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Abstract 

This thesis is about the relation between the closeness centrality of 

the first infected node in the network and each of the total infection time 

that needs to infect all nodes in that network ,the infection rate for 

spreading epidemics in that network ,which measures the fraction of nodes 

those infected per unit time and the infection spreading power of that 

node ,that measures the power for each node to spread the epidemic to 

other uninfected nodes in that network . 

In this thesis, I deal with four types of networks ,unweighted small 

and large networks and weighted small and large networks and study that 

relation in these four types.  

The importance of this work is when we find the closeness centrality 

and the infection spreading power of any node that help us understand 

which weakness or advantages this node has for maintenance or blocking 

dangers at the right time . 

In this work, I made some development in the SI model for the 

epidemic network  in which most of authors consider the infection rate in 

that model assumed and constant. In this work I found that this infection 

rate is not constant but it depends on the closeness centrality of the first 

infected node in the network ,hence I suggest to replace the infection rate in 
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the SI model by the closeness centrality of the first infected node in the 

network . 

The results obtained from this work show that each of the total 

infection time, the infection rate and the infection spreading power when 

any node infected first in the network depend on the closeness centrality for 

that node . 
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Chapter 1 

INTRODUCTION 

The easy access and wide usage of the networks like the Internet, 

WWWnet makes it a primary target for malicious activities.  In particular, 

the Internet has become a powerful mechanism for propagating malicious 

software programs. Worms and viruses, defined as autonomous programs 

that spread through computer networks by searching, attacking, and 

infecting romote computers automatically,have been developed since the 

first Morris worm in 1988. Today , our computing infrastructure is more 

vulnerable than ever before. The Code Red worm and Nimda worm 

incidents of 2001 have shown us how vulnerable our networks are and how 

fast a virulent worm can spread [1] . On July 19th , 2001, a self 

 

propagating program , or worm, was released into the Internet. The worm, 

dudded "Code-Red v2" pobed random Internet host for a documented 

vulnerability in the popular Microsoft IIS web server. As susceptible host 

were infected with the worm,they too attempted to subvert other hosts-

dramatically increasing the incidence of the infection . Over fourteen hours, 

the worm infected almost 360000 hosts, reaching an incidence of 2000 

hosts per minute before peaking . The direct costs of recovering from this 

epidemic have been estimated in excess of $ 2.6 billion. While Code Red 

was neither the first nor the last widespread computer epidemic,it 

exemplifies the vulnerabilities present in today's Internet environment 

[10] . Therefore it is a good matter to study epidemics of the networks and 

how the infection spread through networks and what are the paramaters that 

affects that spreading .  The term of epidemiology is used indeed for human 

disease for a long time and it deals with disease spreading within 
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populations . As some viruses and worms popagated through the computer 

networks in a very high speed, that propagation can be described by 

epidemic models as those that have been used for biological epidemiology 

[11] . So computers in networks can be cosidered as a population, if some 

of them are infected it can infect other susceptible computers in that 

population by some infection rate ' ' or spreading rate ' ' in some 

references. 

Network worms and viruses represent a serious threat to 

confidentiality, integrity, and availability of computer resources on  

networks specially the Internet . The existing automated network security 

solutions ( e.g. antivirus software, firewall,and intrusion detection systems) 

and human 

 

dependent countermeasures ( e.g. software patching, traffic 

blocking) are not sufficent for detection and control of worm and virus 

propagation because every day we have new worms and viruses those they 

are undescovered [17],[18] . Since the problem of network worms is 

worening every year despite increasing efforts and expenditure on Internet 

security, devising techniques for controlling their propagation is of great 

practical importance. An important first step in developing control 

strategies is to understand the dynamics of worm and virus propagation and 

how worm and virus propagation are affected by the network structure 

[16] .   

As a part of the network structure I will focus in my work on the 

effect of the centrality of the first infected node in the network , specially 

the closeness centrality of that node on worms and viruses popagation 

through that network [31]. 
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The infection rate ' ' in most epidemic models is assumed and it is 

considered constant which gives those models large-scale for estimation 

and approximation . In this work and by analysis I will try to find that the 

relation between closeness centrality for the first infected node in network 

and the infection rate in that network, then I will try to suggest some 

devlopment in the SI model  [22]using results obtained from my analysis . 

The outline of this thesis will be as follows : in chapter 2 (graphs), I 

will review some general information about graphs and networks. In 

chapter 3 (centrality), I will discuss centrality of nodes and some methods 

that used to find it . In chapter 4 (related works), I will talk about previous 

work has been done by others and review some known epidemic models 

for worms and viruses propagation through networks . In chapter 5 

(methodology), I will explain my methodology . In chapter 6 (analysis and 

results). I will analyze four different types of networks small and 

large ,weighted and unweighted to prove my hypothesis and I will apply 

my developed SI model on these network and compare my results with the 

previous works . Finally , in chapter 7 (discussion and conclusions) , I will 

have my discussion and conclusions . 

1.1 The Problem and The Hypothesis  

The problem  

What is the relation between closeness centrality of the first infected 

node in the network and each of the total infection time ,the infection rate 

and the infection spreading power of that node in the unweighted and 

weighted networks ? 
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The Hypothesis   

Closeness centrality of the first infected node in the network has a 

strong relation with each of the total infection time , the infection rate and 

the infection spreading power of that node in that network . In SI model 

which assumes that there is no recovery during the infection period :" a 

node with highest closeness centrality will infect all other nodes in the 

network in less time than any other nodes in that network and the infection 

rate at this case is the highest and its infection spreading power also the 

highest a mong all other nodes in that network" . 
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Chapter 2 

Graphs 

2.1 General 

Graphs are a very flexible mathematical model for numerous and 

varied problems. Any system that can be described as a set of objects and 

relationships or interconnections between them can be naturally 

represented as a graph. 

Graphs arising in real life are called Networks . Networks pervade 

our daily life. Road railway and airline networks, connecting different sites, 

cities, or airports, allow us to travel from one place to another. Phone calls 

and emails are transmitted over a network of cables between telephones or 

computers. The World Wide Web (WWW) is a network of web pages 

connected by hyperlinks, and more and more becomes our primary source 

of information. We find ourselves being part of networks of people who are 

connected, for example, by friendship or professional relationships. There 

are also numerous networks within human body itself. They include the 

network of biochemical reactions between the molecules in a cell, and the 

brain which is a complex network of neurons and their synaptic 

connections. Human language, too, can be described as a network of words 

or concepts which are connected if one of us thinks of another. 

The broad applicability of graphs has the major advantage that even 

very different problems can be approached using the same tools from 

Graph Theory. Furthermore, problems which can be modeled as graphs 

have a natural visual representation. This is a very useful aspect of graphs 

as visualization is often the key for understanding a set of data [27]. 



  
6

1

 

2

 

4

 

5

 

3

 

6

 
2.2 Terminology and Notation   

A graph is made up of points, usually called nodes, and lines 

connecting them, usually called edges. The order of any graph is defined as 

the number of vertices of that graph, while the size of that graph is the 

number of edges in it. We denote the graph as G(V, E), where V is the 

number of nodes in the graph, and E is the number of edges in that graph. 

Mathematically, a graph can be represented by a matrix called the 

adjacency matrix, A, which is an n × n symmetric matrix, where n, is the 

number of nodes in the graph. the adjacency matrix has the elements Aij, 

where; 

Otherwise ,  0

. and   nodebetween   edgean  is  thereIf  ,  1 ji
Aij ----------------   (2.1)  

The matrix is symmetric since if there is an edge between i and j, it is 

obvious that there must be an edge between j and i. Thus, Aij = Aji [28]. 

Example (2.1):  Let G(V,E) be a graph, where; 

V = {1, 2, 3, 4, 5, 6} 

E = {e1, e2, e3, e4, e5, e6, e7} 

See Figure (2.2.1).   

                                              e5                                               

                                             e4                                            

                                                            e6   e7 e8    e3  

                                            e1          e2                                                          

Figure (2.2.1): Undirected Graph with "6" nodes and "8" edges 
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The adjacency matrix that represents the graph is A6×6, 

010000

101011

010110

001010

011101

010010

66A     

If the edges are given a direction, the graph is called a directed graph. 

In mathematical terms, the set of edges of a directed graph consistes of 

ordered pairs of nodes which can be referred to as arcs. The adjacency 

matrix of a directed graph is no longer needs to be symmetric. There may 

be an arc from node  j to node i, but not from i to j. 

Example (2.2):  G (V, E) is a directed graph as shown in Figure (2.2.2).  

Figure (2.2.2) : Directed graph with "3" nodes . 

The adjacency matrix for this directed graph is: 

                                       
110

000

011

Aij

    

3

 

1

 

2
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where 

Otherwise ,  0

.  node    to  node  from  arcan    is  thereIf  ,  1 ji

a
ij 

Both directed and undirected graphs may be weighted graph, that has 

a number associated with each edge which can be thought of as reflecting 

the strength of the connection. The weight of the edge between two nodes i 

and j is denoted by wij.  

Example (2.3):  

G is a weighted graph as shown in Figure (2.2.3).    

                                                                                    2        1  

                              2                               3 

Figure (2.2.3) : Undirected weighted graph has "5" nodes . 

The adjacency matrix of the weighted graph is shown below 

02000

20000

00012

00103

00230

55A 

We note that the entries of the adjacency matrix of the weighted 

graph represent edges weights. [27] 

The number of edges attached to the node is called the degree of that 

node. In mathematical terms, the degree (ki) of a node (i) is:[28] 
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n

j
iji Ak

1 
------------------------    (2.2)  

where n is the total number of nodes in the network .    

Example (2.4): 

In example (2.3), the degree of node (1) is 2, and the degree of node 

(4) is 1. 

Directed graphs distinguish between a node s in-degree and out-

degree. 

The in-degree is the number of edges arriving at a node. Similarly, a 

node's out-degree is given by the number of edges departing from it. Just as 

for undirected graphs, the degree of a node is the number of edges attached 

to it, which is equal to the sum of in-degree and out-degree. 

Example (2.5): 

In the directed graph in Example (2.2), node (1) has an in-degree 

2 ,out-degree 1 and degree 3. 

A graph is called complete, or clique, if there is an edge between any 

two of its nodes. 

In the wieghted graph, the natural generalization of the degree "ki" of 

a node "i" is the node strength ( or node weight , or node weighted 

connectivity )  "Si", which is defined as  

Si = j Wij  ----------------  (2.3) 

where Wij is the weight of the edge between node "i" and node "j" [40],[41]      
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Example (2.6): 

The complete graphs of orders one to five are shown in Figure 

(2.2.4).  

Figure (2.2.4) : The complete graphs of order from one to five . 

In a complete graph of order k, each node is connected to all of the 

other k-1 nodes. In other words, each of the nodes has maximal degree k-1. 

Two nodes are neighbors in a graph if they are connected by an edge. 

The neighborhood of a node (v) is the set of all its neighbors, and is 

denoted by N(v). 

Example (2.7): 

In Example (2.6) the node (5) in the last graph in Figure (2.2.4) has 

neighbors N(5) = {1, 2, 3, 4}. 

Two nodes are called adjacent if there is an edge between them, and 

two edges are called adjacent if they share a node, and a sequence of 

adjacent edges in the graph is called a path. The length of a path is the 

number of edges it is composed of. 

1

1

2
1 2

3

1

2

4

3

1

2

3

5 4
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Example (2.8): 

A path of length 4 connecting nodes (1) and (6) in Example (2.1), 

Figure (2.2.1), is given by {e1, e8, e4, e5} 

In the case of a weighted graph, we can speak of the weight of a path 

as the sum of the weights of the traversed edges. 

Example (2.9): 

In example (2.3), the weight of the path {1, 2, 3} equals 3 + 1 = 4. 

A path connecting two nodes v and w is called a shortest path if it 

has the shortest length among all paths connecting v and w. if edges are 

weighted, the term shortest path is sometimes used to refer to the path of 

lowest weight rather than shortest length. The shortest path between nodes 

may not be unique. 

Example (2.10): 

In example (2.1) there are two shortest paths connecting nodes (3) 

and (5) which are {e2, e7} and {e5, e4} . 

The distance between two nodes in the graph is simply defined as the 

length of their shortest connecting path. In other words the distance 

between two nodes is the smallest number of steps that it takes to get from 

one to another. 

A path is called a cycle if it ends at the same node it started from. 
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Example (2.11): 

In example (2.1), the path {1, 2, 4, 5, 1} form a cycle of length 4. 

A graph is connected if there is a path from any node to any other 

node. Otherwise, the graph is disconnected. 

The connected pieces of a disconnected graph are called its 

connected components. 

A connected graph without cycles is called acyclic graph (also called 

a tree). 

If there is more than one edge between two nodes of the graph, or, in 

other words, the graph has multiple edges between node paires, then the 

graph is called multigraph. The adjacency matrix of the multigraph A has 

elements Aij such that: [29] 

Otherwise  ,                                                             0

. adjacent  If  ,    and  nodes between edges ofNumber jiji

Aij 

-------(2.4) 

Figure (2.2.5) shows a multigraph.  

Figuer (2.2.5) : Multigraph .  

1

 

4

 

2

 

3
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The adjacency matrix of the multigraph in Figure (2.2.5) is: 

0201

2003

0001

1310

44A                     

2.3   Computer Network   

2.3.1  Computer Network Fundamentals  

The basic ideas in all communications is that there must be three 

elements for the communication to be effective . First there must be two 

entities, called a sender and a receiver . These two must have something 

they need to share . Second there must be a medium through which the 

sharable item is channeled which is called the transmission medium . Third 

there must be an agreed on set of communication rules or protocals or 

policies. These three apply in every category or structure of 

communication . These are also the three components in the computer 

network .  

What is a computer network ?  A computer network is a distributed 

system consisting of loosely coupled computers and other devices . Each 

device is called " network element " or " transmitting elements " . Any two 

devices in the computer network can communicate with each other through 

a communication medium . In order for these connected devices to be 

considered a communicating network, there must be a set of 

communicating rules or protocols each device in the network must follow 

to communicate with another in the network .  
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The resulting combination consisting of hardware and software is a 

computer communication network, or computer network in short .  

The hardware component is made of network elements consisting of 

a collection of nodes that include the end system commonly called " hosts " 

and intermediate switching elements that include hubs , bridges , routers 

and gateways . All of these are called network elements .  

Network software consists of all application programs and network 

protocal that are used to synchronize, coordinate , and bring a bout the 

sharing and exchange of data a mong the network elements . Network 

software also makes the sharing of expensive resources in the network 

possible . 

Network elements , network software , and users all work together in 

the computer network .  

2.3.2  Computer Network Models  

In computer network we have two main models , the first one is the 

centralized network model . In this model all correspondence must go 

through a central computer called the "master " , also all the sharable 

operations between all the network elements must be controlled by that 

master . The second one is the distributed network model . In this model 

computers and other network elements interconnected by a communication 

network consisting of connecting elements and communication channels . 

Also in this model communication and sharing of resources are not 

controlled by the central computer "master" but are arranged between any 

two communicating elements in the network .  
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2.3.3  Computer Network Types  

Each network is a cluster of network elements and their resources . 

The size of the cluster determines the network type . There are in general 

three main network types :  

1- Local Area Network (LAN)  

It is a computer network with two or more computers or clusters of 

network and their resources connected by a communication medium 

sharing communication protocols,and cofined in a small geographical area 

such as a building floor, abuilding, or a few adjacent buildings . The 

advantage of this type is that the elements are close together so the 

communication links maintain a higher speed of data movement , and the 

disadvantage it is small and the information does not spread in wide area . 

2- Wide Area Network (WAN)  

It is the same thing like local area network but the elements of the 

clusters or the clusters themselves are scattered over a wide geographical 

area like in a region of a country , or a cross the whole country , several 

countries, or the entire globle like the Internet for example . The 

advantages of the wide area network include distributing sevices to a wider 

community and availability of a wide array of both hardware and software 

resources, that may not be available in the local area network . The 

disadvantages is, because of the large geographical areas are covered by the 

wide area network s, communication media are slow and often unreliable.  

3- Metropolitan Area Network (MAN) : 

It is a network between the local area network and the wide area 

network like the network that cover a city or a part of a city .  
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2.3.4   Network Topology           

Networks have many topological shapes like mesh network, which 

allows multiple access links between network elements unlike other types 

of topologies , tree network which is very famous , bus network which is 

the cheapest topology and easy to implement and extend, star network 

which is easy to add new stations and can accommodate different wiring , 

ring network which is the growth of the system in it has minimal impact on 

performance and all stations in it have equal access , see figure (2.3.1) [30] 

   

         Mesh Network                        Tree Network                 Star Network  

                   Bus Network                              Ring Network  

Figure (2 .3.1) : Some Network Topologies    
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Chapter 3 

Centrality 

3.1 Introduction 

The idea of centrality was first applied to human communication by 

Bavelas (1948 and 1950), who was interested in the characterization of the 

communication in small groups of people and assumed a relation between 

structural centrality and influence in group process.  

Since then, various measures of structural centrality have been 

proposed over the years to quantify the importance of an individual in a 

social network. Most of the centrality measures are based on one of two 

quite different conceptual ideas and can be divided into two large classes. 

The measures in the first class are based on the idea that the 

centrality of an individual in a network is related to how he is near to the 

other persons. The simplest and most straightforward way to quantify the 

individual centrality is therefore the degree of the individual, i.e., the 

number of its first neighbors; the most elaboration of this concept is said by 

Neiman (1974). A degree-based measure of the individual centrality 

corresponds to the notation of how well connected the individual is within 

its local environment. The degree-based measure of centrality can be 

extended beyond first neighbors by considering the number of points that 

an individual can reach at distance two or three as Scott (2003) said. A 

global measure based on the concept of closeness was proposed by 

Freeman (1979) in terms of the distances among various points. One of the 

simplest notion of closeness is calculated from the sum of the geodesic 
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distance from an individual to all the other points in the graph as said by 

Sabidusi (1966). 

The second class of measure is based on the idea that central 

individual stand between others on the path of communication as said by 

Bavelas (1948); Anthonisse (1971) and Freeman (1977, 1979). The 

betweenness at a point measures to what extent the point can play the role 

of intermediary in the interaction between the others. The simplest and 

most used measure of betweenness was proposed by Freeman (1977, 1979), 

and is based on geodesic paths. In many real situations, however, 

communication does not travel through geodesic paths only. For such a 

reason, two other measures of betweenness, the first based on all possible 

paths between a couble of points as Freeman Borgatti and White said in 

1991, and the second based on random paths as Newman said in 2003. [31]     

3.2 Centrality for unweighted networks 

There are many methods for measuring nodes centrality in the 

unweighted networks. We will discuss the most commonly methods in this 

section. 

3.2.1 Degree Centrality 

The simplest definition of node centrality is based on the idea that 

important nodes must be the most active, in the sense that they have the 

largest number of ties to the other points in the netwok. Thus, as centrality 

measure of a node i

 

in the network is the degree of that node, i.e., the 

number of nodes adjacent to it.  
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To calculate the degree centrality for a node i in the network; 

 
N  : Total number of nodes in the network (Network Order); 

 
Ki  : degree of the node i ; 

 

AN×N : adjacency matrix for the graph, where; 

Otherwise ,         0

. node to adjacent is  node If  ,         1 ji
aij 

Degree centrality of node "i" is denoted by , and it is sometimes 

called the normalized degree centrality. Its value is calculated from the 

following equation: 

11
1

N

a

N

K
C

N

j
ij

iD
i        -------------------   (3.1) 

Here, N-1 = the maximum possible degree in network [32]. 

3.2.2 Closeness Centrality 

The degree centrality is a measure of local centrality. A definition of 

node centrality on a global scale is based on how close that node to the 

other nodes. In this scale, the idea is that a node in a network is central if it 

can quickly interact with all other nodes, not only first neighbors. The 

simplest notation of closeness is based on the concept of minimum distance 

or geodesic or shortest path between two nodes in the network, i.e., the 

minimum number of edges traversed to get from the first node to the 

second one, [31].  
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Let dij be the shortest path between node i and node j and let N 

be the order of the network. Closeness centrality for node i denoted by 
c
iC is: 

                

N

j
ij

N

j
ij

i
c
i

d

N

N

d

LC

1

1

11 1

1
)(     ----------------------  (3.2) 

Where Li is the average distance from node i to all other nodes and 

the normalization, i.e., divided by N-1 makes 10 c
iC . Such a 

measure is meaningful for connected graphs only, unless one assumed dij 

equal to a finite value, for instance, the maximum possible distance N-1, 

instead of dij = + , when there is no path between two nodes i and j, [32]. 

3.2.3 Betweenness Centrality 

Interaction between two non-adjacent nodes might depend on the 

other nodes in the network, especially on those on the paths between the 

two nodes. Therefore, nodes on the middle can have a strategic control and 

influence on the others. The important idea at the base of betweenness 

centrality measure is that the node in the network is central if it lies 

between many of the nodes. This concept can be simply quantified by 

assuming that the communication travels just along the geodesic, [31]. 

Let gik be the number of geodesic between node j

 

and node k , 

and gjk(i) be the number of geodesics between node j and node k that 

contains node i

 

. Let )(iC B  be the betweenness centrality of node i ,m 

where i
BC = the sum over all pairs (j, k) in the network of the ratio 

between gjk(i) and gjk. Mathematically; 
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kj
kj ik

ikB
i g

ig
C

,

)(
    ---------------------    (3.3) 

To normalize betweenness centrality of node i, we divide by 

)2)(1(
2

1
NN , where  

(N-1)(N-2) = the number of pairs of vertices not including the node i 

which we want to calculate its centrality. 

So, the normalized betweenness centrality of node i  is: 

)2)(1(
2
1

)(

,

NN

g

ig

C kj
kj ik

ik

B
i   -----------------   (3.4) 

Similarly to the other centrality measures, i
BC takes on values 

between 0 and 1, and it reaches its maximum when the node i falls on all 

geodesics, [31],[32]. 

3.2.4  Eigenvector Centrality 

Degree centrality gives a simple count of the number of connections a 

node has, but not all connections are equal. 

For example, connections to people who are themselves influential 

will lend a person more influence than connections to less influential 

people. 
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Having a large number of connections is good for centrality, but a 

node with a smaller number of high-quality contacts may out rank another 

node with a larger number of low-quality contacts. 

Eigenvector centrality acknowledges that both the number and the 

quality of the contacts of the node in the network is important when we 

compute the centrality of that node. 

Let we denote the centrality of nod i by xi , then we can allow for 

this effect by making (xi) proportional to the average of the centralities of 

i s network neigh bourse, [28]. 

Mathematically we can write that as: 

N

j
jiji xAx

1

1

 

--------------------  (3.5) 

Where; 

   

: an eigenvalue of the adjacency matrix (A); 

 

N : is the number of nodes in the network (network order); 

 

Aij : an element in the adjacency matrix (A). 

In the simplest case, (A) is an n × n  symmetric matrix. 

The adjacency matrix has elements Aij (See Equation 2.1). 

A is symmetric, since if there is an edge between (i) and (j), then clearly 

there is also an edge between (j)and (i). 

Defining the vector of centralities: X = (x1, x2, , xn), where; 
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x1 : the centrality of node (1); 

 
x2 : the centrality of node (2); 

 
xn : the centrality of node (n). 

We can rewrite Equation (3.6) in the matrix form as: 

Axx

 

-----------------------    (3.6) 

Where; 

  

: an eigenvalue of the adjacency matrix; 

 

X : The corresponding eigenvector of that eigenvalue of the adjacency 

matrix. 

If we wish the centralities to be non-negative, ( ) must be the largest 

eigenvalue of the adgacency matrix to ensure that all the corresponding 

eigenvectors is positive and (X) the corresponding eigenvector, [28]. 

Each node in the network has an entry in the corresponding 

eigenvector of the largest eigenvalue of the adjacency matrix of that 

network, this entry is the centrality of that node in that network. 

Perron- Frobenius theorem ensures that for a strongly connected graph, 

there is a real positive maximum eigenvalue with a positive corresponding 

eigenvector, [33]. 

The numerical method for the computation of the largest eigenvalue 

( max) and its corresponding eigenvector for the adjacency matrix of any 

network is the so-called Power Method [34] , [35] . 
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Power Method: 

It is a method for computing the largest eigenvalue for the non-

homogeneous system and its corresponding eigenvector. We have this 

procedure for the power method [34],[35]: 

(1) Start with an initial guess for X, the eigenvector in our case ; 

(2) Calculate w = A X, where A is the adjacency matrix; 

(3) Largest value (magnitude) in w is the estimate of the eigenvalue , 

which is the norm for the vector w; 

(4) Get next eigenvector X  by Equation (3.6); 

(5) Continue until converged and at that point, 

 

is the largest eigenvalue 

and X is the corresponding eigenvector . 

The corresponding eigenvector for the larget eigenvalue of the 

adjacency matrix for the network is the centrality vector for the nodes in 

that network. 

There is another method for computing the largest eigenvalue for the 

adjacency matrix of the network and its corresponding eigenvector called 

the Accelerated Power Method. It uses the Rayleigh Quotient instead of the 

largest wk value norm (w, inf), [35]. 

3.3  Centrality for weighted networks 

In section (3.2) we discussed some common methods for computing 

the centrality for unweighted networks that all edges in those networks 

have the same weight which is equal one . But how can we calculate the 

centralities of nodes in networks when their edges have different weights , 

this is what we called the centrality of the weighted network . 
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In the real world networks like social networks, neural networks, the 

Internet and airline networks connections or links between the elements in 

these networks are not equals . For example the ties or relations between 

individuals in social networks may be strong or week or in between , also 

we have different capabilities of transmitting electric signals in neural 

networks , we have also unequal traffic on the Internet links or of the 

passengers in airline networks . These systems can be better described in 

terms of weighted networks rather than unweighted networks , i.e. 

networks in which each link carries a numerical value measuring the 

strength of the connection [40] . 

Definition (3.1):  

A weighted network is a network whose edges and nodes are 

weighted with different weights . We denote the weight of the edge 

between nodes "i" and "j" by " wij"  .  

Definition (3.2) : The adjacency matrix of a weighted network is 

called " A weighted adjacency matrix  ANN" where its entry Aij is defined 

as:  

Otherwise  ,                                                             0

wij" equal weight has j and ibetween  edge  theand  j i if , wij

ijA -----(3.8) 

where "N" is number of nodes in the network . [41] 

3.3.1 Degree Centrality  for weighted networks"Strength Centrality" 

The degree centrality of a node in the unweighted network depends 

on the number of edges adjacent to that node , but if the network is 

weighted each edge in it has its own weight and those weights are not 

equal, so in the weighted networks we must look fore another criteria for 
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2

 

4

 

1

 

3

 

5

 
the centrality which we will call the " Weight Centrality " or the "Strength 

Centrality" instead of the degree centrality in the unweighted networks . 

In the unweighted networks the degree of a node is the number of 

edges attached to it , we could use the same definition for the weighted 

networks 

 

simply count the number of edges attached to a node regardless 

of their weight 

 

but this , ignores much potentially useful information 

contained in the weights . To the extent that degree is a measure of the 

importance of a node in a network, surely nodes with strong connections 

should be accorded more importance than nodes with only weak 

connections . [29] 

Newman suggested a rule by which we can represent any weighted 

network by a multigraph network . The rule is :  

"We can map any weighted graph to unweighted multigraph . That is 

, every edge of weight " n " is replaced with " n " parallel edges of weight 

one each , connecting the same nodes . " [29] 

Example (3.1) :  

We can map the weighted network in fig(3.3.1) to a multigraph 

network in fig (3.3.2) using the mapping rule   

                                                       3 

                                     

                                     2              2          3           2 

                                     

                                               3                     2 

Figure (3.3.1) : A weighted Network 
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Figure (3.3.2) :  A multigraph Network 

In example (3.1) when we calculate the degree centralities for nodes 

in the multigraph network in fig (3.3.2) we found them as follow : 

C1
d = 5, C2

d = 7, C3
d = 10, C4

d = 8, C5
d = 4 . 

When we calculate the strength of nodes in the weighted network in 

fig (3.3.1) we found them as follow :  

S1 = 5 , S2 = 7 , S3 = 10 , S4 = 8 , S5 = 4 

From those two results we note that the degree centrality for a node 

in the multigraph network equal the strenght of the same node in the 

weighted network before using the mapping rule . So by applying the 

mapping rule on the weighted network we note that the strenght of the node 

is a good meaure for the centrality of that node in that network .   

Result : "In the weighted network we can replace the degree centrality of 

the unweighted networks by a new measure called  the" Strength Centrality 

which we will denoted as " Cst " .The strength centrality for a node "i" can 

obtained as  

Ci
st = Si -------------   (3.9) 

The strength Centrality must be between "0" and "1" , i.e .  

                      0    Ci
st    1 

2

 
4

 
1

 
3

 
5
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So we need to normalize the strength centrality of nodes in the 

weighted network to be between "0" and  "1" . 

Suppose we have a weighted network consists of " N " nodes . If we 

want a node "i" in that network to have the maximum strenght centrality 

which equals " 1 " that node must be adjacent to all nodes in that network , 

so its degree must equals " N 

 

1 " ,  which is the same condition as in the 

unweighted network " degree centrality " . But in the weighted networks 

the edges have weights and these weights are very important in the 

calculations of strength of nodes . In each network not all edges have the 

same weight , so we have an edge that has the maximum weight in the 

network , which we will denote as " Wmax " . 

If all the incident edges of the node that adjacent to all other nodes in 

the weighted network     " N -1  nodes " have the maximum weight in that 

network " Wmax " so its strength will be the maximum strength which we 

will denote as " Smax " , and it has also the maximum normalized strength 

centrality which is equals "1" . 

So the maximum possible strength of the nodes in the weighted 

network " Smax " can given in the formula :  

Smax = (N-1) Wmax 

=  Kmax Wmax   -----------------  (3.10) 

To normalize the strength centralities of the nodes in the weighted 

network we must divided its strength by the maximum strength in that 

network " Smax " . Hence the normalized strength centrality of node "i" in 

the weighted network is  
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Ci
st  

maxS

Si ------------- (3.11) 

which we can write as  

Ci
st   

max)1( WN

Si    ------------ (3.12) 

If we return to example (3.1) and apply formula (3.10) to find the 

strength centralities of nodes in the weighted network in figure (3.3.1) we 

find that : 

C1
st = 5, C2

st = 7, C3
st = 10, C4

st = 8, C5
st = 4 . 

Which is the same result after mapping that network to the multigraph 

network in figure (3.3.2) 

3.3.2 Eigenvector Centrality for weighted networks :  

In section (3.2.4) we discussed the eigenvector centrality for the 

unweighted networks is defined to be proportional to the summation of the 

centralities of the node's neighbors , so that a node can acquire high 

centrality either by being connected to alot of others  ( as with simple 

degree centrality ) or by being connected to others that themselves are 

highly central . we write . 

Xi = -1 
j
AijXj --------------------   (3.13) 

In the matrix notation we can write equation (3.11) as   

X = A X ---------------------- (3.14) 

where     : is the eigenvalue of the adjacency matrix  " A" of the network . 

         x : is the corresponding eigenvector of that eigenvalue . 
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By simple arguments one can show that one should take the 

eigenvector corrosponding to the leading eigenvalue or the largest 

eigenvalue of the adjacency matrix "A" [29] . 

The question now is if the network is weighted can we find an 

equivalent eigenvector centrality for that weighted network ? What is the 

effect of the edge's weights on the centrality of the nodes when we use 

eigenvector method?  

To answer these quastions let us go back to the mapping rule that 

was suggested by Newman which map any weighted network to a 

multigraph unweighted network . [ 29] . 

We conclude from the mapping rule that the number of the adjacent 

times between any two nodes in the network have a weighted edge between 

them will icrease many times equal the weight of that edge when we map 

the weighted network to the multigraph network and that will affect the 

adjacency matrix of the network .  

The adjacency matrix of the network in this case must be changed 

and equal the array multiplication between the adjacency matrix of the 

unweighted network and the weight matrix of the weighted network . The 

adjacency matrix in this case called the weighted adjacency matrix and 

denoted by " Aw" where  

Aw = A.* W -------------------- (3.15) 

The method for computing the eigenvector centrality for the 

weighted network is the same as the unweighted network but we replace 

the adjacency matrix of the unweighted network by the weighted adjacency 
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matrix of the weighted network . So the equation that compute the 

centrality of the weighted network using eigenvector method will become :  

X = Aw X ------------------ (3.16) 

where    : is the largest eigenvalue of the weighted adjacency matrix .  

       X : is the corrosponding eigenvector of that eigenvalue .  

      Aw : is the weighted adjacency matrix .  

"X" here is the centrality vector of all the nodes in the network . So if 

we compute  "X" we will compute the eigenvector centrality of all nodes in 

the weighted network. 

To normalize the eigenvector centrality for the weighted network we 

must define the maximum eigenvector centrality of that weighted network 

which is the summation of the eigenvector centralities of all nodes in that 

weighted network 

Ceig 
max =  Ci 

eig ------------------ (3.17) 

The normalized eigenvector centrality for node "i' in the weighted 

network is  

Ci
eign = Ci

eig / Ceig
max ------------------(3.18) 

To compute  max and "X" from equation (3.14) we use the power 

method or the accelerated power method or Matlab functions again. 

3.3.3 Closeness Centrality for weighted networks : 

The method tha t use for comput ing closeness cent ra lit ies 

for nodes in the weighted networks is the same as it for the 
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unweighted network . The only different is that we must take the 

weights of the edges in mind when we compute the shor test 

pa ths between nodes in those networks .  The formula tha t use 

for compute the closeness cent ra lity for node "i" in the weighted 

network is  

N

j
ij

N

j
ij

i
c
i

d

N

N

d

LC

1

1

11 1

1
)( ----- (3.19) 

Where Li is the average distance from node i to all other nodes and 

the normalization, i.e., divided by N-1 makes 10 c
iC .    
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Chapter 4 

RELATED WORKS 

The first application of mathematical modeling to the spread of 

infectious disease was carried out by Daniel Bernoulli in 1760.He 

formulated and solved a differential equation describing the dynamics of 

the infection which is still of value in our day. Hamer formulated and 

analyzed a discrete time model in 1906 to understand the recurrence of 

measles epidemics. Ross developed differential equation models for 

malaria as ahost-vector disease in 1911. Mckendrick developed the first 

stochastic theory in 1926 and in 1930 Kermack and Mckendrick 

established the extremely important threshold theorem,showing that the 

density of susceptible individuals must exceed a certain critical value in 

order for an epidemic to occur [20],[39]  . Mathematical epidemiology 

seems to have grown exponentially starting in the middle of the 20th 

century (the first edition in 1957 of Bailey s book is an important 

landmark), so that a tremendous variety of models have now been 

formulated, mathematically analyzed, and applied to infectious diseases 

[9]. Currently, there are several papers on mathematical epidemiology per 

month in many journals which publishes such work [20] . In 1994 Kephart 

and White presented the epidemiological model to understand and control 

the prevalence of viruses. This model is based on biological epidemiology 

and uses nonlinear differential equations to provide a qualitative 

understanding of virus spreading [19] . In the next section we will review 

some most known epidemiological models such as SI,SIS,and SIR models .  

As I mentioned in chapter (2) we can represent any network as a 

graph consists of nodes which may be computers,routers,ect and edges 
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contact between them which let the information which may be 

worms,viruses or any disease pass from one node to another.When any 

worm or virus is fired into any network,the Internet for example,it 

simultaneously scans many machines (computers or nodes) in an attempt to 

find a vulnerable machine to infect,when it finally finds its prey, it sends 

out a probe to infect the target . If successfull, a copy of this worm is 

transferred to this new host(computer) . This new host(computer) then 

begins running the worm and tries to infect other machines,and so on 

[19] .This infection process is a random process, and the propagation of 

worms and viruses through networks is also  random . 

4.1 Epidemic Models     

The aim of epidemic modelling is to understand and if possible 

control the spread of disease through  networks [14] .There are many 

epidemiological models that described the spreading of epidemics through 

networks such as SI,SIS,SIR,SIDR,and SIRS models. 

Epidemiological models are based on two simplifications  

1- At any given time t, each node can be in one of a finite number of 

states,e.g. susceptible, quarantined-susceptiblem, removed-susceptible, 

infectious, quarantined-infectious, removed-infectious and detected . 

2- Translation of the worm or epidemic transmission mechanism into a 

probability that a node will infect another node. In a similar way, 

transitions between other states of the model are described by simple 

probabilities . Epidemiological models can be analyzed analytically or 

by means of simulation [16] , [12] . 



  
35

The propagation takes place on a graph "G" with "n" nodes and "m" 

edges . let  

S(t) : the number of susceptible nodes at time "t"  

I(t)  : the number of infectious nodes at time "t"  

R(t) : the number of removed nodes at time "t"  

Q s ( t ): the number of quarantined  susceptible nodes at time "t"  

R s ( t ): the number of removed  susceptible nodes at time "t" 

Qi(t) : the number of quarantined  infectious nodes at time "t"   

: infection rate , which is the rate at which susceptible nodes are 

infected [23],[16],[10] . 

Most models of propagation assume the infection rate  ' ' is 

constant ,averaging out the differences in processor speed, network 

bandwidth, and location of infectious node . The existing models also 

assume that a node cannot be infected multiple times [16] . 

4.1.1 Susceptible Infectious Model : SI Model  

It is a model at which a susceptible node becomes infectious,it does 

not change its state . This model can be used in the study of the worst 

 

case propagation, when automated and human countermeasures are not 

available [22],[23],[16],[10],[25] ,[6] . 
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The model :  

Let 

N: the total number of nodes in the network" the population size"  

d: be the average dgree of an infectious node 

i(t) : the fraction of infectious nodes at time "t" where i(t) = I(t)/N  

s(t) : the fraction of susceptible nodes at time "t" where s(t) = S(t)/N 

As all nodes in the network either infectious or susceptible we have 

s(t)+i(t) =1  s(t) = 1- i(t)  ----------   (4.1) 

d s(t) : the expected number of susceptible neighbours that can be infected 

by a given infectious node . 

Using equation 1 we have : d s(t) = d (1- i(t)  

' ' d s(t) i(t) : the total rate of newly infected nodes . 

Using equation 1 we have :  d s(t) i(t) =   d (1-i(t)) i(t) 

The general susceptible 

 

infectious SI model is described by the 

differential equation  

dt

tdi )(  d (1-i(t)) i(t)  ---------- (4.2) 

dt

tdi )( : is called the infection spreading velocity v(t).[2] 
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with boundary conditions : 

1- i(0) = I(0)/N > 0 

2- for all t  0 , i(t) + s(t) = 1  

The solution of equation (2) for the fraction of infectious nodes is the 

logistic curve  

i(t) = i(0) e ' t  / 1- i(0) + i(0) e ' t  ---------- (4.3) 

where ' =  d . 

The authors of [24],[26] describe the propagation of worms through 

networks with time by the differential equation  

dt

da = K a ( 1  a ) ---------- (4.4) 

where    
dt

da  is called the infection velocity  v(t) .[2] 

with solution  

a = e K(t  T) / 1 +  K(t  T) -----------(4.5) 

where T is a constant of integration and K is the infection rate or the 

initial compromise rate which is the number of vulnerable hosts which an 

infected host can find and compromise per unit time . K here is assumed 

and constant [24],[26]. Some authors proposed that the infection rate "K" 

should be considered as function of time ; K=K(t) , because of intervening 

network saturation and router collapse .[26] . 

a : a proportion of the machines that have been compromised at time "t" . 

t : the time . 
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When we plot equations (4.3) and (4.5)  with some assumed and 

constant infection rate we have the S 

 
Shaped curve that described the 

fraction of infectious nodes with time [23],[10],[25], see figure (4.1.1) 

 

Figure ( 4.1.1) : Fraction of infectious nodes with time in SI model 

We note from figure (4.1.1) that the S  Shaped Curve has three regions:  

1- Slow start region , when only few nodes are infected at every time 

step . 

2- Exponentially growth, when the number of newly infected nodes 

grows exponentially . 

3- Equilibrium state , when the number of infectious nodes assumes some 

value around which it fluctuates steadily .  

When we plot equations (4.2) and (4.4)  with some assumed and 

constant infection rate we have the infection spreading velocity curve that 

describe the changing of the spreading velocity of infection with 

time .[2],[3] see figure (4.1.2)  
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Figure .(4.1.2) : The infection Spreading velocity with time 

4.1.2 Susceptible - Infectious - Susceptible  Model : SIS Model 

In this model an infectious node recovers at some rate, and thus it 

becomes susceptible again . This model can be used in the study of worm's 

or epidemic's propagation when some computers are temporarily turned off 

but are not patched  [22],[23],[16] .  

The Model  

Let  

N: the total number of nodes in the network (the population size)       

d : the average degree of an infected node   

: the rate at which an infectious node recovers .( recover rate ) 

The rate of newly infected nodes is proportional to : 

1- the expected fraction of susceptible neighbours  

2- the number of infected nodes  
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3- the infection rate or probability  . 

The rate at which infectious nodes recover is proportional to :  

1- the number of infected nodes . 

2- the recover rate . 

The general SIS model is described by the differential equation  

dt

tdi )( =  d (1-i(t)) i(t) 

 

 i(t)  -------------- (4.6) 

with boundary conditions 

(1) i(0) = I(0) / N >  0 . 

(2) for all t  0 , i(t) +s(t) = 1. 

The solution of equation ( 4.6) gives a functional form for the 

fraction of infectious nodes :  

i(t) = ( 1 

 

 ) i(0) / i(0) + ( 1 

 

  i(0) ) e- ( ' 

 

) t  ---------  ( 4.7) 

where ' =  d  and    

= /  d  : the epidemic threshold . 

When we plot equation (4.7) with some constants   , d

 

, , and  we 

have also the S-Shaped Curve . [23],[16] , see figure (4.1.3) 
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Figure (4.1.3) : Fraction of infectious nodes with time in SIS model 

4.1.3 Susceptible - Infectious -Removed Model : SIR Model 

In this model , an infectious node can be removed .( i.e. it can no 

longer spread the epidemic ) . This model can be used to study the effects 

of software patching and traffic blocking . At any time "t" , a node can be 

susceptible, infectious, or removed .[23],[16], [25]. 

The Model  

: the rate at which infectious nodes are removed . (removed rate ) . 

The general SIR model can be described by the differential equations 

dt

tdi )( =  d (1- i(t) ) i(t) 

 

 i(t)  ----------- (4.8) 

dt

tdr )( =  i(t)  ---------- (4.9) 

with boundary conditions :  

(1) i(0) = I(0)/N  0 
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(2) r(0) = R(0)/N  0 

(3) for all t  0 , i(t) + s(t) + r(t) =1 . 

There are other epidemic models like Susceptible 

 

Infectious 

 

Removed 

 

Susceptible ( SIRS) model , Susceptible 

 

Infectious 

 

Detected  Removed (SIDR) model and others .[16]                     
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Chapter 5 

METHODOLOGY 

To answer my research question and prove my hypothesis I will 

exhibit my method for that by the folowing steps  

5.1  Research Subject  

My subjects in this thesis are nodes (computers, routers, ect) which 

form one population or one network and there are links between 

them.Links may be unweighted or weighted . The weights of the links here 

represent time .All nodes in the networks here either infected or 

susceptible . All networks in this thesis have "N" nodes, just one node 

infected first "I(0) = 1" and has ability to infect all other nodes by an 

infection rate " " which I will relate to the closeness centrality of the first 

infected node. We also have (N 

 

1) nodes are susceptibles (S) which have 

the ability to be infected. 

5.2  Research Tools 

  1- My program  

It is a matlab program that I programed using matlab . It depends on 

Floyd's Algorithm for finding the shortest path between any two nodes in 

the network and putting all these shortest paths in a matrix that I called the 

shortest paths matrix . My program can also calculate the centralities for all 

nodes in the network using three methods , degree centrality, eigenvector 

centrality and the closeness centrality then ranking nodes according to their 

centralities in the same table . The input of my program is the total number 

of nodes in the network and the adjacency matrix of that network and the 
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output of the program is the shortest path matrix of that network and the 

degree centralities, the eigenvector centralities and the closeness centralities 

for all nodes in the network ranking according to their values . See 

Appendix (A) 

2 - Matlab  

Matlab is a popular tool for dealing with matrices . I used matlab for 

running my program and having the results . I used it also for plotting all 

figures in my thesis . 

3-POM  QM for windows program " V3"  

It is a program that programed by Howard  J . Weiss . It is the most 

user 

 

friendly available in the fields of operations Management, which 

includes networks . The program deals with three problems in networks, 

minimum spanning tree, shortest path and maximal flow problem . The 

input in this program is number of edges, the start node,the end node,the 

weight for each edge . By using this program we can calculate the shortest 

path between any two nodes in the network and the minimum distance 

matrix. I used this program to check my matlab program by comparing my 

program result to POM-QM program result. I found that they were the 

same, which supported my program results .  

To compare between the results of my program and the results of 

POM-QM program let us take example (5.1) . 
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Example (5.1) : Find the shortest path matrix for the network shown 

in fig (5.2.1 ) by POM 

 
QM for windows program "V3" and by using my 

matlab program , then compare between the two results ?   

Fig ( 5.2.1) : Small unweighted network 

Solution :                

When I used POM 

 

QM for windows program I found that the 

shortest path matrix is :  

         1    2    3    4    5    6    7    8    9    10   11    12    13 

1     0    1    1    2    1    3    4    3    4    5      6      7      6 

2     1    0    2    1    2    2    3    2    3    4      5      6      5 

3     1    2    0    1    2    2    3    2    3    4      5      6      5 

4     2    1    1    0    3    1    2    1    2    3      4      5      4 

5     1    2    2    3    0    4    5    4    5    6      7      8      7 

6     3    2    2    1    4    0    1    2    2    3      4      5       4 

7     4    3    3    2    5    1    0    2    1    2      3      4       3 

8     3    2    2    1    4    2    2    0    1    2      3      4       3 

9     4    3    3    2    5    2    1     1   0    1      2      3       2 

10   5    4    4    3    6    3    2     2   1    0      1      2       1 

11   6    5    5    4    7    4    3     3   2    1      0      1       2 

12   7   6     6    5    8    5    4     4   3    2      1      0       3 

13   6   5     5    4    7    4    3     3   2    1      2      3       0 

6

 

2

 

3

 

7

 

1

 

5

 

4

 

8

 

9

 

10

 

11

 

13

 

12
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The shortest path matrix for the small unweighted network in fig 

(5.2.1) using POM-QM program 

When I used my matlab program for the same network in fig (5.2.1) I 

found that the shortest path matrix is :  

         1    2    3    4    5    6    7    8    9    10   11    12    13 

1     0    1    1    2    1    3    4    3    4    5      6      7      6 

2     1    0    2    1    2    2    3    2    3    4      5      6      5 

3     1    2    0    1    2    2    3    2    3    4      5      6      5 

4     2    1    1    0    3    1    2    1    2    3      4      5      4 

5     1    2    2    3    0    4    5    4    5    6      7      8      7 

6     3    2    2    1    4    0    1    2    2    3      4      5       4 

7     4    3    3    2    5    1    0    2    1    2      3      4       3 

8     3    2    2    1    4    2    2    0    1    2      3      4       3 

9     4    3    3    2    5    2    1     1   0    1      2      3       2 

10   5    4    4    3    6    3    2     2   1    0      1      2       1 

11   6    5    5    4    7    4    3     3   2    1      0      1       2 

12   7   6     6    5    8    5    4     4   3    2      1      0       3 

13   6   5     5    4    7    4    3     3   2    1      2      3       0  

The shortest path matrix for the small unweighted network in fig 

(5.2.1) using my program  

We note that they are the same which support my program's results 

5.3  Procedures  

1- I will generate four types of random networks , the first one is small 

unweighted network consists of "13" nodes linked together, large 

unweighted network consists of "80" nodes linked together also , small 

weighted network consists of "13" nodes linked by different weights 

edges and finally large weighted network consists of "80" nodes linked 
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by different weights edges . The purpose of that is to support my result 

by different types of networks by comparing the result optained from 

each network to others .  

2- I will calculate the closeness centrality for each node in each network , 

then ranking them according to their closeness centralities using my 

matlab program .  

3- I will use the closeness centrality as assumption for the infection rate in 

networks instead of just assuming any constant number as almost all 

other models have been done . As we have seen in section (4.1) the 

authors of [22],[23], [10],[25] assumed a constant number for the 

infection rate . The authors of [16]and [6] used a constant number for 

the infection rate multiplied by the average of nodes degree "d" to get 

more sensible result . Also the authors of [24] and [26] assumed the 

initial compromise rate is constant . In my development of the SI model 

I will use the closeness centrality of nodes instead of the assumed and 

constant numbers as an infection rate, because I beleave that the 

closeness centrality depends on the summation of all shortest paths  

between the first infected node and all other nodes in the network . The 

node that have the smallest summation of all shortest paths between it 

and all other nodes has the smallest time to infect all other nodes in the 

network, so it has the smallest total infection time and it has the largest 

infection rate , also it can spread infection faster than any other nodes in 

the network ,so it has the largest infection spreading power .  At the 

same time it has the largest closeness centrality 
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4- I will trace infections movements when different nodes with different 

closeness centralities infected first . I will analyze the infection process 

with time for three nodes in each of the four networks that I generate 

when they are infected first . The first node has the highest closeness 

centrality ,the second node has median closeness centrality and the third 

node has the smallest closeness centrality ,then calculate the total 

infection time and the infection rate in general for each case .  

5- I will plot the total number of infected nodes with time for each of the 

three nodes , then compare the three cases by plotting the three curves 

of the three nodes in the same figure . 

6 

 

I will plot the relation between the closeness centrality and the total 

infection time for the three nodes to declear the relation between them .  

7  I will plot the relation between the closeness centrality and the infection 

rate for the three nodes also to declear the relation between them . 

8- I will test my hypothesis and apply it to the four networks that I generate 

and plot the number of infected nodes or their fractions with time and 

their infection spreading velocities with time , then compare my result 

with the prevuois results . 

9 

 

Finally I will compare between my work and the work of the author of 

[12] who replaces the infection rate by the eigenvector principal of the 

first infected node in the network . 
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5.4  Proporation 

To find the infection rate when any node infected first in the network 

we calculate it's closeness centrality as follow :  

1- We find the shortest path between that node and all other nodes in the 

network either it is weighted or unweighted .  

2- We find the summation of all these shortest paths . 

3- To find the closeness centrality of that node we divide one by that 

summation . 

4- To normalize the closeness centrality we multiply (1/summation) by 

(N-1) where N is the nodes in the network , and we have the following 

formula : 

Ci
c = 

j

dij

N )1( ---------- (5.1) 

Where dij : is the shortest path between node "i" and node "j" . 

Example 5.2: Find the closeness centrality for all nodes in the network in 

figure (5.4.1) .    

Figurer (5.4.1) : Small unweighted network for example (5.2) 
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Solution :  

For node (1)  

 d1,1 = 0,d1,2 = 1, d1,3 = 1, d1,4 = 2, d1,5 = 1, d1,6 = 3, d1,7 = 4, d1,8 = 3, d1,9 = 

4, d1,10 = 5, d1,11 = 6, d1,12 = 7, d1,13 = 6 

Sum of shortest paths = 43 

Cc
1 = 

43
12 

For node (2)  

d2,1=1, d2,2=0, d2,3=2, d2,4=1, d2,5=2, d2,6=2, d2,7=3, d2,8=2, d2,9=3, d2,10=4, 

d2,11=5, d2,12=6, d2,13=5 

Sum of shortest paths = 36 

Cc
2 = 

36
12 

For node(3)  

d3,1=1, d3,2=2, d3,3=0, d3,4=1, d3,5=2, d3,6=2, d3,7=3, d3,8=2, d3,9=3, d3,10=4, 

d3,11=5, d3,12=6, d3,13=5 

Sum of shortest paths = 36 

Cc
3= 

36
12 

For node (4)  

d4,1= 2, d4,2= 1, d4,3= 1, d4,4= 0, d4,5= 3, d4,6= 1, d4,7= 2, d4,8= 1, d4,9= 2, 

d4,10= 3, d4,11= 4, d4,12= 5, d4,13= 4 

Sum of shortest paths = 29 

Cc
4= 

29
12 
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For node (5)  

d5,1 = 1, d5,2 = 2, d5,3 = 2, d5,4 = 3, d5,5 = 0, d5,6 = 4, d5,7 = 5, d5,8 = 4, d5,9 

= 5, d5,10 = 6, d5,11 = 7, d5,12 = 8, d5,13 = 7 

Sum of shortest paths = 54 

Cc
5= 

54
12 

For node (6)  

d6,1=3, d6,2=3, d6,3=3, d6,4=3, d6,5=3, d6,6=3, d6,7=3, d6,8=3, d6,9=3, d6,10=3, 

d6,11=3, d6,12=3, d6,13=3 

Sum of shortest paths = 33 

Cc
6= 

33
12 

For node (7)  

d7,1= 4 , d7,2= 4 , d7,3= 4 , d7,4= 4 , d7,5= 4 , d7,6= 4 , d7,7= 4 , d7,8= 4 , d7,9= 

4 , d7,10= 4 , d7,11= 4 , d7,12= 4 , d7,13= 4  

Sum of shortest paths = 33 

Cc
7= 

33
12 

For node (8)  

d8,1=3, d8,2=2, d8,3=2, d8,4=1, d8,5=4, d8,6=2, d8,7=2, d8,8=0, d8,9=1, d8,10=2, 

d8,11=3, d8,12=4, d8,13=3 

Sum of shortest paths = 29 

Cc
8= 

29
12 
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For node (9)  

d9,1=4, d9,2=3, d9,3=3, d9,4=2, d9,5=5, d9,6=2, d9,7=1, d9,8=1, d9,9=0, d9,10=1, 

d9,11=2, d9,12=3, d9,13=2 

Sum of shortest paths = 29 

Cc
9= 

29
12 

For node (10) 

d10,1= 5, d10,2= 5, d10,3= 5, d10,4= 5, d10,5= 5, d10,6= 5, d10,7= 5, d10,8= 5, 

d10,9= 5,d10,10= 5, d10,11= 5, d10,12= 5, d10,13= 5 

Sum of shortest paths = 34 

Cc
10= 

34
12 

For node (11)  

d11,1= 6, d11,2= 6, d11,3= 6, d11,4= 6, d11,5= 6, d11,6= 6, d11,7= 6, d11,8= 6, 

d11,9= 6, d11,10= 6, d11,11= 6, d11,12= 6, d11,13= 6 

Sum of shortest paths = 43 

Cc
11= 

43
12 

For node (12)  

d12,1=7, d12,2=6, d12,3=6, d12,4=5, d12,5=8, d12,6=5, d12,7=4, d12,8=4, d12,9=3, 

d12,10=2, d12,11=1, d12,12=0, d12,13=3. 

Sum of shortest paths = 54 . 

Cc
12= 

54
12 . 
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For node (13)  

d13,1=6, d13,2=5, d13,3=5, d13,4=4, d13,5=7, d13,6=4, d13,7=3, d13,8=3, d13,9=2, 

d13,10=1, d13,11=2, d13,12=3, d13,13=0 . 

Sum of shortest paths = 45. 

Cc
13= 

45
12 . 

So the closeness centrality for all nodes of the network in figure 

(5.4.1) are tabulated in table (5.4.1) . 

Table (5.4.1): Closeness Centralities for all nodes of network in figure 
(5.4.1) 

Node 1 2 3 4 5 6 7 8 9 10

 

11

 

12

 

13 
Closeness 
Cetrality 43

12

 

36
12

 

36
12

 

29
12

 

54
12

 

33
12

 

33
12

 

29
12

 

29
12

 

34
12

 

43
12

 

54
12

 

45
12

 

By ranking nodes according to their closeness centralities we have 

table (5.4.1) 

Table (5.4.2) : Ranking nodes of network in figure (5.4.1) according to 
their closeness centralities 

Rank 1 2 3 4 5 6 7 8 9 10

 

11 12

 

13

 

Node 4 8 9 6 7 10

 

2 3 1 11

 

13 5 12

 

Closeness 
Centrality

 

29
12

 

29
12

 

29
12

 

33
12

 

33
12

 

34
12

 

36
12

 

36
12

 

43
12

 

43
12

 

45
12

 

54
12

 

54
12

       

After finding the closeness centrality "Ci
c" of node in the network  we 

assume that it represents the probability of infection rate when that node 

infected first . 

5.5 My Method  

My research subjects, as I exeplained in section(5.1) ,consist of "N" 

nodes and just one node is infected first "I(0) =1" and " N-1" nodes are 

susceptible " S(0) = N-1". I assumed that the closeness centrality "Ci
c"  for 
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node "i" represent the probability for rate of infection if node "i" is the first 

infected node. When any susceptible node infect if will still infected for 

ever ,that mean we have no recovery ,so after a period of time all 

susceptible nodes will become infected by the probability for rate of 

infection for that node "its closeness centrality" . 

So I will develop the SI model of epidemic network by replacing the 

infection rate " " by the closeness centrality of the first infected node as an 

assumption . 

I assumed that each node in the network has different total infection 

time,different infection rate and different infection spreading power when 

they are infected first ,because they have different shortest paths to other 

nodes and different times to reach  information to those nodes and they 

have different closeness centralities . The node that has the minimum time 

to reach all nodes it has the minimum summation of shortest paths and it 

has the largest closeness centrality, therefor it has the minimum total 

infection time, the maximum infection rate and the maximum infection 

spreading power . 

The author of [12] assumed that we have just one infected node at the 

beginning of the infection process ,where the other authors of 

[16],[9],[24],[10],[22],[25],[26] do not determine how many nodes are 

infected at the beginning of that process . In my development of SI model I 

assume that I also have just one infected node at the beginning as author of 

[12]. The authors of [9],[24],[10],[22],[25],[26] depend on just assumed 

numerical number for the infection rate " " and the author of [16] depends 

on " d" (average of degree) plus " ". The author of [12] used the principal 
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egeinvector "PEV" for the first infected node "i" as rate of infection . In my 

development of SI model I will use the closeness centrality for the first 

infected node "i" ,"Ci
c"  as rate of infection because it depends on the 

shortest paths between node "i" and other nodes in the network and shortest 

path means shortest time , as I considered the weights of edges in my 

networks as time . Nodes with high closeness centralities have the small 

time for propagate the epidemic to all nodes in the network and the large 

infection rate ,therefore , the propagation infection power for nodes 

depends on their closeness centralities ,so I think we can replace the 

infection rate in equation (4.2) and equation(4.3) by the closeness centrality 

of the first infected node "Ci
c"  . 

The differential equation that described SI model will become : 

dt

tdi )( = Ck
c (1-i(t)) i(t) --------------(5.2) 

where "k" is the first infected node in the network. 

with boundary conditions as I(0) = 1 and i(0) = I(0)/N , so 

(1) i(0) = 1/N , i(t final) = 1 . 

(2) for all t  0 , i(t) + s(t) = 1 . 

The solution of equation (5.2) for the fraction of infectious nodes is the " 

logistic curve " :  

     i(t) = (1/N) e Ck t / 1-(1/N) + ( 1/N) eCk t ---------------- (5.3)  

Equation (5.3) represents the logistic curve describing the rate of infection 

which I will use to measure the fraction of infected nodes as afunction of 

time "t" . 
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Chapter 6 

ANALYSIS and RESULTS 

In this chapter I will take four types of networks then I will analyze 

the infection process with time for some nodes in each of those networks 

and related that with their closeness centralities .Finally I will  apply my 

hypothesis on these networks then compare my results with the previous 

results that obtained by other authors .  

6.1 Result From Small Unweighted Network : 

Let us take the same network that we took in example (1.5) which 

consist of " 13" nodes , see figure (6.1.1)  

Figure (6.1.1) : Small Unweighted Network   

By calculating the closeness centralities for all nodes in the network 

in figure (6.1.1) and ranking them according to their closeness centralities 

using my matlab program , I used the adjacency matrix of the network in 

fig (6.1.1) which is shown in Appendix (B) .We have first the shortest path 

matrix see figure (6.1.2)      
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         1     2     3     4     5     6     7     8     9    10   11   12  13 
1       0     1     1     2     1     3     4     3     4     5     6     7     6 
2       1     0     2     1     2     2     3     2     3     4     5     6     5 
3        1     2     0     1     2     2     3     2     3     4     5     6     5 
4        2     1     1     0     3     1     2     1     2     3     4     5     4 
5       1     2     2     3     0     4     5     4     5     6     7     8     7 
6       3     2     2     1     4     0     1     2     2     3     4     5     4 
7       4     3     3     2     5     1     0     2     1     2     3     4     3 
8       3     2     2     1     4     2     2     0     1     2     3     4     3 
9       4     3     3     2     5     2     1     1     0     1     2     3     2 
10     5     4     4     3     6     3     2     2     1     0     1     2     1 
11     6     5     5     4     7     4     3     3     2     1     0     1     2 
12     7     6     6     5     8     5     4     4     3     2     1     0     3 
13     6     5     5     4     7     4     3     3     2     1     2     3     0 

Figure (6.1.2): The shortest paths matrix for the small unweighted network in fig 
(6.1)      

We have also table (6.1.1) in which we ranked nodes of the network 

in fig (6.1.1) according to their closeness centralities. 

Table .(6.1. 1) : Ranks of nodes of network in fig (6.1.1) according to 
their closeness centralities . 

Rank Node Closeness Centrality 
1 4 0.4138 
2 8 0.4138 
3 9 0.4138 
4 6 0.3636 
5 7 0.3636 
6 10 0.3529 
7 2 0.3333 
8 3 0.3333 
9 1 0.2791 
10 11 0.2791 
11 13 0.2667 
12 12 0.2222 
13 5 0.2222 

From table (6.1.1) we note that node (4 ) has the highest closeness 

centralities , so it is the most important node in the network , node (2) has 

median closeness centrality which means that it has median importance and 

node (12) has the smallest closeness centrality and it is the most 

unimportant node in the network .   
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6.1.1: Analysis of infection process for small unweighted 

network : 

To clarify the relation between the closeness centrality of the first 

infected node and each of the total infection time, the infection rate and the 

infection spreading power let us take three nodes that have different 

closeness centralities and assume that they are infected first ,then analyze 

the infection process with time for each of them ,the compare between the 

three cases . The nodes are node (4) which has the largest closeness 

centrality , node (2) which has the median closeness centrality and node 

(12) which has the smallest closeness centrality . 

When node (4) infected first the infection process with time shown in 

table (6.1.2) 

Table (6.1.2) : Infection process with time when node (4) infected first 
in the network in figure (6.1.1)   

Time

 

Infected nodes at 
that time 

Number of infected 
nodes at that time 

t0 4 1 
t1 2,3,6,8 4 
t2 1,7,9 3 
t3 5,10 2 
t4 11,13 2 
t5 12 1 

To explain the infection process when node (4) is the first infected 

node ,we start from node (4) which infects all nodes that adjacent to it 

which are nodes ( 2,3,6 and 8) at time "t1" , then each of these nodes 

infects nodes which adjacent to it . Node (2) infect node (1) , node (6) 

infect node (7) and node (8) infects node (9) at time "t2" . At time 't3" node 

(1) infects node (5) and node (9) infects node (10) . At time "t4" node (10) 
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infects node (11) and node (13) . And finally at time "t5" node (11) infects 

node (12) which is the last infected node in the network . At the end of time 

"t5" all nodes in the network are infected .  

To show the total number of the infected nodes at each unit of time 

when node (4) infected first in the network in figure (6.1) ,we have table 

(6.1.3) 

Table .(6.1.3) : The total number of infected nodes with time when 
node (4) infected first in the network in figure (6.1.1) . 

Time 
Total Number 

of Infected 
Nodes 

t0 1 
t1 5 
t2 8 
t3 10 
t4 12 
t5 13 

       

When we plot the total number of infected nodes with time when node 

(4) infected first in figure(6.1.1) ,we have figure (6.1.3)  

 

Figure(6.1.3) : The total number of infected nodes with time when node (4) infected 
first in the network in fig (6.1.1) 
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We observe from table (6.1.3) and figure(6.1.3) that the total 

infection time when node (4) infected first in fig (6.1.1) that the total 

infection time , which is the time that we need to infect all nodes in the 

network , equal " 6t " unit of time , and the infection rate which is equal 

total number of  infected nodes devided by the total infection time, so the 

infection rate at this case equals " 13/6t " node / unit of time , where "t" is 

unit of time . 

When node (2) infected first the infection process with time shown in 

table (6.1.4). 

Table. (6.1.4) : Infection process with time when node (2) infected first 
in the network in figure (6.1.1) 

Time Infected nodes at 
that time 

Number of infected 
nodes at that time 

t0 2 1 
t1 1,4 2 
t2 5,3,6,8 4 
t3 7,9 2 
t4 10 1 
t5 11,13 2 
t6 12 1 

    The total number of infected nodes with time when node (2) infected first 

is shown in table (6.1.5) 

Table .(6.1.5) : The total number of infected nodes with time when 
node (2) infected first in the network in figure (6.1.1) . 

Time Total Number of 
Infected Nodes 

t0 1 
t1 3 
t2 7 
t3 9 
t4 10 
t5 12 
t6 13 
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       After plotting the total infected nodes with time from table (6.1.5) we 

have figure (6.1.4) 

 

Figure(6.1.4) :The total number of infected nodes with when node (2) infected first 
in the network in fig (6.1.1) 

From table (6.1.5) and figure (6.1.4) we found that the total infection 

time when node (2) infected first equal "7t" unit of time and the infectin 

rate in the case equal " 13/7t " node / unit of time . 

When node (12) infected first the infection process with time shown 

in table (6.1.6) 

Table (6.1.6) : Infection process with time when node (12) infected first 
in the network in figure (6.1.1) 

Time Infected nodes at 
that time 

Number of infected 
nodes at that time 

t0 12 1 
t1 11 1 
t2 10 1 
t3 9,13 2 
t4 8,7 2 
t5 4,6 2 
t6 2,3 2 
t7 1 1 
t8 5 1 
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    Table (6.1.7) shows the total number of infected nodes with time when 

node (12) infected first in figure (6.1.1). 

Table.(6.1.7) : The total number of infected nodes with time when node 
(12) infected first in the network in figure (6.1.1) . 

Time Total Number of 
Infected Nodes 

t0 1 
t1 2 
t2 3 
t3 5 
t4 7 
t5 9 
t6 11 
t7 12 
t8 13 

When we plot the total number of infected nodes with time we have 

figure (6.1.5)  

 

Figure (6.1.5) : The total number of infected nodes with time when node (12) 

infected first in the network in fig (6.1.1) 

When node (12) infected first in fig (6.1.1) we note that the total 

infection time equal " 9t " unit of time and the infection rate equal " 13/9t " 

node / unit of time .  
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To compare between the three cases when nodes (4,2 and 12) 

infected first  we put all their result in the same table , see table (6.1.8). 

Table ( 6.1.8) : The total number of infected nodes with time when 
nodes (4,2 and12) infected first in the network in figure (6.1.1) .  

Time Total Number of 
Infected Nodes 
for node 4 

Total Number of 
Infected Nodes 
for node 2 

Total Number of 
Infected Nodes 
for node 12 

t0 1 1 1 
t1 5 3 2 
t2 8 7 3 
t3 10 9 5 
t4 12 10 7 
t5 13 12 9 
t6  13 11 
t7   12 
t8   13 

When we plot the total number of infected nodes with time when 

nodes (4,2 and 12 ) infected first, we have figure (6.1.6)  

 

Figure (6.1.6) : The total number of infected nodes  with time when nodes (4,2 and 
12) infected first in the network in fig (6.1.1) 
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From table (6.1.8) and figure ( 6.1.6) we notice that :  

1- The total infection time for node (4) which has the largest closeness 

centrality is the smallest , node (2) which has median closeness centrality 

has median total infection time and node (12) which has the smallest 

closeness centrality has the largest total infection time .  

To clear the relation between closeness centrality for the nodes and 

their total infection time when they are infected first we tabulate the 

closeness centralities  for nodes (4,2 and 12 ) and their total infection time 

in table ( 6.1.9)  

Table .(6.1.9) : The relation between closeness centralities for nodes 
(4,2 and 12) and their total infection time  when they are infected first 
in fig(6.1.1) 

Node Closeness Centrality

 

Total Infected Time 
4 0.4137 6 unit of time 
2 0.3333 7 unit of time 
12 0.2222 9 unit of time 

 

When we plot data in table (6.1.9) we have figure (6.1.7) 

 

Figure ( 6.1.7) : A curve clears the relation between closeness centralities for nodes 
(4,2 and 12) and their total infection time  when they are infected first in fig(6.1.1) 
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We conclude from table (6.1.9) ,figure (6.1.6) and figure(6.1.7) that 

the relation between the closeness centrality for the first infected node  and 

their total infection time is inversly proportinal .  

2- The infection rate for node (4) which has the largest closeness centrality 

when it is infected first is the largest , it is median when node (2) which has 

median closeness centrality infected first and it is the smallest when node 

(12)  which has the smallest closeness centrality infected first  . To clear the 

relation between the closeness centrality for the first infected nodes and the 

infection rate , let us tabulate the closeness centralities for nodes (4,2 and 

12) and their infection rate in table (6.1.10) 

Table .(6.1.10) : The relation between closeness centralities for nodes 
(4,2 and 12) and their infection rate when they are infected first in 
fig(6.1.1) 

Node Closeness Centrality

 

Infection Rate 
4 0.4137 13/6t 
2 0.3333 13/7t 
12 0.2222 13/9t 

By plotting data in table (6.1.10) we have figure (6.1.8)     

 

Figure ( 6.1.8) : A curve clears the relation between closeness centralities for nodes 
(4,2 and 12) and their infection rate when they are infected first in fig(6.1.1) 
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From table (6.1.10) and figure (6.1.8) we conclude that the relation 

between closeness centrality for the first infected node and the infection 

rate is directly proportinal . 

3- As nodes, those have high closeness centralities, have small total 

infection time and high infection rate , so they have high infection 

spreading power , nodes, those have median closeness centralities, have 

median total infection time and median infection rate , so they have median 

infection spreading power and nodes, those have small closeness 

centralities, have large total infection time and small infection rate , so they 

have small infection spreading power .  

From these results we can conclude that closeness centrality for the 

first infected node is directly proportinal to the infection spreading power 

of that node .  

6.1.2  Application of my development SI model on small unweighted 

network 

      When we apply equation (5.2) that I developed according to my 

hypothesis by replacing the infection rate " " in the SI model by the 

closeness centrality of the first infected node " Ck
c" on the small 

unweighted network in figure (6.1) . Equation ( 5.2 ) is  

dt

tdi )( = Ck
c(1-i(t))i(t) --------------(6.1)     

where di(t) / dt : is called the spreading velocity at time "t' and denoted 

some times by "V(t)" . 

Ck
c: is the closeness centrality for node "k"  
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i(t) : the fraction of infected nodes at time "t" .  

When we plot the infection spreading velocity with time which is 

shown in equation (6.1) after we assumed that each node in our network 

with different closeness centrality infected first ,we have figure ( 6.1.9)  

 

Figure (6.1.9) : Infection spreading velocity with time when each node in the small 
unweighted network in fig (6.1.1) with different closeness centrality infected first . 

From figure (6.1.9) we note that : 

1- It is the same shape curve optained by the authors of [2] and [3] . The 

infection spreading velocity goes up to a peak exponentially at the left 

side of the curve , then the curve follows the power 

 

law behavior at 

the right side of it .  

2- At the moment of infection outbreaks , the number of infected nodes is 

very small , as well as after a very long time from the outbreak, the 

number of susceptible nodes is very small . Thus when "t" is very small 

( close to zero ) or very large , the spreading velocity is close to zero .  

3- The spreading velocity goes up to a peak quickly , because at the left 

side of the curve we have few infected nodes but at the same time we 
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have many susceptible nodes , so the infection process will increase 

very fast until it reachs the maximum spreading velocity at the top of the 

curve . At the right side of the curve the number of susceptible nodes 

will decrease very fast because we have many infected nodes that 

change a large number of susceptible nodes to infected nodes , so the 

spreading velocity will decrease very fast until it reachs zero after a 

large time of infection outbreaks  

To compare between the infection spreading velocity when nodes 

(4),(2) and (12) are infected first in our network we plot the three curves of 

these nodes in one figure . see figure (6.1.10)  

 

Figure (6.1.10) : Infection spreading velocity when nodes (4,2 and 12) infected first 
in the network in fig (6.1.1) . 

We note from figure ( 6.1.10) that :  

1- The maximum spreading velocity is the largest for node (4) which has 

the largest closeness centrality , it is median for node (2) which has 

median closeness centrality and it is the smallest for node (12) which 

has the smallest closeness centrality .  
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2- When node (4) infected first the curve in both sides is sharper than it 

when node(2) infected first and it is sharper when node (2) infected 

first than it when node (12) infected first . That means the time to 

reach the maximum spreading velocity is the smallest for node (4) 

which has the largest closeness centrality, then it is median for node 

(2) which has median closeness centrality and it is the largest for node 

(12) which has the smallest closeness centrality .  

When we apply equation (5.3) on our small unweighted network in 

figure (6.1.1) which I developed also from the SI model , which is  

i(t) = (1/N) e Ck t / 1-(1/N) + ( 1/N) eCk t ---------------- (6.2) 

This equation represents the fraction of infected nodes as a function 

of time "t" , where  

"N= 13", " Ck " is the closeness centrality for node "k" when it is the 

first infected node and "t" is the time . 

When we plot the fraction of the infected nodes with time that shown 

in equation (6.2) for the closeness centralities of all nodes in the network in 

figure (6.1.1) ,after we assumed that each node in our network with 

different closeness centrality infected first ,we have figure (6.1.11)  
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Figure (6.1.11): The fraction of infected nodes with time in the small unweighted 
network in figure (6.1.1) 

From figure (6.1.11) we notice that :  

1- The S- Shape is very clear which is the same shape that authors of 

[23],[10] and [25] obtained . The curve starts slowly at the first state 

then it groeth exponential at the second state and at the last stage the 

curve will take off until all nodes will be infected .  

2-  Node (4) which has the largest closenes centrality in the network 

spreading the infection faster than any other node in the network and 

that is clear from the smallest total infection time when it is infected 

first ,node (2) which has median closeness centrality spreading 

infection in median rate , and that is clear form the median total 

infection time and node (12) which has the smallest closeness 

centrality spreading the infection through the network slower than 

other nodes in that network and that is clear from the largest total 

infection time when it is infected first in that network .  
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To clear that, let us plot the curves just for nodes ( 4 , 2 and 12 ) to 

compare between the total infection time that we need to infect all nodes in 

the network when these nodes infected first in the network in fig (6.1.1) , 

see figure (6.1.12)  

 

Figure (6.1.12): The fraction of infected nodes with time in the small unweighted 
network in figure (6.1.1) when nodes (4 ,2 and 12 ) infected first . 

From figure (6.1.12) we notice that when node (4) which has the 

largest closness centrality, infected first in the network the total infection 

time that need to infect all nodes in the network is the smallest , it is 

median when node (2) which has median closeness centrality  infected first 

and it is the largest when node (12) which has the smallest closeness 

centrality infected first . 

6.2 Result from large unweighted network  

To clarify the idea more let us take a large network that is shown in 

figure (6.2.1) , which consists of "80" nodes .  
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Figure (6.2.1) : Large Unweighted Network 

25

 

27

 

41

 

10

 
8

 

59

 

66

 

63

 

70

 

68

 

76

 

78

 

15

 

9

 
16

 

30

 

24

 

31

 

32

 

38

 

26

 

39

 

40

 

28

 

29

 

48

 

54

 

57

 

56

 

64

 

79

 

73

 

75

 

22

 

23

 

34

 

33

 

35

 

36

 

37

 

45

 

46

 

47

 

52

 

53

 

61

 

62

 

80

 

72

 

74

 
11

 
12

 

17

 

20

 

19

 

18

 

42

 

43

 

44

 

51

 

49

 

50

 

55

 

67

 

58

 

60

 

71

 

65

 

69

 

77

 

1

 
2

 
3

 
4

 
5

 
6

 
7

 
13

14

 

21

 



  
73

To calculate the closeness centralities for all nodes of the large 

unweighted network in figure (6.2.1) I used my own matlab program again, 

and the adjacency matrix of the network in fig (6.2.1), see Appendix (C ). 

Frist we have the shortest paths matrix for the large network in figure 

(6.2.1) which is shown in Appendix (D). From the shortest paths matrix we 

can calculate the summation of the shortest paths for each node in the 

network in figure(6.13) then we can calculate the closeness centralities for 

all those nodes.Table (6.2.1) shows the nodes of the network in figure 

(6.2.1), their shortest paths summation and their closeness centralities.  
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Table .(6.2.1) : Nodes ,the summation of their shortest paths and their 
closeness centralities for the network in figure (6.2.1) . 

Node Sum of 
Shortest Path

 
Closeness 
Centrality Node Sum of 

Shortest Path

 
Closeness 
Centrality

 
1 631 0.1252 41 424 0.1863 
2 555 0.1423 42 371 0.2129 
3 631 0.1252 43 391 0.2020 
4 622 0.1270 44 337 0.2344 
5 632 0.1250 45 351 0.2251 
6 709 0.1114 46 427 0.1850 
7 523 0.1511 47 505 0.1564 
8 581 0.1360 48 436 0.1812 
9 570 0.1386 49 484 0.1632 
10 568 0.1391 50 515 0.1534 
11 422 0.1872 51 354 0.2232 
12 477 0.1656 52 406 0.1946 
13 573 0.1379 53 322 0.2453 
14 531 0.1488 54 457 0.1729 
15 502 0.1574 55 548 0.1442 
16 461 0.1714 56 493 0.1602 
17 396 0.1995 57 620 0.1274 
18 439 0.1800 58 622 0.1270 
19 472 0.1674 59 629 0.1256 
20 511 0.1546 60 565 0.1398 
21 492 0.1606 61 527 0.1499 
22 359 0.2201 62 555 0.1423 
23 411 0.1922 63 485 0.1629 
24 449 0.1759 64 441 0.1791 
25 494 0.1599 65 383 0.2063 
26 450 0.1756 66 437 0.1808 
27 404 0.1955 67 445 0.1775 
28 426 0.1854 68 507 0.1558 
29 505 0.1564 69 561 0.1408 
30 530 0.1491 70 596 0.1326 
31 502 0.1574 71 596 0.1326 
32 453 0.1744 72 546 0.1447 
33 399 0.1980 73 491 0.1609 
34 447 0.1820 74 569 0.1388 
35 402 0.2015 75 700 0.1129 
36 417 0.1894 76 622 0.1270 
37 468 0.1688 77 596 0.1326 
38 487 0.1622 78 569 0.1388 
39 373 0.2118 79 569 0.1388 
40 387 0.2041 80 639 0.1236 

By ranking nodes in the network in figure (6.2.1) according to their 

closeness centralities we have table (6.2.2). 
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Table (6.2.2): Ranks of nodes in the network in figure(6.2.1) according 
to their closeness centralities . 

Rank Node Closeness 
Centrality Rank Node Closeness 

Centrality 
1 53 0.2453 41 56 0.1602 
2 44 0.2344 42 25 0.1599 
3 45 0.2251 43 15 0.1574 
4 51 0.2232 44 31 0.1574 
5 22 0.2201 45 47 0.1564 
6 42 0.2129 46 29 0.1564 
7 39 0.2118 47 68 0.1558 
8 65 0.2063 48 20 0.1546 
9 40 0.2041 49 50 0.1534 

10 43 0.2020 50 7 0.1511 
11 35 0.2015 51 61 0.1499 
12 17 0.1995 52 30 0.1491 
13 33 0.1980 53 14 0.1488 
14 27 0.1955 54 72 0.1447 
15 52 0.1946 55 55 0.1442 
16 23 0.1922 56 2 0.1423 
17 36 0.1894 57 62 0.1423 
18 11 0.1872 58 69 0.1408 
19 41 0.1863 59 60 0.1398 
20 28 0.1854 60 10 0.1391 
21 46 0.1850 61 74 0.1388 
22 34 0.1820 62 78 0.1388 
23 48 0.1812 63 79 0.1388 
24 66 0.1808 64 9 0.1386 
25 18 0.1800 65 13 0.1379 
26 64 0.1791 66 8 0.1360 
27 67 0.1775 67 77 0.1326 
28 24 0.1759 68 71 0.1326 
29 26 0.1756 69 70 0.1326 
30 32 0.1744 70 57 0.1274 
31 54 0.1729 71 58 0.1270 
32 16 0.1714 72 4 0.1270 
33 37 0.1688 73 76 0.1270 
34 19 0.1674 74 59 0.1256 
35 12 0.1656 75 3 0.1252 
36 49 0.1632 76 1 0.1252 
37 63 0.1629 77 5 0.1250 
38 38 0.1622 78 80 0.1236 
39 73 0.1609 79 75 0.1129 
40 21 0.1606 80 6 0.1114 

From table (6.2.2) we note that node (53) has the highest closeness 

centrality which is equal "0.2453" , node (21) has median closeness 
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centrality which is equal "0.1606" and node "6" has the smallest closeness 

centrality which equal " 0.1114" .  

6.2.1 Analysis of Infection Process for Large Unweighted Network : 

To explain the relation between the closeness centrality of the first 

infected node and each of the total infection time ,the infection rate and the 

infection spreading power of that node in large networks let us analyze the 

infection spreading process with time through the large network in figure 

(6.2.1).  

We will take nodes (53),(21) and (6) as the first infected nodes , then 

analyze the infection spreading process for each case and compare between 

the three cases. 

When node (53) which has the largest colseness centrality in network 

in figure(6.2.1) infected first , the infection process with time shown in 

table (6.2.1) . 

Table(6.2.3) : Infection process with time when node (53) in the 
network in figure (6.2.1) infected first. 

Time

 

Infected nodes at that time 
Number of 

infected nodes 
at that time 

T0 53 1 
T1 39,44,51,42,40,45 6 
T2 33,22,35,43,52,65,41,48,17,36,46 11 
T3 28,32,11,23,27,34,64,67,66,54,38,49,16,18,37,47

 

16 
T4 68,31,12,24,26,56,73,61,63,50,15,19 12 
T5 69,30,7,21,25,60,55,74,79,78,72,62,14,20 14 
T6 70,80,29,8,2,10,9,59,57,71,77,58,13 13 
T7 76,5,1,3,4 5 
T8 75,6 2 
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We note from table (6.2.3) that the infection process begin slowly 

then it grows very fast , then finally it returns slow at the end of that 

process when all nodes almost infected. 

To show the relation between the total number of infected nodes and 

the time "t" , we tabulate that total number of infected nodes at each period 

of time and that time in table (6.2.4) 

Table.(6.2.4) : The total number of infected nodes with time when node 
(53) infected first in figure (6.2.1).   

Time Total Number of 
Infected Nodes 

T0 1 
T1 7 
T2 18 
T3 34 
T4 46 
T5 60 
T6 73 
T7 78 
T8 80 

By plotting data in table (6.14) we have figure (6.2.2) :  

 

Figure (6.2.2) : Infection process curve with time when node (53) infected first in 
figure (6.2.1) . 



  
78

We note from figure (6.14) that we have S 

 
Shape curve , the total 

infection time is "9t" unit of time and the infection rate is " 80/9t" node / 

unit of time when node (53) which has the largest closeness centrality 

infected first , where "t" is the unit time . 

When node (21) infected first in our network the infection spreading 

process with time "t" shown in table (6.2.5) 

Table (6.2.5) : Infected nodes with time when node (21) in the network 
in figure (6.2.1) infected first. 

Time Infected nodes at that time Number of infected 
nodes at that time 

T0 21 1 
T1 20,2,10,24,9 5 
T2 19,1,4,3,25,23 6 
T3 14,18,5,6,26,22 6 
T4 13,15,17,8,27,29,11,44 8 
T5 7,16,45,28,30,12,35,53,43 9 
T6 36,46,33,31,34,42,40,39,51,52

 

10 
T7 37,47,32,41,48,65 6 
T8 68,54,38,49,64,67,66 7 
T9 69,61,50,63,56,73 6 
T10 80,70,62,60,55,72,78,79,74 9 
T11 76,58,59,57,71,77 6 
T12 75 1 

 

         When we tabulate that total number of infected nodes at each period of 

time we have table (6.2.6) 
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Table(6.2.6) : The total number of infected nodes with time when node 
(21) infected first in the network in figure(6.2.1) . 

Time Total Number of 
Infected Nodes 

T0 1 
T1 6 
T2 12 
T3 18 
T4 26 
T5 35 
T6 45 
T7 51 
T8 58 
T9 64 
T10 73 
T11 79 
T12 80 

By plotting data in table (6.2.6) we have figure (6.2.3)  

 

Figure (6.2.3) : Infection process curve with time when node (21) infected first in 
figure (6.2.1) . 

We note from figure (6.2.3) that we also have S 

 

Shape curve , the 

total infection time is "13t" unit of time and the infection rate is " 80/13t" 

node / unit of time when node (21) which has median closeness centrality 

infected first , where "t" is the unit time . 
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When node (6) infected first in our large unweighted network the 

infection spreading process with time shown in table (6.2.7) 

Table (6.2.7) : Infected nodes with time when node (6) in the network 
in figure (6.2.1) infected first . 

Time Infected Nodes at that Time Number of Infected 
Nodes at that Time 

T0 6 1 
T1 3 1 
T2 2 1 
T3 4,1,21 3 
T4 5,24,20,10,9 5 
T5 8,25,23,19 4 
T6 7,26,22,14,18 5 
T7 12,29,27,44,11,13,15,17 8 
T8 30,28,53,43,35,45,16 7 
T9 31,34,33,39,51,40,42,52,46,36 10 
T10 32,65,48,41,47,37 6 
T11 68,66,67,64,49,54,38 7 
T12 69,73,56,63,50,61 6 
T13 70,80,74,79,78,72,55,60,62 9 
T14 76,71,77,57,59,58 6 
T15 75 1 

We can summarize the relation between the total number of infected nodes 

at each period of time in table (6.2.8)  
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Table. (6.2.8) : The total number of infected nodes with time when 
node (6) in figure (6.2.1) infected first . 

Time Total Number of 
Infected Nodes 

t0 1 
t1 2 
t2 3 
t3 6 
t4 11 
t5 15 
t6 20 
t7 28 
t8 35 
t9 45 

t10 51 
t11 58 
t12 64 
t13 73 
t14 79 
t15 80 

  

When we plot data in table (6.2.8) we have figure (6.2.4)  

 

Figure (6.2.4) : Infection process curve with time when node (6) infected first in 
figure (6.2.1) .         

Also we note from figure (6.2.4) that we have S 

 

Shape curve , the 

total infection time is "16t" unit of time and the infection rate is " 80/16t" 
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node / unit of time when node (6) which has the smallest closeness 

centrality infected first , where "t" is the unit time .      

To compare between cases when nodes (53,21 and 6) which have three 

different closeness centralities infected first , let us tabulate their data in 

table ( 6.2.9 )  

Table (6.2.9) : Total number of infected nodes when nodes (53), (21) 
and (6) infected first in figure (6.2.1) . 

Time 
Total Number of 
Infected Nodes 

for node 53 

Total Number of 
Infected Nodes 

for node 21 

Total Number of 
Infected Nodes 

for node 6 
t0 1 1 1 
t1 7 6 2 
t2 18 12 3 
t3 34 18 6 
t4 46 26 11 
t5 60 35 15 
t6 73 45 20 
t7 78 51 28 
t8 80 58 35 
t9  64 45 

t10  73 51 
t11  79 58 
t12  80 64 
t13   73 
t14   79 
t15   80 

When we plot data in table (6.2.9) we have figure (6.2.5)  
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Figure(6.2.5):Infection process with time when nodes (53),(21) ,(6) infected first in 
fig (6.2.1) 

From table (6.2.9) and figure (6.2.5) we notice that :  

1- We have different S- Shape curves for the three nodes (53,21 and 

6) ,which they have three different closeness centralities, when they are 

infected first .  

2- The total infection time is the smallest for node (53) which has the 

largest closeness centrality , it is median for node (21) which has 

median closeness centrality and it is the largest for node (6) which has 

the smallest closeness centrality . When we tabulate the closeness 

centralities for nodes (53,21 and 6) and their total infection time when 

they are infected first in the network in figure(6.2.1) we have table 

(6.2.10)  

Table .(6.2.10) : Closeness centralities for nodes (53,21 and 6) and their 
total infection time when they are infected first in fig(6.2.1)  

Node Closeness 
Centrality 

Total Infection 
Time 

53 0.2453 9t 
21 0.1606 13t 
6 0.1114 16t 
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By plotting data in table (6.2.10) , we have figure (6.2.6) 

 

Figure(6.2.6) : The relation between closeness centralities and the total infection 
time for nodes (53,21,6) in fig (6.2.1) .        

From tables (6.2.9) and (6.2.10) and figures (6.2.5) and (6.2.6) we can 

conclude that the relation between the closeness centrality of the first 

infected node and its total infection time is inversly proportinal . 

3- The infection rate when node (53) which has the largest closeness 

centrality is the largest , it is median for node (21) which has median 

closeness centrality and it is the smallest for node (6) which has the 

smallest closeness centrality . By tabulate the closeness centralities for 

nodes (53,21,6) and their infection rate when they are infected first , we 

have table (6.2.11).  

Table .(6. 2.11) : Closeness centralities for nodes (53,21 and 6) and 
their infection rate when they are infected first in fig(6.2.1) . 

Node Closeness Centrality Infection Rate

 

53 0.2453 80/9t 
21 0.1606 80/13t 
6 0.1114 80/16t 

                                 
When we plot data in table (6.2.11) , we have figure (6.2.7)  
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Figure(6.2.7) :The relation between closeness centralities and the infection rate for 
nodes (53,21,6) in fig (6.2.1) 

From tables (6.2.9) and (6.2.11) and figures (6.2.5) and (6.2.7) we 

can conclude that the relation between the closeness centrality for the first 

infected node and its infection rate is directly proportinal . 

4- As nodes those have high cloesness centralities , have small total 

infection time and large infection rate , so the have high infection 

spreading power , nodes those have median closeness centrality , have 

median total infection time and median infection rate , so they have 

median infection spreading power and nodes those have small closeness 

centralities have large total infection time , small infection rate , so they 

have small infection spreading power . Therefore we can conclude that 

the relation between the closeness centrality for the first infected node 

and its infection spreading power is directly proportinal .  
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6.2.2  Application of my development SI model on large unweighted 

network    

When we apply equation (5.2) that I developed according to my 

hypothesis by replacing the infection rate " " in the SI model by the 

closeness centrality of the first infected node " Ck
c " on the large 

unweighted network in figure (6.2.1) and plot the infection spreading 

velocity with time for closeness centralities of "25" different nodes in our 

large network in fig (6.2.1) ,we have figure(6.2.8)  

 

Figure (6.2.8) : Infection spreading velocity with time when "25' different nodes 
with different closeness centralities infected first in fig (6.2.1) 

We note from fig (6.2.8) that the spreading velocity curve grows 

very fast exponentialy in the left side of the curve , reaching the peak of the 

curve , then it follows the power law behavior as  obtained by previous 

works [2],[3]  

To clear that more, we plot just three curves for nodes (53),(21) and 

(6) for the infection spreading velocity with time in the same figure , see 

figure (6.2.9)  
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Figure (6.2.9) : Infection spreading velocity when nodes (53,21 an 6) infected first 
in fig (6.2.1) 

From figure(6.2.9) we note that the maximum infection spreading 

velocity for node (53) which has the largest closeness centrality is larger 

than it for node (21) which has median closeness centrality and the 

maximum infection spreading velocity for node (21) is larger than it for 

node (6) which has the smallest closeness centrality . We note also that the 

curve from both sides is sharper when node (53) infected first than it when 

node (21) infected first and it is sharper when node (21) infected first than 

it when node (6) infected firs in figure (6.2.1) , and that means the infection  

spreading process when node (53) infected first is faster than it when node 

(21) infected first and it is faster when node(21) infected first than it when 

node (6) infected first .  

When we apply equation (5.3) that I developed according to my 

hypothesis on the large network in figure (6.2.1) and plot the fraction of the 

infected nodes with time which is shown in that equation for closeness 

centralities of "25" different nodes in our large network in fig (6.2.1) ,we 

have figure(6.2.10)  
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Figure (6.2.10) : Fraction of infected nodes with time in the large unweighted 
network in figure (6.2.1) 

From figure (6.2.10) we notice again the clear S-Shape curve which 

starts slowly at the first state , then growth exponential at the second state 

and at the last state the curve will take off until all nodes will be infected .  

To show the effects of nodes with different closeness centralities 

when they are infected first on the infection spreading process let us plot 

the curves for just three nodes ( 53.21 and 6) and compare betweenthem, 

see figure (6.2.11)  

 

Figure (6.2.11) : The fraction of infected nodes with time in the large unweighted 
network in figure (6.2.1) when nodes (53 ,21 and 6 ) infected first . 
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From figure (6.2.11) we note that when node (53) which has the 

largest closeness centrality infected first ,the total infected time that we 

need to infect all nodes in our large network is the smallest , it is median 

when node (21) which has median closeness centrality infected first and it 

is the largest when node (6) which has the smallest closeness centrality .  

6.3 Result From Small Weighted Network  

Let us now take the same network in example (1) but its edges or 

links have weights . The weight in our network here means time , i.e. if we 

have an edge between node "i" and node "j" has weight "3" for example , 

that means the time to transmit any information from "i" to "j" equals "3" 

units of time . This weighted network is shown in fig (6.3.1) .     

   7  
2  4  2 2 

                        5                                    3    

3 1                                                             6 
               2  2 1 2    

Figure (6.3.1) : Small weighted network 

     To calculate the closeness centralities for nodes in the weighted 

network in fig(6.3.1) I used also my matlab program , and the adjacency 

matrix of the network in fig (6.3.1), see Appendix (E). By using that 

program we have the shortest paths matrix shown in fig (6.3.2).   
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                             1     2     3     4     5     6     7     8     9    10    11    12    13 
    
                    1 0     3     2     4     2     9     9     6     7    13    16    18    15  

2 3     0     5     1     5     6     6     3     4    10    13    15    12 
                    3 2     5     0     4     4     9     9     6     7    13    16    18    15 
                    4 4     1     4     0     6     5     5     2     3     9     12    14    11 
                    5  2     5     4     6     0    11   11    8     9    15    18    20    17 
                    6       9     6     9     5    11    0     7     7     8    14    17    19    16 
                    7      9     6     9     5    11    7     0     3     2     8     11    13    10 
                    8     6     3     6     2     8     7     3     0     1     7     10    12     9 
                    9   7     4     7     3     9     8     2     1     0     6      9     11     8 
                  10     13   10   13    9    15   14    8     7     6     0      3      5      2 
                  11     16   13   16   12   18   17   11   10    9     3      0      2      5 
                  12     18   15   18   14   20   19   13   12   11    5      2      0      7 
                  13     15   12   15   11   17   16   10    9     8     2      5      7      0  

Figure (6.3.2) : The shortest path matrix for the small weighted network in 
fig.(6.3.1) . 

The summation of the shortest paths for each node and its closeness 

centrality is shown in table (6.3.1) . 

Table . (6.3.1) : The summation of the shortest paths and the closeness 
centrality for each node in the network in fig (6.3.1) 

Node Sum of the 
Shortest Paths 

Closeness 
Centrality 

1 104 0.1154 
2 83 0.1446 
3 108 0.1111 
4 76 0.1579 
5 126 0.0952 
6 128 0.0938 
7 94 0.1277 
8 74 0.1622 
9 75 0.1600 
10 105 0.1143 
11 132 0.0909 
12 154 0.0779 
13 127 0.0945 

      After ranking nodes according to their closeness centralities we have 

table (6.3.2). 
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Table . (6.3.2) : Ranks of nodes according to their closeness centralities 
in the network in fig (6.3.1) 

Closeness 
Centrality Node Rank 

0.1622 8 1 
0.1600 9 2 
0.1579 4 3 
0.1446 2 4 
0.1277 7 5 
0.1154 1 6 
0.1143 10 7 
0.1111 3 8 
0.0952 5 9 
0.0945 13 10 
0.0938 6 11 
0.0909 11 12 
0.0779 12 13 

We note from table (6.3.2) that node (8) has the largest closeness 

centrality , node (10) has median closeness centrality and node (12) has the 

smallest closeness centrality .  

6.3.1 Analysis of Infection Process for Small Weighted Network : 

To clarify the relation between closeness centrality of the first 

infected node and each of the total infection time , the infection rate and the 

infection spreading power in small weighted network let us analyze the 

infection process with time for the network in figure (6.3.1) when nodes 

(8,10,12) infected first , then compare between the results obtained from 

the three cases . 

When node (8) infected first which has the largest closeness 

centrality , we have table ( 6.3.3). 
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Table . (6.3.3) : Infected nodes with time when node (8) infected first in 
the network in fig (6.3.1) 

Time Infected Nodes at 
That Time 

Total Number of 
Infected Nodes 

t0 8 1 
t1 9 2 
t2 4 3 
t3 2,7 5 
t4 ---- 5 
t5 ---- 5 
t6 1,3 7 
t7 10,6 9 
t8 5 10 
t9 13 11 

t10 11 12 
t11 12 13 

When I plot the relation between time and the total number of 

infected nodes we have figure (6.3.3) .  

 

Figure (6.3.3) : The total number of infected nodes with time when node (8) 
infected first for network in figure (6.3.1) . 

We note from figure (6.3.3) that the total infection time is "11" unit 

of time . If we supposed that each unit of time is "t" , so the total infection 

time in this case is "11t" and the infection rate equals "13/11t" node/unit of 

time "t" . 
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When node (10) infected first which has median closeness centrality 

we have table (6.3.4) 

Table .(6.3.4) : Infected nodes with time when node (10) infected first 
in fig.(6.3.1) 

Time Infected  Nodes 
at That Time 

Total Number of 
Infected Nodes 

t0 10 1 
t1 ------ 1 
t2 13 2 
t3 11 3 
t4 ------ 3 
t5 12 4 
t6 9 5 
t7 8 6 
t8 7 7 
t9 4 8 

t10 2 9 
t11 ----- 9 
t12 ----- 9 
t13 1,3 11 
t14 6 12 
t15 5 13 

By plotting the relation between time and the total number of 

infected nodes we have figure (6.3.4)                

Figure (6.3.4): The total number of infected nodes with time when node (10) 
infected first in fig.(6.3.1) . 



  
94

We note from figure(6.3.4) that the total infection time is "15t" 

where "t" is the unit time and the infection rate equal " 13/15t " node/unit 

of time . 

When node (12) infected first which has the smallest closeness 

centrality we have table ( 6.3.5) 

Table .(6. 3.5) : Infected nodes with time when node (12) infected first 
in fig.(6.3.1) 

Time Infected Nodes 
at That Time 

Total Number of 
Infected Nodes 

t0 12 1 
t1 ----- 1 
t2 11 2 
t3 ----- 2 
t4 ----- 2 
t5 10 3 
t6 ----- 3 
t7 13 4 
t8 ----- 4 
t9 ----- 4 

t10 ----- 4 
t11 9 5 
t12 8 6 
t13 7 7 
t14 4 8 
t15 2 9 
t16 ----- 9 
t17 ----- 9 
t18 1,3 11 
t19 6 12 
t20 5 13 

When we plot the relation between the total number of infected 

nodes with time we have figure (6.3.5)  
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Figure (6.3.5) :  The total number of infected nodes with time when node (12) 
infected first in fig.(6.3.1) . 

From figure (6.3.5) we note that the total infection time is "20t" and 

the infection rate equals "13/20t" node/unit of time .  

To compare between the three cases we put their results in one table . 

see table (6.3.6)  
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Table (6.3.6) : Infected nodes with time when nodes (8),(10), (12) 
infected first in fig.(6.3.1) 

Time Total Infected 
Nodes for Node 8

 
Total Infected 

Nodes for Node 10 
Total Infected 

Nodes for Node 12 
t0 1 1 1 
t1 2 1 1 
t2 3 2 2 
t3 5 3 2 
t4 5 3 2 
t5 5 4 3 
t6 7 5 3 
t7 9 6 4 
t8 10 7 4 
t9 11 8 4 
t10 12 9 4 
t11 13 9 5 
t12  9 6 
t13  11 7 
t14  12 8 
t15  13 9 
t16   9 
t17   9 
t18   11 
t19   12 
t20   13 

 

When we plot the relation between the total number of infected 

nodes with time for the three cases in one figure we have figure (6.3.6) 

 

Figure (6.3.6) : The total number of infected nodes with time when nodes (8),(10) 
and (12) infected first in fig.(6.3.1) . 
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From figure (6.3.6) we note that :  

1- Node (8) which has the largest closeness centrality has the minimum 

total infection time when it is infected first . Also node (10) which has 

median closeness centrality has median total infection time when it is 

infected first and node (12) which has the smallest closeness centrality 

has the maximum total infection time when it is infected first .When we 

tabulate the closeness centralities and the total infection time for the 

three nodes we have table (6.3.7)  

Table .(6.3.7) : Closeness centrality and total infection time for nodes 
(8),(10)and (12) in fig (6.3.1) 

Node 8 10 12 
Closeness 
Centrality 

0.1622 0.1143 0.0779 

Total Infection 
Time 

11t 15t 20t 

When we plot the relation between the closeness cetrality and the 

total infection time for nodes (8),(10) and (12) we have figure (6.3.7) .  

 

Figure (6.3.7) :The relation between closeness centrality for the first infected nodes 
(8),(10) and (12) and their total infection time  in fig (6.3.1) . 
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    From figure (6.3.7) we conclude that the relation between the closeness 

centrality for the first infected node and the total infection time is inversly 

proportinal . 

2- The infection rate when node (8) infected first is the largest which is 

equal "13/11t" node/unit of time ,it is median when node (10) infected 

first which equal "13/15t" node/unit time and it is the smallest when 

node (12) infected first which equals "13/20t " node/unit time . When 

we tabulate the closeness centralities and the infection rate for nodes 

(8),(10) and (12) in fig (6.3.1) we have table (6.3.8)  

Table (6. 3.8): Closeness centrality and infection rate for nodes 
(8),(10)and (12) in fig (6.3.1). 

Node 8 10 12 
Closeness 
Centrality 

0.1622 0.1143 0.0779 

Infection Rate 13/11t 13/15t 13/20t 

When we plot the relation between the closeness centralities and the 

infection rate for nodes (8),(10)and (12) in figure (6.3.1) we have figure 

(6.3.8)  

 

Figure (6.3.8) : The relation between closeness centrality for the first infected 
nodes (8),(10) and (12) and their infection rate in fig (6.3.1) 
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From figure (6.3.8) we conclude that the relation between the 

closeness centrality for the first infected node and its infection rate is 

directly proportinal . 

3- As node (8) which has the highest closeness centrality has the smallest 

total infection time and the largest infection rate we conclude that it has 

the largest infection spreading power ,node (10) which has median  

colseness centrality has median total infection time and median 

infection rate we conclude that it has median infection spreading power 

and node (12) which has the smallest closeness centrality has the largest 

total infection time, the smallest infection rate ,we conclude that it has 

the smallest infection spreading power . From these three cases we note 

that nodes those have high closeness centralities have high infection 

spreading power and nodes those have small closeness centralities have 

small infection spreading power when they are infected first . So we 

conclude that the relation between closeness centrality for the first 

infected nodes and their infection spreading power is directly 

proportinal . 

6.3.2 Application of my development SI model on Small weighted 

network 

When we apply equation (5.2) that I developed according to my 

hypothesis on the small weighted network in figure (6.3.1) and plot the 

infection spreading velocity with time for the closeness centralities of all 

nodes in that network,we have figure(6.3.9)   
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Figure (6.3.9) : Infection Spreading Velocity with Time for small weighted network 
in fig (6.3.1) 

We note from fig (6.3.9) that the spreading velocity curve grows 

very fast exponentialy in the left side of the curve , reaching the peak of the 

curve , then it follows the power law behavior in the right side as  

optained by previous works [2],[3]  

To clear that more we plot the curves of the infection spreading 

velocity with time when nodes (8),(10) and (12) infected first in the same 

figure , see figure (6.3.10) 

 

Figure (6.3.10) : Infection spreading velocity when nodes (8,10 and 12) infected 
first in fig (6.3.1) 
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From figure(6.3.10) we note that the maximum infection spreading 

velocity for node (8) which has the largest closeness centrality is larger 

than it for node (10) which has median closeness centrality and the 

maximum spreading velocity for node (10) is larger than it for node (12) 

which has the smallest closeness centrality . We note also that the curve 

from both sides is sharper when node (8) infected first than it when node 

(10) infected first and it is sharper when node (10) infected first than it 

when node (12) infected first in figure (6.3.1) , and that means the infection  

spreading process when node (8) infected first is faster than it when node 

(10) infected first and it is faster when node(10) infected first than it when 

node (12) infected first .  

When we apply equation (5.3) that I developed according to my 

hypothesis on the small weighted network in figure (6.3.1) and plot the 

fraction of the infected nodes with time that  shown in that equation for all 

closeness centralitiy of all nodes in our small weighted network in fig 

(6.3.1) ,we have figure(6.3.11)  

 

Figure (6.3.11) : Fraction of infected nodes with time in the small weighted 
network in figure (6.3.1) 
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From figure (6.3.11) we notice again the clear S-Shape curve which 

starts slow at the first state , then growth exponential at the second state and 

at the last state the curve will take off until all nodes will be infected .  

To show the effects of nodes with different closeness centralities 

when they are infected first on the infection spreading process let us plot 

the fraction of the infected with time which shown in equation (5.3) for just 

three nodes ( 8,10 and 12) and compare between their curves , see figure 

(6.3.12)  

 

Figure (6.3.12) : The fraction of infected nodes with time in the small weighted 
network in figure (6.3.1) when nodes (8 ,10 and 12 ) infected first .  

From figure (6.3.12) we note that when node (8) which has the 

largest closeness centrality infected first ,the total infected time that we 

need to infect all nodes in our small weighted network is the smallest , it is 

median when node (10) which has median closeness centrality infected first 

and it is the largest when node (12) which has the smallest closeness 

centrality .   
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6.4  Results from Large Weighted Network :  

Let us now take the same large network in figure (6.10) , but it is 

weighted  . See figure (6.4.1) .   
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Figure (6.4.1) : Large Weighted Network 
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To calculate the closeness centralities for nodes in the network in 

figure (6.4.1) I used my matlab program and the adjacency matrix of the 

network in fig (6.4.1), see Appendix (F) . Frist we have the shortest paths 

matrix for our large weighted network which is shown in Appendix (G) . 

By calculating the summation of the shortest paths for each node in 

our large weighted network and their closeness centralities using my 

matlab program , we have table (6.4.1) 
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Table .(6. 4.1): Summation of shortest paths and closeness centralities 
for nodes of the large weighted network in fig.(6.4.1) 

Node Sum of 
Shortest Paths 

Closeness 
Centrality Node Sum of 

Shortest Paths

 
Closeness 
Centrality 

1 1601 0.0493 41 1215 0.0650 
2 1665 0.0474 42 1045 0.0756 
3 1741 0.0454 43 1170 0.0675 
4 1802 0.0438 44 1014 0.0779 
5 2006 0.0394 45 1016 0.0778 
6 1897 0.0416 46 1244 0.0635 
7 1736 0.0455 47 1556 0.0508 
8 2006 0.0394 48 1203 0.0657 
9 1645 0.0480 49 1305 0.0605 

10 1475 0.0536 50 1337 0.0591 
11 1358 0.0582 51 1161 0.0680 
12 1612 0.0490 52 1212 0.0652 
13 1790 0.0441 53 962 0.0821 
14 1457 0.0542 54 1351 0.0585 
15 1430 0.0552 55 1416 0.0558 
16 1359 0.0581 56 1387 0.0570 
17 1249 0.0633 57 1795 0.0440 
18 1430 0.0552 58 1809 0.0437 
19 1516 0.0521 59 1760 0.0449 
20 1521 0.0519 60 1612 0.0490 
21 1411 0.0560 61 1570 0.0503 
22 1022 0.0773 62 1590 0.0497 
23 1233 0.0641 63 1444 0.0547 
24 1246 0.0634 64 1444 0.0547 
25 1287 0.0614 65 1265 0.0625 
26 1312 0.0602 66 1421 0.0556 
27 1163 0.0679 67 1540 0.0513 
28 1201 0.0658 68 1457 0.0542 
29 1580 0.0500 69 1499 0.0527 
30 1509 0.0524 70 1603 0.0493 
31 1423 0.0555 71 1686 0.0469 
32 1201 0.0658 72 1693 0.0467 
33 1155 0.0684 73 1636 0.0483 
34 1318 0.0599 74 1714 0.0461 
35 1285 0.0615 75 1812 0.0436 
36 1164 0.0679 76 1656 0.0477 
37 1417 0.0558 77 1908 0.0414 
38 1363 0.0580 78 1870 0.0422 
39 1100 0.0718 79 1948 0.0406 
40 1123 0.0703 80 1811 0.0436 
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After ranking nodes according to their closeness centralities using 

my matlab program we have table (6.4.2) 

Table . (6.4.2): Ranking nodes of the large weighted network in fig 
(6.4.1) according to their closeness centralities .  

Rank Node Closeness 
Centrality Rank Node Closeness 

Centrality 
1 53 0.0821 41 63 0.0547 
2 44 0.0779 42 64 0.0547 
3 45 0.0778 43 14 0.0542 
4 22 0.0773 44 68 0.0542 
5 42 0.0756 45 10 0.0536 
6 39 0.0718 46 69 0.0527 
7 40 0.0703 47 30 0.0524 
8 33 0.0684 48 19 0.0521 
9 51 0.0680 49 20 0.0519 

10 27 0.0679 50 67 0.0513 
11 36 0.0679 51 47 0.0508 
12 43 0.0675 52 61 0.0503 
13 28 0.0658 53 29 0.0500 
14 32 0.0658 54 62 0.0497 
15 48 0.0657 55 1 0.0493 
16 52 0.0652 56 70 0.0493 
17 41 0.0650 57 12 0.0490 
18 23 0.0641 58 60 0.0490 
19 46 0.0635 59 73 0.0483 
20 24 0.0634 60 9 0.0480 
21 17 0.0633 61 76 0.0477 
22 65 0.0625 62 2 0.0474 
23 35 0.0615 63 71 0.0469 
24 25 0.0614 64 72 0.0467 
25 49 0.0605 65 74 0.0461 
26 26 0.0602 66 7 0.0455 
27 34 0.0599 67 3 0.0454 
28 50 0.0591 68 59 0.0449 
29 54 0.0585 69 13 0.0441 
30 11 0.0582 70 57 0.0440 
31 16 0.0581 71 4 0.0438 
32 38 0.0580 72 58 0.0437 
33 56 0.0570 73 80 0.0436 
34 21 0.0560 74 75 0.0436 
35 55 0.0558 75 78 0.0422 
36 37 0.0558 76 6 0.0416 
37 66 0.0556 77 77 0.0414 
38 31 0.0555 78 79 0.0406 
39 18 0.0552 79 5 0.0394 
40 15 0.0552 80 8 0.0394 
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6.4.1  Analysis of Infection Process for Large Weighted Network 

From table (6.4.2) we note that node (53) has the largest closeness 

centrality which equal " 0.0821", node (15) has median closeness centrality 

which equal " 0.0552" and node (8) has the smallest closeness centrality 

which equal " 0.0394" . 

To compare between the infection process when each of these three 

nodes infected first let us analyze the infection process for each of them 

with time "t" . 

When node (53) infected first we have table (6.4.3) 

Table .(6. 4.3): Infected nodes with time when node (53) infected first 
in network in fig.(6.4.1) 

Time Infected Nodes at That 
Time 

Total Number of Infected 
Nodes at That Time 

t0 53 1 
t1 45 2 
t2 42,44 4 
t3 40,39,22,36 8 
t4 46 9 
t5 51,48,41,43 13 
t6 52,17 15 
t7 35,33,38 18 
t8 32,47,37,49 22 
t9 54,65,27,23,11,28,16,50

 

30 
t10 34,24,18 33 
t11 31,25,15,56 37 
t12 66,26,14,55 41 
t13 12,68,30,63,64 46 
t14 69,67,60,61,21 51 
t15 19,62,10 54 
t16 7,20,59 47 
t17 57,73,70,9,1,13 63 
t18 29,2,80,74,58 68 
t19 3,76,72 71 
t20 4,71,78 74 
t21 6,8,75,79 78 
t22 ------- 78 
t23 5,77 80 
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By plotting the total number of infected nodes with time "t" when 

node (53) infected first we have figure (6.4.2)  

 

Figure (6.4.2) : The total number of infected nodes with time when node (53) 
infected first in fig.(6.4.1) . 

We note from figure ( 6.4.2) that the total infection time is "23t" 

when node (53) which has the largest closeness centrality infected first and 

the infection rate in this case equals " 80/23t"  node / unit time where "t" is 

the unit time .  

When node (15) infected first we have table (6.4.4)  
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Table (6. 4.4) : Infected nodes with time when node (15) infected first 
in network in fig.(6.4.1) 

Time 

Infected 
Nodes at 

That Time  

Total 
Number 

of 
Infected 
Nodes at 

That 
Time 

Time 
Infected 
Nodes at 

That Time 

Total 
Number 

of 
Infected 
Nodes at 

That 
Time 

t0 15 1 t18 35,33,38 44 
t1 14 2 t19 27,32,29,49 48 
t2 16 3 t20 28,54,50,65 52 
t3 ----- 3 t21 34 53 
t4 19 4 t22 31,56 55 
t5 20,17 6 t23 55,66 57 
t6 13 7 t24 30,68,63,64 61 
t7 21 8 t25 69,67,61,60 65 
t8 10 9 t26 62 66 
t9 18 10 t27 59 67 

t10 45,7,1,9 14 t28 70,73,57 70 
t11 2,53,24 17 t29 80,74,58 73 
t12 3,25,36 20 t30 72,76 75 
t13 4,23,12,44,46

,42 
26 t31 78,71 77 

t14 6,22,39,40 30 t32 79,75 79 
t15 8,26 32 t33 ------ 79 
t16 5,41,48,43,51

 

37 t34 77 80 
t17 11,47,37,52 41    

      When we plot the total number of infected nodes with time " t" when 

node (15) infected first we have figure (6.4.3)   
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Figure (6.4.3) : The total number of infected nodes with time when node (15) 
infected first in fig.(6.4.1) . 

          From figure (6.4.3) we note that the total infection time is " 34t" and 

the infection rate equals "80/34t "node/unit time , where "t" is the unit of 

time when node (15) infected first which has median closeness centrality .             

When node (8) which has the smallest closeness centrality infected 

first we have table (6.4.5)                
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Table .(6. 4.5) : Infected nodes with time when node (8) infected first in 
network in fig.(6.4.1)   

Time

 
Infected 
Nodes at 

That Time

 
Total 

Number 
of Infected 
Nodes at 

That Time

 
Time

 
Infected Nodes 
at That Time 

Total 
Number of 

Infected 
Nodes at 

That Time 
t0 8 1 t22 45,43 30 
t1 ----- 1 t23 27,42 32 
t2 ----- 1 t24 35,39,28,36,40 37 
t3 ----- 1 t25 29,46 39 
t4 5 2 t26 34,33,41,51,52,48

 

45 
t5 7 3 t27 32 46 
t6 ----- 3 t28 38 47 
t7 4 4 t29 47,37,49 50 
t8 12 5 t30 30,31,54,65,50 55 
t9 13,2 7 t31 ------ 55 
t10 3,1 9 t32 68,56 57 
t11 ------ 9 t33 55,66,69 60 
t12 6,10 11 t34 63,64 62 
t13 21,11 13 t35 61,67,60 65 
t14 14 14 t36 62,70 67 
t15 15,20 16 t37 59,80 69 
t16 9,19 18 t38 57,73,76 72 
t17 16,24 20 t39 58,74,71 75 
t18 22,25 22 t40 72,75 77 
t19 23,44 24 t41 78 78 
t20 17 25 t42 79 79 
t21 18,26,53 28 t43 77 80 

By plotting the total number of infected nodes with time "t" when 

node (8) infected first we have figure (6.4.4)  
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Figure (6.4.4) : The total number of infected nodes with time when node (8) 
infected first in fig.(6.4.1) . 

We note from figure(6.4.4) that the total infection time is " 43t " and 

the infection rate equal "80/43t" node /unit time where "t" is the unit time 

when node (8) infected first .  

To compare between these three cases , i.e. when nodes (53,15 and 

8) infected first we tabulate their total number of infected nodes in the same 

table , see table (6.4.6)             
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Table .(6. 4.6) : Infected nodes with time when nodes (53,15 and 8) 
infected first in network in fig.(6.4.1) 

Time

 
Total 

Infected 
Nodes 

for 
Node 53

 
Total 

Infected 
Nodes 

for 
Node 15

 
Total 

Infected 
Nodes 

for 
Node 8 

Time

 
Total 

Infected 
Nodes 

for 
Node 53

 
Total 

Infected 
Nodes 

for 
Node 15

 
Total 

Infected 
Nodes 

for 
Node 8 

t0 1 1 1 t22 78 55 30 
t1 2 2 1 t23 80 57 32 
t2 4 3 1 t24  61 37 
t3 8 3 1 t25  65 39 
t4 9 4 2 t26  66 45 
t5 13 6 3 t27  67 46 
t6 15 7 3 t28  70 47 
t7 18 8 4 t29  73 50 
t8 22 9 5 t30  75 55 
t9 30 10 7 t31  77 55 
t10 33 14 9 t32  79 57 
t11 37 17 9 t33  79 60 
t12 41 20 11 t34  80 62 
t13 46 26 13 t35   65 
t14 51 30 14 t36   67 
t15 54 32 16 t37   69 
t16 57 37 18 t38   72 
t17 63 41 20 t39   75 
t18 68 44 22 t40   77 
t19 71 48 24 t41   78 
t20 74 52 25 t42   79 
t21 78 53 28 t43   80 

        

When we plot the total number of infected nodes with time for three 

nodes in the same figure we have figure (6.4.5)    
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Figure (6.4.5) : The total number of infected nodes with time when nodes (53,15 
and 8) infected first in fig.(6.4.1) . 

From figure (6.4.5) we note that :  

1- Total infection time when node ( 53 ) infected first which has the 

largest closeness centrality is the smallest ,it is medain when node 

(15) infected first which has median closeness centrality and it is the 

largest when node (8) infected first which has the smallest closeness 

centrality . When we tabulate the closeness centralities for nodes 

(53,15 and 8 ) in figure (6.4.1) and their total infection time we have  

table (6.4.7) 

Table (6.4.7): Closeness centrality and total infection time for nodes 
(53),(15)and (8) in fig (6.4.1)  

Node 53 15 8 
Total Infected 

Time 
23t 34t 43t 

Closeness 
Centrality 

0.0821 0.0552 0.0394 

When we plot the closeness centralities for nodes ( 53,15 and 8) in 

figure (6.4.1) with their total infection time we have figure (6.4.6 )  
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Figure (6.4.6) : The relation between closeness centrality for the first infected 
nodes (53), (15) and (8) and their total infection time  in fig (6.4.1).  

From all these results we conclude again that closeness centrality for 

the first infected node in the weighted network is inversly proportinal with 

the total infection time that needs to infect all nodes in that network .  

2-  Infection rate when node (53) infected first which has the largest 

closeness centrality is the largest ,it is median when node (15) infected 

first which has median closeness centrality and it is the smallest when 

node (8) infected first which has the smallest closeness 

centrality .When we tabulate the closeness centralities for nodes 

(53,15 and 8 ) in figure (6.4.1) and their infection rate we have  table 

(6.4.8) 

Table (6.4.8) : Closeness centrality and infection rate for nodes 
(53),(15)and (8) in fig (6.36) 

Node 53 15 8 
Infection Rate 80/23t 80/34t 80/43t 

Closeness 
Centrality 

0.0821 0.0552 0.0394 

       

When we plot the closeness centralities for nodes ( 53,15 and 8) in 

figure (6.4.1) with their infection rate we have figure (6.4.7 )  
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Figure (6.4.7) : The relation between closeness centrality for the first infected 
nodes (53),(15) and (8) and their infection rate in fig (6.4.1) . 

Here we also conclude that the closeness centrality for the first 

infected node in the weighted network is directly proportional to the 

infection rate in that network . 

3- As nodes that have high closeness centralities have small total 

infection time and large infection rate ,so they have high infection 

spreading power . Nodes which have small closeness centralities 

have large total infection time and small infection rate , so they have 

small infection spreading power . Thus we can conclude that 

closeness centrality for the first infected node in weighted networks 

is directly proportional with the infection spreading power of that 

node .  

6.4.2 Application of my development SI model on large weighted 

network    

When we apply equation (5.2) that I developed according to my 

hypothesis on the large weighted network in figure (6.4.1) and plot the 
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infection spreading velocity with time which is shown in equation (5.2) 

using the closeness centralities of "25" different nodes in our large 

weighted network in fig (6.4.1) , that we assumed they are infected first in 

that network ,we have figure(6.4.8)  

 

Figure (6.4.8) : Infection spreading velocity when "25' different nodes with 
different closeness centralities infected first in fig (6.4.1) 

We note from fig (6.4.8) that the spreading velocity curve grows 

very fast exponentialy in the left side of the curve , reaching the peak of the 

curve, then it follows the power law behavior in the left side of the curve 

as  optained by previous works [2],[3]  

To clear that more we plot just three curves for nodes (53),(15) and 

(8) for the infection spreading velocity with time in the same figure , see 

figure (6.4.9) 
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Figure (6.4.9) : Infection spreading velocity when nodes (53,15 an 8) infected first 
in fig (6.4.1) 

From figure(6.4.9) we note that the maximum infection spreading 

velocity for node (53) which has the largest closeness centrality is larger 

than it for node (15) which has median closeness centrality and the 

maximum spreading velocity for node (15) is larger than it for node (8) 

which has the smallest closeness centrality . We note also that the curve 

from both sides is sharper when node (53) infected first than it when node 

(15) infected first and it is sharper when node (15) infected first than it 

when node (8) infected firs in figure (6.4.1) , and that means the infection  

spreading process when node (53) infected first is faster than it when node 

(15) infected first and it is faster when node(15) infected first than it when 

node (8) infected first. 

When we apply equation (5.3) that I developed according to my 

hypothesis on the large weighted network in figure (6.4.1) and plot the 

fraction of the infection nodes with time that shown in that equation using 

the closeness centralities of "25" different nodes in our large weighted 

network in fig (6.4.1) that we assumed they are infected first in that 

network ,we have figure(6.4.10). 
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Figure (6.4.10) : Fraction of infected nodes with time in the large weighted network 
in figure (6.4.1) 

From figure (6.4.10) we notice again the clear S-Shape curve which 

starts slow at the first state , then growth exponential at the second state and 

at the last state the curve will take off until all nodes will be infected .  

To show the effects of nodes with different closeness centralities 

when they are infected first on the infection spreading process let us plot 

the curves for just three nodes ( 53,15 and 8) and compare between them , 

see figure (6.4.11). 

 

Figure (6.4.11) : The fraction of infected nodes with time in the large weighted 
network in figure (6.4.1) when nodes (53 ,15 and 8 ) infected first . 
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From figure (6.4.11) we note that when node (53) which has the 

largest closeness centrality infected first ,the total infected time that we 

need to infect all nodes in our large weighted network is the smallest , it is 

median when node (15) which has median closeness centrality infected first 

and it is the largest when node (8) which has the smallest closeness 

centrality .  

6.5 Comparison Between the Effect of Eigenvector Principle and 

Closeness Centrality of Nodes on Infection Rate .  

The author of [12] suggested a relation between the infection rate " " 

or " " and the eigenvector principle"EVP" of the first infected node and in 

my thesis I suggested a relation between the infection rate and the 

closeness centrality" Ck
c " of the first infected node . To compare between 

the two hypothesis let us take two examples , the first one is small network 

and the second is large network and find the eigenvector principles and the 

closeness centralities for all nodes in them using my matlab program then 

compare between the two results and their effect on the infection rate .   

6.5.1 Comparesion in The Small Network:   

Let us take the same small unweighted network in figure (6.1.1) . By 

using my matlab program  I found the eigenvector principles and the 

closeness centralities for all nodes in that network and ranked them 

according to their eigenvector principles and closeness centralities and we 

have table ( 6.5.1) 
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Table(6.5.1): The Eigenvector Principles and the Closeness Centralities 
for all nodes in the network in fig (6.1.1). 

Eigenvector Principle Closeness Centrality Rank 
Node EVP Node Ck

c 

1 4 0.1628 4 0.4138 
2 2 0.1048 8 0.4138 
3 3 0.1048 9 0.4138 
4 8 0.1028 6 0.3636 
5 1 0.0996 7 0.3636 
6 6 0.0953 10 0.3529 
7 9 0.0945 2 0.3333 
8 7 0.0758 3 0.3333 
9 10 0.0580 1 0.2791 

10 5 0.0398 11 0.2791 
11 11 0.0276 13 0.2667 
12 13 0.0232 12 0.2222 
13 12 0.0110 5 0.2222 

From table (6.5.1) we note that the EVP for node (3) is larger than it 

for node (9) which means that the infection rate when node (3) infected 

first is larger than it when node (9) infected first . Also we note from the 

table that Cc for node (9) is larger than it for node (3) which means that the 

infection rate when node (9) infected first is larger than it when node (3) 

infected first . So we have contradiction between result from EVP and 

result form Cc hypothesis . To solve this contradiction let us analyze the 

infection process with time when the two nodes (3),(9) infected first .  

When node (3) infected first the infection process with time shown in 

table (6.5.2) 

Table (6.5.2) : Infection Process with time when node (3)  in fig (6.1.1) 
infected first and the total number of infected nodes with time .  

Total Number of 
Infected Nodes 

Infected Nodes at 
That Time 

Time 

1 3 t0 
3 1,4 t1 
7 2,5,6,8 t2 
9 7,9 t3 

10 10 t4 
12 11,13 t5 
13 12 t6 
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When we plot the total number of infected nodes with time when 

node (3) infected first we have figure (6.5.1)  

 

Figure (6.5.1) : Total Number of Infection Nodes with time when node (3) in 
fig(6.1.1) infected first 

From table (6.5.2) and figure (6.5.1) we note that the total infection 

time when node (3) infected first equals "7t" and the infection rate in this 

case equals "13/7t" node / unit time where "t" is time for each period . 

When node (9) infected first the infection process with time shown in 

table (6.5.3) 

Table(6.5.3) : Infection Process with time when node (9)  in fig (6.1.1) 
infected first and the total number of infected nodes with time . 

Time Infected nodes at 
that time 

Total Number of 
Infected Nodes 

t0 9 1 
t1 7,8,10 4 
t2 6,4,13,11 8 
t3 3,2,12 11 
t4 1 12 
t5 5 13 

By plotting the total number of infected nodes with time when node 

(9) infected first we have figure (6.5.2) 
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Figure (6.5.2) : Total Number of Infection Nodes with time when node (9) in 
fig(6.1.1) infected first 

From table (6.5.3) and figure (6.5.2) we note that the total infection 

time when node (9) infected first equals "6t" and the infection rate equals " 

13/6t " node/unit of time .  

From these two cases we note that the infection rate when node (9) 

infected first is larger than it when node (3) infected first , which agreed 

with the result obtained from" Ck
c" hypothesis which says that nodes with 

high closeness centralities have high infection rates when they are infected 

first , and it contradicts with the EVP hypothesis as EVP for node (3) is 

larger than EVP for node (9)  

We conclude from this example that the relation between closeness 

centrality for the first infected node and the infection rate is stronger than it 

with the eigenvector principle for that node . 
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6.5.2 Comparesion in The Large Network : 

Let us take the same large unweighted network in figure (6.2.1) . By 

using my matlab program  I found the eigenvector principles and the 

closeness centralities for all nodes in that network and ranked them 

according to their eigenvector principles and closeness centralities and we 

have table ( 6.5.4) 

Table .(6. 5.4) : The Eigenvector Principles and the Closeness 
Centralities for all nodes in the network in fig (6.2.1) . 

Eigenvector Principle Closeness Centrality Rank 
Node EVP Node Ck

c 

1 53 0.101447 53 0.2453416 
2 44 0.082694 44 0.2344213 
3 45 0.078828 45 0.22507122 
4 42 0.0562683 51 0.2231638 
5 40 0.0467953 22 0.2200557 
6 51 0.0421593 42 0.21293800 
7 22 0.0373649 39 0.2117962 
8 39 0.0351625 65 0.2062663 
9 43 0.0309745 40 0.20413436 

10 35 0.0300918 43 0.20204603 
11 17 0.0292802 35 0.20153061 
12 36 0.0266098 17 0.19949494 
13 46 0.0256470 33 0.19799498 
14 41 0.02276205 27 0.19554455 
15 52 0.02169939 52 0.19458128 
16 65 0.01894417 23 0.19221411 
17 34 0.01872456 36 0.1894484 
18 48 0.01863779 11 0.18720379 
19 27 0.01798350 41 0.18632075 
20 33 0.01706195 28 0.18544600 
21 28 0.0159539 46 0.18501170 
22 23 0.01291647 34 0.18202764 
23 11 0.01233716 48 0.18119266 
24 37 0.01085483 66 0.18077803 
25 54 0.01047267 18 0.17995444 
26 18 0.01004865 64 0.17913832 
27 38 0.00997438 67 0.17752808 
28 16 0.00980621 24 0.17594654 
29 63 0.00812470 26 0.1755555 
30 64 0.00803154 32 0.17439293 
31 47 0.00760966 54 0.17286652 
32 26 0.00729127 16 0.17136659 



  
125

33 67 0.00710604 37 0.16880341 
34 66 0.00655096 19 0.16737288 
35 49 0.00654700 12 0.16561844 
36 32 0.00638772 49 0.16322314 
37 24 0.00616773 63 0.162886597 
38 56 0.005005469 38 0.162217659 
39 19 0.004586937 73 0.16089613 
40 55 0.00448982 21 0.160569105 
41 61 0.00440952 56 0.16024340 
42 62 0.00438881 25 0.159919028 
43 12 0.00421528 15 0.157370517 
44 25 0.00399339 31 0.15737051 
45 21 0.00387736 47 0.15643564 
46 15 0.00376984 29 0.15643564 
47 50 0.0034277 68 0.15581854 
48 73 0.003134668 20 0.15459882 
49 14 0.00289936 50 0.15339805 
50 29 0.00259703 7 0.15105162 
51 20 0.00251142 61 0.14990512 
52 31 0.00232894 30 0.149056603 
53 58 0.00225749 14 0.14877589 
54 68 0.00213776 72 0.1446886 
55 57 0.00200198 55 0.144160583 
56 7 0.001869700 2 0.14234234 
57 60 0.00184645 62 0.14234234 
58 2 0.00180282 69 0.14081996 
59 30 0.00146157 60 0.13982300 
60 10 0.00143553 10 0.13908450 
61 13 0.00141501 74 0.13884007 
62 72 0.00122363 78 0.13884007 
63 59 0.00121767 79 0.13884007 
64 9 0.00115044 9 0.13859649 
65 1 0.00096084 13 0.13787085 
66 79 0.00093008 8 0.13597246 
67 78 0.00093008 77 0.13255033 
68 74 0.00093008 71 0.13255033 
69 69 0.000817236 70 0.13255033 
70 8 0.000671183 57 0.12741935 
71 4 0.00065134 58 0.12700964 
72 3 0.000586549 4 0.12700964 
73 77 0.00049468 76 0.1270096 
74 71 0.00049468 59 0.12559618 
75 76 0.000443602 3 0.12519809 
76 5 0.000392403 1 0.12519809 
77 70 0.00037410 5 0.1250000 
78 80 0.000242480 80 0.12363067 
79 6 0.000174033 75 0.11285714 
80 75 0.000131620 6 0.11142454 
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We see from table (6.5.4) that the EVP for node (58) is larger than it 

for node (69) which means that the infection rate when node (58) infected 

first is larger than it when node (69) infected first . Also we see from the 

table that " Ck
c "for node (69) is larger than it for node (58) which means 

that the infection rate when node (69) infected first is larger than it when 

node (58) infected first . So we have again contradiction between result 

from EVP and result form " Ck
c" hypothesis . To solve this contradiction let 

us analyze the infection process with time when the two nodes (58),(69) 

infected first in the network in figure (6.2.1) .  

When node (58) infected first the infection process with time shown 

in table (6.5.5) 

Table(6.5.5) : Infection Process with time when node (58)  in fig (6.2.1) 
infected first and the total number of infected nodes with time 

Time Infected nodes at that time Total number of 
infected nodes 

t0 58 1 
t1 62,57,59 4 
t2 63,61,55,60 8 
t3 64,54,56 11 
t4 65,41,67,50 15 
t5 51,66,38,42,49 20 
t6 52,73,37,53,40,48 26 
t7 43,72,78,79,74,36,45,39,44 35 
t8 71,77,17,46,33,22,35 42 
t9 76,16,18,47,32,28,11,23,27,34 52 

t10 75,70,15,19,68,31,12,24,26 61 
t11 14,20,69,30,7,21,25,29 69 
t12 80,13,8,2,10,9 75 
t13 5,4,3,1 79 
t14 6 80 

When we plot the total infection nodes with time when node (58) 

infected first we have figure (6.5.3)  
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Figure (6.5.3) : Total Number of Infection Nodes with time when node (58) in 
fig(6.2.1) infected first. 

From table (6.5.5) and figure (6.5.3) we found that the total infection 

time when node (58) infected first equals "15t" and the infection rate equals 

"80/15t" node/unit time . 

When node (69) infected first the infection process with time shown 

in table (6.5.6)  

Table . (6.5.6) : Infection Process with time when node (69)  in fig 
(6.2.1) infected first and the total number of infected nodes with time 

Time Infected nodes at that time Total number of 
infected nodes 

t0 69 1 
t1 68,80,70 4 
t2 32,76 6 
t3 33,31,71,77,75 11 
t4 28,39,30,72 15 
t5 27,34,53,29,73 20 
t6 22,35,45,40,42,51,44,26,66,74,79,78

 

32 
t7 11,23,17,36,46,41,48,52,43,25,65 43 
t8 12,18,16,37,47,54,38,49,24,64,67 54 
t9 7,19,15,61,50,21,63,53 62 

t10 8,13,14,2,20,10,9,62,55,60 72 
t11 5,3,4,1,58,57,59 79 
t12 6 80 
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By plotting the total number of infected nodes with time when node 

(69) infected first ,we have figure (6.5.4)  

 

Figure (6.5.4) : Total Number of Infection Nodes with time when node (69) in fig 
(6.2.1) infected first. 

From table (6.5.6) and figure (6.5.4) we see that the total infection 

time when node (69) infected first equals " 13t " and the infection rate 

equals " 80/13t " node/unit of time . 

Again we see that form these two cases that the infection rate for 

node (69) is larger than it for node (58) which agreed again with "Ck
c" 

hypothesis which is " high closeness centralities nodes have high infection 

rates when they are infected first , and contradict with the EVP hypothesis 

as EVP for node (69) is less than it for node (58) .  

From this result we conclude that the relation between the closeness 

centrality for the first infected node and the infection rate is stronger than it 

for the eigenvector principal for the same node .   
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Chapter 7 

DISCUSSION and CONCLUSIONS 

In this thesis I studied the effect of closeness centralities of nodes on 

the infection process in unweighted and weighted networks when those 

nodes are infected first in those networks. 

My research question in section (1.2) was : " what is the relation 

between closeness centrality of the first infected node in the network and 

each of the total infection time, the infection rate and the infection 

spreading power of that node in unweighted and weighted networks ? ."  

To answer my research question I used two methods:    

First I used the analysis method for the infection process with time 

for four types of network , unweighted small and large networks and 

weighted small and large networks, see sections (6.1.2), (6.2.2), (6.3.1), 

(6.4.1). The result from those sections supported my research hypothises as 

we saw from figure (6.1.6) that node (4) which has the largest closeness 

centrality in the small unweighted network has the smallest total infection 

time, the largest infection rate and the largest infection spreading power . 

Node (2) which has median closeness centrality has median total infection 

time, median infection rate and also median infection spreading power. 

Node (12) which has the smallest closeness centrality has the largest total 

infection time, the smallest infection rate and the smallest infection 

spreading power. From fig (6.2.5) I noticed that node (53) which has the 

largest closeness centrality in the large unweighted network has the 

smallest total infection time, the largest infection rate and the largest 

infection spreading power. Node (21) which has median closeness 
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centrality has median total infection time , median infection rate and 

median infection spreading power . Node (6) which has the smallest 

closeness centrality has the largest total infection time, the smallest 

infection rate and the smallest infection spreading power . From fig (6.3.6)  

I noticed that node (8) which has the largest closeness centrality in the 

small weighted network has the smallest total infection time , the largest 

infection rate and the largest infection spreading power . Node (10) which 

has median closeness centrality has median total infection time , median 

infection rate and median infection spreading power . Node (12) which has 

the smallest closeness centrality has the largest total infection time , the 

smallest infection rate and the smallest infection spreading power . From 

fig (6.4.5) I observed that node (53) which has the largest closeness 

centrality in the large weighted network has the smallest total infection 

time , the largest infection rate and the larest infection spreading power . 

Node (15) which has median closeness centrality has median total infection 

time,median infection rate and median infection spreading power . Node 

(8) which has the smallest closeness centrality has the largest total infection 

time, the smallest infection rate and the smallest infection spreading power. 

When I ploted the relation between the closeness centrality for nodes 

(4,2,12) in the small unweighted network with their total infection time , 

see fig (6.1.7) I noted that the relation between them was inversly 

proportional and when I ploted the closeness centrality for those nodes with 

their infection rate I noted that the relation between them was directly 

proportional , see fig (6.1.8). From fig (6.2.6) which represents the relation 

between the closeness centrality for nodes (53,21,6) in the large 

unweighted network and their total infection time , I noted that this relation 
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was also inversly proportional and from fig (6.2.7) which represent the 

relation between the closeness centrality of those nodes and their infection 

rate , I found that this relation was also directly proportional . Fig (6.3.7) 

which represents the relation between the closeness centrality of nodes 

( 8,10,12) in the small weighted network and thier total infection time , I 

noted from that figure that this relation was also inversly proportional and 

from fig (6.3.8) which represents the relation between the closeness 

centrality of those nodes and their infection rate , I noted that this relation 

was also directly proportional . I noted from fig (6.4.6) which represents 

the relation between the closeness centrality of nodes ( 53,15,8) in the large 

weighted network and their total infection time , that this relation was also 

inversly proportional and I noted from fig(6.4.7) which represents the 

relation between the closeness centrality of those nodes and their infection 

rate , that this relation was directly proportional . From all these figures and 

results we can conclude that " closeness centrality for the first infected 

node in the unweighted and weighted networks is inversly proportional to 

the total infection time , directly proportional to poth of the infection rate 

" " or " " and the infection spreading power of that node." 

Second I used my developed SI model and replaced the assumed and 

constant infection rate " " by the closeness centrality of the first infected 

node . see sections (6.1.2) , (6.2.2),(6.3.2) and (6.4.2). The exponantial 

growth at the left side of the curve, the beak and the power 

 

law behavior 

at the right side of the curve is so clear when we plot equation (6.1) which 

described the infection spreading velocity with time which is the same 

result that optained from previous works, see [2],[3]  and the S 

 

Shape 

curve is very clear when we plot equation (6.2) that described the fraction 
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of infected nodes with time which is the same result that optained from 

previous works , see [23],[10],[25].The result optained from those four 

sections support my research hypothises .I noticed that nodes those have 

high closeness centralities have small total infection time,large infection 

rate and high infection spreading power and velocity and nodes those have 

small closeness centralities have large total infection time, small infection 

rate and small infection spreading power and velocity, seefigure (6.1.9), 

(6.1.10), (6.1.11), (6.1.12), (6.2.8), (6.2.9), (6.2.10), (6.2.11), (6.3.9), 

(6.3.10), (6.3.11), (6.3.12), (6.4.8), (6.4.9), (6.4.10) and (6.4.11). We 

conclude from these results that closeness centrality for the first infected 

nodes is inversly proportinal to the total infection time,it is also directly 

proportinal to the infection rate and it is directly proportinal to the infection 

spreading power of those nodes . 

From all these results I suggest that we can replace the infection rate 

" " in the SI network epidemic model by the closeness centrality of the first 

infected node and that model will be :   

dt

tdi )( = Ck
c ( 1- i(t) ) i(t) --------------(7.1) 

with boundary conditions as I(0) = 1 and i(0) = I(0)/N , so 

(1)i(0) = 1/N , i(t final) = 1 . 

(2) for all t  0 , i(t) + s(t) = 1 . 

which is the differential equation that described the infection 

spreading velocity with time for that model .  
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The solution of equation (7.1) for the fraction of infectious nodes is 

the " logistic curve " : 

     i(t) = (1/N) eCkc t / 1-(1/N) + ( 1/N) eCkc t ---------------- (7.2)  

By equation (7.2) we can measure the fraction of infected nodes as a 

function of time "t".  

In section (6.5) I made some comparisons between my work which 

suggested replacing the infection rate by the closeness centrality of the first 

infected node in the network and the work of the author of [12] which 

suggested replacing the infection rate by the eigenvector principal of the 

first infected node . To do this comparison I took the same two unweighted 

network small and large in my thesis, fig(6.1.1) and fig (6.2.1).  

For the small unweighted network fig (6.1.1) I calculated the 

eigenvector principals and the closeness centralities for all nodes in that 

network using my matlab program . I took two nodes from that network 

node (3) and node (9) and compared between them when they were 

infected first in that network , I found that the closeness centrality for node 

(9) was larger than it for node (3) which means according to my hypothises 

that the infection rate when node (9) infected first was larger than it when 

node (3) infected first . I found also that the eigenvector principal for node 

(3) was larger than it for node (9) which means according to the author of 

[12] hypothises that infection rate when node (3) infected first was larger 

than it when node (9) infected first see table (6.5.1) . when I analyzed the 

infection process with time I found that the infection rate when node (9) 
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infected first was larger than it when node (3) infected first , see tables 

(6.5.2),(6.5.3) and figures (6.5.1),(6.5.2).  

For the large unweighted network , fig(6.2.1) , I also calculated the 

eigenvector principals and the closeness centralities for all nodes in that 

network using my matlab program . I took nodes nodes (69) and  (58) to 

compare between them . I found that the closeness centrality for node (69) 

was larger than it for node (58) which means according to my hypothises 

that the infection rate when node (69) infected first was larger than it when 

node (58) infected first . I found also that the eigenvector principal for node 

(58) was larger than it for node (69) which means according to the author 

of [12] hypothises that the infection rate when node (58) infected first was 

larger than it when node (69) infected first , see table (6.5.4) . When I 

analyzed the infection process with time for that large unweighted network 

with time I found that the infection rate when node (69) infected first was 

larger than it when node (58) infected first , see tables (6.5.5), (6.5.6) and 

figures (6.5.3) , (6.5.4).  

From these two cases I think that closeness centrality for the first 

infected node is better than the eigenvector principal for it to replace the 

infection rate by it. 

Last Note: 

From my search and studying I noticed that almost all previous 

works for finding the infection rate depend on assumption and we have no 

exact answer for how to find the infection rate in the real world networks . 

In my thesis I found that there is a strong relation between the closeness 
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centrality of the first infected node and the infection rate , so I suggested to 

replaced the infection rate by the closeness centrality of the first infected 

node in the network . 

8. Future Work:  

In this thesis I dealed with just one model of the epidemic models 

which is the SI model and related that model by the closeness centrality of 

the first infected node in networks ,but we have many others models that 

described the epidemic spreading through networks , like SIS ,SIR models 

and others . In the future I will try to study if there is some relation between 

these models and the closeness centralities of nodes in networks . Also I 

will try to deal with another types of graphs to represent the real networks , 

like directed networks , weighted directed networks ,trees and others types .   
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Appendices 

Appendix (A) 

My matlab program :  

clc; 

clear; 

n= input (' Number of nodes in the network = '); 

for i=1:n 

 for j=1:n 

 d(i,j)=input (' Entry of the adjacency matrix of the network = '); 

 end 

 end 

 y=[1:n]; 

 y=y'; 

 r=[1:n]; 

r = r'; 

% Degree Centrality 

for i= 1:n 

x(i)=(sum(d(i,:)))/(n-1); 

 end 

 x=x'; 

 for i=1:n 

 for j=1:n 

  if x(i)> x(j) 

  x([j i],:)=x([i j],:); 

   y([j i],:)=y([i j],:); 

   ran1=[y x]; 

   end 

   end 

  end  

 y=[1:n]; 

 y=y'; 
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%Eigenvector Principle 

[V2,D2]=eigs(d,1); 

for i=1:n 

 V2(i)=abs(V2(i)); 

end 

s=sum(sum(V2)); 

pf=1/s; 

pev=pf*V2; 

for i=1:n 

for j=1:n 

 if pev(i)> pev(j) 

 pev([j i],:)=pev([i j],:); 

  y([j i],:)=y([i j],:); 

  ran2=[y pev]; 

   end 

   end 

   end 

%Closeness Centrality 

y=[1:n]; 

y=y'; 

for i=1:n 

for j=1:n 

 if i~=j & d(i,j)==0 

 d(i,j)=inf; 

    end 

    end 

       end 

d; 

k=1; 

while k<=n 

for i=1:n 
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  for j=1:n 

  if d(i,k)+d(k,j)<d(i,j)&i~=j&i~=k&j~=k 

 d(i,j)=d(i,k)+d(k,j);   

  end 

    end 

end 

if k= =n 

break 

end 

k=k+1; 

end 

for i=1:n 

 s(i)=sum(d(i,:)); 

 c(i)=(n-1)/s(i); 

end 

c=c'; 

for i=1:n 

 for j=1:n 

 if c(i)> c(j) 

 c([j i],:)=c([i j],:); 

  y([j i],:)=y([i j],:); 

   ran3=[y c]; 

    end 

    end 

    end 

dd=[r d] 

p=[r s'] 

q=[r ran1 ran2 ran3] 

ppp=[r ran3]   
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Appendix (B)  

Adjacency Matrix for Small Unweighted Network in Fig( 6.1.1 )   

[0 1 1 0 1 0 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 1 0 0 1 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 1 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 1 0 1 
0 0 0 0 0 0 0 0 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 

   0 0 0 0 0 0 0 0 0 1 0 0 0 ]             
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Appendix (C)  
Adjacency matrix for large unweighted network in fig (6.2.1)  
        [0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0] 
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Appendix (D)  

The Shortest Path Matrix for the unweighted large network in figure(6.2.1)    

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                      

1 0 1 0 2 3 3 5 4 3 1 6 6 6 5 6 7 6 5 4 3 

2 1 0 1 1 2 2 4 3 2 2 5 5 5 4 5 6 5 4 3 2 

3 2 1 0 2 3 1 5 4 3 3 6 6 6 5 6 7 6 5 4 3 

4 2 1 2 0 1 3 3 2 3 3 5 4 4 5 6 7 6 5 4 3 

5 3 2 3 1 0 4 2 1 4 4 4 3 3 4 5 6 7 6 5 4 

6 3 2 1 3 4 0 6 5 4 4 7 7 7 6 7 8 7 6 5 4 

7 5 4 5 3 2 6 0 1 6 6 2 1 1 2 3 4 5 4 3 4 

8 4 3 4 2 1 5 1 0 5 5 3 2 2 3 4 5 6 5 4 5 

9 3 2 3 3 4 4 6 5 0 2 5 6 5 4 5 6 5 4 3 2 

10 1 2 3 3 4 4 6 5 2 0 5 6 5 4 5 6 5 4 3 2 

11 6 5 6 5 4 7 2 3 5 5 0 1 3 4 5 5 4 5 5 5 

12 6 5 6 4 3 7 1 2 6 6 1 0 2 3 4 5 5 5 4 5 

13 6 5 6 4 3 7 1 2 5 5 3 2 0 1 2 3 4 3 2 3 

14 5 4 5 5 4 6 2 3 4 4 4 3 1 0 1 2 3 2 1 2 

15 6 5 6 6 5 7 3 4 5 5 5 4 2 1 0 1 2 3 2 3 

16 7 6 7 7 6 8 4 5 6 6 5 5 3 2 1 0 1 2 3 4 

17 6 5 6 6 7 7 5 6 5 5 4 5 4 3 2 1 0 1 2 3 

18 5 4 5 5 6 6 4 5 4 4 5 5 3 2 3 2 1 0 1 2 

19 4 3 4 4 5 5 3 4 3 3 5 4 2 1 2 3 2 1 0 1 

20 3 2 3 3 4 4 4 5 2 2 5 5 3 2 3 4 3 2 1 0 

21 2 1 2 2 3 3 5 4 1 1 4 5 4 3 4 5 4 3 2 1 

22 5 4 5 5 5 6 3 4 4 4 1 2 4 5 5 4 3 4 5 4 

23 4 3 4 4 5 5 4 5 3 3 2 3 5 5 6 5 4 5 4 3 

24 3 2 3 3 4 4 5 5 2 2 3 4 5 4 5 6 5 4 3 2 

25 4 3 4 4 5 5 6 6 3 3 4 5 6 5 6 7 6 5 4 3 

26 5 4 5 5 6 6 5 6 4 4 3 4 6 6 7 6 5 6 5 4 

27 6 5 6 6 6 7 4 5 5 5 2 3 5 6 6 5 4 5 6 5 

28 7 6 7 7 7 8 5 6 6 6 3 4 6 7 7 6 5 6 7 6 

29 6 5 6 6 7 7 6 7 5 5 4 5 7 7 8 7 6 7 6 5 

30 7 6 7 7 8 8 7 8 6 6 5 6 8 8 9 8 7 8 7 6 

31 8 7 8 8 9 9 8 9 7 7 6 7 9 9 8 7 6 7 8 7 

32 9 8 9 9 9 10 7 8 8 8 5 6 8 8 7 6 5 6 7 8 

33 8 7 8 8 8 9 6 7 7 7 4 5 7 7 6 5 4 5 6 7 

34 8 7 8 8 8 9 6 7 7 7 4 5 7 7 6 5 4 5 6 7 

35 7 6 7 7 7 8 5 6 6 6 3 4 6 6 5 4 3 4 5 6 

36 8 7 8 8 8 9 6 7 7 7 4 5 6 5 4 3 2 3 4 5 

37 9 8 9 9 9 10 7 8 8 8 5 6 7 6 5 4 3 4 5 6 

38 10 9 10 10 10 11 8 9 9 9 6 7 8 7 6 5 4 5 6 7 

39 8 7 8 8 8 9 6 7 7 7 4 5 7 6 5 4 3 4 5 6 

40 8 7 8 8 8 9 6 7 7 7 4 5 7 6 5 4 3 4 5 6 

41 9 8 9 9 9 10 7 8 8 8 5 6 8 7 6 5 4 5 6 7 

42 8 7 8 8 8 9 6 7 7 7 4 5 7 6 5 4 3 4 5 6 

43 7 6 7 7 7 8 5 6 6 6 3 4 6 6 5 4 3 4 5 6 

44 6 5 6 6 6 7 4 5 5 5 2 3 5 5 4 3 2 3 4 5 

45 7 6 7 7 7 8 5 6 6 6 3 4 5 4 3 2 1 2 3 4 

46 8 7 8 8 8 9 6 7 7 7 4 5 6 5 4 3 2 3 4 5 

47 9 8 9 9 9 10 7 8 8 8 5 6 7 6 5 4 3 4 5 6 
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48 9 8 9 9 9 10 7 8 8 8 5 6 8 7 6 5 4 5 6 7 

49 10 9 10 10 10 11 8 9 9 9 6 7 9 8 7 6 5 6 7 8 

50 11 10 11 11 11 12 9 10 10 10 7 8 10 9 8 7 6 7 8 9 

51 8 7 8 8 8 9 6 7 7 7 4 5 7 6 5 4 3 4 5 6 

52 8 7 8 8 8 9 6 7 7 7 4 5 7 7 6 5 4 5 6 7 

53 7 6 7 7 7 8 5 6 6 6 3 4 6 5 4 3 2 3 4 5 

54 10 9 10 10 10 11 8 9 9 9 6 7 9 8 7 6 5 6 7 8 

55 12 11 12 12 12 13 10 11 11 11 8 9 11 10 9 8 7 8 9 10 

56 11 10 11 11 11 12 9 10 10 10 7 8 10 9 8 7 6 7 8 9 

57 13 12 13 13 13 14 11 12 12 12 9 10 12 11 10 9 8 9 10 11 

58 13 12 13 13 13 14 11 12 12 12 9 10 12 11 10 9 8 9 10 11 

59 13 12 13 13 13 14 11 12 12 12 9 10 12 11 10 9 8 9 10 11 

60 12 11 12 12 12 13 10 11 11 11 8 9 11 10 9 8 7 8 9 10 

61 11 10 11 11 11 12 9 10 10 10 7 8 10 9 8 7 6 7 8 9 

62 12 11 12 12 12 13 10 11 11 11 8 9 11 10 9 8 7 8 9 10 

63 11 10 11 11 11 12 9 10 10 10 7 8 10 9 8 7 6 7 8 9 

64 10 9 10 10 10 11 8 9 9 9 6 7 9 8 7 6 5 6 7 8 

65 9 8 9 9 9 10 7 8 8 8 5 6 8 7 6 5 4 5 6 7 

66 10 9 10 10 10 11 8 9 9 9 6 7 9 8 7 6 5 6 7 8 

67 10 9 10 10 10 11 8 9 9 9 6 7 9 8 7 6 5 6 7 8 

68 10 9 10 10 10 11 8 9 9 9 6 7 9 9 8 7 6 7 8 9 

69 11 10 11 11 11 12 9 10 10 10 7 8 10 10 9 8 7 8 9 10 

70 12 11 12 12 12 13 10 11 11 11 8 9 11 11 10 9 8 9 10 11 

71 13 12 13 13 13 14 11 12 12 12 9 10 12 11 10 9 8 9 10 11 

72 12 11 12 12 12 13 10 11 11 11 8 9 11 10 9 8 7 8 9 10 

73 11 10 11 11 11 12 9 10 10 10 7 8 10 9 8 7 6 7 8 9 

74 12 11 12 12 12 13 10 11 11 11 8 9 11 10 9 8 7 8 9 10 

75 14 13 14 14 14 15 12 13 13 13 10 11 13 13 12 11 10 11 12 13 

76 13 12 13 13 13 14 11 12 12 12 9 10 12 12 11 10 9 10 11 12 

77 13 12 13 13 13 14 11 12 12 12 9 10 12 11 10 9 8 9 10 11 

78 12 11 12 13 12 13 10 11 11 11 8 9 11 10 9 8 7 8 9 10 

79 12 11 12 13 12 13 10 11 11 11 8 9 11 10 9 8 7 8 9 10 

80 12 11 12 13 12 13 10 11 11 11 8 9 11 11 10 9 8 9 10 11   

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40                     

2 5 4 3 4 5 6 7 6 7 8 9 8 8 7 8 9 10 8 8 

1 4 3 2 3 4 5 6 5 6 7 8 7 7 6 7 8 9 7 7 

2 5 4 3 4 5 6 7 6 7 8 9 8 8 7 8 9 10 8 8 

2 5 4 3 4 5 6 7 6 7 8 9 8 8 7 8 9 10 8 8 

3 5 5 4 5 6 6 7 7 8 9 9 8 8 7 8 9 10 8 8 

3 6 5 4 5 6 7 8 7 8 9 10 9 9 8 9 10 11 9 9 

5 3 4 5 6 5 4 5 6 7 8 7 6 6 5 6 7 8 6 6 

4 4 5 5 6 6 5 6 7 8 9 8 7 7 6 7 8 9 7 7 

1 4 3 2 3 4 5 6 5 6 7 8 7 7 6 7 8 9 7 7 

1 4 3 2 3 4 5 6 5 6 7 8 7 7 6 7 8 9 7 7 

4 1 2 3 4 3 2 3 4 5 6 5 4 4 3 4 5 6 4 4 

5 2 3 4 5 4 3 4 5 6 7 6 5 5 4 5 6 7 5 5 

4 4 5 5 6 6 5 6 7 8 9 8 7 7 6 6 7 8 7 7 

3 5 5 4 5 6 6 7 7 8 9 8 7 7 6 5 6 7 6 6 

4 5 6 5 6 7 6 7 8 9 8 7 6 6 5 4 5 6 5 5 

5 4 5 6 7 6 5 6 7 8 7 6 5 5 4 3 4 5 4 4 

4 3 4 5 6 5 4 5 6 7 6 5 4 4 3 2 3 4 3 3 
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3 4 5 4 5 6 5 6 7 8 7 6 5 5 4 3 4 5 4 4 

2 5 4 3 4 5 6 7 6 7 8 7 6 6 5 4 5 6 5 5 

1 4 3 2 3 4 5 6 5 6 7 8 7 7 6 5 6 7 6 6 

0 3 2 1 2 3 4 5 4 5 6 7 6 6 5 6 7 8 6 6 

3 0 1 2 3 2 1 2 3 4 5 4 3 3 2 3 4 5 3 3 

2 1 0 1 2 3 2 3 4 5 6 5 4 4 3 4 5 6 4 4 

1 2 1 0 1 2 3 4 3 4 5 6 5 5 4 5 6 7 5 5 

2 3 2 1 0 1 2 3 2 3 4 5 4 4 5 6 7 8 5 6 

3 2 3 2 1 0 1 2 1 2 3 4 3 3 4 5 6 7 4 5 

4 1 2 3 2 1 0 1 2 3 4 3 2 2 3 4 5 6 3 4 

5 2 3 4 3 2 1 0 3 4 3 2 1 1 2 5 6 6 2 4 

4 3 4 3 2 1 2 3 0 1 2 3 4 4 5 6 7 8 5 6 

5 4 5 4 3 2 3 4 1 0 1 2 3 5 6 7 8 8 4 6 

6 5 6 5 4 3 4 3 2 1 0 1 2 4 5 6 7 7 3 5 

7 4 5 6 5 4 3 2 3 2 1 0 1 3 4 5 6 6 2 4 

6 3 4 5 4 3 2 1 4 3 2 1 0 2 3 4 5 5 1 3 

6 3 4 5 4 3 2 1 4 5 4 3 2 0 1 4 5 6 3 4 

5 2 3 4 5 4 3 2 5 6 5 4 3 1 0 3 4 5 3 3 

6 3 4 5 6 5 4 5 6 7 6 5 4 4 3 0 1 2 3 3 

7 4 5 6 7 6 5 6 7 8 7 6 5 5 4 1 0 1 4 4 

8 5 6 7 8 7 6 6 8 8 7 6 5 6 5 2 1 0 4 3 

6 3 4 5 5 4 3 2 5 4 3 2 1 3 3 3 4 4 0 2 

6 3 4 5 6 5 4 4 6 6 5 4 3 4 3 3 4 3 2 0 

7 4 5 6 7 6 5 5 7 7 6 5 4 5 4 3 2 1 3 2 

6 3 4 5 6 5 4 4 6 6 5 4 3 4 3 3 3 2 2 1 

5 2 3 4 5 4 3 4 5 6 6 5 4 3 2 3 4 5 3 3 

4 1 2 3 4 3 2 3 4 5 5 4 3 2 1 2 3 4 2 2 

5 2 3 4 5 4 3 4 5 6 5 4 3 3 2 1 2 3 2 2 

6 3 4 5 6 5 4 5 6 7 6 5 4 4 3 2 3 4 3 3 

7 4 5 6 7 6 5 6 7 8 7 6 5 5 4 3 4 5 4 4 

7 4 5 6 7 6 5 5 7 7 6 5 4 5 4 4 4 3 3 2 

8 5 6 7 8 7 6 6 8 8 7 6 5 6 5 5 5 4 4 3 

9 6 7 8 9 8 7 7 9 9 8 7 6 7 6 6 6 5 5 4 

6 3 4 5 6 5 4 4 6 6 5 4 3 4 3 3 4 4 2 2 

6 3 4 5 6 5 4 5 6 7 6 5 4 4 3 4 5 5 3 3 

5 2 3 4 5 4 3 3 5 5 4 3 2 3 2 2 3 3 1 1 

8 5 6 7 8 7 6 6 8 8 7 6 5 6 5 4 3 2 4 3 

10 7 8 9 10 9 8 8 10 10 9 8 7 8 7 6 5 4 6 5 

9 6 7 8 9 8 7 7 9 9 8 7 6 7 6 6 6 5 5 5 

11 8 9 10 11 10 9 9 11 11 10 9 8 9 8 7 6 5 7 6 

11 8 9 10 11 10 9 9 11 11 10 9 8 9 8 7 6 5 7 6 

11 8 9 10 11 10 9 9 11 11 10 9 8 9 8 8 7 6 7 7 

10 7 8 9 10 9 8 8 10 10 9 8 7 8 7 7 7 6 6 6 

9 6 7 8 9 8 7 7 9 9 8 7 6 7 6 5 4 3 5 4 

10 7 8 9 10 9 8 8 10 10 9 8 7 8 7 6 5 4 6 5 

9 6 7 8 9 8 7 7 9 9 8 7 6 7 6 5 4 3 5 4 

8 5 6 7 8 7 6 6 8 8 7 6 5 6 5 5 5 4 4 4 

7 4 5 6 7 6 5 5 7 7 6 5 4 5 4 4 5 5 3 3 

8 5 6 7 8 7 6 6 8 8 7 6 5 6 5 5 6 6 4 4 

8 5 6 7 8 7 6 6 8 8 7 6 5 6 5 5 6 6 4 4 

8 5 6 7 6 5 4 3 4 3 2 1 2 4 5 6 7 7 3 5 

9 6 7 8 7 6 5 4 5 4 3 2 3 5 6 7 8 8 4 6 

10 7 8 9 8 7 6 5 6 5 4 3 4 6 7 8 9 9 5 7 

11 8 9 10 10 9 8 7 8 7 6 5 6 8 8 8 9 9 7 7 
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10 7 8 9 10 9 8 8 9 8 7 6 7 8 7 7 8 8 6 6 

9 6 7 8 9 8 7 7 9 9 8 7 6 7 6 6 7 7 5 5 

10 7 8 9 10 9 8 8 10 10 9 8 7 8 7 7 8 8 6 6 

12 9 10 11 10 9 8 7 8 7 6 5 6 8 9 10 11 11 7 9 

11 8 9 10 9 8 7 6 7 6 5 4 5 7 8 9 10 10 6 8 

11 8 9 10 10 9 8 7 8 7 6 5 6 8 8 8 9 9 7 7 

10 7 8 9 10 9 8 8 10 10 9 8 7 8 7 7 8 8 6 6 

10 7 8 9 10 9 8 8 10 10 9 8 7 8 7 7 8 8 6 6 

10 7 8 9 8 7 6 5 6 5 4 3 4 6 7 8 9 9 5 7   

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60                     

9 8 7 6 7 8 9 9 10 11 8 8 7 10 12 11 13 13 13 12 

8 7 6 5 6 7 8 8 9 10 7 7 6 9 11 10 12 12 12 11 

9 8 7 6 7 8 9 9 10 11 8 8 7 10 12 11 13 13 13 12 

9 8 7 6 7 8 9 9 10 11 8 8 7 10 12 11 13 13 13 12 

9 8 7 6 7 8 9 9 10 11 8 8 7 10 12 11 13 13 13 12 

10 9 8 7 8 9 10 10 11 12 9 9 8 11 13 12 14 14 14 13 

7 6 5 4 5 6 7 7 8 9 6 6 5 8 10 9 11 11 11 10 

8 7 6 5 6 7 8 8 9 10 7 7 6 9 11 10 12 12 12 11 

8 7 6 5 6 7 8 8 9 10 7 7 6 9 11 10 12 12 12 11 

8 7 6 5 6 7 8 8 9 10 7 7 6 9 11 10 12 12 12 11 

5 4 3 2 3 4 5 5 6 7 4 4 3 6 8 7 9 9 9 8 

6 5 4 3 4 5 6 6 7 8 5 5 4 7 9 8 10 10 10 9 

8 7 6 5 5 6 7 8 9 10 7 7 6 9 11 10 12 12 12 11 

7 6 6 5 4 5 6 7 8 9 6 7 5 8 10 9 11 11 11 10 

6 5 5 4 3 4 5 6 7 8 5 6 4 7 9 8 10 10 10 9 

5 4 4 3 2 3 4 5 6 7 4 5 3 6 8 7 9 9 9 8 

4 3 3 2 1 2 3 4 5 6 3 4 2 5 7 6 8 8 8 7 

5 4 4 3 2 3 4 5 6 7 4 5 3 6 8 7 9 9 9 8 

6 5 5 4 3 4 5 6 7 8 5 6 4 7 9 8 10 10 10 9 

7 6 6 5 4 5 6 7 8 9 6 7 5 8 10 9 11 11 11 10 

7 6 5 4 5 6 7 7 8 9 6 6 5 8 10 9 11 11 11 10 

4 3 2 1 2 3 4 4 5 6 3 3 2 5 7 6 8 8 8 7 

5 4 3 2 3 4 5 5 6 7 4 4 3 6 8 7 9 9 9 8 

6 5 4 3 4 5 6 6 7 8 5 5 4 7 9 8 10 10 10 9 

7 6 5 4 5 6 7 7 8 9 6 6 5 8 10 9 11 11 11 10 

6 5 4 3 4 5 6 6 7 8 5 5 4 7 9 8 10 10 10 9 

5 4 3 2 3 4 5 5 6 7 4 4 3 6 8 7 9 9 9 8 

5 4 4 3 4 5 6 5 6 7 4 5 3 6 8 7 9 9 9 8 

7 6 5 4 5 6 7 7 8 9 6 6 5 8 10 9 11 11 11 10 

7 6 6 5 6 7 8 7 8 9 6 7 5 8 10 9 11 11 11 10 

6 5 6 5 5 6 7 6 7 8 5 6 4 7 9 8 10 10 10 9 

5 4 5 4 4 5 6 5 6 7 4 5 3 6 8 7 9 9 9 8 

4 3 4 3 3 4 5 4 5 6 3 4 2 5 7 6 8 8 8 7 

5 4 3 2 3 4 5 5 6 7 4 4 3 6 8 7 9 9 9 8 

4 3 2 1 2 3 4 4 5 6 3 3 2 5 7 6 8 8 8 7 

3 3 3 2 1 2 3 4 5 6 3 4 2 4 6 6 7 7 8 7 

2 3 4 3 2 3 4 4 5 6 4 5 3 3 5 6 6 6 7 7 

1 2 5 4 3 4 5 3 4 5 4 5 3 2 4 5 5 5 6 6 

3 2 3 2 2 3 4 3 4 5 2 3 1 4 6 5 7 7 7 6 

2 1 3 2 2 3 4 2 3 4 2 3 1 3 5 5 6 6 7 6 

0 1 4 3 3 4 5 2 3 4 3 4 2 1 3 4 4 4 5 5 
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1 0 3 2 2 3 4 1 2 3 2 3 1 2 4 4 5 5 6 5 

4 3 0 1 2 3 4 4 5 6 2 1 2 5 6 5 7 7 7 6 

3 2 1 0 1 2 3 3 4 5 2 2 1 4 6 5 7 7 7 6 

3 2 2 1 0 1 2 3 4 5 2 3 1 4 6 5 7 7 7 6 

4 3 3 2 1 0 1 4 5 6 3 4 2 5 7 6 8 8 8 7 

5 4 4 3 2 1 0 5 6 7 4 5 3 6 8 7 9 9 9 8 

2 1 4 3 3 4 5 0 1 2 3 4 2 3 4 3 5 6 5 4 

3 2 5 4 4 5 6 1 0 1 4 5 3 4 3 2 4 5 4 3 

4 3 6 5 5 6 7 2 1 0 4 5 4 4 2 1 3 4 3 2 

3 2 2 2 2 3 4 3 4 4 0 1 1 4 4 3 5 5 5 4 

4 3 1 2 3 4 5 4 5 5 1 0 2 5 5 4 6 6 6 5 

2 1 2 1 1 2 3 2 3 4 1 2 0 3 5 4 6 6 6 5 

1 2 5 4 4 5 6 3 4 4 4 5 3 0 2 3 3 3 4 4 

3 4 6 6 6 7 8 4 3 2 4 5 5 2 0 1 1 2 3 2 

4 4 5 5 5 6 7 3 2 1 3 4 4 3 1 0 2 3 2 1 

4 5 7 7 7 8 9 5 4 3 5 6 6 3 1 2 0 1 2 3 

4 5 7 7 7 8 9 6 5 4 5 6 6 3 2 3 1 0 1 2 

5 6 7 7 7 8 9 5 4 3 5 6 6 4 3 2 2 1 0 1 

5 5 6 6 6 7 8 4 3 2 4 5 5 4 2 1 3 2 1 0 

2 3 6 5 5 6 7 4 5 5 5 6 4 1 3 4 3 2 3 4 

3 4 6 6 6 7 8 5 5 4 4 5 5 2 2 3 2 1 2 3 

2 3 5 5 5 6 7 4 4 3 3 4 4 1 1 2 2 2 3 3 

3 4 4 4 4 5 6 5 5 4 2 3 3 2 2 3 3 3 4 4 

4 3 3 3 3 4 5 4 4 3 1 2 2 3 3 2 4 4 4 3 

5 4 4 4 4 5 6 5 5 4 2 3 3 4 4 3 5 5 5 4 

5 4 4 4 4 5 6 4 3 2 2 3 3 4 2 1 3 4 3 2 

6 5 6 5 5 6 7 6 7 8 5 6 4 7 9 8 10 10 10 9 

7 6 7 6 6 7 8 7 8 9 6 7 5 8 10 9 11 11 11 10 

8 7 8 7 7 8 9 8 9 9 7 8 6 9 9 8 10 10 10 9 

8 7 7 7 7 8 9 8 8 7 5 6 6 7 7 6 8 8 8 7 

7 6 6 6 6 7 8 7 7 6 4 5 5 6 6 5 7 7 7 6 

6 5 5 5 5 6 7 6 6 5 3 4 4 5 5 4 6 6 6 5 

7 6 6 6 6 7 8 7 7 6 4 5 5 6 6 5 7 7 7 6 

10 9 9 9 9 10 11 10 10 9 7 8 8 9 9 8 10 10 10 9 

9 8 8 8 8 9 10 9 9 8 6 7 7 8 8 7 9 9 9 8 

8 7 7 7 7 8 9 8 8 7 5 6 6 7 7 6 8 8 8 7 

7 6 6 6 6 7 8 7 7 6 4 5 5 6 6 5 7 7 7 6 

7 6 6 6 6 7 8 7 7 6 4 5 5 6 6 5 7 7 7 6 

8 7 8 7 7 8 9 8 9 10 7 8 6 9 11 10 12 12 12 11   

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80                     

11 12 11 10 9 10 10 10 11 12 13 12 11 12 14 13 13 12 12 12 

10 11 10 9 8 9 9 9 10 11 12 11 10 11 13 12 12 11 11 11 

11 12 11 10 9 10 10 10 11 12 13 12 11 12 14 13 13 12 12 12 

11 12 11 10 9 10 10 10 11 12 13 12 11 12 14 13 13 12 12 12 

11 12 11 10 9 10 10 10 11 12 13 12 11 12 14 13 13 12 12 12 

12 13 12 11 10 11 11 11 12 13 14 13 12 13 15 14 14 13 13 13 

9 10 9 8 7 8 8 8 9 10 11 10 9 10 12 11 11 10 10 10 

10 11 10 9 8 9 9 9 10 11 12 11 10 11 13 12 12 11 11 11 

10 11 10 9 8 9 9 9 10 11 12 11 10 11 13 12 12 11 11 11 

10 11 10 9 8 9 9 9 10 11 12 11 10 11 13 12 12 11 11 11 

7 8 7 6 5 6 6 6 7 8 9 8 7 8 10 9 9 8 8 8 
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8 9 8 7 6 7 7 7 8 9 10 9 8 9 11 10 10 9 9 9 

10 11 10 9 8 9 9 9 10 11 12 11 10 11 13 12 12 11 11 11 

9 10 9 8 7 8 8 9 10 11 11 10 9 10 13 12 11 10 10 11 

8 9 8 7 6 7 7 8 9 10 10 9 8 9 12 11 10 9 9 10 

7 8 7 6 5 6 6 7 8 9 9 8 7 8 11 10 9 8 8 9 

6 7 6 5 4 5 5 6 7 8 8 7 6 7 10 9 8 7 7 8 

7 8 7 6 5 6 6 7 8 9 9 8 7 8 11 10 9 8 8 9 

8 9 8 7 6 7 7 8 9 10 10 9 8 9 12 11 10 9 9 10 

9 10 9 8 7 8 8 9 10 11 11 10 9 10 13 12 11 10 10 11 

9 10 9 8 7 8 8 8 9 10 11 10 9 10 12 11 11 10 10 10 

6 7 6 5 4 5 5 5 6 7 8 7 6 7 9 8 8 7 7 7 

7 8 7 6 5 6 6 6 7 8 9 8 7 8 10 9 9 8 8 8 

8 9 8 7 6 7 7 7 8 9 10 9 8 9 11 10 10 9 9 9 

9 10 9 8 7 8 8 6 7 8 10 10 9 10 10 9 10 10 10 8 

8 9 8 7 6 7 7 5 6 7 9 9 8 9 9 8 9 9 9 7 

7 8 7 6 5 6 6 4 5 6 8 8 7 8 8 7 8 8 8 6 

7 8 7 6 5 6 6 3 4 5 7 8 7 8 7 6 7 8 8 5 

9 10 9 8 7 8 8 4 5 6 8 9 9 10 8 7 8 10 10 6 

9 10 9 8 7 8 8 3 4 5 7 8 9 10 7 6 7 10 10 5 

8 9 8 7 6 7 7 2 3 4 6 7 8 9 6 5 6 9 9 4 

7 8 7 6 5 6 6 1 2 3 5 6 7 8 5 4 5 8 8 3 

6 7 6 5 4 5 5 2 3 4 6 7 6 7 6 5 6 7 7 4 

7 8 7 6 5 6 6 4 5 6 8 8 7 8 8 7 8 8 8 6 

6 7 6 5 4 5 5 5 6 7 8 7 6 7 9 8 8 7 7 7 

5 6 5 5 4 5 5 6 7 8 8 7 6 7 10 9 8 7 7 8 

4 5 4 5 5 6 6 7 8 9 9 8 7 8 11 10 9 8 8 9 

3 4 3 4 5 6 6 7 8 9 9 8 7 8 11 10 9 8 8 9 

5 6 5 4 3 4 4 3 4 5 7 6 5 6 7 6 7 6 6 5 

4 5 4 4 3 4 4 5 6 7 7 6 5 6 9 8 7 6 6 7 

2 3 2 3 4 5 5 6 7 8 8 7 6 7 10 9 8 7 7 8 

3 4 3 4 3 4 4 5 6 7 7 6 5 6 9 8 7 6 6 7 

6 6 5 4 3 4 4 6 7 8 7 6 5 6 9 8 7 6 6 8 

5 6 5 4 3 4 4 5 6 7 7 6 5 6 9 8 7 6 6 7 

5 6 5 4 3 4 4 5 6 7 7 6 5 6 9 8 7 6 6 7 

6 7 6 5 4 5 5 6 7 8 8 7 6 7 10 9 8 7 7 8 

7 8 7 6 5 6 6 7 8 9 9 8 7 8 11 10 9 8 8 9 

4 5 4 5 4 5 4 6 7 8 8 7 6 7 10 9 8 7 7 8 

5 5 4 5 4 5 3 7 8 9 8 7 6 7 10 9 8 7 7 9 

5 4 3 4 3 4 2 8 9 9 7 6 5 6 9 8 7 6 6 10 

5 4 3 2 1 2 2 5 6 7 5 4 3 4 7 6 5 4 4 7 

6 5 4 3 2 3 3 6 7 8 6 5 4 5 8 7 6 5 5 8 

4 5 4 3 2 3 3 4 5 6 6 5 4 5 8 7 6 5 5 6 

1 2 1 2 3 4 4 7 8 9 7 6 5 6 9 8 7 6 6 9 

3 2 1 2 3 4 2 9 10 9 7 6 5 6 9 8 7 6 6 11 

4 3 2 3 2 3 1 8 9 8 6 5 4 5 8 7 6 5 5 10 

3 2 2 3 4 5 3 10 11 10 8 7 6 7 10 9 8 7 7 12 

2 1 2 3 4 5 4 10 11 10 8 7 6 7 10 9 8 7 7 12 

3 2 3 4 4 5 3 10 11 10 8 7 6 7 10 9 8 7 7 12 

4 3 3 4 3 4 2 9 10 9 7 6 5 6 9 8 7 6 6 11 

0 1 2 3 4 5 5 8 9 10 8 7 6 7 10 9 8 7 7 10 

1 0 1 2 3 4 4 9 10 9 7 6 5 6 9 8 7 6 6 11 

2 1 0 1 2 3 3 8 9 8 6 5 4 5 8 7 6 5 5 10 

3 2 1 0 1 2 2 7 8 7 5 4 3 4 7 6 5 4 4 9 

4 3 2 1 0 1 1 6 7 6 4 3 2 3 6 5 4 3 3 8 
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5 4 3 2 1 0 2 7 6 5 3 2 1 2 5 4 3 2 2 7 

5 4 3 2 1 2 0 7 8 7 5 4 3 4 7 6 5 4 4 9 

8 9 8 7 6 7 7 0 1 2 4 5 6 7 4 3 4 7 7 2 

9 10 9 8 7 6 8 1 0 1 3 4 5 6 3 2 3 6 6 1 

10 9 8 7 6 5 7 2 1 0 2 3 4 5 2 1 2 5 5 2 

8 7 6 5 4 3 5 4 3 2 0 1 2 3 2 1 2 3 3 4 

7 6 5 4 3 2 4 5 4 3 1 0 1 2 3 2 1 2 2 5 

6 5 4 3 2 1 3 6 5 4 2 1 0 1 4 3 2 1 1 6 

7 6 5 4 3 2 4 7 6 5 3 2 1 0 5 4 3 2 2 7 

10 9 8 7 6 5 7 4 3 2 2 3 4 5 0 1 2 5 5 4 

9 8 7 6 5 4 6 3 2 1 1 2 3 4 1 0 1 4 4 3 

8 7 6 5 4 3 5 4 3 2 2 1 2 3 2 1 0 3 3 4 

7 6 5 4 3 2 4 7 6 5 3 2 1 2 5 4 3 0 2 7 

7 6 5 4 3 2 4 7 6 5 3 2 1 2 5 4 3 2 0 7 

10 11 10 9 8 7 9 2 1 2 4 5 6 7 4 3 4 7 7 0             
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Appendix (E)  

  Adjacency Matrix for The Small Weighted Network in figure (6.3.1):    

[0 3 2 0 2 0 0 0 0 0 0 0 0 
3 0 0 1 0 0 0 0 0 0 0 0 0 
2 0 0 4 0 0 0 0 0 0 0 0 0 
0 1 4 0 0 5 0 2 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 5 0 0 7 0 0 0 0 0 0 
0 0 0 0 0 7 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 2 1 0 6 0 0 0 
0 0 0 0 0 0 0 0 6 0 3 0 2 
0 0 0 0 0 0 0 0 0 3 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 0 0]                       
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Appendix (F)   
Adjacency Matrix for Large Weighted Nework in Fig (6.4.1)  
        [0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 
1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 3 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 5 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 4 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 3 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 4 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 3 0 4 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 4 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5 0 2 0 2 4 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 5 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 4 0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 4 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 2 0 1 0 0 0 3 4 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 2 0 5 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 5 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0]; 
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Appendix (G)  

The Shortest Path Matrix for The Large Weighted Network in figure (6.4.1) 
    

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                      

1 0 1 2 3 6 4 15 10 6 2 19 18 14 9 10 12 15 11 6 5 

2 1 0 1 2 5 3 14 9 7 3 20 17 15 10 11 13 16 12 7 6 

3 2 1 0 3 6 2 15 10 8 4 21 18 16 11 12 14 17 13 8 7 

4 3 2 3 0 3 5 12 7 9 5 20 15 16 12 13 15 18 14 9 8 

5 6 5 6 3 0 8 9 4 12 8 17 12 13 15 16 18 21 17 12 11 

6 4 3 2 5 8 0 17 12 10 6 23 20 18 13 14 16 19 15 10 9 

7 15 14 15 12 9 17 0 5 18 16 8 3 4 9 10 12 15 17 12 13 

8 10 9 10 7 4 12 5 0 16 12 13 8 9 14 15 17 20 21 16 15 

9 6 7 8 9 12 10 18 16 0 4 19 21 14 9 10 12 15 11 6 5 

10 2 3 4 5 8 6 16 12 4 0 17 19 12 7 8 10 13 9 4 3 

11 19 20 21 20 17 23 8 13 19 17 0 5 12 17 18 17 14 18 19 18 

12 18 17 18 15 12 20 3 8 21 19 5 0 7 12 13 15 18 20 15 16 

13 14 15 16 16 13 18 4 9 14 12 12 7 0 5 6 8 11 13 8 9 

14 9 10 11 12 15 13 9 14 9 7 17 12 5 0 1 3 6 8 3 4 

15 10 11 12 13 16 14 10 15 10 8 18 13 6 1 0 2 5 9 4 5 

16 12 13 14 15 18 16 12 17 12 10 17 15 8 3 2 0 3 7 6 7 

17 15 16 17 18 21 19 15 20 15 13 14 18 11 6 5 3 0 4 9 10 

18 11 12 13 14 17 15 17 21 11 9 18 20 13 8 9 7 4 0 5 6 

19 6 7 8 9 12 10 12 16 6 4 19 15 8 3 4 6 9 5 0 1 

20 5 6 7 8 11 9 13 15 5 3 18 16 9 4 5 7 10 6 1 0 

21 3 4 5 6 9 7 15 13 3 1 16 18 11 6 7 9 12 8 3 2 

22 14 15 16 17 20 18 13 18 14 12 5 10 17 15 14 12 9 13 14 13 

23 9 10 11 12 15 13 18 19 9 7 10 15 17 12 13 15 14 14 9 8 

24 7 8 9 10 13 11 19 17 7 5 12 17 15 10 11 13 16 12 7 6 

25 8 9 10 11 14 12 20 18 8 6 13 18 16 11 12 14 17 13 8 7 

26 11 12 13 14 17 15 22 21 11 9 14 19 19 14 15 17 18 16 11 10 

27 15 16 17 18 21 19 18 23 15 13 10 15 22 18 19 17 14 18 15 14 

28 16 17 18 19 22 20 19 24 16 14 11 16 23 19 20 18 15 19 16 15 

29 15 16 17 18 21 19 26 25 15 13 18 23 23 18 19 21 22 20 15 14 

30 20 21 22 23 26 24 27 30 20 18 19 24 28 23 24 22 19 23 20 19 

31 22 23 24 25 28 26 25 30 22 20 17 22 28 23 22 20 17 21 22 21 

32 19 20 21 22 25 23 22 27 19 17 14 19 25 20 19 17 14 18 19 18 

33 18 19 20 21 24 22 21 26 18 16 13 18 24 19 18 16 13 17 18 17 

34 18 19 20 21 24 22 21 26 18 16 13 18 25 21 21 19 16 20 18 17 

35 20 21 22 23 26 24 19 24 20 18 11 16 23 19 18 16 13 17 20 19 

36 20 21 22 23 26 24 19 24 20 18 11 16 18 13 12 10 7 11 16 17 

37 25 26 27 28 31 29 24 29 25 23 16 21 23 18 17 15 12 16 21 22 

38 24 25 26 27 30 28 23 28 24 22 15 20 24 19 18 16 13 17 22 23 

39 20 21 22 23 26 24 19 24 20 18 11 16 20 15 14 12 9 13 18 19 

40 20 21 22 23 26 24 19 24 20 18 11 16 20 15 14 12 9 13 18 19 

41 22 23 24 25 28 26 21 26 22 20 13 18 22 17 16 14 11 15 20 21 

42 19 20 21 22 25 23 18 23 19 17 10 15 19 14 13 11 8 12 17 18 

43 18 19 20 21 24 22 17 22 18 16 9 14 21 17 16 14 11 15 18 17 

44 15 16 17 18 21 19 14 19 15 13 6 11 18 14 13 11 8 12 15 14 

45 18 19 20 21 24 22 17 22 18 16 9 14 16 11 10 8 5 9 14 15 

46 21 22 23 24 27 25 20 25 21 19 12 17 19 14 13 11 8 12 17 18 

47 25 26 27 28 31 29 24 29 25 23 16 21 23 18 17 15 12 16 21 22 
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48 22 23 24 25 28 26 21 26 22 20 13 18 22 17 16 14 11 15 20 21 

49 25 26 27 28 31 29 24 29 25 23 16 21 25 20 19 17 14 18 23 24 

50 26 27 28 29 32 30 25 30 26 24 17 22 26 21 20 18 15 19 24 25 

51 22 23 24 25 28 26 21 26 22 20 13 18 22 17 16 14 11 15 20 21 

52 22 23 24 25 28 26 21 26 22 20 13 18 23 18 17 15 12 16 21 21 

53 17 18 19 20 23 21 16 21 17 15 8 13 17 12 11 9 6 10 15 16 

54 26 27 28 29 32 30 25 30 26 24 17 22 26 21 20 18 15 19 24 25 

55 29 30 31 32 35 33 28 33 29 27 20 25 29 24 23 21 18 22 27 28 

56 28 29 30 31 34 32 27 32 28 26 19 24 28 23 22 20 17 21 26 27 

57 34 35 36 37 40 38 33 38 34 32 25 30 34 29 28 26 23 27 32 33 

58 35 36 37 38 41 39 34 39 35 33 26 31 35 30 29 27 24 28 33 34 

59 33 34 35 36 39 37 32 37 33 31 24 29 33 28 27 25 22 26 31 32 

60 31 32 33 34 37 35 30 35 31 29 22 27 31 26 25 23 20 24 29 30 

61 31 32 33 34 37 35 30 35 31 29 22 27 31 26 25 23 20 24 29 30 

62 32 33 34 35 38 36 31 36 32 30 23 28 32 27 26 24 21 25 30 31 

63 30 31 32 33 36 34 29 34 30 28 21 26 30 25 24 22 19 23 28 29 

64 30 31 32 33 36 34 29 34 30 28 21 26 30 25 24 22 19 23 28 29 

65 26 27 28 29 32 30 25 30 26 24 17 22 26 21 20 18 15 19 24 25 

66 29 30 31 32 35 33 28 33 29 27 20 25 29 24 23 21 18 22 27 28 

67 31 32 33 34 37 35 30 35 31 29 22 27 31 26 25 23 20 24 29 30 

68 24 25 26 27 30 28 27 32 24 22 19 24 30 25 24 22 19 23 24 23 

69 25 26 27 28 31 29 28 33 25 23 20 25 31 26 25 23 20 24 25 24 

70 28 29 30 31 34 32 31 36 28 26 23 28 34 29 28 26 23 27 28 27 

71 31 32 33 34 37 35 34 39 31 29 26 31 37 32 31 29 26 30 31 30 

72 34 35 36 37 40 38 35 40 34 32 27 32 36 31 30 28 25 29 34 33 

73 34 35 36 37 40 38 33 38 34 32 25 30 34 29 28 26 23 27 32 33 

74 35 36 37 38 41 39 34 39 35 33 26 31 35 30 29 27 24 28 33 34 

75 32 33 34 35 38 36 35 40 32 30 27 32 38 33 32 30 27 31 32 31 

76 30 31 32 33 36 34 33 38 30 28 25 30 36 31 30 28 25 29 30 29 

77 35 36 37 38 41 39 38 43 35 33 30 35 40 35 34 32 29 33 35 34 

78 37 38 39 40 43 41 36 41 37 35 28 33 37 32 31 29 26 30 35 36 

79 38 39 40 41 44 42 37 42 38 36 29 34 38 33 32 30 27 31 36 37 

80 29 30 31 32 35 33 32 37 29 27 24 29 35 30 29 27 24 28 29 28   

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40                     

3 14 9 7 8 11 15 16 15 20 22 19 18 18 20 20 25 24 20 20 

4 15 10 8 9 12 16 17 16 21 23 20 19 19 21 21 26 25 21 21 

5 16 11 9 10 13 17 18 17 22 24 21 20 20 22 22 27 26 22 22 

6 17 12 10 11 14 18 19 18 23 25 22 21 21 23 23 28 27 23 23 

9 20 15 13 14 17 21 22 21 26 28 25 24 24 26 26 31 30 26 26 

7 18 13 11 12 15 19 20 19 24 26 23 22 22 24 24 29 28 24 24 

15 13 18 19 20 22 18 19 26 27 25 22 21 21 19 19 24 23 19 19 

13 18 19 17 18 21 23 24 25 30 30 27 26 26 24 24 29 28 24 24 

3 14 9 7 8 11 15 16 15 20 22 19 18 18 20 20 25 24 20 20 

1 12 7 5 6 9 13 14 13 18 20 17 16 16 18 18 23 22 18 18 

16 5 10 12 13 14 10 11 18 19 17 14 13 13 11 11 16 15 11 11 

18 10 15 17 18 19 15 16 23 24 22 19 18 18 16 16 21 20 16 16 

11 17 17 15 16 19 22 23 23 28 28 25 24 25 23 18 23 24 20 20 

6 15 12 10 11 14 18 19 18 23 23 20 19 21 19 13 18 19 15 15 

7 14 13 11 12 15 19 20 19 24 22 19 18 21 18 12 17 18 14 14 

9 12 15 13 14 17 17 18 21 22 20 17 16 19 16 10 15 16 12 12 

12 9 14 16 17 18 14 15 22 19 17 14 13 16 13 7 12 13 9 9 
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8 13 14 12 13 16 18 19 20 23 21 18 17 20 17 11 16 17 13 13 

3 14 9 7 8 11 15 16 15 20 22 19 18 18 20 16 21 22 18 18 

2 13 8 6 7 10 14 15 14 19 21 18 17 17 19 17 22 23 19 19 

0 11 6 4 5 8 12 13 12 17 19 16 15 15 17 17 22 21 17 17 

11 0 5 7 8 9 5 6 13 14 12 9 8 8 6 6 11 10 6 6 

6 5 0 2 3 6 10 11 10 15 17 14 13 13 11 11 16 15 11 11 

4 7 2 0 1 4 8 9 8 13 15 12 11 11 13 13 18 17 13 13 

5 8 3 1 0 3 7 8 7 12 14 11 10 10 13 14 19 18 14 14 

8 9 6 4 3 0 4 5 4 9 11 8 7 7 10 15 20 19 11 15 

12 5 10 8 7 4 0 1 8 9 7 4 3 3 6 11 16 15 7 11 

13 6 11 9 8 5 1 0 9 8 6 3 2 2 5 12 17 16 6 12 

12 13 10 8 7 4 8 9 0 5 7 10 11 11 14 19 24 23 15 19 

17 14 15 13 12 9 9 8 5 0 2 5 6 10 13 16 21 20 10 16 

19 12 17 15 14 11 7 6 7 2 0 3 4 8 11 14 19 18 8 14 

16 9 14 12 11 8 4 3 10 5 3 0 1 5 8 11 16 15 5 11 

15 8 13 11 10 7 3 2 11 6 4 1 0 4 7 10 15 14 4 10 

15 8 13 11 10 7 3 2 11 10 8 5 4 0 3 13 18 17 8 13 

17 6 11 13 13 10 6 5 14 13 11 8 7 3 0 10 15 14 10 10 

17 6 11 13 14 15 11 12 19 16 14 11 10 13 10 0 5 6 6 6 

22 11 16 18 19 20 16 17 24 21 19 16 15 18 15 5 0 1 11 7 

21 10 15 17 18 19 15 16 23 20 18 15 14 17 14 6 1 0 10 6 

17 6 11 13 14 11 7 6 15 10 8 5 4 8 10 6 11 10 0 6 

17 6 11 13 14 15 11 12 19 16 14 11 10 13 10 6 7 6 6 0 

19 8 13 15 16 17 13 14 21 18 16 13 12 15 12 8 3 2 8 4 

16 5 10 12 13 14 10 11 18 15 13 10 9 12 9 5 6 5 5 1 

15 4 9 11 12 13 9 10 17 18 16 13 12 11 8 8 13 12 8 8 

12 1 6 8 9 10 6 7 14 15 13 10 9 8 5 5 10 9 5 5 

15 4 9 11 12 13 9 10 17 14 12 9 8 11 8 2 7 8 4 4 

18 7 12 14 15 16 12 13 20 17 15 12 11 14 11 5 10 11 7 7 

22 11 16 18 19 20 16 17 24 21 19 16 15 18 15 9 14 15 11 11 

19 8 13 15 16 17 13 14 21 18 16 13 12 15 12 8 9 8 8 4 

22 11 16 18 19 20 16 17 24 21 19 16 15 18 15 11 12 11 11 7 

23 12 17 19 20 21 17 18 25 22 20 17 16 19 16 12 13 12 12 8 

19 8 13 15 16 17 13 14 21 18 16 13 12 15 12 8 13 12 8 8 

19 8 13 15 16 17 13 14 21 19 17 14 13 15 12 9 14 13 9 9 

14 3 8 10 11 12 8 9 16 13 11 8 7 10 7 3 8 7 3 3 

23 12 17 19 20 21 17 18 25 22 20 17 16 19 16 12 7 6 12 8 

26 15 20 22 23 24 20 21 28 25 23 20 19 22 19 15 12 11 15 11 

25 14 19 21 22 23 19 20 27 24 22 19 18 21 18 14 13 12 14 10 

31 20 25 27 28 29 25 26 33 30 28 25 24 27 24 20 17 16 20 16 

32 21 26 28 29 30 26 27 34 31 29 26 25 28 25 21 16 15 21 17 

30 19 24 26 27 28 24 25 32 29 27 24 23 26 23 19 18 17 19 15 

28 17 22 24 25 26 22 23 30 27 25 22 21 24 21 17 16 15 17 13 

28 17 22 24 25 26 22 23 30 27 25 22 21 24 21 17 12 11 17 13 

29 18 23 25 26 27 23 24 31 28 26 23 22 25 22 18 13 12 18 14 

27 16 21 23 24 25 21 22 29 26 24 21 20 23 20 16 11 10 16 12 

27 16 21 23 24 25 21 22 29 26 24 21 20 23 20 16 13 12 16 14 

23 12 17 19 20 21 17 18 25 22 20 17 16 19 16 12 17 16 12 12 

26 15 20 22 23 24 20 21 28 25 23 20 19 22 19 15 20 19 15 15 

28 17 22 24 25 26 22 23 30 27 25 22 21 24 21 17 17 16 17 14 

21 14 19 17 16 13 9 8 15 10 8 5 6 10 13 16 21 20 10 16 

22 15 20 18 17 14 10 9 16 11 9 6 7 11 14 17 22 21 11 17 

25 18 23 21 20 17 13 12 19 14 12 9 10 14 17 20 25 24 14 20 

28 21 26 24 23 20 16 15 22 17 15 12 13 17 20 23 28 27 17 23 
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31 22 27 27 26 23 19 18 25 20 18 15 16 20 23 22 27 26 20 22 

31 20 25 27 28 25 21 20 27 22 20 17 18 22 24 20 25 24 20 20 

32 21 26 28 29 26 22 21 28 23 21 18 19 23 25 21 26 25 21 21 

29 22 27 25 24 21 17 16 23 18 16 13 14 18 21 24 29 28 18 24 

27 20 25 23 22 19 15 14 21 16 14 11 12 16 19 22 27 26 16 22 

32 25 30 28 27 24 20 19 26 21 19 16 17 21 24 26 31 30 21 26 

34 23 28 30 31 28 24 23 30 25 23 20 21 25 27 23 28 27 23 23 

35 24 29 31 32 29 25 24 31 26 24 21 22 26 28 24 29 28 24 24 

26 19 24 22 21 18 14 13 20 15 13 10 11 15 18 21 26 25 15 21   

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60                     

22 19 18 15 18 21 25 22 25 26 22 22 17 26 29 28 34 35 33 31 

23 20 19 16 19 22 26 23 26 27 23 23 18 27 30 29 35 36 34 32 

24 21 20 17 20 23 27 24 27 28 24 24 19 28 31 30 36 37 35 33 

25 22 21 18 21 24 28 25 28 29 25 25 20 29 32 31 37 38 36 34 

28 25 24 21 24 27 31 28 31 32 28 28 23 32 35 34 40 41 39 37 

26 23 22 19 22 25 29 26 29 30 26 26 21 30 33 32 38 39 37 35 

21 18 17 14 17 20 24 21 24 25 21 21 16 25 28 27 33 34 32 30 

26 23 22 19 22 25 29 26 29 30 26 26 21 30 33 32 38 39 37 35 

22 19 18 15 18 21 25 22 25 26 22 22 17 26 29 28 34 35 33 31 

20 17 16 13 16 19 23 20 23 24 20 20 15 24 27 26 32 33 31 29 

13 10 9 6 9 12 16 13 16 17 13 13 8 17 20 19 25 26 24 22 

18 15 14 11 14 17 21 18 21 22 18 18 13 22 25 24 30 31 29 27 

22 19 21 18 16 19 23 22 25 26 22 23 17 26 29 28 34 35 33 31 

17 14 17 14 11 14 18 17 20 21 17 18 12 21 24 23 29 30 28 26 

16 13 16 13 10 13 17 16 19 20 16 17 11 20 23 22 28 29 27 25 

14 11 14 11 8 11 15 14 17 18 14 15 9 18 21 20 26 27 25 23 

11 8 11 8 5 8 12 11 14 15 11 12 6 15 18 17 23 24 22 20 

15 12 15 12 9 12 16 15 18 19 15 16 10 19 22 21 27 28 26 24 

20 17 18 15 14 17 21 20 23 24 20 21 15 24 27 26 32 33 31 29 

21 18 17 14 15 18 22 21 24 25 21 21 16 25 28 27 33 34 32 30 

19 16 15 12 15 18 22 19 22 23 19 19 14 23 26 25 31 32 30 28 

8 5 4 1 4 7 11 8 11 12 8 8 3 12 15 14 20 21 19 17 

13 10 9 6 9 12 16 13 16 17 13 13 8 17 20 19 25 26 24 22 

15 12 11 8 11 14 18 15 18 19 15 15 10 19 22 21 27 28 26 24 

16 13 12 9 12 15 19 16 19 20 16 16 11 20 23 22 28 29 27 25 

17 14 13 10 13 16 20 17 20 21 17 17 12 21 24 23 29 30 28 26 

13 10 9 6 9 12 16 13 16 17 13 13 8 17 20 19 25 26 24 22 

14 11 10 7 10 13 17 14 17 18 14 14 9 18 21 20 26 27 25 23 

21 18 17 14 17 20 24 21 24 25 21 21 16 25 28 27 33 34 32 30 

18 15 18 15 14 17 21 18 21 22 18 19 13 22 25 24 30 31 29 27 

16 13 16 13 12 15 19 16 19 20 16 17 11 20 23 22 28 29 27 25 

13 10 13 10 9 12 16 13 16 17 13 14 8 17 20 19 25 26 24 22 

12 9 12 9 8 11 15 12 15 16 12 13 7 16 19 18 24 25 23 21 

15 12 11 8 11 14 18 15 18 19 15 15 10 19 22 21 27 28 26 24 

12 9 8 5 8 11 15 12 15 16 12 12 7 16 19 18 24 25 23 21 

8 5 8 5 2 5 9 8 11 12 8 9 3 12 15 14 20 21 19 17 

3 6 13 10 7 10 14 9 12 13 13 14 8 7 12 13 17 16 18 16 

2 5 12 9 8 11 15 8 11 12 12 13 7 6 11 12 16 15 17 15 

8 5 8 5 4 7 11 8 11 12 8 9 3 12 15 14 20 21 19 17 

4 1 8 5 4 7 11 4 7 8 8 9 3 8 11 10 16 17 15 13 

0 3 10 7 6 9 13 6 9 10 10 11 5 4 9 10 14 13 15 13 
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3 0 7 4 3 6 10 3 6 7 7 8 2 7 10 9 15 16 14 12 

10 7 0 3 6 9 13 10 13 14 5 4 5 14 16 16 21 20 21 19 

7 4 3 0 3 6 10 7 10 11 7 7 2 11 14 13 19 20 18 16 

6 3 6 3 0 3 7 6 9 10 6 7 1 10 13 12 18 19 17 15 

9 6 9 6 3 0 4 9 12 13 9 10 4 13 16 15 21 22 20 18 

13 10 13 10 7 4 0 13 16 17 13 14 8 17 20 19 25 26 24 22 

6 3 10 7 6 9 13 0 3 4 10 11 5 10 7 6 12 13 11 9 

9 6 13 10 9 12 16 3 0 1 13 14 8 9 4 3 9 10 8 6 

10 7 14 11 10 13 17 4 1 0 14 15 9 8 3 2 8 9 7 5 

10 7 5 7 6 9 13 10 13 14 0 1 5 14 11 12 16 15 17 15 

11 8 4 7 7 10 14 11 14 15 1 0 6 15 12 13 17 16 18 16 

5 2 5 2 1 4 8 5 8 9 5 6 0 9 12 11 17 18 16 14 

4 7 14 11 10 13 17 10 9 8 14 15 9 0 5 6 10 9 11 9 

9 10 16 14 13 16 20 7 4 3 11 12 12 5 0 1 5 6 6 4 

10 9 16 13 12 15 19 6 3 2 12 13 11 6 1 0 6 7 5 3 

14 15 21 19 18 21 25 12 9 8 16 17 17 10 5 6 0 4 9 9 

13 16 20 20 19 22 26 13 10 9 15 16 18 9 6 7 4 0 5 7 

15 14 21 18 17 20 24 11 8 7 17 18 16 11 6 5 9 5 0 2 

13 12 19 16 15 18 22 9 6 5 15 16 14 9 4 3 9 7 2 0 

9 12 18 16 15 18 22 11 8 7 13 14 14 5 4 5 8 4 9 8 

10 13 17 17 16 19 23 10 7 6 12 13 15 6 3 4 7 3 8 7 

8 11 15 15 14 17 21 8 5 4 10 11 13 4 1 2 6 5 7 5 

10 13 13 15 14 17 21 10 7 6 8 9 13 6 3 4 8 7 9 7 

14 11 9 11 10 13 17 14 11 10 4 5 9 10 7 8 12 11 13 11 

17 14 12 14 13 16 20 17 14 13 7 8 12 13 10 11 15 14 16 14 

14 13 14 16 15 18 22 10 7 6 9 10 14 10 5 4 10 11 9 7 

18 15 18 15 14 17 21 18 21 22 18 19 13 22 25 24 30 31 29 27 

19 16 19 16 15 18 22 19 22 23 19 20 14 23 26 25 31 30 30 28 

22 19 22 19 18 21 25 22 25 26 20 21 17 26 23 24 28 27 29 27 

25 22 22 22 21 24 28 25 24 23 17 18 20 23 20 21 25 24 26 24 

24 21 19 21 20 23 27 24 21 20 14 15 19 20 17 18 22 21 23 21 

22 19 17 19 18 21 25 22 19 18 12 13 17 18 15 16 20 19 21 19 

23 20 18 20 19 22 26 23 20 19 13 14 18 19 16 17 21 20 22 20 

26 23 25 23 22 25 29 26 27 26 20 21 21 26 23 24 28 27 29 27 

24 21 23 21 20 23 27 24 25 24 18 19 19 24 21 22 26 25 27 25 

28 25 23 25 24 27 31 28 25 24 18 19 23 24 21 22 26 25 27 25 

25 22 20 22 21 24 28 25 22 21 15 16 20 21 18 19 23 22 24 22 

26 23 21 23 22 25 29 26 23 22 16 17 21 22 19 20 24 23 25 23 

23 20 23 20 19 22 26 23 26 27 23 24 18 27 30 29 35 34 34 32  

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80                     

31 32 30 30 26 29 31 24 25 28 31 34 34 35 32 30 35 37 38 29 

32 33 31 31 27 30 32 25 26 29 32 35 35 36 33 31 36 38 39 30 

33 34 32 32 28 31 33 26 27 30 33 36 36 37 34 32 37 39 40 31 

34 35 33 33 29 32 34 27 28 31 34 37 37 38 35 33 38 40 41 32 

37 38 36 36 32 35 37 30 31 34 37 40 40 41 38 36 41 43 44 35 

35 36 34 34 30 33 35 28 29 32 35 38 38 39 36 34 39 41 42 33 

30 31 29 29 25 28 30 27 28 31 34 35 33 34 35 33 38 36 37 32 

35 36 34 34 30 33 35 32 33 36 39 40 38 39 40 38 43 41 42 37 

31 32 30 30 26 29 31 24 25 28 31 34 34 35 32 30 35 37 38 29 

29 30 28 28 24 27 29 22 23 26 29 32 32 33 30 28 33 35 36 27 

22 23 21 21 17 20 22 19 20 23 26 27 25 26 27 25 30 28 29 24 

27 28 26 26 22 25 27 24 25 28 31 32 30 31 32 30 35 33 34 29 
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31 32 30 30 26 29 31 30 31 34 37 36 34 35 38 36 40 37 38 35 

26 27 25 25 21 24 26 25 26 29 32 31 29 30 33 31 35 32 33 30 

25 26 24 24 20 23 25 24 25 28 31 30 28 29 32 30 34 31 32 29 

23 24 22 22 18 21 23 22 23 26 29 28 26 27 30 28 32 29 30 27 

20 21 19 19 15 18 20 19 20 23 26 25 23 24 27 25 29 26 27 24 

24 25 23 23 19 22 24 23 24 27 30 29 27 28 31 29 33 30 31 28 

29 30 28 28 24 27 29 24 25 28 31 34 32 33 32 30 35 35 36 29 

30 31 29 29 25 28 30 23 24 27 30 33 33 34 31 29 34 36 37 28 

28 29 27 27 23 26 28 21 22 25 28 31 31 32 29 27 32 34 35 26 

17 18 16 16 12 15 17 14 15 18 21 22 20 21 22 20 25 23 24 19 

22 23 21 21 17 20 22 19 20 23 26 27 25 26 27 25 30 28 29 24 

24 25 23 23 19 22 24 17 18 21 24 27 27 28 25 23 28 30 31 22 

25 26 24 24 20 23 25 16 17 20 23 26 28 29 24 22 27 31 32 21 

26 27 25 25 21 24 26 13 14 17 20 23 25 26 21 19 24 28 29 18 

22 23 21 21 17 20 22 9 10 13 16 19 21 22 17 15 20 24 25 14 

23 24 22 22 18 21 23 8 9 12 15 18 20 21 16 14 19 23 24 13 

30 31 29 29 25 28 30 15 16 19 22 25 27 28 23 21 26 30 31 20 

27 28 26 26 22 25 27 10 11 14 17 20 22 23 18 16 21 25 26 15 

25 26 24 24 20 23 25 8 9 12 15 18 20 21 16 14 19 23 24 13 

22 23 21 21 17 20 22 5 6 9 12 15 17 18 13 11 16 20 21 10 

21 22 20 20 16 19 21 6 7 10 13 16 18 19 14 12 17 21 22 11 

24 25 23 23 19 22 24 10 11 14 17 20 22 23 18 16 21 25 26 15 

21 22 20 20 16 19 21 13 14 17 20 23 24 25 21 19 24 27 28 18 

17 18 16 16 12 15 17 16 17 20 23 22 20 21 24 22 26 23 24 21 

12 13 11 13 17 20 17 21 22 25 28 27 25 26 29 27 31 28 29 26 

11 12 10 12 16 19 16 20 21 24 27 26 24 25 28 26 30 27 28 25 

17 18 16 16 12 15 17 10 11 14 17 20 20 21 18 16 21 23 24 15 

13 14 12 14 12 15 14 16 17 20 23 22 20 21 24 22 26 23 24 21 

9 10 8 10 14 17 14 18 19 22 25 24 22 23 26 24 28 25 26 23 

12 13 11 13 11 14 13 15 16 19 22 21 19 20 23 21 25 22 23 20 

18 17 15 13 9 12 14 18 19 22 22 19 17 18 25 23 23 20 21 23 

16 17 15 15 11 14 16 15 16 19 22 21 19 20 23 21 25 22 23 20 

15 16 14 14 10 13 15 14 15 18 21 20 18 19 22 20 24 21 22 19 

18 19 17 17 13 16 18 17 18 21 24 23 21 22 25 23 27 24 25 22 

22 23 21 21 17 20 22 21 22 25 28 27 25 26 29 27 31 28 29 26 

11 10 8 10 14 17 10 18 19 22 25 24 22 23 26 24 28 25 26 23 

8 7 5 7 11 14 7 21 22 25 24 21 19 20 27 25 25 22 23 26 

7 6 4 6 10 13 6 22 23 26 23 20 18 19 26 24 24 21 22 27 

13 12 10 8 4 7 9 18 19 20 17 14 12 13 20 18 18 15 16 23 

14 13 11 9 5 8 10 19 20 21 18 15 13 14 21 19 19 16 17 24 

14 15 13 13 9 12 14 13 14 17 20 19 17 18 21 19 23 20 21 18 

5 6 4 6 10 13 10 22 23 26 23 20 18 19 26 24 24 21 22 27 

4 3 1 3 7 10 5 25 26 23 20 17 15 16 23 21 21 18 19 30 

5 4 2 4 8 11 4 24 25 24 21 18 16 17 24 22 22 19 20 29 

8 7 6 8 12 15 10 30 31 28 25 22 20 21 28 26 26 23 24 35 

4 3 5 7 11 14 11 31 30 27 24 21 19 20 27 25 25 22 23 34 

9 8 7 9 13 16 9 29 30 29 26 23 21 22 29 27 27 24 25 34 

8 7 5 7 11 14 7 27 28 27 24 21 19 20 27 25 25 22 23 32 

0 1 3 5 9 12 9 27 28 25 22 19 17 18 25 23 23 20 21 32 

1 0 2 4 8 11 8 28 27 24 21 18 16 17 24 22 22 19 20 31 

3 2 0 2 6 9 6 26 25 22 19 16 14 15 22 20 20 17 18 29 

5 4 2 0 4 7 8 24 23 20 17 14 12 13 20 18 18 15 16 27 

9 8 6 4 0 3 5 20 19 16 13 10 8 9 16 14 14 11 12 23 

12 11 9 7 3 0 8 17 16 13 10 7 5 6 13 11 11 8 9 20 
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9 8 6 8 5 8 0 25 24 21 18 15 13 14 21 19 19 16 17 28 

27 28 26 24 20 17 25 0 1 4 7 10 12 13 8 6 11 15 16 5 

28 27 25 23 19 16 24 1 0 3 6 9 11 12 7 5 10 14 15 4 

25 24 22 20 16 13 21 4 3 0 3 6 8 9 4 2 7 11 12 7 

22 21 19 17 13 10 18 7 6 3 0 3 5 6 3 1 6 8 9 10 

19 18 16 14 10 7 15 10 9 6 3 0 2 3 6 4 4 5 6 13 

17 16 14 12 8 5 13 12 11 8 5 2 0 1 8 6 6 3 4 15 

18 17 15 13 9 6 14 13 12 9 6 3 1 0 9 7 7 4 5 16 

25 24 22 20 16 13 21 8 7 4 3 6 8 9 0 2 7 11 12 11 

23 22 20 18 14 11 19 6 5 2 1 4 6 7 2 0 5 9 10 9 

23 22 20 18 14 11 19 11 10 7 6 4 6 7 7 5 0 9 10 14 

20 19 17 15 11 8 16 15 14 11 8 5 3 4 11 9 9 0 7 18 

21 20 18 16 12 9 17 16 15 12 9 6 4 5 12 10 10 7 0 19 

32 31 29 27 23 20 28 5 4 7 10 13 15 16 11 9 14 18 19 0           
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