
Durham E-Theses

The E�ectiveness of Aural Instructions with

Visualisations in E-Learning Environments

ALHOSBAN, FUAD,HAMAD,MOUSA

How to cite:

ALHOSBAN, FUAD,HAMAD,MOUSA (2011) The E�ectiveness of Aural Instructions with Visualisations

in E-Learning Environments, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/3201/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3201/
 http://etheses.dur.ac.uk/3201/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Abstract
Based on Mayer’s (2001) model for more effective learning by exploiting the
brain’s dual sensory channels for information processing, this research
investigates the effectiveness of using aural instructions together with
visualisation in teaching the difficult concepts of data structures to novice
computer science students. A small number of previous studies have examined the
use of audio and visualisation in teaching and learning environments but none has
explored the integration of both technologies in teaching data structures
programming to reduce the cognitive load on learners’ working memory.

A prototype learning tool, known as the Data Structure Learning (DSL) tool, was
developed and used first in a short mini study that showed that, used together with
visualisations of algorithms, aural instructions produced faster student response
times than did textual instructions. This result suggested that the additional use of
the auditory sensory channel did indeed reduce the cognitive load.

The tool was then used in a second, longitudinal, study over two academic terms
in which students studying the Data Structures module were offered the
opportunity to use the DSL approach with either aural or textual instructions.
Their use of the approach was recorded by the DSL system and feedback was
invited at the end of every visualisation task.

The collected data showed that the tool was used extensively by the students. A
comparison of the students’ DSL use with their end-of-year assessment marks
revealed that academically weaker students had tended to use the tool most. This
suggests that less able students are keen to use any useful and available instrument
to aid their understanding, especially of difficult concepts.

Both the quantitative data provided by the automatic recording of DSL use and an
end-of-study questionnaire showed appreciation by students of the help the tool
had provided and enthusiasm for its future use and development. These findings
were supported by qualitative data provided by student written feedback at the end
of each task, by interviews at the end of the experiment and by interest from the
lecturer in integrating use of the tool with the teaching of the module. A variety of
suggestions are made for further work and development of the DSL tool. Further
research using a control group and/or pre and post tests would be particularly
useful.

The Effectiveness of Aural

Instructions with Visualisations in

E-Learning Environments

Fuad Hamad Alhosban

PhD Thesis

Technology Enhanced Learning Research Group

School of Engineering and Computing Sciences

Durham University

2011

List of Contents
Chapter 1 : Introduction .. 1	

1.1 Research Overview .. 1	

1.2 Definition of Terms ... 3	

1.3 Research Objectives .. 5	

1.4 Research Contributions ... 6	

1.5 Criteria for Success .. 7	

1.5.1 H1: Reducing cognitive load improves student engagement and

outcomes when learning data structures. ... 8	

1.5.2 H2: The use of aural instructions in teaching data structures to

Computer Science students has a positive effect on student perception of data

structure concepts. ... 9	

1.5.3 H3: Students perceive a positive benefit to their learning by using the

DSL tool. .. 10	

1.5.4 H4: There is a positive relationship between a CS student’s level of

engagement with the DSL tool and his/her level of achievement, as measured

by the official assessment marks. .. 10	

1.6 Thesis Outline .. 11	

Chapter 2 : Literature Review ... 13	

2.1 Introduction ... 13	

2.2 Learning and Teaching .. 15	

2.2.1 Active and Passive learning .. 15	

2.2.2 Deep and surface learning ... 16	

2.2.3 Interactive learning ... 18	

2.2.4 Constructive alignment ... 19	

2.2.5 E-Learning .. 20	

2.2.6 E-Learning Technologies .. 22	

2.2.7 Learning Styles ... 23	

2.2.7.1 Why Learning Styles? ... 23	

2.2.7.2 Computer Science and Learning Styles .. 25	

2.2.7.3 Learning Styles in practice .. 26	

2.2.8 Cognitive Load ... 29	

2.2.9 Summary ... 30	

2.3 Learning and Teaching data structures .. 31	

2.3.1 Why data structures? ... 31	

2.3.2 First Year Students and OOP .. 31	

2.3.3 OOP in Java .. 32	

2.3.4 Evaluation of data structures teaching and learning tools 35	

2.3.4.1 Expert IDE Environments ... 35	

2.3.4.2 Micro-worlds Environments ... 37	

2.3.4.3 Advanced Visualisation Environments ... 38	

2.3.5 Summary ... 41	

2.4. Algorithm Animation and Visualisation .. 41	

2.4.1 Definition .. 41	

2.4.2 Why Visualisation? ... 42	

2.4.3 Overview of existing visualisations .. 44	

2.4.3.1 GROOVE: 1992 .. 45	

2.4.3.2 JAWAA: 1998 ... 46	

2.4.3.3 HalVis: 1998 ... 47	

2.4.3.4 iWeaver: 2002 ... 49	

2.4.3.5 SV3D: 2003 ... 50	

2.4.3.6 SHALEX: 2005 ... 51	

2.4.3.7 POOPLES: 2006 ... 52	

2.4.4 Summary ... 53	

2.5. Audio-based Interfaces / Algorithm Auralisation 54	

2.5.1 Definition .. 54	

2.5.2 Background ... 54	

2.5.3 Using Music .. 55	

2.5.4 Spoken language processing ... 56	

2.5.5 Spoken language software and its uses ... 58	

2.5.6 Synthesised Speech ... 59	

2.5.7 TTS with Visualisation ... 60	

2.5.8 Summary ... 60	

2.6 Visualisation and Cognitive Load ... 61	

2.6.1 Reducing cognitive load ... 62	

2.6.1.1 The Dual Channel Assumption ... 64	

2.6.1.2 Limited Capacity Assumption ... 64	

2.6.1.3 Active Processing Assumption ... 65	

2.6.2 Split attention effect .. 65	

2.6.3 Response time and cognitive load .. 66	

2.6.4 Summary ... 67	

2.7. Chapter Summary ... 68	

Chapter 3 : Implementation ... 71	

3.1 Introduction ... 71	

3.2 The DSL tool’s requirements .. 73	

3.2.1 Requirements overview .. 73	

3.2.2 Justifications of requirements ... 74	

3.2.2.1 Aligning the DSL approach domain with the PDS module

requirement ... 74	

3.2.2.2 The DSL tool should be able to capture, organise and retrieve all

the students’ learning events ... 75	

3.2.2.3 Instructional text or audio should accompany the visualisation, and

the student should have the choice of using audio, text, or both feedback

methods ... 76	

3.3 DSL Components’ Design ... 77	

3.3.1 Basic Objects .. 77	

3.3.2 Nodes .. 77	

3.3.3 Integration of aural instructions in a visualisation 78	

3.4 Use case ... 78	

3.5 Implementation of the DSL tool components ... 80	

3.5.1 Basic objects ... 80	

3.5.2 Nodes .. 82	

3.5.3 Embedded TTS Engine ... 84	

3.6 Animating the visual components ... 85	

Chapter 4 : Preliminary Study ... 87	

4.1 Introduction ... 87	

4.2 Study design .. 88	

4.2.1 Study Subjects ... 89	

4.2.2 Variables ... 90	

4.2.3 Subject variable confounds ... 90	

4.2.4 Experiment of Procedure .. 91	

4.3 The DSL Environment .. 93	

4.4 Results ... 95	

4.5 Discussion .. 100	

4.6 Conclusion ... 101	

Chapter 5 : Research Methods .. 104	

5.1 Study design .. 104	

5.1.1 Overview of the study ... 104	

5.1.2 Rejected research methods .. 105	

5.1.3 Ethical Approval ... 106	

5.2 Quantitative data collection ... 106	

5.2.1 Automated collection of usage data .. 107	

5.2.2 Questionnaire .. 110	

5.2.3 Students’ Marks .. 112	

5.2.4 Audio Usage ... 112	

5.3 Qualitative Data Collection ... 113	

5.3.1 Reviewing Student Usage ... 114	

5.3.2 Task feedback and Rating ... 115	

5.3.3 Interviews .. 116	

5.4 Chapter Summary .. 117	

Chapter 6 : Results and Evaluation of the DSL Environment 118	

6.1 Introduction ... 118	

6.2 Participants .. 118	

6.3 Experimental setting and tools .. 119	

6.4 Quantitative data analysis (The DSL usage data) 120	

6.4.1 Analysis of automated usage data ... 121	

6.4.2 Task Feedback .. 124	

6.4.3 Audio Usage ... 125	

6.4.4 Analysis of questionnaire data .. 127	

6.4.5 Students Marks vs. engagement with the DSL environment 131	

6.4.6 Summery ... 133	

6.5 Qualitative data analysis .. 133	

6.5.1 Analysis of individual task comments .. 134	

6.5.1.1 Non-technical feedback ... 134	

6.5.1.2 Technical Feedback ... 136	

6.5.2 Analysis of Interviews .. 138	

6.6 Summary .. 145	

Chapter 7 : Discussion of Research Results ... 147	

7.1 Introduction ... 147	

7.2 Reductions of cognitive load and improving student engagement 147	

7.2.1 Introduction ... 147	

7.2.2 Research Method .. 148	

7.2.3 Results and Discussion ... 149	

7.2.4 Threats .. 150	

7.3 Use of aural instructions and students perception of data structure concepts

 ... 151	

7.3.1 Introduction ... 151	

7.3.2 Research Method .. 151	

7.3.3 Results and Discussion ... 152	

7.3.4 Threats .. 155	

7.4 Students’ perceptions of the benefits of using the DSL tool 156	

7.4.1 Introduction ... 156	

7.4.2 Research Methods ... 156	

7.4.3 Results and Discussion ... 157	

7.4.4 Threats .. 159	

7.5 Students’ assessment marks and their engagement with the DSL

environment ... 159	

7.5.1 Introduction ... 159	

7.5.2 Research Method .. 160	

7.5.3 Results and Discussion ... 160	

7.5.4 Threats .. 161	

7.6 Research Conclusions .. 162	

7.6.1 Introduction ... 162	

7.6.2 Research contributions .. 162	

7.6.3 Answers to the research questions and hypothesis 163	

7.6.4 Limitations of the research ... 168	

7.7 Future Work ... 170	

7.8 Final Conclusion .. 172	

Bibliography .. 174	

Appendices .. 188	

List of Figures
Figure 2.1: Mayes Learning Cycle ... 21	

Figure 2.2: Kolb's Learning Styles and Experiential Learning Model (Clark, 1995)

 ... 24	

Figure 2.3: Snapshot of Alice 2.2 Microworld ... 38	

Figure 2.4: A snapshot of Bednarik’s JEliot 3 visualisation tool 40	

Figure 2.5: Cooper's distribution of visualizations by topic (Cooper, 2007) 43	

Figure 2.6: A GROOVE program specification (Shilling and Stasco, 1992) 46	

Figure 2.7: JAWAA's selection array sorting example (Pierson, 1998) 47	

Figure 2.8: HalVis detailed view screen (Hansen, Schrimpsher, Narayanan, 1998)

 ... 48	

Figure 2.9: iWeaver media experience (Wolf, 2002) .. 50	

Figure 2.10: sv3D working example

(http://graphics.idav.ucdavis.edu/~lfeng/research/sv3d/index.html) 51	

Figure 2.11: Culwin's three POOPLEs “poopRat, poopSub and poopMedic”

(Culwin, Adeboye, Campbell, 2006) .. 53	

Figure 2.12: Tudoreanu illustration of how cognitive load affecting user learning

experience ... 63	

Figure 2.13: Mayer’s multimedia learning model ... 63	

Figure 3.1: Snapshot of DSL tool ... 72	

Figure 3.2: DSL Tool Use Case Diagram ... 79	

Figure 3.3: A snapshot of User Profile .. 80	

Figure 4.1: Visual representation of Bank object created by DSL tool 89	

Figure 4.2: Lab Class quotation .. 92	

Figure 4.3: Illustration of instruction format example .. 95	

Figure 4.4: Mean of Response Time Plot in seconds .. 100	

Figure 6.1: Students’ usage time ... 122	

Figure 7.1: The use of audio during the experiment ... 154	

List of Tables

Table 1.1: Research Hypotheses and Research Questions 8

Table 2.1: Learning styles incorporated into adaptive systems (Stash, Cristea, Bra,

2004) ... 27

Table 4.1: Groups and Conditions table .. 90

Table 4.2: Means of Response Time in seconds for each student in different

method groups ... 96

Table 4.3: One-Way ANOVA test results ... 97

Table 4.4: Further ANOVA Results .. 98

Table 4.5: Multiple Comparisons Table .. 99

Table 6.1: Task Type Count .. 123

Table 6.2: Effective usage of DSL approach .. 124

Table 6.3: Percentage of Aural instruction usage against Textual instructions .. 126

Table 6.4: Students' responces to quiestionner question Q1 127

Table 6.5: Students' responses to questioner question Q2 128

Table 6.6: Students' responses to questioner question Q9 128

Table 6.7: Students' responses to questioner question Q4 129

Table 6.8: Students' responses to questioner question Q5 130

Table 6.9: Interviewees’ quantitative data .. 139

Declaration
No part of the material provided has previously been submitted by the author for a

higher degree in Durham University or in any other University. All the work

presented here is the sole work of the author and no-one else.

Copyright
The copyright of this thesis rests with the author. No quotation from this thesis

should be published without prior written consent. Information derived from this

thesis should also be acknowledged.

Acknowledgements

I would like to thank everyone who has helped me to complete this thesis.

Without them, the work would never have been accomplished.

I am especially indebted to the following people.

My father, Hamad Alhosban who has provided continuous moral and financial

support over the whole period of my post graduate studies. My mother’s prayers

and support gave me hope and motivation to continue through difficult periods.

My lovely wife, Samantha, gave me her love, patience and continuous support

through both the easy and the difficult times of my research work.

Professor Elizabeth Burd provided me with brilliant supervision and supported me

with ideas and advice that helped me greatly.

Dr Andrew Hatch has been a good friend, as well as an excellent second

supervisor, and I have valued his advice on both personal and academic issues.

Dr Iyad Alagha has been a good and special friend who was always available to

help, listen and give advice.

Finally, I record my respect and thanks to everyone in my family and to all my

friends for their support and encouragement and for being part of my life.

1

Chapter 1 : Introduction

1.1 Research Overview

One of the first challenges that faces novice computer science (CS) students when

they start their course is to acquire the skills required to write or compile

computer programmes. Consequently, the Introduction to Programming and the

Data Structures (PDS) modules are compulsory for first year CS students at

Durham University, UK. Within these modules, object-oriented programming

(OOP) is a widely used paradigm for software development.

OOP is defined by Snyder (1986, p1) as “a practical methodology that encourages

modular design and software reuse.” data structures, on the other hand, offer

memory based organisation of information for better algorithm efficiency

(McAllister, 2008, p.5). Understanding the concepts of OOP and data structures is

crucial because they enable students to reuse existing code and to create objects

that form the building blocks of their programming projects.

The starting point towards students acquiring professional programmer skills is to

make sure that they participate in high quality learning. Students need to interact

with their learning environment by talking, listening, reading, writing and

reflecting on their own knowledge as they approach the course content (Meyers,

1993). This interaction helps students to be actively engaged with their learning

environment. Active learning theories believe teachers and students to be actively

engaged in their learning environment if they are exploring, experiencing,

experimenting, testing and applying the knowledge they gain in class to solve real

life problems (Longmire, 2000).

2

Visualisation is one of many attempts to use technology to improve learning by

creating a mental image of how things work. It is also a common learning style

that many students prefer as a way to increase their comprehension of concepts,

bearing out the proverb “a picture is worth a thousand words.” As an active

learning approach, interactive visualisation tools increase the interaction between

the learner and the subject being studied (Evans and Gibbons, 2007).

The visualisation of algorithms is used to enhance learners’ experience and

facilitate the understanding of the algorithm and its concepts. However, there are

problems with many of the existing visualisations. These include loss of focus if

the level of abstract representation focuses concentration on low-level steps rather

than on high-level properties like invariants (Mudner and Shakshuki, 2004).

The use of audio, either musical or spoken sound, was presented by researchers

(Gaver et al., 1991; Brown, 1992; Stifelman, 1995; Franklin, 2001; Vickers et al.,

2005) as a means of aiding visualisation in learning environments. Its usage in CS

learning and in algorithm animation started as a way to describe what

visualisations are currently showing (Brown, 1992). It can also help students to

focus on their learning task. This means that the use of both aural instructions and

visual components can improve students’ awareness of their learning

environment.

Cognitive approaches to human methods of learning, on the other hand, have

highlighted the transformation that occurs on different mental representations of

situations and tasks. To understand human cognition, some knowledge of models

of human memory organisation is important. Kahneman (1973, p.173) and Navon

(1984) explained that the concept of mental load was based on the concept of a

communication between two channels with limited capacity. The Dual Channel

Assumption (Mayer, 2001) believes that humans process information in two

3

separate channels, visually or aurally. Research shows that the use of animation

and an associated aural narration were most effective when presented

simultaneously rather than successively (Kalyuga, 2006). In short, to provide

students with an effective and active learning environment, the cognitive load

should be reduced to the minimum.

This research investigates the use of focused visualisation with aural instructions

in an interactive learning environment to help students to learn OOP and data

structures. By exploiting the dual-channel approach, this integration is expected to

reduce cognitive load on learners’ working memory.

The research presented in this thesis was conducted at Durham University. It

involved first year CS students in the School of Engineering and Computing

Sciences who undertook both the IP and the PDS modules. These modules

introduce the concepts of OOP and data structures as a starting point in learning

programming using the Java programming language. However, the approach used

in this research may be applied to learning any other programming language.

1.2 Definition of Terms

To establish a solid theoretical structure for this thesis, a set of frequently used

key terms are listed and defined below:

• Aural Instructions

Interactive high quality computer generated speech in the form of short

instruction that helps students to complete a learning task.

4

• Cognitive load

The amount of mental effort needed by the brain to learn something, solve a

problem or correctly respond to instructions.

• Data Structures

The concept of dividing programming problems into smaller pieces and

creating building blocks that are called objects. This research refers to two

types of data structures: Linked Lists and Binary Trees.

• Data Structure Learning (DSL) Environment

An environment designed as a centre for CS students’ learning activities; it

provides the content and resources required to help make the activities

successful. It targets students who are studying the Programming and Data

Structures modules. The DSL environment consists of the DSL approach and

the DSL tool.

• DSL Approach

The approach adopted by this research. It is an interactive learning method

using visualisation with aural instruction to teach CS students the concepts of

data structures programming.

• DSL tool

A learning tool that implements the DSL approach through an interactive

software application that helps CS students to learn the concepts of data

structures.

5

• E-Learning

Delivery of a learning, training or education programme by electronic means,

such as a computer or electronic device (e.g. a mobile phone).

• Multimedia Learning

A method for simultaneously presenting visual and aural content to provide

training, educational or learning material.

• Practical Session

A compulsory two hour class where students practice programming lessons

and solve their programming assignments. These sessions take place at the

School of Engineering and Computer Sciences labs in Durham University.

• Textual Instructions

Interactive instructions shown on screen in the form of written text that helps

students to complete a learning task.

• Visualisation Task

A sub program of the DSL tool which enables students to use the interactive

visualisation to learn the concepts of data structures. The DSL tool contains

four visualisation tasks: Learning About Objects, Linked Lists, Binary Search

Tree, and Binary Tree Traversal.

1.3 Research Objectives
Previous research (Kazi, 2000; Cross, 2004; Karavirta, 2004; Bednarik, 2006;

Culwin, 2006; Rajala, 2008; Wolf, 2008; Briana, 2009) in this field examined the

use of visualisation tools to assist students’ learning experience. This research

6

investigated the reduction of cognitive load by providing an intensive

visualisation environment. However, not all visualisation environments reduce the

cognitive load, and Tudoreanu (2003, p106) argues that a “visualization

environment that requires users to handle additional information and tasks, which

increases cognitive load, offers similar performance advantages to that of a user

who has no visualization at all.”

Other research (e.g., Brown, 1992; Franklin, 2001; Vickers, 2005; Qiu and

Benbasat, 2005) investigated the use of sounds or audio feedback to improve the

interaction between users and their systems. However, their investigation did not

exploit the dual channels of working memory to speed the learning process.

The main goal of this thesis is to investigate the effectiveness of using aural

instruction together with visualisation in teaching the concepts of data structures

to novice CS students.

1.4 Research Contributions

The most important contributions of this research are:

- Development of a learning environment and a learning approach that

facilitates the use of both aural instructions and visualisation to assist

students in learning the concepts of data structures, and a tool that

implements the approach called the Data Structures Learning (DSL) tool.

- Obtaining quantitative data to investigate the ways students interact with a

new learning method that uses visual and aural instructions when learning

the concepts of data structures.

- Obtaining qualitative data that measures the effectiveness of using the

DSL tool and its impact on the students’ learning experience.

7

- Using an active learning approach to assist CS students’ learning based on

interacting with the DSL tool.

In addition, the thesis will answer a set of research questions shown in Table 1.1.

1.5 Criteria for Success

In order to reach conclusions about the learning issues raised in Section 1.3, it is

important to propose and answer a set of research questions. These are

approached by proposing four hypotheses concerned with cognitive load, student

perception, and outcome. The success of this research will be measured by the

clarity of its answers to the research questions and its conclusions about the

hypotheses.

Table 1.1 shows the four hypotheses and the nine research questions.

H1 Reducing cognitive load improves student engagement and outcomes
when learning data structures.

Q1 What existing research evidence is there that the simultaneous use of
aural instruction along with visualisation will reduce cognitive load when
learning data structures?

Q2 Does the combination of aural instruction and visualisation reduce
students’ response time for task completion compared with textual
instruction and visualisation?

H2 The use of aural instructions in teaching data structures to CS
students has a positive effect on student perception of data structure
concepts.

Q3 Do CS students perceive benefits from aural instructions along with
visualisation when studying data structures?

Q4 Is there a relationship between visualisation type and CS students’ choice
of instruction type?

8

Q5 Do students prefer the DSL environment based on visualisation only
regardless of the type of instruction?

H3 Students perceive a positive benefit to their learning by using the
DSL tool.

Q6 Do CS students choose to use the DSL tool while studying data
structures?

Q7 Of the three data structure types used in this study, which do CS students
select to explore through the DSL tool?

Q8 Do CS students perceive benefits from using the DSL tool to build a
mental model of data structures?

H4 There is a positive relationship between a CS student’s level of
engagement with the DSL tool and his/her level of achievement, as
measured by the official assessment marks.

Q9 What is the level of achievement of CS students who choose to use the
DSL tool the most?

Table 1.1: Research Hypotheses and Research Questions

There follows a justification of how the proposed research questions support

investigating the research hypotheses.

1.5.1 H1: Reducing cognitive load improves student engagement and

outcomes when learning data structures.

The first element that the research investigates is the reduction of cognitive load

in learning environments. This hypothesis claims that reducing cognitive load will

result in a better engagement of students with the learning environment and, thus,

improve their learning outcomes.

Q1 focuses on finding evidence from previous research in the field of multimedia

learning that the simultaneous use of aural instruction with visualisation will

9

reduce cognitive load. The evidence should also show that the reduction of

cognitive load leads to a reduction of students’ response time to a set of

instructions. Q2, on the other hand, investigates how students’ response time to

instructions is affected by the format of the instruction, e.g.: textual, aural or

textual with aural.

1.5.2 H2: The use of aural instructions in teaching data structures to

Computer Science students has a positive effect on student perception of data

structure concepts.

The second element of the research concerns students’ perception of the research

approach. This research claims that the use of aural instructions with visualisation

can help CS students in learning the concepts of data structures.

Q3 investigates whether or not students perceive benefits from the use of aural

instructions with visualisations when they study the data structures types.

Students’ responses to a questionnaire can provide direct evidence about the

benefits of using the DSL environment, and the extent to which the approach

provided students with a positive effect on their perception of data structure

concepts.

Q4 investigates if there is a relationship between the types of data structure

visualised and students’ choice of instruction format (aural or textual). The data

generated during students’ experience of the learning environment can show if the

use of aural instructions had a positive effect on student perception of some data

structure concepts, and whether or not they tended to use the aural instruction

format in learning the concepts that are harder to understand. On the other hand,

Q5 investigates if students preferred to use the interactive learning environment

10

based on visualisation only, without any consideration of the format of

instruction.

1.5.3 H3: Students perceive a positive benefit to their learning by using the

DSL tool.

Also within the second element of the research, that is students’ perception, this

research hypothesises that there is a positive benefit of using the prototype tool

created to test the research approach validity. Q6 investigates if students choose to

use the DSL tool in practice while studying the proposed data structure. The

frequency of student usage will help to determine whether or not the DSL tool

benefits student learning. Q7 investigates which of the three visualised data

structures engaged students the most. The answers to this question will provide

information about the preferred visualisation task among all the students and show

the level of positive benefit perceived from each visualisation task.

Q8 investigates if students perceive benefits from being able to build a mental

model of the proposed data structures. The answer to this question can provide

information about the overall student experience with the DSL approach, and

whether or not it helped them in meeting their expectations of the DSL tool.

1.5.4 H4: There is a positive relationship between a CS student’s level of

engagement with the DSL tool and his/her level of achievement, as measured

by the official assessment marks.

The third element of the research investigates the outcomes for students of using

the designed learning environment. The CS students’ level of engagement with

11

the interactive learning environment will be compared with their official end-of-

year assessment marks. Q9 investigates whether or not students’ level of

achievement has a relationship with the duration of their engagement with the

DSL tool. The results will provide information about what type of students are

keen to use the DSL tool.

1.6 Thesis Outline

This is the first of seven chapters in this thesis. The others are outlined below.

Chapter 2 provides an overview of the research literature related to collaborative

teaching tools that claim to enhance students’ learning experiences. Such tools

implement the use of software visualization, aural instructions and interactive

learning environments. To cover the learning process from all aspects, this chapter

also reviews students’ perceptions, and their willingness to engage with new

approaches.

Chapter 3 describes with the implementation of the tool that was developed to

evaluate the approach to learning of this research. However, it starts by

introducing the adopted DSL learning environment and discussing the reasoning

behind adopting the DSL approach and how it relates to the research questions.

The discussion of the implementation of the DSL tool focuses on some of the

technical details of the tool’s components and functionality. It describes the

methodology of visualising interactive DS concepts in easy-to-use sub-programs

called tasks, as well as integrating Text to Speech (TTS) technology to provide

spoken feedback to students.

Chapter 4 focuses upon the pilot study designed to test the functionality and

reliability of the research environment, and to answer research question Q2. This

12

ensures that the correct path is set to answer the rest of research questions. The

study investigates the use of the DSL environment to assess the effectiveness of

using textual and aural instructions in a visualised CS learning environment by

measuring students’ response time to aural and textual instructions.

Chapter 5 discusses the methodologies employed in this research to answer the

research questions. The first part will look at students’ learning objectives and the

features of a learning tool that will match students’ requirements with the least

possible cognitive load on the students. It will describe the technical information

involved in developing the DSL tool. Finally, it will describe the experimental

design of the research.

Chapter 6 discusses the evaluation of the DSL environment and provides an

overview of the students’ engagement with the DSL tool during the course of the

study. It details the results of the data collected in this research by both

quantitative and qualitative methods.

Chapter 7 analyses the overall results of using the DSL environment, and

evaluates the quantitative and qualitative data obtained. The analysis of the results

will answer the research questions listed in Table 1.1 and decide if each of the

research hypotheses have been proved or disproved. It also presents the

conclusions of this study and considers the future work that could be developed as

a result of this research.

13

Chapter 2 : Literature Review

2.1 Introduction

Understanding the concepts of Object Oriented Programming (OOP) and data

structures is crucial for CS students. OOP and data structures are important

because they enable the reuse of existing code and the creation of objects that

form the building blocks of a student’s project. In turn, these shorten the time

needed by programmers to provide code in a wide range of academic exercises,

and in the real world. However, this will be hard for student programmers to

achieve if they fail to understand the underlying theoretical assumptions.

The starting point towards developing professional programmer skills is to make

sure that the students have meaningful learning and that they are able to adapt to

new technologies in different circumstances. The quality of learning, however,

depends on the curriculum and in-class activities. It also depends on the approach

adopted by teachers to deliver the knowledge skills required. Thus, the point is to

provide students with activities that open their eyes to the new world of creativity

in programming techniques and well-structured ways of thinking.

In order to help students to understand the concepts of data structures, it is

necessary to look at the way each student learns. Adapting to students’ learning

styles requires that teachers deliver learning materials that suit every student.

Different approaches will be discussed in this research. To adapt to students’

learning styles and thus enhance the learning process, a collaborative environment

14

needs to be created. Furthermore, teaching towards each of the main learning

styles needs to be considered in order to provide a suitable learning environment

for each learner.

Using visualisations and algorithm animation in the classroom may support one of

the student learning styles. Many researchers have developed visualisations to

enhance students’ learning experience and open student minds to engage with the

concepts rather than memorising them as facts or chunks of knowledge (Brown,

1991; Shilling and Stasco, 1992; Culwin, Adeboye and Campbell, 2006). This

enhancement of learning experience is the main purpose of attempting to change

from the passive reception of information to involving students more in the

learning process.

Aural based interfaces can also enhance visualisation tools and thereby support

another main leaning style. This research will look at studies on supporting visual

interfaces with auditory instruments and examine research on associated issues,

such as the use of audio and visualisation together to help people with visual

disabilities or to create another way of communicating with students who learn

more by listening.

This research will cover the interactive and collaborative technologies that engage

students in the learning process and give them the chance to create, update and

even interact with their learning materials.

15

2.2 Learning and Teaching

2.2.1 Active and Passive learning

Active learning requires a learning environment which allows students to interact

by talking, listening, reading, writing and reflecting on their own knowledge as

they deal with the course content. They can do this through problem-solving

exercises, informal small groups, simulations, case studies, role playing, and other

activities, that require students to apply what they are learning (Meyers, 1993).

Active learning is an attitude towards learning, and a teaching method, that

encourages the student to play a more active role in his or her learning. However,

some people (e.g., Roberts, 2001) have argued that listening to lectures, watching

films or television or browsing the web are activities that do not require student

engagement and that encourage learners to be passive.

What is really required is that students should be engaged in class of higher-order

tasks so that they do more than just listening. Such tasks involve analysis,

evaluation and synthesis. Active learning approaches have been introduced by CS

educators into their classrooms with students working alone or in groups solving

problems or participating in activities during lectures. Individual solutions can be

shared with the class, for example, by asking students to write their answer on the

board or overhead projector. This is a classical interactive exercise by which an

individual student’s solution benefits the whole class. All students are helped by

seeing other students making mistakes similar to their own or by seeing more

advanced students present a particularly elegant solution (Simon et al., 2004). In

addition, such interaction gives the instructors a clear idea about the students’

level of understanding and helps them to decide on the best way to teach the

subject.

16

In contrast, passive learning takes place in a more traditional classroom where

instructors verbalise the information and student activity is confined to taking

notes. Students are assumed to enter the course with minds like empty vessels or

sponges to be filled with information without necessarily considering the theory

behind it. Some instructors consider this method is based on common sense

(McManus, 2001).

McKinney (2007) argues that students who prefer passive learning or students in

large classes may show some resistance to active learning, especially if they are

familiar with traditional lectures. Therefore, there is a need to prepare students for

active learning methods by explaining to them the objectives and benefits of such

methods. Some appropriate training for the teachers may also be needed to help to

implement active learning techniques (Niemi, 2002).

Active learning can be implemented in or outside the class. The implementation

of educational tools can be through computer simulations, internships, online

assignments, Internet discussion lists, or independent study (McKinney, 2007).

Active learning can be used with all levels of students from first year

undergraduates through to graduate students. Teaching a full class does not

prohibit the use of active learning techniques; in fact, in a large class, they may be

especially important to promote interest and learning (McKinney, 2007).

2.2.2 Deep and surface learning

The concepts of deep and surface learning are the two key approaches to the way

we learn and interact with the surrounding environments. Marton and Saljo (1976)

carried out the original work on approaches to learning. In an experiment, two

groups of students were given an academic text to study, and they expected to be

17

questioned about this text. Each group adopted a different approach. One focused

on memorizing some facts that they expected to be quizzed about, while the other

tried to understand the whole meaning of the text. The first group can be called

surface or superficial learners while the other can be considered as deep learners.

Atherton (2005, para.2) identified a third approach called “achieving” learning,

defined as “a very well-organised form of surface approach, and in which the

motivation is to get good marks.”

Deep learners concentrate on what is important and they relate what they are

learning to their previous knowledge. Deep learners tend to implement the

acquired knowledge in their daily lives. They also organise and structure content

into a coherent whole, and this all comes from the learners’ own efforts. On the

contrary, surface learners tend not to relate problems they encounter to a main

concept, and tend not to differentiate between principles and examples, as their

focus is how they will be assessed (Ramsden, Beswick and Bowden, 1989).

Deep approaches to learning in higher education have been intensively researched

(e.g., Atherton, 2005; Notess, 2006; Smith, 2007) and they are now widely

encouraged as an optimal way of module content delivery, although deep learning

is not easy to achieve. In order to push students more towards deep learning,

Notess and Neal (2006) suggested five approaches that an instructor needs to

apply:

- Make sure that the course is well organized, paced, and communicated.

Otherwise, students will become disappointed, discouraged or frustrated.

- Develop activities that are authentic and feel more real than imitation, and

relate them to the student by letting real world constraints play a part.

- Give the students more control of the course content by allowing them to

select the required reading or the type and topics of their assignments.

18

- Select activities that cannot be completed without application, analysis,

synthesis and evaluation, thus challenging the students and raising the

standard of discourse.

An important constraint on the promotion of deep learning outcomes among

students is that their teachers might not have been given enough training, tools

and time to engage in practices that contribute to these outcomes (Smith and

Colby, 2007, p:205). Teachers must promote intentional rather than accidental

efforts to enable deep student learning.

2.2.3 Interactive learning

Allen (1999) describes interactive learning as a process that enables students to

obtain information by combining traditional resources, such as textbooks, with

hands-on activities. In interactive learning, students work together in groups or

they interact with tutoring software or any appropriate media tool. Interactive

learning is also learning by doing and experimenting with knowledge in order to

understand it. It is considered an important learning style.

In order to provide interactive learning and achieve deep learning, instructors need

to use the latest online technologies and adopt the new communication mediums

that students are already using (Rajasingham, 2010). Even before students start

their higher education, technologies that enhance collaboration between staff and

students, and between students themselves, can be used.

19

2.2.4 Constructive alignment

Biggs (2003) created the term ‘constructive alignment’ to express the

underpinning concept behind the requirements for programme specification,

declarations of Intended Learning Outcomes and assessment criteria, and the use

of criteria based assessment (Houghton, 2004). Biggs’ notions support active

learning by encouraging learners to construct their own knowledge rather than

adopting passive learning and accepting whatever they are told. Biggs (2003,

p.13) summarises his approach in his claim that “Education is about conceptual

change, not just the acquisition of information."

Alignment requires teachers to set up learning environments that support the

learning activities appropriate to achieving the desired learning outcomes. The

teaching methods should be aligned with the learning activities assumed in the

intended outcomes, and this should be done in a way that engages the learner and

ensures that the intended learning outcomes are achieved.

Biggs (2003) suggests four main steps to achieve constructive alignment:

1. Defining the intended learning outcomes (ILOs)
2. Choosing teaching/learning activities likely to lead to the ILOs
3. Assessing students' actual learning outcomes to see how well they match

what was intended
4. Arriving at a final grade

It is argued that a well-designed course will hinge on a close relationship between

these essential elements. A poorly designed course will not develop these close

relationships and consequently it will be difficult for learners to achieve their

desired learning goals.

This research presents the approach of using aural instructions combined with a

visualised interactive environment. This environment is designed to match the

intended learning outcomes of the Programming and the Data Structures modules

20

designed for novice students studying Computer Science at Durham University.

These learning outcomes will be discussed in detail in Section 3.2.1. Based on

Biggs’ constructive alignment theory, this thesis aims to apply the constructivism

process. This process is met by making sure that the end product of the research

meets the Computer Science Department’s stated learning outcomes. It also

introduces a new learning activity through producing visualisation of the concepts

of data structures. This is based on creating an interactive tool that helps students

in their learning process to meet their ILOs.

2.2.5 E-Learning

E-Learning or Electronic Learning has been defined in many different ways

depending on the context (Stockley, 2004; Nycz, 2007). According to Stockley

(2003, p.1), electronic learning is “The delivery of a learning, training or

education program by electronic means. E-Learning involves the use of a

computer or electronic device (e.g. a mobile phone) in some way to provide

training, educational or learning material.”

The term E-Learning is generally used to refer to the use of electronic tools in a

learning process. However, there has been disagreement about the accuracy of this

definition, as the use of some electronic devices, such as a microphone or a data

projector, does not constitute E-Learning. Tavangarian (2004, p.2) suggests that

E-Learning could be defined as “all forms of procedural electronic supported

learning and teaching” that aims to “affect the construction of knowledge with

reference to the learner’s individual experience, practice and knowledge.” E-

Learning is the use of new technologies, applications and networking to improve

the process of learning and help the learner to get the most knowledge from their

studies.

21

Mayes (1999) argues that there are three fundamental stages of learning and these

can be supported by three kinds of courseware. Technology based learning, he

says, involves a cycle of conceptualisation, construction and dialogue, as shown in

Figure 2.1. At the conceptualisation stage, learners review other people's learning

resources online, such as lecture slides or other external information. In the

construction stage, learners apply the knowledge they have acquired to

meaningful tasks, and this can be done by using computer assisted assessment or

online tests. Finally, at the dialogue stage, actual learning takes place when the

learners get feedback from their instructors about their performance and this can

be supported by using online discussion or any other form of online social

interaction.

Figure 2.1: Mayes Learning Cycle

Salmon (2002, p.3) presented the concept of online learning activities “e-tivities”

as frameworks to enhance active online learning by individuals or groups. The

importance of e-tivities comes from their ability to produce useful pedagogies for

learning by focusing on their implementation by means of network technologies.

Although Salmon argues that e-tivities can make a key difference in learning,

little enjoyable and cost effective online teaching has been produced.

22

2.2.6 E-Learning Technologies

There is a long history of failed attempts to improve the processes of teaching by

using technological innovations like radio and TV (Warschauer and Healey, 1998;

Salaberry, 2001). However, there is still some optimism that it can be done,

especially if crucial parameters, or crucial characteristics, are satisfied. Nicolaou

and Constantinou (2005) listed four such parameters:

- Networking technologies that provide the communication capabilities that

are tuned to the requirements of teaching and learning.

- The learning sciences have a better grasp of the requirements offered by

technological solutions.

- Research tools support the process of implementation through the

evaluation of learning outcomes.

- The awareness by teachers of the need for improved teaching methods to

achieve higher quality education.

The new technologies have proven E-Learning potency and the capability to reach

all kinds of people, at different learning levels. This also applies to non-students

who use the new technologies to learn something. Such technologies include

screencasts, ePortfolios, Personal Digital Assistants (PDA's), MP3 Players with

multimedia capabilities, web-based teaching materials, hypermedia in general,

multimedia CD-ROMs, web sites and web 2.0 communities, collaborative

software, e-mail, blogs, wiki, text chat, computer aided assistance, educational

animation, simulations, games, learning management software, electronic voting

systems, virtual classrooms and many others.

E-Learning has proved valuable beyond traditional education and can be exploited

for the long term learning requirements of its users, such as for Collaborative

Professional Development (CPD). This research is related to E-Learning because

23

it proposes a prototype tool to be used in CS labs to provide interactive

visualisation with aural instructions. This E-Learning technology aims to help

students in their learning process.

2.2.7 Learning Styles

The term ‘learning styles’ refers to the ways in which students prefer to learn.

They include seeing and hearing, reflecting and acting, reasoning logically and

intuitively, and analysing and visualizing (Felder and Soloman, 1988).

Felder and Soloman (1988) categorised four main learning styles. Active and

reflective learners tend to understand information by doing something active with

it. Sensing and intuitive learners like to learn facts and they seek possible

relationships between them. Visual and verbal learners get more information from

seeing or from written or spoken words than from any other format. Finally,

sequential and global learners depend on the order of the information presented to

them.

2.2.7.1 Why Learning Styles?

The interest in students’ learning styles started in the mid-1980s. Felder and

Soloman (1988) suggested changing teaching methods so that they suited

students’ ways of learning. They did not call for a radical change in teaching

methods, but rather for the systematic adoption of some instructional techniques

to suit the variety of learning styles found in students.

Kolb (1984, p 21) also presented an early learning style model. This used terms

such as experiential learning theory (ELT) and learning styles inventory (LSI).

24

Kolb’s model operates at two levels and it identifies four main types of learning:

concrete experience, reflective observation, abstract conceptualization, and active

experimentation, as illustrated in Figure 2.2. The second level distinguishes four

main learning styles: diverging, assimilating, converging, and accommodating

(Kolb, Boyatzis and Mainemelis, 2001, p 139). Kolb’s learning model proposes

that there are four types for learning abilities, namely, Experiencing, Reflecting,

Conceptualising, and Planning, and learners choose which of these they will use

in different learning situations.

Figure 2.2: Kolb's Learning Styles and Experiential Learning Model (Clark,
1995)

25

Rosati, Dean and Rodman (1988) studied the relationship between students'

learning styles and instructors' teaching styles. In an experiment to explore the

interaction between the learning styles of students and the way they were taught,

two different presentations were made to two similar heterogeneous groups of

engineering students. One was designed for sensing style students who rely on

experience rather than theory and have a preference for advancing from their

starting knowledge in a step-by-step manner. The other was designed for intuitive

students who tend to rely on intuition and inspiration and who are often more able

to understand abstract, symbolic and theoretical relationships. The Myer-Briggs

type indicator (MBTI) of personality was used in this experiment as an indicator

of the students’ learning-style preferences. The results showed that students’

performance can be improved if teachers recognize the importance of individual

learning styles.

2.2.7.2 Computer Science and Learning Styles

Howard et al. (1996) looked at integrating Felder’s (1988) learning styles, Klob’s

(1984) learning cycle and Bloom’s (1956) taxonomy, which they described as “a

hierarchical representation of the students depth of knowledge in a given subject

or cognitive domain” (p.227). They developed a blueprint that used a number of

teaching tools with one computer science class and, over an entire semester,

divided the time equally to meet the requirements of each type of learner. They

concluded that there are many techniques and tools available to improve students’

performance in the classroom.

Dunn and Dunn’s (1990) Learning Styles, also known as the Visual, Auditory and

Kinaesthetic (VAK) learning model, has been widely used in schools in the

United States. Its major components include the model's principles, its learning

26

style elements, identifying each student’s learning style, and its impact on the

dimensions of the instructional situation. The main principle or theoretical

assumption of this model is that “Most individuals can learn” (Dunn, 1990, p.1).

Instructional environments, resources and approaches depend on diversified

learning style strengths. Everyone has strengths, but different people have

different strengths. Individual instructional preferences exist and can be measured

reliably. Given suitable environments, resources and approaches, students attain

statistically higher achievement and attitude test scores in matched, rather than

mismatched treatments. Most teachers can learn to use the concepts of learning

styles as a cornerstone of their instruction. Many students can learn to capitalize

on their learning style strengths when concentrating on new or difficult academic

material (Dunn, 1990).

The University of Newcastle-upon-Tyne carried out two projects to evaluate the

models of learning styles inventories and their impact on post-16 pedagogy

(Coffield et al., 2004). Their main questions were which models are influential or

potentially influential, and what is the empirical evidence to support the claims

made for these models. They reviewed Dunn & Dunn’s model, and conclude that

“Despite a large and evolving research programme, forceful claims made for

impact are questionable because of limitations in many of the supporting studies

and the lack of independent research on the model” (Coffield et al., 2004, p.35).

2.2.7.3 Learning Styles in practice

Moving to the practical problem of implementing the concepts of learning styles

for web applications, Stash, Cristea and Bra (2004) looked at the application of

learning styles in the new educational space created by the Web. They wanted to

provide authors with a tool that enabled them to use different learning models in

27

their own adoptive educational hypermedia. Table 2.1 shows how, according to

Stash et al. (2004), the main existing systems relate to students’ learning styles.

System Learning Style

AEC-ES

(Triantafillou et al.,
2002)

field-dependent (FD) and field-independent (FI)
style

ARTHUR

(Gilbert et al., 1999)

visual-interactive, auditory-lecture and text styles

CS388

(Carver, 1999)

Felder-Silverman (1988) learning styles model,
global-sequential, visual-verbal, sensing-intuitive,
inductive-deductive styles

INSPIRE

(Grigoriadou et al.,
2001)

Honey and Mumford (1992) categorisation of
activists, pragmatists, reflectors and theorists based
on Klob

iWeaver

(Wolf, 2003)

auditory, visual , kinaesthetic, impulsive, reflective,
global, analytical styles of Dunn and Dunn’s (1990)
learning style model

MANIC

(Mia, 2000)

applies preferences for graphic versus textual
information

Tangow

(Paredes et al., 2006)

sensing-intuitive dimension from the Felder-
Silverman (1988) learning style model

Table 2.1: Learning styles incorporated into adaptive systems (Stash, Cristea,
Bra, 2004)

28

Stash et al. (2004) did not recommend any particular instructional strategy for a

particular learning style. Their work focused on implementing various

instructional strategies and providing authors with tools that allow them to define

adaptive strategies and specify which instructional strategies should correspond to

which learning style.

One of the systems listed in Table 2.1 is iWeaver, which suits the auditory, visual,

kinaesthetic, impulsive, reflective, global and analytical learning styles of the

Dunn and Dunn (1990) learning style model. It was a PhD project designed by

Wolf (2003) to provide a flexible and manageable environment for the learner by

implementing adaptive hypermedia techniques. Its importance here is that, like

this research, it applies its strategies on computer science students in higher

education, using the Dunn and Dunn (1990) learning styles model.

A statistically based study by Chamillard and Sward (2005) shows that a student's

learning style not only affects his or her performance in introductory computer

science courses, but that it can also affect performance across all the courses in the

CS curriculum. Although they found a wide variety of statistically significant

results, it was unreasonable to expect significant results across all course

assessments for all dimensions of the various learning style models included in the

case study. The wide-range of results and the limitation of the sample, as all the

tested students were from one university, means that there should be caution about

generalising the results to all CS students. Chamillard and Sward themselves

suggest that further studies are required, and that the approach would better if it

were course-specific rather than covering the whole curriculum. The effect of

implementing learning styles cannot always be clear even with statistically based

studies.

29

A later work on learning styles tried to address the effectiveness of considering

learning styles in computer science courses and the cultural differences between

students. Zualkernan’s (2006) hypothesis was that cultural background may

impact on learning styles and those patterns of thinking may differ from one

culture to another. However, his investigation concluded that there are strong

similarities in learning styles among students from different cultures. This

supported Howard’s et al. (1996) study, which concluded that there is great

similarity in learning styles between students from different cultures, and the

comparative learning style profiles mirrored one another in almost all respects.

However, More’s (1989) comprehensive survey of multiple studies shows that

Native Americans differ in their learning styles from people of Caucasian descent;

the former tend to be more visual than verbal and more reflective than active in

their learning styles. The adaptation of teaching and learning systems of students’

learning styles in any learning environment is crucial to accomplish the optimal

collaboration between the student and the learning materials. Moreover, such

adaptation creates a positive relationship between the learner and the teacher, as

the student feels better able to absorb information, and to keep up with the

progress of the class or lecture. Previous work has shown that a consideration of

learning styles is very important to the learning process, and it has presented some

implementations that tried to help CS students to achieve the best results when

learning.

2.2.8 Cognitive Load

The cognitive load theory (CLT) was introduced by Swiller in 1988 (Kalyuga,

2006). CLT is defined as a model for instructional design based on the knowledge

of how learners acquire, process and retain new information (Sweller, 2008). It

30

proposes that a successful use of the model results in more effectual learning, and

greater retention of information in the long term memory, so that it can be recalled

when required (Seery, 2008).

In computer science modules, students are exposed to different visualisation tools

which are used for teaching programming concepts. The use of multiple visual

tools, available on the internet, to help students to understand data structures

concepts, increases the cognitive load on students’ brains (Tudoreanu, 2003).

Section 2.6 will discuss in more detail the relationship between cognitive load and

the use of visual learning tools. It will show that the literature suggests that the use

of visualisation tools does not necessarily have a positive impact on learning.

However, the use visualisation together with audiolisation does tend to lead to a

better learning experience.

2.2.9 Summary

The research covered in Section 2.2 shows the importance of interactive learning

environments, and the necessity to have the appropriate tools to facilitate students’

interaction as well as the knowledge to use such tools professionally and skilfully.

Moreover, it is necessary to be aware of student’s perceptions, and their

willingness to accept these new approaches.

31

2.3 Learning and Teaching data structures

2.3.1 Why data structures?

This section explores the importance of OOP for CS students. It looks at the

feasibility of learning object and data abstraction even before starting computer

science studies at university. It investigates this in relation to project management

skills, and solving real life problems.

Early in the 1970s, the need for software engineers to produce large software

systems increased (Olthoff, 1986). The complexity of these new programs and the

facilities offered by procedural languages made it very difficult to keep track of

the coding process and error correction. Size and complexity also reduced the

reliability and readability of the programs. The OOP concept and data structures

emerged early in the 1980s; OOP aimed at going beyond structured programming

to gain an understanding of its elementary principles and properties, while data

structures advanced the idea of dividing the problem into smaller pieces, and

creating reusable building blocks called objects.

2.3.2 First Year Students and OOP

Although the necessity of having an OOP language as a starting point for first

year CS students was understood at an early stage, the use of the language was not

easily achieved in practice (Decker and Hirshfield, 1995). Both students and staff

struggled during the learning process because there was limited knowledge of the

OOP domain among teaching staff and few resources were devoted to the

problem. In addition, it was feared that adopting OOP as the programming

concept for first year students would cause serious harm to the entire CS

32

curriculum and necessitate a restructuring of the introductory programming

sequence.

However, the advantages of OOP led many researchers (e.g., Deckter, 1995;

Kolling, 1995; Rajaravivarma, 2003) to study the usability of programming

languages (PL) and their role in building the basics of OOP in students’ minds.

Also, interest in teaching OOP rose significantly in the 1990s and many

researchers looked at applying OOP concepts to the existing PLs. Kolling (1995)

examined the deficiencies of existing languages like C++, Smalltalk, Eiffel and

Sather. He found that even C++ has some features that clash with OOP concepts.

His work convinced him of the importance of OOP in computer science studies

and, consequently, he suggested creating a new programming language that would

meet its requirements and he listed some features that it might have.

In the late 1990s there many attempts to create the best tutoring system for CS

students and these emphasised the ability to visualise the concepts of data

structures and their simple manipulation methods (Shilling, 1992; Warendorf,

1997; Pieson, 1998; Hansen, 1998). This led to a focus on creating interfaces to

help CS students in their data structures courses. Warendorf (1997) created the

Animated Data Structure Intelligent Tutoring System (ADIS) to help students to

learn data structures easily and quickly. It was straightforward software to

visualise the main operation on some of the data structure methods, such as the

creation, addition and deletion of objects in simple classes.

2.3.3 OOP in Java

The concept of data structures was introduced through the existing PLs that

support OOP. The current focus is on how to use Java as a powerful PL that can

33

clearly introduce OOP and its features. Java was created by Sun Microsystems in

1991 and published in 19951.

According to Brosgol (1998), at that time, Java was not the best choice for

teaching the concepts of OOP. He argued that Ada might be a better choice than

Java as a foundation language in CS education because of its learnability. But,

soon after 1998, Java proved its capability to implement more complicated OOP

through its rich standard application programming interface, which helps students

to write applications involving networking, multithreading and many other

techniques without having to resort to non-standard, third-party libraries (Schaub,

2000). However, it still lacked a proper graphical user interface (GUI), which

made it hard to learn the coding techniques and programming concepts easily,

although better programming interfaces do not necessarily provide a better

programming language. Schaub (2000) advocated the use of the old Turtle API

from Seymour Papert's Logo. He believed the Turtle paradigm would be a good

way to introduce basic programming concepts since many OOP concepts can be

presented using simple graphics, thus improving the ability of students to

understand those concepts, and use them effectively.

Universities then had the challenge of using Java to introduce OOP concepts as a

CS foundation course and, at the same time, to stay within the time limit imposed

by the term structure. Rajaravivarma and Pevac (2003) presented a new approach

that introduced the concept of Objects at the beginning of the course, and

followed that with an emphasis on problem solving techniques. They suggested

that the use of real world examples would enrich students’ understanding of OOP

concepts and enable them to implement them easily in later, advanced courses in

computer programming. However, there is a continuing debate about the learning

1 (www.java.com)

34

gain that can be achieved by using OOP at early stages of CS courses compared to

using it at later stages (Ehlert, 2009).

OOP teaching and the understanding of data structures had a high priority for

researchers and module leaders in higher education. They pursued the idea of

using any available resource for teaching these subjects in a way that was both

effective and that dealt with the higher demands of studying computer science.

This resulted in using the World Wide Web (WWW) and multimedia tools. In an

attempt to support staff in teaching CS modules, Daly and Horgan (2004)

developed RoboProf, an automated learning environment that generates and

assesses programming exercises, and provides ongoing assistance and feedback to

students without extra demands on lecturer time. This and other such applications

aimed to teach students the basics of programming and to facilitate their own

control over what they were learning and their time commitment, thus giving

students another resource of learning that they might use in their own time to

develop a deeper understanding.

Vickery (2005) looked at the feasibility of teaching OOP at GCE ‘A’ Level using

Java, especially the use of an Integrated Development Environment (IDE) called

BlueJ. His interest came from the idea of the importance of knowing how to

program using object oriented principles at school level to ensure a smooth

transition to higher education courses. His work looked at the use of procedural

PL but this showed limitations, even with the use of a visual PL like Visual Basic

or Delphi. Throughout the experimental work, carried out by an Information and

Communication Technology (ICT) teacher, the students appreciated the instant

visual feedback given by BlueJ, which bridged the gap between the theory behind

OOP and its visual interpretation. However, the study found that the scheme was

only good for learning Unified Modelling Language (UML), and as an

35

introduction to concepts, but not useful enough as a programming tool (Vickery,

2005).

2.3.4 Evaluation of data structures teaching and learning tools

The use of visual learning tools to help students to build a mental image of how

OOP works is one of many attempts to use technology to improve learning. Many

researchers have developed visualisations and tutoring tools to enhance students’

learning experience and open students’ minds to engage with and understand the

concepts rather than relying on memory (Brown, 1991; Shilling and Stasco, 1992;

Culwin, Adeboye and Campbell, 2006). But, auditory interfaces can enhance

visualisation tools and thereby support students’ engagement (Higgins, 2000).

This section will look at previous studies on supporting student engagement with

learning resources and discuss their findings.

There have been many trials that aimed at enhancing the teaching of CS students

by providing lecturers and students with a variety of tutoring systems (Moons,

2009). Those systems can be classified, according to their target objectives, into

three categories, namely, expert IDE environments, micro-world environments

and advanced visualisation environments.

2.3.4.1 Expert IDE Environments

An Integrated Development Environment (IDE), also known as an integrated

design environment, can be defined as an enclosure of the principle development

tools under a single, consistent user interface that helps the development process

of a computer programme by automating some of the time consuming elements

36

such as the graphical user interface (Depradine, 2004). Examples are jGrasp,

BlueJ, and Greenfoot (Cross, 2004; Kölling, 2006; Kölling, 2008).

BlueJ’s main visual features are the display of the class structure in the main

window and the visual distinction between classes and objects; the latter is an

important issue and one that is difficult to explain. Those features have

influenced, in this research, the design of objects representation in the “Learn

About Objects” visualisation of the DSL tool. However, BlueJ probably has a

limitation as a beginner’s tool. It focuses on the object-oriented paradigm for

modelling and design by relying on the class diagram as its basis structure, and it

does not provide an effective presentation of data structure at execution time

(Moor and Deek, 2006). Greenfoot, created by the same people who created BlueJ

at the University of Kent, is an educational IDE that provides a set of learning

tools that aid in understanding basic object-oriented concepts, and it is considered

as a motivational environment because of its ability to provide instant graphical

feedback (Kölling, 2008).

Another example of an IDE environment is JGrasp, which was created

specifically to provide automatic generation of visualizations in order to improve

software understanding. The visualisations it produces include Control Structure

Diagrams, UML Class Diagrams, and dynamic Object Views. For example,

visualizations for more complex structures, such as linked lists and trees, are

generated as needed from the user’s actual program during routine development

(Cross, 2004).

Each of these IDEs, BlueJ, Greenfoot and jGrasp, provide learning environments

that aid students in getting used to interacting with object instances and exploring

their behaviour in an uncomplicated approach. Moreover, these learning tools are

recommended by Sun Microsystems for users without programming experience

37

and listed as tools designed to demonstrate programming visually instead of just

looking at lines of confusing code (Nourie, 2008).

2.3.4.2 Micro-worlds Environments

Micro-worlds can be defined as self-contained computer-based virtual

programming environments in which students have the chance to explore, interact

and establish learning activities to learn basic concepts (Wilson, 1995). It is a

learner-centred world explored by directly manipulating its objects with a small

number of basic commands. Micro-worlds can be joined with images and

diagrams to aid in describing programming problems and to make use of a

storytelling approach as an educational paradigm (Gross, 2005).

Alice (www.alice.org) is an extensive micro-world with a non-Java syntax. It is a

3D programming environment with a functionality to allow users to drag and drop

objects in its virtual world and then add methods or actions that the object can

perform (Briana Lowe et al., 2009). Alice also allows the direct manipulation of

added objects’ values through inspection of its values or scripting in the Python

programming language. However, although Alice can easily be programmed into

object instances, it lacks any particular task structure (Culwin, 2006).

Barbra et al. (2004) examined the effectiveness of using Alice in a first year

computer science course to improve the performance of low scoring or “at risk”

computer science students. They found that the Alice course improved novice

students' performance, and improved their attitudes towards computer science.

The study also found that high risk students who participated in the Alice course

showed high retention rates while high risk students who did not participate

showed signs of low retention rates (Barbara, 2004).

38

Although these advantages can be claimed for Alice, it has some pedagogical

pitfalls. The object model in Alice can easily lead to a false impression that

programming is very easy. The lack of warnings about syntax errors can raise

students’ confidence unjustifiably and cause problems when they come to code in

other programming languages, like Java (Gross, 2007). Figure 2.3 shows a

worked example of Alice micro world. This example teaches students how to

programme mouse events, loop, and setting objects properties.

Figure 2.3: Snapshot of Alice 2.2 Microworld

2.3.4.3 Advanced Visualisation Environments

Advanced visualisation environments referred to in this research have some

similarity to visualisation targeted at novice programmers. Such environments can

use simultaneous representation of visualisation, and present data as it is

processed by a virtual machine, such as JEliot 3 (Bednarik, 2006), or show the

39

program runtime state of object instances, such as Seppälä’s (2004) program state

diagram. These advanced visualisation environments provide integration with, or

can be ’add ons’ to, IDEs like BlueJ, Eclipse or the integration of EduVisor in

Sun’s Microsystems development environment, Netbeans (Moons, 2009).

JEliot 3 is a research-oriented visualisation tool that was designed to aid novice

students to learn procedural programming and OOP with either fully or semi-

automatic visualization of the data and control flows (Moreno, 2004). It claims to

have a simple interface with complete visualisations that are self-explanatory for

students. It can be extended to be integrated with a third-party environment

(BlueJ), so that students who use BlueJ to study Java can find it useful. Moreover,

it supports three architecture models of Java programs, namely, having the ability

to write code, to visualise its execution and to trace changes. However, some

studies have found that it has some shortcomings. Maravic et al. (2010) conducted

a study where 45 students were tested on their comprehension of short program

segments. His results suggest that students who learned with JEliot 3 made

detailed, concrete mental representations of the program text and supported it with

better test examples than students from the control group. However, some

students regarded it as a waste of time. They complained about its simplicity, felt

that it was helpful only for beginners and thought that the visualisation caused

distraction. JEliot 3 also has some usability issues as its canvas is based directly

on the Java AWT classes and this causes some restrictions, such as the complete

absence of select, zoom and pan tools when manipulating onscreen visualisations

(Moons, 2009). A working snapshot of JEliot 3, presenting the visualisation of the

merge sort algorithm, is shown in Figure 2.4.

40

Figure 2.4: A snapshot of Bednarik’s JEliot 3 visualisation tool

As explained in this subsection, there have been many trials and much research to

try to create the optimal visualisations tool. Many useful tools have been created

and used over the past decade, and they have attracted significant interest from

both lecturers and students. However, the created visualisations have been

frequently criticized by other researchers in the field. This research, on the other

hand, did not try to add extra features or to create more complicated visualisation

and fancy animation. On the contrary, it aims to create a focused learning tool to

help students by providing usable visualisation with the least distraction and the

least possible cognitive load on their working memory.

41

2.3.5 Summary

Section 2.3 has covered an important part of this research. It has discussed how

OOP development tools have improved and adopted the new learning techniques

over the years. OOP and data structure concepts are now the basis of any student

programming module. Java is currently the preferred programming language and,

in order to create a learning tool, it should be considered as the presented coding

syntax. It is also important to know about the latest OOP development tools, the

reasons for their creation, their visual elements, and their benefits and

disadvantages. Section 2.4.3 will discuss, in more detail, a variety of such tools

that have been developed to assist students in learning programming concepts.

2.4. Algorithm Animation and Visualisation

2.4.1 Definition

Visualization can be defined as the mapping of data to representations that can be

visual, auditory or a combination of other means of communication. It is a method

of computing that transforms the symbolic into the geometric, enabling

researchers to observe their simulations and computations (Owen, 1999).

Algorithm animation is a form of program visualization that is concerned with

dynamic and interactive graphical displays of a program’s fundamental operations

(Brown, 1991). Animating algorithms started as an exploration of using high-

powered processors to provide complex visual representations of the behaviour of

data structures as they were acted upon by algorithms (Gurka, 1996).

42

2.4.2 Why Visualisation?

Visualisation is a method of using technology to improve learning by creating a

mental image of how things work (Messner, 2003). It is also a learning style that

many students prefer as a means to increase the comprehension of concepts,

bearing out the proverb that “a picture is worth a thousand words.” It also

increases the interaction between the learner and the subject being studied, so it is

an active learning approach.

In computer science, visualisations help researchers to recognise patterns in big

data sets that are difficult to see by using only textual and mathematical

representations of data (Guzdial, 1994). Computer science educators find

algorithm and data structure visualizations useful in their classrooms. However,

research shows that some are effective while many are not (Cooper, 2007).

Cooper’s work involved collecting all the visualising algorithm implementations

in one wiki website, Algoviz Wiki. This helps students to find an existing

visualisation to help them in their computing studies, and it helps to create ideas

for new visualisation tools as it shows what researchers have not presented

properly or visualisations that have not yet been created. Figure 2.5 shows some

statistics on the availability, in 2007, of visualisations for different purposes. It

shows that most of the visualisations were for sorting algorithms, search structures

and linear structures. This result reflects the importance of those structures and the

need for students to visualise them to help them to understand the subject. The

results also show that few visualisations have been created for search algorithms

and memory management. Search may not need to be visualised as it is easy to

understand and it is already part of the sorting process.

43

Figure 2.5: Cooper's distribution of visualizations by topic (Cooper, 2007)

The use of graphics in higher education has a long history but only in the 1980s

did it become a focus of research. One example is Zeus, Brown’s (1984)

visualisation software. He stated that “it is possible to expose the fundamental

characteristics of a broad variety of programs through the use of dynamic (real-

time) graphic displays and that such algorithm animation has the potential to be

quite useful in several contexts” (Brown, 1984, p.1). Zeus is mainly concerned

with animating algorithms to ease their functional understanding so it helps the

learner to have imagination while coding.

Naps (2002) identified a set of ‘commandments of algorithm animation’. These

suggestions raise some important issues about providing resources that help

learners to interpret the graphical representation by adapting to the knowledge

level of the user and providing multiple views. Naps also suggests including

performance information and execution history and supporting flexible execution

44

control, learner-built visualizations, custom input data sets, dynamic questions and

dynamic feedback. Moreover, he proposes complementing visualizations with

explanations and he encourages educators to adapt and apply visualisation

carefully, since no single tool is the best for all learners. Like any other design

activity, the design of animation systems should be carefully planned. This point

links back to Section 2.3.4 and the importance of adopting tools that correspond to

students’ different learning styles, as proposed by Biggs’s (2003) notion of

constructive alignment.

Byrne, Catrambone and Stasko (1996) carried out two experiments. The first,

using a depth-first search algorithm, found that, when learners both viewed an

animation and made predictions, their performance on novel problems improved

compared to a control group. However, the effects of both animation and

instruction were not distinguishable. In the second experiment, they used a

Binomial Heap algorithm and no effect was found for conceptual measures of

learning but a slight effect, similar to the one seen in the first experiment, was

found for procedural problems.

2.4.3 Overview of existing visualisations

The following sub sections examine some popular CS visualisation tools. The

tools selected for discussion in this section were chosen for their focus on

visualising data structures and OOP.

45

2.4.3.1 GROOVE: 1992

GROOVE (Graphical Object-Oriented Visualization Environment) is a visual

design tool that allows programmers to visually specify both the static structure of

a program and its run-time dynamics and protocols. It is designed to help

programmers to visually specify both static structure and dynamic protocols of an

object-oriented program. GROOVE's visual paradigm employs shape, colour and

animation to portray objects and relationships. It helps developers understand

message-to-method binding by utilizing the class presentations from which an

object inherits fields (Shilling and Stasco, 1992).

Figure 2.6 shows GROOVE’s designer interaction with the visual presentation

and how it automatically generates and updates an accompanying code template,

shown in the neighbouring window, which corresponds to the design. This feature

can be a valuable educational aid for students learning object-oriented design.

Students only focus on the important concepts and they are not be held up by

numerous syntactic errors that traditionally accompany learning a language

(Shilling and Stasco, 1992).

46

Figure 2.6: A GROOVE program specification (Shilling and Stasco, 1992)

2.4.3.2 JAWAA: 1998

JAWAA (Java and Web based Algorithm Animation) is an example of a simple

command language for creating animations of data structures and it provides an

interface that displays them with any Web browser. It is helpful as an alternative

view in understanding newly presented data structures and as an aid in debugging

programmes that use the data structures. JAWAA commands can be added as

output to any program to quickly generate an animation (Pieson, 1998). JAWAA

applies the active learning concept through the interactive lecture format and it

can benefit group teaching.

47

Figure 2.7 shows an example of JAWAA selection sorting for an array. The

orange key index shows the selection of the current smallest value and the pink

key shows the value to be compared. After comparison, the smallest value will be

orange, and the process of comparisons starts again.

Figure 2.7: JAWAA's selection array sorting example (Pierson, 1998)

2.4.3.3 HalVis: 1998

The HalVis (Hypermedia Visualisation) approach to algorithm visualization is

based on how humans reason using static diagrams to infer the dynamic behaviour

of mechanical devices and on how hypermedia can improve student

comprehension of the design and evaluation of algorithm animations. HalVis

allows students to learn incrementally by starting from a real world analogy and

transition to the algorithm itself. Moreover, the hypermedia structure allows

students to access fundamental building blocks of algorithmic knowledge at any

time (Hansen, Schrimpsher and Narayanan, 1998).

48

Hansen et al.’s (1998) key insight is that, for algorithm animations to be effective,

they have to be chunked and embedded within a context and knowledge providing

a hypermedia information presentation system. In this process, the problem is

presented in stages that start by visualising the big picture and then go down to

more detailed visualisations. Experimental tests of the system show that students

tend to execute the detailed animation less frequently than the populated-level

animations, which are algorithms on large data sets. However, previous research

results by Stasko et al. (1993) show that, although the visualisations are received

enthusiastically by students, no student showed any improvement in the learning

process.

Figure 2.8 is a snapshot from HalVis system. It shows seven data elements to be

sorted using the MergeSort algorithm. It moves the seven data items as needed

until the algorithm is finished and all elements are sorted.

Figure 2.8: HalVis detailed view screen (Hansen, Schrimpsher, Narayanan,
1998)

49

2.4.3.4 iWeaver: 2002

iWeaver is an interactive web-based adaptive learning environment. It is built on

Dunn and Dunn’s (1990) learning style model, which assumes that each learner

has an individual learning style. It encompasses two dimensions: media

experiences and learning tools. The iWeaver system identifies a student’s learning

style by asking each user to answer 120 multiple choice questions and, based on

the Dunn and Dunn (1990) model, it adopts a suitable learning style for that user.

The results are then saved in the user’s own profile so the student does not have to

repeat the test.

The system also presents a number of learning tools, aiming to accommodate

different psychological styles. The ‘global learners’ can access mind-map

diagrams to understand the sense of the big picture. ‘Reflective learners’ are

offered the chance to take notes and answer reflective questions. ‘Impulsive

learners’ can immediately try out example code with the help of an online

compiler. ‘Visual text’ learners experience content in a rich text format, whereas

the content for ‘visual picture learners’ is supplemented by additional illustrations,

diagrams and animations. ‘Tactile kinaesthetic’ learners are accommodated by

‘interactivelets’ and ‘auditory learners’ encounter a PowerPoint style presentation

of the learning content (Wolf, 2002).

Figure 2.9 shows an example of teaching the ’select statement’ procedure, using

animated object movements over bars representing available choices, and the

object will explain the one selected. Along with visualisation, a pre-recorded

voice explains the whole process.

50

Figure 2.9: iWeaver media experience (Wolf, 2002)

2.4.3.5 SV3D: 2003

The SV3D (Source Viewer) framework is a 3D metaphor for software

visualisation based on SeeSoft’s pixel representation and 3D file maps, relying on

a visualisation system that can display thousands of lines on a single screen to

allow the detection of patterns. It is used to represent source code and related

attributes. Using poly cylinders with four edges and uniform fill, it will allow

representations of hierarchical data and diagrammatic visualisation, such as UML

class diagrams. However, there is a problem in scalability of this 3D space. SV3D

is an example of analytical tools that aid the work of researchers in data and file

mapping tasks in software engineering applications (Marcus, Feng and Maletic,

2003). Figure 2.10 shows a working example of sv3D framework.

51

Figure 2.10: sv3D working example
(http://graphics.idav.ucdavis.edu/~lfeng/research/sv3d/index.html)

2.4.3.6 SHALEX: 2005

The SHALEX (Structured Hypermedia Algorithm Explanation) system is another

good example of algorithm animation software. The system provides a

hypermedia environment that can reflect the structure of an algorithm through

directed graphs of each abstraction; each one is designed to focus on a single

operation, and to provide an abstract data type (ADT) giving a high-level view of

generic data structures. The first version of this system was implemented using

Macromedia Flash 2003 but an HTML web based format is being considered for

the next version, as this will be more accessible to the system’s users. SHALEX

supports active learning through its interactions with users: posing various

questions about the algorithm to the user, along with a “do-it-yourself” mode

52

which provides the user with a means of testing his/her understanding of the given

algorithm by attempting to explain it (Müldner, 2005).

2.4.3.7 POOPLES: 2006

Culwin et al.’s (2006) POOPLES (Pre-Object Oriented Programming Learning

Environments) is a prototype visualisation system implemented in three-part

software. The first part is “poopRat”, the simplest prototype, which depicts a rat

having to run through a maze and reach the cheese before it dies from hunger. The

second is “poopSub”, which involves driving a submarine though a series of

baffles before it runs out of air. The final one, which is the most complex because

of the way it is controlled, is “poopMedic”. This involves driving an ambulance

through a regular grid of streets and avenues to reach a patient before he dies.

Several universities have used POOPLES in their classes, especially when

presenting their programming materials for the first time. The system was

evaluated with school students who aspired to study computing or information

technology at university and the results indicated that participants were highly

engaged in the environment as they were operating independently of the tutors

and very task focussed. This was supplemented by the production of support

material directing the students’ attention to the control structures and the use of

methods. Although the system was evaluated using very small studies, the results

show it is beneficial for students who have yet to start a university programming

course, and that it is an additional resource to convince them that programming

can be fun. However, the results also show that students who already disliked

programming were not re-motivated by the experience (Culwin, Adeboye and

Campbell, 2006). Figure 2.11 shows snapshots of three implementations of

53

POOPLE, poopRat, poopSub and poopMedic. The controls of the visualisation

correspond to a Java code posted in the interaction pan.

Figure 2.11: Culwin's three POOPLEs “poopRat, poopSub and poopMedic”
(Culwin, Adeboye, Campbell, 2006)

2.4.4 Summary

Visualisation is a primary focus of this research. Studying existing visualisations

can help in creating effective new visualisations. Because of the importance of

this field of study, there have been many visualisations designed to aid researchers

and students across many fields of study. Cooper estimated that, in 2007, there

were over 350 of them, many of which are individual applets or programs, but

significant proportions are parts of integrated visualisation collections (Cooper,

2007).

This research primarily investigates the integration of aural instructions in an

interactive visualisation environment to create a focused learning environment

that leads to a reduction of cognitive load in students’ learning processes. The

next section will describe auralisation and how it is used in learning.

54

2.5. Audio-based Interfaces / Algorithm Auralisation

2.5.1 Definition

Aural support or auralisation involves the use of any sound to support an

application, either by spoken audio (narrative) or computer-generated sound.

According to Brown (1992), algorithm auralisation is considered only when the

generated sound is data driven. Early usage of sound in algorithm

animation/auralisation depended on generating a short theme while an algorithm

was running and another one when it stopped. However, in Brown’s study there

will be no difference between running two different algorithms regardless of their

features in terms of the sound produced

2.5.2 Background

Visualising algorithms is used to enhance learners’ experience and facilitate the

understanding of an algorithm and its concepts. However, many of the existing

visualisations have problems. These include the loss of focus when the abstract

representation concentrates on low-level steps rather than on high-level properties

like invariants (Müldner and Shakshuki, 2004). This leads to a higher cognitive

load on the students’ learning process (Tudoreanu, 2003).

The use of audio in computer science and in algorithm animation started as

descriptions of what the visualisation was currently showing (Brown, 1992).

However, the complexity of some algorithms needed new applications if sound

usage was to be effective. One of Brown’s early trials was using sound to get the

attention of the person running an algorithm. For example, a car crash sound was

used to represent the idea of a collision. He also encouraged the use of Buxton,

55

Gaver and Bly’s (1991) recommendations of using auditory displays and real life

sounds to complement the use of visualisations.

2.5.3 Using Music

It is not clear when using audio to aid programming courses started. However,

there have been many trials and wide research studies, starting from the use of

descriptive sound to enhance the users interface and convey rich meaning, and

continuing with the use of sounds to benefit visually challenged people (Alty,

Rigas, Vickers, 1997). However, this approach faced many challenges with screen

readers. Vickers et al. implemented a number of sorting and path following

algorithms using musical representation alone without supplementing the visual

output with sound. They also used algorithm auralisation during the debugging

process, and in finding faults in the program execution.

Franklin (2001) used computer-generated music in an introductory programming

course as a theme of its projects and also as a means of demonstrating methods for

algorithms. The implementation of this work was in a form of two musical

projects assigned to students in the introductory course.

The first of Franklin’s (2001) projects was the “Ear Trainer”, a challenge game or

quiz in two parts. First, two different tones were played and the student had to say

which was higher. Then, after a tone was played, the student had to identify its

pitch. The project focused on if-else statements, switch statements, parameter

passing, loops and using user input to cause a program to vary its execution.

Franklin’s (2001) second project was the more complex “Song Sorter” that

focuses on manipulating arrays by using sort and search methods and enhancing it

further by using modulation concepts and pointers. The task in this project was

56

sorting the songs by their number of rhythmic changes and then repeatedly

searching for a particular song with specific changes.

At Loughborough University, another relevant study (Vickers and Alty, 2005)

tried to show the usefulness of using music auralisation in debugging errors. They

found that music could convey information about program events and play a

complementary role in the programming process. Although they did not address

the needs of visually challenged people, they hoped that their system would be

adopted and extended to do so.

Computer generated music is designed as an artistic way to speed up the learning

process; for instance, in teaching the theory of computation, regular and context-

free grammars can be used to characterise different processes underlying musical

improvisation. Moreover, it might be especially interesting for non-CS students

who take an introductory programming course because they are interested in an

application of computing.

2.5.4 Spoken language processing

The idea of using audio to enhance user interfaces has developed rapidly. As well

as progress in using music, work has been done on developing a natural speaking

output to enhance the user’s interface. In some cases, this enhancement replaced

visual information by aural information to help visually challenged people. The

opportunity to have a human-type conversation with a computer has been

promoted by science fiction films such as HAL in 2001: A Space Odyssey and

Star Ship Enterprise (Michael, 2002). As Lai (2001, p.66) says, “Almost two

generations of science fiction and movie fans have been raised with the concept of

57

a computer that not only understands every nuance and word in the spoken

language but also reads lips, generates flawless speech, and thinks for itself.”

Due to improvements in computer capabilities and its popularity with people from

different backgrounds, speech and sound technologies have become common

methods of communicating with technological appliances; they are integrated into

our daily life and people to talk to their computers, watches... etc.. (Stifelman,

1995). Stifelman presented Conversational VoiceNotes, a tool to support the

generation of speech and non-speech aural feedback. It uses two output types,

speech and non-speech, two input types, speech and buttons, and two levels of

detail, brief and verbose. The software feedback varies depending on the user’s

preferred output modality, the user’s preferred detail level, the input modality

employed and the time elapsed since the last user command.

Steve Whittaker (1994) presented a novel application that integrates handwriting

and recorded audio in a semi-portable device. He proposed rethinking the ‘how’

and ‘why’ of audio applications and the use of speech as data, arguing that

conversational speech is critical in the workplace, but we do not currently capture

it through our computers. He also discussed the importance of recording,

accessing and manipulating recorded speech data, even without the power of full

speech recognition. In his software Filochat, he provided a user-centred indexing

for random access to conversations by co-indexing the digital notes and speech

recording.

Recent studies in the field of text-to-speech (TTS) technologies have focused on

designing help systems because what we actually need from this technology is to

help students to overcome a problem when visually displayed help is not possible,

or to enhance the system’s accessibility for disabled users. Kehoe and Pitt (2006)

suggested a number of guidelines to assist in the creation and testing of help

58

material that may be presented to users via speech synthesis engines. They

pointed out a number of choices to be made with respect to the selection and use

of speech technologies: Recorded Speech versus TTS, Voice and Persona, Testing

and Localization. Their system retrieves help topics and presents them to the user

as synthesized speech. The synchronized non-voice audio is also played in parallel

with the synthesised speech so that the user receives additional cues. This

sonification is used to provide information about the help topic structure, for

instance, topic titles. By testing pre-existing help topics from Microsoft Windows

applications using speech technologies, they encountered some problems

involving the content and the format of those systems. A set of guidelines, based

on their findings, can be used when authoring help materials using speech

technology. Those guidelines were based on having interactive speech dialog in

help systems, as well as customising speech output to the users.

2.5.5 Spoken language software and its uses

Interesting work carried at the State University of New York College by Higgins

(2000) looked at the development of speech-enabled programming applications in

the undergraduate computer science curriculum. He wanted to show that speech

enhanced interfaces can be integrated into the CS curriculum at the second year

level and later reinforced through special topics courses, speech enabled projects

in Software Engineering, or senior thesis work.

Higgins’ work was implemented in two CS curriculum projects on data structures;

a stack based calculator and a map or network that implements a graph requiring

determination of the shortest paths. In both cases, the solutions for these problems

were migrated to a speech-enabled setting and re-evaluated providing very simple

graphic user interfaces. IBM’s ViaVoice software was used as an input

59

technology to generate the text. Higgins expected that such software would

become widely available, make it possible for persons with motor or sight

disabilities to use sophisticated programs, and prove useful for anyone who is

busy using their hands or eyes to do something else at the same time.

A recent example is the “Almost Realistic” TTS technology for customer service

answering systems in mobile phone companies. These answering systems became

so real that they have names like Vodafone’s Vicky, and Orange’s Jane. Vodafone

went a step further than its competitors by creating Vicky with a virtual persona

symbolising the company’s UK’s brand essence and personality. After its

introduction, customer satisfaction rates rose dramatically, according to Melanie

Rowland, Head of Self Service and Automation-IVR at Vodafone UK. Vodafone

planned to automate 60% of all inbound traffic by 2008 (Durant, 2007).

2.5.6 Synthesised Speech

Recent research in speech synthesis has focused on the personality of the

generated speech and its effect on users’ perception. In an attempt to create

adaptive conversational user interfaces, Microsoft presented a reasoning

architecture for an agent that can recognize a user's personality and emotional

state and respond appropriately in a non-deterministic manner (Ball and Breese,

1998). They described architecture for constructing a character-based user

interface using speech recognition and speech generation. This architecture uses

models of emotions and personality encoded as Bayesian networks. The idea was

to diagnose the emotions and personality of the user, and generate appropriate

behaviour by an automated agent in response to the user's interaction.

60

Microsoft’s suggested architecture is an agent that maintains two copies of the

emotion/personality model. One is used to diagnose the user, the other to generate

behaviour for the agent. To achieve this adaptation of the conversation, they have

followed five procedures: Observe, Update, Agent response, Propagate and

Generate Behaviours.

2.5.7 TTS with Visualisation

An interesting study by Qiu and Benbasat (2005) introduced the use of TTS voice

with 3D avatar in an online shopping system. They highlighted the fact that, in

their help system, the use of interactive visual support with high quality audio

enhanced the feeling of telepresence between an individual and customer service.

Their research concluded that the use of text-to-speech voice technology has

significantly improved customers’ awareness and contributed to “cognitive

enjoyment and focused attention” (Qiu and Benbasat, 2005, p: 351). These

findings support the claim that the use of computer generated TTS with a visual

component can improve human perception. They also support the proposition that

using both visual and aural channels of working memory can reduce the cognitive

load and lead to better attentiveness and learning.

2.5.8 Summary

The use of audio, either musical sound or spoken audio, has not been

implemented generally as animations in CS teaching. However, researchers have

proposed it as a way to assess visualisation. Section 2.5 has shown that the use of

audio in CS teaching is usually limited to basic forms using a computer’s built-in

speakers or, in more advanced implantation, as narrative voice. New audio based

61

technologies tend to be more related to customer automated feedback tools.

However, these technologies have great potential to engage students in interactive

learning because the more realistic the feedback, the more that students will be

encouraged to interact with the environment and, if it has a personality, the more

that students will feel it is live interaction. There is, therefore, a good case for

thinking that the use of aural instructions, together with visualisation, is an

important approach for teaching the concepts of data structures.

2.6 Visualisation and Cognitive Load

Cognitive approaches to human ways of learning have highlighted the changes

that occur with different mental representations of situations and tasks. To

understand human cognition in cognitive architecture needs prior knowledge of

models of human memory organisation, how the knowledge is represented and the

problem solving mechanism (Kalyuga, 2006).

Kahneman (1973) and Navon (1984) explain that the concept of mental load is

based on the concept of a communication channel with limited capacity. They

argue that overloading this channel could result in missing signals and under-

loading could result in a considerable spare processing capacity. The capacity

theory of human processing in relation to attention was developed to explain a

learner’s limited capacity to perform many activities at the same time (Kalyuga,

2006). This means that when learning material is described distinctively in a basic

form with low cognitive load, any irrelevant cognitive load caused by an extra

attribute of the learning environment would have a little impact on the working

memory. So, when designing instructional learning materials, cognitive load

should be kept to its minimum.

62

2.6.1 Reducing cognitive load

Program visualisation had helped in reducing the cognitive load and releasing

human processing capacity and reasoning, especially when graphics and visual

aids are used to give learners extra insight and awareness of high level software

programming (Tudoreanu, 2003). Tudoreanu produced guidelines, based on

Sweller’s (1994) CLT, to reduce the cognitive load in software visualisation.

These included removing any indirect representation so that learners themselves

can control how the visualisations are shown and can directly manipulate the

produced visualisations. Then the visualisations should automatically determine

the values of the graphical attributes of the objects shown and relieve the user

from the need to define the functions and calculate the graphical values. Finally,

he suggested enriching the visualization with an explicit representation of the

visualization syntax and allowing the user to continuously adjust the appearance

of the program views.

Although the use of visualisation can help in reducing the cognitive load, it would

be of little use if packaged with an environment that consistently increases that

load. In this case, the environment itself would cause the visualisation to have no

impact on learners’ understanding of the subject (Tudoreanu, 2003). Figure 2.12

shows Tudoreanu’s illustration of two mental models. In the first, cognitive

capacity is enhanced by using visualizations, but cognitive resources are diverted

from understanding the program towards handling indirect structures that control

how the program is represented. In the second illustration, the running program

can be observed through visualizations that are customised directly via user

interactions, and this leaves most of the cognitive resources available for solving

other program related problems.

63

Figure 2.12: Tudoreanu illustration of how cognitive load affecting user learning

experience

Mayer’s (2001) model of information processing in multimedia learning was

summarised by Ando (2008, p: 1). He defined multimedia as “a method for

simultaneously presenting visual content (text, pictures, video) and narration

(audio content)” and highlighted the fact that multimedia material can reduce the

extraneous cognitive load on the learner. As a result of this insight, the ’dual

channel model’ has become an effective theoretical foundation for the use of

multimedia materials in learning (Ando, 2008). Figure 2.13 shows Mayer’s model

of multimedia learning.

Figure 2.13: Mayer’s multimedia learning model

64

Mayer’s (2002) Cognitive Theory of Multimedia Learning was based on three

assumptions, as discussed in the following three sub-sections.

2.6.1.1 The Dual Channel Assumption

The dual channel assumption states that humans process information in two

separate channels, visual and aural. Figure 2.13 shows Mayer’s (2002) model of

the three stages of information processing where two types of information are

presented to the learner. First, the information is acquired by the sensory memory

by either listening or seeing. In the next step, information is processed separately

but in parallel in the working memory where the memory tries to match and

organize related images and sound together. Finally, the information can be

integrated and linked to previously known information in the long term memory.

2.6.1.2 Limited Capacity Assumption

The limited capacity assumption states that learners have a limited information

processing capacity for each channel at any given time. This means that the

working memory can hold only a small number or images and sounds. Research

in this field reveals that the working memory can process about seven pieces of

information at a time, plus or minus two (Kalyuga, 2006). This suggests that, in an

instructional presentation or learning environment, learners should be exposed to

a limited amount of information when learning new subjects.

65

2.6.1.3 Active Processing Assumption

The active processing assumption suggests that learners can be actively engaged

with the learning environment by selecting, linking and integrating the

information they acquire with their prior knowledge. This can help learners in

creating an effective mental model of the information they have just received

(Hanley, 2010).

2.6.2 Split attention effect

The split attention effect takes place when instructional materials require learners

to split their attention between multiple sources of information. Mayer’s (2001)

research concluded that the use of animation and associated narration are most

effective when presented simultaneously rather than serially. This integration has

been used for years in children’s comic books and has proven its efficiency as

most of the reading materials are cognitively demanding for children (Kalyuga,

2006).

According to the CLT, split attention can happen when learners try to integrate

two associated sources of information. This attempt at integration might overload

the limited capacity of the working memory when the learner tries to focus on

both reading the text and looking at the images. However, overloading can be

avoided if the working memory is enhanced by the dual mode presentation of the

information. In conclusion, using aural narration can increase the capacity of the

working memory (Sweller, 2002).

Gerjets and Kirschner (2009, p.257) have highlighted an important theoretical

issue that challenges the currently dominant cognitive theories of instructional

design for multimedia learning by Mayer and Sweller. They argue that those

66

theories focus on the learner’s cognitive system architecture, its limitations and

ways of working with those limitations to design an effective learning

environment. Pointing out that Mayer and Sweller came to their conclusions using

experiments under typical controlled laboratory conditions, Gerjets and Kirschner

(2009) argue that, not only might Mayer and Sweller’s ideas not apply in actual

learning environments but their application might reduce learning.

2.6.3 Response time and cognitive load

Hensler (2006) investigated the factors that influence students’ performance in

answering multiple choice questions. He developed an intelligent tutor model

where the questions were generated by a speech automated speech engine. He

concludes that performance can be measured by the time a student takes to

respond to the questions and the difficulty of the questions themselves. He also

reports that when the cognitive load is greater the level of performance is reduced.

This method of investigation was also used by Beck (2005), who explored how

student engagement with intelligent tutors relates to productivity of learning. His

model was based on “item response theory” where the correct results of a task are

measured by the delay of interest rather than by the results themselves. Beck’s

model was based on the difficulty of the question and how long the student took

to respond as well as whether the response was correct. His analysis of learner

response times and correct responses suggested that students experienced active

learning if they were engaged with the intelligent tutor. The lack of active

engagement with task could also be an indication of higher cognitive load.

Dror (2005) studied whether older (mean age of 70) or younger (mean age of 18)

adults adopt mental representations and processes that lower cognitive load and

67

whether age affected response times. Participants were asked to mentally rotate a

variety of images with different complexity levels as quickly as possible,

maintaining correct answers to the tasks. The results showed that the response

times of the younger adults increased as image complexity increased. However,

for older adults the response time was the same. Dror concluded that increasing

image complexity caused increasing cognitive load.

Khawaja et al. (2007) also investigated the current methods of measuring

cognitive load. They presented users with two speech-based tasks of differing

complexity and recorded the delay in responding, and the length and frequency of

pauses. The differences in response time between the two answers were t-tested

and this showed that the response times for the easier task were statistically

significantly lower than that for the more difficult task. They concluded that

higher levels of cognitive load resulted in increased response times.

2.6.4 Summary

The study of cognitive load is important in understanding how students gain

knowledge. Cognitive load is the amount of mental effort needed to learn

something; the greater the cognitive load, the more mental effort needed. So,

designers of instructional learning materials should aim to keep cognitive load to a

minimum. CLT is a model for instructional design based on the knowledge of

how learners acquire, process and retain new information. The use of multimedia

material can reduce the cognitive load on the learner’s working memory. If the

dual channel assumption is true, humans process information in two separate

channels, visual and aural, so presenting knowledge that uses both channels can

reduce the cognitive load. Learner’s response time can be used as a measurement

of cognitive load.

68

2.7. Chapter Summary

This chapter looked at the existing interactive teaching tools that enhance CS

students’ learning experiences and the research that led to their creation. In

particular, it looked at how new computer technologies enhance these tools,

especially those created for computer science students studying algorithms and

data structures. This chapter also looked in some detail at learning styles and

explained the importance of considering this concept when developing a teaching

tool.

Prior studies have proved the ability of visualisations, discussed in Section 2.4, to

facilitate the learning process, especially in CS education (Brown, 1991; Shilling

and Stasco, 1992; Culwin, Adeboye and Campbell, 2006) and Section 2.4.3

provided details about a variety of visualisation tools. Analysis of these tools

identified some design and scope problems and limitations. Most were designed

as small programs and applets to investigate a simple programming concept, or

they are focused on large-scale learning environments and could increase

cognitive loads. Most of the tools were also evaluated in one short programming

session followed by a student questionnaire. The target scope of previous studies

varied among different age groups and they were not particularly aimed at first

year CS students studying the concepts of data structures.

Section 2.5 moved on to look at audio use and research. The conclusion that can

be drawn from that discussion is that, although auralisation is considered by many

(e.g., Brown, 1992; Higgins, 2000; Vickers and Alty, 2005) to be beneficial to the

learning process, insufficient work has been done to thoroughly investigate its

importance in CS learning. However, Wolf’s (2002) iWeaver system that used

pre-recorded descriptions of programming subjects is probably most worthy of

follow-up work. Other research investigated either visualisation only of

69

programming concepts, or the use of audio with visualisations in learning tools

not concerned with programming.

Section 2.6 discussion of cognitive load demonstrates the importance of

considering its issues when designing an interactive visualisation tool, or any

other type of learning aid or method. Poor interface design is likely to affect not

only the learning process but also students’ motivation and engagement in their

learning process.

This chapter has examined previous studies that introduced new approaches to

learning using interactive multimedia environment and, more specifically, those

that investigated the use of e-learning tools to support teaching and learning of CS

concepts by using visual, textual and aural support. Although several studies

investigated the use of interactive multimedia tools to teach the concepts of data

structures in computer science education, none has explored the use of aural

instructions with visualisation to produce a focused approach with the aim

achieving the lowest possible cognitive load by using Mayer’s (2002) multimedia

learning model. Also revealed was an absence of longitudinal research on the

impacts of the combination of visual and aural displays, especially as a means to

learn the concepts of data structures within the CS curriculum. That is the main

focus of this research.

70

71

Chapter 3 : Implementation

3.1 Introduction

Chapter 2 reviewed many previous attempts to create software visualisation or

tutoring systems that aim to help students in learning programming and data

structures by creating either adaptive learning environments or interactive

visualisation (Kazi et al., 2000; Cross, 2004; Karavirta, 2004; Bednarik, 2006;

Culwin, 2006; Rajala, 2008; Woolf, 2008; Briana, 2009). The conclusion of that

discussion in Chapter 2 was that none of the previous attempts had studied the

efficiency of using interactive aural instructions, generated using TTS engines,

together with visualisation, with the aim of creating a learning environment that

reduced the cognitive load for novice CS students learning the concepts of data

structures. Moreover, previous research (Cross, 2004; Kölling, 2006; Kölling,

2008) was based on creating either a very simple prototype that was not useful

outside the lab where it was developed or a huge application with IDEs that

distracted students’ attention from the learning by introducing complicated

environments so the application did not benefit their learning.

This chapter describes the requirements and implementation details of a prototype

tool (the DSL Tool) that was developed to evaluate the integration of aural

instructions with visualisation in a learning environment, as shown in Figure 3.1.

It will focus on the technical details of the tool’s core components and

functionality that visualise interactive DS concepts in easy to use sub-programs

called tasks, as well as integrating TTS technology to provide spoken feedback to

72

students. First, the system architecture is illustrated. Then, Section 3.5 discusses

the visualisation of OOP concepts in a non-object oriented structure developed in

the Visual Basic (VB) Net programming language. It will also discuss the

integration of speech, generated using AT&T Labs latest TTS engines, to produce

high quality synthesised speech. The word “visualisation” in this thesis refers to

the presentation of data structure in a visual form as on screen objects. However,

it does not include animation of objects. Finally, Section 3.6 will explain the

technical method for animating the visual components in the VB2005

development environment and how the interaction takes place.

Figure 3.1: Snapshot of DSL tool

73

3.2 The DSL tool’s requirements

3.2.1 Requirements overview

Based upon the previous literature, this research adopted six important criteria,

outlined below, for creating an effective learning environment to help first year

CS students when they are learning the concepts of data structures. This research

also presents the use of a new methodology to develop a focused learning tool that

is an effective help to students and that can be used outside the experiment’s

boundaries. In addition, it considers the design of a prototype tool to be used for

testing the effectiveness of using aural instruction along with visualisations which

reduce the possible cognitive load in the learning environment.

The key requirements of a focused learning method to help students studying DS

are:

• Aligning the DSL approach domain with the PDS module requirement.

• The DSL tool should be able to capture, organise and retrieve all the
students’ learning events.

• Narrative text or audio should accompany the visualisation, and the student
should have the choice of using audio, text, or both feedback methods.

• Every visual component should be represented as a small object so that as
many objects as possible will fit on a student’s screen. However, it should
allow the user to enlarge objects to display any extra information related to
it. This will maintain a reduced cognitive load.

• The visualisations should be interactive and accommodate a student’s
actions.

• Students should be able to access and implement the DSL tool at any time
within the computer science labs.

74

By analysing the efficiency of using aural instruction and the impact of using this

method to enhance students’ learning experience, it is expected that these

elements will help this study to answer the research questions listed in Table 1.1.

3.2.2 Justifications of requirements

In order to provide validity to the DSL approach, the DSL tool’s requirements are

justified in this subsection, together with a brief discussion on how those

requirements are related to the research objectives.

3.2.2.1 Aligning the DSL approach domain with the PDS module

requirement

The first important issue that needs to be addressed when developing a learning

approach is identifying the target audience. Knowing the users will determine the

components that need to be investigated, as well as the breadth and the depth of

the information that needs to be presented (Khuri, 2001). For this research, the

target audience is first year undergraduate students undertaking the PDS module.

So the domain of the DSL approach should be aligned with that module’s

requirements and it should focus on those components that the lecturer thinks

students are likely to find most difficult to understand.

Rogers (2008, p.291) suggests a strategy that can be used when designing

animations for learners. He argues that a good approach is to design simple

visualisations that deliver particular components of a system rather than designing

a complete set of visualisations that represent all the components of the system at

the same time (Rogers, 2008, p.291). This approach is likely to result in less

75

cognitive load on students’ working memory when they try to relate multiple

changes on the computer screen to what they are learning. In this case, students’

focus may be on visual components that are not very important and they might

focus less on the important subjects that relate directly to the modules’ intended

learning outcomes (Lowe, 1999).

3.2.2.2 The DSL tool should be able to capture, organise and retrieve all the

students’ learning events

In this research, there are two reasons why it is important to monitor student

engagement with the DSL environment. The main reason for recording student

usage is that the usage data will help in identifying how the student engages with

the tool, and what learning events take place. The collected data on users’

behaviour will help in analysing the effectiveness of the DSL methodology and

answer questions related to what activities promote student engagement (Dawson

et. al, 2008).

Recording usage data can also assist students themselves to organise their learning

activities, and to see the knowledge they have acquired, and the visual

components they have used at different times, so that they can integrate their

learning experiences to create personal, meaningful records of their learning over

the academic year (Vavoula, 2009). The recorded data can also provide concise

and detailed user profiles that provide personalised learning targeted to students

based on their attention given to certain learning objects (Najjar, 2006).

76

3.2.2.3 Instructional text or audio should accompany the visualisation, and

the student should have the choice of using audio, text, or both feedback

methods

This research is studying the impact of using aural instructions and feedback to

accompany visual representation of the proposed data structures. To evaluate the

effectiveness of audio with visualisation, the research also aims to evaluate the

effectiveness of textual instructions with visualisation. In this way, the two

instructional formats can be compared. Khuri (2001) emphasises the necessity of

supporting visual representations with explanatory cues in the form of short notes,

as they can increase the amount of information that the user receives through

different working memory channels.

Mayer (2002, p.117) summarises a successful method of promoting understanding

when he refers to “important aids to multimedia learning, in which students

understand more deeply when they receive words and pictures.” Mayer (2002)

reports that contiguous aids can help students in deeply understanding study

materials if words and pictures are presented simultaneously on screen. He added

that a modality aid can help students to the same extent if words are presented

aurally rather than textually. Finally, the redundancy aid can help students in the

same way if either audio or textual information is presented with visualisation

rather than using them both at the same time. This assumption will be assessed in

chapter 4 where the effectiveness of aural vs. textual narration will be evaluated

based on students’ response times to instructions.

77

3.3 DSL Components’ Design

This section describes the attributes of each of the DSL tool’s components. It is

important to describe each of the proposed components individually because this

will contribute to understanding how the integration of aural instructions and

visualisation works overall, and illustrate the DSL tool’s features. Section 3.5 of

this chapter will describe in detail the implementation of the tool’s components.

3.3.1 Basic Objects

The objects refer to the simulation of the object in the first task that the students

perform. This concept was presented to the students at the beginning of the term.

It helped students in understanding what is meant by objects in Java, and how

they are created. The design of this object simulates BlueJ’s presentation of Java

classes in order to build a relation with the programming environment that

students will be working with during the academic year.

The created object can be dynamically changed according to the student’s

specification of its attributes. When creating an object, a student can name the

object class. Based on that, an object is created that simulates the run-time state of

the Java class. After that, the student can interact with the object by setting and

getting its values.

3.3.2 Nodes

In data structures, nodes are referred to as the data record in the computer memory

that forms the basic form of data structures such as Linked Lists, Binary Trees.

78

Nodes are an important component of the DSL design. They are used to simulate

how DS actually work and are stored in the memory.

3.3.3 Integration of aural instructions in a visualisation

As aural instruction is a key factor in the DSL approach, it is important to present

how the audio component is used as an instructional method. The use of speech

technology allows the integration of aural instructions and the rendering of any

text as spoken audio. The voice used in this research was chosen because it

sounds the most natural of the voices available and it was the favourite voice of

both staff and students.

3.4 Use case

The diagram in Figure 3.2 illustrates a use-case of the DSL tool. First, the student

logs in to the tool to supply and verify his or her user information. Then, the

student chooses his or her desired format for the instruction. The system is then

set to deliver textual or aural instructions while the student is learning any of the

data structures approaches. In the first mini study, students had no choice over the

selection of instruction format, as they were grouped randomly in three groups,

and each group had a specific format of instruction. However, when considering

the results of the mini study, as explained in Chapter 4, students only had to

choose either aural instruction or textual instructions.

79

Figure 3.2: DSL Tool Use Case Diagram

The student can then start any of the visualisation tasks available in the tool

(Learn About Objects, Linked List, Binary Search Tree and Binary Tree

Traversal). During each task session, the student is asked to leave feedback about

the task itself by either giving a rating (out of 5), or giving written feedback about

his or her experience. When the student has finished working on a visualisation

task, a snapshot of the student screen is taken and saved for later reference. At the

end of the task session, all the recorded information about the student’s usage is

stored in the tool’s database. Later, the student can review his or her usage data by

accessing the User Profile screen shown in Figure 3.3.

80

Figure 3.3: A snapshot of User Profile

3.5 Implementation of the DSL tool components

Section 3.3 presented an overview of the three main components of the DSL tool,

namely, basic objects, nodes and embedded TTS engines, and their proposed

functionality. This section describes the technical attributes of each of the three

components. The notion of nodes, linked lists and binary search trees in this thesis

are referred to as parts of data structures.

3.5.1 Basic objects

As stated above, objects refer to the simulation of the object in the first learn

about object task that the students perform. This evaluation of this task will be

81

discussed in detail in Chapter 4. The object component was created in the Visual

Basic VB 2005 programming language as a “User Control” component, that is, a

sub program that can interact with by a single object (e.g. button or text box).

Figure 3.4 shows the design of the basic object in both “design-time” and “run-

time” state. Design-time state is the appearance of the object in the programming

environment before running the tool, while the run-time state is the appearance of

the object during the run of the tool.

When creating an object, a student can name the object class (e.g. Shape, Bank

Account, Student … etc.) and specify how many fields he or she wants to have

and the data type associated with those fields (e.g. data1, name, balance … etc.).

The student can then set or get the data stored in those fields by pressing

“setData1” button or “getData1” button to simulate Accessor and Mutator

Figure 3.4: Design-time and Run-time states of basic objects in DSL Tool

82

methods in Java. The student can also have access to the code used to generate the

object shown, and this code can be used directly in any Java program.

3.5.2 Nodes

As explained in Section 3.4.2, a node is an important component of data structures

so it is an important component to be visualised. Nodes are used to simulate how

data structures actually work and they are stored in the memory.

Similar to basic objects, nodes are also a “User Control” component created in

VB2005. The DSL tool can control the nodes in the same manner as in basic

objects by interacting with them. Figure 3.5A presents two different states of the

Linked List node component, and Figure 3.5B presents two different states of

Binary Tree node.

83

Figure 3.5: (A) Linked List Node (B) Binary Tree Node

Figure 3.5 illustrates two types of nodes used in the DSL tool in their run-time

state. Figure 3.5A shows the full size and the reduced size of the Linked List node

that contains both the value stored in the node and a single Hash Code (address

location in memory) of the next node connected to it. The red square box shows

that the node is linked to another node, but a black box is shown if the node is not

connected to any other node (leaf node). Figure 3.5B illustrates a Binary Tree

node that works as a Linked List node; however, it holds the left and right

memory location of its children.

84

3.5.3 Embedded TTS Engine

As explained in Section 3.3.3, the availability of interactive aural instructions is a

key factor to the DSL environment. It is important to show how the audio

generation component was added to the tool and how it is controlled. To use TTS

in the VB programming environment, the Microsoft Speech Library that controls

any installed TTS on the system was linked to the DSL tool. The speech library

allows the system to synthesise any text passed as a parameter and convert it to

spoken audio. The voice used in the prototype tool was developed by AT&T Labs

Natural Voices®. The voice of a woman (Audrey) with a British accent was used

as it was favoured by both students and staff. Although other voices are available,

only the Audrey voice was used to reduce the number of experimental variables

that could affect the results.

The code snippet shown in Figure 3.6 summarises how to programme the TTS

engine. The code was used in the VB development environment to allow the DSL

tool to synthesise text in each visualisation task.

85

As shown in Figure 3.6, to convert the text to speech, first an object called

“SayThis” is created along with a string variable to hold the text to be synthesised.

Then, the created object is linked to a voice object created within the DSL

environment (MDI.MDIVoice.Voice). Finally, the text is passed to the

SpeechThread method for conversion. The thread function is used because of the

delay in the system caused by halting the execution of the tool until the speech

stops. The threading function allows the system to process the speech in parallel

with the main program.

3.6 Animating the visual components

To design an interactive learning tool that can interact with the visual components

of the DSL approach, it was important to produce simplified visualisations to

allow the students to manipulate and move objects around the screen. The

Private sayText As String

Private WithEvents SayThis As New SpeechLib.SpVoice

SayThis.Voice = MDI.MDIVoice.Voice

sayText = "You can now start creating objects by clicking on 'Create Object Class'"

SayThis.Speak(sayText,SpeechLib.SpeechVoiceSpeakFlags.SVSFlagsAsync)

Private Sub SpeechThread_DoWork(ByVal sender As System.Object, ByVal e As

 System.ComponentModel.DoWorkEventArgs) Handles objectsThread.DoWork

 SayThis.Speak(sayText,

 SpeechLib.SpeechVoiceSpeakFlags.SVSFlagsAsync)

End Sub

Figure 33.6: Summary of coding the TTS engine in VB

86

interaction with objects happens only after they are created by students. In the

Learn About Objects task for example, the created objects had the capability to be

dragged around the student screen. Moreover, it is important to note the capability

of the tool to visualise inheritance (when an object has a field of another object

type). To achieve that, a link is automatically drawn on the screen to show the

inheritance relation between the two objects. This is a similar approach to that

adopted by the BlueJ IDE, and so learners are likely to be familiar with this

approach.

In Linked Lists tasks, two methods are used to build an interactive list structure.

The first method creates the list structure in an object oriented manner, as it is

created in Java. The tree structure is easily represented in the memory because VB

supports OOP. However, to produce the animation, a more complicated

workaround has to be implemented. Two array lists are created to hold down the

information about the node values and their locations on screen and in the

memory. Then, a new function is created to loop through all the lists and objects

shown on the screen to match their values and maintain consistency between the

visual part and the actual values stored in the memory. Whenever a node value is

changed or dragged around the screen, the function checks again for consistency

between the values.

In Binary Search Trees and Tree Traversal tasks, the same methods are used to

store the nodes location on the screen and their values in two array lists. However,

more complicated algorithms are used to simulate the deletion of nodes from the

trees as the deletion can result in restructuring the whole tree and result in many

nodes being relocated in different locations on screen depending on what node

was removed.

87

Chapter 4 : Preliminary Study

4.1 Introduction

The discussion, in Section 2.6.3 of this thesis, about the relationship between

response time and cognitive load suggested an answer for the first research

question “What existing research evidence is there that the simultaneous use of

aural instruction along with visualisation will reduce cognitive load when learning

data structures?” It was shown that there is evidence (Beck, 2005, Dror, 2005,

Hensler, 2006, Khawaja, 2007) that supports the use of response time as a

measurement of cognitive load reduction.

This chapter focuses upon the pilot experiment which was conducted to ensure

that the planned research methods would help in answering the second research

question “Does the combination of aural instruction and visualisation reduce

students’ response time for task completion compared with textual instruction and

visualisation?” and prove the validity of the research hypothesis H1 “Reducing

cognitive load improves student engagement and outcomes when learning data

structures.” The pilot study also aims test the functionality and reliability of the

research environment to set the correct path to answer the rest of research

questions identified in this research.

The design of the DSL environment aimed to assess the effectiveness of using

textual and aural instructions in a visualised Computer Science (CS) learning

environment. This experimental study was designed to reveal how on-screen

88

instructions can benefit CS students in learning the concepts of data structures.

More specifically, it measures if CS students’ response time to a given aural or

textual instructions is reduced, thus implying reduced cognitive load. The results

obtained from this study will answer Q2, which is “Does the combination of aural

instruction and visualisation reduce students’ response time for task completion

compared with textual instruction and visualisation?”

The experiment was conducted during the first practical session of the

Introduction to Programming module when most CS students had little or no

previous contact with computer programming. Feedback given by the students

about the learning environment, and their reports of any technical issues with the

DSL prototype tool was recorded so that it could be assessed and used for future

recommendations and updates of the tool.

4.2 Study design

In this mini study, first year undergraduates in the CS department at Durham

University used the DSL environment as an introduction to learning about objects.

To do this, they used a prototype version of the DSL tool to be used to test the

validity of the research hypotheses. This was, for some students, their first real

exposure to the concept of objects and the use of Java programming. Students

doing the PDS modules were asked to voluntarily complete a task to help them

understand how objects are built in Java, and the BlueJ environment was used for

this purpose. The DSL tool monitored students’ usage and collected data about

their task completion.

89

Task completion is measured by the student’s ability to produce a visual

representation of the created objects. Figure 4.1 shows an example of a complete

task where the student created a visual representation of the Bank object.

Figure 4.1: Visual representation of Bank object created by DSL tool

4.2.1 Study Subjects

A total number of 30 students were involved in this experiment. The experimental

procedure applied was based on dividing the students into three conditions in a

between-subjects design. In the first and second conditions, at the beginning of the

practical session, each student in the two groups was given a laptop and a headset.

In the third condition, the remaining group used the non-audio version of the

prototype tool, so they were given only laptops.

The subjects for each group were distributed randomly. The process of allocating

conditions to students was based on randomly assigning laptops with different

instruction formats of the tool to students during the PDS practical session. Based

on that, each group contained variety of student behaviour, experience and

90

learning style. However, the identified risk of using this method is that it can

produce non-equivalent groups of students.

Group No. of Students Instructions Format

A 10 Textual

B 10 Aural

C 10 Textual and Aural

Table 4.1: Groups and Conditions table

4.2.2 Variables

In this study, the experiments’ identified dependent variable is response time, that

is, the time a student takes to respond to a set of instructions to complete a given

task. The independent variables are the use of aural instructions only with

visualisations, the use of textual instructions only with visualisations, and the use

of aural and textual instructions together with visualisations.

To eliminate any outside variables that could affect the results, the conditions of

the environment during the experiment were all kept the same. All the laptops

used had the same performance level.

4.2.3 Subject variable confounds

There was a concern about the experimental subjects’ variable confounds, that is

that different students may behave differently during the task in a way that may

91

affect the results of the experiment. The possible confounds that could affect the

results of this mini study are: students’ learning styles, differences in age among

groups, language issues that impacted on understanding instructions, students’

reading speeds, and prior knowledge of the subject. If any of these confounds

correlated with the independent variables of the study and resulted in changing the

value of the dependent variable, then the whole study would be confounded.

As explained in Section 4.2.1, a randomisation process was used to reduce the

subject variable confound. However, there was still a risk in having non-

equivalent groups of students.

4.2.4 Experiment of Procedure

The task (learning by using the DSL tool) was an optional part of the practical

session. It was made clear to the students that they could start their practical

without doing the task and that not taking part in the experiment would not affect

their assessment. They were asked to participate if they thought it would be

beneficial to further understand the concepts of objects in Java. From 44 students

undertaking both IP and PDS modules, 30 students volunteered to take part in the

experiment. Figure 4.2 shows an extract from the practical task sheet.

92

Figure 4.2: Lab Class quotation

At the beginning of the task, students were asked to complete login details and

some demographic information including, name, age, gender and programming

experience. This information was kept in the system for later statistical and

analytical use. The students also used their logging details when using the full

version of the prototype tool. To ensure that the system was working correctly, the

students were then asked to verify that they could hear/see a sample of a spoken

or written instruction.

By the end of the task, students should have gained an idea about how objects are

created and should have developed a preliminary understanding of the OOP

concept. This was considered a good start for first year computer science students,

as it enabled them to visualise the basics of programming languages (Cross and

Hendrix, 2006). More importantly, the pilot study aimed to determine the best

form of instruction in order to achieve the most effective results in the shortest

time.

In this experiment, five main instructions of increasing complexity were

monitored. The collected data were then grouped into tables based on the different

types of instruction.

93

A number of procedural variable confounds that could affect the experiment

procedure were identified; these variables related to the context of instruction

presentation and the length of the instruction. To control these potential

confounds, all the textual and aural instructions were identical, and the length of

time that textual instruction showed on the screen was made exactly the same as

the length of time that aural instructions took to play.

4.3 The DSL Environment

The objective of this phase of the research was to use the DSL tool to study the

effect of using three methods of giving instructions to students in a visual

interactive environment, that is, the DSL environment. It also aimed to answer the

research question Q2: “Does the combination of aural instruction and visualisation

reduce students’ response time for task completion compared with textual

instruction and visualisation?” The dependent variable in this experiment is the

reduction of cognitive load and its impact on learning, as measured by the

response time to the instruction given.

The first method of instruction was using text based instruction only. This was

considered a traditional way of giving instructions. It was also the simplest form

of an interactive media experience, and suitable for learners who recall material

by reading it. The second method presented the same textual instruction but it also

used spoken audio instructions. The final method combined both textual and audio

instructions at the same time.

In order to check a student’s response times, the tool first greeted the learner,

directed the learner to a simple instruction to run the programme, and made the

student aware of the availability of a repeat button that allowed the student to hear

94

or see the instruction again. These first two instructions were not monitored by the

tool, but they allowed the student to become familiar with it.

After that, the tool started to monitor the time between the instruction being given

and the student responding by completing the task requested in the instruction. As

explained in Section 4.2.4, to reduce procedural confounds that could affect the

result, each instruction was given or shown for exactly the same length of time.

For example, the duration of the instruction “Start a programme by clicking on

Start button” was 3.35 seconds for both the aural instruction and the textual

instruction. The text then disappears from the screen. Figure 4.3 shows an

illustration of this example. An identified risk that could affect the results of using

this method is the assumption that playing the aural instruction for the same

length of time as showing the textual instruction has equivalent effects on a

student.

95

Figure 4.3: Illustration of instruction format example

4.4 Results

This section describes the collected quantitative data generated by the DSL tool

based on students’ usage. The dependent variable conditions were investigated in

a between-subject analysis. The impacts of the three conditions on response time,

the independent variable, were measured and recorded. The mean of each

student’s response time, in seconds, was then calculated and these calculations are

summarised in Table 4.2.

96

Text Only
Group

Audio Only
Group

Text and Audio
Group

10.40 9.40 10.40

10.20 8.80 9.20

12.40 8.60 9.20

13.40 7.80 6.00

13.40 9.80 11.00

18.40 10.60 13.60

8.60 10.00 18.00

6.20 8.80 10.00

14.80 8.80 9.00

16.60 10.00 12.80
Table 4.2: Means of Response Time in seconds for each student in different method

groups

Further testing of the data was necessary in order to continue to answer the second

research question, “Does the combination of aural instruction and visualisation

reduce students’ response time for task completion compared with textual

instruction and visualisation?” The collected results were expected to show that

the use of audio both with and without textual instructions would improve the

learner’s performance, show effective usage of the environment and, thus,

demonstrate that cognitive load was reduced. In order to support the first

hypothesis, H1, of this research that “Reducing cognitive load improves student

engagement and outcomes when learning data structures”, a test of significance

was required. However, a normal t-test would not be valid for a comparison of

three groups as it can only be used to compare means between two groups (Field,

2007, p.349). Consequently, the One-Way Analysis of Variance (ANOVA) was

used because this allows for comparison of three or more experimental conditions

97

and it provides details about the differences between these groups (Field, 2007,

p.348).

The results of the ANOVA analysis were as follows:

Table 4.3: One-Way ANOVA test results

Table 4.3 shows that using audio only as the instructional method had the shortest

mean response time and, thus, that audio instructions were more effective than the

other two types. Text and audio instructions together produced the second shortest

mean response time and the longest response time was for the text only

instructions.

Table 4.4 shows the homogeneity results of the variance test. This test is designed

to examine the null hypothesis that the variances of all three groups were the

same; its results help to the answer the first research question. Next, Levene’s test

was used to check whether the different distributions of the data were statistically

significant or if they could reasonably have come about by chance (Ellison,

Barwick and Farrant, 2009, p.80).

98

Test of Homogeneity of Variances
Response Time

ANOVA
Response Time in Seconds

Sum of Squares df Mean Square F Sig.

Between Groups 56.619 2 28.309 4.082 .028

Within Groups 187.248 27 6.935

Total 243.867 29

Levene’s Statistic df1 df2 Sig.

4.316 2 27 .024

Table 4.4: Further ANOVA Results

Table 4.4 shows that Levene’s test revealed that the variances were significantly

different (the value of Sig <0.5). This means that the results violated one of the

assumptions of ANOVA and that there were significant differences between the

groups.

A multiple comparison test was then performed and the output gave the results

required for the Post-Hoc test. Use was made of Tukey’s Post-Hoc multiple

comparisons, which compares each method with the other two, in pairs (Field,

2007).

The post-hoc results are shown in Table 4.5.

99

Table 4.5: Multiple Comparisons Table

Table 4.5 shows that there is a statistically significant difference between the

audio only and text only instructional methods. There is no statistically significant

difference between the text only and text with audio instructional methods.

The overall plot of mean of the response times, in seconds, is shown in Figure 4.4.

This provides a visual comparison of response times.

100

Figure 4.4: Mean of Response Time Plot in seconds

4.5 Discussion

As shown by the statistical analysis of the learners’ response times, students who

used the DSL environment responded significantly more quickly with a successful

outcome to audio instructions than to other types of instruction. This leads to the

expected conclusion that aural instructions do benefit students in a visual

interactive learning environment. Those who used audio together with textual

instruction performed better, but not significantly better, than those who used

textual instruction only. The results show that there is a potential benefit for using

aural instructions in visualised learning task. This benefit is measured by the

reduction of the response time to on-screen instruction in successfully completing

a learning task.

101

The tool usage data and how students behaved during the experiment was

investigated further by looking at the students’ use of the Repeat button. The

students had been told that they could click on the Repeat button if they did not

understand the instruction the first time they received it. The recorded data

showed that the Repeat button was used only twice by the students who used

audio but it was used four times by students who used both the text with audio and

the text only instructions. To investigate the impact on the overall results of using

the Repeat function, the records of students who used the Repeat button were

removed and the data were examined again. The results showed that use of the

Repeat function had no impact on the results found previously. Therefore, it can

be concluded that the students still performed better with audio only instructions.

Investigating the second research question, Q2 “Does the combination of aural

instruction and visualisation reduce students’ response time for task completion

compared with textual instruction and visualisation?”, this mini study examined

the results of using two types of instructions (aural and textual) in three

experimental conditions. A comparison of response times in the three groups to

instructions revealed that the use of aural instruction produced statistically

significant lower response times than did the use of textual instruction. This result

enables an affirmative answer to be given to the second research question.

4.6 Conclusion

The conclusion is that using aural instruction resulted in a significantly quicker

response to instruction comparing with the use of textual only instructions.

However, when using simultaneous aural and textual instructions, students’

responses were not significantly quicker than when textual only instructions were

used. This could be caused by students being distracted when using the dual

102

instruction method, and this conclusion is supported by Kalyuga (2006) who

found that using both text and audio instructions caused students to divide their

attention between the two. The student’s limited working memory capacity may

be overloaded when he or she tries to focus on reading the text and looking at the

images at the same time. However, cognitive overloading can be avoided if the

working memory is enhanced by the dual mode presentation of the information, as

discussed in Section 2.8.

The results of this study suggest that a strongly positive answer can be given to

the second research question, Q2. “Does the combination of aural instruction and

visualisation reduce students’ response time for task completion compared with

textual instruction and visualisation?” However, there is no evidence that the

simultaneous use of textual and aural instruction can significantly decrease

students’ response time. These results, allied to the analysis made in Section 2.6.3

of the literature on cognitive load, supports the proposition that cognitive load can

be reduced by the DSL approach.

In summary, using aural instruction can increase the capacity of the working

memory. Based on this result, the research continued into its second part, using

audio only instructions with visualisation and abandoning the use of text with

audio instructions. It is expected that using audio only instructions will produce an

improvement in students’ interaction with the DSL approach.

103

104

Chapter 5 : Research Methods

Several research methods are used in this thesis. Studying the effectiveness of

aural instructions with visualisation in the DSL environment depends mainly on

collecting quantitative data, but some qualitative data also needs to be collected to

support the findings based on the quantitative data. If the results obtained by using

one method corroborate the results obtained by using the other method,

triangulating these results adds strength to the answers to the research questions

listed in Table 1.1.

Chapter 2 and chapter 3 presented an argument that supports the first research

hypothesis H1, and answers the first and second research questions. This chapter

presents the research methods used to address the remaining three research

hypotheses and seven research questions presented in Table 1.1.

5.1 Study design

5.1.1 Overview of the study

As stated in Chapter 4, first year undergraduates in the CS Department at Durham

University used the DSL environment to help them in understanding three

concepts of data structures, namely, Linked Lists, Binary Search Trees, and

Binary Trees Traversal. Students taking the PDS modules were introduced to the

DSL tool and given brief training on how to use it in a practical session

105

immediately after the PDS lecture introducing each data structure concept.

Volunteers were asked to use the tool to help them understand how the selected

data structures concepts work in Java, for example, in the BlueJ environment. The

students had access to the DSL tool whenever they wished to use it. There were

30 volunteers but a total number of 27 participants engaged with the tool during

the study period. The DSL tool monitored their usage and collected data about

each visualisation task they completed.

5.1.2 Rejected research methods

The cross-sectional experimental method used in the first experiment was

replaced by the use of longitudinal experimental method in the second and main

experiment. The cross-sectional method was excluded from the second study for

two reasons. The first was due to nature of the study itself, which tries to assist

novice students over a whole academic year. It would not have been ethical to

assist some students and not others over the length of an important assessed

course. Secondly, the prototype tool’s usage data was designed to be collected

automatically by the tool itself, and the learners were expected to use the tool in

different ways that are not amenable to the cross-sectional experimental approach.

In addition, a longitudinal design can achieve a more comprehensive evaluation of

the design and help in investigating reasonable associations between the DSL

environment and the effectiveness of a multimedia learning environment (Hu et

al, 2007). The study was a conducted over two terms of the academic year, that is

from 15 January to 25 June 2010.

106

5.1.3 Ethical Approval

Durham University requires every student to obtain ethical approval for his or her

research design before starting any experiment. Oates (2006, p 55) explained that

research committees will need to satisfy themselves that the subjects affected by

the study will not be harmed, and that all the people involved will receive fair

treatment. She listed the following issues that need to be addressed before ethical

approval is given:

- Specific data protection rights of participating individuals.

- Whether it is possible to offer incentives to the participants (such as a
prize draw) to encourage them to take part in the research.

- Intellectual property rights to the experiment’s components (multimedia
components).

- Restrictions on the type of learning technologies that are allowed to be
used during experiments.

- The legal liability of the developer of the system to be designed.

The research proposals for this study were submitted to, and approved by, the

Department of Computer Science at Durham University. The DSL tool was also

reviewed by Durham University Computing and Information Services before it

was installed on computers in the Data Structures module laboratory.

5.2 Quantitative data collection

Quantitative data analysis in this research is related to evidence based on finding

patterns through various forms of numerical data. The types of quantitative data

collected in this research included Nominal, Ordinal, Discrete and Continuous

data types. The data sources varied from automatically generated usage data and

usage rating by students, to students’ marks and the results of a questionnaire.

107

Each of those sources is discussed below.

5.2.1 Automated collection of usage data

This method of data collection was designed to support the findings of both the

qualitative and the quantitative data collection methods. The prototype tool that

was developed to evaluate the DSL approach was created with functionality to

record each student’s actions while using the tool. The collected data can then be

used to detect any pattern that can provide evidence about the tool’s efficiency.

Since students’ usage was to be monitored over the whole of the second term, the

resulting data was expected to provide rich evidence for analysing the research

results, and to help greatly in answering the research questions.

The recorded usage data was in the form of:

- Logging information (user name, time and date)

- User choice of feedback type (aural or textual)

- User choice of task (data structures exercise)

- Task log in and out time

- User rating for each task

- User freeform feedback (qualitative data)

- Values added, deleted, manipulated or printed

- “Repeat Instruction” count

- Accessing user profile

108

And for the assessment part:

- Trials count

- Correct and wrong answer count

At the first engagement between students and DSL tool, some demographic data

was collected about each student’s gender, age, and expertise in programming. A

snapshot of this form is shown in Figure 11.1 in the Appendix. This information

would be used in the eventual analysis of the collected data. In addition, the tool

recorded the response time as the interval between the system delivering an

instruction and the learner responding to it. However, the response time was only

recorded in the first mini study, not in the second study.

The automated data recording function would also enable the researcher to

reconstruct each student session, to look at the task that the student performed and

to compare the feedback received to what the student actually did. This

information would increase the validity of the results of other data collection

methods, and help in discarding any irrelevant results that might affect the overall

finding of the research. It would also help in building case studies because it

would enable the researcher to identify students who were actively engaged with

the tool.

109

The automated data collected by the DSL tool was designed to help in answering

the research questions listed below.

Q4: Is there a relationship between visualisation type and CS students’

choice of instruction type?

The DSL tool collected information about the student’s choice of

instruction type with each visualisation task. This data enabled a relation

to be examined between the choice of visualisation task (Linked Lists,

Binary Search Trees, or Tree Traversal) and the preferred type of

instruction. In turn, this relation can provide evidence about the effect of

using aural instructions on students’ perception of some data structure

concepts, and about any tendency to use aural instruction only for harder

to understand concepts. Since the level of complexity differs between the

three data structure tasks, some are harder to understand than others.

Q6: Do CS students choose to use the DSL tool while studying data

structures?

The auto-collected information would provide evidence to evaluate the

claim that students would opt-in to use the DSL tool as a regular resource

to help them in understanding the concepts of the selected data structures.

The frequency of usage would provide evidence about whether students

perceive the DSL environment as a positive benefit to their learning.

110

Q7: Of the three data structure types used in this study, which do CS

students select to explore through the DSL tool?

As mentioned previously, the collected data will provide information

about the use of the DSL tool with each visualisation task. This

information will provide evidence about the level of positive benefit

perceived in each task, and about the way in which the DSL environment

helped the learners.

5.2.2 Questionnaire

A research questionnaire contains a set of predefined questions assembled in a

predefined order designed to provide answers to questions related to the research;

the answers provide data that can be analysed and thus contribute to the research

results.

The use of an anonymous questionnaire enables respondents to answer the

questions honestly because it reduces pressure to give positive feedback or to

show good will towards the research or the researcher. An anonymised

questionnaire is likely to achieve a lower response rate than a researcher-

administrated questionnaire but, in this case, it was decided that fewer but more

honest answers provided by an anonymous questionnaire would be more valuable

than a greater number of possibly compromised results (Oates, 2006).

It was hoped that providing the students with a quick and easy self-administrated

online questionnaire with no time limit for its completion would boost the

response rate, so this was the instrument that was used. The questionnaire had

only nine factual questions. Seven were closed questions and offered a range of

possible answers. A copy of the questionnaire is shown in Table 9.2 in the

111

Appendix. One question was half-closed and half-open. Here, the students were

asked whether the data structures for which the DSL environment provided help

are the most important data structures to have visualisation or if there are other,

more important, data structures that ought to be visualised. The last question had

an open format in which the students were asked to write their overall feedback

about the tool and whether or not it had helped them in learning the concepts of

data structures.

For the closed questions, six alternative answers were provided, finely tuned in

degrees of agreement. The choice of this format instead of Likert’s scale was

designed to avoid students choosing the “do not know” answer without really

thinking about the question. It forced them to answer more definitely, although

this might have alienated those who actually did not know (Oates, 2006). This

approach was used because it was important to have definite answers based on

qualitative data to support the evidence collected statistically.

The questionnaire was designed to help in answering the following research

question.

Q3: Do CS students perceive benefits from aural instructions along with

visualisation when studying data structures?

Students’ answers to the questionnaire can provide direct evidence about

their perception of any benefits of using aural instructions within the DSL

environment. Students were invited to evaluate the extent to which their

use of the DSL environment provided a positive effect on their perception

of data structure concepts.

112

5.2.3 Students’ Marks

The results of students’ assessments in their end of year exam were collected and

compared to the data of their usage of the DSL tool to look for possible

correlations between the two. Although this experiment did not use pre and post-

tests to compare students’ progress during the course with their DSL participation,

it was hoped that the students’ exam results would give an indication of the value

of the DSL approach to novice students with lower marks, and how students with

different levels of marks had interacted with the DSL tool.

The investigation of the students’ assessment results will help in answering the

following research question.

Q9: What is the level of achievement of CS students who choose to use the

DSL tool the most?

A comparison of the students’ assessment results and the amount of time

they spent in engaging with the DSL environment will help in identifying

the students who most needed the tool, and interacted with it effectively to

actually learn. Obviously, this does not attempt to relate the effect of their

use of the environment on their attainment, as there are many other factors

that can affect a student’s attainment, and that is outside of the scope of

this research.

5.2.4 Audio Usage

As this research focuses on the effectiveness of using interactive audio

instructions within a visualised learning environment, it was important to capture

113

as much data as possible about the usage of audio in the DSL environment. First,

a prototype tool was designed to record if the user chose audio at the log in

screen. This would run the tool with aural instructions turned on and disable the

use of textual instructions. The second type of data recorded was how many times

the student clicked on the “Repeat” button, as this would give an idea about the

clarity of the audio. It was expected that the collected data about audio usage

would provide insights about the level of audio support and what type of tasks

attracted students to use this function.

The data about the audio usage will help in answering the following research

question.

Q5: Do students prefer the DSL environment based on visualisation only

regardless the type of instruction?

It is important in this research to identify the impact of aural instructions

on students’ learning experience. The information about the use of aural

instruction should reveal how this type of instruction can benefit those

students who use it and if they found it usable and useful. It will also show

when students choose to use aural instruction, and when they prefer to use

the textual instructions instead.

5.3 Qualitative Data Collection

One of the advantages of the eLearning environment is its ability to trace user

navigation and behaviour. Analysing these can help to discover issues about both

the tool itself and the students’ behaviour while using it (Mor Pera et. al., 2007).

114

In this research, it was hoped that the qualitative data collected would enable an

understanding of the benefits of the DSL environment which integrates aural

instructions into a visualised learning setting, how students use the DSL tool, and

whether it helps them to achieve what they were trying to do. Three main types of

usage data were scheduled: each student’s usage of each visualisation task, written

feedback within the tasks, and interviews with users. All of the qualitative data

collected in this research were acquired during the second study, as the first mini

study aimed to collect only quantitative data in the form of response time to

instructions.

5.3.1 Reviewing Student Usage

The first step in reviewing the collected qualitative data is to understand what the

students generally have done by recreating every session each of them had

undertaken. As explained in Section 5.2.1, the design of the DSL environment

allowed the automated recording of each student’s action in each task, and that

provided the data required. The data collected gave detailed information about

when the student logged in and for how long. It also detailed each student’s inputs

and what functions the student used to manipulate the visual components of the

task. Later, a snapshot could be taken by using the prototype tool to recreate the

image of the visualisation created by the student. It was intended to use the

collected images to compare the student’s work with their feedback about the

task.

115

5.3.2 Task feedback and Rating

The task usage data discussed in the previous sub-section was designed to be used

to identify how the student engaged with the DSL approach, and what content was

created. This sub-section discusses a complementary method of collecting

qualitative data that provides a better interpretation of what actually happened

during the task.

The task interface in the DSL prototype tool offered students the opportunity to

provide feedback about the current task. A task rating slider and a free-text

feedback area were provided to allow students say what they thought about the

task and to communicate any issues they wanted to raise while performing the

task. Although the rating could be classified as quantitative data, it was intended

to use it to assist the analysis of qualitative data like task usage. Analysing

together the textual feedback, the task rating and the usage details would provide

more potential to understand and trace each student’s behaviour. The presentation

of the rating slider however, only included the rating from 1 to 5, and the tool

recorded the rating value as 0 by default.

The data from task feedback was designed to help in answering the following

research question.

Q8: Do CS students perceive benefits from using the DSL tool to build a

mental model of data structures?

Task feedback can provide information about any benefits that students

perceived they gained in their learning within the DSL environment.

Students’ instant feedback about each task can provide detailed

information about their experience with the DSL approach, and the extent

116

to which they achieved what they expected to accomplish by engaging

with the DSL tool.

5.3.3 Interviews

An interview can be defined as a special kind of conversation between two people

(Oates, 2006) which allows the interviewer to get information from the

interviewee, usually based on a set of planned questions. By asking open ended

questions, the researcher can obtain unique answers and more complex feedback

that other research methods cannot capture (Oates, 2006). In this study, the

interviews aimed to obtain detailed information about the students’ involvement

in the conducted experiment. The interviews were planned to be conducted at the

end of the academic year so that the data they revealed could be used in

conjunction with the data collected from the questionnaires to give a fuller picture

of the students’ experience with the DSL environment.

The conducted interviews were designed to be a combination of artefact-based

and semi-structured questions. In the artefact-based part of each interview, the

students’ will be given their own profile created from their usage data and

containing some snapshots of their work, the timings and their written feedback.

These profiles will be sent to the students prior to the interviews as a reminder of

what they have done, and to help them to remember the tasks and the issues they

faced during their work.

The semi-structured questions will cover a list of themes, and follow-up questions

will be asked if necessary in order to get in-depth evidence about students’

experiences. The themes will cover subjects related to the use of audio and

visualisation, and the contributions of the DSL approach towards learning data

structures subjects.

117

In the first part of each interview, the students’ will be given the opportunity to

comment on the usage data that had been sent to them and to explain what they

were trying to do in the shown tasks. Then, they will be asked to say whether or

not the tool helped them to achieve their learning objectives for the chosen task.

The choice of participants will be based on varied usage of the tool (limited usage,

average usage, and intensive usage) and on their assessments marks, as it is

important to see students with a variety of achievement levels. However, due to

the limited time likely to be available after the exams at the end of academic year

it was known that some participants would not be available for the interviews as

many students go home soon after the end of their exams.

5.4 Chapter Summary

This chapter presented the design steps of the research and the experimental

methods used to evaluate the effectiveness of the DSL environment. It was

expected that all the methods discussed in this chapter would shed light on the use

of the DSL tool in the practical sessions of the PDS module, and would gather the

information necessary to answer the research questions listed in Table 1.1.

118

Chapter 6 : Results and Evaluation of the

DSL Environment

6.1 Introduction

Having established, through the pilot study discussed in chapter 4, the

effectiveness of aural instruction for computer science students in a visual

learning environment, this study moved on to investigate the effectiveness of the

main feature of the DSL environment, which is visualising the concepts of data

structures in conjunction with aural instructions.

This chapter discusses the results of a longitudinal study of the DSL environment,

the design of the study and the methodologies used. It also details the data

collection methods used, and provides an overview of the students’ experience of

engaging with the DSL environment during the course of the study, and maps the

results to the research questions listed in Table 1.1. Finally, it analyses the results

of the study to assess the effectiveness of the approach and the extent to which the

results support the research hypotheses.

6.2 Participants

This part of the research was conducted over the second and third terms of the

academic year, that is, from 15 January to 25 June 2010. The students had access

119

to the prototype tool whenever they wished to use it. The total number of

participants decreased from 30, who took part in the first experiment (see chapter

4), to 27 who actively used the tool in this experiment. The term “actively” means

that they used the tool more than once. After reviewing the students’ usage data at

the end of the experiment, it was seen that a small group of students had used the

tool only once. This indicated a lack of interaction with the tool and these students

were excluded from the results and their analysis.

The average age of the students who participated in the experiment was 19.08

years, with only two students aged over 21 years. 19 students had no experience

of programming before the course started, five had 1-3 years of experience, and

only 3 had more than 3 years of programming experience. Of the 5 females taking

the module, 4 actively engaged with the DSL environment, together with 23 of the

39 males.

Students were encouraged to participate in the experiment by emailing them with

details about the DSL approach, how to use the prototype tool and how the DSL

environment could help them in their study. They were also encouraged to use it

by the lab demonstrators, who reminded students of the option of having the tool

to hand.

6.3 Experimental setting and tools

As the experiment ran over two academic terms, the DSL tool was made available

through a network connection to a CS Department local server (SMART), which

is run by the Technology Enhanced Learning (TEL) group. The Information

Technology Service (ITS) at Durham University limited access to the DSL tool so

120

that only students using the network computers in the PDS labs had access to it.

This provided all the students taking the PDS module unlimited access to the tool.

The decision to use the Durham University CS labs as the experimental

environment for the DSL tool was based upon four reasons:

• Students were more likely to access the tool during their practical sessions
to help them understand and seek a solution to an assigned practical task.

• The licence for the text to speech engine limited its use to 40 computers at
any time.

• The DSL tool is a Visual Basic application and, since the installation
process is complicated, the CS labs provided the most suitable
environment for this.

• The university’s MySQL database service was available to record
students’ personal information and data usage through a secure connection.

To engage with the DSL environment, students were provided with instructions

on how to start the DSL tool. Then, they needed access to a shared folder on the

server to run the system executable file. All the lab demonstrators were also made

aware of how to run the tool in case they needed to deal with any problems or

queries from students.

6.4 Quantitative data analysis (The DSL usage data)

This section will analyse and evaluate the overall approaches to data collection.

Both quantitative and qualitative data collection methods were used. The research

observed student behaviour by automatically gathering information about their

usage. This helped to provide general feedback from students about their overall

learning experience. In addition, at the end of every data structures task, they were

asked to provide comments on the tool’s usefulness. At the end of the experiment,

121

the researcher also conducted a questionnaire with students, as described in

Section 5.2.2, to check the conclusions based on the collected usage data and to

gain a deeper understanding of their views and experiences in engaging with the

DSL approach.

6.4.1 Analysis of automated usage data

As explained in chapter 3, the DSL tool automatically collects detailed

information about each student’s usage. This data was used to help to answer

some of the research questions listed in Table 1.1.

The first type of data collected was information about the usage time and the

number of times each student used the system. The experiment recorded the time

and date of each student’s session. It also recorded which data structures

visualisation was accessed and whether any audio assistance was used to

accompany the visualisation. Once a student started a visualisation task, the DSL

tool started to record the time spent on each task, and all the student’s actions.

Figure 6.1 summarises the overall usage data. The mean average time spent on

engaging with the DSL tool was about 40 minutes, which equates to one third of a

practical session. The results show that, during ten practical sessions over two

terms, students spent an average of 3.3% of practical session time using the DSL

tool. However, usage by different students varied greatly. The longest time a

student spent using the tool was 127.92 minutes (about 2 hours and 8 minutes)

and the least time was about 4 minutes. This implies that the results can provided

an answer to the research question Q6 “Do CS students choose to use the DSL

tool while studying data structures?”

122

Figure 6.1: Students’ usage time

With regards to the number of tasks undertaken by students, Table 6.1 shows that

students used the DSL tool with all the visualisation tasks. They logged in to the

tool approximately 4-6 times and used the visualisations tasks more than once.

This suggests that the students were interested in the DSL environment.

Although the previous data provides an overview of the tool’s usage, more

investigation was needed to assess what sort of visualisations were more likely to

be used by students and what was their effect. To answer this, the DSL

environment was designed so that the prototype tool records each student action

while working on the task.

123

Task	
 Type	
 COUNT	

Linked	
 Lists	
 50	

Binary	
 Search	
 Trees	
 55	

Binary	
 Tree	
 Traversal	
 66	

Total	
 Usage	
 171	

Table 6.1: Task Type Count

Table 6.1 shows that the students engaged with the Binary Tree Traversal (BTT)

visualisation task the most and with the Linked Lists (LL) visualisation the least,

but the DSL tool was well used in all three tasks.

Table 6.2 provides further details of the collected data and shows the number of

actions performed on each visualisation during the course of the task. In order to

avoid discrepancies in the system’s usage data, all the tasks where less than 5

actions were performed were eliminated from the results. This was because, after

checking these instances, it became clear that they were not genuine interactions

with the tool and the students did not perform valuable actions with it. Thus, it

was unrepresentative data. Table 6.2 shows that the BTT task had the most

student interactions with the tool. The results enable an answer to be given to the

research question Q7 “Of the three data structure types used in this study, which

do CS students select to explore through the DSL tool?” The answer is that the

students made substantial use of the DSL tool to help them study all the three

types of data structures. They ran a total number of 142 tasks and, within these,

they performed nearly 1,500 actions while interacting with the tool. However, the

BTT visualisations attracted the largest number of both runs and actions and these

accounted for 38% and 48% of their respective totals.

124

Task	
 Type	
 Task	
 Total	
 Runs	
 Total	
 number	
 of	
 actions	

Binary	
 Search	
 Trees	
 46	
 367	

Linked	
 Lists	
 42	
 404	

Binary	
 Trees	
 Traversal	
 54	
 710	

Total	
 Effective	
 Usage	
 142	
 1481	

Table 6.2: Effective usage of DSL approach

6.4.2 Task Feedback

As explained in chapter 3, the DSL environment also allowed students to rate each

task they engaged with and to produce feedback that was specific to the task. For

this, a rating scale was offered with each visualisation task. The scale allowed the

student to rate each task with 1 to 5 stars, with 1 being poor and 5 being excellent.

Out of the total of 142 effective tasks undertaken, the students used the rating

scale on 60 occasions (23 BTT task, 19 BST task, and 18 LL task). The overall

rating for the three visualisation tasks is shown in Figure 6.3. The Binary Search

Tree (BTT) task achieved a higher rating than the other two tasks, which

correlates with the previous data about the greater interaction with that task.

There was no instance of a feedback rating of 1 (poor), and most of the students

claimed to have found the approach useful. However, 21 of the 60 feedback

scores were 3 (neutral).

125

Figure 6.3: Students’ rating of the DSL tool

In addition to the rating, written feedback could be provided and, in general, this

showed appreciation of the contribution of the DSL approach to an active learning

environment. This will be discussed in detail in Section 6.5. Both types of

feedback showed that students had few technical issues with the prototype tool

and the researcher took immediate action to deal with them. The DSL tool also

recorded snapshots of students’ work when they chose to save images. The

analysis of those images will be also discussed in Section 6.5.

6.4.3 Audio Usage

The DSL environment permitted the prototype tool to gather some additional and

important information about how students interacted with the tool’s audio

functionality. As will be seen below, this extra information helps to answer the

research question about the effectiveness of using audio with visualisation.

Chapter 5 of this study discussed the use of audio in this research and how it

would be measured. Students were given the choice to use the tool with or without

aural instructions. At the login screen, students could choose either to have aural

or written instructions, but they could not have both. However, there is a known

126

risk of a student choosing to use aural instructions without having headphones on,

or taking the headphone off when switching between visualisation tasks. The only

way used to avoid the risk, was by continuous monitoring of students usage of the

DSL tool during the practical session by the main researcher conducting this

research. However, there was no case found where students have reported that

they are using audio without actually using it.

Table 6.3 shows the percentage of audio usage with visualisation versus using

visualisation alone. Again, these results were based on the number of students

who engaged actively with the DSL tool, as defined in Section 6.2. The overall

usage of audio in all the tasks performed by students was 54.11%. However, this

data needs further investigation before any conclusions can be made.

Visualisation	
 Type	
 Percentage	
 of	
 Audio	
 Use	

Binary	
 Search	
 Trees	
 56.52%	

Linked	
 Lists	
 59.52%	

Binary	
 Trees	
 Traversal	
 46.30%	

The	
 overall	
 usage	
 of	
 audio	
 54.11%	

Table 6.3: Percentage of Aural instruction usage against Textual instructions

Looking back at the data generated by the students’ engagement with the DSL

approach, it was noted that most of the audio usage (77.77%) was from tasks that

generated less than ten actions. This means that most students used audio in short

tasks, whilst students involved in longer tasks requiring a high number of actions

were less likely to use audio with a visualisation. Again, further investigation into

these results will be discussed in the qualitative analysis in Section 6.5. An

overview of the automated usage results indicates that there is a positive

relationship between the extent of students’ use of the DSL tool in a task (and

giving it a higher rating) and the use of aural instruction.

127

6.4.4 Analysis of questionnaire data

An online questionnaire about their learning experience with the DSL

environment was sent to the participant students at the end of the experiment.

Only 16 of the 30 students responded. This low percentage (53%) may have been

due to the timing being near the end of term. Although the survey was open to

responses for a 3-week period, many students left the University as soon as they

had finished their exams. The summary of the questionnaire results is shown in

Appendix C.

The results of the returned questionnaires were as follows:

- As shown in Table 6.4, the majority of students, 93%, gave a positive

response. 37% of these “strongly agreed” that the DSL tool was easy to

use. 6.3% “slightly disagreed” with this statement.

Response
Percent

Response
Count

Strongly	
 Agree 37.50% 6
Agree 43.80% 7

Somewhat	
 Agree 12.50% 2
Somewhat	
 Disagree 6.30% 1

Disagree 0.00% 0
Strongly	
 Disagree 0.00% 0

Answered	
 questions 16
Skipped	
 questions 0

The learning tool interface was easy to use

Table 6.4: Students' responces to quiestionner question Q1

128

- As shown in Table 6.5, the overall feedback about the clarity of the audio

instruction was positive, also at 93%. However, 31.3% of students only

“somewhat agreed” with this statement.

Response
Percent

Response
Count

Strongly	
 Agree 25.00% 4
Agree 37.50% 6

Somewhat	
 Agree 31.30% 5
Somewhat	
 Disagree 6.30% 1

Disagree 0.00% 0
Strongly	
 Disagree 0.00% 0

Answered	
 questions 16
Skipped	
 questions 0

The audio instructions were clear and easy to
follow

Table 6.5: Students' responses to questioner question Q2

- As shown in Table 6.6, a high percentage, 43.80% of students, “strongly

agreed” that the Binary Tree Traversal visualisation was a useful and

important task to enhance and test their knowledge of the subject. No

negative feedback was given about this part of the study.

Response
Percent

Response
Count

Strongly	
 Agree 43.80% 7
Agree 25.00% 4

Somewhat	
 Agree 31.30% 5
Somewhat	
 Disagree 0.00% 0

Disagree 0.00% 0
Strongly	
 Disagree 0.00% 0

Answered	
 questions 16
Skipped	
 questions 0

The Binary Tree Traversal task was useful and
important to test and enhance your knowledge
about tree traversal

Table 6.6: Students' responses to questioner question Q9

129

- As shown in Table 6.7, 37% of students thought there was a need to

visualise other data structures, such as the Self-balancing Binary Search

Tree (AVL Trees), Graphs, and Control Flow Graphs. However, the

remaining 63% of students thought that the visualisations actually selected

for treatment by DSL approach were the most important data structures.

Response
Percent

Response
Count

Strongly	
 Agree 12.50% 2
Agree 50.00% 8

Somewhat	
 Agree 31.00% 5
Somewhat	
 Disagree 0.00% 0

Disagree 6.30% 1
Strongly	
 Disagree 0.00% 0

Other	
 Data	
 Structures 4
Answered	
 questions 16
Skipped	
 questions 0

1.	
 AVL	
 Trees	
 was	
 more	
 important
2.	
 Control	
 flow	
 graph
3.	
 AVL	
 Trees
4.	
 More	
 specific	
 types	
 of	
 tree	
 (AVL	
 trees,	
 etc)

The provided visualisations coverd the main data
structures that considered important in this
module

If you think there are more important data structures to visualise,
please list the in the empty text box

Table 6.7: Students' responses to questioner question Q4

- As shown in Table 6.8, 34% agreed or strongly agreed that the

visualisations helped them to create a mental model of these data

structures.

130

Response
Percent

Response
Count

Strongly	
 Agree 37.50% 6
Agree 31.30% 5

Somewhat	
 Agree 25.00% 4
Somewhat	
 Disagree 6.30% 1

Disagree 0.00% 0
Strongly	
 Disagree 0.00% 0

Answered	
 questions 16
Skipped	
 questions 0

The visualisations helped in creating mental
model of the proposed data structures

Table 6.8: Students' responses to questioner question Q5

The questionnaire results provide evidence that the students perceived benefits

from using aural instructions and visualisation by engaging with the DSL tool.

93.8% of students reported that their use of the DSL tool helped them to create a

mental model of the three data structures.

In the written feedback about the DSL experience, one student reported that the

DSL tool “was a very easy to use tool that provided a good visual aid for linked

lists and binary search trees.” This comment shows a deep understanding of the

approach and his positive interaction with it. However, he also added that “the

linked list program was quite buggy and sometimes left the program prone to

crashing.” It should be noted here that there are no records of how many system

crashes occurred because the data was saved only upon normal and error free

closure of a visualisation task.

There were mixed reviews about the usage of audio to support visualisations.

Some found it good and useful, for example, “audio instructions and descriptions

were very useful, as well as the ability to add and remove nodes into an existing

list.” The students who experienced technical issues with integrating audio and

131

visualisations tended to be deterred from using it, with one student explaining,

“Audio didn't work first time, and I haven’t used it since then.”

The questionnaire was also an opportunity for the students to share their opinions

on how the DSL environment could be improved. Suggestions included adding

extra features to the prototype tool, for instance, “I think the user interface could

be made easier to use and more intuitive”, or better ways of engagement, such as

“it would be helpful if it was integrated into lectures / practical’s.” The latter

comment suggests the need for more integration between external learning

resources, like the DSL environment, and the PDS module’s contents.

6.4.5 Students Marks vs. engagement with the DSL environment

As explained in Section 5.2.3, the student participants in this experiment did not

do a pre-test and post-test to see if the DSL environment had a direct effect on

their learning. This was because there were other types of learning inputs to the

PDS module so it would not have been possible to isolate the effect of the DSL

environment. In any case, the DSL environment was not part of the PDS module

and it was not considered a formal learning approach. Instead, the research looked

at students’ results in their PDS end-of-year assignment to investigate possible

correlations between these and their engagement with the DSL environment,

keeping in mind that correlation does not necessary mean causation, and the

researcher had no information about the students’ abilities and weaknesses.

To compare students’ assessment marks with the duration of their engagement

with the DSL tool, Figure 6.4 shows the linear regression of the scattered marks

against engagement with the DSL approach. This shows, in general, that students

who spent more time using the DSL tool obtained lower marks in the end-of-year

132

assessment. This result may suggest that less able students used the DSL tool as

an additional resource to help them to understand the concepts of data structures,

rather than that their use of the tool contributed to their lower marks. If true, this

finding confirms the need for learning methods like the DSL to provide students

with an extra support system if and when they need it. Although there is no clear

indication about whether or not using the DSL tool affected the students’ marks, it

is important to note that the less able students used the tool repeatedly, and found

it valuable to their study. It is also possible that these students could have gained

even lower marks if they had not used the DSL tool. However, the lecturer who

taught the data structure module feedback about the DSL environment clearly

indicated that students have benefited from their engagement with this

environment. The lecturer also expressed his interest in using the DSL

environment for the next coming year.

Figure 6.4: relation between student mark and time spent using DSL tool

133

6.4.6 Summery

Section 6.4 has presented and analysed a variety of quantitative data generated by

the DSL environment and the student questionnaires. The next section will discuss

in detail a range of qualitative data and look at some examples that can help in

understanding the results of the quantitative data. Moreover, further discussion on

the data is reserved for Chapter 7.

6.5 Qualitative data analysis

Large amounts of quantitative data were generated from automated usage, task

feedback, recorded audio usage and questionnaires and these were discussed in

Section 6.4. However, answering the research questions listed in Table 1.1 largely

depends upon analysis of the qualitative data. This section will discuss the

qualitative data collected in this study. The experimental approach used in this

research differed from other common experimental methods in that a longitudinal

method was used. This was because the experiment stretched over two terms and

the research was trying to assess educational value, not short-term effects upon

students’ responses that may be quickly forgotten.

The qualitative data collected in this study comprised of the students’ feedback on

each task they performed, a collection of snapshots of their work, written

feedback and interviews with participants.

The qualitative data collected and analysed achieved two main objectives:

- It supports the results obtained by analysing the quantitative data discussed

in Section 6.4

134

- It provides data that allows triangulation to be used, that is, using the

results obtained from one method to support or question the results of the

other method. Triangulation is likely to provide better evidence with

which to answer the research questions in Table 1.1

6.5.1 Analysis of individual task comments

Section 6.4.2 of this research looked at students’ rating of each task they

performed. For each task, students rated the benefit of each task they undertook

using a five point scale and they were also asked to write a short comment about

it. The collected comments were filtered so that repeated comments were ignored

(total of 9 comments). Short comments without any useful feedback (e.g., “nice

tool”, “good work!” and “Note”) were excluded, leaving a total number of 55

different and useful comments. Appendix B and C shows the complete list of

students’ comments. The comments were then divided into two categories, those

on non-technical issues and those of a technical nature. The technical issues raised

by students were dealt with immediately and errors were fixed straight away.

6.5.1.1 Non-technical feedback

Most of the non-technical feedback reflected the students’ general ideas about the

use of aural instructions with visualisation in an interactive learning environment,

or they referred to specific features. For example, a student stated “Audio is good

- it helps greatly with the task …” Another said, “this part has provided me with a

deep knowledge about the linked list as I was finding it hard to acquire

information from text books … view as array and wiki functions are great ideas!”

Such comments showed a good level of engagement by students with the DSL

135

approach and reflected their understanding of the approach’s purpose as well as

highlighting its strengths.

The other type of non-technical feedback was students’ reflections upon their own

learning experience when interacting with the DSL environment. As an example,

a student wrote about his use of the prototype tool, “Excellent tool, especially for

beginners…very interactive ...” Also there were comments like, “Good enough for

first time use” and “audio instructions and descriptions are very useful, as is its

ability to add a node into an existing list.”

Although most of the non-technical feedback was positive, some students raised

issues that need noting. A student commented on the absence of a guide on how to

use the tool by saying “… this section demonstrated tree traversal well. However,

a video tutorial on how to use it would have been the “icing on the cake." Another

student suggested that the DSL approach should have included more important

data structures, saying “… useful for visualizing the objects, though possibly a

function for looking at classes and more difficult to grasp topics such as

inheritance……. would be more useful than understanding simple objects.” The

DSL tool did lack a full guide, but it did actually address visualising “inheritance”

by introducing a simple inheritance in the LAO task, as described in Chapter 3

and illustrated in Figure 6.5.

136

Figure 6.5: Showing simple inheritance example

The non-technical feedback provided information about the benefits that students

perceived that they gained from this approach to learning. Task feedback, in

particular, provided detailed information about their experience with the DSL

environment. It was clear that students had engaged well with the DSL approach,

and had understood the DSL concept. This feedback also supported the

preliminary results and provided an impressive rating for the tool’s qualities.

6.5.1.2 Technical Feedback

In a few cases (27), students reported technical problems experienced while they

were working on a task. Again, Appendix C shows a complete list of such

feedback. The technical type of feedback was monitored closely and, in many

cases (19), a resolution was produced immediately to fix the problem reported by

a student. For example, as shown in Figure 6.6, the onscreen notes were clarified

137

immediately after receiving feedback which said, “… maybe make it clearer that

you can double click elements to display more data.”

Figure 6.6: Enhancing onscreen help after suggestion by students

Although a large part of the technical feedback related to the prototype tool’s

functionality, most of which was resolved without delay, some comments raised

important issues about the learning content visualised in the DSL tool. For

example, it was pointed out that the visualisation used did not give enough

information to aid greater learning about Binary Trees. One student said, “… the

way in which nodes are added to the tree is not clear to me and so the tool doesn't

seem that useful until you can construct a tree, exactly as you want it.” Another

claimed, “I would like to be able to edit/delete objects, for example being able to

change the object name.”

In addition to recommendations for enhancements to functionality, some feedback

reported the lack of specific functionality to help them in learning the concepts of

the offered data structures. A user wrote, “… might be better if somehow the

previous task could somehow import the binary trees created to use in this

exercise …”, showing that the student was keen to make the tool even better by

linking two tasks together. Similarly, a student wanting better quality visualisation

wrote, “… an animated graphical representation of adding and removing elements

138

when it happens would be useful…” In another example from the Linked List

task, a student reported that “… I think it would have been really good to actually

know which of them are tails because some people still get confused between

heads and tails and think tails is ONLY last value in the list …”, while another

expressed his misunderstanding of how the DSL tool works by writing, “I

managed to make 2 head nodes!” In the latter example, the student tested the

tool’s validation by adding a node with the text value “Head”, and thus he

discovered a technical fault that can occur in the Linked List visualisation task. A

snapshot of what this user did is shown if Figure 6.7.

Figure 6.7: Two-Head list created by a student

6.5.2 Analysis of Interviews

This part of the research explores the results of interviewing three student

participants together in a group. Although this is a small sample of the

139

participants, the interviewees provided valuable feedback about student

engagement with the DSL approach. However, because of the small sample size,

generalisations cannot be made about the student population at large.

The students were carefully selected from among those who volunteered to be

interviewed about their experience of using the DSL environment and after

reviewing all the students’ usage data. The selection criterion was discussed in

Section 5.3.3. There was a wide variation in the students’ assessment marks,

experiences and feedback, as shown in Table 6.9.

 Participant 1
(P1)

Participant 2
(P2)

Participant 3
(P3)

Age 19 18 18
Gender Male Female Male

Programming Experience Less than a year 2 3
Time Spent on DSL 78 Minutes 57 Minutes 92 Minutes

Practical Mark 58 84 68
Task Performed 19 10 13

Table 6.9: Interviewees’ quantitative data

Before the interview, a profile of each student’s usage was sent out to them to

remind them of what they had done. A sample is shown in Figure 6.8 below. Each

profile also contained snapshots of the DSL tool screens that the student had

generated or they were replicas based on the student’s action list. In addition, the

profile contained all the written feedback the student had generated throughout the

experiment.

140

At the beginning of the interview, each student was asked if the results of his/her

profile analysis correlated with what they actually did when they performed the

given task, and his/her feedback was explored. This method of using artefact

based interviews was discussed in Section 5.3.3. Figure 6.8 shows a sample of

P1’s usage profile.

Figure 6.8: Sample of P1 profile data

Then the following six questions were put to them. Depending on the nature of the

response, the researcher asked for elaboration in order to gain as much insight as

possible.

1) What did you aim to achieve in this task?

141

Each of the interviewees reported that they had completed the assigned task. Two

of them (P1, P2) said that they were trying to evaluate how the tool visualises data

structures using an example from the lecture notes. P3 described the task as

something he needed to do as part of his in-lab assignment. For example, with

reference to the tree traversal task shown in Figure 6.8 and talking about adding

the “--” values to the tree, he said, “I was doing practical work at the time. I

wanted to visualise a tree in the programming assignment… I was trying to work

out whether there are empty children or not.”

The answers to this question reflect the students’ intentions when first engaging

with the DSL environment. It is likely that many students first made use of the

learning tool in order to test its value to them before deciding whether or not to

use it again.

2) Has the approach helped you in achieving what you were trying to do

when working on a task?

P1 stated that it helped him in the visualisation of data structures, and that was the

reason he used it. P2 agreed but claimed it lacked some functionality, saying, “if

you can export the images of the created objects to use outside the tool, that will

be handy.” Actually, this feature is available, as discussed previously. P3

expressed satisfaction with the DSL approach in more detail, saying, “… it was

quite handy actually! Being able to see graphical representation of what you were

looking at, seeing how to add or remove things from entire structure. I thought

that quite good actually.” These comments reflect an overall satisfaction with the

DSL approach among the interviewees, and a belief that it had helped them in

achieving the purpose of the task. These comments were supported by reviewing

the students’ usage profiles that showed that they engaged with the tool, created a

142

set of visualisations and manipulated them in a logical manner. Thus, it seems that

the DSL tool offered a valuable solution to problems that students encountered.

3) With regards to the traversal task, why did you use it more to build trees

rather than checking your knowledge by taking the quiz?

None of the three interviewees had taken the quiz to test their knowledge about

traversal, although other students had used it and some had used it frequently. It

was important to investigate whether this functionality was not relevant to their

needs or whether they had simply missed it. P1 stated, “… it wasn’t what I wanted

to do at the time. When I used the tool, I used it primarily to construct

visualisation. I wanted to build trees more than learning traversal. When I studied

traversal, I looked at the node that I had.” P2 agreed, saying that, after she had

tried it once, “… I couldn’t understand the quiz part of the traversal task. I might

have been entering the data in a wrong format I think …” P3 said, “I did a few

traversal exercises. I tried the quiz but it wasn’t clear what I needed to do. It

might’ve been something to do with my input; I misplaced the data a few times. I

don’t think it was an error with the tool.” Although there was a range of reasons

for not taking the quiz, the most important point here is that both P2 and P3

showed were confused about how the task worked. While they blamed themselves

for this misunderstanding, it is the responsibility of the system designer to ensure

that students can understand the objective of each task and the instructions for

performing it. This is an example of the limitations of the environment, and future

work should include running usability checks before students start interacting with

the environment.

143

4) In respect to the use of interactive aural instructions, what did you think of

this functionality?

Answers to this interview question were crucial to answering Q3 of the research

questions “Do CS students perceive benefits from aural instructions along with

visualisation when studying data structures?” and whether the use of audio with

visualisation technologies can facilitate student learning.

All interviewees agreed that the instructions were clear and easy to follow.

Reflecting the concept of learning styles, P1expressed a preference for reading

instructions; indeed all of them explicitly said, “… it is a matter of personal

preference.” P3 focused upon the visualisation itself because he found that the

audio instruction slowed him down.

Interestingly, P2 linked the use of audio to an experiment during the first term

while the students were studying Binary Numbers. That was an experiment in

another researcher’s study, which is not related to this research. However, P2’s

comment was interesting and useful as she explained the problems, saying, “…

well, if you look at instructions like in Janet's class, instructions had to be used to

help in constructing binary numbers. We didn't know how to do it and we had to

follow instructions. The instructions were too fast, and we had to go back and

forward to listen again. At that time, it would've been better if it was combined

with words rather than audio.” The student followed with “… just quick short

instructions may have helped. But not all the way audio.” Based on these

students’ answers, the benefits of the use of audio can depends on various factors,

such as a student’s own learning style, external factors or previous experience

with audio based materials, the usability and accessibility of the learning tool, or

simply the availability of headphone speakers for the students at the time of the

practical session.

144

5) Do you think the DSL environment helped you to better understand the

concepts of data structures?

Generally, the students were positive about the value of the environment, saying

“… helped in reinforcing concepts” (P1), and “Yes, particularly the traversal

exercise…” (P2). P3 believed the DSL approach helped him in his learning and

added “… it showed any important information by either displaying it on screen,

spoken or even in a text box; it made it easy to interact with.” The answers

showed that, overall, the DSL environment was useful in learning the concepts of

data structures, and had a good effect on their learning experience.

6) Do you think an environment like this should be used as part of the

module to help you in what you are studying?

This question was added to the question list after the module leader expressed the

intention to use the prototype tool again in the following academic year. The

module leader thought it would be useful for the students to have interactive

visualisation with aural and textual support, but it was also important to know

what the students thought about it. The three interviewees agreed with the module

leader’s intention, and each highlighted a benefit of the approach. For this

question in particular, it is important to present each interviewee’s response as it

showed a deep understanding of the purpose of the DSL approach and an interest

in enhancing such technology for future use.

P1 stated that, “if a lecturer demonstrated how to fill the tree using a visual tool,

or how students could build a tree and had the homework based upon that, that

would be very helpful. Students who missed the class will benefit from it too.” P2

145

stated that “I think the main advantage will be to make the understanding of the

subject faster than any other methods I have used.” Finally, P3 said, “I think

potentially yah, because it gives you a quick way of checking your work, and

making sure your trees are correct, and your linked lists are correct. It will

certainly speed up teaching these things, because you wouldn’t have to read as

much to gain the same level of information. It shows you instantly the changes

that are made.” These students clearly recommended that the DSL environment

should be used in future years, and that it should be part of the module’s

supporting materials.

6.6 Summary

This chapter has discussed the results of the experiment conducted within this

research about the use of aural instructions with visualisations in an interactive

learning environment. It explained the design of the experiment, the research

methods used and the data that were collected. The next chapter will relate these

results to the research questions listed in Table 1.1.

146

147

:

Chapter 7 :

 Discussion of Research Results

7.1 Introduction

This chapter analyses the impact of using aural instructions with visualisation in

an interactive learning environment, and the overall results of the students’

experience with the DSL environment. It also evaluates the collected quantitative

and qualitative data. This analysis and evaluation will be used to answer the

research questions proposed in Table 1.1.

The chapter will discuss the research hypotheses and questions in the order in

which they were presented in Table 1.1. It will include a discussion of the

significance and implications of the research findings, as well as their limitations.

7.2 Reductions of cognitive load and improving student

engagement

7.2.1 Introduction

This section discusses the impact of using aural instructions and visualisation on

learners’ cognitive load. It deals with the first research hypothesis, which is,

“Reducing cognitive load improves student engagement and outcomes when

148

learning data structures.” It will also gather the results of the study to answer the

following research questions:

• Q1. What existing research evidence is there that the simultaneous use of

aural instruction along with visualisation reduces cognitive load when

learning data structures?

• Q2. Does the combination of aural instruction and visualisation reduce

students’ response time for task completion compared with textual

instruction and visualisation?

7.2.2 Research Method

Two main research methods, a systematic review and a cross-sectional

experiment, were used to gather data to answer these two research questions.

In relation to Q1, the systematic review investigated previous research in the field

of multimedia learning and cognitive load. The main focus was on studies that

proposed a presentation of visual content in synchronization with aural narration

to produce an efficient allocation of cognitive memory resources and maximise

the amount of information gained by learners. Section 2.6 presented a range of

studies that investigated this approach, and specifically response times to short

instructions.

The cross-sectional study was used to answer Q2. Chapter 4 presented this mini

study that investigated the use of the DSL tool to measure the CS students’

response times to aural and textual instructions. It is assumed that shorter response

times indicate a reduced cognitive load.

149

7.2.3 Results and Discussion

The results of the systematic review were previously presented in Section 2.6.

They showed that, based on cognitive load theory, the use of visual and aural

presentation simultaneously is likely to result in a lower cognitive load on a

learner’s working memory (Sweller, 1994; Mayer, 2001; Tudoreanu, 2003; Ando,

2008). The review also provided evidence that the use of textual presentations

with visualisation may distract learners by splitting their attention between the

visual presentation and the text, which can be considered as another form of visual

presentation (Sweller, 2002; Kalyuga, 2006).

The literature also investigated the relation between cognitive load and response

time to instructions or questions. It showed that, in intelligent tutoring systems,

the response time to aural instructions positively correlates to cognitive load and

that a longer response time indicates lower performance and less interaction with

the material (Beck, 2005, Hensler, 2006). Conversely, longer response times to

giving a correct answer to a complex question indicates a higher cognitive load

(Dror, 2005; Khawaja et al., 2007). The hypothesis in this research however, is

that if both correct response and the response time indicate or imply that cognitive

load is reduced, and if correct responses are received from all learners, then

response times can indicate whether cognitive load is increased or decreased, that

is, that a greater response time indicates an increased cognitive load.

Based on that investigation, the requirements of a prototype tool that could bring

together an effective approach for reducing cognitive load were presented in

Chapter 3. Additionally, Chapter 4 presented a cross-sectional mini study that was

conducted to answer the second research question, “Does the combination of aural

instruction and visualisation reduce students’ response time for task completion

compared with textual instruction and visualisation?” The results of that study

150

were discussed in Section 4.4, and summarised in Figure 4.4. The results showed

that, when synchronised with visualisations of the concepts of data structures,

learners record a statistically significant higher response time for textual

instructions than for aural instructions. Based on this result, the conclusion was

drawn that the use of aural instruction with visualisation can reduce students’

response time and, based on the results of the systematic review, it was concluded

that the reduction of response time indicates a reduction of cognitive load.

Thus, this thesis has demonstrated positive support for the hypothesis H1 that

“Reducing cognitive load improves student engagement and outcomes when

learning data structures.”

7.2.4 Threats

Two threats to the validly of the first research hypothesis investigated in this

section were identified. The first threat is the validity of the resources used for the

systematic review. No study was found that explicitly states that a reduction of CS

students’ cognitive load can be accomplished by using short aural instructions

with visualisation in a multimedia learning environment that aims to teach the

concepts of data structures. In addition to being interesting and potentially useful

to teachers and learners, this study’s focus on this gap in the research literature

fulfils the requirement for uniqueness of the research, which is a necessary

element of doctoral research. Based on that, the second threat to the validity of the

hypothesis is the adoption of response time as the sole dependent variable for the

mini study. A discussion of the procedural confounds were presented in Sections

4.2.3 and 4.2.4.

151

7.3 Use of aural instructions and students perception of data

structure concepts

7.3.1 Introduction

This section investigates the impact of using aural instruction with visualisation

on the process of learning the concepts of data structures. It presents the second

hypothesis of the thesis, that is “The use of aural instructions in teaching data

structures to Computer Science students has a positive effect on student

perception of data structure concepts.” The purpose of this investigation is to

gather results to enable answers to be given to the following research questions:

• Q3 Do CS students perceive benefits from aural instructions along with

visualisation when studying data structures?

• Q4 Is there a relationship between visualisation type and CS students’

choice of instruction type?

• Q5 Do CS students prefer to use the DSL tool based on visualisation types

only regardless the type of instruction?

7.3.2 Research Method

To answer the three research questions in this section, a triangulation method is

used to make sure that data from one research methodology can be used to explain

the results of the other.

Students’ perception of the benefits of aural instructions is measured by their

responses to the questionnaire. The questionnaire results, presented in Section

6.4.4, provide a general idea about the students’ perceptions of the DSL approach.

152

Students were asked about the clarity of the audio instructions in order to judge

whether students found any difficulties in understanding the instructions or

problems with the voice that was used, as shown in Section 6.4.3.

A qualitative data collection method was employed to obtain further information

to answer the research questions. Students provided written feedback about their

experience with the DSL tool. This feedback provided information about how

students perceived the use of aural instructions in the learning environment.

Interviews were conducted with three selected students to obtain a better insight

and evaluation of how the approach was received by students. Section 6.5.2

presented an analysis of each student’s comments about the use of aural

instructions.

7.3.3 Results and Discussion

To answer the research question Q3 “Do CS students perceive benefits from aural

instructions along with visualisation when studying data structures?” Section 6.4.4

presented students’ responses to the questionnaire at the end of the academic year.

The responses showed that students agreed that the DSL approach had helped

them to build mental models of data structures and the aural instructions were

clear and easy to follow. Moreover, they offered the opinion that the integration of

the DSL approach with the lecture materials could make it even more beneficial.

Some students hoped that more visualisation tasks could be added to the tool.

Thus the answer to research question Q3 is that CS students do perceive benefits

from aural instructions along with visualisation when studying data structures.

The research question Q4 asked “Is there a relationship between visualisation type

and CS students’ choice of instruction type?” Investigation of this question aimed

153

to provide evidence that the use of aural instructions has a positive effect on

learning data structure concepts in general, but also that students might tend to use

aural instruction more in learning harder-to-understand concepts. Section 6.4.3

presented the analysis of the usage of the aural instruction format. Students who

were actively engaged with the DSL tool used aural instructions in 54% of the

tasks they performed. However, the data shown in Table 6.4 showed that there

were no significant differences in the use of the two different types of instructions

in the three different visualisation tasks. Based on that evidence, no conclusion

can be drawn about whether the difficulty level of the task affects the students’

choice of instruction type.

The research question Q5 asked “Do students prefer the DSL environment based

on visualisation only regardless of the format of instruction?” To answer this

question, it was necessary to assess the impact of aural instructions on students’

learning experience. As shown in Section 6.5.1, students’ comments and feedback

about their usage of the DSL environment included feedback about issues faced

while using the DSL tool, suggestions to enhance it, and reflections upon their

learning experience. Students reported that they had benefited from using aural

instructions and that they were very useful and interactive.

Moreover, in the student interviews reported in Section 6.5.2, the interviewees

agreed that the aural instruction was clear and easy to understand. However, they

had some reservation about using aural instructions all the time. One stated a

personal preference for textual instructions and the way in which this was

expressed revealed that she was conscious of her own preferred learning style.

Though investigation of possible relationships between students learning styles

and the DSL environment was not part of the study, it is recommended, especially

in the light of the discussion in Section 2.2.7, that this should be included in any

future work.

154

The results showed that aural support was used on almost half of the occasions

when a student used the DSL tool. This result was investigated further by

constructing a timeline of students’ usage of the DSL tool compared with how

many times they used aural support. This is presented in Figure 7.1 and it shows

that the audio facility was used most at the beginning of the study, and usage

decreased during the two academic Terms. Interestingly, there was an increase in

its use during the exam revision period.

Figure 7.1: The use of audio during the experiment

The linear regression line in Figure 7.1 shows that students retreated from using

aural instructions over the period of the experiment. The conclusion that can be

drawn is that the audio facility was of most help to the students in the first part of

the experimental period as they were learning the basic concepts, and that their

use decreased as they became more interested in the visualisations. It is also

155

possible that the DSL environment might have a design limitation that resulted in

its failure to maintain students’ interest in aural instructions throughout the course.

However, the increased use of the audio facility before the exams suggests that

students had not abandoned it as an unnecessary or unhelpful function but that

they remembered its earlier support and hoped that it would aid their revision of

data structure concepts.

The triangulation of the presented pieces of evidence from the data analysis

indicates that the answer to research question Q5 is that the DSL environment

does benefit students’ learning experience regardless of the type of instructions

used.

Thus, although no definite answer could be given to research question Q4, the

answers to research questions Q3 and Q5 provide enough evidence to support the

hypothesis H2 that “The use of aural instructions in teaching data structures to CS

students has a positive effect on student perception of data structure concepts.”

7.3.4 Threats

The first limitation of the validity of the presented evidence that supports the

answers to the research questions in this section relates mainly to the automated

collection of data about the use of aural instructions. The threat is that if a student

chose to use aural instructions but did not use the headphones, it would mean that

the student was only interested in the visualisations and not in the type of support

instructions. Other threats concern the limitations of using questionnaire and

interview results, especially when the data collected represents the views of only

some of the students involved in the study.

156

7.4 Students’ perceptions of the benefits of using the DSL tool

7.4.1 Introduction

This section represents an important focus of this thesis. It investigates the use of

the DSL tool as a method to test the benefit of integrating aural instructions with

visualisation in an interactive learning environment. It presents the third

hypothesis of the thesis, that is “Students perceive a positive benefit to their

learning by using the DSL tool.” The purpose of this investigation is to gather

evidence to answer the following research questions.

• Q6 Do CS students choose to use the DSL tool while studying data

structure?

• Q7 Of the three data structure types used in this experiment, which do CS

students select to explore through the DSL tool?

• Q8 Do CS students perceive benefits from using the DSL tool to build a

mental model of data structures?

7.4.2 Research Methods

Two research methods were used to provide evidence to answer these three

research questions. The automated data collected about students’ usage of the tool

provided strong evidence about the students’ engagement with the tool, and how it

was used. Feedback provided by the students at the end of each visualisation task

was also valuable evidence of any benefits they perceived from using the tool.

157

7.4.3 Results and Discussion

To help to answer research question Q6, “Do CS students choose to use the DSL

tool while studying data structures?” Section 6.4.1 highlighted the results of data

captured by the DSL about how the students used the prototype tool. The first set

of data provided an average mean of usage time of 39.42 minutes for all students,

as shown in Figure 6.1. However, since the standard deviation is large at 32.1

minutes, the average cannot be generalised over the whole sample of participating

students. This result shows that students varied widely in the time they spent using

the DSL tool, and that usage time does not give a clear indication of how students

engaged with the DSL approach.

Therefore, more investigation was needed to ascertain what students did,

regardless of the time they spent on it. The second set of data measured the

volume of students’ engagement with the DSL tool as shown in Table 6.2. The

duration of the engagement, their effective usage of the DSL tool (as explained in

Section 6.2), and the students’ task comments all lead to the conclusion that

students intentionally chose to use the DSL environment as a source of

information to assist them in learning the concepts of the data structures. The

triangulation of the presented pieces of evidence from the data analysis indicates

that the answer to research question Q6 is that the CS students have chosen to use

the DSL tool while studying data structures.

To help to answer the research question Q7, that is “Of the three data structure

types used in this experiment, which do CS students select to explore through the

DSL tool?”, Table 6.2 presented data about how many times students logged in to

use each of the visualisations tasks in an effective way. The results show that

students engaged with the approach and performed a high number of interactions

with all the available types of visualisation tasks and that there are no significant

158

differences between students’ use of the DSL tool for each of the three

visualisations. The data shows that most students engaged extensively and

effectively with the DSL environment over the period it was available to them and

that they were generally satisfied with its effectiveness in aiding their learning

experience. However, the data does not provide information about what would

have happened if students had not used the DSL environment at all, as there was

no comparison against students’ performance in previous years, or with a control

group for reasons explained in Section 5.1.2. The presented pieces of evidence

from the data analysis, however, indicates that there is no definite answer to

research question Q7 about which data structure students select to explore the

most through the DSL tool as the students have used all the data structures almost

equally.

The help to answer the research question Q8, that is “Do CS students perceive

benefits from using the DSL tool to build a mental model of data structures?”,

participants were asked in the end-of-experiment questionnaire whether the DSL

environment had helped them in building a mental model of data structures. As

discussed in Section 6.4, 93.8% of students reported that their use of the DSL tool

helped them to create a mental model of the three data structures offered in the

experiment. Moreover, in the end-of-experiment interviews, students were

positive about the value of the environment, and reported that it had helped in

reinforcing the concepts of the three data structures. So an answer to the research

question Q8 would be that the DSL tool benefited students to build a mental

model of data structures.

Thus, this thesis has demonstrated some support for hypothesis H3 that “Students

perceive a positive benefit to their learning by using the DSL tool.”

159

7.4.4 Threats

The main limitation of the presented evidence that supports the answers to the

three research questions Q6, Q7 and Q8 is that no data is available that enables a

comparison to be made between the students who used the DSL environment with

those who did not. Even if this data were available, students who choose not to be

engaged with the DSL tool might have had access to other forms of assistance to

help them to understand the concepts of data structures. Moreover, the students

who participated in the experiment might also have used other resources in

conjunction with the DSL environment, so it is not possible entirely to isolate the

effects of the DSL environment on students’ understanding of the concepts of data

structures.

7.5 Students’ assessment marks and their engagement with the

DSL environment

7.5.1 Introduction

This section examines the fourth hypothesis of the thesis, which is “There is a

significant and positive relationship between a CS student’s level of engagement

with the DSL tool and his/her level of achievement, as measured by the official

assessment marks.” This involves a comparison of the amount of time each

student spent using the DSL environment and his/her mark in the official

assessment. It will also look at any evidence that enables this study to identify

those students who most needed the DSL tool. The purpose of this investigation is

to gather results to answer of the following research question.

160

• Q9 What is the level of achievement of CS students who choose to use the

DSL tool the most?

7.5.2 Research Method

To investigate this hypothesis and answer the research question, two methods

were used to gather the necessary information. First, the DSL tool’s automated

data collection gathered information about the duration of students’ usage of the

tool. Secondly, the researcher obtained access to the students’ end-of-year

assessment marks. The comparison between these two data sets looked for

correlation between students’ usage and their level of achievement. In addition, it

looked to see whether conclusions could be drawn about the type of student who

most needed the help provided by the DSL environment.

7.5.3 Results and Discussion

Section 6.4.5 investigated students’ level of attainment in relation to the duration

of their engagement with the DSL tool, and Figure 6.4 plotted a comparison of

these two pieces of data for each participant in the experiment. This showed that,

in general, the students who spent more time using the DSL tool obtained lower

marks in the end-of-year assessment. This result suggests that less able students

were keener to use the DSL environment than more able students. This does not

mean that use of the DSL environment led to lower assessment marks; indeed, the

low-achieving students might have performed even less well if they had not used

the DSL tool. In any case, correlation does not imply causation, and there are

many factors that could have affected the students’ progress. The most likely

explanation of the result is that less able students realise that they need more help

161

to understand the assignment and, therefore, they will tend to use more of the

learning resources available to them. Moreover, the lecturer who taught the data

structure module feedback about the DSL environment clearly indicated that

students have benefited from their engagement with this environment. The

lecturer also expressed his interest in using the DSL environment for the next

coming year.

The answer to research question Q9 is that it is the less able CS students who

choose to use the DSL tool the most. This answer does not support hypothesis H4

that “There is a significant and positive relationship between a CS student’s level

of engagement with the DSL tool and his/her level of achievement, as measured

by the official assessment marks” and the hypothesis proved to be not true.

7.5.4 Threats

The confound that could affect this result is the limitation of the design that did

not specify pre and post tests to evaluate the students’ level before and after their

experience with the DSL environment. However, as explained in Section 5.1.2,

pre and post test methodology was rejected because the study aimed to support

students’ learning over the duration of the academic year rather than to investigate

the effects of a short intervention and, over that period, there were many other

variables that could have affected students’ understanding of the concepts of data

structures.

162

7.6 Research Conclusions

7.6.1 Introduction

This final section summarises the conclusions of this study on the effect of the

DSL environment on students’ learning experience in the PDS module in the CS

Department of Durham University. It reviews the answers to the research

questions listed in Table 1.1 and highlights the contributions of this study to

research into CS teaching and learning. It also highlights the limitations and

weaknesses of the study and, finally, suggests some enhancements that could be

applied in future research in this field.

7.6.2 Research contributions

The main research contribution of this study is to present a new environment to

assist the teaching of novice CS students in the complicated but crucial concepts

of programming. This approach suggests the use of aural instructions with focused

visualisation to speed up the learning process at the start of the course and to

benefit students in the long term. A prototype learning tool, called the DSL tool,

was developed within an interactive learning environment to facilitate the

implementation of the DSL approach to assist students in learning the concepts of

data structures.

As well as assisting students, the DSL environment was designed to record rich

usage data that enabled investigation and analysis of the students’ learning

experience while they were engaged with it. Valuable qualitative feedback was

also obtained from the students.

163

7.6.3 Answers to the research questions and hypothesis

To meet the criteria for the success of this research and to reach worthwhile

conclusions, it is important to answer the nine research questions identified in

Table 1.1, and indicate whether or not the research hypotheses were or were not

supported.

Q1. What existing research evidence is there that the simultaneous use of

aural instruction along with visualisation will reduce cognitive load

when learning data structures?

The study of cognitive load focused on the importance of understanding how

student perceive knowledge. Cognitive load is the amount or measurement of

mental effort needed by a student’s brain to learn something, and this formed the

base for designing the DSL environment, the aim of which was to keep the

cognitive load to its minimum. Section 2.6 of this thesis presented a range of

studies that investigated different approaches that could possibly provide answers

to the research question Q1, and specifically the use of short instructions and their

effect on students’ response times. Section 7.2.3 discussed the connection

between the use of response times as a measurement of cognitive load in the DSL

environment and previous research in this field. Based on that relationship, a

logical conclusion was drawn that the use of aural instruction with visualisation

can reduce students’ response times and that, in turn, the reduction of response

times is a likely indicator of a reduction in their cognitive load.

164

Q2. Does the combination of aural instruction and visualisation reduce

students’ response time for task completion compared with textual

instruction and visualisation?

The answer to this research question was presented separately in the mini study

presented in Chapter 4. The mean of the response times for students in treatment

group A, who had access to the DSL tool using textual instructions with the

visualisation, was 12.60 seconds. The mean of the response times for students in

treatment group B, who had access to the DSL tool using aural instruction with

the visualisation, was 9.24 seconds. Table 4.4 showed that the difference between

the response times of students who used audio only and those who used text only

instructional methods was statistically significant. The conclusion of the study

presented in Section 4.6 was that aural instructions result in significantly quicker

responses compared to those achieved by textual instructions.

Thus, the answers to research questions Q1 and Q2 provided positive evidence

that supports hypothesis H1 that “Reducing cognitive load improves student

engagement and outcomes when learning data structures.”

Q3. Do CS students perceive benefits from aural instructions along with

visualisation when studying data structures?

As discussed in Section 7.3.2, the perception of benefits was measured from

student responses to a questionnaire and interview questions. Section 6.4.4

presented students’ responses to the questionnaire at the end of the academic year.

These showed that they perceived that the DSL environment helped them to build

mental models of data structures. A majority (93%) of the students who

responded to the questionnaire reported that the aural instructions were clear and

165

easy to follow. The results of the interviews, discussed in Section 6.5.2, confirmed

this finding. However, some external factors may have resulted in reducing the

choice of aural instructions over the textual instruction, such as the students’ own

learning styles, students forgetting to bring their headphones to the lab, and

previous unfavourable experiences with audio based learning materials.

Q4. Is there a relationship between visualisation type and CS students’

choice of instruction type?

Section 6.4.3 presented the analysis of the usage of the aural instruction format.

Students who were actively engaged with the DSL tool used aural instructions in

54% of the tasks they performed. However, based on the results shown in Table

6.3, there was no significant difference between the use of the two types of

instructions in each of the three the visualisation tasks. Consequently, as discussed

in Section 7.3.3, no conclusion can be drawn about whether the difficulty level of

the task has a significant impact on the students’ choice of type of instructions.

Q5. Do students prefer the DSL environment based on visualisation only

regardless the type of instruction?

To answer this question, a triangulation of different results was discussed in

Section 7.3.3. Students’ feedback about their usage of the DSL environment

showed that they benefited from using aural instructions and that such instructions

were very useful and interactive. The interviewees agreed that the aural

166

instructions were clear and easy to understand. Figure 7.1 presented a timeline of

students’ usage of the DSL tool over the period of the experiment and this showed

that the audio facility was used greatly at the beginning of the experiment, and

that usage decreased over time. Interestingly, there was an increase in its use

during the revision period. A conclusion can be drawn that the DSL environment

is beneficial to learners, especially at the beginning of their course when they are

being introduced to new concepts, and near the end of the course as an exam

revision aid.

Thus, although no definite answer could be given to research question Q4, the

answers to research questions Q3 and Q5 provide enough positive evidence to

support hypothesis H2 that “The use of aural instructions in teaching data

structures to CS students has a positive effect on student perception of data

structure concepts.”

Q6. Do CS students choose to use the DSL tool while studying data

structures?

The results of data captured by the DSL environment about how the students used

the prototype tool were discussed in Section 6.4.1. The first set of data provided

the average mean of usage times in minutes for all students, as shown in Figure

6.1. The average usage time was 39.42 minutes. The second set of data measured

the amount of students’ engagement with the DSL tool as shown in Table 6.2.

Based on this usage data about engagement duration and effective usage of the

DSL environment, and on students’ feedback about their experience, a conclusion

can be drawn. This is that students intentionally chose to use the DSL

environment as a source of information to assist them in learning the concepts of

the three data structures offered in this study.

167

Q7. Of the three data structure types used in this experiment, which do CS

students select to explore through the DSL tool?

Section 7.4.3 discussed how students engaged with the DSL approach and

performed a high number of interactions with all three visualisation tasks: BTT,

LL and BST. Although there are no statistically significant differences between

the use of the DSL tool with each of the three visualisations, Figure 6.2 shows that

the BTT task, usually considered to be the most complex of the three, had the

most interactions from students. In addition, BTT received the highest student

rating (mean of 3.8 out of 5) among the three investigated tasks. In questionnaire

and interview answers, students suggested developing the DSL tool to include

help with understanding the concepts of the self-balancing binary search tree

(AVL Tree) and graphs.

Q8. Do CS students perceive benefits from using the DSL tool to build a

mental model of Data Structures?

As discussed in Section 7.4.3, the questionnaire results showed that 93.8% of the

students reported that the DSL environment helped them to build a mental model

of data structures. The students who were interviewed were also positive about the

value of the DSL environment, and reported that it had helped them in reinforcing

the concepts of the three types of data structures.

Based on the answers to the research questions Q6, Q7, and Q8 hypothesis H3

that “Students perceive a positive benefit to their learning by using the DSL tool”

is proved.

168

Q9. What is the level of achievement of CS students who choose to use the

DSL tool the most?

Section 7.5.3 of this thesis presented the relation between student attainment in

the end of the year assessment exam and engagement with the DLS environment.

As shown in Figure 6.4, students who gained lower marks in the assessment spent

a longer time engaging with the DSL environment. This result indicates that less

able students were keener than others to use the DSL environment. This may have

been because they realised they needed more help to gain the required

understanding of the concepts of data structures. This outcome, therefore, does not

support hypothesis H4 that “There is a significant and positive relationship

between a CS student’s level of engagement with the DSL tool and his/her level

of achievement, as measured by the official assessment marks.”

7.6.4 Limitations of the research

This research has limitations. All the limitations and threats were discussed

individually in Sections 7.2.4, 7.3.4, 7.4.4, and 7.5.4. As with any study that

investigates students’ learning through data collection and observation, there are

many environmental and technical factors that can affect the variables of an

experiment. The environmental factors relate to the students’ personal experience,

learning styles and willingness to seek knowledge from outside resources, as well

as the availability of those resources. The technical factors usually relate to the

limited usability of any prototype tool developed for the research, the limited

functionalities available to students and the lack of training resources. The

methodologies used can also cause limitations to confidence in the research

results.

169

The first threat is related to the validity of the resources used for the systematic

literature review. No study was found that claimed that a reduction of CS

students’ cognitive load can be accomplished by using short aural instructions

with visualisation in a multimedia learning environment. However, this approach

was used in the first, mini experiment due to the lack of prior work that

documents a common and firm methodology for measuring cognitive load. The

discussion on cognitive load in Section 2.2.8 suggests that the methodology used

has a face validity and this rendered it the most suitable method for the purpose of

the first experiment.

Threats to the validity of the results of the second experiment should also be

considered, especially if they could have a direct or indirect effect on the results

of this research. First, the questionnaire had a comparatively low response rate so

the collected data may not be representative of the experiment’s participants.

Also, some technical faults in the prototype tool may have caused some students

to be dissatisfied at an early stage with the experience of engaging with the DSL

approach and this may have been responsible for reducing the number of active

participants and, thus, for reducing the amount and quality of the data about the

effect of receiving aural instructions on students’ learning experience.

The results of this study could be compromised by the limited use by students of

interactive aural instruction. This was caused by the limited time available to

implement an intelligent and comprehensive interactive environment and the

limited resources available to introduce the approach to the students and explain

its potential benefits. Having more time and resources could definitely help in

overcoming such issues. Use of the DSL environment was also entirely voluntary

and some students may have seen participating in a research experiment as an

unwanted extra burden in a busy work schedule.

170

Finally, the validity of the research results can be threatened by the lack of a fully

controlled experiment on different student groups with a pre and post-test to

evaluate what the group with access to the DSL approach actually achieved

compared to the achievements of the group without access to it.

7.7 Future Work

Section 7.6 pointed out some possibilities for improvements to the DSL approach

that might assist other researchers in this field. While the DSL environment

proved to be useful to students and the successful results support the use of aural

instructions with interactive visualisation, there were some technical limitations

that could be removed by future work. For example, adding visualisations that

help students in learning AVL Trees and Graphs algorithms would undoubtedly

improve its usefulness. These additions were recommended by the students

themselves in comments they made while using the DSL approach as well as later

in answers to questionnaires and in interviews.

The DSL tool design is easy to understand, and it is flexible and easy to

manipulate, so the tool could be easily extended by anyone with a good

knowledge of a programming language and the concepts of data structures. The

following technical improvements could be applied to enhance the performance of

the prototype tool:

- The current instructions list is limited and for experimental use only. A

wider instructions database could be created so that students can engage

more actively in the learning tasks. The instruction database could be used

as a source of both textual and aural instructions.

171

- Implementing the visualisation of AVLTrees and Graphs by using the

node structure shown in Figure 3.5, along with the animating methods

described in Section 3.6.

- Breaking down the addition and deletion animation of Linked Lists and

Binary Trees into more detailed steps so that the student can have a better

understanding of each step of the visualisation. The current prototype tool

shows the student only the final result of the addition or deletion of nodes,

although the generation of these results implemented through the detailed

route is used by the algorithms of the data structures.

The following suggestions would improve the scope and methodology for future

research on this topic.

- This research could be extended by including a comparative study of

students who experience the environment and those who choose not to

participate. This would offer a deeper understanding of how the DSL

environment affects students’ learning experience.

- Multiple cross-sectional studies could assess each aspect of the DSL

approach individually in shorter experiments instead of conducting a

longitudinal study.

- Investigating the impact of students’ learning styles on the choice of

instructional method. It is highly recommended that an assessment of

students learning styles should be performed before introducing them to

the DSL learning environment.

- Conducting pre and post-tests to evaluate students’ level of achievement

before and after using the DSL environment.

172

- Using an eye tracking methodology to test the usability of the environment

and the impact on students’ cognitive load.

Finally, it is highly recommended that the DSL environment should be fully

integrated with the PDS module content, so that it becomes an extra teaching

resource to help both lecturers and students in the process of teaching and learning

data structures, as well as providing a resource for approaching the concepts of

other programming languages.

7.8 Final Conclusion

In summary, this thesis studied the effectiveness of using aural instructions with

visualisation in an interactive learning environment (the DSL environment). It

concentrated on the use of this approach when teaching novice computer science

students the concepts of data structures. This approach aimed to reduce the

cognitive load on students’ working memory by exploiting the dual sensory

channels for information processing. This concept was discussed in Section

2.6.1.1 and illustrated by Mayer’s multimedia learning model in Figure 2.13.

A triangulation method was employed to explore the relationship between the

results obtained by the qualitative and quantitative research methods described in

Chapter 5. The results, discussed in chapters 6 and 7, showed the benefits of using

this research environment on students’ learning experience. Data was collected by

using a prototype tool created for this purpose, by testing students’ perception of

this approach through an end of term questionnaire and by conducting a group

interview with a sample of students. A full discussion of the results was presented

in Chapter 7.

The DSL environment was created to test the four hypotheses of this thesis and to

answer the nine research questions listed in Table 1.1. The implementation of the

173

DSL environment provided enough evidence of the value of aural instructions to

show that this is a research channel that is worth pursuing and that its

development would extend its benefits. The research also demonstrated a

substantial interest from the students and the lecturer in continuing to use the DSL

environment as an extra resource in learning the concepts of data structures.

174

Bibliography

(2010) Faculty Handbook Online. IN Science, D. O. C. (Ed.) Durham, Durham
University.

Ala-Mutka, K. Problems in Learning and Teaching Programming. Finland,
Institute of Software Systems, Tampere University of Technology,
Finland.

Aleksandra, K.-M., Boban, V., Mirjana, I. & Zoran, B. (2010) Integration of
Recommendations and Adaptive Hypermedia into Java Tutoring System.
Computer Science and Information Systems.

Alfonseca, E., Carro, R. M., Martín, E., Ortigosa, A. & Paredes1, P. (2006) The
Impact of Learning Styles on Student Grouping for Collaborative
Learning. User Modeling and User-Adapted Interaction, 16, 377-401.

Allen, J. & Terman, C. J. (1999) An Interactive Learning Environment for Vlsi
Design. Electronics, Circuits and Systems, 1999. Proceedings of ICECS
'99. The 6th IEEE International Conference on.

Alty, J. L., Rigas, D. & Vickers, P. (1997) Using Music as a Communication
Medium. CHI '97 extended abstracts on Human factors in computing
systems: looking to the future. Atlanta, Georgia, ACM New York, NY,
USA.

Ando, M. & Ueno, M. (2008) Cognitive Load Reduction on Multimedia E-
Learning Materials. Advanced Learning Technologies, 2008. ICALT '08.
Eighth IEEE International Conference on.

Andrian, M., Louis, F. & Jonathan, I. M. (2003) 3d Representations for Software
Visualization. Proceedings of the 2003 ACM symposium on Software
visualization. San Diego, California, ACM.

Arnold, P., Stephen, S., Lauri, M., Linda, M., Elizabeth, A., Jens, B., Marie, D. &
James, P. (2007) A Survey of Literature on the Teaching of Introductory
Programming. ACM.

Arons, B. & Mynatt, E. (1994) The Future of Speech and Audio in the Interface:
A Chi '94 Workshop. SIGCHI Bulletin.

Atherton, J. S. (2005) Learning and Teaching: Deep and Surface Learning.
Atkinson, R. K. (2002) Optimizing Learning from Examples Using Animated

Pedagogical Agents. Journal of Educational Psychology, 94, 416-427.
Ball, G. & Breese, J. (1998) Emotion and Personality in a Conversational

Character. Proceedings of WECC '98: The First Workshop on Embodied
Conversational Characters.

175

Barbara, M., Deborah, L. & Stephen, C. (2004) Evaluating the Effectiveness of a
New Instructional Approach. SIGCSE Bull., 36, 75-79.

Barchéus, F. (2006) Time Analysis of Atc Radio Traffic in a Simulated Free
Flight Scenario. Swedish Human Factors Network (HFN) conference.
Linköping, Sweden, Swedish Network for Human Factors (HFN).

Beck, J. E. (2005) Engagement Tracing: Using Response Times to Model Student
Disengagement. Proceeding of the 2005 conference on Artificial
Intelligence in Education: Supporting Learning through Intelligent and
Socially Informed Technology. IOS Press.

Bednarik, R., Moreno, A. & Myller, N. (2006) Various Utilizations of an Open-
Source Program Visualization Tool, Jeliot 3. Informatics in Education, 5,
195-206.

Behringer, R., Behringer, R., Chen, S., Sundareswaran, V., Wang, K. A. W. K. &
Vassiliou, M. A. V. M. (1999) A Novel Interface for Device Diagnostics
Using Speech Recognition, Augmented Reality Visualization, and 3d
Audio Auralization. IN Chen, S. (Ed.) Multimedia Computing and
Systems, 1999. IEEE International Conference on.

Bertram, M., Bertram, M., Deines, E., Mohring, J., Jegorovs, J. A. J. J. & Hagen,
H. A. H. H. (2005) Phonon Tracing for Auralization and Visualization of
Sound

Phonon Tracing for Auralization and Visualization of Sound. IN Deines, E. (Ed.)
Visualization, 2005. VIS 05. IEEE.

Biggs, J. B. (2003) Teaching for Quality Learning at University: What the Student
Does, Society for Research into Higher Education.

Bloom, B. S. & Krathwohl, D. R. (1956) Taxonomy of Educational Objectives:
The Classification of Educational Goals. Handbook I: Cognitive Domain,
Longmans.

Boroni, C. M., Goosey, F. W., Grinder, M. T. & Ross, R. J. (1998) A Paradigm
Shift! The Internet, the Web, Browsers, Java and the Future of Computer
Science Education. Proceedings of the twenty-ninth SIGCSE technical
symposium on Computer science education. Atlanta, Georgia, United
States, ACM Press.

Briana Lowe, W., James, D. & Monica, A. (2009) Alice and Robotics in
Introductory Cs Courses. The Fifth Richard Tapia Celebration of Diversity
in Computing Conference: Intellect, Initiatives, Insight, and Innovations.
Portland, Oregon, ACM.

Brosgol, B. M. (1998) A Comparison of Ada and Java as a Foundation Teaching
Language. ACM SIGAda Ada Letters, XVIII, 12-38.

Brown, M. H. & Hershberger, J. (1992) Color and Sound in Algorithm
Animation. Computer, 25, 52-63.

176

Brown, M. H. & Sedgewick, R. (1984) A System for Algorithm Animation.
ACM.

Brünken, R., Plass, J. L. & Leutner, D. (2004) Assessment of Cognitive Load in
Multimedia Learning with Dual-Task Methodology: Auditory Load and
Modality Effects. Instructional Science, 32, 115-132.

Byrne, M. D., Catrambone, R. & Stasko, J. T. (1996) Do Algorithm Animations
Aid Learning? Technical ReportGITGVU9618.

Carver, C. A., Jr., Howard, R. A. & Lane, W. D. (1999) Enhancing Student
Learning through Hypermedia Courseware and Incorporation of Student
Learning Styles. Education, IEEE Transactions on, 42, 33-38.

Chamillard, A. T. & Sward, R. E. (2005) Learning Styles across the Curriculum.
SIGCSE conference on Innovation and technology in computer science
education. Caparica, Portugal, ACM Press.

Clark, D. (1995) Kolb's Learning Styles.
Clark, R. E. (2001) What Is Next in the Media and Methods Debate. IN Clark, R.

E. (Ed.) Learning from Media: Arguments, Analysis, and Evidence.
Information Age Pub.

Coffield, F., Moseley, D., Hall, E. & Ecclestone, K. (2004) Learning Styles and
Pedagogy in Post-16 Learning. A Systematic and Critical Review.
London, Learning and Skills Research Centre.

Cooper, G. (1998) Research into Cognitive Load Theory and Instructional Design
at Unsw. Sydney, University of New South Wales, Australia.

Cross, J. H. & Hendrix, D. (2006) Workshop Jgrasp: An Integrated Development
Environment with Visualizations for Teaching Java in Cs1, Cs2, and
Beyond. Frontiers in Education Conference, 36th Annual. San Diego, CA

Cross, J. H., Hendrix, D. & Umphress, D. A. (2004) Jgrasp: An Integrated
Development Environment with Visualizations for Teaching Java in Cs1,
Cs2, and Beyond. Frontiers in Education, 2004. FIE 2004. 34th Annual.

Culwin, F., Adeboye, K. & Campbell, P. (2006) Pooples - Pre-Object Oriented
Programming Learning. Environments. Proceedings of 7th Annual
Conference of the ICS HE Academy. Trinity College, Dublin, Higher
Education Academy.

Daly, C. & Horgan, J. M. (2004) An Automated Learning System for Java
Programming. IEEE Transactions on Education, 47, 10 - 17.

David, F., Thomas, N. & Jason, W. (2008) Sorting out Sorting: The Sequel.
SIGCSE Bull., 40, 174-178.

Dawson, S., McWilliam, E. & Tan, J. P.-L. (2008) Teaching Smarter: How
Mining Ict Data Can Inform and Improve Learning and Teaching Practice.
Hello! Where are you in the landscape of educational

technology? , Proceedings ascilite Melbourne 2008.

177

Decker, R. & Hirshfield, S. (1995) The Top 10 Reasons Why Oop Can't Be
Taught in Cs1. 3C ON-LINE, 2, 7-13.

Dennis, H. (2000) Speech-Enabling the Data Structures Curriculum. 15, 130-141.
Depradine, C. & Gay, G. (2004) Active Participation of Integrated Development

Environments in the Teaching of Object-Oriented Programming.
Computers & Education, 43, 291-298.

Deubel, P. (2003) An Investigation of Behaviorist and Cognitive Approaches to
Instructional Multimedia Design. Journal of Educational Multimedia and
Hypermedia, 12, 63-90.

Dexter, S. (2000) Teaching Applet Programming to Non-Majors - Virtually.
Frontiers in Education Conference, 2000. FIE 2000. 30th Annual.

Dino, S. & Wayne, B. (2007) Interactive Visualization for the Active Learning
Classroom. ACM.

Dougherty, J. P. (2008) Using Lyrics and Music to Reinforce Concepts. Journal
of Computing Sciences in Colleges, 23, 106 - 113

Dror, I. E. & Schmitz-Williams, I. C. (2005) Older Adults Use Mental
Representations That Reduce Cognitive Load: Mental Rotation Utilizes
Holistic Representations and Processing. Experimental Aging Research:
An International Journal Devoted to the Scientific Study of the Aging
Process, 31, 409-420.

Dunn, R. (1990) Understanding the Dunn and Dunn Learning Styles Model and
the Need for Individual Diagnosis and Prescription. Reading &
Writing Quarterly, 6, 223 - 247.

Durant, F. (2007) Sea, Speech and Sun. Cannes, France, Nuance Conversations.
Ehlert, A. & Schulte, C. (2009) Empirical Comparison of Objects-First and

Objects-Later. Proceedings of the fifth international workshop on
Computing education research workshop. Berkeley, CA, USA, ACM.

Evans, C. & Gibbons, N. J. (2007) The Interactivity Effect in Multimedia
Learning. Computers & Education, 49, 1147-1160.

Felder, R. M. (1988) How Students Learn: Adapting Teaching Styles to Learning
Styles. Frontiers in Education Conference, 1988., Proceedings.

Felder, R. M. & Soloman, B. A. (1988) Learning Styles and Strategies.
Felder, R. M. & Soloman, B. A. (1988) Learning Styles and Strategies.
Franklin, J. A. (2001) Computer Generated Music as a Teaching Aid for First

Year Computing. Consortium for Computing Sciences in Colleges.
Gaver, W. W., Smith, R. B. & O'Shea, T. (1991) Effective Sounds in Complex

Systems: The Arkola Simulation. Proceedings of the SIGCHI conference
on Human factors in computing systems: Reaching through technology.
New Orleans, Louisiana, United States, ACM.

178

Gerjets, P. & Kirschner, P. (2009) Learning from Multimedia and Hypermedia. IN
Balacheff, N., Ludvigsen, S., Jong, T., Lazonder, A. & Barnes, S. (Eds.)
Technology-Enhanced Learning. Springer Netherlands.

Gilbert, J. E. & Han, C. Y. (1999) Adapting Instruction in Search of [`]a
Significant Difference'. Journal of Network and Computer Applications,
22, 149-160.

Goldstein, C., Leisten, S., Stark, K. & Tickle, A. (2005) Using a Network
Simulation Tool to Engage Students in Active Learning Enhances Their
Understanding of Complex Data Communications Concepts. Proceedings
of the 7th Australasian conference on Computing education - Volume 42
Newcastle, New South Wales, Australia Australian Computer Society, Inc.

Graf, S., Lin, T., Jeffrey, L. & Kinshuk (2006) An Exploratory Study of the
Relationship between Learning Styles and Cognitive Traits. Innovative
Approaches for Learning and Knowledge Sharing. Berlin, Heidelberg,
Springer

Grigoriadou, M., Papanikolaou, K., Kornilakis, H. & Magoulas, G. (2001) Inspire:
An Intelligent System for Personalized Instruction in a Remote
Environment. Proceedings of 3rd Workshop on Adaptive Hypertext and
Hypermedia. Sonthofen, Germany.

Grissom, S., McNally, M. F. & Naps, T. (2003) Algorithm Visualization in Cs
Education: Comparing Levels of Student Engagement. Proceedings of the
2003 ACM symposium on Software visualization San Diego, California,
ACM Press.

Gross, P. & Powers, K. (2005) Evaluating Assessments of Novice Programming
Environments. Proceedings of the first international workshop on
Computing education research. Seattle, WA, USA, ACM.

Gurka, J. S. & Citrin, W. (1996) Testing Effectiveness of Algorithm Animation.
Visual Languages, 1996. Proceedings., IEEE Symposium on.

Guzdial, M., Santos, P., Badre, A., Hudson, S. & Gray, M. (1994) Analyzing and
Visualizing Log Files: A Computational Science of Usability. IEEE
Transactions on Reliability.

Hagan, D. & Markham, S. (2000) Teaching Java with the Bluej Environment.
ASCILITE 2000. Coffs Harbour, Australia, ASCILITE

Hamer, J. (2004) Visualising Java Data Structures as Graphs. Proceedings of the
sixth conference on Australasian computing education - Volume 30.
Dunedin, New Zealand Australian Computer Society, Inc.

Hamid, S. H. A. & Chuan, T. H. (2006) Designing Learning Styles Application of
E-Learning System Using Learning Objects. Advances in Web Based
Learning – Icwl 2006. Berlin, Heidelberg, Springer

179

Hamilton-Taylor, A. G. & Kraemer, E. (2002) Ska: Supporting Algorithm and
Data Structure Discussion. Proceedings of the 33rd SIGCSE technical
symposium on Computer science education. Cincinnati, Kentucky, ACM
New York, NY, USA.

Hanley, M. (2010) A Media Model for E-Learning Content: Project Lifecycle 4.
E-Learning Curve Blog.

Hansen, S., Schrimpsher, D. & Narayanan, N. H. (1998) From Algorithm
Animations to Animation-Embedded Hypermedia Visualizations.Pdf. IN
Department of Computer Science & Engineering, A. U. (Ed.) Visual
Information, Intelligence & Interaction Research Group. Auburn,.

Hensler, B. & Beck, J. (2006) Better Student Assessing by Finding Difficulty
Factors in a Fully Automated Comprehension Measure. Intelligent
Tutoring Systems. Springer Berlin / Heidelberg.

Houghton, W. (2004) Learning and Teaching Theory for Engineering Academics.
The Higher Education Academy Engineering Subject Centre.

Howard, R. A., Carver, C. A. & Lane, W. D. (1996) Felder's Learning Styles,
Bloom's Taxonomy, and the Kolb Learning Cycle: Tying It All Together
in the Cs2 Course. the twenty-seventh SIGCSE technical symposium on
Computer science education. Philadelphia, Pennsylvania, United States
ACM Press.

Hu, P. J. H., Hui, W., Clark, T. H. K. & Tam, K. Y. (2007) Technology-Assisted
Learning and Learning Style: A Longitudinal Field Experiment. Systems,
Man and Cybernetics, Part A, IEEE Transactions on, 37, 1099-1112.

Hubscher-Younger, T. & Narayanan, N. H. (2001) How Undergraduate Students'
Learning Strategy and Culture Effects Algorithm Animation Use and
Interpretation.

Hübscher-Younger, T. & Narayanan, N. H. (2003) Dancing Hamsters and Marble
Statues: Characterizing Student Visualizations of Algorithms. Proceedings
of the 2003 ACM symposium on Software visualization. San Diego,
California, ACM Press.

Iyengar, S. S., Pangburn, B. E. & Mathews, R. C. (2000) Web-Based Multimedia
Development Techniques for the Instruction of Abstract Concepts in
Computer Science. Multimedia Software Engineering, 2000. Proceedings.
International Symposium on.

Jain, J., Cross, J. H., Hendrix, T. D. & Barowski, L. A. (2006) Experimental
Evaluation of Animated-Verifying Object Viewers for Java. Proceedings
of the 2006 ACM symposium on Software visualization. Brighton, United
Kingdom, ACM.

Jarc, D. J. & Feldman, M. B. (1998) An Empirical Study of Web-Based
Algorithm Animation Courseware in an Ada Data Structure Course.

180

Annual International Conference on Ada Washington, D.C., United States
ACM Press.

Jerding, D. F. & Stasko, J. T. (1994) Using Visualization to Foster Object-
Orianted Program Understanding. Atlant, Georgia Institute of Technology.

Jyothi, S., McAvinia, C. & Keating, J. G. (2007) An Interaction Visualisation
Tool for a Learning Management System of the 2007 conference of the
center for advanced studies on Collaborative research. Richmond Hill,
Ontario, Canada, ACM New York, NY, USA.

Kahneman, D. (1973) Attention and Effort, Prentice-Hall.
Kalyuga, S. (2006) Expert-Novice Differences and Adaptive Multimedia. Digital

Multimedia Perception and Design. IGI Publishing.
Karavirta, V., Korhonen, A., Malmi, L. & Stalnacke, K. (2004) Matrixpro - a Tool

for Demonstrating Data Structures and Algorithms Ex Tempore. Advanced
Learning Technologies, 2004. Proceedings. IEEE International
Conference on.

Kazi, I. H., Jose, D. P., Ben-Hamida, B., Hescott, C. J., Kwok, C., Konstan, J. A.,
Lilja, D. J. & Yew, P. C. (2000) Javiz: A Client/Server Java Profiling
Tool. IBM Systems Journal, 39, 96-117.

Kearney, M. (2004) Classroom Use of Multimedia-Supported Predict–Observe–
Explain Tasks in a Social Constructivist Learning Environment. Research
in Science Education, 34, 427-453.

Kehoe, A. & Pitt, I. (2006) Designing Help Topics for Use with Text-to-Speech.
Proceedings of the 24th annual ACM international conference on Design
of communication. Myrtle Beach, SC, USA, ACM.

Khaled, R., Luxton, A. M., Noble, J., Ferres, L., Brown, J. & Biddle, R. (2004)
Visualisation for Learning Oop, Using Aop and Eclipse. Conference on
Object Oriented Programming Systems Languages and Applications.
Vancouver, BC, CANADA, ACM New York, NY, USA.

Khawaja, N. G. & Dempsey, J. (2007) Psychological Distress in International
University Students: An Australian Study. Australian Academic Press.

Khuri, S. (2001) A User-Centred Approach for Designing Algorithm
Visualizations. Informatik/Informatique, Special Issue on Visualization of
Software, 2, 12-16.

Klob, D. (2005) Kolb Learning Styles, Kolb's Learning Styles Model and
Experiential Learning Theory (Elt). www.businessballs.com.

Kolb, D. A. (1984) Experiential Learning: Experience as the Source of Learning
and Development, Prentice-Hall.

Kolb, D. A., Boyatzis, R. & Mainemelis, C. (2001) Perspectives on Thinking,
Learning, and Cognitive Styles, L. Erlbaum Associates.

181

Kolling, M., Koch, B. & Rosenberg, J. (1995) Requirements for a First Year
Object-Oriented Teaching Language SIGCSE technical symposium on
Computer science education Nashville, Tennessee, United States ACM
New York, NY, USA

Kropp, W. & Blomqvist, J. (2001) Auralisation and Visualisation as Tools for
Learning in Acoustics. CAL-laborate. UniServe Connections.

Lai, J. (2001) When Computers Speak, Hear, and Understand. ACM.
Larkin, T. & Budny, D. (2005) Learning Styles in the Classroom: Approaches to

Enhance Student Motivation and Learning. Information Technology Based
Higher Education and Training, 2005. ITHET 2005. 6th International
Conference on.

Larkin, T. L., Feldgen, M. & Clua, O. (2002) A Global Approach to Learning
Styles. Frontiers in Education, 2002. FIE 2002. 32nd Annual.

Longmire, W. (2000) A Primer on Learning Objects. IN Circuits, A. L. (Ed.),
ASTD Learning Circuits.

Lowe, R. (1999) Extracting Information from an Animation During Complex
Visual Learning. European Journal of Psychology of Education, 14, 225-
244.

Maravic Cisar, S., Pinter, R., Radosav, D. & Cisar, P. Software Visualization: The
Educational Tool to Enhance Student Learning. MIPRO, 2010
Proceedings of the 33rd International Convention.

Marton, F. & Saljo, R. (1976) On Qualitative Differences in Learning: I. Outcome
and Process. British Journal of Educational Psychology, 46, 4-11.

Mayer, R. E. (2001) Multimedia Learning, Cambridge University Press.
Mayer, R. E. & Moreno, R. (2002) Aids to Computer-Based Multimedia

Learning. Learning and Instruction, 12, 107-119.
Mayes, J. T. & Fowler, C. J. (1999) Learning Technology and Usability: A

Framework for Understanding Courseware. Interacting with Computers,
11, 485-497.

McAllister, W. (2008) Data Structures and Algorithms Using Java, Jones and
Bartlett Publishers.

McKinney, K. (2007) Active Learning.
McManus, D. A. (2001) The Two Paradigms of Education and the Peer Review of

Teaching. NAGT Journal of Geoscience Education, 49, 423-434.
Messner, J. I. & Horman, M. J. (2003) Using Advanced Visualization Tools to

Improve Construction Education. CONVR 2003. Virginia Tech.
Meyers, C. & Jones, T. B. (1993) Promoting Active Learning: Strategies for the

College Classroom, Jossey-Bass.

182

Mia, S. & Beverly Park, W. (2000) Adaptive Content in an Online Lecture
System. Proceedings of the International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems. Springer-Verlag.

Michael, F. M. (2002) Spoken Dialogue Technology: Enabling the Conversational
User Interface. ACM.

Moloney, J., Moloney, J. & Harvey, L. (2004) Visualization and 'Auralization' of
Architectural Design in a Game Engine Based Collaborative Virtual
Environment

Visualization and 'Auralization' of Architectural Design in a Game Engine Based
Collaborative Virtual Environment. IN Harvey, L. (Ed.) Information
Visualisation, 2004. IV 2004. Proceedings. Eighth International
Conference on.

Moons, J. & De Backer, C. (2009) Rationale Behind the Design of the Eduvisor
Software Visualization Component. Electronic Notes in Theoretical
Computer Science, 224, 57-65.

Moor, B. D. & Deek, F. P. (2006) On the Design and Development of Uml-Based
Visual Environment for Novice Programmers 1998 International
Conference on Software Engineering: Education & Practice.

More, A. J. (1989) Native Indian Learning Styles: A Review for Researchers and
Teachers. Journal of American Indian Education, (Special Edition).

Moreno, A., Myller, N., Sutinen, E. & Ben-Ari, M. (2004) Visualizing Programs
with Jeliot 3. Proceedings of the working conference on Advanced visual
interfaces. Gallipoli, Italy, ACM.

Müldner, T., Mudner, T. & Shakshuki, E. (2004) A New Approach to Learning
Algorithms

a New Approach to Learning Algorithms. IN Shakshuki, E. (Ed.) Information
Technology: Coding and Computing, 2004. Proceedings. ITCC 2004.
International Conference on.

Müldner, T., Shakshuki, E. & Kerren, A. (2005) Using Structured Hypermedia to
Explain Algorithms. Proceedings of the 3rd IADIS International
Conference e-Society'05.

Najjar, J., Duval, E. & Wolpers, M. (2006) Towards Effective Usage-Based
Learning Applications: Track and Learn from User Experience(S).
Advanced Learning Technologies, 2006. Sixth International Conference
on.

Naps, T. L. (2002) Exploring the Role of Visualization and Engagement in
Computer Science Education. Annual Joint Conference Integrating
Technology into Computer Science Education Aarhus, Denmark, ACM
Press.

183

Navon, D. (1984) Resources-a Theoretical Soup Stone? Psychological Review,
91, 216-234.

Nicholson, D., Hamilton, D. & McFarland, D. (2007) Leveraging Learning Styles
to Improve Student Learning: The Interactive Learning Model and
Learning Combination Inventory. Consortium for Computing Sciences in
Colleges, 22, 8-17.

Nicolaou, C. T., Nicolaidou, I. & Constantinou, C. (2003) The E-Learning
Movement as a Process of Quality Improvement in Education. Sixth
International Conference on Computer Based Learning in Science (CBLIS
2003). Nicosia, Cyprus.

Niemi, H. (2002) Active Learning--a Cultural Change Needed in Teacher
Education and Schools. Teaching and Teacher Education, 18, 763-780.

Notess, M. & Neal, L. (2006) Deep Thoughts: Do Mandatory Online Activities
Help Students Leave Surface-Learning Behind? eLearn Magazine.

Nourie, D. (2008) Young Developer Learning Path. Java.net.
Nycz, M. & Cohen, E. (2007) Basics for Understanding E-Learning. Principles of

Effective Online Teaching. Santa Rosa, California, Informing Science
Press.

Oates, B. J. (2006) Researching Information Systems and Computing, SAGE.
Olthoff, W. G. (1986) Augmentation of Object-Oriented Programming by

Concepts of Abstract Data Type Theory: The Modpascal Experience.
onference proceedings on Object-oriented programming systems,
languages and applications. Portland, Oregon, United States, ACM.

Owen, G. S. (1999) Hypervis - Teaching Scientific Visualization Using
Hypermedia.

Paredes, P. & Rodriguez, P. (2006) Considering Sensing-Intuitive Dimension to
Exposition-Exemplification in Adaptive Sequencing. Adaptive
Hypermedia and Adaptive Web-Based Systems. Springer Berlin /
Heidelberg.

Pargas, R. P. & Goodbar, A. (2006) Work in Progress: Developing Tablet Pc
Animations for Computer Science Courses. Frontiers in Education
Conference, 36th Annual.

Parker, B. & Mitchell, I. (2006) Effective Methods for Learning: A Study in
Visualization. Journal of Computing Sciences in Colleges, 22, 176 - 182

Pierson, W. C. & Rodger, S. H. (1998) Web-Based Animation of Data Structures
Using Jawaa. 30, 267-271.

Popescu, E., Trigano, P. & Badica, C. (2007) Towards a Unified Learning Style
Model in Adaptive Educational Systems. Advanced Learning
Technologies, 2007. ICALT 2007. Seventh IEEE International Conference
on.

184

Qiu, L. & Benbasat, I. (2005) An Investigation into the Effects of Text-to-Speech
Voice and 3d Avatars on the Perception of Presence and Flow of Live
Help in Electronic Commerce. ACM Transactions on Computer-Human
Interaction (TOCHI), 12, 329-355.

Rai, S., Wong, K. W. & Cole, P. (2006) Game Construction as a Learning Tool.
Proceedings of the 2006 international conference on Game research and
development. Perth, Australia Murdoch University, Australia.

Rajala, T., Laakso, M.-j., Kaila, E. & Salakoski, T. (2008) Innovations in Practice
Effectiveness of Program Visualization: A Case Study with the Ville Tool.
Journal of Information Technology Education: Innovations in Practice,
Volume 7, 15-32.

Rajaravivarma, R. & Pevac, I. (2003) When to Introduce Objects in Teaching
Java. System Theory, 2003. Proceedings of the 35th Southeastern
Symposium on.

Rajasingham, L. (2010) Will Mobile Learning Bring a Paradigm Shift in Higher
Education? Education Research International.

Ramsden, P., Beswick, D. & Bowden, J. (1989) Effects of Learning Skills
Intervention on First Year Students' Learning. Human Learnin, 5, 151-
164.

Richards, J., Barowy, W. & Levin2, D. (1992) Computer Simulations in the
Science Classroom. Journal of Science Education and Technology, 1, 67-
79.

Roberts, A. (2001) Abc of Learning: Words Used to Make Theories About How
We Learn.

Rogers, Y. (2008) A Comparison of How Animation Has Been Used to Support
Formal, Informal, and Playful Learning. Learning with Animation:
Research Implications for Design. Cambridge University Press.

Rosati, P., Dean, R. K. & Rodman, S. M. (1988) A Study of the Relationship
between Students' Learning Styles and Instructors' Lecture Styles.
Education, IEEE Transactions on, 31, 208-212.

Ruiz, M. d. P. P., Barriales, S. O., Pérez, J. R. P. & Rodríguez, M. G. (2003)
Feijoo.Net- an Approach to Personalized E-Learning Using Learning
Styles. Lecture Notes in Computer Science. Berlin / Heidelberg, Springer

Salmon, G. (2002) E-Tivities: The Key to Active Online Learning, Kogan Page.
Sánchez, J. (2007) A Model to Design Interactive Learning Environments for

Children with Visual Disabilities. Education and Information
Technologies, 12, 149-163.

Schaub, S. (2000) Teaching Java with Graphics in Cs1. ACM SIGCSE Bulletin,
32, 71-73.

Sedgewick, R. (2002) Algorithms in Java, Addison-Wesley.

185

Seppälä, O. (2004) Program State Visualization Tool for Teaching Cs1. Third
Program Visualization Workshop. University of Warwick.

Shaffer, C. A., Cooper, M. & Edwards, S. H. (2007) Algorithm Visualization: A
Report on the State of the Field. Proceedinds of the 38th SIGCSE
technical symposium on Computer science education Covington,
Kentucky, USA, ACM Press.

Shilling, J. J. & Stasko, J. T. (1992) Using Animation to Design, Document and
Trace Object-Oriented Systems, Georgia Institute of Technology.

Simon, B., Anderson, R., Hoyer, C. & Su, J. (2004) Preliminary Experiences with
a Tablet Pc Based System to Support Active Learning in Computer
Science Courses. Proceedings of the 9th annual SIGCSE conference on
Innovation and technology in computer science education. New York, NY,
USA, ACM.

Slator, B. M., Hill, C. & Del Val, D. (2004) Teaching Computer Science with
Virtual Worlds. Education, IEEE Transactions on, 47, 269-275.

Smith, T. W. & Colby, S. A. (2007) Teaching for Deep Learning. Routledge.
Snyder, A. (1986) Encapsulation and Inheritance in Object-Oriented

Programming Languages. ACM.
Stash, N. V., Cristea, A. I. & Bra, P. M. D. (2004) Authoring of Learning Styles

in Adaptive Hypermedia: Problems and Solutions. Proceedings of the 13th
international World Wide Web conference on Alternate track papers \&
posters New York, NY, USA, ACM Press.

Stasko, J., Badre, A. & Lewis, C. (1993) Do Algorithm Animations Assist
Learning?: An Empirical Study and Analysis. Proceedings of the
INTERACT '93 and CHI '93 conference on Human factors in computing
systems. Amsterdam, The Netherlands, ACM.

Stefik, A., Stefik, A., Fitz, K. & Alexander, R. (2006) Layered Program
Auralization: Using Music to Increase Runtime Program Comprehension
and Debugging Effectiveness

Layered Program Auralization: Using Music to Increase Runtime Program
Comprehension and Debugging Effectiveness. IN Fitz, K. (Ed.) Program
Comprehension, 2006. ICPC 2006. 14th IEEE International Conference
on.

Stern, L. & Sterling, L. (1996) Teaching Ai Algorithms Using Animations
Reinforced by Interactive Exercises. the 2nd Australasian conference on
Computer science education The Univ. of Melbourne, Australia, ACM
Press.

Steve, W., Patrick, H. & Myrtle, W. (1994) Filochat: Handwritten Notes Provide
Access to Recorded Conversations. Proceedings of the SIGCHI

186

conference on Human factors in computing systems: celebrating
interdependence. Boston, Massachusetts, United States, ACM.

Stifelman, L. J. (1995) A Tool to Support Speech and Non-Speech Audio
Feedback Generation in Audio Interfaces. Proceedings of the 8th annual
ACM symposium on User interface and software technology. Pittsburgh,
Pennsylvania, United States, ACM.

Stockley, D. (2003) E-Learning Definition and Explanation (Elearning, Online
Training, Online Learning). http://derekstockley.com.au/.

Sweller, J. (2002) Visualisation and Instructional Design. Proceedings of the
International Workshop on Dynamic Visualizations and Learning.
Tübingen, Germany, Knowledge Media Research Center.

Sweller, J. (2008) Cognitive Bases of Human Creativity. Educational Psychology
Review, 21, 11-19.

Tavangarian, D., Leypold, M., Nölting, K., Röser, M. & Voigt, D. (2004) Is E-
Learning the Solution for Individual Learning? Electronic Journal of e-
Learning, 2.

Triantafillou, E., Pomportsis, A. & Georgiadou, E. (2002) Aes-Cs: Adaptive
Educational System Based on Cognitive Styles. Adaptive Hypermedia and
Adaptive Web-Based Systems.

Tseng, J. C. R., Chu, H.-C., Hwang, G.-J. & Tsai, C.-C. (2008) Development of
an Adaptive Learning System with Two Sources of Personalization
Information. Computers & Education, 51, 776-786.

Tudoreanu, M. E. (2003) Designing Effective Program Visualization Tools for
Reducing User's Cognitive Effort. Proceedings of the 2003 ACM
symposium on Software visualization. San Diego, California, ACM.

Uskov, V. & Saad, A. (2000) Development of Online Undergraduate Object-
Oriented Programming Curriculum. Frontiers in Education Conference,
2000. FIE 2000. 30th Annual.

Vasilyeva, E., Pechenizkiy, M., Gavrilova, T. & Puuronen, S. (2007)
Personalization of Immediate Feedback to Learning Styles. Advanced
Learning Technologies, 2007. ICALT 2007. Seventh IEEE International
Conference on.

Vavoula, G. N. & Sharples, M. (2009) Lifelong Learning Organisers:
Requirements for Tools for Supporting Episodic and Semantic Learning.
International Forum of Educational Technology & Society, 12, 82-97.

Vickers, P. & Alty, J. L. (1996) Caitlin: A Musical Program Auralisation Tool to
Assist Novice Programmers with Debugging. IN Frysinger, D. S. P. &
Kramer, G. (Eds.) ICAD: International Conferenceon Auditory Display.
Palo Alto, California, ICAD.

187

Vickers, P. & Alty, J. L. (2005) Musical Program Auralization: Empirical Studies.
ACM Transactions on Applied Perception (TAP), 2, 477 - 489

Vickery, R. (2005) Teaching Object-Oriented Principles to 'a' Level Students.
Computer Education, 5, 109-111.

Wang, K. H., Wang, T. H., Wang, W. L. & Huang, S. C. (2006) Learning Styles
and Formative Assessment Strategy: Enhancing Student Achievement in
Web-Based Learning. Journal of Computer Assisted Learning, 22, 207-
217.

Warendorf, K. (1997) Adis-an Animated Data Structure Intelligent Tutoring
System on the Www. Information, Communications and Signal
Processing, 1997. ICICS., Proceedings of 1997 International Conference
on.

Weidong, H., Peter, E. & Seok-Hee, H. (2009) Measuring Effectiveness of Graph
Visualizations: A Cognitive Load Perspective. Palgrave Macmillan.

Wilson, B. G. (1995) Metaphors for Instruction: Why We Talk About Learning
Environments. Educational Technology, 35, 25-30.

Wolf, C. (2003) Iweaver: Towards 'Learning Style'-Based E-Learning in
Computer Science Education. Australasian Computing Education
Conference (ACE2003). Adelaide, Australia, Australian Computer
Society, Inc.

Woolf, B., Aïmeur, E., Nkambou, R., Lajoie, S., Parvez, S. & Blank, G. (2008)
Individualizing Tutoring with Learning Style Based Feedback. Intelligent
Tutoring Systems. Springer Berlin / Heidelberg.

Yerushalmi, E., Cohen, E., Heller, K., Heller, P. & Henderson, C. Instructors'
Reasons for Choosing Problem Features in a Calculus-Based Introductory
Physics Course. Phys. Rev. ST Phys. Educ. Res., 6, 020108.

Ying, Z., Ying, Z. & Fernando, T. (2002) A Walk-through System for Building
Acoustics Evaluation Based on Virtual Environment Technology

a Walk-through System for Building Acoustics Evaluation Based on Virtual
Environment Technology. IN Fernando, T. (Ed.) Industrial Technology,
2002. IEEE ICIT '02. 2002 IEEE International Conference on.

Zualkernan, I. A., Allert, J. & Qadah, G. Z. (2006) Learning Styles of Computer
Programming Students: A Middle Eastern and American Comparison.
Education, IEEE Transactions on, 49, 443-450.

Zywno, M. S. (2003) Student Learning Styles, Web Use Patterns and Attitudes
toward Hypermedia-Enhanced Instruction. Frontiers in Education, 2003.
FIE 2003. 33rd Annual.

188

Appendices

Appendix A

189

Appendix B

Technical Feedback

• "Value not found" error occurring even when the program finds the value

and successfully appends it, when using "add after selected" function.

Problem occurs as a result of user inserting nodes with letters and symbols

instead of numbers (which works). Program cannot find the letters nodes.

• I am getting an error that the index is out of bound when I add random

number for example: 12,22,11,24,32,2,1,10,35 then it is not proper binary

tree as the program does not output it in the format of it. and it tells me

that is out of bound even though I should be able to add more into it then

only 1

• "A binary tree of depth greater than 3 (4 or more) places new nodes behind

the traversal output boxes unless the user rearranges the tree manually.

• "Delete Selected" button seems to be non-functional

• I think it would have been really good to actually know which of them the

tails are because some people still get confused between head and tail and

think tail is ONLY the last value in the list. So it would be nice to have the

objects somehow labelled to what they are

• The basic functionality of the tree construction is good (clearer to use than

the other Binary tree tool). The fields at the bottom are useful also; though

it would be better if they were overridden by new text as opposed to add at

the end.

• "An option to sort the node values would be nice - such as ascending order

from left to right or ascending order from top to bottom.

190

• Only notable problem found is with duplicate entries (i.e. two or more

nodes with the same value).

• Could be made clearer how to make the node bigger and smaller by

clicking on the top. Also can I not double click on the 'Node Name' words

to make smaller? That could be easier

• Delete seems to work correctly on external nodes most of the time! Not

working on an external node (89) without having attempted to delete an

internal. Successfully deleted another external node (76)

• I manage to make 2 head nodes!

• If you take a snapshot, hit Save and then choose to Cancel it brings up an

error message about ""Primary key duplicate entry

• It is good and helpful and it should clear the screen when the 3 buttons are

pressed. Such as pre order traversal, in order traversal and post order

• Maybe blank out 'add left' and 'add right' when node hasn't yet been

created.

• Found some bugs when trying to 'add left' or 'add right' more than once

• Maybe make it clearer you can double click elements to display more data

• A setAll button would be nice when adding data to Methods

• Objects can be hidden behind menus where they can’t be dragged

• Sometimes nodes overlap and so they aren't easy to see

• Delete button does not provide feedback if told to delete internal

191

• This one can get a bit messy as nodes are added, also I'm not sure how I

did it, but I managed to create an exception when deleting a node and it

completely crashed the program

• I managed to bug one node out somehow, it isn’t linked to anything. Also

when I add something after a certain number of nodes, it doesn’t allow it.

• Trying to add a right-node to a node which already has one produces "Left

node already exists."

• Very good tool.... though it gets a bit cluttered when a lot of objects are

created and I can't find a way to delete them

• With 17 nodes present, attempting to add another threw an unhandled

exception for index being out of array bounds

• The way in which nodes are added to the tree is not clear to me and so the

tool doesn't seem that useful until you can construct a tree, exactly as you

want it

• I would like to be able to edit/delete objects, for example being able to

change the object name

192

Appendix C

Nontechnical Feedback

• Again, very useful to learn about traversing the trees

• Audio instructions and descriptions very useful, as is ability to add a node

into an existing list

• Audio is good - it helps greatly with the task. Without it however it is hard

to understand what is going on. Maybe it can be made easier with text as

well?

• Excellent tool, especially for beginners. And very interactive. Code

generation is amazing and the format is simple to understand.

• Good enough for first time use

• Good for making visualisations of linked lists very quickly. Graphics are

very simple but very easy tool to use, although linked lists are reasonably

easy to visualise

• Good tool for visualising and becoming more familiar with the concept of

linked list

• Obvious and easy to use for making tree diagrams for exercise

• It helps me to visualise and understand the whole thing about binary trees

and data structure. And integrated wiki also a good idea

• Much better than reading a pile of papers to understand things. And easy

to use too.

193

• Reasonably simplified after a year's worth of programming with objects

but a good idea in explaining objects at the beginning of the year when it

was hard to visual them

• view as array and wiki great idea

• This part has provided me with a deep knowledge about linked list as I

was finding it hard to acquire information from text books

• This section demonstrated me about tree traversal well. However, a video

tutorial how to use would be heaven an "icing on the cake".

• This tool is very good for linked lists; the way they are drawn on screen is

useful.

• Useful for visualizing the objects, though possibly a function for looking

at classes and more difficult to grasp topics such as inheritance, etc would

me more useful than understanding simple objects

• Useful Java beginners’ tool. Good data type checking, although Strings are

not checked for "".

• Very easy for making a quick binary tree

• Very good for getting to know how the binary trees work. Especially the

comparison is done automatically so when people don’t know where the

inserted node should appear in the tree they can use this to get the answer

which is very helpful.

194

Appendix D

The	
 learning	
 tool	
 interface	
 was	
 easy	
 to	
 use	

	

There	
 was	
 enough	
 information	
 about	
 how	
 to	

create	
 and	
 interact	
 with	
 object	
 visualisation	

Q1	
 1	
 Strongly	
 Agree	
 	
 	
 37.50%	
 6	

	

Q6	
 1	
 Strongly	
 Agree	
 	
 	
 13.30%	
 2	

	
 	
 2	
 Agree	

	

43.80%	
 7	

	

	
 	
 2	
 Agree	

	

40.00%	
 6	

	
 	
 3	
 Somewhat	
 Agree	

	

12.50%	
 2	

	

	
 	
 3	
 Somewhat	
 Agree	

	

33.30%	
 5	

	
 	
 4	
 Somewhat	
 Disagree	

	

6.30%	
 1	

	

	
 	
 4	
 Somewhat	
 Disagree	

	

13.30%	
 2	

	
 	
 5	
 Disagree	

	

0.00%	
 0	

	

	
 	
 5	
 Disagree	

	

0.00%	
 0	

	
 	
 6	
 Strongly	
 Disagree	
 	
 	
 0.00%	
 0	

	

	
 	
 6	
 Strongly	
 Disagree	
 	
 	
 0.00%	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 The	
 audio	
 instructions	
 were	
 clear	
 and	
 easy	
 to	

understand	

	

There	
 was	
 enough	
 information	
 about	
 how	
 to	

create	
 and	
 interact	
 with	
 Linked	
 List	
 visualisation	

Q2	
 1	
 Strongly	
 Agree	
 	
 	
 25.00%	
 4	

	

Q7	
 1	
 Strongly	
 Agree	
 	
 	
 25.00%	
 4	

	
 	
 2	
 Agree	

	

37.50%	
 6	

	

	
 	
 2	
 Agree	

	

25.00%	
 4	

	
 	
 3	
 Somewhat	
 Agree	

	

31.30%	
 5	

	

	
 	
 3	
 Somewhat	
 Agree	

	

25.00%	
 4	

	
 	
 4	
 Somewhat	
 Disagree	

	

6.30%	
 1	

	

	
 	
 4	
 Somewhat	
 Disagree	

	

25.00%	
 4	

	
 	
 5	
 Disagree	

	

0.00%	
 0	

	

	
 	
 5	
 Disagree	

	

0.00%	
 0	

	
 	
 6	
 Strongly	
 Disagree	
 	
 	
 0.00%	
 0	

	

	
 	
 6	
 Strongly	
 Disagree	
 	
 	
 0.00%	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 The	
 textual	
 instructions	
 were	
 easy	
 to	

understand	

	

There	
 was	
 enough	
 information	
 about	
 how	
 to	

create	
 and	
 interact	
 with	
 Binary	
 Search	
 Tree	

visualisation	

Q3	
 1	
 Strongly	
 Agree	
 	
 	
 18.80%	
 3	

	

Q8	
 1	
 Strongly	
 Agree	
 	
 	
 25.00%	
 4	

	
 	
 2	
 Agree	

	

25.00%	
 4	

	

	
 	
 2	
 Agree	

	

37.50%	
 6	

	
 	
 3	
 Somewhat	
 Agree	

	

25.00%	
 4	

	

	
 	
 3	
 Somewhat	
 Agree	

	

12.50%	
 2	

	
 	
 4	
 Somewhat	
 Disagree	

	

25.00%	
 4	

	

	
 	
 4	
 Somewhat	
 Disagree	

	

25.00%	
 4	

	
 	
 5	
 Disagree	

	

6.30%	
 1	

	

	
 	
 5	
 Disagree	

	

0.00%	
 0	

	
 	
 6	
 Strongly	
 Disagree	
 	
 	
 0.00%	
 0	

	

	
 	
 6	
 Strongly	
 Disagree	
 	
 	
 0.00%	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 The	
 provided	
 visualisations	
 covered	
 the	
 main	

data	
 structures	
 that	
 considered	
 important	
 in	

this	
 module	

	

The	
 Binary	
 Tree	
 Traversal	
 task	
 was	
 useful	
 and	

important	
 to	
 test	
 and	
 enhance	
 your	
 knowledge	

about	
 tree	
 traversal	

Q4	
 1	
 Strongly	
 Agree	
 	
 	
 12.50%	
 2	

	

Q9	
 1	
 Strongly	
 Agree	
 	
 	
 43.80%	
 7	

	
 	
 2	
 Agree	

	

50.00%	
 8	

	

	
 	
 2	
 Agree	

	

25.00%	
 4	

	
 	
 3	
 Somewhat	
 Agree	

	

31.30%	
 5	

	

	
 	
 3	
 Somewhat	
 Agree	

	

31.30%	
 5	

	
 	
 4	
 Somewhat	
 Disagree	

	

0.00%	
 0	

	

	
 	
 4	
 Somewhat	
 Disagree	

	

0.00%	
 0	

	
 	
 5	
 Disagree	

	

6.30%	
 1	

	

	
 	
 5	
 Disagree	

	

0.00%	
 0	

	
 	
 6	
 Strongly	
 Disagree	
 	
 	
 0.00%	
 0	

	

	
 	
 6	
 Strongly	
 Disagree	
 	
 	
 0.00%	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

195

The	
 visualisations	
 helped	
 in	
 creating	
 mental	

model	
 of	
 proposed	
 data	
 structures	

	
 	
 	
 	
 	
 	
 Q5	
 1	
 Strongly	
 Agree	
 	
 	
 37.50%	
 6	

	
 	
 	
 	
 	
 	
 	
 	
 2	
 Agree	

	

31.30%	
 5	

	
 	
 	
 	
 	
 	
 	
 	
 3	
 Somewhat	
 Agree	

	

25.00%	
 4	

	
 	
 	
 	
 	
 	
 	
 	
 4	
 Somewhat	
 Disagree	

	

6.30%	
 1	

	
 	
 	
 	
 	
 	
 	
 	
 5	
 Disagree	

	

0.00%	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 6	
 Strongly	
 Disagree	
 	
 	
 0.00%	
 0	

	
 	
 	
 	
 	
 	

