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Abstract 

Current wind turbine (WT) studies focus on improving their reliability and 

reducing the cost of energy, particularly when WTs are operated offshore. A 

Supervisory Control and Data Acquisition (SCADA) system is a standard 

installation on larger WTs, monitoring all major WT sub-assemblies and 

providing important information. Ideally, a WT’s health condition or state of the 

components can be deduced through rigorous analysis of SCADA data. Several 

programmes have been made for that purpose; however, the resulting cost 

savings are limited because of the data complexity and relatively low number of 

failures that can be easily detected in early stages.  

This thesis develops an automated on-line fault prognosis system for WT 

monitoring using SCADA data, concentrating particularly on WT pitch system, 

which is known to be fault significant. A number of preliminary activities were 

carried out in this research. They included building a dedicated server, 

developing a data visualisation tool, reviewing the existing WT monitoring 

techniques and investigating the possible AI techniques along with some 

examples detailing applications of how they can be utilised in this research.  

The a-priori knowledge-based Adaptive Neuro-Fuzzy Inference System 

(APK-ANFIS) was selected to research in further because it has been shown to be 

interpretable and allows domain knowledge to be incorporated. A fault 

prognosis system using APK-ANFIS based on four critical WT pitch system 

features is proposed. The proposed approach has been applied to the pitch data 

of two different designs of 26 Alstom and 22 Mitsubishi WTs, with two different 

types of SCADA system, demonstrating the adaptability of APK-ANFIS for 

application to variety of technologies. After that, the Alstom results were 

compared to a prior general alarm approach to show the advantage of prognostic 

horizon. In addition, both results are evaluated using Confusion Matrix analysis 
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and a comparison study of the two tests to draw conclusions, demonstrating that 

the proposed approach is effective.    
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1 

Chapter 1.  

Introduction 

 

Wind energy is currently the fastest growing renewable source used for 

electrical generation around the world. It is expected that a large number of wind 

turbines (WTs), especially offshore, will be employed in the near future with the 

aim of achieving the desired carbon emission targets and providing alternative 

energy sources for customers (Krohn et al. 2009). WTs are designed to be 

operated around 20 years and their life-time reliability is the viable factor for the 

success of any wind farm (WF) project.  

Following a rapid acceleration of wind energy development in the late 20th 

& early 21st century, current studies of WTs are beginning to focus on improving 

the cost of energy. The main reason is to ensure that wind generated electricity is 

competitive with other generation sources. Costs for wind generated electricity 

can be higher because O&M costs constitute a significant share of the annual cost 

of a WF and WT downtime. With the rapid growth of wind energy and more 

offshore WTs to be employed in the near future, there is a commercial interest in 

ensuring reduced O&M costs by increasing reliability and having more 

economical operations. The essence of improving WT reliability is to reduce the 

downtime and increase the availability by optimising both the WT design and its 

maintenance schedule (Tavner et al. 2007). Both these strategies require a full 

understanding of the WT system and a detailed analysis of its failure 

mechanisms. Most modern large WTs are now manufactured with some types of 

SCADA and CMS systems that monitor the main components and it is possible 

for WF operators to analyse these data to identify WT’s systematic performance.  

Ideally, a WT’s health condition or state of the turbine’s component can be 

deduced through rigorous analysis of SCADA and CMS data. This information 
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would also be very useful to plan power outages and schedule effective 

maintenance schemes. However, many WF operators have been unable to make 

full use of these available, due to large unmanageable volumes of data and lack 

of domain knowledge impeding its analysis and interpretation.  

1.1. Wind Energy Development & Cost of Energy 

Figure 1.1 shows the European Commission’s forecasts on annual wind 

power investments in EU-27 from 2000 to 2030 (Krohn et al. 2009). The market is 

growing, with a gradually increasing share of investments going to offshore. By 

2020, the annual market for wind power capacity will have grown to €17 billion 

annually with approximately half of investments going to offshore. By 2030, 

annual wind energy investment will reach almost €20 billion with 60% of 

investments offshore.  

 

Figure 1.1:Wind energy investments 2000-2030 (€ million) (Krohn et al. 2009) 

In UK, the government has agreed to a legally binding target for 15% of 

energy production from renewable source by 2020, increasing from 1.5% in 2006 

(GOV.UK 2009). According to a consultative document GOV.UK (2011) 

published by the Department for Business, Enterprise and Regulatory Reform in 
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June 2008, offshore wind power could contribute up to 19% of UK renewable 

energy target by 2020. As an island UK has large potential for offshore WTs to be 

installed to achieve this greater wind energy harvest. However, due to the lack of 

operating experience on large-scale offshore WFs, this could also increase the risk 

to energy capture from low reliability and availability, in view of the difficulties 

of accessing offshore WTs for maintenance (Feng et al. 2010).  

1.1.1. Trends in Wind Turbine Size 

For the development of WT machine itself, with a focus on increasing MW 

ratings over the last decade (Krohn et al. 2009), turbine sizes have become larger. 

This is due to the fact that more energy can be captured by a greater swept area, 

as well as a cost benefit due to the scale, which means that the cost of energy will 

be more competitive for larger WTs. The size evolution of modern WTs since the 

1980s is depicted in Figure 1.2 below.  
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Figure 1.2: Growth in size of wind turbine design (Krohn et al. 2009). 

1.1.2. Moving Offshore 

Currently, most WFs have been sited onshore, but there is growing interest 

in installing them offshore to take advantage of the stronger winds and lower 

environmental impact of offshore locations, as shown in the investment trend 

Figure 1.1.  

1.1.3. Cost of Energy 

The key elements that determine the basic costs of wind energy are listed 

below (Blanco 2009):  

 Capital costs, including WTs, foundation, road construction and grid 

connection, which can be as much as 80% of the total project cost over 
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lifetime. The capital costs are the initial fixed costs and determined by 

market, location and WT design at the time of installation;  

 Variable costs, the most significant are the O&M costs, but also including 

other categories such as land rental, insurance, taxes and administration. 

The variable costs constitute around 20% of the total cost, with variations 

between countries, regions and sites;  

 The electricity production, which depends on local climate, site 

characteristics, WT technical specifications and power generation 

reduction. The indicator that best reflect this element is capacity factor, 

which expresses the ratio of actual energy produced in a year;  

 The discount rate and economic lifetime of the investment. These reflect 

the perceived risk of the project.  

For wind energy to be competitive with other energy sources, it is essential 

to make every effort to reduce the cost of energy from wind. At present, one of 

the priorities of WT research is to lower the variable costs, mainly related to 

O&M. This is because O&M costs constitute a sizable share of the total cost, 12% 

for onshore and 23% for offshore in some EU WFs (Musial et al. 2006; Feng et al. 

2010). In addition, a German study shows that O&M costs are likely to increase 

over WT lifetime (Report 2002). The detection of incipient WT failures in their 

early stages and the identification of their root causes would improve O&M, 

leading to better WT availability and decreased cost of energy.  

1.2. Current Challenges affecting the Wind Turbine 

O&M 

The first challenge that affects WT O&M is difficulty of access to the WT in 

a WF. A WF is a group of WTs in the same location used to produce electric 



1. Introduction 

 

6 

 

power. A large WF may contain more than 100 individual WTs and covers an 

extended area of tens of square km. The sizes of WTs have become physically 

larger and the WF locations are usually built on remote plains, hills or inshore 

sea regions. The growing interest in installing WF offshore increases the 

difficulty of access and results in potentially high O&M costs. The main factors 

affecting offshore WT O&M costs are:  

 Difficulties of site access, corresponding repair and maintenance 

techniques will require reaching the WT by vessel or helicopter;  

 Delays in the first opportunity to carry out a visual inspection of 

suspected failure, caused by adverse weather conditions, may be several 

days or even weeks, resulting lost revenue;  

 Extreme weather conditions may reduce the ability to perform certain 

maintenance procedures to effect a repair;  

The second challenge arises from the data collected by the SCADA & CMS 

systems. They quickly accumulate large, unmanageable volumes of data, making 

data analysis difficult. It would be impractical and maybe impossible to carry out 

WT SCADA & CMS data analysis manually.  

The third challenge is the lack of WT domain knowledge impeding 

incipient fault detection and interpretation. The lack of defect knowledge and 

expertise on how faults manifest themselves in the data is ultimately the main 

aspect of this challenge, which may allow an undetected component fault to 

develop into major failure and could even damage the whole WT.  

With the increase of wind energy development, especially the increasingly 

numerous offshore WFs, questions regarding O&M are gaining more 

importance. This heightens the need for comprehensive automated on-line fault 

detection that can use of existing WT SCADA & CMS data to provide accurate 
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WT fault prediction, so that impending component failures can be detected and 

reasonable maintenance actions are scheduled to minimise WT downtime, 

improve reliability, maximise availability and improve profitability.  

1.3. Research Aim 

 In order to overcome the challenges to WT O&M leading to better WT 

availability and decreased cost of energy, a system that can automatically analyse 

and interpret the large volumes of data from SCADA & CMS systems is required. 

This would reduce WF operators’ workload as only high level information about 

WT health or component state would be presented to them, dramatically 

reducing the complexity of having to carry out data analysis manually and help 

operators to make timely maintenance decisions.  

The aim of this research is to provide a suitable solution that can be used as 

a framework for automated on-line WT fault prognosis based upon a specific, 

important fault area, the WT pitch system. This research speculates that an AI 

algorithm is available to build a robust and effective WT fault prognosis system. 

This potential AI system would be able to work on different designs and 

locations of WTs, and produce better fault prognosis result than the existing 

solutions.  

1.4. Structure of the Thesis 

This thesis is organised into a number of chapters in order to reflect the 

progress and results of the research since January 2011.  

Chapter 1 briefly introduces wind energy development and the research 

background. The challenges to WT O&M are discussed and the aims of the 

research are introduced.  



1. Introduction 

 

8 

 

Chapter 2 begins with the brief introduction of different types of WT and 

the “Danish Concept” is discussed in detail because of its current wide 

application. WT SCADA & CMS systems are introduced and current WT 

reliability studies are discussed. Then, the review summarises and discusses the 

recent research about the WT fault detection and diagnosis (FDD). In the end, the 

focus in this research is presented and followed by the introduction of the 

available data and research facilities in Durham University.  

Chapter 3 reviews a number of AI techniques, commonly used in the field 

of data classification, which can be used for WT FDD. In the end of this chapter 

a-priori knowledge-based Adaptive Neuro-Fuzzy Inference System (APK-

ANFIS) was selected to analyse WT SCADA data in further. In addition, six 

known pitch faults were found and used as the knowledge base for the proposed 

diagnosis approach in Chapter 4.  

Chapter 4 introduces the APK-ANFIS in detail and proposes an automated 

on-line fault prognosis system. With the a-priori knowledge incorporation, the 

proposed system should have improved ability to interpret previously unseen 

conditions. The data of the six known pitch faults were labelled and used to train 

the proposed system with a-priori knowledge incorporated.  

Chapter 5 shows the trained system was applied to data from two different 

designs of WTs, manufactured by Alstom & Mitsubishi, with two different types 

of SCADA systems, demonstrating the adaptability of the proposed approach to 

variety of technologies. The results were further evaluated by Confusion Matrix 

analysis to check the validity of the results.  

Chapter 6 discusses how the proposed system meets the aim of this 

research and lists the advantages of the proposed approach. This chapter also 

provides conclusions from this research and proposes the further work.  
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Chapter 2.  

Wind Turbine Monitoring 

 

As has been noted in Chapter 1, the detection of WT faults, particularly 

offshore, is gaining greater importance because of their remote location and 

inaccessibility, the difficulties of maintenance and the significance of machine 

failures on availability. The need for successfully detecting incipient faults before 

they develop into serious failures, to increase availability and lower cost of 

energy, has led to the development of a large number of WT SCADA & CMS 

systems (Crabtree 2010; Chen and Zappala 2011).  

This chapter begins with the brief introduction of different types of WT and 

then the “Danish Concept” is discussed in detail because of its wide applications. 

After that, WT monitoring systems are introduced and followed by a summary 

of current WT reliability studies. Then, the review summarises and discusses the 

recent researches about the WT fault detection and diagnosis (FDD). In the end, 

the focus in this research is presented and followed by the introduction of the 

available data and research facilities.  

2.1. Modern Wind Turbines 

WTs are mechanical devices that convert kinetic energy from the wind into 

rotational mechanical energy at the shaft, then conversion into electrical energy 

in a rotating generator. Several WT designs have been devised over the last 100 

years. However, in general, WTs can be classified into vertical-axis and 

horizontal-axis ones depending on the position of the WT’s rotor axis (Bianchi et 

al. 2006).  
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The most successful vertical-axis WT is the Darrieus (Hau and Platz 2006), 

as illustrated in Figure 2.1(a). The advantage of this type of WT is that any 

gearbox and conversion systems are placed at ground level and the WT is 

independent of the wind direction. However, maintenance of these WTs is not 

straightforward as rotor removal is often required. In addition, the captured 

energy is not efficient and large WT plan areas are required for the guy-wires 

necessary to support the vertical axis structure. For these reasons only a few 

large vertical-axis WTs have gone into operation and none have been installed 

offshore (Ackermann and Söder 2002).  

(a) (b)  

Figure 2.1: (a) Vertical-axis & (b) Horizon-axis WTs (Bianchi et al. 2006). 

Today, the majority of modern WTs used horizontal-axis, two or three 

blades designs with the three-blade option being by far the majority (Hau and 

Platz 2006), as illustrated in Figure 2.1(b).  

Three-blade option is the preferred solution for modern horizontal-axis WT 

because of the integrated considerations of power coefficient, noise emission and 

visual effect (Hau and Platz 2006). In addition, the horizontal-axis WTs also can 
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be classified into up-wind and down-wind designs depending on the position of 

the WT’s rotor. Down-wind WTs have the rotor on the back of the turbine and 

doesn’t require a separate yaw system to yaw the turbine into the wind. 

However, the advantages of down-wind design can also be a disadvantage as it 

responds to wind directional changes more slowly and this is not practicable for 

modern large WT.  

The vast majority of current horizontal-axis WTs have up-wind rotors to 

create a more practicable system for wind energy capture. The tower holds up 

the nacelle containing the generator, which in the case of a direct drive WT the 

generator is a low speed synchronous machine but the majority of current 

machines installed are indirect drive and high speed induction or asynchronous 

generator is assembled in the nacelle with the gearbox. There is a yaw 

mechanism that turns the rotor and nacelle into the wind, in order to capture as 

much energy as possible. The power electronics converter changes the generator 

frequency to the grid frequency and the transformer changes the generator 

voltage to the grid voltage. The converter and transformer are usually arranged 

at the base of the tower, on the ground for onshore WTs but for offshore WTs 

they are usually contained within the tower. Only three-blade, horizontal-axis, 

up-wind WTs are considered in this research, since they represent the vast 

majority of large WTs currently installed.  
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Figure 2.2: Wind turbine nomenclature (Darling 2011). 

There are two types of three-blade, horizontal-axis, up-wind WTs currently 

in operation and considered in this research.  

 The fixed speed, variable pitch WT using the blade pitch-to-stall control to 

adjust the WT power;  

 The variable speed, variable pitch WT using generator and blade pitch-to-

feather control to adjust the WT power.  

Figure 2.2 shows the components involved in both types of three-blade 

horizontal-axis, up-wind WTs. The following are brief descriptions of the main 

WT sub-assemblies (Darling 2011), important for the gathering of knowledge 

from the WT:  

 Rotor: The WT blades and hub together.  
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 Blades: Extract kinetic energy from the wind and converts it into 

rotational mechanical shaft energy as a driving torque and WT speed at a 

certain wind speed.  

 Pitch System: Controls the angle of attack of the blades to the wind to 

control the extraction of kinetic energy and avoid rotor over-speed at high 

winds speed. 

 Brake: A disc brake to slow down and stop the rotor at cut-out wind 

speed or in over-speed emergencies. 

 Low-speed shaft: Turned by the WT rotor. 

 Gearbox: Used to transfer rotational mechanical energy from the low 

speed shaft to the high speed shaft.  

 High speed shaft: Driven by the gearbox output, coupled to the generator 

and drives the generator.  

 Generator: Converts the rotational mechanical shaft energy from the high 

speed shaft into electrical energy, developing a reaction torque to the high 

speed shaft.  

 Converter: Controls the flow of electrical energy from the generator by 

adjusting its frequency.  

 Controller: Starts up and shuts down the WT at the cut-in and cut-out 

wind speeds, controls the pitch and converter to extract the maximum 

energy, and the yaw system to point the WT into the wind and develop 

the appropriate reaction torque to the WT at a given wind speed.  

 Anemometer: Measures the wind speed and sends the data to the 

controller to assist in the development of the reaction torque.  

 Wind Vane: Measures the wind direction and sends the data to the 

controller to control the yaw system.  

 Nacelle: Housing on the top the tower to yaw into the wind and protect 

the drive-train assemblies, shafts, gearbox and generator.  
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 Yaw Drive: Used to control the nacelle to face the wind as wind direction 

changes.  

 Yaw Motors: Power the yaw drive.  

 Tower: Supports the nacelle at an appropriate height, as wind speed 

increases with height, taller towers enable WTs to capture more energy 

and generate more electricity.  

There are more than 50 large horizontal-axis WT manufacturers in the 

world (Krohn et al. 2009) and their WT designs vary from manufacturer to 

manufacturer. However, the sub-assemblies described above are common to 

almost all manufacturers and this gives confidence in taking a common approach 

to all WTs FDD.  

2.2. Wind Turbine Monitoring System 

WTs are monitored for a variety of reasons, including measuring the 

meteorological data to forecast their prospective power generation. Figure 2.3 

shows a number of different monitoring systems typically installed on a large, > 

1.5MW, WT.  
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Figure 2.3: Monitoring systems on WT (Crabtree 2010). 

2.2.1. Supervisory Control and Data Acquisition 

The Supervisory Control and Data Acquisition (SCADA) system is a 

standard installation on large WTs; its data is collected from individual WT 

controllers. According to (Zaher et al. 2009), the SCADA system assesses the 

status of the WT and its sub-assemblies using sensors fitted to the WT, such as 

anemometers, thermocouples, accelerometers and switches. The meteorological 

information, e.g. wind speed, direction and turbulence, and turbine operating 

information, e.g. rotor speed, blade angle, power output, and lubrication oil 

temperature, are measured by these instruments at a low data rate, usually at 5-

10 minutes interval. The SCADA system data are transmitted to a central 

database for WF operators to monitor the WT & WF performance. 
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The initial design of the SCADA system is not necessary to give an 

indication of the WT health or provide warning of impending malfunctions. 

However, some studies (Feng et al. 2011; Yang and Jiang 2011) have pointed out 

that the SCADA data is a rich resource potentially useful for maintenance 

optimisation. This is largely because SCADA system covers almost all major WT 

sub-assemblies and archives comprehensive signal information, historical alarms 

and detailed fault logs, as well as environmental and operational condition. It is 

believed that a WT’s health condition can be monitored through rigorous 

analysis of the information collected by SCADA system (Chen et al. 2013). 

2.2.2. Condition Monitoring & Diagnosis 

Many large WTs are now fitted with Condition Monitoring system (CMS), 

initially encouraged by insurance companies on early large WTs to reduce drive 

train outages due to the prominent gearbox failures, which monitor sensors 

associated with the rotating drive train, such as accelerometers, proximeters and 

oil particle counters. As a CMS is installed on the WT’s drive train, it may be 

considered as a method for determining whether a WT is operating correctly or 

whether a fault is present or developing. Once a fault has been detected, CMS 

can diagnose automatically or via a monitoring engineer to determine the exact 

nature and the location of the fault. For this analysis the data must be recorded at 

higher sampling frequencies, however CMS diagnosis will only be required on 

an intermittent basis (Crabtree 2011), when incipient faults are indicated by the 

SCADA. The CMS is separated from SCADA system and as explained collects 

data at much higher data rates.  

According to (Yang and Jiang 2011), the cost of CMS is much higher than 

SCADA system due to expensive CMS transducers, data processing equipment 
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and a higher installation cost. In addition, the WF operators usually have a great 

challenge to transmit, store and analyse data with such high rates.  

2.2.3. Structural Health Monitoring 

On larger WTs, > 2MW, there is frequently a Structural Health Monitoring 

(SHM) system installed below the nacelle. The SHM system uses low frequency 

sampling, < 5Hz, of accelerometers or strain gauges, to determine the structural 

integrity of the WT tower and foundation for faults, driven by blade-passing 

frequencies, wind gusts and wave slam.  

Structural faults are slow to develop and do not need continuous 

monitoring. They are better for consideration during perhaps an annual 

structural survey.  

2.2.4. Survey of the Commercially Available Monitoring Systems 

In order to understand the scope of current systems, two surveys were 

made by C.J. Crabtree and this author to investigate all commercially available 

CMS and SCADA systems respectively (Crabtree 2010; Chen and Zappala 2011) 

for the UK EPSRC Supergen Wind Research Consortium. The information was 

collected from WT manufacturers, Renewable Energy Consultancies, Industrial 

Software Companies, WT Operating Company, Electrical Equipment Provider, 

papers and the internet. The survey observations were made concern with the 

nature of systems currently available and apparent future development of WT 

monitoring systems rather than their detailed effectiveness. The survey 

conclusions have shown that it would be beneficial, from the perspective of WF 

operators, if the WT monitoring data could be integrated, analysed and 

interpreted automatically to support the operators identifying WT defects. 
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2.3. Reliability of Wind Turbines 

WT reliability is largely dependent on the design of the machine, along with 

the quality of its sub-assemblies and the manufactured quality of its components 

(Hau and Platz 2006). WT technology has developed and matured in recent 

years, the design of large WTs has become fairly standardised, centring around 

the three-blade, horizontal-axis, up-wind design of the original “Danish 

Concept”. However, there may be some variations within this general design.  

For example, the more popular concept is a WT with a gearbox linked to a high-

speed induction/asynchronous generator and this concept has lower capital cost, 

more recent WTs have been developed with a direct drive system connected to a 

low-speed synchronous generator and fully-rated converter and this new 

concept may have the potential to be more reliable and suffer lower losses in low 

wind (Hau and Platz 2006). However, regardless of which concept is considered 

there are a number of sub-assemblies within a WT which could be the potential 

source of failure.  

Some studies have analysed publicly available data in an attempt to gain 

knowledge of overall WT reliability, whilst also ascertaining the reliability of 

particular sub-assemblies in relation to the whole system. Existing research has 

taken many different approaches to analyse the public available data. Some have 

looked at reliability based on WT rating (Spinato et al. 2009) or weather & 

location (Tavner et al. 2013). Some studies have investigated the reliability of 

different WT sub-assemblies (Spinato et al. 2009; Wilkinson et al. 2010).  

2.3.1. Reliability Study based on Wind Turbine Rating 

Spinato et al. (2009) carried out a failure rate study based on WT rating as 

specified in the LWK data for onshore WTs, considering 158-643 WTs and age up 



2. Wind Turbine Monitoring 

 

19 

 

to 15 years, the results of which are shown in Figure 2.4. It is apparent that there 

is a general trend of increasing failure rate with WT rating. Based on this study, it 

may be more difficult to decrease failure rates as WTs continue to grow in rating. 

This will be more significant as they move to offshore location, where larger WTs 

are needed.  However, experience also shows that as larger WTs are introduced 

there is a learning curve and failure rates can reduce with time as appropriate 

O&M procedures are learnt on the larger machine (Blanco 2009). 

 

Figure 2.4: Variation of failure rates with different wind turbine rating (Spinato et al. 
2009). 

2.3.2. Reliability Study based on Weather and Location 

Tavner et al. (2006) investigated the influence of wind speed on WT 

reliability, using about 16000 WT-years of Windstats data from 1994 to 2004 of 

WTs located in Denmark. The study has some analytical difficulties; the 

population changed size and consisted of various WT models located all over the 

country in varying climatic conditions, and Danish national information was 



2. Wind Turbine Monitoring 

 

20 

 

used to characterise the weather over the large geographical area. Nevertheless, 

it did clearly show that higher mean wind speeds resulted in an increased 

number of WT failures. In Tavner et al. (2013), a more precise analysis using 

WMEP data was made at three specific locations on one WT type, with 201 WT-

years of data, using weather data from local meteorological masts. Cross-

correlation was shown to be effective for relating weather conditions to failure 

rate and this research has shown that there was significant cross-correlation 

between the failure rate, weather and turbulence for all three sites rather than 

just wind speed. 

2.3.3. Reliability Study based on Wind Turbine Sub-assemblies 

Quantitative studies of WT faults from existing public databases have been 

carried out by Tavner et al. (2007) and Spinato et al. (2009) on 25,322 WT-years of 

data. Figure 2.5 shows the comparison between failure rate and downtimes of 

different WT sub-assemblies, such as those described in Section 2.1, from three 

large EU surveys of onshore WTs. 
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Figure 2.5: Failure/WT/year and downtime results, 25,322 WT-year LWK, WMEP and 
Swedish surveys, 1993-2006 (Spinato et al. 2009). 

It can be seen that Electrical System and Electrical Control have the highest 

failure rate, but the corresponding WT downtimes are not high. The major 

sources of downtimes have their root causes centred on the drive train, which 

refers to the large rotating components including the rotor, main bearing, main 

shaft, coupling, gearbox and generator.  Although their failure rates are not high, 

their downtimes are the highest of all sub-assemblies as shown in Figure 2.5. This 

is because the repair procedures in drive train are complex and this will be 

aggravated particularly offshore, requiring not only special lifting equipment 

such as crane, but also vessels and the weather conditions will have to be 

considered.   

Another study of WT sub-assembly reliability was carried out by more 

recent ReliaWind project (Wilkinson et al. 2010). Figure 2.6 shows more detailed 

breakdown results of WT sub-assemblies with data covering 1400 WT-year. The 
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failure rate lessons from ReliaWind project are similar to the last study, but the 

downtime lessons are different showing greater emphasis on the power and 

rotor modules because it is believed these newer variable speed WTs have not 

yet experienced any major gearbox, generator or blade failure to date in service 

(Tavner 2012). 

(a) Normalised failure rate of sub-systems and assemblies

(b) Normalised hours lost per turbine per year to faults in sub-systems and assemblies

Pitch System

Pitch System

 

Figure 2.6: WT sub-assembly reliability analysis, the 1,400 WT-year, 2004-2010 
(Wilkinson et al. 2010). 

2.3.4. Current Reliability Knowledge 

On the basis of above studies, the current knowledge of WT reliability can 

be summarised as follows:   
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 Firstly, WT failure rates tend to increase as WT rating grows. This will be 

of more concern as WTs move to offshore locations.   

 Secondly, higher mean wind speeds result in increased WT failures.  

 Thirdly, there is a significant cross-correlation between the failure rate, 

weather and turbulence rather than just wind speed.  

 Finally, WT sub-assemblies with the highest failure rate and downtime 

from public domain survey are shown in Table 2.1, in descending order of 

significance: 

 Failure Rate Downtime 
High 
 
 
 
 
 
Low 

Pitch system Gearbox 

Converter Generator 

Electrical system Rotor blades 

Rotor blades Pitch system 

Generator Converter 

Hydraulics Electrical system 

Gearbox Hydraulics 

Table 2.1: Wind turbine sub-assemblies failure rate and downtime 

In addition, a recent work by (Tavner et al. 2007) has shown that for 

onshore WTs have failure rates of around 1-3 failures per WT per year, for 

failures of >24 hours, are common. In a later paper, Spinato et al. (2009) 

suggested that a maximum failure rate of 0.5 failures per WT per year is likely to 

be necessary on offshore WT, where planned maintenance visits occurring no 

more than once per year would be desirable.  

Moreover, according to (Faulstich et al. 2011), 75% of onshore WT faults 

cause 5% of the downtime, whereas 25% of the faults cause 95% of the downtime. 

Most of the downtime on onshore WT is dominated by a few large faults, many 

associated with gearboxes, generators and blades, where the corresponding 

replacement procedure is complex and costly. Work by Tavner et al. (2011) notes 
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that the 75% of failures with low downtimes onshore will have a significant effect 

in the move to offshore as quick repairs will not be possible due to access issues.  

The recent ReliaWind project, shown in Figure 2.6, has shown that in that 

survey the pitch system was responsible for 15.5% of failures and 20% of total 

downtime and is the largest contributing assembly in both cases. 

2.4. Review of Wind Turbine Fault Detection & 

Diagnosis Methods 

Fault detection & diagnosis (FDD) schemes in industrial processes are 

becoming increasingly important, because of growing demands for higher 

product quality, safety and operational reliability (Braun and Herrick 2003). Fault 

diagnosis refers to the ability to identify the nature and cause of a specific fault 

(Isermann 2006). Fault prognosis refers to a reliable and sufficiently accurate 

prediction of the remaining useful life of equipment in service (Muller et al. 

2008). An FDD scheme for a WT would allow a predictive maintenance scheme 

to be introduced, reducing WT downtime and increasing the annual energy 

production.  

As has been noted in Chapter 1, that the detection of WT faults, particularly 

offshore, is gaining importance because of the need to reduce the Cost of Energy. 

This idea of successfully detecting incipient faults before they develop into 

failures has led to the development of a number of WT FDD methods.  According 

to Isermann and Balle (1997), FDD methods can be classified by the way process 

knowledge is incorporated into either model or signal-based methods. When a 

process is too complex to be modelled analytically and signal analysis does not 

yield an unambiguous diagnosis, a fault detection approach based on AI can be 
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used. This section covers the research found in the literature that is more closely 

related to WT FDD.  

2.4.1. Model-based Approaches 

In model-based FDD techniques some models of the system are used to 

decide about the occurrence of fault (Venkatasubramanian et al. 2003). In this 

approach, the system models can be mathematical or knowledge-based. Some 

methods, e.g. parameter estimation, parity equations or state observers are often 

used to indicate abnormal status. After that, following the different symptoms’ 

fault diagnosis procedure, faults are determined by applying inference or 

classification methods. A typical example is the WT Condition Monitoring Test 

Rig (WTCMTR) Matlab model developed at Durham University by Zaggout 

(2013). 

The work by Zaggout (2013) developed a diagnostic technique for detecting 

rotor and stator electrical asymmetries in a WT doubly fed induction generator 

(DFIG) using generator control signals. A mathematical model of the WTCMTR 

was developed and built in the Matlab representing the electrical and mechanical 

parts for each component, grid and losses. The effectiveness of the proposed 

method has been evaluated by using this WTCMTR Matlab model and control 

the DFIG with a stator flux oriented vector control.  

2.4.2. Signal-based Approaches 

A signal or feature-based method for fault detection is based on the analysis 

of measured output signals. Suitable features of the measured signals are used to 

evaluate the operating conditions. These features can be studied in either the 

time or frequency domains, some typical examples used for WT are signal 

analysis method for detecting incipient WT gearbox failure developed by 
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Crabtree (2011) and variance analysis in WT gearbox developed by Feng et al. 

(2011).  

The work by Crabtree (2011) developed a signal processing algorithm based 

on experience with analysis techniques and their relationship with the variable 

speed characteristic of a large WT. The algorithm is based on iterative localised 

discrete Fourier transform (         ) analysis and allows the analysis of fault-

related speed-dependent frequencies within non-stationary signals such as those 

encountered on a WT. The verification of the algorithm has been tested in three 

possible fault-like conditions on the Durham WTCMTR:  

 Rotor electrical asymmetry;  

 High speed shaft mass unbalance;  

 High speed gear tooth damage;  

The work concludes with a comparison between           and localised 

continuous wavelet transform (        ) analysis in terms of clarity of result and 

computational intensity. The result shows that           analysis has less 

computing time and better clarity of the results, which is highly important in the 

field of FDD.  

A signal-based approach for detecting WT gearbox and generator faults 

using SCADA and CMS signals was proposed by Feng et al. (2011). The authors 

summarised the typical principal failure modes of WT gearbox and the relevant 

SCADA & CMS measurements for health monitoring. Starting with the basic 

physics of heat generation and temperature rise due to a fault based on the first 

law of thermodynamics, they then derive the relationship between temperature, 

efficiency, and power output or rotational speed. This lead to a new algorithm 

using oil and bearing temperature SCADA data to detect gearbox failures. In the 

this work, another case study extracted diagnostic information from both 
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enveloped amplitude and oil debris particle count CMS data and plotted it 

against WT energy generation. This research showed that SCADA signal 

analyses using simple algorithms can give early warning of gearbox failures and 

the analysis of CMS signals can locate and diagnose failures with detailed 

information. The research suggested that in future WT monitoring systems both 

SCADA and CMS signals should be used to detect faults and schedule 

maintenance.  

Zappalà et al. (2013) proposed an approach based on Sideband Power 

Factor (SBPF) algorithm for incorporation into a commercial CMS for automatic 

gear fault detection and diagnosis. The algorithm has been successfully tested on 

the Durham WTCMTR from which a gear condition indicator has been proposed 

to evaluate the gear damage during non-stationary load and speed operating 

conditions. The performance of the proposed approach has also been successfully 

tested on signals from a field test of full-size WT gearbox which has sustained 

gear damage. The result shows that the proposed technique proves efficient and 

reliable for detecting gear damage. The author concluded that once implemented 

into WT CMSs, this algorithm can automate data interpretation reducing the 

quantity of information that WT operators must handle.  

2.4.3. Expert System & AI approaches 

Sometimes, a process is too complex to be modelled analytically and a 

signal analysis approach will not yield a reliable FDD scheme, for example 

certain fault combinations have different effects on the system behaviour.  It is 

then possible to classify faulty behaviour by using qualitative process knowledge 

to evaluate relations between measured signals and the current operating 

condition. These methods include approaches like probabilistic methods, fuzzy 

logic techniques, artificial neural network (ANN), and Bayesian network (BN). 
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All of these methods can be used for the purpose of extracting or inferring 

knowledge from large volumes of sensor data. The following section provides an 

outline of the named methodologies along with some examples from the 

literature detailing applications of how they have been utilised for the 

application of early fault detection for WTs.  

The Condition Monitoring for Offshore Wind Farms (CONMOW) 

(Wiggelinkhuize et al. 2007) was a collaborative project carried out by a number 

of large and well-established institutes in WT research. Its purpose was to 

investigate the notion of a cost-effective integral CM system for WT monitoring 

with a specific focus on the development of data analysis algorithms. These 

algorithms were to be integrated into the SCADA systems to produce accurate 

information to aid O&M whilst attempting to lower the cost of CM systems. At 

the time of drafting the state of the art of CM techniques report, the authors 

stated that there were no successful WT CM example applications to be found in 

the literature.  

Research by Yang and Jiang (2011) pointed out that the SCADA data are the 

simplest resource for developing a WT condition monitoring system. A basic 

idea of how a WF SCADA system could contributes to establishing a Reliability 

Centred Maintenance strategy is described in this paper. Some examples have 

been given for providing a clear explanation of the opinions. The paper 

concludes with the opinion that SCADA data are of importance for carrying out 

reliability analysis and is the cheapest resource for existing WTs.   

In 2007, Singh et al. (2007) utilised the ANN approach for WT power 

generation forecasting. The paper mentioned that the various factors aside from 

the obvious wind speed and direction which can affect WT power output, such 

as air density, topography of the site e.g. hills & mountains, which can cause the 
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wind profile to deviate from the ideal case. The paper concluded with a 

comparison between traditional methods of power estimation, using the 

manufacturer’s power curve, and the ANN approach. The results show that the 

ANN offered over a monthly period a much more accurate estimation, closer to 

actual generated power, than the traditional method. Although this research was 

not intended for WT FDD, power estimation is potentially useful for FDD 

because abnormal power output without human interaction can be regarded as a 

possible fault.  

A system called SIMAP was developed by Garcia et al. (2006) based on 

ANN for detecting and diagnosing gearbox faults. The system was split into a 

number of components:  

 A fault detection module based on normal behaviour modelling utilising 

ANN’s tailored towards the gearbox of a WT.  

 A diagnosis module based on a simple fuzzy expert system consisting of 

three main rules.  

 An automated maintenance scheduling calendar.  

The result of the ANN normal behaviour model shows its capability of 

detecting a gearbox fault 2 days before the actual failure which is a positive and 

interesting result, although 2 days warning is rather too short for offshore 

application. The aim of the system was to aid the operator in their decision-

making process by informing them of events that are important to them. In this 

way, the WT operator can make the decision based on the evidence supplied by 

the system, rather than being detached from the decision making process 

completely.  

Zaher et al. (2009) proposed an automated analysis system also based on 

ANN. The study described a set of techniques that can be used for early fault 
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identification for the main components of a WT. The results from 52 WT-year of 

data have shown that those techniques can automatically interpret the large 

volumes of SCADA data presented to an operator and highlight only the 

important aspects of interest to them. In this way, the system dramatically 

reduces the information presented to the operator, therefore allowing them to 

make more informed decisions regarding the WT maintenance.  In addition, the 

proposed multi-agent platform allows the techniques to be brought together to 

corroborate their output for more robust fault detection. It also allows the 

development of a system that can be used to apply the techniques across a 

complete WF, therefore offering only one point of contact for an operator that 

provides all of this information in a clear and concise manner.  

A recent study from Qiu et al. (2012) has investigated the Key Performance 

Indicators (KPI) of SCADA alarms from 4 onshore WFs, with considering 153 

1.67MW variable speed, pitch controlled WTs over 2 years and 366 2.5MW 

variable speed, variable pitch WTs over 1 year, that is about 672 WT-years of 

data. The results show an average alarm rate varying from 4-20 per 10 minutes 

and maximum alarm rate varying from 390-1,500 per 10 minutes. These are very 

high figures from relatively small onshore WFs and the alarm rate would need to 

be reduced to be interpretable by operators or maintainers. Qiu et al. then 

introduced a time-sequence and a probability-based analysis method to analyse 

SCADA alarm data. These two methods have proved to be potential for 

rationalising and reducing alarm data providing fault detection, diagnosis and 

prognosis from the conditions generating the alarms.  

A pattern recognition approach for identifying WT pitch fault was 

proposed by Chen et al. (2011) based on a feasibility study of SCADA alarm 

processing and diagnosis on 10 WT-year of data using ANN. At the beginning, 3 

criteria were defined to identify pitch system faults and used to generate the 
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training data. The back-propagation network (BPN) algorithm was used to 

supervise a three layers network with different numbers of neuron in the hidden 

layer to identify WT pitch fault. The trained ANN was then applied to another 4 

WTs to find similar pitch faults. In the end, the highest accuracy rate 47% was 

gained from one tested WT with 50 neurons in the hidden layer. This study 

found that the general mapping capability of ANN can help to identify those 

most likely WT faults from SCADA alarm signals, but a wide range of 

representative alarm patterns are necessary for supervisory training.  

A data-driven approach for monitoring WT pitch faults was proposed by 

Kusiak and Verma (2011) based on 9 WT-year of data. At the beginning, two 

pitch faults, blade angle asymmetry and blade angle implausibility were 

analysed to determine the associations between them and the components/sub-

assemblies of the WT. After that, five different data-mining algorithms were 

studied to evaluate the quality of the models for prediction of WT pitch faults. 

Genetic programming (GP) was found to have the best accuracy and was 

selected to perform prediction at different time stamps.  In the end, the solutions 

obtained by GP provide an easy-to-understand relationship between the input 

parameters that classify an output as a fault/non-fault. However, in this 

research, due to the limited volume of the data, only the blade angle 

implausibility was predicted.  

Gray and Watson (2010) present a methodology for damage calculation 

applied to a typical 3 stages WT gearbox design from 400 WT-year of data based 

on the concept of physics of failure. The authors state that damage is generally 

accumulated due to an “irreversible change that takes place in the microstructure 

of a component subjected to certain loading or environmental conditions”. The 

methodology is illustrated using a case study of a large wind farm where a 

significant number of gearbox failures occurred within a short space of time. The 
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proposed methodology is extremely positive and clear, however it requires an in 

depth understanding of the dynamics of the gearbox under all kinds of 

conditions and loads.  

Schlechtingen et al. (2012) proposed a system for WT FDD using Adaptive 

Neuro-Fuzzy Inference System (ANIFS). ANFIS normal behaviour models were 

developed in this research in order to detect abnormal behaviour of the captured 

signals and indicate component malfunctions or faults using the prediction error. 

In addition, the Fuzzy Inference Systems were also used to capture the existing 

expert knowledge linking observed prediction error patterns to specific faults. 

The final outputs are the condition of the component and a possible root cause 

for the anomaly. This work is based on continuously measured SCADA data 

from 18 2MW WTs covering a period of 30 months, that is 45 WT-year of data. 

The proposed method in this paper shows a novelty which regards the usage of 

ANFIS and the application of the proposed procedure to a wide range of SCADA 

signals. However, the number of the membership function in ANFIS models and 

the probability 0.01% for identifying the prediction error are not clear; both of 

them need to be classified.  

Kusiak and Li (2011) presented a methodology to predict WT faults using 

SCADA data. The methodology involves three consecutive levels:  

 The existence of a status/fault was identified;  

 The category/severity of the fault was predicted; 

 A specific fault was predicted;  

Four data sets, each of them was collected at period of three months, were 

used in this study. Several data-mining algorithms, the ANN, the Neural 

Network Ensemble (NN Ensemble), the Boosting Tree Algorithm (BTA), the 

Support Vector Machine (SVM), the Standard Classification and Regression Tree 
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(CART) have been applied at each level to extract the model. The research 

demonstrated that faults can be predicted with a reasonable accuracy 60 min 

before they occur in most cases. The author concluded that prediction accuracy 

of the fault category is somewhat lower but acceptable and this may due to data 

limitation which cause less accurate in identifying a specific fault. 

A summary of all these AI method is given in Table 2.2.  
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Author Type of WT Specific WT 
problem 

Method Data Estimated 
Prognostic Horizon 

Singh et al. (2007) Zond 500 kW Power curve ANN 1,500 sets of 10 
minutes data 

Not applicable 

Garcia et al. (2006) Not known, (Owned by 
Molinos del Ebro S.A., 
Spain) 

Gearbox ANN, Fuzzy 
Inference 
System 

Not known  2 days 

Zaher et al. (2009) Bonus 600 kW, stall-
regulated indirect drive 
WT 

Gearbox 
Generator 

ANN 52 WT-year 6 months for 
gearbox, more than 
a year for generator 

Qiu et al. (2012) Variable speed variable 
pitch indirect drive WT 

Pitch System 
Converter 

KPIs & Venn 
Diagrams 

306 & 366 WT-
year 

Not known 

Chen et al. (2011) Variable speed variable 
pitch indirect drive WT 

Pitch System ANN 10 WT-year Fault Identification 
only 

Gray and Watson 
(2010) 

Variable speed variable 
pitch indirect drive WT 

Gearbox Statistics and 
Physics of 
Failure Model 

400 WT-year Fault Identification 
only 

Schlechtingen et al. 
(2012) 

Not known 45 normal 
behaviour models 

ANFIS 45 WT-year Fault Identification 
only 

Kusiak and Li 
(2011) 

Not known 7 most frequent 
faults  

ANN, NN 
Ensemble, BTA, 
SVM, CART 

1 WT-year 1 hour 

Kusiak and Verma 
(2011) 

Not known Pitch System k-NN, GP, 
PART, ANN, 
bagging  

9 WT-year Fault Identification 
only  

Table 2.2: Summary of previous application of AI methods to WT monitoring.
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2.4.4. Review Summary 

From the above literature, it can be seen that:  

 Most of existing WT FDD researches focus on a specific problem or 

component of WT in isolation, due to the complexity of modern WT and 

the complex nature of each individual problem.  

 Fault prognostic research has been made in the gearbox and generator. 

Among them, Zaher’s results show 6 months fault prognostic horizon for 

the gearbox and more than 1 year for the generator, which give enough 

time for WT operator to investigate the problem and schedule 

maintenance. However, these results were based on historical data and the 

final time of failure was known from maintenance logs. Therefore, it was 

unclear whether a prediction about time to failure could be made in a real 

application.  

 No fault prognostics research for pitch system was found in the literature. 

However, the fault diagnostics for pitch systems have been studied by 

Kusiak and Verma (2011) and Chen et al. (2011). The importance of the 

pitch system has been discussed. However, both of the studies used small 

data sizes. It would be beneficial from FDD point of view to have more 

data for use in research.  

None of these previous studies have tested their proposed approaches on 

different designs and locations of WTs, to demonstrate the adaptability of the 

proposed approach. More testing on different designs and locations of WTs are 

necessary. 

2.5. Focus in this Research 

The purpose of this section, based upon this earlier work, is to identify the 

main focus in this research and determine the appropriate data and facilities to 

be used. 
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2.5.1. Pitch System 

As mentioned in Section 2.1, the pitch system controls the angle of attack of 

the blades to the wind to control the extraction of kinetic energy and avoid rotor 

over-speed at high wind speeds. The pitch system is a vital part of the modern 

fixed or variable speed WTs, whether it is for they use pitch-to-stall or pitch-to-

feather control.  This is because of the pitch system is not only responsible for 

regulating the WT’s power output by controlling the blade angle to enhance 

wind energy conversion efficiency, but it also provides security braking in the 

case of emergency situations and high wind speeds. It requires that, the WT can 

be brought to a stop, with the rotor blades driven into their feathered positions, 

using power from a back-up system, even in the event of grid power failure 

(Bianchi et al. 2006; Hau and Platz 2006).  

In today’s wind industry, there are primarily two types of pitch system: 

hydraulic pitch system and electrical pitch system. 

Hydraulic Pitch System 

Most of earlier WTs use hydraulic pitch system (Hau and Platz 2006; 

Clarkson 2010), which has hydraulic actuators in the rotor hubs, rotating the 

blades either directly or via mechanical linkages, as shown in Figure 2.7. The 

most significant advantages of a hydraulic pitch system are: 

 Its high driving force or torque, available from hydraulic rams power to 

the blade;  

 Its simplicity and a robust back-up power supply, in the form of a 

pressurised hydraulic accumulator.  
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Because of these advantages, hydraulic pitch systems have historically 

dominated WT pitch control in Europe, North America & China. Its 

disadvantages include: 

 Poor reliability, particularly with ram oil leakages and difficulty of 

detecting faults remotely; 

 Power hungry as a hydraulic pump is required to operate constantly; 

 In colder climates the hydraulic oil viscosity rises as temperature drops; 

 

Figure 2.7: Hydraulic pitch system (Clarkson 2010). 

Electrical Pitch System 

On the other hand, there has been considerable progress in the 

development of electrical pitch systems. In an electrical pitch system (Hau and 

Platz 2006; Clarkson 2010), as shown in Figure 2.8, each blade is controlled by an 

electric servo motor connected to a gearbox which reduces the motor speed to a 

level to apply a high torque to the blade. The gearbox output then drives a pinion 
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gear which engages with an internal ring gear that is rigidly attached to the rotor 

blade root. This kind of pitch system offers a number of benefits over hydraulic 

pitch system:  

 It has a higher efficiency than hydraulic system; 

 There is no risk of oil leakage; 

 It doesn’t require constantly running pump for actuation, it is therefore 

more power efficient; 

 The major advantage of the electrical pitch system is its extended control 

possibilities and greater precision. 

For these reasons, the electrical pitch system has become more and more 

popular in WTs in recent years. However, there is no doubt that the back-up 

power supply in electrical pitch system is the main weakness, which is usually 

provided by batteries with a lifetime of two or possible three years, although new 

battery types and ultra-capacitors are now being considered (Schneuwl,  2013, 

Hau and Platz 2006).  
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Figure 2.8: Electrical Pitch System (Clarkson 2010) 

2.5.2. Why Pitch System & Aim of this Research 

Nowadays, both hydraulic and electrical pitch systems are widely used in 

wind industry and their market share is about 55% and 45% respectively in 2009 

(Dvorak 2009).  

As mentioned in Section 2.3, Tavner et al. (2007) investigated WT 

subassembly reliability in two WT national populations during the period 1994-

2004 showed that the pitch system generally has the highest failure rate.  

Another recent study (Wilkinson et al. 2010), as shown in Figure 2.6, has 

shown that the pitch system is responsible for 15.5% of failures and 20% of the 

total downtime and is the largest contributing sub-assembly in both cases.   
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In addition, as has been noted in last Section, the pitch system is a vital part 

of the modern variable speed WT. Moreover, at the time of starting this research 

in Jan 2011, no successful WT pitch fault detection systems were reported in the 

literature.  

Thus, this research had decided to focus on analysing WT pitch faults with 

the objective of developing a fault detection approach, which will extend the 

prognostic horizon.  This research will involve the following tasks:  

 Development of server and software platform to process and display 

existing WT data held at Durham University;  

 Using the data stored in the above server to develop algorithms for 

automatically diagnosing and processing incipient WT pitch faults to plan 

maintenance intervention;  

 The research will investigate the use of AI approaches to detect WT faults 

and manage the large-scale WF. 

This thesis only considers AI approaches to develop the pitch fault 

detection for WT, since the other approaches have already been considered by 

other Durham University researchers. The main potential benefits of using AI are 

as follows: 

 Human knowledge can be translated into a computer language to 

improve FDDs; 

 Machine learning methods can be used to generalize system behaviour 

from examples; 

 High potential for automation, essential for offshore WFs; 

 Easy to construct as a whole system to provide WF management. 
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2.5.3. Research Data 

There are about 2 Terabytes of real WT data available to us including 

SCADA and CMS data. CMS data is not considered in this research as it only 

monitors the WT drive train, which doesn’t have any pitch data for the author to 

analyse.  

For the SCADA data, 49GB from 5 different companies are available. 

However, by considering the number of WT and data availability, only two of 

them are suitable for this research. The information of these two suitable SCADA 

data is listed in Table 2.3:  

Location Company Data Size Data Description 

Various 
locations 
in Spain 

Alstom, 
Eco 80 

35.2 GB  1.67 MW variable pitch, variable speed 
indirect drive machine; 

 Onshore; 

 Electrical Pitch System, pitch-to-feather; 

 6 WFs; 

 153 WTs; 

 10 minutes data contain alarms, 
maintenance log; 

 Available from Jun 2006 to Oct 2008; 

Brazos, 
Texas, 
USA 

Mitsubishi 
M1000 

13 GB  1 MW class variable pitch, fixed speed 
indirect drive machine; 

 Onshore; 

 Hydraulic Pitch System, pitch-to-stall; 

 2 WFs; 

 160 WTs; 

 10 minutes data contain monthly 
report; 

 Available from Jun 2004 to Nov 2006; 

Table 2.3: Two suitable SCADA data sources 

The original SCADA data is in Office Access format. In order to conduct an 

efficient research, both of them have been imported into the Microsoft SQL 
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Server database and connected to a Data Visualisation tool developed by the 

author. 

2.5.4. Research Facility 

This research aims at improving the efficiency of investigations into the 

reliability of WT. This is part of large activity to research improved Knowledge 

Management for WFs and WTs therein. In order to conduct efficient laboratory 

research in this area, the New & Renewable Energy Research Group at Durham, 

School of Engineering and Computing Sciences has proposed the building of a 

dedicated Server and development of customised application to analyse the 

existing WT data, obtained under confidentiality agreements from various 

operators and manufacturers.  

The Server environment includes a HP Server, Backup Devices, 

Uninterruptable Power Supply (UPS), and software. Their specifications are 

listed in Appendix A. 

2.5.5. WT Data Visualisation Tool 

The WT Data Visualisation Tool is a Client/Server-based application. It is a 

unified platform developed by the author to assist experts to conduct efficient 

laboratory research on WT reliability data. The Server side of this application is 

placed on the ReliaWind Server; it is used to handle data and process Client 

requests. The Client side is a graphical user interface (GUI) - data visualisation 

interface, which allows users to request the Server’s content or services, for 

example raw data, data plot and data aggregation.  The screenshots of the Data 

Visualisation Tool are shown in Appendix B.   
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Compared to the Excel, Access and Matlab Plot, the developed WT Data 

Visualisation Tool has the following advantages which could assist experts to 

conduct efficient laboratory research on WT reliability data:  

 Fast data loading; 

 Fast plotting including Line Plot and Scatter Plot; 

 Fast zoom in/out with the caption to show the corresponding period in 

viewport; 

 Be able to plot SCADA alarm data; 

 Order data in different format e.g. datetime, number and character; 

 Allow to see the data information by clicking the data point in viewport; 

2.6. Chapter Summary 

Only three-blade, horizontal-axis, up-wind WTs are considered in this 

research, since they represent the vast majority of WTs currently installed. The 

current WT reliability knowledge have shown that WT failure rates increase as 

the size of WT grows and this will be of more concern when WTs move to 

offshore locations. The existing researches about WT FDD were reviewed in this 

chapter. The review found most of the existing researches focus on a specific 

problem or component of the WT in isolation. This is mainly due to the 

complexity of modern WT and the complex nature of each individual problem. 

Fault diagnostics for the pitch system and fault prognostics for gearbox & 

generator systems have been reported. However, the existing fault prognostics 

researches are still unclear to make a prediction about the time to failure in real 

application. Small sizes of data were used in the fault diagnostics researches for 

pitch system and it would be beneficial to use more data. In addition, the review 

also found that none of the studies have tested their approaches on different 

designs and locations of WTs.   
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Pitch system is a vital part of the modern variable speed WT and it was 

found to have high failure rate.  There were not many successful WT pitch fault 

detection found in the literature, this research then decided to focus on analysing 

WT pitch fault with the objective of developing the fault prognosis approach. 

The author only considers AI approaches since the other approaches are already 

being considered by other Durham University researchers.  

After that, two different SCADA data sets, each of them has more than 380 

WT-year data, were found to be suitable in this research. In order to conduct 

efficient laboratory research on WT reliability, a dedicated server called 

ReliaWind and a WT Data Visualisation Tool were built by author in early 2011.  

In conclusion, this research speculates that there is a robust and effective AI 

solution which allows us to build an automated on-line fault prognosis system 

for WT pitch system. The system would be able to work on different designs and 

locations of WTs, and produce better fault prognosis results. The key questions 

need to be answered in this research are:  

 Which AI algorithm makes possible the identification of an incipient WT 

pitch faults?  

 Once the AI algorithm is decided, how to construct an automated on-line 

fault prognosis system?  

 Whether the proposed system can be applied on other types of WT? 

 Does this AI approach produce a better result? What is evaluation 

approach? 
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Chapter 3.  

Possible Fault Detection & Diagnosis 

using AI Methods 

 

AI techniques have increasingly been used in the field of FDD of industrial 

systems because of increasing system complexity. According to Angeli and 

Chatzinikolaou (2004), in very complicated non-linear systems, where valid 

mathematical models do not exist, the AI techniques would allow the 

development of new approaches for fault detection. The reason behind these uses 

is that AI provides the necessary association, reasoning and decision-making 

processes that mimic human thought processes when solving diagnostic 

problems. In the field of WT reliability research a large amount of data is 

collected from WT through various monitoring systems, e.g. SCADA and CMS. 

The dynamic nature of the WT operational environment makes the development 

of mathematical models, that capture and interpret WT operational behaviours, 

extremely difficult. In contrast, AI techniques can be used in a variety of ways 

that transform data into knowledge for the purpose of achieving a suitable 

mechanism for FDD. In addition, the model-based and signal-based approaches 

are already being considered by other Durham University researchers. These 

reasons formulated the basis for the decision to investigate the use of AI 

techniques to detect WT faults.  

The FDD task consists of determining the fault types, with as many details 

as possible, such as the fault size, location and time of detection (Braun and 

Herrick 2003; Isermann 2006). The diagnostics procedure is based upon the 

observed analytical and heuristic symptoms and the heuristic knowledge of the 

process. In order to accomplish FDD, many AI approaches have been proposed 

and that procedure can be considered as a classification task.  
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3.1. Supervised & Unsupervised Learning Modes 

In general, there are two different classification modes: supervised and 

unsupervised learning modes. It is important to understand their differences so 

that the potential techniques reviewed in this chapter can be put into perspective. 

The supervised and unsupervised learning modes refer to the training procedure 

and how their requirements can affect the construction of the model. Typically 

supervised learning requires the training data to be fully labelled, for example in 

the field of FDD each data instance is assigned with either a normal or abnormal 

class. Any unseen data is compared against the trained model to determine 

which class it belongs to. Example supervised learning algorithms are Naïve 

Bayes, ANN, SVM and ANFIS. These algorithms are reviewed in detail within 

this chapter.  

By contrast, unsupervised learning doesn’t have any classes assigned to 

training data. The algorithm itself needs to determine what those classes are and 

how to separate them. The most well-known unsupervised learning algorithms 

are k-Means Clustering, Fuzzy c-means (FCM) and Self-organising feature 

mapping (SOM). These are also reviewed in detail within this chapter.  

In addition, semi-supervised learning is a class of supervised learning tasks. 

It uses training data that consist of labelled as well as unlabelled samples. The 

challenge in semi-supervised learning is that the labelled samples should be 

fairly accurate. Its applicability is dependent on whether the accurate labelling 

can be made regarding the training data.  

The following section provides an outline of the possible techniques, 

including supervised and unsupervised learning, along with some examples 

detailing applications of how they can be utilised in the field of WT FDD.  
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3.2. Possible AI Techniques 

As has been noted before, the aim of this research is to examine the use of 

AI techniques for WT FDD with the objective of developing an automated, on-

line fault prognosis using SCADA data. This section will describe the findings of 

some possible AI classification techniques that could be potentially useful for 

early WT fault detection. This section concludes with a summary of the reviewed 

techniques and gives a most feasible data analysis solution. The criteria used to 

evaluate potential techniques in this research are: interpretability of output, 

accuracy of diagnosis, and availability of necessary data. 

3.2.1. Acquiring Data for Investigation Purposes 

The WT power curve, plotting wind speed vs. power output, is the most 

well-known 2D plot widely used to indicate WT performance.  It also been 

applied for WT fault detection because any large deviation from the factory 

supplied power curve could be regarded as a possible fault.  

For this reason, two sets of Alstom WT power data, named Data A and B, 

both for a six months period, are prepared from the ReliaWind server for the 

investigation of possible AI techniques. The two data sets are presented in Figure 

3.1.  
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(a) (b)  

Figure 3.1: WT power data for investigation purpose (a) Data A; (b) Data B. 

In addition, two 3D data sets, representing variable-speed pitch-to-feather 

control strategy (Bianchi et al. 2006) of a WT, are prepared and shown in Figure 

3.2. Both of them are six months period and named Data C and D. The variable-

speed pitch-to-feather control strategy plot on the wind speed, rotor speed and 

pitch angle space.  

(a) (b)  

Figure 3.2: WT 3D data sets (a) Data C; (b) Data D. 
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3.2.2. Naïve Bayes Classifier 

One classification scheme is given by the so-called Naïve Bayes Classifier. It 

is a statistically-based supervised learning technique. The approach, based on 

Bayes’ theorem, is particularly suited when inputs dimensionality is high. 

Despite its simplicity, Naïve Bayes can often outperform more sophisticated 

classification methods (Wu et al. 2008).  

Naïve Bayes classifier can handle an arbitrary number of independent 

variables whether continuous or categorical. Given a set of feature variables, 

  *            +, and suppose the task is to construct the posterior probability 

for the event          among a set of possible outcomes   *         + . 

According to Bayes’ theorem, the task can be represented as:  

 (  |      )  
 (  )   (          )

 (       )
                         (   ) 

In plain English the above equation can be written as:  

          
                

        
                                       (   ) 

In practice we are only interested in the numerator of that fraction, since the 

denominator does not depend on   and the values of the features    are given, so 

that the denominator is effectively constant. According to Bayes’ theorem, the 

numerator is equivalent to the joint probability model: 

 (  )   (       |  )   (          )                       (   ) 

By introducing the “naive” conditional independence assumption, which 

assume that each feature    is conditional independent of every other feature    

for    . Then, the joint model can be expressed as:  
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                    (          )   (  ) (  |  ) (  |  ) (  |  )     (  |  ) 

                                                  ( )∏ (    )

 

   

                                         (   ) 

Therefore, under the above independence assumptions, the conditional 

distribution over the class variable    can be expressed like this: 

 (  |       )  
 

 
 (  )∏ (  |  )

 

   

                         (   ) 

where  , the evidence, is a scaling factor dependent only on        . 

Naïve Bayes can be modelled in several different ways including Normal, 

Lognormal, Gamma and Poisson density function. However, a common 

procedure is to assume Normal density function like below:  

 (  |  )  
 

√      
 
  
(      )

 

    
 
                                      (   ) 

where     is the mean and     is standard deviation. 

In the implementation of WT fault diagnosis, supposed to have the 

following training data for a specific design of 2MW WT.  

WT Status Power Output 
(kW) 

Wind Speed 
(m/s) 

OK 1800 12 

OK …… 

OK 1650 10 

Fault 800 6 

Fault …… 

Fault 1300 9 

Table 3.1: Labelled training data 
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The classifier created from above training data using a Normal 

Distribution assumption would be: 

WT 
Status 

Mean 
(Power 

Output, kW) 

Std_Dev 
(Power 

Output, kW) 

Mean (Wind 
Speed, m/s) 

Std_Dev 
(Wind Speed, 

m/s) 

OK 1716.7 76.4 11 1 

Fault 1066.7 251.7 7.3 1.5 

Table 3.2: Mean and standard deviation of the training data 

Then, there is a sample to be classified as “OK” or “Fault”:  

WT Status Power Output 
(KW) 

Wind Speed 
(m/s) 

To be 
classified 

1750 12 

Table 3.3: A sample to be classified 

We wish to determine which posterior is greater, “OK” or “Fault”. For the 

classification as “OK” the posterior is given by:  

         (  )  
 (  )   (            )   (            )

        
          (   ) 

For the classification as “Fault” the posterior is given by:  

         (     )  
 (     )   (               )   (               )

        
 (   ) 

The evidence may be ignored as it is the same in          (  ) 

and          (     ). Finally, based on the Normal Distribution assumption, we 

can get the posterior numerator of  (  )        and the posterior numerator 

of  (     )        . Since posterior numerator is greater in the “OK” case, this 

sample is identified as “OK”.  

Naïve Bayes classifier is designed for use when features are independent of 

one another within each class. One test, using it to learn the knowledge from WT 
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power data A, applied the classifier to data A and B, Figure 3.1, received the 

error rates 4.22% and 4.37% respectively. The other test, using it to learn the 

knowledge from WT 3D data C and applied the classifier to data C and D have 

received the error rate 4.1% and 13.25% respectively. The two tests show that 

Naïve Bayes is possible to detect WT fault in practice even if the independence 

assumption is not valid, for example in the first test the independence 

assumption between wind speed and power output is invalid, in the second test 

the independence assumption between wind speed, rotor speed and blade angle 

are invalid either. The accuracy result has shown that Naïve Bayes has the 

potential to detect WT fault, however, the independence assumption has made it 

difficult to interpret the classification result. 

3.2.3. Rule-based Expert System 

A rule-based expert system employing logic programming can also be an 

effective classifier (Stuart and Peter 2010). IF-THEN rule-based algorithms are 

attractive when the patterns representative of a particular class of operation can 

be easily identified. The main benefit of using them is because it clearly 

demonstrates the state of the art in building knowledge representation and 

illustrates the cause and effect of the problem. In a rule-based expert system, 

much of the knowledge is represented as conditional sentences relating 

statements of facts with one another. Modus ponens is the primary rule of 

inference by which a system adds new facts to growing knowledge database. The 

basic framework of rule-based system is showed below: 

 

IF A IS TRUE 

AND A IMPLIES B 
THEN B IS TRUE 

 
OR 

 

IF A 
AND   A  B 
-------------- 
THEN B 
 

In a real WT gearbox fault case, rules can be defined as:  
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Rule 1 
 

IF 
The cooler oil temperature is NORMAL AND 
Gearbox main bearing temperature is HIGH 
THEN 
Failure in the gearbox main bearing is CERTAIN 
 
Note: NORMAL and HIGH can be defined using fuzzy logic 
 

In real system development, the Propositional Logic is widely used for the 

representation of information and knowledge in Computer System (Stuart and 

Peter 2010). Propositional Logic is fairly restrictive, which allows us to write 

sentences about propositions – statements about the world – which can either be 

true or false. The symbols in this logic are:  

 Capital letters represent proposition such as   represents “The cooler oil 

temperature is Normal”;  

 Connectives which are : and ( ), or ( ), implies ( ) and not ( );  

 Brackets;  

   stands for the proposition “true” and   stands for the proposition 

“false”.  

Therefore, above rule can be represented as:  

Rule 1 
      

 

Moreover, if we program an intelligent agent with the semantics of the 

above propositional logic, for example in our WT gearbox example we could tell 

it that if “Cooler oil temperature is Normal” and “Gearbox main bearing 
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temperature is High”, it can infer “Failure in the gearbox main bearing”. In the 

real implementation, known facts about a domain is converted into a Truth Table 

and used to deduce new facts (Stuart and Peter 2010). This enables an intelligent 

agent to prove things, for example to start with a set of statements, Axioms in a 

Truth Table, we believe to be true and deduce whether another statement, or 

Theorem, is true or not. This technique is known as Making Deductive Inferences 

and it has been widely used for developing rule-based expert system. For WT 

reliability analysis, the rule-based expert system has been applied in SIMAP 

(Garcia et al. 2006), an intelligent system for predictive WT gearbox maintenance. 

Another application, employing thresholds as shown in Figure 3.3, was made by 

Moorse (2010) in Durham University to investigate the healthy and faulty 

behaviour of WT pitch system, where faults had been observed in the data held 

on the ReliaWind Server. Due to the lack of diagnostic knowledge available to 

codify as rules, the author decided not to take this technique any further.  

 

Figure 3.3: A rule-based algorithm employing thresholds to investigate the healthy and 
faulty behaviour of WT pitch system. 
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3.2.4. Fuzzy Inference System 

The Fuzzy Inference System (FIS) is a computing framework based on the 

concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. It has 

found successful applications in a wide variety of field, such as automatic 

control, data classification, decision analysis and expert systems (Sturart and 

Peter 2010, Jang et al. 1997). The basic structure of a FIS consists of three 

conceptual components:  

 A rule base, which contains a selection of fuzzy rules;  

 A database or dictionary, which defines the membership functions used in 

the fuzzy rules;  

 A reasoning mechanism, which performs the inference procedure upon 

the rules and gives the reasonable output.  

The most widely used FISs are Mamdani, Takagi-Sugeno and Tsukamoto 

FISs (Jang et al. 1997). All of them take crisp inputs and are able to generate crisp 

outputs by applying the defuzzification method. The differences between them 

lie in the consequents of their fuzzy rules and the aggregation & defuzzification 

procedures. The detail description of these three FISs can be found from (Jang et 

al. 1997).  

The initial test of using Takagi-Sugeno FIS to estimate the WT power output 

was implemented by the author. Three fuzzy rules, as listed below, were 

obtained based on the knowledge about how the WT power output varies with 

wind speed, as shown in Figure 3.3 (a). The generalised bell function was chose 

for the membership function because of its smoothness and concise notation 

(Jang et al. 1997). In addition, linear regression was utilised on the normal power 

data A to obtain the corresponding consequent functions, as shown in Figure 3.3 

(b). 
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where X represents wind speed and Y represents the WT power output.  

3~4 12~14 25

Cut-in

Rated Cut-out

Power

(kw)

Wind Speed (m/s)

0

Low Medium High

(a) (b)
 

Figure 3.4: (a) WT power curve; (b) Linear regression applied to the data A. 

By using Matlab Fuzzy toolbox, the Takagi-Sugeno FIS model for WT 

power output estimation was built and the results shown in Figure 3.4. The fault 

then can be identified when observation deviate from this obtained power curve.  

However, the real WT power output data cannot match the obtained power 

curve precisely, for reasons of the dynamic variations in energy in the wind and 

the dynamic state of the WT, as shown in Figure 3.3(b). Therefore, an acceptable 

upper and lower bound of the power curve is needed to avoid false 

identifications. This approach can also be improved by introducing more fuzzy 

rules, for example rule to describe the cut-in, rated speed and cut-out conditions. 
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Figure 3.5: The Takagi-Sugeno FIS for WT power output estimation 

The advantages of this approach are simple, interpretable and of low 

computational cost. However, the FIS’s disadvantages or problems are seen to be 

difficult for non-experts for the following reasons:  

 No standard methods for transforming human knowledge into a FIS. The 

if-then rules, the type of Membership Functions (MF) and parameters for 

them are normally prepared by an expert;  

 The need for expert fine-tuning for finding optimal fuzzy rules, MF type 

and parameter value of MF. There is a need for effective methods to do 

this;  

 The upper and lower bounds of the obtained power curve are needed to 

avoid false identifications.  

The aforementioned problems of the FIS can be solved by the integration of 

FIS and ANN. This approach was developed by Jang (Jang 1993; Jang et al. 1997) 

and named the Adaptive Neuro-Fuzzy Inference System (ANFIS).  

3.2.5. Decision Tree 

A decision tree is established as a graphical tool for the visualisation of 

relationships in decision analysis, to help identify a strategy most likely to reach 
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a goal (Wu et al. 2008). Decision trees are non-parametric supervised learning 

which do not require any assumptions about the distribution of variables in each 

class.  

Decision trees are useful and intuitive graphical tools for displaying 

relationships that lead to faults with a hierarchical structure that aids human 

comprehension. They are common for the analysis and diagnosis of safety-

critical applications. Quantitative failure probabilities can also be derived from a 

decision tree. They require information about the failure probabilities of 

individual elements. By combining these with the relationships from the decision 

tree it is possible to calculate the probability of a system or component fault. An 

algorithm for learning a Decision Tree is a matter of choosing which attribute to 

test at each node in the tree. The widely used algorithms are ID3 and C4.5 (Wu et 

al. 2008). Both of them define a measure called information gain, also known as 

Entropy, to decide which attribute to test at each node. 

It is interesting to see how the Decision Tree method can be used for WT 

FDD. A simple test was made using Matlab statistics toolbox applying the 

Decision Tree to the WT power data A.  The result is shown in Figure 3.6 with 

two different views, the traditional tree and the region views. The region view, 

Figure 3.6(b), clearly shows that the Decision Tree method has successfully 

learned the fault pattern. However, some sub-regions, as encircled, are 

mislabelled as OK because the WT cannot produce power when wind speed is 

too low. The reason for this is because these sub-regions have sparse or no 

training data and cause the Decision Tree result to become inconsistent with 

domain knowledge.   
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WS: Wind Speed

PO: Power Output

(a) (b)  

Figure 3.6: Decision tree result, (a) Tree view; (b) Region View. 

3.2.6. Artificial Neural Network  

An Artificial Neural Network (ANN) is a computational supervised 

learning model made up of many processing neurons that have a natural 

propensity for storing experiential knowledge and making it available for use 

(Wu et al. 2008; Haykin et al. 2009). Typically, the structure of an ANN consists 

of three layers, as shown in Figure 3.7. The first layer of inputs nodes, are 

connected to neurons of a hidden layer, which are connected to the neurons of 

the third or output layer.  
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Figure 3.7: A k×m×n feed-forward ANN 

The training data knowledge is stored in the connection strengths, known 

as weights, between the layers acquired during the training process. The network 

is trained in accordance with a training algorithm, which governs how 

connection weights are modified and adjusted in response to the training data 

feed into the inputs nodes and what is desired at the output neurons. In the recall 

process, the trained ANN accepts data fed into the input nodes and then 

produces a response at the output neurons as a consequence of calculated 

weights.  

Generally, the relation of a three layers (      ) feed-forward ANN can 

be represented in vector notation (Haykin et al. 2009). If   is a   dimensional 

column vector presenting inputs and   is a   dimensional column vector 

representing the results of hidden layer, then: 

    (   )                                                        (    ) 

where    is a     weight matrix assigned to the connection between the input 

and hidden layers and    is an activation function using a sigmoid function, as 

follows:  
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 ( )  
 

     
                                                  (    ) 

This function has the ability to produce a continuous non-linear threshold 

function and transform the input between    and    into real numbers 

between   and  . Similarly, the   dimensional column vector for the output layer 

can be represented as follow: 

    (   )    (    (   ))                  (    ) 

where    is another activation function using a sigmoid function as shown in Eq. 

3.11 and   is a      weight matrix for the connection between the hidden and 

output layers. As we can see from Eq. 3.12, the calculations of the output of the 

ANN involve two weight matrix multiplications and two applications of the 

activation function. Therefore, the use of this ANN will require some 

computational overhead. ANN training algorithms follow an iterative gradient 

descent principle designed to minimize the overall mean square error  , defined 

as: 

  
 

 
∑‖     ‖

 

   

                             (    ) 

where: 

   denotes the number of training pattern presented to the input layer; 

    represents the desired output of the  th input pattern; 

    is the actual output of the same input pattern; 

 Both     and    are vectors.  

Currently, the widely used training algorithms are Back-propagation, Delta 

Rule, Evolutionary and Perception learning (Haykin et al. 2009).  
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Two ANN models were built using Matlab ANN Pattern Recognition Tool 

(nprtool) and data A & C respectively. Both training processes applied the 

default setting with 10 neurons in hidden layer and 1 neuron in output layer. The 

trained ANN models were tested on training data and new data (Data B & D, 

respectively). The testing result is shown in Table 3.4 and it demonstrates that 

ANN has strong potential to be applied in the field of WT FDD. However, the 

biggest problem for ANN is the difficulty to interpret the result because of its 

“black-box” nature.   

ANN Model Testing Result 

Training Data 
(Error Rate) 

New Data 
(Error Rate) 

Power Curve  
(Trained using Data A) 

0.3% 1.7% 

Pitch Mechanism 
(Trained using Data C) 

0.5% 1.9% 

Table 3.4: ANN testing result. 

In addition, the ANN has shown to be potential useful in the field of WT 

FDD on a number of occasions. SIMAP was developed by using ANN to detect 

gearbox faults (Garcia et al. 2006). In 2009, A. Zaher et al. introduced Gearbox 

and Generator Normal Behaviour Modelling (Zaher et al. 2009) also using ANN 

and the results provided an early warning of gearbox and generator problems. 

R.F. Mesquita et al. introduced a similar approach for WT gearbox condition 

monitoring (Brandão et al. 2010). In 2011, B. Chen et al. investigated ANN to 

analyse SCADA alarms for the automatic detection of WT pitch system faults 

(Chen et al. 2011), an ANN was constructed to learn pitch system faults from one 

WT and then applied on the other four other WTs to detect similar symptoms. 

The results show that ANN is a feasible method for on-line WT fault diagnosis 

and has the potential to rapidly identify WT failures and reduce WT alarm rates. 
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3.2.7. Self-organising Feature Mapping 

Self-organizing feature mapping (SOM) was developed by Teuvo Kohonen 

to provide a data visualisation technique, which helps to understand high-

dimensional data by reducing the data dimensions to a map. SOM also 

represents unsupervised learning by grouping similar data together. It can be 

said that SOM reduces data dimensions and displays data similarities (Kohonen 

2001). 

With SOM, clustering is performed by having several units compete for the 

current object. Once the data have been entered into the system, the network of 

artificial neurons is trained by providing information about inputs. The unit with 

the weight vector closest to the current object becomes the winning or active unit. 

During the training stage, the values for the input variables are gradually 

adjusted in an attempt to preserve neighbourhood relationships that exist within 

the input data set.  As it gets closer to the input object, the weights of the winning 

unit are adjusted as well as its neighbours.  

SOM clustering was tested on data A and C, representing the power curve 

and pitch mechanism of a WT respectively. The SOM results are shown in Figure 

3.8 & 3.9. 

1 2

3

4

 

Figure 3.8: SOM test on data A. 
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Figure 3.8 is the SOM clustering result of training data set A. Based on the 

training result, different clusters revealed different operational stages of the WT.  

 The Cluster 1 represents WT operation between rated and cut-out wind 

speeds, in which the WT produces max power output.  

 The Cluster 2 represents WT operation below the cut-in wind speed. In 

this period, the WT is disconnected with grid and does not generate 

electricity.  

 The Cluster 3 represents the operational period above the cut-in but below 

rated wind speeds. As wind speed increases, the generator produces more 

power. 

 In Cluster 4 the wind speed is high but there is no WT power output. This 

may illustrate a possible WT fault. 

1 2
3

4

 

Figure 3.9: SOM test on Data C. 
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Figure 3.9 is clustering result of the variable-speed pitch-to-feather control 

strategy. Based on the training result, different clusters revealed different 

operational stages of the WT pitch mechanism.   

 The Cluster 1 represents WT operation above rated wind speed, in which 

WT rotor speed remains constant. In this period, the blade angle is 

regulated to produce constant power output.  

 The Cluster 2 represents WT operational period represents above the cut-

in but below rated wind speeds. As wind speed increases, the generator 

produces more power. 

 In Cluster 3 the wind speed is high but there is no rotor speed and blade 

angle is almost at optimal position. This may illustrate a possible WT pitch 

fault.  

 The Cluster 4 represents WT operation below the cut-in wind speed, in 

which the WT is disconnected with grid and does not generate electricity.  

SOM results have shown the capability to identify abnormal event, however, 

its results have to be interpreted by expert.  

3.2.8. Bayesian Network 

A Bayesian network (BN) is a probabilistic graphical model that represents 

a set of variables and their conditional dependencies via a directed acyclic graph 

(Korb and Nicholson 2003). For example, a BN could represent the probabilistic 

relationship between faults and alarms. Given alarms, the network can be used 

to compute the probabilities the presence of various faults. 

Formally, BN represented variables as nodes linked in a directed graph, as 

in a cause & effect model. Conditional probabilities are specified for every node 

with a Node Probability Table (NPT). Root causes just have an “a priori” 
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probability. Run-time calculation generates probability estimates for every node 

and changes when any node receives a new observed value. Thus, BNs could 

perform on-line diagnosis or even prediction. 

The equation of BN can be written as a product of the individual density 

function, conditional on their parent variables: 

 ( )  ∏ (      ( ))

   

                               (    ) 

where   ( ) is the set of parents of  , i.e. those vertices pointing directly to   via 

a single edge. For example, suppose that there were two events which could 

cause a WT to stop: either Low Wind or Maintenance. Suppose also that the Low 

Wind has a direct effect on Maintenance. Then the situation can be modelled 

with a BN in Figure 3.10. All three variables have two possible values, T for true 

and F for false.  

Low Wind (L)Maintenance (M)

WT Stop (S)

 

Figure 3.10: BN case study. 

The joint probability function is   (     )   (     ) (   ) ( ) . The 

model can answer question like “What is the probability that it is low wind that 

has caused the WT to stop?”. By using the conditional probability formula and 

summing over all nuisance variables (In probability theory, the nuisance variable 
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is a variable that value does not affect the result of a probabilistic model. In this 

example, the nuisance variables are M in the numerator, M & L in the 

denominator, as shown in the equation below):  

 (       )  
 (       )

 (   )
 
∑  (         )  *   +

∑ (       )    *   +
 

 
(             )  (            )

                      
        

As in the previous example the numerator is highlighted explicitly, the joint 

probability function is used to calculate each iteration of the summation function, 

in the numerator marginalising over M and in the denominator marginalising 

over M and L.  

Chen et al. (2012) investigated the possibility of using BN to analyse WT 

SCADA data with the objective of on-line fault diagnosis. The BN model was 

derived from an existing probability-based analysis method, the Venn diagram 

(Qiu et al. 2012), and based upon 26 months of historical SCADA data. The 

research results have shown that the BN is a valuable tool for WT fault diagnosis 

and has great potential to rationalise failure root causes. Compared to the Venn 

diagram approach the BN could rationalise the data better and was more feasible 

for on-line fault diagnosis. A drawback of using the BN, pointed out by authors, 

was that BN complexity grows exponentially with the increase of parent node 

numbers. Due to the complexity of BN and lack of diagnostic knowledge to build 

a BN for WT FDD, we decided not to take this technique any further.  

3.2.9. k-Means Clustering 

k-Means clustering algorithm was developed by MacQueen (1967). Simply 

speaking k-means clustering is an unsupervised learning algorithm to classify or 
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to group data based on features into K number of group. K is positive integer 

number. The grouping is done by minimising the sum of squares of distances 

between data and the corresponding cluster centroid, for example the most 

widely used Euclidean distance.  

The k-Means clustering algorithm is composed of the following steps:  

 Classify the number of the cluster  . 

 Randomly place   points into the space and each of them represent the 

centroid of the corresponding cluster.  

 Assign each object to the closest centroid.  

o When all objects have been assigned, recalculate the positions of the 

  centroids.  

o   (       )  (
∑   
 
   

 
 
∑   
 
   

 
   
∑   
 
   

 
) 

 where n is the number of objects that has the closest centroid to cluster   .  

 Repeat Step 3 and 4 until the centroids no longer move. This produces a 

separation of the objects into k groups.  

The k-Means clustering with     was tested on the WT data A & C and 

their results are shown in Figure 3.11 & 3.12. Both results have failed to identify 

the abnormal data, therefore k-Means clustering is unlikely to give good WT 

fault detection.  
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Figure 3.11: k-Means clustering result with k=4. 

 

Figure 3.12: Data C, k-Means clustering result with k=4. 

According to Stuart and Peter (2010) and Witten et al. (2011) , the 

weaknesses of k-Means cluster are: 
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 The number of K clusters must be determined at the start of the analysis; 

 It is sensitive to initial position of cluster centroid, different initial position 

may produce different cluster results;  

 It is difficult to know which feature contributes more to the clustering 

process, general scaling can only be applied if we assume each feature has 

the same weight. 

3.2.10. Fuzzy c-Means Clustering 

Fuzzy c-Means (FCM) is a method of clustering which allows one piece of 

data to belong to two or more clusters. This method was developed by Dunn 

(1973) and improved by Bezdek (1981), it was frequently used in pattern 

recognition. It is based on minimisation of the following objective function: 

   ∑∑   
 ‖     ‖

 
 

   

 

   

                             (    ) 

where   is any real number greater than 1,     is the degree of membership of    

in the cluster   ,    is the     of d-dimensional measured data,    is the d-

dimension centre of the cluster, and ‖ ‖ is any norm expressing the similarity 

between any measured data and the centre.  

Fuzzy partitioning is carried out through an iterative optimization of the 

objective function shown above, with the update of membership     and the 

cluster centres    by: 
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where ‖     ‖ is the distance from point   to current cluster  , ‖     ‖ is the 

distance from point   to the other clusters  . This iteration will stop 

when    {|   
(   )     

( )|}   , where   is a termination criterion between 0 and 

1, whereas k is the iteration step.  

The advantages of the FCM are:  

 It gives best result for overlapped data sets, comparatively better than k-

means algorithm; 

 Unlike k-means, where a data point must belong exclusively to one cluster 

centre, an FCM data point can be assigned membership to each cluster 

centre. 

The disadvantages are:  

 The number of clusters have to be classified at the start of the analysis;  

 With lower value of   we get the better results, but it takes more number 

of iteration;  

 Euclidean distance measures can unequally weight underlying factors.  

The Fuzzy c-means with using 4 clusters and exponent 2 was tested on the 

WT power data A and the result is shown in Figure 3.13. The results have failed 

to identify the abnormal data, therefore the FCM clustering is unlikely to give 

good WT fault detection. 
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Figure 3.13: Fuzzy c-means result 

3.2.11. k-Nearest Neighbours 

k-Nearest Neighbours (k-NN) is supervised learning that has been used in 

many applications in the field of data mining and pattern recognition (Witten et 

al. 2011). It classifies objects based on closest training examples in the feature 

space. k-NN is a type of instance-based learning where the function is only 

approximated locally and all computation is deferred until classification. An 

object is classified by a majority vote of the closest k neighbours or the distance-

weighted average of the closest k neighbours if the class is numeric. If k=1, then 

the object is simply assigned to the class or the value of that single nearest 

neighbour.  

In general, the k-NN algorithm is composed of the following steps:  

 Determine parameter k, which is the number of nearest neighbours; 
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 Calculate the distance between the query-object and all the training 

samples; 

 Sort the distance and determine the nearest k neighbours based on 

minimum distance; 

 Gather the category Y of the k nearest neighbours; 

 Use simple majority of the category of nearest neighbours (or the distance-

weighted average if the class is numeric) as the prediction value of the 

query-instance. 

According to (Witten et al. 2011), the advantages of k-NN are:  

 Robust to noisy training data, especially if the inverse square of weighted 

distance is used as the distance metric; 

 Effective in training procedure compare to the other algorithms; 

However, the disadvantages are:  

 Need to determine the value of k, which is the number of nearest 

neighbours; 

 k-NN is a type of distance based learning and which type of distance can 

produce the best result is not clear;  

 Computation cost is high because the algorithm needs to calculate the 

distance of each query-object to all training samples.  

The k-NN was trained using the WT power data A and the classification 

was tested using a test data with k=10 as shown in Figure 3.14.  We found that 

this test data is misidentified as OK because majority of the 10 nearest data to the 

test data are OK.  
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Figure 3.14: k-NN result with a data A 

Due to the uncertainty of k and the high computation cost in every 

classification instance, this algorithm is unlikely to meet the requirement of the 

on-line FDD. 

3.2.12. Support Vector Machine 

The Support Vector Machine (SVM) is a supervised learning algorithm that 

classifies both linear and non-linear data based on maximising margin between 

support points and a non-linear mapping to transform the original training data 

into a higher dimension. It was originally developed by Vapnik (Wu et al. 2008) 

based on the groundwork of statistical learning theory. Similar to ANN, SVM has 

successfully demonstrated the capability to perform classification, pattern 

recognition and prediction  (Witten et al. 2011).  The main difference between 

SVM and ANN is the method used for minimising the error during training 

procedure. Unlike ANN, which uses empirical risk minimisation, the SVM 
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makes use of structural risk minimisation, which is alleged to provide better 

generalisation abilities (Bennett and Campbell 2000).   

In a two-class learning task, the aim of SVM is to find the best classification 

function to distinguish the members of two classes in training data. The metric of 

SVM can be realised geometrically. For a linearly separable dataset, a linear 

classification function is a boundary that passes through the middle of the classes 

separating them into two. However, there are many possible boundaries, as 

shown in Figure 3.15(a). The optimal boundary is the classification function with 

the maximum margin to several data points from both classes in perpendicular 

way, as shown in Figure 3.15(b). The data points that are touched by the margin 

are special because they determine the margin and the classification function. 

Therefore, a special name, is given to them, Support Vector.  

(a) (b)  

Figure 3.15: Linearly separable dataset 

There are a number of mathematical methods that can be used to determine 

the optimal classification function. One method is to find these support vectors 

by solving a quadratic problem as shown in (Bennett and Campbell 2000), 

another method is to maximise the margin between two parallel supporting 

planes also discussed in (Bennett and Campbell 2000). Both methods result in the 

same solution; however quadratic programming method is currently better 

founded.  
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(a) (b) (c)  

Figure 3.16: Linear non-separable dataset 

For a linearly non-separable dataset, SVM utilises slack variables and a 

kernel trick. Figure 3.16 shows some examples of a linearly non-separable case. 

The Figure 3.16(a) is almost linearly separable but there are a few data points that 

can go wrongly to the other side, this type of dataset could be transformed into a 

linearly separable case using slack variables (Witten et al. 2011). The Figure 

3.16(b)&(c) are clearly linearly non-separable as the decision boundary is non-

linear. For these types, a kernel trick is applied to transform the non-linear 

decision boundary into linear decision boundary in a higher dimension. The 

Figure 3.16(c) also contains misclassification on non-linear decision boundary. In 

this case, both slack variables and the kernel trick are needed. A mathematically 

rigorous explanation of the SVM can be found from Wu et al. (2008) and Witten 

et al. (2011).  

According to Fletcher (2009), an SVM framework is currently the most 

popular approach for "off-the-shelf" supervised learning which means that the 

SVM is an excellent method to try first if no specialized prior domain knowledge 

is available. There are three advantages that make SVMs attractive:  

 SVMs construct a maximum margin separator, or decision boundary, with 

the largest possible support vector margin; 
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 SVMs have the ability to embed the data into higher-dimensional space, 

using the kernel trick, data that was not linearly separable in the original 

input space can easily be separable in higher-dimensional space.  

 SVMs are a non-parametric method; they retain training examples and 

potentially need to store them all. On the other hand, in practice they often 

end up retaining only a small fraction of the number of examples, 

sometimes as few as a small constant time the number of dimensions. 

Thus SVMs combine the advantages of non-parametric and parametric 

models, they have the flexibility to represent complex functions, but they 

are resistant to over-fitting.  

SVM have been applied successfully to a number of applications, ranging 

from speech recognition, signal prediction and industrial machinery FDD 

(Witten et al 2011, Widodo and Yang 2007). An interesting application of SVM 

was made by Assunção et al. (2006) to estimate the transformer top oil 

temperature and the result was compared to an ANN model. The comparison 

showed that the SVM estimation performance was slightly better than the ANN.  

In addition, a survey published by Widodo and Yang (2007) reviewed the 

application of SVM to the diagnosis of rolling element bearings, induction 

motors, diagnosis of machine tools and a number of other industrial condition 

monitoring based scenarios. The survey result stated that the SVM provides good 

performance for classification.  

Initial research using SVM with the Radial Basis kernel and the scaling 

factor sigma set to 1 to detect WT fault was applied to data A & C (MathWorks 

2013).  The results are shown in Figure 3.17 & 3.18, which demonstrate that the 

SVM almost successfully separated the data into two classes, OK & Faulty. SVM 

has shown potential to detect WT fault, however, the author found that the SVM 
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might have the difficulty interpreting results in high dimension and the model 

currently doesn’t support domain knowledge incorporation. 

 

Figure 3.17: SVM result on WT power data A. 
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Figure 3.18: SVM result on WT pitch mechanism data C. The decision hyper plane is 
shown in grey colour. 

3.2.13. Adaptive Neuro-Fuzzy Inference System  

A neuro-fuzzy system is a fusion of two different systems that has a 

combination of advantages from ANN, such as robustness, learning & training, 

and FIS, such as interpretability. Strictly speaking, an ANFIS is a specific kind of 

the most widely used neuro-fuzzy system and is functionally equivalent to a 

Takagi-Sugeno FIS (Jang 1993). ANFIS is a multilayered feed-forward network 

consisting of a number of nodes connected through directional links. ANFIS is 

adaptive because some or all nodes contain modifiable parameters which can be 

updated by the learning algorithm. ANFIS is a powerful approach for building 

complex non-linear relationships between sets of input and output data. An 

ANFIS system can be trained without the expert knowledge usually required by 

FIS. Both numerical and linguistic knowledge can be combined into a rule base 

by employing the fuzzy method. Fuzzy Membership Functions (MFs) can be 

optimally tuned by using optimisation algorithms. Another advantage of the 
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ANFIS is its capacity for fast learning and adaptation. Because of these attractive 

features, ANFIS has been employed directly in a variety of modelling, diagnosis, 

decision making, signal processing and control applications (Korbicz and Kowal 

2007, Mote and Lokhande 2012, Tran et al. 2009, Zio and Gola 2009). 

(a) (b)
 

Figure 3.19: (a) WT power data A; (b) ANFIS result, the output z-axis is used to indicate 
the OK and Fault state of the pitch as defined in training data and shown in Fig 3.19(a); 

In order to illustrate the ANFIS, the aforementioned fault detection using 

WT power curve was studied. The WT power data A, as shown in Figure 3.19(a), 

with output value 0 and 1 to indicate the OK and Fault state of the pitch was 

used in this study. The ANFIS was built with 3 MFs in each input, maximum 

training iteration 50 and minimum error 0.01. Figure 3.19(b) shows the output 

generated by the trained ANFIS. Clearly, the ANFIS output range is much larger 

than the defined output value in training data, as encircled in Figure 3.19(b). This 

is largely because of the insufficient training data in the corresponding areas and 

result in the trained model behaves erratically in never-seen input conditions.  

Recent research has proposed that A-Priori Knowledge (APK) can be 

incorporated into an ANFIS model, for example a technique called APK-ANFIS 

from Tewari (2009) allowed domain knowledge to be introduced into the ANFIS 

model, for example if the WT power output was high at low wind speed, this 
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could be regarded as a possible sensor fault. Therefore, another test using APK-

ANFIS with the introduction of two favourable rules, as specified in Figure 

3.20(a), using the same number of MFs, maximum training iteration and 

minimum error was trained on the same data and the result is shown in Figure 

3.20 (b). 
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(a) (b)  

Figure 3.20: APK-ANFIS result (a) 2 favourable rule corresponds to the a-priori domain 
knowledge. (b) The APK-ANFIS result. 

With the incorporation of domain knowledge, the APK-ANFIS showed 

relatively better interpretability and is able to maintain the consistency of the 

model even in the regions with few data points. 

3.2.14. Findings & Conclusion 

The findings of the possible AI approaches are shown in Table 3.2. In the 

view of these techniques, unsupervised learning algorithms are relatively 

difficult to be used in this research. The main reason for this is because the nature 

disadvantages of the algorithms themselves and fault pattern in this study are 

unlikely to have a strong geometrical difference from normal pattern.  

For the supervised learning algorithms, SVM has shown strong potential to 

do the fault detection, however, with more practices and we found the SVM is 

unlike to incorporate any domain knowledge which can be used to solve the 
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problem when training dataset is inadequate. But, this problem may be solved 

through adding manual created data to the training dataset. For ANN, it is not 

transparent and incapable of explaining a particular decision to the user in 

comprehensible form. FIS requires fine-tuning to obtain an acceptable rule base 

and optimal parameters for available data. Although individual ANN and FIS 

problems can be solved by the integration of both methods, ANFIS, there is also a 

significant disadvantage of hybrid models, as the learning becomes entirely data 

driven, it imposes stringent requirements on the quality of training dataset. If the 

training dataset is inadequate, then the trained model can behave erratically in 

unseen input conditions and becomes uninterpretable. Fortunately, recent 

research has proposed a-priori knowledge technique can be incorporated into 

ANFIS model and this have shown relatively better interpretability and is able to 

maintain the consistency of the model even in the regions with few data points, 

as shown in Figure 3.16. 

Therefore, this study has decided focus on using APK-ANFIS to analyse 

WT SCADA data and proves its feasibility for WT fault prognosis, concentrating 

particularly on WT electric pitch system faults, which are known to be 

significant.  
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AI Approach Advantages Disadvantages Findings Reason not to take further 

Naïve Bayes 
Classifier 

 Simple; 

 Good for high 
dimensional inputs; 

 Independence 
assumption; 

Naïve Bayes classifier is designed for use when feature are 
independent of one another within each class. However, the 
two tests showed it can detect WT fault in practice even if 
the independence assumption is not valid.  

Difficult to interpret the 
result because of the 
independence assumption. 

Rule-based 
Expert 
System 

 Model is clear and ; 

 Natural Knowledge 
representation; 

 Expertise needed; 

 Difficult to build; 

 Inability to learn 
itself; 

Rule-based expert system employing logic programming 
has been widely used for knowledge representation. 
However, substantial amount of expert knowledge is 
needed and it doesn’t have ability to learn by itself.  

Lack of diagnostic 
knowledge available to 
codify as rules. 

Takagi 
Sugano FIS 

 Simple and 
interpretable; 

 Low computational 
cost; 

 Difficult to transform 
human knowledge; 

 The need for expert 
to fine-tuning the 
model; 

Takagi Sugano FIS is simple, interpretable and low 
computational cost. However, no standard methods for 
transforming human knowledge into a FIS and it needs 
expert for fine-tuning to find the optimal MF and 
parameters.  

Lack of diagnostic 
knowledge. In addition, no 
standard methods for 
transforming knowledge 
into a FIS.   

Decision 
Tree 

 Visualisation of the 
relationship; 

 Non-parametric 
supervised 
learning; 

 Uncertainty of 
obtaining optimal 
decision tree; 

 Difficult to learn 
some problems e.g. 
XOR; 

Decision tree is an intuitive graphical tool for displaying 
relationships that lead to faults. The test demonstrated 
decision tree has successfully learned the fault pattern. 
However, some sub-regions with sparse training data cause 
the decision tree to become inconsistent with domain 
knowledge.  

The decision tree model has 
the difficulty to deal with 
near-seen data. 

ANN  Implicitly detect 
complex nonlinear 
relationships; 

 Great fault 
tolerance; 

 Adaptive learning; 

 “Black-box” nature; 

 High computational 
cost; 

 Empirical nature of 
model development; 

The two tests demonstrated the general mapping capability 
of the ANN help to identify those most likely faults very 
well.   

Difficult to interpret result 
because of the “Black-box” 
nature.  

SOM  High dimensional 
data visualisation;  

 Reduce data 
dimensions;  

 Need sufficient data; 

 Similar groups may 
appear in different 
areas; 

The two tests showed that the SOM has the capability to 
identify abnormal data. However, the result needs to be 
interpreted by expert.  

Domain knowledge is 
required in order to 
interpret the result.  

Bayesian  Represent the  Domain knowledge The research results have shown that the BN is a valuable Lack of diagnostic 
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Network conditional 
dependences;  

 Represent the 
causal relationship; 

 

required; 

 Difficult to build BN 
structure; 

 Difficult to define 
NPT; 

tool for WT fault diagnosis and has great potential to 
rationalise failure root causes. However, the BN complexity 
grows exponentially with the increase of parent node 
numbers.  

knowledge to build a robust 
BN. In addition, its 
complexity grows 
exponentially with the 
increase of node.  

k-Means 
Clustering 

 Simple and easy to 
understand; 

 Computationally 
faster than other 
clustering 
algorithm, e.g. 
SOM; 

 Give best result 
when data set are 
distinct; 

 The number of k 
cluster has to be  
determined; 

 Sensitive to initial 
position of cluster 
centroid; 

 Difficult to know 
which feature 
contribute more to 
the clustering 
process. 

Two tests results have shown that the k-Means clustering 
has failed to identify the abnormal data.  

Uncertainty of the cluster 
number and test has failed 
to identify the abnormal 
data.  

Fuzzy c-
means 

 Give best result for 
overlapped 
datasets; 

 Data point can be 
assigned 
membership to 
each cluster; 

 The number of 
cluster has to be 
determined; 

 Lower value of   
would get better 
result, but it takes 
more times; 

A test has shown that the FCM clustering has failed to 
identify the abnormal data. 

Uncertainty of the cluster 
number and test has failed 
to identify the abnormal 
data. 

k-Nearest 
Neighbours 

 Robust to noisy 
data; 

 Effective in training 
procedure; 

 k has to be 
determined; 

 High computation 
cost; 

 Distance based 
learning and which 

Due to the uncertainty of k and the high computation cost 
in every classification instance, this algorithm is unlikely to 
meet the requirement of the on-line FDD.  

 

A misclassification problem 
was shown in the example 
and the technique has high 
computation cost in every 
classification instance.  
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type of distance has 
best result is not 
clear;  

SVM  Non-parametric 
approach; 

 Structural risk 
minimisation 
approach; 

 Effective in high 
dimensional spaces; 

 Give poor 
performance if the 
number of features is 
much greater than 
the number of 
samples; 

 Do not provide 
probability estimates; 

Initial research has demonstrated that the SVM almost 
successfully separated the normal and abnormal data.  

It might have the difficulty 
to interpret the result in 
high dimension. In 
addition, SVM is unlike to 
incorporate any domain 
knowledge.  

ANFIS  One of the best 
trade-off between 
ANN and FIS; 

 Fast learning and 
adaptation; 

 Only allow one 
output; 

 Strong computational 
complexity; 

ANFIS has a combination of advantages from ANN and 
FIS. However, if the training dataset is inadequate then the 
trained model can behave erratically in unseen input 
conditions and becomes un-interpretable.  

Trained model can behave 
erratically in unseen input 
conditions and becomes un-
interpretable.   

APK-ANFIS  Inherited the 
advantages of 
ANFIS; 

 A-prior domain 
knowledge 
incorporation; 

 High computational 
cost; 

 Domain knowledge is 
required to build the 
model;  

It allows a-priori domain knowledge to be incorporated 
into the ANFIS training procedure and restrict the output of 
sub-regions.  The built model showed relatively better 
interpretability.  

N/A 

Table 3.5: Findings of the possible AI approaches. 
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3.3. Available SCADA data from WT Pitch Systems 

(a) (b)

A

B

 

Figure 3.21: (a) Variable-speed pitch-to-feather control strategy; (b) Real Alstom WT 
data plot; 

Figure 3.21(a) shows a variable-speed pitch-to-feather control strategy 

(Bianchi et al. 2006) plotted on the pitch angle, rotor speed and wind speed space. 

 Region I shows the rotor speed is increased in proportion to the wind 

speed from its minimum      at cut-in (Point A) to its rated value    at 

point B.  

 Region II is the transition region, where wind speed is between     

and   , the pitch angle remains constant at     .  

 Region II for wind speeds larger than    the pitch angle is increased to 

     to avoid the rotor over speed and limit the power output to its rated 

value.  

Figure 3.21(b) displays the actual SCADA plots for comparison of the 

characteristics seen in Figure 3.21(a). In general, there are clear similarities to 

Figure 3.21(a), with additional transition regions A and B for blade adopt feather. 

Regions A & B are noisy because the blade movement is slow and it can occupy a 

number of angular positions in those conditions. 
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(a) (b)  

Figure 3.22: (a) Pitch torque power curve characteristic; (b) An abnormal WT; 

Figure 3.22(a) shows WT pitch torque power curve characteristic and these 

figures are less noisy than Figure 3.21. According to Moorse (2010), a normal WT 

should have the above characteristic trends during different periods of operation. 

Faults can be identified when a number of observations deviate from the 

characteristic curve, as shown in Figure 3.22(b). 

Initially, an inspection of six known pitch faults (Cases 1-6, as shown in 

Table 3.6), using both typical variable-speed pitch-to-feather control strategy and 

pitch torque power curve characteristics, has been made to find the common 

pitch fault symptom, as shown in Figure 3.23. 

Table 3.6: Six pitch fault cases from the same WF. The three periods were used to inspect 
the WT’s status at different stages. 

WT Case  Developing Fault Maintenance After Maintenance 

A Case 1 05/01/2008 ~ 15/02/2008 16/02/2008 ~ 21/02/2008 22/02/2008 ~ 03/03/2008 

Case 2 20/12/2006 ~ 14/01/2007 15/01/2007 ~ 25/01/2007 26/02/2007 ~ 10/02/2007 

 
B 

Case 3 22/08/2007 ~ 04/09/2007 05/09/2007 ~ 09/09/2007 10/09/2007 ~ 18/09/2007 

Case 4 17/10/2006 ~ 28/10/2006 29/10/2006 ~ 29/10/2006 30/10/2006 ~ 04/11/2006 

Case 5 10/08/2008 ~ 27/08/2008 28/08/2008 ~ 30/08/2008 31/08/2008 ~ 10/09/2008 

Case 6 20/09/2006 ~ 13/10/2006 14/10/2006 ~ 19/10/2006 19/10/2006 ~ 22/10/2006 
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(a) (b)

Top Right

Bottom 

Left

 

Figure 3.23: (a) Typical variable-speed pitch-to-feather control plot for Case 1; (b) Pitch 
torque power curve plot for Case 1; 

In Figure 3.23 (a), no After Maintenance data can be found on the top right 

corner, representing high wind speeds, high blade angle and low rotor speed. A 

normal running turbine should not have feathered blades and zero rotor speed 

when the wind speed is greater than cut-in. Thus, any data appearing on top 

right corner of this 3D plot can be regarded as a possible pitch fault.  

For Figure 3.23 (b), no After Maintenance data can be found on bottom left 

corner, representing high wind speeds, low motor torque and low power output. 

This is because a normal running turbine should start generating power when 

the wind speed is greater than cut-in. Meanwhile, blade pitch motor torque is 

needed to change the blade angle to prevent rotor over-speed. Thus, any data 

appearing in the bottom left of this 3D plot could be caused by a pitch fault.  

These graphs were presented in 3D but analysis in one plane would 

simplify the algorithm to two variables, 2D views are shown in Figure 3.24. By 

comparing and analysing the difference between Developing Fault and After 

Maintenance periods, four 2D views, numbered 1, 2, 4 & 5, were found and they 

clearly showing abnormal SCADA data in the Developing Fault period, as circled 
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in Figure 3.24. Therefore, these four 2D views, known as Critical Characteristic 

Features (CCFs), can be used to identify WT pitch faults.  

(a) Corresponding to Fig.5(a) (b) Corresponding to Fig.5(b)

1

2

3

4

5

6

 

Figure 3.24: 2D views of Fig. 3.18 covering Developing Fault and After Maintenance. 
The subfigures 1-6 are the corresponding 2D plot. 

 

Figure 3.25: Day-by-day analysis 

In addition, a day-by-day analysis through plotting the aforementioned 

four CCFs in the Developing Fault period and checking against the corresponding 
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SCADA pitch alarms had shown that the SCADA signals is able to provide fault 

detection and it is much earlier than SCADA alarms, as shown in Figure 3.25.  

Considering WT O&M economic factors and based on the findings received 

here, this research is extended to develop an automated fault prognosis for WT 

pitch system. A diagnosis procedure is proposed in the next Chapter by applying 

an APK-ANFIS. The six known pitch faults will be used as the knowledge base 

for the proposed diagnosis procedure. 

3.4. Anomaly Detection 

After assessing the possible AI techniques and considering the available 

SCADA data, it quickly becomes evident that anomaly detection is the most 

suitable method for fault detection. This is due to the absence of domain 

knowledge about how incipient component faults are represented in the SCADA 

data. In addition, the lack of WF operator support and resource, as well as the 

time-consuming and complex nature of analysing large SCADA data volumes, to 

understand every single pitch fault symptom. Moreover, limited access to data 

with fault records also prohibits the development of WT fault detection system. 

These limitations ultimately lead towards the need to utilise anomaly detection 

to achieve fault detection through abnormal behaviour observation.  

Anomaly detection refers to the problem of discovering patterns in data 

that do not conform to expected behaviour (Chandola et al. 2009). Usually, the 

anomalies are infrequent, but their importance is significant and critical in most 

application domains; this makes their detection extremely important. In the field 

of WT FDD using SCADA data, an anomaly detection model would receive data 

from various sensors mounted on the WT components and the objective is to 

capture how the data evolves and changes with respect to factors that may 
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influence it under normal circumstances. This would therefore allow for the 

detection of the abnormal behaviour, which does not subject to the physical 

properties of a normal running WT. Usually, a model is built to provide an 

estimation of a senor output based on the relevant signals from the other sensors. 

The estimation can then be compared to the real value recorded by the senor, 

where a significant deviation from the estimated value would be viewed as an 

abnormality. In this way, incipient faults can be highlighted and presented to the 

operator, dramatically reducing the complexity of their task since only significant 

information of relevance to the WT health is presented to them.  

As the knowledge of every individual fault is not included in the model, the 

developed anomaly detection cannot be used to exactly identify fault in a specific 

component.  However, the aim of this research is to provide the initial stage of 

the fault identification process. Early detection of failures and problems would 

allow operators to schedule maintenance schemes appropriately; and an 

experienced operator could take this opportunity to have a look the problems in 

detail, for example by turning on the high frequency CMS to diagnosis the 

component fault. 

3.5. Chapter Summary 

This chapter has investigated a number of AI techniques, commonly used in 

the field of data classification, which can be used for WT FDD. SVM and APK-

ANFIS are found to be potential useful in this research. For APK-ANIFS, a-priori 

knowledge technique can be incorporated into ANFIS model and this have 

shown relatively better interpretability and is able to maintain the consistency of 

the model even in the regions with few data points. Therefore, this study has 

decided to focus on using APK-ANFIS to analyse WT SCADA data and proves 
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its feasibility for WT fault prognosis, concentrating particularly on WT pitch 

system faults, which are known to be significant.  

In addition, an inspection of six known pitch faults, using the variable-

speed pitch-to-feather control and pitch torque power curves, have been used to 

identify common pitch faults. The six known pitch faults will be used as the 

knowledge base for the proposed diagnosis procedure in next Chapter.  

Finally, for this particular application, the anomaly detection approach was 

found to be the necessary approach due to the lack of domain knowledge about 

how incipient component faults are represented in the SCADA data and complex 

nature of analysing large volumes of SCADA data.  
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Chapter 4.  

Proposed On-line Fault Diagnosis 

Procedure 

 

As has been noted in Chapter 3, this study has decided to use APK-ANFIS 

to analyse WT SCADA data and proves its feasibility for WT fault prognosis, 

using SCADA data. The study concentrates particularly on WT pitch faults as it 

is known to be significant. This chapter aims to introduce the APK-ANFIS in 

detail and propose an on-line fault diagnosis system with the possibility for fault 

prognosis. With the a-priori knowledge incorporation, the proposed system is 

expected to have improved ability to interpret previously unseen conditions and 

thus fault diagnoses should be improved over the conventional ANFIS. The data 

of the six known WT pitch faults, introduced in Section 3.3, are labelled and used 

to train the APK-ANFIS system with a-priori knowledge incorporated.  

This chapter is organised as follows: it begins with the introduction of the 

ANFIS and the a-priori knowledge incorporation. Based on the findings from 

Section 3.3, the four critical characteristic features (CCFs) for analysing WT pitch 

fault are discussed in detail. After that, a fault diagnosis procedure using the 

APK-ANFIS and the four CCFs is proposed. The data of the six known WT pitch 

faults are labelled according to expert knowledge and the WT’s physical 

properties. The proposed system is trained with a-priori knowledge 

incorporated. Finally, a trained system is obtained and a demonstration of the 

diagnosis system is shown.  
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4.1. Development of ANFIS & A-priori Knowledge 

Incorporation 

ANN research started in the 1940s (Haykin et al. 2009) and has been proven 

as a reliable technique in the field of pattern recognition, estimation and 

prediction, as well as fault detection. However, ANNs are not transparent and 

are incapable of explaining a particular decision to the user in comprehensible 

form. FIS research started in the 1960s (Jang et al. 1997) and has been widely used 

for control engineering and knowledge representation. FIS has the ability to 

model human knowledge in a form of an if-then rule. It also has the capability of 

transforming linguistic and heuristic terms into crisp numerical values for use in 

complex machine computation, via fuzzy rules and Membership Functions (MF). 

The if-then rules and the initial parameters of MFs are normally prepared by an 

expert. Thus, FIS requires fine-tuning to obtain an acceptable rule base and 

optimal parameters for available data. In the 1990s, researchers came up with an 

idea to combine ANN and FIS to achieve learning and readability at the same 

time. This idea was first proposed by Kosko and Isaka (1993) and named neuro-

fuzzy. Compared to ANN and FIS, neuro-fuzzy research is relatively new, but it 

has gained fast development, especially with the introduction of the ANFIS by  

Jang et al. (1997).  

In general, a neuro-fuzzy system is a fusion or hybrid of two different 

systems that combine the advantages of ANN, robustness, learning and training, 

and with the advantage of FIS, interpretability. An ANFIS is a specific kind of 

neuro-fuzzy system most widely used and functionally equivalent to Takagi-

Sugeno FIS (Takagi and Sugeno 1985). ANFIS is a multi-layered feed forward 

network consisting of a number of nodes connected through directional links. 
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Adaptive in the title of ANFIS signifies that some nodes contain modifiable 

parameters which can be updated by the learning algorithm.  

ANFIS is a powerful approach for building complex non-linear 

relationships between sets of input and output data. An ANFIS system can be 

trained without the expert knowledge usually required by FIS. Both numerical 

and linguistic knowledge can be combined into a rule base by employing the 

fuzzy method. Fuzzy MFs can be optimally tuned by using optimisation 

algorithms. According to Jang et al. (1997), another advantage of the ANFIS is its 

capacity for fast learning and adaptation. Because of these attractive features, 

ANFIS has been employed directly in a variety of modelling, diagnosis, decision 

making, signal processing and control applications. 

4.1.1. ANFIS Architecture 

A typical ANFIS architecture is functionally equivalent to a first-order 

Takagi-Sugeno FIS (Jang 1993), as shown in Figure 4.1, where two inputs   and   

and one output   are assumed. The common rule set for two fuzzy if-then rules 

can be expressed as follows: 

 Rule 1: if   is    and   is   , then              ;  

 Rule 2: if   is    and   is   , then              ;  

where   and   represent the linguistic variables of the MF,  ,   and   are the 

parameters of the consequent first-order polynomial function to be determined 

during the training stage.  
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Figure 4.1: (a) A two inputs first order Takagi-Sugeno FIS model with two rules; (b) The 
equivalent ANFIS architecture. 

Figure 4.1(a) illustrates the reasoning mechanism for this Takagi-Sugeno FIS 

model; the corresponding equivalent ANFIS architecture is shown in Figure 

4.1(b), where only Layer 1 & 4 are adaptive and nodes of the same layer have 

similar functions, as described below:  

Layer 1: Fuzzy Layer: all crisp input variables are assigned equivalent 

linguistic fuzzy labels based on the MFs in this layer. Every node in this layer is 

adaptive with an output         ( ) or         ( )  which represents the 

membership grade of the input   or   to the fuzzy MF (   ,    ,    or   ).    and 

   are linguistic fuzzy labels, such as “small” or “large”, associated with the 

node. MF can be any appropriate parameterised MF introduced in (Jang et al. 

1997), such as the generalised bell function:  

 ( )  
 

  |
    
  
|
   
                                   (   ) 
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where *        + is the premise parameter set and it will be updated during the 

training stage. As the values of these parameters update, the bell-shaped function 

varies accordingly and finally adapts to the given training data.  

Layer 2: Product Layer: this layer is used to combine the incoming signals 

and every node in the layer is fixed. They are labelled   to indicate that they 

multiply the incoming signals to produce the firing strength of a rule, defined as:  

      ( )     ( )                    (   ) 

Layer 3: Normalization Layer: this layer will generate the corresponding 

ratio of the firing strength and every node in this layer is also fixed. They are 

labelled   to indicate the calculation of the ratio of the     rule’s firing strength to 

the sum of all rules’ firing strengths, defined as:  

 ̅  
  

     
                                   (   ) 

For convenience, outputs of this layer are called normalised firing strengths. 

Layer 4: Defuzzify Layer; every rule in this layer will obtain a crisp output 

and all nodes in this layer are adaptive. The output of each node in this layer is 

simply the product of the normalised firing strength and a first-order polynomial 

function. Parameters *        + are referred to as the consequent parameter set.  

 ̅     ̅ (          )                              (   ) 

A special case in this model is that the consequents are expressed by constant 

values    and this model is usually called 0th order ANFIS. 

Layer 5: Output Layer; this layer has only one node labelled ∑ to indicate 

that it computes the overall output as the summation of all incoming signals:  
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         ∑ ̅   
 

 
∑      

∑    
 
         
     

                         (   ) 

Thus, an adaptive network that is functionally and structurally equivalent 

to a Takagi-Sugeno FIS has been constructed, as shown in Figure 4.1.  

4.1.2. Learning Algorithm 

As mentioned in Section 4.1.1, there are two adaptive layers, 1 & 4, in 

ANFIS architecture. Each node in layer 1 has three parameters *        + 

representing the premise parameters. Every node in layer 4 also has three 

tuneable parameters *        +  pertaining to the first order polynomial of the 

consequent part of the rules. The objective of the learning algorithm is to 

optimise all these parameters to make the ANFIS output best match the training 

data.  

From the ANFIS architecture shown in Figure 4.1(b) and Eq. 4.5, we found 

that the ANFIS output can be expressed as a linear combination of the 

consequent parameters when the values of the premise parameters are fixed. In 

symbols, the output   can be rewritten as:  

          ̅     ̅     

             ̅ (          )   ̅ (          )  

            ( ̅  )   ( ̅  )   ( ̅ )   ( ̅  )   ( ̅  )   ( ̅ )                (   ) 

which is linear in the consequent parameters                   . From this 

observation, it can be found that the premise parameters are non-linear and 

consequent parameters are linear. Therefore, a hybrid algorithm combining the 

least squares method and the gradient descent method is proposed. The hybrid 

algorithm consists of a forward pass and a backward pass, as listed in Table 4.1. 
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In the forward pass, the least square method is used to optimise the consequent 

parameters with the fixed premise parameters. Once the optimal consequent 

parameters are found, the backward pass commences immediately. In the 

backward pass, the gradient descent method is used to adjust the premise 

parameters corresponding to the fuzzy set in the input domain, whilst the 

consequent parameters remain fixed. This procedure is repeated until the overall 

squared error between desired output and actual output is less than a specified 

value or the learning has reached the maximum iteration.  

 Forward Pass Backward Pass 

Premise parameters Fixed Gradient descent 

Consequent parameters Least-square method Fixed 
Signals Node outputs Error signals 

Table 4.1: Hybrid algorithm for ANFIS training 

4.1.3. Down-side of ANFIS 

ANFIS has been researched for many different fault detection and diagnosis 

applications. Some recent applications include induction motor fault diagnosis 

(Tran et al. 2009), bearing fault diagnosis (Zio and Gola 2009), rotating machinery 

fault diagnosis (Lei et al. 2007) and dynamic system fault detection (Korbicz and 

Kowal 2007). Although the integration of ANN with FIS has proved useful, there 

is also a noticeable down-side of this hybrid model. As the learning becomes 

entirely data driven, it imposes stringent requirements on the quality of training 

dataset. If the training dataset is inadequate then the trained model can behave 

erratically in unseen input conditions and becomes un-interpretable. For example 

a WT power curve input subspace has sparse data distribution and could result 

in the corresponding ANFIS region’s output become inconsistent with domain 

knowledge. In other words, the model loses its consistency with domain 

knowledge and behaves like a black-box. This down-side has led to the 

development of various parameter estimation techniques aiming to improve the 
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interpretability of this hybrid model. Yen et al. (1998) proposed a combination of 

global and local identification of consequent parameters to certain constraints. In 

another approach, Bikdash (1999) proposed the use of spline-based fuzzy FMs 

and rule-centred linear models that can be treated as 1st order Taylor series 

expansion about the rule centres. This method improved both the interpretability 

and the estimation capability of fuzzy rules. Abonyi et al. (1999) proposed a 

technique which the a-priori knowledge is incorporated in Takagi-Sugeno FIS 

models by introducing a set of parameters constraints and penalty functions.  

Quite often, a domain expert is capable of identifying a few sub-regions in 

the input space where the corresponding output is expected to be more or less 

than the others. Tewari (2009) proposed a technique that allows a-priori domain 

knowledge to be incorporated into the ANFIS training procedure and restrict the 

output of sub-regions. The core idea is to incorporate the expert’s qualitative 

domain knowledge into the parameter estimation step of ANFIS training 

procedure. This proposed technique enables the ANFIS to remain consistent with 

domain knowledge even when the certain input sub-regions are sparse or 

training data has noise. With these advantages, this research has decided to use 

the Tewari’s technique to analyse WT SCADA data. This new technique would 

allow the expert’s domain knowledge such as “If WT power output is high at 

low wind speed, this can be regarded as a possible fault” to be incorporated.  

4.1.4. A-priori Knowledge Incorporation 

The latest development of the ANFIS has enabled the incorporation of 

domain knowledge into the ANFIS training procedure. Assuming that we are 

working on fault detection using the WT power curve, 3 MFs will be associated 

with each input signal. The 3 MFs are used to represent the linguistic labels Low, 

Medium and High for both power output and wind speed. Thus, the total number 
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of rules R is        in this study. In addition, some a-priori domain 

knowledge, known as favourable rule, are allowed to be identified by domain 

expert. The following domain knowledge are available to us prior to the ANFIS 

training:  

 A possible fault is detected if Wind Speed is LOW and Power Output is 

HIGH (Shown as Rule 3 in Figure 4.2 (a));  

 A possible fault is detected if Wind Speed is HIGH and Power Output is 

LOW (Shown as Rule 7 in Figure 4.2 (a));  

The above statements enabled us to distinguish two favourable rules, 

whose locations in the input space are highlighted in Figure 4.2(a). Figure 4.2(a) 

is the region view of the input space, which has been partitioned into 9 

overlapping sub-regions to represent the aforementioned 9 rules. Amongst the 9 

rules, rule 3 & 7 are the favourable rules. Figure 4.2(b) shows the real power 

curve and the encircled areas correspond to the favourable rules which have 

sparse data distribution.  
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Figure 4.2: (a) 2D input space that has been partitioned by 9 overlapping fuzzy sets. The 
shaded subspaces correspond to the a-priori domain knowledge. (b) The corresponding 
real data. 
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The ith rule in conventional ANFIS, as mentioned in Section 4.1.1, can be 

transformed and represented as:  

           
              

              
                        

          
    

        
                               (   ) 

where   
    
      

  are the coefficients of the consequent linear model defined for 

the ith rule.   ,         -
  represents an input vector with   dimensions.   

  

represents the linguistic labels, Low, Medium & High, assigned to the input 

variable   .    is the consequent first-order polynomial function to be 

determined.  

According to Tewari (2009), the technique is based on the framework of 

rule-centred Takagi-Sugeno-Kang (TSK) fuzzy model in which the consequent 

first-order polynomial function, the    as mentioned in Eq. 4.7, can be interpreted 

as the 1st order Taylor series approximation, as shown in Eq. 4.8. 

           
              

              
                                          

          
    

 (     
 )      

 (     
 )                   (   ) 

where     ,  
      

 - is a   dimension vector representing the ith rule centre 

having the same dimension as input. The centre of a rule is simply the geometric 

centre of the corresponding multivariate fuzzy set.     is the corresponding 

coefficients in Taylor series. The coefficients   
  as shown in Eq. 4.7 have a 

straight forward relationship with the coefficients   : 

{
  
    

  ∑  
   
 

 

   

  
    

                     

                               (   ) 

The Eq. 4.8 can be further expanded as follows:  



4. Proposed Automated On-line Fault Diagnosis Procedure 

 

103 

 

     ( 
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(     

 )    
   

   
 
(     

 )         (    ) 

Then, we find that the parameter   
  signifies the underlying function value 

at the ith rule centre and parameter   
  represents the gradient of the function 

along the   dimension about the ith rule centre. The relationship is shown in Eq. 

4.11. 

{

  
    ( 

 )

  
  
   

   
 
  
                               (    ) 

After that, the 1st order ANFIS can be expressed as follows:  

  ∑(  
  ∑  

 (  
    

 )

 

   

)   ̅ 

 

   

                (    ) 

where   is the total rules and   is the dimension of the input vector.  

The qualitative domain knowledge is incorporated into the model in the 

form of Gaussian basis function   at the centre of each favourable rule, i.e. 

  
 
       ( ∑(

  
    

 

  
 
)

  

   

)                                 (    ) 

where   are the available favourable rules out of   total rules. This Gaussian basis 

function, with parameters    and   
 
, is at the centre of each jth favourable rule. 

The Gaussian functions are used to mimic the available domain knowledge. 

Since there can be several favourable rules, the model output at ith rule can be 

represented as the weighted geometric mean of the individual Gaussians, as 

follows:  
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where   
  is the consequent parameter of the ith rule of the 0th order ANFIS. The 

  
 
represents the weight that signifies the degree of closeness of the ith rule centre 

to the centre of jth favourable.     is the Euclidean distance between two rule 

centres. Therefore, the 0th order ANFIS can be computed using the following 

equation:  

  ∏(  
 ) ̅ 

 

   

                                   (    ) 

where  ̅  is the normalised firing strength of each rule. Eq. 4.16 is completely 

different from conventional way of computing the output of a Takagi-Sugeno 

FIS, the rationale of defining the output in this way is that it renders the model 

output intrinsically linear in terms of parameters    and   
 
  (Jang et al. 1997).  

The definition of the 1st order ANFIS, as shown in Eq. 4.12, can be 

transformed as:  

  ∑(  
  ∑.  

   
  (    

 )/   
 (  
    

 )

 

   

)   ̅ 

 

   

               (    )  

where   
  assumes a value of either 0 or 1 depends on the input location to the 

corresponding rule centre as follows: 

{
  
               

    
   

  
               

    
   

                                                      (    )   
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The entire procedure of the APK-ANFIS is outlined in Tewari (2009), the 

learning algorithm of this APK-ANFIS used the quadratic programming for 

solving the constraint bound given by domain knowledge in the forward pass 

and the gradient-decent method was used in the backward pass because of its 

ease of implementation. According to two examples shown in Tewari (2009), the 

results of this technique showed relatively better interpretability under two 

different conditions: data with noise or certain inputs space is sparse. 

In order to illustrate the advantage of incorporating prior domain 

knowledge into the APK-ANFIS, fault detection using the WT power curve was 

studied using real data from Figure 4.2(b). The ANFIS and APK-ANFIS were 

built in a similar manner with 3 MFs in each input, maximum training iteration 

50 and minimum error 0.01. Figure 4.3 (a) & (b) show the output surface 

generated by the trained ANFIS and APK-ANFIS. Clearly, the conventional 

ANFIS resulted in an output surface inconsistent with domain knowledge, 

shown as large Z scale and is encircled in Figure 4.3(a). This is because of 

insufficient training data in the various areas and resulted in a trained model that 

behaved erratically under unseen input conditions. On the contrary, with the 

incorporation of domain knowledge, Figure 4.3(b), APK-ANFIS result has shown 

relatively better interpretability and was able to maintain model consistency 

even in the regions with few data points. With this advantage of improved 

interpretability, this research is going to apply the APK-ANFIS to build a fault 

diagnosis procedure for a WT pitch system. 
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Figure 4.3: (a) Conventional ANFIS result without a-priori knowledge, (b) APK-ANFIS 
result; 

4.2. Proposed Fault Diagnosis Procedure 

The use of APK-ANFIS was explained in Section 4.1 and this section will 

propose a new approach for analysing WT SCADA data using the APK-ANFIS 

with the aim of achieving automated detection of pitch faults. 

4.2.1. Four Critical Characteristic Features 

As has been mentioned in Section 3.3, six known pitch faults from 2 WTs 

have been analysed using typical variable-speed pitch-to-feather control and 

pitch torque power curve characteristics. The analysis results have shown that 

the pitch fault symptom can be clearly identified from four features, named as 

CCFs, as shown in Figure 4.4 and the corresponding physical properties are 

described below: 
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Figure 4.4: Four CCFs for pitch fault analysis 

 Wind Speed vs. Power Output: This is the well-known power curve, as 

shown in Figure 4.4(a), which has been widely used for WF operator to 

monitor the WT’s performance. In general, a WT start generating power 

when the wind speed rises above the cut-in speed, at 3-4 m/s. Then, the 

power generation is in proportion to wind speed until it rises to rated 

speed, at 12-14 m/s. At higher wind speed, the WT is arranged to limit the 

power to the rated power output and this is done by adjusting the blade 

angle to keep the power at the constant level.  

 Wind Speed vs. Blade Angle: In a variable speed WT, its blade angles are 

regulated to enhance wind energy conversion and limit the power to the 

rated power output at high wind speeds. At very low wind speeds, WT 

blades are usually kept in feathered position for safety. They are adjusted 

to the optimal angle to extract optimum power between cut-in and rated 

wind speed. When wind speed rises above the rated speed, the WT adjust 
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the blade angle to keep the power at rated power output. The blade is 

driven into their feathered positions when wind speed is larger than cut-

out. The sketch diagram is shown in Figure 4.4(b).  

 Wind Speed vs. Rotor Speed: The rotor speed refers to the WT main shaft 

rotation speed. In a variable speed WT, rotor speed is changed with 

respect to the change of wind speed, as shown in Figure 4.4(c). In general, 

the main shaft doesn’t move until the wind speed rises above cut-in. Then, 

the rotor speed is in proportion of wind speed until the wind speed 

reaches the rated speed. After that, the rotor speed is kept at the constant 

maximum level until cut-out.  

 Wind Speed vs. Blade Motor Torque: In electrical pitch system, each 

blade is fitted with a pitch motor to control the blade angle, extract 

optimum power from the wind and avoid rotor over-speed. At the very 

low wind speed, blade motor torque is not required as blade is in the 

feathered position. Once the wind speed rises above cut-in, the blade 

motor should start working to regulate the blade to enhance wind energy 

conversion. Large torque is required from rated speed to cut-out to 

regulate and maintain blade angle. 

It is widely believed that a normal WT’s pitch system should subject to 

above physical properties. Any observation deviates far away from the above 

curves can be regarded as a possible fault. The idea of using anomaly detection, 

as mentioned in Section 3.4, is lay in these physical properties in a normal WT 

pitch system.  

4.2.2. Proposed Fault Diagnosis Procedure 

In this work, the aforementioned four CCFs and the SCADA alarms are 

utilized for detecting the incipient WT pitch faults. The proposed fault diagnosis 
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procedure consists of 4 modules, as shown in Figure 4.5, are specifically 

explained as follows:  

 Data Acquisition: This module will collect data from the SCADA system 

and ensure no maintenance or manual stop in the selected period. In 

addition, data must be not NULL and subject to factory supplied ranges:  

o Wind speed range from 0 to 25 m/s;  

o Rotor speed range from 0 to 20 rpm;  

o Blade motor torque range from 0 to 45 kN;  

o Power output range from -10 to 1750 kw;  

o Blade angle range from 0 to 90 degree;  

Note: WT use electricity from the grid is shown as negative in power 

output. 

 Feature Extraction: Valid data are divided into signals and alarms. Four 

CCFs, as mentioned in Section 4.2.1, will be extracted from signals. Alarm 

distribution & showers will then be produced from alarm data to validate 

the final result. (Alarm distribution & showers (Qiu et al. 2012) is the 

number of alarms during a certain period of times, for example a day in 

this proposed system.)  

 Multiple Diagnosis: The four CCFs will be passed to the corresponding 

trained APK-ANFIS to calculate the fault degree. The overall result is the 

aggregation of the 4 individual APK-ANFISs, defined as:  

       
∑             
 
   

∑   
 
   

                          (    ) 

where    is the corresponding weight. All     are set to 1 for calculating the 

average in this case.  

 Fault Diagnosis Result: Finally, the overall result will be checked against 

SCADA alarms to provide the warning to the WF operator. 
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Figure 4.5: The proposed diagnosis procedure 

It can be seen from above description that WT stop and maintenance are not 

considered in the proposed system. This is due to the nature complexity of 

human intervention that may cause the signals to be outputted like a fault and 

result in false identification. In addition, any observed CCFs’ values beyond the 

factory supplied range are largely caused by sensor fault. For simplicity, these 

situations are not diagnosed by the proposed system and they will be recorded 

and forwarded to the WF operators for further inspection. Next, this research 

would have to train the proposed system using the six known pitch fault data as 

mentioned in Section 3.3. The first step is to collect and label the training data.  

4.2.3. Acquiring Training Data 

In order to construct the proposed diagnosis procedure, the data of the six 

known pitch faults are used as a knowledge base for training and testing the 
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individual APK-ANFIS. The fault behaviours of the four CCFs can be 

represented using a vector as follows:  

   [            ]
 
         ,       - 

where    correspond to the four CCFs as mentioned in Figure 4.4 and the 

aggregation of them can be considered to characterise pitch fault.      and      are 

the inputs of the  th CCF. The    is the corresponding output and it takes one of 

the values 0 and 1, which indicate the Absent and Present state of the pitch fault. 

Thus, abnormal data, such as a possible pitch fault, were given value 1 and the 

remainders were given value 0, to represent No pitch fault.  

A labelling procedure is needed in order to assign the correct class, Absent 

or Present state of the pitch fault, to each of the training data. The procedure is 

listed as follows: 

 Giving value 0 to data in After Maintenance period, which indicates the 

Absent state of pitch fault;  

 Based on the 4 CCFs’ physical properties as discussed in Section 4.2.1 and 

the comparison between Generating fault and After Maintenance periods, 

the abnormal data in Generating Fault period are found and given value 1, 

which indicated the Present state of the pitch fault. The reminders 

represent Absent of pitch fault and are given value 0;  

 Data in Maintenance period are not included in the training data because 

the nature complexity of human intervention may cause the signals to be 

outputted like a fault;   

An example of labelling abnormal data in Case 1 is shown as encircled 

regions in Figure 4.6. 
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Figure 4.6: Labelling the abnormal data in Case 1 

By doing above labelling procedure for all the 6 known pitch faults and 

putting six pitch faults’ data together, 26,971 sets of data are collected, as shown 

in Figure 4.7.  
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Figure 4.7: Training data from the six known pitch faults. 

Figure 4.7 shows the labelled six pitch faults data and it also demonstrates 

that some input sub-regions have sparse data distribution, which a WT is hardly 

or impossible to produce signal there, for example: the sub-region where wind 

speed is low and power output is high. For those sub-regions, the a-priori 

domain knowledge is allowed to be identified by domain expert. The following 

sub-regions, as encircled in Figure 4.8, are expected to have 1 output to indicate 

the Present of fault. They are identified by domain expert and available to us 

prior to the ANFIS training.  
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Figure 4.8: Training data from the six known pitch faults. Encircled areas have 
insufficient data and a-priori approach is required. 

4.2.4. Training Process 

The training process is shown in Figure 4.9. During the training, an input 

vector was fed into the input layer of the APK-ANFIS and the desired output 

corresponding to input vector was used to compare with the actual APK-ANFIS 

output. If the result of the comparison was unacceptable, the Hybrid training 

algorithm adjusted the APK-ANFIS parameters to be consistent with the 

imposed input vector and desired output. The parameters were then readjusted 

to accommodate new input vector with the corresponding desired output. The 

training process is repeated until convergence within a specified error or the 

learning has reached the maximum iteration. In this work, the minimum value 

was set to 0.01 and the maximum iteration was set to 150. The training was 

performed on ReliaWind Server with 2 processors, 16 cores, 48G memory and 

8TB hard drive and using 64-bit Matlab.  
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Figure 4.9: APK-ANFIS training process 

(a) (b)

(c) (d)

 

Figure 4.10: RMSE curve of different ANFIS structures; (a) WindSpeed vs RotorSpeed 
ANFIS; (b) WindSpeed vs BladeAngle; (c) WindSpeed vs BladeMotorTorque; (d) 

WindSpeed vs PowerOutput; 

In order to find the optimal structure for each individual APK-ANFIS, a 

batch testing with different number of MFs for each input were examined, as 

shown in Figure 4.10. These calculate the mean square error of different 

structures and finally the optimal structures were chose, as shown in Table 4.2.  

 

 

 



4. Proposed Automated On-line Fault Diagnosis Procedure 

 

116 

 

APK-ANFIS model Optimal structure 
(The number of MFs ) 

Wind Speed vs Rotor Speed 5-by-5 

Wind Speed vs Blade Angle 5-by-5 

Wind Speed vs Blade Motor Torque 5-by-5 

Wind Speed vs Power Output 5-by-4 

Table 4.2: The optimal ANFIS structures 
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Figure 4.11: Sub-regions view of Figure 4.8. Corresponding sub-regions are expected to 
have 1 output to indicate the Present of fault.  

Then, the corresponding sub-regions, which are expected to have 1 output 

to indicate the Present of fault, can be specified and shown in Figure 4.11. After 

that, the data were partitioned into training and testing data sets. Cases 1-5 

provided the training data and Case 6 was used to test the trained model. Its 

success at actual outputs that are as close as possible to the desired outputs 
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determines how well the network has learned or captured the relations between 

the inputs and outputs.   

4.2.5. Trained System 

Finally, the output surfaces generated by individual trained APK-ANFIS 

models are shown in Figure 4.12. This clearly demonstrates that abnormal data 

will give a large output, close to 1 as shown in the “Hill”, while normal data will 

give a small output, close to 0 and shown as the “Valley”. A demonstration of the 

proposed diagnosis system with an arbitrary threshold 0.5 was made and shown 

in Figure 4.13, where Figure 4.13(a) demonstrates a normal running WT and 

Figure 4.13(b) demonstrates the detection of a possible pitch fault for which an 

“Alarm” has been triggered. The Figure 4.14 is the demonstration of the 

diagnosis system with showing every individual APK-ANFIS result. 

(a) (b)

(c) (d)

Valley Hill

 

Figure 4.12: Output surfaces generated from the trained APK-ANFIS 
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(a) A normal running WT

(b) A possible pitch fault has been detected  

Figure 4.13: Demonstration of the diagnosis system with an arbitrary threshold 0.5 
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(a)

(b)  

Figure 4.14: Demonstration of the diagnosis system with showing individual result 

4.3. Chapter Summary 

The development of ANFIS has been introduced and the rationale behind 

the APK-ANFIS approach selected to develop an automated on-line fault 

diagnosis system was discussed. A fault diagnosis system with using the APK-

ANFIS and the four critical CCFs is proposed. The data of the six known WT 

pitch faults are labelled based on expertise.  After that, the proposed system is 

trained using the six known pitch faults with a-priori knowledge incorporated. 

In the end of this chapter, a trained system is obtained and a demonstration of 

the diagnosis system is shown.  

The next chapter will present the effectiveness of the proposed approach 

using five metrics: (1) the trained system will be tested in another WF containing 
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26 same manufactured WTs to show its prognosis ability; (2) the first test result 

will be compared to a general alarm approach; (3) a Confusion Matrix analysis is 

made to demonstrate the accuracy of the proposed approach; (4) this approach is 

applied to pitch data from different manufactured WTs and the result is analysed 

using Confusion Matrix analysis; (5) the comparison of the results of applying 

the proposed approach to two different manufactured WTs. 
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Chapter 5.  

Test Results & Validation 

 

The previous chapter has introduced the development of ANFIS and 

described the rationale behind the APK-ANFIS approach selected to develop an 

automated on-line fault diagnosis system. The data from six known pitch faults, 

developed from ReliaWind knowledge are labelled and used to build the 

proposed system with a-priori knowledge incorporated. The output surfaces 

generated from the trained system have shown improved ability to interpret the 

previously unseen conditions and the system is expected to analyse WT SCADA 

data to provide early pitch fault identification.  

This chapter aims to show the effectiveness of the proposed approach by 

applying the approach to the data from two different designs of WTs, 

manufactured by Alstom & Mitsubishi, with two different types of SCADA, 

demonstrating the adaptability of APK-ANFIS for application to a variety of 

technologies. The details of the two tests are listed as follows:  

 A WF in Spain, containing 34 Alstom WTs, out of which 26 were tested to 

show the method’s prognosis ability. The result is compared to a general 

alarm approach and analysed by Confusion Matrix analysis to show the 

accuracy and precision.  

 Another WF in Brazos, Texas, USA, containing 160 Mitsubishi WTs, out of 

which 22 were tested using a similar system built to show the generalised 

effectiveness of this approach.  

A comparison study of applying this approach on two different designs of 

WTs is shown at the end of this chapter and this comparison of the application of 
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the approach to two widely different designs of WTs strengthens the 

applicability of the proposed approach.  

5.1. Comparing Alstom & Mitsubishi Wind Turbines 

The proposed approach is applied to pitch data from two different types of 

WT with different pitch systems, described earlier in the Thesis: 

 Alstom WTs: 26 Alstom ECO80 WTs, 1.67MW variable speed, variable 

pitch WTs with electric pitch-to-feather control will be used in the first 

test; 

 Mitsubishi WTs: 22 Mitsubishi M1000 WTs, 1MW fixed speed, variable 

pitch WTs with hydraulic pitch-to-stall control will be used in the second 

test. 

The purpose of this comparison is based upon the similarities between their 

respective control systems but also to identify the control signals that will be 

useful in each case to apply APK-ANFIS approaches to detect the prognoses 

faults in their respective pitch systems. These control signals will not be the same 

in the two cases, depending on the WT technology and the SCADA system 

applied to those WTs.  

In order to make a comparison the results from the two WT types have been 

normalised using a feature scaling:  

  
    

       
         

                                 (   ) 

This will rescale the variable ranges to [0, 1]. 
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5.1.1. Power Curves 

 

Figure 5.1: Alstom & Mitsubishi WTs, power curve comparison 

The two types of WT display similar power curves, however, note the more 

abrupt, sharper effect of stall control in the Mitsubishi WT and the softer effect of 

variable speed control in the Alstom WT. 

5.1.2. Pitch Control Plot Comparison 

For both Alstom and Mitsubishi WTs the variable-speed pitch-to-

feather/stall controls were recorded from SCADA data. The Mitsubishi WT 

blade angles range from -20 o to -110o because the machine is pitch-to-stall rather 

than pitch-to-feather. In order to compare them directly with Alstom data, 

Mitsubishi WT blade angle data was multiplied by -1. An example of the raw 

Mitsubishi SCADA blade data can be seen in Appendix C.  
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(b) Alstom WT Case 1(a) Mitsubishi WT Case 1 A01  

Figure 5.2: The variable-speed pitch-to-feather/stall plot. Circled in red represent the 
anomalies, circled in blue represent the noise data. 

Figure 5.2 shows some differences as follows:  

 For the Mitsubishi WTs, in Brazos, Texas, USA, the range of wind speeds 

was less than for the Alstom WTs in Spain, as noted from Figure 5.1; 

 The mean rotor speed for the Mitsubishi WTs was fixed and high 

compared to the Alstom WTs, as expected for a comparison between fixed 

and variable speed WTs; 

 For the two WT types the operational range of blade pitch angles was 

similar, despite the different technologies. The Mitsubishi WT blade 

angles are measured with an offset of about -4o with an operational range 

in the pitch-stall direction of about 17.5o, whereas the Alstom blades had 

an operational range in the pitch-to-feather direction of about 24.5o; 

 Pitch anomalies are circled in red in Figure 5.2, both of them can be 

regarded as possible pitch faults and they demonstrated the common 

pitch fault symptom; 
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For Alstom WTs the SCADA also records blade pitch motor torque, because 

an electric pitch system is being used, therefore a pitch-torque power-curve plot 

can be recorded, as shown in Figure 5.3. Comparison between Figure 5.2 & 5.3 

shows that the latter is less noisy.  

 

Figure 5.3: Alstom WT, Pitch Control Plot, Pitch-Torque Power-Curve plot. 

The noise in the variable-speed pitch-to-feather/stall plots is primarily due 

to SCADA data collected when the WT is shut down with the blades either in the 

parked or fully pitched positions. These spurious points can clearly be seen in 

Figure 5.2, as encircled in blue, for both the Alstom and Mitsubishi WTs.  

5.1.3. Comparison Conclusion 

The comparison study has shown that:  

 Pitch control data for WTs of different architecture can be analysed using 

the same methods; 

 The SCADA-derived data pitch control analysis used the following: 

o Pitch-torque power-curve plot, Figure 5.3; 
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o Variable-speed pitch-to-feather/stall Control Plot, Figure 5.2. 

 It was clear from the analysis that the pitch-torque power-curve plot was 

less noisy than the variable-speed pitch-to-feather/stall control plot, 

because it was less contaminated by WT blade parked & stop positions; 

 Therefore wherever possible, i.e. on electrical pitch WTs, the pitch-torque 

power-curve plot should be used for pitch fault analysis; 

 Nonetheless the variable-speed pitch-to-feather/stall plot from hydraulic 

pitch WTs yielded valuable fault detection results; 

5.2. Test on Alstom Wind Turbines 

In this section, the trained system, described in Section 4.2.5, was tested in a 

WF to validate its effectiveness. After that, the results will be compared to a 

commonly used alarm approach to demonstrate the advantage of the prognostic 

horizon. The result will also be evaluated by a Confusion Matrix analysis to 

check the validity of the results. 

5.2.1. Data Preparation & Selection 

The trained system has been applied to a WF containing 26 Alstom WTs. 

There were 34 WTs in this WF but 8 had insufficient SCADA data for analysis, so 

were ignored. The data period was 28 months, from 01/Jun/2006 to 

30/Sep/2008. For the selected 26 WTs 910 pitch corrective maintenance records 

were found in this period, these were further reduced to 487 records according to 

the following criteria: 

 A maintenance followed by another maintenance within an interval of not 

more than 2 days was considered as one effective maintenance record; 

Some summary statistics for this WF are:  
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 An average of 18.7 pitch effective corrective maintenances per WT in this 

28 month period;  

 That is an average of 0.67 pitch effective corrective maintenances per WT 

per month;  

It can be seen from this that the pitch system is a significant fault for this WT. 

5.2.2. Fault Prognosis using Proposed System 

In order to test the trained system with new WF data, an algorithm was 

written to apply the trained diagnosis procedure to calculate the prognostic 

horizon for every pitch corrective maintenance activity. The Pseudo-code is 

shown in Table 5.1. Three potential prognostic horizons of 7, 14, or 21 days, were 

selected to avoid the false identifications. For example a half year early warning 

probably has nothing to do with this corrective maintenance. In addition, to 

further reduce false identification, required Threshold and Window Sizes were 

defined as follows:  

 Threshold (T) is the critical level for WF operator to consider investigating 

a possible fault. It is the aggregation of the four APK-ANFIS results and its 

output range is from 0 to 1, as shown in Figure 4.5.  

 Window Size (W) is the number of the consecutive data used to identify 

the incipient fault. The SCADA data used in this research was measured 

every 10 minutes; however a single measurement is insufficient to 

demonstrate a possible fault, thus this work chose a Window Size of 6, 18 

and 48 10 min intervals, representing 1, 3 and 8 hours respectively, to 

avoid false identification.  

The initial test had applied the trained system against to its training data, that 

is the 6 pitch fault cases shown in Table 3.5. The average prognosis horizons (in 
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days) with different window sizes and thresholds are shown in Figure 5.3. It can 

be seen that no prognosis horizon is longer than 20 days. In addition, the 

algorithm shown in Table 5.1 had been used to test the potential prognosis 

horizon out to 30 days. A small peak prognostic horizon occurring between 22 to 

26 days was found, as encircled in Figure 5.4. According to these two pieces of 

evidences, the author suspected that a pitch fault is most likely to reach failure 21 

days after the first indication. Therefore, the author decided to use 21 days as the 

maximum prognosis horizon for the application of the online fault prognosis test.  

 

Figure 4 Test against to the training data and the result of average prognosis horizons in 
days 

Window Size = 6 

Threshold = 0.3

Window Size = 48 

Threshold = 0.3
Window Size = 18 

Threshold = 0.5
Window Size = 6 

Threshold = 0.8

Undetected: 148Undetected: 145Undetected: 147Undetected: 75 

 

Figure 5.4 Plot of distribution of the prognosis horizon in 30 days 
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Step 1: 

Data Cleansing – remove data when it has maintenance; 

Step 2: 

Define H, W, T to represent Prognostic Horizon, Window Size, Threshold respectively 

Declare H = 7, 14 or 21; W = 6, 48 or 18; T = 0.3, 0.5 or 0.8; 

For each WT in the WF 

      For each “pitch corrective maintenance record” in the selected WT 

             Within the given Potential_Horizon = H days 

                    Find the earliest date when Window_Size = W and Threshold >= T  

                           Prognosis_Day = Maintenance_date – The_Earliest_date 

End 

Table 5.1: Pseudo-code for calculating the fault prognosis horizon. 

The prognosis results with different potential prognostic horizons are 

shown in Figure 5.5. The x-axis is the prognostic horizon in days, the y-axis is the 

number of pitch corrective maintenance activities. Each data group is for the 

proposed thresholds (T) and window sizes (W). The Undetected showing in 

graph legend is the number of undetected pitch corrective maintenance activities, 

out of 487. Figure 5.5 clearly shows that the proposed approach giving a 

significant warning of pitch faults with a long prognostic horizon up to 21 days, 

depending on the potential Prognostic Horizon, Window Size and Threshold. 
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Figure 5.5: Plot of distribution of APK-ANFIS prognosis horizon in days with different 
potential prognostic horizons 7, 14 and 21 days. (T stands for Threshold and W stands 

for Window Size). 

5.2.3. Fault Prognosis using SCADA Alarms 

As the priority of SCADA alarm is unclear, a common approach for 

identifying WT pitch faults is to count the number of alarms during a certain 

period of time (Qiu et al. 2012). As long as the number of alarms is less than a 

defined threshold, the situation can be considered safe. Conversely, a possible 

fault is identified when the number of alarms is larger than the threshold and 

operators should start investigating the problem. A study using this approach to 

examine the efficiency of SCADA pitch alarms for fault prognosis was applied to 

the same WF. The threshold was taken as the average number of SCADA pitch 

alarms per day. At the beginning of the testing a number of thresholds were 

considered as follows: 2, 5, 10 and 15. Three potential prognostic horizons of 7, 14 

and 21 days, were applied to avoid false identification. An algorithm, shown in 

Table 5.2, was also written to calculate the fault prognosis using above approach.  
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Step 1: 

Data Cleansing – remove data when it has maintenance; 

Step 2: 

Define H, T to represent Prognostic Horizon, Threshold respectively 

Declare H = 7, 14 or 21; T = 2, 5, 10 or 15 

For each WT in the WF 

      For each “pitch corrective maintenance record” in the selected WT 

             Within the given Potential_Horizon = H days 

                    Find the earliest date when Total_No_of_Pitch_Alarm >=  T  

                           Prognosis_Day = Maintenance_date – The_Earliest_date 

End 

Table 5.2: Pseudo-code for calculating the fault prognosis horizon using SCADA Alarms. 

The prognosis results with different potential prognostic horizons are 

shown in Figure 5.6. As large numbers of detections were found close to 0 which 

is the day of conducting the corrective maintenance, this has demonstrated that 

the Alarm approach gives very little prognostic horizon.  

 

Figure 5.6: Plot of distribution of SCADA Alarms prognosis horizon in days with 
different potential prognostic horizons 7, 14 and 21 days. 
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By comparison between Figures 5.5 and 5.6 it is clear that the proposed 

approach with the APK-ANFIS using SCADA pitch signals gives prognostic 

warning of faults ahead of SCADA pitch alarms.   

5.2.4. Confusion Matrix Analysis 

Sections 5.2.2 & 5.2.3 have demonstrated the proposed approach gives 

prognostic warning of pitch fault ahead of pitch alarms. In this section, a 

Confusion Matrix analysis was generated to demonstrate the accuracy of the 

proposed approach.  

The Confusion Matrix (Witten et al. 2011) contains information about actual 

and predicted diagnosis done by the proposed system and it is defined as 

follows:  

 Predicted 

Needs 
Maintenance 

No 
Maintenance 

A
ct

u
a

l Had 
Maintenance 

TP FN 

No 
Maintenance 

FP TN 

 True Positive (TP): actual maintenance correctly predicted;  

 False Positive (FP): incorrectly predicted as Needs Maintenance;  

 False Negative (FN): incorrectly predicted as No Maintenance;  

 True Negative (TN): correctly predicted as No Maintenance;  

An algorithm was written to count TP, TN, FP and FN for every pitch 

corrective maintenance activity in the testing WF. The Pesudo-code is shown in 

Table 5.3.  
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Define H to represent Prognosis Horizon 

Declare H = 7, 14 or 21 days;  

For each WT in the WF 

      For each “pitch corrective maintenance record” in the selected WT, marked as Mm 

            If the interval between Mm and the previous M is > H days, as shown in Figure 5.7(a). 

                    Range 1 and Range 2 are found for the Maintenance Mm. 

                           1) Within Range 2, results from the first positive to Mm are marked as TP; 

                           2) Remainder results in Range 2 are marked as FN; 

                           3) Any positive result in Range 1 are marked as FP; 

                           4) Any negative result in Range 1 are marked as TN; 

            Else if the interval between Mm and the previous M is <= H days, as shown in Figure 5.7(b). 

                      Range 2 is found for the Maintenance Mm. 

                           1) Within Range 2, results from the first positive to Mm are marked as TP; 

                           2) Remainder results in Range 2 are marked as FN; 

End 

Table 5.3: Pesudo-code for counting count TP, TN, FP and FN. 

The two different situations are described in Figure 5.7: 

T0 Tm-21 Tm Tn

Mm

 Range 2    Range 1   

Prognosis Horizon

e.g. 21 days

n > m > 0

Tk-21 Tk Tm

Mk

 Range 2   

Prognosis Horizon

e.g. 21 days

n > m > k > 0

Mm

Tn

Less than

 e.g. 21 days

 Range 2   

(a) 

(b)

 Range 1   

T0

 

Figure 5.7: Two different situations to count TP, TN, FP and FN. 

 Figure 5.7 (a): Maintenance    is far away from the previous maintenance 

and a Range 1, which represents the period from the end of previous 



5. Test Results & Validation 

 

134 

 

maintenance to the beginning of the current potential Prognosis Horizon 

(Range 2), can be found;  

 Figure 5.7 (b): Maintenance     is close to the previous maintenance     

with the interval less than potential Prognosis Horizon. In this case, Range 

1 is not available for the Maintenance   .  

In addition, a further in-depth analysis of the data is presented utilising 

(Witten et al. 2011):   

 Accuracy (ACC) is the proportion of the total number of predictions that 

are correct.  This is one of the key aspects to determine the success of this 

approach.  

 Error rate (ER) is the proportion of the total number of predictions that are 

wrong. Usually,         .  

 Recall (RC) is the proportion of actual maintenance cases that are 

predicted as positive. This value need to be high because an undetected 

failure might result in a catastrophic fault.  

 Precision (P) is the proportion of the predicted positive cases that are truly 

positive. This value need to be as high as possible in order to void the 

additional cost caused by false maintenance request.  

 F-measure (F) is a trade-off between precision and recall. It has been 

widely applied to identify the optimal setting of a classification system. 

These are defined as follows:  
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The Confusion Matrix analysis results of the proposed approach applied to 

the tested WF are shown in Table 5.4.  

 ACC ER RC P F 

T:0.3 WS:6 88.3% 11.7% 37.0% 76.4% 49.9% 

T:0.3 WS:48 86.0% 14.0% 22.6% 66.1% 33.7% 
T:0.5 WS:18 86.4% 13.6% 21.2% 72.8% 32.8% 
T:0.8 WS:6 86.6% 13.4% 19.6% 79.3% 31.4% 

Potential Prognostic Horizon = 7 days 

 ACC ER RC P F 

T:0.3 WS:6 85.1% 14.9% 48.2% 89.2% 62.6% 
T:0.3 WS:48 80.6% 19.4% 30.7% 83.9% 45.0% 

T:0.5 WS:18 81.0% 19.0% 30.6% 88.5% 45.5% 
T:0.8 WS:6 81.0% 19.0% 29.0% 91.9% 44.1% 

Potential Prognostic Horizon = 14 days 

 ACC ER RC P F 

T:0.3 WS:6 85.9% 14.1% 62.2% 94.4% 75.0% 
T:0.3 WS:48 79.4% 20.6% 43.3% 92.1% 58.9% 

T:0.5 WS:18 79.3% 20.7% 41.8% 94.4% 58.0% 
T:0.8 WS:6 78.9% 21.1% 39.4% 96.2% 55.9% 

Potential Prognostic Horizon = 21 days 

Table 5.4: Confusion matrix analysis results with different potential prognosis horizons. 

The table shows the high accuracy and precision of the proposed approach. 

It also can be seen that the precision is increase with the prognostic horizon out 

to 21 days, whilst the accuracy falls slightly. In addition, recall was improved 

greatly along with the increase of the potential prognostic horizon. Finally, the 21 

days potential prognostic horizon is found reasonable as the error rate doesn’t 
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increase very much with the Recall, Precision and F-measure are improved 

greatly. The optimal Threshold and Window Size are 0.3 and 6 respectively in 

terms of Accuracy, Recall and F-measure. However, in terms of Precision, the 

optimal Threshold and Window Size are 0.8 and 6 respectively.  

5.2.5. Result Conclusion 

From the above results we can draw the following conclusions:  

 The proposed approach using an APK-ANIFS on SCADA pitch signals  

gave significant warning of pitch faults with a prognostic horizon up to 21 

days, depending on the window size and threshold;  

 SCADA pitch alarms also detected pitch faults but counting them gave 

very little or no prognostic horizon of impending pitch faults;  

 Confusion Matrix analysis of the SCADA signal analysis has shown that 

regardless of window size and threshold the precision of prediction 

increases the prognostic horizon out to 21 days, whilst the accuracy of 

detection falls slightly;  

 These results all suggest that whilst SCADA alarm analysis may help to 

identify pitch fault root causes they cannot predict faults, whereas SCADA 

signal analysis using APK-ANFIS gives good prediction with a prognostic 

horizon up to 21 days, a valuable period for WF operators to repair 

notified pitch faults. 

5.3. Test on Mitsubishi WTs 

The proposed method has also been applied to Mitsubishi WTs of different 

technology to Alstom WTs also utilising a different SCADA system to collect 

data. Parts of this work were delegated to two Durham Master’s students from 

January-August 2013 (Norevik 2013; Xie 2013).  
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5.3.1. Brazos Wind Farm and the Available Data 

The Brazos WF is located in Borden and Scurry counties in Texas, US 

(Wikipedia 2013), as shown in Figure 5.8. It has 160 Mitsubishi 1000 WTs, each 

rated at 1MW fixed speed, variable pitch with hydraulic pitch-to-stall control. 

The WF project was completed in December 2003 supplying approximately 

30,000 homes.  

(a) (b)  

Figure 5.8: Brazos Wind Farm (a) View of Wind Farm; (b) Location; Source from 
(Wikipedia 2013) 

The data consists of SCADA signals, Maintenance Log (Monthly Reports), 

Met Mast data and WT locations. Two different SCADA systems were installed 

in this WF, named Type 1 and Type 2, shown in Table 5.5. All Mitsubishi WTs’ 

historical SCADA data were available from 31/May/2004 to 24/Nov/2006. 

Type Installed at Brazos in WTs Data Description 

1 WTs A12-18 and A33  10 minutes interval; 

 60 channels; 

 No alarm data; 

2 Rest of WTs  10 minutes interval; 

 60 channels; 

 Has alarm event data, recorded 
as EventDefnID and EventDesc; 

Table 5.5: SCADA systems in Brazos WF. 
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Most of the general signals, such as wind speed, blade angle, rotor speed, 

power output etc., are provided with Max, Min, Mean and Standard Deviation 

value by Mitsubishi WT’s SCADA system. However, by comparison to the 

Alstom SCADA system, the Mitsubishi SCADA system does not record the blade 

torque or ram force signal, which is one of the most valuable WT pitch system 

signals. In addition, the Mitsubishi SCADA system records overall blade angle, 

assumed aggregated from the all three blade angles, whereas the Alstom SCADA 

system records each blade angle signal separately. Moreover, no independent 

SCADA alarms are available in Mitsubishi WT SCADA Type 1, but the 

Mitsubishi SCADA Type 1 system has alarm information to indicate the WT 

state, which is called event and measured every 10 minutes. By analysing the 

Mitsubishi SCADA Type 1 data of 152 WTs over 2 years, 183 identical events or 

alarms were found. Among them, 16 were relevant to pitch system, as shown in 

Table 5.6.  

EventDefnID EventDesc 

1595 F04: Blade pitch angle signal fault 

1603 F12: Blade pitch control error large 

1604 F13: Blade pitch control fault 

1605 F14: Pitch transducer fault 

1615 F24: Pitch hunt Fault 

1640 F49: Blade pitch slow 

1641 F50: Actual pitch error large 

1673 F82: Blade pitch failure at the test mode 

1705 A14: Pitch Span Data Illegal 

1715 A24: Pitch hunt Alarm 

1726 A35: Pitch angle diff. large (auto stop) 

1759 Blade Realignment 

1779 Blade Repair 

1791 Blade Inspection 

1825 Lightning Damage Blade 

1832 A14:Pitch Span Data Illegal 

Table 5.6: Pitch Alarms in Mitsubishi WT. 
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The maintenance log for Mitsubishi WTs was reported monthly and saved 

in PDF format. The monthly report has a list of the top non-manufacturer and 

manufacturer downtimes. However, the records are unclear, and don’t show the 

exact start and end date for each individual maintenance activity, increasing the 

difficulty of researching the cause and effect of Mitsubishi pitch unreliability.  

Met Mast and WT location data were available from Mitsubishi WTs. They 

are very useful as the power generation can be estimated from the Met Mast data 

and the performance of a WT can be checked against neighbouring WTs. 

However, these tasks are not included in this study and will be considered as 

further works. 

5.3.2. Data Preparation & Selection 

This study intended to apply the proposed APK-ANFIS approach on the 

pitch data from Mitsubishi WTs to confirm the effectiveness of the proposed 

approach on a different WT and SCADA system data. As has been noted in 

Section 5.3.1, the Mitsubishi SCADA System does not record blade torque or ram 

force signal, therefore only 3 CCFs can be considered for Mitsubishi WTs rather 

than the 4 CCFs for Alstom WTs. The 3 CCFs are power curve, rotor speed curve 

and pitch angle curve.   

The data selection and testing process in this research relies on the 

maintenance logs, but Mitsubishi WT maintenance logs are unclear. Thus an 

approach needed to be developed to identify the exact maintenance period for 

each individual maintenance activity. By analysing monthly reports, two 

downtime categories were found useful, however only WT manufacturer 

downtime is relevant to this research, as shown in Figure 5.9. By looking in detail 

at the corresponding SCADA data, an approach is proposed by the author to 

identify pitch maintenance period, as described below and shown in Figure 5.10  
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 By searching the keyword “Pitch” in the EventDesc, “Manufacturer” in 

the DTDesc and “Maintenance” in the AvDesc, as shown in Figure 5.9; 

 

Figure 5.9: Mitsubishi WT manufacturer downtime 

Maintenance

consecutive

 

Figure 5.10: Approach used to find the exact pitch maintenance period 

Using above approach, 5 typical pitch faults were found and shown in 

Table 5.7 and they will be used for the training dataset. In the actual data 

selection process, SCADA noises signals, such as “release to run” and “WT shut 



5. Test Results & Validation 

 

141 

 

down” were removed to avoid false identifications. A labelling procedure, 

mentioned in Section 4.2.3, was applied to the 5 known pitch faults. By applying 

the labelling procedure for all 5 known pitch faults and aggregating them 

together, 4,790 sets of data were collected.  

Table 5.7: Five Mitsubishi pitch fault cases. 

5.3.3. Training & Training Result 

A similar training procedure was applied to this Mitsubishi study as was 

applied to the Alstom study. The generalised bell MF was selected with giving 

the minimum value 0.01 and maximum iteration 200. In order to find the optimal 

structure for each individual APK-ANFIS, a batch test with different numbers of 

MFs for each input were examined. Finally, the optimal structures were chosen, 

as shown in Table 5.8:  

APK-ANFIS model Optimal Structure 

Wind Speed vs. Rotor Speed 3-by-3 

Wind Speed vs. Blade Angle 3-by-3 

Wind Speed vs. Power Output 3-by-3 

Table 5.8: The optimal APK-ANFIS structure. 

After that, the data are partitioned into training and testing sets. Cases 1-4 

provided the training data and Case 5 was used to test the trained model. Its 

success at actual outputs that are as close as possible to the desired outputs 

determines how well the APK-ANFIS has learned or captured the relations 

between the inputs and outputs. Finally, the output surfaces generated by 

individual trained APK-ANFIS models are shown in Figure 5.11. The surface 

chart clearly demonstrates that abnormal data will give a large output, close to 1 

WT Case  Generating Fault Maintenance After Maintenance 

A01 Case 1 01/04/2006 ~ 26/04/2006 26/04/2006 ~ 27/04/2006 27/04/2006 ~ 05/05/2006 

A19 Case 2 15/05/2005 ~ 05/06/2005 05/06/2005 ~ 10/07/2005 10/07/2005 ~ 15/07/2005 

A21 Case 3 01/01/2005 ~ 10/01/2005 10/01/2005 ~ 10/01/2005 10/01/2005 ~ 16/01/2005 

A24 Case 4 18/06/2004 ~ 01/07/2004 01/07/2004 ~ 02/07/2004 02/07/2004 ~ 08/07/2004 

A26 Case 5 01/06/2005 ~ 09/06/2005 09/06/2005 ~ 09/06/2005 09/06/2005 ~ 13/06/2005 
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and shown as “Hill”, while normal data will give a small output, close to 0 and 

shown as the “Valley”.  

 

Figure 5.11: Output surfaces generated from the trained APK-ANFIS models. 

5.3.4. Fault Prognosis using Proposed Approach 

The trained system was tested on the pitch data from the other 22 Brazos 

WTs to exam its fault prognosis ability. In the data selection procedure of the 22 

WTs, SCADA noises signals were removed to avoid false identifications. During 

the procedure, almost one sixth of the data were found to be “Release to run” 

and most of them with good wind speed. We conjectured that this is due to the 

low demand from the grid and high wind power availability so WF operators 

have curtailed their WTs.  

For simplicity, the potential Prognosis Horizon was given 21 days as it is 

likely to produce a better result. Window Size 3 and 6, represent 0.5 and 1 hour 

intervals respectively, were chosen and the corresponding Threshold was given 

as follows:  

Window Size Threshold 

3 0.5 

6 0.3 

Note that larger applied Window Size and Threshold would produce better 

warning but were impractical for this data.  
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A similar algorithm to Table 5.1 was applied to Mitsubishi pitch data from 

the 22 WTs. Finally, the prognosis results are shown in Figure 5.12. The result 

shows that the proposed method does not give significant pitch fault warning. 

However, the result still demonstrates that the proposed approach can be used 

for WT pitch fault detection, even on a WT of different technology and a different 

SCADA system. 

 

Figure 5.12: Plot of distribution of SCADA Signals prognosis horizon in days 

5.3.5. Confusion Matrix Analysis 

The Confusion Matrix analysis was used to evaluate the fault prognosis 

results. The method, as described in Section 5.2.4, was applied and the results are 

shown in Table 5.9. According to Table 5.9, the two results are very close, but the 

result from Window Size 3 and Threshold 0.5 is better as it has higher accuracy, 

recall and precision. In general, the evaluation using Confusion Matrix analysis 

has demonstrated the proposed approach gives high accuracy and precision. 

However, by checking against to the number of pitch faults, we found the high 

accuracy and precision is largely contributed by normal data as the Mitsubishi 

WT experiencing less pitch faults.  

 ACC ER RC P F 

T:0.5 WS:3 91.5% 8.5% 34.0% 96.0% 50.2% 

T:0.3 WS:6 91.2% 8.8% 32.0% 91.0% 47.3% 

Table 5.9: Confusion Matrix analysis results with Potential Prognostic Horizon = 21 
days. 
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5.3.6. Result Conclusion 

In this study, a similar system was built and tested on Mitsubishi WTs to 

show the generalised effectiveness of the proposed APK-ANFIS approach. 

However, the results from Mitsubishi WTs do not give significant pitch fault 

warnings. Although higher accuracy was obtained from the Confusion Matrix 

analysis, this is due to the Mitsubishi WTs experiencing less pitch faults and 

accuracy is being contributed mostly by normal data.  

5.4. Comparison of Alstom & Mitsubishi WT Results 

5.4.1. Prognostic Horizon Results 

The APK-ANFIS approach has been applied to pitch data from both Alstom 

& Mitsubishi WTs. The results are shown in Table 5.10 and plotted in Figure 5.13, 

where the effective prognostic horizons of the two methods can be seen. 

 

Table 5.10: Prognostic Horizon Results. Numbers represent the number of detected pitch 
maintenance activities. 
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Mitsubishi 

Results

 

Figure 5.13: Prognostic Horizon Comparison 

Figure 5.13 shows that APK-ANFIS gives a good fault prognosis horizon 

from the Alstom data but not from Mitsubishi data. By reviewing this study, we 

believe Mitsubishi data has the following difficulties, which have a big impact to 

the prognosis results:  

 The Mitsubishi Maintenance Log is unclear having a big impact on data 

selection. The Monthly Reports did not give exact start and end dates for 

each corrective maintenance;  

 The Mitsubishi SCADA System does not record blade torque or ram force 

signal, which is one of the most valuable WT pitch system signals. 

 About one sixth of the Mitsubishi WT data used for Fault Prognosis 

testing shows “Release to Run” with good wind speed but WTs not 

operating, probably due to curtailments at times of low grid demand. 

 However, the APK-ANFIS worked satisfactorily on an entirely different 

WT pitch technology.  



5. Test Results & Validation 

 

146 

 

5.4.2. Confusion Matrix Results 

The Confusion Matrix analysis results are shown in Table 5.11 below: 

 

Table 5.11: Confusion Matrix analysis results. 

The Mitsubishi data shows higher accuracy than Alstom because the 

Mitsubishi WTs experienced less pitch faults and therefore accuracy is 

contributed primarily by normal data.  

5.5. Chapter Summary 

This chapter has described the methodology used to apply the proposed 

approach to the pitch data from two different designs of WTs, manufactured by 

Alstom & Mitsubishi, with two different types of SCADA system, demonstrating 

the adaptability of APK-ANFIS for application to variety of technologies.  The 

results were further evaluated by Confusion Matrix analysis to check the validity 

of the results. A comparison study of Alstom & Mitsubishi results was also 

made.  

The results from Alstom WTs have shown significant warning of pitch 

faults with a long prognostic horizon up to 21 days, depending on window size 

and threshold. However, results from Mitsubishi WTs did not give good fault 

prognosis horizon, but still showed strong fault detection ability. We believed 

the results from the Alstom WTs proved more convincing than from the 

Mitsubishi machines. This was primarily because of poor clarity in the 
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Mitsubishi Maintenance records, lack of an important pitch signal and the effects 

of curtailment, rather than noise in the variable-speed pitch-to-feather/stall 

control. Both Confusion Matrix analysis results have shown high accuracy and 

precision. Among them, the Mitsubishi results showed higher accuracy because 

the Mitsubishi WTs experiencing less pitch faults and therefore accuracy is being 

contributed mostly by normal data. 

The next chapter discusses how the proposed system meets the aim of this 

research and lists the advantages of the proposed approach. A summary of novel 

contributions from this research and the further works are also presented. 
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Chapter 6.  

Discussion, Conclusions and Further 

Works 

 

6.1. Discussion 

6.1.1. Meeting the Research Aim 

As has been stated in Chapter 1, the aim of this research was to develop an 

automated on-line fault prognosis system for WT monitoring using SCADA data. 

This objective has been achieved in two main areas.   

The first area is the development of the mechanisms used to interpret the 

raw SCADA data. This objective is achieved by using APK-ANFIS and the four 

CFs. The use of APK-ANFIS has enabled the system to inherit the interpretability 

presented in FIS. Therefore, any observed numerical data can be transformed 

into linguistic and heuristic terms, which are normally expressed in a form of an 

if-then rule, for example “If WT power output is high and wind speed is low, 

then a possible fault is detected”. The four CFs, as described in Section 4.2.1, 

reflect the physical properties of a running WT. In addition, each time, a new 

observation from SCADA system can also be interpreted through displaying the 

data on the output surface of the system, for example an observation in Table 6.1 

is shown in Figure 6.1.  

Wind Speed 
(m/s) 

Rotor Speed 
(rpm) 

Blade Angle 
(degree) 

Motor Torque 
(kN) 

Power Output 
(kW) 

15 19 14 38 1680 

Table 6.1: An example of an observation from the SCADA system 
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(a) (b)

(c) (d)
 

Figure 6.1: An observation, as shown in Table 6.1, is displayed on the output surface of 
the proposed system. 

The second area is the automation of the on-line fault identification. As 

described in Section 4.2.2, the proposed fault diagnosis procedure consists of 4 

modules: Data Acquisition, Feature Extraction, Multiple Diagnosis and Fault 

Diagnosis Result. Each of them is automated, so that the whole system should 

have the ability to work automatically. In addition, the training procedure of this 

proposed system takes quite a long time, but once the system is trained, each 

module doesn’t need much computational cost. In other word, the inputs 

variable of the trained system can be taken in real-time and a diagnosis output 

will be obtained in real-time too.  

6.1.2. Advantages of the Proposed Approach 

SIMAP (Garcia et al. 2006), the Venn diagram (Qiu et al. 2012), Alarm 

Pattern Recognition (Chen et al. 2011), data-driven (Kusiak and Verma 2011) and 

normal behaviour models (Schlechtingen et al. 2012) approaches were found to 

be similar to this proposed approach. Compared to them, the proposed approach 

has shown the following advantages:  
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 Better interpretability: The latest development of ANFIS, the APK-ANFIS 

is also a hybrid system that contains the advantages of both ANN and FIS; 

therefore the proposed approach will inherit the interpretability present in 

FIS.  

 Better rationalisation of the data: This is because the four CCFs, as 

mentioned in Figure 4.4, reflect the physical properties of a running WT. 

 Incorporation of domain knowledge: The latest developments of ANFIS 

allow experts to introduce domain knowledge into the ANFIS training 

procedure and it has better interpretability for the never-seen input 

conditions.  

 Move convincing prognosis result: The prognosis result is more 

convincing because this approach has been applied to data from two 

different designs of WTs. In addition, the Alstom results were also 

compared to an alarm approach to show its advantages.  

 More feasible online fault prognosis: The input variables of this 

proposed approach are taken in real-time and a prognosis output is 

obtained in real-time too, as shown in Figure 4.5 & 4.13.  

6.2. Conclusions 

The monitoring of WT can allow prevention of downtime, a longer 

operational life and a reduction in the cost of energy over WT lifetime. As pitch 

system is a vital part of the modern variable speed WT and few successful WT 

pitch fault detection systems were found in the literature, this research was 

focused on analysing WT pitch faults with the objective of developing an 

automated on-line fault detection approach. The author only considered AI 

approaches since AI techniques have increasingly been used in the field of FDD 
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and the other analytical CM approaches were already being considered by other 

Durham University researchers.  

This thesis has investigated a number of AI techniques, including 

supervised and unsupervised learning, along with some examples detailing 

applications of how they can be utilised in the field of WT FDD. In the end of this 

investigation, the APK-ANFIS was selected to research in further as it has better 

interpretability and allows domain knowledge to be incorporated. After that, a 

fault prognosis procedure using APK-ANFIS and four CCFs was proposed. The 

data of the six known WT pitch faults were labelled and used to train the 

proposed system with a-priori knowledge incorporated.  

The proposed approach using APK-ANFIS have been applied to the data 

from two different designs of WTs, manufactured by Alstom & Mitsubishi, with 

two different types of SCADA system, demonstrating the adaptability of APK-

ANFIS for application to variety of technologies. The results from Alstom WTs 

have shown significant warning of pitch faults with a long prognostic horizon up 

to 21 days, depending on window size and threshold. However, results from 

Mitsubishi WTs did not give good fault prognosis horizon, but still showed 

strong fault detection ability. The author believes the results from Alstom WTs 

proved more convincing than from the Mitsubishi WTs. This was primarily 

because of poor clarity in the Mitsubishi Maintenance record, lack of an 

important pitch signal and the effects of operational curtailment.  

In addition, the Alstom result was compared to a common alarm approach 

applied on the same data. The comparison result suggested that whilst SCADA 

alarm analysis may help to identify pitch fault root causes they cannot predict 

faults, whereas SCADA signal analysis using APK-ANFIS give good prediction. 

Moreover, both results from Alstom and Mitsubishi WTs were analysed using 
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Confusion Matrix analysis. The analysis result showed that the proposed 

approach gave high accuracy and precision. Among them, the Mitsubishi results 

showed higher accuracy because Mitsubishi WTs experienced less pitch faults 

and therefore accuracy is being contributed mostly by normal data.  

In summary, the novel contributions delivered by the research are:  

 This research has introduced a fault diagnosis model using AI technique 

and demonstrated that the proposed approach gives prognostic warning 

of pitch faults up to 21 days. 

 The robustness and effectiveness of this approach have been 

demonstrated by: 

o  Applying the proposed approach to pitch data from two different 

designs and locations of WTs. 

o Results were evaluated using Confusion Matrix analysis to show 

the validity. 

 Considerable larger sizes of WT data were used in this research, compared 

to previous work. There were 26 Alstom WTs with 63 WT-year data and 

22 Mitsubishi WTs with 53 WT-year data.  

 Online fault diagnosis is possible if the input variables of this proposed 

approach are taken in real-time and a diagnosis output is obtained in real-

time too.  

 In addition, the robustness of the system was improved by the strong 

interpretability of the fault diagnosis model from two different aspects:   

o Domain knowledge incorporation: APK-ANFIS allows experts to 

introduce domain knowledge to the system model. 

o Rationalisation of the Data: four CCFs, as mentioned in Section 

4.2.1, reflect the physical properties of the running WT.    
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In conclusion, this research has presented a fault diagnosis model using 

APK-ANFIS and demonstrated that the proposed APK-ANFIS approach gives 

prognostic warning of pitch faults up to 21 days. The SCADA signal analysis 

using APK-ANFIS has strong potential to provide automated online WT fault 

detection and prognosis.  

6.3. Further Works 

The following areas have been identified as possible works for further 

research. 

6.3.1. Improved APK-ANFIS for Curtailed Situations 

In real operation, the WF operators have to curtail the WTs’ power output if 

there is a low grid demand. This manual intervention will result in some WT’s 

not performing to their factory supplied specification. In this situation, the 

possible faults are much more difficult to be identified. For simplicity, the 

proposed approach currently does not consider this situation and the test on 

Mitsubishi WTs has shown the impact of this problem. Therefore, it would be 

beneficial if the proposed APK-ANFIS approach could be improved to consider 

its operation under the effect of WT curtailment.  

6.3.2. Modular Architecture 

It would be beneficial to have a completed APK-ANFIS system with tasks 

organised in a modular architecture, as presented in SIMAP. Four modules are 

suggested by the author as follows:  

 A pitch Health Condition Assessment Module could be added to evaluate 

on-line health condition of WT pitch systems;  
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 A diagnosis Expert Module could be developed to identify the possible 

failure modes;  

 A predictive Maintenance Scheduling Module could be added with the 

goal of scheduling WT maintenance actions optimally;  

 A maintenance Effectiveness Assessment Module could be developed to 

measure the effectiveness of each applied maintenance action.  

In addition, the WT converters should be studied in the way set out for 

pitch systems in this thesis and organised as a converter health condition 

assessment module. It was known from ReliaWind project (Wilkinson et al. 2010) 

that the pitch system & converters were major fault items. The converter contains 

many similarities with the electric pitch system since it also consists of a power 

electronic converter, rich in SCADA alarm and signal data. It is also known that 

in offshore WTs the convert is a significant source of downtime, primarily due to 

the logistic delay in attending many minor electronic defects.  

6.3.3. More Data and Test on more Modern WTs 

For the research carried out in this thesis, only four CFs (five signals in 

total) were applied and 5-6 pitch fault cases were studied. It would be beneficial 

from machine learning point of view to have more related signals and data to be 

introduced into the model and this is under discussion with our industrial 

partners DONG Energy. However, over-fitting needs to be solved if too many 

signals and data are used.   

In addition, in order to demonstrate the adaptability of the proposed 

approach, more testing on different designs and locations of modern WTs are 

necessary. The use of data from different locations would serve the purpose of 

determining whether the approach can adjust to different environmental 
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conditions. Data from different designs of WT would serve the purpose of 

determining how robust the proposed approach is to do the fault prognosis. 
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Appendices 
A.   Research Facility 

The ReliaWind Server environment incudes a HP Server, Backup Devices, 

Uninterruptable Power Supply (UPS), and software. 

 

A.1   ReliaWind Server 

The ReliaWind Server is a powerful computer that used to store data and 

provide powerful computing services across the department network. 

Server Type: Rack Mountable – 2U 

Server Model: HP ProLiant DL180 G6 

Processor: 2 x Intel Xeon E5620 (2.4 GHz, 4 cores, 8 Threads, 12M 
cache) 

Memory: 48GB DDR3-1333 MHz (4 x 4GB + 4 x 8GB) 

Hard Drive: 4 x 2TB 3.5” 7.2K rpm (Hot Plug)  

2 x 160GB 3.5” 7.2K rpm (Hot Plug) 

Power Supply 
Unit: 

2 x 750W PSU (Hot Plug) 

Warranty: HP 3 years next business day warranty. 

Scalability: Up to 2x 6 core Processor 

Up to 8 x 3.5” HD = 16TB 

Up to 192GB memory 

Be able to connect with Storage Area Network (SAN) or 
Network Attached Storage (NAS) 

Table A.1.1: ReliaWind Server Specification 
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A.2  Backup Device 

In order to avoid a data loss event, backup copies of the data will be used to 

restore the original. For this research, two external hard drives are used to 

backup data. 

Type: WD My Book Edition II 4TB Dual Drive Network Storage 
(3.5”) 

Brand: Western Digital 

Capacity: 2 x 4TB = 8TB 

Table A.2.1: Backup device specification 

A.3  Uninterruptable Power Supply 

The UPS is an electrical apparatus that provides emergency power to the 

ReliaWind Server when the input power source fails. 

Model: Smart-UPS RM 1000VA USB 2U  

Brand: APC 

Type: Rack-Mountable – 2U 

Power 
Capacity: 

600 Watts / 1000VA 

Voltage: 230V 

Output: 4 IEC Power Sockets 

Table A.3.1: UPS specification 
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A.4  Main Software 

The Table 2.7 lists the main software installed on ReliaWind Server. 

Application Software Name License 

Operating 
System: 

Windows Server 2008 R2 Enterprise edition – 
64 bit 

KMS 

Database: Microsoft SQL Server 2008 R2 Enterprise 
edition – 64 bit  

KMS 

Anti-Virus 
Software: 

McAfee Enterprise edition Provided 
by ITS 

Matlab: Matlab R2010a – 64 bit  Site 
license 

Mathematica: Mathematica 8 – Higher Education 2 years 
license 
from 
Mar/2011 

Table A.4.1: Software installed on ReliaWind Server 

 Windows Server 2008 R2 Enterprise edition improves application 

responsiveness for worker who access content from servers in remote 

locations. In addition, Millions of application available for windows OS, easy 

configuration & management, easy to construct the connection with our 

existing client OS (Windows) have led us to choose Windows Server 2008 R2 

Enterprise edition. 

 SQL Server 2008 R2 Enterprise edition support up to 524PB database, memory 

utilization 2TB, powerful data query ability, and no hidden cost. It is the 
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cheapest Enterprise level database solution among DB2, Microsoft SQL 

Server and Oracle. 

 McAfee is one of the best anti-virus software. The Enterprise edition 

significantly increases the security confidence.  

 Matlab is a numerical computing environment and a 4th generation 

programming language. It allows matrix manipulations, plotting of functions 

and data, implementation of algorithms, and interfacing with other 

programming language, e.g. C, C++. The 64 bit version of Matlab allows for 

much larger memory usage, up to 2^64 bytes (Unlike 32-bit which is limited 

to 2^32 bytes = 4GB).  

 Mathematica is a computational software program used in scientific, 

engineering, and mathematical fields and other areas of technical computing. 
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B   Data Visualisation Tool 

The WT Data Visualisation Tool is a Client/Server-based application. It is a 

unified platform developed by the author to assist experts to conduct efficient 

laboratory research on WT reliability data. The Server side of this application is 

placed on the ReliaWind Server; it is used to handle data and process Client 

requests. The Client side is a graphical user interface (GUI) - data visualisation 

interface, which allows users to request the Server’s content or services, for 

example raw data, data plot and data aggregation.  

The tool is fairly easy to use. Simply double-click 

“WT_VisualizationTool.exe” to launch it. Then, choose a Data Source from the 

pop window like Figure B.1 and click Launch. 

 

Figure B.1: Pop window. 

On the Main Interface, choose any provided chart type from top left corner 

to display the data source. Other functionalities like Print/Export Data, Zoom 

in/out, Refine, and Data Aggregation are provided. 
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Figure B.2: WT Data Visualisation Tools – Main Interface. 

Figures B.3 – B.5 show some demonstrations of the WT Data Visualisation 

Tool. 
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Figure B.3: Alstom Line Plot. 

 

Figure B.4: Scatter Plot and Line Plot. 

 

Figure B.5: Alarm Plot. 
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C   Raw Mitsubishi SCADA blade data 

 

 

Figure C.1: Original plot of wind speed vs blade angle using Mitsubishi data, where the 

blade angle is negative because in fixed speed, pitch-controlled WT the blades operate in 

pitch-to-stall. 

 


