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Abstract

The aim of this thesis is to present novel techniques for reasoning

about the dynamic and static semantics of concurrent programs that

use locks and transactions to isolate accesses to shared memory. We

use moverness to characterise the observational semantics of reads

issued by locks and transactions under the simpler semantics of free,

left, right and both movers. The second contribution is guaranteed

transactions which are a safer alternative to locks and the privati-

sation/publication idioms for specific scenarios. Guaranteed trans-

actions facilitate a simpler pessimistic coordination semantics than

locks, but offer most of the conveniences that have made transactions

appealing. Finally, we present a static analysis for reasoning about

the isolation of a program that uses locks and transactions. If our iso-

lation algorithm determines that all the accesses issued by a program

are isolated, then the program is declared data-race-free.



Chapter 1

Introduction

1.1 Background

1.1.1 Chip Multiprocessors

Failure to economically address heat dissipation in uniprocessors has resulted

in industry adoption of chip multi-processors (CMP) [Olukotun et al., 1996].

Each CMP comprises a number of homogeneous processing elements (PE). By

contrast to the PE found in a uniprocessor, the PEs in CMPs consume less

power and dissipate less heat. Desktop PCs, laptops and most recent tablets and

smart phones comprise CMPs. The transition to CMPs has a large impact on

software. Designing software for the uniprocessor was relatively simple: solutions

were described as a sequence of linear commands, and every other year or so

the solution would receive a significant speedup [Schaller, 1997]. This sort of

design under present-day hardware gains little to no speedup [Sutter and Larus,

2005]. Exploiting CMPs requires a fundamental shift in software design: instead
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of focusing on linear execution (vertical scaling), we now focus our efforts on

partitioning work into tasks which can be distributed across the PEs of a CMP

(horizontal scaling). Figures 1.1 and 1.2 show vertical and respectively horizontal

scaling under CMPs. The goal of horizontal scaling is relatively simple: we would

like to design software in such a way that it can take advantage of all the PEs

of a CMP, irrespective of whether the CMP comprises four or four hundred PEs.

Software designs that embrace horizontal scaling can expect favourable speedups

as CMPs with larger quantities of PEs are released. For example, an algorithm

that scales horizontally can potentially run twice as fast on a CMP with four PEs

than it did on a CMP with two PEs, and so on. Linear speedups such as the

previous example are the gold standard for software targeting CMPs. In theory

CMPs are spawning an exciting era in computing: problems that were previously

the domain of supercomputing are now computationally tractable on consumer

grade hardware. However, as will shortly be illustrated, the correct design of such

programs using the current tools is steeped in technical idiosyncrasies, making

the task of exploiting CMPs in practice a difficult and error-prone task.

1.1.2 Threads

Horizontal scaling requires the use of threads [Butenhof, 1997] . Before the im-

portance of threads can be understood we need to describe their role in modern

operating systems. Let us assume we have a valid C program defined in the file

program.c which has the single method main. At the moment program.c is just

a text file. To create something the machine can understand we need to compile

and link program.c using the command CC program.c, where CC is a C compiler.
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CMP

Work

Processing
ElementsCompleted

Work

Execution

...

...

...

Figure 1.1: A vertically scaled program describes its computation as a linear
sequence of commands. This linear sequence can only utilise a single PE, irre-
spective of whether the other PEs of the CMP are being utilised.

Execution

...

... ... ... ...

...

... ... ... ...

...

CMP

Processing
Elements

Work

Completed
Work

Horizontally Partitioned Tasks

Figure 1.2: A horizontally scaled program describes its computation as a series
of partitioned tasks. A task is defined by a linear sequence of commands. Tasks
can be executed by the available PEs of the CMP.
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The result of the previous step is the binary image a.out. We do not need to

know the detailed contents of a.out, just that it contains the machine instruc-

tions that model the high-level commands defined in program.c. To execute our

program we issue a command such as ./a.out from a UNIX terminal. When we

issue this command the operating system performs a number of steps: creation

of a new process ; assigning virtual memory to the newly created process; load-

ing the binary image a.out into the process’s memory; and creation of a main

thread, so-called because it executes the user defined method labelled main. The

main method is often known as being the entry point due to it being the earliest

point where user defined commands are executed. Each thread entails a stack

and possibly some private memory known as thread local storage. The thread’s

stack facilitates method calls. A process has at least one thread, otherwise it can

perform no meaningful work.

1.1.3 Tasks

Each PE of a CMP can execute one thread at a time. The PEs of some CMPs,

such as those manufactured by Intel with Hyper-Threading [Intel, 2013a], can

execute two threads at a time. Utilising the PEs of a CMP requires a program to

partition its work into tasks. A task is described as a method and can be passed

to a thread to execute. A process that creates multiple threads during its lifetime

is said to be multi-threaded. The process that models the execution of program.c

is not multi-threaded as it comprises only the main thread. That is, the process

will only utilise one PE, even if several PEs of the CMP are available, just like

Figure 1.1. To better utilise a CMP our process needs to create additional threads
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and map tasks to those threads. The tasks delegated to these additional threads

may execute concurrently like in Figure 1.2. That is, each PE of the CMP may

execute a distinct thread of the process at the same time.

1.1.4 Thread Scheduling

Typically more threads than PEs exist. The job of an operating system’s thread

scheduler is to map threads to PEs. There are two types of scheduling approaches:

non-preemptive and preemptive. Under non-preemptive scheduling the threads

of a process utilise the CMP for as long as they need to execute; however, a

thread can voluntarily yield control of a PE if it wishes, e.g. it may yield while

waiting for some I/O to complete. Non-preemptive scheduling is a simple model of

cooperative computing but an unfair one. For example, a thread may infrequently

or never yield, starving other threads from utilising the CMP. In response, most

modern operating systems, including Linux, OSX and Windows, use preemptive

scheduling. A preemptive scheduler generally uses time quantums and domain-

specific heuristics to ensure that the PEs of a CMP are fairly shared between

the threads of processes. Under preemptive scheduling each thread is given a

time quantum, the maximum amount of contiguous time it may utilise a PE,

and a priority. A thread implicitly yields if it terminates within its allotted time

quantum. A preemptive scheduler is free at any time during a thread’s utilisation

of a PE to context switch it out in favour of a waiting thread. A context switch

generally entails: (1) saving the state of the thread currently utilising the PE;

(2) placing that thread in the waiting queue; and (3) mapping a thread from the

waiting queue to the now vacant PE. The heuristics used to select the next thread
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CMP

PE PE

Process

Thread 1 Thread 2 Thread 3

Thread Scheduler

Operating System

Thread 3
Wait Queue

Thread 1 Thread 2

Figure 1.3: Three threads contend utilisation of the CMP’s two PEs. Threads 1
and 2 are scheduled to utilise the CMP by the operating system’s thread sched-
uler; Thread 3 is placed in the wait queue.

to run and the technical details of context switching are irrelevant. However,

the fact that a thread can be usurped from utilising a PE at any time is very

important. Figure 1.3 describes a scheduling scenario with three threads from

the same process contending utilisation of a CMP with two PEs.

1.1.5 Accessing Shared Memory

The threads created during the lifetime of a process share the process’s virtual

memory. We will refer to this memory as shared memory. Executing a thread’s

task results in the thread issuing a sequence of low-level instructions. These

instructions are taken from the binary image a.out. For example, a thread that

increments the integer value of a variable x by one, described by the high-level
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command x := x + 1, is modelled by a sequence of low-level instructions, such as

the pseudo-instructions load x; push int 1; add; store x. Figure 1.4 shows

the operation of these instructions. There are two important concepts on display

here: (1) a high-level command is implemented as a sequence of instructions; and

(2) these instructions may issue accesses (reads and writes) to a process’s shared

memory, e.g. load x reads x and store x writes x. The low-level representation

of a high-level program’s commands, in conjunction with the operating system’s

preemptive scheduling, can result in a number of program defects exclusive to

multi-threaded programs.

load x 0

push_int 1 0
1

add 1

store x

x : 0

x : 1

Evaluation Stack

Shared Memory

Execution

Figure 1.4: Incrementing x’s value: load x pushes x’s current value onto the
evaluation stack; push int 1 pushes the integer literal 1; add pops the two values
on the stack and pushes the result of its addition; store pops the value off the
stack and stores it in x.

Figure 1.5 (a) gives a program where two threads increment the value of the

shared variable x. We say a variable is shared if it resides in a process’s shared
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x := x + 1 x := x + 1

Int x;
x := 0;

Thread 1 Thread 2
load x
push_int 1
add
store x

Int x;
x := 0;

Thread 1 Thread 2
load x
push_int 1
add
store x

(a) (b)

Figure 1.5: (a) Threads 1 and 2 increment the shared variable x. The double
bars || denote the commands are executed concurrently. (b) Is the instruction
representation of (a). Instructions are executed as described in Figure 1.4. Each
thread has its own evaluation stack.

load x

push_int 1
add

store x

Int x;
x := 0;

Thread 1 Thread 2

load x
push_int 1

add

store x

Figure 1.6: Scheduling of Figure 1.5 (b) that leads to a data race on x. Thread
1 reads 0 as the value of x, then is preempted; Thread 2 reads 0 as the value of
x and subsequently increments and writes 1 to x in shared memory; Thread 1
resumes execution and writes 1 to x.

memory. Recall that each thread of a process may access the data stored in its

shared memory. Figure 1.5 (b) shows the low-level representation of Figure 1.5

(a). Each instruction takes place as an indivisible step: a preemptive scheduler

cannot context switch a thread while it is executing an instruction; however, it

can context switch a thread that is between executing instructions. Figure 1.6

shows a possible concurrent scheduling of Figure 1.5 (b). Here, the scheduler tries
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to fairly share the uniprocessor’s single PE between two threads. The initial value

of x is 0, and each thread increments x by 1, so we expect to observe 2 for x’s

final value. However, we observe 1. Our program has been subject to a data race

[Unger, 1995]: the final value observed for x depends on the relative ordering of

the instructions issued by each thread. The order that instructions are issued is

dependent upon the operating system’s thread scheduler. It is possible we could

execute Figure 1.5 (a) several times on the same hardware and never observe 1 for

x’s final value. If our process comprised more threads, each incrementing x, then

the set of observable final values for x increases, and the schedules that reproduce

the set of incorrect values of x grows. Data races are often hard to detect, e.g. in

Figure 1.6 we observed 1 for the final value of x: logically this value is incorrect,

despite 1 being an integer. Data races become harder to detect when advanced

data types are used, e.g. user defined classes and data types which span multiple

words in size. A programmer, suspecting the presence of a data race, may seek

assistance from his language’s compiler and debugger. A compiler for Java and

C++ will provide no help. Success may be had with a debugger but only if he has

an idea of where the data race originated. Let us suppose our programmer knows

where to begin his search during a debugger session: he must still deal with the

preemptive scheduling of the operating system; moreover, it is possible that use

of the debugger affects access contention within the attached process due to the

overhead of the debugger’s instrumentation code.
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sync(x) {
  x := x + 1;
}

Int x;
x := 0;

Thread 1 Thread 2
sync(x) {
  x := x + 1;
}

Figure 1.7: Using locks to remove the data race in Figure 1.5 (a).

acq(x)

load x

push_int 1
add

store x

rel(x)

Int x;
x := 0;

Thread 1 Thread 2

acq(x)

load x
push_int 1

add

store x

rel(x)

Thread 2 waits for 
x to be acquirable.

Thread 1 acquires x, 
then increments x.

Thread 2 acquires x.
Thread 1 releases x, 
which is now acquirable.

Figure 1.8: A scheduling of the instructions that represent Figure 1.7. Acquisition
(acq) and release (rel) of x results in its increments being serialised. The final
value observed for x is 2.

1.1.6 Coordination

Preventing data races requires the use of coordination. When employed correctly

coordination facilitates thread exclusion.
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1.1.6.1 Locks

Mutual exclusion is facilitated by a binary semaphore [Dijkstra, 1968]. A binary

semaphore is known as a mutex. Let us use sync(v) { c } to mean that in order

to execute the program commands c we must have acquired the mutex v; when

c has completed executing v is released. A thread can acquire v if and only if

another thread has not already acquired it; v becomes acquirable upon its release

by the thread that currently has it acquired. Conceptually we can think of v as

being released before any user defined program commands are run. That is, v is

initially acquirable when the user’s program text is executed. Figure 1.7 shows a

version of Figure 1.5 (a) that uses the sync construct to remove the data race on

x. We say that Figure 1.7 is data-race-free (DRF). Figure 1.8 shows how sync

works at the instruction-level. We will refer to sync(v) { c } as a lock and

permit any variable v to be used as a lock’s mutex. The accesses issued by locks

in distinct threads are isolated if and only if the locks use the same mutex. Figure

1.7 showed how easy it was to remove the data race on x; by contrast, Figures

1.9 and 1.10 show how simple it is to get locking wrong. Figure 1.9 (a) has a

data race on x as thread 1 acquires x and then increments x; however, thread 2

issues its increment of x without having acquired x. Figure 1.10 (a) comprises a

data race on x as each thread’s lock uses a different mutex. Both Figures 1.9 (a)

and 1.10 (a) are semantically equivalent to the accesses issued by Figure 1.5. A

compiler will not warn the programmer of his failure to mutually exclude accesses

to x, despite being obvious that was his intention.

The problem with locks is that in most languages they are a library facility

[Butenhof, 1997; Oaks and Wong, 2004]. That is, a programming language does
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acq(x)

load x

push_int 1
add

store x

rel(x)

Int x;
x := 0;

Thread 1 Thread 2

load x
push_int 1

add

store x

sync(x) {
  x := x + 1;
}

Int x;
x := 0;

Thread 1 Thread 2
 x := x + 1;

(a) (b)

Figure 1.9: The increments of x are not isolated. Thread 1 issues its write of x

while protected on x; thread 2 writes x irrespectively.

sync(x) {
  x := x + 1;
}

Int x; Int y;
x := 0;

Thread 1 Thread 2
sync(y) {
  x := x + 1;
}

acq(x)

load x

push_int 1
add

store x

rel(x)

Int x; Int y;
x := 0;

Thread 1 Thread 2

acq(y)

load x
push_int 1

add

store x

rel(y)

(b)(a)

Figure 1.10: The increments of x are not serialised as each thread uses a different
mutex to isolate its write of x.

not semantically treat an access issued within a lock any different to one issued

outside of a lock. A programmer who works on a codebase that uses locks often
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relies on program comments to determine what lock or locks should be acquired

before accessing a particular bit of shared memory. These comments also often

describe the order mutexes are to be acquired in. Acquisition and release orders

are very important for mutexes. Figure 1.11 (a) shows a program where each

thread acquires the mutexes x and y in opposing orders. Here, the opposing

acquisition orders results in a program defect known as deadlock [Zöbel, 1983].

For example, consider the scheduling of acquire/release’s given in Figure 1.11 (b)

for the program in Figure 1.11 (a). Thread 1 acquires x then thread 2 acquires y.

Neither thread can make any subsequent progress until the other thread releases

their respective mutex. Unfortunately, neither thread can release their mutex

until the other thread releases theirs. Both thread’s will never make any further

progress. Deadlock can be considered a simpler defect to diagnose than a data

race. For example, in a debugger session we can observe that threads 1 and 2 are

making no progress.

1.1.6.2 Software Transactional Memory

Software transactional memory (STM) [Shavit and Touitou, 1995] is another form

of coordination. Under STM we issue accesses to shared memory using a transac-

tion. A transaction in STM is similar to a transaction under a relational database

management system (RDBMS). A transaction under a RDBMS exhibits the fol-

lowing properties: Atomicity – the effect of a transaction appears to take effect

as a single step or not at all; Consistancy – only committed transactions con-

tribute their effect to the underlying store; Isolation – transactional accesses are

isolated with respect to other transactional accesses; and Durability – the under-

lying store persists, irrespective of whether the program executing the transaction

13



acq(x)

acq(y)

Int x; Int y;
Thread 1 Thread 2

acq(y)

acq(x)

sync(x) {
  sync(y) {
    // ...
  }
}

Int x; Int y;

Thread 1 Thread 2
sync(y) {
  sync(x) {
    // ...
  }
}

(a) (b)

Figure 1.11: (a) The locks of threads 1 and 2 acquire x and y in reverse orders.
(b) A possible scheduling of (a): thread 1 acquires x; thread 2 acquires y; thread
1 tries to acquire y but fails as thread 2 has it acquired; thread 2 tries to acquire
x but fails as thread 1 has it acquired. Consequently, threads 1 and 2 block
indefinitely. That is, neither thread proceeds in its execution.

crashes, or if the host machine should be turned off for some reason [Bernstein and

Goodman, 1983]. The store is the abstract term we give to the physical storage

the transactional system interfaces with: transactions in RDBMSs interface with

a store that is designed exclusively for relational data (e.g., to optimise query

execution plans); by contrast, the store used by transactions in STM is shared

memory. At the moment we will discard technical details and simply state that

shared memory always resides in a machine’s random access memory (RAM).

The RAM of a machine is volatile – when a machine is turned off the contents of

RAM are cleared. STM, due to the volatility of RAM, does not support durabil-

ity. We will focus on STM. Under STM, if transactions issued by distinct threads

access the same shared memory, and one of those accesses is a write, then one

transaction will abort and the other will commit. Figure 1.12 (a) shows a DRF

version of Figure 1.5. Where, atomic { c } executes the program commands c

14



atomic {
  x := x + 1;
}

Int x;
x := 0;

Thread 1 Thread 2
atomic { 
  x := x + 1;
}

atomic {
  x := x + 1;
}

Int x;
x := 0;

Thread 1 Thread 2
x := x + 1;

(a) (b)

Figure 1.12: (a) Transactions are used to isolate the increments of x by threads
1 and 2. (b) Transactional accesses are only isolated with other transactional
accesses.

under a transactional semantics. Transactions typically perform their operations

on a local copy of the data they reference. This is known as out-of-place updates.

Figure 1.13 shows a scheduling for Figure 1.12 (a). Here, each thread’s respec-

tive load and store of x reads and writes a thread-local copy of x. The updates

made to x by a transaction are only persisted to shared memory if the transaction

commits. STM in many cases is also a library, so they are as prone to an error

like Figure 1.9, as shown in Figure 1.12 (b). Transactional accesses are isolated

only with other transactional accesses. This property is known as weak isolation

[Harris et al., 2010].

1.1.7 Locks or Transactions?

We have presented two types of coordination so far: locks and transactions. The

reader may ask why we need two types of coordination rather than just locks or

transactions. Observing Figures 1.7 and 1.12 we note that the only difference

between the program texts is the way they issue their accesses to x: Figure 1.7

(a) uses sync parameterised on a mutex; and Figure 1.12 (a) uses atomic. The

accesses issued by a lock are isolated with respect to those issued by locks that use
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txn_beg

load x

push_int 1
add

store x

txn_end

Int x;
x := 0;

Thread 1 Thread 2

txn_beg

load x
push_int 1

add

store x

txn_end

Thread 1 acquires x, 
then increments x.

Thread 1's transaction is
selected to commit.

Thread 2's transaction is
aborted as Thread 1's commit
has invalidated the consistency
of x. Consequently, Thread 2's
transaction is re-executed.

txn_beg

load x
push_int 1

add

store x

txn_end

Thread 2's transaction commits.

Figure 1.13: A possible scheduling of Figure 1.12 (a). txn beg and txn end are
instructions that delimit transactional regions of program text.

the same mutex; transactional accesses are isolated with respect to those issued

by other transactions. The key difference is that using a lock to coordinate

accesses requires the programmer specify a mutex. In lock programming we

can consider the mutex as encapsulating an isolation invariant. For example,

we can interpret the isolation invariant of thread 1’s lock in Figure 1.11 (a) as

16



“acquire(v) ∧ acquire(w)”. The value yielded from such an expression must

be casually true. However, the expression cannot always be casually evaluated

as shown in Figure 1.11 (b). In STM isolation invariants are maintained by the

STM system rather than the programmer. Consequently, STM is a lot less error-

prone than locks. Furthermore, the learning curve for correctly applying locks is

steep. For example, if one wishes to use locks effectively in Java, for instance,

then ideally the programmer should have digested and understood the three main

texts on the subject [Herlihy and Shavit, 2008; Lea, 2006; Peierls et al., 2005].

By contrast, a programmer can correctly apply STM in minutes.

We will now describe the advantages of locks and transactions, and impor-

tantly show that locks and transactions complement one another.

1.1.7.1 Pessimism and Optimism

Locks are an effective tool in the hands of an expert: they facilitate a pessimistic,

low-overhead and fine-grained coordination semantics. By contrast, transactions

are optimistic and simplify error-free component composition. Pessimistic means

that for every code fragment sync(v) { c } the mutex v will always have been

acquired before executing c, irrespective of whether or not v needed to be acquired

for a given scheduling to isolate the accesses issued to c. For example, consider

Figure 1.14 (a) where two threads read x. Intuitively both threads can execute

their assignment concurrently without introducing a data race. However, the

use of locks in this fashion always serialises their reads of x. The pessimism

of locks in this case unnecessarily reduces the amount of concurrency that can

take place. By contrast, Figure 1.14 (b) is the same as Figure 1.14 (a) but uses

transactions. Here, both threads will execute concurrently because transactions
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are optimistic. Conceptually one can think of the code fragment atomic { c

} as meaning “execute c first and then determine if the accesses issued by c

invalidate memory consistency.” The consistency of a transaction is invalidated

if it conflicts with another transaction. That is, two or more transactions access

the same data and at least one of those transactions issues a write to that data.

Optimistic coordination is more suitable than pessimistic coordination for CMPs.

Furthermore, pessimistic coordination may introduce a high level of artificial

contention as in Figure 1.14 (a).

sync(x) {
  v := x;
}

Int x; Int y; Int x;

Thread 1 Thread 2
sync(x) {
  y := x;
}

atomic {
  v := x;
}

Int x; Int y; Int x;

Thread 1 Thread 2
atomic {
  y := x;
}

(a) (b)

Figure 1.14: (a) Reads of x are always serialised due to the pessimism of locks.
(b) Reads of x are not serialised should they be scheduled concurrently.

1.1.7.2 Overhead

The magic performed by STM does not come for free: the cost of transaction-

ally executing commands can be great. For example, in Figure 1.13 the work

performed by thread 2’s transaction was thrown away due to it being aborted.

The possibility of abortion is a key factor when using transactions, particularly

when a transaction is accessing highly contended memory. By contrast, the cost

of using a lock is generally very low and can be further reduced by using locks

optimised for a particular scenario as shown in Figure 1.15. Here, three threads

access x; thread 1 writes x and threads 2 and 3 read x. We want to isolate each
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sync(l.WriteLock) {
  x := x + 1;
}

Int x; Int v; Int y; ReadWriteLock l;
x := 0; v := 0; y := 0;

Thread 1 Thread 2
sync(l.ReadLock) {
  v := x;
}

Thread 3
sync(l.ReadLock) {
  y := x;
}

Figure 1.15: Threads 1, 2 and 3 access x. Threads 1 and 2 only read x so they
acquire a read lock. By contrast, thread 1 writes x so it acquires a write lock.
Threads 1 and 2 can execute concurrently; if thread 1 has acquired the write lock
then only it can execute – threads 2 and 3 will block until thread 1 releases the
write lock.

access of x but without restricting concurrency for reads as in Figure 1.14 (a). To

accomplish this we coordinate all accesses to x with a ReadWriteLock l. Thread

1 writes x so it acquires the write lock, l.WriteLock; by contrast, threads 2 and

3 acquire the read lock, l.ReadLock. Threads 2 and 3 can execute concurrently;

however, if thread 1 has acquired the write lock then only it can execute. An-

other optimisation is fine-grained locking: several mutexes are used to protect

possibly different regions of shared memory. Because of this greater partition-

ing contention is reduced, but avoiding defects such as deadlock and data races

becomes harder. Figure 1.16 compares fine-grained and coarse-grained locking

strategies. As a final optimisation we may combine read/write locks with fine-

grained locking: this is the gold standard of applying locks; correct application

of this approach is often referred to as an art rather than a science.

1.1.7.3 Composition

Designing modern systems requires composing libraries. For example, consider

Figure 1.17 (a) where an item is removed from one linked list and added to an-

other linked list. Using locks we may model a version of Figure 1.17 (a) that can
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sync(v) {
  sync(x) {
    v := x;
  }
}

Int v; Int x;

sync(compositeMutex) {
  v := x;
}

Int v; Int x; 
Object compositeMutex;

(a) (b)

Figure 1.16: (a) Fine-grained: mutexes associated with v and x are acquired to
perform the assignment. (b) Coarse-grained: a single mutex is used to protect
accesses on v and x.

be performed by multiple threads as Figure 1.17 (b). The pitfall of Figure 1.17

(b) is that it is very easy to introduce deadlock and data races. Furthermore,

the complexity of composing components increases as more components are com-

posed. By contrast, transactions eliminate most of the complexity as shown in

Figure 1.17 (c). Here, the STM system manages the isolation invariants to ensure

that the composition is deadlock-free. Composition is the biggest advantage of

STM. For example, let us consider a scenario where a programmer is asked to

create a correct thread-safe version of Figure 1.17 (a). He may apply locks in sev-

eral fashions and think that the solution is correct – only to observe a scheduling

that invalidates his belief. Realistically the programmer would need to read and

understand the locking semantics of his platform. For Java this would require

him to understand Java threads [Oaks and Wong, 2004], techniques on how to

correctly use locks and their auxiliary data structures [Lea, 2006; Peierls et al.,

2005] and the Java memory model [Manson et al., 2005]. Often one also needs

to understand the details of their host operating system’s process, memory and

thread scheduling internals, and in some cases the details of the underlying hard-

ware. This is not a small undertaking. By contrast, a programmer needs only a

basic familiarity with threads, concurrency and transactions to arrive at Figure
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LinkedList l1; 
LinkedList l2;

l1.add(l2.pop());

LinkedList l1; 
LinkedList l2;

sync(l1) {
  sync(l2) {
    l1.add(l2.pop());
  }
}

LinkedList l1; 
LinkedList l2;

atomic {
  l1.add(l2.pop());
}

(a) (b) (c)

Figure 1.17: (a) Composes the add and pop operations of the LinkedLists l1

and l2. (b) Attempts to compose the operations in a thread-safe manner. (c)
Uses transactions to safely compose the operations.

1.17 (c).

1.1.7.4 Strong and Weak Semantics

One final point of difference between locks and transactions is that locks offer a

strong semantics, by contrast to transactions which are said to be weak. A lock is

pessimistic which means that its protected command will always succeed: that is,

in sync(v) { c } once v is acquired c will execute. By contrast, transactions are

said to afford a weak semantics. For example, in atomic { c } it is possible that

c will be executed multiple times should its transaction abort. This means that

transactions are not generally safe for executing irreversible operations. Figure

1.18 shows the use of locks for writing to disk; Figure 1.19 shows a transactional

version. The transactional program will guarantee shared memory consistency

but not the consistency of peripheral components. It is possible, as shown in

Figure 1.19, that a transaction may abort and leave some data that may be

observed by subsequent reads of disk. Here, thread 2’s transaction has not been

atomic or consistent.
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sync(l) {
 // acquires l

  l.add(1);
  d.write(l);
} // release l

LinkedList l; Disk d;

Thread 1 Thread 2
sync(l) {
 // waits for
 // thread 1 to
 // release l

 // acquires l

  d.write(l);
}

Disk

Figure 1.18: Using locks to safely execute an irreversible I/O operation.

atomic {

  l.add(1);
  d.write(l);
} // Commits

LinkedList l; Disk d;

Thread 1 Thread 2
atomic {

  

  d.write(l);
} // Aborts

Disk

Figure 1.19: Using transactions to execute an irreversible I/O operation. Thread
2’s transaction aborts but its write to disk remains. Thread 2’s transaction has
invalidated the atomicity and consistency guarantees.
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1.2 Motivation

Correct application of locks [Dijkstra, 1968] requires a high level of programmer

skill; otherwise, data races and deadlocks may be introduced. Researchers are

looking into alternative methods, e.g. STM [Shavit and Touitou, 1995], to lower

the barrier of entry for correctly coordinating accesses to shared memory in mul-

tithreaded programs. Adoption of STM is limited [Harris et al., 2005; Hickey,

2008] and in many cases cannot simply supplant locks (see Section 1.1.7.4). There

are two key issues that are blocking the uptake of STM by mainstream imper-

ative programming languages: (1) performance; and (2) understanding how it

co-exists with existing coordination facilities such as locks. The aim of this thesis

is to contribute to the literature regarding (2).

A relatively sizeable amount of literature exists on implementing transactions

in systems that already expose locks, such as [Dice et al., 2006; Lev et al., 2009;

Menon et al., 2008; Saha et al., 2006; Usui et al., 2009] but remarkably little

exists on understanding the semantics of such systems, which is required to de-

velop further research into the area. There are two key advantages to defining a

semantic model that is based on a common implementation strategy: (1) runtime

semantics; and (2) static semantics. The latter is influenced by the former: to

understand what should be statically deemed correct we must understand what

we wish to observe during a program’s execution, e.g. [Grossman et al., 2006;

Spear et al., 2008]. Most of the current literature focuses on verification of the

STM system [Cohen, 2008; Guerraoui and Kapaka, 2007; Hu, 2012] or gives a

semantics which focuses on a specific use case of STM [Lev and Maessen, 2005;

Smaragdakis et al., 2007; Welc et al., 2008; Ziarek et al., 2008]. Moreover, the se-
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mantics presented typically do not encompass several forms of coordination tools.

That is, they focus on STM but omit usages of other coordination tools in the

same program.

Construction of a dynamic and static semantics for programs using locks and

transactions has the following concrete advantages:

• Dynamic Semantics. A general notion of co-existence of locks and transac-

tions can be defined on the basis of fundamental properties such as memory

locations accessed. Properties can be constructed for conflict detection and

resolution between the two semantics, as well as the observational proper-

ties of reads [Adve and Gharachorloo, 1996]. With this understanding we

can apply the derived knowledge to the static analysis of programs which

use locks and/or transactions to coordinate accesses to shared memory. At

present a clear gap in the literature exists in understanding the semantics

of programs which use locks and/or transactions to coordinate accesses to

shared memory.

• Static Semantics. Most static analysis for concurrent programs focus on

programs which use locks, transactions or no coordination when issuing

accesses to memory, e.g. [Boyland, 2003] and [Beckman et al., 2008]. Fur-

thermore, most analyses that do focus on coordinated accesses – so-called

“atomic blocks” abstract the concept of atomic to such an extent that they

remove the practical issues faced when mixing distinct coordination seman-

tics, i.e. locks and transactions, to attain access atomicity. Using fractional

permissions [Boyland, 2003] in combination with a set of rules derived from

studying the dynamic semantics of programs using locks and transactions
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it will be possible to statically check their data-race-freedom.

The motivation for this thesis’s work is very much exploratory: STM is cur-

rently in a state of limbo and may not see mainstream adoption; however, should

it be adopted it will need to be well understood. This is particularly the case for

programs that wish to use locks and transactions, as the former is ubiquitous in

existing libraries which make use of multiple threads. The aim of the thesis is to

shed light on this relationship so that should STM be adopted the authors of such

systems have a larger wealth of literature to consult for a semantic reference.

1.3 Objectives

The objectives of this thesis are to contribute on the scarce literature that exists

on programs that use distinct coordination semantics to coordinate accesses to

shared memory. Specifically, this thesis focuses on the use of locks and transac-

tions to coordinate such accesses. We have two main aims:

1. Develop a framework for reasoning about the dynamic semantics of pro-

grams that use locks and transactions to coordinate accesses to shared

memory. The framework will be defined by an operational semantics. The

focus of the framework is on two key elements: (i) locks and transactions;

(ii) memory accesses. The semantics of locks and transactions will be de-

rived from their respective idiomatic usages. That is, nested locks must be

catered for and a conflict resolution strategy across the two semantic bound-

aries must be defined. A lower-level dynamic reasoning of programs that

use locks and transactions will be facilitated by generalising the semantics

of read/write accesses.
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2. Develop a framework for reasoning about the static semantics of programs

that use locks and transactions to coordinate accesses to shared memory.

The framework will be defined via a set of static execution rules. Accesses

to memory will be coordinated via the use of locks and transactions. A

program that successfully passes the checks entailed by our framework must

be data-race-free. The framework must be able to assert the data-race-

freedom of a program irrespective of whether the same memory is accessed

transactionally, via a lock or under no coordination semantics. A program

which fails our static framework is not data-race-free.

Both frameworks must be able to model reasonable usages of locks and trans-

actions in a multithreaded program. However, each framework will focus on the

relevant use cases. At the present time it is not tractable to reason about arbi-

trary multithreaded programs that use locks and transactions to access shared

memory.

1.4 Challenges

The following challenges exist to successfully meet the objectives of this thesis:

• STM is not like locks: a consensus does not exist on what the semantics

of STM should be. A semantics will have to be defined based upon the

commonality of the existing implementations of STM.

• Locks and transactions differ in how isolation invariants are defined, and

what those invariants mean. In STM isolation invariants are accumulated

optimistically whereas a lock’s invariant is specified pessimistically. A key
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issue will be defining how the invariants of locks and transactions can be

preserved without violating the semantics of either a lock or transaction.

The conflict strategy that is chosen should not restrict concurrency unless

programmer specified isolation invariants dictate otherwise.

• The dynamic semantics should permit reasoning about a program that uses

locks and transactions to the level of individual read and write accesses.

This will facilitate the generalisation of observation properties so that we

can define properties based on their semantics and map them to existing

memory consistency models.

• The static semantics should successfully identify program accesses that may

result in a data race and correctly classify programs that issue such accesses

as not being data-race-free. Classification of a program’s data-race-freedom

should be based upon reads and writes to memory locations that are inline

with the dynamic semantics. That is, the object model should be that of

struct semantics in C. The static analysis should not be overly conservative.

For example, distinct threads that access distinct fields of the same object

should not be flagged as inducing a possible data race.

Some of these challenges will restrict the amount of work that can be done,

particularly for our static semantics which are not envisioned to be able to address

the data-race-freedom of programs using a large array of program features. The

current literature suggests that such a task at present is not feasible for programs

that use a single coordination semantics, let alone one that uses two coordination

semantics that differ to the extent of locks and transactions.
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1.5 Contributions

This thesis presents three main contributions Barnett and Qin [2012a,b, 2013]

which fall under one of two domains: dynamic reasoning, covered in Part I; and

static reasoning, which is covered in Part II of this thesis. In summary, the

contributions presented in this thesis are:

• Moverness Barnett and Qin [2012a], a correctness criterion for modelling

locks and transactions in memory consistency models. We find locks to be

left movers, transactions right movers, transactions and locks with respect

to themselves both movers and non-conflicting locks and/or transactions

free movers. Moverness trivialises reasoning about the otherwise complex

semantics of locks and transactions, particularly in programs which use both

to coordinate accesses to shared memory. We validate moverness by giving

a case study showing its mapping to the happens-before memory consis-

tancy model used by the Java memory consistancy model. Our definitions

of moverness are successful if it faithfully encodes the semantics of the

happens-before memory consistancy model. To our knowledge moverness is

the first correctness criterion for encoding locks and transactions in memory

consistancy models.

• Guaranteed Transactions Barnett and Qin [2012b], a semantic construct

encapsulating the privatisation and publication idioms. Guaranteed trans-

actions are pessimistic and non-abortable but maintain a transactional in-

terface. We validate guaranteed transactions by giving a case study based

upon Spear et al. [2007] that aborted in-place updates are never observed,

and that out-of-place committed updates are always observed. Our suc-
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cess criteria is by showing the ommission of the former anomolies during

the use of the guaranteed transactions. We also formulate the meaning of

guaranteed transactions under moverness. Guaranteed transactions are an

enhancement over existing pessimistic transactions, while not precluding

non-conflicting guaranteed transactions to execute concurrently.

• Data Race Freedom Barnett and Qin [2013], a static analysis framework for

determining whether a program entailing locks and transactions is data-

race-free. Our static framework entails two general stages: first, the pro-

gram is statically executed in order to characterise the reads and writes it

issues; then, an isolation algorithm determines the isolation of accesses is-

sued by the program to each region of memory it allocates. A program that

satisfies our isolation algorithm is data-race-free. We validate our frame-

work by applying to a series of case studies entailing a number of non-trivial

programs, including ones which access dynamically allocated memory. The

success criteria for our static analysis is by such the presence or respectively

the omission of programs which exhibit and respectively do not exhibit data

races. To the best of our knowledge our static analysis is the first to guar-

antee the data-race-freedom of programs that entail locks and transactions.
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Chapter 2

Literature Review

This chapter presents a survey of the literature the work presented in subsequent

chapters is related to. The related work can be partitioned into the following

three groups:

1. programming languages;

2. locks and software transactional memory (STM); and

3. memory consistancy models.

These three groups comprise an authoritative survey of concurrency in current

and state of the art environments: programming languages are often coloured by

the synchronisation and concurrency features built into the language (e.g., Erlang

Armstrong et al. [1996] with its threads and actors, typed channels in Google Go

Google-Go [2013], and synchronized in Java Arnold et al. [2005], etc.); locks

[Dijkstra, 1968] and transactions [Shavit and Touitou, 1995] are two semantics

that synchronisation primitives may reduce to (the focus of this thesis); finally, all
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synchronisation facilities must have an established meaning in the memory con-

sistancy model Adve and Gharachorloo [1996] of the respective language/runtime

(e.g. Java [Manson et al., 2005] and C++11 Boehm and Adve [2008]. That is,

there must be a systematic way to reason about and relate accesses issued to

memory by distinct threads.

The literature presented here gives the general positioning of the work which

follows later in this thesis. Future chapters position their respective work explic-

itly with respect to the work we now cover. The first section on programming

languages gives a general overview of innovation in programming language tech-

nologies, libraries and ancillary services with respect to concurrency and coordi-

nation. Subsequent sections on locks and transactions and memory consistancy

models which are of most import to the work presented in this thesis. Special

attention is given to the semantics of locks and transactions and the current

literature which reasons about such programs.

2.1 Programming Languages

In this section we trace the roots of cutting edge concurrency idioms encoded

in today’s programming languages. Several languages give innovative treatments

of concurrency, a non-exhaustive overview includes: Cilk [Blumofe et al., 1995]

– a famous MIT project that popularised spawning threads and cactus stacks ;

Erlang [Armstrong et al., 1996] – born out of Ericsson for programming highly

reliable hardware such as switches; Haskell [, editor] – which encodes parallel

and synchronisation idioms with the assistance of its expressive type system; and

Clojure [Hickey, 2008] – that introduced persistent data structures and STM to

31



the Java enterprise. The big industry innovators have also inflicted their idea

of how they believe concurrency should be done: Google designed Go [Google-

Go, 2013], a language that uses message passing [Hoare, 1978]; Microsoft has

concurrency platforms for C++ and .NET, and an impressive extension of C++

that allows programmers to easily program graphics processing units [Microsoft,

2013a]; Intel has contributed an efficient version of STM for C++ [Intel, 2012]

and a C++ variant of the Cilk MIT project, Cilk Plus [Intel, 2013b]. NVidia has

opened up their GPUs via CUDA C [Farber, 2011]; and most recently Mozilla

has began developing Rust [Mozilla-Rust, 2013], a language that uses affine/linear

types to guarantee data is safely shared among threads. The rest of this section

describes some of these languages and their key innovations.

2.1.1 Threads and Tasks

2.1.1.1 Threads

A fundamental aspect of concurrency is understanding that multiple things can

happen at the same time. In modern programming environments this concept is

facilitated by threads and tasks. In general the semantics of threads are uniform

across programming languages, with the exception of their abstract programming

interfaces (APIs). By contrast, tasks were popularised by Cilk [Blumofe et al.,

1995] and provide an efficient means to schedule large amounts of concurrent

units of work. At the most basic level threads and tasks differ in their resource

profile: creating a thread requires the operating system allocate (a relatively

large) amount of memory for the thread’s stack, typically around 1−2 megabytes;

by contrast, tasks consume little more resources than an object. Threads are
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scheduled by the operating system’s thread scheduler; by contrast, tasks are

scheduled to threads by a task scheduler [Blumofe and Leiserson, 1994].

Most programming languages expose threads through an API that closely re-

sembles that of the underlying system interface, e.g. Win32 [Russinovich et al.,

2012] and POSIX [Butenhof, 1997]. Typically a thread API offers the following

abilities: thread creation; assignment of some program text the thread is to exe-

cute; and ways to start, wait for and cancel the thread. We will not discuss safe

thread cancellation as it differs per program text the thread is executing. The

excellent texts [Peierls et al., 2005] and [Lea, 2006; Oaks and Wong, 2004] provide

a wealth of practical advice on thread cancellation and multithreading in general,

all be it specific to Java [Arnold et al., 2005]. For .NET programmers the standard

texts are [Duffy, 2008; Richter, 2012] and for C++ there is [Williams, 2012]. Spec-

ifying the program text a thread should run varies according to the programming

environment: pthreads [Butenhof, 1997] take a pointer to a function; by contrast,

languages such as Java [Arnold et al., 2005] and C#[Hejlsberg et al., 2010] permit

the programmer richer interfaces such as java.lang.Runnable in Java or lambda

expressions/delegates for .NETs System.Threading.Thread type. Most thread-

ing APIs support thread local storage (TLS): the ability for a thread to allocate

and access memory that only it can access. For example, in D [Alexandrescu,

2010] all data by default is in TLS, and in .NET one can use the ThreadStatic

attribute to denote that the data it decorates should be stored in TLS. The pro-

gramming models that we use in this thesis are all based upon the use of threads

at an abstract level and are implementation agnostic. Furthermore, we assume

a perfect environment where if a program defines N threads then there exists N

PEs to execute such threads.
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2.1.1.2 Tasks

Tasks are an abstraction of threads specifically to support the effecient mod-

elling of large amounts of concurrent work. Figure 2.1 gives a high-level archi-

tectural overview of a task system. Cilk [Blumofe et al., 1995] inspired most

of the task-based libraries that exist today, including Intel Threading Building

Blocks [Reinders, 2010] and Microsoft’s C++ Concurrency Runtime [Microsoft,

2013b] and Task Parallel Library [Microsoft, 2013c] for .NET. There are a few

key architectural properties of task-based runtimes, which we will now describe.

Figure 2.1 shows a task scheduler. The task scheduler is a user mode [Bovet

and Cesati, 2005; Kerrisk, 2010; Russinovich et al., 2012] component, that is it

lives outside of the operating system’s kernel, kernel-mode. The task scheduler

is designed to be able to schedule huge numbers of tasks by multiplexing them

onto a finite number of threads which the task runtime creates. For example,

in Figure 2.1 the task runtime creates three threads, and subsequently maps the

tasks created by the process to those three threads. Most task schedulers in use

today employ some form of work stealing [Blumofe and Leiserson, 1994]. That

is, the task scheduler can steal tasks it assigned to one thread and map them to

another thread. Erlang supported Cilk-like tasks and scheduling for symmetric

multiprocessor systems since Erlang R11B released in 2006. Apple also has a

task technology known as grand central dispatch (GCD) which can be utilised by

programs targeting OSX or iOS. Under GCD the work a task is to perform is

encapsulated within a block in Objective-C [Kochan, 2012] which is similar to a

closure, or block in Ruby [Flanagan and Matsumoto, 2008]. OCaml [Leroy et al.,

2012] has something similar to threads but under the guise of a user contributed
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light weight threads library, lwt [Dimino, 2012].

CMP

PE PE

Process

Thread 1 Thread 2 Thread 3

Thread Scheduler

Thread 1 Thread 2

Task Scheduler

Task Task Task

Task Task Task
...
...

User Mode

Kernel Mode

Hardware

TaskTask Task

Figure 2.1: High-level architecture of a process that uses tasks.

2.1.2 Immutability

One of the key tenants of being able to reason about concurrent programs is

immutability. An immutable data structure never changes and is thus free from

being subject to a data race [Unger, 1995]. Functional languages such as Haskell

[, editor] and OCaml [Leroy et al., 2012] are immutable by default, although in

OCaml mutating data can be done when necessary. The level of immutability
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supported in languages such as Java, C++, C and C# is relatively weak. For

example, in C++ [Stroustrup, 2000] application of const can result in immutable

semantics but requires a great deal of design attention; in C# const is much

weaker than C++’s const, consequently readonly is used but again the use of

readonly, like C++’s const, requires great deal of attention to design immutable

structures. One interesting approach to immutability by an imperative language

is that taken by D [Alexandrescu, 2010] which has an immutable modifier. In

D any data that has the immutable modifier is immutable, where immutability

spans the transitive closure of the reachable object graph for that data. Scala

[Odersky et al., 2011] and Rust [Mozilla-Rust, 2013] support immutability of

varying strengths by default. For example, in Scala the standard modifier to use

for data is val which denotes an immutable value, however the data reachable

through a val may be mutable. In this thesis all data structures are mutable. We

are interested in situations when data races can be introduced so we explicitly

force the programmer down the road of mutation.

2.1.3 Memory Management

There are two types of memory management: deterministic and non-deterministic.

Determinism in the context of memory management determines when memory

will be recycled for use by other requests to the memory manager, e.g. through

calls to malloc in C [Ritchie and Kernighan, 1988] or new in C++ [Stroustrup,

2000] and Java [Arnold et al., 2005]. C and C++ are deterministic: deallocation

of heap data is immediate and performed at a point of the programmer’s choos-

ing. For example, in C++ one would allocate data on the heap by new and then
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subsequently delete the memory allocated by new by either delete or delete[].

In C++ one can also use shared ptr, unique ptr and weak ptr types to assist in

the lifetime of heap data, but deallocation remains deterministic [Josuttis, 2012].

Non-deterministic memory management is typically employed by higher-level lan-

guages such as Java [Arnold et al., 2005], C# [Hejlsberg et al., 2010], Haskell [,

editor] and OCaml [Leroy et al., 2012], to name just a few. These environments

are non-deterministic as it is the garbage collector (GC) [Jones and Lins, 1996;

Jones et al., 2011] that determines when heap memory is to be recycled, not the

programmer. The performance of GCs varies but in general they are slower than

the deterministic deallocation of C and C++. From our perspective the main

advantage of a GC is that it makes memory management in concurrent programs

a great deal simpler and safer. For example, a GC is almost always required

to implement persistent data structures [Okasaki, 1996] correctly. Most recent

environments that admit multi-threaded programs employ a GC, e.g. the Java

Virtual Machine (JVM) [Lindholm et al., 2013] and the Common Language Run-

time (CLR) [Richter, 2012]. The use of a GC makes concurrent programming

much simpler as the lifetime of memory is deferred to the GC rather than the

programmer. Memory management is not a key component of the work presented

in this thesis but we assume that allocated memory is implicitly reclaimed.

2.1.4 Message Passing

Message passing [Hoare, 1978] is a type of coordination. Examples of language

support for message passing includes Erlang [Armstrong et al., 1996], Google’s

Go [Google-Go, 2013] and Mozilla’s Rust [Mozilla-Rust, 2013] programming lan-
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guages. Other languages also support message passing but via libraries, e.g. Scala

[Odersky et al., 2011] whose message passing library is based upon Akka [Type-

Safe, 2013] and Haskell’s recent Erlang-like library which is discussed in [Epstein

et al., 2011]. We do not cover message passing in this thesis.

2.1.5 GPGPU

General purpose graphics processing units (GPGPU) are becoming ubiquitous.

The two market leading GPU manufacturers – AMD and NVidia – both support

GPGPU. That is, it is possible to run general purpose computations on AMD

and NVidia hardware, which is otherwise the domain of graphics-specific compu-

tations. AMD and NVidia provide proprietary software development toolkits for

programming their respective GPU hardware, such as NVidia’s CUDA [Farber,

2011; Sanders and Kandrot, 2010] which is typically driven by a variant of C

known as Cuda-C. In addition to the proprietary toolchains there is also an effort

to provide libraries and tools for standards conforming languages such as C++.

For instance, AMD has recently released the Bolt library; by contrast, NVidia has

its Thrust library. Both Bolt and Thrust [Farber, 2011] have similar interfaces to

the C++ standard template library (STL) [Stepanov and Lee, 1995]. However,

unlike STL, both Bolt and Thrust perform their computations on the discrete

GPU. Microsoft has also tried to aid C++ programmers by extending the C++

language with a set of language features that specifically target the discrete GPU

should the host have one, known as C++ Accelerated Massive Parallelism, or

simply C++ AMP [Microsoft, 2013a]. In this thesis we focus on the traditional

computation architecture comprising a CMP and a set of of memory modules
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(shared memory) the CMP directly accesses.

2.2 Locks and Transactional Memory

Locks and transactional memory are used to facilitate mutual exclusion. The op-

erations of two threads are mutually exclusive if only one thread can issue accesses.

Locks and transactions are the primary focus of this thesis. The observation in

the following literature is that little work exists on the theoretical underpinnings

of programming models that permit both locks and transactions to coordinate

accesses to shared memory. Subsequent chapters will focus on addressing this

ommission in the current literature. For convenience, before exploring locks and

transactions, Table 2.2 shows the coordination tools used by a select number of

programming languages.

Language Functional/Imperative Coordination Semantics
C# Imperative Locks
Java Imperative Locks
C/C++11 Imperative Locks
Erlang Functional Message passing
Google Go Imperative Message passing and locks
Haskell Functional Locks and STM
Clojure Functional Locks and STM
D Imperative Message passing and locks

Table 2.1: Coordination control used in select programming languages.

2.2.1 Locks

Locks [Dijkstra, 1968; Hoare, 1974] are a facility to limit the number of threads

that execute a particular region of code concurrently. A semaphore permits N
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threads to execute a region of code. A semaphore where N = 1 is a binary

semaphore, most often referred to as a mutex.

sync(x) {
  x := 1;
}

Int x;

x := 0;

Thread 1 Thread 2

x = { }

Memory

x = 0

Memory

x = 1

Memory

sync(x) { 
  x := 2;
}

 x = 2

Memory

Execution

sync(x) {
  x := 1;
}

Int x;

x := 0;

Thread 1 Thread 2

x = { }

Memory

x = 0

Memory

x = 2

Memory

sync(x) { 
  x := 2;
}

 x = 1

Memory

(b) (c)

sync(x) {
  x := 1;
}

Thread 1 Thread 2
sync(x) {
  x := 2;
}

(a)

Int x; x := 0;

Figure 2.2: (a) sync(x) { . . . } denotes an explicit lock protected on x. Two
threads update the value of x; each update is protected on the mutex associated
with x. (b) and (c) show the possible thread schedules.

In Java the semantics of an implicitly synchronised synchronized block is

that of a mutex. That is, if one has as part of a class definition in Java a method

with the signature synchronized void mutate() { . . . }, then only one thread

can execute mutate at a time for a given object. For example, in o.mutate(); ||

o.mutate(); a total ordering is enforced over the invocations of mutate should
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they be scheduled concurrently. Semaphores and mutexes are supported in most

programming languages and libraries. Like Java, C# also gives language sup-

port with lock for using locks but not at the method interface level. Instead, in

C# one always uses explicit synchronisation. Explicit synchronisation is where

the programmer explicitly parameterises the object we wish to delegate mutual

exclusion to. For example, synchronized(this) { . . . } is a form of explicit

synchronisation in Java, despite it yielding the same semantics as our mutate

method if it encapsulated the whole of the method’s program text. A similar

approach can also be taken in C# but using lock, although this is idiomati-

cally incorrect. In C# one often provides a property that yields a thread-safe

object that clients can synchronise on. This can be observed by the types in

System.Collections. In both Java and C# every object has an associated lock.

The lock resides in the object header and is lazily initialised upon its first ac-

quisition [Stutz et al., 2003]. When one uses an implicit lock or explicit lock

parameterised on this in Java, it is the object lock we are acquiring. The formal

name for this type of lock in Java is known as a monitor [Arnold et al., 2005].

For the purposes of this thesis we simply treat a monitor as a mutex, despite a

monitor facilitating thread rendezvousing via its notify, notifyAll and wait

methods defined in java.lang.Object.

Figure 2.2 gives an example of using explicit synchronisation. Here, there is

a total ordering over the updates of x should they be scheduled concurrently as

both updates of x are protected on the same mutex. A thread must have acquired

the mutex x before entering its critical region. When a thread exits its critical

region it releases x. Only one thread can acquire x at a time. If we were to use

a semaphore with N participants then N threads could acquire the semaphore.
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Figure 2.3 shows a possible scheduling of acquire/release events that result in

Figure 2.2 (b).

acq(x);

x := 1;

rel(x);

Int x;

x := 0;

Thread 1 Thread 2

x = { }

Memory

x = 0

Memory

x = 1

Memory

 x = 2

Memory

acq(x);

x := 2;

rel(x);

Thread 2 blocks, waiting for
Thread 1 to release x.

Thread 1 acquires x and 
executes its update of x.

Thread 2 acquires x and
executes its update of x.

Figure 2.3: A possible scheduling that leads to the ordering in Figure 2.2 (b).
We use the pseudo instructions acq and rel to denote acquire and respectively
release operations of the mutex associated with x.

Mutual exclusion when locks are protected on a mutex is only guaranteed

should both locks use the same mutex. Figure 2.4 shows Figure 2.2 (a) but

differs in that both locks use a different mutex to protect their write of x. For

Figure 2.4 (a) three possible schedules exist: that of (b) and (c) in Figure 2.2 and

(b) in Figure 2.4 where the updates may take place concurrently result in a data

race [Unger, 1995] on x. In Figure 2.4 (b) a data race can materialise in a similar

manner to that demonstrated in Figure 1.6.
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sync(x) {
  x := 1;
}

Thread 1 Thread 2
sync(y) {
  x := 2;
}

(a)

Int x; Int y;
x := 0; y := 0;

acq(x);

x := 1;

rel(x);

Int x; Int y;

x := 0; y := 0;

Thread 1 Thread 2

x = { }, y = { }

Memory

x = 0, y = 0

Memory

x = ?, y = 0

Memory

acq(y);
x := 2;

rel(y);

Thread 1 acquires x and 
executes its update of x.

Thread 2 acquires y and 
executes its update of x.

Figure 2.4: (a) The writes of x are protected on different mutexes. (b) A possible
scheduling of (a). Each thread’s write of x can occur concurrently, leading to a
data race on x.

Mutexes, semaphores and so on, are required to be acquired in a consistent

order. In most languages this order is not encoded in the programming language’s

type system or runtime semantics. The programmer must remember the order of

acquisitions when he or she wishes to access data that is shared between threads.

The standard convention is to document such orders within the program text in
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the hope that maintainers of the software will adhere to such advice. Lock ac-

quisition order is important because it may lead to a situation known as deadlock

[Zöbel, 1983]. A contrived but simple example of deadlock is given in Figure 2.5.

The immediate observation in Figure 2.5 is that each thread in (a) acquires the

mutexes x and y in the opposite order with respect to the other thread. Figure

2.5 (b) shows one potential scheduling of Figure 2.5 (a). Here, thread 1 acquires

x then thread 2 acquires y. After the each thread’s initial mutex acquisition

they wish to acquire the mutex that is held by the other thread. Since this is

not possible, as only one thread can acquire a mutex, both threads make no fur-

ther progress in their respective program text’s. Deadlock, like data races, are

a common occurrence in concurrent programs, particularly larger software where

acquisitions and releases are hidden behind layers of indirection. The subjective

opinion of the author is that deadlock is an easier problem to reason about than

data races. Deadlock can be apparent in many cases. Attaching a debugger to a

program you believe to be subject to deadlock can easily confirm your suspicion.

By contrast, data races seldom give any clue to their presence.

Reasoning about concurrent programs that use locks or no coordination has

been the focal point of most of the current literature. A few of the most promi-

nent practically used dynamic analyses for concurrent programs include Helgrind

[Valgrind-Project, 2013] (a tool in the Valgrind [Nethercote and Seward, 2007]

suite) and Google’s ThreadSanitizer [Serebryany and Iskhodzhanov, 2009]. Note

that ThreadSanitizer is also a tool which is to be used with Valgrind. Both tools

use happens-before [Lamport, 1978] (discussed in Section 2.3) to establish the

relative ordering of accesses. Helgrind is largely tied to programs that exlusively

use pthreads [Butenhof, 1997]. By contrast, [Serebryany and Iskhodzhanov, 2009]
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sync(x) {

  sync(y) {
    x := 1;
  }
}

Int x; Int y;

x := 0;  y := 0;

Thread 1 Thread 2

x = { },y={ }

Memory

x = 0,y={ }

Memory

Execution

sync(x) {
  sync(y) {
    x := 1;
  }
}

Thread 1 Thread 2
sync(y) {
  sync(x) {
    x := 2;
  }
}

(a)

Int x; Int y;
x := 0; y := 0;

sync(y) {

  sync(x) {
    x := 2;
  }
}

Thread 1 acquires x.
Thread 2 acquires y.

Thread 1 blocks waiting
for Thread 2 to release y.

Thread 2 blocks waiting
for Thread 1 to release x.

(b)

Figure 2.5: (a) Each thread acquires the mutexes associated with x and y in the
opposite order to the other thread. (b) A possible schedule that leads to deadlock.
Here, thread 1 acquires x then thread 2 acquires y. Neither thread can make any
progress as each thread is waiting on the other thread to release their mutex. For
this scheduling the value of x will remain 0.

provides a set of annotations that permit the programmer to direct the dynamic

analysis of concurrent programs that do not use pthread coordination primi-

tives. ThreadSanitizer is used to check the data-race-freedom of the open source

Chromium Browser [Chromium-Project, 2013]. The Google Go [Google-Go, 2013]

programming language, as of version 1.1, comes with a data race detector tool

that is based upon ThreadSanitizer.

Fractional permissions [Boyland, 2003] can be used to facilitate a simple and

intuitive partitioning of the reads and writes a program issues. This is particularly
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helpful when reasoning about concurrent programs. For example, concurrent

reads to the same memory are inherently data-race-free, but concurrent accesses

where at least one of those accesses is a write, are not data-race-free. Under

fractional permissions rationales are used to classify the type of access issued the

program text. For example, given the command x := v we have a read of x and

a write of y. Using fractional permissions we may represent these accesses as: 1x

and ε y, where 1 (a whole) represents a write and 0 < ε < 1 represents a read.

Using basic addition we can add these so-called fractions on memory locations to

determine whether or not coordination is required to prevent data races. A lot

of the recent literature on verifying concurrent programs use fractions in some

form, e.g. [Bornat et al., 2005] and [Heule et al., 2011], the latter of which is

used in the verification tool Chalice [Leino et al., 2009]. We also use fractional

permissions as the basis for the analysis we present in Part II of this thesis.

2.2.2 Software Transactional Memory

“Atomic” blocks were described first by [Lomet, 1977]. Later, Transactional

memory (TM) was proposed as a set of hardware extensions by [Herlihy and

Moss, 1993]. Hardware transactional memory (HTM) has made some progress

since its introduction, most notably with Sun Microsystems’s ROCK server CMP

[Chaudhry et al., 2009], but was promptly cancelled before it could gain any

traction. As the name implies HTM is a variant of TM that requires hardware

support. The advantage of HTM is that it is a great deal faster than software

emulated TM; its disadvantage is that it requires CMPs with HTM support to

saturate the market before TM can be a viable programming model. We will focus
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on software emulated TM: sofware transactional memory (STM) [Shavit and

Touitou, 1995], which came after the innovations of [Lomet, 1977] and [Herlihy

and Moss, 1993].

STM has gained a considerable amount of traction over the last decade, with

both language [Harris et al., 2005; Hickey, 2008] and library [Dice et al., 2006;

Saha et al., 2006] support. The thesis of STM (and TM) is simple: instead

of locks we wish to use transactions [Bernstein and Goodman, 1983] to isolate

accesses to shared memory. Transactions in a relational databased management

system (RDBMS) guarantee the ACID properties:

Atomicity The effect of the transaction appears to take effect as a single indi-

visible step, or not at all.

Consistancy The data in the store is contributed only by transactions which

commit. A transaction that aborts never contributes its effect to the store.

I solation The effect of transactions are isolated with respect to other transac-

tions.

Durable The effect of committed transactions and by extension the consistent

store is persistant. That is, the store may be rehydrated in the case of

a hardware failure. Durability in modern RDMBSs is often facilitated by

replication [Microsoft, 2012].

We will now refine the previous terminology for STM and HTM which only

support the ACI properties of the ACID acronym. We will explain the terminol-

ogy used in the descriptions later.
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Atomicity The effect of the transaction appears to take effect as a single indi-

visible step, or not at all. The effect of a transaction may be in-place or

out-of-place [Harris et al., 2010].

Consistancy The data in memory is contributed only by transactions which

commit. A transaction that aborts never contributes its effect to memory.

I solation The accesses issued by transactions are at the very least isolated with

respect to other issued by other transactions, known as weak isolation;

TMs that isolate transactional accesses with non-transactional accesses are

strongly isolated [Harris et al., 2010]. Most STMs are weakly isolated;

HTMs typically afford a strongly isolated semantics, although research has

been conducted on bringing strong isolation to STM [Abadi et al., 2009].

The semantics of STMs pivot on several components, generally they are:

Granularity of Conflict Detection . Variants include address-based, object

[Harris et al., 2010] or more abstract, e.g. linearisability [Herlihy and Kosk-

inen, 2008; Herlihy and Wing, 1990; Koskinen et al., 2010].

Update Mode In-place [Moore et al., 2006] or out-of-place [Harris et al., 2010].

In-place transactions mutate the memory they access in-place; out-of-place

transactions issue accesses to a copy of their data [Harris et al., 2010].

Contention Management The contention manager decides which transactions

should abort and commit should the same memory be contended by several

transactions. Typically contention management employs a heuristic that is

domain specific, just like an operating system’s thread scheduler or a task

scheduler [Herlihy et al., 2003; Spear et al., 2009].
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Isolation The level of isolation afforded by STM is typically weak isolation:

transactional accesses are isolated only with other transactional accesses.

Strongly isolated STMs isolate transactional accesses with transactional and

non-transactional accesses [Harris et al., 2010].

Nesting Transactions can be open, closed or flattened.

The remainder of this section dissects the properties of STM which are relevant

to the work presented in this thesis.

2.2.2.1 Basics

We now give an abstract overview of transactions in STM. In particular we focus

on STM in relation to the general abstractions encoded by the ACI properties.

The ACI properties will be expanded upon in subsequent sections.

Figure 2.6 gives a diagrammatic representation of a transaction’s structure

with regards to memory accesses. Each command of a transaction issues a se-

quence of reads and writes to memory. The set of memory locations a transaction

reads is known as its read set ; those that it writes form the transaction’s write

set. A transaction’s dataset is the union of its read and write set.

Two transactions conflict if the write set of one transaction intersects the

dataset of another transaction. Figure 2.7 show two scenarios: (a) when trans-

actions do not conflict; and (b) when they do conflict. Only one transaction

may commit should there be a conflict. The transactions that do not commit

must abort. The transaction that commits contributes its effect to memory. The

aborted transactions do not contribute their effect to memory. Each aborted

transaction is re-executed. The thread that executed the committed transac-
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atomic {
  

}

Thread 1 Thread 2
atomic { 
 

}

Cmds Cmds

Issue Accesses to Memory

atomic {
  

}

Thread 1 Thread 2
atomic { 
 

}

R/W R/W

Reads (R)/Writes (W)

atomic {
  

}

Thread 1 Thread 2
atomic { 
 

}

Datasets

R
W

R
W

(a) (b)

(c)

Figure 2.6: Abstract view of transactional accesses to memory. (a) A transaction
entails a number of commands to execute. (b) Each command to be executed by
a transaction issues a sequence of reads and writes to memory. (c) The set of
memory locations a transaction accesses is known as its dataset.

tion proceeds by executing its subsequent program text. Figure 2.8 shows the

commit/abort semantics of transactions.

2.2.2.2 Isolation

In Figures 2.7 and 2.8 we described the notion of conflict. We will now discuss the

types of accesses that transactional accesses may conflict with, known as isolation.

TM employs one of two types of isolation: weak or strong [Harris et al., 2010].

Weak isolation is prevalent in STM [Dice et al., 2006; Hickey, 2008; Menon et al.,

2008], however some languages such as Haskell [, editor] exploit the type system

to give a semantics similar to strong isolation [Harris et al., 2005].
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atomic {
  x := 1;
}

Int x; Int y;
x := 0; y := 0;

Thread 1 Thread 2
atomic { 
  y := 1;
}

Write Set = {x}
Read Set = { }
Dataset = {x}

Write Set = {y}
Read Set = { }
Dataset = {y}

x yThread 1's Write Set Thread 2's Dataset

atomic {
  x := 1;
}

Int x; Int y;
x := 0; y := 0;

Thread 1 Thread 2
atomic { 
  y := x;
}

Write Set = {x}
Read Set = { }
Dataset = {x}

Write Set = {y}
Read Set = {x}
Dataset = {x,y}

x yThread 1's Write Set Thread 2's Dataset

(a)

(b)

Figure 2.7: (a) The write set of thread 1’s transaction does not intersect with
the dataset of thread 2’s transaction. (b) The write set of thread 1’s transaction
intersects: only one of the two transactions may commit.

The accesses issued by a transaction in a weakly isolated STM are isolated

with respect to other transactional accesses. Figure 2.9 show a weakly isolated

semantics. In (a) the final value of y will be either 0 or 1, due to its read of x

being ordered before or after thread 1’s write of x (see Figure 2.8 as to why).

By contrast, the final value of y in (b) will be 0, 1 or a junk value which we

simply label ?. In a weakly isolated STM transactional accesses are only isolated

with other transactional accesses. Therefore, there does not exist a total ordering

over the transactional write of x by thread 1 and the uncoordinated read of x
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atomic {
  x := 1;
}

Int x; Int y;

x := 0; y := 0;

Thread 1 Thread 2
atomic { 
  y := x;
}

x = { }, y = { }

Memory

x = 0, y = 0

Memory

x = 1, y = 0

Memory

atomic { 
  y := x;
}

x = 1, y = 1

Memory

Execution
atomic {
  x := 1;
}

Int x; Int y;

x := 0; y := 0;

Thread 1 Thread 2
atomic { 
  y := x;
}

x = { }, y = { }

Memory

x = 0, y = 0

Memory

x = 0, y = 0

Memory

x = 1, y = 0

Memory

atomic {
  x := 1;
}

(a) (b)

Figure 2.8: (a) Thread 1’s transactional write of x is selected to commit. Thread
2’s transactional read of x is aborted and subsequently re-executed, upon which
it observes 1 for the value of x. (b) Is the reverse of (a). Thread 2’s transactional
read of x observes 0 as its value. Thread 1’s transactional write of x is aborted
and subsequently re-executed.

in thread 2. If the thread scheduler executes thread 2’s read before thread 1’s

transactional write of x then the final value of y will be 0; if scheduled after then

its final value will be 1. However, if both thread’s accesses of x are scheduled

concurrently, thread 2’s read of x could observe an intermediate value, a so-called

junk value. A junk value is a side-effect of a data race. See Figure 1.6 for the

intuition behind how such a junk value may occur.

Strong isolation goes one further than weak isolation and not only guaran-

tees that transactional accesses are isolated with respect to other transactional
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atomic {
  x := 1;
}

Int x; Int y;
x := 0; y := 0;

Thread 1 Thread 2
atomic { 
  y := x;
}

atomic {
  x := 1;
}

Int x; Int y;
x := 0; y := 0;

Thread 1 Thread 2
y := x;

(a) (b)

Figure 2.9: (a) Upon execution of the program the following assertion holds for
the final values for x and y: x = 1 ∧ (y = 0 ∨ y = 1). The assertion that models
the final values for (b) is x = 1 ∧ (y = 0 ∨ y = 1 ∨ y =?).

accesses, but also that they are isolated with non-transactional accesses. Under

strong isolation the final value of y in program (b) of Figure 2.9 will be either 0

or 1. This extra level of isolation at present is too expensive to emulate efficiently

in software [Abadi et al., 2009]. Chip manufacturers have shown some interest in

HTM, a setting where strong isolation is efficient, but a recent attempt to bring

such hardware to market was cancelled [Chaudhry et al., 2009].

2.2.2.3 Conflict Granularity

There are several types of conflict granularity in STM, the most popular being

object [Fraser and Harris, 2007] and address [Harris et al., 2010]. Under object

granularity all instance data is used to determine conflict detection; by contrast,

address-based conflict detect treats accesses to each field distinctly. Figure 2.10

compares object and address based conflict detection.

Conflict detection occurs at a stage known as validation. The validation pro-

cess is driven by the contention manager (discussed in Section 2.2.2.6). Put

simply, validation entails asking the question “Have the accesses performed by

another active or recently run transaction invalidated my view of the world?” If
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atomic {
  p.FirstName := "Granville";
}

Person p;
p := new Person;

Thread 1 Thread 2
atomic { 
  p.LastName := "Barnett";
}

(a)

atomic {
  p.FirstName := "Granville";
}

Person p;
p := new Person;

Thread 1 Thread 2
atomic { 
  p.LastName := "Barnett";
}

(b)

Figure 2.10: (a) Under an object STM the accesses to FirstName and LastName

result in a conflict as they are both fields of the same object. (b) An address-
based STM treats the accesses to FirstName and LastName distinctly as they
occupy distinct regions of memory.

the answer is yes then the contention manager will select one of the conflicting

transactions to commit and select the rest to abort. Validation can occur at

several stages: pre-commit or incremental [Harris et al., 2010]. Pre-commit en-

tails validating the accesses of a transaction just before it commits. By contrast,

incremental validation can occur at any time during a transaction’s execution.

For example, in Figure 2.11 (a) uses pre-commit validation, by contrast to (b)

that uses incremental validation. Incremental validation may detect memory con-

tention earlier and therefore prevent a so-called doomed (a transaction that will

be aborted) transaction from carrying out any further work, as such work is sur-

plus. The poll rate of incremental validation is subject to the STM and in many

respects is analogous to a thread and task scheduler. That is, the poll rate is

based on a domain-specific heuristic.
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atomic {
  coord.X := 10;

  coord.Y := 2;
}

Coord coord;
coord := new Coord;

Thread 1 Thread 2

atomic { 
 coord.X := 73;
 coord.Y := 12;
}

atomic { 
  coord.X := 73;
  coord.Y := 12;
}

Validate

atomic {
  coord.X := 10;

  coord.Y := 2;
}

Coord coord;
coord := new Coord;

Thread 1 Thread 2
atomic { 

  coord.X := 73;
  coord.Y := 12;

}
atomic { 
  coord.X := 73;
  coord.Y := 12;
}

Validate

(a)

(b)

Figure 2.11: (a) Employs incremental validation at per-transactional command
granularity. Thread 2’s transaction is selected to abort. Here, thread 2’s trans-
action does not execute the doomed write of Y. (b) Uses pre-commit validation.
The conflict during the transactional execution of the accesses to coord are only
observed upon pre-commit.
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2.2.2.4 Update Mode

There are two popular types of update mode: out-of-place and in-place. We will

discuss out-of-place as its semantics are easier to model and generally speaking

is the more prevalent. Note that these two update modes may also be referred to

as indirect and eager version management, or respectively direct and lazy version

management. The best coverage of in-place and out-of-place update can be found

in [Harris et al., 2010]. [Moore et al., 2006] present a version of in-place update

that is cache friendly.

Figure 2.12 shows out-of-place update in practice. The initial value of x = 0

and when thread 1 and 2’s transactions are entered, as they each access x, they

make a copy of x’s current value. Thread 1’s transaction writes 1 to x, but the

write is issued to its private copy of x (the transaction’s redo log). The read of x

in thread 1’s transaction observes the value of x in thread 1’s redo log. Thread 2

is similar to thread 1: it too makes a copy of x’s current value in memory upon

issuing an access to x, and subsequently writes over that value upon completing

its assignment of 2 to x. Thread 1 and 2’s transactions abort so only one may

commit: thread 1’s transaction is selected to commit; consequently, thread 2’s

transaction will abort. Committing thread 1’s transaction entails copying the

updated values for x and y to memory. The redo log of thread 2’s transaction is

discarded. Upon thread 2’s transaction being re-executed it will observe x = 1

for its initial value of x. Thread 2’s transaction subsequently commits and copies

its updated value for x in its redo log to memory.

A distinction exists between commit and copy in out-of-place update STMs.

When a transaction commits it is said to be logically committing. A logical
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atomic {
  x := 1;
  y := x;
}

Int x;

x := 0; y := 0; 

Thread 1 Thread 2
atomic { 
  x := 2;

}

x = { }, y = { }

Memory

x = 0, y = 0

Memory

x = 1, y = 1

Memory

atomic { 
  x := 2;
}

 x = 2, y = 1

Memory

Execution
x = 0
y = 0
x = 1
y = 1

x = 0
x = 2

x = 1
x = 2

Copy Discard

Copy

Transaction-local 
redo log

Figure 2.12: Out-of-place update. Each transaction maintains a private redo
log. The redo log encapsulates the effect of a transaction. A transaction that
commits replays its redo log to main memory. After this so-called replay the effect
of a committed transaction is observable by the other threads of the program.
Aborting transactions discard their redo logs.

commit means that the transaction has been selected to commit but its effect is

not yet observable by the other active threads. A physical commit follows the

logical commit: this is when the effect of the transaction has been propagated to

memory and is observable by the other active threads in the program.

2.2.2.5 Nesting

The semantics of a transaction nested within another transaction vary according

to STM. The three most popular semantics for nested transactions are: flattened ;

closed ; and open. At the time of writing it is still an open question as to which
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nesting semantics is preferable.

Flattened The simplest way to deal with nested transactions is to flatten them.

The benefit of flattening is that its semantics are simple. For example, under

a flattening semantics atomic { c1; atomic { c2 } } becomes atomic { c1;

c2 }.

Closed The effect of a nested transaction in a closed semantics is only observ-

able when its parent transaction commits. For example, in atomic { x := 1

atomic { y := 1 } }, y == 1 is only observed if the parent transaction com-

mits. The nested transaction may abort and not abort its parent transaction.

Open The effect of a nested transaction can persist even if its parent transaction

aborts. For example, in atomic { x := 1; atomic { y := 1 } }, if the child

transaction commits and the parent transaction aborts then y == 1 is observed.

In open nesting a committed transaction, irrespective of its nesting, has its effect

being immediately observable by all active transactions. For example, in the

previous example y == 1 is observable by all transactions, not just its parent

transaction, upon its commit.

For reference we summarise the most frequent semantics of each transactional

property in Table 2.2.2.5. The semantics exhibited by an STM is a product of the

values selected for these properties. No consensus on a standard set of semantic

values exists.
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Property Semantics
Concurrency control Optimistic or pessimistic
Update mode In-place or out-of-place
Isolation Weak or strong
Conflict resolution Word-based or object-based
Validation Incremental or pre-commit
Contention management Heuristic driven

Table 2.2: Common semantics for transactional properties.

2.2.2.6 Contention Management

The contention manager is analogous to the thread or task scheduler (see Sec-

tions 2.1.1.1 and 2.1.1.2) in that it applies some heuristic to actively executing

transactions to attain a specific goal, e.g. throughput or reducing the amount of

wasted CPU time. Based upon the used heuristic the contention manager deter-

mines which transactions abort and commit. [Herlihy et al., 2003; Scherer and

Scott, 2005; Spear et al., 2009] are largely considered the authoritative works on

contention management scheduling heuristics. In this thesis contention manage-

ment is treated as an oracle component that selects a transaction (randomly) to

commit should several transactions conflict.

2.2.2.7 Privatisation and Publication

The privatisation and publication idioms [Spear et al., 2007] are used to permit

weakly isolated STMs to execute irreversible or compute bound operations. Their

application is error prone, like locks, as the programmer is required to explicitly

maintain isolation invariants, but in a slightly different way than what we are

used to with locks. The focus of Chapter 6 addresses the issues of applying the

privatisation/publication idioms, so we now describe their facility.
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atomic {
  // Privatise.
  // cut off connectivity to 
  // b by other threads
  // introduce thread-local connection
  // to b's subgraph
}

c

b

d

a

c

b

d

a

e

c

b

d

a

// operate on b's subgraph; no coordination required
ComplexOperation(b);

atomic {
  // Publicise.
  // make b reachable again
}

// b and its subgraph can be reached by
// multiple threads through a

Figure 2.13: Privatising and publicising b and its subgraph using transactions.

With locks we use mutexes and other primitives to encode isolation semantics,

e.g. in sync(v){c;} we are stating that the accesses issued by other threads to

those which the command c accesses will be isolated if the other threads protect

their accesses on the mutex v. Privatisation and publication achieves a similar

type of isolation encoding via explicitly managing the reachability of a program’s

object graph. Modification of reachability is performed by transactions. The

general thesis of the privatisation and publication idiom is shown in Figure 2.13.
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Here, we wish to execute the CPU bound operation ComplexOperation which

accesses b and the objects that b can reach. Reachable objects of b are located

in b’s subgraph within the program’s object graph. The first step is to private

b by removing reachability of a to b. We state that a is the object which is

accessible by all threads, so removing a’s connection to b prevents other threads

from accessing b. The connection to b from a is removed using a transaction as

we need to mediate the update of a. This is the privatisation stage. Upon its

completion only the privatising thread may access b and its subgraph. Due to

this we can perform our CPU bound operation without needing to use any form

of coordination. The benefits of this in a purely transactional world are that

the accesses issued to b and its subgraph are not transactionally instrumented

as well as removing the possibility of abortion. Upon completion of our complex

operation we publicise b and its subgraph once more by re-establishing the edge

from a to b. Publication results in any mutations ComplexOperation made to b

and its subgraph being observable by all other threads.

Figure 2.13 presents a simple example of applying privatisation and publica-

tion. In the author’s opinion the correct application of privatisation/publication

is more complex than that of correctly applying locks. The reason being that

managing the connectivity of objects which are constituents of a complex ob-

ject graph is very hard to do correctly. Nonetheless, privatisation/publication

are powerful idioms for executing irreversible and CPU bound operations in a

purely transactional setting. The current literature has attempted to address

cleaner and safer semantics for the privatisation and publication idioms, which

we discuss now.

[Ziarek et al., 2008] present a dynamic approach for selecting a stronger se-
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mantics when a transaction attempted to execute an operation which seems (de-

termined by a magic analysis) to require stronger guarantees than that afforded

by a transaction. Unfortunately, such a semantics reverts to using programmer

specified lock invariants which are error prone. [Smaragdakis et al., 2007] pre-

sented a set of language extensions to temporarily “suspend” an transaction’s iso-

lation in order to support irreversible operations, however they rely heavily on the

specification of isolation invariants, which are again, error prone. Privatisation

and publication [Spear et al., 2007] can be used to emulate a stronger semantics

within STM but requires the programmer to correctly manage the reachability of

a program’s object graph. obstinate transactions [Ni et al., 2008] afford a strong

semantics but are a product of a prior abort. [Welc et al., 2008] use single owner

read locks to transition to a stronger transactional semantics but permit only a

single such transaction to run at any given time. [Sonmez et al., 2009] present

a model built on Haskell STM that turns transactions that access “hot” regions

of memory into pessimistic transactions, however this approach again is dynamic

and does not provide dataset guarantees. Autolocker [McCloskey et al., 2006]

presents a model of pessimistic transactions by using a type system that uses

programmer specified lock protection annotations to convert transactions into

lock-based equivalents statically.

2.3 Memory Consistency Models

A memory consistency model defines the set of values a read may observe. All

systems that admit multi-threaded programs should define a memory consistency

model. All major programming platforms provide a memory consistancy model,
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including the JVM, Common Language Runtime, Google Go and C++11. Sur-

prisingly, most texts that cover these environments omit any information on their

respective memory consistency model, despite it being a key factor of a concur-

rent program’s execution semantics. In this section we discuss three memory

models: program order, sequential consistency [Lamport, 1979] and the Java

memory model [Manson et al., 2005]. Hardware memory models are closely re-

lated to these memory models but are not relevant to the work we present in

this thesis. The best reference on hardware memory models is the tutorial by

[Adve and Gharachorloo, 1996]. Memory consistency models are closely related

to the work we present in Chapter 5 when we wish to relate accesses issued by

transactions and locks in a simple and intuitive manner.

2.3.1 Program Order

The simplest memory model is that of program order (PO). The semantics of

PO are restrictive but present a good starting point. Consider Figure 2.14 which

executes a number of arbitrary commands. Observe that this program does not

entail multiple threads of execution. That is, Figure 2.14 is single threaded. PO

states that each command in Figure 2.14 appears to execute in the same order

that the programmer issued them. For example, c1 will take effect before c2

which will take effect before c3, and so on. PO is a total ordering over a sequence

of commands, which we represent with the binary relation
po−→. The ordering of the

commands in Figure 2.14 can then be described by c1
po−→ c2

po−→ c3. PO seems

trivial but it provides important observational guarantees to the programmer.

That is, the read of l issued by c1 observes the value that c1 writes to l, and
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so on. A memory model restricts the optimisations a compiler may perform. For

example, as c2 reads memory that c1 writes, the compiler may not re-order the

accesses issued by c2 before c1. This is intuitive to the programmer as he or she

wishes that, at least semantically, their program executes in the order described

in their program text. This guarantee has a profound effect for memory models

which govern the observational guarantees of multi-threaded programs.

c1; ~> R(l),W(l)
c2; ~> R(l),W(l)
c3; ~> R(l),W(l)R(l) observes c2's W(l)

R(l)observes c1's W(l)
R(l) observes c0's W(l)

c0; ~> W(l)

Pre-program initialisation of the value of l

Figure 2.14: Program Order. R and W are used to denote read and respectively
write. For example, R(l) indicates a read of l. Each command issues a sequence
of reads and writes upon its execution. c1’s read observes the write of l by c0,
c2’s read observes the write by c1, and so on.

2.3.2 Sequential Consistency

Program order assumes a program comprises a single thread of execution. A

program that exploits a CMP is multi-threaded. Therefore, the order that each

thread’s instructions appear to execute to one another must be defined; other-

wise, the programmer has no way to reason about the observations their code may

witness. Sequential consistancy (SC) [Lamport, 1979] is the simplest and most re-

strictive memory model that governs observation guarantees for a multi-threaded

program. SC states that a global total order exists,
sc−→, over the instructions

executed by each thread. In
sc−→ the instructions issued per each thread do not
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W(x,1);
R(x);

Int x;
x := 0;

Thread 1 Thread 2
W(x,2);
R(x);

W(x,1);
W(x,2);
R(x);
R(x);

W(x,1);
R(x);

Int x;
x := 0;

Thread 1 Thread 2
W(x,2);
R(x);

W(x,1);
R(x);
R(x);
W(x,2);

(a) (b)

Program 
Order

Sequential
Consistency

Order

Figure 2.15: Thread 1’s instructions are coloured green; thread 2’s blue. W(x,1)
writes 1 to x. For thread 1 we have W(x,1)

po−→ R(x) and for thread 2 W(x,2)
po−→

R(x). (a) is valid under SC as W(x,1)
sc−→ R(x)

sc−→ W(x,2)
sc−→ R(x) preserves

each thread’s
po−→. By contrast, (b) does not as thread 2’s read of x occurs before

its write of x, which goes against the ordering of these two instructions in thread
2’s PO.

invalidate their issuing thread’s PO. A read within
sc−→ observes the value of the

most recent write before it. Figure 2.15 shows an example of SC. Here, (a) is valid

ordering under SC as each instruction that appears in
sc−→ respects its respective

thread’s PO. By contrast, (b) is not a valid ordering under SC as thread 2’s read

of x in
sc−→ is ordered before its write of x, violating thread 2’s PO.

2.3.3 Java Memory Model

The Java memory model (JMM) [Manson et al., 2005] guarantees SC semantics

for a correctly coordinated program. It also defines a number of orderings which

help determine when the instructions executed by locks and upon volatile data

appear to take effect. These orderings include: synchronises-with – a partial

ordering over release and acquire instructions; synchronisation-order – a total

order over release and acquire instructions derived from a program’s execution;
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and happens-before – the transitive closure of PO and synchronises-with order. A

data race exists on a memory location x if two accesses are issued to x by distinct

threads, one of them is a write and they are not ordered by happens-before. A

program is correctly synchronised if all SC executions of a program are free of

data races.

In Figure 2.16 (a) thread 1 writes x and thread 2 reads x. The scheduling

given in (b) shows thread 1’s write of x occurs before thread 2’s. Under the

JMM this scheduling is DRF, as we now explain. The JMM states that each

release of x synchronises-with subsequent acquires of x. Taking Figure 2.16 (b),

before thread 1 acquires the lock associated with x there is an initial release of x,

otherwise x is not acquirable. This conceptual release synchronises-with thread

1 and 2’s acquires of x; likewise, thread 1’s release of x synchronises-with thread

2’s acquire of x, and thread 2’s release of x synchronises-with thread 1’s acquire

of x. The JMM states that a schedule of a program is DRF if the accesses to x

are ordered by happens-before, which they are: thread 1’s write of x takes place

before thread 2’s as in Figure 2.16, in which case thread 2’s read of x is guaranteed

to observe the value 1 for x and additionally 1 for y. Figure 2.16 (a) is trivially

DRF as all SC executions are free of data races. The remaining semantics that

the JMM defines is to protect the strong security and safety guarantees of the

JVM, see [Manson et al., 2005] for more details.

2.4 Summary

There are three general elements which aid in the successful reasoning of a con-

current program: the language abstractions provided by the host programming
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y := 1;
sync(x) {
  x := 1;
}

Thread 1 Thread 2

sync(x) {
  z := x;
}

Int x; Int y; Int z;
x := 0; y := 0; z := 0;

(b)

y := 1;
sync(x) {
  x := 1;
}

Thread 1 Thread 2
sync(x) {
  z := x;
}

Int x; Int y; Int z;
x := 0; y := 0; z := 0;

(a)

Figure 2.16: (a) Thread 1 writes x and thread 2 reads x. (b) a DRF scheduling
of (a) according to the JMM. Here, thread 1 and 2’s accesses of x are ordered by
happens-before.

language and its associated libraries and runtime environment; static and dy-

namic tools which aid the programmer in detecting concurrency related errors

in their programs; and the semantics afforded by the host’s memory consistency

model. Together they provide a compelling programming model for designing

correct concurrent programs. We use the term correct in this thesis as a syn-

onym for data-race-freedom, although the term can more broadly encapsulate

other criteria such as deadlock freedom, as well as others. The remainder of the

thesis presents innovations that touch on each of the aforementioned categories:

Chapter 5 presents an abstract memory consistency model for programs that use

both locks and transactions to coordinate accesses to shared memory; Chapter

6 gives a programming language construct for simplifying the application of the

privatisation and publication idioms; and Part II presents a static analysis for au-

tomatically determining the data-race-freedom of programs that use both locks

and transactions to coordinate accesses to shared memory.
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Part I

Dynamic Reasoning
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In this part of the thesis we present two novel techniques to dynamically

reason about the semantics of a concurrent program: moverness and guaranteed

transactions.

Chapter 3: We introduce the role that reads and writes play in determining

the observable semantics of concurrent programs. We then describe means

to serialise them using locks and transactions, and the situations in which

each is the appropriate tool. The chapter concludes by giving illustrattive

examples of situations when each tool excels, giving an intuition of why a

programmer may wish to use both in their program.

Chapter 4: Gives the programming model that the subsequent chapters in the

dynamic reasoning part of the thesis are based upon. Locks and transac-

tions are used to serialise accesses to shared memory. We then define the

semantics of locks and transactions via a small step operational semantics.

Chapter 5: We reason about the direction which reads and writes issued by

locks and transactions may travel in upon instances of memory contention.

We describe the set of permissible directions by defining moverness. Locks

are found to be left movers due to their non-abortable semantics and trans-

actions right movers as they may be aborted. Non-conflicting locks and

transactions are free movers, and transactions and locks with respect to

themselves are both movers.

Chapter 6: An alternative to locks for certain scenarios is presented in the form

of guaranteed transactions. A guaranteed transaction affords pessimistic

serialisation but without the programmer having to explicitly manage iso-

lation invariants or the reachability of the object graph. A key benefit of
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guaranteed transactions is their abstract parity with transactions. We also

define their moverness with respect to transactions, and find them to be

left movers. Guaranteed transactions can be considered a half way house

between transaction and lock semantics.
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Chapter 3

Introduction

The observable semantics of a multi-threaded program are a consequence of the

control flows taken by each thread and the interleaving of each thread’s issued

accesses. In this chapter we give an overview of how reads and writes affect

program semantics. We also discuss how the effect of reads and writes can be

strictly defined by using locks and transactions to serialise their execution.

3.1 Actions

Understanding the semantics of an executing program is seldom trivial, partic-

ularly for concurrent programs. Reasoning about the semantics of a concurrent

program requires the programmer understand when actions (reads, writes, among

other operations) issued by distinct threads may take place simultaneously. The

possible permutations in which these actions take affect determines the observ-

able values yielded by the execution of a multi-threaded program. For example,

Figure 3.1 shows a program where two threads write to y. Here, there are three
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possible schedules that influence the final value observed for y: thread 1 writes

y, followed by thread 2’s write, or vice versa; or, thread 1 and thread 2’s write

of y take place concurrently. For the first two cases the final value obserbed for

y is most likely that we expected. However, in the latter case we may observe a

value for y that is neither 1 or 2. In this instance we observe a value of y that is

a consequence of a data race (Section 2.2), which are, unfortunately, common in

multi-threaded programs. Preventing data races is the topic of Part II.

y := 1;
Thread 1 Thread 2

y := 2;

Int y;
y := 0;

Figure 3.1: Threads 1 and 2 write y but their writes may overlap in time, resulting
in a data race.

3.2 Action Indivisibility

Locks and transactions can be used to restrict the ability of threads to concur-

rently issue accesses to defined regions of memory. We state this facility as the

ability of a thread to serialise its accesses with respect to those issued by other

active threads. Provided the programmer applies lock and transactional seman-

tics correctly, he can expect to observe data values that are a consequence of a

well-defined permutation of actions. The programmer can do this due to a com-

bination of two semantics: first, that of locks and transactions; and secondly that

of the underlying memory model (Section 2.3). We will briefly look at lock and

transactional semantics now and defer a discussion of memory models to Chapter

4. We refer the reader to Chapter 2 for more information.
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3.2.1 Locks

sync(y) {
  x := y;
}

Thread 1 Thread 2
sync(y) {
  y := 1;
}

Int x; Int y;
x := 0; y := 0;

acq(y);
R(y);
W(x);
rel(y);

Thread 1 Thread 2
acq(y);
W(y);
rel(y);

Int x; Int y;
x := 0; y := 0;

(1) (2)

(a) (b)

Figure 3.2: (a) Each thread’s access of y is protected by the same mutex. Con-
sequently, each thread’s access of y is isolated. (b) Shows the coversion of (a) to
its synchronisation and read/write action form. Due to each thread’s access of
t being isolated the acquire/release delimited sequence of actions collapses into
a single indivisible action. For example, if we label (1) as action a1 and (2) as
action a2, the possible execution sequences are a1a2 or a2a1.

sync(y) {
  x := y;
}

Thread 1 Thread 2
sync(x) {
  y := 1;
}

Int x; Int y;
x := 0; y := 0;

acq(y);
R(y);
W(x);
rel(y);

Thread 1 Thread 2
acq(x);
W(y);
rel(x);

Int x; Int y;
x := 0; y := 0;

(a) (b)

Figure 3.3: (a) Each thread uses a different mutex to protect its access of y.
Consequently, each thread’s access of y is not isolated. (b) Due to the locks not
agreeing on a mutex each thread’s acquire/release delimited sequence of actions
is not treated as an indivisible action. Therefore, the possible action sequence
is any permutation of the four actions issued by thread 1 and the three actions
issued by thread 2.

Lock issued accesses to the same memory by distinct threads are treated as

being indivisible if the locks are protected on the same mutex. For example,

consider the program in Figure 3.2. Here, locks are used to protect each thread’s

accesses. The use of each lock constructs a sequence of actions delimited by the
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synchronisation actions acquire and release. Each thread’s lock issued access of

y is isolated with respect to the other thread’s access of y as both locks use the

same mutex. Because the accesses of y are isolated they will be serialised. That

is, there are only two possible schedules for Figure 3.2: either thread 1’s read of y

takes effect, then thread 2’s write of y, or vice versa. Due to each thread’s access

of y being isolated we can treat the sequence of constituent accesses issued by

each thread’s lock as if it were a single indivisible action. By contrast, in Figure

3.3 each thread’s sequence of actions may not be treated as an indivisibl action

as the accesses of y are protected by different mutexes.

3.2.2 Transactions

Indivisibility of transactionally issued accesses is not guaranteed. This is partic-

ularly the case for transactions in a weakly isolated STM (Section 2.2.2.2), which

are the semantics of the STM we use throughout the thesis. The key concept

in a weakly isolated STM is that transactional accesses are isolated with respect

to other transactional accesses. For example, the accesses of y in Figure 3.4 are

isolated but those in Figure 3.5 are not. If the accesses issued by a transaction

are isolated then we can treat the sequence of actions the transaction issues as

a single indivisible action, like in Figure 3.4. By contrast, transactional accesses

that are not isolated cannot be treated as an indivisible action, as shown in Figure

3.5.
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atomic {
  x := y;
}

Thread 1 Thread 2
atomic {
  y := 1;
}

Int x; Int y;
x := 0; y := 0;

beg_txn;
R(y);
W(x);
end_txn;

Thread 1 Thread 2
beg_txn;
W(y);
end_txn;

Int x; Int y;
x := 0; y := 0;

(1) (2)

(a) (b)

Figure 3.4: (a) Each thread’s access of y is isolated as their respective accesses
are issued transactionally. (b) Each transaction begin/end delimited sequence of
actions can be treated as an indivisible action. For example, if we label (1) as
the action a1 and (2) as the action a2, the sequences a1a2 or a2a1 are possible.

atomic {
  x := y;
}

Thread 1 Thread 2
y := 1;

Int x; Int y;
x := 0; y := 0;

beg_txn;
R(y);
W(x);
end_txn;

Thread 1 Thread 2
W(y);

Int x; Int y;
x := 0; y := 0;

(a) (b)

Figure 3.5: Accesses of y are not isolated. The uncoordinated access of y by
thread 2 results in thread 1’s transactional sequence of actions not being viewed
as taking effect indivisibly.

3.3 Locks or Transactions

3.3.1 Locks

Locks have been the mainstay for facilitating serialisation in multi-threaded pro-

grams for decades. Virtually all thread safe libraries use locks to some extent.

The designers of modern languages such as Java and C# felt that locks were so

important that they made them a fundamental part of the respective languages.

By contrast, C and C++, prior to C11 and C++11, have relied on libraries such

as pthreads [Butenhof, 1997] to provide their concurrency semantics. Two points
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sync(x) {
  x := y;
}

Thread 1 Thread 2
sync(y) {
  y := 1;
}

Int x; Int y;
x := 0; y := 0;

Figure 3.6: Threads 1 and 2 access y. However, each thread’s access of y is
protected by a different mutex. Therefore, thread 1’s read and thread 2’s write
of y may take place concurrently and result in a data race.

of friction are common when applying locks: explicit invariant management and

composition.

Explicitly managing invariants is often error prone. As an analogy we can

consider the maintenance of lock isolation invariants to being akin to manual

memory management. That is, while the concept is often trivial to grasp, its

application in practice is easy to get wrong. Unfortunately, the incorrect main-

tainence of lock invariants can lead to complex program errors such as data races

and deadlock. Figure 3.6 gives an example of a program that leads to a data

race.

A second problem with locks is that of composition. Modern software design

is based upon the concept of resuable components. For example, one company

may provide a library A and another library B. A programmer would like to use

A and B as each provides complimentary functionality. For a single threaded

program we can compose A and B in an often intuitive manner. However, in

a multi-threaded program it is possible that A and B mutate data which may

be accessible by several threads. Consequently, the programmer must serially

compose A and B. Using locks this is non-trivial as it requires the programmer

to compose lock invariants. Figure 3.7 gives an example of such a lock invariant
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sync(a) {
  sync(b) {
    a.apply(b);
  }
}

Thread 1 Thread 2
sync(b) {
  sync(a) {
    a.apply(b);
  }
}

ComponentA a;
ComponentB b; 

Figure 3.7: Threads 1 and 2 compose the components a and b. Because a and b

can be accessed by multiple threads we pessimistically compose them with locks.
The programmer working on the program text executed by thread 1 composes the
isolation invariants in the sequence of acquiring a then b; the programmer who
coded the program text being executed by thread 2 took the opposite approach.
The result is deadlock should thread 1 acquire a and thread 2 acquire b.

composition. The more components the programmer wishes to compose, the

harder it becomes to compose isolation invariants and still maintain the desired

serialisation semantics.

3.3.2 Transactions

STM is an alternative to locks for mediating accesses to shared memory. The

semantics afforded by transactions are often too weak for operations which are

irreversible or demand run once semantics. For example, Figure 3.8 shows a

program which executes a seemingly irreversible operation. Here, transactions

are a bad choice as the operation being performed cannot be reversed. That

is, should the transaction abort it is likely that the atomicity and consistancy

guarantees of STM will be violated. CPU bound operations, such as that shown

in Figure 3.9, are impractical to be executed transactionally. Here, the problem

is that an operation, despite the fact it may have utilised several seconds of CPU

time, may be aborted introducing contention on system resources.
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atomic {
  ms.launchMissiles();
}

MissileSilo ms;

Thread 1 ...

...

(a)

atomic {
  ms.launchMissiles();
}

MissileSilo ms;

Thread 1 ...

...

(b)

atomic {
  ms.launchMissiles();
}

.

.

.

Figure 3.8: (a) Thread 1 launches some missiles. Once the missiles are launched
it may not be possible to have them aborted, e.g. the missles may be out of
control range. This problem is exemplified in (b) where the transaction executing
launchMissiles is aborted several times before it finally commits.

3.4 Locks and Transactions

Most multithreaded libraries written in a language like Java use locks extensively.

Transactions must co-exist with locks in the same program, otherwise the attrac-

tion of languages such as Java – its libraries – are of little use. In this section we

will discuss how locks and transactions can be used to compliment one another

by describing their respective strengths. Generally speaking, locks facilitate low

friction strong serialisation semantics, while transactions reduce the complexity

of correctly serialising component composition.

Consider Figure 3.10 where transactions are used to write data to disk. Here,

transactions may lead to data inconsistancy on the disk should a transaction

abort. Transactions are not appropriate for executing such operations, but locks

are, as shown in Figure 3.11. Locks are also appropriate for executing CPU bound

operations as shown in Figure 3.12. Using locks for executing such operations
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ComplexMatrix m;
atomic {
  m := m1 * m2;
}
// ...

ComplexMatrix m1;
ComplexMatrix m2;

Thread 1 ...

...

(a)

ComplexMatrix m;
atomic {
  m := m1 * m2;
}

atomic {
  m := m1 * m2;
}

// ...

ComplexMatrix m1;
ComplexMatrix m2;

Thread 1 ...

...

(b)

.

.

.

Figure 3.9: (a) Shows a program that performs the CPU bound operation of
multiplying two complex matrices. In (b) the transaction executing the matrix
operation is aborted several times before committing. Here, an operation which
may have taken at most 100 milliseconds of CPU time ends up taking several
seconds, introducing artificial contention on system resources.

atomic {

  l.add(1);
  d.write(l);
} // Commits

LinkedList l; Disk d;

Thread 1 Thread 2
atomic {

  

  d.write(l);
} // Aborts

Disk

Figure 3.10: Using transactions to execute an irreversible I/O operation. Thread
2’s transaction aborts but its write to disk remains.
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sync(l) {
 // acquires l

  l.add(1);
  d.write(l);
} // release l

LinkedList l; Disk d;

Thread 1 Thread 2
sync(l) {
 // waits for
 // thread 1 to
 // release l

 // acquires l

  d.write(l);
}

Disk

Figure 3.11: Using locks to safely execute an irreversible I/O operation.

comes at the expense of the programmer having to maintain isolation invariants.

Other approaches are possible, for example we might introduce a mutex which is

to be acquired before we access m1 and m2, as shown in Figure 3.13 (a). Another

key strength of locks is that they can be directly influenced by the programmer.

For example, the programmer may explicilty partition read and write cases as

shown in Figure 3.13 (b).

ComplexMatrix m;
sync(m1) {
  sync(m2) {
    m := m1 * m2;
  }
}
// ...

ComplexMatrix m1;
ComplexMatrix m2;

Thread 1 ...

...

Figure 3.12: Locks are used to execute a CPU bound operation.

The semantics of transactions are not as easily influenced as locks. The reason
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ComplexMatrix m;
sync(matrices) {
  m := m1 * m2;
}
// ...

ComplexMatrix m1;
ComplexMatrix m2;
Mutex matrices;

Thread 1 ...

...
ComplexMatrix m;
sync(matrices.ReadLock) {
  m := m1 * m2;
}
// ...

ComplexMatrix m1;
ComplexMatrix m2;

ReadWriteLock matrices;

Thread 1 ...

...

(a) (b)

Figure 3.13: (a) The programmer defines the object matrices which is to be used
each time an operation accesses the matrices m1 and m2. The lock invariant is
simplified at the cost of increasing the granularity of the isolation invariant. (b)
A Read/Write lock is used to optimise for cases when m1 and m2 are only read.
Threads that only read m1 and m2 need only acquire the read lock.

atomic {
  a.apply(b);
}

ComponentA a;
ComponentB b;

Thread 1 ...

...

Figure 3.14: Transactions are used to simplify component composition.

is analogous to optimising memory management in a garbage collected environ-

ment such as the JVM. That is, in order to optimise memory management the

programmer’s actions must compliment the semantics of the underlying service.

In our case the service is STM. The key feature of STM is the ease at which

it can be used to compose operations without burdening the programmer with

maintaining isolation invariants. Figure 3.14 shows a typical example of using

transactions to compose components. Under STM the programmer seldom has

to put much thought into the act of composing components.
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3.5 Summary

Taken individually locks and transactions are both insufficient for effectively solv-

ing many general purpose coordination scenarios in concurrent programs. Locks

can be considered the “assembly language” of coordination – they permit the

construction of most mutual exclusion idioms. However, locks are hard to use,

particularly when composing software components. Transactions do not provide

run once semantics like locks, but they do offer a simple and intuitive composition

semantics without burdening the programmer with complex isolation invariants.

The use of locks and transactions in the same program permits the programmer

to pick and choose the desired semantics for the task at hand: locks are ideal

to execute I/O and CPU bound operations; by contrast, transactions simplify

component composition and alleviate the programmer from maintaining isola-

tion invariants.
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Chapter 4

Programming Model

4.1 Programming Language

The programming language that we use is given in Figure 4.1. Most of the lan-

guage features are standard with the exception of atomic{c} and sync(v){c} which

we explain shortly. A simple version of object oriented programs are permitted

via the use of classes and methods. In our examples classes are generally used

to structure data and determine the connectivity of a program’s object graph,

which is our main focus.

4.1.1 Locks

The locks supported, denoted syntactically by sync(v){c}, protect execution of the

commands c according to the semantics of the mutex v. In Java this type of lock

is known as an explicit lock [Arnold et al., 2005]. Given the parallel composition

sync(v1){c1} || sync(v2){c2} the accesses issued by c1 and c2 are isolated if and

only if v1 = v2. Locks can be recursively acquired/released. We clarify these
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Program ::= Class-Decl
∗
(cn v)+ (v := new cn)∗

( T || . . . || T )

Class-Decl ::= class cn {
(cn v)+

Meth-Decl
∗

}
Meth-Decl ::= m((cn p)∗) {

C
}

b ∈ BExpr ::= v 6= null | v = null | True | False

T ::= (cn v)∗ C

c ∈ C ::= v := x
| v := x.f
| v.f := x
| v.m(p∗)
| atomic{c}
| sync(v){c}
| v := new cn
| if b {c1} else {c2}
| while b {c}
| c1;c2

Figure 4.1: Programming Language Abstract Syntax.

semantics, along with the isolation semantics of lock and transactional accesses

in Section 4.2.

4.1.2 Transactions

Transactions are denoted syntactically by atomic{c} which states that the com-

mands c are to be executed under a transactional semantics. Unlike locks, no

one semantics for transactions are standard, so we now give the semantics of the

transactions we model.
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Weakly Isolated: transactional accesses are isolated only with respect to ac-

cesses issued by other transactions. (We define the isolation of transactional

and lock accesses in Section 4.2.)

Conflict Granularity: transactional accesses conflict at the granularity of mem-

ory locations.

Update Mode: transactional accesses are issued out-of-place. That is, each

transaction updates a local copy of its dataset, the transaction’s redo log,

which becomes observable only should the transaction commit.

Nesting: nested transactions are flattened , e.g. atomic{c1; atomic{c2}} becomes

atomic{c1; c2; }.

Each lock and transactional instance is associated with a label id, e.g. atomic{c}

becomes id:atomic{c} and sync(v){c} becomes id:sync(v){c}, which takes on a

unique integer identifier id each time it is encountered within the program text.

A nested lock within a transaction and vice versa is prohibited1.

4.2 Operational Semantics

We now present the operational semantics for the language given in Section 4.1.

The definitions of the functions referenced can be found in Appendix A.

1No clear consensus on a semantics for this situation exists. The simplest option is to use a
single global lock atomicity semantics. We address a similar issue when we introduce guaranteed
transactions in Chapter 6.
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4.2.1 Overview

There are several pieces to our semantics so we begin with a high level overview of

how the respective configurations and rules relate to one another. Figure 4.2 gives

a diagrammatic overview of a program’s execution. On first reading one should

skim this section and then return to it after reading the rest of the chapter.

Legend:

Thread Initialisation Commands
Thread Management
Thread Main Commands

...

...

Thread Lifetime

Parallel Composition of Threads

Program Initialisation Commands

Main Thread

Main Thread

Begin Program Execution

End Program Execution

(a)

(b)

(c)

(d)

(e)

Figure 4.2: Annotated program execution lifetime.

A program’s execution undergoes the following phases:
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1. The main thread executes global initialisation commands ((a) in Figure 4.2),

e.g. global variable declarations and allocation of objects. The relevant

rules are (PROGRAM−INIT−NEW) and (PROGRAM−INIT−VAR−DECL).

2. The main thread forks several threads ((b) in Figure 4.2) which are treated

as a parallel composition. In Figure 4.2 the act of forking a thread falls

under the category of thread management, as does joining which we cover

shortly. The rule that forks the parallel composition of threads is

(PROGRAM−FORK).

3. Each thread then executes its initialisation commands ((c) in Figure 4.2)

which are thread-local variable declarations. The variable declarations are

executed by (THREAD−INIT−VAR−DECL).

4. Each thread executes its non-initialisation commands, (d) in Figure 4.2).

Each non-initialisation command is executed by a thread under one of three

coordination semantics: uncoordinated, transactional or lock-based. The

rules that govern the execution of a thread’s non-initialisation commands

are the thread rules in Section 4.2.4.2 and the unified rules in Section 4.2.4.3.

5. When each thread has executed its non-initialisation commands a join op-

eration is performed, (PROGRAM−JOIN), (e) in Figure 4.2. Upon the join

completing the program ceases execution.

4.2.2 Configurations

On a first reading it is recommended that the reader skims this section, con-

sults Section 4.2 and then returns should further clarification of a configuration’s
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components be required.

4.2.2.1 Program

A program configuration is of the form 〈Cpinit, T1 || . . . || Tn, σ, fs,md, Id〉, where:

• Cpinit are the program initialisation commands that are executed before the

parallel composition of threads are spawned. The commands making up

Cpinit are variable declarations, cn v, and object allocations, v := new cn.

See Program in Figure 4.1.

• T1 || . . . || Tn is a parallel composition of thread configurations, discussed

in Section 4.2.2.2. The thread configurations are formed by the rule

(PROGRAM−FORK).

• σ ∈ State
def
= Store × Heap represents the program state. The syntax

“σ ∈ State” asserts σ is an instance of the type State. Store
def
= Variable →

Location × Location maps a variable identifier to a tuple whose first com-

ponent is the memory location of the variable and second component its

value. Variable contains all possible contiguous sequences of the charac-

ters a, . . . , z and Location comprises all possible memory locations. We

use the metavariable ` and its subscripts to range over memory locations.

Heap
def
= Location → Object maps a memory location to an object, where

Object
def
= Field→ Location×Location maps a field identifier to a pair whose

first component is the location of the field and second component its value.

Field is defined similarly to Variable, e.g. name is both a valid instance of

Field and Variable. The second component of a variable or field is null when

the value of the variable or respectively field is a primitive, e.g. an integer.
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• fs ∈ FS
def
= LocationSet, where LocationSet is a set of Location. fs represents

the program’s free store. That is, fs is a set which comprises the memory

locations allocated by an executing program.

• md ∈ MD
def
= ID → MetaData maps a unique label ID

def
= N associated

with a lock or transaction instance to its respective metadata. MetaData
def
=

Time× Time× LocationSet× LocationSet× LocationSet× Coord:

– The first two components represent the begin and respectively commit

time of the lock or transaction, where Time
def
= N.

– The three components of type LocationSet represent the read set, write

set and respectively dataset of the lock or transaction. Recall that the

dataset is the union of the read and write set. We include the dataset

in a lock and transaction’s metadata to permit simpler construction of

of our operational semantics which we give later.

– The last component of MetaData denotes the type of coordination the

metadata is modelling, where Coord
def
= L | A. The label L denotes a

lock and A a transaction. L is parameterised on two values: a thread

identifier τ and a handle count count, L(τ, count). These parame-

terised values are used to support nested and recursive locks.

• Id ∈ ID holds the value which the next unique label is the successor of.

4.2.2.2 Thread

A thread configuration is 〈τ, Ctinit, C, sτ , δ〉.
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• τ ∈ T is a unique integer representing a thread identifier. T is the set

of active thread identifiers. For example, T = {1, 2, 3} if the program

configuration comprises the parallel composition of threads T1 || T2 || T3.

• Ctinit is the sequence of thread initialisation commands. These commands

are restricted to variable declarations, see T in Figure 4.1. The variables

declared by a thread’s initialisation commands are accessible only by the

defining thread. All the commands in Ctinit are executed before a thread’s

non-initialisation commands C.

• C is the sequence of non-initialisation commands to be executed by the

thread.

• sτ ∈ Store is the thread’s local store. sτ is defined only for the variables

declared in the command sequence Ctinit.

• δ ∈ State is a redo log and is only present during the execution of a trans-

action.

4.2.2.3 Unified

A unified configuration is 〈τ, c, δ, fs, γR, γW, sτ , σ,md, Id〉, where:

• τ is the active thread identifier.

• c is the command to execute.

• δ is the threaded state pair.

• fs is the program’s free store.
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• γR def
= LocationSet and γW

def
= LocationSet are read and respectively write

sets. Read and write sets are only used when executing a command trans-

actionally; otherwise, they are set to ⊥, “undefined.”

• sτ , σ, md and Id are the thread’s local store, the global state, the metadata

mapping and respectively the currently taken unique identifier label. These

components are only set when executing nested locks; otherwise, they are

set to ⊥.

All commands executed under an uncoordinated, lock or transactional se-

mantics delegate their execution to a unified configuration. The advantage of the

unified configuration is that we can define the semantics of a command c once

and then “thread-in” the appropriate components depending on the coordination

semantics c is to be executed under.

4.2.3 Transition Relations

4.2.3.1 Program

There are two forms of reduction for a program configuration: one for when

executing the initialisation commands of the main thread, and another when

executing the commands of the parallel composition of threads.

Initialisation Commands Executing the initialisation commands of the main

thread results in P
λ+−→ P ′, where

P=〈c, T1 || . . . || Tn, σ, fs,md, Id〉 P ′=〈c′, T1 || . . . || Tn, σ′, fs′,md, Id〉
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Execution of an initialisation command by the main thread only ever updates

the σ and fs components of the program configuration. Each reduction generates

a sequence of actions λ+ which we discuss shortly.

Non-Initialisation Commands The non-initialisation commands of a pro-

gram are those executed by the parallel composition of threads that the program

spawns. Executing the commands of the threads within the parallel composition

results in P
Λi || Λj || Λk || Λm || Λu−−−−−−−−−−−−−−−→ P ′, where

P=〈ε, Ti || . . . || Tj || . . . || Tk || . . . || Tm || . . . || Tu, σ, fs,md, Id〉

P ′=〈ε, Ti || . . . || T ′j || . . . || T ′k || . . . || T ′m || . . . || T ′u, σ′, fs′,md′, Id′〉

Note that the commands of the parallel composition are only executed after

the initialisation commands of the program.

• For now we assert thread Ti is executing a lock that has not acquired its

mutex, Tm a transaction which is committing, Tu an uncoordinated com-

mand, Tj a lock which has acquired its mutex and Tk an aborted transac-

tion. Threads Tj, Tm and Tu contribute to the updated program state σ′.

Threads Tj, Tk and Tm contribute to md′ and Id′. We cover this reduction

further in Section 4.2.5.

• Upon a program reduction each thread executes a sequence of actions that

conforms to one of the sequences defined by Λ, defined in Figure 4.3. The

actions from each respective sequence can be executed concurrently in any

order so long as they respect their issuing thread’s program order.
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λ
def
= R | W | TBEG | TABT | TCMT | ACQ | REL | NOP

λRW
def
= R | W

Λ
def
= λ+

RW

| TBEG λ+
RW (TABT | TCMT)

| ACQ λ+ REL
| NOP

Figure 4.3: Abstract Syntax for Actions.

Figure 4.3 shows the abstract syntax of actions which are issued during a

reduction:

• R is a read.

• W is a write.

• TBEG delimits the beginning of a transactional sequence of actions.

• TCMT delimits the end of a transactional sequence whose actions are to

take effect.

• TABT delimits the end of a transactional sequence whose actions are not to

take effect.

• ACQ delimits the beginning of a lock issued sequence of actions.

• REL delimits the end of a lock issued sequence of actions.

• NOP is a no operation action. We use this action when a command’s re-

duction results in no work being done, e.g. a thread blocking to wait for a

mutex to become acquirable.
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The actions R, W, ACQ and REL are parameterised on a memory location `.

For example, R(`) denotes that the memory location ` ∈ fs is being read. We

use non-parameterised versions of actions when we wish to state that a particular

action has been issued but without explicitly stating the concrete semantics of the

action. Λ is used to generalise a specific sequence of actions that are executed by

each thread within a reduction of a program’s non-initialisation commands, i.e.

its parallel composition. For example, all reductions in the parallel composition

of threads which make progress issue a sequence of actions which conform to the

sequence defined by Λ. The use of actions will become clearer as we proceed

through this chapter and Chapter 5. At present it is sufficient to understand that

every command reduction generates one or more actions from λ, denoted λ+.

4.2.3.2 Thread

Initialisation Commands Executing the initialisation commands of a thread

results in the following T, σ, fs,md, Id
λ+−→ T ′, σ, fs′,md, Id, where

T = 〈τ, Ctinit, C, sτ ,⊥〉 T ′ = 〈τ, C ′tinit, C, sτ ′ ,⊥〉

Note that only the thread local store and free store components are updated

when executing a thread’s initialisation command.

Non-Initialisation Commands Executing the non-initialisation commands

of a thread results in T, σ, fs,md, Id
λ+−→ T ′, σ′, fs′,md′, Id′, where

T = 〈τ, ε, c, sτ , δ〉 T ′ = 〈τ, ε, c′, sτ ′ , δ′〉
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The reduction results in:

• The thread progressing to the next command in its sequence of non-initialisation

commands.

• A possible update of the thread local store and/or global state.

• An update of the redo log δ if c was a transaction.

• An update of md and Id if c was a transaction or lock.

• An update of fs if c performed an allocation.

• The generation of one or more actions drawn from λ.

4.2.3.3 Unified

A reduction of a unified configuration U
λ+−→ U ′, where

U = 〈τ, c, δ, fs, γR, γW, sτ , σ,md, Id〉

U ′ = 〈τ, c′, δ′, fs′, γ′R, γ′W, s′τ , σ′,md′, Id′〉

The reduction results in:

• Progression to the next command c′.

• Update of the threaded state δ if c issued a write.

• Update of fs should c have allocated.
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• Update of the read and/or respectively write set, γR and respectively γW,

should c have been executed under a transactional semantics.

• Update of sτ , σ, md and Id should c be a nested lock.

The following conventions apply when executing a command under a unified

configuration:

• c is transactional. The sτ , σ, md and Id components of a unified configura-

tion are ⊥.

• c is uncoordinated. The components γR, γW, sτ , σ, md and Id are ⊥.

• c is a nested lock. All components are defined.

4.2.4 Rules

We now present the rules for the program, thread and unified configurations.

4.2.4.1 Program

Figure 4.4 shows the rules for executing the commands of a program. The rules

(PROGRAM−INIT−VAR−DECL) and (PROGRAM−INIT−NEW), which we de-

scribe shortly, correspond to label (a) in Figure 4.2.

(PROGRAM−INIT−VAR−DECL) declares a global variable:

• A fresh memory location ` is introduced. “fresh” in this context asserts

that ` 6∈ fs. That is, ` is not currently active in the program’s free store.
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(PROGRAM−INIT−SEQ−1)

〈c1, T1 || . . . || Tn, σ, fs,md, Id〉 λ∗−→ 〈c′1, T1 || . . . || Tn, σ′, fs′,md, Id〉
〈c1; c2, T1 || . . . || Tn, σ, fs,md, Id〉 λ∗−→ 〈c′1; c2, T1 || . . . || Tn, σ′, fs′,md, Id〉

(PROGRAM−INIT−SEQ−2)

〈c1, T1 || . . . || Tn, σ, fs,md, Id〉 λ∗−→ 〈ε, T1 || . . . || Tn, σ′, fs′,md, Id〉
〈c1; c2, T1 || . . . || Tn, σ, fs,md, Id〉 λ∗−→ 〈c2, T1 || . . . || Tn, σ′, fs′,md, Id〉

(PROGRAM−INIT−VAR−DECL)
fresh ` s′=σ′.s[v 7→(`, null)] fs′=fs∪{`} σ′=(s′, σ.h)

〈cn v, T1 || . . . || Tn, σ, fs,md, Id〉 NOP−−→ 〈ε, T1 || . . . || Tn, σ′, fs′,md, Id〉

(PROGRAM−INIT−NEW)
[v 7→(`, val)]⊆σ.s (obj, locs)=CreateObject(cn, fs) fs′=fs∪locs

`base=Head(locs) s′=σ.s[v 7→(`, `base)] h′=σ.h[`base 7→obj] σ′=(s′, h′)

〈v := new cn, T1 || . . . || Tn, σ, fs,md, Id〉
W(`)−−→

〈ε, T1 || . . . || Tn, σ′, fs′,md, Id〉

(PROGRAM−FORK)
fresh s1 . . . fresh sn

T ′1=〈1, C1tinit
, C1, s1,⊥〉 . . . T ′n=〈n,Cntinit

, Cn, sn,⊥〉
〈ε, T1 || . . . || Tn, σ, fs,md, Id〉 NOP−−→ 〈ε, T ′1 || . . . || T ′n, σ, fs,md, Id〉

(PROGRAM−JOIN)
T1=〈1, ε, ε, s1,⊥〉 . . . Tn=〈n, ε, ε, sn,⊥〉

〈ε, T1 || . . . || Tn, σ, fs,md, Id〉 NOP−−→ 〈ε, ε, σ, fs,md, Id〉

Figure 4.4: Program Command Rules.

• The updated store s′ is the same as σ.s but maps v to the pair (`, null), where

the first component of the tuple is v’s memory location and the second v’s
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value.

• ` becomes bound in the free store.

• The new global state σ′ uses s′ as its variable mapping.

• The variable declaration emits a no operation action. Our rules omit a

no operation action whenever a reduction has no bearing on read, write or

coordination semantics.

We often use the simpler form σ.s and σ.h for addressing the store and heap

components of a state, where σ.s
def
= fst(σ) and respectively σ.h

def
= snd(σ), and

fst((a, b)) = a and snd((a, b)) = b.

(PROGRAM−INIT−NEW) executes an object allocation:

• CreateObject
def
= Type × FS → Object × LocationSet returns a tuple whose

first component is an object mapping obj representing an instance of cn, and

second component the set of memory locations associated with the fields of

obj.

• The set of memory locations locs consumed by obj are bound in the pro-

gram’s free store.

• The head of locs is the base location of obj. That is, `base is the start address

of obj. The base address is the memory location associated with obj’s first

field. Where, Head({`1, . . . , `n})=`1.

• The updated store mapping s′ is the same as σ.s with the exception that the

value of v is the base location of obj. The updated heap mapping h′ is the
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same as σ.h but maps `base to the newly created object obj. The updated

global state σ′ comprises s′ and h′.

• Execution of the allocation omits a write action on the memory location of

v, W(`).

The object model we use is very simple: each field has an associated distinct

memory location; the memory location of an object’s first field is its base location.

For example, given the class definition class Coord { Int x; Int y; }, an

object o of type Coord looks like that shown in Figure 4.5. Essentially, objects

have the same memory semantics as structs in C, with the exception that each

field has a fixed width of a single memory location.

o

x y

Each field has a fixed width 
of a single memory location.

The memory location of
an object's first field is its 
base location.

Figure 4.5: The object model used by our semantics.

The rules (PROGRAM−INIT−SEQ−1) and (PROGRAM−INIT−SEQ−2) are

applied when executing sequences of initialisation commands drawn from Cpinit.

(PROGRAM−FORK) forks the parallel composition of threads upon all the

program initialisation commands having been executed. The forking of threads

corresponds to label (b) in Figure 4.2:

• A fresh store mapping is created for each thread configuration.
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• A thread configuration is initialised for each thread’s program text:

– The thread identifier is a strictly increasing integer.

– The thread’s initialisation commands are the variable declarations

from T in Figure 4.1.

– The thread’s non-initialisation commands are the command sequence

drawn from the options in C in Figure 4.1.

– The thread configuration takes on one of the fresh stores.

– The redo log component δ is initially set to ⊥.

• The reduction sees a no operation action issued, and the thread configura-

tions of the program being in an active state. That is, the thread configu-

rations begin execution. Thread management activities, e.g. fork and join,

do not emit actions.

(PROGRAM−JOIN) performs an n-thread join when all threads have finished

executing their respective commands. This rule corresponds to label (e) in Figure

4.2:

• The thread configurations T1 . . . Tn have executed all of their respective

initialisation and non-initialisation commands. This is indicated by the

initialisation commands being ε and the non-initialisation commands being

ε in each respective thread configuration.

• The reduced program configuration uses ε for the value of the parallel com-

position component of the program configuration. Here, ε indicates that all

threads have completed their execution. The program implicitly terminates.
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We have explained most of the program execution lifetime. However, we have

not described the rule that governs reductions while each thread is executing

its non-initialisation commands in parallel with respect to the non-initialisation

commands being executed by the other active threads of the parallel composition

(label (d) in Figure 4.2). We defer coverage of this topic until Section 4.2.5 as it

requires an understanding of the rules given in Sections 4.2.4.2 and 4.2.4.3.

4.2.4.2 Thread

We now present the rules that execute the commands that correspond to label

(d) in Figure 4.2. The thread rules are given in Figures 4.6, 4.7, 4.8 and 4.9.

A thread executes a sequence of initialisation commands (thread-local variable

declarations), then a sequence of non-initialisation commands (any command in

C in Figure 4.1). At any given point of a thread’s execution a non-initialisation

command is being executed under one of three coordination semantics: uncoordi-

nated, lock or transactional. The actual execution of each command is performed

by the unified rules given in Section 4.2.4.3. The purpose of the rules that execute

the non-initialisation commands of a thread is to setup the execution context for

for a command to be executed under the unified rules. Recall that the unified

rules permit a single definition of all commands, irrespective of their executing

coordination semantics. This single definition for each command comes at the

cost of slightly reducing the intuitiveness of the thread rules.

(THREAD−INIT−VAR−DECL) executes a variable declaration as part of a

thread’s initialisation commands. The semantics are the same as the program rule

(PROGRAM−INIT−VAR−DECL) with the exception that the variable is added to

the domain of sτ , the thread local store mapping. (THREAD−INIT−SEQ−ONE)
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(THREAD−INIT−VAR−DECL)
fresh ` fs′=fs∪{`} s′τ=sτ [v 7→(`, null)]

〈τ, cn v, C, sτ ,⊥〉, σ, fs,md, Id
NOP−−→ 〈τ, ε, C, s′τ ,⊥〉, σ, fs′,md, Id

(THREAD−INIT−SEQ−ONE)

〈τ, c1, C, sτ ,⊥〉, σ, fs,md, Id
λ+−→ 〈τ, c′1, C, s′τ ,⊥〉, σ, fs′,md, Id

〈τ, c1; c2, C, sτ ,⊥〉, σ, fs,md, Id
λ+−→ 〈τ, c′1; c2, C, s′τ ,⊥〉, σ, fs′,md, Id

(THREAD−INIT−SEQ−TWO)

〈τ, c1, C, sτ ,⊥〉, σ, fs,md, Id
λ+−→ 〈τ, ε, C, s′τ ,⊥〉, σ, fs′,md, Id

〈τ, c1; c2, C, sτ ,⊥〉, σ, fs,md, Id
λ+−→ 〈τ, c2, C, s′τ ,⊥〉, σ, fs′,md, Id

(THREAD−SEQ−ONE)

〈τ, ε, c1, sτ ,⊥〉, σ, fs,md, Id
λ+−→ 〈τ, ε, c′1, s′τ ,⊥〉, σ′, fs′,md′, Id′

〈τ, ε, c1; c2, sτ ,⊥〉, σ, fs,md, Id
λ+−→ 〈τ, ε, c′1; c2, s′τ ,⊥〉, σ′, fs′,md′, Id′

(THREAD−SEQ−TWO)

〈τ, ε, c1, sτ ,⊥〉, σ, fs,md, Id
λ+−→ 〈τ, ε, ε, s′τ ,⊥〉, σ′, fs′,md′, Id′

〈τ, ε, c1; c2, sτ ,⊥〉, σ, fs,md, Id
λ+−→ 〈τ, ε, c2, s′τ ,⊥〉, σ′, fs′,md′, Id′

(THREAD−UNCOORDINATED)
c 6= sync( ){ } ∧ c 6= atomic{ }

δ=(sτ ∪ σ.s, σ.h)

〈τ, c, δ, fs,⊥,⊥,⊥,⊥,⊥,⊥〉 λ+−→ 〈τ, c′, δ′, fs′,⊥,⊥,⊥,⊥,⊥,⊥〉
(s′τ , σ

′)=Persist(δ′, sτ , σ)

〈τ, ε, c, sτ ,⊥〉, σ, fs,md, Id
λ+−→ 〈τ, ε, c′, s′τ ,⊥〉, σ′, fs′,md, Id

Figure 4.6: Thread Command Rules (Part I).

and (THREAD−INIT−SEQ−TWO) execute each command within a thread’s se-

quence of initialisation commands. When all of a thread’s initialisation com-
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(THREAD−TRANSACTION−BEGIN)
id′=GenerateID(md, Id)

md′=md[id′ 7→(Now(),⊥, {}, {}, {},A)]
δ=(sτ ∪ σ.s, σ.h)

〈τ, ε, id:atomic{c}, sτ ,⊥〉, σ, fs,md, Id
TBEG−−−→

〈τ, ε, id′ :ablk(c, id:atomic{c}), sτ , δ〉, σ, fs,md′, id′

(THREAD−TRANSACTION−IN)
[id 7→(beg,⊥, γR, γW, γD, coord)]⊆md

〈τ, c, δ, fs, γR, γW,⊥,⊥,⊥,⊥〉
λ+RW−−−→ 〈τ, c′, δ′, fs′, γ′R, γ′W,⊥,⊥,⊥,⊥〉

md′=md[id 7→(beg, cmt, γ′R, γ
′
W, γ

′
R∪γ′W, coord)]

〈τ, ε, id:ablk(c,←−c ), sτ , δ〉, σ, fs,md, Id
λ+RW−−−→

〈τ, ε, id:ablk(c′,←−c ), sτ , δ
′〉, σ, fs′,md′, Id

(THREAD−TRANSACTION−COMMIT)
¬Conflict(id,md)

[id 7→(beg,⊥, γR, γW, γD, coord)]⊆md
md′=md[id 7→(beg,Now(), γR, γW, γD, coord)]

(s′τ , σ
′)=Persist(δ, sτ , σ)

〈τ, ε, id:ablk(ε,←−c ), sτ , δ〉, σ, fs,md, Id
TCMT−−−→

〈τ, ε, ε, s′τ ,⊥〉, σ′, fs,md′, Id

(THREAD−TRANSACTION−ABORT)
Conflict(id,md)

md′=md Dom(md′)=Dom(md′)\{id}
〈τ, ε, id:ablk(c,←−c ), sτ , δ〉, σ, fs,md, Id

TABT−−−→
〈τ, ε,←−c , sτ ,⊥〉, σ, fs,md′, Id

Figure 4.7: Thread Command Rules (Part II).
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(THREAD−LOCK−ACQUIRE)
`=VarLocation(sτ , σ, v)

Acquireable(`,md)
id′=GenerateID(md, Id)

md′=md[id′ 7→(Now(),⊥, {}, {}, {`},L(τ, 1))]

〈τ, ε, id:sync(v){c}, sτ ,⊥〉, σ, fs,md, Id
ACQ(`)−−−−→

〈τ, ε, id′ :sblk(c), sτ ,⊥〉, σ, fs,md′, id′

(THREAD−LOCK−RELEASE)
[id 7→(beg,⊥, γR, γW, {`},L(τ, 1))]⊆md

md′=md[id 7→(beg,Now(), γR, γW, {},L(τ, 0))]

〈τ, ε, id:sblk(ε), sτ ,⊥〉, σ, fs,md, Id
REL(`)−−−→

〈τ, ε, ε, sτ ,⊥〉, σ, fs,md′, Id

(THREAD−LOCK−BLOCKING)
`=VarLocation(sτ , σ, v)
¬Acquireable(`,md)

〈τ, ε, id:sync(v){c}, sτ ,⊥〉, σ, fs,md, Id
NOP−−→

〈τ, ε, id:sync(v){c}, sτ ,⊥〉, σ, fs,md, Id

(THREAD−LOCK−IN)
c 6= sync( ){ }
δ=(sτ ∪ σ.s, σ.h)

〈τ, c, δ, fs,⊥,⊥,⊥,⊥,⊥,⊥〉 λ+−→ 〈τ, c′, δ′, fs′,⊥,⊥,⊥,⊥,⊥,⊥〉
(s′τ , σ

′)=Persist(δ′, sτ , σ)

〈τ, ε, id:sblk(c), sτ ,⊥〉, σ, fs,md, Id
λ+−→

〈τ, ε, id:sblk(c′), s′τ ,⊥〉, σ′, fs′,md, Id

Figure 4.8: Thread Command Rules (Part III).
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(THREAD−LOCK−IN−LOCK)
c = sync( ){ }
δ=(sτ ∪ σ.s, σ.h)

〈τ, c, δ, fs,⊥,⊥, sτ , σ,md, Id〉 λ+−→ 〈τ, c′, δ′, fs′,⊥,⊥, s′τ , σ′,md′, Id′〉
〈τ, ε, id:sblk(c), sτ ,⊥〉, σ, fs,md, Id

λ+−→
〈τ, ε, id:sblk(c′), s′τ ,⊥〉, σ′, fs′,md′, Id′

Figure 4.9: Thread Command Rules (Part IV).

mands have been executed, i.e. reduced to the empty command ε, the thread’s

non-initialisation commands are executed, which we cover from this point for-

ward.

(THREAD−SEQ−ONE) and (THREAD−SEQ−TWO) execute the commands

within a thread’s non-initialisation sequence of commands. Note that each com-

mand’s execution can result in the update of sτ , σ, fs, md and Id. By contrast, a

command executed as part of the thread’s initialisation commands only updates

sτ and fs.

(THREAD−UNCOORDINATED) executes a command under an uncoordinated

semantics:

• The command c is not a lock or a transaction.

• The unified configuration that c is executed under contains the thread iden-

tifier of the thread executing c, a state whose store component is the union

of the thread store and global store, and second component the global heap.

Where, sτ∪σ.s unifies the domain and co-domain of the store mappings sτ

and σ.s. Persist
def
= State× Store× State→ Store× State persists the effect

105



of a command’s mutations. The first argument of Persist is the state we

wish to persist, and the remaining arguments the store and state we wish

to persist the effect into (the thread-local store and the global state). The

returned tuple is a store and global state with the effect of c’s execution

persisted.

• Executing the command sees a number of actions being issued. The exact

actions will be defined when we cover the unified rules.

(THREAD−TRANSACTION−BEGIN) begins the execution of a transaction:

• A unique integer id′ is created via GenerateID(md, Id) which generates the

next unique integer identifier. id′ is no longer a candidate for future unique

labels so Id is replaced with id′ in the reduction. Note that the definition

of GenerateID
def
= MD × ID → ID is trivial – it simply returns the successor

of Id and checks that the successor is not in the domain of md.

• The language construct id:atomic{c} is translated to the intermediate con-

struct id′ :ablk(c, id:atomic{c}). The first component of ablk is the command

the transaction is to execute and the second component the point at which

the program counter should rollback to should the transaction abort. We

refer to the point of rollback in subsequent rules as ←−c .

• The medadata mapping md is updated to reflect the newly initiated trans-

action’s state: the time at which it began, Now(), and the fact that the

coordination instance the metadata models is that of a transaction, A.

All other components of the metadata entry are initialised to their default

components: {} for the read, write and dataset and ⊥ for the transaction’s
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commit time. The function Now yields an integer timestamp marking the

current point in time.

• The transaction’s effect, its redo log, is stored in δ which is a state pair

whose first component is that of the thread local store and global store

combined, and second component that of the global heap.

(THREAD−TRANSACTION−IN) executes a command c transactionally:

• We assert the current metadata that id, the unique identifier associated

with the current transactional instance, maps to in md. Note that in

the assertion [id 7→(beg, cmt, γR, γW, γD, coord)]⊆md we use the canonical

labels beg, cmt, γR, γW, γD and coord to bind to the respective compo-

nent’s current value in id’s metadata. When we do not wish to bind

the current value, e.g. we want to set or assert existence of a specific

value within id’s metadata, we use a permissible value of that component’s

type. For example, in [id 7→(beg,⊥, γR, γW, γD, coord)]⊆md we assert that

the coordination instance with identifier id has yet to complete, and in

md′=md[id 7→(beg,Now(), γR, γW, γD, coord)] we are setting the value of id’s

commit time.

• The command c is executed via our unified command configuration which

we cover in Section 4.2.4.3. The main things of note are that we use the

transaction’s redo log as the state under which c is executed in addition to

incrementally building the read and write set of the transaction. The re-

maining components of the unified configuration are irrelevant for executing

c transactionally.
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• The new value of the metadata which id maps to in md′ differs in its read,

write and dataset to the value it mapped to in md. A transaction’s dataset

is incrementally built on a per-command basis. The dataset of a transaction

is validated pre-commit, rather than incrementally.

(THREAD−TRANSACTION−COMMIT) commits a transaction:

• The transaction can be committed if the predicate Conflict fails. That is, if

the write set of id does not conflict with the dataset of any recently ran or

still running transaction or lock.

• The metadata entry for id is updated to reflect its commit time.

• The effect of δ is persisted by merging its effect into the appropriate com-

ponent of σ and sτ via Persist.

• The redo log of the committed transaction is discarded.

(THREAD−TRANSACTION−ABORT) aborts a transaction:

• The transaction may not be committed as it conflicts with another running

or recently ran lock or transaction.

• The metadata associated with id is removed from md.

• The transaction’s redo log is discarded.

• The program counter of the thread executing the aborted transaction is set

to its rollback command←−c . Recall that the rollback command refers to the

transaction. That is, the transaction is simply retried until it is eventually

permitted to commit.
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The thread rules that execute a lock represent the execution of the most parent

lock. (THREAD−LOCK−ACQUIRE) initiates the execution of a lock if its mutex

can be acquired:

• VarLocation
def
= Store×State×Variable→ Location gets the memory location

` of the variable v being used as the mutex.

• Acquireable
def
= Location ×MD → Bool is a predicate that is true only if an

actively executing lock has not already acquired `.

• A unique identifier for the lock instance is generated via GenerateID. The

generated identifier is no longer unique, so becomes the current value of Id

in the reduction.

• The metadata mapping is updated to contain a new entry for the now ac-

tive lock instance. Its begin time is set via Now, its dataset is initialised

to the location of the mutex it is protected on and the coordination type

the metadata represents is labelled as L(τ, 1) to denote that the metadata

models a lock whose mutex is owned by thread τ and the handle count on

that mutex is 1. A lock never has a read or write set, only a dataset. The

dataset of a lock comprises the mutex the lock instance has acquired. Be-

cause (THREAD−LOCK−ACQUIRE) always executes the most parent lock

the handle count will always be set to 1 upon an acquisition.

• An acquire action is issued parameterised on the location of the mutex.

• The reduction features the use of the intermediate construct sblk which

takes on the unique identifier id′.
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(THREAD−LOCK−RELEASE) applies when all of a lock’s constituent com-

mands have been executed. Again, because we are executing the most parent

lock the handle count will always be 1 when releasing a mutex.

• The premise begins by asserting that id, the unique label associated with

the current lock instance, is yet to complete and the handle count on the

mutex ` is 1. A lock is only ever released when the handle count on the

mutex is 1.

• ` is the location of the mutex used by the lock. Reduction of the thread

configuration results in the generation of a release instruction on `.

• The metadata mapping is updated to reflect the time of lock instance id’s

completion time, the removal of ` from id’s dataset and the handle count

being set to 0. The last two components have no logical impact on our

overall system but they provide a visual cue to the releasing of a resource.

• The location of the mutex v, `, cannot be acquired due to Acquireable failing.

That is, ` is acquired by a currently running lock in a thread other than τ .

• The thread reduction sees no change in the thread’s program text. Here,

the effect is that the thread appears to continually try to acquire ` until at

some stage ` becomes available and (THREAD−LOCK−ACQUIRE) may be

applied.

• The reduction sees the generation of the action NOP.

(THREAD−LOCK−IN) executes a command under a lock semantics as long

as the command is not a lock.
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• c is not a lock. Note that sync( ){ } denotes we have no interest in the

mutex or command the lock is defined on, only that c is a lock.

• c is executed with no read or write set being accumulated. Recall that a

lock has no need for a read or write set. The remaining components of the

unified configuration are not required as the current lock is in charge of

persisting the effect of c to memory.

• The effect of c is persisted immediately to the thread-local store and global

state. This is in contrast to transactions where multiple writes and reads

may have occurred before such actions are observable by other threads.

(THREAD−LOCK−IN−LOCK) executes a nested lock:

• The command c (the nested lock) is executed under a unified configuration

that is given sτ , σ, md and Id. These components are specified because it

is the task of the nested lock to persist its effect to these components, not

the parent lock. (We revisit this point shortly.)

• The reduction sees the thread configuration taking on the updated values

of sτ , σ, md and Id. s′τ and σ′ comprise the effect of the nested lock’s

commands, md′ the nested lock’s supporting metadata and Id′ the next free

unique label.

The details of nested locks will be clearer upon reading Section 4.2.4.3. How-

ever, we now give a conceptual overview of effect persistence with respect to

parent and child locks. The key point is that a lock executing a non-lock com-

mand is in charge of persisting the effect of its immediate command; however,
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sync(v) { 
  x := 1;
  sync(x) {
    v := 1;
  } 
}

Command 1

Command 2
Persisting the write of v is
delegated to the nested lock.

Persisting the write of x is 
the task of the parent lock.

Figure 4.10: The parent lock contains two commands: a write of x and a lock.
The nested lock contains a write of v. The most nested active lock is in charge of
persisting the effect of its commands. For example, the parent lock persists the
write of x, while the nested lock is in charge of persisting the write of v.

if a lock is executing a lock, then persisting the effect of the nested lock’s com-

mands is delegated to the nested lock. The latter point is shown in the re-

duction of (THREAD−LOCK−IN−LOCK) where the reduction takes the values

of s′τ , σ
′, md′ and Id′ from the reduced unified configuration. By contrast, the

updated values for s tid and σ in the reduction of (THREAD−LOCK−IN) are

constructed directly. Figure 4.10 gives a general intuition as to which lock is

in charge of persisting the effect of a command. Here, the parent lock ex-

ecutes its first command using (THREAD−LOCK−IN) and second command,

the nested lock, with (THREAD−LOCK−IN−LOCK). The persisted effect of a

nested lock bubbles up until it reaches the most parent lock, one initiated via

(THREAD−LOCK−ACQUIRE). The recursive nature of locks is extended further

in Section 4.2.4.3.

4.2.4.3 Unified Commands

The unified commands are given in Figures 4.11, 4.12, 4.13, 4.14 and 4.15. All

commands are defined in terms of a unified configuration.
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(UNIFIED−NESTED−LOCK−ACQUIRE) is applied when a lock is executing

a nested lock and is similar to (THREAD−LOCK−ACQUIRE). A nested lock is

at first a consequence of executing the rule (THREAD−LOCK−IN−LOCK) but is

also applied as a consequence of (UNIFIED−NESTED−LOCK−IN−LOCK).

(UNIFIED−NESTED−LOCK−ACQUIRE−REC) is applied when a nested lock

wishes to acquire a mutex which is already held by a parent lock executed by the

same thread:

• The memory location of the mutex v is asserted to be not acquirable as it

is held by an active lock, in addition it is asserted that the mutex is held

by the current thread τ .

• The existential states that there exists an actively executing lock in md

such that it uses the same mutex that the nested lock wishes to acquire, is

running on the same thread and has a handle count greater than or equal

to one.

• The handle count of the mutex is incremented.

• The nested locks recycles the identifier of the original lock which acquired

the mutex. Intuitively, the nested lock does not alter the semantics of

the original acquiring lock, so there is no need to treat the recursive lock

instance as being logically distinct.

• An acquire action is issued during the reduction.

(UNIFIED−NESTED−LOCK−BLOCKING) is almost identical to

(THREAD−LOCK−BLOCKING) and is applied when a nested lock cannot acquire

its mutex.
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(UNIFIED−NESTED−LOCK−RELEASE−REC) is applied when a lock releases

a recursively acquired mutex:

• The handle count on the mutex to be released by the lock is greater than

one. This implies that the lock was recursively acquired and that there

exists a parent lock that still requires the mutex be held by the thread.

• The handle count on the mutex is decremented.

• The reduction sees a release action being generated on the mutex.

(UNIFIED−NESTED−LOCK−RELEASE) is applied when a mutex acquired by

a nested lock can be released:

• The handle count associated with the mutex to be released is one. That is,

the current nested lock instance is the last instance that has a use for the

mutex.

• The updated metadata instance sees the identifier of the releasing lock

removing the mutex from its dataset component and setting its handle

count to zero.

• The reduction issues a release action on the mutex.

(UNIFIED−NESTED−LOCK−IN) is similar to (THREAD−LOCK−IN). Here,

the command being executed by a nested lock is not a lock, so the responsi-

bility of persisting the effect of c is the task of the immediate lock instance.

(UNIFIED−NESTED−LOCK−IN−LOCK) is similar to (THREAD−LOCK−IN−LOCK)

in that the responsibility of persisting the child lock’s commands are that of the
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child lock, not the immediate lock. The persisted effect of each of the nested lock’s

commands bubble up to the unified configuration executing the parent lock.

The rules governing nested locks are tricky to understand so we now provide

a general summary of their operation in Figure 4.16. Let us assume that lock

instance 1 is a nested lock. A general overview of the relevant rule applications fol-

lows. The first command of nested lock instance 1 is a lock. Consequently, the rule

(UNIFIED−NESTED−LOCK−IN−LOCK) is applied. Assuming the nested lock

can acquire its non-recursive mutex it applies (UNIFIED−NESTED−LOCK−ACQUIRE),

followed by (UNIFIED−NESTED−LOCK−IN) as the lock’s first command is not a

lock. Lock instance 2 then applies (UNIFIED−NESTED−LOCK−RELEASE) and

passes the effect of its assignment back to lock instance 1 in the form of an up-

dated thread store and global state. Note also that the nested lock passes back an

updated metadata mapping and identifier component as the nested lock mutated

them during its execution. Lock instance 1 then executes its second command

which is an assignment via (UNIFIED−NESTED−LOCK−IN) followed by an appli-

cation of (UNIFIED−NESTED−LOCK−RELEASE). Lock instance 1 then passes

the effect of executing its commands to its parent lock, and so on until control

returns to the most parent lock instance.

(UNIFIED−ASSIGN) assigns the value of one variable to another.

• The updated store s′ sees v take on x’s value. Note that we often use

placeholders such as valv and valx when we do not care what the value of

a particular variable or field is.

• The assertion `1 6=`2 denotes that v and x occupy different stack slot loca-

tions.

115



• The update state δ′ comprises the updated store s′ but the heap component

remains the same as δ.h.

• The updated read set comprises x’s memory location `2; the updated write

set comprises v’s memory location `1.

• The reduction results in a read instruction on `2 and write instruction on

`1.

(UNIFIED−FLD−UPD) updates the value of a field to be that of a variable.

• The value of v must be a memory location that is not equal to that of the

physical locations of v and x. This assertion maintains the invariant that

the stack and heap memory pools are logically distinct.

• The value of v must be in the domain of δ.h.

• The location of the field f is attained via FldLoc
def
= State×Variable×Field→

Location.

• We update the value of f to that of x’s value via FldUpd
def
= State×Variable×

Field×Location→ Heap. The returned heap mapping entails f in the object

that v.f refers to having the value valx.

• The update state δ′ comprises the old store and the updated heap.

• The updated read set comprises the locations of v and x; the updated write

set comprises the location of f .

• The reduction sees read actions issued on v and x and a write action on f .
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(UNIFIED−ASSIGN−FLD) assigns the value of a field to a variable:

• The value of f is attained via FldVal
def
= State×Variable× Field→ Location.

• The updated store s′ sees v taking on the value of f . The updated state

comprises s′ and δ.h as executing the command only updates the store.

• The updated read set comprises a read on x and f ; the updated write set

comprises a write on v.

• The reduction sees read actions issued for x and f and a write action for v.

(UNIFIED−NEW) allocates a new object and is generally identical to the pro-

gram rule (PROGRAM−INIT−NEW) with the exception that (UNIFIED−NEW)

updates the write set.

(UNIFIED−EQ) checks whether the value of v is null.

• The predicate IsNull
def
= Location→ Bool determines if the value of v is null.

• The reduction goes to the results of the IsNull test.

• A read action on v in the reduction is generated.

(UNIFIED−NEQ) is the same as (UNIFIED−EQ) but checks for inequality with

null. (UNIFIED−IF) evaluates the boolean command b. Evaluating a boolean

command only every results in the issue of a read, so only the read set is updated.

(UNIFIED−IF−TRUE) and (UNIFIED−IF−FALSE) are applied when the boolean

b reduces to the canonical values True and respectively False. (UNIFIED−WHILE),

(UNIFIED−WHILE−TRUE) and (UNIFIED−WHILE−FALSE) are similar to the if

rules.

(UNIFIED−METHOD−CALL) executes a method:
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• The program text of the method is retrieved via MethodCmds which takes

the receiver type and the method name and returns the methods pro-

gram text. The set of formal arguments a method takes is attained via

FormalArgs. We assume this information is easily derivable from the pro-

gram text. Note that p∗ represents zero-or-more arguments. We interpret

this as a set: if no arguments are given then p∗ is the empty set when calling

PassByValue, otherwise it comprises a set of variables which were passed to

m.

• PassByValue
def
= State× FS× Variable× VariableSet× VariableSet→ Store×

LocationSet returns a tuple whose first component comprises a store popu-

lated with method local variables whose names and values are the same as

those passed to the method, and second component the memory locations

that the method local variable occupy. Note that the returned store also

comprises the special variable this whose value is a reference to the base

location of the object the method invoked upon.

• The updated read set comprises the memory locations of the variables

passed to the method. ArgLocs
def
= State × VariableSet → LocationSet re-

turns the memory locations for the passed in variables.

• The intermediate construct frame(c, s) is used to delimit the method’s pro-

gram text. The second component of frame is the store to “pop” back in,

which is the store of the invoker of the method.

• The new state δ′ which to execute the method’s program text under com-

prises the method local store sm.

118



• Invoking the method sees a read instruction issued on each of the memory

locations of the variables passed in as arguments to the method.

(UNIFIED−METHOD−IN) executes a command of a method. Returning from

a method via (UNIFIED−METHOD−RETURN) is trivial – it simply restores the

caller’s store.

4.2.5 Parallel Composition

Figure 4.17 shows the rule which governs the progress each thread makes during

the parallel execution of each thread’s non-initialisation commands (label (d) in

Figure 4.2).

4.2.5.1 Intuition

At any given time a thread is executing a command under one of three coordi-

nation semantics: uncoordinated, lock or transactional. Each thread within the

parallel composition makes some form of progress in their respective transition

system: a thread executing an uncoordinated command always makes positive

progress; a thread executing a transaction makes positive progress if its trans-

action commits; and a thread executing a lock makes positive progress if it has

acquired its respective mutex. Positive progress denotes reduction to a thread

configuration whose active command succeeds that which was originally executed

at the beginning of the program reduction. Threads that make positive progress

contribute to the new program state upon a program reduction. Threads that

execute a transaction that has been aborted or are blocking waiting for a mutex

to become acquirable make negative progress. That is, they appear to make no
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progress in their respective transition systems.

4.2.5.2 Discussion

(PROGRAM−PARALLEL−COMPOSITON) is a big-step semantics for performing

a program reduction while executing the commands of the threads within a paral-

lel composition. Most of the details discussed shortly have already been presented

in Section 4.2.4.2. Boxes and labels are used to group like components within

the premise of (PROGRAM−PARALLEL−COMPOSITON) to facilitate their dis-

cussion.

Label A states that the active set of threads are partitioned into the groups

of threads I, J , K, M and U . The threads are partitioned based upon the

coordination semantics they are executing: threads in I are executing locks which

are blocking; J are those which have acquired their respective mutex; those in

K are executing transactions to be aborted; M those executing transactions to

be committed; and those in U are executing their respective command under no

coordination semantics. This partitioning covers all the semantics of our thread

rules given in Section 4.2.4.2. We assume that each thread in J acquires a distinct

mutex and that all transactions executed by the threads in M do not conflict

with one another. The label comparisons for idj, idk and idm assert that they are

valid unique values within the range Id and Id′. We use these labels later when

we specify the thread configurations each thread transitions through.

The box labelled B comprises the thread configurations that each thread in

I, J , K, M and U transitions through. Box C uses the thread configurations

constructed in B to form the relevant program reductions:

• All threads in I have one configuration as a lock that blocks reduces to
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the same thread configuration. The reduction does not affect any program

component.

• Threads in U make positive progress and reduce to a thread configuration

whose command to execute is the one that succeeds the just executed com-

mand. The side effect of executing an uncoordinated command can be the

update of a thread store, program state and/or free store. No thread in U

will update the metadata or coordination instance identifier components.

• Threads in J , the threads executing locks which have managed to acquire

their respective mutex, transition through the following configurations:

– The first reduction to T ′j sees the thread acquire its respective mutex.

This action results in an update of mdj and Idj.

– A number of intermediate transitions take place as the lock executes

its constituent commands. We denote this via (
λ+−→)+ which states that

several reductions occur, each of which issue some number of actions

λ. These reductions can possibly update the thread store, global state,

metadata and identifier components. The latter two occur when a lock

comprised a nested lock. See Appendix A for its definition.

– The thread configuration that is a consequence of executing a lock’s

constituent commands, T ′′j , is a thread configuration where the inter-

mediate lock construct has the state sblk(ε). That is, it is the thread

configuration that precedes the release of a lock’s mutex.

– The final thread configuration T ′′′j sees the command that followed the

lock being set as the active command.
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• Threads in K execute aborting transactions:

– The transition to T ′k sees the transaction beginning, which updates Id

and md, and creates the redo log δk.

– The transaction executes its constituent commands. Recall that the

constituent commands of a transaction only update the transaction’s

redo log – the respective thread’s local store and program state are

unaffected. Transactional commands can still allocate memory to the

free store, however.

– T ′′k is the point at which the transaction wishes to commit.

– The transaction rolls back in T ′′′k so that the active command to execute

is the transaction which was just aborted, ←−c k.

• Threads in M go through a similar set of configurations as those in K with

the exception that their transactions commit which results in their effect

being persisted to their respective thread local store and the program state.

A thread that executes a committed transaction sees its active command

being set to that which succeeds the transaction.

The predicates labelled D assert the semantics given in Section 4.2.4.2 but

for all the threads in each of the thread partitions. The semantics of D have

been covered in Section 4.2.4.2. Label E computes the new program state by

merging the states of the threads which make positive progress. The merge

functions are relatively trivial and we point the reader to Appendix A for their

definitions. Note that a data race is informally captured by MergeStates if there

exists two states σi 6=σj to be merged such that vi ∈ Dom(σi), vj ∈ Dom(σj),
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vi=vj and snd(σi.s(vi)) 6= snd(σj.s(vj)), then in σ′=MergeStates({σi, σj}) we have

snd(σ′.s(v)) = ⊥. That is, the value of v resulting from the merge is undefined.

Merging the heaps of the states has a similar semantics. Merging the other

components is trivial as their differences are distinct.

The reduction in the conclusion sees the program components being updated

to the values constructed in the premise. Also, during the reduction each thread

issues a sequence of actions that conforms to Λ defined in Figure 4.3. The syntax

Λ1 || Λ2 denotes that the actions which comprise each sequence may be con-

currently interleaved with respect to one another. The only restriction on this

interleaving is that the sequence of actions issued by each thread respects their

respective thread’s program order. The semantics of these actions are covered

further in Chapter 5 when we present moverness.

4.3 Summary

In this chapter we have presented a programming model for locks and transac-

tions. Locks are pessimistic, whereas transactions are optimistic. The trans-

actions modelled are out-of-place, weakly isolated and support address based

conflict granularity. The semantics of transactions we model are based on the

common semantics in leading STM libraries such as [Dice et al., 2006]. A lock and

transaction conflict if the transaction accesses the mutex used by a lock. Locks

have execution priority over transactions: when a lock and transaction conflict

the transaction will always be aborted. This semantics is inline with what the

programmer would expect: a lock guarantees run once semantics should it be

able to acquire its mutex; by contrast, a transaction always has the potential to
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abort. The semantics of objects are those of C structs, which are preserved by

transactions. That is, two concurrently executing transactions can freely access

distinct fields of the same object and not conflict.

The accesses issued to memory by locks, transactions and commands executed

under an uncoordinated semantics are captured at the granularity of actions. An

action is roughly analogous to a machine instruction, with the exception that

actions focus on capturing: begin and abort/commit of transactions, acquisi-

tion/release of mutexes and reads and writes of memory locations. The observa-

tion semantics of read actions will be generalised in Chapter 5 when we present

moverness.
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(UNIFIED−NESTED−LOCK−ACQUIRE)
` = VarLocation(δ.s, v)

Acquireable(`,md)
id′ = GenerateID(md, Id)

md′=md[id′ 7→(Now(),⊥, {}, {}, {`},L(τ, 1))]

〈τ, id:sync(v){c}, δ, fs,⊥,⊥, sτ , σ,md, Id〉
ACQ(`)−−−−→

〈τ, id′ :sblk(c), δ, fs,⊥,⊥, sτ , σ,md′, id′〉

(UNIFIED−NESTED−LOCK−ACQUIRE−REC)
` = VarLocation(δ.s, v)

¬Acquireable(`,md) HeldByThread(τ, `,md)
∃id′∈Dom(md) · [id′ 7→(beg,⊥, γR, γW, {`},L(τ, count ≥ 1))]⊆md

count′=count+ 1
md′=md[id′ 7→(beg,⊥, γR, γW, {`},L(τ, count′))]

〈τ, id:sync(v){c}, δ, fs,⊥,⊥, sτ , σ,md, Id〉
ACQ(`)−−−−→

〈τ, id′ :sblk(c), δ, fs,⊥,⊥, sτ , σ,md′, Id〉

(UNIFIED−NESTED−LOCK−BLOCKING)
` = VarLocation(δ.s, v)
¬Acquireable(`,md)

〈τ, id:sync(v){c}, δ, fs,⊥,⊥, sτ , σ,md, Id〉
NOP−−→

〈τ, id:sync(v){c}, δ, fs,⊥,⊥, sτ , σ,md, Id〉
(UNIFIED−NESTED−LOCK−RELEASE−REC)
[id 7→(beg,⊥, γR, γW, {`},L(τ, count > 1))]⊆md

count′=count− 1
md′=md[id 7→(beg,⊥, γR, γW, {`},L(τ, count′))]

〈τ, id:sblk(ε), δ, fs,⊥,⊥, sτ , σ,md, Id〉
REL(`)−−−→

〈τ, ε, δ, fs,⊥,⊥, sτ , σ,md′, Id〉

Figure 4.11: Unified Command Rules (Part I).
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(UNIFIED−NESTED−LOCK−RELEASE)
[id 7→(beg,⊥, γR, γW, {`},L(τ, 1))]⊆md

md′=md[id 7→(beg,Now(), γR, γW, {},L(τ, 0))]

〈τ, id:sblk(ε), δ, fs,⊥,⊥, sτ , σ,md, Id〉
REL(`)−−−→

〈τ, ε, δ, fs,⊥,⊥, sτ , σ,md′, Id〉
(UNIFIED−NESTED−LOCK−IN)

c 6= id:sync( ){ }
〈τ, c, δ, fs,⊥,⊥,⊥,⊥,⊥,⊥〉 REL(`)−−−→ 〈τ, c′, δ′, fs′,⊥,⊥,⊥,⊥,⊥,⊥〉

(s′τ , σ
′) = Persist(δ′, sτ , σ)

〈τ, id:sblk(c), δ, fs,⊥,⊥, sτ , σ,md, Id〉
λ+−→

〈τ, id:sblk(c′), δ′, fs′,⊥,⊥, s′τ , σ′,md, Id〉
(UNIFIED−NESTED−LOCK−IN−LOCK)

c = id:sync( ){ }
〈τ, c, δ, fs,⊥,⊥, sτ , σ,md, Id〉 λ+−→ 〈τ, c′, δ′, fs′,⊥,⊥, s′τ , σ′,md′, Id′〉

〈τ, id:sblk(c), δ, fs,⊥,⊥, sτ , σ,md, Id〉
REL(`)−−−→

〈τ, id:sblk(c′), δ′, fs′,⊥,⊥, s′τ , σ′,md′, Id′〉
(UNIFIED−ASSIGN)

[v 7→(`1, valv), x7→(`2, valx)]⊆δ.s `1 6=`2 s′=δ.s[v 7→(`1, valx)]
γ′R=γR∪{`2} γ′W=γW∪{`1} δ′=(s′, δ.h)

〈τ, v := x, δ, fs, γR, γW, sτ , σ,md, Id〉 R(`2)W(`1)−−−−−−→ 〈τ, ε, δ′, fs, γ′R, γ′W, sτ , σ,md, Id〉
(UNIFIED−FLD−UPD)

[v 7→(`1, `2), x7→(`3, valx)]⊆δ.s `1 6=`2 `3 6=`2 `1 6=`3 `2∈Dom(δ.h)
`f=FldLoc(δ, v, f) h′=FldUpd(δ, v, f, valx) δ′=(δ.s, h′)

γ′R=γR∪{`1, `3} γ′W=γW∪{`f}
〈τ, v.f := x, δ, fs, γR, γW, sτ , σ,md, Id〉

R(`3)R(`1)W(`f )−−−−−−−−−→
〈τ, ε, δ′, fs, γ′R, γ′W, sτ , σ,md, Id〉

Figure 4.12: Unified Command Rules (Part II).
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(UNIFIED−ASSIGN−FLD)
[v 7→(`1, valv), x7→(`2, `3)]⊆δ.s `1 6=`3 `2 6=`3 `1 6=`2 `3∈Dom(δ.h)

`f=FldLoc(δ, v, f) valf=FldVal(δ, v, f) s′=δ.s[v 7→(`1, valf )] δ′=(s′, δ.h)
γ′R=γR∪{`2, `f} γ′W=γW∪{`1}

〈τ, v := x.f, δ, fs, γR, γW, sτ , σ,md, Id〉
R(`2)R(`f )W(`1)−−−−−−−−−→

〈τ, ε, δ′, fs, γ′R, γ′W, sτ , σ,md, Id〉

(UNIFIED−NEW)
[v 7→(`, valv)]⊆δ.s (obj, locs)=CreateObject(cn, fs) fs′=fs∪locs

`base=Head(locs) s′=δ.s[v 7→(`, `base)] h′=δ.h[`base 7→obj] δ′=(s′, h′)
γ′W=γW∪{`}

〈τ, v := new cn, δ, fs, γR, γW, sτ , σ,md, Id〉
W(`)−−→

〈τ, ε, δ′, fs′, γR, γ′W, sτ , σ,md, Id〉

(UNIFIED−EQ)
[v 7→(`, valv)]⊆δ.s rslt=IsNull(valv) γ′R=γR∪{`}

〈τ, v = null, δ, fs, γR, γW, sτ , σ,md, Id〉 R(`)−−→ 〈τ, rslt, δ, fs, γ′R, γW, sτ , σ,md, Id〉

(UNIFIED−NEQ)
[v 7→(`, valv)]⊆δ.s rslt=¬IsNull(valv) γ′R=γR∪{`}

〈τ, v 6= null, δ, fs, γR, γW, sτ , σ,md, Id〉
R(`)−−→

〈τ, rslt, δ, fs, γ′R, γW, sτ , σ,md, Id〉

(UNIFIED−IF)

〈τ, b, δ, fs, γR, γW, sτ , σ,md, Id〉 λ+−→ 〈τ, b′, δ, fs, γ′R, γW, sτ , σ,md, Id〉
〈τ, if b {c1} else {c2}, δ, fs, γR, γW, sτ , σ,md, Id〉

λ+−→
〈τ, if b′ {c1} else {c2}, δ, fs, γ′R, γW, sτ , σ,md, Id〉

Figure 4.13: Unified Command Rules (Part IV).
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(UNIFIED−IF−TRUE)

〈τ, b, δ, fs, γR, γW, sτ , σ,md, Id〉 λ+−→ 〈τ,True, δ, fs, γ′R, γW, sτ , σ,md, Id〉
〈τ, if b {c1} else {c2}, δ, fs, γR, γW, sτ , σ,md, Id〉

λ+−→
〈τ, c1, δ, fs, γ′R, γW, sτ , σ,md, Id〉

(UNIFIED−IF−FALSE)

〈τ, b, δ, fs, γR, γW, sτ , σ,md, Id〉 λ+−→ 〈τ, False, δ, fs, γ′R, γW, sτ , σ,md, Id〉
〈τ, if b {c1} else {c2}, δ, fs, γR, γW, sτ , σ,md, Id〉

λ+−→
〈τ, c2, δ, fs, γ′R, γW, sτ , σ,md, Id〉

(UNIFIED−WHILE)

〈τ, b, δ, fs, γR, γW, sτ , σ,md, Id〉 λ+−→ 〈τ, b′, δ, fs, γ′R, γW, sτ , σ,md, Id〉
〈τ,while b {c}, δ, fs, γR, γW, sτ , σ,md, Id〉

λ+−→
〈τ,while b′ {c}, δ, fs, γ′R, γW, sτ , σ,md, Id〉

(UNIFIED−WHILE−TRUE)

〈τ, b, δ, fs, γR, γW, sτ , σ,md, Id〉 λ+−→ 〈τ,True, δ, fs, γ′R, γW, sτ , σ,md, Id〉
〈τ,while b {c}, δ, fs, γR, γW, sτ , σ,md, Id〉

λ+−→
〈τ, c; while b {c}, δ, fs, γ′R, γW, sτ , σ,md, Id〉

(UNIFIED−WHILE−FALSE)

〈τ, b, δ, fs, γR, γW, sτ , σ,md, Id〉 λ+−→ 〈τ, False, δ, fs, γ′R, γW, sτ , σ,md, Id〉
〈τ,while b {c}, δ, fs, γR, γW, sτ , σ,md, Id〉

λ+−→
〈τ, ε, δ, fs, γ′R, γW, sτ , σ,md, Id〉

Figure 4.14: Unified Command Rules (Part V).

128



(UNIFIED−METHOD−CALL)
[v 7→(`1, `2)]⊆δ.s `1 6=`2 `2∈Dom(δ.h) s=δ.s

c=MethodCmds(TypeOf(v),m) fargs=FormalArgs(TypeOf(v),m)
(sm, locs)=PassByValue(δ, fs, v, p∗, fargs)

fs′=fs∪locs argLocs=ArgLocs(δ, p∗) γ′R=γR∪{`1}∪argLocs δ′=(sm, δ.h)

〈τ, v.m(p∗), δ, fs, γR, γW, sτ , σ,md, Id〉
∀ ` ∈ argLocs · R(`)−−−−−−−−−−−−→

〈τ, frame(c, s), δ′, fs′, γ′R, γW, sτ , σ,md, Id〉

(UNIFIED−METHOD−IN)
〈τ, c, δ, fs, γR, γW, sτ , σ,md, Id〉

λ+−→
〈τ, c′, δ′, fs′, γ′R, γ′W, s′τ , σ′,md′, Id′〉

〈τ, frame(c, s), δ, fs, γR, γW, sτ , σ,md, Id〉
λ+−→

〈τ, frame(c′, s), δ′, fs′, γ′R, γ
′
W, s

′
τ , σ

′,md′, Id′〉

(UNIFIED−METHOD−RETURN)
δ′=(s, δ.h)

〈τ, frame(ε, s), δ, fs, γR, γW, sτ , σ,md, Id〉
NOP−−→

〈τ, ε, δ′, fs, γR, γW, sτ , σ,md, Id〉

(UNIFIED−SEQ−ONE)

〈τ, c1, δ, fs, γR, γW, sτ , σ,md, Id〉 λ+−→ 〈τ, c′1, δ′, fs′, γ′R, γ′W, s′τ , σ′,md′, Id′〉
〈τ, c1; c2, δ, fs, γR, γW, sτ , σ,md, Id〉 λ+−→ 〈τ, c′1; c2, δ

′, fs′, γ′R, γ
′
W, s

′
τ , σ

′,md′, Id′〉

(UNIFIED−SEQ−TWO)

〈τ, c1, δ, fs, γR, γW, sτ , σ,md, Id〉 λ+−→ 〈τ, ε, δ′, fs′, γ′R, γ′W, s′τ , σ′,md′, Id′〉
〈τ, c1; c2, δ, fs, γR, γW, sτ , σ,md, Id〉 λ+−→ 〈τ, c2, δ

′, fs′, γ′R, γ
′
W, s

′
τ , σ

′,md′, Id′〉

Figure 4.15: Unified Command Rules (Part VI).
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1:sblk(id:sync(v) { v := x; }; x := v;)

2:sblk(v := x;);

v := x;

1
…

2

Delegate update of thread store and global state to nested lock.

Command to execute is not a nested lock. Lock instance executing the command
is responsible for forming updated thread-local store and global state.

3

4

5

Pass updated thread store and global state to parent lock.

Execute assignment under state passed back from
the nested lock.

6

Figure 4.16: Abstract derivation for the delegation of state persistence for nested
locks. The responsibility of state persistence is delegated to the most nested lock
when executing a lock which is a child of another lock.
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(PROGRAM�PARALLEL�COMPOSITON)
T={I, J, K, M, U}

Id<idjId0 Id<idkId0 Id<idmId0 idj 6=idk 6=idm

8i 2 I · Ti, �i, fsi, mdi, Idi
NOP��! Ti, �i, fsi, mdi, Idi

8j 2 J · Tj, �j, fsj, mdj, Idj
ACQ��! T 0

j , �j, fsj, md0
j, Id

0
j (

�+

�!)+

T 00
j , �0

j, fs
0
j, md00

j , Id
00
j

REL��! T 000
j , �0

j, fs
0
j, md000

j , Id00
j

8k 2 K · Tk, �k, fsk, mdk, Idk
TBEG���! T 0

k, �k, fsk, md0
k, Id

0
k (

�+

�!)+

T 00
k , �k, fs

0
k, md0

k, Id
0
k

TABT���! T 000
k , �k, fs

0
k, md00

k, Id
0
k

8m 2M · Tm, �m, fsm, mdm, Idm
TBEG���! T 0

m, �m, fsm, md0
m, Id0

m (
�+

�!)+

T 00
m, �m, fs0m, md0

m, Id0
m

TCMT���! T 000
m , �0

m, fs0m, md00
m, Id0

m

8u 2 U · Tu, �u, fsu, mdu, Idu
�+

�! T 0
u, �

0
u, fs

0
u, mdu, Idu

8i 2 I · ¬Acquireable(idi, mdi, i, si, �i, vi)
8j 2 J · Acquireable(idj, mdj, j, sj, �j, vj)

8k 2 K · Conflict(idk, md00
k) 8m 2M · ¬Conflict(idm, md00

m)
�0=MergeStates({�0

j, �
0
m, �0

u}) Id0=MaxLabel({Idi, Id
00
j , Id

0
k, Id

0
m, Idu})

fs0=fsi[fs0j[fs0k[fs0m[fs0u md0=MergeMetadata({md000
j , md00

k, md00
m})

h✏, Ti || . . . || Tj || . . . || Tk || . . . || Tm || . . . || Tu || . . . , �, fs, md, Idi
⇤i || ⇤j || ⇤k || ⇤m || ⇤u���������������!

h✏, Ti || . . . || T 000
j || . . . || T 000

k || . . . || T 000
m || . . . || T 0

u || . . . , �0, fs0, md0, Id0i

8i 2 I · Ti=hi, ✏, sync(vi){ci}; c0i, si,?i
8j 2 J · Tj=hj, ✏, sync(vj){cj}; c0j, sj,?i ^

T 0
j=hj, ✏, idj :sblk(cj); c

0
j, sj,?i ^

T 00
j =hj, ✏, idj :sblk(✏); c0j, s

0
j,?i ^

T 000
j =hj, ✏, c0j, s0j,?i

8k 2 K · Tk=hk, ✏, id:atomic{ck}; c0k, sk,?i ^
T 0

k=hk, ✏, idk :ablk(ck, id:atomic{ck}); c0k, sk, �ki ^
T 00

k =hk, ✏, idk :ablk(✏, �c k); c
0
k, sk, �

0
ki ^

T 000
k =hk, ✏, �c k; c

0
k, sk,?i

8m 2M · Tm=hm, ✏, id:atomic{cm}; c0m, sm,?i ^
T 0

m=hm, ✏, idm :ablk(cm, id:atomic{cm}); c0m, sm, �mi ^
T 00

m=hm, ✏, idm :ablk(✏, �c m); c0m, sm, �0mi ^
T 000

m=hm, ✏, c0m, s0m,?i
8u 2 U · Tu=hu, ✏, cu; c

0
u, su,?i ^

T 0
u=hu, ✏, c0u, s

0
u,?i
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(PROGRAM�PARALLEL�COMPOSITON)
T={I, J, K, M, U}

Id<idjId0 Id<idkId0 Id<idmId0 idj 6=idk 6=idm

8i 2 I · Ti, �i, fsi, mdi, Idi
NOP��! Ti, �i, fsi, mdi, Idi

8j 2 J · Tj, �j, fsj, mdj, Idj
ACQ��! T 0

j , �j, fsj, md0
j, Id

0
j (

�+

�!)+

T 00
j , �0

j, fs
0
j, md00

j , Id
00
j

REL��! T 000
j , �0

j, fs
0
j, md000

j , Id00
j

8k 2 K · Tk, �k, fsk, mdk, Idk
TBEG���! T 0

k, �k, fsk, md0
k, Id

0
k (

�+

�!)+

T 00
k , �k, fs

0
k, md0

k, Id
0
k

TABT���! T 000
k , �k, fs

0
k, md00

k, Id
0
k

8m 2M · Tm, �m, fsm, mdm, Idm
TBEG���! T 0

m, �m, fsm, md0
m, Id0

m (
�+

�!)+

T 00
m, �m, fs0m, md0

m, Id0
m

TCMT���! T 000
m , �0

m, fs0m, md00
m, Id0

m

8u 2 U · Tu, �u, fsu, mdu, Idu
�+

�! T 0
u, �

0
u, fs

0
u, mdu, Idu

8i 2 I · ¬Acquireable(idi, mdi, i, si, �i, vi)
8j 2 J · Acquireable(idj, mdj, j, sj, �j, vj)

8k 2 K · Conflict(idk, md00
k) 8m 2M · ¬Conflict(idm, md00

m)
�0=MergeStates({�0

j, �
0
m, �0

u}) Id0=MaxLabel({Idi, Id
00
j , Id

0
k, Id

0
m, Idu})

fs0=fsi[fs0j[fs0k[fs0m[fs0u md0=MergeMetadata({md000
j , md00

k, md00
m})

h✏, Ti || . . . || Tj || . . . || Tk || . . . || Tm || . . . || Tu || . . . , �, fs, md, Idi
⇤i || ⇤j || ⇤k || ⇤m || ⇤u���������������!

h✏, Ti || . . . || T 000
j || . . . || T 000

k || . . . || T 000
m || . . . || T 0

u || . . . , �0, fs0, md0, Id0i

8i 2 I · Ti=hi, ✏, sync(vi){ci}; c0i, si,?i
8j 2 J · Tj=hj, ✏, sync(vj){cj}; c0j, sj,?i ^

T 0
j=hj, ✏, idj :sblk(cj); c

0
j, sj,?i ^

T 00
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(PROGRAM�PARALLEL�COMPOSITON)
T={I, J, K, M, U}

Id<idjId0 Id<idkId0 Id<idmId0 idj 6=idk 6=idm

8i 2 I · Ti, �i, fsi, mdi, Idi
NOP��! Ti, �i, fsi, mdi, Idi

8j 2 J · Tj, �j, fsj, mdj, Idj
ACQ��! T 0

j , �j, fsj, md0
j, Id

0
j (

�+

�!)+

T 00
j , �0

j, fs
0
j, md00

j , Id
00
j

REL��! T 000
j , �0

j, fs
0
j, md000

j , Id00
j

8k 2 K · Tk, �k, fsk, mdk, Idk
TBEG���! T 0

k, �k, fsk, md0
k, Id

0
k (

�+

�!)+

T 00
k , �k, fs

0
k, md0

k, Id
0
k

TABT���! T 000
k , �k, fs

0
k, md00

k, Id
0
k

8m 2M · Tm, �m, fsm, mdm, Idm
TBEG���! T 0

m, �m, fsm, md0
m, Id0

m (
�+

�!)+

T 00
m, �m, fs0m, md0

m, Id0
m

TCMT���! T 000
m , �0

m, fs0m, md00
m, Id0

m

8u 2 U · Tu, �u, fsu, mdu, Idu
�+

�! T 0
u, �

0
u, fs

0
u, mdu, Idu

8i 2 I · ¬Acquireable(idi, mdi, i, si, �i, vi)
8j 2 J · Acquireable(idj, mdj, j, sj, �j, vj)

8k 2 K · Conflict(idk, md00
k) 8m 2M · ¬Conflict(idm, md00

m)
�0=MergeStates({�0

j, �
0
m, �0

u}) Id0=MaxLabel({Idi, Id
00
j , Id

0
k, Id

0
m, Idu})

fs0=fsi[fs0j[fs0k[fs0m[fs0u md0=MergeMetadata({md000
j , md00

k, md00
m})

h✏, Ti || . . . || Tj || . . . || Tk || . . . || Tm || . . . || Tu || . . . , �, fs, md, Idi
⇤i || ⇤j || ⇤k || ⇤m || ⇤u���������������!

h✏, Ti || . . . || T 000
j || . . . || T 000

k || . . . || T 000
m || . . . || T 0

u || . . . , �0, fs0, md0, Id0i

8i 2 I · Ti=hi, ✏, sync(vi){ci}; c0i, si,?i
8j 2 J · Tj=hj, ✏, sync(vj){cj}; c0j, sj,?i ^

T 0
j=hj, ✏, idj :sblk(cj); c

0
j, sj,?i ^

T 00
j =hj, ✏, idj :sblk(✏); c0j, s

0
j,?i ^

T 000
j =hj, ✏, c0j, s0j,?i

8k 2 K · Tk=hk, ✏, id:atomic{ck}; c0k, sk,?i ^
T 0

k=hk, ✏, idk :ablk(ck, id:atomic{ck}); c0k, sk, �ki ^
T 00

k =hk, ✏, idk :ablk(✏, �c k); c
0
k, sk, �

0
ki ^

T 000
k =hk, ✏, �c k; c

0
k, sk,?i

8m 2M · Tm=hm, ✏, id:atomic{cm}; c0m, sm,?i ^
T 0

m=hm, ✏, idm :ablk(cm, id:atomic{cm}); c0m, sm, �mi ^
T 00

m=hm, ✏, idm :ablk(✏, �c m); c0m, sm, �0mi ^
T 000

m=hm, ✏, c0m, s0m,?i
8u 2 U · Tu=hu, ✏, cu; c

0
u, su,?i ^

T 0
u=hu, ✏, c0u, s

0
u,?i
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T={I, J, K, M, U}

Id<idjId0 Id<idkId0 Id<idmId0 idj 6=idk 6=idm

8i 2 I · Ti, �i, fsi, mdi, Idi
NOP��! Ti, �i, fsi, mdi, Idi
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j , �j, fsj, md0
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0
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j, fs
0
j, md0

j, Id
0
j

GCMT���! T 000
j , �0

j, fs
0
j, md00

j , Id
0
j

8k 2 K · Tk, �k, fsk, mdk, Idk
TBEG���! T 0

k, �k, fsk, md0
k, Id

0
k (

�+

�!)+

T 00
k , �k, fs

0
k, md0

k, Id
0
k

TABT���! T 000
k , �k, fs

0
k, md00

k, Id
0
k

8m 2M · Tm, �m, fsm, mdm, Idm
TBEG���! T 0

m, �m, fsm, md0
m, Id0

m (
�+

�!)+

T 00
m, �m, fs0m, md0

m, Id0
m

TCMT���! T 000
m , �0

m, fs0m, md00
m, Id0

m

8u 2 U · Tu, �u, fsu, mdu, Idu
�+

�! T 0
u, �

0
u, fs

0
u, mdu, Idu

8i 2 I · GConflict(ci, si, �i, mdi)
8j 2 J · ¬GConflict(cj, sj, �j, mdj)

8k 2 K · Conflict(idk, md00
k) 8m 2M · ¬Conflict(idm, md00

m)
�0=MergeStates({�0

j, �
0
m, �0

u}) Id0=MaxLabel({Idi, Id
0
j, Id

0
k, Id

0
m, Idu})

fs0=fsi[fs0j[fs0k[fs0m[fs0u md0=MergeMetadata({md00
j , md00

k, md00
m})

h✏, Ti || . . . || Tj || . . . || Tk || . . . || Tm || . . . || Tu || . . . , �, fs, md, Idi
⇤i || ⇤j || ⇤k || ⇤m || ⇤u���������������!

h✏, Ti || . . . || T 000
j || . . . || T 000

k || . . . || T 000
m || . . . || T 0

u || . . . , �0, fs0, md0, Id0i

simply involves updating the completion time of the guaranteed transaction’s

metadata.

6.2.2 Parallel Composition

Where,

6.3 Moverness

We redefine the definitions of moverness originally given in Chapter 5 but for

transactions, guaranteed transactions and uncoordinated commands.
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Figure 4.17: Parallel Composition Rule.
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Chapter 5

Moverness of Locks and

Transactions

5.1 Overview

In Chapter 4 we gave the semantics for locks and transactions. The problem with

these semantics is that they require thinking at a low-level of abstraction: deter-

mining whether two active transactions conflict requires an understanding of the

memory locations they access. Ideally we would reason purely about observational

properties. That is, if two transactions conflict then the aborted transaction will

observe the effect of the committed transaction. From the current literature we

can find some comparison with memory consistency models. For example, under

the Java memory model [Manson et al., 2005] all we really need to know is that if

we adhere to the rules, i.e. make appropriate use of synchronize and volatile,

then we are guaranteed certain observational semantics. Observational semantics

are far simpler to understand than the mechanics of synchronized and volatile.
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Other memory consistency models such as linearisability [Herlihy and Wing, 1990]

define observation guarantees at the granularity of linearisation points. That is,

the point at which an operation seems to take effect. For example, an add(int

val) method of a LinkedList class may perform the following:

1. Allocate a Node object with the value the user provided when invoking add.

2. Update the next property of the allocated Node to be value which the head

property of the LinkedList object currently holds.

3. Update the head property of the LinkedList object to be that of the allo-

cated Node object.

The question here is when the effect of add is observed to have taken effect.

The third step can be considered the linearisation point because it is the phase

of add which makes the Node object allocated by add reachable by other clients

of the object. Or, more simply, it is the point when we mutate the state of the

LinkedList object itself. If our LinkedList had two properties, head and size,

and the add method of LinkedList additionally incremented size, then the lin-

earisation point would be the point at which the mutation of head and size took

place. Under the linearisability memory model we can state that the linearisation

point of an operation can take place at any point within the operation’s execution

interval. Most matters in concurrent programming reduce to issues of observa-

tion. In languages such as C++, even reasoning about observation semantics in

single threaded programs can be non-trivial, as shown in Item 4 of [Meyers, 2005].

The remainder of this chapter looks at applying the general notion of a lineari-

sation point to accesses issued under a lock, transactional and no coordination
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semantics. The moves that linearisation points can make with respect to one an-

other are characterised as free, left, right or both movers. This moverness defines

the order that reads and writes take effect and consequently the values that each

read may observe. The key benefit of studying the moverness of reads and writes

issued in a program that uses locks and transactions is the simplification of an

otherwise complex set of observation rules for reads. It has also been shown in

previous work [Koskinen et al., 2010] to be of use in purely transactional pro-

gramming models. The definitions of moverness are based upon the semantics

given in Chapter 4.

5.2 Linearisation Points

In this section we give a general intuition of when the linearisation points of

commands executed under differing coordination semantics can take place. In

Section 5.3 we derive definitions of moverness based on this intuition.

Figure 5.1 shows the notation we use throughout to describe when a lineari-

sation point of a command c may take effect. Here, the shaded box below c

represents its execution interval. The left and right bounds of the interval denote

its beginning and completion points. The blue bar denotes the linearisation point

for c which can be placed at any point within the bounds of c’s execution interval.

To make our examples simple we assume that all variables are of integer type.

5.2.1 Uncoordinated Commands

Figure 5.2 shows a program where two threads issue uncoordinated accesses to

x. A total order does not exist over concurrently executing uncoordinated com-
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c;

Time

Figure 5.1: The shaded box is the execution interval of c. The blue bar (the
linearisation point) can be placed at any point within the bounds of c’s execution
interval.

x := 1;

y := x;

Thread 1

Thread 2

Figure 5.2: The linearisation points of the commands executed by threads 1 and
2 may take place concurrently, resulting in a data race on x. This is possible
because there does not exist a total ordering over the commands.

mands. That is, the reads and writes issued by each command may take effect

concurrently. In Figure 5.2 this is represented by the possibility of each thread’s

linearisation point occurring concurrently. Concurrent application of the lin-

earisation points of uncoordinated commands does not always lead to erroneous

values being observed, as shown in Figure 5.3.
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x := 1;

y := 1;

Thread 1

Thread 2

Figure 5.3: The linearisation points of each command can take effect concurrently
and not yield erroneous data.

5.2.2 Locks

The linearisation points of concurrently executing locks are totally ordered if and

only if they are protected on the same mutex. Consider Figure 5.4. Here, thread

1 acquires v and then thread 2 blocks because its lock also wishes to acquire v.

The linearisation point of thread 2’s lock will not take place during the interval

of thread 1’s lock. Instead, thread 2’s linearisation point will occur at some point

later. Consequently, thread 2’s lock will observe the writes issued by thread 1’s

lock. That is, thread 2’s lock will observe 1 for the value of x. Figure 5.5 shows a

program where the linearisation points of two locks may take effect concurrently.

Here, the value observed by thread 2’s read of x may be 1, its original value or

a junk value due to thread 1 and 2’s write and respectively read taking place

concurrently. Figure 5.6 gives another example where linearisation points may

take place concurrently.
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sync(v) { x := 1; }

sync(v) { y := x; }

Thread 1

Thread 2

Figure 5.4: Thread 1’s lock acquires v. Consequently, the linearisation point of
thread 2’s lock takes place after thread 1’s lock.

sync(v) { x := 1; }

sync(x) { y := x; }

Thread 1

Thread 2

Figure 5.5: Each lock protects its access of x on a distinct mutex, consequently
a total ordering does not exist over the linearisation points of the locks.

sync(v) { x := 1; }

v := x;

Thread 1

Thread 2

Figure 5.6: The linearisation points may overlap as a total ordering does not exist
over the uncoordinated and lock commands.
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atomic { x := 1; }

atomic { y := x;}

Thread 1

Thread 2

Figure 5.7: The linearisation points of the transactional commands are totally
ordered as they conflict. Thread 2’s transactional read of x will observe 1.

5.2.3 Transactions

The linearisation points of concurrently executing transactions are totally ordered

if one transaction writes to memory which the other transaction accesses. For

example, in Figure 5.7 thread 2’s linearisation point occurs after the linearisation

point of thread 1’s transaction. A total order does not exist over the linearisa-

tion points of transactional accesses to distinct memory, as in Figure 5.8. The

linearisation points of transactional and uncoordinated accesses are also not to-

tally ordered as shown in Figure 5.9. Note that the sequence of actions issued

by an aborting transaction forms a ghost sequence. That is, its removal from any

sequence of actions does not affect observational semantics. This is due to trans-

actions in our system being out-of-place. Also note that transactions which abort

have no linearisation point; only transactions which commit have a linearisation

point.
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atomic { x := 1; }

atomic { y := 1; }

Thread 1

Thread 2

Figure 5.8: A total order does not exist over the linearisation points of transac-
tions which do not conflict.

atomic { x := 1; }

v := x;

Thread 1

Thread 2

Figure 5.9: The linearisation points of threads 1 and 2 may overlap, resulting in
thread 2’s read of x not observing thread 1’s write of x.
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5.2.4 Locks and Transactions

The linearisation points of a lock and transaction are totally ordered if and only

if the transaction accesses the mutex used by the lock. The semantics in Chapter

4 stated that a lock has a stronger semantics than a transaction. That is, if a

transaction and lock are executing concurrently, such that the transaction accesses

the mutex used by the lock, then the lock will always force the transaction to

abort. This is what we mean by a lock having a stronger semantics in the context

of concurrently executing locks and transactions. A lock cannot be aborted, but

a transaction can. Therefore, the linearisation point of a lock is always ordered

before that of a transaction should the previous situation occur, as shown in

Figure 5.10. By contrast, Figure 5.11 shows an example of where the linearisation

points of the lock and transaction may occur concurrently due to the transaction

not accessing the lock’s mutex.

sync(v) {     x := 1;     }

atomic {  v := x;  }

Thread 1

Thread 2

Figure 5.10: The linearisation point of the transaction occurs after that of the
lock due to the stronger semantics of locks.
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sync(v) {    x := 1;   }

atomic { y := x; }

Thread 1

Thread 2

Figure 5.11: The linearisation point of the lock and transaction may occur con-
currently due to the transaction not accessing the lock’s mutex.

5.3 Moverness

Moverness is a property over sequences of actions which are abstractly represented

by linearisation points. For example, if we say that a command c1 is a left mover

with respect to c2 then we are stating that the actions that c1 issues take effect

before any action issued by c2, and so on.

Definition 5.1 (Free Mover). Let λ+
1 be the sequence of actions issued by the

command c1 and λ+
2 those issued by c2, such that c1 || c2. The constituent actions

of λ+
1 and λ+

2 can freely move with respect to one another if and only if:

1. either c1 or c2 issue its sequence of actions under an uncoordinated seman-

tics; or

2. c1 and c2 issue their respective sequence of actions via locks but protected

on distinct mutexes; or

3. c1 issues its sequence of actions under a lock semantics and c2 under a

transactional semantics, such that c2’s transaction does not access the mu-

tex used by c1’s lock; or
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4. c1 and c2 issue their respective sequence of actions transactionally, such that

c1 and c2’s transactions do not conflict.

Free moving actions may take place in any totally ordered permutation, or

concurrently with respect to one another, so long as they respect their issuing

thread’s program order (Section 2.3.1). The programs given in Figures 5.2, 5.3,

5.5, 5.6, 5.8, 5.9 and 5.11 are free movers.

Example 5.1 (Free Mover – Uncoordinated Commands). Consider the program

given in Figure 5.2. The sequence of actions issued by thread 1’s command is

a write of x, W(x), and the actions issued by thread 2’s command is R(x) and

W(y). Because the respective actions are free movers with respect to one another

the schedule (W(x) || R(x)) W(y) is possible leading to a data race on x.

Example 5.2 (Free Mover – Non-Conflicting Transactions). Consider the pro-

gram given in Figure 5.8. The sequence of actions issued by thread 1’s trans-

action is TBEG, W(x) and TCMT, and the sequence of actions issued by thread

2 is TBEG, W(y) and TCMT. The linearisation point of each sequence of ac-

tions can take place at any time without introducing a data race. For example,

(TBEG W(x) TCMT) || (TBEG W(y) TCMT).

5.3.1 Left Mover

Definition 5.2 (Left Mover). Let λ+
1 be the sequence of actions issued by a

command c1 and λ+
2 be those issued by c2, such that c1 || c2. Further, let λ+

1 be

issued under a transactional semantics and λ+
2 under a lock semantics, such that
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there exists a read in λ+
1 on the mutex used by c2. We say that the sequence

λ+
2 moves to the left of λ+

1 , λ+
2 λ+

1 , due to the weaker (abortable) semantics of

transactions. That is, the constituent actions of λ+
2 are guaranteed to take place

before any of those in λ+
1 .

Example 5.3 (Left Mover). Consider the program given in Figure 5.10. The

linearisation point of a lock always takes precedent over a transaction when the

transaction accesses the mutex used by the lock. Therefore, the only possible se-

quence of actions initially executed by thread 2 is TBEG R(x) W(v) TABT, with

the action sequence ACQ(v) W(x) REL(v) of thread 1’s lock moving to the left of

thread 2’s subsequently issued sequence TBEG R(x) W(v) TCMT. Recall that an

aborted transaction has no linearisation point so the actions issued between TBEG

and TABT can take place in any total or concurrent order with respect to the con-

stituent actions issued by thread 1’s lock. One example of a permissible sequence

is ACQ(v) (W(x) || TBEG R(x) W(v)) REL(v) TABT TBEG R(x) W(v) TCMT.

Here, thread 1’s write of x takes place concurrently with thread 2’s transactional

read of x and write of v, followed by thread 1 releasing v, thread 2’s transac-

tion aborting, and subsequently retrying and committing. The key observation

is that the linearisation point of a lock which conflicts with a concurrently exe-

cuting transaction will always appear to the left of the respective transaction’s

linearisation point. In the previous example sequence this is represented by all the

constituent actions of thread 1’s lock being ordered before (or appearing to the

left of) the constituent actions of thread 2’s committing transactional sequence.

For the execution given in Figure 5.10 we may give a stricter claim and state that

thread 2’s transactional read of x is guaranteed to observe 1.

143



5.3.2 Right Mover

Definition 5.3 (Right Mover). A right mover is the mirror of a left mover. Let

λ+
1 be the sequence of actions issued by a command c1 and λ+

2 be those issued by

c2, such that c1 || c2. Further, let λ+
1 be issued under a transactional semantics

and λ+
2 under a lock semantics, such that there exists a read in λ+

1 on the mutex

used by c2. We say that the sequence λ+
1 moves to the right of λ+

2 , λ+
2 λ+

1 , due to

the weaker (abortable) semantics of transactions. That is, the constituent actions

of λ+
2 are guaranteed to take place before any of those in λ+

1 .

The transaction in Figure 5.10 is an example of a right mover.

Example 5.4 (Right Mover). The same as Example 5.3 but interpret “...the

linearisation point of a lock which conflicts with a concurrently executing trans-

action will always appear to the left of the respective transaction’s linearisation

point.” as “...the linearisation point of a transaction which conflicts with a con-

currently executing lock will always appear to the right of the respective lock’s

linearisation point.”

5.3.3 Both Mover

Definition 5.4 (Both Mover). Locks and transactions are both movers with

respect to themselves. Let λ+
1 be the sequence of actions issued by a command

c1 and λ+
2 be those issued by c2, such that c1 || c2.

• if λ+
1 and λ+

2 are issued under a transactional semantics, and the accesses

issued by λ+
1 and λ+

2 result in a conflict, then:

– λ+
1 can move to the left of λ+

2 , λ+
1 λ+

2 (c1 commits, c2 aborts); or
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– λ+
1 can move to the right of λ+

2 , λ+
2 λ+

1 (c2 commits, c1 aborts).

• if λ+
1 and λ+

2 are issued under a lock semantics, and the constituent actions

of λ+
1 and λ+

2 are protected on the same mutex, then:

– λ+
1 can move to the left of λ+

2 , λ+
1 λ+

2 (c1 acquires, c2 blocks); or

– λ+
1 can move to the right of λ+

2 , λ+
2 λ+

1 (c2 acquires, c1 blocks).

atomic { x := 1; }

atomic { y := x;}

Thread 1

Thread 2

atomic { x := 1; }

atomic { y := x;}

Thread 1

Thread 2

(a)

(b)

Figure 5.12: (a) The linearisation point of thread 1’s transaction appears to
the left of the linearisation point of thread 2’ transaction. (b) The order of
linearisation points is reversed. The order of linearisation points for conflicting
transactions is dependent on the contention manager.

Example 5.5 (Both Mover). Consider the program execution given in Figure

5.12. (a) Here, should thread 1’s transaction be selected to commit and thread

2’s abort, we have for thread 1 TBEG W(x) TCMT and TBEG R(x) W(y) TABT for

the initial action sequence of thread 2. Due to the constituent actions of thread
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2’s first attempt to execute its transaction being ghost actions we have a final se-

quence that is logically equivalent to TBEG W(x) TCMT TBEG R(x) W(y) TCMT.

Now consider the reverse selection for commit/abort as shown in (b). That is,

thread 1’s transaction initially aborts and thread 2’s commits. Here, we have a

final sequence equivalent to TBEG R(x) W(y) TCMT TBEG W(x) TCMT. The

key observation in this example is that a total ordering exists over the constituent

actions of the two transactions but the ordering of each transaction’s sequence

of actions with respect to one another is dependent upon the contention man-

ager. That is, either thread 2’s transaction will observe the actions of thread 1’s

transaction should thread 2’s transaction be selected to abort, or vice versa.

5.3.4 Moverness and the Java Memory Model

We now show how moverness can be applied to abstract the observation semantics

for the happens-before relation in the Java memory model (JMM) Manson et al.

[2005].

Under the JMM a program execution E = 〈P,A, po−→, so−→,W, V, sw−→, hb−→〉, where

• P is a program;

• A is a set of actions (discussed shortly);

• po−→ is a total ordering over the actions issued by a thread τ ;

• so−→ is a total ordering over an execution’s synchronisation actions;

• W is a write seen function;

• V is a value written function;
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• sw−→ is a partial ordering over synchronisation actions; and

• hb−→ is the transitive closure over
po−→ and

sw−→.

An action A = 〈τ, k, v, u〉, where

• τ is a thread identifier;

• k is the kind of action: read, write, acquire or release;

• v is the variable involved; and

• u is a unique identifier associated with the action.

The write seen function W gives the identifier of the write action a read r

observes, e.g. W (r) = u. The value written function function W gives the value

val written by a write w, e.g. W (w) = val. The value observed by a read is a

consequence of the preceding write to the same variable in
hb−→. The remainder of

this section discusses how moverness maps to the JMM Manson et al. [2005] via

a series of examples. Note that we only address the happens-before ordering and

not the security features of the JMM.

5.3.4.1 Preliminaries

Before proceeding we first establish a connection with the execution environment

presented in Chapter 4, particularly when mutexes are acquired and when they are

not, determined by the contention manager which resolves accesses to contended

memory, irrespective of whether the access issued is transactional or lock-based.

The synchronisation order (
so−→) of the JMM is the actual order of acquire/releases

taken during a program execution, by contrast to the synchronises-with (
sw−→) or-

der which is the relation between release/acquires which may happen. For locks,
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both
so−→ and

sw−→ are straightforward. Transactions are only related should they

conflict during an execution, likewise a transaction with a lock. Should a trans-

action access contended memory then its
sw−→ is defined for all the memory it

accesses should it conflict with a transaction or lock, with the synchronisation or-

der reflecting the acquire/releases issued. Note that in the cases where a conflict

occurs the acquire/releases in the synchronisation order may not actually be re-

quired to be executed as the semantics given in Chapter 4 ensures that conflicting

transactions/locks are always totally ordered.

5.3.4.2 Examples

Example 5.6 (Conflicting Transactions). Let P be the following:

Thread 1 Thread 2

atomic { atomic {

x := y; z := x;

y := 1; }

}
Note that as the two transactions conflict each will acquire/release the mutexes

associated with their respective datasets. There are two possible executions (as

they are both movers): left or mutually right mover. Note: for conciseness we do

not include default release actions on the variables a program accesses.

• Case 1: Thread 1 commits, Thread 2 aborts. Let A = {〈1, ACQ, x, 1〉,

〈1, ACQ, y, 2〉, 〈1, R, y, 3〉, 〈1,W, x, 4〉, 〈1,W, y, 5〉, 〈1, REL, y, 6〉,

〈1, REL, x, 7〉, 〈2, ACQ, z, 8〉, 〈2, ACQ, x, 9〉, 〈2, R, x, 10〉, 〈2,W, x, 11〉,

〈2, REL, x, 12〉, 〈2, REL, z, 13〉, po−→ be the same as the order of each ac-

tion in A for threads 1 and 2,
so−→ be 〈1, 7〉, 〈2, 6〉, 〈8, 13〉, 〈9, 12〉, sw−→ be
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〈7, 9〉, 〈12, 1〉, hb−→ is as per its definition (in this case, thread 1’s actions

happen-before any of those issued by thread 2) and W and V be fresh write

seen and value seen functions in an execution E = 〈P,A, po−→, so−→,W, V, sw−→

,
hb−→〉. Here, thread 1’s transaction can be described as a left mover, thread

2’s as a right mover, or (more generally) as being both movers. That is,

according to
hb−→ the read of x by thread 2 observes the write to x by thread

1.

• Case 2: Thread 2 commits, Thread 1 aborts. Let A = {〈1, ACQ, x, 1〉,

〈1, ACQ, y, 2〉, 〈1, R, y, 3〉, 〈1,W, x, 4〉, 〈1,W, y, 5〉, 〈1, REL, y, 6〉,

〈1, REL, x, 7〉, 〈2, ACQ, z, 8〉, 〈2, ACQ, x, 9〉, 〈2, R, x, 10〉, 〈2,W, x, 11〉,

〈2, REL, x, 12〉, 〈2, REL, z, 13〉, po−→ be the same as the order of each ac-

tion in A for threads 1 and 2,
so−→ be 〈8, 13〉, 〈9, 12〉, 〈1, 7〉, 〈2, 6〉, sw−→ be

〈7, 9〉, 〈12, 1〉, hb−→ is as per its definition (in this case, thread 2’s actions

happen-before any of those issued by thread 1) and W and V be fresh write

seen and value seen functions in an execution E = 〈P,A, po−→, so−→,W, V, sw−→

,
hb−→〉. Here, thread 2’s transaction can be described as a left mover and

thread 1’s as a right mover. That is, according to
hb−→ the read of x by

thread 2 observes the original value of x.

Example 5.7 (Non-Conflicting Transactions). Let P be the following:

Thread 1 Thread 2

atomic { atomic {

x := y; z := 1;

y := 1; }

}
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Let A = {〈1, R, y, 1〉, 〈1,W, x, 2〉, 〈1,W, y, 3〉, 〈2,W, z, 4〉}, po−→ be the same as

the order of each action in A for threads 1 and 2,
so−→ and

sw−→ (with the exception

of the initial releases injected on the variables) be empty,
hb−→ is as per its definition

and W and V be fresh write seen and value seen functions in an execution E =

〈P,A, po−→, so−→,W, V, sw−→, hb−→〉. Consequently, the actions issued by threads 1 and

2 are free movers. That is, the accesses issued by each thread are unrelated in

hb−→.

Example 5.8 (Conflicting Lock and Transaction). Let P be the following:

Thread 1 Thread 2

atomic { sync(x) {

x := y; z := 1;

y := 1; }

}
Note that to make the connection in the JMM we must conservatively issued

acquire/releases on the transactions dataset due to the conflict with the lock. Let

A = {〈2, ACQ, x, 1〉, 〈1,W, z, 2〉, 〈2, REL, x, 3〉, 〈1, ACQ, x, 4〉, 〈1, ACQ, y, 5〉,

〈1, R, y, 6〉, 〈1,W, x, 7〉, 〈1,W, y, 8〉, 〈1, REL, y, 9〉, 〈1, REL, x, 10〉}, po−→ be the same

as the order of each action in A for threads 1 and 2,
so−→ be 〈1, 3〉, 〈4, 10〉, 〈5, 9〉,

sw−→ be 〈3, 4〉, 〈10, 1〉, hb−→ is as per its definition and W and V be fresh write seen

and value seen functions in an execution E = 〈P,A, po−→, so−→,W, V, sw−→, hb−→〉. Con-

sequently, thread 2 is a left mover w.r.t. thread 1. That is, the actions issued

by thread 2 will happen-before those issued by thread 1 as a lock is a left mover

w.r.t. a transaction when the transaction accesses the mutex the lock is protected

on.

Example 5.9 (Non-Conflicting Lock and Transaction). Let P be the following:
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Thread 1 Thread 2

atomic { sync(z) {

x := y; z := 1;

y := 1; }

}
Let A = {〈1, R, y, 1〉, 〈1,W, x, 2〉, 〈1,W, y, 3〉, 〈2, ACQ, z, 4〉, 〈2,W, z, 5〉,

〈2, REL, z, 6〉}, po−→ be the same as the order of each action in A for threads 1 and

2,
so−→ is 〈4, 6〉, sw−→ contains only a relationship between the initial release injected

on z and the acquire performed in the program text,
hb−→ is as per its definition

and W and V be fresh write seen and value seen functions in an execution E =

〈P,A, po−→, so−→,W, V, sw−→, hb−→〉. Consequently, the actions issued by threads 1 and

2 are free movers. That is, the actions issued by threads 1 and 2 are unrelated in

hb−→.

5.4 Summary

In this chapter we have presented moverness for accesses issued under a lock,

transactional and no coordination semantics. Moverness abstracts the underly-

ing machine’s semantics for these coordination semantics and defines them as

observation rules. Moverness can be seen as a being a memory consistency model

[Adve and Gharachorloo, 1996] with the respective move definitions defining the

observational properties of reads. Indeed, we showed this by mapping its abstract

semantics to the lower-level execution semantics of the Java memory model. Its

key benefit is that it simplifies an otherwise complex set of observation rules for

reads issued by a program using both locks and transactions, as shown in Section
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5.3.4. Each coordination type is associated a linearisation point [Herlihy and

Wing, 1990] and a priority. The movement of one linearisation point with respect

to another linearisation point falls under the semantics of a free, left, right or both

mover. The linearisation points of unrelated accesses are free movers. A lock has

execution priority of a transaction and is classified to be a left mover, by contrast

to a transaction which is a right mover. Timing events result in the requirement

for defining both mover semantics: a lock can move to the left or right of another

lock protected on the same mutex, depending on which lock acquired the mutex

first; likewise, a transaction that conflicts with another transaction can move to

the left or right of the other transaction depending on the commit/abort selection

of the contention manager.
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Chapter 6

Guaranteed Transactions

6.1 Overview

Locks and transactions are tools used to serialise accesses to memory. The level

of complexity required to serialise accesses to memory under locks is significantly

greater than that of transactions. However, there are cases when transactional

semantics, specifically those under a weakly isolated STM, are insufficient for

executing certain types of operation. Such operations include I/O, CPU bound

tasks and any general form of irreversible operation. In these cases the program-

mer must apply locks or the privatisation/publication idioms. It can be argued

that neither approach is ideal in a transactional program:

Locks require the programmer to explicitly maintain lock invariants, e.g. mu-

texes, read/write locks, etc. This process is often error prone due to or-

derings over lock invariants being hard to track and enforce, particularly in

object oriented systems where components are frequently composed. Addi-

tionally, while being the most practical, mixing locks and transactions can
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result in a significantly more complex programming model. (Part II presents

a framework for determining the data-race-freedom of such a programming

model, which we found to justify the previous claim.)

Privatisation/Publication requires the programmer to explicitly maintain reach-

ability of the object graph. This is no less error prone than the use of locks.

It is arguable as to which is the more challenging: managing the reachability

of a program’s object graph, or maintaining lock invariants. Nonetheless,

the principal advantage of the privatisation/publication idioms is that it

permits the programmer to stay within a transactional programming model.

That is, the programmer can rely completely on application of transactional

semantics.

On a more idealistic level both locks and the privatisation/publication idioms

are inappropriate because they go against the original philosophy of STM [Shavit

and Touitou, 1995]. The goal of STM was to significantly lower the entry bar for

creating correct, i.e. data-race-free, concurrent programs. That is, make it hard

to get it wrong and easy to get it right. Combining transactions and locks/the

privatisation/publication idioms leaves the programmer in an awkward and often

complex environment when, on occasion, he/she requires a stronger coordination

semantics.

Guaranteed transactions attempt to address the deficiencies of locks and the

privatisation/publication idioms. A guaranteed transaction is a means to get

a stronger coordination semantics but via an abstraction akin to transactions.

That is, when, on occasion, the programmer requires a stronger semantics he can

transparently substitute the atomic keyword for gatomic, the keyword we asso-
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ciate with a guaranteed transaction. The programmer does not have to maintain

isolation invariants or worry about object graph reachability issues. Guaranteed

transactions, like transactions, can be thought of as being similar to garbage col-

lection in an environment like the Java Virtual Machine (JVM): the programmer

is not required to understand how the JVM’s garbage collector works or what

algorithm it uses, he only needs to be aware of the fact that the system will en-

sure that unreachable memory will be freed. Briefly, the benefits of guaranteed

transactions over locks and the privatisation/publication idioms are as follows:

• Abstract parity with transactions. Mixing transactions and guaranteed

transactions is a transparent process.

• Implicit handling of isolation and object graph reachability invariants.

• Inherently support a concurrency model that is similar to read/write locks.

That is, if possible, several guaranteed transactions can execute concur-

rently even if the datasets of the guaranteed transactions intersect.

The remainder of this section briefly recaps the problems associated with the

use of locks and the privatisation/publication idioms in a transactional program,

followed by an overview of guaranteed transactions.

6.1.1 Locks

Locks require the programmer maintain isolation invariants. These isolation in-

variants are typically come in the form of a mutex or a more specific form such

as a read/write lock. Locks, when applied in a routine and consistent manner,

can be used to support most types of serialisation semantics. Nonetheless, the
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application of locks, particularly for fine grained concurrency control, has a steep

learning curve which can take several years to master. Figure 6.1 shows a coarse

and fine grained locking strategy. Here, (a) protects all accesses to x, y and z

on a single mutex. The advantage of the coarse grained approach is that serial-

ising accesses to defined regions of memory is simpler as we have less mutexes

to juggle before performing the appropriate accesses. However, using a coarse

grained approach significantly reduces the amount of concurrency that may be

exploited. For example, one thread may only access x but still have to contend

for the same lock that another thread which accesses v and y requires. The fine

grained approach as shown in (b) is the opposite: we use a mutex associated

with each variable. The advantage of this approach is that a thread which only

accesses x does not need to contend with another thread that accesses v and y.

However, as Figure 6.1 shows, even for a trivial program the use of fine grained

locks can become quite complex, and lead to the likes of deadlocks should a con-

sistent ordering not be maintained over lock acquisitions. For example, in (b) we

acquire locks in a lexicographic ordering to prevent deadlock.

sync(m) {
  v := x;
}

Thread 1 Thread 2
sync(m) {
  y := v;
}

Mutex m;
Int v; Int x; Int y;

sync(v) {
  sync(x) {
    v := x;
  }
}

Thread 1 Thread 2
sync(v) {
  sync(y) {
    y := v;
  }
}

Int v; Int x; Int y;

(a) (b)

Figure 6.1: (a) A single mutex is used to protect accesses to x, y and z. (b) The
individual mutexes associated with x, y and z are used to protect their respective
accesses.
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We can extend fine grained locking further by associating each variable with a

read/write lock. Under this approach multiple readers can execute concurrently

but multiple writers cannot. Fine grained read/write locking is tricky to apply

but significantly reduces lock contention while not prohibiting concurrency with

respect to read operations. Figure 6.2 shows an example program that uses a

fine grained read/write lock strategy. Thread 1 acquires the write lock associated

with v, v rw, as thread 1 wishes to write v. Thread 1 only needs to acquire x’s

associated read lock as thread 1 only reads x, as does thread 2 which additionally

acquires the write lock associated with y. Threads 1 and 2 can execute their op-

erations concurrently. Multiple threads can acquire the read lock of a read/write

lock, but only one thread can have acquired the write portion of a lock at any

given time.

sync(v.WriteLock) {
  sync(x.ReadLock) {
    v := x;
  }
}

Thread 1 Thread 2
sync(x.ReadLock) {
  sync(y.WriteLock) {
    y := x;
  }
}

ReadWriteLock v_rw;
ReadWriteLock x_rw;
ReadWriteLock y_rw;
Int v; Int x; Int y;

Figure 6.2: Each variable has an associated read/write lock.

As described previously a transactional program that uses a weakly isolated

STM must use either locks or the privatisation/publication idioms when wishing

to execute an irreversible operation. It is also possible that a programmer may

want to use one of the two previous alternatives when executing a CPU task, or

when the performance budget of a program leaves little margin for possible retries
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of transactions which abort. Using locks and transactions in the same program

is non-trivial. There are two main issues:

• Management of lock invariants. The complexity of this task depends largely

on the locking strategy a code base uses – fine or coarse grained, etc.

• Isolation of accesses to memory issued by locks and transactions. The pro-

grammer must understand when a lock and transaction “conflict” and the

semantics of such a conflict.

The use of locks in a transactional program naturally makes coordination of

accesses more complex. For example, consider Figure 6.3. Here, there is no par-

ticular reason to use a lock to coordinate thread 1’s write and read of v and

respectively x. The point of Figure 6.3 is that it is not immediately obvious, even

for such a trivial program, whether or not there exists a total ordering over thread

1 and 2’s respective accesses of v. In this case the accesses issued to v by each

thread are serialised as thread 2’s transaction accesses the mutex used by thread

1’s lock. The point here is that mixing locks and transactions increases the com-

plexity of the programming model significantly, but affords the programmer more

powerful options for coordinating accesses. Furthermore, as discussed previously,

the thesis of transactional memory was to reduce the learning curve for writing

obviously correct concurrent programs. The use of locks within a transactional

program re-introduces the steep learning curve that STM intended to dispose of.

To motivate the need of a stronger semantics consider Figure 6.4. Here, should

the thread executing the write to disk abort, the write to disk will still persist.

The atomicity, consistency and isolation guarantees of transactions only hold for

in-memory data. In this case disk is excluded from such guarantees. Therefore,
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sync(v) {
  v := x;
}

Thread 1 Thread 2
atomic {
  y := v;
}

Int v; Int x; Int y;

Figure 6.3: Using locks and transactions.

it is possible that other transactions may observe the value written by an aborted

transaction. Locks can be used to remedy this situation as shown in Figure 6.5.

Here, the write of disk will not execute more than once. However, the problem

remains that introducing a lock (or most likely several locks) into a transactional

program removes the intuitiveness of a purely transactional program. The more

locks that are required in a transactional program, the less appealing transactions

become.

atomic {

  l.add(1);
  d.write(l);
} // Commits

LinkedList l; Disk d;

Thread 1 Thread 2
atomic {

  

  d.write(l);
} // Aborts

Disk

Figure 6.4: Using transactions to execute an irreversible I/O operation. Thread
2’s transaction aborts but its write to disk remains. Thread 2’s transaction has
invalidated the atomicity and consistency guarantees.
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sync(l) {
 // acquires l

  l.add(1);
  d.write(l);
} // release l

LinkedList l; Disk d;

Thread 1 Thread 2
sync(l) {
 // waits for
 // thread 1 to
 // release l

 // acquires l

  d.write(l);
}

Disk

Figure 6.5: Using locks to safely execute an irreversible I/O operation.

6.1.2 Privatisation/Publication Idioms

The privatisation and publication idioms [Spear et al., 2007] provide a means for

dropping in and out of a strong semantics without the use of locks or other forms

of coordination control. The general principle of the idioms is shown in Figure

6.6. To draw comparison to locks, which use mutexes, etc. to encode isolation

invariants, the privatisation/publication idioms use standard program logic to

control the reachability of an object (or objects). Controlling the reachability

of an object requires the programmer view his program as one large graph, the

program’s object graph. During the execution of a program objects become reach-

able from one another be performing assignments. For example, executing o.f

:= v results in the memory v referencing being reachable by o. In graph parlance

execution of the previous command results in a directed edge labelled f from a

node labelled o to a node labelled v. It is not uncommon for an object graph of

even a basic program to entail thousands of nodes, particularly in object heavy
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languages such as Java and (more so) Ruby [Flanagan and Matsumoto, 2008].

atomic {
  // Privatise.
  // cut off connectivity to 
  // b by other threads
  // introduce thread-local connection
  // to b's subgraph
}

c

b

d

a

c

b

d

a

e

c

b

d

a

// operate on b's subgraph; no coordination required
ComplexOperation(b);

atomic {
  // Publicise.
  // make b reachable again
}

// b and its subgraph can be reached by
// multiple threads through a

Figure 6.6: General principle of the privatisation and publication idioms. Trans-
actions are used to close off and open up the reachability of a program’s object
graph.

Figure 6.7 gives a simplified version of applying the privatisation and publica-

tion idioms for writing the contents of a linked list to disk. The program attempts

to replicate the semantics of Figure 6.5. Here, we use the first transaction to set a

thread local variable l1 to point-to the first node of the linked list that l points-

to. Subsequently, we close off (privatise) the reachability to the nodes that l1
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points-to by setting l to null. Observe that l is accessible by all threads but l1

is only accessible by the executing thread. Only the executing thread can now

access the nodes of the linked list that l1 points-to, so we execute the irreversible

write operation. Our final step is to open up (publicise) the nodes that l1 refers

to so that all threads may observe the list. We do this by updating l to point-to

the memory that l1 points-to.

LinkedList l1;
atomic {
  l1 = l;
  l = null;
}

l

d.write(l1);

atomic {
  l = l1;
  l1 = null;
}

// l and d are accessible by all 
// threads. The nodes of the linked
// list can be accessed via l.

LinkedList l; Disk d;

n2

n1

n3

l

n2

n1
n3

l1

ll1

n2

n1
n3

Figure 6.7: Simplified application of the privatisation/publication idioms to write
a linked list’s contents to disk.
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6.1.3 Guaranteed Transactions

A guaranteed transaction is another coordination tool that is designed to keep

the programmer in the transactional world for as long as possible. A guaran-

teed transaction complements transactions and locks. We specifically position a

guaranteed transaction as a means to safely (remove the programmer from man-

ually maintaining isolation invariants) use the privatisation/publication idioms

and supplant usages of locks in specific scenarios. For example, a guaranteed

transaction is ideal to simplify the semantics of the program given in Figure 6.5.

The rest of this section outlines some of the benefits of guaranteed transactions

and also positions it with respect to the current literature.

A guaranteed transaction lies between the semantics of a transaction and lock.

That is, it provides a stronger semantics than a transaction but affords a less pre-

cise semantics to custom rolled locking strategies. Guaranteed transactions are

pessimistic like locks. That is, the environment must be in a state to satisfy the

invariants (read and write set) before a guaranteed transaction can begin execu-

tion. Guaranteed transactions are a good solution when the data to be privatised

is relatively small and the object graph is predictable, e.g. acyclic. Candidate

data structures include the likes of linked lists and trees. Guaranteed transactions

are not free: isolation invariants are computed at runtime and can abort actively

running transactions which conflict with such computation. Consequently, guar-

anteed transactions should be used when the data to be privatised is not heavily

contended and has a simple object graph. Using guaranteed transactions to pri-

vatise heavily contented data or to privatise objects with large object graphs will

most likely result in increasing the amount of memory contention.
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Guaranteed transactions are similar to obstinate transactions [Ni et al., 2008]

but are not a product of a prior abort. [Welc et al., 2008] use single owner

read locks to transition to a guaranteed semantics but permit only a single such

semantics to run at any given time. Multiple guaranteed transactions can execute

concurrently provided they do not conflict. [Sonmez et al., 2009] present a model

built on Haskell STM that turns atomics that access “hot” regions of memory into

pessimistic atomics, however this approach again is dynamic and does not afford

dataset guarantees. Recent literature such as that by [McCloskey et al., 2006; Ni

et al., 2008; Shavit and Matveev, 2012] and [Welc et al., 2008] have, via empirical

evidence, justified not only the practical feasibility of pessimistic concurrency

control for STM but also its importance in simplifying the programming model.

An example application of a guaranteed transaction is shown in Figure 6.8.

Here, the guaranteed transaction and transaction conflict. Should they be sched-

uled concurrently the guaranteed transaction will always commit and force the

conflicting transaction (and any other conflicting transactions which execute dur-

ing the guaranteed transaction’s interval) to abort. Observe that a guaranteed

transaction does not require the programmer specify any invariants. The sim-

plicity of guaranteed transactions comes at the cost of over approximating its

dataset. For Figure 6.8 a guaranteed transaction is ideal as the object graph of

the guaranteed transaction is simple.

Guaranteed transactions can execute concurrently if their respective datasets

do not conflict, as shown in Figure 6.9. Here, both guaranteed transactions

only read the contents of the linked list pointed-to by l. Consequently, they

can be executed concurrently. This is a slightly contrived example only used for

illustration – thread 2’s invocation of l.traverse() would ideally use the more
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gatomic {
  d.write(l);
}

LinkedList l; Disk d;

Thread 1 Thread 2

atomic {
  l.add(1);
}

n2

n1

n3

l

n4

Read by guaranteed transaction.

Transaction want to write to l.

Figure 6.8: The guaranteed transaction reads the memory associated with l,n1,
n2 and n3. l is included in the transaction executed by thread 2’s write set.
The guaranteed transaction will force the transaction to abort should they be
scheduled concurrently.

efficient semantics of a transaction as the guaranteed transaction in this instance

is not required. The guiding philosophy of guaranteed transactions are loosely

based upon a quote by Simon Peyton-Jones from a talk he gave in 20061 on the

topic of STM, paraphrased: “...would you rather a fast program that is correct

some of the time or a slower program that is correct all of the time?” This quote

has resonated with me deeply when thinking about coordination in non-trivial

programs. Conflicting guaranteed transactions are totally ordered, as shown in

Figure 6.10.

1Developer!Developer!Developer! conference held at Microsoft’s Campus in Reading, UK.
At the time I was an intern at Microsoft.
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gatomic {
  d.write(l);
}

LinkedList l; Disk d;

Thread 1 Thread 2

gatomic {
  l.traverse();
}

n2

n1

n3

l

Read by both guaranteed transactions.

Figure 6.9: The guaranteed transactions can execute concurrently as neither
guaranteed transaction writes data the other guaranteed transaction accesses.

The remainder of this chapter is structured as follows:

• Section 6.2 gives the operational semantics of guaranteed transactions. This

includes thread defined commands and a modified version of the parallel

composition rule given in Section 4.2.5.

• Section 6.3 defines the moverness (Chapter 5) of guaranteed transactions

within a transactional program.

6.2 Rules

Before we present the rules for guaranteed transactions we redefine the definition

of Coord to be Coord
def
= A | G, where A is a transaction and G is a guaranteed

transaction. Just as in Chapter 4 we use the values of Coord to distinguish the
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gatomic {
  d.write(l);
}

LinkedList l; Disk d;

Thread 1 Thread 2

gatomic {
  l.add(1);
}

n2

n1

n3

l

n4

Thread 1's guaranteed transaction reads l.

Thread 2's guaranteed transaction
writes l.

Figure 6.10: Conflicting guaranteed transactions are totally ordered should they
be scheduled concurrently.

coordination semantics that the metadata in md models. We also extend the def-

inition of λ and Λ, originally defined in Figure 4.3, to be λ
def
= . . . | GBEG | GCMT

and respectively Λ
def
= . . . | GBEG λ+

RW GCMT. Note also that guaranteed trans-

actions, like transactions, are flattened and are associated with a unique label.

Transactions and guaranteed transactions can be mutually nested but are flat-

tened, like nested transactions.

6.2.1 Thread Rules

The thread command rules for guaranteed transactions are given in Figure 6.11.

(THREAD−GTRANSACTION−BEGIN) begins execution of a guaranteed trans-

action:
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(THREAD−GTRANSACTION−BEGIN)
reads=Reads(c, sτ , σ) writes=Writes(c, sτ , σ)

¬GConflict(writes,md)
id′=GenerateID(md, Id)

md′=md[id′ 7→(Now(),⊥, reads, writes, reads∪writes,G)]

〈τ, ε, id:gatomic{c}, sτ ,⊥〉, σ, fs,md, Id
GBEG−−−→

〈τ, ε, id′ :gablk(c), sτ ,⊥〉, σ, fs,md′, id′

(THREAD−GTRANSACTION−BLOCK)
writes=Writes(c, sτ , σ) GConflict(writes,md)

〈τ, ε, id:gatomic{c}, sτ ,⊥〉, σ, fs,md, Id
NOP−−→

〈τ, ε, id:gatomic{c}, sτ ,⊥〉, σ, fs,md, Id

(THREAD−GTRANSACTION−IN)
δ=(sτ∪σ.s, σ.h)

〈τ, c, δ, fs,⊥,⊥,⊥,⊥,⊥,⊥〉 λ+−→ 〈τ, c′, δ′, fs′,⊥,⊥,⊥,⊥,⊥,⊥〉
(s′τ , σ

′)=Persist(δ′, sτ , σ)

〈τ, ε, id:gablk(c), sτ ,⊥〉, σ, fs,md, Id
λ+−→

〈τ, ε, id:gablk(c′), s′τ ,⊥〉, σ′, fs′,md, Id

(THREAD−GTRANSACTION−COMMIT)
md′=md[id 7→(beg,Now(), γR, γW, γD,G)]

〈τ, ε, id:gablk(ε), sτ ,⊥〉, σ, fs,md, Id
GCMT−−−→

〈τ, ε, ε, sτ ,⊥〉, σ, fs,md′, Id

Figure 6.11: Guaranteed Transaction Command Rules.

• The read and write set of the guaranteed transaction are conservatively over

approximated. Reads
def
= C × Store × State → LocationSet and Writes

def
=
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C × Store × State → LocationSet return the transitive closure of memory

locations the guaranteed transaction reads and respectively writes. Existing

analyses such as [Jenista and Demsky, 2009] and [Ghiya and Hendren, 1996]

can compute this information efficiently, although the intended use case of

guaranteed transactions is on privatising relatively small object graphs.

• The predicate GConflict
def
= LocationSet × MD → Bool is true if the write

set of the guaranteed transaction conflicts with the dataset of an actively

executing guaranteed transaction.

• The operations Reads, Writes and GConflict are executed under a single

global lock atomicity semantics. Note that during the invocations of these

respective functions they abort any conflicting active transaction.

• Beginning the guaranteed transaction makes use of the intermediate con-

struct gblk which is associated a fresh unique identifier.

• The metadata mapping is updated to include the read and write set of the

guaranteed transaction. The metadata is identified as modelling a guaran-

teed transaction via the use of the Coord value G.

(THREAD−GTRANSACTION−BLOCK) is applied if the write set of the guar-

anteed transaction conflicts with the dataset of an actively running guaranteed

transaction. The thread blocks until its guaranteed transaction can be run. Note

that guaranteed transactions would take on a similar semantics to that presented

in [Harris et al., 2005]. That is, they only try to execute again when an ac-

tively running guaranteed transaction which conflicts with the blocking guaran-

teed transaction completes execution.
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(THREAD−GTRANSACTION−IN) executes a command under a guaranteed

transaction semantics. The semantics are identical to (THREAD−LOCK−IN).

The rule (THREAD−GTRANSACTION−COMMIT) commits a transaction which

simply involves updating the completion time of the guaranteed transaction’s

metadata.

6.2.2 Parallel Composition

The parallel composition rule for transactions and guaranteed transactions is

given in Figure 6.12. The rule is similar to Figure 4.17 so we only describe its

differences.

• The thread configurations in I model guaranteed transactions which block.

Those in J will execute due to their write sets not conflicting with actively

executing guaranteed transactions.

• The transitions that the guaranteed transactions in J go through in the box

labelled C are as follows:

– A guaranteed transaction begins its execution, configuration T ′j , as

it does not conflict with another active guaranteed transaction (see

label D). This entails the update of the metadata and unique label

components.

– The constituent commands of the guaranteed transaction are executed

resulting in T ′′j which differs to T ′j in that its constituent commands

may have allocated memory, updated the thread store and/or global

state.
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– The guaranteed transaction commits in T ′′′j which sees the metadata

component updated to reflect the guaranteed transaction’s commit

time, and the command which followed the guaranteed transaction

being set as the thread’s active command.

The intuition behind (PROGRAM−PARALLEL−COMPOSITON) is similar to

the one given in Figure 4.17. That is, the active threads are partitioned accord-

ing to the coordination semantics of their active commands. We assume that the

threads in M and J are executing transactions and guaranteed transactions that

do not conflict with the other transactions and respectively guaranteed trans-

actions in their group of threads. The transactions in K either conflict with a

transaction in M or a guaranteed transaction in J . The guaranteed transactions

in I conflict with one or more actively executing guaranteed transactions in J .

6.3 Moverness

We redefine the definitions of moverness originally given in Chapter 5 but for

transactions, guaranteed transactions and uncoordinated commands.

Definition 6.1 (Free Mover). Let λ+
1 be the sequence of actions issued by the

command c1 and λ+
2 those issued by c2, such that c1 || c2. The constituent actions

of λ+
1 and λ+

2 can freely move with respect to one another if and only if:

1. either c1 or c2 issue its sequence of actions under an uncoordinated seman-

tics; or

2. c1 and c2 issue their respective sequence of actions via guaranteed transac-

tion such that c1 and c2’s guaranteed transactions do not conflict; or
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Definition 6.1 (Free Mover). Let �+
1 be the sequence of actions issued by the

command c1 and �+
2 those issued by c2, such that c1 || c2. The constituent actions

of �+
1 and �+

2 can freely move with respect to one another if and only if:

1. either c1 or c2 issue its sequence of actions under an uncoordinated seman-

tics; or
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and c2 under a transactional semantics, such that c1’s transaction does not

conflict with c2’s guaranteed transaction; or

4. c1 and c2 issue their respective sequence of actions transactionally, such that

c1 and c2’s transactions do not conflict.
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(PROGRAM�PARALLEL�COMPOSITON)
T={I, J, K, M, U}

Id<idjId0 Id<idkId0 Id<idmId0 idj 6=idk 6=idm

8i 2 I · Ti, �i, fsi, mdi, Idi
NOP��! Ti, �i, fsi, mdi, Idi

8j 2 J · Tj, �j, fsj, mdj, Idj
GBEG���! T 0

j , �j, fsj, md0
j, Id

0
j (
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�!)+

T 00
j , �0

j, fs
0
j, md0

j, Id
0
j

GCMT���! T 000
j , �0

j, fs
0
j, md00

j , Id
0
j

8k 2 K · Tk, �k, fsk, mdk, Idk
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k, �k, fsk, md0
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0
k (

�+
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T 00
k , �k, fs

0
k, md0

k, Id
0
k
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0
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0
k
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�!)+
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m, �m, fs0m, md0

m, Id0
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m , �0
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0
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0
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8k 2 K · Conflict(idk, md00
k) 8m 2M · ¬Conflict(idm, md00

m)
�0=MergeStates({�0

j, �
0
m, �0

u}) Id0=MaxLabel({Idi, Id
0
j, Id

0
k, Id

0
m, Idu})

fs0=fsi[fs0j[fs0k[fs0m[fs0u md0=MergeMetadata({md00
j , md00

k, md00
m})

h✏, Ti || . . . || Tj || . . . || Tk || . . . || Tm || . . . || Tu || . . . , �, fs, md, Idi
⇤i || ⇤j || ⇤k || ⇤m || ⇤u���������������!

h✏, Ti || . . . || T 000
j || . . . || T 000

k || . . . || T 000
m || . . . || T 0

u || . . . , �0, fs0, md0, Id0i

simply involves updating the completion time of the guaranteed transaction’s

metadata.

6.2.2 Parallel Composition

Where,

6.3 Moverness

We redefine the definitions of moverness originally given in Chapter 5 but for

transactions, guaranteed transactions and uncoordinated commands.
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6.2.2 Parallel Composition

Where,

6.3 Moverness

We redefine the definitions of moverness originally given in Chapter 5 but for

transactions, guaranteed transactions and uncoordinated commands.
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Figure 6.12: Parallel Composition Rule for Transactions and Guaranteed Trans-
actions.
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3. c1 issues its sequence of actions under a guaranteed transaction semantics

and c2 under a transactional semantics, such that c1’s transaction does not

conflict with c2’s guaranteed transaction; or

4. c1 and c2 issue their respective sequence of actions transactionally, such that

c1 and c2’s transactions do not conflict.

Definition 6.2 (Left Mover). Let λ+
1 be the sequence of actions issued by a

command c1 and λ+
2 be those issued by c2, such that c1 || c2. Further, let λ+

1 be

issued under a transactional semantics and λ+
2 under a guaranteed transaction

semantics, such that there exists a write to a memory location ` in λ+
2 and an

access of ` in λ+
1 . We say that the sequence λ+

2 moves to the left of λ+
1 , λ+

2 λ+
1 ,

due to the weaker (abortable) semantics of transactions. That is, the constituent

actions of λ+
2 are guaranteed to take place before any of those in λ+

1 .

Definition 6.3 (Right Mover). A right mover is the mirror of a left mover. Let

λ+
1 be the sequence of actions issued by a command c1 and λ+

2 be those issued by

c2, such that c1 || c2. Further, let λ+
1 be issued under a transactional semantics

and λ+
2 under a guaranteed transaction semantics, such that there exists a write

to a memory location ` in λ+
2 and an access of ` in λ+

1 . We say that the sequence

λ+
1 moves to the right of λ+

2 , λ+
2 λ+

1 , due to the weaker (abortable) semantics of

transactions. That is, the constituent actions of λ+
2 are guaranteed to take place

before any of those in λ+
1 .

Definition 6.4 (Both Mover). Guaranteed transactions and transactions are

both movers with respect to themselves. Let λ+
1 be the sequence of actions issued

by a command c1 and λ+
2 be those issued by c2, such that c1 || c2.
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• if λ+
1 and λ+

2 are issued under a transactional semantics, and the accesses

issued by λ+
1 and λ+

2 result in a conflict, then:

– λ+
1 can move to the left of λ+

2 , λ+
1 λ+

2 (c1 commits, c2 aborts); or

– λ+
1 can move to the right of λ+

2 , λ+
2 λ+

1 (c2 commits, c1 aborts).

• if λ+
1 and λ+

2 are issued under a guaranteed transaction semantics, and the

accesses issued by λ+
1 and λ+

2 conflict, then:

– λ+
1 can move to the left of λ+

2 , λ+
1 λ+

2 (c1 commits, c2 blocks); or

– λ+
1 can move to the right of λ+

2 , λ+
2 λ+

1 (c2 commits, c1 blocks).

We do not treat moverness of locks and guaranteed transactions, despite such

properties being trivial. For example, semantically speaking, both locks and

guaranteed transactions are of equal strength. Therefore, should a guaranteed

transaction and lock not conflict, that is the guarantee transaction not access

the mutex used by the lock, then the actions of the respect lock and guaranteed

transaction are free movers. By contrast, should the lock and transaction conflict,

then they are both movers.

6.4 Applying Guaranteed Transactions

We now apply guaranteed transactions to the problem of applying an irreversible

operation to a list suffix, a problem similar to that presented in Spear et al. [2007],

to demonstrate their application and advantages, which we describe as we proceed

during presentation of the example. The basic outline of the problem is as follows:
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find a list suffix and privatise it, apply an operation to that suffix, then publi-

cise that suffix. Guaranteed transactions greatly simplify the problem, and in

conjunction with the moverness properties of guaranteed transactions (discussed

in section 6.3 guarantee that reads issued via guaranteed transactions or trans-

actions to the same memory observe the correct value. Importantly, as we have

explained previously, guaranteed transactions handle privatisation/publication

without having the programmer resort to explicit application of the idioms, and

the semantics are only applied should they be required: for example, the suffix

won’t be privatised if the suffix’s data is only read. Figure 6.13 gives the basic

intuition of our example pictorially.

Achieving the semantics required for Figure 6.13 using the privatisation/publication

idioms generally requires a pattern sketched out in Figure 6.14. Here, the first

transaction finds the suffix, privatises it, the operation is then performed on its

members non-transactionally, finally the second transaction publicises the previ-

ously provatised list suffix.

To give context to our problem we will work with a simple singly linked list

data structure as shown in Figure 6.15. The data structure itself is trivial: nodes

are added to the head of the list via add, in addition to supporting a more inter-

esting method serialise suffix which is an instance of the problem outlined

in Figure 6.13. serialise suffix attempts to write the members of the suffix

specified by the user to disk (an irreversible operation) after it has mutated their

values. The mutation is important as it will trigure a serialised semantics should

mutlitple threads invoke serialise suffix on the same LinkedList instance; if

the mutation did not exist then the semantics of guaranteed transactions would

permit calls to serialise suffix to take place concurrently as their invocation
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1 2 3 4  5

1 2 3 4  5

(a)

(b)

1 2 3 4  5

(c)

1 2 3 4  5

(d)

Apply operation to suffix members

Figure 6.13: (a) Instance of a singly linked list; (b) privatise list suffix at 2; (c)
apply an operation upon the suffix members; (d) publicise the list suffix.

atomic {
  // find list suffix, if possible
  // privatise it to the current thread
}

// apply operation to suffix members

atomic {
  // publicise the suffix
}

Figure 6.14: Pseudo steps for attaining the semantics required for Figure 6.13
using the privatisation and publication idioms.

does not intersect with the other’s dataset.

Example 6.1 (Serialised guaranteed transactions). Consider the following pro-
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class LinkedList {
  Node head;

  void add(int value) {
     Node n := new Node;
     n.value := value;
     n.next := this.head;
     this.head := n; 
  }

  void serialise_suffix(int value) {
    gatomic {
      Node n := this.head;
      while (n != null && n.value != value) {
        n := n.next;      
      }
      if (n != null && n.value == value) {
        while (n != null) {
          n.value := n.value + 1;
          Disk.Write(n.value);
          n := n.next;
        }
      }
    }
  }
}

class Node {
  int value;
  Node head;
}

Figure 6.15: Singly linked list entailing a privatising/publicising operation on the
members of a user-defined suffix. serialise suffix mutates the members of
a suffix in addition to applying an irreversible operation on those members via
writing them to disk courtesy of of Disk.Write.

gram:

LinkedList l; l := new LinkedList;

l.add(1); l.add(2); l.add(3); l.add(4);

Thread 1 Thread 2

l.serialise suffix(3); l.serialise suffix(2);

Here, there are only two outcomes due to each guaranteed transaction writing

to memory the other accesses: either thread 1’s guaranteed transaction executes
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first followed by thread 2’s or vice versa. Consequently, the state of disk will be

4, 3, 2 then 4, 3 or 3, 2 then 4, 4, 3. Recall that (THREAD−GTRANSACTION−BEGIN)

first checks its write set will not intersect with other currently executing guaran-

teed transactions, otherwise it blocks via (THREAD−GTRANSACTION−BLOCK).

Therefore, for our first case (THREAD−GTRANSACTION−BEGIN) for thread 1’s

guaranteed transaction is applicable, but (THREAD−GTRANSACTION−BLOCK)

is applied for thread 2’s as its write set intersects with that of thread 1’s actively

executing guaranteed transaction.

An important property of guaranteed transactions is there observation seman-

tics which are defined via moverness and may be mapped to a memory model

such as Java’s in the same way as shown in Chapter 5. The side effect of this

property is that transactions and guaranteed transactions are guaranteed to ob-

serve the writes of committing instances. For example, if in Figure 6.15 we were

to ammend the definition of add to encapsulate its commands within a transac-

tion, as shown in Figure 6.16, then a concurrent invocation of serialise suffix

on the same list instance would have its reads and writes be related to those of

the transaction. That is, the transaction would observe the writes issued by the

guaranteed transaction, as a guaranteed transaction is a left mover with respect

to a transaction.

Example 6.2 (Observation semantics of transactions and guaranteed transac-

tions). Consider the following program:

LinkedList l; l := new LinkedList;

l.add(1); l.add(2); l.add(3);
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class LinkedList {
  Node head;

  void add(int value) {
     atomic {
       Node n := new Node;
       n.value := value;
       n.next := this.head;
       this.head := n; 
     }
  }

  void serialise_suffix(int value) {
    gatomic {
      Node n := this.head;
      while (n != null && n.value != value) {
        n := n.next;      
      }
      if (n != null && n.value == value) {
        while (n != null) {
          n.value := n.value + 1;
          Disk.Write(n.value);
          n := n.next;
        }
      }
    }
  }
}

Figure 6.16: Transactional addition of a value to an instance of LinkedList.

Thread 1 Thread 2

l.add(4); l.serialise suffix(2);

Here, thread 2’s guaranteed transaction aborts thread 1’s transactional oper-

ation due to transactions being right movers with respect to guaranteed transac-

tions. Consequently, thread 1’s transaction observes any writes made by thread

2’s guaranteed transaction.
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6.5 Summary

In this chapter we have presented guaranteed transactions which are an alterna-

tive to the privatisation and publication idioms. Guaranteed transactions are not

a replacement for all application instances of the privatisation/publication idioms

but do provide a convenient and intuitive replacement when wishing to execute

operations on data with simple object graphs. Guaranteed transactions can also

replace locks in such scenarios. We demonstrated the application of guaranteed

transactions by applying an irreversible operation to a linked list. In cases when

the data which a guaranteed transaction operates upon has a complex object

graph the system can revert to a single global lock atomicity semantics while

preserving the simpler semantics that guaranteed transactions afford. Guaran-

teed transactions always give the user run once semantics while preserving object

graph reachability invariants. Guaranteed transactions are a type of transaction

so the programmer can define the semantics of his concurrent program using the

simpler transactional programming model.

In this part of the thesis we have given three contributions: a low-level word-

based small-step operational semantics for a programming language that supports

locks and transactions, and transactions and guaranteed transactions; moverness

definitions for locks, transactions and guaranteed transactions; and a safer means

of a strong coordination semantics via the use of guaranteed transactions. We

found the definition of a low-level semantics for transactions and locks to be a

clear omission from the current literature, which we have tried to address in our

work. We also found that mixing locks [Dijkstra, 1968] and transactions [Shavit

and Touitou, 1995] results in a particularly complex but powerful semantics. To
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simplify the semantics we used moverness [Barnett and Qin, 2012a] to generalise

the observational properties of read actions which we found to be a particularly el-

egant solution. Guaranteed transactions [Barnett and Qin, 2012b] are an attempt

to reduce the complexity of mixing transactions with a stronger coordination se-

mantics without recourse to locks or the privatisation/publication idioms [Spear

et al., 2007].
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Part II

Static Reasoning
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In this part of the thesis a program analysis is presented that guarantees

the data-race-freedom (DRF) of fine-grained accesses in programs that use locks,

transactions or both to coordinate accesses to memory. The presented framework

entails two main steps. (i) Static Execution: a program is statically executed to

determine the memory it allocates and the accesses (access requirements) it issues

to that memory. The key artefact of a static execution is an access mapping which

maps each memory location allocated by a program to its access requirements. (ii)

Isolation Algorithm: isolation is checked for in the semantic information encapsu-

lated by the access mapping from (i). Access isolation can be checked irrespective

of whether accesses to the same memory use locks, transactions or both.

Chapter 7: A brief introduction to the problems of accessing shared memory

using multiple coordination semantics is given, along with key definitions.

The chapter concludes by showing a trivial application of our framework to

a simple program.

Chapter 8: The syntax of the programming language that we use is described.

Accesses to shared memory are issued under a lock, transactional or unco-

ordinated semantics.

Chapter 9. We describe how a program’s stack and heap memory is represented.

We then show how accesses to such memory are modelled by access require-

ments.

Chapter 10: The rules that drive a program’s static execution are given. Ap-

plication of each rule results in a set of access requirements being issued

and stored in an incrementally built access mapping. We then present our
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isolation algorithm which guarantees that all access requirements within

the access mapping are isolated.

184



Chapter 7

Introduction

7.1 Isolation

Accesses (reads and writes) issued to the same memory in a concurrent program

need to be isolated via the use of coordination, e.g. a lock [Dijkstra, 1983] or

transaction [Shavit and Touitou, 1995]. Accesses are isolated if and only if their

issuing coordination semantics prohibits them being scheduled concurrently. Fail-

ure to isolate accesses issued to the same memory introduces data races [Unger,

1995]. If accesses issued by distinct threads to a specific memory location are

isolated then those accesses are data-race-free (DRF). If all accesses issued by a

program are isolated then the program is DRF.

Definition 7.1 (Isolation of Concurrently Issued Accesses). Two concurrently

issued accesses a1 and a2, a1 || a2, to a memory location ` are isolated if and only

if, should they be scheduled concurrently, guarantee the total ordering a1 a2 or

a2 a1.

Intuitively, the accesses issued by a specific thread are isolated with respect
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to all other accesses that thread issues. This is due to program order (Section

2.3.1).

Definition 7.2 (Program Order). Taken in isolation the accesses issued by each

thread form a total ordering known as program order. For example, let a1 be a

write and a2 be a read of a memory location ` issued by a thread 1. Further, let

the order in which a1 and a2 are issued by thread 1 be a1 . . . a2, that is a1 appears

before a2 in thread 1’s program order. We assert that a2 observes the value of `

written by a1 unless a more recent intervening write of `, a′, exists in thread 1’s

program order such that a1 . . . a
′ . . . a2, in which case a2 observes the value of `

written by a′.

7.2 Isolation of Concurrently Issued Accesses

Locks and transactions provide the necessary semantics for isolating most shared

memory accesses: locks (i) are suitable for executing irreversible and compute-

bound operations; and (ii) offer an alternative when the overhead of transaction-

ally accessing memory is too high. By contrast, transactions: (i) simplify com-

ponent composition [Harris et al., 2005]; and (ii) alleviate the programmer from

the error-prone maintenance of isolation invariants [Unger, 1995; Zöbel, 1983].

Reasoning about the isolation of concurrent programs that use locks and

transactions to coordinate accesses to memory is particularly challenging. Here,

the key issue is the granularity upon which isolation pivots: accesses issued by a

lock are typically protected by a mutex (a binary semaphore [Dijkstra, 1968]); by

contrast, a transaction entails multiple conceptual locks which are only acquired if

another transaction accesses the same memory [Shavit and Touitou, 1995]. Stati-

186



cally reasoning about access isolation in programs that use locks and transactions

to isolate accesses is extremely difficult, particularly in languages that offer weak

immutability and sharing semantics, such as Java and C++.

To understand when accesses are isolated we will abstract the semantics given

in Chapter 4 using the following definitions.

Definition 7.3 (Isolation of Lock and Transactional Accesses). Two concurrently

issued coordinated accesses a1 and a2 to a memory location `, a1 || a2, where either

a1 and/or a2 is a write are isolated if and only if:

1. a1 = atomic{`} and a2 = atomic{`}; or

2. a1 = sync(`1){`} and a2 = sync(`2){`}, where `1 = `2; or

3. a1 = sync(`1){`} and a2 = atomic{`; `2}, where `1 = `2.

Definition 7.4 (Isolation of Concurrently Issued Uncoordinated Accesses). Two

concurrently issued uncoordinated accesses a1 and a2, a1 || a2, to a memory

location ` are never isolated. That is, the schedules a1a2, a2a1 and a1 || a2 are all

possible.

Definition 7.5 (DRF of Concurrent Reads). Two concurrent reads of a memory

location ` by the accesses a1 and a2, Any(a1) || Any(a2), are trivially DRF. Where,

Any(a) is used to denote that the access a can be issued under any semantics.

This holds because neither thread mutates the value of `.

Definition 7.6 (DRF). Two accesses a1 and a2, a1 || a2, to a memory location

` are DRF if and only if:
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1:atomic {
  x := 1;
}

Int x@loc(p1); Int y@loc(p2);
x := 0; y := 0;

Thread 1 Thread 2
y := x;

Referenceable Locations

W=x@loc(p1)
R=x@loc(p1)
W=y@loc(p2)

Transactional 
Issuing Identifier

Global thread's accesses
are discarded

Figure 8.1: A simple program annotated with the inferred memory locations (`1
and `2) for the global variables x@loc(`1) and y@loc(`2). Execution of thread 1’s
assignment results in a write (W) of `1; Executing thread 2’s assignment results
in a read (R) of `1 and a write of `2.

• a1a2, that is a1 and a2 are related only by program order; or

• in a1 || a2, a1 = Any(:= `) and a2 = Any(:= `); or

• in a1 || a2, a1 and a2 are isolated via use of locks, transactions or both.

The requirement for isolating accesses is only of importance when several

threads access a memory location `, and at least one of those threads writes `.

8.3 Example

Figure 8.1 shows a simple program annotated with information inferred from its

static execution. Each referenceable location (x and y) has an associated mem-

ory location: x@loc(`1) and respectively y@loc(`2), where `1 6= `2 are memory

locations and x@loc(`1) reads as “x resides at the memory location `1. The goal

of our analysis is to model the type of accesses issued to `1 and `2 during its

static execution. The accesses issued by the program to `1 and `2 are modelled

by permission requirements. It is best to think of a permission requirement as a

closed form of access which captures the issuing thread; a numerical value (scale)
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`1

`1

`2

`1
`2

Figure 7.1: A simple program annotated with the inferred memory locations (`1
and `2) for the global variables x@loc(`1) and y@loc(`2). Execution of thread 1’s
assignment results in a write (W) of `1; Executing thread 2’s assignment results
in a read (R) of `1 and a write of `2.

• a1a2, that is a1 and a2 are related only by program order; or

• in a1 || a2, a1 = Any(:= `) and a2 = Any(:= `); or

• in a1 || a2, a1 and a2 are isolated via use of locks, transactions or both.

The requirement for isolating accesses is only of importance when several

threads access a memory location `, and at least one of those threads writes `.

7.3 Example

Figure 7.1 shows a simple program annotated with information inferred from its

static execution. Each referenceable location (x and y) has an associated mem-

ory location: x@loc(`1) and respectively y@loc(`2), where `1 6= `2 are memory

locations and x@loc(`1) reads as “x resides at the memory location `1.” The goal

of our analysis is to model the type of accesses issued to `1 and `2 during its

static execution. The accesses issued by the program to `1 and `2 are modelled

by access requirements. It is best to think of an access requirement as a closed
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form of access which captures the issuing thread; a numerical value (scale) that

distinguishes the type of access – a fraction between 0 and 1 for a read, and 1 for

a write [Boyland, 2003]; the coordination type – transactional, lock-based or un-

coordinated; and the identifier of the issuing coordination instance. The primary

purpose of access requirements is to facilitate a uniform reasoning of access iso-

lation irrespective of whether accesses to the same memory location were issued

under an uncoordinated, lock or transactional semantics.

The access requirement that models the execution of thread 1’s write of

x@loc(`1) in Figure 7.1 is the quadruple (TID=1, Scale=1,Coord=A, Issuer=1),

where: TID is the identifier of the issuing thread (Thread 1); Scale is the type

of access (1, a write); Coord is the type of coordination the access is issued

under (A, a transaction); and Issuer the identifier of the issuing transactional

instance (1). Locks and transactions have an Issuer value to facilitate isola-

tion checks when an memory location is accessed by locks and transactions.

Executing thread 2’s assignment results in: (1) a read issued to x@loc(`1),

(TID=2, Scale=ε,Coord=⊥, Issuer=⊥), where 0<ε<1 is a fraction that represents

a read, and ⊥ for Coord and Issuer denotes the read is issued under no coordina-

tion semantics; and (2) a write issued to y@loc(`2), (TID=2, Scale=1,Coord=⊥,

Issuer=⊥). The access mapping instance am that models the accesses issued by

the program is:

[`17→{(1, 1 ,A, 1), (2, ε ,⊥,⊥)}, `27→{(2, 1,⊥,⊥)}]⊆am

Where, the domain of am is the set of memory locations the program allocates
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(`1 and `2) and co-domain a set of access requirements on those memory locations.

In this instance am is rejected by our isolation algorithm. The sum of scales

(highlighted) on `1 exceeds 1, 1+ε>1, as such we know at least one access to `1 is a

write. Closer inspection reveals that two threads (underlined, TIDs 1 and 2) access

`1, therefore all accesses to `1 must be coordinated. We note thread 1’s access to

`1 as being transactional and thread 2’s as being uncoordinated. Consequently,

the program is rejected as thread 1’s transactional write of x@loc(`1) may be

scheduled concurrently with thread 2’s uncoordinated read of x@loc(`1), resulting

in a data race [Unger, 1995].

7.4 Summary

Access isolation in a concurrent program is critical: failing to correctly isolate

accesses to shared memory that is accessed by multiple threads, where at least

one of those accesses is a write, may lead to a data race. A data race can have

serious logical and security consequences in a program so should be prevented at

all costs. Correctly isolating accesses in a program that uses just locks to isolate

accesses has been shown in the past to be complex. Attaining access isolation

in purely transactional programs is simpler as the programmer does not need to

specify isolation invariants (e.g., mutexes, etc.) but the programmer must still

issue accesses to shared memory transactionally. A programmer may wish to use

both locks and transactions in the same program, applying each in situations

which they are mutually appropriate: locks incur a low runtime cost and afford

run once semantics; by contrast, transactions simplify component composition

and in cases when performance is not the ultimate concern, provide a far simpler

190



isolation mechanism than locks. Unfortunately, reasoning about access isolation

in a program that uses both locks and transactions is complex. For example, the

programmer must reason not only about the isolation of accesses issued under

the same coordination semantics but also those issued under distinct coordination

semantics. We present a framework for automatically reasoning about the access

isolation of such programs in this part of the thesis.

191



Chapter 8

Programming Model

The language that Part II of the thesis is based upon is a simplification of that

used in Part I. The language presented here is driven by what is feasibly com-

putable for determining the DRF of a program that uses locks, transactions or

both to coordinate accesses to shared memory in a system that supports objects,

method calls and unrestricted mutation of memory.

8.1 Programming Language

8.1.1 Core Language.

Locks [Dijkstra, 1983] and transactions [Shavit and Touitou, 1995] (see Section

2.2) are used to coordinate accesses to memory. A lock is described by sync(v){c}

where v is a variable that acts as a mutex and c the program text which it protects.

Transactionally executing a command c is performed by atomic{c}. Transactions

are weakly isolated, out-of-place and conflict detection is at the granularity of

memory locations. The isolation of accesses issued by nested locks and mutually
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Core Language

Program ::= Class-Decl
∗
( Type v)+ (v := new cn | v := il | v.f := il)

+

(v.m(il?)@nodefer)∗ ( C || . . . || C )

Class-Decl ::= Class-Ann class cn { ( Type v)+ Meth-Decl
∗}

Type ::= cn | Int

Meth-Decl ::= m(( Type a)?) { ( Type v)∗ C m }
b ∈ BExpr ::= v 6= null | v = null

c ∈ C ::= v := x | v := il | id:atomic{c} | id:sync(v){c} | v.m(il?) | c;c′
cm ∈ C m ::= v := new cn | v.f := x | v.f := x.f | v := x.f

| Loop-Space-Ann while b {cm} | print(v.f) | cm; cm′
Memory Annotations

Class-Ann ::= @object−space[fields=f+ (; dynamic=fn)?]
(@serialise[m1 < · · · < mn])?

Loop-Space-Ann ::= @iter−space[fn]

Mem-Fn ::= locs fn (E, val) {Mem-Pred }
Mem-Pred ::= null | `

Figure 8.1: Abstract Syntax of the Core Programming Language and Memory
Annotations.

nested locks and transactions cannot be checked, we discuss why in 10. Nested

transactions are flattened as in Part I. The metavariables v and x range over vari-

ables, il over integer literals (variables of type Int), cn over user defined classes, m

over methods and v.f over accesses to the field f defined by the receiver v’s type.

∗, + and ? denote zero-or-more, one-or-more and respectively zero-or-one occur-

rences. A program’s structure Program entails a sequence of class and global

variable declarations, their initialisation and a parallel composition of threads.

Classes Class-Decl are permitted to facilitate the checking of more advanced

programs, as shown in Appendix B. Class methods are used to mutate values of

memory which hold references to other objects. This restriction permits a simple
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reasoning of when writes are required to be observed, which is particularly im-

portant for data structures like linked lists. The underlined parts of the syntax

are a side-effect of our program text preprocessing. Note that the unique label

id associated with a lock or transaction is statically bound, by contrast to Part I

where id was a label that was bound dynamically to a unique identifier.

8.1.2 Memory Annotations.

A class is decorated with Class-Ann which comprises two parts. (1) @object−space

describes the memory space that an object of its decorating type will occupy: the

memory location associated with each of its fields, fields, in addition to any mem-

ory the class dynamically allocates, dynamic. (2, optionally) @serialise which

describes a total order over a class’s member methods. A memory function

Mem-Fn fn computes the dynamic memory space of an object. It is defined as

a sequence of structural predicates over the value val (the literal value null or a

memory location `) and returns a set of memory locations locs. We use fn on

its own to be a metavariable over memory function application. A while loop is

decorated with Loop-Space-Ann which specifies the dynamic memory the while

loop reads. We give a thorough treatment of memory annotations is given in

Chapter 9.

8.1.3 Preprocessing.

Lock and transactional instances are given a unique identifier id, id:atomic{c} and

respectively id:sync(v){c}. Method invocations by the main thread are annotated

with @nodefer. Methods annotated with @nodefer are executed immediately upon
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being encountered within the program text.

8.2 Summary

The language presented in this chapter allows the programmer to create suffi-

ciently complex programs that make use of dynamically allocated data structures,

e.g. linked lists. The key focus of the language is on mutation and the use of

locks [Dijkstra, 1968] and transactions [Shavit and Touitou, 1995], rather than

a comprehensive feature list. Mutation helps to form interesting object graphs

which are inherently shared between several threads. Locks and transactions are

used to coordinate accesses to the memory which the object graph occupies. The

data-race-freedom of these accesses is the subject of the static analysis we present

in subsequent chapters. Memory annotations, which we cover in Chapter 9, aug-

ment the core programming language and are used to drive the static execution

of a program.
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Chapter 9

Memory and Memory Accesses

We now describe how the memory consumed by a program’s stack and heap data

is modelled, and how accesses to such data are captured by access requirements.

9.1 Memory

9.1.1 Stack Variables

A stack variable is associated with a memory location and the value null upon

declaration. For example, the variable declaration X v, where X is the type of

variable v, sees v associated with a pair whose first component is the fresh memory

location `, the stack slot address of v, and second component null. The term

“fresh `” denotes the memory location ` is unbound in a program’s free store:

the set of memory locations currently in use by a program. We use the mapping

Var
def
= Variable→ Location× Location to map a variable to its stack location and

value pair. Recall that null, along with all possible memory locations ` are valid

instances of Location.
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Example 9.1 (Variable Declaration). Let var be a variable mapping Var. Exe-

cuting the variable declaration X v results in [v 7→(`, null)]⊆var, where ` is a fresh

memory location.

9.1.2 Heap Objects

The mapping Object
def
= Field → Location × Location models the memory space

of an allocated instance of a class. Each object is a mapping from a field name

to a pair whose first component is the memory location of the field and second

component its value. Each field specified by a class’s @object−space.fields anno-

tation resides at a distinct memory location within an object of that class. For

example, allocation of a Point as given in Figure 9.1 results in x and y occupying

distinct memory locations. The fields property of a class’s @object−space anno-

tation declares the immediate memory space of an object of its type and can be

read as “the memory space occupied by allocating a Point is a memory location

for x and a memory location for y.” Because Point comprises data of literal

types – integers – the fields property for @object−space is all that is required as

the object graph of a Point object is fixed upon allocation. That is, the x and y

fields of a Point object are leaf nodes in a program’s object graph.

@object-space[fields=x,y] 
class Point { 
  Int x; 
  Int y; 
}

Figure 9.1: A simple Point class with fields for x and y coordinates.

Example 9.2 (Object Mapping). Given the definition of Point in Figure 9.1, the
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object mapping created as a result of the command new Point is [x7→(`1, null), y7→(`2, null)],

where `1 6= `2 and the initial value of each field of the object is null. The memory

space of this object is {`1, `2}.

The memory location of the first field in the domain of an object, its base

location, `base, is the start address of an object. This semantics is modelled on

“plain old data” types in C/C++. That is, we treat an object like a basic struct.

The mapping Obj
def
= Location → Object maps the base address of an object to

the object it refers to.

Example 9.3 (Object Base Location). Let [x7→(`1, null), y7→(`2, null)]⊆pt be a

Point object. The base location of pt is fst(pt(Head(Dom(pt)))) = `1. Where,

Head({a, . . . })=a.

Example 9.4 (Allocation). Let var be a variables mapping Var and obj an empty

object mapping Obj such that [v 7→(`1, null)]⊆var. Executing the command v :=

new Point results in var′=var[v 7→(`1, `2)] and obj′=obj[`27→[x7→(`2, null),

y7→(`3, null)]].

The Var and Obj mappings are used to compute the memory space of a com-

mand in our static execution rules given Section 10.1.

Example 9.5 (Var and Obj for Computing Memory Locations Accessed). Let

var be a variables mapping Var and obj an object mapping Obj such that:

[v 7→(`1, `3), x7→(`2, null)]⊆var [`37→[x7→(`3, null), y7→(`4, null)]]⊆obj

The memory locations accessed in the command x := v.y are fst(var(x)),

fst(var(v)) and fst(obj(snd(var(v)))(y)). That is, the locations `2, `1 and `4.
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Where, fst((a, b))=a and snd((a, b))=b.

We present a syntactically more elegant way to access information such as a

variable’s memory location and value, etc. in Chapter 10. For now, use of the

more verbose syntax gives a better understanding of how memory information is

attained.

@object-space[fields=next,value] 
class Node { 
  Node next; 
  Int value; 
}

@object-space[fields=head;dynamic=nodes(E,head)]
@serialise[add < traverse]
class LinkedList { 
  Node head;
  add(Int val) {
    Node n; 
    n := new Node; 
    n.value := val; 
    n.next := this.head; 
    this.head := n;
  }

  traverse() {
    Node curr; 
    curr := this.head;
    @iter-space[object-space.dynamic]
    while (curr ≠ null) { 
      print(curr.value); 
      curr := curr.next; 
    } 
  } 
}

Figure 9.2: An advanced application of our system. Node and LinkedList classes
make use of @object−space, @serialise and @iter−space annotations.

A method of a class may allocate data, e.g. add in LinkedList given in Figure

9.2. Here, the fields property of the @object−space annotation alone is insufficient:

the memory space a LinkedList object occupies is that of its member fields and

that of the Node objects it allocates. A class that allocates heap data as a side-

199



effect of invoking one of its member operations must specify a memory function

( Mem-Fn , Figure 8.1) via the dynamic property of the class’s @object−space

annotation. A memory function takes an environment E (described in Section

10.1) and location as arguments and returns the set of memory locations reachable

from that value. Note that the only thing we need to be aware of for E at this

moment in time is that it comprises an object mapping Obj. The memory function

of LinkedList in Figure 9.2 is nodes
def
= E× Location→ LocationSet:

nodes(E, val)
def
=

 {} if val = null

{`1, `2} ∪ nodes(E, valnext) if val 6= null ∧†

†[`1 7→[next7→(`1, valnext), value 7→(`2, null)]]⊆E.Obj

Where, the subscripted `s `1, `2 and `3 are metavariables over actual memory

locations.

Example 9.6 (Computing the Dynamic Memory Space of a Linked List). Given

an instance env of E:

[`17→[head7→(`1, `2)],

`27→[next7→(`2, `4), value7→(`3, null)],

`47→[next7→(`4, null), value7→(`5, null)]]⊆env.Obj

Which models the following linked list:
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head null

Node

null null

Node

LinkedList

`1

`2

`2 `3

`4 `5

`4

We can compute its dynamic memory space by applying nodes with the value

of head, `2:

nodes(env, `2) = {`2, `3} ∪ nodes(env, `4)

{`4, `5} ∪ nodes(env, null)

{}

Which results in the set of memory locations {`2, `3, `4, `5}.

9.1.3 Iteration Space

A loop such as the while construct is often used to iterate over a dynamic mem-

ory space, e.g. traverse in LinkedList. A loop must be decorated with an

@iter−space annotation if it reads dynamic memory. For example, the traverse

method in Figure 9.2 uses the memory function defined by LinkedList. Here, we

are stating that traverse’s while loop reads all the dynamic memory allocated

by a LinkedList object.
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9.2 Memory Accesses

We now give a quick refresher of permissions [Boyland, 2003] which were briefly

discussed in Section 2.2.1, and our enriched version of permissions which we call

access requirements. Permissions are used to partition reads and writes. Access

requirements extend permissions to encode the issuing coordination semantics of

accesses.

9.2.1 Permissions

Permissions [Boyland, 2003] are used to partition reads from writes: a read re-

quires part of a permission; by contrast, a write requires the whole of a permission.

Permission
def
= Scale `

Where Scale
def
= ε | 1 and ` is a memory location. Using this formalism we can

define reads and writes as follows:

Read
def
= ε ` Write

def
= 1 `

Where 0 < ε < 1. The sum of read scales ε on the same memory location

forms a whole.

Example 9.7 (Applying Permissions). Let us assume that v resides at memory

location `1 and x at memory location `2.
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v := 0; x := 0;

Thread 1 Thread 2

x := v; v := x;

The permissions that model thread 1’s accesses are: 1`2 (write of x) and ε`1

(read of v). The permissions that model thread 2’s accesses are: 1`1 (write of v)

and ε`2 (read of x).

9.2.2 Access Requirements

An access requirement enriches a permission with additional access metadata:

AR
def
= (TID, Scale,Coord, Issuer), where TID

def
= Int is a unique thread identifier,

Scale is as defined previously, Coord
def
= ⊥ | A | L(`) is the coordination type and

Issuer
def
= Int the unique identifier id associated with a lock or transaction instance.

The values of Coord are as follows: ⊥ is uncoordinated; A is transactional; and

L(`) is lock-based. The value L(`) lock-contextualises ` which is the memory

location associated with the variable the lock is protected on. The last two

components of an access requirement are ⊥ when the access being modelled is

uncoordinated.

Example 9.8 (Applying Access Requirements). First, consider the same pro-

gram from Example 9.7:

v := 0; x := 0;

Thread 1 Thread 2

x := v; v := x;

Where v and x reside at the memory locations `1 and respectively `2. Let

us now define an access mapping, AM
def
= Location → ARSet, to be a mapping

from a memory location to a set of access requirements on that memory location.
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Assuming am is an instance of AM we can model the accesses issued by previous

program as:

[`17→{(1, ε,⊥,⊥), (2, 1,⊥,⊥)}, `27→{(1, 1,⊥,⊥), (2, ε,⊥,⊥)}]⊆am

am for this example reads as follows:

• An uncoordinated read by thread identifier 1 and uncoordinated write by

thread identifier 2 is issued to `1; and

• An uncoordinated write by thread identifier 1 and uncoordinated read by

thread identifier 2 is issued to `2.

In Example 9.7 we may observe that a write and read are issued to both v and

x. However, what we cannot determine is whether these writes and reads were

issued by distinct threads or not. Assuming we can determine such information

we are now tasked with determining whether or not the accesses to v and x

are isolated. Permissions alone are insufficient for this task and rely heavily on

external components such as type rules to (try) and determine such a property.

As we will show later, reasoning about the isolation of a program that permits

the use of several coordination semantics is complex. Furthermore, deferring this

reasoning to a type system is challenging and in many cases not possible. Our

response is to take a hybrid approach: access requirements capture the key data

required to reason about access isolation and the task of the static rules is to

build an access mapping. Reasoning about the isolation of a program is then

handled by an isolation algorithm which inspects an access mapping.
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We will now demonstrate the use of access requirements by informally rea-

soning about the isolation of a program, aided only by the access requirements

which model the accesses it issues.

Example 9.9 (Understanding Access Requirements). We informally reason about

the AM am given in Example 9.8, which was as follows:

[`17→{(1, ε,⊥,⊥), (2, 1,⊥,⊥)}, `27→{(1, 1,⊥,⊥), (2, ε,⊥,⊥)}]⊆am

• `1. The first question we may pose is “are any writes issued to `1?” Clearly,

we can see that one thread writes `1, namely the thread with TID = 2. Due

to the previous answer we may subsequently ask “Does a single thread

access `1?” We observe that threads with TIDs 1 and 2 access `1. It

follows from our previous enquiries that two threads access `1, with one of

those accesses being a write. Consequently, we require the accesses to `1 be

isolated. Inspecting the accesses of both threads to `1 we see that each is

uncoordinated. Therefore, accesses to `1 are not isolated as each thread’s

respective access of `1 may be issued concurrently with respect to the other

thread’s access of `1.

• `2. Accesses to `2 are not isolated due to a similar argument as `1.

The key point of this example is that each question (and ones we have yet to

pose) can be answered by just looking at the access requirements on a memory

location.

Example 9.9 gave a basic intuition of the role that access requirements play in
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our framework. We have found that an access requirement captures just enough

information to answer queries of access isolation in both simple and complex

situations. In Section 10.2 we present an algorithm that mechanically reasons

about the isolation of accesses issued to each memory location allocated by a

program.

9.3 Summary

In this chapter we presented how our static analysis framework models the mem-

ory allocated by a program and how accesses issued to this memory are captured.

Each variable and object field is associated with a unique memory location upon

declaration/allocation. Objects have the same semantics as structs in C. Accesses

issued by the program are captured by access requirements which are an exten-

sion of fractional permissions [Boyland, 2003]. We use fractional permissions as

it offers an intutive means to partition reads from writes. Furthermore, fractional

permissions make our isolation algorithm vastly simpler to construct as we can

make use of basic arithmetic on permission scales. Each access requirement com-

prises the thread identifier that issued the access, the scale of the access (read or

write), the coordination semantics the access was issued under (lock, transaction

or uncoordinated) and the identifier of the coordination instance (if issued under

a lock or tranasction) the access originated from. Access requirements encap-

sulate the necessary information required to make unambigous decisions about

the data-race-freedom of accesses issued to the same memory, irrespective of the

coordination semantics the accesses were issued under.
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Chapter 10

Static Execution Rules and

Isolation Algorithm

In this chapter we present static execution rules which compute the accesses

issued to memory by each command. The result of their application is an access

mapping whose domain is the set of memory locations allocated by the program,

and co-domain the set of access requirements on those memory locations. The

access mapping resulting from the static execution of a program is validated by

our isolation algorithm (Section 10.2).

Note that, like in Part I, we give mainly informal discussions of the functions

referenced throughout. See Appendix A for their formal definitions.

10.1 Static Execution Rules

Application of each rule executes a command. Execution of a command focuses

specifically on its memory semantics. That is, the memory a command may
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allocate and the memory it may access. The accesses a command issues are

captured as access requirements in the program’s incrementally constructed access

mapping (See Chapter 9.

Example 10.1 (Rule Application). Let us assume that x and y reside at the

memory locations `1 and respectively `2. Static execution of the uncoordinated

assignment x := y by a thread with identifier 1, results in a read on `2 and a

write on `1. These access semantics are encoded by the rules in an instance of

an access mapping AM. Let am by an instance of AM that is used to execute the

program which entails the command x := y. Execution of x := y leaves am in

the following state: [`17→{(1, 1,⊥,⊥)}, `27→{(1, ε,⊥,⊥)}]⊆am.

10.1.1 Environment

A command is executed in an environment E
def
= TID; FS; Issuer; Coord; Var; Obj;

AM; Dfr.

• TID
def
= Int is the active thread identifier.

• FS
def
= LocationSet is the free store of the program.

• Issuer
def
= Int is the unique label id associated with each lock and transactional

instance. For example, this would be 1 in 1:atomic{c}.

• Coord
def
= L | A | ⊥ is active coordination semantics. L indicates the active

coordination semantics is a lock, A a transaction and ⊥ signals that no

coordination semantics are active. L is parameterised on a memory location

`, L(`), which denotes the memory location of the variable being used as

the mutex the active lock is protected on.

208



• Var
def
= Variable → Location × Location maps a variable to a pair whose

first component is the memory location the variable resides and second

component the variable’s value.

• Obj
def
= Location → Object maps the base memory location of an object to

the object which it refers to. Object
def
= Field → Location × Location maps

a field to a pair whose first component is the memory location the field

resides at and second component the field’s value.

• AM
def
= Location→ ARSet is a mapping from a memory location to a set of

access requirements issued to that memory location. See Chapter 9.

• Dfr
def
= DeferredMethodCallList, where DeferredMethodCallList is a list of

DeferredMethodCall which contains all instances of the form v.m(il?)@ctxt.

That is, Dfr is a list of deferred method calls. We explain this concept

throughout the coming chapter.

Some of these components we have seen in Part I, such as TID, FS, Var, Obj,

Object and Coord. We point out that the value L of Coord is only parameterised

on a memory location, by contrast to Part I where L was parameterised on a

memory location and handle count.

10.1.2 Notation

The expression E[Component=value] yields an environment that is the same as

E but with Component bound to value. Each Component of the environment

is referred to by the same name as its defining type. E.Component returns the

value of Component in E. Component in rule premises is short for E.Component.
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fresh ` asserts p 6∈ FS. A primed value, e.g. value′, indicates an updated version

of value. Functions that require access to an environment component take the

environment E as their first argument. A subscripted `, e.g. `1, is a metavariable

over memory locations. A non-subscripted `, e.g. ` and `1, denote actual memory

locations. For example, `1 and `2 may both resolve to `1, but `1 and `2 denote

distinct memory locations. This is consistent with the presentation used in Part

I.

10.1.3 Judgements

Judgements are of the form E ` c⇒ E′. Where, E′ is the environment yielded by

executing c from an environment E. If a command c cannot be satisfied by the

environment E from which it is to be executed then we have E ` c ⇒ ⊥. That

is, the environment yielded from executing c is undefined. A command whose

execution results in an undefined environment is conservatively labelled as not

isolated.

10.1.4 Constructing Access Requirements

Most rules we present in this chapter add access requirements to E.AM, so we de-

fine AddAR
def
= E×Scale×LocationSet→ AM which adds a new access requirement

to each of the memory locations specified with the given scale.

Example 10.2 (Constructing Access Requirements for a Command). Let env

be an instance of E and env.AM be an empty mapping. Further, let the ac-

cess requirements we wish to model be that issued by the command x := y,

where x resides at memory location `1 and y `2. We assume the command
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is executed under no coordination semantics by a thread with the identifier 1.

We can construct these access requirements via amR=AddAR(env, ε, {`2}) and

amW=AddAR(env, 1, {`1}), where amR and amW differ with env.AM in that they

contain the read, amR, and respectively write, amW , access requirements:

[`27→{(1, ε,⊥,⊥)}]⊆amR [`17→{(1, 1,⊥,⊥)}]⊆amW

An obvious problem is that the access mappings amR and amW each contain

the access requirements the command issued. The access mapping that becomes

the new value of env.AM is that of merging amR and amW . We do this via the

function MergeAMs
def
= AM× AM→ AM which takes two access mappings whose

domain and co-domain are to be merged and returns the result of their merging.

Let am′=MergeAMs(amR, amW ), where

[`17→{(1, 1,⊥,⊥)}, `27→{(1, ε,⊥,⊥)}]⊆am′

10.1.5 Rules

We now present the static execution rules which are given in Figures 10.1, 10.2,

10.3 and 10.4, then describe their operation. Please see Appendix A for the

definitions of all the functions referenced by the rules.
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(VAR−DECL)
fresh ` FS′=FS ∪ {`} Var′=Var[v 7→(`, null)]

E ` Type v ⇒ E[FS=FS′; Var=Var′]

(ASSIGN−VAR−LITERAL)
[v 7→(`1, null), x7→(`2, null)]⊆Var {`1, `2} ⊆ FS AMR=AddAR(E, ε, {`2})

AMW=AddAR(E, 1, {`1}) AM′=MergeAMs(AMR,AMW )

E ` v := x ⇒ E[AM=AM′]

(NEW)
[v 7→(`1, null)]⊆Var `1 ∈ FS AM′=AddAR(E, 1, {`1})

(obj, locs)=CreateObject(E, cn) FS′=FS ∪ locs `base=Head(locs)
Var′=Var[v 7→(`1, `base)] Obj′=Obj[`base 7→obj]

E ` v := new cn ⇒ E[FS=FS′; Var=Var′; Obj=Obj′; AM=AM′]

(METHOD−CALL−DEFER)
Dfr′=(v.m(il?)@ctxt[TID=E.TID; Coord=E.Coord; Issuer=E.Issuer]) :: Dfr

E ` v.m(il?) ⇒ E[Dfr=Dfr′]

(METHOD−CALL−ARG−DEFERRED)
[v 7→(`1, `2)]⊆Var {`1, `2}⊆FS `1 6= `2 `2 ∈ Dom(Obj)

E′=E[TID=@ctxt.TID; Coord=@ctxt.Coord; Issuer=@ctxt.Issuer]
AMR=AddAR(E′, ε, {`1}) fresh `1, `2 FS′=FS∪{`1, `2} fresh Varm
Varm[this7→(`1, `2), arg7→(`2, null)] cm=MethodCmds(TypeOf(v),m)

E′[Var=Varm; FS=FS′; AM=AMR] ` cm ⇒ E′′

E ` v.m(il)@ctxt ⇒ E′′[Var=E.Var]

(EQ)
[v 7→(`1, valv)]⊆Var AMR=AddAR(E, ε, {`1})

E ` v = null ⇒ E[AM=AMR]

Figure 10.1: Static Execution Rules (Part I).
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(METHOD−CALL−ARG−NO−DEFER)
[v 7→(`1, `2)]⊆Var {`1, `2}⊆FS `1 6=`2 `2∈Dom(Obj) fresh `1, `2

FS′=FS∪{`1, `2} fresh Varm AMR=AddAR(E, ε, {`1})
Varm[this7→(`1, `2), arg7→(`2, null)] cm=MethodCmds(TypeOf(v),m)

E[Var=Varm; FS=FS′; AM=AMR] ` cm ⇒ E′

E ` v.m(il)@nodefer ⇒ E′[Var=E.Var]

(TRANSACTION)
E[Issuer=id,Coord=A] ` c ⇒ E′[Issuer=⊥,Coord=⊥]

E ` id:atomic{c} ⇒ E′

(LOCK)
[v 7→(`1, valv)]⊆Var `1∈FS

E[Issuer=id; Coord=L(`1)] ` c ⇒ E′[Issuer=⊥; Coord=⊥]

E ` id:sync(v){c} ⇒ E′

(WHILE)

E ` b ⇒ E′ AMR=AddAR(E′, ε, fn) E′[AM=AMR] ` cm ⇒ E′′

E ` @iter−space[fn] while b {cm} ⇒ E′′

(FLD−UPDATE−VAR−REF)
[v 7→(`1, `2), x7→(`3, `4)]⊆Var `1 6=`2 `3 6=`4 `1 6=`4 `3 6=`2

{`2, `4}⊆Dom(Obj) `vf=FldLoc(E, v, f) {`1, `2, `3, `4, `vf} ⊆ FS
AMR=AddAR(E, ε, {`1, `3}) AMW=AddAR(E, 1, {`vf})

AM′=MergeAMs(AMR,AMW ) Obj′=FldUpd(E, v, f, `4)

E ` v.f := x ⇒ E[Obj=Obj′; AM=AM′]

(ASSIGN−INT−LITERAL)
[v 7→(`1, null)]⊆Var `1∈FS AMW=AddAR(E, 1, {`1})

E ` v := il ⇒ E[AM=AMW ]

Figure 10.2: Static Execution Rules (Part II)
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(FLD−UPDATE−FLD−REF)
[v 7→(`1, `2), x7→(`3, `4)]⊆Var `vf=FldLoc(E, v, f) `xf=FldLoc(E, x, f)

{`1, `2, `3, `4, `vf , `xf} ⊆ FS `1 6=`2 `3 6=`4 `1 6=`4 `3 6=`2

{`2, `4} ⊆ Dom(Obj) AMR=AddAR(E, ε, {`1, `3, `xf})
AMW=AddAR(E, 1, {`vf}) Obj′=FldUpd(E, v, f,FldVal(E, x, f))

AM′=MergeAMs(AMR,AMW )

E ` v.f := x.f ⇒ E[Obj=Obj′; AM=AM′]

(ASSIGN−FLD−REF)
[v 7→(`1, valv), x7→(`2, `3)]⊆Var `xf=FldLoc(E, x, f) {`1, `2, `3, `xf} ⊆ FS

`1 6=`3 `2 6=`3 `3 ∈ Dom(Obj)
AMR=AddAR(E, ε, {`2, `xf}) AMW=AddAR(E, 1, {`1})

AM′=MergeAMs(AMR,AMW ) Var′=Var[v 7→(`1,FldVal(E, x, f))]

E ` v := x.f ⇒ E[Var=Var′; AM=AM′]

(FLD−UPDATE−VAR−LITERAL)
[v 7→(`1, `2), x7→(`3, null)]⊆Var `vf=FldLoc(E, v, f) `1 6=`2 `3 6=`2

`2∈Dom(Obj) {`1, `2, `3, `vf}⊆FS AMR=AddAR(E, ε, {`1, `3})
AMW=AddAR(E, 1, {`vf}) AM′=MergeAMs(AMR,AMW )

E ` v.f := x ⇒ E[AM=AM′]

(PRINT)
CheckSafeIO(E)

[v 7→(`1, `2)]⊆Var `vf=FldLoc(E, v, f) `1 6=`2 {`1, `2, `vf}⊆FS
`2∈Dom(Obj) AMR=AddAR(E, ε, {`1, `vf})

E ` print(v.f) ⇒ E[AM=AMR]

(NEQ)
[v 7→(`1, valv)]⊆Var AMR=AddAR(E, ε, {`1})

E ` v 6= null ⇒ E[AM=AMR]

Figure 10.3: Static Execution Rules (Part III).
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(METHOD−CALL−NO−ARG−DEFERRED)
[v 7→(`1, `2)]⊆Var {`1, `2}⊆FS `1 6=`2 `2∈Dom(Obj)

E′=E[TID=@ctxt.TID; Coord=@ctxt.Coord; Issuer=@ctxt.Issuer]
AMR=AddAR(E′, ε, {`1}) fresh `1 FS′=FS∪{`1} fresh Varm

Varm[this 7→(`1, `2)] cm=MethodCmds(TypeOf(v),m)
E′[Var=Varm; FS=FS′; AM=AMR] ` cm ⇒ E′′

E ` v.m()@ctxt ⇒ E′′[Var=E.Var]

(METHOD−CALL−NO−ARG−NO−DEFER)
[v 7→(`1, `2)]⊆Var {`1, `2}⊆FS `1 6=`2 `2∈Dom(Obj) fresh `1

FS′=FS∪{`1} fresh Varm AMR=AddAR(E, ε, {`1})
Varm[this7→(`1, `2)] cm=MethodCmds(TypeOf(v),m)

E[Var=Varm; FS=FS′; AM=AMR] ` cm ⇒ E′

E ` v.m()@nodefer ⇒ E′[Var=E.Var]

(SEQc−1)

E ` c ⇒ E′ E′ ` c′ ⇒ E′′

E ` c; c′ ⇒ E′′

(SEQc−2)
E ` c ⇒ E′

E ` c; • ⇒ E′

(SEQcm−1)

E ` cm ⇒ E′ E′ ` c′m ⇒ E′′

E ` cm; c′m ⇒ E′′

(SEQcm−2)

E ` cm ⇒ E′

E ` cm; • ⇒ E′

(PROGRAM)
E=0; {};⊥;⊥; fresh Varp; fresh Objp; fresh AMp; fresh Dfr

E ` Class-Decl∗ ⇒ E E ` (Type v)+ ⇒ E′

E′ ` (v := new cn | v := il | v.f := il)
+ ⇒ E′′

E′′ ` (v.m(il?)@ctxt)∗ ⇒ E′′′ E1=E′′′[AM=[ ]]

E1[TID=1] ` C1 ⇒ E2 . . . En[TID=n] ` Cn ⇒ En+1

Em=En+1 serialised=Serialise(Em.Dfr) Em ` serialised⇒ E′m Efin=E′m
E `

Class-Decl∗ (Type v)+ (v := new cn | v := il | v.f := il)
+

(v.m(il?)@ctxt)∗ (C1|| . . . ||Cn)
⇒ Efin

Figure 10.4: Static Execution Rules (Part IV).
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(VAR−DECL) executes a variable declaration:

• A fresh memory location ` is allocated (the variable’s stack slot location).

• The memory location ` becomes bound in the program’s free store FS′.

• v is associated with ` and the value null in Var′.

(ASSIGN−VAR−LITERAL) assigns the value of one variable to another, where

both variables hold literal values:

• The memory locations associated with each variable must be bound in the

program’s free store.

• Executing the assignment results in a read access requirement on x and

respectively write access requirement on v, each of which are contained in

AMR and respectively AMW .

• AM′ comprises the read and write contained in AMR and AMW as a result

of merging AMR and AMW .

(NEW) executes an object allocation:

• The receiver of the allocation must have a literal value prior to the allo-

cation. A variable can only be the recipient of a memory location once in

the lifetime of a program unless the variable is declared within a method.

(Methods are used to perform arbitrary assignment as we can reason about

them in a simple uniform manner.)

• Execution of the allocation results in:
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– A write access requirement on v.

– Creation of the object mapping obj which represents the fields within

the type cn. Where, CreateObject
def
= E×Type→ Object× LocationSet

returns a pair whose first component is the object obj modelling an

instance of cn and second component the set of memory locations used

by the fields in obj.

– The memory locations entailed by obj become bound in the program’s

free store.

– The base location of obj is the head of locs, where Head({`1, . . . , `n})=`1.

– Var′ updates the value of v to be the base location of obj.

– Obj′ maps the base location of obj to obj.

(METHOD−CALL−DEFER) is applied to every method call issued with the

parallel composition of threads.

• The method call is dehydrated by annotating the method call with a calling

context, @ctxt, which states:

– The thread identifier of the original method call.

– The coordination type the method was originally executed under.

– The issuing identifier, if applicable, of the coordination instance the

method was invoked by.

• The dehydrated method call is appended to the list Dfr via ::, where i ::

[ ] = [i], i′ :: [i] = [i′, i], and so on. The role of Dfr will be looked at when

we describe (PROGRAM).
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(METHOD−CALL−ARG−DEFERRED) executes a dehydrated method which

takes an argument:

• The receiver of the method call must hold a value which is the base location

of an object.

• The assertion `1 6= `2 denotes that the memory in the stack and heap

domains are distinct.

• E′, the environment the method m is to be executed under, has its TID,

Coord and Issuer components set to the values of the dehydrated method’s

TID, Coord and Issuer properties of its @ctxt annotation.

• The method call sees a read access requirement on the receiver v.

• Before the method can execute we create a method local variables mapping

Varm which has comprises this and arg (a metavariable over the method’s

formal argument) pushed in. Both this and arg are associated with fresh

memory locations, and this takes on the value `2 which is the base location

of the object the method is being invoked upon. This permits the method’s

program text to write or read the object’s state, e.g. this.field := ...,

and so on.

• The program text of the method is recalled via MethodCmds which takes

the receiver type and a method name and returns the program text of that

method. We assume this information is easily derivable from the program

text.
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• The program text of the invoked method is executed under an environment

which uses Varm. Upon completion of the method execution the method’s

variable mapping is swapped out for the global variable mapping.

(EQ) executes an equality check, which results in a read access requirement

on v. (NEQ) (Figure 10.3) is the same but for an inequality check.

(METHOD−CALL−ARG−NO−DEFER) execute a method issued by the main

thread. Each method issued by the main thread is annotated with @nodefer.

(METHOD−CALL−ARG−NO−DEFER) is identical to

(METHOD−CALL−ARG−DEFERRED) with the exception that the method’s pro-

gram text is executed under the present environment that differs only in its vari-

able mapping. By contrast, (METHOD−CALL−ARG−DEFERRED) executes a

method’s program text under an environment whose TID, Coord and Issuer values

are drawn from the dehydrated method’s @ctxt annotation.

(TRANSACTION) executes a transaction. This entails setting the environ-

ment’s Issuer component to the label id of the transactional instance and the Coord

component to (TRANSACTION). Upon execution of the transactional commands

the environment’s Issuer and Coord components are both set to ⊥. Executing

a lock via (LOCK) is similar to (TRANSACTION) but the environment’s Coord

component is set to L(`1), where `1 is the memory location associated with the

variable being used as the mutex. Note that L is only parameterised on a memory

location, by contrast to Part I where L was parameterised on a memory location

and handle count.

(WHILE) executes a while loop:

• The access requirements issued by the boolean expression b are determined.
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• The memory function fn is applied. A read access requirement is issued to

each of the memory locations it returns. Note that fn is drawn from the

while loop’s @iter−space annotation.

• The body of the while loop is executed.

For example, the memory function of the while loop for traverse (Figure

9.2) is set to @object−space.dynamic which resolves to nodes(E, head). When

encountered in the program text The expression nodes(E, head) is interpreted as

nodes(E,FldVal(E, this, head)), which returns the set of memory locations that the

LinkedList object referred to by this owns.

(FLD−UPDATE−VAR−REF) assigns the value of a variable holding a reference

to an object to a field.

• Execution of the field update results in a read access requirement on v and x,

and a write access requirement on f. The memory location of the field f in

the indirection v.f is attained via FldLoc
def
= E×Variable×Field→ Location.

• The object mapping Obj′ has the value of f being that of x’s value. The

update is performed by FldUpd
def
= E×Variable×FieldLocation→ Obj which

returns an object mapping that is the same as E.Obj but differs in that the

value of the field f of the relevant object has been updated to be `4.

(ASSIGN−INT−LITERAL) is applied when assigning a literal value to a vari-

able that currently holds a literal value. Its execution results in a write access

requirement issued on v.

(PRINT) executes a print command:
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• The predicate CheckSafeIO
def
= E→ Bool the environment is not in a trans-

actional state. If the environment is in a transactional state then executing

the command print may result in an inconsistent memory (Section 1.1.7.4).

• Executing the print command results in a read access requirement issued

on v and f.

The remaining rules, apart from (PROGRAM), in Figures 10.3 and 10.4 are

similar in operation to those previously described. Note that in the sequencing

rules we use • to represent the empty command. (Typically this is ε but we have

already used this to denote a read value.)

(PROGRAM) drives execution of a program.

• The environmental components are each initialised to their default values.

• The commands of the main thread are executed. Special attention should

be drawn to E1 throwing away the access requirements issued by the main

thread – only access requirements issued by the parallel composition of

threads is of importance.

• The commands of the first thread are executed yielding an environment

which the commands of the second thread are executed from, and so on.

• The methods that were deferred while executing the parallel composition are

serialised according to their respective class’s @serialise definition. Serialise

sorts the method invocations on each object according to the comparator

specified by @serialise and returns the sorted method invocations as a com-

mand sequence. For example, Serialise(o.traverse()@ctxt,
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o.add(1)@ctxt)=o.add(1)@ctxt; l.traverse()@ctxt, due to add < traverse

in LinkedList@serialise. The serialised methods are then executed.

10.2 Isolation Algorithm

In this section we describe the predicate Isolated?
def
= AM→ Bool given in Figure

10.5. Isolated? is given an access mapping instance and returns true if and only

if the access requirements issued to each memory location in the domain of the

supplied access mapping are isolated. Isolated? comprises of four general cases,

each denoted with a label C and a short description. Isolated? can determine the

DRF of any correctly annotated program using the facilities presented in Chapter

8, with the exception of when writes are issued to arbitrary locations of dynami-

cally allocated memory, e.g. the middle of a linked list. This is not necessarily a

limitation of the algorithm, but of the static execution rules themselves.

10.2.1 Preliminaries

Throughout the definition of Isolated? we use comments to describe the general or

particular instance the case matches. To describe these cases accurately we use

access positions and access position modifiers. Access positions denote whether or

not an access of an memory location ` is in read, write or read/write position. An

access position modifier wraps an access position to state the coordination type

an access was issued under. An access position with no access position modifier

is uncoordinated. Access positions are as follows:

• := ` denotes ` is in read position;

222



• ` := denotes ` is in write position; and

• ` denotes ` is in read/write position.

Access position modifiers include:

• Coord(`) denotes the access of ` is issued by either a lock or transaction;

and

• Any(`) denotes the access of ` is issued uncoordinated, by a lock or by a

transaction.

The definitions of the auxiliary functions referenced by Isolated? can be found

in Appendix A.4.

10.2.2 Soundness of Isolation Algorithm

The function LocksAndTxnsIsolated (defined in Section A.4.11) implements the

semantics described by Definition 7.3.

Theorem 10.1 (Isolation of Accesses). Let am be an access mapping AM derived

from statically executing a program, such that ` ∈ Dom(am) and |Dom(am)| = 1.

If Isolated?(am) then the accesses issued to ` are isolated and by extension DRF.

Proof. The proof is structured over the cases of Figure 10.5.

• C1 : if ` is only read, Any(:= `) || Any(:= `) , then due to Definition

7.6 accesses to ` are DRF; or, if ` is only accessed by a single thread,

` || . . . , then accesses to ` are trivially isolated and DRF due to Defini-

tions 7.2 and 7.6.
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Algorithm 2 Isolated?
def
= PM! Bool

1: procedure Isolated?(am)
2: for each ` 2 Dom(am) do
3: if NumberOfWritingThreads(am(`)) = 0 _

NumberOfAccessingThreads(am(`)) = 1 then

4: . C1: ` only read or accessed by a single thread
5: goto 2
6: end if
7: . Several threads access `; at least one is a write ———————————
8: (un, txn, lk) PartitionAccessesByCoordType(am(`))
9: if un 6= {} then

10: . C2: Uncoordinated accesses issued to `
11: if NumberOfWritingThreads(am(`)) = 1 then
12: writes Writes(am(`))
13: reads Reads(am(`))
14: writing tid Head(writes).TID
15: if 9ar 2 writes · ar.Coord=? _

(9ar 2 reads · ar.Coord=? ^ ar.TID 6= writing tid) then

16: . C2.1: ` := || Any(:= `) or Coord(` :=) || := `

17: return False
18: end if
19: . C2.2: Coord(` :=) := ` || Coord(:= `)
20: if LocksAndTxnsIsolated(am, lk, txn) then goto 2
21: else return False
22: end if
23: else
24: . C2.3: Any(` :=) || Any(` :=) || `

25: return False
26: end if
27: else if txn 6= {} ^ lk = {} then

28: . C3: All accesses issued to ` are transactional
29: goto 2
30: else
31: . C4: All lock, or lock and transactional accesses issued to `

32: if LocksAndTxnsIsolated(am, lk, txn) then goto 2
33: else return False
34: end if
35: end if
36: end for
37: return True
38: end procedure

Figure 10.5: Isolation Algorithm
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It follows from failing to satisfy C1 that several threads access `, with at

least one of the accesses to ` being a write.

• C2 : there exists an uncoordinated access issued to `.

– Assume a single thread writes `.

∗ C2.1 : if an uncoordinated write is issued to `, `:=||Any(:= `) ,

then due to Definitions 7.4 and 7.6 accesses to ` are not DRF.

It follows from failing to satisfy the first part of the disjunct

of C2.1 that all writes to ` are coordinated. If there exists

an uncoordinated read of ` issued outside of the writing thread,

Coord(` :=) || := ` , then due to Definitions 7.4 and 7.6 ac-

cesses to ` are not DRF.

∗ C2.2 : it follows from failing to satisfy case C2.1 that all unco-

ordinated reads of ` are issued by the writing thread, that all writes

of ` are coordinated and that the reads issued to ` outside of the

writing thread are coordinated, Coord(` :=) :=`||Coord(:=`) .

Due to Definitions 7.2 and 7.6 the uncoordinated reads of ` is-

sued by the writing thread are trivially isolated with the writing

thread’s writes of `. Due to Definition 7.6 it follows that accesses

to ` are DRF if and only if the coordinated writes of ` issued by the

writing thread are isolated with respect to the coordinated reads

of ` issued outside of the writing thread as defined by Definition

7.3.

– Assume several threads write `, Any(` :=) || Any(` :=) || ` .

Due to Definitions 7.4 and 7.6 accesses to ` are not isolated.
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If follows from failing to satisfy C2 that accesses issued to ` are either issued

transactionally, by locks or by locks and transactions.

• C3 : if all accesses to ` are transactional, atomic{`} || atomic{`} , then

accesses to ` are isolated due to Definitions 7.3 and 7.6.

If follows from failing to satisfy C3 that all accesses issued to ` are either (i)

issued by locks, or (ii) locks and transactions. C4 covers both (i) and (ii).

• C4 , (i) all accesses to ` are lock issued, sync(`1){`} || sync(`2){`} .

Due to Definition 7.3 we require `1 = `2 for accesses to ` to be isolated and

by extension DRF (Definition 7.6); otherwise, accesses to ` are not DRF.

• C4 , (ii) accesses to ` are issued by locks and transactions,

sync(`1){`} || atomic{`;`2;} . Due to Definition 7.3 each transactional

instance that accesses ` must access the memory location used to protect the

lock issued accesses of ` for the accesses to be isolated and by extension DRF

(Definition 7.6). That is, the following must be true `1 = `2. Otherwise,

accesses to ` are not DRF.

Theorem 10.2 (Program Isolation). Let am be the access mapping derived from

statically executing a program prog. If Isolated?(am), then prog is DRF.

Proof. Trivial. Due to the structure of Isolated? it must be the case that Trivial

10.1 holds for each ` ∈ Dom(am) for Isolated?(am).
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Isolated? is sufficient to determine the DRF of programs which issue accesses

under locks, transactions, an uncoordinated semantics or some combination of

those semantics. The main restriction of the algorithm is a consequence of the

sensitivity of our static execution rules which collect access information. That

is, while the algorithm can detect the DRF of a program which entails the pre-

viously mentioned access semantics, it cannot (with the information provided by

the current static execution rules) determine the DRF of a program that entails

operations which write an arbitrary location of dynamically allocated memory,

e.g. writing in the middle of a linked list. Under the presented framework such a

write would conservatively require that all accesses to the linked list be isolated

w.r.t. the write, irrespective of whether the accesses logically conflicted. In effect,

the algorithm would fall back to treating accesses in such a situation as being

object rather than location-based, resulting in a conservative judgement. Addi-

tionally, the algorithm has no notion of specialised lock types, e.g. read/write

locks or arbitrary semaphores. However, incorporating the latter semantics in

Isolated? would be generally straightforward. Despite these deficiencies, Isolated?

is more than capable of determining when accesses must be isolated in a transac-

tional and lock-based setting (e.g., demanding that lock invariants are consistent,

transactions access lock invariants only when required, and so on, when at least

two threads access the same memory and one of them is a write), and when they

need not be (e.g. single accessing thread or only readers). Examples of all in-

stances Isolated? is applicable, along with derivations of their computation, are

given in Appendix B.
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10.3 Summary

In this chapter we have presented the static execution rules and isolation algo-

rithm used by our static analysis framework. Application of each static execution

rule results in a number of access requirements being issued to the memory al-

located by a program. These accesses are maintained within the access mapping

presented in Chapter 9. Upon completion of statically executing a program the

access mapping is given to our isolation algorithm. The isolation algorithm ap-

plies a number of expert rules (the cases in Figure 10.5) to the accesses issued

to each memory location. The expert rules are based upon the dynamic conflict

semantics for locks and transactions covered in Part I of this thesis. If accesses

to all the memory allocated by the program satisfy these expert rules then the

program is judged to be isolated and by extension DRF.

We have presented a static framework for determining whether a program that

uses locks, transactions or both to access shared memory is DRF. Our framework

comprises two phases: static execution and application of our isolation algorithm.

A program is statically executed to determine the memory it allocates. Memory

is modelled by access requirements which are an enriched form of permission Boy-

land [2003]. An access requirement captures additional access metadata such as

the issuing thread and the coordination semantics the access was issued under.

The key advantage of access requirements is that they facilitate a simple and

uniform means to determine the isolation of accesses, irrespective of the coor-

dination semantics they were issued under. The access requirements a program

issues during its static execution are captured by an access mapping. The access

mapping maps each memory location to its set of access requirements. Our iso-
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lation algorithm takes an access mapping that results from the static execution

of a program and checks that all accesses are isolated. The isolation algorithm is

capable of determining when lock, transactional and both lock and transactional

accesses to the same memory are isolated. A program whose access mapping is

deemed isolated by our isolation algorithm is DRF.
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Chapter 11

Summary & Conclusions

We briefly summarise the contributions of this thesis and conclude by describing

achieved results and possible future work.

11.1 Summary

In this thesis we have presented three contributions to aid reasoning about con-

current programs that use locks and transactions to issue accesses to the same

memory: moverness for locks, transactions and guaranteed transactions; guaran-

teed transactions; and a static analysis framework for guaranteeing the data-race-

freedom of programs entailing locks and transactions. Moverness is an abstract

memory consistency model which distils the desired observation semantics for

coordination tools into fours categories: left, right, both and free movers. We

showed that moverness can be mapped to a memory consistency model such as

Java’s. Guaranteed transactions are an alternative in some cases to locks and

the privatisation/publication idioms. The main advantage of guaranteed trans-

actions is that they maintain a transactional interface and as such are easier

to apply than locks or transactions when wishing to perform irreversible oper-

ations on shared data. We showed this by applying guaranteed transactions to
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a scenario where a suffix of a list is serialised out to disk. Finally, we gave a

static analysis framework for guaranteeing the data-race-freedom of a program

that uses both locks and transactions to access the same memory. Mixing locks

and transactions is error prone but provides the programmer greater flexibility

when deciding which coordination semantics to issue accesses. We showed that

our static analysis is sufficient for identifying data races in programs which issue

accesses to non-dynamic and dynamic data structures.

11.2 Conclusions

11.2.1 Achieved Results

The objective of this thesis was to research techniques for reasoning about imper-

ative concurrent programs which used both locks Dijkstra [1983] and transactions

Shavit and Touitou [1995] to issue accesses to the same memory. The work in this

thesis met this objective by presenting the following: moverness (see Chapter 5

and Barnett and Qin [2012a]) – an abstraction over write observation semantics;

guaranteed transactions (see Chapter 6 and Barnett and Qin [2012b]) – a partial

abstraction over the privatisation/publication idioms; and a static analysis (see

Part II and Barnett and Qin [2013]) for determining whether such programs are

data-race-free.

11.2.1.1 Moverness

Moverness defines the observation semantics of writes issued to memory under no

coordination, lock or transactional semantics. Moverness is an abstraction over a

low-level memory consistency model, and is required to reason about the values

a read observes in a concurrent program. Definitions of the moverness laws were
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given along with a projection of moverness onto the Java memory consistency

model. Moverness permits the programmer to reason about the writes that reads

issued from locks and transactions will observe without invalidating the semantics

of the memory consistency model it abstracts.

11.2.1.2 Guaranteed Transactions

In a purely transactional programming model a strong pessimistic semantics are

required for executing irreversible operations. We gave such a semantics in the

form of guaranteed transactions, while preserving a transactional interface. We

described guaranteed transactions by giving an operational semantics for an im-

perative Java-like language. We also described the concurrent operational se-

mantics of guaranteed transactions with respect to optimistic, weakly isolated,

out-of-place transactions. Guaranteed transactions were found to be a suitable

replacement for the privatisation/publication idioms under situations when the

structure of the accessed data structures are well known.

11.2.1.3 Static Analysis

Understanding the execution semantics of a concurrent program before it is ad-

mitted to the execution environment is important, particularly when the pro-

gramming model is complex, such as that which affords locks and transactions.

Our static analysis guaranteed that programs that used locks and transactions to

issue accesses to the same memory were data-race-free. We described our static

analysis by defining a static semantics making use of fractional permissions for

a Java-like language, and gave theorems showing that programs admitted to the

execution environment are data-race-free.
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11.2.2 Future Work

We describe two natural extensions of this thesis for future work: application of

our approach to a different transactional semantics, and a static analysis based

upon separation logic.

This thesis focused on transactions that were weakly isolated, optimistic and

out-of-place. Other transactional semantics exist such as object based STMs

Harris et al. [2010], those based on the linearizability memory consistency model

Herlihy and Wing [1990]; Koskinen et al. [2010] and others under active inves-

tigation such as ISO-WG21 [2012] which will make use of the C++ memory

consistency model Boehm and Adve [2008]. Changes in the underlying STM may

result in some novel discoveries regarding the dynamic and static semantics pre-

sented in this thesis. We have shown that interest in STM is relatively active (see

Barnett and Qin [2012a,b, 2013]) which suggests that such discoveries would be

of interest to the research community.

The static analysis presented in this thesis was based upon fractional permis-

sions Boyland [2003, 2010] which have shown considerable promise for reasoning

about concurrent programs. Analyses based on separation logic Reynolds [2002]

using fractional permissions have recently shown encouraging results Bornat et al.

[2005]. An interesting area of research would be to encode the static analysis given

in this thesis using separation logic and fractional permissions. We believe that

such an analysis would be more expressive and of significant importance to the

research community. It is possible that such an analysis could aid in the verifi-

cation of other related research such as the use of the privatisation/publication

idioms Lev and Maessen [2005]; Smaragdakis et al. [2007]; Spear et al. [2007];
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Ziarek et al. [2008] which are particularly important should STM be adopted by

mainstream imperative languages such as C++ ISO-WG21 [2012].
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Appendix A

Algorithm Definitions

Algorithms are labelled with a type signature which describes the types of its

arguments and return value. The form of a type signature is A
def
= t1×· · ·× tn →

tret, where t1, . . . , tn are the types of the arguments A expects to be provided and

tret is its return type.

A.1 Types

Before we present the algorithms used in Parts I and II we give a quick summary

of all types used:

• Int
def
= N.

• Variable comprises all possible variables identifiers.

• VariableSet is a set of Variable.

• Field comprises all possible field identifiers.
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• FieldSet is a set of Field.

• ID
def
= Int.

• IDSet is a set of ID.

• Issuer
def
= Int.

• Time
def
= Int.

• TID
def
= Int.

• TIDSet is a set of TID.

• Location comprises all possible memory locations ` and the nullary location

null.

• LocationSet is a set of Location.

• FS is a set of Location.

• MD
def
= ID → MetaData takes an identifier associated with a lock, transac-

tion or guaranteed transaction and returns its respective metadata.

• MDSet is a set of MD.

• MetaData
def
= Time×Time×LocationSet×LocationSet×LocationSet×Coord.

• Coord
def
= ⊥ | A | L | G is the union type comprising the values ⊥, A, L

and G which represent no coordination semantics, transactions, locks and

respectively guaranteed transactions. In Part I L is parameterised on two

values: a memory location ` (the memory location of the mutex being used)

and a handle count count which is an integer, L(`, count). By contrast, in
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Part II L is just parameterised on the memory location of a mutex, L(`).

Also, in Part II Coord does not comprise the value G.

• Store
def
= Variable→ Location×Location takes a variable and returns a tuple

whose first component is the location of the variable and the second its

value.

• Heap
def
= Location → Object takes the base memory location of an object

and returns the object to which it refers.

• Object
def
= FieldSet → Location × Location takes a field name and returns a

tuple whose first component is the address of the field and second its value.

• Obj
def
= Location→ Object takes the base memory location of an object and

returns the object it refers to.

• State
def
= Store×Heap is a state which is a pair of store and heap mappings.

• StateSet is a set of State.

• Scale
def
= ε | 1 where ε is a read scale and 1 a write scale.

• AR
def
= TID × Scale × Coord × Issuer is an access requirement. Note that

Coord
def
= ⊥ | L | A and L is parameterised only on a memory location `.

• ARSet is a set of AR

• Bool
def
= True | False.

• DeferredMethodCall contains all instances of the form v.m(il?)@ctxt.

• DeferredMethodCallList is a list of DeferredMethodCall.
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• DeferredMethodCallSequence is a sequence of DeferredMethodCall delimited

by ;.

• Type contains all user defined types.

A.2 Algorithm Definitions for Operational Se-

mantics

A.2.1 Algorithms

A.2.1.1 GenerateID

GenerateID
def
= MD× ID → ID generates the next unique label not in the domain

of the given metadata mapping.

GenerateID(md, id) = id′ where id′=Succ(id) ∧ id′ 6∈Dom(md)

Where, Succ
def
= ID → ID gives the successor of the previously unique label,

Succ(id) = id+ 1.

Example A.1 (GenerateID). Let md be an instance of a metadata mapping MD

such that [17→(3,⊥, {}, {}, {},A)]⊆md and id be a valid instance of ID such that

id = 1. GenerateID(md, id) = 2.

A.2.1.2 Conflict

Conflict
def
= ID ×MD → Bool is a predicate that asserts whether the identifier of

the transaction provided conflicts with another actively running transaction or
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lock.

Conflict(id,md)
def
= ∃id′ 6=id ∈ Dom(md)·

[id 7→(begi,⊥, γRi, γWi, γDi,A)]⊆md ∧

[id′ 7→(begj, cmtj, γRj, γWj, γDj, coord)]⊆md ∧

γDi∩γWj 6={}∧

(i) ((begi ≥ begj ∧

(i) (cmtj ≤ Now() ∨ cmtj = ⊥))

∨

(ii) (begi < begj ∧

(ii) (cmtj ≤ Now() ∨ cmtj = ⊥)))

Example A.2 (Conflict). Consider the following diagram where the red interval

represents the transaction instance i. Straight edges indicate the transaction is

yet to commit. Intervals on a different line denote a particular case. The labels (i)

and (ii) are used to denote which part of Conflict each respective interval matches

against. . . . denote either a lock or transaction.
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Time

beg Now()

id':...

id:ablk(…,…)

id':...

id':...

id':...

id':...

id':...

(i)

(i)

(i)

(i)

(ii)

(ii)

A.2.1.3 Persist

Persist
def
= State× Store× State→ Store× State given in Algorithm 1 takes a redo

log, a thread store and a global state and returns an updated thread store and

global state with the effect of the redo log persisted.

Algorithm 1 Persist
def
= State× Store× State→ Store× State

1: procedure Persist(redo,store,state)
2: sτ ← store
3: σ ← state
4: for each v ∈ Dom(redo.s) do
5: if v ∈ Dom(sτ ) then
6: sτ ← sτ [v 7→redo.s(v)]
7: else
8: σ.s← σ.s[v 7→redo.s(v)]
9: end if

10: end for
11: for each ` ∈ Dom(redo.h) do
12: σ.h← σ.h[ 7̀→redo.h(`)]
13: end for
14: return (sτ , σ)
15: end procedure
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Example A.3 (Persist). Let δ and σ be instances of State and sτ be an instance

of Store, such that

[v 7→(`1, `2), x7→(`3, `4)]⊆δ.s [`27→o1, `47→o2]⊆δ.h

[v 7→(`1, `5)]⊆sτ [x 7→(`3, `6)]⊆σ.s [`27→o4, `47→o5]⊆σ.h

(s′τ , σ
′) = Persist(δ, sτ , σ), where

[v 7→(`1, `2)]⊆s′τ [x 7→(`3, `4)]⊆σ′.s [`27→o1, `47→o2]⊆σ′.h

A.2.1.4 Acquireable

Acquireable
def
= Location ×MD → Bool is a predicate that asserts whether a cur-

rently active lock is still in pocession of the lock at the specified memory location.

Acquireable(loc,md)
def
= 6 ∃id∈Dom(md) ·

[id 7→(beg,⊥, {}, {}, {`},L)]⊆md ∧

beg 6= ⊥ ∧ `=loc

The predicate is relatively simple to digest. It states that loc is acquireable if

and only if there does not exist an actively running lock that has already acquired

loc. Note that Acquireable will be false if called by a child lock whose mutex is the

same as that of its parent lock. This occurs because we use L without parameters

to match all values of L.

Example A.4 (Acquireable). Let md be an instance of MD and ` be a valid

memory location in the free store, such that [id 7→(4,⊥, {}, {}, {`},L)]⊆md.

Acquireable(`,md) = False. However, given [id 7→(4,⊥, {`}, {}, {`},A)]⊆md we
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have Acquireable(`,md) = True.

The version of Acquireable we use in the parallel composition rule is given in

Algorithm 2 and is similar to that given previously but encapsulates the compu-

tation of a variable’s memory location.

Algorithm 2 Acquireable
def
= ID×MD× TID× Store× State× Variable→ Bool

1: procedure Acquireable(id,md,tid,s,σ,v)
2: `← VarLocation(s, σ, v)
3: return 6 ∃id′ 6=id ∈ Dom(md)·
4: [id′ 7→(beg,⊥, {}, {}, {`},L(τ 6=tid, count))]⊆md
5: end procedure

Algorithm 2 asserts that a thread that differs to tid is not executing a lock

that has acquired `, the location of the mutex tid’s lock wishes to acquire.

A.2.1.5 HeldByThread

HeldByThread
def
= TID × Location × MD → Bool is a predicate that asserts that

the mutex location specified is already held by the given thread.

HeldByThread(tid, loc,md)
def
= ∃id ∈ Dom(md)·

[id 7→(beg,⊥, {}, {}, {loc},L(tid, count))]⊆md

∧ count ≥ 1

Example A.5 (HeldByThread). Let md be an instance of MD, 1 be a valid thread

identifier in TID and ` a location in Location, where

[id 7→(2,⊥, {}, {}, {`},L(1, 1))]⊆md. HeldByThread(1, `,md) = True.
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A.2.1.6 VarLocation

VarLocation
def
= Store× State×Variable→ Location given in Algorithm 3 looks up

the memory location of the specified variable identifier.

Algorithm 3 VarLocation
def
= Store× State× Variable→ Location

1: procedure VarLocation(s, σ, v)
2: loc← null
3: if ∃v ∈ Dom(s) then
4: loc← fst(s(v))
5: else
6: loc← fst(σ.s(v))
7: end if
8: return loc
9: end procedure

Example A.6 (VarLocation). Let s be an instance of Store, σ an instance of State

and v an instance of Variable, such that [v 7→(`1, `2)]⊆s.

VarLocation(s, σ, v) = `1.

We also use VarLocation (Algorithm 4) in the unified rules where we have

only a single store. Therefore, we provide the alternative VarLocation
def
= Store×

Variable→ Location.

Algorithm 4 VarLocation
def
= Store× Variable→ Location

1: procedure VarLocation(s, v)
2: loc← fst(s(v))
3: return loc
4: end procedure

Example A.7 (VarLocation). Let s be an instance of Store and v an instance of

Variable, such that [v 7→(`1, `2)]⊆s. VarLocation(s, v) = `1.
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A.2.2 IsNull

The predicate IsNull
def
= Location→ Bool checks if a value is null.

IsNull(`)
def
=

 True if ` = null

False otherwise

Example A.8 (IsNull). IsNull(null) = True.

A.2.3 CreateObject

CreateObject
def
= Type × FS → Object × LocationSet given in Algorithm 5 creates

an object for a type cn. The first component of the returned tuple is an object

[f1 7→(`1, null), . . . , fn 7→ (`n, null)] where {f1, . . . , fn} ⊆ TypeFields(cn); the sec-

ond component is the set of memory locations {`1, . . . , `n} associated with the

fields of the object. TypeFields
def
= Type→ FieldSet returns the set of fields a type

comprises. We assume this information is derivable from the program text. We

carry a FS instance to give context to fresh `.

Algorithm 5 CreateObject
def
= Type× FS→ Object× LocationSet

1: procedure CreateObject(env, cn)
2: obj ← fresh Object
3: locs← {}
4: Dom(obj)← TypeFields(cn)
5: for each f ∈ Dom(obj) do
6: `f ← fresh `
7: locs← locs ∪ {`f}
8: obj ← obj[f 7→(`f , null)]
9: end for
10: return (obj, locs)
11: end procedure
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Example A.9 (CreateObject). Let fs be an instance of FS such that FS =

{`1, `2}. Further, let class Point { Int x; Int y}. CreateObject(fs, Point) =

(obj, locs), where [x7→(`3, null), y7→(`4, null)]⊆obj and locs={`3, `4}.

Rather than define them twice, as they are almost identical, the functions

FldLoc, FldVal and FldUpd are almost identical to those in Section A.3 with the

exception that the first parameter is an instance of State.

A.2.4 PassByValue

PassByValue
def
= State×FS×Variable×VariableSet→ Store× LocationSet given in

Algorithm 6 copies the values of the variables given and returns a tuple whose first

component is a store defined for the formal arguments of a method and second

component the memory locations associated with the variables in the returned

store. The first set of variables are the names of the actual variables passed to the

method and the second set the names of the method’s formal arguments. Where,

Zip({a, b, c}, {1, 2, 3}) = {(a, 1), (b, 2), (c, 3)}.

Example A.10 (PassByValue). Let σ be an instance of State and fs an instance of

FS, such that [v 7→(`1, `2), x7→(`3, `4), y 7→(`5, `6)]⊆σ.s and fs={`1, `2, `3, `4, `5, `6}.

PassByValue(σ, fs, y, {v, x}, {arg1, arg2})=(sm, locs), where

[arg17→(`7, `2), arg27→(`8, `4), this7→(`9, `6)]⊆sm and locs={`7, `8, `9}.

A.2.5 ArgLocs

ArgLocs
def
= State × VariableSet → LocationSet given in Algorithm 7 returns the

memory locations of the specified variables.

245



Algorithm 6 PassByValue
def
= State× FS×Variable×VariableSet×VariableSet→

Store× LocationSet
1: procedure PassByValue(σ, fs, receiver, vs, fvs)
2: sm ← fresh Store
3: vars← Zip(vs, fvs)
4: Dom(sm)← fvs
5: locs← {}
6: for each v ∈ vars do
7: loc← fresh `
8: sm ← sm[snd(v)7→(loc, snd(σ.s(fst(v))))]
9: locs← locs ∪ {loc}

10: end for
11: loc← fresh `
12: locs← locs ∪ {loc}
13: Dom(sm)← Dom(sm) ∪ {this}
14: sm ← sm[this7→(loc, snd(σ.s(receiver)))]
15: return (sm, locs)
16: end procedure

Algorithm 7 ArgLocs
def
= State× VariableSet→ LocationSet

procedure ArgLocs(σ, vs)
locs← {}
for each v ∈ vs do

locs← locs ∪ {fst(σ.s(v))}
end for
return locs

end procedure

Example A.11 (ArgLocs). Let σ be an instance of State such that

[v 7→(`1, `2), x7→(`3, `4)]⊆σ.s. ArgLocs(σ, {v, x})={`1, `3}.

A.2.6 GConflict

GConflict
def
= LocationSet × MD → Bool is a predicate that determines whether

or not the write set of a guaranteed transaction conflicts with the dataset of

an actively running guaranteed transaction. Because GConflict is pessimistic we
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do not need to check for conflicts with intersecting execution intervals like we

do in Conflict. Observe that a guaranteed transaction is free to execute if its

write set conflicts with the dataset of an active transaction. Here, the guaranteed

transaction will force the abortion of the transaction (see Conflict).

GConflict(ws,md)
def
= ∃id ∈ Dom(md)·

[id 7→(beg,⊥, γR, γW, γD,G)]⊆md

∧ ws ∩ γD 6= {}

Example A.12 (GConflict). Let md be an instance of MD such that

[17→(4,⊥, {`1, `2}, {`3}, {`1, `2, `3},G)]⊆md and ws={`3, `4}.

GConflict(ws,md)=True.

The version of GConflict we use in the parallel composition rule is identical to

that shown before but additionally encapsulates the computation of a command’s

write set, as shown in Algorithm 8.

Algorithm 8 GConflict
def
= C × Store× State×MD→ Bool

1: procedure GConflict(c,s,σ,md)
2: ws← Writes(c, s, σ)
3: return GConflict(ws,md)
4: end procedure

A.2.7 MaxLabel

MaxLabel
def
= IDSet → ID returns the largest identifier from the set of unique

identifiers provided.

Example A.13 (MaxLabel). MaxLabel({1, 4, 2}) = 4.
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A.2.8 MergeMetadata

MergeMetadata
def
= MDSet→ MD given in Algorithm 9 returns a metadata map-

ping whose domain and co-domain are the merge of the metadata map instances

provided. Note that the metadata values in each mapping are always complete.

Algorithm 9 MergeMetadata
def
= MDSet→ MD

1: procedure MergeMetadata(mds)
2: merged← fresh MD
3: for each md ∈ mds do
4: Dom(merged)← Dom(merged) ∪ Dom(md)
5: end for
6: for each id ∈ Dom(merged) do
7: for each md ∈ mds do
8: if id ∈ Dom(md) then
9: merged← merged[id 7→md(id)]

10: break
11: end if
12: end for
13: end for
14: return merged
15: end procedure

Example A.14 (MergeMetadata). Let mdi, mdj and mdk be instances of MD

such that

[27→(3, 4, {}, {`8}, {`8},A)]⊆mdi

[37→(8, 12, {`1, `2}, {}, {`1, `2},A)]⊆mdj

[57→(3, 9, {`3, `4}, {`5}, {`3, `4, `5},A), 27→(3, 4, {}, {`8}, {`8},A)]⊆mdk
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MergeMetadata({mdi,mdj,mdk}) = merged, where

[27→(3, 4, {}, {`8}, {`8},A),

37→(8, 12, {`1, `2}, {}, {`1, `2},A),

57→(3, 9, {`3, `4}, {`5}, {`3, `4, `5},A)]⊆merged

A.2.9 MergeStates

MergeStates
def
= StateSet → State returns a state whose store and heap compo-

nents are the merge of the domain and co-domains of the states provided. Note

that MergeStates will overwrite the value of store and heap values when they

differ. The value of the mappings in the formed state will only be as expected

if the states provided are a product of a correctly coordinated reduction in the

program semantics.

Example A.15 (MergeStates). Let si, sj, hi and hj be valid instances of Store and

respectively Heap such that

[v 7→(`1, null), x7→(`3, `4)]⊆si [v 7→(`1, `2), y 7→(`5, `6)]⊆sj

[`57→[f1 7→(`5, `6), f2 7→(`7, `8)], `97→[f1 7→(`9, `10)]]⊆hi

[`57→[f1 7→(`5, `12), f2 7→(`7, `8)]]⊆hj

And σi = (si, hi) and σj = (sj, hj). MergeStates({σi, σj}) = (s, h), where
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Algorithm 10 MergeStates
def
= StateSet→ State

1: procedure MergeStates(states)
2: mergeds ← fresh Store
3: for each σ ∈ states do
4: Dom(mergeds)← Dom(mergeds) ∪ Dom(σ.s)
5: end for
6: for each v ∈ Dom(mergeds) do
7: for each σ ∈ states do
8: if v ∈ Dom(σ.s) then
9: mergeds ← mergeds[v 7→σ.s(v)]

10: end if
11: end for
12: end for
13: mergedh ← fresh Heap
14: for each σ ∈ states do
15: Dom(mergedh)← Dom(mergedh) ∪ Dom(σ.h)
16: end for
17: for each `base ∈ Dom(mergedh) do
18: for each σ ∈ states do
19: if `base ∈ Dom(σ.h) then
20: if mergedh(`base) = () then
21: mergedh ← mergedh[`base 7→σ.h(`base)]
22: else if ∃f ∈ Dom(obj′)· then
23: [`base 7→obj′]⊆σ.h ∧ [`base 7→obj]⊆mergedh ∧ obj′(f) 6= obj(f)
24: mergedh ← mergedh[`base 7→obj[f 7→obj′(f)]]
25: end if
26: end if
27: end for
28: end for
29: return (mergeds,mergedh)
30: end procedure

[v 7→(`1, `2), x7→(`3, `4), y 7→(`5, `6)]⊆s

[`57→[f1 7→(`5, `12), f2 7→(`7, `8)], `97→[f1 7→(`9, `10)]]⊆h
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A.3 Algorithm Definitions for Static Execution

Rules

A.3.1 Equal

TID and Issuer are integers so the usual equality rules apply. The special case for

Issuer is ⊥, in which case we define ⊥ = ⊥.

Equal
def
= Scale× Scale→ Bool:

Equal(ε, ε) = True Equal(1, ε)† = False Equal(1, 1) = True

Equal
def
= Coord× Coord→ Bool:

Equal(⊥,⊥) = True Equal(A,A) = True Equal(A,⊥)† = False

Equal(L,⊥)† = False Equal(L,A)† = False

Equal(L(`1),L(`2)) = True if `1 = `2 Equal(L(`1),L(`2)) = False if `1 6= `2

† Equality is symmetric. scale1 = scale2
def
= Equal(scale1, scale2); coord1 =

coord2
def
= Equal(coord1, coord2).

A.3.2 IsMemberOfARSet

IsMemberOfARSet
def
= AR×ARSet→ Bool given in Algorithm 11 is a membership

predicate over an AR and ARSet. ar ∈ ars def
= IsMemberOfARSet(ar, ars).

Example A.16 (IsMemberOfARSet).

IsMemberOfARSet((1, ε,⊥,⊥), {(1, ε,⊥,⊥)}) = True.
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Algorithm 11 IsMemberOfARSet
def
= AR× ARSet→ Bool

1: procedure IsMemberOfARSet(ar, ars)
2: for each ar′ ∈ ars do
3: if ar′.TID = ar.TID ∧ ar′.Scale ≥ ar.Scale ∧
ar′.Coord = ar.Coord ∧
ar′.Issuer = ar.Issuer then

4: return True
5: end if
6: end for
7: return False
8: end procedure

IsMemberOfARSet((1, ε,⊥,⊥), {(1, 1,⊥,⊥)}) = True.

IsMemberOfARSet((1, 1,⊥,⊥), {(1, 1,⊥,⊥)}) = True.

IsMemberOfARSet((1, 1,⊥,⊥), {(1, ε,⊥,⊥)}) = False.

A.3.3 AddAR

AddAR
def
= E× Scale× LocationSet→ AM given in Algorithm 12 adds a new AR to

an AM with the specified scale for the memory locations provided. The returned

AM differs to E.AM by containing a new AR for each of the memory locations

given. We informally state the restriction that access requirements may only be

added to a AM via AddAR.

Example A.17 (AddAR). Let env be an environment E such that:

env.TID=1 env.Coord=⊥ env.Issuer=⊥

[`17→{(1, ε,⊥,⊥)}]⊆env.AM

AddAR(env, ε, {`1, `2}) = am, where [`17→{(1, ε,⊥,⊥) (1, ε,⊥,⊥) },

`27→{(1, ε,⊥,⊥)} ]⊆am. There are two things to note here: (i) the read AR we
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Algorithm 12 AddAR
def
= E× Scale× LocationSet→ AM

1: procedure AddAR(env, scale, locs)
2: am← env.AM
3: for each ` ∈ locs do
4: if ∃ar ∈ am(`) ·
ar.TID=env.TID ∧ ar.Scale < scale ∧ ar.Coord=env.Coord ∧
ar.Issuer=env.Issuer then

5: am(`)← am(`)\{ar} . Eliminate read AR; write AR subsumes it.
6: end if
7: am(`)← am(`) ∪ {(env.TID, scale, env.Coord, env.Issuer)}
8: end for
9: return am

10: end procedure

are attempting to add to env.AM(`1) already exists, so it is not added, highlighted

in red; and (ii) `2 did not exist in the domain of env.AM before the application

of AddAR, so `2 is added to the domain of am and associated with a read AR,

highlighted in yellow. In (ii) we assert that issuing a AR on a memory location

` not in the domain of an access mapping am has the effect of adding ` to the

domain of the returned access mapping am.

Example A.18 (AddAR: Write AR elimination of read AR.). Let env be an

environment E such that:

env.TID=1 env.Coord=⊥ env.Issuer=⊥

[`17→{(1, ε,⊥,⊥)}, `27→{(1, ε,⊥,⊥)}]⊆env.AM

AddAR(E, 1, {`1, `2}) = am, where [`17→{ (1, ε,⊥,⊥) (1, 1,⊥,⊥) },

`27→{ (1, ε,⊥,⊥) (1, 1,⊥,⊥) }]⊆am. The write access requirements, highlighted

in yellow, issued to `1 and `2 subsume the existing read access requirements,

highlighted in red, on `1 and `2 as the write and read access requirements differ
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only in their scale, and 1 > ε. This models the semantics of permissions given in

Boyland [2003]. That is, if one has write permission then one has read and write

permission. Note however that we extend this concept to to be context aware

w.r.t. the thread, coordination type and coordination instance.

A.3.4 MergeAMs

MergeAMs
def
= AM × AM → AM in Algorithm 13 takes two access mappings and

returns an access mapping whose domain and co-domain is the union of the

domain and co-domain of the access mappings given as arguments.

Algorithm 13 MergeAMs
def
= AM× AM→ AM

1: procedure MergeAMs(am1, am2)
2: merged← fresh AM
3: Dom(merged)← Dom(am1) ∪ Dom(am2)
4: for each ` ∈ Dom(merged) do
5: if ` ∈ Dom(am1) ∧ ` 6∈ Dom(am2) then
6: merged← merged[ 7̀→am1(`)]
7: else if ` ∈ Dom(am2) ∧ ` 6∈ Dom(am1) then
8: merged← merged[ 7̀→am2(`)]
9: else

10: merged← merged[ 7̀→am1(`) ∪ am2(`)]
11: end if
12: end for
13: return merged
14: end procedure

Example A.19 (MergeAMs). Let am1 and am2 be access mappings AM such

that:

[`17→{(1, ε,L(`2), 3), (2, 1,A, 2)}, `27→{(1, ε,⊥,⊥)}]⊆am1

[`17→{(2, ε,⊥,⊥), (1, ε,L(`2), 3)}]⊆am2
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MergeAMs(am1, am2) = merged, where

[`17→{(1, ε,L(`2), 3), (2, 1,A, 2), (2, ε,⊥,⊥)}, `27→{(1, ε,⊥,⊥)}]⊆merged.

A.3.5 CreateObject

CreateObject
def
= E × Type → Object × LocationSet given in Algorithm 14 creates

an object for a type cn. The first component of the returned tuple is an object

[f1 7→(`1, null), . . . , fn 7→ (`n, null)] where {f1, . . . , fn} ⊆ TypeFields(cn); the sec-

ond component is the set of memory locations {`1, . . . , `n} associated with the

fields of the object. TypeFields
def
= Type→ FieldSet returns the set of fields a type

comprises. We assume this information is derivable from the program text. We

carry the environment E to give context to fresh `.

Algorithm 14 CreateObject
def
= E× Type→ Object× LocationSet

1: procedure CreateObject(env, cn)
2: obj ← fresh Object
3: locs← {}
4: Dom(obj)← TypeFields(cn)
5: for each f ∈ Dom(obj) do
6: `f ← fresh `
7: locs← locs ∪ {`f}
8: obj ← obj[f 7→(`f , null)]
9: end for
10: return (obj, locs)
11: end procedure

Example A.20 (CreateObject). Let env be an environment E such that env.FS =

{`1, `2}. Further, assume that Node is a valid instance of Type.

CreateObject(env, Node) = (obj, locs), where [next7→(`3, null), value7→(`4, null)]⊆obj

and locs={`3, `4}.
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A.3.6 BaseLoc

BaseLoc
def
= E × Variable → Location given in Algorithm 15 returns the base

memory location of an object a variable refers to. CoDom(M) returns the co-

domain of a mapping M , snd((a, b)) = b and Head({f1, . . . , fn}) = f1.

Algorithm 15 BaseLoc
def
= E× Variable→ Location

1: procedure BaseLoc(env, v)
2: `← snd(env.Var(v))
3: ∃obj ∈ CoDom(env.Obj) · ` ∈ FieldLocations(obj) ∧
4: `base = Head(FieldLocations(obj))
5: return `base

6: end procedure

Example A.21 (BaseLoc). Let env be an environment E such that:

[x 7→(`1, `3)]⊆env.Var [`27→[next7→(`2, null), value7→(`3, null)]]⊆env.Obj

BaseLoc(env, x)=`2.

A.3.7 FieldLocations

FieldLocations
def
= Object→ LocationSet returns the set of memory locations asso-

ciated with the fields of an object.

Example A.22 (FieldLocations). Let [f17→(`1, `2), f27→(`3, `4)]⊆obj.

FieldLocations(obj) = {`1, `3}.
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A.3.8 FldLoc

FldLoc
def
= E × Variable × Field → Location given in Algorithm 16 returns the

memory location associated with a field in an indirection.

Algorithm 16 FldLoc
def
= E× Variable× Field→ Location

1: procedure FldLoc(env, v, f)
2: `base ← BaseLoc(env, v)
3: obj ← env.Obj(`base)
4: ∃f ′ ∈ ObjectFields(obj) · f ′=f ∧
5: [. . . , f ′ 7→(`, val), . . . ]⊆obj
6: return `
7: end procedure

Example A.23 (FldLoc). Let env be an evironment E such that:

[x 7→(`1, `2)]⊆env.Var [`27→[next7→(`2, null), value7→(`3, null)]]⊆env.Obj

FldLoc(env, x, next) = `2.

A.3.9 ObjectFields

ObjectFields
def
= Object→ FieldSet returns the fields an object entails.

Example A.24 (ObjectFields). Let [f17→(`1, `2), f27→(`3, `4)]⊆obj.

ObjectFields(obj) = {f1, f2}.

A.3.10 FldUpd

FldUpd
def
= E × Variable × Field × Location → Obj given in Algorithm 17 returns

an object mapping with the value of the specified field updated to the provided

location.
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Algorithm 17 FldUpd
def
= E× Variable× Field× Location→ Obj

1: procedure FldUpd(env, v, f , loc)
2: `base ← BaseLoc(env, v)
3: obj ← env.Obj(`base)
4: ∃f ′ ∈ ObjectFields(obj) · f ′=f ∧
5: [. . . , f ′ 7→(`, val), . . . ]⊆obj
6: obj′ ← obj[f 7→(`, loc)]
7: objMap← env.Obj
8: objMap← objMap[`base 7→obj′]
9: return objMap
10: end procedure

Example A.25 (FldUpd). Let env be an environment E such that:

[x 7→(`1, `2)]⊆env.Var [`27→[next7→(`2, null), value7→(`3, null)]]⊆env.Obj

FldUpd(env, x, next, `4)=obj′ where [`27→[next7→(`2, `4), value7→(`3, null)]]⊆obj′.

A.3.11 FldVal

FldVal
def
= E×Variable× Field→ Location given in Algorithm 18 returns the value

of an object’s field.

Algorithm 18 FldVal
def
= E× Variable× Field→ Location

1: procedure FldLoc(env, v, f)
2: `base ← BaseLoc(env, v)
3: obj ← env.Obj(`base)
4: ∃f ′ ∈ ObjectFields(obj) · f ′=f ∧
5: [. . . , f ′ 7→(`, val), . . . ]⊆obj
6: return val
7: end procedure
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Example A.26 (FldVal). Let env be an environment E such that:

[x 7→(`1, `2)]⊆env.Var [`27→[next7→(`2, `4), value7→(`3, null)]]⊆env.Obj

FldVal(env, x, next) = `4.

A.3.12 Receiver

Receiver
def
= DeferredMethodCall→ Variable takes a deferred method call and gives

you back the receiver of the method call.

Example A.27 (Receiver). Receiver(l.add(1)@ctxt) = l.

A.3.13 CollectReceivers

CollectReceivers
def
= DeferredMethodCallList → VariableSet given in Algorithm 19

takes a list of deferred method calls and returns the set of receiver variables for

those method calls.

Example A.28 (CollectReceivers). CollectReceivers([l.add(1)@ctxt,

n.traverse()@ctxt]) = {l, n}.

Algorithm 19 CollectReceivers
def
= DeferredMethodCallList→ VariableSet

1: procedure CollectReceivers(methodCalls)
2: receivers← {}
3: for each methodCall ∈ methodCalls do
4: receivers← receivers ∪ {Receiver(methodCall)}
5: end for
6: return receivers
7: end procedure
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A.3.14 ReceiverCalls

ReceiverCalls
def
= DeferredMethodCallList×Variable→ DeferredMethodCallList given

in Algorithm 20 takes a list of method calls and a receiver variable and returns the

list of deferred method calls issued on the given receiver variable. ReceiverCalls

preserves program order,
po−→.

Example A.29 (ReceiverCalls). ReceiverCalls([l.add(1)@ctxt, n.traverse()@ctxt,

l.traverse()@ctxt], l) = [l.add(1)@ctxt, l.traverse@ctxt].

Algorithm 20 ReceiverCalls
def
= DeferredMethodCallList × Variable →

DeferredMethodCallList
1: procedure ReceiverCalls(methodCalls, v)
2: callsOnReceiver ← [ ]
3: for each methodCall ∈ methodCalls do
4: if Receiver(methodCall) = v then
5: callsOnReceiver ← methodCall :: callsOnReceiver
6: end if
7: end for
8: return callsOnReceiver
9: end procedure

A.3.15 Sort

Sort
def
= DeferredMethodCallList × Comparator → DeferredMethodCallList takes a

list of deferred method calls and a comparator and returns an ordered list of

deferred method calls using the provided comparator. We assume that Sort is

stable. That is, if a < b, and there exists instances of both a and b, ai and aj and

bi and bj, such that in the list to be sorted [ai, bi, aj, bj], then in the sorted list ai

will appear before aj and bi before bj, e.g. [ai, aj, bi, bj].
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Example A.30 (Sort). Given the list of method calls

methodCalls=[l.traverse()@ctxt, l.add(1)@ctxt, l.traverse()@ctxt], where l

is of type LinkedList, Sort(methodCalls, LinkedList@serialise)

= [l.add(1)@ctxt, l.traverse()@ctxt, l.traverse()@ctxt].

A.3.16 ListToCmdSeq

ListToCmdSeq
def
= DeferredMethodCallList → DeferredMethodCallSequence returns

a sequence of deferred method calls that preserves the ordering of the deferred

method calls in the given deferred method call list.

Example A.31 (ListToCmdSeq). ListToCmdSeq([l.add(1)@ctxt,

l.traverse()@ctxt]) = l.add(1)@ctxt;l.traverse()@ctxt;

A.3.17 Serialise

Serialise
def
= DeferredMethodCallList→ DeferredMethodCallSequence given in Algo-

rithm 21 takes a list of deferred method calls and serialises those method calls for

each receiver according to its defining class’s @serialise annotation. list1++list2 =

list3, where list3 contains the elements of list1 and list2 where list1, list2 and list3

are instances of DeferredMethodCallList.

Example A.32 (Serialise). Serialise([l.traverse()@ctxt, n.add(1)@ctxt,

l.add(2)@ctxt, n.traverse()@ctxt]) = l.add(2)@ctxt; l.traverse()@ctxt;

n.add(1)@ctxt; n.traverse()@ctxt;
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Algorithm 21 Serialise
def
= DeferredMethodCallList →

DeferredMethodCallSequence

1: procedure Serialise(methodCalls)
2: receivers← CollectReceivers(methodCalls)
3: serialised← [ ]
4: for each receiver ∈ receivers do
5: receiverCalls← ReceiverCalls(methodCalls, receiver)
6: serialised← Sort(receiverCalls,TypeOf(receiver)@serialise)
7: + + serialised
8: end for
9: return ListToCmdSeq(serialised)

10: end procedure

A.3.18 CheckSafeIO

CheckSafeIO
def
= E → Bool given in Algorithm 22 is a predicate that asserts the

environment’s coordination type is strong enough to perform an irreversible oper-

ation, e.g. print. The semantics of CheckSafeIO models that of a weakly isolated

STM Harris et al. [2010]. CheckSafeIO does not prohibit use of the privitisa-

tion/publication idioms Spear et al. [2007].

Algorithm 22 CheckSafeIO
def
= E→ Bool

1: procedure CheckSafeIO(env)
2: if env.Coord = A then
3: return False . Transaction could abort.
4: else
5: return True
6: end if
7: end procedure

Example A.33 (CheckSafeIO). Let env be an environment E such that

env.Coord=A. CheckSafeIO(env)=False.
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A.4 Algorithm Definitions for Isolated?

A.4.1 Writes

Writes
def
= ARSet → ARSet given in Algorithm 23 filters the write access require-

ments from the set of access requirements specified.

Algorithm 23 Writes
def
= ARSet→ ARSet

1: procedure Writes(prs)
2: write prs← {}
3: for each pr ∈ prs do
4: if pr.Scale = 1 then
5: write prs← write prs ∪ {pr}
6: end if
7: end for
8: return write prs
9: end procedure

Example A.34 (Writes). Let ars = {(1, ε,⊥,⊥), (2, 1,⊥,⊥), (3, 1,⊥,⊥)}.

Writes(ars) = {(2, 1,⊥,⊥), (3, 1,⊥,⊥)}.

A.4.2 AccessingTIDs

AccessingTIDs
def
= ARSet → Int given in Algorithm 24 returns the number of

distinct threads that issue access requirements in the specified set of access re-

quirements. |s| is the cardinality of the set s.

Example A.35 (AccessingTIDs). Let ars = {(1, ε,⊥,⊥), (2, 1,⊥,⊥),

(3, 1,⊥,⊥), (1, 1,A, 3)}. AccessingTIDs(ars) = 3.
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Algorithm 24 AccessingTIDs
def
= ARSet→ Int

1: procedure AccessingTIDs(ars)
2: tids← {}
3: for each ar ∈ ars do
4: tids← tids ∪ {ar.TID}
5: end for
6: return |tids|
7: end procedure

A.4.3 NumberOfWritingThreads

NumberOfWritingThreads
def
= ARSet→ Int given in Algorithm 25 returns the num-

ber of distinct threads that issue write access requirements in the set of access

requirements specified.

Algorithm 25 NumberOfWritingThreads
def
= ARSet→ Int

procedure NumberOfWritingThreads(ars)
return AccessingTIDs(Writes(ars))

end procedure

Example A.36 (NumberOfWritingThreads). Let ars = {(1, ε,⊥,⊥), (2, 1,⊥,⊥),

(3, 1,⊥,⊥), (1, 1,A, 3)}. NumberOfWritingThreads(ars) = 3.

A.4.4 Reads

Reads
def
= ARSet → ARSet given in Algorithm 26 filters the read access require-

ments from the set of access requirements specified.

Example A.37 (Reads). Let ars = {(1, ε,⊥,⊥), (2, 1,⊥,⊥), (3, 1,⊥,⊥)}.

Reads(ars) = {(1, ε,⊥,⊥)}.
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Algorithm 26 Reads
def
= ARSet→ ARSet

1: procedure Reads(ars)
2: read ars← {}
3: for each ar ∈ ars do
4: if ar.Scale = ε then
5: read ars← read ars ∪ {pr}
6: end if
7: end for
8: return read ars
9: end procedure

A.4.5 RemoveReadsByTID

RemoveReadsByTID
def
= ARSet × TID → ARSet given in Algorithm 27 returns a

set of access requirements minus the access requirements issued by the specified

thread.

Algorithm 27 RemoveReadsByTID
def
= ARSet× TID→ ARSet

1: procedure RemoveReadsByTID(ars, tid)
2: filtered← {}
3: for each ar ∈ ars do
4: if ar.TID 6= tid then
5: filtered← filtered ∪ {ar}
6: end if
7: end for
8: return filtered
9: end procedure

Example A.38 (RemoveReadsByTID). Let ars = {(1, ε,⊥,⊥), (2, ε,⊥,⊥),

(1, ε,A, 3)}. RemoveReadsByTID(ars, 1) = {(2, ε,⊥,⊥)}.
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A.4.6 PartitionAccessesByCoordType

PartitionAccessesByCoordType
def
= ARSet→ ARSet×ARSet×ARSet given in Algo-

rithm 28 partitions a set of access requirements into a triple of access requirement

sets. The first component of the returned triple comprises the access requirements

issued under no coordination semantics; the second those issued transactionally;

and the third those issued by locks. The syntax partitioned[i] where 0≤i<3

accesses the ith component of the triple partitioned.

Algorithm 28 PartitionAccessesByCoordType
def
= ARSet→ ARSet×ARSet×ARSet

1: procedure PartitionAccessesByCoordType(ars)
2: partitioned← ({}, {}, {})
3: component index← 0
4: coord types← {⊥,A,L}
5: for each coord ∈ coord types do
6: for each ar ∈ ars do
7: if ar.Coord = coord then
8: partitioned[component index]←
partitioned[component index] ∪ {ar}

9: end if
10: end for
11: component index← component index+ 1
12: end for
13: return partitioned
14: end procedure

Example A.39 (PartitionAccessesByCoordType). Let ars = {(1, 1,⊥,⊥), (1, 1,A, 3),

(2, 1,L(p2), 4), (1, ε,A, 5)}. PartitionAccessesByCoordType(ars) = ({(1, 1,⊥,⊥)},

{(1, 1,A, 3), (1, ε,A, 5)}, {(2, 1,L(p2), 4)}).
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A.4.7 TransactionsAccessMutex

TransactionsAccessMutex
def
= AM×AbsLocSet×ARSet→ Bool given in Algorithm

29 asserts that each of the transactional instances in the set of transactionally

issued access requirements accesses the memory location (the mutex) specified.

Algorithm 29 TransactionsAccessMutex
def
= AM× AbsLoc× ARSet→ Bool

1: procedure TransactionsAccessMutex(am, mutex, ars)
2: for each txn ∈ ars do
3: if 6 ∃ar ∈ am(mutex) · ar.Issuer = txn.Issuer then
4: return False
5: else
6: goto 2
7: end if
8: end for
9: return True

10: end procedure

Example A.40 (TransactionsAccessMutex). Let am be an access mapping AM

such that [`17→{(1, 1,A, 3), (2, ε,⊥,⊥), (4, ε,A, 4)}]⊆am, mutex=`1 and ars={}.

TransactionsAccessMutex(am,mutex, ars) = True. The predicate trivially suc-

ceeds as ars={} results in the body of the for each being skipped.

Example A.41 (TransactionsAccessMutex). Let am be an access mapping AM

such that [`17→{(1, 1,A, 3), (2, ε,⊥,⊥), (4, ε,A, 4)}]⊆pm, mutex=`1 and

ars={(1, 1,A, 3), (4, ε,A, 4)}. TransactionsAccessMutex(am,mutex, ars) = True.

The predicate succeeds as transactional instances 3 and 4 access `1 in am.

Example A.42 (TransactionsAccessMutex). Let am be an access mapping AM

such that [`17→{(1, 1,A, 3), (2, ε,⊥,⊥), (4, ε,A, 4)}]⊆pm, mutex=`1 and
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ars={(1, 1,A, 5), (4, ε,A, 4)}. TransactionsAccessMutex(am,mutex, ars) = False.

The predicate fails as transactional instance 5 does not access `1 in am.

A.4.8 LocksAgreeOnMutex

LocksAgreeOnMutex
def
= Location × ARSet → Bool given in Algorithm 30 asserts

that all the specified lock access requirements are protected on the mutex pro-

vided.

Algorithm 30 LocksAgreeOnMutex
def
= AbsLoc× ARSet→ Bool

1: procedure LocksAgreeOnMutex(`, ars)
2: if ars = {} then
3: return True
4: end if
5: return 6 ∃ar ∈ ars · ar.Coord 6= `
6: end procedure

Example A.43 (LocksAgreeOnMutex). Let ars = {(1, 1,L(`1), 3), (2, ε,L(`1), 4)}.

LocksAgreeOnMutex(`1, ars) = True. The predicate succeeds as all lock permis-

sion requirements in ars uses the mutex `1.

Example A.44 (LocksAgreeOnMutex). Let ars = {(1, 1,L(`1), 3), (2, ε,L(`2), 4)}.

LocksAgreeOnMutex(`1, ars) = False. The predicate fails as at least one lock per-

mission requirement in ars uses a different mutex to that of `1.

A.4.9 FilterLocks

FilterLocks
def
= ARSet → ARSet given in Algorithm 31 filters the lock access re-

quirements from the set of access requirements provided.
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Algorithm 31 FilterLocks
def
= ARSet→ ARSet

1: procedure FilterLocks(ars)
2: lock ars← {}
3: for each ar ∈ ars do
4: if ar.Coord = L then
5: lock ars← lock ars ∪ {ar}
6: end if
7: end for
8: return lock ars
9: end procedure

Example A.45 (FilterLocks). Let ars = {(1, 1,L(`1), 3), (2, ε,A, 2)}. FilterLocks(ars) =

{(1, 1,L(`1), 3)}.

A.4.10 FilterTxns

FilterTxns
def
= ARSet → ARSet given in Algorithm 32 filters the transactional

access requirements from the set of access requirements provided.

Algorithm 32 FilterTxns
def
= ARSet→ ARSet

1: procedure FilterTxns(ars)
2: txn ars← {}
3: for each ar ∈ ars do
4: if ar.Coord = A then
5: txn ars← txn ars ∪ {ar}
6: end if
7: end for
8: return txn ars
9: end procedure

Example A.46 (FilterTxns). Let ars = {(1, 1,L(`1), 3), (2, ε,A, 2)}. FilterTxns(ars) =

{(2, ε,A, 2)}.
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A.4.11 LocksAndTxnsIsolated

LocksAndTxnsIsolated
def
= AM × ARSet × ARSet → Bool given in Algorithm 33

asserts that all lock and transactionally issued access requirements in the set of

access requirements specified are isolated. LocksAndTxnsIsolated is an implemen-

tation of Definition 7.3 given in Section 10.2.2.

Algorithm 33 LocksAndTxnsIsolated
def
= AM× ARSet× ARSet→ Bool

1: procedure LocksAndTxnsIsolated(am,lk,txn)
2: for each lk access ∈ lk do
3: remaining accesses← RemoveAccessesByTID(lk∪txn, lk access.TID)
4: if lk access.Scale = ε then
5: remaining accesses← remaining accesses\Reads(remaining accesses)
6: end if
7: mutex used← lk access.Coord
8: if LocksAgreeOnMutex(mutex used,FilterLocks(remaining accesses)) ∧

TransactionsAccessMutex(am,mutex used,FilterTxns(remaining accesses))
then

9: goto 2
10: else
11: return False
12: end if
13: end for
14: return True
15: end procedure

Example A.47 (LocksAndTxnsIsolated). Consider the following program where

only locks access v and x. We assert v resides at location `1 and x at `2.

Int v; Int x;

v := 0; x := 0;
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1:sync(v) { 3:sync(v) {

v := 1; v := 2;

} }

2:sync(v){ 4:sync(v){

x := v; x := v;

} }
Let am be the program’s derived access mapping such that:

[`17→{(1, 1,L(`11), 1), (1, ε,L(`1), 2), (2, 1,L(`1), 3), (2, ε,L(`1), 4)},

`27→{(1, 1,L(`1), 2), (2, 1,L(`1), 4)}]⊆am

Let lk = FilterLocks(am(`1)) and txn = FilterTxns(am(`1)):

lk = {(1, 1,L(`1), 1), (1, ε,L(`1), 2), (2, 1,L(`1), 3), (2, ε,L(`1), 4)} txn = {}

LocksAndTxnsIsolated(am, lk, txn) = True.

Example A.48 (LocksAndTxnsIsolated). Consider the following program where

locks and transactions access v, x and y. We assert v resides at location `1, x at

`2 and y at `3.

Int v; Int x; Int y;

v := 0; x := 0; y := 0;
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1:sync(v) { 3:atomic {

v := 1; y := v;

} }

2:sync(x){

x := v;

}
Let am be the program’s derived access mapping such that:

[`17→{(1, 1,L(`1), 1), (1, ε,L(`2), 2), (2, ε,A, 3)},

`27→{(1, 1,L(`2), 2)}, p37→{(2, 1,A, 3)}]⊆am

Let lk = FilterLocks(am(`1)) and txn = FilterTxns(am(`1)):

lk = {(1, 1,L(`), 1), (1, ε,L(`2), 2)} txn = {(2, ε,A, 3)}

LocksAndTxnsIsolated(am, lk, txn) = True.

Example A.49 (LocksAndTxnsIsolated). Consider the following program where

both locks and transactions write v which we assert resides at location `1:

Int v;

v := 0;
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1:atomic { 3:atomic {

v := 1; v := 3;

} }

2:sync(v){ 4:sync(v){

v := 2; v := 4;

} }
Let am be the program’s access mapping such that:

[`17→{(1, 1,A, 1), (1, 1,L(`1), 2), (2, 1,A, 3), (2, 1,L(`1), 4)}]⊆am

Let lk = FilterLocks(am(`1)) and txn = FilterTxns(am(`1)):

lk = {(1, 1,L(`1), 2), (2, 1,L(`1), 4)} txn = {(1, 1,A, 1), (2, 1,A, 3)}

LocksAndTxnsIsolated(am, lk, txn) = True.

Example A.50 (LocksAndTxnsIsolated). Consider the following program where

both locks and transactions write v. We assert v resides at location `1 and x at

`2.

Int v; Int x;

v := 0; x := 0;
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1:sync(v) { 4:atomic {

v := 1; v := 3;

} }

2:atomic{

x := v;

}

3:sync(x) }

v := 2;

}
Let am be the program’s derived access mapping such that:

[`17→{(1, 1,L(`1), 1), (1, ε,A, 2), (1, 1,L(`2), 3), (2, 1,A, 4)},

`27→{(1, 1,A, 2)}]⊆am

Let lk = FilterLocks(am(`1)) and txn = FilterTxns(am(`1)):

lk = {(1, 1,L(`1), 1), (1, 1,L(`2), 3)} txn = {(1, ε,A, 2), (2, 1,A, 4)}

LocksAndTxnsIsolated(am, lk, txn) = False. The predicate fails as transac-

tional instance 4 does not access the mutex that lock instance 3’s write of v is

protected on.

Example A.51 (LocksAndTxnsIsolated). Consider the following program which

is similar to that given in Example A.50.

Int v; Int x;

v := 0; x := 0;
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1:sync(v) { 4:atomic {

v := 1; v := x;

} }

2:atomic{

x := v;

}

3:sync(x) }

v := 2;

}
Let am be the program’s derived access mapping such that:

[`17→{(1, 1,L(`1), 1), (1, ε,A, 2), (1, 1,L(`2), 3), (2, 1,A, 4)},

`27→{(1, 1,A, 2), (2, ε,A, 4)}]⊆am

Let lk = FilterLocks(am(`1)) and txn = FilterTxns(am(`1)):

lk = {(1, 1,L(`1), 1), (1, 1,L(`2), 3)} txn = {(1, ε,A, 2), (2, 1,A, 4)}

LocksAndTxnsIsolated(am, lk, txn) = True. The predicate succeeds as trans-

actional instance 4 accesses the mutexes used by lock instances 1 and 3.

275



Appendix B

Example Applications of Part II’s

Static Framework

In all examples we assert am is an instance of an access mapping AM. Each

memory location ` ∈ Dom(am) is annotated with a label to aid in presentation.

For example, v `1 in the presentation of am denotes that `1 is the memory

location that represents the location of the variable v. The names of memory

locations in the examples can be derived by fresh ` yielding a memory location

with a strictly increasing integer label i, ` i, where i > 0 and initially i = 1. For

example, given Node n1; Node n2;, the first application of (VAR−DECL) sees n1

being associated with `1 and the second application of (VAR−DECL) sees n2 being

associated with `2. When describing rule applications we use the form rule×N

to denote N successive applications of rule, e.g. rule×2 = rule rule. We use the

syntax rule〈rule1 . . . rulen〉 to denote that the rules rule1 . . . rulen appear in the

immediate derivation of rule. To keep the presentation of the examples concise

we omit applications of the sequencing rules.
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Example B.1 (Only Readers and Single Accessing Threads). Consider the fol-

lowing program where v is read by threads 1 and 2, thread 1 writes x and thread

2 writes y and z.

Program.

Int v; Int x; Int y; Int z;

v := 0; x := 0; y := 0; z := 0;

Thread 1 Thread 2

x := v; y := v;

z := v;

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 4, (ASSIGN−INT−LITERAL)× 4;

– Thread 1: (ASSIGN−VAR−LITERAL);

– Thread 2: (ASSIGN−VAR−LITERAL)× 2.

• 〉

Access Mapping.

[ v `17→{(1, ε,⊥,⊥), (2, ε,⊥,⊥)},

x `27→{(1, 1,⊥,⊥)},

y `37→{(2, 1,⊥,⊥)},

z `47→{(2, 1,⊥,⊥)}]⊆am
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Isolation.

Isolated?(am) = True. C1 applies for v as `1 is only read; C1 applies for x,

y and z as `2, `3 and `4 are all accessed by a single thread.

Example B.2 (Several Accessing Threads; Single Writer Thread; Uncoordinated

Write).

Program.

Int v; Int x;

v := 0; x := 0;

Thread 1 Thread 2

v := 1; x := v;

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 2, (ASSIGN−INT−LITERAL)× 2;

– Thread 1: (ASSIGN−INT−LITERAL);

– Thread 2: (ASSIGN−VAR−LITERAL).

• 〉

Access Mapping.

[ v `17→{(1, 1,⊥,⊥), (2, ε,⊥,⊥)},

x `27→{(2, 1,⊥,⊥)}]⊆am

Isolation.

Isolated?(am) = False, due to C2.1 . Thread 1’s uncoordinated write of `1

will not be isolated with the uncoordinated read of `1 issued by thread 2.
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Example B.3 (Several Accessing Threads; Single Writer Thread; Uncoordinated

Read). We now present an example which triggers the second part of the disjunct

of C2.1 . That is, we have a single writing thread whose write is issued under

a coordinated semantics, and an uncoordinated read issued to the same location

outside of the writing thread.

Program.

Int v; Int x;

v := 0; x := 0;

Thread 1 Thread 2

1:atomic { x := v;

v := 1;

}

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 2, (ASSIGN−INT−LITERAL)× 2;

– Thread 1: (TRANSACTION)〈(ASSIGN−INT−LITERAL)〉;

– Thread 2: (ASSIGN−VAR−LITERAL).

• 〉

Access Mapping.

[ v `17→{(1, 1,A, 1), (2, ε,⊥,⊥)},

x `27→{(2, 1,⊥,⊥)}]⊆am

Isolation.
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Isolated?(am) = False, due to C2.1 . Thread 1’s transactional write of `1 will

not be isolated with the uncoordinated read of `1 issued by thread 2.

Example B.4 (Several Accessing Threads; Single Writer Thread; Writer Thread’s

Writes Isolated w.r.t. Reads; Uncoordinated Read Issued by Writer Thread). An

uncoordinated read of a memory location ` can only exist in a program where

several threads access ` if and only if: the uncoordinated read of ` is issued by

the writing thread and the writes issued by the writing thread are isolated w.r.t.

the reads of ` issued outside of the writing thread.

Program.

Int v; Int x; Int y;

v := 0; x := 0; y := 0;

Thread 1 Thread 2

1:atomic { 2:atomic {

v := 1; x := v;

} }

y := v;

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 3, (ASSIGN−INT−LITERAL)× 3;

– Thread 1: (TRANSACTION)〈(ASSIGN−INT−LITERAL)〉,

(ASSIGN−VAR−LITERAL);

– Thread 2: (TRANSACTION)〈(ASSIGN−VAR−LITERAL)〉.

• 〉
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Access Mapping.

[ v `17→{(1, 1,A, 1), (1, ε,⊥,⊥), (2, ε,A, 2)},

x `27→{(2, 1,A, 2)}, y `37→{(1, 1,⊥,⊥)}]⊆am

Isolation. Isolated?(am) = True. Due to C2.2 thread 1’s transactional write of

`1 is isolated with thread 2’s transactional read of `1. `2 and `3 are isolated due

to C1 . (See Section A.4.11 for examples of LocksAndTxnsIsolated.)

Example B.5 (Several Accessing Threads; Single Writer Thread; Writer Thread’s

Writes not Isolated w.r.t. Reads; Uncoordinated Read Issued by Writer Thread).

We present a non-isolated version of Example B.4.

Program.

Int v; Int x; Int y;

v := 0; x := 0; y := 0;

Thread 1 Thread 2

1:atomic { 2:sync(x) {

v := 1; x := v;

} }

y := v;

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 3, (ASSIGN−INT−LITERAL)× 3;

– Thread 1: (TRANSACTION)〈(ASSIGN−INT−LITERAL)〉,

(ASSIGN−VAR−LITERAL);
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– Thread 2: (LOCK)〈(ASSIGN−VAR−LITERAL)〉.

• 〉

Access Mapping.

[ v `17→{(1, 1,A, 1), (1, ε,⊥,⊥), (2, ε,L(`2), 2)},

x `27→{(2, 1,L(`2), 2)}, y `37→{(1, 1,⊥,⊥)}]⊆am

Isolation.

Isolated?(am) = False, due to C2.2 . Thread 1’s transactional write of `1 is

not isolated with thread 2’s lock issued read of `1 as transactional instance 1 does

not access lock instance 2’s mutex, `2.

Example B.6 (Several Threads Issue Uncoordinated Writes). If several threads

issue uncoordinated writes to a memory location ` then all accesses to ` are

subject to a data race.

Program.

Int v; Int x;

v := 0; x := 0;

Thread 1 Thread 2

v := 1; v := 2;

x := v;

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 2, (ASSIGN−INT−LITERAL)× 2;
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– Thread 1: (ASSIGN−INT−LITERAL), (ASSIGN−VAR−LITERAL);

– Thread 2: (ASSIGN−INT−LITERAL).

• 〉

Access Mapping.

[ v `17→{(1, 1,⊥,⊥), (1, ε,⊥,⊥), (2, 1,⊥,⊥)},

x `27→{(1, 1,⊥,⊥)}]⊆am

Isolation.

Isolated?(am) = False, due to C2.3 . All accesses issued to `1 are not isolated

due to threads 1 and 2 issuing uncoordinated writes to `1.

Example B.7 (Only Transactional Accesses). If all accesses to a memory loca-

tion ` are issued tranasctionally then those accesses are trivially isolated.

Program.

Int v; Int x;

v := 0; x := 0;

Thread 1 Thread 2

1:atomic { 2:atomic {

v := 1; v := 2;

} }

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 2, (ASSIGN−INT−LITERAL)× 2;
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– Thread 1: (TRANSACTION)〈(ASSIGN−INT−LITERAL)〉;

– Thread 2: (TRANSACTION)〈(ASSIGN−INT−LITERAL)〉.

• 〉

Access Mapping.

[ v `17→{(1, 1,A, 1), (2, 1,A, 2)}]⊆am

Isolation.

Isolated?(am) = True. Due to C3 all accesses issued to `1 are isolated as

threads 1 and 2 issue their writes of `1 transactionally.

Example B.8 (Only Lock Accesses). Case C4 covers two scenarios for accesses

issued to a memory location `: (1) all accesses to ` are issued by locks; and

(2) accesses to ` are issued by locks and transactions. This example covers (1);

subsequent examples cover (2).

Program.

Int v; Int x; Int y;

v := 0; x := 0; y := 0;

Thread 1 Thread 2

1:sync(v) { 3:sync(v) {

v := 1; y := v;

} }

2:sync(x) }

x := v;

}
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Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 3, (ASSIGN−INT−LITERAL)× 3;

– Thread 1: (LOCK)〈(ASSIGN−INT−LITERAL)〉,

(LOCK)〈(ASSIGN−VAR−LITERAL)〉;

– Thread 2: (LOCK)〈(ASSIGN−VAR−LITERAL)〉.

• 〉

Access Mapping.

[ v `17→{(1, 1,L(`1), 1), (1, ε,L(`2), 2), (2, ε,L(`1), 3)},

x `27→{(1, 1,L(`2), 2)}, y `37→{(2, 1,L(`1), 3)}]⊆am

Isolation.

Isolated?(am) = True. Due to C4 the accesses issued to `1 by threads 1 and

2 are isolated: the write and read issued by thread 1 and respectively thread 2

are isolated as they both use the same mutex, `1; lock instances 2 and 3 do not

need to use the same mutex as both only read `1.

Example B.9 (Lock and Transactional Accesses).

Program.

Int v; Int x; Int y;

v := 0; x := 0; y := 0;
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Thread 1 Thread 2

1:sync(v) { 3:sync(v) {

v := 1; y := v;

} }

2:sync(x) { 4:atomic {

x := v; y := v;

} }
Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 3, (ASSIGN−INT−LITERAL)× 3;

– Thread 1: (LOCK)〈(ASSIGN−INT−LITERAL)〉,

(LOCK)〈(ASSIGN−VAR−LITERAL)〉;

– Thread 2: (LOCK)〈(ASSIGN−VAR−LITERAL)〉,

(TRANSACTION)〈(ASSIGN−VAR−LITERAL)〉.

• 〉

Access Mapping.

[ v `17→{(1, 1,L(`1), 1), (1, ε,L(`2), 2), (2, ε,L(`1), 3), (2, ε,A, 4)},

x `27→{(1, 1,L(`2), 2)}, y `37→{(2, 1,L(`1), 3), (2, 1,A, 4)}]⊆am

Isolation.

Isolated?(am) = True. Due to C4 : the lock issued write and lock issued read

by thread 1 and respectively thread 2 are isolated as they both use the same

mutex, `1; transactional instance 4 accesses the mutex used by thread 1’s lock
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issued write of `1, therefore are isolated; lock instances 2 and 3 do not need to

use the same mutex as both only read `1; likewise, transactional instance 4 does

not need to access lock instance 2’s mutex as both only read `1.

Example B.10 (Lock and Transactional Accesses).

Program.

Int v; Int x; Int y;

v := 0; x := 0; y := 0;

Thread 1 Thread 2 Thread 3

1:sync(v) { 3:sync(v) { 5:sync(x) {

v := 1; y := v; v := x;

} } }

2:atomic { 4:atomic {

v := y; y := v;

} }

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 3, (ASSIGN−INT−LITERAL)× 3;

– Thread 1: (LOCK)〈(ASSIGN−INT−LITERAL)〉,

(TRANSACTION)〈(ASSIGN−VAR−LITERAL)〉;

– Thread 2: (LOCK)〈(ASSIGN−VAR−LITERAL)〉,

(TRANSACTION)〈(ASSIGN−VAR−LITERAL)〉;

– Thread 3: (LOCK)〈(ASSIGN−VAR−LITERAL)〉;

• 〉
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Access Mapping.

[ v `17→{(1, 1,L(`1), 1), (1, 1,A, 2), (2, ε,L(`1), 3), (2, ε,A, 4), (3, 1,L(`2), 5)},

x `27→{(3, ε,L(`2), 5)}, y `37→{(1, ε,A, 2), (2, 1,L(`1), 3), (2, 1,A, 4)}]⊆am

Isolation.

Isolated?(am) = False, due to C4 . Thread 3’s lock-issued write of `1 is not

isolated w.r.t. to the accesses issued to `1 by threads 1 and 2.

Example B.11 (Lock and Transactional Accesses).

Program.

Int v; Int x; Int y;

v := 0; x := 0; y := 0;

Thread 1 Thread 2 Thread 3

1:sync(v) { 3:sync(v) { 5:sync(v) {

v := 1; y := v; v := x;

} } }

2:atomic { 4:atomic {

v := y; y := v;

} }

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL)× 3, (ASSIGN−INT−LITERAL)× 3;

– Thread 1: (LOCK)〈(ASSIGN−INT−LITERAL)〉,

(TRANSACTION)〈(ASSIGN−VAR−LITERAL)〉;
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– Thread 2: (LOCK)〈(ASSIGN−VAR−LITERAL)〉,

(TRANSACTION)〈(ASSIGN−VAR−LITERAL)〉;

– Thread 3: (LOCK)〈(ASSIGN−VAR−LITERAL)〉;

• 〉

Access Mapping.

[ v `17→{(1, 1,L(`1), 1), (1, 1,A, 2), (2, ε,L(`1), 3), (2, ε,A, 4), (3, 1,L(`1), 5)},

x `27→{(3, ε,L(`1), 5)}, y `37→{(1, ε,A, 2), (2, 1,L(`1), 3), (2, 1,A, 4)}]⊆am

Isolation.

Isolated?(am) = True. `1 is isolated due to C4 , `2 due to C1 and `3 due to

C4 .

Example B.12 (Concurrently Mutating a Linked List).

Program.

LinkedList l;

l := new LinkedList;

l.add(1)@nodefer;

l.add(2)@nodefer;

Thread 1 Thread 2

l.add(3); l.traverse();

l.add(4);

Rule Applications.

• (PROGRAM)〈
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– Main thread: (VAR−DECL), (NEW),

(METHOD−CALL−ARG−NO−DEFER)〈†〉 × 2;

– Thread 1: (METHOD−CALL−DEFER);

– Thread 2: (METHOD−CALL−DEFER)× 2;

– Serialised Method Calls: (METHOD−CALL−ARG−DEFERRED)〈†〉 ×

2,

(METHOD−CALL−NO−ARG−DEFERRED)〈∗〉.

• 〉

Where, † = (VAR−DECL), (NEW), (FLD−UPDATE−VAR−LITERAL),

(FLD−UPDATE−FLD−REF), (FLD−UPDATE−VAR−REF); ∗ = (VAR−DECL),

(ASSIGN−FLD−REF), (WHILE)〈(NEQ),(PRINT),(ASSIGN−FLD−REF)〉.

Variable and Entity Mappings. Application of the rules results in the follow-

ing var and obj mappings, where var is an instance of Var and obj an instance

of Obj. The structure of var and obj is diagrammatically shown in Figure B.1.
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[l 7→(`1, `2)]⊆var

[`2 7→ [head7→(`2, `21)],

`6 7→ [next7→(`6, null), value7→(`7, null)],

`11 7→ [next7→(`11, `6), value7→(`12, null)],

`16 7→ [next7→(`16, `11), value7→(`17, null)],

`21 7→ [next7→(`21, `16), value7→(`22, null)]]⊆obj

p2l
p1

p21head
p2

p16

p21 p22

Node

p11

p16 p17

Node

p6

p11 p12

Node

p6 p7

Node

LinkedList

Figure B.1: Structure of the anonymous LinkedList object. The LinkedList

object is anonymous due to all literal values being discarded – only the shape of
the LinkedList that l points-to is of relevance.

Access Mapping.
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We have omitted the memory locations associated with a method’s formal

parameters and locally defined variables as they do not escape.

[

l (1) `17→{(1, ε,⊥,⊥), (2, ε,⊥,⊥},

LinkedList( head ) (2) `27→{(1, 1,⊥,⊥), (2, 1,⊥,⊥)},

(3m) l.add(1)@nodefer: this(`3), val(`4) and n(`5)

Node( next (3) `67→{(2, ε,⊥,⊥)},

value ) (3) `77→{(2, ε,⊥,⊥)},

(4m) l.add(2)@nodefer: this(`8), val(`9) and n(`10)

Node( next (4) `117→{(2, ε,⊥,⊥)},

value ) (4) `127→{(2, ε,⊥,⊥)},

(5m) l.add(3)@ctxt: this(`13), val(`14) and n(`15)

Node( next (5) `167→{(1, 1,⊥,⊥), (2, ε,⊥,⊥)},

value ) (5) `177→{(1, 1,⊥,⊥), (2, ε,⊥,⊥)},

(6m) l.add(4)@ctxt: this(`18), val(`19) and n(`20)

Node( next (6) `217→{(2, 1,⊥,⊥)},

value ) (6) `227→{(2, 1,⊥,⊥)},

(7m) l.traverse()@ctxt: this(`23)and curr(`24)

]⊆am

The domain of am reveals our example program allocated 24 memory locations

during its static execution. The labels (1) . . . (7) correspond to the following

descriptions:
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1. LinkedList l variable declared by the main thread;

2. LinkedList instance allocated by the main thread;

3. Node instance allocated by the main thread’s invocation of l.add(1)@nodefer.

The omitted memory locations `3, `4 and `5 in (3m) were allocated to sup-

port the invocation of add;

4. l.add(2)@nodefer invoked by the main thread;

5. l.add(3)@ctxt invoked by thread 1;

6. l.add(4)@ctxt invoked by thread 2;

7. l.traverse()@ctxt invoked by thread 2.

Isolation.

Isolated?(am) = False, due to C2.3 . Thread 1’s write of `2, l.head in

l.add(3), is not isolated with respect to thread 2’s accesses of `2 in l.add(4)

and l.traverse().

Example B.13 (Concurrently Mutating a Linked List using Transactions). We

will attempt to give an isolated version of the program given in Example B.12 by

using transactions.

Program.

LinkedList l;

l := new LinkedList;

l.add(1)@nodefer;
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l.add(2)@nodefer;

Thread 1 Thread 2

1:atomic { 2:atomic {

l.add(3); l.traverse();

} l.add(4);

}

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL), (NEW),

(METHOD−CALL−ARG−NO−DEFER)〈†〉 × 2;

– Thread 1: (TRANSACTION)〈(METHOD−CALL−DEFER)〉;

– Thread 2: (TRANSACTION)〈(METHOD−CALL−DEFER)× 2〉;

– Serialised Method Calls: (METHOD−CALL−ARG−DEFERRED)〈†〉 ×

2,

(METHOD−CALL−NO−ARG−DEFERRED)〈∗〉.

• 〉

Where, † = (VAR−DECL), (NEW), (FLD−UPDATE−VAR−LITERAL),

(FLD−UPDATE−FLD−REF), (FLD−UPDATE−VAR−REF); ∗ = (VAR−DECL),

(ASSIGN−FLD−REF), (WHILE)〈(NEQ),(PRINT) ⊥.

Unfortunately, application of our rules does not complete due to (PRINT)

yielding an undefined environment. This occurs due to CheckSafeIO failing in the

premise of (PRINT). Consequently, the program is pessimistically declared not

isolated.
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Example B.14 (Concurrently Mutating a Linked List using Transactions and

Locks). We now modify the program given in Example B.13 to execute thread 2’s

commands within a lock to address the weak execution semantics of transactions.

Program.

LinkedList l;

l := new LinkedList;

l.add(1)@nodefer;

l.add(2)@nodefer;

Thread 1 Thread 2

1:atomic { 2:sync(l) {

l.add(3); l.traverse();

} l.add(4);

}

Rule Applications.

• (PROGRAM)〈

– Main thread: (VAR−DECL), (NEW),

(METHOD−CALL−ARG−NO−DEFER)〈†〉 × 2;

– Thread 1: (TRANSACTION)〈(METHOD−CALL−DEFER)〉;

– Thread 2: (LOCK)〈(METHOD−CALL−DEFER)× 2〉;

– Serialised Method Calls: (METHOD−CALL−ARG−DEFERRED)〈†〉 ×

2,

(METHOD−CALL−NO−ARG−DEFERRED)〈∗〉.

• 〉
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Where, † = (VAR−DECL), (NEW), (FLD−UPDATE−VAR−LITERAL),

(FLD−UPDATE−FLD−REF), (FLD−UPDATE−VAR−REF); ∗ = (VAR−DECL),

(ASSIGN−FLD−REF), (WHILE)〈(NEQ),(PRINT),(ASSIGN−FLD−REF)〉.

Access Mapping.

[

l (1) `17→{(1, ε,A, 1), (2, ε,L(`1), 2)},

LinkedList( head ) (2) `27→{(1, 1,A, 1), (2, 1,L(`1), 2)},

(3m) l.add(1)@nodefer: this(`3), val(`4) and n(`5)

Node( next (3) `67→{(2, ε,L(`1), 2)},

value ) (3) `77→{(2, ε,L(`1), 2)},

(4m) l.add(2)@nodefer: this(`8), val(`9) and n(`10)

Node( next (4) `117→{(2, ε,L(`1), 2)},

value ) (4) `127→{(2, ε,L(`1), 2)},

(5m) l.add(3)@ctxt: this(`13), val(`14) and n(`15)

Node( next (5) `167→{(1, 1,A, 1), (2, ε,L(`1), 2)},

value ) (5) `177→{(1, 1,A, 1), (2, ε,L(`1), 2)},

(6m) l.add(4)@ctxt: this(`18), val(`19) and n(`20)

Node( next (6) `217→{(2, 1,L(`1), 2)},

value ) (6) `227→{(2, 1,L(`1), 2)},

(7m) l.traverse()@ctxt: this(`23)and curr(`24)

]⊆am

Isolation.
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Isolated?(am) = True. A total ordering exists over the accesses performed by

thread 1 and 2’s transaction and lock. There are two points of contention:

• p2 – Thread 1’s invocation of add needs to be isolated with thread 2’s

invocations of add and traverse because each invocation of add writes

l.head at memory location `2, and traverse reads `2. Each thread’s

accesses are isolated as transactional instance 1 accesses the mutex `1 used

by thread 2’s lock which protects its invocations of add and traverse.

• `16 and `17 – The Node allocated by thread 1’s invocation of add needs

to be isolated with respect to thread 2’s invocation of traverse due to the

allocated node being reachable by traverse. The invocation of add by

transactional instance 1 is isolated with respect to thread 2’s lock issued

traverse due to transactional instance 1 accessing the mutex `2 which

protects the invocation of traverse.

The second point of contention is a problem due to the possible semantics

of the underlying memory model. For example, in the schedule l.add(); ||

l.traverse(); traverse may not observe the state of thread 1’s allocated Node

due to the accesses issued by each method not being related by the underlying

memory model. That is, the writes issued by thread 1’s invocation of add may

be buffered and not flushed to main memory before the reads issued by traverse

take place. In the Java memory model Manson et al. [2005] we might say, assum-

ing a transaction has appropriately defined synchronisation actions and relation-

ships within synchronises-with, that the accesses issued by thread 2’s invocation

of traverse and thread 1’s add are not related in happens-before. Therefore, a

data race may occur.
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