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Abstract

In the last fifty years, approximate density functional theory (DFT) has
become firmly established as the de facto standard for electronic structure
calculations in chemistry. Although the theory itself is formally exact,
approximations must be made for the unknown exchange–correlation (XC)
functional, and whilst many successful approximate functionals exist, a
number of deficiencies still persist, leading to many cases where the ap-
proximation breaks down completely. This thesis addresses two prevalent
deficiencies, and examines some novel approaches to reducing and eliminat-
ing them.

Chapter 1 provides a background to electronic structure theory, with
particular reference to the approximate solution of the electronic Schrödinger
equation through ab initio wavefunction methods. Chapter 2 then provides
the formal justification for DFT as an alternative to wavefunction-based
methods, and outlines common approximations to the XC functional. Two
prominent deficiencies of approximate DFT are discussed: delocalisation
error due to non-linearity in the energy variation with number of electrons,
and incorrect long-range behaviour of the XC potential.

Chapter 3 examines a system-dependent tuning technique for the range-
separated hybrid class of XC functionals, whereby the range-separation
parameter is non-empirically tuned to self-consistent energy-linearity con-
ditions, which has been successfully used to improve the calculation of
quantities affected by the delocalisation error. A full, systematic assessment
of this tuning technique is provided, and it is demonstrated that the success
of the technique is aided by a convenient cancellation of errors.

In Chapter 4, the tuned functionals are applied to quantities relevant to
conceptual DFT. It is shown that functionals tuned to the energy conditions
of Chapter 3 remain appropriate for calculation of the electronegativity from
orbital energies, however the density variation with number of electrons—
described by the Fukui function—is better modelled by conventional non-
tuned functionals.

Finally, an entirely new approach to functional development is provided
in Chapter 5. The behaviour of a functional under density scaling is used to
impose homogeneity constraints on a simple functional form, culminating
in an electron-deficient functional that satisfies the appropriate energy-
linearity condition and exhibits the correct asymptotic XC potential.
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1
Quantum Mechanics

The foundations of quantum mechanics are briefly discussed, with partic-

ular reference to the Schrödinger equation as a determinative of molecular

electronic structure. The importance of the wavefunction as a descriptor

for a particular electronic state is then highlighted, and a discussion is

presented of its use in methods to solve electronic structure problems

in chemistry. Finally, a brief hierarchy of techniques used to approxi-

mately solve the Schrödinger equation is outlined, with reference to the

inherent challenges that lead to the consideration of wavefunction-free

alternatives.

The postulates of quantum mechanics,1–3 culminating in the time-dependent

Schrödinger equation, together describe the behaviour of all known microscopic

matter. It is the approximate solution, through various methods, to this

equation that drives electronic structure theory, in order to model and predict

the structure and properties of molecular systems.

Quantum mechanics has a history stretching throughout the 20th century,

beginning with early efforts to correct failures of traditional Newtonian mechan-

ics. Planck’s quantisation of electromagnetic radiation4 began the development,

followed by Einstein’s rationalisation of the photoelectric effect5 and Bohr’s

hypothesis of quantised angular momentum.6 The links between electromag-

netic radiation and matter were cemented with de Broglie’s conjecture7 that

any moving body possesses a wavelength inversely proportional to its linear

1



2 · Chapter 1: Quantum Mechanics

momentum, giving rise to the concept of wave–particle duality.

Both Schrödinger8–13 and Heisenberg14 independently developed formu-

lations of quantum mechanics. Whilst the two formalisms were developed

and expressed using different mathematical concepts, the two are equivalent.

Although the matrix terminology of Heisenberg’s formalism is best suited to

formal manipulations of the theory, the familiarity of Schrödinger’s functions

and differential calculus lends itself more readily to interpretation of the theory

and to calculating numerical results, ultimately leading to its widespread fame.

1.1 The Schrödinger equation

The time-dependent Schrödinger equation is given by

i~
∂Ψ

∂t
= ĤΨ , (1.1)

where Ψ = Ψ(x1,x2, . . . ,xn, t) is the wavefunction, dependent on both time

t and the coordinates x of each of the n particles in the system. Here, x is

a coordinate combining the spatial position r and spin coordinate s of the

particle. Ĥ is the Hamiltonian operator for the system, the terms of which

describe the contributions to the total energy E of the system, and ~ is the

reduced Planck constant ~ = h/2π.

For many purposes we are not concerned with time-dependent interactions,

and for applications where the potential energy is independent of time, the

Schrödinger equation is separable into components describing the time and space

variation of the wavefunction, respectively. The time-dependent component of

such a wavefunction is a complex phase factor, e−iEt/~, which does not affect

the absolute square of the wavefunction. Given that only the absolute square of

the wavefunction—rather than the wavefunction itself—has physical meaning15

(corresponding to the probability density of finding a particle at a given point in

space), the phase factor has no effect on the interpretation of the wavefunction

and we can remove the direct time-dependence. The resulting time-independent

Schrödinger equation is given by

Ĥψ = Eψ , (1.2)

where ψ = ψ(x1,x2, . . . ,xn) is the time-independent wavefunction.
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1.1.1 born–oppenheimer approximation

A further simplification we can make is the approximation outlined by Born

and Oppenheimer,16 which involves separating the Schrödinger equation into

two further parts: electronic and nuclear. This allows us to solve separately

an electronic Schrödinger equation—where the nuclei are regarded as fixed in

position and exerting a static external potential on the electrons. Repeating

this for a set of external potentials arising from different nuclear configurations

then builds up a potential energy surface for the system.

This decoupling of the nuclear and electronic motions is made possible by

the large difference in their masses: any change in nuclear position produces a

near-instantaneous response in the electrons, and so from the point of view of the

electrons, the nuclei can be regarded as fixed. The approximation relies on the

assumption that electrons behave adiabatically with respect to nuclear motion,

i.e. that the electronic state is unaffected by a change in the nuclear position.

When electronic states are sufficiently separated in energy this assumption is

generally valid, however as the energy of two or more states approach each other,

non-adiabatic effects may cause the approximation to break down, necessitating

a correction due to the coupling between electronic states. In general, the

Born–Oppenheimer framework provides a robust approximation for ground

states, but can be less reliable for excited states.

1.1.2 atomic units

Before we delve into the form of the Hamiltonian, we first comment on the

concept of atomic units (a.u.), which will be used extensively throughout

this thesis, and are implied unless otherwise specified. The advantage of using

atomic units lies in their definition, whereby four fundamental constants, namely

electronic mass me, elementary charge e, the reduced Planck constant ~, and

the electrostatic constant ke = 1/4πε0, are assigned the value of unity.

With this convention, numerous physical constants and derived units can be

reduced from mathematically complicated combinations of the above quantities

in SI units, to unity or similarly simple forms in atomic units. A summary of

units pertinent to this work is given in Table 1.1.

Certain care must be taken in the interpretation of quantities expressed
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Table 1.1: Definitions of fundamental and derived atomic units,
each with a value of unity, relevant to this work.

Name Symbol Approx. value in common units

Electron mass me 9.109× 10−31 kg

Elementary charge e 1.602× 10−19 C

Reduced Planck’s constant ~ =
h

2π
1.055× 10−34 J s

Electrostatic constant ke =
1

4πε0
8.988× 109 N m2 C−2

Bohr radius; “bohr” [length] a0 =
4πε0~2

mee2
0.529 Å

Hartree [energy] Eh =
mee

4

(4πε0~)2
=
e2

a0
27.211 eV

Electric potential
Eh

e
27.211 V

Electric dipole moment ea0 2.542 D

in atomic units—since they reduce to unity and effectively cancel each other

out they are often thought of and expressed as unitless, or otherwise under the

catch-all notation of “a.u.”. This can lead to a certain dimensional ambiguity

when mathematical operations are performed; it is important to note that the

same rules of dimensional analysis must apply as with traditional units, in

particular the homogeneity of units.

1.1.3 electronic schrödinger equation

Within the Born–Oppenheimer approximation, we can reduce equation (1.2)

to an electronic time-independent Schrödinger equation, which we formally

restate for an N -electron system as

Ĥeψe(x
N ;R) = Ee(R)ψe(x

N ;R) . (1.3)

The “e” subscript refers to the electronic quantities, xN = x1,x2, . . . ,xN refers

to the dependence on each of the electronic space–spin coordinates, and R

refers to the parametric dependence on the (fixed) positions of the nuclei. For

the remainder of the work we will be working exclusively with this electronic

problem, and so we simplify the notation back to

Ĥψ = Eψ . (1.4)
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The Hamiltonian Ĥ is given, in atomic units, by

Ĥ = −1

2

N∑
i

∇2
i +

N∑
i

v(ri) +
N∑
i<j

1

rij
, (1.5)

where

v(ri) = −
∑
α

Zα
riα

(1.6)

is the external potential acting on electron i due to nuclear charges Zα. For

brevity, we define

Ĥ = T̂ + V̂en + V̂ee (1.7)

where T̂ , V̂en, and V̂ee correspond to the three terms in equation (1.5), and

are identified as the kinetic, electron–nucleus attraction, and electron–electron

repulsion operators, respectively. Note that the potential in equation (1.6) will

contain additional terms in the presence of external fields.

The total energy is then given by the sum of the electronic energy E and

the nucleus–nucleus repulsion energy Vnn,

Vnn =
∑
α<β

ZαZβ
Rαβ

. (1.8)

The result is independent of whether this quantity is added after solving

equation (1.4) for E, or whether it is included in the definition of Ĥ itself and

the total energy determined directly.

Many acceptable solutions exist to equation (1.4), comprising the eigenfunc-

tions ψ with their corresponding eigenvalues E; the ground state wavefunction

and energy are denoted ψ0 and E0, respectively. The eigenfunctions ψ form a

complete, orthonormal basis, in terms of which any observable state ψ′—which

may or may not be an eigenfunction of Ĥ—may be expanded. It follows that

the expectation value (the mean of many measurements) of the energy, given

by

E[ψ′] = 〈Ĥ〉 =
〈ψ′|Ĥ|ψ′〉
〈ψ′|ψ′〉 , (1.9)

is an upper bound to the exact ground state energy E0,

E[ψ′] > E0 . (1.10)

The ground state energy is given only if equation (1.9) is evaluated with the

exact ground state wavefunction ψ0. We can therefore define the ground state
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wavefunction and energy as a full minimisation of the functional E[ψ] with

respect to all allowed N -electron wavefunctions,

E0 = min
ψ
E[ψ] . (1.11)

1.2 Hartree–Fock theory

The simplest appropriate approximation to the wavefunction comprises a

product of N one-electron spin orbitals χi(x), antisymmetrised to satisfy the

Pauli principle,17 in the form of a Slater determinant18,19

ψhf =
1√
N !

det[χ1(x1), χ2(x2), . . . , χN(xN)] , (1.12)

where each χi is the product of a spatial orbital dependent on the coordinate r

and a spin function accounting for α and β spin states, and the prefactor ensures

the normalisation condition 〈ψhf|ψhf〉 = 1. Hartree–Fock (HF) theory20–24 takes

this Slater determinant as an approximation for the true wavefunction, by

finding the set of orbitals that minimises the expectation value

Ehf = 〈ψhf|Ĥ|ψhf〉 (1.13)

=
N∑
i

Hi +
1

2

N∑
i,j

(Jij −Kij) (1.14)

=
N∑
i

〈i|ĥ|i〉+
1

2

N∑
i,j

〈ij|ij〉 − 〈ij|ji〉 , (1.15)

where we introduce shorthand notation for one- and two-electron integrals

〈i|j〉 = 〈χi|χj〉, and 〈ij|kl〉 = 〈χiχj|r−1
12 |χkχl〉, respectively, using the Dirac

notation such that

〈χiχj|r−1
12 |χkχl〉 =

∫∫
χ∗i (x1)χ∗j(x2)r−1

12 χk(x1)χl(x2) dx1 dx2. (1.16)

The operator ĥ corresponds to the one-electron Hamiltonian,

ĥ = −1

2
∇2 + v , (1.17)

and Jij and Kij correspond to the Coulomb and exchange integrals, respectively.

The former term is the classical Coulomb repulsion of a charge distribution
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with itself, whereas the second term arises due to the antisymmetry condition

of the Pauli principle, and is a lowering of the energy due to like-spin electrons

avoiding one other. Importantly, Jii = Kii, and so any terms pertaining to an

electron interacting with itself cancel, correctly, to zero; the consequence of

the failure of approximate DFT (Chapter 2) functionals to replicate this is of

direct relevance to this thesis.

The minimisation of equation (1.13)—which yields the best approximate

wavefunction of this form due to the variational principle—proceeds under the

constraint of orthonormal orbitals

〈i|j〉 = δij . (1.18)

This gives rise to the Hartree–Fock equations,

F̂χi(x1) =
N∑
j

εijχj(x1) , (1.19)

where εij are the elements of a matrix of Lagrange multipliers, the Fock operator

F̂ defines the effective Hamiltonian,

F̂ = ĥ+ ĵ − k̂ , (1.20)

and ĵ and k̂ are the Coulomb and exchange operators respectively. These are

defined, by their effect on orbital χi(x1), as

ĵ χi(x1) =
N∑
j

{∫
χ∗j(x2)χj(x2)

r12

dx2

}
χi(x1) , (1.21)

and

k̂ χi(x1) =
N∑
j

{∫
χ∗j(x2)χi(x2)

r12

dx2

}
χj(x1) . (1.22)

The HF (Slater determinant) wavefunction is invariant to a unitary trans-

formation of the orbitals, as is the Fock operator. Furthermore, the matrix of

Lagrange multipliers ε is Hermitian, and so there must exist a transformation

(and corresponding set of transformed orbitals) that diagonalises ε. Thus we

can write the Hartree–Fock equations in the canonical form,

F̂χi(x1) = εiχi(x1) . (1.23)
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The solutions to these equations for an N -electron system comprise a set of

eigenfunctions—the orbitals {χi}—with associated eigenvalues—the orbital en-

ergies {εi}. The N orbitals lowest in energy correspond to the occupied orbitals,

whereas the remainder (in principle infinite in number) are the unoccupied, or

virtual orbitals.

It must be noted that the eigenvalue equation equation (1.23) is not truly

a linear problem. In fact, the Fock operator (through the Coulomb and

exchange operators) is itself dependent on the solutions {χi} to the problem.

The resolution to this apparent contradiction comes in the form of the self-

consistent-field (SCF) method, whereby the problem is tackled iteratively,

starting from an initial guess for the orbitals.

1.2.1 roothaan–hall equations

For an N -electron closed-shell system, a restricted (rhf) formalism is custom-

arily employed, where N/2 pairs are formed of opposite-spin electrons. Each

α-spin electron occupies a spin orbital with an identical spatial component

to its β-spin partner—or, equivalently, the HF wavefunction comprises N/2

doubly occupied spatial orbitals. One can then integrate over the spin functions

to derive spatial HF equations,

F̂ϕi(r) = εiϕi(r) , (1.24)

where ϕi(r) is the spatial part of χi(x).

Although numerical solutions to the HF equations equation (1.24) are

tractable for atoms due to their spherical symmetry, the situation is much more

complex for molecular systems, and for most practical purposes the orbitals

are expanded in a basis set of known spatial functions,

ϕi(r) =
∑
ν

cνiϑν(r) . (1.25)

If {ϑi} were a complete set, the expansion would be exact, however for practical

purposes a finite set must be used; the choice of basis set thus has a direct

effect on both the quality of the expansion and the computational complexity,

and is an active and subjective area of research.
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By substituting equation (1.25) into the HF equation equation (1.24),

multiplying on the left by ϑ∗µ and integrating over r, we obtain∑
ν

cνi 〈ϑµ|F̂ |ϑν〉 = εi
∑
ν

cνi 〈ϑµ|ϑν〉 . (1.26)

We define the Fock matrix F and the overlap matrix S as

Fµν = 〈ϑµ|F̂ |ϑν〉 , (1.27)

and

Sµν = 〈ϑµ|ϑν〉 , (1.28)

where the latter arises as there is no orthonormality constraint on the basis

functions (for an orthonormal basis set, S is the identity matrix). The Roothaan–

Hall25,26 equations of equation (1.26) can then be simply represented as

Fc = Scε , (1.29)

a set of matrix equations soluble using conventional techniques.

1.2.2 basis sets

There are two approaches to the choice of basis set that dominate the field.

Plane wave basis sets are common in calculations on periodic systems, however

for isolated gas-phase molecules—and all the calculations relevant to this work—

by far the most prevalent choice is for atom-centered basis functions. The

idea stems from the knowledge that the electronic Schrödinger equation can be

solved exactly for hydrogenic systems, coupled with the assumption that the

one-electron Hartree–Fock orbitals will be similar to these solutions, and that

atoms in molecules will behave similarly to lone atoms.

Atomic orbitals (AOs) are chosen to approximate the hydrogenic solutions,

centered on each of the nuclei. The first proposed approximations27,28 were

Slater-type orbitals (STOs), which take the form (for a function centred on the

origin r0)

ϑsto(r) = N|r − r0|n−1 e−ζ|r−r0| , (1.30)

where N is a normalisation constant, n is the (effective) principle quantum

number, and ζ is an adjustable parameter, the Slater orbital exponent. Note



10 · Chapter 1: Quantum Mechanics

that we have omitted the system-independent angular part of the function,

which is universally given by the set of spherical harmonics.

The Slater functions exhibit a form that can lead to highly accurate results,

however the evaluation of the four-centre integrals described by equation (1.16)

over these orbitals is a difficult computational prospect, and the calculation

quickly becomes difficult as system size increases. By far the most common

functions in use today are the Gaussian-type orbitals (GTOs) introduced by

Boys.29 In Cartesian form, these are written

ϑgto(r) = N (x− x0)i(y − y0)j(z − z0)k e−α|r−r0|
2

, (1.31)

where the sum i + j + k is analogous to the angular momentum quantum

number l, and α is the Gaussian orbital exponent.

In contrast to the STOs, the Gaussian functions exhibit a zero slope at

the origin rather than the cusp present in the true hydrogenic orbitals, and

decay much more rapidly at long range. For this reason STOs give a better

qualitative description of the hydrogenic orbitals than GTOs; a more accurate

description can be built up for the latter by taking a linear combination of

many Gaussian primitives, leading to contracted Gaussian functions. This is

made computationally possible by the greater ease of evaluating integrals over

the GTOs: the product of two Gaussian functions at different centres reduces

to a single Gaussian function at a centre between the two.

The Gaussian functions can, as written above, be implemented in their

Cartesian form and, indeed, this is often simpler. However a subtlety arises

for l > 2, where a greater number of Cartesian Gaussian functions arise than

the corresponding spherical harmonics. As an example, the “d” orbitals (l = 2)

comprise five spherical harmonics, but six combinations of i, j, and k. Linear

combinations of the Cartesian GTOs give five combinations corresponding to

the five spherical GTOs, whereas the sixth (superfluous) combination exhibits

the angular behaviour of an s-orbital. Spurious functions such as this are

somewhat inefficient, and it may be preferable to transform the GTOs into the

spherical harmonic basis and so reduce the number of basis functions.

A final consideration to note is the number of functions that are required

for the basis set to be sufficiently flexible to produce accurate results. In a

so-called minimal basis set, there exists a single basis function (typically a

contracted Gaussian function) to describe each AO. Improvements can then be
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made by including additional functions (both of the same and of higher angular

momenta) to increase the flexibility of the basis set. Polarisation functions

typically take the form of orbitals with higher angular momenta than those of

the occupied AOs—these have the effect of distorting the shape of the AOs,

accounting for the distortion of the electron density due to, for example, other

atoms in the molecule. Polarisation functions are also vital to the description

of electron correlation, in order to correctly describe the electron–electron cusp

arising from the reduction in the probability of two electrons occupying the

same space.

Additional diffuse functions can also be included for cases where the electron

density is more spread out, such as in excited states and anions. These typically

take the form of single, shallow GTOs with small exponents and improve the

description at larger distances from the nucleus.

1.2.3 open-shell systems

For open-shell systems two formalisms arise. In restricted open-shell Hartree–

Fock (rohf), pairs of opposite-spin electrons exist in doubly occupied “closed-

shell” orbitals, whilst the remainder exist in singly occupied “open-shell” or-

bitals. Conversely in unrestricted Hartree–Fock (uhf), the spatial components

of orbitals for opposite-spin electrons are allowed to differ. The orbitals are

obtained from the Pople–Nesbet equations,30 which are α and β analogues of

the Roothaan–Hall equations.

In principle, the uhf formalism for closed-shell systems should reduce to

the rhf case, although treatment of cases such as dissociation into open-shell

fragments will be handled differently. For open-shell systems, uhf tends to

give a lower variational energy than rohf due to its better description of, for

example, an unpaired 2sα electron exhibiting a different interaction with either

a (paired) 1sα or 1sβ electron. That being said, care must be taken, as whilst

the rohf wavefunction is an eigenfunction of the Ŝ2 spin operator, the uhf

wavefunction is not, and may exhibit varying degrees of spin contamination.
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1.3 Correlated methods

Through the variational principle, the HF energy is an upper bound on the

exact energy. Aside from the one-electron case for which it is exact, it remains

an approximation due to its mean-field treatment of the interaction between

an electron with the others in the system, through modelling the wavefunction

as a single determinant. In particular, the mean-field approach fails to ac-

count for the electron–electron cusp of opposite-spin electrons (although some

correlation between like-spin electrons is modelled), and a single determinant

cannot accurately describe certain situations such as a molecule approaching

dissociation.

The correlation energy is defined as the difference between the exact energy

and the HF energy,

Ec = E0 − Ehf 6 0 . (1.32)

Much of the research in the field of electronic structure theory has revolved

around calculating and incorporating this correlation energy, in order to solve

problems with quantitative accuracy. For the remainder of this chapter, we

briefly discuss a number of approaches, before justifying the need for a more

computationally accessible alternative, which will be the focus of the remainder

of the thesis.

1.3.1 configuration interaction

The justification for the method of configuration interaction arises from the

ability31 to express the exact wavefunction as a linear combination of all possible

N -electron Slater determinants that arise from a complete set of spin orbitals,

|ψci〉 = |ψhf〉+
∑
a,i

cai |ψai 〉+
∑

a<b,i<j

cabij |ψabij 〉+ . . . (1.33)

= |ψhf〉+
∑
i,a

cai τ̂
a
i |ψhf〉+

1

4

∑
a,b,i,j

cabij τ̂
ab
ij |ψhf〉+ . . . (1.34)

= (1 + Ĉ1 + Ĉ2 + . . .) |ψhf〉 . (1.35)

The Ĉ1 (singles) excitation operator generates all possible singly excited deter-

minants by changing the orbital occupancy of the wavefunction, through the

operator τ̂ai , which “moves” an electron in the ith occupied orbital to the ath
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virtual orbital; the coefficients cai (amplitudes) are determined by minimising

the electronic energy. The Ĉ2 (doubles) operator is analogous for doubly excited

determinants, with the series increasing until all possible Slater determinants

are included, the so-called full configuration interaction (FCI) limit.

FCI is exact (within a given basis set—approximations are still introduced

by the need for a finite basis set), but the vast number of terms that emerge

as the number of electrons increases means it is impossible to compute for all

but the smallest of systems. In practice, one must truncate the expansion to

a finite order. Inclusion of singles only (cis) is no different to Hartree–Fock

itself: the singly excited determinants do not couple with the ground state, as

a consequence of Brillouin’s theorem.32 As a result, to see any improvement

one must at least include singles and doubles (cisd), and this remains the most

commonly used truncation.

One disadvantage of truncated CI is that it is not size-extensive. Consider

two non-interacting He atoms: for a method to be size-extensive, a calculation

on the two-atom, four-electron system should give an identical energy to twice

that of a single isolated He atom. The cisd method is equivalent to FCI for

a two-electron He atom: single and double excitations generate all possible

determinants and so the method is exact; doubling the energy gives the exact

energy for the two non-interacting atoms. A cisd calculation on the four-

electron system with two He atoms, however, neglects the determinants formed

by triple and quadruple excitations and so does not give the same, exact, energy.

Although the size-extensivity error can be reduced,33 its presence restricts the

usefulness of truncated CI, leading to the consideration of the size-extensive

alternative of coupled-cluster theory.

1.3.2 coupled-cluster theory

Whereas CI represents the wavefunction as a sum of excitation operations

|ψci〉 = (1 +
∑
µ

cµτ̂µ) |ψhf〉 , (1.36)
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the coupled-cluster (CC) method instead expands the wavefunction as a prod-

uct,34–36

|ψcc〉 =
∏
µ

(1 + tµτ̂µ) |ψhf〉 (1.37)

= eT̂ |ψhf〉 (1.38)

= (1 + T̂ +
1

2!
T̂ 2 + . . .) |ψhf〉 , (1.39)

which holds due to the property τ̂ 2
µ = 0. The excitation operator is given by

T̂ = T̂1 + T̂2 + . . . , (1.40)

where

T̂1 =
∑
a,i

tai τ̂
a
i , (1.41)

T̂2 =
∑

a<b,i<j

tabij τ̂
ab
ij , (1.42)

and so on. As with FCI, a full expansion of all possible excited determinants

gives the exact wavefunction for the given basis set, however it is when the

expansion is truncated that the advantages of CC manifest.

Consider the prevalent truncation including only the single and double

excitations, ccsd, where T̂ = T̂1 + T̂2. The inclusion of singly excited de-

terminants is similar to CI, with each contribution possessing an associated

single-excitation amplitude tia. Doubly excited determinants, however, can

arise in two ways: both from the connected contribution of the T̂2 operator,

with associated double-excitation amplitudes tijab, and from the disconnected

contribution of the T̂1 operator acting twice. This disconnected contribution

is instead associated with a product of single-excitation amplitudes tai t
b
j. In a

similar manner, disconnected contributions appear from triple, quadruple, and

higher order excitations.

Whilst these disconnected contributions do not give an exact treatment of

the higher-order excitations, their inclusion is beneficial to the overall accuracy

of the method. Importantly, returning to the example of two non-interacting He

atoms, the presence of the disconnected contributions accounts for all possible

excitations, and so the method is size-extensive.
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The ccsd method is a popular benchmarking tool, and can presently be

applied to molecules of reasonable size. Systematic improvement, however, in

order to achieve true quantitative accuracy by inclusion of triples (ccsdt37)

and higher terms, is again hindered by an unmanageable computational cost

for all but the smallest of systems. Approximations to both ccsd and ccsdt

have been developed in the form of cc238,39 and cc3,40,41 which mitigate some

of the cost of their parent methods.

A variant of ccsd is formulated in terms of the Brueckner orbitals42,43 rather

than the HF orbitals, and is termed the Brueckner Doubles (bd)44 method.

The Brueckner orbitals are linear combinations of the HF orbitals that give rise

to single-excitation amplitudes of zero in the coupled-cluster formulation. The

benefit of this approach is in mitigating some of the complexity of ccsd, along

with potential problems associated with large single-excitation amplitudes,

without sacrificing its accuracy.

A final important note is that the CC methods are not variational, and

may overestimate the correlation energy. The typical error, however, is much

lower than that caused by the non-size-extensivity of truncated CI.

1.3.3 perturbation theory

An alternative approach, which—like coupled cluster—is (in principle) sys-

tematic, size-extensive at any level of truncation, but not variational, can be

identified by considering perturbation theory. We represent the true Hamil-

tonian for a system as Ĥ = Ĥ0 + λV̂ , where Ĥ0 is a reference Hamiltonian

whose eigenvalues and eigenfunctions are known, and V̂ is a perturbation that

transforms the reference system into the true system through the parameter λ

(λ = 0 indicates the zeroth order, unperturbed system whereas λ = 1 describes

the true system).

If Ĥ0 is well chosen then the perturbation will be small, and we can

approximate the exact wavefunction and energy by expanding as a Taylor series

in λ. Although we present only the main results relevant to this work, a full

treatment is again given in Refs 2 and 3.

Møller–Plesset45 perturbation theory (MPPT) chooses Ĥ0 to be a sum

over the one-electron Fock operators of equation (1.20), with the perturbation

given by V̂ = Ĥ − Ĥ0 = Ĥ −∑i F̂ (ri). The zeroth order energy is simply the
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expectation value of Ĥ0,

E(0) = 〈ψhf|Ĥ0|ψhf〉 , (1.43)

where ψhf is the ground-state HF wavefunction, whilst the first order correction

is given by

E(1) = 〈ψhf|V̂ |ψhf〉 . (1.44)

It is immediately clear that the Hartree–Fock energy is equivalent to the sum

of these two terms, i.e. the first-order truncation of MPPT,

Ehf = 〈ψhf|Ĥ|ψhf〉 = 〈ψhf|Ĥ0 + V̂ |ψhf〉 = E(0) + E(1) . (1.45)

It can be shown that the second order correction to the energy is given by

E(2) =
1

4

∑
a,b,i,j

| 〈ij|ab〉 − 〈ij|ba〉 |2
εi + εj − εa − εb

(1.46)

and truncating here yields the second-order MPPT approximation, denoted mp2.

Although mp2 is a commonly used method, further terms can be systematically

added by truncating at higher orders, however doing so does not, in general,

produce a systematic improvement worthy of the increasing computational

complexity.

The principles of MPPT can also be applied to the coupled-cluster methods

of Section 1.3.2. Applying the MP-type perturbation to the ccsd wavefunction,

such that the triples correction is introduced perturbatively46 yields the ccsd(t)

method. This useful approach provides much of the improved accuracy of

the full ccsdt method, without a large part of the significant increase to

computational cost. A similar perturbative approach can incorporate triples

into the bd method, to give a method denoted bd(t).

1.3.4 basis set dependence

A final comment must be made on the dependence of these correlated wavefunc-

tion methods on the choice of basis set. In particular, a great many polarisation

functions are required to accurately model the electron–electron cusp, resulting

in very large basis sets. This, in part, stems from the need to describe not

only the ground-state (HF) determinant, but also excited-state determinants,
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which involve occupation of orbitals that are virtual in the ground state. The

accurate description of a wavefunction incorporating an increasing number of

excited-state determinants requires an ever-increasing flexibility in the basis set,

and the convergence towards the complete basis limit is slow. Similarly, any

small increase in system size necessitates a large increase in basis set flexibility.

In general, correlated methods scale poorly with system size—ccsd(t), for

example, formally scales as M7, where M is a measure of the system size related

to the number of basis functions. Since the number of basis functions required

for an accurate calculation itself increases with system size, calculations can

rapidly become intractable, and the use of these methods—using presently

available computational techniques—is unfeasible for all but the smallest of

systems.

As an illustration, the limit to date of full CI has been systems of no more

than around ten electrons, standard ccsd(t) implementations would take weeks

or months to model several tens of electrons, whereas more efficient algorithms

have permitted calculations on up to several hundred electrons. Despite rapid

increases in computational power and memory, along with many technical

advances in the optimisation of methods and algorithms, application of these

correlated methods to systems of several thousand electrons or more are likely

to remain inaccessible for the foreseeable future, and it is this that leads us to

consider methods formulated around a much simpler, more accessible quantity:

the electron density.





2
Density functional theory

Density functional theory is introduced as a formally exact alternative to

correlated ab initio electronic structure methods. The electron density

is shown, through the Hohenberg–Kohn theorems, to contain sufficient

information to describe and determine all properties of the system.

The Kohn–Sham method is then introduced as a practical route to

solving electronic structure problems, by approximating the exchange–

correlation functional. Finally, methods of approximating this functional

are discussed, along with ongoing challenges in their development.

Chapter 1 introduced approaches to approximately solve the Schrödinger

equation by approximating the exact ground-state wavefunction ψ0. Whilst

such methods can, in principle, produce very accurate results, in practice it

becomes very difficult to perform calculations on even modest systems, owing

to the huge complexity of the N -electron wavefunction ψ(x1,x2, . . . ,xN ). This

complexity stems from its dependence on the four (three spatial and one spin)

coordinates of each electron in the system along with, implicitly, the positions

of the nuclei. This, coupled with the increasingly large basis sets needed to

correctly model the electron–electron cusp, led many to investigate whether a

simpler quantity could be used to determine the required information.

One such quantity was the one-electron density ρ(r), and early models

involving ρ date back to the late 1920s, with the work of Thomas, Fermi and

Dirac.47–49 At the time, there was no formal proof that an exact theory could

19
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be derived in terms of ρ, and these models did not gain wide acceptance until

much later, when in 1964 Hohenberg and Kohn provided such a proof. Despite

this, their decision to use the electron density ρ—more properly the electron

probability density—was arguably an intuitive one, as reputedly observed by

E. Bright Wilson following a presentation of Hohenberg and Kohn’s work (the

latter is discussed in Section 2.2). He noted that cusps in the density indicate

the positions of the nuclei, and that the slope of the cusp is related to the

nuclear charge by
∂

∂rA
ρ̄(rA)|rA=0 = −2ZAρ̄(0) , (2.1)

for a given nucleus A, where ρ̄ is the spherical average of the density. This,

coupled with the knowledge that the density integrates to the total number of

electrons ∫
ρ(r) dr = N , (2.2)

suggests that all the information required to determine the Hamiltonian, and

thus all the desired properties of a system, is contained within the density.

2.1 Thomas–Fermi theory

Conceptually, the idea was simple: to express each of the terms defining the

total energy associated with the Hamiltonian operator in equation (1.7) as a

functional of the density, rather than the wavefunction, such that

E[ρ] = T [ρ] + Ven[ρ] + Vee[ρ] (2.3)

= T [ρ] +

∫
ρ(r)v(r) dr + Vee[ρ] , (2.4)

where T [ρ] is the electronic kinetic energy, Ven[ρ] is the electron–nuclear inter-

action energy, and Vee[ρ] is the electron–electron repulsion energy. Note that,

simplistically, a functional F [f ] (denoted with square brackets), differs from a

function f(x), in that the latter takes a number as input and returns a number,

whereas the former takes a function as input and returns a number.

Using statistical arguments to model the distribution of electrons in an

atom, Thomas47 and Fermi48 derived an expression for the total kinetic energy

of a non-interacting system in terms of the electron density,

Ttf[ρ] = Ct

∫
ρ5/3(r) dr, where Ct =

3

10
(3π2)2/3 . (2.5)
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This is an example of the modern idea of a local density approximation, where

conditions appropriate for a uniform electron gas (UEG) are applied to local

systems.

The original Thomas–Fermi model approximated Vee using only the classical

Coulomb potential energy,

J [ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

r12

dr1 dr2 . (2.6)

Of course, this neglects completely the non-classical part, and the Thomas–

Fermi–Dirac model49 improves the approximation by adding to Vee the exchange

energy of the UEG,

Ex[ρ] = Cx

∫
ρ4/3(r) dr, where Cx = −3

4

(
3

π

)1/3

. (2.7)

The true electron density of an atom or molecule does not resemble that

of the UEG, and so the approximations remain somewhat over-simplified.

It is likely for this reason—along with the failure to match the accuracy of

existing approximations—that the model was initially seen as unimportant

for any quantitative application. The kinetic energy term, in particular, was

problematic. From the Virial theorem, the kinetic energy for an atom is the

negative of the total energy, and is thus relatively large. As a result, even small

errors in its approximation can lead to large errors in the result obtained.

In the context of Hohenberg and Kohn’s proof, however, the perspective

changed dramatically. Now, the TFD model was an approximation to an exact

theory, offering important insights into the potential for improved approxima-

tions. Indeed, the principles of modelling a non-interacting system, and of a

local density approximation, became vital components of Kohn–Sham theory

and early approximations of the exchange–correlation energy (Section 2.4).

2.2 The Hohenberg–Kohn theorems

As can be seen from equation (1.5), the Hamiltonian for a system is completely

defined by the number of electrons N and the external potential v(r), and

so with the knowledge of these quantities one can, in principle, determine all

properties of the ground state. The legitimacy of replacing N and v(r) with
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ρ(r)—as with the TFD explicit functionals of the density—was proven in 1964

by Hohenberg and Kohn.50

2.2.1 first hohenberg–kohn theorem

Their deceptively simple reductio ad absurdum proof shows that two external

potentials differing by more than an additive constant cannot be associated with

the same density, or in other words ρ(r) uniquely determines v(r). Since N is

also determined trivially by quadrature, all terms in the electronic Hamiltonian

can be written as functionals of the density.

Consider two external potentials, v(r) and v′(r), differing by more than

a constant, which give the same ground-state density ρ(r). These, in turn,

give rise to two Hamiltonians, Ĥ and Ĥ ′, with the same density but different

normalised wavefunctions ψ and ψ′, and corresponding ground-state energies

E and E ′. Taking ψ′ as a trial wavefunction for Ĥ gives, from the variational

principle,

E0 < 〈ψ′|Ĥ|ψ′〉 = 〈ψ′|Ĥ ′|ψ′〉+ 〈ψ′|Ĥ − Ĥ ′|ψ′〉 (2.8)

= E ′0 +

∫
ρ(r)

[
v(r)− v′(r)

]
dr . (2.9)

Similarly, taking ψ as a trial wavefunction for Ĥ ′ gives

E ′0 < 〈ψ|Ĥ ′|ψ〉 = 〈ψ|Ĥ|ψ〉+ 〈ψ|Ĥ ′ − Ĥ|ψ〉 (2.10)

= E0 −
∫
ρ(r)

[
v(r)− v′(r)

]
dr . (2.11)

Summing these two inequalities results in E0 + E ′0 < E ′0 + E0, which is a clear

contradiction. Thus the original postulate—that two differing potentials can

be associated with the same density—must be false.

In other words, v(r) is uniquely determined by ρ(r) (to within a trivial

additive constant). Since N is determined by quadrature,

N =

∫
ρ(r) dr , (2.12)

it must follow that ρ(r) is able to determine all properties of the ground state.

We can thus write the total electronic energy as a functional of the density,

E[ρ] =

∫
ρ(r)v(r) dr + Fhk[ρ] , (2.13)
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where

Fhk[ρ] = T [ρ] + Vee[ρ] = 〈ψ|T̂ + V̂ee|ψ〉 . (2.14)

It may also be noted that Vee[ρ] can be written as the classical Coulomb

repulsion (in terms of the density) J [ρ], added to a non-classical term. This

latter term is very important, and will be a major component of the exchange–

correlation energy defined and discussed below.

2.2.2 second hohenberg–kohn theorem

The second theorem of Hohenberg and Kohn50 introduces the energy variational

principle in terms of the density. Consider a trial density ρ̃(r) > 0, where∫
ρ̃(r) dr = N . From the first Hohenberg–Kohn theorem, there is a unique

potential ṽ(r), and hence wavefunction ψ̃, associated with ρ̃(r). This wavefunc-

tion can in turn be taken as a trial function for the system of interest—with

external potential v(r)—such that

〈ψ̃|Ĥ|ψ̃〉 =

∫
ρ̃(r)v(r) dr + Fhk[ρ̃] = E[ρ̃] > E[ρ] . (2.15)

Thus, for a trial density ρ̃(r),

E0 6 E[ρ̃] , (2.16)

where E0 is the ground-state energy.

To obtain the ground-state energy, therefore, the energy must be minimised

with respect to variations in the density, subject to the constraint that the

number of electrons remains constant, equation (2.12). This leads to the

stationary condition

δ

δρ(r)

(
E[ρ]− µ

[∫
ρ(r) dr −N

])
= 0 , (2.17)

or
δE[ρ]

δρ(r)
− µ = 0 , (2.18)

where δ/δρ(r) denotes a functional derivative, i.e. the change in the functional

in response to a local change in the input function. The Lagrange multiplier

µ is characteristic of the system and is termed the (electronic) chemical po-

tential, measuring the escaping tendency of an electron from the equilibrium
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system.51,52 Through its link with electronegativity,51–53 this quantity has

particular significance in conceptual DFT, which will be discussed in Chapter 4.

Combining equations (2.13) and (2.18) gives the Euler–Lagrange equation

µ =
δE[ρ]

δρ(r)
(2.19)

= v(r) +
δFhk[ρ]

δρ(r)
(2.20)

We therefore have a formally exact theory: given the exact Fhk[ρ] we can, in

principle, solve equation (2.20) for any given system. Unfortunately, the explicit

form of Fhk[ρ] is unknown, and it is around this problem that much of the field

of research in DFT has developed in recent years. We have seen already that

this term can be approximated—indeed, the early work of Thomas, Fermi and

Dirac can be seen as approximations to its components T [ρ] and Vee[ρ], but

even small errors in these approximations can render the theory unusable.

A practical workaround to this problem was provided shortly after, by Kohn

and Sham, and this is addressed below. First, though, we discuss another

potential problem: that of the trial density.

2.2.3 v- and N-representability of the electron

density

The Hohenberg–Kohn theorems were an important breakthrough, demonstrat-

ing that the ground-state electron density uniquely determines the properties of

the ground state, however there is a subtle setback. We now introduce the con-

cept of a v-representable density—which is defined as a density associated with

the antisymmetric wavefunction of a Hamiltonian of the form equation (1.5),

with some external potential v(r). By necessity, the densities considered in

the proofs above are v-representable, but in general a density may not be.

This is an important distinction, and so we restate the first Hohenberg–Kohn

proof as the assertion that a v-representable density has a unique mapping to

a single ground-state wavefunction, and thus determines the properties of its

ground state. Importantly, the idea that all the ground-state properties can

be described as functionals of the electron density only holds—assuming the

above proofs are followed—if the density is v-representable.
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We know the exact ground-state density for a system will be v-representable,

but the variational principle of equation (2.15) breaks down if the trial density

is not v-representable. This presents a problem, as many physically reasonable

trial densities can, in fact, be non-v-representable.54,55 It turns out that we can,

in fact, reformulate the theory such that the density need only satisfy a weaker

condition: that of N-representability.

An N -representable electron density is one that can be derived from an anti-

symmetric N -electron wavefunction: a necessary condition for v-representability,

but weaker than the latter. In other words, v-representable densities form a

subset of N -representable densities, and so the exact ground-state density is

both v- and N -representable. The conditions for N -representability are known

and, indeed, are satisfied for any reasonable density. Specifically, the density

must be everywhere positive, integrate to the number of electrons, and be

differentiable, i.e. ρ(r) > 0,
∫
ρ(r) dr = N , and

∫
|∇ρ(r)1/2|2 dr <∞.

2.3 The Levy constrained search approach

In order to avoid the v-representability problem, Levy introduced the con-

strained search approach,55,56 which minimises over N -representable densities.

First, we redefine the Fhk[ρ] functional in terms of a constrained search ap-

proach. Consider two wavefunctions: the true ground state ψ0, and a second

wavefunction ψ′, both of which integrate to the ground-state density ρ0(r).

From the variational principle,

〈ψ′|Ĥ|ψ′〉 > 〈ψ0|Ĥ|ψ0〉 = E0 , (2.21)

where Ĥ = T̂ + V̂ee + V̂en. Since the contribution of V̂en—due to the external

potential—is the same for both wavefunctions, we can write

〈ψ′|T̂ + V̂ee|ψ′〉 > 〈ψ0|T̂ + V̂ee|ψ0〉 (2.22)

and so for all wavefunctions giving the ground-state density ρ0(r), the ground-

state ψ0 is that which minimises the expectation value 〈T̂ + V̂ee〉. The right-

hand side of equation (2.22) is equivalent to the functional Fhk[ρ0] and so we

can define

Fhk[ρ0] = min
ψ→ρ0

〈ψ|T̂ + V̂ee|ψ〉 . (2.23)
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This constrained-search definition, so-called because it searches over only a sub-

set of possible wavefunctions: those which give the ground-state density ρ0(r),

has been derived without reference to the fact that ρ0(r) is v-representable.

By extending the space of trial wavefunctions, Levy showed that one can

arrive at the ground state energy with only the N -representability constraint.

Consider a general functional

F [ρ] = min
ψ→ρ
〈ψ|T̂ + V̂ee|ψ〉 , (2.24)

where the minimisation is now over any N -representable ρ. By definition, for the

ground-state density (which we know to be v-representable), Fhk[ρ0] = F [ρ0].

Levy’s approach partitions the energy-minimisation procedure into two

steps. Firstly the energy is minimised over all wavefunctions ψ which give rise

to an N -representable density ρ. Secondly, it is minimised over all possible

N -representable densities to determine E0:

E0 = min
ψ
〈ψ|T̂ + V̂ee + V̂en|ψ〉 (2.25)

= min
ρ

(
min
ψ→ρ
〈ψ|T̂ + V̂ee + V̂en|ψ〉

)
(2.26)

= min
ρ

(
min
ψ→ρ
〈ψ|T̂ + V̂ee|ψ〉+

∫
ρ(r)v(r) dr

)
(2.27)

= min
ρ

(
F [ρ] +

∫
v(r)ρ(r) dr

)
. (2.28)

The existence of a universal functional F [ρ], for any N -representable density,

is thus proven. This functional, combined with the variational principle,

therefore provides a rigorous, formally exact density functional theory for

determining the ground-state density and energy of a given electronic system.

A problem remains, however, in the difficulty of approximating F [ρ]. We

still do not know how to formulate the components T [ρ] and Vee[ρ] in terms

of the density, and even small errors can prove catastrophic. Kohn and Sham

introduced a working solution to the problem, which remains the most commonly

applied approach to practical DFT calculations.
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2.4 Kohn–Sham theory

As is now well established, the barrier to converting the formally exact proof

that the density can be used in place of the many-electron wavefunction, into a

practical scheme for accurately calculating the properties of an arbitrary system,

lies in the inability to approximate F [ρ] to the required accuracy. Although

the full form of F [ρ] is unknown, the density-dependence of some parts of

the energy are known. The beauty of the Kohn–Sham approach, presented

in 1965,57 is that it separates the large, unknown, F [ρ] into a relatively large

component which we know how to calculate exactly, and a much smaller

unknown component for which approximation is still necessary—that way, any

remaining errors in the approximation will have a much smaller effect on the

total energy.

The key lies in a simple repartitioning of the components of the energy

expression, by considering a fictitious system of non-interacting electrons with

density ρ. Specifically, the kinetic energy T can be represented as the sum of

the kinetic energy Ts of the non-interacting system and a corrective term due

to the interactions,

T [ρ] = Ts[ρ] + (interacting term) . (2.29)

Similarly, a large portion of the electron–electron repulsion energy Vee is given

by the classical Coulomb repulsion of the density,

J [ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

r12

dr1 dr2 , (2.30)

again leaving a small term to be approximated,

Vee[ρ] = J [ρ] + (non-classical term) . (2.31)

We collect the “left-over” terms into a new quantity termed the exchange–

correlation (XC) energy functional, defined as

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] . (2.32)

In other words, it consists of the difference between the kinetic energy of the

full, interacting system and that of the hypothetical non-interacting system,



28 · Chapter 2: Density functional theory

added to the difference between the electron–electron interaction energy of the

real system and the classical Coulomb energy.

We can therefore rewrite the energy as

E[ρ] =

∫
ρ(r)v(r) dr + Ts[ρ] + J [ρ] + Exc[ρ] . (2.33)

Minimising this energy, as before, with respect to changes in the density (subject

to constant N), gives the Euler equation

µ = v(r) +
δTs[ρ]

δρ(r)
+
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
. (2.34)

If we define an effective potential

veff(r) = v(r) +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
, (2.35)

then we may write

µ = veff(r) +
δTs[ρ]

δρ(r)
. (2.36)

Importantly equation (2.36), which yields the exact density of the real, fully

interacting system, is entirely equivalent to the Euler equation of equation (2.20),

but for a system of non-interacting electrons moving in an external potential

veff(r) (i.e. a system where T = Ts and Vee = 0). In other words, we can

determine the density of the real, interacting system by performing a calculation

on a non-interacting system, with potential veff(r).

This is trivial: the Hamiltonian for a non-interacting system is

Ĥ = −1

2

∑
i

∇2
i +

∑
i

veff(ri) , (2.37)

the wavefunction ψ is a Slater determinant comprising the one-electron orbitals

{ϕi}, and we can thus determine the orbitals that are the solutions to(
−1

2
∇2 + veff(r)

)
ϕi(r) = εiϕi(r) . (2.38)

Returning to the energy expression of equation (2.33), the kinetic energy of

the non-interacting system is given exactly by

Ts[ρ] =
∑
i

〈ϕi| −
1

2
∇2|ϕi〉 , (2.39)
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and the density by

ρ(r) =
n∑
i

|ϕi(r)|2 . (2.40)

Crucially, the density of the real, interacting system is by definition the same

as that of the fictitious system.

This indirect procedure of reintroducing orbitals to solve the problem, as

an (equivalent) alternative to finding a direct solution to the Euler equation,

is known as Kohn–Sham (KS) DFT. By repartitioning the energy expression

into equation (2.33) we are able to calculate all the terms exactly, except

for the relatively small Exc component, for which an approximation is still

necessary. Whilst some of the elegant simplicity of the theory is lost as a result,

it overcomes many of the challenges associated with the direct approach, and

as such remains the most popular route for practical DFT calculations.

The similarities to Hartree–Fock theory are immediately apparent, and,

indeed, KS-DFT requires a similar computational cost. The same procedure is

used, beginning with trial orbitals expanded in terms of basis functions, then

solving the SCF equations. The same methods applied to HF for determining

molecular properties can thus be applied to KS theory. Despite these similarities,

the advantage of KS theory is that unlike HF, which neglects correlation, it is

formally exact.

2.5 Exchange–correlation functionals

Having emphatically derived such a formally exact theory, one might be tempted

to assume the problem is solved—we have a working method, which includes

correlation and is no more computationally difficult than Hartree–Fock. There

is, however, a remaining problem, in that the exact form of the exchange–

correlation energy functional Exc[ρ] (hereafter often simply referred to as

“functional” or “Exc” for brevity) is still unknown, and an approximation

must still be made. Although the contribution of Exc is relatively small, the

quality of the approximation directly affects the accuracy of any calculations.

Understandably, finding a universal functional form appropriate for all systems

ranging from a single proton to the largest of proteins, in terms of the simple,

three-dimensional density, is not a trivial task, and a large part of the last
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fifty years of research in DFT has been dedicated to creating and improving

approximations to the elusive Exc functional.

Before discussing in detail the common schemes of functional development,

we will briefly comment on the extension of DFT to a spin-dependent form,

necessary for modelling the effect of a magnetic field on the spins of electrons,

and in general improving the approximations in the absence of a magnetic field

(in particular for open-shell systems). For a full derivation and discussion, see

section 8.1 of Ref. 58.

We consider separately the α-electron and β-electron densities

ρα(r) =
nα∑
i

|ψi(r, α)|2 , (2.41)

and

ρβ(r) =

nβ∑
i

|ψi(r, β)|2 , (2.42)

with the total density given by

ρ(r) = ρα(r) + ρβ(r) ; (2.43)

nα and nβ are the number of α- and β-spin electrons, respectively. In the case

of closed-shell systems, ρα = ρβ = ρ/2 .

2.5.1 local density approximation

The local density approximation (lda), or more properly the local spin density

approximation (lsda) in the spin-polarised formalism, is the simplest physically

relevant approximation to Exc, and is the form originally demonstrated in

Kohn and Sham’s seminal paper. Derived from a consideration of the UEG

and applying it locally, the functional is split into separate exchange (Ex[ρ])

and correlation (Ec[ρ]) functionals, where the overall functional is given by

Exc = Ex + Ec .

The exchange functional takes the form

Elsda
x [ρα, ρβ] = 21/3Cx

∑
σ

∫
ρ4/3
σ dr , where Cx = −3

4

(
3

π

)1/3

, (2.44)

and σ is a spin coordinate indicating summation over α and β. This is merely

the Dirac approximation of equation (2.7), generalised to a spin-polarised form.
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A subtle difference here is that whilst the original TFD arguments used the

UEG to model T [ρ] and Vee[ρ], here we are restricting its use to the smaller,

unknown component of KS theory.

For the correlation functional no explicit form is known, however accurate

values have been calculated59 using quantum Monte Carlo. Analytic parame-

terisations of these values have been generated, the most common being that

of Vosko, Wilk and Nusair60 (vwn).

The lsda has seen popularity in the field of physics, where its application

to large, periodic systems such as bulk metals is relatively successful. For the

isolated molecules relevant to chemical problems, however, the localised densities

bear very little resemblance to the UEG, and so the approximation quickly

breaks down. Several deficiencies are apparent, most notably the tendency to

over-bind molecules, and a non-zero correlation energy for one-electron systems.

2.5.2 generalised gradient approximations

Given the inhomogeneity in the density of a typical molecule, a natural progres-

sion to the functional form is to include information about the density gradient.

The most common approach is the generalised gradient approximation (GGA),

which takes the general form

Egga
xc [ρ] =

∫
F (ρ,∇ρ(r)) dr , (2.45)

which can again be extended to a spin-polarised form in terms of ρα and ρβ.

As before, the functional is usually partitioned into separate exchange and

correlation components.

The exchange functional is typically expanded in terms of a dimensionless

density gradient, a natural example being

x(r) =
∇ρ(r)

ρ4/3(r)
, (2.46)

such that the form

Egga
x [ρ] =

∫
ρ4/3(r)f(x(r)) dr (2.47)

maintains correct coordinate scaling (further discussion of the scaling properties

of functionals is given in Chapter 5).
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Two distinct approaches to the development of GGA functionals have

been widely utilised. The first is to determine a form which, through various

parameters, reproduces as many known mathematical properties of the exact

exchange and correlation functionals as is practical. Prominent functionals

developed in this manner include the Perdew–Wang61,62 1991 (pw91) and

Perdew–Burke–Ernzerhof63 (pbe) functionals.

The alternative approach is to determine a parameterised form, where

the parameters are empirically fitted to known molecular properties. Notable

exchange functionals of this type include Becke’s 198664 and 198865 (b88)

functionals, fitted to atomic energies. Most prominently among correlation

functionals, the Lee–Yang–Parr66 (lyp) approximation was derived from Colle–

Salvetti67 calculations on the helium atom.

Both approaches to functional development have seen notable improvements

over the lsda, and each has its advantages. On the one hand, the functionals

derived from known mathematical relationships tend to offer more physical

insight into the reasons for their success. On the other, empirically derived

functionals have tended to show a greater proclivity to achieve good-quality

results, although the approximations may tend to break down for systems and

properties significantly outside the remit of the empirical fit.

Probably the most famous empirically derived GGA is the combination

of Dirac exchange, b88 and lyp, collectively termed blyp.68 The immediate

success of this functional kick-started the expansion of DFT into the chemical

field, whereas it had previously been thought primarily useful to physics. The

blyp functional also provides the foundation for the immensely popular b3lyp,

discussed in Section 2.5.4.

Despite showing an almost universal improvement over the lsda, and giving

a reasonable approximation of atomisation energies, ion energetics and local

excitation energies, GGA functionals still fail to give quantitative accuracy in

a number of areas. Particular failures include the underestimation of reaction

barriers, NMR shieldings, and Rydberg and charge–transfer excitation energies.

2.5.3 meta-ggas

Given that the lsda and the gradient correction can be thought of as the

first two terms of a Taylor series, a logical next step would be to introduce
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higher-order derivatives of the density. In principle this would involve—as the

next term—the introduction of the Laplacian of the density ∇2ρ(r), however

in practice the more numerically stable kinetic energy density τ =
∑

i |∇ψi|2 is

typically used.

Again, functionals may be derived from theoretical arguments, as with the

pkzb69 and tpss70,71 functionals, or from empirical fitting, as with the vsxc

functional of Van Voorhis and Scuseria,72 and the local Minnesota functionals

of Truhlar and co-workers, m06-l73,74 and m11-l.75 The increased flexibility of

the functional form, for little extra computational cost, is a promising concept,

however initial implementations did not exhibit any major improvement over

conventional GGAs for chemical applications. Recent advances have been made

which improve the prospects for these functionals, in particular when combined

with the hybrid and range-separated approaches discussed below.73,76–78

2.5.4 hybrid functionals

Consideration of the adiabatic connection provides an alternative approach

to improving the functional form: that of incorporating a proportion of exact

exchange E0
x[ρ]. Consider a generalisation of the definition of F [ρ] from the

constrained search approach, equation (2.24),

Fλ[ρ] = min
ψ→ρ
〈ψ|T̂ + λV̂ee|ψ〉 = 〈ψλ|T̂ + λV̂ee|ψλ〉 , (2.48)

where λ controls the strength of electron–electron interaction, and ψλ is the

wavefunction that minimises 〈T̂ + λV̂ee〉 and gives the exact density. By choos-

ing λ = 0 for the non-interacting system and λ = 1 for the fully interacting

system we find

F1[ρ] = T [ρ] + Vee[ρ] , (2.49)

F0[ρ] = Ts[ρ] , (2.50)

and, from equation (2.32),

Exc[ρ] = F1[ρ]− F0[ρ]− J [ρ] . (2.51)

If we assume that the functional Fλ[ρ] smoothly varies to connect the non-

interacting system with the fully interacting system, via a series of partially



34 · Chapter 2: Density functional theory

interacting systems, then

Exc[ρ] =

∫ 1

0

∂Fλ[ρ]

∂λ
dλ− J [ρ] (2.52)

=

∫ 1

0

Wλ dλ , (2.53)

where

Wλ = 〈ψλ|V̂ee|ψλ〉 − J [ρ] . (2.54)

An appropriate choice of Wλ can therefore be used to approximate the exchange–

correlation energy, exploiting the fact that W0 corresponds exactly to E0
x, whilst

W1 corresponds exactly to Vee−J , which—although the exact form is unknown—

can be approximated using existing functionals.

Early considerations by Becke79 chose Wλ as a linear function of λ, Wλ =

a+ bλ, where W0 = a is represented by exact exchange and W1 = a+ b by lsda

to give the half-and-half functional bhh (often combined with lyp correlation

to give bhlyp),

Ebhh
xc = a+

b

2
=

1

2
E0

x +
1

2
U lsda
xc . (2.55)

where U lsda
xc is the potential energy contribution to the lsda exchange–correlation

energy. Even with such a simple approximation, Becke saw promising improve-

ments to thermochemical properties, and established the powerful observation

that exchange–correlation functionals could be improved by incorporating a

fraction of exact exchange E0
x into the functional form.

By introducing a number of semi-empirical parameters, Becke subsequently

proposed the b3pw91 functional,80

Eb3pw91
xc = (1− A)EDirac

x + AE0
x +B∆Eb88

x + Evwn
c + C∆Epw91

c , (2.56)

with optimal parameters A = 0.20, B = 0.72 and C = 0.81. A slightly modified

version proposed by Stephens et al. 81 replaced the pw91 correlation with lyp,

to give b3lyp,

Eb3lyp
xc = (1− A)EDirac

x + AE0
x +B∆Eb88

x + (1− C)Evwn
c + CElyp

c , (2.57)

which has seen unparalleled success in the field of chemistry and remains a

tremendously popular method.
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The general form of a hybrid functional is often denoted

Ehybrid
xc [ρ] =

∫
F (ρ,∇ρ) dr + ξE0

x , (2.58)

where the fraction of exact exchange is controlled by the parameter ξ. In

general, functionals of this form are implemented within the generalised Kohn–

Sham (GKS) framework,82 where the energy is minimised with respect to the

orbitals (as opposed to the density, as in strict KS theory).

There is an important distinction to be made between this method of incor-

porating exact exchange into the overall DFT exchange–correlation functional,

and that of simply including DFT correlation as a correction to exact exchange.

The latter option in general fails to include the non-dynamic correlation absent

from exact exchange, but present in local density exchange functionals. Becke

and Johnson have investigated additions to exact exchange which model both

dynamic and non-dynamic correlation, with the b05 and df07 functionals.83–87

The widespread popularity of b3lyp stems largely from its improvement over

GGAs for computing thermochemical properties, making it widely applicable

to many aspects of chemistry. However, although the failings of GGAs in

other areas—such as reaction barriers, Rydberg and charge–transfer excitation

energies—are reduced somewhat, the errors remain too high for quantitative

use, and NMR shieldings tend to be less accurate than for GGAs.

A vast array of alternative hybrid functionals exist, derived from both

theoretical and semi-empirical arguments. The pbe0 functional88,89 combines

the parameter-free pbe with and zero-parameter arguments for the partitioning

of E0
x and Egga

x following Becke 90 and Perdew et al.,91 to create a hybrid

functional free from any semi-empirical parameters. Conversely a series of

functionals based on the Becke 1997 expansion92 have been proposed, comprising

b97-1,93 b97-2,94 and b97-3.95

Finally, we note the mcy functionals of Mori-Sánchez, Cohen, and Yang,96–98

who considered an alternative [1,1]-Padé form of the adiabatic connection

previously proposed by Ernzerhof.99 A key feature of this series of functionals

is that by construction the functionals are free from one-electron (although

not necessarily many-electron) self-interaction. The importance of the self-

interaction problem is discussed in Section 2.7.1 and Chapter 3.
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2.5.5 range-separated functionals

Becke’s original half-and-half approximation showed that a larger proportion

of E0
x than is typically seen in general hybrid functionals is actually beneficial

in some cases. Specifically, long-range properties can be significantly improved,

but at the detriment to the quality of the short-range properties exhibited by

b3lyp et al. This is not altogether surprising if one considers that correlation

effects will be strongest at shorter range, so the exact exchange term (which

neglects correlation) becomes increasingly accurate at long range.

In recent years, much work has been directed towards range-separated

functionals,100,100–118 where the functional form is partitioned into short- and

long-range components, with each modelled differently. Most commonly this

takes the form of incorporating a greater proportion of exact exchange at long

range than at short, the idea being to maintain the quality of the short-range

properties shown by conventional hybrids, whilst improving the long-range

properties.

The precise balance between the long- and short-range components can

have a profound effect on the behaviour of the functional, and this variation,

along with its benefits, is the subject of Chapters 3 and 4. A full discussion of

the partitioning schemes is contained therein.

2.6 Time-dependent DFT

The Hohenberg–Kohn theorems rely on the use of the variational principle, and

so only the ground state of a system is accessible. In order to probe excited

states and related properties the theory must be extended, in the form of

time-dependent DFT (TDDFT).

Analogous to the Hohenberg–Kohn proofs for ground-state DFT, TDDFT

is founded upon the Runge–Gross119 theorem, which states that the time-

dependent external potential v(r, t), and thus the time-dependent wavefunction

ψ(r, t), is uniquely determined (the former to within a spatially constant

function and the latter to within a time-dependent phase-factor) by the ex-

act time-dependent density ρ(r, t). Similarly, a variational principle can be

established involving the action integral.
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The Kohn–Sham equations can then be generalised to the time-dependent

formalism (TDKS),120 as

F̂ ksϕi(r, t) = i
∂

∂t
ϕi(r, t) , (2.59)

where F̂ ks is the time-dependent KS operator. Equation (2.59) can be repre-

sented in matrix-element notation as∑
q

(FpqPqr − PpqFqr) = i
∂

∂t
Ppr , (2.60)

where the elements of the density matrix Ppr are related to the (time-dependent)

density by

ρ(r, t) =
∑
p,q

cp(t)cq(t)ϕp(r)ϕq(r) (2.61)

=
∑
p,q

Ppq(t)ϕp(r)ϕq(r) , (2.62)

and p, q, . . . are generic indices denoting any orbital (i, j, . . . refer to occupied

and a, b, . . . to virtual orbitals).

In principle, the TDKS expression involves a time-dependent exchange–

correlation functional; however through the adiabatic approximation, which

assumes the density varies slowly with time, it can be approximated in terms

of the time-independent XC functional (evaluated with the time-dependent

density).

2.6.1 linear-response tddft

Most commonly, a linear-response formalism of TDDFT is employed,120–123

where excitation energies are determined by considering the response of the

ground state density to the small perturbation by a time-dependent electric

field, such that

Ppq = P (0)
pq + P (1)

pq , (2.63)

Fpq = F (0)
pq + F (1)

pq , (2.64)

which by substitution into equation (2.60) (and collection of the first-order

terms) yield∑
q

(
F (0)
pq P

(1)
qr − P (1)

pq F
(0)
qr + F (1)

pq P
(0)
qr − P (0)

pq F
(1)
qr

)
= i

∂

∂t
P (1)
pr . (2.65)
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The perturbation to the KS Hamiltonian matrix F consists of two terms:

the contribution from the applied electric field (of frequency ω)

gpq =
1

2

(
fpqe

−iωt + f ∗qpe
iωt
)
, (2.66)

where fpq is a one-electron operator describing the perturbation, and the

response of the two-electron part of F to changes in the density matrix P ,

∆F (0)
pq =

∑
st

∂F
(0)
pq

∂Pst
P

(1)
st . (2.67)

The overall first-order change in F is the sum of these two terms,

F (1)
pq = gpq + ∆F (0)

pq . (2.68)

The first-order perturbation to the density matrix P itself is given by

P (1)
pq =

1

2

(
dpqe

−iωt + d∗qpe
iωt
)
, (2.69)

where dpq represent elements of the perturbation density matrix.

If we substitute equations (2.68) and (2.69) into equation (2.65) and compare

the terms multiplying e−ωt, we obtain the expression

∑
q

[
F (0)
pq dqr − dqrF (0)

qr +

(
fpq +

∑
st

∂F
(0)
pq

∂Pst
dst

)
P (0)
qr

− P (0)
pq

(
fqr +

∑
st

∂F
(0)
qr

∂Pst
dst

)]
= ωdpr ;

(2.70)

similarly the complex conjugate of equation (2.70) is obtained by comparing

the terms multiplying eiωt.

From the idempotency condition∑
q

P (0)
pq P

(1)
qr = P (0)

pr , (2.71)

we can identify the first-order change in P as∑
q

(
P (0)
pq P

(1)
qr + P (1)

pq P
(0)
qr

)
= P (1)

pr , (2.72)
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and so only the occupied–virtual and virtual–occupied elements of the matrix

dpq (dia and dai, respectively) are non-zero. Given that the unperturbed KS

Hamiltonian and density matrices are diagonal, we obtain

F (0)
aa dai − daiF (0)

ii +

[
fai +

∑
b,j

(
∂Fai
∂Pbj

dbj +
∂Fai
∂Pjb

djb

)]
P

(0)
ii = ωdai , (2.73)

and

F
(0)
ii dia − diaF (0)

aa − P (0)
ii

[
fia +

∑
b,j

(
∂Fia
∂Pbj

dbj +
∂Fia
∂Pjb

djb

)]
= ωdia , (2.74)

In order to follow conventional notation, we define dai = xai and dia = yai.

In the zero-frequency limit, where an infinitesimal perturbation is assumed

(fia = fai = 0), we can rewrite equations (2.73) and (2.74) as the non-Hermitian

eigenvalue equation(
A B

B∗ A∗

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
, (2.75)

where we have made use of the relations F
(0)
pp = εp and P

(0)
ii = 1. Equation (2.75)

is then solved to determine the excitation energies ω.

The elements of matrices A and B are given (for local or GGA functionals)

by

Aia,jb = δijδab(εa − εi) + (ia|jb) + (ia|fxc|jb) , (2.76)

and

Bia,jb = (ia|bj) + (ia|fxc|bj) , (2.77)

where we switch to the Mulliken “charge-cloud” notation for two-electron

integrals. The quantity fxc is termed the exchange–correlation kernel, and is

the second functional derivative of Exc,

(ia|fxc|jb) =

∫∫
dr dr′ ϕ∗i (r)ϕa(r)

δ 2Exc

δρ(r)δρ(r′)
ϕ∗b(r

′)ϕj(r
′) . (2.78)

Note that additional terms are present in equations (2.76) and (2.77) for hybrid

and range-separated functionals.
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2.7 Specific failures of conventional DFT

Despite the plethora of functionals now available, and the many years of re-

search dedicated to improve them, there remain several challenges in DFT

functional development, owing to a number of failures of virtually all conven-

tional approximate functionals. A comprehensive review by Cohen et al. 124

gives a detailed account of the major hurdles remaining in DFT; this thesis

will focus in large part on the delocalisation error, and to some extent the

asymptotic behaviour of the exchange–correlation potential.

2.7.1 delocalisation error

A number of failings that persist in approximate DFT—including the underes-

timation of reaction barriers,125–130 band gaps,131,132 energies of dissociating

ions,133–136 and charge–transfer excitation energies,137–are symptomatic of a

common cause: delocalisation error.133,134,138 The delocalisation error can in

part be traced to the unphysical interaction of an electron with itself, which

conventional functionals fail to cancel, however the consequences extend far

beyond a simple one-electron problem.

The most intuitive illustration of the problem can be seen by stretching

H +
2 , which—as a one-electron system—can be described exactly by Hartree–

Fock theory. At equilibrium, this simple system of a single electron shared

between two centres is well modelled by conventional exchange–correlation

functionals. However, as the bond is stretched and the system approaches

two separated H nuclei, each formally with half an electron, the energy is

significantly underestimated by approximate DFT.

The traditional understanding of this incorrect behaviour is the failure of

approximate functionals to cancel the electron–electron interaction terms J [ρ]

and Exc[ρ], which should sum to zero for a single electron. The resulting self-

interaction error (SIE) has been widely discussed in the literature,97,133,139–143

and is defined as the sum of the above two terms,

SIE = J [ρ] + Exc[ρ] . (2.79)

A number of efforts have been made to correct this SIE. Perdew and Zunger 144

presented a correction term that eliminates the one-electron self-interaction
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terms, though this brought other complications, such as detrimental effects to

atomisation energies and equilibrium properties,145–147 and a lack of invariance

with respect to unitary transformation of the occupied orbitals.148 Becke’s

b05,83 and the mcy functionals of Mori-Sánchez, Cohen, and Yang,96,97 are

also free from the one-electron SIE whilst improving thermochemistry and

reaction barriers.

However, the problem extends beyond a simple one-electron cancellation.

Zhang and Yang 143 demonstrated that the SIE will increase for fractionally

charged systems (as demonstrated by the stretching of H +
2 ), and that even if

the SIE is eliminated for a one-electron system it will—without proper con-

sideration of the scaling properties of the functional—still exist for systems

with 0 6 N < 1 electrons. Though the SIE is easiest to define and analyse as a

one-electron problem, its consequences extend to many-electron systems. The

extension to the many-electron self-interaction error (MESIE)97,133,134,139–142 is

much more difficult to conceptualise, however the key observation is that func-

tionals incorporating corrections to the one-electron SIE still exhibit erroneous

behaviour associated with its presence, namely the incorrect lowering of energy

(i.e. stabilisation) of fractional charges.

The upshot of the error is that approximate exchange–correlation functionals

tend to incorrectly over-stabilise (and hence favour) systems that locally exhibit

fractional charges. Put another way, these functionals tend to over-delocalise

the charge distribution in order to (incorrectly) lower the energy, and so the

term delocalisation error is used to capture the physical manifestation of the

underlying problem.

E vs N plots

Plotting the energy E of a system with respect to a fractional variation in the

number of electronsN (abbreviated to E vs N) can model the extent of the error,

and has generated significant interest in recent years.97,131–134,138,139,142,149–160

DFT calculations on a system with an arbitrary fractional number of electrons

can be carried out by explicitly choosing a fractional occupation number for

the HOMO in the one-particle density matrix.133,161

The exact behaviour was determined by Perdew et al.,163 who used a zero-

temperature ensemble approach to model an open system free to exchange
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electrons. Consider a system with N = N0 + δ electrons, for integer N0

and 0 6 δ 6 1. The quantum mechanical ensemble is described by a linear

combination of pure states—in this case ψN0 and ψN0+1—weighted by their

respective probabilities (1 − δ) and δ. The authors demonstrated that the

energy is given by

(1− δ)EN0 + δEN0+1 , (2.80)

and as such the exact E vs N takes the form of a series of piecewise linear

segments, with discontinuities in the gradient at integer N . An alternative

proof, without invoking the ensemble approach, was given by Yang et al. 164 in

the limit of dissociation.

This discontinuity in the derivative of the energy manifests as a discontinuity

in the potential as N passes through an integer: the potential on the electron-

deficient side vanishes asymptotically, whereas the potential on the electron-

abundant side is identical in shape, yet shifted by a constant known as the

derivative discontinuity ∆xc.165 By definition, for a system with integer N = N0

electrons, the gradient of the slope on the electron-deficient side of N0 is equal

to the vertical ionisation potential I0, whereas the gradient on the electron-

abundant side is the vertical electron affinity A0.

In Hartree–Fock theory, one can relate the eigenvalues of occupied orbitals

to corresponding ionisation potentials through Koopmans’ theorem,166 which

states that the negative of the occupied orbital energy is equal to the ionisation

potential due to removal of the same electron, when the orbitals are frozen

(the condition becomes an approximation when the orbitals are allowed to

relax). Within DFT, Janak’s theorem167 provides an analogous exact condition

for the frontier orbitals, stating that the change in energy with respect to

the occupation number of an orbital (i.e. ∂E/∂n = ∂E/∂N) is equal to the

eigenvalue of that orbital. Combining this with the exact linearity condition

equation (2.80), we see that

εN0(N0 − f) = −I0 , (2.81)

and

εN0+1(N0 + f) = −A0 , (2.82)

where 0 < f < 1.
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In the limit f → 0, these orbital energies correspond to the highest-occupied

(HOMO) and lowest-unoccupied (LUMO) molecular orbital energies for the

N0-electron system, evaluated with the exchange–correlation potentials on the

electron-deficient and electron-abundant sides, respectively, of N0. Denoting

these orbital energies ε−h and ε+
l , we have

ε−h = −I0 , (2.83)

and

ε+
l = −A0 , (2.84)

giving what we will call (exact) Koopmans conditions in DFT.

In the limit f → 1, equation (2.81) corresponds to ε+
l of the (N0 − 1)-

electron system, and by definition A
(N0−1)
0 ≡ I

(N0)
0 . Similarly, equation (2.82)

corresponds to ε−h of the (N0 + 1)-electron system, where I
(N0+1)
0 ≡ A

(N0)
0 . It

follows that ε+
l (N0 − 1) must equal ε−h (N0) and ε+

l (N0) must equal ε−h (N0 + 1),

with the orbital energy remaining constant between each pair of integer N .

The use of the ± superscript to denote the side of the integer is vital, because

the exact exchange–correlation potential jumps discontinuously as the integer

is crossed, meaning a given orbital energy also jumps by the same amount.

Two inter-related deficiencies are characteristic of approximate explicit den-

sity functionals. Firstly, the delocalisation error produces unphysical curvature

in E vs N , due to the lowering of the energy at fractional N . Secondly, there

is no discontinuity in the potential, and so at best they can average over it.

A recent paper by Stein et al. 154 discusses the intrinsic link between the two

problems.

These deficiencies have serious repercussions. In practical calculations, using

approximate exchange–correlation functionals within the usual generalised

Kohn–Sham approach,82 ∂E/∂N is again equal to the orbital energy131 and so

the values of ∂E/∂N on the f → 0 electron-deficient and electron-abundant

sides of N0 equal the HOMO energy εh and LUMO energy εl of the N0-electron

system, respectively. Explicit density functionals do not satisfy the conditions in

equations (2.81) and (2.82) due to the inherent curvature in E vs N associated

with the delocalisation error, leading to HOMO energies much greater than

−I0 and LUMO energies much lower than −A0.
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Conversely, Hartree–Fock—aside from a one-electron system for which it is

exact—incorrectly raises the energy for fractional charges, creating a localisation

error and concave E vs N curvature. This causes a useful partial cancellation

of errors for hybrid functionals where (depending on the exact fraction of exact

exchange included) problematic quantities can be improved, although it is far

from a rigorous, system-independent solution.

Manifestation of the error

Ruzsinszky et al. 140 have shown that neutral molecules may incorrectly dissoci-

ate to fragments containing fractional charges, when modelled with functionals

that suffer from a large delocalisation error. NaCl, for example, dissociates

to approximately Na0.4+ and Cl 0.4– when computed with pbe. This is an

artifact of the unphysical lowering of energy of the fractionally charged systems

compared to the integer case. Incorporating a self-interaction correction scheme

lessens this spurious behaviour by reducing—although not eliminating—the

delocalisation error.

Peach et al. 168 and Heaton-Burgess and Yang 169 have noted that b3lyp

can give a poor description of bond length alternation (BLA)—a structural

manifestation of the degree of electron-delocalisation in conjugated π-systems.

Explicit density functionals, and hybrids with a lower proportion of exact

exchange such as b3lyp, tend to bias the system towards greater delocalisation

and hence underestimate the BLA. Both studies show that a larger, more

accurate BLA is predicted by the cam-b3lyp range-separated functional, and

Peach et al. draw the analogy to similarly improved results given by bhlyp—a

fixed hybrid with a larger proportion of exact exchange (although cam-b3lyp

remains preferable due to better applicability as an all-round functional).

Diels–Alder reactions are another good representative example of a prob-

lem caused by the delocalisation error.130,170 These pericyclic reactions, which

proceed through a highly delocalised transition state, are very sensitive to the

choice of functional. A GGA such as blyp, with a large delocalisation error,

dramatically over-stabilises this delocalised transition state and so underesti-

mates the reaction barrier, whereas including and increasing a proportion of

exact exchange with b3lyp and bhlyp systematically reduces this error.

Poater et al. 171 have examined in detail the behaviour of the ground and low-
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lying electronic states of Cu2+−H2O, as the proportion of exact exchange E0
x in

hybrid functionals is varied. Higher proportions of E0
x predict a ground state of

2A1 in a C2v geometry, in agreement with ccsd(t) predictions. As E0
x is reduced,

the 2B1 state becomes more stable in C2v, whilst the ground state becomes Cs

(2A′). This is rationalised by examination of charge and spin delocalisation—the

states which are over-stabilised by, in particular, blyp and b3lyp, with lower

proportions of E0
x, provide a more delocalised distribution of the electron density,

causing erroneous stabilisation by these functionals. Rios-Font et al. 172 extend

this work to a wider range of systems, studying Cu2+−(H2O)n complexes for

n = 1–6. Again, blyp and b3lyp tend to predict lower-symmetry structures

with more-delocalised electron densities. The admixture of more E0
x gives an

improved description.

The examples above are far from exhaustive, and it is clear that the

delocalisation error is a severe failing in approximate DFT, with far-reaching

consequences. It is unsurprising then, that a large amount of recent research

has focused on its reduction and elimination.

Reducing delocalisation error by approximately enforcing linearity

A number of approaches can be used to reduce the delocalisation error by im-

posing near-linear E vs N behaviour. Vydrov et al. 139 showed that the MESIE

was significantly reduced by applying the PZ self-interaction correction;144 see

also Refs 148, 173, and 174. The mcy3 and rcam-b3lyp functionals97 were

specifically designed to achieve near-linear behaviour, and have shown some

success.169,170 Zheng et al. 175 proposed a non-empirical scaling correction to

largely restore linearity, which was later extended176 to properly account for

orbital relaxation effects. Although the scaling correction applies to systems

with explicitly fractional N , it does not affect integer-N systems with locally

fractional regions (such as the case of stretched H +
2 ). A recent extension to

the scheme177 introduces a local scaling correction to counter this deficiency.

Recently, Kraisler and Kronik 178 demonstrated that the exact Koopmans

ionisation condition could be largely restored using an ensemble treatment.

Other groups,172,179,180 in keeping with above observations, have noted that

increasing the proportion of exact exchange in hybrid functionals can improve

erroneous results associated with the delocalisation error, with functionals such



46 · Chapter 2: Density functional theory

as bhlyp performing better despite their poor treatment of thermochemical

properties. This improved behaviour can be visualised as the result of error-

cancellation between the delocalisation of DFT and the localisation of HF.

“Local hybrid” functionals,181–184 can improve the flexibility of the admixture,

providing the desired compromise between the components without as much

detriment to the thermochemistry. The balance of components in range-

separated hybrids will be addressed in Chapter 3.

Static correlation error

Although beyond the scope of this thesis, it would be remiss not to mention

the related problem of the static correlation error (SCE).185,186 Whilst the

delocalisation error is characterised by the incorrect treatment of fractional

charges, the SCE instead arises due to fractional spins. Such systems are, again,

subject to an energy constancy condition where—for the exact functional—a

system with δ α-spin electrons and (1 − δ) β-spin electrons has an identical

energy for any δ (0 6 δ 6 1). The failure of approximate density functionals to

satisfy this condition is the cause of well-known failures in strongly correlated

systems, illustrated by the overestimation of the energy in the simple case of

dissociating H2.185,187–189

2.7.2 exchange–correlation potential

A second important failing of typical approximate exchange–correlation func-

tionals is that their functional derivative—the exchange–correlation potential—

exhibits incorrect long-range behaviour. We have already established that

approximate functionals fail to exhibit the discontinuity in the potential when

passing through an integer N , however an additional property of the exact

vxc(r) is that it should vanish asymptotically as −1/r on the electron-deficient

side, and tend to −1/r + ∆xc on the electron-abundant side.

As discussed in Section 2.7.1, GGA functionals approximately average

over the discontinuity, but only in regions of appreciable electron density. In

asymptotic regions the averaged potential should tend to −1/r+∆xc/2, however

for a typical GGA vxc(r) incorrectly vanishes, and at an exponential rate—

i.e. faster than −1/r. Since the core region—which describes the occupied
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orbitals—mimics the averaged potential, these orbitals are shifted up relative

to the virtual orbitals which are described by the quickly vanishing asymptotic

region.

This incorrect description causes Rydberg excitation energies to be greatly

underestimated,190 and so exhibiting the correct asymptotic behaviour is an-

other key desirable condition for any functional. The asymptotic correction191

scheme has been developed to constrain vxc(r) to obey the limit

lim
r→∞

vxc(r) = −1

r
+ I + εh , (2.85)

where the derivative discontinuity has been approximated as twice the sum of

the ionisation potential and the energy of the HOMO.149,162,192,193 Variations to

the asymptotic correction have been proposed,194,195 along with extensions to

hybrid196 and range-separated197 functionals. Potentials derived from methods

such as this, however, no longer correspond to functional derivatives of the

energy, and so are limited in their application. More desirable is a functional

form whose functional derivative inherently satisfies the asymptotic condition.

2.7.3 novel approaches to correcting deficiencies in

approximate density functionals

Having framed the problems of delocalisation error and the incorrect asymptotic

XC potential in the context of the underlying theory, the remainder of this

thesis focuses on the analysis and development of novel methods that go some

way towards counteracting them.

In Chapter 3 we examine the system-dependent tuning of the proportion

of exact exchange in range-separated hybrid functionals, in order to approxi-

mately satisfy Koopmans and related conditions. The procedure is a particularly

prominent extension of the cancellation between DFT delocalisation and HF

localisation errors that is growing in popularity, and has been shown to offer a

tangible approach to computing orbital energy differences, which would other-

wise be greatly hindered by the delocalisation error. We present a systematic

analysis of this tuning method, by examining a range of tuning criteria. By

relating the apparent success of the tuned functionals to the underlying quanti-

ties involved in the tuning, and to E vs N plots for a representative system,
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we provide an insight into the nature of the error cancellation and the inherent

challenges in attempting to enforce linearity on the functional forms.

In Chapter 4 we extend the analysis by considering the effect of functional

tuning on the derivative of the density with respect to N , in the form of the

Fukui function. In particular, we examine whether functionals tuned to give

near-linearity in E vs N are similarly optimal for the density.

Ultimately, the goal is to find a functional form inherently free from the

delocalisation error. In Chapter 5, we present a completely new approach,

based on scaling relations, for developing a functional that approximately

recovers the one of the exact Koopmans conditions associated with exact

E vs N linearity. The approach has the added advantage that it provides a

simple mechanism for recovering the exact asymptotic XC potential. Despite a

deceptively simple mathematical form, the success of our initial results show

a great deal of promise, and our hope is to inspire a different approach to

functional development, leading to the elimination of the delocalisation error

and other prominent deficiencies in approximate DFT.



3
Tuned range-separated hybrid

functionals

In this chapter, we address a recently proposed scheme to tune range-

separated hybrid (RSH) functionals in order to reduce the effects of the

delocalisation error. Firstly, the theory of RSH functionals is discussed,

and a range of typical functionals compared. A method for tuning

these functionals in order to reproduce linearity conditions is then

introduced, and a systematic assessment of a range of tuning norms is

presented. Finally, the impact of these tuning methods on the E vs N

behaviour of the functional is comprehensively discussed for a model

system, highlighting the role of error-cancellation in the procedure.

As outlined in Chapter 2, range-separated hybrid (RSH) functionals expand

upon the concept of hybrid functionals by partitioning the functional form into

long- and short-range terms, and handling them differently. Although it adds an

additional layer of complexity to the functional form, this powerful concept has

numerous advantages and has led to great improvements in typically error-prone

calculations.

Consider a global hybrid functional such as b3lyp. Admixture of a certain

proportion of exact exchange, E0
x, into the DFT functional has a beneficial

effect in mitigating the errors in the exchange–correlation approximation,

without negating the benefit of the non-dynamic correlation inherent to density-

49
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based exchange functionals. The precise proportion is a compromise, often

determined by semi-empirically averaging over a range of systems and properties

to obtain the most effective balance of the two components. This, however,

is an over-simplified picture, and the “optimal” balance is not universally

applicable. b3lyp, for example, gives a reasonable to good estimation of

atomisation energies, ionisation potentials, and bond lengths, but breaks down

for reaction barriers, polarisabilities and excitation energies (in particular

Rydberg excitations).95,198

These failures typically arise either directly from an insufficient proportion

of E0
x, or from the incorrect asymptotic behaviour of the exchange–correlation

potential (which would not be exhibited by a local potential associated with

pure E0
x). Clearly then, the fixed proportion of exact exchange in a conventional

hybrid is insufficient for a universally applicable functional.

We now consider a more complex partitioning between the approximate-

DFT and exact exchange components, which involves modifying the treatment

of exchange to depend on the inter-electron distance r12. For finite molecular

systems, this approach, commonly known as range-separation, long-range cor-

rection, or Coulomb attenuation, usually involves including a small proportion

of exact exchange at short range (small r12), increasing smoothly to a larger

proportion at long range (large r12). The remainder of the exchange term is

treated with conventional DFT approximations. For the purposes of this work,

we will describe this class of functionals as range-separated hybrids (RSH), and

use long-range correction and Coulomb attenuation to describe two specific

partitioning schemes, defined in Sections 3.1.1 and 3.1.2, respectively.

In general, the range-separated approach can provide a good compromise

between the DFT and exact-exchange components, improving the overall appli-

cability of the functional. The effect of the precise balance of the components,

through parameterisation of the partitioning function, is the focus of Chapters 3

and 4. Firstly, we introduce the common formulations for partitioning schemes,

which will determine the underlying functional forms used throughout these

chapters.
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3.1 Functional forms

3.1.1 long-range correction

Early long-range correction schemes proposed100,101 a partitioning of the r−1
12

operator using the error function, to give

1

r12

≡ erf(µr12)

r12

+
1− erf(µr12)

r12

. (3.1)

The first term, governing the long-range behaviour, was used to evaluate

a modified orbital expression for exact exchange, whereas the second term

(short-range part) was used to evaluate DFT approximations—initially the

lda100,102,103 and extended to GGA by Hirao and co-workers.104–110,199 In

this way the relative proportion of exact-exchange and DFT components is

dependent upon the inter-electron distance r12. The parameter µ, denoted the

range-separation parameter, determines the ratio of the two parts at a given r12,

i.e. the rate at which the partitioning varies with inter-electron distance. As a

result, the proportion of exact exchange varies smoothly from 0 % to 100 % as

r12 increases, at a rate dependent on µ. An optimal value of µ = 0.33 a0
−1 was

determined by Tawada et al. 106 for the long-range–corrected GGA.

This technique, initially termed a long-range correction scheme (denoted

lc in this work) was shown to produce significant improvements for calculation

of long-range properties: errors were reduced in van der Waals interactions,105

polarisabilities of π-conjugated chains,104 and both Rydberg and charge–transfer

excitation energies.106 However, the functional failed to reproduce the accuracy

of conventional functionals for short-range properties such as atomisation

energies, due to little or no exact exchange included at short inter-electron

distances. In other words, at short range the functional resembles a pure GGA

and much of the benefit of hybrid functionals is lost.

3.1.2 coulomb attenuation

Expanding upon the idea of long–range correction, Yanai et al. 111 generalised

the partitioning formula, introducing additional parameters to define lower and

upper limits for the proportion of E0
x. This Coulomb-attenuated (cam) form is
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Figure 3.1: Schematic illustration of the partitioning of DFT and
exact-exchange in hybrid and range-separated functionals.

given by
1

r12

≡ α + β erf(µr12)

r12

+
1− (α + β erf(µr12))

r12

, (3.2)

where α controls the proportion of E0
x at short range (r12 = 0), increasing

to α + β at long range (r12 → ∞); again, the range-separation parameter µ

determines the rate at which exact exchange is incorporated.

Applying this cam scheme to Becke’s famous b3lyp hybrid, Yanai et al. 111

proposed parameters again fitted to known data, producing the cam-b3lyp

functional. The optimal parameters were determined to be α = 0.19, α+ β =

0.65 and µ = 0.33 a0
−1. This gives a short-range proportion of exact exchange

very similar to the 0.2 of b3lyp, whilst improving the long-range behaviour of

the functional,198 however the optimal parameters are not universal.200

The schematic diagram in Figure 3.1 illustrates the partitioning of the DFT

and exact-exchange components for the different classes of hybrid functional.

In the range-separated cases, choosing a greater value of µ would increase the

steepness of the initial slope.

3.1.3 alternative partitioning schemes

Other partitioning schemes have been considered, for example by Toulouse

et al.,112 and Baer and Neuhauser.201 We also mention the screened approach of

Scuseria and co-workers,113–117 in which the opposite partitioning is used, with

exact exchange dominating the short-range components and excluded at long

range. Such a scheme can have computational advantages for extended systems
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such as solids, where polarisation effects screen the long-range interactions

between electrons and the asymptotic behaviour of the exchange–correlation

potential is less important. Neglecting the computationally demanding calcu-

lation of exact exchange at long range can therefore increase the tractability

without diminishing the accuracy of the functional. In discrete molecular

systems, however, the accurate asymptotic description of the potential becomes

vital, and so increased long-range exact exchange is more appropriate. For a

full discussion, see Ref. 118.

3.2 Tuning functionals

The idea of tuning the parameters of functionals to better reproduce known

data is not a new one. As already discussed, a great many functional forms

have been derived by adjusting parameters semi-empirically to fit known sets

of data. Whilst this approach of averaging over a large set of systems and

properties can lead to good-quality, widely applicable functionals, there remain

some drawbacks.

If the property or system to be investigated differs significantly from the

fitting set, then the fitted parameters may no longer be appropriate. Further-

more, the property in question may be too system-dependent, such that any

averaged set of parameters cannot produce the desired accuracy. Of particular

relevance to this work is that energy linearity has not typically been a pri-

mary consideration in the development of conventional functionals, and many

problems associated with the delocalisation error still manifest.

A recently proposed solution is to tune the functional parameters to a

particular non-empirical condition, on a system-by-system basis, rather than

attempting to empirically average over all systems. The justification and

implementation of such a procedure is outlined below, and the remainder of

the chapter provides a systematic assessment of the technique’s application to

the delocalisation error.

3.2.1 tuning to the delocalisation error

Application of the technique to the delocalisation error involves tuning the pro-

portion of exact orbital exchange in global172,179,180 or range-separated152,202–214
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hybrid functionals in order to approximately recover Koopmans or other condi-

tions, which are necessary (but not sufficient) for linearity.

The success of this approach lies in the differing behaviour of the HF-like and

GGA-like components of a hybrid functional. As is well established, the DFT

Exc component causes an incorrect lowering of the energy for fractional N : a

convex E vs N curve. Conversely, Hartree–Fock (and hence the exact-exchange

component of a hybrid functional) incorrectly raises the energy, creating a

concave E vs N curve and a localisation error.

The delicate balance of these two components hence has a cancelling effect,

with the overall error being reduced—and so the goal of achieving near-linearity

in E vs N may be achieved by finding the optimal balance of components.

This, of course, is not the whole story. For the functional to be quantitatively

useful, the integer points—which are described well by traditional, averaged

approaches to functional development—must remain a key consideration. In

addition, Karolewski et al. 210 recently highlighted a number of caveats for the

tuning approach, most notably the violation of size-extensivity.

3.2.2 satisfying koopmans’ theorem

Although conceptually fairly simple, the idea of tuning the parameters of a

functional to attempt to linearise E vs N is non-trivial. Clearly, it would be

impractical to generate a full E vs N curve for each combination of parameters

in order to determine the optimal functional for a given system, and even if it

was, a reliable means of quantifying the degree of linearity would need to be

employed.

Both of these problems can be simplified by considering known aspects of

the exact E vs N curve. Here we reintroduce the concept of the DFT analogue

of Koopmans’ theorem within the generalised Kohn–Sham formalism, and use

it to identify conditions that can be used as both a measure of, and a constraint

on, the linearity of E vs N .

For a given species, the piecewise-linear nature of exact E vs N—combined

with Janak’s theorem—gives the exact condition (see Section 2.7.1)

εh = −I0 (3.3)
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on the electron-deficient side of integer N . In order for an approximate func-

tional to satisfy this equality, two criteria must be met: the elimination of the

delocalisation error, and the accurate description of the relative energies (i.e.

the calculated ionisation potential) at integer points.

Of course, in the general case, I0 is unknown, so we cannot explicitly

constrain a functional to reproduce this quantity on a system-dependent basis.

We can, however, try to enforce the condition εh = −I, where I is the ionisation

potential calculated as the difference between energies at consecutive integer-N

points (∆SCF). In the absence of delocalisation error, εh + I = 0, and hence we

introduce our first rudimentary measure of the non-linearity of any functional,

H = |εh + I| . (3.4)

Early manifestations202,215 of the tuning concept focused on enforcing this

Koopmans condition, i.e. trying to ensure H = 0. For a given functional form

one or more of the parameters—in this case the range-separation parameter—

are varied until H is minimised, and these parameters are chosen as optimal

for this system. As a result, the initial E vs N slope on the electron-deficient

side of the integer is correct, and the hope is that the remainder of the curve

becomes near-linear.

Whilst showing promising results, such a scheme constrains only the electron-

deficient side of the integer. We identify a similar exact condition on the

electron-abundant side of the integer,

εl = −A0 , (3.5)

with the corresponding linearity measure (using the ∆SCF electron affinity, A)

L = |εl + A| . (3.6)

For notational purposes, we now identify two segments of the E vs N curve

for a given species, schematically illustrated in Figure 3.2. We define N0 to be

the (integer) number of electrons in the species in question, and consider the

addition and removal of an electron. The electron-deficient part of the curve,

between N0 − 1 and N0 electrons, is then denoted the left-hand side (LHS),

and the electron-abundant part (N0 to N0 + 1) the right-hand side (RHS), of

the E vs N curve.
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Figure 3.2: Schematic representation of the quantities involved in
the tuning methods.

Thus the Koopmans conditions and measures become

εN0
h = −IN0 , (3.7)

Hlhs = |εN0
h + IN0 | , (3.8)

and

εN0
l = −AN0 , (3.9)

Lrhs = |εN0
l + AN0| . (3.10)

Since these conditions are completely general, we can identify similar condi-

tions on the (N0 − 1)- and (N0 + 1)-electron systems:

Llhs = |εN0−1
l + AN0−1| (3.11)

≡ |εN0−1
l + IN0| , (3.12)

and

Hrhs = |εN0+1
h + IN0+1| (3.13)

≡ |εN0+1
h + AN0| , (3.14)
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where we have made use of the fact that AN0−1 ≡ IN0 and IN0+1 ≡ AN0 .

Finally, we note that, moving along a given (exact) E vs N segment, the

relevant frontier orbital remains constant. This introduces the condition that

the LUMO at the electron-deficient end of an E vs N segment should equal

the HOMO at the electron-abundant end. Hence we can introduce two final

measures, which we denote Ω,

Ωlhs = |εN0−1
l − εN0

h | , (3.15)

Ωrhs = |εN0
l − εN0+1

h | . (3.16)

Each of the quantities H, L and Ω—whilst acting as a measure of the degree

of linearity—can also be employed in a tuning procedure. By varying the

parameters of a functional (typically either the proportion of exact exchange in

a conventional hybrid or the range-separation parameter in an RSH functional)

until one of these tuning norms is minimised, one can achieve a degree of

near-linearity in the relevant E vs N segment.

3.2.3 multiple segments

The tuning norms introduced so far each constrain a functional to satisfy a

single linearity constraint on one E vs N segment of a given system. Arguably,

however, this has limited real-world use, where orbital differences are often

required for meaningful calculations. Take, for example, the fundamental gap,

I0−A0. As noted by Baer and co-workers,203,209 in order to accurately estimate

this as the difference of Kohn–Sham orbital energies, both segments of the

E vs N curve need to be accurately described.

To achieve this, they introduced new “double-segment” tuning norms, which

in our notation are written

Jh, l = Hlhs + Lrhs (3.17)

and

Jh, h = Hlhs +Hrhs , (3.18)

where the first and second subscripts indicate the left- and right-hand side

tuning conditions, respectively. By analogy, we can also define

Jl, h = Hlhs +Hrhs (3.19)
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and

Jl, l = Llhs + Lrhs . (3.20)

An alternative form of the tuning norm in equation (3.18) was also pro-

posed,203,209 which we write as

‖Jh, h‖2 =
√
H2

lhs +H2
rhs . (3.21)

Though conceptually very similar to equation (3.18), a subtle difference arises

when the quantity is squared: whereas equation (3.18) contains cross terms,

equation (3.21) does not. As before, we may consider the related combinations

‖Jh, l‖2, ‖Jl, h‖2 and ‖Jl, l‖2.

We now observe that equations (3.18) and (3.21) are the first two terms in

a series of p-norms,

‖Jh, h‖p = p
√
Hp

lhs +Hp
rhs , (3.22)

which leads us to consider the general p-norm

‖Jx, y‖p = p
√
xp + yp , (3.23)

where x and y refer to the LHS and RHS conditions respectively; in this work

we consider up to p = 4. Note that the components of the p-norms are always

positive, due to the modulus in the definitions of H, L, and Ω.

Overall this leads to a total of 22 tuning norms, summarised in Table 3.1,

which will be assessed in detail later in this chapter. Firstly, though, we present

a preliminary investigation into the behaviour of representative RSH functionals,

to highlight the system-dependence of the range-separation parameter, and to

inform our choice of functional form to use in the systematic assessment.

3.3 Preliminary assessments

3.3.1 functional comparison

An initial assessment was carried out to briefly examine the influence of the

RSH functional form on relevant properties, for a few representative systems.

Three simple systems—each of which bind an additional electron—were chosen

(C, Cu+ and OH). Each of these was modelled with several common RSH

functionals available in Gaussian 09:216 cam-b3lyp, lc-ωpbe118,139,179 and
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Table 3.1: Summary of the 22 tuning norms assessed in this chapter.

Tuning norm Definition

Hlhs |εN0
h + IN0 |

Llhs |εN0−1
l +AN0−1|

Ωlhs |εN0−1
l − εN0

h |
Hrhs |εN0+1

h + IN0+1|
Lrhs |εN0

l +AN0 |
Ωrhs |εN0

l − εN0+1
h |

‖Jh, h‖1 Hlhs +Hrhs

‖Jh, h‖2
√
H2

lhs +H2
rhs

‖Jh, h‖3 3
√
H3

lhs +H3
rhs

‖Jh, h‖4 4
√
H4

lhs +H4
rhs

‖Jh, l‖1 Hlhs + Lrhs

‖Jh, l‖2
√
H2

lhs + L2
rhs

‖Jh, l‖3 3
√
H3

lhs + L3
rhs

‖Jh, l‖4 4
√
H4

lhs + L4
rhs

‖Jl, h‖1 Llhs +Hrhs

‖Jl, h‖2
√
L2
lhs +H2

rhs

‖Jl, h‖3 3
√
L3
lhs +H3

rhs

‖Jl, h‖4 4
√
L4
lhs +H4

rhs

‖Jl, l‖1 Llhs + Lrhs

‖Jl, l‖2
√
L2
lhs + L2

rhs

‖Jl, l‖3 3
√
L3
lhs + L3

rhs

‖Jl, l‖4 4
√
L4
lhs + L4

rhs

ωb97,217,218 along with a modified parameterisation of cam-b3lyp, termed

lc-b3lyp, where we choose α = 0 and β = 1. Whilst not the optimal

parameterisation for many computed properties, this form has the advantage

of satisfying the condition α + β = 1, which is necessary to exhibit the correct

asymptotic behaviour of the exchange–correlation potential.

Such a limited set of test data cannot hope to provide firm conclusions,

however a number of useful observations can be made. Figure 3.3 compares the

variation of the representative norms ‖Jh, h‖1 and ‖Jh, l‖1 with µ for each of

the functionals. With the exception of cam-b3lyp, the functionals show very

similar trends, with J reaching a fairly well-defined minimum at a finite value

of µ. With cam-b3lyp, however, J decays asymptotically towards infinite µ,

never truly reaching a minimum. This observation lends great weight to the

assertion that satisfying α + β = 1 is a necessary condition for the success of
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Figure 3.3: Variation of ‖Jh, h‖1 and ‖Jh, l‖1 with µ for various RSH
functional forms, using the aug-cc-pVTZ basis set. The optimal
values of µ for each system correspond to minima in the curves
(although the curves have been artificially smoothed to guide the
eye, the coarse grid of µ values is sufficient to show the qualitative
variation of J with µ).

these tuning methods, since cam-b3lyp is the only functional (of those tested)

that does not satisfy this condition.

Another immediately apparent observation is that, aside from cam-b3lyp,

J minimises at similar values for each functional. The precise Jmin , however,

is different for each of the three species, reinforcing the notion that µ needs to

be a system-dependent parameter.
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Figure 3.4 plots the deviation in the calculated (∆SCF) IN0 and AN0 from

the experimental values219 IN0
0 and AN0

0 , as a function of µ, for each functional.

Importantly, the trends vary between functionals much more than the trends

in J , and the optimal µ for IN0 or AN0 (i.e. that which gives a deviation of

∆E = 0) can vary significantly, both from that of other functionals and from

that which minimises J . This has important implications both in the tuning

procedure, and in the assessment of the quality of the functional. Specifically, it

highlights the fact that we must examine not only the ability of the functional

to satisfy linearity conditions (governed by its description of fractional N),

but also its ability to reproduce experimental I and A values from ∆SCF

calculations (governed by its description of integer N).

3.3.2 successive ionisations of carbon

We have established that the optimal value of µ is sensitive to the system under

consideration. However, even for a given atom or molecule, a single value of

µ may not be universally appropriate—different values may be required to

achieve near-linearity in different segments of the E vs N curve. In order to

illustrate this, we now investigate the effect of tuning µ for each segment of a

given species in turn, by considering successive ionisations of carbon. In effect,

we consider the entire E vs N curve of carbon, from C6+ to C– , by examining

separately the segments between each pair of integer-N species.

Section 3.3.1 established a broad similarity between the various functional

forms (where α+β = 1), and so we concentrate on lc-b3lyp as a representative

example, again with the aug-cc-pVTZ basis set. The assessment proceeded

as follows. Firstly, an optimal µ, denoted µ∗, was determined for each pair of

carbon species, by minimisingH for the more-reduced species (thereby satisfying

the “HOMO” Koopmans condition). Note here that H refers explicitly to

equation (3.8) for the more-reduced species—since we are dealing with multiple

E vs N segments the use of “LHS” and “RHS” would be potentially ambiguous.

Calculations were carried out using the Gaussian 09 software at a range of µ

values, with the lowest H chosen as optimal. Next, E vs N data were generated

for all seven pairs of species, at each µ∗, using a modified version of cadpac.220

This was achieved by explicitly incrementing the (fractional) occupation of the

relevant frontier orbital (HOMO of the more oxidised species, LUMO of the
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Figure 3.4: Deviation of calculated IN0 and AN0 from experimental
IN0

0 and AN0
0 , as a function of µ, for various RSH functional forms,

using the aug-cc-pVTZ basis set. The optimal values of µ for each
system correspond to ∆E = 0.

more reduced) from zero to one in steps of 0.05, and computing the energy at

each point.

The procedure of minimising H is illustrated in Figure 3.5, which plots the

extent to which the HOMO Koopmans condition is satisfied, as a function of

µ, for each carbon species. The optimal µ values—corresponding to where the

curves of Figure 3.5 are closest to zero—are summarised in Table 3.2.

It is immediately apparent that there is significant variation in the µ∗ for
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Figure 3.5: The degree to which the HOMO Koopmans condition
is satisfied, for successive ionisations of carbon, as a function of
µ, using the lc-b3lyp functional and aug-cc-pVTZ basis set. µ∗

(Table 3.2) is the value of µ for which H (the absolute values of the
plotted data) is minimised.

different E vs N segments. The curves for C– , C, C+ and C4+ each cross

H = 0 at a finite, well-defined µ∗, and each has a different optimal value. The

curves for C2+ and C5+ merely approach zero as µ tends to infinity, whilst the

C3+ curve tends asymptotically to a positive value. A particularly significant

observation is that µ∗ for the C– and C species differs by 0.3 a0
−1, and this

difference in µ has a big impact on the properties, and hence behaviour, of

the optimal functional. Since applying the tuning procedure to these species

affects the RHS and LHS E vs N segments of neutral carbon, respectively, this

immediately presents a challenge for accurately describing both segments, and

hence the frontier orbitals of carbon, simultaneously.
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Table 3.2: Optimal range-separation parameters µ∗ that minimise
H for successive ionisations of carbon, using the lc-b3lyp functional
and aug-cc-pVTZ.

Species µ∗/a0
−1

C– 0.37
C 0.67
C+ 1.00

C2+ ∞ (H →∼0)

C3+ ∞ (H → +ve)

C4+ 5.89

C5+ ∞ (H → 0)

E vs N plots

In order to intuitively compare the E vs N data for each pair of carbon species

on a single plot, and to avoid large differences in scale, we in fact consider what

we will denote an E vs N deviation curve, plotting ∆E against ∆N . ∆N is

defined as the fractional occupancy of the relevant frontier orbital, such that

the more oxidised species is described by ∆N = 0, and the more reduced by

∆N = 1. ∆E is the difference between the computed energy and the desired

behaviour: an interpolated straight line between the integer-N points. In this

way, the closer a plot is to a straight line along zero, the closer it is to being a

linear E vs N segment.

By construction, the interpolated and calculated energies agree at integer N .

For non-integer values, a horizontal line along zero indicates a linear E vs N

curve, whilst a positive/negative deviation indicates a concave/convex curve.

Figure 3.6 plots this E vs N deviation for each of the key µ∗ values

summarised in Table 3.2 (we choose µ = 1000 a0
−1 as “effectively infinite”). We

also present the same variation as computed using Hartree–Fock, for comparison.

The plot labels refer to the species at ∆N = 1, i.e. that for which H was

optimised in determining µ∗. In this way the colours and labels are consistent

with Figure 3.5.

It is important to note that the tuning procedure—in this case—only

attempts to constrain the initial slope approaching ∆N = 1, and is clearly

successful in doing so. For C– , C, C+ and C4+, where a finite µ∗ is well defined,

this behaviour is clearly seen when computed using the appropriate µ. For

C2+ and C5+, where H decays to zero towards infinite µ, the behaviour is
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Figure 3.6: E vs N deviation curves for successive pairs of car-
bon species, computed using lc-b3lyp at each of the µ∗ values in
Table 3.2 and aug-cc-pVTZ, together with Hartree–Fock. Legend
labels refer to the species corresponding to ∆N = 1.
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approached when computed using very large µ. Finally for C3+, where H

decays to a positive asymptote, the behaviour is not seen at all.

The behaviour of the unconstrained end—at ∆N = 0—is slightly less

intuitive. If the functional were exact, the slope here would be equal to that

at ∆N = 1, and remain constant between 0 6 ∆N 6 1. However, this is not

the case for any fixed value of µ, and ε∆N=0
l 6= ε∆N=1

h . The difference is largely

negligible, so the variation between integers is typically very close to linear

at µ∗, however with some of the more highly charged species the difference is

much more pronounced, leading to distinctly “S-shaped” curves.

These plots perfectly illustrate the significant dependence of E vs N curves

on the precise value of µ, and reinforce previous observations that it is not

possible to enforce linearity on two segments of the curve with a single value

of µ. As µ increases, the convexity of each curve decreases, passing through

near-linearity at µ∗, before becoming concave. Each curve appears to reach

a maximum concavity, such that a further increase in µ no longer affects the

curve—as a result the spread of deviations from linearity narrows as µ increases.

Neglecting correlation

It is also interesting to consider the effect of correlation on the above trends.

The lc-b3lyp functional with µ = 1000 a0
−1 is effectively equivalent to using

the Hartree–Fock functional with (dynamic) correlation added—however the

corresponding plot in Figure 3.6 is considerably different than that of pure HF.

In particular, the curves for C2+ and C3+ do not change appreciably above

µ ≈ 1 a0
−1, whereas with HF they become concave and linear respectively.

Similarly, the C4+ curve remains S-shaped for µ = 1000 a0
−1, compared with

the entirely concave curve for HF.

Figure 3.7 re-plots the variation of H with µ, this time neglecting any

correlation in the lc-b3lyp functional. Now, there is a well-defined, finite

µ∗ for the C2+ segment (as reflected in the HF E vs N plot, where the

curve has passed through near-linearity and become concave), whereas the

C3+ segment asymptotically approaches zero (reflected in the linear HF plot).

Indeed, repeating the E vs N analysis using µ = 1000 a0
−1 with no correlation

produces a plot—Figure 3.8—identical to that of HF.
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Figure 3.7: The degree to which the HOMO Koopmans condition is
satisfied, for successive ionisations of carbon as a function of µ, using
correlation-free lc-b3lyp (correlation omitted) and aug-cc-pVTZ.
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Figure 3.8: E vs N deviation curves for successive pairs of carbon
species, computed using correlation-free lc-b3lyp at very large µ.
Legend labels refer to the species corresponding to ∆N = 1.
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Figure 3.9: Error in calculated (∆SCF) ionisation energies of carbon
species, as a function of µ, for lc-b3lyp.

Comparison to experimental ionisation energy

As discussed in the introduction, we can only explicitly enforce the approximate

condition εh = −I, for the obvious reason that in the general case we do not

know the exact ionisation energy I0. However, for the functional to be correct,

the condition I = I0 must also be fulfilled, so it is useful—whilst we are dealing

with species for which we have exact values—to compare the two quantities.

Figure 3.9 plots the deviation from experiment of successive carbon ioni-

sation energies I, calculated at a range of µ values. It is clear that a broadly

similar trend is seen for each removal of the same character of electron—however

a different value of µ is optimal for each ionisation energy. Optimal values are

listed in Table 3.3. Furthermore, by comparing with Table 3.2, it is clear that

the µ that best fulfils I = I0 does not necessarily correspond to that which

minimises H for the same species. This is consistent with the preliminary

assessment of C, Cu+ and OH.
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Table 3.3: Optimal range-separation parameters µ∗ that minimise
the error in I∆SCF for successive ionisations of carbon, using the
lc-b3lyp functional and aug-cc-pVTZ.

Species µ∗/a0
−1

C– 0.61
C ∞
C+ 0.12

C2+ 0.61

C3+ 3.0

C4+ 0.06 or 2.71

C5+ 5.80

In effect we can identify two “optimal” values of µ∗ for each carbon species

(and hence for each segment of the E vs N curve)—one which best minimises the

tuning norm (in this case H) and one which best reproduces I = I0. Although

the errors in I may still be small when computed at the µ∗ appropriate for H,

the question remains whether it is more preferable to achieve near-linearity in

E vs N , or rather to be able to accurately compute I. The carbon analysis

has also confirmed that, in general, a different value of µ is required to enforce

near-linearity on each E vs N segment. How, then, do the double-segment

tuning norms behave when attempting to enforce near-linearity on two adjacent

segments with a single optimal µ∗? Furthermore, do the µ∗ values determined

using these norms provide a good estimate of I and A? All of these questions

are addressed in the systematic assessment of tuning norms below, and the

precise interplay between the various quantities is shown to be central to the

success of such methods.

3.4 Assessment of tuning methods

A number of related tuning norms were outlined in Table 3.1, each of which gives

a different approach to enforcing known exact conditions on RSH functionals.

We now present a systematic study of the performance of each in order to

identify which methods are best, and what factors govern their success. We

relate this to both the linearity of the E vs N dependence, and the errors in

various quantities relating to the tuning, namely the frontier orbital energies

(and differences), ionisation energies and electron affinities.
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3.4.1 choice of functional

Much of the earlier work on the tuning of RSH functionals, primarily conducted

by Baer and co-workers,202,203,221 used the bnl (Baer–Neuhauser–Livshits)

functional form201,215 to great success. However, as stated in the same works,

the techniques are trivially applicable to other RSH functionals. Our preliminary

investigations similarly suggested the qualitatively similar behaviour of different

RSH forms (where the long-range condition α + β = 1 was met).

Since an implementation of cam-b3lyp—trivially modified to lc-b3lyp by

changing the α and β parameters—already exists in the modified cadpac220

code (which we require to examine the E vs N relationships), we choose to

proceed with the lc-b3lyp for the full assessment. However, we first provide

further justification of its use by reproducing the tuned-bnl results of Refs 203

and 209, and comparing them with equivalent calculations using lc-b3lyp.

The two most prominent tuning norms used in previous works for optimally

computing fundamental gaps are (in our notation) ‖Jh, h‖1 and ‖Jh, h‖2, equa-

tions (3.18) and (3.21) respectively. We tuned the functionals by calculating

these quantities at a range of µ values for main group atoms from Na to Br

(excluding the noble gases, which do not bind an electron). The µ∗ for each

atom was then identified for each minimised J , and the fundamental gap cal-

culated at this value as εN0
l − εN0

h , where N0 refers to the number of electrons

in the neutral atom. We compare this to the experimental fundamental gap,

IN0
0 − AN0

0 , with data taken from Ref. 219. In the case of nitrogen, which has

a negative experimental AN0
0 , we explicitly choose the ground-state value of

AN0
0 = 0 in both the tuning and the analysis.

Figure 3.10 plots the computed fundamental gaps, along with their deviation

from experiment, for the bnl functional form implemented in the nwchem222

software (neglecting the subtraction of part of the short-range exchange energy,

as noted in Ref. 203), using the aug-cc-pVTZ basis set. Immediately one can

see significant differences between the two tuning norms. ‖Jh, h‖2 reproduces

the values of µ∗ published in Refs 209 and 203, with a slight discrepancy in

oxygen, with a minor difference of 0.01 a0
−1 in the µ∗ obtained; the effect on the

computed fundamental gap is negligible. This difference is largely insignificant,

and attributable to slight differences in the code and parameters used (the

value of J differs by less than 0.001 eV between the two values of µ).
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Of the two methods, ‖Jh, h‖2 generally gives a better estimation of the

fundamental gap across the range of atoms, with maximum errors of around

0.4 eV. ‖Jh, h‖1, on the other hand, does not perform as well overall, despite

differing only in the presence of cross-terms when squared. The method gives

errors as high as 1 eV, although for certain atoms (e.g. phosphorous) it does

perform slightly better than ‖Jh, h‖2. For nitrogen the two methods are identical,

since the RHS criterion is zero. Similarly for the group I and II atoms, the

two tuning methods give almost identical results, despite potentially large

differences in the µ∗ determined by each. The reason for this is how the

fundamental gap varies with µ for these atoms: above a certain value, very

little variation is seen, so the results are similar regardless of the µ∗ obtained.

Figure 3.11 repeats the procedure with lc-b3lyp and the same basis

set, using the Gaussian 09216 software (NB: tests were carried out to ensure

consistency between results from the two programs when using an equivalent

level of theory). The results closely mimic those obtained using bnl, indicating

the suitability of choosing lc-b3lyp for the full systematic assessment.

3.4.2 systematic assessment of tuning norms

Having established that the validity of the approach is independent of the

functional form used, we now proceed with a systematic assessment of each of

the tuning norms in Table 3.1. We considered the same set of atoms as Baer

and co-workers,204,209 corresponding to those assessed in Figures 3.10 and 3.11,

namely Li–F, Na–Cl, and Ga–Br. The ground state spin configuration was

used for both neutral atoms and ions.

For each atom, calculations were performed using a series of µ values,

and the value that minimised each norm, denoted µ∗, was determined to

2 d.p. For comparison, calculations were also carried out using a representative

GGA (pbe), a conventional hybrid functional (b3lyp), and non-tuned range-

separated hybrids (bnl and lc-b3lyp, each with range-separation parameter

µ = 0.4 a0
−1). Calculations were performed using the Gaussian 09 and cadpac

programs, with the aug-cc-pVTZ basis set.

Inevitably, use of these tuning methods increases the computational effort,

since calculations must be performed over a range of µ values. In the present

work—where multiple criteria were investigated simultaneously, each with a
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Figure 3.10: HOMO–LUMO gap, and its deviation from experimen-
tal fundamental gap, calculated using tuned bnl. All calculations
use the aug-cc-pVTZ basis set.
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(potentially) different µ∗—we used a coarse grid of µ values, refining as necessary

close to the minima. For a single tuning norm, the procedure could be carried

out more efficiently but would still require a number of separate calculations

(typically greater than 20).

We assess the tuning methods in several ways. To test the satisfaction

of the Koopmans conditions, we consider the deviation of εN0
h and εN0

l from

the exact −IN0
0 and −AN0

0 ,223 respectively; it is also pertinent to consider the

deviation of the calculated IN0 and AN0 (∆SCF values determined from integer

energy differences) from the exact values. The quantities Ωlhs and Ωrhs provide

a measure of linearity for the individual segments, and so we consider the

deviation of these quantities from zero (by construction, Ω will be near-zero

when successfully employed as the tuning norm, but this will not necessarily

be the case for a general tuning norm). Finally, we consider the deviation of

εN0
l − εN0

h from the fundamental gap IN0
0 − AN0

0 .

Mean absolute deviations are presented in Table 3.4, determined by cal-

culating individual absolute deviations for each atom using its corresponding

µ∗ value and then averaging over the set of atoms. For clarity, the results

are divided into those determined using conventional functionals, and those

determined using tuned functionals with single-segment (H, L, and Ω) and

double-segment (J) tuning norms.

Conventional Functionals

First, consider the results in Table 3.4 determined using the pbe functional.

As expected, the values of εN0
h and εN0

l differ significantly from −IN0
0 and

−AN0
0 , by 3 eV to 4 eV. By contrast, the directly computed IN0 and AN0 are

more than an order of magnitude more accurate. The large values of 6 eV to

8 eV for the linearity measures Ωlhs and Ωrhs quantify the significant E vs N

curvature. As noted in Section 2.7.1, the errors in εN0
h and εN0

l are of opposite

sign and so the deviation is amplified when the difference is used to compute

the gap. It follows that the gaps εN0
l − εN0

h deviate by more than 7 eV from

IN0
0 − AN0

0 . In the case of a GGA such as pbe, the difference between the

fundamental gap and the associated orbital energy gap is approximately equal

to the exact exchange–correlation integer discontinuity;149,162 the relationship

between curvature and integer discontinuity has recently been discussed by
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Table 3.4: Mean absolute deviations (in eV), from exact refer-
ence values, of various key quantities computed using conventional
functionals and each tuning norm.

εN0
h εN0

l IN0 AN0 Ωlhs Ωrhs εN0
l − εN0

h

Conventional functionals

pbe 4.10 3.04 0.15 0.19 8.22 5.71 7.13
b3lyp 3.16 2.35 0.17 0.17 6.57 4.37 5.50
bnl 0.76 0.33 0.15 0.32 1.46 0.50 0.85

lc-b3lyp 0.36 0.37 0.26 0.24 1.29 0.31 0.62

Single-segment tuning norms

Hlhs 0.26 0.33 0.26 0.17 0.16 0.79 0.53
Llhs 0.34 0.40 0.25 0.16 0.17 0.91 0.68
Ωlhs 0.30 0.37 0.26 0.17 0.09 0.85 0.61

Hrhs 0.63 0.42 0.26 0.23 1.82 0.21 0.92
Lrhs 0.30 0.22 0.26 0.21 1.16 0.21 0.39
Ωrhs 0.46 0.32 0.25 0.23 1.45 0.04 0.65

Double-segment tuning norms

‖Jh, h‖1 0.24 0.32 0.26 0.17 0.19 0.78 0.51
‖Jh, h‖2 0.09 0.21 0.26 0.19 0.64 0.49 0.19
‖Jh, h‖3 0.10 0.20 0.26 0.19 0.71 0.45 0.17
‖Jh, h‖4 0.11 0.20 0.27 0.19 0.73 0.44 0.16

‖Jh, l‖1 0.25 0.32 0.26 0.17 0.18 0.78 0.52
‖Jh, l‖2 0.17 0.26 0.26 0.18 0.37 0.65 0.34
‖Jh, l‖3 0.16 0.24 0.26 0.18 0.42 0.62 0.31
‖Jh, l‖4 0.14 0.23 0.27 0.18 0.45 0.61 0.28

‖Jl, h‖1 0.33 0.39 0.25 0.16 0.16 0.89 0.67
‖Jl, h‖2 0.11 0.22 0.26 0.19 0.55 0.55 0.22
‖Jl, h‖3 0.11 0.20 0.26 0.19 0.61 0.51 0.19
‖Jl, h‖4 0.11 0.20 0.26 0.19 0.64 0.50 0.17

‖Jl, l‖1 0.34 0.40 0.25 0.16 0.17 0.90 0.67
‖Jl, l‖2 0.22 0.29 0.26 0.18 0.26 0.72 0.44
‖Jl, l‖3 0.19 0.27 0.26 0.18 0.33 0.68 0.38
‖Jl, l‖4 0.18 0.26 0.26 0.18 0.35 0.67 0.37

Mean reference value −9.78 −1.28 9.78 1.28 0 0 8.50

Reference quantity −IN0
0 −AN0

0 IN0
0 AN0

0 0 0 IN0
0 −AN0

0
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Stein et al. 154

b3lyp performs slightly better than pbe for each of the problematic quan-

tities, reflecting the reduction in convexity caused by the addition of exact

exchange, whilst maintaining the low deviations in IN0 and AN0 . The non-tuned

range-separated hybrids bnl and lc-b3lyp show a further marked improvement

in the problematic quantities, although the deviations remain non-negligible.

With these two functionals, the IN0 and AN0 values degrade marginally.

Single-segment tuning

Next consider the functionals tuned to criteria on a single E vs N segment,

using the H, L, or Ω tuning norms. The deviations in εN0
h and εN0

l are generally

close to those from the non-tuned RSH functionals. The lowest deviations in εN0
h

and εN0
l are, not surprisingly, obtained by tuning to Hlhs and Lrhs respectively,

since these explicitly optimise the Koopmans conditions that are being assessed.

Importantly, these deviations are still non-zero, challenging the assumption that

simply tuning to the calculated IN0 or AN0 is sufficient—one must also consider

the quality of the calculated IN0 or AN0 itself. In other words, one must take

into account the accuracy of the relative energies of the integer-electron systems.

In fact, IN0 is in virtually constant deviation by 0.25 eV whichever tuning norm

is used, and—somewhat counterintuitively—AN0 is slightly better when tuning

to the LHS rather than the RHS.

Tuning to Hlhs or Llhs gives comparatively low values of Ωlhs, up to five

times smaller than Ωrhs, indicating that the tuning is relatively successful at

linearising the LHS segment, but at the expense of the RHS. Tuning to Hrhs

and Lrhs yields analogous behaviour, with Ωrhs values up to nine times smaller

than Ωlhs. When used as tuning norms, Ωlhs and Ωrhs give, by construction,

near-zero values for their respective linearity measures (although large values

are seen on the non-optimised side). However, all that a small value of Ω

indicates is that the slopes at the two integers are essentially the same—not

necessarily that they are equal to the correct value. In fact, the discrepancy

between the deviations in εN0
h and εN0

l and those in the calculated IN0 and AN0

confirms that the slopes are not correct; see Section 3.4.3.

For both LHS and RHS tuning norms, the deviations in the gap εN0
l −εN0

h are

of a similar magnitude to the non-tuned RSH functionals. The lowest deviations
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are obtained when tuning to Hlhs and Lrhs, reflecting the fact that these two

conditions individually yield the most accurate εN0
h and εN0

l , respectively, which

are the two components of the gap.

Double-segment tuning

Next consider the functionals tuned to criteria on both E vs N segments, using

the various J in equation (3.23) as tuning norms. In all cases, the deviations

in εN0
h and εN0

l reduce notably from p = 1 to p = 2, with little subsequent

change for p > 2. The best results are obtained using the ‖Jh, h‖p series, with

deviations as small as 0.1 eV to 0.2 eV. However, similar trends are not seen

in the computed IN0 and AN0—the deviation in IN0 is a near-constant 0.26 eV

on average, for all of the tuning norms tested, whereas the deviation in AN0

varies from 0.16 eV to 0.19 eV. This has obvious implications for the tuning

methods, which rely on attempting to constrain the frontier orbital energies to

these incorrect IN0 and AN0 values.

As p increases beyond unity, Ωlhs increases (implying an increase in E vs N

curvature), which is somewhat counterintuitive given that the error in εN0
h

decreases. A more intuitive trend is observed for Ωrhs, which reduces as εN0
l

improves. Despite yielding the most accurate εN0
h and εN0

l , the values of Ωlhs

and Ωrhs are both significant for the ‖Jh, h‖p series with p > 2, indicating that

substantial non-linearity remains. Insight into these observations is provided

in Section 3.4.3.

The accuracy of the gaps εN0
l − εN0

h again reflect the accuracy of the orbital

energies: the best results are obtained for the ‖Jh, h‖p series, with deviations

reducing to less than 0.2 eV.

3.4.3 representative system: the carbon atom

Further insight into the behaviour of the tuned functionals is obtained by

focusing on a single atom, thereby enabling the quantities in Table 3.4 to be

explicitly related to E vs N plots. We choose the carbon atom, such that

N0 = 6, and consider the E vs N behaviour in the range 5 6 N 6 7. Table 3.5

presents µ∗ values determined for the carbon atom, using selected tuning norms,

along with deviations (calculated minus reference) in εN0
h , εN0

l , IN0 , AN0 , Ωlhs,
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Table 3.5: Deviations (in eV), from exact reference values, of various
key quantities computed for the carbon atom using selected tuning
norms.

µ∗ εN0
h εN0

l IN0 AN0 Ωlhs Ωrhs εN0
l − εN0

h

Single-segment tuning norms

Hlhs 0.66 −0.47 0.57 0.46 −0.03 −0.05 1.44 1.03
Llhs 0.68 −0.52 0.61 0.45 −0.05 0.05 1.50 1.12
Ωlhs 0.67 −0.49 0.59 0.45 −0.04 0.00 1.47 1.08

Hrhs 0.36 0.89 −0.50 0.44 0.21 −2.75 −0.31 −1.38
Lrhs 0.43 0.44 −0.14 0.46 0.15 −1.87 0.29 −0.57
Ωrhs 0.39 0.68 −0.33 0.45 0.18 −2.35 −0.03 −1.01

Double-segment tuning norms

‖Jh, h‖1 0.65 −0.44 0.55 0.46 −0.03 −0.11 1.41 0.99
‖Jh, h‖2 0.53 −0.04 0.24 0.47 0.06 −0.91 0.91 0.29
‖Jh, h‖3 0.52 0.00 0.21 0.47 0.07 −1.00 0.86 0.21
‖Jh, h‖4 0.51 0.04 0.18 0.47 0.08 −1.08 0.81 0.14

Reference value −11.26 −1.26 11.26 1.26 0 0 10.00

Reference quantity −IN0
0 −AN0

0 IN0
0 AN0

0 0 0 IN0
0 −AN0

0

Ωrhs, and εN0
l − εN0

h , all computed using µ∗. The dependence of these quantities

on the choice of tuning norm largely follows the behaviour of the average

quantities presented in Table 3.4.

For each tuning norm in Table 3.5, the E vs N behaviour was analysed by

fixing µ at the corresponding value of µ∗ and smoothly varying the number of

α-spin electrons in the system from 3 to 5, at fractional intervals (note that due

to the similarity between the different double-segment norms, we only present

the ‖Jh, h‖p series). The number of β-spin electrons remained fixed at 2. To

most effectively illustrate the non-linearity of the E vs N curve, we again plot

the deviation of the calculated energy from a linear interpolation at integer

N (E vs N deviation curves). As before, the interpolated and calculated

energies agree at integer N (by construction), a horizontal line along zero

indicates a linear E vs N curve, and a positive/negative deviation indicates a

concave/convex curve. Results are presented in Figures 3.13 to 3.15.

A pair of straight lines is superimposed onto each E vs N deviation curve,

one on the electron-deficient side and one on the electron-abundant side of

N = 6. These lines are the differences between the exact piecewise curve and

the linear interpolation between calculated integers, aligned at N = 6. The
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Figure 3.12: Schematic relationship between an E vs N curve and
an E vs N deviation curve. Vertical scale has been exaggerated for
clarity.

slopes of these lines indicate the limiting slopes that an E vs N deviation

curve would have to exhibit at N = 6, in order to yield εN0
h = −IN0

0 and

εl = −AN0
0 , respectively. We term them “exact slopes”, in the context of

an E vs N deviation plot. Figure 3.12 illustrates the relationship between a

conventional E vs N curve, with exact I and A values superimposed, and an

E vs N deviation curve, with exact slopes superimposed.
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Figure 3.13: E vs N deviation curves (dashed/dotted curves) and
exact slopes (solid straight lines) for the carbon atom using RHS
tuning norms.

These exact slopes provide a useful guide to the quality of a functional:

the difference between the slope of the E vs N deviation curve and the exact

slopes quantifies the deviations in εN0
h and εN0

l from −IN0
0 and −AN0

0 , whilst

the deviation of the exact slope from horizontal quantifies the deviations in

IN0 and AN0 , again from IN0
0 and AN0

0 . We note that if the exact slope is not

horizontal then satisfaction of the exact Koopmans conditions (εN0
h = −IN0

0 ;

εl = −AN0
0 ) will require non-linearity in the E vs N curve.

Figure 3.13 presents the E vs N deviation curves for the three µ∗ values

determined by tuning to the RHS. The three µ∗ values are rather different from

one another and so the E vs N behaviour of each is also quite different. In

moving from Hrhs to Ωrhs to Lrhs, the slopes on either side of N = 6 move

closer to the exact slopes, and so the deviations in εN0
h and εN0

l in Table 3.5

reduce. The exact slopes are notably offset from horizontal, reflecting the

deviations in IN0 and AN0 in Table 3.5. By construction, tuning to Hrhs and
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Figure 3.14: E vs N deviation curves (dashed/dotted curves) and
exact slopes (solid straight lines) for the carbon atom using LHS
tuning norms.

Lrhs yields—for the RHS segment—near-zero slopes at N = 7 and N = 6

respectively. However, in both cases the unconstrained end of the RHS segment

exhibits a much larger slope, leading to the small but non-negligible Ωrhs values

in Table 3.5; by contrast the LHS segment is highly convex, with large Ωlhs

values. By construction, tuning to Ωrhs yields essentially identical slopes at

N = 6 and N = 7 for the RHS segment and hence near-zero values for Ωrhs,

but the slopes themselves are not zero, resulting in a curve with a point of

inflection. The LHS segment is again highly convex, with a correspondingly

large Ωlhs value.

Figure 3.14 shows the analogous curves when tuning to the LHS. The three

µ∗ values are now very close to one another and so the differences in the

E vs N behaviour are much less pronounced. The near-linearity of the LHS

is much more pronounced than the RHS was in Figure 3.13 and so, at first

sight, one might expect an accurate εN0
h . However, the plot simply illustrates
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Figure 3.15: E vs N deviation curves (dashed/dotted curves) and
exact slopes (solid straight lines) for the carbon atom using double-
segment tuning norms.

that εN0
h ≈ −IN0 ; by contrast the deviation of the exact slope from horizontal

indicates that IN0 6= IN0
0 and so the discrepancy between εN0

h and −IN0
0 is

actually significant. The deviation in εN0
l is of a similar magnitude—in this

case, the deviation arises largely due to the curvature, rather than the error in

AN0 , which is now much smaller.

Finally, consider the curves obtained by tuning to both segments. Each set

of p-norms shows a similar trend, so we choose the most successful method,

‖Jh, h‖p, to illustrate the behaviour. Figure 3.15 presents the E vs N deviation

curves using the µ∗ values obtained for 1 6 p 6 4. When p = 1, µ∗ = 0.65 a0
−1,

which is essentially the same as the value obtained when tuning to the LHS

segment alone. As a result, the corresponding curve is close to those in

Figure 3.14. Increasing p to 2 yields µ∗ = 0.53 a0
−1, roughly midway between

the LHS-only and RHS-only optimised values. Appropriately, this leads to

some reduction in concavity on the RHS (Ωrhs in Table 3.5 decreases) but
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increased convexity on the LHS (Ωlhs increases in magnitude), so that neither

side shows near-linear behaviour. As p is increased to 3 and 4, µ∗ decreases

marginally again, with a corresponding small shift in the E vs N deviation

curves. Despite the lack of linearity on either side, using p > 1 yields slopes

that are closest to the exact slopes, and hence the values of εN0
h and εN0

l are

optimal. The good performance of the p > 1 functionals therefore arises from

a convenient error cancellation between lack of linearity and errors in IN0 and

AN0 .

3.5 Conclusions

Tuning the range-separation parameter of an RSH functional (or, indeed, simply

the proportion of exact exchange in a conventional hybrid) in order to better

reproduce desired conditions, is a relatively recent concept which is gaining

increasing popularity. The ability to obtain good-quality approximations—

from existing methods—of problematic quantities previously inaccessible to

conventional DFT methods, is an enticing prospect.

Through preliminary investigations involving C, Cu+ and OH, along with

successive ionisations of carbon, we confirmed the system-dependence of the

optimal range-separation parameter µ, and its dependence on the quantity

being assessed. By comparing various functional forms, we concluded that

the long-range condition α + β = 1 is desirable not only for the asymptotic

behaviour of the exchange–correlation potential, but also for the tuning norms

to exhibit a well-defined minimum. Despite this, we found that RSH functionals

which do satisfy this conditional are qualitatively interchangeable when utilised

in the tuning procedure.

We performed a systematic assessment of a range of tuning norms for

enforcing approximate energy linearity, i.e. reducing delocalisation error through

a system-by-system optimisation of a representative RSH functional. For a series

of atoms, the accuracy of frontier orbital energies, ionisation potentials, electron

affinities, and orbital energy gaps was quantified, with particular attention

paid to the extent to which approximate linearity was actually achieved in the

resulting E vs N curve.

The tuning approaches can yield significantly improved orbital energies
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and orbital energy gaps, compared to those from conventional functionals.

For a given N0-electron system, optimal results were obtained using a tuning

norm,‖Jh, h‖p>1, based on the HOMO energy of the N0- and (N0 + 1)-electron

systems, with deviations of just 0.1 eV to 0.2 eV in these quantities, compared

to exact values. However, detailed examination of the behaviour of the carbon

atom illustrates a subtle cancellation of errors. Specifically, the very fact that

it is not possible to achieve near-linearity on both the LHS and RHS of N0,

means that at the optimal µ there is an inherent non-linearity remaining in

E vs N . Conveniently, the degree of curvature—and hence the deviation of the

frontier orbital energies from the computed ionisation potentials and electron

affinities to which µ was tuned—is of approximately the same magnitude as

the errors (compared to experiment) of I and A themselves.

The implications of this observation, and thus the validity of the approach,

are debatable. On the one hand, one is taking advantage of a convenient

cancellation of errors, and so the robustness of the method is immediately

called into question. On the other, regardless of the intricacies of the method,

the approach provides a seemingly reliable means of computing quantities

beyond the capability of conventional functionals, by a trivial parameter-tweak

and without the need to modify or implement any new functional forms.

Whilst we are inclined to agree with the latter argument, we urge that

care must be taken in the interpretation of any results, and hope that our

observations provide a useful insight into the properties of these tuned func-

tionals, which may assist the future development of functionals free from the

delocalisation error.

3.5.1 further considerations

Despite the apparent success of these tuning methods, there are a number of

remaining drawbacks. Firstly, the procedure requires a series of calculations on

the N0-, (N0 − 1)- and/or (N0 + 1)-electron systems in order to narrow down

the optimal µ. For our test set of systems, with the simultaneous investigation

of many tuning norms, we initially chose a coarse grid of µ values, optimising

with a tighter grid around the minima to achieve the desired precision. Whilst

arguably the most efficient compromise between CPU time and man-hours, the

number of individual calculations quickly ran into the thousands. This is an
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extreme case, and the procedure for a single system/tuning norm is much easier,

however even with the implementation of a relatively efficient minimisation

routine (complicated by the need to compute I and A for each µ) we estimate

several tens of calculations would still be necessary.

The system-dependence of the approach is paramount to its success, yet

undeniably remains one of its drawbacks, in that µ must be recomputed for

any new system, in the time-intensive manner outlined above. Likewise the

optimal µ is unique to the property for which it has been tuned, as determined

by the tuning norm used. If calculation of a different property is desired then

a different µ may be optimal, requiring a full set of new tuning calculations

based on a different norm. This may not be a problem if one simply desires a

good estimation of a particular property for one or two molecules, but could

quickly become unmanageable for a large set of systems.

Finally, we note the lack of size-extensivity in the method, hindering its

use for, say, dissociation energies. Despite its drawbacks, the method is an

important step towards reducing or even eliminating the delocalisation error.

In this work we have focused entirely on a range-separation scheme under the

constraint that α = 0 and β = 1, with µ the only free parameter. An interesting

future investigation could be made into two- and three-parameter optimisations

(the former maintaining the desirable constraint that α+ β = 1), in addition

to alternative forms of the short- and long-range partitioning. In particular,

given that a non-zero α can be beneficial for thermochemical properties,200 the

convenient cancellation of errors between the calculated ionisation energy and

any residual non-linearity may be affected.

In the next chapter, we examine the effect of the tuning procedure on the

electron density, which—like the energy—should exhibit a linear variation with

fractional N . By considering the Fukui function (the derivative of the density

with respect to N , and a key quantity in conceptual DFT) computed with

tuned RSH functionals, we investigate whether µ∗ values that are optimal for

near-linearity in E vs N are similarly optimal for the density.





4
Fukui function from tuned

functionals

As with E vs N , the variation of the exact density with N is also

piecewise-linear, with discontinuities in its derivative at integer N . In this

chapter, we consider whether functionals tuned to give near-linearity in

E vs N also give near-linearity in the density. We do this by considering

the influence of the range-separation parameter on the Fukui function in

conceptual DFT. We relate our findings to calculations of the Mulliken

electronegativity, another important quantity in conceptual DFT, which

can be determined from the frontier orbital energies and so should benefit

from an improved description of E vs N .

4.1 Conceptual DFT

Broadly speaking, the term “conceptual DFT” refers to the field of relating

known empirical chemical concepts, such as electronegativity, to specific defini-

tions extracted from DFT quantities—in particular successive derivatives of

the energy functional. Whilst a brief outline is provided below, full discussions

can be found in chapters 4 and 5 of Parr and Yang,58 and a comprehensive

review by Geerlings et al. 53

87
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4.1.1 chemical potential and electronegativity

Electronegativity is an important concept for understanding and predicting

chemical reactivity, and describes the degree to which an atom in a molecule

draws electron density towards itself. Originally proposed by Pauling225 in

terms of a relative scale, multiple alternative definitions now exist.226–233 The

Mulliken expression, in particular, involves only the ionisation potential and

electron affinity of the atom and so is independent of any relative scale; for

this reason it is often termed the absolute electronegativity,234,235 and is readily

identifiable with quantities computed using DFT.51–53

Recall the definition of the electronic energy E in terms of the density ρ(r),

E[ρ] = F [ρ] +

∫
ρ(r)v(r) dr , (4.1)

where F [ρ] is a universal functional of the density and v(r) is the external

potential. The energy change dE of a system passing from one ground state

to another (i.e. perturbation of the system due to a chemical reaction) can be

written as

dE =

∫ (
δE

δρ(r)

)
v

dρ(r) dr +

∫ (
δE

δv(r)

)
ρ

dv(r) dr , (4.2)

From the Euler–Lagrange equation, equation (2.19), we can write the first term

of equation (4.2) as

dEv =

∫
µ dρ(r) dr (4.3)

= µ dN , (4.4)

where µ is the Lagrange multiplier, or chemical potential (not the range–

separation parameter tuned in Chapter 3), the v subscript indicates fixed v(r),

and we have used the quadrature relation for the number of electrons N in

equation (2.12).

The second term of equation (4.2) can be identified by considering the

functional derivative of equation (4.1) with respect to v(r) at fixed ρ, which—

since F is a universal functional of ρ—is simply ρ(r), hence

dEρ =

∫
ρ(r) dv(r) dr . (4.5)
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Combining equations (4.4) and (4.5) we can rewrite equation (4.2) as

dE = µ dN +

∫
ρ(r) dv(r) dr . (4.6)

Alternatively, the energy can be considered as a functional of the number

of electrons N and v(r), perturbations in which give the differential

dE =

(
∂E

∂N

)
v

dN +

∫ (
δE

δv(r)

)
N

dv(r) dr . (4.7)

By comparing terms in equations (4.6) and (4.7), we thus identify the individual

first-order derivatives of the energy as

µ =

(
∂E

∂N

)
v

(4.8)

and

ρ(r) =

(
δE

δv(r)

)
N

. (4.9)

Through Iczkowski and Margrave’s definition230 of electronegativity,

χ = −
(
∂E

∂N

)
, (4.10)

we can now relate the Lagrange multiplier of the Euler equation—the chemical

potential—directly to this well-established chemical concept,

µ = −χ , (4.11)

thus cementing the link between computational and conceptual DFT.

It must be noted that, as a result of the derivative discontinuity, µ(N) is a

stepwise function, discontinuous at integer N . This leads to two electronega-

tivity values, χ− and χ+, when evaluated on the LHS or RHS of the integer

respectively, and corresponding to an electrophilic (dN < 0) or nucleophilic

(dN > 0) perturbation. Typically, a finite difference approach is taken for the

calculation of χ+ and χ− for a given species with N = N0 electrons:

χ− = EN0−1 − EN0 = I , (4.12)

χ+ = EN0 − EN0+1 = A , (4.13)

with the electronegativity taken to be the average of the two,

χ =
χ+ + χ−

2
=
I + A

2
. (4.14)

The latter relationship is equivalent to Mulliken’s definition of the electronega-

tivity.
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4.1.2 fukui function and higher derivatives

Having established the link between first derivatives of the energy with core

chemical concepts, it is logical to consider higher derivatives. An overview of

common functions and their definitions is given in Scheme 4 of Ref. 53. Of

particular note are the second derivatives: the electronic Fukui function

f(r) =

(
∂ δE

∂Nδv(r)

)
, (4.15)

the chemical hardness

η =

(
∂ 2E

∂N2

)
v(r)

, (4.16)

and the linear response function

χ(r, r′) =

(
δ 2E

δv(r)δv(r′)

)
N

. (4.17)

The Fukui function is a chemical reactivity index that acts as a gener-

alisation236,237 of Fukui’s FMO (frontier molecular orbital) theory.238–240 By

resolving equation (4.15), it can be identified either as the sensitivity of the

chemical potential to a perturbation at point r, or as the change in the electron

density ρ(r), at each point r, when the total number of electrons N is varied,

f(r) =

(
δµ

δv(r)

)
N

=

(
∂ρ(r)

∂N

)
v

. (4.18)

From the latter definition it is clear that this quantity is again subject to the

derivative discontinuity at integer N , and so for any system with N = N0

electrons, we may consider derivatives on both the electron-abundant and

electron-deficient sides,

f+(r) =

(
∂ρ(r)

∂N

)+

v(r)

, (4.19)

and

f−(r) =

(
∂ρ(r)

∂N

)−
v(r)

. (4.20)

Physically these correspond to a generalisation of Fukui’s FMO reactivity in-

dices, measuring the reactivity of a site towards a nucleophilic attack provoking
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the addition (f+) or an electrophilic attack provoking the subtraction (f−)

of an electron. The third index—representing reactivity towards a radical

reagent—is given by the average

f 0 =
f+(r) + f−(r)

2
. (4.21)

In practice, these quantities are usually approximated by a finite difference

method,

f+(r) ≈ ρN0+1(r)− ρN0(r) , (4.22)

and

f−(r) ≈ ρN0(r)− ρN0−1(r) , (4.23)

although an analytic expression has been developed by Yang et al..241

4.2 Near-linearity of the density gradient

In Chapter 3, our goal was to tune the parameters of a given functional until

the electronic energy E varied linearly (or, in reality, almost linearly) with the

number of electrons N , between each integer pair of N . The electron density

should also exhibit similar linear variation, and this has obvious implications

for the Fukui function, which is defined above as the change in ρ as N is varied.

We may generalise the finite difference (FD) methods to

f+(r) ≈ ρN0+x(r)− ρN0+y(r)

x− y , (4.24)

and

f−(r) ≈ ρN0−y(r)− ρN0−x(r)

x− y , (4.25)

where 0 6 y < x 6 1. The “usual” definitions given by equations (4.22)

and (4.23) use values of x = 1 and y = 0, corresponding to the densities at

integer numbers of electrons. For the exact functional—i.e. where the linearity

condition holds—the value of f±(r) should be identical for any combination

of x and y. Intuitively though, we would expect this not to be the case for
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traditional density functional approximations that suffer from the delocalisation

error.

We can illustrate this relatively simply by plotting the difference between the

integer FD functions, equations (4.22) and (4.23), and alternatives calculated

using equations (4.24) and (4.25) with a small fractional N , i.e. choosing y = 0

and x = 0.01. Pictorially, this is analogous to comparing the ∆SCF energy

differences I and A with the limiting initial slopes εh and εl, for an E vs N

plot.

These Fukui difference plots were produced as follows:

∆f+ = f+
x=1 − f+

x=0.01 (4.26)

= (ρN0+1 − ρN0)−
(ρN0+0.01 − ρN0)

0.01
, (4.27)

and

∆f− = f−x=0.01 − f−x=1 (4.28)

=
(ρN0 − ρN0−0.01)

0.01
− (ρN0 − ρN0−1) , (4.29)

where we have dropped the (r) for clarity. A straight line along zero is the

desired behaviour, indicating linearity in the (initial) density gradient.

An example is shown in Figure 4.1 for the carbon atom, using blyp as a

representative GGA, and the aug-cc-pVTZ basis set. Since we are no longer

dealing with a one-dimensional quantity, we choose to plot along a single

coordinate, in this case the z axis; such a choice is arbitrary as long as the

direction is consistent across all calculations. The density was thus computed

along a grid of z values, for a carbon atom with 5, 6, 7, 5.99 and 6.01 electrons,

taking care to add or remove electrons (or fractions thereof) to and from the

same orbitals; the atom was oriented such that the pz orbital was the HOMO

of the cationic species (and so was always occupied).

It can immediately be seen that for both ∆f+ and ∆f− there are notable

deviations from zero, indicating a discrepancy between the initial density

gradient, between 0 and 0.01 electrons, and the overall density change between 0

and 1 electrons. The discrepancy is particularly pronounced for ∆f−. Naturally,

we would expect this behaviour to improve, as before, when moving to hybrid

and RSH functionals, however it is particularly interesting to consider the effect
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Figure 4.1: Example Fukui difference plots for the carbon atom,
using blyp, showing the difference between finite difference Fukui
functions computed using N0 ± 1 and N0 ± 0.01 electrons. All
calculations use the aug-cc-pVTZ basis set.

of the RSH tuning procedure on the Fukui difference plots. Specifically, are

the optimal range-separation parameters determined in Chapter 3 from norms

appropriate for energy linearity similarly appropriate for the density variation,

in the context of the Fukui function?

4.3 Functional tuning

One could follow a similar procedure to that in Chapter 3: determine a tuning

norm—based now on desired criteria for the density, and minimise it for a

given RSH functional to determine the optimal µ∗ (note that here we revert

to using µ to denote the range-separation parameter; for the remainder of the

chapter we will discuss the chemical potential in terms of the electronegativity
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χ to avoid confusion). However, finding suitable minimisation criteria for the

density—which is a function of r—is not as trivial as for the energy. Instead,

we consider whether functionals tuned to give near-linearity in E vs N are

similarly optimal for the density, by examining Fukui difference plots computed

at a range of µ values (including µ∗ values determined from energy tuning

norms).

We first examine, separately, the Fukui functions for carbon, computed

using the finite difference method with x = ±1 and x = ±0.01, respectively.

Calculations using blyp and cam-b3lyp are compared with those using lc-

b3lyp with a selection of µ values. The values of µ = 0.66 a0
−1 and µ =

0.43 a0
−1 correspond to tuning the Hlhs and Lrhs norms from Chapter 3, i.e.

enforcing near-linearity in the LHS and RHS E vs N segments, respectively.

The value of µ = 0.4 a0
−1 corresponds to a “typical” choice, for an lc functional

with α = 0 and β = 1, when averaged for thermochemical properties. Finally,

the value of µ = 0.35 a0
−1 investigates the effect of further reducing the

proportion of short-range exact exchange. After presenting the Fukui functions

themselves, we examine the Fukui difference plots, to investigate the extent of

linearity in the density variation with respect to N .

4.3.1 results

Figure 4.2 plots the Fukui functions for carbon, computed using the usual finite

difference method from integer-electron systems, i.e. equations (4.22) and (4.23).

It is clear that there is very little difference between the six functionals. This

is fully consistent with the ability of each of the functionals to model integer-

electron systems relatively successfully, and with a similar degree of accuracy

to one another.

Figure 4.3 plots the fractional Fukui functions for carbon, this time cal-

culated with equations (4.24) and (4.25) using x = ±0.01, for the same set

of functionals, on the same vertical scale. Now, significant differences can

be seen between the functionals, reflecting their respective abilities to model

systems with fractional numbers of electrons. Immediately, this would suggest

that the Fukui difference plots will exhibit a significant functional-dependence.

The biggest variation between functionals occurs in the core regions, below

around 2 a0; as z increases, the differences between functionals become much
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Figure 4.2: Fukui functions for the carbon atom, computed using
the finite difference method from integer-electron species, equa-
tions (4.22) and (4.23).
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Figure 4.3: Fractional Fukui functions for the carbon atom, com-
puted using the generalised finite difference method, equations (4.24)
and (4.25), with x = ±0.01.
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less pronounced.

Figure 4.4 shows the Fukui difference plots for the carbon atom. It is

immediately evident that the presence of exact exchange has a significant

impact on the shape of the plot. The most prominent illustration of this

can be seen by comparing blyp, a GGA, with cam-b3lyp, a conventional

RSH functional. The difference plots for blyp show significant deviation from

zero, whereas those for cam-b3lyp—whilst still not linear—show a marked

improvement over much of space, highlighting the beneficial effect of the

incorporated exact exchange.

When varying the value of µ in lc-b3lyp, it would be reasonable to

hypothesise that the LHS-tuned value (in terms of E vs N) of 0.66 a0
−1 might

give the optimal ∆f− , whilst the RHS-tuned value of 0.43 a0
−1 would give

the optimal ∆f+ . However, it in fact transpires that 0.43 a0
−1 appears better

in both cases, whereas 0.66 a0
−1 produces a deviation similar in magnitude,

though opposite in sign, to the GGA. Furthermore, a value of 0.4 a0
−1—deemed

appropriate for most thermochemical properties—is slightly better still (as, in

fact, is the thermochemically averaged cam-b3lyp). Reducing µ to 0.35 a0
−1

shifts the plots back in the direction of the GGA, suggesting that insufficient

exact exchange is included.

The biggest variation in ∆f− and ∆f+ between functionals occurs in the core

region, below around z = 2 a0. The chemical relevance of the Fukui function,

however, is particularly associated with the region of space corresponding to

the van der Waals radius: approximately 3.2 a0 (1.7 Å) for carbon. Figure 4.5

shows an expansion of the Fukui difference plots in this region of space. In

general, all of the functionals perform well in this region: only very small

deviations from zero are seen in the difference plots.

On the electron-deficient side, blyp in fact shows the smallest deviation

from zero, whilst for the RSH functionals, the deviation again decreases with

decreasing µ. The value of µ = 0.66 a0
−1 optimised for energy linearity on the

electron-deficient side, is again least optimal.

On the electron-abundant side, the ordering of functionals is the same,

however the plots are shifted downwards. It is again evident that for most

values of z, decreasing µ from 0.66 a0
−1 to 0.4 a0

−1 is beneficial.

Overall, it is clear that despite only small variations in the chemically
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Figure 4.4: Fukui difference plots for the carbon atom, computed
with lc-b3lyp at a variety of µ values, compared to representative
GGA and RSH functionals. All calculations use the aug-cc-pVTZ
basis set.
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Table 4.1: Errors in the electronegativity χ from the reference value
of 6.26 eV, calculated using experimental I and A values.219 Errors
in χ calculated using I and A, equation (4.14), are compared with
those calculated using εh and εl, equation (4.30).

Functional Equation (4.14) Equation (4.30)

blyp 0.12 −0.63
cam-b3lyp 0.21 −0.30

0.35 0.26 −0.20
0.4 0.32 −0.17
0.43 0.31 −0.15
0.57 0.25 −0.09
0.66 0.21 −0.06

relevant regions of space, the fractional Fukui function (and hence the variation

of the density with N) is better modelled by RSH functionals with a value of

µ ≈ 0.4 a0
−1 than by higher values of µ. This is true on both sides of integer

N , despite a higher value of µ being more appropriate for the energy on the

electron-deficient side.

Comment on electronegativity

Another quantity important to conceptual DFT is the electronegativity, which is

related to the Fukui function, through the chemical potential, by equation (4.18).

Mulliken’s definition of the electronegativity, given in equation (4.14), can

equivalently be approximated (via Janak’s Theorem) as

χ = −εh + εl
2

, (4.30)

which as we know will only truly hold in the absence of delocalisation error

(although error-cancellation is possible). Given that this approximation involves

the frontier orbital energies, we might expect the quality of the approximation to

follow trends similar to the results of Chapter 3 when µ is varied, and not those

of the Fukui function above. Table 4.1 compares errors in the electronegativity

values from equation (4.14) with those from equation (4.30), for the same

functional forms considered in Figure 4.4.

We established in Section 3.4.3 that I and A are, in general, in considerable

error for the tuned RSH functionals—indeed this error contributes towards their

success in estimating εl − εh. Thus when calculating χ using equation (4.14),
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we would expect the tuned RSH functionals to give a poorer estimate of

the electronegativity than conventional functionals. This is indeed the case,

although increasing µ to 0.66 a0
−1 reduces the error in A (the error in I is

largely independent of µ) sufficiently to give an error in χ similar to that of

cam-b3lyp.

On the other hand, the tuned functionals show a considerable improvement

over the non-tuned alternatives, when calculating χ using equation (4.30),

due to the reduction in delocalisation error. The trends do not follow those

observed for the fundamental gap in Chapter 3, since we are now dealing with

the sum, rather than the difference, of the orbital energies, however there are

some important observations. Specifically, the magnitude of the error decreases

as µ—and hence the proportion of short-range exact exchange—increases. This

contrasts with the trends exhibited by the Fukui function, and suggests that

the optimal proportion for estimating the electronegativity from the orbital

energies is much higher than for estimating its derivative with respect to the

external potential.

4.4 Conclusions and further

considerations

So far we have considered only a single system: carbon. However, even with

such a limited test case, we have demonstrated that near-linearity in the

energy variation does not necessarily correspond to near-linearity in the density

variation with number of electrons. Near-linearity can be achieved in either

property (for a given segment spanning two adjacent integer-N species), but

each requires a different range-separation parameter.

The optimal value for density variation appears to correspond to a value

typically chosen from an average over many thermochemical quantities and

systems. It would be premature to draw any conclusions from only a single

system, but further study could involve other systems to determine whether

this observation remains true.

In principle, an optimal µ could be found for each property (such as the

Fukui function, electronegativity, and others ad infinitum) and each system,

in the spirit of Chapter 3, but with the knowledge that such values may
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vary significantly, the idea quickly becomes overwhelming. In addition, the

inability—in general—to achieve near-linearity for two pairs of integer-N species

simultaneously makes application of the functional limited: being both system-

and property-dependent it could only ever be utilised on a small scale, and this

ultimately highlights limitations in the underlying functional form.

Instead, for the remainder of this thesis we focus our efforts towards address-

ing functional development at a more fundamental level, trialling simple forms

that satisfy known exact behaviour. We begin by introducing some known

mathematical relationships, build the functional forms, and then perform a

variety of assessments to determine their success.



5
Development of novel explicit

density functionals

In this chapter we present a novel approach to functional development,

based on the homogeneity properties of explicit density functionals under

density scaling. We begin by investigating the properties of a number of

simple functional forms, to justify the use of density scaling as a tool

for functional development. We then constrain the mathematical forms

to approximately satisfy known exact scaling conditions, culminating

in a self-consistent functional that approximately recovers the exact

Koopmans condition εh = −I associated with energy linearity. It also

produces a potential with the correct asymptotic behaviour. The chapter

concludes with a series of tests to highlight the successes and remaining

challenges for this developmental process.

As established in Chapter 3, it is desirable to try to satisfy the exact Koopmans

conditions

εh = −I0 (5.1)

and

εl = −A0 , (5.2)

which correspond to the slopes of the exact piecewise linear E vs N curve, on

the electron-deficient and electron-abundant sides of the integer N0, respec-

103
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tively. These conditions—in which the terminology electron-deficient/abundant

refers to the limiting behaviour as the electron number approaches N0 from

below/above—are appropriate for explicit density functionals and for orbital-

dependent functionals within the usual generalised Kohn–Sham (GKS) formal-

ism.139

With orbital-dependent functionals, namely global and range-separated

hybrids, we have seen that it is possible to tune the parameters in order to

approximately satisfy one or both of these conditions, although the tuning pro-

cedure still has a number of drawbacks, outlined in the final section of Chapter 3.

For explicit density functionals, such as local functionals or generalised gradient

approximations (GGAs), the situation is even less straightforward. Firstly, the

lack of exact orbital exchange means there is no obvious parameter that can be

systematically varied to adjust the HOMO and LUMO energies. Furthermore,

for global hybrid and RSH functionals the non-multiplicative nature of the XC

operator means equations (5.1) and (5.2) can both be approximately satisfied

at the same time. For explicit density functionals, however, the XC potential is

now multiplicative, and it is not in general possible to satisfy both conditions

simultaneously.

This can be traced to the fact that the piecewise linearity of the exact

energy leads to a jump in the exact XC potential by an amount ∆xc as N

increases through an integer. This jump—typically of several electron volts—is

the integer discontinuity discussed in earlier chapters. The exact potential on

the electron-deficient side of the integer does yield a HOMO energy that satisfies

equation (5.1); however it is the shifted potential on the electron-abundant

side of the integer that yields a LUMO energy that satisfies equation (5.2).

Local functionals and GGAs are continuum approximations, and exhibit a

potential that is continuous across the integer. In other words there is only

one potential for the integer system, which cannot satisfy both conditions. In

fact, these functionals yield a potential that approximately averages over the

discontinuity, meaning HOMO energies are well above −I0 and LUMO energies

are well below −A0.149

In this chapter, we present a novel approach to XC functional development

based on density scaling considerations, culminating in an explicit density

functional that obeys equation (5.1), and exhibits the correct asymptotic
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behaviour in its potential. Our approach is based on approximately satisfying

known exact scaling relations, so we begin by outlining the key aspects of

the theory, and the influence of the integer discontinuity. Following this, we

investigate the mathematical properties of simple functional forms in order to

justify the consideration of density scaling in the development of functionals.

We then impose constraints appropriate specifically for the limiting electron-

deficient side of any integer-N system, to define two functional forms appropriate

for this side of the integer. Crucially, these functionals obey the Koopmans

condition of equation (5.1), and one additionally produces a potential with

the correct asymptotic behaviour. The chapter concludes with an assessment

of the performance of these functionals for the self-consistent calculation of a

number of properties.

5.1 Scaling relations

In the context of DFT, scaling relations refer to the behaviour of a functional

when some quantity is scaled in a particular manner. Most common is the

concept of coordinate scaling,242 where the coordinates are uniformly shrunk

or dilated by a constant λ whilst preserving normalisation, such that the

coordinate-scaled density is

ρλ(r) = λ3ρ(λr) . (5.3)

If a functional of this scaled density is equivalent to the same functional of the

unscaled density, multiplied by a constant λm,

F [ρλ] = λmF [ρ] , (5.4)

then we say that the functional is homogeneous of degree m under coordinate

scaling.

A similar condition can be identified if the density itself is scaled by a factor

ξ, such that a functional is homogeneous of degree k under density scaling if it

satisfies

F [ξρ] = ξkF [ρ] . (5.5)

Equivalently, for k 6= 0,243

k =

∫
vF (r)ρ(r) dr

F [ρ]
, (5.6)
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where vF (r) = δF [ρ]/δρ(r). Evaluation of k using equation (5.6) thus provides

a mechanism for quantifying the behaviour of any functional F [ρ] under density

scaling. If the value of k is system-independent, then equation (5.5) is universally

satisfied and the functional is homogeneous of degree k. If the value of k is

system-dependent, then the functional is inhomogeneous; the degree of system-

dependence then provides a measure of the degree of inhomogeneity.

In a recent study, Borgoo et al. 244 investigated the density scaling properties

of the exact XC functional. The functional is, in fact, inhomogeneous, though

following Zhao et al. 245 a system-dependent effective homogeneity can be

defined, through equation (5.6) as

kxc =

∫
vxc(r)ρ(r) dr

Exc[ρ]
, (5.7)

where Exc[ρ] is the XC energy functional and vxc(r) = δExc[ρ]/δρ(r) is the

XC potential. This quantity was evaluated in Ref. 244 for atoms and molecules

at equilibrium geometries using near-exact XC potentials, electron densities

and XC energies, determined from experimental and correlated ab initio data.

5.1.1 influence of the integer discontinuity

A key consideration in the study of Borgoo et al. was the integer discontinuity

in the exact XC potential. On the electron-deficient side of the integer, the

exact potential, which we denote v−xc(r), decays to zero as −1/r and yields the

HOMO energy in equation (5.1). On the electron-abundant side, the exact

potential is shifted at all points in space by the integer discontinuity ∆xc, and

yields the LUMO energy in equation (5.2); we denote this potential

v+
xc(r) = v−xc(r) + ∆xc . (5.8)

The average of the two, which we denote vav
xc(r), is approximately equivalent

to that exhibited by conventional local functionals and GGAs (except at long

range, where these explicit density functionals decay exponentially to zero).

With three distinct potentials, equation (5.7) can be evaluated to produce
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three near-exact effective homogeneities,

k−xc =

∫
v−xc(r)ρ(r) dr

Exc[ρ]
, (5.9)

k+
xc =

∫
v+
xc(r)ρ(r) dr

Exc[ρ]
= k−xc +

N∆xc

Exc[ρ]
, (5.10)

and

kav
xc =

∫
vav
xc(r)ρ(r) dr

Exc[ρ]
= k−xc +

N∆xc

2Exc[ρ]
. (5.11)

The near-exact values for each of these quantities were investigated in Ref. 244:

both k−xc and k+
xc are relatively system-dependent, whereas kav

xc is close to 4/3

(the homogeneity of the Dirac exchange functional).

5.1.2 general form for a homogeneous functional

By generalising the work of Liu and Parr,246 we introduce a generic explicit

density functional form, which is homogeneous of degree m under coordinate

scaling and homogeneous of degree k under density scaling for all n,

E[ρ] =

[∫
ρ(r)

9k−nm
9k−3m xn dr

] 3k−m
3−n

, (5.12)

where x is the dimensionless reduced density gradient

x =
|∇ρ|
ρ

4
3

, (5.13)

and n is a power governing the degree of gradient correction (n = 0 signifies a

local functional). The functional can be multiplied by an arbitrary parameter

without altering its homogeneity properties. For brevity, we introduce the

notation “DS: k” to denote homogeneity of degree k under density scaling, and

“CS: m” to denote homogeneity of degree m under coordinate scaling.

Although the form looks complicated, it simplifies readily for many common

purposes—for example choosing n = 0 and k = (3 +m)/3 removes the gradient

dependence and reduces the external power to unity. Then, the functional

with m = 1 yields k = 4/3, and recovers the Dirac exchange functional

(when multiplied by the appropriate prefactor). Similarly, m = 2 recovers

k = 5/3 and the Thomas–Fermi kinetic energy functional. We will return to
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this general functional form a number of times throughout this chapter, as a

tool for investigating the behaviour of functionals that exhibit specific scaling

properties.

5.2 Combining Coulomb and XC terms

For a system with 0 < N 6 1 electrons, the Coulomb and exchange–correlation

energies must cancel exactly in order to eliminate the one-electron SIE of

equation (2.79). Zhang and Yang 143 determined that, given that J [ρ] is

DS: 2, Exc[ρ] must also be DS: 2 on the electron-deficient side of the one-

electron system. Otherwise, examination of equation (5.5) shows that even if

J [ρ] + Exc[ρ] ≈ 0 for one electron, the (approximate) equality will not hold

for half, or any fraction, of an electron. In other words, the functional will

still suffer from the delocalisation error (as is the case for conventional explicit

density functionals, for example, which are approximately DS: 4/3).

In fact, Ref. 244 demonstrates that this is part of a larger problem: unlike

J [ρ], the exact Exc[ρ] is not homogeneous, and its effective (electron-deficient)

homogeneity k−xc is highly system-dependent. The average effective homogeneity

kav
xc, associated with a potential averaged over the integer discontinuity, is less

system-dependent, and is in general close to 4/3 (note that conventional explicit

density functionals—which approximately average over the discontinuity—are

homogeneous of around this degree).

A crucial observation, though, is that the exact J [ρ] and Exc[ρ] behave

differently under density scaling. It is interesting, then, to consider their

combined homogeneity properties, and whether the two may be modelled as

a single entity. In other words, we define an overall functional combining the

Coulomb and XC functionals, which we term Ω,

Ω[ρ] = J [ρ] + Exc[ρ] , (5.14)

whose effective DS homogeneity is given by

kΩ =
kJJ [ρ] + kxcExc[ρ]

Ω[ρ]
(5.15)

=
2J [ρ] + kxcExc[ρ]

J [ρ] + Exc[ρ]
. (5.16)
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We desire a functional form that satisfies this homogeneity condition. If we

consider the simple approximation

Ω[ρ] = A[ρ](N − 1) , (5.17)

for any A[ρ] that is DS: 1, we find that

kΩ =

∫
vΩ(r)ρ(r) dr

Ω[ρ]
(5.18)

=
2N − 1

N − 1
, (5.19)

where vΩ = δΩ[ρ]/δρ(r), and we have used the definition

kA =

∫
vA(r)ρ(r) dr

A[ρ]
= 1 . (5.20)

Importantly, the factor of (N − 1) ensures that Exc[ρ] = J [ρ] for a one-electron

system.

Figure 5.1 plots the simple approximation of equation (5.19) against the

near-exact kΩ, computed using equation (5.16) with near-exact Zhao–Morrison–

Parr (ZMP)247 values of Exc[ρ] and J [ρ], and the kav
xc values from Ref. 244.

Note that we have regarded N as a functional of ρ in the differentiation; we

could alternatively have chosen to treat N as a fixed parameter, which would

result in a potential shifted only by a trivial additive constant (although the

homogeneity of the functional would differ).

Even with such a simple approximation, the similarity in the trend is striking.

We can add further physical justification to this form by noting that J [ρ]/N is

DS: 1 (when N is differentiated, as above). If we choose A[ρ] = J [ρ]/N , the

overall functional becomes

Ω[ρ] =
J [ρ]

N
(N − 1) (5.21)

= J [ρ]

(
1− 1

N

)
, (5.22)

which is simply the Fermi–Amaldi approximation.248 Whilst, in general, this

is a poor model for the exchange–correlation functional, it has a number of

desirable properties249—in particular it is exact for one-electron systems (i.e. it

is one-electron SIE-free), and its functional derivative vxc(r) gives the correct

asymptotic behaviour.
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Figure 5.1: Comparison of exact kΩ values from equation (5.16)
with approximate values from equation (5.19).

It is interesting, then, to investigate whether we can improve upon this

form with a simple correction term, based on the above scaling arguments. Let

A[ρ] =
J [ρ]

N
+B[ρ] , (5.23)

where B[ρ] (DS: 1) is our correction to Fermi–Amaldi. Thus

Ω[ρ] =

(
J [ρ]

N
+B[ρ]

)
(N − 1) , (5.24)

which—if we separate Ω[ρ] back into its constituent terms—corresponds to an

exchange–correlation energy of

Exc[ρ] = −J [ρ]

N
+B[ρ](N − 1) . (5.25)

For our choice of B[ρ], we return to the generic form of equation (5.12),

multiplied by a prefactor α, with our sole constraint being k = 1 (we do not

know the exact coordinate-scaling behaviour). For simplicity, we initially choose

n = m, such that the external power reduces to unity and we are left with

B[ρ] = α

∫
ρ

9−m2

9−3m xm dr . (5.26)

A couple of important cases arise. Choosing m = 0 (hence CS: 0) reduces

the functional simply to N multiplied by a constant. Choosing m = 1 (hence



Combining Coulomb and XC terms · 111

Table 5.1: Calculated prefactors α computed using B[ρ] in equa-
tion (5.26), along with mean absolute errors (MAE) and sums of
square errors (SSE) in the resulting Exc[ρ] values, compared to
near-exact ZMP values. Fermi–Amaldi (FA) errors are included for
comparison.

Functional α MAE/Eh SSE/Eh

FA — 6.95 1044.72
m = 0 −6.17× 10−2 0.29 1.44
m = 1/3 −3.53× 10−2 0.42 2.99
m = 2/3 −1.83× 10−2 0.59 5.99
m = 3/3 −8.56× 10−3 0.80 11.04
m = 4/3 −3.66× 10−3 1.04 18.50
m = 5/3 −1.45× 10−3 1.28 28.44
m = 6/3 −5.39× 10−4 1.54 40.68
m = 7/3 −1.92× 10−4 1.78 54.90
m = 8/3 −6.61× 10−5 2.02 70.67
m = 9/3 −2.23× 10−5 2.24 87.60
m = 10/3 −7.38× 10−6 2.45 105.30
m = 11/3 −2.42× 10−6 2.64 123.47
m = 12/3 −7.86× 10−7 2.82 141.84

CS: 1) reduces the exponent to 4/3, thus mimicking Dirac exchange with a

gradient correction.

5.2.1 testing the functional

We implemented the functional in a post-Kohn–Sham manner into a develop-

ment version of the cadpac program, using the converged pbe density, for

a range of m between 0 and 4. The parameter α was then determined by a

least-squares fit of the RHS of equation (5.25) (using the near-exact ZMP247

values of J [ρ]) to the near-exact ZMP values of Exc[ρ], for the atoms Li–F and

Na–Cl. Calculations were performed using the aug-cc-pVTZ basis set.

Table 5.1 lists the prefactors α, determined from the least-squares fit, for the

range of B[ρ] functionals tested, along with the mean absolute errors (MAE)

and sum of square errors (SSE) in the resulting Exc[ρ], compared to near-exact

ZMP values. Errors in the unmodified Fermi–Amaldi form are included for

comparison.

It is immediately obvious that all of the functional forms tested provide a

significant improvement over Fermi–Amaldi, with the mean absolute error over

the set of atoms reducing from almost 7Eh to a little as 0.3Eh. It is not really
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Figure 5.2: Errors in Exc[ρ], compared to near-exact ZMP values,
for a range of B[ρ] functionals, where m = n, along with unmodified
Fermi–Amaldi (FA).

surprising that the errors in Fermi–Amaldi are so high, since it was devised

for the useful properties of its functional derivative rather than its quality as

an approximation for Exc. What is perhaps more surprising is that adding

such a simple correction has such a pronounced effect—indeed it is the simplest

correction, Exc[ρ] = −J [ρ]/N + αN(N − 1), which results in the lowest errors.

This is particularly noticeable in Figure 5.2, which plots the error in Exc for

each atom: whilst Fermi–Amaldi gets rapidly worse as the atom size increases,

the corrected forms, in particular m = 0, remain small in error. It must be

noted that the increased error in the corrected forms with higher m is likely

to do with the magnitude of B[ρ] prior to scaling by α. It can be seen from

the increasingly small values of α required that as m increases, so does the
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magnitude of B[ρ], and so one might expect a larger spread of individual errors.

5.2.2 breaking the density-scaling requirement

So far, we have only considered functional forms which are homogeneous of

degree one under density scaling, due to the similarity this produces in the

overall effective homogeneity to the near-exact values in Figure 5.1. We carried

out a brief investigation into breaking this DS: 1 “requirement” as a possible

means of further improving the B[ρ] = αN correction.

We considered a functional B[ρ] = αNp, to give

Ω[ρ] =

(
J [ρ]

N
+ αNp

)
(N − 1) , (5.27)

such that the effective homogeneity is

kΩ =

∫
vΩρ dr

Ω[ρ]
=

(J [ρ]/N + αpNp)(N − 1) + J [ρ] + αNp+1

(J [ρ]/N + αNp)(N − 1)
, (5.28)

and substituting p = 1 recovers

kΩ =
2N − 1

N − 1
. (5.29)

For the purposes of our investigation we may compute this functional—and the

corresponding Exc—entirely from near-exact ZMP quantities and a knowledge

of the number of electrons in the system. The prefactor α and exponent p

are again determined from a fit over the set of atoms. There are, in fact, two

intuitive quantities we can fit to. Based on our above homogeneity arguments

we could choose the parameters which minimise the difference between kΩ in

equation (5.28), and the near exact value in equation (5.16). Alternatively, we

could choose the parameters that minimise the error in Exc. In the ideal case

the two approaches would give the same value, but in the event that this is

not the case, we could attempt to fit to both quantities simultaneously. We

take two approaches to the fitting: either minimising the sum of square errors

(SSE) as before, or minimising the mean absolute percentage error (MAPE);

the latter method was chosen to better weight the two components when fitting

to both kΩ and Exc simultaneously.

Table 5.2 summarises the results of the different minimisation criteria. It

is clearly possible to improve upon the description of both Exc and kΩ by
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Table 5.2: Optimised parameters for the functional B[ρ] = αNp,
along with the errors in kΩ and Exc (compared to near-exact ZMP
values), generated for various minimisation conditions. Both mean
absolute percentage errors (MAPE) and sums of square errors (SSE)
are quoted in Eh.

kΩ Exc

Minimisation criteria α p MAPE SSE MAPE SSE

SSE
Exc with p = 1 −0.062 1 0.020 0.034 0.038 1.442
Exc −0.104 0.805 0.063 0.284 0.004 0.019
kΩ −0.097 0.958 0.006 0.006 0.151 167.735
Exc and kΩ −0.094 0.843 0.042 0.127 0.008 0.077

MAPE
Exc with p = 1 −0.064 1 0.020 0.034 0.034 2.826
Exc −0.108 0.792 0.071 0.357 0.004 0.026
kΩ −0.093 0.951 0.006 0.006 0.119 110.610
Exc and kΩ −0.077 0.927 0.007 0.007 0.021 1.072

breaking the DS: 1 requirement of our (very simple) functional form, although

reassuringly the optimal values remain relatively close to unity. There is a

certain ambiguity as to which value is “best”, but it suffices to note that the

errors in Exc and kΩ are minimised for different values of p: approximately 0.8

and 0.95, respectively. A good compromise between the two can be found by

minimising the MAPE of both simultaneously, with p ≈ 0.93.

Figures 5.3 and 5.4 plot kΩ and the error in Exc respectively, for the atoms

involved in the fit. The trends clearly reinforce those of Table 5.2—individually

optimising kΩ or Exc negatively affects the other quantity, but optimising

both simultaneously provides a reasonable (if not perfect) approximation of

both. Constraining p to be unity, as in our initial tests, also gives a reasonable

approximation.

This analysis is very promising. By starting from basic homogeneity ar-

guments, we have taken an exceedingly simple functional form—N raised to

a power and multiplied by a constant—and added it to the Fermi–Amaldi

functional to produce a remarkable correction, whereby the correct exchange–

correlation energies and effective homogeneities are approximately reproduced.

The functional form is not perfect—and, indeed, we could continue to look for

a more optimal set of parameters in equation (5.26) by removing our simplistic

constraints, however there are other considerations to take into account.
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Figure 5.3: kΩ values for B[ρ] = αNp using different optimisa-
tion criteria, compared with near-exact values. SSE indicates the
optimisations were carried out by minimising the sum of square
errors, whilst MAPE indicates minimisation of the mean absolute
percentage error.
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Our investigations so far have originated from the qualitative observation

in Figure 5.1 that a simple mathematical form mimics kΩ, as defined by

equation (5.16) when evaluated using kav
xc, from equation (5.11). We have

demonstrated that we can use this to derive a functional form that, through

exhibiting the correct effective homogeneity, can provide a good approximation

to the exchange–correlation energy.

We note, however, that the underlying homogeneity constraint (kxc =

kav
xc) relates to the exchange–correlation potential averaged across the integer

discontinuity. Thus, constraining a functional to this homogeneity will by

definition generate a potential of this averaged, GGA-like nature, and as such

will not solve our overarching concern—that of the delocalisation error and

satisfying the Koopmans conditions of equations (5.1) and (5.2).

As discussed in the introduction to this chapter, the continuum nature

of explicit density functionals means we cannot simultaneously satisfy both

equations (5.1) and (5.2). Instead we now consider using the above homogeneity

arguments to develop an expression appropriate specifically for the electron-

deficient side of the integer system, culminating in a functional that does

approximately satisfy equation (5.1).

For the remainder of the chapter, then, we look to replacing kav
xc in our

functional form with k−xc. As noted in Ref. 244, the system-dependence of

k−xc is much more pronounced than that of kav
xc, and finding an appropriate

approximation may be non-trivial. However, by relating the properties of a

functional studied by Parr and Ghosh 250 to the homogeneity calculations of

Borgoo et al.,244 we establish that the necessary system-dependence can be

introduced directly into the generic functional of equation (5.12), rather than

by an equivalent of the (N − 1) term in equation (5.25).

5.3 Parr–Ghosh functional

The functional investigated by Parr and Ghosh250 takes a form very similar to

equation (5.25), neglecting only the factor of (N − 1),

Exc[ρ] = −J [ρ]

N
+G[ρ] , (5.30)
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where G[ρ] is an arbitrary functional which is homogeneous of degree one under

density scaling. Whilst such a homogeneity condition is acknowledged in the

above paper as a simple approximation, it provides an excellent basis for our

own investigation of homogeneity relationships.

From equation (5.30), we can determine the exchange–correlation potential

vxc(r) =
δ

δρ

(
−J [ρ]

N

)
+

δ

δρ

(
G[ρ]

)
(5.31)

= −vJ [ρ]

N
+ vG[ρ] , (5.32)

and the effective homogeneity

kpgxc =

∫
vxc(r)ρ(r) dr

Exc[ρ]
(5.33)

=
−2J [ρ]/N +G[ρ]

Exc[ρ]
(5.34)

=
Exc[ρ]− (J [ρ]/N)

Exc[ρ]
, (5.35)

where we have used the fact that G[ρ] is DS: 1,

kGG[ρ] = G[ρ] =

∫
vG(r) ρ(r) dr . (5.36)

Note that, following Parr and Ghosh, we have not differentiated N , treating it

instead as a fixed parameter. This can be rationalised by considering the nature

of the electron–deficient potential: by not differentiating N , the Parr–Ghosh

potential, being a correction to Fermi–Amaldi, correctly decays to zero as −1/r.

If we instead chose to differentiate N , the shape of the potential would be

unchanged, but would be shifted by a constant and no longer decay to zero.

For the atoms for which we have near-exact ZMP quantities, we can hence

determine the effective homogeneities of the Parr–Ghosh functional. Table 5.3

presents the deviations in these quantities from the near-exact k−xc values, and

correlates them with the errors in the Parr–Ghosh functional. Immediately,

we see that for atoms where the error in the energy is small, the deviation

in kpgxc is also small, indicating that constraining G[ρ] to be DS: 1 is a good

approximation. Conversely, however, the atoms for which the Parr–Ghosh

approximation breaks down and the error in the energy is large, are those

where kpgxc shows a significant error, implying that, for these systems, kG should

not be unity.
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Table 5.3: Deviation of the effective homogeneities of the Parr–
Ghosh (PG) functional from near-exact k−xc, along with the errors
in total energy (from near-exact values) quoted in Ref. 250.

Atom kpgxc − k−xc ∆E/Eh

Li 0.217 0.398
Be 0.045 0.149
B 0.044 0.177
C 0.003 0.010
N −0.024 −0.244
O −0.001 −0.020
F −0.008 −0.082
Na 0.113 1.609
Mg 0.084 1.585
Al 0.059 1.101
P −0.008 −0.165
S 0.002 0.016
Cl −0.011 −0.350

Can we, therefore, improve upon the Parr–Ghosh approximation by choosing

an appropriate G[ρ] with the correct homogeneity? In other words, if we choose

a functional form for G[ρ] by constraining kG such that kxc = k−xc can we

reduce the errors in Table 5.3? Moreover, since the homogeneity is intrinsically

linked to the potential through equation (5.9), can we produce a functional

that satisfies εh = −I?

5.4 Development of an electron-deficient

functional

We present two functional forms, where the effective DS homogeneity is con-

strained to be k−xc; we will term these functionals ed, for electron-deficient.

The first approach, termed ed1, is given by

Eed1
xc [ρ] = γF [ρ] , (5.37)

which is a simple scaling of an explicit density functional. The second approach,

termed ed2, follows the Parr–Ghosh method to provide a correction to the

Fermi–Amaldi approximation, whereby

Eed2
xc [ρ] = −J [ρ]

N
+ αG[ρ] . (5.38)
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F [ρ] and G[ρ] are functionals of the form equation (5.12), which are DS: k and

CS: m for all n, and γ and α are arbitrary constants. The latter approach,

as we have seen, is desirable due to the correct asymptotic behaviour of the

potential—though for completeness we will investigate both methods.

In both cases, we desire an exchange–correlation functional with an effective

homogeneity of kxc = k−xc, and so for ed1 this requires

kF = k−xc . (5.39)

For ed2, we evaluate equation (5.7) for the functional in equation (5.38), and

substitute kxc = k−xc, to give

k−xcExc[ρ] =

∫
vxc(r)ρ(r) dr (5.40)

=

∫ −vJ(r)

N
ρ(r) dr + α

∫
vG(r) ρ(r) dr (5.41)

=
−2J [ρ]

N
+ α kGG[ρ] . (5.42)

This rearranges, dropping [ρ] for brevity, to give

kG =
k−xcExc + (2J/N)

Exc + (J/N)
. (5.43)

As before, we have treated N as a fixed parameter. We then substitute kF or kG

from equations (5.39) and (5.43) for k in the generic functional equation (5.12),

to give the functionals F [ρ] and G[ρ], respectively.

Table 5.4 lists the required effective homogeneities for a range of atoms

and molecules for each approach. Quantities were derived from near-exact

ZMP values where available, or otherwise from the near-exact calculations

of Ref. 244. Consistent with our observations in Section 5.3, the kG values

that are close to unity in Table 5.4 correspond to atoms—for example oxygen,

carbon and sulphur—where the Parr–Ghosh approximation was particularly

effective (i.e. small errors in Table 5.3).

Given that k is pre-determined, we now have three free parameters for

which we must find optimal values: the coordinate-scaling m, the prefactor γ

or α, and the gradient exponent n. To begin with, for the sake of simplicity,

we choose to eliminate the gradient dependence and generate a local functional

where n = 0, so that equation (5.12) becomes

E[ρ] =

[∫
ρ(r)

3k
3k−m dr

] 3k−m
3

, (5.44)



Development of an electron-deficient functional · 121

Table 5.4: Exact effective homogeneities kF and kG required for
functionals F [ρ] and G[ρ], in order to ensure kxc = k−xc, for equa-
tions (5.37) and (5.38).

Atom kF kG

Li 1.525 0.161
Be 1.606 0.867
B 1.558 0.889
C 1.568 0.993
N 1.575 1.053
O 1.544 1.003
F 1.545 1.017
Ne 1.547 1.035
Na 1.391 0.772
Mg 1.403 0.835
Al 1.410 0.888
P 1.451 1.015
S 1.431 0.997
Cl 1.435 1.019
Ar 1.440 1.037

Molecule kF kG

CH4 1.552 1.280
CO 1.486 1.151
Cl2 1.410 1.211
F2 1.501 1.233
H2O 1.513 1.017
HCl 1.428 1.030
HF 1.523 1.011
N2 1.494 1.165

replacing k with the exact kF or kG from Table 5.4 to produce F [ρ] and G[ρ].

5.4.1 post-kohn–sham optimisation

As before, we used a post-KS framework in a developmental version of cadpac

to determine F [ρ] and G[ρ], using the converged pbe density with the aug-cc-

pVTZ basis set. Equation (5.12) was evaluated for 0.9 6 m 6 2 at intervals of

0.05; n was set to zero and k taken from Table 5.4.

For each m, we then performed a least-squares fit, to near-exact values, of

F [ρ] against Exc[ρ], and G[ρ] against Exc[ρ] + J [ρ]/N , in order to determine γ

and α, respectively. The value of m that produced the lowest errors in the fit

was chosen, along with its corresponding prefactor, as the optimal functional

form. The fitting set comprised the species in Table 5.4; we investigated fitting

to both the set of atoms only, in keeping with previous work, and to the

combined set of atoms and molecules.

Figure 5.5 plots the regression fit to determine the prefactor for the optimal

m of each of the four approaches. In plot (a), fitting only to the set of atoms,

there is a stark contrast between F [ρ] and G[ρ]. The former shows a distinct

jump in the correlation between the computed and near-exact values, consistent
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Figure 5.5: Linear-regression fits (through zero) of the ed approxi-
mate energy functionals against near-exact values, to determine the
prefactors γ and α. Fits were performed (a) to the set of atoms
in Table 5.4 and (b) to both the atoms and molecules in the same
table.

with the periodicity of the atoms (the jump occurs between Ne and Na). The

nature of this jump means a simple linear relationship cannot be found and the

errors due to the averaged prefactor γ are significant. G[ρ], however, appears to

have a much more linear correspondence with the near-exact values, with the

periodicity largely accounted for by the J [ρ]/N term. As a result, the averaged

prefactor α produces surprisingly small errors across the range of atoms, and is

an exciting prospect for such a simple functional form.

Plot (b) includes the molecules in the fit, and the difference between the

two functionals is now lessened by the increasingly scattered correlation. It is

perhaps to be expected that the introduction of molecular species reduces the

possibility of finding a simple linear relationship between our functional forms

and the near-exact value, however the fact they are at all close is encouraging.

Table 5.5 lists the optimal parameters, as determined by the regression

fits, for the four functionals. For notational purposes, we use the suffixes -a

and -am to denote the functionals fitted to atoms, and atoms and molecules,

respectively.
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Table 5.5: Parameters defining the “optimal” ed1 and ed2 func-
tionals, as determined from a linear regression fit to the set of atoms
(-a) and atoms and molecules (-am).

Functional γ m

ed1-a −0.629 15 1.10
ed1-am −0.610 97 1.20

α m

ed2-a −0.376 89 1.65
ed2-am −0.785 30 1.20

5.4.2 self-consistent implementation

With all parameters now defined, the ed1 and ed2 functionals were imple-

mented self-consistently into the developmental cadpac code. The exchange–

correlation potentials were obtained directly by functionally differentiating all

terms in equations (5.37) and (5.38), given the relevant constants. Note that

the ed2 functional must take into account the derivative of the −J/N term,

for which we treat N as a fixed constant.

For convenience, we define p = 3k/(3k −m), q = (3k −m)/3, and ε[ρ] =∫
ρ p dr, and so the generic energy functional in equation (5.44) becomes

E[ρ] =

[∫
ρ p dr

]q
= ε[ρ]q . (5.45)

The potential is then

vE =
δE[ρ]

δρ
= qε[ρ]q−1 δε[ρ]

δρ
(5.46)

= pqε[ρ]q−1 ρ p−1 (5.47)

= kε[ρ](k−
m
3
−1) ρ

m
3k−m . (5.48)

Special care must be taken due to the external power q in equation (5.44), as the

energy functional appears—raised to a different power—in the expression for

the potential, and this must be properly accounted for in the implementation.

The TDDFT exchange–correlation kernel was similarly determined from

the second functional derivative of equation (5.45),

fed
xc =

δ 2E[ρ]

δρ(r)δρ(r′)
= qp(p− 1)ε[ρ]q−1 ρ(r)p−2δ(r − r′)

+ p2q(q − 1)ε[ρ]q−2 ρ(r)p−1 ρ(r′)p−1 .

(5.49)
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Extra care must again be taken in the evaluation of the two-electron inte-

gral (ia|fed
xc |jb) from equation (2.78), as the second term of equation (5.49)

depends on both r and r′, which again arises due to the external power q in

equation (5.45). Expansion of the integrals leads to two terms,∫∫
dr dr′

δ 2E[ρ]

δρ(r)δρ(r′)
ϕi(r)ϕa(r)ϕj(r

′)ϕb(r
′)

= qp(p− 1)ε[ρ]q−1

∫
dr ρ(r)p−2 ϕi(r)ϕa(r)ϕj(r)ϕb(r)

+ p2q(q − 1)ε[ρ]q−2

∫
dr ρ(r)p−1 ϕi(r)ϕj(r)

∫
dr′ ρ(r′)p−1ϕj(r

′)ϕb(r
′) .

(5.50)

A full derivation can be found in Appendix A.

Verifying the implementation

Our implementation was verified by carrying out Hellmann–Feynman tests,

comparing analytic results for first and second derivatives (the dipole moment

and static polarisability, respectively) with numerical finite difference results

(using energies and dipole moments, respectively) determined from calculations

in a small electric field. Table 5.6 gives a representative example of this process

for the CO molecule, using the full system-dependent form of the ed2 functional

(defined in Section 5.5) and the Sadlej basis set used in the analysis of static

polarisabilities (Section 5.6.4). There is close agreement between the numerical

and analytic results, comparable to equivalent tests performed using pbe (the

results of which are included in Table 5.6 for comparison), verifying that the

implementation is variational. Note that the parameters defining each of the

functionals were treated as independent of electric field.

Performance of the self-consistent functionals

For simplicity, the self-consistent implementation was restricted to closed-shell

systems. Although this limited the available set of test systems, it was sufficient

to draw initial conclusions.

Table 5.7 lists the mean absolute errors (MAEs) in Exc (compared to near-

exact ZMP values) and those in the HOMO energies εh (compared to −I0
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Table 5.6: Representative Hellmann–Feynman tests for CO, using
the ed2 functional and Sadlej basis set, comparing the agreement of
analytic dipole moments µ and static isotropic polarisabilities αiso =
(αxx+αyy+αzz)/3, with numerical equivalents. Numerical quantities
were determined by finite difference quotients from calculations in
an electric field of ±0.0001 a.u., and all quantities are quoted in
atomic units. pbe results are included for comparison.

Field Energy in +ve field Energy in -ve field Difference quotient

x −113.237 500 −113.237 500 0
y −113.237 500 −113.237 500 0
z −113.237 493 −113.237 506 0.0651

Numerical µz 6.5135× 10−2

Analytic µz 6.5132× 10−2

Agreement 2.7800× 10−6

pbe agreement 2.0900× 10−6

Field Dipole in +ve field Dipole in -ve field Difference quotient

x 0.001 075 −0.001 075 10.7451
y 0.001 075 −0.001 075 10.7451
z −0.063 763 −0.066 502 13.6958

Numerical αiso 11.7287
Analytic αiso 11.7287

Agreement 2.9360× 10−5

pbe agreement 1.1607× 10−4

values) for the set of closed-shell molecules in Table 5.4—this time computed

self-consistently.

Despite the functional parameters being fitted (post-KS) to near-exact ZMP

Exc values, the errors in the self-consistent Exc values are not particularly

impressive for any of the functionals—at best they are an order of magnitude

worse than pbe.

Fitted only to the the set of atoms ed2-a produces an MAE in Exc of over

3Eh—three times larger that of ed1-a, despite a much more linear trend in the

regression fit of ed2-a. This seemingly incongruous result can be rationalised

by the fact that this much more accurate fit is to a set of largely open-shell

atoms, resulting in a functional that is completely inappropriate for closed-shell

molecules. In other words, the poor fit of ed1-a to the set of atoms actually

improves its application to molecules—although results are still poor.

When molecules are included in the fitting set, the MAEs in Exc reduce for

both methods, although they remain significant: ed1-am produces an MAE
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Table 5.7: Mean absolute errors in the exchange–correlation and
HOMO energies, for self-consistent calculations using ed1 and ed2,
with optimal parameters determined from the linear-regression fits
of Figure 5.5. pbe and lda errors are included for comparison.

Functional (Exc − Ezmp
xc )/Eh (εh + I0)/Eh

ed1-a 0.987 0.113
ed2-a 3.180 0.141
ed1-am 0.593 0.206
ed2-am 1.160 0.067
pbe 0.087 0.189
lda 1.202 0.194

of nearly 0.6Eh (over six times larger than pbe), whilst ed2-am gives an

error double this again. These large errors are symptomatic of the significant

scattering around the linear fit.

The errors in εh are more promising, with both ed1 and ed2 showing

an improvement over pbe and lda. In particular, ed2-am gives a threefold

reduction in the error compared to pbe, however, the large errors in Exc for

this functional limits its usefulness—there is little benefit to improving the

HOMO energies if the overall energies are ruined.

Two problems thus remain with our functional form. Firstly, our theoretical

justification for these functional forms relies on explicitly constraining the

homogeneity of the functional to a system-dependent k−xc, a quantity for which

we have used known near-exact values from Ref. 244. In the general case,

however, this quantity is unknown, rendering the functional form useless

without prior knowledge of exact data or highly accurate ab-initio calculations.

Secondly, we have not succeeded in finding a prefactor that is appropriate for

all systems—the energies simply do not give a sufficiently linear relationship

with our functional form. We address the first problem in the following section,

and then move on to show how the solution can also elegantly solve the latter,

to create a truly general, system-dependent functional form with promising

characteristics.

5.4.3 approximating the effective homogeneity

To turn our functional forms into a practical, generally applicable method,

we need to be able to evaluate k for an arbitrary system, which poses an
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obvious challenge given the form of equations (5.9), (5.39) and (5.43). However,

we observe that all of the relevant components in these equations can be

estimated relatively accurately from conventional GGA calculations, meaning

an approximate k can be calculated in advance and then used in the functional.

We do this as follows.

The quantities Exc and J are trivially approximated from a GGA calculation;

we denote them Egga
xc and Jgga. For k−xc , we first rearrange equation (5.11) to

give

k−xc = kav
xc −

N∆xc

2Exc

, (5.51)

noting from Ref. 244 that kav
xc ≈ 4/3. We also note that ∆xc can be approxi-

mated by

∆xc ≈ 2(εggah + Igga) , (5.52)

where εggah and Igga are the HOMO energy and ∆SCF ionisation potential

(computed from total electronic energies) determined using a GGA func-

tional. Equation (5.52) is central to the asymptotic approach of Ref. 191;

see Refs 149 and 159 for further discussion. Substituting these two results into

equation (5.51), and estimating Exc using the GGA value, gives

k−xc ≈
4

3
− N(εggah + Igga)

Egga
xc

. (5.53)

Returning to equations (5.39) and (5.43), we therefore obtain the following

expressions for the approximate, system-dependent k:

kF ≈
4

3
− N(εggah + Igga)

Egga
xc

, (5.54)

and

kG ≈

(
4
3
− N(εggah +Igga)

Egga
xc

)
Egga

xc + (2Jgga/N)

Egga
xc + (Jgga/N)

. (5.55)

Although, on the face of it, these quantities appear rather complicated, in

reality they merely involve simple arithmetic on quantities trivially computed

in a typical GGA calculation.

One subtlety is that GGA calculations are required on both the N - and

(N − 1)-electron systems. The latter is required solely to compute the total

electronic energy of the (N − 1)-electron system, for the computation of Igga.
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Figure 5.6: Comparison of approximations for kF and kG from
equations (5.54) and (5.55) with their exact equivalents from Ta-
ble 5.4.

This need to compute the ionisation potential—whilst arguably inconvenient—

is not only found in the current approach but is also central to the conventional

functional tuning approaches of previous chapters.

Figure 5.6 plots the near-exact kF and kG from Table 5.4 alongside the

approximations from equations (5.54) and (5.55), where the approximations

use GGA quantities obtained from pbe calculations with the aug-cc-pVTZ

basis set. It is clear that the outlined method gives a good approximation of

the electron-deficient homogeneity, and so it is reasonable to continue to use

the approximate forms in subsequent development.

Given these approximate values of k we could, in principle, repeat the anal-

ysis of Figure 5.5 and Table 5.7. Indeed, preliminary investigations revealed

very similar optimal values for the prefactors and coordinate-scaling homo-

geneities However—as already established—the relatively inflexible functional
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form associated with a fitted prefactor is insufficient to accurately reproduce

exchange–correlation energies. Instead, we argue that since we already require

a precursor gga calculation to compute the approximate, system-dependent k,

we can use the same calculation to determine an appropriate system-dependent

prefactor.

5.4.4 system-dependent prefactor

Specifically, we demand that the exchange–correlation energy in equations (5.37)

and (5.38) equals the GGA value when the GGA density is used, which requires

γ =
Egga

xc

F gga
, (5.56)

and

α =
Egga

xc + (Jgga/N)

Ggga
. (5.57)

Here, F gga and Ggga are the values of F [ρ] and G[ρ] (we drop the [ρ] for

brevity) obtained by evaluating equation (5.12) using the GGA density, for the

values of k given by equations (5.54) and (5.55). This can be obtained from a

trivial modification of a GGA code.

5.4.5 determining the coordinate-scaling parameter

Since we are still working in the realm of a local functional (no gradient

dependence, so n = 0), the only parameter left to determine is the homogeneity

under coordinate scaling, m. Whilst this quantity is again system-dependent,

there is no obvious approximation to be made, and so we again search for an

optimal value that can be reasonably applied to a variety of systems. With

the knowledge of our other parameters we may once again perform a series of

self-consistent calculations for a range of m, and hence assign the parameter

based on the best results for the given criteria. It must be noted that the value

of the prefactor—as determined by the GGA precursor calculation—varies

depending on the choice of m, and this must be factored into the subsequent

SCF calculations.

For the optimisation criteria, two alternatives immediately spring to mind:

minimising the errors in either the exchange–correlation energies or the HOMO
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Table 5.8: Optimal values of m based on self-consistent calculations
with ed1 and ed2, using a system-dependent prefactor.

Minimisation Exact k Approx k

ed1 ed2 ed1 ed2

|εh + I0| 0.93 0.98 0.97 1.00

energies. Intuitively, the latter option might be expected to be more useful, as

the definition of the prefactors γ and α should ensure that the computed Exc

be close to that of the GGA, regardless of m.

Since we are once again fitting a limited subset of systems to find a universal

parameter, it makes sense to compare to the best-quality data we have, namely

the near-exact ionisation energies (as in Table 5.7), which are appropriate for a

functional with kxc ≈ k−xc. That being the case, we must make a decision as

to which values of kF and kG to use: the near-exact forms of equations (5.39)

and (5.43), or the approximate forms of equations (5.54) and (5.55)?

A valid argument could be made for either. The functional, in its final

implementation, will use the approximate values by necessity, since exact values

are unknown for an arbitrary system, and so it is not unreasonable to use

the same values in the initial fit. On the other hand, near-exact values (since

we know them for the fitting set) would be consistent with the near-exact

quantities to which we are fitting. We consider both options, but ultimately

settle on the approximate values, as we feel this to be the most internally

consistent procedure.

Table 5.8 lists the optimal values of m, determined to within 0.01, using

the |εh + I0| minimisation criterion for each of the k values. The same set of

closed-shell molecules was used, comprising CH4, CO, Cl2, F2, H2O, HCl, N2,

with a pbe calculation as the GGA precursor and the aug-cc-pVTZ basis set

throughout. The precise optimum value varied between molecules, and so m

was chosen to minimise the mean absolute error across the set.

It is encouraging that the relevant values are close to unity, given that F [ρ]

corresponds directly to the exchange–correlation functional, and G[ρ] to the

difference between the exchange–correlation and Fermi–Amaldi functionals:

both the Fermi–Amaldi term, and exact exchange (which usually dominates

exchange–correlation) are homogeneous of degree one under coordinate scaling.
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There is no significant difference between the values derived from near-exact

and approximate values of k. This, again, is encouraging, as it reinforces the

applicability of the approximate values.

Ultimately, we note that m = 1 gives near-optimal HOMO energies and so

we use this value throughout. Using a more precise value would ideally require

widening the scope of the investigation, and fitting to a much larger set of

systems. Moreover, differences in the approximate k may arise though the use

of different basis sets (necessary for response calculations), as it makes sense to

re-compute k using the same method as the final calculation. This, in turn,

may affect the precise value of the optimal m, so we feel that a value of unity

is a suitable compromise.

5.5 Summary of the ED functional scheme

Our scheme for a self-consistent calculation on an arbitrary N -electron system

can therefore be summarised as follows:

1. Perform GGA calculations on the N - and (N − 1)-electron systems, and

use the data to determine kF or kG using equations (5.54) and (5.55).

2. Use the converged GGA density from the above N -electron calculation,

together with the calculated k and m = 1, to determine the prefactors γ

or α from equations (5.56) and (5.57).

3. Finally, perform a self-consistent calculation on the N -electron system

using the functional in equations (5.37) and (5.38), with the parameters

computed in the above steps.

The remainder of the chapter is devoted to assessing the performance of

these two functionals, Eed1
xc = γF , and Eed2

xc = −(J/N) + αG.

5.6 Analysis and performance of the ED

functionals

All ed calculations use the pbe functional for the initial GGA calculations;

we have confirmed that the results are not sensitive to the choice of GGA.
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Table 5.9: Parameters defining the ed1 functional.

Molecule kF γ 3k
3k−m

3k−m
3

CH4 1.58 −0.554 1.27 1.24
CO 1.51 −0.593 1.28 1.18
Cl2 1.42 −0.645 1.31 1.09
F2 1.52 −0.541 1.28 1.19

H2O 1.55 −0.592 1.27 1.22
HCl 1.44 −0.649 1.30 1.11
HF 1.56 −0.574 1.27 1.23
N2 1.53 −0.582 1.28 1.19

Table 5.10: Parameters defining the ed2 functional.

Molecule kG α 3k
3k−m

3k−m
3

CH4 1.18 −0.590 1.39 0.85
CO 1.19 −0.696 1.39 0.86
Cl2 1.22 −0.851 1.37 0.89
F2 1.27 −0.643 1.36 0.93

H2O 1.10 −0.639 1.44 0.77
HCl 1.05 −0.913 1.46 0.72
HF 1.09 −0.630 1.44 0.76
N2 1.22 −0.661 1.38 0.89

The same basis set is used for each of the three stages of the ed calculations.

Given that this is a preliminary, proof-of-concept investigation we choose not

to compare our results with those from a plethora of other functionals; rather

we focus our comparison against pbe, which provides the key ingredients for

the ed functionals. We also compare with experimental or near-exact reference

values, quoting mean absolute errors (MAEs) relative to these values.

We begin by considering results for eight representative molecules: CH4,

CO, Cl2, F2, H2O, HCl, N2. Whilst one might argue that these are the same as

those used in the ‘fitting’ of m and hence expected to perform well, we reiterate

that a true fit was never undertaken, merely an observation that m = 1 gave

near-optimal results. Later sections extend the analysis to a wide range of

other systems, with different basis sets, and these reinforce the validity of the

approach.

Tables 5.9 and 5.10 list the calculated values of kF and γ for ed1, and kG and

α for ed2, respectively, for each molecule. Also listed are the values of 3k/(3k−
m) and (3k − m)/3, which define the functional forms via equation (5.44).
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For all eight systems, the density exponent 3k/(3k −m) is greater than unity

and so the potentials associated with F and G asymptotically vanish, at an

exponential rate. It follows that the ed2 exchange–correlation potential in

asymptotic regions reduces to the potential of the Fermi–Amaldi functional,

which exhibits the exact −1/r form. The ed2 functional therefore yields the

exact asymptotic exchange–correlation potential for each of the eight systems;

we have confirmed that this is also the case for all systems considered in this

study. By extension, the ed1 functional, in the absence of the Fermi–Amaldi

term, exhibits a potential which vanishes too quickly in asymptotic regions.

The effective homogeneities of the ed1 and ed2 functionals are given by

equation (5.7), and the central idea behind the functionals is that these values

should be close to k−xc. For the eight molecules listed above, the values of k−xc
were calculated in Ref. 244, and so we can quantify how well this is achieved

in practice.

Figure 5.7 plots the ed1 and ed2 kxc values, obtained by evaluating equa-

tion (5.7) using data from self-consistent ed1 and ed2 calculations, explicitly

integrating the potential with the converged density and substituting in the final

Exc[ρ]. These values are compared with the near-exact k−xc values of Ref. 244.

The self-consistent values are very close to the approximate values used to

initially define the functionals (deduced from Figure 5.6), and the average

discrepancy from near-exact values is less than 2 %. The system-dependence of

k−xc is successfully reproduced.

5.6.1 exchange–correlation energies

Table 5.11 presents exchange–correlation energies for the initial test set, com-

pared to the near-exact values from Ref. 244. As might be expected, the ed

values are very close to those of pbe, with ed2 producing a slightly lower MAE

than ed1. Recall the definition of equations (5.56) and (5.57): for the pbe

density, the Exc of the ed functionals exactly equals that of pbe, and so the

discrepancy between the ed and pbe energies is a measure of the difference

between their converged densities. The mean absolute percentage difference

between pbe and ed2 exchange–correlation energies is 0.8 %. The discrepancy

between total electronic energies (not shown) is just 0.02 %.

For the ed2 functional, the importance of the second term in equation (5.38),
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Figure 5.7: Effective homogeneities of the exchange–correlation
functional from self-consistent ed1 and ed2 calculations, compared
with near-exact k−xc values from Ref. 244.

Table 5.11: Exchange–correlation energies (in Eh), compared to
near-exact values from Ref. 244.

Molecule pbe ed1 ed2 Near-exact

CH4 −6.836 −6.926 −6.922 −6.865
CO −13.756 −13.913 −13.835 −13.816
Cl2 −56.039 −56.297 −56.165 −56.303
F2 −20.553 −20.813 −20.665 −20.579

H2O −9.238 −9.393 −9.373 −9.270
HCl −28.377 −28.550 −28.491 −28.526
HF −10.713 −10.901 −10.868 −10.759
N2 −13.572 −13.727 −13.652 −13.607

MAE 0.080 0.101 0.074
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Table 5.12: HOMO energies (in Eh), compared to the negative of
the exact vertical ionisation potential from Ref. 149.

Molecule pbe ed1 ed2 −I0

CH4 −0.347 −0.512 −0.506 −0.526
CO −0.332 −0.481 −0.515 −0.515
Cl2 −0.268 −0.344 −0.414 −0.422
F2 −0.347 −0.554 −0.611 −0.577

H2O −0.266 −0.447 −0.466 −0.464
HCl −0.296 −0.389 −0.425 −0.469
HF −0.355 −0.574 −0.593 −0.592
N2 −0.377 −0.551 −0.593 −0.573

MAE 0.194 0.036 0.016

and its system-dependence, is particularly notable. Removing this term entirely,

leaving only the Fermi–Amaldi term, leads to an MAE of 13.007Eh, illustrating

the unsuitability of the unmodified Fermi–Amaldi approximation for computing

Exc. Reinstating the term, but choosing the parameters kG and α to be an

average of the values in Table 5.10, leads to an MAE of 2.501Eh, which is still

two orders of magnitude greater than that of ed2.

5.6.2 homo energies

Table 5.12 presents the HOMO energies for the same test set, compared to −I0,

the negative of the exact vertical ionisation potential, from Ref. 149. As is well

known, the pbe HOMO energies are significantly above −I0, with an MAE of

0.194Eh. The ed functionals both show an order of magnitude improvement

in the errors, with all HOMO energies being lowered towards −I0. The error

of 0.036Eh for ed1 is almost halved again with ed2, highlighting the beneficial

effect of adding the Fermi–Amaldi term.

Again, the importance of the αG[ρ] term in the ed2 functional is highlighted

by the MAEs of 0.145Eh and 0.040Eh given respectively by Fermi–Amaldi

and by averaged parameters. Both errors are again significantly larger than

those of ed2.
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Table 5.13: HOMO energies (in Eh), compared to the negative of
the rmp2 ionisation potential I.

Anion pbe ed1 ed2 −I
CH3S– 0.047 −0.003 −0.060 −0.070
CN– −0.001 −0.100 −0.148 −0.146
Cl– 0.009 −0.046 −0.103 −0.132
F– 0.057 −0.074 −0.122 −0.134

HOO– 0.101 −0.006 −0.069 −0.066
NH –

2 0.094 0.016 −0.028 −0.033
NO –

2 0.040 −0.065 −0.138 −0.096
OH– 0.080 −0.019 −0.064 −0.076
PH –

2 0.056 0.027 −0.028 −0.043
SH– 0.035 −0.005 −0.061 −0.084

SiH –
3 0.034 −0.001 −0.043 −0.065

MAE 0.136 0.060 0.016

5.6.3 bound anions

We now proceed to consider the ed functionals for other systems and properties.

First, we examine the HOMO energies of bound anions. Most of the molecules

in the previous test set do not bind an excess electron and so we consider

a different set. Table 5.13 presents HOMO energies for 11 bound anions,

determined at mp2/6-31g* anion geometries using the aug-cc-pVTZ basis set.

For reference, we list the negative of the vertical ionisation potential of the

anion determined using restricted mp2 (rmp2251) with the same basis set.

For pbe, the values are essentially all positive and this issue as been the

subject of much discussion;252,253 the MAE is 0.136Eh. With ed1, the HOMO

energies are lowered, and all become (correctly) negative with the exception of

NH –
2 and PH –

2 . The MAE of 0.060Eh is not quite as low as for the neutral

systems in Table 5.12, but is still less than half that of pbe. For ed2, all the

HOMO values become negative, as required, with an MAE of just 0.016Eh;

this MAE is the same as that obtained for the neutral systems in Table 5.12.

5.6.4 excitation energies

Next, we consider TDDFT vertical excitation energies. Table 5.14 presents

singlet excitation energies for CO, N2, and H2CO, determined at experimen-

tal geometries254 using an augmented Sadlej basis set,191,255,256 compared to

experimental values.191
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Table 5.14: Vertical excitation energies (in eV), compared to ex-
perimental values from Ref. 191. Rydberg and valence excitations
are labelled R and V, respectively.

State Transition Type pbe ed1 ed2 Expt.

CO

1Σ+ σ → 3dσ R 9.62 13.40 12.33 12.40
1Π σ → 3pπ R 9.56 13.32 11.32 11.53

1Σ+ σ → 3pσ R 9.47 13.21 11.59 11.40
1Σ+ σ → 3sσ R 8.99 12.63 10.56 10.78
1∆ π → π∗ V 10.18 10.52 11.11 10.23

1Σ− π → π∗ V 9.84 10.17 10.39 9.88
1Π σ → π∗ V 8.25 8.36 8.04 8.51

MAE (R) 2.12 1.61 0.17
MAE (V) 0.12 0.25 0.62
MAE (all) 1.26 1.03 0.36

N2

1Πu πu → 3sσg R 11.54 15.78 14.52 13.24
1Σ+

u σg → 3pσu R 10.47 14.96 13.51 12.98
1Πu σg → 3pπu R 10.48 15.10 13.29 12.90
1Σ+

g σg → 3sσg R 10.23 14.53 12.65 12.20
1∆u πu → πg V 10.08 10.24 10.85 10.27
1Σ−

u πu → πg V 9.66 9.80 9.98 9.92
1Πg σg → πg V 9.08 9.21 9.01 9.31

MAE (R) 2.15 2.26 0.66
MAE (V) 0.23 0.09 0.32
MAE (all) 1.33 1.33 0.51

H2CO

1A2 n→ 3db1 R 7.14 11.12 9.64 9.22
1A2 n→ 3pb1 R 6.59 10.41 8.46 8.38
1B1 σ → π∗ V 8.85 9.18 8.94 8.68
1B2 n→ 3pa1 R 6.38 9.81 8.04 8.12
1A1 n→ 3pb2 R 6.40 9.69 8.25 7.97
1B2 n→ 3sa1 R 5.73 8.61 7.24 7.09
1A2 n→ π∗ V 3.80 4.00 3.48 3.94

MAE (R) 1.71 1.77 0.20
MAE (V) 0.16 0.28 0.36
MAE (all) 1.26 1.34 0.25
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MAEs are presented for Rydberg (R), valence (V), and both categories

of excitations combined (all). Accurate Rydberg excitations require191 the

exchange–correlation potential to asymptotically behave as −1/r + εh + I0,

which reduces to −1/r when equation (5.1) is exactly satisfied. pbe completely

fails to exhibit this form and so the Rydberg excitation energies are much too

low, as is well known.

Similarly, the ed1 potential does not exhibit the −1/r asymptotic behaviour,

and so the Rydberg excitations remain much too low in energy. Only CO shows

any improvement over pbe, and the MAE of 1.610 eV is still very large.

The ed2 potential asymptotically behaves as −1/r and approximately satis-

fies equation (5.1). As a result, the potential closely resembles the required form

and the Rydberg excitations are significantly improved. The improvement is

approximately an order of magnitude for CO and H2CO, but is less pronounced

for N2. This can be traced to the fact that equation (5.1) is less well satisfied

for this latter system—the MAEs for the Rydberg excitation energies closely

mirror the magnitude of the deviation of εh + I0 from zero.

For the valence excitations in Table 5.14, the performance of ed1 is, surpris-

ingly, better than that of ed2. ed1 shows a small increase in MAE compared to

pbe (with the exception of N2, where the error is significantly lower), whereas

ed2 is notably less accurate than pbe in all cases.

5.6.5 static polarisabilities

Table 5.15 lists static isotropic polarisabilities, determined at experimental

geometries254 using the Sadlej basis set. The table compares the polarisabilities

with reference bd(t) values determined using the same basis set.191 The pbe

values are too high, as is well known; both ed1 and ed2 do reduce the values

as required, but by significantly too much.

A likely cause of this is that whilst the asymptotic behaviour of the ed2

potential goes correctly as −1/r, as desired for Rydberg excitations, the core

region of the potential—important for valence excitations and polarisabilities—

may still be incorrectly described. The ed1 polarisabilities are even lower,

almost doubling the MAE again, suggesting a complete breakdown in the shape

of the potential. It is unclear why ed1 valence excitations should show such an

improvement over ed2, when the polarisabilities are so much worse, however
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Table 5.15: Static isotropic polarisabilities (in a.u.), compared to
reference bd(t) values from Ref. 94.

Molecule pbe ed1 ed2 Ref.

C2H4 28.30 — 24.97 26.91
CH4 17.40 14.31 15.79 16.43
Cl2 31.54 27.97 28.70 30.71
CO 13.53 11.06 11.73 13.03
CO2 17.72 15.02 15.72 17.56
F2 8.87 7.24 7.68 8.45

H2O 10.49 7.74 8.53 9.71
H2S 25.70 21.82 24.18 24.67
HCl 18.26 15.29 16.64 17.43
HF 6.18 4.47 4.86 5.64
N2 12.13 9.86 10.28 11.75

NH3 15.37 11.60 12.96 14.33
PH3 31.85 27.88 31.57 30.44
SO2 26.44 22.63 24.26 26.06

MAE 0.76 2.25 1.25

future study into the precise influence of the shape of the potential may offer

some insight.

5.6.6 exchange–correlation potentials

Figure 5.8 plots the ed1 and ed2 exchange–correlation potentials along the

bond axis of two representative systems, CO and PN, compared to both pbe

and the near exact v−xc(r) of Ref. 257, determined using the ZMP procedure.245

The present calculations use the same Huzinaga basis set as was used in Ref. 257.

The pbe potentials are well above the near-exact potentials and do not exhibit

the desired −1/r asymptotic behaviour; they rapidly decay to zero with increas-

ing distance from the molecule. With ed1, the potentials are lowered towards

the near-exact potential (and it is this lowering in energetically important

regions that causes εh to reduce towards −I0), however the asymptotic regions

still decay to zero much too quickly. The ed2 potentials are similarly lowered,

maintaining the low deviations of εh from I0, but crucially they also exhibit

the correct −1/r behaviour in the asymptotic regions.

There is, however, clear room for improvement in the non-asymptotic regions.

In particular, the ed potentials do not exhibit the intershell structure evident

in both pbe and the near-exact potential, and this is a consequence of the fact
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Figure 5.8: Exchange–correlation potentials along the bond axis
for CO and PN, compared to the near-exact ZMP potential from
Ref. 257.
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that F [ρ] and G[ρ] are local, rather than gradient corrected, functionals.

5.6.7 summary and extensions

Whilst we have continued with the analysis of both ed1 and ed2 throughout,

it is clear that in almost all cases (and hence as an overall functional), ed2 is

superior, and so we conclude that the addition of the −J/N term is a vital

contribution to the success of our functional. We have therefore achieved

our original aim: our method yields a functional (ed2) that is appropriate

for the electron deficient side of the integer, as illustrated by the effective

homogeneities in Figure 5.7, the HOMO energies in Tables 5.12 and 5.13, and

the exchange–correlation potentials in Figure 5.8.

The ability to recover the exact asymptotic potential is an added bonus,

yielding the improved Rydberg excitation energies in Table 5.14. The ed2

functional is less successful for the valence excitations in Table 5.14, along with

the static isotropic polarisabilities in Table 5.15, which is consistent with the

lack of quantitative accuracy in the shape of the exchange–correlation potentials

in non-asymptotic regions, as shown in Figure 5.8. It is also important to note

that the ed functional form is not size-extensive.

We should not be surprised by these deficiencies: the functional form is

extremely simple, with a purely local G[ρ] term. Rather, it is encouraging that

such improvements can be made with such a simple procedure. The functional

development procedure imposes only two system-dependent conditions: we

constrain kxc to be close to k−xc, and Exc to be close to the (reasonably accurate)

GGA value. It follows from equations (5.7) and (5.9) that the ed2 functional

must yield a reasonably accurate
∫
vxc(r)ρ(r) dr . This is clearly desirable, but

is not a sufficient condition to ensure that the potential itself has the correct

shape (consistent with the observations in Figure 5.8). Finally we note that the

accuracy of the excited states and polarisabilities might also have been affected

by neglecting any electric field dependence of the functional parameters.

Looking ahead, an obvious extension of the functional would be to reintro-

duce gradient dependence into the functional form, i.e. to choose n 6= 0. This is

less trivial than it sounds, however, as without careful choice of the parameters

the potential will diverge in asymptotic or zero-density-gradient regions. Some

initial investigations were pursued, but SCF convergence problems were quickly
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met, coinciding with divergences in the potential. By considering the functional

form more closely, we determined that in order to avoid a divergence in the

potential, two constraints must be met: n = {0 , 2 ,> 4}, and m > kn.

Given that we know m to be close to unity, and k to be around 1.5, this

would appear to limit our use of this functional form to n = 0. Furthermore,

with increasing n the G[ρ] term quickly becomes unmanageably large, requiring

very small values of α to bring it in line with the pbe value, which brings with

it its own problems. Further investigation into the nature of the functional

form and its derivative must therefore be undertaken before a useful gradient

correction can be introduced.

A second extension one might consider would be to use ed2 data to calculate

new k and α values and then iterate the approach. Whilst an interesting

prospect, care must again be taken because equation (5.55) relies on the use

of an (incorrect) GGA HOMO energy in order to estimate the derivative

discontinuity. If the ed2 HOMO energy was instead used, then the overall

effective homogeneity would again be close to 4/3 for all systems.

Thirdly, the dependence of the parameters kG and α on perturbations, such

as electric fields and nuclear coordinates, must be further investigated. Some

early investigations were carried out into the stretching of diatomics in order

to determine the equilibrium geometry. Although a number of calculations

were successful (despite deviations from experimental geometry being an order

of magnitude worse than pbe), the majority either failed to converge or en-

countered other problems. In particular, several diatomics failed to bind at all

and for many the character of the cation ground state changed at a particular

separation. The latter problem highlights the lack of size-extensivity of the

method, given that both the GGA ionisation potential and HOMO energy are

vital to the approximation of k.

Finally, regarding the shape of the potential, it may prove fruitful to

explicitly enforce the correct shape, in the spirit of Ref. 94.

5.7 Conclusions

In a conceptual departure from the procedures in Chapters 3 and 4 for tuning

existing functionals, we have used density scaling considerations as a novel
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method of functional development, culminating in an explicit density functional

that is appropriate for the electron-deficient side of the integer.

By considering a combined density functional Ω[ρ], comprising both Coulomb

and exchange–correlation terms, we determined that multiplying any homoge-

neous functional (of degree one) by a factor of (N − 1) approximately recovers

the system-dependent effective homogeneity of the exact Ω[ρ], for a series

of atoms. Through careful choice of the homogeneous functional, the proce-

dure was formulated as a correction to the Fermi–Amaldi approximation, such

that significant improvements were made in the calculation of the exchange–

correlation energy, without losing the correct asymptotic behaviour of the

Fermi–Amaldi exchange–correlation potential. The results were further im-

proved by explicitly changing the homogeneity of the corrective functional,

although the exact value remained close to unity.

Following the above proof-of-concept procedure, which (approximately)

reproduced the average effective homogeneity of the Ω[ρ], and hence the Exc[ρ]

functionals, the same considerations were applied to the electron-deficient

effective homogeneity. Comparing the Fermi–Amaldi correction (DS: 1) studied

by Parr and Ghosh 250 to the near-exact homogeneities calculated by Borgoo

et al. 244 showed that systems for which the near-exact homogeneity is unity are

well described by the Parr–Ghosh functional, and vice versa. To improve on

this, we examined a simple, explicit density functional form and imposed on it

the near-exact homogeneity from Ref. 244, considering it both as a functional

in its own right (ed1), and as a correction to Fermi–Amaldi, following Parr

and Ghosh (ed2).

Our initial investigations scaled the functional form by a system-independent

prefactor determined by a linear regression fit to known data. Whilst the

results were encouraging, producing HOMO energies that were much closer

to −I0 than conventional explicit density functionals, the functionals failed

to accurately reproduce the exchange–correlation energies, implying that a

system-dependent prefactor was necessary. In addition, the functional form was

explicitly constrained to exhibit the near-exact effective homogeneity which, in

the general case, is unknown and must be approximated.

Crucially, the effective homogeneity can be approximated from the results of

a precursor GGA calculation, which can also be used to determine the system-
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dependent prefactor. This procedure was carried out successfully for both the

ed1 and ed2 forms, and the latter in particular showed promising improvements

over conventional explicit density functionals, despite maintaining a simple

mathematical form.

Compared to GGA results, the ed2 functional yields similar exchange–

correlation energies, but HOMO energies that are an order of magnitude closer

to the negative of the vertical ionisation potential; for anions, the HOMO

energies are negative, as required. Rydberg excitation energies are also notably

improved, and the exchange–correlation potential is visibly lowered towards

the near-exact potential. Further development is required to improve valence

excitations, static isotropic polarisabilities, and the shape of the potential in

non-asymptotic regions.

Despite its limitations, the ed2 functional shows promising improvements in

several key areas known to be problematic with conventional DFT approaches.

Our hope is that the ideas and methods used in its derivation, along with

the insight they provide, may prove useful in future study and functional

development.



6
Conclusions

For many years, density functional theory has offered chemists a tractable

alternative to highly accurate but computationally expensive correlated wave-

function methods, for performing electronic structure calculations. Its lower

computational cost makes it applicable to much larger, chemically relevant

systems, and as a result it has become a widely used and invaluable tool in

the field. Given its widespread popularity, much research has been directed

towards improving the remaining approximation in what is otherwise an exact

theory—the exchange–correlation functional.

Many exchange–correlation functionals exist in the literature, and these

have been widely and successfully applied to countless projects. However,

many situations remain for which existing functionals fail. This thesis has

focused on two particular widespread deficiencies in conventional functionals,

which between them are responsible for a large number of common failures.

The first, delocalisation error, describes the underestimation of the energy

of fractionally charged species, leading to problems such as over-delocalised

charge distributions, underestimated reaction barriers, and incorrect orbital

energies. The delocalisation error can be conveniently quantified by plotting the

variation of the energy E with the number of electrons N , for both fractional and

integer N (an E vs N plot). The exact behaviour should be a piecewise-linear

variation between pairs of integer N , however conventional DFT functionals are
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convex at fractional N . The second deficiency concerns the incorrect long-range

asymptotic behaviour of the exchange–correlation potential, leading to, for

example, underestimated Rydberg excitation energies. We considered some

novel approaches to correcting these deficiencies, and suggested avenues for

future work.

Chapter 3 examined the balance between the short-range DFT exchange

and long-range exact exchange components of range-separated hybrid (RSH)

functionals, and its effect on the delocalisation error. By tuning the range-

separation parameter µ (i.e. the rate at which exact exchange is incorporated)

in a system-dependent manner, in order to achieve near-linearity in E vs N , it

has previously been shown that much more accurate frontier orbital energies

and energy differences can be obtained. This effect can be seen as resulting

from a reduction in the delocalisation error, due to a cancellation between the

delocalisation of DFT exchange, and the localisation of Hartree–Fock (exact)

exchange.

The chapter began by examining the justification for this tuning procedure,

and the effect of varying µ on successively ionised species. Most interestingly,

the optimal µ varied considerably for each successive species, suggesting that

achieving near-linearity in the whole E vs N plot is not feasible with a single

value of µ. Since the most successful tuning procedures rely on attempting

to constrain two adjacent E vs N segments simultaneously, a systematic

assessment was subsequently performed of the tuning procedures, relating its

successes and failures to the explicit E vs N behaviour. It was demonstrated

that, for the double-segment tuning procedure, the optimal µ returned E vs N

plots with some residual non-linearity in both sections. However, the errors

due to this non-linearity conveniently cancelled with errors in the integer-N

energy differences, to give the observed low errors in frontier orbital energy

differences. Whilst not a rigorous or universally applicable solution to the

delocalisation error, this marks an important step in successfully computing

quantities affected by the delocalisation error, and in understanding some of

its causes.

Following the successful tuning of RSH functionals to give near-linearity

in the energy variation with fractional N , Chapter 4 considered whether the

same functionals are similarly optimal for the density variation, which should
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also be piecewise-linear. The Fukui function in conceptual DFT, defined as

the derivative of the density with respect to N , is typically approximated

as the difference between the densities of adjacent integer-N species. By

defining an alternate finite difference method, the density difference between

the integer species and a small fractional N , we identified initial Fukui functions,

analogous to the initial slopes (i.e. frontier orbital energies) of the E vs N

plots. Comparison of initial Fukui functions to those from integer species,

computed using optimally tuned functionals from Chapter 3, indicated that

the optimal µ for near-linearity in the energy variation with N can differ

significantly from the optimal µ for density variation. Although only one test

system was considered, the results suggested that a system-independent value

of µ optimised for thermochemical properties may be most appropriate for the

Fukui function.

A second quantity important to conceptual DFT, the electronegativity, was

then considered. Since this quantity can be calculated using the frontier orbital

energies, it was hypothesised that functionals optimally tuned for the energy

should provide a better approximation than their non-tuned equivalents (unlike

for the Fukui function). This was indeed found to be the case, reinforcing the

conclusion that one cannot find even a system-dependent µ that is universally

appropriate for all computed properties.

Whilst the tuning procedure provides an accessible approach to the successful

calculation of problematic quantities, its main drawback is that for each new

property and system, many calculations have to be performed to determine the

optimal µ. This process is not only time consuming and labour-intensive, it also

severely limits the transferability of a particular set of functional parameters to

a variety of different problems. Furthermore, there is currently no systematic

means of verifying that the convenient error cancellation will hold for a particular

system or property.

As such, a more important goal is to find a more universally applicable func-

tional that is inherently free from the delocalisation error. Chapter 5 presented

an entirely new approach to functional development, based on homogeneity

properties and known scaling relations, culminating in an electron-deficient (ed)

explicit density functional that both satisfies the exact Koopmans condition

εh = −I0 associated with energy-linearity, and exhibits a potential with the
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correct long-range asymptotic behaviour.

After establishing that a simple functional form with known homogene-

ity properties could be successfully used to approximately reproduce near-

exact average effective homogeneities and exchange–correlation energies, it was

demonstrated that similar homogeneity arguments could be used to generate

a functional with a potential associated with the electron-deficient side of

an integer species. In other words, the potential would be appropriate for

satisfying εh = −I. Due to the highly system-dependent nature of the exact

electron-deficient effective homogeneity, this quantity was approximated, along

with a scaling prefactor, by a precursor GGA calculation; the resulting func-

tional was termed ed1. Alternatively, by treating the functional as a correction

to the Fermi–Amaldi approximation, the correct asymptotic behaviour of the

potential could also be recovered, leading to a second functional, denoted

ed2. The functionals are unlike any other functionals proposed previously.

Although the functional form is still inherently system-dependent, the precursor

calculations to determine the system-dependent parameters are much easier

and less time-consuming than the process in Chapter 3.

The two functionals were implemented self-consistently, and assessed in

terms of their ability to reproduce exchange–correlation energies, HOMO en-

ergies of neutral molecules and bound anions, excitation energies and static

polarisabilities. The ed2 functional in particular showed great promise despite

such a simple mathematical form. Exchange–correlation energies were suc-

cessfully reproduced, whilst HOMO energies for both neutral molecules and

bound anions were considerably closer to −I0 than for pbe. Rydberg excitation

energies were also much improved due to the correct asymptotic behaviour of

the potential.

Several challenges still remain. In particular, large errors in the valence

excitation energies and static polarisabilities indicate improvements to be made

in the shape of the potential in core regions. Secondly, the approximation relies

on precursor GGA calculations on both the system in question and its cation:

eliminating this step would cut down on both the computation time and com-

plexity of the method. Further investigation is also needed into improving the

ed functionals through introduction of a gradient correction; initial investiga-

tions were carried out, but many natural choices for the parameters introduced
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divergences into the potential. Finally, the applicability of these functionals to

other properties must be addressed: since they are explicitly constructed to

improve the HOMO energy and (in the case of ed2) electron-deficient potential,

their general applicability may be limited. In particular, the methods are not

size-extensive, and calculations such as geometry optimisations require iterative

determination of the functional parameters at each step (or a knowledge of

their dependence on perturbations such as varying nuclear coordinates).

Overall, the fact that a local, explicit density functional can offer such a

great improvement over conventional alternatives is very encouraging. Our

hope is that the insights into the nature of linearity in the energy and density

variation with respect to N of Chapters 3 and 4, coupled with the benefits of

satisfying correct homogeneity conditions highlighted in Chapter 5, will aid

and inspire future functional development.





A
ED Exchange–correlation

kernel

Consider the general functional

E[ρ] =

[∫
ρ(r)p dr

]q
= ε[ρ]q . (A.1)

We define the functional derivative by consideration of an infinitesimal change

in the density δρ(r), and expanding as a Taylor series,

E[ρ+ δρ] = E[ρ] +

∫
δE[ρ]

δρ(r)
δρ(r) dr

+
1

2

∫∫
δ 2E[ρ]

δρ(r)δρ(r′)
δρ(r)δρ(r′) dr dr′ + · · · .

= ε[ρ+ δρ]q

(A.2)

Similarly, we can expand the “inner” functional ε[ρ] as

ε[ρ+ δρ] = ε[ρ] +

{∫
δε[ρ]

δρ(r)
δρ(r) dr

+
1

2

∫∫
δ 2ε[ρ]

δρ(r)δρ(r′)
δρ(r)δρ(r′) dr dr′ + · · ·

}
,

(A.3)
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and so if we collect everything in the brackets into a term denoted “B”, we

can represent ε[ρ+ δρ]q as a binomial expansion

ε[ρ+ δρ]q = ε[ρ]q + qε[ρ]q−1{B}+
1

2
q(q − 1)ε[ρ]q−2{B}2 + · · · . (A.4)

Thus,

E[ρ+ δρ]− E[ρ] = ε[ρ+ δρ]q − ε[ρ]q

= qε[ρ]q−1

{∫
δε[ρ]

δρ(r)
δρ(r) dr +

1

2

∫∫
δ 2ε[ρ]

δρ(r)δρ(r′)
δρ(r)δρ(r′) dr dr′

}
+

1

2
q(q − 1)ε[ρ]q−2

{∫
δε[ρ]

δρ(r)
δρ(r) dr

∫
δε[ρ]

δρ(r′)
δρ(r′) dr′

}
,

(A.5)

where we have truncated the expansions at the quadratic level.

By collecting terms of each power, we can therefore identify the first and

second functional derivatives of the original energy functional E[ρ],

δE[ρ]

δρ(r)
= qε[ρ]q−1 δε[ρ]

δρ(r)
, (A.6)

and

δ 2E[ρ]

δρ(r)δρ(r′)
= qε[ρ]q−1 δ 2ε[ρ]

δρ(r)δρ(r′)

+ q(q − 1)ε[ρ]q−2 δε[ρ]

δρ(r)

δε[ρ]

δρ(r′)
.

(A.7)

We now consider the derivatives of ε[ρ]. From the definitions

ε[ρ] =

∫
ρ(r)p dr (A.8)

and

ε[ρ+ δρ] =

∫ {
ρ(r) + δρ(r)

}p
dr

=

∫
ρ(r)p +

∫
pρ(r)p−1 δρ(r) dr

+
1

2

∫
p(p− 1)ρ(r)p−2 δρ(r)2 dr + · · ·

(A.9)

we can, from the above expansions, identify

δε[ρ]

δρ(r)
= pρ(r)p−1 , (A.10)
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and

δ 2ε[ρ]

δρ(r)δρ(r′)
= p(p− 1)ρ(r)p−2 δ(r − r′) , (A.11)

where the introduction of the delta functional collapses r′ to r and reduces the

double integral of the quadratic term in equation (A.3) to the single integral of

equation (A.9).

Substituting equation (A.10) into equation (A.6) recovers the potential,

equation (5.48)

vE =
δE[ρ]

δρ(r)
= pqε[ρ]q−1 ρ(r) p−1 . (A.12)

Substituting equation (A.11) into the first term of equation (A.7), and equa-

tion (A.10) twice into the second term (maintaining the r- and r′-dependence),

yields our component of the exchange–correlation kernel, equation (5.49)

δ 2E[ρ]

δρ(r)δρ(r′)
= qp(p− 1)ε[ρ]q−1 ρ(r)p−2 δ(r − r′)

+ p2q(q − 1)ε[ρ]q−2 ρ(r)p−1 ρ(r′)p−1 .

(A.13)

In order to evaluate the two-electron integrals of the kernel, we first note

that

(ia|fed
xc |jb) =

∫∫
dr dr′

δ 2E[ρ]

δρ(r)δρ(r′)
ϕi(r)ϕa(r)ϕj(r

′)ϕb(r
′) (A.14)

=

∫∫
dr dr′

{
qp(p− 1)ε[ρ]q−1ρ(r)p−2 δ(r − r′)

+ p2q(q − 1)ε[ρ]q−2ρ(r)p−1ρ(r′)p−1
}
ϕi(r)ϕa(r)ϕj(r

′)ϕb(r
′) .

(A.15)

The first term reduces to a single integral in terms of r, due to the delta

function, whereas the second term decomposes into separate integrals involving

the respective orbitals,

(ia|fed
xc |jb) =

∫∫
dr dr′

δ 2E[ρ]

δρ(r)δρ(r′)
ϕi(r)ϕa(r)ϕj(r

′)ϕb(r
′) (A.16)

= qp(p− 1)ε[ρ]q−1

∫
dr ρ(r)p−2 ϕi(r)ϕa(r)ϕj(r)ϕb(r)

+ p2q(q − 1)ε[ρ]q−2

∫
dr ρ(r)p−1ϕi(r)ϕa(r)

∫
dr′ ρ(r′)p−1 ϕj(r

′)ϕb(r
′) ,

(A.17)

to give us the final expression in equation (5.50).





B
Presented work

Publications

A significant portion of the work in this thesis has been published (or is due to

be submitted) in peer-reviewed journals:

1. Assessment of tuning methods for enforcing approximate energy linearity

in range–separated hybrid functionals

J. D. Gledhill, M. J. G. Peach and D. J. Tozer, J. Chem. Theory Comput. 9, 4414–

4418 (2013).

2. System-dependent exchange–correlation functional with exact asymptotic

potential and εh = −I
J. D. Gledhill and D. J. Tozer, J. Chem. Phys. 143, 024101 (2015).

3. Tuning parameter in range-separated exchange–correlation functionals:

successive ionisations and the Fukui function

J. D. Gledhill, F. De Proft and D. J. Tozer, in prep.
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Meetings attended

I have presented my work at a number of schools, meetings and symposia,

including:

1. National Training School in Theoretical Chemistry

2012, Oxford

Poster prize winner: Tuned range–separated hybrid functionals in DFT.

2. Chemistry Postgraduate Gala Symposium

2013, Durham

Poster: Tuned range–separated hybrid functionals in DFT.

3. International Conference on Density Functional Theory and its Applica-

tions

2013, Durham

Poster: Energy linearity in tuned range–separated hybrid functionals.

4. Chemistry Postgraduate Gala Symposium

2014, Durham

Talk: Novel approaches to improving the exchange–correlation functional in DFT.

5. European Seminar on Computational Methods in Quantum Chemistry

2014, Houffalize

Poster: Assessment of tuning methods for enforcing approximate energy linearity in

range–separated hybrid functionals.
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