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ABSTRACT 

MACRO MODEL FOR SOLID AND PERFORATED MASONRY INFILL SHEAR 

WALLS  

Farid Nemati 

July 7, 2015 

In this dissertation the performance of masonry walls enclosed by frame structures is 

studied and a new finite element model for these systems is presented. As part of this 

effort, the common modeling approaches i.e. micro-models and macro-models are 

briefly reviewed and their specifications are compared. Based on the findings in these 

comparisons, it was shown that macro modeling is the preferred modeling approach 

and the development of the new model is presented. The proposed model is described 

in detail and the calibration procedures along with the material models, used in the 

proposed model, are presented. To account for the interaction of the frame and the 

shear wall a contact member is developed.  In support of this development three of 

most common solutions for contact problems that can be also used in modeling the 

frame-infill interaction problem are described; a detailed description for the chosen 

method along with a simple structural example is given.  

A method for capturing the behaviors of the steel reinforcement (if present) is 

presented for the case where the infill shear walls are reinforced.  

The proposed element was examined to see if it passes a patch test.  
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Finally, a number of experimental tests conducted by other researchers are modeled 

using the proposed model and the results are compared with the behavior predicted by 

the model. Good agreement between the predicted and measured behavior was 

achieved.    
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CHAPTER 1:  INTRODUCTION 

Many of the pre-1950 constructed buildings in the United States are frame-type 

structures with enclosed brick or concrete masonry walls in their perimeter portals. As 

an example, about 40 % of the buildings inventoried by U.S. Army have been 

classified as concrete frames enclosing infill shear walls, while this structural system 

has shown to be vulnerable to seismic damage [Bashandy et al., 1995].  In addition, 

newer construction has also used similar systems in South and Central America, 

North Africa and Southern Europe. Unless these structural systems are designed to 

avoid any considerable interaction with the surrounding frame, the wall usually 

participates in the performance of the structure, under lateral loadings, i.e. seismic or 

wind loads. The non-participating walls are not studied here as potential structural 

elements, and the study here is limited to the participating enclosed walls also known 

as infill walls. From this point in this study, the term infill wall refers to the 

participating infill walls. 

The infill walls can significantly alter the stiffness and strength of the surrounding 

frame; especially under lateral loadings, the infill wall increases the stiffness of the 

combined structural system leading to a reduction in the natural period of the 

structural system and its ductility [El-Dakhakhni 2003]. The infill wall can also cause 

pre-mature failure of the frame elements in the cases where the infill wall imparts 

large shear loads to the surrounding frame [FEMA 178, 1992]. Thus, accurate study 

of the frame-wall interaction is of great importance and neglecting the infill wall 

participation in design may be unsafe [Asteris 2011]. 
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To assess the performance of infill walls, many computational models have been 

created and many experimental tests have been conducted in the past sixty years.  

Each of these methods has been applied to the analysis and design of masonry infill 

shear walls with varying degrees of success. 

The objectives of the following investigation was to evaluate the current state of the 

art for the analysis masonry infill shear walls, identify where the current state of the 

art is lacking, develop an analytical model that can be used to accurately predict the 

performance of masonry in-fill shear walls; unreinforced, reinforced and with 

openings, but is simple enough to use to support the assessment and rehabilitation of 

existing buildings and the design of new structures.        

In the following section, a literature review of the current state of the art is presents. 

Chapter 2 presents the detailed model development and Chapter 3 present the 

procedures used to develop the material stress-strain relationships and calibrate the 

model.  Chapter 4 presents a discussion of the model results when compared with 

measured unreinforced and reinforced masonry infill shear walls performance, with 

and without openings.  A discussion of the effects of openings on the performance of 

the masonry infill shear walls is also presented in this chapter. Chapter 5 provides a 

summary, conclusions and recommendations.       

Literature Review 

To assess the performance of masonry infill shear walls, a number of computational 

models have been created and numerous experimental tests have been conducted in 

the past sixty years. The data from the experimental tests were used to evaluate the 

theoretical models proposed by various researchers or to update the design 
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codes/standards, for such structural systems. The following section of this document 

will describe this in more detail.    

In general, the computational models proposed hitherto, can fall into two general 

groups: micro-models and macro-models. In micro-models, the wall parts, i.e. the 

units and mortar are usually considered as two separate element types and the 

interface between them may also be modeled as third type of element [Lourenço et al. 

2006]. In contrast, the macro-elements consider the units, mortar and the interface 

between them as a homogeneous isotropic/anisotropic material [Lourenço et al. 2006]. 

The merged material model assumed in macro-models can be either isotropic or 

anisotropic based on the focus of study and desired precision. These modeling 

approaches along with their general specifications will be briefly described later in 

this work. 

Micro-models: 

One of the main modeling approaches for assessing the behavior of infill walls under 

loading is to use micro-models. Micro-models can fall into two general groups, i.e. 

simplified and detailed. Although the basic idea behind the two groups may seem very 

similar, the required computational effort and achieved accuracy of the results can 

vary significantly [Lourenço, 2006]. 

In detailed micro-models, separate continuum elements describe units and mortar at 

the location of joints but the unit-mortar interface elements are discontinuous. In the 

simplified micro-modeling each unit and the surrounding mortar joint are represented 

by continuum elements, also known as expanded units, while the unit-mortar interface 

is lumped into discontinuous elements at mid-thickness of the mortar layers 

[Lourenço et al. 2006] and [Grecchi 2010]; see Fig. 1 taken from [Lourenço, 2006].  
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Figure 1. 1. Micro-Modeling Strategies for Masonry (a) Detailed Micro-Modeling; (b) 
Simplified Micro-Modeling [taken from Lourenço, 2006] 

 

In detailed micro-models, the material properties of units and mortar must be defined 

separately. In addition, the unit-mortar interface is considered as a separate plane with 

potential crack/slip [Lourenço et al. 2006]. The detailed micro-modeling approach has 

shown to be very accurate for analyzing the local behavior of infill walls both in 

linear elastic and nonlinear/inelastic zones [Grecchi, 2010].  

On the other hand, the simplified micro-models can be only used when the material is 

experiencing linear deformations. This is mostly because of the large ratio of unit 

stiffness to mortar stiffness that induces significant inaccuracies when the wall is 

showing nonlinear behavior [Zucchini and Lourenço, 2002]. 

Thus, to assess the nonlinear behavior of masonry walls and achieve sufficiently 

accurate results, very fine meshes must be used along with detailed micro-models 

[Zucchini et al. 2002]; this modeling approach requires a significant computational 

effort. In addition, the location of units and thicknesses of mortar layers places 

constraints on the finite element mesh generation procedure. This is especially 

important when the wall is perforated, where additional considerations on mesh 

generation must be made to reflect the pattern of units and mortar around the 



 

 5   
 

openings. Moreover, as the variability of materials and difference in homogeneity 

levels for mortar and units must be considered when addressing the performance of 

each element type.  Thus, the use of detailed micro-models requires a relatively high 

level of expertise for proper application to masonry assembly behavior. Furthermore, 

a relatively high number of test samples are needed for experiments to capture the 

range of behavior for the materials i.e. units and mortar [Grecchi, 2010]. 

Macro-models: 

In macro-elements, none of the internal parts of the structure of the wall, i.e. units, 

mortar and the interface between them are modeled as separate elements. Instead, they 

merge together in the model to create a homogeneous anisotropic material which is 

used for the entire masonry assembly. Hence, the micro model mesh generated for the 

finite element analysis does not need to follow the pattern of bonding between units. 

Thus, the macro-models require significantly lower expertise levels for modeling  and  

a much lower computational effort is needed for  macro-models when compared to 

micro-models; and is therefore, much more application and design oriented. 

Moreover, no specific considerations need be made for modeling the openings in 

macro-models. In addition, as the units, mortar and the interface between them are 

merged to create a homogeneous anisotropic material, only the relation between 

average stresses and average strains in the homogenized media has to be described. 

Finally, a smaller number of tests on unit and mortar assemblies are needed to define 

the material properties for the whole infill wall assembly [Lourenço, 1996]. 

Modeling preference: 

Because of the following reasons, a macro-modeling approach has been selected over 

the micro-modeling approaches in this research: 
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1. In contrast to the micro-elements that require the separately modeling of all 

units and mortar layers, the macro-models can be used to divide the infill wall 

into geometrically appropriate wall-sections without consideration of bonding 

patterns and unit sizes. The wall elements can be defined regardless of the 

thickness of mortar layers and the location and number of units. This is useful 

in modeling perforated infill walls, where the openings may not necessarily 

follow the masonry bonding pattern. 

2. Use of micro-elements requires higher levels of expertise both in masonry 

material behavior and Finite Element modeling when compared to macro-

elements. This expertise is required especially for mesh generation, 

conducting frequent small size experimental tests on mortar and units to find 

their material properties, placing additional potential crack/slip planes to 

model the interface between the units and mortar and technical details to 

define the failure criteria of different elements. 

3. Use of macro-element modeling requires much less computational effort 

comparing to the micro-elements. In addition, macro-elements can be 

calibrated with smaller numbers of experimental tests (or code defined 

assembly strengths and stiffness), while giving acceptably precise prediction 

of the overall performance of the infill walls. 

In the following section a brief literature review is provided for some of the best 

known macro-models proposed by other researchers for modeling the in-plane 

behavior of infill wall systems. 
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Previous Macro Models For Infill Shear Walls 

Over the past sixty years, a number of researchers have investigated the behavior of 

infilled shear walls and frames under in-plane loading.  One of the first people who 

proposed a model for consideration of infill shear walls was Polyakov, who suggested 

that the effect of an infill wall could be captured by replacing it with diagonal bracing 

[Polyakov 1960]. Using this idea of replacing the shear wall with a diagonal brace, 

many researchers proposed models where the infill wall was replaced by a single 

compressive strut.  Each of these researchers, ([Holmes 1961], [Smith 1962, 1966], 

[Smith et al. 1969], [Mainstone 1971, 1974], [Bazan et al. 1980], [Liauw et al. 1984], 

[Paulay et al. 1992], [Durrani et al. 1994], and [Flanagan et al. 1999, 2001]) suggested 

different criteria for calculation of the strut width. For example, Holmes in 1961 

suggested a model in which, the infill wall was replaced by a pin-joint diagonal strut 

made from the same material, i.e. masonry. In his model the thickness of the strut was 

equal to that of the wall but its width was one third of the length of the strut [Holmes 

1961]. In 1962, based on the results of experimental data, Smith suggested that one 

third for the ratio of strut width to strut diagonal length is an overestimation; he 

suggested that the width of the strut to range from 0.1 to 0.25 of the length of the 

diagonal strut [Smith 1962]. Later in 1969, Smith et al. suggested that the width of the 

diagonal strut is related to the ratio of stiffness of infill wall to stiffness of frame; 

indeed they showed that the width of compression strut is related to the coefficient 

shown in Equation 1-1. 

 
4

4
2sin

wcc

ww
h

hIE

tE
h


                                                                                          Eq. 1-1 

In which, h is the height of columns from centerlines of top and bottom beams, Ew is 

the modulus of elasticity for infill wall material, tw is the thickness of the infill wall, 
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EcIc is the flexural rigidity of columns, hw is the height of infill wall and   is as 

following: 

)arctan( ww Lh                                                                                              Eq. 1-2 

Where, Lw is the horizontal length of the infill wall and hw is the same as before. 

 

Figure 1. 2. Single Compressive Strut Model for Masonry Infill; (Fig. is based on a 
similar Fig. in [Asteris 2011]) 

In 1974, Mainstone et al. suggested a formula for the width of the equivalent 

compressive strut based on the relative stiffness of infill wall to stiffness of frame as 

following [Mainstone 1974]: 

4.0175.0 
 hdw                                                                                                Eq. 1-3 

In which, 
h  is defined as in work of Smith et al. [1969]; see Equation 1-1. Later 

many other researchers ([Klingner and Bertero 1978], [Fardis and Calvi 1994], 

[Fardis and Panagiotakos 1997], [Kodur et al. 1995 and 1998], [Balendra et al 2003]) 
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agreed with the Mainstone suggested formula for equivalent compressive strut width 

and it was also considered in FEMA 1997 [Asteris 2011]. 

In 1984, Tassios suggested the formula shown below (Eq. 1-4) for the equivalent 

compressive strut width [Tassios 1984] based on the experimental work of Bazan et 

al. [1980].  

   wwcc AGAEdw )(sin2.0                                                                        Eq. 1-4 

Their proposed formula was applicable only if: 

    51  wwcc AGAE                                                                                           Eq. 1-5 

Liauw et al. also proposed a formula for the width of the equivalent compressive strut, 

which was computed only for the practical strut angle,  , values of 25 and 50 for as 

follows [Liauw et al. 1984]: 

   hdw  2sin95.0                                                                                    Eq. 1-6 

In 1987, Decanini et al. suggested two different equations for the width of the 

equivalent strut for cracked and uncracked infill walls [Decanini 1987]: 

)85.7(,707.001.0  hh andcrackedifdw                                 Eq. 1-7 

)85.7(,470.004.0  hh andcrackedifdw                                 Eq. 1-8 

)85.7(,748.0085.0  hh andUncrackedifdw                           Eq. 1-9 

)85.7(,393.0130.0  hh andUncrackedifdw                        Eq. 1-10 

In 1992, Paulay and Priestley proposed a more conservative formula (Eq. 1-11) for 

the width of diagonal compressive struts as they showed that previous proposed 

criteria for width of the compressive strut may result in stiffer structure and a higher 

seismic load demand in the structure under lateral loading [Paulay and Priestley 

1992]. 

41dw                                                                                                           Eq. 1-11 
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All of the aforementioned formulae are based on the ratio of stiffness of infill wall to 

the stiffness of frame and used the ratio shown in Equation 1-1.  

In 1994, Durrani et al. proposed the following formula for the width of diagonal 

compressive strut.  It was also based on the relative stiffness of infill wall and frame 

but it did not use the h calculated by Equation 1-1 [Durrani et al. 1994]. 

)2(sin dw                                                                                                 Eq. 1-12 

Where, 

     1.04)2(sin32.0 
 wccww hIEmtEh                                               Eq. 1-13 

In which, 

    LIEhIEm ccbb 616                                                                        Eq. 1-14 

And, E, I and h are abbreviations for elasticity modulus, the moment of inertia and the 

height, while the subscripts w, c and b denote wall, column and beam, respectively. 

However, many researchers found that the single compressive strut model could not 

reproduce the flexural moments and shear forces created in the frame members and 

showed that diagonal strut models did not accurately address all aspects of the 

interaction between the frame and the infill; ([Reflak et al. 1991], [Buonopane et al. 

1999], [Chaker et al. 1999], [Mohebkhah et al. 2007] and [Asteris et al. 2011] among 

many others). In addition, there were still disagreements about the width of equivalent 

strut considered in the modeling process. Furthermore, single-strut models usually 

underestimated the flexural capacity of the wall as the lateral forces were primarily 

resisted by a truss mechanism [Crisafulli 1997]. 

In 1995, Saneinejad proposed a method for the analysis and design of infilled steel 

frames under in-plane loading, which was later used by [Madan et al. 1997]. 

Saneinejad used nonlinear finite-element analyses calibrated on previous experiments 

and assumed that wall openings were not along the formed diagonal struts. A number 
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of researchers applied the strut model to perforated infill walls and found that the 

lateral resistance, initial stiffness and energy dissipation capacity of perforated infill 

walls could be significantly lower than solid infill walls ([Benjamin et al. 1958], 

[Mallick et al. 1971], [Liauw et al. 1977], [Utku 1980], [Giannakas et al. 1987], [Al-

Chaar et al. 2003], [Asteris 2003], [Mohebkhah et al. 2007] and [Mondal et al. 2008]). 

However, modifications of the model to account for openings typically just reduced 

the width of single compressive strut [Kakavetsis et al. 2009] and can become very 

inaccurate for modeling the infill walls with openings. 

In 1976, Leuchars and Scrivener [1976] proposed a model for masonry infill shear 

walls that considered sliding shear failure; the model had two struts and was able to 

predict large the bending moments and shear forces that are often induced in the 

central zone of the frame columns. The wall sliding friction mechanism (along cracks) 

was also considered by the model using an element connecting the two struts. To 

model the interaction between frame and infill more precisely, [Thiruvengadam 1985] 

proposed the use of a multiple strut model for infill walls. His model was originally 

intended to more realistically evaluate the natural frequencies and vibration modes of 

infill shear walls.  

Other researchers, also proposed multiple strut models, [Syrmakezis et al. 1986], 

[Chrysostomou 1991], [Chrysostomou et al. 2002]. [Syrmakezis et al. 1986] 

suggested the use of five parallel diagonal struts, in both directions, to emphasize on 

the effect of frame-infill contact length on distribution of moments in the surrounding 

frame.  

Chrysostomou focused on the degradation of stiffness and strength of the infill shear 

walls, and suggested the use of six compression-only diagonal struts, in both 

directions [Chrysostomou 1991]. In this model, the ends of off-diagonal compression-
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only struts were inserted on the potential plastic hinge locations on the beams and 

columns and only half of the six struts were active under loading in each direction.  

 

Figure 1. 3. Parallel Multiple-Struts Model for Masonry Infill Walls [Chrysostomou 
1991];(Fig. is based on a similar Fig. in [Asteris 2011])\ 

[El-Dakhakhni et al. 2001], [El-Dakhakhni 2002] also suggested a model that used 

one diagonal and two off-diagonal struts in order to describe the orthotropic behavior 

of the masonry.  This model was later adopted by [Mohebkhah et al. 2007] to consider 

the nonlinear global behavior of infilled steel frames with central openings. 
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Figure 1. 4. Non-Parallel Multiple-Struts Model [El-Dakhakhni et al. 2001]; (Fig. is 
based on a similar fig. in [Asteris 2011]) 

 

In his Ph.D. thesis, Crisafulli showed that even the most complicated multiple-strut 

model, such as that proposed by Thiruvengadam [1985] was not capable of describing 

the response of the infilled frame systems when horizontal shear sliding occurs in the 

masonry panel [Crisafulli 1997]. Thus, he modified the model of Leuchars and 

Scrivener by implementing a four-node panel element connected to the frame at the 

beam-column joints [Crisafulli et al. 2007]. Although the modified model was easy to 

use in the analysis of infilled frame structures, it did not accurately predict the 

bending moments and shear forces in the surrounding frame [Asteris et al. 2011].  
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Figure 1. 5. Multiple-Strut Model for Masonry Infill Walls [Crisafulli et al. 2007]; 
(Fig. is based on a similar Fig. in [Asteris 2011]) 

 

Finally, in all of these models, the force-displacement relationships of the equivalent-

strut model must account for the nonlinear hysteretic material behavior, which 

increases the computational complexity and uncertainty of the problem [Asteris et al. 

2011].  

In conclusion, neither the single strut models nor the multi-strut models were accurate 

enough to predict the performance of masonry infill shear wall systems. Previous 

models lack the ability to consider all types of common failure modes and most of 

them cannot properly address the effects of wall openings. In addition, modeling steel 

reinforcement has not been properly addressed in the previous models. As a result, 

there is a need for an analytical model that is able to predict the behavior of these 

structural systems, more accurately.  

Recently, a new macro-element was proposed by Caliò et al. [2012] to assess the 

performance of masonry structures under lateral and vertical loadings. Caliò et al. 
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later used their model for masonry structures in studying the behavior of infill walls 

[Caliò et al. 2014]; see Fig. 1-5. 

 

 

Figure 1. 6. Macro-Element Proposed by [Caliò et al. 2012] 

 (a) Undeformed Configuration (b) Deformed Configuration (reprinted from [Caliò et 
al. 2012] with permission) 

 

Proposed Macro Model for Infill Masonry Shear Walls 

In the current research, the model proposed by [Caliò et al. 2012] was modified and 

extended to capture the shear deformations of the masonry shear walls more 

accurately. In addition, the effect of doweling action of reinforcement on the shear 

transfer mechanisms was also considered by the proposed model. Moreover, the 

model’s description of the impact of steel reinforcements on the shear and in flexural 

behavior of the shear walls was enhanced in this research. Finally, the frame-infill 

contact problem has also been addressed using the multiple constraint contact 

problem procedures   and the Lagrange Multipliers method. A detailed description of 
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the macro-element developed in this by this investigation will be presented in the 

following Chapter.
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CHAPTER 2 : MODEL DEVELOPMENT 

To address some of the shortcomings of the previously described models, a new 

macro-element for modeling both reinforced and unreinforced masonry infill shear 

walls is proposed and its development is described in this chapter. In the first section, 

the model for unreinforced masonry infill shear walls will be described. Following 

sections present how the model will account for the effects of steel reinforcement on 

the different behaviors of masonry infill shear walls and an element for capturing the 

frame-infill shear wall and frame interaction and possible methods for applying the 

contact to the finite element equations.  

The macro element presented in this chapter is based on an element previously 

developed by Ivo Caliò et al. who proposed a new modeling approach and developed 

an analysis program for the simulation of seismic behavior of masonry structures 

[Caliò et al. 2012]. In his modeling approach, Caliò developed a rigid bar macro 

element that used a series of springs to capture the flexural behavior of infill wall. In 

addition, Calio’s model used a set of two diagonal springs to model the shear behavior 

of the shear wall elements. Finally, a nonlinear rigid-plastic link addressed the shear 

transferred between any two wall sections. Caliò et al. showed that their element gave 

reasonably accurate predictions of the behavior of solid masonry walls and infilled 

frames with relatively low computational effort. The element proposed in this chapter 

extends the macro element developed by Caliò et al. to produce a more accurate 

prediction of the behavior of infill shear walls fully or partially confined within a 
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frame. Moreover, the problem of contact between frame and infill wall is addressed 

using a new “gap” element.  

 

 Indeed, in the proposed model, gap elements are used to account for any compressive 

contact between the frame and the infill wall. The gap elements, if closed, capture the 

frame-infill shear wall contact effects, and then they can be applied to the finite 

element equations using the Method of Lagrange Multipliers. It is worth mentioning 

that the values computed for the Lagrange Multipliers are equal to the forces 

transferred to/from frame from/to infill wall; thus they can be used to locally study the 

frame-infill contact problem in more detail.  

As shown in Fig. 2-1, the proposed macro element is configured to model flexural and 

shear deformations. Also, the shear transferred between any two contiguous elements 

can be captured using a set of nonlinear links that connect them along their common 

interface. Variable meshing of these elements will produce the desired precision and 

account for openings, if present.  It should be noted that this model only describes the 

in-plane behavior of infill walls, and the work presented herein is limited to single 

story one bay frames. However, it is expected that larger structural systems can be 

readily analyzed using this modeling system. 

As shown in Figure 2-1, the proposed macro-element consists of four rigid bars, 

hinged at their ends, forming a rectangular chassis to which three different groups of 

springs are attached. The rigid bars are stabilized using ten linear/nonlinear “shear” 

springs that are used to describe the shear behavior of the infill wall. In addition, there 

are groups of linear/nonlinear zero-length springs attached perpendicularly to the rigid 

bars of adjacent elements, simulating the flexural behavior of the infill shear wall. 

Finally, a pair of rigid-plastic links connecting the parallel rigid bars along adjacent 
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element edges are simulating the shear transfer mechanism between macro-elements 

and capturing any sliding shear failure. The constitutive relations for each group of 

springs, along with their calibration procedures are described later in this work and 

are based on simple behavior models and masonry code derived capacities. 

 

(a). Undeformed Shape of Proposed Macro-Element 

 

(b). Deformed Shape of Proposed Macro-Element 
Figure 2. 1. Proposed Macro-element; (Fig. is Based on a Similar Fig. in [Caliò et al. 

2012]) 

To evaluate the model more clearly, Figure 2-2 separately shows the three 

deformations (flexural, shear and sliding shear) modeled by the proposed shear wall 

element.  It should be noted that an infill wall under lateral loading may exhibit one or 

more modes/mechanisms of failure associated with each of these deformations. The 
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proposed macro-element/model can be distinguished from previous models as 

described in the following: 

1. The interaction of the shear wall and the frame is addressed with special 

contact elements (gap elements), at the joints of the rigid bars (they enable the 

model to capture any frame-wall compressive contact even when there are 

initial gaps on top or sides of the wall that may be intentional or produced  by 

imperfect construction). These gaps lead to lower initial stiffness for the wall 

frame system at lower loads and will affect the frame only when closed under 

loading. These effects must be considered in the analysis in order to accurately 

predict the behavior of the structural system. 

2. The additional diagonal shear springs allow the shear stiffness of the masonry 

infill shear wall to degrade in a more realistic manner; in the proposed model, 

the wall can degrade in up to three stages for the case of unreinforced infill 

walls and up to four stages for the case of reinforced infill walls. 

3. The flexural springs allow the stiffness of the wall element to gradually 

degrade in a more realistic manner than the compression strut models and can 

be used to account for the presence of reinforcement,  

4. The sliding shear nonlinear links consider the doweling action in the sliding 

shear transfer mechanism (if reinforcement is present) and thus capture the 

behavior of reinforced infill walls more realistically. 

5. The constituent material models are based on masonry code mandated material 

properties and assembly capacities (and these are based on extensive testing) 

[MSJC, 2013].  



 

 21   
 

 

(a) Flexural Behavior 

 

(b) Shear Behavior 

 

(c) Sliding Behavior 
Figure 2. 2. Deformation Mechanisms/Failures of the Proposed Macro-Element (Fig. 

is Based on a Similar Fig. in [Caliò et al. 2012]) 
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Steel Reinforcement Model   

Reinforcement Participation in Flexure 

Steel reinforcing bars are often used in masonry construction.  These bars can 

participate in infill shear wall behaviors including flexural, shear and shear transfer. In 

flexure, the reinforcement is modeled by using additional flexural spring elements, 

similar to the masonry flexural spring elements. As shown in Figure 2-3, these steel 

springs are placed along the rigid bars of the shear wall element, at the actual location 

of the reinforcing.   

 

Figure 2. 3. Modeling Flexural Steel Reinforcement 

 

Reinforcement Participation in Shear 

If high shear demand applications, steel reinforcing bars are placed in masonry shear 

walls to improve shear strength and ductility.  The effect these reinforcements have on 

the strength and stiffness of the shear wall element are accounted for by equivalent 

truss elements.  These elements shown in Figure 2-4 are used to account for any steel 

reinforcing bars that obliquely cross a give shear wall macro-element. 
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Figure 2. 4. Modeling of Steel Shear Reinforcement 

Frame-Wall Contact 

As the infill walls are usually constructed after the surrounding frame has finished, the 

distance between them cannot be properly filled with grouting; thus, there is usually a 

gap between the frame and the shear wall even it was not intended. As the frame 

deforms it will close the gap at some points and place the frame in contact with the 

shear wall.  As these contact points are the only ways of transferring load between the 

wall and the surrounding frame, the load distribution between frame and shear wall 

can significantly change depending on the size of the gaps and locations of the contact 

points. The occurrence and location of contact depends on wall and frame 

deformations and the size of the gap.  

Assume an infilled frame with the gaps on top and sides of the wall, as shown in Fig. 

2-5.  
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(a) Gap Elements between Frame and Infill Wall                     (b) Points of Contact 

Figure 2. 5. Finding the Points of Contact Between the Infill Shear Wall and Frame 
Using Gap Elements 

 

The gap elements shown in Fig. 2-5-a. are inserted in order to monitor the relative 

displacements of frame and infill wall at predefined locations. Each gap element has 

two confronting parts which are connected to the wall and frame. As the frame and 

infill wall cannot pass through each other when the gap element is closed under 

loading, additional constraints will be added to the finite element equations to ensure 

this is accounted for. This constraint process is known as multi-freedom constraint. In 

general, three methods are commonly used to apply this type of constraint to the finite 

element equations. These are the Penalty method, the Master-Slave method, and the 

Lagrange Multipliers method. The Penalty method induces approximations to the 

solution, while, the Master-Slave and Lagrange Multipliers methods give accurate 

results in linear and in linear/nonlinear zones, respectively. For the proposed model, 

the Lagrange Multipliers method was chosen as it gives accurate solutions in both 

linear and nonlinear zones. In the following discussion, the Lagrange Multipliers 

method is briefly described using a simple example for a homogeneous multi-freedom 

constraint; more information about these methods can be found elsewhere ([Park et 

al., 2000], and [Felippa, 2014]). 
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Consider the axially loaded bar shown in Fig. 2-6-a. (Similar to the example in work 

of [Felippa et al., 2014]). 

 

(a) Structural Example 

 

(b) Lagrange Multiplier  (Multi-freedom Constraint) 

Figure 2. 6. Structural Example for Homogeneous Multi-Freedom Constraint  ( ); 
(modified from [Felippa, 2014], with permission) 

The finite element equations for the structure shown in Fig. 2-6-a can be written as 

shown in Equation 2-1.   
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                                               Eqn. (2-1) 

Now, assume that the multi-freedom constraint of Equation 2-2 is to be applied in 

addition to the constraints provided by supports, as shown in Fig. 2-6-a.  

 0=U-U 42                                                                                                   Eqn. (2-2) 

This is called a homogeneous multi-freedom constraint, as the value on the right side 

of Equation 2-2 is equal to zero. Physically, this multi-freedom constraint is similar to 

the case where a rigid bar is connected to degrees of freedom 2 and 4. If the rigid bar 
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method was used, its large stiffness would have caused singularities in the solution 

leading to inaccurate results. Thus, instead of adding the rigid bar, its unknown 

internal force can be added to the equations as shown in Equation (2-3). 
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                                      Eqn. (2-3) 

The  is called a Lagrange Multiplier and its value is unknown; by transferring it to 

the vector of unknowns we will have: 
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                                     Eqn. (2-4) 

After applying the constraints due to the supports of the structure and solving the 

system of equations written in Equation 2-4, the displacements and the Lagrange 

multiplier   can be computed. Note that, the value calculated for  is equal to the 

force created in the rigid bar if it was physically added to the system. This was a 

homogeneous multi-freedom constraint applied by using the Lagrange Multipliers 

method. Similarly, multiple homogeneous multi-freedom constraints can be added. 

Information about the nonhomogeneous multi-freedom constraints can be found in 

work of [Felippa, 2014]. 
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In the proposed infill shear wall model, closure of a gap element is defined by a 

negative distance between its confronting parts. Thus, even when the distance 

between parts of gap element are zero it is not considered closed as the sides are not 

pushing toward each other. This definition allows us to model the contact problem 

when there is not an initial gap between the infill wall and surrounding frame. 

In places where the frame and infill wall are in contact under compression, the gap 

elements are defined as closed and multi-freedom constraints are derived, 

correspondingly. As the deformations of nonlinear springs of the proposed macro 

elements are based on the displacements of corners of the rigid bars (chasses), the gap 

elements are placed between frame and macro elements only at the corners of the 

macro element chasses; see Fig. 2-7-b. 

   

(a) Infill Wall with Door Opening                     (b) Flexural Springs and Gap Elements  

Figure 2. 7. Steel Frame with Perforated Infill Wall (Door Opening) 
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CHAPTER 3 : MODEL ELEMENT AND BEHAVIOR CALIBRATION 

In this chapter, the procedures used to define the response of all three types of springs 

of the proposed macro model, along with the springs proposed to represent the 

different effects of reinforcements (if present) are presented. In the first section, the 

required procedures used to define the unreinforced masonry infill shear walls will be 

presented. Later, the procedures for modeling the reinforcements both in shear and 

flexure are presented. 

Unreinforced Masonry Infill Shear Walls 

In case of unreinforced masonry infill walls, the response of the flexural springs, 

shear springs and sliding springs are based on theoretical and/or experimental data. In 

the following sections, the response of each of these spring types will be described 

along with the procedures used to calibrate each spring model. 

Linear/Nonlinear Flexural Springs 

Consider a masonry infill wall with door openings as shown in Fig. 3-1-a (duplicated 

from Chapter 2 for convenience). This wall can be divided into five sections as shown 

with dashed lines in figure and   each section defines a macro element (see Figure 3-1-

b. All of the macro-elements are connected to their adjacent macro-elements with sets 

of flexural tension-compression springs at right angles to rigid bars in each macro 

element. These springs, shown in Fig. 3-1-b, are intended to simulate the flexural 

resistance of the wall using a fiber-modeling approach.
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       (a) Infill wall with door opening         (b) Flexural Springs in the Macro-model 

Figure 3. 1. Infilled Steel Frame with Door Opening 

 (Figure duplicated from Chapter 2 for convenience). 

As shown in Figure 3-2, there are flexural springs connecting the rigid bars of two 

adjacent macro-elements, thus placing each pair of flexural springs in series. While in 

the computational model these springs have zero length, the stiffness of the flexural 

springs is calculated based on the assumption that they are extended to the center-

lines of contiguous macro-elements. The effective stiffness of each of the springs in 

series is calculated using Equation (3-1) and the resultant stiffness for a spring 

equivalent to each pair of springs in series (shown in Fig. 3-2-c) can be determined 

using Equation (3-2).   
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            (a)                              (b)                         (c)                           (d) 

Figure 3. 2. Flexural Springs Stiffness Formulation 

a) Two Adjacent Wall-Parts, b) Springs Defined by Each Wall Part, c) Set of 
Equivalent Springs, d) Flexural Element using Variable Number of Zero-Length 

Springs in the Interface with Defined Degrees of Freedom (Fig. is Based on a Similar 
Fig. in [Caliò et al. 2012]). 
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Where,   equals the width of the fibers along the element and equals the interface 

length divided by the number of flexural springs along the interface, iL is the length of 

each element perpendicular to the interface and t is the thickness of the infill wall. 
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The stiffness of the flexural element can be assembled using Equation (3-3) and the 

stiffness of each of the equivalent springs in series. The flexural response of each 

macro element includes the two connected parallel rigid bars on each face and the 



 

 31   
 

flexural tensile/compressive springs in series.  The deformation of each spring set is 

related to the corresponding degrees of freedom shown in Fig. 3-2-d. 
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Where  and  are defined as following. 
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  is the fiber width associated with each spring, t is the thickness of the wall and 

2,1, iLi  are the perpendicular lengths of the adjacent panels connected at the 

interface. n is the number of springs. Ei is the elasticity modulus of the ith fiber.  

This approach is quite simple and if a sufficient number of springs are used to define 

each macro element, it produces a reasonable estimate of the flexural performance of 

the masonry infill shear wall segment. A more advanced modeling approach could be 

used, if pairs of springs in series are separately used to determine  and  values. If 

the latter approach had been chosen, the failure criterion could have been checked for 

each spring [Caliò et al. 2012]. 

The relative corner displacements of adjacent elements’ rigid bars are used to 

determine the strain for each flexural spring under applied loadings. This allows each 
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spring pair to soften separately as defined by the masonry material model. In the 

modeling, each spring is initially assigned equal elasticity moduli in tension and 

compression. If a spring fails in tension, then spring stiffness is softened (tensile 

elastic modulus is lowered) according to the constitutive relation but the compression 

stiffness (compressive elasticity modulus) will remain unchanged. Thus, if a spring 

fails in tension it can still provide resistance in compression. On the other hand, if a 

spring fails in compression, the compression stiffness is softened (compressive elastic 

modulus is lowered) according to the constitutive relation and the tensile stiffness 

(elasticity modulus) will be assumed to drop to near zero. It is reasoned that masonry 

that has substantially degraded due to high compressive strains will have little tensile 

resistance. Thus, the modeling techniques are capable of capturing pinching effects 

observed under cyclic loading.  

Linear/Nonlinear Shear springs: 

Each macro-element contains ten internal springs connected to the corners and 

midpoints of the rigid bar chassis on the element edges. These ten springs can be 

collected in three groups, corner-to-mid-height (Type-1), corner-to-mid-width (Type-

2) and corner-to-corner springs (Type-3); see Fig. 3-3-a and 3-3-b. Fig. 3-3-c shows 

the angle each group of springs makes with the including rigid bars.  
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(a) Single wall 
(b) Proposed Macro 
Model with Shear 

Springs 
(c) Spring Angles 

Figure 3. 3. Wall Macro Model Shear Elements (Springs) 

Type 1 (4 Springs); Type 2 (4 Springs); Type 3 (2 Springs);  

 

In order to determine the stiffness of each of the shear springs, the shear stiffness of 

the shear wall element was determined using the classic horizontal shear stiffness 

formula shown by Equation (3-6).  

K= (G. At) / h                                                                                                     Eq. (3-6) 

Where, G is the modulus of rigidity, 
tA is the shear area defined by the wall width 

times its thickness and H is the wall height. 

Consider an angular deformation, γ, for the chassis of macro-element; this can cause a 

horizontal or vertical displacement as shown in Figs. 3-4-a and 3-4-b, respectively. 

Now, consider the two Type 1 shear springs shown in Fig. 3-4. The projected 

elongation of each of these springs in x-direction, equals δh/2, while the horizontal 

displacement of top of the macro-element equals the sum of projected elongations of 

each of the springs, i.e. (δh= δh/2+ δh/2). Thus, the two Type 1 springs will act as 

springs in series, horizontally (Fig. 3-4-a). On the other hand, the projected elongation 

of each of these springs in the y-direction, equals δv, which equals the vertical 

displacement of right side of the element, i.e. δv (Fig. 3-4-b). Hence, the Type 1 

springs will act as parallel springs, vertically.  
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(a) K1 Springs, in Series (horizontally) 

 

(b) K1 Springs, in Parallel (Vertically) 

Figure 3. 4. Type 1 Shear Springs in x and y Directions 

Note that, as one end of spring Types 1 and 2 are connected to the middle point of a 

rigid bar, the deformation of each of these springs can be only calculated based on 

displacements of three corners of the macro-element. Hence, the stiffness of spring 

Types 1 and 2 cannot directly be compiled into the macro-element stiffness matrix. 
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Instead, the shear stiffness of the macro-element must be derived by simultaneously 

summing up the effective resistance of all ten springs. 

Each Type-1 spring has an anisotropic contribution to the shear stiffness of the macro-

element, where the stiffness of each Type-1 spring in the x and y directions equals 

K1/2 and K1, respectively. Thus, to model such behavior, a non-orthogonal 

transformation matrix must be utilized to map the stiffness of each Type 1 spring from 

the local coordinate system to the macro-element coordinate system.  The non-

orthogonal transformation matrix for Type 1 shear springs is shown in Equation 3-7. 































2200
2200

0022
0022

1

CS

SC

CS

SC

T

                                                                    Eq. (3-7) 

In which, 

 1cos C   ,  1sin S   and   wh 2arctan1                                        Eq. (3-8) 

In contrast, for the two Type-2 springs shown in Fig. 3-5, projection of each spring’s 

elongation in the x-direction equals δh, which is equal to the horizontal displacement 

of top of macro-element; thus, the Type 2 springs act as parallel springs, horizontally. 

However, the sum of projections of each of the type two spring’s elongation in y-

direction equals the vertical displacement of right side of macro-element i.e. (δv = δv 

/2+ δv /2); thus, the two Type 2 springs are in series, vertically. 
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(a) K2 Springs, in Parallel (Horizontally) 

 

(b) K2 Springs, in Series (Vertically) 

Figure 3. 5. Type 2 Shear Springs in x and y Directions 

Therefore, each Type 2 spring also has an anisotropic contribution to the shear 

stiffness of the macro-element, where the stiffness of each Type 2 spring in x and y 

directions will be K2 and K2/2, respectively; see Fig. 3-5. The non-orthogonal 

transformation matrix for the Type-2 springs is shown in Equation (3-9). 
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                                                                 Eq. (3-9) 

In which, 

 2cos C   ,  2sin S   and  wh2arctan2                                        Eq. (3-10) 

The stiffness of all three types of springs is set to produce equivalent shear stiffness to 

the shear deformation produced by a pure shear element issuing a classic elastic 

material formulation, in both vertical and horizontal directions.  While the total shear 

stiffness of the ten springs is set to produce the same shear stiffness as the classic 

formulation for a shear wall element, each shear spring type must be allocated 

percentage of the total shear stiffness separately. Based on the horizontal shear 

deformations, each pair of Type-1 springs are parallel to the equivalent spring pair on 

the other diagonal. Therefore, as the equivalent stiffness of each pair of Type-1 

springs equals K1/2, the final stiffness of both pairs will be equal to K1. The total 

percentage of shear stiffness allocated to the Type-1 shear springs is 40 %. As all 

Type-2 shear springs undergo equal deformations horizontally and the total shear 

stiffness allocated to Type-2 springs is also 40 %, their stiffness will sum together, 

resulting in 10 % of the wall stiffness assigned to each of the four Type-2 shear 

springs. Finally, Type-3 shear springs also undergo equal deformations, and were thus 

each are assigned half of the allocated 20 % of the wall shear stiffness. 

The resulting spring stiffnesses are shown in Equations 3-11 through 3-13. Equation 

3-14 shows the equivalent shear wall stiffness for a shear wall element with the 

dimensions shown in Fig. 3-3-a. 
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   211 )(cos4.0 wallKK                                                                                   Eq. (3-

11) 

   222 )(cos44.0  wallKK                                                                             Eq. (3-12) 

   233 )(cos22.0  wallKK                                                                            Eq. (3-13) 

In which, 

htwGKwall                                                                                              Eq. (3-14) 
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                                                                                        Eqs. (3-15) 

Material model and Failure Criteria for Masonry Flexural and Shear Springs 

As is commonly assumed in a macro modeling approach [Zucchini et al., 2002], 

[Grecchi, 2010], [Flanagan et al., 2001], an isotropic homogeneous material behavior 

was assumed for the masonry in the proposed infill shear wall model. This is more 

consistent with the assumptions in the proposed macro-model and facilitates model 

calibration using a small number of material tests and design code defined material 

constants [Lourenço 1996]. 

Figure 3-6 shows the stress-strain behavior of a typical masonry assembly under 

tension and compression.  As it can be observed in the figure, the masonry exhibits 

almost the same elasticity modulus in both tension and compression regions, although 

the nonlinear behavior is different [Lotfi et al. 1994].  Saneinejad and Hobbs [1995] 

suggested that, in compression, the secant stiffness of masonry infilled walls at the 

peak load is about half the initial stiffness. Thus, for the proposed masonry element in 
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this research, the secant elastic modulus at peak load, Epeak, is assumed to be half of 

the initial elastic modulus, Einitial [El-Dakhakhni et al. 2004]. In addition, the nonlinear 

behavior of masonry walls was simplified using a tri-linear material model for 

compression and a bi-linear material model for tension as shown with thick dashed 

lines in Fig. 3-6. The strain at peak compressive stress, p , was obtained from the 

tests, [Lumantarna et al. 2014]. Strains 1 and 2  are taken as approximate

p5.0 and p5.1 . The final strain, final , was also assumed equal to 0.01. For an 

p  of 0.002, the strains 1 and 2 will be 0.001 and 0.003, respectively, and thus 

defines the tri-linear material model for compression. This base material model is 

used for both flexural and shear masonry springs in compression. 

 

Figure 3. 6. Simplified Isotropic Material Model for Nonlinear Diagonal Shear and 
Flexural Springs 

 (Note: compression is shown in +y direction) 

The tensile strength of masonry flexural springs was assumed equal to one tenth of 

compressive strength following the experimental tests of Lotfi et al. [1994]. The 

failure tensile strain was calculated as the tensile strength divided by the elastic 

modulus of the masonry. 
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Although the masonry is very brittle in tension, the masonry tensile behavior in 

flexure was modeled using a bi-linear material model as shown in Fig. 3-6. Typically, 

final tensile strains as low as the ones used by the proposed model can cause 

singularity problems in the analysis.  However, the proposed model and analysis 

procedures are robust enough to preclude these singularity issues based on the fact 

that the model remained stable even with use of very low stiffness for the tensile 

springs. 

The initial elastic modulus of the masonry, Em, was set equal to the design code value 

(TMS 402-13/ACI 530-13/ASCE 5-13).  For concrete masonry, 


 mm fE 900                                                                                                 Eq. (3-16) 

Where f’m is the specified compressive strength of masonry prism determined in 

accordance with the specification article 1.4 B.3 of TMS 602/ACI 530.1/ASCE 6 and 

[ASTM C1324].  

As direct by the masonry code, the modulus of rigidity was assumed to be 40 % of the 

elastic modulus [MSJC 2013]. 

mm EG 4.0                                                                                                   Eq. (3-17) 

To keep the modeling simple, the failure criteria proposed for flexural compression 

stress is also proposed for shear springs in compression. But, the tensile failure 

criterion for shear springs is slightly different from the tensile failure criterion of 

flexural elements. 

The maximum allowable shear stress in unreinforced masonry shear wall elements 

described in the MSJC Masonry Design code [MSJC, 2013] is shown in Equation (3-



 

 41   
 

18) below.  For the proposed shear wall model, it was conservatively assumed that 

each macro-element will start to fail at the same angular strain that a shear wall of 

equivalent dimensions and material properties reaches the allowable shear limits 

defined by the shear code limit. Thus, Equation (3-18) can then be used to determine 

the tensile failure criteria for the diagonal shear springs.  

n
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                                                      Eq. (3-18) 

If it is conservatively assumed that there is no axial stress and the M/Vd ratio is at its 

largest value (1.0) required to be considered by code, then the allowable shear stress 

reduces to 

mvm fF '125.1                                                                                             Eq. (3-19) 

If the maximum permissible shear stress is set equal to the average applied shear 

stress, an angular (shear) failure strain, γvm, (tensile shear) can be determined as  

G

f

G

F mvm

vm




125.1


                                                                                     Eq. (3-20) 

In which, G, is the shear modulus of rigidity and f’m is the compressive strength of 

masonry.  

Under this angular strain, the change in the lengths of different types of springs can be 

determined using Equations (3-21-a) to (3-21-c).  These spring length changes were 

then converted to strains as shown in Equations 3-22a through 3-22c.  The 

relationship between the various strains and spring elongations are shown graphically 

in Fig. 3-7, as well.  
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Figure 3. 7. Angular Deformation of a Macro-Element and Strains Created in Each 
Spring Type 
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                                              Eqs. (3-22-a-c) 

For a given macro-element aspect ratio, the maximum of the three tensile strains will 

be used to define the onset of shear failure in the macro-element.  Thus, this 

maximum will be used as the tensile shear failure strain (or onset of nonlinear 

behavior) for all three types of shear springs. 
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                                                           Eq. (3-23) 

Using the above relationships it can be shown that, for elements with height to width 

ratios of less than 22 , the Type 2 springs, and for aspect ratio equal to 22 , Types 2 

and 3 springs will simultaneously produce higher tensile strains than Type 1 springs.  

Similarly, for height to width aspect ratios of greater than 2 , the Type 1, and for 

aspect ratios equal to 2 , Types 1 and 3 springs will produce higher tensile strains than 

Type 2 springs. Finally, for height to width aspect ratios of between 2  and 22  , the 

Type 3 springs will produce higher tensile strains than other two types. Using this 

analysis, one can roughly predict that the first shear crack orientation will be either 

along a line from the corner to mid-height or a line from the corner to mid-width, or 

along the diagonal, depending on the aspect ratio. In addition, for some element 

aspect ratios the shear spring model will imply that the shear crack will fall between 

the main diagonal spring and one or the other diagonal shear spring types. Moreover, 

the proposed methodology for calculating the strains occurring in different shear 

spring types can be extended to include more shear springs (four, five, or more) and 

improve the prediction for first crack location and orientation. 

 It is important to note that the proposed prediction of first shear crack orientation can 

be useful in predicting the behavior of perforated infill/shear walls, where the 

direction of first crack is very important with respect to the load distribution and on 

the performance of the perforated infill shear walls. 
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As with the flexural springs, initially the stiffness of the shear springs was assumed 

equal in both tension and compression. After tension cracking, the tensile stiffness 

was reduced but the compression stiffness was not changed. But, if compression 

softening occurred both tension and compression stiffness were reduced. 

Sliding Shear Springs 

In an effort to capture shear friction behavior and possibly doweling action (in case of 

reinforcements), an additional group of springs was introduced into the macro-

element.  These (two) springs are located at the interface between adjacent macro-

elements, or the base of the wall.  Each of these two springs is assumed to produce 

half of the sliding stiffness associated with the corresponding interface they are 

attached to.  

For unreinforced masonry shear walls, the sliding shear springs are assumed to exhibit 

a rigid-plastic behavior; i.e. the stiffness of each sliding spring is infinite before 

failure but reduced to near zero above sliding force levels. Note that spring stiffness 

cannot actually be set to zero since this will result in a singularity in the stiffness 

matrix and numeric instability.   The stiffness was set to a value small enough to 

maintain stability but a have little effect on the force distribution.  The sliding force 

was determined using a Mohr-Coulomb approach, a material cohesion strength, a 

coefficient of friction and the normal stress state.   

 For reinforced masonry walls, if the steel reinforcement crossing the sliding surface 

has not yielded, the sliding shear springs are assumed to follow a rigid-nonlinear-

plastic behavior. The initial stiffness of the sliding springs can be assumed near 

infinite. After the sliding spring force reaches a limiting force, the element will start to 

slide along the interface.  However, in a reinforced masonry wall steel reinforcement 
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crossing the interface will prevent further sliding by doweling action. At this point, 

the stiffness of the sliding shear springs will be defined by the behavior of the 

crossing dowels. Finally, if the steel bars yield, either under transferred shear force 

and/or under flexural forces, the stiffness of the sliding shear springs will reduce to 

near zero. In this investigation, sliding shear failure is assumed to happen only at the 

ground level, as this is typically the weakest interface with the highest loading. 

The ultimate resistance of an interface subject to shear forces can be modeled by 

accounting for the mechanisms of adhesion and interlock, friction and dowel action, if 

present. Note that these mechanisms interact with each other and cannot be simply 

added to determine the ultimate capacity of the interface. 

Based on the Fib Model Code equation for concrete structures, the ultimate shear 

stress at the reinforced interface resulting from the three mechanisms can be simply 

described as shown in Equation 3-24. [Fib Model Code, 2010]. 

  
 mynycu fff 

                                                      Eq. (3-24) 

In which, c is the cohesion strength,  is the friction coefficient,  is the ratio of 

area of reinforcement to the area of the interface and κ is the interaction factor defined 

as ratio of current tensile stress in the reinforcement to the yield strength of the 

reinforcement. n  is the compressive stress applied normally to the interface, fy is the 

yield strength of the reinforcing bars and f’m is the compressive strength of masonry. 

In the case of unreinforced masonry infill walls, the ultimate stress is usually limited 

to only adhesion/interlocking mechanisms and friction.  
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It is initially assumed that all of the sliding shear springs have a known and near 

infinite stiffness. At each increase in load, the displacements for the sliding springs 

can be found and the internal forces in these springs can be calculated.  These forces 

can then be compared to a limiting force defined in Equation 3-25. 

   CONTACTnyc AfF  lim                                                    Eq. (3-25) 

Where, ACONTACT is the contact area of interface, and the other parameters are defined 

as before. It should be noted that when calculating the friction part of limiting force, 

Flim, the vertical stress includes vertical compressive stress applied to the interface 

plus the stress added by the clamping force of any steel tension reinforcement that  

cross the interface. If the summation of forces in the sliding springs at an interface 

reaches its limiting force, then the resultant stiffness of the sliding shear springs at 

that interface are softened. In the case where the wall is reinforced and the 

reinforcements crossing the interface have not yielded, the doweling action of the 

steel bars prevents the complete sliding failure of the interface. Conversely in URMs, 

when the summation of forces created in sliding springs reaches Flim, the sliding shear 

springs will be assumed to respond plastically, with the resultant stiffness of the pair 

of sliding springs reduced to near zero [Fib Model Code, 2010]. Thus, the resultant 

stiffness is assumed to soften to near zero in URMs, and in presence of un-failed 

crossing reinforcement, is assumed to soften to a value equal to the total bending-

resistance of the crossing steel bars divided by the current slip  along the interface. 

If rebar is present,  the amount of force carried by the doweling action in the interface 

of the model can be calculated using Equation 3-26. [Fib Model Code 2010] 

   max
2

max,2 1 SSfffAkF ysymss  
                          Eq. (3-26) 
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In which, max,2k is the interaction coefficient for flexural resistance at maxS (smaller or 

equal to 1.6 for circular reinforcements). S is the current slip (smaller or equal to maxS ). 

  sdtoS 2.01.0max  , and sd  is the diameter of a reinforcing bar equivalent to the 

areas of all reinforcing bars crossing the interface.  These areas are proportionally 

reduced to reflect any inelastic behavior [Patnaik et al. 2003]. As and s are the area 

and current tensile stress in the equivalent rebar, respectively. All other parameters are 

as defined before. 

Equation 3-26 defines the force in the reinforcing bars produced by dowelling action.  

Therefore, if one divides this force by the current slip of the interface, the resultant 

stiffness of the interface springs can be defined. This value is the force required to 

make the interface slip by a unit value, which is consistent with the classic definition 

of stiffness. In addition, Equation 3-26 reduces the doweling action force as the 

tensile stress in the reinforcement increases. Indeed, the more the clamping force the 

reinforcing bars provide at the interface, the more the friction mechanism dominates 

over the doweling action.  

Finally, if slip reaches maxS , the bending resistance of the steel bars is no longer 

available and the stiffness of sliding springs reduces to near zero. However, in large 

interface slip values, the kinking effect of reinforcement (or the parallel component of 

the tensile force of inclined crossing reinforcement) may come into play, as shown in 

Fig. 3-8 [Fib Model Code, 2010]. 

 

https://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Surya+Patnaik%22
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(a) Bending Effect 

 

(b) Kinking Effect 

Figure 3. 8. Doweling Action of Reinforcing Bar at Slip Interface 

 

Reinforced Masonry Infill Shear Walls 

In case of reinforced masonry infill shear walls, the macro-model needs to account for 

the effects of the reinforcing bars   on the shear and/or flexure behavior. As mentioned 

earlier, participating reinforcing bars will be replaced by truss elements. In the 
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following sections, the procedures used to calibrate these reinforcing truss elements 

for shear and/or flexure will be discussed separately.  

Reinforcement Participation in Flexure 

When a reinforcement crosses the interface between two contiguous macro-elements 

(usually perpendicular), it will affect the flexural behavior of the macro model. At 

each location where a bar is present an additional flexural element connecting the two 

contiguous rigid bars from two adjacent macro-elements is added. This new element 

behaves similar to the masonry flexural elements, with the exception that it will have 

one spring per reinforcement and the material model for the steel is consistent with 

conventional material models for mild steel. The stiffness of each spring is assumed to 

equal the tensile stiffness of the corresponding reinforcement; in order to simplify the 

problem for this research, it is assumed that the reinforcing bars are fully bonded with 

the surrounding masonry material. It is also important to mention that the length of 

the rebar can be different from the lengths of contiguous elements. See Fig. 3-9. 

 

Figure 3. 9. Modeling the Reinforcements Participating in Flexure 
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In the following, the stiffness matrix of an interface with single crossing reinforcing 

bars is shown in Equation 3-27). This stiffness matrix can be easily extended to 

multiple reinforcing crossing the interface. 
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Where  and  are defined as following. 
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Reinforcement Participation in Shear 

The stiffness of equivalent truss elements are used for modeling steel  reinforcing bars 

obliquely crossing the macro-elements (such as horizontal shear reinforcing), to 

capture their effect on the shear deformation response of the masonry infill shear 

walls wall system. The shear steel truss element stiffness is calculated using the actual 

area and length of the steel reinforcing bars and its elastic modulus. Since shear 

reinforcing does not generally pass through the corners of the macro-elements 

chasses, the shear truss element stiffness matrix must be transformed twice to act in 
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accordance with the degrees of freedom defined at the corners of macro-elements. 

The stiffness matrix must be rotationally transformed to follow the direction of global 

degrees of freedom system and then mapped to the degrees of freedom defined at the 

corners of the macro-element chassis. The latter transformation matrix can be 

calculated using both the shape functions of a rectangular four-node isoparametric 

element and the location of points, in which, the reinforcement crosses the edges of 

macro-element chassis [Kwak and Filippou, 1997]. The global stiffness matrix of the 

aforementioned shear reinforcement truss element is given in Equation 3-30. 

           2112 TTKTTK local

TT

global   
                                           Eq. (3-30) 
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                                                Eq. (3-31) 

And, the rotational transformation matrix,  1T , matrix is defined by: 
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                                          Eq. (3-32) 

While  1T can be simply computed using the angle , created by the reinforcement and 

the positive direction of x-axis (see Fig. 3-10),  2T  varies if the reinforcement crosses 

the horizontal or the vertical edges of the macro-element. Equations 3-33 and 3-34 

show the   2T  transformation matrices for the cases where the reinforcement either 

crosses the horizontal edges of the macro-element or the vertical ones, respectively.  
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Eq. (3-33) 

And,  
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Eq. (3-34) 

The angle   along with dimensions 1c , 2c , h and w are shown in Fig. 3-10. 

 

Figure 3. 10. Modeling of Reinforcement Participating in Shear 

 

Although in this work, steel shear reinforcing bars are assumed to either cross the 

horizontal or vertical edges of the macro-element, the  2T  transformation matrix can 

be also computed for a combination of the two groups. More general crossing 

situations are addressed in the work of [Kwak and Filippou, 1997]. 

The effect of reinforcements in shear transfer (dowelling action) has been explained in 

detail in an earlier section.   
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CHAPTER 4 : DISCUSSION 

The previous sections described the proposed masonry shear wall macro-element.  To 

test its robustness this element was subjected to a patch test. To evaluate the precision 

and efficiency of the proposed macro-model, it was used to predict the behavior of 

previously conducted experimental tests of masonry infill shear wall specimens. 

These tests included three unreinforced and two reinforced infill walls from work of 

[Dawe et al. 1989]. The results from the analytical models are then compared to the 

experimental tests to determine the accuracy and ease of use of the proposed infill 

masonry shear wall model.  

In order to examine effect of different locations of openings in perforated infill shear 

walls, multiple models were created and analyzed under increasing lateral 

unidirectional loading (pushover analysis).  The results of these analyses were 

compared to allow assessment of these effects and determine where openings should 

be encouraged and where they should be avoided.  This chapter discusses each of 

these efforts in more detail.   

Patch Test of Proposed Macro Infill Masonry Shear Wall Element 

The patch test is a simple way for demonstration of the robustness of a given finite 

element. The test uses a partial differential equation on a domain consisting of several 

elements set up in a way that the exact solution is known. Typically, the exact 

solution consists of displacements, also known as constant strain solutions that vary 

following linear functions in space. An element will pass the patch test if the finite 

http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Strain_%28materials_science%29
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element produces a solution that approaches the exact solution, as the mesh is refined. 

The origins of this test can be found in work of [Bruce Irons 1972].  Although, 

engineers have presumed for a long time that any element passing this test will 

necessarily converge to the exact solution if the mesh is refined enough, it was later 

found that it is not true. Researchers in late 1970s found that the patch test is neither 

necessary [Stummel 1980] nor sufficient [Sander et al. 1977] for convergence. 

Nonetheless, the quality of a new element can be examined by using this method as 

discussed below. 

In any patch test process, the correct solution gives almost uniform conditions to 

which the patch is known to respond correctly, provided that the small perturbations 

from uniform conditions do not cause a disproportionate response in the patch.  This 

condition is assumed by insisting that the stiffness matrix of the structural system is 

positive definite [Felippa, 2014].  

To conduct the patch test, an unreinforced solid infill wall tested by Dawe et al [1989] 

was used. This test specimen (also considered in the numerical examples section) was 

analyzed using the proposed macro model shear wall elements with meshes of 

different sizes to evaluate whether the accuracy of the model will be increased, 

(converged to the single result) if finer mesh was used in modeling the infill wall. 

Again, the result of this test is neither adequate nor necessary to conclude that the 

finite element responses will converge to the correct answer ([Stummel 1980] and 

[Sander et al. 1977]) and the patch test is only used here to evaluate the quality of the 

proposed element and its robustness.  

The shear wall test specimen incorporated an unreinforced masonry infill shear wall 

within a surrounding steel structural frame. The dimensions for the wall, concrete 

http://en.wikipedia.org/wiki/Bruce_Irons_%28engineer%29
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blocks and frame members are shown in Table 4-1 while the material properties are 

provided in Table 4-2 [Dawe et al, 1989]. Note that the experimental test used 

200x200x400 mm hollow concrete blocks (54 % Solid), but in the created macro-

model “equivalent” solid concrete blocks of the same sizes are used to keep the 

geometry the same. This homogenization procedure significantly reduced the 

elasticity modulus of the equivalent concrete blocks in the model. The initial stiffness 

of the infilled frame given in the work of Dawe et al [1989] for each experimental test 

was used and back-calculated to get the modulus elasticity for homogenized solid 

concrete blocks for the corresponding macro-model. Using the elasticity modulus 

calculated by the aforementioned method, the compressive strength of the masonry 

assembly was calculated using the instructions of [MSJC 2013] for concrete masonry; 

see Equation 4.1. 

mm fE  900                                                                                                        Eq. 4-1 

A unidirectional incremental pushover analysis was conducted on each of the models 

and Table 4-3, summarizes the approximate size of the meshes used to model the 

shear wall, along with the predicted maximum load and displacements.   

 

Table 4. 1. Frame Dimensions and Cross Sections for Patch Test 

Frame 
Height 
(mm) 

Frame 
Width 
(mm) 

Columns’ 
Cross Section 

(AISC – 
Metric.) 

Beam’s Cross 
Section 
(AISC –
Metric.) 

Concrete 
Blocks 

Dimensions 
(mm) 

2800 3600 W250x58 W200x46 200x200x400 
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Table 4. 2. Material Properties of Frame and Infill Wall considered in Patch Test 

Frame Material Properties Infill wall Material Properties 

Es 
(psi) 

Fy  
(psi) 

Fu  
(psi) 

f’m 
(for equivalent 
solid concrete 

blocks) 
(psi) 

Cohesion 
Parameter 
(C) (psi) 

Friction 
coefficient 

( ) 

Special 
Weight 

(  ) 
(lb/ft3) 

29 x 106 4x 104 6x 104 512 150 0.7 135 
 

 

Table 4. 3. Results of Patch Test 

Modeling 
Number 

Number of  
Vertical  

Elements 

Number of  
Horizontal 
Elements 

Maximum Load 
Kips (kN) 

Displacement at 
Ultimate Load 
inches (mm) 

1 2 3 130(578.3) 0.788(20.0) 
2 3 4 113.7(504.7) 0.807(20.5) 
3 4 5 107.3(477.2) 0.811(20.6) 
4 5 6 104.7(465.7) 0.811(20.6) 
5 6 7 104.3(464.1) 0.815(20.7) 

 

The coarsest and finest meshing used in modeling numbers 1 and 5 of Table 4-3 are 

shown in Fig. 4-1.  

 

Figure 4. 1. Coarsest and Finest Meshing In Patch Test (NTS) 
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The Load-Displacement response for each of the analyses for each of the mesh sizes 

are shown in Fig. 4-2. 

 

Figure 4. 2. Patch Test Results 

 

Based on the results shown in Table 4-3, and the load-displacement equilibrium path 

diagrams shown in Fig. 4-2 for different mesh sizes, it can be concluded that the 

element has passed the patch test. This is reasoned because by refining the finite 

element mesh, the predicted answers approach to a constant value. In other words, 

after refining the average mesh size to 25 inches, additional refinement has little effect 

on the response of the model. 

Computer Program Implementation 

In this section, a brief description of the implemented program will be presented. In 

the first step, all specifications for frame and infill wall will be entered to the 
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program. The required specifications for frame and infill wall are presented in Tables 

4-11 and 4-12.  

 

 

Table 4. 4. Frame Elements and Reinforcements Specifications 

Specification Comments 
Frame Height  
Frame Width  

Left Column 
Left Column’s Area  

Left Column’s Moment of 
Inertia  

Right Column 
Right Column’s Area  

Right Column’s Moment of 
Inertia  

Left Support Type  
Right Support Type  

Left Column to Beam Connection Type  
Right Column to Beam Connection Type  
Elasticity Modulus of Frame Members  

Fy of Frame Members Not Included in Model 

Fu of Frame Members Not Included in Model 
Elasticity Modulus of Reinforcements  

Fy of Frame Members  
Fu of Frame Members  

Special Weight of Frame Members  
 

Based on the geometric specifications entered as inputs to the program, the program 

first defines the meshing of the infill wall. In case of solid infill walls, the program 

first runs a patch test for different refinement of meshing in order to find the coarsest 

meshing size. For perforated infill walls, the model requires that at least a pair of 

macro-element to be considered along the distances between the opening and the 

frame members; the program then uses the size of these elements as an approximation 

of average element size for meshing. The program then assigns numbers to the 

degrees of freedom for frame members, macro-elements and supports. 
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The nonlinear stiffness matrices for different elements are computed as described 

briefly in the following sections. They are assembled together in order to calculate the 

total stiffness matrix of structure. Note that two-dimensional beam-column elements 

have been used for modeling the frame members.  

 

Table 4. 5. Infill Wall Specifications 

Specification Comments 
Order of Integration 2nd Order Integration/4th Order Integration 

Gap on Sides of Wall  

Wall Height Distance From Ground to the Face of Beam Minus 
the Gap on Top of the Wall 

Wall Width Distance Between the Internal Faces of  Columns 
Minus the Sum of Gaps on Sides of the Wall 

Wall Thickness  
Openings 

Dimensions 
Opening Height  
Opening Width  

Openings 
Location 

Door Opening Horizontal Distance of Left Side of Door Opening 
from the Internal Face of Side of the Wall 

Window Opening 
Horizontal and Vertical Distances of Left Bottom 

Corner of Window from the Bottom Left Corner of 
the Wall 

Compressive Strength of   
Cohesion Parameter  

Friction of Coefficient  
Special Weight of Masonry  

 

Flexural Stiffness Matrix 

 For each flexural element 

  21 LL   = sum of lengths of panels 

   = assumed fiber width 

   = angle between the rigid bars of element and +x axis 

 n = Number of springs in element (element width / )  

 Define the DOFs of element 
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 [T] = Transformation Matrix 

 For each spring in flexural element 

 Ei = Elasticity Modulus of ith spring 

 
i = Strain at ith spring 

o Modify the elasticity modulus of ith spring according to material 

model  

o Compute the flexural stiffness matrix of each element. (See 

Chapter 3) 

Shear Stiffness Matrix 

 For each wall panel 

 H = Height of the wall panel 

 W = Width of wall panel 

 Length of different spring types. (See Chapter 3) 

 Define the failure criteria 

o in tension 

   45.0 22
1 HWWHshear          Eq. 4-2 

   45.0 22
2 WHWHshear          Eq. 4-3 

   22
3 5.0 WHWHshear           Eq. 4-4 

),,max( 321  t           Eq. 4-5 

o in compression 

cc f            Eq. 4-6 

 Calculate the strains in each spring 

 Modify the elasticity moduli of springs according to material model 

Note: if a spring is in tension use tensile elasticity modulus 
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Otherwise, use compressive elasticity modulus. (See Chapter 3) 

 Calculate the shear stiffness matrix along each diagonal 

 For each type of spring in tension: 

o find the stiffness matrix of each spring type 

o calculate the corresponding transformation matrix 

o transform the local stiffness to the DOFs of the 

element 

o assemble it to accumulatively compute the stiffness 

matrix of the diagonal along the corresponding 

diagonal 

 For each type of spring in compression: 

o find the stiffness matrix of each spring type 

o calculate the corresponding transformation matrix 

o transform the local stiffness to the DOFs of the 

element 

o assemble it to accumulatively compute the stiffness 

matrix of the diagonal along the corresponding 

diagonal 

For Type One springs on either of diagonals find [K1(local)] and [T1]. (See Chapter 3) 

   T

local

diagonal
SecondaryorMain

TKTK 1111 

















      Eq. 4-7 

For Type Two springs on either of diagonals find [K2(local)] and [T2]. (See Chapter 3) 

   T

local

diagonal
SecondaryorMain
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      Eq. 4-8 
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For Type Three springs on either of diagonals find [K3(local)] and [T3]. (See Chapter 3) 

   T

local

diagonal
SecondaryorMain

TKTK 3333 
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




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



      Eq. 4-9 

Note: Three stiffness matrices for each type of springs on either diagonal are added 

together and assembled for degrees of freedom at the ends of the corresponding 

diagonal. 
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 Eq. 4-10 

The stiffness matrix of each macro-element at the location of DOFs on the corners of 

macro-element includes the stiffness of each diagonal at their corresponding DOFs. 

Sliding Shear Stiffness Matrix 

Initially the stiffness matrix of the sliding shear springs are assumed equal to infinity. 

Under change in the applied loading, the forces calculated in each sliding shear spring 

is calculated and compared to the defined limiting force.  

If the current force was greater or equal to the limiting force, the interface starts to 

slip. 

- Following the occurrence of slip in the interface, if unreinforced, 

the stiffness of the sliding shear spring are reduced to near zero. It 

cannot reduce to zero as it creates singularity. 

- Following the occurrence of slip in the interface, in the presence of 

reinforcements, it prevents further slips by dowel action. 

o The flexural force created in the reinforcement are 

calculated and divided by the current slip of the interface to 

calculate the new stiffness of the shear springs. 
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o By increasing the transferred shear load, if the force created 

in the reinforcements causes shear failure of the 

reinforcements or it fail in tension, the stiffness of sliding 

shear spring is reduced to near zero. 

Solution Method  

To analyze the models created in this research, an arc-length method was used 

[Felippa, 2014]. When using arc-length method, an initial big arc-length can be used 

provided that the structure behaves linearly at the beginning. Later, proportionally 

smaller arc-lengths are used as the structure degrades, which help capturing the 

behavior of the structural system. In such way, bigger load steps/displacements are 

used by the program while the structure experience linear behavior and when the 

structure starts experiencing nonlinear behavior, the arc-length is reduced to address 

the behavior, correctly. This method seems to be computationally efficient because 

even with finer meshing the computational effort remains low.  

As mentioned before, in experimental work of Dawe et al [1989], the frame elements 

were kept in linear range, probably to be able to reuse the frames in other 

experiments. Worth to mention that to reach to the limit state in arc-length analysis 

method, all structural components should degrade such that the structure gradually 

becomes unstable. On the other hand, as the frame elements in the models in this 

research were assumed to remain elastic to match to what was reported in the 

experimental tests [Dawe et al 1989] because of the intact stiffness of frame members, 

the model was not able to degrade completely to reach to the limit state.  

To address this issue in the model, for each infilled frame, the initial stiffness of total 

structure (frame and infill wall) was calculated at the first step. Then the stiffness of 
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frame structure (without the infill wall) was calculated. Through the analysis, the 

stiffness of frame structure was subtracted from the stiffness of total structure (frame 

and infill wall) to calculate the stiffness of infill-wall-Only. When the calculated 

stiffness degraded to a low percentage of the initial stiffness of the infill wall (1% for 

unreinforced and 2% for reinforced infill walls), it was assumed that the wall is totally 

failed leading to the limit state. In this moment, the program stops the analysis. 

 

Numerical Examples 

Unreinforced Masonry Infill Walls 

In order to evaluate the accuracy of proposed model, three unreinforced masonry infill 

shear wall tests conducted by [Dawe et al, 1989] were modeled using the proposed 

macro-model and the predicted force-displacement responses were compared to those 

of measured for each of the tests. The tests were designated WA4 (a solid URM infill 

wall with no gaps in top and sides of the wall) and WC3 and WC5 (similar frames but 

with perforated infill walls). The WC3 test had a central opening of 800 mm by 2200 

mm and the WC5 specimen contained the same opening but this opening was offset 

600 mm from the center towards the loaded side. The height and width of frames in 

all three tests were 2800 and 3600 mm, respectively. The AISC Metric steel wide 

flange sections used for the columns and beams of the surrounding frames were 

W250x58 and W200x46, respectively. See Figs. 4-3 to 4-5. The geometric 

configuration of tests WA4, WC3 and WC5 are presented in Table 4-4. 

Although, the masonry material models in the proposed macro-elements can be 

calibrated using the results of standard material tests, (such as compressive and a 

diagonal tensile tests) the initial linear portion of the measured load deflection 
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response was used to determine the elastic modulus of the masonry in the model.  

This was done to remove the inaccuracy of the material tests from the assessment of 

the model accuracy.  Conventional elastic-plastic steel material models were used for 

the steel elements, including the reinforcing bars. The values for initial stiffness of the 

infilled frames were given in the experimental work of Dawe et al, [1989]. The 

elasticity moduli for frame members and the reinforcements are assumed to be the 

same but the frame members have been assumed to remain elastic through the 

analysis. It should be noted that partially grouted and hollow concrete masonry blocks  

(200 mm x 200mm x 400 mm) were used in the experimental tests [Dawe et al 1989], 

but to simplify the modeling, “equivalent” solid concrete blocks with lower elasticity 

modulus were assumed in the modeling process. The elasticity modulus of masonry 

wall was calculated based on the initial stiffness from the tests and the solid block 

assumption [Dawe et al 1989]. 

                                             (a)                                                                 (b) 

Figure 4. 3. WA4 Test                                                                                                    
(a) Experimental Test (Solid Wall) [Dawe et al. 1989] ; (b) Proposed Macro-Model 

Macro-Model For Infill Wall With Central Opening (NTS) 
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         (a)                                                                (b)  

Figure 4. 4. WC3 Test 

 (a) Experimental Test (Central Door Opening) [Dawe et al. 1989]; (b) Proposed 
Macro-Model For Infill Wall With Central Opening (NTS) 

 
       (a)                                                                (b) 

Figure 4. 5. WC5 Test 

 (a) Experimental Test (Door Opening Offset Towards the Loaded Side) [Dawe et al. 
1989]; (b) Proposed Macro-Model For Infill Wall With Offset Door Opening (NTS) 

 

 

Table 4. 6. Geometrical Specifications for WA4, WC3 and WC5 tests 

Test 
Frame 
Height 
(mm) 

Frame 
Width 
(mm) 

Door 
Height 
(mm) 

Door 
Width 
(mm) 

Door 
Location 

Column’s 
Section 
(AISC-
Metric) 

Beam’s 
Section 
(AISC-
Metric) 

Concrete 
Block size 

(mm3) 

WA4 2800 3600 -------- ------- -------- W250x58 W200x46 200x200x400 
WC3 2800 3600 2200 800 Central W250x58 W200x46 200x200x400 

WC5 2800 3600 2200 800 

600 mm 
Offset 

towards 
Loaded 

Side 

W250x58 W200x46 200x200x400 
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 A monotonic incremental pushover load analysis was conducted on each of the 

models shown in Figures 4-3b through 4-5b. The macro element mesh for each infill 

wall was determined by keeping the number of the macro-elements small while 

maintaining approximately as square aspect ratio.  For wall without openings little 

difference in performance was seen with even relative course meshing.  For walls 

with openings, the most accurate response from the model was achieved when the 

shortest distance between the opening and edges of the wall determined the average 

mesh size. The meshing for perforated infill walls must be such that at least two 

macro elements are placed along the aforementioned distance.   A finer mesh can be 

used but does not appreciably change the predicted wall performance 

It should be noted that the elasticity modulus of each of the masonry infill walls 

models was derived from the measured initial stiffness of the infill walls for each of 

these tests [Dawe et al 1989], as only the initial stiffness of each of the tests was given 

in the published information. In addition, in the experimental tests, hollow 

200x200x400 mm concrete masonry blocks were used. To simplify the modeling, 

“equivalent” solid masonry blocks were assumed during   the macro-modeling 

process. This assumption required   lowering the elasticity moduli for “equivalent” 

solid concrete masonry blocks to produce the same strength and stiffness as the 

hollow units. This homogenization process is consistent with the assumptions in 

masonry design code (MSJC), in which, the stresses and strains are assumed to be 

resisted by a homogenous masonry assembly and the strength and stiffness of hollow 

or partially grouted masonry is reduced in proportion to the grouted percentage. 

The material properties for the steel frame members in all three tests are the same and 

are presented in Table 4-2. It should be noted that during testing [Dawe et al 1989], 

the wall displacements were been kept small to keep the steel frame elements in the 
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elastic stain range. The material model for frame members in the macro-models also 

assumed that the steel members remained elastic for all analyses conducted in this 

investigation.  The material properties for steel and masonry used for the analyses for 

each of these test configurations are given in Table 4-5.  

 

Table 4. 7. Material Properties for WA4, WC3 and WC5 tests 

 Frame Material Properties Infill wall Material Properties 

Test Es  
psi(Mpa) 

f’m  
(for equivalent solid 

concrete blocks) 
psi(Mpa) 

(C) 
Cohesion 
Parameter 
psi(Mpa) 

( ) 
Friction 

coefficient 

(  ) Special 
Weight 

lb/ft3 (N/m3) 

WA4 29 x 106 

(2x105) 512 (3.53) 150(1.034) 0.7 135(21206.81) 

WC3 29 x 106 

(2x105) 276.45(1.91) 150(1.034) 0.7 135(21206.81) 

WC5 29 x 106 

(2x105) 317.11(2.19) 150(1.034) 0.7 135(21206.81) 

 

Figures 4-6 to 4-8 show the comparison of the force-displacement response predicted 

for each macro-model and those obtained experimentally for infill walls WA4, WC3 

and WC5, respectively. Ultimate experimentally measured and computationally 

predicted force and displacements are summarized in Table 4-6, along with the 

differences between the two.  
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Figure 4. 6. Solid Infill Wall (WA4) 

Experimental (data from [Dawe et al. 1989]) vs. Macro-Model 

 
Figure 4. 7. Infill Wall with Central Opening (WC3) 

Experimental (data from [Dawe et al. 1989]) vs. Macro-Model 
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Figure 4. 8. Infill Wall with Opening Offset Toward the Loaded Side (WC5) 

Experimental (data from [Dawe et al. 1989]) vs. Macro-Model 

 

 

Table 4. 8. Experimental Test Results vs. Macro-model Results 

 Experimental Test Macro-Model   

Test Name F max 
(kN) 

 max 
(mm) 

F max 
(kN) 

 max 
(mm) 

Force 
Error (%) 

Displacement 
Error (%) 

WA4 476 20.2 477.25 20.6 0.262 1.98 
WC3 285 21 288.72 19.14 1.31 -8.85 
WC5 245 14.2 249.47 13.88 1.82 -2.25 

Note: F max = ultimate load;   max = displacement at ultimate load on the equilibrium 
path 

 

Examination of Figs. 4-6 through 4-8 and Table 4-6 shows that the macro-model was 

able to predict the force-displacement response of the tested walls with acceptable 

precision.  In addition, the ultimate loads for all three models are predicted very 

accurately with the maximum error of 1.82 % for WC5 test. The ultimate 

displacements for WA4 and WC5 tests are predicted with a reasonable error.  The 

error on the prediction for ultimate displacement of the WC3 test appears larger (less 

than 9 %), but Fig. 4-7 shows that the tangent stiffness of experimental test between 

the load points just preceding the ultimate load is very low and thus there is a large 
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increase in displacement for a very small increase in the load. If the measured loading 

point just prior to the peak loading point is compared to the predicted load response, a 

much closer agreement between measured and predicted performance is shown. 

Comparing the modes of failure predicted by the macro model with that shown in the 

tests shows that for WA4 test, the model predicts the first tensile crack on the lower 

left side of the wall where the tensile stress is the highest and then predicts shear 

cracks perpendicular to the compressive diagonal of the wall (note that these cracks 

were also tensile shear cracks). As the infill shear wall was confined by the steel 

frame, these tensile failures did not soften the structural model, significantly. Along 

with increase in the load, a local interface failure was observed in the element(s) 

where there were complete tensile failure (at lower left of the wall) and finally the 

ultimate load was reached just before a local compressive corner crushing was 

observed in the lower right side of the infill wall. In overall, the random shear cracks 

perpendicular to the compressive diagonal of the masonry shear wall were the most 

degrading failure type predicted by the model; and, the tensile failures predicted on 

the lower left side of the masonry shear wall and even local separation of the wall 

from the ground were not significantly reducing the stiffness of the system. In the 

experimental test also, the random shear cracks were reported as the main reason for 

degradation of shear wall and other failure modes were found to be not very effective. 

[Dawe et al 1989]. The macro model predicted the failure types, location and load 

acceptably close to the measured responses. 

The first tensile crack appeared in the model WC3 test specimen, under a load lower 

than that measured experimentally.  However, these were minor flexural tensile 

cracks, which were followed by a local element separation failure. Major shear cracks 

were predicted by the model at about the same load level as observed in the tests. 
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Note that in both the model and test these shear cracks did not significantly reduce the 

wall capacity. Finally, the model, predicts a slight local corner crushing of masonry 

on the lower right corner of the wall followed by major sliding failure in ground level 

of both sides of the infill wall. Sliding was observed in the test, although the corner 

crushing was not.  It should be noted that the corner crushing observed in the model 

was minor and very local. 

Failure of the wall in the model for the WC5 wall specimen started with a major 

flexural tensile crack forming below the left side of the wall (the section adjacent to 

the loaded column). This crack was followed by diagonal shear crack on the right side 

of the opening (about ½ way up the pier). Immediately after the tensile shear cracks 

occurred in the right side of door opening, a local element separation failure happened 

on the left side (at the base of the pier). The interesting point about this wall was that 

the left side of the door opening did not experience a shear failure but just before the 

ultimate load, minor corner crushing happened in the lower right corner of the pier 

located to the left of door opening. It appeared that pier to the left of door opening 

was acting primarily in flexure. This behavior was similar to that observed in the 

experimental test for WC5 wall. In experimental WC5 test, evident sliding failure was 

reported similar to what predicted by the model; in addition, some minor (not 

through) diagonal cracks were also reported in the pier to the right side of the 

opening.  

In general, the proposed macro-model was able to capture the failure modes and 

sequence observed in the experimental tests and was able to predict the ultimate load 

and the displacement at with an acceptable degree of accuracy. 
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Reinforced Masonry Infill Shear Walls 

In order to evaluate the accuracy of the proposed model for the case of reinforced 

masonry infill walls, two of reinforced masonry infill shear wall tests, conducted by 

Dawe et al, [1989] were analyzed using the proposed macro-model. The predicted and 

measured responses were then compared.  The two test specimens were identified as 

WC4, WD5 [Dawe et al, 1989]. The WC4 specimen is a perforated reinforced 

masonry infill shear wall with no gaps on top or sides of the wall. The specimen had a 

central door opening of 800 mm by 2200 mm. A pair of 15M bars were used to form a 

lintel spanning the opening. The WD5 specimen was the same as WC4 with the 

exception of two additional 20M reinforcing bars were placed vertically on each side 

of the opening. The height and width of the frame in both tests was 2800 and 3600 

mm, respectively and W250x58 and W200x46 (AISC -Metric) wide flange sections 

were used for the columns and beam elements, respectively. All infill walls were 

constructed with partially grouted 200 mm x 200mm x 400 mm concrete masonry 

units. See Figs. 4-9 and 4-10. 

 

Figure 4. 9. WC4 Experimental Test (Perforated Infill Wall With Horizontal 
Reinforcements Only)  [Dawe et al. 1989] (NTS) 
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Figure 4. 10. WD5 Experimental Test (Perforated Infill Wall With Horizontal and 
Vertical Reinforcements) [Dawe et al. 1989] (NTS) 

Although, the masonry material models in the proposed macro-elements can be 

calibrated using the results of standard material tests, (such as compressive and a 

diagonal tensile tests) the initial linear portion of the measured load deflection 

response was used to determine the elastic modulus of the masonry in the model.  

This was done to remove the inaccuracy of the material tests from the assessment of 

the model accuracy.  Conventional elastic-plastic steel material models were used for 

the steel elements, including the reinforcing bars. The values for initial stiffness of the 

infilled frames were given in the experimental work of Dawe et al, [1989]. The 

meshing used for modeling WC4 and WD5 tests are exactly the same as the meshing 

used for WC3 test in the section for unreinforced masonry infill shear walls; see Fig. 

4-4. The elasticity moduli for frame members and the reinforcements are assumed to 

be the same but the frame members have been assumed to remain elastic through the 

analysis. It should be noted that partially grouted and hollow concrete masonry blocks  

(200 mm x 200mm x 400 mm) were used in the experimental tests [Dawe et al 1989], 

but to simplify the modeling, “equivalent” solid concrete blocks with lower elasticity 

modulus were assumed in the modeling process. The elasticity modulus of masonry 
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wall was calculated based on the initial stiffness from the tests and the solid block 

assumption [Dawe et al 1989]. 

The material properties of the frame members, masonry walls and reinforcement for 

tests WC4 and WD5 are given in Table 4-7. 

 
Table 4. 9. Material Properties Used for WC4 and WD5 Specimen Analyses 

Test 
Fy Steel 
Reinf. 

psi(Mpa) 

Fu Steel 
Reinf. 

psi(Mpa) 

Es  
psi (Mpa) 

f’m 
(for equivalent 
solid concrete 

blocks)  
psi (Mpa) 

(C) 
Cohesion 
Parameter 
psi (Mpa) 

( ) 
Friction 

coefficient 
 

(  ) 
Special 
Weight 

lb/ft3 (N/m3) 

WC4 6x 104 

(413) 
9x 104 

(620) 
29 x 106 

(2x105) 
276.45 
(1.9) 

150 
(1.034) 0.7 135 

(21206.81) 

WD5 6x 104 

(413) 
9x 104 

(620) 
29 x 

106(2x105) 
447.2 
(3.08) 

150 
(1.034) 0.7 135 

(21206.81) 

Figs. 4-11 and 4-12 show the force-displacement response predicted by the model for 

an incremental unidirectional pushover analysis and measured for tests WC4 and 

WD5, respectively. The experimental and computationally predicted force and 

displacements peak values are presented in Table 4-8; in addition, errors in prediction 

of ultimate forces and corresponding displacements are calculated and shown in a 

separate column of the table.  



 

 76   
 

 

Figure 4. 11. Infill wall with Central Opening (WC4) 

Experimental [Dawe et al, 1989]) (red) vs. Predicted by Macro-model Analyses 

 

 
Figure 4. 12. Infill wall with Central Opening (WD5) 

Experimental [Dawe et al, 1989]) vs. Predicted by Macro-model Analyses 

 

As you can see in Table 4-8, the macro-model was able to predict the force-

displacement response of the reinforced masonry infill shear wall test specimens with 

a reasonable degree of accuracy; the ultimate loads predicted for WD5 and WC4 were 
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within three percent of the measured values. The peak displacements for WC4 and 

WD5 tests are estimated to within less than two and ten percent error, respectively. 

Although the model slightly underestimates the ultimate displacement for the WD5 

test, its estimation for ultimate load is reasonably close 

 

Table 4. 10. Comparison of Experimental and Macro-model Predicted Results 

 Experimental Macro-model Error 

Test 
Name 

maxF  
(kN) 

max  
(mm) 

maxF  
(kN) 

max  
(mm) 

Force 
Prediction 
Error (%) 

Displacement 
Prediction Error (%) 

WC4 334 22.1 325.85 23.24 -2.44 5.15 
WD5 335 22.2 338.01 20.01 +0.92 -9.61 

Note: F max = ultimate load;   max = displacement at ultimate load  

 

The first failure described in the analysis of the WC4 specimen model was a flexural 

tensile failure in the lower left side of the infill wall (left-loaded-pier). This failure 

was followed by a local sliding failure in the same area. Following the sliding failure 

on the loaded side of the infill wall, tensile shear cracks started to appear in pier to the 

right of the door opening. These tensile shear cracks significantly decreased the 

stiffness of the infill wall. Additional tensile shear cracking then occurred in the upper 

half of the pier to the left of the opening. Indeed, because of the local sliding failure in 

the lower part of the left pier, this pier did not contribute significantly to the shear 

resistance of the assembly after the sliding occurred. After these failures occurred, 

corner crushing was predicted in the lower right part of the right hand pier, followed 

by a complete sliding failure on the lower right pier at the ultimate load.  

In general, the model was able to predict the failure types observed during the test of   

specimen WC4. Although the order of occurrence for different failure types observed 
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in the analysis seems reasonable, it was not possible to check the order of occurrence 

because the order of failure types is not clearly described in the experimental work of 

Dawe et al [1989]. The presence of horizontal reinforcing bars in the lintel on top of 

the door opening did not significantly improve the in-plane load performance of the 

infill wall. In the analysis of the WD5 specimen, the model predicts the start of 

degradation by a minor tensile failure in the lower left of the left pier.  This crack is 

followed by local element separation failures happened in the same area as the load 

was gradually increased. These local element failures were followed by tensile shear 

cracking throughout the right pier and in the upper section of the left pier. It should be 

noted that the local sliding failures in the left pier were confined to a single element 

and did not lead to sliding of the entire left pier because the vertical reinforcement to 

the left of the opening prevented further sliding by dowel action. The model then 

predicted minor corner crushing failure at the bottom of the right pier. As the load was 

further increased, the model predicted additional tensile shear cracks occurred in near 

mid-height of the right pier and the vertical reinforcement on the right of door 

opening yielded. Next, the model predicted additional tensile shear cracks  in the 

upper triangle portion of the left pier as well At the ultimate load there was minor 

corner crushing predicted along the compression diagonal of the left pier. Again 

because the experimental test results [Dawe et al 1989] did not clearly mention the 

order of occurrence for different failure types, it is not possible to check if the model 

was able to predict the order of failures correctly. However, in general the predicted 

failure modes were observed and the ultimate load and the displacement at the 

ultimate load are predicted with an acceptable degree of accuracy. 
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Effect of Opening Location on Infill Masonry Shear Wall Response 

Unreinforced Cases: 

In the following section, different positions for a door opening in masonry infill shear 

wall are investigated. The purpose of this analysis is to determine how opening 

location affects the ultimate strength of infill masonry shear walls and its load 

deflection response. It is worth mentioning that all masonry infills were assumed to 

have the same material properties, and all of the dimensions of the frame, wall and 

door openings were the same size. Thus the only variable in this part of study was the 

distances from the door openings to the inside face of the left column. The door 

opening size was assumed to be equal to the door opening size of perforated walls in 

the numerical examples section; i.e. 2200 mm high and 800 mm wide. See Tables. 4-9 

and 4-10. 

 

 

Table 4. 11. Geometrical Configurations for Location of Door Opening Models 

Frame 
Height 
(mm) 

Frame 
Width 
(mm) 

Door 
Height 
(mm) 

Door 
Width 
(mm) 

Column’s 
Section 

(AISC-Metric) 

Beam’s 
Section 

(AISC-Metric) 

Concrete Block 
size (mm3) 

2800 3600 2200 800 W250x58 W200x46 200x200x400 
 

 

Table 4. 12. Material Properties for Location of Door Opening Models 

Frame  Infill wall 
Es 

(psi) 
Assumed 
f’m (psi) 

(C) Cohesion 
Parameter (psi) 

( ) Friction 
coefficient 

(  ) Special Weight 
(lb/ft3) 

29 x 106 300 150 0.7 135 
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Different locations for door opening are distinguished by the distance between the left 

side of door opening to the inside face of left column. See Fig. 4-13. Note that the left 

distance equal to 54.76 inches defines a central door opening.  

 

Figure 4. 13. Load-Displacement Responses for Different Locations of Opening 

 

As it can be seen in Fig. 4-13, when the opening is central, the highest ultimate load 

resistance and most ductile behavior is predicted (shown by solid line). When the 

opening is offset from the center towards the loaded side, although the ultimate load is 

close to the ultimate load reached in the central case, the system shows much less 

ductility. On the other hand when the opening is offset from center away from the 

loaded column, the ultimate load reduces significantly. It can be concluded that a 

perforated infill wall will show the highest ultimate load and maximum ductility when 

the opening is central. A (central/ near central) opening will divide the infill shear 

wall to almost equal wall pier on each side of the opening, which help a more uniform 

load sharing due to their comparable stiffness. Thus, when one of the piers 
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experiences minor failures, the load share of its counterpart will increase only a small 

amount; this prevents sudden failure of the first panel, and a higher percentage of total 

capacity of the perforated masonry infill shear wall will be utilized. 

Reinforced Cases: 

Reinforced perforated masonry infill shear walls are examined to assess the effects of 

opening location of the infill wall system performance. In the three configurations 

investigated, the frame size, shear wall and opening size were the same as those 

described for the unreinforced configuration. In addition there were three opening 

locations, one to the left of center, one with the opening centered in the shear wall 

length and one with the opening on the right side of center.  For all configurations, it 

was assumed that there were vertical 20M steel reinforcing bars on either side of the 

opening. In addition, a horizontal 20M reinforcing bar was extend across the masonry 

wall at the top of the opening and connected to both columns. Two, horizontal 20M 

reinforcing bars were also located at mid-height of the opening and connected through 

the  columns on both sides of the wall segment. See Figs. 4-14 to 4-16 for more detail. 
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Figure 4. 14. Reinforced Infill Wall Case With Opening Offset Toward The Loading 
(NTS) 

As it can be observed in Figs. 4-14 to 4-16, the percentage reinforcements for three 

examples with different locations of opening are exactly the same.

 

Figure 4. 15. Reinforced Infill Wall Case With Central Opening in Reinforced Infill 
Walls (NTS) 
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Figure 4. 16. Reinforced Infill Wall Case With Opening Offset Away From the 
Loading Reinforced Infill Walls (NTS) 

For all three configurations, an incremental push over analyses was conducted and the 

predicted load-displacement response for the three perforated infill reinforced 

masonry shear walls are shown in Fig. 4-17.  
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Figure 4. 17. Load-Displacement Diagrams For Reinforced Infill Walls With 
Openings 

Figure 4-17 shows that the ultimate load of the reinforced infill wall with the opening 

offset towards the loaded side is higher than the other two cases, but the central 

opening case shows more ductility while the ultimate load is not much lower than the 

case where the opening is offset towards the loaded side. 

Effects of Openings - Summary 

Overall, the analytical models created to describe the response of masonry infill shear 

walls to study the precision of the model and evaluate the effects of openings on the 

response of infill masonry shear wall systems concluded that best performance for 

both unreinforced and reinforced perforated infill walls will be achieved if the door 

opening is located close to the centerline of the infill wall. In such cases, the overall 

structural system shows a higher ultimate load and more ductility under in-plane shear 

loading than other locations for the opening.  
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In addition, the analysis of the unreinforced masonry infill wall models suggest that 

openings offset away from the loading side reduce initial stiffness and ultimate system 

capacity. Thus, as these infill wall systems will undergo cyclic loadings under most 

lateral loadings, the best performance of the infill wall will be obtained if openings 

are located at or near the centerline of the infill wall.  This will produce the highest 

resistance and greatest ductility.  
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

In many places around the world, masonry walls are enclosed by structural frame 

systems. In general, these structural systems can be categorized into two different 

groups; the first type, called nonparticipating infill shear walls, includes wall systems 

specifically constructed to avoid any interaction with the surrounding frame. The 

second category, known as the participating infill walls, includes walls that are 

intended to be in contact with the surrounding frame and thus contributory to the 

lateral resistance of the structure. Participating infill walls, will significantly affect the 

performance of the surrounding frame. This investigation concentrated on developing 

a method to predict the response of participating masonry infill shear walls. 

As macro-models are simpler to use, do not need as much information to apply and 

are more computationally more efficient, this type of model was chosen for further 

consideration. Although many of the macro-models proposed hitherto fore for 

masonry infill shear walls were able to partially capture some of the behaviors 

observed in the infill wall systems under loading, none of the models was able to 

address all of the behaviors observed under simultaneous lateral and vertical loading. 

In addition, most of them could not address the effects of wall openings on the 

performance of the structural system nor the effect of reinforcements on the shear 

transfer mechanism.  

After reviewing the properties of different wall models, an advanced macro-element 

infill shear wall model was developed based on the work of Caliò et al. [2012]. The 

proposed model has the following features: 
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1. A rigid bar chassis is created to form the boundaries of each infill masonry 

shear wall element.   

2. Ten internal shear springs are used to capture the shear resistance of the wall 

instead of Caliò’s pair of diagonal shear springs. This enables the model to 

degrade more gradually, better representing the actual behavior of the wall 

system.  

3. The new model addresses the flexural stiffness using a closed form stiffness 

matrix based on a fiber-approach (flexural springs).  

4. Springs are used to capture the shear transfer mechanism between the wall 

sections, including the dowel action of reinforced infill walls. Moreover, 

cohesion, friction and the doweling action of reinforcements crossing the 

interface between the elements was also considered in the defined interface 

shear transfer mechanism of the model using an interface shear spring. 

5. The effect of reinforcements on shear and flexure in the cases where the infill 

wall is reinforced was addressed with steel spring elements.  

6. Variable masonry elasticity moduli were used for flexural and shear springs. 

These variable moduli were set to allow the material to experience nonlinear 

behavior in tension while maintaining the compressive elasticity modulus at 

the same value. Thus, if the same spring goes into compression, e.g. under 

cyclic loading, the spring element can model compressive resistance while 

closing the tensile gaps under cyclic loading.  

7. The variable elastic moduli were also set to degrade the tension response if 

significant inelastic compression strains were experienced. This models the 

condition where materials that have failed in compression show little or no 

resistance in tension. 
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8. Gap elements, the multiple constraints method and Lagrange Multipliers are 

used to account for gaps between the frame and wall, and the interaction 

between the two systems. 

Procedures for calibration of each type of spring in the proposed macro-element were 

presented and are based on simple material tests and design code strength and 

stiffness relationships. 

The proposed element and analysis procedures were applied to predict the behavior of 

five full sized tests on unreinforced and reinforced masonry infill walls confined by 

steel structural framing.  Comparison of predicted and experimental behavior 

demonstrated that the proposed macro-model is able to predict the load-displacement 

equilibrium paths and estimate the ultimate loads and displacements of the 

experimental tests with an acceptable degree of accuracy.   

In conclusion, the results of this research can lead to the following: 

 The proposed macro-model was able to address different behaviors observed 

in the infill masonry shear wall systems including flexural, shear and shear 

transfer (sliding shear failure) using a rigid bar chassis, a variety of spring 

elements and variable material models to describe the in-plane load deflection 

behavior of unreinforced and reinforced  infill masonry shear wall systems. 

  The model can be easily calibrated by conducting a few code defined 

laboratory tests on small size masonry assemblages.  

 A patch test on the proposed macro-element showed that same structure was 

modeled and analyzed repetitively using finer mesh sizes converge to a 

common answer and the model appears to be quite robust. 
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 When applying the model to full sized infill shear wall tests (unreinforced, 

reinforced and perforated) the computational models showed very good 

agreement with the experimental tests. Predicted ultimate strengths and 

deformations were quite close to measured values, generally within 5%.  In 

addition the predicted failure modes were generally observed during testing.  

 Assessment of the effects of perforations in the infill walls suggests that if 

these openings are located near or on the center-line of the infill wall, greater 

ductility of response and high ultimate resistances are expected.  

Recommendations for Future Work 

Based on the result of his study the following additional work is recommended: 

1. Although, the proposed macro-model was created in a way that it could 

address the cyclic behavior (Softened tension springs keep their compression 

stiffness but, softened compression springs lose their tensile stiffness), the 

model was used only to study monotonic incremental push over loading on 

different masonry infill walls. Thus, further studies should evaluate the 

proposed model under cyclic loading.   

2. The current study limited itself to the analysis of bounding steel frame systems 

that remained elastic.  The model should be evaluated where the bounding 

frame elements are either steel or concrete and where these elements that 

undergo significant inelastic deformation. 

3. The current study was limited to single story systems.  The proposed model 

should be evaluated for multistory applications. 

4. The model should be evaluated for retrofit application where reinforcing may 

be surface applied, partially bonded. 
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5. The doweling action of reinforcement on the shear transfer mechanism was 

limited in the proposed model to the flexural resistance of the steel reinforcing 

bars. The model for doweling action of reinforcements could be extended to 

consider the kinking effect on the shear transfer interface when larger slips 

occur. 

6.  Further refinement of the failure mechanisms associated with the masonry 

infill wall is need to establish specific failure criterion so that a formalized 

code format design procedure can be developed. 
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