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Quantum Theory of Complex Ultracold Collisions

Abstract

This thesis reports on a variety of calculations on cold and ultracold scattering,

with a broad theme of how best to consider and understand complex systems in

simple ways.

Firstly, we investigate quantum defect theory. We demonstrate that it is not

only an excellent model for simple systems, but can also provide simple predictions

of the range of possible behaviours for complex systems, in particular for a model

of collisional losses. These predictions agree well with expensive coupled-channels

calculations in cases where the full calculations also predict only the range of possible

behaviours.

Secondly, we consider effects relating to thermalisation of cold and ultracold

gases. We show that considering the correct transport cross section, σ
(1)
η , is impor-

tant for determination of scattering lengths and their signs by interspecies thermal-

isation. This cross section is also important to the understanding of high-quality

simulations of sympathetic cooling in a microwave trap, which suggest Rb is likely to

be a good coolant for CaF. We also correct an error in the interpretation of previous

results for sympathetic cooling in a magnetic trap, showing this may work from over

100 mK for Li+CaF and many Kelvin when using atomic hydrogen as a coolant.

Thirdly, we study quantum chaos in ultracold collisions. We find very clear and

strong signs of chaos in Li+CaH. We also show that a more strongly coupled system,

Li+CaF, is not fully chaotic and that there is unexpected structure in the levels of

chaos as the CaF rotational constant is varied. We also show that signatures of chaos

can emerge in a very simple atom-atom system, Yb(1S0)+Yb(3P2), which interacts

on only two Born-Oppenheimer potentials.

Finally, we examine the idea that metastable states in 2-body scattering greatly

enhance 3-body recombination at ultracold temperatures. We attempt to put it on

a more rigorous theoretical grounding by considering Smith’s collision lifetime and

related quantities, but those are shown to lack clear interpretations in the ultracold

regime. We therefore consider 3-body scattering theory and arrive at some general

conclusions about how we expect such 2-body features to appear in 3-body scattering

and suggest possible ways forward.
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3.7 Cooling rate coefficient of molecules as a function of their kinetic

energy when the coolant is (a) Rb and (b) Li, and for various values

of the s-wave scattering length. . . . . . . . . . . . . . . . . . . . . . 91

3.8 Time evolution of the phase-space distribution of molecules in the x

direction. The cooling times are (a) 0 s, (b) 2 s, (c) 10 s, and (d) 20 s.
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Chapter 1

Introduction

Cold and ultracold chemistry and physics have progressed dramatically over the

past two decades since the first observations of atomic Bose-Einstein condensates

(BECs) in 1995 [1–4]. Those seminal experiments marked what seemed to be a nat-

ural culmination of the long journey of cooling matter to ever colder temperatures.

This progression of cooling produced many important scientific discoveries along the

way, from the discovery and isolation of the noble gases [5] to superconductivity [6].

The realisation of BEC – where almost all particles exist in the same macroscopic

quantum ground state – and its Fermionic counterpart [7] achieves quantum degen-

eracy. Although this is far from end of the road for cooling, we can no longer look

for major progress or qualitatively new behaviours just from reducing temperatures

further. Instead, attention has turned to making, cooling, and understanding more

complex systems in order to observe an even richer variety of physics than is shown

by the simple atoms of the early BEC experiments.

The novel physics of this cold and ultracold regime can mostly be thought to

arise from one of two origins: firstly, the breakdown of Bohr’s correspondence prin-

ciple as temperature falls towards zero, removing the averaging over many quantum

states that leads to observed classical behaviour; secondly, the thermal de Broglie

wavelength

λdB =
h

p
=

h√
2mkBT

(1.0.1)

becomes a dominant length scale. For example, the onset of BEC can be thought

1



1.1. Production and uses of cold and ultracold atoms and molecules 2

of, in conceptual terms, as either when all the particles begin to occupy the same

lowest macroscopic translational level, or when λdB becomes comparable to the

spacings between particles. It can already been seen that the crucial quantity for

the interesting effects is rarely just the temperature itself, and other factors such as

the mass of the particles can affect what energies and temperatures are of interest.

Nonetheless, the physics community has broadly adopted the definition of cold to

be below 1 K and ultracold to be below 1 mK.

1.1 Production and uses of cold and ultracold atoms

and molecules

Ultracold atoms have been successfully produced for more than two decades. This

is almost entirely built on the technique of laser cooling [8–11], which won the

Nobel Prize in Physics 1997. The basic scheme of laser cooling (specifically Doppler

cooling) is to irradiate a sample with light that is slightly red-detuned from an

atomic transition, such that the Doppler shift experienced by a counter-propagating

atom will bring it into resonance. The atom absorbs the photon along with its

momentum which is opposite to the atom’s propagation direction, thereby slowing

it. The photon must be reemitted, but the direction is random and so there is still

a net slowing effect on the atom. This effect is often combined with magnetic fields

in order to assist bringing different velocities of atoms in different spatial regions

into or out of resonance with the laser, for example in a Zeeman slower [12] or a

magneto-optical trap (MOT) [13].

Doppler cooling has limits of the temperatures it can reach, and likely cannot cool

atoms to BEC by itself. The limit is often determined by the natural linewidth of the

transition, but there are further ‘sub-Doppler’ cooling effects that are subsequently

used to reach even lower temperatures, such as optical molasses [14–16]. However,

there is a fundamental photon-recoil limit beyond which laser-cooling usually cannot

proceed. Beyond laser-cooling, evaporative cooling in a pure magnetic trap is used

to reduce temperatures further [17, 18]. This was the final stage of cooling used to

first achieve BEC [1]. This is often performed by using radio-frequency radiation to
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drive transitions to untrapped states at magnetic field reached by only the hottest

atoms in the trap. These techniques are now standard in many laboratories around

the world.

Not all atoms are well suited to all these techniques. Evaporative cooling requires

large numbers and high densities of the atoms, as well as suitable intra-species scat-

tering properties for rethermalisation. In this case, it is possible to sympathetically

cool these species by holding them in the same trap as a species which is being

cooled. Provided the inter-species scattering properties allow sufficiently quick ther-

malisation then both species will be cooled. This method was first demonstrated for

two different spin states of 87Rb [19], then for different isotopes [20–22], and finally

cooling one element with another [23, 24]. This method has greatly expanded the

range of atoms that have been brought to ultracold temperatures. In particular,

the scattering of identical fermions is strongly suppressed at low energy, so these

will never be suitable for evaporative cooling, so sympathetic cooling with another

species has been a commonly-used technique used to reach Fermi degeneracy [21–23].

Unfortunately, the techniques that have been so successful for cooling atoms have

proved much more challenging to apply to molecules. Laser cooling techniques rely

on a great many photon absorbance-emission cycles, so need a very nearly closed

transition to work efficiently. However, molecules have a great deal of internal struc-

ture so the emission from the excited state will generally populate a mixture of states

rather than just the desired state. It is only in the past few years that the difficul-

ties associated with this have been successfully addressed for a very limited class of

molecules, as discussed near the end of this section. The search for alternatives has

led to a considerable variety of techniques for creating cold and ultracold molecules,

with varying degrees of success. These are usually separated into “direct” methods,

which take hot and/or fast molecules and make them cold, and “indirect” meth-

ods, which take ultracold atoms and convert them into ultracold molecules. So far,

indirect methods have been the most successful for creating ultracold molecules in

relatively large numbers, and direct methods have only recently achieved cooling to

ultracold temperature for a very small number of molecules. However, the direct

methods may be able to cool both a wider variety and more complicated molecules.
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1.1.1 Production of ultracold molecules: Indirect methods

Indirect methods of producing ultracold molecules start from ultracold atoms and

associate them into molecules. The great advantage of these methods is that if

the association process is adiabatic then the molecules will produced at the same

ultracold temperature as the atoms. The two different methods have been pursued

in this area are photoassociation and magnetoassociation.

Photoassociation [25, 26] is essentially equivalent to a spectroscopy experiment:

an intense laser field is used to transfer pairs of colliding atoms to a bound state.

Initial proposals were to associate pairs of atoms to quasi-bound states on potential

curves correlating with excited atomic states, which then spontaneously decay to

truly bound states on the lowest potential curves [27–29], and this was first demon-

strated experimentally for caesium [30]. An alternative to relying on spontaneous

emission is to use stimulated emission from the excited state. This allows all the

molecules to be produced in a single state and provides some degree of control over

which state is to be populated [31, 32]. However, photoassociation suffers from very

poor wavefunction overlap and rely on transfer from transient unbound collisional

states, so typically struggle to produce large numbers of molecules.

Magnetoassociation [33] makes use of magnetic Feshbach resonances to associate

pairs of atoms to form molecules. The magnetic field in the experiment is varied such

that a quasi-bound state above the dissociation threshold moves to below threshold.

As this state crosses the threshold, pairs of atoms colliding at the threshold transfer

adiabatically from the continuum to the bound state and form very-weakly bound

molecules often known as Feshbach molecules [34]. These Feshbach molecules have

been formed for many combinations of atoms, mostly alkali-alkali systems [35–42]

but recently more exotic atoms such as Dy [43], and there are proposals to mag-

netoassociate alkali metal atoms with alkaline earth atoms to make molecules with

both electric and magnetic dipole moments [44–46].

Once formed, these Feshbach molecules can be transferred to deeper states, in-

cluding the absolute ground state, by stimulated Raman adiabatic passage (STI-

RAP) [47, 48]. This involves a transition up to a state corresponding to an excited

electronic configuration followed by stimulated emission back down to a lower rovi-
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brational state of the original ground electronic state. This process is similar to

2-photon photoassociation, but with three important advantages: the wavefunction

overlap is typically better when starting from a bound state rather than a scattering

state; the interaction time is not limited by the lifetime of a collision; and the process

can be performed coherently. To date, this is the only method to have produced a

sample of ultracold molecules in their absolute ground state. The first molecule to

be produced in this way was 40K87Rb [49], which was followed by 87Rb133Cs [50, 51],

23Na40K [52], and 23Na87Rb [53].

1.1.2 Production of ultracold molecules: Direct methods

Direct methods of producing ultracold molecules start with molecules at higher

temperatures and cool them down to ultracold temperatures. An advantage of this

is that in principle a wider variety of molecules can be produced rather than just

those made from the limited selection of atoms available at ultracold temperatures.

Polyatomic molecules are also likely to be easier to cool directly than by an indirect

method. However, direct cooling of molecules to ultracold temperatures has not yet

been demonstrated.

Buffer-gas cooling [54–56] makes use of a gas of cold helium atoms to cool hot

molecules through simple thermal transport. It is conceptually similar to conven-

tional refrigeration and atomic sympathetic cooling, a gas of cold helium is held in

a cell and the target molecules are introduced, typically through laser ablation or a

molecular beam [57, 58]. This was first demonstrated for molecules by Doyle [59]. It

is generally successful at cooling both internal and translational degrees of freedom

for a wide range of molecules [57, 58, 60–66], producing large quantities and high

densities of the cooled molecules. The temperatures that can be reached with this

method are limited by the temperature at which sufficient density of helium gas

can be produced and contained, which typically limits final temperatures to 100s of

milli-Kelvin. Additionally, the required additional step of removing the helium once

the molecules are cooled is both time-consuming and will degrade the quality of the

vacuum.

A more useful version of this method may be the buffer-gas beam [67–72]. The
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difference with this method is that the helium and cooled molecules are expelled from

the buffer-gas cell to form a beam. This produces a molecular beam that is internally

cold, intense, and moving significantly slower than a conventional molecular beam.

This set-up is more suitable for producing molecules that can be used in a further

stage of an experiment away from the relatively dense sample of helium.

In order to slow a group of molecules in a beam to zero average velocity in the

laboratory frame, Stark [73] or Zeeman [74] deceleration1 [75] is commonly used.

This makes use of the Stark or Zeeman effect of the molecules and an electric or

magnetic field that oscillates along the path of the molecules. The group of high-

field-seeking (low-field-seeking) molecules is slowed as kinetic energy is converted

to Stark or Zeeman energy as they travel up the effective potential created by a

decreasing (increasing) field; when they approach a minimum (maximum) in the

field, it is switched such that the molecules again feel a decreasing (increasing)

field. The deceleration caused by each individual rise in Stark or Zeeman energy

is small, but if repeated a large number of times this can bring the molecules close

enough to stationary to be captured by a suitable trap [76]. A improved version

of this technique [77–81] uses continuously varying fields in place of the original

sharply switched fields to maintain smoothly moving potential minimum through

the length of the decelerater. The velocity of this minimum can then be decreased to

slow molecules within it, and could ultimately become a static electric or magnetic

trap. Stark and Zeeman deceleration do not cool molecules per se, but can slow the

macroscopic motion of a cloud of molecules whose relative motion is cool, such as

those produced in a buffer-gas beam. The combination of a buffer gas beam and

Zeeman or Stark deceleration is a promising combination to cool a wide variety of

molecules from readily available hot sources (e.g., room temperature gas bottle, or

laser ablation) down to cold temperatures.

There are other methods that could produce samples of cold atoms. Kinematic,

or “billiard ball”, cooling [82–85] relies on a single collision, typically with a rare gas

atom in a molecular beam, to slow a fast molecule from a molecular beam to rest

1Note that this in not the same thing as Zeeman slowing [12] used in atomic cooling, which is
a type of laser cooling.
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in the laboratory frame. Photostop [86–88] uses the recoil from photodissociation

to cancel the laboratory-frame motion of a molecule in a molecular beam and leave

one of the dissociated fragments stationary. Kinematic cooling relies on collisions

resulting in a particular scattering angle to cancel the velocity of the molecule, and

photostop relies on the dissociation fragments separating in the correct direction to

cancel the velocity of one of them. Naturally, these conditions are not fulfilled for the

majority of the molecules, but both techniques compensate for this by starting from

a conventional molecule beam which can contain very large numbers of molecules

by the standards of cold and ultracold experiments, and these techniques should be

able to produce comparable temperatures and numbers as other cooling techniques.

Unfortunately, the direct cooling methods considered so far cannot reach tem-

peratures below 100 mK with large numbers and high densities, and are not likely to

be able to. Therefore, a further “second-stage” cooling technique will be required to

reach ultracold temperatures. Direct evaporative cooling has been proposed for this

stage [89], but that requires initially large numbers and high densities of molecules,

which are rarely achievable. Further, the initial system considered for evaporative

cooling was NH [89–91], but further calculations showed that evaporative cooling

would likely be impaired by a reactive mechanism [92]. Nonetheless, evaporative

cooling has been demonstrated for OH down to a few mK [93].

One of the leading candidates for this second-stage cooling is sympathetic cooling

with ultracold atoms [94]. This has been a highly successful technique in the atomic

case, but the critical difficulty for molecules relates to the magnetic traps that are

most commonly used to trap molecules. These can trap only the low-field-seeking

states, which can never be the lowest state so there will always be the possibility of

inelastic collisions which will transfer molecules to an untrapped state. There has

been much theoretical consideration of which systems might have sufficiently weak

inelastic transitions to allow sympathetic cooling [95–107]. A few systems have been

suggested as good candidates for sympathetic cooling in a magnetic trap, such as

Mg+NH [100, 103], Li+NH [106], and Li+CaH [107]. A particularly important

conclusion is that a light coolant will strongly suppress inelastic collisions at low

magnetic field due to a large centrifugal barrier in outgoing channels [103, 106, 108];
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this suggested the use of atomic hydrogen as a coolant [109, 110] and also that

lithium may be a reasonable coolant for a wide variety of molecules.

Sympathetic cooling in traps other than static electric or magnetic traps is not

necessarily sensitive to inelastic collisions. Sympathetic cooling in a microwave trap

[111] has emerged as a promising alternative to using a magnetic trap [112, 113] as

it allows molecules to be trapped in their ground state and therefore removes the

possibility of inelastic collisions. This situation is considered in much greater detail

in section 3.2 of this thesis.

Finally, laser cooling is a good option as a second-stage cooling technique for some

molecules [114]. The crucial factor is for the Frank-Condon factors for the relaxation

from the excited electronic state should be nearly diagonal. The numbers of photons

that need to be scattered for useful cooling is of the order 10,000, so branching

ratios of as little as 0.01% need to be considered. In practice this means that a large

number of repumping lasers are needed for effective cooling of molecules, even in

the most favourable cases. Some degree of laser cooling has been demonstrated for

CaF [115, 116] and YO [117, 118], but the majority of work in this area has been on

SrF, including the first demonstration of a molecular MOT [119, 120]. Very recently,

temperatures as low as 250 µK have been reported [121, 122] for laser-cooling of SrF,

representing the first example of direct cooling to reach ultracold temperatures.

1.1.3 Applications

The uses that ultracold molecules could be put to are many and varied [123]. Firstly,

there are fundamental physics effects which will be observed at ultracold tempera-

ture. This is exemplified by Bose-Einstein condensation, which may show exciting

new behaviours for molecules with electric and magnetic dipole moments [124], and

other interesting effects might be observed by exploiting internal structure of the

molecules to engineer novel trap geometries [125, 126]. In recent years, there has

been growing interest in ultracold molecules (and atoms) that might show effects of

quantum chaos [127–130].

There is great interest in the use of ultracold molecules for ultra-high-precision

spectroscopy [131]. The low temperatures allow preparation of the single quan-
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tum state of interest, and allow long coherence and observation times, dramatically

increasing measured signal. Various line-broadening effects are also significantly re-

duced, in particular velocity-broadening. Certain molecules also have spectroscopic

lines that are highly sensitive to certain fundamental physical constants that atoms

may be insensitive to. Particular examples of this application are the search for

an electron electric dipole moment [132, 133], to show physics beyond the standard

model; and placing limits on the time-variation of fundamental physical constants

[134], in particular the ratio of the mass of the electron to the mass of the proton,

me/mp [135–137].

One of the most exciting prospective uses for ultracold molecules is quantum

computing [138–140]. However, that is probably still far removed from current ex-

perimental capabilities. What is more imminently feasible is quantum simulation,

where ultracold molecules are made to form a model of a certain many-body Hamil-

tonian that is not computationally solvable with current computing technology, and

the solution is read by simply observing the system. A particular focus has been

on molecules with an electric dipole in an optical lattice interacting through their

long-range (R−3) dipole-dipole interaction, for example work on the molecular Hub-

bard Hamiltonian [141, 142]. Spin-exchange in an optical lattice have been observed

[143], which is a first step towards quantum simulation.

Chemistry at ultracold temperatures behaves very differently from chemistry

at hotter temperatures [144]. Single-state control allows unprecedented resolution

and direct observation of quantum effects. For example, observations of chemical

reactions of ultracold KRb [145] have demonstrated the suppression of collisions of

identical fermions in the low-energy limit. There are also chemical reactions, such

as Li+CaH→LiH+Ca that can be changed from allowed to forbidden depending on

spin states of the reactants [107, 146]. It may therefore be possible to control these

reactions with unprecedented precision by controlling initial states and the external

magnetic and electric fields [147].
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1.2 Scattering Theory

The theory of molecular scattering is quite extensive and good introductions can be

found elsewhere [148]. Presented here is an overview of some relevant sections, based

on Hutson [149]. Most of the theory will be written in terms of collisions, but many

parts are also relevant to near-threshold bound-state calculations; the differences will

be discussed towards the end of this section. We will describe most of the theory in

the absence of external fields; the theory including these is conceptually very similar

but the detailed description is significantly more complicated (see, e.g., Ref. 150).

Although some of the calculations in this work do include such fields, understanding

the details of such calculations is not needed to understand the results that are

important to this work.

The scattering wavefunction (neglecting internal structure) can be written as

Ψ(R)
R→∞∼ Ψ0(R) +R−1f(Θ)eikR, (1.2.2)

where Ψ0(R) is the wavefunction without scattering, assumed to be a plane wave, R

is the separation of the two particles, k is the wavevector, Θ is the scattering angle,

and f(Θ) is the scattering amplitude, which is complex and determines the angular

distribution of the scattering. The differential cross section is then

dσ

dω
= |f(Θ)|2 (1.2.3)

and the integral elastic cross section

σel =

∫∫
dσ

dω
dω = 2π

∫
dσ

dω
sin Θ dΘ. (1.2.4)

Some properties of collisions are not determined by the elastic cross section, but by

various other effective cross sections, which are often called transport cross sections

where they relate to transport properties of dilute gasses. The theory of these cross

sections is extensive and discussed elsewhere (e.g. ref. [151]), but here we introduce
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one transport cross section,

σ(1)
η = 2π

∫
dσ

dω
(1− cos Θ) sin Θ dΘ, (1.2.5)

whose relevance to thermalisation will be discussed in chapter 3.

The Schrödinger equation relevant to a non-reactive, 2-body collision in the

centre-of-mass (CM) frame is conveniently written

Ĥ(R, τ)Ψ(R, τ) = EΨ(R, τ) (1.2.6)[
− ~2

2µ
R−1 d2

dR2
R +

L̂2

2µ
+ Ĥint(τ) + V (R, τ)

]
Ψ(R, τ) = EΨ(R, τ) (1.2.7)

where R refers to the inter-molecular separation and τ represents all other coordi-

nates, Ψ is the collision wavefunction, E is the collision energy, µ is the reduced

mass for the collision, Ĥint(τ) is the internal Hamiltonian of the colliding particles

at infinite separation, L̂ is the operator for the relative angular momentum of the

two particles around each other, and V (r, τ) is the potential, which contains all

interactions between the two particles. The coupled-channel approach [152–155] to

solving this problem handles the coordinates τ by a basis-set expansion and handles

R by propagation on a grid. The total wavefunction is expanded as

Ψ(R, τ) = R−1

N∑
i

φi(τ)ψi(R), (1.2.8)

where N is the number of basis functions used in the expansion. The form of

the basis set, or “channel functions”, φi(τ), varies depending on upon the system

under consideration and how it is represented. They will often be chosen to be

eigenfunctions of Ĥint, but this is not necessary. Typical examples would include

rotational states of a rigid diatom, or electron and nuclear spin functions of an

alkali atom. Also included in the channel functions is the angular motion of the

two particles about each other, which corresponds to motion in the scattering angle

Θ. Eigenstates of L̂2 – spherical harmonics Y m
L (Θ, φ) with partial-wave quantum

number L ≥ 0 and eigenvalue ~L(L + 1) – are almost always used for this. The
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size of the basis set, N , generally has to be increased until numerical convergence is

reached.

From here we are in a position construct the coupled equations to be solved.

After substituting eq. (1.2.8) into eq. (1.2.7) and projecting onto a basis function

φj, we find [−~2

2µ

d2

dR2
− E

]
ψj(R) = −

N∑
i

Wji(r)ψi(R), (1.2.9)

where the coupling-matrix elements

Wji(r) =

∫
φ∗j(τ)

[
Ĥint(τ) + V (r, τ) +

L̂2

2µr2

]
φi(τ)dτ (1.2.10)

couple the solutions in different channels to each other. Assuming that the coupling

matrix is diagonal asymptotically (Wij(R)
R→∞∼ δijWii(R); if not, it is straightfor-

ward to rotate into a basis where it is), we can separate the channels into “open”

channels (E > Wii), in which the particles have sufficient energy to reach infinite

separation, and “closed” channels (E < Wii), in which the particles cannot fully

separate. We define the channel wavenumber ki through

~2k2
i

2µ
= |E −Wii(∞)| = |ECM

k,i |, (1.2.11)

where ECM
k,i is the kinetic energy of the collision in channel i; the superscript denoting

this as being in the CM frame is usually omitted, but will prove important for us in

chapter 3.

The boundary conditions are

Ψ(R)
R→0
= 0 (1.2.12)

and

Ψ(R)
R→∞∼ R−1

[
φj(τ)k

−1/2
j e−ikjr+iLjπ/2 +

∑
i

Sjiφi(τ)k
−1/2
i eikir−iLiπ/2

]
, (1.2.13)

where the sum runs over all open channels. The first part of eq. (1.2.13) describes an
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incoming wave in channel j and the second part describes outgoing waves that may

have been scattered into different channels. The effect of the scattering is described

by an S-matrix, S, with elements Sji. The S-matrix is an No ×No unitary complex

symmetric matrix, where No is the number of open channels. Note that we still

refer to this as an S-matrix even when there is only 1 open channel and it is a 1× 1

matrix, although in that case the scattering is often characterised instead by a phase

shift δ which is related to the S-matrix through S = e2iδ.

The short-range boundary condition eq. (1.2.12) does not uniquely define the

wavefunction. There are N linearly independent wavefunctions which satisfy it, but

we do not know which combination of them we need until they have been propagated

to long range and matched to the asymptotic boundary conditions. Therefore,

the usual computational procedure is to propagate all N solutions. Each of these

solutions has N components, resulting in an N×N wavefunction matrix Ψ(R) with

elements ψij(r), where one index specifies which of the N solutions and the other

specifies which channel the component refers to. Although the wavefunctions can

generally be complex, we can usually choose numerical solutions such that Ψ(R) is

real for convenience. After propagation, these solutions are matched to a long-range

boundary condition

Ψ(r)
r→∞
= J(r) + N(r)K. (1.2.14)

Here, J(r) and N(r) are diagonal matrices whose elements are

[J(r)]ij = δijrk
1/2
i jLi

(kir) (1.2.15)

[N(r)]ij = δijrk
1/2
i nLi

(kir), (1.2.16)

where jL(x) and nL(x) are spherical Bessel functions. K contains all the information

about to the completed collision, equivalently to the S-matrix, to which it is related

by

S = (1 + iKoo)−1(1− iKoo) (1.2.17)

where Koo is the part of the K-matrix between open channels.

The collision cross sections from asymptotic state α to β (which may be the
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same, in the case of an elastic cross section) now become

σα,β =
π

k2
α

∑
i∈α
j∈β

|δij − Sij|2. (1.2.18)

The notation i ∈ α refers to all channels i which correspond to level α, which may

include several channels, e.g. with different values of Li. In the case of scattering of

structureless particles we can rewrite this in terms of the phase shift for each partial

wave, δL. In this case, we find

σel =
4π

k2

∞∑
L=0

(2L+ 1) sin2 δL. (1.2.19)

In the case that it is not possible to scatter from channel i to another channel

corresponding to the same asymptotic level, the total inelastic cross section can be

written as

σα,inel =
π

k2
α

∑
i∈α

1− |Sii|2. (1.2.20)

The collision problem can often be factorised into several smaller sets of coupled

equations according to symmetry factors, such as different values of total angular

momentum. This leads to separate S-matrices each of which contributes to the total

cross sections independently.

Propagation methods

A method is needed to numerically propagate solutions generated at short range

out to long range to match asymptotic boundary conditions. A primary concern

for numerical algorithms when propagating such solutions is the behaviour in clas-

sically forbidden regions, where Wii > E. In these regions the wavefunction can

grow exponentially and can therefore cause numerical problems if care is not taken

and its value explodes. Specialised propagation methods have been developed for

scattering calculations, the most important of which are those that propagate not
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the wavefunction but its log-derivative [156, 157]

Y(R) =
dΨ

dR
Ψ(R)−1. (1.2.21)

It is clear that in the single channel case this will be constant if the wavefunction

itself is exponential, and those benefits also apply to the multi-channel case. A more

extensive discussion of propagation methods can be found in Ref. [155].

1.2.1 Low-energy scattering

At low energy, scattering is dominated by threshold effects [158]. At low enough

energy, scattering for L 6= 0 is suppressed by centrifugal barriers, and scattering in

the s-wave (L = 0) channel is usefully characterised by the scattering length as(k).

For scattering with only a single open channel this can be defined as

as(k) =
− tan δ0

k
. (1.2.22)

It becomes constant at low enough energy, and in many cases the k-dependence

can be safely neglected, but leading correction terms can be understood through

effective range theory [159, 160]. The s-wave elastic cross section is

σel =
4πa2

s

1 + a2
sk

2
, (1.2.23)

which shows that the elastic cross section takes a constant value of 4πa2
s at low

energy, provided as is constant and ask � 1, both of which will always become true

at low enough energy. Note that eqs. (1.2.22) and (1.2.23) are not approximations

and do not rely on any low-energy arguments, so are therefore accurate at any energy

and for any value of as, although they may lose physical meaning away from low

energy.

The interpretation of the scattering length at zero collision energy is that the

wavefunction asymptotically tends towards a straight line, and the scattering length

is the radius at which that line (although not necessarily the wavefunction itself)

crosses zero. Therefore, the wavefunction is asymptotically the same as it would be
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for a system whose potential consists only of a hard wall at R = as, even if this is

negative. This interpretation agrees with the constant elastic cross section 4πa2
s .

Whenever there is a bound state exactly at threshold, the scattering length is

infinite [161]. If the potential is scaled (i.e. V (R) → λV (R)) to make it deeper,

then the bound state moves to just below threshold and as is large and positive; as

the potential is deepened further the state moves further down and the value of as

decreases. As the potential gets close to supporting another bound state as becomes

large and negative and then when the new bound state is just at threshold it becomes

infinite again. This means that, if there are many bound states, the scattering

length can be highly sensitive to the details of the interaction potential. If there is

sufficient uncertainty in the potential to cover the range of changing the number of

bound states by 1 or more, then that uncertainty translates to a scattering length

that could be anywhere between −∞ and ∞. The uncertainties associated with

potentials from ab initio electronic structure theory do not usually allow calculation

of reliable scattering lengths unless the system has very few bound states. High

quality interaction potentials for ultracold physics must therefore usually come from

comparison with experimental results and careful fitting [162, 163].

If there are several open channels then the scattering length becomes a complex

quantity a(k) = α(k)− iβ(k). It is given for channel i as [164]

ai(k) =
1

iki

(
1− Sii(k)

1 + Sii(k)

)
. (1.2.24)

Like the single-channel scattering length, it becomes constant at low energy, and

determines both elastic and total inelastic s-wave cross sections [164]

σel =
4π|as|2

1 + k2|as|2 + 2kβ
(1.2.25)

and

σinel =
4πβ

k(1 + k2|as|2 + 2kβ)
. (1.2.26)

However, it generally does not diverge when there is a state at threshold. In the

single-channel case, a diverges when Sii = −1 and the denominator in eq. (1.2.24)
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is zero, but if there is inelastic scattering then |Sii| < 1 and the divergence of the

scattering length is suppressed [164].

1.2.2 Resonances

Scattering resonances occur when there is a quasi-bound state which is coupled

to the incident channel. They can be caused either by states in a closed channel

(Feshbach resonances) or by states in an open channel trapped behind a centrifugal

barrier (shape resonances). Either of these will cause sharp features in the scattering

properties as a function of energy. If there is only one open channel, then an isolated

narrow resonance will cause the phase to vary according to the famous Breit-Wigner

form

δ = δbg + arctan

(
ΓE

2(Eres − E)

)
, (1.2.27)

where ΓE characterises the width of the resonance, Eres is the position in energy of

the resonance, and δbg is a slowly varying background term. This corresponds to

the S-matrix element tracing the unit circle in the complex plane. If there is more

than one open channel, then all the S-matrix elements trace circles of various radii

in the complex plane [165]. The quantity that follows eq. (1.2.27) is the eigenphase

sum, which is the sum of the phases associated with the eigenvalues of S.

The situation is different when we consider a fixed collision energy at or near

threshold as an external field is varied. The bound state energy typically varies with

field in a different way to the threshold, so there is a possibility of a state moving

across threshold as a function of an external field. This creates a “zero-energy”

Feshbach resonance, and it has been most commonly demonstrated using a varying

magnetic field so is sometimes called a magnetic Feshbach resonance [166, 167].

In this case, the important quantity is the scattering length, which varies for the

single-open-channel case as [168]

a(B) = abg

[
1− ∆B

B −Bres

]
, (1.2.28)

where Bres is the field at which the resonance occurs, ∆B characterises its width,

and abg is the background scattering length away from the resonance. This shows a
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pole which coincides with the position at which the bound state crosses threshold,

as discussed earlier. Careful control of the magnetic field allows controlled variation

of the scattering length to a wide range of values. The use of zero-energy Feshbach

resonances in this way has been crucial to a great many aspects of ultracold physics

in the past two decades.

If there are multiple open channels, then the behaviour is again more complicated

[164]. The pole is suppressed, and the real and imaginary parts of the scattering

length show an oscillation, which may either be very large if there is little inelastic

decay from the resonant state, or very small if the quasi-bound state is strongly

decayed. The scattering length describes a circle in the complex plane

a(B) = abg +
ares

2(B −Bres)/Γinel
B + i

, (1.2.29)

where the ‘resonance scattering length’ ares characterises how large an oscillation a

shows and Γinel
B characterises the inelastic loss from the resonance.

An extensive review on “Feshbach resonances in ultracold gases” can be found

in Ref. [169].

1.2.3 Bound states

The coupled-channels method is also applicable to the problem of finding bound

states, and is particularly suited to finding weakly-bound states that extend out to

large R. The Schrödinger equation, expansion of the wavefunction and resulting

coupled equations (eqs. (1.2.7) to (1.2.9)) are the same as the case of scattering.

For a bound state, the wavefunction dies to zero not only as R → 0 but also as

R→∞, and at most energies it will not be possible for the wavefunction to satisfy

both boundary conditions at the same time. It is therefore necessary to perform a

calculation at a particular energy, check to see if it meets the boundary conditions,

and if not then refine the energy and repeat the process.

Numerically, a single propagation starting at one end of the range and proceeding

to the other end would inevitably run into numerical instability as it is propagating

into a classically forbidden region at the end of its propagation. Therefore two
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propagations are performed, one outwards from a small value of R, ψ+(R), and one

inwards from a large value of R, ψ−(R), and if the energy is a bound-state energy

then it will be possible to match both the wavefunctions and their derivatives at a

matching point Rmatch somewhere in a classically allowed region near the middle of

the range. As the wavefunctions can be scaled arbitrarily, it will always be possible

for their values to be made to match, but the criterion for their derivatives matching

is

[ψ+(Rmatch)]′/ψ+(Rmatch)− [ψ−(Rmatch)]′/ψ−(Rmatch) = 0 (1.2.30)

for the case of a single channel. With the expression in this form, standard numerical

techniques for finding zeros of functions can be used to converge on a bound state

energy. In the multichannel case, it is again necessary to propagate N independent

solution, and the matching condition becomes

det
[
Y+(Rmatch)−Y−(Rmatch)

]
= 0, (1.2.31)

although numerically it is more convenient to work with eigenvalues of Y+(Rmatch)−
Y−(Rmatch) rather than the complete determinant [155]. It is also possible to im-

plement a ‘node-counting’ algorithm that counts the number of eigenvalues below

the current energy, thus making it easy to bracket the eigenvalues and ensure that

all states in a range are found [153–155, 170].

1.2.4 Computer programs

There are readily available computer programs built to perform coupled-channels

calculations as described in this section. We use Hutson’s molscat [171] for scat-

tering calculations, and the closely related bound [172] for bound-state calculations.

The hibridon package [173] is also available for scattering calculations. We also

use field [174] for locating states at a particular energy as a function of an external

parameter (such as magnetic field). The procedure is very similar to locating bound

states in energy except that it is the field that is varied in place of energy. This is

not a formally rigorous process, like finding states in energy is, but works very well

in practice.
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Chapter 2

Quantum Defect Theory (QDT)

Quantum defect theory (QDT) is a family of powerful theories that exploit the

different energy scales between different regions in a scattering or near-threshold

bound-state system. QDT was originally developed in the context of atomic Ryd-

berg states [177, 178]; these are electronic states immediately below the ionisation

threshold of a neutral atom which can alternatively be considered as near-threshold

bound states of the corresponding electron-ion system. In this interpretation, the

electron moves primarily in the long-range Coulomb potential outside the ion core.

In the simplest case, where there is no deviation from the pure Coulomb interaction,

the energy levels are given by

En =
me4

2~2

Z2

n2
(2.0.1)

where e is the fundamental charge, m is the reduced mass of the electron-ion system,

Z is the charge on the ion, and n is the principal quantum number. This is an

excellent approximation for atomic hydrogen. However, for more complicated atoms,

the energy levels are better approximated by

En =
me4

2~2

Z2

(n− µn)2
, (2.0.2)

which introduces the “quantum defect” µn. This varies slowly with n, which is

equivalent to varying slowly with energy. In effect, this separates the problem into

two parts: the overall structure of the equation is still the same as eq. (2.0.1), which

corresponds to the long-range region where the electron is far from the ion core and

21
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the interaction is well approximated as a pure Coulomb potential; and secondly,

the short-range region where the effect of the ion core and the complex interactions

associated with it are not explicitly considered, but simply parameterised into a

single value µn. This value corrects for the effect of the ion core, and varies slowly

with energy, leading to a simple solution to a potentially difficult many-electron

problem. In fact, some of the ideas of QDT echo earlier work on collisions of neutrons

with nuclei by Bethe [161]. In that work, the problem was also separated into

a short-range region whose effect was parameterised without consideration of the

detailed interactions (the nucleus), and a simplified long-range region (free motion

of the neutron); this simple model was used to explain the unexpectedly common

appearance of large elastic and neutron-capture cross sections.

Since the initial conception of the theory, further work has greatly expanded and

developed QDT, including applying it to electron-ion scattering above threshold

[179], multi-channel problems [177, 180, 181], and different kinds of long-range po-

tentials. In particular, it has been realised that the Coulomb potential gives QDT

a particularly simple form and that other long-range potentials are usually more

complex to deal with [182–184]. In all these cases, the basic idea is the same: the

short-range and long-range parts of the problem are approximated in different ways.

The short-range part is usually parameterised in some way to avoid dealing with the

typically complex interactions in that region; it is also common to approximate the

parameterisation either to not vary or vary only slowly with energy. The long-range

part is approximated (often quite drastically) to allow solutions to be readily found;

the approximations used typically remove many of the difficult details of the system

but often also remove distinguishing features that make the system distinct from

similar systems. We will therefore often consider the long range to be so generic

that is can be thought of as system-independent, but the short range will vary by

system. The separation between short- and long-range regions is often mostly con-

ceptual and does not need to be specified exactly, although some numerical methods

do require a given location for the change from one region to the other.

In the case of cold and ultracold scattering, there is also a disparity in energy

scales that can be exploited in a similar way to the case of Rydberg states. The



2.1. Theoretical presentation 23

collision/binding energies are of the order 1 K or usually much smaller, and the

interaction potentials rapidly approach a similar magnitude at long range, but the

potentials typically reach the equivalent of 10 to 10,000 K at their deepest points

at short range. At long range, the approximations are usually that the interaction

potential can be represented by a standard asymptotic form (such as −C6r
−6),

and, in multi-channel systems, that there is no coupling between channels. These

approximations are usually so drastic that the resulting solutions have no validity

except at long range. At short range, the typical approximation is that the solution

is independent of energy, or slowly varying, because the range of energy of interest

(� 1 K) is much smaller than the local energy scale (10 ∼ 10000 K). The application

of QDT to cold and ultracold collisions was pioneered by Julienne and Mies [185]

and has been taken up by numerous other authors, mainly for collisions of neutral

particles [186–195], including scattering of two dipoles [196, 197], and also for ion-

atom collisions [198–202]. One particularly successful application of QDT has been

in the description of resonances at and near zero energy [203–205].

This chapter is laid out as follows. Section 2.1 sets out the theory of QDT,

specifically Gao’s expression of QDT including angular-momentum-insensitive QDT

(AQDT). In section 2.2 we systematically compare AQDT predictions with calcu-

lations on real systems with reliable interaction potentials, demonstrating excellent

agreement for simple systems, but showing the limitations of the theory for more

complex multi-channel systems. In section 2.3 we develop an effective single-channel

model to quantify typical behaviours of complex systems and compares it with re-

alistic calculations on the complex system Li+LiH.

2.1 Theoretical presentation

QDT can be used as either a powerful analytic theory (e.g. [206]) or an efficient

numerical technique (e.g. [191]), but in either case the principles are the same. The

true solution is described as a linear combination of reference functions with known

behaviour at certain points - reference functions are solutions for the problem, un-

der the approximations used in the long-range region. The crucial aspect of QDT
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is the transformation between different sets of reference functions with particular

behaviours. Typically, two sets of reference functions are used, one that is conve-

nient to describe the solution at short-range, usually with WKB-like normalisation

conditions, and the other suitable for matching to asymptotic boundary conditions.

Using reference functions allows the transformation from the short-range solution to

the asymptotic limit to be described in a small number of parameters. As the refer-

ence functions and the transformation are not directly dependent on the particular

true solution, these parameters are applicable for a given model of the long-range

interactions whatever the short-range details. On a computational level, this allows

us to be efficient and not re-calculate solutions in the long-range region for every

slight variation in the short-range region. It also facilitates analytic approaches

which allow simple relationships to be obtained between short-range parameters

and asymptotic observables, and can provide clear insight into the separation of

system-dependent and system-independent effects.

We assume that the solution in the short-range region is known and/or pa-

rameterised. Recent applications in the literature have obtained this, for example,

using explicit coupled-channel calculations [191–193] or a statistical description of

a chaotic set of resonances [207, 208], although it is also common just to describe

it with one or more parameters which are to be empirically determined. As this

short-range solution will be used as a boundary condition, how it is obtained does

not make a difference to the basic theory. However, many of the ways in which we

use the theory in this work are only applicable if the short-range solution can be

approximated to be independent of energy.

Within the general scheme outlined so far, there are many possible implemen-

tations. Distinguishing features of these can include some (but not necessarily all)

of: how the short-range region is described; what approximations are applied to

the long-range region; how the reference functions are defined; and how the trans-

formation between reference functions is parameterised. For cold and ultracold

collisions, the most commonly used implementation is that of Mies and Julienne

[181, 185, 209, 210], which is similar to the earlier version of Seaton [177] and is ex-

cellent for description of resonances [204]. However, we prefer to use Gao’s version
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in this work as I feel it to be a more naturally elegant mathematical description,

and because it helps to emphasise some elements of the system-invariance QDT

can show. In particular, it provides a clean separation between parameters char-

acterising the short-range interactions, and parameters relating to the effect of the

long-range potential and the transformation of reference functions; by contrast, this

distinction can become blurred in the Mies and Julienne description, to the point

that in some uses the reference functions and their transformations depend explicitly

on the effect of the short-range region, which can obscure much of the commonality

between different systems.

2.1.1 Gao’s AQDT

The theory presented in this section is predominantly drawn from the work by Gao

on single-channel QDT [184, 187, 206, 211–214]. In particular, ref. [184] lays out

the important elements of the formalism in a complete and systematic manner,

and we base our analysis on that work. Note that particularly careful attention to

superscripts and subscripts is needed throughout.

Gao’s expression of QDT has been built around his earlier analytic solutions to

the Schrödinger equation eq. (1.2.9) with a pure attractive −C6r
−6 potential [211],

and we take the same approach here. However, the formalism presented could also

be used with other solutions, including numerical solutions calculated using a more

realistic long-range potential. The solutions themselves are immensely complicated

[211] and will not be discussed in detail here, but they are valid for arbitrary partial

wave and energy. We use code that Gao has written to calculate these solutions

[215], or quantities pertaining to them as discussed below. The use of these solutions

requires the approximation of the potential in the long-range region to consist only

of the −C6r
−6 term – the validity of this approximation in calculations on realistic

systems is considered in section 2.2.

It will often be convenient to write quantities in terms of the length and energy

scales associated with the long-range −C6r
−6 interactions. We use the length scale

r6 =

(
2µC6

~2

)1/4

, (2.1.3)
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and energy scale

E6 =
~2

2µr2
6

, (2.1.4)

which are also used by Gao, although he usually calls them β6 and sE respectively.

These scales, and the approximation of the interaction potential to just its long-

range −C6r
−6 form, allow the Schrödinger equation, eq. (1.2.7), to be rewritten in

the dimensionless form

[
− d2

dr2
s

− 1

r6
s

+
L(L+ 1)

r2
s

− ε
]
ψ(rs) = 0, (2.1.5)

where rs = r/r6 and ε = E/E6 are the reduced separation and energy. This removes

the explicit dependence on system-dependent quantities, C6 and reduced mass µ,

instead replacing them with energy and length scales. This gives rise to many of

the ideas involved in “universality”, where different systems may show identical

behaviour if quantities are measured in units of these scales rather than in absolute

scales such as SI units. Other authors sometimes use the length and energy scales

rvdw = r6/2 and Evdw = ~2/(2µr2
vdw) = 4E6, but those do not rescale the Schrödinger

equation in such a convenient way. Another important length scale is the mean

scattering length of Gribakin and Flambaum [216],

ā =
2π

[Γ(1/4)]2
r6 = 0.477 988 8 . . . r6 = 0.955 977 6 . . . rvdw, (2.1.6)

where Γ(x) is the Gamma function. which is the most relevant scale for scattering

lengths. It is the average value of the scattering length for a system with a potential

that behaves as C6r
−6 at long range.1 We will often give scattering lengths as

multiples of ā throughout this entire thesis. It also has an associated energy scale

of Ē = ~2/(2µā2). Values of some of these scales are given for example systems in

table 2.1.

The reference wave functions are now particular solutions to eq. (2.1.5), which

are defined by their boundary conditions. To facilitate using them as a basis for

1Technically, it is the Cauchy principal value rather than the average as the scattering length
has a non-integrable singularity.
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Table 2.1: Energy and length scales for example systems.
System C6/Eha

6
0 µ/u r6/Å (E6/kB)/µK ā/Å

6Li+174Yb [217] 1594 5.81 40.3 2560 19.3
Mg+NH [99, 218] 158.12 9.23 25.417 4070 12.1

87Rb+Cs [42] 5694 52.55 96.2 49.9 46.0
164Dy+164Dy [128] 2003 81.96 82.77 43.2 39.6
KRb+KRb [219] 16133 63.44 131 22.4 62.5

describing our true solution, they are defined in pairs. Following the definitions and

notation of Gao [184], the first reference functions we define are

f c
L(rs)

rs→0∼
√

2

π
r3/2

s cos(r−2
s /2− π/4) (2.1.7)

gc
L(rs)

rs→0∼
√

2

π
r3/2

s sin(r−2
s /2− π/4). (2.1.8)

These are standing-wave solutions that have WKB-like normalisation at short range;

these are sometimes referred to as “short-range solutions” because they have known

and useful behaviour at short range, but they are defined for all values of rs. This pair

are very similar to the solutions originally calculated by Gao [211] and are central

to his description of QDT. In particular, note these these short-range boundary

conditions are independent of both energy and angular momentum, although the

solutions away from rs = 0 will obviously vary with both energy and L. Next, we

define the equivalent standing-wave solutions normalised at long range,

sL(rs)
rs→∞∼

√
2

πks

sin(ksrs − Lπ/2) (2.1.9)

cL(rs)
rs→∞∼

√
2

πks

cos(ksrs − Lπ/2), (2.1.10)

for ε > 0, where ks =
√
ε; Gao also provides versions for ε < 0 in ref. [184] but we

will not need them here. These two sets of reference functions are related byf c

gc

 = Zc

s
c

 =

Zc
fs Zc

fc

Zc
gs Zc

gc

s
c

 , (2.1.11)

which defines the 2 × 2 transformation matrix Zc. This matrix varies with ε and
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L, but we will usually suppress those labels. The four elements of Zc are not all

independent and are limited by det(Zc) = 1. As part of his solutions for the r−6

potential, Gao found explicit, if complicated, analytical expressions for the elements

of Zc [211] and we use computer code [215] written by him to evaluate them.

We now consider a particular solution ψ to eq. (2.1.5). We define it as a linear

combination of reference solutions,

ψ(rs) = C (f c(rs)−Kcgc(rs)) , (2.1.12)

where C is an arbitrary normalisation constant and Kc is a short-range K-matrix

analogous to the asymptotic K-matrix in eq. (1.2.14). As with the S-matrix, we still

call this a K-matrix even although we are dealing with a single-channel problem.

Equally, we can rewrite eq. (1.2.14) itself in terms of our reference solutions as

ψ(rs) = C ′ (s(rs)−Kc(rs)) , (2.1.13)

note that the limit in eq. (1.2.14) has become an equality in this case. Combined

with eq. (2.1.11), this allows us to write down the relation between the short-range

and asymptotic K-matricies as

K =
Zc
gcK

c − Zc
fc

Zc
fs − Zc

gsK
c
, (2.1.14)

which is a central equation of QDT.

In addition to the standing-wave reference functions, eqs. (2.1.7) to (2.1.10),

we can also define travelling-wave reference functions. These are defined pairs of

incoming (−) and outgoing (+) waves. First at short range, called the inner region

by Gao,

f i+(rs)
rs→0∼

√
1

π
r3/2

s exp[−i(r−2
s /2)] (2.1.15)

f i−(rs)
rs→0∼

√
1

π
r3/2

s exp[+i(r−2
s /2)], (2.1.16)
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and at long range, called the outer region by Gao,

f o+(rs)
rs→∞∼

√
1

πks

eiπ/4 exp[+iksrs] (2.1.17)

f o−(rs)
rs→∞∼

√
1

πks

eiπ/4 exp[−iksrs]. (2.1.18)

These can be written in terms of the standing-wave reference functions asf i+

f i−

 =
eiπ/4√

2

1 i

1 −i

f c

gc

 (2.1.19)

and f o+

f o−

 =
eiπ/4iL√

2

 i 1

−(−1)Li (−1)L

s
c

 . (2.1.20)

Using the travelling-wave reference functions, we can understand the reflection

from and transmission through the long-range potential. A wave travelling outward

from short range (f i+) will be partially reflected back towards short range (r(io)f i−)

and partially transmitted (t(io)f o+) to long range. These transmissions and reflec-

tions can be written as the boundary conditions

ψ
rs→0∼ f i+ + r(io)f i− (2.1.21a)

ψ
rs→∞∼ t(io)f o+, (2.1.21b)

where we have defined complex reflection and transmission coefficients r and t, and

the superscript (io) indicates they are for a wave travelling from the inner region

outwards. Note that both sets of travelling wave reference functions are normalised

to the same flux such that a reflection or transmission coefficient with magnitude of

1 indicates complete reflection or transmission. As ψ and our basis functions are all

solutions to the same linear differential equation, these limits are in fact equalities

and so are valid at all rs. Thus we can combine the two limits to write

f i+ + r(io)f i− = t(io)f o+. (2.1.22)



2.1. Theoretical presentation 30

Starting from a wave travelling inwards from long range, we can similarly obtain

t(oi)f i− = f o− + r(oi)f o+, (2.1.23)

where the superscript (oi) now indicates they refer to a wave travelling from the

outer region inwards. Combining these with earlier definitions, these reflection and

transmission coefficients can be written explicitly as

r(io) =
(Zc

fc + Zc
gs)− i(Zc

fs − Zc
gc)

(Zc
fc − Zc

gs)− i(Zc
fs + Zc

gc)
=
√
Rc exp[i(δc − φc)] (2.1.24)

r(oi) = (−1)L
(Zc

fc + Zc
gs) + i(Zc

fs − Zc
gc)

(Zc
fc − Zc

gs)− i(Zc
fs + Zc

gc)
=
√
Rc exp[i(δc + φc)] (2.1.25)

t(io) = t(oi) = e−iLπ/2
2

(Zc
fc − Zc

gs)− i(Zc
fs + Zc

gc)
=
√
T c exp[i(δc − (L+ 1)π/2)],

(2.1.26)

where

Rc = 1− T c = |r(io)|2 = |r(oi)|2 =
(Zc

fc + Zc
gs)

2 + (Zc
fs − Zc

gc)
2

(Zc
fc − Zc

gs)
2 + (Zc

fs + Zc
gc)

2
(2.1.27)

and

T c = 1−Rc = |t(io)|2 = |t(oi)|2 =
4

(Zc
fc − Zc

gs)
2 + (Zc

fs + Zc
gc)

2
(2.1.28)

are reflection and transmission probabilities. The phases defined by

tan δc =
Zc
gs − Zc

fc

Zc
fs + Zc

gc

(2.1.29)

cos δc =
Zc
fs + Zc

gc

(Zc
gs − Zc

fc)
2 + (Zc

fs + Zc
gc)

2
, (2.1.30)

and

tanφc =
Zc
gs + Zc

fc

Zc
gc − Zc

fs

(2.1.31)

tanφc =
Zc
gc − Zc

fs

(Zc
gs + Zc

fc)
2 + (Zc

gc − Zc
fs)

2
(2.1.32)
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are associated by Gao with transmission and reflection respectively. As these quan-

tities are all written in terms of elements of Zc, they are all readily calculated.

To define a particular solution using travelling wave reference functions, we use

an equivalent of an S-matrix. We have

ψ(rs) = C ′′
(
f i−(rs) + Scf i+(rs)

)
, (2.1.33)

which defines the short-range S-matrix Sc – analogous to the S-matrix of eq. (1.2.13)

– which is a complex number with unit magnitude. Again, the long-range reference

functions have been chosen to be equivalent to the functions in eq. (1.2.13), which

can be rewritten as

ψ(rs) = C ′′′
(
f o−(rs)− (−1)LSf o+(rs)

)
, (2.1.34)

The relation between the asymptotic and short-range S-matrices can now be written

as

S = (−1)L+1

[
r(oi) +

t(oi)Sct(io)

1− r(io)Sc

]
, (2.1.35)

which can be expanded [184] as

S = (−1)L+1
[
r(oi) + t(oi)Sct(io)(1 + r(io)Sc + (r(io)Sc)2 + . . . )

]
. (2.1.36)

Equation (2.1.36) provides a clear physical understanding of the scattering process.

It is made up of multiple pathways: reflection off the pure long-range potential;

transmission inwards past the long-range potential, followed by a single interaction

with the short-range and retransmission out past the long-range potential; then a

further series of terms which involve repeated reflections off the long-range poten-

tial back towards short range. This last group is responsible for shape resonances

when r(io)Sc is close to 1 and successive terms of the sum add constructively. This

travelling-wave form of QDT is equivalent to the standing-wave form described ear-

lier, but provides considerable additional insight.

There are several short-range parameters that can be used to describe the system.
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We have already described the short range K- and S-matrices, which are related by

Sc =
1 + iKc

1− iKc
(2.1.37)

and

Kc =
1

i

1− Sc

1 + Sc
. (2.1.38)

Another useful parameter is the short-range phase shift δs [184], which is related to

the previous two parameters by

Sc = e2iδs (2.1.39)

Kc = tan δs. (2.1.40)

Instead of these obviously short-range but somewhat artificial parameters, some

authors use the s-wave scattering length at threshold in the same role as a short-range

parameter. Although the scattering length is an inherently long-range quantity, it

has a one-to-one mapping to the short-range parameters and it is far better known

and understood than the short-range parameters. This is conveniently related to

the other parameters through [184]

a

ā
= 1 + cot

(
δs − π

8

)
. (2.1.41)

The different formulations and short-range parameters are formally equivalent

to each other and should give identical results. In practice, it is usually easiest

to perform calculations using Kc and the standing-wave formulation, and we will

do so in section 2.2, but in section 2.3 it will instead be more convenient to use

Sc and the travelling wave formulation. However, it is often easier to present and

understand results in terms of δs or a/ā, and we shall normally use those quantities

for presenting results.

We make the common QDT approximation that the wavefunction at short range

is independent of energy in a region around threshold. This is reasonable because of

the separation between the large energy scale at short range and the small energy

scale associated with the region around threshold that we are interested in; this can
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alternatively be expressed as assuming that the energy range of interest is small

compared to the magnitude of the potential at short range. As the wavefunction

and the short-range reference functions (eqs. (2.1.7), (2.1.8), (2.1.15) and (2.1.16))

are all independent of energy at short range, then by eqs. (2.1.12) and (2.1.33) so are

Kc and Sc. Additionally, we follow Gao [213] in assuming that the wavefunction at

short range is also independent of partial wave L. This relies on a similar assumption

that the centrifugal energy is small compared to the potential at short range. As

we have deliberately chosen short-range reference functions that are independent

of L at short range, then Kc and Sc are also independent of L. Thus, in this

model, all the variation in the scattering properties with L and energy come directly

from the long-range potential and are described by the variation of Zc (or other

equivalent parameters, such as those used for the travelling-wave description). The

combination of these two approximations results in angular-momentum-insensitive

QDT (AQDT). Although these approximations may seem drastic, we will show in

section 2.2 that they can be astonishingly robust in realistic systems.

2.2 Accurate Representation of Simple Systems

with AQDT

Here we demonstrate Gao’s AQDT as applied to real systems, and test the limits of

its range of validity. Gao’s development of the analytic theory has been impressive

but has focussed primarily on the abstract aspects rather than concrete results on

real, or at least realistic, systems, and few others have used the theory enough to

guide expectations about which cases it may be useful for. We therefore want to

investigate directly the application of AQDT to a variety of real systems and assess

its validity.

2.2.1 Structureless atom+atom systems: Li+Yb and Rb+Yb

The first systems we investigate are Li+Yb and Rb+Yb. These are made up of a 2S

alkali-metal atom and a closed-shell 1S alkaline-earth-like ytterbium atom. These
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systems do exhibit very narrow Feshbach resonances due to coupling between the

alkali-metal hyperfine states due to the dependence of the hyperfine coupling on the

internuclear distance R [44–46]. However, these resonances have widths of 100 mG or

less. We will focus on the case of collisions far from resonance, which are accurately

described by single-channel calculations that neglect both electron and nuclear spin

and thus do not depend on magnetic field. We use interaction potentials for LiYb

[217] and RbYb [46] from electronic structure calculations, with a fixed long-range

C6 coefficient and the short-range potential scaled as V → λV to adjust the s-wave

scattering lengths as required. This single-channel system is quite close to the ideal

AQDT model and good agreement with the AQDT predictions is expected. The

length and energy scaling factors r6 and E6/kB are 40.3 Å and 2.56 mK for 6Li174Yb

and 82.7 Å and 61.1 µK for 87Rb174Yb. ā is 19.3 and 39.6 Å for 6Li174Yb and

87Rb174Yb respectively.

The crucial element of AQDT is the relationship between scattering in different

partial waves. This is conveniently demonstrated by considering the relationship

between the s-wave scattering length and the equivalent quantities for higher partial

waves [206] (which are no longer lengths but volumes or hypervolumes). For example

the p-wave scattering volume2 is predicted by AQDT to be

ap

āp

= −2

[
1 +

1

as/ā− 2

]
, (2.2.42)

where āp is the mean p-wave scattering volume [206] given by

āp =
[Γ(1/4)]2

36π
r3

6. (2.2.43)

Figure 2.1(a) shows as and ap for LiYb, from quantum scattering calculations on

the realistic potential curves described above, as the potential scaling factor λ is

adjusted between 0.8 and 1.2. Figure fig. 2.1(b) shows ap as a function of as over

the same range of λ. It may be seen that ap is indeed a nearly single-valued function

of as, as predicted by eq. (2.2.42). For a clearer comparison, we also convert these

2The p-wave scattering volume ap is defined by tan δp = −k3ap, where δp is the p-wave phase
shift.
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Figure 2.1: (a) s-wave (black, left scale) and p-wave (red, right scale) scattering
lengths/volumes, across a wide range of the potential scaling factor, λ; (b) ap as a
function of as, showing that the different segments of the line in (a) lie on top of one
another; (c) δs implied by the s- and p-wave scattering lengths plotted against each
other; note that both axes are cyclic, and the line of points continues for a short
distance in the top left corner of the plot.
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Figure 2.2: Comparison of σel (solid lines) and σ
(1)
η (dashed lines) in reduced units

with a scattering length of as = 1.05ā for LiYb (black) and RbYb (blue), compared
with standard AQDT (red) and hard-sphere AQDT (green).

scattering lengths to the short-range phase δs each implies, as shown in fig. 2.1(c).

If the AQDT approximation is correct then these phases will be the same and the

points will lie on the main diagonal (δs
s = δs

p; in fact, we see that they lie very

slightly below. This can be rationalised by noting that increasing the centrifugal

contribution to the effective potential reduces the depth and volume of the well

and so should be expected to decrease the accumulated phase, so that the p-wave

scattering has a lower effective short-range phase compared to the s-wave scattering.

To test the extent of the universal relationship, we have carried out calculations

of σel and σ
(1)
η for RbYb and LiYb for potentials scaled to give identical values of

as/ā. The results in reduced units are compared for the case of as = 1.05ā in fig. 2.2.

According to AQDT, values of as slightly greater than ā produce a d-wave shape

resonance at low energy, and this appears as a prominent feature for both species in
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fig. 2.2. Apart from small differences in resonance positions, the results in reduced

units are remarkably similar for LiYb and RbYb up to energies well above 1000E6,

up to at least 100 mK for RbYb and several Kelvin for LiYb. The calculations on

full potential curves are also compared with AQDT [213, 215]. This still replicates

the results amazingly well considering the simplicity of the model: the same shape

resonances are clearly present and qualitatively correct, although some are shifted

from the full calculations by amounts comparable to their width. Nonetheless, the

non-resonant part of the cross sections is extremely well reproduced over the energy

range. This includes a broad rise in the elastic cross section around 1000E6 which

is in fact the first of the characteristic ‘glory’ oscillations [148]; this peak does not

appear in σ
(1)
η because glory scattering contributes mainly to small-angle scattering

and so does not provide large contributions to this cross section.

The differences between the full calculations and the AQDT results might be

caused either by terms in the long-range potential apart from −C6r
−6 or by the

short-range wavefunction not being independent of energy or angular momentum.

We can try to test this latter possibility using a hard-sphere-plus-r−6 QDT model to

get a more realistic description of the variation of the short-range wavefunction. A

hard-sphere of radius rHS is modelled by a boundary condition of ψ(rHS) = 0, which

sets Kc through eq. (2.1.12). This value of Kc now varies with energy and angular

momentum, but otherwise the calculation of cross sections proceeds as previously.

We choose rHS = 0.0986331008173 to reproduce the zero-energy s-wave scattering

length of 1.05ā of the case discussed above; this value of rHS is approximately 4 Å for

LiYb, which is slightly further out than the classical turning point for the potential

we use for full calculations, which is at about 3 Å, but gives a slightly deeper potential

minimum by about 15%. The results are also shown fig. 2.2 in green, where it can

be seen that this model provides excellent agreement with the full calculations,

comparable with their agreement with each other. This therefore suggests that the

small deviations of the full calculations from pure AQDT are due to the assumption

that the short-range wavefunction is independent of energy and angular momentum,

and the approximation of the long-range potential as −C6r
−6 appears to be quite

accurate in this case.
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Figure 2.3: The cross section σ
(1)
η for RbYb, as a function of δs and the energy in

reduced units. Note that the δs has been shifted to start at π/8, and that δs is
periodic such that 9π/8 is equivalent to π/8. The spikes visible at the left-hand end
of some narrow ridges are artefacts of the finite grid used for plotting.
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Figure 2.3 shows σ
(1)
η for RbYb plotted as a surface as a function of δs and ε. As

as has a pole at δs = π/8, fig. 2.3 shows large peaks at low energy at either end of

the δs axis. It also shows a deep trough at δs = 7π/8, which curves towards higher

δs as a function of energy because of a Ramsauer-Townsend minimum [220] that

occurs in the s-wave cross section for small negative values of the scattering length.3

In addition, there are strong features due to shape resonances, which sharpen and

eventually become invisible as the energy decreases. The prominent ridge that

points towards δs = 3π
8

, as = 2ā at low energy is due to a p-wave resonance, while

the narrower ones that point towards δs = 5π
8

, as = ā and δs = 7π
8

, as = 0 are

due to d-wave and f-wave resonances, respectively. A series of ridges due to shape

resonances in higher partial waves may also be seen at higher energies, and can be

followed up to at least L = 9. Their positions closely follow the prediction of AQDT,

which is that, at zero energy, resonances with L ≥ 4 occur at the same location as

those with L − 4. Figure 2.3 would look very similar for any other single-channel

system with potential of the form −C6R
−6 at long range.

2.2.2 Structured atom+atom systems: Rb+Cs

The situation is somewhat more complicated for pairs of alkali-metal atoms and

other systems with extensive Feshbach resonances. AQDT still applies usefully to

the background scattering (away from Feshbach resonances), and in such regions

the “universal” behaviour of scattering lengths and cross sections is still expected

to apply, at least at relatively low energies. However, understanding the detailed

behaviour, including resonant effects, requires coupled-channel calculations using

accurate potential curves. We use the example of 87Rb+Cs, for which there are

highly accurate potentials available; these and the coupled-channels calculations

are described in detail elsewhere [42]. Full coupled-channel calculations on pairs

of alkali-metal atoms in a magnetic field become prohibitively expensive for large

basis sets, so the cross-section calculations are truncated at Lmax = 5; the AQDT

calculations in this section are similarly truncated. The effect of this truncation is

3This feature is more clearly visible in comparable plots in section 2.3.
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small for almost all the energy range shown. Scattering length calculations need

only Lmax = 3 for convergence.

Figure 2.4 shows s- and p-wave scattering lengths for 87RbCs as magnetic field is

varied from 0 to 500 G. Note that in this case the three different ML components for

p-wave scattering are not equivalent and results are presented for each. Figure 2.4

clearly shows a very different picture from that seen in fig. 2.1, as the variation in

scattering length is entirely due to Feshbach resonances. These Feshbach resonances

cannot be described by the single-channel QDT we use in this chapter; a more

complex multi-channel QDT model might be able to model these resonances [189,

221] but that is beyond the scope of this work. This means that the s- and p-wave

scattering lengths are not correlated in the way that they were for the single-channel

case, which can be seen in fig. 2.4(b) where the results deviate greatly from the line

predicted by AQDT. However, the results do still cluster around the background

scattering lengths, and these are close to the AQDT line. Note that the p-wave

scattering lengths for |ML| = 0 and 1 are split by a small amount; this is expected

and directly related to the known multiplet structure of p-wave Feshbach resonances

[222].

For a better comparison between RbCs and AQDT, fig. 2.5 shows the scattering

lengths as the reduced mass µ is varied4 from 50 to 60 u with magnetic field fixed

at 100 G. Varying µ varies the background scattering as well as resonances, so now

we see that the general form of the scattering length variation is similar to that

seen in fig. 2.1, but with significant Feshbach resonance structure superimposed.

Figure 2.5(b) and (c) show a clear clustering of points around the single-channel

AQDT prediction, but with a significant number of points lying well away from this

line. Again, we there is a separation between the |ML| = 0 and 1 p-wave scattering

lengths and we can now see that this varies with the effective phase; this variation

was not explicitly predicted in Ref. [222], but it is implicit in their eqs. (5) and (6)

that the splitting will vary. Nonetheless, these results show that the relationships

predicted by AQDT do have some use in multi-channel cases like this one, where it

4Note that this is not equivalent to varying between different isotopologues as we don’t vary
the hyperfine interactions from those of 87RbCs.
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Figure 2.4: Coupled-channel calculations of scattering lengths for 87RbCs as fields
is varied from 0 to 500 G. s-wave results are in black, p-wave ML = −1, 0, and 1
in red, green and blue respectively; note that the ML =-1 and 1 results are very
similar so most red points are below blue points and not visible. (a) s-wave (left
scale) and p-wave (right scale) scattering lengths/volumes; (b) ap as a function of
as, the black line is the AQDT prediction of eq. (2.2.42); (c) δs implied by the s-
and p-wave scattering lengths plotted against each other.
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Figure 2.5: Coupled-channel calculations of scattering lengths for 87RbCs as reduced
mass is varied from µ = 50 to 60 a.m.u. s-wave results are in black, p-wave ML = −1,
0, and 1 in red, green, and blue respectively; note that the ML = −1 and 1 results
are very similar so most red points are below blue points and not visible. (a) s-wave
(left scale) and p-wave (right scale) scattering lengths/volumes; (b) ap as a function
of as, the black line is the AQDT prediction of eq. (2.2.42); (c) δs implied by the s-
and p-wave scattering lengths plotted against each other.
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Figure 2.6: Coupled-channel calculations of σel (solid lines) and σ
(1)
η (dashed lines)

for RbCs at various magnetic fields: 500 G (non-resonant, red); 313.82 G (resonant
but as = abg, blue); 355 G (resonant, with as 6= abg, green), compared with single-
channel AQDT (black). The coupled-channel calculations are truncated at Lmax = 5.
Fully converged AQDT results for σel are shown as a black dotted line and are
indistinguishable from the Lmax = 5 results except at the highest energies.

might have been expected that the single-channel formalism would fail completely.

Figure 2.6 compares cross sections for 87RbCs at various magnetic fields B. We

consider several cases: (a) at B = 500 G, the system is in a non-resonant region and

the scattering length is close to its background value as = abg ≈ 350 Å ≈ 7.5ā; (b)

B = 313.82 G, which is in a region with numerous overlapping resonances but where

the scattering length is coincidentally close to the background scattering length; and

(c) B = 355 G, which is near a resonance at a point where the scattering length is

small, as = 12 Å. AQDT results for a single channel with as = abg are also shown

in fig. 2.6. In the non-resonant region, AQDT again gives excellent results for both

σel and σ
(1)
η . In the resonant region with the same scattering length, the results

are again remarkably good, except for a resonant feature that in this case occurs

near 10E6; here σ
(1)
η shows a characteristic peak and trough because the interference
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terms in eq. (3.1.16) pass through both positive and negative values as one of the

phases changes rapidly by π. Even when the scattering length is resonantly shifted

from its background value, so that the limiting low-energy scattering is different, the

cross sections rapidly approach the “universal” form from the background channel

once a few partial waves contribute.

2.2.3 A strongly anisotropic system: Li+CaH

As a final example we look at Li+CaH, ignoring all electron and nuclear spins. We

will introduce this system more completely in chapter 4, but here it is sufficient to

say that it is a highly anisotropic atom+diatom system that is expected to have a

strongly multi-channel character. We also note that in section 4.2 and Ref. [130] we

show this system to show strong signs of chaos. Figure 2.7(a) shows s- and p-wave

scattering lengths for this system as λ is varied, which shows that the scattering

is dominated by a large number of Feshbach resonances such that scattering at all

values of λ is strongly affected by one or more resonances. The structure that was

clearly visible in previous examples can no longer be seen, but there still appears

to be some correlation between some of the resonance positions in the two partial

waves. Figure 2.7(b) and (c) confirm that there is a remarkable amount of clustering

near the single-channel AQDT prediction. This clustering is seen to be below the

diagonal in fig. 2.7(c) even more significantly than was seen for LiYb. Although far

from exact, many of the points that make up this clustering are close to resonances

in one or both partial waves, which suggests that this relationship is holding to some

extent even across Feshbach resonances.

We can understand this surprising agreement between partial waves by consider-

ing the collision in the body-fixed frame. We can consider the projection of the total

angular momentum J (or equivalently the diatom rotation j) onto the intermolec-

ular axis, which is well known in studies of atom-diatom Van der Waals complexes

[223] and is given the symbol K. It can take values from −J to +J in integer steps.

Blocks of the Hamiltonian with different K are coupled only by Coriolis terms in the

body-frame representation of the centrifugal motion; these Coriolis terms are very

small compared to the potential anisotropy in the well region, so the Hamiltonian
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Figure 2.7: Coupled-channel calculations of scattering lengths for LiCaH as λ is
varied from 0.9 to 1.1. (a) s-wave (black, left scale) and p-wave (red, right scale)
scattering lengths/volumes; (b) ap as a function of as, the red line is the AQDT
prediction of eq. (2.2.42); (c) δs implied by the s- and p-wave scattering lengths
plotted against each other.
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Figure 2.8: Coupled-channel calculations of σel for LiCaH at various values of λ
between 0.9 and 1.1 giving the same s-wave scattering length as = 29.9 Å.

can be considered to be nearly block-diagonal with blocks labeled by |K| and par-

ity. Thus, the s-wave scattering in J = 0 and the p-wave scattering in J = 1 both

have contributions that correspond to K = 0, and the J = 1 scattering also has a

|K| = 1 component. The K = 0 components of the two partial waves will differ

only by a centrifugal term, which we have assumed to be negligible at short-range

under AQDT. Thus the expected short-range phase from just the K = 0 part of the

Hamiltonian is the same for both s-wave and p-wave scattering, even if it completely

dominated by Feshbach resonances. In this picture, the only difference between the

two partial waves comes from the presence of the |K| = 1 block of the Hamilto-

nian, which will cause resonances in J = 1 but not J = 0. Inspection of fig. 2.7(a)

on a larger scale shows the p-wave scattering length does indeed show additional,

mostly narrow, resonances compared to the s-wave scattering length. In this case,

the single channel model does not provide the full picture, but it does still provide a

remarkably good approximate model for the typical relationship between scattering

in different partial waves, even in a system that also shows signs of chaos.
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Figure 2.8 shows cross sections calculated for a number of values of λ which give

the same scattering length. These calculations use Jmax = 10 which is expected

to be sufficient to converge the calculations over the range shown. The single-

channel AQDT model predicts that these will all give the same variation of the

cross section with energy. As they have the same scattering length they all have the

same cross section in the low-energy limit but they rapidly diverge from each other

as E increases and show a wide variety of differing behaviours. These results fail

to agree with the single-channel prediction much more significantly than the results

in fig. 2.7 for two reasons. Firstly, the cross sections depend on many partial waves

rather than just the two considered in fig. 2.7, and these higher partial waves have

contributions from more blocks of |K| so are increasingly likely to vary from the

AQDT prediction. Secondly, the arguments presented for good agreement in fig. 2.7

only suggested that the short-range phase is constant between partial waves at a

particular energy (E = 0), but they do not make a similar argument for the other

QDT assumption that it does not vary with energy, therefore even the contribution

from a single partial wave will be expected to not agree with the AQDT prediction

and vary rapidly with energy. Thus there is clearly no useful prediction that could

be provided by AQDT in this case.

2.3 Modelling Typical Behaviour of Complex Sys-

tems

To describe complex systems – including those such as KRb+KRb that may be

intractable using coupled-channel methods – different approaches are needed. Con-

siderable success has been achieved with effective single-channel QDT methods that

take account of short-range loss, whether inelastic or reactive, with a single param-

eter. In particular, the model of Idziaszek and Julienne [190] successfully explained

the temperature dependence of reactive KRb+KRb collisions at temperatures below

1 µK. They also showed that in the limit of complete loss at short range, the loss

rate is independent of the scattering length, which was termed the “universal” limit.

This model was later extended [196] to handle the additional r−3 dipole-dipole po-
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tential that exists when the KRb molecules are oriented with an external electric

field; Kotochigova [219] and Gao [224, 225] have also worked on similar models.

More recently, Jachymski et al. [194, 195] have extended this theory up to the high-

temperature limit, and used it to interpret merged-beam experiments on Penning

ionisation in collisions of metastable He with Ar [226]. In this section, we undertake

a systematic and complete exploration of the behaviour of elastic and loss cross

sections from an effective single-channel model. We then compare these results with

full coupled-channel calculations on a prototype strongly coupled system, based on

rotationally inelastic collisions of LiH with Li atoms.

To model loss, the single-channel QDT model now needs two short-range parame-

ters. One of these describes the interaction without loss, while the other describes the

probability that loss will occur when the particles reach short range. For the former

parameter, Idziaszek and Julienne [190] used the reduced “background” scattering

length s = a/ā.5 We prefer to use the short-range phase δs defined in eq. (2.1.41) to

map the behaviour onto a finite range. We use the same loss parameter y as Idzi-

aszek and Julienne [190], which has the property that y = 0 corresponds to no loss

and y = 1 corresponds to complete loss at short range. However, we change to the

travelling wave representation for convenience. This gives a short-range S-matrix

Sc =

(
1− y
1 + y

)
e2iδs . (2.3.44)

This formulation already makes clear that the collisional properties of the system

are independent of δs (and hence of a) in the limit of y → 1 (|Sc| → 0), and that this

can be known from the construction of the problem without the need to actually

solve it. Now that Sc is not unitary, the corresponding Kc is not generally real;

thus in this case we find it easier to solve the QDT equations in the travelling wave

formalism.
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Figure 2.9: Contour plots of the elastic (left) and loss (right) cross sections for
distinguishable particles as a function of reduced energy E/Ē and short-range phase
shift δs for selected values of the loss parameter y.
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Figure 2.10: Contour plots of the elastic (left) and loss (right) cross sections for
identical bosons as a function of reduced energy E/Ē and short-range phase shift
δs for selected values of the loss parameter y.
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Figure 2.11: Contour plots of the elastic (left) and loss (right) cross sections for
identical fermions as a function of reduced energy E/Ē and short-range phase shift
δs for selected values of the loss parameter y.
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2.3.1 Results of the single-channel model

Figures 2.9 to 2.11 show the elastic and loss cross sections for selected values of the

loss parameter y, as a function of the short-range phase shift δs and the reduced

energy E/Ē, for distinguishable particles, identical bosons, and identical fermions,

respectively. Versions of these figures with every value of y from 0 (fully elastic)

to 1 (the universal loss regime) in steps of 0.01 are provided in the Supplemental

Material of Ref. 176, both as pdf files and animated into short videos.

We consider first the case of distinguishable particles. At y = 0 (fig. 2.9(a)),

low-energy scattering is dominated by s-wave features. There is a large peak near

δs = π/8, which corresponds to infinite scattering length, and a deep trough around

δs = 7π/8, which corresponds to zero scattering length. There is a set of sharp shape

resonances that curve towards their zero-energy positions: p-wave at δs = 3π/8, d-

wave at δs = 5π/8, and further partial waves at increments of π/4. Thus a shape

resonance in partial wave L+ 4 has the same zero-energy position as that in partial

wave L [212], e.g. an h-wave (L = 5) shape resonance curves towards the same

zero-energy position as the p-wave (L = 1) resonance. The plots are cyclic in δs

with period π, so that the contours along the top edge of each plot are the same

as those along the bottom edge. It may be noted that the trough corresponding to

zero scattering length curves upwards as a function of energy; this arises because

of a Ramsauer-Townsend minimum [220] that occurs in the s-wave cross section for

small negative values of the scattering length. Note that this case is almost identical

to the results shown previously for Rb+Yb in fig. 2.3.

There is by definition no loss cross section for y = 0; for y = 0.01 (fig. 2.9(b))

there is very little loss except close to the shape resonances: little flux is lost in

each interaction with the short-range region, so it is only at a shape resonance that

there are many interactions with the short-range region and loss becomes important.

Shape resonances cause visible features at least as high as L = 11 in the plots for

y = 0 and 0.01. Note that there is a large peak in the s-wave loss near δs = π/8,

even though s-wave collisions cannot have shape resonances per se: at low enough

5In this instance a actually refers to the scattering length of the reference potential, see Ref.
190 for more details.
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energies the long-range potential reflects outgoing flux even with no barrier, so that

the multiple interactions with the short-range region that are characteristic of shape

resonances can still occur.

As the loss parameter y increases from 0, the features in the cross sections

broaden out and eventually disappear, reaching the “universal loss” regime described

by Idziaszek and Julienne [190]. Most of the features described above are still visible

at y = 0.05, though the shape resonances are lower and do not persist to such low

energy. However, the features have largely washed out by y = 0.25. The amplitude

of variations in σloss as a function of δs decreases steadily as y increases. It should be

noted that, even though y = 1 corresponds to complete loss at short range, it does

not give the maximum possible overall loss rate. Values of y < 1 can sometimes give

even faster loss rates because of the possibility of resonant enhancement.

The results for identical bosons (fig. 2.10) show similar features to those for

distinguishable particles, except that there are no odd-L shape resonances. However,

the results for identical fermions (fig. 2.11) are visually very different, because of

the lack of an s-wave background at low energy. The shape resonances (this time

for odd L only) are therefore even more prominent.

Many experiments use thermal samples. Figure 2.12 shows the rate constants

for loss processes as a function of temperature, for selected values of y, for distin-

guishable particles (left) and identical fermions (right). The major features of the

plots remain, but it may be seen that some of the higher-energy structure is washed

out by averaging over kinetic energy. In particular, shape resonances due to partial

waves with L > 3 are barely visible.

2.3.2 Comparison with coupled-channel calculations

Most of the real collision systems of interest in ultracold physics are multichan-

nel in nature and have both shape and Feshbach resonances. As a prototype

strongly-coupled system, we carry out coupled-channel calculations on Li+LiH, but

we also calculate scattering at rotationally excited thresholds to explore the effects

of inelastic loss. The length and energy scales for Li+LiH are ā = 16.2 Å and

Ē/kB = 24.5 mK, giving a p-wave barrier height of 6.1 mK.
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Figure 2.12: Contour plots of the thermally averaged loss rate for distinguishable
particles (left) and identical fermions (right) as a function of reduced temperature
kBT/Ē and short-range phase shift δs for selected values of the loss parameter y.
The loss rate is scaled by K̄ = āh/µ.
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Figure 2.13: Elastic (left) and total inelastic (right) cross sections for Li+LiH col-
lisions for initial rotational levels j = 0 (black), 3 (red), and 6 (blue) at kinetic
energies E/kB = 1 mK (top) and 50 mK (bottom) as a function of the potential
scaling factor λ. Note the steadily decreasing amplitude of oscillations as initial j
increases.



2.3. Modelling Typical Behaviour of Complex Systems 56

Figure 2.13 shows the calculated elastic and total inelastic cross sections for

Li+LiH collisions for initial rotational levels j = 0, 3 and 6 at kinetic energies

E/kB = 1 mK and 50 mK as the scaling factor λ is varied across the range 0.95 <

λ < 1.05. Rotationally inelastic collisions are dominated by couplings at distances

much smaller than ā. E/kB = 1 mK is in the s-wave regime, so the cross sections

for initial j = 0 show very large peaks and deep troughs. These correspond to poles

and zeroes in the s-wave scattering length as successive atom-diatom bound states

pass through threshold and cause Feshbach resonances. At E/kB = 50 mK, peaks

and troughs are still visible, but are less pronounced because of contributions from

higher partial waves and the overall k−2 factor in the expressions for cross sections

[106].

For successively higher initial j values, the number of inelastic channels increases

and inelastic scattering becomes progressively stronger. The poles in scattering

length that occur for initial j = 0 are replaced by finite oscillations that diminish

in amplitude as the inelasticity increases [164]. The amplitude of the oscillations in

the cross sections thus decreases as initial j increases, even in the s-wave regime.

The interaction potential of ref. [227] has an estimated uncertainty of only 0.05%,

which is unusually precise for potentials from electronic structure calculations. In

cases where the uncertainty is 1 to 5%, which is more typical, it is sufficient to

span many oscillations in the cross sections in a plot such as fig. 2.13. Under these

circumstances it is not meaningful to regard the results of scattering calculations

on a single potential as predictions for the physical system, and it is essential to

understand the range of results that may be obtained across the uncertainties in

the potential [100, 228]. It is clear from fig. 2.13 that the range of possible results

is very large for purely elastic collisions in the s-wave regime, but diminishes both

when loss is present (for initial j > 0) and when there are significant contributions

from several partial waves [106].

As shown earlier, even without loss (j = 0), the scattering for L > 0 in a complex

system like Li+LiH is not fully determined by the value of δs obtained for L = 0. In

addition, for j > 0 the value of y obtained by inverting eq. (2.1.35) is a fast function

of λ, even in the s-wave regime, and is also L-dependent. Nevertheless, it is useful to
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Figure 2.14: Mean values and mean ± 1 standard deviation of log10(σel/Å2) from the
single-channel model with y = 0 (red), compared with the corresponding quantities
from coupled-channel calculations for Li+LiH collisions with initial j = 0 (black).
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Figure 2.15: Mean values and and mean ± 1 standard deviation of log10(σel/Å2)
(left) and log10(σloss/Å2) (right) from the single-channel model (red) for collision
energies E/kB = 1 mK (top) and 50 mK (bottom) as a function of y, compared
with the corresponding quantities from coupled-channel calculations for for Li+LiH
collisions with initial j = 6 (black horizontal lines). The vertical grey lines indicate
y = 0.57, which gives the best agreement between the single-channel model and
coupled-channel calculations for j = 6 at low energy.

compare the distribution of elastic and inelastic cross sections obtained from coupled-

channel calculations (as λ is varied over the range shown in the Figures) with that

obtained from the single-channel model (as δs is varied from 0 to π for a given value

of y). Figure fig. 2.14 shows this comparison for the mean and mean ± 1 standard

deviation of log σel as a function of collision energy for the case of initial j = 0, where

there are no inelastic channels, so y = 0. It may be seen that the single-channel

model (with no adjustable parameters whatsoever) quite accurately reproduces the

energy-dependence of both the mean and standard deviation, despite the fact that

most of the structure in fig. 2.13 comes from Feshbach resonances rather than shape

resonances.

For higher initial j, where inelastic scattering is possible, we need to choose a

value of y before comparing the coupled-channel and single-channel results. The
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Figure 2.16: Mean values and and mean ± 1 standard deviation of log10(σel/Å2)
(left) and log10(σloss/Å2) (right) from the single-channel model (red) and coupled-
channel calculations (black) for Li+LiH collisions with initial j = 6 (top) and j = 3
(bottom) as a function of collision energy. The single-channel calculations use y =
0.57 for j = 6 and y = 0.23 for j = 3. The blue lines show the classical Langevin
cross section multiplied by the reaction probability P re = 4y/(1 + y)2.
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upper panels of fig. 2.15 show the mean and mean ± 1 standard deviation for log σel

and log σloss for initial j = 6 at E/kB = 1 mK from coupled-channel calculations

(horizontal lines), compared with those calculated from the single-channel model

as a function of y (converging lines). It may be seen that y ≈ 0.57 approximately

reproduces the low-energy distributions. The lower panels of fig. 2.15 show the

corresponding plots at 50 mK; the single-channel model with y = 0.57 still repro-

duces the distribution of σloss fairly well, and is also qualitatively correct for σel,

though it somewhat overestimates the standard deviation in this case. The full

energy-dependence for y = 0.57 is shown in the upper panels of fig. 2.16; there are

quantitative differences, but the single-channel model is nevertheless remarkably ac-

curate for the distribution of both elastic and inelastic cross sections over the range

of energies shown. For comparison fig. 2.16 also shows the classical Langevin cross

section multiplied by the reaction probability P re = 4y/(1 + y)2 [194].

The agreement between the coupled-channel calculations and the single-channel

model does deteriorate somewhat for lower values of initial j. This is to be expected,

because these cases have fewer open loss channels and it is therefore more likely that

flux that is initially lost from the incoming channel will subsequently return to it,

violating one of the assumptions of the single-channel model. The lower panels

of fig. 2.16 show the case of initial j = 3, where the low-energy distribution is

reasonably well described by y = 0.23. In this case, however, the higher-energy

cross sections calculated from the single-channel model deviate somewhat from the

coupled-channel results, particularly for the elastic cross sections. Nevertheless,

qualitative agreement remains.

We have verified that the agreement between the coupled-channel calculations

and the single-channel model improves steadily from initial j = 1 to 6, as the number

of open loss channels increases. Initial j = 1 is a special case. In the presence of

inelastic scattering, individual Feshbach resonances exhibit both a peak and a dip

in the real and imaginary parts of the complex scattering length, and hence in the

loss cross section [164]. When there is a single dominant loss channel, the dip in

the s-wave cross section can be very deep [229] (and reaches σloss = 0 when there

is only one loss channel). This behaviour skews the distribution of log10 σloss at the
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low end, particularly for initial j = 1. For higher initial j, the effect is reduced by

additional loss channels, and at higher energies it is reduced by contributions from

higher partial waves.

2.4 Conclusions and Future Work

In this chapter we have investigated AQDT in a series of increasingly complex sys-

tems. The theory was expected to provide a good model of the simple single-channel

alkali+Yb systems at low energy, but it turned out to be more robust than expected

and provide an excellent single-parameter model of the scattering over a remarkably

large range of energy. It even captured the first effects of glory scattering, which is

usually considered to be well outside the realm of cold collisions, suggesting that ele-

ments of this theory may have useful applications beyond this immediate field. This

also confirms that there is only one independent parameter relating to the details

of the short-range potential which is important in cold (and not so cold) scattering

in systems of this type; this justifies the emphasis placed on determination of the

scattering length. In the moderately complicated alkali+alkali system, the very sim-

ple AQDT predictions provided robust predictions of characteristics of background

scattering, even if it inevitably failed to describe the Feshbach resonances of the

system. Finally, in the case of a strongly coupled system – where the single-channel

AQDT model was expected to fail completely – we found that it still provided a

remarkably good approximate model for the relationship between partial waves at

low energy. For such complex systems AQDT is more suitable as a guide to typical

behaviour rather than making specific quantitative predictions, but it is nonetheless

remarkable that such a simple single-channel model has any validity.

Now that the limits of the simple single-channel AQDT model have been in-

vestigated, a possible future direction would be to investigate more complicated

QDT models and how well they represent the more complicated systems. For exam-

ple, a frame-transformation multichannel QDT model with two independent short-

range parameters has proved to be a successful model for some alkali+alkali systems

[189, 221, 230, 231]. It would be interesting if a similar model could be successfully
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applied to more complex systems. It would be of particular interest if a system

which shows signs of chaos – such as Yb(1S0)+Yb(3P2) [129] (as we will discuss in

chapter 4) – could be accurately described using only a small number of parame-

ters. The application of such a model to scattering involving one or more molecules

could also be interesting because it may help determine the number of independent

parameters needed to describe the short-range interactions.

We then pursued further the idea of representing typical behaviour rather than

specific detailed results, this time to model collisional loss. We implemented the

travelling-wave QDT of Gao to model loss with a non-unitary short-range S-matrix.

The results of this QDT model are enlightening in themselves and illustrate some

interesting points about losses in scattering as well as clarifying the approach to the

universal loss regime of Idziaszek and Julienne [190]. The comparison of these results

with coupled channel calculations of rotationally inelastic collisions was highly suc-

cessful, with the model reliably and quantitatively reproducing the range of typical

results with only one or zero fitted parameters. In the case that full calculations will

only give us a range of typical results anyway – as is common in ultracold scattering

due to uncertainties in the potential – this method has great potential.

These last results suggest a remarkable possibility for inferring the behaviour of

cold collisions at higher temperatures from calculations in the s-wave regime. For a

system with enough open channels to be well described by a single-channel model,

it would be possible to perform coupled-channel calculations for incoming L = 0

only and use the results (as a function of a potential scaling factor λ) to determine

a short-range loss parameter y. The single-channel approach could then be used to

predict the range of possible loss rates at higher energy, without the need to carry

out explicit coupled-channel calculations for higher initial L.

One possible future direction is including the important physical effect of cen-

trifugal suppression of inelastic collisions into our model, to assess typical behaviours

for that case. Multichannel QDT has previously been shown to be capable of describ-

ing centrifugal suppression accurately in a simple system [218]. The most important

case of centrifugal suppression is for collisions in a small magnetic field, which typ-

ically require relatively large and complicated basis sets. This has made explicit
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calculations for systems of this type challenging and computationally expensive,

especially at energies above the s-wave regime and for complex systems. This is

exactly the case for which our model is expected to be most useful.



Chapter 3

Thermalisation

The thermalisation of clouds of atoms and molecules is important in many areas

in cold and ultracold physics. Most obviously, it is crucial for many direct cool-

ing methods, in particular sympathetic, buffer-gas, and evaporative cooling. It is

also often used as an easily observable signature of collisions, which can be used

to obtain an estimate of the magnitude of the scattering length or a cross section

[232, 233]. A particular example of this is the use of the variation in thermalisation

rates to observe magnetic Feshbach resonances (e.g., [234]). The ability to estimate

the magnitude of the scattering length can also be important as a simple method

for refining potentials; this is usually fairly approximate, but early in the investiga-

tions into a system even such approximate estimates can be useful in directing and

understanding further work on the system in question.

It is often supposed that the rate of thermalisation is determined by the elastic

cross section σel [56, 112, 235]. Recall1 that this is given as a simple integral over

the differential cross section (DCS) dσ/dω,

σel =

∫
dσ

dω
dω = 2π

∫
dσ

dω
sin Θ dΘ, (3.0.1)

where Θ is the deflection angle in the centre-of-mass frame. However, collisions that

cause only small deflections of the collision partners contribute fully to the elastic

cross section but make very little contribution to kinetic energy transfer and thus

1This was described previously in section 1.2, but repeated here for the purposes of discussion.
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to thermalisation. The appropriate cross section that takes this into account is the

transport cross section σ
(1)
η that was introduced in eq. (1.2.5),

σ(1)
η = 2π

∫
dσ

dω
(1− cos Θ) sin Θ dΘ, (3.0.2)

which has been used extensively in the context of transport properties at higher

temperatures [236, 237]. It determines the binary diffusion coefficient for a mixture,

and contributes to the shear viscosity coefficient.

The relevance of σ
(1)
η to thermalisation of ultracold gases has been pointed out

by Anderlini and Guéry-Odelin [238] (who call it σ̃), but no study of how it behaves

has been made for the conditions relevant to thermalisation of ultracold atoms and

molecules. In section 3.1 we explore how this cross-section arises and its behaviour

for real and realistic systems. Then, in section 3.2, we proceed to explore the ef-

fect that this cross section, and a generally anisotropic DCS, has on prospects for

sympathetic cooling in a microwave trap. For this we use systems and other details

directly related to ongoing experimental efforts to use sympathetic cooling. Finally,

in section 3.3, we apply what we have learned through the chapter to improve our

understanding of the prospects of sympathetic cooling in a magnetic trap. This in-

cludes correcting an error in interpretation of centre-of-mass and lab-frame energies

in previous work on the subject, which can have significant effects for systems with

considerable mass imbalance.

3.1 Differential Cross Sections and Integral Cross

Section for Thermalisation

In this section, we first re-derive eq. (3.0.2) in more detail than was given by Ander-

lini and Guéry-Odelin [238]. We then give examples in section 3.1.2 of differential

cross sections and how they affect the integral cross-sections σel and σ
(1)
η for realistic

potentials. Finally, we consider how this work affects the determination of scat-

tering lengths from thermalisation measurements in real experiments on alkali+Yb

systems.
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Figure 3.1: Newton diagram for an elastic collision of two particles, A and B. The
notation is described in the text. For clarity final velocities are shown only for A.

3.1.1 Effect of Scattering Angle on Energy Transfer

We consider a classical model of collisional energy transfer. The approximations

involved in this are that there are only two-body collisions and that the macroscopic

motion of particles around the trap can be considered to be classical, although

the microscopic collision dynamics which determine the DCS can still be quantum

in nature. Such a model has been shown to be valid for collisional relaxation of

collective motion down to temperatures about twice the temperature of quantum

degeneracy [239, 240], and it is reasonable to assume that a similar range of validity

will be applicable for thermalisation; however, as degeneracy is approached a fully

quantum description will be needed (e.g. [241]). This approximation may also break

down if three-body collisions are enhanced, for example due to the effects of Effimov

physics or the effects considered in chapter 5.

A Newton diagram for an elastic collision of two particles, A and B, is shown in

fig. 3.1. The initial velocities in the laboratory frame are labeled vlab
X ,2 where X is

2Through this chapter we will use superscript labels to indicate whether a velocity or energy
is in the laboratory frame or the centre-of-mass frame, and be explicit throughout. The reader
should be aware that other authors are sometimes not so explicit.



3.1. Differential Cross Sections and Integral Cross Section for
Thermalisation 67

either A or B. This gives the velocity of the centre of mass (CM) as3

VCM =
vAmA + vBmB

mA +mB

, (3.1.3)

where mX is the mass of particle X. The velocities of each particle in the centre of

mass frame are then given as

vCM
X = vlab

X −VCM, (3.1.4)

and the relative velocity is

vrel = vlab
A − vlab

B (3.1.5)

= vCM
A − vCM

B , (3.1.6)

which is the same in both frames, so does not need a label for which frame it is in.

The total kinetic energy of the system can be written either as a sum of terms from

each particle, or as a sum of centre-of-mass and relative terms

Ek = Elab
k,A + Elab

k,B =
1

2
mA|vlab

A |2 +
1

2
mB|vlab

B |2 (3.1.7)

= Ek,CM + Ek,rel =
1

2
(mA +mB)|VCM|2 +

1

2
µ|vrel|2, (3.1.8)

where µ is the reduced mass as in previous chapters. The energy of the relative

motion Ek,rel = (1/2)µ|vrel|2 is the quantity used in scattering calculations, i.e. the

E in eqs. (1.2.7) and (1.2.9); we will often call this quantity the energy in the

centre-of-mass frame ECM
k .

At this point, we emphasise the importance of correctly considering the difference

between laboratory frame energies and centre-of-mass frame energies, especially for

the purposes of thermalisation. In particular, if one particle (B) is approximated

as being stationary (vlab
B = 0) – which is often reasonable in a cooling experiment

3Note that the subscript labels this as the velocity of the centre of mass (in the laboratory
frame), not a velocity in the centre-of-mass frame. We could technically write this as Vlab

CM, but
that would be overly pedantic.
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where the coolant cloud (B) is much colder than the target to be cooled (A) – then

we can write

Ek = Elab
k,A = Ek,CM + ECM

k (3.1.9)

ECM
k = Elab

k,A − Ek,CM (3.1.10)

= Elab
k,A

mB

mA +mB

(3.1.11)

= Elab
k,A

µ

mA

. (3.1.12)

This means that when cooling with a species that is significantly lighter than the

target to be cooled, the collision energies that need to be considered in scattering

calculations can be much lower than the temperature of the target cloud. In the case

of particularly light coolants such as H [109, 110], or Li [106], this factor can easily

be an order of magnitude. This effect lessens as the temperature of the target cloud

approaches that of the coolant and the latter can no longer be well approximated

to be stationary.

We now consider the effect a collision has on the colliding particles. Here we need

to consider only elastic collisions, because inelastic (or reactive) collisions will lead

to trap loss and are thus considered separately. As is well known, conservation of

energy and momentum means that in the centre-of-mass frame the collision rotates

the velocity vectors but does not alter their magnitude. This is shown in fig. 3.1,

where velocity vectors after the collision are denoted with a prime, e.g. v′CM
A is the

velocity of particle A in the CM frame after the collision. In our case, the rotation

(or rather, probability of a given rotation) will be determined from the differential

cross section eq. (1.2.3) calculated in microscopic quantum scattering calculations,

although it could equally be obtained from an equivalent classical calculation. The

rotation is conveniently parameterised by two angles in the CM frame, Θ and φ, as

shown in fig. 3.1. Note that while Θ is the familiar scattering angle, φ is not usually

explicitly considered in scattering calculations as the cylindrical symmetry in the

CM frame means that scattering usually does not depend on this angle. There is

an exception to this in the case that there is some external field which breaks this

symmetry.
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Although there is no change in the magnitude of the velocity and so no appar-

ent energy transfer in the centre-of-mass frame, there is an energy transfer once

transformed back to the laboratory frame; generally Elab
k,A 6= E ′ lab

k,A . Another way to

think about this is that the partitioning of kinetic energy between CM and relative

motions given by eq. (3.1.8) cannot be changed by an elastic collision, but the par-

titioning of kinetic energy between A and B given by eq. (3.1.7) can be changed.

This change in energy is given by

∆Ek,A = E ′ lab
k,A − Elab

k,A =
1

2
mA|v ′ lab

A |2 − 1

2
mA|vlab

A |2 (3.1.13)

=
µ

mA +mB

(1− cos Θ)
[
−mA|vlab

A |2 +mB|vlab
B |2 + (mA −mB)|vlab

A | |vlab
B | cosα

]
+ µ|vlab

A | |vlab
B | sinα sin Θ cosφ (3.1.14)

where α is the angle between vlab
A and vlab

B . Averaging this quantity assuming that

the direction of the initial velocity vectors are uniformly random on a sphere and

that the scattering is uniform in φ we obtain

〈∆Ek,A〉 =
2µ

mA +mB

(1− cos Θ)(Elab
k,B − Elab

k,A). (3.1.15)

This shows the efficiency of energy transfer in collisions, and so thermalisation, to

be proportional to 1 − cos Θ. This results in the use of the transport cross section

σ
(1)
η given by eq. (3.0.2).

We can immediately consider the behaviour of σ
(1)
η in some simple cases. When

the scattering is isotropic - such as in the s-wave regime - the factor of 1 − cos Θ

is averaged out and σ
(1)
η = σel. Indeed, when any single partial wave dominates,

such as may occur near a resonance, the DCS will be symmetric about Θ = π/2

and σ
(1)
η = σel. At higher collision energies there are typically large contributions

to the elastic cross section from small-angle scattering which will have little or no

impact on thermalisation. We thus expect qualitatively different behaviour of the

two cross sections at the high-energy limit; in particular, the elastic cross section

for systems with potentials with a long-range attractive tail shows distinctive glory

oscillations [148] which we expect to be absent from σ
(1)
η . It is also worth noting
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that in the high-energy limit for hard-sphere scattering, the quantum elastic cross

section is approximately twice the classical cross section, but is also approximately

half comprised of small-angle ‘shadow’ scattering [148] which contributes little to

thermalisation. Therefore, in this case, σ
(1)
η will agree between classical and quantum

scattering. We expect that σ
(1)
η will in general agree between quantum and classical

calculations in a suitable limit of classical behaviour, even though σel does not

generally agree in a such a limit. In particular, we will later show that the high-

energy classical and quantum σ
(1)
η agree for a model Lennard-Jones potential.

Anderlini and Guéry-Odelin [238] also provide an alternative expression for σ
(1)
η

in terms of partial-wave phase shifts δL,

σ(1)
η =

2π

k2

∑
0≤L≤L′<∞

αL,L′ sin δL sin δL′ cos(δL − δL′) (3.1.16)

where αL,L = 4L + 2, αL,L+1 = −(4L + 4), and α = 0 otherwise. This expression

is the one we use to calculate σ
(1)
η in the single-channel case and is also useful for

interpretation in the few partial wave regime. However, it is not suitable for calcu-

lating the cross section in more complex cases, for example when there is coupling

between channels of different partial waves, or when there is inelastic scattering.

Equation (3.1.16) shows σ
(1)
η to be composed of the same terms as the elastic cross

section, eq. (1.2.19), plus additional interference terms between consecutive partial

waves. For random phase shifts, these interference terms are more often negative

than positive, which emphasises that the very nature of the partial wave expansion

biases scattering towards the forward direction. In the case of multiple open chan-

nels, σ
(1)
η is no longer given by eq. (3.1.16) but it can still be simply calculated from

S-matrix elements [150] and is conceptually similar.

3.1.2 Differential Cross Sections

Here we give examples of differential cross sections and show how they contribute

to σ
(1)
η . We use calculations on a Lennard-Jones (L.-J.) potential

V (r) =
C12

r12
− C6

r6
. (3.1.17)
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Figure 3.2: Differential cross sections for the model L.-J. potential with a/ā = 1.5
at E/E6 = 0.010 (black), 0.50 (red), 5.2 (blue), and 50 (green). Dashed lines show
the DCS weighted by 1− cos Θ.

Section 2.2 tells us that the results for this model system are a good model for

any single-channel system with a long-range form of C6R
−6. They can also be

thought of as capturing typical behaviours of more complex systems, by analogy

with section 2.3. We emphasise this by presenting results in reduced units and

avoiding discussion of the particular parameters of the model.4 We focus on a

typical moderate scattering length of 1.5ā, but will use other scattering lengths as

appropriate.

Figure 3.2 shows selected DCSs for energies from 0.01E6 to 50E6. Note that

the integral cross sections are not simply integrals under these curves as eqs. (1.2.4)

and (3.0.2) include a weight of sin Θ.5 It can be seen that at the lowest energy

4For reference, we use those used to describe Rb+CaF in section 3.2.
5We could have included this weighting or plotted the DCSs as a function of cos Θ (as we will

do in a later section), but at this stage we choose to leave these DCSs as they are to provide simple
qualitative understanding.
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E = 0.01E6, there is only s-wave scattering so the DCS is isotropic. As energy

increases, the isotropy is broken by contributions from higher partial wave and at

E = 0.5E6 the DCS shows a small amount of anisotropy. This energy is about twice

the p-wave centrifugal-barrier height, but still below the d-wave barrier, which is

consistent with the simple angular dependence observed; complex patterns would

need contributions from many more partial waves. In this case, the anisotropy

favours forward scattering but at this energy does not yet form a clear forward peak,

but other cases (different values of a/ā) may instead favour backward scattering. By

E = 5.2E6, there is a clear but broad forward peak, and also a peak in backward

scattering. The former is common (but not universal) amongst different cases at

this energy, but the latter is a relatively uncommon feature. Note how the 1 −
cos Θ weighting almost completely suppresses the forward peak, but in this case

compensates somewhat by enhancing the backward peak. Finally, at E = 50E6, the

DCS has a higher but narrower forward peak and oscillations near zero at larger

angles. This qualitative behaviour is common between different cases, although the

quantitative details will vary. Now, the 1− cos Θ suppresses the forward peak even

more dramatically as it is concentrated at lower Θ, but there is now no compensating

backward scattering. It is clear that in this final case σ
(1)
η will be considerable smaller

than σel.

Figure 3.3 shows contributions to σel and σ
(1)
η from eq. (1.2.19) and eq. (3.1.16).

At low energy, both cross sections are composed of only the constant s-wave contri-

bution (red solid line); σ
(1)
η deviates from this at significantly lower energy than σel

because the interference term between L = 0 and 1 (red dashed line) begins to con-

tribute at lower energy than the pure L = 1 term (green solid line). Note that this

interference term is negative; as previously mentioned it is typical for these terms

to be negative, but in other cases they can be positive, for example the L = 1 and 2

interference term (green dashed line) begins positive. There is a large peak in both

integral cross sections around E = 10E6 which comes from the d-wave contribution

(blue). This is not a shape resonance as it is above the centrifugal barrier, but can

be thought of as a continuation of one and is associated with the phase in the d-wave

channel rapidly increasing from zero; this rapid phase variation causes, as expected,
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Figure 3.3: Integral cross sections σel (heavy solid line) and σ
(1)
η (heavy dashed line)

for the model L.-J. potential with a/ā = 1.5. The lighter lines show individual
contributions to these cross sections: solid lines show the L = L′ terms in that
contribute to both σel and σ

(1)
η , and the dashed lines show the L′ = L+1 interference

terms that only contribute to σ
(1)
η . Coloured lines show the contributions for L = 0

(red), 1 (green), 2 (blue), and 3 (magenta), the contributions from higher partial
waves are all in grey. Note that the vertical axis is linear rather than logarithmic as
would be normal for plots of cross sections.
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a large peak in the pure d-wave contribution, but it also changes the sign of the

L = 1 and 2 interference term, as the term cos(δ1 − δ2) in eq. (3.1.16) changes sign

as δ2 rapidly changes and takes the difference δ1− δ2 through plus or minus π. This

also happens less obviously for the L = 2 and 3 interference term. Although several

of the features just described are particular to this case, they serve to demonstrate

the picture of the various positive and negative contributions to the cross sections

– as in eq. (3.1.16) – in the few-partial-wave regime. At higher energies and partial

waves, the picture is more cluttered and this way of thinking about σ
(1)
η becomes

less useful.

3.1.3 Thermalisation Cross Sections for determining scat-

tering lengths

A common application of measurements of thermalisation rates is to determine the

s-wave scattering length as of an ultracold system [232, 233]. This is a relatively

easy measurement to perform on a new experimental system and can give a direct

measurement of a scattering length without the potentially difficult process of fit-

ting an interaction potential. However, the problems with this method are that

there are usually large uncertainties associated both with the measurement of the

thermalisation itself and the densities needed for interpreting those measurements.

The other problem is that, in the ultracold limit, positive and negative scattering

lengths give equivalent results and so thermalisation measurements in the s-wave

regime might only be able to determine the magnitude of the scattering length, and

measurements at higher energies would be needed to determine the sign [232]. It is

often also possible to determine the sign directly from accurate spectroscopic mea-

surements of near-threshold bound states. This is often provides a more accurate

and reliable measurement of the scattering length, but thermalisation measurements

are usually quicker and easier. Therefore, in this section will focus on determination

of the sign of as through thermalisation measurements and the importance of using

the thermalisation cross section σ
(1)
η for this.

In this section we will use the example of alkali metal atoms colliding with ytter-

bium, and in particular Li+Yb. As discussed in section 2.2.1, such systems can be
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well approximated as single-channel systems and characterised by just the scatter-

ing length. Determining the scattering length is critical for predicting the positions

of the very narrow Feshbach resonances that these systems actually exhibit [44–

46]. There have been thermalisation measurements for a series of isotopologues of

Rb+Yb [242, 243] where the variation between the numerous different isotopologues

conveniently resolves the sign ambiguities of the individual measurements. Those re-

sults also agree with 2-colour photoassociation spectroscopy of near-threshold bound

states [244, 245], and the various isotopologues of RbYb are now well understood

[246].

There have also been thermalisation measurements for 6Li+174Yb [247, 248],

which suggest an s-wave scattering length |as| ≈ 8 Å but do not indicate its sign.

Note that performing measurements on different isotopologues of LiYb can not re-

solve the sign of the scattering length. This is because changing the Li isotope to 7Li

alters the reduced mass by too much to allow useful comparison with 6Li, and chang-

ing the Yb isotope barely affects the reduced mass due to the mass disparity [248].

Indeed thermalisation measurements on 6Li+173Yb [248] are indistinguishable from

those on 6Li+174Yb, within experimental uncertainties. Neither this unfavourable

case nor the highly favourable case of Rb+Yb should be considered typical.

Thermalisation measurements from ultracold scattering are usually assumed to

be determined by only s-wave scattering, but the sign of as could be determined from

thermalisation measurements where higher partial waves contribute. Figure 3.4(a)

shows σel and σ
(1)
η for 6Li+174Yb and as = ±8 Å: it may be seen that the cross

sections for positive and negative scattering lengths deviate from one another sub-

stantially above 40 µK, and σel and σ
(1)
η start to differ significantly in the same

region. Thus measurements at temperatures high enough to determine the sign of

the scattering length should take into account the difference between σel and σ
(1)
η .

The thermalisation measurements for 6Li174Yb were performed at low tempera-

tures (< 500 µK [248] and ∼ 100 µK [247]) well below the p-wave barrier. Therefore

it was assumed that only s-wave collisions contributed to scattering. However, we

have just shown that in this case we expect deviations from pure s-wave behaviour

from energies well below this temperature. Ivanov et al. [247] did include an effective-
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Figure 3.4: LiYb cross sections. σel (solid lines) and σ
(1)
η (dashed lines) for positive

(black) and negative (red) signs of the scattering length for different values of the
magnitude of the scattering length: (a) |as| = 8 Å (b) |as| = ā = 19.3 Å (c)
|as| = 2ā = 38.6 Å (d) |as| = 7.5ā = 145 Å

range correction to capture some of the energy dependence of the scattering, but

that cannot describe the thermalisation cross section σ
(1)
η . Therefore, the thermali-

sation measurements already performed were at a sufficiently high energy that they

might in principle be able to determine the sign of the scattering length. Addi-

tionally, the two cross sections reported were measured at different temperatures:

Ivanov et al. report a = 13 ± 3 a0, which is 6.9 ± 1.6 Å for cooling from 110 to 40

µK; Hara et al. report a = 10± 2 Å for cooling from 500 to 200 µK. This apparent

increase in the magnitude of the scattering length will correspond to an increase in

the cross section, which is what is expected if the scattering length is positive (see

fig. 3.4(a)). However, the relatively small size of this effect and the large uncer-
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tainties of the measurements mean that we cannot definitively assign this scattering

length as positive without a more thorough investigation.

The remaining panels of fig. 3.4 show analogous results for other values of |as|, in

order to illustrate the range of possible behaviour for other systems. It may be seen

that in most cases σel and σ
(1)
η are reasonably similar at energies up to about 100 µK

(about 0.04E6); this may be compared with the p-wave barrier height of 2.8 mK.

However, the difference between σel and σ
(1)
η begins at much lower energies (near

1 µK) for values of as near +2ā. This is because there is a p-wave shape resonance

close to zero collision energy when as = +2ā, in accordance with AQDT. Although

in this case there is a very weakly bound state rather than a shape resonance per

se, the low-energy p-wave scattering is still resonance enhanced, and so introduces

interference terms into eq. (3.1.16) even at very low energy. These results show that

in an experiment to determine the sign of a scattering length from thermalisation

measurements, it is important to consider the correct thermalisation cross section

σ
(1)
η .

Thermalisation measurements have been performed on 87Rb171Yb at energies

higher than the s-wave regime [249]. As the sign of the scattering lengths were

already understood for Rb+Yb, this experiment was not specifically analysed for this

purpose. However, there were signs of a Ramsauer-Townsend minimum observed,

which might have proved a useful test of this theory if this case was not already

understood.

There are ongoing experiments to co-trap Cs and Yb and attempt magnetoasso-

ciation [46, 250, 251]. The magnitudes and signs of scattering lengths are not known

in advance for these systems, and they will need to be determined experimentally.

Initial thermalisation measurements have just recently begun on this system and

preliminary results will soon be available. Because of the large reduced mass of this

system, the p-wave barrier will be quite low and so the thermalisation may show

strong effects of scattering in higher partial waves. This provides a clear prospect

of an imminent experimental application for the work in this section.

[Note added after submission: Thermalisation measurements for Cs+170Yb and

Cs+174Yb have now been made by the group of S. L. Cornish, and thermalisation
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cross sections have been extracted from them. We have fitted these to theoretical

calculations, and hence determined scattering lengths for all stable isotopologues

of CsYb. We also showed that using σ
(1)
η rather than σel gives a small but clear

improvement to the fitting, and may show a significantly larger effect for other

isotopes. A paper describing both the experimental and theoretical work has been

submitted and a preprint is available [252].]

3.1.4 Conclusions

In this section we have considered effects relating to thermalisation of cold and ul-

tracold gases, mostly in the context of sympathetic cooling. The primary results to

the use of the transport cross section σ
(1)
η for thermalisation in place of the elastic

cross section σel. This is not novel in itself, but there has been little attention and

discussion of this cross section until now. We have considered its application to

determination of scattering lengths from interspecies thermalisation measurements,

and determined that considering the correct cross section becomes important at

about the same energies that it is possible to distinguish between positive and neg-

ative scattering lengths. We are hopeful that ongoing experiments on Cs+Yb will

allow us to apply these ideas to real experiments in the near future.

3.2 Simulating Sympathetic Cooling of CaF by Li

or Rb in a Microwave Trap

In order to understand thermalisation in more detail, we directly simulate the process

of sympathetic cooling in a microwave trap. In previous work [112], sympathetic

cooling of a cloud of LiH molecules by ultracold Li atoms was simulated using a

simple model. The collisions were taken to be isotropic and determined by the

elastic cross section. This is appropriate for s-wave-dominated collisions at very low

energy. However, as discussed in the previous section it will most likely not be a

good approximation for collisions outside the s-wave regime. Here, we introduce a

new collision model that takes account of the full energy dependence of the collision
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cross section and the corresponding differential cross sections. We show that this

model produces significantly slower sympathetic cooling in the early stages than the

original hard-sphere model. We also consider approximations to the full model and

show that a model that uses hard-sphere scattering based on the energy-dependent

transport cross section σ
(1)
η [175] produces accurate results for the cooling of the

molecules but not for heating and loss of the coolant atoms.

The previous modelling work [112] explored sympathetic cooling in three dif-

ferent types of trap: a static electric trap, an alternating current (ac) trap, and a

microwave trap. A static electric trap can confine molecules only in rotationally

excited states, and it was found that for Li+LiH the ratio of elastic to rotationally

inelastic collisions was too small for such molecules to be cooled before they were

ejected from the trap. An ac trap can confine molecules in the rotational ground

state, so there are no inelastic collisions, but elastic collisions can transfer molecules

from stable to unstable trajectories and it was found that this eventually causes

all the molecules to be lost. A microwave trap [111, 253] can confine molecules in

the absolute ground state, around the antinodes of a standing-wave microwave field,

and sympathetic cooling in such a trap was found to be feasible on a timescale of

10 s [112]. The microwave trap brings the benefits of a high trap depth and large

trapping volume for polar molecules, especially compared to an optical dipole trap.

In the present work, we simulate sympathetic cooling in a microwave trap in de-

tail. We consider the following specific, experimentally realistic, scenario. Cold CaF

molecules are produced either in a magneto-optical trap [119, 120] or by Stark de-

celeration [254, 255]. In the first case the temperature might be about 2 mK, and in

the second about 30 mK. The molecules are loaded into a magnetic trap, and then

transported into a microwave trap. Here, the molecule cloud is compressed in order

to improve the overlap with the atomic coolant, and this raises the initial temper-

ature of the molecules to 20 mK and 70 mK respectively. A distribution of atoms,

either 7Li or 87Rb, with an initial temperature of 100µK, is trapped magnetically

and is overlapped with the cloud of molecules. We simulate the way in which elastic

collisions reduce the molecular temperature towards the atomic temperature. Black-

body heating out of the rovibrational ground state can be reduced below 10−4 s−1
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by cooling the microwave trap to 77 K [256].

We start by describing our scattering calculations and the cross sections we

obtain. Then we describe the simulation method we use, and study how the choice of

collision model affects the simulation results. Next, we examine the cooling dynamics

and evaluate which coolant, Rb or Li, is likely to be the best in practical situations.

Because the cross section is very sensitive to the exact form of the atom-molecule

interaction potential, especially at low energies, we study sympathetic cooling for a

range of typical values of the s-wave scattering length. In addition to cooling the

molecules, collisions either heat the atoms, raising the final temperature, or eject

atoms from the trap, reducing the atomic density. These effects are particularly

important if the atom number does not greatly exceed the molecule number. We

study these effects and explain the results in terms of appropriate partial integrals

over differential cross sections. Finally, we investigate how evaporative cooling of

the atoms can be used to speed up the sympathetic cooling rate and lower the final

temperature obtained.

The work in this section relies heavily on simulations - described here and in

Ref. [113] - which were performed by J. Lim and M. R. Tarbutt. The calculations

of the potentials and the various cross sections were performed by myself with J.

M. Hutson. The analysis and discussion of all the results in this section was a joint

effort between all four authors of Ref. [113].

3.2.1 Scattering calculations

Exact scattering calculations on systems as complex as Li+CaF and Rb+CaF are not

currently feasible. The combination of a deep chemical well, very large anisotropy

of the interaction potential, and small CaF rotational constant mean that a very

large rotational basis set would be needed for convergence. In addition, even if

converged results could be achieved, uncertainties in the potential surface mean

that no single calculation could be taken to represent the true system and many

calculations on many surfaces would be needed to explore the range of possible

behaviours [257]. Instead we model the interactions with a simple single-channel

model potential which we choose to be the Lennard-Jones potential eq. (3.1.17). As
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Figure 3.5: Total elastic cross section, σel (solid lines), and transport cross section,

σ
(1)
η (dashed lines), for positive (black) and negative (red) signs of the scattering

length. (a) CaF+87Rb, |a| = 1.5ā; (b) CaF+87Rb, |a| = 0.5ā; (c) CaF+7Li, |a| =
1.5ā; (d) CaF+7Li, |a| = 0.5ā.
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we have shown in section 2.2, while a simple single-channel model cannot be expected

to reproduce a full coupled-channel calculation, it can quantitatively reproduce the

range of behaviours shown by full calculations.

We obtain Lennard-Jones parameters for Li+CaF from ab initio calculations

[130]. We obtain C6,Li+CaF = 1767Eha
6
0 from direct fitting to the isotropic part of

the long-range potential. We set C12,Li+CaF = 2.37 × 107Eha
12
0 to reproduce the

depth of the complete potential, which is 7224 cm−1. We use the depth of the

complete potential in preference to the depth of the isotropic part of the poten-

tial because the very large anisotropy at short range means the isotropic part of

the potential is not representative of the interaction. To obtain a C6 parameter

for Rb+CaF we first separate C6,Li+CaF into induction and dispersion contributions.

Induction contributions for both systems are readily calculated from known val-

ues of the CaF dipole moment [258] and the static polarisabilities of the atoms

[259]. The dispersion contribution for Rb+CaF can then be calculated from the

dispersion contribution for Li+CaF using Tang’s combining rule [260] with known

homonuclear diatomic dispersion coefficients [259], atomic polarisabilities [259] and

a calculated CaF polarizability of αCaF = 137 a3
0. The sum of these contributions

gives C6,Rb+CaF = 3084Eha
6
0. We estimate, by analogy to calculations on methyl

fluoride [261], that the well depth for Rb+CaF will be about 2.5 times shallower

than for Li+CaF. This sets C12,Rb+CaF = 1.8× 108Eha
12
0 .

For our purposes, the key property of a potential is the s-wave scattering length,

a, that it produces. In the present work, we vary the C12 coefficient over a small range

(with C6 fixed) to vary the scattering length. We focus on four typical scattering

lengths, a = −1.5ā, −0.5ā, +0.5ā, +1.5ā. ā = 20.2 Å for Li+CaF and 35.7 Å for

Rb+CaF.

The calculated elastic and transport cross sections for Li+CaF and Rb+CaF are

shown in fig. 3.5 for our chosen selection of scattering lengths. At low energy, in the

s-wave regime, the cross sections have constant limiting values of 4π|a|2. This is the

same for both σel and σ
(1)
η , because pure s-wave scattering is isotropic. The cross

sections for positive and negative scattering lengths go to the same low-energy limit.

However, as energy increases, the cross sections all diverge from one another. Those
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for negative scattering lengths, especially a = −0.5ā, show dramatic Ramsauer-

Townsend minima as the scattering phase shift, and hence the s-wave cross section,

passes through a zero [148]. For σ
(1)
η this minimum is further deepened by destructive

interference between s-wave and p-wave scattering [175]. For a = +1.5ā a peak in

both cross sections is seen (near 10−3 K for Rb+CaF). This is a d-wave feature

corresponding to the energy of the centrifugal barrier maximum. At higher energies,

there are various shape resonances present for all cases. Nevertheless, once many

partial waves contribute, the cross sections become less dependent on scattering

length and approach classical limits.

We note that, as explained in section 2.2, the cross sections for the two systems for

the same value of a/ā are nearly identical, apart from constant factors in energy and

cross section. The scaling in energy is determined by Ē = 9.51 mK for Li+CaF and

0.543 mK for Rb+CaF. This scaling means that, while the Rb+CaF cross sections

are almost independent of scattering length at 10 mK and above, the Li+CaF cross

sections are highly sensitive to scattering length at any energy below 100 mK.

For stationary atoms the molecular kinetic energy in the laboratory frame, Elab
CaF,

is related to the collision energy in the center-of-mass frame, ECM, by Elab
CaF =

(mCaF/µ)ECM, where µ = mCaFmat/(mCaF+mat) is the reduced mass of the collision

system, mCaF is the molecular mass and mat is the atom mass. The ratio Elab
CaF/E

CM

is 9.40 for Li+CaF and 1.68 for Rb+CaF. This introduces a further energy scaling

between the two systems in addition to the difference in Ē.

Because the molecules are in the ground state, and the rotational excitation en-

ergy is far greater than the available collision energy, we assume that there are no

inelastic collisions. It is known that there can be molecule-molecule inelastic col-

lisions in the presence of the microwave field, even when the microwave frequency

is well below the first rotational resonance [262, 263]. This is a concern for evapo-

rative cooling of molecules, but less so for sympathetic cooling, where the density

of molecules can be low. It is worth studying whether there can be atom-molecule

inelastic collisions induced by the microwave field, but that is beyond the scope of

this section.
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3.2.2 Simulation method

The simulations described here were designed, implemented, and run by M. R.

Tarbutt and J. Lim, but their description is presented here as it is essential for un-

derstanding the work in this section. They assume that ground-state CaF molecules

are confined around the central antinode of a standing-wave microwave field, formed

at the centre of an open microwave cavity [253]. The interaction potential of the

molecules with the microwave field is

U(r) = −∆U exp

[
− x

2

w2
x

− y2

w2
y

]
cos2

(
2πz

λ

)
, (3.2.18)

where ∆U is the trap depth and we take ∆U/kB = 400 mK, wx = 16.3 mm,

wy = 15.3 mm, and λ = 21.3 mm [253]. The initial phase-space distribution of

the molecules is assumed to be

f(r,p) =
n0,CaF

(2πmCaFkBT )3/2

× exp

[
−U(r)− U(0)+ p2/(2mCaF)

kBT

]
, (3.2.19)

where T is the initial temperature of the molecules and n0,CaF is the initial density

at the centre of the trap, which is fixed such that the total number of molecules is

NCaF = 105. For most simulations, the temperature is taken to be T = 70 mK in

order to study sympathetic cooling from a high temperature. A distribution of ultra-

cold atoms is overlapped with the molecules. The atoms are in a harmonic magnetic

trap whose depth is 1 mK. The distribution of atoms in phase space is assumed to

depend only on their energy. Therefore, at all times, the atoms have a Gaussian

spatial distribution and a thermal velocity distribution with temperature Tat. They

have an initial temperature of 100µK, an initial central density of 1011 cm−3, and

an initial number of 109. The corresponding initial 1/e radius is 1.2 mm. The ap-

proximation that the molecules are confined only by the microwave field, and the

atoms only by the magnetic field, is a reasonable one, though the model could be

extended to use the complete potential of both species in the combined fields.

For each molecule, the simulation proceeds as follows. The equation of motion
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in the microwave trap is solved for a time step ∆t which is much smaller than the

mean time between collisions. Then, using the current position, r and velocity,

v, of the molecule, whether or not there should be a collision is determined as

follows. The velocity of an atom is chosen at random from a thermal distribution

with temperature Tat. From the atomic and molecular velocities they calculate

the collision energy in the center-of-mass frame, ECM. The collision probability is

P = nat(r)σ(ECM)vr∆t, where vr is the relative speed of the atom and molecule, nat

is the atomic density, and σ(ECM) is either σel or σ
(1)
η (see section 3.2.3). A random

number is generated in the interval from 0 to 1, and if this is less than P a collision

occurs. If there is no collision, the velocity of the molecule is unchanged. If there is

a collision, the velocities are transformed into the center-of-mass frame, a deflection

angle is determined as described below, and the new velocities transformed back

into the laboratory frame. If the new total energy (kinetic energy plus trapping

potential) is sufficient for the atom to escape from the trap, the atom, and its

energy prior to the collision, are removed. The change in energy is shared among all

the remaining atoms. Otherwise, the atom remains in the trap and the change in

kinetic energy is shared between all the atoms. This algorithm is followed for each

molecule in the distribution. The density and temperature of the atom cloud are

updated to account for the atom loss and atom heating at this time step, and then

the simulation proceeds to the next time step.

With the choice of trap depth and initial atom temperature, there is a small evap-

orative cooling effect due to atom-atom collisions. For Rb, over the 50 s timescale

of the simulations, 8% of the atoms are lost and the temperature falls to 80µK.

Prior to section 3.2.8, this evaporative cooling effect is neglected in our simulations

because we wish to isolate effects that are due to atom-molecule collisions. Then, in

section 3.2.8, atom-atom collisions are included to explore the effects of evaporative

cooling.

As we will see, the molecular velocity distributions obtained during the cooling

process are far from thermal. There are some molecules that never have a collision

during the whole simulation and so remain at high energy throughout. Almost all

these molecules have a kinetic energy greater than 10 mK, and they disproportion-
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ately skew the mean kinetic energy of the sample as a whole. Our interest is in

the molecules that cool, and so we separate the kinetic energy distribution into two

parts, above and below 10 mK. To express how well the cooling works, we give the

fraction of molecules in the low-energy part, and their mean kinetic energy, both as

functions of time.

3.2.3 Collision models

The models discussed here were implemented - and the simulations run - by Tarbutt

and Lim, but they were conceived, and the results interpreted, jointly.

In previous modelling [112], atoms and molecules collided like hard spheres. In

this model, the momenta in the centre-of-mass frame before and after a collision, pc

and p′c, are related by

p′c = pc − 2(pc · ê)ê, (3.2.20)

where ê is a unit vector along the line joining the centres of the spheres, given by

ê = p̂c

√
1− |b|2 + b, (3.2.21)

where p̂c is a unit vector in the direction of pc and b is a vector that lies in a plane

perpendicular to pc and whose magnitude is the impact parameter divided by the

sum of the radii of the two spheres. For each collision, b is chosen at random from

a uniform distribution, subject to the constraints b · pc = 0 and |b| ≤ 1.

The lines labeled (i) in fig. 3.6 show how the cooling proceeds for CaF + Rb

when we use the hard-sphere model and choose the cross section to be independent

of energy and equal to 4πā2 = 1.59 × 10−16 m2. The cross section is shown in

fig. 3.6(a), while the cold fraction and the mean kinetic energy of that fraction are

shown in parts (b) and (c), both as functions of time. As explained in section 3.2.2,

the cold fraction is defined as the fraction with kinetic energy below 10 mK. The

cold fraction increases rapidly, and that fraction thermalises quickly with the atoms.

After just 4 s, 85% of the molecules are in the cold fraction and their mean energy

is within 50% of the 100µK temperature of the coolant atoms.

The energy-independent hard-sphere (EIHS) model described above is reasonable
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Figure 3.6: Results of various collision models: (i) hard-sphere model with energy-
independent cross section 4πā2; (ii) full energy-dependent differential cross sec-
tion model; (iii) hard-sphere model with σel(E

CM); (iv) hard-sphere model with

σ
(1)
η (ECM); (v) hard-sphere model with classical approximation to σ

(1)
η (ECM). The

graphs show: (a) Cross section versus collision energy; (b) fraction of molecules with
kinetic energy below 10 mK versus time; (c) mean kinetic energy of that fraction
versus time. The coolant is Rb and a = +1.5ā.
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at very low energy, but it has three deficiencies. First, it neglects the fact that the

low-energy cross sections are actually 4πa2, where a is the true scattering length as

opposed to the mean scattering length. The true scattering length can take any value

between −∞ and +∞, but is generally unknown for a specific system until detailed

measurements are available to determine it. Secondly, the EIHS model neglects

the fact that real cross sections are strongly energy-dependent, usually showing

resonance structure on a background that drops off sharply with increasing energy,

as shown in fig. 3.6(a). Thirdly, collisions with small deflection angles (forwards

scattering) do not contribute efficiently to cooling, and the EIHS model neglects the

fact that differential cross sections (DCS) at higher energies tend to be dominated

by such forwards scattering, because many collisions encounter only the attractive

long-range tail of the interaction potential.

To remedy all these deficiencies, we introduce here a new model that we call

the full DCS model. For this we calculate realistic integral and differential cross

sections, as described above, for a variety of choices of the scattering length a.

We use the elastic cross section σel(E
CM) from these calculations to determine the

collision probability. This cross section is curve (ii) in fig. 3.6(a), and it is smaller

than in the EIHS model at collision energies above 8 mK, but larger below 8 mK.

We then select a deflection angle Θ from a random distribution that reproduces the

full differential cross section, dσ/dω, at energy ECM. To select a deflection angle at

random from this distribution, we form the cumulative distribution function,

S(Θ) =
2π

σel

∫ Θ

0

dσ

dω
sin(Θ′)dΘ′, (3.2.22)

select a random number r between 0 and 1, and find the value of Θ where S(Θ) = r.

The full DCS model is our most complete one and we have used it for all the

simulations in the following sections. Its results for the choice a = +1.5ā are shown

by the lines labeled (ii) in fig. 3.6. It may be seen that the cooling proceeds more

slowly than in the EIHS model. It takes 14 s for the cold fraction to reach 80% and

for the energy of that fraction to be within 50% of the temperature of the atoms.

The slower cooling is mainly due to the dominance of forward scattering at higher
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energies.

There are three approximations to the full-DCS model that are worth consider-

ing because they avoid the tabulation of differential cross sections and cumulative

distributions. The first of these is to use a hard-sphere collision model but to take

the full energy-dependent elastic cross section from fig. 3.6(a). This produces the

cooling behaviour labeled (iii) in fig. 3.6(b) and (c). It may be seen that this model

produces cooling slightly slower than the EIHS model, but considerably faster than

the full DCS model. The second and more satisfactory approximation is to use a

hard-sphere collision model but to take the full energy-dependent transport cross

section σ
(1)
η , shown as line (iv) in fig. 3.6(a). We label this approach EDT-HS. It

produces the cooling behaviour labeled (iv) in fig. 3.6(b) and (c). It may be seen

that it models the cooling of the molecules very accurately, because it takes proper

account of the reduced efficiency of small-angle collisions for sympathetic cooling.

However, as will be seen below, the EDT-HS approach does not adequately model

heating and loss of the coolant atoms.

It is worth exploring whether a classical calculation of σ
(1)
η would suffice. Unlike

the elastic cross section, σ
(1)
η,class is finite because the factor of 1−cos Θ suppresses the

divergence due to forwards scattering. We have calculated σ
(1)
η,class for the Lennard-

Jones potentials described above,

σ
(1)
η,class = 2π

∫ ∞
0

b[1− cos Θ(b)]db, (3.2.23)

where b is the impact parameter and Θ(b) is the classical deflection function [148].

We find that it is very well approximated by the power law σ
(1)
η (ECM) = A(ECM/C6)−1/3,

with the dimensionless constant A = 4.79. This cross section is labeled (v) in

fig. 3.6(a). It agrees well with the quantum-mechanical σ
(1)
η (ECM) for Rb+CaF at

high energies, as we would expect when many partial waves contribute. Remarkably,

the temperature and cold fraction shown for this model in fig. 3.6 agree very well

with those for model (ii), even as the temperature approaches 100µK. This is an

atypical result because, for a = +1.5ā, σ
(1)
η,class is within a factor of about three of

the quantum-mechanical σ
(1)
η at all energies above 3µK. For other values of a, the
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two cross sections can differ by more than a factor of three at energies below about

2Ē, which is around 1 mK for Rb+CaF. Note that the classical approximation will

be less successful for a lighter coolant such as Li where Ē is far higher.

3.2.4 Approximate cooling rates

From the transport cross sections, σ
(1)
η , in fig. 3.5 we can make a useful estimate of

the cooling rate of molecules as a function of their kinetic energy. For this estimate,

we assume stationary atoms with a uniform density nat = 1011 cm−3. The cooling

rate is
dElab

CaF

dt
= natσ(ECM)v∆E, (3.2.24)

where v = (2Elab
CaF/mCaF)1/2 is the speed of the molecule and ∆E is the average

energy transfer for a hard-sphere collision. ∆E is given explicitly as

∆E = −
(

2µ

mCaF +mat

)
(1− cos Θ)Elab

CaF. (3.2.25)

Figure 3.7 shows the cooling rate coefficients obtained this way, which although

only approximate are helpful for understanding the numerical results presented later.

For collisions with Rb at energies above 10 mK, the cooling rate does not depend

strongly on the s-wave scattering length. This is the energy regime where the a-

independent classical approximation to σ
(1)
η (ECM) described in section 3.2.3 is accu-

rate. Due to the small reduced mass in the lithium case, the classical limit is reached

only for temperatures above 200 mK, and so the cooling rate depends sensitively on

a over the whole energy range of interest. When a is negative there is a minimum in

the cooling rates corresponding to the Ramsauer-Townsend minimum in σ
(1)
η (ECM).

For Rb, at a = −1.5ā, this minimum is near 100µK, which is close to the temper-

ature of the atoms in our simulations and so will not have a significant impact on

the thermalisation. For Li, the minimum occurs for kinetic energies between 1 and

10 mK, and so it has a strong effect on the thermalisation. Finally, we note that in

the ultracold limit the cooling rate is almost an order of magnitude higher for Rb

than for Li, reflecting the larger value of ā for Rb + CaF relative to Li + CaF.
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Figure 3.7: Cooling rate coefficient of molecules as a function of their kinetic energy,
estimated from eq. (3.2.24), when the coolant is (a) Rb and (b) Li, and for various
values of the s-wave scattering length: a = +1.5ā (red solid line), a = +0.5ā (blue
dash-dot line), a = −0.5ā (green dotted line), and a = −1.5ā (black dashed line).



3.2. Simulating Sympathetic Cooling of CaF by Li or Rb in a Microwave
Trap 92

10

5

0

-5

-10
-10 -5 0 5 10

10

5

0

-5

-10
-10 -5 0 5 10

10

5

0

-5

-10
-10 -5 0 5 10

10

5

0

-5

-10
-10 -5 0 5 10

(a) 0 s (b) 2 s

(c) 10 s (d) 20 s

x (mm)

v
  (

m
/s

)
x

Figure 3.8: Time evolution of the phase-space distribution of molecules in the x
direction. The cooling times are (a) 0 s, (b) 2 s, (c) 10 s, and (d) 20 s. The coolant
is Rb and a = +1.5ā.

3.2.5 Cooling dynamics

Figure 3.8 shows the evolution of the (x, vx) phase-space distribution of CaF when

Rb atoms are used as the coolant, for the case where the s-wave scattering length

is a = +1.5ā. At t = 0 (fig. 3.8(a)), the molecules fill the phase-space acceptance of

the trap. At later times, more and more molecules congregate at the trap centre as

they are cooled by collisions with the atoms. After 20 s (fig. 3.8(d)), the distribution

has separated into two parts. The majority are cooled to the centre, but there are

some that remain uncooled. These are molecules that have large angular momentum

around the trap centre and so are unable to reach the centre where the atomic density

is high. At x = 3 mm for example, the atomic density, and hence the collision rate,

is a factor of 1000 smaller than at the centre, and so molecules at this distance

are unlikely to collide with atoms on the 20 s timescale shown in the figure. These

molecules can be cooled by expanding the size of the atom cloud, but only at the

expense of the overall cooling rate [112].

Figure 3.9(a) shows histograms of the kinetic energy distribution of the molecules

at three different times, 2, 10 and 20 s, when the coolant is Rb and a = +1.5ā.

These are the same times as chosen for the phase space distributions in fig. 3.8, and
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Figure 3.9: Kinetic energy distributions after 2 s, 10 s, and 20 s. The coolant is Rb.
Left panels have a = +1.5ā while right panels have a = −1.5ā.
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the results come from the same simulation. The initial distribution is a Maxwell-

Boltzmann distribution with a temperature of 70 mK, truncated at the trap depth

of 400 mK. The distribution rapidly separates into two parts, those that cool and

those that do not. The latter are the molecules that never reach the trap centre

because of their large angular momentum, as discussed above. A significant fraction

of molecules are cooled below 1 mK after just 2 s. After 10 s the majority are in this

group, and after 20 s this cold fraction is almost fully thermalised with the atoms.

We return to part (b) of fig. 3.9 in the next section.

3.2.6 Sensitivity to the scattering length and the choice of

coolant

At low energies, cross sections are very sensitive to the exact form of the scattering

potential, as shown in fig. 3.5, and cannot be calculated accurately without indepen-

dent knowledge of the scattering length. In our model Lennard-Jones potential, the

full energy-dependence of the cross section is determined once the s-wave scattering

length, a, is fixed. Here, we study how the simulation results change as we vary the

value of a. The choice of coolant is also a crucial consideration, and so we compare

the results for Li and Rb as coolants.

Evolution of the kinetic energy distributions

Figure 3.9 compares how the kinetic energy distributions evolve for two cases: a =

+1.5ā and a = −1.5ā, with Rb as the coolant. At 2 s the two distributions are

similar. The main difference is that the distribution extends to lower energies for

a = +1.5ā. The similarity is due to the similar cooling rates at the high energies, as

shown in fig. 3.7(a), while the difference at low energy is due to the far higher cooling

rate for a = +1.5ā at energies below 1 mK (compare the solid red and black dashed

lines in fig. 3.7(a)). Exactly the same trend is seen after 10 s of cooling. Once again,

the high-energy parts of the distributions are very similar, but the distribution

extends to lower energies for the a = +1.5ā case. After 20 s the majority of the

molecules have fully thermalised with the atoms and the two distributions are very
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similar to one another.

Figure 3.10 shows the corresponding histograms for the case of Li. Here, the

cooling proceeds more slowly and so we have added a fourth pair of histograms

showing the distributions after 40 s. There is a great contrast between the positive

and negative scattering lengths in this case. For a = +1.5ā the distribution evolves

in a very similar manner to the Rb case, but when a = −1.5ā it takes a long time

for the molecules to reach energies below 10 mK. This is the effect of the Ramsauer-

Townsend minimum which reduces the cooling rate estimated in fig. 3.7(b) to 0.25 s−1

for kinetic energies near 20 mK. Because the minimum is broad in energy, and there

is a large mass mismatch between CaF and Li, a collision cannot take a molecule

directly across the minimum. The molecules have to be cooled through the min-

imum by multiple collisions, and that takes a long time. Once molecules have

passed through this minimum, cooling to ultracold temperatures occurs on a similar

timescale to the a = +1.5ā case.

Cold fraction and mean kinetic energy

Figure 3.11(a) shows the fraction of molecules with kinetic energy less than 10 mK,

as a function of time, for various values of a when the coolant is Rb. This fraction

is entirely insensitive to a. This is because the cooling rate is independent of a for

energies above 10 mK, as we saw in fig. 3.7. After 5 s about 50% of the molecules

are in this cold fraction, and after 20 s this exceeds 80%. Figure 3.11(b) shows the

cold fraction versus time when the coolant is Li. We find a strong dependence on a

in this case. When a = +1.5ā, the increase in the cold fraction with time is similar

to the Rb case. For this value of a there is a maximum in the cooling rate at a

kinetic energy of about 70 mK (see fig. 3.7(b)), which happens to match the initial

temperature of the molecules, and so the cooling to below 10 mK proceeds rapidly.

The cold fraction reaches 50% after 4 s in this case. The increase in the cold fraction

is slower for a = +0.5ā, reaching 50% after 16 s. The accumulation of cold molecules

is exceedingly slow when a is negative. When a = −1.5ā, the Ramsauer-Townsend

minimum is at Elab
CaF = 20 mK, and it takes a long time for the molecules to cool

through this minimum. The cold fraction reaches 50% after 40 s in this case. When
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Figure 3.10: Kinetic energy distributions after 2 s, 10 s, 20 s and 40 s. The coolant
is Li. Left panels have a = +1.5ā while right panels have a = −1.5ā.
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Figure 3.11: Fraction of molecules with kinetic energy below 10 mK as a function
of time for (a) Rb, and (b) Li, for four different values of the scattering lengths:
a = +1.5ā (red), a = +0.5ā (blue), a = −0.5ā (green), and a = −1.5ā (black).
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a = −0.5ā, the Ramsauer-Townsend minimum is shifted to Elab
CaF = 10 mK, but the

cross section at the minimum is a factor of five smaller, and so the cooling is even

slower, taking 50 s to reach 50%.

Figure 3.12(a) shows the mean kinetic energy of the cold fraction as a function of

time for various values of a when Rb is used as the coolant. As for the cold fraction

itself, this measure is almost independent of a. This may seem surprising, since the

cooling rates estimated in fig. 3.7(a) show a strong dependence on a below a few mK.

However, the mean kinetic energy is strongly influenced by molecules with kinetic

energies close to the 10 mK cutoff that defines the cold fraction, and at this energy

the cooling rates show little dependence on a. We find a small difference in the

cooling rates between positive and negative scattering lengths. For the positive a

values the molecular temperature is within a factor of two of the atomic temperature

after 10 s, while for the negative a values this takes 14 s. Figure 3.12(b) shows how

the mean kinetic energy of the cold fraction evolves when Li is used as a coolant.

In this case, the cooling depends sensitively on a. When a = +1.5ā the evolution

is similar to the Rb case. The cooling is much slower when a = +0.5ā because

the low-energy cross-section is nine times smaller. The cooling is even slower when

a is negative. This is because, in the energy region between 1 and 10 mK, the

Ramsauer-Townsend minimum greatly suppresses the cooling rate relative to the

positive a case, and because molecules with energies in this range have a strong

influence on the mean.

The fraction of molecules that are cooled below 10 mK depends on the initial

temperature, Ti. Figure 3.13 compares this fraction for Ti = 20 mK and 70 mK, for

the case where Rb is the coolant and a = +1.5ā. These two initial temperatures

correspond to temperatures of 2 mK and 30 mK prior to compression of the cloud

in the microwave trap. When Ti = 20 mK, more than 99% of the molecules are cold

within 10 s.

3.2.7 Atom heating and loss

The energy transferred from molecules to atoms will either eject atoms from the

trap, or will heat them up. As described in section 3.2.2, we suppose that atoms are
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Figure 3.12: Mean kinetic energy of the cold fraction as a function of time when the
coolant is (a) Rb and (b) Li, and for various values of the s-wave scattering length:
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Figure 3.13: Fraction of cold molecules as a function of time for the initial tem-
peratures of Ti = 20 mK (red solid line), and Ti = 70 mK (black dashed line). The
coolant is Rb and a = +1.5ā.

lost from the trap if their total energy exceeds 1 mK. This could be the actual depth

of the trap, or an “rf knife” might be used to cut off the trap at this depth. Here,

we investigate the heating and loss of atoms and the consequences for sympathetic

cooling. We note that while the EDT-HS collision model correctly captures the

molecule cooling dynamics by using σ
(1)
η is used as the cross section, it does not

model correctly the atom heating and loss. Here, we highlight the difference between

these two approaches by comparing the results obtained from the EDT-HS model

and the full DCS model.

Figure 3.14 shows how the heating and loss rates of the atoms change with time

in the full DCS model and the EDT-HS model for the case of 105 molecules and 109

atoms. The two models show similar trends, so we first discuss these trends and

then consider the differences between the models. At early times the majority of

the molecules have energies far above the atom trap depth and so most collisions

cause atom loss, rather than heating. The loss rate is high while the heating rate is

low. Nevertheless, there is still some heating due to small-angle collisions with the

molecules which transfer only a little energy to the atoms. The loss rate increases

during the first second because the collision cross section and the atom-molecule
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Figure 3.14: (a) Atom heating rate per molecule and (b) atom loss rate per molecule
for the EDT-HS model (dashed line) and the full DCS model (solid line). The coolant
is Rb, a = +1.5ā, and the molecules have an initial temperature of 70 mK. There
are 105 molecules and 109 atoms.
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overlap both increase as the molecules are cooled. As time goes on the loss rate

falls because the molecules are cooler and there are fewer collisions with enough

energy to kick atoms out of the trap. For the same reason the heating rate initially

increases, but then decreases again as the molecules have less energy to transfer to

the atoms. For most of the 20 s period, the full DCS model gives more atom heating

and more atom loss than the EDT-HS model. Only at long times, once the atoms

and molecules are almost fully thermalised, do the two models give the same results.

Integrating the results of the full DCS model shown in fig. 3.14, we find that the

total temperature increase of the trapped atoms is 1.3 pK per molecule, while the

total loss is 10 atoms per molecule. The energy deposited into the atom cloud is

only 1.8% of the initial energy of the molecular cloud. In this sense, the sympathetic

cooling process is remarkably efficient.

We now turn to how the atom heating and loss rates can be understood, and

explain why the two models give different results. Whether an atom is heated

or lost depends on the kinetic energy kick it receives in the collision, as given by

eq. (3.2.25) if the atoms are assumed to be stationary. An atom at the centre of the

trap is lost from the trap if the energy transferred in the collision exceeds the trap

depth, ∆E > Etrap. This occurs if the deflection angle exceeds a critical angle Θcrit

given by

cos Θcrit = 1−
(
mCaF +mat

2µ

)(
Etrap

Elab
CaF

)
. (3.2.26)

At laboratory-frame energies below critical energy Ecrit = ((mCaF + mat)/4µ)Etrap,

no loss is possible, assuming stationary atoms at the centre of the trap. This energy

is 2.63 mK for Li+CaF and 1.04 mK for Rb+CaF. All collisions below this energy

and collisions above this energy where Θ < Θcrit will not eject atoms from the trap,

but still transfer energy and so heat the atom cloud, by an amount proportional to

1 − cos Θ. This suggests the possibility of defining cross sections for atom heating

and loss as partial integrals of the differential cross section,

σloss = 2π

∫ cos Θcrit

−1

dσ

dω
d cos Θ, (3.2.27)
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σheat = 2π

∫ 1

cos Θcrit

dσ

dω
(1− cos Θ)d cos Θ. (3.2.28)

It is convenient to write these as integrals over d cos Θ instead of sin Θ dΘ because

the cos Θ form allows us to show plots in which the integrals are simply areas that

can be estimated by eye. Note that if Elab
CaF < Ecrit then σheat = σ

(1)
η , because all

collisions cause heating rather than loss. For the full DCS model these integrals

must be evaluated numerically, but in the hard-sphere model the DCS are isotropic,

dσHS/dω = σHS/(4π), and the integrals can be evaluated analytically to give

σloss,HS =
1

2
(1 + cos Θcrit)σHS (3.2.29)

and

σheat,HS =
1

4
(1− cos Θcrit)

2σHS. (3.2.30)

Figure 3.15 shows differential cross sections at two energies that correspond to

Elab
CaF = 2 mK and 20 mK for Rb+CaF. Both full differential cross sections and those

from the EDT-HS model are shown (solid and dashed black lines respectively), and

the corresponding quantities weighted by 1 − cos Θ are shown in red. The values

of Θcrit at the two energies are shown as vertical lines. Integrals over the complete

range of cos Θ under the black lines correspond to σel, and under red lines correspond

to σ
(1)
η ; the latter is the same for the full DCS and EDT-HS models by construction.

σloss is the area under the black lines to the left of Θcrit, and σheat is the area under

the red lines to the right of Θcrit. It can be seen that at 20 mK the full DCS has

a very large forwards peak; this dominates σheat, even though its contribution is

suppressed by the 1 − cos Θ weighting. The resulting σheat is many times larger

than in the EDT-HS model, which has no forward peak. The full DCS also has a

secondary peak near cos Θ = 0.75, which is outside Θcrit and so contributes to atom

loss; the resulting σloss is also larger than in the EDT-HS model. At the lower energy

of 2 mK, Θcrit is near Θ = π/2. There is still a large forwards peak but it no longer

dominates due to the changed range of integration, leading to similar cross sections

for the two models.

Figure 3.16 shows how the heating and loss cross sections vary over the range
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Figure 3.15: Differential cross sections and their contributions to heating and loss.
The solid black line shows the full quantum-mechanical dσ/dω, while the solid red
line shows (1− cos Θ)dσ/dω; the dashed lines show the corresponding quantities for
the EDT-HS model. The vertical line shows the value of Θcrit. (a) Elab

CaF = 2 mK.
(b) Elab

CaF = 20 mK. The coolant is Rb and a = +1.5ā.
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Figure 3.16: Loss (red) and heating (blue) cross sections as a function of CaF lab-
oratory energy for the EDT-HS model (dashed lines) and the full DCS model (solid

lines). σel (solid black line) and σ
(1)
η (dashed black line) are shown for comparison.

The coolant is Rb and a = +1.5ā.

of energies relevant to the cooling process. As explained above, at low energy,

Elab
CaF < Ecrit, we have σheat = σ

(1)
η and σloss = 0. Above Ecrit the heating cross

section falls off rapidly; for the EDT-HS model it falls to negligibly small values by

a few mK. The cross section for the full DCS is several times larger than that for

the EDT-HS model in this tail, but it also falls towards zero. The loss cross sections

for the two models agree surprisingly well (± ∼ 30%) in an intermediate energy

range from about 2 mK to 60 mK; the extent of this similarity is greatest for this

particular scattering length (a = +1.5ā), but it also exists up to about 20 mK for

the other scattering lengths investigated. Above this intermediate range, σloss for

the full DCS model does become larger than for the EDT-HS model, as we expect.

The large peak around 1.5 mK in the elastic cross section is a d-wave feature that

causes a large amount of backwards scattering around that energy; this significantly

enhances the loss cross section because at this energy Θcrit is still near backwards

scattering.

The overall effect is that the full DCS model gives significantly larger rates of
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both atom heating and atom loss than the EDT-HS model, especially at higher

energies, exactly as we see in fig. 3.14. This is at first sight surprising because each

atom-molecule collision causes either atom heating or atom loss. However, at higher

energies the total collision rate is considerably greater in the full DCS model than

in the EDT-HS model, because the former is determined by σel and the latter by

σ
(1)
η .

The effects of atom heating and loss will, of course, be most significant when

the atom number does not greatly exceed the molecule number. Table 3.1 shows

the results of simulations for a variety of molecule numbers, with the atom number

fixed at 109, and once again compares the full DCS and EDT-HS models. In the

first three rows, the trap depth for the atoms is 1 mK. When the atom number is

100 times the molecule number, atom heating and loss are not significant effects.

For each molecule, the first few collisions carry away most of the energy, and almost

all of these collisions cause atom loss, rather than heating. Thus, for this case, 11%

of the atoms are lost, and the atom cloud heats up by just 13µK. The molecules

thermalise completely with the atoms, and the majority are in the cold fraction.

When the atom number is only 10 times the molecule number, the effects are far

more dramatic. At the end of the simulation only 2.2% of the atoms remain, and

the temperature of those remaining has increased to 259µK. Since there are so few

atoms remaining, only 70% of the molecules now reach kinetic energies below 10 mK,

and the temperature of this fraction is increased to 596µK. The EDT-HS collision

model underestimates the atom loss and atom heating, and it predicts more cold

molecules, with a lower final temperature, than the full DCS model.

It is interesting to explore whether the atomic trap depth of 1 mK used in the

simulations above is optimum. The last three rows of table 3.1 show the results of

simulations with the atomic trap depth increased to 5 mK. As expected, this results

in less atom loss and more atom heating. The fraction of cold molecules increases

a little, but the temperature of the cold fraction increases significantly. This is

especially evident when the atom number is only 10 times the molecule number. It

is clear that large atomic trap depths are not necessarily beneficial for sympathetic

cooling, and indeed there might be advantages in adjusting the trap depth as cooling
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Table 3.1: The effect on the cooling process of different molecule numbers (Nmol),
with atom number fixed at 109, for two values of the trap depth Etrap: 1 mK and
5 mK. The columns give the fraction of remaining atoms fat, the atomic temperature
Tat, the fraction of cold molecules fmol, and the molecular temperature Tmol after
50 s. The main values are for the full DCS model, and the values in brackets are for
the EDT-HS model.

Etrap Nmol fat (%) Tat (µK) fmol (%) Tmol (µK)
107 89 (92) 113 (107) 89 (89) 113 (108)

1 mK 5×107 38 (59) 159 (136) 88 (88) 168 (144)
108 2.2 (18) 259 (180) 70 (83) 596 (246)
107 95 (96) 151 (133) 90 (89) 153 (134)

5 mK 5×107 75 (79) 396 (291) 90 (91) 435 (299)
108 50 (57) 704 (518) 85 (87) 927 (624)

proceeds.

3.2.8 The effect of evaporative cooling

Tarbutt and Lim also considered the effect of evaporatively cooling the atoms, to

allow cooling of the molecules to even lower temperatures. The methods and results

are described in detail in the final section of Ref. [113] and only the results are

summarised here. They suppose that the evaporation is done in the magnetic trap

by applying an rf field which induces transitions between trapped and anti-trapped

Zeeman states at a value of magnetic field only reachable by the most energetic

atoms (an “rf knife”). The evaporative cooling of the atoms follows the theory

described in [264]. The rf knife is set such that an atom is lost if its energy exceeds

ηkBT , such that the parameter η determines how rapidly the evaporative cooling

proceeds.

Figure 3.17(a,b) shows the fraction of molecules with kinetic energy below 1 mK,

and the mean kinetic energy of that fraction, using a = +1.5ā and three different

values of η: 5.52, 6.67, and 8.14. It can be seen that for all three values of η

sympathetic cooling works well in this case and the molecules reach 1 µK in 30 – 50

s. Note that the times taken to reach this temperature are purely atomic effects and

are not influenced by the sympathetic cooling. In particular, in the case of η = 5.52

the cooling slows significantly after about 20 s, which is because too many atoms

have been lost due to the aggressive evaporative cooling. Therefore, the fastest
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Figure 3.17: Sympathetic cooling of molecules with evaporative cooling applied to
the atoms. Graphs show the time evolution of (a) the fraction of molecules with
kinetic energy below 1 mK, when a = +1.5ā; (b) the mean kinetic energy of the
ultracold fraction when a = +1.5ā; (c) the mean kinetic energy of the ultracold
fraction when a = −0.5ā. (i, black) η = 5.52, (ii, red) η = 6.67, (iii, blue) η = 8.14.
In (b) and (c), the dashed lines show how the atomic temperature evolves. The
long-dash green line shows the atom temperature without evaporative cooling.
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cooling is found for the intermediate value of η

Finally, we consider the case where a = −0.5ā. This is a highly unfavourable case

compared to a = +1.5ā, both because the elastic cross section in the ultracold limit

is nine times smaller and because there is a deep Ramsauer-Townsend minimum in

the cross section for collision energies slightly below 100µK, as can be seen in fig. 3.5.

The fraction of molecules with kinetic energy below 1 mK is almost unchanged from

that shown in fig. 3.17(a) because at energies higher than 1 mK the cross sections

for the two values of a are not too different. Figure 3.17(c) shows how the mean

kinetic energy of the ultracold fraction evolves when a = −0.5ā. Because of the

lower collision rate, the mean kinetic energy of the molecules lags behind that of the

atoms, instead of the two being locked together as they are in the case of a = +1.5ā.

The molecules are slow to reach 20µK for all values of η, because they have to cool

through the Ramsauer-Townsend minimum to do so. In particular, for η = 5.52, the

atoms cool too quickly and the molecules have not thermalised with the atoms even

after 50 s. However, cooling is successful for the other two values of η and again the

cooling of the molecules is fastest for the intermediate value. We see that, even for

this unfavourable value of a, evaporative cooling of the atoms can bring the molecule

temperature down to 1µK on a reasonable timescale, provided a suitable value of η

is chosen. It is clear that knowledge of the actual atom-molecule scattering length

will be needed to choose the optimum conditions for evaporative cooling.

3.2.9 Conclusions

In this section, we have addressed the methodology for modelling sympathetic cool-

ing of molecules by ultracold atoms, and we have studied in detail the results of

simulations for a prototype case where ground-state CaF molecules in a microwave

trap are overlapped with ultracold Li or Rb atoms in a magnetic trap. This work

leads to a number of conclusions which we now summarise.

Previous work on sympathetic cooling used a hard-sphere model of collisions.

This is appropriate at very low energies (in the s-wave regime), but breaks down

badly for heavy molecules in the millikelvin regime. Even with a properly energy-

dependent elastic cross section, σel, we have shown that a hard-sphere model sig-
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nificantly over-estimates the cooling rate for collision energies above the s-wave

scattering regime. A hard-sphere collision model that uses the energy-dependent

momentum transport cross section, σ
(1)
η , gives the correct molecule cooling rate, but

underestimates both the heating of the atoms and the loss of atoms from the trap.

We have therefore used the full differential cross section to model atom-molecule

collisions, so that the cooling of the molecules and the associated heating and loss

of atoms are all modelled accurately.

We have studied sympathetic cooling of CaF with both Rb and Li over a range

of typical values of the atom-molecule scattering length a. We find that Rb offers

significant advantages over Li as a coolant for ground-state molecules. The mean

scattering length ā is almost twice as large for Rb, and so it is likely that the true

scattering length will also be larger for Rb. The mean energy transfer is proportional

to µ/(mCaF + mat) which is 0.48 for Rb, but only 0.19 for Li. If a happens to be

negative there can be a deep Ramsauer-Townsend minimum in the cross section.

For Li, the minimum typically occurs when Elab
CaF is between 1 and 10 mK, and the

molecules cool very slowly because their energies must pass through this minimum.

For Rb, the minimum is shifted down an order of magnitude in energy, and so

the molecules do not encounter the minimum until they have reached the ultracold

regime. For Li, the cooling rate is very sensitive to the actual value of a, while for Rb

the initial cooling rate is fairly insensitive to a because the Rb+CaF cross section

conforms closely to a classical result, independent of a, down to temperatures near

1 mK. This brings less uncertainty about the likely results of sympathetic cooling

experiments if Rb is used. These advantages of Rb as a coolant are likely to extend

to other molecules of a similar or greater mass. Finally, it is experimentally easier

to prepare large, dense samples of ultracold Rb than of ultracold Li.

It should be noted that the preference for Rb over Li applies only to ground-

state molecules that cannot be lost from the trap through inelastic collisions. For

molecules in static magnetic or electric traps, a light collision partner such as Li,

Mg or H provides a higher centrifugal barrier than a heavy one such as Rb, and this

may be important for suppressing low-energy inelastic collisions [100, 106, 110].

For molecules with an initial temperature of the molecules of 70 mK, cooled by Rb
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with a temperature of 100µK and a peak density 1011 cm−3, we find that, after 10 s,

75% of the molecules have cooled into a distribution with a temperature of 200µK. If

the initial temperature of the molecules is reduced to 20 mK, this fraction increases

to 99% due to improved overlap between molecule and atom clouds. By arranging

for the atom trap depth to be far below the initial molecule temperature, we can

ensure that the majority of the energy in the molecule cloud is removed by atoms

that are lost from the trap, instead of heating the atom cloud. For efficient cooling

the atom number should exceed the molecule number by at least a factor of 100.

By applying evaporative cooling to the atoms, the molecules can be sympathetically

cooled more rapidly, or they can be cooled to far lower temperatures. For values of

the scattering length in the likely range, and with a suitable choice of evaporation

ramp, 70% of the molecules can be cooled to 1µK within about 30 s. These are

all encouraging results: using experimentally achievable atom numbers, densities

and temperatures, sympathetic cooling to ultracold temperatures can work on a

timescale that is short compared to achievable trap lifetimes. A good starting point

for such experiments would be a mixed-species magneto-optical trap of molecules

and atoms.

3.3 Updated Prospects for Sympathetic Cooling

of Magnetically Trapped Molecules

We now briefly consider how the ideas explored in this chapter affect our under-

standing of the prospects for sympathetic cooling in a magnetic trap. For trapping

in a static magnetic trap, the molecules must be in a low-field-seeking state, which

can never be their lowest state. Therefore, inelastic collisions will always be possible

for sympathetic cooling in a magnetic trap; these will cause trap loss either through

large kinetic energy release or through transfer to an untrapped state. This has led

to a rule of thumb that for successful sympathetic cooling in a magnetic trap, the

ratio of elastic to inelastic cross sections, γel = σel/σinel, must be 100 or greater.

A definitive justification for this number seems elusive; Ref. [56] is often cited, but
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that paper is far from definitive as concerns the general case,6 although the ratio

of 100 probably is a reasonable target in practical terms. Much of the theoretical

effort in this area has been focussed on finding systems where this criterion is met

[96–102, 106, 107, 110].

As an example we consider Mg+NH, which was the first molecular system to

be shown to have the required ratio of elastic to inelastic cross section [100]. We

consider collisions of NH in its ms = +1 state, where s is the spin quantum number

of the unpaired electron of the NH molecule and ms is the projection of s onto

the space-fixed magnetic-field axis. Mg is a 1S atom and is therefore structureless.

We neglect hyperfine interactions on both collision partners. The calculations are

described in detail elsewhere [100, 218].

We can immediately say that the relevant ratio to asses sympathetic cooling is

γth = σ
(1)
η /σinel, rather than γel. Figure 3.18 shows contour plots of both γel and γth

for Mg+NH. It can be seen that the use of σ
(1)
η makes relatively little difference to

the overall behaviour and interpretation of these results. This is fairly unsurprising,

given the two cross sections differ by only a small factor in the region of energy we are

interested in. The most notable difference is that the region where the ratio is only

just larger than 100 is significantly wider when using σ
(1)
η , but as this is still likely to

lead to successful sympathetic cooling it does not affect the conclusions. Indeed, the

effect of using σ
(1)
η is much smaller than the effects of including hyperfine interactions

[103]. However, the results are quantitatively different and, where possible, σ
(1)
η (and

γth) should be used in preference to σel (and γel) for assessing the likelihood of success

of sympathetic cooling.

There is an additional effect that was not accounted for in previous theoreti-

cal work on this topic. The relevant scattering calculations were performed using

centre-of-mass energies, as usual, but were not subsequently interpreted in terms

of laboratory frame energies that are of primary interest to experimentalists. As

discussed in sections 3.1.1 and 3.2.1, if the coolant atoms are approximated as being

6It is written in the context of buffer-gas cooling not sympathetic cooling; refers to a number of
collisions needed for cooling rather than a ratio of elastic to inelastic cross sections; is for a single
specific case for which the number of collisions is actually ∼ 250.
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Figure 3.18: Contour plots of ratios of cross sections: σel/σinel (top) and σ
(1)
η /σinel

(bottom) for Mg+NH. The black lines show the upper bound of the field sampled
by 99.9% of the molecules in a cloud with a temperature of Elab

NH/kB, in an unbiased
trap (solid) and a trap with a bias field of B = 1 G (dashed). For comparison,
the red lines show the equivalent quantity for a temperature of ECM/kB, which was
incorrectly used in some previous publications.
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stationary in the trap, the laboratory frame energy of the molecules is higher than

the CM energy by a factor of mmol/µ. This can significantly affect the interpre-

tation of the calculations, in particular it can scale the temperature below which

sympathetic cooling is likely to be successful. In Mg+NH, the factor is 1.626, and

although this appears to be a relatively modest factor it could make a large dif-

ference to the number of molecules able to be cooled to the starting temperature.

This is also shown in fig. 3.18 by the secondary x-axis showing Elab
NH, which allows

correct interpretation of the contour plot under the approximation that the coolant

Mg atoms are stationary. Additionally, previous work included estimates for the

maximum field experienced by 99.9% of the molecules at a particular temperature,

which had been incorrectly calculated using the CM energies; this is now calculated

correctly, using the laboratory frame energies.

The effect of this mass-scaling can be much larger and highly significant for

heavier molecules or lighter coolant atoms. For example, for 7Li+CaF there are

reasonable prospects that γth > 100 at collision energies below about 20 mK. This is

because of centrifugal suppression in the outgoing channel [103, 106, 108]. However,

the mass scaling factor is 9.404, so sympathetic cooling might be possible from

laboratory energies 150-200 mK for the molecules. Figure 3.19 shows the cross

sections of Mg+NH but with the ratio between CM and laboratory energies of

Li+CaF to illustrate the magnitude of this effect. This is a very significant difference

because existing direct cooling methods, such as Stark or Zeeman deceleration or

buffer-gas cooling, can sometimes cool significant numbers of molecules down to

100-200 mK but generally struggle to reach lower temperatures. Therefore, cooling

starting at 150 mK is likely to be experimentally feasible whereas cooling starting

at 20 mK is likely not to be feasible, so this effect might be crucial in a practical

realisation of sympathetic cooling in a magnetic trap.

Similarly large mass scaling factors will also occur in systems using atomic hy-

drogen as a coolant [109, 110] (15.9 for H+NH, 17.9 for H+OH). This may allow

cooling from initial molecule temperatures of several Kelvin, which will significantly

reduce the pre-cooling necessary and may result in much larger molecule numbers

if sufficiently large numbers and high densities of hydrogen atoms can be produced.



Chapter 4

Chaos in Ultracold Scattering

Systems

In recent years, interest in ultracold physics has turned to increasingly complex

systems. Examples include collisions of high-spin atoms [43, 265–269] and ground-

state molecules [49–51, 104, 145]. The theory needed for a full description of these

systems is often prohibitively difficult; for example, two erbium atoms interact on

91 potential curves [127], and even small molecular systems such as Li+CaF become

extremely challenging when all spins are included [270]. In such a case it is unrealistic

to fit precise potentials to experimental results in the manner that has been so

successful for simple atomic systems such as Rb+Cs [42] and might even be envisaged

for a system like Mg+NH. Instead it is possible that the dynamics are stochastic

with levels described by random matrix theory (RMT) [271, 272].

A qualitative understanding of the dynamics of these highly complex systems

is important for both theorists and experimentalists. For a simple system, theory

can in principle give a complete description, but for a fully chaotic system specific

predictions are likely to be impossible. For example, it is unlikely to be possible to

map out the near-threshold bound states navigated by Feshbach molecules except

empirically [43]. If a collision is chaotic in nature, the collision complex will ergodi-

cally explore the entire phase-space and the two collision partners may be trapped

together for a long time. In ultracold collisions, this may be long enough for a third

body to collide with the complex, which is likely to lead to the loss of all the particles

116
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involved from the trap [207].

The idea of describing energy levels of a complex system as eigenvalues of a

random matrix was first proposed by Wigner [273–275] in an effort to describe

resonances in the scattering of neutrons from complex nuclei. These ideas were

expanded through the 1950’s and 60’s by various authors [276–281], most notably

Dyson whose seminal series of papers [282–285] established much of the underlying

theoretical structure of RMT. During this period, the Gaussian Orthogonal Ensem-

ble (GOE) was first described; this quickly became the most commonly used RMT

ensemble. Although these ideas were originally developed in the context of energy

levels of complex nuclei, they were quickly applied to other physical systems such

as electronic states of transition metal atoms [278] and Rydberg states of Hydro-

gen in a magnetic field [286]. The discussion of such systems originally referred to

“complex” or “random” systems, but the Bohigas-Giannoni-Schmit (BGS) conjec-

ture [287] made the link to “chaotic” systems - in this context, systems for which the

classical dynamics are chaotic. This conjecture states that the quantum mechanical

energy levels of a system that is classically chaotic follow the same statistical fluc-

tuations as the GOE (for a time-reversal independent system). The BGS conjecture

remains unproven, but there are strong indications of its validity in the semiclassi-

cal limit [288, 289] and there is much evidence supporting it from both theory and

experiment.

The idea of applying theories of chaos and RMT to cold and ultracold collisions

was first suggested by Bohn et al. [290] for O2. However, this idea only gained

significant traction in the ultracold physics community after later studies [207, 208]

emphasised the potential enhancement of 3-body collision rates due to long-lived 2-

body collisions. This effect was proposed as a mechanism by which molecules which

are expected to be immune to 2-body inelastic and reactive collisions might still show

fast trap loss. Of particular interest are alkali dimers: these have been produced

in their absolute ground state for several atomic combinations; and for some of

the combinations all 2-body reactive collisions should be energetically forbidden

at ultracold temperatures [291]. There have been preliminary signs of this kind of

rapid trap loss for molecules that were expected to be collisionally stable [50, 52, 53],
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although attributing the loss to chaos and long-lived 2-body collisions is still highly

speculative. This argument will be explored in greater depth in chapter 5, but it

is predicated upon the idea that the systems in question are chaotic, and it is this

aspect that will be the focus of this chapter.

Signatures of quantum chaos have now been experimentally observed in ultracold

collisions of high-spin atoms. These studies analysed the distribution of magnetic

Feshbach resonances in Er+Er [127, 128] and Dy+Dy [128] and found that they

showed some key features expected of chaotic systems but that they were not con-

sistent with a fully chaotic system. Theoretical bound-state calculations were also

performed on the two systems [127, 128] which were broadly in agreement with

the conclusions from the experimental results. However, calculations on Li+Er

found statistics consistent with a random but non-chaotic level distribution [292].

A re-analysis of the erbium results [293] showed that the deviations from chaotic

predictions might arise because some narrow resonances are not observed in the

experiment. These ideas have also been used as a basis for a QDT toy model by

Jachymski and Julienne [294].

This chapter will begin with a discussion of some of the theory of RMT, and how

it applies to ultracold systems in section 4.1, as well as details of how we perform sta-

tistical analysis of our results. In section 4.2 we consider the specific atom+diatom

systems Li+CaH and Li+CaF. Here, we investigate both the signatures of chaos

observed, and the development of order under certain conditions which partially

destroys the chaos in both expected and unexpected ways. In section 4.3 we turn

our attention to the atom+atom system Yb+Yb∗, which has similarities to the Er

and Dy systems investigated experimentally but with a much simpler structure.

The work in this chapter is drawn from work published in Refs. 129 and 130 and

significant parts of the work were collaborative between all 5 authors of those pub-

lications. The code used to perform the statistical analysis described in section 4.1

and used in sections 4.2 and 4.3 was created jointly by C. L. Vaillant and myself.

The bound state calculations in section 4.2 were performed jointly by M. Morita

and myself. The calculations in section 4.3 were performed by C. L. Vaillant and

D. G. Green. The analysis and interpretation of results was generally collaborative
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between all the authors, but lead by myself for the atom+diatom work in section 4.2.

4.1 Introduction to RMT as Applied to Ultracold

Scattering and Near-Threshold Bound States

Here we will give a very brief overview of RMT and in particular the GOE. This

will hopefully both illustrate the key points needed to understand our use of RMT,

and provide a starting point for a student first approaching this challenging field,

as I was at the start of this project. There is a great deal of secondary literature

available on this subject, although much of it is near incomprehensible to those not

already familiar with the basics in this field. Sources we have found particularly

useful include “Random Matricies” by Mehta [271] and the early sections of “Ran-

dom matrix theories in quantum physics: common concepts” by Guhr et al. [272], in

particular we found this review was the most useful source of references into the pri-

mary literature; “Quantum signatures of chaos” by Haake [295] is a more technical

text, and covers less of the material we are interested in than the other references,

but it is clearly and precisely written and has been useful for clarifying technical

points; “The transition to chaos: conservative classical systems and quantum man-

ifestations” by Reichl [296] covers an extensive range of the topics relevant to our

work, but as a result does not always have the same focus or clarity of some of the

other sources.

Random matrix theory does not seek to describe the specific details of a sys-

tem, but instead tries to model statistical properties of the system. RMT can, in

principle, be applied to a vast range of types of system, but we will focus on it as

applied to chaotic time-reversal-invariant systems. This is both the most commonly

studied case and the one relevant to the physical systems we are interested in un-

derstanding. Some of these systems of interest will include a magnetic field, which

breaks conventional time-reversal symmetry, but they still have the correct symme-

try under time-reversal plus a geometric symmetry such as a reflection, so behave

in the same way as time-reversal-symmetric systems. If all remaining geometric

symmetries were removed from such a system with additional external fields (such
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as radio-frequency radiation) it may show behaviour corresponding to a different

symmetry class [297]. Such considerations, and further possible symmetry classes,

are beyond our current investigations. Note that many texts give general results

applicable to several symmetry classes in terms of a parameter usually labelled as

β, for our case this should take the value β = 1.

The Gaussian Orthogonal Ensemble (GOE) is the standard RMT model for chaos

in systems with time-reversal-invariant Hamiltonians. It is a set of real symmetric

N ×N matrices H, with probability distribution

P (H) = C exp

(
−tr(H2)

2

)
, (4.1.1)

where C is a normalisation constant. This can be rewritten as probability distribu-

tions for diagonal and off-diagonal elements

Pii(Hii) = C ′ exp

(
−H

2
ii

2

)
, (4.1.2)

Pij(Hij) = C ′′ exp
(
−H2

ij

)
, (4.1.3)

respectively. The underlying assumptions that lead to this distribution are that all

elements are uncorrelated and that the probability density does not change under

orthogonal transformation, P (OTHO) = P (H) for all N × N orthogonal matrices

O. Note that alternative choices of scaling are sometimes used, but these do not

materially change the results. It can be seen that the GOE has off-diagonal elements

that are on the order of the spread of the diagonal elements and so for large N are

much larger than the average separation of diagonal elements. In this way, the GOE

can be seen as a limit of strong coupling.

It is instructive to immediately present two theoretical results about the eigen-

values of a GOE matrix, xi for i = 1, . . . , N . These are given for the usual limit

N →∞, although in practice they are typically robust for even moderate values of

N ≈ 10 to 100. The overall distribution of the density of eigenvalues is

ρ(x) =
1

π

√
2N − x2 (4.1.4)
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for −
√

2N < x <
√

2N and ρ(x) = 0 otherwise [277]. This is known as Wigner’s

semicircle law. Note that both the width of the semicircle and the density at zero

energy scale as
√
N , so are infinite in the limit N → ∞. Either, but not both,

of these divergences can be avoided by choosing a different scaling in eqs. (4.1.1)

to (4.1.3), although we will not need to do so here. The full distribution for the set

of eigenvalues xi for i = 1, . . . , N , can be written as

P (x1, . . . , xN) = C ′′′
N∏
n=1

exp

(
−x

2
n

2

) ∏
m<n

(xn − xm). (4.1.5)

The terms xn−xm show that the levels repel each other: there is a linearly vanishing

probability of finding two levels close to each other. This is a key result for the GOE.

This level repulsion is more clearly quantified in the nearest-neighbour spacings

(NNS) si, which are given in units of the local mean spacing D = 1/ρ. These are

distributed according the Wigner surmise

P (s) =
πs

2
exp

(
−πs

2

4

)
, (4.1.6)

which is also known as the Wigner-Dyson distribution. Equation (4.1.6) is an ap-

proximation, but it is a good one and sufficient for most purposes; for more details

see the discussion by Haake [295]. It should be noted that simply picking spacings

randomly from eq. (4.1.6) and using them to generate a series of level positions does

not correctly model a series of eigenvalues from the GOE as it neglects correlations

beyond the nearest neighbour, which are very important in many circumstances.

The BGS conjecture links a chaotic system with the GOE, but it is important

to appreciate that there are two different limiting cases for systems that are not

chaotic. Some systems have highly structured energy-level patterns; the most ex-

treme example of this is a harmonic oscillator, but a similar degree of regularity is

exhibited by the levels of any single-channel system and by a rigid rotor. Other non-

chaotic systems can have completely random (Poissonian) level patterns, without

level repulsion. Such systems are often referred to in the chaos literature as regular

systems, by analogy with the corresponding classical dynamics. To a spectroscopist,
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however, the term regular implies structure and can lead to confusion. We therefore

prefer to use the term random to describe systems with Poissonian level statistics.

For a system to be chaotic requires very large coupling matrix elements, as

shown by eqs. (4.1.1) to (4.1.3). In the context of near-threshold bound states or

low-energy collisions, this can occur when the anisotropic terms in the interaction are

comparable in magnitude to the depth of the isotropic potential, which determines

the spread of diagonal elements. As we will see, the highly anisotropic potentials

of Li+CaH, Li+CaF and Yb+Yb∗ would seem to fulfil this: the majority of the

potential well is contained in the anisotropic terms of many thousands of cm−1.

In contrast, the Er+Er and Dy+Dy potentials used in Ref. 128 have anisotropies

around 10% of their well depths.1 In this way it is perhaps not surprising that there

are deviations from GOE predictions for Er+Er and Dy+Dy, whereas we might at

first sight expect better agreement for Li+CaH, Li+CaF, and Yb+Yb∗.

4.1.1 Statistical analysis of level sequences

To determine if a set of levels, either calculated or experimental, is well described by

the GOE - and thus the system they came from is chaotic - we must analyse statistics

calculated from the levels. A great many statistics are available to perform this

analysis (see for example chapter 16 of Mehta’s book [271]) but work on ultracold

collisions so far has focused on two of the simplest quantities: the NNS distribution

and the level number variance; we also analyse these two quantities.

Such statistical analysis would usually be performed on a series of levels in energy

with the Hamiltonian defining the system fixed. However, the underlying RMT con-

cerns distributions taken over an ensemble of different Hamiltonians. The assump-

tion that the distributions over energy (for a single Hamiltonian) are the same as

those over Hamiltonians is known as spectral ergodicity [299]; this is a known prop-

erty of RMT [299] but not necessarily of real systems. In recent ultracold collision

studies [127, 128, 294], statistical analysis was performed on a series of zero-energy

1The anisotropy considered in Ref. 128 is based entirely on dispersion effects [298]. The spread
of dispersion coefficients for different potential curves of Er-Er is 10% of their mean value, and
that for Dy-Dy is 9% of their mean value.
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resonance positions as magnetic field was varied. Such experiments sample many

different Hamiltonians - albeit in a much more limited and structured way than

RMT - and so may provide a more authentic comparison with RMT than an energy

spectrum would, even if it was available. In place of the spectral ergodicity hy-

pothesis, we now need only to assume that different Hamiltonians are sampled in a

representative way. We will also consider zero-energy resonances as a potential scal-

ing factor λ is varied. This also varies the Hamiltonian but without the theoretical

complexities or computational expense that make calculations including magnetic

fields prohibitively difficult for some systems. In this respect λ may be considered

a poor man’s magnetic field.

For the statistical analysis of the levels we follow the methods of Mehta [271]

and Guhr et al. [272]. We denote the series of n experimental or calculated level

positions as Xi for i = 1, . . . , n, where X would conventionally represent energy but

here can also represent magnetic field or λ. Note that we observe only a fraction

of the total number of levels in the system, so n � N . First we ‘unfold’ the level

positions to remove any systematic variation in the density and to set the levels on a

dimensionless scale with unit mean spacing. To do this we construct the cumulative

spectral function, also known as the staircase function,

S(X) =
n∑
i=1

Θ(X −Xi), (4.1.7)

where Θ(x) is the Heaviside step function. We then fit a smooth function, ξ(X), to

S(X). In the systems we analyse here, fitting with a quadratic function is sufficient

as the original staircase is already very nearly linear. The unfolded positions are

then given as ξi = ξ(Xi).
2 The nearest-neighbour spacings (NNS) are given by

si = ξi+1 − ξi for i = 1, . . . , n− 1.

As previously stated, the NNSs for a chaotic system are expected to follow the

Wigner-Dyson distribution, eq. (4.1.6). In contrast, if the system is random the

2In general, S(X) can be decomposed as S(X) = ξ(X) + Sfl(X), where ξ(X) is a smooth part
given by the cumulative mean level density, and Sfl(X) describes fluctuations about this average.
The unfolding procedure rescales the staircase function S(X) → S(ξ) = ξ + Sfl(ξ), i.e., to unit
average density, isolating the fluctuating part that is of interest.
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NNSs will follow a Poissonian distribution

PP(s) = exp (−s) . (4.1.8)

If the system is structured, there is no generic NNS distribution we expect it to

follow. For a harmonic oscillator the NNS is simply a delta function, PHO(s) =

δ(s−1), but more complicated forms of structure will lead to other distributions. For

example, a multi-dimensional harmonic oscillators typically has an NNS distribution

that is more strongly peaked than the Wigner-Dyson distribution [300]. However,

we will not investigate this further but instead simply focus on the chaotic and

Poissonian cases. Qualitative impressions of the statistics can be given by histograms

of the spacings, but it is also desirable to have quantitative measures.

Real systems do not exactly follow either PWD(s) or PP(s). There are various

formulas for interpolating between the two [301–303]. The most commonly used of

these is the Brody distribution [301],

P
(η)
B (s) = cη(η + 1)sη exp

(
−cηsη+1

)
, (4.1.9)

where

cη =

[
Γ

(
η + 2

η + 1

)]η+1

, (4.1.10)

and η is known as the Brody parameter. Despite its lack of theoretical foundation3

this NNS distribution has remained popular and widely used because of its simplicity

and versatility; it is the one that has been used in recent publications in ultracold

physics and is the one that we use in this chapter.

We obtain a value of η for a set of spacings by maximum likelihood estimation

[304]. We maximise the likelihood function,

L(η) =
∏
i

P
(η)
B (si), (4.1.11)

3In particular, the fractional power behaviour as s → 0 runs contrary to typical arguments
which suggest the behaviour should always be linear in this limit and it is the derivative that
should vary.
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to find η. As a matter of computational practicality, we actually calculate and

maximise the logarithm of the likelihood

l(η) = lnL(η) =
∑
i

lnP
(η)
B (si). (4.1.12)

The uncertainty of η is

σ =

(
− d2

dη2
lnL(η)

)− 1
2

. (4.1.13)

The fitted value for the Brody parameter quantifies the visual information seen in

NNS histograms: Poisson statistics yield η = 0 and chaotic statistics yield η = 1.

The NNS distribution by nature captures information only about short-range

correlations but chaos is predicted to have effects over long ranges as well [271, 272].

Therefore we also consider the level number variance

Σ2(∆ξ) = 〈Ŝ2(∆ξ, ξ)〉 − 〈Ŝ(∆ξ, ξ)〉2, (4.1.14)

where Ŝ(∆ξ, ξ) counts the number of levels in the interval [ξ, ξ+∆ξ] and the average

is taken over the starting values ξ. This characterises the spread in the numbers of

levels in intervals of length ∆ξ and probes long-range correlations. For the GOE, it

rises logarithmically as

Σ2(∆ξ) = 2π−2

[
ln(2π∆ξ) + γ + 1− π2

8

]
+O(∆ξ−1), (4.1.15)

where γ = 0.5772 . . . is Euler’s constant; for Poissonian statistics it rises linearly

as Σ2(∆ξ) = ∆ξ; and for a regular system it will oscillate around a constant value.

While there have been some attempts to interpolate between Poissonian and GOE

behaviours of the number variance, there is no direct analogue to the Brody distribu-

tion so we restrict ourselves to qualitative statements about the transition between

the two limiting behaviours.
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4.2 Li+CaH and Li+CaF

Atom+diatom systems provide excellent prototype systems to investigate chaotic

behaviour. If vibrational excitation and electron spins are neglected, the systems

have two internal degrees of freedom; this is the minimum for classical chaos and

probably also for a quantum system to follow the predictions of RMT [287]. The

required formalisms [155, 223, 305] and programs to perform the necessary calcula-

tions [171, 172] are well developed, readily available, and relatively straightforward.

There are many atom+diatom systems that are of interest at low temperatures,

including Rb+KRb [145], N+NH [105] and Li+CaH [306]. In particular, there is

good progress towards obtaining CaH or CaF at cold and ultracold temperatures

by buffer-gas cooling [59, 62], Stark deceleration [307], laser cooling [115, 116], or

sympathetic cooling [113], and considerable interest in investigating their collisional

properties with Li or other alkali metals [107, 146, 308]. Therefore, the first systems

we investigate for signatures of chaos are Li+CaH and Li+CaF.

4.2.1 Potential energy surface and bound-state calculations

The interaction between Li(2S) and CaH/CaF(2Σ) gives rise to singlet and triplet

electronic states of 1A′ and 3A′ symmetries. For sympathetic cooling in an exter-

nal magnetic field, Li and CaH/CaF would be prepared in magnetically trappable

spin-stretched states, in which all the quantum numbers for the projections of angu-

lar momentum onto the magnetic field direction have their maximum values. Such

collisions occur primarily on the potential energy surface for the 3A′ state, so we

use this surface for our calculations. For Li+CaH, we use the ab initio 3A′ inter-

action potential calculated by Tscherbul et al. [107], and for Li+CaF we use the

surface calculated in [130].4 For both systems, the diatom bond length is held at its

equilibrium value throughout.

The resulting 3A′ potential energy surfaces are shown in fig. 4.1. It may be seen

that they are strongly anisotropic, with a deep well (7063 cm−1 for CaH and 7258

cm−1 for CaF) at slightly bent Li-X-Ca geometries. The overall behaviour of the

4The potential in Ref. 130 was calculated by M. Morita.
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Figure 4.1: The ab initio 3A′ interaction potential for (a) Li+CaH and (b) Li+CaF.
Contours are labeled in cm−1. R is the distance from the Li atom to the centre of
mass of the diatom and θ is the angle between the diatom bond and the inter-particle
vector, θ = 0◦ corresponds to the Li-H(F)-Ca geometry. The diatom bond length is
fixed at its equilibrium value.
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two surfaces is similar, though the Li+CaF interaction is slightly stronger and more

anisotropic.

As previously explained we will focus on zero-energy bound states and resonances

as a function of potential scaling parameter λ due to the difficulties associated with

performing calculations on Li+CaH and Li+CaF in magnetic fields. The calculations

themselves are the same as those performed in section 2.2.3, except that we now focus

on bound state calculations rather than scattering calculations. We have modified

the program field [174] to locate bound states as a function of λ rather than an

applied electromagnetic field. We also use bound [172] for calculations of bound

states away from threshold. Since the diatom rotational constants, b, are very small

(bCaH = 4.2766 cm−1 [107] and bCaF = 0.339 cm−1 [309]), we need very large basis

sets of diatom rotational functions for convergence. Unless otherwise stated, we use

basis functions with rotational quantum numbers up to jmax = 55 and 120 for CaH

and CaF, respectively.

The real systems include diatom vibrations and electron and nuclear spins. The

harmonic frequencies for CaH and CaF are 1298 and 589 cm−1, respectively. Since

the well depth is significantly larger than this, there will be states from channels

involving diatom vibrational excitation in the region around threshold, although

they may be sparse in energy. These are neglected in our calculations. There will

also be considerable extra density of levels due to the spin multiplicities, although

it is not clear whether the spins will be fully involved in any chaotic dynamics or if

they will be spectators. The present results are therefore for model systems, based

on the real systems but not taking account of their full complexity.

4.2.2 Results: Li+CaH

We begin by analysing Li+CaH for total angular momentum J = 0 and 0.7 ≤ λ ≤
1.6. Figure 4.2 shows the calculated level positions for J = 0, the staircase function,

a histogram of the NNS distribution, and the level number variance. This serves

as an example of the statistical preparation and fitting described in section 4.1.1;

all further sequences in this section and section 4.3 were analysed in the same way.

The NNS distribution clearly shows the key features of a Wigner-Dyson distribution:
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Figure 4.2: Statistical analysis of calculated levels of Li+CaH (J = 0, 0.7 ≤ λ ≤ 1.6).
From top: Level positions in λ; Staircase function, with fitted smooth function ξ(X)
in blue; Histogram of NNS distribution, green dotted and red dashed lines are Pois-
son and Wigner-Dyson distributions respectively, black line is Brody distribution
using the fitted η; and level number variance, green dotted and red dashed lines are
Poisson and GOE predictions respectively.



4.2. Li+CaH and Li+CaF 130

0.975 1.000 1.025
−10

−8

−6

−4

−2

0

B
in

d
in

g
en

er
g
y

(c
m
−

1
)

1.00 1.01 1.02

λ

−0.4

−0.3

−0.2

−0.1

0.0

B
in

d
in

g
en

er
g
y

(c
m
−

1
)

Figure 4.3: Near-threshold bound states as a function of λ for Li+CaH (J = 0).
The bottom panel shows an expanded view with a state approaching threshold,
crossed by several steeper states. The dashed line has been added to follow this
state through the avoided crossings and help guide the eye.

linear repulsion at small spacing and a tail that dies off rapidly. The fitted Brody

parameter, η = 1.08±0.10, is consistent with GOE predictions, and the level number

variance also follows the GOE prediction almost exactly. This Brody parameter may

be compared with values in the region 0.5 to 0.7 found for Er+Er and Dy+Dy [128].

Li+CaH thus shows the clearest evidence yet found of chaotic behaviour in a realistic

ultracold collisions.

Figure 4.3 shows near-threshold bound states for J = 0 for a small range of λ.

The top panel shows bound states to a depth of 10 cm−1, where the levels interact

and undergo avoided crossings with a wide variety of strengths. The lower panel

is an expanded view showing a state with a long tail curving towards threshold.

This state is crossed by several steeper states with avoided crossings of varying
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widths, including a crossing around λ = 1.007 that appears quite broad on this scale.

Bound states with these features have been observed experimentally in Dy+Dy [269],

although in our case the state is much more deeply bound (by a factor of about 100

in the natural units defined by the asymptotic van der Waals interaction [169]). It

is not a ‘halo’ state because its wave function is mostly inside the outer classical

turning point [33], but its presence in Li+CaH demonstrates that states with clear

threshold behaviour can persist across several avoided crossings even in a system

with statistics close to the GOE limit.

Next we consider higher values of J , which correspond to higher partial waves

at the lowest rotational threshold. Figure 4.4 shows histograms of NNS for J=1,

3, and 8. These notably do not show the linear level repulsion at small spacings

expected for complete chaos. Instead there appears to be a finite probability of zero

spacing. The corresponding Brody parameters are in the region of 0.4. Although at

first sight this suggests a substantially reduced degree of chaos compared to J = 0,

such a distribution can also occur for two overlapping but non-interacting chaotic

spectra [278, 302]. This suggests that there is some form of symmetry or good

quantum number present in the system. However, we have already taken account

of all rigorous symmetries, so the quantity concerned must be only approximately

conserved. On a finer scale, the NNS distribution does indeed show some limited

level repulsion.

The nearly conserved quantum number can be understood in the body-fixed

reference frame, rather than the space-fixed frame that we use in the coupled-channel

calculations. It is the projection of the total angular momentum J (or equivalently

the diatom rotation j) onto the intermolecular axis, which is well known in studies of

atom-diatom van der Waals complexes [223] and is given the symbol K. It can take

values from −J to +J in integer steps. Blocks of the Hamiltonian with different K

are coupled only by Coriolis terms in the body-frame representation of the centrifugal

motion; these Coriolis terms are very small compared to the potential anisotropy in

the well region, so the Hamiltonian can be considered to be nearly block-diagonal

with blocks labeled by |K| and parity.

It is possible to carry out coupled-channel calculations in the body-fixed frame,
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neglecting the Coriolis terms off-diagonal in K. This makes the problem block-

diagonal and is known as helicity decoupling; it is often an effective technique for

calculations of atom-diatom bound states [223]. Figure 4.5(a) and (b) show NNS

distributions for the separate K = 0 and |K| = 1 blocks. There is no further hidden

symmetry and so the NNS distributions are once again close to the Wigner-Dyson

limit. Figure 4.5(c) shows the statistics for the superposition of the two individual

level sequences. This last case is close to that of two GOE level sequences which

overlap but are not coupled. The resulting NNS distribution can be obtained from

equation (3.69) of [272], and is also shown in fig. 4.5(c). It differs from the Wigner-

Dyson distribution most obviously in that it does not vanish at zero spacing. It is in

good agreement with the results from helicity decoupling calculations and explains

the qualitative behaviour of the J 6= 0 distributions in fig. 4.4.

The remaining differences between fig. 4.4(a) and fig. 4.5(c) are due to the Cori-

olis terms. The quantitative effect of these terms on the statistics is beyond the

scope of our work here, but it is nevertheless informative to look at the pattern of

bound states near threshold. Figure 4.6 shows bound states for J = 1 within 10

cm−1 of threshold for a small range of λ, both from a full calculation and within

the helicity decoupling approximation. The K = 0 levels for J = 1 are only slightly

shifted from the levels for J = 0 (top panel of fig. 4.3). The |K| = 1 levels are quite

different but show the same qualitative features of many avoided crossings of a wide

variety of strengths. However, in the helicity decoupling approximation, levels with

one value of |K| do not interact with those of different |K|; this gives rise to a large

number of true crossings, producing an NNS distribution with finite probability at

zero spacing. In the full calculation, which takes account of the Coriolis coupling

between the blocks, the overall pattern of levels is similar but there are now narrow

avoided crossings between levels of different |K|. These are typically much narrower

than those between levels of the same |K|. This confirms our picture of a nearly

conserved quantum number, with only weak coupling between states of different

|K|. This is closely related to the relationship between the scattering in L = 0 and

1 that was seen for this system in section 2.2.3.
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4.2.3 Results: Li+CaF

The second system we consider is Li+CaF. The rotational constant for CaF is about

13 times smaller than that for CaH, while the potential surface is quite similar. The

ratio of the anisotropy to b is thus significantly greater for CaF than for CaH. This

stronger effective coupling might be expected to give equal or greater amounts of

chaos for Li+CaF compared to Li+CaH.

We have performed coupled-channel calculations for Li+CaF (J = 0) using the

same methods as for Li+CaH, but with a larger basis set because of the smaller

value of b. Figure 4.7 shows the resulting level statistics. Remarkably, the NNS

distribution does not appear to show level repulsion, even for J = 0, but neither
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Figure 4.8: Near-threshold bound states as a function of λ for Li+CaF (J = 0).

does it resemble a Poisson distribution; the fitted Brody parameter is only 0.44.

Once again the distribution bears a close resemblance to the case of two overlapping

but non-interacting GOE spectra as discussed for the helicity-decoupled J = 1 case

for Li+CaH. This again hints at the possibility of some unexpected partially good

quantum number, but in this J = 0 case it cannot be the projection |K|. The level

number variance for Li+CaF (J=0) is also some way from the GOE prediction,

although it does level off at high spacings, in contrast to that in other near-chaotic

examples [128, 294].

Figure 4.8 shows the binding energies of near-threshold levels for Li+CaF (J =

0) as a function of λ. It may be seen that some bound states have very steep

energy gradients with respect to λ and that these states interact weakly with those

with shallower gradients.5 In this respect the pattern shows a clear systematic

difference from that observed for Li+CaH (fig. 4.3), where all J = 0 states appeared

significantly coupled and the levels could not easily be separated into classes.

There has been a great deal of work on the energy levels of atom-diatom sys-

tems, largely aimed at understanding the dynamics of van der Waals complexes [223].

For low anisotropies, the diatomic molecule executes hindered rotation in the com-

5Although visually there may seem to be relatively few steep states for Li+CaF, counting them
with respect to λ at fixed energy reveals that approximately 1/3 of the levels are of this type.
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plex, and the resulting internal rotation is only weakly coupled to the intermolecular

stretching motion. However, when the effective anisotropy is comparable to or larger

than the diatom rotational constant, there is significant mixing of diatom rotational

states. As the anisotropy increases further, the internal rotation is transformed into

a bending vibration of the triatomic molecule. Correlation diagrams showing how

this transition occurs have been given in ref. [223] for complexes with both linear and

non-linear equilibrium geometries. The low-lying levels of a non-linear species such

as Li-CaH or Li-CaF eventually execute low-amplitude bending vibrations about

their non-linear equilibrium. The degree of mixing between bending and stretching

degrees of freedom typically depends on their relative frequencies: if the bending is

either much faster or much slower than the stretching then the modes can be sepa-

rated in a Born-Oppenheimer sense [310–312], but if the frequencies are comparable

then they are strongly mixed.

The situation is more complicated for highly excited states, such as the near-

dissociation states that give rise to Feshbach resonances in the present work. Some

highly excited states have unstructured nodal patterns that fill the energetically

accessible space, but there are others with simple nodal patterns that sample re-

stricted regions of space [313–316]. However, the paths along which such states

are localized may be complicated ones that do not correspond to obvious quantum

numbers. Because of this, it may be difficult to identify the specific nearly conserved

quantity that divides the states in fig. 4.8 into separate classes. Nevertheless, the

level statistics appear to indicate that such a quantity exists.

4.2.4 Results: Variable rotational constant

To understand better the puzzling difference between Li+CaH and Li+CaF, we

attempt to interpolate between our two systems and extrapolate beyond them. Since

the two potential energy surfaces are so similar, we use the surface and reduced mass

for Li+CaH throughout this section, and vary the rotational constant. We increase

the number of rotational basis functions from 55 to 350 as b decreases from 100 to

0.01 cm−1 to obtain converged level positions.

Figure 4.9 shows the fitted Brody parameter as a function of rotational constant.
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This shows an astonishing structure. It can be seen that bCaH lies in a relatively

wide region from 0.7 to 7 cm−1 where η is near unity, so that the systems can be

said to be chaotic. Towards lower rotational constant the fitted Brody parameter

falls sharply to about 0.4 in the region between 0.2 and 0.4 cm−1 – in which bCaF lies

– but it then rises rapidly back to values near unity for 0.05 cm−1 < b < 0.08 cm−1

before beginning to fall slowly again. At higher values of b, there is another steep

and narrow trough centred around 12 cm−1, followed by a steady decrease towards

zero as the angular and radial motions become increasingly uncoupled.

Figure 4.10 shows statistics for sample values of the rotational constant b. Those

for the lowest value, b = 0.05 cm−1 [fig. 4.10(a)] show almost perfect agreement with

the GOE predictions for both NNS distribution and level number variance; the fitted

Brody parameter is η = 0.97 ± 0.06. The second value, b = 0.25 cm−1, is close to

bCaF = 0.339 cm−1, but the NNS distribution [fig. 4.10(b)] differs from that seen for

Li+CaF in fig. 4.7(a), with noticeably more level repulsion despite a lower η. b = 1.0

cm−1 [fig. 4.10(c)] is within the same region of high η as bCaH and also shows clear

signs of chaos. b = 12.5 cm−1 [fig. 4.10(d)] is located in a narrow trough of low η and

the statistics appear to be similar to case (b). b = 21 cm−1 [fig. 4.10(e)] is located

above the trough in η; the Brody parameter is only 0.8 but the statistics show all

the qualitative features expected of a chaotic system. The statistics for b = 50 cm−1

[fig. 4.10(f)] show an NNS distribution that is close to Poissonian (η = 0.16) because

the rotational constant is large enough for the rotational and stretching motions to

be significantly decoupled and the conditions for chaos no longer exist. However,

the number variance does not rise linearly as in the Poisson case; instead it reaches

a peak and turns downwards. The inset shows that, on a larger scale, this is the

first in a complex series of oscillations, which we attribute to the onset of regularity

and do not interpret further in this paper.

The presence of oscillations in the Brody parameter in fig. 4.9 is puzzling. The

argument given in section 4.2.3 above would predict a single maximum in the Brody

parameter when the effective bending and stretching frequencies are comparable

for near-threshold states, dropping off when the frequencies are very different. Fig-

ure 4.9 does appear to show such a maximum, but the argument does not explain the
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deep minima that seem to be present either side of it. It is possible that the flank-

ing maxima correspond to effective bending frequencies that match the stretching

frequencies for different stretching states, or that are rational multiples of effective

stretching frequencies.

4.3 Yb(1S0)+Yb∗(3P2)

There are numerous obstacles to performing realistic calculations on Er+Er and

Dy+Dy. Obtaining sensible ab initio potentials for the large number of short-range

states is currently not feasible; the high-spin nature of the atoms makes the required

angular momentum algebra challenging, although should not present any fundamen-

tal problems; and the large number of potentials together with the large number of

partial waves required [127] makes the number of channels for a calculation very

large and may make coupled-channel calculations numerically intractable. There-

fore, we choose a different atom+atom system, which shares some features with the

erbium and dysprosium systems, but is very much simpler to perform calculations

on.

The calculations and analysis in this section were principally done by C. L.

Vaillant and D. G. Green.

4.3.1 Calculation of near-threshold bound states

Yb(1S0)+Yb(3P2) is a particularly simple case of atom-atom interactions with strong

anisotropy. In a spin-orbit-free representation, there are only four electronic states

arising from the interaction, of which two (3Σg and 3Πg) contribute to the symmetry

block which includes s-wave scattering. When spin-orbit coupling is included, there

are three Born-Oppenheimer curves that correlate with the 1S0+3P2 threshold. This

contrasts with 49 and 81 curves for the 3H6 and 5I8 states of the submerged f-shell

atoms Er and Dy.

The Schrödinger equation is solved using the atom-atom Hamiltonian described

in Ref. 318, except that in the present case Yb(3Pj) interacts with a structureless

partner. The interaction potential V̂ can be written as the Legendre expansion
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Figure 4.11: Interatomic potentials for Yb(1S)+Yb(3P). Σ and Π Born-Oppenheimer
potentials calculated from [317] (red lines). Isotropic V0(R) and anisotropic V2(R)
Legendre expansion coefficients, as described in the text (blue lines).

V̂ (R, r̂) =
∑

k=0,2 Vk(R)Pk

(
R̂ · r̂

)
[319, 320], where R is the internuclear separa-

tion vector and r̂ is a unit vector describing the orientation of the occupied Yb 6p

orbital. The expansion coefficients are V0 = (VΣ + 2VΠ) /3 and V2 = 5 (VΣ − VΠ) /3

[321, 322], where VΣ and VΠ are the 3Σg and 3Πg Born-Oppenheimer potentials.

Figure 4.11 shows the 3Σg and 3Πg potentials of Ref. [317], together with V0 and V2.

Physically, the anisotropy is due to the 6p valence electron of [Xe]4f146s6pYb(3P).

As a result, the anisotropy in this system is much larger than in the Er+Er and

Dy+Dy systems, which involve f-shell electrons submerged beneath a closed 6s shell

[127, 128]. The potentials are extrapolated at long range with the dispersion form

−C6/R
6 [323], using calculated dispersion coefficients of 2999 and 2649 Eha

6
0 [324]

for the 3Σg and 3Πg states respectively. The spin-orbit interaction is taken to be

independent of R, with a coupling constant that gives the correct splitting between

the 3P2 and 3P1 states [325].

At zero field the total angular momentum is a good quantum number. In the

absence of a field, the space-fixed total angular momentum basis set |(ls)jLJMJ〉
[320] is used. Here the atomic orbital and spin angular momenta l and s couple

to give a resultant j, which then couples to the end-over-end angular momentum
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L to give the total angular momentum J . At finite magnetic field, the partially

uncoupled basis set |(ls)jmjLML〉 is used, where mj and ML are the projections

of j and L onto the field axis, respectively [318]. Values of L up to Lmax = 22 are

included, for which the pattern of the Feshbach resonance spectrum is converged.

Increasing the value of Lmax introduces additional bound states, but they are very

weakly coupled to the entrance channel.

In this section, we consider resonances in s-wave collisions of Yb(3P2) in its

mj = −2 state. This is the lowest component of the j = 2 manifold. Inelastic

decays to the j = 0 and j = 1 manifolds in 2-body collisions with Yb(1S) are slow,

with a decay rate coefficient that has been measured to have an upper bound of

10−13 cm3 s−1 at fields below 1 G [326]. Green et al. [327] have performed coupled-

channel calculations of the inelastic rate over the range 0 to 2000 G, and found the

background rate coefficient to be significantly smaller than this bound, on the order

of 10−17 cm3 s−1. The slow background 2-body decay makes experiments on to find

resonances viable, through either 3-body or 2-body losses, both of which can be

enhanced by the resonances.

As in the previous section, we use field as modified to converge on levels (and

thus resonance positions) as a function of potential scaling factor λ as well as mag-

netic field. In order to locate resonances at the j = 2, mj = −2 threshold, basis

functions for j = 0 and 1 were omitted, corresponding to neglect of the slow inelastic

decays considered above. We expect this approximation to have no significant effect

on level statistics.

4.3.2 Results and discussion

Figure 4.12(a)–(f) shows the NNS distribution and number variance for a sequence

of 1000 resonance positions, calculated with respect to λ on the range [0.9,1.13], in

external magnetic fields of 0 G, 100 G and 700 G. In the absence of a field, the

NNS distribution and the number variance are close to those expected for Poisson

statistics, with a Brody parameter η = 0.06 ± 0.03. However, application of a

magnetic field induces a clear transition towards chaotic statistics. Figure 4.12(g)

shows the Brody parameter η as a function of field B: it rises steadily from close
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to zero at B = 0 to a value around 0.6 at fields above 500 G. The high-field value

is comparable to that observed experimentally for Er and Dy [128]. The number

variance also changes steadily from near-Poissonian to chaotic behaviour as the field

increases, following the GOE prediction at high field more strongly than for Er and

Dy.

Let us consider further the result at zero field, where the total angular momentum

J is a good quantum number. In fig. 4.12(h) we show the NNS distribution for

individual Hamiltonian blocks of a given total angular momentum J , averaged over

values of J = 2, . . . , 20 to obtain improved statistics.6 Although this superficially

resembles a Wigner-Dyson distribution, except that there is a cutoff at large spacing,

the levels associated with individual blocks of the total Hamiltonian are in fact highly

structured. They correspond to the superposition of nearly independent sequences

for |Ω| = 0, 1 and 2, where Ω is the projection of J onto the interatomic axis.7 It is

evident that the Poisson statistics exhibited by the full spectrum at zero field result

from superposition of these structured spectra.

In both section 4.2 and thus far in this section we have considered the distribu-

tion of resonances with respect to an interatomic potential scaling factor. We now

consider the distribution of Feshbach resonances with respect to magnetic field, for

homonuclear collisions involving the four most abundant bosonic isotopes of Yb.

The typical density of resonances is ∼ 0.05 G−1. This is comparable to that found

in Cs [163] and Li+Er [292], but much less than that observed in the Er and Dy

systems, where it can be as large as ∼ 4 G−1 (for bosonic isotopes) [127, 128].

Figure 4.13 shows the NNS distributions and number variances for 170Yb, 172Yb,

174Yb and 176Yb in the field range 400 to 2000 G. The statistics show strong signa-

tures of chaos in each case, with Brody parameters ranging from 0.5 to about 1 and

number variances much closer to the GOE predictions than to Poisson statistics.

We emphasise that the statistics depend on the potential scaling factor as well as

6The average is performed by first calculating the unfolded spacings for each J , before combining
the sets and normalizing the resulting histogram.

7The cutoff at approximately s = 1.8 in fig. 4.12(h) is consistent with the vibrational spacing
for the |Ω| = 2 potential at dissociation, calculated with respect to λ. This is the deepest of the
three potentials, and is equivalent to the 3Πg potential.
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the isotopic mass, so the results in fig. 4.13 are representative of typical behaviour,

rather than specific predictions for individual isotopes. Signatures of chaos emerge

at somewhat different fields for different cases, but are always strongly present for

fields over 600 G. These signatures will be observable if current experiments on

Feshbach resonances in Yb(1S0)+Yb(3P2) [328, 329] can be extended to suitable

magnetic fields.

The results in figs. 4.12 and 4.13 show that a large number of electronic states

is not required for signatures of chaos to emerge in ultracold collisions, as may have

been expected from the Er and Dy examples. We conclude that chaos in Yb+Yb*

emerges as a result of the combination of strongly anisotropic interactions and mag-

netic field, consistent with the findings for Dy+Dy [128]. As a counterexample, we

have analysed the Feshbach resonance positions in Cs(2S)+Cs(2S) collisions in mag-

netic field [163], where there are two electronic states but only very weak anisotropy.

We find no deviations from Poisson statistics for Cs.

4.4 Conclusions and Future Work

In this chapter we have analysed positions of zero-energy Feshbach resonances in

terms of RMT and quantum chaos. We began with an overview of RMT and sta-

tistical analysis, which we hope will be useful for others approaching the field of

chaos from ultracold physics or chemistry. In particular, we hope that we have

made it accessible to those without the strong abstract mathematical background

that sometimes seems required for introductions to RMT and quantum chaos.

We have carried out calculations on threshold and near-threshold bound states of

atom + rigid-rotor models of Li+CaH and Li+CaF, and performed statistical analy-

sis of the resulting level sequences. For Li+CaH with zero total angular momentum

we have found the strongest signs of chaos yet observed for a realistic ultracold col-

lision system in either theory or experiment. However, for non-zero total angular

momentum we found a nearly good quantum number which we identified as the

body-fixed projection K of the total angular momentum J . The presence of this

nearly conserved quantity significantly alters the overall statistics, but the statistics
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for individual values of K still show chaotic behaviour. The superposition of two

nearly independent level sequences in the J = 1 case produces an NNS distribution

that is distinct from the Poisson, Wigner-Dyson and Brody distributions.

The ratio of the anisotropy to the diatom rotational constant is significantly

larger for Li+CaF than for Li+CaH. Nevertheless, contrary to expectation, Li+CaF

shows less strongly chaotic behaviour even for J = 0. The similarity of the statistics

with the case of Li+CaH (J = 1) suggests the presence of another nearly good quan-

tum number in Li+CaF. The existence of this quantum number may be related to an

adiabatic separation between a slow bending vibration and a faster intermolecular

stretch.

Finally, we have investigated how the statistics change between and beyond our

two systems by varying the rotational constant with a fixed potential. We observe

astonishing fluctuations in the levels of chaos in the system. It thus cannot even be

assumed that a system that is partway between two closely related chaotic systems

will itself be chaotic. The origin of this surprising effect is unclear. One possibility is

that stronger chaos emerges when the bending and stretching frequencies are close

to rational multiples of one another.

From our results for Yb+Yb*, we have shown that a large number of electronic

states is not required for signatures of chaos to exist in ultracold atomic collisions, as

may have been expected from the Er and Dy examples. We conclude that chaos in

Yb+Yb* emerges as a result of the combination of strongly anisotropic interactions

and magnetic field, consistent with the findings for Dy+Dy [128]. As a counterex-

ample, we have also analysed the Feshbach resonance positions in Cs(2S)+Cs(2S)

collisions in magnetic field [163], where there are two electronic states and hyper-

fine structure, but only very weak anisotropy. We find no deviations from Poisson

statistics for Cs.

It is clear that there is much to be learned from studying chaos in ultracold

collisions and high-lying bound states of atoms and molecules. Statistical analysis

can provide valuable insight when the spectra are too complex for direct analysis.

However, this study has highlighted that deviations from chaotic behaviour can be

difficult to predict, even in apparently simple systems.
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One topic for future work is to look at a wider selection of statistics. In particular

it will be interesting to include analysis of the widths of the resonances, not just

the positions, as these may be important for the enhanced 3-body recombination

rates proposed by Bohn and coworkers [207, 208]. It is also important to understand

exactly which statistical measures are important to determine if a system should be

considered “chaotic” for our purposes. The NNS distribution is conceptually simple

and easy to calculate, but inherently captures effects of coupling only between levels

that are close to each other. A crucial aspect of chaos is the degree of coupling

and correlation between levels that are far removed from each other. Significantly

more work is needed to understand if this aspect of chaos is important for our

understanding of ultracold collisions and bound states, and which statistics are most

useful for quantifying these effects.

It is also important to understand the origins of chaotic or non-chaotic statistics

in increasingly complex systems. One question of particular importance is whether,

in real systems, all degrees of freedom are involved in the chaotic behaviour, or

whether there is a hierarchy of couplings that leaves some degrees of freedom unin-

volved. Our results for Li+CaH (J = 1) represent a particularly simple example of

a case with a clear hierarchy, and our results for Li+CaF (J = 0) show that such a

hierarchy may arise is places and ways that are unexpected.



Chapter 5

Time Delay in Cold and Ultracold

Collisions

The idea, put forward by John Bohn and co-workers [207, 208], that low-energy

collisions of highly complex particles are very long-lived, is rapidly becoming popular

in the field of cold and ultracold atoms and molecules. These ‘sticky collisions’ are

thought to enhance the possibility of three-body collisions dramatically, resulting in

rapid loss even for species that had previously been thought to be stable to collisional

decay (such as molecules in their absolute ground state). This proposed process can

be written as

A + A 
 A?
2

A?
2 + A→ A2 + A + Ek

⇒ 3 A lost from sample.

In this picture, the loss rate is proportional to the lifetime, τ , of the A?
2 intermediate.

This process is not in itself novel (it is closely related to Lindemann theory [330])

but the new feature of this idea is the suggestion that it is the dominant process for

complex molecules at ultralow energies. Apparent rapid three-body losses which may

be due to this have been reported experimentally for Rb+KRb [145], RbCs [50] and

others [52, 53], although the experiments are very far from conclusive on the subject.

The overall process 3A → A2 + A + Ek is termed three-body recombination, and

151
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includes contributions from the direct process without the intermediate step. This

direct three-body recombination is usually greatly suppressed if densities are low,

as is the case in most experiments with ultracold atoms and molecules. However,

the rate is known to scale as a4 [331] at low energy and can become considerable for

large scattering lengths, particularly near resonances [167].

High complexity in a system would usually manifest itself as a large number of

channels in calculations on the system. As we are usually interested in the lowest

threshold or lowest few thresholds, almost all of these many channels will be closed

and the main effect of added complexity is expected to be in the form of a large

number of Feshbach resonances. Bohn’s theory attempts to arrive at a statistical

description of the Feshbach resonances using RMT, under the assumption that the

system displays quantum chaos [207]. There is some experimental evidence of spac-

ings between resonances following a chaotic statistical distribution [127, 128], but

this provides no direct information on collision times, or even the resonance widths

which are crucial for Bohn’s arguments. As reported in chapter 4 and elsewhere

[127–130], theoretical investigations have shown signatures of chaos too, but they

have also shown that in some cases the assumption of complete mixing of all degrees

of freedom may break down in ways both expected and unexpected. It is not clear

how those new theoretical results may affect the effects proposed by Bohn.

In Bohn’s theory [207], collision lifetimes τ are inferred simplistically from reso-

nance widths (in energy) ΓE through the relation

τ =
~

ΓE
. (5.0.1)

Note that this is actually the time for an existing quasi-bound state to decay, and we

should expect that the total lifetime of a collision to be twice this - this is because

the state must first form in a collision, which takes the same amount of time as decay

because it is same process but time-reversed. Three-body losses are then assumed

to be a two-stage process with the long-lived collision complex as an intermediate,

leading to a loss rate that is proportional to the lifetime to a first approximation.

Bohn further assumes that the level widths are proportional to the level spacings,
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leading to a description of three-body decay that depends only upon the two-body

density of states. There are several problems with this approach, including how to

treat many overlapping resonances and what effect threshold effects may have, both

of which seem likely to be relevant. A much more rigorous and complete approach to

collision times is Smith’s lifetime matrix Q [332] which is defined for any scattering

situation. This theory is well established and robust at higher temperatures, but in

the threshold region the results require careful interpretation.

It is not even clear if it is valid to think about three-body recombination at ultra-

cold energies in terms of the lifetime of a metastable intermediate. That model for

three-body recombination is intuitive and persuasive, but classically motivated and

we should be cautious about believing or applying it in a context where we already

know that many classical ideas are no longer valid. Unfortunately, rigorous quantum

theory of three-body collisions is highly challenging and, although the formalisms

exist, existing calculations at ultralow energies have focussed on particular aspects

of three-body collisions – namely Efimov physics and the various associated effects

[331, 333–340] – and have not sought to address the questions relevant to Bohn’s idea

of three-body recombination at low energy via a metastable intermediate. In prac-

tice, we cannot currently calculate three-body recombination rates for any highly

complex system, but much may still be learned about three-body collisions without

explicit calculations.

In this chapter we will first consider the collision lifetime as defined by Smith

[332] and discuss some of the problems that arise when applying it to ultracold col-

lisions. We explore some alternative related quantities, but do not reach a definitive

conclusion on which is the relevant quantity to consider. In an attempt to resolve

what quantity is most relevant to enhancement of 3-body collisions, we explicitly

consider the 3-body scattering equations. We do not perform any explicit calcula-

tions on 3-body systems, but we discuss what aspects of quantum 3-body scattering

are likely to correspond to the classical physical picture put forward by Bohn. We

then find ways to relate important elements of the 3-body scattering to a closely

related 2-body problem. We hope this will pave the way for future work to identify

precisely what aspects of a particular 2-body collisional system will enhance the
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processes of interest in the associated 3-body system.

5.1 Smith Time Delay and Related Quantities

5.1.1 Original Formulation of Smith’s Time Delay

This section introduces the key ideas and equations from Smith’s original formu-

lation of collision lifetimes [332]. Similar results had previously been obtained by

Eisenbud and Wigner [341, 342] in a formulation based on wave-packet scattering,

but Smith’s formulation is based on time-independent stationary-state scattering

theory, as described in section 1.2 and used throughout this thesis, so we prefer to

use this formulation. Note that some of Smith’s notation and other minor details

are not in line with modern usage in this field and what is used in this thesis; in par-

ticular, Smith’s definition of the phase shift is twice the value of the usual definition

of the phase shift.

It seems at first surprising that it is possible to understand time delays in colli-

sions from a time-independent formalism. Smith resolves this difficulty by applying

the fact that, if a system is in a steady state, the average time spent by a particle

in a certain region can be obtained as the quantity in that region divided by the

flux in or out of that region. For the our case, the quantity is readily given as the

integral of the squared magnitude of the wavefunction, and the flux can be obtained

if the wavefunction is written in terms of a sum of travelling waves, as in the usual

S-matrix boundary condition of eq. (1.2.13). This gives us a ready definition of the

time spent in any particular region, but this will diverge as the region expands.

For some uses it may suffice to define a specific region of interest – for example for

separations less than a certain value, R ≤ Rmax – but a more general method is to

consider the excess quantity in the region by subtracting the quantity that would

be present without the interaction. Thus it is possible to get a definition of the

collision lifetime that does not diverge even if the region is taken to extend out to

infinite separation.

We now specialise to a one-dimensional single-channel system and formalise the

arguments of the preceding paragraph, although the results readily generalise to
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more complex cases. As usual, the wavefunction of the system is the solution to the

Schrödinger equation, eq. (1.2.7), that vanishes at R = 0 and behaves as

ψ(R)
R→∞∼ k−1/2

i
(−e−i(kR+δ) + ei(kR+δ)) = 2k−1/2 sin(kR + δ) (5.1.2)

= ∞ψ(R). (5.1.3)

The travelling waves that make up this boundary condition are already normalised

to give a constant flux of ~/µ independent of energy. Therefore we can define the

collision lifetime Q as

Q =
µ

~

∫ Rmax

0

(ψ(R)∗ψ(R)− A) dR, (5.1.4)

where A is a reference density that would have been present even without the in-

teraction. Smith takes this to be simply the average density in the absence of a

potential

A = lim
L→∞

1

L

∫ L

0
∞ψ(R)∗∞ψ(R) dR (5.1.5)

=
2

k
, (5.1.6)

independent of R. However, this has the drawback of introducing terms in Q that

oscillate with R out to infinite R; to proceed with this choice requires that these

terms are removed by a further stage of averaging. Smith mentions in passing the

possibility of an alternative definition of the lifetime which uses the functional form

of the asymptotic wavefunction to give an R-dependent reference density that allows

the integral to converge. This gives an alternative definition of the lifetime as

Q′ =
µ

~

∫ Rmax

0

(ψ(R)∗ψ(R)− ∞ψ(R)∗∞ψ(R)) dR, (5.1.7)

which is related to the previous definition by

Q′ = Q− ~
2E

sin 2δ. (5.1.8)
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At moderate energies this difference is small enough to be ignored, but here we are

specifically interested in cold and ultracold scattering so we will probably need to

consider the effects of this additional term.

The integrals in eqs. (5.1.4) and (5.1.7) may not be easy to perform explicitly

in practice for a variety of reasons. It is also desirable to be able to simply relate

the lifetime Q to other commonly used and well understood quantities in ultracold

scattering, such as the S-matrix or phase shift. In order to do this, Smith shows

that starting from the Schrödinger equation and its energy derivative, it is possible

to write

ψ∗ψ = − ~2

2µ

∂

∂R

[
ψ∗

∂2ψ

∂R∂E
−
(
∂ψ

∂E

)(
∂ψ∗

∂R

)]
. (5.1.9)

This expression is now easy to integrate, and if we assume that ψ(R) has converged

to ∞ψ(R) by R = Rmax we obtain

∫ Rmax

0

ψ(R)∗ψ(R) dR = 2~
∂δ

∂E
+

2

k
Rmax −

~
2E

sin(2kR + 2δ). (5.1.10)

The second term in this is exactly the contribution that is removed by the reference

density A, and the last term is the oscillating term introduced by this choice of

reference density. Removing these two terms1 leaves

Q = 2~
∂δ

∂E
, (5.1.11)

which relates the collision lifetime to the phase shift, which is in agreement with the

earlier work of Eisenbud and Wigner [341, 342].

A similar analysis is possible if there are multiple open channels, leading Smith

to define a lifetime matrix

Q = i~
dS

dE
S†, (5.1.12)

where S is the usual multichannel S-matrix. The diagonal elements Qii are in-

terpreted as the average time delay for a collision that is incoming in channel i,

including flux that is outgoing in a different channel. The off-diagonal elements of

1This process can be formalised but in this case the result is obvious.
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Q do not have a simple interpretation, but are used when rotating Q to a different

basis set. If there are multiple channels, but only one of them is an open channel,

then the definitions given for the single-channel case apply. We will remain focussed

on this single-open-channel case through the remainder of this section as the effects

we are interested in are already present in that case and there is no need to introduce

the additional complexities involved with considering the multichannel case.

The simple relationship between the lifetime and phase shift means that any

features in the phase shift will have a corresponding feature in the lifetime. In

particular, consider an isolated narrow resonance at energy E0 that is not near a

threshold, with energy-independent width ΓE � E0. The phase shift follows the

standard Breit-Wigner form

δ = δbg + arctan

(
ΓE/2

(E0 − E)

)
, (5.1.13)

and the time delay shows a Lorentzian peak

Q = Qbg +
~ΓE

(E0 − E)2 + (ΓE/2)2
(5.1.14)

which peaks at four times the quasi-bound state decay lifetime of eq. (5.0.1), or

twice the standard collision lifetime inferred from the width. Smith shows that a

suitably weighted average over the resonance results in an average lifetime which

is equivalent to that inferred from the width. Further, for a magnetically tuneable

resonance (or any resonance similarly tuneable by an external parameter), with a

width independent of field and energy, the time delay will also show a Lorentzian

peak in field at fixed energy with a width determined by the resonance width in

field, ΓB, but a height determined by its width in energy, ΓE = ΓBδµB where δµB is

a difference in magnetic moment between the continuum state and the quasi-bound

state causing the resonance.
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5.1.2 Threshold behaviour

Threshold laws and behaviours dominate scattering in the low-energy regimes that

we are interested in [158]. In the simplest case where scattering is wholly determined

by an energy-independent scattering length a, the phase shift is

δ = arctan(−ka) (5.1.15)

≈ −ka if |ka| � 1, (5.1.16)

which gives a time delay

Q =
−2aµ

~k
= −2

a

v
, (5.1.17)

where v = k~/µ is the relative velocity. This is the classical time-delay associated

with a hard sphere of radius a, agreeing with the usual interpretation of the scatter-

ing length as an effective hard-sphere radius. This means that around a zero-energy

Feshbach resonance (and close enough to threshold for the scattering lengths to be

constant), where the scattering length shows a pole, we expect the time delay to

show large positive and negative peaks. Unlike the scattering length it must remain

finite at finite energy (the condition in eq. (5.1.16) prevents Q diverging when a

diverges). This is qualitatively very different from the simple Lorentzian behaviour

seen away from threshold. This is understood by considering the known threshold

behaviour of resonances; in particular the Breit-Wigner width ΓE of a resonance is

known to be linear in k near threshold [34, 204], whereas the width ∆ associated

with the scattering length does not vary with energy, to a first approximation. The

high-energy form of Q in eq. (5.1.14) assumed a constant ΓE, and rapid energy vari-

ation of ΓE due to threshold effects is responsible for the difference between the two

cases.

Figure 5.1 shows Q calculated for a sample resonance. The system is 87RbCs,

with the interaction potentials of Takekoshi et al. [42] but with only L = 0 basis

functions included. The resonance is at B0 = 792 G and fairly broad, ∆B ≈ 4 G.[343]

In the low-energy region, up to tens or hundreds of nK, eq. (5.1.17) holds well and

the positive and negative peaks in the time delay are well defined, nearly equal and
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Figure 5.1: Smith’s collision lifetime, Q, around the 792 G resonance 87RbCs for 10
nK (top), 1 µK, 40 µK and 1 mK (bottom). Note the changing scale.



5.1. Smith Time Delay and Related Quantities 160

fairly sharp. Around 1 µK we enter an intermediate region as both peaks broaden

and become unequal, with the negative side fading away. This is associated with

the energy rising above the threshold regime, so that the width no longer increases

linearly with k; an alternative view is that the approximation δ = −ka with a

constant a no longer holds. 1 mK is well away from threshold behaviour and the

expected Lorentzian shape is clear. Below the high-energy region, most clearly at

40 µK, there is a peculiar dip on the high-field side of the peak, similar to the

dip observed on the low-field side around 1 µK. This is attributed to a narrowing

of the resonance in that energy range causing the opposite effect of the widening

seen at lower energies, albeit much weaker. This narrowing of the resonance can be

understood through a multi-channel QDT description of resonances [204], but this

effect is not important for our main discussion.

This near-threshold behaviour of Q raises some puzzling issues. The lifetime

at a particular energy appears to cancel somewhat between opposite sides of the

resonance, if the particular case samples both. This is unlikely to be relevant in

the RbCs case discussed immediately above, but if there are a large number of very

narrow resonances (as is likely in the cases Bohn and co-workers consider [207, 208])

then the variation of the magnetic field through the sample in a real experiment

could be enough to cover many widths. In that case the average lifetime will be

much smaller in magnitude than the lifetime at most particular fields. Conversely,

at a fixed field if there are many resonances within the range of the thermal energy

kBT then the phase shift across this range of energy will still increase by π for each

one, provided their widths are small enough. As
∫
QdE = 2~δ, such an increase in

the phase shift will transfer directly to the average lifetime. Further, if the width

of a particular resonance is small compared to both its position E0 and kBT , then

the contribution to the average lifetime depends only on the thermal distribution

at its particular energy and not on its width. Therefore, in this understanding

and approximation, the average collision lifetime depends not on the details of the

resonances, but simply on the density of resonances.

The difference in the apparent behaviours between averaging over energy at a

fixed field and averaging over field at a fixed energy (or just a sufficiently low tem-
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perature) do not necessarily indicate a fundamental problem, but at the very least

makes interpretation difficult without detailed knowledge of the experimental situ-

ation under consideration. In any case, the interpretation of Bohn and co-workers

[207] that an average resonance width implies a certain lifetime seems simplistic.

However, in their analysis, they take the average resonance width to be approxi-

mately equal to the average resonance spacing – although not examined in detail

here, this is itself a questionable assumption – and therefore find that the average

lifetime is proportional to the average density of resonances, the same as we have

concluded for the case of a thermal average at a fixed field.

5.1.3 Alternative possible definitions of the collision lifetime

We now turn to considering alternative definitions of the collision lifetime. For Q′

defined by eqs. (5.1.7) and (5.1.8) and δ given by eq. (5.1.16), we find that if a is

independent of energy then the term −~ sin(2δ)/2E in eq. (5.1.8) exactly cancels

the value of Q and we find that Q′ = 0. Note that, unlike eq. (5.1.17), this result

does not depend on |ka| � 1. Hence, non-zero values of Q′ arise only due to the

variation of a with energy. Resonances are one prominent feature which will cause

a to vary [160], but such variation is typically concentrated in a region of field that

is much narrower than the width of the resonance.

Figure 5.2 shows Q′ for the RbCs resonance shown previously. The results show

very different behaviour to Q. At the lowest energy, 10 nK, Q′ shows a narrow

negative peak corresponding to the position of the pole in a, but this dies off very

quickly away from the pole position. At 1 µK this sharp peak has broadened and

become asymmetric. Again, once the energy is 1 mK, the expected Lorentzian high-

energy line-shape is recovered. Also, note that the scales on the results for 10 nK

and 1 µK are much smaller than in fig. 5.1, meaning that the overall magnitude of

Q′ is significantly smaller than Q when near threshold.

If we consider the case of averaging over many resonances in field at a fixed

energy or low temperature, then at first it seems as if Q′ behaves rather differently

to Q. However, insofar as it is formally possible to do so, integrating the difference

term between the two, −~ sin 2δ/2E, over a single resonance would appear to give
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Figure 5.2: Alternative collision lifetime, Q′, around the 792 G resonance 87RbCs for
10 nK (top), 1 µK, 10 µK and 1 mK (bottom). Note the different scales compared
to fig. 5.1.
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an average contribution of zero if the background phase δbg is approximated to zero.

Hence, it appears that in that case the two definitions might give the same averaged

behaviour, although very different detailed behaviour.

A further possible definition of the lifetime comes from simply considering the

density in closed channels. We define

Q′′ =
µ

~
∑

i∈closed channels

∫ ∞
0

|〈i|Ψ(R, τ)|i〉|2dR, (5.1.18)

=
µ

~
∑

i∈closed channels

∫ ∞
0

|ψi(R)|2dR, (5.1.19)

where ψi is the component of the multichannel wavefunction Ψ in channel i. This

quantity lacks a clear interpretation as a time delay because there is no obvious flux

in and out of the closed channels, but instead implicitly uses the asymptotic incoming

and outgoing flux. Also, it is not easily expressible in terms of asymptotic quantities,

so we cannot derive analytic expressions for it and evaluating it numerically is slow

and computationally expensive. However, it requires no reference density to be

subtracted, because the wavefunction in closed channels dies off and so the integral

converges; note that this means it can never be negative, unlike Q and Q′. It

also very clearly corresponds to Bohn’s original concept of the collision complex

transferring energy to degrees of freedom other than R [290], and it may be an

instructive quantity to consider.

5.1.4 Contributions to integrals for collision lifetimes.

We now examine the actual contributions to the various integrals, eqs. (5.1.4), (5.1.7)

and (5.1.19), that define the collision lifetimes Q, Q′, and Q′′. For this, we use a

model 2-channel system: the potential of each channel is a Lennard-Jones potential,

eq. (3.1.17), with parameters chosen to approximately represent Rb+KRb [207]. The

channels are coupled by a small coupling term (also L.-J. in form with maximum

value ≈ 1 cm−1) to replicate the narrow resonances predicted by Mayle et al. [207].

We use a fixed collision energy of 300 nK and to create a resonance, we directly

varying the asymptotic energy of the closed channel to tune a state across threshold.
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Figure 5.3: Cumulative integrals for Q from a series of point across a resonance in a
model 2-channel system, showing very large long-range oscillations. The colouring
runs from red on one side of resonance to blue on the other and the two bands
approaching the background situation can clearly be seen. Also shown in black for
comparison is the cumulative integral for Q′′ right on resonance, i.e. the maximum
closed-channel contribution.
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Figure 5.4: Integrand (top) and cumulative integral (bottom) for Q′ (black) and Q′′

(red) at one point right on resonance in a model 2-channel system.
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Figure 5.3 shows the cumulative value of the integral, eq. (5.1.4), for a set of

calculations across the resonance out to a large Rmax. The long-range oscillations

are the dominant feature in this figure, and the value of Q for each calculation could

be obtained by averaging over these oscillations. All the waves are still relatively

close together at a value of R which is outside the short-range region, but small on

the scale of these long-range oscillations, but they then diverge rapidly depending

upon the phase in the oscillation at which they start. Therefore, the range of values

of Q has little to do with any short-range effects, which are almost entirely lost on

this scale, and are almost entirely determined by the phase shift.

Figure 5.4 compares Q′ and Q′′ in a shorter-range region for a single calculation

right on resonance. The contributions to Q′′ are concentrated at short range, as

expected, and rise to an effective lifetime of about 60 ns The contributions to Q′

contain all the same terms, plus a contribution from the open channel that appears

to be much smaller than that from the closed channel, at least at short range.

However, it also contains negative terms due to the reference density, which appears

constant on this scale and is not cancelled out by the open-channel contribution

until nearly R = 100 Å. It can be seen in the cumulative integral of Q′ that this

reference contribution almost exactly cancels out the closed channel contribution

and Q′ converges to a value close to zero.

It is obvious that, in the region of this example resonance, Q has overwhelming

contributions from the very-long-range region and at these energies Q cannot be

said to reflect any short-range behaviour. Even in the case of multiple resonances

in the energy range of interest, the magnitude of the contributions from the very-

long-range will be similarly large, and Q will still not represent any short-range

effects. Q′ is more representative of the short-range interactions, but still shows

significant contributions at moderate range, which often cancel most or all of the

apparent short-range contributions. However, the case explored numerically was at

an energy where the scattering was still well described by an energy-independent

scattering length, and we expect different behaviour of Q′ when this is not the

case. Q′′ appears promising from these results, but has several problems: it is

currently highly inconvenient to calculate, it neglects density at short range in the
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open channel(s), and it is not clear that it can be interpreted as a lifetime in any

meaningful way.

Thus all three possible definitions of the collision lifetime have been considered

and we have not been able to make a convincing argument for any one of them to be

considered the ‘correct’ lifetime for determining rates of three-body recombination.

However, we can state a clear preference for Q′ over Q at low energy, due to the

above-mentioned very large contributions to Q from the very-long-range region.

5.2 Relationship to 3-body Scattering

As we have been unable to make a convincing argument for any of the definitions of

collision lifetime considered in section 5.1 to determine three-body recombination,

we now turn to explicit consideration of three-body collision theory. This is a com-

plicated topic that could provide material for an entire thesis by itself, so we will

endeavour to discuss only the most relevant elements of the theory. We will also

attempt to keep the discussion based on clear physical concepts rather than abstract

mathematics, although this will not always be possible.

In this section we will make essentially two principal arguments. First, we will

consider how a long-lived metastable intermediate would be expected to appear in

results of three-body scattering calculations; a simple corollary is that the effect

of such metastable states is separate from the Efimov-like scattering which is the

subject of most if not all ultracold three-body scattering studies to date. Second, we

consider the mechanisms by which a metastable state will influence the 3-body scat-

tering and how to relate important quantities back to an effective two-body problem

in which we might identify something which appears to be a collision lifetime. These

considerations will each immediately suggest potentially useful ways to proceed.

5.2.1 The appearance of long-lived metastable states in three-

body scattering

We must first introduce certain important elements of three-body scattering the-

ory. We follow the notation of Parker et al. [344], but the theory presented mostly
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originates in the much older work of Smith [345] and Delves [346].

Jacobi coordinates, and basic classical dynamics

We consider three particles, A, B, and C, which we assume, for now, to be struc-

tureless particles with masses mA, mB, and mC. After removing the centre-of-mass

motion, we can describe the system using a usual set of Jacobi coordinates. RA

the vector from the centre-of-mass of BC to A, and rA is that from B to C. These

coordinates obviously correspond to the system being formally considered as A+BC,

and equivalent sets of coordinates are defined for the other two formal arrangements

(called RB etc.). It is convenient to rescale the coordinates to

SX = dXRX (5.2.20)

sX =
1

dX
rX (5.2.21)

where dX is a known dimensionless mass scaling factor which depends only on the

masses of the three particles and which arrangement is being considered [344, 345].

The main benefits of this rescaling are that it allows motion associated with each of

the vectors to be described by the same effective mass, and is makes interconversion

between different sets of scaled Jacobi coordinates a simple rotation in 6-D space.

In these coordinates, all three particles are close when both SX and sX are small;

this corresponds to a local region near the origin in the 6-D space. However, two

particles are close when any one of the sX is small (although it will be a different

pair of particles in the different cases); this corresponds to extended regions that

can be thought of as being near certain axes. This is schematically represented for

1 spatial dimension in fig. 5.5, which is a reproduction of Fig. 1 of Smith [345].

We now consider some classical dynamics of a 3-body collision. If there is no

interaction between the particles, the collision trajectory is just a straight line in the

6-D space of SX and sX . An important feature of such a trajectory is the distance

of closest approach to the origin, Rmin =
√
|SX |2 + |sX |2, which characterises how

close the trajectory comes to all three particles being close to each other; this is

analogous to the impact parameter b in classical 2-particle scattering. This closest
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approach is shown as R1 for trajectory (e) in fig. 5.5. As with the 2-body impact

parameter, Rmin has a relationship to an angular momentum

Λ2 = 2µEkR
2
min (5.2.22)

which introduces Λ2 as Smith’s classical ‘total grand angular momentum’ [345]. This

quantity is defined and discussed at length by Smith, but we consider only a few

of its characteristics that are relevant to our purpose. It is a single real positive-

definite quantity that is a constant of a trajectory in the absence of any interaction.

However, any interaction will generally change it, even if the interaction affects only

two of the three particles and even if the interactions are spherically symmetric. For

a collision to be a pure three-body collision then the initial value of Λ2 before the

collision must be small. However, if Λ2 reaches a small value sometime during the

collision, the trajectory may reach the region near the origin with all three particles

interacting – and so could result in three-body recombination – even if the initial

value of Λ2 is not small. This can happen through a two-body interaction which

can change the value of Λ2 significantly through the course of the collision if the two

particles form a metastable collision complex. This corresponds to trajectory (e) in

fig. 5.5.

It is clear that the process described qualitatively by Bohn and co-workers [207,

208] can be described in these terms. A long-lived two-body collision complex leading

to three-body recombination, directly corresponds to a classical three-body collision

trajectory that is schematically like trajectory (e) in fig. 5.5. The trajectory starts

with a large value of Λ2 but a two-body interaction corresponding to a long-lived

metastable state allows Λ2 to change to a much smaller value and so allows the

trajectory to reach the region of three-body interactions which can cause three-body

recombination. This is now the correct classical description of 3-body recombination

for us to transfer to a quantum description in a way which can be precise and

corresponds directly to rigorous quantum theory.
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Hyperspherical coordinates, and basic quantum dynamics

To discuss the quantum 3-body collision theory we must change from Jacobi to

hyperspherical coordinates. First, we separate SX and sX into their magnitudes,

SX and sX , and their directions, ŜX and ŝX . The 4 degrees of freedom of the two

directions cover both the three external rotations and an internal coordinate

ΘX = arccos
[
ŜX .ŝX

]
, (5.2.23)

which is just the usual diatom rotation coordinate in atom-diatom Jacobi coordi-

nates. The magnitudes SX and sX are transformed to the hyperradius

ρ =
√
S2
X + s2

X (5.2.24)

and the Delves hyperangle

θX = arctan
sX
SX

, (5.2.25)

which is defined on the range θX ∈ [0, π/2]. The inverse transformation is

sX = ρ sin θX (5.2.26)

SX = ρ cos θX . (5.2.27)

For convenience we sometimes group all the angular coordinates as Ω = {θX , ŜX , ŝX}.
The hyperradius can be understood as describing the overall size of the system. It

is large whenever any one of the particles is far from any other of the particles, and

so it can be large even when two of the particles are close if the third is far away.

In this way ρ → ∞ can describe fragmentation to either 3 free particles or 1 free

particle and the other two bound together as a diatom. The hyperangle θX describes

the shape of the system but not its size. For example, small θA corresponds to B

and C close together (small sA) and A as far away as the value of ρ allows, whereas

θA close to π/2 corresponds to A being close to the centre-of-mass of BC, but with

B and C separated as much as ρ allows. These coordinates have mapped the two

infinite ranges of SX and sX onto the finite range of θX and the single infinite range
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of ρ. This has reduced the problematic double continuum – which would otherwise

have appeared in 3-body quantum scattering calculations – to a single continuum

that can be handled by relatively standard means. Essentially all explicit quantum

3-body scattering calculations make use of a transformation of this type in one form

or another.

We can now write the Hamiltonian for 3-body scattering as

Ĥ = Tρ +
Λ̂2

2µ3ρ2
+ V (ρ, θX ,ΘX), (5.2.28)

where

T̂ρ = − ~2

2µ3ρ5

∂

∂ρ
ρ5 ∂

∂ρ
(5.2.29)

= − ~
2µ
ρ−5/2 ∂

2

∂ρ2
ρ5/2 +

~2

2µ

15

4
ρ−2 (5.2.30)

is the kinetic energy for motion in ρ, V (ρ, θX ,ΘX) is the interaction potential,

µ3 = [mAmBmC/(mA + mB + mC)]1/2 is the three-body reduced mass, and Λ̂2 is

now the quantum grand angular momentum operator whose eigenfunctions are hy-

perspherical harmonics in Ω and eigenvalues are ~2λ(λ + 4) where the quantum

number λ is a non-negative integer. This grand angular momentum introduces a

ρ−2 effective potential which is analogous to the centrifugal potential in 2-body scat-

tering. Asymptotically, when all three particles separate and V approaches zero, λ

becomes a good quantum number and determines the asymptotic behaviour of the

channel’s effective potential. It is obvious that in order for all three particles to

approach close to each other simultaneously, λ cannot be too large or the effective

potential will prevent penetration to small ρ; this accords with the interpretation of

Λ2 in the classical case.

If we now include the interaction potential V , we need to consider the hyperspher-

ical adiabats. These are defined as the eigenvalues ε of the adiabatic Hamiltonian

Ĥad(Ω; ρ) =
Λ̂2

2µρ2
+ V (ρ, θX ,ΘX) (5.2.31)

which parametrically varies with ρ. In general, the adiabats for a real system can be
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states. In this situation there is always significant amplitude
of the eigenstate within the centrifugal barrier of the poten-
tial. Quasibound wavefunctions !panels with label QB" are
shown in Fig. 2. The QB wavefunction, #20($% ;&
!190a0), with three nodes has quantum numbers ('
!14,(%!3,j%!l %!4) and the wavefunction, #21($% ;&
!220a0), with four nodes has quantum numbers ('
!16,(%!4,j%!l %!4). As one can see most of the ampli-
tude of these two wavefunctions and all QB wavefunctions is
at small values of $% with small oscillations at large values of
$% . This results in a constant positive energy at large &.

Wavefunctions with both continuum and quasibound
character are also shown in Fig. 2. The wavefunction,
#20($% ;&!205a0), with three nodes has quantum numbers
('!14,(%!3,j%!l %!4) and the wavefunction, #21($% ;&
!205a0), with four nodes has quantum numbers ('
!16,(%!4,j%!l %!4). As one can see these two mixed

wavefunctions and all mixed CS and QB wavefunctions have
significant amplitude everywhere. As can be seen from Fig.
2, the quasibound state gains one oscillation and the con-
tinuum state loses one oscillation at roughly &!205a0 . As &
grows, each quasibound state continues to cross continuum
states, so that for large values of &, QB states oscillate rap-
idly at large $% . However, the quasibound state does not
rapidly oscillate in the vicinity of the potential and only

FIG. 7. Energy correlation diagram for the H"Ne2 system. The eigenener-
gies E n

Q1D(&) are plotted as a function of &. We see both continuum
E n
Q1D(&)→0 and quasibound E n

Q1D(&)→)n
QB#0 states. This is an expanded

view of the previous figure showing the coupling of quasibound states to the
continuum states.

FIG. 8. The scattering energies used in calculations superimposed on the
energy correlation diagram for the H"Ne2 system.

TABLE II. Quantum numbers ((% , j%) and )(% j%
QB eigenergies in hartrees and

meV for the quasibound states of Ne2 .

(% j% Energy !hartree" Energy !meV"

1 4 0.5344$10%6 0.0145
1 6 8.7720$10%6 0.2387
0 10 18.804$10%6 0.5117
0 12 51.592$10%6 1.4039

TABLE III. Total energies, E , used in propagating the coupled-channel
differential equations. The zero of energy is defined as the energy of the
three-body breakup. The energies are listed in hartrees, milli electron volts,
and Kelvins.

Energy !hartree" Energy !meV" Energy !K"

%47.5$10%6 %1.265 340 %14.999
%7.0$10%6 %0.190 481 %2.210
0.3$10%6 0.008 163 0.095
1.00$10%6 0.027 212 0.316
10.0$10%6 0.272 116 3.158
20.0$10%6 0.544 232 6.316
30.0$10%6 0.816 348 9.473
40.0$10%6 1.088 464 12.631
50.0$10%6 1.360 580 17.789
60.0$10%6 1.632 696 18.946
70.0$10%6 1.904 812 22.104
80.0$10%6 2.176 928 25.262
90.0$10%6 2.449 044 28.420
100.0$10%6 2.721 160 31.578
110.0$10%6 2.993 276 34.735
120.0$10%6 3.265 392 37.893

6092 J. Chem. Phys., Vol. 117, No. 13, 1 October 2002 Parker et al.

Figure 5.6: Example 3-body hyperspherical adiabats for H+Ne2, reproduced from
Parker et al. [344]. This shows a quasi-bound state approaching its asymptotic value
of about 14.8 µeV. The steep lines crossing this state are adiabats corresponding
to all three particles separating, which are dying off as ρ−2 asymptotically. The
adiabats within each group of lines have the same value of λ but are split due to
different values for other quantum numbers.
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very complicated – see, for example, Fig. 2 of Quéméner et al. [347] – but the features

we are interested in may appear in much more simple ways. If the interaction is

such that the 2-body B+C system supports a quasibound state, then this state will

appear in the 3-body adiabats as a level that approaches a constant positive value

as ρ→∞. This level will be crossed by levels corresponding to states which have all

three particles separating; these levels vary as ρ−2 with different pre-factors depend-

ing on their value of λ. Therefore the level which corresponds to the quasibound

state may have a large number of avoided crossings with the states corresponding to

the 3-body continuum. An example of this from Ref. [344] is reproduced in fig. 5.6.

This provides a mechanism for flux to transfer from one continuum channel to the

quasibound state and then out to another continuum state with a different value

of λ. This is now seen to be the characteristic quantum mechanism which corre-

sponds to the classical picture of a metastable state changing the classical Λ2, which

can enhance penetration of flux to small enough ρ to allow 3-body recombination.

This interpretation seems obvious, and although it may not have found practical

application to date, it would be surprising to us if it has not been given previously

in the literature. However, if it has been given explicitly we have failed to find it,

and it does not appear to have be mentioned in the literature concerning ultracold

scattering, so it is worthwhile repeating here anyway.

Viewing the three-body collision dynamics in this way allows us to identify ex-

actly which features we should look for in 3-body scattering which can be interpreted

as the influence of long-lived 2-body collision intermediates. In this picture, three-

body recombination would be dominated by contributions from incoming channels

with large values of λ, even at low energy where scattering in these channels is usu-

ally suppressed. It will be worth bearing in mind that individual contributions from

each of these channels is still expected to be quite small, but the number of such

channels may be large. Additionally, if a system will show large 3-body recombina-

tion because of this effect, it will also show large cross sections for collisions which

change the value of λ without inducing 3-body recombination or other processes.

Such collisions may be easier to characterise in theoretical calculations than 3-body

recombination, and it should certainly be easier to perform calculations that show
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λ-changing collisions than three-body recombination.

A simple corollary of the interpretation presented here is that the effect of

metastable 2-body collision intermediates is distinct from the a4 scaling of three-

body recombination at ultracold energies predicted by Efimov physics [331].2 This

can be understood simply from the fact that Efimov physics requires that the 2-

body scattering length of at least 2 of the three pairs of particles must be large

[338]. However, the effect of a metastable state relies on the interaction between

only one pair of particles, and the interactions between the other two pairs can be

zero or otherwise negligible.

5.2.2 Explicit link between three-body and two-body scat-

tering

The ideas discussed in the preceding section suggest what features to look for in

three-body scattering, and how they might be interpreted. However, they do not

directly tell us about 3-body recombination in complex systems, or shed light on the

potential connection between a 2-body collision lifetime and features in a description

of 3-body scattering. Here we will make the first steps towards such a connection,

although this line of research has not yet proceeded very far; the contents of this

section should be regarded as proposals for future work rather than conclusions that

have been reached from work performed.

The basic strategy we employ is a change of variables to reintroduce the BC

diatom bond length rA = |rA| as a coordinate in place of θA. This allows the

adiabatic equation ĤadΦ = εΦ to be expressed and solved in the manner of a 2-

body collision with rA as the distance coordinate, and ρ entering only as a parameter.

Of course, the resulting problem is not actually a collision problem, but analogous to

a 2-body bound-state problem. However, the link between collision and bound-state

problems is strong and generally well understood, so should allow any results in

this picture to be correctly interpreted. For this discussion we will assume that the

2We use ‘Efimov physics’ [338] quite generally to cover many associated effects, not just the
appearance of an infinite series of bound states originally considered by Efimov [348].
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only interaction potential present in the system is between B and C, V (ρ, θX ,ΘX) =

VBC(rA), which will not allow 3-body recombination but will, as discussed, allow λ-

changing collisions which we believe will be correlated with 3-body recombination.

To get the adiabatic equations into a suitable form for the change of variables,

we must first expand the grand angular momentum operator as

Λ̂2 = − ~2

sin2 2θA

∂

∂θA

sin2 2θA
∂

∂θA

+
L̂2

A

cos2 θA

+
Ĵ 2

A

sin2 θA

(5.2.32)

=
2

sin 2θA

∂2

∂θ2
A

sin 2θA

2
+ 4 +

L̂2
A

cos2 θA

+
Ĵ 2

A

sin2 θA

. (5.2.33)

Here, L̂A and ĴA are the angular momentum operators corresponding to the angular

motion of A with BC, and B with C, respectively; this is in accordance with their

usual definitions for the atom+diatom system A+BC. This allows us to rewrite the

adiabatic equation in the form

∂2

∂θ2
A

φ(θA; ρ) = W (θA; ρ)φ(θA; ρ), (5.2.34)

with the replacement φ = 2
sin 2θA

Φ. W contains contributions from many different

terms, and so we will not write W explicitly in its entirety, but merely consider

pertinent contributions.

The method for a change of variable for an equation like eq. (5.2.34) is given

explicitly in Ref. [349], although the general method is, of course, well known. We

map from θA to rA = dAρ sin θA, and write

∂2

∂r2
A

χ(rA) =W(rA)χ(rA), (5.2.35)

where χ(rA) = (drA/dθA)1/2φ(θA) and an explicit expression for W(rA) is given in

Ref. [349] in terms of W and the Jacobian for the transformation. In this form, it

would probably be possible to implement this problem directly in some bound-state

programs, such as bound.



5.2. Relationship to 3-body Scattering 177

We now pick out some of the important terms in W . First, we consider 1

1− r2A
ρ2d2A

 2µ3

~2d2
A

[
VBC(rA)− ε+

Ĵ 2

2µBCr2
A

]
, (5.2.36)

where µBC is the usual 2-body reduced mass of B and C.3 The term in square

brackets here exactly corresponds to the description of the interaction of the two

particles B and C (where Ĵ describes the end-over-end angular momentum, which

would usually have been given the symbol L̂ in a purely 2-body description). This is

scaled by the term in round brackets which starts at 1 at rA = 0 and increases on a

length scale set by ρdA before diverging at rA,max = ρdA. Note that this divergence

goes as only (rA,max − rA)−1 and so the singularity in eq. (5.2.35) is integrable even

when it diverges to −∞, although care will need to be taken over both boundary

conditions and numerical propagation of solutions. Another important physical term

in W is  1

1− r2A
ρ2d2A

2

2µ3

~2ρ2

L̂2

2µA−BC

, (5.2.37)

where µA−BC = d2
Aµ3 is the reduced mass of A and BC. This term describes the

centrifugal motion of A about the centre of mass of BC, and it is less obvious in

structure than eq. (5.2.36) because the coordinates we have chosen are far from a

natural set for this term. It diverges as rA → rA,max, which is when θA → π/2 and

A approaches the CM of BC, as expected; also note that it diverges faster than

the term in eq. (5.2.36), so if the angular momentum L̂ is non-zero then the overall

divergence of W as rA → rA,max will be repulsive and formally non-integrable and

therefore numerically easier to handle in practice. There are other terms in W ,

but they do not have such easily understandable physical interpretations. It is not

clear whether those extra terms are physically important, or may become physically

important at low energy, so further work in this direction is needed.

Finding bound-state solutions to eq. (5.2.35) will hopefully allow us to under-

stand important quantities in the three-body problem. It should be feasible to char-

3The 2- and 3- body reduced masses and the mass scaling factor dX are related by d2
AµBC = µ3.
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acterise the avoided crossing of metastable and continuum levels, and also calculate

the associated non-adiabatic couplings. A productive first step would probably be

to identify and characterise these quantities in a high-energy region, where we do

expect the classical picture to hold, and to find that the 2-body collision lifetime

does indeed determine some or all of the important quantities. Once this has been

achieved, and this description of the three-body physics is better understood, then

the low-energy behaviours can be usefully investigated.

At large ρ, the scaling in eq. (5.2.36) will remain near unity for most or all

of the range of rA for which the two-body interaction is important. Therefore, in

this region the system can be considered to behave exactly as it would in the pure

two-body case. The deviations from the two-body case will occur as rA becomes

larger and approaches ρdA and the system in this region will behave independently

of the details at short range. This suggests that an approach based on QDT might

be a productive direction to investigate. The general form of the problem is not

too dissimilar to QDT in a harmonic trap [350–352]; the effective potentials are

obviously very different, but the same basic QDT ideas may be useful.

5.3 Conclusions and future directions

We have considered the ideas of John Bohn and co-workers [207, 208] that at ultra-

cold temperatures three-body recombination is dramatically enhanced by long-lived

2-body collisions. We have attempted to put the theory on a more rigorous footing

by considering the lifetime matrix of Smith [332], which we investigated numeri-

cally at ultracold energies. However, the definition used by Smith neglects a term

proportional to E−1, which we found to dominate in the case of ultracold resonant

collisions. More detailed consideration of the contributions to the lifetime showed

that this contribution arises from long-range oscillations and not any short-range be-

haviour. Therefore, while Smith’s definition is perfectly useful for many situations,

it is a fatally flawed quantity for considering the mechanism envisaged by Bohn.

We considered two other candidate definitions of a collision lifetime, which were

more promising. We numerically explored their behaviour in the ultracold regime.
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However, we did not find either has a persuasive case to represent the lifetime of a

collision complex at short-range, or to determine 3-body recombination. Therefore,

we approached the three-body scattering problem directly.

From consideration of the three-body problem we concluded that the process

proposed by Bohn corresponds to scattering originating in channels with large values

of the grand angular momentum quantum number λ, and that a simple characteristic

indicator of this process would be large cross sections for elastic 3-body collisions

which cause a large change in the value of λ. Three-body scattering calculations for

this process may be significantly easier than those for 3-body recombination. We

also observed that the effect proposed by Bohn is distinct from the Efimov physics

considered by the majority of explicit ultracold three-body scattering calculations

to date.

In the final section, we put forward the idea of reformulating the hyperspherical

adiabatic equation in a form that makes clear the analogy to a two-body scattering

(or bound-state) problem. These ideas are not fully developed and significant further

work is needed to know if they will prove to be useful. Explicit calculations of

adiabats using bound is likely achievable in the near future. We suggest a preference

for the use of bound, or a similar program, because of its suitability for considering

problems that are closely related to scattering problems. Hopefully this explicit

connection to 2-body interactions will allow us to apply our accumulated knowledge

to help shed light on the problem.

Beyond this, we can immediately suggest some explicit calculations that may

be possible with suitable three-body scattering codes. There are three features we

think may be important for such calculations:

1. Perform calculations that deliberately do not show Efimov physics. The model

we considered featured an interaction between only two of the three particles

with the third completely non-interacting, which is an extreme limit of this.

2. Consider higher grand angular momentum λ.

3. Consider a resonance that is both at low energy (say, Eres � E6) and nar-

row in energy (ΓE � E0), to consider directly the effects of the very narrow
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resonances proposed by Bohn.

Without direct expertise in use of three-body scattering programs, it is difficult

to say if any or all of these desired features will pose problems in practice. The

first should not be difficult to guarantee, provided the program is not restricted to

work only with identical particles. The second should be trivial to implement if the

programs are already written to deal with arbitrary λ; some three-body scattering

programs clearly are, but it is not immediately clear if those used for ultracold

scattering calculations are. However, even if the program is capable of dealing

with this in principle, it will increase significantly the number of channels and the

computational expense of the calculations. The third should be straightforward to

implement for code that is able to include closed 2-body channels that can support

Feshbach resonances explicitly [340].



Chapter 6

Conclusions and Future Work

In this thesis we have explored a wide variety of features of complex cold and ul-

tracold collisions. In chapter 2 we investigated QDT, and in particular AQDT, for

a series of increasingly complex systems. We found that it went from an excellent

quantitatively predictive model for the simplest systems to predicting typical gen-

eral behaviours for more complex systems. Even this level of predictive power for

complex systems is impressive for such a simple model. We then went on to demon-

strate a QDT model of loss that produced a quantitative model for the range of

possible behaviour when the interaction potential was uncertain.

In chapter 3 we considered and discussed several effects of thermalisation that

were not wholly new, but were in need of greater consideration and understanding.

Firstly, consideration of the correct cross section for thermalisation σ
(1)
η was shown

to be important for determination of scattering lengths from thermalisation mea-

surements to account for the variation in deflection angles for scattering outside the

s-wave regime. Understanding deflection angles also played an important role in high

quality simulations of sympathetic cooling in a microwave trap. These simulations

showed cooling of CaF with Rb to be likely to succeed, even if the scattering length

of the system happens to be moderately unfavourable. The importance of correctly

differentiating between centre-of-mass and laboratory frames was also highlighted,

playing an important role in the decision that Li was likely not the most suitable

coolant for CaF in a microwave trap. This subsequently allowed reanalysis of previ-

ous results for sympathetic cooling in a magnetic trap, leading to a suggestion that

181
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sympathetic cooling might be possible starting at considerably higher temperatures

than previously thought. The small mass of Li might make it an excellent coolant for

magnetically trapped CaF because of both the large centrifugal barriers in outgoing

channels and a large ratio between laboratory frame and CM energies; in this case,

the cooling may be able to start from molecular temperatures in excess of 100 mK.

In chapter 4 we analysed various systems in terms of quantum chaos and RMT.

We found very clear signs of chaos for Li+CaH for J = 0. However, for other cases

including Li+CaH in J = 1 and Li+CaF, we found clear signs that the motion is

not fully chaotic, and there are approximately conserved constants of the motion,

even where we expected none. We have demonstrated the complicated nature of the

relationship between coupling strength and chaos. Starting from a chaotic system

and increasing the strength of a coupling does not necessarily lead to an increase in

chaos. This should not be surprising in principle: if a single term in a hamiltonian

becomes dominant, that term defines nearly good quantum numbers for the system.

We also studied Yb+Yb* and showed that chaotic spectra in atomic collisions do

not require large numbers of electronic states and can arise in quite simple systems

if the anisotropy is strong enough.

Finally, in chapter 5, we considered whether long-lived 2-body collisions cause

large enhancements of 3-body recombination at low energy. The idea is persuasive,

but has proved difficult to consider rigorously. We tried to analyse it in terms of

Smith’s collision lifetime [332], but found this was not a suitable quantity to rep-

resent short-range effects at low energy. We considered various elements of explicit

three-body collision theory, and made some general arguments about how we would

expect long-lived 2-body metastable states to appear in three-body scattering the-

ory. We then proposed some practical directions forward, both for full three-body

calculations, and for attempting to understand the link between two-body and three-

body collisions.
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[91] L. M. C. Janssen, P. S. Żuchowski, A. van der Avoird, G. C. Groenenboom,

and J. M. Hutson, Cold and ultracold NH–NH collisions in magnetic fields,

Phys. Rev. A 83, 022713 (2011).

[92] L. M. C. Janssen, A. van der Avoird, and G. C. Groenenboom, Quantum

reactive scattering of ultracold NH(X 3Σ−) radicals in a magnetic trap, Phys.

Rev. Lett. 110, 063201 (2013).

[93] B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quéméner, J. L. Bohn, and J. Ye,
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[103] M. L. González-Mart́ınez and J. M. Hutson, Effect of hyperfine interactions

on ultracold molecular collisions: NH(3Σ−) with Mg(1S) in magnetic fields,

Phys. Rev. A 84, 052706 (2011).

[104] L. P. Parazzoli, N. J. Fitch, P. S. Żuchowski, J. M. Hutson, and H. J.
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magnetic fields, in E. J. Brändas and E. S. Kryachko (Editors), Fundamental

World of Quantum Chemistry, volume 3, pages 273–294 (Kluwer Academic,

2004).

[151] G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular

Forces (Clarendon Press, Oxford, 1981).

[152] R. G. Gordon, A new method for constructing wavefunctions for bound states

and scattering, J. Chem. Phys. 51, 14 (1969).



Chapter 7. Bibliography 199

[153] B. R. Johnson, Renormalized Numerov method applied to calculating bound

states of coupled-channel Schrödinger equation, J. Chem. Phys. 69, 4678

(1978).

[154] B. R. Johnson, New numerical methods applied to solving one-dimensional

eigenvalue problem, J. Chem. Phys. 67, 4086 (1977).

[155] J. M. Hutson, Coupled-channel methods for solving the bound-state

Schrödinger equation, Comput. Phys. Commun. 84, 1 (1994).

[156] D. E. Manolopoulos, An improved log-derivative method for inelastic scatter-

ing, J. Chem. Phys. 85, 6425 (1986).

[157] B. R. Johnson, Multichannel log-derivative method for scattering calculations,

J. Comput. Phys. 13, 445 (1973).

[158] E. P. Wigner, On the behavior of cross sections near thresholds, Phys. Rev.

73, 1002 (1948).

[159] O. Hinckelmann and L. Spruch, Low-energy scattering by long-range potentials,

Phys. Rev. A 3, 642 (1971).

[160] C. L. Blackley, P. S. Julienne, and J. M. Hutson, Effective-range approxima-

tions for resonant scattering of cold atoms, Phys. Rev. A 89, 042701 (2014).

[161] H. A. Bethe, Theory of disintegration of nuclei by neutrons, Phys. Rev. 47,

747 (1935).

[162] J. M. Hutson, E. Tiesinga, and P. S. Julienne, Avoided crossings between bound

states of ultracold cesium dimers, Phys. Rev. A 78, 052703 (2008).

[163] M. Berninger, A. Zenesini, B. Huang, W. Harm, H.-C. Nägerl, F. Ferlaino,
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[180] M. Gǎılitis, Behavior of cross sections near threshold of a new reaction in the

case of a Coulomb attraction field, Sov. Phys. JETP 17, 1328 (1962).

[181] F. H. Mies, A multichannel quantum defect analysis of diatomic predissociation

and inelastic atomic scattering, J. Chem. Phys. 80, 2514 (1984).

[182] C. H. Greene, U. Fano, and G. Strinati, General form of the quantum-defect

theory, Phys. Rev. A 19, 1485 (1979).

[183] B. Yoo and C. H. Greene, Implementation of the quantum-defect theory for

arbitrary long-range potentials, Phys. Rev. A 34, 1635 (1986).

[184] B. Gao, General form of the quantum-defect theory for −1/rα type of potentials

with α > 2, Phys. Rev. A 78, 012702 (2008).

[185] P. S. Julienne and F. H. Mies, Collisions of ultracold trapped atoms, J. Opt.

Soc. Am. B 6, 2257 (1989).

[186] J. P. Burke, C. H. Greene, and J. L. Bohn, Multichannel cold collisions: Simple

dependences on energy and magnetic field, Phys. Rev. Lett. 81, 3355 (1998).

[187] B. Gao, Quantum-defect theory of atomic collisions and molecular vibration

spectra, Phys. Rev. A 58, 4222 (1998).

[188] F. H. Mies and M. Raoult, Analysis of threshold effects in ultracold atomic

collisions, Phys. Rev. A 62, 012708 (2000).



Chapter 7. Bibliography 202

[189] B. Gao, E. Tiesinga, C. J. Williams, and P. S. Julienne, Multichannel quantum-

defect theory for slow atomic collisions, Phys. Rev. A 72, 042719 (2005).

[190] Z. Idziaszek and P. S. Julienne, Universal rate constants for reactive collisions

of ultracold molecules, Phys. Rev. Lett. 104, 113202 (2010).

[191] J. F. E. Croft, A. O. G. Wallis, J. M. Hutson, and P. S. Julienne, Multichannel

quantum defect theory for cold molecular collisions, Phys. Rev. A 84, 042703

(2011).

[192] J. F. E. Croft, J. M. Hutson, and P. S. Julienne, Optimized multichannel

quantum defect theory for cold molecular collisions, Phys. Rev. A 86, 022711

(2012).

[193] J. F. E. Croft and J. M. Hutson, Multichannel quantum defect theory for cold

molecular collisions with a strongly anisotropic potential energy surface, Phys.

Rev. A 87, 032710 (2012).

[194] K. Jachymski, M. Krych, P. S. Julienne, and Z. Idziaszek, Quantum theory of

reactive collisions for 1/rn potentials, Phys. Rev. Lett. 110, 213202 (2013).

[195] K. Jachymski, M. Krych, P. S. Julienne, and Z. Idziaszek, Quantum-defect

model of a reactive collision at finite temperature, Phys. Rev. A 90, 042705

(2014).
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[292] M. L. González-Mart́ınez and P. S. Żuchowski, Magnetically tunable Feshbach

resonances in Li+Er, Phys. Rev. A 92, 022708 (2015).

[293] J. Mur-Petit and R. A. Molina, Spectral statistics of molecular resonances in

erbium isotopes: How chaotic are they?, Phys. Rev. E 92, 042906 (2015).

[294] K. Jachymski and P. S. Julienne, Chaotic scattering in the presence of a dense

set of overlapping Feshbach resonances, Phys. Rev. A 92, 020702 (2015).

[295] F. Haake, Quantum signatures of chaos (Springer, 2001), 2nd edition.

[296] L. E. Reichl, The Transition to Chaos: Conservative Classical Systems and

Quantum Manifestations (Springer, 2004), 2nd edition.

[297] M. Aszmann, J. Thewes, D. Frohlich, and M. Bayer, Quantum chaos and

breaking of all anti-unitary symmetries in rydberg excitons, Nature Materials

advance online publication, (2016).

[298] A. Petrov, E. Tiesinga, and S. Kotochigova, Anisotropy-induced Feshbach res-

onances in a quantum dipolar gas of highly magnetic atoms, Phys. Rev. Lett.

109, 103002 (2012).



Chapter 7. Bibliography 212

[299] T. A. Brody, J. Flores, J. B. French, P. A. Mellow, A. Pandey, and S. S. M.

Wong, Random-matrix physics: spectrum and strength fluctuations, Rev. Mod.

Phys. 53, 385 (1981).

[300] M. V. Berry and M. Tabor, Level clustering in the regular spectrum, Proc. R.

Soc. A 356, 375 (1977).

[301] T. Brody, A statistical measure for the repulsion of energy levels, Lett. Nuovo

Cimento 7, 482 (1973).

[302] M. V. Berry and M. Robnik, Semiclassical level spacings when regular and

chaotic orbits coexist, J. Phys. A 17, 2413 (1984).

[303] F. Izrailev, Quantum localization and statistics of quasienergy spectrum in a

classically chaotic system, Phys. Lett. A 134, 13 (1988).

[304] R. J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the

Physical Sciences (Wiley, 1989).

[305] R. B. Bernstein (Editor), Atom-Molecule Collision Theory: a Guide for the

Experimentalist (Plenum Press, New York, 1979).

[306] H.-I. Lu, I. Kozyryev, B. Hemmerling, J. Piskorski, and J. M. Doyle, Magnetic

trapping of molecules via optical loading and magnetic slowing, Phys. Rev.

Lett. 112, 113006 (2014).

[307] T. E. Wall, S. K. Tokunaga, E. A. Hinds, and M. R. Tarbutt, Nonadiabatic

transitions in a Stark decelerator, Phys. Rev. A 81, 033414 (2010).

[308] R. V. Krems, A. Dalgarno, N. Balakrishnan, and G. C. Groenenboom, Spin-

flipping transitions in 2Σ molecules induced by collisions with structureless

atoms, Phys. Rev. A 67, 060703 (2003).

[309] M. Mizushima, Theory of Rotating Diatomic Molecules (Wiley, New York,

1975).



Chapter 7. Bibliography 213

[310] S. L. Holmgren, M. Waldman, and W. Klemperer, Internal dynamics of van

der Waals complexes. I. Born–Oppenheimer separation of radial and angular

motion, J. Chem. Phys. 67, 4414 (1977).

[311] J. M. Hutson and B. J. Howard, Spectroscopic properties and potential surfaces

for atom-diatom van der Waals molecules, Mol. Phys. 41, 1123 (1980).

[312] J. M. Hutson and B. J. Howard, Anisotropic intermolecular forces. I. Rare

gas-hydrogen chloride systems, Mol. Phys. 45, 769 (1982).

[313] C. R. Le Sueur, J. R. Henderson, and J. Tennyson, Gateway states and bath

states in the vibrational spectrum of H+
3 , Chem. Phys. Lett. 206, 429 (1993).

[314] G. G. de Polavieja, F. Borondo, and R. M. Benito, Scars in groups of eigen-

states in a classically chaotic system, Phys. Rev. Lett. 73, 1613 (1994).

[315] N. J. Wright and J. M. Hutson, Regular and irregular vibrational states: Lo-

calized anharmonic modes in Ar3, J. Chem. Phys. 110, 902 (1999).

[316] N. J. Wright and J. M. Hutson, Regular and irregular vibrational states: Lo-

calized anharmonic modes and transition-state spectroscopy of Na3, J. Chem.

Phys. 112, 3214 (2000).

[317] Y. X. Wang and M. Dolg, Pseudopotential study of the ground and excited

states of Yb2, Theor. Chem. Acc. 100, 124 (1998).
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