
Durham E-Theses

Applications of Finite Model Theory: Optimisation

Problems, Hybrid Modal Logics and Games.

GATE, JAMES,SIMON

How to cite:

GATE, JAMES,SIMON (2013) Applications of Finite Model Theory: Optimisation Problems, Hybrid

Modal Logics and Games., Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/7015/

Use policy

This work is licensed under a Creative Commons Attribution 3.0 (CC BY)

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7015/
http://creativecommons.org/licenses/by/3.0/
http://etheses.dur.ac.uk

Abstract

There exists an interesting relationships between two seemingly distinct fields: logic
from the field of Model Theory, which deals with the truth of statements about discrete
structures; and Computational Complexity, which deals with the classification of problems
by how much of a particular computer resource is required in order to compute a solution.
This relationship is known as Descriptive Complexity and it is the primary application
of the tools from Model Theory when they are restricted to the finite; this restriction is
commonly called Finite Model Theory.

In this thesis, we investigate the extension of the results of Descriptive Complexity
from classes of decision problems to classes of optimisation problems. When dealing with
decision problems the natural mapping from true and false in logic to yes and no instances
of a problem is used but when dealing with optimisation problems, other features of a logic
need to be used. We investigate what these features are and provide results in the form
of logical frameworks that can be used for describing optimisation problems in particular
classes, building on the existing research into this area.

Another application of Finite Model Theory that this thesis investigates is the relative
expressiveness of various fragments of an extension of modal logic called hybrid modal
logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory
and modifying it so that it can be applied to hybrid modal logic. Then, by developing
winning strategies for the players in the game, results are obtained that show strict hier-
archies of expressiveness for fragments of hybrid modal logic that are generated by varying
the quantifier depth and the number of proposition and nominal symbols available.

Applications of Finite Model Theory
Optimisation Problems, Hybrid Modal Logics

and Games

James S. Gate

supervised by

Professor Iain A. Stewart and Doctor Stefan Dantchev

Thesis submitted for the degree of Doctor of Philosophy

School of Engineering and Computer Sciences

Durham University, UK

2012.

Contents

1 Introduction 6
1.1 Applications of Finite Model Theory . 7
1.2 Thesis Layout . 8
1.3 Original Contribution . 8

2 Preliminaries 10
2.1 General Definitions and Theorems . 10

2.1.1 Finite Model Theory . 10
2.1.2 Computational Complexity Theory 23
2.1.3 Satisfiability Problems . 28
2.1.4 Descriptive Complexity . 32
2.1.5 Games and Inexpressibility . 34

2.2 Optimisation Specific Definitions . 38
2.2.1 Formal Definition of an Optimisation Problem 38
2.2.2 P-optimisation Problems . 42
2.2.3 Some Common Optimisation Problems 43
2.2.4 Extracting Parameters from Fixed-Point Operations 46

2.3 (Hybrid) Modal Logic Specific Definitions 47
2.3.1 Basic Modal Logic . 47
2.3.2 Hybrid Modal Logic and Graph Logic 49
2.3.3 Bisimulation . 53

3 Descriptive Complexity of Optimisation Problems 55
3.1 Chapter Outline . 56
3.2 Past Research . 56

3.2.1 Characterizing NPPBopt . 57
3.2.2 Characterising PPBopt . 62

3.3 Failure of Manyem and Bueno’s Proposed Framework 65
3.3.1 Expressing NP-hard Problems In the Maximisation Framework . . . 66
3.3.2 Expressing NP-hard Problems in the Minimisation Framework . . . 69
3.3.3 Discussion of the results . 71

3.4 A Fixed-Point Framework for PPBopt . 71
3.4.1 Characterisation of Popt . 71

3.5 Examples (using the fixed-point framework) 74
3.5.1 Shortest Path . 75
3.5.2 Max-Flow . 77

1

CONTENTS 2

3.6 A Horn Logic Framework for PPBopt . 79
3.7 Characterising Unbounded Optimisation Problems 83

3.7.1 Removing the Polynomially Bounded Restriction From the NPPBopt
Frameworks . 83

4 Modal Logic, Hybrid Graph Logic and Games 88
4.1 Chapter Outline . 88
4.2 Past Research . 89
4.3 Some problems definable in HGL . 90

4.3.1 Connectivity . 90
4.3.2 Acyclic . 90
4.3.3 Non-4-Colour-SC . 91
4.3.4 Complexity and Decidability of Hybrid Graph Logic 91
4.3.5 Research Question . 92

4.4 Games and Hybrid Graph Logic . 92
4.4.1 Games on Pointed Structures (Models) 93
4.4.2 Games on Modal Frames . 97

4.5 Playing games in Hybrid Graph Logic . 99
4.5.1 Variable quantifier-rank . 100
4.5.2 Variable numbers of propositional symbols and nominals 109

5 Conclusions 112
5.1 Descriptive Complexity of Optimisation Problems 112
5.2 Expressiveness of Fragments of Hybrid Graph Logic 113

Bibliography 114

List of Figures

4.1 Building (H, λ, v) from (G, µ, u). 103
4.2 Building (G, µ, u) from (H, λ, v). 104
4.3 The digraph Ai,j . 106
4.4 (G, µ) and (H, λ) when (H, λ) has distinct clean colour-types. 107
4.5 The digraph Hm. 110

3

Declaration

The work contained within this thesis represents the original research of the author under
the supervision of Prof. Iain Stewart, with the exception of the results from Section 3.3,
which were reached in collaboration with Dr. Prabhu Manyem and Prof. Iain A. Stewart.
Results from Sections 3.3 and 3.4 have been published in [GS10].

No part of this thesis has previously been submitted for any degree at any institution.

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be published
without the author’s prior written consent and information derived from it should be
acknowledged.

Acknowledgements

First and foremost I would like to thank my supervisor, Professor Iain A. Stewart, for
igniting my interest in Finite Model Theory and enabling me to study it through this
PhD. I would also like to thank the EPSRC for providing the necessary financial support to
study and University College, Durham for providing a social environment to study within.
I wish also to acknowledge the various other students and staff within the Engineering and
Computing Science’s Algorithms and Complexity group, for everything from listening to
presentations on and discussing my research; through escaping the office over a coffee; to
putting the world to rights over a pint or two. They include, in no particular order: Dr.
Pim van ’t Hof, Dr. Luke Mathieson, Dr. Lars Nagel, Ioannis Lignos, Dr. Mark Rhodes,
Dr. Barnaby Martin, Dr. Ross Kang, Dr. Berndt Muller, Dr. Yonghong Xiang, Dr. Anna
Huber and I am sure many others.

I also wish to thank everyone I met, talking with and listened to at the various confer-
ences I attended in Bristol, Birmingham, Edinburgh, Warwick, Lipari and Kazan. Special
thanks should go to Dr. Florent Madelaine and Professor Arnaud Durand for helping me
organise research talks at both Clermont-Ferrand and Paris VII and for the hospitality
they provided.

Last but by no means least, I would like to thank my partner, Dr. Amy Jordan, for
her help, support and love.

Dedication

Dedicated to my parents Janet and Martin and to Amy.

Chapter 1

Introduction

Within the last century the computer has developed from little more than a mathematical
concept and general curiosity to an incredibly powerful and useful tool that appears in
almost every walk of life all over the world; in this time it has moved from being no
more powerful than an abacus to being able to perform quadrillions of computations every
second [Top12]. Whilst these huge increases in speed have allowed computers to solve
increasingly larger and more complex problems, the laws that underpin their limitations
haven’t changed. For example, most supercomputers rely on combining multiple processors
in parallel and so, if presented with a problem that is inherently sequential they will not
be able to efficiently solve it. Another example is a problem for which the most efficient
algorithm runs in a number of steps that is exponential as a function of the size of the
input; while it may be computable in a reasonable amount of time for a small problem size,
any increase in the problem size quickly renders the problem computable in excessively
large amounts of time due to the exponential growth of the function. This is where the
field of Theoretical Computer Science comes in.

Theoretical Computer Science studies the underlying principles of computation and
aims to provide tools for the analysis and classification of computational problems; as
opposed to constructing working computers (Electrical Engineering) or developing tools
for using them (Software Engineering). Its primary focus over the years has been to classify
problems based on the computational resources (mainly processor time and memory) they
require and then study the relationships between these classes.

In order to build up a machine independent view of computation, Theoretical Computer
Science distances itself from the physical machine by, among other methods, considering
problems as simply questions. Such questions are posed in natural language, for example:
“What is the shortest distance from Durham to Glasgow?” is a problem whose answer
is the shortest distance between the two cities; it has as its input a map and a pair of
cities (in this case Durham and Glasgow) and then the goal is to find the shortest distance
between them on the map.

A computational method for solving a problem is called an algorithm, which is a
sequence of computational steps that transforms the input to the problem into an answer
to the question. Now, since there are multiple algorithms for solving the same problem, it
is interesting to analyse how much of a computer’s resources they use in order to compare
them. The two primary computer resources that are measured in this analysis are time

6

CHAPTER 1. INTRODUCTION 7

(the number of computational steps needed) and space (the amount of memory required).
Other measures, such as the number of processors used when studying algorithms running
on parallel systems, are of interest but are outside the scope of this thesis and so are not
considered here. By examining the relationship between the resources used and the size
of an instance of a problem the relative complexity of an algorithm can be found and
compared to other algorithms for the same problem and also for different problems.

The comparison of the resources used by different algorithms is not the main applica-
tion of Theoretical Computer Science; it is a tool used to study the relative complexity of
different problems. The fundamental concept here is that there exists a “best” algorithm
for solving a certain problem, in that there is no “better” algorithm that uses signific-
antly less computational resources. By giving an algorithm that solves a problem, this
algorithm has, in effect, shown an upper bound on the complexity of a problem, but what
is really interesting is what the lower bound for the complexity of the problem is, that
is, the point where no computationally more efficient algorithms exist (in fact, this is the
point where the upper bound equals the lower bound). The difficulty comes in showing
that an algorithm is in fact the best possible one for solving a problem as it requires the
consideration of every possible algorithm. To do this in a rigorous mathematical way re-
quires the formalisation of the model of computation and the algorithms that it can run;
one such formalisation is the ubiquitous Turing Machine developed by Alan Turing (see,
e.g. [Sip06]).

Whilst progress has been made towards classifying problems into various classes and
defining which problems are the hardest in those classes through, for example, the theory
of NP-completeness [GJ79], very little is known about the relationships between the com-
plexity classes. For example, the infamous problem in Theoretical Computer Science is
the question as to whether P ⊂ NP, or P = NP (see, e.g. [Pap94]).

To be able to recognise and cope with problems that are fundamentally too hard for
computers to be able to solve in reasonable amounts of time or space, it is very important
to develop these tools through study of and research in the field of Theoretical Computer
Science.

1.1 Applications of Finite Model Theory

As mentioned above the study of the complexity of algorithms and problems requires
a mathematical formalisation of computation. This is often achieved using the model of
computation called the Turing Machine. Whilst this model is very intuitive when thinking
about actual physical computers, it falls short when analysing the complexity of problems,
as the machine itself has no built-in concept of the complexity of problems and classes
thereof. Finite Model Theory on the other hand does.

Finite Model Theory provides a restricted model of computation in which only prob-
lems of a particular complexity can be defined using a particular language (logic). This
has made the link between a problem and its computational complexity much more solid,
as a problem, and not just an algorithm, has a particular complexity if it can be defined
using a formula of some logic; this formalism equates computational complexity classes to
classes of logical formulae. Since Finite Model Theory has grown out of mathematical

CHAPTER 1. INTRODUCTION 8

Model Theory it retains (some of) the tools from this field, such as Ehrenfeucht-Fraïssé
games, which has given it powerful methods for analysing the complexity of problems;
comparing two complexity classes is the same as comparing the relative expressiveness of
formulae from two logics.

Since its conception, Finite Model Theory has been applied to Theoretical Computer
Science in many different ways. Here, two applications are presented:

1. Logical frameworks for optimisation problems (Chapter 3).

2. Relative expressiveness of fragments of hybrid modal logic (Chapter 4).

Whilst the areas are not directly linked, as in one does not build upon the other, they both
use tools from Finite Model Theory, which was the aim of the research carried out for this
thesis. The first application uses features of logics to define optimisation problems and the
second uses Ehrenfeucht-Fraïssé style games to prove the existence of strict hierarchies of
expressiveness within hybrid modal logic.

1.2 Thesis Layout

This thesis starts by presenting the required preliminaries in Chapter 2. These are broken
down into the following key areas:

• Section 2.1 covers general definitions used by both applications.

• Section 2.2 covers the definitions relevant to the research into the logical frameworks
for optimisation problems presented in Chapter 3.

• Section 2.3 covers the definitions relevant to the research into the expressiveness of
fragments of hybrid modal logic in Chapter 4.

Following on from the preliminaries are Chapters 3 and 4 that each examine different ap-
plications of finite model theory. Finally, the thesis closes with Chapter 5, which discusses
the results obtained, looks at the open questions they raise and hypothesises about future
avenues of research.

1.3 Original Contribution

Of the results presented within this thesis, the following theorems and their corollaries
comprise the significant original contribution made by this research to the field of Theor-
etical Computer Science:

• NP-hardness proof of the minimisation and maximisation frameworks suggested by
Manyem and Bueno in [Man08, BM08] (Theorems 3.3.4 and 3.3.6).

• Frameworks for characterising polynomially-bounded P-optimisation problems;

– Using fixed-point logic (Theorem 3.4.1);

– Using second-order Horn logic (Theorem 3.6.6).

CHAPTER 1. INTRODUCTION 9

• Ehrenfeucht-Fraïssé style games for hybrid modal logic with one modality and uni-
versal access (Theorems 4.4.4 and 4.4.7).

• Hierarchies of expressiveness of fragments of Hybrid Graph Logic, which is a hybrid
modal logic with one modality, as presented in [BS09] (Theorems 4.5.2, 4.5.6, 4.5.9
and 4.5.10).

A more thorough discussion of the original contribution of these results is made in Chapter 5.

Chapter 2

Preliminaries

In this chapter, the common definitions that will be used throughout this thesis are laid
out in Section 2.1, along with those that are specific to the two main chapters: Section 2.2
contains definitions for Chapter 3 and Section 2.3 for Chapter 4. Whilst these preliminaries
are intended to be self contained, at the beginning of each section the reader is pointed
towards the key textbooks that contain a more in-depth discussion of the area.

2.1 General Definitions and Theorems

The general theme of this thesis is the application of finite model theory to computational
complexity and algorithms, a field broadly known as descriptive complexity. Finite model
theory is introduced in Section 2.1.1 followed by computational complexity theory in Sec-
tion 2.1.2, before outlining the major results of descriptive complexity in Section 2.1.4.
In the interim, one important class of problems, satisfiability problems, is introduced in
Section 2.1.3. Methods and tools for showing inexpressibility of a problem in a logic are
presented in Section 2.1.5.

A good introduction to classical mathematical logic is [HA50]; the seminal text on
the restrictions of mathematical model theory to the finite is [EF99], although equally
good and sometimes regarded as clearer introductions can be found in [Lib04, Kol07,
Grä07]. Note that most books on finite model theory focus quite heavily on its applications
to computational complexity; no more so than the aptly titled Descriptive Complexity
[Imm99].

The theory of computation and its complexity is presented in many textbooks such as
[Sip06], although notably the relationships between this and mathematical logic through
finite model theory are presented from the computational perspective in [Pap94, BBJ02]. A
good general textbook on algorithms is [CLRS09], with those particular to logic analysed
more closely in [BL99] and the theory of NP-completeness is presented in Garey and
Johnson’s seminal work [GJ79].

2.1.1 Finite Model Theory

Mathematical model theory is concerned with models, which are in essence discrete data
structures, and asks whether a particular property of a model, or a class of models, can
be written using a sentence in some logic. In order for a logic to talk about a structure, it

10

CHAPTER 2. PRELIMINARIES 11

must be the case that they are both of the same vocabulary. A vocabulary τ , consists of the
relations, functions and constants that comprise a discrete structure and that a formula
in some logic can use to talk about and describe the properties of these structures.

Definition 2.1.1. A vocabulary τ is a sequence of r relation symbols, s function symbols
and t constant symbols. In general:

τ = 〈Ra11 , ..., R
ar
r , f

b1
1 , ..., f

bs
s , c1, ..., ct〉

where each relation symbol Raii is of arity ai and each function symbol f bjj is of arity bj .
Note that whilst constant symbols are sometimes represented as functions of arity zero,
here they are treated as separate symbols with no concept of arity.

With the vocabulary fixed, it is now possible to talk about a structure that is of a
particular vocabulary. Every structure has a universe of available objects and an assign-
ment from each symbol in its vocabulary (be it a relation, function or constant) to an
appropriate construct of the objects in the universe.

Definition 2.1.2. A τ -structure (or sometimes a τ -model) A of vocabulary τ (see Defin-
ition 2.1.1) is in general defined as:

A = 〈A,RA1 , ..., RAr , fA1 , ..., fAs , cA1 , ..., cAt 〉

where A is a unary set of objects called the universe of A and each symbol from the
vocabulary is instantiated as follows:

i) each relation symbol Raii is instantiated as RAi ⊆ Aai (where ai is the arity of the
ith relation symbol)

ii) each function symbol f bjj is instantiated as a total function fAj : Abj → A (again,
where bj is the arity of the jth function symbol)

iii) each constant symbol ck is instantiated as cAk ∈ A.

Note that the arities of the instances of relation and function symbols (RAi and fAj re-
spectively) are omitted from the notation. This is because the arity can be derived from
the size of the tuples in the particular instance: if RAi contains only l-tuples then Ri is of
arity l; if fAj contains only mappings from ā 7→ b, where ā is an m-tuple, then fj is an
m-ary function.

Definition 2.1.3. The class of all τ -structures, that is all structures of a particular vocab-
ulary τ , is denoted as STRUCT[τ].

Remark 2.1.4. When the universe of a structure is a finite set the structure is also said
to be finite. From now onwards in this thesis all structures, unless otherwise stated, are
finite.

Now that the formal definitions of a vocabulary and a structure have been stated, it
serves to demonstrate their usage through an example, in order to explain the short-hands
and abbreviations that are regularly used.

CHAPTER 2. PRELIMINARIES 12

Example 2.1.5 (The Vocabulary of Graphs). A directed graph, often called a digraph,
(see [Die97, Bol98, AW00]) is a common structure used in computation and especially in
the theory thereof. It consists of a set of vertices and a set of edges that link the vertices;
it is commonly represented as a domain V of vertices and a binary set E of edges in the
structure G = 〈V,E〉.

An undirected graph, or simply a graph, is a restriction of the more general digraph in
which the existence of an edge between two vertices u and v implies there is also an edge
between v and u.

In order to represent a graph as a structure, fix the vocabulary to τG = 〈E2〉 that is,
the vocabulary consists of just one binary relation symbol E. An instance of a structure in
this vocabulary is H = 〈H,EH〉, where H = V and EH = E from the graph structure G in
the previous paragraph. It should be clear to see that H and G represent the same graph
and that there is a one-to-one mapping between any graph structure and its representation
as a τG-structure.

Now onto the short-hand: when the context that a symbol is presented in makes it
implicit as to whether it is a vocabulary symbol (such as E2) or an instance of one (such as
EH) that is being talked about then the superscript is omitted. As an example consider
the graph edge relation E. When E is mentioned on its own it is the edge relation in
general, and hence the vocabulary symbol E2 that is being talked out. Whereas when a
question such as, “is there an edge between vertices a and b?” is asked, it is a particular
instance of the edge relation E, say EG , that is being referred to. Since these questions are
often asked of all graphs, the superscript is omitted, except when it is required for clarity.

Another notational shorthand used throughout this thesis is that the universe of a
structure is written using a Roman capital letter (e.g. H) whereas the actual structure
itself is written using a calligraphic capital letter (e.g. H).

Example 2.1.6. Another common vocabulary is τGst = 〈E2, s, t〉. It is used to represent
a graph plus two named vertices, the start vertex s and the end vertex t.

Now that the concept of a vocabulary and of the structures that use it have been
defined, it remains to define a language that can be used to describe properties of these
structures. The first such language that shall be introduced is first-order logic. Although,
as will later be explained, it is not a language expressive enough to be of specific interest,
it is the basis of almost all other languages that are and as such it is a useful starting
point for demonstrating how a language can be used to describe properties of structures.

From now onwards only relational vocabularies shall be considered, that is vocabularies
without any function symbols. Under such a vocabulary, there are only two types of atomic
formulae. In a logic, atomic formulae are those whose truth relies solely on the structure
and not on other fragments of the formula, since they cannot be decomposed into simpler
atoms. A well-formed formula is one that is valid according to the definition of the syntax
below:

Definition 2.1.7. The syntax of first-order logic in the vocabulary τ is recursively defined
as follows:

ϕ := Ri(x1, ..., xai) | x = y | ⊥ | ψ1 ⇒ ψ2 | ∃z ψ

CHAPTER 2. PRELIMINARIES 13

where Raii ∈ τ (that is Ri is a relation symbol of arity ai) and in the tuple (x1, ..., xai), each
xj is either a first-order variable or a constant symbol from τ ; ⊥ is a special symbol that
always represents the truth value of False; x and y are each either a first-order variable
or a constant symbol from τ ; ψ1 and ψ2 are both well-formed first-order logic formulae; z
is a first-order variable; and ψ is a well-formed first-order formula.

Formulae of the form Ri(x1, ..., xai), x = y and ⊥ are atomic. The ⇒ symbol is a
boolean operator from first-order propositional logic and the ∃ symbol is a quantifier from
first-order predicate logic [HA50].

Definition 2.1.8. The class of all first-order formulae is FO; the class of all first-order
formulae of the same vocabulary τ is denoted as FO[τ].

The free variables of some formula ϕ are those that appear in an atomic formula, are
not constant symbols from τ and haven’t been bound by a quantifier. To see this, take the
formula ψ := E(x, y): in ψ both x and y are free, but in the formula ϕ := ∃xE(x, y) only
y is free since the quantifier has bound x. A formula without any free variables is called
a sentence.

Sometimes it shall be necessary to explicitly state what the free variables of a formula
are (often simply for clarity) using a function style notation. For example the formula ψ
in the previous example can be written as ψ(x, y), explicitly stating that its free variables
are x and y; similarly ϕ(y) explicitly states that y is a free variable in ϕ.

Free variables can be substituted for concrete values from the universe as follows:
ψ[ax ,

b
y] substitutes the concrete values a and b for the free variables x and y in the formula

ψ, reducing it to the relational query E(a, b). When the free variables of a formula are
explicitly stated, as above, then the substitution is implicit: ψ[ax ,

b
y] can be written as

ψ(x, y)[a, b].
Often it is useful to substitute constant values for free variables. The notation ψ [a/x]

means “substitute every free occurrence of x with a in the formula ψ” and in the context
of the previous example, this gives ψ [a/x] ≡ E(a, y). It is often the case that free variables
are substituted for constants and so the notation ψ(a, b), where both a and b are constant
symbols in the vocabulary τ , is used on a formula ψ(x, y), where both x and y are free
variables, as shorthand for ψ [a/x, b/y]. Note that the statement ψ(a, b) has bound all the
free variables in ψ and so is a sentence.

With the syntax defined, the semantic meaning of first-order formulae on a particular
structure can be defined.

Definition 2.1.9. Given a first-order formula ϕ and a structure A that are both of the
same vocabulary τ , it is the case that A satisfies ϕ (and similarly that A is a model of
ϕ), written A |= ϕ, depending on the form of ϕ according to the following rules:

• A |= Ri(x1, ..., xai) iff (x1, ..., xai) ∈ RAi .

• A |= x = y iff x and y denote the same member of the universe.

• A |= ⊥ never holds, that is A 6|= ⊥ for all A.

• A |= ψ1 ⇒ ψ2 iff when A |= ψ1 it is also the case that A |= ψ2.

• A |= ∃z ψ iff there exists some a ∈ A such that A |= ψ [a/z].

CHAPTER 2. PRELIMINARIES 14

with all the symbols and variables having the same properties as defined in the syntax
(Definition 2.1.7).

Definition 2.1.10. The normal boolean operators from propositional logic are construc-
ted using the boolean operator ⇒ and the False symbol ⊥ as follows:

• ¬ϕ ≡ ϕ⇒ ⊥ (negation)

• ϕ1 ∨ ϕ2 ≡ ¬ϕ1 ⇒ ϕ2 (or)

• ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2) (and)

• ϕ1 ⇔ ϕ2 ≡ (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1) (bi-implication)

The dual of the existential quantifier ∃, which is the universal quantifier ∀ is defined as:

• ∀xϕ ≡ ¬∃x¬ϕ

2.1.1.1 Structure Composition

Another feature that is useful to have access to is the ability to compose a structure from
a collection of smaller structures. For example, if there is a structure A of vocabulary τ1

and a structure B of vocabulary τ2, such that A = B (i.e. they are over the same universe)
and τ1 ∩ τ2 = ∅ (i.e. the two vocabularies are disjoint), then the notation (A,B) |= ϕ is
used to combine the two structures and query whether they satisfy the sentence ϕ, where
ϕ is appropriate to the vocabulary τ1 ∪ τ2. Note that when the two conditions are not
met (i.e. A 6= B or τ1 ∩ τ2 6= ∅) the notation (A,B) |= ϕ is not well-formed, but these
conditions can usually be met through a transformation of one of the structures.

Often it is the case that the vocabulary of some of the structures to be composed
contains just constant symbols. For example consider a graph structure G of vocabulary
τg and a formula ϕ of vocabulary τgst. Now the statement G |= ϕ is not well-formed since s
and t do not exist in the structure G, whereas if it is composed with two structures A and
B of vocabularies 〈s〉 and 〈t〉 respectively, then the statement (G,A,B) |= ϕ is well-formed.
The notation (G, s, t) |= ϕ is used as a shorthand when a structure is being composed with
structures that contain only constants, as is the case in this example.

2.1.1.2 Logical Equivalence

Although two first-order formulae may differ syntactically, they may agree on all structures.
When this is the case these formulae are said to be logically equivalent.

Definition 2.1.11. Fix the vocabulary τ . Two FO[τ] formulae, ϕ and ψ, are logically
equivalent, denoted ϕ ≡FO[τ] ψ iff for every pair of τ -structures A ∈ STRUCT[τ] and
B ∈ STRUCT[τ], it is the case that A |= ϕ iff B |= ψ.

Every first-order formula is logically equivalent to another formula in which all the
quantifiers are in one block at the beginning of the formula and then the rest of it is
quantifier-free, which is to say that no ∃ or ∀ symbols appear in it. This particular
syntactic form for first-order formula is know as prenex normal form.

CHAPTER 2. PRELIMINARIES 15

Definition 2.1.12. A formula ϕ is in prenex normal form if it is in the syntactic form
ϕ := Q1x1...Qrxrψ, where each Qi is a quantifier (Qi ∈ {∃, ∀}), each xi a first-order
variable and ψ is quantifier-free. Every first-order formula is logically equivalent to some
other first-order formula that is in prenex normal form.

Another type of logical equivalence is between two structures, as opposed to two formu-
las. Two structures are equivalent in first-order logic when they agree on every sentence.

Definition 2.1.13. Fix the vocabulary τ . Two τ -structures A and B are equivalent in
first-order logic (or just FO-equivalent), denoted A ≡FO B if, and only if, for every formula
ϕ ∈ FO[τ] it is the case that A |= ϕ iff B |= ϕ.

The concepts of equivalence of formulae and structures in first-order logic can be
extended to arbitrary logics; the equivalence relation for a logic L is denoted ≡L. Note
also that the vocabulary is omitted in Definition 2.1.13 (i.e. FO rather than FO[τ]) since
it is implicit from the structures. When talking about the logical equivalence of formulae,
the vocabulary is also omitted when it is implicit.

2.1.1.3 Syntactic properties of first-order formulae

Whereas the semantic properties of a formula are dependent on the structure that the
formula is being evaluated on, syntactic properties (or metrics) are those of a formula
that can be measured without considering any structures. Most metrics are based on
the quantifiers in the formula; one such metric is the quantifier rank (sometimes called
the quantifier depth) of a formula, denoted qr(ϕ), which is the greatest number of nested
quantifications in the formula.

Definition 2.1.14. Given a formula ϕ ∈ FO, the quantifier rank qr(ϕ) is recursively
defined as follows:

(i) If ϕ is an atomic formula (i.e. a relational query, equivalence test or ⊥) then qr(ϕ) =

0.

(ii) When ϕ := ψ1 ⇒ ψ2, qr(ϕ) = max{qr(ψ1), qr(ψ2)}.

(iii) When ϕ := ∃x.ψ, qr(ϕ) = qr(ψ) + 1.

where max{...} evaluates to the largest member of a set of integers.
The definitions of quantifier rank for the other boolean operators (see Definition 2.1.10)

are derived as follows:

(iv) qr(¬ϕ) = qr(ϕ⇒ ⊥) = max{qr(ϕ), qr(⊥)} = max{qr(ϕ), 0} = qr(ϕ).

(v) qr(ψ1 ∨ ψ2) = qr(¬ψ1 ⇒ ψ2) = max{qr(¬ψ1), qr(ψ2)} = max{qr(ψ1), qr(ψ2)}.

with the definitions of the two binary boolean operators, ∧ and ⇔, being of exactly the
same format as for ∨, i.e. the maximum quantifier rank of the two formulae either side of
the operator.

Finally, the universal quantifier is derived as:

(vi) qr(∀xψ) = qr(¬∃x¬ψ) = qr(∃x¬ψ) = qr(∃xψ) = qr(ψ) + 1.

CHAPTER 2. PRELIMINARIES 16

The number of variables (either free or bound) used in a formula is another syntactic
measure. For example the sentence ∀x∀y [E(x, y)⇒ E(y, x)] contains two bound variables
x and y. This and the measure of quantifier rank are used to generate some classes of
first-order formulae.

Definition 2.1.15. The following classes are syntactic restrictions of the class FO:

(i) FOs contains all first-order formulae with at most s variables (where these variables
can be either free or bound). Note that FOs ⊆ FOs+1.

(ii) FOr contains all first-order formulae with quantifier rank of at most r; ϕ ∈ FOr iff
qr(ϕ) ≤ r. Note that FOr ⊆ FOr+1.

(iii) FOs
r = FOs ∩ FOr.

Further classes are defined for first-order formulae in prenex normal form based on the
nature of the quantifiers at the front of a formula. The measure here is that of quantifier
alternation, which is the number of times the quantifiers switch between being existential
and universal. Recall from Definition 2.1.12 that first-order formulae in prenex normal
form are those of the form:

Q1x1...Qrxr ψ where each Qi ∈ {∃, ∀}and ψis quantifier free.

Each maximal range of quantifiers of the same type is called a quantifier block ; the
range of quantifiers Qixi...Qjxj is a maximal quantifier block if, and only if, all quantifiers
in the block are of the same type, either i = 1 or Qi−1 6= Qi, and either j = r or
Qj 6= Qj+1. A formula in prenex normal form is now classified by the number of different
maximal quantifier blocks, which is referred to as its amount of quantifier alternation.

Definition 2.1.16. Given a first-order formula ϕ that is in prenex normal form, let m be
the number of maximal quantifier blocks in the quantifiers at the beginning of the formula.
The following class of first-order formulae are defined:

i) Σm contains all first-order formulae with m maximal quantifier blocks where the
leftmost block is existential.

ii) Πm contains all first-order formulae with m maximal quantifier blocks where the
leftmost block is universal.

iii) ∆m contains all first-order formulae that are logically equivalent to both a formula
in Σm and a formula in Πm.

A formula from the class Σm is called a Σm-formula (similarly for Πm and ∆m). Note that
when m = 0 the classes contain only quantifier free formulae and hence Σ0 = Π0 = ∆0.
Each of the classes forms a hierarchy, that is for m ≥ 0, Σm ⊆ Σm+1 (similarly for Π

and ∆), since a formula with m quantifier alternations can simply add a quantifier with a
dummy variable as the rightmost quantifier to generate m+ 1 alternations.

CHAPTER 2. PRELIMINARIES 17

2.1.1.4 Second-order logic

An extension of first-order logic, called second-order logic, shall now be introduced. It al-
lows quantifiers to operate on variables that are relations over the universe of the structure
rather than just single points in the universe.

Definition 2.1.17. The language (syntax) of second-order logic is the same as that of
first order logic (see Definition 2.1.7) but with the addition of second-order quantifiers.
These are quantifiers that bind a relational variable rather than a first-order variable.
Let RVAR = 〈Sc11 , ..., S

cu
u 〉 be the sequence of u relational (second-order) variables that a

formula may use, where each Si is of arity ci. It must be the case that RVAR is disjoint
from both the symbols in the vocabulary of the formula and the first-order variables (the
implicit sequence VAR) that the formula contains.

If ϕ is a second-order formula then so is ∃Si ϕ and all first-order order formulae are
also second-order formulae (but not vice versa). The shorthand ∀Si ϕ ≡ ¬∃Si ¬ϕ is freely
used in second-order formulae. The class of all second-order logic formulae is called SO.

Now with the syntax of second-order logic defined, the semantics can be discussed.
The semantics are the same as for first-order logic except when evaluating the second-
order quantifier fragment ∃Si ϕ. For this the concept of a structure realising a sequence
of relational variables is required.

Definition 2.1.18. Given a sequence of u relational variables RVAR = 〈Sc11 , ..., S
cu
u 〉, let

the vocabulary σRVAR = RVAR. A structure B realises the relational variables in RVAR
with respect to another structure A iff it is of the vocabulary σRVAR and the universe of B
equals the universe of A (i.e. B = A). When RVAR contains only one relation variable,
say S, it is said that B realises S.

The semantics of second-order logic use realisation of relational variables to assign
them specific values, allowing the resulting first-order formulae to be evaluated as per the
semantics of first-order logic (see Definition 2.1.9).

Definition 2.1.19. The semantics of second-order logic are the same as those of first-
order logic (see Definition 2.1.9) with the addition of rules for evaluating the second-order
quantifiers. Some structure A satisfies the fragment ∃Si ϕ iff there exists some structure
B that realises the relational variable Si and (A,B) |= ϕ. It is said that B witnesses Si in
ϕ. The semantics for the fragment ∀Si ϕ are similarly defined, except that every structure
that realises the relational variable Si must satisfy ϕ and therefore a single structure
cannot witness Si in ϕ, instead it can witness that ∀Si ϕ is unsatisfiable when (A,B) 6|= ϕ.

In the same way that first-order logic formulae can be written in prenex normal form
(see Definition 2.1.12), every second-order formula is logically equivalent to some second-
order formula where all the second-order quantifiers are in a block at the beginning followed
by a block of first-order quantifiers.

Definition 2.1.20. Every second-order formula is logically equivalent to a second-order
formula of the form:

Q1X1...QmXm.ψ

CHAPTER 2. PRELIMINARIES 18

where each Qi ∈ {∃,∀}, each Xi ∈ RVAR and ψ is a first-order formula in prenex normal
form. The concept of quantifier blocks is defined in a manner analogous to that for first-
order logic, where it is a maximal sequence of quantifiers such that they are all of the same
type.

The number of blocks of the same type of second-order quantifiers gives the class that
the formula is in (in a manner similar to the first-order classification in Definition 2.1.16).
But for second-order formulae it is parameterised by a second measure: the maximum
arity of the relational variables in the second-order quantifier block.

Definition 2.1.21. The class of second-order formulae Σr
m contains all second-order for-

mulae in prenex normal form that have relational variables of arity at most r and m blocks
of different types of second-order quantifiers, where the first block is an existential one (∃).
The class Πr

m is defined analogously to Σr
m, except that the first block is universal (∀). Fi-

nally the class ∆r
m contains all formulae that are logically equivalent to both a Σr

m-formula
and a Πr

m-formula.

Definition 2.1.22. The following classes of second-order formulae are used as shorthand
for the commonly used classes from Definition 2.1.21:

1. ESO = ∃SO =
⋃
r≥0

Σr
1 (existential second-order logic);

2. USO = ∀SO =
⋃
r≥0

Πr
1 (universal second-order logic);

3. MSO =
⋃
m≥0

∆1
m (monadic second-order logic).

2.1.1.5 Built-in Relations and Orderings

Sometimes, as in the case of descriptive complexity (see Section 2.1.4), a logic that is
not expressive enough can be slightly enhanced, by adding to a structure pre-constructed
relations and functions that satisfy certain properties before evaluating it against the
sentence. Such relations and functions are respectively known as built-in relations and
built-in functions. Here only built-in relations will be discussed since the vocabularies
used throughout this thesis are (on the whole) relational.

Definition 2.1.23. A built-in relation is one that is in the vocabulary of a structure/sentence
but that is constructed based on the values of other (possibly built-in) relations and con-
stants. There are two important types of built-in relations:

i) Deterministic: built-in relations that are always the same for the same structure.

ii) Non-deterministic: built-in relations that can vary for the same structure.

In order to introduce the concepts of built-in relations and show how they work, both
deterministic and non-deterministic examples are now given:

Example 2.1.24. Let σG+ = 〈E2, E+2〉, that is the vocabulary of digraphs augmented
with the binary relation E+. The relation E+ is a built-in relation that always contains
the transitive closure of E. This means that whenever there are two vertices s and t in

CHAPTER 2. PRELIMINARIES 19

the graph, such that there is a path between s and t over edges defined in E, it is the case
that E+(s, t) holds. Observe that this is a deterministic built-in relation, since there is
only one valid E+ for each E.

More details about the built-in relation defining the transitive closure of the edge
relation of a graph, along with its use, can be found in Chapter 4.

Example 2.1.25. Let σ< = 〈<2〉. A τ -structure is said to be ordered when it includes
the built in ordering relation < from the vocabulary σ<, resulting in the ordered (τ ∪
σ<)-structure. Using the shorthand x < y ≡ <(x, y), the < relation has the following
properties:

(i) ∀x∀y [x 6= y ⇒ (x < y ∨ y < x)] (the ordering relation is total)

(ii) ∀x∀y [x < y ⇒ ¬ y < x] (the ordering relation is anti-symmetric)

(iii) ∃!x∀y [x < y] (there is exactly 1 element smaller than all other elements)

(iv) ∃!x∀y [y < x] (there is exactly 1 element larger than all other elements)

where ∃!xϕ is the shorthand for ∃x[ϕ(x)∧∀y(ϕ(y)⇒ x = y))] (read: there exists a unique
x such that ϕ(x) holds). Observe two facts about the ordering relation <: it does not
depend on the values of any relations or constants in the original unordered σ-structure
and it is non-deterministic. To see the second claim, take an ordered structure A with
universe A = {1, 2, 3}. The ordering relations {(1, 2), (2, 3)}, {(1, 3), (3, 2)}, {(2, 1), (1, 3)},
{(2, 3), (3, 1)}, {(3, 1), (1, 2)}, {(3, 2), (2, 1)} are all valid under the four rules above, mean-
ing that < is a non-deterministic built-in relation.

Another type of vocabulary that can be used to make a τ -structure ordered is the
successor relation, whose vocabulary is given as σsucc = 〈succ2,min,max〉. The element
min is the smallest element in the ordering, max the largest and succ(x, y) means that y
comes immediately after x in the ordering. This built-in relation and the two constants
have the following properties:

(i) ∀x[x 6= max⇒ ∃!y succ(x, y)] (every element except max has exactly one successor)

(ii) ∀x[x 6= min⇒ ∃!y succ(y, x)] (every element except min has exactly one predecessor)

(iii) ¬∃x succ(x,min) (min has no predecessor)

(iv) ¬∃x succ(max, x) (max has no successor)

Note that the built-in relation succ and constants min and max are also non-deter-
ministic, and also that the transitive closure of a valid built-in succ relation is a valid
built-in < relation.

Definition 2.1.26. A structure is ordered if it has either a total ordering of vocabulary
σ< or a successor ordering of vocabulary σsucc as built-in relations.

The problem with non-deterministic built-in relations, such as ordering, is that they can
cause the evaluation of whether a structure satisfies a formula to also be non-deterministic.
This is more than often an undesirable property and so the concept of a formula being
invariant over the different possible values for non-deterministic built-in relations of the
same underlying structure is defined.

CHAPTER 2. PRELIMINARIES 20

Definition 2.1.27. A formula ϕ is R-invariant, where R is a non-deterministic built-in
relation, when for any (σ \ 〈R〉)-structure A and any two different assignments to R, say
R1 and R2, (A, R1) |= ϕ⇔ (A, R2) |= ϕ.

The most usual type of non-deterministic built-in relation is ordering, so there is a
special term for when a formula is invariant over the built-in ordering relations of a struc-
ture:

Definition 2.1.28. A formula ϕ is order-invariant when, for any pair of ordered structures
A and B that both have the same (unordered) universe, it is the case thatA |= ϕ⇔ B |= ϕ.

Built-in relations can be used with any logic since they only change the vocabulary
of the structure; it is up to the particular logic to define how these built-in relations are
accessed, especially if the logic works with a fixed vocabulary or places limitations on the
types of vocabulary available.

2.1.1.6 Fixed Points of Operators

Details of fixed point operators, their application to first-order logic and the complexity
classes they capture are described in: Chapters 7 and 8 of [EF99]; Chapter 4 (inductive
definitions) & Chapter 5 (parallelism) of [Imm99]; Chapter 10 of [Lib04]; and Chapters 2
and 3 of [GKL+07].

The operators of interest here are those that operate on the universe A of some struc-
ture A. An operator on A is a mapping F : P(A)→ P(A), where P(A) is the powerset of
A.

Definition 2.1.29. Given an operator F : P(A) → P(A), a set X (which is an element
of the powerset of A) is a fixed-point of F if, and only if, F (X) = X.

In the context of finite model theory these operators are used to recursively construct
relations. This is achieved by defining a starting point, an iterative step and an end point.
For some operator F on A the start point is:

X0 = ∅

the iterative step is:

Xi+1 = F (Xi)

and the end point is the first fixed-point that is encountered.

The operator F is inductive when Xi ⊆ Xi+1 for all i; that is, at each step in the
sequence the relation either grows to include more members or stays the same. The value
of r when Xr = Xr+1, i.e. the first fixed point, is the inductive depth of the operator F
on the structure A.

Definition 2.1.30. Given an operator F on A, a set X (which is an element of the
powerset of A) is a least fixed point if it is a fixed point and for all Y , where Y is a fixed
point of F , it is the case that X ⊆ Y .

CHAPTER 2. PRELIMINARIES 21

Furthermore, an operator F on A is monotone, if for all X and for all Y , where X
and Y are elements of the powerset of A, X ⊆ Y ⇒ F (X) ⊆ F (Y), and inflationary if
X ⊆ F (X).

2.1.1.7 Defining Operators Using Logic

A formula in first-order logic can be used to define an operator. Suppose there is a formula
ϕ(R, x̄), which is appropriate to the vocabulary τ , with the only free variables being a k-
ary relational variable R /∈ τ and a k-tuple x̄ of variables. Using this formula, the operator
F on Ak is defined as follows:

Definition 2.1.31. Given: a formula ϕ(R, x̄) that is appropriate to the vocabulary τ ,
where R is a k-ary relation variable such that R /∈ τ and x̄ is a k-tuple of variables. Then
the operator F on Ak that ϕ gives rise to is defined as:

F (R) = {ū | (A, ū) |= ϕ (R, ū)}

where A is a τ -structure whose universe is A and ū is a k-tuple ranging over Ak.

With this definition, first-order logic can be augmented with fixed-point operators and
these can be used to construct relations, starting with the empty set and finishing when a
fixed-point is encountered. Before adding this capability to first-order logic, the nature of
the fixed-point that is used to indicate the end of this construction needs to be considered.

Theorem 2.1.32 (Tarski-Knaster). Every monotone operator F has a least fixed point
which is equal to the first fixed point encountered in the sequence of relations Xi, which
starts with X0 = ∅ and has each step inductively defined as Xi+1 = F (Xi).

Lemma 2.1.33. If R only appears positively in ϕ(R, x̄) then the operator F that ϕ gives
rise to is monotone.

A least fixed point operator (LFP) is an operator generated from a first-order formula
that iteratively constructs a relation, as previously described, stopping at its least fixed
point. From the above theorem, it can be seen that if the operator is monotone then it
is a least fixed-point operator; moreover if the formula satisfies the hypothesis of Lemma
2.1.33 then the resulting operator is monotone.

The logic FO(LFP) is first-order logic augmented with the capability to define operat-
ors, find their least fixed-point and query the resulting relation. The syntax and semantics
of FO(LFP) are the same as those of first-order logic, but with the addition of the following
rule:

Definition 2.1.34. The logic FO(LFP) has the same syntax and semantics as first-order
logic (FO), plus the following syntactic construction: if ϕ(R, x̄) is a formula of vocab-
ulary τ , in which R /∈ τ is a k-ary relation variable that only appears positively, then
[LFPR,x̄ ϕ](t̄) is also a formula, where x̄ is a k-tuple of variables and t̄ is a k-tuple of
constants symbols from τ . It is satisfied by a structure A if the least fixed-point of the
operator generated by ϕ over A contains the tuple t̄.

CHAPTER 2. PRELIMINARIES 22

From now onwards in this thesis the formula [LFPR,x̄ ϕ] of the logic FO(LFP) shall
be referred to as the least fixed-point operator generated by the formula ϕ. The least
fixed-point operator is an operator on Ak, where k is the arity of the relation variable R.

Remark 2.1.35. As first-order logic is defined inductively (see Definition 2.1.7), it follows
that with the addition of a new formula to the syntax, the inductive definitions still hold.
For example, if ψ is a formula in FO(LFP) then ψ ∧ [LFPR,x̄ ϕ](t̄) is also a formula. Also,
the formula ϕ that is used to generate the operator is in the logic FO(LFP) and so can
itself contain fragments that query the least fixed point of an operator generated from an
appropriate formula in FO(LFP).

Strictly, only one least fixed point operator is needed to define a boolean query on a
structure. This is due to the following logical equivalence:

Theorem 2.1.36. Every sentence of the form [LFPR,x̄ ϕ] (t̄) where ϕ ∈ FO(LFP), is
logically equivalent to a sentence of the form [LFPS,x̄ ψ] (ū) where ψ ∈ FO.

Note that the arities of R and S (and hence the size of t̄ and ū) in Theorem 2.1.36
are not necessarily equal. Notwithstanding Theorem 2.1.36, it is still a useful syntactic
feature to have multiple nested fixed-point operators, as is demonstrated in the examples
in Section 3.5 of Chapter 3.

Another fixed-point operator that will be considered is the inflationary fixed-point, or
IFP operator. Adding the ability to define and apply this type of operator to first-order
logic produces the logic FO(IFP). An IFP operator is defined in a similar way to an LFP
operator (see Definition 2.1.34).

Definition 2.1.37. Given a formula ϕ(R, x̄) that is appropriate to the vocabulary τ ,
where R is a k-ary relation variable such that R /∈ τ and x̄ is a k-tuple of variables, then
the inflationary fixed point (IFP) operator F on Ak that ϕ gives rise to is defined as:

F (R) = {ū | (A, ū) |= R(ū) ∨ ϕ(R, ū)}

where A is a τ -structure whose universe is A and ū is a k-tuple ranging over Ak.

Corollary 2.1.38. The operator F , as defined in Definition 2.1.37, is inductive.

In a manner identical to that used to add the least fixed point operator to first-order
logic (see Definition 2.1.34), the logic FO(IFP) is defined analogously.

Definition 2.1.39. The syntax and semantics of the logic FO(IFP) are those of first-
order (FO) logic, with the addition of the following syntactic construction: if ϕ(R, x̄) is
a formula of vocabulary τ , in which R /∈ τ is a k-ary relation variable that only appears
positively, then [IFPR,x̄ ϕ](t̄) is also a formula (x̄ is a k-tuple of variables and t̄ is a k-tuple
of constants symbols from τ). Given a structure A, the fixed-point of the IFP operator
defined by ϕ (as per Definition 2.1.37) contains the tuple t̄ iff A |= [IFPR,x̄ ϕ] (t̄).

In the same manner that LFP and IFP operators are added to first-order logic allowing
the construction of relations, they can also be added to second-order logic (see Definitions
2.1.17 and 2.1.19). The key difference is that the formula used to define the operator in
Definitions 2.1.31 and 2.1.37 is a second-order formula. This gives rise to two new classes:

CHAPTER 2. PRELIMINARIES 23

Definition 2.1.40. The logics SO(LFP) and SO(IFP) are respectively those that con-
sist of least fixed-point and inflationary fixed-point operators, where the formula used to
construct the relation is from second-order logic.

The results in this sub-section are drawn from Chapter 4 of [Imm99], Chapter 8 of
[EF99] and [Kol07, Grä07], all of which contain further references.

2.1.2 Computational Complexity Theory

It is assumed that the reader is familiar with the ideas behind measuring the asymptotic
growth of the resources required to compute the result of an algorithm for solving a
problem [CLRS09]. Here, these ideas are used to present the main results of computational
complexity theory [Pap94, Sip06].

A problem is a question asked about a particular class of structures. It is specified by
the class of input structures it accepts, the question that it asks of some particular input
instance and the type of output that will be produced as an answer to the question. The
question is usually given in natural language although it can also be given as a logical
specification. Problems are isomorphism-closed, in that they give the same answer for any
pair of isomorphic structures. There are three main types of problems:

1. Decision Problems. The output of which is a boolean, e.g. yes/no or true/false.

2. Optimisation Problems. The output here is a quantity, usually a natural number.

3. Construction Problems. Also known as function problems, these give a structure
as a result, often but not necessarily of the same type as the input structure.

Note that a decision problem is also an optimisation problem (but not necessarily vice
versa) since the boolean output can be encoded as the numbers 0 and 1; also an op-
timisation problem is a construction problem (but not necessarily vice versa) since the
output value is a type of structure. Throughout this thesis only decision and optimisation
problems will be considered, although there will often be constructions as intermediates
in calculating the answer.

An algorithm is a series of instructions that can be used to program a computer in
order to work out the answer to a particular problem. By specifying an algorithm that
computes a problem, an upper bound O(f(n)) for the complexity of solving that problem
is immediately found, where n is the size of the input. The following definition classifies
problems by the upper bound on their running times:

Definition 2.1.41. The class DTIME(f(n)) contains all problems that have an algorithm
that runs on a deterministic computer in time O(f(n)). The class DSPACE(f(n)) contains
all problems that have an algorithm that uses O(f(n)) space (memory) when run on a
deterministic computer. The classes NTIME(f(n)) and NSPACE(f(n)) are similar except
that the algorithm is run on a non-deterministic computer.

Here, the term computer is taken to mean any reasonable model of computation, i.e.
one that is both well-defined and well-behaved. This generalisation of the term can be
made since Church’s Thesis states that no reasonable model of computation, such as the

CHAPTER 2. PRELIMINARIES 24

Turing Machine or the Lambda Calculus, is considerably more powerful than any other. It
should also be noted that to map an algorithm from one reasonable model of computation
to another never requires more than a polynomial amount of time and a linear amount of
space. Under this observation, problems can be classified independently from the models of
computation that the algorithms run on as long as there is at most a polynomial difference
in time and a linear difference in space between the models. This leads to the following
(deterministic and non-deterministic) standard complexity classes for polynomials:

• P =
⋃
k∈N DTIME

(
nk
)

• NP =
⋃
k∈N NTIME

(
nk
)

• PSPACE =
⋃
k∈N DSPACE

(
nk
)

• NPSPACE =
⋃
k∈N NSPACE

(
nk
)

For logarithms:

• L = DSPACE(log n)

• NL = NSPACE(log n)

And for exponentials:

• EXPTIME =
⋃
k∈N DTIME

(
2n

k
)

• NEXPTIME =
⋃
k∈N NTIME

(
2n

k
)

• EXPSPACE =
⋃
k∈N DSPACE

(
2n

k
)

• NEXPSPACE =
⋃
k∈N NSPACE

(
2n

k
)

Since an algorithm that runs in O(f(n)) time (or space) also runs in O(g(n)) time (or
space), where O(g(n)) ≥ O(f(n)), it is the case that DTIME(f(n)) ⊆ DTIME(g(n)) for
all f(n) and g(n) such that O(g(n)) ≥ O(f(n)) and similarly for all the other classes,
NTIME, DSPACE and NSPACE, in Definition 2.1.41, e.g. P ⊆ EXPTIME. In time
O(f(n)) an algorithm can only use O(f(n)) space, which leads to the relationships between
time and space DTIME(f(n)) ⊆ DSPACE(f(n)) for deterministic complexity classes and
NTIME(f(n)) ⊆ NSPACE(f(n)) for non-deterministic ones.

The containments in this hierarchy for deterministic computers are strict for time
when g(n) is at least the square of f(n) and space when g(n) is at least a factor (log n)

larger than f(n); a similar result holds for non-deterministic computers. These results are
collectively know as the Space/Time Hierarchy :

Theorem 2.1.42 (Time and Space Hierarchy). For deterministic classes of problems, the
following strict hierarchies hold:

• DTIME(f(n)) ⊂ DTIME(f2(n))

• DSPACE(f(n)) ⊂ DSPACE(f(n). log n)

and for non-deterministic classes of problems the containments are:

CHAPTER 2. PRELIMINARIES 25

• NTIME(f(n)) ⊂ NTIME(f(n). log n)

• NSPACE(f(n)) ⊂ NSPACE(f(n). log n)

From the Time and Space Hierarchy Theorem the following containments for the stand-
ard complexity classes can be derived:

Corollary 2.1.43. The containments:

1. P ⊂ EXPTIME

2. NP ⊂ NEXPTIME

3. L ⊂ PSPACE ⊂ EXPSPACE

4. NL ⊂ NPSPACE ⊂ NEXPSPACE

are all direct from Theorem 2.1.42.

The Time and Space Hierarchy Theorem only details the relationship between differ-
ent functions within a type of complexity class; what is doesn’t do is describe relations
between deterministic and non-deterministic complexity classes or space and time com-
plexity classes. The arguments that allow these different types of complexity classes to
be related are based on simulation; that is, given an algorithm that runs on one type of
computer using a certain amount of time or space another algorithm can be described that
simulates the first algorithm on a different type of computer in a related amount of time
or space.

A non-deterministic computer can simulate a deterministic computer (since every de-
terministic program is also a non-deterministic one, but not necessarily vice versa) in an
equal amount of time or space and so it is the case that for any f(n), DTIME(f(n)) ⊆
NTIME(f(n)) and DSPACE(f(n)) ⊆ NSPACE(f(n)) so, for example, P ⊆ NP.

Any deterministic computer can simulate a non-deterministic computer by going th-
rough every possible computation path sequentially. Whilst this method of simulation
clearly requires more time, as there are a possibly exponential number of computation
paths, it does not require any additional space, since each path of computation can be con-
sidered independently from all others. Since this simulation of the non-deterministic com-
puter requires the same degree of space, it is the case that NTIME(f(n)) ⊆ DSPACE(f(n)).

With the relationships between complexity classes in the previous paragraphs it is pos-
sible to construct a non-strict hierarchy of classes for some function f(n) up to NSPACE
(f(n)). To go beyond this a relationship between NSPACE(f(n)) and a complexity class
based on an asymptotically larger function g(n) is required, since as has just been shown,
NSPACE is the largest of the four complexity classes for some fixed function f(n). As
previously stated, a deterministic machine can simulate a non-deterministic one by se-
quentially executing every possible path of computation. Since there are an exponential
number of paths a deterministic computer can simulate a non-deterministic one in 2f(n)

steps. The relationships here is that NSPACE(f(n)) ⊆
⋃
k≥1 DTIME

(
2k.f(n)

)
(see Chapter

7 of [Pap94] for more details).
Another relationship for non-deterministic space is with deterministic space and is

given by the following theorem

CHAPTER 2. PRELIMINARIES 26

Theorem 2.1.44 (Savitch’s Theorem [Sav70]). NSPACE(f(n)) ⊆ DSPACE(f2(n))

An immediate consequence of this theorem is that for functions that grow at a polyno-
mial or higher rate, non-deterministic space classes collapse to their deterministic versions
and in particular:

Corollary 2.1.45. PSPACE = NPSPACE (and EXPSPACE = NEXPSPACE)

From the above relationships between classes, a hierarchy of the standard complexity
classes can be used to constructed:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE (2.1)

As is regularly stated, it is surprising that very little is know about the relationships
between these classes. The only known proper inclusions are those due to the Time and
Space Hierarchy Theorem (2.1.42) that are stated in Corollary 2.1.43 plus one further
proper containment resulting from the Corollary succeeding Savitch’s Theorem (2.1.44).

Corollary 2.1.46. NL ⊂ PSPACE

2.1.2.1 Complement of complexity classes

Every problem Q has a complementary problem Q whose output for a particular input
structure is the complement of the output of Q. In the realm of decision problems, the
complement of the output yes is the output no and vice versa.

Definition 2.1.47. The complement of a decision problem Q is the decision problem Q

that is defined as follows: Given any input structure A appropriate to Q, Q(A) = yes

iff Q(A) = no and vice versa. That is, the complement problem answers yes when the
original problem answers no, and similarly the complement problem answers no when the
original problem answers yes; this relationship holds for any valid input structure.

The complement of a complexity class is the set of all the complements of problems
from the original class. For example the class co-P contains all the problems that are
a complement of some problem in P. An interesting property of complexity classes is
whether or not they are closed under complement, which simply put asks whether the
complement of a class is equal to the original class.

Clearly, any deterministic class is closed under complement, as the deterministic com-
puter simply executes the algorithm and switches the output from either yes to no or no
to yes, which does not increase the complexity of solving the problem.

In the case of non-deterministic complexity classes, it is not obvious how to write an
algorithm that takes an algorithm for a problem and computes the complement of that
problem, whilst still remaining in the same complexity class. To see this, recall that a non-
deterministic computer returns yes if there exists at least one sequence of computational
steps that leads to an accepting state and no if every sequence of computational steps ends
up in a failed state; that is one where the algorithm contains no rules for how to move on to
a new state. This asymmetry between the way that a non-deterministic computer arrives

CHAPTER 2. PRELIMINARIES 27

at a yes or a no answer means that simply running the algorithm and then negating the
result cannot work, as the algorithm answers no once every computational path has been
tried and all have failed. Once in a failed state the non-deterministic computer cannot,
by definition, move to an accepting state.

For time classes, the question as to whether they are closed under complement or
not is a major open question in the field of computational complexity (see Chapter 10 of
[Pap94]). But for space classes, the question has been answered by the following theorem:

Theorem 2.1.48 (The Immerman-Szelepscényi Theorem [Imm88, Sze87]). If f ≥ log n

then NSPACE(f(n)) = co-NSPACE(f(n)).

2.1.2.2 Reductions and Completeness

So far, the computational complexity of a problem has only been discussed with respect to
which complexity classes it belongs to. In this subsection, an important tool for relating
problems to each other within a complexity class, called reduction, is introduced and
from this the concept of problems that are complete for a complexity class is arrived at.
Conceptually, complete problems are very important in understanding the nature of a
complexity class since they are the hardest problems in the class and as such encapsulate,
through reductions, what it means to be a member of that class.

A reduction is a transformation of the input of some problem P into the input of
some other problem Q in such a way that an algorithm that solves Q can be applied to a
transformed input instance of P in order to solve P . More formally,

Definition 2.1.49. A (many-to-one) reduction from the problem P to the problem Q

consists of a transformation function T : A 7→ B, where A is an input instance to P

and B is an input instance to Q. As T is total, it must provide a mapping from every
valid instance of P to a valid instance of Q. It must hold that for any input structure
A (appropriate to problem P), if it is a yes instance of P then T (A) must also be a yes
instance of Q; conversely, if A is a no instance of P then T (A) is a no instance of Q.
When such a transformation between two problems P and Q exists, it is said that there
is a reduction from P to Q, written P ≤ Q.

It is very important to analyse the complexity of computing the transformation func-
tion in a reduction, especially when reductions are used to order the complexity of problems
within a complexity class. The hardest problems in the class NP are known as NP-complete
problems.

Definition 2.1.50. A problem Q is NP-complete iff Q ∈ NP and for every problem
P ∈ NP there exists a reduction (see Definition 2.1.49) computable in polynomial time so
that P ≤ Q; i.e. there exists a polynomial-time many-to-one reduction from P to Q.

The first problem discovered to be NP-complete was Satisfiability, or Sat, (see
Definition 2.1.59) by Cook [Coo71]. Once Sat was shown to be NP-complete many other
problems in NP were also shown to be NP-complete by giving polynomial-time many-to-
one reductions to them from Sat; the Appendix of [GJ79] contains a large but by no
means complete catalogue of NP-complete problems.

CHAPTER 2. PRELIMINARIES 28

When ordering the complexity of problems within P a polynomial-time many-to-one
reduction is useless because P is closed under such reductions; any problem in P can
be trivially transformed to any other problem in P in polynomial-time, since this is the
amount of time required to calculate a solution. For this reason log-space reductions are
used, which are weaker than polynomial-time reductions under the assumption that L 6= P.

Definition 2.1.51. A problem Q is P-complete iff Q ∈ P and for every problem R ∈ P
there exists a log-space reduction from R to Q.

There are many problems that have been shown to be complete for P; a compendium
of such problems can be found in Appendix A of Part II of [GHR95].

Another class of problems is that of the problems that are at least as hard as the
hardest problems in NP (see Chapter 5 of [GJ79] for more information on NP-hardness).
These use a different type of reduction from that presented in Definition 2.1.49.

Definition 2.1.52. A polynomial-time Turing Reduction from P to Q consists of an oracle
for solving problem Q and an algorithm that queries the oracle and produces an answer
to instances of problem P in polynomial-time.

The polynomial-time Turing Reduction differs from the many-to-one reduction in that
it can apply the oracle for solving the problem Q multiple times, rather than just once.
Whilst this ability is not required for NP-complete and P-complete reductions it is required
for NP-hard reductions:

Definition 2.1.53. A problem Q is NP-hard iff there exists a polynomial-time Turing
reduction from some NP-complete problem P , to Q.

Note that while P must be a decision problem, Q does not necessarily have to be; it
could for example, be an optimisation problem. Definitions 2.1.50 and 2.1.53 give rise to
the following relationship within (and beyond) NP:

NP ≤ NP-complete ≤ NP-hard

In Chapter 3 the class NP-hard is used extensively since it contains the hardest optim-
isation problems whose decision variants are in NP.

2.1.3 Satisfiability Problems

There is one large class of computational problems that deserve special mention as they
often crop up when dealing with reductions, completeness and logic. These are the satis-
fiability problems and their derivatives. Here, they are presented in the context of finite
model theory.

Definition 2.1.54. Let ϕ be a first-order, quantifier-free, Boolean formula over the set
of variables V = {x1, ..., xn} (i.e. free(ϕ) = V or equivalently ϕ is appropriate to the
vocabulary 〈x1, ..., xn〉). Let the unary relation T be a truth assignment to the variables
in V ; that is, T is a 〈x1, ..., xn〉 structure. If there exists a T such that T |= ϕ then ϕ is
satisfiable; if T |= ϕ for all possible truth assignments then ϕ is a tautology or is valid, often
simply written |= ϕ; if T 6|= ϕ for all possible truth assignments then ϕ is unsatisfiable or
invalid, often simply written 6|= ϕ.

CHAPTER 2. PRELIMINARIES 29

Furthermore, it is desirable to work with Boolean formulae in a normal form:

Definition 2.1.55. A Boolean formula is in conjunctive normal form (CNF) if and only
if it consists of a conjunction of clauses that themselves are disjunctions of literals.

The terms clause and literal from the above definition are commonly used when talking
about the components of a Boolean formula and so deserve some further explanation.

• A literal is a Boolean variable from the set of variables V proceeded either with
or without a negation symbol: x1 and ¬x1 are both literals. x1 is called a positive
literal and ¬x1 is called a negative literal.

• A clause is a fragment of a Boolean formula that consists only of literals and the or
operator; it is a disjunction of literals: x1 ∨ ¬x2 ∨ x3 is a clause of three literals.

So a formula in conjunctive normal form is a conjunction of clauses: e.g. (x1 ∨ ¬x2) ∧ x3

is an example of a Boolean formula in CNF.

Remark 2.1.56. In some literature the notation x̄1 is used to denote the negation of the
variable x1. In order to avoid confusion the negation operator is used in this thesis, as the
notation x̄ (read: x-bar) is used to denote a tuple.

Remark 2.1.57. A literal can technically appear in a clause more than once, although
it can be safely assumed that this doesn’t happen, as the repetition of a literal can be
removed, e.g. x1 ∨ x2 ∨ x2 ≡ x1 ∨ x2. If a variable appears both positively and negatively
in a clause then the clause itself can be assumed true and removed, since |= (x1 ∨ ¬x1).

In the context of finite model theory, the problem of satisfiability is usually represented
as follows:

Definition 2.1.58. The vocabulary of the input structure to a satisfiability problem is
σSAT = 〈P 2, N2〉. The structure A realises the vocabulary σSAT such that P (xi, ci) is true
iff variable xi appears positively in clause ci and N(xi, ci) is true iff variable xi appears
negatively in clause ci. Note that this allows for at most |A| clauses and |A| variables to
be represented by A.

Now the main computational problem is given:

Definition 2.1.59. The problem Satisfiability (or Sat for short) has an input structure
A as per Definition 2.1.58 and asks the question: is there a truth assignment T to the
Boolean variables x1, ..., xn, such that the Boolean formula represented by the structure
A is satisfied?

The whole of the theory of NP-completeness (see Section 2.1.2.2 and Definition 2.1.50)
stems from the following result:

Theorem 2.1.60 (Cook’s Theorem [Coo71]). Sat is NP-complete.

and

Theorem 2.1.61 ([Coo71]). 3-Sat, the restriction of Sat to a Boolean formulae whose
clauses have at most 3 literals, is also NP-complete.

Many other variations of Sat are also NP-complete; Appendix 9 of [GJ79] lists more
such variations.

CHAPTER 2. PRELIMINARIES 30

2.1.3.1 Horn Clauses

There is another interesting structural restriction to clauses that greatly effects the com-
plexity of the corresponding satisfiability problem; clauses obeying this restriction are
called Horn clauses.

Definition 2.1.62. A Horn clause is a disjunction of literals in which only one literal is
positive.

For example, the clause x1 ∨ ¬x2 is Horn but the clause x1 ∨ x2 is not. In general,
a Horn clause of the form x1 ∨ ¬x2 ∨ ... ∨ ¬xn can be written as (x2 ∧ ... ∧ xn) ⇒ x1,
due to the logical equivalences u ⇒ v ≡ ¬u ∨ v and ¬(¬u ∨ ¬v) ≡ u ∧ v. This form
involving implication is commonly used when writing out Horn formula as is highlights
the key feature of a Horn clause: if all the negative literals (those on the left-hand side of
the implication) are true, then the positive literal (the one on the right-hand side of the
implication) must be true.

Definition 2.1.63. The problem Horn-Sat is a restriction of Sat (see Definition 2.1.59)
in which every clause is a Horn clause (see Definition 2.1.62).

Taking a Horn-Sat instance to have the same vocabulary and structure as that of a
Sat instance, i.e. as in Definition 2.1.58, the formula represented by such a structure A
is in Horn form iff

A |= ∀c∀x∀y(P (x, c) ∧ P (y, c)⇒ x = y)

and hence such a structure represents a formula consisting of a conjunction of Horn clauses.
This is true because if any pair of variables x and y appear in the same clause positively
(i.e. P (x, c) and P (y, c) are true for all clauses c) then it must be the case that x and y
are the same variable, otherwise the Boolean formula represented by the structure is not
Horn.

This restriction of a formula to Horn clauses makes the satisfiability problem signific-
antly easier to solve than in the general case (see Theorem 2.1.60).

Theorem 2.1.64. Horn-SAT is P-complete.

This result comes from problem A.6.3 in the compendium of P-complete problems
[GHR95]; it is attributed to [Pla84].

In the context of finite model theory, a formula can be in Horn form if it has certain
properties:

Definition 2.1.65. A first-order formula ψ is said to be Horn with respect to a vocabulary
σ iff ψ is in CNF and each clause has a most one positive atom involving a relation symbol
from σ.

There are various classes of logic that are defined as being Horn. The most common
is second-order Horn logic, which contains formulae that are Horn with respect to the
second-order relational variables they contain:

CHAPTER 2. PRELIMINARIES 31

Definition 2.1.66. The logic second-order Horn (denoted SO-Horn) consists of formulae
of the form:

∃S1, ...∃Sα∀x1, ...,∀xβ ψ

where ψ is a first-order quantifier free formula appropriate to some vocabulary σ ∪ τ ;
τ = 〈S1, ..., Sα〉 is a vocabulary of relation symbols, each of some given arity and x1, ..., xβ

are first-order variables. Moreover, the formula ψ is Horn with respect to the vocabulary τ .

Remark 2.1.67. This logic is called SO-Horn as opposed to ∃SO-Π1-Horn as it has been
shown that all families of second-order Horn logic collapse to the above class [Grä91b].

2.1.3.2 Krom Clauses

A Krom clause (like a Horn clause) is specified by placing a restriction on clauses in a
formula; a formula that consists entirely of Krom clauses is said to be a Krom formula.

Definition 2.1.68. A Krom clause is a disjunction that contains at most two distinct
literals.

The restriction of Sat to Krom formulae is surprisingly called 2-Sat rather than
Krom-Sat. It is even easier to solve than Horn-Sat.

Theorem 2.1.69. 2-Sat, the restriction of Sat to Boolean formulae whose clauses are
Krom clauses, is NL-complete.

This result is attributed by [Imm99] to [JLL76].

2.1.3.3 Optimisation Variants of Satisfiability Problems

Satisfiability problems are generalised into optimisation problems by adding some constant
k and asking if there exists a truth assignment that satisfies at least k clauses in the Boolean
formula. The maximisation version of SAT is given (as a decision problem) as:

Definition 2.1.70. The decision problem Max-SAT (short for Maximum Satisfiability)
is given an input structure A of vocabulary σSAT (see Definition 2.1.58) plus an integer
constant k and asks the question: is there a truth assignment T to the variables in A such
that the number of satisfied clauses |C| ≥ k, where C is defined as:

C := {c ∈ A | ∃x((P (x, c) ∧ T (x)) ∨ (N(x, c) ∧ ¬T (x))}

The usual restrictions to Sat, e.g. restricting the number of literals in each clause
can also be applied to Max-SAT, resulting in Max-2-Sat, Max-3-Sat etc. Similarly,
the type of clauses can be restricted, e.g. to Horn clauses, resulting in Max-Horn-SAT.
Both these restrictions can be combined, resulting in say, Max-2-Horn-SAT.

The results in this subsection are covered in depth in books on algorithms, e.g. [CLRS09,
Pap94]; the relationship between Sat and NP-completeness is well studied in [GJ79]; a
good survey of propositional logic (i.e. Boolean logic) problems and algorithms can be
found in [BL99].

CHAPTER 2. PRELIMINARIES 32

2.1.4 Descriptive Complexity

The area of study concerned with finding the relationships between computational com-
plexity classes and classes of logical formulae is called Descriptive Complexity.

2.1.4.1 Characterising a class of structures using a sentence (both stable and
unstable)

Recall that the set of all structures for some relational vocabulary τ is denoted STRUCT[τ]

and contains all the finite τ -structures. Now let K ⊆ STRUCT[τ] be an isomorphism-
closed class of τ -structures. A formula ϕ of some logic L is said to characterise the class
K if it can distinguish whether a τ -structure is a member of K or not.

Definition 2.1.71. The class K of τ -structures is characterised by the formula ϕ of some
logic L iff for any τ -structure A the following conditions hold:

i) A ∈ K ⇔ A |= ϕ

ii) A 6∈ K ⇔ A 6|= ϕ

Now, when STRUCT[τ] coincides with the input instances to a problem Q it is possible
to construct a subclass of τ -structures KQ such that A ∈ STRUCT[τ] and A ∈ KQ iff A
is a yes-instance to problem Q. Any formula that characterises the class of structures KQ
is therefore a formula that characterises the problem Q.

To see this more clearly, some examples are given below of how to characterise problems
on graphs using sentences of first-order logic.

Example 2.1.72. Given some digraph G of the vocabulary τG,

G |= ∀x∀y(E(x, y)⇒ E(y, x))

iff the digraph G is undirected and is, in fact, a graph.

Example 2.1.73. Given some (di-)graph G of the vocabulary τG,

G |= ¬∃x∃y∃z(E(x, y) ∧ E(y, z) ∧ E(z, x))

iff the (di-)graph G is triangle free.

It is assumed that the input structure of any problem can be encoded as a relational
structure of some vocabulary that is fixed for the problem. This is a fair assumption since
a model of computation, such as a Turing machine, encodes its input as a binary string,
which can be encoded as a τs-structure; with τs = 〈≤, S1〉, where ≤ is a total ordering
of the universe and the unary relation S indicates the positions in the string that are set
to 1.

In the examples above, the formulae given are both sentences and are referred to as
stable characterisations of the given problem. If the formula is parameterised, that is the
exact formula depends on the input structure in question, then it is referred to as an
unstable characterisation of the given problem.

CHAPTER 2. PRELIMINARIES 33

2.1.4.2 Characterising a complexity class using a class of logic

The real power of Descriptive Complexity comes from its ability to equate a complexity
class to a class of logical formulae.

Definition 2.1.74. Some logic L characterises some complexity class C under the follow-
ing conditions:

(i) For every problem Q ∈ C, there exists a formula ϕ ∈ L such that ϕ characterises Q.

(ii) Every formula ϕ ∈ L characterises a problem in C.

When L characterises C, it is written that L = C.

Whilst not strictly the case, all the characterisations of the key complexity classes are
by formulae that are stable and so unless otherwise stated it is assumed that only logics
containing stable formulae are being considered.

2.1.4.3 Characterisations of Complexity Classes

The first characterisation of a complexity class by a logic is due to Fagin’s seminal work
in the field. It shows that a class of second order logic (see Definition 2.1.22) characterises
non-deterministic, polynomial-time decision problems.

Theorem 2.1.75 (Fagin’s Theorem [Fag74]). A problem is in NP if, and only if, it can
be characterised by a sentence of existential second-order logic (∃SO).

Interestingly, the dual of ∃SO, universal second-order logic (∀SO) characterises the
complement of NP: co-NP = ∀SO. Second-order logic in general characterises the poly-
nomial-time hierarchy. When restricted to formulae that are Horn with respect to the
relational variables in a formula, the resulting logic SO-Horn (see Definition 2.1.66) gives
the following result:

Theorem 2.1.76 (Grädel’s Theorem [Grä91a, Grä91b, Grä92]). A problem is in P if, and
only if, it can be defined by a sentence of SO-Horn in the presence of a built-in successor
relation.

Away from second-order logic, first-order logic augmented with various operators pro-
vides several characterisations. It should be noted though that first-order logic on its own
is too weak to characterise P (see Chapter 2 of [EF99]).

One such characterisation using augmented first-order logic is independently due to
Immerman and Vardi and uses the least fixed-point operator (see Definition 2.1.34).

Theorem 2.1.77 (Immerman [Imm86] & Vardi [Var82]). The logic FO(LFP) character-
ises the complexity class P on ordered structures.

The problem with FO(LFP) is that it requires the formulae that define operators
to only positively refer to the relation they are constructing. This syntactic restriction
is inconvenient when describing problems but handily the less syntactically restrictive
inflationary fixed point operator (see Definition 2.1.37) is expressively equivalent to LFP:

Theorem 2.1.78 (Gurevich-Shelah [GS86]). IFP = LFP on finite structures.

CHAPTER 2. PRELIMINARIES 34

The application of the equivalence in Theorem 2.1.78 to the result in Theorem 2.1.77
gives the following Corollary:

Corollary 2.1.79. The logic FO(IFP) characterises the complexity class P on ordered
structures.

The logical equivalence defined in Theorem 2.1.36 that says that there is no expressive
hierarchy in nested LFP or IFP operators, means that any sentence in either FO(IFP) or
FO(LFP) that captures a problem from P is logically equivalent to another sentence in
the same logic that only has one fixed point operator.

Remark 2.1.80. The logics that characterise P in Theorem 2.1.77 and Corollary 2.1.79
only do so on ordered structures; that is, structures that have an ordered universe through
the inclusion of a built in ordering relation (see Definition 2.1.26). In the case of SO-Horn
though (see Theorem 2.1.76), only a successor relation is required. It is an open question
as to whether or not a logic exists that can characterise P without the addition of a built-in
ordering relation.

2.1.5 Games and Inexpressibility

In showing that a particular problem can be expressed using a sentence of some logic (see
Section 2.1.4.1 for details of what is meant by this), in essence all that has been done is
that an upper bound for the problem has been given; the same as would happen when
demonstrating an algorithm for solving the problem. The main advantage of expressing
a problem using logic, given by Descriptive Complexity, is that the complexity class that
the problem is in follows immediately, without any analysis of the algorithm.

What is more interesting, as was mentioned in the Introduction, is what a problem’s
lower bounds are. For example, given an algorithm that solves the problemQ in polynomial
time, this shows that Q ∈ P and gives an upper bound. What would be more interesting
is if it could be shown that Q’s lower bound is also in P; that is, there is no algorithm for
Q that would place its upper bound in NL. The reason this is interesting is that it would
show that NL is strictly contained within P; a containment that is currently unknown (see
the complexity class hierarchy in Equation 2.1 on page 26 and the known containments in
Corollary 2.1.43).

2.1.5.1 Inexpressibility in Logic

In the context of general computational models, such as the Turing Machine, proving a
lower bounds for a problem is a difficult task, since every single possible programming of
the machine must be considered and analysed. One of the great hopes in proving lower
bounds is finite model theory, due to its characterisations of the key complexity classes
and existing tools/methods from mathematical model theory.

In a finite model theory context a lower bound is obtained by demonstrating that no
formula in a certain logic can characterise a particular problem. One method for doing
this, using logical equivalence of structures, is now given:

Definition 2.1.81. Given a class of τ -structures K and a structural equivalence relation
for some logic L (see Definition 2.1.13), it is said that K is L-inexpressible if, and only if,

CHAPTER 2. PRELIMINARIES 35

there exists two τ -structures A ∈ K and B 6∈ K such that A ≡L B, that is A and B are
L-equivalent.

Using this method of showing inexpressibility in a logic gives rise to another method
for showing strict hierarchies between logics:

Proposition 2.1.82. Given a class of τ -structures K and two logics L1 and L2 such that
L1 ⊆ L2, if K is L2-expressible (that is, there exists some ϕ ∈ L2 such that ϕ characterises
K) and K is L1-inexpressible then it follows that L1 ⊂ L2, i.e. the containment between
the logics is proper.

Now, let K be the set of τ -structures that represent yes-instances of the problem Q; let
L1 be a logic that characterises the complexity class P; let L2 be a logic that characterises
the complexity class NP and using the method from Proposition 2.1.82 show that L1 ⊂ L2,
which would yield the result P ⊂ NP.

The main difficulties with this method, aside from choosing K, A and B, are proving
that A ≡L B.

2.1.5.2 The Ehrenfeucht-Fraïssé Game

A method of showing structural equivalence in first-order logic was developed independ-
ently by Ehrenfeucht [Ehr61] and Fraïssé [Fra54], with the resulting method now commonly
referred to as the Ehrenfeucht-Fraïssé Game [EF99, Lib04, GKL+07].

Definition 2.1.83 (Ehrenfeucht-Fraïssé Game). The game Gr(A,B) is played on two
τ -structures A and B by two players called Spoiler and Duplicator (sometimes referred
to as Player I and Player II, or Samson and Delilah). A play of the game consists of r
rounds. In each round the Spoiler chooses a structure, either A or B, and places a pebble
on a point in that structure (i.e. a member of the universe); the Duplicator then responds
by placing a pebble on a point in the other structure. After the ith round the pebble ai
sits on structure A and bi on structure B: this tuple (ai, bi) is the play for that round.

Once all r rounds have been played there will be r tuples resulting from r plays. Two
sub-structures A′ and B′ are then constructed by restricting A and B to the members
of their universes that have pebbles placed on them. A mapping p : A′ → B′ is then
constructed such that for each 0 < i ≤ r, p(ai) = bi. The Duplicator is the winner of the
game if p describes a valid isomorphism between A′ and B′, otherwise the Spoiler is the
winner of the game.

In effect the Spoiler is aiming to show that the two structures can be differentiated
between by the logic whereas the Duplicator’s aim is to stop the Spoiler from being able to
do this, hence showing that the logic cannot differentiate between them. The Duplicator is
said to have a winning strategy if she can always respond to Spoiler’s moves and maintain
an isomorphism between the pebbled sub-structures, whereas the Spoiler is said to have a
winning strategy if he can always move in any sequence of plays such that Duplicator cannot
respond in a way that maintains an isomorphism between the pebbled sub-structures. It is
just said that the Spoiler or the Duplicator wins the game if they have a winning strategy.

Remark 2.1.84. The Ehrenfeucht-Fraïssé game was originally designed to work with infinite
structures, on which games with an infinite number of rounds would be played. This poses

CHAPTER 2. PRELIMINARIES 36

a problem on finite structures in that after an infinite number of moves every point in the
universes of the structures will be pebbled, reducing the game to the simpler concept of
isomorphism. To get around this and indeed to make the game useful, the number of
rounds of play is introduced as a parameter to the game and with this, the equivalence of
structures in a parameterised restriction of first order logic can be examined.

The relationship between the game and equivalence of structures in first-order logic is
given by the following theorem:

Theorem 2.1.85. For two τ -structures A and B the following are equivalent:

(i) A ≡FOr B.

(ii) Duplicator wins the game Gr(A,B).

where FOr is the class of first-order logic formulae restricted to a quantifier depth of at
most r (see Definition 2.1.15).

Unfortunately this result is slightly different from the inexpressibility required by the
method in Proposition 2.1.82 as the Ehrenfeucht-Fraïssé game, in its above stated form,
can only be used to show that a problem is FOr-inexpressible for some fixed r, not FO-
inexpressible. The way around this is as follows:

Proposition 2.1.86. For a class of τ -structures K, the following are equivalent:

i) K is FO-inexpressible.

ii) For all r ≥ 1, there exists two structures A ∈ K and B /∈ K such that A ≡FOr B.

iii) For all r ≥ 1, there exists two structures A ∈ K and B /∈ K such that Duplicator
wins Gr(A,B).

Whilst this method must be considered for all r and so leads to an infinite number
of cases, it is usual to describe each structure as being parameterised by r. Consider for
example the case when the vocabulary τ is the vocabulary of graphs τg (see Definition
2.1.5): A could be an undirected cycle of length r and B could be a undirected cycle of
length r+ 1 with the winning strategy for the Duplicator being proven by induction on r.

Unfortunately, since first-order logic does not characterise any of the major complexity
classes (see the list in Section 2.1.4.3) the application of the method presented in Propos-
ition 2.1.82 using Proposition 2.1.86 will not lead to showing any of the containments
in the hierarchy from Equation 2.1 on page 26 to be strict; at best it could show strict
containments between fragments of first-order logic.

2.1.5.3 Extending Ehrenfeucht-Fraïssé Games to Second-Order Logic

The game described in Definition 2.1.83 can be extended to second-order logic [Fag75].

Definition 2.1.87. The second-order Ehrenfeucht-Fraïssé game is, like the first-order
one in Definition 2.1.83, played on two τ -structures A and B for r-rounds. It is also
parameterised by a sequence of arities s̄ = 〈s1, ..., sp〉. Initially, the Spoiler chooses a
structure (either A or B) and for each arity si picks some relation Ci ⊆ Asi if they chose

CHAPTER 2. PRELIMINARIES 37

A, or Di ⊆ Bsi if they chose B. The Duplicator then responds by picking Di ⊆ Bi for each
arity si (if Spoiler chose A) or Ci ⊆ Ai for each arity si (if Spoiler chose B). The game
then continues for r rounds on the extended structures (A, C1, ..., Cp) and (B,D1, ...,Dp)
in exactly the same way as the first-order Ehrenfeucht-Fraïssé game, i.e. the winner is the
winner of the game Gr((A, C1, ..., Cp), (B,D1, ...,Dp)).

The game is denoted G〈s1,...,sp〉,r(A,B) and two τ -structures A and B are SO〈s1,...,sp〉,r-
equivalent if, and only if, the Duplicator winsG〈s1,...,sp〉,r(A,B), where the logic SO〈s1,...,sp〉,r
is the fragment of SO in which the p second-order quantifiers each of arity si appear fol-
lowed by a first-order formula from the fragment FOr. When the arities are all 1, that is
each relation that is picked is unary, then the game is denoted as simply Gp,r(A,B).

To extend the method of showing inexpressibility of a problem in first-order logic
to second-order logic using the above game, would require structures to be found for
every possible combination of arities for every p ≥ 1 as well as for every r ≥ 1. This
makes the problem of finding structures much harder and to date, only results that show
inexpressibility in fragments of second-order logic that are restricted so that each si =

1 (i.e. Monadic Second-order logic or MSO) have been found [Fag75, dR87]. So far,
inexpressibility results with even just s1 = 2 have not been found [Fag96].

2.1.5.4 The Ajtai-Fagin Game

In order to progress with developing winning strategies for the Duplicator on second-order
Ehrenfeucht-Fraïssé games the game itself needed to be made easier for the Duplicator to
win. One such restriction was given by Ajtai and Fagin:

Definition 2.1.88 (Ajtai-Fagin Game [AF90]). The Ajtai-Fagin game is the same as the
second-order Ehrenfeucht-Fraïssé game, except that a class of τ -structures K is provided
as input rather than two τ -structures A and B. The play proceeds as follows:

(i) Duplicator picks a structure A ∈ K.

(ii) For each arity si the Spoiler picks a relation Ci ⊆ Asi .

(iii) Duplicator picks a structure B 6∈ K.

(iv) For each arity si the Duplicator picks a relation Di ⊆ Bsi .

(v) The winner of the game is the winner of the r-round Ehrenfeucht-Fraïssé game (see
Definition 2.1.83) played on the structures (A, C1, ..., Cp) and (B,D1, ...,Dp).

This game is for existential second-order logic. For universal second-order logic the
structures the Duplicator chooses are swapped around, i.e. the Spoiler picks relations on
a structure A 6∈ K and Duplicator on a structure B ∈ K. For arbitrary second-order logic
the Duplicator picks both structures and the Spoiler then chooses which one to play on.

The key fact about this game is that the Duplicator can choose a structure in step (iii)
in response to the relations that the Spoiler has chosen. This game was originally developed
and used by Ajtai and Fagin to prove that connectivity is not in monadic ESO even in
the presence of some built-in relations [AF90], it was then extended to total orderings by
Schwentick in [Sch96] and the proof simplified in [AF97] by removing the random graph

CHAPTER 2. PRELIMINARIES 38

theory part. As mentioned in [Fag96] no results beyond monadic second order logic, and
hence so called monadic NP and monadic co-NP [FSV95], are known.

2.2 Optimisation Specific Definitions

A decision problem asks whether a structure exhibits a particular property. If a sentence
ϕ characterises the class of structures K, then A ∈ K ⇔ A |= ϕ, for some structure A ap-
propriate to ϕ. In the domain of decision problems, the answers to problems are all binary;
A is either in the class K or not. Optimisation problems extend this binary classification
by quantifying how well some structure A fits into a class; rather than structures being
either a member of a class or not, they are now assigned a numeric value corresponding
to their optimal solution.

2.2.1 Formal Definition of an Optimisation Problem

Since this thesis is concerned with finite model theory, the rationale for the definition
of an optimisation problem naturally comes from Descriptive Complexity arguments. As
shall be seen in Chapter 3, the primary aim of the research into optimisation problems
is to generate theorems and frameworks for describing optimisation problems using finite
model theory; this is also called the descriptive complexity of optimisation problems.

Before going further, the concept of a solution to an NP decision problem needs to be
introduced.

2.2.1.1 Witnesses and Solutions to NP Decision Problems

Fagin’s Theorem (see 2.1.75) is the cornerstone of descriptive complexity and so is always
a good place to start when applying it to other domains, in this case optimisation. Recall
that due to Fagin’s Theorem, an NP decision problem can be written in the form:

A |= ∃S̄ ∀x̄ ∃ȳ ψ(S̄, x̄, ȳ) (2.2)

where ψ is a quantifier-free first-order formula and the structure A is the input instance;
both are appropriate to and of the same vocabulary τ . Since the outermost (second-order)
quantification in Formula 2.2 is existential, only one particular assignment to S̄ needs to
be found such that the first-order formula ∀x̄ ∃ȳ ψ(S̄, x̄, ȳ) is true. Now assume that ψ
has been given and the arities of x̄ and ȳ, along with S̄ have been defined. Let σ be
the vocabulary consisting solely of the relation symbols from the tuple S̄ and let the σ-
structure S be an assignment to the relations such that (A,S) |= ∀x̄ ∃ȳ ψ. S is said to be
a witness of, or a solution to, the formula 2.2 being true on the structure A.

Only one such witness S is required to show that a Σr
1 formula is true on some structure

A, but obviously the selection of one witness does not preclude the existence of others.
Note, in order to show that A 6|= ∃S̄ ∀x̄ ∃ȳ ψ holds (i.e. the structure A does not satisfy
the formula) it is necessary to show that there are no witnesses at all.

The concept of a witness is very similar to that of a short certificate. To see an example
of a short certificate consider the problem Hamiltonian-Path, which given a graph asks
the question: does the graph contain a path that visits every vertex exactly once? This

CHAPTER 2. PRELIMINARIES 39

problem is in NP and is in fact NP-complete (problem GT39 in Appendix A1.3 of [GJ79]).
Now, if given a graph and a path, it can be quickly checked whether or not the path visits
every vertex in the graph exactly once; such a path is a solution or a short certificate
to Hamiltonian-Path for that graph. A witness S can also be quickly checked for
validity against an input structure A, since the formula being checked is first-order as the
second-order quantifiers have been removed and replaced by a fixed interpretation of their
relation variables. So it can be seen that a witness to an NP decision problem in the finite
model theory context is the same as a short certificate in the computational complexity
context. For further information on short certificates and their complements, called short
disqualifications, see Chapter 9 of [Pap94].

Definition 2.2.1. For an input instance A and a Σr
1-sentence ∃S̄ ϕ, the set of all witnesses

Wϕ(A), is defined as:

Wϕ(A) := {S | for each i, SSi ⊆ Ari , (A,S) |= ϕ}

where ri is the arity of each relation Si from the tuple S̄; the structure S is of the vocabulary
σ which contains only the relation symbols in S̄; the formula ϕ is a first-order formula of
the form ∀x̄ ∃ȳ ψ, with ψ being quantifier-free and free(ψ) = {x̄, ȳ, S̄}; A is a structure in
the fixed vocabulary τ that is appropriate to the sentence ∃S̄ ϕ.

A decision problem can be rephrased as asserting whether the condition |Wϕ(A)| ≥ 1

is true; this condition expresses that there is at least one witness or solution to a sentence
of the form ∃S̄ ϕ, which characterises the problem.

On the other hand, optimisation problems are concerned with finding the ‘best’ solution
from the set Wϕ(A). In order to find the ‘best’ solution, a numeric cost is calculated using
the objective function, which maps a tuple (A,S) consisting of an input instance and a
witness/solution, to a numeric cost. The optimal solution is the member of the witness
set with the ‘best’ value (normally either the largest or smallest cost); if |Wϕ(A)| = 0 then
there are no solutions to the problem and hence no optimal solution.

This tuple, (A,S), is also important in evaluating a decision problem, as a sentence
∃S̄ ϕ characterising a problem is true for some structure A iff the first-order component ϕ
of the sentence is satisfied by the tuple (A,S), that is (A,S) |= ϕ and thus S is a witness
to the formula ∃S̄ ϕ being satisfied by the structure A.

2.2.1.2 NP-Optimisation Problems

In general, an optimisation problem will search for the solution with either the largest or
smallest cost, giving rise to two distinct types of optimisation, respectively called max-
imisation and minimisation. Every optimisation problem has a decision variant in which
rather than asking for the optimum value, it is asked whether the optimum value is ≥
some constant k for a maximisation problem (respectively, ≤ k for a minimisation prob-
lem). The complexity class that an optimisation problem’s decision variant lies in is key
in classifying the complexity of the optimisation problem.

Given the discussion of witnesses/solutions above, a formal definition of NP-optimisa-
tion problems can now be given.

CHAPTER 2. PRELIMINARIES 40

Definition 2.2.2. An NP-optimisation problem Q is given by the sets and functions IQ,
FQ, costQ and µ, written as the tuple Q = (IQ, FQ, costQ, µ), where:

(i) IQ is a class of structures (of some fixed vocabulary τ) acceptable in polynomial
time corresponding to the input instances of the problem Q.

(ii) FQ(A) is a function whose domain is IQ and range is the set of feasible solutions
for A; the feasible solutions it maps onto are all recognisable in polynomial time.
This function has direct parallels withWϕ(A), the set of witnesses for a second-order
existential formula (see Definition 2.2.1).

(iii) costQ(A, S) is the objective function, which maps a given input structure and solution
to a numeric value. It is of the type

⋃
A∈IQ [{A}×FQ(A)]→ N and can be computed

in polynomial time.

(iv) µ ∈ {max,min}

(v) optQ(A) is a function that returns the optimal value of the problem A for some
input structure A ∈ IQ. It is defined as

optQ(A) := µ{costQ(A, S) | S ∈ FQ(A)}

(vi) QD is the decision problem variant ofQ: given some structure A ∈ IQ and a constant
k ∈ N, is there a solution S ∈ FQ s.t. if µ = max then costQ(A, S) ≥ k, or if µ = min
then costQ(A, S) ≤ k? The decision problem QD is in NP.

The class of all such optimisation problems is called NPopt. It takes its name from the
observation that the decision variant of any problem in the class NPopt is in NP. It should
be noted that every optimisation problem has a decision variant (as per point (vi) above),
but some decision problems have no optimisation variant. For example the question “is x
prime?” has no optimisation variant, as x is either prime or not – there is no concept in
number theory as to how good a prime x is. This leads to the relationship α(NPopt) ⊂ NP,
where α is a function that transforms a set of optimisation problems into a set of their
corresponding decision variants.

Remark 2.2.3. Note that according to Definition 2.2.2, every optimisation problem is
in fact an NP-optimisation problem, irrespective of condition (vi). This is because the
problem of computing the optimal value, as specified in condition (v) of Definition 2.2.2,
is in fact an NP-optimisation problem. To see this, observe the following algorithm for
the decision variant of an optimisation problem: guess a feasible solution S and then
check whether it is greater or equal to than (for maximisation) or less than or equal to
(for minimisation) the target value k. Clearly, as all feasible solutions are recognisable in
polynomial time and the cost function can be calculated in polynomial time, this problem
is in NP, hence rendering condition (vi) redundant. However, it is included as it appears
in analogous definitions in [KT94, KT95]; for in these definitions the objective function
is defined to be computable in time polynomial in the size of the input, i.e., the instance
and a feasible solution, rather than in the size of the instance.

CHAPTER 2. PRELIMINARIES 41

Remark 2.2.4. Definition 2.2.2 implies that all feasible solutions to some instance can be
taken to have size bounded by some polynomial in the size of the instance. Given that
the notion here of a solution to an optimisation problem is simply that a numeric value
should be found and not a witnessing feasible solution, there is no real need to discuss
the computational nature of a set of feasible solutions corresponding to some instance. In
particular, Definition 2.2.2 says nothing about the complexity of deciding whether some
potential feasible solution is indeed an actual feasible solution to some instance. It turns
out that most (instances of) natural optimisation problems have easily recognisable sets
of feasible solutions.

2.2.1.3 Absence of any Feasible Solutions

In some situations there are no feasible solutions to an optimisation problem for some
given input structure. To see this in the context of a real example consider the problem
Shortest-Path, which given a graph and two named vertices s and t, asks the question:
what is the shortest path between s and t? (See Definition 2.2.3.5 for a more formal
description). A feasible solution to this problem is a path from s to t; if there is no path
between s and t in the graph then there are no feasible solutions. This means that the
set over which the minimum is taken (since Shortest Path is a minimization problem) in
point (v) of Definition 2.2.2 is empty. To deal with this situation the following is needed:

Definition 2.2.5. The maximum and minimum of the empty set is undefined, represented
by the symbol ⊥. More specifically:

• max{} ≡ max ∅ ≡⊥

• min{} ≡ min ∅ ≡⊥

So, if the set FQ(A) is empty then the optimal solution is undefined, written optQ(A) :=

⊥.

Remark 2.2.6. When the optimal solution of problem Q is undefined on input structure
A, it is the case that for the decision variant QD of the problem the structure A is a
no instance, irrespective of the value chosen for k (see point (vi) of Definition 2.2.2).
This is because there is no such feasible solution S ∈ FQ that satisfies the predicate
costQ(A, S) ≥ k (or ≤ k if Q is a minimisation problem), simply because there are no
feasible solutions at all.

2.2.1.4 Classes of NP-optimisation Problems

With the class of all NP-optimisation problems dealt with in Definition 2.2.2, it is now
prudent to introduce the other main classes of optimisation problems.

Definition 2.2.7. The class of NP-optimisation problems NPopt is composed from two
distinct sub-classes, NP-maximisation problems NPmax, and NP-minimisation problems
NPmin, which respectively correspond to the cases when µ = max and µ = min in the
tuple that defines an NP-optimisation problem (see Definition 2.2.2).

Up until now the value of the cost of a solution hasn’t been mentioned, other than the
fact that it is a natural number. Whilst arbitrary natural numbers are usually encoded on

CHAPTER 2. PRELIMINARIES 42

a computer using a binary string whose length is the base 2 logarithm of the number, it
is not clear exactly how such numbers are encoded using relational structures. A straight
forward way of doing this is to measure the cardinality of a relation but this would only
allow numbers whose size is bounded by a polynomial in the size of input to be represented.
It turns out (as will hopefully become clear later in Chapter 3) that this is a reasonable
way to measure the cost of a feasible solution in many natural optimisation problems and
so the following sub-class of problems is a useful restriction:

Definition 2.2.8. An optimisation problem Q is polynomially-bounded if there is a poly-
nomial q such that for every instance A in IQ, opt(A) ≤ q(|A|) (note that in general
the value opt(A) of some instance A might be exponential in |A|). The (sub-)class of
polynomially-bounded NP-optimisation problems is denoted by NPPBopt , the (sub-)class
of polynomially-bounded NP-maximisation problems by NPPBmax, and the (sub-)class of
polynomially-bounded NP-minimisation problems by NPPBmin.

As shall be seen in Chapter 3 the polynomially-bounded restriction can be lifted by
adding to the logical framework a function that encodes numbers whose value is expo-
nential in the size of the input; such an encoding is technically awkward to use and as
such is left out of the initial theorems (which are thus restricted to polynomially-bounded
optimization problems).

2.2.1.5 Complete Problems

Proposition 2.2.9. If the decision variant QD of an NP-optimisation problem Q is NP-
complete, then Q is NP-hard.

This is direct from the definition of an NP-hard problem (see Definition 2.1.53): use
QD as an oracle and apply a binary search algorithm to find the optimal value to Q.
The binary search requires a number of queries to the oracle that is logarithmic in the
size of the largest possible cost, which in the general (non-polynomially-bounded) case is
exponential in the size of the input. This means it makes at most a polynomial number
of calls to the oracle and so is NP-hard.

A problem is complete for a class if it is amongst the hardest problems in that class; if
an optimisation problem is NP-hard then this means that there is polynomial-time Turing
reduction from some NP-complete problem to the optimisation problem. Since all NP-
optimisation problems must have a decision problem in NP, the hardest problems are
those with a decision problem that is NP-complete.

Definition 2.2.10. An optimisation problem Q is NPopt-complete iff it is NP-hard.

There are polynomial-time reductions between all NP-complete problems and so it
immediately follows that there are polynomial-time Turing reductions between all NPopt-
complete problems.

2.2.2 P-optimisation Problems

The definition of the class of P-optimisation problems (usually abbreviated to Popt) is
identical to that of NP-optimisation problems except for one restriction regarding the
class that the decision variant lies in:

CHAPTER 2. PRELIMINARIES 43

Definition 2.2.11. A P-optimisation problem Q is given by the sets and functions IQ,
FQ, costQ and µ, written as Q = (IQ, FQ, costQ, µ), where points (i) to (v) of Definition
2.2.2 hold and with point (vi) is given as:

(vi) QD is the decision problem variant ofQ: given some structure A ∈ IQ and a constant
k ∈ N, is there a solution S̄ ∈ FQ s.t. if µ = max then costQ(A, S̄) ≥ k, or if µ = min
then costQ(A, S̄) ≤ k. The decision problem QD is in P.

The class of all such problems is called Popt and since P ⊆ NP then Popt ⊆ NPopt. The
restriction of the class Popt to those with polynomially bounded objective functions (see
Definition 2.2.8) is called PPBopt , where naturally PPBopt ⊂ Popt. All the classes exhibit a
dichotomy between maximisation and minimisation problems; these are denoted (in a
manner similar to that for NP-optimisation problems) as Pmax, Pmin, PPBmax and PPBmax.

Importantly, the solution of an optimization problem Q = (IQ, FQ, costQ, µ) is an
algorithm that given any instance A of the problem, produces as output the value opt(A)

and not (necessarily) an optimal feasible solution from FQ(A) (if there is one). In fact,
this algorithm need not even work with representations of feasible solutions; all it has to
do is to come up with the optimal value. Note that all problems Q = (I, F, cost, µ) in Popt
can be solved in polynomial-time, for: given any instance A of size |A| and any feasible
solution S ∈ F (A), by definition cost(A,S) is O(2p(|A|)), where p is some polynomial. Now
there is according to condition (vi) of Definition 2.2.11 an algorithm that runs in time
q(|A|), where q is some polynomial, that decides whether the optimal solution is greater
than (or less than) an input parameter k. Now, by applying this decision algorithm in
conjunction with a binary search (see e.g. [Knu73, CLRS09]) the optimal cost can be found
in O(log2(2p(|A|)).q(|A|)) = O(p(|A|).q(|A|)), hence this combination yields a polynomial-
time algorithm for computing opt(A).

In terms of existing complexity classes, Popt is the same as the subset of problems in
FP (see Chapter 10 of [Pap94]) where the output structure is a positive natural number.

2.2.3 Some Common Optimisation Problems

When discussing logical frameworks for describing problems it is useful to give examples
of their application to concrete problems. Here are the definitions of some common op-
timisation problems that shall be used for this purpose.

2.2.3.1 Max-Flow, Max-FlowPB and Max-Unit-Flow

Consider the maximum flow problem Max-Flow = (I, F, cost,max), where:

• I is the set of tuples (G, w, s, t), with G a digraph and s and t two named vertices of
G, where s has in-degree 0 and t has out-degree 0. The relation w maps each edge
in G to a weight, effectively making G a weighted digraph. An example of how such
a weight relation may be encoded is discussed in Section 3.7.1.1.

• F : (G,w, s, t) 7→ {Pi} is a relation from input instances to valid flows, where a flow
P is an assignment of values to each edge in the digraph G under the constraints
that no value exceeds the weight assigned to the edge by w and that the sum of the

CHAPTER 2. PRELIMINARIES 44

values incident upon a vertex is equal to the sum of the values radiating out of it.
F ((G, w, s, t)) is the set of all valid flows for (G, w, s, t).

• cost(A,S), for some instance A ∈ I and for some feasible solution S ∈ F (A), is
the size of the flow S, that is the sum of the flows on the edges emanating out of s
(which is equal to the sum of the flows on the edges incident on t in any valid flow).

It is well-known that the decision version of Max-Flow is in P (see, e.g. [CLRS09]
or Chapter 1 of [Pap94]); thus, Max-Flow ∈ Pmax but note that Max-Flow is, in
general, not in PPBmax since the weights on the edges can be at most exponential in the
size of the input (as it is possible to encode such numbers of the order of O(2n) with a
sequence of symbols of length n). If the weights are explicitly restricted to being bounded
by some polynomial in the size of the input then the problem would be in fact be in
PPBmax; call the polynomially bounded restriction of the problem Max-FlowPB. Such a
restriction can be achieved by considering the maximum flow problem Max-Unit-Flow =

(IU , FU , costU ,max), which is a restriction of Max-Flow to only have unit weights on
the edges; effectively removing the weight mapping w. Or more formally:

• IU is the set of tuples (G, s, t), with G a digraph and s and t two named vertices of
G, where s has in-degree 0 and t has out-degree 0. G is an unweighted digraph.

• FU : (G, s, t) 7→ {Pi} is a relation from input instances (G, s, t) to sets of all possible
flows {P0, ..., Pm} for each instance (where m depends on the instance).

with the cost function being the same as in Max-Flow.
The problem Max-Unit-Flow ∈ PPBmax since the maximum possible value of a flow

is equal to the number of edges emanating from the source vertex s, which is a quantity
that is linearly bounded by the number of vertices in the graph. Also note that a Max-

Flow instance A that has the values of its weight mapping wA polynomially bounded can
be transformed into an instance B of the problem Max-Unit-Flow by simply replacing
each weighted edge with a sequence of edges whose length is equal to the weight of the
original edge. This transformation introduces more vertices to the graph, the number of
which is bounded by the same polynomial that bounds the weight mapping wA. Since it
takes a polynomial amount of time to construct the Max-Unit-Flow instance from the
polynomially-bounded Max-Flow instance the computational complexity of the problem
(transformation plus solving) is unchanged, whereas if the weight mapping was exponen-
tially bounded then the transformation would take an exponential amount of time to run,
changing the computational complexity of the problem.

Using the notation introduced in Section 2.1.2.2 this transformation (c.f. reduction)
means that Max-Unit-Flow ≤Max-FlowPB.

2.2.3.2 Max-2-Sat

Firstly, recall the decision problem Sat (whose name is a shortening of satisfiability) from
Section 2.1.3. Famously this is the first ever NP-complete problem [Coo71], which takes
as its input a boolean formula in conjunctive normal form over a set of literals (boolean
variables that can be assigned either true or false) and asks: is there an assignment of

CHAPTER 2. PRELIMINARIES 45

truth values to the literals such that all the clauses in the formal are true? A commonly
used restriction of Sat is 3-Sat, in which each clause has exactly 3 literals; this decision
problem is also NP-complete [Coo71]. Another restriction is 2-Sat, in which each clause
has exactly 2 literals; this decision problem is in P.

Moving away from decision problems and back to optimisation, the most common
optimisation version of satisfiability problems is Max-Sat (see Definition 2.1.70), which
asks for the maximum number of clauses that can be satisfied in a formula.

Consider the maximum 2-satisfiability problem Max-2-Sat = (I, F, cost,max), where:

• I is the set of conjunctive normal form formulae ϕ where every clause has 2 literals;

• F (ϕ) is the set of truth assignments on the Boolean variables involved in ϕ;

• cost(ϕ,S), for some instance ϕ ∈ I and for some feasible solution S ∈ F (ϕ), is the
number of clauses made true in ϕ under the truth assignment S.

The decision version of this problem, k-Max-2-Sat is NP-complete [GJS76], unless k =

|C|, where C is the set of clauses in the formula ϕ in the input instance, because then
the problem is effectively the same as the decision problem 2-Sat. Since k-Max-2-Sat

is in NP it follows by Definition 2.2.2 that Max-2-Sat is in NPmax but not Pmax unless
P = NP, as by Definition 2.2.11 Max-2-Sat is in Pmax iff k-Max-2-Sat is in P (which
would require that P = NP since k-Max-2-Sat is NP-complete).

Observe that the maximum number of clauses in a formula ϕ in I is equal to half the
length of the formula, and so the values of the cost function are polynomially bounded, in
fact cost(ϕ,S) ≤ |ϕ|2 ≤ c.|ϕ|, where |ϕ| is the length of the formula ϕ; c is some rational
constant; ϕ ∈ I and S ∈ F (ϕ). This shows that the values returned by the cost function
are linear in the length of the input formula and hence linear in the size of the input.
Hence Max-2-Sat is in NPPBmax.

2.2.3.3 Max-2-Horn-Sat

The problem Max-2-Horn-Sat is obtained by taking the problem Max-2-Sat and
adding the restriction that all instances must be Horn formulae (see Section 2.1.3.1).
Due to a result in [JS87], where the decision variant of Max-2-Horn-Sat, k-Max-2-

Horn-Sat is shown to be NP-complete, it follows that even with the Horn restriction
Max-Horn-2-Sat is in NPPBmax.

2.2.3.4 Max-2-Sat(≤2)

Define the problem Max-2-Sat(≤2) by restricting instances of Max-2-Sat so that every
variable appears in at most 2 clauses. The decision version k-Max2Sat(≤2) can be
solved in linear time [RRR98]. Therefore, since k-Max-2-Sat(≤2) is in P, it follows by
Definition 2.2.11 that the optimisation problem Max-2-Sat(≤2) is in PPBmax.

2.2.3.5 Shortest Path

Shortest path is part of a family of problems that operate on graphs (and digraphs) G
that contain two named vertices: s (the source or start vertex) and t (the sink or end

CHAPTER 2. PRELIMINARIES 46

vertex). Once such decision problem in the family is Reachability, which asks: is there
a path between vertices s to t in G? This can be extended with a constant k to ask: is
there a path between vertices s and t in G such whose length is ≤ k? Call this decision
problem the k-minimum shortest path problem or k-Min-SP for short. Now consider the
optimisation version Min-SP = (I, F, cost,min), where:

• I is the set of triples (G, s, t), with G a digraph and s and t two named vertices of G;

• F : (G, s, t) 7→ {Pi} is a relation mapping input instances (G, s, t) to the set of all
possible paths {P0, ..., Pm} in G from s to t (wherem depends on the input instance).

• cost(A,S), for some instance A ∈ I and for some feasible solution S ∈ F (A), is
defined as the length of the path S.

It is well-known that the decision version of Min-SP is in P (see, e.g. [CLRS09]); thus,
since the length of the longest possible path in G is |G| − 1 (where |G| is the number of
vertices in G) it follows by Definition 2.2.11 that Min-SP ∈ P PB

min.

2.2.4 Extracting Parameters from Fixed-Point Operations

This section deals with metrics associated with fixed-point operators.

2.2.4.1 Inductive depth operator for LFP and IFP

As mentioned earlier in Section 2.1.1.6, the inductive depth of an operator (for some
structure A), is the number of iterations required before a fixed point is encountered. As
will be discussed later, the inductive depth of an operator is an important measure and
as such, the following notation is introduced:

depth ([LFPR,x̄ ϕ] (t̄)) ∈ N ∪ {⊥}

where if A |= [LFPR,x̄ ϕ](t̄) then the above is evaluated as the inductive depth of the
least fixed point operator applied to the structure A, minus one. Conversely, if A 6|=
[LFPR,x̄ ϕ](t̄) then the above is evaluated as ⊥, which is read as being undefined (even
though the inductive depth of the LFP operator is).

An inductive depth of zero means that the least fixed point R is ∅, implying that
A 6|= [LFPR,x̄ ϕ](t̄) since t̄ 6∈ ∅. By subtracting one from the inductive depth of an operator
the values of the depth will be in the range 0 to |A|k − 1 (or ⊥).

As well as knowing the value of the relation R at the least fixed point it is also useful
to be able to refer to its value at a particular point in the sequence before the least fixed
point is reached. For this the following notation is used:

Xi =
[
LFPiR,x̄ ϕ

]
which refers to the ith relation constructed after i applications of the least fixed point

operator generated by the formula ϕ. Let the inductive depth of the operator defined by
ϕ applied to some structure A be r. If i > r then Xi = Xr. Since this holds true for all
integers larger than the inductive depth, it is written that X∞ = Xr.

CHAPTER 2. PRELIMINARIES 47

Both the inductive depth and ith iteration notations are applied to IFP operators in
exactly the same way that they are to LFP operators.

2.3 (Hybrid) Modal Logic Specific Definitions

In this section are the preliminary definitions used in Chapter 4. They start with an
introduction to modal logic, specifically basic modal logic (2.3.1) and develop this into
hybrid modal logic, before fixing on the logic of interest: Hybrid Graph Logic (2.3.2).
Finally, the concept of bisimulation is then introduced (2.3.3).

The definitions given here intend to build upon those given in Section 2.1 regard-
ing relational structures (2.1.2), descriptive complexity (2.1.4), logical equivalence classes
(2.3.2.5) and games (2.1.5).

2.3.1 Basic Modal Logic

Modal logic differs from first-order logic (see Definition 2.1.7) in that the models/structures
that it operates on are far less general. Classically, modal logic is the extension of propos-
itional logic with two unary operators � and ♦ that are used to express that a property
expressed by a formula ϕ is respectively necessarily or possibly true. In modern descrip-
tions of modal logic (see e.g. [HC96, BdRV01, GO07]) the underlying structure is a graph
and these operators traverse it examining the truth of propositions at each vertex. The
structures of modal logic are formally defined as a special case of the more general τ -
structure, as introduced in Definition 2.1.2.

Definition 2.3.1. In modal logic, a model M is a relational structure with universe W
and vocabulary 〈R2,P〉, where P = 〈P 1

1 , P
1
2 , ..., P

1
l 〉 is the set of l proposition symbols, or

simply the set of propositions.

In essence, a model in modal logic is a directed graph (W,R) with a set of colours P

applied to the vertices. The uncoloured graph (W,R) is called a modal frame or sometimes
just a frame. As a model is parameterised by the set of propositions P it is sometimes
referred to as a P-structure (similar in naming to that of τ -structures from Definition
2.1.2).

Definition 2.3.2. Formulae in basic modal logic are inductively defined in a similar way
to those of first-order logic (see Definition 2.1.7). The well-formed atomic formulae of
modal logic are p, where p is a proposition symbol and ⊥. If ψ and φ are well-formed
formulae then so are ψ ⇒ φ and ♦ψ. The class of logic ML(P) consists of all such basic
modal logic formulae where the proposition symbols are contained within the set P.

A basic modal logic formula is evaluated on a model at a particular point or vertex
(this is what makes the logic modal) in the underlying modal frame. The key part of the
evaluation is to examine whether a proposition p holds for some vertex v inM. For this
reason the concept of the valuation function µ : P → P(W) is introduced, which maps a
proposition symbol p ∈ P to a set of vertices µ(p). It should be noted that in a modelM
the set of vertices returned by the valuation function µ(pi) is equal to the instantiation of
the unary relation symbol pi inM to pMi . As will be explained later, when dealing with

CHAPTER 2. PRELIMINARIES 48

frame satisfaction this separation of the frame from the values of the proposition symbols
in the model is important.

The modal frame of a model is in fact a directed graph and so the universe M of a
model M is the set of vertices in the graph (or the unary relation W from Definition
2.3.1) and a modal frame G is a directed graph structure of vocabulary τg (see Definition
2.1.5). With this definition of graphs and the concept of the valuation function it can be
seen that a modal P-structureM is a tuple of a graph structure and an valuation function
appropriate to P, i.e. M = 〈G, µ〉.

Definition 2.3.3. A pointed modal structure or a pointed model is simply a structure
M = 〈G, µ〉 combined with a point (or vertex) from the underlying modal frame v ∈
M . This is commonly denoted (M, v) (see structure extension in Definition 2.1.1.1) but
can just as well be denoted (〈G, µ〉, v), 〈〈G, µ〉, v〉 or simply just (G, µ, v), following the
convention of using lower-case Greek letters for functions and lower-case Roman letters
for constants in order to avoid ambiguity. A pointed (modal) frame is a modal frame G
combined with some point (or vertex) v ∈ G, denoted (G, v).

The terms ‘digraph’ and ‘frame’ and the terms ‘vertex’ and ‘point’ shall be used inter-
changeably, depending upon the context.

Remark 2.3.4. The universe of a modelM = 〈G, µ〉 is equal to the universe of the under-
lying frame (i.e. M = G). Since G is the set of vertices of a graph it is usually given the
symbol V ; when a set V is referred to, it is the universe of the model.

The semantics for evaluating whether a model M = 〈G, µ〉 is satisfied by a formula
ϕ ∈ ML(P) are:

Definition 2.3.5. Let ϕ be a formula from the modal logic ML(P), where P is a set of
proposition symbols, and let M = 〈G, µ〉 be a model appropriate to the modal system
ML(P). The satisfaction relation |= is defined as follows:

(i) (M, v) |= p, where p ∈ P, iff v ∈ µ(P).

(ii) It is not the case that (M, v) |=⊥ is true.

(iii) If ϕ is of the form ψ ⇒ ψ′ then (M, v) |= ϕ if, and only if, whenever (M, v) |= ψ, it
must be he case that (M, v) |= ψ′.

(iv) If ϕ is of the form ♦ψ then (M, v) |= ϕ if, and only if, there exists some point v′ of
G for which E(v, v′) holds in G and for which (M, v′) |= ψ.

If (M, v) |= ϕ then it is said thatM satisfies ϕ at v. If it is not the case that (M, v) |= ϕ,
written (M, v) 6|= ϕ, then it is said thatM is unsatisfied by ϕ at v.

The usual Boolean connectives ∨,∧,¬ and⇔ can be defined in basic modal logic in the
same way that they are defined in first-order logic (see Definition 2.1.7). The short-hand
> is used for ¬⊥ and is referred to as true. The short-hand �ϕ ≡ ¬♦¬ϕ is also used
and is referred to as box or the universal access operator (with ♦ being diamond or the
existential access operator).

CHAPTER 2. PRELIMINARIES 49

2.3.1.1 Satisfiability and Validity

A formula in basic modal logic is satisfiable if from some class of P-structures there is a
model that satisfies the given formula at a certain point:

Definition 2.3.6. Given a formula ϕ ∈ ML(P), where P is a set of proposition symbols,
ϕ is P-satisfiable (or just satisfiable if P is clear form the context) if, and only if, there
exists some model M appropriate to P and there exists some point v in M such that
(M, v) |= ϕ.

The dual property of validity is similarly defined:

Definition 2.3.7. Given a formula ϕ ∈ ML(P), where P is a set of proposition symbols,
ϕ is P-valid (or just valid if P is clear from the context) if, and only if, for all modelsM
appropriate to P and for all points v inM it holds that (M, v) |= ϕ.

Observe that if a formula ϕ is satisfiable then its negation ¬ϕ is not valid (or invalid),
since the modelM and point v that witness satisfiability of ϕ also witness the invalidity
of ¬ϕ. The dual of this relationship is that if a formula ϕ is valid then its negation ¬ϕ is
not satisfiable (or unsatisfiable). These observations give rise to the following Lemma:

Lemma 2.3.8. Given an algorithm for deciding P-satisfiability and a formula ϕ ∈ ML(P),
the validity problem for ϕ can be answered by negating the algorithm’s response for sat-
isfiability of ¬ϕ: if ¬ϕ is satisfiable then ϕ is invalid; if ¬ϕ is unsatisfiable then ϕ is
valid.

The above lemma means that the satisfiability problem is decidable (i.e. there is an
algorithm that solves it) if, and only if, the validity problem is decidable, since there is a
reduction each way between the two problems.

Theorem 2.3.9. The satisfiability problem for basic modal logic is decidable.

The direct consequence of the above theorem and lemma is:

Corollary 2.3.10. The validity problem for basic modal logic is decidable.

These decidability results come from the fact that basic model logic exhibits the finite
tree model property; more details can be found in [HC96, Var96, BdRV01, MV07].

2.3.2 Hybrid Modal Logic and Graph Logic

In this section, the syntax and semantics of Hybrid Graph Logic (as it was defined in
[BS09]) are recapitulated. In essence, Hybrid Graph Logic is a hybrid modal logic aug-
mented with a facility to validate paths in structures, and the structures in which the
formulae of Hybrid Graph Logic are interpreted are modal frames with a single modal-
ity. A hybrid modal logic is an extension of modal logic with the concept of nominals,
which behave like propositional symbols except that they can only refer to exactly one
vertex/point in the modal frame. Further information on hybrid modal logics can be found
in [AtC07].

CHAPTER 2. PRELIMINARIES 50

2.3.2.1 Syntax

First, the syntax of Hybrid Graph Logic is presented. Since every basic modal logic formula
is also a Hybrid Graph Logic formula the definitions of syntax and semantics shall extend
those presented in Section 2.3.1. Every formula of Hybrid Graph Logic is parameterised
by a set of proposition symbols P (as in basic modal logic) and by a set of nominals N.

Definition 2.3.11. Given a set P of propositional symbols and a set N of nominals, the
formulae of the logic HGL(P,N) (called Hybrid Graph Logic) are inductively defined as
those of ML(P) plus the following:

n ; ♦+ψ ; and @nψ,

where n ∈ N is a nominal and ψ ∈ HGL(P,N).

The structures in which formulae of HGL(P,N) are interpreted are the same as those for
basic modal logic, except that the valuation function also has evaluations for the nominals.

Definition 2.3.12. Given a set of propositional symbols P and a set of nominals N a
P ∪ N-structure (or model) M = (G, µ) in Hybrid Graph Logic comprised of a graph G
and a valuation function µ : P ∪ N → P(V). The valuation function in HGL is the same
as in basic modal logic except that the nominals are always evaluated to a singleton set.
If µ(n) = {v}, where n ∈ N and v ∈ V , then sometimes this is written as µ(n) = v and
the nominal n is said to sit on the point v.

2.3.2.2 Semantics

The semantics of the Hybrid Graph Logic HGL(P,N) are built on top of those of basic
modal logic (see Definition 2.3.5), with interpretations of the Hybrid Graph Logic specific
syntax given below.

Definition 2.3.13. Let ϕ be a formula of Hybrid Graph Logic that involves proposition
symbols from the set P and nominals from the set N. ϕ is interpreted in a P∪N-structure
M = 〈G, µ〉 as per the semantics of basic modal logic with the following additional rules:

(i) (M, v) |= n if, and only if, v = µ(n).

(ii) If ϕ is of the form ♦+ψ then (M, v) |= ϕ if, and only if, there exist points v0, v1, . . . , vq,
where q ≥ 1, for which: v = v0; E(vi, vi+1) holds in G, for all i = 0, 1, . . . , q − 1; and
(M, vq) |= ψ.

(iii) If ϕ is of the form @nψ then (M, v) |= ϕ if, and only if, (M, u) |= ψ, where u = µ(n).

The short-hand �+ψ is used for ¬♦+¬ψ (making �+ the dual of the operator ♦+).
While the ♦ operator is used to ask if a formula is true at some vertex that is adjacent to
the current evaluation vertex v, the ♦+ operator asks if a formula is true at some vertex
that is reachable by a path of at least one edge from v. So, (M, v) |= ♦+ψ is the same as
asking if (M, u) |= ψ holds at some vertex u and that E+(v, u) is true, where E+ is the
non-reflexive, transitive closure of E.

CHAPTER 2. PRELIMINARIES 51

2.3.2.3 Characterising Problems Using HGL

Hybrid Graph Logic can be used to define digraph problems; that is, classes of digraphs
that are closed under isomorphisms. To do this, the concept of global satisfaction and
frame validity are required.

Definition 2.3.14. Let ϕ be some formula of Hybrid Graph Logic that involves proposi-
tional symbols from the set P and nominals from the set N, and letM = 〈G, µ〉 be some
model with modal frame G and valuation function µ : P ∪ N → P(V). It is said that the
modelM globally satisfies ϕ, writtenM |= ϕ if, and only if, at every point v of the modal
frame G it is the case that (M, v) |= ϕ.

Definition 2.3.15. Let ϕ be some formula of Hybrid Graph Logic from the set HGL(P,N)

and let G be a modal frame. The formula ϕ is valid in G (or ϕ is G-valid), written G |= ϕ,
if, and only if, for every possible valuation function µ : P ∪ N→ P(V), it is the case that
〈G, µ〉 |= ϕ (that is, the model composed of the frame G and the valuation function µ

globally satisfies ϕ).

This idea of a formula being valid on a modal frame is used to define problems in Hybrid
Graph Logic in a manner similar to the way that problems are defined using first-order
logic (see Definition 2.1.4.1).

Definition 2.3.16. Let ϕ be some formula of Hybrid Graph Logic. The problem defined
by ϕ consists of those frames G for which ϕ is valid in G; that is, for which G |= ϕ.

So, a formula ϕ characterises a graph problem Q if, and only if, for every graph G, the
formula ϕ is valid in G when G corresponds to a yes-instance of Q and ϕ is not valid in G
when G is a no-instance of Q.

Care should be taken when working with formulae of Hybrid Graph Logic in relation
to the problems they define. For example, consider some formula of HGL(P,N) of the
form ϕ ∨ ψ. For some modal frame G, it is the case that G |= ϕ ∨ ψ if, and only if, for all
valuation functions µ : P∪N→ ℘(V) and for all points u of G, (G, µ, u) |= ϕ∨ψ. However,
it happens that G |= ϕ or G |= ψ if, and only if, for all valuation functions µ : P∪N→ ℘(V)

and for all points u of G, (G, µ, u) |= ϕ or for all valuation functions µ : P ∪ N → ℘(V)

and for all points u of G, (G, µ, u) |= ψ. Thus, it might be that G |= ϕ ∨ ψ but that it
is not necessarily the case that G |= ϕ or G |= ψ. This is because there is a universal
quantifications of the valuation functions and the points of G hidden in the expression
G |= ϕ ∨ ψ and in general ∀x(ϕ ∨ ψ) 6≡ ∀xϕ ∨ ∀xψ.

Note that it might be argued that HGL is not very “well behaved” as a logic; for
instance, it is not closed under negation. However, there are many logics prevalent in
descriptive complexity that are not closed under negation, existential second-order logic
being perhaps the most prominent example (see Definition 2.1.22).

Remark 2.3.17. The notation used here differs from that used in [BS09]. Modal frames
are usually of the form G = 〈V,E〉 (to reflect the fact that HGL deals with graphs, or
more precisely digraphs), whereas F = 〈W,R〉 was the norm in [BS09] (and most basic
modal logic texts, e.g. [MV07]); sets of propositional symbols are usually of the form P,
whereas Φ was the norm in [BS09] (Greek letters are reserved here for formulae, valuation

CHAPTER 2. PRELIMINARIES 52

functions and paths in digraphs); sets of nominals are usually of the form N, whereas Ψ

was the norm in [BS09]; and valuations are usually of the form µ, whereas V was the norm
in [BS09].

2.3.2.4 Metrics and Sub-classes of Formulae

Whilst it is interesting to see what problems a logic can characterise, it is also interesting
to question whether there are strict classes of expressiveness within a logic. For this to be
investigated metrics derived from formulae are used to build classes. Hybrid Graph Logic
already has two built in metrics: the number of proposition symbols and the number of
nominal symbols; it is only the number of such symbols that matters, since there is a
straight forward isomorphism between two HGL formulae with different sets of symbols
of the same size.

Up until now, the logic HGL(P,N) has consisted of all formulae with set of proposition
symbols P and set of nominal symbols N, such that the logics HGL(P,N) and HGL(P′,N′)
are distinct even when |P| = |P′| and |N| = |N′| are true. Following from the discussion in
the previous paragraph, the following class of formulae is defined:

Definition 2.3.18. The class of formulae HGL(c, d), where c ≥ 0 and d ≥ 0, consists of
all formulae from HGL(P,N), where c = |P| and d = |N|. Observe that it is the case that
both HGL(c, d) ⊆ HGL(c+ 1, d) and HGL(c, d) ⊆ HGL(c, d+ 1) hold.

Another measure that can be applied to formulae in Hybrid Graph Logic is of their
quantifier rank (commonly called modal depth in other literature). This is effectively the
modal logic version of Definition 2.1.14. Using this measure along with the number of
proposition symbols and nominals, a rich taxonomy of Hybrid Graph Logic formulae can
be developed.

Definition 2.3.19. Every atomic formula ϕ has quantifier-rank 0 and it is written that
qr(ϕ) = 0 for such formulae.

• If ϕ is of the form ¬ψ then ϕ has quantifier-rank defined as qr(ϕ) = qr(ψ).

• If ϕ is of the form ψ ⇒ ψ′, ψ ∧ ψ′ or ψ ∨ ψ′ then ϕ has quantifier-rank defined as
qr(ϕ) = max{qr(ψ), qr(ψ′)}.

• If ϕ is of the form ♦ψ, ♦+ψ, �ψ, �+ψ or @nψ then ϕ has quantifier-rank defined
as qr(ψ) + 1.

Definition 2.3.20. Let c, d and r be non-negative integers, let P be a set of propositional
symbols and let N be a set of nominals. The logic HGLr(P,N) consists of those formulae
of HGL(P,N) of quantifier-rank at most r. The logic HGLr(c, d) is the fragment of Hybrid
Graph Logic consisting of all those formulae of quantifier-rank at most r in which there
are at most c proposition symbols and d nominals.

The logic HGLr(c, d) is equated with the class of problems definable by the formulae
of that logic; consequently it is written, for example, HGLr(c, d) ⊆ HGLr′(c′, d′) to denote
that any problem definable by a formula of the logic HGLr(c, d) can also be defined by a
formula of the logic HGLr′(c′,d′), and it is written HGLr(c, d) ⊂ HGLr′(c′, d′) to denote
that HGLr(c, d) ⊆ HGLr′(c′, d′) but there are problems definable in HGLr′(c′, d′) that are
not definable in HGLr(c, d).

CHAPTER 2. PRELIMINARIES 53

2.3.2.5 Logical Equivalence

Related to the logic HGLr(c, d) are various notions of equivalence (see Section 2.1.1.2 for
more details).

Definition 2.3.21. Let P be a set of proposition symbols and let N be a set of nominals.

• Let (G, µ, u) and (H, λ, v) be pointed P ∪ N-structures. (G, µ, u) and (H, λ, v) are
(P,N, r)-equivalent, written (G, µ, u) ≡HGLr(P,N) (H, λ, v), if for all formulae ϕ of
HGLr(P,N), (G, µ, u) |= ϕ if, and only if, (H, λ, v) |= ϕ.

• The P∪N-structures 〈G, µ〉 and 〈H, λ〉 are (P,N, r)-equivalent, written 〈G, µ〉 ≡HGLr(P,N)

〈H, λ〉, if (〈G, µ〉, u) ≡HGLr(P,N) (〈H, λ〉, v), for all points u and v of G and H, respect-
ively.

• The modal frames G and H are (c, d, r)-equivalent, written G ≡HGLr(c,d) H, if for all
formulae ϕ of HGLr(c, d), G |= ϕ if, and only if, H |= ϕ.

2.3.3 Bisimulation

Basic modal logic is limited in what properties it can express (on finite structures) due
to the fact that it is bisimulation-invariant, that is no formula in basic modal logic can
differentiate between two given points in two different models for which a valid bisimulation
has been given. A bisimulation is defined as follows:

Definition 2.3.22. Given two P-structures 〈G, µ〉 and 〈H, λ〉, a non-empty relation Z ⊆
V G × V H is a bisimulation between 〈G, µ〉 and 〈H, λ〉 if the following conditions hold for
any pair of states (s, t) ∈ Z:

1. For all pi ∈ P, s ∈ µ(pi) iff t ∈ λ(pi) (base).

2. For all u ∈ V G such that EG(s, u) holds, there exists some v ∈ V H such that EH(t, v)

holds and (u, v) ∈ Z (forth).

3. For all v ∈ V H such that EH(t, v) holds, there exists some u ∈ V G such that EG(s, u)

holds and (u, v) ∈ Z (back).

The points u ∈ V G and v ∈ V H are bisimilar if such a bisimulation Z exists and (u, v) ∈ Z.

A bisimulation is a kind of structural logical equivalence (see Section 2.3.2.5) in the
sense that two pointed models (G, µ, s) and (H, λ, t) are bisimilar if, and only if, they agree
on the same basic modal logic formulae.

Theorem 2.3.23. For two pointed P-structures (G, µ, s) and (H, λ, t), the following are
equivalent:

1. Points s and t are bisimilar in the models 〈G, µ〉 and 〈H, λ〉, respectively.

2. (G, µ, s) ≡ML (H, λ, t).

3. For any formula ϕ ∈ ML(P) it holds that (G, µ, s) |= ϕ iff (H, λ, t) |= ϕ.

CHAPTER 2. PRELIMINARIES 54

Bisimulation is what is known as an algebraic characterisation of the limits of express-
iveness of a logic, similar to the algebraic characterisation of first-order logic by Fraïssé
[Fra54]. When dealing with finite models it is often easier to think of this characterisation
as a game, as is done for first-order and second-order logic in Section 2.1.5.

Definition 2.3.24. The bisimulation game Gbr((G, µ, s), (H, λ, t)) is played by two players
called Spoiler and Duplicator on the P-structures A = 〈G, µ〉 and B = 〈H, λ〉, and it lasts
for r rounds of play. Initially it starts with the pebbles a and b placed on the points s in
〈G, µ〉 and t in 〈H, λ〉; these are the positions a0 and b0. In each round of play, the Spoiler
chooses a structure, either 〈G, µ〉 or 〈H, λ〉 and moves the corresponding pebble, either a
or b, onto an adjacent point in the structure. The Duplicator then responds by moving
the pebble in the other structure onto an adjacent point. Let the current positions of the
pebbles be ai and bi, and the new positions ai+1 and bi+1. It must be the case that both
EG(ai, ai+1) and EH(bi, bi+1) hold.

During a play in order for the Duplicator to win it must be the case that at each round
for all pi ∈ P, ai ∈ µ(pi) iff bi ∈ λ(pi), otherwise the Spoiler wins.

This game and hence bisimulation are only the same as structural equivalence in basic
modal logic; in Hybrid Graph Logic Theorem 2.3.23 does not hold. An Ehrenfeucht-Fraïssé
style game for bisimulation can be found in most modal logic literature, e.g. [MV07].

Chapter 3

Descriptive Complexity of
Optimisation Problems

When describing computational problems it is common to do so using natural language,
whereas when describing an implementation of an algorithm on a particular machine, it is
common to use a formal notation that explicitly defines the functionality of the machine.
Often the language describing the implementation is very technical and it is hard to trace
it back up to the natural language of the original problem.

Looking for ways of describing the implementations of algorithms from the field of
Finite Model Theory gives the following advantages:

• Ability to reason about computational problems and their implementations using
the rich toolset that mathematical model theory and logic provide.

• The natural complexity classes are cleanly captured.

• A different perspective on what makes a problem computationally intractable.

This application of Finite Model Theory to describing algorithms for solving computational
problems comes under the broad term of Descriptive Complexity, which is discussed in
Section 2.1.4, along with key results from the field in Section 2.1.4.3. The vast majority
of research carried out to date in Descriptive Complexity has been concerned with the
description of algorithms for solving decision problems and therefore the characterisation
of classes of decision problems. It would appear that this has mainly happened because
the formal languages used to describe the problems are derived from Boolean logic, which
lends itself well to decision problems as a result of the mapping from true and false to yes
and no.

As the field of Descriptive Complexity is now very well defined and includes a healthy
set of results for decision problems, it follows to pose the question: what about optimisation
problems? It is not entirely obvious how it could be possible to use a formal language based
on Boolean logic to come to an answer that is a number, as opposed to just a Boolean
value. The techniques needed are clearly going to involve counting of some sort, but how
exactly can a logic “count”? There is also the question of how exactly the numbers are
going to be encoded using a finite set of symbols and what the limitations of using this
finite set will impose on the types of problems that can be described.

55

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 56

All these questions and more shall be dealt with in this chapter. Whilst they are
relatively open ended in the sense that there are essentially an unlimited number of ways
of describing optimisation problems using formal languages (in the same way that there are
essentially an unlimited number of different computer programming languages) by sticking
to the following core theme, it is argued that the research has produced useful results. The
core theme of this chapter’s research is summarised in the following two questions:

What additional linguistic features does a logic that already characterises a
class of decision problems need in order to characterise a similar class of op-
timisation problems?

and

What is the computational complexity of these additional linguistic features in
isolation?

The first question highlights the theme’s desire to build upon work that has gone before
and the second its desire to analyse the impact of the new results obtained.

3.1 Chapter Outline

The general definitions and notations that this chapter uses and refers to can be found in
Section 2.1; in particular the results from Descriptive Complexity in Section 2.1.4 shall be
drawn on. The definitions and notations specific to optimisation problems can be found
in Section 2.2, the whole of which is applicable to this chapter.

The first section (3.2) looks at past work on characterising optimisation problems;
starting with the works covering NP-optimisation problems (3.2.1) before moving onto P-
optimisation problems (3.2.2). The next section (3.3) examines some of the short comings
with the proposed frameworks for characterising P-optimisation problems before proving
that certain approaches cannot ever work unless P = NP. Following on from this a section
(3.4) proposes and proves a framework for characterising P-optimisation problems. Next
some examples of using this framework to describe several optimisation problems are
presented (3.5) before introducing another framework (3.6), proving that it characterises
the class of P-optimisation problems. Finally, the extensions of frameworks to unbounded
optimization problems is examined and discussed (3.7).

3.2 Past Research

In this section, the past research into characterising optimisation problems is presented.
First in Section 3.2.1 the logical frameworks for characterising classes of non-deterministic
polynomial-time optimisation problems are given from [PY91, PR93, KT94, KT95]. Fur-
thermore, some classification results are given from [KT94, KT95]. Secondly in Section
3.2.2 the logical frameworks for characterising classes of deterministic polynomial-time
optimisation problems are given from [BM08, Man08].

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 57

3.2.1 Characterizing NPPBopt

The first paper that tried to characterise NP-optimisation problems in terms of logic was
written by Papadimitriou and Yannakakis [PY91]. They approached the problem by ex-
tending Fagin’s framework for NP decision problems [Fag74] to the domain of optimisation
problems.

They observed that due to Fagin any NP decision problem can be written in the general
form given by the formula in Section 2.2.1 and then modified this to create a framework
within which optimisation variants of NP decision problems could be described:

optQ(A) = max
B
{|{x̄ ∈ Ak | (A,B) |= ∃ȳ ψ(x̄, ȳ, S̄)}|} (3.1)

where k is the arity of the tuple x̄ and the structure B is a realisation of the relation symbols
in the m-tuple S̄ over the universe A; the structure B has vocabulary σS = 〈S1, ..., Sm〉
and is loosely referred to as the feasible solution (see Definition 2.2.2 for the exact meaning
of a feasible solution).

So instead of finding some solution B that satisfies ∃ȳ ψ for all x̄, the framework finds
the maximum number of different x̄ tuples that satisfy ∃ȳ ψ for each possible solution B.
It can be seen that this is the case since the members of the inner set are the x̄ tuples
that satisfy the formula ∃ȳ ψ for a particular assignment to the relations in S̄ and the
outer set’s members are the cardinalities of the inner set for each possible assignment to
S̄. From this set of cardinalities, the largest is the optimal value.

Papadimitriou and Yannakakis named the class of problems that can be described
using this framework as MAX NP. They also defined the class MAX SNP as the problems
that can be defined in the framework but without the first-order existential component
i.e., of the form ψ(x̄, S̄) rather than ∃ȳ ψ(x̄, ȳ, S̄). The paper [PY91] then shows that
some natural problems in NPopt, such as Max-Sat (see Definition 2.1.70), can be defined
using the frameworks representing the classes MAX NP and MAX SNP, and that using an
approximation preserving reduction, the class MAX SNP has complete problems. They
argued that while MAX NP might not capture the class NPopt, since the framework was
derived from Fagin’s Theorem (see 2.1.75) and captures several natural problems, it is a
sound way of describing optimisation problems.

The next key result for the characterisation of optimisation problems comes from
a paper by Panconesi and Ranjan in which they show that the class MAX NP is not
expressive enough to contain the optimisation variant of the NP problem Max-Clique

[PR93]; they then go on to propose a more expressive class of optimisation problems
which they call MAX Π1. The paper is also the first to mention the formal definition of
an optimisation problem; it is practically identical to that given in Definition 2.2.2 but
without the relationship between NP-optimisation and decision problems.

The proof that the class MAX NP is not large enough to capture all NP-optimisation
problems, as given in [PR93], is motivated by the fact that:

[A |= ∃x̄ψ (x̄) ∧ A ⊆ B]⇒ [B |= ∃x̄ ψ(x̄)] (3.2)

which says that given some formula ϕ in Σ1 form that is satisfied by some structure A,

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 58

the same formula will hold true on any structure B that is an extension of A.

Theorem 3.2.1. The optimisation problem Max-Clique cannot be described by the
framework in Equation 3.1 and so is not in the class MAX NP.

Proof. Assume that there exists a formula that characterises the problem Max-Clique

in the framework described in Equation 3.1 over graph structures of vocabulary σG (see
Definition 2.1.5). Call this formula ϕ and without loss of generality fix the arities of x̄, ȳ
and the solution vocabulary τ . Now, for some graph G1 assume that the solution structure
A1 is optimal and that:

optMC(G1) = |{x̄ | (G1,A1) |= ∃ȳ ϕ}|

Take the graph G2 to be an isomorphic but disjoint copy of G1 and the solution struc-
ture A2 to be a copy of A1 under the same isomorphic mapping. Clearly optMC(G1) =

optMC(G2).
Now create the graph structure H = G1 ∪G2 and observe that due to the fact that the

truth of existential formulae is preserved under extension (Equation 3.2), for some tuple
ā, if (G1,A1) |= ∃ȳ ϕ(ā) then (H,B) |= ∃ȳ ϕ(ā) and similarly if (G2,A2) |= ∃ȳ ϕ(ā) then
(H,B) |= ∃ȳ ϕ(ā). Hence the solution structure B witnesses the following inequality about
the optimal value of H:

optMC(H) ≥ |{x̄ | (G1,A1) |= ∃ȳϕ} ∪ {x̄ | (G2,A2) |= ∃ȳϕ}|

And since the pairs of structures (G1,A1) and (G2,A2) are disjoint,

optMC(H) ≥ 2 · optMC(G1)

Which contradicts the fact that the maximum clique in H is equal to the maximum
clique in G1 (or G2), since G1 is not connected to G2 in H.

Corollary 3.2.2. MAX NP ⊂ NPopt

Proof. The optimisation problem Max-Clique is an NP-optimisation problem by Defin-
ition 2.2.2, since its decision variant is in NP. The proof is direct from this fact and the
result in Theorem 3.2.1.

Panconesi and Ranjan showed that Max-Clique can be written using the following
framework:

optQ(A) = max
B
{|{x̄ ∈ Ak | (A,B) |= ∀ȳ ψ(x̄, ȳ, S̄)}|} (3.3)

By giving the formula:

optMC(G) = max
C
{|{v | (G, C) |= C(v) ∧ ∀x∀y (C(x) ∧ C(y)⇒ E(x, y) ∨ x = y)}‖|} (3.4)

where the input structure G is of the vocabulary of graphs (see Definition 2.1.5);
structure C has the vocabulary 〈C1〉, (that is, it contains one unary relation C) and is over
the same universe as G.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 59

They called the class of problems that can be described using the framework in Equa-
tion 3.3 as MAX Π1 and exhibit some more example problems within it, but they do not
show that any of the problems Papadimitriou and Yannakakis placed in MAX NP are also
in MAX Π1.

Remark 3.2.3. There are some differences between the notation used for the frameworks
in the past research [PY91, PR93, KT94, KT95, BM08, Man08] and that used in this
chapter (as well as differences between each and every paper). Usually there is no obvious
difference between the structure being maximised over and the relation symbols contained
within it. By making the difference explicit, using say B to denote the structure and
S0, ..., Sm to denote the symbols it is clear whether an actual instance or just the abstract
symbols are being referred to. In a framework, generally, the symbols are used in the
formula and the structure in the mechanics for working out the optimum value.

The other difference is that the structure on which a formula is being evaluated is
explicitly stated, as in (A,B) |= ϕ. Without this notation is has to be implicitly derived
as to which symbols in ϕ are free and which are bound.

It is argued that this more explicit style of notation is necessary since this chapter
compares and contrasts many different frameworks, each originally presented in its own
style and with its own notation.

The only difference between the frameworks defined by Equations 3.1 & 3.3 is that
their first-order components are respectively existential and universal. In a journal paper
[KT94], Kolaitis and Thakur allowed the first-order component to be any formula (in
prenex normal form) that has free variables from S̄ and x̄. With this generalisation of
the framework they showed that it is equal to the class of polynomially-bounded NP-
optimisation problems (see Definition 2.2.8) and that there is a proper hierarchy between
restrictions of the framework [KT94]. In what follows, both these key results are formally
stated.

When restricting the first-order component of the framework, the naming convention
follows the quantifier order of this part of the formula. For example, it is a first-order
existential formula in the framework in Equation 3.1, giving rise to the name MAX Σ1

(since it is a framework for maximisation problems). With this new naming scheme it can
be seen that MAX Σ1 = MAX NP and MAX Σ0 = MAX SNP for the syntactic classes in
[PY91], and that the class MAX Π1 in [PR93] remains unchanged.

Theorem 3.2.4 (Kolaitis and Thakur [KT94]). Let Q = (IQ, FQ, costQ, µ) be an optim-
isation problem over vocabulary σ. The following are equivalent:

1. Q is a polynomially-bounded NP-optimisation problem, i.e., Q ∈ NPPBopt .

2. There exists a signature τ = 〈S̄〉, consisting solely of relation symbols and disjoint
from σ, and a first-order formula ϕ(x̄) over σ ∪ τ , where x̄ is a k-tuple of variables,
for some k, such that for every instance A ∈ IQ:

optQ(A) = µ
B
{|{x̄ ∈ Ak | (A,B) |= ϕ(x̄)}|} (3.5)

where B ranges over all τ -structures of universe A.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 60

Proof. If an optimisation problem Q is definable in the above framework, then the inner
set contains the number of x̄ tuples that satisfy the formula ϕ for some particular structure
B. Since all x̄ are from Ak and |Ak| = |A|k, then optQ(A) ≤ |A|k and is by Definition
2.2.8 polynomially-bounded.

Now assume that Q is a polynomially bounded optimisation problem with input struc-
ture A over vocabulary τ . Let k be a positive integer such that for any A it holds that
optQ(A) ≤ |A|k. A new relation R of arity k is now introduced and the following class of
problems is defined when µ = max:

K1 := {(A, R) | A ∈ IQ, R ⊆ Ak, there is an B ∈ FQ(A) s.t. cost(A,B) ≥ |R|}

and when µ = min:

K1 := {(A, R) | A ∈ IQ, R ⊆ Ak, there is an B ∈ FQ(A) s.t. cost(A,B) ≤ |R|}

It can be seen that the class K1 corresponds to the decision variant of the optimisation
problem Q, as defined in 2.2.2 part (vi), and thus is acceptable in NPTIME. By Fagin’s
seminal characterisation of NP (see Theorem 2.1.75), there exists a second-order existential
formula ∃S̄ ψ of vocabulary τ ∪ 〈Rk〉 and with ψ being first-order, s.t.:

(A, R) ∈ K1 ⇔ (A, R) |= ∃S̄ψ

With this, it can be seen that finding the optimal solution to the problem Q is equivalent
to finding some extended structure (A, R) s.t. optQ(A) = |R| and thus:

optQ(A) = µ
(R,B∗)

{|R| | (A, R,B∗) |= ψ}

Where B∗ ranges over all structures with vocabulary σ = 〈S̄〉 and so ψ is appropriate
to the vocabulary τ ∪ 〈Rk〉 ∪ σ.

In the case that µ = max this leads to:

optQ(A) = max
(R,B∗)

{|{x̄ ∈ Ak | (A, R,B∗) |= R(x̄) ∧ ψ}|} (3.6)

and in the case µ = min to:

optQ(A) = min
(R,B∗)

{|{x̄ ∈ Ak | (A, R,B∗) |= ψ ⇒ R(x̄)}|} (3.7)

Which are both in the form required by Equation 3.5, with the solution vocabulary being
〈Rk, S̄〉.

(The proof is based on the one presented in Chapter 10 of [EF99]).

As was observed in Equation 2.2, the first-order component of a sentence describing an
NP decision problem need not be more complex than Π2; this is also true for the first-order
component of Equation 3.6.

Corollary 3.2.5. NPPBmax = MAX Π2.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 61

The differences between the maximisation and minimisation results in the proof of
Theorem 3.2.4 is due to the fact that R(x̄)∧ψ(R, S̄∗) is inappropriate for minimisation as
the value zero (when R is empty) would always be the minimum. Since ψ(R, S̄∗)⇒ R(x̄)

can be rewritten as ¬ψ(R, S̄∗) ∨ R(x̄) and ¬∀w̄ ϕ ≡ ∃w̄¬ϕ, the first-order component in
Equation 3.7 is equivalent to a Σ2-formula. This gives us:

Corollary 3.2.6. NPPBmin = MIN Σ2.

Kolaitis and Thakur then show that the quantifier complexity of the first-order formu-
lae in the framework form a proper hierarchy; for maximisation this is:

MAX Σ0 ⊂ MAX Σ1 ⊂ MAX Π1 ⊂ MAX Π2

As shown in Theorem 3.2.4 and given in Corollary 3.2.5, the class MAX Π2 captures
all polynomially-bounded NP-optimisation problems. The problem Max-Connected-

Component separates the classes MAX Π2 and MAX Π1; Max-Clique separates MAX Π1

and MAX Σ1 (see 3.2.1); and Max-SAT separates MAX Σ1 and MAX Σ0.
The hierarchy for minimization problems is also proper, but only has two levels as

opposed to maximisation’s four:

MIN Σ0 = MIN Σ1 ⊂ MIN Π1 = MIN Σ2

The problem Min-Chromatic-Number separates the hierarchy; it is in MIN Π1 but
not MIN Σ1.

In their second paper [KT95], Kolaitis and Thakur observed that for many natural
problems the following two properties hold:

1. A feasible solution is a tuple of relations that satisfy some first-order formula.

2. The objective function value is the cardinality of one of these relations.

Based on this observation they then proposed a new framework for capturing NP-optimisation
problems, which for some NP-optimisation problem Q and input structure A, is given by
the following theorem:

Theorem 3.2.7 (Kolaitis and Thakur [KT95]). Let Q = (IQ, FQ, costQ, µ) be an optim-
isation problem over vocabulary σ. The following are equivalent:

(i) Q is a polynomially-bounded NP-optimisation problem, i.e., Q ∈ NPPBopt .

(ii) There exists a signature τ = 〈S̄〉, consisting solely of relation symbols and disjoint
from σ, and a first-order formula ϕ(x̄) over σ ∪ τ , where x̄ is a k-tuple of variables,
for some k, such that for every instance A ∈ IQ:

opt(A) = µ
B
{|S0| | (A,B) |= ϕ} (3.8)

where B ranges over all τ -structures of universe A and S0 is a particular relation
symbol from S̄.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 62

Given the proof for the old framework (see Theorem 3.2.4), it is easy to see that
this new framework captures the class of NP-optimisation problems, since it is used in
the penultimate step of the proof. The final step of the proof for the old framework is
different for maximisation and minimisation problems, whereas for the new framework it
is not. The new framework is identified with an F, e.g. MAX F Π2 corresponds to the class
of formulas in the new framework where the first-order component is in Π2 form.

Remark 3.2.8. There is one very important difference between the “tuple counting” frame-
works in [PY91, PR93, KT94] and Kolaitis and Thakur’s new “relation cardinality” frame-
work in [KT95]. When considering minimisation problems (i.e. µ = min), the tuple
counting frameworks suffer from the problem that when (A,B) 6|= ψ (i.e. the solution B
is infeasible) the cardinality of the emptyset is added to the outer set and since |∅| = 0

the minimum value in the outer set will always be zero. So when designing a formula
to describe a minimisation problem the implementer must ensure that (A,B) |= ψ is al-
ways true, for all possible combinations of input structures and realisations of the tuple of
relations (unless of course, the minimum value is in fact zero).

It should be noted that relation cardinality style frameworks do not suffer from this
“zero cardinality” problem for minimisation problems. A realisation of S0 will only be
added to the outer set if the realisation B of the feasible solution S̄ (which includes S0)
satisfies the formula ϕ. If there are no valid feasible solution structures B, to an input
instance A, the set will be empty and in accordance with Definition 2.2.5 the optimal
value is undefined, signifying the absence of an optimal solution.

The relationships between the relation cardinality and tuple counting frameworks for
both maximisation and minimisation problems extends the quantifier complexity hierarchy
as given in the below theorem:

Theorem 3.2.9 (Kolaitis and Thakur [KT95]).

MAX Σ0

MAX F Σ1

}
⊂ MAX Σ1 ⊂ MAX Π1 = MAX F Π1 = MAX Σ2

= MAX F Σ2 ⊂ MAX Π2 = MAX F Π2 = NPPBmax.

MIN Σ0 = MIN Σ1 = MIN F Π1

MIN F Σ1

}
⊂ MIN F Σ2 ⊂ MIN F Π2 = MIN Π1

= MIN Σ2 = MIN Π2 = NPPBmin.

The bracketing used in the statement of Theorem 3.2.9 is to denote that the classes are
incomparable. For example, the classes MAX Σ0 and MAX F Σ1 both contain problems
that are not in the other class, and so there is no containment between them.

3.2.2 Characterising PPBopt

In section 3.2.1 the evolution of the frameworks for syntactic characterisation of NP-
optimisation problems were described. This climaxed with Kolaitis and Thakur’s new
relation cardinality style framework for polynomially-bounded NP-optimisation problems
[KT95].

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 63

This section defines the restriction of the class NPopt to only optimization problems
whose decision variants are in P and examines the search for a framework that syntactic-
ally characterises this subclass. The formal definition of a polynomial-time optimisation
problem is given in Definition 2.2.11.

It is clear that any problem in the class Popt can be written using the frameworks
given in Theorem 3.2.4 Equation 3.5 and Theorem 3.2.7 Equation 3.8, since PPBopt ⊆ NPPBopt
(see Definition 2.2.11). If the converse were true, that is any problem written in those
frameworks was in PPBopt , then PPBopt = NPPBopt which implies that P = NP, since the decision
variant of the optimisation problem that solves the framework would be in P and the
framework can represent problems with NP-complete decision variants, e.g. Max-Clique

(see Equation 3.4) .
Remarkably little research has been done into logically characterising Popt and what

has been done does not really answer any of the questions outlined at the beginning of
this chapter.

The research starts with a paper by Manyem in which he proposes a framework for
describing polynomial-bounded P-optimisation problems [Man08]. Inspired by the work
of Kolaitis and Thakur, Manyem (and subsequently with Bueno in [BM08]) attempted
to provide a suitable logical framework to characterize P-maximisation problems and
P-minimisation problems. Whereas Kolaitis and Thakur’s logical framework had been
derived from Fagin’s seminal characterisation of NP (see Theorem 2.1.75), Bueno and
Manyem looked to take Grädel’s characterization of P (see Theorem 2.1.76) as the class
of problems definable in a particular fragment of existential second-order logic, as their
inspiration.

Below is the framework Bueno and Manyem proposed stated as the theorem that was
the ultimate goal of their research:

Theorem 3.2.10. Let Q = (IQ, FQ, costQ, µ) is an optimization problem over the vocab-
ulary σ. The following are equivalent:

(i) Q is a polynomially-bounded P-optimisation problem, i.e., Q ∈ PPBopt .

(ii) There exists a vocabulary τ = 〈S̄〉, consisting solely of relation symbols disjoint from
σ, and a quantifier-free first-order Horn formula η(x̄, ȳ) over σ ∪ τ , where x̄ is a
k-tuple of variables, for some k, such that for every instance A ∈ IQ:

optQ(A) = µ
B
{|{x̄ ∈ Ak | (A,B) |= ∀ȳ η}|} (3.9)

where A is the universe of the structure A and B ranges over all τ -structures of
universe A. η is a quantifier free first-order formula in conjunctive normal form
(CNF) that is comprised of clauses that are Horn with respect to the relation symbols
in τ .

The framework in Equation 3.9 is a tuple counting framework of a style similar to
the framework presented by Kolaitis and Thakur in Theorem 3.2.4. The key difference is
that the first-order formula has been restricted to a universal Horn formula. Therefore,
following the current classification scheme for the first-order component, the framework
when µ = max is called MAX Π1-Horn and when µ = min is called MIN Π1-Horn. For a

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 64

further discussion of Horn clauses see Section 2.1.3.1 and for what it means for a formula
to be Horn with respect to the relation symbols in a vocabulary, see Definition 2.1.65.

Remark 3.2.11. It should be pointed out that Manyem’s definition of a P-optimisation
problem in [Man08], and subsequently with Bueno in [BM08], is slightly different from
the one given in Definition 2.2.11, for they had an extra condition, namely that a feasible
solution witnessing the optimal value for an instance should be computable in time poly-
nomial in the size of the instance. This condition has been dropped from Definition 2.2.11
in order to allow the P-optimisation problems presented in this thesis to be analogous to
the NP-optimisation problems of [KT94, PR93, PY91]. Moreover, it is felt that the con-
dition is not intrinsic to the notion of the solution of an optimisation problem; dropping
Manyem’s additional condition provides for a more appropriate analysis.

So, Remark 3.2.11 points out that Manyem’s definition of a P-optimisation problem is
at variance with the definition to be expected should one proceed analogously to related
research on optimization problems, mentioned above.

Manyem then proceeds to demonstrate that any problem from PPBopt can be written
using this framework; this proves the (i)⇒ (ii) direction of Theorem 3.2.10. He treated the
results for maximisation and minimisation separately, in Theorems 3 and 10 respectively,
mainly so that he could deal with the zero cardinality problem in minimisation problems
(see Remark 3.2.8), which he chose to cover by not allowing a minimum solution of zero.
This design decision in his framework appears to have been made as it allows a close
relationship between the feasible solution from Definition 2.2.11 and the vocabulary τ that
the structures B in Theorem 3.2.10 range over (see Remark 3.2.11 for further discussion
on feasible solutions).

No result is shown for the converse direction of the theorem, even when restricted to
just maximisation or minimisation problems.

Manyem allowed for the use of a built-in successor relation in the formula η, in Theorem
3.2.10 above, but did not explain how η(x̄, ȳ) might be order-invariant (as per Definition
2.1.28). Manyem attempted to demonstrate the efficacy of his framework by defining
within it the problems Max-Unit-Flow and Min-SP (see Examples 2.1.2 and 2.2.1).
Unfortunately there are errors in both definitions.

In a subsequent paper that Manyem published in collaboration with Bueno [BM08], it
is conjectured that the converse of Theorem 3.2.10, (ii)⇒ (i), is false due to the exponential
number of feasible solutions that must be considered for the structure B, but other than
stating that they could not design an algorithm to solve the framework, no proof is given.

Below is a reworking of Manyem’s proofs from Theorems 3 and 10 in [Man08].

Proposition 3.2.12. Any optimisation problem in PPBmax can be defined by a sentence
of MAX Π2-Horn and any optimisation problem in PPBmin can be defined by a sentence of
MIN Π1-Horn.

Proof. Let Q = (IQ, FQ, cost, µ) ∈ PPBopt have input instances over some vocabulary σ. Let
m be such that nm bounds opt(A), for any instance A ∈ IQ of size n = |A| (where A is
the universe of A). Instances of the decision version of Q, call it QD, can be taken to be
structures over σ ∪ 〈Rm〉, where R is a relation symbol of arity m, by encoding the bound
k in an instance of QD as the number of tuples in R. By definition, QD is in P; thus, by

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 65

Grädel’s theorem (see Theorem 2.1.76), QD can be defined by a sentence of ∃SO-Horn of
the form:

∃S1∃S2 . . . ∃St ∀y1∀y2 . . . ∀yk ϕ,

where each Si is a relation symbol not in the underlying signature σ, each yj is a (first-
order) variable, and ϕ is a quantifier-free first-order formula over σ ∪ τ , where τ =

〈S1, S2, . . . , St〉 and ϕ is Horn with respect to the relation symbols in τ (see Definition
2.1.65).

Let A be an instance of Q from IQ. Suppose that there exists a feasible solution
S ∈ FQ(A) such that cost(A,S) ≥ α when µ = max, or cost(A,S) ≤ α when µ = min.
Thus, for any relation R over A (the universe of A) consisting of α tuples, (A, R) |=
∃S1∃S2 . . . ∃St ∀y1∀y2 . . . ∀yk ϕ. Hence when µ = max,

max
(B,R)
{|{x̄ ∈ Am | (A,B, R) |= ∀y1∀y2 . . . ∀yk ϕ ∧R(x̄)}|} ≥ α

and otherwise, when µ = min,

min
(B,R)
{|{x̄ ∈ Am | (A,B, R) |= ∀y1∀y2 . . . ∀yk ϕ ∧R(x̄)}|} ≤ α

where B ranges over all 〈S1, S2, . . . , St〉-structures. Thus the problem Q has, via its
decision variant QD, been described using the framework MAX Π1-Horn or MIN Π1-Horn,
as appropriate.

Remark 3.2.13. There is a technical problem with the case when µ = min in the proof of
Proposition 3.2.12. If there are no feasible solutions, i.e (A,B) 6|= ∀y1∀y2 . . . ∀yk ϕ holds
for all structures B, then the minimum value will be zero, which is incorrect. Kolaitis and
Thakur deal with this in their framework (see Theorem 3.2.4) by adding tuples to the set
when ψ ⇒ R(x̄), so if for any structure (A,B) 6|= ψ then in ranging over all values of R,
when R = Am all the tuples are added ensuring a minimum value of |A|m when there are
no feasible solutions, although this still doesn’t quite work as the empty set will get added
when R = ∅. For this reason tuple counting frameworks either have to map the value zero
to ⊥ and ignore it as a valid minimum value, or not allow input instances with no valid
feasible solutions.

3.3 Failure of Manyem and Bueno’s Proposed Framework

In order for a framework F to characterise a complexity class K it must satisfy two
properties:

1. Every problem in K can be written as a formula in the framework F .

2. Every formula expressible using the framework F corresponds to some problem in
K.

With respect to Manyem’s proposed framework (from Theorem 3.2.10); whereas the first
point has been proven to hold (see Proposition 3.2.12), the second point has not. Kolaitis
and Thakur’s frameworks characterised the complexity class NPPBopt as any formula ex-
pressed in them corresponds to a problem in NPPBopt . This property of the frameworks is

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 66

potentially easier to show for NPPBopt over PPBopt since every optimisation problem as defined
in 2.2.2 is an NP-optimisation problem (see Remark 2.2.3) and so it suffices to show that
the framework is an optimisation problem as per Definition 2.2.2 in order for it to have
the second property.

3.3.1 Expressing NP-hard Problems In the Maximisation Framework

If a framework designed for expressing optimisation problems from PPBopt can represent
an NP-hard problem, or in fact a problem that is complete for NPPBopt , then under the
assumption that P 6= NP it is the case that PPBopt 6= NPPBopt , and so any complete problem
for NPPBopt is not in PPBopt ; any framework that can represent such a problem will never
be able to characterise PPBopt , unless of course, it turns out that P = NP. The following
proposition formally explains this concept:

Proposition 3.3.1. Any framework that can characterize an NP-hard problem cannot
be a framework that characterizes Popt (or any combination of the polynomially-bounded,
minimization or maximization sub-classes of Popt) under the assumption that P 6= NP.

Proof. If P 6= NP then for every NP-complete problem Q it is the case that there is no
polynomial-time algorithm for solving Q and so Q 6∈ P. Some of these NP-complete prob-
lems are decision variants of optimisation problems (e.g. Max-Clique or Min-Vertex-

Cover, see Appendices of [GJ79]) and so it follows that Popt 6= NPopt.
Now, take an NP-hard optimisation problem H. This problem cannot be in Popt since

the decision variant of H is reducible (in polynomial-time) to an NP-complete problem
(and hence every NP-complete problem), which by definition of completeness and the
initial assumption gives H 6∈ Popt. Let H be a problem the the given framework F can
characterise. It follows that F cannot characterise Popt since not every problem expressible
in F is in Popt.

This proof can be extended to all the proper sub-classes of optimisation problems
(combinations of maximisation or minimisation that are either polynomially-bounded or
not) simply by observing that each of these sub-classes of NPopt contains an optimisation
problem that has an NP-complete decision variant.

What follows, is a proof that Manyem’s proposed framework (see Theorem 3.2.10)
cannot hope to characterise PPBopt under the assumption that P 6= NP, by demonstrating
that the conditions of Proposition 3.3.1 hold for it.

Before stating the main theorem, the optimisation problem Max-Horn-2-SAT, which
looks to maximise the number of clauses that a truth assignment could possibly satisfy in
a Boolean formula consisting of Horn clauses of at most two literals (see Definition 2.1.70),
is introduced and the completeness results that the main theorem uses are given:

Lemma 3.3.2 ([JS87]). The decision problem k-Max-Horn-2-SAT is NP-complete.

Proof. By a reduction from the decision problem Min-Vertex-Cover, see [JS87].

Corollary 3.3.3. The optimisation problem Max-Horn-2-SAT is in NPPBopt and is NP-
hard.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 67

Observe that the optimisation problem Max-Horn-2-SAT is polynomially-bounded
as the number of clauses is linear in the size of the universe (in fact the universe contains
one symbol for each clause) and hence in NPPBopt . It is also NP-hard, since its decision
variant, k-Max-Horn-2-SAT, is NP-complete (see the definition of NP-hard in Section
2.1.53).

Theorem 3.3.4. There exists an NP-hard maximisation problem Q = (I, F, cost,max)

such that: Q is over σ = 〈H,Z〉, where H is a relation symbol of arity 4 and Z is a
constant symbol; τ = 〈P, T 〉, where P and T are both relation symbols of arity 1; and ψ
is a quantifier free first-order formula over (σ, τ) with free variable y that is Horn with
respect to τ , such that for every A ∈ I:

opt(A) = max
B
{|{w ∈ A | (A,B, u) |= ∀x1∀x2∀x3 ϕ(w)}|}

with B ranging over all τ -structures with domain A and w detailing a value for the variable
y.

Proof. Let I be an instance of Max-Horn-2-SAT of size n; that is, involving clauses
C1, C2, . . . , Cn and Boolean variables X1, X2, . . . , Xn. Every clause is of one of the follow-
ing forms:

(i) Xi ⇒ Xj

(ii) Xi ∧Xj ⇒ false

(iii) true⇒ Xi

(iv) Xi ⇒ false.

Define the input signature σ = 〈H,Z〉, where H is a relation symbol of arity 4 and Z

is a constant symbol, and the solution signature τ = 〈P, T 〉, where P and T are both
relation symbols of arity 1. Let Φ(I) be the σ-structure with domain {0, 1, . . . , n}, with
the constant Z = 0 and with the relation H defined as follows:

(i) if clause Ck of I is of the form Xi ⇒ Xj then (i, 0, j, k) ∈ H;

(ii) if clause Ck of I is of the form Xi ∧Xj ⇒ false then (i, j, 0, k) ∈ H;

(iii) if clause Ck of I is of the form true⇒ Xi then (0, 0, i, k) ∈ H;

(iv) if clause Ck of I is of the form Xi ⇒ false then (i, 0, 0, k) ∈ H.

This completely defines H.
Define the formula Ψ′ over σ ∪ τ as

∀c∀x∀y(((c 6= Z ∧ x 6= Z ∧ y 6= Z ∧H(x, Z, y, c) ∧ P (x) ∧ ¬P (y))⇒ ¬T (c))

∧ ((c 6= Z ∧ x 6= Z ∧ y 6= Z ∧H(x, y, Z, c) ∧ P (x) ∧ P (y))⇒ ¬T (c))

∧ ((c 6= Z ∧ x 6= Z ∧ y 6= Z ∧H(Z,Z, x, c) ∧ ¬P (x))⇒ ¬T (c))

∧ ((c 6= Z ∧ x 6= Z ∧ y 6= Z ∧H(x, Z, Z, c) ∧ P (x))⇒ ¬T (c))).

Note that Ψ′ is a first-order formula over (σ, τ) and is Horn with respect to τ .

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 68

We claim that there exists a truth assignment on X1, X2, . . . , Xn making at least m
clauses of I true if, and only if, there exist unary relations P and T over {0, 1, . . . , n} such
that (Φ(I), P, T) |= Ψ′ and |T | ≥ m.

Suppose that π is a truth assignment on X1, X2, . . . , Xn making at least m clauses of
I true. Define

P = {i : 1 ≤ i ≤ n, π(Xi) = true}

and
T = {k : 1 ≤ k ≤ n, π makes clause Ck of I true}.

There are 4 cases to consider.

(i) Suppose that Ck is of the formXi ⇒ Xj and that π makes Ck false; so, π(Xi) = true

and π(Xj) = false. Hence, P (i) and ¬P (j) hold. Consequently, H(i, 0, j, k)∧P (i)∧
¬P (j) holds. Furthermore, ¬T (k) holds and so

(H(i, 0, j, k) ∧ P (i) ∧ ¬P (j))⇒ ¬T (k) holds.

If π makes Ck true then π(Xi) = false or π(Xj) = true, and so at least one of
¬P (i) and P (j) holds with the consequence that

(H(i, 0, j, k) ∧ P (i) ∧ ¬P (j))⇒ ¬T (k) holds.

(ii) Suppose that Ck is of the form Xi ∧ Xj ⇒ false and that π makes Ck false;
so, π(Xi) = true and π(Xj) = true. Hence, P (i) and P (j) hold. Consequently,
H(i, j, 0, k) ∧ P (i) ∧ P (j) holds. Furthermore, ¬T (k) holds and so

(H(i, j, 0, k) ∧ P (i) ∧ P (j))⇒ ¬T (k) holds.

If π makes Ck true then π(Xi) = false or π(Xj) = false, and so at least one of
¬P (i) and ¬P (j) holds with the consequence that

(H(i, j, 0, k) ∧ P (i) ∧ P (j))⇒ ¬T (k) holds.

(iii) Suppose that Ck is of the form true⇒ Xi and that π makes Ck false; so, π(Xi) =

false. Hence, ¬P (i) holds. Consequently, H(0, 0, i, k) ∧ ¬P (i) holds. Furthermore,
¬T (k) holds and so

(H(0, 0, i, k) ∧ ¬P (i))⇒ ¬T (k) holds.

If π makes Ck true then π(Xi) = true, and so P (i) holds with the consequence that

(H(0, 0, i, k) ∧ ¬P (i))⇒ ¬T (k) holds.

(iv) Suppose that Ck is of the form Xi ⇒ false and that π makes Ck false; so, π(Xi) =

true. Hence, P (i) holds. Consequently, H(i, 0, 0, k) ∧ P (i) holds. Furthermore,

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 69

¬T (k) holds and so

(H(i, 0, 0, k) ∧ P (i))⇒ ¬T (k) holds.

If π makes Ck true then π(Xi) = false, and so ¬P (i) holds with the consequence
that

(H(i, 0, 0, k) ∧ P (i))⇒ ¬T (k) holds.

Consequently, by definition of H, (Φ(I), P, T) |= Ψ′ and |T | ≥ m.
Conversely, suppose that there exist unary relations P and T over {0, 1, . . . , n} such

that (Φ(I), P, T) |= Ψ′ and |T | ≥ m. Consider the clause Ck of I. Again, there are 4 cases.

(i) Suppose that k ∈ T and that Ck is of the formXi ⇒ Xj ; soH(i, 0, j, k) holds in Φ(I).
As (Φ(I), P, T) |= Ψ′, we must have that ¬P (i) ∨ P (j) holds. Thus, π(Xi) = false

or π(Xj) = true and we have that clause Ck of I is true under π.

(ii) Suppose that k ∈ T and that Ck is of the form Xi ∧ Xj ⇒ false; so H(i, j, 0, k)

holds in Φ(I). As (Φ(I), P, T) |= Ψ′, we must have that ¬P (i)∨¬P (j) holds. Thus,
π(Xi) = false or π(Xj) = false and we have that clause Ck of I is true under π.

(iii) Suppose that k ∈ T and that Ck is of the form true ⇒ Xi; so H(0, 0, i, k) holds in
Φ(I). As (Φ(I), P, T) |= Ψ′, we must have that P (i) holds. Thus, π(Xi) = true and
we have that clause Ck of I is true under π.

(iv) Suppose that k ∈ T and that Ck is of the form Xi ⇒ false; so H(i, 0, 0, k) holds in
Φ(I). As (Φ(I), P, T) |= Ψ′, we must have that ¬P (i) holds. Thus, π(Xi) = false

and we have that clause Ck of I is true under π.

Consequently, the truth assignment π makes at least m clauses of I true.
By defining Ψ as Ψ′ ∧ T (w) and using the result from [JS87] that Max-Horn-2-SAT

is NP-complete, the required result is obtained.

The above proof has shown that the MAX Π1-Horn framework can be used to describe
an NP-complete problem by demonstrating the existence of an optimisation problem that
can solve the decision variant of Max-Horn-2-Sat. If follows that this optimisation
problem must be NP-hard.

3.3.2 Expressing NP-hard Problems in the Minimisation Framework

Now, attention is turned to the minimisation variant of Manyem’s framework (MIN Π1-Horn)
and it is considered whether or not an NP-hard problem can be represented in it. As it
turns out, the proof of the previous theorem can be adapted to represent the same problem
(Max-Horn-2-Sat) in the MIN Π1-Horn framework. This is based on the observation
that maximising the number of clauses that are true in a Boolean formula is the same as
minimising the number of false clauses.

Lemma 3.3.5. Maximising the number of clauses that are true in a Boolean formula is
equivalent to minimising the number of clauses that are false.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 70

Proof. Note that if a Boolean formula consists of the set of C clauses and under some truth
assignment T there are k clauses made true, then there are |C| − k clauses that are made
false. Let the maximum number of satisfiable clauses in a formula ϕ be k and say that
the truth assignment T satisfies k clauses in ϕ. The claim is that the minimum number of
unsatisfied clauses is |C| − k and that T witnesses this in ϕ. Assume that the minimum
number of unsatisfied clauses in ϕ is actually l, where l < |C| − k. In this situation all the
other clauses are therefore satisfied, so the maximum number of satisfied clauses in ϕ is
k ≥ |C| − l > k, giving k > k and thus contradicting the claim.

Theorem 3.3.6. There exists an NP-hard minimisation problem Q = (I, F, cost,min)

such that: Q is over σ = 〈H,Z〉, where H is a relation symbol of arity 4 and Z is a
constant symbol; τ = 〈P, T 〉, where P and T are both relation symbols of arity 1; and ψ
is a quantifier free first-order formula over (σ, τ) with free variable y that is Horn with
respect to τ , such that for every A ∈ I:

opt(A) = min
B
{|{w ∈ A | (A,B) |= ∀x1∀x2∀x3ϕ(w)}|}

with B ranging over all τ -structures with domain A and w detailing a value for the variable
y.

Proof. Let the minimisation problem in question be Min-Horn-Not-2-Sat, which is the
problem that given a Boolean formula ϕ over m variables in conjunctive normal form
asks: what is the minimum number of clauses that are not satisfied by any assignment
to the m variables in ϕ? Observe that by Lemma 3.3.5 this problem is equivalent to
Max-Horn-2-SAT and thus by Corollary 3.3.3 is also NP-hard.

The proof now proceeds exactly as per that of Theorem 3.3.4 above, except that Ψ is
defined as Ψ′ ∧ ¬T (y). Note that Ψ still has the Horn property under this modification.
Instead of showing that a truth assignment π satisfies at least m clauses if, and only if,
(Φ(I), P, T) |= Ψ and |T | ≥ m, it is necessary to show that a truth assignment π satisfies at
most m clauses if, and only if, (Φ(I), P, T) |= Ψ and |T | ≤ m; this is because the problem
being represented in the framework is a minimization problem rather than a maximisation
problem.

The key to showing this relationship is that the cases in the proof of Theorem 3.3.4
cover all possible types of clauses in a Horn-2-SAT formula.

Assume that π satisfies at most m clauses in I and that |T | > m. This would mean
that there is some clause Ck in T that is not satisfied by the truth assignment π. Clause
Ck must be of one of the four forms given in the second part of the proof of Theorem 3.3.4
and so it follows that π satisfies Ck, leading to a contradiction.

Assume that |T | ≤ m but that π satisfies more than m clauses in I. This means that
some clause Ck is satisfied by π but is not in T . Clause Ck must be one of the four forms
given in the first part of the proof of Theorem 3.3.4 and so it follows that Ck is in T ,
leading to a contradiction.

Hence the formula Ψ′ ∧ ¬T (y) characterises the minimisation problem, Min-Horn-

Not-2-SAT and so the framework MIN Π1-Horn can represent NP-hard problems.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 71

3.3.3 Discussion of the results

While the inappropriateness of the framework proposed by Manyem for characterising
PPBmax was long suspected, and the original motivation of the research was to establish this,
the above result for the minimisation variant of the framework was not expected. This is
because the algorithm for solving the decision problem Horn-SAT (see Definition 2.1.63)
works out the minimum number of literals in a satisfying assignment as a side-effect of
applying the algorithm of unit propagation, whereas the problem Min-Horn-SAT is after
the minimum number of clauses.

3.4 A Fixed-Point Framework for PPBopt

The rationale in Manyem’s work [BM08, Man08], for modifying Kolaitis and Thakur’s
NPPBopt framework [KT94, KT95], is based on the observation that while NP is captured
by sentences in second-order existential logic (Fagin’s Theorem [Fag74]), P is captured by
restricting the first-order component in second-order sentences to universal Horn formulae
[Grä91a]. This led Manyem to simply modify the first-order component of Kolaitis and
Thakur’s NPPBopt framework to construct a framework for PPBopt .

As was discussed in the previous section, this modification of the framework, while
quite understandable, introduces a complexity gap and as such cannot capture both max-
imisation and minimisation problems. In this section the characterisation of P as the class
of problems captured by Immerman’s iterative fixed-point logic [Imm82, Var82] is used
to construct a framework that captures the complexity class PPBopt . Examples are then
given of key problems from this class along with formulae that express them within the
framework.

3.4.1 Characterisation of Popt

Manyem’s method for capturing polynomially bounded P-optimisation problems [BM08,
Man08] is based on a restriction of Kolaitis and Thakur’s tuple counting framework that
captures NPPBmax [KT94]. It is argued that this is an inappropriate approach because:

1. Manyem’s framework does not capture PPBmax as a solution to the framework is NP-
hard (see Theorem 3.3.4).

2. Tuple counting frameworks are not appropriate for minimisation problems, as is
argued in [KT95], which led to a more appropriate relation cardinality framework.

3. The distinction between maximisation and minimisation problems in a class is the
same as the difference between a class and its complement (as presented in [KT95]).
Since P = co-P it appears more appropriate to capture both PPBmax and PPBmin using
exactly the same framework.

To address the above remarks, a framework based on FO(IFP) logic is proposed and
examples of problems described using it are given.

Theorem 3.4.1. A problem Q is a polynomially bounded P-optimisation problem (i.e.
Q ∈ PPBopt) iff there exists some formula ϕ over τ , the vocabulary of Q, such that for any
A ∈ IQ, where A is and ordered structure, the optimal value optQ(A) is given by:

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 72

optQ(A) = depth ([IFPR,x̄ ϕ] (t̄)) (3.10)

where ϕ is a formula in the logic FO(IFP) with free variables consisting only of the
k-ary relational symbol R /∈ τ and the k-tuple x̄. The k-tuple t̄ consists of constant symbols
from τ .

Proof. Suppose that Q ∈ PPBopt and that for some fixed k, optQ(A) ≤ |A|k for all structures
A ∈ IQ. Let W /∈ τ be a new k-ary relation symbol and let the binary relation µ be such
that if Q is a maximisation problem then µ(x, y)⇔ x ≥ y, otherwise if Q is a minimisation
problem then µ(x, y)⇔ x ≤ y. The class

K :=
{

(A,W) | A ∈ IQ,W ⊆ Ak, there is an S ∈ FQ s.t. µ (cost(A,S), |W |)
}

is equivalent to the class of (A, c) structures that the decision variant of Q accepts on,
with c = |W | and thus the problem of computing whether some (A,W) structure is in K,
is in P. As a consequence of Corollary 2.1.79, there exists some sentence [IFPS,x̄ ψ] (ū) as
per Definition 2.1.39, that characterises K such that

(A,W) ∈ K ⇔ (A,W) |= [IFPS,ȳ ψ(W)] (ū)

where S /∈ τ is an m-ary relation symbol (and hence ȳ and ū are m-tuples) and ψ has
free variables (W,S, ȳ). Note that it is not necessarily the case that m = k.

Now, define the following formulae:

ϕmax(R, x̄) = [IFPS,ȳ ψ(R)] (ū) ∧ (3.11)(
x̄ = min ∨ ∃z̄ (R (z̄) ∧ z̄ ≤ x̄ ∧ ¬∃v̄ (z̄ < v̄ < x̄))

)

ϕmin(R, x̄) = [IFPS,ȳ ψ(R)] (ū) ∨ (3.12)

x̄ 6= max ∧
(
x̄ = min ∨ ∃z̄ (R(z̄) ∧ z̄ < x̄ ∧ ¬∃v̄(z̄ < v̄ < x̄))

)
If Q is a maximisation problem then

optQ(A) = depth
(
[IFPR,x̄ ϕmax]

(
min

))
and otherwise (i.e. Q is a minimisation problem) then

optQ(A) = depth ([IFPR,x̄ ϕmin] (max))

both of which are in the appropriate form (see Equation 3.10). All that remains is
to prove that the depth of the IFP operators that ϕmax and ϕmin give rise to is equal to
the optimal value of the problem Q, for which [IFPS,ȳ ψ] (ū) is an oracle for the decision
variant QD, over (A,W) structures. The proof for this proceeds by induction on the
sequence of applications of the IFP operator.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 73

First note that the IFP operator defined by the sub-formula

(
x̄ = min ∨ ∃z̄ (R (z̄) ∧ z̄ < x̄ ∧ ¬∃v̄ (z̄ < v̄ < x̄))

)
of ϕmax, constructs a sequence s.t. at each step |Ri| = i. This sequence is also constructed
in order, starting with the smallest tuple min and adding one tuple at each step until
R|A|

k
= Ak, which is a fixed point. For the base case R1, observe that when R = ∅ there

is no z̄ that satisfies the right-hand part of the disjunction, so the only tuple satisfying
the formula is min, giving R1 = {min} and hence |R1| = 1. For the inductive step
Ri+1, assume that Ri contains the first i tuples. The right-hand part of the disjunction is
satisfied by any tuple that is the successor of one that is contained in Ri giving

Ri+1 = {min, succ(min) + succ(min+ 1), . . . , succ(i− 1), succ(̄i)}

and hence |Ri+1| = i + 1, as required. Note that the first tuple in Ri+1 comes from the
left-hand side of the disjunction and that succ is used to signify the successor of a tuple
(see Defintion 2.1.26).

A similar sub-formula of ϕmin

x̄ 6= max ∧
(
x̄ = min ∨ ∃z̄ (R(z̄) ∧ z̄ < x̄ ∧ ¬∃v̄(z̄ < v̄ < x̄))

)
adds to the sub-formula of ϕmax the condition that a tuple x̄ cannot be added if it is the
largest tuple, max. This means that the fixed point is at R|A|k−1 = Ak \ {max}. These
sub-formulae are the counting components of ϕmax and ϕmin.

Now consider the case where Q is a maximisation problem. The optimal value occurs
at the largest |W | s.t. (A,W) |= [IFPS,x̄ ψ] (ū). The counting component of ϕmax will
keep adding a tuple to Ri as long as (A, Ri) |=

[
IFPS,x̄ ψ(Ri)

]
(ū). Say w = optQ(A),

then the last point in the sequence to which a tuple is added will be to Rw, giving Rw+1 =

Rw∪{w + 1}. Since (A, Rw+1) 6|=
[
IFPS,x̄ ψ(Rw+1)

]
(ū) then Rw+1 is a fixed-point, giving

a depth of w, which is the optimal value.
If there is no solution to Q for some particular A ∈ IQ, i.e. F (A) = ∅, the oracle for the

decision variant QD will never evaluate to true. This means that (A, R0) 6|= [IFPS,x̄ ψ] (ū)

since R0 = ∅ and so this will be the fixed-point. Since min /∈ ∅ the depth operator will
return ⊥, as required.

For the other case, where Q is a minimisation problem, the optimal value occurs at the
smallest |W | s.t. (A,W) |= [IFPS,x̄ ψ] (ū). While the oracle for the decision variant QD
evaluates to false, the counting component of ϕmin will add one tuple (as long as it isn’t
equal to max). At the point Rw where the oracle first evaluates to true, the formula ϕmin
is satisfied by any x̄ ∈ Ak, including max and so giving Rw+1 = Ak. This is a fixed point
since it contains all possible tuples. The depth operator returns w, which is as required
since optQ(A) = |Rw| = w.

When there is no solution to a minimisation problem, as for a maximisation problem,
the oracle for the decision variant will never evaluate to true. This means that only tuples
accepted by the counting component of ϕmin will be added to R, and that the fixed point
in the sequence will be R|A|k−1 = Ak \ {max}. Since max is not an element of this

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 74

fixed-point the depth operator will return ⊥, as required.
Conversely, given a formula in the form of Equation 3.10, the process of computing

a solution is in itself an optimisation problem. The decision variant of this problem is
one that asks the question: “is the inductive depth of ϕ(R, x̄) ≥ k?” on (A, k) structures.
This problem is in P, since any machine that constructs R can easily be augmented with
a counter that measures the inductive depth of R without adding any degree of additional
complexity to the machine. By simply comparing the inductive depth of R with the
constant k an answer to the decision problem can be made in polynomial time. Since it is
in P, therefore the optimisation problem is in Popt, as required.

Since FO(IFP) = FO(LFP) (see Theorem 2.1.78) the oracle for the decision variant of
an optimisation problem, as used in the proof of Theorem 3.4.1, can also be of the form
[LFPS,x̄ ψ] (ū); using a least fixed-point rather than an inflationary fixed-point operator.
The two counting formulae, ϕmax and ϕmin (Equations 3.11 and 3.12 respectively) give
rise to monotone operators, since the relation R is only referred to positively. Therefore
the least fixed-point of these formulae is equal to the inflationary fixed-point and hence
throughout the statement and proof of Theorem 3.4.1 IFP can be replaced with LFP,
giving rise to the following corollary:

Corollary 3.4.2. A problem Q is a polynomially-bounded P-optimisation problem (i.e.
Q ∈ PPBopt) iff there exists some formula ϕ over τ , the vocabulary of Q, such that for any
A ∈ IQ, the optimal value optQ(A) is given by:

optQ(A) = depth ([LFPR,x̄ ϕ] (t̄)) (3.13)

where ϕ is a formula in the logic FO(LFP) with free variables consisting only of the
k-ary relational symbol R /∈ τ and the k-tuple x̄. The k-tuple t̄ consists of constants from τ .

Another observation about the oracle for the decision variant of an optimisation prob-
lem, as used in the proof of Theorem 3.4.1, is that it is of the form [IFPS,x̄ ψ] (ū), where ψ
is a formula from the language FO, not FO(IFP). This is due to the absence of a syntactic
hierarchy linked to the number of levels of fixed-point operators within FO(IFP/LFP)
logics (see Theorem 2.1.36). With this in mind it can immediately be seen that the proof
of Theorem 3.4.1 leads to the following corollary:

Corollary 3.4.3. A formula ϕ that describes an optimisation problem Q ∈ PPBopt in the
framework used in Theorem 3.4.1 need only contain at most one level of fixed-point op-
erators; all sub-formulae of the formula ϕ ∈ FO(IFP) that are of the form [IFPS,x̄ ψ] (ū)

have ψ ∈ FO.

As will later be shown in the examples in Section 3.5, some problems (such as Min-SP

in Section 3.5.1) require only the outermost fixed-point operator.

3.5 Examples (using the fixed-point framework)

In this section the PPBopt problems introduced in Section 2.2.3 are described using the
framework from Theorem 3.4.1.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 75

3.5.1 Shortest Path

The minimisation problem Shortest Path (or Min-SP) is defined in Section 2.2.3.5 and
is concerned with finding the shortest path between two vertices in a directed graph. The
vocabulary for input instances of this problem is the vocabulary of graphs σG =

〈
E2
〉

extended to include two distinct vertices s and t, respectively representing the start and
end vertices of the path through the graph. This results in the vocabulary σSP = σGst =

σG ∪ 〈s, t〉 =
〈
E2, s, t

〉
.

Algorithms that compute the length of the shortest path between s and t in polynomial
time (e.g. from Chapter 1 of [Pap94]) do so using a breadth-first search technique. Starting
from the vertex s they construct all possible distinct paths. At each iteration in the
algorithm all paths are extended by 1 edge; any branching results in a new path being
added and any collisions between paths result in the longest one being deleted. The first
path to reach the end vertex t is the shortest path in the graph between s and t. Since
at each iteration the algorithm only increases the length of all the paths by 1, the total
number of iterations required before t is reached (and the algorithm terminates), is equal
to the length of the shortest path between s and t. More formally, at the ith iteration
of the algorithm the length of all the current paths is equal to i, giving an equivalence
between inductive depth and cost in the problem Shortest Path, which is as required
by the framework in Theorem 3.4.1.

As a starting point, examine how the problem Reachability is defined in the logic
FO(LFP) (see Chapter 4 of [Imm99]). The problem Reachability asks the question “is
there a path between s and t?” Firstly, a first-order formula defining a fixed-point operator
that constructs a relation R is given:

ψtc(R, x, y) := (x = y) ∨ ∃z (E (z, y) ∧R (x, z))

This formula, ψtc gives rise to a monotone operator since R appears only positively.
The least fixed-point of ψtc is the same as the transitive closure of the edge relation E and
as such, reachability can be defined as:

Reachability ≡ A |= [LFPR,x,y ψtc] (s, t)

Where A is a structure of the vocabulary σSP . If this operator is visualised constructing
the relation R on a graph then it can be seen that after the first iteration R only contains,
for all vertices v, the tuples (v, v); that is for all tuples (u, v) ∈ R1 the distance between
u and v is ≤ 0. At the next iteration, for all vertices v and w, if there is an edge between
v and w then (v, w) ∈ R2; hence for all tuples (u, v) ∈ R2 the distance between u and v
is ≤ 1. On subsequent iterations new tuples are added to R if there is an edge (v, w) and
(u, v) ∈ R for some u 6= w. If the construction is followed, it can be seen that the presence
of the tuple (u, v) ∈ Ri implies that there is a path from u to v of length ≤ i− 1, and that
the least fixed-point of ψtc will contain the tuple (s, t) if there is a path from s to t.

The transitive closure of a relation contains all pairs of vertices that are connected.
In Min-SP the only vertices of interest are those that are connected to the start and end
vertices and more so, the only paths of interest are those between s and t. So ψtc can be
restricted to:

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 76

ψ1(R, x, y) := (x = s ∧ y = s) ∨ ∃z (E (z, y) ∧R (x, z))

Observe that in ψ1 the tuple (x, y) will only be added to Ri+1 if x = s or some tuple
(x, z) ∈ Ri; this is because the start of all paths is fixed to s, and so ψtc can be further
restricted to only constructing a unary relation:

ψ2(R, x) := (x = s) ∨ ∃y (E(y, x) ∧R(y))

The presence of x ∈ Ri means that there is a path between s and x of length ≤ i− 1,
or more importantly the absence of a vertex (x /∈ Ri) at the ith iteration means there is
no path of length ≤ i− 1 between s and x. Now, if t /∈ Ri then there is no path between
s and t of length ≤ i − 1 but if t ∈ Ri+1 then there is a path between s and t of length
≤ i, therefore if t /∈ Ri ∧ t ∈ Ri+1 then the shortest path between s and t is of length i.

In the description of a problem in the framework presented in Theorem 3.4.1, it is
required that the optimal value is equal to the inductive depth of the outermost fixed-
point operatorminus one. As shown above, at the point where t is added toR the inductive
depth minus one equals the length of the shortest path between s and t, implying that
if t ∈ Ri then Ri = Ri+1; the iteration where t is added must be the fixed-point. This
property can be achieved by adding an extra term to ψ2, giving:

ψ3(R, x) := [x = s ∨ ∃y (E(y, x) ∧R(y))] ∧ ¬R(t)

Introducing this extra term produces a formula that is not positive inR, and so does not
define a monotone operator. This is not a problem though, as the framework in Theorem
3.4.1 uses inflationary fixed-point operators, which do not have this syntactic restriction.
All that is required is to consider what happens when s and t are not connected. This
is handled by the depth operator returning ⊥ (undefined) when the relation R does not
contain some constant; in this case R is required to contain t, giving:

Min-SP ≡ depth ([IFPR,x ψ3] (t))

for some structure A in the vocabulary σSP .
In order to define Min-SP using least fixed-point rather than inflationary fixed-point

operators (and hence describing the problem within the LFP based framework from Co-
rollary 3.4.2), a different method for ensuring that the iteration where t is added is the
fixed-point must be used. Rather than stopping any more tuples being added at the point
where t ∈ Ri, as formula ψ3 does with the term . . . ∧ ¬R(t), the operator must force a
fixed-point by adding every element from the universe to R. This is done by adding a
term to ψ2 that accepts any element x if it equals s, is connected to an element already
in R or if there is some element in R that is connect to t:

ψ4(R, x) : = (x = s) ∨ ∃y [R(y) ∧ (E(y, x) ∨ E(y, t))]

So,
[
t /∈ Ri ∧ ∃y

(
Ri(y) ∧ E(y, t)

)]
⇒
[
t ∈ Ri+1 ∧Ri+1 = A

]
⇒
[
Ri+1 = Ri+2

]
. Since

R only appears positively within ψ4 the formula gives rise to a monotone operator, allow-
ing:

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 77

Min-SP ≡ depth ([LFPR,x ψ4] (t))

The examples given above show how to implement a problem from Popt using both
the IFP and LFP frameworks presented in Theorem 3.4.1 and Corollary 3.4.2 respectively.
For both cases, the formulae given that define the operators are in first-order logic as they
contain no nested IFP or LFP operators. If there is a strict syntactic hierarchy within
the frameworks, then Corollary 3.4.3 demonstrates its ceiling and the examples above its
floor.

3.5.2 Max-Flow

Given a network with a source and a sink, the maximisation problem Max-Flow asks:
“what is the maximum achievable flow through the network from the source to the sink?”
In this section the variant Max-Unit-Flow shall be considered, in which the network is
represented as a (directed) graph and the weight of each edge is one. It is formally defined
in Section 2.2.3.1.

Input structures for Max-Unit-Flow use the same vocabulary as those for Min-SP

(see Section 3.5.1), which is σGst =
〈
E2, s, t

〉
with s being the network source, t being

the network sink and E being the links between nodes in the network. The algorithm
presented here for solving this problem follows on from that of Min-SP (see Chapter 1
of [Pap94]) and is based on the idea of bottlenecks. Effectively the maximum flow is equal
to the maximum number of disjoint paths in the graph between s and t, and a bottleneck
must exist on the shortest path between s and t. This leads to an algorithm that finds
the shortest path between s and t and then removes it from the graph, before repeating
the process. The number of times it finds and removes a path is equal to the maximum
flow; when it cannot find a path the algorithm terminates.

Since this algorithm solves Max-Unit-Flow in O(n5) it is expected that a represent-
ation of it using fixed-point logic to either construct a relation of arity 5, or for there to
be multiple nested fixed-point operators of a lower arity.

The algorithm used to solve the Min-SP problem in Section 3.5.1 did so by traversing
the graph in a breadth-first manner from vertex s and counting the number of edges
traversed when vertex t is encountered. What it does not do is construct the actual
shortest path, which is what the algorithm for Max-Unit-Flow requires. To construct
a shortest path, a breath-first traversal of the graph that marks the edges, as opposed to
vertices, visited is required, along with a method for building just one such path.

Take the following formula:

ϕ1(T,R, x, y) = [E(x, y) ∧ ¬T (x, y)]

∧ [(x = s ∧ ∀u. (E(s, u)⇒ y ≤ u)) ∨ ∃z R(z, x)]

The inflationary fixed-point of ϕ1, for some fixed relation T , will contain a tuple (x, y)

if it is an edge, is not in T and is either the first edge lexicographically emanating from
s or is connected to some edge already in R. This effectively produces a relation that

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 78

contains all the edges that lie on a path between s and t from the graph G′ = 〈E \ T, s, t〉,
where the paths all traverse the first (lexicographically) edge to emanate from s in G′.

Using the least-fixed point of ϕ1, an actual path between s and t can be constructed.
This is done by starting at t and traversing edges in [IFPR,x,y ϕ1(T)] in reserve, until s is
reached. Given the following formula:

ϕ2(T, S, x, y) = [IFPR,x,y ϕ1(T)] (x, y)

∧ ∀u ([IFPR,x,y ϕ1(T)] (u, y)⇒ x ≤ u)

∧ [y = t ∨ ∃z S(y, z)]

Again, the inflationary fixed-point of ϕ2 is calculated for some fixed T , which is also
fixed when constructing [IFPR,x,y ϕ1(T)]. The relation Si contains a fragment of a path
between s and t, in fact it contains the final i edges of a path, since it is building it
in reverse. The inflationary fixed-point of ϕ1 may contain edges from the graph that
are incident on the same vertex; this happens when two paths collide. As such, when
traversing a path in reverse a choice must be made as to which way to go, since if both
edges were added to the path, then it would in fact not be a path. The logic fragment
∀u ([IFPR,x,y ϕ1(T)] (u, y)⇒ x ≤ u) ensures that the lexicographically first option is taken
where two paths collide.

Up until now, the relation T and its purpose have not been defined. T is used to record
the edges of the paths that have already been constructed in order to ensure that any new
path is disjoint from these; the formula ϕ1 only adds edges to the relation R if they are not
in T . So at each iteration, a path is constructed by computing the inflationary fixed point
of ϕ2 with respect to T i, and is then added to T i+1. The maximum flow in the network
equals the number of distinct paths which equals the inductive depth of the inflationary
fixed-point of the following formula:

ϕ3(T, x, y) = (∃u∃v ([IFPR,x,y ϕ2(T)] (s, u) ∧ [IFPR,x,y ϕ2(T)] (v, t))

∧ [IFPR,x,y ϕ2(T)] (x, y) ∧ T 6= ∅))

∨(x = s ∧ y = s)

Which gives the optimal value as:

optMuF = depth ([IFPT,x,y ϕ3] (s, s))

The formula ϕ3 only adds the tuple (s, s) when T = ∅, i.e. at T 0. This is done to ensure
that at least one iteration occurs so that the inductive depth of the inflationary fixed-point
of ϕ3 is at least zero and never ⊥ (undefined); every network has a maximum flow. On
subsequent iterations (T i where i ≥ 1), ϕ3 ensures that there is actually a complete path
between s and t and then adds every edge from that path to T i+1. If no such path exists
then no edges are added and T i+1 = T i. The inductive depth of ϕ3 is therefore equal
to the number of paths found (the dummy clause added on the first iteration is there to
offset the fact that the inductive depth is the number of iterations, minus one).

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 79

3.6 A Horn Logic Framework for PPB
opt

Having successfully developed a framework for characterising PPBopt using Immerman’s res-
ult that FO(IFP) = P, it is now prudent to consider why Manyem and Bueno’s approach
using Grädel’s result that SO-Horn = P, failed. Firstly, let us reconsider what it means
for a framework to characterise a class of problems:

Definition 3.6.1. In order that a framework F characterises a class of problems K, it
must be shown that:

1. Any problem from K can be defined using the framework.

2. Any problem that the framework F can define is itself a problem in K.

In showing the second part of the above definition, it (usually) suffices to find a problem
Q that can be used to compute the optimal value of any problem described using the
framework and show that this problem (the so called framework solver) is itself in K.

The key undoing of Manyem and Bueno’s frameworks is that it has been shown in
Theorem’s 3.3.4 and 3.3.6 that problems complete for classes further up the hierarchy (from
NPPBopt) can be described using them. Another problem is that they treat maximisation
and minimisation problems separately and symmetrically, but since P = co-P there is no
need for this separate treatment of PPBmax and PPBmin since a problem in one can be reduced
to a problem in the other in an amount of time at most polynomial in the input size.
Finally, they use a tuple counting framework, which as discussed in Remark 3.2.8, which
gives rise to some technical problems when dealing with minimisation problems.

With all this in mind, along with the key results in Sections 3.3 and 3.4, an avenue of
research was pursued that sought to build a framework for PPBopt using Grädel’s result. This
framework uses the arity of a relation as its measure for the optimal value (as in [KT95])
and does not distinguish between maximisation and minimisation problems. Next is a
definition of a family of frameworks similar to those from Theorem 3.2.7, but with the
first-order component restricted to Horn formulae.

Definition 3.6.2. Let Q = (IQ, FQ, cost,max) be a maximisation problem over σ and
let i ≥ 1. The problem Q is in MAX F Πi-Horn if, and only if, there exists a signature
τ = 〈S1, S2, . . . , St〉, consisting entirely of relation symbols and disjoint from σ, and a Πi

first-order sentence ϕ over σ ∪ τ that is in Horn form with respect to τ (see Definition
2.1.65) such that for every instance A in IQ:

optQ(A) = max
B
{|S1| : (A,B) |= ϕ},

where B ranges over all τ -structures with domain A.

There are analogous definitions of MAX F Σi-Horn, MIN F Πi-Horn, and MIN F Σi-
Horn, similar to the classes defined in the postscript of Theorem 3.2.7.

The framework that is a candidate for characterising PPBopt is MIN F Π1-Horn. The
components required to construct a solver for this framework are introduced.

Lemma 3.6.3. The decision problem Horn-Sat (c.f. Theorem 2.1.64) is in the com-
plexity class P.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 80

Proof. Polynomial time algorithms based on the concept of unit propagation are well
studied (see [CLRS09] and specifically Chapter 5 of [BL99]). A description of the problem
(taken from Chapter 9 of [Imm99]) in the logic FO(LFP) over structures of the vocabulary
σSAT (see Definition 2.1.58) is given by

ϕ(R, x) = ∃c (P (x, c) ∧ ∀y (N(y, c)⇒ R(y)))

Let T = LFPϕ, and the sentence

ψ = ∀c∃x (P (x, c) ∧ T (x) ∨N(x, c) ∧ ¬T (x))

defines the problem Horn-Sat. Thus Horn-Sat ∈ P.

An algorithm for solving Horn-Sat based on the concept of unit propagation takes
advantage of the following three different classes of Horn clauses

1. Those that contain a single positive literal, x, which must always be true in any
satisfying assignment.

2. Constraint clauses that contain no positive literals, (x1 ∧ . . . ∧ xk) ⇒ false, where
the variables on the left hand side of the implication cannot all be set to true in any
satisfying assignment.

3. Implication clauses that are of the form (x1 ∧ . . . ∧ xk)⇒ xk+1, such that if all the
variables on the left hand side of the implication are true, then so is the variable on
the right hand side.

Using these rules to build a satisfying set of literals for the problem Horn-Sat (c.f.
the set T from Lemma 3.6.3) leads to the minimum number of clauses being satisfied.
This is because in any satisfying assignment literals of clause type 1 must always be set
to true and positive literals of clause type 3 are set to true only if all of the negative
literals are true (this has to be repeated recursively). These literals must be set for any
satisfying assignment, therefore if any clauses of type 2 are unsatisfied, then the formula
is unsatisfiable.

By augmenting Horn-SAT with the additional requirement that no more than k

literals are set to true from a specific subset the following problem is derived:

Definition 3.6.4. The decision problem k-Min-Literal-Subset-Horn-SAT has input
instances that are the same as the decision problem Horn-SAT (see Definition 2.1.63)
but with a constant k and a set S of literals (S ⊆ {x1, . . . xα}). It asks the question: is
there an assignment to the boolean variables x1, . . . , xα such that every clause is satisfied
and the number of boolean variables that are a member of S and set to true is ≤ k?

When deciding if a Horn-SAT instance is satisfiable using the algorithm based on
the concept of unit propagation, the constructed set of satisfying literals is always the
minimum number required to satisfy all the clauses in the Horn formula. This observation
leads to the following lemma:

Lemma 3.6.5. The decision problem k-Min-Literal-Subset-Horn-SAT is in P.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 81

Proof. Apply the unit propagation algorithm to obtain a set of literals L. Restrict this set
by removing all literals that are not in the subset S and if the cardinality of this restricted
set |L ∩ S| is ≤ k accept the input instance, otherwise reject. Due to the fact that L
is a minimal set of literals for satisfying the input Horn formula and the fact that unit
propagation algorithm is deterministic (in the sense that it never has to choose between 2
or more literals to make true), it follows that L ∩ S is the minimal set of literals that are
required in a satisfying assignment and are in S.

Assume that L and S are such sets of literals. Now assume that there is another
assignment L′ such that |L′| ≤ |L| and hence that |L′ ∩ S| < |L ∩ S|. It must be the case
that there is a literal in S that is in L but not in L′; let x be such a literal. In order that
x is in L it must be the case that x appears in one of the following types of clauses:

1. true⇒ x

2. (y1 ∧ . . . ∧ yl)⇒ x

Now, if it is the first type, if it is true in L then it must also be true in L′. If it is the
second type then it must be the case that the literals y1 . . . yl are also true in L. Since the
algorithm is deterministic these literals must also be true in L′, leading to the conclusion
that xmust be true in L′, which contradicts the original assumption. Hence the cardinality
of |L ∩ S| is the minimal number of literals from S that must be true in any satisfying
assignment.

Since the decision problem k-Min-Literal-Subset-Horn-SAT is in P, the optim-
isation variant Min-Literal-Subset-Horn-SAT is in PPBopt (by Definition 2.2.11). The
optimal solution is bounded by the number of literals, which is linear in the size of the
input, hence the optimisation problem is polynomially-bounded.

Now the main theorem, which says that the framework MIN F Π1-Horn characterises
the class of polynomially-bounded P-optimisation problems is presented, using the problem
k-Min-Literal-Subset-Horn-SAT as the framework solver.

Theorem 3.6.6. A polynomially bounded P-minimisation problem Q = (IQ, FQ, cost,min,
is in the class PPBopt iff there exists an input vocabulary σ, a solution vocabulary τ and a
quantifier-free first-order formula η that is appropriate to (σ ∪ τ) and Horn with respect
to τ , such that the optimal solution to Q is given by

optQ(A) = min
B
{|S1| | (A,B) |= ∀x̄ η} (3.14)

where A ∈ IQ is an ordered structure, A is the universe of A; B is a structure of vocabulary
τ whose universe is also A and S1 is some particular k-ary relation symbol from the solution
vocabulary τ .

Proof. Any problem that can be represented using the above framework must be polyno-
mially bounded, since there are only |A|k different tuples that can be members of S1 in
any particular structure B and thus its cardinality is bounded by |A|k.

Now suppose that Q is a polynomially bounded P-minimisation problem where the
optQ(A) ≤ |A|k for all structures A ∈ IQ and some fixed k. Let W be a new k-ary

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 82

relation and add it to the input structure. The class

K := {(A,W) | A ∈ IQ,W ⊆ Ak, there is an S ∈ FQ s.t. cost(A,S) ≤ |W |}

is equivalent to the class of (A, c) structures that the decision variant of Q accepts on,
with c = |W |. Thus the class K is in PTIME.

Since P = ∃SO-Horn (see Theorem 2.1.76), there exists some sentence ∃R̄ ∀x̄ η(W, R̄, x̄)

that characterises the class K such that

(A,W) ∈ K ⇔ (A,W) |= ∃R̄ ∀x̄ η(W, R̄, x̄)

The optimal solution to Q is any (A,W) ∈ K structure with the smallest W relation,
thus:

optQ = min
(WB,R̄B)

{|W | | (A,WB, R̄B) |= ∀x̄ η}

Let τ = (W, R̄) with S1 = W , hence any such problem Q is definable in the framework
given in Equation 3.14.

For the converse, it is required to show that for any formula written using the frame-
work, the problem of finding the optimal value is in itself a polynomially-bounded P-
optimisation problem. To do this, it suffices to show that the decision variant of the
problem of solving the framework is in P.

Since ∀xϕ ≡ ϕ[x/x1] ∧ ϕ[x/x2] ∧ . . . ∧ ϕ[x/xn] the formula ∀x̄ η can be expanded to
a logically equivalent quantifier-free formula ψ, whose length is nk times that of η (where
x̄ is a k-tuple). Note that if η is Horn with respect to τ , then the expanded formula ψ
is still Horn with respect to τ , since Horn formulae (with respect to τ) are closed under
conjunction. Following this expansion, the only unknowns in the formula ψ are the values
of the relations and constants from the vocabularies σ and τ (note that τ is a relational
vocabulary).

Fix the σ-structure A and substitute the values for the relation and constant symbols
in σ into η. Following this the only unknowns are the values of the relation symbols from
τ ; everything else about the formula is known. Let ψA be the result of the substitution of
values for σ from A in the expansion of η.

Without loss of generality, assume that the vocabulary τ = 〈S1, S2, ..., Sr〉, where
r ≥ 1. From the formula ψA construct an input instance to the problem k-Min-Literal-

Subset-Horn-SAT (see Definition 3.6.4) where each literal corresponds to a tuple being
a member of a relation symbol from τ in the structure B and S is the subset of literals
corresponding to a tuple being a member of the relation S1. Call this mapping Φ(A) and
let the target optimal value be m.

Each relation symbol Si in τ gives rise to at most nα(i) literals (recall that α is a
function mapping relation symbols to arities). This means that there are at most r.nmaxα

literals in Φ(A), where maxα is the largest arity of a relation symbol in τ , and so the size
of Φ(A) is the function of some polynomial of the size of the universe of A.

Now it remains to show that under the mapping Φ, the problem k-Min-Literal-

Subset-Horn-SAT solves the MIN F Π1-Horn framework, i.e. optQ ≤ m iff k-Min-

Literal-Subset-Horn-SAT accepts under the mapping Φ.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 83

If k-Min Literal Subset Horn SAT accepts, then there are at most m tuples that
are in the set S. Place all these tuples into the realisation of S1 in B, so |SB1 | ≤ m and
thus optQ ≤ m.

Conversely suppose that k-Min-Literal-Subset-Horn-SAT rejects but that there
exists some τ -structure B such that |S1| ≤ m. Since the problem rejects on the instance
Φ(A) this means that there is no assignment to the literals in Φ(A) such that at most
m literals in S are true. As under the mapping each literal in S corresponds to the
membership of a tuple in S1 and the mapping ensures that every possible tuple has a
corresponding literal, it cannot be the case that there is a τ -structure B s.t. |S1| ≤ m,
contradicting the original assumption.

Since, by Lemma 3.6.5, k-Min-Literal-Subset-Horn-SAT is in P it follows that
whether optQ ≤ m holds or not can be computed in polynomial-time, giving the required
result.

A direct consequence of the use of k-Min Literal Subset Horn SAT to prove the
above theorem is

Corollary 3.6.7. The problem k-Min Literal Subset Horn SAT is complete for all
minimisation problems in the class PPBopt .

3.7 Characterising Unbounded Optimisation Problems

So far, all the frameworks that have been presented for characterising optimisation prob-
lems have only dealt with polynomially-bounded problems. In this section, the character-
isation of classes of problems that do not admit this restriction is considered.

3.7.1 Removing the Polynomially Bounded Restriction From the NPPBopt
Frameworks

The frameworks that Kolaitis and Thakur give for characterising NPopt (see Theorems
3.2.4 and 3.2.7) do so only for the polynomially-bounded subclass NPPBopt (see Definition
2.2.8 for exactly what is meant by polynomially-bounded). The framework proposed by
Manyem and Bueno (see Theorem 3.2.10) also only dealt with the polynomially-bounded
subclass PPBopt , as did the frameworks introduced earlier in this chapter in Theorems 3.4.1
and 3.6.6.

The reason for this is that all these frameworks model the objective function from
an optimisation problem as a measure of either the number of tuples that satisfy some
formula for a given solution (in general these are derived from [PY91, KT94]), or as the
cardinality of a relation that is part of the solution structure (in general these are derived
from [KT95]). Since for a k-ary relation over universe A there are only |A|k different tuples
that can be its members, it can be seen that any objective function based on counting
these members will always be limited to values bounded by the polynomial nk.

Papadimitriou and Yannakakis conjectured that an exponentially bounded objective
function could be modelled within their framework by assigning values, or weights, to each
tuple x̄, but they did not discuss this any further [PY91].

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 84

A generalisation of this idea of adding weights to each tuple is first given by Zimand,
who extends Kolaitis and Thakur’s new framework (from Theorem 3.2.7) to characterise
NPopt [Zim98]. He achieves this by introducing a weight function w, which maps some
relation to a natural number. By using this function to model the values of the objective
function, rather than just measuring the cardinality of the relation, it is then shown that
arbitrary objective function values can be calculated. The framework is given by:

optQ(A) = µ
B
{w(S1) | (A,B) |= ϕ} (3.15)

Where A is a σ-structure (the input structure); B is a τ -structure, with S1 some
particular k-ary relation in τ ; ϕ is a first-order formula appropriate to (σ, τ) and w is a
function that maps from sets of k-tuples to natural numbers.

The similarities between the above framework and the new polynomially-bounded NP-
optimisation framework presented in Equation 3.8 of Theorem 3.2.7 are obvious; the func-
tion w has simply replaced the cardinality operator.

3.7.1.1 Representing Exponentially Bounded Values in Structures

It is fair to question not just how a logical framework for optimisation problems can ex-
tract an unbounded value, but also how these values are represented within a relational
structure in the first place. Recall that the preferred model of computation, Turing ma-
chines, operates on strings, which can be encoded as binary strings (see Section 2.1.2 for
more details). Now, a positive integer m can be encoded as a binary string of length
dlog2(m+ 1)e; or more so, a binary string of length l can be used to encode all positive
integers less than 2l. Note that it is common to refer to a binary string of length l as being
a string of l-bits.

With this in mind the vocabulary of weighted graphs, where the weights are arbitrary
positive integers, is introduced:

Definition 3.7.1. The vocabulary of weighted (di-)graphs is an extension of that of
unweighted (di-)graphs (see Definition 2.1.5) to include the weight function w that maps
from a pair of vertices to a weight. More formally σGw = 〈E2, w2〉 with w being a 2-
ary function and having the following properties: w : V 2 7→ N, where V is the set of
vertices/universe of the structure and for all edges (u, v) it holds that w(u, v) ≥ 0 iff
E(u, v).

Since the structures being dealt with in this Thesis have all so far been relational, it is
now prudent to show how to build a weighted graph using a purely relational structure.
In order to do this a method of encoding weights using relations is needed. One such way
to do this is based on the observation that whilst a k-ary relation over universe A can only
have at most |Ak| members (which is equal to |A|k and hence polynomial in the size of
the input) there are 2|A|

k combinations of tuples that it could contain; this is because the
cardinality of the power set |P(Ak)| = 2|A|

k . Now, by assigning each of these combinations
to a number, it is possible to encode the weights using a relation, where the relation is in
effect representing a |A|k-bit number.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 85

3.7.1.2 Zimand’s Theorem

The principle that Zimand uses to model an arbitrary objective function is based on the
observation of the above stated fact: that while there are only polynomially many unique
tuples that can be members of a relation, there are exponentially many combinations of
these tuples that the relation can be assigned to. This leads him to propose augmenting
Kolaitis and Thakur’s new framework from Theorem 3.2.7 with a weight function w, as
stated in Equation 3.15. In order for such a function w to give an exponentially bounded
range of objective values, it must provide a one-to-one mapping between sets of tuples and
natural numbers, as captured by the following definition.

Definition 3.7.2. The weight function w has the following properties:

1. w : Ak 7→ N, where k is the arity of the relation S0 in equation 3.15.

2. w({x̄i}) = w({x̄j})⇔ x̄i = x̄j .

3. w(SB1i) = w(SB2j)⇔ SB1i = SB2j .

4. w(Si) =
∑

x̄∈Si w(x̄).

5. The range of values of w is from zero up to
(

2‖A‖
k+1 − 1

)
inclusive.

Effectively, w maps between the binary encoding of a number, where each bit is rep-
resented by the presence of a tuple in a k-ary relation, to the number itself. In order to
construct this function, a total ordering over the tuples in Ak is needed. With this, it is
possible to give each tuple a value corresponding to its position in the ordering. If some
tuple x̄ ∈ Ak is in position i in the ordering, that is, it is the ith tuple (in the range 1 to
‖A‖k inclusive), then w({x̄}) = 2(i−1).

In order for the weight function w to be a valid model of an exponentially bounded
objective function, it must be able to be both constructed and queried in polynomial time
(see Definition 2.2.2).

Lemma 3.7.3. The weight function w (see Definition 3.7.2), whose domain is Ak, can
be both constructed and queried in polynomial time.

Proof. Assume that the universe A = {1, 2, . . . , n} and that it is ordered according to the
natural order of its elements. Using this ordering, what is needed is to write out the tuples
from Ak in order. What follows is a method for constructing w by induction on k.

To write out the tuples from A(k+1) in order, write out all the tuples from Ak in order,
but augment them with an element from the universe A. Let tki represent all the elements
from the ith tuple from Ak, then start by writing out the augmented tuples (tki , 1), (where
i counts through the range 1 ≤ i ≤ |A|k), followed by (tki , 2) and so on up to (tki , n). This
constructs an ordering for the tuples from A(k+1) assuming that an ordering for the tuples
from Ak is already at hand. For the base case (where k = 1), the weight function is simply
constructed by writing out the elements of the universe A in order. Hence the function w
can be constructed in this way using |A|k time, which is polynomial in n.

This list can then be used to calculate the value of some relation R of arity k. Start
by assigning an area for writing down the output value, and initialise it with |A|k zeros.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 86

For each tuple in R, search through the list until a match is found. If the match is in
the ith position then write a 1 in the ith position of the output value area. Once this has
been done for all tuples in R, a binary representation of the number w(R) is written in
the output value area. Each tuple takes at most |A|k steps to find (as this is the length
of the constructed function), and this must be repeated at most |A|k times, as this is the
maximum number of tuples in R. Hence the upper bound is O(n2k) and the function w
can be queried in polynomial time, if constructed as above.

It is noteworthy that in order to construct the weight function w it is required that
the universe of the structure is ordered. Often, the input structure to a non-polynomially-
bounded NP-optimisation problem will already contain an ordering because it encodes
exponentially large numbers as l-bit strings, which requires knowledge of an ordering on
the universe in order to be meaningful. In these cases, this ordering can be used to
construct the weight function w.

There are problems that do not necessarily contain an ordering in the input structure.
One such example is that trivial1 optimisation problem that given a polynomially-bounded
number x (such that x ≤ nk for some fixed k), it asks the question: what is the greatest
value of 2x? Clearly the objective function for this problem is required to encode x-bit
numbers and so requires an ordering on the universe.

Due to the existence of these problems, it is required, within Zimand’s framework, for
the input structures to either be ordered or contain a suitable weight function already.

The main theorem from his work is now presented.

Theorem 3.7.4 (Zimand’s Theorem [Zim98]). Let Q be an (unbounded) NP-optimisation
problem whose input instance A is an ordered structure of vocabulary σ. For some fixed
k there exists a k-ary weight function w, a vocabulary τ and a first-order Π2 formula ϕ
appropriate to σ ∪ τ such that the optimal value of Q is given by:

optQ(A) = µ
B
{w(S0) | (A,B) |= ϕ}

where B ranges over all τ -structures, µ ∈ {max,min} and S0 is some particular k-ary
relation from τ .

Proof. The proof that an NP-optimisation problem Q can be represented in the framework
proceeds by introducing a new relation R of arity k and defining the following class of
problems when µ = max:

K1 := {(A, R) | A ∈ IQ, R ⊆ Ak, there is a B ∈ FQ(A)s.t. cost(A,B) ≥ w(R)}

and when µ = min:

K1 := {(A, R) | A ∈ IQ, R ⊆ Ak, there is a B ∈ FQ(A)s.t. cost(A,B) ≤ w(R)}
1Trivial in the sense that there is only one feasible solution and so any feasible solution is automatically

the optimal.

CHAPTER 3. DESCRIPTIVE COMPLEXITY OF OPTIMISATION PROBLEMS 87

which corresponds to the decision variant QD. Since QD is in NP (by the Definition
of an NP-optimisation problem in 2.2.2), there is a formula ∃S̄ ψ, where ψ is a first-order
Π2 formula, that characterises the class K1 (and hence QD). That is (A, R) ∈ K1 ⇔
(A, R) |= ∃S̄ ψ, noting that ψ is appropriate to the vocabulary σ∪ 〈Rk〉. With this, it can
be seen that finding the optimal solution to the problem Q is the same as finding some
extended structure (A, R) ∈ K1 with the property that optQ(A) = w(R), thus:

optQ(A) = µ
(C,R)
{w(R) | (A, C, R) |= ψ}

which is in the form required by this framework.
Conversely, given an instance of the framework, the following NP-optimisation problem

can be constructed: IQ is the set of all σ-structures; FQ(A) is set of all τ -structures (B);
and the function cost(A,B) is defined as the value of w(SB0), which is computable in
polynomial time due to Lemma 3.7.3. Since all optimisation problems defined in this
way are NP-optimisation problems (see Remark 2.2.3), it is unnecessary to show that the
decision variant of this constructed problem is in NP, although it clearly is: guess a τ -
structure B and check that w(SB0) ≥ k if µ = max, or w(SB0) ≤ k if µ = min, where k is
the target value.

There are many practical barriers to representing a problem using the framework
proposed by Zimand (see equation 3.15) for capturing NP-optimisation problems that are
not polynomially bounded [Zim98]; it appears that no examples of applications of the
framework to real problems have been published.

Chapter 4

Modal Logic, Hybrid Graph Logic
and Games

Classical modal and temporal logics were developed to argue about any system in which
there are relationships or transitions between states. The ubiquitous mathematical struc-
ture for representing such discrete systems is the graph and so it comes as no surprise
that a directed graph is used to represent the underlying modal frame in these logics (see
Definition 2.3.1). In computer science, modal logics are often used in the field of Formal
Methods. In this field a system is modelled as a class of relational structures and a formula
is then written in an appropriate logic so that it describes some property of the system.
To verify that the system is correct this property is then checked to see if it is either:
always true of the system (valid), never true of the system (unsatisfiable), sometimes true
of the system (satisfiable) or sometimes false of the system (invalid). These four questions
are the same as the satisfiability and validity problems of the logic in question (plus their
complements). If the logic used was first-order logic then the verification of the system
would not be possible, since both satisfiability and validity are undecidable for first-order
logic. Since these problems are decidable for basic modal logic and its extensions these
are commonly used in Formal Methods so that the verification of the system is (at least)
possible.

4.1 Chapter Outline

Firstly, this chapter sets the scene with past research on hybrid modal logic and in partic-
ular Hybrid Graph Logic (4.2); it then demonstrates some graph problems definable using
Hybrid Graph Logic (4.3); next it introduces games that can be used to demonstrate
whether two structures are logically equivalent or not and describes how these can be used
to show whether graph properties are definable in a class of Hybrid Graph Logic or not
(4.4); the games are then played on graph structures and strict hierarchies of classes of
formulae are derived (4.5).

88

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 89

4.2 Past Research

Hybrid logics have recently been developed and studied. A hybrid logic is an extension
of a modal (or temporal) logic in which symbols are used to name individual points in a
modal frame. Key to many hybrid logics is the use of nominals, n, and their corresponding
nominal operators, @n, which allow the current state to ‘jump’ to the point of a structure
named by the nominal n. Another operator introduced by hybrid logics is the ‘binder’
↓, which allows so called world variables to be bound to the current state. The study of
hybrid logics in theoretical computer science has primarily been with regard to their use
in model checking and verification of Formal Methods; consequently the focus has been on
the decidability and complexity of the related model-checking, satisfiability and validity
problems (see, for example, [AtC07, CS01, FdR06, MMS+10]).

Up until recently, hybrid logics have not been closely studied within the context of
Finite Model Theory and Descriptive Complexity. However, in [BS09] Benevides and
Schechter defined (amongst other hybrid logics) Hybrid Graph Logic (HGL), which is
basic modal logic (see definitions from Section 2.3.1) augmented with the use of nominals
and a facility to verify the existence of paths in graphs (see HGL specific definitions
from Section 2.3.2). The intention in [BS09] was to develop (modal and hybrid) logics
for reasoning about graphs (as opposed to models) that are expressive enough to define
core graph-theoretic problems relating to properties such as connectedness, acyclicity and
Hamiltonicity. Actually, Hybrid Graph Logic without nominals is a well-known and well-
studied fragment of both PDL and CTL (see, for example, [EH85]), and the logic itself has
been independently formulated and studied (from the perspective of tableaux systems) in
[KS10] where it is referred to as basic modal logic extended with nominals and eventualities.
Here the logic is referred to as HGL, given that the emphasis of the research follows the
tone set in [BS09].

In relation to expressibility, Areces, Blackburn and Marx [ABM01] studied the hybrid
logic H(↓,@), which is the extension of basic modal logic with the binder ↓ and nominal
operators of the form @n. They characterised its expressibility (on models) in terms of a
fragment of first-order logic (namely the fragment that is invariant under generated sub-
models) before developing Ehrenfeucht-Fraïssé style games and notions of bisimulation in
doing so. Their investigation is primarily with regards to models although they briefly
mention the relevance of their work to modal frames. They mention the study of the
hybrid logic H(@), in relation to its expressibility, as being an interesting direction for
further research. Note that HGL is more expressive than H(@) as it includes an extra
modality corresponding to the non-reflexive transitive closure of the edge relation in the
modal frame; within this naming convention HGL is more accurately termed H(@,+).

The focus of this chapter is on using Hybrid Graph Logic as a logic for defining problems
involving finite directed graphs, which are effectively the same as finite modal frames. The
logic itself is basic enough that it forms a fragment of many other hybrid logics yet within
it computationally hard problems can be defined (assuming that P 6= NP); hence, it makes
sense to undertake a fundamental study of this logic. As was noted in [BS09], results from
[ABM00] and [FdR06], respectively, show that the satisfiability and validity problems for
HGL are EXPTIME-complete and the model-checking problem for HGL is solvable in time
that is linear in the size of the model and the length of the formula.

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 90

4.3 Some problems definable in HGL

In this section some problems definable in Hybrid Graph Logic are exhibited; two of these
problems featured strongly in [BS09].

4.3.1 Connectivity

The problem Connectivity consists of those digraphs for which there is a directed path
from any vertex to any other vertex; that is, those digraphs that are strongly connected.
This problem can be defined by the following formula ϕ of Hybrid Graph Logic:

¬n⇒ ♦+n

where n is a nominal.
To see this, suppose that the digraph G = 〈V,E〉 is strongly connected but G 6|= ϕ (in

particular, G has at least 2 vertices). There is a valuation function µ : {n} → P(V), with
µ(n) = {v}, and a point u of G such that (G, µ, u) 6|= ¬n⇒ ♦+n. So, u 6= v and for every
vertex v′ of the digraph G reachable from u via a non-trivial path (that is, a path with
at least one edge), it must be the case that v′ 6= v. However, every vertex of G different
from u (of which v is one) is reachable from u via a non-trivial path and so this yields
a contradiction. Conversely, suppose that G |= ϕ but that the digraph G is not strongly
connected. So, there exist distinct vertices u and v for which there is no path from u to v
in the digraph G. Define µ(n) = {v}. In particular, (G, µ, u) |= ¬n⇒ ♦+n. So, there is a
path in the digraph G from u to v, which yields a contradiction.

This places the problem Connectivity in the class HGL1(0, 1).

4.3.2 Acyclic

The problem Acyclic consists of those digraphs that do not have a directed cycle con-
taining at least one edge as a sub-digraph (note that self-loops are regarded as cycles of
length 1). This problem can be defined by the following formula ϕ of Hybrid Graph Logic:

@n¬♦+n,

where n is a nominal.
To see this, suppose that the digraph G = 〈V,E〉 is acyclic but G 6|= @n¬♦+n. So,

there exists a valuation function µ : {n} → P(V) and a point v of G such that (G, µ, v) 6|=
@n¬♦+n; that is, such that (G, µ, v′) 6|= ¬♦+n, where µ(n) = v′, which is equivalent to
(G, µ, v′) |= ♦+n. Hence, there is a non-trivial path from v′ to v′ in the digraph G and
a contradiction is obtained. Conversely, suppose that G |= @n¬♦+n but the digraph G
contains a cycle. Let v be a vertex on a cycle in G and define µ : {n} → P(V) via
µ(n) = {v}. This results in (G, µ, v) |= @n¬♦+n; that is, (G, µ, v) |= ¬♦+n, which yields
a contradiction.

This places the problem Acyclic in the class HGL2(0, 1).

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 91

4.3.3 Non-4-Colour-SC

The problem Non-4-Colour-SC consists of those digraphs that are strongly connected
and can not be properly 4-coloured; the existence of a directed edge (u, v) in a digraph
means that u and v must be coloured differently in any proper colouring. This problem
can be defined by the following formula ϕ of Hybrid Graph Logic:

(¬n⇒ ♦+n)

∧ ♦+((p1 ∧ p2 ∧ ♦(p1 ∧ p2)) ∨ (p1 ∧ ¬p2 ∧ ♦(p1 ∧ ¬p2))

∨(¬p1 ∧ p2 ∧ ♦(¬p1 ∧ p2)) ∨ (¬p1 ∧ ¬p2 ∧ ♦(¬p1 ∧ ¬p2)))

where n is a nominal and p1 and p2 are both propositional symbols.
To see this, let G = 〈V,E〉 and let µ : {p1, p2} ∪ {n} → P(V) be any valuation

function. µ is interpreted as providing a 4-colouring of the vertices of V with the colours
being: v ∈ µ(p1) and v ∈ µ(p2); v ∈ µ(p1) and v 6∈ µ(p2); v 6∈ µ(p1) and v ∈ µ(p2); and
v 6∈ µ(p1) and v 6∈ µ(p2). Suppose that G |= ϕ. So, G is strongly connected and for every
valuation function µ : {p1, p2} ∪ {n} → P(V) (that is, every 4-colouring of the vertices of
V) and for every u ∈ V , there exists a vertex v reachable via a non-trivial path from u so
that there is an edge (v, v′) ∈ E where v and v′ have the same colour. Hence, G is strongly
connected and can not be properly 4-coloured. Conversely, if G is strongly connected and
can not be properly 4-coloured then G |= ¬n ⇒ ♦+n and no matter which valuation
function µ : {p1, p2} ∪ {n} → P(V) and point u of G is chosen, there is a non-trivial path
from u to a vertex v from which there is an edge (v, v′) with v and v′ identically coloured;
that is, G |= ϕ.

This places the problem Non-4-Colour-SC ∈ HGL2(2, 1).

4.3.4 Complexity and Decidability of Hybrid Graph Logic

The example in Section 4.3.3 above, illustrates that Hybrid Graph Logic can be used to
define problems that are probably not solvable in polynomial-time, as Non-4-Colour-

SC is co-NP-complete, where co-NP is the complement (see Definition 2.1.47) of NP (see
Definition 2.1.41). To see this, observe that the graph problem K-Colour (also know
as the graph Chromatic-Number problem) is NP-complete for all fixed K ≥ 3 (see
problem GT4 in Appendix A1 of [GJ79]) and so the problem 4-Colour is NP-complete.
The addition of the strongly connected requirement doesn’t make the problem any easier,
hence 4-Colour-SC is also NP-complete and its complement is co-NP-complete. This
example also shows that Hybrid Graph Logic cannot characterise, using stable formulae,
an NP-complete problem (see Definition 2.1.50) unless NP = co-NP (i.e. NP is closed
under complement).

It is true that hybrid modal logic with universal access has a decidable satisfiability
(see Definition 2.3.6) problem [ABM00, FdR06] and that by Lemma 2.3.8 the validity
problem (see Definition 2.3.7) is also decidable. Now, the key difference between hybrid
modal logic with universal access and Hybrid Graph Logic is that while validity is the
same for both logics, satisfiability in the later is the same as looking, in the former, for
a satisfiable frame that is also valid. This means that validity is decidable in HGL, but

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 92

that Lemma 2.3.8 cannot be applied to HGL’s validity problem to obtain an algorithm
for solving satisfiability. In fact, the global satisfiability problem, (that is given a formula
does there exist a model that globally satisfies ϕ?), is undecidable for basic modal logic
(see, e.g. Chapter 6, Section 5 of [BdRV01]), so it follows that frame satisfaction is also
undecidable for basic modal logic, and hence it is undecidable for HGL.

4.3.5 Research Question

The formulation of formulae defining problems such as Connectivity, Acyclicity and
Non-4-Colour-SC has lead to the posing of the main question studied by the research
in this chapter:

What is the relative expressivity of fragments of Hybrid Graph Logic, obtained
by restricting: the application of the operators ♦, ♦+, �, �+ and @; the
number of propositional symbols used; and the number of nominals used?

As mentioned earlier, HGL is obtained from a well-studied fragment of PDL and CTL by
allowing the use of nominals, and so it makes sense to better understand its expressibility,
given that it will be a fragment of many well-known logics that are extended by the
incorporation of nominals. Also, the study of the expressivity of “low-level” logics in
descriptive complexity is common-place; see, for example, the study of finite variable or
quantifier-prefix fragments of first-order logic [EF99, Lib04]. The logic HGL forms such a
“low-level” logic and is readily extendible to obtain new logics, the expressibility of which
will be built upon the expressibility of HGL.

While HGL does not have a decidable satisfiability problem it is arguable whether
this would be useful in a formal verification environment; asking whether there exists
some graph that has a certain property appears to be a counter-intuitive question, as it
is already know what property of graphs the formula represents and so the construction
of a satisfying graph should be trivial. It is much more likely that the graph will be fixed
and that the question will be whether a property holds for all possible valuation functions
and vertices of this fixed graph, which is decidable.

It does on the other hand have a decidable validity problem, allowing the model check-
ing of properties expressed in HGL(P,N) to see if they are true for all directed graphs.

4.4 Games and Hybrid Graph Logic

One approach to separating fragments of Hybrid Graph Logic (or any logic for that mat-
ter) is to exhibit a problem (i.e. a class of graphs K) that can be characterised in one
fragment, say L1 but not the other, say L2. This is done by taking two structures A and
B, one that is in the class of graphs, say A ∈ K and one that isn’t, say B 6∈ K and demon-
strating the structures are L1-equivalent but not L2-equivalent. This method is presented
in Propositions 2.1.81 and 2.1.82, with logical/structural equivalence defined in Section
2.1.1.2 and Definition 2.3.21 giving the structural equivalence relations for fragments of
HGL.

Showing that A 6≡L2 B is straightforward: simply show that there is a formula in
L2 that holds for A but not B. The difficultly comes in showing that A ≡L1 B, as

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 93

every possible formula within the fragment L1 must be considered. This is where the
Ehrenfeucht-Fraïssé style pebble games and their modal logic versions for bisimulation
come in.

4.4.1 Games on Pointed Structures (Models)

The game presented in this section aims to equate logical equivalence of two pointed
structures with a winning strategy for one of the players (the Duplicator). It is derived
from the game theoretic characterisation of bisimulation (see Section 2.3.3 and Definition
2.3.24), which is in turn derived from the Ehrenfeucht-Fraïssé game for first-order logic
(see Section 2.1.5.2).

Definition 4.4.1. Let r ≥ 0, let P be a set of propositional symbols and let N be a set of
nominals. The r-round HGL(P,N)-game is a two-player pebble game played by Spoiler and
Duplicator. It is played on two pointed P ∪ N-structures (G, µ, u) and (H, λ, v). Initially,
prior to any play of the game, pebble a sits on point u of G and pebble b sits on point v
of H. During a play of the game, pebble a is moved from point to point in G, with pebble
b being moved from point to point in H. There are r rounds in any play of the game and
the point of G (resp. H) on which pebble a (resp. b) sits after round i of some play is
denoted by ai (resp. bi); so, a0 = u and b0 = v. Each round i of a play is as follows.

1. Spoiler makes one of the following moves.

(a) ♦-move: Spoiler moves pebble a from ai−1 to ai. It must be the case that there
is an edge (ai−1, ai) in the digraph G.

(b) �-move: Spoiler moves pebble b from bi−1 to bi. It must be the case that there
is an edge (bi−1, bi) in the digraph H.

(c) ♦+-move: Spoiler moves pebble a from ai−1 to ai. It must be the case that there
is a non-trivial path (that is, consisting of at least one edge, though possibly a
self-loop) from ai−1 to ai in the digraph G.

(d) �+-move: Spoiler moves pebble b from bi−1 to bi. It must be the case that
there is a non-trivial path from bi−1 to bi in the digraph H.

(e) @n-move: Spoiler moves the pebble a to the point µ(n) (note that this move
has no dual).

2. Duplicator replies with the corresponding move.

(a) ♦-move: Duplicator moves pebble b from bi−1 to bi. It must be the case that
there is an edge (bi−1, bi) in the digraph H.

(b) �-move: Duplicator moves pebble a from ai−1 to ai. It must be the case that
there is an edge (ai−1, ai) in the digraph G.

(c) ♦+-move: Duplicator moves pebble b from bi−1 to bi. It must be the case that
there is a non-trivial path from bi−1 to bi in the digraph H.

(d) �+-move: Duplicator moves pebble a from ai−1 to ai. It must be the case that
there is a non-trivial path from ai−1 to ai in the digraph G.

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 94

(e) @n-move: Duplicator moves the pebble b to the point λ(n).

In order to determine the winner of a play of a game, the notion of equivalence on
points is needed.

Definition 4.4.2. Let (G, µ) and (H, λ) be two P∪N-structures, and let u and v be points
of G and H, respectively. It is said that u and v are equivalent, written u ' v, if for every
p ∈ P and n ∈ N: u ∈ µ(p) if, and only if, v ∈ λ(p); and u = µ(n) if, and only if, v = λ(n).

The above definition summarises the idea that only the assignments to proposition and
nominal symbols effects the equivalence of two points.

Definition 4.4.3. Duplicator wins a play of the r-round HGL(P,N)-game on two pointed
P ∪ N-structures (G, µ, u) and (H, λ, v) if either: at some point before the end of the play
Spoiler cannot make a move (which is only the case when both pebbles are on vertices of
out-degree 0 and there are no nominals); or for all i ∈ {0, 1, . . . , r}, ai ' bi. In all other
cases, Spoiler wins; in particular, Spoiler wins a play if Duplicator is unable to reply to
a move of Spoiler. Duplicator has a winning strategy in the r-round HGL(P,N)-game on
two pointed Kripke P∪N-structures if she can always reply to Spoiler’s moves in any play
so as to force a win for Duplicator, with Spoiler having a winning strategy if he can move
so as to force at least one play of the game for which Duplicator does not win.

There is a relationship between r-round HGL(P,N)-games and the logical equivalence
of pointed structures in the logic HGLr(P,N).

Theorem 4.4.4. Let r ≥ 0, let P be a set of propositional symbols and let N be a set of
nominals. Let (G, µ) and (H, λ) be P∪N-structures and let u and v be points of G and H,
respectively. The following are equivalent.

1. (G, µ, u) ≡HGLr(P,N) (H, λ, v).

2. Duplicator has a winning strategy in the r-round HGL(P,N)-game on (G, µ, u) and
(H, λ, v).

Proof. For brevity, throughout this proof: on occasion C = (G, µ) and D = (H, λ) is
written; the edge set of the digraph G (resp. H) is denoted by EG (resp. EH); and the
non-reflexive transitive closure of EG (resp. EH) is denoted by EG+ (resp. EH+).

Begin by noting that the result trivially holds for r = 0. In particular, for any point u
of some Kripke P∪N-structure (G, µ), there exists a formula ϕ0

C,u of HGL0(P,N) such that
for any point v of any P ∪ N-structure (H, λ), (G, µ, u) ≡HGL0(P,N)

(H, λ, v) if, and only if,
u ' v if, and only if, Duplicator has a winning strategy in the 0-round HGL(P,N)-game
on (G, µ, u) and (H, λ, v) if, and only if, (H, λ, v) |= ϕ0

C,u. The formula ϕ0
C,u is actually the

formula ∧
{p : p ∈ P, u ∈ µ(p)} ∧

∧
{¬p : p ∈ P, u 6∈ µ(p)}

∧
∧
{n : n ∈ N, u = µ(n)} ∧

∧
{¬n : n ∈ N, u 6= µ(n)}.

Lemma 4.4.5. Let r ≥ 0 and let (G, µ) be a P ∪ N-structure. For any point u of G,
there exists a formula ϕrC,u of HGLr(P,N) such that for any point v of any P∪N-structure

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 95

(H, λ), Duplicator has a winning strategy in the r-round HGL(P,N)-game on (G, µ, u) and
(H, λ, v) if, and only if, (H, λ, v) |= ϕrC,u.

Proof. Let the following be the induction hypothesis Ind(r), for some r ≥ 0: for any point
u of G, there exists a formula ϕrC,u of HGLr(P,N) such that for any point v of any Kripke
P∪N-structure (H, λ), Duplicator has a winning strategy in the r-round HGL(P,N)-game
on (C, u) and (D, v) if, and only if, (D, v) |= ϕrC,u. Ind(0) holds by the remark preceding
the statement of the lemma.

For any point u of G, define the formula ϕr+1
C,u of HGLr+1(P,N) as follows:

∧
(u,u′)∈EG

♦ϕrC,u′ ∧
∧

(u,u′)∈EG+

♦+ϕrC,u′ ∧�
∨

(u,u′)∈EG
ϕrC,u′ ∧�+

∨
(u,u′)∈EG+

ϕrC,u′

∧
∧
n∈N

@nϕ
r
C,µ(n).

Suppose that: v is some point of some Kripke P ∪ N-structure (H, λ); (D, v) |= ϕr+1
C,u ;

and an (r + 1)-round HGL(P,N)-game is played on (C, u) and (D, v).

1. Suppose that Spoiler’s first move in some play is a ♦-move so that a1 = u′. As
(D, v) |= ϕr+1

C,u , it follows that (D, v) |= ♦ϕrC,u′ . So, there exists some point v′ ∈
{v′ is a point of H : (v, v′) ∈ EH} such that (D, v′) |= ϕrC,u′ . Duplicator replies with
b1 = v′. By Ind(r), Duplicator has a winning strategy in the r-round HGL(P,N)-
game on (C, u′) and (D, v′). If Spoiler’s move is a ♦+-move then a similar argument
is made.

2. Suppose that Spoiler’s first move in some play is a �-move so that b1 = v′. As
(D, v) |= ϕr+1

C,u , it follows that (D, v) |= �
∨

(u,u′)∈EG ϕ
r
C,u′ ; that is,(D, v′) |=

∨
(u,u′)∈EG

ϕrC,u′ . Hence, (D, v′) |= ϕrC,u′ , for some point u′ ∈ {u′ is a point of G : (u, u′) ∈ EG}.
Duplicator replies with a1 = u′. By Ind(r), Duplicator has a winning strategy in the
r-round HGL(P,N)-game on (C, u′) and (D, v′). If Spoiler’s move is a �+-move then
a similar argument is made.

3. Suppose that Spoiler’s first move in some play is a @n-move so that a1 = µ(n).
As (D, v) |= ϕr+1

C,u , it follows that (D, v) |= @n ϕ
r
C,µ(n); that is, (D, λ(n)) |= ϕrC,µ(n).

Duplicator replies with b1 = λ(n). By Ind(r), Duplicator has a winning strategy in
the r-round HGL(P,N)-game on (C, µ(n)) and (D, λ(n)).

Consequently, by replying with a1 or b1, appropriately, as in each of the cases above,
Duplicator has a winning strategy in the (r + 1)-round HGL(P,N)-game on (C, u) and
(D, v).

Conversely, suppose that v is a point of some P∪N-structure (H, λ) and that Duplicator
has a winning strategy in the (r+1)-round HGL(P,N)-game on (C, u) and (D, v). Consider
a play of the game.

1. Suppose that Spoiler’s first move in some play is a ♦-move so that a1 = u′. Let
Duplicator’s response (according to the winning strategy) be b1 = v′. In particular,
Duplicator has a winning strategy in the r-round HGL(P,N)-game on (C, u′) and
(D, v′). By Ind(r), (D, v′) |= ϕrC,u′ and so (D, v) |= ♦ϕrC,u′ . Hence, as Spoiler’s first

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 96

♦-move can be arbitrary amongst all points of {u′ is a point of G : (u, u′) ∈ EG},
it must be that (D, v) |=

∧
(u,u′)∈EG ♦ϕ

r
C,u′ holds. Similar reasoning yields that

(D, v) |=
∧

(u,u′)∈EG+
♦+ϕrC,u′ .

2. Suppose that Spoiler’s first move in some play is a �-move. No matter which point of
{v′ is a point of H : (v, v′) ∈ EH} Spoiler moves to, so that b1 = v′, there exists some
point g(v′) of {u′ is a point of G : (u, u′) ∈ EG} that Duplicator can respond with,
by setting a1 = g(v′), so as to ensure that Duplicator wins the subsequent r-round
HGL(P,N)-game on (C, g(v′)) and (D, v′). By Ind(r), (D, v′) |= ϕrC,g(v′), for every
point v′ in {v′ is a point of H : (v, v′) ∈ EH}. Consequently, it must be that (D, v) |=
�
∨

(u,u′)∈EG ϕ
r
C,u′ . Similar reasoning yields that (D, v) |= �+

∨
(u,u′)∈EG+

ϕrC,u′ .

3. Suppose that Spoiler’s first move in some play is a @n-move, so that a1 = µ(n).
Duplicator’s reply must be so that b1 = λ(n), and Duplicator wins the subsequent
r-round HGL(P,N)-game on (C, µ(n)) and (D, λ(n)). By Ind(r), (D, λ(n)) |= ϕrC,µ(n)

and so (D, v) |= @nϕ
r
C,µ(n); consequently, as n is an arbitrary nominal, it must be

that (D, v) |=
∧
n∈N @nϕ

r
C,µ(n) holds.

Hence, (D, v) |= ϕr+1
C,u , and the lemma follows by induction.

Return now to the proof of the main theorem. For the induction hypothesis Ind(r),
where r ≥ 0, assume that for any P ∪ N-structures (G, µ) and (H, λ) and for any points u
and v of G and H, respectively, the following are equivalent:

1. (G, µ, u) ≡HGLr(P,N) (H, λ, v).

2. Duplicator has a winning strategy in the r-round HGL(P,N)-game on (G, µ, u) and
(H, λ, v).

As remarked earlier, Ind(0) holds.
Let (G, µ) and (H, λ) be Kripke P∪N-structures and u and v points of G andH, respect-

ively. Suppose that (C, u) ≡HGLr+1(P,N) (D, v); that is, for every formula ϕ ∈ HGLr+1(P,N),
(C, u) |= ϕ if, and only if, (D, v) |= ϕ. Assume that Spoiler has a winning strategy for the
(r+1)-round HGL(P,N)-game played on the Kripke P∪N-structures (C, u) and (D, v). By
Lemma 4.4.5, (C, u) |= ϕr+1

C,u and (D, v) 6|= ϕr+1
C,u , with ϕ

r+1
C,u ∈ HGLr+1(P,N). This yields a

contradiction.
Conversely, suppose that (C, u) 6≡HGLr+1(P,N) (D, v). So, there exists a formula ϕ ∈

HGLr+1(P,N) such that (C, u) |= ϕ and (D, v) 6|= ϕ. Without loss of generality, assume
that ϕ is of the form

♦ψ ; ♦+ψ ; �ψ ; �+ψ ; or @nψ,

where ψ ∈ HGLr(P,N) and n is a nominal of N. To see this, note that if ϕ is of the form
ϕ1 ⇒ ϕ2, for example, then (D, u) |= ϕ1 but (D, u) 6|= ϕ2. If (C, u) |= ϕ1 then take ϕ as
ϕ2, otherwise take ϕ as ϕ1.

1. Suppose that ϕ is of the form ♦ψ. There exists a point u′ of G such that (u, u′) ∈ EG

and (C, u′) |= ψ. Let Spoiler’s first move of an (r + 1)-round HGL(P,N)-game
on (C, u) and (D, v) be a ♦-move so that a1 = u′. No matter which point v′ of
{v′ is a point of H : (v, v′) ∈ EH} Duplicator replies with, (D, v′) 6|= ψ. By Ind(r),

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 97

Spoiler has a winning strategy in the subsequent r-round HGL(P,N)-game on (C, u′)
and (D, v′). A similar argument is made when ϕ is of the form ♦+ψ.

2. Suppose that ϕ is of the form �ψ. For every point u′ of G such that (u, u′) ∈ EG , it is
the case that (C, u′) |= ψ. However, there is a point v′ of {v′ is a point of H : (v, v′) ∈
EH} such that (D, v′) 6|= ψ. Let Spoiler’s first move of an (r+ 1)-round HGL(P,N)-
game be a �-move so that b1 = v′. No matter which point u′ of {u′ is a point of G :

(u, u′) ∈ EG} Duplicator replies with, (C, u′) |= ψ. By Ind(r), Spoiler has a winning
strategy in the subsequent r-round HGL(P,N)-game on (C, u′) and (D, v′). A similar
argument is made when ϕ is of the form �+ψ.

3. Suppose that ϕ is of the form @nψ, where n is a nominal of N. Thus, (C, µ(n)) |= ψ

and (D, λ(n)) 6|= ψ. Let Spoiler’s first move of an (r+ 1)-round HGL(P,N)-game be
an @n-move. By Ind(r), Spoiler has a winning strategy in the subsequent r-round
HGL(P,N)-game on (C, µ(n)) and (D, λ(n)).

Thus, Spoiler has a winning strategy in the (r + 1)-round HGL(P,N)-game played on the
Kripke P ∪ N-structures (G, µ, u) and (H, λ, v). The result follows by induction.

4.4.2 Games on Modal Frames

The game from the previous section is now extended so that it can be played on modal
frames (graphs). Since a formula holds on a modal frame in HGL if, and only if, it is
valid on that frame (see Definition 2.3.15) there are in effect unary relations representing
the proposition symbols that need to be chosen, so a good starting point for building a
game on frames is the Ehrenfeucht-Fraïssé game for second-order logic [Fag75] (see Section
2.1.5.3 and Definition 2.1.87).

Definition 4.4.6. Let P be a set of propositional symbols, let N be a set of nominals
and let G = 〈V G , EG〉 and H = 〈V H, EH〉 be two modal frames. The r-round colouring
HGL(P,N)-game on G and H is played by two players, the Spoiler and the Duplicator, as
follows:

1. The Spoiler picks a frame (either G or H). If he has chosen, say G, he then picks
|P| unary relations over V G and |N| vertices from V G . Using these choices he then
construct the valuation function µ : P ∪ N → P(V G), such that for each pi ∈ P,
µ(pi) ⊆ V G and for each ni ∈ N, µ(ni) = v, where v ∈ V G . He then picks a
starting vertex u ∈ V G . On the other hand, if he had chosen frame H, he would pick
the unary relations over V H and vertices from V H and use these to construct the
valuation function λ : P∪N→ P(V H); he would then pick a starting vertex v ∈ V H.

2. The Duplicator then picks |P| unary relations and |N| vertices and uses these to
construct a valuation function in exactly the same way the Spoiler has already done,
but in the other structure. If the Spoiler has chosen G and constructed the poin-
ted structure (G, µ, u) then the Duplicator constructs (H, λ, v); alternatively if the
Spoiler has chosen H and constructed the pointed structure (H, λ, v) then the Du-
plicator constructs (G, µ, u).

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 98

3. They then play the HGL(P,N)-game on the resulting pointed (P ∪ N)-structures
(G, µ, u) and (H, λ, v).

The winning conditions for a play of the r-round colouring HGL(P,N)-game are analogous
to those of the r-round HGL(P,N)-game. Note that the pair of moves for each player in
which they select a valuation function and a start vertex are referred to as the colouring-
start moves.

There is a relationship between r-round colouring HGL(P,N)-games and frame defin-
ability (see Definitions 2.3.15 and 2.3.16) in the logic HGLr(P,N).

Theorem 4.4.7. Let r ≥ 0, let P be a set of proposition symbols, let N be a set of nominals
and let G and H be two frames. The following are equivalent.

1. G ≡HGLr(P,N) H

2. Duplicator has a winning strategy in the r-round colouring HGL(P,N)-game on G
and H.

Proof. Assume that G ≡HGLr(P,N) H. Suppose that Spoiler has a winning strategy in the
r-round colouring HGL(P,N)-game on G and H. Let Spoiler make a colouring-start move
as dictated by his winning strategy; that is, Spoiler builds the P ∪ N-structure (H, λ)

and chooses a point v of V H. Suppose that Duplicator replies by making a colouring-
start move so as to build the P ∪ N-structure (G, µ) and chooses the point u of V G .
By hypothesis, no matter what Duplicator’s colouring-start move, Spoiler wins the r-
round HGL(P,N)-game on (G, µ, u) and (H, λ, v). Thus, by Theorem 4.4.4, there is a
formula ϕrµ,u of HGLr(P,N) for which (G, µ, u) |= ϕrµ,u and (H, λ, v) 6|= ϕrµ,u. Define Φ

as
∨
{ϕrµ,u : µ : P ∪ N → P(V G) is a valuation function, u is a point of G}. In particular,

G |= Φ, and so, by hypothesis, it must be that H |= Φ. However, (H, λ, v) 6|= Φ, which
yields a contradiction.

Conversely, suppose that G 6≡HGLr(P,N) H. This means that there is a formula ϕ ∈
HGLr(P,N) such that either G |= ϕ and H 6|= ϕ or G 6|= ϕ and H |= ϕ. Assume it is
the former case and note that since H 6|= ϕ then there exists some valuation function
λ and start vertex v, such that (H, λ, v) 6|= ϕ. Let Spoiler make a colouring-start move
of the r-round colouring HGL(P,N)-game on G and H by selecting H and building such
a pointed (P ∪ N)-structure (H, λ, u). The Duplicator replies by building some (P ∪ N)-
structure (G, µ) and choosing some point u of G. No matter how she has replied to his
colouring-start move, it must be the case that (G, µ, u) |= ϕ. For the latter case, where
H |= ϕ and G 6|= ϕ the same argument is made, except with the Spoiler choosing G. By
Theorem 4.4.4, Spoiler has a winning strategy in the r-round colouring HGL(P,N)-game
on G and H. The result follows.

The above game on modal frames is derived from and has a lot of similarities to the
Ehrenfeucht-Fraïssé style game for second-order logic, in that it takes as its input two
structures and the Spoiler chooses which structure they start playing on. There exists a
restriction of this game where the input is a class of structures, rather than two particular
structures and the Spoiler has to start playing on one particular structure chosen by
the Duplicator. This restriction is called the Ajtai-Fagin game (see Section 2.1.5.4 and

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 99

Definition 2.1.88) and it has been used to show that certain problems are not definable in
various classes of monadic second-order logic (of which modal logics are a subset of), see
[Sch96, Nur96, AF97]. As it turns out in the next section, such a restriction of the game
on modal frames is not needed in order to obtain the required results.

4.5 Playing games in Hybrid Graph Logic

Theorem 4.4.7 provides the basic tool needed to prove expressibility results as regards the
problems definable in various fragments of Hybrid Graph Logic.

First, an observation is made with regards to a winning strategy for Spoiler in an r-
round HGL(P,N)-game on two pointed (P∪N)-structures (G, µ, u) and (H, λ, v), where G
and H are strongly connected digraphs having at least one edge. If Spoiler has a winning
strategy then this strategy can be assumed to be such that: either a play does not involve
a ♦+-move, a �+-move or a @n-move; or a play consists of a ♦+-move, a �+-move or a
@n-move followed by (at most) r − 1 ♦ or �-moves. To see this, note that if Spoiler’s
winning strategy were to involve the undertaking of a ♦+-move, a �+-move or a @n-move
mid-way through a play then Spoiler may as well have made this move as the first move,
given that any configuration in any play (on some modal frame) is completely determined
by the point on which the two pebbles sit (that is, there is no ‘history’ associated with the
configuration) and any vertex is reachable from any other vertex via a non-trivial path in
the respective digraph. This observation helps in the upcoming constructions of strategies
for Duplicator in response to Spoiler, in that only Duplicator’s response to plays by Spoiler
of the above form need be considered.

Given this above observation, it can be exactly characterised when the Duplicator
has a winning strategy in the r-round HGL(P,N)-game on two pointed (P,N)-structures
(G, µ, u) and (H, λ, v).

Lemma 4.5.1. Let (G, µ, u) and (H, λ, v) be two pointed (P,N)-structures that are strongly
connected and have a least one edge. The following are equivalent:

1. The Duplicator wins the r-round HGL(P,N)-game on (G, µ, u) and (H, λ, v).

2. The Duplicator wins the restricted r-round HGL(P,N)-game on (G, µ, u) and (H, λ, v),
where the first move can be of any type and the remaining (r − 1) moves are either
♦-moves or �-moves.

Proof. Assume that the Spoiler wins the restricted game. He can simply apply the same
strategy to win the unrestricted game.

Assume that the Duplicator wins the restricted game. The strategy she uses to win
gives rise to a pair of functions sG : G 7→ H and sH : H 7→ G, which are constructed
from her response to Spoiler’s initial move: if Spoiler makes a ♦+-move to a1 in G, then
Duplicator responds in H with sG(a1) and if Spoiler makes a �+-move to b1 in H, then
Duplicator responds in G with sH(b1). Observe that since the structures G and H are
strongly connected, the Spoiler’s initial ♦+ or �+ move can be to any vertex and so the
functions sG and sH are total.

Now, in the unrestricted game the Duplicator can use the functions sG and sH to decide
where to move in response to a ♦+ or �+ move by Spoiler; she can do this even if such

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 100

a move is made part way through a play because, as mentioned above, the functions are
total. Any ♦ or � moves that follow a ♦+ or �+ move are responded to by the Duplicator
using the same strategy as was used to win the restricted game. Hence she can win the
unrestricted game.

If the Spoiler makes an @n-move at any point, the Duplicator does not have a choice
in her replying move, but this does not pose a problem as she has a winning strategy in
the restricted game that starts with any @n-move and can use the sG and sH functions to
win a play that involves ♦+ or �+ moves after an @n-move.

4.5.1 Variable quantifier-rank

The games start by focussing on hierarchies obtained by fixing the number of proposition
symbols and nominals and allowing the quantifier-rank to vary.

Consider the situation where there are no propositional symbols or nominals available.

Theorem 4.5.2. Let r ≥ 0. HGLr(∅, ∅) ⊂ HGLr+1(∅, ∅).

Proof. Let r ≥ 1 and denote the directed path of length r by Pr. Consider the r-round
colouring HGLr(∅, ∅)-game on the frames Pr and Pr+1. Note that the colouring-start
round consists of just selecting a starting vertex.

Suppose that Spoiler chooses Pr and selects the starting vertex u. Duplicator now
responds in Pr+1 with the vertex v such that the distance from v to the last vertex in
Pr+1 equals the distance from u to the last vertex in Pr. In the following r moves of
play the Duplicator can ensure that the distance from each of the pebbles ai and bi to
the last vertex is equal in both structures and hence wins the game. The reason she can
maintain this property is that the only position where it does not hold is when the pebbles
are located on the first vertex of each path; a situation that cannot arise since the paths
are directed (i.e. pebbles always move away from the first vertex of each path) and her
strategy ensures that she does not place a pebble on the first vertex of Pr+1.

Alternatively, suppose that Spoiler chooses Pr+1 and the starting vertex v. Duplicator’s
strategy is again to ensure that the distance from the pebbles to the ends of the paths is
equal in both structures. She can achieve this for any starting point the Spoiler chooses
of Pr+1 except if it is the first vertex on the path. In this situation she responds with
the point u which is the first vertex on the path Pr. Now considering this situation, if
Spoiler’s first move is a ♦+-move then Duplicator can respond by moving the pebble in
Pr+1 to a vertex such that the distance between a1 and the end of Pr equals the distance
between b1 and the end of Pr+1 and hence she wins.

Next, consider the situation where the Spoiler’s first move is a �+-move and say that
the Spoiler moves the pebble from b0 a distance of l along the path Pr+1 to b1. If l > 1

then the Duplicator responds by moving the pebble from a0 a distance of l − 1 along the
path Pr to a1. The distance from a1 to the end of Pr is equal to the distance from b1

to the end of Pr+1 and hence she wins. If l = 1 then the Duplicator responds with a1 a
distance of 1 along the path Pr. The distances from a1 and b1 to the ends of their paths
are not equal (they are r− 1 and r respectively) and the Spoiler can force the Duplicator
to remain in this state as long as he makes ♦ or �-moves. If he made a ♦+-move such that
the distance from ai to ai+1 is m, then the Duplicator moves such that the distance from

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 101

bi to bi+1 is (m + 1). If he made a �+-move such that the distance from bi to bi+1 is m,
where m ≥ 2, then Duplicator moves such that the distance from ai to ai+1 is (m−1); the
case where m = 1 is the same as for a �-move (i.e. the Spoiler maintains the difference
of 1 in the distances from the pebbles to the last vertices). But, if Spoiler does play any
combination of (r− 1) ♦ or �-moves in then ar will be on the last vertex of Pr and br will
be on the penultimate vertex of Pr+1 and so the Duplicator wins.

The case where Spoiler’s first move is a ♦ or �-move is covered by the previous case
for a �+-move where l = 1 (since the Duplicator responds with a move to an adjacent
vertex) and hence the Duplicator wins the r-round colouring HGLr(∅, ∅)-game on Pr and
Pr+1.

However, Spoiler clearly has a winning strategy in the (r+1)-round colouring HGLr(∅, ∅)-
game on Pr and Pr+1: Spoiler chooses v in a colouring-start move as the first vertex of
Pr+1. No matter how Duplicator replies, Spoiler wins the subsequent game by making
r+ 1 �-moves. This can be seen by examining the penultimate configuration of the game:
ar will be the last vertex of Pr and br will be the penultimate vertex of Pr+1 and in the
final round the Duplicator cannot respond to Spoiler’s �-move and so she loses.

The result follows by noting that only the problem consisting of every digraph and the
problem consisting of no digraphs can be defined by formulae of HGL0(∅, ∅).

In fact, the Spoiler’s winning strategy gives rise to a formula that is true on Pr but
not on Pr+1. Let ϕr+1 = ¬♦♦ . . .♦>, where ♦ is repeated r+1-times. Clearly, Pr |= ϕr+1

as no matter which vertex in Pr is chosen as the start vertex is it impossible to take an
r + 1-edge walk. However, by choosing the first point of Pr+1 to start from it is possible
to take an r + 1-edge walk; thus, Pr+1 6|= ϕr+1.

Attention is now turned to the situation where there are no propositional symbols
available but there is at least 1 nominal. For any m ≥ 1, denote the directed cycle of
length m by Cm.

Lemma 4.5.3. Let r ≥ 1 and d ≥ 1, and define m = d(r + 1). It is the case that
Cm+1 ≡HGLr(0,d) Cm+2.

Proof. Let N = {n0, n1, . . . , nd−1} be a set of d ≥ 1 nominals. For brevity, denote Cm+1 by
G = 〈V G , EG〉 and Cm+2 by H = 〈V H, EH〉. Consider the r-round colouring HGL(∅,N)-
game on G and H.

Suppose that in the colouring-start phase Spoiler chooses the valuation function µ :

N → V G and the point u. Suppose that in the first instance µ(n0) = µ(n1) = . . . =

µ(nd−1). Duplicator chooses the valuation function λ : N→ V H so that λ(n0) = λ(n1) =

. . . = λ(nd−1) and chooses v so that the length of the path from v to λ(n0) in H is equal
to the length of the path from u to µ(n0) in G. Duplicator clearly has a winning strategy
in the subsequent r-round HGL(∅,N)-game on (G, µ, u) and (H, λ, v). The only remark to
make is that if Spoiler’s first move is a �+-move so that b1 is such that there is an edge
from λ(n0) to b1 (that is, the path from b1 to λ(n0) has length m + 1) then Duplicator
replies so that there is an edge from µ(n0) to a1 (that is, the path from a1 to µ(n0) has
length m). Duplicator can always successfully respond to Spoiler’s subsequent r− 1 ♦- or
�-moves.

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 102

Alternatively, suppose that in the colouring-start phase Spoiler begins by choosing
the valuation function λ : N → V H and the point v. Similarly to as above, suppose that
λ(n0) = λ(n1) = . . . = λ(nd−1). Let the length of the path from v to λ(n0) be l. Duplicator
chooses the valuation function µ : N → V G so that µ(n0) = µ(n1) = . . . = µ(nd−1), and
she chooses u so that the length of the path from u to µ(n0) in G is min{l,m}. Clearly (as
in the previous paragraph), Duplicator has a winning strategy in the subsequent r-round
HGL(∅,N)-game on (G, µ, u) and (H, λ, v).

Now suppose that in the colouring-start phase Spoiler chooses the valuation function
µ : N → V G and the point u where w.l.o.g.: λ(n0) 6= λ(n1) (and so d ≥ 2); the nominals
appear on the cycle G in the order n0, n1, . . . , nd−1 (consecutive nominals might sit on the
same vertex); and u lies on the path from λ(n0) to λ(n1) in G but where u 6= λ(n1) (it
might be the case that u = λ(n0), though). Duplicator replies by choosing the valuation
function λ : N → V H and point v as follows. Duplicator takes a copy of (G, µ, u) and
‘splits’ an edge by replacing it with a path of length 2, with the edge to be split chosen as
we now describe:

1. if the length of the path from µ(n0) to µ(n1) is at most r + 2 then there must be
some ni, where i 6= 0, so that the length of the path from µ(ni) to µ(ni+1) (with
addition modulo d) is at least r + 2; choose the first edge on this path to split

2. if the length of the path from µ(n0) to µ(n1) is at least r + 3 and v = µ(n0) then
split the first edge of this path

3. if the length of the path from µ(n0) to µ(n1) is at least r + 3 and v 6= µ(n0) then
split the first edge of the path from µ(n0) to v.

The pointed structure (H, λ, v) is obtained from this ‘split-edge’ structure by setting
λ(ni) = µ(ni), for i ∈ {0, 1, . . . , d− 1}, and renaming u to v. The three different construc-
tions can be visualized in Figure 4.5.1 (where the grey vertex is the ‘new’ vertex and the
white vertex is u or v).

It is not difficult to see that Duplicator has a winning strategy in the subsequent
r-round HGL(∅,N)-game on (G, µ, u) and (H, λ, v). The only remark to make is that if
Spoiler’s first move is a �+-move so that b1 is the ‘new’ point, inH, introduced by splitting
the edge (x, y) of G, then a1 is chosen to be the point y of G.

Alternatively, suppose that Spoiler begins the colouring-start phase by choosing the
valuation function λ : N → V H and the point v where w.l.o.g.: λ(n0) 6= λ(n1) (and so
d ≥ 2); the nominals appear on the cycle H in the order n0, n1, . . . , nd−1 (consecutive
nominals might sit on the same vertex); and v lies on the path from λ(n0) to λ(n1) in H
but where v 6= λ(n1) (it might be the case that v = λ(n0), though). Duplicator chooses
the valuation function µ : N → V G and point u as follows. Duplicator takes a copy of
(H, λ, v) and ‘merges’ a path of length 2 by replacing it with an edge, with the path to be
merged chosen as we now describe:

1. if the length of the path from λ(n0) to λ(n1) is at most r + 2 then there must be
some ni, where i 6= 0, so that the length of the path from λ(ni) to λ(ni+1) (with
addition modulo d) is at least r + 2; choose the first 2 edges of this path to merge
(so that the point common to both edges is removed)

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 103

...

n0

...

n1

ni+1

n
i

u

length at

most r + 2

length at

least r + 2

G

...

n0

...

n1

ni+1

n
i

v

length at

most r + 2

length at

least r + 3

H

Case 1.

...

n0

...

n1

ni+1

n
i

length at

least r + 3

G

...

n0

...

n1

ni+1

n
i

= v

length at

least r + 4

H

Case 2.

...

n0

...

n1

ni+1

n
i

u

length at

least r + 3

G

...

n0

...

n1

ni+1

n
i

v

length at

least r + 4

H

Case 3.

= u

Figure 4.1: Building (H, λ, v) from (G, µ, u).

2. if the length of the path from λ(n0) to λ(n1) is at least r+ 3 and either v = λ(n0) or
there is an edge from λ(n0) to v then choose the last 2 edges of this path to merge

3. if the length of the path from λ(n0) to λ(n1) is at least r + 3 and v 6= λ(n0) and
there is no edge from λ(n0) to v then choose the first 2 edges of this path to merge.

The pointed structure 〈〈G, µ〉, u〉 is obtained from this ‘merge-edge’ structure by setting
µ(ni) = λ(ni), for i ∈ {0, 1, . . . , d − 1}, and renaming v to u. The different constructions
can be visualized in Figure 4.5.1.

Again, it is not difficult to see that Duplicator has a winning strategy in the subsequent
r-round HGL(∅,N)-game on (G, µ, u) and (H, λ, v). Consequently, the result follows from
Theorem 4.4.7.

Lemma 4.5.4. Let r ≥ 1 and d ≥ 1, and define m = d(r + 1). There exists a formula ϕ
of HGLr+1(0, d) such that Cm+1 |= ϕ and Cm+2 6|= ϕ.

Proof. Let N = {n0, n1, . . . , nd−1} be a set of d ≥ 1 nominals. For brevity, denote Cm+1

by G = 〈V G , EG〉 and Cm+2 by H = 〈V H, EH〉. We shall prove that Spoiler has a winning
strategy in the (r + 1)-round colouring HGL(∅,N)-game on G and H. The result then
follows by Theorem 4.4.7.

Consider a play in the (r+ 1)-round colouring HGL(∅,N)-game on G and H. Suppose
that d > 1. In Spoiler’s colouring-start move: Spoiler chooses λ : N → V H such that the
nominals n0, n1, . . . , nd−1 appear in order on the directed cycle H and so that: the length
of the path from λ(n0) to λ(n1) is r+ 3; for i = 1, 2, . . . , d− 2, the length of the path from
the point λ(ni) to the point λ(ni+1) is r + 1; and the length of the path from the point
λ(nd−1) to the point λ(n0) is r+ 1. In addition, Spoiler chooses v as the point x for which
there is an edge (λ(n0), x).

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 104

...

n0

...

n1

ni+1

n
i

u

length at

most r + 2

length at

least r + 1

G

...

n0

...

n1

ni+1

n
i

v

length at

most r + 2

length at

least r + 2

H

Case 1.

...

n0

...

n1

ni+1

n
i

length at

least r + 2

G

...

n0

...

n1

ni+1

n
i

= v

length at

least r + 3

H

Case 2.

...

n0

...

n1

ni+1

n
i

u

length at

least r + 2

G

...

n0

...

n1

ni+1

n
i

v

length at

least r + 3

H

Case 3.

= u

v

u

Figure 4.2: Building (G, µ, u) from (H, λ, v).

Consider Duplicator’s response if she wishes to progress to a win. No matter which
valuation function µ and point u Duplicator chooses, the path of length r+1 starting at u
in (G, µ, u) must be nominal-free (otherwise, Spoiler would walk along the path starting at
v in H via r+1 �-moves). Hence, there are two nominals, ni and nj , say, so that there is a
nominal-free path from µ(ni) to µ(nj) in 〈〈G, µ〉, u〉 of length at least r+ 3. Consequently,
there are two nominals, ni′ and nj′ , say, so that there is a nominal-free path from µ(ni′)

to µ(nj′) in G of length at at most r (recall, G is a cycle of length d(r+ 1) + 1 and d ≥ 2).
Spoiler now makes a @ni′ -move so that a1 = µ(ni′), with Duplicator necessarily having to
ensure that b1 = λ(ni′). Spoiler now makes r ♦-moves which results in him winning the
play.

Suppose that d = 1. Spoiler proceeds as follows. After choosing λ(n0), Spoiler chooses
v as the point x where there is an edge (λ(n0), x). No matter how Duplicator replies, when
Spoiler subsequently makes r + 1 ♦-moves, Spoiler wins the play. Hence, Spoiler has a
winning strategy in the (r + 1)-round colouring HGL(∅,N)-game on G and H. The result
follows.

The proof of Lemma 4.5.4 is via establishing a winning strategy for Spoiler. However,
this result can also be obtained by presenting an explicit formula of HGLr+1(0, d) that
tells Cm+1 and Cm+2 apart. It is argued that in this case showing a winning strategy for
the Spoiler was quicker and more intuitive, especially within the domain of game playing.
Nevertheless, what follows is the construction of an explicit formula of HGLr+1(0, d) that
can tell Cm+1 and Cm+2 apart.

• Define χ as ¬n0 ∧ ¬n1 ∧ . . . ∧ ¬nd−1. So, χ holds at some point of some structure if
no nominal sits on this point.

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 105

• Define η as
∧
i 6=j(¬ni∨¬nj), where i, j ∈ {0, 1, . . . , d−1}. So, η holds at some point

of some structure if at most one nominal sits on this point.

• Define ϕ0 as χ and for i ≥ 1, define ϕi as χ∧♦(ϕi−1). So, ϕi holds at some point of
some structure if there is a path of length i from this point so that no nominal sits
on any point of this path.

• Define ψ1 as ♦χ and for i ≥ 2, define ψi as ♦(χ ∧ ψi−1). So, ψi holds at some point
of some structure if there is a path of length i from this point so that no nominal
sits on any point of this path apart from possibly the first.

• If d = 1, r ≥ 1 and m = r+ 1 then it holds that Cm+1 |= ¬ϕr+1 but Cm+2 6|= ¬ϕr+1.

• Define Φ as η ∧ ϕr+1 ∧
∧d−1
i=0 @niψr. If d ≥ 2, r ≥ 1 and m = d(r + 1) then we have

that Cm+1 |= ¬Φ but Cm+2 6|= ¬Φ.

Note that ♦+ and �+ have not been used in the construction of the above formula.
The following lemma is immediate.

Lemma 4.5.5. Let c ≥ 0 and d ≥ 0. Let G be the frame with one point and no edges, and
let H be the frame with one point and a self-loop. It is the case that G ≡HGL0(c,d) H but
that G |= ¬♦> and H 6|= ¬♦>.

Lemmas 4.5.3, 4.5.4 and 4.5.5 yield the following result.

Theorem 4.5.6. When r ≥ 0 and d ≥ 1, it is the case that HGLr(0, d) ⊂ HGLr+1(0, d).

Now the attention is turned to the cases when there is access to proposition symbols
as well as nominals. Denote a path ρ in some digraph from vertex s to vertex t by ρ(s, t).
For i ≥ 1 and j ≥ 0 and define the digraph Ai,j as follows:

• take the disjoint union of i directed paths of length j, namely the paths ρ1(s1, t1),

ρ2(s2, t2), . . . , ρi(si, ti) (where if j = 0 then s1 = t1, s2 = t2, . . . , si = ti)

• include also the distinct vertex s along with the edges of {(s, sl), (tl, s) : l = 1, 2, . . . , i}.

The digraph Ai,j can be visualized as in Figure 4.3.

Lemma 4.5.7. Let r ≥ 1, c ≥ 1 and d ≥ 0. Define m = d + 2c(r+1). It is the case that
Am−1,r ≡HGLr(c,d) Am,r.

Proof. For brevity, denote Am−1,r by G = 〈V G , EG〉 and denote Am,r by H = 〈V H, EH〉.
A path ρi will be denoted ρGi or ρHi depending upon whether it lies in G or H, respectively,
and the same goes for vertices (so, there is the vertex sG of V G , the vertex sH of V H, and
so on).

Let P be a set of c propositional symbols and let N be a set of d nominals. Consider a
play of the r-round colouring HGL(P,N)-game on G and H. Suppose that Spoiler makes
a colouring-start move so as to build the pointed P ∪ N-structure (H, λ, v). This results
in each path ρHi having a specific colour-type: an ordered list of r + 1 subsets of P ∪ N,

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 106

...

...

...

s1 sis2

t 1 t it 2

s

ρ1 ρ2 ρi

j edges

Figure 4.3: The digraph Ai,j

one for each vertex w of ρHi , detailing for which p ∈ P or n ∈ N it holds that w ∈ λ(p) or
w ∈ λ(n). A path ρHi is called clean if no nominal is involved in any of the r + 1 sets of
the colour-type of ρHi , and dirty otherwise; the definition of clean and dirty is extended to
colour-types also. Without loss of generality, it may be assumed that none of the paths of
{ρHd+1, ρ

H
d+2, . . . , ρ

H
m} are dirty. The following assumptions can also be made.

1. If two clean paths from {ρH1 , ρH2 , . . . , ρHm} have the same colour-type then the path
ρHm has the same colour-type as some clean path from {ρH1 , ρH2 , . . . , ρHm−1}.

2. If no two clean paths have the same colour-type then the path ρHm is the path of
colour-type S, S, . . . , S, where S = {p ∈ P : sH ∈ λ(p)} (note that in this case: every
path of {ρHi : i = 1, 2, . . . , d}must be dirty; every path of {ρHi : i = d+1, d+2, . . . ,m}
must be clean; and s 6= µ(n), for all n ∈ N).

Consider H with the vertices of the path ρHm removed (along with any incident edges);
that is, H \ {ρHm}. Let λ′ : P ∪ N → V H \ {w : w is a vertex of ρHm} be defined via
λ′(p) = λ(p) \ {w : w is a vertex ofρHm}, for p ∈ P, and λ′(n) = λ(n), for n ∈ N. For
simplicity, denote the P ∪ N-structure (H \ {ρHm}, λ′) by (H \ {ρHm}, λ). Duplicator replies
with a colouring-start move so as to build the P ∪ N-structure (G, µ) such that (G, µ) is
isomorphic to (H \ {ρHm}, λ), via the natural isomorphism f : G → H \ {ρHm}. However,
some care needs to be taken by Duplicator in the choice of u. If Spoiler has chosen v in the
isomorphic copy of G in H (w.r.t. to the natural isomorphism f) then Duplicator chooses
u in G according to the isomorphism f . There are other possibilities.

1. Suppose that the path ρHm and the path ρHj , where 1 ≤ j < m, have the same (clean)
colour-type. If Spoiler has chosen v to be the ith vertex of ρHm then w.l.o.g. it may
be assumed that Spoiler has chosen v as the ith vertex of ρHj and Duplicator chooses
u according to the natural isomorphism f .

2. Suppose that all clean paths from {ρHi : 1 ≤ i ≤ m} have a unique colour-type, and
so all paths of {ρHi : 1 ≤ i ≤ d} must be dirty with all paths of {ρHi : d+ 1 ≤ i ≤ m}
clean. Recall that the colour-type of ρHm is S, S, . . . , S, where S = {p ∈ P : sH ∈
λ(p)}, and that this colour-type does not appear as the colour-type of any path of

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 107

... ...

...

...

s1 s
m-1

t 1 t
m-1

s

ρ1

...

s
d+1

t
d+1

ρ
d+1 ρ

m-1

r edges
...

s
d+2

t
d+2

ρ
d+2

...

...

...

...

...

s1

t 1

s

ρ1

...

s
d+1

t
d+1

ρ
d+1

...

s
m-1

t
m-1

ρ
m-1

r edges
...

s
d+2

t
d+2

ρ
d+2

...

...

...

s
m

t
m

ρ
m

Figure 4.4: (G, µ) and (H, λ) when (H, λ) has distinct clean colour-types.

{ρGi : 1 ≤ i ≤ m − 1}. Without loss of generality, let ρHd+1 be a path whose colour-
type is S′, S, . . . , S, for some S′ 6= S, and let ρHd+2 be a path whose colour-type is
S, S, . . . , S, S′′, for some S′′ 6= S. The situation can be visualized as in Figure 4.4,
where a vertex w (of V G or V H) with the property that {p ∈ P : w ∈ λ(p)} = S is
depicted in white.

• If Spoiler has chosen the first vertex of the path ρHm as v then Duplicator chooses
the second vertex of ρGd+1 as u.

• If Spoiler has chosen the ith vertex of the path ρHm as v, where 2 ≤ i ≤ r + 1,
then Duplicator chooses the ith vertex of ρGd+1 as u.

Following the colouring-start move, there are two essential situations.

Case 1. Suppose that the colour-type of the (clean) path ρHm is the same as the colour-type
of the path ρHj , for some path ρHj where 1 ≤ j < m. Extend the natural isomorphism
f−1 : H \ {ρHm} → G, to the map g : H → G so that if w is some point of ρHm then
g(w) = f−1(w′), where w′ is the point of ρHj analogous to w (that is, if w is the ith vertex
of ρHm then w′ is the ith vertex of ρHj). Duplicator’s strategy in the subsequent r-round
HGL(P,N)-game on (G, µ, u) and (H, λ, v) is simply to play according to g, if Spoiler plays
in H, or according to f , if Spoiler plays in G. Clearly, this yields a winning strategy for
Duplicator in the r-round colouring HGL(P,N)-game on G and H.

Case 2. Suppose that all of the colour-types of the clean paths of {ρHi : 1 ≤ i ≤ m = d+

2c(r+1)} are distinct. As remarked earlier, it must be the case every path of {ρH1 , ρH2 , . . . , ρHd }
is dirty with every path of {ρHd+1, ρ

H
d+2, . . . , ρ

H
m} clean. By construction: ρHm has colour-

type S, S, . . . , S; ρHd+1 has colour-type S′, S, . . . , S; and ρHd+1 has colour-type S, S, . . . , S, S′′

(with S, S′ and S′′ defined as above).

Consider Spoiler’s moves in a play of the r-round HGL(P,N)-game on (G, µ, u) and (H, λ, v).
Recall that it can be assumed that if Spoiler makes a ♦+-move, a �+-move or a @n-move
then this is will be the first move of the play and every subsequent move will be a ♦-move

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 108

or a �-move (indeed, it may be assumed that no @n-move is ever made by Spoiler as
Spoiler can incorporate such a move into the choice of v). Note also that Duplicator’s
reply to a move of Spoiler involves no choice unless either: the pebble Duplicator is mov-
ing happens to lie on sG or sH; or Spoiler’s move is a ♦+-move or a �+-move, either of
which can only happen if the move is the first move of the play. If Spoiler’s (first) move
is a ♦+-move then Duplicator simply plays according to the natural isomorphism f .

The strategy for Duplicator will be such as to force that whenever pebble a is on sG , it
holds that pebble b is on sH, and vice versa, apart from the possibility that after the rth

move of the play pebble a is on sG and pebble b not on sH. If it is the case that pebble
a is on sG and pebble b is on sH, and less than r moves have been made, then unless
Spoiler makes a �-move or a �+-move to a vertex of ρHm, Duplicator plays according to
the natural isomorphism f . If Spoiler makes a �-move and places pebble b on sHm then
Duplicator replies by placing pebble a on sGd+2.

Suppose that Spoiler makes a �+-move (as the first move and irrespective of the choice
of v). If Spoiler places the pebble b on a point of H\{ρHm} then Duplicator places pebble a
according to the natural isomorphism. If Spoiler places the pebble b on a point of ρHm then
Duplicator’s reply is as follows: if Spoiler plays on the first vertex of ρHm then Duplicator
replies by playing on the second vertex of ρGd+1; and if Spoiler plays on the ith vertex of
ρHm, where 2 ≤ i ≤ r + 1, then Duplicator replies by playing on the ith vertex of ρGd+1.
Note that because all of the subsequent r − 1 moves are ♦-moves or �-moves, Duplicator
can clearly win this play of the game:

• if b1 is the first vertex of ρHm and a1 is the second vertex of ρGd+2 then in the remainder
of the play the pebbles never leave the paths ρHm and ρGd+2;

• if b1 is the ith vertex of ρHm and a1 is the ith vertex of ρGd+1, for some i ∈ {2, 3, . . . , r+

1}, then by playing as directed above (when the pebbles arrive at sG and sH),
Duplicator can win the play.

Finally, it should be noted that when u and v are as defined above, Duplicator can win
the play by playing as directed above. The only slightly awkward situation is when u is
the second vertex of ρGd+1, v is the first vertex of ρHm and all r moves are ♦ or �-moves.
However, the fact that the path in G consisting of the last r vertices of ρGd+1 augmented
with the vertex sG has the same colour-type as the path ρHm enables Duplicator to win the
play.

Consequently, Duplicator has a winning strategy in the r-round colouring HGL(P,N)-
game on the graphs Am−1,r and Am,r if the Spoiler selects Am,r to perform the colouring-
start move on.

Alternatively, suppose that Spoiler’s colouring-start move is so as to build the poin-
ted P ∪ N-structure (G, µ, u). W.l.o.g. it may be assumed that the path ρGm−1 is clean.
Duplicator builds the P ∪ N-structure (H, λ) by taking a copy of (G, µ) and extending it
with the path ρHm and edges from (resp. to) sH to the first (resp. from the last) vertex
of ρHm so that the colour-type of ρHm is identical to the colour-type of ρGm−1. There is a
natural embedding of (G, µ) in (H, λ) and the point v is taken to be the image of u under
this embedding; this is the pointed P ∪ N-structure (H, λ, v). Given the more complic-
ated arguments above, it should be clear that Duplicator has a winning strategy in the

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 109

r-round colouring HGL(P,N)-game on Am−1,r and Am,r when the Spoiler selects Am−1,r

to perform the colouring-start move on. The result follows by Theorem 4.4.7.

Lemma 4.5.8. Let r ≥ 1, c ≥ 1 and d ≥ 0. Define m = d + 2c(r+1). There exists a
formula ϕ of HGLr+1(c, d) such that Am−1,r |= ϕ and Am,r 6|= ϕ.

Proof. Let P be a set of c propositional symbols and let N = {n0, n1, . . . , nd−1} be a set of
d nominals. Assume that the Duplicator starts a (r+ 1)-move colouring HGL(P,N)-game
by selecting Am−1,r and Am,r. For brevity, denote Am−1,r by G = 〈V G , EG〉 and Am,r by
H = 〈V H, EH〉.

Consider the following strategy by Spoiler in the (r + 1)-move colouring HGL(P,N)-
game on G and H. Spoiler begins by choosing the valuation function λ : P ∪ N → V H

so that if d ≥ 1 then the paths of {ρH1 , ρH2 , . . . , ρHd } are all dirty, and so that the colour-
types of the paths of {ρHd+1, ρ

H
d+2, . . . , ρ

H
m} are all distinct. Moreover, if d ≥ 1 then Spoiler

chooses λ so that λ(ni) is the first vertex of ρHi+1, for i = 0, 1, . . . , d − 1. Spoiler chooses
v as sH. Duplicator replies with some valuation function µ : P ∪ N→ V G and in order to
stand a chance of winning the play, Duplicator must clearly choose u as sG . If d ≥ 1 then
in order for Duplicator to stand a chance of winning the play, clearly it must hold that
w.l.o.g. µ(ni) is the first vertex of ρGi+1, for i = 0, 1, . . . , d− 1.

Consequently, the paths of {ρG1 , ρ
G
2 , . . . , ρ

G
d} are all dirty and the paths of {ρGd+1, ρ

G
d+2,

. . . , ρGm−1} are all clean. There must be some path ρHj in {ρHd+1, ρ
H
d+2, . . . , ρ

H
m} whose colour-

type does not appear amongst the colour-types of the paths of {ρGd+1, ρ
G
d+2, . . . , ρ

G
m−1}.

Spoiler next makes r + 1 �-moves and walks along the path ρHj . Clearly, this results in
a winning play for Spoiler. Hence, Spoiler has a winning strategy for the (r + 1)-move
colouring HGL(P,N)-game on G and H. The result follows by Theorem 4.4.7.

Just as was the case with Lemma 4.5.4, it is possible to prove Lemma 4.5.8 by constructing
an explicit formula of HGLr+1(c, d) to tell Am−1,r and Am,r apart. This time though, it
is much more complicated and proceeding by using our game makes life much easier.
However, what follows is a description of such a formula. Essentially, given some pointed
P∪N-structure (G, µ, u), the formula will be the negation of the formula Φ that says: ‘from
u, upon which no nominal sits, one can always move along an edge so that thereafter there
is a path of length r upon which no nominal sits and whose colour-type is any colour-type
involving just the propositional symbols from the set P; moreover, from u, one can move
to a vertex on which exactly one nominal sits and where this nominal can be any nominal
of N’. Note that it is possible to construct this formula so that it is in HGLr+1(c, d)

and contains no applications of ♦+ or �+. From above, it is not difficult to see that
Am−1,r |= ¬Φ whereas Am,r 6|= ¬Φ.

The following result is immediate from Theorem 4.5.6 and Lemmas 4.5.5, 4.5.7 and 4.5.8.

Theorem 4.5.9. When r ≥ 0, c ≥ 0 and d ≥ 0, it is the case that HGLr(c, d) ⊂
HGLr+1(c, d).

4.5.2 Variable numbers of propositional symbols and nominals

Now the case is considered where letting the number of propositional symbols or nominals
vary whilst keeping the quantifier-rank fixed is examined. For m ≥ 1, define the digraph

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 110

...

s

m vertices

t
m

t
1

t
2

Figure 4.5: The digraph Hm.

Hm as follows:

• the vertices of Hm are {s, t1, t2, . . . , tm}

• the edges of Hm are those edges of {(s, tj) : 1 ≤ j ≤ m}.

Hence, Hm is a star with central vertex s and where all edges are directed away from s to
m outer vertices, and can be visualized in Figure 4.5.

Theorem 4.5.10. Let r ≥ 1, c ≥ 0 and d ≥ 0. Define m = d + 2c. The class of
graphs containing just Hm is HGLr(c, d)-inexpressible, but that if c′ ≥ c, d′ ≥ d and
c′ + d′ = c+ d+ 1 then Hm is HGLr(c

′, d′)-expressible. Thus, HGLr(c, d) ⊂ HGLr(c
′, d′).

Proof. As before, vertices of Hm or Hm+1 are denoted by using superscripts, as in sHm+1

or tHm1 , for example.
Let P be a set of c proposition symbols and let N be a set of d nominals. Consider

a play of the r-round colouring HGL(P,N)-game on the class of graphs containing Hm.
The Duplicator starts the game by choosing the structures Hm and Hm+1. Spoiler makes
a colouring-start move so as to build the pointed Kripke P ∪ N-structure (Hm+1, λ, v).
The colour of a vertex x of (Hm+1, λ) is the set of propositional symbols p of P for which
x ∈ λ(p) in union with the set of nominals n of N for which x = λ(n) (and do likewise
in other structures). In particular, there are two outer vertices of (Hm+1, λ), say tHm+1

i

and tHm+1

j , with identical colours. Duplicator replies and builds the pointed Kripke P∪N-
structure (Hm, µ, u) by taking a copy of (Hm+1, λ, v) and deleting the vertex tHmi (and
its incident edge), as well as renaming v as u. Duplicator trivially has a winning strategy
in the subsequent r-round HGL(P,N)-game on (Hm, µ, u) and (Hm+1, λ, v), and so by
Theorem 4.4.7 Hm is HGLr(c, d)-inexpressible.

Alternatively, if Spoiler makes a colouring-start move so as to build the pointed P ∪
N-structure (Hm, µ, u) then Duplicator replies and builds the pointed P ∪ N-structure
(Hm+1, λ, v) by taking a copy of (Hm, µ, u) and extending it with a new vertex tHm+1 and
edge (sHm+1 , tHm+1) so that the colour of tHm+1 is identical to the colour of some point tHmi
ofHm upon which no nominal sits and that is different from u. The point v is chosen as the
point (corresponding to) u. Duplicator trivially has a winning strategy in the subsequent
r-round HGL(P,N)-game on (Hm, µ, u) and (Hm+1, λ, v). Hence, Hm ≡HGLr(c,d) Hm+1 by
Theorem 4.4.4.

Let P′ be a set of c′ propositional symbols and let N′ be a set of d′ nominals (with
c′ and d′ as in the statement of the result). Consider a play of the r-round colouring

CHAPTER 4. MODAL LOGIC, HYBRID GRAPH LOGIC AND GAMES 111

HGL(P′,N′)-game in which Duplicator starts the game by choosing the structures Hm
and Hm+1. Suppose that Spoiler makes a colouring-start move so as to build the pointed
Kripke P∪N-structure (Hm+1, λ, v) where every outer vertex has a different colour and v
is the vertex sHm+1 (this is possible irrespective of whether c′ > c or d′ > d). No matter
which colouring-start move Duplicator replies with, so as to build (Hm, µ, u), Duplicator
must choose u as sHm (in order to stand a chance of winning the play) and there will exist
some outer vertex of (Hm+1, λ) whose colour is not represented in (Hm, µ). Spoiler clearly
wins the subsequent r-round HGL(P′,N′)-game on (Hm, µ, u) and (Hm+1, λ, v) by making
the appropriate �-move. This winning strategy characterises the structure Hm and so no
matter which other structure Duplicator chooses, Spoiler can apply this strategy to win
the game, hence by Theorem 4.4.7 Hm is HGLr(c′, d′)-expressible.

The result that HGLr(c, d) ⊂ HGLr(c′, d′) immediately follows from Hm being both
HGLr(c, d)-inexpressible and HGLr(c′, d′)-expressible.

Finally, the situation for the logics HGL0(c, d), where c ≥ 0 and d ≥ 0, is considered.
Formulae of these logics do not involve the operators ♦, ♦+, �, �+ and @n; that is, they
are simply Boolean combinations of proposition symbols, nominals, > and ⊥. Let ϕ be a
formula of one of these logics. It is not difficult to see that:

• if G is a digraph with at least 2 vertices then G |= ϕ if, and only if, when regarding
all propositional symbols and nominals in ϕ as Boolean variables, ϕ is a tautology

• if G is a digraph with 1 vertex then G |= ϕ if, and only if, when regarding all
propositional symbols and nominals in ϕ as Boolean variables and make all Boolean
variables corresponding to nominals true, the resulting formula ϕ is a tautology.

In particular, if ϕ is a formula of one of the above logics:

• if there exists a digraph G with at least 2 vertices such that G |= ϕ then the problem
defined by ϕ consists of all digraphs

• if ϕ is not valid in any digraph with at least 2 vertices and no nominals appear in ϕ
then the problem defined by ϕ is the empty problem

• if ϕ is not valid in any digraph with at least 2 vertices and at least 1 nominal
appears in ϕ then either ϕ is valid in both digraphs with 1 vertex or neither (and
both situations are possible).

Thus, the following result is obtained:

Theorem 4.5.11. Let c ≥ 0 and d ≥ 0.

• For each c ≥ 0, HGL0(0, 0) = HGL0(c, 0), with the class of problems so defined
consisting of the two problems consisting of all digraphs and of no digraphs.

• If d ≥ 1, HGL0(c, d) consists of three problems, namely the problems consisting of
all digraphs, of no digraphs and of both the digraphs with 1 vertex.

Theorems 4.5.2, 4.5.6, 4.5.9 and 4.5.10 give a full characterisation of the relative ex-
pressiveness of fragments of Hybrid Graph Logic that are obtained by varying the quantifier
depth, number of proposition symbols and number of nominals.

Chapter 5

Conclusions

The research presented in this thesis examines the field of Finite Model Theory and its
applications to Theoretical Computer Science. It has followed two distinct themes: the
Descriptive Complexity of Optimisation Problems (Chapter 3) and the Expressiveness of
Fragments of Hybrid Graph Logic (Chapter 4).

5.1 Descriptive Complexity of Optimisation Problems

The theory of Descriptive Complexity provides a strong link between Finite Model Theory
and Computation Complexity. Most of the results obtained in the field have been with
regards to characterisations of classes of decision problems, with few results extending
to optimisation problems and those that do mainly focussing on NP-optimisation prob-
lems. Our focus was on polynomial-time optimisation problems and the development of
frameworks for characterising them. The work started by analysing existing frameworks,
which led to the results in Theorem 3.3.4 and Theorem 3.3.6, which state that a cer-
tain type of framework, the second-order tuple-counting framework, cannot characterise
P-optimisation problems unless P = NP. Once this result was realised, we set about build-
ing frameworks from other candidate logics, most notably first-order logics augmented
with fixed-point operators. This led to the full characterisation of PPBopt using a framework
based around the inflationary fixed-point logic FO(IFP) in Theorem 3.4.1 and the least
fixed-point logic FO(LFP) in Corollary 3.4.2. This framework is novel in that it uses the
inductive depth of the fixed-point operator, rather than counting the number of tuples that
satisfy a formula or measuring the cardinality of a relation, as had been done by previous
frameworks.

These two results, the hardness of the tuple-counting framework, even when restricted
to Horn formulae and the fixed-point framework characterising PPBopt , where presented by
myself at the 5th International Computer Science Symposium in Kazan, Russia (CSR 2010)
[AM10] and published in the conference proceedings [GS10]. Our paper was selected to
appear in a special edition of Theory of Computer Systems (ToCS) and we have submitted
a full length version for review and publication.

In Theorem 3.6.6 another framework is presented that characterises PPBopt using the
measure of the cardinality of a relation. This result was surprising given the hardness of
the very similar tuple-counting frameworks in Theorems 3.3.4 and 3.3.6 and has led to
the conclusion that the tuple-counting part of the framework breaks the Horn condition

112

CHAPTER 5. CONCLUSIONS 113

required in order to ensure the solution can be computed in polynomial-time. Future
avenues of research could look at this complexity gap and investigate if any subsets of the
tuple-counting framework, e.g. with limited tuple arity; unary quantifiers etc. resulted
in a polynomial time computable solution. This would also tie in with the research that
examines the tractability frontier from the perspective of logic [GKS04].

Section 3.7 examines the methods used to remove the polynomially-bounded require-
ment from the optimisation problems characterised by logical frameworks. Extending these
results to Popt for one of our frameworks would be an interesting line of future research.

5.2 Expressiveness of Fragments of Hybrid Graph Logic

The application of tools from Finite Model Theory to hybrid modal logic has resulted in a
game that characterises the expressibility of properties in Hybrid Graph Logic. The game
presented in Theorem 4.4.1 extends the Ehrenfeucht-Fraïssé style game for bisimulation to
deal with both nominals and universal access. We then extended the game further to work
for frame validity by using the idea of colouring rounds from the second-order Ehrenfeucht-
Fraïssé game first developed by Fagin [Fag75]. The aim of the research was to search for
classes of structures and develop winning strategies on them for the Duplicator in order
to show that these structures are expressible in one fragment of Hybrid Graph Logic but
inexpressible in another.

We used this game, structures and winning strategies to completely characterise the
relative expressiveness of fragments of Hybrid Graph Logic that are obtained by restriction
the quantifier-rank, the number of proposition symbols and the number of nominals. The
hierarchy results are presented in Theorems 4.5.2, 4.5.6, 4.5.9 and 4.5.10.

Directions for future research in this area could include extending these hierarchy
results to more expressive hybrid logics, such as those involving the binder ↓ and also
to undirected graphs. It would also be interesting to examine the relative expressiveness
of fragments that are parameterised by the number of alternations of modal quantifiers,
rather than just the quantifier depth, i.e. is the fragment that contains a block of ♦

quantifiers followed by a block of � quantifiers strictly more expressive than a fragment
that just contains (either) ♦ or � quantifiers?

The development of winning strategies for the Duplicator in these games is of key
importance, and it may be the case that the techniques used in devising winning strategies
presented in this thesis could be applied elsewhere.

Bibliography

[ABM00] Carlos Areces, Patrick Blackburn, and Maarten Marx, The computational com-
plexity of hybrid temporal logics, Logic Journal of the IGPL 8 (2000), no. 5,
653–679.

[ABM01] , Hybrid logics: characterization, interpolation and complexity, J.
Symb. Log. 66 (2001), no. 3, 977–1010.

[AF90] Miklós Ajtai and Ronald Fagin, Reachability is harder for directed than for
undirected finite graphs, J. Symb. Log. 55 (1990), no. 1, 113–150.

[AF97] Sanjeev Arora and Ronald Fagin, On winning strategies in Ehrenfeucht-Fraïssé
games, Theor. Comput. Sci. 174 (1997), no. 1-2, 97–121.

[AM10] Farid Ablayev and Ernst W. Mayr (eds.), 5th international computer science
symposium in Russia, CSR 2010, Kazan, Russia, June 16-20, 2010, proceed-
ings, Lecture Notes in Computer Science, vol. 6072, Springer Berlin, 2010.

[AtC07] Carlos Areces and Balder ten Cate, Hybrid logics, Handbook of Modal Logic
(Patrick Blackburn, Johan Van Benthem, and Frank Wolter, eds.), Studies in
Logic and Practical Reasoning, vol. 3, Elsevier, 2007, pp. 821 – 868.

[AW00] Joan M. Aldous and Robin J. Wilson, Graphs and applications: an introductory
approach, Springer, 2000.

[BBJ02] George S. Boolos, John P. Burgess, and Richard C. Jeffrey, Computability and
logic, fourth ed., Cambridge University Press, 2002.

[BCG01] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy, Winning ways for
your mathematical plays, second ed., vol. 1, A K Peters, Natick, Massachusetts,
2001.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema, Modal logic, Cam-
bridge tracts in theoretical computer science, vol. 53, Cambridge University
Press, 2001.

[BL99] Hans Kleine Büning and Theodor Lettman, Propositional logic: deduction and
algorithms, Cambridge tracts in theoretical computer science, vol. 48, Cam-
bridge University Press, 1999.

[BM08] Orestes Bueno and Prabhu Manyem, Polynomial-time maximisation classes:
syntactic hierarchy, Fundamenta Informaticae 84 (2008), no. 1, 111–133.

114

BIBLIOGRAPHY 115

[Bol98] Béla Bollobás, Modern graph theory, Graduate texts in mathematics, vol. 184,
Springer, 1998.

[BS09] Mario R. F. Benevides and L. Menasché Schechter, Using modal logics to ex-
press and check global graph properties, Logic Journal of the IGPL 17 (2009),
no. 5, 559–587.

[CJ91] Christian Choffrut and Matthias Jantzen (eds.), STACS 91, 8th annual sym-
posium on theoretical aspects of computer science, Hamburg, Germany, Feb-
ruary 14-16, 1991, proceedings, Lecture Notes in Computer Science, vol. 480,
Springer, 1991.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
Introduction to algorithms, third ed., MIT Press, 2009.

[Coo71] Stephen A. Cook, The complexity of theorem-proving procedures, in Harrison
et al. [HBU71], pp. 151–158.

[CS01] Edmund M. Clarke and Bernd-Holger Schlingloff, Chapter 24 – model checking,
Handbook of Automated Reasoning (Alan Robinson and Andrei Voronkov,
eds.), North-Holland, Amsterdam, 2001, pp. 1635 – 1790.

[DBL82] Proceedings of the fourteenth annual ACM symposium on theory of computing,
5-7 May 1982, San Francisco, California, USA, ACM, 1982.

[Die97] Reinhard Diestel, Graph theory, Graduate texts in mathematics, vol. 173,
Springer, 1997.

[dR87] M. de Rougemont, Second-order and inductive definability on finite struc-
tures, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik
33 (1987), 47–63.

[EF99] Heinz-Dieter Ebbinghaus and Jörg Flum, Finite model theory, second ed.,
Monographs in mathematics, Springer, 1999.

[EH85] E. Allen Emerson and Joseph Y. Halpern, Decision procedures and expressive-
ness in the temporal logic of branching time, J. Comput. Syst. Sci. 30 (1985),
no. 1, 1–24.

[Ehr61] A. Ehrenfeucht, An application of games to the completeness problem for form-
alized theories, Fund. Math. 49 (1961), 129–141.

[Fag74] Ronald Fagin, Generalized first-order spectra and polynomial-time recognizable
sets, Complexity and Computation, SIAM-AMS Proceedings, vol. 7, 1974,
pp. 43–73.

[Fag75] , Monadic generalized spectra, Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik 21 (1975), 89–96.

[Fag96] , Easier ways to win logical games, in Immerman and Kolaitis [IK96],
pp. 1–32.

BIBLIOGRAPHY 116

[FdR06] Massimo Franceschet and Maarten de Rijke, Model checking hybrid logics (with
an application to semistructured data), J. Applied Logic 4 (2006), no. 3, 279–
304.

[FG06] Jörg Flum and Martin Grohe, Parameterized complexity theory, Texts in the-
oretical computer science; an EATCS series, Springer, 2006.

[Fra54] R. Fraïssé, Sur quelques classifications des systèmes de relations, Publ. Sci.
Univ. Alger. Sér. A 1 (1954), 35–182.

[FSV95] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi, On monadic NP vs.
monadic co-NP, Inf. Comput. 120 (1995), no. 1, 78–92.

[GH10] Jürgen Giesl and Reiner Hähnle (eds.), Automated reasoning, 5th international
joint conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010, proceedings,
Lecture Notes in Computer Science, vol. 6173, Springer, 2010.

[GHR95] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo, Limits to parallel
computation: P-completeness theory, Oxford University Press, 1995.

[GJ79] Michael R. Garey and David S. Johnson, Computers and intractability, a guide
to the theory of NP-completeness, W. H. Freeman and Company, 1979.

[GJS76] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer, Some simplified
NP-complete graph problems, Theor. Comput. Sci. 1 (1976), no. 3, 237–267.

[GKL+07] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Yde
Venema, Joel Spencer, Moshe Y. Vardi, and Scott Weinstein, Finite model
theory and its applications, Texts in theoretical computer science; an EATCS
series, Springer, 2007.

[GKS04] Georg Gottlob, Phokion G. Kolaitis, and Thomas Schwentick, Existential
second-order logic over graphs: charting the tractability frontier, J. ACM 51
(2004), no. 2, 312–362.

[GO07] Valentin Goranko and Martin Otto, Model theory of modal logic, Handbook
of Modal Logic (Patrick Blackburn, Johan Van Benthem, and Frank Wolter,
eds.), Studies in Logic and Practical Reasoning, vol. 3, Elsevier, 2007, pp. 249
– 329.

[Grä91a] Erich Grädel, Capturing complexity classes by fragments of second order logic,
Structure in Complexity Theory Conference, 1991, pp. 341–352.

[Grä91b] , The expressive power of second order horn logic, in Choffrut and
Jantzen [CJ91], pp. 466–477.

[Grä92] , Capturing complexity classes by fragments of second-order logic,
Theor. Comput. Sci. 101 (1992), no. 1, 35–57.

[Grä07] , Finite model theory and descriptive complexity, ch. 3, pp. 125–230, in
Brauer et al. [GKL+07], 2007.

BIBLIOGRAPHY 117

[GS86] Yuri Gurevich and Saharon Shelah, Fixed-point extensions of first-order logic,
Annals of Pure and Applied Logic 32 (1986), 265–280.

[GS10] James Gate and Iain A. Stewart, Frameworks for logically classifying
polynomial-time optimisation problems, in Ablayev and Mayr [AM10], pp. 120–
131.

[HA50] D. Hilbert and W. Ackermann, Principles of mathematical logic, Chelsea Pub-
lishing Company, New York, 1950.

[HBU71] Michael A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman (eds.), Pro-
ceedings of the 3rd annual ACM symposium on theory of computing, May 3-5,
1971, Shaker Heights, Ohio, USA, ACM, 1971.

[HC96] G. E. Hughes and M. J. Cresswell, A new introduction to modal logic, Rout-
ledge, 1996.

[IK96] Neil Immerman and Phokion G. Kolaitis (eds.), Descriptive complexity and fi-
nite models, proceedings of a DIMACS workshop, January 14-17, 1996, Prin-
ceton University, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 31, American Mathematical Society, 1996.

[Imm82] Neil Immerman, Relational queries computable in polynomial time (extended
abstract), in STOC [DBL82], pp. 147–152.

[Imm86] , Relational queries computable in polynomial time, Information and
Control 68 (1986), no. 1-3, 86–104.

[Imm88] , Nondeterministic space is closed under complementation, SIAM J.
Comput. 17 (1988), no. 5, 935–938.

[Imm99] , Descriptive complexity, Graduate texts in computer science, Springer,
1999.

[JLL76] Neil D. Jones, Y. Edmund Lien, andWilliam T. Laaser, New problems complete
for nondeterministic log space, Mathematical Systems Theory 10 (1976), 1–17.

[JS87] Brigitte Jaumard and Bruno Simeone, On the complexity of the maximum
satisfiability problem for horn formulas, Inf. Process. Lett. 26 (1987), no. 1,
1–4.

[KKM94] Rajeev Kohli, Ramesh Krishnamurti, and Prakash Mirchandani, The minimum
satisfiability problem, SIAM J. Discrete Math. 7 (1994), no. 2, 275–283.

[Knu73] Donald E. Knuth, The art of computer programming, volume I: fundamental
algorithms, 2nd edition, Addison-Wesley, 1973.

[Kol07] Phokion G. Kolaitis, On the expressive powers of logics on finite models, ch. 2,
pp. 27–123, in Brauer et al. [GKL+07], 2007.

[Kre04] Stephan Kreutzer, Expressive equivalence of least and inflationary fixed-point
logic, Ann. Pure Appl. Logic 130 (2004), no. 1-3, 61–78.

BIBLIOGRAPHY 118

[KS10] Mark Kaminski and Gert Smolka, Terminating tableaux for hybrid logic with
eventualities, in Giesl and Hähnle [GH10], pp. 240–254.

[KT94] Phokion G. Kolaitis and Madhukar N. Thakur, Logical definability of NP op-
timization problems, Information and Computation 115 (1994), no. 2, 321–353.

[KT95] , Approximation properties of NP minimization classes, Journal of
Computer and System Sciences 50 (1995), no. 3, 391–411.

[KV07] Phokion G. Kolaitis and Moshe Y. Vardi, A logical approach to constraint
satisfaction, ch. 6, pp. 339–370, in Brauer et al. [GKL+07], 2007.

[Lib04] Leonid Libkin, Elements of finite model theory, Texts in theoretical computer
science; an EATCS series, Springer, Berlin, 2004.

[Man08] Prabhu Manyem, Syntactic characterizations of polynomial time optimization
classes, Chicago Journal of Theoretical Computer Science 2008 (2008), no. 3,
1–23.

[MMS+10] Arne Meier, Martin Mundhenk, Thomas Schneider, Michael Thomas, Volker
Weber, and Felix Weiss, The complexity of satisfiability for fragments of hybrid
logic – part I, J. Applied Logic 8 (2010), no. 4, 409–421.

[MV07] Maarten Marx and Yde Venema, Local variations on a loose theme: modal
logic and decidability, ch. 7, pp. 371–429, in Brauer et al. [GKL+07], 2007.

[Nur96] Juha Nurmonen, On winning strategies with unary quantifiers, J. Log. Comput.
6 (1996), no. 6, 779–798.

[Pap94] Christos M. Papadimitriou, Computational complexity, Addison-Wesley, 1994.

[Pla84] David A. Plaisted, Complete problems in the first-order predicate calculus, J.
Comput. Syst. Sci. 29 (1984), no. 1, 8–35.

[PR93] Alessandro Panconesi and Desh Ranjan, Quantifiers and approximation, The-
oretical Computer Science 107 (1993), no. 1, 145–163.

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis, Optimization, approxim-
ation, and complexity classes, Journal of Computer and System Science 43
(1991), 425–440.

[RRR98] Venkatesh Raman, Bala Ravikumar, and S. Srinivasa Rao, A simplified NP-
complete MAXSAT problem, Inf. Process. Lett. 65 (1998), no. 1, 1–6.

[Sav70] Walter J. Savitch, Relationships between nondeterministic and deterministic
tape complexities, J. Comput. Syst. Sci. 4 (1970), no. 2, 177–192.

[Sch96] Thomas Schwentick, On winning ehrenfeucht games and monadic NP, Ann.
Pure Appl. Logic 79 (1996), no. 1, 61–92.

[Sip06] Michael Sipser, Introduction to the theory of computation, second ed., Thomson
Course Technology, 2006.

BIBLIOGRAPHY 119

[SST95] Sanjeev Saluja, K. V. Subrahmanyam, and Madhujar N. Thakur, Descriptive
complexity of #P functions, Journal of Computer and System Sciences 50
(1995), 493–505.

[Sze87] Róbert Szelepcsényi, The method of forcing for nondeterministic automata,
Bulletin of the EATCS 33 (1987), 96–99.

[Top12] TOP500 supercomputing sites, http://top500.org, September 2012.

[Tov84] Craig A. Tovey, A simplified NP-complete satisfiability problem, Discrete Ap-
plied Mathematics 8 (1984), no. 1, 85–89.

[Var82] Moshe Y. Vardi, The complexity of relational query languages (extended ab-
stract), in STOC [DBL82], pp. 137–146.

[Var96] , Why is modal logic so robustly decidable?, in Immerman and Kolaitis
[IK96], pp. 149–184.

[Vol99] Heribert Vollmer, Introduction to circuit complexity, Texts in theoretical com-
puter science; an EATCS series, Springer, 1999.

[Zim98] Marius Zimand, Weighted NP optimization problems: logical definability and
approximation properties, SIAM Journal on Computing 28 (1998), no. 1, 36–
56.

[Zoo12] Complexity zoo, http://qwiki.stanford.edu/index.php/Complexity_Zoo,
September 2012.

