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Abstract 

Low molecular weight gelators (LMWGs) are a class of compounds that has garnered 

great interest from material, synthetic, supramolecular and biological chemists. Anion 

tuning of these supramolecular gels is a burgeoning field of study. Two classes of 

compounds, chiral bisureas and urea derivatised pyrazoles are studied. 

 

The synthesized chiral bisurea compounds act as gelators in a variety of solvents. 

Addition of anions in the form of tetrabutyl ammonium salts was found to afford break 

up of the gels. Studies reveal that the rheological characteristics of these materials can be 

tuned using the simple addition of sub-stoichiometric amounts of anion. Variation in the 

length of the alkyl chain of the spacer separating the chiral and bisurea moieties affects 

the gel formation of a series of related compounds. Compounds with even numbered 

spaced alkyl chains were found to gel, whereas the odd numbered spaced alkyl chain 

compounds did not. Crystal growth within the gel matrix influences the crystallization 

processes and the use of anion induced break down of the LMWGs allows for easy 

recovery of the grown crystals. Drug compounds, bound upon gelation of a solution 

containing the drugs, were found to be released in a controlled manner from the gel 

matrix. 

 

Urea functionalised pyrazoles were synthesized. Crystallographic determination of the 

hydrogen bonding of the compounds as well as the coordination chemistry of these 

compounds was obtained. Anion binding studies, in addition to the crystallographic 

results, reveal that the urea or thiourea groups form an intramolecular hydrogen bond 

with the pyrazole group resulting in an anti conformation. This prevents formation of gels 

except in one case. The gelation of 1-(3-methyl-1H-pyrazol-5-yl)-3-(3-nitrophenyl)urea 

in acidic water overcomes this problem by protonation of the pyrazole group resulting in 

a syn conformation of the urea group. Anion tuning of the gel properties is revealed 

where nitrate and chloride result in precipitation of gels and the rheological 

characteristics can be tuned by changing the anion’s identity. 
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LMWG Low Molecular Weight Gelator 
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Tgel  Gel transition temperature from gel to solution 

THF  Tetrahydrofuran 

Tol  Toluene 

Tsg  Gel transition temperature from solution to gel 
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Figure captions 

 

Figure 1.1. a, b) Photographs of the reversible phase transition between the gel and sol states of 

1.6 in 1,2-dichloroethane (neutral gel (a) and protonated sol (b)). c, d) Fluorescence images and 

e, f) SEM images of the neutral gel and the protonated sol, respectively. (Reproduced with 

permission from ref.122) 

 

Figure 1.2. a) Hydrogel of 1.7-Na containing 0.1 mM of crystal violet. b) Toluene added to the 

hydrogel of 1.7-Na containing the dye. c) Status of hydrogel after the addition of 1.1 equiv of HCl. 

d) Subsequent heating results in selective gelation of the toluene phase containing crystal violet, 

leaving the aqueous layer clear within a few minutes of addition. (Reproduced with permission 

from ref.80) 

 

Figure 1.3 a) Gel films of 1.18 in cyclohexane. b) reversible gel-sol transitions by a variety of 

stimuli. Top left represents the redox controlled transition between the gel and sol states. Top 

right and bottom left is the thixotropic character of the gel. (Reproduced with permission from 

ref.160) 

 

Figure 1.4 a) gelation of cyclohexane by free 1.20, b) of cyclohexane by the [Fe(1.20)2](ClO4)2 

complex c) precipitation of the analogous ruthenium complex, and d) a gel of 1.20 doped with 

Fe(II). (Reproduced with permission from ref.164) 

 
Figure 1.5. Ca2+ responsiveness of hydrogelator 1.26. a) Phase diagram of the gel-sol transition, 

revealing the number of equivalents of Ca2+ required to induce gelation at each gelator 

concentration. b) Photographs of the Ca2+-induced sol-to-gel transition ([1.26] = 0.30 wt %; 

[Ca2+]/[1.26] = 1.0; [Na2EDTA]/[Ca2+] = 10). c) Corresponding dynamic viscoelastic properties 

before and after the addition of Ca2+. (Reproduced with permission from ref.11) 

 

Figure 1.6. Rheological detection of a) light- and b) temperature-triggered gelation of 

1.27/liposome precursor fluid (12 vol % CaCl2-loaded liposomes in a sucrose solution of 1.27 (30 

mg/mL)). (Reproduced with permission from ref.173) 

 

Figure 1.7. SEM images showing morpholgy of xerogels of 1.28 in a) water – spongy globules 

(gel forms instantaneously), b) 1 mM CaCl2 – fused globules (gel takes 15 mins to form), c) 1 mM 
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MgCl2 – fused globules (gel takes 15 mins to form), and d) 1 mM NaCl – aggregated spheres (gel 

takes 7 mins to form). (Reproduced with permission from ref.79) 

 

Figure 1.8. The acetone gel of 1.29, showing the transitions between the gel state and liquid 

states upon addition of chemical stimuli (X = F–, Cl– or BF4
–). a) Acetone gel of 1.29 (2.0 wt %). b) 

Acetone gel of 1.29 (2.0 wt %) containing (from left) 1.1 equiv of TBA+ F–, 1.7 equiv of TBA+ Cl–, 

and 10 equiv of TBA+ BF4
–. c) BF3·OEt2 (1.0 equiv for TBA+ salt) mixture after sonication of 1.29 

and TBA+ F– (left) or TBA+ Cl– (right) in acetone. d) ZnBr2 (1.0 equiv for TBA+ salt) mixture after 

sonication of 1.29 and TBA+ F– (left) or TBA+ Cl– (right) in acetone. (Reproduced with permission 

from ref.184) 

 

Figure 1.9. Transition of the supramolecular gel of 1.31c in octane (10 mg/ml) to a solution upon 

addition of 10 equivalents of TBA+ Cl– added as a solid to the top surface of the gel. The highly 

emissive solution generated by the decomposition of the gel has fluorescence emission at 524 

and 574 nm (λex = 470 nm) indicating that the bound Cl– by 1.31c is soluble in the octane 

explaining the breakdown of the gel. (Reproduced with permission from ref.189) 

 

Figure 1.10. a) The 1.34 p-xylene gel; b) addition of 10 equivalents of TBAF to the hot p-xylene 

solution of 1.34 followed by cooling to RT; c) 1.34 EtOH gel; d) reddish 1.34 EtOH gel after 

addition of 10 equivalents of F–. e) Diffusion of F– from a concentrated p-xylene solution (50 

equiv.) through the 1.34 p-xylene gel. From left to right: 1.34 p-xylene gel; immediately after 

addition of TBA+ F– solution; after 2, 3 and 4 h; and overnight standing. (Reproduced with 

permission from ref.193) 

 

Figure 1.11. Schematic representation of the reversible polymerisation and the reversible 

conversion between folded and unfolded conformations of a coordination chain upon 

counteranion exchange of 1.37 resulting in gelation to solution, and vice versa, state changes. a) 

Depolymerisation of the coordination polymers due to strong binding of the F– to the Ag+ metal 

centres resulting in the breakdown of the gel. Repolymerisation and reformation of the gel by the 

addition of 1.2 equivalents of TBA+ BF4
–. b) Transition from gel to sol caused by the 

conformational change in 1.37 induced by the addition of C2F5CO2
–. The reformation of gel is 

accomplished by addition of TBA+ BF4
–. (Reproduced with permission from ref.202) 

 

Figure 1.12. Gels of 1.38 (11 wt % in acetonitrile) exhibit multi-responsive behaviour including the 

chemo-response to formic acid and TBA+ ClO4
–. a) Sonication induced toughening of the gel of 

1.38. b) Chemo-responsive break down of the gel by the addition of formic acid or TBA+ ClO4
– 

caused by the osmotic deswelling of the gel or salting out of the organic phase. c) Thixotropic 
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(recovery of gel after gel is sheared to breaking point, i.e. mechano-responsive) character of the 

gel. d) Thermotropic (temperature sensitive) character of the gel. (Reproduced with permission 

from ref.207) 

 

Figure 1.13. Diagram showing the luminescence profiles of Au(I) pyrazolate complex 1.40 in 

hexane as solutions and gels, and the schematics of the self-assembling structures. Anion tuning 

by the use of Cl– between the red and blue gel states occurs due to the removal of the 

intercalated Ag+ a) Sol of complex 1.40 that shows barely any visible luminescence (λext = 254 

nm). b) Gel of 1.40 that contain stacks of complexes resulting in bright red luminescence (λext = 

254 nm). c) Sol containing AgOTf (0.01 equivalents) that shows green luminescence (λext = 365 

nm) due to intercalation of silver between sets of 1.40. d) Gel containing AgOTf (0.01 

equivalents) showing blue luminescence (λext = 365 nm) due to intercalation of Ag+ into the stacks 

of 1.40. (Reproduced with permission from ref.212) 

 

Figure 1.14. Chiral bisurea compounds for the study of anion tunable LMWGs. 

 

Figure 1.15. Urea and thiourea functionalised pyrazoles for the formation of metal and salt 

LMWGs that can be tuned using anions. 

 

Figure 2.1. A time sweep of the rheological character of a gel of 2.1a at 0.3% by weight in MeCN. 

It shows how even though a gel has formed instantaneously upon cooing the gel continues to 

‘mature’. The strengthening is highlighted by the increase in the G value (Light grey filled ○) 

while the G value (Grey filled ) stays relatively the same. a) Inset showing a micrograph image 

of air trapped in a clear gel as seen upon brief sonication of a gel solution. b) Inset shows the 

branching by growing fibres resulting spherulitic networks in a gel as it matures. 

 

Figure 2.2. DMSO:Water gels formed by the addition of water to a solution of 2.1a in DMSO. 

From left to right the solvents are: pure water, ratios 1:9; 2:8; 3:7; 4:6; 5:5; 6:4; 7:3; 8:2; 9:1; pure 

DMSO. Note that the more aqueous samples, 1:9; 2:8; 3:7, are precipitated and/or form weak 

gels. Note the 8:2; 9:1 and pure DMSO samples are clear solutions. 

 

Figure 2.3. Image of the same samples as in Figure 2.2 but after heating to dissolution followed 

by cooling to room temperature. Homogenous gels were obtained for the more aqueous 

solutions. Only pure water and ratios 7:3; 8:2; 9:1 DMSO:H2O and pure DMSO did not form gels. 

Compound 2.1a is partially soluble in water but does not form a gel. Note that the vial containing 

the 7:3 solution contains small crystals which were used for the determination of the compound’s 

crystal structure. 
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Figure 2.4. Rheology of 2.1a showing a frequency sweep performed on a gel of 2.1a at 0.3% by 

weight MeCN gel. Typically the consistency of the G (Light grey filled ) and G (Dark grey filled 

○) values over the frequency range indicates the solid-like nature of the gel material. The greater 

than a magnitude value of G over the G value demonstrates the elastic behaviour of the gel. 

Both axis values are shown as a logarithmic (log) scale. 

 

Figure 2.5. Rheology of 2.1a showing a stress sweep, as a function of oscillation (osc.) torque, 

on a gel of 2.1a at 0.3% by weight MeCN gel. The stress sweep shows the rigidity and strength of 

the gel which breaks at a relatively high shear strength. G value (Light grey filled ) stays 

constant until the torque begins to become too strong and the struts start to break under the 

strain. Eventually G for the samples drops to below the G value (Dark grey filled ) and the 

sample is said to be flowing, coloured guide lines show blue (G) passing red (G). This transition 

point were the G value becomes greater the G value gives the “yield stress”. Both axis values 

are shown on a log scale. 

 

Figure 2.6. The G dependence on the concentration (indication of strength of gel) of compound 

2.1a in MeCN. The plateau point, at around 0.45 % by weight, is used as the cut off point for the 

determination of the G  [conc]n relationship. Errors bars on all points represent standard 

deviation for ten determinations of G values for a given sample. An example of the deviation in 

results for different samples at the same weight percent is represented by the two measurements 

on samples at 0.35% by weight. Lines are for a power law and a linear relation of best fits. 

 

Figure 2.7. a) Crystalline material seen upon drying a gel sample of 2.1a in MeCN using SEM. b) 

Crystalline material seen upon drying a gel sample of 2.1a in CHCl3 using SEM. c) SEM image of 

compound 2.1a xerogel formed from a gel made in a DMSO:H2O mixture at 6:4. This image is a 

better representation of the gel structure than images seen in parts a and b. Note how the gel 

fibres are rod-shaped and show no indication of the chirallity of the gelator. d) Higher resolution 

image of the fibre connections of the DMSO:H2O gel. There are large fibres/crystals that are 

bound to the smaller gel fibres. 

 

Figure 2.8. a) TEM image of compound 2.1a gel formed in a CHCl3 at 0.5% by weight. b) 

Cryo-SEM image of a CHCl3 gel of 2.1a showing the fibrous gelatinous morphology as seen 

in the TEM image, which is in strong contrast to the dried crystalline SEM samples of Figure 

7a and 7b. To the top right of the image can be seen the edge of crystalline structure similar 

in morphology to the dried gel.  
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Figure 2.9. a) Ellipsoid plot of 2.1a. Atoms shown as 50% ellipsoids with labels for atoms 

involved in the hydrogen bonding. b) Anti-parrallel urea-urea tapes formed within the structure of 

2.1a. Molecules shown in capped-stick representation. R )6(1
2  hydrogen bonding shown by 

dashed red lines. Selected hydrogen bond distances: N1–H1N···O1 2.875(6) Å, N2–H2N···O1 

2.956(6) Å, N3–H3N···O2 2.871(6) Å and N4–H4N···O2 2.939(6) Å. 

 

Figure 2.10. PXRD patterns of the xerogel of compound 2.1a formed from the drying of the 

CHCl3 gel (Blue line), drying of MeCN gel (Red line) and the simulated PXRD of the single crystal 

data of compound 2.1a (Black line). The first three characteristic peaks match for all the samples. 

There is a systematic drift to lower 2θ values of the powder sample peaks compared to the 

simulated pattern due to the single crystal structure being obtained at 120K compared to the 

powder samples which were obtained are room temperature. Intensities have been normalised to 

the same scale. 

 

Figure 2.11. Influence of different anions (0.1 equivalents of anion added as their TBA+ salts) 

on the storage modulus (G) at a frequency of 1 Hz and a temperature of 20 C, as a function 

of osc. torque of the 0.3% by weight gel of compound 2.1a in MeCN. The anions added are 

BF4
– (Orange ); Br– (Blue ); NO3

– (Pink ); Cl– (Yellow ) and MeCO2
– (Black ). The 

pure gel is represented as brown ○. F– is not shown as it forms a liquid. G and G axis 

values are shown in log scale. 

 

Figure 2.12. The effect of adding anion in form of TBA+ Cl– on G, G and Tsg for a gel of 2.1a at 

0.3% by weight and in MeCN, as measured by varying the temperature from 70oC to 25oC. The 

 symbols (G open; G filled) represent 0.1 equivalents of anion added and the  symbols (G 

open; G filled) represent 0.2 equivalents added. Arrows indicate Tsg points. G and G axis 

values are shown in log scale. 

 

Figure 2.13. The effect of adding the anion TBA+ NO3
– on the storage moduli for a gel of 2.1a at 

0.3% by weight and in MeCN measured by varying the osc. torque from 10 micro N.m to 1000 

micro N.m, at a fixed frequency of 1 Hz. The  symbols represent 0.1 equivalents of anion 

added; the ○ symbols represent 0.2 equivalents added and the  symbols represent 0.5 

equivalents added. G decreases as more anion is added to the gel. G and G axis are values 

shown in log scale. 
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Figure 2.14. The change in chemical shift of one of the NH protons of compound 2.1a during the 

titration of TBA+ MeCO2
– done in MeCN at 50 oC from which the binding strengths of 2.1a for the 

anion is determined.  

 

Figure 2.15. Figure showing the results of a Job Plot analysis for the binding of TBA+ MeCO2
– by 

compound 2.1a giving a 1:1 binding ratio (0.5 mole fraction of host). The two NMR signals, 

represented by the  and  symbols, are those assigned to the NH protons of the urea groups. 

 

Figure 2.16. Figure showing the results of a Job Plot analysis for the binding of TBA+ Cl– by 

compound 2.1a giving a 1:1 binding ratio (0.5 mole fraction of host). The two NMR signals, 

represented by the  and  symbols, are those assigned to the NH protons of the urea groups. 

 

Figure 2.17. Alternation of gel (even n) and sol (odd n) formation in CHCl3 by compounds 

2.1a – 2.1g. All vials are at 1 % by weight in 2 ml of solvent. 

 

Figure 2.18. a) SEM image of the xerogel of 2.1a gel from MeCN (solvent) showing the rod-

shaped nature of the dried gel sample due to crystallisation. b) SEM image of the xerogel of 2.1c 

gel from MeCN showing the thread-like nature of the gel fibres and the helical twist induced by 

the chiral gelator. c) SEM image of the xerogel of a MeCN gel of 2.1e showing the brittle (more 

crystalline) fibrous nature of the gel fibres. d) SEM image of the xerogel of a MeCN gel of 2.1g. 

 

Figure 2.19. PXRD pattern of the xerogel of compound 2.1c at room temperature formed from 

the drying of a CHCl3 gel (Black line) and the simulated PXRD pattern from the single crystal 

determination (performed at 120K) (Red line). Intensity of the simulated PXRD has been 

normalised to that of the xerogel. 

 

Figure 2.20. PXRD patterns at room temperature of a powder sample of the as synthesised 2.1e 

from the precipitation/gel formation in the synthesis solvent CHCl3 (Black line) and the xerogel of 

2.1g formed from the drying of the CHCl3 gel (Grey line). Intensity of 2.1g PXRD normalised to 

that of 2.1e. 

 

Figure 2.21. Crystal packing diagrams showing the urea tape motif of compounds 2.1a (a), 2.1c 

(b). Note how the urea tape motifs are anti-parallel and the phenylethyl groups are in a gauche 

arrangement. Selected hydrogen bond for 2.1c: N1–H1N···O1 2.944(4) Å, N2–H2N···O1 2.923(4) 

Å, N3–H3N···O2 2.930(4) Å, N4–H4N···O2 2.905(4) Å. 
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Figure 2.22. Crystal packing diagrams showing the urea tape motif of compounds 2.1d (a), 2.1f 

(b). Note how the urea tape motifs are parallel and the phenylethyl groups are in an anti 

arrangement. Selected hydrogen bonds: 2.1d N1–H1N···O1 2.869(4) Å, N2–H2N···O1 2.939(4) 

Å, N3–H3N···O2 2.895(4) Å, N4–H4N···O2 2.866(4) Å and 2.1f N1–H1N···O1 2.915(2) Å, N2–

H2N···O1 2.881(2) Å, N3–H3N···O2 2.949(2) Å, N4–H4N···O2 2.886(2) Å. 

 

Figure 2.23. Molecular structure of 2.1c in form II. Atoms are shown as ellipsoids at 50% 

probability. Selected hydrogen bonds: N1···O1i = 2.8859(15) Å;  N1–H1N···O1i = 145.0o, 

N2···O1i = 2.8565(15) Å;  N2–H2N···O1i = 143.8o, N3···O2ii = 2.9111(15) Å;  N3–

H3N···O2ii = 147.0o, N4···O2ii = 2.8172(15) Å;  N4–H4N···O2ii = 154.8o, (i = 1+x, y, z and ii 

= x-1, y, z) 

 

Figure 2.24. Packing arrangements of 2.1c in a) form I and b) form II. 

 

Figure 2.25. Fibrous strands of the gels formed by 2.2. a) SEM image of a MeCN 0.06 % by 

weight gel and b) is of a DMSO:H2O 0.3 % by weight gel. Note how the fibres are larger for the 

more concentrated gel (i.e. higher weight %) and how the fibres are joined together through both 

weaving and inter-growth of fibres. 

 

Figure 2.26. Helical fibres found within gels of compound 2.2. a) is of a 0.1 % by weight CHCl3 

gel and b) is of a 0.06 % by weight MeCN gel. Note how the two images show two different sets 

of direction for the helical twist of the fibres. This indicates that the helicity direction is not 

determined by the chirality of compound 2.2. 

 

Figure 2.27. Rheology of 2.2 showing a time sweep performed on a gel of 2.2 at 0.1% by weight 

MeCN gel. Typically the gel’s strength increases over time as shown by the increase in G (Dark 

grey filled ) with time while G (Light grey filled ) does not change. 

 

Figure 2.28. Rheology of 2.2 showing a frequency sweep performed on a gel of 2.2 at 0.1% by 

weight MeCN gel. Typically the consistency of the G (Dark grey filled ) and G (Light grey filled 

) values over the frequency range indicates the solid-like nature of the gel material. The fact 

that the G value is a magnitude of order larger than G value, demonstrates the elastic behaviour 

of the gel. 

 

Figure 2.29. Rheology of 2.2 showing a stress sweep on a 0.1% by weight MeCN gel. The stress 

sweep shows the rigidity and strength of the gel, which breaks at a relatively high shear strength. 

G value (Grey filled ) stayed relatively constant until the torque begins to become too strong 
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and the struts start to break under the strain. Eventually G for the samples dropped to below the 

G value (Light grey filled ) and the sample is said to be flowing. G and G axis values shown 

on a log scale. 

 

Figure 2.30. PXRD pattern of 2.2 from the as-synthesised materials. 

 

Figure 2.31. A gel of 2.2 at 0.6% by weight in a DMSO:H2O 5:5 solvent mixture was shown to 

reform after being sheared to breaking point. The gel was allowed to set for 25mins upon which a 

stress sweep was performed from a range of 10 micro N.m to 15 000 micro N.m (Time 25.2 min 

to 57.4 min). The gel started to flow at around 10 000 micro N.m. Upon removal of this shear 

force the measurements were continued at a low frequency and stress value. As can be seen the 

gel reforms over time, the G value reached ~ 55% of its original value. G shown as grey filled  

and G as grey filled ○. G and G axis values shown on a log scale. 

 

Figure 2.32. SEM images of the dried thixotopic gel formed by 2.2 in a DMSO:H2O mixture after 

shearing and “self-repair”. a) Note that the ends of fibres that join the fibres together are thinned. 

b) Close up SEM image of the areas that join the gel fibres of the thixotropic gel together. Note 

how the fibres join together and can be easily be broken and re-grown. The small fragile 

connections result in a weaker gel. 

 

Figure 2.33. Fluorescence spectra of a gel of 2.2 at 0.06% by weight in DMSO:H2O. The dark 

blue spectrum (lowest intensity spectrum) is of the hot solution. The general increase of the 

intensity, as indicated by the arrow, is seen as the temperature decreased. This decrease in 

temperature also resulted in gelation. There is also a small red shift in the band.  

 

Figure 2.34. Fluorescence spectra of a gel of 2.2 at 0.003% by weight in DMSO:H2O. The 

spectra do not change by much as the solution cooled. When the solution is given a shake, gel 

formation starts to occur and the band intensity increased (as shown by the arrow). 

 

Figure 2.35. Rheological study of the tuning of gels of 2.2 using the addition of anion in the form 

of TBA+ MeCO2
–. Time sweep measurements were performed on gels of 2.2 at 0.1% by weight in 

MeCN with varied amounts of TBA+ MeCO2
– added. G represented as dark filled symbols and G 

as light filled symbols.  symbols are for the pure gel,  symbols are for 0.05 equivalents of 

TBA+ MeCO2
– added,  symbols are for 0.2 equivalents of TBA+ MeCO2

– added and ○ symbols 

are for 0. 5 equivalents of TBA+ MeCO2
– added. 
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Figure 2.36. Rheological study of the tuning of gels of 2.2 using the addition of anion in the form 

of TBA+ MeCO2
–. Frequency sweep measurements were performed on gels of 2.2 at 0.1% by 

weight in MeCN with varied amounts of TBA+ MeCO2
– added. G represented as dark filled 

symbols and G as light filled symbols.  symbols are for the pure gel,  symbols are for 0.05 

equivalents of TBA+ MeCO2
– added,  symbols are for 0.2 equivalents of TBA+ MeCO2

– added 

and ○ symbols are for 0. 5 equivalents of TBA+ MeCO2
– added. 

 

Figure 2.37. Rheological study of the tuning of gels of 2.2 using the addition of anion in the form 

of TBA+ MeCO2
–. Stress sweep measurements were performed on gels of 2.2 at 0.1% by weight 

in MeCN with varied amounts of TBA+ MeCO2
– added. G represented as dark filled symbols and 

G as light filled symbols.  symbols (blue guide line) are for the pure gel,  symbols (green 

guide line) are for 0.05 equivalents of TBA+ MeCO2
– added,  (red guide line) symbols are for 

0.2 equivalents of TBA+ MeCO2
– added and ○ symbols (purple guide line) are for 0. 5 equivalents 

of TBA+ MeCO2
– added. The “yield stress”, as represented by the swapping of the G being larger 

than G, decreases with increasing equivalents of anion added (shown with an arrow). “Yield 

stress” values are estimated to be where the eye-guiding colour lines (linear plot between two 

points) intersect. 

 

Figure 2.38. Molecular structure of 2.3. Note how the urea groups are in an anti-parallel 

orientation. Atoms are shown at 50% probability ellipsoids. 

 

Figure 2.39. The urea tape motif of 2.3 in which each molecule is hydrogen bonded to four other 

molecules. C-H hydrogen atoms are omitted for clarity. Selected hydrogen bond distances: N1–

H1N···O4 = 2.793(4) Å, N2–H2N···O4 = 3.056(4) Å, N3–H3N···O3 = 2.973(4) Å and N4–

H4N···O3 2.933(3) Å 

 

Figure 2.40. The two dimensional hydrogen bonded layer of the molecules of 2.3. Structure 

viewed looking down [100]. C-H hydrogen atoms are omitted for clarity.  

 

Figure 2.41. The overall packing of 2.3 as viewed looking down [100]. C-H hydrogen atoms are 

omitted for clarity. 

 

Figure 2.42. Photograph of the Asp crystals grown from a 0.3% gel by weight of 2.1a in MeCN 

through a microscope at x40 magnification. Note the visible gel fibres that have been broken by 

smearing some of the gel that contains the crystals on a microscope.  
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Figure 2.43. Pictures showing the result of crystallisation of CBZ from the gel state from acetone 

as a solvent resulting in a large single crystal of the acetone solvate of CBZ and its isolation from 

the gel by using the reversibility of the LMW gel. a) A photograph under UV irradiation of the vial 

containing the gel to highlight the crystal from the gel as the crystal was luminescent and the gel 

was not. b) The large single crystal forms within the gel which stays intact when anion in the form 

of TBA+ MeCO2
– was added to dissolve the gel to form a clear solution. c) The crystal was then 

easily separated for use. 

 

Figure 2.44. Release of ibuprofen (10mg) from a gel of 2.1a at 0.5% by weight 7:3 

H2O:EtOH into pure water over time. 

 

Figure 2.45. IBU release (30mg in sample gel) over time from a 0.3% gel of 2.1a in EtOH:H2O 

3:7 into pure water followed using UV spectroscopy.  

 

Figure 2.46. The initial release of IBU from the gel appears to follow the one-dimensional 

diffusion law c  kt1/2 (Abscissa is t1/2 and ordinate is the normalised concentration). However, 

after approximately two hours the rate has greatly slowed down and a second mechanism was 

evident. 

 

Figure 2.47. Local Avrami plot of the kinetics of drug release (IBU) from a gel of 2.1a at 0.3% by 

weight of EtOH:H2O 3:7 mixture into pure water. Note how the initial negative slope is linear but 

then deviates once approximately 0.45 α of the drug has been released compared to the 

equilibrium level of drug release. This shows a second mechanism of diffusion is occurring during 

the release of IBU from the gel. 

 

Figure 2.48. The effect to pH on the release of IBU (10 mg in sample of gel) from a 0.3% gel of 

2.1a in EtOH:H2O 3:7 into water. The black points are the release into pure water, the dark grey 

points are the release into basic, pH 10, water and the light points are the release into acidic, pH 

2, water.  

 

Figure 3.1. Molecular structures of 3.1 and 3.2. a) Compound 3.2. b) Compound 3.2 chloroform 

solvate. c) Compound 3.1. Atoms are shown as ellipsoids at 50% probability. Selected hydrogen 

bonds: 3.2 N3···O1 = 2.736(2) Å;  N3–H3B···O1 = 126.4o, N4···N1 = 2.681(2) Å;  N4–H4···N1 

= 107.5o, 3.22CHCl3 N3···O1 = 2.743(3) Å;  N3–H3A···O1 = 126.0o, N4···N1 = 2.667(3) Å;  

N4–H4···N1 = 108.3o, 3.1 N3···O1 = 2.768(2) Å;  N3–H3A···O1 = 126.1o and N4···N1 = 

2.627(2) Å;  N4–H4···N1 = 111.7o. 
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Figure 3.2. The crystal structure of 3.3. a) Molecular structure of 3.3. Atoms are shown as 

ellipsoids at 50% probability. b) Dimer formation through the hydrogen bonding of the thiourea 

groups. c) Herringbone-like packing of the dimers. Hydrogen bonds from the N–H of the pyrazole 

to the S1 are shown as dashed red lines. Hydrogen bonds between dimers shown as dashed 

yellow lines. Selected hydrogen bonds: N4···N2 = 2.687(2) Å;  N4–H4N···N2 = 140.6o, N3···S1i 

= 3.345(1) Å;  N3–H3N···S1i = 148.3o and N1···S1ii = 3.285(2) Å;  N1–H1N···S1ii = 152.4o (i = 

2-x, 1-y, -z and ii = x-½, ½-y, z-½). 

 

Figure 3.3. a) ASU of 3.3.CHCl3. Atoms are shown as ellipsoids at 50% probability. b) Packing of 

the dimers of 3.3 to form a 2D hydrogen bonded sheet. Hydrogen bonds between dimers are 

shown as yellow dashed lines. Hydrogen bonds involving the pyrazole N–H group are shown as 

red dashed lines. c) Packing of these sheets one on top of each other results in channels. d) 

These channels are occupied by the CHCl3. Selected hydrogen bonds: N4···N2 = 2.684(3) Å;  

N4–H4N···N2 = 141.1o, N8···N6 = 2.703(3) Å;  N8–H8N···N6 = 140.7o, N3···S1i = 3.367(2) Å;  

N3–H3N···S1i = 162.0o, N7···S2ii = 3.328(2) Å;  N7–H7N···S2ii = 162.1o, N1···S1ii = 3.296(2) Å; 

 N1–H1N···S1ii = 169.5o and N5···S2ii = 3.346(2) Å;  N5–H5N···S2ii = 166.3o (i = -x, 1-y, 1-z, ii 

= 1-x, 1-y, 1-z). 

 

Figure 3.4. Molecular structures of 3.4, 3.5 and 3.6. a) BOC protected 3-amino-5-methylpyrazole, 

3.5. b) BOC protected 3-aminopyrazole, 3.4. c) BOC protected 3-amino-5-phenylpyrazole, 3.6. 

Selected hydrogen bonds: 3.5 N3···O1 = 2.7812(16) Å;  N3–H3N···O1 = 119.8o, 3.4 N3···O1 = 

2.735(2) Å;  N3–H3N···O1 = 128.1o and 3.6 N3···O2 = 2.6918(11) Å;  N3–H3N···O2 = 121.6o. 

Atoms are shown as ellipsoids at 50% probability. 

 

Figure 3.5. The two molecular structures of the two molecules of the ASU of the crystal structure 

of 3.8. Atoms are shown as ellipsoids at 50% probability. Selected hydrogen bonds: N3···O2 = 

2.7338(18) Å;  N3–H3N···O2 = 120.5o and N7···O5 = 2.7049(17) Å;  N7–H7N···O5 = 125.9o. 

 

Figure 3.6. a) Simplified diagram showing the donor and acceptor groups. b) Helix formed by 3.8. 

Selected hydrogen bonds: N4···N5 = 3.0243(19) Å;  N4–H4N···N2 = 173.0o and N8···N1i = 

2.9437(19) Å;  N8–H8N···N1i = 150.1o (i = -x, y, -z). 

 

Figure 3.7. Molecular structure of 3.10. Atoms are shown as ellipsoids at 50% probability. 

Selected hydrogen bond: N4···N2 = 2.6651(17) Å;  N4–H4N···N2 = 139.4o.  
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Figure 3.8. Hydrogen bonding of the dimers of 3.10 to form a hydrogen bond chain. Selected 

hydrogen bonds: N3···O1i = 2.8153(15) Å;  N3–H3N···O1i = 166.3o  and N1···O3ii = 2.9703(16) 

Å;  N1–H1N···O3ii = 171.1o (i = -x, 1-y, -z and ii = 1-x, -y-1, -z) 

 

Figure 3.9. Perpendicular inter-chain packing of 3.10. 

 

Figure 3.10. Molecular structure of 3.11a in form I. Atoms are shown as ellipsoids at 50% 

probability. Selected hydrogen bonds: N4···N2 = 2.7328(18) Å;  N4–H4N···N2 = 139.0o and 

N5···N2 = 2.6153(17) Å;  N5–H5N···N2 = 112.7o. 

 

Figure 3.11. Dimer formation by 3.11a in form I. Selected hydrogen bonds: N3···O1i = 2.7859(16) 

Å;  N3–H3N···O1i = 166.0o (i = -x, y, -z). 

 

Figure 3.12. Molecular structure of 3.11a in form II. Atoms are shown as ellipsoids at 50% 

probability. Selected hydrogen bond: N5···N2 = 2.660(12) Å;  N4–H4N···N2 = 112.0o. 

 

Figure 3.13. Formation of a urea tape by 3.11a, form II. Selected hydrogen bonds: N3···O1i = 

2.902(11) Å;  N3–H3N···O1i = 151.3o and N4···O1i = 2.822(11) Å;  N4–H4N···O1i = 156.5o (i = 

x-1, y, z). 

 

Figure 3.14. X-ray molecular structure of [Zn2Cl2(-Cl)2(-N,O-3.10)2] (50 % ellipsoids). Selected 

bond distances: Zn1···N2 = 2.013(5) Å, Zn1···O1 = 2.093(4) Å, Zn1···Cl2 = 2.5845(17) Å, 

Zn1···Cl1 = 2.2492(17) Å and Zn1···Cl2i = 2.3289(18) Å (i = -x, 2-y, -z). 

 

Figure 3.15. Hydrogen bonding of complexes [Zn2Cl2(-Cl)2(-N,O-3.10)2] into columns (a) which 

are stacked next to each other (b). Selected hydrogen bonds: N1···Cl2 = 3.126(4) Å;  N1–

H1···Cl2 = 120.7o, N1···Cl1ii = 3.314(4) Å;  N1–H1···Cl1ii = 128.3o, C7···O1 = 2.813(4) Å;  C7–

H7···O1 = 120.9o, C7···O2 = 2.705(4) Å;  C7–H7···O2 = 97.6o, N4···Cl1iii = 3.257(4) Å;  N4–

H4···Cl1iii = 152.3o and N3···Cl1iii = 3.292(4) Å;  N3–H3···Cl1iii = 146.1o (ii = -x, y, ½ - z and iii = 

x, y-1, z). 

 

Figure 3.16. The ASU of [CuBr(-N,O-3.10)2]Br.2H2O showing the chelating coordination of 

compound 3.10 to copper and the hydrogen bonding to the anion by the urea group of 3.10. 

Atoms shown as ellipsoids at 50 % probability. Selected coordination bonds: Cu1···O1 = 2.034(2) 

Å; Cu1···O4 = 2.025(2) Å; Cu1···N2 = 1.923(2) Å; Cu1···N2 = 1.923(2) Å; Cu–Br 2.693(1) Å with 

angles of  N2–Cu1–N7 = 176.7(1)o and  O1–Cu1–O4 = 144.5(1)o. Selected hydrogen bonds: 
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N8···Br2 = 3.370(2) Å;  N8–H8N···Br2 = 149.6o, N9···Br2 = 3.370(2) Å;  N9–H9N···Br2 = 

149.6o, O7W···Br2 = 3.481(2) Å;  O7W –H7W···Br2 = 165.6o, O8W···Br2 = 3.706(2) Å;  O8W 

–H8W ···Br2 = 154.7o, C7···O1 = 2.854(3) Å;  C7–H7···O1 = 119.8o, C7···O2 = 2.711(4) Å;  

C7–H7···O2 = 96.5o, C18···O4 = 2.984(3) Å;  C18–H18···O4 = 116.2o and C18···O5 = 2.721(3) 

Å;  C18–H18···O5 = 96.6o. 

 

Figure 3.17. Extensive hydrogen bonding of [CuBr(-N,O-3.10)2]Br.2H2O. Selected hydrogen 

bonds: N1···Br2i = 3.370(2) Å;  N1–H1···Br2i = 149.6o, N6···O7Wii = 2.806(3) Å;  N6–H6N··· 

O7Wii = 152.2o, N3···Br1iii = 3.304(2) Å;  N3–H3N···Br1iii = 158.7o; N4···Br1iii = 3.371(2) Å;  

N4–H4N···Br1iii = 157.2o, O7W···O8Wiv = 2.885(4) Å;  O7W –H7W···O8Wiv = 164.9o and 

O8W···Br1v = 3.293(2) Å;  O8W –H8W···Br1v = 162.9o (i = 1-x, 1-y , -z; ii = 1-x, ½+y , ½-z; iii = -

x, 1-y , -z; iv = x, ½-y, z-½ and v = 1-x, y-½, ½-z). 

 

Figure 3.18. The complex of [Cu(-N,O-3.10)2(MeOH)2](BF4)2 showing the chelating coordination 

of compound 3.10 to copper and the hydrogen bonding to the anion by the urea group of 3.10. 

Atoms shown as ellipsoids at 50 % probability and labelled atoms represent the asymmetric unit. 

Selected bond distances: Cu1···N2 = 1.9209(15) and Cu1···O1 = 1.9706(11) Cu1···O4 = 

2.5243(13). Selected hydrogen bonds: N1···O1i = 2.898(2);  N1-H1N···O1i = 111.4o (i = -x, -y, -

z). 

 

Figure 3.19. Packing of [Cu(-N,O-3.10)2(MeOH)2](BF4)2. Selected hydrogen bonds: N3···O4ii = 

2.968(2);  N3-H3N···O4ii = 155.5o, N3···F4 = 2.802(2);  N3-H3N···F4 = 139.5o  and O4···O3iii 

= 2.868(2);  O4-H4···O3iii = 162.8o (ii = 1+x, y, z and iii = -x, -y, 1-z). 

 

Figure 3.20. ASU of [{Cu(--O,O,N,N-3.11a)(MeOH)}6](MeCO2)6·6MeOH. Atoms are shown as 

ellipsoids at 30% probability. Selected bond lengths: N5···Cu1 = 2.001(4) Å, N2···Cu1 = 1.882(5) 

Å, O1···Cu1 = 2.004(3) Å, O6···Cu1 = 2.216(4) Å and O2i···Cu1 = 1.939(3) Å. Selected hydrogen 

bonds: N3···O3 = 2.730(6);  N3-H3N···O3 = 165.3o and N4···O4 = 2.765(6);  N4-H4N···O4 = 

169.9o, O5···O3 = 2.824(6);  O5-H5···O3 = 164.9o and O6···O4ii = 2.679(5);  O6-H6···O4ii = 

173.4o (i = 1+y, 1-x+y, -z and ii = 5/3-x, ⅓-y, ⅓-z). 

 

Figure 3.21. Hexamer ring of [{Cu(--O,O,N,N-3.11a)(MeOH)}6](MeCO2)6·6MeOH. Non-

coordinated MeOH has been removed for clarity. 

 

Figure 3.22. Overall packing of stacks of [{Cu(--O,O,N,N-3.11a)(MeOH)}6]
6+. Hydrogens and 

hydrogen bonds are not shown for clarity. 
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Figure 3.23. Molecular structures of [mer-Cd(-O,N,N-3.11a)2]. Water and hydrogen atoms 

bound to carbon atoms are not shown for clarity. Atoms are shown as ellipsoids at 50% 

probability. Selected bond distances: Cd2···O1 = 2.393(9), Cd2···N2 = 2.234(7), Cd2···N5 = 

2.304(8); Cd2···O3 = 2.398(9), Cd2···N7 2.251(9) and Cd2···N10 = 2.312(8) 

 

Figure 3.24. Packing of mer-[Cd(-O,N,N-3.11a)2] through hydrogen bonds between the urea 

groups and included methanol resulting in interstitial spaces filled by disordered water, N4···O5 = 

2.892(13);  N4-H4N···O5 = 157.4o, N3···O2i = 2.850(10);  N3-H3N···O5i = 152.4o, O5···O2i = 

2.721(11);  O5-H5···O2i = 150.2o, N9···O6 = 2.729(14);  N9-H9N···O6 = 159.9o, N8···O4ii = 

2.821(10);  N8-H8N···O4ii = 150.5o and O6···O4ii = 2.729(11);  O6-H6···O4ii = 169.6o (i = -x, 

½-y, 1-z and ii = -x, y-½, 2-z). 

 

Figure 3.25. Ellipsoid plot of compound 3.13 showing the η2 and η1 coordination by TBP and THF 

to the aluminium centre. Hydrogen atoms and the interstitial THF have been removed for clarity. 

Ellipsoids are shown at 50% probability.  

 

Figure 3.26. Ellipsoid plot of compound 3.14 showing the ligation of aluminium by PFB, TBP and 

a methoxyglycol anion in a bimetallic complex. Hydrogen atoms and the interstitial DME have 

been removed for clarity. t-butyl groups on the TBP ligands have been removed for clarity and the 

disordered groups as well. Ellipsoids are shown at 30% probability. 

 

Figure 3.27. a) Crystal packing in the homoleptic compound Al(TBP)3 channel structure of the 

hexane solvate of 3.12. b) High Z' structure (Z' = 4) of the homoleptic compound Al(TBP)3, 3.12.  

 

Figure 3.28. Job plot of binding by 3.3 with MeCO2
– showing the 2:1 host to guest ratio. Only the 

N3–H3N resonance which shows the maximum amount of shift during the titration is plotted for 

clarity.  

 

Figure 3.29. Molecular structure of (3.3)(TBA+)(MeCO2
–)·H2O with the TBA+ removed for clarity. 

Atoms are shown as ellipsoids at 50% probability. Selected hydrogen bonds: N4···N2 = 2.660(3) 

Å;  N4–H4N···N2 = 143.3o, N3···O1 = 2.856(3) Å;  N3–H3N···O1 = 143.3o, O3W···O2 = 

2.777(3) Å;  O3W–H3A···O2 = 163.5o and O3W···S1 = 3.315(3) Å;  N3–H3N···O1 = 175.1o. 

 

Figure 3.30. Packing of (3.3)(TBA+)(MeCO2
–)·H2O. a) 1D hydrogen bonded stacking of 3.3 

hydrogen bonded to MeCO2
– and the H2O as viewed down [001]. b) Layer pattern of the packing 

with negatively charged layers of 3.3 MeCO2
– H2O (shown in capped stick representation) 
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alternating with positively charged TBA+ layers (shown in space-filled representation). Selected 

hydrogen bond: N1···O2i = 2.687(3) Å;  N1–H1N···O2i = 175.1o (i = -x, y-½, ½-z). 

 

Figure 3.31. Photograph of the gels of compound 3.10 at 1% by weight in water acidified with, 

from left to right, H3PO4; H2SO4; HPF6 and HBF4. 

 

Figure 3.32. Gels formed by compound 3.10 in water at pH 1.0 acidified with H2SO4. From left to 

right the concentrations are 1.3%, 0.6%, 0.15% and 0.1% by weight in 5ml of solution. The 0.1% 

by weight solution only partially gels and therefore does not survive the inversion test. 

 

Figure 3.33. Rheology of gelation by 3.10 showing a frequency sweep performed on a gel of 3.10 

at 0.1% by weight in water acidified with H2SO4 to a pH of 1.0. Typically the consistency of the G 

(Dark grey filled ) and G (Light grey filled ○) values over the frequency range indicates the 

solid-like nature of the gel material. The value of G is typically five times greater than the G 

value and constant with respect to the frequency demonstrating the elastic behaviour of the gel. 

The G and G axis is shown as a log scale. 

 

Figure 3.34. Rheology of the gelation by 3.10 showing a stress sweep on a gel of 3.10 at 0.1% 

by weight in water acidified with H2SO4 to a pH of 1.0. The stress sweep shows the rigidity and 

strength of the gel which breaks at a relatively high shear strength. G value (Dark grey filled  

with brown line) stays constant until the torque begins to become too strong and the struts start to 

break under the strain where upon G becomes less than G (Light grey filled  with green line). 

Lines are there to help aid the eye. The G and G axis is shown as a log scale. 

 

Figure 3.35. Study in the variation in G with change in concentration for gels of 3.10 in acidified 

water at pH 1.0 using H2SO4 (y = G (Pa) and x = concentration in mg in 5 ml). G  [conc]n 

relationship is confirmed with n = 2.2. Errors on data points, determined as standard deviations of 

ten measurements on a sample, are smaller than symbol size used. Both the G axis and 

concentration axis are shown on a log scale. 

 

Figure 3.36. Study in the variation in “yield stress” with change in concentration for gels of 3.10 in 

acidified water at pH 1.0 using H2SO4 (y = “Yield Stress” (micro Nm) and x = concentration in mg 

in 5ml). “Yield stress”  [conc]n relationship is confirmed with n = 1.5. Errors on plotted points are 

determined as the standard deviation for the point determined by taking the average of the 

measured points either side of the “yield stress” (see Figure3.34 for example). Both the “yield 

stress” axis and concentration axis are shown on a log scale. 
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Figure 3.37. a) SEM image of dried gels of 3.10 in water acidified with H2SO4 to a pH of 1.0 that 

has been covered with a thin layer of Pt. b) TEM image of a gel of 3.10 in water acidified with 

H2SO4 to a pH of 1.0.  

 

Figure 3.38. EELS data from the gel sample of 3.10 in water acidified to pH 1.0 with H2SO4. The 

collected spectra (Filled blue area) is baseline corrected (Red line) to give the EELS data (Green 

line). This reveals peaks at 164 eV (S), 284 eV (C), 401 eV (N) and 532 eV (O). 

 

Figure 3.39. ASU of (3.10H+)2(SO4
2–)7H2O. Atoms are shown as ellipsoids at 50% probability. 

Selected hydrogen bonds: N2···O8 = 2.575(2) Å;  N2–H2N···O8 = 118.4o, C7···O8 = 2.750(2) 

Å;  C7–H7···O8 = 121.5o, N7···O11 = 2.663(2) Å;  N7–H7N···O11 = 118.3o and C18···O11 = 

2.836(2) Å;  C18–H18···O11 = 121.1o, N8···O14 = 2.8184(19) Å;  N8–H8N···O14 = 169.4o, 

N9···O15 = 2.9459(18) Å;  N9–H9N···O15 = 168.2o and N1···O17i = 2.7439(18) Å;  N1–

H1N···O17i = 171.9o (i = x, y-1, z). 

 

Figure 3.40. Packing diagram of (3.10H+)2(SO4
2–)7H2O showing the stacking of 3.10H+ one on 

top of each other resulting in a column in which the SO4
2– and water are located. Packing viewed 

down [100]. 

 

Figure 3.41. Rheology by frequency sweep of the HBF4 () and HPF6 () acidified gels. 

 

Figure 3.42. TEM images of gels of 3.10 acidified with a,b) HBF4, c,d) HPF6.  

 

Figure 3.43. Electron diffraction images of gels of 3.10 acidified with HBF4 (top) and HPF6 

(bottom). Top diffraction d–spacing for the HBF4 acidified gels are 2.46 Å; 2.11 Å; 1.86 Å; 1.55 Å; 

1.32 Å and 1.12 Å. Bottom diffraction d–spacing for the HPF6 acidified gels are 2.07 Å; 1.81 Å; 

1.31 Å and 1.10 Å. 

 

Figure 3.44. SEM images of dried gels of 3.10 acidified with a) HBF4 and b) HPF6.. 

 

Figure 3.45. Molecular structure of (3.10H+)(BF4
–)H2O. Atoms are shown as ellipsoids at 50% 

probability. Selected hydrogen bonds: BF4
– are N3···F3 = 2.965(2) Å;  N3–H3N··· F3 = 148.4o, 

N3···F1 = 3.069(2) Å;  N3–H3N··· F1 = 145.9o, N4···F1 = 2.9275(19) Å;  N4–H4N··· F1 = 

149.4o, O4···O1 = 2.814(2) Å;  O4–H4W··· O1 = 177.3o, N1···O4i = 2.653(2) Å;  N1–H1N··· 

O4i = 170.5o, O4···F3ii = 2.981(2) Å;  O4–H4W··· F3ii = 149.4o and N2···F2iii = 2.7539(19) Å;  

N2–H2N··· F2iii = 140.9o (i = -x, 1-y, 1-z and ii = x, y-1, z and iii = x-1, y-1, z). 
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Figure 3.46. a) Structure of 3.10H+ BF4
– H2O as viewed down (100). b) Structure of 3.10H+ BF4

– 

H2O as viewed down (010). Hydrogen bonds not shown for clarity. 

 

Figure 3.47. Molecular structure of (3.10H+)(BF4
–)3.10. Atoms are shown as ellipsoids at 50% 

probability. a) Disordered proton on N1. Selected hydrogen bonds: N1···O4 = 2.722(3) Å;  N1–

H1N··· O4 = 113.2o, N2··· O4 = 2.743(3) Å;  N2–H2N··· O4 = 111.7o, N2···O1 = 2.685(3) Å;  

N2–H2N··· O1 = 119.3o, C7···O1 = 2.930(3) Å;  C7–H7··· O1 = 118.9o N1···N7 = 2.843(3) Å;  

N1–H1N···N7 = 162.5o or N7···N1 = 2.843(3) Å;  N7–H7N···N1 = 167.6o N7···O4 = 2.838(3) Å; 

 N7–H7N··· O4 = 114.7o C22···O4 = 2.905(3) Å;  C22–H22··· O4 = 118.3o. b) Disordered 

proton on N7. Selected hydrogen bonds: N3···F1 = 2.935(3) Å;  N3–H3N···F1 = 155.6o and 

N4···F2 = 2.897(3) Å;  N4–H4N···F2 = 160.9o N8···F4i = 2.908 (3) Å;  N8–H8N···F4i = 145.9o, 

N9···F4ii = 2.958(3) Å;  N9–H9N···F4ii = 157.4o and N6···O3iii = 3.192(3) Å;  N6–H6N··· O3iii = 

164.8o (i = 1-x, 1-y, 2-z; ii = 1+x, 1+y, z and iii = 1+x, y, 1+z). 

 

Figure 3.48. Packing diagram of (3.10H+)(BF4
–)3.10 showing the stacking of 1D hydrogen 

bonded 3.10H+ 3.10 threads alternating with the layers of BF4
–. Hydrogen bonds are not shown 

for clarity.  

 

Figure 3.49. PXRD pattern for dried 3.10 gel acidified with HPF6. Selected d-spacings: 2.08 Å; 

1.85 Å; 1.70 Å; 1.21 Å and 1.13 Å. 

 

Figure 3.50. PXRD pattern for dried 3.10 gels acidified with HBF4. Selected d-spacings: 2.15 Å; 

1.95 Å; 1.81 Å; 1.77 Å; 1.75 Å; 1.60 Å and 1.46 Å. 

 

Figure 3.51. Frequency sweep rheometry of 3.10 gels acidified with H3PO4 (○) and MePO4H2 

(). Dark grey filled symbols are of G and light grey filled symbols are of G. 

 

Figure 3.52. TEM image of 3.10 gel acidified with H3PO4 at room temperature.  

 

Figure 3.53. PXRD pattern for dried 3.10 gel acidified with MePO3H2.  

 

Figure 3.54. PXRD pattern for dried 3.10 gels acidified with EtPO3H2.  
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Figure 3.55. TEM images of the gels from acidification of a water solution of 3.10 with HNO3. a) 

and b) are from a 3.10 with HNO3 gel sample. c) and d) are from a 3.10 with HNO3 gel that has 

started to break down to a precipitate. 

 

Figure 3.56. Molecular structure of (3.10H+)(NO3
–)·MeOH. Atoms are shown as ellipsoids at 50% 

probability. Selected hydrogen bonds for intra-molecular bonds: N2···O1 = 2.598(2) Å;  N2–

H2N···O1 = 120.3o, C7···O1 = 2.855(3) Å;  C7–H7···O1 = 120.4o, N7···O4 = 2.667(2) Å;  N7–

H7N···O4 = 118.3o and C18···O4 = 2.884(3) Å;  C18–H18···O4 = 120.2o. Selected hydrogen 

bonds for chelated nitrate: N3···O7 = 2.982(3) Å;  N3–H3N···O7 = 170.7o, N4···O8 = 2.785(2) 

Å;  N4–H4N···O8 = 165.9o, N8···O7 = 3.318(3) Å;  N8–H8N···O7 = 161.8o, N8···O9 = 

3.040(3) Å;  N8–H8N···O9 = 144.4o and N9···O9 = 2.778(3) Å;  N9–H9N···O9 = 157.5o. 

Selected hydrogen bonds for methanol and methanol hydrogen bonded nitrate: N1···O11 = 

2.687(3) Å;  N1–H1N···O11 = 172.9o, N1···O10 = 3.080(3) Å;  N1–H1N···O10 = 117.2o and 

N2···O10 = 3.097(3) Å;  N2–H2N···O10 = 115.3o, O14···O12 = 2.835(3) Å;  O14–H14W···O12 

= 171.5o, O13···O10 = 2.969(2) Å;  O13–H13W···O10 = 150.1o, N6···O14 = 2.645(3) Å;  N6–

H6N···O14 = 169.6o and N7···O13 = 2.803(2) Å;  N7–H7N···O13 = 146.5o (i = 1-x, 1-y, 1-z and 

ii = 1+x, y, 1+z). 

 

Figure 3.57. Overall crystal packing of (3.10H+)(NO3
–)·MeOH. Hydrogen bonds are not shown for 

clarity. 

 

Figure 3.58. Molecular structure of 2[(3.10H+)(Cl–)]·MeOH·H2O. Atoms are shown as ellipsoids at 

20% probability. Selected hydrogen bonds for intra-molecular hydrogen bond: N2···O1 = 

2.716(19) Å;  N2–H2N···O1 = 121.0o, C7···O1 = 2.906(18) Å;  C7–H7···O1 = 123.2o, N7···O4 

= 2.657(17) Å;  N7–H7N···O4 = 118.5o and C18···O4 = 2.805(18) Å;  C18–H18···O4 = 119.9o. 

Selected hydrogen bonds for Cl1: N3···Cl1 = 3.258(16) Å;  N3–H3N··· Cl1 = 159.0o, N4··· Cl1 = 

3.230(16) Å;  N4–H4N··· Cl1 = 165.4o, N8··· Cl1 = 3.172(16) Å;  N8–H8N··· Cl1 = 160.9o and 

N9··· Cl1 = 3.281(15) Å;  N9–H9N··· Cl1 = 156.9o. Selected hydrogen bonds for Cl2 and 

methanol: N1···Cl1 = 2.956(18) Å;  N1–H1N··· Cl1 = 174.1o, N6···O8 = 3.330(16) Å;  N6–

H6N··· O8 = 163.3o, N7···O7 = 2.775(15) Å;  N7–H7N··· O7 = 145.2o and Cl1, O7···Cl1i = 

3.009(16) Å;  O7–H7A··· Cl1i = 156.6o (i = 1-x, 2-y, 1-z). 

 

Figure 3.59. Overall packing of 2(3.10H+) 2Cl– MeOH H2O. Atoms are shown in capped stick 

representation except for the Cl– and water oxygen which are shown as small spheres. 

 

Figure 3.60. PXRD pattern for dried 3.10 gel acidified with HNO3.  
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Figure 3.61. PXRD pattern for dried 3.10 gel acidified with HCl.  

 

Figure 3.62. Photograph of gels of 3.10 at 1% by weight in water acidified with, from left to right, 

EtPO4H2; MePO4H2, H3PO4; H2SO4; HPF6 and HBF4. The samples for the acids H3PO4; H2SO4; 

HPF6 and HBF4 are the same as those shown in Figure 3.31. 

 

Figure 3.63. Anion tuning of the rheometric characterisations of 3.10 gels shown by stress sweep 

rheometry of the hydrogels of 3.10 at 1% by weight acidified with H2SO4 (Blue ), H3PO4
3 

(Orange ), MePO3H2 (Green ), HBF4 (Light blue ), HPF6 (Brown ○) and EtPO3H2 (Light 

green ).  

 

Scheme captions 
 

Scheme 3.1 Possible products from the reaction of 3-amino-5-methylpyrazole with an isocyanate 

to give, from left to right, desired urea, 2-carboxamide, 1-carboxamide. 

 

Scheme 3.2 Possible reaction products from the reaction of 3-amino-5-methylpyrazole with       

di-tert-butylpyrocarbonate, the BOC-protection reaction. 

 

Scheme 3.3 Reaction products, 3.7, 3.8 and 3.9, of the pyrazole urea synthesis by reacting 3.5 

with three different isocyanates. 

 

Scheme 3.4 The synthetic route to the synthesis of 3.10 from 3-amino-5-methylpyrazole via a 

BOC-protection of the pyrazole ring. 

 

Scheme 3.5 The two possible isomers from the reaction of two equivalents of p-tolylisocyanate 

with 3-amino-5-methylpyrazole. 3.11a 1-carboxamide-3-urea isomer and 3.11b 2-carboxamide-3-

urea isomer. 

 

Scheme 3.6. Redox transmetallation ligand exchange reaction between Aluminium metal and 

3,5-t-butylpyrazole (TBPH) and dipentaflourophenylmercury. 
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Table captions 
 

Table 2.1. Gelation behaviour of compound 2.1a. 

 

Table 2.2. Gel formation for compounds 2.1a – 2.1g. 

 

Table 2.3. β values (Host:Guest) determined for the anion binding by 2.3 in CHCl3. 

 

Table 2.4 Crystal forms of NPU. 

 

Table 2.5. CBZ polymorph characteristics 

 

Table 2.6. Gel crystallisation results for CBZ in gels of compound 2.1a and 2.2. 

 

Table 3.1. Binding constants for compound 3.3 with various anions in CDCl3 

 

Table 3.2. Conditions for gel formation for compound 3.10. 

 

Table 3.3. Hydrogen bond parameter details for hydrogen bonds involving the water molecules 

within the structure of (3.10H+)2(SO4
2–)7H2O. 

 

Table 3.4. Summary of the anion-based tuning of gel characteristics of compound 3.10. 
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Chapter 1 

Introduction 

 

1.1 What is a gel? 

 

By definition, gels are solid, jelly-like materials formed from colloidal mixtures. They 

are colloidal in nature due to the dispersion of the gelator (the solid continuous phase) 

within a solvent (the liquid dispersed phase). What makes gels so interesting is that by 

weight and volume they are mostly liquid, yet they behave like a solid. Many 

applications of gels have been envisaged and discovered because of the gels’ abilities to 

trap and immobilize large volumes of liquid (and sometimes active guest molecules) 

using relatively low masses of gelator. Gels have been applied in the photographic, 

food, cosmetic and petroleum industries, and have additional potential uses in drug 

delivery,1-12 lithography,13-15 catalysis (as supports),16-21 scaffolds (such as in tissue 

engineering and materials synthesis)22-31 and as separation materials,32-37 to name but a 

few.27,38-68 

 The set of compounds that act as gelators is surprisingly diverse, and virtually 

all liquids can be immobilised within a gel. Gelators such as polymers, proteins and 

inorganic substances - like clays and silica - have been studied extensively. Although 

low molecular weight gelators (LMWGs) have been known for a long time, it is only 

recently that they have become a focused area of supramolecular chemistry and 

materials science.27,38-68 This increased interest has occurred because of the high 

versatility of such compounds towards synthetic modification. In practice, this 

‘molecular tunability’ allows for greater control of the properties of the gel-phase 

assemblies. 

 The macroscopic properties of a gel - in particularly its rheological properties - 

are determined by the three-dimensional (3D) entangled networks of the 

micro/nanostructured supramolecular fibres.38-65 In the case of LMWGs, the structure 

of these fibres is determined by supramolecular interactions such as hydrogen bonding, 

π-π stacking, hydrophobic effects, metal coordination and van der Waals interactions. 
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Often these interactions are divergent and orientated in one or two dimensions such that 

the small molecules preferentially self-assemble into 1D fibrils, resulting in fibre 

formation. The association of these fibres into larger bundles (which branch further 

through mechanisms such as crystallographic mismatch branching)44 and the eventual 

physical knotting of these fibres, results in a 3D network that retards the movement of 

the liquid by capillary force alone. The reversibility of these supramolecular 

interactions means that LMWGs are easily manipulated by external stimuli, allowing 

for the tuning of the physical properties of the gel. This has been accomplished by 

using mechanical stimuli (in the form of thixotropy and sonication-aided gelation) as 

well as thermal, electrochemical, electromagnetic and chemical stimuli.38-65 Chemical 

stimuli, as additives, have also been reported to change the characteristics of the gel, for 

example, variation of pH,7,8,11,12,15,18,69-84 the addition/response to biologically relevant 

compounds such as vancomycin, insulin and enzymes,4-6,8,20,38,56,84-95 the incorporation 

of metals (metallogels)51,96 and the addition and incorporation of anions.52,97 

 

1.2 Tuning of LMWGs 

 

LMWGs can be divided into compounds that gel water (hydrogels) and those that gel 

organic solvents (organogels) and there are examples that are capable of both. Except 

for a few examples, the majority of LWMGs were only discovered and reported in the 

last couple of decades.38,39,48 Even so, there is a surprisingly large variation in the 

structures of compounds that are LMWGs. There are compounds that contain natural 

product based moieties such as amino acids, saccharides, bile salts, nucleosides and 

nucleotides. There are compounds with diverse sets of functional groups and structures 

such as amines, carboxylic acids, amides, ureas, hydrophobic groups like long alkyl 

chains, dendrimers, metal sites, metal binding sites, azobenzenes, perfluoronated alkyl 

chains and dye-systems, to name but a few.27,38-68 As there is such a large variability in 

the structure of LMWGs, a recognisable advantage for the use of these compounds over 

the other known gelators, there has been as large a development of ways to tune the gel 

properties of LMWGs.54 This tuning ability has led to many ideas for applications of 

LMWGs.27,38,68 The following paragraphs describe some of the methods used to tune 
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LMWGs’ properties and some of the applications that have arisen from them. We will 

then focus on the tuning of gel properties by anion binding in particular. 

 The thermal reversibility of most LMWGs is one of the key advantages of these 

types of materials. Thermally reversible gels are termed physical gelators, i.e. their 

physical state can be changed, and the majority of LMWGs undergo thermally 

reversible gel to sol transformations, unlike most polymers and biopolymer gels 

(though not all).45 The reversibility allows for hot solutions to be gelled by cooling and 

the gel to be broken down by heating, therefore, increasing the LMWG’s solubility. 

There are even a few interesting examples of the opposite effect on gel formation, that 

is, gel formation on heating, and the breaking down of the gel upon cooling of a 

LMWG.98,99 An example of this increase in temperature gel setting involves a two 

component gelator of a chiral amine-functionalised calix[4]arene (1.1) and 2,3-

dibenzoyltartaric acid in cyclohexane.98 The mixture with the L enantiomer of 2,3-

dibenzoyltartaric acid behaves ‘normally’ in that the solution gels upon cooling. The D 

enantiomer of 2,3-dibenzoyltartaric acid enantiomer does the opposite and gels upon 

heating a solution to 60 oC.  

 

OOHO OH

NHNH

R R R R

H
CH3

H
CH3Ph

Ph

R = C(CH3)2(CH2)13CH3

1.1  
 The dissolving and/or melting temperature point of a gel discovered when 

increasing the temperature is referred to as its Tgel.48 There are several methods to 

measure this point but all generally use a shearing mechanism and temperature 

variation to disturb the gel. These methods include the dropping ball method, the 
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inverted tube method and rheological shearing during a temperature sweep using a 

rheometer.48 In the cases where there is a measurable energy change due to the sudden 

phase change event a differential scanning calorimetry (DSC) measurement can be 

used.48 

 LWMGs can be physically sheared. In most cases this causes the gel to break 

down and the resultant flow become permanent. However, in a few special cases the 

phenomenon of thixotropy occurs.69,100-104 This is when the gel has an inbuilt repair 

mechanism and therefore the gel reforms after it has been made to flow after shearing. 

This occurrence within gels is not the only way in which a gel can be tuned by physical 

means. Sonication of solutions or suspensions of LMWGs has become a focused area 

of interest.54,65,105-108 The use of “sound” in some cases is the only way to form these 

LMW gels.65,108  

 Chemical reactions are by far the most utilised means to tune a LMWG.54 One 

such example is when chemical moieties are capable of light-induced conformational 

and/or chemical changes. This process has been harnessed by designers of LMWGs to 

create gels that can be tuned to either their solution or gel states.1,14,16,54,88,109-118 

Azobenzene moieties are one of the more commonly used groups.110,112-114 The UV 

induced change from the trans conformation to the cis conformation often results in 

disruption of the gel state resulting in a solution. Shinkai was one of first to use this 

principle although many others have followed this work up with many applications, 

such as drug delivery,1 and insightful studies such as the cooperative effects of this 

transformation within the self-assembled fibres.112  

 Shinkai used an azocholesterol derived LMWG, compound 1.2, to show that the 

trans-cis photoisomerisation of the azobenzene moiety was the cause of the sol-gel 

phase transition.113 The transition was reversible by using the appropriate wavelength to 

cause the cis-trans photoisomerisation. Carbon-carbon double bonds also undergo a 

trans-to-cis transformation under UV irradiation and this has also been utilized in the 

formation of gels that can be transformed to sols upon exposure to UV radiation.1,111,115 

Light-induced chemical transformations are also a popular means of transforming the 

gel state.14,116  
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O
1.2  

 Bisthienylethene LMWGs have been shown to undergo the transformation from 

an open to a closed state without degradation of the gel.14,116 This results in a tunable 

gel, the use of which has been envisioned in fields of opto- and electronic smart 

materials, logic gate, fluorescence sensors and other molecular photonic devices.14,88 

The integration of the photo-sensitive spiropyran group into a LMWG has resulted in a 

gel that can be transformed from the gel state to the sol state through exposure to UV 

light.88 The photodimerization (which can be reversible) and polymerization of 

unsaturated hydrocarbons has also been investigated within the gel state of 

LMWGs.16,117-121 
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1.3 n = 11  
 An interesting method of inducing gel formation is to use photo-induced 

cleavage reactive groups that results in a product that acts as a LMWG.109 Stupp et al. 

have done this using compound 1.3 (a peptide) and have induced the formation of the 

gel by irradiation of 1.3. The gel has been used as a medium for testing biological 

activity of living cells.109 Compound 1.3 contains the photolabile 2–nitrobenzyl group. 
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Upon exposure of an aqueous solution of 1.3 and CaCl2 to UV light (λmax = 350nm) for 

45 mins the solution turns to a hydrogel.  
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n
 

1.4 m = 0;3;5;7;11;14  n = 4;8;6;12

CH3(CH2)m (CH2)mCH3

 
 Many LMWG contain functional groups that are sensitive to the pH of their 

environment.7,8,11,12,15,18,69-84 These groups can be deprotonated or protonated according 

to the pH of the solution and this may remove or create important interactions vital to 

the gel tuning and/or formation resulting in a gel that can be tuned by changing the pH. 

Estroff and Hamilton were some of the first to actively show this process of pH tuning 

of a LMWG.75 Using compounds 1.4 they showed that the compounds gel at different 

pHs and salt conditions (ionic strength). The number of carbon atoms within the spacer 

and alkyl esters also have a great effect on the gel ability with some compounds not 

gelling at all. The pH at which the compounds do gel is also tuned by the number of 

carbon atoms. 

 

N
N
H

O

N N
H

O

N

1.5  
 Jung et al. showed that the pH can be used to tune the emissive properties of a 

gel of compound 1.5.76 Compound 1.5 gels over the entire pH range but shows a higher 

Tgel at neutral pH 7. This thermally more stable gel at pH 7 also shows a stronger 

emission of blue light and weaker emission is noted at pH 13 and pH 2. The authors 

explain this observation in light of the fact that at low acidic pH 1.5 is protonated and 

under highly basic conditions the retardation of the gel process prevents significant 
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aggregation of 1.5 to give strong fluorescence, besides the fact that gel formation still 

occurs at both low and high pH. Park et al. also showed similar production of emissive 

gels of compound 1.6 that can be tuned by pH variation.122 

N
F3C

F3C

CF3

CF3

NC

1.6  
 The protonation of a pyridyl group is once again the mechanism by which the 

gel is tuned by the decrease in pH. However as 1.6 forms organogels the authors use the 

photo-induced release of protons to induce the gel-to-sol transition. This was 

accomplished by using the photoacid generator triphenylsulfonium trifluoromethane 

sulfonate (PAG) which releases protons (H+) and counter ions (CF3SO3
–) upon UV light 

exposure. This is illustrated by Figure 1.1.  

 

 
 

Figure 1.1. a, b) Photographs of the reversible phase transition between the gel and sol states 

of 1.6 in 1,2-dichloroethane (neutral gel (a) and protonated sol (b)). c, d) Fluorescence images 

and e, f) SEM images of the neutral gel and the protonated sol, respectively. (Reproduced with 

permission from ref.122) 
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1.7  
 Das et al. showed how pH control of gelation of compound 1.7 (as well as other 

related compounds), a dipeptide based LMWG, can be used effectively to entrap 

compounds such as dyes.80 The sodium salt of 1.7 (1.7-Na) is a rare case of a LMWG 

of both organic solvents and water. Interestingly, the conversion to the sodium salt 

improves the gelation ability of 1.7 as the compound gels organic solvents with a 

critical gelation concentration, CGC, of approximately 0.8% by weight whereas 1.7-Na 

gels them at a CGC of approximately 0.35% by weight. As 1.7 does not gel water, the 

lowering of the pH by the addition of HCl resulted in the breakdown of the gel due to 

protonation of the carboxylate group. The authors use this understanding of pH 

controlled gelation to target removal of a dye (crystal violet) from water by varying 

gelation through changes in pH (Figure 1.2). By gelling the dye-containing aqueous 

solution with 1.7-Na a hydrogel is formed. By adding toluene to the surface (which has 

no effect) and then adding HCl they were able to remove the dye from the water phase. 

Heating this mixture gently and then cooling resulted in the toluene phase becoming a 

gel that contains the dye. This sequence of experiments showed how the assembled gel 

fibres were interacting strongly with the dye and were able to transport it between two 

very different phases. 

 Host:guest interactions can be used to tune the properties of a 

gel.54,61,77,78,88,93,98,123-135 There have been some classical host:guest systems developed 

that can be used as LWMGs. An interesting host:guest system of cucurbit[7]uril (1.8) in 

acidic water was shown by Kim et al. 1.8 to only gel in aqueous solutions at pH values 

below its pKa, which was determined to be 2.2 by a simple titration method.77 At, and 

above, this pH, the hydronium ion bound to the carbonyl portal groups can be displaced 

by Na+ or K+ resulting in the break-down of the gel to give a solution. In addition Kim 

et al. showed how a small amount of added guest 4,4′-diaminostilbene dihydrochloride 
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(1.9) was used to tune the gel properties of this system. A solution containing just 0.1 

equivalents of 1.9 compared to 1.8 results in a gel. Upon exposure to UV light 

compound 1.9 undergoes a trans-cis isomerisation resulting in it being bound much 

more strongly by the cucurbit[7]uril host. This prevents the binding of the 

water/hydronium ions breaking the hydrogen bonding network of the gel therefore 

resulting in sol formation.  

 

 
 

Figure 1.2. a) Hydrogel of 1.7-Na containing 0.1 mM of crystal violet. b) Toluene added to the 

hydrogel of 1.7-Na containing the dye. c) Status of hydrogel after the addition of 1.1 equiv of 

HCl. d) Subsequent heating results in selective gelation of the toluene phase containing crystal 

violet, leaving the aqueous layer clear within a few minutes of addition. (Reproduced with 

permission from ref.80) 

 

 
 

 Calixarenes are well known in the field of host-guest chemistry and the 

interaction between this class of hosts and chiral amine guests has been exploited by 
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Zheng and coworkers to make LMWGs.98,124,125 The calixarenes such as compound 1.1 

reported by this group are able to form gels with several chiral amines, i.e. the systems 

are two–component gels. Fascinating properties have been described such as the 

selective gelation of a single enantiomer and gelation at elevated temperatures (60 oC) 

by the D-2,3-dibenzoyltartaric acid whereas L-2,3-dibenzoyltartaric acid shows 

“normal” behaviour and gels at a lower temperature.98  
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 Using a mixture of two or more components is becoming a common means of 

tuning gels.16,59,61,71,78,99,125,129,130,136-147 Smith reviewed this concept in 2005.61 A range 

of chemical additives can be used to tune many characteristics of the LMWGs such as 

their structural, physical and electromagnetic properties.131-134 Fluorescent compounds 

like 8-anilinonaphthalene-1-sulfonic acid, propyldansylamide and pyrene are all 

environment-sensitive fluorescent probes.132-134 This allows the investigator to probe 

the hydrophobicity of the gel interiors where the probes are immobilised. Other 

additives can be used to tune the properties of the gels. Examples include the use of 

polymers to strengthen LMWGs131 and the interaction between [60]fullerene and a 

LMWG porphyrin has also been utilised by Shinkai et al. to strengthen the gels.127 A 

foldamer based LMWG (1.10) reported by Li et al. shows chirality induced 

comformational properties due to the interaction with added glucose.126  
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 Some additives can be used to break down the gel due to the strong interaction 

of the additive with the LWMG. Vancomycin, an antibiotic, has been used to both 

strengthen a gel and cause a transformation from gel to sol.88,93 With compound 1.11, 

the interaction with vancomycin causes an improvement in the gelation ability.93 In 

contrast compound 1.12 breaks down from a gel to a sol upon the addition of 

vancomycin.88 In both these cases the interaction between the D-ala-D-ala residues and 
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the vancomycin are important for these tuning abilities. Indeed, with compound 1.12, 

replacement of the D-ala-D-ala residue with L-ala-L-ala results in no tuning by the 

addition of vancomycin. This biologically inspired gel tuning has been further 

expanded using other gelators.4-6,8,20,26,32,38,56,84,86,87,89-92,94,95,148-152 When an enzyme 

cleavable moiety is incorporated into the LMWG the gel can be tuned using the 

catalytic properties of enzymes. The group of Xu and co-workers is one of the groups 

investigating LMWG with biological aspects in mind.20,56,87,90,91,93,148,149 Compound 

1.13 is an example of their work. This phosphate compound does not gel water. But 

when the phosphate group is enzymatically converted to the hydroxyl group the new 

compound (1.14) does gel water. Therefore compound 1.13 can be used to cause 

gelation in the presence of a phosphatase enzyme.90  
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 Work by Yang, Wang, Kong et al. with a very similar compound to 1.13, 

compound 1.15, also shows how an enzymatic process can be used to form a gel.94 

Compound 1.15 does not form a gel under any circumstances, nor does the 

dephosphorylated compound 1.16. However, when a low concentration of phosphatase 

enzyme is used an opaque gel is formed. This gel contains a mixture of compounds 

1.15 and 1.16. Mixtures of the two compounds could also not be induced to gel 

therefore showing that the enzymatic action of converting 1.16 to 1.15 assists the 

supramolecular fibrillar assembly and therefore gel formation. The use of an enzyme 

catalysed reaction to degrade a gel has also been studied. This idea is highlighted by the 

work of John et al. who used a LMWG consisting of a sugar and fatty acid.6 The 

cleavage of the fatty acid moiety using a hydrolase enzyme resulted in the destruction 

of the gel.  

 

1.3 Metal-based tuning of LMWGs 

 

 The example of the industrially important lithium greases, such as the Li+ salt of 

12-hydroxyoctadecanoic acid,153 shows that it has long been known that metals can be 

incorporated into gel systems. The use of metal ions as a factor in designing an 

effective gelator allows for a vast range of diverse properties.96 These properties 

include catalytic activity, magnetism, different coordination geometries, labile 

coordination interactions, redox reactions and the absorption and emission of light 

offered by the metallic elements to enhance the tunability of the gel, to name but a few. 

As a result, metallogels, LMWG gels that in some way incorporate a metallic element, 

have recently become highly topical.51,96 The manipulation of metal sites within a 

LMWG to tune the gel characteristics or the use of a metal interaction with a LMWG to 

tune gel behaviour have developed as interesting ways of fine tuning gel properties. 

The use of porphyrins, with their bound metals, as components of LMWGs has led to 

tunable gels. These compounds are representative of LWMGs which have metal 

binding sites, are discrete compounds (i.e. non-polymeric in nature) and can be 

manipulated at the metal site to tune the gel properties. Work by Shinkai et al. 
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expanded on the idea of achieving control of the stacking mode of porphyrin 

compounds as a means of self assembly and gelation.154-158  

 The symmetrical 4-substituted compounds 1.17a-e are versatile gelators, for 

example 1.17a gels 14 (for n = 3) and 10 (for n = 11) out of the 23 solvents tested.154 

Interestingly the Zn(II) complex of urea gelator 1.17c (Zn⋅1.17c) does not gel benzene, 

toluene, and p-xylene. However, addition of piperazine, which is able to link the 

metalloporphyrin units together via axial coordination to the Zn(II) ion, results in an 

H-aggregate type structure and the formation of stable gels in those solvents.154 The 

stoichiometry of the Zn⋅1.17c piperazine complexes was found to have a great impact 

on the gelling behavior, with a 2:1 ratio affording gels with a one-dimensional fibrillar 

network at much lower concentrations, and with a thixotropic character. In the 1:1 

complexes the critical gelator concentration is around one order of magnitude higher 

and leads to a two-dimensional sheet-like morphology of the aggregates. Addition of 

DABCO only allows partial gelation and results in 2D sheet-like aggregate 

morphologies, whereas ethylenediamine and N.N’-dimethylethylenediamine disrupt gel 

formation completely.  
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 The above example represents tuning of a gel characteristic by binding of a 

ligand to the metal within the LMWG. The metal oxidation state (redox active organic 

systems have been shown to undergo similar processes)159 can be changed using redox 

reactions thus providing a means to tune a gel. The cholesterol appended ferrocene, 

compound 1.18 shows gelling behaviour depending on the chain length of the 

linker.160,161 The gelator with n = 0 rigidifies cyclohexane and CCl4 at concentrations as 

low as 0.09 percent by weight. With n = 2, compound 1.18 also gels but at a higher 

concentration, whereas for longer lengths of the spacer chain gelling ability is lost 

altogether. FT-IR and 1H NMR spectroscopic studies suggest that not only the 

ferrocene and cholesterol unit, but also the hydrogen bonds between the adjacent spacer 

groups are essential for the assembly of the gel network. The gel is rigid enough to be 

molded into films that support themselves in the wet state and is responsive to a wide 

range of stimuli, both chemical and mechanical (Figure 1.3a). As well as being broken 

up and formed reversibly upon shaking, sonication and heating, 1.18 shows redox 

switching. In this case oxidation was carried out using (NH4)2Ce(NO3)6 and the gel 

network was destroyed. Subsequent reduction by NH2NH2 re-established the gel 

network and the redox process could be confirmed by UV-vis spectroscopy (Figure 

1.3b). 

 



 43

 
 

Figure 1.3 a) Gel films of 1.18 in cyclohexane. b) reversible gel-sol transitions by a variety of 

stimuli. Top left represents the redox controlled transition between the gel and sol states. Top 

right and bottom left is the thixotropic character of the gel. (Reproduced with permission from 

ref.160) 

 

 Another way to tune a gel’s properties is use of a different metal within the 

LWMG. Platinum complexes have been prepared and studied because of their 

interesting luminescent behaviour. The group of Shinkai reported the 8-quinolinol 

based organogelator Pt⋅1.19a and its non-gelating reference Pt⋅1.19b in a study into 

possible ways of protecting the excited state from O2-quenching by “insulating” the 

phosphorescent group in a gel fiber with peripheral alkoxy groups.30,101,162 Compound 

Pt⋅1.19a gels 18 organic solvents out of 25 tested, some of these, like p-xylene, 

cyclohexane and other alkanes, gel at critical gelation concentrations as low as 0.01% 

by weight. UV-vis spectral analysis reveals a red shift in the ligand centered π-π 

transition and the singlet intraligand charge transfer when going from sol to gel. This 

was interpreted as a J-aggregation mode of the 8-quinolinol platinum(II) chelate 

groups, which led to thermo- and solvatochromic behaviour exhibited in the absorption 

and emission spectra. The sol of Pt⋅1.19a appears yellow and emits at 460 nm when 

excited at 365 nm, the gel was orange and emits at 490 nm. Interestingly, the 

luminescence intensity in the gel phase was clearly less susceptible to O2-quenching, 

thus demonstrating the insulating effect aspired to in the gel design.162 Incidentally, 

compounds 1.19a and 1.19b can also be complexed by copper(II) and palladium(II) 

without compromising any of the gelation capacity of these systems, with gel fiber 

aggregation being attributed to strong π-π stacking and hydrogen bonding interactions 
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between the amide groups. The different metallogels exhibit field emission 

performances, with the turn-on field depending on the type of metal in the complex. 

Although these fields are higher than for other organic field emission substances, the 

ease of preparation makes these gels interesting for photo- and electrochemical 

materials.30 
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1.20  
 Addition of metals to a compound that already gels can be used to tune the 

gel.163 The terpyridine appended 3,5-diacylamino toluene derivative 1.20 and its 

binding to iron(II) and ruthenium(II) reported by the group of Ziessel highlights how 

this technique of tuning using the addition of metals can be used.164 The free ligand 

aggregated as a transparent organogel from cyclohexane at 2.6 weight% (Figure 1.4a). 

The iron complex also gelled the same solvent at a slightly higher critical gel 

concentration (3% by weight), whereas the ruthenium equivalent does not form a gel 

under the same conditions (Figure 1.4a–c). Both the iron-gel and the ruthenium 

complex exhibited strong coloration stemming from metal-to-ligand charge transfer 

expected in the presence of terpyridine. 
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Figure 1.4 a) gelation of cyclohexane by free 1.20, b) of cyclohexane by the [Fe(1.20)2](ClO4)2 

complex c) precipitation of the analogous ruthenium complex, and d) a gel of 1.20 doped with 

Fe(II). (Reproduced with permission from ref.164) 

 

 All organogels in this system are thermoreversible and showed a tight hydrogen 

bonding network, involving the amide groups, by FT-IR spectroscopy. The failure of 

the ruthenium derivative to form stable gels might be related to the chloride counter 

ions, which could be responsible for interfering with the hydrogen bonding. A small 

amount of Fe(ClO4)2 in solution layered on top of a gel of free 1.20 led to absorption of 

the metal cation accompanied by the characteristic colour of the complex developing 

inside the gel. Sprinkling an excess of the metal salt on the gel resulted in complete 

breakage of the assembly over a few days.  
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 One very early gelator for which cation binding was reported to have an 

influence on the rheology is the cholesterol derivative 1.21 containing a benzocrown 

moiety and an azobenzene linker.165 Without any metal binding this ligand was found 

to gel a selection of hydrocarbons and alcohols. The gel-sol transition temperature was 

found to be influenced by the addition of cations, which can bind to the crown ether 

fragment, and in the presence of Li+, Na+, K+, Rb+, and NH4
+, the Tgel rose with 

increasing cation concentration by up to 20 °C and then gradually decreased. On the 

other hand, Cs+ lowered the transition temperature systematically, and inhibited 

gelation completely at higher concentrations. This behaviour was thought to be caused 

by a 1:2 metal-crown sandwich complex that may disrupt the order in the helical 

stacking usually observed in these cholesterol systems.165 Complexation of a group I 

metal leading to gel tuning has been reported by Ghoussoub and Lehn who investigated 

the effect of sequential binding and release of K+ by a [2.2.2]cryptand in the presence 

of the bis-guanine monomer 1.22.166  
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 Compound 1.22 is a gelator by itself in aqueous media, but introduction of the 

potassium affords an increase in Tgel that plateaus at high concentrations. The gelation 

properties of 1.22 were attributed to the formation of an extended polymeric assembly 

driven by hydrogen bonding involving four guanine units organized in a macrocycle 

stabilized by the K+ cations (a G-quartet motif). Interestingly reversible gel-sol 

interconversion was achieved by the addition of [2.2.2]cryptand, which resulted in loss 

of the gel network, as a result of the removal of the potassium from the coordination 

matrix by the cryptand to form [K+ ⊂ 2.2.2]. Subsequent addition of HCl led to 

protonation of the cryptand and K+ release with reformation of the gel. Further 

acidification and neutralization allowed for reversibly tunable gels. 
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 The dipyridine ligands 1.23a and 1.23b incorporate amide linkages and form pH 

responsive gels when a solution of them in aqueous HCl is exposed to ammonia 

vapour.167 They also gel a range of organic solvents with hydrogen bonding as a driving 

force in the fibre creation. Pd(AcO)2 in toluene was layered on top and the gels and 

allowed to diffuse into them overnight. This resulted in orange coloration of the gel 

phase and TEM suggested that palladium had indeed been incorporated into the fibrils. 

Interestingly, attempts to complex the ligands to Pd(II) outside the gel phase were 

unsuccessful and led to decomposition to palladium black. The metal doped gels were 

found to act as effective catalysts in the aerobic oxidation of benzyl alcohol with about 

10 turnovers. The low turnover indicates some deactivation process, although the 

palladium inside the gel was stable towards decomposition. 

 There is a remarkable number of LMWG that are salts. Of these compounds 

there are the important examples that contain metals as the cationic species, e.g. Na+, 

Al3+ and Ca2+.8,11,12,38,39,48,50,51,57,59,61,63,70,72,79-81,83,129,168-178 This metal can be used to 

tune and induce gelation. Good illustrations of the use of LMWG salts include 

industrially important compounds like the Li+ salt of 12-hydroxyoctadecanoic acid153 

and the gelators (most of which are hydrogelators) based on fatty acids and their 

derivatives that have been used in a biological context.50,56,57 Often amino acid based 

gelators with carboxylic acid functionalities only gel as the appropriate salt leading to 

tuning capabilities. This tuning of the gel properties has led to pH reversible gels in 

many cases, an important means of tuning the gelation properties of certain 

materials.7,8,11,12,15,18,69-84 There have been some excellent examples of the use of 
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specific metals and/or their salts to tune gel properties as illustrated by the following 

cases. 
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 Variation of the metal ion in a salt LMWG can be used to tune a gel.70,172  In the 

case of compound 1.24 a gel is formed when NaOH is added to a DMSO mixture. KOH 

and RbOH still give gels but these gels are less stable. In the cases of LiOH, NH4
+ OH– 

and tetrabutylammonium hydroxide (TBA+ OH–) no gel was formed showing how 

important the metal ion is for the production of a gel.70 A similar trend was shown by 

compound 1.25 which gelled with Na+ and Rb+ (once again a weak gel) but not with Li+ 

and K+.172 The importance of the Na+ to gelation is cleverly shown by the addition of 

[2.1.1]cryptand which selectively binds to Na+ preventing the gelation of a hot solution. 
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 Ca2+ ions are very important physiologically and have therefore been used in 

testing gelation of some hydrogels.11,173,174 Hamachi and coworkers synthesized the 
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hydrogelator compound 1.26.11 One of the chemical stimuli allowing for formation of 

the gel state was found to be Ca2+ (Figure 1.5). The reversibility of gelation can be 

accomplished by using EDTA (or OH–) to bind the Ca2+ and the authors cleverly use 

this process to release model drugs from the gel state. 

 

 
 
Figure 1.5. Ca2+ responsiveness of hydrogelator 1.26. a) Phase diagram of the gel-sol 

transition, revealing the number of equivalents of Ca2+ required to induce gelation at each 

gelator concentration. b) Photographs of the Ca2+-induced sol-to-gel transition ([1.26] = 0.30 wt 

%; [Ca2+]/[1.26] = 1.0; [Na2EDTA]/[Ca2+] = 10). c) Corresponding dynamic viscoelastic 

properties before and after the addition of Ca2+. (Reproduced with permission from ref.11) 

 

 Messersmith et al. ingeniously use light and/or temperature induced release of 

Ca2+ from loaded liposomes to induce gelation of a short peptide which consists of 16 

amino acids with alternating hydrophobic and hydrophilic residues, compound 1.27.173 

Compound 1.27 by itself is highly soluble in pure water but in the presence of 

millimolar concentrations of NaCl, KCl or CaCl2 a gel is formed. The authors show 

how they use trapped Ca2+ within liposomes that can be broken down by light or heat to 

induce gelation upon simulation of a solution of 1.27 and these liposomes (Figure 1.6).  
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Figure 1.6. Rheological detection of a) light- and b) temperature-triggered gelation of 

1.27/liposome precursor fluid (12 vol % CaCl2-loaded liposomes in a sucrose solution of 1.27 

(30 mg/mL)). (Reproduced with permission from ref.173) 
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 The type of metal cation within a LMWG can also have an effect on the 

morphology and kinetics of gelation. With compound 1.28 the cationic species has a 

drastic influence on the gel formed.79 The presence of the salts NaCl, KCl, CaCl2 or 

MgCl2 at 1 mM concentrations in water causes 1.28 to gel at a different rate and 
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morphology. NaCl slows the gelation period from instantaneously in pure water to 

approximately seven mins and the morphology changes from spongy globules to 

aggregated spheres (Figure 1.7). KCl slows the gel formation down a little more and a 

wrinkled cloth morphology results. MgCl2 and CaCl2 slow the gelation down to 15 

mins and a fused globular morphology results. The use of BaCl2 results in precipitation 

and no gelation. These results clearly show how a gel can be tuned by the metal 

species. 

 These many and varied ways of tuning the properties of LMWGs show how 

important the tuning of LMWGs is for the development of practical uses.  

 

 
 
Figure 1.7. SEM images showing morpholgy of xerogels of 1.28 in a) water – spongy globules 

(gel forms instantaneously), b) 1 mM CaCl2 – fused globules (gel takes 15 mins to form), c) 1 

mM MgCl2 – fused globules (gel takes 15 mins to form), and d) 1 mM NaCl – aggregated 

spheres (gel takes 7 mins to form). (Reproduced with permission from ref.79) 
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1.4 Anion tuning of LMWGs 

 

The principle of using anions in the tuning of gel properties has developed into a 

recognizable subfield of LWMG chemistry.52,97 The field of anion binding by 

supramolecular hosts is well established and reasonably well understood.179-183 Several 

host designs have been developed, with the majority using hydrogen bonding 

functionalities to bind anions. Owing to the commonality of hydrogen bonding between 

LMWGs and anion-binding supramolecular hosts, it is unsurprising that some 

researchers have begun to investigate the combination of these properties. An excellent 

example is of the use of compound 1.29 as a LWMG that is affected by the addition 

and removal of anions.184  
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 Compound 1.29 contains the preorganizing triethyl benzene core180,185,186 and 

multiple urea-derived anion binding moieties.184 Compound 1.29 is a LWMG, and 

forms gels in polar solvents such as acetone (CGC 1.5 wt %), methanol (CGC 2.0 wt 

%) and tetrahydrofuran (CGC 5 wt %), on brief sonication of the solution. The acetone 

gels of 1.29 respond to chemical stimuli in the form of anions, resulting in 

homogeneous solutions (Figure 1.8). The anion is added as a tetrabutylammonium salt, 

the cation being chosen for its inert properties. There is a linear correlation between the 

binding constants for the formation of the 3:1 complex (log β13) - determined using 
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standard solution nuclear magnetic resonance (NMR) spectroscopic titration 

experiments - and the minimum amount of anion required for the complete gel-sol 

transition (indeed the very weakly bound BF4
– does not influence the gel properties of 

1.29 at all). The entire process is reversible and repeatable, and can also be used as a 

method of detecting or identifying fluoride. Reversibility of the dissolution of the gel is 

demonstrated by addition of the Lewis acid BF3·OEt2 to a solution of 1.29 containing 

tetrabutylammonium fluoride (TBA+ F–). This reverses the effect of the fluoride anion, 

and a gel reforms upon sonication, whereas the same is not observed for the other 

anions. However, ZnBr2 acts as a non-specific chemical stimulus for re-gelation by 

binding to the added anions much more strongly than 1.29 does (Figure 1.8). 

 

 
 
Figure 1.8. The acetone gel of 1.29, showing the transitions between the gel state and liquid 

states upon addition of chemical stimuli (X = F–, Cl– or BF4
–). a) Acetone gel of 1.29 (2.0 wt %). 

b) Acetone gel of 1.29 (2.0 wt %) containing (from left) 1.1 equiv of TBA+ F–, 1.7 equiv of TBA+ 

Cl–, and 10 equiv of TBA+ BF4
–. c) BF3·OEt2 (1.0 equiv for TBA+ salt) mixture after sonication of 

1.29 and TBA+ F– (left) or TBA+ Cl– (right) in acetone. d) ZnBr2 (1.0 equiv for TBA+ salt) mixture 

after sonication of 1.29 and TBA+ F– (left) or TBA+ Cl– (right) in acetone. (Reproduced with 

permission from ref.184) 

 

 Another example of the influence of anion binding on gel formation is 

exemplified by the bis(urea) functionalized binaphthalene derived compound, 1.30.187 
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This study, primarily based around the circular dichroism (CD) of 1.30 shows that the 

gel in cyclohexane (CGC = 6 mg/ml) can be destroyed by the addition of TBA+ F–.  
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 Maeda et al. have produced some notable results working with the anion 

binding and gel formation of C3-bridged oligopyrroles.188,189 A long alkyl substituted 

derivative of the C3-bridged oligopyrroles, 1.31, affords a transparent emissive gel in 

hydrocarbon solvents such as octane (CGC = 10 mg/ml). The addition of anions causes 

the gel to break down. This is exemplified by the breakdown of a 1.31c gel in octane 

upon the addition of ten equivalents of solid TBA+ Cl– to the upper surface of the gel 

resulting in the gel becoming a solution. Additionally, both the UV-Vis and the 

fluorescence spectra are notably changed (Figure 1.9). The addition of different solid 

TBA+ salts show how the rate of breakdown is dependent on the anion (time required 

for F– is minutes, Cl– is 2 hours, CH3COO– is 3 hours and Ph4B– does not perturb the 

gel). 

 The phenomenon of gelation can be described as a form of arrested or partial 

crystallisation.39 In this context, the hydrogels of 1.32 show an interesting 
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transformation from gel to crystalline material when exposed to NaCl.190 As Cl– binds 

to 1.32 (K11 = 1114 M-1 by NMR spectroscopic titration), chloride complexation 

inhibits fibre growth along the fibre axis (and long axis of the needle shaped crystal) 

allowing growth in the other two dimensions. 

 

 
 
Figure 1.9. Transition of the supramolecular gel of 1.31c in octane (10 mg/ml) to a solution 

upon addition of 10 equivalents of TBA+ Cl– added as a solid to the top surface of the gel. The 

highly emissive solution generated by the decomposition of the gel has fluorescence emission 

at 524 and 574 nm (λex = 470 nm) indicating that the bound Cl– by 1.31c is soluble in the 

octane explaining the breakdown of the gel. (Reproduced with permission from ref.189) 
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 The strong binding of F– by anion binding hosts has its origin in the high 

basicity of the anion, and this is manifested when sometimes the hydrogen bonding 

moiety in some hosts is deprotonated. Owing to the strong binding of F– by hydrogen-

bonding hosts, there have now been a number of studies on how F– affects gel 

formation by LMWGs, and the use of F– as a chemical switch. A good example is the 

behaviour of the family of compounds 1.33.191 
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 These compounds gel a variety of solvents with the R = C12H25 compound 

(1.33b) showing the greatest versatility. Addition of four equivalents of TBA+ F– to the 

1,4-dioxane 1.33b gel resulted in a transition from a gel to a solution state. This process 

is reversed by the addition of trifluoroacetic acid (TFA). The details of these processes 
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were probed using fluorescence spectroscopy. The measured photoluminescence 

intensity of 1.33b in the gel state (λ = 433 nm) is greatly increased in comparison to 

that in solution (λ = 359, 376 and 396 nm) and this can be attributed to the phenomenon 

of aggregation-induced enhanced emission. The 1.33b·F– aggregate in solution shows 

an emission band centred at 450 nm. With the addition of increasing amounts of TBA+ 

F– to a 1.33b gel, there is a subsequent decrease in the band at 433 nm observed for the 

gel, and an increase in the band observed for the 1.33b·F– complex. Interestingly, in the 

solution state, 1.33b that has been exposed first to TBA+ F– and then TFA has a similar 

emission spectrum to that of the starting 1.33b. Surprisingly, however, addition of 

TBA+ F– followed by TFA on the reformed gel results in a blue-shift of the emission 

band by 70 nm. This change in the gel character (compared with the gel before addition 

of fluoride and TFA) is also manifested in the morphology, as shown by the scanning 

electron micrograph (SEM) images of the dried gels. This result highlights the 

continued difficulty of assigning gel structure. Are the contents of these gels identical 

(pure 1.33b), or is the new gel made of a 1.33b·F–·H+ aggregate (as Yang et al. 

suggest)? Indeed, is the new gel some type of morphological “polymorph”?50,108,192  
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 An example where the gel is influenced by the interaction between the gelator in 

the gel state and F– was reported by Žinić, Mandolini, Cametti et al.193 Working with 

oxalamide-derived anthraquinone compounds they showed that compound 1.34 forms 

gels in a variety of solvents and that the properties of these gels can be tuned using 

anions. In p-xylene gels the addition of TBA+ F– (10 equivalents) causes the gel to 

break down and form a reddish solution. The change in colour and prevention of 

gelation is caused by the basic F– interacting with (possibly deprotonating) the NH 

group closest to the anthraquinone moiety in 1.34 (Figure 1.10). This effect can be 
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prevented when the solvent used in the gel is changed. An ethanol gel does not change 

to a solution upon addition of TBA+ F– (10 equivalents) as the fluoride is better 

solvated by the more polar protic solvent and therefore the anion cannot compete with 

the NH interactions that allow gelation to occur. Addition of a concentrated TBA+ F– p-

xylene solution on top of the gel results in a gradual breakdown of the gel over four 

hours (Figure 1.10). The fluoride ion is the only anion that behaves this way with gels 

of 1.34. This has led the authors to speculate that these fluoride responsive gels may 

provide the basis for a non-fluid and therefore more robust gel-based system for the 

naked-eye detection of fluoride.  

 

 
 

Figure 1.10. a) The 1.34 p-xylene gel; b) addition of 10 equivalents of TBAF to the hot p-xylene 

solution of 1.34 followed by cooling to RT; c) 1.34 EtOH gel; d) reddish 1.34 EtOH gel after 

addition of 10 equivalents of F–. e) Diffusion of F– from a concentrated p-xylene solution (50 

equiv.) through the 1.34 p-xylene gel. From left to right: 1.34 p-xylene gel; immediately after 

addition of TBA+ F– solution; after 2, 3 and 4 h; and overnight standing. (Reproduced with 

permission from ref.193) 
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 Due to the selective binding of F– by 1.35, a benzoxazole-based organogelator, 

Lee and coworkers show that they could also visually detect F– using a gel-based 

system.194 Deprotonation by F– causes a colour change from colourless to green in 1.35, 

so when 100 equivalents of TBA salts are added to the gel, a similar effect is seen. F– 

causes breakdown of the gel and generation of the colour. Other anions cause break 

down of gel but do not generate the same colour change except in the case of CH3COO– 

which only gives a very pale green colour.  
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 The binding of F– (or any anion) to the hydrogen bonding moieties of a LMWG 

can be used to determine the importance of those functional groups in the aggregation 

processes of gel formation. This is most often expressed in the form of a gel-to-sol 

transition. An important aspect is that it is not always necessary to use stoichiometric or 

excess amounts of anion to disrupt the formation of the gel.195-197 Gel-to-sol transitions 

are not the only resultant affects caused by the addition of anions to a gel; anions can 

also be used to change the strength of the gel - cases are known of both anion-induced 

weakening and strengthening of gels. In addition to weakening gels and causing gel-to-

sol transitions, anions can be used to enhance gelation.12,90,93,198 Addition of halide and 

nitrate salts to compound 1.36 results in the formation of hydrogels, whereas 1.36 by 

itself does not gel.198 
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 The anion-enhancement of gelation of 1.36 is suggested to be based around the 

Hofmeister series (specific ion effect). A typical Hofmeister series is:199-201  

 

I– < ClO4
– < NO3

– < Br– < Cl– < F– < SO4
2– 

 

 The more hydrated anions (to the right) are referred to as ‘salting-out’ or 

kosmotropic ions, and the less hydrated anions (to the left) are known as ‘salting-in’ or 

chaotropic ions. The salts containing the more chaotropic anions cause gelation of 1.36, 

and salts containing kosmotropic anions cause solvation. In addition to this factor is the 

solubility-based trend in crystallization tendency. As a result, the most stable gels are 

formed when salts of NO3
– and Br– are added. Interestingly, it seems that the salts 

remain in the liquid phase and are not incorporated in the gel. The salts cause no 

noticeable perturbation of the 1H NMR spectra of 1.36 (which might indicate solution-

phase binding). Even so, the anions may be helping to preorganize 1.36, or the 

Hofmeister anion effects may be the only effect.190 Further studies will be needed to 

fully understand the nature of the Hofmeister anion effects as they are not greatly 

understood in most systems.190,202,203 

 

1.5 Anion tuning of metal-based LMWGs 

 

 Studies by Lee et al. on gel formation by ligand 1.37 in the presence of silver(I) 

salts shows how the anion has an important role in templating the assembly that leads to 
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gelation.202-204 The silver coordinates to the pyridyl functionality in a linear fashion 

resulting in either a cisoid (meta groups on pyridyl groups are cis to each other in 

relation to the N�Ag�N bond) or transoid (meta groups on pyridyl groups are trans to 

each other in relation to the N�Ag�N bond) arrangement depending on the identity of 

the anion present in solution. Thus NO3
–, BF4

– and CF3SO3
– result in the cisoid form 

and consequently a gel is formed when the weight percentage of 1.37 is greater than 2.5 

% (Figure 1.11).202 These anions give the cisoid isomer as they are small enough to 

maximise the electrostatic interactions between the cationic chains. 
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 Addition of a larger anion such as C2F5CO2
– and C3F7CO2

– to the gel in the 

form of their TBA salts results in the disintegration of the gel. It has been shown using 

techniques such as circular dichroism and fluorescence spectroscopy, small-angle and 

wide-angle X-ray diffraction, electron microscopy (SEM and tunnelling electron 

microscopy (TEM)) and NMR spectroscopy how the gel-sol transformation arises from 

the change from the cisoid to the transoid arrangement, which in turn is caused by the 

anion interaction with the cationic chains.  
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Figure 1.11. Schematic representation of the reversible polymerisation and the reversible 

conversion between folded and unfolded conformations of a coordination chain upon 

counteranion exchange of 1.37 resulting in gelation to solution, and vice versa, state changes. 

a) Depolymerisation of the coordination polymers due to strong binding of the F– to the Ag+ 

metal centres resulting in the breakdown of the gel. Repolymerisation and reformation of the gel 

by the addition of 1.2 equivalents of TBA+ BF4
–. b) Transition from gel to sol caused by the 

conformational change in 1.37 induced by the addition of C2F5CO2
–. The reformation of gel is 

accomplished by addition of TBA+ BF4
–. (Reproduced with permission from ref.202) 
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 In colloidal gel chemistry the salting effect, and specifically the influence of the 

anion, has been studied for as long as the gels have been known – Hofmeister was 
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studying colloidal gels when he postulated his anion series.199-201 Recently Jamieson, 

Rowan and co-workers showed that a metallo-organic LMWG based around ligand 

1.38 (which contains 2,6-bis(1’-methylbenzimidazolyl)-4-oxypyridine metal binding 

groups) and the appropriate transition metal salt forms a colloidal gel that can be 

influenced by the addition of anions.104,205-209 Transition metal salt examples are 

Zn(ClO4)2 or Co(ClO4)2; additionally a small percentage of lanthanide ions can also be 

used to enhance gel formation (Figure 1.12).207  

 

 
 
Figure 1.12. Gels of 1.38 (11 wt % in acetonitrile) exhibit multi-responsive behaviour including 

the chemo-response to formic acid and TBA+ ClO4
–. a) Sonication induced toughening of the 

gel of 1.38. b) Chemo-responsive break down of the gel by the addition of formic acid or TBA+ 

ClO4
– caused by the osmotic deswelling of the gel or salting out of the organic phase. c) 

Thixotropic (recovery of gel after gel is sheared to breaking point, i.e. mechano-responsive) 

character of the gel. d) Thermotropic (temperature sensitive) character of the gel. (Reproduced 

with permission from ref.207) 

 

 This result illustrates the difficulties that can be encountered when studying 

multi-component supramolecular systems. The study reveals that the addition of formic 

acid causes degradation of the gel. Additionally, TBA+ ClO4
– also degrades the gel but 

at a much lower concentration than formic acid. Ligand exchange is not involved in the 
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degradation however, as demonstrated by the fact that a 20 and 60 times equivalent 

excess to transition metal is required to fully break down the gel for TBA+ ClO4
– and 

formic acid, respectively. The loss of gel character is inferred from the separation of the 

liquid phase from the gel and from the lack of ligand exchange upon addition of the salt 

to be due to the osmotic deswelling of the gel or salting out of the organic phase.199-201 

This work highlights the care that must be taken when establishing the causes of gel 

anion destabilisation in LMWG as the cause may be supramolecular in nature or 

physical, as shown above.  
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1.39  
 Coordination-complex-based LMWG metallogelators are an interesting group 

of compounds and of these, the labile silver(I) based compounds lend themselves to 

easy manipulation by anions.197,202,203,210,211 A simple complex (1.39) with a ligand that 

contains the coordinating pyridyl group, the hydrogen bonding amide group and 

lipophilic groups for van der Waals interactions forms gels with AgCF3SO3. Silver 

readily reacts with halide anions to form insoluble silver halide and this process has 

been used to cause a gel-sol transition when potassium iodide, chloride and bromide are 

added to the silver(I) metallogels of 1.39 in the correct stoichiometry. Hydroxide anions 

can be used in a similar manner resulting in the formation of Ag2O precipitate and the 

disruption of the gel. Removal of the precipitates by filtration and addition of 

AgCF3SO3 results in the return of the gel state showing that the response is chemo-

reversible.  

 The ability of chloride anions to remove silver has been put into good use in the 

gels formed by the trinuclear Au(I) pyrozalate complex 1.40.212 Compound 1.40 forms 

a gel in hexane (CGC 5 wt%) where the hydrophobic side chains interact strongly 

promoting metallophilic interactions of the Au···Au type. The gel is red emissive (λem = 

650 nm, λex = 254 nm) but upon addition of 0.01 equivalents of silver(I) ions (where the 
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silver intercalates between the stacking planes of 1.40 utilising metal-metal 

interactions) the gel becomes blue emissive (λem = 458 nm, λex = 370 nm). The 

reversibility of this tuning of the luminescence of the gel is achieved by using chloride 

anions to remove the silver (Figure 1.13). This study represents the use of anions to 

tune the dopant characteristics that in turn cause changes in the gel features.  
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 There are a large number of salts of organic anions and cations with inorganic 

counter ions as well as purely organic salts that have been discovered to gel a wide 

variety of solvents.38,39,42,46,48-50,213-216 The characteristics of the anion intuitively play a 

crucial part in the gelation ability of these compounds. There have, however, been 

surprisingly few studies performed that directly look at the influence of the anion in 

LMWG salts due often to the fact that a simple change in the anion results in loss of gel 

character all together.38,39,42,46,48-50,213-216 Studies by Dastidar and co-workers have gone 

against this trend and have studied examples where the anion is varied and therefore 

varies the characteristics of the gel.59,143-145,215-217 This work looked at the importance of 

one-dimensional hydrogen bonding networks as a means to predict and possibly design 

gelation using knowledge gained through the use of crystal engineering of 

supramolecular synthons. A study on a family of organic salts with the 

dibenzylammonium cation revealed that the variation in the anion in the form of both 

benzoate and cinnamate derivatives allowed for the tuning of the gelation process. 
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215,216 Of the 27 anions tested it was found that 19 of them showed some form of 

gelation and that this tendency correlates well with the formation of one-dimensional 

networks in the crystal structures of the salts. This insight allows the tuning of the gel 

characteristics, the gel strength or stability (as measured by changes in Tgel), and 

minimum gel concentration required for full gelation of a specific solvent volume, 

solvent type and gel fiber morphology.  

 

 
 
Figure 1.13. Diagram showing the luminescence profiles of Au(I) pyrazolate complex 1.40 in 

hexane as solutions and gels, and the schematics of the self-assembling structures. Anion 

tuning by the use of Cl– between the red and blue gel states occurs due to the removal of the 

intercalated Ag+ a) Sol of complex 1.40 that shows barely any visible luminescence (λext = 254 

nm). b) Gel of 1.40 that contain stacks of complexes resulting in bright red luminescence (λext = 

254 nm). c) Sol containing AgOTf (0.01 equivalents) that shows green luminescence (λext = 365 

nm) due to intercalation of silver between sets of 1.40. d) Gel containing AgOTf (0.01 

equivalents) showing blue luminescence (λext = 365 nm) due to intercalation of Ag+ into the 

stacks of 1.40. (Reproduced with permission from ref.212) 
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1.6 Aims of this work 

 

The aim of this work is to design and synthesise LMWGs that are capable of forming 

anion-tunable gels.52,97 It was also hoped that the combination of gelation and anion-

binding properties of a compound could lead to the ability to tune the gel characteristics 

for specific ‘smart’ applications such as drug delivery.38 Chiral bisurea compounds 

(Figure 1.14) where chosen for this task as the anion binding capabilities of the urea 

group is well understood,218,219 and the gel properties of compounds that contain urea 

groups have also been extensively studied.42,75,220-226 Therefore it is easy to speculate 

that the two can be used together within the same system.52,97,190 The choice of the 

chiral group comes through reasoning that many gelators do contain chiral functionality 

and that chirality is a desirable property of self-assembled systems due to common use 

in biology, nanoassembly and functional materials.41,53,60 In addition the presence of a 

single enantiomer may reduce crystallinity by preventing crystallisation in 

centrosymmetric space groups. The synthesised compounds are to be tested for gelation 

ability and their gelation properties investigated. Addition of anions will be used as a 

means to test if the gelation ability of the compounds is affected. If the gelation 

properties are changed by the addition of anions, the mechanism behind this change 

will be probed using such techniques as rheology and standard protocols for assessing 

solution equilibria, particularly NMR spectroscopic titration. Finally two potential uses 

of LMWGs, crystal growth control50,75 and drug release control,1-12 will be tested with 

anion tuning playing an important role in the application of these properties. 
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Figure 1.14. Chiral bisurea compounds for the study of anion tunable LMWGs. 
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 The second set of aims revolves around the pyrazole group and the chemistry of 

this functionality.227 Many salts (both organic and inorganic) are capable of forming 

gels. As the pyrazole group is capable of metal and anion coordination, as well as 

having the capability of being protonated, it is a useful binding group to design into a 

possible anion and cation tunable LMWG. Indeed, as shown by the example of Aida 

and co workers, pyrazoles can been incorporated into LWMGs.212 Functionalising the 

pyrazole group with a urea group provides a means to bind anions in a more controlled 

manner (Figure 1.15). As there have been no investigations into the coordination 

chemistry of urea functionalised pyrazoles, simple studies into the coordination 

chemistry of metals and anions have also been carried out in order to increase the 

understanding of these compounds in the hope of designing, and, serendipitously, 

finding a LMWG. Using this LMWG, which contains both the pyrazole and urea 

groups, should result in a gel that can be tuned by varying the identity of the anion. 
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Figure 1.15. Urea and thiourea functionalised pyrazoles for the formation of metal and salt 

LMWGs that can be tuned using anions. 
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Chapter 2 

 

Gelation and anion binding properties of a group of chiral 

bisurea compounds 

 

2.1 Aims 

 

The main aim of this research is to investigate low molecular weight gelators and their 

anion binding properties in order to produce anion tunable gels1,2 for specific 

applications.3 Chiral bisurea compounds were chosen because the anion binding 

capabilities of the urea group are well understood,4,5 and the gel properties of compounds 

that contain urea groups have also been extensively studied.6-10 Therefore it was easy to 

speculate that the two could be used together within the same system.1,2,11 The choice of a 

resolved chiral end group comes through the reasoning that many gelators do contain 

chiral functionality and that chirality is a desirable property of self-assembled systems.12-

14 Moreover optically resolved systems frequently crystallise less readily than their 

racemic or achiral counterparts because of the restrictions placed on the possible space 

group symmetry by the asymmetric centre or moiety. The target compounds are to be 

tested for gelation ability and their gelation properties investigated. Addition of anions 

will be used as a means to test if the gelation ability of the compounds is affected by 

anion complexation. If the gelation properties are changed by the addition of anions the 

mechanism behind this change will be probed using such techniques as rheology and 

standard anion testing protocols like NMR spectroscopic titration. Finally two potential 

uses of LMWGs, crystal growth control8,15 and controlled drug release,16-27 will be tested 

with anion tuning playing an important role in the application of these properties.
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2.2 Gelation study of 1-[(1S)-1-phenylethyl]-3-[2-({[(1S)-1-phenylethyl]carbamoyl} 

amino)ethyl] urea  

 

N
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N
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1-[(1S)-1-Phenylethyl]-3-[2-({[(1S)-1-phenylethyl]carbamoyl}amino)ethyl]urea (2.1a) 

was readily synthesised by reaction of ethylene diamine with (S)-(-)-α-methylbenzyl 

isocyanate. The gelation ability of the compound was assessed by dissolving 2.1a at 1% 

by weight in a variety of solvents, namely MeCN, CHCl3, MeOH, EtOH, Toluene (Tol), 

EthylAcetate (EtOAc), (CH3)2CO, THF and solvent mixtures of H2O or Tol (Table 2.1). 

The alcohols, DMSO and DMF dissolve 2.1a very well and no gelation was observed. 

Compound 2.1a did not dissolve in the non-polar solvents like hexane and toluene. 

Compound 2.1a is only sparingly soluble in water and precipitates out of a hot solution. 

2.1a formed stable opaque gels in CHCl3, EtOAc, (CH3)2CO, THF and MeCN. 

 In general sonication was found to significantly increase the rate of gelation and 

to improve the homogeneity of the organogels even though sonication was not necessary 

for gel formation.28 The increase in homogeneity due to the sonication is due to the 

enhanced formation of nuclei and their dispersion throughout the solvent leading to the 

initial growth of more and finer fibres.28 In the case of a brief sonication (less than a 

second) of 2.1a at 0.3% by weight in MeCN a transparent gel results. Over time this clear 

gel (Figure 2.1a) becomes more opaque with the formation of thicker-fibred spherulitic 

networks of dendrimer appearance, Figure 2.1b.29-32 This formation of the thicker-fibred 

spherulitic networks results in a stronger gel as indicated by the time dependence of the 

elastic shear modulus G and the loss modulus G variables as measured by rheometry as 

shown in Figure 2.1. DMSO/H2O, EtOH/H2O, MeOH/H2O and DMSO/Tol, MeCN/Tol, 

CHCl3/Tol mixtures are also gelled by compound 2.1a giving hydrogels (in the case of 

water based solvent mixtures)33,34 and gels of nonpolar solvents. The gelling conditions 

for all solvents and solvent mixtures investigated are listed in Table 2.1. To form gels of 
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hydrophobic solvents, such as Tol, where 2.1a is not soluble, the gelator was dissolved in 

a minimum volume of DMSO (or a solvent that is miscible with the hydrophobic solvent 

and dissolves 2.1a). This 2.1a solution was added to a larger volume of the hydrophobic 

solvent resulting in a gel of 2.1a. For example, gels, with Tol as the majority solvent, can 

be formed at a solvent ratio of 9.5:0.5 Tol to DMSO at 0.05% gelator by weight. These 

mixed solvent gels were thermally reversible. 

 

 
 

Figure 2.1. A time sweep of the rheological character of a gel of 2.1a at 0.3% by weight in MeCN. 

It shows how even though a gel has formed instantaneously upon cooing the gel continues to 

‘mature’. The strengthening is highlighted by the increase in the G value (Light grey filled ○) 

while the G value (Grey filled ) stays relatively the same. a) Inset showing a micrograph image 

of air trapped in a clear gel as seen upon brief sonication of a gel solution. b) Inset shows the 

branching by growing fibres resulting spherulitic networks in a gel as it matures. 

 

 The gelation of 2.1a at 1% in DMSO/ H2O mixtures by the addition of water to a 

pre-dissolved DMSO solution is shown in Figure 2.2. These mixtures can be heated until 

compound 2.1a dissolves and upon cooling the gels reform. In the case of the more 

aqueous samples, ratios 1:9; 2:8; 3:7, when water was added to the DMSO solution a 

mixture of gel material and precipitate was seen whereas when these same samples were 



 81

heated and cooled a gel was formed (Figures 2.2 and 2.3). The 7:3 mixture shows the 

close relationship between gelation and crystallisation.35 Adding water to the pre-

dissolved 2.1a in DMSO resulted in a gel, however, upon heating and cooling 

crystallisation occured (Figure 2.3).  

 

Table 2.1. Gelation behaviour of compound 2.1a. 

 

Solvents Phase[a] Appearance CGC (%)[b]

CHCl3
 G Transparent to Opaque 0.02 

MeCN G Opaque 0.05 

THF G Opaque 0.05 

Acetone G Opaque 0.05 

Ethyl Acetate G Transparent to Opaque 0.03 

Alcohols, DMSO, DMF S n/a n/a 

Tolune, Hexane, 

Cyclohexane 

I n/a n/a 

Water P n/a n/a 

DMSO:H2O
(c) / 

EtOH:H2O
(d) / 

MeOH:H2O
(e) / 

G/C/S Opaque 0.04 

Tol:co-solvent(f) G/S Transparent to Opaque 0.06 

 

[a] G = gel; I = Insoluble; S = Sol; P = Precipitate; C = Crystals [b] Gel formation is observed 

below this concentration however the gel does immobilise the entire solution of 1ml in a 1cm wide 

circular vessel [c] A ratio range of 7:3 to 1:9 results in gel formation (Figures 2 and 3) [d] A ratio 

range of 7:3 to 1:9 results in gel formation [e] A ratio range of 7:3 to 1:9 results in gel formation [f] 

1 does not dissolve in toluene but dissolving it in a minimal amount of DMSO, MeCN or CHCl3 

and adding it to the toluene allows for gel formation. 
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Figure 2.2. DMSO:Water gels formed by the addition of water to a solution of 2.1a in DMSO. 

From left to right the solvents are: pure water, ratios 1:9; 2:8; 3:7; 4:6; 5:5; 6:4; 7:3; 8:2; 9:1; pure 

DMSO. Note that the more aqueous samples, 1:9; 2:8; 3:7, are precipitated and/or form weak 

gels. Note the 8:2; 9:1 and pure DMSO samples are clear solutions. 

 

 

 

Figure 2.3. Image of the same samples as in Figure 2.2 but after heating to dissolution followed 

by cooling to room temperature. Homogenous gels were obtained for the more aqueous 

solutions. Only pure water and ratios 7:3; 8:2; 9:1 DMSO:H2O and pure DMSO did not form gels. 

Compound 2.1a is partially soluble in water but does not form a gel. Note that the vial containing 

the 7:3 solution contains small crystals which were used for the determination of the compound’s 

crystal structure. 

 

 Given the ability of a concentrated solution of 2.1a in DMSO to gel both water 

and non-polar solvents like Tol, we attempted to selectively gel one of these solvents 

from a mixture of the two in order to develop liquid-liquid separations applications.36-40 A 

few drops of a concentrated solution of 2.1a in DMSO were added to a mixture of water 

and Tol. The Tol is gelled upon addition of 2.1a. If excess 2.1a (above 2% by weight for 

the Tol gel) is added it begins to gel the water as well. Subsequent heating of this solution 

with water and the gelled Tol results in the toluene becoming a large mass of gel. This 

shows how 2.1a can be used to separate a non-polar solvent from water. In addition the 
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effect of small amounts of water on gel behaviour of organic solvent was investigated. In 

the case of MeCN and CHCl3 the gels of these solvents were found to be stronger when 

the solvent was dried over molecular sieves to remove water compared to when the 

solvents were not dried over molecular sieves. This effect is more pronounced in the case 

of THF gels; addition of one or two drops of water results in the complete dissolution of 

the gels. 

 The behaviour of fibres of the gels when exposed to mechanical stress was 

investigated using rheology.31,41-45 The gels were characterised by temperature sweep, 

stress sweep and frequency sweep rheometry. With a number of different samples 

varying in both concentration and solvent used, when a frequency sweep was performed 

with a small amplitude stress, the solid-like nature at 20 C was reflected in the storage 

modulus, G, being typically an order of magnitude greater than the loss modulus, G, 

thus demonstrating the elastic behaviour of the systems (Figure 2.4).46 This viscoelastic 

behaviour is associated with classical gels, and therefore supports the notion that the 

cooling of these samples from a clear solution to a solid-like material results in a true gel 

state.  
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Figure 2.4. Rheology of 2.1a showing a frequency sweep performed on a gel of 2.1a at 0.3% by 

weight MeCN gel. Typically the consistency of the G (Light grey filled ) and G (Dark grey filled 

○) values over the frequency range indicates the solid-like nature of the gel material. The greater 

than a magnitude value of G over the G value demonstrates the elastic behaviour of the gel. 

Both axis values are shown on a logarithmic (log) scale. 
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 The non-linear rheological response was investigated using stress sweep 

experiments, during which an oscillatory torque was imposed with a fixed frequency (1 

Hz) over a range of shear stress amplitudes. Example gels showed a typical instrument 

response with the small decrease in G value, essentially constant, below the critical value 

of oscillatory torque, the “yield stress”. At this “yield stress” point, where G swaps from 

being greater in value than G to being lesser in value, the sample starts to flow 

providing the “yield strength/stress value” for the sample (Figure 2.5).44,45  

 

 

 

Figure 2.5. Rheology of 2.1a showing a stress sweep, as a function of oscillation (osc.) torque, 

on a gel of 2.1a at 0.3% by weight MeCN gel. The stress sweep shows the rigidity and strength of 

the gel which breaks at a relatively high shear strength. G value (Light grey filled ) stays 

constant until the torque begins to become too strong and the struts start to break under the 

strain. Eventually G for the samples drops to below the G value (Dark grey filled ) and the 

sample is said to be flowing, coloured guide lines show blue (G) passing red (G). This transition 

point were the G value becomes greater the G value gives the “yield stress”. Both axis values 

are shown on a log scale. 

 

 The effect of the concentration on the gel strength was also investigated using 

rheology. Plotting G against concentration of 2.1a reveals concentration dependence 

similar to that seen often for the dependence of Tgel with concentration (Figure 2.6).45 

There have been theoretical models put forward for the mechanical properties of gels.47 
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Two examples that are pertinent to LMWGs are the colloidal gel description48 and the 

cellular solid model.41,49,50 

 

 

 

Figure 2.6. The G dependence on the concentration (indication of strength of gel) of compound 

2.1a in MeCN. The plateau point, at around 0.45 % by weight, is used as the cut off point for the 

determination of the G  [conc]n relationship. Errors bars on all points represent standard 

deviation for ten determinations of G values for a given sample. An example of the deviation in 

results for different samples at the same weight percent is represented by the two measurements 

on samples at 0.35% by weight. Lines are for a power law and a linear relation of best fits. 

 

 Attempting to fit either of the two models to the data shown in Figure 2.6 gives no 

obvious match. However, as can be seen clearly from the graph there is a saturation point 

(in terms of further strengthening) at approximately 0.45 % by weight. As neither model 

takes this into account, the use of data points below this weight percentage threshold 

should provide a set of data that can be modelled.31,51 Doing this reveals a power law 

relationship fit between the strength of 2.1a in MeCN and concentration of G  

[conc]1.8.This is in good agreement with the cellular solid model which is predicted to 

have a relationship of G  [conc]n, where n can vary between 1 and 2.50 A good fit for a 

linear relationship between G and the concentration can also be found. Due to the 

inherently high errors involved in fitting data of this kind, no conclusive power law 

relationship can be made and therefore, a conclusive choice between the two models. 
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However, the cellular solid model parameters fit better than those for the colloidal gel 

description. The cellular solid model describes an open-cell cellular material which 

consists of load bearing struts interconnected via crosslinks or junction points which 

deform by bending. To further elucidate whether or not this model is correctly assigned 

to the gel structures formed by 2.1a, imaging techniques were utilized to determine the 

gel morphology. 

 

 

 

Figure 2.7. a) Crystalline material seen upon drying a gel sample of 2.1a in MeCN using SEM. b) 

Crystalline material seen upon drying a gel sample of 2.1a in CHCl3 using SEM. c) SEM image of 

compound 2.1a xerogel formed from a gel made in a DMSO:H2O mixture at 6:4. This image is a 

better representation of the gel structure than images seen in parts a and b. Note how the gel 

fibres are rod-shaped and show no indication of the chirallity of the gelator. d) Higher resolution 

image of the fibre connections of the DMSO:H2O gel. There are large fibres/crystals that are 

bound to the smaller gel fibres. 

 

 Gel morphologies were studied by scanning electron microscopy (SEM) imaging. 

Samples of 2.1a were dried under vacuum and then coated with a thin layer of platinum 
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metal. The rod-shaped morphologies seen in the SEM imaging of the gels are very 

different from the fibred network morphologies of the hydrogels (Figure 2.7). It is likely 

that the morphology difference is due to how the gels dry under dynamic vacuum. More 

specifically, the rod-shaped morphology is likely to be micro-crystalline material that 

does not truly represent the gel structure.  

 

 

 

Figure 2.8. a) TEM image of compound 2.1a gel formed in a CHCl3 at 0.5% by weight. b) 

Cryo-SEM image of a CHCl3 gel of 2.1a showing the fibrous gelatinous morphology as seen 

in the TEM image, which is in strong contrast to the dried crystalline SEM samples of Figure 

7a and 7b. To the top right of the image can be seen the edge of crystalline structure similar 

in morphology to the dried gel.  

 

 As this micro-crystalline material is not a true representation of the gel structure 

the CHCl3 gels were also characterised using TEM imaging. The sample preparation for 

this imaging technique results in a fresh sample being exposed abruptly to high vacuum 

resulting in an altered drying process. The placement of thin layers of gel on the carbon 

mesh support and the imaging results revealed a more truly representative image of the 

gel. As shown in Figure 2.8a the TEM images show a much more fibrous morphology. 

We attempted to obtain an electron diffraction pattern from the larger fibres but failed 

due to the melting/break down of the fibres under the electron beam. The initial image 

under diffraction mode shows good diffraction that very quickly disappears. The 

morphology found using TEM was confirmed by running cryo-SEM (Figure 2.8b). With 

this technique the gels are frozen in liquid nitrogen and imaged as the frozen material. 

Initial imaging first showed no obvious gel features but by slowing heating the sample 
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(under dynamic vacuum) the frozen solvent is slowly evaporated from the surface. This 

revealed a gel fibre network, confirming the gelatinous morphology seen in the TEM 

images. This technique of removing the solvent under high vacuum and low temperature 

results in less surface tension from evaporation, resulting in less disturbance of the gel 

morphologies. 

 

 

 

Figure 2.9. a) Ellipsoid plot of 2.1a. Atoms shown as 50% ellipsoids with labels for atoms 

involved in the hydrogen bonding. b) Anti-parrallel urea-urea tapes formed within the structure of 

2.1a. Molecules shown in capped-stick representation. R )6(1
2  hydrogen bonding shown by 

dashed red lines. Selected hydrogen bond distances: N1–H1N···O1 2.875(6) Å, N2–H2N···O1 

2.956(6) Å, N3–H3N···O2 2.871(6) Å and N4–H4N···O2 2.939(6) Å. 

 

 Single crystals of 2.1a were grown from 7:3 DMSO:water solution (Figure 2.3). 

The structure was determined using single crystal X-ray diffraction. The compound was 

found to crystallise in the chiral monoclinic space group P21, with the whole molecule as 

the asymmetric unit (ASU) (Figure 2.9a). The most obvious feature of the structure is the 
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R )6(1
2  urea tape motif9,52 formed by both urea substituents on each molecule (Figure 

2.9b). The arrangement of the hydrogen bonding of the two urea tapes is in an anti-

parallel chain. The antiparallel mode has been postulated in gels of a number of cyclic 

bis(ureas).9 There is a gauche arrangement of the phenylethyl groups (Figure 2.9a). For 

this very short alkyl chain the two terminal C–N–C–C torsional angles are ca. 80o rather 

than 180o (of a perfect all-trans alkyl chain) resulting in a ‘kink’ in the chain. The crystal 

morphology is a long flat needle. This is similar to the fibre morphology seen in the gel 

state imaged by TEM and SEM. Face indexing the crystals showed that the growing face 

(i.e. the face that is growing fastest) is (010). The urea-tape packing direction is [010] and 

this matches the faster growing face of the crystal indicating that the urea–urea packing 

drives the faster growth of (010) face of the crystal. The flat longer face of the crystal is 

(100) and the thin face is the (001).  

 

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

2θ (degrees)

R
el

at
iv

e 
In

te
n

si
ty

 

 

Figure 2.10. PXRD patterns of the xerogel of compound 2.1a formed from the drying of the 

CHCl3 gel (Blue line), drying of MeCN gel (Red line) and the simulated PXRD of the single crystal 

data of compound 2.1a (Black line). The first three characteristic peaks match for all the samples. 

There is a systematic drift to lower 2θ values of the powder sample peaks compared to the 

simulated pattern due to the single crystal structure being obtained at 120K compared to the 

powder samples which were obtained are room temperature. Intensities have been normalised to 

the same scale. 
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 The powder diffraction patterns of dried gel samples revealed that the dried 

crystalline material (as seen in the SEM images) has the same structure as the single 

crystal form (Figure 2.10). There is a variable amount of amorphous material within any 

particular sample (the base line of the gel sample pattern is elevated). From this 

crystallographic data, and taking the assumption that the structure of these fibrous 

crystals is the same of the fibres seen for the gel, we can take the density of the struts (s) 

joining junctions of a gel to be 1.262 g cm-3. For a wide range of materials with a range 

of cellular concentrations, the formula G  3Es(c/s)
2/8 holds true,53 where Es is the 

Young’s modulus of the struts and c is the concentration of the compound making up 

those struts. The Young’s modulus of the individual fibres determined using the data 

collected from the rheological study of the concentration of 2.1a in MeCN can be 

calculated to be Es ~ 1.0 GPa (+/- 0.1). This value is comparable to that calculated for 

other LMWGs and values associated with the macroscopic mechanical behaviour of 

semi-crystalline polymers.11 

 In tris(ureas), which mimic bis(ureas) in their crystal packing, the known gelator 

structure is anti-parallel,54 whereas work on a tris(urea) analogue of 2.1a (which is also a 

LMWG) resulted in a structure with a parallel arrangement being isolated in the presence 

of Cl–.11 The role of the anion may well be to switch the ureas from a gelling antiparallel 

arrangement to a crystalline colinear arrangement. If this postulated anion-induced 

rearrangement was the case then adding anions to gels based on 2.1a should significantly 

reduce their gelling abilities according to the degree of interaction with the anion, 

resulting in tuneable rheology.55 Addition of solid or dissolved excess amounts of 

tetrabutyl ammonnium (TBA+) salts of varying anions to gels of 2.1a were visually 

inspected to see if there had been any change. In the case of gels in MeCN, CH3Cl, ethyl 

acetate, THF, acetone and Tol:MeCN the gel broke down to give a solution when at least 

one equivalent of F–, Cl–, Br–, NO3
– or MeCO2

– was added, either as a solid or solution. 

Weakly coordinating anions BF4
– and PF6

– had no effect indicating that the TBA+ cation 

has no noticeable effect on the gel and acts as a spectator cation. Hydrogels are not 

affected by the addition of the anions, either in the form of TBA+ salts or Na salts. 

 To test this theory of anion tuning we carried out stress sweep rheometry 

measurements and sol to gel temperature transition point (Tsg) determinations on 2.1a in 
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the presence of small amounts of a variety of simple anions as their TBA+ salts, namely 

F–, Cl–, Br–, NO3
–, MeCO2

– and the non-coordinating BF4
– as a control with MeCN as the 

solvent.  
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Figure 2.11. Influence of different anions (0.1 equivalents of anion added as their TBA+ salts) 

on the storage modulus (G) at a frequency of 1 Hz and a temperature of 20 C, as a function 

of osc. torque of the 0.3% by weight gel of compound 2.1a in MeCN. The anions added were 

BF4
– (Orange ); Br– (Blue ); NO3

– (Pink ); Cl– (Yellow ) and MeCO2
– (Black ). The 

pure gel is represented as brown ○. F– is not shown as it forms a liquid. G and G axis 

values are shown on a log scale. 

 

 The addition of solids, or small volumes of dissolved anions, to preformed gels 

were found to give inconsistent rheological results as the breakdown of the gel was not 

homogenous. The most consistent results were found by predissolving both gelator and 

anion at a specific stoichiometry, and adding this hot solution to the rheometer. A 

homogenous gel would form over time. While BF4
– had no effect on the observed storage 

and loss moduli (G′ and G′′), the other anions dramatically compromised the gel strength 

and greatly decreased the values of the moduli. Figure 2.11 shows that addition of small 

amounts of these anions (0.1 equivalents with respect to the gelator concentration) which 

results in the reduction in the storage modulus by up to two orders of magnitude 

depending on the identity of the anion, indeed addition of 0.1 equivalents of MeCO2
– and 
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F– totally disrupts gel formation. For a fixed concentration of gelator, such a decrease 

suggests a lower interconnectivity of the individual threads,50 supporting our hypothesis 

that the anion disrupts the gelation process. In addition to the decrease in G, the anions 

cause a decrease in the “yield stress” of the gel and Tsg,
45 also indicating a weakening of 

the gel (Figures 2.12 – 2.13). Increasing the amount of anion added results in the 

lowering of the G, G and Tsg values for the gel as revealed by temperature sweep 

rheometry (Figure 2.12). The sol to gel transition temperature can be defined by the when 

the G and G values crossover, i.e. G is smaller than G. Hence for the samples shown 

in Figure 2.12, Tsg = 58.5 ± 1.5 oC for when 0.1 equivalents of Cl– is added and Tsg = 48.5 

± 1.5 oC for 0.2 equivalents added. The value of the osc. torque that results in a minimal, 

but measurable, value for G also decreases as the anion concentration is increased 

(Figure 2.13), giving “yield stress” values of 794 micro Nm at 0.1 equivalents NO3
– 

added to 158 micro Nm at 0.2 equivalents added to 79 micro Nm at 0.5 equivalents 

added. In addition to weakening the gels, time sweeps of gel formation reveal that the gel 

formation is slowed as generally the gels took longer to form if anions were added. 

 

 
 

Figure 2.12. The effect of adding anion in form of TBA+ Cl– on G, G and Tsg for a gel of 2.1a at 

0.3% by weight and in MeCN, as measured by varying the temperature from 70oC to 25oC. The 

 symbols (G open; G filled) represent 0.1 equivalents of anion added and the  symbols (G 

open; G filled) represent 0.2 equivalents added. Arrows indicate Tsg points. G and G axis 

values are shown on a log scale. 
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Figure 2.13. The effect of adding the anion TBA+ NO3
– on the storage moduli for a gel of 2.1a at 

0.3% by weight and in MeCN measured by varying the osc. torque from 10 micro N.m to 1000 

micro N.m, at a fixed frequency of 1 Hz. The  symbols represent 0.1 equivalents of anion 

added; the ○ symbols represent 0.2 equivalents added and the  symbols represent 0.5 

equivalents added. G decreases as more anion is added to the gel. G and G axis are values 

shown in log scale. 

 

 As the gelator and anion are interacting in the solution state before the nucleation 

of the gel formation, anion binding by the gelators was probed using 1H NMR 

spectroscopic titration techniques and the data were analysed using the program 

HypNMR56,57 (Figure 2.14). By carrying out the titrations at 50 C in MeCN, gelation 

was avoided, allowing the assessment of individual gelator-anion binding constants in the 

gel solvent. All titrations revealed the formation of 1:1 gelator-anion complexes. The 

host:guest stoichiometry was confirmed by Job plot analysis (Figures 2.15 – 2.16). 

Fluoride was not titrated as TBA+ F– occurs as a hydrate and water has a great effect on 

the self-association of 2.1a. Addition of small amounts of TBA+ F– monohydrate breaks 

down the gel, but it is difficult to disentangle the effects of water and F–. In addition to 

the 1:1 gelator-anion complex, the anion binding competes with the dimerisation of the 

molecule, an obvious precursor step to gel formation. MeCO2
– proved to be the strongest 

anion bound with a log β11 value of 4.24(1) in competition with dimerisation constant 
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with a log β20 value of 3.96(1). Cl– and NO3
– are bound with log β11 values of 3.96(2) and 

2.93(6), respectively, again in competition with the dimerisation process. For the BF4
– 

and Br– anions the binding was found to be too weak to determine binding strengths. The 

trend of the anion binding affinities in this pre-gel solution mirrors the inhibitory effect 

anions have on the gel formation, the gel rheology and the gel structure after forming. 

Thus MeCO2
–, the strongest bound anion and the only one that competes effectively with 

solution dimerisation, has by far the most significant influence on G, G, Tsg and “yield 

stress”. This leads to the effect that the gel structure is completely broken and dissolution 

of 2.1a occurs when as little as 0.05 equivalents of MeCO2
– are added to a gel. Similarly, 

chloride has a significantly greater effect than NO3
– on the gel rheological properties. 

Therefore the order of anion binding in solution and the order of reduction in G, G, Tsg 

and “yield stress” by addition of anions to the gels of 2.1a are same and is MeCO2
– > Cl– 

> NO3
– > Br– > BF4

–. 
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Figure 2.14. The change in chemical shift of one of the NH protons of compound 2.1a during the 

titration of TBA+ MeCO2
– done in MeCN at 50 oC from which the binding strengths of 2.1a for the 

anion is determined.  
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Figure 2.15. Figure showing the results of a Job Plot analysis for the binding of TBA+ MeCO2
– by 

compound 2.1a giving a 1:1 binding ratio (0.5 mole fraction of host). The two NMR signals, 

represented by the  and  symbols, are those assigned to the NH protons of the urea groups. 
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Figure 2.16. Figure showing the results of a Job Plot analysis for the binding of TBA+ Cl– by 

compound 2.1a giving a 1:1 binding ratio (0.5 mole fraction of host). The two NMR signals, 

represented by the  and  symbols, are those assigned to the NH protons of the urea groups. 
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 In summary compound 2.1a gels a large variety of solvents. The fibre 

morphology is not always seen when imaged using SEM due to the crystallisation of gel 

upon drying, however, a fibrous gel structure is imaged using cryo-SEM and TEM. 

Rheological experiments identified the relationship between concentration and strength 

of the gels as G  [conc]1.8 which matches with the cellular solid model. The single 

crystal x-ray determination of the crystalline structure shows how the urea groups are 

hydrogen bonding together into anti-parallel tapes which provide the driving force for 

self-assembly into gel fibres. The gel self-association, and hence, rheology can be tuned 

by the introduction of sub-stoichiometric amounts of anions which compete with the self-

association of the urea hydrogen bonding groups. The conjoined anions (with their TBA+ 

counter ions) and molecules of 2.1a are more soluble resulting in a shift of the 

equilibrium between the solid gel fibres and solution molecules from more solid to more 

solution. This shift in equilibrium results in weakening of the gels, and with the addition 

of the right quantity of anion, total dissolution of the gel results. Gel formation is also 

slowed by the addition of anions, as gel solutions containing anions were found to form 

more slowly in comparison to gels of equal strength or concentration of gelator. The 

degree to which anions inhibit gelation is to some extent correlated with the anion-gelator 

binding affinity when comparing the rheological tuning and the solution based 

determination of the binding between anions and 2.1a. 
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2.3 Functional group orientation by variation in spacer group length between urea 

functionalities*  

 

N
H

N
H

N
H

N
H

OO

n

 

2.1a - g with n = 2 - 8  

The seven compounds 2.1a – 2.1g, where the alkyl chain length (n) is varied from 2 – 8, 

respectively, are readily synthesised by reactions of the appropriate -diaminoalkane 

with (S)-(-)-α-methylbenzyl isocyanate.55 The gelation ability of the compounds was 

assessed by dissolving the compounds at 1% by weight in a variety of solvents, namely 

MeCN, CHCl3, MeOH, EtOH and solvent mixtures such as DMSO/H2O and MeOH/H2O 

(Table 2.2). The compounds 2.1e (n = 6) and 2.1g (n = 8) gelled CHCl3 to form 

completely thermally reversible transparent gels at 1% weight and the compounds with 

2.1a (n = 2) and 2.1c (n = 4) readily formed semi-transparent thermally reversible 

organogels in MeCN and CHCl3 after slow cooling from the hot solutions. Gels for 2.1e 

could also be obtained in MeCN, but were opaque, probably indicating larger 

(microscale) aggregates. For 2.1g gels in MeCN could only be formed upon sonication of 

the compound in solution.28 No gels were formed by the 2.1d (n = 5) and 2.1f (n = 7) 

compounds. The 2.1b (n = 3) compound generally also did not form gels in any solvents, 

although in a few, poorly reproducible experiments, a weak gel or partial gel in CHCl3 

was observed. All compounds dissolved in MeOH, EtOH and DMSO and did not form 

gels in these solvents. Compounds with even numbered n were also found to gel mixtures 

of DMSO/H2O and MeOH/H2O. These gelation studies reveal that compounds with n = 

even formed gels and for n = odd did not (Figure 2.17).58-63 In general sonication was 

found to significantly increase the rate of gelation and to improve the homogeneity of the 

organogels. The gel to sol transition temperatures, Tgs, of the even numbered compounds, 

as determined by the dropping ball method, decreased with an increase in oligomethylene 

linker length when measured at 1% by weight in CHCl3. 

                                                           
* In collaboration with Dr. Marc-Oliver Piepenbrock. Dr. Piepenbrock performed synthesis, SEM studies 
and gelation studies of 2.1b – 2.1g. All PXRD and single crystal diffraction studies performed by author. 
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Table 2.2. Gel formation for compounds 2.1a – 2.1g. 

 

Compound Solvents Phase[a] 

2.1a(b) CHCl3 / MeCN / DMSO:H2O / EtOH:H2O / 

MeOH:H2O  
G 

2.1b All solvents(c)  SP 

2.1c CHCl3 / MeCN / DMSO:H2O
(d) 

MeOH:H2O
(e) 

G 

G/C 

2.1d All solvents SP 

2.1e CHCl3 / MeCN / DMSO:H2O
(f) 

MeOH: H2O
(e) 

G 

G/C 

2.1f All solvents SP 

2.1g CHCl3 / MeCN(g) / DMSO:H2O
(f) 

MeOH: H2O
(e) 

G 

G/C 

 

[a] G = gel; SP = Sol or Sol and Precipitate; C = Crystals [b] See Table 1.1 for more details 

[c] Occasionally forms gels in CHCl3 [d] Range of 3:2 – 1:1 [e] gel + crystals mixed phases for 

all ratios [f] Range of 4:1 – 2:3 [g] Requires sonication for gelation to occur 

 

 

 

Figure 2.17. Alternation of gel (even n) and sol (odd n) formation in CHCl3 by compounds 

2.1a – 2.1g. All vials are at 1 % by weight in 2 ml of solvent. 

 

 For the even numbered spacers, the xerogels were imaged by SEM after drying 
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under dynamic vacuum and coating with Pt, which revealed the characteristic threadlike 

morphology for gels from compounds 2.1c, 2.1e and 2.1g (Figure 2.18). The morphology 

of the 2.1a is discussed in the previous section but also shows similar threadlike 

morphology. The molecular chirality of the LWMG is manifested only in the gels of 2.1c 

where a left-handed helical twist in the xerogel fibres is seen (Figure 2.18b).  

 

 

 

Figure 2.18. a) SEM image of the xerogel of 2.1a gel from MeCN (solvent) showing the rod-

shaped nature of the dried gel sample due to crystallisation. b) SEM image of the xerogel of 2.1c 

gel from MeCN showing the thread-like nature of the gel fibres and the helical twist induced by 

the chiral gelator. c) SEM image of the xerogel of a MeCN gel of 2.1e showing the brittle (more 

crystalline) fibrous nature of the gel fibres. d) SEM image of the xerogel of a MeCN gel of 2.1g. 

 

 The n = 2, 4, 5 and 7 members of the series were characterised by single 

crystal X-ray crystallography. Crystals of the 2.1a and 2.1c compounds were obtained 

from aqueous DMSO, while the 2.1d and 2.1f samples were obtained from aqueous 

MeOH upon cooling of hot concnetrated solutions. In the cases of the 2.1a and 2.1c 



 100

(Figures 2.20) compounds PXRD measurements of xerogels showed that the single 

crystal structure was retained. The PXRD patterns of precipitates of 2.1e show good 

crystallinity whereas the PXRD patterns of aerogels only shows marginal 

crystallinity. The PXRD patterns of precipitates and aerogels of 2.1g show mostly 

amorphous character (Figures 2.20). 
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Figure 2.19. PXRD pattern of the xerogel of compound 2.1c at room temperature formed from 

the drying of a CHCl3 gel (Black line) and the simulated PXRD pattern from the single crystal 

determination (performed at 120 K) (Red line). Intensity of the simulated PXRD has been 

normalised to that of the xerogel. 

 

 In all cases the most obvious feature of the crystal packing is the R )6(1
2  urea 

tape motif5 formed by both urea substituents on each molecule (Figures 2.21 – 2.22). 

The structures of the 2.1c, 2.1d and 2.1f materials display the expected all-trans 

conformations of the alkylenic chains and hence the two independent urea tapes are 

antiparallel for 2.1c, whereas they are all co-aligned in the 2.1d and 2.1f case giving 

an overall polar as well as chiral structure, Figures 2.21 – 2.22. The orientation of the 

bulky phenylethyl groups is strongly correlated to the urea orientation because of the 

need to minimise steric bulk round the urea carbonyl group which acts as an acceptor 

for two NH donors.64,65 This results in a gauche arrangement of the phenylethyl 

groups in the 2.1a and 2.1c cases and an anti arrangement for the 2.1d and 2.1f cases. 
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Figure 2.20. PXRD patterns at room temperature of a powder sample of the as synthesised 2.1e 

from the precipitation/gel formation in the synthesis solvent CHCl3 (Black line) and the xerogel of 

2.1g formed from the drying of the CHCl3 gel (Grey line). Intensity of 2.1g PXRD normalised to 

that of 2.1e. 

 

 The expected packing for the gauche substituents should be more awkward 

compared to the anti substituents, however, there is little difference between these 

four compounds’ densities. In the 2.1c and 2.1f cases a lower density is found (1.22 g 

cm-3) compared to the 2.1c and 2.1d cases (1.26 g cm-3 and 1.25 g cm-3, respectively). 

In the 2.1c, case a less efficient packing mode is found as it crystallised in a space 

group with rotational rather than screw symmetry (C2 instead of P21).
66 The structure 

of the 2.1a compound, which is also a good gelator, shows antiparallel chains for the 

urea tapes and a gauche arrangement of phenylethyl groups. For this very short chain, 

however, the two terminal C-N-C-C torsional angles are ca. 80o rather than 180o 

giving a ‘kink’ in the chain and allowing a higher density and more efficient packing 

than the 2.1c case, in P21. Hence it is not poor crystallinity or bad packing that gives 

gelation but it is the antiparallel urea hydrogen bonded chains in bis(ureas) that 

resulted in gelation behaviour. A parallel, polar arrangement did not. The antiparallel 

mode has been postulated in gels of a number of cyclic bis(ureas).9 
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Figure 2.21. Crystal packing diagrams showing the urea tape motif of compounds 2.1a (a), 2.1c 

(b). Note how the urea tape motifs are anti-parallel and the phenylethyl groups are in a gauche 

arrangement. Selected hydrogen bond for 2.1c: N1–H1N···O1 2.944(4) Å, N2–H2N···O1 2.923(4) 

Å, N3–H3N···O2 2.930(4) Å, N4–H4N···O2 2.905(4) Å. 

 

 

 

 

Figure 2.22. Crystal packing diagrams showing the urea tape motif of compounds 2.1d (a), 2.1f 

(b). Note how the urea tape motifs are parallel and the phenylethyl groups are in an anti 

arrangement. Selected hydrogen bonds: 2.1d N1–H1N···O1 2.869(4) Å, N2–H2N···O1 2.939(4) 

Å, N3–H3N···O2 2.895(4) Å, N4–H4N···O2 2.866(4) Å and 2.1f N1–H1N···O1 2.915(2) Å, N2–

H2N···O1 2.881(2) Å, N3–H3N···O2 2.949(2) Å, N4–H4N···O2 2.886(2) Å. 
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 When compound 2.1c was crystallised from a MeOH:H2O mixture a 

conformational polymorph was found (Figure 2.23).67,68 Crystallisation of 2.1c was 

performed by taking a room temperature concentrated solution of 2.1c in MeOH and 

adding drops of water until crystallisation began. This polymorph (designated form II, 

with the C2 crystal form designated form I) crystallised in the space group P21. The 

density of form II was to be higher at 1.25 g cm-3 than that of form I. The R )6(1
2  urea 

tape motif5, formed by both urea substituents, are present once again. The two urea 

tapes are in an antiparrallel arrangment. The all-trans conformation of the alkylenic 

chain, as seen in form I, are also present in form II. 

 

 

 

Figure 2.23. Molecular structure of 2.1c in form II. Atoms are shown as ellipsoids at 50% 

probability. Selected hydrogen bonds: N1···O1i = 2.8859(15) Å;  N1–H1N···O1i = 145.0o, 

N2···O1i = 2.8565(15) Å;  N2–H2N···O1i = 143.8o, N3···O2ii = 2.9111(15) Å;  N3–

H3N···O2ii = 147.0o, N4···O2ii = 2.8172(15) Å;  N4–H4N···O2ii = 154.8o, (i = 1+x, y, z and ii 

= x-1, y, z) 

 

 The significant change in the molecular structure of 2.1c in form II compared with 

form I is the angle of the urea groups in relation to the all-trans alkyl chain. In form I, the 

C–N–C–C torsion angles are essentially linear at 171.6o and 177.2o (Figure 2.24a). In 

form II, the C–N–C–C torsion angles are 95.3o and -78.3o resulting in a ‘kinked’ 

molecule, similar to that seen in the structure of 2.1a (Figure 2.24b). The phenylethyl 

groups are still in a gauche arrangement. The overall packing in form II is of a 

herringbone-like motif which is different to the interlocked motif of form I (Figure 

2.24b).  
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Figure 2.24. Packing arrangements of 2.1c in a) form I and b) form II. 

 

 In summary we have shown that gelation in this series is a consequence of strong, 

anisotropic, multiple hydrogen bonding interactions coupled with packing difficulties 

perpendicular to the hydrogen bonded direction. There is a close relationship between 

molecular structure and hence hydrogen bonding group orientation and crystallisation or 

gelation tendency. Antiparallel arrangements of urea groups promote gelation while 

reducing crystallinity in some cases. While alternation effects are known in gels, the 

alternation between gelation and complete lack of gelator behaviour has not been 

observed previously.58-63 
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2.4 Gelation by 1-[(1R)-1-(1-naphthyl)ethyl]-3-[2-({[(1R)-1-(1-naphthyl)ethyl] 

carbamoyl}amino)ethyl]urea 

 

N
H

N
H

O

N
H

N
H

O

2.2  

1-[(1R)-1-(1-Naphthyl)ethyl]-3-[2-({[(1R)-1-(1-naphthyl)ethyl]carbamoyl}amino) 

ethyl]urea, 2.2 (Scheme 2) was synthesised from the reaction of ethylene diamine with 

two equivalents of (R)-1-(1-naphthyl)ethyl isocyanate and was studied, as an analogue to 

compound 2.1a, as a LMWG. Even though 2.2 has a lower solubility in most solvents, it 

formed gels readily in CHCl3, MeCN, EtOAc and mixtures of DMSO/H2O, MeOH/H2O, 

EtOH/H2O, Tol:MeCN (with a general weight percent range of 0.01% to 1.5% with a 

maximum limit due to poor solubility). Compound 2.2 showed identical gelation 

properties when it come to types and ratios of solvents as 2.1a but have slightly lower 

CGCs. In contrast to 2.1a, compound 2.2 showed no drying affects and the SEM images 

showed 2.2 to form fibrous strands (Figure 2.25). This difference could be seen by the 

naked eye as gels of 2.1a are generally opaque with a fibrous crystalline nature under the 

microscope and gels of 2.2 were more transparent and were very gelatinous in nature. 

Compound 2.2 also showed helicity in the fibres which was not evident in gels of 

compound 2.1a (Figure 2.26). 

 The behaviour of fibres of the gels formed by 2.2 when exposed to mechanical 

stress was investigated using rheology. The gels were characterised by time sweep 

(Figure 2.27), stress sweep and frequency sweep rheometry. With a number of different 

samples varying in both concentration and solvent used, when a frequency sweep was 

performed with a small amplitude stress, the solid-like nature at 20 C was reflected in 

the G being typically an order of magnitude greater than G thus demonstrating the 

elastic behaviour of the systems (Figure 2.28).46 This viscoelastic behaviour is associated 

with classical gels, and therefore supports the notion that the cooling of these samples 

from a clear solution to a solid-like material resulted in a true gel state. In general, it was 
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also found the gels of 2.2 were weaker than gels of 2.1a when it came to the values of G 

and “yield stress” (given that all things are equal such as weight % or concentration). 

 

 

 

Figure 2.25. Fibrous strands of the gels formed by 2.2. a) SEM image of a MeCN 0.06% by 

weight gel and b) is of a DMSO:H2O 0.3% by weight gel. Note how the fibres are larger for the 

more concentrated gel (i.e. higher weight %) and how the fibres are joined together through both 

weaving and inter-growth of fibres. 

 

 

 

Figure 2.26. Helical fibres found within gels of compound 2.2. a) is of a 0.1% by weight CHCl3 gel 

and b) is of a 0.06% by weight MeCN gel. Note how the two images show two different sets of 

direction for the helical twist of the fibres. This indicates that the helicity direction is not 

determined by the chirality of compound 2.2. 
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Figure 2.27. Rheology of 2.2 showing a time sweep performed on a gel of 2.2 at 0.1% by weight 

MeCN gel. Typically the gel’s strength increases over time as shown by the increase in G (Dark 

grey filled ) with time while G (Light grey filled ) does not change. 
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Figure 2.28. Rheology of 2.2 showing a frequency sweep performed on a gel of 2.2 at 0.1% by 

weight MeCN gel. Typically the consistency of the G (Dark grey filled ) and G (Light grey filled 

) values over the frequency range indicates the solid-like nature of the gel material. The fact 

that the G value is a magnitude of order larger than G value, demonstrates the elastic behaviour 

of the gel. 
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 The non-linear rheological response was investigated using stress sweep 

experiments, during which an oscillatory torque was imposed with a fixed frequency (1 

Hz) over a range of shear stress amplitudes. Example gels showed a typical instrument 

response with the small decrease in G value, essentially constant, below the critical value 

of shear stress, the “yield stress”, until the sample started to flow providing the “yield 

strength/stress” value for the sample (Figure 2.29). 
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Figure 2.29. Rheology of 2.2 showing a stress sweep on a 0.1% by weight MeCN gel. The stress 

sweep shows the rigidity and strength of the gel, which breaks at a relatively high shear strength. 

G value (Grey filled ) stayed relatively constant until the torque begins to become too strong 

and the struts start to break under the strain. Eventually G for the samples dropped to below the 

G value (Light grey filled ) and the sample are said to be flowing. G and G axis values shown 

on a log scale. 

 

 Unfortunately, no high quality single crystals of 2.2 could be obtained. Most often 

the crystallisation attempts from DMSO:H2O and MeOH:H2O mixtures resulted in very 

thin fibrous masses. As shown by the PXRD pattern of the as-synthesised compound 
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(powder recovered from synthesis in CHCl3) and the dried gels from CHCl3 (xerogels) 

the two types of materials are crystalline and were found to contain the same peak 

positions and intensity ratios (Figure 2.30). The xerogels show considerable amorphous 

back ground scattering.  
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Figure 2.30. PXRD pattern of 2.2 from the as-synthesised materials. 

 

 Compound 2.2 readily formed gels in DMSO:H2O mixtures. The gels showed 

thixotropic properties. Thixotropic gels are gels that lose their gel properties (i.e. begin to 

flow) by applying a shearing force to them, but upon removal of the shearing force the 

gel properties return (normally gels continue to flow once sheared). This “gel repair” 

property has been seen to occur in some gels but is still relatively uncommon 

phenomenon.42,43,69-72 To investigate this process using rheometry a sample was allowed 

to gel. When the gel was found to be stable, a shear sweep was performed resulting in the 

breaking of the gel. The broken gel was then followed over time (Figure 2.31). The gel 

was shown to undergo shearing (time point 58 min, G was measured at a lower value 

than G). Upon removal of the shearing force the sample was seen to redevelop its gel 

characteristics with the gradual increase in G with the G value staying practically the 
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same eventually leading to a gel with a G measurement of an approximate magnitude of 

order greater value than G but which was weaker (55% of the original G) than the 

originally set gel. 

 

 

 

Figure 2.31. A gel of 2.2 at 0.6% by weight in a DMSO:H2O 5:5 solvent mixture was shown to 

reform after being sheared to breaking point. The gel was allowed to set for 25mins upon which a 

stress sweep was performed from a range of 10 micro N.m to 15 000 micro N.m (Time 25.2 min 

to 57.4 min). The gel started to flow at around 10 000 micro N.m. Upon removal of this shear 

force the measurements were continued at a low frequency and stress value. As can be seen the 

gel reforms over time, the G value reached ~ 55% of its original value. G shown as grey filled  

and G as grey filled ○. G and G axis values shown on a log scale. 

 

 A SEM study of the gel morphology gave good insight into how this particular gel 

system might be undergoing the shearing breakdown of the gel and “self-repair”. SEM 

imaging of a sample that has not been sheared revealed a well connected fibrous network 

(Figure 2.25b). Inspection of images of a sample that has been sheared and has “self-

repaired”, Figure 2.32, revealed that the fibres have ends that were braided but still 

connect the fibres together into a network to bind the liquid in place. The liquid in this 
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case, a DMSO:H2O mixture, consisted of an excellent solvent for 2.2 in the form of 

DMSO, and H2O, which is a poor solvent. This solvent mixture may allow for the growth 

and reconnection of the fibres, albeit at a small scale and formation of a weakened gel. 

 

 

 

Figure 2.32. SEM images of the dried thixotopic gel formed by 2.2 in a DMSO:H2O mixture after 

shearing and “self-repair”. a) Note that the ends of fibres that join the fibres together are thinned. 

b) Close up SEM image of the areas that join the gel fibres of the thixotropic gel together. Note 

how the fibres join together and can be easily be broken and re-grown. The small fragile 

connections result in a weaker gel. 

 

 The naphthyl groups of 2.2 are a recognised fluorescent chromophore.73 It was 

hoped that the gelation of 2.2 would result in a change in fluorescence of the naphthyl 

group allowing for determination of some of the structural details of the aggregation of 

2.2. Figure 2.33 shows the spectra found when a hot solution of 2.2 is cooled and gelation 

occurs. The split structural emission band (λ = 327, 335 and 353 nm) increases in 

intensity with a slight red shift (in the 335 nm peak) and loss of the fine structure. The 

aggregation of 2.2 within the gel fibres results in a restriction in the motion of the 

molecules and therefore reduces the non-radiative dynamic decay pathways of the 

naphthyl excited states resulting in the increase in the intensity (also known as the 

phenomenon of aggregation-induced enhanced emission (AIEE)).74-83 The slight red shift 

can be attributed to the stacking of the naphthyl groups together, through π‒π 

interactions, within the solid state of the gel (a hydrophobic environment).84,85 This red 

shift in the band is characteristic of J-aggregation of the naphthyl groups.74,76,86-88 In 
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addition to this experiment, where a hot solution is cooled and gelation occurs fairly 

quickly, a second experiment was performed on a gel solution that was at the CGC level. 

Due to the gel not forming properly upon cooling the spectra do not change very much. 

But upon shaking the solution to initiate nucleation, and, therefore, gelation the spectra 

show gelation occurring with the red shift and intensity increase (Figure 2.34). This 

shows how important the nucleation event is for the growth of the gel fibres and the 

consequent gelation of the solution. 

 

 

 

 

Figure 2.33. Fluorescence spectra of a gel of 2.2 at 0.06% by weight in DMSO:H2O. The dark 

blue spectrum (lowest intensity spectrum) is of the hot solution. The general increase of the 

intensity, as indicated by the arrow, is seen as the temperature decreased. This decrease in 

temperature also resulted in gelation. There is also a small red shift in the band.  
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Figure 2.34. Fluorescence spectra of a gel of 2.2 at 0.003% by weight in DMSO:H2O. The 

spectra do not change by much as the solution cooled. When the solution is given a shake, gel 

formation starts to occur and the band intensity increased (as shown by the arrow). 

 

 The anion tuning of the gels of 2.2 was also investigated. As with 2.1a there gels 

show a gel to sol transformation upon addition of excess anion in the form of a TBA+ 

salt, even though 2.2 is less soluble in most solvents when compared to 2.1a. A 

determination of the binding of 2.2 to MeCO2
– at 50 oC in MeCN using NMR titration 

techniques gave binding data of β11 = 4.30(1); β20 = 2.92(10) and β21 = 7.63(3). The 

binding value for β11 is comparable to the β11 of 2.1a. However, the dimerisation 

constant, β20, is smaller. A two hosts to one guest complex is also evident in this 

experiment which contrasts with the behaviour of 2.1a. This binding by MeCO2
– in 

comparison to 2.1a should lead to comparable complex formation of 2.2 with MeCO2
– 

and therefore the breakdown of a gel of 2.2. This is the case with 2.2 and is particularly 

evident when the tuning of gel strength is characterised using rheology (Figure 2.35). 

Compound 2.1a forms gels in MeCN that can be easily “dissolved” with addition of 0.1 

equivalents of TBA+ MeCO2
–. In comparison, 2.2 forms a gel in MeCN that requires a 
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much larger concentration of anion to dissolve. One equivalent of TBA+ MeCO2
– is 

required to fully dissolve the gel. This indicates that the binding strength between the 

host gel forming compound and the anion is not the only determining point in allowing 

the breakdown of these gels. The solubility of both the gel compound and the gel 

compound and anion complex, and the way in which the equilibrium between the 

solvated components and solid gel matrix is affected by these solubilities, plays a vital 

role in the anion tuning of these gels.  
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Figure 2.35. Rheological study of the tuning of gels of 2.2 using the addition of anion in the form 

of TBA+ MeCO2
–. Time sweep measurements were performed on gels of 2.2 at 0.1% by weight in 

MeCN with varied amounts of TBA+ MeCO2
– added. G represented as dark filled symbols and G 

as light filled symbols.  symbols are for the pure gel,  symbols are for 0.05 equivalents of 

TBA+ MeCO2
– added,  symbols are for 0.2 equivalents of TBA+ MeCO2

– added and ○ symbols 

are for 0. 5 equivalents of TBA+ MeCO2
– added. 

 

 The rheological characterisation of the tuning of 2.2 by addition of TBA+ MeCO2
– 

reveals how the strengths of the gels, as represented by G values measured over the 
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setting time of the gel, are decreased with increasing amounts of TBA+ MeCO2
– added 

(Figure 2.35). The frequency sweep characterisations of the gels show how they are true 

gels. This is shown by the G value being an order of magnitude larger than G and by 

the fact that over the frequency range measured the G and G values are constant (Figure 

2.36). The weakening of the gels by the addition of the TBA+ MeCO2
– is also represented 

by the decrease in the “yield stress” of the gels as can be seen in Figure 2.37.  
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Figure 2.36. Rheological study of the tuning of gels of 2.2 using the addition of anion in the form 

of TBA+ MeCO2
–. Frequency sweep measurements were performed on gels of 2.2 at 0.1% by 

weight in MeCN with varied amounts of TBA+ MeCO2
– added. G represented as dark filled 

symbols and G as light filled symbols.  symbols are for the pure gel,  symbols are for 0.05 

equivalents of TBA+ MeCO2
– added,  symbols are for 0.2 equivalents of TBA+ MeCO2

– added 

and ○ symbols are for 0. 5 equivalents of TBA+ MeCO2
– added. 

 

 In summary compound 2.2 gels a large variety of solvents and has low CGCs in 

most solvents (it can be characterised as a supergelator).89 Although it forms weaker gels 

than compound 2.1a (as shown by the rheology results) it shows similar gel qualities, one 

of them being the ability to have its rheological characteristics tuned using anion binding. 
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The fluorescence of the naphthyl group allows us to interpret structural details of the gel 

that cannot be seen using compound 2.1a. The change in the fluorescence signal indicates 

that there is J-aggregation of the naphthyl groups within the gel fibres. 

 

 

 

Figure 2.37. Rheological study of the tuning of gels of 2.2 using the addition of anion in the form 

of TBA+ MeCO2
–. Stress sweep measurements were performed on gels of 2.2 at 0.1% by weight 

in MeCN with varied amounts of TBA+ MeCO2
– added. G represented as dark filled symbols and 

G as light filled symbols.  symbols (blue guide line) are for the pure gel,  symbols (green 

guide line) are for 0.05 equivalents of TBA+ MeCO2
– added,  (red guide line) symbols are for 

0.2 equivalents of TBA+ MeCO2
– added and ○ symbols (purple guide line) are for 0. 5 equivalents 

of TBA+ MeCO2
– added. The “yield stress”, as represented by the swapping of the G being larger 

than G, decreases with increasing equivalents of anion added (shown with an arrow). “Yield 

stress” values are estimated to be where the eye-guiding colour lines (linear plot between two 

points) intersect. 
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2.5 Anion Binding Study – 2-(3-{2-[3-((1S)-1-Methoxycarbonyl-2-methyl-propyl)-

ureido]-ethyl}-ureido)-(1S)-3-methyl-butyric acid methyl ester 

 

OO

N

O

N

N

O

N

O

O

HH

HH

2.3  

2-(3-{2-[3-((1S)-1-Methoxycarbonyl-2-methyl-propyl)-ureido]-ethyl}-ureido)-(1S)-3-

methyl-butyric acid methyl ester, 2.3, was synthesised from the reaction of methyl (S)-2-

isocyanato-3-methylbutyrate with ethylene diamine. Compound 2.3 is soluble in most 

solvents and therefore did not form gels in any solvents tested. An anion binding study of 

compound 2.3 in CHCl3 was performed to fully understand how the bisurea chiral 

compounds interact with different anions. Table 2.3 shows the resultant binding constants 

determined for compound 2.3 using the program HypNMR. MeCO2
– is bound most 

strongly by 2.3 with a much higher binding constant for the 1:1 (Host:Guest) complex 

compared to the other anions studied (the order is  MeCO2
– > NO3

– > Cl– > Br– > 

CF3SO3
–).  

 

Table 2.3. β values (Host:Guest) determined for the anion binding by 2.3 in CHCl3. 

 

Anion log β11  log β21 log β12 

CF3SO3
– 0.84(3) n/a n/a 

Br– 1.52(4) 2.85(8) 2.63(4) 

Cl– 2.78(8) 5.42(10) 4.05(10) 

NO3
– 2.82(3) 4.70(13) 4.08(3) 

MeCO2
– 4.40(2) 6.75(5) 5.92(5) 

 

 This selectivity can be explained by the fact that urea groups are well-known to 

bind strongly to carboxylates through R )8(2
2  hydrogen bonds and that the binding pocket 
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shaped by the two urea groups of 2.3 probably matches the size of MeCO2
– well. 

Additionally, MeCO2
– is the most basic of the anions used. The relative size of the 

pocket, and therefore the presence of selectivity, is also shown by the slightly stronger 

binding of the NO3
– compared to the Cl–. The low binding constants for the 1:2 

complexes indicates that both urea groups are possibly involved in the binding of the 1:1 

complexes and that it is unfavourable to have an anion per urea group binding mode. The 

binding constants for the 2:1 complexes are interesting in that the Cl– and Br– complexes 

have comparably (to the related 1:1 complex value) higher binding constants than those 

of the other complexes. This pattern may be due to the size of the anions. The NO3
– and 

MeCO2
– are likely to be too large and poorly shaped to receive the hydrogen bonds from 

two molecules of 2.3 whereas the Cl– and Br– are ideally shaped.90  

 The crystal structure of 2.3 was determined (Figure 2.38). Due to the steric 

bulkiness of the isopropyl and ester groups the urea tape motifs associated with the 

bisurea compounds studied so far in this report are slightly distorted (Figure 2.39). As the 

with the crystal structure of 2.1a, the R )6(1
2  urea tape motifs are present and are anti-

parallel.52 N4 forms an intra-molecularly hydrogen bond to O5 of the methylcarboxylate 

group (N4–H4N···O5 2.690(4) Å) showing how the orientation of the isopropyl groups 

and methylcarboxylate groups are very different on the two ends of 2.3. This is partially 

the reason for the distorted urea hydrogen bonding. Similarly to compound 2.1a the short 

chain results in a “kink” with the two terminal C–N–C–C torsional angles of ca. 80o. 

Unlike 2.1a, the bisurea molecules are not hydrogen bonded together one on top of each 

other in a translation stacked one dimensional column. Each molecule of 2.3 hydrogen 

bonds to four different molecules via the donor and acceptor functionalities of the urea 

groups and the urea tapes are anti-parallel. This pattern results in a zigzag two-

dimensional layer of molecules forming a two-dimensional hydrogen bonded sheet 

(Figure 2.40). Interdigitation of the two-dimensional layers and van der Waals 

interactions are the only interaction between the layers (Figure 2.41).  
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Figure 2.38. Molecular structure of 2.3. Note how the urea groups are in an anti-parallel 

orientation. Atoms are shown at 50% probability ellipsoids. 

 

 

 

Figure 2.39. The urea tape motif of 2.3 in which each molecule is hydrogen bonded to four other 

molecules. C-H hydrogen atoms are omitted for clarity. Selected hydrogen bond distances: N1–

H1N···O4 = 2.793(4) Å, N2–H2N···O4 = 3.056(4) Å, N3–H3N···O3 = 2.973(4) Å and N4–

H4N···O3 2.933(3) Å 
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Figure 2.40. The two dimensional hydrogen bonded layer of the molecules of 2.3. Structure 

viewed looking down [100]. C-H hydrogen atoms are omitted for clarity.  

 

 

 

Figure 2.41. The overall packing of 2.3 as viewed looking down [100]. C-H hydrogen atoms are 

omitted for clarity. 

 

 In summary, compound 2.3 binds anions in a direct manner via the urea groups in 

a one host to one guest as well as a two guests to one host stoichiometry. There is 

indication that in the case of the spherical anions Cl– and Br– that there is enhanced 

binding of an anion by two hosts through a capsule-like assembly. The single crystal 

structure reveals that there is an anti-parallel arrangement for the urea tapes. However, 

the packing of the neighbouring molecules is not through translational stacking alone. 

Rather, rotational stacking is found which results in a two-dimensional hydrogen bonded 
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sheet instead of a one-dimensional hydrogen bonded column. Combined with high 

solubility in most solvents and this alternating hydrogen bonding pattern, compound 2.3 

does not form gels. 

 

2.6 Crystal growth within LMWGs 

 

Gel media have been utilised for over a century for controlling the growth of inorganic, 

organic and macromolecular crystals.91-103 The improved physical characteristics (optical 

quality, improved size and fewer defects) and preferential crystallization of the more 

thermally stable polymorph of the gel-grown crystals over solution-grown crystals is 

usually ascribed to the suppression of convection currents, sedimentation and nucleation 

afforded by the viscous gel milieu.94,95 It is generally accepted that the gel does not exert 

large mechanical forces on the growing crystal but there has been a recent increase in the 

understanding of the influence of chemical interactions between the gel and the 

molecules of the growing crystals.96 Interestingly, LMWGs have not been reported as 

being used as the gel medium for crystal growth to date, despite the fact that Sangeetha 

and Maitra have stated in their 2005 review,15 ‘Supramolecular gels may be used as 

media for crystal growth’; Hamilton stated at the end of his paper of 2000 that ‘we are 

currently investigating the use of these hydrogels to control the reactions and crystal 

growth within the matrix’;8 and Weiss has stated referring to LMWGs, ‘They may allow 

novel morphs and specific sizes or shapes of crystals to be grown from the liquid 

component (i.e. crystal engineering)’.104 In this section, crystal growth within gels of 

compounds 2.1a and 2.2 is investigated with specific focus on the recovery of the grown 

crystals using the anion initiated degradation of the gel. 

 Three compounds were chosen for crystal growth within LMW gels. They were 

1,3-bis(m-nitrophenyl)urea (NPU), carbamazepine (CBZ) and aspirin (ASP). All these 

compounds have been crystallised before and show polymorphism. 1,3-Bis(m-

nitrophenyl)urea has similar functional groups to the two gelators 2.1a and 2.2.105 

Carbamazepine is a well studied drug compound that shows excellent crystallinity and 

polymorphism and with its hydrophobic and hydrophilic functional groups it also should 

interact well with the gelators.106-111 Aspirin was also chosen as a drug compound which 
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shows very little change in its structural crystallography in terms of polymorphism (there 

are two possible polymorphs) and habit growth.112-116  

 

2.6.1 Aspirin 

 

OHO

O

O

Asp  

 

Aspirin (Asp) is a very well studied compound.112-116 There are two known polymorphs. 

In the gel crystallisations, 2 ml gel with 100 mg of Asp at 0.3% by weight gelator in 

MeCN, crystallisation was found to have occurred after one week (Figure 3.42). Asp was 

found to crystallise in the most common form in all five experiments but of most interest 

is the manner of crystallisation. An equally concentrated solution of Asp in MeCN was 

found not to crystallise even when it is prepared at the same time and cooled at the same 

rate and subjected to sonication. This indicates that gel can be used to induce 

crystallisation by providing nuclei for crystal growth initiation.  

 

 

 

Figure 2.42. Photograph of the Asp crystals grown from a 0.3% by weight gel of 2.1a in MeCN 

through a microscope at x40 magnification. Note the visible gel fibres that have been broken by 

smearing some of the gel that contains the crystals on a microscope.  
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2.6.2 1,3-Bis(m-nitrophenyl)urea 
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NPU  

 Three concomitant polymorphs of NPU were originally reported in 1899 and 

summarised by Groth a few years later.105,117,118 More recently both Etter and Bernstein 

have studied this compound.105,119,120 Bernstein in particularly showed that there are three 

polymorphs, designated as α, β and δ, and a hydrate which is more than likely the form 

designated as γ in the 1899 and Groth papers (Table 2.4).105 Even though these studies 

have revealed a lot about the chemical crystallography of this compound it appears that 

there is no reliable means to obtain all of the pure states, i.e. control the crystallisation of 

a particular form. Slurry methods and fast cooling from a supersaturated acetic acid 

solution were found to be effective at producing pure β form but no other means were 

found to produce the other phases or the hydrate. For this reason this compound seemed 

well suited for testing crystallisation with LMWG based gel media.  

 

Table 2.4 Crystal forms of NPU. 

 

 

Form 

Space Group Habit Form Stability Pure Crystallisation 

Method 

α Monoclinic 

P21/c 

Yellow 

Prisms 

3 No means 

β Monoclinic  

C2 

White 

Needle 

1 Acetic acid slurry 

δ Monoclinic 

P21/c 

White 

Needle 

2 No means 

γ 

(Hydrate) 

Monoclinic  

C2 

Yellow 

Plates  

n/a No means 
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 Crystallisation from MeCN, EtOAc, CHCl3 and MeOH:H2O gels resulted in no 

control over crystal form. Often the yellow prism α form was found at the air/gel 

interface and the white needle β form within the gel matrix in CHCl3, EtOAc and MeCN 

cases (characterisation of the form was done by determining the unit cells of several 

single crystals picked from the samples and visual characterisation by colour and 

morphology). Interestingly in the case of EtOAc the crystallisation from pure solvent in 

the absence of gel produced β form with plate morphology and from the gel a β needle 

morphology.96,99,121 The hydrate form was mostly found in the case of the MeOH:H2O 

gels but white needle, β form, crystals were also isolated. Testing the recovery of the 

crystals by adding anions to the gels resulted, unfortunately, in dissolution of not just the 

gel but also the crystals in the cases of gels in MeCN, EtOAc and CHCl3. The gels and 

crystals of NPU in MeOH:H2O were unaffected by the addition of anions. NPU interacts 

with anions, as highlighted by the β11 = 3.67(10) for MeCO2
– in MeCN determined using 

the technique of NMR titration and the program HypNMR, 56,57 and the host:anion 

species was more soluble in the solvents used therefore leading to the rapid dissolution of 

any crystalline material.  

 

2.6.3 Carbamazepine 

 

N

O NH2

CBZ  

 Carbamazepine serves as a model compound for many groups engaged in the 

study of crystal polymorphism.106,107,109-111,122 For this reason CBZ seemed ideal to test 

against crystallisation within our gels. CBZ, an anticonvulsant, crystallises in four known 

anhydrous, solventless forms (although the trigonal form could contain some solvent). 

Recently a fourth form was discovered that is grown by using polymer heteronuclei to 

induce the growth of this polymorph.107,108 Table 2.5 below shows the relevant details of 
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the different forms.  

 

Table 2.5. CBZ polymorph characteristics 

 

 

Form 

Space Group Habit Form Stability Crystallisation 

Method 

I Triclinic  

P 1  

Needle 2 Melt 

II Trigonal  

R 3  

Needle 4 Rapid cooling (5 oC) 

from EtOH 

III Monoclinic 

P21/c 

Equant 1 Slow cooling (25 oC) 

from EtOH 

IV Monoclinic 

C2c 

Prism 3 Polymer induced 

heteronucleation in 

MeOH 

 

 Crystallisations were attempted in CHCl3, MeOH:H2O, EtOAc, (CH3)2CO and 

Tol:MeCN (9:1) gels. No gels of 2.1a or 2.2 could be formed in CHCl3 as CBZ retarded 

gel formation highlighting that there is interaction between the two compounds. The 

other solutions formed gels and crystallisation occurred (Table 2.6). The crystals were 

recovered, when crystallisation had occurred, by the addition of anions, namely adding at 

least five equivalents of TBA+ MeCO2
– to dissolve the gel. This allows for the recovery 

of crystals without the use of mechanical separation, except in the case of the MeOH:H2O 

gels where addition of anions does not lead to break down of the gel, due to solvation of 

the anion. Acetone gels containing 50 mg of CBZ were found to contain crystals after a 

couple of weeks whereas parallel experiments in pure solvent did not. This is likely to be 

due to the large number of heteronuclei present within a gel sample compared to a 

solution based sample. Even though there are a large number of heteronuclei it is 

interesting to note that in most cases only a single large crystal was found to have grown 

within a gel sample. These large single crystals were found to be the acetone solvate form 

of CBZ. These crystals give a good example of the ease of recovery of the crystals by 
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digestion of the gel using the addition of anions (Figure 3.43). The acetone crystallisation 

of CBZ in gels shows how the gel can induce crystallisation at lower concentrations than 

the level required for pure solvent crystallisation. 

 

 

 

Figure 2.43. Pictures showing the result of crystallisation of CBZ from the gel state from acetone 

as a solvent resulting in a large single crystal of the acetone solvate of CBZ and its isolation from 

the gel by using the reversibility of the LMW gel. a) A photograph under UV irradiation of the vial 

containing the gel to highlight the crystal from the gel as the crystal was luminescent and the gel 

was not. b) The large single crystal forms within the gel which stays intact when anion in the form 

of TBA+ MeCO2
– was added to dissolve the gel to form a clear solution. c) The crystal was then 

easily separated for use. 

 

 Crystallisation of CBZ in MeOH:H2O (8:2) gels of 2.1a and 2.2 at 0.1% by 

weight containing 50mg of CBZ, and crystallisation from solvent without gel at the same 

concentration of CBZ, were found to give identical results. Crystals mechanically 

separated from the MeOH:H2O gels were found to be the monohydrate form of CBZ and 

were similar in size and shape to those from the pure solvent crystallisation.111,122 

Crystallisation from EtOAc gels of 2.1a and 2.2, 0.1% by weight and 50 mg CBZ, 

resulted in the isolation of CBZ in form III. In the pure solvent crystallisations it was 

found that mixtures of block-shaped form III and needle-shaped form II formed when 

identical concentrations and cooling, compared to the gel crystallisations, were used. This 

is an example of how gel crystallisation can result in the more thermally stable 
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polymorph being formed.92,99 Although crystallisation from EtOAc often resulted in form 

III, if the cooling was rapid, form II was formed, as was often seen in these examples at 

the cooling rate and concentrations employed experimentally. Greater control of the habit 

and size of the crystals formed was found when utilising gels of a Tol and MeCN 

mixture. From a solvent crystallisation it was often found that the crystals were mostly of 

form III with occasional crystallisation of needles of form II. In the gel crystallisation, the 

more thermodynamically stable form III was found to crystallise in all cases. Some of the 

crystals showed different morphologies to the normal equant shape and were elongated 

block shaped.96,99,121 It was found that these crystals were twinned explaining their 

different morphology.123,124  

 

Table 2.6. Gel crystallisation results for CBZ in gels of compound 2.1a and 2.2. 

 

Gel solventa Crystal forms in 

pure solventb 

Crystal forms from 

gelb 

Habit from gel 

compared to solvent 

MeOH:H2O
c Dihydrate Dihydrate Identical 

Ethyl Acetate II leading to III over 

time 

III Same equant shape 

but larger in size 

Acetone No crystalsd Acetone solvate n/a 

CHCl3 n/a No gel formation n/a 

Tol:MeCN III with some II III (some crystals 

are twinned) 

Same equant shape 

but larger in sizee 

 

[a] gels are at 0.1% by weight and 2 ml in volume. [b] Crystallisation was performed in a sealed 

12 ml glass vial. Crystallisation performed at the same concentration, heating and cooling rates 

for samples of gel and pure solvent. Small variations were expected between the different 

solvents. [c] Crystals not retrieved by dissolving the gel with anions. [d] Crystallisation of the 

acetone solvate structure occured upon further super-saturation either by concentrating by 

evaporation or addition of more CBZ [e] Twinned crystal was different in habit, an elongated block 

shape. 

 

 In summary it was found that the crystallisation within gels formed from LMWGs 
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could influence the crystallisation results of the three compounds studied. More 

importantly because of the ease with which LMWGs were be tuned, allowing for the 

recovery of the grown crystals by chemical decomposition of the gel fibres and without 

use of mechanical force (other than filtration), grown crystals were retrieved by simply 

dissolving the gels using the addition of anions. Of the three compounds tested using this 

crystallisation method, CBZ and Asp showed signs of enhanced crystallisation within the 

gel state. This is probably due to the high number of heteronuclei present within a LMW 

gel, which is not necessarily seen in the case of other forms of gels.94,95 Interestingly, the 

opposite effect was also clear. In cases where prevention of convection currents and rapid 

nucleation by the formation of the gel were seen, fewer crystals grew in comparison to 

when a pure solvent mixture was used and found to be super-saturated upon which rapid 

crystallisations occurred.94,95 Crystallisation from these LMWGs gels often led to the 

thermodynamically more stable polymorph being isolated from the gel state where 

commonly from pure solvents often both thermodynamic and kinetic forms are found. 

 

2.7 Drug release from LMWGs 

 

Gels are a well recognised means of controlling drug release.125-131 LMWGs are now 

becoming an important medium for the release of drugs as they can represent a means of 

controlling the interaction of the drug with the gel and the controlled release of the drug, 

as most LMWGs can be tuned by external stimuli.16-27 The fact that compound 2.1a can 

form very stable hydrogels (albeit with a small amount of polar organic solvent present) 

and that the gels have been shown to be tuneable by the addition of anions, it was decided 

that this LMWG could act as media for controlled drug release. 

 Ibuprofen (IBU, as its sodium salt) was chosen as the model drug to be studied in 

the release studies from these gels. A gel of 1 ml in EtOH:H2O, at a ratio of 3:7 at 0.3% 

by weight gelator and containing 10 mg of IBU was chosen as the ethanol represents a 

non-hazardous solvent (unlike DMSO and MeOH) and this gel is easily moved from the 

gel preparation vial into a cuvette for UV spectroscopic experiments. Once in the cuvette, 

a 3 ml layer of water was introduced into which the IBU could diffuse. Below in Figure 

3.44 is shown a typical result in which the characteristic IBU UV spectra is seen 
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increasing in intensity.  

 

 

 

Figure 2.44. Release of ibuprofen (10 mg) from a gel of 2.1a at 0.5% by weight 7:3 

H2O:EtOH into pure water over time. 

 

 According to the Beer Lambert Law (A = εcl) the concentration of a compound 

within a solution can be determined using its absorbance value and an extinction 

coefficient (ε) for the compound at a particular wavelength and path length. Using the 

literature value of  256.5 M-1 cm-1 at  = 273 nm, for IBU, which was confirmed 

experimentally using the instrument utilised herein, the concentration increase from the 

release of IBU from the gel over time can be followed.132 Simplifying the experiment by 

just following the absorbance at this specific wavelength over time gave results as shown 

in Figure 3.45, therefore allowing for the easy identification of the amount of drug 

released. From this data the concentration of the solution can be determined as 0.0113 M. 

This reveals that at equilibrium the concentration of the solution above the gel was less 

than that would be expected from the dilution of the 1 ml solution to 4 ml (it is 

approximately a third less, 0.0329 M) showing that there was a significant amount of 

drug compound retained within the gel.  

 



 130

 

 

Figure 2.45. IBU release (30 mg in sample gel) over time from a 0.3% gel of 2.1a in EtOH:H2O 

3:7 into pure water followed using UV spectroscopy.  

 

 By normalising the concentration level (α) to represent the  amount released from 

the beginning of the experiment to the end point at equilibrium as 0 to 1, this allows the 

kinetics of the system to be probed. Doing this for the above data reveals that no known 

kinetic model for diffusion fits it. Within the literature25,129,133 on drug release from gels 

(polymer, biological and LMWG) the release has been found to follow the one-

dimensional law of c  kt1/2. Using the initial 2 hours of data however produces a very 

good fit to this kinetic model (Figure 3.46).  

 A local Avrami plot is a means of determining whether or not more than one 

mechanism is involved in a process.134 If one process is involved a consistent straight line 

is revealed. In the case of two or more processes a plot will tend to have a change in 

direction or curve. Plotting the above data showed a deviation in the slope indicating a 

two or more process for the release of IBU from these gels (Figure 3.47). The change in 

solvent mixture (water mixing with 3:7 EtOH:H2O gel solvent) may account for the 

above results on the rate.  
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Figure 2.46. The initial release of IBU from the gel appears to follow the one-dimensional 

diffusion law c  kt1/2 (Abscissa is t1/2 and ordinate is the normalised concentration). However, 

after approximately two hours the rate has greatly slowed down and a second mechanism was 

evident. 

 

 

 

Figure 2.47. Local Avrami plot of the kinetics of drug release (IBU) from a gel of 2.1a at 0.3% by 

weight of EtOH:H2O 3:7 mixture into pure water. Note how the initial negative slope is linear but 

then deviates once approximately 0.45 α of the drug has been released compared to the 

equilibrium level of drug release. This shows a second mechanism of diffusion is occurring during 

the release of IBU from the gel. 
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 The aim of this study was to investigate the effects of anions on the LMW gels. It 

has been shown that anions have no effects on hydrogels of 2.1a. Nevertheless, the 

anions could have an effect on the interactions between the drug compounds and the gel 

matrix. The addition of anions in the form of TBA+ MeCO2
– and NaCl was found to have 

no effect on the release of IBU. In additional to the anion study, the effect of pH of the 

solvents was investigated. As seen in Figure 3.48 the release of IBU from the gel was 

unaffected by a change to basic pH, however, the change to an acidic pH induced a 

reduction in the amount released. Although acidification does have an effect on the gel in 

that it slows the formation, it does not weaken the gel or affect it when viewed after it has 

formed by rheological studies. This means that the acidic conditions are affecting the way 

in which the IBU is interacting with the gel and/or released from the gel matrix. An 

obvious cause is the protonation of IBU from an anion to its neutral form. This neutral 

form will interact more strongly with the hydrophobic gel fibres in the water based media 

resulting in a drop in its release. Another cause is the solubility of the neutral form which 

is much reduced compared to the salt form of IBU (at high concentrations a change in pH 

results in precipitation of IBU from the solution). 

 

 
 

Figure 2.48. The effect to pH on the release of IBU (10 mg in sample of gel) from a 0.3% gel of 

2.1a in EtOH:H2O 3:7 into water. The black points are the release into pure water, the dark grey 

points are the release into basic, pH 10, water and the light points are the release into acidic, pH 

2, water.  
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 In summary IBU release from hydrogels of 2.1a is controlled, with the release of 

the drug taking several hours to diffuse out of the gel and to reach equilibrium. The 

equilibrium point indicates that a substantial amount of IBU is retained within the gel 

matrix indicating there is a strong interaction between the drug compound and the gel 

matrix. Kinetic studies of the drug release diffusion rates indicate that initial 2 hours does 

follow the one-dimensional diffusion law c  kt1/2 as seen in other controlled drug release 

experiments.25,129,133 However, there is evidence that there is a second mechanism 

involved that is more pronounced as the release approaches equilibrium as shown by 

inspecting the kinetics of the system by plotting a local Avrami graph. Unfortunately, the 

addition of anions in the form of NaCl or TBA+ MeCO2
– did not affect the drug release. 

The change in pH revealed no change in the IBU release except when the pH was 

lowered. The change in solubility of IBU at low pH accounts for the change in release 

from the gel. The gel matrix may act as means to control the release of the drug as at low 

pH the solid IBU was retained within the gel solid where at neutral or higher pHs the 

drug was released in a controlled manner.  

 

2.8 Conclusion 

 

 The chiral bisureas 2.1 and 2.2 show good gelation abilities and their gelation 

ability can be tuned using the addition of anions. Compound 2.1a gels a wide variety of 

solvents forming organogels and mixtures of water forming hydrogels. The structural 

bonding through urea-urea tapes, as revealed by the crystallographic determination of the 

single crystal form, represents the unidirectional driving force for the growth of the 

fibrous structures that constitute the gel. As revealed by the electron microscopy studies 

of the gel the drying of samples can lead to crystallisation in some cases with a fibrous 

microstructure of a gel shown when crystallisation has not occurred. This microstructural 

determination of the gel was confirmed by the rheological study in which the cellular 

solid model matches with the experimental results therefore connecting theory and 

experimental results. The anion tuning shows how other than just fully breaking down a 

gel to a solution, anions can be used to tune the rheological characteristics of the gel. The 

rheological characteristics that are tuned by the addition of anions, which show a 
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decrease in their value with increasing amounts of anion added, include the Tgel, shear 

value and G parameters.  

 The alternation of the urea tapes from antiparallel to parallel upon changing the 

alkyl chain length within the heart of the compounds 2.1a-g caused an alternation in the 

gelation ability. Single crystal x-ray determination of the structures of some of these 

compounds (2.1a,c,d and f) reveals the antiparallel and parallel relationship with the 

length of the alkyl chain. An even numbered chain length, which gave the antiparallel 

urea tapes, results in gelation and an odd numbered chain length, which gave the parallel 

urea tapes, results in no gelation character. While alternation effects are known in gels, 

the alternation between gelation and complete lack of gelator behaviour has not been 

observed previously.58-63 

 Compound 2 showed very similar gelation abilities to compound 2.1a. Compound 

2.2 forms weaker gels (as shown by the rheological measurements) than 2.1a, however it 

did gel at lower CGC in all the solvents investigated allowing for its classification as a 

super gelator.89 The fibrous structure shown by scanning electron spectroscopy 

demonstrates helical twisting, although the chirality of the compound is not evidenced in 

these helical twists. The fluorescence of the naphthyl group shows that stacking of the 

compounds within the gel follows a J-aggregation mode. Similarly to 2.1a, compound 2.2 

can have its rheological characteristics tuned by the addition of anions. 

 Compound 2.3 did not gel due to high solubility and different packing within the 

solid state. Compound 2.3 forms the antiparallel urea tape motif, as seen in compounds 

2.1 when the spacer is even, but did not form it through translation stacking as revealed 

by single crystal x-ray diffraction. Rather it formed through rotational stacking resulting 

in a two-dimensional hydrogen bonded sheet instead of a one-dimensional hydrogen 

bonded column. Anion binding by this compound showed how the anions interact with 

the urea groups with the more basic anions being bound more strongly. There was also 

evidence of a capsule-like binding assembly with two hosts to one anion formed with the 

stronger binding in this mode seen for the spherical anions. 

 Gels formed from LMWGs were found to influence the crystallisation results of 

the three compounds studied. More importantly because of the ease with which LMWGs 

can be tuned, allowing for the recovery of the grown crystals without use of mechanical 
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force, grown crystals were retrieved by simply dissolving the gels using the addition of 

anions. The three compounds tested with this crystallisation method all showed signs of 

enhanced crystallisation within the gel state. This is probably due to the high number of 

heteronuclei present within a LMW gel which is not necessarily seen in the case of other 

forms of gels.94,95 Interestingly the opposite effect was also clear, due to the prevention of 

convection currents and rapid nucleation by the formation of the gel, resulting in the 

growth of fewer crystals within a gel sample compared to when a pure solvent mixture 

was found to be super-saturated and rapid crystallisation occurred.94,95 Polymorphic 

crystallisation from these LMWG gels often led to the thermodynamically more stable 

polymorph being isolated from the gel state where commonly from pure solvents often 

both thermodynamic and kinetic forms are found. 

 Ibuprofen release from hydrogels of 2.1a is controlled with the release of the drug 

taking several hours to diffuse out of the gel to reach equilibrium. The equilibrium point 

indicates that a substantial amount of IBU is retained within the gel matrix indicating 

there is a strong interaction between the drug compound and the gel matrix. Kinetic 

studies of the drug release indicate that initial drug release does follow the one-

dimensional diffusion law c  kt1/2 as seen in other controlled drug release 

experiments.25,129,133 However, there is evidence that there is a second mechanism 

involved that is more pronounced as the release approaches equilibrium as shown by 

inspecting the kinetics of the system by plotting an local Avrami graph. Unfortunately, 

the addition of anions in the form of NaCl or TBA+ MeCO2
– did not affect the drug 

release. The change in pH revealed no change in the IBU release except when the pH was 

lowered. The change in solubility of IBU at low pH accounts for the change in release 

from the gel. 

 In general it was found that chiral bisureas could gel a large variety of solvents 

and within most of these solvents, anion tuning of the rheological characteristics of the 

gels could be obtained. This may lead to application of these gels and this property as 

shown by the use of the LMW gels a growth medium for crystallisation and the ease of 

recovery for the grown crystals by the anion induced reversibility of gel formation. 
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Chapter 3 

 

Gelation and coordination chemistry of Pyrazole derived 

compounds 

 

3.1 Aims 

 

The main aims for this research were to investigate the coordination chemistry of metals 

and anions of a set of pyrazole derived compounds in order to characterise the ligands’ 

metal and anion coordination modes, and hence design new pyrazole-based LWMGs. 

Additional studies on pyrazolate coordination chemistry were undertaken in collaboration 

with Prof. Peter Junk at Monash University, Australia. The pyrazole group, a five 

membered heteroaromatic ring with two adjacent nitrogen atoms, has been studied 

extensively, particularly in metal coordination chemistry.1-7 The derivatisation of the 

pyrazole group has led to many important ligand classes, particularly the “scorpionate” 

ligands.2-6,8-13 Simple pyrazoles have the ability to coordinate to metals through the Lewis 

basic pyrazolyl N-donor group and coordinate via hydrogen bonds to anions through the 

Lewis acidic pyrrolic N–H group. This has led to studies in the co-coordination of cations 

and anions by pyrazole ligands. Anion binding by these kinds of coordination complexes 

includes work particularly by Halcrow and Pérez.12-19 The use of pyrazoles within 

LMWGs has been limited, with the work of Aida, with a trinuclear Au(I) pyrazolate 

complex, being one of the more recognisable examples.20 Far greater use has been made 

of pyridyl moieties as an N-donor group in metal and anion tunable LMWGs.21-37 The 

work presented here complements these pyridyl examples with the use of the pyrazole 

group and is aimed at producing LWMGs that can be tuned using anions. The addition of 

urea functionality to the pyrazole will aid the search for a LWMG that can be tuned using 

anions as the anion binding capabilities of the urea group are well understood,38,39 and the 

gel properties of compounds that contain urea groups have also been extensively 

studied.40-44 Initial studies on simple urea derivatised pyrazole compounds were 

performed to understand the coordination chemistry of these compounds with both anions 
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and metals in the hope of producing a LMWG. The LWMGs that formed were tested for 

their anion tunability.45,46 

 

3.2 Synthesis of Pyrazole Ureas 

 

The following results describe the synthesis of the target urea and thiourea pyrazole 

derivatives. All the compounds synthesised were tested for gelation ability in the solvents 

H2O, CHCl3, Acetone, MeCN, MeOH, EtOH, Hexane, Toluene and DMSO. The 

synthesis of urea-functionalised pyrazole derivatives was first attempted by reacting 3-

amino-5-methylpyrazole with isocyanates and isothiocyanates. There are three possible 

reaction products for the addition of an isocyanate to 3-amino-5-methylpyrazole. These 

products involve either reaction at the primary amino group to form a urea, or the 

reaction on either of the ring nitrogen positions to give a carboxamide (or carboxylic acid 

amide) (Scheme 3.1).7,47,48 The large majority of the literature on this type of reaction 

between an amino-pyrazole and an isocyanate suggests that the carboxamide derivatives 

are the most common products.7,47,49 However, as shown by Graubaum and others, 

temperature plays an important role in determining which of the three possible products 

is obtained.47,50 Indeed even heating the products can lead to the conversion from one 

isomer to another, with the urea often being the most stable product.47,50  
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Scheme 3.1 Possible products from the reaction of 3-amino-5-methylpyrazole with an isocyanate 

to give, from left to right, desired urea, 2-carboxamide, 1-carboxamide. 
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 Reaction of 3-amino-5-methylpyrazole with 1,4-diisocyanatobutane and p-tolyl 

isocyanate in refluxing CHCl3 resulted in the two carboxamide products 3.1 and 3.2, in 

agreement with previous work on related compounds.47-49 The X-ray crystal structures of 

3.1 (both in pure form and as a chloroform solvate) and 3.2 confirm the carboxamide has 

indeed been formed and that the addition of the isocyanate to form the carboxamide has 

occurred on the nitrogen atom next to the primary amine group (Figure 3.1). Attempting 

to convert the carboxamides to ureas using the protocol described by Graubaum, where 

heating of the carboxamide under an inert atmosphere resulted in the isolation of the urea 

form,47 only resulted in mixtures of products. These mixtures of products could not be 

satisfactorily separated to give the urea in high yield and purity. Neither compound 3.1 

nor 3.2 were found to form gels. Crystalline materials were produced from solution. The 

determination of the crystal structures of 3.1 as the pure compound and as a CHCl3 

solvate, as well as the structure of 3.2 revealed that intra-molecular hydrogen bonding 

plays a role in the behaviour of these compounds (Figure 3.1). Formation of 1D hydrogen 

bond chains by amide and urea groups has been recognised as a structural directing motif 

in LMWGs.40,51,52 The presence of the carboxamide group within compounds 3.1 and 3.2 

did not lead to 1D chains of hydrogen bonds. The intra-molecular hydrogen bonding 

between N–H of the amide group and the Lewis basic pyrazolyl N-donor group of the 

pyrazole moiety, and the amine group and the carbonyl group of the amide group within 

the three structures determined for 3.1 and 3.2 prevents the formation of the amide 

hydrogen bond chains. The conjugation between the amide group and the pyrazole aids 

planarisation of the pyrazole and amide groups orientating the hydrogen bonding groups 

in such a way to allow the formation of the intra-molecular hydrogen bonds. 
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Figure 3.1. Molecular structures of 3.1 and 3.2. a) Compound 3.2. b) Compound 3.2 chloroform 

solvate. c) Compound 3.1. Atoms are shown as ellipsoids at 50% probability. Selected hydrogen 

bonds: 3.2 N3···O1 = 2.736(2) Å;  N3–H3B···O1 = 126.4o, N4···N1 = 2.681(2) Å;  N4–H4···N1 

= 107.5o, 3.22CHCl3 N3···O1 = 2.743(3) Å;  N3–H3A···O1 = 126.0o, N4···N1 = 2.667(3) Å;  

N4–H4···N1 = 108.3o, 3.1 N3···O1 = 2.768(2) Å;  N3–H3A···O1 = 126.1o and N4···N1 = 

2.627(2) Å;  N4–H4···N1 = 111.7o. 
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 Reaction of t-butyl isothiocyanate with 3-amino-5-methylpyrazole in refluxing 

CHCl3 gave compound 3.3 in good yield. All analytical data, including the single crystal 

x-ray structure determinations, indicate that the isothiocyanate reacted at the 3-amino 

position giving a thiourea as desired. Reactions between aminopyrazoles and 

isothiocyanates reported in the literature all appear to produce a thiourea except in one 

case.7,48,53-55 In this one case, where carbothioamides were produced, the reactions were 

performed at room temperature in acetone whereas in the other examples the reactions 

were performed in a refluxing solvent.54 This result shows that the temperature and 

solvent of the reaction play important roles in determining the product of the reaction 

between a thioisocyanate and an aminopyrazole. 47 

 Compound 3.3 was not found to form gels. The crystal structures of 3.3 are of 

interest when it comes to the interpretation of the anion and metal coordination properties 

of the urea pyrazole compounds and their potential for gel formation. Compound 3.3 was 

crystallised from MeCN (Figure 3.2). The structure shows how there is an intra-

molecular hydrogen bond between the NH group next to the t-butyl group and the Lewis 

basic pyrazolyl N-donor group. This results in the thiourea group being in an anti 

conformation (Figure 3.2a). The rest of the thiourea group, not involved in the intra-

molecular hydrogen bond, hydrogen bonds in a R )8(2
2  motif resulting in a dimer of 3.3 

(Figure 3.2b). These dimers pack in a herringbone-like motif (Figure 3.2c) with the Lewis 

acidic pyrrolic N–H group interacting with the neighbouring dimers through a hydrogen 

bond to the sulfur resulting in a 3D hydrogen bonded lattice. The conformation of 3.3 

with the intra-molecular hydrogen bond and dimer formation is the same as that seen for 

a wide variety of 2-pyridylthiourea compounds.56-67 The second crystallographically 

determined structure of 3.3 is of a CHCl3 clathrate from the crystallisation of 3.3 in 

CHCl3. The molecular structures of the two 3.3 molecules of the ASU (Figure 3.3a) of 

this structure are identical to that of the previous structure, with the intra-molecular 

hydrogen bond and the anti conformation of the thiourea both being present.  
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Figure 3.2. The crystal structure of 3.3. a) Molecular structure of 3.3. Atoms are shown as 

ellipsoids at 50% probability. b) Dimer formation through the hydrogen bonding of the thiourea 

groups. c) Herringbone-like packing of the dimers. Hydrogen bonds from the N–H of the pyrazole 

to the S1 are shown as dashed red lines. Hydrogen bonds between dimers shown as dashed 

yellow lines. Selected hydrogen bonds: N4···N2 = 2.687(2) Å;  N4–H4N···N2 = 140.6o, N3···S1i 

= 3.345(1) Å;  N3–H3N···S1i = 148.3o and N1···S1ii = 3.285(2) Å;  N1–H1N···S1ii = 152.4o (i = 

2-x, 1-y, -z and ii = x-½, ½-y, z-½). 
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Figure 3.3. a) ASU of 3.3.CHCl3. Atoms are shown as ellipsoids at 50% probability. b) Packing of 

the dimers of 3.3 to form a 2D hydrogen bonded sheet. Hydrogen bonds between dimers are 

shown as yellow dashed lines. Hydrogen bonds involving the pyrazole N–H group are shown as 

red dashed lines. c) Packing of these sheets one on top of each other results in channels. d) 

These channels are occupied by the CHCl3. Selected hydrogen bonds: N4···N2 = 2.684(3) Å;  

N4–H4N···N2 = 141.1o, N8···N6 = 2.703(3) Å;  N8–H8N···N6 = 140.7o, N3···S1i = 3.367(2) Å;  

N3–H3N···S1i = 162.0o, N7···S2ii = 3.328(2) Å;  N7–H7N···S2ii = 162.1o, N1···S1ii = 3.296(2) Å; 

 N1–H1N···S1ii = 169.5o and N5···S2ii = 3.346(2) Å;  N5–H5N···S2ii = 166.3o (i = -x, 1-y, 1-z, ii 

= 1-x, 1-y, 1-z). 
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 The dimer formation, through the R )8(2
2  hydrogen bond motif interaction 

between the urea functionalities, is also present in the 3.3·CHCl3 structure. Once again 

these dimers interact through the Lewis acidic pyrrolic N–H group. Unlike the previous 

structure where this hydrogen bonding led to a 3D packing arrangement of edge-to-face 

dimer packing the solvate structure has 2D hydrogen bonded sheets with the same edge-

to-face packing of dimers (Figure 3.3b). These sheets pack one on top of each other 

forming tubular channels that contain the chloroform guests (Figure 3.3c–d). 
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Scheme 3.2 Possible reaction products from the reaction of 3-amino-5-methylpyrazole with       

di-tert-butylpyrocarbonate, the BOC-protection reaction. 

 

 As a result of the reaction between 3-amino-5-methylpyrazole and isocyanates 

leading to carboxamide compounds 3.1 and 3.2, an alternative method was used to obtain 

the desired pyrazole ureas. tert-Butyloxycarbonyl (BOC) protection is a very well known 

method in chemical synthesis and protection of the pyrazole group has indeed been used 

to synthesis pyrazole amides and ureas of 3-amino-5-methylpyrazole and other 

aminopyrazoles.68-75 The reaction of one equivalent of di-tert-butylpyrocarbonate with 

one equivalent of 3-amino-5-R–pyrazole (where R = H, methyl or phenyl) in CHCl3 at 

room temperature gave compounds 3.4, 3.5 and 3.6 in yields of 69%, 96% and 96%, 

respectively (Scheme 3.2 and Figure 3.4).  
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Figure 3.4. Molecular structures of 3.4, 3.5 and 3.6. a) BOC protected 3-amino-5-methylpyrazole, 

3.5. b) BOC protected 3-aminopyrazole, 3.4. c) BOC protected 3-amino-5-phenylpyrazole, 3.6. 

Selected hydrogen bonds: 3.5 N3···O1 = 2.7812(16) Å;  N3–H3N···O1 = 119.8o, 3.4 N3···O1 = 

2.735(2) Å;  N3–H3N···O1 = 128.1o and 3.6 N3···O2 = 2.6918(11) Å;  N3–H3N···O2 = 121.6o. 

Atoms are shown as ellipsoids at 50% probability. 
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 The analytical and spectroscopic data, along with the crystallographically 

determined molecular structures (Figure 3.4), showed that “protection” of the nitrogen 

position next to the amine had occurred. These results agree with the reported literature 

results for similar reactions.70,75 There is an intra-molecular hydrogen bond between the 

amine group and the BOC group within each of the structures of 3.4, 3.5 and 3.6. The 

hydrogen bond is to the carbonyl group of the BOC group in the structures of 3.4 and 3.5 

and to the ether oxygen of the BOC group in the structure of 3.6. This BOC protection of 

the Lewis acidic pyrrolic N–H group leaves the amino group available for further 

derivatisation.  
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Scheme 3.3 Reaction products, 3.7, 3.8 and 3.9, of the pyrazole urea synthesis by reacting 3.5 

with three different isocyanates. 

 

 Derivatisation of the free amine group of 3.5 by reaction with the isocyanates     

1-napthylisocyanate, p-tolylisocyanate, m-nitrophenylisocyanate in refluxing CHCl3 gave 

the BOC-protected urea derivatised pyrazoles 3.7, 3.8 and 3.9, respectively, in relatively 
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high yields (Scheme 3.3). Compounds 3.7, 3.8 and 3.9 did not form gels. The crystal 

structure determined for 3.8 shows how the BOC-protecting group has remained on the 

same position on the pyrazole and the amine has been derivatised to a urea (Figure 3.5). 

This Z = 2 structure (two of the same molecules in the ASU)76 shows how 3.8 has intra-

molecular hydrogen bonds between the urea NH next to the pyrazole to the carbonyl of 

the BOC moiety (similar to what is seen in compound 3.5) and the other NH of the urea 

group hydrogen bonds the Lewis basic pyrazolyl N-donor group of neighbouring 

molecules. This hydrogen bonding results in helical columns (Figure 3.6). 

 

 

 

Figure 3.5. The two molecular structures of the two molecules of the ASU of the crystal structure 

of 3.8. Atoms are shown as ellipsoids at 50% probability. Selected hydrogen bonds: N3···O2 = 

2.7338(18) Å;  N3–H3N···O2 = 120.5o and N7···O5 = 2.7049(17) Å;  N7–H7N···O5 = 125.9o. 
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Figure 3.6. a) Simplified diagram showing the donor and acceptor groups. b) Helix formed by 3.8. 

Selected hydrogen bonds: N4···N5 = 3.0243(19) Å;  N4–H4N···N2 = 173.0o and N8···N1i = 

2.9437(19) Å;  N8–H8N···N1i = 150.1o (i = -x, y, -z). 

 

 BOC deprotection of 3.9 by refluxing in acetic acid overnight yielded compound 

3.10. The crystal structure of compound 3.10 was determined (Scheme 3.4 and Figure 

3.7). The structure exhibits an intra-molecular hydrogen bond between N4 and N2 within 

the ASU of 3.10 which results in an anti conformation for the urea group. This is similar 

to the conformation found for the structures of thiourea-containing compound 3.3. A few 

2-pyridylureas and 2-pyrrolyleurea derivatives show similar behaviour, namely forming 

an intra-molecular hydrogen bond and causing the urea to be in an anti conformation.77-80 

The rest of the urea group that is not involved in the intra-molecular hydrogen bond 

forms a dimer with the neighbouring molecule via a R )8(2
2  hydrogen bond motif, similar 

to the structures of 3.3 and related compounds.56-67,77-80 These dimers form a 1D 

hydrogen bonded chain with N1–H1···O3 hydrogen bond between the pyrazole and nitro 

groups (Figure 3.8). These flat chains stack one on top of each other resulting in 2D 
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stacks (stack distance 3.3 Å). These stacks run perpendicular to each other (Figure 3.9). 

This stacking is possible due to the flatness of 3.10, RMS value of 0.0694 Å.81 
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Scheme 3.4 The synthetic route to the synthesis of 3.10 from 3-amino-5-methylpyrazole via a 

BOC-protection of the pyrazole ring. 

 

 

 

Figure 3.7. Molecular structure of 3.10. Atoms are shown as ellipsoids at 50% probability. 

Selected hydrogen bond: N4···N2 = 2.6651(17) Å;  N4–H4N···N2 = 139.4o.  
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Figure 3.8. Hydrogen bonding of the dimers of 3.10 to form a hydrogen bond chain. Selected 

hydrogen bonds: N3···O1i = 2.8153(15) Å;  N3–H3N···O1i = 166.3o  and N1···O3ii = 2.9703(16) 

Å;  N1–H1N···O3ii = 171.1o (i = -x, 1-y, -z and ii = 1-x, -y-1, -z) 

 

 

 

Figure 3.9. Perpendicular inter-chain packing of 3.10. 

 

 As the synthesis of the carboxamides from reaction of the aminopyrazole with an 

isocyanate results in an unreacted primary amine group, we attempted to react 3-amino-5-

methylpyrazole with two equivalents of p-tolyl isocyanate in refluxing CHCl3 in order to 

derivatise both primary and ring nitrogen atoms. This would give a compound with both 

amide and urea groups. There are two possible isomers that can be produced in this 

reaction (Scheme 3.5). The reaction was performed overnight in refluxing CHCl3. The 1H 

NMR spectrum of the crude product showed that both isomers, 3.11a and 3.11b, are 

produced as there are two resonances for every proton type. The existence of the two 

isomers was confirmed by the observation of two spots by thin layer chromatography 
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(TLC) with ethyl acetate as the solvent. 
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Scheme 3.5 The two possible isomers from the reaction of two equivalents of p-tolylisocyanate 

with 3-amino-5-methylpyrazole. 3.11a 1-carboxamide-3-urea isomer and 3.11b 2-carboxamide-3-

urea isomer. 

 

 Recrystallisation of the mixtures of products from hot CHCl3 resulted in the 

isolation of compound 3.11a, and therefore separation of the isomers. Compound 3.11a 

was found not to form gels. The structure of this crystalline material from CHCl3, 3.11a 

polymorph I, was determined (Figure 3.10). In this structure the urea is in an anti 

conformation resulting from a hydrogen bond to the Lewis basic pyrazolyl N-donor 

group of the pyrazole from the N4–H4N.77-80 The carboxamide N5–H5N group also 

forms intra-molecular hydrogen bonds to the same Lewis basic pyrazolyl N-donor group. 

The rest of the urea group forms a dimer motif through a R )8(2
2  hydrogen bond motif 

(Figure 3.11).56-67,77-80 There are only weak C–H···O interactions with the carbonyl of the 

carboxamide group leading to a 1D chain of these V-shaped molecules. Subsequent 

packing by van der Waals space filling completes the structural description. This 

structure shows how even though there is already a hydrogen bond to the Lewis basic 

pyrazolyl N-donor group that the urea has a propensity to go into an anti conformation 

and hydrogen bond to the N-donor group of the pyrazole. 
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Figure 3.10. Molecular structure of 3.11a in form I. Atoms are shown as ellipsoids at 50% 

probability. Selected hydrogen bonds: N4···N2 = 2.7328(18) Å;  N4–H4N···N2 = 139.0o and 

N5···N2 = 2.6153(17) Å;  N5–H5N···N2 = 112.7o. 

 

 

 

Figure 3.11. Dimer formation by 3.11a in form I. Selected hydrogen bonds: N3···O1i = 2.7859(16) 

Å;  N3–H3N···O1i = 166.0o (i = -x, y, -z). 
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 Interestingly, when 3.11a was crystallised from the more polar solvent MeOH a 

conformational polymorph,82 form II, was found (Figure 3.12). Polymorphism is an 

important phenomenon, especially in pharmaceutical compounds.83-85 The 

conformational differences of compound 3.11a in these two forms involves the syn and 

anti isomers of the urea group. In the structure of form II the urea group is in a syn 

conformation (Figure 3.12) and as a result only the N–H group of the carboxamide group 

hydrogen bonds to the Lewis basic pyrazolyl N-donor group of the pyrazole which has 

similar bond lengths and angles to that in form I. This leaves the urea group to form a 

urea tape motif with a hydrogen bond of R )6(1
2  (Figure 3.13).86 The resultant V-shaped 

columns interact weakly through C–H···O hydrogen bonding of the carbonyl group of the 

carboxamide moiety to give 2D layers that stack next to each other through filling of 

space in an anti-parallel fashion. This conformation change due to recrystallisation from a 

more polar solvent demonstrates how even though the urea or thiourea group on these 

urea and thiourea functionalised pyrazoles has a strong propensity to form an anti 

conformation and an intra-molecular hydrogen bond, it can be induced to form a syn 

conformation.77,80 

 

 

 

Figure 3.12. Molecular structure of 3.11a in form II. Atoms are shown as ellipsoids at 50% 

probability. Selected hydrogen bond: N5···N2 = 2.660(12) Å;  N4–H4N···N2 = 112.0o. 
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Figure 3.13. Formation of a urea tape by 3.11a, form II. Selected hydrogen bonds: N3···O1i = 

2.902(11) Å;  N3–H3N···O1i = 151.3o and N4···O1i = 2.822(11) Å;  N4–H4N···O1i = 156.5o (i = 

x-1, y, z). 

 

 In summary, it was found that synthesis of urea and thiourea derivatised pyrazoles 

was not as straightforward as it at first appeared, i.e. reacting the isocyanate or 

isothiocyanate with the aminopyrazole did not always lead to a urea or thiourea. The 

reaction of t-butyl isothiocyanate with 3-amino-5-methylpyrazole in refluxing CHCl3 was 

performed, and in agreement with literature results, the derived thiourea compound 3.3 

was isolated.7,48,53-55 The reaction of isocyanates with 3-amino-5-methylpyrazole results 

in the formation of carboxamides, compounds 3.1 and 3.2 being two examples.7,47,48 This 

problem was circumvented by BOC-protection of the pyrazole ring allowing for the urea 

functionalisation of the amine group to yield the desired urea functionalised pyrazole 

compounds. The reaction of two equivalents of p-tolyl isocyanate with 3-amino-5-

methylpyrazole yielded a mixture of isomeric products. Compound 3.11a, isolated by 

crystallisation from hot CHCl3, showed conformational polymorphism due to the 

transition from anti to syn conformations of the urea group. The propensity of the 

thiourea and urea groups of compounds 3.3 and 3.10, respectively, to form an intra-

molecular hydrogen bond and therefore be in an anti conformation will be an obstacle 

that needs to be circumvented to allow for the urea and thiourea groups to interact with 

themselves and/or anions in the study of any gel formation and subsequent anion tuning 
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of any gels. The following sections that follow are, therefore, studies to determine ways 

of breaking the inter-molecular hydrogen bond, to allow for anion interaction and gel 

formation. 

 

3.3 Metal coordination chemistry of urea functionalised ligands 

 

Urea-derivatised pyrazoles have not been studied as ligands for transition metals,48 

although Kraatz has studied the coordination chemistry of related amide-derivatised 

pyrazoles.68,72 We have undertaken the reaction of urea pyrazole ligands 3.10 and 3.11 

with a range of transition metal salts in order to obtain insight into possible assembly and 

anion interaction modes that may be found within gels. While a number of single crystals 

were obtained that give interesting structural details, no gels were formed and no pure 

compounds were isolated in large quantities, and hence, no claim is made that the 

structures presented herein are representative of the bulk material. However, the 

structural results do represent useful information into the coordination modes of the urea-

derivatised pyrazoles. 

 The first row transition metals, Ag(I) and Cd(II) were used in the coordination 

experiments because of their softness. On this basis we expected them to coordinate to 

the pyrazole ligand, as seen in the studies of Halcrow and Kraatz.14-17,48,68,72,87 There is an 

increasing interest in coordination metal-tuned LMWGs, especially those formed by the 

first row transition metals because of the interesting properties shown by these metals, 

such as their redox chemistry, spectroscopic properties, catalytic properties and 

magnetism, to name but a few.22 The studies of the transition metal complexes presented 

here, were driven by the need to better understand the coordination chemistry of the 

ligands. With this information in hand we hoped to be able to further tune the properties 

of LMW gels formed by utilising urea-derivatised pyrazoles. The reactions between 

ligand 3.10 and the first row transition metals often led to mixtures of precipitates, from 

which it was difficult to isolate pure compounds. In the case of Ag(I) salts with 3.10, 

sticky precipitates that resembled gels were formed but these were not crystalline nor 

gelatinous. In a few cases, with Zn(II), Cu(II) and Cd(II) salts, crystalline materials were 

isolated, and these are described in the following section. 
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 As a direct comparison with the anion-binding systems reported by Halcrow and 

co-workers,14-17,48,87 compound 3.10 was mixed in a MeOH solution with ZnCl2 in a 3:1 

ratio. The reaction yielded single crystals of formula [Zn2Cl2(-Cl)2(-N,O-3.10)2] which 

were characterised by single crystal x-ray diffraction (Figure 3.14). The dimetallic 

complex is made up of two ligands of 3.10 each coordinated to a different zinc(II) 

centres. Each zinc(II) ion also binds to one terminal and two bridging chloride ligands to 

give a chloride-bridged dimer involving five coordinate zinc centres in a distorted 

trigonal bipyramidal geometry. The ASU consists of half of the complex. Ligand 3.10 

acts a bidentate chelate forming a six-membered ring in which the Lewis basic pyrazolyl 

N-donor group, N2, in this case the nitrogen nearest the urea group of the pyrazole ring 

and the oxygen of the carbonyl group of the urea group, O1, coordinate to the zinc. The 

ligand is planar, rms deviation for all non–hydrogen atoms is 0.04 Å. The bidentate 

character precludes any chances of 3.10 forming a tripodal complex like that seen with 

the anion-binding systems of Halcrow and coworkers.14-17,48,87 The bidentate coordination 

of 3.10 is similar to the amide pyrazole complexes reported by Kraatz and to complexes 

of triazole amides.68,72,88,89 The bidentate coordination is also similar to that of the 

coordination complexes of 2-pyridylureas.78,90,91 

 The observed hydrogen bonding motifs are essential to the understanding of this 

ligand, its coordination complexes and the gelation possibilities of both. The Lewis acidic 

pyrrolic N1–H1 group intra-molecularly hydrogen bonds to the bridging chloride Cl2. 

The CH group C7–H7 also forms intra-molecular hydrogen bonds with the coordinated 

O1 and O2 of the nitro group helping to constrain ligand 3.10 into a planar conformation. 

The urea NH donor groups are free to hydrogen bond to the coordinated chlorides 

resulting in 1D stacks of [Zn2Cl2(-Cl)2(-N,O-3.10)2] (Figure 3.15a). The NH group 

(N4-H4) nearest the nitrophenyl group hydrogen bonds to the equatorial (non-bridging) 

chloride. The NH group (N3-H3) next to the pyrazole group hydrogen bonds to the 

bridging chloride. The Lewis acidic pyrrolic N1–H1 group interacts with neighbouring 

stacks by hydrogen bonding to the equatorial chloride Cl1ii (Figure 3.15b). 
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Figure 3.14. X-ray molecular structure of [Zn2Cl2(-Cl)2(-N,O-3.10)2] (50 % ellipsoids). Selected 

bond distances: Zn1···N2 = 2.013(5) Å, Zn1···O1 = 2.093(4) Å, Zn1···Cl2 = 2.5845(17) Å, 

Zn1···Cl1 = 2.2492(17) Å and Zn1···Cl2i = 2.3289(18) Å (i = -x, 2-y, -z). 

 

 
 

Figure 3.15. Hydrogen bonding of complexes [Zn2Cl2(-Cl)2(-N,O-3.10)2] into columns (a) which 

are stacked next to each other (b). Selected hydrogen bonds: N1···Cl2 = 3.126(4) Å;  N1–

H1···Cl2 = 120.7o, N1···Cl1ii = 3.314(4) Å;  N1–H1···Cl1ii = 128.3o, C7···O1 = 2.813(4) Å;  C7–

H7···O1 = 120.9o, C7···O2 = 2.705(4) Å;  C7–H7···O2 = 97.6o, N4···Cl1iii = 3.257(4) Å;  N4–

H4···Cl1iii = 152.3o and N3···Cl1iii = 3.292(4) Å;  N3–H3···Cl1iii = 146.1o (ii = -x, y, ½ - z and iii = 

x, y-1, z). 
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 Copper coordination compounds with pyridyl ureas have become an interesting 

class of LMWGs.21-37 The coordination chemistry of 3.10 with several copper salts was, 

therefore, investigated to elucidate the coordination chemistry of this metal to the urea-

derivatised pyrazole ligand. Reaction of 3.10 with copper (II) bromide in a 2:1 ratio in 

MeOH gave [CuBr(-N,O-3.10)2]Br2H2O (Figure 3.16).  

 

 

 

Figure 3.16. The ASU of [CuBr(-N,O-3.10)2]Br.2H2O showing the chelating coordination of 

compound 3.10 to copper and the hydrogen bonding to the anion by the urea group of 3.10. 

Atoms shown as ellipsoids at 50 % probability. Selected coordination bonds: Cu1···O1 = 2.034(2) 

Å; Cu1···O4 = 2.025(2) Å; Cu1···N2 = 1.923(2) Å; Cu1···N2 = 1.923(2) Å; Cu–Br 2.693(1) Å with 

angles of  N2–Cu1–N7 = 176.7(1)o and  O1–Cu1–O4 = 144.5(1)o. Selected hydrogen bonds: 

N8···Br2 = 3.370(2) Å;  N8–H8N···Br2 = 149.6o, N9···Br2 = 3.370(2) Å;  N9–H9N···Br2 = 

149.6o, O7W···Br2 = 3.481(2) Å;  O7W –H7W···Br2 = 165.6o, O8W···Br2 = 3.706(2) Å;  O8W 

–H8W ···Br2 = 154.7o, C7···O1 = 2.854(3) Å;  C7–H7···O1 = 119.8o, C7···O2 = 2.711(4) Å;  

C7–H7···O2 = 96.5o, C18···O4 = 2.984(3) Å;  C18–H18···O4 = 116.2o and C18···O5 = 2.721(3) 

Å;  C18–H18···O5 = 96.6o. 

 

 The two 3.10 ligands once again bind as bidentate chelates via the N and O atoms. 

The coordination sphere is completed by a bromide ligand to give a five coordinate 
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copper centre with a distorted trigonal bipyramidal geometry. The distortion from square 

pyramidal geometry is due to the steric bulkiness of the nitrophenyl groups and the 

hydrogen bonding of the Lewis acidic pyrrolic N–H groups not being intra-molecular. 

The distorted trigonal bipyramidal geometry of this complex is different to the reported 

copper complexes of the amide pyrazole, triazole amides and 2-pyridylureas, where 

either an octahedral or square pyramidal geometry has been seen.68,72,78,88-91 The two 

ligands adopt a mutually trans orientation with the oxygen and nitrogen coordinated 

opposite each other with the oxygen coordinated in the equatorial plane of the copper 

centre and the nitrogens in the axial positions. The trans coordination is similar to that 

seen with the complexes formed by amide pyrazole, triazole amides and 2-pyridylureas 

ligands.68,72,78,88-91 The 3.10 molecules within this complex are slightly less planar, with 

the RMS deviation from planarity being 0.141 Å and 0.120 Å.  

 Once again the hydrogen bonding is of interest in this structure, to give 

information on how the complexes interact with anions. The availability of six NH 

hydrogen bond donors within this complex results in an extensive hydrogen bonding 

network. The Lewis acidic pyrrolic N1–H1 group hydrogen bonds to the interstitial 

(secondary coordination sphere) bromide. The Lewis acidic pyrrolic group, N6–H6N, 

hydrogen bonds to one of the interstitial waters. Both urea groups hydrogen bond to 

bromides through R )6(1
2  hydrogen bonding motifs (Figure 3.16), one to the coordinated 

bromide and the other to the interstitial bromide. The interstitial bromide receives one 

hydrogen bond each from the two interstitial waters meaning it receives a total of five 

hydrogen bonds. The hydrogen bonding of the urea groups and the Lewis acidic pyrrolic 

N1–H1 group to the bromides leads to a ribbon of [CuBr(-N,O-3.10)2]Br with the 

planarity of 3.10 aiding the assembly (Figure 3.17). The interstitial waters hydrogen bond 

to each other and the coordinated bromide connecting the ribbons of [CuBr(-N,O-

3.10)2]Br together to complete the packing.  
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Figure 3.17. Extensive hydrogen bonding of [CuBr(-N,O-3.10)2]Br.2H2O. Selected hydrogen 

bonds: N1···Br2i = 3.370(2) Å;  N1–H1···Br2i = 149.6o, N6···O7Wii = 2.806(3) Å;  N6–H6N··· 

O7Wii = 152.2o, N3···Br1iii = 3.304(2) Å;  N3–H3N···Br1iii = 158.7o; N4···Br1iii = 3.371(2) Å;  

N4–H4N···Br1iii = 157.2o, O7W···O8Wiv = 2.885(4) Å;  O7W –H7W···O8Wiv = 164.9o and 

O8W···Br1v = 3.293(2) Å;  O8W –H8W···Br1v = 162.9o (i = 1-x, 1-y , -z; ii = 1-x, ½+y , ½-z; iii = -

x, 1-y , -z; iv = x, ½-y, z-½ and v = 1-x, y-½, ½-z). 

 

 The reaction of two equivalents of 3.10 with Cu(BF4)2 in MeOH results in the 

complex [Cu(-N,O-3.10)2(MeOH)2] 2BF4 being isolated as blue plate crystals (Figure 

3.18). Once again the ligand 3.10 is coordinated to the transition metal in a bidentate 

manner. The two ligands are coordinated trans to each other with the O and N opposite 

each other as seen in the structure of [CuBr(-N,O-3.10)2]Br2H2O and the complexes 

formed by amide pyrazole, triazole amides and 2-pyridylureas ligands.68,72,78,88-91 The 

MeOH is coordinated in the axial positions of a Jahn-Teller distorted octahedral copper 

centre. Unlike the two previous complexes in which ligand 3.10 is planar, the ligand 3.10 

within this structure is not planar. This is due to the two ligands coordinating to the metal 

in an ideal square planar manner resulting in steric hindrance between the nitrophenyl 

groups causing the non-planar character of the ligand. The Lewis acidic pyrrolic N1–H1 

group is hydrogen bonded to the coordinated oxygen of the carbonyl group of the urea 

functionality aiding the planarity of the coordination. 
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Figure 3.18. The complex of [Cu(-N,O-3.10)2(MeOH)2](BF4)2 showing the chelating coordination 

of compound 3.10 to copper and the hydrogen bonding to the anion by the urea group of 3.10. 

Atoms shown as ellipsoids at 50 % probability and labelled atoms represent the asymmetric unit. 

Selected bond distances: Cu1···N2 = 1.9209(15) and Cu1···O1 = 1.9706(11) Cu1···O4 = 

2.5243(13). Selected hydrogen bonds: N1···O1i = 2.898(2);  N1-H1N···O1i = 111.4o (i = -x, -y, -

z). 

 

 The N3–H3N group of the urea functionality hydrogen bonds to the MeOH while 

the other NH group of the urea, N4–H4N, hydrogen bonds to the BF4. The MeOH 

hydrogen bonds to the nitro group of a neighbouring complex. The nitrophenyl groups 

that twist out from the coordination centres are able to stack together indicative of π-π 

stacking, as shown in Figure 3.19. 
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Figure 3.19. Packing of [Cu(-N,O-3.10)2(MeOH)2](BF4)2. Selected hydrogen bonds: N3···O4ii = 

2.968(2);  N3-H3N···O4ii = 155.5o, N3···F4 = 2.802(2);  N3-H3N···F4 = 139.5o  and O4···O3iii 

= 2.868(2);  O4-H4···O3iii = 162.8o (ii = 1+x, y, z and iii = -x, -y, 1-z). 

 

 The coordination chemistry of compound 3.11a was also investigated. 

Crystallisation of Cu(MeCO2
–)2 and 3.11a in MeOH resulted in the isolation of crystals in 

which 3.11a has been deprotonated to give the compound [{Cu(--O,O,N,N-

3.11a)(MeOH)}6](MeCO2)66MeOH (Figure 3.20). The deprotonation occurred on the 

carboxamide nitrogen. This creates a cleft in which the copper is chelated by the 

tridentate 3.11a through bonds to the deprotonated N5, pyrazole Lewis basic pyrazolyl N-

donor group N2 and the oxygen of the carbonyl group of the urea moiety O1. There are, 

therefore, two chelate rings present from the coordination of the deprotonated 3.11a. 

They are a five-membered ring involving the deprotonated carboxamide and pyrazole (-

Cu1-N5-C13-N1-N2-) and a six-membered ring involving the carbonyl of the urea group 

and the same pyrazole (-Cu1-O1-C5-N3-C4-N2-). The tridentate coordination by the 

deprotonated 3.11a is similar to some Schiff base ligands and similar ligands used in the 

supramolecular assembly of multi-metal centred grids.92-108 The coordination geometry of 

the copper is that of a distorted trigonal bipyramidal. The fifth coordination is to the 

carbonyl oxygen (O2) of the carboxamide group of a neighbouring 3.11a. The urea NH 

groups hydrogen bond to the MeCO2
– through an R )8(2

2  hydrogen bond motif. Both of 
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the symmetry-independent methanol molecules are hydrogen bonding to the MeCO2
– 

(one to each of the MeCO2
– oxygen atoms) and in addition, one of the MeCO2

– is 

coordinated to the copper(II) centre.  

 

 

 

Figure 3.20. ASU of [{Cu(--O,O,N,N-3.11a)(MeOH)}6](MeCO2)6·6MeOH. Atoms are shown as 

ellipsoids at 30% probability. Selected bond lengths: N5···Cu1 = 2.001(4) Å, N2···Cu1 = 1.882(5) 

Å, O1···Cu1 = 2.004(3) Å, O6···Cu1 = 2.216(4) Å and O2i···Cu1 = 1.939(3) Å. Selected hydrogen 

bonds: N3···O3 = 2.730(6);  N3-H3N···O3 = 165.3o and N4···O4 = 2.765(6);  N4-H4N···O4 = 

169.9o, O5···O3 = 2.824(6);  O5-H5···O3 = 164.9o and O6···O4ii = 2.679(5);  O6-H6···O4ii = 

173.4o (i = 1+y, 1-x+y, -z and ii = 5/3-x, ⅓-y, ⅓-z). 

 

 The space group for this crystal structure is R 3 . The coordination of the 

neighbouring (Cu(--O,O,N,N-3.11a) through the carboxamide group continues in a 3  

symmetry pattern resulting in hexamer of formula [{Cu(--O,O,N,N-

3.11a)(MeOH)}6]
6+ (Figure 3.21).101 These hexamers have an acetate anion hydrogen 

bonded to each of the urea groups with the tolyl group alternating up and down on the 

outer rim of the hexamer. The tolyl group bound to the carboxamide group can be seen 

alternating up and down within the centre of the hexamer. The hexamers stack one on top 
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of each other resulting in columns that are packed into the hexagonal lattice, with the 

hydrogen bond between the coordinated MeOH and the MeCO2
– aiding the stacking 

assembly (Figure 3.22). When the crystals were dissolved in MeOH the mass spectra data 

indicated that the hexamer was not fully broken down as indicated by the 1574 m/z signal 

which had a half m/z pattern which corresponds to [{Cu(--O,O,N,N-

3.11a)(MeOH)}6]
6+ plus 6MeCO2

– and 2Na+. There were other peaks observed which are 

indicative of fragments of the [{Cu(--O,O,N,N-3.11a)(MeOH)}6]
6+ assembly. 

 

 

 

Figure 3.21. Hexamer ring of [{Cu(--O,O,N,N-3.11a)(MeOH)}6](MeCO2)6·6MeOH. Non-

coordinated MeOH has been removed for clarity. 
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Figure 3.22. Overall packing of stacks of [{Cu(--O,O,N,N-3.11a)(MeOH)}6]
6+. Hydrogens and 

hydrogen bonds are not shown for clarity. 

 

 A second coordination complex of compound 3.11a was obtained from 

crystallisation of 3.11a with Cd(MeCO2)2·6H2O from MeOH. Cadmium was chosen 

because it is slightly larger than copper, and, thus, its use should test the robustness of the 

hexamer unit to variations in metal ion size. Once again deprotonation of 3.11a occurred 

at the carboxamide group but with two of the ligands bound to the metal. The resultant 

complex mer-[Cd(-O,N,N-3.11a)2] was isolated in the crystalline form mer-[Cd(-

O,N,N-3.11a)2]2MeOHH2O with the crystal structure having the space group P21 

(Figure 3.23). The two deprotonated 3.11a ligands chelate to the cadmium through the 

same mode as seen in the copper structure forming the five-membered and six-membered 

rings. As the tridentate chelating deprotonated 3.11a is rigid and planar the coordination 

of two ligands around a metal centre results in the mer isomer, which has been isolated in 

this crystallisation.109,110 As mer-[Cd(-O,N,N-3.11a)2] is neutral the urea groups are free 

to hydrogen bond to the included solvent. The hydrogen bonding is in a cyclic motif, 

R )8(3
2 , to neighbouring complexes, with the methanol molecules and NH groups closest 

to the pyrazole substituent interacting with the carbonyl group of the deprotonated 3.11a 

and the other NH groups hydrogen bonding to the methanol. These interactions result in a 
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hydrogen bonded 2D layer of complexes (Figure 3.24). The disordered water molecule 

resides within the interstitial space created between the mismatching of 2D layers. 

 

 

 

Figure 3.23. Molecular structures of [mer-Cd(-O,N,N-3.11a)2]. Water and hydrogen atoms 

bound to carbon atoms are not shown for clarity. Atoms are shown as ellipsoids at 50% 

probability. Selected bond distances: Cd2···O1 = 2.393(9), Cd2···N2 = 2.234(7), Cd2···N5 = 

2.304(8); Cd2···O3 = 2.398(9), Cd2···N7 2.251(9) and Cd2···N10 = 2.312(8) 

 

 In summary, the coordination chemistry of the soft transition first row metals, 

silver and cadmium with ligands 3.10 and 3.11a were investigated to see whether metal 

ion coordination could induce gel formation. No gels were formed, but some crystalline 

complexes with zinc, copper and cadmium were isolated and investigated. The 

complexes of 3.10 show how the urea-derivatised pyrazole acts as a bidentate ligand with 

copper and zinc, coordinating through the carbonyl group of the urea (a hard donor) and 

the nitrogen in the 2 position on the pyrazole (a soft donor). The bidentate coordination is 

similar to that found for amide-derivatised pyrazole.68,72 The coordination to the metal 

ion results in the urea group going from the anti conformation seen in the crystal 

structure of 3.10 (section 3.2) to a syn conformation. The syn conformation suggests that 

the urea is free from intra-molecular hydrogen bonding and is able to interact with anions 
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and solvent. This, however, does not lead to gel formation as hoped, probably because of 

the coordination of the metal ion to the carbonyl group, preventing formation of the urea 

tape motif. Deprotonation of 3.11a and its coordination to copper and cadmium results in 

a chiral mer complex of cadmium (that exists as a spontaneous conglomerate) and a 

hexameric copper assembly. The larger cadmium cation allows for the coordination of 

two deprotonated 3.11a ligands around a distorted octahedral metal centre, whereas with 

the smaller copper cation, a distorted trigonal bipyramidal coordination arose and a 

cationic hexameric assemble was formed.  

 

 

 

Figure 3.24. Packing of mer-[Cd(-O,N,N-3.11a)2] through hydrogen bonds between the urea 

groups and included methanol resulting in interstitial spaces filled by disordered water, N4···O5 = 

2.892(13);  N4-H4N···O5 = 157.4o, N3···O2i = 2.850(10);  N3-H3N···O5i = 152.4o, O5···O2i = 

2.721(11);  O5-H5···O2i = 150.2o, N9···O6 = 2.729(14);  N9-H9N···O6 = 159.9o, N8···O4ii = 

2.821(10);  N8-H8N···O4ii = 150.5o and O6···O4ii = 2.729(11);  O6-H6···O4ii = 169.6o (i = -x, 

½-y, 1-z and ii = -x, y-½, 2-z). 

 

3.4 Redox Transmetallation/Ligand Exchange reactions* 

 

 The coordination chemistry of pyrazolate anions and pyrazole has become a 
                                                           
* Work performed by the author in the group of Prof. Peter Junk, Monash University, Melbourne, Australia 
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mainstay of inorganic chemistry.1-5,8,18,111-118 Prior to 1997, the coordination modes 

established for pyrazolate by crystallographic means consisted of just the simple μ-η1:η1, 

η1 and η2 modes.1,119 However, post-1997 the increase in the possible modes of 

coordination increased substantially to over twenty, resulting in such extreme cases as μ-

η1:η2:η1 (to K+) and η5 (to Ru2+).1,119-122 The synthesis of homoleptic pyrazolate 

complexes of both d-block, f-block and main group metals has also been 

achieved.119,123,124 In all these cases, there is significant competition between the 

formation of the homoleptic complex and complexes with coordinated solvent. 3,5-Di-t-

butylpyrazole (TBPH) is an archetypal ligand when it comes to the coordination 

chemistry of the pyrazolates.112,124,125 Due to its simplicity in structure and its lack of 

steric bulk it forms many types of complex with all known metal types.119,123,124 The 

homoleptic [Al(TBP)3] has been synthesised (Compound 3.12, a hexane solvate trigonal 

crystal structure was determined) using a metathesis method.119 In this study, we further 

investigate the prospective coordination chemistry of aluminium with this ligand and 

investigate the use of the redox transmetallation/ligand exchange reaction 126,127 as a 

means to produce novel aluminium complexes.128,129 

 

N
H

N

6TBPH

TBPH

+ +2Al(s) 3Hg(C6H5)2

2Al(TBP)3 + 6C6F5H + Hg

Solvent Hg

 
Scheme 3.6. Redox transmetallation ligand exchange reaction between Aluminium metal and 

3,5-t-butylpyrazole (TBPH) and dipentaflourophenylmercury. 
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 Carrying out the redox transmetallation/ligand exchange reaction shown in 

Scheme 3.6 using THF as the solvent resulted in a complex of formula 

[Al(TBP)3THF]·THF (3.13). The best yields of ca. 60% were achieved when the 

aluminium metal was cut into strips as small as possible. Elemental mercury was used as 

an activator and the reaction was performed in a sonic bath for between 48 and 72 hours. 

Crystals were formed over time after filtration and reducing the volume of the solution. 

Single crystal X-ray diffraction confirmed the formulation (Figure 3.25). Compound 3.13 

exhibits η2 coordination of the TBP ligand in the same way as in 3.12. However, the η1 

THF coordination distorts the metal environment resulting in one of the three TBP 

ligands becoming η1, N1···Al1 1.8770(18). Even though the other two TBP ligands are 

still η2 they are distorted with asymmetric Al–N binding; bond lengths N3···Al1 

1.8542(19)Å; N4···Al1 2.3894(19)Å; N5···Al1 1.8794(18)Å and N6···Al 2.0304(18)Å. 

Additionally the pyrazolate ring is distorted away from planarity with the coordination 

plane of the aluminium centre; interplanar angles between the plane of TBP and N1-N2-

Al1 6.07(17)o; N3-N4-Al1 17.06(14)o; N4-N5-Al1 25.49(14)o; calculated using MPLA 

function in SHELXL.81,130 The complex formed a solvate with THF.  

 

 
 

Figure 3.25. Ellipsoid plot of compound 3.13 showing the η2 and η1 coordination by TBP and THF 

to the aluminium centre. Hydrogen atoms and the interstitial THF have been removed for clarity. 

Ellipsoids are shown at 50% probability.  
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 In the trigonal crystal form found for the homoleptic compound, recrystallised 

from hexane, the complex has approximate D3h symmetry. The original metathesis was 

carried out in THF as well, but we now believe reduction of the solution to dryness under 

vacuum removed the THF from 3.13 to produce the homoleptic compound, which was 

recrystallised from hexane to give the reported trigonal structure. This is evidenced in the 

mass spectrum of a sample of 3.13 as no signal is seen for 3.13, but 3.12 is detected. The 

redox transmetallation/ligand exchange reaction, therefore, effectively works as a means 

to synthesise the desired products of ligated aluminium. 

 The solvent THF plays an important role in the formation of the above complex in 

terms of the formation of 3.13 and 3.12. We attempted to study the effect a change of 

solvent would have on the reaction product in terms of the coordination of solvent and 

rate of reaction. We chose to use 1,2-dimethylether (DME) in the hope that the bidentate 

coordinating ability of the solvent would reveal if it is possible for the aluminium 

coordination sphere to accommodate three pyrazolate ligands and two coordinated 

solvent oxygen atoms. The product isolated from the first crystallisation of this reaction 

has the formula [Al2(TBP)3(PFP)2(MG)]·DME (3.14) (Figure 3.26).  

 

 

 

Figure 3.26. Ellipsoid plot of compound 3.14 showing the ligation of aluminium by PFB, TBP and 

a methoxyglycol anion in a bimetallic complex. Hydrogen atoms and the interstitial DME have 

been removed for clarity. t-butyl groups on the TBP ligands have been removed for clarity and the 

disordered groups as well. Ellipsoids are shown at 30% probability. 
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 The complex is dinuclear and contains three different ligands; the desired 

pyrazolate anion, the precursor pentafluorophenyl ligand (PFP) and a methoxyglycol 

anion (MG) arising from the cleavage of DME. One of the three pyrazolate ligands and a 

methoxyglycol ligand bridge the two metal centres. The bridging pyrazolate ligand, -

η1:η1 binds to the two metals with bond lengths of Al1···N3 1.954(3)Å and Al2···N4 

1.949(3)Å and a torsion angle of  Al1·N3·N4·Al2 34.3(3)o. The five membered ring 

involving the bridged TBP and MG ligands -Al1-N3-N4-Al2-O1- is not a common motif 

(only three rings involving -Al-N-N-Al-O- were found in the CSD131 and all have 

pyrazolate ligands)132-134 and is not planar (RMS deviation from plane = 0.136 Å).130 The 

η2 pyrazolate ligands have bond lengths of Al1···N1 1.974(3)Å; Al1···N2 1.870(3)Å and 

Al2···N5 1.858(3)Å; Al2···N6 2.054(3)Å. These two ligands are coplanar with the Al/N 

coordination plane (interplanar angles of N1-N2-Al1 2.67(15)o and N5-N6-Al2 3.37(9)o 

The methoxyglycol is the product of the cleavage of the solvent DME and is relatively 

unusual, although well precedented.135-141 The bonds between the aluminium and the PFP 

ligands are Al1···C37 2.008(4)Å and Al2···C43 2.007(4)Å. This matches well with the 

average distance Al···C 1.997(52)Å for PFP to Al in the crystal structures observed and 

reported in the CSD.131 The serendipitous formation of compound 3.14 provides evidence 

that the redox transmetallation/ligand exchange reaction does indeed go through a metal 

PFP complex intermediate and not a mercurial TBP complex. Compound 3.14 represents 

a small percentage of the reaction products (ca. 23%). As well as 3.14, unreacted TBP 

(ca. 40%) and the homoleptic compound [Al(TBP)3] (3.12, ca. 37%) were found. 

 The second product, from the second crystallisation, obtained in the DME 

reaction is the homoleptic complex [Al(TBP)3] (3.12) which does not contain metal-

bound DME solvent. The formulation of the complex suggests that it may not be possible 

to cleave more than one Al–N bond (as in 3.13), even in the presence of a bidentate hard 

donor such as DME. The crystal structure reported previously of 3.12 is a hexane 

clathrate (or solvate, the solvent is present in channels and is incommensurate and 

therefore is not modelled in the reported structure) with a Z' value of 1 (Figure 

3.27a).76,142-145 However, in the new structure of 3.12 there is no solvent present, and the 

packing is compact (Figure 3.27b). The four crystallographically independent molecules 

found within this structure all show a similar approximate D3h symmetry to the hexane 
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structure of  3.12 (almost C3 symmetry due to the twisting of the planes of the pyrazolate 

ligands, this twisting is opposite on neighbouring columns (related by P 1  symmetry) in 

both structures of 3.12). One of the most noticeable differences between the two 

structures of 3.12 is the orientation of the two t-butyl groups on TBP in relation to each 

other. In the hexane structure of 3.12 the orientation is staggered, with a torsion angle of 

ca. 32.5o. In the new high Z' structure this is not always the case, of the twelve examples, 

two are eclipsed (torsion angles of ca. 1.2o and ca. 5.6o). The other ten staggered groups 

have torsion angles ranging from ca. 25o to ca. 52o. As recently described by Anderson et 

al.,142 the occurrence of high Z' crystalline structures of a compound in its pure state can 

be related to its ability to form host:guest complexes. The structures of 3.12 are a good 

example of a high Z' organometallic complex that forms a low Z' clathrate structure.  

 

 

 

Figure 3.27. a) Crystal packing in the homoleptic compound Al(TBP)3 channel structure of the 

hexane solvate of 3.12. b) High Z' structure (Z' = 4) of the homoleptic compound Al(TBP)3, 3.12.  

 

 In summary it has been shown that the redox transmetallation/ligand exchange 

reaction can be used to prepare Al complexes starting with simple “off the supermarket 

shelf” aluminium foil in reasonable yield. The ease of isolation of the pure product due to 

the production of volatile pentafluorobenzene and amalgamated Hg (with the excess 

metal reactant) is also advantageous. The complexes reported herein reveal the solvent 

ligand binding ability of the [Al(TBP)3] complex. THF can coordinate, but more 

sterically demanding solvents such as DME do not appear to be able to, even though they 

are potential chelators. The cleavage of DME by this reaction is also interesting and 
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provides us with evidence of the Al(PFP)n intermediate. The crystallisation of the 

homoleptic [Al(TBP)3] complex from DME reveals its interesting clathrate chemistry 

especially relating to its high Z' characteristics. Further experiments are underway to 

investigate the possibilities of using the redox transmetallation/ligand exchange reaction 

with other metals and other ligands with aluminium. 

 

3.5 Anion coordination chemistry of urea functionalised pyrazole ligands 

 

The ability of the NH group of the pyrazole functionality to bind to anions is a well 

recognised phenomenon that has been utilised by the groups of Halcrow and Pérez 

amongst others.12-19 However, in these cases, the pyrazole group has been pre-organised 

for anion binding by the coordination to a metal. In this study, titrations were performed 

to look at the anion binding properties of the pure urea functionalised pyrazoles to see 

whether the urea group can be induced to change from an anti conformation to a syn 

conformation through the binding of an anion.  

 As can been seen from the structures of 3.3 the thiourea group forms an intra-

molecular hydrogen bond and may not be available for hydrogen bonding to an anion. 
1H-NMR spectroscopic titrations were performed on 3.3 in CHCl3 with the anions Cl–, 

Br–, NO3
– and MeCO2

–, and the results were interpreted using the HYPNMR 

program.146,147 The resulting anion binding constants are presented in Table 3.1.  

 

Table 3.1. Binding constants for compound 3.3 with various anions in CDCl3 

 

Anion log β20
a log β11 log β21 

Cl– 1.11 2.07(3) 3.74(6) 

Br– 1.11 1.73(1) 2.53(1) 

NO3
– 1.11 1.93(5) 3.34(12) 

MeCO2
– 1.11(1) 2.03(5) 3.68(7) 

 

[a] Constant determined from MeCO2
– data and kept constant for the other anions (Other anion 

studies were found to give similar values).  
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 From the raw data it is immediately clear that one of the NH groups’ resonances 

shifts upfield a small amount ( = 0.3 ppm for MeCO2
–), one NH resonance shifts 

downfield a small amount after initially moving upfield ( = 0.25 ppm for MeCO2
–) and 

the last NH proton resonance shifts significantly upfield ( = 4.5 ppm for MeCO2
–) for 

all the anions studied. The resonance that shifts downfield is assigned to the pyrazole NH 

proton. The NH resonance that shifts upfield a little is the thiourea NH involved in the 

intra-molecular hydrogen bond as seen in the crystal structures, leaving the resonance 

that shifts the most as the other NH group of the thiourea. Interestingly, the data indicate 

that 3.3 forms a dimer, with β20 = 1.11(1). The ES– mass spectrometry results corroborate 

the dimer formation with the dimer minus a proton and the dimer plus a Cl– seen. The 

dimer formation through the R )8(2
2  hydrogen bond motif of the thiourea groups as seen 

in the two crystal structures of 3.3 also corroborates the dimer formation in solution. A 

concentration study to confirm this constant is not possible in CHCl3 due to the poor 

solubility of 3.3. The intra-molecular hydrogen bond, seen in the two crystal structures of 

3.3, appears to be still present in the titration experiments as there was little shift in the 

NH proton resonance peaks for two of the three NH proton resonance peaks. It is of 

interest to see that the order of strength of binding for the anions with the 1:1 complex is 

Cl– > MeCO2
– > NO3

– > Br–. MeCO2
– normally binds much more strongly to 

urea/thiourea groups due to the formation of an R )8(2
2  hydrogen bond, but with this 

compound, Cl– and MeCO2
– bind comparably. This can be explained by the formation of 

the intra-molecular bond which prevents the formation of the R )8(2
2  hydrogen bond 

motif. The 1:1 anion binding order is also observed in the β21 values for a two hosts to 

one guest binding ratio in which the Cl– binds better than MeCO2
–. The Job plot for 

MeCO2
– confirms the two hosts to one guest binding ratio (Figure 3.28). The structural 

determination of (3.3)(TBA+)(MeCO2
–)·H2O crystals grown from the evaporation of the 

CHCl3 solutions of 3.3 and TBA+ MeCO2
– shows a host:guest ratio of 1:1 and a binding 

mode that supports the mode of binding of the anion by 3.3 described above (Figure 

3.29). 

 The ASU of the anion host crystal consists of 3.3, TBA+, MeCO2
– and H2O. The 

intra-molecular hydrogen bond between the NH of the thiourea and the Lewis basic 
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pyrazolyl N-donor group is present as seen in the two other crystal structures of 3.3. The 

thiourea group has not gone from the anti conformation to the syn conformation by 

binding of the acetate anion. The free NH group of thiourea group is hydrogen bonded to 

the MeCO2
–. The water is then hydrogen bonded to the MeCO2

– and the sulfur of the 

thiourea resulting in a R )10(3
3  hydrogen bond motif. The pyrazole NH also binds to the 

MeCO2
– resulting in 1D chains of alternating left then right complexes of (3.3 MeCO2

– 

H2O)n (Figure 3.30a),. These chains stack next to each other forming an anionic layer 

(Figure 3.30a). These layers alternate with cationic layers of TBA+ (Figure 3.30b).  
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Figure 3.28. Job plot of binding by 3.3 with MeCO2
– showing the 2:1 host to guest ratio. Only the 

N3–H3N resonance which shows the maximum amount of shift during the titration is plotted for 

clarity.  

 

 In summary, anion binding by 3.3 does not appear to cause the breaking of the 

intra-molecular hydrogen bond between the thiourea group and the Lewis basic pyrazolyl 

N-donor group.148 The anion binding strengths are in the order Cl– > MeCO2
– > NO3

– > 

Br–. This indicates that the R )8(2
2  binding of MeCO2

– by ureas and thioureas which 
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results in stronger binding of MeCO2
– over Cl– is not present as Cl– is bound more 

strongly than MeCO2
–. This is confirmed by the elucidation of the structure of the 

host:guest complex between 3.3 and MeCO2
– in the crystal of           

(3.3)(TBA+)(MeCO2
–)·H2O. The structure shows the intra-molecular hydrogen bond still 

present. As anion addition did not result in the formation of gel, protonation was studied 

as a means to induce gel formation by compound 3.10. 

 

 

 

Figure 3.29. Molecular structure of (3.3)(TBA+)(MeCO2
–)·H2O with the TBA+ removed for clarity. 

Atoms are shown as ellipsoids at 50% probability. Selected hydrogen bonds: N4···N2 = 2.660(3) 

Å;  N4–H4N···N2 = 143.3o, N3···O1 = 2.856(3) Å;  N3–H3N···O1 = 143.3o, O3W···O2 = 

2.777(3) Å;  O3W–H3A···O2 = 163.5o and O3W···S1 = 3.315(3) Å;  N3–H3N···O1 = 175.1o. 
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Figure 3.30. Packing of (3.3)(TBA+)(MeCO2
–)·H2O. a) 1D hydrogen bonded stacking of 3.3 

hydrogen bonded to MeCO2
– and the H2O as viewed down [001]. b) Layer pattern of the packing 

with negatively charged layers of 3.3 MeCO2
– H2O (shown in capped stick representation) 

alternating with positively charged TBA+ layers (shown in space-filled representation). Selected 

hydrogen bond: N1···O2i = 2.687(3) Å;  N1–H1N···O2i = 175.1o (i = -x, y-½, ½-z). 
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3.6 Gelation by urea functionalised pyrazole ligands and their anion tuning 

 

3.6.1 Gel formation by compound 1-(3-methyl-1H-pyrazol-5-yl)-3-(3-

nitrophenyl)urea 

 

 

 

Figure 3.31. Photograph of the gels of compound 3.10 at 1% by weight in water acidified with, 

from left to right, H3PO4; H2SO4; HPF6 and HBF4. 

 

The urea-functionalised pyrazole compounds were investigated to find examples of 

LMWGs as simple organic compounds, metal complexes and/or salts. The investigations 

into metal complexes and pure compounds resulted in isolation of crystalline materials as 

shown in sections 3.1 to 3.5. Serendipitously, salt formation proved to be the means to 

produce LMWGs. More specifically, compound 3.10 was found to gel water in acidic 

conditions indicating that the protonated form, as part of a salt, can form hydrogels 

(Figure 3.31). The importance of pH and therefore the formation of a salt (acidity 

required to protonate the pyrazole group giving 3.10H+) is highlighted by the fact that 

3.10 precipitates/crystallises out of neutral water (and all organic solvents tested) in the 

crystalline form described in section 3.2. In basic conditions, pH > 10, 3.10 stays in 

solution presumably as a deprotonated 3.10 pyrazolate sodium salt. At very low pH, 

below 1, 3.10 was also found to not gel and instead stays in solution. It was found that 

3.10 forms hydrogels in the narrow pH range of 1 to 2. This makes compound 3.10 a 

hydrogel with pH tunable gelation ability.25,42,149-168 As well as being a pH tunable 

LMWG the ability of 3.10 to gelate water in this pH range allows for the study of the 
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influence of the anion species on gelation ability of this compound in water. Table 3.2 

shows the results of the systematic study of the gelation ability of 3.10 in acidified water 

using different inorganic acids to provide the anion variation. The pH of the solution was 

varied as well for each of the acids to find the optimum pH at which gels formed for the 

different anions. Gels were consistently formed when HBF4, HPF6, H2SO4 and H3PO4 

were used as acids (CGC for each of these acids and pH ranges resulting in gelation are 

shown in Table 3.2).  

 

Table 3.2. Conditions for gel formation for compound 3.10. 

 

Acid HBF4 HPF6 HCl HNO3 H3PO4 H2SO4 

pH range 1 – 2.0 1 – 1.7 n/a 1 – 2.5 1 – 2.1 1 – 2.0 

CGC 

(Weight %)a 

0.30 0.20 n/a n/a 0.11 0.12 

Appearance Opaque 

Cream 

Gel 

Opaque 

Cream 

Gel 

Light 

Cream 

Precipitate

Unstable 

Opaque 

Cream-

Yellow Gel 

Clear to 

Opaque 

Yellow 

Gel 

Clear to 

Opaque 

Yellow 

Gel 

 

[a] Weight percent in 1 ml of solvent that will hold a gel up upon upturning a vial of diameter of 1 

cm. 

 

 Water acidified with HCl containing 3.10 never gave a gel at any pH and 

concentration of 3.10. A light cream coloured precipitate always formed under acidic 

conditions. Water acidified with HNO3 could be gelled by 3.10, however, these gels were 

unstable. When 3.10 was dissolved in a small volume of conc. HNO3 (0.05 ml) and 

diluted by the addition of water (0.95 ml) a gel formed. However, this gel was unstable 

and formed a precipitate upon standing for a few minutes.169,170 The gel could be 

reformed by heating the sample until the precipitate dissolved followed by slow cooling 

on a bench (sonication resulted in the precipitate). However, within a few minutes the gel 

broke down again to a precipitate. Due to the precipitation of a solution of 3.10 in water 

acidified with HCl the addition of chloride salt to gels of the other acids was investigated 



184 
 

as a means to tune the gel with anions. Addition of NaCl as solid to gels of 3.10 in water 

acidified with H2SO4 or H3PO4 resulted in the gradual disintegration of the gel to a 

precipitate. The precipitation caused by the addition of Cl‒ provides the ability tune a gel 

of 3.10 (a salting out effect).152,162,168,171  

 

3.6.2 Gel formation with H2SO4 

 

 

 

Figure 3.32. Gels formed by compound 3.10 in water at pH 1.0 acidified with H2SO4. From left to 

right the concentrations are 1.3%, 0.6%, 0.15% and 0.1% by weight in 5 ml of solution. The 0.1% 

by weight solution only partially gels and therefore does not survive the inversion test. 

 

Hydrogels formed by compound 3.10 in water acidified with H2SO4 were found to be the 

most stable over time (Figure 3.32). Gel formation occured in the pH range of 1 – 2 and 

the CGC for 3.10 with this acid was 0.12% by weight. Sonication of samples resulted in 

more uniform gels.172 The behaviour of the gels when exposed to mechanical stress was 

investigated using rheology to understand the gels and their characteristics.173-178 The gels 

were characterised by stress sweep and frequency sweep rheometry. When a frequency 

sweep was performed with a small amplitude stress, with a number of different samples 

varying in concentration, the solid-like nature at 20 C was reflected in the storage 

modulus, G, being, typically, five times greater than the loss modulus, G, thus 

demonstrating the elastic behaviour of the systems (Figure 3.33).179 This viscoelastic 

behaviour is associated with classical gels, and therefore supports the notion that the 
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cooling of these samples from a solution to a solid-like material resulted in a true gel 

state. 
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Figure 3.33. Rheology of gelation by 3.10 showing a frequency sweep performed on a gel of 3.10 

at 0.1% by weight in water acidified with H2SO4 to a pH of 1.0. Typically the consistency of the G 

(Dark grey filled ) and G (Light grey filled ○) values over the frequency range indicates the 

solid-like nature of the gel material. The value of G was typically five times greater than the G 

value and constant with respect to the frequency demonstrating the elastic behaviour of the gel. 

The G and G axis is shown on a log scale. 

 

 The non-linear rheological response was investigated using stress sweep 

experiments, during which an oscillatory stress was imposed with a fixed frequency (1 

Hz) over a range of shear stress amplitudes. Example gels showed a typical response with 

the small decrease in G value, essentially constant, below the critical value of shear 

stress, the “yield stress”, whereupon the sample started to flow (Figure 3.34).  
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Figure 3.34. Rheology of the gelation by 3.10 showing a stress sweep on a gel of 3.10 at 0.1% 

by weight in water acidified with H2SO4 to a pH of 1.0. The stress sweep shows the rigidity and 

strength of the gel which breaks at a relatively high shear strength. G value (Dark grey filled  

with brown line) stays constant until the torque begins to become too strong and the struts start to 

break under the strain where upon G becomes less than G (Light grey filled  with green line). 

Lines are there to aid the eye. The G and G axis is shown on a log scale. 

 

 The effect of the concentration on the gel strength, in the form of G and “yield 

stress” values was also investigated using rheology. The two theoretical models put 

forward for the mechanical properties of gels180 that are pertinent to LMWGs are the 

colloidal gel description180,181 and the cellular solid model.173,180,182,183 A power law 

relationships between the strength of the gel of 3.10, in water acidified to pH 1 with 

H2SO4, and the concentration of 3.10 of G  [conc]2.2 (Figure 3.35) and “yield stress”  

[conc]1.5 (Figure 3.36) was found. This is in good agreement with the cellular solid model 

which is predicted to have a relationship of G  [conc]n and “yield stress”  [conc]n, 

where n can vary between 1 and 2.183 The cellular solid model describes an open-cell 

cellular material which consists of load bearing struts interconnected via crosslinks or 
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junction points which deform by bending. To confirm this model for the gel structure 

formed by 3.10 imaging techniques were utilized to try to determine the gel morphology. 

 

 

 

Figure 3.35. Study in the variation in G with change in concentration for gels of 3.10 in acidified 

water at pH 1.0 using H2SO4 (y = G (Pa) and x = concentration in mg in 5 ml). G  [conc]n 

relationship is confirmed with n = 2.2. Errors on data points, determined as standard deviations of 

ten measurements on a sample, are smaller than symbol size used. Both the G axis and 

concentration axis are shown on a log scale. 
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Figure 3.36. Study in the variation in “yield stress” with change in concentration for gels of 3.10 in 

acidified water at pH 1.0 using H2SO4 (y = “Yield Stress” (micro Nm) and x = concentration in mg 

in 5ml). “Yield stress”  [conc]n relationship is confirmed with n = 1.5. Errors on plotted points are 

determined as the standard deviation for the point determined by taking the average of the 

measured points either side of the “yield stress” (see Figure3.34 for example). Both the “yield 

stress” axis and concentration axis are shown on a log scale. 

 

 The gel morphology was studied by SEM and TEM imaging (Figure 3.37). 

Samples of gels of 3.10 acidified with H2SO4 to a pH of 1.0 for SEM imaging were dried 

under vacuum and then coated with a thin layer of platinum metal. As can be seen from 

Figure 3.37a the imaging reveals a porous sponge-like morphology. The Pt coating has 

created a smooth surface on the gel struts with the pores of the gels appearing darker. The 

gel morphology from the TEM images, as shown in Figure 3.37b, appears, essentially, to 

be the same as that seen in the SEM images. The gel material broke down under the 

electron beam, but the porous sponge-like morphology of the gel structure remained 

visible. The visible edge of a large circular pore, which the gel transverses, is the edge of 

the carbon mesh grid used to hold the gel sample. 
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Figure 3.37. a) SEM image of dried gels of 3.10 in water acidified with H2SO4 to a pH of 1.0 that 

has been covered with a thin layer of Pt. b) TEM image of a gel of 3.10 in water acidified with 

H2SO4 to a pH of 1.0.  

 

 

 

Figure 3.38. EELS data from the gel sample of 3.10 in water acidified to pH 1.0 with H2SO4. The 

collected spectra (Filled blue area) is baseline corrected (Red line) to give the EELS data (Green 

line). This reveals peaks at 164 eV (S), 284 eV (C), 401 eV (N) and 532 eV (O). 

 

 Electron energy-loss spectroscopy (EELS) was run on the TEM samples to 

confirm that SO4
2– or HSO4

– were incorporated into the gel and that the gel was a salt 

(Figure 3.38). As the samples were under high vacuum there was no liquid present so any 

sulfur found to be present was due to that in the gel struts as counter ion to the protonated 
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3.10, although it could have been deposited from the evaporation of the solvent but the 

amount would be small and the signal weak. The EELS clearly shows a peak at 164 eV 

which can be assigned to the 2p shell electron peak of sulfur confirming the presence of 

sulphur and therefore SO4
2– or HSO4

–.184 The other elements that were expected to be 

present in this gel, carbon, nitrogen and oxygen can also be identified at 284 eV, 401 eV 

and 532 eV, respectively.184  

 The gels of 3.10 formed in water acidified at pH 1.0 with H2SO4 were induced to 

crystallise by addition of salt in the form of Na2SO4 or by mechanical stress. Stirring with 

a spatula, which creates nuclei for crystallisation to occur, resulted in crystallisation after 

a few weeks with the gel slowly converting to crystal form.170 The crystals were 

dissolved by heating the solution, and upon cooling, the gel reformed. The structure of 

these crystals, (3.10H+)2(SO4
2–)7H2O provides a “snap shot” into the structural 

characteristics of the gel.25 The ASU consists of two 3.10H+, a SO4
2– anion and seven 

water molecules (Figure 3.39).  

 

Figure 3.39. ASU of (3.10H+)2(SO4
2–)7H2O. Atoms are shown as ellipsoids at 50% probability. 

Selected hydrogen bonds: N2···O8 = 2.575(2) Å;  N2–H2N···O8 = 118.4o, C7···O8 = 2.750(2) 

Å;  C7–H7···O8 = 121.5o, N7···O11 = 2.663(2) Å;  N7–H7N···O11 = 118.3o and C18···O11 = 

2.836(2) Å;  C18–H18···O11 = 121.1o, N8···O14 = 2.8184(19) Å;  N8–H8N···O14 = 169.4o, 

N9···O15 = 2.9459(18) Å;  N9–H9N···O15 = 168.2o and N1···O17i = 2.7439(18) Å;  N1–

H1N···O17i = 171.9o (i = x, y-1, z). 
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Table 3.3. Hydrogen bond parameter details for hydrogen bonds involving the water molecules 

within the structure of (3.10H+)2(SO4
2–)7H2O. 

 

Water 

Donor or Acceptora 

Hydrogen bond 

Atomsb 

Donor – Acceptor 

Distance (Å) 

Hydrogen bond 

Angle (Degrees) 

Acceptor N7–H7N···O4 2.742(2) 145.9 

Acceptor N6–H6N···O7 2.6405(19) 175.6 

Donor O2–H2WA···O15 2.8887(19) 167.3 

Donor O1–H1WA···O14 2.6901(19) 160.5 

Donor O4–H4WA···O3 2.877(2) 150.3 

Donor O5–H5WB···O6 2.7185(18) 153.1 

Donor O4–H4WB···O5 2.828(2) 167.0 

Acceptor N4–H4N···O6 2.9226(18)  170.2 

Acceptor N3–H3N···O5 2.8797(18) 165.6 

Donor O3–H3WA···O12 3.069(2) 168.2 

Acceptor N2–H2N...O1i 2.7514(19) 152.9  

Donor O1–H1WB...O4ii 2.931(2) 170.1 

Donor O2–H2WB...O17iii 2.8721(19) 174.3 

Donor O3–H3WB...O14iv 3.134(2) 145.2 

Donor O5–H5WA...O15iv 2.9319(19) 172.7 

Donor O6–H6WA...O16v 2.8173(18) 170.3 

Donor O7–H7WB...O2v 2.674(2) 165.4 

Donor O6–H6WB...O16vi 2.7833(19) 177.1 

Donor O7–H7WA...O16vi 2.8333(19) 168.2 

 

[a] Denotes if the water molecule is a donor or acceptor of an hydrogen bond. [b] ii = 1-x, ½+y, ½-

z; iii = -x, 3-y, 1-z; iv = -x, y-½, ½-z; v = x, 5/2–y, z-½; vi = 1-x, y-½, ½-z.  
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 The pyrazole group is protonated resulting in the breaking of the intra-molecular 

hydrogen bond seen in crystal structure of 3.10. The 3.10H+ molecules are flat (RMS 

deviation of 0.102 Å and 0.08 Å for the molecules with atoms C1 and C12, respectively) 

with intra-molecular hydrogen bonds between the carbonyl group of the urea and the 

pyrazole NH nearest the urea group, and the carbonyl group of the urea and the CH on 

the nitrophenyl group. As there are a large number of water molecules in this structure 

there is extensive hydrogen bonding. All hydrogen bonds involving water, both as an 

acceptor and as a donor, are listed in Table 3.3. Hydrogen bonds involving just atoms 

within the ASU are shown in Figure 3.39. There are just three hydrogen bonds that do not 

involve water molecules and these involve the hydrogen bonding of the urea group (N8 

and N9) to the SO4
2– anion in a R )8(2

2  motif and the pyrazole (N1) to the SO4
2– anion 

through a linear hydrogen bond. The overall packing of the molecules of 3.10H+ one on 

top of each other in a π stacking motif (the distance between the molecules varies from 

3.33 Å to 3.49 Å) results in columns that contain the SO4
2– and water molecules 

surrounded by four stacks of 3.10H+ (Figure 3.40). This packing is similar to that seen by 

Dastidar, Das and coworkers in a bispyridyl urea hydrogelator with ethylene glycol and 

water “snap shot” single crystal structure.25 1D growth of gel fibres due to 1D 

supramolecular bonds is considered an important consideration in designing LMWGs.51 

Keeping this in mind, the needle-shaped crystals were face indexed to determine what the 

driving force is for the “quicker” growth of the face that determines the needle 

morphology. This quicker growing face was determined to be (100). The packing of the 

3.10H+ molecules within the structure one on top of each other through π stacking is in 

the [100] direction, in correlation to the (100) quicker growing face. This shows that the π 

stacking, the hydrophobic supramolecular driving force that is important in aqueous 

conditions, of the planarised 3.10H+ drives 1D growth and may do so as well in the gel 

formation. No PXRD pattern of the H2SO4 gel samples could be obtained. 

 



193 
 

 

 

Figure 3.40. Packing diagram of (3.10H+)2(SO4
2–)7H2O showing the stacking of 3.10H+ one on 

top of each other resulting in a column in which the SO4
2– and water are located. Packing viewed 

down [100]. 

 

3.6.3 Gel formation with HBF4 and HPF4 

 

 Solutions of 3.10 in water that have been acidified to a general pH range of 1 to 2 

with HBF4 or HPF6 also formed gels (see Table 3.2 for details). When hot solutions were 

allowed to cool to room temperature irregular gel formation was seen, however, more 

regular gels were obtained by sonication of the solution until gel formation was 

complete.172 The gels were, in appearance, different to gels of 3.10 with H2SO4 (and the 

metastable nitrate gel) in that they were more opaque and were pale cream in colour 

instead of the more yellow colour of the other gels (Figure 3.31). The rheological 

characterization by stress sweep and frequency sweep reveals that the HBF4 and HPF6 

acidified gels were true gels with G values being 2 to 4 times greater than the G values, 

and there values were essentially constant over a range of frequencies or stress levels 
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(Figure 3.41).179 The HBF4 and HPF6 acidified gels were found to be weaker than those 

of H2SO4. 
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Figure 3.41. Rheology by frequency sweep of the HBF4 () and HPF6 () acidified gels. 

 

 TEM imaging of the HBF4 and HPF6 acidified gels reveals that the microstructure 

was different to that of the H2SO4 acidified gels (Figure 3.42). Both gels showed a 

particle-based gel structure.185-187 The images of the HBF4 acidified gels showed a porous 

structure with struts consisting of small particles ranging in size from 10 to 50 nm with 

the gel spanning the pores of the carbon mesh holding the samples. The images of the 

HPF6 gels showed a similar gel structure with struts consisting of nano-sized particles. 

The particles of the HBF4 and HPF6 acidified gels were crystalline in nature as shown by 

their ability to diffract the electron beam in diffraction mode on the TEM instrument 

(Figure 3.43). SEM images of gel samples acidified with HBF4 and HPF6 that had been 

dried under high vacuum and covered in a thin layer of Pt showed that the HBF4 acidified 

gels form crystalline flakes upon drying (Figure 3.44a). The SEM images of the HPF6 

acidified gels showed porous structures which are similar to those seen for the H2SO4 

acidified gels (Figure 3.44b). 
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Figure 3.42. TEM images of gels of 3.10 acidified with a,b) HBF4, c,d) HPF6.  

 

 Single crystal structure determinations of the structure of the acidified water gels 

with HBF4 or HPF6 were attempted by inducing salt formation by adding salts such as 

NaCl and Na2HPO4 to the gels and by growing single crystals from MeOH solutions of 

3.10 acidified with the acids. No single crystals were obtained with HPF6 but the HBF4 

sample yielded block-shaped crystals of formula (3.10H+)(BF4
–)H2O from a MeOH 

solution acidified with HBF4 that was allowed to evaporate for one week (Figure 3.45). A 

3.10H+ cation was found in this structure. The nitrophenyl group is twisted away from 

the plane set by the pyrazole and urea groups, the torsion angle  C5–N4–C6–C7 = –

30.1o (in other structures of 3.10 the angle is less than 12o and as little as 1o in structure of 

(3.10H+)2(SO4
2–)7H2O). The RMS deviation from planarity of 0.3081 Å for the 3.10H+ 

molecule within the (3.10H+)(BF4
–)H2O structure also highlights this twisting. The 

twisted conformation of the 3.10 molecule also disrupts the intra-molecular hydrogen 

bonds involving the carbonyl group of the urea, in particularly the hydrogen bond with 
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the nitrophenyl group, in comparison to the structure of 3.10 and the structure of 

(3.10H+)2(SO4
2–)7H2O), N2···O1 = 2.626(2) Å;  N2–H2N···O1 = 119.0o, C7···O1 = 

2.905(18) Å;  C7–H7···O1 = 111.5o and the H···O distance is longer at 2.42 Å 

(compared to the 2.24 Å and 2.12 Å of the SO4
2– structure). The R )8(2

2  hydrogen 

bonding to the BF4
– through the urea group is shifted resulting in a weaker interaction for 

the N3–H3N···F3 bond compared to the N4–H4N···F1 and results in the hydrogen bond 

N3–H3N···F1 leading to an asymmetric hydrogen bonding pattern (Figure 3.45).  

 

 

 

 

 

Figure 3.43. Electron diffraction images of gels of 3.10 acidified with HBF4 (top) and HPF6 

(bottom). Top diffraction d–spacing for the HBF4 acidified gels are 2.46 Å; 2.11 Å; 1.86 Å; 1.55 Å; 

1.32 Å and 1.12 Å. Bottom diffraction d–spacing for the HPF6 acidified gels are 2.07 Å; 1.81 Å; 

1.31 Å and 1.10 Å. 
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Figure 3.44. SEM images of dried gels of 3.10 acidified with a) HBF4 and b) HPF6.. 

 

 

 

Figure 3.45. Molecular structure of (3.10H+)(BF4
–)H2O. Atoms are shown as ellipsoids at 50% 

probability. Selected hydrogen bonds: BF4
– are N3···F3 = 2.965(2) Å;  N3–H3N··· F3 = 148.4o, 

N3···F1 = 3.069(2) Å;  N3–H3N··· F1 = 145.9o, N4···F1 = 2.9275(19) Å;  N4–H4N··· F1 = 

149.4o, O4···O1 = 2.814(2) Å;  O4–H4W··· O1 = 177.3o, N1···O4i = 2.653(2) Å;  N1–H1N··· 

O4i = 170.5o, O4···F3ii = 2.981(2) Å;  O4–H4W··· F3ii = 149.4o and N2···F2iii = 2.7539(19) Å;  

N2–H2N··· F2iii = 140.9o (i = -x, 1-y, 1-z and ii = x, y-1, z and iii = x-1, y-1, z). 

 

 There is one water molecule that hydrogen bonds to both the 3.10H+ (as both a 

donor and an acceptor) and the BF4
– anion. The intra-molecularly hydrogen bonded N2–

H2N also hydrogen bonds to the BF4
–. Due to the twisting of the nitrophenyl group in 
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3.10H+ the 3.10H+ cations do not quite pack one on top of each other as seen in the other 

structures containing 3.10H+ (Figure 3.46a). The π-π stacking of the nitrophenyl groups 

can be viewed when the entire structure is packed out and viewed down (010) (the c axis 

length of 7.7509(4) Å being double the π stacking distance) (Figure 3.46b).  

 

 

 

Figure 3.46. a) Structure of 3.10H+ BF4
– H2O as viewed down (100). b) Structure of 3.10H+ BF4

– 

H2O as viewed down (010). Hydrogen bonds not shown for clarity. 

 

 Crystals of formula (3.10H+)(BF4
–)3.10, obtained by adding Na2HPO4 (50 mg to 

a 3 ml 0.2% by weight gel) to a gel in water acidified with HBF4, were found to be a 

cocrystal188-192 consisting of both protonated and unprotonated 3.10 (Figure 3.47). The 

acidic proton is disordered equally between N2 and N7 of neighbouring molecules of 

3.10 with the hydrogen bonding between the two compounds changing with the position 

of the proton. The two molecules of 3.10 are still planar but the nitrophenyl groups are 

twisted slightly due to steric hindrance arising from the interactions between the pyrazole 

groups, RMS deviations of 0.1190 Å (3.10 molecular with C1 atom) and 0.2161 Å (C12 

compound). Indeed, the nitrophenyl group of the second molecule (based on C12 to O6) 

has a “transoid” orientation in relation to the pyrazole group orientation rather than the 

“cisoid” orientation seen in all the other structures of 3.10. When the proton is on N2, in 

addition to it hydrogen bonding to N7, the pyrazole group forms a R )8(2
1  hydrogen bond 

with the carbonyl of the neutral 3.10 helping to open up the urea group from the intra-

molecular hydrogen bond of crystal structure of pure 3.10. When the proton is on N7 the 
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hydrogen bonding is slightly different. The hydrogen bonding to the now acceptor N1 

means that there is an intra-molecular hydrogen bond to the urea carbonyl group as seen 

in the other structures. The intra-molecular hydrogen bonds from the nitrophenyl moiety 

are slightly different due to the already mentioned twisting of the nitrophenyl group to a 

different orientation. With the first 3.10 compound (labelled C1 to O3) the previously 

noted intra-molecular hydrogen bonding, C7–H7···O1, was found. However, the second 

3.10 molecule (labelled C12 to O6) has a hydrogen bond from C22, C22–H22···O4, 

instead of C18. 

 

 

 

Figure 3.47. Molecular structure of (3.10H+)(BF4
–)3.10. Atoms are shown as ellipsoids at 50% 

probability. a) Disordered proton on N1. Selected hydrogen bonds: N1···O4 = 2.722(3) Å;  N1–

H1N··· O4 = 113.2o, N2··· O4 = 2.743(3) Å;  N2–H2N··· O4 = 111.7o, N2···O1 = 2.685(3) Å;  

N2–H2N··· O1 = 119.3o, C7···O1 = 2.930(3) Å;  C7–H7··· O1 = 118.9o N1···N7 = 2.843(3) Å;  

N1–H1N···N7 = 162.5o or N7···N1 = 2.843(3) Å;  N7–H7N···N1 = 167.6o N7···O4 = 2.838(3) Å; 

 N7–H7N··· O4 = 114.7o C22···O4 = 2.905(3) Å;  C22–H22··· O4 = 118.3o. b) Disordered 

proton on N7. Selected hydrogen bonds: N3···F1 = 2.935(3) Å;  N3–H3N···F1 = 155.6o and 

N4···F2 = 2.897(3) Å;  N4–H4N···F2 = 160.9o N8···F4i = 2.908 (3) Å;  N8–H8N···F4i = 145.9o, 

N9···F4ii = 2.958(3) Å;  N9–H9N···F4ii = 157.4o and N6···O3iii = 3.192(3) Å;  N6–H6N··· O3iii = 

164.8o (i = 1-x, 1-y, 2-z; ii = 1+x, 1+y, z and iii = 1+x, y, 1+z). 

 

 This hydrogen bonding between a neutral 3.10 species and a protonated species 
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via their carbonyl and pyrazole groups results in the NH groups of the urea moieties and 

one NH group of the pyrazole group, N6–H6N, being available as hydrogen bond donors. 

The urea groups hydrogen bond to the BF4
– with the N3–H3N and N4–H4N groups 

forming a R )8(2
2  hydrogen bond pattern. The other urea group (N8 and N9) hydrogen 

bonds to F4 on two symmetry independent BF4
– ions. The free NH group of the pyrazole 

group hydrogen bonds to O3 of neighbouring nitro groups which results in a hydrogen 

bonded thread of 3.10H+·3.10. These threads are stacked one on top of each other (the 

stacking distance being a quarter of the a–c unit cell diagonal distance) giving a 2D 

dimensional layer that alternates with layers of the BF4
– ions (Figure 3.48).  

 

 

 

Figure 3.48. Packing diagram of (3.10H+)(BF4
–)3.10 showing the stacking of 1D hydrogen 

bonded 3.10H+ 3.10 threads alternating with the layers of BF4
–. Hydrogen bonds are not shown 

for clarity.  

 

 The formation of this cocrystal may be due to the change in pH induced by the 

addition of the Na2HPO4. Simulation of the PXRD patterns of either of these BF4
– 3.10H+ 

single crystal structures resulted in no confirmed match with the d-spacings found from 

either the electron diffraction of the particles of the TEM gel samples (Figure 3.43) or the 

PXRD patterns measured of dried gel samples (Figures 3.49 and 3.50). The dried gel 

PXRD patterns of the HBF4 and HPF6 acidified gels show some similarities, but are not 

perfectly matched. 



201 
 

 

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50

2θ (Degrees)

In
te

n
si

ty
 (

a.
u

.)

 

 

Figure 3.49. PXRD pattern for dried 3.10 gel acidified with HPF6. Selected d-spacings: 2.08 Å; 

1.85 Å; 1.70 Å; 1.21 Å and 1.13 Å. 
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Figure 3.50. PXRD pattern for dried 3.10 gels acidified with HBF4. Selected d-spacings: 2.15 Å; 

1.95 Å; 1.81 Å; 1.77 Å; 1.75 Å; 1.60 Å and 1.46 Å. 
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3.6.4 Gel formation with H3PO4 and organic acids 

 

 The use of inorganic acids to protonate 3.10 to give gels in acidified water 

showed the trend that the multiple oxygen-containing anions formed much more stable 

and reproducible gels. The acids used were H2SO4 and H3PO4. As both of these acids 

give multiply charged conjugate anions that can be derivatised with organic groups a 

study of simple organic sulfonic and phosphonic acids as well as carboxylic acids was 

performed and the results were compared with the H3PO4 acidified gels. The following 

organic acids were tested with compound 3.10 for gelation in water by dissolving the acid 

in water to give an acidic solution: acetic acid, trifluoroacetic acid, methanesulfonic acid, 

trifluoromethanesulfonic acid, p-toluene sulfonic acid, methylphosphonic acid 

(MePO3H2) and ethylphosphonic acid (EtPO3H2). The use of MePO3H2 and EtPO3H2 

resulted in gels, whereas the other acids only gave precipitates. In a similar way to the 

inorganic acids, gels were formed with MePO3H2 and EtPO3H2 at a pH between 1 and 2. 

The CGC for the MePO3H2 gels was 0.13 % by weight, 0.18 % by weight for EtPO3H2 

and 0.11 % by weight for H3PO4. The visual appearance of these two phosphonate gels 

was similar to the H3PO4 and H2SO4 gels. The MePO3H2 based gels were found to be 

stable for months, whereas the EtPO3H2-based gels broke down to a precipitate within 30 

min.170 

 Rheological characterisation of gels acidified with H3PO4, MePO3H2 or EtPO3H2 

by both stress sweep and frequency sweep rheometry confirmed that these solid-like 

materials were true gels with their G values being five times greater than their G values. 

These values were essentially constant over a range of frequencies or stresses (Figure 

3.51).179 The MePO3H2 acidified gels were found to be stronger (larger G and “yield 

stress” values) than the H3PO4 acidified gels, but weaker than the H2SO4 acidified gels 

with the H3PO4 acidified gels being comparable to the HBF4 and HPF6 acidified gels in 

strength. The EtPO3H2 acidified gels were found to be very weak, often forming 

precipitates when transferred to the rheometer for measurement, therefore, resulting in 

poor measurement data. The TEM imaging of the H3PO4, MePO3H2 and EtPO3H2 

acidified gels revealed a porous sponge-like structure similar to that seen for the H2SO4 
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acidified gels (Figure 3.52). PXRD patterns of the of dried MePO3H2 and EtPO3H2 

acidified gels show how the gel materials transform to crystalline materials (Figures 3.53 

and 3.54) No PXRD patterns could be obtained for the H3PO4 gel samples as samples 

formed sticky amorphous materials. 
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Figure 3.51. Frequency sweep rheometry of 3.10 gels acidified with H3PO4 (○) and MePO3H2 

(). Dark grey filled symbols are of G and light grey filled symbols are of G. 

 

 

 

Figure 3.52. TEM image of 3.10 gel acidified with H3PO4 at room temperature.  



204 
 

 

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50

2θ (Degrees)

In
te

n
si

ty
 (

a.
u

)

 

 

Figure 3.53. PXRD pattern for dried 3.10 gel acidified with MePO3H2.  
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Figure 3.54. PXRD pattern for dried 3.10 gels acidified with EtPO3H2.  
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3.6.5 Precipitation of 3.10 by NO3
– and Cl– 

 

 As already noted, the nitrate- and chloride-based solutions of 3.10 resulted in 

precipitates instead of gels. A study of the crystalline materials of 3.10 with these two 

anions was undertaken to ascertain why these anions result in precipitates and not stable 

gels. The transient nature of the nitrate-acidified gel, that turns into a precipitate, meant 

that it was studied using the technique of rheology. However, it could have been 

investigated using TEM imaging (Figure 3.55).170 Taking images of a gel that had just 

formed allowed for some characterisation of the gel. Interestingly, the transformation 

from gel to crystal could be observed directly, as clusters of nanocrystals grew on what 

appeared to be the gel fibres. The Cl– and NO3
– gel tests and the transformation of the 

nitrate, sulphate and ethylphosphate 3.10 gels to crystals revealed a close relationship 

between gel formation and crystal formation.51,193,194  

 

 

 

Figure 3.55. TEM images of the gels from acidification of a water solution of 3.10 with HNO3. a) 

and b) are from a 3.10 with HNO3 gel sample. c) and d) are from a 3.10 with HNO3 gel that has 

started to break down to a precipitate. 
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 As no single crystals of these crystalline materials could be obtained from 

acidified water, an organic polar solvent was added to slow down crystal formation. This 

resulted in the formation and characterisation of a methanol solvate of 3.10H+ Cl– and a 

methanol and water solvate of 3.10H+ NO3
– when 3.10 was crystallised from a MeOH 

solution acidified with an equal volume of concentrated acid. The (3.10H+)(NO3
–)·MeOH 

structure has an ASU consisting of two each of 3.10H+, NO3
– and MeOH, i.e. Z = 2 

(Figure 3.56). Once again, the 3.10H+ cations are planar with the pyrazole being 

protonated, RMS deviations of 0.105 Å (C1 containing molecule) and 0.0396 Å (C12 

containing molecule). The intra-molecular hydrogen bonds between the pyrazole and the 

carbonyl of the urea and the carbonyl group of the urea and the CH on the nitrophenyl 

group aids with the formation of the planar 3.10+ cation. One of the nitrate anions is 

asymmetrically chelated between two urea groups with hydrogen bonds that are in an 

asymmetric R )8(2
2  motif.195 The hydrogen bond details for the R )8(2

2  motif of the urea 

group containing N3 and N4 show that the hydrogen bond pattern is symmetrical. The 

urea containing N8 and N9 is not symmetric, with particularly the N8–H8N hydrogen 

bond being weaker in strength than the N9–H9N hydrogen bond. The N8 part of the urea 

group can ,therefore, be considered to be forming a R )6(1
2  motif and the N9 forming a 

linear hydrogen bond.196 The pyrazole group containing N1 and N2, hydrogen bonds to 

the second nitrate anion, but due to the divergent character of the pyrazole NH groups 

only the N–H···O11 hydrogen bond is strong. The MeOH molecules hydrogen bond (as 

donors) to this nitrate and are hydrogen bonded (as acceptors) to the other pyrazole 

group. The planar 3.10H+ molecules, once again, pack one on top of each other, but this 

time in an alternating pattern (Figure 3.57). There are four stacks of 3.10H+ that surround 

a column of the MeOH and NO3
–.  
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Figure 3.56. Molecular structure of (3.10H+)(NO3
–)·MeOH. Atoms are shown as ellipsoids at 50% 

probability. Selected hydrogen bonds for intra-molecular bonds: N2···O1 = 2.598(2) Å;  N2–

H2N···O1 = 120.3o, C7···O1 = 2.855(3) Å;  C7–H7···O1 = 120.4o, N7···O4 = 2.667(2) Å;  N7–

H7N···O4 = 118.3o and C18···O4 = 2.884(3) Å;  C18–H18···O4 = 120.2o. Selected hydrogen 

bonds for chelated nitrate: N3···O7 = 2.982(3) Å;  N3–H3N···O7 = 170.7o, N4···O8 = 2.785(2) 

Å;  N4–H4N···O8 = 165.9o, N8···O7 = 3.318(3) Å;  N8–H8N···O7 = 161.8o, N8···O9 = 

3.040(3) Å;  N8–H8N···O9 = 144.4o and N9···O9 = 2.778(3) Å;  N9–H9N···O9 = 157.5o. 

Selected hydrogen bonds for methanol and methanol hydrogen bonded nitrate: N1···O11 = 

2.687(3) Å;  N1–H1N···O11 = 172.9o, N1···O10 = 3.080(3) Å;  N1–H1N···O10 = 117.2o and 

N2···O10 = 3.097(3) Å;  N2–H2N···O10 = 115.3o, O14···O12 = 2.835(3) Å;  O14–H14W···O12 

= 171.5o, O13···O10 = 2.969(2) Å;  O13–H13W···O10 = 150.1o, N6···O14 = 2.645(3) Å;  N6–

H6N···O14 = 169.6o and N7···O13 = 2.803(2) Å;  N7–H7N···O13 = 146.5o (i = 1-x, 1-y, 1-z and 

ii = 1+x, y, 1+z). 
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Figure 3.57. Overall crystal packing of (3.10H+)(NO3
–)·MeOH. Hydrogen bonds are not shown for 

clarity. 

 

 The crystal structure determined for 2[(3.10H+)(Cl–)]·MeOH·H2O (Figure 3.58), 

from the crystallization of 3.10 from a HCl acidified solution in MeOH, shows 

similarities in the anion binding to the structure of (3.10H+)NO3
–·MeOH. Once again the 

3.10H+ molecules are planar with the pyrazole protonated, RMS deviations of 0.0533 Å 

(C1 containing molecule) and 0.0995 Å (C12 containing molecule). The intra-molecular 

hydrogen bonds between the pyrazole and the carbonyl of the urea and the carbonyl 

group of the urea and the CH on the nitrophenyl group aid planarization. As with the 

nitrate structure, there is a chloride chelated between the two urea groups of 3.10H+. The 

R )6(1
2  hydrogen bonding by both ureas is symmetrical. The N1–H1N group of the 

pyrazole hydrogen bonds to the second chloride. The other pyrazole group has hydrogen 

bonds to the MeOH and water molecules. The MeOH hydrogen bonds to the chelated 

Cl1. As seen with the other structures containing a protonated 3.10, the 3.10H+ in this 

chloride structure pack one on top of each other, but as with the nitrate structure, in an 

alternating motif. This results in the now familiar stacks of 3.10H+ with anion and solvent 

in between, and, as a result of the smaller size of the Cl–, the “channel” between four 

stacks is shifted resulting in a kinked column (Figure 3.59). 
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Figure 3.58. Molecular structure of 2[(3.10H+)(Cl–)]·MeOH·H2O. Atoms are shown as ellipsoids at 

20% probability. Selected hydrogen bonds for intra-molecular hydrogen bond: N2···O1 = 

2.716(19) Å;  N2–H2N···O1 = 121.0o, C7···O1 = 2.906(18) Å;  C7–H7···O1 = 123.2o, N7···O4 

= 2.657(17) Å;  N7–H7N···O4 = 118.5o and C18···O4 = 2.805(18) Å;  C18–H18···O4 = 119.9o. 

Selected hydrogen bonds for Cl1: N3···Cl1 = 3.258(16) Å;  N3–H3N··· Cl1 = 159.0o, N4··· Cl1 = 

3.230(16) Å;  N4–H4N··· Cl1 = 165.4o, N8··· Cl1 = 3.172(16) Å;  N8–H8N··· Cl1 = 160.9o and 

N9··· Cl1 = 3.281(15) Å;  N9–H9N··· Cl1 = 156.9o. Selected hydrogen bonds for Cl2 and 

methanol: N1···Cl1 = 2.956(18) Å;  N1–H1N··· Cl1 = 174.1o, N6···O8 = 3.330(16) Å;  N6–

H6N··· O8 = 163.3o, N7···O7 = 2.775(15) Å;  N7–H7N··· O7 = 145.2o and Cl1, O7···Cl1i = 

3.009(16) Å;  O7–H7A··· Cl1i = 156.6o (i = 1-x, 2-y, 1-z). 
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Figure 3.59. Overall packing of 2(3.10H+) 2Cl– MeOH H2O. Atoms are shown in capped stick 

representation except for the Cl– and water oxygen which are shown as small spheres. 

 

 The PXRD patterns of the precipitate from the 3.10 acidified water solutions for 

both HCl and HNO3 do not correspond to the two single crystal structures due to these 

crystal structures containing MeOH (Figures 3.60 and 3.61).  
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Figure 3.60. PXRD pattern for dried 3.10 gel acidified with HNO3.  
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Figure 3.61. PXRD pattern for dried 3.10 gel acidified with HCl.  

 

3.6.6 Anion tuning of gels formed by 1-(3-methyl-1H-pyrazol-5-yl)-3-(3-

nitrophenyl)urea 

 

 

 

Figure 3.62. Photograph of gels of 3.10 at 1% by weight in water acidified with, from left to right, 

EtPO3H2; MePO3H2, H3PO4; H2SO4; HPF6 and HBF4. The samples for the acids H3PO4; H2SO4; 

HPF6 and HBF4 are the same as those shown in Figure 3.31. 

 

 A large number of salts of organic anions and cations with inorganic counter ions 

as well as purely organic salts have been discovered to gel a wide variety of 
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solvents.40,193,197-205 The anion characteristics play a large part in the gelation ability of 

these compounds. There have been, however, surprisingly few studies performed that 

look directly at the influence of the anion in LMWG salts, often because a simple change 

in the anion results in a complete loss of gel character.40,193,197-205 With the two organic 

acid based gels and the four inorganic acid based gels that have been described above, a 

study of the effect of the anion on the rheological characteristics of the 3.10 gels was 

undertaken (Figure 3.62 and 3.63). The comparison of the gels at 1% by weight with the 

six acids, and therefore anions, shows that the G value for each of the anions follows the 

trend H2SO4 > MePO3H2 > H3PO4 ~ HBF4 ~ HPF6 > EtPO3H2 (Figure 3.60). The “yield 

stress” shows the more detailed trend of H2SO4 > MePO3H2 > HPF6 > H3PO4 > HBF4 > 

EtPO3H2.  
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Figure 3.63. Anion tuning of the rheometric characterisations of 3.10 gels shown by stress sweep 

rheometry of the hydrogels of 3.10 at 1% by weight acidified with H2SO4 (Blue ), H3PO4
3 

(Orange ), MePO3H2 (Green ), HBF4 (Light blue ), HPF6 (Brown ○) and EtPO3H2 (Light 

green ).  
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 It is of interest to compare this series of the anion tuning of the 3.10 gels with the 

classical Hofmeister series.46,206,207 The Hofmeister series ranks the anions used in this 

study in the order from kosmotropic (strongly hydrated anions) to chaotropic (weakly 

hydrated anions) as: SO4
2– ~ MePO3

2– ~ HPO4
2– > EtPO3

2– > Cl– > NO3
– > PF6

– > BF4
–, 

kosmotropic meaning salting-out anions and chaotropic meaning salting-in anions. When 

the kosmotropic anions, from the acids H2SO4, MePO3H2, H3PO4, EtPO3H2, were used, 

gel formation was seen, with the SO4
2– and MePO3

2– based gels being the strongest. The 

chaotropic anions NO3
–, PF6

– and BF4
– also formed gels; however, these gels had 

different morphologies to the kosmotropic anion based gels. The hydration of the anions, 

therefore, possibly plays a role in the morphology of the gel. In addition, crystallisation, 

determined by the identity of the anion, also appears to play an important part in the 

tunability of the 3.10 hydrogels. The crystallinity of a substance is partly determined by 

its solubility and lattice energy. As shown by the precipitation of the NO3
– and EtPO3

2– 

gels, the induced crystallisation of (3.10H+)2(SO4
2–)7H2O from the SO4

2– gels and 

crystals of (3.10H+)(BF4
–) from the HBF4 gels, the crystalline solids are more 

thermodynamically stable than the gels (a meta-stable state). The chelation of the NO3
– 

and Cl– anions by the urea groups, as seen in the structures (3.10H+)(NO3
–)·MeOH and 

2[(3.10H+)(Cl–)]·MeOH·H2O, is noteworthy.207 This direct hydrogen bonding interaction 

between the cation and anion may provide the driving force for crystallisation and, 

therefore, lack of stable gel formation. The non-planar character of the 3.10H+ cation 

within the structure (3.10H+)(BF4
–)·H2O is also to be noted. This need to have a non-

planar conformation for the 3.10H+ cation within the crystal form allows for the 

formation of the meta-stable gel. It, therefore, appears that the position of the anions in 

the  Hofmeister series plays an important role in the tuning of the gel properties. On top 

of these effect is super-imposed the crystallisation tendencies of the compounds, 

determined by the identity of the anion and its interactions (hydrogen bonding) with the 

3.10H+ cation. 

 In summary compound 3.10 was found to form hydrogels in the pH range of 1 to 

2, thus making compound 3.10 a hydrogelator with pH tunable gelation ability.25,42,149-168 

Rheological characterisation, in conjunction with TEM and SEM imaging, of the H2SO4 

acidified gels indicated a cellular solid gel material that consists of load bearing struts 
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interconnected via crosslinks or junction points which deform by bending.173,180,182,183 

The anion tuning of the gel characteristics was accomplished by changing the identity of 

the anion by changing the acid used to adjust the pH of the water solutions. Gel formation 

was changed to crystallisation by the use of chloride or nitrate resulting in the ability to 

precipitate a gel by the addition of salts containing these anions. Characterisation of the 

crystalline salts of 3.10 indicates that the assembly of the gel is encouraged by the 1D 

stacking of the planar 3.10H+ driven by hydrophobic effects.51 The anion-induced change 

from gel to precipitate appears to be due to the ability of 3.10H+ to coordinate through 

multiple hydrogen bonds to the anion.169,170 The smaller NO3
– and Cl– ions are 

coordinated between two molecules by the urea groups as shown by the      

(3.10H+)(NO3
–)·MeOH and 2[(3.10H+)(Cl–)]·MeOH·H2O crystal structures. The 

rheological anion tuning of gels of 3.10 was studied, and the gels found to vary in 

strength according to the identity of the anion. The identity of the anion determines the 

rheological strength of the gels and following order, according to the acid, was found 

H2SO4 > MePO3H2 > HPF6 > H3PO4 > HBF4 > EtPO3H2.  

 

3.7 Conclusion 

 

 The synthesis of urea and thiourea derivatised pyrazoles was not as 

straightforward as it at first appeared, i.e. reacting the isocyanate or isothiocyanate with 

the aminopyrazole did not always lead to a desired urea or thiourea. The reaction of t-

butyl isothiocyanate with 3-amino-5-methylpyrazole in refluxing CHCl3 was performed, 

and, in agreement with literature results, the derived thiourea compound 3.3 was 

isolated.7,48,53-55 The reaction of isocyanates with 3-amino-5-methylpyrazole resulted in 

the formation of carboxamides, compounds 3.1 and 3.2, for example.7,47,48 This problem 

was circumvented by BOC-protection of the pyrazole ring allowing for the urea 

functionalisation of the amine group to yield the desired urea functionalised pyrazole 

compounds. The propensity of the thiourea and urea groups to form an intra-molecular 

hydrogen bond to the pyrazole moiety, and therefore, be in an anti conformation was 

revealed in the determination of the crystal structures of these compounds. The inability 

to form one-dimensional aggregates, through the unidirectional hydrogen bonding of urea 
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tapes, was prevented by the formation of the intra-molecular hydrogen bond. The 

compounds were all crystalline in nature and did not form gels.  

 The induced opening of the urea group from the anti conformation to the syn 

conformation was tested as a means to induce the gel formation by the pyrazole urea 

compounds. Metal complexes of compounds 3.10 and 3.11a were found not to form gels 

even though the urea group was induced to open into the syn conformation. Complexes of 

3.10 show how the urea-derivatised pyrazole acts as a bidentate ligand with copper and 

zinc, coordinating through the carbonyl group of the urea and the Lewis basic pyrazolyl 

N-donor group next to the urea moiety. The bidentate coordination is similar to that 

found for amide-derivatised pyrazole.68,72  

 The anion binding by 3.3 does not appear to cause the breaking of the intra-

molecular hydrogen bond between the thiourea group and the Lewis basic pyrazolyl N-

donor group. This was confirmed by the elucidation of the host guest complex between 

3.3 and MeCO2
– in the crystal of (3.3)(TBA+)(MeCO2

–)·H2O. The structure shows the 

intra-molecular hydrogen bond to still be present. 

 Protonation of compound 3.10 resulted in the formation of hydrogels in the pH 

range of 1 to 2, thus making compound 3.10 a hydrogelator with pH tunable gelation 

ability.25,42,149-168 Rheological characterization, in conjunction with TEM and SEM 

imaging, of the H2SO4 acidified gels indicated a cellular solid gel material that consisted 

of load bearing struts interconnected via crosslinks or junction points which deform by 

bending.173,180,182,183 In addition, SEM and TEM imaging revealed a morpholigical 

difference between the gels with anions BF4
– and PF6

–, to the gels synthesized with 

oxygen containing anions; SO4
2–, HPO4

2–, EtPO3
2– and MePO3

2–. The anion tuning of the 

3.10 gel characteristics was accomplished by varying the identity of the anion by 

changing the acid used to adjust the pH of the water solutions. Gel formation changed to 

crystallisation when Cl– or NO3
– was introduced. This resulted in the ability to precipitate 

a gel by the addition of salt containing these anions. The smaller NO3
– and Cl– are 

coordinated between two molecules by the urea groups in the solid state, as shown by the 

crystal structures of (3.10H+)(NO3
–)·MeOH and 2[(3.10H+)(Cl–)]·MeOH·H2O. 

Characterisation of the crystalline salts of 3.10 indicated that the assembly of the gel was 

encouraged by the 1D stacking of the planar 3.10H+ driven by hydrophobic effects and π-
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π stacking.51 The anion induced change from gel to precipitate appears to be due to the 

ability of 3.10H+ to coordinate through multiple hydrogen bonds to the anion. These 

hydrogen bond patterns, in combination with other factors, including lattice energy, 

nucleation and the thermodynamics of the systems, led to higher stability of the 

crystalline states over the gel states.169,170 The crystal structures (3.10H+)(BF4
–)·H2O and 

(3.10H+)2(SO4
2–)7H2O reveal a slight change in conformation of the 3.10H+ cation, and 

the level of hydration, respectively. In addition to the anion tuning from gel to crystal 

states, the anion tuning of the rheological characteristics of gels of 3.10 was 

accomplished.40,193,197-205 The gels of 3.10 were found by rheology to have the order, in 

relation to “strength”, of, according to the acid: 

 

H2SO4 > MePO3H2 > HPF6 > H3PO4 > HBF4 > EtPO3H2 

 

 Neither the Hofmeister series and/or level of hydration of the anions were found 

to conclusively explain the order of strength of the 3.10 gels. The change in morphology 

of the gels, from the oxygen containing anions to BF4
– and PF6

–, may explain the 

inconsistency, as the structures are seen to be different due to the hydrogen bond 

propensity of these anions, as shown by the crystal structure (3.10H+)(BF4
–)·H2O. 

Additionally, the crystallisation abilities of the salts are super-imposed onto the gelation 

of this series of anion containing gels. The tuning of the gel characteristics of gels of 3.10 

is summarized in Table 3.4. This study, overall, shows that LMWG salts can be tuned in 

terms of gel rheology characteristics, and overall gel formation, by simply varying the 

identity of the anion. 
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Table 3.4. Summary of the anion-based tuning of gel characteristics of compound 3.10. 

 

Acid HBF4 HPF6 HCl HNO3 H3PO4 H2SO4 MePO4H2 EtPO4H2 

Gelation pH 

range 

1 – 2.0 1 – 1.7 n/a 1 – 2.5 1 – 2.1 1 – 2.0 1 – 2.0 1 – 2.0 

CGCa 0.30 0.20 n/a Unstable 0.11 0.12 0.13 0.18 

Appearance Opaque 

Cream Gel 

Opaque 

Cream 

Gel 

Light Cream 

Precipitate 

Unstable 

Opaque 

Cream-

Yellow Gel 

Clear to 

Opaque 

Yellow 

Gel 

Clear to 

Opaque 

Yellow Gel 

Opaque 

Cream 

Gel 

Clear, 

Yellow 

Weak 

Gel 

Morphology Particulate Particulate Crystalline Fibre to 

Crystalline 

Sponge-

like 

Sponge-like Sponge-

like 

Sponge-

like 

Crystal 

structures 

(3.10H+) 

(BF4
–)·H2O 

n/a 2[(3.10H+) 

(Cl–)] 

·MeOH·H2O 

(3.10H+) 

(NO3
–) 

·MeOH 

n/a (3.10H+)2 

(SO4
2–) 

7H2O 

n/a n/a 

Hydration of 

anionb 

Monohydrate n/a None None n/a Heptahydrate n/a n/a 

Hofmeister 

seriesc 

8 7 5 6 3 1 2 4 
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Rheological 

Strengthd 

5 3 n/a n/a 4 1 2 6 

 

a) %, Critical Gel Concnetration (CGC) in weight percentage. b) Hydration determined from crystal structures. c) Order of 1 to 8 being from 

kosmotropic (strongly hydrated anions) to chaotropic (weakly hydrated anions). d) 1 being the strongest and 6 being the weakest, according to 

rheological properties like G value and “yield stress”. 
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Chapter 4 

 

Future Work 

 

4.1 Chiral bisurea LMWGs 

 

A full characterisation of the rheological properties and morphologies of the gels of the 

chiral bisurea LMWGs was not carried out when the solvent or solvent mixtures were 

varied. It would be of interest to determine the changes that occur when moving from 

apolar to polar solvents, if any. This is especially true when it comes to elucidating the 

mechanism behind the thixotropic character of gels formed by 2.2.1 Connected to this is 

the use of environmental SEM imaging of the gels. As shown, the TEM, SEM and cryo-

SEM techniques give different points of view of the gel morphology. The non-drying 

conditions, in which the imaging is performed within the environmental SEM technique, 

should lead to a more representative image of the gel morphology. Characterisation of the 

behaviour of the molecules prior to nucleation and gel formation was not performed and 

would be desirable. Studies utilising small and wide angle x-ray or neutron scattering, 

static light scattering, NMR and vapour pressure osmometry experiments on the chiral 

bisurea compounds, would provide insights into the behaviour of the compounds prior to 

gel formation.2 A key experimental technique not utilised in this study was circular 

dichroism.3-5 Due to the chirality of the compounds, useful structural information of the 

gel could be highlighted by using this technique.  

 Crystal growth within the gel milieu of a LMWG was attempted within the study. 

From the results found and presented within this thesis, it can be concluded that there is 

great room for further studies to be performed using a greater range of LWMGs, solvents 

and crystal forming compounds. One obvious study that could easily be done, and that 

has high scientific interest, is the crystallisation of calcium carbonate (bio-mineralisation) 

within LMWGs.6,7 

 The drug delivery studies could be extended to other drugs and other LMWGs 

other than compound 2.1a. Further experiments are certainly needed to elucidate the 
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potential of the gels to control drug release both in vivo and in vitro. The initial 

investigations described in this thesis revealed an intriguing mechanism of drug release, 

and this could be further studied by utilising diffusion probing methods such as NMR-

DOSY experiments and neutron scattering. 

 

4.2 Pyrazole LMWGs 

 

The coordination chemistry of the pyrazole ureas was investigated with moderate 

success. Further studies utilising softer metals like Hg and Ag could have been done, 

especially considering that the mixtures of compound 3.10 and Ag salts formed gel-like 

precipitates (partial gels). The synthesis of pyrazole urea analogues to the gel forming 

pyridyl ureas was unsuccessfully attempted within this study, but  could be yet be made 

to succeed. Very little synthetic variation was made to the gel-forming pyrazole ureas 

utilised in this study. Simple modifications, such as the position of the nitro group on the 

phenyl group, indeed, even the full removal of the group, could lead to further 

understanding of the aggregation phenomena of the gel forming compound 3.10. 

 Complete x-ray diffraction characterisation of all the different crystalline 3.10H+ 

materials produced would be advantageous, in order to give a complete understanding of 

why these compounds showed anion-dependent rheologies and morphologies. The 

difficulty of producing single crystals could be circumvented by solving the structures 

from powder x-ray diffraction data.8 The visually determined colour differences between 

the gels of 3.10H+ could easily be quantified using solid-state reflection UV 

spectroscopy. This would give structural details of the 3.10H+ molecules within the gel 

fibres, especially, if the UV results are coupled with theoretical calculations. The gelation 

of water by the salts of 3.10H+ reveals that this pyrazole urea class of compounds can, 

indeed, form gels. The extension of the gel formation within other solvents was only 

briefly explored and is, therefore, a study that could be expanded. 
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Appendix A - Equipment Experimental 

 

NMR 
1H and 13C NMR spectra were run at room temperature using one of the following 

machines, Bruker Avance-400 spectrometer, Varian Mercury-400 spectrometer and 

Varian Inova-500 spectrometer operating at 400 MHz, 400 MHz and 500 MHz, 

respectively (Durham) or Bruker AM300 spectrometer operating at 300 MHz (Monash) 

for 1H NMR. Chemical shifts are reported in parts per million (δ) relative to the residual 

protic solvent as an internal reference. Coupling constants (J) are reported in Hertz (Hz). 
27Al chemical shifts reported as parts per million (δ) relative to an external standard 

(Al(NO3)3, 0.67 M (aq), 27Al δ = 0.0). 

 

NMR Titrations 
1H NMR titration experiments were carried out at room temperature using either a Varian 

Inova-500 spectrometer operating at 500 MHz or Varian Mercury-400 spectrometer 

operating at 400 MHz (Durham). All chemical shifts are reported in ppm relative to the 

residual protic solvent as an internal reference. A solution of the host species of known 

concentration, typically 0.02 M, was made up in an NMR tube using the appropriate 

deuterated solvent (0.5 ml). Solutions of the anions, as TBA+ salts, were made up in 

volumetric flasks (2 ml) with a concentration five times greater than that of the host. The 

guest solution was typically added in 10 μl aliquots, representing 0.1 equivalents of the 

guest with respect to the host. Larger aliquots were used in some cases where no 

inflection of the trace was evident. Spectra were recorded after each addition and the 

trace followed. Results were analysed using the curve-fitting program HypNMR,1,2 

simultaneously fitting as many peaks as could be accurately followed throughout the 

experiment. 

 

Elemental Analysis 

Samples were run using an Exeter Analytical E-440 Elemental Analyser (Durham). 

Elemental analyses on compounds 3.13 and 3.14 were performed by The Campbell 

Microanalytical Laboratory, Chemistry Department, University of Otago, Dunedin, New 
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Zealand. 

 

Mass Spectrometry 

Compounds dissolved in an appropriate solvent were run using either a Thermoquest 

Trace machine or Thermo-Finnigan LTQ FT machine (Durham) running in positive or 

negative electrospray (ES) mode.  

 

FT-IR 

Fourier transform infrared spectra were recorded with a Perkin Elmer Spectrum 100 ATR 

instrument. For each spectrum of solid samples, 64 scans were conducted over a spectral 

range of 4000 to 600 cm-1 with a resolution of 4 cm-1. The analyses were carried out with 

the Spectrum Express 1.01 software. FT-IR spectra for compounds 3.13 and 3.14 were 

obtained as nujol mulls with a Perkin Elmer 1600 FTIR instrument (Monash). Peak 

intensity described as strong (s), medium (m) or weak (w). 

 

SEM 

Samples were partially dried under room temperature and atmosphere, and then fully 

dried under high vacuum on a piece of silicon wafer. They were then coated with a thin 

layer of platinum of 3 – 5 nm using a 308UHR Ultra High Resolution Coating System. 

Samples were imaged using a S-5200 UHR FE-SEM Hitachi Scientific instrument. 

(Durham) 

 

TEM 

Samples were deposited onto a holey carbon grid and were immediately examined in a 

JEOL 2100F FEG TEM (Durham) operating at 200 kV. EELS spectra and EFTEM 

mapping were carried out using a Gatan GIF Tridiem (the energy resolution of the EELS 

spectra is approximately 1 eV). 

 

Fluorescence 

Samples were scanned in 1 ml glass vials using a Jobin-Yvon Horiba Fluorolog 3-222 

Tau-3 Spectrofluorimeter with a front facing illumination method and were corrected for 
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the spectral response of the machine (Durham). 

 

Powder X-ray Diffraction 

Samples were processed through a 100 µm microsieve and run on silica blank disks. 

Samples were run on a Bruker D500 (Durham). 

 

Single Crystal Crystallography 

Suitable single crystals were mounted using either silicon grease or perflouropolyether on 

a thin glass fibre. Crystallographic measurements were carried out using a Bruker 

SMART 6K (6000 CCD) (Durham) or a Bruker ApexII diffractometer (Monash) or 

Nonius Kappa CCD diffractometer (Monash). The instruments were equipped with a 

graphite monochromatic Mo-Kα radiation (γ = 0.71073). The standard data collection 

temperature was 120 K, maintained using an open flow N2 Oxford Cryostream device. 

Integration was carried out using SAINT software. Data sets were corrected for Lorentz 

and polarization effects and for the effects of absorption. Structures were solved using 

direct methods in SHELXS-973 and developed using conventional alternating cycles of 

least-squares refinement with SHELXL-974 and difference Fourier synthesis with the aid 

of the graphical interface program X-Seed.5,6 All non-hydrogen atoms were treated as 

anisotropic. In all cases hydrogen atoms were fixed in idealised positions and allowed to 

ride on the parent atom to which they were attached. Hydrogen atom thermal parameters 

were tied to those of the parent atom. Where possible N-H and O-H hydrogen atoms were 

located experimentally and their position and displacement parameters refined or their 

position parameters constrained to ideal distances from their parent atoms. Molecular 

graphics were produced using the program POV-ray.7 

 

Rheometry 

Rheology experiments were performed using a TA Instruments Advanced Rheometer 

2000 (Durham). A cylindrical cup geometry was used for experiments run on gel samples 

of compounds 1.1a and 1.2. A parallel plate geometry (40 mm diameter) was used for 

experiments run on gel samples of compound 3.10. All experiments were run at 20 oC. 

Frequency sweep measurements were performed over a range of 1 to 100 Hz with a 
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constant ocs. torque value of 100 Nm. Stress sweep measurements were performed over 

an osc. torque range of 1 Nm to 20000 Nm with a constant frequency of 1 Hz. Time or 

temperature sweep measurements were performed at a constant ocs. torque value of 100 

Nm and constant frequency value of 1 Hz.  

 A typical measurement performed by the rheometer was done by rotating the head 

group (the parallel plate or cylinder) at a specified rotation (frequency in Hz) and 

specified torque (in Nm). The torque was converted into “stress” (expressed in Pa) by 

taking into account the contact surface area between the sample and the instrument. 

Results in this work are presented as the instrument parameter. Osc. torque (Nm) was 

chosen rather than the “stress” (Pa) parameter, as the “stress” is dependent on the 

geometry used and the contact area between the sample and the instrument. Comparison 

of the data from plotting sample variables like G and G against osc. torque or “stress” 

reveal no differences in the trends seen for all the gel samples tested.8-10 

 A typical experiment with the cylindrical cup geometry involved the following. A 

10 ml gel sample in a sealed 15 ml screw cap vial was dissolved by heating (care must be 

taken when heating sealed vessels due to the build up of pressure). The head cylinder was 

lowered to a gap distance of 500 µm. The solution was transferred via a preheated 

syringe to the rheometer. The sample was allowed to equilibrate at a pre-determined 

temperature and the experiment was performed. 

 A typical experiment with the parallel plates involved removing the pre-formed 

gel with a small spatula and placing it uniformly on the stationary plate covering the 

entire contact surface area between the two plates. The rotating plate was lowered to a 

gap distance of 1 mm. Frequency and stress sweep measurements were then performed. 

 There are two errors to take into account in all measurements. The errors on the 

output parameters of the machine are considerably smaller than experimental errors 

produced from volume and weight measurements, due to high accuracy of the instrument. 

However, as each measurement is performed at a specific frequency and specific torque, 

if a transition of interest happens to occur between two specific measurements the 

accuracy of this point of interest can only be determined by how close the two 

measurements are. The average of the two measurements is taken as the value for the 

transition of interest and the systematic errors shown in figures as the standard deviation 
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of the average between the two measurements. The second error is due to the accuracy of 

producing samples of gels that are identical (a random error). No two gels are identical. It 

was found that gels of a LMWG in a specific solvent at the same concentration varied in 

their exact rheological characteristics. Nucleation plays a very important role in the 

formation of LMW gels.11-13 To prevent error due to variation in nucleation due to 

different numbers of nuclei all vials used were cleared of dust by blowing high pressured 

gas through the vial before samples were prepared. The dryness of the organic solvents 

was also found to affect gel formation so all solvents used were dried over molecular 

sieves. The injection or adding of gel samples to the rheometer was also found to affect 

the measurements. Samples were therefore added using spatulas, with samples taken of 

equivalent size, or injected at similar rates and consistent directions. Even with all these 

precautions results were found to vary. Where possible this type of error was shown by 

running more than one sample but it was found that the errors in sample measurements 

did not prevent identification of trends within this work. Adding anions directly to 

preformed gels resulted in large errors in measurements, therefore, all anion experiments 

were on gels that had been formed after the anion was added. 
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Appendix B - Synthesis and analytical data 

 

Compound 2.1a 

1-[(1S)-1-Phenylethyl]-3-[2-({[(1S)-1-phenylethyl]carbamoyl}amino)ethyl] urea 

 

N
H

N
H

O

N
H

N
H

O

2.1a  

Synthesis: (S)-1-Phenylethyl isocyanate (2.10 g, 13.6 mmol,) was added to dry CHCl3 

(150 mL) in a three necked round bottom flask fitted with a condenser and flowing N2. 

To this solution was added ethylene diamine (0.408 g, 0.450 mL, 6.8 mmol) dropwise. 

The reaction mixture was refluxed for 24 hours under N2. A white precipitate formed 

which was filtered off using a Büchner funnel.  

 

Yield: 1.96 g; 81%; 5.5 mmol 

 
1H NMR: (400 MHz, d6-DMSO, δ/ppm, J/Hz) 1.30 (6H, doublet, J = 7.1, -CH3) 2.92-

3.01 (4H, multiplet, -CH2-) 4.67-4.74 (2H, multiplet, -CH-) 5.82-5.86 (2H, broad 

multiplet, -NH-CH2) 6.42 (2H, doublet, J = 8.1, -CH-NH-) 7.15-7.30 (10H, multiplet, Ar. 

C-H) 
13C NMR: (100 MHz, d6-DMSO, δ/ppm) 14.05; 23.30; 48.56; 125.75; 126.35; 128.13; 

145.76; 157.37  

Mass Spectra: ES+  m/z = 355.3 [44%] C20H26N4O2 + H+ 

   m/z = 377.2 [100%] C20H26N4O2 + Na+ 

Elemental analysis: Calc. C 67.8% H 7.38% N 15.8%  

   Exp.  C 66.9% H 7.32% N 15.6% 

Melting point: 216 +/- 1 oC 

FT-IR: (v, cm–1) 3321 (m), 2970 (w), 2930 (w), 2866 (w), 1620 (s), 1571 (s), 1526 (m). 
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Crystal data for 2.1a: C20H26N4O2, M = 354.45, colourless needle, 0.40  0.11 0.10 

mm3, monoclinic, space group P21 (No. 4), a = 12.1914(14), b = 4.6342(6), c = 17.341(2) 

Å, = 107.849(5)°, V = 932.57(19) Å3, Z = 2, Dc = 1.262 g/cm3, F000 = 380, Smart-6K, 

MoKradiation,  = 0.71073 Å, T = 120(2)K, 2max = 56.5º, 7921 reflections collected, 

4407 unique (Rint = 0.2294). Final GooF = 0.896, R1 = 0.0972, wR2 = 0.2219, R indices 

based on 2170 reflections with I >2sigma(I) (refinement on F2), 235 parameters, 1 

restraint. Lp and absorption corrections applied, = 0.084 mm-1. 

 

Compounds 2.1b -2.1g  

1-((S)-1-Phenyl-ethyl)-3-{4-[3-((S)-1-phenyl-ethyl)-ureido]-alkyl}-ureas 

 

N
H

N
H

N
H

N
H

OO

n

 

2.1a - g with n = 2 - 8  

 

Synthesis and analytical work performed by Dr. M. O. M. Piepenbrock; X-ray 

crystallography performed by author. 

 

Synthesis: In a typical synthesis a solution of (S)-(-)-α-methylbenzyl isocyanate (0.90 g, 

6.1 mmol) in dry CHCl3 (100 mL) was added dropwise to a stirred solution of the 

appropriate α-ω-diaminoalkane (3.0 mmol) under reflux. After complete addition the 

reaction was allowed to reflux under an inert N2 atmosphere for up to 24h. The resulting 

precipitate formed was collected by filtration and washed with CHCl3 (3 × 10 mL). The 

resulting white powders were obtained in good yields (75-82%). 

 

See supplementary data of the paper, M. O. M. Piepenbrock, Gareth O. Lloyd, Nigel 

Clarke, Jonathan W. Steed, Gelation is crucially dependent on functional group 

orientation and may be tuned by anion binding, Chem. Commun., 2008, 2644-2645, for 

analytical data for compounds 2.1b-2.1g. 
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Crystal data for 2.1c (form I): C22H30N4O2, M = 382.50, colourless needle, 0.35  0.21  

0.16 mm3, monoclinic, space group C2 (No. 5), a = 35.285(15), b = 4.651(2), c = 

12.784(5) Å, = 97.518(7)°, V = 2079.7(15) Å3, Z = 4, Dc = 1.222 g/cm3, F000 = 824, 

Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 56.4º, 12725 

reflections collected, 5076 unique (Rint = 0.0619). Final GooF = 1.152, R1 = 0.0761, wR2 

= 0.1907, R indices based on 4339 reflections with I >2sigma(I) (refinement on F2), 253 

parameters, 1 restraint. Lp and absorption corrections applied,  = 0.080 mm-1. 

 

Crystal data for 2.1c (form II): C22H30N4O2, M = 382.50, colourless needle, 0.21  0.07  

0.05 mm3, monoclinic, space group P21 (No. 4), a = 4.5914(1), b = 19.6481(4), c = 

11.2393(3) Å, = 90.8720(10)°, V = 1013.81(4) Å3, Z = 2, Dc = 1.253 g/cm3, F000 = 412, 

Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 61.0º, 18937 

reflections collected, 3189 unique (Rint = 0.0399). Final GooF = 1.104, R1 = 0.0376, wR2 

= 0.0886, R indices based on 2763 reflections with I >2sigma(I) (refinement on F2), 253 

parameters, 1 restraint. Lp and absorption corrections applied, = 0.082 mm-1. 

 

Crystal data for 2.1d: C23H32N4O2, M = 396.53, colourless needle, 0.49  0.24  0.10 

mm3, monoclinic, space group P21 (No. 4), a = 12.317(2), b = 4.6108(8), c = 19.488(3) 

Å = 107.519(4)°, V = 1055.4(3) Å3, Z = 2, Dc = 1.248 g/cm3, F000 = 428, Smart-6K, 

MoK radiation = 0.71073 Å, T = 120(2)K, 2max = 55.1º, 7923 reflections collected, 

4625 unique (Rint = 0.0499). Final GooF = 1.018, R1 = 0.0624, wR2 = 0.1354, R indices 

based on 3061 reflections with I >2sigma(I) (refinement on F2), 262 parameters, 1 

restraint. Lp and absorption corrections applied,  = 0.081 mm-1. 

 

Crystal data for 2.1f: C25H36N4O2, M = 424.58, colourless needle, 0.50  0.23  0.08 

mm3, monoclinic, space group P21 (No. 4), a = 12.275(4), b = 4.6302(15), c = 20.791(7) 

Å = 102.108(9)°, V = 1155.4(7) Å3, Z = 2, Dc = 1.220 g/cm3, F000 = 460, Smart-6K, 

MoK radiation = 0.71073 Å, T = 120(2)K, 2max = 54.0º, 12691 reflections collected, 

4874 unique (Rint = 0.1213). Final GooF = 0.988, R1 = 0.0592, wR2 = 0.1468, R indices 
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based on 4077 reflections with I >2sigma(I) (refinement on F2), 280 parameters, 1 

restraint. Lp and absorption corrections applied = 0.078 mm-1. 

 

Compound 2.2 

1-[(1R)-1-(1-Naphthyl)ethyl]-3-[2-({[(1R)-1-(1-naphthyl)ethyl]carbamoyl}amino) 

ethyl]urea 

 

N
H

N
H

O

N
H

N
H

O

2.2  

Synthesis: (R)-1-(1-Naphthyl) isocyanate (1.00 g, 5.08 mmol) was added to dry CHCl3 

(150 mL) in a three necked round bottom flask fitted with a condenser and flowing N2. 

To this solution was added ethylene diamine (0.152 g, 0.170 mL, 2.54 mmol) dropwise. 

The reaction mixture was refluxed for 24 hours under N2. A white precipitate formed and 

was filtered off using a Buchner funnel.  

 

Yield: 0.95 g; 82%; 2.1 mmol 

 
1H NMR: (400 MHz, d6-DMSO, δ/ppm, J/Hz) 1.44 (6H, doublet, J = 6.8, -CH3) 2.96-

3.08 (4H, multiplet, -CH2-) 5.51-5.58 (2H, multiplet, -CH-) 5.87 (2H, broad, -NH-CH2) 

6.57 (2H, doublet, J = 8.1, -CH-NH-) 7.44-7.56 (8H, multiplet, J = 7.3; 7.6; 8.1, Ar. C-H) 

7.79 (2H, doublet, J = 7.6, Ar. C-H) 7.92 (2H, doublet, J = 7.3, Ar. C-H) 8.12 (2H, 

doublet, J = 8.1, Ar. C-H) 
13C NMR: (100 MHz, d6-DMSO, δ/ppm) 14.05; 22.45; 44.64; 121.98; 123.23; 125.42; 

125.46; 126.00; 126.97; 128.54; 130.31; 133.37; 141.31; 157.30 

Elemental analysis: Calc. C 74.0% H 6.65% N 12.3%  

   Exp.  C 73.6% H 6.64% N 12.1% 

Melting point: 243 +/- 1 oC 

Mass Spectra: ES+  m/z = 455 [78%] C28H30N4O2 + H+ 
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   m/z = 477 (100%) C28H30N4O2 + Na+ 

   m/z = 931 (52%) 2C28H30N4O2 + Na+ 

FT-IR: (v, cm–1) 3315 (m), 2972.4 (w), 2938 (w), 2868 (w), 1614 (m), 1569 (s), 1509 

(m). 

 

Compound 2.3 

2-(3-{2-[3-((1S)-1-Methoxycarbonyl-2-methyl-propyl)-ureido]-ethyl}-ureido)-(1S)-3-

methyl-butyric acid methyl ester 

 

OO

N

O

N

N

O

N

O

O

HH

HH

2.3  

Synthesis: Methyl (S)-2-isocyanato-3-methylbutyrate (0.500 g, 3.18 mmol) was added to 

dry CHCl3 (150 mL) in a three necked round bottom flask fitted with a condenser and 

flowing N2. To this solution was added ethylene diamine (0.096 g, 0.110 mL, 1.54 mmol) 

dropwise. Reflux for 24 hours under N2. Solvent was removed using a rotary evaporator 

to give an oil which crystallized on standing. Crude product was purified by 

recrystallisation from MeCN.  

 

Yield: 0.26 g; 43%, 0.69 mmol 

 
1H NMR: (400 MHz, d3-MeCN, δ/ppm, J/Hz) 0.88 (6H, doublet, J = 6.9, tert-CH-CH3) 

0.91 (6H, doublet, J = 6.9, tert-CH-CH3) 1.99-2.09 (2H, multiplet, J = 5.6; 6.9; -CH-

(CH3)2) 3.13 (4H, multilpet, -CH2-) 3.66 (6H, singlet, -O-CH3) 4.15 (2H, doublet of 

doublets, J = 8.5; 5.6, -CH-NH) 5.33 (2H, broad, urea-NH-CH2-) 5.39 (2H, doublet, J = 

8.5, urea-NH-CH-) 
13C NMR: (100 MHz, d6-DMSO, δ/ppm) 17.00; 18.13; 30.38; 40.47; 51.02; 58.09; 

157.91; 173.13  

Elemental analysis: Calc. C 51.3% H 8.08% N 15.0%  
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   Exp.  C 51.6% H 8.13% N 14.6% 

Melting point: 190 +/- 2 oC 

Mass Spectra: ES+  m/z = 375 [100%] C16H30N4O6 + H+ 

   m/z = 397 (95%) C16H30N4O6 + Na+ 

   m/z = 771 (45%) 2C16H30N4O6 + Na+ 

FT-IR: (v, cm–1) 3327 (s), 3299 (s), 2659 (m), 2942 (m), 2976 (w), 1718 (s), 1663 (s). 

 

Crystal data for 2.3: C16H30N4O6, M = 374.44, colourless blocks, 0.24  0.20  0.17 mm3, 

monoclinic, space group P21 (No. 4), a = 9.138(11), b = 10.858(13), c = 11.209(12) Å, 

= 106.57(3)°, V = 1066(2) Å3, Z = 2, Dc = 1.167 g/cm3, F000 = 404, Smart-6K, MoK 

radiation, = 0.71073 Å, T = 250(2)K, 2max = 56.5º, 11442 reflections collected, 5093 

unique (Rint = 0.0300). Final GooF = 0.989, R1 = 0.0528, wR2 = 0.1383, R indices based 

on 3345 reflections with I >2sigma(I) (refinement on F2), 235 parameters, 1 restraint. Lp 

and absorption corrections applied, = 0.089 mm-1. 

 

Compound 3.1 

N-1,4-Di(5-methyl-3-amino-1H-pyrazol-1-carboxamidyl)butane 

N
H

O

N
N
H

N

ON

NH2
N

NH2

3.1  

Synthesis: 3-Amino-5-methylpyrazole (1.25 g, 12.8 mmol) was added to dry CHCl3 (100 

mL) in a three necked round bottom flask fitted with a condenser and flowing N2. To this 

solution was added 1,4-diisocyanatobutane (0.847 g, 0.810 mL, 6.4 mmol) dropwise. 

Reflux for 24 hours under N2. Solvent was removed using a rotary evaporator to give 

crystalline material. 

 

Yield: 2.08 g; 97%, 6.2 mmol 
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1H NMR: (400 MHz, CDCl3, δ/ppm, J/Hz) 1.65-1.71 (4H, multiplet, -CH2-) 2.11 (6H, 

singlet, -CH3) 3.30-3.40 (4H, multiplet, N-CH2-) 5.20 (2H, singlet, =CH-) 5.38 (4H, 

broad singlet, -NH2) 7.10 (2H, singlet, -NH-) 
13C NMR: (100 MHz, d6-DMSO, δ/ppm) 13.7, 26.7, 38.7, 87.7, 150.1, 150.6, 152.6 

Elemental analysis: Calc. C 50.3% H 6.63% N 33.5%  

   Exp.  C 49.4% H 6.54% N 32.7% 

Melting point: 158 +/- 2 oC 

Mass Spectra: ES+  m/z = 335 [100%] C14H22N8O2 + H+ 

   m/z = 357 [24%] C14H22N8O2 + Na+ 

FT-IR: (v, cm–1) 3450 (m), 3383 (m), 3340 (m), 2985 (w), 2945 (m), 2928 (w), 2862 (w), 

1705 (s), 1693 (s), 1615 (s), 1548 (m), 1523 (s). 

 

Crystal data for 3.1: C14H22N8O2, M = 334.40, colourless needles, 0.15  0.12  0.07 

mm3, monoclinic, space group P21/c (No. 14), a = 8.4926(15), b = 8.8024(14), c = 

11.241(2) Å, = 92.522(6)°, V = 839.5(2) Å3, Z = 2, Dc = 1.323 g/cm3, F000 = 356, 

Smart-6K, MoK radiation, = 0.71073 Å, T = 116(2)K, 2max = 54.0º, 3603 reflections 

collected, 1830 unique (Rint = 0.0596). Final GooF = 0.970, R1 = 0.0518, wR2 = 0.1331, 

R indices based on 1259 reflections with I >2sigma(I) (refinement on F2), 110 

parameters, 0 restraints. Lp and absorption corrections applied, = 0.094 mm-1. 

 

Crystal data for 3.1.CHCl3: C16H24Cl6N8O2, M = 573.13, colourless block, 0.21  0.18  

0.16 mm3, monoclinic, space group P21/c (No. 14), a = 14.0047(6), b = 7.9376(3), c = 

11.8478(5) Å, = 107.107(2)°, V = 1258.78(9) Å3, Z = 2, Dc = 1.512 g/cm3, F000 = 588, 

Smart-6K, MoK radiation, = 0.71073 Å, T = 123(2)K, 2max = 56.0º, 10086 

reflections collected, 3041 unique (Rint = 0.0346). Final GooF = 1.029, R1 = 0.0587, wR2 

= 0.1514, R indices based on 2165 reflections with I >2sigma(I) (refinement on F2), 146 

parameters, 0 restraints. Lp and absorption corrections applied, = 0.713 mm-1. 

 

Compound 3.2 

5-Amino-N-p-tolyl-1H-pyrazole-1-carboxamide 
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N
H

N

O

N

NH2

3.2  

Synthesis: 3-Amino-5-methylpyrazole (1.00 g, 10.3 mmol) was added to 100 mL dry 

CHCl3 in a three necked round bottom flask fitted with a condenser and flowing N2. To 

this solution was added p-tolyl isocyanate (1.37 g, 1.300 ml, 10.3 mmol). Reflux for 24 

hours under N2. Solvent was removed using a rotary evaporator to give crystalline solid. 

 

Yield: 2.06 g; 87%, 8.96 mmol 

 
1H NMR: (400 MHz, CDCl3, δ/ppm, J/Hz) 2.17 (3H, singlet, -CH3 (pyr)) 2.33 (3H, 

singlet, -CH3 (tolyl)) 5.26 (1H, singlet, =CH-) 5.44 (2H, broad, -NH2) 7.16 (2H, doublet, 

J = 8.4, -CH=(tolyl)) 7.44 (2H, doublet, J = 8.4, -CH=(tolyl)) 8.97 (1H, singlet, -NH-) 
13C NMR: (100 MHz, d6-DMSO, δ/ppm) 12.7, 19.3, 99.6, 117.9, 128.2, 130.2, 137.0, 

141.7, 149.1, 151.7 

Elemental analysis: Calc. C 62.6% H 6.13% N 24.3%  

   Exp.  C 62.5% H 6.07% N 24.0% 

Melting point: 172 +/- 2 oC 

Mass Spectra: ES+  m/z = 231 [100%] C12H14N4O + H+ 

   m/z = 253 [92%] C12H14N4O + Na+ 

   m/z = 483 [45%] 2C12H14N4O + Na+ 

FT-IR: (v, cm–1) 3284 (w), 2989 (s), 2977 (s), 2907 (m), 1709 (m), 1673 (m), 1611 (w), 

1507 (s). 

 

Crystal data for 3.2: C12H14N4O, M = 230.27, colourless block, 0.41  0.14  0.08 mm3, 

orthorhombic, space group Pbca (No. 61), a = 13.1977(5), b = 8.5124(3), c = 20.9749(8) 

Å, V = 2356.41(15) Å3, Z = 8, Dc = 1.298 g/cm3, F000 = 976, Smart-6K, MoK 

radiation, = 0.71073 Å, T = 120(2)K, 2max = 56.0º, 33994 reflections collected, 2842 
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unique (Rint = 0.0666). Final GooF = 1.029, R1 = 0.0499, wR2 = 0.1255, R indices based 

on 2083 reflections with I >2sigma(I) (refinement on F2), 162 parameters, 2 restraints. Lp 

and absorption corrections applied, = 0.087 mm-1. 

 

Compound 3.3 

1-tert-Butyl-3-(3-methyl-1H-pyrazol-5-yl)thiourea 

N
H

N

N
H

N
H

S

3.3  

Synthesis: 3-Amino-5-methylpyrazole (0.766 g, 7.9 mmol) was added to 100 mL dry 

CH2Cl2 in a three necked round bottom flask fitted with a condenser and flowing N2. To 

this solution was added t-butyl isothiocyanate (0.908 g, 1.00 mL, 7.9 mmol) dropwise. 

Reflux for 24 hours under N2. Solvent was removed using a rotary evaporator to give oil. 

Crude product was purified by recrystallisation from CHCl3 to form a crystalline solvate 

that lost the solvent to give the pure compound upon exposure to the atmosphere. 

 

Yield: 1.23 g; 74%, 5.86 mmol 

 
1H NMR: (400 MHz, CDCl3, δ/ppm, J/Hz) 1.57 (9H, singlet, methyl t-butyl) 2.27 (3H, 

singlet, -CH3) 5.53 (1H, singlet, =CH-) 7.87 (1H, singlet, -NH-) 9.20 (1H, broad singlet, -

NH-N=) 9.80 (1H, singlet -NH-) 
13C NMR: (100 MHz, d6-DMSO, δ/ppm) 10.31; 28.38; 52.83; 93.03); 138.92; 150.05; 

175.89 

Elemental analysis: Calc. C 50.9% H 7.60% N 26.4%  

   Exp.  C 50.7% H 7.60% N 26.3% 

Melting point: 186 +/- 1 oC 

Mass Spectra: ES-  m/z = 211.3 [50%] C9H16N4S - H+ 

   m/z = 256.9 (100%) C9H16N4S + Cl- 

   m/z = 422.4 [5%] 2(C9H16N4S) - H+ 

   m/z = 458.3 (3%) 2(C9H16N4S) + Cl- 
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FT-IR: (v, cm–1) 3231 (m), 3190 (m), 3145 (w), 3072 (m), 2984 (w), 2966 (m), 2932 (w), 

2874 (w), 1593 (s), 1547 (s), 1486 (s). 

 

Crystal data for 3.3: C9H16N4S, M = 212.32, colourless block, 0.28  0.16  0.13 mm3, 

monoclinic, space group P21/n (No. 14), a = 9.9582(2), b = 10.3379(2), c = 12.2352(3) 

Å, = 108.2790(10)°, V = 1196.02(4) Å3, Z = 4, Dc = 1.179 g/cm3, F000 = 456, Smart-6K, 

MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 61.0º, 11608 reflections collected, 

3632 unique (Rint = 0.0373). Final GooF = 1.028, R1 = 0.0499, wR2 = 0.1359, R indices 

based on 2620 reflections with I >2sigma(I) (refinement on F2), 127 parameters, 0 

restraints. Lp and absorption corrections applied, = 0.242 mm-1. 

 

Crystal data for 3.3.CHCl3: C20H26Cl6N8S2, M = 655.31, colourless block, 0.21  0.21  

0.17 mm3, monoclinic, space group P21/c (No. 14), a = 20.5918(7), b = 12.7948(4), c = 

12.6182(4) Å, = 102.5780(10)°, V = 3244.70(18) Å3, Z = 4, Dc = 1.341 g/cm3, F000 = 

1344, Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 56.0º, 19739 

reflections collected, 7834 unique (Rint = 0.0676). Final GooF = 0.966, R1 = 0.0516, wR2 

= 0.1403, R indices based on 5257 reflections with I >2sigma(I) (refinement on F2), 325 

parameters, 0 restraints. Lp and absorption corrections applied, = 0.682 mm-1.  

 

Compound 3.4 

tert-Butyl 5-amino-1H-pyrazole-1-carboxylate 

 

N N

NH2

O

O

3.4  

Synthesis: 3-Aminopyrazole (1.00 g, 12.0 mmol) is added to dry CHCl3 (100 mL) in a 

three necked round bottom flask fitted with a condenser and bubbler. To this solution was 
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added di-tert-butylpyrocarbonate (2.63 g, 12.0 mmol). Solution was stirred for 24 hours. 

Solvent was removed using a rotary evaporator to give oil. Recrystallised from CHCl3 to 

give pure crystalline material. 

 

Yield: 1.52 g; 69%, 8.30 mmol 

 
1H NMR: (400MHz, CDCl3, δ/ppm, J/Hz) 1.62 (9H, singlet, -(CH3)3) 5.25 (1H, singlet, 

=CH-) 5.26 (2H, broad singlet, -NH2) 7.24 (1H, singlet, -CH=)  
13C NMR: (100 MHz, CDCl3, δ/ppm) 28.2, 85.2, 88.7, 99.3, 143.6, 150.4, 

Elemental analysis: Calc. C 52.5% H 7.15% N 22.9%  

   Exp.  C 52.0% H 7.20% N 22.9% 

Melting point: 117 +/- 2 oC 

Mass Spectra: ES+  m/z = 84 [45%] C3H5N3 + H+ 

   m/z = 447 (8%) C8H13N3O2 + H+ 

FT-IR: (v, cm–1) 3443 (m), 3286 (w), 3165 (w), 3116 (w), 2982 (m), 2940 (w), 2907 (w), 

1710 (s), 1619 (s). 

 

Crystal data for 3.4: C8H13N3O2, M = 183.21, colourless prism, 0.28  0.24  0.20 mm3, 

monoclinic, space group P21/c (No. 14), a = 10.0050(19), b = 8.4249(16), c = 12.184(2) 

Å, = 108.487(6)°, V = 974.0(3) Å3, Z = 4, Dc = 1.249 g/cm3, F000 = 392, Smart-6K, 

MoK radiation, = 0.71073 Å, T = 100(2)K, 2max = 61.6º, 8496 reflections collected, 

2989 unique (Rint = 0.0626). Final GooF = 1.011, R1 = 0.0531, wR2 = 0.1233, R indices 

based on 1714 reflections with I >2sigma(I) (refinement on F2), 126 parameters, 2 

restraints. Lp and absorption corrections applied, = 0.092 mm-1. 

 

Compound 3.5 

tert-Butyl 5-amino-3-methyl-1H-pyrazole-1-carboxylate 
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N N

NH2

O

O

3.5  

Synthesis: 3-Amino-5-methylpyrazole (2.00 g, 20.3 mmol) was added to dry CHCl3 (100 

mL) in a three necked round bottom flask fitted with a condenser and bubbler. To this 

solution was added di-tert-butylpyrocarbonate (4.49 g, 20.3 mmol). Solution was stirred 

for 24 hours. Solvent was removed using a rotary evaporator to give oil that crystallized 

upon standing. 

 

Yield: 3.83 g; 96%, 19.4 mmol 

 
1H NMR: (400 MHz, CDCl3, δ/ppm, J/Hz) 1.60 (9H, singlet, -(CH3)3) 2.12 (3H, singlet, 

-CH3) 5.18 (1H, singlet, =CH-) 5.35 (2H, broad singlet, -NH2)  
13C NMR: (100 MHz, CDCl3, δ/ppm) 14.4, 28.0, 84.9, 89.3, 92.0, 150.7, 153.2 

Elemental analysis: Calc. C 54.8% H 7.67% N 21.3%  

   Exp.  C 54.3% H 7.61% N 20.9% 

Melting point: 120 +/- 2 oC 

Mass Spectra: ES+  m/z = 198 [100%] C9H15N3O2 + H+ 

   m/z = 220 [5%] C9H15N3O2 + Na+ 

   m/z = 395 [33%] 2C9H15N3O2 + H+ 

FT-IR: (v, cm–1) 3441 (m), 3358, (w), 3285 (w), 3212 (w), 3161 (w), 3120 (w), 2982 

(m), 2933 (w), 1710 (s), 1619 (s), 1553 (m). 

 

Crystal data for 3.5: C9H15N3O2, M = 197.24, colourless prism, 0.24  0.19  0.13 mm3, 

monoclinic, space group P21/c (No. 14), a = 9.8180(3), b = 9.6472(3), c = 11.6088(4) 

Å, = 106.9080(10)°, V = 1052.01(6) Å3, Z = 4, Dc = 1.245 g/cm3, F000 = 424, Smart-6K, 

MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 61.0º, 9721 reflections collected, 

3199 unique (Rint = 0.0403). Final GooF = 1.024, R1 = 0.0479, wR2 = 0.1228, R indices 
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based on 2223 reflections with I >2sigma(I) (refinement on F2), 135 parameters, 4 

restraints. Lp and absorption corrections applied, = 0.090 mm-1. 

 

Compound 3.6 

tert-Butyl 5-amino-3-phenyl-1H-pyrazole-1-carboxylate 

 

N N

NH2

O

O

3.6
 

Synthesis: 3-Amino-5-phenylpyrazole (2.00 g, 12.6 mmol) was added to dry CHCl3 (100 

mL) in a three necked round bottom flask fitted with a condenser and bubbler. To this 

solution was added di-tert-butylpyrocarbonate (2.74 g, 12.6 mmol). Solution was stirred 

for 24 hours. Solvent was removed using a rotary evaporator to give pure crystalline 

material. 

 

Yield: 3.14 g; 96%, 12.1 mmol 

 
1H NMR: (400 MHz, CDCl3, δ/ppm, J/Hz) 1.68 (9H, singlet, -(CH3)3) 5.35 (2H, broad 

singlet, -NH2) 5.75 (1H, singet, =CH-) 7.34 (1H, triplet, J = 8.0, -CH=(phenyl)) 7.38 (2H, 

triplet, J = 8.0, -CH=(phenyl)) 7.81 (2H, doublet, J = 8.0, -CH=(phenyl)) 
13C NMR: (100 MHz, CDCl3, δ/ppm) 27.0, 84.2, 85.5, 125.3, 127.4, 127.8, 131.4, 149.7, 

150.0, 153.0 

Elemental analysis: Calc. C 64.9% H 6.61% N 16.2%  

   Exp.  C 64.2% H 6.60% N 15.9% 

Melting point: 138 +/- 2 oC 

Mass Spectra: ES+  m/z = 160 [100%] C9H9N3 + H+ 

   m/z = 260 (12%) C14H17N3O2 + H+ 

FT-IR: (v, cm–1) 3481 (m), 3387 (w), 3289 (M), 3223 (w), 3182 (w), 2981 (m), 2936 
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(w), 2902 (w), 1746 (s), 1614 (s), 1567 (s), 1519 (w). 

 

Crystal data for 3.6: C14H17N3O2, M = 259.31, colourless block, 0.28  0.26  0.25 mm3, 

monoclinic, space group P21/n (No. 14), a = 6.2704(4), b = 13.1872(8), c = 16.6178(10) 

Å, = 99.116(2)°, V = 1356.75(14) Å3, Z = 4, Dc = 1.269 g/cm3, F000 = 552, Smart-6K, 

MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 61.0º, 24229 reflections collected, 

4127 unique (Rint = 0.0440). Final GooF = 1.026, R1 = 0.0440, wR2 = 0.1191, R indices 

based on 3371 reflections with I >2sigma(I) (refinement on F2), 180 parameters, 0 

restraints. Lp and absorption corrections applied, = 0.087 mm-1. 

 

Compound 3.7 

tert-Butyl 3-methyl-5-(3-(naphthalen-1-yl)ureido)-1H-pyrazole-1-carboxylate 

 

N N

NH

O

O

N
HO

3.7  

Synthesis: Compound 3.5 (1.22 g, 6.20 mmol) was added to dry CHCl3 (100 mL) in a 

three necked round bottom flask fitted with a condenser and flowing N2. To this solution 

was added 1-naphthylisocyanate (1.05 g, 0.890 ml. 6.20 mmol). Refluxed under N2 for 24 

hours. Precipitate formed which was filtered and was found to be pure. 

 

Yield: 1.16 g; 51%, 3.18 mmol  

 
1H NMR: (400 MHz, CDCl3, δ/ppm, J/Hz) 1.47 (9H, singlet, -(CH3)3) 2.17 (3H, singlet, 

-CH3) 6.53 (1H, singlet, =CH-) 7.44-7.50 (3H, multiplet, -CH=) 7.69-7.71 (1H, multiplet, 

-CH=) 7.73-7.75 (1H, multiplet, -CH=) 7.85-7.88 (1H, multiplet, -CH=) 8.03-8.08 (1H, 

multiplet, -CH=) 8.20 (1H, broad singlet, -NH-) 9.76 (1H, singlet, -NH-) 
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13C NMR: (100 MHz, d6-DMSO, δ/ppm) 10.6, 27.6, 84.8, 96.1, 116.8, 117.4, 122.1, 

123.9, 125.4, 125.7, 126.1, 128.5, 133.6, 144.2, 151.1, 151.2, 152.0 

Elemental analysis: Calc. C 65.6% H 6.05% N 15.3%  

   Exp.  C 66.6% H 5.93% N 14.7% 

Melting point: Decomposition 220 oC 

Mass Spectra: ES+  m/z = 366 [30%] C20H22N4O3 + Na+ 

   m/z = 755 [100%] 2C20H22N4O3 + Na+ 

FT-IR: (v, cm–1) 3305 (w), 3280 (w), 3235 (w), 3161 (w), 3046 (w), 2982 (w), 2935 (w), 

1747 (w), 1724 (m), 1704 (m), 1667 (m), 1635 (w), 1535 (s). 

 

Compound 3.8 

tert-Butyl 3-methyl-5-(3-p-tolylureido)-1H-pyrazole-1-carboxylate 

 

N N

NH

O

O

N
HO

3.8  

Synthesis: Compound 3.5 (1.50 g, 7.60 mmol) was added to dry CHCl3 (100 mL) in a 

three necked round bottom flask fitted with a condenser and flowing N2. To this solution 

was added p-tolyl isocyanate (1.01 g, 0.960 ml, 7.60 mmol). Refluxed under N2 for 24 

hours. Solvent was removed using a rotary evaporator to give an oil. Oil was 

recrystallised from MeOH to give pure crystalline material. 

 

Yield: 0.93 g; 37%, 2.82 mmol  

 
1H NMR: (400 MHz, CDCl3, δ/ppm, J/Hz) 1.52 (9H, singlet, -(CH3)3) 2.21 (3H, singlet, 

-CH3 (pyrazole)) 2.30 (3H, singlet, -CH3 (tolyl)) 6.54 (1H, singlet, =CH-) 7.11 (2H, 

doublet, , J = 10.0, -CH=) 7.30 (2H, doublet, , J = 10.0, -CH=) 7.94 (1H, broad singlet, -

NH-) 9.63 (1H, singlet, -NH-) 
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13C NMR: (100 MHz, d6-DMSO, δ/ppm) 11.8, 20.1, 28.5, 83.2, 98.7, 118.3, 121.9, 

128.4, 131.2, 136.7, 148.8, 151.6, 152.9 

Elemental analysis: Calc. C 61.8% H 6.71% N 17.0%  

   Exp.  C 61.4% H 6.79% N 16.6% 

Melting point: 184 +/- 2 oC 

Mass Spectra: ES+  m/z = 330.9 [85%] C17H22N4O3 + H+ 

   m/z = 353.0 (50%) C17H22N4O3 + Na+ 

   m/z = 660.1 [35%] 2(C17H22N4O3) + H+ 

   m/z = 683.0 (100%) 2(C17H22N4O3) + Na+ 

 

Crystal data for 3.8: C17H22N4O3, M = 330.39, colourless needle, 0.25  0.21  0.19 mm3, 

monoclinic, space group P21/c (No. 14), a = 11.4293(8), b = 16.9788(11), c = 

18.1269(11) Å, = 90.217(3)°, V = 3517.6(4) Å3, Z = 8, Dc = 1.248 g/cm3, F000 = 1408, 

Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 61.1º, 37755 

reflections collected, 10755 unique (Rint = 0.0587). Final GooF = 1.022, R1 = 0.0540, 

wR2 = 0.1287, R indices based on 6500 reflections with I >2sigma(I) (refinement on F2), 

437 parameters, 0 restraints. Lp and absorption corrections applied, = 0.088 mm-1. 

 

Compound 3.9 

tert-Butyl 3-methyl-5-(3-(3-nitrophenyl)ureido)-1H-pyrazole-1-carboxylate 

 

N N

N
H

N
H

O
N

+

O

O

O

O

3.9  

Synthesis: Compound 3.5 (1.50 g, 7.60 mmol) was added to dry CHCl3 (100 mL) in a 

three necked round bottom flask fitted with a condenser and flowing N2. To this solution 

was added 3-nitrophenylisocyanate (1.25 g, 0.960 ml, 7.60 mmol). Refluxed under N2 for 

24 hours. Solvent was removed using a rotary evaporator to give pure yellow precipitate. 
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Yield: 2.61 g; 96%, 7.27 mmol 

 
1H NMR: (400 MHz, d6-DMSO, δ/ppm, J/Hz) 1.58 (9H, singlet, -(CH3)3) 2.13 (3H, 

singlet, -CH3) 6.48 (1H, singlet, =CH-) 7.56 (1H, triplet, J = 8.4, -CH=) 7.70 (1H, 

doublet of doublets of doublets, J = 8.4, 1.0, 2.2, -CH=) 7.83 (1H, doublet of doublets of 

doublets, J = 8.4, 1.0, 2.2, -CH=) 8.53 (1H, triplet, J = 2.2, -CH=) 9.72 (1H, singlet, -NH-

) 10.50 (1H, singlet, -NH-) 
13C NMR: (100 MHz, d6-DMSO, δ/ppm) 13.8, 27.6, 85.1, 94.0, 96.1, 112.0, 116.7, 

124.2, 130.1, 140.6, 141.8, 148.1, 150.1, 151.8 

Elemental analysis: Calc. C 53.2% H 5.30% N 19.4% 

   Exp.  C 53.0% H 5.54% N 17.8%  

Melting Point: 176 +/-1 oC 

Mass Spectra: ES-  m/z = 360.2 [51%] C11H11N5O3 - H
+ 

   m/z = 405.9 (80%) C11H11N5O3 + Cl- 

   m/z = 720.7 [25%] 2(C11H11N5O3) - H
+ 

   m/z = 566.2 (12%) 2(C11H11N5O3) + Cl- 

FT-IR: (v, cm–1) 3342 (w), 3272 (m), 3141 (w), 3092 (w), 3034 (w), 2989 (w), 2940 (w), 

1694 (m), 1661 (m), 1608 (m), 1586 (w), 1564 (m). 

 

Compound 3.10 

1-(3-Methyl-1H-pyrazol-5-yl)-3-(3-nitrophenyl)urea 

 

N
H

N

N
H

N
H

O
N

+

O

O

3.10  

 

Synthesis: Compound 3.9 (2.50 g, 9.65mmol) was added to acetic acid (25 ml) in a 

round bottom flask fitted with a condenser. Refluxed for 24 hours. Upon cooling a solid 

formed which was filtered off. The solid was washed with water (2 x 25 ml) and 
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saturated sodium carbonate solution (2 x 25 ml) to give crude product. The filtered 

solvent was dried by removing the solvent using a rotary evaporator to give fine yellow 

solid. This solid product was washed with water (2 x 25 ml) and saturated sodium 

carbonate solution (2 x 25 ml) to give crude product. The product was recrystallisation 

from MeCN if found to be not analytically pure. 

 

Yield: 2.31 g; 92%, 8.92 mmol 

 
1H NMR: (400 MHz, d3-MeCN, δ/ppm, J/Hz) 2.23 (3H, singlet, -CH3) 5.85 (1H, singlet,  

=CH-) 7.46 (1H, triplet, J = 8.0, -CH=) 7.71 (1H, doublet of doublets of doublets, J = 8.0, 

0.9, 2.2, -CH=) 7.81 (1H, doublet of doublets of doublets, J = 8.0, 0.9, 2.2, -CH=) 8.13 

(1H, broad singlet, -NH- (pyrazole)) 8.55 (1H, triplet, J = 2.2, -CH=) 10.10 (1H, broad 

singlet, -NH-) 10.45 (1H, broad singlet -NH-) 
13C NMR: (100 MHz, d6-DMSO, δ/ppm) 10.8, 94.0, 112.0, 116.1, 124.2, 130.0, 141.2, 

148.11, 152.0 

Elemental analysis: Calc. C 50.6% H 4.24% N 26.8%  

   Exp.  C 50.4% H 4.25% N 26.2% 

Melting Point: 180 +/-1 oC 

Mass Spectra: ES-  m/z = 260.2 [53%] C11H11N5O3 - H
+ 

   m/z = 306.0 (100%) C11H11N5O3 + Cl- 

   m/z = 520.8 [25%] 2(C11H11N5O3) - H
+ 

   m/z = 566.2 (12%) 2(C11H11N5O3) + Cl- 

FT-IR: (v, cm–1) 3346 (m), 3042 (m), 3010 (w), 2936 (w), 1707 (s), 1611 (m), 1583 (m), 

1544 (s), 1523 (s). 

 

Crystal data for 3.10: C22H22N10O6, M = 522.50, yellow prism, 0.21  0.18  0.10 mm3, 

monoclinic, space group P21/n (No. 14), a = 10.4699(10), b = 5.4899(5), c = 20.581(2) 

Å, = 103.507(4)°, V = 1150.26(19) Å3, Z = 2, Dc = 1.509 g/cm3, F000 = 544, Smart-6K, 

MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 61.0º, 10993 reflections collected, 

3450 unique (Rint = 0.0388). Final GooF = 1.031, R1 = 0.0486, wR2 = 0.1254, R indices 
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based on 2428 reflections with I >2sigma(I) (refinement on F2), 173 parameters, 0 

restraints. Lp and absorption corrections applied, = 0.114 mm-1. 

 

Compound 3.11a 

1-(1-(p-Tolylcarbamoyl)-5-methyl-1H-pyrazol-3-yl)-3-p-tolylurea 

 

N N

N
H

N
H

OO

NH

3.11a  

Synthesis: 3-amino-5-methylpyrazole (1.00 g, 10.3 mmol) was added to dry CHCl3 (100 

mL) in a three necked round bottom flask fitted with a condenser and flowing N2. To this 

solution was added p- tolyl isocyanate (2.74 g, 2.60 ml, 20.6 mmol) dropwise. The 

solution was refluxed for 24 hours under N2. The solvent was removed using a rotary 

evaporator to give a crystalline solid of a mixture of isomers. Compound 3.11a was 

isolated by crystallisation from hot CHCl3 and the crystalline material filtered hot. Solid 

was washed with hot CHCl3 (15 ml). 

 

Yield: 0.79 g; 33%, 0.34 mmol 

 
1H NMR: (400 MHz, d6-DMSO, δ/ppm, J/Hz) 2.22 (3H, singlet, -CH3) 2.51 (3H, singlet, 

-CH3) 3.32 (3H, singlet, -CH3) 6.44 (1H, singlet, =CH-) 7.08 (2H, doublet, J = 6.4; -

CH=(tolyl)) 7.14 (2H, doublet, J = 7.2; -CH=(tolyl)) 7.34 (2H, doublet, J = 6.4; -

CH=(tolyl)) 7.53 (2H, doublet, J = 7.2; -CH=(tolyl)) 8.99 (1H, singlet, -NH-) 9.12 (1H, 

singlet, -NH-) 9.81 (1H, singlet, -NH-) 
13C NMR: (100 MHz, d6-DMSO, δ/ppm) 13.8, 20.3, 20.4, 101.4, 118.4, 121.2, 129.0, 

129.1, 131.2, 133.0, 134.5, 136.5, 143.2, 148.4, 148.6, 151.7 

Elemental analysis: Calc. C 65.9% H 5.93% N 19.2%  
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   Exp.  C 66.1% H 5.82% N 19.3% 

Melting point: 158 +/- 2 oC 

Mass Spectra: ES+  m/z = 231 [100%] C20H21N5O2 – C8H7N4O1 + H+ 

   m/z = 364 [34%] C20H21N5O2 + H+ 

   m/z = 386 [78%] C20H21N5O2 + Na+ 

   m/z = 749 [45%] 2C20H21N5O2 + Na+ 

FT-IR: (v, cm–1) 3382 (m), 3283 (m), 3136, w), 3037 (W), 2977 (w), 2923 (w), 2866 

(w), 1732 (m), 1648 (m), 1594 (m). 

 

Crystal data for 3.11a (form I): C20H21N5O2, M = 363.42, colourless needle, 0.31  0.14  

0.06 mm3, triclinic, space group P-1 (No. 2), a = 5.8615(2), b = 11.0671(4), c = 

14.0882(5) Å, = 91.1250(10), = 98.7050(10), = 97.0080(10)°, V = 895.95(5) Å3, Z 

= 2, Dc = 1.347 g/cm3, F000 = 384, Smart-6K, MoK radiation, = 0.71073 Å, T = 

120(2)K, 2max = 61.0º, 16676 reflections collected, 5478 unique (Rint = 0.0371). Final 

GooF = 1.031, R1 = 0.0541, wR2 = 0.1468, R indices based on 3835 reflections with I 

>2sigma(I) (refinement on F2), 244 parameters, 0 restraints. Lp and absorption 

corrections applied, = 0.091 mm-1. 

 

Crystal data for 3.11a (form II): C20H21N5O2, M = 363.42, colourless needle, 0.27  0.16 

 0.09 mm3, triclinic, space group P-1 (No. 2), a = 4.5914(16), b = 7.115(2), c = 

28.028(10) Å, = 93.378(7), = 92.584(7), = 104.976(7)°, V = 881.3(5) Å3, Z = 2, Dc 

= 1.370 g/cm3, F000 = 384, Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 

2max = 50.0º, 7025 reflections collected, 3086 unique (Rint = 0.0601). Final GooF = 

1.136, R1 = 0.1765, wR2 = 0.4279, R indices based on 2257 reflections with I >2sigma(I) 

(refinement on F2), 244 parameters, 0 restraints. Lp and absorption corrections applied, 

= 0.092 mm-1. 

 

Metal complexes of 3.10 and 3.11a 
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Crystal data for [Zn2Cl2(-Cl)2(-N,O-3.10)2]: C11H11Cl2N5O3Zn, M = 397.52, yellow 

prism, 0.31  0.15  0.13 mm3, monoclinic, space group C2/c (No. 15), a = 27.907(3), b 

= 7.9249(8), c = 14.6409(14) Å, = 113.679(4)°, V = 2965.3(5) Å3, Z = 8, Dc = 1.781 

g/cm3, F000 = 1600, Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 

50.0º, 7266 reflections collected, 2479 unique (Rint = 0.0586). Final GooF = 1.380, R1 = 

0.0894, wR2 = 0.2203, R indices based on 2034 reflections with I >2sigma(I) (refinement 

on F2), 200 parameters, 0 restraints. Lp and absorption corrections applied, = 2.035 

mm-1. 

 

Crystal data for [CuBr(-N,O-3.10)2]Br2H2O: C22H26Br2CuN10O8, M = 781.89, green 

block, 0.29  0.28  0.24 mm3, monoclinic, space group P21/c (No. 14), a = 15.0983(6), 

b = 14.3747(5), c = 14.4724(5) Å, = 111.9580(10)°, V = 2913.14(18) Å3, Z = 4, Dc = 

1.783 g/cm3, F000 = 1564, Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 

2max = 61.1º, 52510 reflections collected, 8905 unique (Rint = 0.0625). Final GooF = 

1.011, R1 = 0.0358, wR2 = 0.0771, R indices based on 6131 reflections with I >2sigma(I) 

(refinement on F2), 406 parameters, 6 restraints. Lp and absorption corrections applied, 

= 3.557 mm-1. 

 

Crystal data for [Cu(-N,O-3.10)2(MeOH)2]2BF4: C24H30B2CuF8N10O8, M = 823.74, 

ocean blue plate, 0.29  0.27  0.24 mm3, triclinic, space group P-1 (No. 2), a = 

6.9003(4), b = 9.9005(7), c = 12.6217(8) Å, = 76.351(2), = 83.346(2), = 74.686(2)°, 

V = 806.85(9) Å3, Z = 1, Dc = 1.695 g/cm3, F000 = 419, Smart-6K, MoK radiation, = 

0.71073 Å, T = 120(2)K, 2max = 61.0º, 12758 reflections collected, 4904 unique (Rint = 

0.0378). Final GooF = 1.100, R1 = 0.0447, wR2 = 0.1312, R indices based on 4271 

reflections with I >2sigma(I) (refinement on F2), 244 parameters, 0 restraints. Lp and 

absorption corrections applied, = 0.788 mm-1. 

 

Crystal data for [{Cu(--O,O,N,N-3.11a)(MeOH)}6](MeCO2)6·6MeOH: 

C24H31CuN5O6, M = 549.08, blue prism, 0.13  0.11  0.05 mm3, trigonal, space group R-

3 (No. 148), a =  b = 31.7325(8), c = 13.6585(7) Å, V = 11910.8(7) Å3, Z = 18, Dc = 
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1.378 g/cm3, F000 = 5166, Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 

2max = 50.0º, 22616 reflections collected, 4635 unique (Rint = 0.1729). Final GooF = 

0.860, R1 = 0.0518, wR2 = 0.1021, R indices based on 1988 reflections with I >2sigma(I) 

(refinement on F2), 334 parameters, 3 restraints. Lp and absorption corrections applied, 

= 0.872 mm-1. 

 

Mass Spectra: ES+  m/z = 364 [10%] (C20H21N5O2) + H+  

   m/z = 386 [38%] (C20H21N5O2) + Na+ 

   m/z = 457 [100%] (C21H24CuN5O3) = (Cu + 3.11– + MeOH) 

   m/z = 788 [95%] C40H40CuN10O4 + H+ = (Cu + 23.11– + H+) 

   m/z = 1574 [12%] 6(C23H27CuN5O5) + 2Na+ 

 

Crystal data for mer-[Cd(-O,N,N-3.11a)2]: C42H50CdN10O7, M = 917.30, colourless 

block, 0.11  0.07  0.04 mm3, monoclinic, space group P21 (No. 4), a = 12.329(7), b = 

12.877(7), c = 14.883(6) Å, = 91.625(18)°, V = 2362(2) Å3, Z = 2, Dc = 1.290 g/cm3, 

F000 = 948, Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 50.0º, 

13385 reflections collected, 8275 unique (Rint = 0.0586). Final GooF = 1.032, R1 = 

0.0719, wR2 = 0.1676, R indices based on 6012 reflections with I >2sigma(I) (refinement 

on F2), 567 parameters, 3 restraints. Lp and absorption corrections applied, = 0.518 

mm-1. Absolute structure parameter = 0.02(5). 

 

Compound 3.13 

 

Synthesis: The product 3.13 was air- and moisture-sensitive. All manipulations were 

carried out under purified nitrogen using standard Schlenk techniques. Aluminium foil 

(cut into small strips) (0.500 g, 18.5 mmol), 3,5-Di-t-butylpyrazole (0.911 g, 5.0 mmol), 

dipentaflourophenylmercury (1.377 g, 2.5 mmol) and 2 drops of elemental mercury were 

added to a 150 ml Schlenk flask. The Schlenk flask was kept under dynamic vacuum for 

three hours to ensure dryness. THF (50 ml) was added and the Schlenk flask was then 

placed in a sonic bath for 24 hours. The liquid solvent was filtered into another Schlenk 

flask using a cannula. This filtered liquid was reduced until precipitation began. The 
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solution was reheated to dissolve precipitate and was placed in a fridge upon which 

crystallisation of the product occured.  

 

Yield: 0.71 g; 60%, 1.0 mmol 

 
1H NMR: (400 MHz, d8-THF, δ/ppm, J/Hz)) 1.15 (singlet, 54H, (-CH3)3) 1.72-1.75 

(multiplet, 8H, -CH2-) 3.56-3.59 (multiplet, 8H, -CH2-) 5.91 (singlet, 3H, -CH-) 
27Al NMR: (78 MHz, d8-THF, δ/ppm) 23.8 and 67.3 

Elemental analysis: Calc. C 69.5% H 10.38% N 11.9%  

   Exp.  C 67.0% H 9.72% N 15.0% 

Mass Spectra: ES+  m/z = 385 [100%] C33H57N6Al – C11H19N2
– 

   m/z = 564 [46%] C33H57N6Al + H+ 

FT-IR: (v, cm–1) 2955 (s) 2924 (s) 2845 (s) 1511 (m) 1462 (s) 1375 (s) 1309 (w) 1257 (s) 

1232 (w) 1204 (w) 1075 (s) 992 (w) 960 (w) 915 (w) 796 (w) 723 (s) 

 

Crystal data for 1.13: C41H73AlN6O2, M = 709.03, colourless rectangular prism, 0.39  

0.36  0.31 mm3, monoclinic, space group P21/c (No. 14), a = 11.934(7), b = 19.011(10), 

c = 19.148(12) Å, = 101.095(15)°, V = 4263(4) Å3, Z = 4, Dc = 1.105 g/cm3, F000 = 

1560, Nonius Kappa CCD, MoK radiation, = 0.71073 Å, T = 123(2)K, 2max = 53.0º, 

31846 reflections collected, 8799 unique (Rint = 0.0467). Final GooF = 1.029, R1 = 

0.0548, wR2 = 0.1237, R indices based on 6473 reflections with I >2sigma(I) (refinement 

on F2), 497 parameters, 34 restraints. Lp and absorption corrections applied, = 0.087 

mm-1. 

 

Compound 3.14 

 

Synthesis: The products 3.14 and 3.12 were air- and moisture-sensitive. All 

manipulations were carried out under purified nitrogen using standard Schlenk 

techniques. Aluminium foil (cut into small strips) (0.650 g, 24.0 mmol), 3,5-Di-t-

butylpyrazole (0.514 g, 2.5 mmol), dipentaflourophenylmercury (0.800 g, 1.25 mmol) 

and 2 drops of elemental mercury were added to a 150 ml Schlenk flask. The Schlenk 
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flask was kept under dynamic vacuum for three hours to ensure dryness. DME (50 ml) 

was added and the Schlenk flask was then placed in a sonic bath for 24 hours. The liquid 

was filtered into another Schlenk flask using a cannula. This filtered liquid was reduced 

until precipitation began. The solution was reheated to dissolve the precipitate and was 

placed in a fridge upon which compound 3.14 crystallised. The liquid was again filtered 

off into another Schlenk flask using a cannula to give 3.14. This new filtered liquid was 

reduced to the point that precipitation began again. Reheating of the solution to dissolve 

the precipitate and standing at room temperature over night resultd in isolation of 3.12. 

The liquid was once again filtered off into another Schlenk flask using a cannula to give 

3.12. This liquid was reduced to dryness resulting in isolation of unreacted 3,5-di-t-

butylpyrazole. 

 

Yield:  Compound 3.14 0.29 g; 23%, 0.28 mmol 

 Compound 3.12 0.52 g; 37%, 0.93 mmol 

 
1H NMR: (400 MHz, C6D6, δ/ppm, J/Hz) 1.22 (singlet, 54H, (-CH3)3) 3.10-3.15 

(multiplet, 8H, -CH2-) 3.30-36 (multiplet, 9H, -CH2-) 5.98 (singlet, 3H, -CH-) 
19F NMR: (282 MHz, C6D6, δ/ppm) -166.7 -154.4 -162.5 
27Al NMR: (78 MHz, C6D6, δ/ppm) 77.9 

Elemental analysis: Calc. C 57.6% H 6.44% N 8.4%  

   Exp.  C 57.4% H 7.46% N 8.4% 

Mass Spectra: ES+  m/z = 225 [100%] C7H3OF5Al 

   m/z = 821 [18%] C48H64Al2F10N6O2-C11H10N2 

FT-IR: (v, cm–1) 2934 (s) 2848 (s) 1635 (m) 1507 (m) 1456 (s) 1380 (m) 1365 (m) 1303 

(w) 1268 (w) 1252 (w) 1227 (w) 1205 (w) 1125 (w) 1069 (m) 962 (m) 804 (m) 799 (m) 

722 (w) 666 (w) 

 

Crystal data for 3.14: C50H69Al2F10N6O3, M = 1046.07, colourless block, 0.40  0.38  

0.25 mm3, triclinic, space group P-1 (No. 2), a = 10.618(2), b = 12.964(3), c = 20.759(4) 

Å,  = 73.27(3), = 76.49(3), = 87.32(3)°, V = 2660.1(9) Å3, Z = 2, Dc = 1.306 g/cm3, 

F000 = 1102, Nonius Kappa CCD, MoK radiation, = 0.71073 Å, T = 123(2)K, 2max = 
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52.0º, 32892 reflections collected, 10390 unique (Rint = 0.0796). Final GooF = 1.036, R1 

= 0.0697, wR2 = 0.1778, R indices based on 5682 reflections with I >2sigma(I) 

(refinement on F2), 695 parameters, 0 restraints. Lp and absorption corrections applied, 

= 0.136 mm-1. 

 

Crystal data for 3.12: C33H57N6Al1, M = 564.83, colourless prism, 0.45  0.21  0.18 

mm3, triclinic, space group P-1 (No. 2), a = 10.4999(5), b = 19.4670(10), c = 

33.9263(18) Å,  = 91.127(3),  = 92.024(2),  = 97.265(2)°, V = 6872.6(6) Å3, Z = 8, 

Dc = 1.092 g/cm3, F000 = 2480, Nonius Kappa CCD, MoK radiation,  = 0.71073 Å, T 

= 123(2)K, 2max = 55.0º, 142018 reflections collected, 31492 unique (Rint = 0.0448). 

Final GooF = 1.107, R1 = 0.0781, wR2 = 0.1757, R indices based on 24910 reflections 

with I >2sigma(I) (refinement on F2), 1442 parameters, 0 restraints. Lp and absorption 

corrections applied,  = 0.089 mm-1. 

 

Salts of 3.10 – Crystallographic data 

 

Crystal data for (3.10H+)2(SO4
2–)7H2O: C22H38N10O17S, M = 746.68, light yellow needle, 

0.38  0.28  0.24 mm3, monoclinic, space group P21/c (No. 14), a = 8.60190(10), b = 

16.2504(2), c = 23.2724(3) Å, = 91.1000(10)°, V = 3252.52(7) Å3, Z = 4, Dc = 1.525 

g/cm3, F000 = 1568, Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 

61.0º, 33366 reflections collected, 9934 unique (Rint = 0.0401). Final GooF = 1.053, R1 = 

0.0523, wR2 = 0.1414, R indices based on 7653 reflections with I >2sigma(I) (refinement 

on F2), 503 parameters, 14 restraints. Lp and absorption corrections applied, = 0.192 

mm-1. 

 

Crystal data for (3.10H+)(BF4
–)H2O: C11H14BF4N5O4, M = 367.08, light yellow block 

needle, 0.31  0.21  0.13 mm3, triclinic, space group P-1 (No. 2), a = 7.7509(4), b = 

8.2203(5), c = 13.2848(7) Å, = 94.481(2), = 104.643(2), = 110.579(2)°, V = 

753.54(7) Å3, Z = 2, Dc = 1.618 g/cm3, F000 = 376, Smart-6K, MoK radiation, = 

0.71073 Å, T = 120(2)K, 2max = 61.1º, 12989 reflections collected, 4594 unique (Rint = 
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0.0481). Final GooF = 1.025, R1 = 0.0585, wR2 = 0.1402, R indices based on 2963 

reflections with I >2sigma(I) (refinement on F2), 235 parameters, 2 restraints. Lp and 

absorption corrections applied, = 0.153 mm-1. 

 

Crystal data for (3.10H+)(BF4
–)3.10: C22H23BF4N10O6, M = 610.31, yellow prism, 0.16  

0.09  0.06 mm3, triclinic, space group P-1 (No. 2), a = 7.5596(4), b = 12.6366(6), c = 

13.7797(6) Å, = 100.6610(10), = 94.926(2), = 96.370(2)°, V = 1277.98(11) Å3, Z = 

2, Dc = 1.586 g/cm3, F000 = 628, Smart-6K, MoK radiation, = 0.71073 Å, T = 

120(2)K, 2max = 56.0º, 17616 reflections collected, 6149 unique (Rint = 0.0494). Final 

GooF = 1.011, R1 = 0.0587, wR2 = 0.1474, R indices based on 3877 reflections with I 

>2sigma(I) (refinement on F2), 390 parameters, 0 restraints. Lp and absorption 

corrections applied, = 0.136 mm-1. 

 

Crystal data for (3.10H+)(NO3
–)·MeOH: C24H32N12O14, M = 712.62, yellow plates, 0.28  

0.24  0.21 mm3, monoclinic, space group P21/c (No. 14), a = 7.6261(3), b = 

25.9299(11), c = 16.0689(7) Å, = 98.908(2)°, V = 3139.2(2) Å3, Z = 4, Dc = 1.508 

g/cm3, F000 = 1488, Smart-6K, MoK radiation, = 0.71073 Å, T = 120(2)K, 2max = 

61.1º, 30666 reflections collected, 9546 unique (Rint = 0.0692). Final GooF = 1.008, R1 = 

0.0613, wR2 = 0.1458, R indices based on 5157 reflections with I >2sigma(I) (refinement 

on F2), 457 parameters, 0 restraints. Lp and absorption corrections applied, = 0.126 

mm-1. 

 

Crystal data for 2[(3.10H+)(Cl–)]·MeOH·H2O: C23H30Cl2N10O8, M = 643.45, yellow 

needle, 0.25  0.08  0.02 mm3, triclinic, space group P-1 (No. 2), a = 7.557(8), b = 

14.027(16), c = 15.689(17) Å, = 70.74(2), = 77.71(2), = 87.03(2)°, V = 1534(3) Å3, 

Z = 2, Dc = 1.393 g/cm3, F000 = 668, Smart-6K, MoK radiation, = 0.71073 Å, T = 

120(2)K, 2max = 50.0º, 15248 reflections collected, 5366 unique (Rint = 0.2267). Final 

GooF = 1.812, R1 = 0.2848, wR2 = 0.5981, R indices based on 2474 reflections with I 

>2sigma(I) (refinement on F2), 383 parameters, 280 restraints. Lp and absorption 

corrections applied, = 0.273 mm-1. 
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