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Abstract

In 2006 NVIDIA introduced a new unified GPU architecture facilitating general-

purpose computation on the GPU. The following year NVIDIA introduced CUDA,

a parallel programming architecture for developing general purpose applications for

direct execution on the new unified GPU. CUDA exposes the GPU’s massively par-

allel architecture of the GPU so that parallel code can be written to execute much

faster than its sequential counterpart. Although CUDA abstracts the underlying

architecture, fully utilising and scheduling the GPU is non-trivial and has given rise

to a new active area of research. Due to the inherent complexities pertaining to

GPU development, in this thesis we explore and find efficient parallel mappings of

existing and new parallel algorithms on the GPU using NVIDIA CUDA. We place

particular emphasis on metaheuristics, image processing and designing reusable

techniques and mappings that can be applied to other problems and domains.

We begin by focusing on Ant Colony Optimisation (ACO), a nature inspired

heuristic approach for solving optimisation problems. We present a versatile im-

proved data-parallel approach for solving the Travelling Salesman Problem using

ACO resulting in significant speedups. By extending our initial work, we show

how existing mappings of ACO on the GPU are unable to compete against their

sequential counterpart when common CPU optimisation strategies are employed

and detail three distinct candidate set parallelisation strategies for execution on

the GPU. By further extending our data-parallel approach we present the first

implementation of an ACO-based edge detection algorithm on the GPU to reduce

the execution time and improve the viability of ACO-based edge detection. We

finish by presenting a new color edge detection technique using the volume of a

pixel in the HSI color space along with a parallel GPU implementation that is able

to withstand greater levels of noise than existing algorithms.
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CHAPTER 1

Introduction

1.1 Graphics Processing Units

In November 2006 NVIDIA introduced the GeForce 8 Series architecture along

with the next generation of Graphics Processing Units (GPUs). This generation

pioneered the unified shader pipeline combining pixel and shader units into unified

shaders each with their own instruction memory, cache and control logic [5]. This

move to a unified architecture resulted in each of the units becoming fully pro-

grammable and no longer constrained to a single graphics task. Each of the unified

shader units execute independently in parallel allowing the GPU to dynamically

allocate execution resources depending on the workload. These changes in turn

led to increased performance and efficiency [6]. Rege notes [7] that by moving to a

unified architecture we can achieve up to a 2x increase in instruction throughput by

using scalar instruction shaders resulting in significantly better performing complex

graphic shaders (on the first generation of hardware alone). The resulting GPU

architecture was a massively parallel general-purpose processor with large memory

bandwidth and improved floating point performance that enabled both traditional

graphics processing and, more importantly, facilitated general-purpose computation

outside of the realm of graphics with the aid of the new unified shader units. These

fundamental changes to create a new unified general-purpose GPU architecture

were implemented in consumer grade GPUs available in standard desktops and

laptops, so putting a parallel processor within reach of all users

15



1.2. NVIDIA CUDA

Over the last decade parallel processing has become increasingly popular due

in part to the diminishing returns when increasing the clock rate of conventional

CPUs. Additional power consumption and cooling requirements outweighed the

increased performance benefits after CPUs began to approach a clock speed of

around 4 GHz [8]. This speed limit restricted the potential of single core CPUs

leading to the rise of multiple core CPUs. A typical desktop computer is currently

equipped with around 4 to 8 cores per CPU and this can increase upwards of 12

cores for higher end workstations or servers depending on the configuration.

1.2 NVIDIA CUDA

In June 2007 NVIDIA unveiled Compute Unified Device Architecture (CUDA), a

parallel programming architecture that allowed developers to harness the massively

parallel architecture of the new unified GPU for general-purpose computation

(GPGPU). CUDA was the first language designed to facilitate GPGPU using ANSI

C which required no prior experience with OpenGL or DirectX. This gave CUDA

a competitive advantage over previous attempts which forced developers to coerce

non-graphics algorithms into restrictive graphics interfaces for execution on the

GPU. By facilitating execution on the massively parallel architecture, code can be

written to execute in parallel much faster than its optimised sequential counterpart.

Parallel processing allows work to be divided into smaller units and executed in

parallel as opposed to executing sequentially. NVIDA note [9] that to get the

maximum benefit from CUDA it’s best to first find efficient ways to [9] sequential

code. By applying Amdahl’s Law [9] we can determine the maximum expected

speedup from moving sections of sequential code to execute in parallel. NVIDIA

note [9] that to maximise the speedup it’s worthwhile spending effort increasing

larger regions of code to be parallelised. CUDA compatible GPUs can be found

in a wide range of devices from desktop computers to laptops and more recently

mobile devices such as tablet computers and phones [10]. This allows developers to

utilise massively parallel processing in previously restricted domains and crucially

improve the performance of their applications whilst preserving portability due to

the prevalence of NVIDIA GPUs. Additionally CUDA applications can scale at

16



1.2. NVIDIA CUDA

runtime to utilise all available processing units so as to achieve the best possible

runtime on the available hardware.

Since 2007 finding efficient CUDA implementations and parallel mappings of

selected algorithms has been an active and ongoing area of research. There have

been seven major releases of the CUDA toolkit along with four major hardware

revisions; Tesla, Fermi, Kepler and Maxwell (see Section 2.4.1). In 2008 Tokyo

Tech announced [11] the first GPU powered supercomputer to enter the list of top

500 supercomputers worldwide using GPGPU to achieve this. The following year

NVIDIA released the first major hardware revision to the platform (Fermi) which

significantly improved the speed of the GPU but also releaxed some of the tight

memory coalescing restrictions (see Section 2.3.2) imposed by the first hardware

generation vastly increasing the programmability of the platform. In 2011 the

National Supercomputing Center announced [12] the world’s fastest supercomputer

Tianhe-1A based on NVIDIA GPUs. The Tianhe-1A used a total of 7168 NVIDIA

Tesla GPUs to run molecular dynamics simulations at 1.87 petaflops per second [12].

In 2012 NVIDIA announced the Kepler hardware architecture bringing further

CUDA advancements including dynamic parallelism (see Section 2.4.1). In 2012

NVIDIA also announced a virtualised GPU cloud solution known as GRID [13]

allowing developers to access the power of the GPU on cloud based platforms

such as Amazon Web Services (AWS). In 2014 NVIDIA released the most recent

hardware revision of CUDA Maxwell [14]. Maxwell brought continued speed im-

provements along with an additional energy efficiency. CUDA has been successfully

applied to a wide range of problems across multiple domains including medical

imaging [15], computational finance [16], bioinformatics [17] and many other areas.

CUDA success stories tout significant execution speedups over optimised sequential

counterparts, each improving the viability of general-purpose GPU computing.

The simplest parallel implementations can easily offload entire computationally

expensive regions of an application to the GPU using CUDA. However this method

can require costly memory transfers to and from the GPU which can increase

the execution time resulting in marginal speedups when compared to sequential

counterparts. This simple implementation only requires minimal effort to port

regions of an application as opposed to redesigning an entire application to execute

17



1.2. NVIDIA CUDA

in parallel. Libraries such as Thrust [18] provide high level interfaces based on the

Standard Template Library (STL) to perform common methods such as sorting

without requiring detailed knowledge of CUDA programming.

Although CUDA abstracts the underlying GPU architecture, fully utilising and

scheduling the GPU is non-trivial. Along with a hierarchical memory system,

CUDA imposes many restrictive limitations which must be strictly adhered to in

order to attain maximum speedups and performance. As a result, many existing

sequential and even parallel algorithms must be redesigned in order to conform

to the restrictive parallel GPU architecture. To attain the best performance it

is often necessary that the entire application is executed in parallel on the GPU

to avoid the aforementioned memory transfers. This can result in a significantly

more complex implementation, increased development time and unforeseen par-

allelisation issues. The complexity of implementing existing algorithms on the

GPU depends heavily on the resources used, interaction between processes and

control flow of the algorithm. Some algorithms (such as basic image processing)

can be classified as embarrassingly parallel when little effort is required to split up

the process into parallel tasks and are often easily ported to the GPU. Executing

in parallel can also bring unexpected scheduling difficulties as some algorithms

can be highly sequential thus prohibiting parallelisation and greatly increasing the

effort required to implement an efficient CUDA solution that executes faster than

a optimised sequential counterpart. In the worst case, regions of algorithms that

cannot be easily executed in parallel must still be executed on the GPU to avoid

the time penalty of memory transfers. NVIDIA provide a set of comprehensive

best practices to help developers port and implement existing and new algorithms

on the GPU using CUDA [9]. However, deviating from these strictly defined best

practices can lead to severe performance issues such as warp serialisation which

imposes a harsh time penalty by executing regions of parallel code sequentially,

often negating the performance benefit of executing in parallel.

In summary, developing an efficient parallel implementation is highly dependent

on the input algorithm. Although a simple parallel implementation can be easily

implemented, the benefits of executing in parallel are often hindered by poor per-

formance. Some problems can be easily parallelised and others require significant
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changes to adapt sequential regions of the algorithm to execute in parallel without

scheduling issues. For maximum speedups all features of the GPU must be utilised

requiring detailed knowledge of the GPU however; this is not always possible.

1.3 Motivation

Due to the aforementioned complexities pertaining to GPU development, the mo-

tivation behind this thesis is to explore and find efficient parallel mappings of

existing and new algorithms on the GPU using NVIDIA CUDA. We place particular

emphasis on metaheuristics, image processing and designing reusable techniques

and mappings that can be applied to other problems and domains. By extending

recent contributions we start by focusing on Ant Colony Optimisation (ACO) and

move on to new parallel applications of ACO and image processing.

1.3.1 Metaheuristics

Ant Colony Optimisation is a population-based metaheuristic that has proven to

be the most successful ant algorithm for modelling discrete optimisation problems

including the Travelling Salesman Problem (TSP) [19]. However, when modelling

the TSP, as the number of cities to visit increases, so does the computational

time required to construct tours. This problem necessitates the need for a parallel

implementation in order to reduce the execution time and increase performance.

Many of the nature inspired heuristic approaches for solving optimisation problems

may seem intrinsically and even embarrassingly parallel. Dorigo and Stützle re-

mark [19] that for many applications ACO solutions often rival the best in class,

however, as previously mentioned, finding efficient parallel implementations to

exploit the GPU hardware is non-trivial. Recent contributions from Cecilia et

al. [20] and Delévacq et al. [21] have shown that adopting a data-parallel approach

can better utilise the GPU. However the speedups attained are relatively low,

and both implementations fail to utilise CPU optimisations and only apply their

solution to the TSP. Motivated by the high quality of solutions produced by ACO

and the recent parallel GPU developments we focuss on extending and improving

data-parallel techniques whilst utilising CPU optimisations in parallel.
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1.3.2 Image Processing

Edge detection is one of the most fundamental operations in computer vision and

image processing as other tasks (such as image segmentation, object recognition

and classification) can depend upon edge characterisation. It is crucial that the

process of edge detection should result in a precise characterisation of the image

features. Hence, edge detection must be both reliable and efficient. Edge detection

differs according to whether an image is color or not. Novak and Shafer [22] found

that about 90% of edges in color images are also edges in terms of their gray values.

However, the remaining 10% of edges in color images can not be so characterised.

Thus, many color edge detection algorithms have been proposed (see [23,24,25] for

examples). In spite of this, there has been little research into developing efficient

parallel implementations aside from traditional algorithms such as the Canny edge

detection algorithm [26]. Luo and Duraiswami [27] and Ogawa et al. [28] both

present GPU implementations of the Canny algorithm. Luo and Duraiswami [27]

note that over 75% of the runtime is spent applying edge thresholding to improve

the quaility of edge maps. However, neither implementation considers using color

images to improve the quality of edges detected.

1.4 Contributions & Thesis Guide

As previously mentioned this thesis focuses on finding efficient parallel mappings

and optimisations of the Ant Colony Optimisation metaheurisitc and image pro-

cessing algorithms on the GPU using NVIDIA CUDA and is based on the pub-

lications [1, 2, 3, 4]. We omit a single related work section in favour of providing

detailed related sections. Our primary contributions made and guide to this thesis

are outlined as follows:

• In Chapter 2 we provide additional background on parallel GPU development

and give an overview of the hardware of the GPU, the CUDA programming

model and recent CUDA hardware advancements.

• In Chapter 3 we present an improved data-parallel approach for mapping

the Ant System algorithm to the GPU for solving the Travelling Salesman
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Problem. We detail a novel implementation of a parallel warp-level roulette

wheel selection algorithm called Double-Spin Roulette which is able to sig-

nificantly outperform the execution time of existing parallel and sequential

contributions whilst matching the quality of sequentially generated solutions.

Our results show a speedup of up to 8.5x faster than the best existing GPU

implementation and up to 82x faster than the sequential counterpart.

• In Chapter 4 we show how existing mappings of ACO on the GPU are unable

to compete against their sequential counterpart when common optimisation

strategies such as the use of candidate sets are employed. We explore three

distinct candidate set parallelisation strategies for execution on the GPU. We

show that by extending our previous data-parallel and warp-level approach

we were able to efficiently integrate the use of a candidate set to reduce the

overall execution time against both sequential and parallel counterparts. Our

results show a speedup of up to 18x faster than the sequential counterpart

while the best existing implementations struggle to maintain a speedup

• In Chapter 5 we present the first implementation of a parallel ACO-based

edge detection algorithm on the GPU using NVIDIA CUDA. By further

extending our data-parallel and warp-level approach we map individual ants

to thread warps allowing multiple ants to execute on each CUDA block thus

exploiting the GPU hardware and was able to yield the fastest execution

times. Consequently, we increase the viability of ACO-based edge detection.

Our approach is also able to produce variable edge widths that can produce

stylised edge maps. Our results show a speedup of up to 150x faster than the

sequential counterpart

• In Chapter 6 we propose a new method for quantifying color information so

as to detect edges in color images using the volume of a pixel in the HSI color

space. We detail a novel GPU implementation featuring an efficient parallel

edge thinning algorithm that precomputes all potential thinning outcomes

based on surrounding pixel data and storing the results in a look up table.

We show that our method can improve the accuracy of detection, withstand

greater levels of noise in images and decrease the execution time thus attaining
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a speedup against related implementations. When comparing the execution

times of our new color edge detection algorithm against the Canny edge

detection algorithm our results show a speedup of up to 5x faster than the

best performing GPU implementation and up to 20x faster than the sequential

counterpart.

• In Chapter 7 we conclude this thesis and give direction for potential future

work based on our research and findings.
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CHAPTER 2

General-purpose computation on the GPU using CUDA

2.1 Introduction

In Chapter 1.1 we introduced the modern unified GPU and outlined how recent

advancements have facilitated the development of the next generation of general-

purpose computation on the GPU (GPGPU). By fully harnessing the power of a

massively parallel processor, developers can significantly improve the performance

of their applications on low-cost GPU hardware now available in most laptops,

desktops and recently even mobile devices (including tablet computers). CUDA

has since been applied to a wide range of problems across multiple domains.

In Chapter 1.2 we introduced CUDA, a parallel architecture designed for ex-

ecuting applications in parallel on the new unified GPU architecture. In this

thesis we focus on finding efficient parallel mappings of existing algorithms to

the massively parallel GPU using CUDA. It is important to fully understand the

architecture of the modern massively parallel GPU and CUDA programming model

before further discussing our primary contributions. In this chapter we provide

background information on the GPU and CUDA detailing: the hardware of a

CUDA compatible GPU, the CUDA programming model including how it must

be utilised when developing parallel applications and the considerations that must

be taken into account when developing for parallel execution on the GPU, and

recent advancements made to the GPU hardware, the CUDA software toolkit and

support for new processor architectures (notably ARM).
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2.2 CUDA hardware

First and foremost a CUDA compatible GPU is a separate processing unit that

runs alongside the CPU. A modern desktop computer may be equipped with a

single GPU or multiple GPUs depending on the configuration. A high-end desktop

NVIDIA GPU can be purchased for around £500 and easily added to a standard

motherboard. This enables developers to conveniently upgrade the GPU or add

GPU support irrespective of the rest of their system. It is important to note that

the GPU runs asynchronously to the CPU and therefore work can be distributed

between the CPU and GPU [29]. Work can either be executed on the GPU blocking

the CPU or executed on the GPU and asynchronously notify the CPU the work has

completed. Typically an application will use one of two methods when scheduling

work to the GPU. The first method relies upon a high level of parallelism in an

application and uses the GPU alongside the CPU in parallel. The second method

is suited to an application where events must strictly execute sequentially and each

step is dependent on the previous. A computationally expensive region of the

application is executed on the GPU, halting execution on the CPU, until the GPU

has completed the unit of work. Both methods highlight the concept of using the

GPU as a coprocessor alongside the CPU.

Since the introduction of the unified GPU, the typical architecture of a CUDA-

compatible GPU consists of a scalable array of threaded streaming multiprocessors

(SM), each containing a subset of stream processors (SP) that share control and in-

struction logic [5]. The number of SMs varies between devices with low-end devices

having far fewer than high-end devices and CUDA applications scale transparently

to the number of SMs available. The combination of multiple SMs form a CUDA

block and the number of SMs required to constitute a block varies between each

generation of CUDA. Each SP can also be known as a CUDA core and the total

number of CUDA cores per device has increased significantly since the launch of

the first generation of CUDA GPU. For example, the first flagship CUDA GPU

(8800GTX) was equipped with 128 CUDA cores and this has risen to 2688 CUDA

cores for the latest flagship CUDA GPU (Titan). From this we can see that the

massively parallel architecture has increased over time with more CUDA cores
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now available for parallel execution. There has also been considerable continued

improvements to the clock rate, available memory, memory speed and bandwidth.

In Fig. 2.1 we show the increase in floating point performance over the last 10

years on Intel CPUs and consumer level GeForce GPUs [30]. NVIDIA note that

the dramatic increase in floating point performance on the GPU is due to the GPU

specialising in graphics and therefore highly parallel intensive computation. For

this reason the GPU assigns more transistors to data processing [30]. The major

jumps in GPU performance of single and double precision data correspond to each

major GPU hardware release for example from Fermi to Keppler (580 to 680)

Figure 2.1: A comparison of the floating point performance.

Each GPU has access to a variety of memory types each possessing a range of

different properties such as size, speed, location, volatility and built-in caching. In

Section 2.3.2 we will discuss the implications this has on the software model and

the affect on application performance. Each GPU has its own high-speed physical

memory on the PCB of the GPU and the memory space of the GPU is separate

to that of the CPU. Data available on the host (CPU) must be transferred to the

device (GPU) as the device is unable to access the host memory space. The size

of physical memory available on the PCB varies depending on the device and as

expected high-end devices typically provide more memory. The current flagship

Tesla GPU provides 6GB of high-speed GDDR5 memory.
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2.3 The CUDA programming model

As previously mentioned, CUDA allows developers to execute methods in parallel

directly on the GPU using a parallel programming interface. These parallel methods

are known as kernels and are defined using the specifier global at the start of

the method signature. When a kernel method is executed, the application moves

execution from the host (CPU) to the device (GPU) [5]. NVIDIA note that unlike a

conventional C function, a CUDA kernel is executed N times by N parallel CUDA

threads [30]. It it important to note that kernels execute asynchronously and as

a result kernels cannot return values. However, as expected, kernels can interact

and write to memory but sequential execution must be blocked if subsequent stages

depend on the results so as to avoid race condition synchronisation issues (see 2.3.3).

In the following subsections we will describe how kernels execute in parallel using

the block and thread model, the memory types available for CUDA threads and

execution synchronisation. Within each subsection we will also discuss common

implementation issues and design considerations. We direct the reader to the

NVIDIA programming guide for additional information regarding CUDA [30].

2.3.1 Blocks and Threads

When a kernel method is executed, the execution is distributed over a grid of thread

blocks as illustrated below in Fig. 2.2. Each of the thread blocks contains a subset

of parallel CUDA threads which all in turn execute the kernel method.

Grid

...

Block (0,0)

...

Block (1,0)

...

Block (2,0)

...

Block (3,0)

...

Block (0,1)

...

Block (1,1)

...

Block (2,1)

...

Block (3,1)

Figure 2.2: A two-dimensional arrangement of 8 thread blocks within a grid.
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Blocks

Within the CUDA grid, thread blocks can be arranged into a one-dimensional, two-

dimensional or three-dimensional formation [30] (an example of a two-dimensional

arrangement can be seen in Fig. 2.2). Each thread block contains a number of

parallel threads that can only directly interact with threads within the thread

block. Each block has a unique position in the grid and this can be determined

at run time by each thread. The number of thread blocks and their dimensional

arrangement can be defined by the application before or after compilation and

will vary depending on the usage. For example, when working with images, a

2-dimensional arrangement is best suited as this matches the two-dimensional

array holding the pixel data (although a one-dimensional array could be used with

additional calculations to determine the position of the block within the grid).

NVIDIA note [30] that thread blocks must be required to execute independently

and this is key to the mapping of thread blocks to SMs. There can be no inferred

or presumed order of execution and parallelism between thread blocks. As a result

each block must be self contained. The number of thread blocks chosen for each

kernel execution should be sufficiently high so as to utilise all of the parallel cores

available. During execution we must assume that each block could be the first or the

last block to execute. This execution independence allows blocks to be distributed

across a variable number of processing elements and executed in parallel [30].

However, as multiple blocks can execute in parallel we must be aware of data

integrity when accessing memory outside of the block thus necessitating the use

of atomic operators (see 2.3.3) that respect the order of access. Farber notes [29]

that NVIDIA’s insistence on thread block independence might also be indicative of

transparent scheduling execution across multiple devices in future releases.

Threads

Within each thread block is a collection of parallel threads. Older cards such

as the G80 can support up to 768 parallel threads per block and more recent

Fermi cards increased that limit to 1024. The total number of threads per kernel

execution is equal to the number of threads per thread block multiplied by the
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number of thread blocks. For example executing 128 thread blocks each with

1024 threads would result in 131072 threads each executing the same kernel. Each

parallel thread is only able to communicate with other threads in that block and

this is facilitated by shared memory. Within a block, threads execute in parallel

in smaller sub-blocks known as warps. Each thread warp contains either 16 or 32

threads depending on the compute version and generation of CUDA GPU. There

is no guarantee as to what order the warps will execute in; however, within a warp

threads can communicate directly with each other using warp level primitives such

as ballot(). As with thread blocks, the number of threads per block is configurable

at runtime but each thread block must have the same number of threads. As a

general rule, CUDA applications must keep the GPU busy and achieve a high level

of occupancy. NVIDIA recommend that at least 64 threads are used per thread

block [30]. Threads can also be configured into a one-dimensional, two-dimensional

or three-dimensional formation. The arrangement of threads within a thread block

is user configurable and certain configurations may suit particular applications [30].

For optimum performance, all threads within a warp must follow the same

execution path. Developers must pay attention to the control flow of each warp

so as to avoid branching conditional statements. For example, if statements may

cause the warp to branch as CUDA cannot process the resulting multiple paths from

this branching statement in parallel. When threads follow different execution paths

within a warp, the execution is serialised resulting in a loss of parallelism within the

warp until after the branching region has finished execution. This process of warp

serialisation due to branching is known as warp divergence and must be avoided

if possible. To avoid warp divergence we must ensure that all threads strictly

follow the same control flow throughout the kernel execution even if this results in

performing redundant computation to align all threads within the warp.

The CUDA programming model allows applications to support fine-grained

parallelism capable of instantiating hundreds of thousands of parallel threads for

execution on a single task. In contrast CPU applications often apply coarse-grained

parallelism typically focusing a significantly lower number of threads on distinctly

different tasks. As each of the threads executes the same kernel, we can classify

this parallel model of execution as single-program, multiple-data (SPMD) [5].
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2.3.2 Memory types

CUDA exposes a set of different memory types to developers, each with unique

properties that must be exploited in order to maximise performance [30]. Each

CUDA thread has access to all of the different memory types but it is up to the

developer to know which memory type is applicable for their particular application

and how best to utilise each of the different types for performance gains. In Fig. 2.3

we present an overview of the hierarchical CUDA memory model highlighting each

of the different available memory types and the accessibility of each memory type.

We will now review each of the memory types, detailing their unique properties,

accessibility, scope and implementation considerations.

(Device) Grid

Global
Memory

Constant
Memory

Block (0,0)

Shared Memory

Registers

Thread (0,0)

Registers

Thread (1,0)

Block (1,0)

Shared Memory

Registers

Thread (0,0)

Registers

Thread (1,0)

Figure 2.3: An overview of the hierarchical CUDA memory model.
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Register Memory

The first type of memory is 32-bit register memory. Registers are the fastest form

of storage and each thread within a block has access to a set of fast local registers

that exist on-chip. However, the accessibility of register memory is severely limited

as each thread can only access its own registers. As the number of registers per

block is limited, blocks with many threads will have fewer registers per thread. If a

thread block uses a high number of threads, each using multiple local variables, the

block may use more registers than available. In this case the registers will spill into

the significantly slower region of local memory resulting in loss of performance.

During compilation the number of spilled registers is presented to the developer

and care must be taken to keep this number to a minimum. A kernel may fail to

execute if there are not enough registers or shared memory for at least one block to

execute [30]. In short, registers are the fastest of all the available memory types but

are in limited supply, must be managed to avoid register spilling and do not allow

inter-thread communication facilitating the need for additional memory types.

Shared Memory

For inter-thread communication within a thread block, shared memory is the fastest

available memory type and must be used to achieve optimum performance. As

with register memory, shared memory exists on-chip but is accessible to all threads

within the block. This increases the scope of accessibility from register memory and

thus facilitates fast inter-thread communication within the thread block without

moving to off-chip memory. Shared memory is slower than register memory and

if a thread can execute without sharing information with other threads, shared

memory should not be used over register memory as this will reduce the execution

performance. When possible, shared memory should also be cached into local

register memory to avoid additional memory reads (providing the data in shared

memory is constant and using additional variables will not exhaust the number of

registers available). Shared memory is extremely important for increasing applica-

tion performance. When used correctly, data can be cached locally as to reduce

the dependency on additional expensive reads to slower off-chip memory.
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The amount of shared memory per block is limited to 16KB or 48KB depending

on the split of memory with the L1 cache [29]. Shared memory is arranged

into banks and developers must carefully manage access to these banks. On

Fermi CUDA devices with compute version 2.0, shared memory is arranged as

32 consecutive 32 bit (4 byte) wide memory banks each with a bandwidth of 32

bits per cycle. This configuration is designed to permit each bank to load a single

4 byte word per clock cycle. For optimum performance, each thread in a warp (32

threads) must access a single 4 byte word from a different memory bank. If two

or more threads attempt to access a single memory bank this is known as a bank

conflict and all subsequent memory requests are serialised. To avoid serialisation,

developers must explicitly manage all shared memory reads within a warp to access

different memory banks. If just a single thread accesses the same bank as another

thread within the warp, this will trigger a bank conflict. An exception to this rule

is when all threads within a warp access the same word in a memory bank. In this

case the value can be broadcast to all the threads within the warp using a single

read operation opposed to multiple serialised reads [29]. Since compute version 3.0,

the bank size is now adjustable and can be either set as 4 or 8 bytes. This allows

developers to easily support double precision words without bank conflicts [30].

Inter-thread communication without shared memory

Aside from shared memory, threads can also communicate directly within a warp by

using warp vote functions. The three available warp vote functions allow threads in

a warp to communicate to other threads in the warp via a reduction-and-broadcast

operation [30] and without using shared or global memory. The mechanism behind

the warp vote is simple; each of 32 threads pass an integer into the function and

the result is then broadcast to all threads in the warp. An example warp vote

operation is the all function. The result of the all warp vote is only true if all of

the 32 threads input a positive integer. In Fig. 2.4 we illustrate multiple threads

across thread warps within a single thread block each executing the all warp vote

function at the start of the kernel. In the first warp, the input into the vote function

from each thread is positive and therefore the warp vote returns true. As a result

all threads within the first warp follow the true execution path and so the warp
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does not branch or trigger warp divergence. In the second warp the input contains

non-positive integers and so the warp vote returns false. The warp then proceeds

to follow the false execution path also without branching. The warp vote functions

provide one of the most useful techniques to help reduce warp divergence and thus

serialising the warp. Warp voting permits all threads in the same warp to check

that a condition has been met before performing a potentially branching statement.

By balloting threads within a warp, we can dynamically change the execution path

depending on the result of the thread consensus reached via voting functions within

the warp without using shared memory or serialising the warp.

__all() warp vote

...T1

1

T2

1

T3

1

Tn

1

Conditional against result

True path False path

...

Warp 1

__all() warp vote

...T1

1

T2

0

T3

0

Tn

1

Conditional against result

True path False path

...

Warp 2

__all() warp vote

...T1

1

T2

1

T3

1

Tn

1

Conditional against result

True path False path

...

Warp n

...

Figure 2.4: An example of multiple threads across separate thread warps executing
the CUDA all warp vote function and following different execution paths.

As of compute version 3.0, newer Kepler GPUs can also communicate directly

with other threads within their warp using the new warp shuffle functions [31].

The four available warp shuffle functions (shuffle, shuffle up, shuffle down and

shuffle xor) allow single 4 byte variables to be transferred simultaneously between

threads in each warp. As with warp vote functions, warp shuffle functions do not

require the use of shared memory and only use one instruction to share variables as

opposed to three [32]. The shuffle method must be executed twice sequentially when

transferring larger 8 byte variables such as doubles. By using the shuffle function

the amount of shared memory used per warp can be reduced which can result in a

higher occupancy [32]. As each of the threads within the warp execute in parallel,

there is no need to synchronise the warp after performing either a warp vote or

warp shuffle thus further increasing the performance of the warp level operations.
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Global, Constant and Texture Memory

For inter-block communication, larger data sets, and persistent memory, threads

have access to global (DRAM), constant and texture memory. The lifetime of global,

constant and texture memory is the lifetime of the application (as opposed to

register and shared memory which is only the duration of a single kernel execution).

If an application requires memory persistence between multiple kernel executions,

global, constant or texture memory must be used. From the device and within

kernel execution, global memory has read and write access where as constant and

texture memory only has read access. Constant and texture memory can only

be written to by the host (CPU) prior to kernel execution. Since the release of

compute version 2.0, access to global memory is now automatically cached using

L1 and L2 caches. As previously mentioned, the amount of shared memory and the

size of the L1 cache can be adjusted by the developer according to the use case and

requirements [29]. For example, if each each thread block requires a large amount

of shared memory the size of the L1 cache can be reduced to accommodate this.

If global memory is accessed frequently (or randomly) the size of the L1 cache can

be increased to hide the access latency by reducing the amount of shared memory

per block. Texture and constant memory also benefit from caching, but the initial

load will still be significantly slower than accessing shared or register memory.

Two of the CUDA implementation best practices detailed by NVIDIA [31] are

to minimise redundant accesses to global memory and if possible to coalesce these

global memory accesses. One common practice to minimise redundant access to

global memory is to cache global memory locally in shared memory. A simple

approach can instruct each thread to copy a value from global memory into shared

memory. After the initial load all subsequent global memory read accesses would be

directed to the shared memory array thus avoiding excessive costly global lookups.

If required, any changes can be written from shared memory back into global

memory at any point during the execution of a kernel. By replacing slow global

memory accesses with fast shared memory reads, the execution time of a kernel

can be significantly reduced. To further increase the execution performance, these

initial reads can also be coalesced. When global memory reads are coalesced, a
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single memory transaction can return an entire section of memory for a warp as

opposed to issuing multiple reads for each thread. Prior to the release of compute

2.0, coalescing global memory accesses required strict alignment of threads to

consecutive memory addresses within a section of memory. After compute 2.0

these restrictions were relaxed and the penalties of not coalescing memory reads

were mitigated by the inclusion of an additional L1 cache. To further reduce the

number of memory reads issued, each thread within a warp should access the same

128 byte region of global memory (as illustrated in Fig. 2.5 and Fig. 2.6).

Thread block

...

Global Memory

Figure 2.5: An example of all threads within a block accessing the same 128 byte
region of global memory resulting in a single 128 byte load.

Thread block

...

Global Memory

Figure 2.6: An example of the threads from the same block accessing two 128 byte
regions of memory resulting in two separate global memory loads.

To summarise: when designing a kernel for parallel CUDA execution, it is important

to fully and properly use the three main memory types (register, shared and global).

Kirk and Hwu [5] note, global memory is the slowest of all the memory types but

often large, whereas shared memory is fast but extremely limited and must be

explicitly managed in order to maximise performance. Register memory is the

fastest of all the memory types but has limited accessibility restricted to each

thread, and exhausting the number of registers can result in costly spilling.
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2.3.3 Synchronisation

Key to the design of any parallel algorithm for execution on the GPU is synchroni-

sation. As there are multiple memory types and levels of abstraction (from CUDA

threads to thread blocks), there are also multiple types of parallel synchronisation.

In the following subsections we review each of the synchronisation types available.

Warp Synchronisation

Threads within a warp execute non-branching regions of kernels in parallel. There

is implicit synchronisation between all threads as long as the warp execution path

does not diverge. However, NVIDIA suggest avoiding warp-synchronous program-

ming as this can lead to synchronisation issues and race conditions; furthermore,

implementations often incorrectly assume that the number of threads in a warp

will always be 32 [31]. NVIDIA note that although warp-synchronous implemen-

tations might function correctly now, changes to the CUDA toolchain and CUDA

capable hardware might may easily break these implementations. However, warp

synchronous programming can lead to improved execution times.

Thread Synchronisation

There is no guarantee as to what order warps will execute, necessitating the usage

of additional block synchronisation techniques where inter-thread communication

is required across multiple warps. The method syncthreads() will block the

execution of threads within a block up to a point in the kernel. After all threads have

reached the syncthreads() method the kernel execution will resume ensuring block

synchronisation. The syncthreads() method should not be called within an if-then-

else statement unless all threads follow the same execution path as this may cause

a deadlock resulting in the kernel timing out and failing to execute successfully. As

of compute 2.0 there are three variants of the syncthreads() method that allow

similar voting functionality to warp vote. An example of a syncthreads() method

variant is syncthreads count(). This variant method takes an integer from each of

the threads in the block, synchronises all threads to a point and returns the number

of non-zero integers input to each of the threads.
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Block synchronisation

There is no built-in support for block synchronisation in CUDA during kernel

execution. This allows the GPU to execute each block independently and adjust

the block execution scheduling dynamically according to the number of CUDA

cores available on the GPU. As a result there is no guarantee as to the execution

order of blocks or which blocks are currently executing at any given point and

developers should not presume ordering. In Fig. 2.7 we illustrate a simple alterna-

tive to global synchronisation by splitting one kernel into two smaller kernels. A

blocking synchronisation method cudaDeviceSynchronize() is used to ensure that

all thread blocks have fully completed their kernel execution. A second kernel is

then scheduled for execution by the host with the guarantee that the previous kernel

had finished execution therefore achieving global synchronisation up to a point.

Kernel operations

...T1 T2 T3 Tn

Thread block 1 Kernel operations

...T1 T2 T3 Tn

Thread block 2

Kernel operations

...T1 T2 T3 Tn

Thread block 3

Kernel operations

...T1 T2 T3 Tn

Thread block 1

Kernel operations

...T1 T2 T3 Tn

Thread block 1

Kernel operations

...T1 T2 T3 Tn

Thread block 1

Figure 2.7: An example of global thread block synchronisation via executing the
function cudaDeviceSynchronize() to explicitly synchronise all blocks.
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One restriction with this method of achieving global synchronisation is that

additional expensive memory operations may be required. As previously men-

tioned, the lifetime of shared memory is limited to the scope of a single kernel.

Therefore the contents of shared memory will have to be copied to global memory

in the first kernel and back from global memory to shared memory in the second

kernel. To avoid this issue, other methods have been proposed to achieve global

synchronisation such as using atomic operations, but such practices are discouraged

by NVIDIA as they could be unsupported after subsequent new releases of CUDA.

Atomic Operations

As there is no guarantee as to which order threads, warps and thread blocks

will execute, additional atomic operations are provided to read and update global

memory values without interruption from other threads accessing the same region

of memory. Atomic operations perform read-modify-write on a region of global

memory. Each operation locks a region of memory until the initial operating

thread has read the value, modified the value and written the value back to global

memory [30]. After the lock is placed on a region of memory, all other threads must

wait until this lock is removed before accessing the same region of memory [33].

A simple example of an atomic operator is atomicAdd. The atomicAdd oper-

ation reads a word in global memory, adds a value to this word and writes the

value back to global memory (read-modify-write). Without atomic operations two

threads could potentially read the same value simultaneously, independently modify

the value and write back to global memory with the second write overwriting the

value of the first write. In this scenario the value written by the first thread is lost.

By using the atomicAdd method, the second thread would wait until the first thread

has fully completed the read-modify-write operations ensuring the value written to

global memory is the initial read value for the second thread. Atomic operations

are more expensive than read and write global memory accesses. The use of atomic

operations should be limited to the absolute minimum to avoid scenarios where

multiple threads are waiting on a single region of memory. For example, instead

of using atomicMax, threads within a block should first use shared memory to

compute the maximum value so as to avoid each thread using an atomic operation.
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2.3.4 OpenCL

After the release of CUDA, an alternative open standard general-purpose program-

ming API was released under the name OpenCL (Open Computing Language) [5].

Initially Developed by Apple and subsequently the Khronos Group, OpenCL allows

developers to harness the GPU and multi-core CPUs for general-purpose parallel

computation. However unlike CUDA, OpenCL has multi-vendor and multiplatform

support thus allowing parallel code to be executed on AMD and NVIDIA GPUs

as well as x86 CPUs [5]. This gives OpenCL the advantage of portability between

platforms. However as Kirk and Hwu [5] note, OpenCL programs can be inherently

more complex if they choose to accommodate multiple platforms and vendors.

Developers must use different features from each platform to maximise performance

and so multiple execution paths dependent on the platform and vendor must be

included. This can result in each platform achieving a different execution time

depending on the input algorithm, mapping and usage of platform specific APIs

that may give an advantage to that specific platform. Kirk and Hwu also note

that the design of OpenCL is influenced heavily by that of CUDA and as a result

working with OpenCL can be very similar to CUDA. As with CUDA, regions of

the application that execute in parallel are encapsulated in kernels. OpenCL also

has a similar concept of CUDA blocks and threads which have been renamed to

Work group and Work item respectively. The current index of the block within the

grid of all blocks has also been renamed as the NDRange. To facilitate support for

multiple devices across platforms and vendors, OpenCL introduces the concept of

an OpenCL context. Each device is assigned to a context and work is scheduled

for execution in a queue for that context [5]. For additional information regarding

OpenCL, we direct the reader to the Khronos Group OpenCL specification [34].

In this thesis we choose to use NVIDIA CUDA as the primary programming

model along with NVIDIA GPUs. This is due to current API capabilities, better

development and profiling tools and improved GPU hardware. This unfortunately

comes with the sacrifice of portability between GPU vendors however as we previ-

ously noted the two parallel models are very similar. We envisage that our parallel

implementations could be ported to use OpenCL and ATI GPUs if necessary.
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2.4 Recent advances

In this section we detail the recent advances made to CUDA since 2007.

2.4.1 Fermi, Kepler and Maxwell

CUDA is now a proven technology in its sixth major toolkit release and as of

September 2014, fourth major hardware revision (Maxwell). From the initial CUDA

compatible GPU, each major hardware revision has made significant improvements

to the speed, number of CUDA cores, on-chip cache sizes and clock speed of the

GPU. Improvements have also been made to the programmability of the CUDA

applications reducing the need for strict memory coalescing and providing better

automatic caching of global memory accesses. In Table 2.1 we compare the high-end

CUDA devices showing the considerable improvements from 2006 to 2014 [35].

Tesla Fermi Kepler Maxwell
Card Name 8800 GTX GTX 580 GTX 680 GTX 980
Chip G80 GF110 GK104 GM204
CUDA Cores 128 512 1536 2048
Base Clock 575 MHz 772 MHz 1006 MHz 1126 MHz
Memory Clock 900 MHz 2004 MHz 6008 MHz 7010 MHz
Shared Memory 16 KB 48 KB 48 KB 96 KB
Memory 768 MB 1536 MB 2048 MB 4096 MB
Memory Bandwidth 86.4 GB/s 192.4 GB/s 192.3 GB/s 224.3 MB

Table 2.1: A comparison of consumer level CUDA GPUs for each hardware revision.

Fermi

In an NVIDIA whitepaper, Patterson describes how the architectural hardware

advancements from Tesla to the Fermi architecture are as significant as NV40 (pre-

CUDA) to Tesla [36] and goes on to define the top innovations made in Fermi. Of

these innovations significant improvements have been made in: the performance

(and quality) of floating point operations; on-chip cache sizes; and the performance

of atomic instructions. Fermi also introduced Error Correcting Codes (ECC) to
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main and cached memory alongside a new instruction set for increased performance.

The increase in floating performance results in double precision floats now running

only half the speed of single. As previously mentioned Fermi increased the on-chip

cache size from 16KB shared memory to 48KB of configurable L1 cache with an

additional 768KB of L2 cache. By increasing the shared memory size, Patterson

describes how applications with lower levels of parallelism can hide DRAM latency

more efficiently. Additionally the L2 cache alleviates the need for complex shared

memory caching patterns for applications with random access patterns albeit with

a slight penalty for the L2 latency. By reducing the time to switch contexts, Fermi

allows concurrent kernel execution with bi-directional parallel memory transfers.

This benefits asynchronous applications where the results of one kernel are not

necessarily used immediately, or in the case where memory can be transferred in

small chunks, a kernel is invoked whilst the next transfer is being completed. The

results from the kernel can then be transferred back to the host whilst the next

chunk of memory is transferred across. Fermi also boasts atomic instructions which

are around 5x to 20x faster than the Tesla as they can be stored in the L2 cache.

Kepler

Following on the success of the Fermi architecture, Kepler tripled the number

of CUDA cores, increased GPU performance and decreased power consumption.

NVIDIA note that the architecture of Kepler extends the same programming model

as Fermi and so the best practices discussed for Fermi are applicable to Kepler.

Kepler also introduced warp shuffle methods (for communication between threads

in a warp), increased parallelism and increased shared memory bandwidth. The

second generation of Kepler GK110 devices also introduced dynamic parallelism.

Dynamic parallelism allows kernels to launch additional kernels and thus nest kernel

execution. This allows the GPU to dynamically create additional work starting with

a coarse grained first kernel and executing finer grained kernels for specific regions

when required. A simple example would be processing an image with mostly empty

regions: the first kernel would identify regions of interest, executing nested kernels

when areas of interest are discovered. Kepler also allows up to 16 kernels to execute

simultaneously so further increasing parallelism.
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Maxwell

Maxwell is the most recent CUDA compatible GPU architecture initially announced

by NVIDIA in mid-February 2014 with the GeForce 7 Series. A second more

powerful iteration was released in mid-September 2014 along with the new GeForce

9 Series of GPU. As with Kepler, Harris notes [35] that developers will not have

to change their existing CUDA implementations to benefit from the increased

performance and efficiency benefits. However, to fully utilise the architecture

developers should make use of the new hardware and software features available.

The Maxwell architecture brings significant CUDA hardware improvements. In

Table 2.1 we show the increase in shared memory from the first generation of

CUDA compatible GPUs to the latest iteration of Maxwell GPUs. The Maxwell

architecture doubles the amount of shared memory available for each thread block.

Applications that were previously exhausting the amount of shared memory will

benefit from this change when built against the latest compute version, and Har-

ris [35] notes that shared memory bound kernels can achieve up to double the

occupancy compared to Kepler GPUs. Developers can no longer specify the split

between L1 and shared memory and therefore shared memory is now locked at the

higher amount of 96KB. In addition to increased shared memory, the L2 cache is

now four times the size of the previous Kepler generation, so increasing performance

of bandwidth-bound CUDA applications [35]. Another significant increase is the

number of active thread blocks per SM to 32 (up from 16). As a result of this change,

each SM will be able to execute double the number of thread blocks potentially

improving occupancy of kernels with thread blocks with low thread counts [35].

Maxwell brings a new SM design from the previous Kepler generation and has

been renamed as SMM (previously SMX). The new SMM design achieves around

1.4x performance per code compared to the older Kepler SMX. For a detailed

comparison of the key differences between the SMM and SMX we refer the reader to

the NVIDIA GTX 980 whitepaper [37]. Along with increased performance Maxwell

also brings significantly increased power efficiency. Maxwell provides double the

performance per watt against the Kepler generation of GPU [37] while maintaining

the same 28-nm manufacturing process highlighting the efficiency of the new SM.
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2.4.2 Embedded and low power applications

In mid-2013 NVIDIA announced [38] a new release of the CUDA Toolkit (version

5.5) with support for the ARM processor architecture alongside the existing x86

architecture support. This enabled parallel CUDA applications to be executed

on a wider range of devices and form factors. ARM processors are small low-

powered processors typically found in mobile devices that are based on the ARM

processor architecture. The ARM processor architecture is similar to a reduced

instruction set computing (RISC) architecture with various enhancements to allow

the processors to archive higher performance and low power consumption [39].

ARM-based processors are manufactured based on the IP licensed directly from

ARM and fabricated by partners such as Samsung, Qualcomm or NVIDIA. These

processors are generally cheap and sold in large volumes. ARM report that around

16 million processors are sold every day with around 30 billion sold to date. Due

to the low power consumption, efficiency, small size and cost, these low-powered

processors are found in mobile devices such as phones and recently, smart watches.

Parallelism is also key to the efficiency of ARM processors with mobile devices

now routinely using 2-8 CPU cores. ARM provide a SIMD engine known as NEON

for parallel processing on ARM CPUs with emphasis on multimedia applications

but also general purpose applications such as DSP processing, game processing and

image processing [40]. Similarly to CUDA, by increasing the occupancy of the ARM

processor using NEON, throughput can be increased and the power consumption

of the CPU can be reduced. To further still increase performance and reduce the

power consumption, ARM introduced a new architecture known as big.LITTLE

which couples modern high performance ARM CPUs with lower power, smaller,

efficient ARM CPUs switching between the two depending on the context [41].

ARM also produce their own GPUs known as Mali and can be included on the

SoC (system on a chip). However, partners can chose to include their own GPUs

(for example, NVIDIA use their own Tegra mobile GPU). Along with the initial

ARM toolkit, release NVIDIA produced a small ARM-based device development

board (codenamed Kayla) featuring an ARM CPU and an NVIDIA CUDA com-

patible GPU. Until this release, execution of CUDA code was limited to x86-based
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devices which severely limited the potential execution of highly parallel CUDA

applications to desktops and laptop devices. By extending support to multiple

processor architectures (including ARM) CUDA can now target mobile, embedded

and low power applications for potential speed increases. This greatly increased the

scope of CUDA as optimised parallel code can now bring potential speed increases

across a range of devices scaling to utilise the number of CUDA cores available.

Following the ARM announcement in 2014, NVIDIA released the Jetson TK1

development kit. Expanding on the previously released low powered ARM based

board, the TK1 significantly improves the parallel capabilities and includes a new

GPU with 192 CUDA cores based on the Kepler architecture.

2.4.3 CUDA roadmap

At NVIDIA GTC 2014, NVIDIA announced Pascall. The next generation GPU

architecture and the successor to the recently released Maxwell architecture. Pascal

is due to arrive in 2016 and brings a radically redesigned GPU layout featuring 3D

memory and reducing the physical footprint of memory on the GPU. 3D memory

stacks multiple wafers to increase bandwidth, capacity and energy efficiency. As a

result of the redesigned GPU layout, Pascal GPUs are around one third of the size of

an existing PCIe card. Pascal will also introduce NVLink, a high speed alternative

to PCIe with significantly increased bandwidth for sharing data from the GPU to

GPU and GPU to CPU (providing that the CPU is NVLink compliant).
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CHAPTER 3

Parallel Ant Colony Optimization on the GPU

This chapter is based on the following publication:

Improving Ant Colony Optimization performance on the GPU using CUDA [1].

3.1 Ant Colony Optimisation

Ant algorithms model the observed behaviour of real ants to solve a wide variety of

optimisation and distributed control problems. Dorigo and Stützle [19] note that ant

algorithms replicate the self-organizing and co-ordinated principles of real ant colonies.

This allows artificial ants to solve complex tasks where good solutions are an emergent

property of these basic principles. An ant algorithm consists of two main stages; building

a solution and feeding back information to other ants. This process is repeated and the

next iteration of solution construction is influenced by the information shared from the

last iteration. This feedback mechanism helps ants to improve their solutions constructed.

As a result the ants will communicate improved solutions over time and converge on better

solutions. Ant Colony Optimisation (ACO) [42] is a population-based metaheuristic that

can be used for modelling discrete optimisation problems. One of the many problems

ACO has been successfully applied to is NP-hard the Travelling Salesman Problem (TSP)

in which the goal is to find the shortest tour around a set of cities thus minimising

the total distance travelled. Dorigo and Stützle [19] remark that when modelling new

algorithmic ideas, the TSP is the standard problem to model due its simplicity; often

algorithms that perform well when modelling the TSP will translate with similar success

to other optimisation problems. When modelling the TSP, the simplest implementation

of ACO, Ant System (AS), consists of two main stages: tour construction and pheromone
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update (an optional additional local search stage may also be applied once the tours have

been constructed so as to attempt to improve the quality of the tours before performing

the pheromone update stage). The process of tour construction and pheromone update

is applied iteratively until a termination condition is met. There are many different

termination conditions including; performing a set number of iterations of the algorithm,

terminating when a solution with a set range is constructed or when an optimal solution

is obtained. By a process known as stigmergy, ants are able to communicate indirectly

through a pheromone matrix. This matrix is updated once each ant has constructed a

new tour and will influence successive iterations of the algorithm.

3.2 Solving the Travelling Salesman Problem

In order to solve the TSP we aim to find the shortest tour around a set of cities from

a given start point and returning to the starting point. A complete tour contains each

of the available cities. Each city must be visited once (excluding the starting city) to

produce a tour. An instance of the problem is a set of cities where for each city we are

given the distances from that city to every other city. These inter-city distances are often

represented using a matrix of size N×N . In more detail, an instance is a set N of cities

with an edge (i, j) joining every pair of cities i and j so that this edge is labelled with

the distance di,j between city i and city j. Whilst the aim is to solve the TSP by finding

the shortest-length Hamiltonian circuit of the graph (where the length of the circuit is

the sum of the weights labelling the edges involved), the fact that solving the TSP is NP-

hard means that in practice we can only strive for as good a solution as possible within

a feasible amount of time (there is usually a trade-off between these two parameters).

Throughout our research we only ever consider symmetric instances of the TSP where

di,j = dj,i, for every edge (i, j), as opposed to non-symmetric instances where di,j does not

equal dj,i. The AS algorithm came after three initially-proposed ant algorithms [19] ant-

density, ant-quantity and ant-cycle. With ant-density and ant-quantity the pheromone

levels were updated after every ant move. Ant-cycle improved on this and only updated

the pheromone levels after all ants have moved. The amount of pheromone deposited

by each ant in ant-cycle was proportional to the quality of the tour further increasing

the quality of the tours constructed. AS now refers to ant-cycle due to the convergence

performance and solution quality over the other two variants. AS and consists of two

main stages (see Fig. 3.1): ant solution construction; and pheromone update.
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procedure ACOMetaheuristic
set parameters, initialise pheromone levels
while (termination condition not met) do

construct ants’ solutions
update pheromones
local search (optional)

end
end

Figure 3.1: An overview of the Ant System algorithm. [19]

Solution construction and pheromone update are iteratively repeated until a final

termination condition is met such as a minimum tour length or number of iterations.

The solutions can be optionally improved after each iteration by performing a local search

operation such as 2-opt, 3-opt or k-opt. The 2-opt search algorithm removes two edges

in the final tour and reorganises the edges to potentially reduce the total tour length

(with 3-opt removing 3 edges and so on). For example, by removing the edge (c, d) and

(h, g) we can insert two new edges between (c, g) and (d, h) (illustrated in Fig. 3.2). If

the length of the new tour (with the two new edges inserted) is lower than the tour prior

to performing 2-opt (with the original two edges) the changes are kept. If the length

of the tour is not lower, the changes can be disgarded and the process repeated until

some termination condition is met. The colony contains m artificial ants, where m is a

user-defined parameter. In the tour construction phase, these m ants construct solutions

independently of each other.
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Figure 3.2: An example of performing the 2-opt operation on a tour. The edges
between (c, d) and (h, g) and are replaced with new edges between (c, g) and (d, h).
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3.2.1 Solution Construction

To begin, each ant is placed on a randomly selected initial starting city. All ants within

the colony then repeatedly apply the random proportional rule independently, which

gives the probability of ant k moving from its current city i to some other city j, in

order to construct a tour (the next city to visit is chosen by ant k according to certain

probabilities). Each ant in the colony will perform this action n−1 times (where n is the

number of cities) before returning to the respective initial randomly selected start city

thus constituting a complete and valid tour. At any point in the tour construction, ant

k will already have visited some cities. A complete tour is considered valid if each city is

visited exactly once (excluding the starting city). To stop an ant re-visiting previously

visited cities, we maintain a set of legitimate cities to which an ant may next visit and this

is denoted as Nk. This list is updated after the next city is selected to avoid repeatedly

re-visiting the same city. Suppose that at some point in time, ant k is at city i and the

set of legitimate cities is Nk. The random proportional rule for ant k moving from city i

to some city j ∈ Nk is defined via the probability:

pkij =
[τij ]

α[ηij ]
β∑

l∈Nk [τil]α[ηil]β
, (3.1)

where: τil is the amount of pheromone currently deposited on the edge from city i to city

l; ηil is a parameter relating to the distance from city i to city l and which is usually set

at 1/dil; and α and β are user-defined configurable parameters to control the influence of

τil and ηil, respectively. Dorigo and Stützle [19] suggest the following parameters when

using AS: α = 1; 2 ≤ β ≤ 5; and m = |N | (that is, the number of cities), i.e., one ant

for each city and thus increasing the number of tours per iteration as the size of the TSP

instance increases. The probability pkij is such that edges with a smaller distance value

are favoured and thus have a greater chance of being the next city selected by ant k.

3.2.2 Pheromone Update

For the second stage of the Ant System algorithm, the results of solution construction

must be saved to the pheromone matrix to influence subsequent iterations of tour con-

struction as ants cannot directly communicate with each other. Once all of the ants

have constructed their tours, the pheromone levels of edges must be updated. To avoid

stagnation of the population, the pheromone level of every edge is first evaporated
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according to the user-defined evaporation rate ρ (which, as advised by Dorigo and Stützle

[19], we take as 0.5). So, each pheromone level τij becomes:

τij ← (1− ρ)τij . (3.2)

Over time, this allows edges that are seldom selected to be forgotten. Once all edges have

had their pheromone levels evaporated, each ant k deposits an amount of pheromone on

the edges of their particular tour T k so that each pheromone level τij becomes:

τij ← τij +
m∑
k=1

∆τkij , (3.3)

where the amount of pheromone ant k deposits, that is, ∆τkij , is defined as:

∆τkij =

1/Ck, if edge (i, j) belongs to T k

0, otherwise,
(3.4)

where Ck is the length of ant k’s tour T k. The method of updating the pheromone

levels ensures that a shorter tour found by some ant will result in a larger quantity of

pheromone being deposited on the edges traversed in this tour. This in turn will increase

the chances of one of these edges being selected by some ant (in the next iteration)

according to the random proportional rule and becoming an edge in some subsequent tour.

Dorigo and Stützle (see [19]) note that for larger instances of the TSP, the performance

of AS decreases and thus reduces the viability of the algorithm. To constitute a valid

and complete tour, each ant must visit all of the cities available exactly once and so the

workload for each ant per iteration will increase as the tour size increases. As previously

mentioned, the number of ants recommended is equal to the size of the TSP instance

increasing the computational load as the TSP instance increases in size. Many alternative

algorithms, techniques and extensions have subsequently been proposed to reduce the

impact on performance including local search, elitist AS, rank-based AS,MAX −MIN
AS (MAX −MIN ), ant colony system and the hyper-cube framework for ACO [19].
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3.3 Parallel Ant Colony Optimisation

When sequentially executing AS, each ant in the colony iteratively builds up its own tour

with each ant being executed consecutively [19]. It is not until all ants have completed

building their tours that pheromone is deposited. Therefore each ant cannot influence

other ants during the current iteration of solution construction or pheromone update

and cab be executed independently sequentially or in parallel. This makes each stage of

ACO particularly suited to parallelisation. Dorigo and Stützle [19] note that there are

two main approaches to implementing ACO in parallel: the first maps each ant to an

individual processing element (a collection of processing elements therefore constitutes a

single colony of ants); the second maps an entire colony of ants to a processing element

(usually augmented with a method of communicating between the colonies). Multiple

colonies are often executed in parallel, potentially reducing the number of iterations

before termination as each colony works towards a solution.

3.3.1 Parallel ACO on the GPU

In this chapter we detail our work on improving parallel ACO implementations for solving

the TSP on the GPU using NVIDIA CUDA. Recent works of Cecilia et al. [20] and

Delévacq et al. [21] have shown how ACO can be successfully implemented using a data-

parallel approach (see Section 3.4.2) on the GPU using NVIDIA CUDA. The novel data-

parallel approach maps individual ants to CUDA thread blocks resulting in significant

speedups over existing methods which map individual ants to CUDA threads.

Motivated by these findings we present an improved data-parallel approach executing

both the tour construction (see Section 3.2.1) and pheromone update (see Section 3.2.2)

stages of the Ant System algorithm in parallel on the GPU for solving the TSP.

For the tour construction phase, our approach uses a new parallel implementation

of the commonly-used roulette wheel selection algorithm (proportionate selection) called

DS-Roulette. DS-Roulette exploits the modern GPU hardware architecture, increases par-

allelism, and decreases the execution time whilst still enabling us to construct high-quality

tours. For the pheromone update phase, we adopt the approach taken byMAX −MIN
Ant System, and allied with a novel implementation we achieve significant speed-ups

against a sequential counterpart and existing parallel implementations on the GPU.
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3.4 Related work

As regards parallel implementation, ACO algorithms can be categorised as fine grained

or coarse grained. In a fine grained approach, the ants are individually mapped to

processing elements with communication between processing elements being ant to ant.

In a coarse grained approach, entire colonies are mapped to processing elements with

communication between colony to colony [19] (adopting a coarse grained approach with

no communication between colonies is equivalent to executing the algorithm multiple

times on the same instance but independently). In this section we will review existing

parallel ACO contributions that target the GPU in more detail.

Catala et al. [43] presented one of the first GPU implementations of ACO targeted

at modelling the Orienteering Problem. At the time of publication, the unified GPU

was not available and CUDA had not yet been released. The implementation presented

relies upon a previous direct GPU interface using graphics paradigms to model and solve

general-purpose problems. Jiening et al. [44] implemented the MMAS algorithm to solve

the TSP. This early work was also published prior to the release of CUDA and the authors

note that their implementation was much more complex than its CPU counterpart. Their

implementation of a parallel tour construction phase resulted in a small but incremental

speedup. Using the Jacket toolbox for MATLAB, Fu et al. [45] implemented a parallel

version of MMAS for the GPU to solve the TSP. Their approach focused more on

a MATLAB implementation and less on the GPU (as parallelisation is handled by

Jacket). They reported a speedup; however, their comparative CPU implementation

was MATLAB-based which is inherently slower due to being an interpreted language.

Zhu and Curry [46] modelled an ACO Pattern Search algorithm for nonlinear function

optimisation problems using CUDA on the GPU. They reported speedups of around 250x

over the sequential implementation. Bai et al. [47] implemented a coarse-grained multiple

colony version of MMAS using CUDA to solve the TSP. Each ant colony is mapped to a

thread block and within the block each thread is mapped to an ant. Their approach yields

tours with a quality comparable to the CPU implementation but the speedup reported is

only around 2x. You [48] presented an implementation of the AS algorithm using CUDA

to solve the TSP. Each thread is mapped to an ant but each thread block is part of a

larger colony. You [48] notes that the use of shared memory is important for frequently

accessed information by each ant such as visited cities. The speedup reported for this

approach is around 2-20x when the number of ants is equal to the number of cities.
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Weiss [49] developed a parallel version of AntMinerGPU (an extension of the MMAS

algorithm). As in [47] and [48], each ant within the colony is mapped to an individual

CUDA thread. Weiss argues that this approach, coupled with the AntMinerGPU algo-

rithm, allows for larger population sizes to be considered. Weiss moves all stages of the

algorithm to the GPU to avoid costly transfers to and from the GPU, a practice that is

advocated by the programming guide to speed up CUDA applications [30]. Weiss tested

the implementation against two problems from the UCI Machine Learning Repository:

Wisconsin Breast Cancer; and Tic-Tac-Toe. The GPU version on AntMiner was up

to 100x faster than the CPU implementation on large population sizes. Finally, Weiss

noted that the implementation could easily be extended to support multiple colonies

across multiple GPUs with possible inter-GPU communication.

3.4.1 Large TSP instances

O’Neil et al. [50] present a highly parallel hill climbing algorithm to solve the TSP

using CUDA. They were able to attain speedups of up to 62x over optimised sequential

code and note that it takes 32 CPUs each with 8 processing cores (256 cores in total) to

match the performance of their parallel CUDA implementation. Their implementation

also features a highly parallel implementation of the 2-opt algorithm which is able to

process up to 20 billion 2-opt moves per second on a single CUDA compatible GPU.

Rocki and Suda [51] extend the work of O’Neil et al. [50] and also present an iterative

hill climbing algorithm on the GPU using CUDA but expand the maximum number of

cities from 110 to 6000 cities. Rocki and Suda [51] note that in order to process larger

city instances it was critical to move the city distances out of shared memory and onto

slower global memory. However in doing so this introduced additional latency as the

global memory read times are significantly slower than shared memory.

For TSP instances with many cities O’Neil et al. [50] note that an iterative hill

climbing approach may be better suited to the GPU due to the speed of their implemen-

tation against other approaches such as genetic algorithms or ant colony optimization

approaches. However at the time of publication there were only task-based parallel

approaches for implementing ACO on the GPU as Cecilia et al. note [20] and Delèvacq

et al. [21] had yet to publish their findings on data-parallelism (see Section 3.4.2) which

was able to significantly reduce the execution time of running ACO in parallel on the

GPU by mapping individual ants to thread blocks as opposed to CUDA threads.
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3.4.2 Data-parallelism

As Cecilia et al. note [20], the majority of existing contributions fail to implement the

entire ACO algorithm on the GPU and provide no systematic analysis of how best to

implement the algorithms in parallel. All of the above implementations also adopt a

task-based parallelism strategy that maps ants directly to threads. The following two

papers adopted a novel data parallel approach that maps ants to thread blocks so as to

better utilise the massively parallel GPU architecture (as discussed in Chapter 2). By

using this approach the total number of ants is equal to the number of thread blocks as

opposed to the number of thread blocks multiplied by the number of threads per block.

Cecilia et al. [20] implemented the AS algorithm for solving the TSP on the GPU using

CUDA. They note that the existing task-based approach of mapping one ant per thread

is fundamentally not suited to the GPU. With a task-based approach, each thread must

store each ant’s memory (e.g., list of visited cities). This approach works for small tours

but quickly becomes problematic with larger tours, as there is limited shared memory

available and exhausting the shared memory can result in costly register spilling. The

alternatives are to use fewer threads per block, which reduces GPU occupancy, or to

use global memory to store each ant’s memory, which dramatically reduces the kernel’s

performance as global memory is significantly slower than efficiently using shared memory.

The second issue with task-based parallelism (as discussed in [20]) is warp-branching.

As ants construct a tour, their execution paths generally differ due to conditional state-

ments inherent when using roulette wheel selection on the output of the random propor-

tional rule (Fig. 3.1). When a warp branches, all threads within the branch are serialised

and executed sequentially until the branching section is complete, thus significantly

impeding the performance of branching code due to the loss of parallelism. Cecilia et

al. present data-parallelism as an alternative to task-based parallelism so as to avoid these

issues and potentially increase performance by better utilising the GPU architecture.

Data parallelism avoids warp-divergence and memory issues by mapping each ant to

a thread block. All threads within the thread block then work in cooperation to perform

a common task such as tour construction. Cecilia et al. use a fixed-size thread block that

tiles to match the size of the problem. Tiling is a commonly used CUDA technique that

allows a fixed size set of threads to repeat over a larger size input data set so that the

input size is not restricted by the total thread count (where each thread performs some

action on the input data in parallel). For example, when using an data input set size of

1024 and a fixed size thread block of 256 threads; each of the threads would tile across
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the input data four times. In this case, thread 0 would process index 0, 256, 512 and 768.

This technique is useful as the number of threads is limited by the version of CUDA. A

thread is responsible for an individual city and the probability of visiting a city can be

calculated without branching the warp by using a new proportionate selection method

known as I-Roulette [20]. Cecilia et al. also implement the pheromone update stage on the

GPU thus ensuring that both stages of AS execute on the GPU to avoid costly memory

transfers. Two alternative pheromone update implementations are presented but Cecilia

et al. conclude that the much simpler method of using atomic methods is significantly

faster and will likely to continue to be so due to ongoing hardware improvements to

atomic instructions by NVIDIA with newer GPUs. A speedup factor of up to 20x is

reported when both the tour construction and pheromone update phases are executed on

the GPU. The majority of the execution time reported by Cecilia et al. was spent on the

tour construction phase.

The second data-parallel paper was presented by Delèvacq et al. [21] and imple-

mented the MAX −MIN algorithm with 3-opt local search for solving the TSP using

CUDA with improved solution quality. Delevacq et al. conduct a similar survey of

data-parallelism against task-based parallelism and also conclude that a data-parallelism

approach is more suitable, due to the aforementioned reasoning and include detailed

benchmarks to support this assertion. As a result, no solutions are proposed using the

task-based parallel mapping. To improve solution quality in [21], after a block constructs

a new ant tour, 3-opt local search is applied. As Delèvacq et al. [21] note that the 3-opt

search algorithm is a time consuming process but can yield near optimal results. Delèvacq

et al. outline that the data structures required to compute the expensive 3-opt search

must be stored in global memory, therefore the execution is slow.

Building on their initial offering, Delv̀acq et al. also implemented multiple colonies

to run in parallel across separate GPUs. The same test instances of the TSP were

considered (as were considered for the implementations in [20] mentioned above) and the

results showed up to a 20x speedup against a sequential implementation of the MMAS

algorithm with local search disabled. With 3-opt local search enabled, the quality of the

tours constructed improved significantly; however, the speedup was notably reduced.
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3.5 Implementation

In this section we present our parallel implementation of the AS algorithm for execution

on the GPU. We base our parallelisation strategy on the works of Cecilia et al. [20] and

Delv̀acq et al. [21] and adopt a data-parallel approach for the tour construction phase,

mapping each ant in the colony to a thread block. As discussed in Section 3.4.2, we

execute each stage of the algorithm (see Fig. 3.1) on the GPU to maximise performance.

The first stage of the algorithm parses the city data and allocates memory and the

relevant data structures. For any given city set of size m, the city-to-city distances are

loaded into an n×n matrix. As mentioned in Section 3.2 we are using symmetric instances

of the TSP and so di,j = dj,i, for every pair of distinct cities i and j. As the amount of

global memory available exceeds the largest tested instances of the TSP we are able to

use a matrix. However, for even larger test instances, alternative data structures should

be considered that only store the value of di,j and not dj,i (as the two values are equal

and storing both leads to value duplication unnecessarily consuming memory).

Ant memory is allocated to store each ant’s current tour and tour length. A pheromone

matrix is initialised on the GPU to store pheromone levels and a secondary structure

called choice info is used to store the product of the denominator of equation 3.1 (an

established optimisation, detailed in [19], as these values do not change during each

iteration). Once the initialisation is complete, the pheromone matrix is artificially seeded

with a tour generated using a greedy search as recommended in [19] (other approaches

can also be used such as seeding large values to encourage search space exploration).

3.5.1 Tour construction

In Section. 3.2 we gave a broad overview of the tour construction phase that is applied

iteratively until a new tour is constructed. Dorigo and Stützle provide a detailed de-

scription of how to implement tour construction sequentially along with pseudo-code [19]

which we summarise in Fig. 3.3 (where the number of cities is n with the cities named

as 1, 2, . . . , n). After the initial random city is chosen, the first inner for-loop repeats

n− 2 times to build a complete tour (note that there are only n− 2 choices to make as

once n− 2 cities have been chosen there is no choice as regards the last as the ant must

return to the original city the tour started at to constitute a valid tour). Within the inner

for-loop, the probability of moving from the last visited city to all other possible cities

is calculated. Calculating the probability consists of two stages: retrieving the value of
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choice info[j][l] (the numerator in equation 3.1) and checking if city l has already been

visited in the current iteration (in which case the probability is set to 0). The next city

to visit is selected using roulette wheel selection.

procedure ConstructSolutions
tour [1] ← place the ant on a random initial city
for j = 2 to n− 1 do
for l = 1 to n do

probability [l] ← CalcProb(tour [1 . . . j − 1],l)
end-for
tour [j] ← RouletteWheelSelection(probability)

end-for
tour [n] ← remaining city
tour cost ← CalcTourCost(tour)

end

Figure 3.3: Overview of an ant’s tour construction.

Roulette wheel selection is a prime example of something that is trivial to implement

sequentially yet requires additional consideration when implemented in parallel using a

GPU. As the operation is performed n−2 times for each ant per iteration, it is essential to

find an efficient parallel implementation that executes fully on the GPU. Roulette wheel

selection is illustrated in Table 3.1 where 1 item has to be chosen from 5 in proportion

to the value in the first column labelled ‘input’. The first step is to reduce the set

of input values so as to obtain cumulative totals (as is depicted in the second column

labelled ‘reduced’). The reduced values are normalised so that the sum of all input values

normalises to 1 (see the third column labelled ‘normalised’) and the portion of the roulette

wheel corresponding to some item is calculated (see the fourth column labelled ‘range’).

The final step is to generate a random number that is greater than 0.0 and at most 1.0,

and then to use the ranges so as to choose an item (so if 0.5 was generated, for example,

then we would choose item 5, as 0.5 is greater than 0.365 but less than or equal to

0.875). Items with larger input values will have a larger range compared to smaller input

values and an increased chance of being selected when a random number is generated.

Critically this process allows poor values to be randomly selected. Sequentially this

process is trivial; however, the linear nature of the algorithm, the divergence in control

flow, parallel random number generation and the need for constant thread synchronisation

means we have to work harder in our GPU setting.
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Input Reduced Normalised Reduced range
0.1 0.1 0.1 > 0.0 & ≤ 0.1
0.3 0.4 0.25 > 0.1 & ≤ 0.25
0.2 0.6 0.375 > 0.25 & ≤ 0.375
0.8 1.4 0.875 > 0.375 &≤ 0.875
0.2 1.6 1.00 > 0.875 & ≤ 1.0

Table 3.1: An example run of roulette wheel selection (proportionate selection).

Cecilia et al. [20] address these issues by implementing a parallel implementation of

roulette wheel selection, Independent-Roulette (I-Roulette) specifically for the GPU using

CUDA. In I-Roulette, each thread l calculates the probability of moving to city j. Each

thread then checks to see whether the city j has been previously visited and multiplies

the probability just calculated by a random number. Finally, the n resulting values

undergo a reduction and the largest value is selected as the next city (by a reduction we

mean a process by which the values are pairwise linearly compared with the largest being

retained). However, there are some issues with this approach.

• The reduction is performed on the entire thread block and this prohibits synchro-

nisation between warps so that idle warps result.

• The random numbers generated can dramatically decrease the influence of the

heuristic and the pheromone information. This in turns leads to a reduction in the

quality of the tours generated.

• A random number must be generated for each thread for n− 2 iterations in order

to build a complete tour.

• From the source code provided by Cecilia et al., it can be observed that often a

single thread is used for various stages of the algorithm resulting in warp divergence

and reduced parallelism. Where possible all threads within a warp should be used

to achieve maximum performance.

• The entire tour is stored in shared memory. Larger tours that exceed the limited

total amount of shared memory will spill out of shared memory resulting in a loss

of performance over smaller tours.

• When constructing tours for large instances, shared memory is often exhausted.
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3.5.2 Double-Spin Roulette

To address these issues we present Double-Spin Roulette (DS-Roulette), a highly parallel

roulette selection algorithm that exploits warp-level parallelism, reduces shared memory

dependencies, and reduces the overall instruction count and work performed by the GPU.

In the sequential implementation of roulette wheel selection, each ant constructs a tour

one city at a time and each ant is processed consecutively. The first level of parallelism

we employ is to execute the tour construction stage in parallel. Using a data-parallel

approach (as suggested in [20] and [21]), each ant is mapped to a thread block (so that

m ants occupy m blocks) as opposed to executing multiple ants in a single thread block.

DS-Roulette consists of three main stages that are executed in succession (see Fig. 3.4).

Thread synchronisation is utilised after each stage to ensure that all threads within the

block have finished the previous stage before proceeding. As warps can execute in any

order we cannot assume they will arrive at a certain point together thus necessitating

an implicit synchronisation of all threads via the syncthreads() operation. Cecilia et

al. note that due to having a fixed maximum thread count and limited shared memory

available, tiling threads across the block to match the number of cities yielded the best

results. Without employing this tiling method the maximum number of cities per tour

would be limited to the number of threads in a thread block specified before launch.

Building upon this observation, the first stage of DS-Roulette tiles 4 thread warps (128

threads) so as to provide complete coverage of all potential cities (again illustrated in

Fig. 3.4). We will henceforth refer to a tiled warp consisting of 32 threads as a sub-block

that represents a block of possible cities.

In the first stage, each thread within the sub-block checks if the city it represents

has previously been visited in the current tour. This valued is stored in shared memory

and is known as the tabu value. Tabu values are stored in shared memory as the values

are accessed frequently. A warp-level poll is then executed to determine if any valid

cities remain in the sub-block (this reduces redundant memory accesses and execution

time). If valid cities remain then each thread retrieves the respective probability from

the choice info array and multiplies the probability by the associated tabu value. The

sub-block then performs a warp-reduction (see Fig. 3.5) on the probabilities to calculate

the sub-block probability and this is stored in shared memory. Warp-level parallelism

implicitly guarantees that all threads execute without divergence throughout the stage

and this significantly decreases the execution time. Once the probability for the sub-block

is calculated, the sub-blocks then tile to ensure complete coverage of all cities.
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Figure 3.4: An overview of the double-spin roulette algorithm executed by each
ant (thread block) during each iteration of the tour construction phase of the AS
algorithm in order to construct a valid tour.
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device void

warp reduce (int tid, float in, float *data){
int idx = (2 * tid - (tid & 31) );

data[idx] = 0;

idx += 32;

float t = data[idx] = in;

data[idx] = t = t + data[idx - 1 ];

data[idx] = t = t + data[idx - 2 ];

data[idx] = t = t + data[idx - 4 ];

data[idx] = t = t + data[idx - 8 ];

data[idx] = t = t + data[idx - 16 ];

}

Figure 3.5: The warp-reduce method [52].

At the end of stage one, the results are a list of sub-block probabilities. Stage 2

performs roulette-wheel selection on this set of probabilities to chose a specific sub-block

from which the next city to be visited will be chosen. If the tour size were 256 cities, for

example, there would be 8 potential sub-blocks previously calculated by 4 warps. This

is the first spin of the roulette wheel (other methods such as greedy selection can also be

utilised here). Once a warp has been chosen, the value is then saved to shared memory.

In the final stage of DS-Roulette, we limit the execution to the chosen sub-block.

Using the block value calculated in stage 2, the first 32 threads load, from shared memory,

the probabilities calculated by the winning sub-block in stage 1. Each thread then loads

the total probability of the sub-block and the probabilities are normalised. As each thread

is accessing the same 32-bit value from shared memory, the value is broadcasted using a

single memory read to each thread eliminating bank conflicts and serialisation. A single

random number is then generated and each thread checks if the number is within its

range thus completing the second spin of the roulette wheel. The winning thread then

saves the next city to shared memory and global memory, and updates the total tour

cost. After n−2 iterations, the tour cost is saved to global memory using an atomic max

operator. This value is subsequently used during the pheromone update stage.

Using this technique we address the issues raised by I-Roulette. Instead of reducing

and normalising the entire thread block, we split the block into smaller sub-blocks from

which we approximate where the next city is to be selected from. Roulette wheel

selection is applied twice to calculate the next city. This process drastically reduces
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the synchronisation overhead and the need for each thread to generate a costly random

number. We exploit warp-level scheduling to avoid additional computation and thus

reduce the total instruction count. DS-Roulette preserves the influence of both the

heuristic and the pheromone information and leads to higher quality tours. At any

point, only the last visited city is required to be kept in shared memory thus reducing the

total shared memory required. This in turn increases the occupancy of the GPU when

larger tour instances are used.

3.5.3 Pheromone update

The last stage of the AS algorithm is pheromone update which consists of two stages:

pheromone evaporation; and pheromone deposit. The pheromone evaporation stage (see

equation (3.3)) is trivial to parallelise as all edges are evaporated by a constant factor

ρ. A single thread block is launched which maps each thread to an edge and reduces

the value using ρ. A tiling strategy is once again used to cover all edges (an alternative

strategy was originally used to map each row of the pheromone matrix to a tiling thread

block; however, this was found to be considerably slower in practice).

The second stage, pheromone deposit (see equation (3.4)), deposits a quantity of

pheromone for each edge belonging to a constructed tour for each ant. Cecilia et al. [20]

note that as each ant will perform this stage in parallel, atomics must be used to ensure

correctness of the pheromone matrix. Atomic operations are expensive and Cecilia et

al. provide an alternative approach using scatter to gather transformations. Using this

approach removes the dependency on atomic operations; however, it results in more global

memory loads which impedes the performance. As a result they conclude that although

there is a dependency on atomics, the implementation is faster than other alternatives.

Other ant algorithms such as elitist ant, MMAS and ACO apply pre-conditions on the

pheromone update state. For example, when using MMAS only the iteration’s best ant

deposits pheromone. To reduce the usage of atomic operations and increase convergence

speed, we adopt the pheromone update stage from MMAS into our AS implementation.

At the end of the tour construction stage, each ant performs a single atomic min operation

on a memory value storing the tour length. This single operation per block allows the

lowest tour value to be saved without additional kernels and is inexpensive. For the tour

construction stage we then launch m thread blocks (representing m ants) which then

individually check if their tour cost is equal to the lowest overall cost and if so deposit

pheromone without the need for atomics as only one ant will be depositing pheromone.
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3.6 Results

In this section, we present the results obtained by executing our implementation on

various instances of the TSP and we compare these results to other parallel and sequential

implementations. We use the previously mentioned parameters (see Section 3.2.1) but

modify the value of ρ from 0.5 to 0.1 to reduce the rate of evaporation on the pheromone

matrix (reducing the rate of evaporation will preserve edges within the pheromone matrix

for longer) for both GPU and CPU implementations. As we have modified the pheromone

deposit stage to only use the best ant, less pheromone is deposited. The reduced evapo-

ration rate reflects this change and ensures that the pheromone matrix still has sufficient

pheromone to influence the tour construction. We arrived at this value experimentally

and found it to produce results comparable to the sequential implementation..

3.6.1 Experimental Setup

For testing our implementation we use an NVIDIA GTX 580 GPU (Fermi, see Fig 2.1)

and an Intel i7 950 CPU (Bloomfield). The GPU contains 580 CUDA cores and has a

processor speed of 1544 MHz. As the card is from the Fermi generation, it uses 32 threads

per warp and up to 1024 threads per thread block with a maximum shared memory size

of 64 Kb. The CPU has 4 cores which support up to 8 threads with a clock speed of

3.06 GHz. Our implementation was written and compiled using the latest CUDA toolkit

(v5.0) for C and executed under Ubuntu 12.10. To match the setup of Cecilia et al. [20],

timing results are averaged over 100 iterations of the algorithm with 10 independent runs.

3.6.2 Solution Quality

To evaluate the quality of the tours, we compared the results of our new GPU implemen-

tation against an existing CPU implementation of AS for the set number of iterations

(where an iteration is a single run of solution construction and pheromone deposit for

each ant). Our new approach was able to match and in most cases reduce the length of

the tours when using identical parameters and number of iterations. As is expected when

using the AS algorithm, the results are not optimal and the quality of tours constructed

decreases as the number of cities increases. However, this was seen across both versions

and can be improved by implementing local search. Fig3.6 shows a comparison of the

average quality of tours obtained via the existing CPU and new GPU implementation.
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Instance Optimal CPU GPU
d198 15780 17583 16222
a280 2579 3015 2710
lin318 42029 46651 44495
pcb442 50778 62255 56639
rat783 8806 10896 9390
pr1002 259045 333262 341080
pr2392 378032 511977 537127

Table 3.2: The best tour lengths obtained for various test instances of the TSP on
the CPU and GPU implementations over 10 independent runs with 100 iterations.
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Figure 3.6: A comparison of the quality of tours constructed via the existing CPU
implementation of AS and new GPU implementation.

3.6.3 Benchmarks

In Table 3.3 we present the execution times obtained when executing instances of the

TSP using the setup documented in Section 3.6.1. In Fig 3.7 and Fig 3.8 we present

the speedup attained against the standard CPU implementation and the best existing

GPU implementation (using the same configuration as our GPU implementation). In

Table 3.4 we break down the time spent on each stage of the algorithm for our GPU

implementation. For the sequential implementation, we compare against ACOTSP (the

source code is available at [53]) which has been established as the standard sequential

CPU implementation used when comparing against GPU implementations (see [20,21]).
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We obtained our results by solving the same instances of the TSP as documented by

Cecilia et al. [20]. The results for the existing CPU and GPU implementations were ob-

tained by repeating their executions on our hardware to ensure that the comparison is fair

and that any speedup is not a product of hardware or software differences. For example,

improvements to the CUDA toolkit could inadvertently increase the performance of our

implementation which could lead to incorrectly attributing any potential performance

improvements to the new algorithm design and not the improvements in the toolkit.

Cecilia et al. Our Speedup Speedup
Instance CPU GPU GPU CPU GPU
d198 48.37 7.60 1.16 41.79x 6.56x
a280 123.13 18.61 2.68 45.86x 6.93x
lin318 175.57 26.43 3.39 51.79x 7.79x
pcb442 482.19 66.34 7.79 61.86x 8.51x
rat783 3059.70 332.15 42.70 71.65x 7.78x
pr1002 7004.72 646.90 85.11 82.30x 7.60x
nrw1379 17711.68 1687.63 323.00 54.83x 5.22x
pr2392 97850.65 8026.75 1979.31 49.44x 4.06x

Table 3.3: The Average execution times (ms) of our GPU implementation against
the best current GPU implementation from Cecilia et al. and the standard
sequential test CPU implementation (ACOTSP [53]).

Instance Tour Construction Pheromone Update
d198 1.10 0.062
a280 2.63 0.059
lin318 3.30 0.087
pcb442 7.72 0.079
rat783 42.56 0.138
pr1002 84.96 0.153
nrw1379 322.71 0.296
pr2392 1977.93 1.380

Table 3.4: The execution times for each stage of our proposed GPU implementation
(ms) across various instances of the TSP.
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Figure 3.7: Speedup of execution against the standard CPU implementation.
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Figure 3.8: Speedup of execution against the best existing GPU implementation.
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The results show a speedup of up to 82x faster than the sequential CPU implemen-

tation and up to 8.5x faster than the current best parallel implementation. The tour

construction stage is responsible for the majority of the total execution time and varies

between 4-8.5x faster than the existing GPU implementation. As previously mentioned,

the tour construction stage uses a new efficient implementation of roulette wheel selection

and we believe our implementation will be able to bring similar speedups to other

algorithms limited by the execution time of proportionate selection. The pheromone

update implementation is between 1-9x faster than the existing GPU implementation.

As the performance of atomic operations is further optimised with subsequent hardware

and software releases from NVIDIA, the execution time of the pheromone update stage

will decrease further without additional manual software optimisations.

3.6.4 Shared memory restrictions

The size of the shared memory available for each thread block can be reduced (which in

turn increases the L1 cache size available) by altering the preferred cache configuration.

By reducing the shared memory available we observe that for larger tour sizes, the

reduction in shared memory size no longer has any affect. From this we can infer that

the shared memory in larger instances is exhausted which forces threads to use additional

slower global memory and reduces the efficiency of the tour construction phase.

Our parallel roulette wheel selection algorithm improves upon the implementation

presented by Cecilia et al. [20] by significantly reducing the amount of shared memory

required. As we can observe in Fig. 3.8 as we exhaust the shared memory the effectivness

of our solution is reduced and so emphasis was placed on conserving as much shared

memory as possible. Our DS-Roulette algorithm only stores the most recently visited city

in shared memory (as opposted to the whole tour) and our algorithm doesn’t generate

as many random numbers which also are stored in shared memory. However, the tabu

list is still stored in shared memory which increases in size as the tour size increases. In

Chapter 4 we’ll explore how to dynamically reduce the size of the tabu list by compressing

the tabu list after each city is selected.

Finally the warp-reduce method uses double the shared memory required over a

simpler branching implementation and we believe that this contributed to the decreased

speedup observed for larger TSP instances (see Fig 3.9). Due to these memory limitations,

we did not test any TSP instances larger than 2392 cities.
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Figure 3.9: Observed execution speeds as a product of varying the L1 cache size.

3.7 Conclusion

In this chapter we have presented a new data-parallel GPU implementation of the AS

algorithm that executes both the tour construction and pheromone update stages on

the GPU. Our results show a speedup of up to 8.5x faster than the best existing GPU

implementation and up to 82x faster than the sequential counterpart. By extending the

work of Cecilia et al. [20] and Delévacq et al. [21] we were able to present a new data-

parallel approach that focused on utilising each thread block on a warp level to achieve

additional speedups over the current best GPU implementation.

For larger data sets we observed that shared memory usage can often be exhausted

causing the performance of the algorithm to degrade. Our implementation is able to

match the quality of solutions generated sequentially on the CPU. However, we can still

improve things further. In the subsequent chapters we detail improvements to reduce

the shared memory requirements of DS-Roulette and utilise additional common CPU

improvements to the AS algorithm (such as the use of a candidate set to reduce the

available search space).

3.7.1 Contributions

Our primary contribution of an efficient parallel implementation of roulette wheel se-

lection contributed significantly to the reported speedups and we envisage the parallel

algorithm might be more widely applicable within other heuristic problem-solving areas.
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CHAPTER 4

Candidate Set Parallelisation Strategies

This chapter is based on the following publication:

Candidate Set Parallelization Strategies for Ant Colony Optimization on the GPU [2].

4.1 Introduction

In this chapter we build upon our data-parallel ACO implementation on the GPU (as

described in Chapter 3). We observed that existing parallel implementations of ACO on

the GPU [1,20,21,54] fail to maintain their speedup against their sequential counterparts

that utilise common CPU optimisation strategies. As the number of cities to visit

increases, so does the computational effort and thus time required for the AS algorithm

to construct tours as the tour construction phase is performed N − 2 times to build up a

tour. The search effort can be reduced through use of a candidate set (or candidate list).

A candidate set limits the number of potentially valid cities to a smaller subset (often pre-

calculated and based on a greedy heuristic such as the closest N cities) when constructing

a tour for each move. This chapter is motivated by the shortcomings of existing solutions

and we present three candidate set parallelisation strategies for execution on the GPU.

• The first parallelisation strategy adopts a naive ant-to-thread mapping to examine

whether the use of a candidate set can increase the performance. This naive

approach (in the absence of candidate sets) has previously been shown to per-

form poorly by Cecilia et al. [20] and Delévacq et al. [21]. However, as neither

contribution utilised a candidate set, we first implement this naive approach to

test if this simple mapping can be improved when using a candidate set to restrict

the search space.
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• The second approach extends our previous data-parallel approach (as pioneered by

Cecilia et al. [20] and Delévacq et al. [21]), mapping each ant to a thread block

on the GPU. Through the use of warp level primitives we manipulate the block

execution to first restrict the search to the candidate set and then expand to all

available cities dynamically and without excessive thread serialisation.

• Our third parallelisation strategy also uses a data-parallel approach but also com-

presses the list of potential cities outside of the candidate set in an attempt to

further decrease execution time. In Chapter 3 the performance of our parallel

implementation decreased as shared memory was exhausted. We aim to address

this issue by the use of tabu list compression as the tour is constructed.

We find that our data-parallel GPU candidate set mappings reduce the computation

required and significantly decrease the execution time against the sequential counterpart

when using candidate sets. By adopting a data parallel approach we are able to achieve

speedups of up to 18x faster (see Table 4.2) than the CPU implementation whilst pre-

serving tour quality and show that candidate sets can be used efficiently in parallel on

the GPU. As the use of candidate sets is not unique to ACO, we predict that our parallel

mappings may also be appropriate for other approaches such as Genetic Algorithms.

4.2 Candidate Sets

Randall and Montgomery [55] note that for larger instances of the TSP, the computational

time required for the tour construction phase of the algorithm can increase significantly.

In Chapter 2 we presented a data-parallel implementation of the AS algorithm for exe-

cution on the GPU using NVIDIA CUDA. Our solution was able to outperform the best

existing GPU implementations (using CUDA) for all tested instances. However, con-

structing larger tours still required significantly more time (resulting in a lower speedup

against the CPU) due to the increased search space and computational overhead. As the

number of cities increases, the number of available moves from any given city during tour

construction also increases. The increasing search space necessitates a reduction in the

number of valid potential moves for each ant at any given city during tour construction to

maintain a viable execution time. Additionally due to the shared memory requirements

of DS-Roulette larger TSP instances can exhibit unwanted adverse behaviour, such as

register spilling, resulting in a further loss of performance again necessitating additional
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modifications to the AS algorithm when using large instances. A common solution to this

problem is to limit the number of available cities for each iteration of tour construction

using a subset of cities which we refer to as a candidate set. In the following subsections

we describe how to use a candidate set when solving the TSP and present the results of

enabling the use of a candidate set sequentially against our parallel GPU implementation

that does not use a candidate set.

4.2.1 Using candidate sets with the TSP

In the case of the TSP, a greedy candidate set contains a set of the nearest neighbouring

cities for each city. The number of neighbouring cities is user configurable. This exploits

an observation that optimal solutions can often be found by only visiting close neighbour-

ing cities for each city [19] and so can significantly reduce the computational overhead

for each iteration during the tour construction phase. For the TSP the candidate set can

be generated prior to execution using the distances between cities; this does not change

during execution so there is no need to re-evaluate these values. In the tour construction

phase (for any given city) the ant will first consider all valid and closely neighbouring

cities pertaining to the candidate set. If one or more of the cities in the candidate set has

not yet been visited, the ant will apply proportional selection on the closely neighbouring

cities to determine which city to visit next from the candidate set. As a result, no

cities outside of the candidate set are considered even if they constitute a valid move. If

no valid cities remain in the candidate set, the ant then applies an arbitrary selection

technique to pick from the remaining unvisited cities (such as moving to the first valid

city encountered or simply applying the random proportional rule to all remaining cities

as described in Chapter 3). Through the use of a candidate size (with a fixed given size),

we can potentially reduce the number of valid cities to consider to a far smaller subset

until each city has been visited in the candidate set for each city. Dorigo and Stützle [19]

utilise the greedy selection technique to select the closest cities. The sequential ACOTSP

implementation used as the standard test implementation in Chapter 3 also uses a simple

greedy selection algorithm selecting the closest cities with a variable candidate set size.

Randall and Montgomery [55] propose several new dynamic candidate set strategies which

can update and change the list dynamically during execution and Reinelt [56] gives an

overview of many candidate set selections; however, in this chapter we only use static

candidate sets as a static set is the simplest addition we can make to our algorithm to

first evaluate if a candidate set can be used efficiently in parallel..
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4.2.2 The effect of utilising a candidate set

As previously mentioned the use of a candidate set can significantly reduce the overall

execution time by reducing the available search space even when using a sequential imple-

mentation. To illustrate this we compare observed speedup of our GPU implementation

and the data-parallel GPU implementation presented by Cecilia et al. [20] against the

CPU implementation when using a candidate set. In Fig. 4.1 we can observe that the

data-parallel implementation of AS presented by Cecilia et al. [20] fails to maintain the

speedup previously reported when the standard CPU ACOTSP implementation [53] uses

a candidate set. We can observe that all test instances are slower than the sequential

counterpart and larger instances (such as pr1002 and pr2392) execute at only 0.2-0.4x

the speed of the sequential counterpart. In Fig. 4.2 we can observe that our GPU

implementation (outlined in Chapter 3) was able to achieve a speedup against the CPU

implementation when using a candidate set. For smaller test instances the speedup ranges

from around 5x to 4x and for larger test instances this drops to from around 3x to just

1.25x. In Table 4.1 we give the average execution times for the same range of TSP

instances used in Chapter 3 for the CPU implementations (with and without the use of

a candidate set), the data-parallel GPU implementation presented by Cecilia et al. [20]

and our improved data-parallel implementation presented in Chapter 3.

Although we were able to maintain a speedup against the CPU for all test instances,

the viability of using a parallel GPU implementation drops as the tour size increases.

Existing solutions were also unable to compete with the CPU implementation when using

a candidate set thus necessitating the inclusion of a parallel candidate set on the GPU.

Input CPU CPU + CS Cecilia et al. Our GPU
d198 48.37 6.39 7.60 1.16
a280 123.13 13.44 18.61 2.68
lin318 175.57 18.60 26.43 3.39
pcb442 482.19 42.37 66.34 7.79
rat783 3059.70 168.90 332.15 42.70
pr1002 7004.72 278.85 646.90 85.11
pr2392 97850.66 2468.40 8026.75 1979.31

Table 4.1: The average execution times (ms) of the CPU implementation (with and
without candidate set), the best current GPU implementation from Cecilia et al.
and our GPU implementation.
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Figure 4.1: Performance of the GPU implementation of AS presented by Cecilia
et al. [20] without the use of a candidate set against the sequential CPU
implementation [53] using a candidate set.
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Figure 4.2: Performance of our GPU implementation of AS without the use of a
candidate set against the sequential CPU implementation [53] using a candidate
set.
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4.3 Related work

At the time of writing the best two implementations followed a data-parallel approach

and were presented by [20,21]. At around the same time our initial research into ACO on

the GPU was published (documented in Chapter 3), Uchida et al. [54] presented a GPU

implementation of AS and also use a data-parallel approach mapping each ant to a thread

block. Four different tour construction kernels are detailed and a novel city compression

method is presented. This method compresses the list of remaining cities to dynamically

reduce the number of cities to check in future iterations of tour construction. In existing

implementations, all cities are considered when executing the random proportional rule

for each iteration of tour construction and visited cities will be assigned a probability

of being selected of 0. The selection compression algorithm presented by Uchida et

al. [54] maintains an additional unvisited array. This array is then used as the input

for the random proportional rule removing the need to check if cities have already been

visited and removing them from the selection process. Uchida et al. [54] note that as

the number of unvisited cities decreases, the duration of selection process decreases.

However, as the global memory reads can no longer be easily coalesced when using the

compressed selection process, the performance of the uncompressed variant is greater

than that of the compressed variant when the unvisited cities array is large. Additional

tour construction methods are proposed, however the performance of all four variants is

slower than our data-parallel contribution using the simpler DS-Roulette algorithm using

the same hardware and setup as documented in Chapter 3. The speedup reported for

their hybrid approach is around 43x faster than the sequential implementation (see [53]).

Uchida et al. conclude that further work should be put into nearest neighbour techniques

(candidate sets) to further reduce the execution times (as their sequential implementation

does not use candidate sets and consequently the performance diminishes when comparing

against a CPU implementation utilising candidate sets).

We can observe that the fastest speedups are obtained when using a data parallel

approach; however, none of the current implementations [1, 20, 21, 54] use candidate sets

and as a result fail to maintain speedups for large instances of the TSP. In conclusion,

although there has been considerable effort put into improving candidate set algorithms

(e.g. [55, 57, 58, 59]), there has been little research into developing parallel candidate set

implementations, thus reducing the viability of existing GPU implementations.
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4.4 Implementation

In this section we present three parallel AS algorithms utilising candidate sets for execu-

tion on the GPU. The first uses a simple ant-to-thread mapping. Although this approach

has previously been outperformed by data-parallel implementations ( [1, 20, 21, 54]) we

re-examine if this approach is suitable for use with candidate sets. The second and

third implementations use a data parallel approach with the third using unvisited city

compression to dynamically reduce the size of the unvisited city array to further reduce

the computation required during each stage of solution construction. The following

implementations will only focus on the tour construction phase of the algorithm. In

Chapter 3 we show how to implement the pheromone update efficiently on the GPU [1]

and re-use this existing approach for our candidate set implementations.

4.4.1 Basic setup

In Section 3.5 we describe the setup required to initialise the AS algorithm. The majority

of these data structures remain unchanged; however, we now include an additional

structure for the candidate set. City data is first loaded into memory, stored in an

n × n matrix and transferred to the global memory of the GPU. Ant memory is again

allocated to store each ant’s current tour and tour length. The ant memory is also copied

to the global memory on the GPU. A pheromone matrix is initialised on the GPU to

store pheromone levels and a secondary structure called choice info is used to store the

product of the denominator of Equation 3.1. After initialisation the pheromone matrix

is artificially seeded with a tour generated using a greedy search as recommended in [19].

4.4.2 Candidate set setup

The candidate set is represented in memory as a single array of length n× c (where n is

the size of the TSP instance and c is the number of neighbours for each city). To generate

the candidate set, we use the city data to save the closest c cities for each city. This simple

greedy approach is recommended by Dorigo and Stützle [19] and allows the candidate set

to be quickly generated prior to execution. The candidate set is transferred to the global

memory of the GPU where it remains unaltered for the duration of the execution. For

smaller instances of the TSP this data could also be placed in faster memory types such

as texture or constant memory; however, we will only be using the global memory.
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4.4.3 Tour construction using a candidate set

In Fig. 4.3 we give the pseudo-code for iteratively generating a tour using a candidate

set based upon the implementation by Dorigo and Stützle [19]. First, an ant is placed on

a random initial city; this city is then marked as visited in the tabu list (located in the

shared memory). Then for n−2 iterations (again, where n is the size of the TSP instance)

we select the next city to visit thus iteratively building a complete and valid tour. The

candidate set is first queried and a probability of visiting each closely neighbouring city

is calculated. If a city has previously been visited, the probability of visiting that city in

future is 0. If the total probability of visiting any of the candidate set cities is greater

than 0 (indicating valid cities still remain in the candidate set), we perform roulette wheel

(proportional) selection on the set and pick the next city to visit. Otherwise we pick the

best city out of all the remaining cities (where we define the best as having the largest

current pheromone value that has not yet been visited). Each city is then marked as

visited in the tabu list before starting the next iteration of the inner tour construction

loop. As the candidate set significantly reduces the search space, selecting the next city

to visit from the set is faster than selecting the best city out of the remaining cities.

procedure ConstructSolutionsCandidateSet
tour [1] ← place the ant on a random initial city
tabu[1] ← visited
for j = 2 to n− 1 do
for l = 1 to 20 do

probability [l] ← CalcProb(tour [1 . . . j − 1],l)
end-for
if probability > 0 do

tour [j] ← RouletteWheelSelection(probability)
tabu[tour[j]] ← true

else
tour [j] ← SelectBest(tabu)
tabu[tour[j]] ← true

end-if
end-for
tour [n] ← remaining city
tour cost ← CalcTourCost(tour)

end

Figure 4.3: Overview of an ant’s tour construction when using a candidate set.

74



4.4. IMPLEMENTATION

4.4.4 Task parallelism

Although it has previously been shown that using a data parallel approach yields the

best results [1], [20], [21], [54], it has not yet been established that this holds when

using a candidate set. Therefore our first parallelisation strategy considers this simple

mapping of one ant per thread (task parallelism) to determine if this primitive solution

can produce adequate results. Although this would diminish our previous finding, a

simpler task parallel candidate set implementation would be advantageous due to the

reduced complexity of the solution and thus increase the viability of the algorithm.

Task parallel tour construction

Each thread (ant) in the colony executes the tour construction method shown in Fig. 4.3

and the number of threads is equal to the number ants in the colony. Multiple thread

blocks will be used as the number of ants exceeds the number of threads available in a

block. There is little sophistication in this simple mapping; however we include it for

completeness. Cecilia et al. [20] note that implementing ACO using task parallelism is

not suited to the GPU. From our experiments we can observe that these observations still

persist when using a candidate set and as a result yield inadequate results which were

significantly worse than those obtained by the CPU implementation. We can therefore

conclude that the observations made by Cecilia et al. [20] still hold when using candidate

sets and the use of a candidate set does not improve the performance enough to warrant

using this approach over a data-parallel implementation. As a result our subsequently

proposed candidate set parallelisation strategies will all use a data-parallel approach

building upon our previous contributions and observations so as to decrease the total

execution time of the algorithm by fully exploiting the GPU architecture.

4.4.5 Data parallelism

Our second approach uses a data-parallel mapping (one ant per thread block). Our

initial experiments when using the basic task parallel approach (one ant per thread)

quickly showed that the previous limitations of the approach remained thus necessitating

a different approach. Based on our previous observations made when implementing a

parallel roulette wheel selection algorithm [1] we found that using warp level primitives

to avoid branching led to the largest speedups. We can also observe that the control flow

of DS-Roulette is similar to that of tour construction using a candidate set.
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DS-Roulette

In DS-Roulette each warp independently calculates the probabilities of visiting a set of

cities (where a set is equal to the number of threads in a warp). These probabilities are

then saved to shared memory and one warp performs roulette wheel selection to select the

best set of cities. Roulette wheel selection is then performed again on the subset of cities

so as to select which city to visit next [1]. This process is fast as we substitute performing

reduction across the whole block with two spins of roulette wheel selection and thus avoid

waiting for other warps to finish executing and reduce costly synchronisation across the

thread block. However, this process is fundamentally different when using a candidate set

as we no longer need to perform roulette wheel selection across all potentially available

cities. As a result DS-Roulette in its present state is unsuitable for use with a candidate

set without significant modifications to initially reduce the number of potential cities to

just query the candidate set. Without these modifications all cities would initially be

considered when the candidate set should first be queried. Only after the candidate set

is exhausted for each city should cities outside of the candidate set be considered.

Reversing DS-Roulette to incorporate the use of a candidate set

In its present state DS-Roulette is unsuitable when utilising a candidate set. DS-Roulette

first considers all potential cities to perform roulette wheel on one warp of potential

cities. Informally, this process first considers all available cities before restricting to one

individual set of cities. When using a candidate set we first perform roulette wheel

selection across the candidate set (one set of cities) to potentially select the next city and

only scale up to all available cities if no neighbouring cities are available in the candidate

set. Informally, this process first considers one set of cities before potentially expanding

this to all remaining cities which is the exact opposite control flow of DS-Roulette in

its current state. Therefore if we simply reverse the execution path of DS-Roulette (see

Fig. 3.4) we can adapt the algorithm to utilise a candidate set during tour construction

(see Fig. 4.4) taking advantage of our previous contribution. The process can be further

simplified as we can skip the greedy selection process entirely if a valid city is found in

the candidate set. This process is significant for larger instances of the TSP as it reduces

the execution time as the number of expensive global memory accesses can be decreased

when considering the candidate set compared to all the available cities. Our new data

parallel tour selection algorithm consists of three main stages which we will now detail.
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1. Query the candidate set

The first stage uses one warp to calculate the probability of visiting each neighbouring city

in the candidate set. Typically the candidate set size is small and Dorigo and Stützle [19]

recommended only using the closest 20 neighbouring cities; however this can change

depending on the input size and implementation details. We found experimentally that

using a candidate set with less than 32 cities (1 complete warp on CUDA Compute 2.0

and above) was actually detrimental to the performance of the algorithm. This was due

to warp serialisation which in turn incurred a large execution speed reduction. Scaling

the candidate set up from 20 cities to 32 cities allows all threads within the warp to follow

the same execution path and thus avoid costly thread divergence. For larger candidate set

sizes, we envision our parallel candidate set implementation based on DS-Roulette could

easily be modified to support multiple warps in the first stage of the algorithm. However,

to further avoid warp serialisation as a result of divergence, the number of candidate set

cities should be a strict multiple of the thread warp size (e.g. 32, 64, 96 and so on).

The first optimisation we apply when checking the candidate set is to perform a warp

ballot to quickly check if any valid cities remain in the candidate set before attempting to

perform proportional selection. During the warp ballot, each thread in the warp checks

the respective candidate set city against the tabu list and submits this value to the CUDA

operation ballot(). The result of the ballot is a 32-bit integer delivered to each thread

where bit n corresponds to the input for thread n. If the integer is greater than zero

then unvisited cities remain in the candidate set and we proceed to perform roulette

wheel selection on the candidate set. Roulette wheel selection is still applied in the first

step of the algorithm as we don’t want to simply select the closest available city and

thus create a purely greedy selection process. Using the same warp-reduce method we

previously used in [1] we are able to quickly normalise the probability values across the

candidate set warp, generate a random number and select the next city to visit without

communication between threads in the warp. Our previously introduced technique for

a fast parallel roulette wheel selection in a single warp could easily be applied to other

algorithms relying on proportional selection for a section of the algorithm such as genetic

algorithms. The city selected will then be used as the next city for the ant to visit whilst

building up a complete tour and as a result the remaining two stages for this iteration

are skipped entirely. If the result of the warp ballot is equal to 0 we can infer that no

valid cities remain in the candidate set and so can skip to stage 2 (bypassing the parallel

warp-level proportional selection process) to select the next best available city.
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2. Perform a greedy search

The second stage is performed only after we have already checked the candidate set for

potential cities and failed to find any available cities. If there were valid available cities in

the candidate set, stage 2 and 3 are skipped for the current iteration of tour construction.

In stage 2 we dynamically increase the search space to include all available cities for

the instance of the TSP. We then progressively narrow down the number of remaining

available cities to select the best remaining available city (where best is defined as having

the largest pheromone value). We again limit the number of threads per block to 128 and

perform tiling across the block to match the number of cities (as previously demonstrated

in Chapter 3). Each warp then performs a modified version of warp-reduce [1] to find

the city with the highest pheromone value using warp-max. Warp-max quickly finds the

largest value within the warp and records the index of the thread so that one nominated

thread can save this value. By using a warp level operator we can again avoid additional

synchronisation in the warp and unnecessary increases in execution duration. This is a

purely greedy operation and so does not require the additional normalisation and random

selection stages from roulette wheel selection. As each warp tiles, it saves the current

best city and pheromone value to shared memory. As we are solely interested in the best

possible available city we do not need to keep the best available city per thread warp

and so can override the best discovered value as the warp tiles without consequence.

Using this approach we can quickly find four candidates (1 best candidate for each of the

warps as there are 128 threads with 32 threads per warp) for the city with the maximum

pheromone value for the final stage of the algorithm using limited shared memory and

without block synchronisation. There are only four potential cities as each warp only

keeps the largest candidate in memory when tiling over all available cities.

3. Select the best available city

The final stage of the algorithm simply uses one single thread to check which of the four

previously selected cities has the largest pheromone value, select this city and save the

value to global memory and mark as visited in the tabu list. This stage is purely sequential

and we have not optimised this for execution in parallel as the computational overhead is

so small and occupies a small proportion of the total execution time. However, in future

work this step could potentially be merged with step 2 as part of the tiling method when

querying all available cities. The three stages of the algorithm are illustrated in Fig. 4.4.
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Figure 4.4: An overview of our data parallel tour construction algorithm utilising
a candidate set to reduce the total execution time of the algorithm.
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4.4.6 Data parallelism with tabu list compression

Section 4.3 details the recent work of Uchida et al. [54] presenting a novel tabu list

compression technique when construction tours in parallel on the GPU for the TSP. This

novel tabu list compression technique is able to reduce the tour construction execution

time. The execution times presented are comparable to our results in Chapter 3. However

Uchida et al. do not consider the use of a candidate set and as a result struggle to maintain

performance against the sequential implementation when using a candidate set.

Our third candidate set optimisation considers using this novel tabu list compression

technique to further reduce the execution time of tour construction. In its current state

this process is only useful when considering cities outside of the candidate set. Little

benefit can be gained from reducing the search space of the candidate set. As the size of

the candidate set is set to match the number of threads in a warp, further limiting the

work to a subset of the warp would immediately and clearly result in warp divergence

and thus impede the performance of the fast candidate set selection stage. Therefore

from the onset we will only consider the use of tabu list compression to stages 2 and 3

of our modified tour construction algorithm (illustrated in Fig. 4.3). In the case where

the next city cannot be selected from the candidate set, the search space is subsequently

widened and so the use of tabu list compression could potentially limit the number of

cities to query and reduce the number of memory calls to the costly global memory.

In our existing GPU solution we represent a tabu list as an array of integers with

size n. When a city i is visited, the value tabu[i] is set to 0 which in turn reduces the

probability of selecting that city in future iterations of tour construction to 0. However,

when using tabu list compression this process is modified to dynamically reduce the size

of the tabu list. When city i is chosen, the algorithm replaces city tabu[i] with city

tabu[n− 1] and decrements the list size n by 1. Cities that have previously been visited

will not be considered in future iterations thus reducing the search space. By adding tabu

list compression to our data parallel tour construction kernel we aim to further reduce

the execution time. However, as a complete tabu list is still required for checking against

the candidate set we must use two tabu lists and subsequently double the number of

global memory accesses. The second list maintains the positions of each city within the

first candidate list allowing for quick lookups with a time complexity of O(1). If we were

to solely rely upon a single tabu list with compression, the time complexity increases to

O(n). As we cannot check if a city in the candidate set has been visited by visiting the

specified index in the tabu list, each thread would have to iterate through the entire list.
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4.5 Results

In this section we present the results of executing various instances of the TSP on our two

data-parallel GPU candidate set implementations. We compare the results of our parallel

implementations to the sequential counterpart and our previous GPU implementation (see

Chapter 3). As we mentioned in Section 4.4 our task parallel implementation was unable

to match the performance of the CPU implementation and offers no practical benefits. As

a result we will not include the results of the task parallel trials. From our experiments

we would advise against implementing ACO with a candidate set in parallel on the GPU

when using a task parallel approach due to the aforementioned limitations (see [20]).

We use the standard ACO parameters as previously used (see Section 3.6) but increase

the candidate set size from 20 to 32 to match the warp size (see Section 4.4). The solution

quality obtained by our data parallel implementations was able to match and often beat

the quality obtained by the sequential implementation. As previously noted the quality

of tours obtained by AS are not optimal and can be further improved with local search.

4.5.1 Experimental Setup

For fairness and consistency we used the same experimental setup as described in Sec-

tion 3.6.1. We used an NVIDIA GTX 580 GPU (Fermi) and an Intel i7 950 CPU

(Bloomfield). To again match the setup of Cecilia et al. [20], timing results are averaged

over 100 iterations of the algorithm with 10 independent runs.

4.5.2 Benchmarks

In Table 4.2 we present the execution times for a single iteration (where an iteration is

defined as a single run of tour construction and pheromone deposit for each ant in the

colony) of the tour construction algorithm using a candidate set for various instances

of the TSP (these instances were also used in Chapter 3 and by Cecilia et al. [20]).

Columns 5 and 6 show the speedup of the two data parallel implementations over the

CPU implementation. Both the GPU and CPU implementations are using a candidate

set. For a comparison of CPU using a candidate set against GPU implementations

without, see Fig. 4.1 and Fig. 4.2. The CPU results are based on the standard sequential

implementation ACOTSP (source available at [53]) and the two GPU columns correspond

to the two proposed data parallel candidate set implementations in Section 4.4.
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Figure 4.5: A comparison of the speedup of execution of multiple GPU instances
(with and without use of a candidate set) against the standard CPU implementation
using when using a candidate set.

GPU GPU Speedup Speedup
without with without with

Instance CPU compression compression compression compression

d198 6.39 0.77 0.85 8.31x 7.53x
a280 13.44 1.59 2.04 8.42x 6.59x
lin318 18.60 1.90 2.07 9.74x 8.99x
pcb442 42.37 3.67 3.96 11.55x 10.69x
rat783 168.90 12.13 14.49 13.92x 11.66x
pr1002 278.85 19.76 26.34 14.10x 10.58x
pr2392 2468.40 131.85 393.98 18.72x 6.27x

Table 4.2: Average execution times (ms) when using AS and a candidate set.
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Our results show that the GPU implementation without compression achieves the best

speedups across all instances of the TSP with speedups of up to 18x against the sequential

counterpart. Both data parallel approaches consistently beat the results obtained for the

sequential implementation for all test instances. The speedup obtained by the GPU

implementation without compression increased as the tour sizes increased. This is in

contrast to our previous GPU implementation [1], in which the speedup reduced once

the city size passed the instance pr1002 due to shared memory constraints, and failed to

maintain speedups against the sequential implementation when using a candidate set. By

using a candidate set we can avoid these constraints and maintain a speedup for increased

tour sizes. The results attained for the GPU implementation with tabu list compression

show the implementation was not able to beat the simpler method proposed without

compression. As mentioned in Section 4.4, to implement tabu list compression a second

tabu list must be used to keep the index of each city in the first list. This second list must

be used to avoid costly O(n) lookups to the tabu list over cheaper O(1) lookups. This

second list resulted in requiring additional steps during the computationally expensive

section of our method and additional calls to global memory. The process of updating

the second list for each iteration (for both the greedy search stage and proportionate

selection on the candidate set stage) outweighed the benefits of not checking the tabu

values for previously visited cities. The increased shared memory requirements for larger

instances reduced the performance and effectiveness of the solution.

In Fig. 4.5 we compare the speedup of our previous GPU implementation [1] without

a candidate set against our data parallel GPU solutions. We omit comparisons with

other data parallel GPU implementations (see Section. 4.3) as we have previously shown

our GPU implementation using DS-Roulette to be the fastest to date. We can observe

that for large instances of the TSP in Fig. 4.5 the speedup obtained from our GPU

implementation without a candidate set reduces whilst the opposite can be seen for our

new data parallel implementation without tabu compression.

4.6 Conclusion

In this chapter we have presented three candidate set parallelisation strategies. We have

shown that candidate sets can be used efficiently in parallel on the GPU and execute

significantly faster than the CPU counterpart. Our results show that a data parallel

approach must be used over a task parallel approach to maximise performance. As was
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anticipated, a task parallel approach performed poorly and was not able to beat the

CPU implementation when using a candidate set. Tabu list compression was shown

to be ineffective when implemented as part of the tour construction method and was

beaten by the simpler method without compression due to requiring two lists to avoid

costly memory accesses. Future work should aim to implement alternative candidate set

strategies including dynamically changing the candidate list contents and size.

4.6.1 Contributions

In this chapter our primary contribution has been to highlight that existing GPU im-

plementations fail to compete against the CPU implementation when using common

optimisation strategies such as the use of a candidate set. We have shown that a simple

extension to DS-Roulette can effectively integrate the use of a candidate set and reduce

the overall execution time producing a significant speedup against the CPU counterpart.

84



CHAPTER 5

Ant Colony Optimization based Image Edge Detection

This chapter is based on the following publication:

Accelerating Ant Colony Optimization based Edge Detection on the GPU using CUDA [3].

5.1 Introduction

In this chapter we extend our data-parallel ACO implementations on the GPU and

present the first implementation of a parallel ACO-based image processing edge detection

algorithm on the GPU using CUDA. The motivation of this chapter was to improve the

runtime of ACO-based edge detection leading to an increased viability of the novel edge

detection algorithm, rather than introduce fundamental changes to the design of the

algorithm (however, the nuances of CUDA usually mean that algorithm amendments

occur so as to secure an efficient implementation). Our implementation is able to match

the quality of edge maps produced by existing sequential implementations. By building

upon our previous data-parallel approach we are able to successfully execute more ants

in parallel per iteration without loss of performance or degradation of the edge map pro-

duced. We are able to show that a previously proposed data-parallel ant mapping is still

applicable for image processing despite conventional GPU image processing algorithms

using the pixel-to-thread mapping (see Section 5.3). The solution presented is able to

stay comfortably below 15ms per iteration enabling 60 frames per second (FPS).

The primary contribution of this chapter is a novel mapping of individual ants

to CUDA thread warps so as to pack multiple ants into a single thread block whilst

maintaining the previously proposed data-parallel approach. This approach yields the

best results and speedups of up to 150x against an optimised sequential counterpart.
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5.2 Edge detection using ACO

ACO has been successfully applied to many different problems including: the TSP [42],

the Quadratic Assignment Problem [60] and, in recent years, to a range of image process-

ing problems including edge detection [61]. Dorigo and Stützle remark [19] that for many

applications ACO solutions often rival the best in class. Edge detection is the process

of producing a map of edges from a given input image. The resulting edge maps are an

essential component of many computer vision algorithms as they drastically reduce the

input data size whilst preserving vital information concerning the edge boundaries [26].

Baterina and Oppus [62] note that traditional approaches to edge detection can be

computationally expensive as an exhaustive search is performed via per-pixel convolution

to determine the position of edge boundaries from neighbouring pixels.

Nezamabadi-pour et al. [61] moved away from per-pixel convolution and proposed

the first mapping of ACO for edge detection by implementing the AS algorithm. The

AS algorithm was previously described in Section 3.2 and outlined in Fig. 3.1. AS

consists of two stages: tour construction and pheromone deposit, and is repeated until

a termination condition is obtained (such as a set number of iterations or a solution

attaining a minimum quality is met). Tour construction in the context of edge detection

refers to the decision of which move to take next. An image can be held in memory using

a 2D array representation of a graph. This ‘grid-based’ graph serves as the landscape

for each ant to explore. To initialise the algorithm, the input image is read, converted

to a graph and each ant is randomly placed on a node. Ants then move around the

image following the variations in image intensity. The ants deposit pheromone so as to

communicate which edges to follow with other ants in future iterations of the algorithm.

Each ant has a limited memory of nodes it is not allowed to visit again so as to ensure

that ants do not get stuck following the same trail. Without this memory, an ant could

loop around the same set of nodes until termination without exploring other regions of

the image. A move is considered valid if the node is not currently in the ant’s memory.

There is no limitation to how many ants can occupy a single node at any one point (which

eliminated the need for communication between ants during solution construction). This

process results in ants grouping around the edges of the image which, in turn, is used

to produce an edge map (to which a thinning algorithm may be applied). The process

produces high quality edge maps but, as Lu and Chen [63] note, overall it can be slow

due to inherent redundancy in the search and expensive due to the number of ants.
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5.2.1 Solution construction

Once initialised each ant independently moves to one of the eight neighbouring nodes

(horizontally, vertically or diagonally). Nezamabadi-pour et al. [61] consider one complete

iteration of the algorithm to consist of each ant performing one step (a move from one

node to another in the virtual environment) and updating the pheromone matrix for the

iteration. In ACO ants decide how to construct solutions using the random proportional

rule where each available move is assigned a probability and where the selection of a move

is proportionate to the probability [19] (see Section 3.2.1). Nezamabadi-pour et al. [61]

adapted the random proportional rule for edge detection by considering two cases. In

the first case, they consider that the ant has visited all of the neighbouring nodes and

no valid move is currently available: in this case we simply randomly move the ant to

another position on the graph thus constituting a move. In the second case (where there

are valid moves available), each ant surveys the eight neighbouring nodes (see Fig. 5.1)

so as to determine where next to move. The probability of visiting a neighbouring node

(i, j) from (r, s) so as to perform a valid move is (for each ant) defined as:

pk(r,s),(i,j) =
[τij ]

α[ηij ]
β∑

u

∑
v[τuv]

α[ηuv]β
(5.1)

where: τij is the amount of pheromone currently deposited on the pixel (i, j); ηij is

the visibility of the node (i, j); and α and β are user-defined parameters to control the

influence of τij and ηij . The visibility of the pixel (i, j) is defined as:

ηij =
1

IMax
×Max


|I(i− 1, j − 1)− I(i+ 1, j + 1)|,

|I(i− 1, j + 1)− I(i+ 1, j − 1)|,

|I(i, j − 1)− I(i, j + 1)|,

|I(i− 1, j)− I(i+ 1, j)|

 (5.2)

where I is the intensity of a pixel. By applying the simple pixel mask (see Fig. 5.2) to

each pixel we can determine the variation in intensities between pixels. Nezamabadi-pour

et al. [61] note that edge pixels should have the highest visibility. This in turn directly

increases the chance of the pixel being selected by the random proportional rule. As the

intensity of the image remains constant throughout execution, the intensity values can

be pre-calculated prior to the AS execution to decrease the overall running time.
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i-1,j-1 i-1,j i-1,j+1

i,j-1 i,j i,j+1

i+1,j-1 i+1,j i+1,j+1

Figure 5.1: Surrounding neighbour pixels and valid moves from position (i, j)
(providing none of the surrounding pixels have recently been visited)

5.2.2 Pheromone update

Once each ant has completed its move (or has been randomly relocated if there were no

moves available), the pheromone matrix must be updated. To avoid stagnation of the

colony, the pheromone level of every node is first evaporated according to the user-defined

evaporation rate ρ. So, each pheromone level τij becomes:

τij ← (1− ρ)τij . (5.3)

Over time this allows nodes that are seldom visited to be forgotten and potentially

excluded from the final edge map which is generated from the pheromone matrix. After

evaporation the pheromone matrix must be updated with the last move of each ant so as

to influence the subsequent iterations of the algorithm. Each ant deposits an amount of

pheromone on the last node visited so that the pheromone level τij becomes:

τij ← τij +

m∑
k=1

∆τkij , (5.4)

5.2.3 Termination conditions

The algorithm is executed for a set number of iterations after which an edge map is

generated from the pheromone matrix [61]. At this stage it is important to note that the

number of iterations is influenced by the number of ants. If we allow more ants to explore

the graph simultaneously then we can reduce the total number of iterations required.
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5.3 Related work

In this section we will review existing contributions to edge detection using ACO. We

will give a brief overview of the most significant contributions to date and of the most

significant relevance to our research. At the time of writing we were unable to find

any other existing research into parallel edge detection algorithms using ACO with

NVIDIA CUDA or using other GPU frameworks (such as OpenCL or older solutions).

For completeness we will also briefly cover alternative GPU-accelerated edge detection

implementations. We will not include existing parallel ACO TSP research as these have

previously been covered and we direct the reader to Chapters 3 and 4.

5.3.1 Edge detection using Ant Colony Optimisation

As was previously mentioned, Nezamabadi-pour et al. [61] were the first to propose edge

detection via ACO. Their main contribution was the novel mapping of standard ACO

components (random proportional rule and pheromone update) to edge detection using

the simple AS algorithm and letting ants explore an artificial landscape based on an

input image. The subsequent edge maps produced were of high quality and the input

parameters for the algorithm did not require modification for different images. Imple-

mentation details and execution times for their algorithm were not included; however, Lu

and Chen [63] have subsequently remarked that this initial offering was slow.

Lu and Chen [63] provide an alternative method and focus their efforts on repairing

broken edges and reducing the work done by the algorithm. When compared against the

implementation by Nezamabadi-pour et al. [61], their results show that they were able to

produce higher quality edge maps in around half the time. However, the time required

to produce a single edge map was around 1 minute and did not execute in parallel.

Tian et al. [64] detail an improved ACO edge detection algorithm based on the

works of Nezamabadi-pour et al. [61]. Their approach differs by allowing ants to make

multiple moves on each iteration and to update the pheromone levels after each of these

moves and again after all ants have moved. They detail that the execution time of their

implementation was also around 1 minute. They conclude that a parallel ACO algorithm

could be effectively utilised to decrease the total execution time.

Many additional papers have subsequently been presented however, these papers have

mainly focussed on improving the viability of the algorithm by increasing the quality of

the edge maps produced over reducing the execution time of the algorithm.
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5.3.2 Other edge detection methods on the GPU

The Canny edge detection algorithm [26] produces high quality edge maps and results

in more complete edges than alternative algorithms such as Prewitt or Sobel due to the

inclusion of the hysteresis step (in which thresholding is applied to include and exclude

certain edges). Luo and Duraiswami [27] were the first to present a GPU implementation

of Canny using CUDA. Their implementation moved the entire execution of the algorithm

to the GPU which yielded speedups over the optimised sequential counterpart. Luo and

Duraiswami [27] detail that their GPU implementation uses a pixel-to-thread mapping.

Ogawa et al. [28] build upon the work of Luo and Duraiswami [27] and also present a

GPU implementation of the Canny algorithm using a simple pixel-to-thread mapping.

Simpler edge detection algorithms such as using the Prewitt and Sobel operators have

also been implemented in parallel by NVIDIA [65]; the process of applying one of the

operators via convolution in parallel is simple and uses pixel-to-thread mapping.

5.4 Implementation

In this section we present a parallel implementation of a ACO edge detection algorithm

for execution on the GPU using NVIDIA CUDA. We execute each stage of the algorithm

on the GPU to avoid unnecessary memory transfers. Building upon Chapters 3 and 4,

we present a new parallel approach mapping multiple ants to each thread block on a

warp level. Cecilia et al. [20] have previously shown that mapping individual ants to

each CUDA thread is not effective and following a data-parallel mapping of one thread

per thread block yields improved execution times. This speedup is due to reducing warp

serialisation as a result of eliminating thread divergence caused by each thread following

its own path. When a warp is serialised the speedup is dramatically reduced and NVIDIA

recommends, as best practice, that this should generally be avoided [30].

5.4.1 Adapting data-parallelism for edge detection

Edge detection differs from the TSP as each ant can potentially move to any city in the

graph of size k; however, with ACO based edge detection each ant can only ever move

to any of the 8 neighbouring pixels (see Fig. 5.1). The number of valid moves will also

decrease as an ant is not permitted to revisit a pixel for a set number of iterations (this is

to avoid the ant becoming stuck and not fully exploring the image). To accommodate the
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difference in the number of potentially valid moves, we map each ant to a warp of threads

and execute multiple ants per thread block. This allows us to ensure all threads within

the warp still follow the same execution path (avoiding warp serialisation) and also to

execute more ants per thread block thus reducing the total number of blocks required.

Whilst we could have simply utilised the previous data-parallel mapping, this would have

left most of the threads in each block idle during execution and resulted in increased

execution time due to using more thread blocks. As was previously shown by Cecilia et

al. [20], mapping a single thread to an individual results in slower execution times and

our initial experiments also found this to be true for our edge detection implementation.

As a result the following section will only document our warp-level ant mapping which

resulted in the best speedups and lowest execution times for all of the test images.

5.4.2 Algorithm setup

As Nezamabadi-pour et al. [61] note, an input image can be loaded into a 2D array. The

color image is then converted to greyscale using the algorithm shown in Fig. 5.2. Novak

and Shafer [22] note that around 90% of edges in an image can be found just using the

greyscale values and this approach produces high quality edge maps.

The image array is later used by the random proportional rule for determining the

visibility of a pixel which in turn alters the probability of an ant deciding to move to

the pixel. However, as this input image remains static throughout each iteration of the

algorithm we can significantly reduce the computational load of the algorithm by pre-

processing the pixel visibilities. The visibility of a pixel is calculated using the variation

of intensity around a given point. With existing implementations each ant must calculate

the visibility of all pixels in the neighbourhood of a pixel for each iteration. This is a

costly operation and unnecessary as the image data does not change. After loading the

image data into an array, we calculate all pixel visibilities and save the results to a second

array in global memory on the GPU. This array is then used by each ant when calculating

the probability of visiting a neighbouring pixel thus replacing eight slow global memory

lookups with a single lookup for each pixel.

procedure ColorToGreyscale (red, green, blue)
return (red >>2) + (green >>1) + (blue >>2);

end

Figure 5.2: Calculating the greyscale value for a color pixel
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A pheromone matrix is allocated in global memory on the GPU and artificially seeded

with the value 0.0001 as described by Nezamabadi-pour et al. [61]. A second pheromone

matrix is also allocated in global memory. As each ant is executed in parallel, it can

potentially deposit pheromone to the pheromone matrix before all ants have made their

next move. To accommodate this, after evaporation the new values are written to the

second matrix. Each ant then deposits an amount of pheromone on the second matrix

after constructing their solution using an atomic add operation. In the next iteration

of the algorithm the two pheromone matrices are swapped thus allowing ants to deposit

without impacting the current iteration. Finally we allocate an array containing the ants.

For each ant we maintain the current position on the image, the current iteration and

a small array for the ant memory. As we are operating on the warp level we set the

length of the memory array to 32 previous locations matching the size of the warp. By

maintaining the current iteration, we are able to treat the memory array as a circular

array using basic modulo arithmetic. For example on iteration 48 we would index position

48 % 32. This allows us to maintain a fast FIFO queue of previous locations on the image

without the need for additional data structures. Before we enter the solution construction

phase, the ants are randomly placed around the image. Lu and Chen [63] suggest an

alternative to randomly placing the ants is to place the ants on the end points of edges

extracted using alternative algorithms. However we will use the random placement for

our implementation described by Nezamabadi-pour et al. [61].

5.4.3 Solution construction

In Section 5.2 we gave an overview of solution construction phase of the AS algorithm

outlined by Nezamabadi-pour et al. [61]. In this section we describe our parallel mapping

of the algorithm to the GPU using CUDA. Our primary contribution of this chapter is the

novel ant-to-warp mapping for the tour construction phase. As was previously mentioned,

mapping a single ant to a thread is ineffective and leads to warp serialisation resulting in

a loss of performance. Mapping a single ant to each thread block is a wasteful use of the

GPU as most threads will be idle for each iteration. As a result we cannot simply use

DS-Roulette. We found experimentally that packing four ants into a thread block (using

a total of 128 threads) and operating on a warp level yielded the best results. In Fig. 5.3

we illustrate our ant warp mapping for solution construction that is key to the speedup

attained. In Fig. 5.4 we give an overview of the entire parallel solution construction phase

performed by each ant within a thread block before detailing each step individually.
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Figure 5.3: An overview of our novel mapping technique to pack multiple ants
within a thread block. Each ant is mapped to a thread warp and four warps are
executed per thread block in parallel.
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procedure SolutionConstruction
Cache the surrounding pixel visibility data
Calculate the probability of visiting local pixels
Check if the local pixels have already been visited
Perform reduction on the pixel probabilities
Perform roulette wheel selection on the probabilities
Update the ants current position

end

Figure 5.4: An overview of solution construction

Cache the surrounding pixel visibility data

First the pre-calculated visibility values (as previously described) of the 8 neighbouring

pixels are cached into shared memory. As we are operating on a warp level, the remaining

24 threads load in the same data to avoid warp divergence. As the values are cached in

the L1 cache, this operation is faster than branching the warp. After the visibility data

is cached to shared memory, each thread loads the previously visited position from the

ant’s memory into a local register. As the size of the memory is limited to 32 previous

positions each thread will load one value from the array. For example, thread 9 will load

position 9 from the array and so on. This will later allow the warp to quickly check if a

position has recently been visited without touching costly global memory.

Calculate the probability of visiting local pixels

Each of the first 8 threads in the warp then calculate the probability of visiting one

of the neighbouring pixels using the random proportional rule described in Section 5.2.

The probabilities calculated are saved to an array in shared memory, again to avoid the

cost of using global memory. Although we introduce branching in this stage, having the

remaining 24 threads perform additional work is more costly than serialisation.

Check if the local pixels have already been visited

Each thread in the warp then checks whether the previously visited pixel cached in its

register is a valid move. If a thread finds that the move has recently been made it replaces

the probability of visiting that pixel with 0 (this matches our previous implementation

in Chapter 3 replacing available cities with potentially available neighbouring pixels).
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Perform reduction on the pixel probabilities

A warp-level reduction is then performed on the probability array returning the total of

all the probability values. At this point the first thread checks if the total value returned

is greater than 0 and if not the thread picks a new random location for the ant to move

to (also saving this to the ants memory). If the total is greater than 0 the first thread

then calculates a random number in the range of 0 to 1, saving this to shared memory.

Perform roulette wheel selection on the probabilities

The first 8 threads then apply roulette wheel selection (proportionate selection) to select

the next pixel to move to. Using the previously reduced probability array in shared

memory (and total value previously returned) each thread normalises the probability of

its respective pixel bringing the probability into the range of 0 to 1 (see Table 3.1). After

the values are normalised each of the 8 threads then checks if the previously generated

random number lies within the range for that pixel. If the thread determines that its pixel

has been selected then the ant’s current position is updated. This parallel implementation

thus handles both cases for solution construction outlined by Nezamabadi-pour et al. [61].

5.4.4 Pheromone update

The second stage of the AS algorithm is pheromone update which consists of two stages:

pheromone evaporation; and pheromone deposit. The pheromone update stage represents

a very small proportion of the total execution time and thus is not the main focus of this

paper. As we previously noted [1], the pheromone evaporation stage (see equation (3.3))

is trivial to parallelise as all points on the matrix are evaporated by a constant factor

ρ. We adopt the same efficient parallel strategy previously demonstrated [1] where a

single thread block is launched which maps each thread to a position on the pheromone

matrix and decreases the value using ρ. A tiling strategy is used to ensurecoverage of all

positions on the matrix. Each ant then deposits an amount of pheromone proportional

to the quality of its move onto the pheromone matrix. As previously noted, we utilise

two pheromone matrices (alternating between primary and secondary) to ensure that

ants deposit to a matrix not currently being read by other ants. Each ant deposits an

amount of pheromone to the second pheromone matrix using the operation atomicAdd()

(for thread safety to avoid overriding values) which takes the previous value within the

matrix and adds the new value.

95



5.5. RESULTS

5.5 Results

In this section we will discuss our experimental setup, algorithm parameters chosen, qual-

ity of the edge maps obtained via our parallel implementation and finally the execution

times observed from our implementation on the GPU against the CPU counterpart.

5.5.1 Experimental setup

For fairness and consistency we used the same experimental setup as described in Chap-

ter 3 and again in Chapter 4. This identical setup includes an NVIDIA GTX 580 GPU

(Fermi) and an Intel i7 950 CPU (Bloomfield).

5.5.2 Algorithm parameters

To ensure a fair comparison of the edge maps produced via our implementation, we use

the same parameters as defined by Nezamabadi-pour et al. [61] with the exception of

modifying the number of ants and iterations. Nezamabadi-pour et al. define the number

of ants and iterations to be proportionate to the root of the size of the image. For example,

an image of size 512×512 would have a total of 512 ants performing 512 iterations

before producing an edge map (a total of 262144 moves). We found experimentally that

executing more ants per iteration for fewer iterations yielded edge maps of comparable

quality and was a better fit for the parallel architecture as we can execute more ants

simultaneously with ease. There is an implicit overhead when scheduling a kernel for

execution on the GPU and by increasing the number of ants (and thus increasing the

number of thread blocks) we can reduce the number of kernel executions. This approach

will also scale automatically to CUDA devices with more CUDA cores which will further

decrease the execution time. For a 512×512 image we use 3000 ants for a maximum of 50

iterations (a total of 150000 moves). The remaining algorithm parameters are as follows:

• α = 2.5

• β = 2

• ρ = 0.04

• Ant memory length = 32

• Edge threshold = mean image intensity
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5.5.3 Solution quality

To ensure our implementation provided edge maps comparable to the original algorithm

by Nezamabadi-pour et al. [61], we tested against the standard test images (Lena, Peppers

etc.). To evaluate what we consider to be a good edge map we have to consider a number

of factors including; the thickness of the edges produced, if edges are repeated (i.e. double

edges), if edges are incorrectly detected, if the edges that are detected are incomplete and

if the edges we have detected have been incorrectly shifted. Our parallel solution was

able to match and often improve the quality of edge maps produced. In Fig. 5.5 we show

the edge maps produced by the Sobel operator, the Canny edge detector and our parallel

ACO implementation. The edge maps produced for Canny and Sobel were generated via

the Image Processing toolbox in MATLAB [66].

(a) Original (b) Sobel

(c) Canny (d) Our solution

Figure 5.5: A comparison of final edge maps produced by the Sobel, Canny and
our parallel ACO edge detection algorithms.
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5.5.4 Variable edge thickness

We found experimentally that by increasing the number of ants (whilst keeping the

iteration count constant) we were able to increase the thickness of the edges produced.

Over time ants settle on the major edges in the image due to deposits on the pheromone

matrix. As more ants are added to the image this effect is amplified creating a stylised

effect. In Fig. 5.6 we show the edge maps produced when using 1500 ants, 3000 ants

(standard), 4500 and 6000 ants.

(a) 1500 ants (b) 3000 ants

(c) 4500 ants (d) 6000 ants

Figure 5.6: The effect on edge thickness when alternating the number of ants in a
512x512 standard test image.
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5.5.5 Benchmarks

In Section 5.4 we detailed the various mappings for ACO on the GPU. The simplest of

the mappings uses a single CUDA thread for each ant, the second mapping uses a whole

CUDA thread block for each ant and the third mapping uses a single thread warp per

ant (with multiple ants per CUDA block). Our results (shown in Table 5.1) show that

the different approaches yield significantly different results. The execution times detailed

are for both the solution construction and pheromone update stages of the AS algorithm.

Threads per block Ant-to-thread Ant-to-block Ant-to-warp
64 62.679 21.435 10.693
128 63.025 18.233 6.531
256 62.858 18.433 8.884
512 62.601 18.431 9.308
768 64.845 18.973 9.597

Table 5.1: Average execution times (ms) when varying the number of threads per
block and mapping arrangement of ants to blocks, threads and warps.

The first mapping (although the simplest to implement) produced the worst results

and varying the number of threads per block did little to change this. As Cecilia et al. [20]

note, this simple mapping is not suited to ACO as the solution construction phase results

in warp divergence which increases the overall execution time. As expected the second

data-parallel mapping produced significantly better results and executed in around a

third of the time of the first mapping. The third approach which utilised our ant-to-warp

mapping consistently produced the best results. The mapping performed best when using

128 threads (4 ants using 4 warps of 32 threads per CUDA thread block).

In our ant-to-warp implementation each thread in the warp caches a value of a

recently visited city to shared memory. This later allows the warp to quickly check if a

neighbouring pixel is still valid or has been visited recently without touching the slower

global memory and slowing down the execution. As Fermi generation GPUs automatically

cache values to the L1 cache, we observed the execution times of manually caching values

to the shared memory versus solely relying on the automatic L1 cache (see Fig. 5.7). The

results show that manually caching the values is still considerably faster and necessary

to obtain the best possible speedups although requiring additional programming effort.
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Figure 5.7: Observed execution speeds for the ant-to-warp mapping with/without
caching visited positions to shared memory.

An ant placed on an input image has no perceivable concept of difficulty and will

explore an image irrespective of the number of edges on the image. As a result we found

that unlike with other edge detection algorithms (such as the Canny edge detector)

varying the input image had little effect on the overall execution time of the algorithm.

Finally, we compared the results of executing our ant-to-warp mapping implementa-

tion against an optimised sequential counterpart. We found that the sequential implemen-

tation took just under 1000ms to execute compared against 6.531ms for the best thread

configuration for our parallel CUDA version. This represents around a 150x speedup for

our GPU implementation against the optimised CPU implementation.

5.6 Conclusion

In this paper we present the first parallel ACO edge detection implementation for ex-

ecution on the GPU. By extending our previous contributions in Chapters 3 and 4 we

are able to adapt our fast data-parallel GPU ACO mapping for edge detection using a

novel ant-to-warp mapping. By harnessing the massively parallel nature of the GPU we

reduced the number of iterations required to produce the edge map and increased the

number of ants per iteration. Our implementation is able to match the quality of edge

maps produced by the sequential implementation and executed up to 150x faster.
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CHAPTER 6

Color Image Edge Detection

This chapter is based on the following joint publication:

Color Image Edge Detection based on Quantity of Color Information and its Implemen-

tation on the GPU [4].

Y. Xiang initially proposed utilising additional color information to enhance the perfor-

mance of edge detection. Y. Xiang and L. Dawson jointly designed the proposed technique

and the parallel implementation was proposed and implemented by L. Dawson.

6.1 Introduction

In Chapter 5 we introduce the first-data parallel implementation of an existing established

ACO-based edge detection technique on the GPU using NVIDIA CUDA. In this chapter

we present a new method for quantifying color information as to detect edges in color

images. Novak and Shafer [67] note that although 90% of edge images can be detected

using just gray values in color images. The remaining 10% of edges in color images

may contain important information for further processing. As a result several color edge

detection algorithms have been proposed [23, 24, 68, 69]. Our novel approach uses the

volume of a pixel in the HSI color space, allied with noise reduction, thresholding and

edge thinning to produce an edge map that can withstand great levels of noise in images

whilst creating high quality edge maps. In order to improve the viability of our color edge

detection algorithm, we also present a parallel implementation for direct execution on the

GPU using NVIDIA CUDA. Experimental results show that compared to traditional edge

detection methods our new method can improve the edge detection accuracy, withstand

significantly greater levels of noise on the input algorithm and achieve speedups of up to
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6.2. COLOR IMAGE EDGE DETECTION

10x over related CUDA implementations based on the Canny edge detection algorithm

using CUDA. Although our color edge detection method is not as sophisticated as the

method presented in Chapter 5, we envisage our new method could be successfully applied

to detect edges in noisy images whilst maintaining a high frame rate in domains such as

real-time video processing or when using poor quality image sensors.

6.2 Color image edge detection

In Chapter 5 we introduce edge detection, a fundamental step in computer vision, image

processing, analysis and pattern recognition systems. Its importance arises from the fact

that edges often provide an indication of the physical extent of objects within the image.

They are often vital clues toward the analysis and interpretation of image information. By

the detection of edges the size of the image data is reduced into a size that is more suitable

for image analysis. As later tasks (such as image segmentation, boundary detection,

object recognition and classification, image registration, and so on) depend on the success

of the edge characterization step, it is very important that the edge detection step should

provide sufficient information to characterize the image feature, but with a relatively

small image size (to keep the image edge information). Hence, edge detection must be

efficient and reliable [70].

To utilize the non-linear relationship between color components, we propose a new

color edge detection algorithm based on the quantity of color information (QCI) in the

HSI color space. To detect as many edges as possible, we use QCI as well as the existing

luminance values used by traditional edge detection techniques. Not all edges can be

detected by QCI, but some edges not detected by luminance information can be detected

by QCI. Experimental results show that our algorithm generally performances as good

as the Canny edge detection algorithm [26], and in some cases, it performances better

and can endure more noise than the Canny edge detection algorithm.

6.2.1 Edge detection techniques

An edge in a monochrome image is defined as an intensity discontinuity, while in a color

image, the additional variation in color must be considered; for example, the correlation

among the color channels (which may constitute a valid edge). There are a number

of color edge detection methods which can be divided into two groups: 1. techniques

extended from monochrome edge detection; 2. vector space approaches, including vector
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gradient operators, directional operators, compound edge detectors and second derivative

operators [71, 72]. Numerous kernels have been proposed for finding edges; for example,

the Prewitt kernels [73] and Sobel [74] kernels. By using gradient operators the edges are

detected by looking for the maximum in the first derivative of the color or intensity of

the images. Second derivative operators search for zero crossings in the second derivative

of the color or intensity of the image to find edges [75]. First derivative operators are

very sensitive to noise, while the second derivative operators lead to better performance

in a noisy environment. After selecting a suitable color space, primary edge detection

steps include: (1) suppressing noise by image smoothing; and (2) localizing edges by

determining which local maxima correspond to edges and which to noise (thresholding).

A Gaussian filter is widely used to remove noise. The Gaussian operator is isotropic and

therefore smoothes the image in all directions [76]. One problem with derivative-based

edge detection is that the output may be thick and require edge thinning [77].

6.3 Related work

In this section we will give an overview of the most significant contributions made to

edge detection using CUDA. In Section 5.3.2 we outlined significant contributions to edge

detection using CUDA; however, will expand upon these here. At the time of writing

we were unable to find any other existing research into parallel color edge detection

algorithms using NVIDIA CUDA.

Luo and Duraiswami [78] present a parallel version of the Canny edge detection

algorithm using CUDA. Their work extends upon a previous parallel contribution on the

GPU presented by Fung [79]; however, it uses CUDA as opposed to the older NVIDIA

Cg framework. Their contribution represents the first modern CUDA implementation of

the Canny edge detection algorithm and is able to improve upon an optimised sequen-

tial counterpart. The implementation presented by Luo and Duraiswami also improves

upon the earlier work of Fung by increasing the functionality to include the hysteresis

thresholding step on the GPU. Sections of the implementation such as Gaussian blurring

were built upon NVIDIA SDK examples and can be easily reused for other potential

applications. The results of [78] show a modest speedup compared to highly optimised

sequential Intel SSE code executed on the CPU and significant speedups compared to

sequential naive Matlab code also executed on the CPU. However it is worth noting that

their code was tested using first generation CUDA hardware and not optimised to take
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advantage of the newer features of Fermi, Kepler and Maxwell cards. Luo and Duraiswami

note that hysteresis thresholding occupies over 75% of the overall runtime. This is due

to the function to connect edges between thread blocks being called multiple times and

without this stage the algorithm performs around 4 times faster. They note that the

runtime can vary depending on the complexity of the image and number of edges.

Building upon the work of Luo and Duraiswami, Ogawa et al. extend the imple-

mentation of the Canny edge detection algorithm [80]. They note that as the hysteresis

step is called a fixed number of times, some edges which span over blocks may not be

fully traversed. Their implementation solves this by introducing a stack onto which weak

edges are pushed and when all edges have been traversed, the algorithm will terminate.

Their results show a speedup of around 50 times for large images; however it is unclear as

to whether they first compare with niave CPU code or SSE optimised code. As with the

implementation presented by Luo and Duraiswami [78], it would be reasonable to assume

that the runtime of their improved method will also vary depending on the image. The

implementations of Luo and Duraiswami and Ogawa et al. only support gray input and

to date, there have been no color edge detection algorithms implemented using CUDA.

NPP (NVIDIA Performance Primitives) is a closed-source CUDA library targeted

specifically at video and image processing (although the scope is set to increase with time).

NPP allows developers to easily port existing sections of Intel Performance Primitives

(IPP) C/C++ code to corresponding GPU functions. We will not be using the NPP

library, as it is not an open source library and modifications cannot be made.

6.4 Implementation

In this section we will present the steps to our color edge detection algorithm and also

how we map our new algorithm to the GPU using CUDA for parallel execution. Our

color edge detection algorithm is divided into 4 steps.

Step 1. Noise removal and color space transformation. The following Gaussian filter

is used to remove noise.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (6.1)

where x is the distance from the origin in the horizontal axis, y is the distance from the

origin in the vertical axis, and σ is the standard deviation of the Gaussian distribution.
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We choose to use the HSI (Hue-Saturation-Intensity) color space as it represents colors

similarly to how the human eye senses colors, and it is one of the most commonly used

color spaces in image processing. For a given color P in the HSI color space, H (hue)

is given by an angular value ranging from 0 to 360 degrees, S (saturation) is given by

a radial distance from the cylinder center line, and I (intensity) is the height along the

cylinder axis. The following three formulas convert a color in RGB (R, G, B) to a color

(H, S, I) in the HSI color space:

I =
R+G+B

3
(6.2)

S = 1− min(R+G+B)

I
(6.3)

H =

{
θ if G ≥ B

2π − θ otherwise
(6.4)

where θ = arccos

[
1
2 [(R−G) + (R−B)]√

(R−G)2 + (R−B)(G−B)

]
(6.5)

Step 2. Gradient finding. In this step we detect edges using the magnitude of the

volume information and intensity information.

Let P = Img(i, j) be a pixel at position (i, j) in the image Img, and its color

information be (Hp, Sp, Ip).

Define its volume Vp = π × S2
P × Ip × (Hp/360). As well as volume information,

color intensity information is also considered in our algorithm. Replace each pixel’s

color information in Img by the corresponding volume (resp. intensity) information, and

denote it as ImgV (resp. ImgI).

Using Prewitt kernels we calculate the magnitude of the volume and intensity infor-

mation. Let ImgP be the 3× 3 area centered at pixel P in ImgV (resp. ImgI), and let

Gx = Dx × Imgp and Gy = Dy × Imgp be the magnitude in the x direction and the y

direction for P in ImgV (resp. in ImgI), where Dx is the x directional Prewitt kernel,

and Dy is the y directional Prewitt kernel. The magnitude of the volume information

(resp. intensity information) for the pixel P is defined as: M1p =
√
G2
x +G2

y.
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Another two direction operators are applied in our algorithm to obtain more accurate

edges: one in the 45◦ direction; and one in the 135◦ direction. Similarly, the magnitude

of the volume (resp. intensity) information is defined as M2p =
√
G2

45◦ +G2
135◦ . A pixel

is considered as on an edge if either M1p or M2p is above a corresponding threshold.

Step 3. Thresholding. The threshold value is set as the average volume magnitude

value multiplied by a constant. For the constant, we first set a random value and then

adjust until we get a satisfiable edge map. As a result different images will have a different

constant value and this will have to be configured per image.

Step 4. Edge thinning. It is neccessary to thin the edges of the edge map produced

due to using a derivative-based edge detection algorithm. Prior to thinning, the edges

may be up to several pixels thick thus requiring thinning. For our algorithm we use a

simple edge thinning algorithm described by Guo and Hall [81] (an extension of [82]).

6.5 Parallel Implementation on the GPU

In this section we describe how the four steps of the algorithm described in Section 6.4

are mapped to the GPU using NVIDIA CUDA.

6.5.1 Algorithm setup

Image data is stored in the CUDA vector type uchar4 which allows us to access the

individual RGB components of a pixel easily without additional bit shifting techniques.

The uchar4 vector is the same size as a standard integer so introduces no additional space

constraints by switching to this efficient data type. By using the vector type uchar4 global

memory accesses can be coalesced for maximum bandwidth as described in step 1 and 2.

For simplicity our solution is currently designed for square input images so as to easily

fit the block and thread requirements of CUDA. However, our solution could easily be

extended to allow for non-square input images by setting padding on the images. This

padding would be applied as the image is loaded so that the image appears as a square

internally and thus not requiring any further alterations to the parallel kernels.

Our solution is designed to utilise advancements made in CUDA Compute 2.0 such as

increased shared memory and full warp thread processing (pior to Compute 2.0 threads

were addressed by half warp). As a result of these hardware requirements, our solution

is incompatible with older devices without changing the execution flow of warps and

incurring execution penalties due to the lack of the larger L1 cache.
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6.5.2 Edge detection

Step 1. Gaussian blurring and color space transformation. The first step of our algorithm

applies a Gaussian blur to the input image whilst preserving the three color channels. We

initially set the standard deviation σ = 1 for the Gaussian filter. In our implementation

this is a user configurable value and this can be altered at run time to change the final

edge map produced. As applying a Gaussian filter is a simple operation, we base our

implementation on the optimised image convolution CUDA example provided by NVIDIA

as part of the CUDA SDK [83]. In the example provided by NVIDIA, the Gaussian filter

is expressed as the product of two one-dimensional filters. Podlozhnyuk [84] describes

how using separable filters can increase image convolution efficiency as the number of

pixels loaded into shared memory can be reduced. When performing convolution on an

image, surrounding image data is required for each pixel and splitting the Gaussian filter

into the two separable planes minimises the number of surrounding pixels required which

can lead to significant performance benefits [84]. Threads at the edges of thread blocks

will require additional pixel information from neighbouring blocks in order to perform

convolution. Podlozhnyuk [84] describes how this can be handled by loading an apron of

surrounding pixels. Without sampling the surrounding pixels around thread blocks, edges

cannot be traced across multiple thread blocks without producing discontinuation of the

edges discovered. Luo and Duraiswami [78] also use the efficient apron-based approach

described by Podlozhnyuk [84] for their parallel Canny edge detection algorithm.

The seperable convolution example only supports blurrinsg of gray images and as a

result is only optimised for a single channel. For a color image the three channels can

be blurred independently and recombined after the last blur. This basic approach would

allow us to use the source provided without modification (requiring three passes, one for

each image channel), however, by combining the three iterations into one single pass, we

can take advantage of the pixel data existing in shared memory.

At the end of the second convolution pass (we perform two convolution passes as

convolution has deconstructed into the two constituent dimensions) we calculate the

color space transformation as again, the pixel data already exists in shared memory thus

removing unnecessary accesses to slow global memory. After color space transformation,

the results are written back to global memory. An optimisation tested was to replace

the inverse cosine function (used as part of the color space transformation) with a faster

approximation method; however, this approximation function performed worse than the

compiler optimised fast-math alternative and was not used.
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Step 2. Gradient calculation. For the next step of the algorithm we calculate the

gradient through convolution with the Prewitt operator. As we apply the operator in 4

directions (two of which are diagonal) the process is not linearly separable, as with the

blur operator, and requires a different approach to achieve efficient convolution. Stam [85]

describes how peak convolution performance can be attained by using shared memory

efficiently and gives insight into how this method could be modified to support color

images across three channels. This solution also maps multiple pixels per thread to

achieve higher device occupancy and reduce the number of apron pixels loaded. However,

as the example provided uses gray images, the shared and global memory access patterns

are carefully aligned for smaller data types. Based on a modified version of the solution

proposed by Stam [85] we perform a fast efficient 2D convolution of the kernel that

handles larger float datatypes and multiple color channels. In Figures 6.1, 6.2 and 6.3

we show how image data is loaded into shared memory efficiently to maximise coalesced

accesses. Shared memory is aligned across 32 memory banks thus satisfying the access

pattern requirements and avoiding bank conflicts. In tests we found that our approach

was around 2-3 faster than naive global lookups on Compute 2.0. Once the convolution

is complete, the values are again saved back to the global memory.

Step 3. Average gradient calculation and thresholding. In order to perform global

edge thresholding the average gradient values must first be calculated. Using the results

obtained from the previous convolution we implement a parallel reduction algorithm

based on the example provided by NVIDIA [86]. As CUDA does not support global

synchronisation the algorithm is split into two stages. The first stage calculates the sum

within each block; the second stage then calculates the global total across all blocks.

Before saving the total average value to global memory, the value is multiplied by a

constant to obtain the thresholding value.

With the global threshold values calculated, the next stage is the relatively simple

task of applying thresholding to each pixel. We can process each pixel independently

removing the need for any apron areas surrounding the blocks. The first thread of each

block then caches the previously computed threshold value into shared memory using

a single 128-bit load. Each thread then loads the corresponding pixel data into local

registers and performs a conflict-free broadcast access to the cached threshold. Each

thread then decides if the pixel loaded qualifies as an edge and writes this data back to

global memory. At this point there is an option to either display the edges as they are,

or continue to process the data and thin the detected edges.
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Figure 6.1: Load the top apron pixels

Figure 6.2: Load the centre and apron pixels

Figure 6.3: Load the bottom apron pixels
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Step 4. Edge thinning. Using the edge thinning algorithm mentioned in Section 6.4,

we are able to thin the edges in the edge map produced in Step 3. We can avoid the

costly task of calculating if each pixel satisfies multiple conditions in order to be thinned

by pre-calculating the outcome of any possible situation and storing this data in a lookup

table (LUT). As there are only 9 pixels in each window of interest, each of which can be 0

or 1, there are only 512 different outcomes of the edge thinning algorithm per pixel. The

outcome of any pixel’s calculation can be quickly and efficiently accessed in the LUT by

calculating the index addressed according to the matrix shown in Fig. 6.4.

256 32 4
128 16 2
64 8 1

Figure 6.4: LUT index matrix

For example if all pixels are set, the lookup index will be 256+32+4+128+16+2+

64 + 8 + 1. This is equal to the index 512 in the lookup table. The value from the LUT

is then assigned to the pixel and repeated for all other pixels. This is a commonly used

optimisation in image processing and is possible in this circumstance due to the small

kernel size. To perform edge thinning in parallel, the results of thresholding are loaded

into shared memory and each thread calculates the index for the LUT for each pixel. The

final step copies the value obtained from the LUT back into global memory resulting in

a thinner edge. This process can be repeated multiple times for thinner edges.

6.6 Results

In this section, we describe the quality of the edge maps produced using our algorithm and

timings from the parallel implementation of the GPU, and compare our algorithm with

other edge detection algorithms. For each edge detection algorithm the results shown are

based on the criteria of selecting the best output by tuning the corresponding parameters.

This is required as each algorithm requires fine tuning to produce the optimum edge map

for a given input image. To evaluate our proposed technique, we compare our algorithm

with the Canny and Sobel edge detection algorithms for a set of color images of the

standard image processing dimension 512 × 512.
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6.6.1 Noise tolerance

To demonstrate our algorithms’ tolerance to noise we present the results of experiments

using the standard test image Lena. In Fig. 6.5 the images in column one are: original,

+20% noise, and +40% noise. Columns two to four contain the results of our algorithm,

Canny and Sobel, respectively. With no noise we can see that our algorithm detects more

useful edges than Sobel and produces an edge map comparable to Canny.

Lena Our algorithm Canny Sobel

Lena Our algorithm Canny Sobel

Lena Our algorithm Canny Sobel

Figure 6.5: The effect of introducing noise to the input image when using the
standard image processing test image Lena.

When noise is introduced to the image, our algorithm maintains a near constant

edge map whilst Canny and Sobel begin to falter. When noise is added, Canny and Sobel

required significant input parameter changes whilst our algorithm required minimal input

changes. We can observe that the hysteresis stage of the Canny edge detection algorithm

begins to form incomplete edges due to an increased threshold to remove noise.

111



6.6. RESULTS

6.6.2 Improved edge detection

By using coefficients for intensity and volume, in some circumstances we are able to

produce better edge maps using this volume information. For example when using the

test image shown in Fig. 6.6 the edge maps produced are significantly better than the edge

maps produced using Canny and Sobel. In this example we adjusted the parameters to

allow more volume information than intensity to contribute to the edges. Experimentally

we found that our algorithm was often able to match the edge map produced by Canny

for most test images. However, the edge maps produced contained thicker edges and

sometimes non-connected edges.

(a) Original (b) Our algorithm

(c) Canny (d) Sobel

Figure 6.6: Edge maps produced for a color image.
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6.6.3 GPU Implementation Results

In this section we present the results of executing our parallel implementation on the GPU

using CUDA. We compare against five standard test images (Lena, Peppers, Mandril,

House and Cameraman [87]) and average our results over 1000 iterations of our algorithm.

6.6.4 Experimental setup

For fairness and consistency we used the same experimental setup as described in Chap-

ter 3, Chapter 4 and finally in Chapter 5. This identical setup includes an NVIDIA GTX

580 GPU (Fermi) and an Intel i7 950 CPU (Bloomfield).

6.6.5 Benchmarks

We compare the execution time of our algorithm in parallel against the GPU CUDA

Cannny implementation and the OpenCV Canny implementation. As the results from

the Canny CUDA implementation were obtained using Compute 1.0 hardware, we tested

and re-calculated the results using our updated setup to provide a more accurate and fair

comparison. We also executed the OpenCV implementation on our hardware to again

provide a fair comparison. Running the hysteresis step four times as proposed by Luo

and Duraiswami [78] was rarely sufficient and we also include timings from executing the

step 10 times, producing a more accurate Canny output edge map.

Image OpenCV GPU Canny
(H4)

GPU Canny
(H10)

Our
algorithm

Lenna 7.95 1.46 2.41 0.46
Mandril 9.05 1.43 2.34 0.44
Peppers 8.12 1.39 2.29 0.47
House 7.78 1.35 2.69 0.44
Cameraman 8.15 1.42 2.53 0.42

Table 6.1: Average execution times (ms) for processing standard image processing
test input images using the OpenCV canny implementation, the CUDA GPU
implementation [78] with 4 passes of the hysteresis step, the CUDA GPU
implementation [78] with 10 passes of the hysteresis step and finally using our
new color edge detection method.
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6.7 Conclusion

In this chapter we propose a new edge detection method based on QCI in HSI color

space. By using the QCI, we are able to find edges that are not detectable when only

intensity information is used. Experimental results show that our proposed algorithm is

able to withstand greater levels of noise than other leading edge detection algorithms. We

present a parallel implementation of our algorithm on the GPU using NVIDIA CUDA.

Our GPU implementation can achieve speedups of up to 20 times over the IPP Canny

algorithm, and is around 5 times faster than the existing CUDA Canny algorithm.
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CHAPTER 7

Conclusion

In thesis we introduce NVIDIA CUDA and present novel parallel mappings of existing

and new algorithms on the GPU using NVIDIA CUDA. Our research primarily focussed

on improving parallel Ant Colony Optimisation on the GPU and then extended to parallel

edge detection using the techniques and mappings outlined in Chapter 3.

In Chapter 3 we presented a new data-parallel GPU implementation of the AS

algorithm that executes both the tour construction and pheromone update stages on

the GPU. By extending recent contirbutions [20,21] we adopted a data-parallel approach

that focused on utilising each thread block on a warp level to achieve additional speedups

over the current best GPU implementations. We presented a new efficient parallel

implementation of roulette wheel selection called DS-Roulette that we envisage will be

more widely applicable within other heuristic problem-solving areas. By improving the

tour construction stage of the algorithm, our novel parallel implementation of roulette

wheel selection was able to significantly increase the performance of tour construction and

contributed to a speedup of up to 8.5x faster than the best existing GPU implementation

and up to 82x faster than the sequential counterpart.

In Chapter 4 we show that to solve large instances of the TSP using AS, the use of

a candidate set is essential to maintain a speedup over the sequential counterpart when

using a candidate set. We show that all existing contributions struggle to maintain a

speedup against a sequential implementation when a canddiate set is used. By improving

upon our implementation presented in Chapter 3 we again solve the TSP using three

distinct approaches that all utilise a candidate set. After implementing and testing the

three candidate set parallelisation strategies we were able to show that candidate sets can

be utilised efficiently in parallel when using a data-parallel approach. As was predicted, a

115



task-parallel approach performed poorly as was not able to beat the CPU implementation

when using a candidate set. Our best approach was able to achieve a speedup of up to

18x against the CPU counterpart using a candidate set.

In Chapter 5 we presented the first implementation of a parallel ACO-based edge

detection algorithm on the GPU using CUDA. By further extending and reusing our

data-parallel approach presented in Chapter 3. we mapped individual ants to thread

warps allowing multiple ants to execute per CUDA thread block. Our efficient parallel

mapping was able to execute significantly more ants per iteration whilst maintaining

a speedup of up to 150x against the sequential counterpart. We hope that reducing

the execution time of an ACO-based implementation of edge detection will increase its

viability in image processing and computer vision.

In Chapter 6 we outlined a new method of edge detection using additional color

information when using the HSI color space. We presented a novel GPU implementation

utilising an efficient edge-thinning algorithm that was able to execute up to 20x faster

than an efficent CPU implementation of the Canny edge detection algorithm and up to

5x faster than the GPU implementation. Our new method was able to find edges that are

not detectable when only using intensity information and crucially was able to withstand

significantly greater levels of noise on the input images.

The reusable techniques and mappings presented in Chapter 3 allowed us to improve

upon the best existing parallel implementations. These techniques were then extended in

Chapter 4 and repurposed in Chapter 5 showing the versatility of our implementation.

7.0.1 Future work

In future work we would like to apply these techniques and mappings to other heuristic

problem-solving areas that rely heavily on block synchronisation and would benefit from

warp-level parallel programming. As parallel implementations of genetic algorithms have

already been implemented on the GPU [88, 89] we would like to see how our technique

could be merged with existing approaches.

As the amount of global memory increases on the GPU we would like to see larger

instances of ACO processed in parallel. By also extending our work to execute over

multiple graphics cards we would like to see huge instances of the TSP such as the

Mona Lisa [90] challenge being attempted in parallel. New techniques to split tours over

multiple thread blocks would have to be devised along with some method of recombining

these tours.
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