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ABSTRACT 

 

DATA DRIVEN COMPREHENSIVE ASSESSMENT OF THE PERFORMANCE OF 

STORMWATER BEST MANAGEMENT PRACTICES 

 

Shanshan Li 

March 26th, 2015 

 

In order to evaluate the performance of the stormwater best management practices (BMPs) 

installed on the Belknap campus at the University of Louisville, a comprehensive 

assessment on the stormwater BMPs’ the flow volume reduction, peak flow attenuation, 

and overflow area abatement was made. 

 

We used a two-pronged analysis based on 1) predictive modeling using data mining 

approach; 2) model-based hydraulic simulation. The novelty of study is that it not only 

assessed the stormwater BMPs’ performances on flow volume reduction, but also assessed 

their performance on peak flow attenuation which is neglected in previous studies and 

assessment practices. Flow volume reduction and peak flow attenuation were assessed 

through mining the rainfall and combined sewer flow data before and after the BMPs’ 

installation. The stormwater BMPs’ performances on overflow area abatement were 

assessed through contrasting the overflow areas before and after the BMPs’ installation.
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The radar rainfall data was verified using the local rain gauge data, and the rainfall event 

is sorted out using a 6 hour dry period. The data mining in this study includes rainfall data 

validation, data preparation, and modelling. The predictive Multiple Linear Regression 

Models (MLRMs) and Back Propagation Neural Network Models (BPNNM) were built.  

 

For the study area, flow volume in wet weather is mostly controlled by rainfall depth, and 

followed rainfall duration. Peak flow is decided by rainfall depth, peak rainfall intensity, 

duration and duration of above average rainfall intensity. Peak flow is negatively correlated 

with rainfall duration, while positively correlated with other three features. 

 

According to both model, the estimated volume of the flow diverted by the stormwater 

BMPs are approximately 30 million gallons per year, and the magnitude of the peak flow 

could be trimmed down by approximately 50%. Multiple linear regression and back-

propagation neural network are evaluation methods which are not only applicable in the 

studied case, but also can be widely adopted. However, it shows that the BPNNM is only 

viable to predict for flow volume lower than 6 million gallons. 

 

The overflow area abatement was assessed through contrasting the overflow areas before 

and after the installation of the stormwater BMPs. Overflow areas were visualized by 

performing coupled 1D/2D hydraulic simulation. 

 

It shows that the overflow areas, which could be saved by the stormwater BMPs, depend 

on the magnitude of the rainfall event. The abatement in overflow areas is more evident at 



vii 

 

4 inch rainfall event and the 1 inch rainfall event. In the 4 inch rainfall event, the overflow 

areas at the JB Speed School parking lot, Student Rec Center, and College of Business 

were significantly abated by the stormwater BMPs. 
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CHAPTER I 

 

INTRODUCTION 

 

High intensity rainfall tends to create overland flow, especially on non-permeable concrete 

and asphalt ground. Enormous economic loss and tragic health damage could be caused by 

severe stormwater overland flow. 

 

In this study, a data driven comprehensive assessment on the performance of the 

stormwater best management practices was made/implemented for the Belknap campus at 

the University of Louisville. The aspects of the assessment on the stormwater best 

management practices include flow volume reduction, peak flow attenuation, and overflow 

area abatement. As the construction of the stormwater best management practices may cost 

millions of dollars, the assessment will provide the effectiveness of the investment made 

by the stakeholders and useful guidance for the future decision makers.  

 

The assessment results in this study might be only applicable to the situation on the Belknap 

campus at the University of Louisville, however, the performance assessments methods 

could widely be adopted, especially in similar situations.
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1.1 Stormwater Best Management Practices 

 

The urbanization of watersheds, with the associated increase in impervious surface and 

intensity of use, changes the local hydrology and that of the downstream river systems 

(Heasom, Traver et al. 2006). In an effort to reduce the impact of development, many 

communities are implementing “green infrastructure”. Green Infrastructure could be 

described as techniques, measures or structural controls used to manage the quantity and 

improve the quality of stormwater runoff using a network of natural and semi-natural areas, 

features and green spaces in the rural and urban areas (Naumann, Davis et al. 2011).  

 

Stormwater Best Management Practices (BMPs) are the combination of permeable 

pavement, infiltration trench, infiltration basin, green roof, rain gardens, and rain barrels. 

commonly incorporated into the urban environment (Thorndahl and Rasmussen 2012, 

USEPA 2013). They are designed to divert stormwater from entering a communities 

combined sewer or the community’s waterways (URS 2012).  

 

Theoretically, the installation of stormwater BMPs could recharge aquifer, increase the 

stormwater retention, improve water quality, reduce greenhouse gas emission, and reduce 

energy footprint. Studies have shown that stormwater BMPs are effective in runoff 

reduction (Rushton 2001, Hsieh and Davis 2005, Zachary Bean, Frederick Hunt et al. 2007, 

Passeport, Hunt et al. 2009), and pollutants removal (Rushton 2001, Hunt, Jarrett et al. 

2006, Passeport, Hunt et al. 2009). And they are more cost-effective than conventional 

infrastructures, and could provide a higher social and ecological value to the community 
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(ENTRIX 2010, Jaffe, Zellner et al. 2010, De Sousa, Montalto et al. 2012, European 

Commission 2013). Stormwater BMPs are gaining popularity in the United States and 

around the world.  

 

The cost of stormwater BMPs construction range from $3,500 to $125,000 depending on 

the type of BMPs, and the operation and management cost is usually 1% - 13% of the 

construction cost (Weiss, Gulliver et al. 2007). Many cities, such as Portland, Seattle, 

Philadelphia, Kansas City, New York, Washington D.C., Austin, San Diego, Louisville, 

Iowa City, Lynchburg, St. Louis, etc., have invested or are investing hundreds of millions 

of dollars on the installation of BMPs (Wise, Braden et al. 2010, CleanRiverCampaign 

2014). 

 

Therefore, the legit questions are: are the stormwater BMPs working as effectively as they 

were designed to? What is the volume of reduced stormwater? Are the stormwater BMPs 

able to attenuate the peak flow of the stormwater runoff? What is the degree of the 

attenuation? Have the stormwater BMPs helped abate the overflow area? To what extent? 

 

Up until now, there has been very little work performed to prove performance of these 

BMPs systems. Most assessments are based on visual observations, basic data, or vague 

assessments, there is not a quantifiable methodology to determine if the systems are 

providing the intended results. Therefore, a comprehensive performance assessment on the 

BMPs is necessary. 
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1.2 Purpose of This Study 

 

In view of the lack of effective techniques on the performance assessment of the costly 

stormwater BMPs, the purpose of this study is to develop methodologies that can assess 

overall performances on in-place stormwater BMPs utilizing flow instrumentation data 

commonly employed by waste water utilities.  

 

The assessments should be performed on three aspects: flow volume reduction, peak flow 

attenuation, and overflow area abatement. The quantitative magnitude of flow volume 

reduction, and peak flow attenuation, and a visual contrast of overflow area abatement 

should be obtained. The robustness of this system is that it does not rely on specialized 

instrumentation, rather utilizes flow monitoring data commonly recorded by waste water 

utilities.  

 

1.3 Study Area 

 

Combined sewer overflow caused by large storm events has been a very serious problem 

for the Belknap campus. While flooding during typically large rain events is common, the 

massive storm on August 4th, 2009 caused over $20.9 million in flood damage. Apart from 

the enormous economic cost, the massive overflow leads to dangerous release of untreated 

sewage into the Ohio River, cause a threat to the residents’ health and ecological integrity. 
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 To remediate the flooding, a variety of Stormwater BMPs were designed and installed 

across the Belknap campus between 2011-2013, to more effectively manage stormwater 

and mitigate floods. According the University of Louisville, the BMPs were designed to 

capture over 127,000 ft3 of stormwater at a total cost of $1.25 million.  

 

Unfortunately, almost no instrumentation was included to verify that the installed 

stormwater BMPs are functioning as intended. The only instrumentation available is the 

flow meter FM0048 located on the cross section of West Cardinal Boulevard and South 

Forth Street. Figure 1 is the location of the study area, flow meter, and the location of the 

Stormwater BMPs. The information of stormwater BMPs projects developed on study area 

is listed in Table 1. 

 



 

Table 1  

Information of Stormwater BMPs Projects 

 

Project ID Name Watershed Area 
(Square Feet) 

Impervious Area 
(Square Feet) 

Storage Capacity 
(Cubic Feet) 

GP1 Grawemeyer South Parking Lot 139731 80209 16678 

GO1 Grawemeyer Oval 173952 69349 34474 

EL1 Esktrom Library 191560 108240 7500 

EL2 Jouett Hall Rain Garden 34306 14397 7017 

EL3 Law School Courtyard 18800 14240 7446 

EL4 Law School Parking Lot 22612 19896 2485 

BS1 Business School Parking Lot 95330 86052 8110 

BS2 Music Building Roof/Cistern 41087 41087 10816 

SM1 Speed Museum Base/Expand Infiltration 288624 213187 43868 

 

(From Planning, Design, and Construction at University of Louisville) 
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1.4 Methodology 

 

The limited amount of available instrumentation makes the assessment of the BMPs 

installed on the Belknap Campus challenging. Without data to gauge the performance of 

specific BMPs, a portfolio or watershed analysis approach was utilized to compare flow 

rates pre and post construction.  

 

Data mining methods (such as multiple linear regression, artificial neural network) were 

conducted to correlate flow volume or flow rate with respective rainfall features. For the 

first time, detected rainfall and sewer flow data was utilized to assess the stormwater BMPs’ 

performance on flow reduction and peak flow attenuation. Changes in the correlation 

values, and contrast on overflow areas can provide an indication of the relative 

effectiveness of the installed BMPs. 

 

Also, a coupled 1D/2D hydraulic simulation was performed. Two rainfall events was 

investigated. The innovation of the assessment is that, in any given rainfall event, overflow 

areas on the two scenarios (Pre and Post-BMPs) was contrasted. There are four scenarios 

in total. The overflow area difference can indicate the effectiveness of the stormwater 

BMPs. 

 

The conclusions in this study was focused on the University of Louisville’s Belknap 

campus, however, the assessment methodologies are important, because it can be adaptable 

to other communities.  
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Figure 1. Location of study area and the areas installed stormwater BMPs  
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1.5 Contributions 

 

The contributions of this study are listed as follows: 

 

(1) It incorporated peak flow reduction as stormwater BMPs’ performance assessment. The 

of rainfall – runoff assumption raised in this study linked rainfall features with flow 

volume/peak flow, which brought a new insight in solving stormwater BMPs’ assessment 

problems. The assumption could be revised and adopted in many other situations. 

 

(2) The volume of flow diverted by the stormwater BMPs for every rainfall/storm event in 

our study period was estimated, and the degree of peak flow attenuated was also predicted 

by the developed models.  

 

(3) Multiple linear regression and back propagation neural network are feasible method in 

revealing the relationships either between flow volume and rainfall features, or between 

peak flow and rainfall features. The prediction accuracy and application range were also 

discussed. 

 

(4) The overflow course was visualized in a coupled 1D/2D hydraulic simulation, and the 

overflow sensitive area could provide information needed for stakeholders and decision 

makers on the stormwater BMPs’ installation priority. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

During rain events, runoff from impervious surfaces, also known as urban runoff, is one of 

the leading causes of inundation damage and water quality impairment throughout the 

world (Strassler, Pritts et al. 2006). Flow control involves managing both the volume and 

intensity of stormwater discharge to receiving waters. High flow rates of stormwater 

discharge can cause a number of impacts and may also increase the pollutant concentration 

in stormwater runoff (Blink, Kelly et al. 2004). 

 

Stormwater BMPs are control measures implemented to mitigate changes to both water 

quantity and quality of urban runoff (Reese and Debo 2002). They are used widely as a 

means for controlling flood runoff events, which have been proposed as an alternative 

approach to better mimic the natural flow regime by using decentralized design to control 

stormwater runoff at the source, rather than at a centralized location in the watershed 

(Damodaram, Giacomoni et al. 2010). Typically, stormwater BMPs can abate the overflow 

area during storm events through reducing the volume of the runoff by redirecting 

stormwater flow into the groundwater system. Simultaneously, it improves receiving water 

quality by attenuating peak flows of the runoff (Granato 2014).  
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The functions of the stormwater BMPs include reducing flow volume, attenuating peak 

flow, and abating overflow area. Therefore, a good performance of those functions are 

essential indicators for successful stormwater BMPs. 

 

Runoff reduction (flow volume reduction) is the most frequently studied aspect of 

stormwater BMPs’ performance. A variety of runoff reduction assessment tools have been 

developed, each with their own strengths and weaknesses.  

 

The National Green Value Calculator (GVC) is a tool for quickly estimating runoff 

reduction (Technology 2006). When lot information, predevelopment condition, runoff 

reduction goal, conventional development, etc., are set, GVC could provide its estimation 

on the stormwater BMPs’ runoff reduction performance momentarily. The pros of this tool 

are easy and fast, while the cons are the less accuracy and no peak flow assessment.  

 

Similar to the National GVC, EPA’s National Stormwater Calculator (SWC) is a desktop 

application that estimates the annual amount of rainwater and frequency of runoff from a 

specific site anywhere in the United States (including Puerto Rico), and the estimation is 

based on local soil conditions, land cover, and historical rainfall record (Infrastructure and 

Infrastructure 2013). Its pros and cons are the same with the National GVC. 

 

Virginia Runoff Reduction Method (VRRM) is a relatively simple method to estimate the 

runoff volume reduction by using a designed excel file, which can be downloaded from the 

internet (Hirschman, Collins et al. 2008, Battiata, Collins et al. 2010). It estimates the 
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volume of runoff reduction by the stormwater BMPs through the change of the land use, 

soil type, and hydraulic conditions before and after the installation. 

 

There are also some assessment tools designed for special occasions. With regard to the 

overflow problem in urban areas, the U. S. Environmental Protection Agency (EPA) 

designed a Green LTCP-EZ Temple as a tool to help small combined sewer overflow (CSO) 

communities develop their long-term overflow control plan (USEPA 2011). This model 

enables shareholders to access the runoff volume reduction and CSO volume by importing 

the event precipitation, ground information and stormwater BMPs parameters.  

 

In order to address the costs associated with vegetative roofs, rainwater catchment systems, 

and bioretension facilities, U.S. EPA developed Water Environment Research Foundation 

(WERF) BMP and LID whole life cost models. These tools can provide a framework to 

facility cost estimation for capital cost, operation and maintenance cost, and life-cycle net 

present value (Houdeshel, Pomeroy et al. 2010). 

 

All these models mentioned above could be applied in assessing the performance of the 

chosen stormwater BMPs on the function of runoff reduction, and inform the stakeholder 

on decision making. However, as is known, high peak flow could cause serious damages 

in a flooding event, and is an indispensable part of flood control and management. 

Unfortunately, these models are all concerned with runoff volume reduction, none of them 

are capable of assessing the performance of stormwater BMPs on peak flows attenuation. 

Moreover, the value of runoff reduction provided by these models are calculated based on 
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surface water hydrology theory. None of them could provide a flow volume reduction at 

sewage level. As well, none of them could assess the flow volume reduction or peak flow 

attenuation utilizing the real-time monitored rainfall and sewer flow data. 

 

For assessing the stormwater BMPs from a hydraulic perspective, the EPA Stormwater 

Management Model (SWWM) with LID Controls is one of the software packages most 

extensively used. It is a dynamic rainfall - surface runoff - subsurface runoff simulation 

model used for single-event to long-term simulation of the surface/subsurface hydrology 

quantity and quality (Rossman). It enables users to retrieve runoff volume and runoff rate 

by entering the meteorological data and land use characteristics (USEPA 2013). However, 

SWMM5, as with many other software platforms such as Storm NET, is hardwired to solve 

4-6 iterations in the dynamic solution and proceeds to the next time step regardless of the 

correctness of the solution at that interval. This can generate continuity errors and also the 

wrong solution of the HGL. In SWMM5, the stored water is only in a constant area vs. 

depth shape.  

 

As a stormwater management tool, coupled 1D/2D models are more accurate and produce 

results that are far more readily accepted and understood by managers, decision makers, 

and other stakeholders (Solutions 2004, Leandro, Chen et al. 2009). Unfortunately, the 

SWMM5 is not capable of offering 2D modeling as needed in a comprehensive 

performance assessment.  
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When comparing capabilities with the analysis engine of XPSWMM and programs such as 

SWMM5, the main consideration is the fact that XPSWMM is a fully dynamic model 

utilizing the St. Venant equations, which takes into account the hydraulic effects within a 

system occurring throughout a simulation which many other modeling platforms fail to 

estimate (Ovbiebo and She 1995, Othman Jaafar, Toriman et al. 2010). 

 

Also, XPSWMM allows the water above the ground level (spillcrest) to be in a unique 

ponding shape at every node (Schaefer 2009). This ponding shape describes the sag that 

stores the water at a flooded manhole for example. This ponded volume can then be used 

to define required storage. Multi-links provide a tool which can model up to 7 items in 

parallel which share the same upstream and downstream nodes. This is a very convenient 

method to model numerous objects without drawing additional links. 

 

These work exceptionally well for dual drainage scenarios (conduit flow and overland, 

street flow) or conduit flow with weir or bypass flows and can also be used to model bridge 

crossings in a 1D environment. Much more discussion can be provided on these topics as 

well as the 2D or coupled 1D/2D modeling capabilities offered by XPSWMM (Phillips, 

Yu et al. 2005, Toriman, Hassan et al. 2009). 
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CHAPTER III 

 

DATA SUMMARY 

 

The entire data utilized in this study includes the data for data mining and the data for 

hydraulic simulation. The assessment on flow volume reduction and peak flow attenuation 

were realized through data mining, which was about to conduct correlation between the 

monitored rainfall data and flow data. A series of rainfall data and flow data preparation 

should be performed before the actual modelling begins. Overflow area abatement was 

assessed through hydraulic simulation using XPSWMM software. The data needed is GIS 

files on elevation, land use, manhole information, sewer system information, etc. 

 

3.1 Data for Data Mining 

 

3.1.1 Raw data 

 

In this study, the raw data applicable for this stormwater BMPs’ assessments was 

comprised of rainfall data and sewer flow data pre and post the installation of stormwater 

BMPs. 



- 16 - 

 

The date range of the data is June 2011 — June 2013. All the data was collected, maintained, 

and provided by Louisville and Jefferson County Metropolitan Sewer District (MSD). 

 

3.1.1.1 Rainfall Data 

 

Application of weather radar data in urban hydrology is evolving, and it is applied in many 

scientific research areas (Pedersen, Jensen et al. 2010, Thorndahl and Rasmussen 2012). 

The study area is mainly covered by the three radar pixels (7492, 7493, and 7359). All the 

radar pixels are a 1000 meter × 1000 meter in size. The real-time radar rainfall data would 

be calibrated by the rain gauges (TR05 and TR12) operated and maintained by Louisville 

MSD. Both the radar and the radar gauges were configured to record precipitation depth in 

inches detected during the previous 5 minutes period. 

 

Additionally, a study accomplished by OneRain Inc., (Orangevale, CA) shows the 

NEXRAIN radar rainfall data system has performed very well since it was installed in 

MSD in October 2002 (Liu, Hoblit et al.). 

 

3.1.1.2 Combined Sewer Flow Data 

 

The real-time combined sewer flow data is measured by flow meters set up by Louisville 

MSD. The flow meters measure the flow rate in million gallons per day in 15 minutes 

intervals. The study area is part of the combined sewer watershed for flow meter FM0948. 
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The real-time combined sewer flow data provided by Louisville MSD enable us to extract 

peak flow and the total flow volume for each rainfall event. 

 

3.1.2 Data Preparation 

 

Data preparation is a crucial step in data mining. In this study, data preparation includes 

rainfall data validation and rainfall events preparation. 

 

3.1.2.1 Rainfall Data Validation 

 

In order to obtain valid quantitative precipitation estimates (Thorndahl and Rasmussen 

2012), the local rain gauge data, which is also maintained by Louisville MSD, is used to 

calibrate the radar data (Steiner, Smith et al. 1999). Figure 2 is a map showing the radar 

pixels and rain gauges, and the distribution of the rain gauge stations in Jefferson County. 

The red area is the location of the study area, the pink drops are the locations of rain gauges 

utilized in this study, and the highlighted squares in green are the range of radar data. 

 

The dilemma is there is no rain gauge placed in the study area. It is shown in the map, the 

nearest rain gauges to the study area are Nightingale Pump Station with an ID of TR12, 

Beargrass Creek Pump Station with an ID of TR05. TR12 and TR05 are located 2.5 miles 

and 4 miles away from the study area, and covered by the radar pixels 7497 and 8161 

respectively. 
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Figure 2 Range of radar pixels and locations the rain gauges in Jefferson County 
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Radar Pixel 7492 vs. Rain Gauges TR12 and TR05  

 

As is shown in Figure 3, the radar pixel 7492 is one of the pixels that covers the study area. 

To investigate its reliability form January 2009 to March 2014, a comparison of monthly 

cumulative precipitation depth from radar pixel 7492 and its nearest rain gauges TR12 and 

TR05 was made (Figure 5). Two-sample t-tests on radar pixel 7492 vs. TR12 and radar 

pixel 7492 vs. TR05 were performed (Table 2), and the P-Values (probability of 

significance) are 0.009 and 0.002 (< 0.05), indicating the precipitation data from radar pixel 

7492 is significantly different with that from rain gauge TR12 or TR05.The significant 

difference between radar pixel 7492 and its nearest rain gauges doesn’t necessarily indicate 

the precipitation data from any of the sources are invalid. Rather, variation is expected as 

the rain gauges are located more than 2.4 miles away from the radar pixel 7492. 

 

 

 

Figure 3 Radar Pixel 7492 vs. Rain Gauges TR12 and TR05 
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Table 2  

Two sample t-test for radar pixel 7492 and rain gauge TR12 

 

 
Number of 

Samples 
Mean 

Standard 

Deviation 

Mean Squared 

Error 

Radar Pixel 9497 63 5.54 3.01 0.38 

Rain Gauge TR12 63 4.22 2.54 0.32 

Rain Gauge TR05 63 3.97 2.67 0.34 

Difference = μ (Radar Pixel 9492) - μ (Rain Gauge TR12) 

Estimate for difference:  1.321 

95% CI for difference:  (0.338, 2.305) 

T-Test of difference = 0 (vs ≠): T-Value = 2.66  P-Value = 0.009  DF = 120 

Difference = μ (Radar Pixel 9492) - μ (Rain Gauge TR05) 

Estimate for difference:  1.574 

95% CI for difference:  (0.570, 2.578) 

T-Test of difference = 0 (vs ≠): T-Value = 3.10  P-Value = 0.002  DF = 122 

 

 

From Figure 2, it could be seen that rain gauge TR12 and TR05 fall in the perimeters of 

radar pixel 7497 and radar pixel 8181. Figure 6 and Figure 7 are the bar charts showing the 

monthly precipitation comparison for the two sources. Thus, if we could show the 

precipitation data from TR12 is similar to that from radar pixel 7497, and the precipitation 

data from TR05 is similar to that from radar pixel 8161 (Figure 4), it could be concluded 

that the rainfall radar data is reliable. 

 



- 21 - 

 

Two-paired t-tests were performed, and the results are shown in Table 3. The P-Value in 

the t-test is 0.754, and 0.848 respectively (>>0.05), which means the monthly precipitation 

data from radar pixel 7497 and rain gauge TR12 have no significant differences, and the 

monthly precipitation data from radar pixel 8161 and rain gauge TR05 have no significant 

differences. The high similarity of the rainfall data from different sources indicates the 

radar pixel precipitation data likely reflects the real precipitation level for the area it covers. 

 

 

 

Figure 4 Radar Pixel 7492 vs. Rain Gauges TR12 and TR05 
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Table 3  

Two sample t-tests for radar pixel 7497 vs. rain gauge TR12 and radar pixel 8161 vs. rain 

gauge TR05 

 

 
Number of 

Samples 
Mean 

Standard 

Deviation 

Mean Squared 

Error 

Rain Gauge TR12 63 4.22 2.54 0.32 

Radar Pixel 9497 63 4.37 2.74 0.34 

Rain Gauge TR05 63 3.97 2.67 0.34 

Radar Pixel 8161 63 4.05 2.52 0.32 

Difference = μ (Radar Pixel 9497) - μ (Rain Gauge TR12) 

Estimate for difference:  0.148 

95% CI for difference:  (-0.783, 1.079) 

T-Test of difference = 0 (vs ≠): T-Value = 0.31  P-Value = 0.754  DF = 123 

Difference = μ (Radar Pixel 8161) - μ (Rain Gauge TR05) 

Estimate for difference:  0.089 

95% CI for difference:  (-0.826, 1.004) 

T-Test of difference = 0 (vs ≠): T-Value = 0.19  P-Value = 0.848  DF = 123 

 

 

 

 

 

 



 

 

 

    

Figure 5. Monthly rainfall Depth form radar pixel 7492, rain gauge TR12 and TR 05 during January 2009 and March 2014 
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Figure 6. Monthly rainfall Depth form radar pixel 7497 and rain gauge TR12 during January 2009 and March 2014 
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Figure 7 Monthly rainfall Depth form radar pixel 8161 and rain gauge TR05 during January 2009 and March 2014 
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3.1.2.2 Rainfall Events 

 

 Once the radar rainfall data were validated, it is important to subdivide the precipitation 

data into separate rainfall events. As is defined in the regulations, a ‘representative’ rainfall 

must yield at least 0.1 inches of precipitation. This is because rainfall depths less than 0.1 

inches usually do not produce any measurable runoff (GeoSyntec and ASCE 2002). In this 

study, the rainfall events were sorted out using 6 hour dry period. 

 

In this section, the radar precipitation data (5 min interval) will be sorted into representative 

rainfall events according to the following two principles. 

(i) Rainfall depth: at least 0.1 inches 

(ii) Dry period: at least 6 hours 

 

Snow events provide unique challenges when trying to assess rainfall and runoff 

information. Most importantly, snow has a significant time delay between the event and 

when it generates runoff. Thus, due to complications and possible errors all the snow events 

were excluded from the data set by referring to the historical weather record in Louisville. 

After removing the snow events, 152 rainfall events remained during June 2011 - June 

2013, and 43 events for before Jan 2012 (Table 4). 

 

Figure 8 shows the rainfall event took place on June 18th, 2011 in incremental depth (bars) 

and accumulative depth (curve). The available real-time rainfall record is from June 2011 
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to June 2013, which include the Pre-BMPs and Post-BMPs rainfall events. Figure 9 shows 

the real-time rainfall intensity and flow rate during that period. 

 

Table 4  

Number of rainfall events pre- and post-installation of the stormwater BMPs 

  

Rainfall Events Number 

Pre-BMPs 43 

Post-BMPs 109 

Total 152 

 

 

 

 

Figure 8. The incremental rainfall depth and the cumulative depth of the rainfall event on 

6/18/2011
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Figure 9. Real-time rainfall intensity and flow rate before and after development of the stormwater BMPs 
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3.2 Data for Hydraulic Simulation 

 

The combined sewer system was built to convey wastewater to treatment facilities during 

dry weather conditions, and during wet weather conditions, to also carry stormwater. When 

a large storm events occur, however, the sewer system reaches capacity, and tends to create 

overflow, normally called a combined sewer overflow (CSO). The dynamic hydraulic 

process is simulated by a coupled 1D/2D using XPSWMM. 

 

The data for the coupled 1D/2D hydraulic simulation include rainfall data and hydraulic 

conditions information, all of which was authorized by Louisville MSD. Two rainfall 

events were selected to be studied, one of which is a 1-inch rainfall that occurred on June 

18, 2011 (Figure 10), and the other is a 4-inch rainfall that occurred on May 29, 2012 

(Figure 11).  

 

The information on hydraulic conditions of the study area is compose of land use (Figure 

12), topography (Figure 13) and the underground combined sewer system (Figure 14). The 

land use includes buildings, tree areas, roads, railroads, parking areas, driveways, 

recreational areas, athletic fields, and grass areas. Figure 13 is a map of contours of the 

ground elevation for the study area, which has an elevation ranged from 456 ft to 486 ft. 

Figure 14 shows the study area as a combined sewer watershed, in which the combined 

sewer drainage route and the outfall location. Flow meter FM0948 is at the outfall location, 

which means it can measure the flow condition in the combined sewer for the whole study 

area. 
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Figure 10 Rainfall event occurred on June 18, 2011 

 

 

 

Figure 11 Rainfall event occurred on May 29, 2012 
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Figure 12 Map of land use for the study area  



- 32 - 

 

 

 

Figure 13 Ground elevation contours of the study area 
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Figure 14 Combined sewer drainage system for the study area 
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CHAPTER IV 

 

COMPREHENSIVE ASSESSMENT METHODOLOGIES  

 

A comprehensive assessment on the performance of the stormwater BMPs includes 

evaluations on the changes of magnitudes of flow volume, peak flow, and overflow area. 

This chapter has two sections: (1) flow volume reduction assessment and peak flow 

attenuation assessment, and (2) overflow area abatement assessment. The first section 

presents the assumptions and modelling procedures associated with the rainfall-runoff 

analysis. The second section discusses the coupled 1D/2D hydraulic simulations for the 

overflow area.  

 

4.1 Flow Volume Reduction and Peak Flow Attenuation 

 

The development of stormwater BMPs is supposed to change the hydraulic conditions in 

the study area to promote infiltration and reduce system overflows by alleviating the load 

of the combined sewer system. Theoretically, the incorporation of BMPs should reduce the 

flow volume and peak flow in the sewer pipe. However, directly comparing the flow 

volume or the peak flow before and after the development of stormwater BMPs cannot be 

exact, because every rainfall has a different pattern.
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For example, two rainfall events even with the same overall rainfall depth, may not be 

comparable because of different durations, different rainfall intensity distributions, or other 

features that could affect the flow volumes and peak flows. As such, it is necessary to 

generalize the rainfall features through mining the relationship between rainfall events and 

the flow volume or peak flows generated by the rainfall events, and then compare the 

estimated values by the prediction models and real values detected by flow meters. 

 

4.1.1 Proposing Assumption for Modelling 

 

4.1.1.1 Rainfall-Runoff System 

 

The actual physical process that converts rainfall to runoff is both complex and highly 

variable. The factors affecting runoff are rainfall characteristics/features (depth, intensity, 

duration, etc.), watershed factors (size, shape, land use, soil type, topography, etc.), 

meteorology factors (temperature, humidity, wind velocity), and antecedent rainfall 

conditions (length of dry period). Thus, the amount of stormwater runoff generated by a 

storm will change as any of the factors change. The question is: what factors should be 

counted in the rainfall-flow model? What factors can be ignored, and why? 

 

(1) Watershed factors 

 

The watersheds for the study area include only the CSO 211 basin ( 
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Figure 1). As the watershed boundaries and general development conditions within the 

watershed did not change during the study period, the rainfall-runoff parameters were 

assumed constant throughout the study. Thus, the watershed factors typically associated 

with rainfall-runoff calculations have a negligible influence within the models. 

 

(2) Meteorology factors 

 

The amount of runoff tends to be affected by the meteorology factors. For example, high 

temperature would promote evaporation and transpiration, and low temperature would turn 

the precipitation into snow, and freeze the runoff. However, the effect of evaporation and 

transpiration is typically unquantifiable, and usually is ignored in the study of rainfall–

runoff system. The snow and freezing events have been excluded in the rainfall data 

preparation section. 

 

(3)Antecedent rainfall condition 

 

Antecedent rainfall condition refers to the dry period (length of dry weather prior to the 

storm). Typically, a longer dry period means a better infiltration. In this study, rainfall 

events were sorted out using a 6 hour dry period, which means 100% of the dry period of 

the rainfall events is longer than 6 hours. It is also illustrated in Figure 15 that 10% of all 

the rainfall events has a dry period of less than 12 hours. While, 20% of all the rainfall 

events has a dry period over 150 hours. Generally, only 30% of the rainfall events fall in 

the perimeters of extremely wet or extremely dry conditions. Therefore, the effect of 
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antecedent rainfall condition on the rainfall-runoff system is believed to be little in this 

study. 

 

 

  

Figure 15. The probability distribution of dry period of the rainfall events 

 

(4) Rainfall characteristics/features 

 

Rainfall depth is defined as the cumulative depth of precipitation in a rainfall event. 

Rainfall peak intensity is defined as the highest intensity in a rainfall event. These two 

rainfall features are commonly taken as tied to the flow volume and the peak flow 

respectively. Presented below is an overview of the important statistical analyses used to 
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describe rainfall depth and the rainfall peak intensity with respect to either flow volume or 

peak flow. 

 

Flow Volume 

 

Figure 16 shows the linear relationship between rainfall depth and flow volume. It 

illustrates that flow volume is closely correlated with rainfall depth with a R2 of 0.89 (Pre-

BMPs) and 0.93 (Post-BMPs) which means that rainfall depth plays an essential role on 

the magnitude of flow volume. However, when compared to rainfall depth, the peak rainfall 

intensity seems to be random with the magnitude of flow volume. The R2s of the linear 

expression for peak rainfall intensity and flow volume are 0.04 (Pre-BMPs) and 0.07 (Post-

BMPs) respectively (Figure 17). It explains that peak rainfall intensity plays a much less 

vital role in the magnitude of flow volume. 

 

Peak Flow 

 

Rainfall depth and peak rainfall intensity are also investigated with respect to their effect 

on peak flow. Figure 18 and Figure 19 illustrate that the R2s are ranged from 0.4 to 0.6, 

which means both rainfall depth and peak rainfall intensity can affect the magnitude of 

peak flow.  
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However, what are the most essential rainfall features? Is it possible that both flow volume 

and peak flow are affected by multiple rainfall features, other than single rainfall feature? 

And what are those rainfall features influence on the flow volume or peak flow 

 

 

 

Figure 16. The relationship of flow volume and rainfall depth before and after the 

installation of stormwater BMPs 
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Figure 17. The relationship of flow volume and rainfall depth before and after the 

installation of stormwater BMPs 
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Figure 18.The relationship of flow volume and rainfall depth before and after the 

installation of stormwater BMPs 
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Figure 19. The relationship of peak flow and rainfall depth before and after the installation 

of stormwater BMPs 
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(2) The magnitude of the flow volume and/or the peak flow is decided by the 

features of the rainfall event.  

 

What are the rainfall features we are considering? Take the rainfall event on June 18, 2011 

as an example (Figure 20), the rainfall rate and runoff flow rate could be fitted into smooth 

curves. For the rainfall curve, if the features of rainfall depth, rainfall duration, peak rainfall 

intensity, time of rising limb, and time of average intensity are fixed, the shape of the curve 

could be obtained. Those five features are obtained directly from the curve which were 

defined as direct features. Since the direct features might not be linearly correlated with the 

magnitude of flow volume or the magnitude of peak flow, some combinations of the feature 

might be crucial to the accuracy of the model. 

 

Table 5 shows the denotation for the direct rainfall features. The indirect features are 

generated based on the direct rainfall features. The indirect feature generation process is a 

dynamic process, and the generating ceases when “desirable” models could be built. 
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Figure 20. Real-time Rainfall-Runoff Rate for the event on June 18, 2011 

 

Table 5  

Denotation for direct rainfall features 
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4.1.2 Modelling Procedures 

 

The assessments on both flow volume reduction and peak flow attenuation are through data 

mining. The Pre-BMPs rainfall data and detected flow data are used as input and output 

respectively in the model training and testing phases. When the models are developed, they 

are used to estimate the magnitude of the flow volume and peak flow for the Post-BMPs 

rainfall events. The difference of the predicted values and the detected values would be the 

effect of stormwater BMPs. 

 

As is shown in the flow chart (Figure 21), the data mining procedure starts with 

standardizing the values of the rain features, and then, choosing the important rainfall 

features using a feature selection algorithm. Next, develop a multiple linear regression 

model and an artificial neural network model for each of the rainfall features - flow volume 

and the rainfall features - peak flow using the Pre-BMPs data. The performance of the 

stormwater BMPs on flow volume reduction could be obtained through comparing the flow 

volume estimated by the two models with the actual flow volume detected by the flow 

meter; the performance of the stormwater BMPs on peak flow could be obtained by 

comparing the estimated peak flow with the actual detected peak flow. 
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Figure 21. Data mining flow chart 

 

4.1.2.1 Standardization 

 

From the descriptive statistics of the rainfall features in Table 6, it is evident that all the 

rainfall features are numeric, while at the same time, some rain features have a small range 

in value, while others have a large range in value. For example, the rainfall depth is ranged 

in [0.12, 4.16], with a standard deviation of 1.09; while T2 (square of rainfall duration) is 

ranged in [1.17, 3471.57], with a standard deviation of 632.31. The large variance between 

rainfall features in weight will undermine the reliability of the models, and make the model 

interpretation less meaningful. 

 

Therefore, standardizing the rainfall feature is essential to the following data mining steps. 

The standardized rainfall feature is obtained from the original rainfall feature divided by 

the standard deviation, which is shown in the Equation (1). 
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The descriptive statistics of the rainfall features after standardization are shown in Table 7, 

in which the values of all the features are between 0 and 7, and the standard deviation for 

all the features are 1. The weight of all the standardized rainfall features (independent 

variables) are now on the same order of magnitude. 

 

 

 

 

 

𝒙𝒏
′ =

𝒙𝒏

𝝈𝒏
        𝑓𝑜𝑟 𝑛 = 𝐷,  𝑇,  𝑖𝑝, 𝑡𝑟𝑙 , 𝑡𝑎𝑎,  … ;  𝜎 = 𝑆𝑡𝑎𝑛𝑑𝑒𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛   …… (1) 



 

Table 6  

Descriptive Statistics of the Rainfall Features before Standardization 

 

 D T ip taa trl D2 D3 T2 T0.5 LnT ip2 taa2 trl2 D/T ip0.5 trl0.5 D*T ip*trl 

Max 4.16 58.92 3.72 2.98 39.17 17.31 71.99 3471.57 7.68 4.08 13.84 8.88 1534.29 0.63 1.93 6.26 221.54 15.29 

Min 0.12 1.08 0.12 0.08 0.25 0.01 0.00 1.17 1.04 0.08 0.01 0.01 0.06 0.01 0.35 0.50 0.15 0.08 

Mean 0.97 12.06 0.69 0.64 4.51 2.10 6.63 291.79 3.12 2.03 1.16 0.98 65.22 0.12 0.74 1.76 19.47 2.27 

SD 1.09 12.24 0.83 0.77 6.78 4.47 17.69 632.31 1.55 1.01 2.67 2.05 235.80 0.14 0.40 1.20 43.16 3.66 

 

 

Table 7  

Descriptive Statistics of the Rainfall Features after Standardization 

 

 D T ip taa trl D2 D3 T2 T0.5 LnT ip2 taa2 trl2 D/T ip0.5 trl0.5 D*T ip*trl 

Max 3.82 4.81 4.48 3.87 5.78 3.87 4.07 5.49 4.95 4.04 5.18 4.33 6.51 4.51 4.82 5.22 5.13 4.18 

Min 0.11 0.09 0.14 0.10 0.04 0.00 0.00 0.00 0.67 0.08 0.01 0.00 0.00 0.07 0.87 0.42 0.00 0.02 

Mean 0.89 0.99 0.84 0.83 0.66 0.47 0.37 0.46 2.01 2.01 0.43 0.48 0.28 0.87 1.84 1.47 0.45 0.62 

SD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 
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4.1.2.2 Feature Selection 

 

Feature selection, also known as attribute selection, is the process of selecting a subset of 

relevant features for use in model construction (Yang and Pedersen 1997, Guyon and 

Elisseeff 2003). Weka, a data mining software in Java, was employed to practice feature 

selection.  The evaluator used is CfsSubsetEval, which evaluates the worth of a subset of 

attributes by considering the individual predictive ability of each feature along with the 

degree of redundancy between them (Kittler 1986, Hall, Frank et al. 2009). Subsets of 

features that are highly correlated with the class while having low inter-correction are 

preferred (Hall 1999). The search method used in this study is best first, which searches 

the space of attributes subsets by greedy hill-climbing algorism (a mathematical 

optimization technique) which augmented with a back-tracking facility (Hall, Frank et al. 

2009), and the search direction is forward (Guyon, Andr et al. 2003). 

 

The standardized rainfall features are used in the feature selection. Figure 22 and Figure 

23 are the interface feature selection results on Weka for flow volume and peak flow 

respectively. The selected features are listed inTable 8. The selected rainfall features for 

flow volume are rainfall depth, rainfall depth cubic, and the product of rainfall depth and 

rainfall duration. The selected rainfall features for peak flow are rainfall depth, peak rainfall 

intensity, duration of above average intensity, and average rainfall intensity. 
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Table 8  

Important Rainfall Features Affecting Flow Volume and Peak Flow 

 

 Selected Features 

Flow Volum (Fv) D D3 D×T  

Peak Flow (Fp) D ip taa  D/T 

 

 

 

 

Figure 22. Result of rainfall feature selection for flow volume on Weka 
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Figure 23. Result of rainfall feature selection for peak flow on Weka 
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4.1.2.3 Multiple Linear Regression Model  

 

Two Multiple Linear Regression Models (MLRMs) were built in this section, one is for 

rainfall - flow volume, and the other one is for rainfall - peak flow. In the rainfall – flow 

volume model, the independent variables are the selected rainfall features for flow volume; 

in the rainfall – peak flow model, the independent variables are the selected rainfall features 

for peak flow. The flow volume MLRM and the peak flow MLRM were built, and the 

expression of which are shown in equation (2) and equation (3). 

 

Flow Volume (Fv) 

 

 

 

The Adj R2 (adjusted square of multiple correlation from the regression) is 0.96 (Table 9), 

which means 96% of variation of flow volume could be explained by rainfall depth, cubic 

of rainfall depth, and the product of rainfall depth and rainfall duration (Li, Zhang et al. 

2014). Table 10 shows the analysis of the coefficients in the flow volume MLRM. The P-

Value of all the independent variables are ca. 0.00 (<< 0.05), indicating each of the selected 

rainfall features has a significant contribution to the flow volume (Fox 1991).  

 

It is very clear that in the study area, rainfall depth is the most important feature, followed 

by rainfall duration. The flow volume in the combined sewer can grow exponentially with 

rainfall depth.  

𝐹𝑣 = −0.06 + 2.79𝐷 + 1.38 𝐷3 + 2.92 𝐷 ∙ 𝑇                  ⋯ ⋯              (2) 
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Table 9  

Fit-of-goodness for Flow Volume MLRM 

 

S R2 R2 (adj) R2 (pred) 

11.6184 96.34% 95.96% 91.80% 

 

 

Table 10  

Analysis of Coefficients for Flow Volume MLRM  

 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 1825.25 608.416 590.03 0.000 

D 1 37.45 37.452 36.32 0.000 

D3 1 10.97 10.965 10.63 0.002 

D·T 1 148.91 148.911 144.41 0.000 

Error 39 40.22 1.031 70.99 0.014 

Total 42 1865.46    

 

(DF denotes degree of freedom, Adj SS denotes adjusted sum of square, Adj MS denotes mean square of error)  

 

Since one of the most important assumptions of the regression model is the residual 

(estimated error) is random, which means it is from normal distribution (Osborne and 

Waters 2002). A normality test for the residuals was made and the results shown in Figure 
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24. We could see the P-Value of the normality test for the flow volume MRLM is 0.09 (> 

0.05), indicating the residual is from normal distribution. 

 

 

 

Figure 24. Normality test for the flow volume MLRM 
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Peak Flow (Fp) 

 

 

 

The Adj R2 is 0.98 (Table 11), which means 98% of variation of peak flow could be 

explained by rainfall depth, peak rainfall intensity, time of above average rainfall intensity, 

and the average rainfall intensity (rainfall depth divided by rainfall duration). Table 12 

show the analysis of the coefficients in the peak flow MLRM. The P-Value of all the 

independent variables are ca. 0.00 (<< 0.05), indicating each of the selected rainfall features 

has a significant contribution to the peak flow.  

 

It shows that in the study area, the peak flow is decided by rainfall depth, peak rainfall 

intensity, duration and duration of above average rainfall intensity. Peak flow is negatively 

correlated with rainfall duration, while positively correlated with other three features. 

 

Table 11 

Fit-of-goodness for Peak Flow MLRM 

 

S R2 R2 (adj) R2 (pred) 

7.22306 98.40% 98.23% 97.09% 

 

 

  

𝐹𝑝 = 3.61 + 18.17𝐷 + 7.9𝑖𝑝 + 15.60𝑡𝑎𝑎 +
24.96𝐷

𝑇
             ⋯ ⋯        (3) 
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Table 12  

Analysis of Coefficients for Peak Flow MLRM 

 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 4 121622 30405.4 582.79 0.000 

D 1 7209 7208.8 138.17 0.000 

ip 1 883 882.6 16.92 0.000 

taa 1 4606 4605.8 88.28 0.000 

D/T 1 8771 8770.6 168.11 0.000 

Error 38 1983 52.2   

Total 42 123604    

 

(DF denotes degree of freedom, Adj SS denotes adjusted sum of square, Adj MS denotes mean square of 

error)  

 

A normality test for the residuals also was made for peak flow MLRM, and the results are 

shown in Figure 26. The P-Value of the normality test is 0.11 (> 0.05), indicating the 

residuals is from normal distribution. 
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Figure 25. Normality test for the peak flow MLRM 
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4.1.2.4 Artificial Neural Network Model 

 

Artificial neural network was also applied to build the rainfall features - flow volume model, 

and the rainfall features - peak flow model using the selected rainfall features. The training 

algorithm employed is back propagation which is a supervised learning algorithm. Two 

Back Propagation Neural Network Models (BPNNM) were built in this section.  

 

In splitting data for training and testing, 10 fold cross-validation was applied (Kohavi 1995). 

It partitions the training set into 10 subsets. For each model complexity, the learner trains 

10 times, each using one of the sets as the validation set and the remaining sets as the 

training set. It then selects the model complexity that has the smallest average error on the 

validation set (Krogh and Vedelsby 1995). 

 

Learning rate and momentum are important factors in adjusting neurons’ weight. Learning 

rate (a decreasing function of time) scales the derivative, and has an important effect on 

the time needed until convergence is reached. Momentum scales the influence of the 

previous step on the current, which is supposed to make the learning procedure more stable  

and accelerate convergence of the error function (Riedmiller and Braun 1993). The learning 

rate is used as a fixed value, ranging from 0 to 1. The smaller the learning rate, the smaller 

the residual deviation but the slower the convergence rate (Chinrungrueng and Sequin 

1995). The value of the momentum should be also in between 0 and 1. Since we have three 

independent valuables for the flow volume BPNNM, and four independent valuables for 

the peak flow BPNNM, the number of neural nodes is considered to choose from 0 to 4. 
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In spite of the mean absolute error, root mean square error, and relative absolute error, the 

correlation coefficient is the most important factor in indicating the stability and reliability 

of the neural network model. It is found that the correlation coefficient changes with 

different settings on learning rate, momentum, and number of nodes. The question is: how 

to obtain the highest correlation coefficient by setting up these factors? Let’s see how the 

single factor affects the correlation coefficient. 

 

Figure 26 and Figure 27 illustrate that the correlation coefficient fluctuates with the 

learning rate, and the correlation coefficient is a  maximum when the learning rate is 0.1 

both for the flow volume BPNNM (correlation coefficient = 0.86) and peak flow BPNNM 

(correlation coefficient = 0.86). For the momentum, the correlation coefficient decreases 

with its growing. Therefore, the correlation coefficients (0.92 for flow volume BPNNM, 

0.96 peak flow BPNNM) are highest when the momentum is set up as 0. For the number 

of hidden nodes, 2 hidden nodes will maximize the correlation coefficient of flow volume 

BPNNM, and 3 hidden nodes will maximize the correlation coefficient of peak flow 

BPNNM. The above analysis is focusing on single factors, which means other factors are 

fixed when considering the specific factor.  
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Figure 26. Correlation coefficients of the flow volume BPNNM with the change of learning 

rates, momentums, and hidden nodes   
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Figure 27. Correlation coefficients of the peak flow BPNNM with the change of learning 

rates, momentums, and hidden nodes  
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From the above analysis, the variation trend of the model’s correlation coefficient is clearly 

shown. However, in search for the optimal combination of the learning rate, momentum, 

and number of nodes, a full factorial experiment was performed. The value range for both 

learning rate and momentum are both set as [0, 1] with the step of 0.1, and the number of 

nodes is ranged at [0, 4] with the step of 1, which make the total number of combinations 

of all those choices 605 for each BPNNM. 

 

To accelerate the searching process, a program was written in Java language to find the 

optimal combination of learning rate, momentum, and number of nodes for correlation 

coefficient (see Appendix). The program can call the MulitilayerPerceptron algorithm in 

Weka (Hall, Frank et al. 2009). The optimal combination for flow volume BPNNM and 

peak flow BPNNM are shown below. 

 

Flow volume BPNNM 

 

The optimal combination of the learning rate, momentum, and number of nodes flow 

volume BPNNM is 0.3, 0.5, and 4 respectively (Figure 28). The running results are shown 

in Table 13. The maximum correlation coefficient of the model is 0.98.  
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Table 13  

Flow Volume BPNNM Running Result 

 

 

=== Run information === 

 

Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.5 -N 500 -V 0 -S 0 -E 20 -H 4 

Relation:     Pre-BMPs-weka.filters.unsupervised.attribute.Remove-R2-6,8-16,18-19 

Instances:    43 

Attributes:   4 (D, D3, D*T, Fv) 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

Linear Node 0 

    Inputs    Weights 

    Threshold    -0.5380423623357347 

    Node 1    0.16605206954100468 

    Node 2    1.5947754319284373 

    Node 3    0.19342328454059918 

    Node 4    -0.9419784293085267 

Sigmoid Node 1 

    Inputs    Weights 

    Threshold    -1.0078681562602674 

    Attrib D    0.3780623051212866 

    Attrib D3    0.5499326755567432 

    Attrib D*T    0.6500223809013068 

Sigmoid Node 2 

    Inputs    Weights 

    Threshold    -0.7302148990886627 

    Attrib D    0.8309811412055409 

    Attrib D3    0.9540482142716712 

    Attrib D*T    1.818236612109338 

Sigmoid Node 3 

    Inputs    Weights 

    Threshold    -0.9904640330903244 

    Attrib D    0.40843625105534453 

    Attrib D3    0.5513880759374299 

    Attrib D*T    0.6498527608147631 

 

Sigmoid Node 4 

    Inputs    Weights 

    Threshold    -1.5636109773970421 

    Attrib D    -2.1396932318708433 

    Attrib D3    0.4028818101003671 
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    Attrib D*T    0.12882026997754897 

Class  

    Input 

    Node 0 

 

Time taken to build model: 0.17 seconds 

 

=== Cross-validation === 

=== Summary === 

 

Correlation coefficient                  0.9769 

Mean absolute error                      1.3062 

Root mean squared error                  2.0045 

Relative absolute error                 29.5543 % 

Root relative squared error             29.4494 % 

Total Number of Instances               43      

 

 

 

 

 

Figure 28. The structure of flow volume BPNN 
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Peak flow BPNNM 

 

The optimal combination of the learning rate, momentum, and number of nodes peak flow 

BPNNM is 0.1, 0, and 2 respectively (Figure 29). The running result is shown in Table 14. 

The maximum correlation coefficient of the model is 0.99. 

 

Table 14  

Peak Flow BPNNM Running Result 

 

 

=== Run information === 

 

Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.1 -M 0.0 -N 500 -V 0 -S 0 -E 20 -H 2 

Relation:     Pre-BMPs-weka.filters.unsupervised.attribute.Remove-R2,5-13,15-18,20 

Instances:    43 

Attributes:   5 (D, ip, taa, D/T, Fp) 

 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

Linear Node 0 

    Inputs    Weights 

    Threshold    1.3146414557907469 

    Node 1    -0.9293701228309864 

    Node 2    -1.8920564928053003 

Sigmoid Node 1 

    Inputs    Weights 

    Threshold    -0.41172891145727053 

    Attrib D    -0.3776188802813853 

    Attrib ip    -0.2868179790252736 

    Attrib taa     0.0799960892446779 

    Attrib D/T    -0.7926666399101188 

Sigmoid Node 2 

 

    Inputs    Weights 

    Threshold    -1.340853557859408 

    Attrib D    -0.7976832711339032 

    Attrib ip    -0.3847935160005908 



- 66 - 

 

    Attrib taa     -0.8543145877606572 

    Attrib D/T    -1.1280006130867009 

Class  

    Input 

    Node 0 

 

Time taken to build model: 0.14 seconds 

 

=== Cross-validation === 

=== Summary === 

 

Correlation coefficient                  0.9878 

Mean absolute error                      6.4459 

Root mean squared error                  8.3583 

Relative absolute error                 15.1678 % 

Root relative squared error             15.3407 % 

Total Number of Instances               43      

 

 

 

 

 

Figure 29. The structure of peak flow BPNNM  
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4.1.2.5 Design Parameters  

 

The design parameters of the stormwater BMPs could also be used to estimate the 

stormwater flow volume reduction using their designed storage capacities. It could be 

considered as an additional method in assessing the performance on flow volume reduction 

or a validation of model prediction.  

 

For every rainfall event, the volume reduction could be estimated by 

 

1) If Vrain < Vstorage 

Then, Vreduction = Vrain, and no overflow 

 

2) If Vrain > Vstorage 

Then, Vreduction = Vstorage + Vexfiltration - Vinfiltration, and overflow appear 

 

The flow chart for this method is shown in Figure 30. 
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Figure 30. Flow chart for flow volume reduction using stormwater BMPs’ design 

parameters 

  

Rain 

Vrain > Vstorage 

Rainfall Event 

Discrimination Vrain ≤ Vstorage 

Vrain Vstorage Runoff 

Reduction 



- 69 - 

 

4.2 Overflow Area Abatement 

 

Coupled 1D/2D hydraulic models are supposed to present a visual contrast in the area of 

combined sewer overflow before and after the development of the stormwater BMPs. To 

solve the models in XPSWMM, hydraulic condition/elements and simulation scenarios 

need to set up according to the practical situation. 

 

4.2.1 Hydraulic Conditions 

 

Elements needed for the coupled 1D/2D models in XPSWMM are composed of 1D 

elements, 2D elements, and 1D/2D connections. The 1D part simulates the flow conditions 

in the underground combined sewer system, while the 2D part simulates the overflow on 

the surface of the ground. Figure 31 is a screenshot of the working station, and all the 

elements prepared for the coupled 1D/2D hydraulic simulation. 

 

1D Elements 

 

Nodes: represent manholes, catch basin, inlet, wet wells, junctions, ponds or outfalls 

(Solution). In this study, there are 653 hydraulic nodes in the model, which includes 393 

manholes and 260 sewer junctions. The nodes’ information on location (Figure 14), spill 

crest elevation, and invert elevation is necessary for XPSWMM. 
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Links: represent open channels and river reaches, closed conduits, pumps weirs, orifices 

and special structures (Solution). In this study, there are 650 hydraulic links (combined 

sewer pipes) in the model. The links are either single link or multi-link and reflecting 

location and shape of the buried conduits. There are no gutters, and surface channels 

located in the study area. The combined sewer pipes were loaded in XPSWMM, together 

with their upstream nodes, downstream nodes, diameter, slope, length, and roughness. To 

make sure the accuracy of the pipes’ condition, the pipes’ length and pipes’ slope were 

updataed through XPSWMM’s calculating conduit function. 

 

2D Elements 

 

DTM layer: in order to access the topographic data of the study area, the digital terrain 

model (DTM) is built in the XPSWMM using the topography data in Figure 13. For all the 

manholes, the elevation of the spill crest of the manholes was adjusted through generating 

ground elevation from TIN (Triangle Irregular Network) surface. 

 

2D grid layer: an XP2D model grid extents was created both within the range of DTM and 

the study area. The size of the study area is 292 acres (12718180 ft2). Due to the license of 

XPSWMM has a 10,000 limit in the number of XP2D cells, the minimum grid step of the 

XP2D layer has to be 36 ft. 
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2D inactive layer: in order to prevent stormwater flowing through buildings, the building 

areas should be either to be set as an inactive layer or given an extremely large Mining’s n 

in the land use layers. In this study the building areas were set as an inactive layer. 

 

Land use layers: the infiltration effect of the ground surface was affected by soil type and 

land use type. XPSWMM allow users to define the soil type under each land use layer 

setting. The land use layers in our study include grass layer, trees layer, parking areas layer, 

road areas layer, driveway areas layer, recreational layer and stormwater BMPs layer. Since 

the shape file for grass areas is not available, so the grass areas are set as unclaimed areas. 

Hence, the default land use category was supposed to be set as grass layer. Expect for the 

stormwater BMPs layer, all the other land use layers is active in all the four scenarios. 

 

Head boundary layer: in the default setting, a vertical wall is assumed at the edge of the 

active grid domain, which will cause water to pile up at the downstream edge of the 2D 

model. Head boundaries will allow water to exit the flooded area, and three head boundary 

lines was created on edges of the active area in this study. 

 

2D rain area layer: Rain on the grid method is used in the simulations. Two rainfall/flow 

area layers were created to coordinate with different scenarios. The status of the 

rainfall/flow area layer will be discussed in details in the next section. 

 

1D/2D Connections 
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In the model, it is supposed that the natural dispersal occurs where combined sewer reached 

its capacity and runoff spreads according to existing topography (Wisheropp, Manha et al.). 

The manholes’ spill crests were linked to the 2D ground surface in the nodes’ setting, which 

can capture inflow from the ground surface. 



 

 

 

Figure 31 Elements needed in the coupled 1D/2D hydraulic simulation
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4.2.2 Simulation Scenarios 

 

In order to obtain the overflow information before and after the development of stormwater 

BMPs under the two selected rainfall events, four scenarios were studied. The status of the 

layers under the 1D network, 2D models, and topography for each scenario were listed in 

Table 15 – 18.  

 

Scenario 1: rainfall event on June 18, 2011 

 

 Scenario 1.1 Overflow Area for Pre-BMPs (Table 15) 

 

 Scenario 1.2 Overflow Area for Post-BMPs (Table 16) 

 

Scenario 2: rainfall event on May 29, 2012 

 

 Scenario 2.1 Overflow Area for Pre-BMPs (Table 17) 

 

 Scenario 2.2 Overflow Area for Post-BMPs (Table 18) 
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Table 15  

Status of the layers for the scenario 1.1 

 

Elements Category Layer Status 

1D Network Sewer System 

Nodes Active 

Links Active 

2D Model 

 2D Grid Active 

2D Layers Inactive Areas Active 

 Head Boundary Active 

Rainfall Event 

June 18, 2011 (1-inch) Active 

May 29, 2012 (4-inch) Inactive 

Land Use 

Tree Areas Active 

Parking Areas Active 

Road Areas Active 

Driveway Areas, Active 

Recreational Areas Active 

Stormwater BMPs Area Inactive 

Topography Surface DTM Active 
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Table 16  

Status of the layers for the scenario 1.2 

 

Elements Category Layer Status 

1D Network Sewer System 

Nodes Active 

Links Active 

2D Model 

 2D Grid Active 

2D Layers Inactive Areas Active 

 Head Boundary Active 

Rainfall Event 

June 18, 2011 (1-inch) Active 

May 29, 2012 (4-inch) Inactive 

Land Use 

Tree Areas Active 

Parking Areas Active 

Road Areas Active 

Driveway Areas, Active 

Recreational Areas Active 

Stormwater BMPs Area Active 

Topography Surface DTM Active 
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Table 17  

Status of the layers for the scenario 2.1 

 

Elements Category Layer Status 

1D Network Sewer System 

Nodes Active 

Links Active 

2D Model 

 2D Grid Active 

2D Layers Inactive Areas Active 

 Head Boundary Active 

Rainfall Event 

June 18, 2011 (1-inch) Inctive 

May 29, 2012 (4-inch) Active 

Land Use 

Tree Areas Active 

Parking Areas Active 

Road Areas Active 

Driveway Areas, Active 

Recreational Areas Active 

Stormwater BMPs Area Inactive 

Topography Surface DTM Active 
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Table 18  

Status of the layers for the scenario 2.2 

 

Elements Category Layer Status 

1D Network Sewer System 

Nodes Active 

Links Active 

2D Model 

 2D Grid Active 

2D Layers Inactive Areas Active 

 Head Boundary Active 

Rainfall Event 

June 18, 2011 (1-inch) Inactive 

May 29, 2012 (4-inch) Active 

Land Use 

Tree Areas Active 

Parking Areas Active 

Road Areas Active 

Driveway Areas, Active 

Recreational Areas Active 

Stormwater BMPs Area Active 

Topography Surface DTM Active 
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4.2.3 Simulation Job Control 

 

Since this is a coupled 1D/2D hydraulic simulation, hydraulics job control, and 2D job 

control is needed to be configured in XPSWMM. 

 

Hydraulics Job Control 

 

In this section, the routing control (parameters for routing simulation) and time control 

(simulation time) need to be set up. Take scenario 1.1 as an example, the simulation time 

starts at 10:00:00 of June 18th, 2011, and ends at 19:59:59 of that day. The duration of 

simulation is 10 hours and the simulation time step is set as 5 seconds (Figure 32). 

 

 

 

Figure 32 Hydraulics job control interface 
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2D Job Control 

 

In the 2D job control, the 2D model need to be set active, and the time step is set to 5 

seconds. The grass layer is set to be as the default land use category, and the default area 

type is the active area in this study. Other parameters are using the XPSWMM default 

values (Figure 33). 

 

 

 

Figure 33 2D job control interface 
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CHAPTER V 

 

RESULTS AND DISCUSSION 

 

5.1 Flow Volume Reduction 

 

In the previous chapters, the MLRM and BPNNM for flow volume were built by training 

the rainfall features - flow volume data which is measured before the development of the 

stormwater BMPs. When the models were applied to predict the flow volume for the 

rainfall event which occurred after the development of the stormwater BMPs, the 

predicted/estimated value would be the flow volume generated by the rainfall events 

without the stormwater BMPs installed in the study area. 

 

It is illustrated in Figure 34 that the predicted flow volume agrees with the trend of actual 

flow volume of post-development, and almost all of the predicted flow volume are larger 

than the actual flow volume. It shows that all the estimated flow volume by MLRM is 

greater than the actual flow volume which was detected by flow meter, and the flow volume 

reduction ranges from 0.01 to 3.22 million gallons. It is also shown in Figure 34 that of the 

109 estimated flow volumes by BPNNM, 102 has an over-estimation, which ranges from 

0.04 to 0.88 million gallons. 



 

 

 

 

Figure 34 Actual and predicted flow volume for pre- and post-development of stormwater BMPs 
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Figure 35 Actual and reduced flow volume for the rainfall events after the development of stormwater BMPs 
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Seven flow volumes out of the 109 are lower than the actual detected flow volumes. The 

bar chart in Figure 35 clearly shows: whenever the flow volume is greater than 6 million 

gallons, the estimation of the flow volume by the BBNNM would be lower than the actual 

flow volume, which gives a negative value for flow volume reduction. This makes the flow 

volume BBNNM only applicable to rainfall event which had a flow volume lower than 6 

million gallons. There are two possible reasons accountable for this issue:  

 

(i) The number of total training samples (Pre-BMP rainfall features – flow volume) is 

relatively small. 

      (ii) 85% of training samples having a flow volume less than 6 million gallons.  

 

The predicted/estimated total flow volume reduction for the 109 rainfall events (post-

development) by the stormwater BMPs was summarized in Figure 36. It was estimated by 

flow volume MLRM and BPNNM that the reduction is 38.30 million gallons and 35.12 

million gallons respectively. In other words, approximately 14% of the flow was 

captured/diverted by the stormwater BMPs. The highly identical estimations by the two 

models also substantiate the feasibility of the multiple linear regression method and back 

propagation neural network method.  

 

The flow volume reduction can also be estimated by design parameters of the stormwater 

BMPs. The method was introduced in section 4.1.2.5 Design Parameters. It is estimated 

that 26.81 million gallons of flow were captured by the stormwater BMPs (Figure 36), 

which is about 27% lower than the estimations made by flow volume MLRM and BPNNM. 
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Figure 36 Total flow volume reduction by the stormwater BMPs  
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5.2 Peak Flow Attenuation 

 

The MLRM and BPNNM for peak flow were also built by training the rainfall features - 

peak flow on data from before the development of the stormwater BMPs. When the models 

were applied to predict the peak flow for the rainfall events which occurred after the 

development of the stormwater BMPs, the predicted/estimated value would be the peak 

flow generated by the rainfall events without the stormwater BMPs installed in the study 

area. 

 

It is clearly shown in Figure 37 that the predictions/estimations both from MLRM and 

BPNNM correlate closely and have a very distinct over-prediction when compared to the 

actual detected peak flow. Because the models were generated from data obtained prior to 

installation of the stormwater BMPs, this over-prediction indicates that the stormwater 

BMPs are having a significant effect on the magnitude of peak flow.  

 

From the results of peak flow MLRM in Figure 37, the magnitude of peak flow in all the 

109 rainfall events has been weakened, and the estimated average degree of attenuation is 

48.44% (Figure 38). Figure 37 also shows the prediction results from peak flow BPNNM. 

It illustrates that the magnitude of peak flow in 107 (out of the 109) rainfall events was 

attenuated, and the estimated average degree of attenuation is 46.28% (Figure 38). The 

other 2 rainfall events, occurred on April 19, 2013 and March 30, 2013, were estimated to 

be 1.30 and 2.30 (in million gallons per day) greater than the actual detected peak flow. 



 

 

 

 

Figure 37 Actual and predicted flow volume for pre- and post-development of stormwater BMPs 
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Figure 38 Average peak flow attenuation by stormwater BMPs 
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5.3 Overflow Area Abatement 

 

The coupled 1D/2D hydraulic models with four scenarios were solved in XPSWMM. The 

maps of maximum overflow depth for the scenarios were obtained, and the overflow depth 

animation for each scenario was recorded.  

 

Scenario 1: (1 inch rainfall event on June 18, 2011) 

 

Figure 39 shows the maximum overflow depth for the scenario 1.1 (Pre-BMPs) and 

scenario 1.2 (Post-BMPs). The blue polygons stand for the areas and locations of the 

stormwater BMPs. The legend shows the maximum water depth ranges from 0.1 to 6 inches. 

It shows that almost all of the overflow area has a depth which is below 0.5 inches, expect 

for some areas along Eastern Parkway have a water depth at about 1.5 inches.  

 

There are no significant change on the overflow areas for Pre- and Post BMPs. Therefore, 

for 1 inch rain, the overflow area is not obviously reduced when the stormwater BMPs is 

installed. It also reflected the combined sewer’s capacity hasn’t been reached. 

 

The overflow areas are mostly distributed at the road areas and the concrete areas beside 

the buildings, but the depth of the overflow is shallow. This is probably because the rain 

water at this volume tends to pond on the ground surface, instead of flowing into the 

combined sewer system, or the stormwater BMPs infrastructure.  
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Scenario 2: (4 inch rainfall event on May 29, 2012) 

 

The 4 inch rainfall occurred on May 29, 2012 generated a larger overflow area than the 

rainfall occurred on June 18, 2011. Figure 40 shows the maximum overflow depth for the 

scenario 2.1 (Pre-BMPs) and scenario 2.2 (Post-BMPs) in the study area. The blue 

polygons stand for the areas and locations of the stormwater BMPs.  

 

It is clear that the majority of the overflow area has a water depth lower than 0.5 inches in 

both the Pre-BMPs scenario and Post-BMPs scenario. The overflow sensitive areas for the 

4 inch rainfall are the areas along the Eastern Parkway, South Brook Street, and South 

Floyd Street. The depth of overflow in the sensitive area doesn’t significantly lowered by 

the stormwater BMPs. The maximum overflow depth at the T-intersection of Eastern 

parkway and South 2ND street has reached 6 inches in both the Pre-BMPs scenario and 

Post-BMPs scenario.  

 

Unlike the 1 inch rainfall event, the 4 inch rainfall event has a distinct contrast on the 

overflow areas between the Pre-BMPs scenario and Post-BMPs scenario, especially at the 

location where the stormwater BMPs were installed. It illustrates that the overflow areas at 

the JB Speed School parking lot, Student Rec Center, and College of Business were 

significantly abated by the stormwater BMPs. 



 

 

 

Figure 39 Maximum Pre- and Post-BMPs Overflow Area caused by rainfall event on June 18, 2011 
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Figure 40 Maximum Pre- and Post-BMPs Overflow Area caused by rainfall event on May 29, 2012
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CHAPTER VI 

 

CONCLUSIONS 

 

In this chapter, the conclusions of this research are outlined, and several potential ideas and 

recommendations for the future work are discussed. 

 

6.1 Conclusions 

 

A comprehensive performance assessment on the stormwater BMPs was accomplished in 

this study. The assessments were made on three different perspectives: flow volume 

reduction, peak flow attenuation, and overflow area abatement. The flow volume reduction 

and the peak flow attenuation were quantified through building Multiple Linear Regression 

Models (MLRMs) and Back Propagation Neural Network Models (BPNNMs), and the 

overflow area abatement was visualized by performing coupled 1D/2D hydraulic 

simulations. The following conclusions are achieved. 

 

(1) The development of stormwater BMPs in the study area have reduced the volume of 

stormwater flows, attenuated the peak flows, and abated the overflow areas during wet 

weather.



- 94 - 

 

(2) For the study area, flow volume in wet weather is mostly controlled by rainfall depth, 

and followed rainfall duration. Peak flow is decided by rainfall depth, peak rainfall 

intensity, duration and duration of above average rainfall intensity. Peak flow is negatively 

correlated with rainfall duration, while positively correlated with other three features. 

 

(3) Multiple linear regression and back-propagation neural network are applicable methods 

in predicting the magnitude of flow volume. However, the flow volume BPNNM is only 

viable to predict for flow volume lower than 6 million gallons. The estimated volume of 

the flow diverted by the stormwater BMPs are approximately 30 million gallons per year 

by both models.  

 

(4) Multiple linear regression and back-propagation neural network are also applicable in 

predicting the magnitude of peak flow. According to the models’ prediction, the magnitude 

of the peak flow could be trimmed down by approximately 50% after installed the 

stormwater BMPs. 

 

(5) The coupled 1D/2D hydraulic simulation is a viable tool in visualizing the overflow 

areas. The overflow areas, which could be saved by the stormwater BMPs, depend on the 

magnitude of the rainfall event. The abatement in overflow areas is more evident at 4 inch 

rainfall event and the 1 inch rainfall event. In the 4 inch rainfall event, the overflow areas 

at the JB Speed School parking lot, Student Rec Center, and College of Business were 

significantly abated by the stormwater BMPs. 
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6.2 Contributions 

 

Besides the conclusion of a comprehensive assessment on the stormwater BMPs was 

reached, here are some additional contributions from this study: 

 

(1)  It incorporated peak flow reduction as stormwater BMPs’ performance assessment. 

The of rainfall – runoff assumption raised in this study linked rainfall features with flow 

volume/peak flow, which brought a new insight in solving stormwater BMPs’ assessment 

problems. The assumption could be revised and adopted in many other situations. 

 

(2) The volume of flow diverted by the stormwater BMPs for every rainfall/storm event in 

our study period was estimated, and the degree of peak flow attenuated was also predicted 

by the developed models.  

 

(3) Multiple linear regression and back propagation neural network are feasible method in 

revealing the relationships either between flow volume and rainfall features, or between 

peak flow and rainfall features. The prediction accuracy and application range were also 

discussed. 

 

(4) The overflow course was visualized in a coupled 1D/2D hydraulic simulation, and the 

overflow sensitive area could provide information needed for stakeholders and decision 

makers on the stormwater BMPs’ installation priority. 
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6.3 Future Work and Recommendations 

 

The comprehensive performance assessment for the stormwater BMPs was accomplished 

utilizing the available information. While the assessment methods are applicable in a wide 

range of cases, the accuracy of the methods still has room to improve. The following are 

some of the recommendations for the future design and construction of stormwater BMPs. 

 

(1) More flow meters should be installed at the downstream of the combined sewer 

watersheds, especially for the ones that have severe overflow issues. The predictions on 

the magnitude of flow volume and peak flow would have been more accurate if more 

training data were available. Since the study area is comprise of several combined sewer 

sub-watersheds, flow meters are recommended to be installed at every outlet of the sub-

watersheds 

 

(2) If there is more rainfall and flow data available before the development of the 

sormwater BMPs, antecedent conditions, such as dry period, should be considered as 

rainfall features in the prediction models. A more accurate model could be obtained 

through year of rainfall and runoff observation. 

 

(3) Stormwater BMPs need to be installed to alleviate the overflow problem on the T-

intersection of Eastern parkway and South 2ND street, because they are the most overflow 

sensitive areas in wet weather. 
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(4) More rainfall events should be researched on the overflow areas pre- and post-BMPs 

installation. For example, 1-year storm, 2-year storm, 5-year storm, 10-year storm, 20-year 

storm, 50-year storm, and 100-year storm. A reference table could be made for the study 

area. In this way, once the magnitude of the storm is forecasted or measured, the rough 

overflow risk could be assessed through quickly looking up the table. 
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6.4 Limitations 

 

(1) The data mining could be more sophisticated. For example, more information could 

have been extracted from the training data. Moreover, there are other mining data algorisms 

could be applied to developing more accurate predictive models. 

 

(2) Some assumptions may be violated. For example, it is assumed that all the rainfall 

events are independent in this study, however, extreme conditions do exists. 

.
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APPENDIX 

 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.util.Random; 

 

import weka.classifiers.Evaluation; 

import weka.classifiers.functions.MultilayerPerceptron; 

import weka.core.Instances; 

import weka.core.converters.CSVLoader; 

 

public class Water { 

 

 @SuppressWarnings("resource") 

 public static void main(String args[]) throws Exception { 

  // File to write the output to. 

  BufferedWriter outputWriter = new BufferedWriter(new FileWriter( 

    "output.csv")); 

 

  // Get the dataset from file named 'data.csv' or the passed value. 

  String fname = "data.csv"; 

  if (args.length > 0) { 

   // This is executed only if there is an input parameter.
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   fname = args[0]; 

  } 

 

  // Read the dataset from the CSV file. 

  Instances dataset = loadTrainingARFF(fname); 

  // Set the class index to 'Fp' 

  dataset.setClass(dataset.attribute("Fp")); 

 

  // Repeat for different values of l, m, h. 

  for (double l = 0.0; l <= 1.0; l = l + 0.1) { 

   for (double m = 0.0; m <= 1.0; m = m + 0.1) { 

    for (int h = 0; h <= 4; h++) { 

 

     // Build the classifier and set the options. 

     MultilayerPerceptron mlp = new MultilayerPerceptron(); 

     mlp.setLearningRate(l); 

     mlp.setMomentum(m); 

     mlp.setHiddenLayers(h + ""); 

 

     mlp.buildClassifier(dataset); 

 

     // Run the 10-fold cross evaluation. 

     Evaluation eval = new Evaluation(dataset); 

     eval.crossValidateModel(mlp, dataset, 10, new Random(1)); 

 

     // Write the Correlation Coefficient to the output file. 

     outputWriter.write(l + "\t" + m + "\t" + h + "\t" 
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       + eval.correlationCoefficient() + "\n"); 

    } 

   } 

  } 

 

  // Close the file after writing all the output values. 

  outputWriter.flush(); 

  outputWriter.close(); 

  // DONE. 

  System.out.println("Output written to: 'output.csv'"); 

 } 

 

 public static Instances loadTrainingARFF(String fname) throws IOException { 

  CSVLoader tr = new CSVLoader(); 

  tr.setSource(new File(fname)); 

  Instances data = tr.getDataSet(); 

  return data; 
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