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ABSTRACT 

MODELING THE RELATIONSHIP BETWEEN AIR QUALITY AND INTELLIGENT 
TRANSPORTATION SYSTEMS (ITS) WITH ARTIFICIAL NEURAL NETWORKS 

Dinesh Kumar Gupta 

November 24, 2008 

Environmental or air quality impacts of Intelligent Transportation Systems (ITS) 

are very difficult to measure. Some researchers have attempted to quantify the effects of 

individual ITS application on emissions; yet, the effects of ITS as a whole on ambient air 

quality have not been investigated. 

The objective of this research was to model the relationship between ITS and 

ambient air quality. The multiple Artificial Neural Networks (ANN) training with the 

data yielded a model for predicting the air quality. In addition, the ANN made the 

measurement of the effect of ITS on air quality possible. 

Data pertaining to sixty US cities (urbanized area) were used for this research. 

Input variables used were related to transportation and local characteristics, and ITS 

applications. Output variables were the annual average concentrations of CO, Ozone, and 

N02 in ambient air. The K-fold cross validation technique was used to train the ANN. 

The results of ANN model were compared with that of a Multiple Regression (MR) 

model showing the supremacy of ANN over MR. The ANN model results show that the 

Mean Absolute Errors (MAEs) in prediction vary from 5 to 20 %. This variance is 

justified since the factors related with industries, which contribute significantly to air 
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pollution, have not been taken into consideration in this study. There were some unusual 

findings: in contrast to the common assumptions, N02 concentration increases with ITS 

intensity, and Ground Level Ozone concentration, in ambient air, seemed to be more 

transportation-dependent as compared with that of CO and N02• 

A recommendation for further research on this topic is to include more input 

variables, especially those which are relatcd with industries, to improve the accuracy of 

prediction. Scientific experimentations have also been recommended to corroborate the 

unusual findings. 
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CHAPTER 1 

INTRODUCTION 

Air pollution is a condition of the atmosphere, arising wholly or partly from the 

presence therein of one or more contaminants, that endangers the health, safety, or 

welfare of persons, interferes with normal enjoyment oflife or property, endangers the 

health of animal life, or causes damage to plant life or property (Environment Canada, 

1996). Air pollution is caused from two major sources: (l) stationary sources such as 

factories, industrial units, power plants, manufacturing facilities, and municipal waste 

incinerators, and (2) mobile sources or motor vehicles such as cars, trucks, and buses. 

Motor vchicles havc been a major source of air pollution. Due to the ever-growing 

transportation activities, which are linked to the economic progress of a region, the road 

infrastructure of US has come under a pressure, resulting in congestion and delays and 

causing serious reduction in the mobility of the nation. The challenge now lies in 

improving the mobility of the nation without adversely affecting the air quality. Hcnce, it 

is important to explorc transportation options that may rcsult in potential mobility 

increase along with air quality benefits. Intelligent Transportation Systems (ITS) is 

believed to constitute one such class of strategies that could have significant air quality 

benefits. Quantification ofthcse benefits and subsequently identifying the relationship 

betwecn ITS and ambient air quality should, obviously, be an important pali of any ITS 

assessment effort and decision-making in the perspective of ITS deployment. 



1.1 Background 

The major pollutants which pose health hazards to human are Ground Level 

Ozone and Carbon Monoxide. Ground Level Ozonc is the rcsultant of the complex 

reactions of NO x and VOC in the presence of light. Transportation is the biggest 

contributor to air pollution, as can be seen from Table 1.1. 

Table 1.1 Pollutants by Source 

Pollutants Sources of Emissions 

Transportation Fuel Industrial Miscellaneous 
Combustion Processes 

CO 78.6% 6.0% 5.4% 10.0% 

Lead l3.1% 12.7% 74.2% -
NOx 53.3% 41.7% 3.7% 1.3% 

VOC 43.5% 5.0% 47.2% 4.4% 

PM 10 25.4% 38.6% 36.0% -
S02 7.1% 85.1% 7.7% 0.1% 

Source: EPA Emissions Trends Report (EPA 454!F-00-002) 

To address air quality concerns, Congress first enacted the Air Pollution Control 

Act of 1955. This Act provided funds for federal research in air pollution. The Clean Air 

Act of 1963 was the first federal legislation regarding air pollution control. It established 

a federal program within the U.S. Public Health Service and authorized research into 

techniques for monitoring and controlling air pollution. In 1967, the Air Quality Act was 

enacted in order to expand federal government activities. In accordance with this law, 

enforcement proceedings were initiated in areas subject to interstate air pollution 

transport. As part of these proceedings, the federal government for the first time 

conducted extensive ambient monitoring studies and stationary source inspections. The 
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Air Quality Act of 1967 also authorized expanded studies of air pollutant emission 

inventories, ambient monitoring techniques, and control techniques (EPA, 2008). 

The enactment of the Clean Air Act of 1970 (1970 CAA) resulted in a major shift 

in the federal government's role in air pollution control.The act mandates state and local 

governments to develop strategies to address the problem, and set minimum air quality 

standards called National Ambient Air Quality Standards (NAAQS). The Clean Air Act 

was amended in 1977 to emphasize the need for coordination of air quality planning with 

the transp0l1ation planning process of metropolitan planning organizations (CAS 

Handbook, FOOT, 1996). This has helped in containing air pollution, as expected, in last 

three decades as can be seen from Figure 1.1. During 1970 to 2002, gross domestic 

product increased 164%, while vehicle miles traveled increased 155%, showing a close 

relationship of transportation activities with economic growth. Energy consumption and 

US population increased 42 % and 32% respectively, whereas the total emissions of six 

principal air pollutants decreased 48%. 

",0"' 
1~';:5~,,. 

Source: Latest Findings on National Air Quality, 2002, EPA 

Figure 1.1 
Comparison of Growth Areas and Emissions 
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The transportation sector, being a major source of air pollution, can playa very 

vital role in improving air quality. The Clean Air Act Amendments of 1990 gives a 

framework for developing air quality improvement plans. It has also put an additional 

requirement that transportation plans, programs, and projects must conform to the 

purpose of State Implementation Plans (SIPs) for the attainment ofNAAQS. This 

additional requirement has resulted in a greater role of transportation officials in the 

development of air quality plans. It has also resulted in increased interface, both 

collaborative and conflicting, between the transportation and environmental communities 

(Shrouds, 1994). These developments over the past one and half decades have given 

some positive results as shown in Table 1.2. 

Table 1.2 Emissions and Air Quality Trends (1990-1999) 

Pollutant Change in Air Change in 
Quality Emissions 

Carbon Dioxide -36% -7% 

Lead -60% -23% 

Nitrogen Dioxide -10% +2% 

Ozone -4% (1 hr) -15% (VOC) 

0% (8 hr) 

Particulate Matter (PM IO) -18% -16% 

Sulphur Dioxide -36% -21% 

Source: EPA EmIssIons Trends Report (2) 
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The challenge now rests in enhancing the quality of the air without unfavorably 

disturbing the mobility of the nation. The demand for travel is expected to increase at 

about 30% in the next few years. Therefore, to simply maintain congestion at the current 

levels and without the introduction of productivity-enhancing technologies, the capacity 

of the transportation system would have to be increased by 30%. This would mean an 

addition of approximately 4,427 new miles (7,125 kilometers) of roadway every year, an 

unlikely event under current political and economic conditions (McGurrin, 1997). 

In the above context, it is important to search transportation options that may result 

in significant mobility enhancement without adversely affecting air quality. Intelligent 

Transportation Systems (ITS) are one such class of options that are believed to have 

noteworthy air quality benefits. ITS applications could lead to capacity improvements 

with the same physical infrastructure by enhancing the efficiency of the transportation 

system. A 20-year life-cycle cost analysis for fifty major urban areas for the two options 

(capacity increase vis-a-vis ITS) indicated that the ITS-based investment would "reduce 

the need for new roads while saving approximately 35% of the required investment in 

urban highways" (ITS Benefit, FHW A, 1997). 

Evaluation of ITS impacts on air quality is very difficult and further 

compounded by the fact that deployment of most ITS strategies has been relatively 

recent, and is largely still underway; therefore, the long-term relationships between these 

strategies and the parameters that affect air quality are not very clear. 

Estimates of emissions changes are usually simulation based, using multiple 

scenarios with and without ITS services and under different traffic, weather and accident 

conditions to predict emissions changes. Before and after field data are sometimes used in 
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combination with simulation; for example, GPS-equipped floating cars can be used to 

gather more detailed speed, stop, and acceleration data as inputs to estimating emissions. 

While much progress is being made in developing models integrating demand modeling, 

traffic network simulation and emissions modeling, there remain many challenges. A 

review of the state-of-practice of air quality evaluation ofITS outlined some of the 

following issues: (1) "emissions factors ... (fail) to adequately capture the effects of 

vehicle-operating modes on mobile source emissions," (2) "current travel demand models 

and traffic flow simulation models are not sufficiently detailed for purposes of ITS 

evaluation," and (3) these models "also fail to provide the kind of inputs needed for use 

in modal emissions" (Mehta et aI, 2001). 

There have been attempts to quantify the effects of individual ITS applications 

on emission but to date, no research has been oriented towards determining the effect of 

ITS as a whole on the ambient air quality. The approaches to ITS evaluation that have 

been adopted in practice and reported in the ITS research literature exhibit a lot variation. 

One of the main concerns with ITS strategies is 'induced demand'. The concern is that 

the improved traffic operations and reduced travel times may lower the road users' 

perceived costs of vehicle travel and consequently induce additional vehicle traffic. This 

argument is based on the theory of induced growth in vehicle travel, which hypothesizes 

that an increase in the capacity of a specific corridor or road network will attract 

increased level of traffic (Dodder, 2005). 

Also the emissions of CO, NOx and VOC are speed-dependent. The average 

speed, therefore, may prove to be an important factor while modeling the effects of ITS 

on air quality. How emissions are increasing and what is the rate of increase with average 
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speed have not been clearly studied, and this is an obstruction in determining the effect of 

ITS on ambient air quality. Air-quality models, like transportation models, are far from 

perfect in replicating reality. In the real world, emissions from post-1980s cars are quite 

sensitive to the pattern and extent of vehicle accelerations. For example, under high 

acceleration conditions, emissions from new cars can approach the emission rates of pre

controlled, I 960s-vintage vehicles. But, just as transportation models leave out the 

"induced demand" effect of transportation improvements, the air-quality models assumt: 

one pattern of driving, omitting from the analysis the effect of ITS improvements that 

reduce accelerations and decelerations (Burbank, 1995). 

This is an important gap in the model that may penalize ITS strategies that 

smooth traffic flow. EPA's models assume one particular driving cycle: pattern of 

acceleration, speeds, and deceleration, under both the build and no-build scenarios. To 

the extent that an ITS strategy smoothes the area's driving pattern, reducing the extent of 

accelerations, it reduces/increases NOx and other emissions. But this will not be evident 

in the build/no-build comparison because EPA's models don't provide for it. So, even 

though the model results are legally binding for conformity purposes, they should be 

treated with caution until EPA undertakes more research and refines its models (Burbank, 

1995). 

In US and other countries, there is growing interest in and deployment of 

Intelligent Transportation Systems (ITS), from small-scale and relatively isolated 

applications, to entire ITS Architectures. At the same time, many of the cities, where the 

pressure to deploy ITS is felt strongest, also confront major air quality problems. ITS are 
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believed to be the best options to address congestion in the face of physical, financial, 

and social limits on the ability to "build one's way out" of congestion with more 

highways(Dodder, 2005). 

1.2 Research Objectives 

In the context of the issues discussed in the Background section, this research 

addresses the following questions: 

• In what ways can ITS have an impact, whether positive or negative, on 

overall air quality? 

• Can air quality be predicted with a specific set of ITS applications and local 

characteristics? 

• Are Intelligent Transport Systems (ITS) really helping in improving air 

quality or vice versa? 

Only those priority air pollutants, which are closely linked with transportation 

activities, have been selected for analysis in this research. These are carbon monoxide 

(CO), nitrogen dioxide (N02) and ozone (03). 

This research has three main objectives that are detailed in the following section. 

Objective 1: Develop a method to convert seventeen ITS applications related 

variables into a single variable. 

Objective 2: Employ Artificial Neural Networks (ANN) to model the 

relationship between ITS plus the local characteristics (mostly related with roads) and 

average ambient concentration of each priority pollutant for prediction purposes. 
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Objective 3: Detennine the effect of ITS on the average ambient air 

concentration of each priority pollutant. 

1.3 Potential Contribution of this research 

Intelligent Transportation Systems (ITS) - the application of communications 

and infonnation technology to surface transportation systems - has the potential to 

improve transportation in several ways, from safety to emissions reductions to travel time 

and reliability. ITS have become a worldwide technology, and many US cities are 

currently deploying ITS, from individual technologies to entire ITS Architectures. Whit;: 

improving mobility is at the core of any ITS deployment, air quality concerns are such 

that ignoring possible air quality impacts of ITS technologies represents either a failure to 

leverage ITS for air quality improvements, or even a risk of running counter to air quality 

management efforts [Dodder, 2005]. While there is a growing number of studies 

evaluating the air quality benefits of ITS, there are important restrictions on the degree to 

which the results of these studies can be used to support planning of ITS in US cities and 

other nations. First, the challenges involved in modeling ITS air quality benefits mean 

that they nonnally focus on only one or two ITS technologies at a time. Second, air 

quality and mobility conditions diverge greatly across cities, meaning that air quality 

outcomes will also contrast widely. Third, present emission models are not able to take 

into account the effect of ITS on emission, especially the "induced demand" and the 

"effect on emissions with the change of average speed due to ITS". Finally, since the 

general public is more concerned with the ambient air quality (AAQ) rather than 

emissions, no models are available which could directly relate ITS to AAQ. 
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To date, there have been no efforts to address these issues in totality. This research 

provides a new approach to overcome these 1 ssues. It specifies an innovative and easy 

methodology to assess the effect of ITS on aIr quality. In the future, when more data of 

ITS will be available, it should produce a modeling tool-combined with more variables 

(e.g., contribution of industry to air pollution }-to improve accuracy in quantifying the 

effects of ITS on ambient air quality. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Previous Research 

The Intelligent Transportation Systems Joint Program Office (ITS JPO) of the 

U.S. Department of Transportation (U.S. DOT) has developed an ITS Benefits Database 

and has categorized benefits into six goal areas: safety, mobility, productivity, efficiency, 

energy & environment, and customer satisfaction. The air quality and energy impacts of 

ITS services are very important considerations, particularly for non-attainment areas. In 

most cases, environmental benefits can only be estimated by the use of analysis and 

simulation. The problems related to regional measurement include the small impact of 

individual projects and large numbers of exogenous variables including weather, 

contributions from non-mobile sources, air pollution drifting into an area from other 

regions, as well as the time-evolving nature of ozone pollution. Small-scale studies 

generally show positive impacts on the environment. These impacts result from smoother 

and more efficient flows in the transportation system. However, environmental impacts 

of travelers reacting to large-scale deployment in the long term are not well understood. 

Therefore, designing a suitable frame work for evaluating the air quality benefits is a 

challenging task (Mehta et aI., 2001). 
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There have been some methodological developments that have taken place in past 

in air quality evaluation of individual ITS applications. One of the earliest studies found 

to emphasize the effect of ITS on emission was a model, which indicated that changes in 

travel behavior due to better traveler information in Boston, Massachusetts would result 

in a 25 percent reduction in volatile organic compounds, a 1.5 percent decline in nitrous 

oxide, and a 33 percent decrease in carbon monoxide. While these estimates were 

significant for participating drivers, they represented only 28,800 daily trips in the Boston 

metropolitan area which had 2.9 million registered drivers (Tech Environmental, Inc., 

1993). 

The Automated Traffic Surveillance and Control Program (ATSAC) in Los 

Angeles, California, operated computerized signal control systems since 1984. As of 

1994, it included 1,170 intersections, and 4509 detectors for signal timing optimization. It 

reportedly decreased fuel consumption 13 percent, and decreased air emissions 14 

percent (Los Angeles DOT, 1994). 

Beginning in September of 1990, the SCOOT system implemented in Toronto, 

Canada covered 3 signal networks encompassing 75 signalized intersections. An on-street 

evaluation conducted from May-June 1993 tiJund a 5.7 percent average decrease in fuel 

consumption, a 3.7 percent average decrease in hydrocarbons, and a 5.0 percent average 

decrease in Carbon monoxide emissions (Traffic Technology, 1995). 

As part of the Congestion Mitigation and Air Quality Improvement Program 

(CMAQ), the San Francisco freeway service patrol has been in operation since August 

1992. As ofJanuary 1997, the program has assisted more than 90,000 drivers. It has 

decreased air pollution and reduced fuel consumption by helping to reduce the effects of 
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incident caused congestion, start-and-stop travel and vehicle idling. Estimates indicate a 

reduction in 32 kg/day of hydrocarbons, 322 kg/day of CO emissions, and NOx is 

reduced by 798 kg/day (FHW A, US DOT, 1996). 

The City of Richmond installed a 4.7 million dollar advanced signal system at 262 

signalized intersections and evaluated its impact on the central business district (CBD). 

The system was designed to coordination signal timing on four routes having independent 

signal timing plans. Timing was optimized using a system event schedule and the 

TRANSYT -7F signal timing optimization program. The timing plans were implemented 

using a central computer system and subsequently fine tuned based on input from drivers 

who compared traffic flow, signal phasing, splits, and offsets to platoon progression 

diagrams for each route. Field data were collected during peak periods using a test 

vehicle equipped with an automatic data collection system to record travel times, dc1ays, 

stops, emissions, and fuel consumption before and after system deployment. A series of 

runs performed on representative test sections on each route indicated that the fuel 

consumption decreased 10 to 12 percent and emissions decreased 5 to 22 percent (Hetrick 

&McCollough, 1996). 

Bilspedition Transport & Logistics (BTL) of Scandinavia used GPS-based 

tracking of vehicles in combination with remotely-accessed on-board computers to raise 

the productivity of its fleet operations in southern and central Sweden. It reportedly cut 

wasted mileage and emissions, and brought a 15 percent increase in freight carried 

(Bunting, 1997). 

The evaluation of air quality benefits from implementing automatic vehicle 

identification (A VI) technology for electronic toll collection (ETC) produced some 
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positive results. Located in Orlando, Florida, the Orlando-Orange County Expressway 

Authority (OOCEA) operates eleven mainline toll plazas. The busiest, the Holland East 

Toll Plaza, includes fourteen toll lanes. Nine of which are used for peak direction travel. 

A before-after study on the Express Pass (E-PASS) implementation of AVI based ETC at 

the toll plaza was conducted to evaluate the reduction in vehicle emissions. Specifically, 

the reductions in Carbon monoxide (CO), hydrocarbons (HC), and Nitrogen Oxides 

(NOx) were evaluated at the toll plaza. 

Using the MOBILE5a emission model, and data collected, it was shown that even 

with the increased volumes at the Holland East Toll Plaza, vehicle emissions were 

reduced. An overall average reduction in Carbon Monoxide by 7.29 percent and HC by 

7.19 percent resulted from the simulation. However, NOx increased by 33.77 percent 

(Klondzinski et aI., 1998). 

A transit signal priority system in Southampton, England reduced bus fuel 

consumption by 13 percent, lowered bus emissions by 13 to 25 percent, increased fuel 

consumption for other vehicles by 6 percent, and increased the emissions of other 

vehicles up to 9 percent (TR Lab, 1999). 

A pilot Electronic Toll Collection (ETC) project was installed and tested by 

Caltrans on the Carquinez Bridge. This bridge was chosen as the location because 

capacity at the toll plaza was sufficient to handle peak demands with booths out of 

service during the ETC demonstration. The report estimated a person-time savings of 

79,919 hours (per year) or about $l.07 million. Emission reductions were estimated at 

9.82 million grams of CO, l.06 million grams of NO x, and 0.46 million grams ofHC per 

year (Gillen et aI., 1999). 
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A simulation study indicated that integrating traveler information with traffic and 

incident management systems in Seattle, Washington could reduce emissions by 1 to 3 

percent, lower fuel consumption by 0.8 percent, and improve fuel economy by 1.3 

percent (Wunderlich et aI., 1999). 

In Michigan, a study examined the safety, performance, user-acceptance, and 

deployment of intelligent cruise control (ICC) systems. The findings were based on a 

field operational test (FOT) conducted by the National Highway Traffic Safety 

Administration (NHTSA) and the University of Michigan Transportation Research 

Institute (UMTRI). The FOT involved 108 volunteer test drivers and 10 ICC-equipped 

Chrysler Concordes. The testing was performed between July 1996 and September 1997, 

and the results were analyzed by Volpe. The analysis indicated that the tcchnology 

reduced fuel consumption and emissions by limiting throttle fluctuations (Koziol et aI., 

1999). 

An adaptive signal control system in Toronto, Canada reduced vehicle emissions 

by three to six percent. Also it lowered fuel consumption by four to seven percent 

(Greenough and Kelman, 1999). 

In Torino, Italy, a simulation study found that an automated speed control system 

designed to optimize travel speeds between green lights reduced fuel consumption by 8.3 

to 13.8 perccnt. It also reduced CO2 emissions by 3.9 to 5.4 percent, reduce hydrocarbon 

emissions by 4.2 to 6.9 percent, and reduce NOx emissions by 7.9 to 11.3 percent 

(Gianguido and Lorenzo Mussone, 1999). 
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Optimizing signal timing at 700 intersections in the Tysons Corner area of 

Northern Virginia lead to a 9 percent reduction in fuel consumption. This also resulted in 

a 134,600 kilogram decreasc in annual emissions (White et aI., 2000). 

In Arizona, traffic signal coordination among two jurisdictions contributed to a 

1.6 percent reduction in fuel consumption. But it also led to a 1.2 increase in carbon 

monoxide emissions (Zimmerman, 2000). 

Arterial traffic flow data were included in the traveler information system in 

Seattle, Washington. Simulation results indicated that vehicle emissions could be rcduced 

by two percent (Jensen et aI., 2000). 

A study used field experiments and simulation models to quantify the 

environmental benefits of intelligent cruise control (ICC) vehicles. Field tests were 

conducted using one ICC vehicle and two other manually operated vehicles in a single 

lane of freeway traffic. During the field trials driver responses and vehicle dynamics were 

recorded as they followed a lead vehicle with a pre-programmed speed profile 

(aggressive-rapid-acceleration or smooth-acceleration). The ICC vehicle trailed the other 

vehicles at different positions and implemented a smoothing effect to decrease the 

variance between the acceleration and deceleration extremes exhibited by the manually 

operated vehicles. Information from each field test was then input into a simulation 

model to measure net changes in fuel consumption and emissions. Emissions measured 

included unburned hydrocarbons (HC), Carbon monoxide (CO), Carbon dioxide (C02), 

and the oxides of Nitrogen (NOx). The smoothing of traffic flow by the ICC vehicle 

significantly reduced emissions and the fuel consumption of manual traffic (Bose and 

Ioannou, 2001). 
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A research project to document the benefits of anti-icing techniques and road 

weather information system (RWIS) technologies was initiated under the National 

Cooperative Highway Research Program (NCHRP). Winter maintenance personnel 

indicated that road weather information systems decrease salt usage, and anti-icing 

techniques limit damage to roadside vegetation, groundwater, and air quality (Boselly, 

2001). 

A study examined the impacts of ARTIMIS (Advanced Regional Traffic 

Interactive Management and Information System) in metropolitan areas of Northern 

Kentucky and Cincinnati, Ohio. As of 1999, ARTIMIS consisted of closed circuit TV 

cameras (CCTV), portable dynamic message signs (DMS), highway advisory radio 

(HAR), freeway and ramp reference markers, freeway service patrols, time-saving 

incident investigation equipment, and advanced traveler advisory telephone services. 

Modeling found emissions reductions of 3.7 to 4.6 percent due to an advanced 

transportation management and traveler information system serving northern Kentucky 

and Cincinnati (Jeannotte, 2001). 

This study was conducted in September of2000 to evaluate the New Jersey 

Turnpike Authority (NJT A) E-ZPass electronic toll collection system. The study 

consisted of an extensive data collection effort that involved measuring traffic counts, 

queue lengths, lane configurations, and transaction times during peak periods at 27 toll 

locations. Field observations were collected at each toll station during peak periods and 

the results were evaluated against NJTA toll collection records. The peak period data was 

entered into a TOLLSIM micro-simulation model in order to generate 24-hour profiles 

representative of total queue length and average vehicle-class delay before and after E-
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ZPass deployment at each station. Emission factors such as vehicle type, average vehicle 

approach speed, acceleration and deceleration rates, and length of time in queue were 

used to evaluate system-wide air-quality impacts. The E-ZPass electronic toll collection 

system on the New Jersey Turnpike reduced delay for all vehicles by 85 percent saving 

an estimated 1.2 million gallons of fuel each year and eliminating approximately 0.35 

tons ofVOC and 0.056 tons NOx per weekday (Wilbur Smith Associates, 2001). 

A study examined changes in vehicle emissions as a result of electronic toll 

collection at three major toll stations (Fort McHenry Tunnel, Baltimore Harbor Tunnel, 

and Francis Scott Key Bridge) outside Baltimore, Maryland. The system used toll tag 

readers and in-vehicle transponders to automatically execute toll transactions as vehicles 

passed through toll booths. Computer models were used to quantify emissions of 

hydrocarbons (HC), Carbon monoxide (CO).. and Nitrogen oxides (NOx), before and 

after the system was deployed. An evaluation indicated these systems reduced 

environmentally harmful emissions by 16 to 63 percent (Saka and Agboh, 2002). 

A study used the INTEGRA nON simulation model to estimate the impact of 

implementing transit signal priority (TSP) on a 3.95 mile section Columbia Pike in 

Arlington, Virginia. Baseline corridor and cross street traffic flows were determined from 

field data collected between June 12 and 14,2000. Saturated traffic flow parameters were 

estimated based on corridor geometry. During the A.M. peak period, transit signal 

priority on an arterial route in Arlington, Virginia could increase carbon monoxide 

emissions by 5.6 percent and decrease nitrogen emissions by 1.7 percent (Dion et aI., 

2002). 
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Simulation of a transit signal priority system in Helsinki, Finland indicated that 

fuel consumption decreased by 3.6 percent. Also Nitrogen oxides were reduced by 4.9 

percent, Carbon monoxide decreased by 1.8 percent, hydrocarbons declined by 1.2 

percent, and particulate matter decreased by 1.0 percent (Lehtonen and Kulmala, 2002). 

In response to Onondaga County not meeting air quality standards in 1993, the City 

of Syracuse implemented the Signal Interconnect Design Project. The project 

standardized 145 intersections within the City of Syracuse and optimized the signal 

timing in an attempt to reduce automobile emissions by creating a more efficient 

network. By implementing coordinated signal timing on the arterial network in Syracuse, 

New York; total fuel consumption was reduced by 9 to 13 percent, average fuel 

consumption declined by 7 to 14 percent, average vehicle emissions decreased by 9 to 13 

percent (Harris, 2003). 

Researchers at Oak Ridge National Laboratory estimate that poor signal timing 

causes 296 million vehicle hours of delay. Appropriate timing of traffic signals can 

decrease congestion, improve air quality, reduce fuel consumption, and minimize 

aggressive driving behavior. Optimizing signal timing produces average benefit-to-cost 

ratios that approach 40 to 1. Across the nation, traffic signal retiming programs have 

resulted in travel time and delay reductions of 5 to 20 percent and fuel savings of 10 to 15 

percent. In Oakland County, Michigan retiming 640 traffic signals during a two-phase 

project resulted in Carbon monoxide reductions of l.7 and 2.5 percent, Nitrogen oxide 

reductions of 1.9 and 3.5 percent, and hydrocarbon reductions of2.7 and 4.2 percent 

(Halkias and Schauer, 2004). 
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The Georgia DOT Intelligent Transportation System, known as NaviGAtor, 

covers 140 freeway miles in the Atlanta metropolitan area. The NaviGAtor system 

includes a traffic management center (TMC), freeway management components, 

advanced traveler information systems, and an incident management program. TMC 

operators use vehicle detectors, closed circuit television (CCTV) cameras, dynamic 

message signs (DMS), and ramp meters to collect traffic data and manage incidents. 

When TMC operators identify an incident, they dispatch a Highway Emergency 

Response Operator (HERO) to provide motorist assistance or traffic control, and 

disseminate traveler information via DMS, the NaviGAtor web site, and a telephone 

information service. This incident management program reduced annual fuel 

consumption by 6.83 million gallons, and contributed to decreased emissions: 2,457 tons 

less Carbon monoxide, 186 tons less hydrocarbons, and 262 tons less Nitrous oxides 

(Guin, et aI., 2006). 

Congestion charging in London improves efficiency, reduces pollution, and raises 

revenue for transit improvements. The program requires motorists to pay a fee of £8 per 

day to drive within the inner city of London on workdays between 7:00 AM and 6:30 

PM. Motorists can buy a prepaid weekly, monthly, or annual pass and save 15 percent, or 

buy a daily pass and pay full price. Residents receive a 90 percent discount; however, 

motorcycles, licensed taxis, vehicles used by disabled people, some alternative fuel 

vehicles, buses, and emergency vehicles are exempt. Congestion charging in London 

resulted in pollutant emission reductions: 8 percent for oxides of nitrogen, 7 percent for 

airborne particulate matter, and 16 percent for carbon dioxide (Transport for London, 

2007). 
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2.2 Ambient Air Pollution 

Six common air pollutants (also known as "criteria pollutants") are found all over 

the United States. They are particle pollution (often referred to as particulate matter), 

ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. These 

pollutants can harm your health and the environment, and cause property damage. Of the 

six pollutants, particle pollution and ground-level ozone are the most widespread health 

hazards. Details about these pollutants are discussed below. 

EP A calls these pollutants "criteria" air pollutants because it regulates them by 

developing human healthbased and/or environmentally-based criteria (science based 

guidelines) for setting permissible levels. The sct of limits based on human health is 

called primary standards. Another set of limits intended to prevent environmental and 

property damage is called secondary standards. A geographic area with air quality that is 

cleaner than the primary standard is called an "attainment" area; areas that do not meet 

the primary standard are called "nonattainment" areas. 

EP A has been developing programs to cut emissions of these commonly found air 

pollutants since the Clean Air Act was passed in 1970. It's a big job, and although a great 

deal of progress has been made, it will take time to make the air healthy throughout the 

country. There are still several areas of the country, including many large cities, that are 

classified as nonattainment for at least one of the six common pollutants. Despite 

continued improvements in air quality, millions of people live in areas with unhealthy 

levels of pollution. 
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2.2.1 Particle Pollution 

Particle pollution, also known as particulate matter (PM), includes the very fine 

dust, soot, smoke, and droplets that are formed from chemical reactions, and produced 

when fuels such as coal, wood, or oil are burned. For example, sulfur dioxide and 

nitrogen oxide gases from motor vehicles, electric power generation, and industrial 

facilities react with sunlight and water vapor to form particles. Particles may also come 

from fireplaces, wood stoves, unpaved roads, crushing and grinding operations, and may 

be blown into the air by the wind. 

EPA scientists and other health experts are concerned about particle pollution 

because very small or "fine" particles can get deep into the lungs. These fine particles, by 

themselves, or in combination with other air pollutants, can cause increased emergency 

room visits and hospital admissions for respiratory illnesses, and tens of thousands of 

deaths each year. They can aggravate asthma, cause acute respiratory symptoms such as 

coughing, reduce lung function resulting in shortness of breath, and cause chronic 

bronchitis. 

The elderly, children, and asthmatics are particularly vulnerable to health problems 

caused by breathing fine particles. Individuals with pre-existing heart or lung disease are 

also at an increased risk of health problems due to particle pollution. Particles also cause 

fog reducing visibility in places like national parks and wilderness areas that are known 

for their picturesque vistas. These are places where one expects to see clearly for long 

distances. In many parts of the US, pollution has reduced the distance and clarity of 

vision by 70 percent (Environmental Protection Agency (EPA), 2008). 
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Fine particles can remain suspended in the air and travel long distances with the 

wind. For example, over 20 percent of the particles that form haze in the Rocky 

Mountains National Park have been estimated to come from hundreds of miles away 

(EPA, 2008). 

Particles also make buildings, statues and other outdoor structures dirty. Trinity 

Church in downtown New York City was black until a few years ago, when cleaning off 

almost 200 years worth of soot brought the church's stone walls back to their original 

light pink color (EPA, 2008). 

Before the 1990 Clean Air Act went into effect, EPA set limits on airborne particles 

smaller than 10 micrometers in diameter called PMlO. These are tiny particles (seven of 

these particles lined up next to each other would cover a distance no wider than a human 

hair). Research has indicated that even smaller particles (114 the size ofa PMlO particle) 

are more likely to harm human health. So in 1997, EPA published limits for fine 

particles, called PM2.S. To reduce particle levels, additional controls are being required 

on a variety of sources including power plants and diesel trucks. 

2.2.2 Ground-level Ozone 

Ground-level ozone is a primary component of smog. Ground-level ozone can 

cause human health problems and harm forests and agricultural crops. Repeated contact 

with ozone can make people more vulnerable to respiratory infections and lung 

inflammation. It also can aggravate pre-existing respiratory diseases, such as asthma. 

Children are at risk from ozone pollution because they are outside, playing and 
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exercising, during the summer days when ozone levels are at their highest. They also can 

be more susceptible because their lungs are still developing. People with asthma and even 

active healthy adults, such as construction workers, can experience a reduction in lung 

function and an increase in respiratory symptoms (chest pain and coughing) when 

exposed to low levels of ozone during periods of moderate exertion (EPA, 2008). 

The two types of chemicals that are the chief ingredients in forming ground-level 

ozone are called volatile organic compounds (VOCs) and nitrogen oxides (NOx). VOCs 

are released by cars burning gasoline, petroleum refineries, chemical manufacturing 

plants, and other industrial facilities. The solvents used in paints and other consumer and 

business products consist of VOCs. The 1990 Clean Air Act has resulted in changes in 

product formulas to reduce the VOC content of those products. Nitrogen oxides (NOx) 

are produced when cars and other sources like power plants and industrial boilers bum 

fuels such as gasoline, coal, or oil. The reddish-brown color, when it is smoggy, comes 

from the nitrogen oxides (EPA, 2008). 

The pollutants that react to form ground-level ozone literally cook in the sky during 

the hot summertime season. It takes time for smog to form-several hours from the time 

pollutants get into the air until the ground-level ozone reaches unhealthy level. 

Weather and the topogaraphy of the land (for example, hills around a valley, high 

mountains between a big industrial city and suburban or rural areas) help determine 

where ground-level ozone goes and how worse it gets. When temperature inversions 

occur (warm air stays trapped near the ground by a layer of cooler air) and winds are 

calm, high concentrations of groundlevel ozone may continue for several days at a time. 
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As traffic and other sources add more ozone-forming pollutants to the air, the ground

level ozone gets worse (EPA, 2008). 

2.2.3 Carbon monoxide 

CO is a colorless and odorless gas that is formed when carbon in fuel is not burned 

completely. It is a component of motor vehicle exhaust, which contributes about 56 

percent of all CO emissions nationwide. Other non-road engines and vehicles (such as 

construction equipment and boats) contribute about 22 percent of all CO emissions 

nationwide. Higher levels of CO generally occur in areas with heavy traffic congestion. 

In cities, 85 to 95 percent of all CO emissions may come from motor vehicle exhaust. 

Other sources of CO emissions include industrial processes (such as metals processing 

and chemical manufacturing), residential wood burning, and natural sources such as 

forest fires. Woodstoves, gas stoves, cigarette smoke, and unvented gas and kerosene 

space heaters are sources of CO indoors. The highest levels of CO in the outside air 

typically occur during the colder months of the year when inversion conditions are more 

frequent (EPA, 2008). The air pollution becomes trapped near the ground beneath a layer 

of warm air. Carbon monoxide can cause harmful health effects by reducing oxygen 

delivery to the body's organs (like the heart and brain) and tissues. The health threat from 

lower levels of CO is most serious for those who suffer from heart disease, like angina, 

clogged arteries, or congestive heart failure. For a person with heart disease, a single 

exposure to CO at low levels may cause chest pain and reduce that person's ability to 

exercise; repeated exposures may contribute to other cardiovascular effects. Even healthy 

people can be affected by high levels of CO. People who breathe high levels of CO can 

develop vision problems, reduced ability to work or learn, reduced manual dexterity, and 
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difficulty perfonning complex tasks. At extremely high levels, CO is toxic and can 

cause death. CO contributes to the fonnation of smog ground-level ozone, which can 

trigger serious respiratory problems (EPA, 2008). 

Reducing emissions of CO is an important part of EPA's policy for cleaner air. The 

u.s. Environmental Protection Agency (EPA), states, and local governments work as 

partners to decrease emissions of CO. EP A's main strategy to reduce CO has been to 

establish national ambient air quality standards, to require national controls for motor 

vehicle emissions, and to require reductions from large industrial facilities. Starting in the 

early 1970's, EPA has set national standards that have considerably reduced emissions of 

co. Since 1970, CO emissions from on-road vehicles (which include cars, motorcycles, 

light- and heavy-duty trucks) have been reduced by over 40 percent. The greatest 

reductions have been in emissions from cars (nearly 60 percent). 

2.2.4 Nitrogen oxides 

NOx is the generic tenn for a group of highly reactive gases, all of which consist of 

nitrogen and oxygen in varying amounts. Many of the nitrogen oxides are colorless and 

odorless. However, one common pollutant, nitrogen dioxide (N02) along with particles in 

the air can often be seen as a reddish-brown layer over many urban areas. NOx causes a 

wide variety of health and environmental impacts because of various compounds and 

derivatives in the family of nitrogen oxides, including nitrogen dioxide, nitric acid, 

nitrous oxide, nitrates, and nitric oxide. Ground-level Ozone (Smog) - is fonned when 

NOx and volatile organic compounds (VOCs) react in the presence of sunlight. Millions 

of Americans live in areas that do not meet the health standards for ozone. Other impacts 
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from ozone include damage to vegetation and crop yields. NOx and sulfur dioxide react 

with other substances in the air to form acids which fall to earth as rain, fog, snow or dry 

particles. Some may be carried by wind for hundreds of miles. Acid rain damages; causes 

deterioration of cars, buildings and historical monuments; and causes lakes and streams 

to become acidic and unsuitable for many fish. NOx reacts with ammonia, moisture, and 

other compounds to form nitric acid and related particles. Human health concerns include 

effects on breathing and the respiratory system, damage to lung tissue, and premature 

death. Small particles penetrate deeply into sensitive parts of the lungs and can cause or 

worsen respiratory disease such as emphysema and bronchitis, and aggravate existing 

heart disease. Increased nitrogen loading in water bodies, particularly coastal estuaries, 

upsets the chemical balance of nutrients used by aquatic plants and animals. Additional 

nitrogen accelerates "eutrophication," which leads to oxygen depletion and reduces fish 

and shellfish populations. NOx emissions in the air are one of the largest sources of 

nitrogen pollution in the Chesapeake Bay. One member of the NOx, nitrous oxide or 

N20, is a greenhouse gas. It accumulates in the atmosphere with other greenhouse gasses 

causing a gradual rise in the earth's temperature. This will lead to increased risks to 

human health, a rise in the sea level, and other adverse changes to plant and animal 

habitat. In the air, NOx reacts readily with common organic chemicals and even ozone, to 

form a wide variety of toxic products, some of which may cause biological mutations. 

Examples of these chemicals include the nitrate radical, nitroarenes, and nitrosamines. 

Nitrate particles and nitrogen dioxide can block the transmission of light, reducing 

visibility in urban areas and on a regional scale in US national parks (EPA, 2008). 
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Since the 1970s, EPA has required motor vehicle manufacturers to reduce millions 

of tons of NO x from their products, resulting in noteworthy improvements to public 

health. As a result of the Tier 2 program, all cars, SUVs, pickups, and vans will be 77-95 

percent cleaner by 2009. The requirements are phased in, starting in 2004. The program 

will also result in cleaner-burning gasoline that contains 90 percent less sulfur. Through 

its clean diesel truck and buses program, EPA reduced the level of sulfur in highway 

diesel fuel by 97 percent starting in 2006, and will reduce NOx emissions by over 90%. 

The Clean Air Nonroad Diesel Rule will cut nonroad diesel vehicle exhaust emissions by 

more than 90 percent and fuel sulfur levels by 99 percent, beginning in 2007. To help 

reduce acid rain, EPA devised a two-phased strategy to cut NOx emissions from coal

fired power plants. The first phase, finalized in a rulemaking in 1995, aimed to reduce 

NOx emissions by over 400,000 tons per year between 1996 and 1999. The second phase 

began in 2000, and aimed to reduce NOx emissions by over 2 million tons per year. The 

second phase reduction goal has been surpassed, in part due to additional state-initiated 

NOx reductions in the Northeast. The Clean Air Act requires states to reduce ground

level ozone. Since NOx and ozone can be transported long distances, the Act also 

requires "upwind" states to implement programs that will help "downwind" states meet 

the ozone standards. EPA issued a rule in 1998 that requires 21 states and the District of 

Columbia to revise their Implementation Plans to further reduce NOx emissions by taking 

advantage of newer, cleaner control strategies. The rule does not mandate how the 

reductions are to be achieved, but gives each affected state a NOx emission target. States 

have flexibility in determining how to reduce emissions. The goal of this rule is to reduce 
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total emissions of NO x by I million tons in the affected states by 2007. Reductions in 

most states were required to begin in 2004 (EPA, 2008). 

2.2.5 Sulfur dioxide 

S02 belongs to the family of sulfur oxide gases (SOx). These gases dissolve easily 

in water. Sulfur is found in all raw materials, including crude oil, coal, and ore that 

contains common metals like aluminum, copper, zinc, lead, and iron. SOx gases are 

formed when fuel containing sulfur, such as coal and oil, is burned, and when gasoline is 

extracted from oil, or metals are extracted from ore. S02 dissolves in water vapor to form 

acid, and interacts with other gases and particles in the air to form sulfates and other 

products that can be detrimental to people and their environment. S02 causes a wide 

variety of health and environmental impacts because of the way it reacts with other 

substances in the air. Particularly sensitive groups include people with asthma who are 

active outdoors and children, the elderly, and people with heart or lung disease. Peak 

levels of S02 in the air can cause temporary breathing difficulty for people with asthma 

who are active outdoors. Longer-term exposures to high levels of S02 gas and particles 

cause respiratory illness and aggravate existing heart disease. S02 reacts with other 

chemicals in the air to form tiny sulfate particles. When these are breathed, they gather in 

the lungs and are associated with increased respiratory symptoms and disease, difficulty 

in breathing, and premature death. Haze occurs when light is scattered or absorbed by 

particles and gases in the air. Sulfate particles are the major cause of reduced visibility in 

many parts of the U.S., including national parks. S02 and nitrogen oxides react with other 

substances in the air to form acids, which fall to earth as rain, fog, snow, or dry particles. 

Some may be carried by the wind for hundreds of miles. Acid rain harms forests and 
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crops, changes the makeup of soil, and makes lakes and streams acidic and unsuitable for 

fish. Continued exposure over a long time changes the natural variety of plants and 

animals in an ecosystem. S02 accelerates thE~ decay of building materials and paints, 

including precious monuments, statues, and sculptures that are part of any nation's 

cultural heritage. 

Reducing emissions of SOz remains a crucial element of EP A's strategy for cleaner 

air. Meeting EPA's national health-based air quality standards is an important stage 

towards ensuring the air is safe to breathe. To meet the standards, EPA, states, tribes, and 

local governments work as partners to decrease emissions of S02 through several control 

programs. Meeting the national ambient air quality standards for sulfur dioxide entails 

working with state and local governments to ensure that the levels of SOz in the air are 

not unhealthy. Breathing SOz can cause respiratory illness and aggravate existing heart 

and lung diseases. SOz is a primary contributor to the formation of acid rain, which is 

associated with acidification of soils, lakes, and streams, and accelerated corrosion of 

buildings and monuments. To help reduce acid rain, EPA is implementing a program to 

reduce releases of S02 and other pollutants from coal-fired power plants. The first phase 

began in 1995 for SOz and targets the largest and highest emitting power plants. The 

second phase (started in 2000) sets tighter restrictions on smaller coal-, gas-, and oil-fired 

plants. This program will reduce annual SO;! emissions by 10 million tons (almost half 

the 1980 level) between 1980 and 2010. Particulate matter can be formed from direct 

sources (like diesel exhaust or smoke), but can also be formed through chemical 

reactions. Emissions of S02 can be chemically transformed into ammonium sulfates, 

which are very tiny particles that can be carried by winds hundred of miles. These small 
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particles have been shown to cause a series of health problems for asthmatics, the elderly, 

and other people with pre-existing respiratory problems. These same small particles are 

also a chief pollutant that reduce visibility across large areas of the country, particularly 

national parks that are known for their scenic vistas. The nation has made great steps 

forward in meeting the first goal of meeting the national air quality standards. Levels of 

S02 in the air have decreased over the past 20 years. These reductions over time were 

achieved by installing pollution control equipment at coal-fired power plants, decreasing 

pollution from industrial processing facilities, reducing the average sulfur content of fuels 

burned, and using cleaner fuels like natural gas for residential and commercial heat. 

However, further reductions of S02 and other pollutants will be required to solve the 

particulate matter and acid rain problems (EPA, 2008). 

2.2.6 Lead 

In the past, motor vehicles were the main contributor oflead emissions to the air. 

As a result of EPA's regulatory efforts to redluce lead in gasoline, air emissions oflead 

from the transportation sector, and particularly the automotive sector, have greatly 

declined over the past two decades. Today industrial processes, primarily metals 

processing, are the major source of lead emissions to the air. The highest air 

concentrations of lead are usually found near lead smelters. Other stationary sources are 

waste incinerators, utilities, and lead-acid battery manufacturers. In addition to exposure 

to lead in air, other major exposure channels include intake of lead in drinking water and 

lead-contaminated food as well as incidental ingestion of lead-contaminated soil and dust. 

Lead-based paint remains a major exposure pathway in older homes. Once taken into the 

body, lead distributes throughout the body in the blood and is amassed in the bones. 
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Depending on the level of exposure, lead can adversely affect the nervous system, kidney 

function, immune system, reproductive and developmental systems and the 

cardiovascular system. Lead exposure also affects the oxygen carrying capacity of the 

blood. The lead effects most commonly encountered in current populations are 

neurological effects in children and cardiovascular effects (e.g., high blood pressure and 

heart disease) in adults. Infants and young children are especially sensitive to even low 

levels of lead, which may contribute to behavioral problems, learning deficits and 

lowered IQ. 

Lead does not decay easily in the environment and accumulates in soils and 

sediments through deposition from air sourc,~s, direct discharge of waste streams to water 

bodies, mining, and erosion. Ecosystems near point sources of lead demonstrate a wide 

range of harmful effects including losses in biodiversity, changes in community 

composition, decreased growth and reproductive rates in plants and animals, and 

neurological effects in vertebrates. EPA Strategy for Reducing Lead Exposure, the 

Agency focused primarily on regulatory and remedial clean-up efforts to reduce Pb 

exposure from a variety of non-air sources that posed more extensive public health risks, 

as well as other actions to reduce air emissions. 

2.2.7 National Ambient Air Quality Standards (NAAQS) 

The Clean Air Act, which was last amtmded in 1990, requires EPA to set National 

Ambient Air Quality Standards (40 CFR part 50) for pollutants considered harmful to 

public health and the environment. The Clean Air Act established two types of national 

air quality standards. "Primary standards" set limits to protect public health, including the 

health of sensitive populations such as asthmatics, children, and the elderly. "Secondary 
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standards" set limits to protect public welfare, including protection against decreased 

visibility, damage to animals, crops, vegetation, and buildings. 

The EPA Office of Air Quality Planning and Standards (OAQPS) has set National 

Ambient Air Quality Standards for six principal pollutants, which are called "criteria" 

pollutants. They are listed below. Units of measure for the standards are parts per million 

(ppm) by volume, milligrams per cubic meter of air (mg/m3), and micrograms per cubic 

meter of air (~g/m\ 

Table 2.1 National Ambient Air Quality Standards 
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(\) Not to be exceeded more than once per year. 
(2) Not to be exceeded more than once per year on average over 3 years. 
(3) To attain this standard, the 3-year average of the weighted annual mean PM2.5 
concentrations from single or multiple community-oriented monitors must not exceed 
15.0Ilg/m3. 
(4) To attain this standard, the 3-year average of the 98th percentile of 24-hour 
concentrations at each population-oriented monitor within an area must not exceed 35 
Ilglm3 (effective December 17,2006). 
(5) To attain this standard, the 3-year average of the fourth-highest daily maximum 8-hour 
average ozone concentrations measured at each monitor within an area over each year 
must not exceed 0.075 ppm. (effective May 27,2008) 
(6) (a) To attain this standard, the 3-year average of the fourth-highest daily maximum 8-
hour average ozone concentrations measured at each monitor within an area over each 
year must not exceed 0.08 ppm. 

(b) The 1997 standard-and the implementation rules for that standard-will remain in 
place for implementation purposes as EPA undertakes rulemaking to address the 
transition from the 1997 ozone standard to the 2008 ozone standard. 
(7) (a) The standard is attained when the expected number of days per calendar year with 
maximum hourly average concentrations above 0.12 ppm is S 1. 

(b) As of June 15, 2005 EPA revoked the I-hour ozone standard in all areas except the 
8-hour ozone nonattainment Early Action Compact (EAC) Areas. 

2.2.8 How the Clean Air Act Reduces Air Pollution Such as Particle Pollution 

and Ground-level Ozone 

First, EPA works with state governors and tribal government leaders to identify 

"nonattainment" areas where the air does not meet allowable limits for a common air 

pollutant. States and tribes usually do much of the planning for cleaning up common air 

pollutants. They develop plans, called State/Tribal Implementation Plans, to reduce air 

pollutants to allowable levels. Then they use a permit system as part of their plan to make 

sure power plants, factories, and other pollution sources meet their goals to clean up the 

aIr. 

The Clean Air Act requirements are comprehensive and cover a variety of pollution 

sources and clean-up methods to reduce common air pollutants. Many of the clean-up 
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requirements for particle pollution and ground-level ozone involve large industrial 

sources (power plants, chemical producers, and petroleum refineries), as well as motor 

vehicles (cars, trucks, and buses). Also, in nonattainment areas, controls are generally 

required for smaller pollution sources, such as gasoline stations and paint shops. 

2.3 Transportation and Air Quality 

In response to the Clean Air Act (CAA), the U.S. Environmental Protection 

Agency (EPA) established National Ambient Air Quality Standards (NAAQS) for 

various pollutants - known as criteria pollutants - that adversely affect human health and 

welfare. The three major transportation-related criteria pollutants are as follows: 

1. Ozone (03) and its precursors, volatile organic compounds (VOC) and oxides of 

nitrogen (NOx) 

2. Particulate matter (PM) 

3. Carbon monoxide 

Other criteria pollutants include sulfur dioxide (S02), nitrogen dioxide (N02), and 

lead (Pb). In the past, motor vehicles were a major source of lead emissions that were 

virtually eliminated as leaded gasoline was phased out. Although not criteria air 

pollutants, toxic air pollutants/air toxics, are the pollutants that cause or may cause cancer 

or other serious health effects, such as reproductive effects or birth defects. Air toxics 

may also cause adverse environmental and ecological effects. The CAA identifies 188 air 

toxics. The EPA has identified 21 pollutants as mobile source air taxics, including diesel 

particulate matter, benzene, and other organic materials and metals. 

35 



Fuel combustion by motor vehicles and other sources releases carbon dioxide 

(C02)' which is a "greenhouse gas" that traps heat within the earth's atmosphere. CO2 is 

not directly dangerous to human health and is not regulated under the CAA. 

Significant progress has been made in reducing criteria pollutant emissions from 

motor vehicles and improving air quality since the 1970s, even as vehicle travel has 

increased rapidly. The air is noticeably cleaner than in 1970, and total criteria-pollutant 

emissions from motor vehicles are less than they were in 1970 despite a near tripling of 

vehicle miles of travel. With the reduction in criteria pollutants, many air toxics have also 

been reduced. 

Still, challenges remain. In 1997, EPA issued revised standards for ozone and 

particulate matter that reflect improved understanding of the health effects of these 

pollutants. Based on monitoring data, approximately 146 million people in the United 

States reside in counties that do not meet the air-quality standards for at least one 

NAAQS pollutant. 

2.3.1 Carbon-monoxide 

Although one cannot see or smell carbon monoxide, this poisonous gas is a major 

air pollutant in many American cities. Carbon monoxide forms when carbon in fuel 

doesn't bum completely (incomplete combustion). The main source of carbon monoxide 

in our air is vehicle emissions. As much as 95 percent of the carbon monoxide in typical 

U.S. cities comes from mobile sources, according to EPA studies. 
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[Source: EPA, 2008] 
Figure 2.1 

1999 National Emissions by Source: Carbon Monoxide 
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[Source: EPA, 2008] 
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It is obvious from Figure 1.1 & 1.2, that major contribution (51 %) to the ambient 

air of Carbon-monoxide comes from on-road Mobile Sources and Cars & Motorcycles 

are responsible for 55 % out of that amount. Ifpollution from Cars & Motorcycles could 

be curtailed, significant reduction in the concentration of CO in ambient air would follow 

automatically. 

2.3.2 Hydrocarbons 

Hydrocarbons are a precursor to ground-level ozone, a serious air pollutant in cities 

across the United States. A key component of smog, ground-level ozone is formed by 

reactions involving hydrocarbons and nitrogen oxides in the presence of sunlight. 

Hydrocarbon emissions result from incomplete fuel combustion and from fuel 

evaporation. Today's cars are equipped with emission controls designed to reduce both 

exhaust and evaporative hydrocarbon emissions. 

[Source: EPA, 2008] 
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Figure 2.3 
1999 National Emissions by Source: Hydrocarbons 
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Though the major portion of Hydrocarbons to ambient air comes from other 

sources such as Gasoline and Diesel equipments as can be seen from Figure 2.3, On-Road 

mobile sources also consitute a significant part. From Figure 2.4, it is evident that 

Motorcycles and cars, once again, are major contributor out of On-Road mobile sources 

to the Hydrocarbon pollution in ambient air. 

[Source: EPA, 2008] 

Figure 2.4 
1999 National Emissions by Source: Hydrocarbons 

On-Road Mobile Sources 
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2.3.3 Nitrogen Oxides 

[Source: EPA, 2008] 

Other 
(Not Mobile) 
Sources 
(44°ru) 

Figure 2.5 
1999 National Emissions by Source: Nitrogen Oxides 

Nitrogen oxides form when fuel bums at high temperatures, such as in motor 

vehicle engines. Mobile sources are responsible for more than half of all nitrogen oxide 

emissions in the United States. Both on-road and nonroad mobile sources are major 

nitrogen oxide polluters. 
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[Source: EPA, 2008] 

Figure 2.6 
1999 National Emissions by Source: Nitrogen Oxides 

On-Road Mobile Sources 

From Figure 2.5 & 2.6, it is evident that on-road mobile vehicles inject a significant 

portion of Nitrogen Oxide into the atmosphere and Diesel vehicles are the biggest source 

of these. 

2.4 ITS Application Overview 

ITS improve transportation safety and mobility and enhance productivity through 

the use of advanced information and communications technologies. Intelligent 

transportation systems (ITS) encompass a broad range of wireless and wire line 

communications-based information and electronics technologies. When integrated into 

the transportation system's infrastructure, and in vehicles themselves, these technologies 

relieve congestion, improve safety and enhance American productivity. ITS is made up of 

16 types of technology based systems. These systems are divided into intelligent 
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infrastructure systems and intelligent vehicle systems (Research and Innovative 

Technology Administration (RITA), 2008). 

2.4.1 Arterial Management 

Arterial Management, through ITS, consists of Surveillance, Traffic Control, Lane 

Management, Parking Management, Information Dissemination, and Enforcement as can 

be seen in Figure 2.7. 

2.4.1.1 Surveillance 

Many of the services possible through arterial management systems are enabled by 

traffic surveillance and detection technologies, such as sensors or cameras, monitoring 

traffic flow. The surveillance and detection technologies used to monitor traffic flow in 

support of ITS applications are also used to monitor key transportation facilities or 

infrastructure for security purposes (ITS, America, 2008; RITA, 2008). 

2.4.1.2 Traffic Control 

Traffic control measures on arterials optimize travel speeds and provide transit 

signal priority and signal preemption for emergency vehicles. These also improve safety 

of bicyclists and pedestrians and smooth traffic flow during special events (RITA, 2008; 

ITS America, 2008), 
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Figure 2.7 

Arterial Management Systems 
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2.4.1.3 Lane Management 

Lane management applications can promote the most effective use of available 

capacity during emergency evacuations and incidents, construction and a variety of other 

traffic and/or weather conditions (RITA, 2008). 

2.4.1.4 Parking Management 

Parking management systems with information dissemination capabilities, most 

commonly deployed in urban centers or at modal transfer points such as airports, monitor 

the availability of parking and disseminate the information to drivers, reducing traveler 

frustration and congestion associated with searching for parking (ITS, Europe, 2008; 

RIT A, 2008). 

2.4.1.5 Information Dissemination 

Advanced communications have improved the dissemination of information to the 

traveling public. Motorists are now able to receive relevant information on location

specific traffic conditions in a number of ways, including dynamic message signs (DMS), 

highway advisory radio (HAR), and in-vehicle signing, or specialized information 

transmitted to individual vehicles (ITS America, 2008; RITA, 2008). 

2.4.1.6 Enforcement 

Automated enforcement systems, such as speed enforcement and stop/yield 

enforcement, improve safety and reduce aggressive driving. These systems also assist in 

the enforcement of traffic signal and speed compliance (ITS America, 2008; RITA, 

2008). 
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2.4.2 Freeway Management Systems 

Freeway Management Systems, through ITS, consists of Surveillance, Ramp 

Control, Lane Management, Special Event Transportation Management, Information 

Dissemination, and Enforcement as can be seen in Figure 2.8. 
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Figure 2.8 

Freeway Management Systems 
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2.4.2.1 Surveillance 

Traffic surveillance systems use detectors and video equipment to support the most 

advanced freeway management systems. These sensors can also be used to monitor 

critical transportation infrastructure for security purposes (ITS America, 2008; RITA, 

2008). 

2.4.2.2 Ramp Control 

Traffic control measures on freeway entrance ramps, such as ramp meters, can use 

sensor data to optimize freeway travel speeds. Also these measures reduce ramp meter 

wait times (ITS America, 2008; RITA, 2008). 

2.4.2.3 Lane Management 

Lane management applications can promote the most effective use of available 

capacity on freeways to encourage the use of high-occupancy commute modes. These 

applications include HOV facilities, reversible flow lanes, pricing, lane control, variable 

speed limits, and emergency evacuation (ITS America, 2008; RITA, 2008). 

2.4.2.4 Special Event Transportation Management 

Special event transportation management systems can help control the impact of 

congestion at stadiums or convention centers. In areas with frequent events, large 

changeable destination signs or other lane control equipment can be installed. In areas 

with occasional or one-time events, portable equipment can help smooth traffic flow (ITS 

America, 2008; RITA, 2008). 
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2.4.2.5 Information Dissemination 

Advanced communications technologies have enhanced the dissemination of 

infonnation to the traveling community. Motorists are now capable to receive pertinent 

infonnation on location-specific traffic conditions in a number of ways, including 

dynamic message signs (OMS), highway advisory radio (HAR), in-vehicle signing, or 

specialized infonnation transmitted to individual vehicles (ITS America, 2008; RITA, 

2008). 

2.4.2.6 Enforcement 

Automated enforcement systems, such as speed enforcement, high-occupancy 

vehicle (HOV) lane enforcement, and ramp meter enforcement, improve safety. These 

systems also reduce aggressive driving (ITS America, 2008; RITA, 2008). 

2.4.3 Transit Management Systems 

Transit ITS services, as can be seen in Figure 2.9, include surveillance and 

communications, such as automated vehicle location (A VL) systems, computer-aided 

dispatch (CAD) systems, and remote vehicle and facility surveillance cameras, which 

enable transit agencies to improve the operational efficiency, safety, and security of the 

nation's public transportation systems (ITS, Europe, 2008; RITA, 2008). 

2.4.3.1 Safety and Security 

Advanced software and communications enable data as well as voice to be 

transferred between transit management centers and transit vehicles for increased safety 

and security, improved transit operations, and more efficient fleet operations. Transit 

management centers can monitor in-vehicle and in-tenninal surveillance systems to 
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improve quality or service and improve the safety and security of passengers and 

operators (ITS, Australia, 2008; RITA, 2008). 

2.4.3.2 Transportation Demand Management 

Transportation demand management service, such as ride sharing/matching, 

dynamic routing/scheduling, and service coordination, increase public access to transit 

resources where coverage is limited. These systems reduce bus schedule deviation, 

increase ridership, and decrease paratransit costs (ITS America, 2008; RITA, 2008). 

2.4.3.3 Fleet Management 

Fleet management systems improve transit reliability through implementation of 

automated vehicle location (AVL) and computer aided dispatch (CAD) systems which 

can reduce passenger wait times. These systems may also be implemented with in-vehicle 

self-diagnostic equipment to automatically alert maintenance personnel of potential 

problems (ITS America, 2008; ITS, Europe, 2008; RITA, 2008) 
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Transit Management Systems 

2.4.3.4 Information dissemination 

Infonnation dissemination websites allow passengers to confinn scheduling 

infonnation, improve transfer coordination, and reduce wait times. Electronic transit 

status infonnation signs at bus stops help passengers manage time, and on-board systems 
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such as next-stop audio enunciators help passengers in unfamiliar areas reach their 

destinations (ITS, Europe, 2008; RITA, 2008). 

2.4.4 Incident Management Systems 

Incident management systems lessen the effects of incident-related congestion by 

decreasing the time to detect incidents, the time for responding vehicles to arrive, and the 

time required for traffic to return to normal conditions. As can be seen in Figure 2.10, 

Incident management systems utilize a variety of surveillance technologies, often shared 

with freeway and arterial management systems, as well as superior communications and 

other technologies that facilitate coordinated response to incidents (RITA, 2008; ITS 

America, 2008). 

2.4.4.1 Surveillance & Detection 

An array of surveillance and detection technologies facilitate detect incidents 

rapidly, including inductive loop or acoustic roadway detectors, and camera systems 

providing frequent still images or full-motion video. Information from wireless improves 

911 systems, mayday, and automated collision notification systems, as well as roadside 

call boxes can also help incident management system personnel spot incidents quickly 

(RITA, 2008; ITS America, 2008). 

2.4.4.2 Mobilization & Response 

Mobilization and response consists of automated vehicle location and computer

aided dispatch systems, and response routing systems. These systems facilitate incident 

response teams arrive quickly (RITA, 2008; ITS America, 2008). 
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Figure 2.10 

Incident Management Systems 

2.4.4.3 Information dissemination 

Information dissemination systems facilitate travelers safely steer around incidents 

on the roadway. Incident management personnel can directly place incident-related 

information through Highway Advisory Radio (HAR) and Dynamic Message Signs 

(DMS). 
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2.4.4.4 Clearance & Recovery 

Several technologies are available to accelerate the investigation of incident scenes 

and record necessary information for later analysis. Temporary traffic control devices 

assist in making sure the safety of incident responders and provide for the safe travel of 

vehicles around the incident site (ITS, Australia, 2008; RITA, 2008). 

2.4.5 Emergency Management Systems 

ITS applications in emergency management comprise of hazardous materials 

management, the deployment of emergency medical services, and large and small-scale 

emergency response and evacuation operations as can be seen in Figure 2.11. 

2.4.5.1 Hazardous Materials Management 

ITS applications related with hazardous materials (HAZMAT) consignment can 

achieve four major functions intended to provide safe and secure transport of hazardous 

materials by road. Vehicle-mounted hardware provides the capability to track HAZMA T 

shipments and support notification of management centers when a shipment deviates 

from its proposed route. Roadside detectors can check for the presence of hazardous 

shipments in sensitive areas and, if electronic tag information is available on the detected 

vehicle, corroborate that the shipment is on the proposed route. Driver authentication 

technology can make sure that the individual operating a HAZMA T vehicle is certified to 

do so and report operation by unanticipated drivers to public safety entities. ITS also 

offer assistance to commercial vehicle operations via electronic route planning services, 

ensuring compliance with HAZMAT shipment restrictions along planned travel 

routes(RIT A, 2008). 
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Emergency Management Systems 

2.4.5.2 Emergency Medical Services 

Advanced automated collision notification (ACN) and telemedicine tackle the 

detection of and response to incidents such as vehicle collisions or other incidents 

requiring emergency responders. In rural areas, response time for emergency medical 

services is greater than in urban areas, resulting in fatal consequences for those in want of 

medical assistance. Advances ACN systems can alert emergency personnel and provide 

them with valuable information on the crash, including location, crash characteristics, and 
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possible appropriate medical information regarding the vehicle occupants. Telemedicine 

systems provide a connection between responding ambulances and emergency medical 

facilities, enabling doctors to counsel emergency medical personnel regarding treatment 

of patients on the way to the hospital (RITA, 2008; ITS America, 2008). 

2.4.5.3 Response & Recovery 

The assortment of sensors deployed on the transportation infrastructure can help 

provide an early warning system to spot large-scale emergencies, including natural 

disasters and technological and man-made disasters. In the event of a large-scale 

emergency, ITS applications can help with response management through services such 

as the tracking of emergency vehicle fleets using automated vehicle location (A VL) 

technology and two-way communications between emergency vehicles and dispatchers. 

Evacuation operations often need a synchronized emergency response involving multiple 

agencies, various emergency centers, and numerous response plans. Integration with 

traffic and transit management systems enables emergency information to be shared 

between public and private agencies and the traveling public. This communication and 

cooperation also enables the use of the variety oflTS information dissemination 

capabilities to provide emergency traveler information (RITA, 2008; ITS America, 

2008). 

2.4.6 Electronic Payment and Pricing 

As it can be seen from Figure 2.12, Electronic Payment and Pricing consists ofto11 

collection, transit fare payment, parking fee payment, multi-use payment and pricing. 

Electronic payment systems utilize various communication and electronic technologies to 

facilitate business between travelers and transportation agencIes, normally for the 
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purpose of paying tolls and transit fares. Pricing refers to charging motorists a fee or toll 

that varies with the level of demand or with the time of day (RITA, 2008). 
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Figure 2.12 

Electronic Payment and Pricing 

2.4.6.1 Toll Collection 

Electronic toll collection (ETC) supports the collection of payment at toll plazas 

using automated systems to enhance the operational efficiency and expediency of toll 

collection. Systems typically consist of vehicle-mount cd transponders identified by 
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readers located in dedicated and/or mixed-use lanes at toll plazas (RITA, 2008; ITS 

America, 2008). 

2.4.6.2 Transit Fare Payment 

Electronic transit fare payment systems, often enabled by smart card or magnetic 

stripe technologies, provide increased convenience to customers. These systems make 

significant cost savings to transportation agencies by increasing the efficiency of money 

handling processes and improving administrative controls (RITA, 2008; ITS America, 

2008). 

2.4.6.3 Parking Fee Payment 

Electronic parking fee payment systems provide benefits to parking facility 

operators, simplify payment for customers, and decrease congestion at entrances and 

exits to parking facilities. These payment systems are enabled by a variety of 

technologies including magnetic stripe cards, smart cards, in-vehicle transponders, or 

vehicle-mounted bar-codes (RITA, 2008; ITS America, 2008). 

2.4.6.4 Multi-use Payment 

Multi-use payment systems facilitate transit payment more easily. Payment for bus, 

rail, and other public or private sector goods and services can be made using transit fare 

cards at terminal gates, or on check -out counters and phone booths of participating 

merchants located near transit stations. Multi-use systems may also include the capability 

to pay highway tolls with the same card (RITA, 2008; ITS Europe, 2008). 

2.4.6.5 Pricing 

Pricing, also known as congestion pricing or value pricing, makes the use of 

technologies to vary the cost to use a transportation facility or network based on demand 
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or the time of day. Pricing strategies include: variable priced lanes, variable tolls on entire 

roadways or roadway segments, cordon charging, area-wide charging and fast and 

intertwined regular (FAIR) lanes (RITA, 2008, ITS Europe, 2008). 

2.4.7 Traveler Information 

As shown in Figure 2.l3, Traveler Information applications employ a mix of 

technologies, including Internet websites, telephone hotlines, as well as television and 

radio, to let users to make more informed decisions regarding trip departures, routes, and 

mode of travel. Ongoing implementation of the designated 511 telephone number will 

improve access to traveler information across the country. 
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2.4.7.1 Pre-trip Information 

Pre-trip traveler infonnation provided via internet websites, other wireless devices, 

511 telephone numbers, other telephone services, television, radio or kiosks allows users 

to take a more infonned decision for trip departures, routes, and mode of travel. These 

services greatly reduce traffic demand through the work zone resulting in lowering of 

average peak delay (RITA, 2008; ITS America, 2008). 

2.4.7.2 En-route Information 

En-route traveler infonnation is provided through wireless devices, 511 telephone 

numbers, other telephone services, radio, and in-vehicle signing. These services allow 

users to make infonned decisions regarding alternate routes and expected arrival times 

(RITA, 2008; ITS America, 2008). 

2.4.7.3 Tourism and Events 

Tourism and event-related travel infonnation systems cater the needs of travelers in 

areas alien to them or when traveling to major events such as sporting events or concerts. 

These services enhance the mobility and traveler convenience. Information provided 

includes electronic yellow pages as well as transit and parking availability (RITA, 2008; 

ITS America, 2008). 

2.4.8 Information Management 

ITS infonnation management supports the archiving and retrieval of data generated 

by other ITS applications and enables ITS applications that use archived infonnation. 

Decision support systems, predictive infonnation, and perfonnance monitoring are some 

ITS applications enabled by ITS infonnation management. Also ITS infonnation 
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management systems can help in transportation planning, research, and safety 

management activities (RITA, 2008). 

2.4.8.1 Data Archiving 

Data archiving is the collection, storage and distribution of ITS data for 

transportation planning, administration, policy, operation, safety analyses, and research. 

Data archiving systems use an array of software, database, and electronic data storage 

technologies (RITA, 2008; ITS America, 2008). 
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Figure 2.14 

Information Management 

2.4.9 Crash Prevention and Safety 

Crash prevention and safety systems identify unsafe conditions and provide 

warnings to travelers to take action to evade crashes. These systems provide alerts for 

traffic approaching at dangerous curves, off ramps, restricted overpasses, highway-rail 

crossings, high-volume intersections, and also provide warnings of the existence of 

pedestrians, and bicyclists, and even animals on the roadway. Crash prevention and 

safety systems typically utilize sensors to monitor the speed and characteristics of 

approaching vehicles and frequently also include environmental sensors to monitor 

roadway conditions and visibility_ These systems may be either permanent or temporary. 
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Some systems provide a general warning of the recommended speed for prevailing 

roadway conditions. Other systems provide a specific warning by taking into account the 

particular vehicle's characteristics (truck or car) and a calculation of the recommended 

speed for the particular vehicle based on conditions. In some cases, manual systems are 

employed, for example where pedestrians or bicyclists manually set the system to provide 

warnings of their presence to travelers (RITA, 2008). 
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2.4.9.1 Road Geometry Warning Systems 

Road geometry warning systems caution drivers, typically those in commercial 

trucks and other heavy vehicles, of potentially unsafe conditions that may cause rollovers 

or other crashes on ramps, curves, or downgrades. Advance curve speed warning and 

downhill truck speed warning systems reduce truck speed significantly (RITA, 2008; ITS 

America, 2008). 

2.4.9.2 Highway Rail Crossing Systems 

Highway rail crossing systems employ detectors, electronic warning signs and 

automated enforcement technologies to warn roadway traffic of approaching trains. 

These systems discourage drivers from violating railroad crossing traffic controls (RITA, 

2008; ITS Europe, 2008). 

2.4.9.3 Intersection Collision Warning 

Intersection collision warning systems employ sensors to monitor traffic 

approaching unsafe intersections. These systems warn vehicles of approaching cross 

traffic, via roadside or in-vehicle signage (RITA, 2008; ITS Europe, 2008). 

2.4.9.4 Pedestrian Safety 

Pedestrian safety systems facilitate protect pedestrians by automatically activating 

in-pavement lighting to alert drivers as pedestrians enter crosswalks. Other systems 

include 'countdown' pedestrian traffic signals, and pedestrian detectors that extend the 

"Walk" phase for pedestrians needing more time to cross a street (RITA, 2008; ITS 

Europe, 2008). 
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2.4.9.5 Bicycle Warning Systems 

Bicycle warning systems employ detectors and electronic warning signs to 

recognize bicycle traffic. These systems warn drivers when a cyclist is in an upcoming 

segment of roadway to improve safety on narrow bridges and tunnels (RITA, 2008, ITS 

Europe, 2008). 

2.4.9.6 Animal Warning Systems 

Animal warning systems characteristically use infrared or other detection 

technologies to identify large animals approaching the roadway, and notify drivers by 

activating flashers on warning signs located upstream of high frequency crossing areas. 

These systems may also turn on in-vehicle warning devices (RITA, 2008). 

2.4.10 Roadway Operations & Maintenance 

ITS applications in operations and maintenance, as shown in Figure 2.16, 

concentrate on integrated management of maintenance fleets, specialized service 

vehicles, hazardous road conditions remediation, and work zone mobility and safety. 

These applications monitor, evaluate, and disseminate roadway and infrastructure data for 

operational, maintenance, and managerial uses. ITS assist in securing the safety of 

workers, and travelers in a work zone while helping traffic flow through and around the 

construction area. This is often achieved through the temporary use of other ITS services, 

such as elements of traffic management and incident management programs (RITA, 

2008). 

2.4.10.1 Information Dissemination 

Information dissemination technologies can be deployed temporarily, or existing 

systems can be restructured periodically to provide information on work zones or other 
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highway maintenance activities. Examples of these systems include dynamic message 

signs (DMS), highway advisory radio (HAR), internet websites, wireless devices, and 

telephone services (RITA, 2008; ITS America, 2008). 

2.4.10.2 Asset Management 

Many of the services achievable through arterial management systems are enabled 

by traffic surveillance and detection technologies, such as sensors or cameras, monitoring 

traffic flow. The surveillance and detection technologies used to monitor traffic flow in 

support of ITS applications can also be used to monitor key transportation facilities for 

security purposes (RITA, 2008; ITS America, 2008). 
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Figure 2.16 
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2.4.10.3 Work Zone Management 

ITS applications in work zones consist of the temporary implementation of traffic 

management or incident management capabilities. These temporary systems can be 

stand-alone implementations or they may supplement existing systems in the area during 

construction. Other applications for managing work zones include measures to control 

vehicle speeds and inform travelers of changes in lane configurations or travel times and 

delays through the work zones. ITS may also be used to control traffic along detour 

routes during full road closures to facilitate rapid and safe reconstruction projects (RITA, 

2008; ITS America, 2008). 

2.4.11 Road Weather Management 

As shown in Figure 2.17, road weather management activities comprise road 

weather information systems (RWIS), winter maintenance technologies, and coordination 

of operations within and between state DOTs. ITS applications help with the monitoring 

and forecasting of roadway and atmospheric conditions, dissemination of weather-related 

information to travelers, weather-related traffic control measures such as variable speed 

limits, and both fixed and mobile winter maintenance activities (RITA, 2008; ITS 

America, 2008). 

2.4.11.1 Surveillance, Monitoring, & Prediction 

Surveillance, monitoring, and prediction of weather and roadway conditions 

facilitate the appropriate management actions to mitigate the impacts of any unfavorable 

conditions. Low visibility and automated wind warning systems reduce accidents and 

crashes significantly (RITA, 2008; ITS America, 2008). 
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2.4.11.2 Information Dissemination 

Information dissemination technologies help road weather managers inform 

travelers of any unfavorable conditions. DMS about adverse weather conditions can 

decrease mean driving speeds and reduce accident severity (ITS America, 2008; RITA, 

2008). 

2.4.11.3 Traffic Control 

Traffic control technologies improve traveler safety under poor weather conditions. 

A variety of technologies let these control measures to be taken quickly in response to 

developing adverse weather (RITA, 2008; ITS America, 2008). 

2.4.11.4 Response & Treatment 

A range of ITS applications are being used in the US to support roadway treatments 

necessary in response to weather events. These applications may provide for automated 

treatment of the road surface at fixed locations, such as anti-icing systems mounted on 

bridges in cold climates. They may also increase the efficiency and safety of mobile 

winter maintenance activities, for example, through automatic vehicle location on snow 

plows supporting a computer-aided dispatch system (ITS America, 2008; RITA, 2008). 
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Figure 2.17 

Roadway Weather Management 

2.4.12 Commercial Vehicle Operations 

ITS applications for commercial vehicle operations are designed to improve 

communication between motor carriers and regulatory agencies. These include, as can be 

seen in Figure 2.18, electronic registration and permitting programs, electronic exchange 

of inspection data between regulating agencies for better inspection targeting, electronic 
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screening systems, and several applications to help operators with fleet operations and 

security (RITA, 2008). 

2.4.12.1 Credentials Administration 

Electronic registration and permitting at state agencies allows carriers to register 

online, decreasing the tum-around time associated with permit approval. Electronic 

screening and credential systems deployment has been proved of having a high benefit

to-cost ratio (ITS America, 2008; RITA, 2008). 

2.4.12.2 Safety Assurance 

Safety information Exchange (SEI) programs facilitate exchange of vehicle and 

driver safety information between states and jurisdictions. Enforcement personnel at 

check stations can use national database clearinghouses to confirm carrier regulatory 

compliance data and crosscheck safety assurance information (RITA, 2008). 

2.4.12.3 Electronic Screening 

Electronic screening applications enhance safety and efficiency for commercial 

vehicle operators. Carriers that provide their fleets with low-cost in-vehicle transponders 

can communicate with check stations and automatically transmit regulatory data to 

authorities as trucks approach check stations. These and other technologies such as 

weight-in-motion (WIM) scales improve efficiency and reduce congestion at check 

stations by allowing safe and legal carriers to avoid inspections and come back to the 

mainline without stopping (RITA, 2008; ITS America, 2008). 

2.4.12.4 Carrier Operations & Fleet Management 

Several ITS technologies facilitate motor carriers with their day-to-day operations: 

automated vehicle location (AVL)/computer-aided design (CAD) technologies help in 
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scheduling and tracking of vehicle loads; on-board monitoring of cargo can warn drivers 

and carriers of potentially risky load conditions; and traveler information can assist 

carriers choose alternate routes and departure times, evade traffic, avoid inclement 

weather, and arrive on time (RITA, 2008). 
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Figure 2.18 

Commercial Vehicle Operations 

2.4.12.5 Security Operations 

ITS applications can be used to ensure the security and safety of motor carriers. 

Assct tracking tcchnologies can supervise the location and condition of fleet assets (e.g., 
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trailers, cabs, and trucks), and remote disabling systems can stop the unauthorized use of 

fleet vehicles and help in asset recovery (ITS America, 2008; RITA 2008). 

2.4.13 Intermodal Freight 

ITS can facilitate the protected, professional, and seamless movement of freight. 

Applications, as shown in Figure 2.19, being deployed provide for tracking of freight and 

carrier assets: containers and chassis, and improve the efficiency of freight terminal 

processes, drayage operations, and international border crossings (RIT A,2008). 

2.4.13.1 Freight Tracking 

Freight tracking applications can monitor, detect, and communicate freight status 

information such as condition and location of goods. Also these applications ensure 

containerized cargo remains sealed within shipping containers while en-route (RITA, 

2008; ITS America, 2008). 

2.4.13.2 Asset Tracking 

Many of the services possible through arterial management systems are enabled by 

traffic surveillance and detection technologies, such as sensors or cameras, monitoring 

traffic flow. The surveillance and detection technologies used to monitor traffic flow in 

support of ITS applications can also be used to watch main transportation facilities for 

security purposes (RITA, 2008). 

2.4.13.3 Freight Terminal Processes 

ITS freight terminal processes improve the efficiency of freight transfers or freight 

storage by enabling transponder tags to track cargo containers within the terminal as they 

are processed and sealed for transfer or storage. Electronic supply chain manifest 

systems, reduce the amount of time and paperwork required to transfer load and can 
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improve operational efficiencies for shippers/receivers, trucking companies, and air cargo 

carriers (RITA, 2008; ITS America, 2008). 
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Figure 2.19 

Intermodal Freight 

2.4.13.4 Drayage Operations 

ITS for drayage operations facilitate the efficient loading, unloading, sorting, and 

transfer of cargo by implementing automated systems and robotics to optimize limited 
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dock and port space. Automated truck-way technologies (automatic truck steering, speed, 

and platoon spacing control) can save travel time and reduce fuel consumption (RITA, 

2008). 

2.4.13.5 Freight Highway Connector System 

ITS applications optimize traffic control and coordinate transfers near intermodal 

ports of entry. These applications can simplify increased freight movement on the 

nation's freight highway connector system (RITA, 2008). 

2.4.13.6 International Border Crossing Processes 

At international border crossings, automating tax revenue transactions and faster, 

more efficient verification of cargo manifest information can reduce delays associated 

with multi-agency processes. Improvements in speed, accuracy and visibility of 

information transfer in a freight exchange could reap large rewards for America's 

economic vitality. The Electronic Freight Management Initiative can assist in making 

these improvements through the development of a common electronic freight 

management (RITA, 2008; ITS America, 2008). 

2.4.14 Collision Avoidance Systems 

To enhance the capability of drivers to avoid accidents, vehicle-mounted collision 

warning systems (CWS) continue to be tested and deployed. These applications use a 

variety of sensors to monitor the vehicle's surroundings and alert the driver of conditions 

that could lead to a collision. Examples include forward collision warning, obstacle 

detection systems, and road departure warning systems as can be seen in Figure 2.20 

(RITA, 2008). 
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2.4.14.1 Intersection Collision Warning 

Intersection collision warning systems are designed to detect and caution drivers of 

approaching traffic at high-speed intersections. Through the Cooperative Intersection 

Collision A voidance Systems initiative, the USDOT is working in partnership with the 

automotive manufacturers and State and local departments of transportation to pursue an 

optimized combination of autonomous-vehicle, autonomous-infrastructure and 

cooperative communication systems that potentially address the full set of intersection 

crash problems (USDOT, 2008). 

2.4.14.2 Obstacle Detection 

Obstacle detection systems employ vehicle-mounted sensors to notice obstructions, 

such as other vehicles, road debris, or animals, in a vehicle's path and warn the driver. A 

guidance-vehicles system designed to lead traffic through heavy fog on freeways can 

have a high benefit-to-cost ratio (RITA, 2008; ITS Australia, 2008). 

2.4.14.3 Lane Change Assistance 

Lane-change warning systems have been used to alert bus and truck drivers of 

vehicle, or obstructions, in adjacent lanes when the driver prepares to change lanes. A 

National Highway Traffic Safety Administration (NHTSA) modeling study indicated that 

lane change/merge crash avoidance systems would be 37 percent effective (RITA, 2008). 
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Figure 2.20 

Collision Avoidance Systems 

2.4.14.4 Lane Departure Warning 

Lane departure warning systems alert drivers that their vehicle is unintentionally 

drifting out of the lane. Tn-vehicle computer visioning technology designed to detect and 

warn truck drivers of lane departure and driver drowsiness reduced fuel consumption, 

increased safety, and provided drivers with more comfortable working conditions (RITA, 

2008). 
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2.4.14.5 Rollover Warning 

Rollover warning systems warn drivers when they are traveling too fast for an 

approaching curve, given their vehicles operating characteristics. This has been largely a 

concern of heavy trucks (RITA, 2008; ITS Australia, 2008). 

2.4.14.6 Road Departure Warning 

Road departure warning systems have been tested using machine vision and other 

in-vehicle systems to sense and warn drivers of potentially risky lane-keeping practices 

and to keep drowsy drivers from running off the road. An NHTSA modeling study 

indicated that the road-departure countermeasure systems would be 24 percent effective 

(RIT A, 2008; ITS Australia, 2008). 

2.4.14.7 Forward Collision Warning 

In the application area of forward-collision warning systems, microwave radar and 

machine vision technology facilitate perceive and avoid vehicle collisions. These systems 

typically use in-vehicle displays or audible alerts to notify drivers of dangerous following 

distances. If a driver does not properly apply brakes in a critical situation, some systems 

automatically assume control and apply the brakes in an attempt to avert a collision. An 

NHTSA modeling study indicated that forward collision warning systems would be 51 

percent effective (RITA, 2008; ITS Australia, 2008). 

2.4.14.8 Rear Impact Warning 

Rear-impact warning systems employ radar detection to avoid accidents. A warning 

sign is activated on the rear of the vehicle to alert tailgating drivers of impending danger 

(RIT A, 2008; ITS Australia, 2008). 
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2.4.15 Driver Assistance Systems 

As can be seen in Figure 2.21, numerous intelligent vehicle technologies exist to 

help the driver in operating the vehicle safely. Systems are available to assist with 

navigation, while others, sueh as vision enhancement and speed control systems, are 

intended to help safe driving during adverse conditions. Other systems assist with 

difficult driving tasks such as transit and commercial vehicle docking (RITA, 2008; ITS 

Australia, 2008). 

2.4.15.1 Navigation/Route Guidance 

In-vehicle navigation systems with GPS technology may lessen driver mistake, 

increase safety, and save time by improving driver decision in alien areas. Availability of 

navigational information may help reduce travel stress for drivers in unfamiliar areas 

(RITA, 2008; ITS Australia, 2008). 
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Figure 2.21 

Driver Assistance Systems 
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2.4.15.2 Driver Communication 

Integrated driver communication systems enable drivers and dispatchers to 

coordinate re-routing decisions on-the-fly and can also save time, money and enhance 

productivity. HAZMAT safety and securities technologies can reduce the potential for 

terrorists' consequences/attacks (RITA, 2008; ITS Australia, 2008). 

2.4.15.3 Vision Enhancement 

In-vehicle vision enhancement improves visibility for adverse driving conditions. 

These conditions may involve reduced sight distance due to night driving, inadequate 

lighting, fog, drifting snow, or other inclement weather conditions (RITA, 2008; ITS 

Australia, 2008). 

2.4.15.4 Object Detection 

Object detection system notifies the driver of an object (front, side or back) that is 

in the path or adjacent to the path of the vehicle, and the most common application is 

parking aids for passenger vehicles. An integrated countermeasure system could prevent 

over 48 percent of rear-end, run-off-road, and lane change crashes. Through the 

Integrated Vehicle-Based Safety Systems initiative, the U.S. DOT is seeking to establish 

a partnership with the automotive and commercial vehicle industries to accelerate the 

introduction of integrated vehicle-based safety systems into the Nation's vehicle fleet 

(RIT A, 2008). 

2.4.15.5 Adaptive Cruise Control 

Adaptive cruise control systems maintain a driver set speed without a lead vehicle, 

or a specified following time if there is a lead vehicle and it is traveling slower than the 

set speed. An automated speed system designed to optimize travel speeds between two 
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green lights can reduce fuel consumption significantly (RITA, 2008; ITS Australia, 

2008). 

2.4.15.6 Intelligent Speed Control 

Intelligent speed control systems limit maximum vehicle speed via a signal from 

the infrastructure to an equipped vehicle. Intelligent Speed Adaptation (lSA) monitors the 

difference in speed between a vehicles current speed and its suitable speed. Corrective 

action can then be taken, for example, if the vehicle is traveling too fast for the current 

speed limit. Road beacons are used to transmit a signal to the car and warn the driver. 

The systems can also be automatic (RITA, 2008; ITS Australia, 2008). 

2.4.15.7 Lane Keeping Assistance 

Lane keeping assistance systems make small steering corrections. These systems do 

so when the vehicle detects an imminent lane departure without the use of a tum signal 

(RITA, 2008). 

2.4.15.8 Roll Stability Control 

Roll stability control systems apply corrective action, such as throttle control or 

braking. This is effected when sensors detect that a vehicle is in a possible rollover 

situation (RITA, 2008; ITS Australia, 2008). 

2.4.15.9 Drowsy Driver Warning 

Drowsy driver warning notifies the driver that he or she is fatigued which may lead 

to lane departure or road departure. In-vehicle computer visioning technology designed to 

detect and warn truck drivers of lane departure and driver drowsiness can reduce fuel 

consumption, increase safety, and provide drivers with more comfortable working 

conditions (RITA, 2008; ITS Australia, 2008). 
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2.4.15.10 Precision Docking 

Precision docking systems mechanize precise positioning of vehicles at 

loading/unloading areas. This reduces driver's stress to an extent (RITA, 2008; ITS 

Australia, 2008). 

2.4.15.11 Coupling/Decoupling 

Intelligent cruise control, speed control, guidance/steering, and 

coupling/decoupling systems which help transit operators link multiple buses or train cars 

into trains each help drivers with routine errands that weight on driver workload. These 

systems reduce fuel consumption also resulting in less atmospheric pollution (RITA, 

2008; ITS Australia, 2008) .. 

2.4.15.12 On-board Monitoring 

On-board monitoring applications track and report cargo condition, safety and 

security, and the mechanical condition of vehicles equipped with in-vehicle diagnostics. 

This information is presented to the driver immediately, transmitted off-board, or stored. 

In the event of a crash or near-crash, in-vehicle event data recorders record vehicle 

performance data and other input from video cameras or radar sensors to improve the 

post-accident processing of data (RITA, 2008; ITS Australia, 2008). 

2.4.16 Collision Notification Systems 

In an effort to improve response times and save lives, collision notification systems 

have been designed to detect and report the location and severity of incidents to agencies 

and services responsible for coordinating appropriate emergency response actions. These 

systems can be activated manually (Mayday), or automatically with automatic collision 
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notification (ACN), and advanced systems may transmit information on the type of crash, 

number of passengers, and the likelihood of injuries (RITA, 2008; ITS Australia, 2008). 

Intelligent Vehicles 
Collision Notification 

[Source: RITA, 2008] 

Figure 2.22 

Collision Notification Systems 

2.4.16.1 Mayday/ACN 

The typical Mayday/ ACN product uses location technology, wireless 

communication, and a third-party response center to alert the closest Public Safety 

Answering Point (PSAP) for emergency response. Drivers equipped with in-vehicle 

emergency communications found feel "more secure" with Mayday voice 

communications (RITA, 2008; ITS Australia, 2008). 

2.4.16.2 Advanced ACN 

Advanced collision notification systems utilize in-vehicle crash sensors, GPS 

technology, and wireless communications systems to provide public/private call centers 

with crash location information. Also sometimes, these systems inform about the number 

of injured passengers and the nature of their injuries (RITA, 2008; ITS Australia, 2008). 
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2.4.17 Other Applications 

2.4.17.1 Smart Glasses 

Glasses that monitor eye movement and alert drivers when they become fatigued 

will soon be available to motorists in an initiative to curb the number of fatalities in 

Australia. The glasses have frames fitted with tiny sensors that measure the size and 

speed of blinking and beep when motorist is too tired to drive safely (ITS, Australia, 

2008). 

2.4.17.2 Real-time Rail Time Table on iPhone 

Listed as "Live UK rail journey planner" under travcl on the iPhone web 

applications, KIZOOM.MOBI outclasses other time-table only services by delivering free 

and easy-to-navigate real-time rail time tables, fast journey planning, taxi finder, 

disruption news and route stops. It is a really useful bundle of travel services for people 

on the move (ITS UK, 2008). 

2.4.17.3 Smart Roads 

There has been a great discussion in US about the smart roads of tomorrow for 

years. But now "intelligent highway" technology is inching into the mainstream. One 

reason is that the number of vehicles on the road is increasing far faster than the ability to 

add more roads or widen old ones. Consider these statistics from the Federal Highway 

Administration (FHW A). Over the past 20 years, about 2% more streets and roads have 

been built, but there are more than 50% more vehicles using them-and they travel 77% 

more miles. 

The result is spreading congestion that is affecting broader metropolitan areas. 

Pending an unlikely swing away from personal vehicles, traffic planners figure the best 
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solution is to manage traffic flow more efficiently. That's where smart highways come in. 

A number of possible solutions were demonstrated during a big automated highway expo 

in San Diego. Among them is high-speed "platooning" in which a smart highway takes 

control of cars and moves them along, bumper-to-bumper, at 70 miles an hour. Those 

technologies are years away from implementation. More immediate traffic aids include 

"smart" traffic signals and roadside displays that give drivers instant updates on traffic 

conditions ahead. The potential U.S. market for smart road technology is enormous. A 

study released two years ago by the u.S. Department of Transportation pegs it at some 

$430 billion over the 20-year period from 1996 to 2016 (FHW A, 2008). 

2.5 Artificial Neural Networks (ANN) 

An Artificial Neural Network (ANN) or commonly just Neural Network (NN) is an 

interconnected group of artificial neurons that uses a mathematical model or 

computational model for information processing based on a connectionist approach to 

computation. In most cases an ANN is an adaptive system that changes its structure based 

on external or internal information that flows through the network. In more practical 

terms neural networks are non-linear statistical data modeling tools. They can be used to 

model complex relationships between inputs and outputs or to find patterns in data (Flood 

and Kartam, 1998). 

Neural networks, with their remarkable ability to derive meaning from complicated 

or imprecise data, can be used to extract patterns and detcct trends that are too complex to 

be noticed by either humans or other computer techniques. A trained neural network can 

be thought of as an "expert" in the category of information it has been given to analyze. 

This expert can then be used to provide projections given new situations of interest and 
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answer "what if' questions. 

Other advantages include: 

1. Adaptive learning: An ability to learn how to do tasks based on the data given for 

training or initial experience. 

2. Self-Organization: An ANN can create its own organization or representation of 

the infonnation it receives during learning time. 

Neural networks take a different approach to problem solving than that of 

conventional computers. Conventional computers use an algorithmic approach i.e. the 

computer follows a set of instructions in order to solve a problem. Unless the specific 

steps that the computer needs to follow are known the computer cannot solve the 

problem. That restricts the problem solving capability of conventional computers to 

problems that we already understand and know how to solve. But computers would be so 

much more useful if they could do things that we don't exactly know how to do (Flood 

and Kartam, 1998). 

Neural networks process infonnation in a similar way the human brain does. The 

network is composed of a large number of highly interconnected processing elements 

(neurons) working in parallel to solve a specific problem. Neural networks learn by 

example. They cannot be programmed to perfonn a specific task. The examples must be 

selected carefully otherwise useful time is wasted or even worse the network might be 

functioning incorrectly. The disadvantage is that because the network finds out how to 

solve the problem by itself, its operation can be unpredictable (Flood and Kartam, \998). 

In summary one can say that: 
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• Artificial neural networks (ANN) are AI application which has recently 

been used widely to model some of the human interesting activities in many areas 

of science and engineering 

• Engineers often deal with incomplete and noisy data which is one area 

where ANNs are most applicable 

• The special characteristics of ANNs make them a promising candidate for 

modeling some of the difficult engineering problems 

• One of the distinct characteristics of the ANN is its ability to learn and 

generalize from experience and examples and adapt to the changing situations. In 

simple terms, an ANN tries to imitate some of the learning activities of the human 

brain. 

2.5.1 Biological Neuron and Artificial Neuron 
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• ANNs are much simpler than the human brain 

• The human brain consists 100 billion neurons and 100 trillion connections 

(synapses) between them. 

• Many highly specialized types of neurons (which are not possible in 

ANN) exist in human brain (Fraser, 2008). 
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2.5.1.1 Biological Neuron 

'fhe basic model of the neuron is founded upon the functionality of a biological 

neuron. "Neurons are the basic signaling units of the nervous system" and "each neuron is 

a discrete cell whose several processes arise from its cell body". 

( INPUT ) 

[Source: V. Giri , 2006] 

Figure 2.23 

Biological Neuron 

The neuron has four main regions to its structure. The cell body, or soma, has two 

offshoots from it, the dendrites, and the axon, which end in pre-synaptic terminals. The 

cell body is the heart of the cell, containing the nucleus and maintaining protein 

synthesis. A neuron may have many dendrites, which branch out in a treelike structure, 

and receive signals from other neurons. A neuron usually only has one axon which grows 

out from a part of the cell body called the axon hillock. The axon conducts electric 

signals generated at the axon hillock down its length. These electric signals are called 

action potentials. The other end of the axon may split into several branches, which end in 

a pre-synaptic terminal. Action potentials are the electric signals that neurons use to 

convey information to the brain. All these signals are identical. Therefore, the brain 
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detennines what type of infonnation is being received based on the path that the signal 

took. The brain analyzes the patterns of signals being sent and from that infonnation it 

can interpret the type of infonnation being received. Myelin is the fatty tissue that 

surrounds and insulates the axon. Often short axons do not need this insulation. There are 

uninsulated parts of the axon. These areas are called Nodes of Ranvier. At these nodes, 

the signal traveling down the axon is regenerated. This ensures that the signal traveling 

down the axon travels fast and remains constant (i.e. very short propagation delay and no 

weakening of the signal). The synapse is the area of contact between two neurons. The 

neurons do not actually physically touch. They are separated by the synaptic cleft, and 

electric signals are sent through chemical interaction. The neuron sending the signal is 

called the presynaptic cell and the neuron receiving the signal is called the postsynaptic 

cell. The signals are generated by the membrane potential, which is based on the 

differences in concentration of sodium and potassium ions inside and outside the cell 

membrane. Neurons can be classified by their number of processes (or appendages), or 

by their function. If they are classified by the number of processes, they fall into three 

categories. Unipolar neurons have a single process (dendrites and axon are located on the 

same stem), and are most common in invertebrates. In bipolar neurons, the dendrite and 

axon are the neuron's two separate processes. Bipolar neurons have a subclass called 

pseudo-bipolar neurons, which are used to send sensory infonnation to the spinal cord. 

Finally, multipolar neurons are most common in mammals. Examples of these neurons 

are spinal motor neurons, pyramidal cells and Purkinje cells (in the cerebellum). If 

classified by function, neurons again fall into thrce separate categories. The first group is 

sensory, or afferent, neurons, which provide information for perception and motor 
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coordination. The second group provides information (or instructions) to muscles and 

glands and is therefore called motor neurons. The last group, interneuronal, contains all 

other neurons and has two subclasses. One group called rclay or projection interneurons 

have long axons and connect different parts of the brain. The other group called local 

intemeurons are only used in local circuits (Kandel et al., 2000). 

2.5.1.2 Artificial Neuron 

When creating a fUl1ctionalll1odcl of the biological neuron. there arc three basic 

components of importance. First, the synapses of the neuron arc modeled as weights. The 

strength of the connection between an input and a ncuron is noted by the value of the 

weight. Negative weight values relled inhibitory connections. while positive values 

designate excitatory connections. The next two components model the actual activity 

within the neuron cell. An adder sums up all the inputs modified by their respective 

weights. 'fhis activity is referred to as linear combination. Finally, an activation function 

controls till: amplitude of the output of the neuron. An acceptable range of output is 

usually between 0 and 1, or -1 and 1 (Demuth et al.. 20(6). 
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[Source: Neural Network Toolbox User's Guide, MathWorks, Inc., 2006] 

Figure 2.24 

Artificial Neuron 
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Like the brain, a neural network is a massively parallel collection of small and 

simple processing units where the interconnections form a large part of the network's 

intelligence. 

2.5.2 ANN Features 

• Large number of very simple units. 

• Connections through weighted links. 

• There is no "program". The "program" is the architecture of the network. 

• There is no central control. If a portion of the network is damaged, the network is 

still functional. 

• A human observer can't understand what is going on inside the network. It is a 

sort of a "black box" (Lingireddy and Ormsbee, 1998). 

2.5.3 Neural Network Topolo2Y (Feed Forward Neural Networks) 

The feedforward neural network was the first and arguably simplest type of 

artificial neural network devised. In this network, the information moves in only one 

direction, forward, from the input nodes, through the hidden nodes (if any) and to the 

output nodes. There are no cycles or loops in the network (Lingireddy and Ormsbee, 

1998). 
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Figure 2.25 

Feed Forward Neural Networks 

2.5.4 Activation Functions 

Output 
Layer 

The main differencc bctween network types lies in the type of activation function 

used by the hidden neuron. The activation function acts as a squashing function, such that 

the output of a neuron in a n~ural n~twork is b~twc~n certain values (usually 0 and 1, or -

1 and 1). In general, there arc four types of activation functions: 

• Sign Function (Classification, Pattern Recognition) 

• Step Function (Classification, Pattern Recognition) 

• Sigmoid Function (Squashes inputs so outputs are within 0-1) 

• Linear Function (Used for linear approximation) 
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Figure 2.26 

Types of Activation Function 
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2.5.5 Training an ANN 

Once a network has been structured for a particular application, that network is 

ready to be trained. To start this process the initial weights are chosen randomly. Then, 

the training, or learning, begins. There are two approaches to training - supervised and 

unsupervised. Supervised training involves a mechanism of providing the network with 

the desired output either by manually "grading" the network's performance or by 

providing the desired outputs with the inputs. Unsupervised training is where the network 

has to make sense of the inputs without outside help. The vast bulk of networks utilize 

supervised training. Unsupervised training is used to perform some initial 

characterization on inputs (Kandel et aI., 2000). 

2.5.5.1 Supervised Training 

In supervised training, both the inputs and the outputs are provided. The network 

then processes the inputs and compares its resulting outputs against the desired outputs. 

Errors are then propagated back through the system, causing the system to adjust the 

weights which control the network. This process occurs over and over as the weights are 

continually tweaked. The set of data which enables the training is called the "training 

set." During the training of a network the same set of data is processed many times as the 

connection weights are ever refined (Kandel et a\., 2000). 

2.5.5.2 Unsupervised Training 

The other type of training is called unsupervised training. In unsupervised training, 

the network is provided with inputs but not with desired outputs. The system itself must 

then decide what features it will use to group the input data. This is often referred to as 

self-organization or adaption (Kandel et aI., 2000). 
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2.5.6 Various issues with ANN 

• Selecting topology 

• Preprocessing training data 

• Data selection for training 

• Duration of ANN training 

• Speeding up the training process 

• Checking network performance 

2.6 Kendall's Tau Test and Multiple-Regression (MR) 

2.6.1 Kendall's Tau Test 

The Kendall tau rank correlation coefficient (or simply the Kendall tau coefficient, 

Kendall's T or Tau testes)) is used to measure the degree of correspondence between two 

rankings and assessing the significance of this correspondence. It best depicts the degree 

of association for non-parametric data (Wilkie, 1980). In other words, it measures the 

strength of association of the cross tabulations. It was developed by Maurice Kendall in 

1938. 

The Kendall tau coefficient (T) has the following properties: 

• If the agreement between the two rankings is perfect (i.e., the two rankings 

are the same) the coefficient has value 1 . 

• If the disagreement between the two rankings is perfect (i.e., one ranking 

is the reverse of the other) the coefficient has value -l. 
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• For all other arrangements the value lies between -1 and 1, and increasing 

values imply increasing agreement between the rankings. If the rankings are 

completely independent, the coefficient has value 0 on average. 

Kendall tau coefficient is defined 

2P iiP 
T ;.;;:::; -.-1---- ~ 1 = - 1 

'2n(n 1) n(n-1) 

where n is the number of items, and P is the sum, over all the items, of items 

ranked after the given item by both rankings (Wilkie, 1980). 

2.6.2 Multiple-Regression (MR) 

In statistics, Multiple linear regression is a regression method that allows the 

relationship between the dependent variable Yand the p independent variables X and a 

random term s. The model can be written as 

where ~I is the intercept ("constant" term), the ~iS are the respective parameters of 

independent variables, and p is the number of parameters to be estimated in the linear 

regreSSIOn. 

Non-linear model can be converted into linear ones but one has to be very careful 

while converting as some models can not be made linear (Haan, 1977). 
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CHAPTER III 

DATA COLLECTION 

Data collection is a term used to describe the process of preparing and collecting 

the various types of information related to a research project. The majority of data 

collection usually takes place early on in a project, and is often formalized through a data 

collection plan which often contains the following activities. 

Pre-collection activity - defined goals, target data types and sources, data 

definitions, collection methods, collection locations including internet, personal 

interviews, public input, field surveys (historical data and project specific). 

Collection - data collection including list of sources searched or contacted 

Present findings - usually involves some form of data compilation or reduction, 

organization and sorting analysis and/or presentation. 

A formal data collection process is necessary as it ensures data gathered are both 

defined and accurate and subsequent decisions based on arguments embodied in the 

findings have objective validity (Sapsford and Jupp, 1996). 

Since this research involved identifying, describing, quantifying, and modeling the 

relationship between Intelligent Transportation Systems (ITS) applications and ambient 

air pollutant concentrations, target data were mainly related to ambient air pollution 

records, ITS application types, and transportation system characteristics in urbanized 

areas. 
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Data pertaining to fifty-nine USA cities (those specified as federal-aid urbanized 

areas) were used in this research. Most data components were obtained through 

authenticated web-pages of various municipal, state, and federal government 

organizations as described in the following sections. 

3.1 Air Data 

The AirData web site of Environmental Protection Agency (EPA) provides access 

to historical and current air pollution measurement records for the entire United States. 

AirData produces summary reports and maps of air pollution values based on criteria that 

one may specify in terms of date, location, and data type. AirData makes available annual 

summaries of air pollution data from two EPA databases: 

• AQS (Air Quality System) database provides air monitoring records -

specific ambient concentration measurements of criteria-defined and hazardous 

air pollutants at monitoring sites, primarily in cities and towns . 

• NEI (National Emission Inventory) database provides estimates of annual 

emission levels of criteria and hazardous air pollutants from all types of regulated 

sources. The NEI database in 2002 replaced two separate EPA databases for 

emissions of criteria air pollutants (National Emission Trends, or NET) and 

hazardous air pollutants (National Toxics Inventory, or NTI). 

In this research, the Monitor Data Queries section and procedures of the AirData 

Web site were used to access and generate specific and detailed descriptions of air 

monitor records, and annual summary data details for more pollutants and years than 
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standard AirData reports and maps provide. Monitor Data Queries uses data extracted 

from the AQS database (EPA, 2008). 

Arithmetic mean-measure of central tendency obtained from the sum of the 

observed pollutant data values over a specified time interval divided by the number of 

values that comprise the sum for the monitor year for a specific monitor location-was 

used to define the average concentration of a pollutant in ambient air over an urbanized 

area. Observation count of each monitor location (ID) was multiplied with the arithmetic 

mean (ambient air concentration of a pollutant) for the corresponding year and the 

average concentration was defined by summing the resultant for all monitors and dividing 

by the total number of observation count for all monitors. The average concentrations for 

three criteria air pollutants-CO, N02, and 0 3 - were calculated for 59 cities of US for 

years 2000, 2002, 2004, and 2005. The concentrations (in ppm) of these three pollutants 

in ambient air were termed the Target Variables in this study and were named as Y 1, Y2, 

and Y3 respectively as shown in Table 3.2 and Appendix-I. 

3.2 Transportation/Highway Data 

While the Office of Highway Policy Information is responsible for the preparation 

of the publication of transportation/highway data, a number of the statistical summaries 

are prepared by other units within the Federal Highway Administration (FHW A). All 

highway data are submitted to the FHW A by the individual States. Each State is analyzed 

for consistency against its own past years of data and also against other State and Federal 

data. The result is the publication of annual series-highway statistics-of selected 
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statistical tabulations relating to highway/transportation in three major areas: (1) highway 

use-the ownership and operation of motor vehicles; (2) highway finance-the receipts 

and expenditures for highways by public agencies; and (3) the highway plant-the extent, 

characteristics, and performance of the public highways, roads, and streets across the 

nation. 

In this research, Highway Statistics 2000 through 2005 were the resource used to 

extract data related to the Federal-Aid Urbanized Areas of US. A "Federal-Aid 

Urbanized Area" is an area with 50,000 or more persons that at a minimum encompasses 

the land area delineated as the urbanized area by the Bureau of the Census (Highway 

Statistics, 2005). 

The descriptive quantities utilized in this work included population, road length, 

Daily Vehicle Miles Traveled (DVMT), land area, freeway DVMT, freeway miles, and 

annual average daily traffic on freeways. These quantities were considered the most 

appropriate input variables associated with transportation and ambient air quality. In this 

research, these were designated with variable names Xl through X7 respectively. Due 

importance was given to freeway data in this research for the reason that freeway 

constitute only 2.8 percent of all roadway lengths in the nation, yet 37 percent of total 

DVMT are on freeways (Highway Statistics, 2005). Detailed data for these variables 

(from Xl through X7) are listed in Appendix-I. 

3.3 ITS Data 

Intelligent Transportation Systems (ITS) deployment intensity data for the fifty

nine US cities were downloaded from the RITA, US DOT, web site (RITA, 2008). 
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Table 3.1 below provides a sample of the Deployment Statistics. ITS applications have 

been grouped under eight bundles: Freeway Management, Incident Management, 

Arterial Management, Electronic Toll Collection, Transit Management, Electronic Fare 

Payment, Highway Rail Intersections, and Emergency Management. Column under the 

name "Reported" indicates the number of miles/ramps under a specific ITS application in 

a bundle and the column under the name "Total" represents the total number of 

miles/ramps under that bundle. Therefore, "Percent" indicates the application intensity in 

percent of an ITS user service in an area calculated by dividing "Reported" with "Total" 

and then multiplying with 100. 

Similarly, seventy-eight tables related to major metropolitan areas were available 

from RITA and were used to compile application intensity for each of the fifty-nine US 

cities described earlier. As shown in Table 3.1, there is a total of thirty ITS applications 

that are included in the surveys. Only seventeen of the thirty applications' data (percent

data) which are more associated with air pollution generation were used for this research 

and were included as variables named X8 to X24 as defined in the Table 3.2. The data for 

X8 through X24 (termed as input variables) are listed in Appendix-I. 

Data collection process is crucial in any research because reliability, specificity, 

and rationale of the data collected ensure the objective validity of the outcome of that 

research. In this research, the data were collected as mentioned in earlier sections as per 

the data collection plan keeping goals and objcctive in the view. The next chapter 

"Methodology" describes how these data were actcd upon to arrive at the results and 

findings. 
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Table 3.1 National Summary (FY-2005) 

(78 metropolitan areas surveyed) 

Freeway Management Reported Total Percent 
Miles under electronic surveillance 6503 17090 38% 
Ramps controlled by ramp meter 5284 25198 21% 
Miles under lane control 1478 17090 9% 
Number of Dynamic Message Signs (DMS) 3177 N/A** N/A** 
Miles covered by Highway Advisory Radio(HAR) 3722 17090 22% 
Incident Management 
Freeway miles under incident detection algorithms 2732 17090 16% 
Freeway miles under free cell phone call to a dedicated 
number 4703 17090 28% 
Freeway miles covered by surveillance cameras 
(CCTV) 5984 17090 35% 
Freeway miles covered by service patrols 8241 17090 48% 
Arterial miles under incident detection algorithms 1481 97687 2% 
Arterial miles under free cell phone call to a dedicated 
number 4148 97687 4% 
Arterial miles covered by surveillance cameras (CCTV) 4912 97687 5% 
Arterial miles covered by service patrols 10338 97687 11% 
Arterial Management 
Signalized intersections covered by electronic 
surveillance 49754 138261 36% 
Signalized intersections under centralized or closed 
loop control 73295 138261 53% 
Number of Dynamic Message Signs (DMS) 1142 N/A** N/A** 
Arterial miles covered by Highway Advisory Radio 
(HAR) 1942 97687 2% 
Electronic Toll Collection 
Toll collection plazas with Electronic Toll Collection 
capabilities 730 777 94% 
Toll collection lanes with Electronic Toll Collection 
capabilities 3862 4907 79% 
Transit Management 
Fixed route buses equipped with Automatic Vehicle 
Location (AVL) 27021 49612 54% 
Fixed route buses with electronic real-time monitoring 
of system components 16108 49612 32% 
Demand responsive vehicles that operate under 
Computer Aided Dispatch (CAD) 4710 10530 45% 
Bus stops with electronic display of dynamic traveler 
information to the public 1670 536333 0% 
Electronic Fare Payment 
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Fixed route buses equipped with Magnetic Stripe 
Readers 29800 49612 60% 
Fixed route buses equipped with Smart Card Readers 11349 49612 23% 
Rail Stations equipped with Magnetic Stripe Readers 1174 2807 42% 
Rail Stations equipped with Smart Card Readers 349 2807 12% 
Highway Rail Intersections 
Highway rail intersections under electronic surveillance 522 11095 5% 
Emergency Management 
Vehicles under Computer Aided Dispatch (CAD) 90836 112841 80% 
Vehicles equipped with on-board navigation 
capabilities 20065 112841 18% 
*NR=No Response, **N/A=Not Applicable 

http://www.itsdeployment.its.dot.gov/ 

Table 3.2 Variables 

Designation of Description Type 

Variable 

Xl Population in thousands Input 

X2 Road Length in miles Input 

X3 Daily Vehicle Miles Traveled (DVMT) in thousands Input 

X4 Land Area in square miles Input 

X5 Freeway DVMT in thousands Input 

X6 Freeway Miles Input 

X7 Annual average daily traffic on freeways Input 

X8 % of Freeway Miles covered by Highway Advisory Radio (HAR) Input 

X9 % of Freeway miles under incident detection algorithms Input 

X10 % of Freeway miles covered by surveillance cameras (CCTV) Input 

XII % of Freeway miles covered by service patrols Input 
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X12 % of Arterial miles under incident detection algorithms Input 

X13 % of Arterial miles covered by surveillance cameras (CCTV) Input 

X14 % of Arterial miles covered by service patrols Input 

X15 % of Signalized intersections covered by electronic surveillance Input 

X16 % of Signalized intersections under centralized or closed loop Input 

control 

X17 % of Arterial miles covered by Highway Advisory Radio (HAR) Input 

Xl8 % of Toll collection lanes with Electronic Toll Collection Input 

capabilities 

Xl9 % of Fixed route buses equipped with Automatic Vehicle Input 

Location (AVL) 

X20 % of Demand responsive vehicles that operate under Computer Input 

Aided Dispatch (CAD) 

X2I % of Fixed route buses with electronic real-time monitoring of Input 

system components 

X22 % of Vehicles under Computer Aided Dispatch (CAD) for EM Input 

X23 % of Vehicles equipped with on-board navigation capabilities for Input 

EM (Emergency Management) 

X24 % of Highway rail intersections under electronic surveillance Input 

YI Average concentration of CO in ppm over an area Target 

Y2 Average concentration ofN02 in ppm over an area Target 

Y3 Average concentration of 0 3 in ppm over an area Target 
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CHAPTER IV 

RESEARCH METHODOLOGY 

Methodology refers to more than simply a set of methods; rather it refers to the 

rationale and the philosophical assumptions that underlie the particular study. Often there 

are different methods that may be suitable to investigate a research problem. The 

methodology defines reasons why a particular method or procedure is chosen. The 

research methods must be appropriate to meet the study objectives. The methodology 

should also discuss anticipated challenges and explain actions taken to address them, 

mitigate difficulties, and provide guidance for any expected issues and minimize adverse 

impacts. In some cases, it is useful for researchers to adapt or replicate methodology used 

in related or similar studies, so sufficient information is often provided in technical 

publications to allow others to duplicate the work. This is particularly the case when a 

new method is developed, or an innovative adaptation used (Language Center, AIT, 

2008). 

To achieve the research objectives defined in chapter I, a set of specific 

methods/procedures was developed. The methods and the rationale of using these 

methods are explained in the following sections. 

4.1 Data Normalization 

In many numerical methods and model applications, data preparation techniques 

are essential to organize and condition the raw field observations or measurements prior 
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to use. This is the case in most artificial neural network (ANN) model applications where 

data normalization with specific constraints or criteria, is crucial to prepare data for 

application as well as to significantly improve the efficiency of the model operation (Sola 

and Sevilla, 1997). Specifically in ANN applications, the process of back propagation 

used for neural network training or calibration requires all training targets to be 

normalized to the range between 0 and l. This is due to the output node's signal, 

commonly in the form of a sigmoidal activation function, being restricted to the 0 to 1 

range. For consistency in the calibration and application procedures, all data values for 

both input and target (output) variables were scaled to the 0 to 1 range. For a set of 

training data that may naturally fall between the limits 0 and 1, normalization may still be 

desirable. For example, if target data are between 0.1 and 0.2, it would be better to 

normalize the data over a wider range to provide a broader spectrum for model training 

resolution and improved prediction over an optimal range (Chao and Skibniewski, 1998). 

Additionally, a skewed form of normalization may be used in order to address the 

distribution of data density. In this case data values may occur over a broad range of 

values, yet may be concentrated over a more narrow range - and this property may be 

exploited in normalization to provide a spreading or distribution of the data more evenly 

across the normalized spectrum. 

In this research, two methods were used to normalize the input and target data. 

Reason for using two methods was to highlight the importance of data normalization for 

the application of neural networks to complex engineering problems. It was subsequently 

established that the method of data normalization affects the model prediction 

performance for a given set of input variables and training data, and one may obtain 
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different results for the same sct of training facts. The two normalization mcthods are 

described in the following sections. 

4.1.1 Normalization method one (n1) 

The first normalization method is termed as n1 in this dissertation. The method of 

normalizing the data can be summarized in the following steps: 

The normalized value of any variable data point is set equal to the value of that data 

point under consideration scaled by the maximum value (observed or expected or 

possible) of the variable. 

For example, if data are recorded with the following magnitudes: 0.2, 0.3, 1.2, 1.4, 

& 2.5; the maximum data value is 2.5 and the corresponding respective normalized 

values of each data point for use in the artificial neural network training are as follows: 

Normalized value of 0.2 = (0.2/2.5) = 0.08, 

Normalized value of 0.3 = (0.3/2.5) = 0.12, 

Normalized value of 1.2 = (1.2/2.5) = 0.48, 

Normalized value of 1.4 = (1.4/2.5) = 0.56, 

Normalized value of2.5 = (2.5/2.5) = 1.00. 

4.1.2 Normalization method two (n2) 

The second normalization method is termed as n2 in this dissertation. The method 

of normalizing the data can be summarized in the following steps: 

Normalized value of any variable data point = (Value of that data point under 

consideration - Minimum value of the variable)/(Maximum value of the variable

Minimum value of the variable) 
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Taking the same example as in previous section, the respective normalized values 

by the second method are as follows: 

Normalized value of 0.2 = (0.2 - 0.2)/(2.5 - 0.2) = 0.000 

Normalized value of 0.3 = (0.3 - 0.2)/(2.5 - 0.2) = 0.043 

Normalized value of 1.2 = (1.2 - 0.2)/(2.5 - 0.2) = 0.435 

Normalized value of 1.4 = (1.4 - 0.2)/(2.5 - 0.2) = 0.522 

Normalized value of2.5 = (2.5 - 0.2)/(2.5 - 0.2) = 1.000 

It is important now to compare the both these methods. First method (nl) provides 

a narrower range as compared with that obtained by second method (n2). Range of 

normalized data values was from a minimum value to 1.00 for first method and it was 

from 0.00 to 1.00 for the second method. But it can not be stated with certainty which 

method is better. 

The effect of the normalizing methods on model training or calibration and model 

application or validation results as reflected in performance criteria including correlation 

coefficients are presented later in the results chapter. 

4.2 Reduction of ITS Application Variables 

This research compiled data records from ITS applications and consists of 

seventeen variables. As a component of the data reduction process this work required the 

development of a method to convert the seventeen ITS related variables into a single 

variable. This reduction was necessitated for the two reasons: first, an individual ITS 

application might reduce emissions significantly, yet this reduction may not be sufficient 

to be observable by the available means in the context of overall air quality, analogous to 

"below detection limit" in environmental measurements, because the overall air quality is 
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the result of emissions from all the transportation, industrial and natural activities in an 

urbanized area. Second, in this research, an attempt was made to highlight the effect of 

overall ITS (rather than individual system components) on air quality, negative or 

positive, to explain, justify, and validate the value of the overall systems environmental 

benefits. 

4.2.1 Correlations 

As a means of identifying any suspected non-parametric relationships between ITS 

applications and air quality variables, the Kendall tau (t) rank correlation coefficient was 

used to define the degree of correspondence between the two since this best depicts the 

degree of association for non-parametric data (Wilkie, 1980). The Kendall's correlations 

betwccn targct variables and ITS application variables were computed using software 

available from Wcssa.net (URL: http://www.wessa.net/rwasp_kendall.wasp). As a 

verification of the normalization procedures, the correlation magnitudes were not affected 

by the method of normalization since both input and corresponding output variables werc 

scaled with consistent methods. The results arc shown in Table 4.1 and indicate 

correlation magnitudes betwccn the variablcs for thc normalized data under method one 

(n 1) are identical to those normalized by method two (n2). Variable Xl through X7 are 

transportation/highway related and variables Y1, Y2, and Y3 are target/output variables 

as mentioned in Chapter-III. Correlations for Xl through X7 were not found because 

these were not needcd. Correlations for ITS rclated variables from X8 to X24 were 

calculated since these were used to convert the seventeen ITS related variables into a 

single variable. Most of the correlations are having low values indicating a weak relation 

between an ITS application and air quality and that is true up to some extent in the sense 
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that an individual ITS application really does not affect the overall air quality much. 

Correlation coefficient calculated~shown in Table 4.1~have low numerical values 

showing weak relationships; still they provide a basis to convert the seventeen ITS 

variables into one. A weak relationship is still a relationship, however weak it may be. 

Table 4.1 Correlations 

ITS Variables Target Variables 

YI (CO) Y2( Y3 

X8 -0.1318199 0.1878397 0.0315266 

X9 -0.0298406 -0.0241524 -0.0378799 

XIO -0.0486612 0.0599820 -0.0877814 

Xll 0.0767697 -0.0789142 -0.0266254 

X12 0.0625569 0.1088283 -0.0498106 

X13 0.0637094 0.0601325 -0.0798940 

XI4 0.0228942 0.1830461 -0.0011008 

X15 0.0205741 0.0114823 -0.096410 

XI6 0.2096858 -0.0555733 -0.0360316 

X17 -0.0224172 0.2454934 0.1173083 

XI8 -0.1577866 0.0698830 -0.0551721 

X19 -0.1099675 0.0571351 -0.1569653 

X20 -0.0702035 0.0923930 -0.0416617 

X2I -0.1445423 0.0387003 -0.1614164 
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X22 -0.0092677 -0.0380587 0.0101071 

X23 -0.1079034 -0.0064517 -0.0086043 

X24 0.0457885 0.0615584 -0.1233637 

4.2.2 Conversion of seventeen ITS variables into one 

ITS applications affect the air quality in varying degrees. Some ITS applications 

might not be affecting the air quality significantly as is evident by low values of 

correlation coefficients and some might be affecting it significantly as is indicated by 

their high values of correlation coefficients. Importance to an ITS application, therefore, 

should be assigned in proportion of its correlation coefficient. Absolute value of 

correlation coefficient is taken as the basis to give weight to an ITS application intensity 

data and it is only a way to assign degree of importance to a particular ITS application. 

The seventeen ITS variables were assigned weights in proportion of the absolute values 

of their correlation coefficients. Each ITS variable (normalized) was multiplied by the 

respective correlation coefficient (absolute values), the values were summed, and the 

result was defined as a new single ITS variable (weighted). Subsequently, this ITS 

(weighted) was normalized by both the methods of normalization and re-named as ITS-

n 1 and ITS-n2 respectively. Weight for each target variable~Y 1, Y2, and Y3 = Absolute 

value of correlation coefficient. 

For example, 

New York-Newark urbanized area's seventeen ITS data values were: X8=0.27, 

X9=0.22, XlO=0.24, Xll=0.51, XI2=0.149, X13=0.0923, X14=0.23, X15=0.18, 
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X16=0.48, XI7=0.0555, XI8=0.71, XI9=0.21, X20=0.18, X21=0.03, X22=0.27, 

X23=0.0149, and X24=0.82 

Absolute values of correlation coefficients between the ITS variables and ambient 

air concentration of CO were: 0.13182,0.029841,0.048661,0.07677,0.062557, 

0.063709,0.022894,0.020574,0.209686,0.022417, 0.157787, 0.109968, 0.070204, 

0.144542,0.009268,0.107903, and 0.045789 respectively. 

Therefore, ITS (weighted) = (0.27)(0.13182) + (0.22)(0.029841) + 

(0.24)(0.048661) + (0.51)(0.07677) + (0.149)(0.062557) + (0.0923)(0.063709) + 

(0.23)(0.022894) + (0.18)(0.020574) + (0.48)(0.209686) + (0.0555)(0.022417) + 

(0.71 )(0.157787) + (0.21 )(0. 1 09968) + (0.18)(0.070204) + (0.03 )(0.144542) + 

(0.27)(0.009268) + (0.0149)(0.107903) + (0.82)(0.045789) 

= 0.404419874 = 40.4% 

Maximum Value = 0.846354911 = 84.6% 

Therefore, ITS-nl = 0.404419874/0.84635491 1 = 0.477837216 

Using a similar procedure for normalization method n2, the resulting variable is, 

ITS-n2 = 0.45299535 

Hence, this methodology converted the seventeen ITS variables into a single 

summary variable. It is dctinitely a better way than "averaging" in which average 

intensity of ITS application could have been used in the model. 

In the following section, the revised list of variables after reduction is shown in 

Table 4.2. These variables are those used in the ANN and Multiple Regression models. 
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Table 4.2 Revised Variables 

Designation of Description 

Variable 

Xl Population in thousands 

X2 Road Length in miles 

X3 Daily Vehicle Miles Traveled (DVMT) in thousands 

X4 Land Area in square miles 

X5 Freeway DVMT in thousands 

X6 Freeway Miles 

X7 Annual average daily traffic on freeways 

X'8 % ITS (converted or reduced) in an area 

YI A verage concentration of CO in ppm over an area 

Y2 Average concentration ofN02 in ppm over an area 

Y3 A verage concentration of 0 3 in ppm over an area 

*Jnput variables are independent variables while target variables are dependent 

variables. 

4.3 Modeling 

Type 

Input* 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

Target* 

Target 

Target 

Engineering and scientific modeling is the process of generating abstract, 

conceptual, graphical and/or mathematical models, and physical geometrically-scaled 

models to study a system of interest. The modeling process refers to generating a model 
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as a conceptual representation of the phenomenon of interest as a physical, mathematical, 

or logical representation of a system of entities, phenomena, or processes. Basically a 

model may be a simplified abstract view of the complex reality (Silvert, 2001), allowing 

for controlled, reproducible, repeatable, and measureable study and analysis of the 

system. In this work a computational mathematical model is selected and developed to 

study the relation and impact of ITS on operationally measured environmental factors and 

indictors of environmental impacts in urban transportation network systems. 

4.3.1 ANN Modeling 

In this research, the relation between ITS components and improvements in 

measureable environmental parameters was studied. To extract quantitative measures of 

this abstract relationship, a method capable of mapping the complex non-linear and 

unknown degree of freedom relationships between independent and dependent variables 

was researched. The method must also be capable of adapting to the available complex 

and noisy operational data representing the relationships between input and output 

variables. Artificial neural network models can provide such a model framework since 

these are designed to self-adjust within the model structure through the training process 

and extract the relationship from the examples shown in input-output data patterns. 

Owing to the combined effect of the multi-layer structure and the non-linear activation 

function, ANN models can represent relations that are difficult to describe using 

conventional mathematical functions. It has been proven that many arbitrary irregular 

patterns can be mapped by a neural network with two hidden layers and thus this 
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adaptability is useful for developing the type of mapping function required for this work 

(Pao, 1989). 

As can be seen from Table 4.2, Xl through X'8 are the eight independent variables 

and Yl, Y2, and Y3 are the dependent variables. Since the relationship between 

dependent and independent variable is not known (appears to be non-linear), ANN 

therefore turns out to be well-suited for modeling the relationship. 

4.3.1.1 Feedforward Neural Networks 

Feedforward artificial neural networks were used for modeling in this research 

since these are the most parsimonious form, most commonly applied with the back 

propagation training algorithm, and are widely used in several civil engineering 

applications (Lingireddy and Ormsbee, 1998). The model structure consists of a (possibly 

large) number of simple neuron-like processing units, organized in layers. Every neuron 

unit in a layer is connected with all the units in the adjacent layers. The strength of the 

layer-to-Iayer neuron connections is not equal; each connection typically has a different 

strength or inter-connection weight. The weights on the connections encode the 

knowledge of a network or pattern "learned" in the training or calibration process 

(Lingireddy and Ormsbee, 1998). Often the units in a neural network are also called 

nodes. 

In an operational or applied mode, the ANN model accepts data entry at the input 

nodes and passes through the network, layer by layer, undergoing computational 

modification, until it is transformed and arrives at the output layer in the desired form or 
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signal. Once calibrated or trained, and during normal operation, there is no feedback 

between layers. This is why the ANNs are called feed-forward neural networks. Prior to 

operational use, the ANN must be trained, and the back-propagation algorithm is one 

such training method using a gradient decent method for error minimization (Rumelhart 

et aI., 1986). Starting with an assumed or specified set of initial weights for the 

connections, the back-propagation algorithm computes the error between the predicted 

and specified target values at the output layer. If this error is greater than a prescribed 

tolerance, the algorithm updates the connection weights by iteratively back-propagating 

the error using a gradient decent method. The software system MATLAB 7.0 was used in 

this study (MA TLAB, 7.0, 2004). 

4.3.1.2 Network Architecture 

As briefly described above, artificial neural network models are composed of a set 

of nodes or neurons, joined together by connection weights or synapses. Each neuron 

performs a simple computational task, generally a basic yes/no decision. The synapses 

are the connections that link neurons together, from layer to layer, and re-scale or adjust 

the neuron response by weighting the response as the signal passes to the next layer. This 

system eventually links input values to produce the output signals. 

In programming terms, a synapse is an object which links one neuron connected to 

its input to another connected to its output. A neuron is a slightly more complex object 

which can be connected to onc or more input synapses and one or more output synapses. 

The structure of any neural network is therefore defined by the way in which various 

neurons and synapses are linked together. Selecting the number of hidden layers, the 
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number of neurons or nodes in each layer, the learning rule, the activation function (or 

transfer function) and the level of error tolerance is the process of searching for 

suitable/optimum architecture of ANN (Howard et aI., 2006). Given below is an example 

of setting up architecture for an ANN: 

• MA TLAB code used for setting up the architecture was: 

net=newff(minmax(p ),[3,2,1],{'tansig', 'tansig', 'purelin '}, 'trainlm'); 

where p is the input variables (independent), [3,2,1] indicates the number of 

nodes in first hidden layer, second hidden layer, and output layer 

respecti vel y. 

• {'tansig' ,'tansig' ,'purelin'} in the code indicates the transfer functions in 

first hidden layer, second hidden layer, and output layer respectively. 

• Trainlm in the code indicates the L.M.learning (or training) rule. 

• ff indicates the feed-forward network. 

• [net,tr]=train(net,p,t); code was used for training, where t indicates the 

target variable (dependent). 

• Error tolerance was kept 0.0002 and epochs were restricted upto 5000. 

• trl=sim(net,p); code was used for simulation where trl represents 

simulated results when input is p in a trained network. 

4.3.1.3 Training Algorithm (Learning Rule) 

A learning rule is defined as a procedure for modifying the weights and biases of a 

network. This procedure can also be referred to as a training algorithm. The learning rule 

is applied to train the network to perform some particular task. In supervised learning that 
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has been used in this research, the learning rule is provided with a set of examples (the 

training sets) of proper network behavior. As the inputs are applied to the network, the 

network outputs arc compared to the targets. The learning rule is then used to adjust the 

weights and biases of the network in order to move the network outputs closer to the 

targets (Howard et al., 2006). 

It is very difficult to know which training algorithm will be the fastest for a given 

problem. It depends on many factors, including the complexity of the problem, the 

number of data points in the training set, the number of weights and biases in the 

network, the error goal, and whether the network is being used for pattern recognition or 

function approximation. However, the Levenberg-Marquardt (LM) training algorithm has 

been used in this research since it is best suited for function approximation (regression) 

and converges very fast whcn data set are less in number comparatively (Howard et al., 

2006). 

4.3.1.4 Transfer Function (Activation Function) 

One of the important components in determining a neuron's response is called thc 

transfer function. The transfer function dcscribes how a neuron's firing rate varies with 

the input it receives. A very sensitive neuron may fire with very little input, for example. 

A neuron may have a threshold, and fire rarely below threshold, and vigorously above it. 

A neuron may have a bell-curve style firing pattern, increasing its firing rate up to a 

maximum, and then leveling off or decreasing when over-stimulated. A neuron may sum 

its inputs, or average them, or something entirely more complicated. Each of these 

behaviors can be represented mathematically, and that representation is called the transfer 

function. In simple language, it can be said that Transfer function connects input to 
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output. These functions for the hidden units are needed to introduce nonlinearity into the 

network. Without nonlinearity, hidden units would not make nets more powerful than just 

plain perceptrons (which do not have any hidden units, just input and output units). The 

reason is that a linear function of linear functions is again a linear function. However, it is 

the nonlinearity-the capability to represent nonlinear functions-that makes multilayer 

networks so powerful. Almost any nonlinear function does the job, except for 

polynomials. For backpropagation learning, the activation function must be 

differentiable, and it helps if the function is bounded; the sigmoidal functions such as 

logistic and tanh and the Gaussian function are the most common choices. Functions such 

as tanh or arctan that produce both positive and negative values tend to yield faster 

training than functions that produce only positive values such as logistic, because of 

better numerical conditioning. For hidden units, sigmoid activation functions are usually 

preferable to threshold activation functions. Networks with threshold units are difficult to 

train because the error function is stepwise constant, hence the gradient either does not 

exist or is zero, making it impossible to use backprop or more efficient gradient-based 

training methods. With sigmoid units, a small change in the weights will usually produce 

a change in the outputs, which makes it possible to tell whether that change in the 

weights is good or bad. With threshold units, a small change in the weights will often 

produce no change in the outputs (Howard et at., 2006). 

In this research, sigmoid function was used in hidden layers followed by linear 

function in output layer. Multiple layers of neurons with nonlinear transfer functions 

allow the network to learn nonlinear and linear relationship between input and output 
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vectors. The linear output layer lets the network produce values outside the range -1 to + 1 

(Howard et aI., 2006). 

4.3.2 Multiple Linear regression Modeling 

The general purpose of multiple regressions is to learn more about the relationship 

between several independent or predictor variables and a dependent or criterion variable. 

Matlab was used for this purpose in this research and 10-fold cross-validation technique 

was utilized to find the predicted values of dependent variables-Yl, Y2, and Y3-so 

that ANN model prediction could be compared with Multiple Linear Regression Model 

prediction and superiority of ANN modeling could be estabished. Limitation of this 

modeling was that it was assumed that the relationship betwccn variables was linear. In 

practice this assumption can virtually never be confirmed; fortunately, multiple 

regression procedures are not greatly affected by minor deviations from this assumption 

(Draper & Smith, 1998). 

4.3.3 K-fold Cross-validation 

In K-fold cross-validation, the original sample is partitioned into K subsamplcs. Of 

the K subsamples, a single subsample is retained as the validation data for testing the 

model, and the remaining K - I subsamples are used as training data. The cross

validation proccss is then repeatcd K times (the folds), with each of the K subsamples 

used exactly once as the validation data. The K results from the folds then can be 

averaged (or otherwise combined) to produce a single estimation. The advantage of this 

method over repeated random sub-sampling is that all observations are used for both 
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training and validation, and each observation is used for validation exactly once (Kohavi, 

1995). la-fold cross-validation is commonly used and the same has been used in this 

rescarch as well. 

4.4 Prediction/forecasting 

As la-fold cross validation technique was used, the original data (Xl to X'8 and 

YI, Y2, & Y3) were partitioned in 10 subsets. Of the 10 subsets, a single subset was 

rctaincd as the validation data for testing both the models (ANN and MR), and the 

remaining 9 subsets wcre used as training data. The cross-validation process was then 

rcpeatcd 10 times, with cach of the 10 subsets used exactly once as the validation data. 

The 10 results from the folds then were compared with the actual target variables' values 

(YI, Y2, and Y3) and errors in percent were calculated for each data point. The Mean 

Absolute Error (MAE) in prediction was found by averaging the absolute values of 

percent errors for all data points. 

The data points with large errors (outliers) were identified and were removed from 

the data sct for further rcfinement and the refined data set, now named as "modified 

data", once again went through the same process as mentioned above to check if it 

improved the prediction results. 

4.4.1 Removal of Outliers 

In statistics, an outlier is an observation that is numerically distant from the rest of 

the data. Results derived from data sets that include outliers may be misleading. In most 

larger samplings of data, some data points will be further away from the sample mean 

than what is deemed reasonable. This can be due to incidental systematic error or it can 

simply be the case that some observations happen to be a long way from the center of the 

118 



data. In this research certain data points produced large errors and were suspected to be 

outliers. For detecting outliers, a procedure was used which was as follows: 

• First, mean was computed 

• Second, standard deviation was computed 

• Data points which were falling above or below 2 times the standard deviation 

from the mean were decided to be the outliers. 

Original data points in this research corresponding to CO, N02, and 0 3 were 234, 221, 

and 236 and after removal of outliers, modified data points were 186, 196, and 217 

respectively. 

4.4.2 ANN Modeling 

Neural networks can be explicitly programmed to perform a task by manually 

creating the topology and then setting the weights of each link and threshold. However, 

this by-passes one of the unique strengths of neural nets: the ability to program 

themselves. The most basic method of training a neural network is trial and error. If the 

network isn't behaving the way it should, change the topology/architecture of the NN. If 

the accuracy of the network declines, undo the change and make a different one. It takes 

time, but the trial and error method does produce results (Fraser, 2008). Choosing the 

right neural network topology to solve a particular problem with optimum generalization 

performance is not, in any case, a trivial problem. 

The following were the salient features in ANN modeling adopted in this research 

for forecasting/predicting the target variables for a given set of input variables: 

• First, very simple neural network topology with one hidden layer with one 

neuron was chosen and the MAE (in percent) was found. 
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• Subsequently, the topologies were made more complex by increasing the 

number of nodes/neurons and the layers and the MAEs were found out. 

• The topology/architecture that provided the least error was considered to be 

the best model for prediction/forecasting purpose. 

• The same procedure was repeated for the modified data too. 

• The procedure was completed for the data normalized by both the methods 

to see if method of normalization makes a difference in the results. 

• Calculations were done to calculate the Mean Absolute Errors (MAEs) and 

Root Mean Square Errors (RMSEs). 

• Curves were plotted between observed/predicted concentration vis number 

of observations of a pollutant in ambient air for the best model to see if the 

trend of concentration variation for observed and predicted amongst a 

number of observations is same or not. If it was the same, then it would 

prove the model to be an accurate/robust one. 

• Also scatter plots were made between observed vis predicted concentration 

to see if the most of the data were evenly and closely distributed about the 

45 degree line. 

• Above-mentioned curves were plotted for modified data also. 

4.4.3 Multiple Regression (MR) Modeling 

Multiple linear regression modeling was also utilized in this research to highlight 

the supremacy of ANN over MR in prediction/forecasting of targets. la-fold cross

validation technique was used in matlab platform. 
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The following were the salient features in MR modeling adopted in this research 

for forecasting/predicting the target variables for a given set of input variables: 

• Calculations were done to calculate the Mean Absolute Errors (MAEs) and 

Root Mean Square Errors (RMSEs). 

• Curves were plotted between observed/predicted concentration vis number 

of observations of a pollutant in ambient air for the MR model to see if the 

trend of concentration variation for observed and predicted amongst a 

number of observations is same or not. 

• Also scatter plots were made between observed vis predicted concentration 

to see if the most of the data were evenly and closely distributed about the 

45 degree line or not. 

• Above-mentioned curves were plotted for modified data also. 

4.5 Effect of ITS on Ambient Air Quality 

Using a trained network to learn about the effect of a particular variable-ITS in 

this case-on air quality (concentration of CO, N02 or 03 in ambient air), involves 

running the network with all of the input neurons, except the one of interest, held 

constant; interactions can be explored by setting input neurons at various values. 

Following procedure was adopted to find the effect of ITS (X'S variable) on target 

variables (YI, Y2, and Y3): 

• First of all, the trained neural networks which provided the least MAEs

total four NN, one each for a combination of method of normalization (nl 

and n2) and type of data (original or modified)-were fcd with the constant 
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values of variables of Xl through X7 along with ITS values (X'8) varying 

from 0 to 1.00 with a constant increment of 0.02. 

• Constant values of variables Xl through X7 that were fed to the model as 

mentioned in the previous section were the average values of these 

variables. For example, normalized average input values (by method-I, 

i.e.,n 1) of Xl through X7 for CO prediction used were 0.121181,0.178049, 

0.178135, 0.143888, 0.174108, and 0.418095 respectively while ITS (X'8 

variable) values were 0.0, 0.02, 0.04, ----- upto 1.00. 

• By putting these input values of Xl through X'8 in a trained Neural 

Network, predicted values of target variables could be found out and the 

curves were plotted between % ITS and concentration of target variables to 

show how the intensity of ITS affected the ambient air quality. 

• Similarly, by using MR modeling in the matlab platform, the same values of 

input variables were used to provide the values of the target variable, and 

these values were also included in the plot as mentioned in the previous 

point. 

This was the methodology, as mentioned in earlier sections, adopted in this 

research that explained the methods and procedures used and their rationale. Also it 

explained the problems that were anticipated and the steps taken to prevent them from 

oecurnng. 
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CHAPTER V 

RESUL TS AND DISCUSSION 

To achieve the research objectives, a set of specific proccdures/methods were used 

as described in Chapter IV and the results obtained are discussed in the following 

sections. The results have been categorized on the basis of target variables-CO, N02, 

and 03.and are presented in that order. 

5.1 Carbon monoxide (CO) 

Several configurations of ANN model structure (combinations of nodes and hidden 

layers) were implemented and applied using sets of the CO data-four sets altogether. 

These sets were as follows: 

Set 1: Original data normalized by method-l (nl), 

Set 2: Modified data normalized by method-l (n 1 ), 

Set 3: Original data normalized by method-2 (n2), and 

Set 4: Modified data normalized by method-2 (n2). 

The notations n1 and n2 indicate the two methods of data normalization as 

described in Chapter IV. 
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5.1.1 ANN Architecture selection 

5.1.1.1 Results 

In this section, the influence of ANN architecture on the mean absolute error 

(MAE) performance measures has been highlighted. Starting with a nominal ANN 

architecture and subsequently increasing model structure complexity, the MAE 

performance measures were determined for applications corresponding to each model 

architecture or configuration. Also, a Multiple Regression study was performed on each 

of the four data sets and the corresponding MAE values were determined. Tables 5.1 

through 5.4 summarize the model architecture configurations and corresponding MAEs 

for each. In Table 5.1 the first column defines the model architecture or structure using a 

compact notation in a 3-digit format. The three digits shown correspond to either the 

number of layers or nodes in each layer. The first digit denotes the number of hidden 

layers, the second digit denotes the number of nodes in first hidden layer, and the third 

digit denotes the number of nodes in second hidden layer. Tables 5.2 through 5.4 follow 

a similar form and present results corresponding to the remaining data sets. Additionally, 

Figures 5.1 through 5.4 provide a graphical summary and comparison of performance 

MAE measures for each model structure. Again, Figures 5.2 through 5.4 are presented in 

the same format as Figure 5.1 and present results for the remaining data sets. 
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Table 5.1 ANN model perfonnance according to architecture and corresponding 

MAE measure (for data nonnalized by method-l) 

Contiguration-n 1 
%E 

(MAE) 

(1-1-0)* 21.7 

(1-2-0) 26.3 

(1-3-0) 22.8 

( 1-4-0) 20.9 

(1-5-0) 24.4 

(2-2-2) 20.4 

(2-2-3) 20.5 

(2-3-3) 17.2 
Multiple 

24.1 
Regression 

Where: 

Configuration-n 1 = Architecture of the ANN model and n I indicates the first 

method of normalization. 

Configuration-n2 = Architecture of ANN and n2 indicates the second method of 

nonnalization. 

Configuration-n l-m = Architecture of ANN and n 1 jndicates the first method of 

nonnalization, and 'm' indicates the modified data. 

Configuration-n2-m = Architecture of ANN and n2 indicates the second method of 

nonnalization, and 'm' indicates the modified data. 

%E = Mean Absolute Error (MAE) expressed in percent fonnat. 

(1-1-0)* = first digit denotes the number of hidden layers, second digit denotes the 

number of nodes in first hidden layer, and third digit denotes the number of nodes in 

second hidden layer. 

Multiple Regression = Multiple Regression modeling. 
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Table 5.2 ANN model perfonnancc according to architecture and corresponding 

MAE measure (for modified data nonnalized by method-I) 

Configuration-n 1-m %E (MAE) 
(1-1-0) 16.0 
(2-1-1) 16.2 
(2-2-1) 14.0 
(2-3-3) 19.2 

Multiple Regression 17.7 

Mean Absolute Error (MAE) VIS ANN Architecture 
(for modified normalized data by method-1) 
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Table 5.3 ANN model perfoll11ance according to architccture and corrcsponding MAE 

f!! 
;j ... 
u 
~ 
..c:: 
u ... 
c( 

measure (for data nOll11alized by method-2) 

Configuration-n2 %E (MAE) 

(1-1-0) 20.5 

(1-3-0) 27.0 

(2-1-1) 20.2 

(2-2-2) 20.0 

(2-3-2) 22.3 

(2-3-3) 21.6 

(2-4-4) 19.8 

(2-5-5) 27.7 

Multiple Regression 24.1 

Mean Absolute Error (MAE) VIS ANN Architecture (for normalized 
data by method-2) 
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Table 5.4 ANN model performance according to architecture and corresponding 

I!! 
:::I 
'0 
~ 
..c: 
~ « 

MAE measure (for modified normalized data by method-2) 

Configuration-n2-m %E (MAE) 
(1-1-0) 16.0 
(1-2-0) 15.1 
(1-3-0) 15.0 
(2-1-1) 16.2 
(2-2-2) 14.5 
(2-3-3) 16.8 
(2-2-l) 22.2 
(2-1-2) 14.8 

Multiple Regression 17.7 

Mean Absolute Error (MAE) VIS ANN Architecture (for modified 
normalized data by method-2) 
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5.1.1.2 Discussion 

Several ANN model structure configurations or architectures were applied in order 

to arrive at the optimal form to minimize MAE. MAE is a standard performance measure 

to check the capability of a prediction model. 

Entries in bold in the tables indicate the configuration of ANN with the lowest 

MAE in prediction. Following section summarizes the significant observations derived 

from the results of CO modeling with regard to variations in ANN Architecture. 

• The values of MAE for data Set 1 varied from 17.2 % corresponding to 

ANN model configuration (2-3-3) to 26.2 % corresponding to ANN model 

configuration (1-2-0), and 24.1 % for the multiple regression model. 

• The MAE values for data Set 2 varied from 14.0 % corresponding to ANN 

model configuration (2-2-1) to 19.2 % for ANN model configuration (1-2-

0) , and 17.7% for the multiple regression model. 

• The values ofMAEs for Set 3 data varied from 19.8 % corresponding to 

ANN model configuration (2-4-4) to 27.7 % corresponding to ANN model 

configuration (2-5-5) and 24.1 % for the multiple regression model. 

• The values for MAEs for Set 4 data varied from 14.5 % corresponding to 

ANN model configuration (2-2-2) to 22.2 % corresponding to ANN model 

configuration (2-2-1) and 17.7% for the multiple regression model. 

• The values for MAEs with Multiple Regression are same for Set 1 and Set 3 

(24.1 %) and Set 2 & Set 4 (17.7 %) indicating that the influence of the data 

normalization method does not significantly affect multiple regression 

modeling results. 
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• From Table 5.1 through 5.4, it is evident that MAEs are larger when the 

ANN model is likely to be considered either under-trained or over-trained, 

however there are no clear-cut guidelines by which one can define the 

optimal configuration for ANN structure. Although the tendency is for more 

complex the relationships between dependent and independent variables 

require more complex ANN structures, the final details of model structure 

must still be determined using an iterative, trial and error style procedure. 

Through the training or model calibration process one must monitor the 

ANN evolution and avoid both under-trained and over-trained regions of 

the solution space. 

• The MAE values in prediction applications vary over the range from 14% to 

20% approximately and those are typical results considering the fact that the 

significant CO emissions from sources, in addition to the transportation 

factors, include industries, power plants etc. and those factors have not been 

included in this study due to the focus on transportation facilities. 

• The lowest MAE value for Set 1 data was 17.2 % and 14.0 % for Set 2 (data 

modified by removing outliers indicating that by removing "outliers" the 

prediction error is reduced significantly. This same result was found for the 

data sets 3 and 4, and for the multiple-regression model. 

• The lowest MAE value for data Set 1 (data normalized by method-I, n 1) 

was 17.2 % and 19.8 % for Set 3 (normalized by method-2, n2). Similarly, 

lowest MAE value for data Set 2 (normalized by method-I, n1) was 14.0 % 

and 14.5 % for Set 4 (normalized by method-2, n2). This result indicates 
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the method of data nonnalization does significantly affect results with ANN 

modeling in this particular study; and method number one (nl) was found 

to provide a more accurate prediction relative to method two (n2). 

5.1.2 Comparison of Observed and Predicted values 

5.1.2.1 Results 

The observed and predicted results from both the models-ANN model and 

Multiple Regression (MR) model-were compared using values for both the MAE and 

RMSE (for the CO parameter). The model configuration or architecture providing the 

least MAE result was selected as the "target" or optimal model and served to provide the 

predicted values for model validation evaluation. By using 1 O-fold technique, the 

predicted values were found for both the models, the optimal ANN and multiple 

regression. To provide a means for visualization of the results, a series of curves were 

plotted comparing observed and predicted values of CO concentration. Additionally, a 

series of scatter plots were developed to illustrate the statistical comparison relative to the 

perfect agreement line and provide an indication of model bias if any. Figures 5.5 through 

5.12 depict the plots of observed and predicted for original data and Figures 5.13 through 

5.20 show the plots between observed and predicted for modified data. 
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5.1.2.2 Discussion 

The optimal ANN models (one for each set of data), defined here as those with the 

best or lowest MAE values, were used to predict the concentrations of CO in ambient air. 

The prediction or validation was performed by furnishing the ANN models with only the 

operationally available values of observation variables. With regard to the MR models 

too, the same set of input values were used so that a valid comparison between the two 

model types (ANN and MR) can be evaluated. The following section describes the 

notable observations derived from the CO modeling results. 

• The values for MAEs and RMSEs are lower (better) for modified data as 

compared with use of the original data for both the model types-ANN and 

MR models- and it strengthens the concept that the removal of outliers 

improves model performance irrespective of modeling approach. Prediction 

with modified data was consistently better and more reliable. 

• The graphical comparison of predicted and observed CO concentration 

closely follow one another in the case of both ANN and MR models, 

indicating the methods are well suited to the application and the approach 

can yield potentially useful results for research or planning applications .. 

• Using quantitative measures of performance, the differences between 

predicted and observed CO values are lower in the case of ANN modeling, 

and this indicates an improved modeling approach relative to MR. 

• The performance criteria values for both MAE and RMSE are less in the 

case of ANN models indicating both robustness and accuracy of ANN over 

MR models. 

141 



• Scatter plots support the same fact - the ANN's supremacy over MR. 

Considering the data spread around the 1: 1 line or "Perfect Agreement 

Line" that is less in the case of ANN, supporting the conclusion of superior 

model performance. This is also indicated by the lower values of RMSE in 

the case of ANN as compared with the MR model. 

• The distribution in number of data points about the "Perfect Agreement 

Line" is equally distributed (above and below) in all the scatter plots 

indicating unbiased ANN model performance. 

• The distribution of data point predictions shown in both the scatter plots and 

point comparisons of predicted and observed values are identical for the 

MR models using either method of data normalization. This result shows 

the data normalization method does not affect MR model and this fact is 

also supported by the values of MAEs and RMSEs being equal in MR 

modeling for both methods of data normalization. 

• But abovementioned fact is not applicable to ANN modeling as the plots 

and curves are different and the values ofMAEs and RMSEs as well. The 

method of data normalization therefore does affect the ANN modeling and 

is a very crucial element to be decided by trial and error. 

5.1.3 Effect ofITS on ambient air quality 

5.1.3.1 Results 

In this section, the effect of ITS on ambient air quality has been highlighted. Using 

trained network to learn about the effect ofITS on air quality (concentration of CO), 
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involved running the network with all of the input neurons, except the one of ITS, held 

constant; interactions could be explored by setting ITS at various values-starting from 

0% through 100% with an increment of2%. As it can be seen from Figure 5.21, five 

curves have been plotted-four for the four sets of data with ANN and one for the MR 

model. 
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5.1.3.2 Discussion 

Following section describes the important observations about the results of CO 

modeling with regard to ITS effects on air quality: 

• As it can be sccn from Figurc 5.21, CO pollution in ambient air decreases 

as ITS application intensity increases irrespective of the method of data 

normalization and the data used (original or modified). In both the 
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models-ANN and MR, it shows that ITS helps in curbing down the CO 

pollution. 

• Induce demand increases pollution because more number of vehicles would 

be on the road due to smoothening of traffic by ITS. 

• Since the average speed on roads is increased because of less delay or 

congestion due to ITS, the rate of emission also increases that causes more 

pollution. 

• In contrast, because of less congestion or delay, fuel saving takes place 

causing significant reduction in emissions of motor vehicles. This 

contributes in reduction of CO pollution in ambient air. 

• Since overall ITS helps in curbing the CO pollution in ambient air as it 

evident from Figure 5.21, reason that one could think of might be, "the 

cumulative effect of induced demand, effect of increase of average speed on 

emission rates of CO and reduction of congestion/delay results in the 

reduction of CO concentration". 
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5.2 Nitrogen Dioxide (NOi), 

Several configurations of ANN model structure (combinations of nodes and hidden 

layers) of ANN were implemented and applied using sets of the N02 data~four sets 

altogether. These sets, like CO data sets in previous section, were as follows: 

Set 1: Original data normalized by method-l (n1), 

Set 2: Modified data normalized by method-l (nl), 

Set 3: Original data normalized by method-2 (n2) and, 

Set 4: Modified data normalized by method-2 (n2). 

The notations n 1 and n2 indicate the two methods of data normalization as 

described in Chapter-IV. 

5.2.1 ANN Architecture Selection 

5.2.1.1 Results 

In this section, the influence of ANN architecture on the MAE performance 

measures has been highlighted with regard to N02 modeling. Starting with very simple 

architecture of ANN and subsequently increasing the model structure complexity, MAE 

performance measures were determined corresponding to each model configuration or 

architecture. Also, a Multiple Regression study was performed on each of the four data 

sets and the corresponding MAE values were determined. Tables 5.5 through 5.8 

summarize the model architecture configurations and corresponding values of MAE for 

each and Figure 5.22 through 5.25 depict the corresponding plots. Notations in this 

section are same as in the previous section and the same is the description about the 

figures. Only difference is that this section deals with N02. 
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Table 5.5 ANN model performance according to architecture and corresponding 

MAE measure (for data normalized by method-I) 

Configuration-n 1 %E (MAE) 
(1-1-0)* 34.8 
(1-2-0) 27.8 
(1-3-0) 34.1 
(1-4-0) 29.3 
(1-5-0) 24.9 
(1-6-0) 27.8 
(2-1-1) 34.7 
(2-2-2) 33.4 
(2-3-3) 29.0 
(2-4-4) 24.2 
(2-5-5) 33.6 

Multiple Regression 35.2 
Where: 

Meanings of various terms and notations are same as mentioned in the previous 

sections. 
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ANN performance summary according to architecture and corresponding 

MAE (for normalized data by method-I) 
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Table 5.6 ANN model performance according to architecture and corresponding MAE 

measure (for modified normalized data by method-1) 

Configuration-n 1-m %E (MAE) 
(1-1-0) 22.8 
(1-2-0) 29.9 
(1-3-0) 35.5 
(1-4-0) 33.7 
(1-5-0) 25.0 
(2-1-1) 25.4 
(2-2-2) 26.7 
(2-3-3) 38.3 
(2-4-4) 24.2 
(2-5-5) 19.3 
(2-6-6) 27.8 
(2-2-1) 24.8 
(2-1-2) 27.7 
(2-3-4) 25.9 
(2-5-6) 27.1 

Multiple Regression 30.3 
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Figure 5.23 

ANN performance summary according to architecture and corresponding 

MAE (for modified normalized data by method-1) 
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Table 5.7 ANN model perfonnance according to architecture and corresponding MAE 
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measure (for nonnalized data by method-2) 

Configuration-n2 %E (MAE) 
(I-I-0) 34.4 
(1-2-0) 31.0 
(1-3-0) 33.7 
(1-4-0) 32.3 
(2-1-1) 37.7 
(2-2-2) 32.0 
(2-3-3) 34.1 
(2-4-4) 31.0 
(2-5-5) 25.5 
(2-6-6) 36.5 

Multiple Regression 35.2 
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ANN performance summary according to architecture and corresponding 

MAE (for normalized data by method-2) 
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Table 5.8 ANN model performance according to architecture and corresponding MAE 
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measure (for modified normalized data by method-2) 

Configuration-n2-m %E 
(1-1-0) 22.9 
(1-2-0) 27.4 
(1-3-0) 28.0 
(1-4-0) 29.7 
(1-5-0) 26.2 
(2-1-1) 24.5 
(2-2-2) 29.0 
(2-3-3) 22.0 
(2-4-4) 36.5 
(2-4-3) 33.0 
Mult.R 30.1 
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5.2.1.2 Discussion 

Like CO modeling mentioned in previous sections, several ANN model 

configurations or architectures were applied with N02 data in order to arrive at the 

optimal form to minimize MAE. MAE is a standard performance measure to check the 

capability of a prediction model. 

Entries in bold in the tables indicate the configuration of ANN with the lowest 

MAE in prediction. Following section summarizes the significant observations about the 

results ofN02 modeling with regard to variations in ANN Architecture. 

• The values of MAE for Set I data varied from 24.2 % corresponding to 

ANN model configuration (2-4-4) to 34.8 % corresponding to ANN model 

configuration (1-1-0), and 35.2% for the Multiple Regression model. 

• The MAE values for Set 2 data varied from 19.3 % corresponding to ANN 

model configuration (2-5-5) to 38.3 % corresponding to ANN model 

configuration (2-3-3) and 30.1 % for Multiple Regression model. 

• The values of MAE for Set 3 data varied from 25.5 % corresponding to 

ANN model configuration (2-5-5) to 37.7 % corresponding to ANN model 

configuration (2-1-1) and 35.2% for Multiple Regression model. 

• The values of MAE for Sct 4 data varied from 22.0 % corresponding to 

ANN model configuration (2-3-3) to 36.5 % corrcsponding to ANN model 

configuration (2-4-4) and 30.1 % for Multiple Regression model. 

• The values ofMAEs with Multiple Regression are same for Set 1 & Set 3 

(35.2 %) and Set-2 & Set-4 (30.1 %) indicating that the influence of the 
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data normalization method does not affect the multiple regression modeling 

results. 

• From Tables 5.5 through 5.8, it is evident that MAEs are larger when the 

ANN model is either under-trained or over-trained; however there is no 

clear-cut rule by which one can define the optimal ANN structure. Although 

the tendency is for more complex the relationships between dependent and 

independent variables require more complex ANN structures, the final 

details of model structure must still be determined using an iterative, trial 

and error style procedure. Through the training or model calibration process 

one must monitor the ANN evolution and avoid both under-trained and 

over-trained regions of the solution space. 

• The values MAEs in prediction application for N02 vary over the range 

from 19.3% to 25.5% and those are justifiable considering the fact that the 

significant N02 emissions are from sources, in addition to the transportation 

factors, include industries, power plants etc. and those factors have not been 

included in this study. 

• The lowest MAE for Set 1 data was 24.2 % and 19.3 % for Set 2 (modified 

data by removing outliers) indicating that the by removing "outliers" the 

prediction error can be reduced significantly. This same result was found 

for the data Set 3 and 4 data and also for the Multiple Regression modeling. 

Removal of outliers therefore always improves the accuracy of any 

prediction model. 
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• The Lowest value of MAE for data Set 1 (normalized by method-I, n 1) was 

24.2 % and was 25.5 % for Set 3 (normalized by method-2, n2). Similarly, 

lowest MAE for data Set 2 (normal ized by method-I, n I) was 19.3 % and 

was 22.0 % for Set 4 (normalized by method-2, n2). This result indicates 

that the method of normalization does significantly affect the results of 

ANN modeling and in this particular study, method number one (nl) proved 

to be providing more accurate prediction relative to method number two 

(n2). 

5.2.2 Comparison of Observed and Predicted values 

5.2.2.1 Results 

The observed and predicted results from both the models-ANN model and 

Multiple Regression (MR) model-were compared using values for both the MAE and 

RMSE (for the N02 parameter). The model configuration or architecture providing the 

least MAE result was selected as the "target" or optimal model and served to provide the 

predicted values for model validation evaluation. By using lO-fold technique, the 

predicted values were found for both the models, the optimal ANN and multiple 

regression. To provide a means for visualization of the results, a series of curves were 

plotted comparing observed and predicted values ofN02 concentration. Additionally, a 

series of scatter plots were developed to illustrate the statistical comparison relative to the 

perfect agreement line and provide an indication of model bias if any. Figures 5.26 

through 5.33 depict the plots of observed and predicted for original data and Figures 5.34 

through 5.41 show the plots between observed and predicted for modified data. 
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5.2.2.2 Discussion 

The optimal ANN models (one for eaeh set of data), defined here as those with the 

best or lowest MAE values, were used to predict the concentrations ofN02 in ambient 

air. The prediction or validation was performed by furnishing the ANN models with only 

the operationally available values of observation variables. With regard to the MR 

models too, the same set of input values were used so that a valid comparison between 

the two model types (ANN and MR) can be evaluated. The following section describes 

the notable observations derived from the N02 modeling results. 

• The values for MAE and RMSE are lower (better) for modified data as 

compared with use of the original data for both the model types-ANN and 

MR models- and it strengthens the concept that the removal of outliers 

improves model performance irrespective of modeling approach. Prediction 

with modified data was consistently better and more reliable. 

• The graphical comparison of predicted and observed N02 concentration 

closely follow one another in the case of both ANN and MR models, 

indicating the methods are well suited to the application and the approach 

can yield potentially useful results for research or planning applications .. 

• Using quantitative measures of performance, the differences between 

predicted and observed N02 values are lower in the ease of ANN modeling, 

and this indicates an improved modeling approach relative to MR. 

• The performance criteria values for both MAE and RMSE are small in the 

case of ANN models indicating both robustness and accuracy of ANN over 

MR models. 
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• Scatter plots support the same fact - the ANN's supremacy over MR. 

Considering the data spread around the I: I line or "Perfect Agreement 

Line", it is less in the case of ANN, supporting the conclusion of superior 

model performance. This is also indicated by the lower values of RMSE in 

the case of ANN model relative to the MR model. 

• The distribution in number of data points about the "Perfect Agreement 

Line" is equally distributed (above and below) in all the scatter plots 

indicating unbiased ANN model performance. 

• The distribution of data point predictions shown in both the scatter plots and 

point comparisons of predictcd and observed values are identical for the 

MR models using either method of data normalization. This result shows 

the data normalization method does not affect MR model and this fact is 

also supported by the values of MAE and RMSE being equal in MR 

modeling for both the methods of data normalization. 

• But abovementioned fact is not applicable to ANN modeling as the plots 

and curves are different and the values of MAE and RMSE as well. The 

method of data normalization therefore does affect the ANN modeling and 

is a very crucial element to be decided by trial and error. 

5.2.3 Effect of ITS on ambient air quality 

5.2.3.1 Results 

In this section, the effect of ITS on ambient air quality has been highlighted. Using 

trained network to learn about the effect of ITS on air quality (concentration of N02), 
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involved running the network with all of the input neurons, except the one of ITS, held 

constant; interactions could be explored by setting ITS at various values-starting from 

0% through 100% with an increment of2%. As it can be seen from Figure 5.21, five 

curves have been plotted-four for the four sets of data with ANN and one for the MR 

model. 
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5.2.3.2 Discussion 

Following section describes the important observations about the results ofN02 

modeling with regard to ITS effects on air quality: 

• Figure 5.42 depicts some exciting results regarding the variability ofN02 

concentrations in ambient air with the intensity of application of ITS. Either 

the concentrations are increasing or remaining unaffected with ITS which 

indicates that the ITS is increasing or not affecting the concentration of 
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N02 in ambient air. It is a startling observation in the sense that it may 

create conformity problems for the entire transportation program ~ not just 

ITS projects. 

• Induce demand increases pollution because more number of vehicles would 

be on the road due to smoothening of traffic by ITS. 

• Since the average speed on roads is increased because of less 

delay/congestion due to ITS, the rate of emission also increases that causes 

more pollution. 

• In contrast, because of less congestion/delay, fuel saving takes place 

causing significant reduction in emissions of motor vehicles. This 

contributes in reduction ofN02 pollution in ambient air. 

• Overall ITS either does not help or worsens the N02 pollution in ambient 

air as it evident from Figure 5.42. The reasons could be as follows: a) 

Induced demand due to the less congestion because of ITS (but it was not 

the case for CO as CO concentration reduced with ITS) b) N02 emissions 

increase dramatically in large proportion as compared with CO as the speed 

of vehicles increase after a certain value and that might be the reason behind 

the difference between N02 and CO implications. So the overall effect of 

induced demand plus increased emissions (due to average speed increase) 

minus less congestion/delay is the increase of ambient N02 concentrations 

(though small, however an increase). It may lead to the serious implications 

with regard to the nonattainment areas. 
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5.3 Ozone (03} 

Several configurations of ANN model structure (combinations of nodes and hidden 

layers) were implemented and applied using sets of 0 3 data~four sets altogether. These 

sets, like CO & N02 data sets in previous sections, were as follows: 

Set 1: Original data normalized by method-l (n 1), 

Set 2: Modified data normalized by method-l (nl), 

Set 3: Original data normalized by method-2 (n2) and, 

Set 4: Modified data normalized by method-2 (n2). 

Here nl and n2 indicate the two methods of data normalization as described in 

Chapter-IV. 

5.3.1 ANN Architecture vis MAEs 

5.3.1.1 Results 

In this section, the influence of ANN architecture on the MAE performance 

measures has been highlighted with regard to 0 3 modeling. Starting with very simple 

architecture of ANN and subsequently increasing the model structure complexity, MAE 

performance measures were determined corresponding to each model configuration or 

architecture. Also, a Multiple Regression study was performed on each of the four data 

sets and the corresponding MAE values were determined. Tables 5.9 through 5.12 

summarize the model architecture configurations and corresponding values of MAE for 

each and Figure 5.43 through 5.46 depict the corresponding plots. Notations in this 

section are same as in the previous sections and the same is the description about the 

figures. Only difference is that this section deals with 0 3. 
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Table 5.9 ANN model performance according to architecture and corresponding 

MAE measure (for normalized data by method-I) 

Configuration-n1 %E(MAE) 
(1-1-0)* 9.7 
(1-2-0) lO.2 
(1-3-0) 9.7 
(1-4-0) 9.4 
(1-5-0) 8.7 
(1-6-0) 9.0 
(2-1-1) 9.0 
(2-2-2) 9.9 
(2-4-4) 9.2 
(2-1-2) 9.7 
(2-3-2) 9.9 

Where: Multiple Regression 11.5 

Meanings of various terms and notations are the same as mentioned in the previous 

sections. 
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Table 5.10 ANN model perfonnance according to architecture and corresponding MAE 

measure (for modified nonnalized data by method-I) 

Configuration-n I-m %E(MAE) 
(1-1-0) 6.8 
(1-2-0) 7.9 
(1-3-0) 5.7 
(1-4-0) 5.6 
(1-5-0) 13.3 
(1-6-0) 7.0 
(2-1-1) 6.1 
(2-2-2) 6.0 
(2-3-3) 7.5 
(2-4-4) 7.3 
(2-1-2) 6.4 

Multiple Regression 9.4 

Mean Absolute Error (MAE) VIS ANN Architecture 
(for modified normalized data by method-1) 
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Table 5.11 ANN model perfonnance according to architecture and corresponding MAE 

measure (for nonnalized data by mcthod-2) 

%E 
Configuration-n2 (MAE) 

(1-1-0) 9.1 
0-2-0) 9.1 
(1-3-0) 11.0 
(1-4-0) 10.9 
(2-1-1) 9.5 
(2-2-2) 9.9 
(2-3-3) 9.8 
(2-2-1) 9.3 
(2-3-2) 9.6 

Multiple 
Regression 11.5 

Mean Absolute Error (MAE) VIS ANN Architecture (for normalized 
data by method·2) 
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Table 5.12 ANN model performance according to architecture and corresponding MAE 

E 
:l 
tl , .2! 
:E 

~ 

measure (for modified normalized data by method-2) 

Configuration-n2-m %E 
(1-1-0) 6.8 
(1-2-0) 5.9 
(1-3-0) 5.6 
(1-4-0) 6.4 
(2-1-2) 11.5 
(2-1-1) 6.3 
(2-3-3) 7.0 
(2-2-1) 6.7 

Multiple Regression 9.4 

Mean Absolute Error (MAE) VIS ANN Architecture (for modified 
normalized data by method-2) 
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5.3.1.2 Discussion 

Like CO and N02 modeling mentioned in previous sections, several ANN model 

configurations or architectures were applied with 0 3 data in order to arrive at the optimal 

form to minimize MAE. MAE is a standard performance measure to check the capability 

of a prediction model. 

Entries in bold in the tables indicate the configuration of ANN with the lowest 

MAE in prediction. Following section summarizes the significant observations about the 

results of 0 3 modeling with regard to variations in ANN Architecture. 

• The values of MAE for Set 1 data varied from 8.7 % corresponding to ANN 

model configuration (1-5-0) to 10.2 % corresponding to ANN model 

configuration (1-2-0) and 11.5% for Multiple Regression modeling. 

• The MAE values for Set 2 data varied from 5.6 % corresponding to ANN 

model configuration (l-4-0) to 13.3 % corresponding to ANN model 

configuration (1-5-0) and 9.4 % for Multiple Regression modeling. 

• The MAE values for Set 3 data varied from 9.1 % corresponding to ANN 

model configuration (1-1-0) to 1l.0 % corresponding to ANN model 

configuration (1-3-0) by and 11.5 % for Multiple Regression modeling. 

• The MAE values for Set 4 data varied from 5.6 % corresponding to ANN 

model configuration (1-3-0) to 11.5 % corresponding to ANN model 

configuration (2-1-2) by and 9.4 % for Multiple Regression modeling. 
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• The values of MAE with Multiple Regression are identical for Set I & Set 3 

(11.5 %) and also for Set 2 and Set 4 (9.4 %) indicating that the method of 

normalization does not affect the results of multiple regression modeling. 

• From Table 5.9 through 5.12, it is evident that MAE values are larger when 

the ANN model is either under-trained or over-trained; however there is no 

clear-cut rule by which one can define the optimal ANN structure. Although 

the tendency is for more complex the relationships between dependent and 

independent variables require more complex ANN structures, the final 

details of model structure must still be determined using an iterative, trial 

and error style procedure. Through the training or model calibration process 

one must monitor the ANN evolution and avoid both under-trained and 

over-trained regions of the solution space. 

• The MAE values in prediction application for 0 3 vary from 5.6% to 9.1 % 

for these sets and those are quite justifiable. Here one point is noteworthy 

and that is about the MAE values in prediction of 03 concentrations are far 

below than that of CO and N02 indicating the close association of 03 

(ground level) with the transportation parameters or variables as compared 

with CO and N02. This result is contrary to what is generally believed (that 

the contribution of transportation sector to CO in ambient air is maximum 

percentagewise as compared with other priority pollutant and this factor 

should be invcstigated in detail as there is a confusion about the level of 

NOx may increase, decrease or have no cffect on area's Ozone level since it 

apparently depends on the proportion of NO x and VOC). 
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• The Lowest MAE for Set 1 data was 8.7 % and 5.6 % for Set 2 (modified 

data by removing outliers) indicating that the by removing "outliers" the 

prediction error can be reduced significantly. The same result was found for 

the Set 3 and 4 data as well and also for the multiple-regression modeling. 

Removal of outliers therefore always improves the accuracy of any 

prediction model. 

• The lowest value of MAE for data Set 1 (normalized by method-I, n 1) was 

8.7 % and was 9.1 % for Set 3 (normalized by method-2, n2). Similarly, the 

lowest MAE for data Set-2 (normalized by method-I, nl) was 5.6 % and 

was the same (5.6%) for Set 4 (normalized by method-2, n2). It indicates 

that the method of normalization significantly influence the results of ANN 

modeling and in this particular study, method number one (nl) proved to be 

providing more accurate prediction as compared with the method number 

two (n2). 

5.3.2 Comparison of Observed and Predicted values 

5.3.2.1 Results 

Observed and predicted results from both the models-ANN model and Multiple 

Regression (MR) model-were compared using values for both the MAE and RMSE (for 

the 0 3 parameter). The model configuration or architecture providing the least MAE 

result was selected as the "target" or optimal model and served to provide the predicted 

values for model validation evaluation. By using 1 O-fold technique, the predicted values 

were found for both the models, the optimal ANN and multiple regression. To provide a 
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means for visualization of the results, a series of curves were plotted comparing observed 

and predicted values of 0 3 concentration. Additionally, a series of scatter plots were 

developed to illustrate the statistical comparison relative to the perfect agreement line and 

provide an indication of model bias if any. Figures 5.47 through 5.54 depict the plots of 

observed and predicted for original data and Figures 5.55 through 5.62 show the plots 

between observed and predicted for modified data. 
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Observed VIS Predicted by Multiple Regression (for normalized data by method·2) 
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Observed VIS Predicted by ANN (for the modified normalized data by method·l) 
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Observed VIS Predicted by ANN (for modified normalized data by method·2) 
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Observed VIS Predicted by Multiple Regression (for modified normalized data by method·1) 
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5.3.2.2 Discussion 

With regard to 0 3 modeling also, the discussion is on the similar lines as it was 

with respect to CO and N02• The optimal ANN models (one for each set of data), defim~d 

here as those with the best or lowest MAE values, were used to predict the concentrations 

ofN02 in ambient air. The prediction or validation was performed by furnishing the 

ANN models with only the operationally available values of observation variables. With 

regard to the MR models too, the same set of input values were used so that a valid 

comparison between the two model types (ANN and MR) can be evaluated. The 

following section describes the notable observations derived from the 0 3 modeling 

results. 

• The values for MAEs and RMSEs are lower (better) for modified data as 

compared with use of the original data for both the model types-ANN and 

MR models- and it strengthens the concept that the removal of outliers 

improves model performance irrespective of modeling approach. Prediction 

with modified data was consistently better and more reliable. 

• The graphical comparison of predicted and observed 0 3 concentration 

closely follow one another in the case of both ANN and MR models, 

indicating the methods are well suited to the application and the approach 

can yield potentially useful results for research or planning applications .. 

• Using quantitative measures of performance, the differences between 

predicted and observed 0 3 values are lower in the case of ANN modeling, 

and this indicates an improved modeling approach relative to MR. 
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• The perfonnance criteria valucs for both MAE and RMSE are less in the 

case of ANN models indicating both robustness and accuracy of ANN over 

MR models. 

• Scatter plots support the same fact - the ANN's supremacy over MR. 

Considering the data spread around the 1: 1 line or "Perfect Agreement 

Line", it is less in the case of ANN, supporting the conclusion of superior 

model perfonnance. This is also indicated by the lower values of RMSE in 

the case of ANN model relative to the MR model. 

• The distribution in number of data points about the "Perfect Agreement 

Line" is equally distributed (above and below) in all the scatter plots 

indicating unbiased ANN model perfonnanee. 

• The distribution of data point predictions shown in both the scatter plots and 

point comparisons of predicted and observed values are identical for the 

MR models using either method of data nonnalization. This result shows 

the data nonnalization method does not affect MR model and this fact is 

also supported by the values ofMAEs and RMSEs being equal in MR 

modeling for both the methods of data nonnalization. 

• But abovementioned fact is not applicable to ANN modeling as the plots 

and curves are different and the values ofMAEs and RMSEs as well. The 

method of data nonnalization therefore does affect the ANN modeling and 

is a very crucial clement to be decided by trial and error. 
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• RMSEs are more sensitive as compared with MAE to the large differences 

and that is the reason that rate of increase in RMSEs is more than the rate of 

MAEs. 

5.3.3 Effect of ITS on ambient air quality 

5.3.3.1lResults 

In this section, the effect of ITS on ambient air quality has been highlighted. Using 

trained network to learn about the effect of ITS on air quality (concentration of 0 3), 

involved running the network with all of the input neurons, except the one ofITS, held 

constant; interactions could be explored by setting ITS at various values~starting from 

0% through 100% with an increment of 2%. As it can be seen from Figure 5.21, five 

curves have been plotted~four for the four sets of data with ANN and one for the MR 

model. 
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5.3.3.2 Discussion 

Following section describes the important observations about the results of 03 

modeling with regard to ITS effects on air quality: 

• As it can be seen from Figure 5.63, Concentration of ground level 03 

decreases with increase in the intensity of ITS application (on expected 

lines). 

• Induce demand increases pollution because more number of vehicles would 

be on the road due to smoothening of traffic by ITS. 

• Since the average speed on roads is increased because of less 

delay/congestion due to ITS, the rates of emission of NO x and VOC also 

increase that causes more Ozone pollution since Ozone is the result of a 

complex interaction between NOx and VOC. 

• In contrast, because of less congestion/delay, fuel saving takes place 

causing significant reduction in emissions of motor vehicles. This may 

contribute in reduction of 0 3 pollution in ambient air. 

• Overall ITS does help in curbing the 0 3 pollution in ambient air as it 

evident from Figure 5.63. Reason might be, "the cumulative effeet of 

induced demand, effect of increase of average speed on emission rates of 

NOx and VOCs, and reduction of congestion/delay results in the reduction 

of 03 concentration which is a good thing". 

The goal of this research was to devise a mechanism to quantify the air quality 

benefits of ITS and subsequently to identify the relationship between ITS and ambient air 

quality by using ANN modeling. This research has been successful in doing so and the 
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results were well on the expected lines except a few which may not go very well with the 

prevailed notions. Also the results provided and strengthened some of the concepts about 

ANN and offered an insight and a starting point in the direction of quantification of ITS 

effects on air quality. 

Next chapter consists of conclusions of this research. Also it consists of a fcw 

recommendations for further research on this topic. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

A summary of the findings and conclusions of this research is provided in this 

chapter. The main goal of the research was to devise a mechanism to quantify the air 

quality benefits of Intelligent Transportation Systems (ITS) and then to identify the 

relationship b,~tween ITS and ambient air quality. To accomplish this goal, a plan was 

developed which included data mining from available operation resources and 

implementation of relational modeling methods, including both regression and artificial 

neural network (ANN) modeling. 

6.1 Conclusions 

Existing research studies were aimed primarily to quantify the effects of individual 

ITS applications on emissions, but to date, no research has been oriented towards 

determining the effect of ITS as a whole on the ambient air quality in urban regions. 

There have been no efforts to address the issues of induced demand, mobility conditions, 

and average speed increase with regard to ITS implementation and further, the 

quantification of these issues through modeling. This research provided a new approach 

incorporating and illustrating innovative methods to quantify and model the impact of 

these ITS issues, and to assess the effect of ITS on air quality. 
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Based on the research completed in this dissertation, the following conclusions can 

be made: 

• The method of data normalization does not affect the results of multiple 

regression modeling. 

• Method of data normalization was found to have significant affect on the 

performance of the ANN model. In this particular study, method number 

one (n1) proved to be giving more accurate prediction as compared with the 

method number two (n2). 

• Removing "outliers" can reduce the prediction error significantly. 

Prediction with modified data results in better accuracy and improved 

reliability. 

• Mean Absolute Error (MAE) values in prediction for CO and N02 vary 

hom 14% to 25% approximately and are reasonable considering the fact 

that the significant CO and N02 emissions are from sources including 

industries, power plants and othcrs in addition to mobile or transportation 

factors, and those factors are not specifically addressed in this study. 

• Mean Absolute Error (MAE) values are large when the ANN is either 

under-trained or ovcr-trained but no clear-cut rules emerge to define the 

best architectural configuration of ANN structure. As in other application 

fields where ANN modeling is successful, it is through a trial and error 

procedure that model components are identified. In a similar way, it is 

important that the ANN should be neither under-trained nor over-trained. 
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• The Mcan Absolutc Error (MAE) and Root Mean Square Error (RMSE) are 

less in thc casc of ANN, rclativc to thc multiple rcgression (MR) model, 

indicating the robustness and accuracy of ANN ovcr MR modcls. 

• The measured level of CO pollution in ambient air decreases as ITS 

applications intensity or density increases. ITS helps in reducing the CO 

pollution level. 

• Increment in ITS intensity in an area increases the concentration ofN02 in 

ambient air. The overall effect of a combined induced demand plus 

increased emissions (due to avcrage specd increase) minus the lowcr 

congestion/delay is an increase of ambient N02 concentrations (though 

small, however an increase). It may lead to the serious implications with 

regard to the non attainment areas. 

• MAE values in prediction for 0 3 vary from 5.6% to 9.1 %, which is far 

below than that of CO and N02, indicating the close association of 0 3 

(ground level) with the transportation parameters and measurable variables 

as compared with CO and N02. 

• Concentration of ground Icvel 0 3 dccreases with increase in the intcnsity of 

lTS application. 

6.2 Contributions to the Sum of Knowledge 

Intelligent Transportation Systems (ITS) - the application of communications and 

information technology to surface transportation systems - has the potential to improve 

transportation in several ways, from safety to emissions reductions to travel time and 

reliability. ITS have become a worldwide technology, and many US cities are currently 
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deploying ITS, from individual technologies to entire ITS Architectures. While there is a 

growing number of studies evaluating the air quality benefits of ITS, there arc important 

restrictions on the degree to which the results of these studies can be used to support 

planning of ITS in US cities and other nations. First, the challenges involved in modeling 

ITS air quality benefits mean that they normally focus on only one or two ITS 

technologies at a time. Second, air quality and mobility conditions diverge greatly across 

cities, meaning that air quality outcomes will also contrast widely. Third, present 

emission models are not able to take into account the effect of ITS on emission, 

especially the "induced demand" and the "effect on emissions with the change of average 

speed due to ITS". Finally, since the general public is more concerned with the ambient 

air quality (AAQ) rather than emissions, no models are available which could directly 

relate ITS to AAQ. 

To date, there have been no efforts to address these issues in totality. This research 

provides significant contributions to the sum of knowledge in the field as follows: 

• Provides an innovative method to quantify the effect of ITS on ambient air 

quality. 

• Provides a new approach to highlight the effect of ITS on ambient air 

quality in contrast to the earlier research which focused more on emissions. 

• Also addresses the effect of "induced demand" due to ITS on air quality. 

• Neural networks, with their remarkable ability to derive meaning from 

complicated or imprecise data, has been used in this research for the first 

time to extract patterns and detect trends between ITS and air quality that 
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are too complex to be noticed by either humans or other computer 

techniques. 

• Multiple linear regression modeling was also used in conjunction with ANN 

10 highlight the supremacy ANN modeling over other modeling techniques. 

6.3 Recommendations for future research 

Results of this study provide some conclusions that illustrate contrasts with some 

typical or prevailing notions. The following recommendations are therefore made to 

address the future research needs that may enhance the knowledge base in this field and 

improve model performance. 

• Include more input variables which may affect the air quality (e.g., 

contribution of industry to air pollution) to improve accuracy in quantifying 

the effects of ITS on ambient air quality. 

• This research shows interesting results regarding the variability ofN02 

concentrations in ambient air with the intensity of application of ITS. Either 

the concentrations are increasing or remaining unaffected with ITS. This in 

turn indicates that ITS intensity leads to increasing or no affect on the 

concentration ofN02 in ambient air. This result may be an important 

observation since it may indicate conformity challenges for the entire 

transportation program - not just the ITS projects. A sound scientific study 

is therefore recommended for further investigation of this issue. 

• A thorough research study is also recommended for the investigation of the 

effect of increase in the average speed of motor vehicles on emissions since 
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the change of emission rates with the average speed does not seem to be 

uniform with the different pollutants. 

192 



REFERENCES 

Boselly, E. S. (2001). Benefit/Cost Study of RWIS and Anti-icing Technologies: Final 
Report. Published By: Transportation Research Board. NCHRP Report No. 20-7( 117). 

Bose, A. and Ioannou, P. (2001). Evaluation of the Environmental Effects ofIntelligcnt 
Cruise Control (ICC) Vehicles. Published By: Paper presented at the 80th Annual 
Transportation Research Board Meeting. Washington, District of Columbia. 

Bunting, A. (1997). Tracking Trucks. Published By: ITS: Intelligent Transport Systems 
Source Date: May/June 1997. 

Burbank, C. 1. (1995). ITS and the Environment. 
<http://www.tfhrc.gov/pubrds/spring95/p95sp9.htm> Dated: 1/22/2007. 

Chao, L. and Skibniewski, M. J. (1998). Neural Networks for Evaluating Construction 
Technology. Artificial Neural Networks for Civil Engineers: Advanced Features and 
Applications. ASCE, Reston, VA, USA. 

Commute Alternatives Systems Handbook (1996). Prepared by the Center for Urban 
Transportation Research, College of Engineering, and University of South Florida for 
FDOT. 

Howard, D., Beale, M., and Hagan, M. (2006). NN tool box. MA TLAB, The 
Mathworks.2006. 

Dion, Francois, et al (2002). Evaluation of Transit Signal Priority Benefits Along A 
Fixed-Time Signalized Arterial. Paper presented at the 81 st Annual Transportation 
Research Board Meeting. Washington, District of Columbia. 

Dodder R. S. (2005). A System Framework for Assessing Air Quality Impacts of ITS: 
Application to Mexico City. MIT, Cambridge, Massachusetts, USA. 

Draper, N.R. and Smith, H (1998). Applied Regression Analysis. Wiley Series in 
Probability and Statistics. 

EPA (2008). Environmental Protection Agency. <http://www.cpa.gov/> Dated: 
07/28/2008. 

EPA (2008). Clean Air Act. <http://www.epa.gov/air/caa/ > Dated: 07/24/2008. 

193 



EPA (2008). History of Clean Air Act. <http://www.cpa.gov/air/caa/caa_history.html> 
Dated: 07/24/2008. 

FHW A, US DOT (1996). Innovations in Transportation and Air Quality: Twelve 
Exemplary Projects. Published By: Federal Highway Administration, U.S. DOT. 

FHWA (2008). Federal Highway Administration (FHW A). < http://www.fuwa.dot.gov/> 
Dated: 08102/2008. 

Fraser, N. (2008). Neural Networks. <http://neil.frascr.name/> Dated: 08/02/2008. 

Gianguido, S. and Mussone, L. (1999). Evaluation Framework and Assessment of Urban 
Drive Control Applications. Published By: Paper presented at the 6th World Congress 
Conference on ITS. Toronto, Canada. Source Date: 8-12 November 1999. 

Gillen et al (1999). Assessing the Benefits and Costs ofITS Projects: Volume 2 An 
Application to Electronic Toll Collection. Published By: California PATH Program, 
University of California. Report No. UCB-ITS-PRR-99-10. 

Giri, V. (2006). Presentation of Venkitila Giri for M.S. Thesis at Civil Engineering 
Department ,BT, Roorkee, India. 

Greenough and Kelman (1999). ITS Technology Meeting Municipal Needs - The 
Toronto Experience. Published By: Paper presented at the 6th World Congress 
Conference on ITS. Toronto, Canada. Source Date: 8-12 November 1999. 

Guin, Angshuman, et al (2006). Bencfits Analysis for the Georgia Department of 
Transportation NaviGAtor Program: Final Report. Georgia DOT. 

Halkias, J. and Schauer, Michael (2004). Michigan retiming 640 traffic signals, Public 
Roads Journal, U.S. DOT. 

Haan, C. T. (1977). Statistical Methods in Hydrology by CT Haan (1977). ISBN: 
081381510X. Iowa State Publishers. 

Harris, DMJM (2003). Syracuse Signal Interconnect Project: Before and After Analysis: 
Final Report. '\lew York State DOT. 

Highway Statistics (2005). Providing information to address major transportation issues 
facing the Nation. < http://www.fuwa.dot.gov/policy/ohim/hs05/index.htm> Dated: 
01123/2008. 

ITS America (2008). Intelligent Transportation Society of America. < 
http://www.itsa.org/> Dated: 07/30/2008. 

ITS Australia (2008). Intelligent Transport Systems (ITS) Australia. < http://www.its
australia.com.au/kmxserver3/> Dated: 07/31/2008. 

194 



ITS Benefits (1997). Continuing Successes and Operational Test Results. USDOT, 
FHWA, Wasington, D. C. 

ITS Europe (2008). Intelligent Transport Systems and Services (ITS) Europe. < 
http://www.ertico.com/> Dated: 07/3112008. 

ITS UK (2008). Intelligent Transport Systems (ITS) United Kingdom. < http://www.its
uk.org.uk!> Dated: 07/3112008. 

Jeannotte, Krista (2001). Evaluation of the Advanced Regional Traffic Interactive 
Management and Information System (AR TIMIS). Paper presented at the II th Annual 
ITS America Meeting. Miami, Florida 

Jensen, M., et al (2000). Vehicle emissions reduction by traveler information system in 
Seattle, Washington. Federal Highway Administration, u.S. DOT, Report No. FHWA
OP-00-019. 

Kandel E.R., Schwartz, lH., Jessell, T.M. (2000). Principles of Neural Science (pp. 36-
73), 4th ed., McGraw-Hill, New York. 

Klondzinski, AI-Deek, and Radwan (1998). Impacts of Electronic Toll Collection on 
Vehicle Emissions. Published By: Paper presented at the 77th Annual Transportation 
Research Board Meeting. Washington, District of Columbia. 

Kohavi, Ron (1995). A study of cross-validation and bootstrap for accuracy estimation 
and model selection. Proceedings of the Fourteenth International Joint Conference on 
Artificial Intelligence 2 (12): 1137-1143.(Morgan Kaufmann, San Mateo). 

Koziol et al (1999). Evaluation of Intelligent Cruise Control System. Volume I - Study 
Results. Published by: Federal Highway Administration, u.S. DOT. Prepared by: Volpe 
for the u.S. DOT. Report No. DOT -VNTSC-NHTSA-98-3. 

Language Center, AIT (2008). Writing up Research Method and Research Design. 
Language Center, Asian Institute of Technology, Bangkok. < 
http://www.languages.ait.ac.th/eI21meth.htm> Dated 07/25/2008. 

Lehtonen, M. and Kulmala, R. (2002). The Benefits of a Pilot Implementation of Public 
Transport Signal Priorities and Real-Time Passenger Information. Published By: Paper 
presented at the 81 st Annual Transportation Research Board Meeting. Washington, 
District of Columbia. 

Lingireddy and Ormsbee (1998). Neural Networks in Optimal Calibration of Water 
Distribution Systems. Artificial Neural Networks for Civil Engineers: Advanced Features 
and Applications. ASCE, Reston, VA, USA. 

195 



Los Angeles DOT (1994). Automated Traffic Surveillance and Control (A TSAC) 
Evaluation Study, Published By: Los Angeles DOT. 

MA TLAB, 7.0 (2004). The Mathworks, 2004. 

Mehta, T., Mahmassani, H. S., and Bhat, C. (2001 ).Methodologies for Evaluating 
Environmental Benefits ofITS. Texas DOT Report No. 0-4197. 

McGurrin, M. F. and Shank D. E. (1997). ITS versus New Roads: A Study of Cost 
Effectiveness. ITS World, July/August 1997. 

Pao, Y. H. (1989), Adaptive Pattern Recognition and Neural Networks, Addison
W csley, 1989. 

RITA, (2008). Research and Innovative Technology Administration. < 
http://www.rita.dot.gov/> Dated: 30/07/2008. 

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning Internal Representation by 
Error Propagation. The MIT Press. 

Saka, Anthony and Dennis Agboh (2002). Assessment of the Impact of Electronic Toll 
Collection on Mobile Emissions in the Baltimore Metropolitan Area. Paper presented at 
the 81 st Transportation Research Board Annual Meeting. Washington, District of 
Columbia. 

Sapsford, R. and Jupp, V. (1996). Data Collection and Analysis. Sage Publications: London. 

Silvert, W (2001). Modeling as a Discipline. Tnt. 1. General Systems Vol. 30(3), pp. 261. 
Publisher: Taylor & Francis. 

Sola, 1.; Sevilla, J (1997). Importance of input data normalization for the application 
of neural networks to complex industrial problems. Nuclear Science, IEEE Transactions 
on Volume 44, Issue 3, Jun 1997 Page(s):1464 -1468. 

Srouds,1. M. (1994). Conformity and the New Transportation Covenant. Transportation 
Planning and Air Quality II. 

Stephen, H. and McCollough, C. B. (1996). How to save $4.2 Million a Year. ITS 
International Newsletter. 

Tech Environmental, Inc (1993). Air Quality Benefit Study of the SmarTraveler 
Advanced Traveler Information Service. Tech Environmental, Inc. 

Traffic Technology (1995). SCOOT in Toronto. Traffic Technology. 

196 



Transport for London (2007). Congestion charging in London resulted in pollutant 
emission reductions. URL: http://www.tfl.gov.uk/assets/downloads/fifth-annual-impacts
monitoring-report -2007 -07 -07. pdf 

Transport Research Laboratory (1999). Monitoring and evaluation of a public transport 
priority scheme in Southampton. Southampton University and the University of 
Portsmouth Transport Research Laboratory for the Hampshire County Council. Report 
No. TRL413. 

Wilbur Smith Associates (2001). Operational and Traffic Benefits of E-ZPass to the New 
Jersey Turnpike. New Jersey Turnpike Authority. 

Wilkie, O. (1980). Pictorial Representation of Kendall's, Rank Correlation Coefficient. 
Teaching Statistics 2, pp. 76-78. 

Wunderlich, K., Bunch J., and Larkin J. (1999). ITS Impacts Asscssment for Seattle 
MMOI Evaluation: Modeling Mcthodology and Results. Published By: Federal Highway 
Administration, U.S. DOT. Prepared by: Mitretek for the U.S. DOT. Source Date: 
September 1999. EOL Number 11323. 

White et al (2000). Traffic Signal Optimization for Tysons Corner Network Volume I. 
Evaluation and Summary. Published By: Virginia DOT. Report No. TPE.R7D.03.08.00. 

Zimmerman, C. (2000). Phoenix Metropolitan Model Deployment Initiative Evaluation 
Report. Published By: Federal Highway Administration, U.S. DOT. Prepared by Battelle 
for the U.S. DOT. Report No. FHW A-OP-OO-O 15. 

197 



APPENDIX-[ 
COMPLETE DATA SET 

FEDERAL-AID URBANIZED AREA Yl Y2 Y3 Xl * 1000 X2 
New York-Newark (2000) 0.96 0.0274 0.0463 17089 37623 
2002 0.65 0.0249 0.0549 17307 37854 
2004 0.59 0.0226 0.0475 17759 42033 
2005 0.49 0.0231 0.0502 17773 42095 
Los Angeles-Long Beach-Santa Ana 0.77 0.04 0.0488 12384 26949 
2002 0.81 0.0333 0.0516 12365 26329 
2004 0.53 0.0239 0.0515 12534 26284 
2005 0.56 0.0205 0.0486 12149 24726 
Chicago (2000) 0.71 0.0221 0.0436 7702 23764 
2002 0.644 0.023 0.0511 7702 23832 
2004 0.512 0.0205 0.045 7702 23885 
2005 0.548 0.0199 0.0527 7702 24523 
Miami (2000) 0.7 0.0097 0.0458 2270 5607 
2002 0.67 0.0097 0.0409 5021 15436 
2004 0.69 0.0084 0.0404 5270 16762 
2005 0.51 0.0084 0.0418 5331 17167 
Philadelphia (2000) 0.46 0.0176 0.052 4068 13417 
2002 0.38 0.016 0.057 4813 15743 
2004 0.35 0.0152 0.0499 5282 19029 
2005 0.36 0.0157 0.0544 5296 19078 
Washington (2000) 1.07 0.019 0.0471 3617 10329 
2002 0.98 0.02 0.0561 3807 10561 
2004 0.86 0.019 0.0499 4206 11438 
2005 0.86 0.018 0.0521 4251 11543 
Atlanta (2000) 0.81 0.0135 0.0606 2997 13145 
2002 0.39 0.0116 0.0549 2873 13438 
2004 0.42 0.0105 0.0543 3988 19080 
2005 0.48 0.0105 0.0544 4172 19504 
Boston (2000) 0.55 0.0179 0.0451 2917 10148 
2002 0.44 0.017 0.0525 3854 13809 
2004 0.39 0.0144 0.0483 3977 16197 
2005 0.4 0.0146 0.0518 4077 16775 
Detroit (2000) 0.47 0.0215 0.0492 3836 13808 
2002 0.37 0.0193 0.0558 3835 13755 
2004 0.37 0.0159 0.0486 3930 14688 
2005 0.35 0.0174 0.056 3931 14638 
Dallas-Fort Worth-Arlington (2000) 0.6 0.0114 0.0524 3746 17830 
2002 0.5 0.0108 0.0506 3746 17778 
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2004 0.46 0.0101 0.0501 4439 17772 
2005 0.45 0.0101 0.0544 3746 17799 
Phoenix (2000) 1.36 0.0291 0.055 2138 10232 
2002 1.19 0.0261 0.0559 2949 10684 
2004 0.84 0.0222 0.0525 3131 12077 
2005 0.83 0.0227 0.0533 3270 12418 
San Francisco-Oakland (2000) 0.68 0.0177 0.0473 4022 9316 
2002 0.55 0.0166 0.0489 4120 9461 
2004 0.44 0.0143 0.0461 4133 9620 
2005 0.44 0.014 0.0462 3110 7162 
Seattle (2000) 0.0208 0.0394 1994 7101 
2002 0.81 0.0189 0.0425 2746 10094 
2004 0.8 0.0179 0.0412 2964 10693 
2005 0.79 0.018 0.0386 3002 10784 
San Diego (2000) 0.73 0.0181 0.0564 2653 5965 
2002 0.69 0.0176 0.0549 2823 6331 
2004 0.53 0.0155 0.0514 2869 6751 
2005 0.48 0.0156 0.0495 2903 5077 
Minneapolis-St. Paul (2000) 0.64 0.0171 0.0432 2475 10919 
2002 0.46 0.0147 0.0476 2440 10980 
2004 0.37 0.0111 0.0411 2482 11021 
2005 0.37 0.0118 0.0456 2519 11057 
Houston (2000) 0.58 0.0129 0.054 2487 15251 
2002 0.48 0.0127 0.0517 2487 15572 
2004 0.44 0.0118 0.0512 2694 15555 
2005 0.47 0.0114 0.0541 2487 15556 
Tampa-St. Petersburg 0.67 0.0108 0.0532 1953 7539 
2002 0.6\ 0.0096 0.0452 2023 9852 
2004 0.65 0.0086 0.0472 2214 9727 
2005 0.56 0.008 0.0481 2251 9466 
Baltimore 0.55 0.0207 0.0556 2107 6608 
2002 0.56 0.0191 0.0643 2295 7060 
2004 0.57 0.0167 0.0535 2139 7076 
2005 0.47 0.0169 0.0555 2149 7101 
st. Louis 0.69 0.0125 0.0572 2044 8064 
2002 0.59 0.0121 0.0552 2067 9123 
2004 0.45 0.012 0.049 2092 9963 
2005 0.46 0.0115 0.0572 2106 10024 
Denver-Aurora 0.86 0.0368 0.0583 1993 7007 
2002 0.73 0.0354 0.0594 1989 7261 
2004 0.61 0.0272 0.0536 2067 7999 
2005 0.55 0.0276 0.0571 2092 8197 
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Pittsburgh 0.52 0.019 0.0514 1569 8441 
2002 0.35 0.0171 0.0587 1569 8508 
2004 0.43 0.016 0.0497 1785 9238 
2005 0.37 0.0154 0.0534 1769 9234 
Cleveland 0.56 0.021 0.0543 1783 5530 
2002 0.51 0.0203 0.0587 1785 6975 
2004 0.51 0.0192 0.0497 1782 7219 
2005 0.49 0.0196 0.0562 1767 7231 
Portland 1.24 0.0122 0.0381 1338 5165 
2002 1.07 0.012 0.0431 1610 5750 
2004 0.93 O.OlOl 0.0396 1696 6610 
2005 0.85 0.0114 0.0385 1729 6891 
Cincinnati 0.55 0.0221 0.0547 1176 4887 
2002 0.55 0.0214 0.0597 1327 6048 
2004 0.49 0.0187 0.0504 1612 6563 
2005 0.47 0.0205 0.0564 1619 6592 
Kansas City 0.67 0.0093 0.0572 1422 7545 
2002 0.47 0.0088 0.0536 1474 7896 
2004 0.42 0.0086 0.0481 1447 8093 
2005 0.46 0.0092 0.0566 1454 8204 
Milwaukee 0.37 0.0165 0.0489 1532 5095 
2002 0.45 0.0171 0.0536 1443 5082 
2004 0.42 0.0112 0.0462 1378 6069 
2005 0.37 0.0124 0.0519 1399 6096 
Orlando 0.67 0.0 III 0.0483 1160 3610 
2002 0.6 0.0088 0.0427 1235 6039 
2004 0.61 0.0079 0.0444 1300 5305 
2005 0.56 0.0065 0.0446 1335 5373 
Las Vegas 0.91 0.0157 0.0506 1256 2963 
2002 0.83 0.0177 0.0515 1456 3206 
2004 0.76 0.0174 0.0504 876 3237 
2005 0.77 0.0169 0.0508 1256 3513 
Providence 0.98 0.02 0.0495 907 4399 
2002 0.78 0.0181 0.058 1233 5528 
2004 0.61 0.0178 0.0518 1246 6261 
2005 0.61 0.0173 0.0528 1242 6294 
Columbus 0.52 0.0538 940 3426 
2002 0.5 0.0593 961 4747 
2004 0.47 0.0159 0.0502 1195 5250 
2005 0.39 0.0168 0.0557 1197 53Dl 
San Antonio 0.6 0.0108 0.0508 1143 50n 
2002 0.49 0.OlO4 0.0523 1259 5084 
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2004 0.55 0.01 0.0495 1359 5095 

2005 0.44 0.01 0.0539 1143 5110 

Buffalo 0.51 0.0246 0.0462 1112 3985 

2002 0.41 0.0197 0.0523 1123 4049 

2004 0.37 0.0167 0.0468 1123 4025 

2005 0.37 0.0172 0.0495 1123 4025 

New Orleans 0.7 0.0109 0.0499 1065 3290 

2002 0.63 0.0098 0.0437 1065 3292 

2004 0.68 0.0095 0.0449 1009 3279 

2005 0.58 0.0095 0.0492 1009 3285 

Jacksonville 0.61 0.0104 0.0591 869 3664 

2002 0.54 0.0094 0.0462 906 4769 

2004 0.5 0.0082 0.0492 965 5155 

2005 0.48 0.0077 0.0495 992 5067 

Nashville 0.69 0.0184 0.0591 605 2960 

2002 0.69 0.0144 0.0536 659 2958 

2004 0.61 0.0117 0.0514 974 4641 

2005 0.58 0.0143 0.0573 984 4650 

Salt Lakc City 1.15 0.0264 0.0618 830 3334 

2002 0.95 0.027 0.0644 910 3399 

2004 0.86 0.0253 0.0591 937 3384 

2005 0.83 0.0234 0.0629 970 3444 

Indianapolis 0.73 0.0151 0.0547 915 4228 

2002 0.66 0.0138 0.0621 915 4334 

2004 0.65 0.0 III 0.0538 915 4438 

2005 0.55 0.0121 0.0593 915 4755 

Richmond 0.43 0.0153 0.0544 694 2964 

2002 0.46 0.0154 0.06 838 4346 

2004 0.39 0.0147 0.0516 898 4648 

2005 0.42 0.0147 0.0548 910 4682 

Louisville 0.48 0.0144 0.0557 823 3763 

2002 0.56 0.0127 0.0541 841 3747 

2004 0.65 0.0122 0.0495 898 4154 

2005 0.56 0.0123 0.0546 904 4394 

Hartford-Middletown 0.82 0.0166 0.0526 602 2597 

2002 0.79 0.0179 0.0606 873 4023 

2004 0.86 0.0149 0.0526 885 4054 

2005 0.85 0.0155 0.0569 889 4062 

Oklahoma City 0.74 0.0119 0.0522 1083 4714 

2002 0.49 0.0119 0.0509 1083 4711 

2004 0.43 0.0093 0.0492 834 4404 

2005 0.35 0.0103 0.055 856 4531 
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Charlotte 0.66 0.0179 0.0606 646 2653 
2002 0.55 0.0145 0.0603 721 2812 
2004 0.49 0.0137 0.0495 743 2950 
2005 0.49 0.0127 0.055 855 3737 
Tucson 0.77 0.0206 0.0534 619 2225 
2002 0.7 0.0192 0.0535 709 3095 
2004 0.58 0.0183 0.0498 731 3786 
2005 0.58 0.0178 0.051 749 3715 
Birmingham 0.98 0.0107 0.0579 667 4595 
2002 0.72 0.0061 0.0517 664 4613 
2004 0.58 0.0041 0.0498 676 4773 
2005 0.7 0.0052 0.0519 680 4780 
E1 Paso 0.68 0.011 0.0519 649 2211 
2002 0.54 0.01 0.0525 657 2225 
2004 0.53 0.0096 0.0501 637 2235 
2005 0.47 0.0094 0.0533 656 2235 
Honolulu 0.73 0.005 0.0242 694 1068 
2002 0.7 0.005 0.0267 694 1081 
2004 0.68 0.004 0.0249 648 1090 
2005 0.57 0.004 0.0263 648 1092 
Fresno 0.65 0.0153 0.0447 555 2191 
2002 0.58 0.0147 0.0478 586 2191 
2004 0.44 0.0129 0.0453 603 2257 
2005 0.45 0.0126 0.044 616 2291 
Allentown-Bethlehem 0.46 0.0157 0.0516 447 1872 
2002 0.35 0.0143 0.0583 448 1979 
2004 0.29 0.0136 0.0508 599 3032 
2005 0.35 0.0123 0.055 607 3039 
Grand Rapids 0.41 0.0216 0.0502 530 2273 
2002 0.38 0.0193 0.0581 529 2260 
2004 0.39 0.0159 0.0508 591 2722 
2005 0.36 0.0174 0.0565 595 2672 
Springfield 0.68 0.0162 0.0482 608 2928 
2002 0.79 0.0147 0.056 653 3144 
2004 0.46 0.0112 0.0525 589 3230 
2005 0.41 0.011 0.0558 587 3253 
Tulsa 0.71 0.0153 0.0525 803 2761 
2002 0.7 0.0105 0.051 803 2771 
2004 0.4 0.0054 0.0478 559 3323 
2005 0.49 0.0109 0.0552 575 3325 
Albuquerque 0.65 0.0098 0.0534 427 1949 
2002 0.51 0.0108 0.0536 529 1956 
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2004 0.42 0.0113 0.0497 543 2515 
2005 0.41 0.0106 0.0504 573 2537 
Omaha 0.56 0.0447 648 2475 
2002 0.54 0.0429 625 2483 
2004 0.52 0.0453 571 2481 
2005 0.5 0.0468 571 2500 
Albany 0.48 0.0227 0.0489 519 2663 
2002 0.39 0.0182 0.0551 524 2607 
2004 0.35 0.0155 0.0483 524 2592 
2005 0.34 0.0162 0.0505 524 2592 
Toledo 0.55 0.0553 500 2121 
2002 0.58 0.0593 499 2267 
2004 0.46 0.0493 518 2439 
2005 0.49 0.0552 518 2432 
Knoxville 0.57 0.0089 0.0615 325 1997 
2002 0.66 0.0044 0.0551 363 2048 
2004 0.0545 483 2710 
2005 0.0036 0.059 483 2965 
Baton Rouge 0.74 0.0106 0.0508 375 1823 
2002 0.7 0.0098 0.0441 375 1827 
2004 0.54 0.0095 0.046 479 2136 
2005 0.43 0.0102 0.0503 479 2159 
Bakersfield 0.6 0.018 0.0534 404 1377 
2002 0.5 0.0166 0.053 425 1355 
2004 0.4 0.0141 0.0492 448 1435 
2005 0.37 0.0135 0.0496 469 1450 
Youngstown 0.5 0.055 379 1821 
2002 0.55 0.0604 423 2281 
2004 0.46 0.052 441 2598 
2005 0.42 0.0578 444 2598 
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X3*1000 X4 
263905 3962 
274767 3962 
297930 4778 
299706 4778 
280793 2231 
2925162231 
293758 2231 
279040 1948 
158240 2730 
165494 2730 
170869 2730 
170933 3502 
43577 353 
120131 1590 
131852 1499 
132934 1499 
77005 1347 
93445 1590 
105839 2257 
106558 2257 
82959 999 
86519 999 
94429 1305 
97009 1305 
100693 1757 
1014021757 
125528 3027 
128353 3027 
59361 1138 
80693 1695 
90971 2104 
94248 2241 
92359 1304 
96388 1304 
102234 1439 
104126 1439 
116548 1712 
107298 1727 

X5* 1000 X6 
101290 1130 
105197 1144 
115408 1220 
117154 1221 
126498 652 
135339 705 
139274 704 
133081 673 
48276 477 
51424 478 
53942 478 
54398 485 
13584 120 
35699 478 
38322 332 
39468 329 
24483 347 
30772 407 
34442 455 
35324 468 
34533 306 
36201 306 
38197 325 
38582 330 
42488 306 
43388 300 
49489 358 
49192 360 
22890 211 
33130 342 
38722 422 
40873 446 
31125 283 
31613 280 
33459 304 
33045 303 
49197 594 
50965 518 
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X7 X8 
89639 27 
91950 37 
94596 13 
95949 14 
193875 2 
191970 4 
197832 8 
197743 11 
10116717 
107682 18 
112849 13 
112162 22 
112782 13 
113013 39 
115428 39 
119963 39 
70457 49 
75628 59 
75696 31 
75478 45 
112852 27 
118255 33 
11752941 
116915 48 
138701 0 
144675 0 
138237 0 
136644 0 
108468 5 
96856 5 
91758 5 
91643 5 
109882 0 
112987 0 
110061 4 

109059 4 
82872 0 
98431 0 

X9 
22 
31 

23 
6 
o 
o 
31 
31 
28 
28 
46 
16 
o 
7 
7 
25 
15 
24 
16 
16 
19 
19 
19 
19 
11 
26 
45 
51 
3 
3 
o 
o 
39 
39 
39 
39 
5 
8 

XIO 
24 
29 
59 
53 
3 
7 

33 
36 
14 
14 
25 
35 
7 
10 
10 
28 
17 
22 
22 
35 
34 
55 
54 
61 
11 
26 
45 
51 
20 
20 
20 
20 
39 
39 
39 
39 
11 
14 

XII 
51 

63 
32 
16 
15 

33 
47 
47 
45 
45 
39 
48 
96 
100 
100 
100 
65 
51 
48 
50 
81 
46 
46 
52 
73 
88 
88 
88 
85 
85 
85 
81 
9 
39 
39 
39 
50 
50 



113395 2385 52162 520 

119648 1712 57326 522 

58405 1054 19424 163 

62566 1054 22528 189 

73269 1151 26674 191 

77267 1115 28728 202 

90277 1203 47982 330 

91945 1203 48583 341 

92009 1203 49263 343 

73251 721 39501 274 

51430 844 24008 241 

67330 1185 30465 296 

69593 1185 30418 321 

69967 1185 30759 321 

62809 733 33745 246 

66391 733 33502 254 

70102 733 38807 270 

70408 953 39396 277 

60720 1192 27094 316 

62430 1192 27060 317 

63154 1192 27398 317 

63492 1192 28142 321 

91883 1537 39195 368 

97614 1476 45165 364 

97525 1954 45631 378 

97775 1537 46372 378 

44473 650 8356 124 

55540 1294 9380 127 

62796 1072 12982 157 

63177 1072 13074 160 

45021 712 22659 278 

50256 764 25428 287 

52006 683 26336 288 

52541 683 26454 287 

58761 1124 25739 320 

60292 1124 25773 321 

64764 1135 27663 353 

63585 1359 27130 352 

43997 720 16904 209 

45479 720 17079 208 

49754 814 18615 258 

52437 814 19897 259 
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100312 0 

109819 0 

118882 0 

118967 0 

139654 0 

142219 0 

145461 41 

142611 47 

143625 47 

144163 47 

99474 7 

102960 24 

94761 27 

95824 27 

137029 10 

131875 10 

143731 10 

142224 

85640 87 

85335 87 

86429 87 

87671 87 

106458 0 

124109 12 

120718 12 

122676 12 

67181 13 

73956 0 

82690 0 

81715 0 

81550 20 

88565 46 

91445 23 

92176 23 

80362 27 

80373 27 

78365 27 

77073 27 

81063 0 

82039 15 

72150 29 

76823 41 

34 

34 

o 
o 
48 

43 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
11 

11 

11 
11 

o 
o 
o 
o 

15 

16 

31 

59 

48 

43 

41 

70 

70 

70 

26 

44 

48 

48 

7 

7 
10 

23 

59 

64 

64 

64 
41 

52 

55 

58 

5 

5 

5 
8 
23 

38 

19 

20 

o 
o 
12 

12 

6 
9 
9 

9 

56 

56 

74 

79 

99 

99 

84 

100 

100 

100 

6 
68 

68 

68 

70 

70 

70 

77 

29 

49 

49 

49 

24 

24 

24 

24 

6 

30 

31 

36 

72 

54 

27 

27 

39 

50 

53 

53 

o 
29 

29 

29 



35632 1086 11128 283 

36154 1086 11700 290 

38996 1215 12500 300 
38673 1215 12330 301 

37800 838 17284 227 

36757 838 16782 227 
38645 897 18374 244 
38642 897 18150 244 
31517 469 12595 137 

31826 469 12901 137 
34237 538 13098 145 
35143 538 13621 151 
32605 630 15744 176 
35236 691 16128 180 
39625 887 17790 209 
40148 887 18560 209 
41187 1036 19307 374 
42262 1036 20067 381 
41484 1041 20183 376 
44359 1041 20674 384 
31888 518 9701 111 
31753 512 9304 III 
34355 515 10943 144 
33933 518 10746 141 
32288 395 9532 156 
40383 667 9934 162 
40972 716 11768 177 
42447 716 12468 167 
24128 270 6848 77 
26408 270 7985 83 
27490 270 8277 83 
30543 270 9228 86 
20446 515 8465 120 
24881 794 10588 157 
26698 799 11415 182 
26746 799 11505 182 
24731 476 11895 149 
26394 476 13354 150 
31208 609 15043 164 
31104 609 14960 164 
33445 485 15775 211 
31354 481 15908 212 
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39295 14 
40413 41 

41666 41 

40964 41 
76169 14 

73957 14 
75304 14 
74386 18 

91900 0 

94227 0 

90264 0 
90204 0 
89495 51 

89796 51 
85119 51 

88804 51 
51566 7 
52662 7 
53678 11 

53838 11 
87013 31 
83933 31 
75995 58 
76212 70 
60915 0 
61404 0 

66486 0 
74656 0 
88954 0 
96143 13 
99722 0 
107299 13 
70833 29 
67417 22 
62721 13 
63214 18 

80044 0 
88865 87 
91724 0 
91219 0 
74837 0 

75027 0 

o 
9 

9 
9 
o 
o 
o 
o 
53 

62 
71 
73 
38 

38 
38 
38 
o 
o 
26 

28 
78 
78 
78 
93 
33 
33 

100 
100 
o 
o 
o 
4 
o 
o 
o 
o 
o 
9 
9 

9 
o 
41 

9 
9 

17 

17 
4 

o 
2 
2 
44 

58 
62 
66 
38 

38 
43 
43 
o 
o 
26 

28 
45 
78 
89 
89 
33 
33 

100 
100 
o 
o 
o 
4 

o 
41 
47 
91 

15 
o 
9 

9 
o 
41 

26 

11 

1 1 
II 
70 

43 
43 

71 

81 

81 
81 
81 
38 

38 
38 
43 
42 
42 
1 S 
100 
78 
1 DO 
8S 
78 
2D 
32 

5D 
5D 
2J 
2J 
25 
25 
o 
o 
1 S 
15 

o 
87 

87 
87 
o 
87 



32817 565 16792 212 

33681 485 17064 211 

21448 564 6365 139 

21662 564 6434 139 

22320 564 6722 139 

22320 564 6722 139 

15414 270 5613 75 

15945 270 5964 75 

15468 321 5411 66 

15330 321 5415 69 

24553 508 9836 156 

28095 727 9963 151 

32861 696 10823 157 

33078 696 11247 158 

22753 571 10433 139 

23302 571 10727 139 
31556 746 13002 173 

31955 746 13369 172 

20396 353 6410 79 

22578 353 8293 80 
21329 342 7540 80 

21294 342 7565 76 
29398 422 11259 130 

30950 422 10969 130 
30634 422 11288 130 

30571 422 11050 129 
16879 406 6937 109 
24648 473 9965 178 

25816 697 11510 194 
26187 697 11682 194 
22794 384 10040 137 
22695 384 10442 137 

24703 465 11730 150 
24515 465 11583 150 

16187 366 8407 108 

21765 552 10359 145 

22114 552 10566 146 
22250 552 10589 147 
25980 647 8932 150 
27216 647 9496 156 

26393 548 9230 143 

27144 548 9243 143 
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79208 2 

80870 2 

45900 33 

46356 33 

48358 33 

48358 33 

74954 0 

79220 33 

81989 33 

78480 33 

62896 0 
66091 0 

68938 0 
71185 3 

74814 0 

76932 0 
75157 11 

77729 11 
81618 15 

104261 36 

94249 65 

99534 11 
86750 13 

84603 78 

86828 78 
85661 78 

63678 24 

55935 24 

59331 24 

60215 24 
73103 

76034 7 
78200 18 

77218 35 

77582 16 
71283 16 

72371 16 

72034 16 

59444 0 

60998 0 
64544 0 

64639 0 

40 

40 

o 
o 
o 
o 
o 
o 
o 
o 
o 
5 

5 

21 

o 
o 
21 

21 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
16 
28 

35 
12 

10 

10 
10 

o 
o 
o 
o 

40 

40 

8 

o 
85 

62 

o 
o 
o 
o 
11 

11 

11 

31 

o 
21 

21 

21 

72 

100 
100 

100 

6 
o 
16 

16 

o 
4 
4 

9 
o 
16 

28 

35 
4 

31 

31 
31 

o 
o 
o 
100 

87 

87 

o 
14 

8 

8 

16 

68 

68 

68 

55 
100 

100 

100 

49 

49 
49 

28 

86 

100 

100 
100 

24 

39 

39 

39 

o 
o 
o 
o 
43 
43 

43 

43 

31 
34 

34 

34 

o 
o 
o 
o 



19097 299 7640 92 
19807 299 7862 92 
20403 299 8046 100 
29513 58.3 10984 132 
13400 280 2153 34 
14011 312 2359 35 
17280 503 3424 51 
18505 503 3553 48 
23185 609 8687 127 
23331 609 8762 127 
24046 609 9270 127 
24722 609 9645 128 
12049 227 3977 51 
11396 226 4012 51 
12286 259 4479 51 
12636 229 4554 51 
11434 135 5626 69 
11814 135 5776 69 
12858 139 6001 69 
13028 139 5943 69 
11598 168 2552 36 
12290 168 3216 47 
12456 168 3647 55 
12579 190 3863 55 
9443 179 3380 65 
9553 179 3694 68 
13308 339 4871 92 
13511 339 5085 97 
12151 318 3566 68 
12636 318 3841 68 
15151 443 4897 100 
15540 443 4885 101 
13124 422 4249 79 
14030 463 4803 87 
14225 477 5314 95 
14534 477 5489 95 
18006 305 6267 112 
18974 305 6595 132 
20688 474 6936 151 
20904 474 6958 152 
12145 175 3356 44 
12493 175 3398 51 
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83213 16 
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84046 0 
86969 0 
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70049 19 
68690 24 
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54021 0 
54928 0 
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14263 192 4516 64 70557 30 0 15 30 
14534 269 4664 64 72879 30 0 15 30 
12194 222 3298 60 55425 0 0 0 47 
12809 222 3635 60 61098 0 0 0 63 
12986 222 3529 56 63018 0 0 0 63 
13225 222 3591 56 64119 0 0 0 63 
13955 365 5503 104 53129 7 0 21 28 
14568 365 5817 104 56168 24 0 28 28 
15134 365 6214 104 59747 24 0 23 32 
15134 365 6214 104 59747 17 0 8 0 
11830 255 4024 71 56794 0 0 0 0 
12195 255 4091 71 57599 0 0 0 0 
13101 287 4154 72 57696 0 0 0 
12950 287 4090 72 56802 0 0 1 0 
11574 355 3994 51 78347 0 0 0 42 
12750 355 4265 52 82032 0 0 0 61 
15776 458 5028 63 79809 0 0 0 61 
16430 458 5136 63 81526 85 0 63 61 
8334 185 2487 36 69243 0 0 0 100 
9016 185 2761 36 76898 0 0 0 0 
12257 638 3630 52 69812 0 0 97 97 
13093 638 4054 60 67572 32 0 100 100 
7270 176 1929 42 46373 9 0 1 I 4 
7602 176 2047 42 49173 17 0 11 0 
7891 176 2034 42 48426 17 0 11 0 
8351 226 2063 42 49111 17 0 1 1 0 
7269 193 1624 46 35258 0 0 0 0 
8155 243 1735 54 32327 0 0 0 0 
9609 325 2462 82 30024 0 0 0 0 
9629 325 2476 84 29482 0 0 0 0 
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X12 X13 X14 X15 X16 X17 X18 X19 X20 
I 6 23 18 48 1 71 21 18 
1 6 10 27 43 1 60 7 13 
3 9 30 29 45 3 76 7 34 

8 25 30 46 2 74 5 31 
0 0 50 70 0 45 58 
0 0 51 68 0 56 50 
3 7 4 47 60 1 0 81 57 
3 8 6 55 62 1 0 82 54 
0 0 7 14 20 0 70 57 24 
0 7 16 44 75 61 27 
0 2 7 43 47 75 98 31 
2 5 11 36 53 2 79 54 45 
0 0 0 0 79 0 80 100 0 
0 0 0 0 79 0 80 100 0 
0 0 0 8 76 0 90 100 0 
0 0 8 76 0 100 100 0 
0 2 13 l3 5 51 0 0 
2 8 11 22 12 3 54 11 100 
2 9 6 33 22 3 100 11 100 
2 9 6 35 23 3 88 88 100 
3 5 0 47 98 3 99 5 44 
3 6 38 75 5 99 11 16 
3 10 35 100 5 99 86 5 
3 13 3 53 81 5 99 85 4 
0 3 0 27 51 0 78 34 0 
0 16 11 31 38 1 70 34 0 
0 7 II 54 48 0 100 35 0 
0 7 0 46 46 0 100 100 0 
2 2 18 25 29 0 36 2 0 
2 2 22 22 33 0 40 0 0 
0 2 22 23 30 47 3 0 
0 2 16 23 32 47 3 0 
0 0 51 14 14 0 100 100 
0 0 51 16 17 100 100 100 
0 0 51 14 16 92 100 100 
0 0 51 14 22 1 92 100 100 
0 3 0 20 66 0 100 91 60 
0 6 0 50 67 0 100 0 
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0 0 0 0 20 1 0 1 9 
0 0 0 0 20 3 24 3 2 
0 0 0 100 3 54 3 
0 0 0 100 3 34 3 
0 0 0 2 22 2 0 0 20 
0 0 9 13 29 1 0 53 50 
0 0 9 34 41 1 0 77 52 
0 0 24 16 30 4 0 77 65 
4 2 84 14 45 0 0 87 77 
4 4 84 34 48 0 0 86 79 
4 4 84 41 56 0 0 85 79 
4 5 100 41 56 0 0 100 100 
0 1 8 10 43 3 0 90 0 
8 10 53 12 41 16 0 100 100 
8 II 53 9 40 16 0 100 100 
8 11 53 9 44 16 0 100 100 
0 0 7 30 37 1 0 100 0 
0 0 22 26 39 2 0 100 0 
0 1 22 51 39 2 0 100 0 
0 4 22 56 42 2 0 100 0 
0 0 0 9 13 0 0 83 0 

5 0 12 14 2 0 83 0 
4 8 0 17 15 7 0 29 0 
4 8 0 20 15 8 0 50 0 
0 2 0 46 67 0 95 2 0 
0 2 0 43 63 0 76 2 0 
0 2 37 65 80 0 0 
0 2 1 38 75 1 81 0 0 
0 0 6 33 98 0 0 0 0 
0 2 6 7 94 0 0 100 0 
0 1 6 6 97 0 0 100 100 
0 6 6 94 0 0 100 100 
0 1 0 13 12 3 0 0 19 
0 3 16 19 4 0 8 19 
0 7 1 31 20 5 0 0 0 
0 4 31 37 25 4 0 0 0 
0 0 0 9 59 0 0 100 100 
0 I 0 14 69 15 0 100 100 
0 17 0 17 70 18 0 100 100 
0 20 2 18 70 18 0 81 100 
67 15 14 40 0 0 0 100 4 
67 IS 18 72 4 0 100 100 
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0 0 0 8 76 0 0 0 100 
0 0 0 9 75 0 0 8 100 
0 0 17 2 74 0 0 0 0 
0 0 13 3 77 0 0 95 100 
0 0 17 3 81 0 0 94 100 
0 0 4 3 80 0 0 95 100 
0 0 0 1 4 0 100 0 100 
0 0 0 1 7 2 100 0 81 
0 2 4 9 11 3 100 100 100 
0 0 0 14 26 0 100 100 100 
0 0 0 0 66 0 0 0 0 
0 0 0 0 63 0 0 0 0 
0 0 0 12 66 0 0 100 100 
0 0 0 15 67 0 0 100 100 
0 0 0 3 44 0 0 0 0 
0 0 0 6 47 0 0 0 0 
0 0 0 8 57 0 0 13 0 
0 0 0 8 57 0 0 12 0 
0 1 0 3 12 6 0 0 0 
0 0 10 32 11 6 0 0 0 
1 10 36 13 0 0 0 0 
6 6 15 30 30 0 0 0 0 
0 0 0 14 46 1 0 0 0 
0 0 0 4 44 2 0 0 0 
0 1 4 44 2 0 100 100 
0 0 15 42 2 0 100 100 
0 0 0 7 27 0 0 100 100 
0 0 0 4 15 0 0 100 100 
0 0 0 16 17 3 0 100 71 
0 0 0 12 14 3 0 100 80 
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X2I X22 X23 X24 
3 27 82 
3 39 2 10 
3 79 5 2 
3 76 6 9 
0 87 100 
8 88 19 
72 95 2 8 
78 95 3 11 
0 63 5 6 

65 6 
98 62 7 1 
32 80 18 5 
96 55 3 18 
100 53 3 25 
29 71 7 70 
22 70 6 51 
100 91 0 11 
93 96 0 3 
93 98 3 
93 98 7 1 
0 44 0 0 
8 93 40 0 
8 65 31 3 
8 85 35 9 
29 63 26 
29 71 9 
100 71 13 
100 73 11 1 
0 37 0 15 
0 66 0 14 
0 84 2 14 
0 85 2 14 
97 72 2 3 
100 75 5 6 
100 81 42 5 
100 81 49 5 
0 91 2 100 
0 95 35 7 
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0 97 38 5 
0 98 40 5 
0 84 1 1 100 
0 80 14 18 

84 19 15 
88 21 15 

8 70 3 2 
58 74 3 3 
24 66 0 9 
35 42 0 3 
0 88 10 3 
0 86 2 2 
4 90 7 2 
4 91 11 2 
32 47 0 100 
37 100 46 21 
0 93 34 24 
74 92 40 22 
100 67 0 50 
6 60 1 36 
100 63 2 25 
100 66 2 28 
30 75 0 0 
0 87 0 0 
0 95 49 0 
0 96 58 0 
0 81 0 9 
0 88 11 0 
43 84 19 0 
47 83 44 0 
0 52 0 0 
0 91 5 0 
0 89 35 0 
0 99 15 0 
0 27 0 0 
0 53 8 0 
0 36 5 0 
12 57 9 0 
0 84 0 7 
0 93 8 4 
0 99 13 4 
0 100 7 4 
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0 98 0 100 
3 100 0 100 
3 96 0 100 
3 96 0 100 
36 57 0 2 
53 58 0 
77 59 17 
77 63 17 
0 90 6 18 
0 93 7 13 
0 95 6 11 
0 97 20 1 1 
82 0 21 0 
0 90 8 0 
0 93 24 0 
0 90 21 0 
100 93 3 0 
100 67 2 0 
100 57 6 2 
100 53 7 2 
0 78 0 0 
0 64 0 0 
29 55 20 0 
50 77 50 0 
0 26 0 11 
0 72 1 10 
0 81 21 10 
0 59 50 10 
0 84 0 0 
0 88 0 0 
100 84 0 0 
100 83 6 0 
0 63 0 0 
0 69 0 
0 99 4 0 
0 93 0 0 
0 54 0 0 
0 60 30 0 
0 59 36 0 
0 70 41 0 

100 0 100 
100 100 0 100 
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100 94 38 100 
100 94 67 100 
100 46 0 0 
100 77 0 0 
99 80 0 0 
99 82 0 0 
0 47 0 0 
0 66 0 0 
14 73 34 0 
14 72 37 0 
0 75 0 0 
0 93 0 0 
0 95 15 0 
0 90 20 0 
0 95 0 100 
0 99 0 0 
0 70 0 0 
0 100 0 0 
0 65 7 37 
0 99 0 
0 95 5 0 
0 93 23 0 
98 90 2 0 
98 93 3 0 
0 92 2 0 
0 94 2 0 
0 62 0 0 
0 77 0 11 
0 100 23 II 
0 87 35 11 
0 5 0 75 
0 20 3 0 
0 92 0 0 
0 92 2 a 
0 48 0 8 
0 68 0 
0 76 5 
0 86 6 
0 73 0 
0 78 8 0 
0 82 21 0 
0 83 15 0 
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0 88 7 100 
0 87 7 100 
98 97 7 100 
98 94 7 0 
87 92 0 48 
100 93 0 13 
100 83 22 13 
100 89 22 13 
0 100 0 0 
0 100 0 2 
0 84 0 0 
0 83 0 0 
0 87 0 0 
100 78 0 0 
100 100 0 85 
100 100 0 22 
0 100 0 100 
0 100 0 100 
100 100 0 100 
100 88 0 100 
80 100 0 0 
100 72 41 0 
100 100 40 0 
100 100 42 0 
0 74 0 0 
0 82 6 100 
0 73 5 100 
0 71 8 100 
0 91 0 0 
0 94 34 0 
0 89 32 0 
0 88 32 0 
0 67 0 0 
0 88 53 0 
0 88 45 0 
0 45 40 0 
0 89 0 2 
0 82 0 0 
0 93 0 0 
0 72 0 0 
0 82 0 0 
0 53 4 0 
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0 87 5 0 
0 90 5 0 
0 30 8 0 
95 91 6 0 
94 87 16 0 
95 93 16 0 
98 57 3 0 
100 73 3 0 
100 83 5 0 
100 86 3 0 
0 58 0 0 
0 84 0 0 
0 83 0 0 
0 82 0 0 
0 80 0 
0 69 1 0 
0 74 8 0 
0 72 7 0 
0 70 2 0 
0 72 6 6 
0 100 7 8 
0 99 9 8 
0 100 0 100 
0 99 8 100 
0 100 2 100 
0 100 100 
0 17 2 0 
0 51 1 0 
0 80 6 0 
0 96 13 0 
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Where 
Target variable = Y = Annual Average Concentration of CO in ambient air 

= Annual Average Concentration of Ozone in ambient air 

= Annual Average Concentration of NOX in ambient air 

Input Variables: 

X I = Population in thousands 

X2 = Road Length in miles 

X3 = DVMT in thousands 

X4 = Land Area in sq. miles 

X5 = Freeway DVMT in thousands 

X6 = Freeway Miles 

X7 = Annual average daily traffic on freeways 

X8 = % of Freeway Miles covered by Highway Advisory Radio (HAR) 

X9 = % of Freeway miles under incident detection algorithms 

XIO = % of Freeway miles covered by surveillance cameras (CCTV) 

XII = % of Freeway miles covered by service patrols 

X 12 = % of Arterial miles under incident detection algorithms 

X13 = % of Arterial miles covered by surveillance cameras (CCTV) 

X 14 = % of Arterial miles covered by service patrols 

X15 = % of Signalized intersections covered by electronic surveillance 
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X 16 = % of Signalized intersections under centralized 

or closed loop control 

X 17 = % of Arterial miles covered by Highway Advisory Radio (HAR) 

X 18 = % of Toll collection lanes with Electronic Toll Collection capabilities 

X19 = % of Fixed route buscs equipped with 
Automatic Vehicle Location (AVL) 

X20 = % of Demand responsive vehicles that operate under Computer 
Aided Dispatch (CAD) 

X2I = % of Fixed route buses with electronic real-time monitoring of 
system components 

X22 = % of Vehicles under Computer Aided Dispatch (CAD) for EM 

X23 = % of Vehicles equipped with on-board navigation capabilities for 
EM (EmergencyManagement) 

X24 = % of Highway rail intersections under electronic surveillance 
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