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Abstract 
 

This thesis describes the synthesis and analysis of organometallic complexes that 

feature either enyl or ynyl linkages.   Chapter 1 introduces a general overview of 

electron transfer, classification of mixed-valence complexes and the modelling of 

mixed-valence complexes using density functional theory. 

 

The synthesis of a range of trans-RuCl(C≡CC6H4R)(dppe)2 complexes, in which R 

is either an electron donor (Me, OMe, C5H11) or acceptor (NO2, CO2Me), from the 

five-coordinate complex [RuCl(dppe)2]OTf is described.   This synthetic route 

represents an alternative to the long-standing methods based on cis-RuCl2(dppe)2.   

Improved synthetic routes to both [RuCl(dppe)2]OTf and cis-RuCl2(dppe)2 are also 

given.   These compounds were fully characterised spectroscopically and the 

molecular structures of [RuCl(dppe)2]OTf, trans-RuCl(C≡CC6H4OMe)(dppe)2, 

trans-RuCl(C≡CC6H4Me)(dppe)2, and trans-RuCl(C≡CC6H4CO2Me)(dppe)2 

determined and analysed.   The structures conform with literature precedence. 

 

The synthesis of ruthenium complexes based on RuCl(dppe)2 and Ru(dppe)Cp* 

units, featuring 1,3-diethynylbenzene bridging ligands has been achieved.   The 

electronic structures of 1,3-{trans-Cl(dppe)2RuC≡C}2C6H4, 1,3-

{Cp*(dppe)RuC≡C}2C6H4 and 1,3-{Cp*(dppe)RuC≡C}2-5-(HC≡C)C6H3 have been 

investigated using a combination of UV-vis-NIR and IR spectroscopies and 

computational studies.   In contrast to the case of closely related iron compounds, for 

the ruthenium complexes 1,3-{trans-Cl(dppe)2RuC≡C}2C6H4, 1,3-

{Cp*(dppe)RuC≡C}2C6H4 and 1,3-{Cp*(dppe)RuC≡C}2-5-(HC≡C)C6H3 the 

bridging aryl moiety is heavily involved in the oxidation process, and consequently 

descriptions of the electronic structures and electronic transitions in terms of the 

language developed for mixed-valence systems with clearly identifiable metal 

oxidation states are not appropriate.   The description of the low-energy absorption 

bands from the mixed-valence complexes are therefore better described as charge 

transfer transitions rather than IVCT transitions. 

 



 VI 

A range of mono vinyl Ru(CH=CHC6H4R-4)(CO)(PPh3)Tp complexes have been 

obtained from the reaction of RuHCl(CO)(PPh3)3 with para- substituted 

ethynylphenylenes, and KTp.   (R = NO2, CO2Me, CN, Me and OMe).   These 

complexes have been fully characterised spectroscopically, with molecular 

structures for Ru(CH=CHC6H4NO2-4)(CO)(PPh3)Tp, Ru(CH=CHC6H4CN-

4)(CO)(PPh3)Tp, Ru(CH=CHC6H4CH3)(CO)(PPh3)Tp and Ru(CH=CHC6H4OMe-

4)(CO)(PPh3)Tp being determined and analysed.   The electronic structures of these 

mono vinyl complexes have been also investigated using a combination of UV-vis-

NIR and IR spectroscopies and computational studies, revealing the redox activity of 

the styrene-derived ligand.   Hydroruthenation of 1,3-, 1,4- diethynylbenzene and 

1,3,5-triethynylbenzene affords the di- and trimetalled vinyl complexes, which have 

been characterised spectroscopically.   The bridging ligand is shown to be redox 

non-innocent. 

 

A simple protocol that allows the preparation of either “symmetric” A3 or 

“asymmetric” AB2 triethynyl methanol derivatives through the reaction of acetylide 

anions with chloroethylformate, has been explored.   This synthetic protocol is not 

only high yielding, but avoids the harsh conditions used in literature methods.   The 

molecular structures of Me3SiC≡C(COH)(C6H4I)2 and HC≡C(COH)(C6H4I)2 have 

been determined and analysed, with the packing motifs in the solid state arising from 

halogen interactions identified.   The use of these ligands as branched core ligands 

has also been investigated, and whilst difficulties have been encountered synthetic 

work to resolve these has been initiated. 

 

A selection of pro-ligands and both mono- and tris-metallated ligand complexes 

based on a triarylamine core have been prepared.   The electronic and structural 

nature of Me3SiC≡C(C6H4)NTol2, Fe(C≡C(C6H4)NTol2)(dppe)Cp and 

[{Fe(dppe)Cp}3(μ-(C≡CC6H4)3N)] have been investigated using a combination of 

UV-vis-NIR and IR spectroscopies and computational studies indicating electronic 

interactions between the remote metal centres in the case of [{Fe(dppe)Cp}3(μ-

(C≡CC6H4)3N)]
n+

 (n = 1, 2).   The molecular structures of Me3SiC≡C(C6H4)NTol2, 

HC≡C(C6H4)NTol2, Ru(C≡C(C6H4)NTol2)(dppe)Cp* and 

Fe(C≡C(C6H4)NTol2)(dppe)Cp have been determined and analysed. 
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Chapter 1 : Introduction 
 

In the mid-1960s, Gordon Moore, the co-founder of Intel, observed that the number 

of transistors on a chip had doubled approximately every two years. This 

observation has proven to be somewhat prophetic, and the original statement is now 

encompassed in Moore‟s Law which serves as a target for the semiconductor 

industry. 
1
   Over the last 40 years, technological advances in electronics have seen 

Moore‟s Law being largely obeyed, with silicon-based transistors becoming smaller 

and smaller in response to advances in both materials and processing methods.   This 

approach in making silicon devices ever smaller, known as the „top-down approach‟, 

has so far been successful, with some argument that the technology is ahead of 

Moore‟s Law. 
2
   However the question is no longer one of „if?‟, but rather of 

„when?‟, will significant obstacles to the miniaturisation of solid-state devices be 

reached.   Two of the major limitations to the minimum size of silicon-based 

transistors are: the breakdown of the fundamental band structure of the solid 

materials used in the construction of these nano-scale devices; 
3, 4

 the monetary costs 

of both resources and equipment required to manufacture ever smaller devices on 

ever larger wafers. 
3
   As of this, Moore‟s Law based solid state technologies may 

reach failure point in the foreseeable future. 
4
 

 

The other approach to miniature size transistors is the „bottom-up approach‟.   The 

nature of synthetic chemistry offers an alternative approach to the construction of 

functional materials through assembly with atomic precision.   The ability to handle 

and manipulate the properties of molecules opens up the possibility to exploit 

molecular properties to our gain.   The idea that a single molecule could provide an 

analogous function to that of an electrical device gained considerable momentum 

following the proposal in 1974 by Aviram and Ratner of a unimolecular rectifier (a 

p-n junction rectifier) based on a Donor-Acceptor (D-A) architecture (Figure 1). 
5
   

The Aviram-Ratner unimolecular rectifier, now considered a milestone in molecular 

electronics, 
6
 unsurprisingly received very little attention at the time as the 

requirements to synthesise such rectifying molecules and the subsequent fabrication 

of devices, that require vertical stacking of the molecules in organic monolayers of 

nanometre-scale thickness, sandwiched between two electrodes, are technically 



 

2 

 

challenging, even today.  However, over the ensuing years great advances in both 

the synthesis of rectifying molecules and testing of electronic characteristics has 

advanced greatly, with numerous demonstrations of this concept having been 

reported. 
7
 

 

 

Figure 1 Band diagram for a A-bridge-D Aviram-Ratner rectifier, between two 

electrodes. 

 

Recently the most widely investigated roles for the electronic properties of 

molecules within devices have returned to studies of simpler components, such as 

molecular wires, in which a molecule acts as a conduit for charge that is more 

effective than the transmission through space. 
8
   These „molecular wires‟ are the 

fundamental building blocks of molecular electronic devices such as junctions, 

switches, transistors, logic gates, etc.   There are a few basic requirements that 

molecules proposed to act as molecular wires must satisfy, such as conformational 

stability in the long term when exposed to a wide variety of conditions such as 

elevated temperature, oxidation or reduction.   However, the most elementary 

requirement of a molecular wire is the capacity to conduct a hole or an electron, and 

hence carry a current.   Therefore a „molecular wire‟ provides a pathway between 

two sites and has been defined as a „one dimensional molecule allowing a through-

bridge exchange of an electron or hole, between its remote terminal groups, 

themselves able to exchange electrons with the outside world‟. 
9
   In recent years, 

numerous types of molecules have been proposed as molecular wires, 
10, 11

 including 

conjugated carbon chains, 
12

 carbon nanotubes, 
13, 14

 polymers, 
15

 including DNA, 
16

 

and porphyrin based complexes. 
17

   By decorating the basic linear molecular 

architecture with substituent groups the properties of the molecule as a whole, such 



 

3 

 

as solubility, electrode binding properties and redox potentials, can be tuned by the 

chemist to meet the requirements of the device. 

 

In order to assess the conduction properties of a molecular wire, a potential has to be 

applied across the length of the molecule, just in the same way the conduction of a 

length of copper wire would be tested.   Quantification of the conductance of a 

molecular wire has been approached in many different ways, which generally 

depend on the nature of the molecule being assessed.   One technique that is used to 

obtain current-voltage characteristics is scanning tunnelling microscopy (STM).   

This often involves the formation of a self assembled monolayer (SAM) of alkane 

thiols adsorbed onto a gold substrate, of a known thickness, to give an insulating 

molecular layer on the surface.   Exposure of a low concentration of the molecule 

wire to this SAM results in the insertion of the wire-like candidate into a grain 

boundary within the insulating supporting film. 
8
   In some cases the position of the 

wire-like candidate can be controlled via the application of a voltage pulse from the 

STM tip. 
18

   With the molecular wire aligned perpendicularly to the gold surface, 

the STM tip acts as the second electrode, completing the circuit. 
19

   This technique, 

the equivalent of contacting a molecule into a circuit by surface binding micro-

crocodile clips, although popular in measuring the conductivity and length of 

molecular wires, is fraught with problems arising from, for example, defects in the 

monolayers, and the growth of metallic filaments between the STM tip and the 

underlying gold substrate. Numerous variations on the theme of contacting 

molecules between solid electrodes have been developed, and techniques continue to 

be devised. 
20

 

 

An alternative method arguably more suited to the study of a wider variety of 

molecules rests on the investigation of intramolecular electron transfer processes 

through spectroscopic techniques, with the conductivity of the wire assessed via 

relatively simple measurements in solution.   The most basic model of a molecular 

wire consists of two molecular groups, which act as the source of electrons or holes, 

tethered together by a bridging ligand, which provides the conduit for efficient 

charge transfer (Figure 2). 
11

    

 

 



 

4 

 

 

Figure 2 Basic model of a molecular wire consisting of two molecular groups 

tethered together by a bridging ligand. 

 

The transfer of an electron from the electron rich centre (the donor) to the electron 

poor centre (the acceptor) can take place either thermally, or be initiated via photo-

induced electron transfer (Figure 3).  
21, 22

 

 

 

Figure 3 Thermal and optical electron transfer processes in a M-bridge-M binuclear 

mixed-valence complex. 

 

Both thermal and photochemical electron-transfer are common processes in mixed 

valence materials.   Consequently, studies of „wire-like‟ behaviour in molecules in 

solution have been drawn to closely related studies of the characteristics of mixed 

valence complexes. 
22-24

   A mixed valence compound features an element in more 

than one formal oxidation state (e.g. the Creutz-Taube ion [{Ru(NH3)5}2(-pz)]
5+

, 

pz = pyrazine). 
22

   In the late 1960s Robin and Day 
25

 distinguished three broad 

classes of mixed-valence materials (Figure 4): 



 

5 

 

 Class I the interaction between the M and M
+
 centres is so weak, either 

because the M-M
+
 separation is large, and/or the M and M

+
 environments are 

extremely different, that the mixed-valence complex exhibits only the 

properties observed for isolated mononuclear M and M
+
 complexes. 

 

 Class II these complexes exhibit some interaction between the M and M
+
 

centres, to the extent that the complex M-M
+
 exhibits some perturbation of 

M and M
+
 characteristics.   In this class the electron is vibrationally localised 

in one of the redox centres and an external or thermal stimulus is needed to 

promote electron transfer.   In the case of photo-induced electron exchange 

between the two sites, the characteristic absorption band is usually termed 

the “Inter-Valence Charge Transfer” (IVCT) band, and is often found in the 

NIR region.  

 

 Class III the interaction between the M and M
+
 centres is so great that the 

properties of the isolated M and M
+
 centres are absent, with new properties 

characteristic of (M-M)
+
 being observed and the system essentially behaves 

as a unique species unrelated to either M or M
+
. 

 

 

Figure 4 Potential energy curves associated with ligand bridged dinuclear mixed-

valence complexes of: Class I (left); Class II (middle); and Class III (right). 
25

 

 

At the same time that Robin and Day proposed this classification of mixed-valence 

complexes, Hush proposed a theoretical model that linked the parameters of the 



 

6 

 

IVCT band to the activation energy for the electron transfer process, derived from 

Marcus theory 
26, 27

 

 

max = hν = λi + λo + ΓE0 + ΓE‟  

 

where max is the energy of the IVCT band, λi and λo are the inner- and outer-sphere 

re-organisation energies, E0 is the difference in ground state energy of the two 

states and ΓE‟ is the term that accounts for other energy terms, such as spin-orbit 

coupling and differences in the ligand field at each site.   From the characteristics of 

these IVCT absorption bands, specifically their energy (νmax), intensity (ε) and 

bandwidth at half-height (Γν1/2), information into the fundamental factors governing 

the coupling of the two redox centres can be extracted. 
28

 

 

The frequency of the optical transition absorption Eop can be related to the activation 

energy of thermal electron transfer, E
*

th ,  

 

Eop = 4 E
*

th 

 

From this relationship, Hush predicted that for the optical absorption band of a 

symmetric Class II species, the bandwidth at half intensity ∆ν1/2 should be a function 

of the band maximum, νmax , 

 

∆ν1/2 = [2310 νmax]
1/2

 cm
-1 

 

 

The comparison of the calculated and experimental values of ∆ν1/2 can be indicative 

of Class II or Class III behaviour. 
22

   In turn, the degree of electronic coupling 

between the two metal centres in a Class II system, which is related to the 

Hamiltonian Hab, can be assessed from the relationship; 

 

Hab = 2.06 × 10
-2

 [{maxεmaxΓ1/2}
1/2

]/rab 

 

where max is the peak energy, εmax is the molar extinction coefficient, Γ1/2 is the 

bandwidth at half-height and rab is the effective charge transfer distance. 
27
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Where the complex has three equivalent metal centres, with the assumption that all 

three sites behave independently, a modified Hush equation reported by Bonvoisin 

and Launay is used, with the two equations differing by a factor of √2, to take into 

account three equivalent redox centres; 
29, 30

 

 

Hab = 2.06 × 10
-2

 [{maxεmaxΓ1/2}
1/2

]/[rab√2] 

 

In keeping with the charge transfer nature of the IVCT process in a Class II mixed 

valence system, the IVCT band is typically solvatochromic. 
28

   Indeed, 

solvatochromism is often used as a diagnostic test to aid in the assignment of the 

IVCT band. 
28

 

 

However as Class III systems exhibit electron delocalisation, the rearrangement of 

the solvent spheres is not necessary, hence the analogous transition in Class III 

systems is solvent independent.   The Hush relationship, derived for Class II 

systems, is not applicable to Class III systems, 
22

 and rather for a delocalised system 

Hab is simply given by: 

 

Hab = λ/2 

 

Recently, a new class of mixed-valence systems has been proposed in light of recent 

experimental experience. 
24, 31, 32

   This new class, Class II-III, named because of the 

systems exhibit intermediate localised-to-delocalised behaviour. 
32, 33

   Characteristic 

features which define Class II-III systems include electron localisation, solvent 

averaging and a residual barrier to electron transfer arising from intramolecular 

structural changes. 
24

   In essence, Class II-III defines a system in which electron 

exchange is faster than the time-scale of solvent reorganisation. 
24

 

 

However in reality there are no abrupt transitions between the different classes, with 

experimental studies revealing that there is a gradual change in behaviour from 

localised to delocalised limits. 
24

   Factors governing this change include the relative 

timescales for intramolecular electron transfer, with the picture complicated further 
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with the appearance of multiple IVCT absorptions, due the presence of multiple 

metal donor d-orbitals, spin-orbital coupling, and specific solvation. 
34

 

 

It has often been asserted that the extent of communication between metal centres of 

a molecular wire can be determined by cyclic voltammetry, an electrochemical 

technique.   The thermodynamic stability of the mixed valence state M-M
+
, with 

respect to M-M and M-M
2+

, can be determined from the potential difference 

between E0/1 and E1/2. 
35, 36

  From the Nernst equation, the relationships below can be 

derived. 

 

∆E = ∆Eº - {RT/nF}ln Kc 

 

At equilibrium ∆E = 0 and so 

 ∆Eº = {RT/nF}ln Kc 

 

Therefore 

Kc = exp(∆EF/RT) 

 

The argument runs that the more strongly delocalised the charge between the two 

sites M and M
+
, the more stable the intermediate oxidation state should be relative to 

the two homovalent forms.   In strongly coupled Class III systems the 

comproportionation constant Kc can be >10
13

, whereas in Class I weakly coupled 

systems Kc can be as small as 4, which is the statistical limit.   Whilst Kc has been 

used as a guide to the extent of electron delocalisation, technically no electronic 

structural information can be inferred from the value of Kc, as it is strictly a stability 

constant, 
37

 with; 

 

 Kc   =      [M-M
+
]
2
      . 

[M-M][M-M
2+

] 

 

 

Figure 5 Equilibria between [M-M
+
], and [M-M] and [M-M

2+
]. 
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Indeed, the thermodynamic stability of the mixed-valence state can be affected by 

many factors, including solvation, ion-pairing and different metal-ligand interactions 

(e.g. back-bonding) in the different formal oxidation states. 
37

   The situation 

becomes even more fraught when one considers the possibility of complexes 

containing redox non-innocent ligands. 

 

Thus, the determination of the exact nature of the mixed-valence systems, despite 

the Hush analysis of IVCT processes and many claims of the role electrochemical 

data can play in the determination of Robin-Day class, is not always simple.   In 

order to assess the electron transfer effects, a variety of spectroscopic techniques, on 

various timescales, have been used. 
38

   By way of recent examples Kubiak has used 

the (C≡O) band in a series of ligand bridged bis(ruthenium cluster) compounds, 

where upon the rate of electron-exchange between the two cluster redox sites was 

monitored as a function of the bridge structure, 
31, 39

 or solvation environment. 
40

   

Another example of a study into electron transfer effects has been carried out by 

Winter, where compounds with the RuCl(CO)(PR3)2 (R = Ph, Me or 
i
Pr) moieties, 

attached by a variety of carbon-rich bridges, have been investigated, using the 

(C≡O) band and the (C=O) band of the coligands, as probes of electron density 

changes at the metal and ligand sites respectively. 
41, 42

   The use of the (C≡C) and 

(B-H) bands as vibrational probes has also been investigated, by Low, with a 

selection of mono- and bi- metallic Ru(dppe)Cp* carborane (p-C2B8H8 and p-

C2B10H10) acetylides.   The mixed valence complexes of the bimetallic 

ethynylcarboranes exhibited spectroscopic properties consistent with the description 

of these species as valence-localised (Class II) mixed-valence compounds. 
43

   This 

point is addressed in greater detail in Chapters 3, 4 and 6. 

 

Density functional theory (DFT) offers an alternative orbital picture of the electronic 

structure and through time dependent DFT (TD-DFT) a prediction of the nature of 

the electronic absorptions at a said oxidation state can be gained.  This molecular 

orbital view of the electronic structure of mixed-valence complexes compliments 

and greatly advances the „two-state‟ description encompassed in Hush theory.  
44, 45

   

Quantum-chemical calculations either use approximations of individual electron 

wavefunctions or electron density methods to arrive at a description of the overall 
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molecular system, leading to ab initio and density-functional (DFT) techniques, 

respectively.    Wavefunction–based ab initio methods, which employ the Hartree 

Fock approximation and subsequent configuration interaction (CI) treatment, are 

computationally very demanding and dependent on the number of atoms on the 

molecule. 
45

 

 

Although density functional theory has its conceptual routes in the Thomas-Fermi 

model, 
46

 the theoretical background relies on the two Hohenberg-Kohn theorems 

(HK). 
47

   The two HK theorems demonstrate that the ground state properties of a 

many-electron system are uniquely determined by an electron density that depends 

on only three spatial coordinates.   The ability, through the use of functionals of 

electron density, to reduce the many-body problem of N electrons with 3N spatial 

coordinates to three spatial coordinates follows on from the two theorems. 
47

   The 

intractable many-body problem of interacting electrons in a static external potential, 

can be replaced with a tractable problem of non-interacting electrons moving in an 

effective potential, which includes external potentials and coulombic interactions 

between the electrons.  
48

   To simplify the problem, approximations are used, one 

such approximation is the local-density approximation (LDA), fitted to correlation 

energy for a uniform electron gas. 
49

 

 

One of the major problems with DFT is that the only exact functional for the 

exchange and correlation energies that is known is for the free electron gas. 
49

   To 

permit the calculation of physical properties approximations are needed, with one of 

the approximations being LDA, where the functional depends only on the density at 

the coordinate where the functional is evaluated, given by the relationship: 
50

 

 

 

 

The LDA functional can be modified to include the electron spin, to give the local 

spin-density approximation (LSDA): 
50
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However one area where pure DFT functionals fail concerns charge-transfer excited 

states where the electron is excited from a donor orbital to an acceptor orbital, which 

is localised at a different part of the molecule. 
45

   This is due to pure DFT 

functionals not properly describing the long range electron hole separation. 
45

   As of 

this there is an overestimation on the stabilisation of the acceptor orbital, hence 

predicted lower in energy.   With the inclusion of some HF character in the 

functional used, a better picture of the acceptor‟s energy can be determined, 

however with a trade-off with increased computational demand. 
45

 

  

Within this framework it is apparent that the wire-like properties of M-bridge-M 

systems depends critically on both the nature of the metal, the supporting ligands 

and the bridge, with the interaction between the M and bridge arguably dominating 

the electronic properties of the system.   Within the vast array of bridging ligands 

that have been proposed and investigated, those based on carbon-rich structures have 

attracted particular attention.   Homo- and hetero- bimetallic complexes of the 

simplest bridge,  –C≡C– have been studied, with a wide range of metal end groups 

such as ScCp*2, 
51

 Ti(PMe3)Cp2, 
52

 Ru(CO)2Cp 
53

 and Au(PR3) (R = Ph, Tol) 
54

 to 

name just a few.   The chain length of these bimetallic complexes has also been an 

area of extensive research, with the number of acetylenic –(C≡C)– repeat units being 

conceptually increased from one all the way up to twenty. 
12, 55, 56

   Bimetallic 

complexes where the carbon-rich bridge contains an odd-number of carbon atoms 

have also been investigated. 
57

   Related structures including polyacetylene, many of 

which have been studied by Jia (see Chapter 4), and phenylene ethynylene (see 

Chapter 3) have also been extensively studied. 

 

This thesis attempts to address some of the issues arising from the challenging 

concept of linking more than two metal centres through a common carbon-rich 

bridging ligand. 
58, 59

   The introduction of a third metal, the metal-bridge-metal 

interaction picture increases in complication, with the possibility of metalA-bridge-

metalB, metalA-bridge-metalC, and metalB-bridge-metalC interactions.   However, the 

problem can be simplified if all three metals are the same, in the same ligand 

coordination sphere and the same oxidation state (Figure 6). 
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Figure 6 Representation of metal-bridge-metal interactions in a tris metallic complex 

with a common bridge core. 

 

To be able to study and understand metal-bridge-metal interactions, it is required 

that first the metal-bridge interactions are understood.   The best way to study these 

metal-bridge interactions is to study the analogous mono-metal bridge complexes.   

There is therefore a requirement for a straightforward synthetic method to obtain the 

mono- and polymetallic complexes in a good yield and high purity.   The mono-

metal complexes will be devoid of any metal-bridge-metal‟ interactions.   Through 

comparison of the electrochemical and spectroscopic properties of the mono-

metallic and polymetallic complexes, it is possible to separate the metal-bridge and 

metal-bridge-metal interactions from one another.    

 

As metal-bridge-metal interactions in carbon rich complexes rely on the interaction 

between the metal centre and the bridge, the actual linkage between the metal centre 

and the bridge itself is important.   An alternative metal bridge linker to the ynyl 

fragment, is the enyl –CH=CH–, which can be in either cis or trans conformation 

(Figure 7). 
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Figure 7 Representations of mono-metallic bridge complexes with an; (left) ynyl 

linker, and (right) enyl linker (trans-). 

 

As stated above, this thesis sets out to explore the challenges associated with the 

preparation and study of bridge-mediated charge transfer in systems containing more 

than two metal centres linked through a core bridging ligand (Figure 6).   In the 

Chapters that follow, the synthesis of mono- and polynuclear metal complexes are 

described, together with the concerted application of electrochemical, spectroscopic, 

spectroelectrochemical and computational methods to assess the electronic structure 

of these compounds in their various formal redox states.   Each Chapter carries its 

own Introductory Section that more precisely defines the background to the 

particular area of study described. 
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Chapter 2 : trans-RuCl(C≡CR)(dppe)2 

 

2.1 Introduction 

 

The chemistry of transition metal complexes trans-RuCl(C≡CR)(dppe)2 and trans-

Ru(C≡CR)2(dppe)2 is very well established, 
60-69

 with a considerable body of recent 

research demonstrating the utility of these moieties in the construction of 

multimetallic complexes, 
70-74

 and optical materials, 
75-77

 including those that exhibit 

a pH or redox-switchable NLO (Non-Linear Optical) response. 
78-84

   Other studies 

have focused on colourmetric 
85

 and fluorescent 
86

 sensing behaviour of suitably 

functionalised derivatives whilst the “wire-like” behaviour that arises from extensive 

d- mixing along the Ru-C≡C fragment, 
43, 87-95

 and other characteristics including 

reversible redox properties, make these compounds potentially useful molecular 

electronic components. 
65, 90-92, 96-99

 

 

Organometallic complexes, particularly acetylide based systems, have been widely 

investigated as second- and third order NLO materials, in which the donor properties 

of the metal fragment can be tuned through both changes in molecular structure (i.e. 

by altering the nature of the supporting ligands) or redox state, or through reversible 

chemical reactions (e.g. protonation leading to acetylide / vinylidene equilibria).   

The acetylide complexes trans-RuCl(C≡CR)(dppe)2 have proven to be particularly 

useful in this regard, offering: a site of protonation (the acetylide C carbon); 

excellent redox stability in both the (formal) Ru(II) and Ru(III) states; 
†
 and the 

ability to construct bi- and polymetallic complexes through functionalisation of the 

acetylide ligand or the Ru-Cl moiety. 

 

By way of example, the Samoc, Humphrey and Lapinte groups have collaborated to 

explore methods of switching cubic NLO properties through more than two states 
79, 

100
 through redox control in the bimetallic complex [{Cp*(dppe)Fe}(-C≡C-1,4-

C4H4C≡C){Ru(dppe)2Cl}] (1), which can be switched through the three (formal) 

Fe(II)/Ru(II), Fe(III)/Ru(II) and Fe(III)/Ru(III) states (Figure 8). 
93
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Figure 8 Bimetallic complex 1. 

 

All three states, 1 and the “mixed valence” [1]
+
 and [1]

2+
,
 
 are reversibly accessible 

under electrochemical control.   Cubic NLO measurements at 790 nm show that 

progression through the redox series 1 to [1]
+
 to [1]

2+
, caused a dramatic change in 

the complex‟s NLO properties.  The neutral form 1 of the complex exhibited 

negligible nonlinear absorption, the mixed-valence monocation form [1]
+
 was found 

to be an efficient two-photon absorber, and the dication [1]
2+

 a saturable absorber.  

Effectively 1 represents a complex in which its cubic NLO properties can be 

switched, by redox processes, through nonlinearity “off” to two forms of 

nonlinearity “on”. 

 

The facile replacement of the chloride ligand in complexes trans-

RuCl(C≡CR)(dppe)2 with a second alkynyl ligand either directly, from related 

vinylidenes or via trans-[Ru(NH3)(C≡CR)(dppe)2]PF6, is well documented 
60, 61, 63, 

76, 92, 101-103
  leading to the preparation of monometallic, oligomeric, polymeric and 

dendritic compounds featuring trans-Ru(C≡CR)2(dppe)2 fragments. 
70, 72, 98, 104-111

   

One such study by Humphrey carried out in collaboration with the Low group has 

examined the third-order nonlinear optical properties of triphenylamine based 

dendrimers. 
112

 

 

The “wire-like” properties of a series of linear complexes based on the Ru(dppe)2 

fragment have been investigated by Fiedler, 
91

 using a series of phenylene 

ethynylene based bridging ligands, trans-Ru(dppe)2 “connectors” and trans-

RuCl(dppe)2 end-caps.   By comparing a selection of bi- and tri-metallic complexes 

based on purely organic bridges or those containing metal-fragments  (Figure 9), 

different factors influencing the efficacy of intramolecular electron transfer (ET), 

such as length of bridge, metal terminus and incorporated metal linker could be 

investigated (Figure 10). 



 

16 

 

 

Figure 9 Schematic representation of the complexes used by Fiedler. 
91

 

 

 

Figure 10 Some of the complexes prepared and studied in the Fiedler investigation 

of “wire-like” phenylene ethynylene bridging ligands. 
91

   

 

In the Fielder study the comproportionation constant, Kc 
‡
, was used as a measure of 

the extent of interaction between the remote metal sites. On this basis it was 

concluded that: elongation of the carbon chain past two phenylethynyl units ET 

vanished; and the introduction of a metal linker (whether that be Ru(dppe)2, or 

Pd(PBu3)2) was conducive to electron transfer. 

 

A more detailed study of the bonding and electronic nature of trans-

[RuCl(C≡CC6H4X)(dppe)2]BF4 radical compounds has been reported recently. 
113

  

Along with ESR work and spectroscopic and electrochemical spectroscopic studies, 

extensive DFT calculations have been performed on the radical models trans-

[RuCl(C≡CC6H4X)(dHpe)2]
+
 as well as the corresponding neutral species. 

113
  

Comparison of the experimental results with computational calculations on [Ru 

(C≡CC6H4X)(dHpe)Cp*]
n+ 

(n = 0, 1) model compounds 
113

 allowed a better 

understanding of the similarities and differences exhibited by these isoelectronic and 

isolobal organometallic fragments.   The DFT calculations found two 

conformational minima for both the neutral and cation model systems: one where 

the aryl plane and the ethane bridges of the dHpe ligands are parallel (||); and a 

second where the plane of the functional aryl ring bisected the dHpe ligands () 
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(Figure 11). 
113

   The same conformers were found for the corresponding 

[Ru(C≡CC6H4X)(dHpe)Cp*]
n+ 

(n = 0, 1) model compounds. 
113

   The (||) 

configuration for the trans-[RuCl(C≡CC6H4X)(dHpe)2]
+
 was found to be the lowest 

of the two minima, which is consistent with X-ray studies of compounds of the form 

trans-[RuCl(C≡CC6H4X)(dppe)2]. 
113

 

 

 

Figure 11 Schematic representations of the parallel and perpendicular arrangement 

of the aryl ring in RuCl(C≡CC6H4X)(dppe)2 and Ru(C≡CC6H4X)(dppe)Cp*. 

 

Molecular orbital calculations on trans-[RuCl(C≡CC6H4X)(dppe)2] show that the 

HOMO and HOMO-1 are mainly metal and acetylide in character, whilst the LUMO 

is Ru-P antibonding. The HOMO-LUMO gap slightly decreases in energy going 

from electron withdrawing to electron donating substituents. 
113

   Upon oxidation to 

trans-[RuCl(C≡CC6H4X)(dHpe)2]
+
 the most stable conformer is found to be one 

where the plane of the aryl ring is located perpendicular to the dHpe ligands.   Spin 

densities calculations indicate that more of the spin density is present on the 

arylacetylide than on the metal group. 
113
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Scheme 1 The preparation of trans-RuCl(C≡CR)(dppe)2 4 from cis-RuCl2(dppe)2 

cis-2.  

 

Indeed all of the interesting physical phenomena associated with acetylide 

complexes of the Ru(dppe)2 moiety are underpinned at the most elementary level by 

the extent of mixing of the metal d and alkynyl ligand -orbitals.   As part of a wider 

study of the electronic structure of metal acetylide complexes, 
114-118

 particularly 

those of ruthenium complexes that underpin the results in this thesis, ready access to 

a series of complexes trans-RuCl(C≡CR)(dppe)2 was required.   Complexes of the 

type trans-RuCl(C≡CR)(dppe)2 are most often prepared from cis-RuCl2(dppe)2 (cis-

2) using the method first reported by Dixneuf and colleagues (Scheme 1). 
60

   Initial 

reaction between cis-2 and NaPF6 or similar salt in dichloromethane affords the five-

coordinate species [RuCl(dppe)2][PF6] ([3][PF6]), which in turn reacts with terminal 

alkynes HC≡CR to give the mono-chloro, mono-vinylidene species trans-

[RuCl{C=C(H)R}(dppe)2]PF6.   Subsequent deprotonation of the vinylidene affords 

the corresponding neutral acetylide trans-RuCl(C≡CR)(dppe)2 4 which can be 

isolated, or, in the presence of excess terminal alkyne, triethylamine and NaPF6, 

undergo further reaction to give the trans-bis(acetylide) complexes trans-

Ru(C≡CR)2(dppe)2 (5).  

 

Conversion of the thermodynamically more stable isomer trans-2 to acetylide 

complexes trans-RuCl(C≡CR)(dppe)2 has been achieved following reaction of 

trans-2 with trialkylstannyl alkynes, sometimes in the presence of a CuI catalyst. 
64, 

119
   Prolonged (5 – 7 day) reaction of the trans-2 with terminal alkynes in the 
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presence of NaPF6 followed by deprotonation of the resulting vinylidene has also 

been shown to afford monoacetylide complexes trans-RuCl(C≡CR)(dppe)2, 
120

 

however the conversion of trans-2 to the active 16-electron species [RuCl(dppe)2]
+
 

[3]
+
 under these conditions is rather slow. 

69, 121
  

 

The use of isolated [RuCl(dppe)2]
+
 ([3]

+
) salts as an entry to acetylide complexes 

trans-RuCl(C≡CR)(dppe)2 and related compounds has recently begun to attract 

attention. 
71, 73, 86, 92, 93, 121, 122

   This Chapter details a convenient preparation of 

acetylide complexes 4 from trans-2 that takes advantage of the ready abstraction of a 

chloride ligand from trans-2 by AgOTf in dichloromethane to give the key reagent 

[3]OTf.   A facile synthesis of cis-2 from [3]OTf is also described for completeness.   

The molecular structures of [3]OTf and three aryl acetylide complexes featuring 

representative electron donating (OMe, Me) and withdrawing (CO2Me) groups have 

also been determined.   Details of the electronic structure of trans-

RuCl(C≡CR)(dppe)2 complexes are given in Chapter 3. 

 

 

2.2 Results and Discussion 

 

2.2.1 Syntheses 

 

Many literature syntheses of complexes trans-RuCl(C≡CR)(dppe)2 (4) utilise the 

reaction of cis-2 with the appropriate terminal alkyne HC≡CR, a salt (typically 

NaPF6) and a base (Scheme 1).   The key reagent cis-2 is often cited as being 

prepared by the method originally described by Chaudret 
123

 for the preparation of 

cis-RuCl2(dppm)2.   However, attempts to react RuCl2(dmso)4 
124

 with two 

equivalents of the bis(phosphine) in toluene at 80 C (the Chaudret conditions) 

produced only pure trans-2. 
69

   At ambient temperature in dichloromethane under 

normal laboratory lighting conditions, mixtures of cis-2 and trans-2 are obtained in 

ca. 3:1 ratio (estimated here from integration of 
31

P NMR resonances) over the 

course of approximately 1 h. 
64, 69, 97, 120, 125, 126

   By lowering the temperature to 0 C, 
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the ratio of cis-2 : trans-2 can be increased as high as 10 : 1, although the reaction 

becomes very slow, taking well over 24 h for complete conversion.   Careful 

fractional crystallisation, best carried out in the dark (see below), results in 

separation of cis-2 and trans-2 from these mixtures. 

 

In seeking to devise an alternative route to complexes 4, the details of the reactions 

summarised in Scheme 1 were considered.   Conversion of cis-2 to the active five-

coordinate species [RuCl(dppe)2]
+
 ([3]

+
) takes place readily upon reaction with 

alkali metal salts including NaPF6 
62

 and KPF6, 
70

 and salts of [3]
+
 can be isolated 

from reaction of cis-2 with NaPF6, 
101, 127

 NaOTf or NaBPh4. 
128

   The conversion of 

trans-2 to salts of [3]
+
 has been implicated under similar conditions, although the 

reaction is considerably slower. 
69, 127

   In contrast, far more facile conversion of 

trans-2 to [3]
+
 is achieved by halide abstraction with Ag(I) salts. 

129, 130
   Treatment 

of trans-2 with two equivalents of AgOTf (dichloroethane, 50 C) 
129

 or AgBF4 

(THF, room temperature or dichloromethane) 
130

 have been reported to yield [3]OTf 

or [3]BF4, respectively.   The complex [3]OTf has also been isolated from reaction 

of mixtures of cis- and trans-2 with the rather carcinogenic reagent MeOTf. 
131

  

 

With these precedents in mind, a simple, high-yielding, step-wise sequence of 

reactions can be constructed that results in conversion of RuCl3.nH2O to the 

acetylide complexes 4 in good overall yield, via the readily prepared complexes 

trans-2 and [3]OTf (Scheme 2).   The syntheses of trans-2 
132

 from RuCl3.nH2O is 

most conveniently achieved by sequential reaction with PPh3 in methanol to give 

RuCl2(PPh3)3, 
133, 134

 followed by ligand exchange with dppe. 
135, 136

   Treatment of 

trans-2 with 1 equiv. AgOTf in CH2Cl2 resulted in immediate colour change from 

yellow to red, with the precipitation of AgCl.   Complete reaction was achieved 

within 1 h at room temperature.   The product can be isolated as an air-stable solid 

by simple filtration and precipitation. 

 



 

21 

 

 

Scheme 2 The preparation of trans-RuCl(C≡CR)(dppe)2 from trans-RuCl2(dppe)2. 

 

The five-coordinate complex [3]OTf reacts rapidly with 1-alkynes in small volumes 

of CH2Cl2 at room temperature to give the corresponding vinylidene complexes.   

Simple washing of the crude vinylidene salts with further aliquots of hexane serves 

to remove any excess 1-alkyne, which is essential if formation of the bis(acetylide) 

complex is to be prevented during the next step.   Formation and isolation of the 

desired acetylide complexes c.f. 4 is most conveniently performed by addition of a 

solution of KO
t
Bu in methanol to a concentrated dichloromethane solution of the 

vinylidene.   Under these conditions the acetylide precipitates essentially free of 

triflate salt by-products, and can be collected by filtration.   The product obtained in 

this fashion is of high purity, with recrystallisation affording single crystals suitable 

for X-ray diffraction.  
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This reaction sequence was successfully applied in the preparation of a range of 

complexes trans-RuCl(C≡CR)(dppe)2 [R = Ph (6), C6H4OMe-4 (7), C6H4Me-4 (8), 

C6H4C5H11-4 (9), C6H4CO2Me-4 (10), C6H4NO2-4 (11)] which were isolated in ca. 

70-80% yield in each case.   However, attempts to prepare trans-

RuCl(C≡CC6H4NH2-4)(dppe)2 were hampered by the basicity of the aniline moiety, 

which deprotonated the intermediate vinylidene, leading to formation of the 

bis(acetylide) trans-Ru(C≡CC6H4NH2-4)2(dppe)2.   Reactions with 4-

ethynylbenzonitrile were complicated by competitive coordination and chloride 

substitution reactions involving the nitrile moiety.  

 

The acetylide complexes were characterised by the usual spectroscopic (IR, 
1
H, 

13
C, 

31
P NMR, ES-MS) methods.   The acetylide (C≡C) band was observed between 

2050 - 2070 cm
-1

, the lowest wavenumber bands being associated with 10 and 11.   

The electrospray mass spectra (ES-MS) featured fragment ions formed from loss of 

chloride, the molecular ion not being observed.   The observation of a singlet near  

50 ppm, in the 
31

P NMR spectra, confirmed the trans geometry of the complexes, 

whilst the 
1
H (Table 1) and 

13
C (Table 2) spectra featured characteristic resonances 

arising from both the dppe and aryl acetylide ligands.   The acetylide Cα resonance, 

which was observed as a quintet (
2
JCP ca. 15 Hz), proved to be sensitive to the 

electronic nature of the remote aryl substituent.   The 
1
H and 

13
C NMR spectra could 

be fully assigned (see Figure 12 for NMR labelling scheme) through correlation 

spectroscopy, although the couplings of the methylene protons from the dppe 

ligands were not fully resolved. 

 

 

Figure 12 NMR labelling scheme used in this work. 
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Table 1 
1
H NMR data from complexes 6 – 11. 

 7 

R = OMe 

9 

R = C5H11 

8 

R = Me 

6 

R = H 

10 

R = CO2Me 

11 

R = NO2 

Ho/o’ 7.57, 7.26 

(2 × d, J = 

7 Hz) 

7.62, 7.20 (2 

× d, 

unresolved) 

7.58, 7.23 

(2 × d, J = 

7 Hz) 

7.58, 7.25 

(2 × d, J = 

7 Hz) 

7.42, 7.33 (2 

× d, J = 7 

Hz) 

7.36, 7.34 

(AB,  J = 

8 Hz) 

Hm/m’ 6.99, 6.97 

(AB, J = 7 

Hz) 

6.94, 7.05 

(unresolved) 

6.99, 6.97 

(AB)  J = 7 

Hz 

6.99, 6.97 

(dd)  J = 7 

Hz 

7.01, 6.94 

(dd)  J = 7 

Hz 

7.03, 6.95 

(dd)  J = 8 

Hz 

Hp/p’ 7.19 

(t, J = 7 

Hz) 

7.20 

(unresolved) 

7.18 

(t, J = 7 

Hz) 

7.18 

(t, J = 7 

Hz) 

7.20, 7.18 

(2 × t, J = 7 

Hz) 

7.21, 7.20 

(2 × t,  J = 

8 Hz) 

CH2CH2 2.65 (m) 2.66 (m) 2.65 (m) 2.68 (m) 2.69 (m) 2.69 (m) 

H2 6.64 

(AB, J = 8 

Hz) 

6.65  

(d, J = 8 Hz) 

6.62  

(d, J = 8 

Hz) 

6.70 

(d, J = 8 

Hz) 

6.57 

(d, J = 8 Hz) 

6.44 

(d, J = 8 

Hz) 

H3 6.70  

(AB, J = 8 

Hz) 

6.92 

(d, J = 8 Hz) 

6.93 

(d, J = 8 

Hz) 

7.11 

(d, J = 8 

Hz) 

7.77 

(d, J = 8 Hz) 

7.94 

(d, J = 8 

Hz) 

R 3.80 0.92 (m), 

1.35 (m), 

1.61(m), 

2.54(m) 

2.30 7.11 

(dd) J = 

8Hz 

3.89  

 

 - 
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Table 2 
13

C NMR spectroscopic data from complexes 6 – 11. 

 7 

R = OMe 

9 

R = C5H11 

8 

R = Me 

6 

R = H 

10 

R = CO2Me 

11 

R = NO2 

Cα 119.2 121.2 121.5 124.1 136.7 148.4 

Cβ 112.7 113.7 113.6 113.9 114.9 116.8 

C1 123.5 127.8 127.8 130.6 135.1 137.2 

C2 131.0 129.9 130.0 130.2 129.9 130.0 

C3 113.1 127.6 128.4 127.6 129.1 123.5 

C4 155.8 137.5 132.4 123.0 123.6 142.4 

Ci/i’ 136.9 

135.8 

137.0 

135.7 

137.0 

135.8 

136.9 

135.8 

136.2 

135.6 

135.9 

135.5 

Co/o’ 134.5 134.6 

134.5 

134.6 134.6 

134.6 

134.5 

134.2 

134.5 

134.1 

Cm/m’ 127.3 

127.0 

127.3 

127.0 

127.4 

127.1 

127.4 

127.1 

127.4 

127.1 

127.5 

127.3 

Cp/p’ 129.0 

128.8 

128.9 

128.8 

129.0 

128.9 

129.1 

129.0 

129.0 129.2 

CH2CH2 30.9 30.9 31.0 30.8 30.7 30.6 

R 55.3 z 14.3 

y 22.8 

x 31.3 

w 31.9 

v 35.9 

21.5 - CO 167.7 

Me 52.0 

 

 

The formation of cis-2 from the reaction of [3]BF4 with LiCl has been noted 

previously, although experimental conditions and isomeric purity were not reported. 

127
   The reaction of [3]OTf with LiCl in methanol at ambient temperature results in 

the formation of a yellow precipitate within a few minutes, which was collected by 

filtration and identified by 
31

P and 
1
H NMR spectroscopy to be pure cis-2 (ca. 84% 

isolated yield).   Whilst solutions of cis-2 are stable in the dark, cis-2 converts to 

trans-2 under both normal laboratory and natural lighting.   The conversion of cis-2 

to equilibrium mixtures of cis-2 and trans-2 was followed by 
31

P NMR spectroscopy 

in both CDCl3 (1:1, 24 hours) and dichloromethane (3:1, 48 hours).   This facile 

conversion of cis-2 to trans-2 in solution at room temperature under ambient 

lighting conditions must be taken into account when trying to separate mixtures of 

cis-2 and trans-2 by fractional crystallisation.  



 

25 

 

2.2.2 Molecular Structure Analyses 

 

Single crystals of [3]OTf, 7, 8 (as both 0.5THF and 2CH2Cl2 solvates) and 10 

suitable for X-ray diffraction were obtained, those of 6, 
64

 11, 
120

 and the related 

complexes trans-RuCl(C≡CC6H3-Me-2-NO2-4)(dppe)2, 
120

 trans-

RuCl(C≡CC6H4CHO-4)(dppe)2, 
83

 trans-RuCl(C≡CC6H4F-4)(dppe)2, 
76

 trans-

RuCl(C≡CC6H4F-3)(dppe)2 
93

 and trans-RuCl(C≡CC6H4CH=CHC6H4NO2-4)(dppe)2 

83
 having been reported earlier.   Crystallographic data and important bond lengths 

and angles are summarized in Table 3 and Table 4, with plots of [3]
+
, 7, 8 and 10 

illustrated in Figure 15, Figure 16, Figure 17 and Figure 18, respectively.   There are 

no significant differences in the structures of the two different solvates of 8. 

 

The structures of salts containing five-coordinate ruthenium(II) cations of general 

form [RuCl(PP)2]X (where PP = chelating diphosphine ligand) have been reported 

on several previous occasions [PP = dppe, X = [PF6]
–
 , 

127
 [BF4]

–
 , 

130
 [C2B9H12]

–
 ; 

137
  PP = dppp, X = [PF6]

–
 ; 

138
 PP = dcpe, X = [PF6]

–
 ; 

139
 PP = NH(CH3)(PPh2)2, X 

= [SbF6]
–
 ; 

140
 PP = bnpe, X = [PF2O2]

–
 . 

141
   The cation in [3]OTf is essentially 

identical to that in [3]PF6 and [3]BF4 with a similar degree of “Y”-shaped distortion 

of the equatorial plane from that in an idealised trigonal bipyramid.   The two dppe 

ligands span axial and equatorial positions, with the equatorial plane defined by 

Cl(1), P(2) and P(4).   Around the equatorial plane, the donor atoms define angles 

Cl(1)-Ru(1)-P(2, 4) 134.49(2), 130.35(2)  and the rather small angle P(2)-Ru(1)-

P(4) 95.16  to relieve degeneracy in the “e” type orbitals associated with a d
6
 

trigonal bipyramid.   Theoretical studies on d
6
-ML5 complexes, have shown that 

there are many factors that determine the spatial arrangement of the ligands around 

the metal centre, one of the factors affecting the structure is the spin of the centre, 

with singlet states favouring square pyramidal structures 
142

 and triplet states 

favouring trigonal bi-pyramidal structures. 
143

   The electronic factors that underpin 

this distortion have been investigated by Rachidi and Eisenstein. 
144

   By varying the 

degree of “Y”-shaped distortion d
6
-ML5 16-electron complexes can span from 

square pyramid (L2-M-L3 α = 180, A), through to square planar (α = 30, C) via a 

distorted trigonal bipyramidal structure (α = 80, B) (Figure 13).   
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Figure 13 A schematic representation of the “Y” distortions in 5-coordinate 

complexes.   L4 and L5, in the z-axis, have been removed for clarity.  

 

The nature of the occupied d-orbitals has a correspondence to the total energy of the 

complex.   The changing of the angle α does not affect the energy of the non-

bonding e” set (dxz, dyz) as L2 and L3 are in the nodal planes of both orbitals, 

however structural distortion does strongly affect the energy of the e‟ (dx2-y2, dxy) set.   

Figure 14 shows the effect of varying α on the bonding interaction between dx2-y2 

and dxy and L2 and L3. 

 

 

Figure 14 L2 and L3 bonding interaction with a) dx2-y2 and b) dxy. 

 

On increasing α from 120  to 180 , the interaction between the dx2-y2 and L2 and L3 

increases the energy of this orbital, whereas dxy becomes fully non-bonding at 180 , 

and hence dxy is stabilised.   The opposite effect occurs as α shifts from 120  to 30 .   

Within this framework two minima can be identified, one at α = 180  (square based 

pyramid), and one at α = 80  (distorted trigonal bi-pyramid).   Interconversion 

between the two minima via the TBP is symmetry forbidden due to the level 

crossing between occupied and empty orbitals.    

 

The ζ and π effects of the L1 ligand can also affect the degree of “Y”-shaped 

distortion.   Three of the four low-lying metal d-orbitals (dxz, dyz, dxy) are unaffected 

by the effects of the ζ-properties of L1, as L1 lies in one of their nodal planes.   The 
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only orbital to be affected by L1 is dx2-y2.   This orbital is metal-ligand antibonding in 

character, so with a strong ζ-donor at L1, the energy of the orbital goes up, 

independent of α.   The opposite trend is seen for L1 = ζ-acceptor, where the dx2-y2 

orbital is lowered in energy.   So in summary for the effects of ζ-donor/acceptor 

properties;  

 

  Strong ζ-donor L1    Strong ζ-acceptor L1 

    favours opening       favours closing 

 

All of the 16e
-
 d

6
-ML5 complexes mentioned in this Chapter have Cl

-
 in the L1 

position, which in addition to being a strong ζ-acceptor is also a double-faced π-

donor ligand.   The dz2 and dyz orbitals do not mix with any of the p-orbitals of L1.    

The dxz orbital is raised in energy by the ζ-interaction with L1.   The dx2-y2 orbital 

does not mix with any of the L1 p-orbitals.   However dxy is raised in energy by 

interaction with py on L1, consequently it is energetically favourable to fill dx2-y2 

before dxy, which favours the trigonal bipyramid structure with a high degree of 

“Y”-shape distortion. 
144, 145

 

 

The cation of [3]OTf is more sterically crowded than other acetylide complexes 

described in this Chapter and as a result the planes of axial Ph-rings of the dppe 

ligands are almost parallel to each other.    
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Figure 15 Plot of the cation in [RuCl(dppe)2]OTf ([3]OTf). In this and all 

subsequent plots, hydrogen atoms have been omitted for clarity, with thermal 

ellipsoids at 50%. 

 

The structures of the acetylide complexes 7, 8 and 10 illustrate the usual octahedral 

geometry around Ru, and linear Cl-Ru-C(1)-C(2)-C(3) chain.   The C(1)-C(2) 

acetylide bond lengths fall in the range 1.188(5) – 1.202(5) Å, whilst the Ru-P bond 

lengths are insensitive to the electron donating (OMe) or withdrawing (CO2Me) 

properties of the acetylide substituent.   The Ru-C(1) [2.018(4) Å] and Ru-Cl 

[2.5118(9) Å] bond lengths in 7 are at the longer end of the range of values typically 

offered by complexes of general type 4 (Table 3), possibly due to greater Cl 3p / Ru 

3d / C≡C  filled orbital-filled orbital repulsive interactions along the linear back-

bone. 
146, 147
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Figure 16 Plot of a molecule of trans-RuCl(C≡CC6H4OMe-4)(dppe)2 7. 

 

 

Figure 17 Plot of a molecule of trans-RuCl(C≡CC6H4Me-4)(dppe)2 8. 
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Figure 18 Plot of a molecule of trans-RuCl(C≡CC6H4CO2Me-4)(dppe)2 10. 

 

As usual, in the absence of strong hydrogen bonds the packing of complexes in 

crystals is determined by a fine balance between a number of attractive 

intermolecular weak interactions of various nature (C-H…O, Cl, π; Cl…Cl, etc.).   

The presence and the nature of solvent molecules also significantly affects the 

crystal packing.   For example, the metal complexes in isostructural crystals 7 and 

8.CH2Cl2 form double layers perpendicular to the b-axis and disordered solvent 

molecules are located in channels between the layers, while ordered 

dichloromethane molecules are "trapped" in the voids of these layers.   There are a 

number of weak C-H…π interactions in the structures.   Hydrogen atoms of both 

methylene groups of dichloromethane molecules and aromatic rings take part in 

these interactions, while the methylene groups of the dppe ligands do not show any 

shortened contacts.  

 

In the absence of solvent dichloromethane molecules in structure of 8.THF the 

character of packing changes and complexes form chains along c-axis of the crystal.   

In this case the methylene groups of dppe ligands became stereochemically active 

and link the adjacent complexes by C-H…Cl contacts.   These groups are also active 
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in the structure of 10 where they are involved in C-H…π interactions, while Cl 

atoms are linked with an aromatic hydrogen atom.   Finally, the absence of stacking 

interactions between aromatic rings in these structures should be noted. 

 

Table 3 Selected bond lengths (Å) and angles () for [3]OTf and complexes trans-

RuCl(C≡CC6H4R-4)(dppe)2 (6, 7, 8, 10 and 11).   

 
[3]OTf 

 

R = H  

6.CH2Cl2 
64  

R = OMe 

7.2CH2Cl2  

R = Me  

8.0.5THF  

R = Me  

8.2CH2Cl2 

R = CO2Me 

 10.THF 

R = NO2  

11.CH2Cl2 
122

 

Ru-Cl 2.4061(5) 2.4786(13) 2.5118(9) 2.4907(12) 2.5096(8) 2.4806(13) 2.500(1) 

Ru-P(1) 2.3786(5) 2.3680(14) 2.3526(9) 2.3792(12) 2.3539(8) 2.3753(14) 2.360(2) 

Ru-P(2) 2.2449(5) 2.3524(14) 2.3824(9) 2.3642(11) 2.3827(8) 2.3552(14) 2.354(1) 

Ru-P(3) 2.3639(5) 2.3917(14) 2.3610(9) 2.3433(11) 2.3627(8) 2.3768(13) 2.366(2) 

Ru-P(4) 2.2434(5) 2.3734(14) 2.3812(9) 2.3549(11) 2.3781(8) 2.3679(14) 2.386(1) 

Ru-C(1)  2.007(5) 2.018(4) 2.009(5) 2.007(4) 1.998(5) 1.986(5) 

C(1)-C(2)  1.198(7) 1.188(5) 1.196(6) 1.202(5) 1.195(8) 1.206(7) 

C(2)-C(3)  1.445(8) 1.437(5) 1.447(6) 1.432(5) 1.431(7) 1.442(7) 

Cl-Ru-

C(1) 
 175.72(14) 179.25(9) 176.41(12) 179.22(8) 178.54(15) 176.20(13) 

Ru-C(1)-

C(2) 
 174.1(5) 177.0(3) 175.6(4) 176.8(3) 178.4(5) 175.3(4) 

C(1)-

C(2)-C(3) 
 178.3 175.1(4) 175.5(5) 176.8(4) 171.1(6) 174.4(5) 

P(1)-Ru-

P(2) 
79.39(2) 82.43(14) 81.83(3) 82.29(4) 81.97(3) 82.71(5) 83.23(6) 

P(2)-Ru-

P(3) 
97.77(2) 97.78(5) 98.09(3) 98.38(4) 98.28(3) 96.43(5) 95.52(6) 

P(3)-Ru-

P(4) 
80.02(2) 80.93(5) 81.57(3) 80.73(4) 81.54(3) 81.25(5) 82.58(6) 

P(1)-Ru-

P(4) 
97.35(2) 98.48(5) 98.48(3) 98.54(4) 98.18(3) 99.62(5) 98.66(6) 
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Table 4 Crystal data and refinement details. 

Complex [3]OTf 7 8 8 10 

Formula 
C53H48OF3SCl

P4Ru.2CHCl3 

C61H55OClP4

Ru. 2CH2Cl2 

C61H55ClP4Ru. 

0.5C4H8O 

C61H55ClP4Ru. 

2CH2Cl2 

C62H55O2ClP4

Ru.C4H8O 

Molecular weight 

(g mol–1) 
1321.11 1233.29 1084.50 1218.30 1128.51 

Crystal system Triclinic Triclinic Orthorhombic Triclinic Triclinic 

Space group P



1 P



1 Pna21 P



1 P



1 

a (Å) 14.2259(2) 9.2242(3) 25.7427(6) 9.2375(5) 12.9760(4) 

b (Å) 17.4740(3) 12.8045(4) 15.5668(4) 12.8488(7) 17.1779(5) 

c (Å) 12.3513(3) 23.8399(7) 13.5683(3) 23.6105(12) 24.6946(7) 

 () 72.08(1) 92.88(1) 90 92.97(1) 97.46(1) 

 () 75.17(1) 94.63(1) 90 93.88(1) 90.47(1) 

 () 79.80(1) 99.13(1) 90 99.18(1) 104.20(1) 

V (Å3) 2807.86(9) 2765.35(15) 5437.2(2) 2754.5(3) 5286.6(3) 

c (g cm–3) 1.563 1.481 1.325 1.469 1.418 

Z 2 2 4 2 4 

2max () 60 58 56 58 56 

 (Mo-K) (mm–1) 0.817 0.684 0.496 0.685 0.515 

Crystal size (mm) 
0.20  0.18  

0.14 

0.28  0.08  

0.02 

0.26  0.10  

0.06 

0.20  0.20  

0.06 

0.20  0.18  

0.07 

NTot 41337 34263 55975 26206 50880 

N (Rint) 
16339 

(0.0263) 

14655 

(0.0662) 

12966 

(0.0765) 

14447 

(0.0332) 

25401 

(0.0412) 

R1 0.0324 0.0481 0.0484 0.0528 0.0891 

wR2  0.0868 0.1265 0.1289 0.1640 0.2964 

Goodness-of-fit on 

F2 
1.001 0.988 1.030 1.072 1.113 
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2.2.3 Cyclic Voltammetry 

 

The cyclic voltammograms of the ruthenium bis-dppe complexes 6 – 11, in 

dichloromethane, each exhibit two anodic processes, the first being fully reversible, 

the potential of which reflect the variation in the electronic properties of the aryl 

substituent (Table 5).   The nitro-substituted derivative 11 also contains a partially 

chemically reversible reduction with an anodic peak potential Epx –1.13 V (vs 

Fc/Fc
+
), most likely localised on the nitroaromatic portion of the molecule.   The 

sensitivity of the redox response to the nature of the remote substituent and the 

chemical reversibility of the first redox couple is consistent with the aryl acetylide 

character of the HOMO in trans-RuCl(C≡CC6H4R)(dppe)2 complexes.   This point 

is addressed in greater detail in Chapter 3. 

 

Table 5 Electrochemical data 
a
 from trans-RuCl(C≡CC6H4R-4)(dppe)2 (6 – 11). 

R E1/V E2/V 

OMe (7) –0.10 +0.69b 

C5H11 (9) –0.04 +0.83 b 

Me (8) –0.03 +0.85 b 

H (6) +0.01 +0.89 b 

CO2Me (10) +0.10 +0.98 b 

NO2 (11) +0.20 +1.07 b 

a E1/2 vs Fc/Fc+ (CH2Cl2, 0.1 M NBu4BF4, Pt dot working electrode). Data are reported 

against an internal Fc*/Fc*+ standard. Under these conditions Fc*/Fc*+ = –0.53 V vs Fc/Fc+. 
b Irreversible, anodic peak potential Epa reported. 

 

 

2.3 Conclusions 

 

Here a simple reaction protocol has been described that allows the preparation of 

acetylide complexes trans-RuCl(C≡CR)(dppe)2 4 from the five coordinate complex 

[RuCl(dppe)2]OTf ([3]OTf), which is obtained in three high yielding steps from 
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RuCl3.nH2O.   The use of [3]OTf as an entry point to mono-acetylide complexes 4 is 

more convenient than the long-standing methods based on cis-RuCl2(dppe)2.   

 

 

2.4 Experimental Details 

 

2.4.1 General Condition 

 

All reactions were carried out under an atmosphere of nitrogen using standard 

Schlenk techniques as a matter of routine, although no special precautions were 

taken to exclude air or moisture during work-up.   Dichloromethane was purified 

and dried using an Innovative Technology SPS-400, and degassed before use.   

Diethyl ether, hexane and methanol were the best available commercial grade, and 

used without further purification.   Reagents were purchased and used as received, 

with modifications to the literature procedures being used to prepare RuCl2(PPh3)3, 

134
 trans-RuCl2(dppe)2, 

135
 and [RuCl(dppe)2]OTf 

129
  as detailed below.  

 

NMR spectra were recorded on a Bruker Avance (
1
H 400.13 MHz, 

13
C 100.61 MHz, 

31
P 161.98 MHz) spectrometer from CDCl3 solutions and referenced against solvent 

resonances (
1
H, 

13
C) or external H3PO4 (

31
P).   IR spectra (CH2Cl2) were recorded 

using a Nicolet Avatar spectrometer from cells fitted with CaF2 windows.   

Electrospray ionisation mass spectra were recorded using Thermo Quest Finnigan 

Trace MS-Trace GC or WATERS Micromass LCT spectrometers.   Samples in 

dichloromethane (1 mg/mL) were 100 times diluted in either methanol or 

acetonitrile, and analysed with source and desolvation temperatures of 120 °C, with 

cone voltage of 30 V.  

 

Cyclic voltammograms were recorded at v = 100 - 800 mV s
−1

 from solutions of 

approximately 10
-4

 M in analyte in dichloromethane containing 10
-1

 M NBu4BF4, 

using a gas tight single-compartment three-electrode cell equipped with platinum 

disk working, coiled platinum wire auxiliary, and platinum wire pseudo-reference 

electrodes.   The working electrode surface was polished before scans with an 
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alumina paste.   The cell was connected to a computer-controlled Autolab PGSTAT-

30 potentiostat.   All redox potentials are reported against the ferrocene/ferrocenium 

couple, and referenced against the decamethylferrocene/decamethylferrocenium 

(Fc*/Fc*
+
 = –0.53 V) redox couple used as an internal reference system.  

 

Single crystal X-ray data for all structures were collected on a Bruker SMART CCD 

6000 diffractometer equipped with a Cryostream (Oxford Cryosystems) cooling 

device at 120K using MoKα radiation.   All the structures were solved by direct 

method and refined by full-matrix least squares on F
2
 for all data using SHELXTL 

software. 
148

   All non-hydrogen atoms were refined with anisotropic displacement 

parameters, H-atoms were placed into calculated positions and refined in a "riding" 

mode. 

 

2.4.2 Preparation of RuCl2(PPh3)3  

 

A suspension of RuCl3.nH2O (1.00 g, 3.83 mmol for n = 3) and PPh3 (6.00 g, 22.9 

mmol) in methanol (50 ml) was heated for 4 h at reflux.   The brown solid that 

precipitated was collected by filtration, washed with diethyl ether and dried in air to 

give RuCl2(PPh3)3 as a dark brown powder (3.59 g, 98%).   
31

P{
1
H} NMR (CDCl3, 

81 MHz): δ 30.2 (s, PPh3). 

 

2.4.3 Preparation of trans-RuCl2(dppe)2 (trans-2) 

 

A suspension of RuCl2(PPh3)3 (3.59 g, 3.75 mmol) and dppe (3.14 g, 7.89 mmol) in 

acetone (40 ml) was stirred for 1 h at room temperature.   The resulting yellow 

precipitate was collected by filtration, washed with acetone and dried in air to give 

trans-2 as an orange-yellow powder (3.40 g, 99 %).     
 1

H NMR (CDCl3): δH 2.70 

(m, 8H, CH2), 6.99 (dd, JHH = 7 Hz, 16H, Ph Hm), 7.19 (t, JHH = 7 Hz, 8H, Ph Hp), 

7.26 (d, JHH = 8 Hz, 16H, Ph Ho);  
 31

P{
1
H} NMR (CDCl3): δ 46.1 (s);   

13
C NMR 

(CDCl3): δC 28.8 (m, CH2), 127.0 (m, Cm), 128.8 (m, Cp), 134.4 (m, Co), 135.0 (m, 

Ci). 
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2.4.4 Preparation of [RuCl(dppe)2][OTf] ([3]OTf) 

 

A suspension of trans-2 (3.40 g, 3.51 mmol) and AgOTf (0.90 g, 3.51 mmol) in 

dichloromethane (40 ml) was stirred for 1 h.   The resulting dark red solution was 

filtered (Celite) to remove the precipitated AgCl, and the filtrate diluted with 

hexane.   Careful removal of the CH2Cl2 on a rotary evaporator resulted in the 

precipitation of [3]OTf as well-formed red crystals, which were collected, washed 

with hexane and dried to give [3]OTf as a dark red solid, which is stable in air and 

chlorinated solvents (3.22 g, 85%).   Crystals suitable for X-ray diffraction were 

obtained following recrystallisation from CHCl3 / hexane.   
1
H NMR (CDCl3): δH 

1.57 (m, 2H, CH2), 2.44 (m, 4H, CH2), 2.65 (m, 2H, CH2), 6.71 (m, 4H, Ph Hm), 

6.99 (m, 12H, Ph H), 7.19 (m, 16H, Ph H), 7.32 (t, JHH = 7 Hz, 2H, Ph Hp), 7.52 (t, 

JHH = 7 Hz, 2H, Ph Hp), 7.73 (m, 4H, Ph Hm).   
31

P NMR (CDCl3): δ 56.7 (dd, JPP = 

13 Hz, 2P), 84.0 (dd, JPP = 13 Hz, 2P).   
19

F NMR (CDCl3, 188 MHz): δ -78.5 (s, 

CF3SO3
-
);  

13
C NMR (CDCl3): δC 18.4 (m, CH2), 30.1 (m, CH2), 120.9 (q, JCF = 321 

Hz, CF3), 127.5 (m), 128.0 (m), 128.7 (m), 129.3 (m, Cp), 129.4 (m, Ci + other C), 

130.4 (m, Ci), 131.1 (m, Cp x 2), 131.7 (m), 132.0 (m, Ci), 132.1 (m), 132.3 (m, Cp), 

132.7 (m), 133.1 (m, Ci), 133.7 (m).   A mixture of cis-2 and trans-2 can also be 

used to give high yields of [3]OTf by this procedure. 

 

2.4.5 Preparation of cis-RuCl2(dppe)2 (cis-2) 

 

A solution of [3]OTf (198 mg, 0.182 mmol) in methanol (25 ml) was added to a 

stirred solution of LiCl (80 mg, 1.93 mmol) in methanol (4 ml).   The yellow solid 

formed after 15 min was filtered, washed with 2 x 2 ml of methanol and dried in 

vacuo.   This solid (148 mg, 0.152 mmol, 84%) was identified as pure cis-2 by 
31

P, 

13
C and 

1
H NMR spectroscopy.   

1
H NMR (CDCl3): δH  2.48 (m, 4H, CH2), 2.55 (m, 

2H, CH2), 2.98 (m, 2H, CH2), 6.73 (m, 8H), 6.78 (m, 8H), 6.84 (m, 4H), 6.93 (t, JHH 

= 6 Hz, 2H, Ph Hp), 7.01 (m, 4H), 7.24 (t, JHH = 6 Hz, 2H, Ph Hp), 7.26 (m, 4H), 

7.54 (m, 4H), 8.22 (m, 4H).   
31

P NMR (CDCl3): δ 38.8 (dd, JPP = 19 Hz, 2P) 53.6 

(dd, JPP = 19 Hz, 2P).   
13

C NMR (CDCl3): δC 24.6 (m, CH2), 31.9 (m, CH2), 126.6 

(m), 127.2 (m), 127.5 (m), 127.7 (m, Cp), 128.0 (m), 128.5 (m, Cp), 128.7 (m, Cp), 
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128.9 (m, Cp), 131.2 (m), 131.5 (m), 133.9 (m), 134.3 (m, Ci), 134.7 (m), 135.2 (m, 

Ci), 137.9 (m, Ci), 139.7 (m, Ci). 

 

2.4.6 Preparation of trans-RuCl(C≡CPh)(dppe)2 (6) 

 

A solution of [3]OTf (100 mg, 0.092 mmol) in CH2Cl2 (3 ml) was treated with 

phenylacetylene (10 µl, 0.09 mmol) and stirred at room temperature for 1 h.   The 

solvent was removed in vacuo and the residue containing the crude vinylidene salt 

washed with hexane (2  10 ml) to remove any excess alkyne.   The crude 

vinylidene salt was redissolved in dichloromethane (2 ml) and treated with a 

solution of KO
t
Bu (35 mg) in methanol (5 ml), prompting the precipitation of a pale 

yellow solid, which was collected by filtration and dried to give 6 (72 mg, 75%).   

IR: (C≡C) 2072 cm
-1

.  
31

P NMR: δ 50.8 (s, PPh2). ES-MS: m/z 1039 [M – Cl + K + 

H]
+
. 

 

2.4.7 Preparation of trans-RuCl(C≡CC6H4OMe-4)(dppe)2 (7) 

 

Prepared in a similar fashion to that described for 6 from [3]OTf (100 mg, 0.092 

mmol), 1-ethynyl-4-methylbenzene (11 µl, 0.09 mmol), the vinylidene being formed 

after 2 h at room temperature.   After deprotonation, yellow 7 was collected by 

filtration (42 mg, 43%).   Crystals suitable for X-ray diffraction were obtained from 

CH2Cl2 / hexane.   IR: (C≡C) 2070 cm
-1

.  
31

P NMR: δ 50.0 (s, dppe). ES-MS: m/z 

1069 [M – Cl + K + H]
+
. 

 

2.4.8 Preparation of trans-RuCl(C≡CC6H4Me-4)(dppe)2 (8) 

 

Prepared in a similar fashion to that described for 6 from [3]OTf (100 mg, 0.092 

mmol), 1-ethynyl-4-methylbenzene (11 µl, 0.09 mmol), the vinylidene being formed 

after 2 h at room temperature.   After deprotonation, yellow 8 was isolated (75 mg, 

78%).   Crystals suitable for X-ray diffraction were obtained from CH2Cl2 / hexane 

and also THF / hexane.   IR: (C≡C) 2073 cm
-1

.  
31

P NMR: δ 51.8 (s, PPh2). ES-MS: 

m/z 1053, [M – Cl + K + H]
+
. 
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2.4.2.9 Preparation of trans-RuCl(C≡CC6H4C5H11-4)(dppe)2 (9) 

 

Prepared in a similar fashion to that described for 6 from [3]OTf (100 mg, 0.092 

mmol) and 4-pentyl phenylacetylene (18 µl, 0.09 mmol), the vinylidene being 

formed after 2 h at room temperature.   After deprotonation 9 was obtained as a 

yellow powder (86 mg, 84%).  IR: (C≡C) 2071 cm
-1

.  
31

P NMR: δ 51.5 (s, PPh2). 

ES-MS: m/z 1069, [M – Cl]
+
. 

 

2.4.2.10 Preparation of trans-RuCl(C≡CC6H4CO2Me-4)(dppe)2 (10) 

 

Prepared in a similar fashion to that described for 6 from [3]OTf (100 mg, 0.092 

mmol) and methyl 4-ethynylbenzoate (15 mg, 0.09 mmol), the vinylidene being 

formed after 2 h at room temperature.   After deprotonation, 10 was isolated as a 

yellow powder (66 mg, 66%).   Crystals suitable for X-ray diffraction were obtained 

from THF / hexane.   IR: (C≡C) 2065 cm
-1

.  
31

P NMR: δ 51.6 (s, PPh2).  ES-MS: 

m/z 1097, [M – Cl + K + H]
+
. 

 

2.4.2.11 Preparation of trans-RuCl(C≡CC6H4NO2-4)(dppe)2 (11) 

 

Prepared in a similar fashion to that described for 6 from [3]OTf (100 mg, 0.092 

mmol) and 4-nitro phenylacetylene (14 mg, 0.09 mmol) the vinylidene being formed 

after 6 h at room temperature.   After deprotonation 11 was obtained a red powder 

(73 mg, 73%).   IR: (C≡C) 2051 cm
-1

.  
31

P NMR: δ 48.4 (s, PPh2).  ES-MS: m/z 

1084, [M – Cl + K + H]
+
. 
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Chapter 3 : 1,3 Diethynyl Benzene Compounds 
 

3.1 Introduction 

 

Since the earliest work with the Creutz-Taube ion, the study of bridge-mediated 

electron-transfer in bimetallic complexes has centred on complexes featuring linear 

bridging moieties, with many early studies featuring bridging ligands with classical 

coordination properties, such as N-heterocycles. 
22

   With a view to the development 

of families of bridging ligands capable of allowing investigations of factors such as 

bridge length on the electron transfer process, attention has turned to bridge 

structures that are more readily amenable to simple, repetitive extension.   The 

conceptually simple all-carbon oligo(yne)diyl ligands, -(C≡C)n-, have allowed 

investigations free of potential complications arising from internal ligand rotational 

modes, 
55

 whilst the recognition of the remarkable conductivity of suitably doped 

polyacetylene that has led to the development of the plastic electronics industry has 

also spurred renewed interest in the “wire-like” properties of oligo(ene)s, 

oligo(phenylenevinylenes) and oligo(phenyleneethynylenes). 
149-152

   Of the various 

and numerous bridging ligands that have been considered, the “all-carbon” (e.g. 

buta-1,3-diyndiyl) 
153-158

 and “carbon-rich” (e.g. oligo(ene) 
159-163

 1,4-phenylene, 
164-

167
 1,4-diethynyl benzene 

72, 92, 93, 168, 169
 and related oligo(phenylene ethynylene) 

170-

179
) have proven to be of particular interest in the last decade. 

55, 155, 156, 180, 181
 

 

The use of linear bridging ligands, B, permits investigation of electron-transfer 

processes in the classical LnM-B-MLn structures, or  linear metallo-oligomers LnM{-

B-MLm-B-}xMLn by Wolf, 
182-185

 Lavastre 
72, 103, 106, 186

 and Rigaut, 
71, 89, 92-94, 121, 187-

189
 to name but a few.  However, very recently attention has begun to turn to more 

complex molecular structures with a view to developing more advanced 

architectures that could be suitable for use as, for example, QCA devices. 
190, 191

   

The quantum-dot cellular automata (QCA) approach offers an alternative way in 

which binary information is encoded, with the original proposal of a QCA device 

consisting of islands of metal atoms on the corners of a square on a surface. 
192, 193

   

Whereas in modern-day computers the binary information is stored in bits as on or 
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off signals which can in turn be considered as 0s and 1s, QCA devices realise 

functionality in ways which are well-suited to the properties of single molecules, not 

by using the molecules as switches but as structured charge containers. 
190

   The 

“dot” which refers to a unit of charge, can therefore be represented by a redox 

centre, whether that be metallic or organic, which essentially treats the information 

as electronic or magnetic states of a nanoscale island. 
194

   The attraction of using a 

metal centre is that the response of the centre can be modified dependent on pH, 

photoexcitation, electrochemical potential and by the metal centre‟s spatial 

environment. 
195

   By combining the QCA cells in different arrangements, molecular 

analogues of logic gates, such as AND and OR gates, can be constructed. 
190, 196-199

   

Given the robust, chemically reversible redox processes associated with simple 

metal-ligand combinations, there is a great potential, and hence wide interest in, the 

synthesis of prototypical molecules, 
200-203

 such as the “Creutz-Taube square” 
204

 

(Figure 19) and the theoretical studies of electron transfer within such structures, for 

QCA-based molecular logic systems.  

 

 

Figure 19 Long‟s [(cyclen)4Ru4(pz)4]
9+

 cation or “Creutz-Taube square”. 
204

 

 

“Branched” carbon-rich systems, including those derived from 1,1,2,2-

tetraethynylethene 
58, 205, 206

 and the 1,3,5-triethynylbenzene 
207

 motif have been 

recognized as offering a scaffold suitable for the assembly of polymetallic 

complexes, including metallodendrimers with interesting structural, 
208

 optical and 

non-linear optical properties. 
104, 105, 109, 209-212

   In many cases the extent of 
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interaction between metal centres at the periphery of these branched cores has been 

investigated using electrochemical methods. 
59, 76, 213-220

   More comprehensive 

studies by Lapinte 
219

 with weakly coupled mixed valence organoiron compounds 

based on 1,3-diethynyl- and 1,3,5-triethynyl-benzene ligands (Chart 1) have also 

been conducted on both homo- and mixed-valence species.   The interaction between 

the two or three Fe(dppe)Cp* centres in the bimetallic and trimetallic compounds 

based on 12 and 13 has been investigated by cyclic voltammetry, single crystal X-

ray diffraction analysis and IR and UV-vis spectroscopy.   These two neutral 

compounds were prepared from their respective silyl-protected pro-ligands ligands, 

1,3-bis(trimethylsilylethynyl)- or 1,3,5-tris(trimethylsilylethynyl)-benzene, and 

FeCl(dppe)Cp* in the presence of methanol, potassium fluoride and potassium 

hexafluorophosphate (Scheme 3). 
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Chart 1 The complexes discussed in this Chapter (6 and 12 - 18). 
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Scheme 3 Synthesis of bi- and tri iron acetylide complexes 12 and 13. 
219

 

 

In room temperature solution 12 under goes two reversible one e
-
 oxidations and 13 

undergoes three (Figure 20). 
219

 

 

 

Figure 20 Equilibria between 12, [12]
+
 and [12]

2+
. 

 

Comparison of the oxidation potentials of 12, 13 and of the mononuclear iron 

complex [Fe(C≡CC6H5)(dppe)Cp*], shows that the first oxidation potential 

corresponding to the 13/[13]
+
 couple is observed 40 mV lower than the 12/[12]

+
 

couple and 60 mV lower than that for the mononuclear iron complex 

Fe(C≡CPh)(dppe)Cp*.   These electrochemical data are said to be indicative of 

weakly coupled mixed valence systems, 
22

  but care must be exercised in drawing 

conclusions about electronic structure from the electrochemical experiments (which 

provide thermodynamic data) alone.   Nevertheless, the comproportionation constant 
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(Kc) values that can be derived from the electrochemical data indicate that the 

oxidised / mixed-valence species [12]
+
 and [13]

+/2+
 are stable enough to predominate 

in solution (Kc coincidently for all mixed-valence compounds ([12]
+
 and [13]

+/2+
) is; 

1.3 × 10
2
). 

219
    

 

Both compounds 12 and 13 have a characteristic ν(C≡C) band at 2050 cm
-1

 which 

provides a convenient spectroscopic probe through which to assess the effects of 

redox state change on the structure of the complex.   The species [12]
+/2+

 and 

[13]
+/2+/3+

 can be obtained by oxidation of 12 and 13 respectively, by treatment with 

[Cp2Fe]PF6 and the IR spectroscopic data from the redox family are summarised in 

Table 6. 

 

Table 6 Infra-red data for 12 and 13 and their accessible redox states. 

Compound IR (cm-1) (CH2Cl2) 

12 2050 

[12]
+
 2044 / 1998 

[12]2+ 2006 

13 2050 

[13]+ 2044 / 1990 

[13]2+ 2041 / 2010 

[13]3+ 2011 

 

The mixed-valence derivatives of 12 and 13 show two distinct ν(C≡C) bands, the 

higher frequencies corresponding to the Fe(II)C≡C fragments and the lower 

corresponding to the Fe(III)C≡C fragments.   From the IR data it can be seen that 

there is a weak ground state interaction between the Cp*FeC≡C building blocks 

through the arene connector. 
219

 

 

The UV-vis spectra of each of the binuclear and trinuclear compounds [12]
n+

 – 

[13]
n+

 have intense absorption bands in the range of 250-290 nm, which are 

attributed to π-π* ligand centred transitions.   The red shift of these ligand centred 

bands following stepwise oxidation suggests that the site of oxidation is unlikely to 

be ligand centred.   The UV spectra of the oxidised species [12]
n+

 and [13]
n+

 also 
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exhibit two weak bands above 550 nm which have been assigned to ligand to metal 

charge transfer (LMCT) transitions. 
221

   In the NIR region of [12]
n+

 and [13]
n+

, 

within the tail of the LMCT bands, very weak bands (ε ≈ 150 M
-1

cm
-1

) 

corresponding to forbidden ligand field (LF) transitions specific to the 

Cp*(dppe)Fe(III) fragment and intervalence charge transfer (IVCT) transitions were 

observed. 
221

   From the characteristics of the IVCT band the coupling between the 

metal centres could be calculated using Hush theory, and in agreement with the 

other experimental data, the calculated coupling parameter Hab  ([12]
+
 161 ± 2 cm

-1
, 

[13]
+
 143 ± 2 cm

-1
, [13]

2+
 117 ± 2 cm

-1
 and 71 ± 2 cm

-1
) showed the organoiron 

compounds based on 1,3-diethynyl- and 1,3,5-triethynylbenzene to be weakly 

coupled Robin-Day Class II compounds. 
219, 221, 222

  

 

In earlier work by Friend and the Cambridge groups on analogous mixed-valence 

bimetallic ruthenium compounds based on the 1,3-diethynylbenzene bridging motif 

14 (Chart 1), detailed analyses were hindered by the weakness of the IVCT band. 
220, 

223
   Thus, whilst the an intermediate oxidation state could be observed by 

voltammetric methods, the IVCT transition in the presumed Ru(II/III) mixed-

valence state was not be observed.   This weakness, or lack, of IVCT bands in 

mixed-valence bimetallic 1,3-diethynylbenzene compounds, was explained at the 

time by “the fact that the 1,3-benzenediyl bridging ligand cannot form the quinoid 

mixed-valence structure”. 
223

   However, more recent studies demonstrating the 

ligand-centred oxidation behaviour of ruthenium-acetylide complexes, 
115, 224

 the 

observation of weak IVCT transitions in the iron analogues, the ongoing interest in 

electronic interactions between metal ethynyl moieties arranged in meta-positions 

around a benzene ring 
116, 207, 225

 and electron-transfer through branched ligands in 

general, coupled with the absence of detailed information about the IVCT band in 

even simple ruthenium complexes featuring this motif, has prompted a re-

consideration the electronic structure of formally mixed-valence ruthenium (II/III) 

complexes of 1,3-diethynylbenzenes. 

 

The concerted application of vibrational spectroscopy and DFT methods has proven 

useful in the analysis of the electronic structure of ruthenium(II) acetylide 

complexes such as trans-RuCl(C≡CPh)(dppe)2 6 and Ru(C≡CPh)(dppe)Cp* 15 

(Chart 1), 
115

  and also bimetallic derivatives, including those that might be regarded 
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as “mixed valence”. 
43, 88, 226

   In this Chapter, studies of 1,3-{trans-

Cl(dppe)2RuC≡C}2C6H4 16 and 1,3-{Cp*(dppe)RuC≡C}2C6H4 17 and the related 

complex 1,3-{trans-Cl(dppe)2RuC≡C}2-5-(HC≡C)C6H3 18, (Chart 1) are described. 

Electrochemical oxidation of 16 and 17 results in the formation of stable “mixed 

valence” cation radicals, the electronic structures of which have been investigated 

using a suite of electrochemical, spectroscopic (UV-vis-NIR, IR) and computational 

methods.  

 

 

3.2 Results and Discussion 

 

Before discussing the electrochemical and spectroscopic properties of the dinuclear 

compounds, 1,3-{trans-Cl(dppe)2RuC≡C}2C6H4 16 and 1,3-

{Cp*(dppe)RuC≡C}2C6H4 17, it is helpful to consider first the mononuclear model 

complexes 6 and 15 which have been studied in detail elsewhere. 
81, 115, 224, 227

   The 

HOMO of the mononuclear ruthenium acetylide complexes 6 and 15 features a 

considerable contribution from the alkynyl and phenyl -orbitals (ca. 70%), mixed 

with ruthenium d character (ca. 20%).   Each complex undergoes a one-electron 

oxidation event at moderate potentials.   The orbital composition is largely retained 

upon oxidation, and the cation radical [6]
+
 and [15]

+
 could be described as metal- 

stabilised organic radical cations.   The important involvement of the alkynyl ligand 

orbitals in the oxidation process is also evidenced by the large shift of (C≡C) (ca. –

150 cm
-1

) following oxidation of 6 or 15 in a spectroelectrochemical cell (Table 7), a 

trend that is adequately reproduced in the calculated (C≡C) frequencies and 

geometries (Table 7, Table 8, Table 9, Scheme 4) of the appropriate computational 

models [6-H]
+
 and [15-H]

+
. 

 

 

Scheme 4 A schematic representation of the redox products derived from a 

ruthenium acetylide. 
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Table 7 IR spectroelectrochemical data (0.1 M [NBu4][BF4] / CH2Cl2) from 

compounds 6 – 18 (calculated values from related model systems in parentheses). 

 0 +1 +2 

 v(C≡CRu) v(C≡CH) v(C≡CRu) v(C≡CH) v(C≡CRu) v(C≡CH) 

[6] 2075 (2072) - 1910 (1912) - - - 

[15] 2072 (2075) 

 

- 1929 (1905) 

 

- - - 

[16] 2063 (2073) - 2049 (2024) 

1905 (1935) 

 

- 1909 (1858 

HS, 1826 

LS) 

- 

[17] 2063 (2075) - 2060 (2032) 

1934 (1944) 

 

- 1938 (1886 

HS, 1860 

LS) 

- 

[18] 2059 

 

[2059]a, 

3303 

2054 [2054]a, 

3301 

1908 2068, 3300 

a C≡C band assumed to be present within the strong C≡CRu band observed. 

 

Other structural variations that arise from the oxidation process include the 

elongation of Ru-P bond lengths and, in the case of [6-H]
n+

, contraction of the Ru-Cl 

bond.   The optimised geometries of the computational model systems [trans-

RuCl(C≡CPh)(dHpe)2]
n+

 ([6-H]
n+

) and [Ru(C≡CPh)(PH3)2Cp]
n+

 ([15-H]
n+

) (Table 8, 

Table 9) and calculated spin densities (Table 10) at the MPW1K/3-21G* level of 

theory are in agreement with the previous studies, 
228, 229

 and are presented here for 

purposes of comparison with results obtained from the bimetallic complexes at the 

same level.   The atom-labelling scheme is illustrated in Scheme 5. 
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Table 8 Selected bond lengths from the optimised geometries of [trans-RuCl(C≡CPh)(dHpe)2]
n+

 ([6-H]
n+

) (n = 0, 1) and [1,3-{trans-

Cl(dHpe)2RuC≡C}2C6H4]
n+

 ([16-H]
n+

) (n = 0, 1, 2).
a
  

 Ru1-P Ru1-C1 C1-C1 C1-C1 C1-C2 C2-C3 C3-C4 C4-C5 C5-C6 C6-C1 C3-C2 C2-C2 C2-Ru2 Ru2-P 

6-H 2.300 2.007 1.216 1.419 1.395 1.380 1.384 1.384 1.380 1.395     

[6-H]+
 2.345 1.914 1.237 1.394 1.404 1.375 1.388 1.388 1.375 1.404     

16-H 2.299 2.009 1.216 1.420 1.392 1.392 1.395 1.380 1.380 1.395 1.420 1.215 2.009 2.299 

[16-H]+ 2.331 1.919 1.241 1.382 1.403 1.384 1.414 1.385 1.374 1.416 1.405 1.220 1.991 2.308 

[16-H]2+ (LS) 2.340 1.908 1.245 1.378 1.390 1.390 1.433 1.377 1.376 1.433 1.378 1.245 1.908 2.340 

[16-H]2+ (HS) 2.357 1.936 1.230 1.405 1.396 1.396 1.404 1.380 1.380 1.404 1.405 1.230 1.936 2.357 

also: 6-H Ru-Cl 2.464; [6-H]+ Ru-Cl 2.423; 16-H Ru1-Cl 2.464, Ru2-Cl 2.464; [16-H]+ Ru1-Cl 2.436, Ru2-Cl 2.459; [16-H]2+ (LS) Ru1-Cl 2.428, Ru2-

Cl 2.428; [16-H]2+ (HS) Ru1-Cl 2.399, Ru2-Cl 2.399;  
a See Scheme 5 for the atom labelling scheme. 

 

Table 9 Selected bond lengths from the optimised geometries of [Ru(C≡CPh)(PH3)2Cp]
n+

 ([15-H]
n+

) (n = 0, 1) and [1,3-

{Cp(PH3)2RuC≡C}2C6H4]
n+

 ([17-H]
n+

) (n = 0, 1, 2).
a 

 Ru1-P Ru1-C1 C1-C1 C1-C1 C1-C2 C2-C3 C3-C4 C4-C5 C5-C6 C6-C1 C3-C2 C2-C2 C2-Ru2 Ru2-P 

15-H 2.253 2.003 1.215 1.418 1.395 1.380 1.384 1.384 1.380 1.395     

[15-H]+
 2.293 1.919 1.236 1.393 1.405 1.375 1.388 1.388 1.375 1.405     

17-H 2.253 2.003 1.215 1.419 1.391 1.392 1.395 1.381 1.380 1.395 1.419 1.215 2.004 2.252 

[17-H]+ 2.285 1.920 1.237 1.385 1.401 1.385 1.411 1.385 1.374 1.414 1.406 1.219 1.990 2.261 

[17-H]2+ (LS) 2.285 1.918 1.240 1.382 1.389 1.390 1.428 1.376 1.377 1.429 1.382 1.239 1.923 2.281 

[17-H]2+ (HS) 2.306 1.930 1.232 1.402 1.396 1.397 1.404 1.380 1.380 1.405 1.402 1.231 1.937 2.299 

[17-H]2+ (HS, asym) 2.299 1.935 1.231 1.403 1.398 1.389 1.399 1.381 1.377 1.402 1.419 1.213 1.991 2.330 
a See Scheme 5 for the atom labelling scheme. 
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Table 10 Calculated spin densities for the model systems [6-H]
+
, [15-H]

+
, [16-H]

+
, HS-[16-H]

2+
, [17-H]

+
, HS-[17-H]

2+
.
a 

 Ru1 C1 C1 C1 C2 C3 C4 C5 C6 C2 C2 Ru2 

[6-H]+ 0.56 -0.06 0.37 –0.11 0.15 –0.11 0.19 –0.11 0.15    

[15-H]+ 0.51 –0.10 0.41 –0.17 0.22 –0.17 0.26 –0.17 0.22    

[16-H]+ 0.28 0.07 0.26 –0.07 0.04 –0.09 0.34 –0.17 0.30 0.06 0.00 0.04 

[16-H]2+ 0.72 –0.19 0.41 –0.21 0.27 –0.21 0.26 –0.18 0.26 0.41 –0.19 0.72 

[17-H]+ 0.36 0.02 0.31 –0.13 0.16 –0.18 0.37 –0.23 0.32 0.07 –0.06 0.00 

[17-H]2+ 0.66 –0.26 0.49 –0.30 0.37 –0.30 0.35 –0.26 0.35 0.49 –0.25 0.65 

[17-H]2+ (asym) 0.63 –0.22 0.46 –0.22 0.25 –0.20 0.25 –0.19 0.24 0.16 –0.15 0.94 
a
 See Scheme 5 for the atom labelling scheme.  

 

 

 

Scheme 5 The labelling scheme for the DFT calculations. 
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The UV-vis-NIR spectra of [6]
n+

 (n = 0, 1) are shown in  Figure 23 for illustrative 

purposes, and data from [6]
n+

 and [15]
n+

 are summarised in Table 11, together with 

assignments based on TD DFT calculations. 
81, 115

   The 18-electron, charge neutral 

(n = 0) complexes 6 and 15 each exhibit a broad absorption envelope in the UV 

region arising from transitions localised within the aryl groups of the phosphine 

ligands, and various approximately MLCT bands associated with both the 

phosphines and the acetylide ligand.   The conventional “MLCT” description is used 

for convenience, although the mixed d/ character of the HOMO should be noted. 

These MLCT bands tail into the visible region, and are responsible for the yellow 

colour of the complexes.   The oxidised compounds [6]
+
 and [15]

+
 feature a number 

of bands in the vis-NIR regions that can be broadly attributed to processes involving 

charge transfer from occupied orbitals with appreciable metal character to the -

LUSO, which is delocalised over the metal, acetylide and phenyl moieties. In the 

case of [6]
+
 a weak band near 9000 cm

-1
, not resolved in a previous study, 

81
 is also 

apparent and attributed to charge transfer from the chloride ligand to the -LUSO 

(i.e., approximately a chloride-to-metal LMCT transition) (Figure 21, Table 11).   

The NIR spectrum of [15]
+
 features a weak band near 8100 cm

-1
 ( 600 M

-1
cm

-1
) 

that has been assigned to a transition between orbitals with significant 

phenylacetylide character. 
115, 224, 227

  

 

 

Figure 21 The UV-vis-NIR spectra of [6]
n+

 (n = 0, 1) (CH2Cl2 / 0.1 M [NBu4]BF4). 
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Table 11 Electronic transitions and assignments for [6]
n+

, [15]
n+

, [16]
n+

, [17]
n+

 and 

[18]
n+

. 

 wavenumber / cm-1 

[M-1
cm

-1
 

wavenumber 

/cm
-1

 [f] 

Assignment Reference 

6 31350 [23000] 31200 [0.0012] Ru(d)C2Ph(*), MLCT 
81 

 38480 [50000] 41700 [0.5389] phenyl ()phenyl (*)  

[6]+ 9080 [580] 4100 [0.0000] Cl(p)RuC2 (d), LMCT 
81,a  

 12040 [10000] 13000 [0.2761] ClRuC2Ph (d)RuC2Ph (d)  

 16900 [1000] 15700 [0.0014] ClRu RuC2Ph (d)  

15 29500 [9500] 31400 [0.0080] RuC2 (d)Ru, MMCT 
115 

[15]+ 8100 [600] 7200 [0.0001] phenyl ()RuC2 (d)  
115 

 11200 [5100] 15500 [0.3131] phenyl ()RuC2, LMCT  

 21100 [4300] 27000 [0.0493] phenyl ()RuCp, LMCT  

16 31350 [43500] 31000 [0.0013] phenyl ()RuP2  
a 

[16]+ 3750 [900] 5600 [0.0444] dd ClRu  RuC2Ph a 

 5800 [320] 6100 [0.1346] IVCT RuC2Ph  RuC2Ph  

 9100 [1200] 12200 [0.0002] ClRuC2RuC2Ph(d)  

 12120 [7800] 14800 [0.2234] RuP2 RuC2Ph(d)  

 17300 [2800] 20400 [0.0082] Cl(p) RuC2Ph(d), LMCT  

[16]2+  3200 [0.0000] Dd 
a 

  3300 [0.0000] Dd  

 8800 [1800] 12200 [0.0001] RuC2Ph (d)RuC2Ph(d)  

 11900 [9400] 14700 [0.5242] phenyl ()RuC2Ph(d)  

 17000 [3400] 16000 [0.0494] phenyl ()RuC2Ph(d)  

17 31500 [13000] 31300 [0.0094] Ru  phenyl (*) 
a 

[17]+ 4800 [150] 5800 [0.1567] IVCT RuC2Ph (d)RuC2Ph(d) 
a 

 7750 [150] 8200 [0.0001] dd RuCp RuC2Ph(d)  

 14000 [1000] 14900 [0.0084] phenyl () RuC2Ph  

 17800 [500] 15800 [0.2716] RuC2RuC2Ph  

  21500 [0.0167] RuC2Ph (d) RuC2Ph   

[17]2+ 4300 [90] 6600 [0.0003] dd RuC2  RuC2 
a 

 7500 [300] 6800 [0.0001] dd RuCp  RuC2 
 

 13500 [2300] 17200 [0.6145] phenyl ()RuC2Ph(d) 
 

 17400 [1300] 18600 [0.0636] phenyl ()RuC2Ph(d) 
 

18 29300 [13400] - Ru  phenyl (*) 
a,b 

[18]+ 3780 [750] - IVCT RuC2Ph (d)RuC2Ph(d) 
a,b 

 8550 [260] - dd RuCp RuC2Ph(d) 
 

 12000 [7100] - phenyl () RuC2Ph 
 

 16800 [2600] - Cl(p) RuC2Ph(d), LMCT 
 

 27000 [13300] - Ru  phenyl (*) 
 

[18]2+ 8900 [1500] - RuC2Ph (d)RuC2Ph(d) 
a,b 

 12000 [7600] - phenyl ()RuC2Ph(d)  

 16600 [3000] - phenyl ()RuC2Ph(d)  

 27700 [10500] - Ru  phenyl (*)  
a assignments derived in this Chapter 
b assignments for [18] and redox products made by analogy. 
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The compounds 1,3-{trans-Cl(dppe)2RuC≡C}2C6H4 16 and 1,3-

{Cp*(dppe)RuC≡C}2C6H4 17 were prepared from 1,3-diethynyl benzene via 

bis(vinylidene) intermediates, which were deprotonated in situ to afford the 

bis(acetylide) complexes as the sole isolated product in each case.   Compound 1,3-

{trans-Cl(dppe)2RuC≡C}2C6H4 16 was also prepared from the [RuCl(dppe)2]OTf 

[3]OTf salt and 1,3-diethynyl benzene resulting in a higher yield (82% versus 26%) 

than was obtained via the cis-RuCl2(dppe)2 procedure.   Each compound undergoes 

two, essentially chemically reversible, one-electron oxidation events at potentials E1 

and E2, giving rise to the redox series [16]
n+

 and [17]
n+

 (n = 0, 1, 2) (Table 12).   A 

chemically irreversible oxidation event can also be detected at higher potentials; this 

process has not been investigated further.   The first oxidation potential E1 from each 

of 16 and 17 is modestly more thermodynamically favourable than the first 

oxidation of the appropriate mononuclear model (Table 12).   The second oxidation 

in the bimetallic systems, which occurs at E2, is some 160 – 200 mV more positive 

than E1.   This difference in first and second oxidation potential provides a measure 

of the stability of the mono-cation states, [16]
+
 and [17]

+
, with respect to 

disproportionation (Kc = 500 – 1600). 
230

 

 

Table 12 Oxidation potentials for complexes [6], [15], [16] and [17]. 
a
  

 E1/V E2/V E3/V E1-2/V Kc 

[6] 0.47 1.31b    

[15] 0.25 1.09 b    

[16] 0.43 0.62 1.53 b 0.19 1600 

[17]  0.18 0.34 1.13b 0.16 500 

a Data recorded from solutions in CH2Cl2 containing 0.1 M [NBu4]BF4 supporting 

electrolyte and referenced against decamethylferrocene/decamethylferrocenium 

Fc*H/Fc*H+ couple at -0.07 V vs SCE scan rate 100 mV/s.  
b Irreversible, anodic peak potential reported. 

 

As noted in the introductory remarks, compounds such as 1,3-{trans-

Cl(dppm)2RuC≡C}2-C6H4], 
220, 223

 1,3-{trans-Cl(dppm)2RuC≡C}2-5-HC≡C-C6H3, 

213
  [1,3-{trans-Cl(dppe)2RuC≡C}2-5-HC≡C-C6H3 18 

104, 105
 and [1,3-

{Cp(PPh3)2RuC≡C}2-5-HC≡C-C6H3] 
213

 were also found to undergo two sequential 

and well separated oxidations in earlier studies.   On the assumption that the 
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oxidation processes were metal centred, the intermediate mono-cation states were 

described as Ru(II/III) mixed-valence complexes.   Furthermore, based on the 

electrochemical data, these mono-cations were taken as being examples of weakly 

coupled (i.e. Robin-Day Class II) systems.   However, the thermodynamic stability 

of the mixed-valence state that is reflected in these electrochemical data is a sum of 

factors, including ion-pair interactions, intramolecular electrostatic factors, solvation 

energies, varying degrees of metal-ligand bond energies in the different metal 

oxidation states and the like, in addition to the “resonance”, or delocalisation, term. 

28, 231
   Of these various factors, only the resonance term relates to the concept of 

electronic coupling between the remote sites.   This resonance contribution to the 

stability of a mixed-valence compound cannot be easily extracted from a small set of 

electrochemical data in isolation of extensive work with closely related model 

systems, and various control experiments using different solvent and electrolyte 

combinations. 

 

To more rigorously assess the electronic structures of the 1,3-diethynylbenzene 

bridged complexes [16]
n+

 and [17]
n+

, a combination of IR and UV-vis-NIR 

spectroelectrochemical methods and DFT calculations, was employed.   The IR 

spectra of 16
 
and 17 are characterised by a single (C≡C) band, coincidently at 2063 

cm
–1

 in each case, which do not differ significantly from the (C≡C) bands in the 

comparable mononuclear model complexes 6 and 15 (Table 7).   Unfortunately 

compound 16 was not very soluble in dichloromethane, so THF was also used as 

solvent for spectroelectrochemical studies of this species, which afforded somewhat 

better quality spectra (Figure 22).   The IR spectra of [16]
+
 and [17]

+
 each display 

two (C≡C) bands, which on the basis of comparison with the spectra of 6 and [6]
+
 

or 15 and [15]
+
, as appropriate, can be approximately assigned to “Ru-C≡C” and 

“[Ru-C≡C]
+
” moieties (Figure 22, Table 7). 

 

Further oxidation of the bimetallic compounds to the dicationic state results in 

collapse of the characteristic two-band (C≡C) pattern, and only a slightly 

broadened (C≡C) band envelope is observed near 1900 cm
–1

 (Figure 22, Table 7).   

Clearly, the “mixed valence” bimetallic monocations [16]
+ 

and [17]
+
 are localised on 
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the IR timescale, and electron density from the alkynyl moieties is involved in the 

oxidation process. 
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Figure 22 The IR spectra of [{1,3-Cl(dppe)2RuC≡C}2C6H4]
n+

 (n = 0, 1, 2) [16]
n+

 

(top, THF / 0.1 M [NBu4]BF4, room temperature), [{1,3-Cp*(dppe)RuC≡C}2C6H4]
n+

 

(n = 0, 1, 2) [17]
n+

 (middle, CH2Cl2 / 0.1 M [NBu4]BF4, room temperature) and 

[{1,3-Cl(dppe)2RuC≡C}2-5-(HC≡C)C6H3]
n+

 (n = 0, 1, 2) [18]
n+

 (bottom, CH2Cl2 / 

0.1 M [NBu4]BF4, room temperature) collected from in situ oxidation in a 

spectroelectrochemical cell. 

 

Geiger has proposed a method of estimating a “charge distribution parameter”, , 

for mixed valence compounds from IR spectroscopic data. 
37, 232

   The charge 

distribution parameter, which is a measure of the ground-state charge distribution 

between the two IR-active centres in the mixed valence case, is given by; 

 



 
 ox   red 
2 ox  red 

 

 

where ox  and red are the wavenumbers of signature vibrational bands associated 

with the complex in the fully oxidised and fully reduced states (i.e. the dication and 

neutral complexes in the present examples), and ox = ox – ox(obs), red = red – 

red(obs).   The parameters ox(obs) and red(obs) refer to the observed vibrational bands 

associated with the “oxidised” and “reduced” centres in the mixed valence case.   
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From the data in Table 7,  = 0.06 and 0.03 for [16]
+
 and [17]

+
, respectively, 

consistent with the description of these compounds in terms of localised redox 

centres. 

 

 

3.2.1 DFT Calculations 

 

Electronic structure calculations (MPW1K/3-21G*, Gaussian 03) were carried out, 

using the model systems [1,3-{trans-Cl(dHpe)2RuC≡C}2C6H4]
n+

 ([16-H]
n+

) and 

[1,3-{Cp(PH3)2RuC≡C}2C6H4]
n+

 ([17-H]
n+

) to reduce computational effort, but no 

symmetry constraints were applied.   The atom-labelling scheme is illustrated in 

Scheme 5, and results of the geometry optimizations are summarised in Table 8 and 

Table 9, while calculated vibrational frequencies have been included in Table 7 to 

permit ready comparison with the available experimental data.   Details of orbital 

energies and composition for selected orbitals from the frontier region of each of 

[16-H]
n+

 and [17-H]
n+

 are given in Table 13.  
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Table 13 Decomposition of selected frontier MOs in [6-H]
n+

, [15-H]
n+

, [16-H]
n+

 and 

[17-H]
n+

. 

6-H 

MO occ  (eV) %Cl %PH3 %Ru %Cα %Cβ %Ph 

113 0 1.56 0 35 66 -1 0 1 

112 0 1.50 0 24 50 4 0 21 

111 0 1.41 0 28 71 0 0 1 

110 0 1.35 6 52 42 0 0 0 

109 0 1.21 1 55 44 0 0 0 

108 0 0.91 0 10 19 10 3 58 

107 2 -6.45 5 2 21 17 22 33 

106 2 -6.94 21 2 42 9 24 2 

105 2 -7.58 56 15 14 4 1 10 

104 2 -7.86 46 24 1 12 15 2 

103 2 -8.16 0 0 0 0 0 100 

 

 

[6-H]+ 

MO occ  (eV) %Cl %PH3 %Ru %Cα %Cβ %Ph 

110 β  0 -2.24 0 1 12 14 2 70 

109 β  0 -2.46 9 39 48 3 0 1 

110 α  0 -2.55 10 35 48 4 0 3 

109 α  0 -2.75 0 3 7 19 5 66 

108 β  0 -2.80 0 55 45 0 0 0 

108 α  0 -3.01 0 56 44 0 0 0 

107 β  0 -6.33 3 4 40 9 24 20 

107 α  1 -10.53 1 3 9 15 14 57 

106 β  1 -10.79 25 9 20 15 0 32 

105 β  1 -11.02 17 3 38 11 29 3 

106 α  1 -11.25 22 2 34 10 28 3 

104 β  1 -11.41 0 0 0 0 0 100 

105 α  1 -11.55 0 0 0 0 0 100 

104 α  1 -11.68 68 23 9 0 0 1 

103 β  1 -11.74 51 34 2 5 7 1 
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15-H 

MO occ  (eV) %Cp %PH3 %Ru %C %C %Ph 

90 0 1.70 0 0 0 0 0 100 

89 0 1.52 0 11 84 1 0 4 

88 0 1.45 16 18 59 6 1 0 

87 0 1.03 2 3 9 13 3 69 

86 0 0.91 1 10 89 0 0 0 

85 0 0.79 22 28 49 0 0 1 

84 2 –6.30 6 3 23 15 22 31 

83 2 –7.11 13 5 55 8 17 1 

82 2 –7.51 27 9 26 16 20 2 

81 2 –8.06 27 8 25 6 0 34 

80 2 –8.08 1 0 1 0 0 99 

 

 

[15-H]+ 

MO occ  (eV) %Cp %PH3 %Ru %C %C %Ph 

86 β 0 -2.77 19 21 54 6 0 0 

87 α 0 -2.92 20 20 52 8 0 0 

86 α 0 -2.96 1 4 5 20 5 64 

85 β 0 -3.46 26 26 47 0 0 0 

85 α 0 -3.67 26 27 47 0 0 0 

84 β 0 -6.44 7 4 35 10 23 21 

84 α 1 -10.60 6 4 13 12 14 51 

83 β 1 -11.21 9 4 22 15 0 49 

82 β 1 -11.51 0 0 0 0 0 100 

81 β 1 -11.51 5 2 36 18 36 4 

83 α 1 -11.66 0 0 0 0 0 100 

82 α 1 -11.71 53 10 26 8 3 1 

81 α 1 -11.76 3 1 38 17 36 5 
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16-H 

MO 
occ eV % 

Cl 1 

% 

PH3 1 

% 

Ru1 

% 

Cα1 

% 

Cβ1 

% 

C6H4 

% 

Cβ2 

% 

Cα2 

% 

Ru2 

% 

PH3  2 

% 

Cl 2 

200 0 1.36 3 30 27 0 0 1 0 0 19 19 2 

199 0 1.36 3 27 25 0 0 0 0 0 19 24 3 

198 0 1.33 0 6 25 0 0 3 0 0 42 21 1 

197 0 1.24 1 50 40 0 0 2 0 0 3 3 0 

196 0 1.23 0 6 7 0 0 4 0 0 37 45 1 

195 0 1.19 0 10 21 2 1 23 1 1 24 16 0 

194 0 0.89 0 3 7 6 2 57 2 7 10 5 0 

193 2 -6.23 2 1 10 10 11 39 9 9 8 1 2 

192 2 -6.56 4 1 13 7 11 25 13 9 14 1 4 

191 2 -6.86 8 1 17 5 11 2 15 6 23 1 11 

190 2 -6.95 14 1 24 5 13 2 9 3 18 1 11 

189 2 -7.49 37 9 11 3 0 8 0 1 6 5 20 

188 2 -7.55 17 5 4 2 1 15 1 3 8 10 35 

187 2 -7.79 26 13 1 7 8 1 6 6 1 10 21 

 

 

[16-H]+ 

MO 
occ eV % 

Cl 1 

% 

PH3 1 

% 

Ru1 

% 

Cα1 

% 

Cβ1 

% 

C6H4 

% 

Cβ2 

% 

Cα2 

% 

Ru2 

% 

PH3  2 

% 

Cl 2 

197 0 -1.70 10 38 50 2 0 0 0 0 0 0 0 

196 0 -1.73 0 1 3 2 1 78 1 8 4 1 0 

195 0 -1.93 0 2 10 12 2 69 0 3 1 0 0 

194 0 -1.95 0 55 45 0 0 0 0 0 0 0 0 

195 0 -2.06 0 55 45 0 0 0 0 0 0 0 0 

194 0 -2.66 0 1 4 15 2 70 0 5 1 0 0 

193 0 -6.25 1 3 21 13 19 34 3 4 2 0 0 

192 1 -8.53 1 1 8 1 6 16 23 11 26 3 6 

193 1 -9.11 0 0 0 0 0 19 23 10 32 2 13 

191 1 -9.19 0 0 0 0 0 1 21 6 46 2 23 

192 1 -9.23 0 0 0 0 0 1 21 6 45 2 25 

190 1 -9.79 1 0 2 0 1 6 2 5 10 17 56 
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LS-[16-H]2+ 

MO 
occ eV % 

Cl 1 

% 

PH3 1 

% 

Ru1 

% 

Cα1 

% 

Cβ1 

% 

C6H4 

% 

Cβ2 

% 

Cα2 

% 

Ru2 

% 

PH3  2 

% 

Cl 2 

199 0 -3.74 0 0 0 0 0 0 0 2 56 33 10 

198 0 -3.95 10 32 55 3 0 0 0 0 0 0 0 

197 0 -4.08 0 0 0 0 0 0 0 0 45 54 1 

196 0 -4.29 0 55 45 0 0 0 0 0 0 0 0 

195 0 -4.86 0 0 2 6 0 80 0 7 3 1 0 

194 0 -5.54 0 1 3 10 0 73 0 9 3 1 0 

193 0 -9.86 1 2 13 6 12 34 11 6 12 2 1 

192 2 -11.48 3 2 18 3 14 13 15 3 21 3 4 

191 2 -12.48 0 0 1 0 0 3 18 4 41 2 31 

190 2 -12.75 35 2 38 3 16 2 0 0 1 1 2 

189 2 -12.88 5 0 2 0 1 3 1 2 5 21 59 

188 2 -13.03 52 21 5 2 1 3 1 0 1 7 7 

 

 

HS-[16-H]2+ 

MO 
occ eV % 

Cl 1 

% 

PH3 1 

% 

Ru1 

% 

Cα1 

% 

Cβ1 

% 

C6H4 

% 

Cβ2 

% 

Cα2 

% 

Ru2 

% 

PH3  2 

% 

Cl 2 

195 0 -4.51 0 1 1 0 0 0 0 0 44 52 0 

194 0 -4.51 1 52 44 0 0 0 0 0 1 1 1 

196 0 -4.77 0 11 8 0 0 2 0 0 34 44 0 

195 0 -4.77 0 45 35 0 0 0 0 0 9 11 0 

194 0 -4.79 0 1 3 11 1 67 1 11 3 1 0 

193 0 -7.76 2 2 24 2 10 17 10 2 24 2 2 

192 0 -7.91 3 2 27 2 12 9 12 2 27 2 3 

191 1 -12.37 13 6 7 11 1 26 1 11 7 6 13 

193 1 -12.28 0 2 4 8 9 53 9 8 4 2 0 

190 1 -12.61 15 8 5 8 3 20 3 8 5 8 15 

189 1 -12.67 10 2 17 6 13 4 13 6 17 2 10 

188 1 -12.76 13 1 19 4 12 2 12 4 19 1 13 

192 1 -12.79 1 3 6 7 11 44 11 7 6 3 1 
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17-H 

MO 
occ eV % 

Cp1 

% 

PH3 1 

% 

Ru1 

% 

Cα1 

% 

Cβ1 

% 

C6H4 

% 

Cβ2 

% 

Cα2 

% 

Ru 2 

% 

PH3 2 

% 

Cp 2 

152 0 1.09 1 2 5 8 2 65 2 8 5 2 1 

151 0 1.01 1 9 86 0 0 0 0 0 3 0 0 

150 0 0.98 0 0 3 0 0 0 0 0 87 9 1 

149 0 0.91 22 28 49 0 0 1 0 0 0 0 0 

148 0 0.88 0 0 0 0 0 1 0 0 49 28 22 

147 2 -6.00 3 1 11 9 10 37 9 8 9 1 2 

146 2 -6.32 3 2 12 7 11 25 13 8 14 2 4 

145 2 -6.95 6 3 36 7 15 2 7 4 16 1 3 

144 2 -7.02 6 2 18 2 4 1 12 6 37 4 9 

143 2 -7.35 19 7 18 10 12 2 4 4 10 4 11 

142 2 -7.42 8 3 9 5 7 3 14 11 18 6 17 

 

 

[17-H]+ 

MO occ eV % 

Cp1 

% 

PH3 1 

% 

Ru1 

% 

Cα1 

% 

Cβ1 

% 

C6H4 

% 

Cβ2 

% 

Cα2 

% 

Ru 2 

% 

PH3 2 

% 

Cp 2 

150 0 -1.98 3 2 10 13 2 67 0 2 0 0 0 

149 0 -2.03 18 19 57 6 0 0 0 0 0 0 0 

150 0 -2.13 19 19 55 7 0 0 0 0 0 0 0 

148 0 -2.70 26 26 48 0 0 0 0 0 0 0 0 

149 0 -2.73 3 2 6 16 3 64 0 4 1 0 0 

148 0 -2.83 24 27 46 1 0 2 0 0 0 0 0 

147 0 -6.20 5 3 23 13 20 32 1 2 2 0 0 

146 1 -8.47 1 1 5 0 4 15 22 9 29 4 9 

147 1 -8.83 0 0 0 0 0 17 23 8 34 6 12 

145 1 -9.31 0 0 0 0 0 0 9 5 56 8 22 

146 1 -9.31 0 0 0 0 0 0 8 4 55 8 24 

144 1 -9.70 0 0 0 0 0 2 25 14 31 6 21 

145 1 -9.73 0 0 0 0 0 2 26 14 32 5 20 

144 1 -10.07 10 5 20 10 16 37 0 0 0 0 1 
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LS-[17-H]2+ 

MO 
occ eV % 

Cp1 

% 

PH3 1 

% 

Ru1 

% 

Cα1 

% 

Cβ1 

% 

C6H4 

% 

Cβ2 

% 

Cα2 

% 

Ru 2 

% 

PH3 2 

% 

Cp 2 

152 0 -4.64 0 0 0 0 0 1 0 0 48 27 24 

151 0 -4.65 20 17 55 7 0 0 0 0 0 0 0 

150 0 -4.72 1 1 1 4 1 78 1 9 3 1 0 

149 0 -5.32 27 26 46 0 0 1 0 0 0 0 0 

148 0 -5.42 1 2 4 12 1 71 0 6 2 0 0 

147 0 -9.78 3 2 11 5 9 30 12 5 15 3 4 

146 2 -11.25 6 4 18 3 14 13 12 2 18 4 7 

145 2 -12.76 0 0 0 0 0 0 1 6 37 10 46 

144 2 -12.9 0 0 0 0 0 3 35 13 39 2 7 

143 2 -13.33 5 2 5 1 0 23 2 13 13 7 29 

142 2 -13.52 50 10 29 7 3 0 0 0 0 0 0 

141 2 -13.62 3 2 46 12 32 3 0 0 0 0 0 

140 2 -13.87 28 7 11 12 2 28 2 2 2 1 6 

 

 

HS-[17-H]2+ 

MO 
occ eV % 

Cp1 

% 

PH3 1 

% 

Ru1 

% 

Cα1 

% 

Cβ1 

% 

C6H4 

% 

Cβ2 

% 

Cα2 

% 

Ru 2 

% 

PH3 2 

% 

Cp 2 

150 0 -5.03 1 1 2 11 2 67 2 11 2 1 0 

149 0 -5.18 27 26 47 0 0 0 0 0 0 0 0 

148 0 -5.23 0 0 0 0 0 0 0 0 48 27 25 

149 0 -5.46 27 27 46 0 0 0 0 0 0 0 0 

148 0 -5.49 0 0 0 0 0 0 0 0 47 28 25 

147 0 -7.97 5 3 23 3 11 18 9 2 19 2 4 

146 0 -8.13 4 2 21 2 11 10 13 2 26 3 5 

147 1 -12.34 3 2 6 7 8 46 9 7 6 3 4 

145 1 -12.95 5 2 10 13 1 40 0 13 10 2 5 

146 1 -12.77 7 4 9 5 10 30 10 4 9 4 7 

144 1 -13.16 6 2 15 10 17 16 10 9 10 1 4 
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The important metric parameters of the neutral bimetallic systems 16-H and 17-H 

are indistinguishable from those of the comparable mononuclear models 6-H and 

15-H.   The calculated (C≡C) frequencies are in good agreement with the observed 

data (Table 7), giving confidence in the accuracy of the structural models. 

Differences in energy arising from different orientations of the metal fragments with 

respect to the plane of the aromatic ring are negligible, as has been found in related 

studies of similar systems. 
115, 233

   In each case the HOMO is M-C anti-bonding, 

C-C bonding and C-C6H4 anti-bonding in character, and, as with the mononuclear 

analogues, contains considerable diethynylbenzene character (16-H 76%, 17-H 

73%) (Figure 23, Table 13). 

 

 

Figure 23 The HOMOs for the neutral bimetallic model systems 16-H and 17-H. 

 

On the basis of the IR spectroscopic data (Table 7), [16]
+
 and [17]

+
 offer distinct 

metal-acetylide environments, consistent with a localised “mixed valence” 

description.   The distinction of the metal sites and associated ligands is reproduced 

in the optimised geometries of [16-H]
+
 and [17-H]

+
 and calculated electronic 

structures.   When compared with the structures of the neutral, closed shell 

bimetallic models 16-H and 17-H, in each of the monocations [16-H]
+
 and [17-H]

+
 

the local geometry around one of the metal ethynyl fragments (denoted Ru1 for 

convenience, Scheme 5) displays contracted Ru1-Cα1 and Cβ1-C1 bond lengths, and 

elongated Cα1≡Cβ1 and Ru1-P bond lengths.   The local geometries associated with 

the Ru1 metal centre and the Ru1-Cα1≡Cβ1 moieties in [16-H]
+
 or [17-H]

+
 are 

essentially identical to those calculated for the metal centre in [6-H]
+
 or [15-H]

+
 as 

appropriate. The Ru2 site, and associated Cα2≡Cβ2 moiety, is less significantly 

affected by the loss of electron density from the molecule, and is closer in geometry 

to that calculated for 6-H or 15-H.   The calculated vibrational frequencies from the 
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[16-H]
+
 and [17-H]

+
 computational models accurately reproduce the two (C≡C) 

bands observed in the spectroelectrochemical experiments (Table 7). For example, 

whereas 16-H gives rise to a single (C≡C) band at 2072 cm
-1

, [16-H]
+
 displays two 

distinct (C≡C) bands, both shifted to lower frequency relative to the single band 

16-H, with the smaller shift in one band (Γ(C≡C) 49 cm
–1

) complemented by a 

much larger shift in the other (∆(C≡C) 138 cm
–1

).   Similar shifts are also found for 

[17-H]
+
 relative to 17-H.   Interestingly, there is some evidence for a degree of 

quinoidal character evolving in the aryl ring in conjugation with Ru1-Cα1-Cβ1 in both 

[16-H]
+
 (Table 8) and [17-H]

+
 (Table 9). 

 

The orbital structure of [16-H]
+
 and [17-H]

+
 is consistent with the valence localised 

(weakly coupled Class II mixed valence) description of these species (Table 13).   

For both [16-H]
+
 and [17-H]

+
 the -LUSO is delocalised over the Ru1-Cα1≡Cβ1 and 

the C4 and C6 carbon atoms of the bridging phenylene ring, whilst the -HOSO has 

significant Ru2-Cα2≡Cβ2 and C2 character.   The distribution of spin densities in the 

various open-shell complexes [6-H]
+
, [15-H]

+
, [16-H]

+
 and [17-H]

+
 are particularly 

informative in deriving a description of the oxidation of ruthenium(II) compounds 

containing bridging ligands derived from 1,3-diethynylbenzene (Table 10).   The 

unpaired electron spin density in each of [16-H]
+
 and [17-H]

+
 is distributed over 

Ru1, Cα1, Cβ1 and the aryl ring system.   Within the aryl ring, the electron density is 

not evenly distributed, but rather is more concentrated at C4 and C6.   The integrated 

electron density over the Ru2-Cα2≡Cβ2 fragment in [16-H]
+
 and [17-H]

+
 is only ca. 

0.1 – 0.01 e.   Taken as a whole, the calculated geometry and spin density is 

consistent with the simple valence bond description shown in Scheme 6, in which 

the phenylene ring plays an important role in the oxidation process.  

 

 

Scheme 6 The important role played by the phenylene ring in the oxidation process. 
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The pronounced electronic asymmetry calculated in [16-H]
+
 using the MPW1K 

functional contrasts with the largely symmetrical distributions of electron density 

that arises from broken symmetry calculations on Class II mixed-valence iron 

systems. 
221

   In the case of the ruthenium systems, the thermodynamic stability of 

the valence-trapped mixed valence compounds [16]
+
 and [17]

+
 implied by the 

solution electrochemical data (i.e. the significant separation of E1 and E2 and 

associated calculated Kc values), and significant changes in the (C≡C) frequencies 

that are reproduced by calculations on simplified, gas-phase model systems, seems 

to be an inherent electronic feature associated with delocalisation of charge into the 

aromatic ring of the bridging ligand, and not just a consequence of external 

thermodynamic factors (e.g. ion pairing with the electrolyte), 
37, 232

 or through any 

significant charge-delocalisation between the metal centres (c.f. the negligible  

values).  

 

The dicationic compound [16-H]
2+

 offers both low spin (LS) and high spin (HS) 

electronic configurations.   In their respective lowest energy conformations, the HS 

state, HS-[16-H]
2+

, is more stable than the LS configuration, LS-[16-H]
2+

, by some 

35.5 kcal.mol
–1

.   Similar energetic preferences for the HS state have been found for 

[17-H]
2+

 (36.4 kcal.mol
–1

), and also in the case of closely related iron compounds. 

222
   Broadly, there is also a better agreement between the calculated vibrational 

features of the HS dications with those observed experimentally, and it is likely that 

the HS state dominates in solution (Table 7). 

 

The potential energy surface of HS-[16-H]
2+

 features a large number of shallow 

energy minima differentiated by the orientation of the RuP4 fragments relative to the 

plane of the bridging phenylene ring.   However, the optimised geometries 

associated with these various local minima of HS-[16-H]
2+

 are characterised by two 

common features: in contrast to the monocations, there is no significant structural 

distinction between the  Ru1-Cα≡Cβ1 and Ru2-Cα≡Cβ2 fragments; the structure of 

the Ru1,2-Cαα≡Cβ1,β2  fragments do not change greatly as the orientation of the 

Ru(dHpe)2Cl groups with respect to the bridging phenylene plane is systematically 

varied.   Table 8 lists selected bond distances for the most stable form of HS-[16-

H]
2+

 in which the phenylene plane bisects the P-Ru-P angle at each metal centre.   
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The geometrical parameters for the Ru-C-C fragments are similar to those found in 

the monoruthenium cation [6-H]
+
 (Table 8), whilst the spin densities reflect the 

similarities between HS-[16-H]
2+

 and [6-H]
+ 

(Table 10). 

 

In contrast, the nature of the Ru-Cα-Cβ-C fragments in the optimised geometries of 

HS-[17-H]
2+

 is sensitive to the orientation of the Ru(PH3)2Cp groups.   When the 

Ru(PH3)2Cp moieties are in either a cisoid or transoid arrangement with the 

phenylene plane approximately perpendicular to the plane of  the Cp rings, the 

geometry and spin distribution associated with the Ru1-Cα1-Cβ2 and Ru1-Cα1-Cβ2 

fragments are similar to each other, and also to [15-H]
+
 (Table 9, Table 10).   Table 

8 lists selected geometrical parameters for the most stable conformation, in which 

the phenylene ring approximately bisects the P-Ru-P angles for HS-[17-H]
2+

 in a 

manner similar to that depicted for 17-H in Figure 23.   Twisting one Ru(PH3)2Cp 

moiety in HS-[17-H]
2+

 (nominally Ru2) such that the phenylene plane is 

approximately parallel to the Cp ring ligated to Ru2 prevents that metal d system 

from effectively conjugating with the phenylene bridge.   The geometry of local 

minimum (ca. +2.5 kcal.mol
–1

) associated with this conformation (denoted (HS, 

asym) in Table 9) resembles [15-H]
+
 substituted at C3 by an oxidised 

Ru(C≡C)(PH3)2Cp fragment.  

 

The redox products derived from 1,3-{trans-Cl(dppe)2RuC≡C}2-5-(HC≡C)C6H3 18, 

were also explored, which is a more soluble analogue of 16 that bears additional IR 

active [(C≡C), (C-H)] spectator groups.   Compound 18 also undergoes two 

sequential one-electron oxidation processes, 
104, 105

 which, when monitored by IR 

spectroelectrochemistry, reveal the same pattern of behaviour for the metal-

coordinated (C≡C) bands as described above for 16.   However, the spectator bands 

associated with the C≡CH moiety in the 5-position of the bridging phenylene ring in 

18 are virtually unperturbed by the changes in redox state of the molecule, as would 

be reasonably expected for a probe group located meta to the redox-active 

substituent.  

 

Electronic spectroscopy provides another view of the electronic structures of 16 and 

17, and their redox products.   The UV-vis-NIR spectra of the homo-valent, 
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bimetallic complexes 16 and 17 are dominated by broad, relatively high-energy, 

absorption bands that are likely a combination of -* transitions associated with 

the diethynylbenzene moiety, and “MLCT” bands comparable to those observed in 6 

and 15.   In the most general terms, the electronic spectra of localised mixed valence 

compounds {LnM
+
}-B-{MLn} such as [16]

+
 and [17]

+
 are expected to contain a 

unique intervalence charge transfer band which is not found in the spectra of the 

associated homovalent states, or mononuclear models of the constituent fragments. 

22
   In the case of mixed-valence d

5
/d

6
 complexes, Meyer has noted that the low 

energy region of the electronic spectrum can feature a five-band pattern arising from 

a combination of IVCT transitions and interconfigurational (dd) transitions, which 

gains in intensity in examples featuring low local symmetry and heavier metal 

centres. 
23, 24
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Figure 24 The UV-vis-NIR spectra of [16]
n+

 (top, THF / 0.1 M [NBu4]BF4), [17]
n+

 

(middle, CH2Cl2 / 0.1 M [NBu4]BF4) and [18]
n+

 (bottom, CH2Cl2 / 0.1 M 

[NBu4]BF4). 
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Figure 25 The NIR-IR region of [16]
+
 (top, THF / 0.1 M [NBu4]BF4) and [17]

+
 

(bottom, CH2Cl2 / 0.1 M [NBu4]BF4, showing the deconvolution into a sum of two 

Gaussian- shaped absorption bands. 
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In the visible region, the spectra of the mixed-valence compound [16]
+
, the dication 

[16]
2+

 ( 

Figure 24) and mono-nuclear [6]
+
 (Figure 21) are similar, each being composed of 

three main absorption bands (Table 11).   The NIR region of the mixed valence 

monocation [16]
+
 also features a weak absorption envelope, which can be 

deconvoluted into two Gaussian shaped bands (Figure 25, Table 11).   The lowest 

energy edge of the absorption envelope is partially obscured by IR (overtone) bands 

from the solvent and electrolyte.   On the basis of TD-DFT calculations, the lower 

energy, more intense NIR band is assigned to the “primary” IVCT transition (Figure 

25), whilst the somewhat less intense band is assigned to a pseudo-dd transition.   

These NIR features collapse on further oxidation of the sample to [16]
2+

.   The dd 

bands in this more octahedral system are apparently too weak to be observed or 

masked by the more intense chloride-to-metal MLCT band.   The more soluble 

compound 1,3-{trans-Cl(dppe)2RuC≡C}2-5-(HC≡C)C6H3 18 was also examined by 

UV-vis-NIR spectroelectrochemistry, which revealed the same spectral patterns for 

the oxidised species. 

 

 

Figure 26 Frontier orbitals of mixed valence model systems [16-H]
+
 (left) and [17-

H]
+
 (right) which are likely to be involved in the low-energy IVCT bands observed 

experimentally for [16]
+
 and [17]

+
, on the basis of TD-DFT computations. 
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The visible absorption spectrum of the half-sandwich complexes [17]
+
 and [17]

2+
 

feature bands that are only slightly different to those observed for the related 

mononuclear system [15]
+
 and the closely related mononuclear complex 

[Ru(C≡CC6H4Me-4)(dppe)Cp*]
+
. 

115
   The NIR region of [17]

+
 features two 

absorption bands. The higher energy band is centred near 7750 cm
-1

 ( 150 M
-1

cm
-1

), 

similar to the -HOSO-LUSO transition in [15]
+
 [8100 cm

-1
 ( 600 M

-1
cm

-1
)], 

and assigned to a similar pseudo-dd band associated with the formally d
5
 metal 

centre. 
115

   The lower energy band is unique to the bimetallic mixed valence 

compound [17]
+
 and attributed to an IVCT process ( 

Figure 24).   Oxidation to the dication [17]
2+

 is accompanied by an increase in the  

intensity of the “dd” band near 7500 cm
-1

, collapse of the IVCT band, and growth of 

a new, very weak transition at ca. 4300 cm
-1

 ( 90 M
-1

cm
-1

).   This new low energy 

band is tentatively assigned to a dd transition (which gains intensity as a 

consequence of the two formally d
5
 centres in the dication) or an analogous MMCT 

transition between the d
5
 centres. 

 

The identification of the IVCT band associated with [16]
+
 and [17]

+
 permits 

estimation of the classical coupling parameter Hab based on the relationships 

originally derived by Hush, provided the electron transfer distance, rab, is known, or 

can be estimated.   In the absence of data from Stark spectroscopy, the metal-metal 

separation may be used as an upper limit estimate of rab.   Using the through-space 

metal-metal distance in the optimised geometries of [16-H]
+
 (10.47 Å) and [17-H]

+
 

(10.44 Å) as rab, values of Hab for [16]
+
 and [17]

+ 
 are 180 cm

-1
 and 85 cm

-1
, 

respectively.   However, given the involvement of the bridge in the redox orbitals, 

the relevance of the two-state model to complexes [16]
+
 and [17]

+
 is limited. 

234
   

The molecular orbital representations shown in Figure 26 and Table 13 offer an 

alternative interpretation of the systems. 
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3.3 Conclusions 

 

The results described here clearly indicate that the connection of Ru(II) centres 

through the 1,3-diethynylbenzene core permits formation of thermodynamically 

stable mono-cations that might be described as valence trapped mixed-valence 

compounds for convenience.   The electronic structures of [16]
+
 and [17]

+
 have been 

studied using spectroscopic and computational methods, with the MPW1K 

functional satisfactorily reproducing the electronic asymmetry observed in solution.   

The IVCT band has been located for both [16]
+
 and [17]

+
, with the coupling 

parameters extracted from a Hush-style analysis (Hab = 180 cm
-1

 and 85 cm
-1

 for 

[16]
+
 and [17]

+
 respectively) consistent with the weak coupling indicated by 

Geiger‟s charge distribution parameter.   However, as with related Ru(II) 

arylacetylide complexes, there is an important contribution from the ethynyl 

aromatic -orbitals to the redox process, which necessitates caution when basing 

descriptions on concepts of well-defined metal oxidation states.   Indeed, the 

stabilisation of the “mixed-valence” state seems to arise from the delocalisation of 

the unpaired electron in [16]
+
 and [17]

+
 between a formally Ru(III) centre, the 

acetylide moiety and the aromatic ring, rather than from delocalisation of the charge 

between the two metal centres.   The mixing of metal d and acetylide -type orbitals 

makes the (C≡C) bands a particularly useful diagnostic tool for assessing the 

degree of (de)localisation in polymetallic Ru(II) acetylide complexes. 

 

 

3.4 Experimental Details 

 

3.4.1 General Conditions 

 

All reactions were carried out under an atmosphere of nitrogen using standard 

Schlenk techniques.   Reaction solvents were purified and dried using an Innovative 

Technology SPS-400, and degassed before use.   No special precautions were taken 

to exclude air or moisture during work-up.   The compounds RuCl(dppe)Cp*, 
234
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cis-RuCl2(dppe)2 cis-2, 
235

 [RuCl(dppe)2]OTf  [3]OTf, 
129

 1,3-diethynylbenzene, 
236

 

trans-RuCl(C≡CPh)(dppe)2 6, 
61, 235

 Ru(C≡CPh)(dppe)Cp* 15 
237

 and 1,3-{trans-

Cl(dppe)2RuC≡C}2-5-(HC≡C)C6H3 18 
105

 were prepared by the literature methods.   

Other reagents were purchased and used as received.   [NBu4]BF4 electrolyte was 

recrystallized twice and dried overnight under vacuum at 80 ºC before use.  

 

Infrared spectra of the complexes were recorded using a Nicolet Avatar spectrometer 

from KBr discs.   NMR spectra were obtained with Bruker Avance (
1
H 400.13 MHz, 

13
C 100.61 MHz, 

31
P 161.98 MHz) or Varian Mercury (

31
P 161.91 MHz) 

spectrometers from CDCl3 solutions and referenced against solvent resonances (
1
H, 

7.26 ppm; 
13

C. 77.0 ppm) or external H3PO4 (
31

P).   Mass spectra were recorded 

using Thermo Quest Finnigan Trace MS-Trace GC, Thermo Electron Finnigan LTQ 

FT mass spectrometers or Matrix-Assisted Laser Desorption/Ionisation-Time-of-

Flight (Mass Spectrometry) (MALDI-TOF MS) ABI Voyager STR. 

 

Cyclic voltammograms were recorded from solutions of approximately 10
-4

 M in 

analyte in dichloromethane containing 10
-1

 M [NBu4]BF4 at  = 100 mV s
-1

 in a gas-

tight single-compartment three-electrode cell equipped with platinum disk working 

(apparent surface area of 0.42 mm
2
), coiled platinum wire auxiliary, and platinum 

wire pseudo-reference electrodes.   All redox potentials are reported against the SCE 

scale, with the decamethylferrocene/decamethylferrocenium (Fc*H/Fc*H
+
) redox 

couple used as an internal reference system: –0.07 V vs SCE. 
238

   Data were 

collected using a computer-interfaced EcoChemie PGSTAT-30 potentiostat. 

 

IR spectroelectrochemical experiments at room temperature were performed with an 

air-tight optically transparent thin-layer electrochemical (OTTLE) cell equipped 

with a Pt minigrid working electrode (32 wires cm
-1

) and CaF2 windows. 
239

   The 

cell was positioned in the sample compartment of a Nicolet Avatar FT-IR 

spectrometer (1 cm
-1 

spectral resolution, 16 scans).   The controlled-potential 

electrolyses were carried out with a home-built potentiostat in THF 16 or CH2Cl2 (6 

- 18) solutions that were 0.1 M in supporting electrolyte ([NBu4]BF4). 
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3.4.1.1 Preparation of 1,3-{trans-Cl(dppe)2RuC≡C}2C6H4 [16] 

 

Method A 

A mixture of cis-[RuCl2(dppe)2] cis-2 (970 mg, 1.00 mmol), 1,3-diethynylbenzene 

(50.3 mg, 0.399 mmol) and NaPF6 (180 mg, 1.07 mmol) in CH2Cl2 (40 mL) was 

stirred at room temperature overnight.   The solvent volume was reduced and the 

mixture filtered into a large excess of rapidly stirred diethyl ether.   The precipitated 

vinylidene complex was collected and dissolved in CH2Cl2.   Triethylamine was 

added, and the solvent removed on the rotary evaporator.   The residue was 

redissolved in CH2Cl2 and loaded on a pad of basic alumina.   Elution with CH2Cl2 

afforded a yellow fraction that was concentrated, and then filtered into rapidly 

stirred petrol, affording the product as a yellow powder, which was collected, 

washed with petrol, and dried.   Yield 209 mg (26%).  

 

Method B 

A mixture of [RuCl(dppe)2]OTf [3]OTf (388 mg, 0.36 mmol) and 1,3-

diethynylbenzene (21 mg, 0.167 mmol) in CH2Cl2 (14 mL) was stirred at room 

temperature overnight.   The solvent was removed in vacuo and the residue was 

washed with hexanes.   The residual red solid was redissolved in CH2Cl2 (5 mL) and 

triethylamine (0.5 mL) was added, causing an immediate lightening of the solution 

to a yellow colour.   The solvent was removed in vacuo, and the pale residue 

redissolved in CHCl3 (4 mL).   Addition of methanol (25 mL) gave a sandy yellow 

solid, which was collected by filtration, washed with hexanes and dried in vacuo.   

Yield 273 mg (82%). 

 

IR(CH2Cl2 / cm
-1

): (C≡C) 2063(s).   
1
H NMR (CDCl3, 400 MHz): H 2.66 (m, 8H, 

CH2), 2.76 (m, 8H, CH2), 6.48 (d, 2H, H4,6 of C6H4), 6.71 (s, 1H, H2 of C6H4), 6.96 

(t, 1H, H5 of  C6H4), 6.96 (m, 32H, CH dppe), 7.07 (m, 32H, CH dppe), 7.71 (m, 

16H, Ph Ho).   
31

P{
1
H} NMR (CDCl3, 81 MHz):  51.2 (s, dppe).   

13
C{

1
H} NMR 

(CDCl3, 126 MHz): C 30.9 (m, CH2), 114.9 (s, C≡CC6H4), 126.8, 127.2 (Cm,m’ 

dppe); 128.5, 128.9 (Cp,p’ dppe); 134.1, 134.5 (dds, JCP/CCP ~ 5 Hz, Co,o‟); 135.2, 
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137.1 (m, Ci,i’).   Other expected peaks were not observed due to poor solubility. 

ES(+)-MS (m/z): 1990, M
+
. 

 

3.4.1.2 Preparation of 1,3-{Cp*(dppe)RuC≡C}2C6H4 [17] 

 

A mixture of RuCl(dppe)Cp* (210 mg, 0.31 mmol) and NH4PF6 (75 mg, 0.45 

mmol) was heated at reflux in dry degassed MeOH (15 ml) for 20 min to form an 

orange suspension.   After cooling, 1,3-diethynylbenzene (22 μL, 0.15 mmol) was 

added to the reaction vessel and the solution stirred for 5 min.   The reaction mixture 

was filtered under nitrogen and a solution of NaOMe (made from Na metal 

dissolved in MeOH) was added to the red solution.   The yellow precipitate formed 

was filtered and washed with hexane.   Yield (150 mg, 72 %).   IR(CH2Cl2 / cm
-1

): 

(C≡C) 2062(s).   
1
H NMR (CDCl3, 400 MHz): H 1.54 (s, 30H, Cp*); 2.05 (m, 4H, 

CH2); 2.70 (m, 4H, CH2); 6.35 (dd, 2H, JHH = 8 and 2 Hz, H4,6 of C6H4), 6.67 (t, 1H, 

JHH = 2 Hz, H2 of C6H4), 6.70 (t, 1H, JHH = 8 Hz, H5 of  C6H4), 7.17 (m, 8H, CH 

dppe), 7.27 (m, 24H, CH dppe), 7.75 (m, 8H, Ph Ho).   
31

P{
1
H} NMR (CDCl3, 81 

MHz):  82.1 (s, dppe).   
13

C{
1
H} NMR (CDCl3, 126 MHz): C 10.0 (s, C5Me5), 

29.5 (m, CH2), 92.4 (s, C5Me5), 109.8 (s, C≡CC6H4), 125.1 (t, JCP = 23 Hz, RuC), 

125.4 (C4,6 of C6H4), 126.6 (C5 of C6H4), 127.0, 127.3 (Cm,m’);  128.7 (Cp,p’); 130.4 

(C1,3 of C6H4); 131.9 (C2 of C6H4); 133.0, 133.5 (dds, JCP/CCP ~ 5 Hz, Co,o’); 137.0, 

139.0 (m, Ci,i’). ES(+)-MS (m/z): 1394, [M+H]
+
. 

 

3.4.1.3 Preparation of 1,3-{Cp*(dppe)RuC≡C}2-5-(HC≡C)C6H3 [18] 

 

[18] was prepared by literature methods. 
105

 

1
H NMR (CDCl3, 400 MHz): H 2.65 (m, 8H, CH2); 2.74 (m, 8H, CH2); 3.02 (s, 1H, 

C≡CH), 6.44 (s, 2H, H4,6 of C6H3), 6.58 (s, 1H, H2 of C6H3), 6.94 (m, 32H, CH 

dppe), 7.11 (m, 32H, CH dppe), 7.59 (m, 16H, Ph Ho).   
31

P{
1
H2 NMR (CDCl3, 81 

MHz):  51.1 (s, dppe).   
13

C{
1
H} NMR (CDCl3, 126 MHz): C 30.7 (m, CH2), 75.0 

(C≡CH), 84.9 (C≡CH),  113.7 (RuC≡CC6H3), 120.3 (C5 of C6H3), 124.0 (t, JCP = 15 

Hz, RuC), 126.8, 127.2 (Cm,m’ dppe); 128.6, 128.8 (Cp,p’ dppe); 129.6 (C1,3 of C6H3), 

129.6 (C2 of C6H3), 129.9 (C4,6 of C6H3), 134.2 (Co,o’); 135.2, 136.8 (m, Ci,i’).  



 

76 

 

3.4.2 Computations 

 

All ab initio computations were carried out with the Gaussian 03 package. 
240

   The 

model geometries of the mononuclear [6-H]
n+

 and [15-H]
n+ 

(n = 0, 1), and dinuclear 

systems [16-H]
n+

 and [17-H]
n+

 (n = 0, 1, 2) discussed here were optimised using the 

MPW1K/3-21G* level of theory with no symmetry constraints. 
228, 241-243

   This 

MPW1K/3-21G* level of theory proved to be suitable for ruthenium complexes 

elsewhere.
 43,229

   The keywords used in Gaussian03 for the MPW1K functional 
228, 

241
 here are MPWPW91 and iop(3/76=0472005280).   Frequency calculations were 

computed on these optimised geometries at the corresponding levels and no 

imaginary frequencies were found in these geometries unless otherwise stated.   A 

scaling factor of 0.89 was applied to the calculated frequencies, as it is known that 

DFT calculations over estimate the acetylide (C≡C) and acetylide ring substituent 

(C=C) frequencies. 
244, 245

   TD-DFT computations carried out on the model 

geometries gave complex data with heavily mixed transitions.   However, the two 

lowest-energy transitions for the mixed valence cations [16-H]
+
 and [17-H]

+
  are 

clearly IVCT and dd transitions, attributable to a charge transfer process from a 

metal-acetylide donor to a metal-phenylacetylide acceptor.   The MO diagrams and 

orbital contributions were generated with the aid of GaussView 
246

 and GaussSum 

247
 packages respectively. 
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Chapter 4 : Hydroruthenation – Mono and Multi- 

metallated Compounds 
 

4.1 Introduction 

 

In seeking to better understand the electronic structure of redox families derived 

from [LnM]-bridge-[MLn] systems there is considerable advantage in the use of 

spectroscopic techniques that are sensitive to the formal redox state of the MLn 

fragments and / or the electron density residing on the bridge.   The use of IR 

spectroelectrochemical methods to follow the shift in (C≡C) bands in 1,3-{trans-

Cl(dppe)2RuC≡C}2C6H4 16, 1,3-{Cp*(dppe)RuC≡C}2C6H4 17 and 1,3-{trans-

Cl(dppe)2RuC≡C}2-5-(HC≡C)C6H3 18 as a function of redox state illustrates this 

point (Chapter 3).   Since there is little back-bonding between the metal centre and 

the acetylide fragment, the large shifts in acetylide (C≡C) frequency upon 

oxidation of 16, 17 and 18 clearly indicate that the oxidation event involves 

considerable acetylide ligand character. 

 

The use of “spectator” vibrational groups to report on electronic structure within a 

redox family has developed rapidly over the last few years. 
41-43, 59, 248-251

   The fast 

time-scale of vibrational spectroscopy (ca. 10
-13

 s) permits study of all but the fastest 

of electron transfer events.   In addition, since vibrational frequencies can be readily 

extracted from computational models, experimental vibrational data provide a 

convenient direct link between an optimized geometry and the experimental system, 

albeit with some need for empirical correction. 
244, 245

   For example, Kubiak has 

used the (C≡O) band in a series of ligand bridged bis(cluster) compounds [{Ru3(μ3-

O)(μ-OAc)6(CO)(L)}2(μ-BL)]
–
 (L = 2-electron donor ligand, BL = bridging ligand, 

see Chart 2) to follow the rate of electron-exchange between the cluster redox sites 

as a function of the bridge structure, 
31, 39

 or solvation environment. 
40

 

 



 

78 

 

 

Chart 2 Kubiak bis(cluster) compounds. 
31

 

 

With many studies of bimetallic, acetylide-bridged metal complexes having been 

completed over the last 10 years or so, attention was directed to alternative ligand 

structures and metal fragments that directly incorporated an IR active reporting 

group.   The assembly of ruthenium complexes featuring both a metal-bound 

carbonyl and a conjugated organic ligand can be conveniently achieved through the 

hydroruthenation of an alkyne with RuHCl(CO)(PPh3)3 (19). 
252-257

   The first step in 

this reaction is dissociation of a labile phosphine ligand due to a high trans effect of 

a hydride ligand, which leads to the formation of a five coordinate ruthenium 

hydride complex (Scheme 7).   The five coordinate species is susceptible to attack 

by the alkyne in a -donor fashion and subsequently the C≡C bond is reduced by a 

regioselective addition of Ru-H.   This five coordinate ruthenium vinyl species can 

then be isolated, 
252, 253, 258, 259

 or used in situ as a precursor to a wide range of 

complexes through ligand substitution reactions. 
260-267
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Scheme 7 Hydroruthenation reaction scheme. 

 

However whilst the addition of M-H across a C≡C bond of a terminal alkyne is 

simple conceptually, there seems to be some detail lacking in the mechanism of this 

reaction.  Some researchers have proposed that the reaction occurs by “addition of 

the alkyne to the metal centre, followed by rapid migration of the hydride from the 

metal to the carbon atom”, 
268

 and also calling this reaction an “unexpected 

insertion”.
269

   However this reaction mechanism should also apply to alkenes, but 

these only form the metal adducts, rarely forming the alkyl product. 
270, 271

 

 

With the structure of the metal reactant being square pyramidal with an apical 

hydride, the LUMO is directed away from the hydride (Scheme 8).   Hence the 

adduct of any unsaturated ligand would be stereochemically unsuitable towards easy 

H transfer to the carbon. 
272

 

 

 

Scheme 8 One proposed model for the first steps of the hydroruthenation reaction. 

272
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Alternative possible mechanisms have been proposed, 
272, 273

   including the 

formation of the vinyl product by bimolecular attack of the alkyne at the metal 

centre in the H-M-Cl quadrant (Scheme 9). 
272

 

 

 

Scheme 9 Alkyne attack to the metal centre in the H-M-Cl quadrant. 
272

 

 

Regardless of the precise detail of the reaction mechanism, the hydroruthenation 

reaction is well suited to the conversion of alkynes to metal vinyl complexes.   Jia 

has been very successful in building a series of metal-capped polyacetylene 

derivatives through the reaction of RuHCl(CO)(PPh3)3  with a series of bis(alkynes) 

HC≡C(CH=CH)nC≡CH (Scheme 10). 
159, 160, 162, 274

   A rich variety of complexes are 

then accessible through facile ligand exchange reactions with the 

Ru(vinyl)(CO)(PPh3)2 fragment. 
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Scheme 10 Syntheses of a selection of bimetallated polyacetylene derivatives. 
159, 160, 

162, 274
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In a very clever variation, the polyacetylene chain has also been built through 

extension of the somewhat exotic Wittig reagent 

[Ru(CH=CHCH2PPh3)(CO)(PPh3)Tp]BF4 upon reaction with the hindered base 

LiN(SiMe3)2 and benzaldehyde (Scheme 11). 
161

 

 

 

Scheme 11 Extension of the vinyl fragment, through the use of Wittig reactions. 
161

  

 

Similar strategies have also been used to prepare mixed ruthenium / ferrocene 

capped polyacetylene fragments (Scheme 12). 
163

   However, detailed investigations 

of the electronic structure of these complexes and their redox products have not been 

forthcoming, with discussions largely limited to analyses of electrochemical data. 
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Scheme 12 Synthesis of Ruthenium / Ferrocene capped polyacetylene complexes. 
163

 

 

In a series of elegant studies reported during the course of the work that forms this 

thesis, Winter demonstrated the use of both metal carbonyl and supporting ligand 

vibrational bands in assessing the site of oxidation in bis(vinyl) complexes such as 

1,4-[{RuCl(CO)(P
i
Pr3)2}2(μ-CH=CHC6H4CH=CH)], 1,3-[{RuCl(CO)(P

i
Pr3)2}2(μ-

CH=CHC6H4CH=CH)], 
42

 and the ethyl isonicotinate adduct 1,4- and 1,3-

[{RuCl(CO)(PPh3)2(NC6H4CO2Et)}2(μ-CH=CHC6H4CH=CH)] (20 and 21) (Chart 

3). 
41

   In the Winter work , the small shifts in both (C≡O) (+13 cm
-1

 and +33 cm
-1

 

for [20]
+
 and [20]

2+
, respectively) and (C=O, ester) (+2 cm

-1
 and +11 cm

-1
 for [20]

+
 

and [20]
2+

, respectively), demonstrated the bridging ligand to be largely the redox 

active site in these molecules.   Oxidation of 21, gives very similar small shifts in 

both (C≡O) and (C=O, ester) to 20, with the exception of the mixed-valence 
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[21]
+
, where the (C≡O) splits, indicating a partial charge localisation on one of the 

styrylruthenium fragments. 

 

 

Chart 3 Isonicotinate ester capped 1,4- and 1,3-divinylbenzene complexes (20 and 

21). 
42

 

 

Other spectroscopic methods, such as that from EPR spectroscopy, were consistent 

with these findings, although it is important to bear in mind that each spectroscopic 

method has a different timescale. 
248-250

   Extension of this work to the tetrametallic 

complex [{RuCl(CO)(P
i
Pr3)2}4{4-(CH=CHC6H4)4(CH=CH)}] (22) (Scheme 13) 

has also been undertaken, with the tetraphenylethene core being shown to be the 

redox active portion of the molecule. 
59
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Scheme 13 Tetra- hydroruthenation of tetraphenylethene to form 22. 
59

 

 

However, not all studies on related systems are so thorough.   In the case of a series 

of complexes with general form 1,4-[{RuCl(CO)(PMe3)3}2(μ-

CH=CHC6H2R2CH=CH)], electrochemical studies revealed two one electron 

oxidation waves, the separation of which was sensitive to the nature of the 

substituents on the aryl group of the bridging ligand.   On the assumption that the 

redox events were metal centred, the authors interpreted their electrochemical data 

in terms of the degree of electronic interaction between the metal centres.   If one 

considers that the first oxidation processes are likely to be rather more ligand in 

character, the flaws in reliance upon electrochemical data in isolation are obvious. 

275
 

 

In this Chapter the complexes [Ru(CH=CHC6H4R-4)(CO)(PPh3)Tp] [Tp
-
 = 

hydrido(trispyrazolyl)borate anion, [BHpz3]
-
] have been prepared and characterized.   

The electronic structure of [Ru(CH=CHC6H4R-4)(CO)(PPh3)Tp]
n+

 (n = 0, 1) have 

been studied by spectroelectrochemical methods supported by DFT calculations.   
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Extension of the work to ligands derived from 1,4-diethynyl, 1,3-diethynyl and 

1,3,5-triethynyl benzene has allowed questions of ligand mediated electron transfer 

in bi- and tri-metallic di- and tri- vinyl bridged complexes to be investigated in 

detail. 

 

The choice of the Tp
-
 ligand was inspired by the analogy with the anionic 

cyclopentadienyl ligand that has been used to support many half-sandwich 

ruthenium acetylide complexes. 
276

   The Cp
-
 and Tp

-
 ligands are isoelectronic, six 

electron donors, which are likely to coordinate in a tridentate manner, and lead to 

similar chemistry. 
277, 278

   For example, typical reactions in complexes such as 

RuCl(PPh3)2Cp which contain the cyclopentadienyl ligand include phosphine 

dissociation, which occurs in non-polar solvents, and chloride ionisation and 

dissociation in polar solvents. 
276

   Similar characteristics are also prominent in the 

chemistry of RuCl(PPh3)2Tp. 
279

   KTp is a commercially available, air-stable solid.   

Consequently, [Ru(CR=CHR‟)(CO)(PPh3)Tp] complexes are more readily available 

than the isoelectronic Cp analogues, 
266

 and were chosen as the entry point to studies 

of the electrochemical properties and electronic structure of ruthenium vinyl 

complexes. 

 

The addition of Tp
-
 to five coordinate complexes of the form MHCl(CO)(PR3)2 (M 

= Ru / Os) has been shown to be a two step process where first, the incoming Tp
-
 

ligand displaces the Cl
-
 ligand, with one further pyrazolyl ring coordinating to the 

vacant coordination site trans- to the hydride.   The second step is the coordination 

of the third pyrazolyl ring which displaces one of the two phosphines. (Scheme 14)  

Reaction conditions and other factors determine whether or not the η
2
-Tp 

coordinated complexes can be isolated. 
280, 281

   Similar processes are likely in the 

substitution reactions of vinyl complexes described below. 
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Scheme 14 Addition of Tp
-
 ligand to a metal hydride complex. 

280
 

 

 

4.2 Mono-Hydroruthenated Acetylene Complexes 

 

4.2.1 Results and Discussion 

 

On addition of each of the acetylenes HC≡CC6H4R-4 (R = CH3, CN, NO2, CO2Me, 

OMe) to RuHCl(CO)(PPh3)3 in CH2Cl2, there is an instant colour change in the 

solution from a pale yellow to a deep red, with in situ monitoring of the reaction by 

IR or 
31

P NMR spectroscopy indicating the rapid formation of Ru(CH=CHC6H4R-

4)Cl(CO)(PPh3)2.   The addition of KTp to these solutions of Ru(CH=CHC6H4R-

4)Cl(CO)(PPh3)2 resulted in a slower ligand substitution  reaction, evidenced by a 

slower colour change over 1 - 3 hours, the precise duration being dependent on the R 

group attached to the benzene ring, that ultimately afford Ru(CH=CHC6H4R-

4)(CO)(PPh3)Tp , [R = CH3 (23) , CN (24), NO2 (25), CO2Me (26), OMe (27)] 

(Chart 4). 

 

For the most part, these reactions were straightforward and gave the vinyl products 

in moderate yield.   Higher yields were obtained when an inert atmosphere was used 

and reactions performed in a glove box.   Isolation of the product was achieved by 

first removal of precipitated KCl by filtration, followed by precipitation of the 

complex from CH2Cl2 with n-hexane.   Purification of this series of complexes was 

achieved by recrystallisation (slow diffusion) in a suitable solvent system, as the 

complexes proved sensitive to common chromatography supports.   Crystals of a 

suitable quality for single crystal X-ray diffraction were obtained for 23, 24, 25 and 

26. 
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Chart 4 The monometallic vinyl complexes used in this study (23 – 27). 

 

Curiously, the synthesis of 24 was difficult to reproduce, and the attempted 

preparation of Ru(CH=CHC6H4NMe2-4)(CO)(PPh3)Tp was unsuccessful, with a 

complex mixture of products being observed in the final solution by 
31

P NMR 

spectroscopy.   In an attempt to elucidate the relative reaction timescales 

(hydroruthenation vs ligand substitution by Tp
-
), but not a full kinetic profile, a 50 

mg scale reaction between RuHCl(CO)(PPh3)3, HC≡CC6H4NMe2 and KTp was 

followed by 
31

P NMR spectroscopy.   It was hoped that knowledge of the relative 

rates of the species formed, potentially a mixture of RuHCl(CO)Tp, 

Ru(CH=CHC6H4R-4)Cl(CO)(PPh3)2 and the desired complex 

Ru(CH=CHC6H4NMe2-4)(CO)(PPh3)Tp, the reaction conditions could be optimised.   

However, little could be deduced and this experiment merely provided the 

confirmation that the slowest step was the capping reaction that converts 

Ru(CH=CHC6H4R-4)Cl(CO)(PPh3)2 to Ru(CH=CHC6H4R-4)(CO)(PPh3)Tp.   

However, isolation of Ru(CH=CHC6H4NMe2-4)(CO)(PPh3)Tp from the reaction 

mixture was not successful.  

 

The synthesis of 24 was only possible once but fortunately a crystal suitable for X-

ray crystallographic work was obtained by crystallisation of the crude reaction 

mixture.   However, attempts to repeat this experiment on a larger scale, in order to 
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complete the characterisation, were unsuccessful.   In this particular experiment, the 

addition of 4-ethynylbenzonitrile to RuHCl(CO)(PPh3)3 led to the formation of a 

cloudy yellow suspension almost instantly.   This is likely to be due to complications 

arising from competitive coordination leading to the formation of a polymer, 

whereby the lone pair on the nitrogen atom of the cyano group coordinates to the 

vacant site trans to the vinyl ligand  (Scheme 15). 

 

On one occasion, addition of KTp to the cloudy suspension lead to the dissolution of 

the presumed polymer, and the formation of a clear green solution.   This contained 

the “capped” six coordinate ruthenium vinyl complex 24, which was isolated by 

crystallisation.   The fact that this experiment could not be repeated led to the 

conclusion that the timescale of each step in the sequence and concentration of the 

reagents must be considered with the extent to which the formation of the suspected 

polymer or oligomeric by-products is allowed to take place, and the point in the 

polymer formation where KTp is added may be significant in determining whether 

the desired product is formed.   However, the general time constraints prevented 

further examination of this reaction. 
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Scheme 15 A schematic showing possible diverse reaction pathways arising from 

CN coordination to the RuCl(CO)(PPh3)2 fragment. 

 

The ruthenium centre in 23 - 27 is approximately octahedral, with the Tp ligand 

occupying three sites in a fac configuration with the remaining sites occupied by the 

vinyl, CO and PPh3 ligands.   The complexes are therefore chiral and both 

enantiomers (R and S), are formed in the reaction (Scheme 16).   The R and S 

enantiomeric forms give the same spectroscopic data hence can not be separated or 

distinguished spectroscopically.   Both isomers are, of course, present in the single 

crystal and observed crystallographically. 
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Scheme 16 A schematic showing the two possible enantiomers from the Tp capping 

step of the reaction. 

 

The six-coordinate complexes 23 – 27 were characterised by the usual spectroscopic 

and spectrometric (IR, 
1
H, 

13
C, 

31
P NMR, MALDI(+)-MS) methods along with 

11
B{

1
H} NMR.   In the IR spectra, the carbonyl ν(C≡O) band was observed between 

1940 and 1950 cm
-1

, the lowest wavenumber bands being associated with 26 and 27, 

and the borohydride ν(B-H) band was observed between 2470 and 2490 cm
-1

, the 

lowest wavenumber band being associated with 27.   The MALDI (Matrix-Assisted 

Laser Desorption/Ionization) mass spectra (MALDI(+)-MS) featured the molecular 

ion.  In the 
31

P NMR spectra, the phosphine ligand gave rise to a single singlet near 

 50 ppm.   In the 
1
H NMR spectra of 23 - 27, the aromatic protons were often 

observed as distinctive pseudo-doublet (AB pattern) resonance between H 6.8 – 7.9 

ppm. 

 

The vinyl protons in 23 – 27 display the characteristic vinyl coupling patterns, with 

coupling between the alpha vinyl proton and the phosphorus centre of the phosphine 

ligand also apparent.   The Hα resonance is therefore observed between δH 7.8 - 9.1 

ppm as a doublet of doublets with coupling of 
3
JHH = 17 Hz and 

3
JHP = 2 Hz.  The 

magnitude of the 
3
JHH coupling is diagnostic of trans vinyl Hs.   The resonance for 

the Hβ is observed as a doublet (
3
JHH = 17 Hz), between δH 6.3 – 6.6 ppm.   The 

chemical shifts of both of the vinyl proton resonances are sensitive to the electronic 
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nature of the remote para-substituent, the Hα resonances being the more sensitive of 

the two. 

 

The NMR resonances of the pyrazolyl rings were assigned using the 
1
H NMR 

spectra of potassium tris-pyrazolylhydroborate as reference, and correlation 

spectroscopy, although a few of the couplings from the aromatic ligands, especially 

those of the tris-pyrazolylhydroborate, were not fully resolved, with the assignments 

further aided by NMR simulation software.   The free ligand Tp
-
 exhibits three sets 

of resonances, each with an integral of 3H.   The same pattern is also observed for 

the Tp
-
 ligand in the complexes 23 – 27.   The first set of resonances for the 

coordinated Tp
-
 are observed at δH ~6 ppm, which from the pseudo-triplet 

arrangement (
3
JHH = 2 Hz), are assigned as the 3 Hb protons on the three pyrazolyl 

rings.   The second set are observed as doublets at δH ~7 ppm, and the third set of 

resonances are observed also as doublets at δH ~8 ppm.  The second and third sets 

are assigned as the 3 Hc and 3 Ha protons respectively (Figure 27).   Within each set 

of resonances, there are two resonances close to each other and one a little further 

away.   It is difficult to determine from which of the three pyrazolyl rings each of the 

three resonances in the sets arise. 

 

 

Figure 27 The NMR labelling scheme used in this Chapter. 

 

The hydrido resonance of the Tp
–
 ligand is heavily broadened by coupling to the 

11
B 

nucleus to the extent that it cannot be observed in routine 
1
H NMR spectra. 

However, in a 
1
H{

11
B} NMR spectrum of 25 the boron-hydride resonance was 

observed at 4.64 ppm.   In complementary fashion, the 
11

B{
1
H} NMR spectra of 25 

shows one boron resonance at -3.8 ppm. 
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The 
13

C NMR spectra of 23 – 27 all have a characteristic carbonyl resonance, which 

can be observed as a doublet (
2
JCP = 16 Hz) at high frequency (δC 200 – 208 ppm), 

the precise position of which shows some sensitivity to the nature of the R-group, 

with compound 27 (R = OMe) having the lowest frequency carbonyl resonance (201 

ppm).   The chemical shift of the vinyl Cα resonances, which were observed as  

doublets (
2
JCP ~ 13 Hz), proved to be sensitive to the electronic nature of the remote 

aryl substituent, varying between δC 158 and 180 ppm, where as the vinyl Cβ 

resonances, which were also observed as  doublets (
3
JCP ~ 2 Hz), were located 

closely around δC 135 ppm.    

 

The 
13

C resonances of the Tp
–
 ligand were observed in three sets of three slightly 

different C environments, which are labelled in Figure 27 for clarity.   From the 

NMR labelling scheme (Figure 27) it can be seen that there are three different 

carbon environments on each pyrazolyl ring, however each pyrazolyl ring is in a 

slightly different electronic environment from the other two, i.e. Ca ≠ Ca‟ ≠ Ca‟‟.   

These three sets of resonances, observed at δC ~106 ppm, δC 135 – 137 ppm and δC 

142 – 145 ppm, are assigned to the Cb/b‟/b‟‟, the Cc/c‟/c‟‟ and the Ca/a‟/a‟‟ environments 

respectively.   The Cc/c‟/c‟‟ environment set have been assigned to the set of 

resonances with the widest range of δC chemical shift due to the fact that there are 

closer to the ruthenium centre and hence more likely to be influenced by the 

electronic density changes at the ruthenium centre caused by the change in the 

electronic nature of the para-substituent.   The chemical shifts within each set of 

resonances follow the same pattern as seen in the 
1
H NMR spectra, with two 

resonances occurring at very similar chemical shifts whilst the third is found to 

slightly higher frequency. 
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4.2.2 Molecular Structure Analyses 

 

The molecular structures of 23, 24, 25 and 26 have been determined by single 

crystal X-ray diffraction with plots of the molecules shown in Figure 28, Figure 29, 

Figure 30 and Figure 31, respectively.   Crystallographic data, selected bond lengths 

and angles are listed in Table 14, Table 15 and Table 16.   The crystallographic work 

was carried out by Dr D.S. Yufit of Durham University, Chemistry Department. 
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Table 14  Crystal data and experimental parameters.  The molecular structure of 26* contains a molecule of CH2Cl2. 

Empirical formula C37H34BN6OPRu  C37H31BN7OPRu  C36H31BN7O3PRu  C39H36Cl2BN6O3PRu   

Complex number 23 24 25 26* 

Formula weight (g mol-1) 721.55 732.54 752.53 850.49 

Temperature (K) 120(2)  120(2)  153(2) 120(2) 

Wavelength (Å) 0.71073 0.71073 - - 

Crystal system Monoclinic Monoclinic Monoclinic Orthorhombic 

Space group P 21/n P 21/n P21/n Pca21 

a / (Å) 12.3553(4) 12.3271(4) 12.2388(2) 17.9655(9) 

b / (Å) 17.5258(6) 17.7540(5) 17.7482(3) 13.7346(7) 

c / (Å) 15.5575(5) 15.5549(4) 15.5664(3) 15.5579(9) 

 / (°) 90.00 90.00 90.00 90.00 

 / (°) 90.66(1) 90.19(1) 90.36(10) 90.00 

γ / (°) 90.00 90.00 90.00  90.00 

Volume (Å
3

) 3368.54(19) 3404.25(17)  3381.21(10) 3838.9(4) 

Z 4 4 4 4 

Density (calculated) Mg/m
3

 1.423  1.429  1.478  1.472  

Absorption coefficient (mm
-1

) 0.553  0.549  0.559  0.635  

F(000) 1480 1496 1536 1736 

Crystal size (mm
3) 0.18 x 0.18 x 0.04  0.34 x 0.16 x 0.07  0.2 × 0.2 × 0.01 0.3 × 0.3 × 0.3 

Theta range for data collection (°) 1.75 to 30.00 1.74 to 29.00 1.74 to 28.50 1.48 to 29.00 
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Index ranges -17 ≤ h ≤ 17 

-24 ≤ k ≤ 24 

-21 ≤ l ≤ 21 

 -16 ≤ h ≤ 16 

 -24 ≤ k ≤ 23 

-21 ≤ l ≤ 21 

-16 ≤ h ≤ 16 

 -23 ≤ k ≤ 23 

-20 ≤ l ≤ 20 

-21 ≤ h ≤ 24 

 -16 ≤ k ≤ 18, 

-21 ≤ l ≤ 21 

Reflections collected 44956 38474 42882 30441 

Independent reflections 9799 [R(int) = 0.0607] 8972 [R(int) = 0.0898] 8573[R(int) = 0.0727] 10183[R(int) = 0.0273] 

Absorption correction Numerical None - - 

Max. and min. Transmission 0.9796 and 0.8990 - - - 

Refinement method Full-matrix least-squares on 

F2 

Full-matrix least-squares 

on F2 

- - 

Data / restraints / parameters 9799 / 0 / 560 8972 / 0 / 437 8573/0/450 10183/1/483 

Goodness of fit on F
2

 1.026 0.976 0.986 1.047 

Final R indices [I>2ζ(I)] R1 = 0.0324 

 wR2 = 0.0745 

R1 = 0.0409 

 wR2 = 0.0811 

R1 = 0.0334 

 wR2 = 0.0754 

R1 = 0.0380 

 wR2 = 0.1014 

R indices (all data) R1 = 0.0493 

 wR2 = 0.0820 

R1 = 0.0809 

 wR2 = 0.0904 

R1 = 0.0574 

 wR2 = 0.0847 

R1 = 0.0437 

 wR2 = 0.1069 

Largest diff. peak and hole (e.Å
-3

) 0.686/-0.438 0.558/-0.558  0.804/-0.478 1.327/-0.923 
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Table 15 Selected bond lengths (Å) for 23, 24, 25 and 26.  

 23 (R = CH3)  24 (R = CN)  25 (R = NO2)  26* (R = CO2Me)  

Ru(1) – C(1) 2.0582(19) 2.052(3) 2.044(2) 2.038(3) 

Ru(1) – P(1) 2.3193(5) 2.3326(7) 2.3315(6) 2.3360(8) 

Ru(1) – N(1)  

(trans to PPh3) 
2.1407(16) 2.142(2) 2.1368(19) 2.121(2) 

Ru(1) – N(3)  

(trans to CO) 
2.1555(16) 2.155(2) 2.1504(19) 2.167(3) 

Ru(1) – N(5)  

(trans to CHCH) 
2.1952(15) 2.195(2) 2.1879(18) 2.179(2) 

C(1) – C(2) 1.342(3) 1.334(4) 1.338(3) 1.352(4) 

C(2) – C(3) 1.474(3) 1.473(4) 1.446(3) 1.472(4) 

Ru(1) – C(9) 1.8273(19) 1.829(3) 1.829(2) 1.833(3) 

C(9) – O(1) 1.153(2) 1.161(3) 1.154(3) 1.154(4) 

* includes a molecule of CH2Cl2. 

 

Table 16 Selected bond and dihedral angles () for 23, 24, 25 and 26.  

 23 (R = CH3)  24 (R = CN)  25 (R = NO2)  26* (R = CO2Me)  

C(9)-Ru(1)-C(1) 86.52 (8) 86.63 (11) 87.42 (10) 88.72 (12) 

C(9)-Ru(1)-N(3) 172.72 (7) 173.01 (10) 173.36 (9) 174.54 (12) 

C(1)-Ru(1)-N(5) 171.96 (7) 172.31 (9) 171.91 (8) 171.04 (10) 

C(9)-Ru(1)-P(1) 92.75 (6) 92.39 (9) 92.32 (8) 93.37 (10) 

C(1)-Ru(1)-P(1) 91.92 (5) 91.81 (7) 92.46 (6) 92.78 (8) 

N(1)-Ru(1)-P(1) 177.27 (4) 177.16 (6) 176.85 (5) 174.19 (7) 

C(2)-C(1)-Ru(1) 132.10 (15) 132.4 (2) 131.89 (19) 134.3 (2) 

C(1)-C(2)-C(3) 127.02 (19) 127.7 (3) 126.9 (2) 125.2 (3) 

C(9)-Ru(1)-C(1)-C(2) -7.83 -3.85 7.89 5.52 

Ru(1)-C(1)-C(2)-C(3) 173.57 175.44 176.61 176.29 

C(1)-C(2)-C(3)-C(8) 19.6 15.0 18.3 2.3 

* includes a molecule of CH2Cl2. 
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Figure 28 Molecular structure of 23.  In this and subsequent Figures, only a selection 

of the H atoms are shown for clarity.  

 

 

Figure 29 Molecular structure of 24. 
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Figure 30 Molecular structure of 25.   

 

 

Figure 31 Molecular structure of 26.   

 

In each complex 23 – 26 the ruthenium centre exhibits a distorted octahedral 

geometry with the Tp
–
 anion acting as a facial tridentate ligand and occupying three 
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coordination sites.   The Ru-vinyl-aromatic ring moiety is essentially planar [Ru(1)-

C(1)-C(2)-C(3) dihedral angle 173.6 – 176.3 ], with a gentle curve in the molecular 

backbone, brought about by crystal packing.   Within the series 23 – 26, the Ru-C(9) 

[1.8273(19) – 1.833(3) Å], Ru-P [2.3193(5) – 2.3360(8) Å] and Ru-C(1) [2.038(3) – 

2.0582(19) Å] bond lengths are comparable with those of related hydroruthenated 

compounds such as [Ru(CH=CHC3H7)Cl(CO)(PPh3)2(Me2Hpz)] (28) [Ru-CO; 

1.79(1) Å, Ru-P; 2.319(3) Å, and Ru-Cα; 2.05(1) Å] 
256

 and 

[{RuCl(CO)(PPh3)2(Py)CH=CH}3C6H3-1,3,5] (29) [Ru-CO; 1.809(10) Å, Ru-P; 

2.397(2) Å, and Ru-Cα; 2.050(8) Å]. 
282

   The three Ru-N bond lengths [Ru-NPPh3; 

2.121(2) – 2.142(2) Å, Ru-Nvinyl; 2.179(2) – 2.1952(15) Å, Ru-NCO; 2.1504(19) – 

2.167(3) Å] are comparable with those of related tris(pyrazolyl)hydroborate capped 

ruthenium compounds, 30 
283

 and 31. 
266

  

 

 

Chart 5 Tp capped mono-vinyl complexes 30 and 31. 

 

 

Table 17 Selected bond lengths comparison of complexes 23 – 26 with 30 and 31. 

 Range 23 – 26 30 283 31 266 

Ru-NPPh3 2.121(2) – 2.142(2) 2.125(3) 2.117(11) 

Ru-NCO 2.1504(19) – 2.167(3) 2.154(3) 2.184(10) 

Ru-Nvinyl 2.179(2) – 2.1952(15) 2.194(3) 2.17(1) 

Ru – P 2.3193(5) – 2.3360(8) 2.3455(9) 2.341(4) 

Ru – CO 1.8273(19) – 1.833(3) 1.817(5) 1.85(1) 

Ru – C(1) 2.038(3) – 2.0582(19) 2.049(4) 2.090(12) 

C(1) – C(2) 1.334(4) – 1.352(4) 1.209(2) 1.40(2) 
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There is little or no evidence for significant quinoidal character within the phenylene 

portion of the molecule, (Figure 32).  

 

 

Figure 32 Possible resonance forms showing the evolution of quinoidal character in 

23 – 26. 

 

The phenylene ring is almost perfectly in plane with the Ru-CH=CH moiety in the 

case of 26 ( = 2.3 °) but significantly less conjugated with the metallovinyl portion 

of the molecule in the case of 23 – 25 ( = 15.0 – 19.6 °) (Figure 33).   There are no 

obvious close contacts that might account for this geometric variation.   

 

 

Figure 33 The torsion angle between C(1)-C(2) and C(3)-C(8). 

 

In the compounds 23, 24 and 25 the three respective distances between the 

ruthenium atom and the coordinating nitrogen atoms of the pyrazolyl rings, are 

essentially the same, within the limits of precision of the structure determination.   

The slight difference in ruthenium – pyrazolyl ring distances appears in the methyl-

ester complex 26, where all three Ru –N bonds are shorter in respect to the other 

compounds.   This may be an electronic effect, with the electronic-withdrawing 

properties of the methyl-ester group being accentuated by the more planar 

arrangement of the metal vinyl and methylbenzoate fragments.   Steric constraints 

associated with the PPh3 supporting ligand and the tris(pyrazolyl)hydroborate 

capping ligand are like to restrict the close approach of the aromatic rings, and hence 

no π – π interactions between the phenyl rings occur.   In each structure both chiral 

forms of the compounds are found, in a 1:1 ratio as expected. 
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Within any given complex, the strong trans influence of the vinyl ligand 
284

 can be 

observed in the longer Ru(1) – N(5) bonds when compared to Ru(1) – N(1) and 

Ru(1) – N(3).   This difference in the three Ru-N bonds is due to the difference in 

structural trans- effect (STE) of each of the trans ligands; CO, vinyl and PPh3.    

The structural trans- effect is the effect of a ligand on a bond length to a trans 

ligand.   To fully understand the trans- effects of the many different coordinating 

ligands, both electronic effects such as polarisation, and - and - bonding 

characteristics, and to a lesser extent the steric effects of the ligands, must be taken 

into consideration.   Of the trans- ligands, in the mononuclear vinyl complexes, 23 – 

26, the vinyl moiety is a strong -donor, and both the CO and PPh3 have -donor – 

-acceptor properties, with the CO being a weak -donor and a strong -acceptor 

and the PPh3 being similar to CO but a stronger -donor and weaker - acceptor.   

Consequently, the STE of these ligands follow the series in increasing STE: PPh3 < 

CO < Vinyl.   Hence the Ru-N bond length (Ru(1)-N(5) 2.179(2) – 2.1952(15) Å) 

trans to the vinyl moiety experiences a greater trans- effect, and therefore is longer 

than the other Ru-N bonds trans to the CO (Ru(1)-N(3) 2.1504(19) – 2.167(3) Å) 

and PPh3 (Ru(1)-N(1) 2.121(2) – 2.142(2) Å).   The electron withdrawing effect, and 

increased conjugation, of the CO2Me substituent, in complex 26 may be causing the 

vinyl moiety to have less of a STE and hence a less significant increase in the Ru(1)-

N(5) bond length (Ru(1)-N(5) 2.179(2) Å) in 26 compared to complex 23 (Ru(1)-

N(5) 2.1952(15) Å), but this may also be due to packing constraints in the crystal, 

and conformational issues noted above. 

 

The CO and vinyl moieties in all of the complexes 23 – 26 are essentially coplanar 

[C(9)-Ru(1)-C(1)-C(2): -7.8 ° (23),  -7.9 ° (25)].   This coplanar arrangement of the 

vinyl group and CO is expected due to the strong π-interaction between CO and 

vinyl ligands with metal centres in an octahedral conformation. 
285

   A large 

proportion of the six-coordinate transition metal complexes that contain both a vinyl 

and a carbonyl ligand have a pseudo-octahedral structure.   The two lowest energy 

configurations of the vinyl and cis- carbonyl ligands, where the degree of the 

planarity defined by the dihedral angle  are shown in Figure 34. 
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Figure 34 The two preferred configurations, along with the Newman projections ( 

= 0 ° and 180 °). 

 

It has been shown that with the use of orbital interaction models this coplanarity can 

be accounted for.   In the case of most six-coordinate transition metal alkenyl 

complexes the metal centre satisfies the 18e
-
 rule with a full complement of filled t2g 

orbitals (dxy, dxz and dyz), which have -symmetry with respect to the metal-ligand 

bond, (Figure 35).   Back-donation of electron density from these metal orbitals into 

the * orbitals of the vinyl and carbonyl ligands is possible, favouring the coplanar 

arrangement of the two ligands.   As there is competition between the -acceptor 

ligands for back-donation, the relative orientation of the vinyl ligand with respect to 

the other -acceptor ligands will affect the stability of the complex.   Figure 35 

shows the orientation of the * orbitals of the vinyl and carbonyl ligands when cis- 

to one another.   When dxz interacts with the * orbitals of the vinyl fragment, the 

remaining t2g orbitals (dxy and dyz) can interact with the * orbitals on the carbonyl.   

Therefore maximum back-donation and increased stability occurs when there is a 

coplanar configuration between the alkenyl and carbonyl ligands ( = 0 and 180 ). 
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Figure 35 t2g metal d-orbital and orientation of the * orbitals of the alkenyl and 

carbonyl ligands. 

 

This preferential bonding situation that arises from a coplanar orientation of the 

carbonyl and vinyl ligands results in a significant energy barrier to rotation about the 

metal alkenyl bond, up to 10 kcal.mol
-1

, which is significantly higher than values 

found in simple organic alkene molecules, where rotation is often less than 2 

kcal.mol
-1

. 
286, 287

   Although this simple schematic MO description does not 

distinguish a preference for the  = 0  vs  = 180  conformations, detailed NBO 

analysis on suitable model systems suggests that the  = 0  state is marginally (< 2 

kcal.mol
-1

 more stable. 
52

 

 

 

4.2.3 Cyclic Voltammetry 

 

The six coordinate Tp
-
 capped ruthenium vinyl complexes 23, 25, 26 and 27 all 

show a single reversible oxidation wave at potentials that reflect the electronic 

properties of the aryl substituent (Table 18).   Thus, 27 is easier to oxidise than 23, 

26 and 25 as might be expected given the strong electron donating properties of the 

OMe group.   Compound 23 is also easier to oxidise than 26 and 25 because the 

methyl group is weakly electron donating in comparison to 26 and 25 which both 

bear electron with drawing groups.   Complex 25 also has a reversible reduction 

wave, which can be readily assigned to the reduction of the nitrophenyl moiety.   
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The significant influence of the aryl ring substituent on the electrochemical 

potentials in the series of complexes 23, 25, 26 and 27 indicates that the aryl group 

is likely closely associated with the redox active orbitals. 

 

Table 18 Cyclovoltammetry data of complexes 23, 25, 26 and 27. 

Complex E1/V E1-2/mV ic/ia 

23 0.31 69 1.1 

25
 b
 0.55 97 1.0 

26 0.48 77 1.0 

27 0.22 73 1.0 

a Data recorded using a glassy carbon working electrode, platinum counter and pseudo 

reference electrodes, from solutions in MeCN containing 0.1 M NBu4BF4 supporting 

electrolyte and referenced against ferrocene/ferrocenium [FcH/FcH+] couple = 0 V, scan 

rate 100 mV/s.  
b Irreversible, anodic peak potential reported at -1.61 mV with a peak separation of 132 mV. 

 

The electrochemical reversibility of the oxidation of the complexes 23, 25, 26 and 

27 can be established from the linear dependence of the peak current with 
1/2

 

(Figure 36) as expected from the Randles-Sevcik equation, 

 

ip = (2.69 x 10
5
)n

3/2
 A C D

1/2
 

1/2
 

 

(where ip is the peak current of the voltammetry wave, n is the number of electrons 

in the process, A is the area of the working electrode, C is the analyte concentration, 

D is the diffusion constant of the analyte, and  is the scan rate), the unitary 

aniodic:cathodic current ratio and the peak-to-peak separation close to that of an 

internal ferrocene standard. 
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Figure 36 The linear relationship between peak current (A) and 
1/2

 (mVs
-1

)
1/2

 

derived from the electrochemical response of 23, illustrated for purposes of example. 

 

 

4.2.4 IR Studies 

 

The carbonyl ligand can act as a probe by which we can assess electron density at a 

metal centre, due to a synergistic interaction between the metal and the carbonyl 

ligand.   This involves the forward donation of a lone pair from CO to the metal and 

subsequent π-backbonding from the metal d-orbitals to the CO ligand.   In essence, 

greater electron density at the metal centre leads to a lower frequency CO stretching 

mode.   

 

Table 19  IR stretching frequencies for 23, 25, 26 and 27 in CH2Cl2 solutions. 

Complex (C≡O) / cm-1 (B-H) / cm-1 

23 1942 2481 

25 1945 2485 

26 1940 2483 

27 1940 2486 
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It is clear from the data in Table 19 that the stretching frequencies of the carbonyl 

ligand do not differ significantly, despite the differing electron donating or 

withdrawing properties of the vinyl substituent.   The effect of the R group in the 

stretching frequencies of the B-H bond is similarly limited, with these (B-H) data 

spanning only 5 cm
-1

.   When these IR data are considered alongside the structural 

and electrochemical data, it must be concluded that: 

 

 the aryl ring is associated with the redox active orbitals of the complexes; 

 the aryl ring substituent is not causing any significant electronic perturbation 

at the ruthenium metal centre. 

 

To address this point in more detail, an „in-situ‟ spectroelectrochemical study was 

undertaken. 

 

 

4.2.5 IR Spectroelectrochemical Studies 

 

Spectroelectrochemistry combines the use of spectroscopic techniques in 

conjunction with electrochemical studies.   As well known through textbook 

examples, and beautifully illustrated by the recent works of Kubiak 
31, 39, 40

 and 

Winter 
59, 250

, the presence of a carbonyl ligand in a complex provides a vibrational 

probe through which electron density at a metal can be assessed by relative changes 

in the (C≡O) stretching frequency.   The monometallic capped ruthenium vinyl 

complexes 23 – 27 are ideal candidates for IR spectroelectrochemical studies with 

the shifts in (C≡O), (B-H) and (C=C) providing information about the site of 

oxidation. The complexes 23 and 25 were chosen as representative examples. 
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Figure 37  IR spectroelectrochemistry; first oxidation of 23 to [23]
+
 in CH2Cl2 0.1 M 

[NBu4][BF4]. 

 

Figure 38  IR spectroelectrochemistry; oxidation and reduction of 25 in THF 0.1 M 

[NBu4][BF4]. 
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Table 20 IR spectroelectrochemical data for complexes [23], [25] and [27], recorded 

in (CH2Cl2, 0.1 M [NBu4][BF4]). 

 Neutral / cm-1 Cation / cm-1 Anion / cm-1 

 (C≡O) (BH) (C≡O) (BH) (C≡O) (BH) 

[23] 1942 2481  1999 2500  - - 

[23]a
  1946 2478 1991 2493 - - 

[25] 1945 2485  1997 2500 - - 

[25]a
  1947 2483 1991 2497 1946 2471 

[27] 1941 2486 1996 2500 - - 

a Measurement taken in (THF , 0.1 M [NBu4][BF4]) 

 

On oxidation of 23 and 25 there is a shift in ν(C≡O) of ~ 50 cm
-1

 to lower 

wavenumbers.   Metal based oxidations usually result in a shift in ν(C≡O) of ~ 100 

cm
-1

. 
41

   The small shift in ν(C≡O) of 23 and 25 therefore indicates a largely ligand 

based oxidation, and is comparable with the ca. 20 - 65 cm
-1

 shift that results from 

the oxidation of closely related systems [Ru(CH=CHAr)Cl(CO)(P
i
Pr3)2(L)] (Ar = 

Ph, pyrenyl; L = ethylisonicotinate, vacant coordination site) that have been shown 

to possess redox non-innocent vinyl ligands. 
249

   The small shift in ν(B-H) of ~ 15 

cm
-1

 of 23 and 25 also shows that the Tp
-
 ligand is hardly affected by the oxidation 

process.   The oxidation of 23 and 25 were carried out in CH2Cl2 as well as THF, to 

explore solvation effects on the oxidation process.   However, Table 20 shows that 

there is little difference in these data. 

 

 

4.2.6 UV-Vis Spectroelectrochemical Studies 

 

The neutral and monocationic forms of 23 and 25 were further characterised by UV-

vis-NIR spectroelectrochemical methods.   These spectroscopic data are summarised 

in Table 21, with assignments given based on results of the electronic structure and 

TD DFT calculations that are described in more detail below. 
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Table 21 Electronic transitions for [23]
n+

 and  [25]
n+

 in both CH2Cl2 and THF with a 

supporting 0.1 M [NBu4][BF4] electrolyte. 

 wavenumber / cm-1 

[M-1
cm

-1
] 

wavenumber / 

cm-1 [f] 

Orbital Designation Assignment 

23 32900 [18570] 37600 [0.120] HOMO → LUMO+4 ML-LCT 

[23]+ 24390 [3270] 

 

26020 [0.085] α-HOSO → α-LUSO  ML-LCT 

 13040 [1070] 13880 [0.178] β-HOSO → β-LUSO M-MLCT  

23 
a
 33200 [10800] 37600 [0.120] HOMO → LUMO+4 ML-LCT 

[23]+ a 22300 [1500]  

 

26020 [0.085] α-HOSO → α-LUSO  ML-LCT 

 13900 [230] 13880 [0.178] β-HOSO → β-LUSO M-MLCT  

25 22830 [28750] 29600 [0.688] HOMO → LUMO ML-LCT 

[25]+ 16050 [4020]   

 

24500 [0.105] α-HOSO → α-LUSO ML-LCT 

 12800 [1070]    14700 [0.182] β-HOSO → β-LUSO M-MLCT  

25 
a
 23300 [8400] 29600 [0.688] HOMO → LUMO ML-LCT 

[25]+ a  16500 [1800]  

 

24500 [0.105] α-HOSO → α-LUSO ML-LCT 

 12450 [350] 14700 [0.182] β-HOSO → β-LUSO M-MLCT  

a Measurements taken in THF. 

 

 

4.2.7 Electronic Structure Calculations 

 

A theoretical investigation was conducted at the DFT level, initially on the model 

system Ru(CH=CHPh)(CO)(PPh3)Tp, (23-H), which was used to mimic complex 23 

and the corresponding radical cation [23-H]
+
.   Similar models for 24 – 27 (24-H – 

27-H) were constructed.   The discussion which follows refers to results obtained 

from calculations at the MPW1K/LANL2DZ/3-21G* level of theory, where the 

ruthenium atom was modelled using LANL2DZ and the other atoms using 3-21G*, 

with no symmetry constraints (Table 22).   There is excellent agreement between the 

available crystallographically determined structures of 23 - 27 and the DFT 

optimised geometry determined here.   The good agreement between observed and 

calculated ν(C≡O) and ν(B-H) frequencies gives further confidence in the accuracy 

of the optimised geometries (Table 23 and Table 24).   For illustrative purposes 



 

111 

 

selected bond lengths and bond angles of the optimised geometries of 23-H and [23-

H]
+
 are shown in Table 25, the structural changes upon oxidation of 24-H – 27-H 

follow a similar trend.   Energies and composition of the frontier orbitals are 

summarised in Table 26, Table 27 and Table 28, while Figure 39 illustrates the 

labelling scheme. 

 

 

Figure 39 The labelling scheme used in the discussion of the DFT results. 

 

The Ru-Cα, Ru-P, Cα=Cβ, C≡O and Cβ-C1 bond lengths in the series of mono-nuclear 

vinyl compounds are similar, despite the change in nature of the vinyl substituent.   

At the level of theory employed, the aromatic ring and the vinyl bond lie in the same 

plane, with a dihedral angle Cβ-Cα-Ru-CO of about -20 . 
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Table 22 Selection of critical bond lengths from the crystallographically determined structures of 23, 24, 25 and 26, and the corresponding 

bond lengths from the optimised geometries of the model systems and 23-H, 24-H, 25-H and 26-H. 

 23 23-H
a 24 24-H 25 25-H 26 26-H 

Ru-CO 1.8273(19) 1.87266 1.829(3) 1.87404 1.829(2) 1.87482 1.833(3) 1.87358 

C≡O 1.153(2) 1.16041 1.161(3) 1.15996 1.154(3) 1.15978 1.154(4) 1.16014 

Ru-Cα 2.0582(19) 2.04711 2.051(3) 2.04338 2.044(2) 2.04054 2.038(3) 2.04424 

Cα=Cβ 1.342(3) 1.34203 1.334(4) 1.34434 1.338(3) 1.34590 1.352(4) 1.34390 

Cβ-Ph 1.474(3) 1.47031 1.473(4) 1.46415 1.466(3) 1.46089 1.472(4) 1.46524 

Ru-P 2.3193(5) 2.32689 2.3326 2.33094 2.3315(6) 2.33309 2.3360(8) 2.32942 

Ru-N1 (trans 

phosphine) 
2.1407(16) 2.08856 2.142(2) 2.08941 2.1368(19) 2.08934 2.121(2) 2.08905 

Ru-N3 (trans 

CO) 
2.1555(16) 2.11614 2.155(2) 2.11416 2.1504(19) 2.11302 2.167(3) 2.11411 

Ru-N5 (trans 

vinyl ) 
2.1952(15) 2.15748 2.195(2) 2.15533 2.1879(18) 2.15487 2.179(2) 2.15682 

a 23-H has phenyl instead of tolyl.
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 Table 23  A comparison of the calculated optimised frequencies and experimental 

determined ν(C≡O) and ν(B-H) frequencies of 23, 24, 25, 26 and 27. 

Neutral ν(C≡O) ν(B-H) 

 Expt Calc Expt Calc 

23 1942 1944 a 2481 2487a 

24 - 1948 - 2490 

25 1945 1948 2485 2491 

26 1940 1946 2483 2489 

27 1941 1944 2486 2486 

a 23-H has phenyl instead of tolyl 

 

Table 24 A comparison of the calculated and experimentally determined ν(C≡O) and 

ν(B-H) frequencies of [23]
+
, [25]

+
 and [27]

+
, and appropriate models. 

Cation ν(C≡O) ν(B-H) 

 Expt Calc Expt Calc 

[23]+ 1999 1996 a 2500 2521 

[25]+ 1997 2007 2500 2625 

[27]+ 1996 1984 2500 2617 

a
 23-H has phenyl instead of tolyl 

 

Upon oxidation to the mono-oxidised species the vinyl-aromatic ring plane is rotated 

by only 2-3 , and hence the gross structural features of the complexes are similar, 

regardless of oxidation state. 
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Table 25 Selected bond lengths (Å) of 23-H and [23-H]
+
, and the structural 

differences. 

Bond Length 23-H [23-H]+
 Δ 

Ru-Cα 2.047 1.965 -0.082 

Ru-CO 1.873 1.917 +0.044 

Ru-P 2.327 2.400 +0.073 

C≡O 1.160 1.150 -0.010 

CαCβ 1.342 1.377 +0.035 

Cβ-C1 1.470 1.442 -0.028 

Ru-N1 (trans to PPh3) 2.089 2.088 ~ 0 

Ru-N3 (trans to CO) 2.116 2.087 -0.029 

Ru-N5 (trans to vinyl) 2.157 2.141 -0.016 

C1-C2/6 1.398 1.405 +0.007 

C2/6-C3/5 1.384 1.380 -0.004 

C3/5-C4 1.387 1.390 +0.003 

 

The model radical cation [23-H]
+
 features a Ru-Cα bond somewhat shorter than 23-

H (Table 25).   The metal-phosphine bond lengths are sensitive to the net electron 

density available for π-back bonding and as such are elongated in [23-H]
+
, relative 

to 23-H.   The elongation of the vinyl Cα-Cβ bond in [23-H]
+
 compared to the 

neutral model system 23-H is consistent with a decrease in the net vinyl π-bonding 

character.   Carbonyl bond lengths, and hence the ν(C≡O), are also sensitive to the 

net electron density at the metal centre.   The CO bond length in the [23-H]
+
 is 

modestly shorter than in 23-H, leading to a higher ν(C≡O) frequency (23-H, 1944 

cm
-1

; [23-H]
+
, 1997 cm

-1
).   The very slight contraction of the C2-C3 and C5-C6 

bonds and elongation of the remaining C-C bonds in the phenyl substituent is 

consistent with only a small degree of cumulenic character in the radical cation. 

(Figure 40) 
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Figure 40 Possible resonance forms showing the evolution of quinoidal character in 

the radical cations [23-H]
+
 - [27-H]

+
. 

 

Rotational barrier calculations were also carried out, using the same mixed basis set, 

for model complexes in both oxidation states by fixing the carbonyl-vinyl dihedral 

angle.   This revealed a second minimum, 2 kcal.mol
-1

 higher in energy (1.5 

kcal.mol
-1

 in the mono-oxidised species), where the vinyl-aromatic ring plane is 

bisecting the angle between two of the pyrazolyl rings, with a dihedral angle Cβ-Cα-

Ru-CO of ~135  (Figure 41).   As the ruthenium centre is chiral there are two 

distinct ways the vinyl-aromatic ring fragment can rotated around the Ru-Cα bond, 

clockwise and anticlockwise, therefore there are two rotation barriers.   In both the 

neutral and mono-oxidised species the rotational barriers are considerable at ca 8-15 

kcal.mol
-1

 (Figure 42). 

 

 

Figure 41 Schematic representation of the position of the vinyl bond relative to the 

carbonyl bond, looking down the Cα-Ru-N axis; (a) dihedral angle = -20 , (b) 

dihedral angle = 135 . 
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Figure 42 Rotational Barrier around Ru-Cα bond for [23-H]
n+

 (n = 0, 1). 

 

By fixing the vinyl-aryl dihedral angle in certain angles ranging from 0  to 180 , 

rotational barrier calculations on the rotation around the Cβ-C1 bonds in the same 

model systems were also carried out (Figure 43).   The only minimum for the aryl 

rotation was, not unexpectedly, found to be when the vinyl and aryl ring are 

coplanar.   The rotation barrier around the Cβ-C1 bond, in both the neutral and mono-

oxidised species, is considerable, being 5 kcal.mol
-1

 and 10 kcal.mol
-1

 respectively 

(Figure 44).    

 

 
Figure 43 Showing the rotation around the Cβ-C1 bond. 
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Figure 44 Rotational barrier around Cβ-C1 bond for [23-H]

n+
 (n = 0, 1). 
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Table 26 Contributions of the frontier molecular orbitals of 23-H and [23-H]
+
. 

23-H 

MO 

 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 

(eV) 0.43 0.23 0.14 -0.03 -5.76 -6.92 -7.06 -7.47 -7.54 

Occ 0 0 0 0 2 2 2 2 2 

%Ru 5 1 4 5 26 58 37 4 58 

%Tp 5 1 2 4 4 28 30 1 14 

%CO 2 0 1 1 0 6 3 0 4 

%PPh3 81 97 93 88 2 2 6 1 13 

%Cα 2 0 0 1 16 4 6 1 1 

%Cβ 1 0 0 0 22 0 1 0 0 

%Ph 4 0 0 1 30 0 17 94 9 

 

[23-H]+
 

MO 

 170β 170α 169β 169α 168β 168α 167β 167α 166β 166α 165β 165α 164β 164α 

 
β-

[LUSO+3] 

α-

[LUSO+2] 

β-

[LUSO+2] 

α-

[LUSO+1] 

β-

[LUSO+1] 

α- 

[LUSO] 

β- 

[LUSO] 

α- 

[HOSO] 

β- 

[HOSO] 

α- 

[HOSO-1] 

β- 

[HOSO-1] 

α- 

[HOSO-2] 

β- 

[HOSO-2] 

α- 

[HOSO-3] 

(eV) -2.68 -2.74 -2.71 -2.95 -2.91 -3.16 -6.14 -9.61 -9.88 -10.35 -10.26 -10.35 -10.34 -10.42 

Occ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

%Ru 15 15 13 21 14 6 42 11 20 12 28 1 1 19 

%Tp 12 15 14 8 5 3 6 5 26 40 59 88 92 46 

%CO 6 32 31 3 8 4 0 0 0 1 3 0 0 1 

%PPh3 22 37 35 51 57 18 2 2 7 47 10 11 7 33 

%Cα 13 0 2 6 5 26 8 15 16 0 1 0 0 1 

%Cβ 4 1 1 1 2 8 22 18 1 0 0 0 0 0 

%Ph 28 0 3 9 9 34 19 49 30 0 0 0 0 0 
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Table 27 Contributions of the frontier molecular orbitals of 25-H and [25-H]
+
. 

25-H 

MO 

 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 

(eV) 0.00 -0.07 -0.25 -1.41 -6.26 -7.25 -7.45 -7.83 -7.87 

Occ 0 0 0 0 2 2 2 2 2 

%Ru 1 4 6 1 31 56 33 8 32 

%Tp 1 2 4 0 6 32 33 82 27 

%CO 1 1 2 0 0 6 3 0 2 

%PPh3 97 93 85 0 2 2 8 9 37 

%Cα 0 0 1 7 13 3 8 0 1 

%Cβ 0 0 0 0 23 0 3 0 0 

%Aryl 0 0 0 32 23 0 12 0 1 

%NO2 0 0 0 58 3 0 1 0 0 

 
[25-H]+ 

MO 

 181β 181α 180β 180α 179β 179α 178β 178α 177β 177α 176β 176α 175β 175α 

 
β-

[LUSO+3] 

α-

[LUSO+2] 

β-

[LUSO+2] 

α-

[LUSO+1] 

β-

[LUSO+1] 

α- 

[LUSO] 

β- 

[LUSO] 

α- 

[HOSO] 

β- 

[HOSO] 

α- 

[HOSO-1] 

β- 

[HOSO-1] 

α- 

[HOSO-2] 

β- 

[HOSO-2] 

α- 

[HOSO-3] 

(eV) -3.00 -3.04 -3.21 -3.31 -4.08 -4.23 -6.51 -10.11 -10.26 -10.58 -10.53 -10.60 -10.65 -10.70 

Occ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

%Ru 17 17 20 24 5 2 49 11 13 8 22 0 1 18 

%Tp 16 17 6 7 2 1 8 6 26 28 55 83 91 60 

%CO 37 40 9 6 0 0 1 0 0 0 2 0 0 1 

%PPh3 28 25 61 60 1 1 2 4 13 63 21 16 8 19 

%Cα 0 0 1 1 10 14 4 14 18 0 1 0 0 1 

%Cβ 1 1 0 0 0 1 21 20 4 0 0 0 0 0 

%Aryl 0 0 0 0 34 39 14 42 23 0 0 0 0 0 

%NO2 0 0 1 1 48 43 3 3 1 0 0 0 0 0 
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Table 28 Contributions of the frontier molecular orbitals of 27-H and [27-H]
+
. 

 

27-H 

MO 

 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 

(eV) 0.46 0.26 0.17 0 -5.53 -6.85 -6.89 -7.43 -7.57 

Occ 0 0 0 0 2 2 2 2 2 

%Ru 4 1 4 5 18 42 58 56 10 

%Tp 4 1 2 4 3 24 27 10 14 

%CO 2 0 1 1 0 1 7 5 1 

%PPh3 87 97 93 88 1 4 1 5 14 

%Cα 1 0 0 1 16 1 5 2 2 

%Cβ 1 0 0 0 18 1 1 3 1 

%Aryl 1 0 0 0 36 20 1 15 57 

%OMe 0 0 0 0 7 7 0 3 0 

[27-H]+ 

MO 

 178β 178α 1777β 177α 176β 176α 175β 175α 174β 174α 173β 173α 172β 172α 

 
β-

[LUSO+3] 

α-

[LUSO+2] 

β-

[LUSO+2] 

α-

[LUSO+1] 

β-

[LUSO+1] 

α- 

[LUSO] 

β- 

[LUSO] 

α- 

[HOSO] 

β- 

[HOSO] 

α- 

[HOSO-1] 

β- 

[HOSO-1] 

α- 

[HOSO-2] 

β- 

[HOSO-2] 

α- 

[HOSO-3] 

(eV) -2.47 -2.49 -2.50 -2.72 -2.77 -3.08 -5.99 -9.11 -9.49 -10.15 -10.05 -10.18 -10.17 -10.22 

Occ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

%Ru 16 14 10 19 11 4 32 10 27 19 32 3 1 17 

%Tp 14 14 10 7 5 3 4 3 20 58 57 85 90 35 

%CO 14 23 11 3 5 2 0 0 0 2 3 0 0 1 

%PPh3 46 48 27 64 56 10 2 2 3 20 6 12 9 47 

%Cα 3 0 12 3 7 29 11 13 9 1 1 0 0 0 

%Cβ 1 0 4 0 3 9 21 13 0 0 0 0 0 0 

%Aryl 6 0 24 4 11 40 25 47 30 0 0 0 0 0 

%OMe 0 0 2 0 1 3 4 12 10 0 0 0 0 0 
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         (a)                     (e)                    (i) 
 

       
         (b)                (f)                      (j) 
 

       
         (c)          (g)       (k) 
 

       
                    (d)          (h)                  (l) 
 

Chart 6 The  (a) [LUMO+1] (b) LUMO (c) HOMO (d) [HOMO-1] of 25-H together 

with (e) α-[LUSO+1] (f) α-LUSO (g) α-HOSO (h) α-[HOSO-1] and (i) β-[LUSO+2] 

(j) β-[LUSO+1] (k) β-LUSO (l) β-HOSO of [25-H]
+
, plotted with contour values 

±0.05 (e/bohr
3
)

1/2
 . 
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Table 29 Computed spin densities for the model radical cations [23-H]
+
, [24-H]

+
, 

[25-H]
+
, [26-H]

+
 and [27-H]

+
. 

 [25-H]+a [25-H]+b [26-H]+a [24-H]+a [23-H]+a [23-H]+b [27-H]+a [27-H]+b 

Ru 0.743 0.699 0.654 0.702 0.610 0.559 0.445 0.404 

P -0.030 -0.026 -0.025 -0.028 -0.022 -0.020 -0.015 -0.014 

C (C≡O) -0.016 -0.015 -0.015 -0.015 -0.014 -0.013 -0.011 -0.011 

O (C≡O) -0.011 -0.007 -0.011 -0.011 -0.011 -0.008 -0.010 -0.008 

Cα -0.224 -0.206 -0.173 -0.201 -0.136 -0.100 -0.007 0.034 

Cβ 0.439 0.451 0.446 0.439 0.439 0.438 0.366 0.352 

Ntrans PPh3 -0.010 -0.009 -0.008 -0.009 -0.007 -0.006 -0.003 -0.002 

Ntrans CO -0.008 -0.009 -0.007 -0.008 -0.007 -0.007 -0.005 -0.004 

Ntrans vinyl -0.004 -0.002 -0.005 -0.004 -0.005 -0.004 -0.005 -0.004 

C6H4 0.067 0.074 0.109 0.089 0.130 0.140 0.180 0.188 

R-group 0.011 0.012 0.005 0.009 - - 0.058 0.060 

a global minimum configuration, b local minimum configuration 

 

(a)  

(b)  

Chart 7 Showing the spin density distribution, plotted with contour values ±0.0024 

(e/bohr
3
) of [23-H]

+
 in the two minima configurations;  

(a) the global minimum, where the vinyl is coplanar with the carbonyl, 

(b) a local minimum, where the vinyl is nestled between two of the pyrazolyl rings. 
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Table 26 - Table 28, summarise the composition of the frontier orbitals of 23, 25 and 

27 and their mono-oxidised analogues, with representative contour plots of key 

orbitals from 25-H and [25-H]
+
 illustrated in Chart 6.   In the neutral systems, the 

metallic contribution to the HOMOs is sensitive to the nature of the substituent, with 

vinyl ligand contribution being more important as the donating strength of the 

substituent increases.   Thus, the metal / vinyl contributions to the HOMO vary from 

31 / 62 % (R = NO2, 25) to 18 / 77 % (R = OMe, 27).   Similarly significant 

contributions (67 – 84 %) of the vinyl ligand to the HOMOs in complexes 

[Ru(CH=CHAr)Cl(CO)(PMe3)2] (Ar = Ph, Py) have been computed by Winter and 

his team. 
249

   For both 23 and 27 the LUMO is essentially a phosphine *-orbital, 

with contributions from the metal centre, the vinyl * system comprising the 

LUMO+4 and LUMO+8 for 23 and 27 respectively.   Introduction of the strongly 

electron withdrawing NO2 group causes this orbital to descend in energy, and 

comprises the LUMO in 25 (Table 27, Chart 6).   These orbital characteristics are 

largely retained upon oxidation (Table 26 - Table 28), although the metallic 

contribution to the -LUSO is generally somewhat greater than in the HOMO of the 

corresponding neutral system.   Clearly, the vinyl ligand is a significant component 

of the redox active orbitals in these vinyl complexes.    The calculated (C≡O) 

frequencies are in good agreement with those observed from the 

spectroelectrochemical experiments, and the small increase in frequency of the 

(C≡O) band upon oxidation is consistent with the structure of the -LUSO.   Spin 

density calculations on the optimised geometries of [23-H]
+
, [24-H]

+
, [25-H]

+
, [26-

H]
+
 and [27-H]

+
 support the general conclusions, with the vinyl ligand supporting 

progressively more of the electron spin as the donating properties of the vinyl 

substituent increase (Table 29).   Unsurprisingly, the orientation of the vinyl ligand 

is also important and affects the net electron spin distribution (Table 29, Chart 7).   

Calculations with model systems at a local minimum in which the plane of the vinyl 

ligand and associated aryl ring are held approximately embraced by two of the 

pyrazine rings of the Tp
-
 ligand feature smaller spin density at the metal centre, and 

greater spin density on the vinyl ligand.  
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4.2.8 UV-vis-NIR Absorptions from TD DFT Calculations 

 

To aid in the assignment of the electronic transitions, TD DFT calculations were 

carried out on the model systems [Ru(CH=CHPh)(CO)(PPh3)Tp]
n+

 [23-H]
n+

, 

[Ru(CH=CHC6H4NO2-4)(CO)(PPh3)Tp]
n+

 [25-H]
n+

 and  [Ru(CH=CHC6H4OMe-

4)(CO)(PPh3)Tp]
n+

 [27-H]
n+

.   Before discussing the TD DFT results from 23-H, 25-

H and 27-H it is helpful to re-cap a few pertinent points of the electronic structure of 

these compounds, and relevant data are summarised for ease of reference by the 

reader.   In each case, the HOMO is predominately comprised of a Ru-CH=CH-Ar 

(Table 30) -type system and can be termed a “metal-ligand” (ML) orbital (Figure 

45, Figure 46 and Figure 47).   As a consequence of the significant aryl contribution 

to the HOMO, the energy of these orbitals are sensitive to the electronic nature of 

the R group being stabilised by the electron-withdrawing NO2 group in the case of 

25-H and destabilised by the OMe group in 27-H relative to 23-H.   The 

corresponding * system with a node between the vinyl carbon atoms features an 

appreciably smaller metal contribution (Table 30) and can be designated a “ligand” 

(L) orbital.   The energy of this * orbital is also sensitive to the electronic nature of 

the aryl substituent, and comprises the LUMO for 25-H, LUMO+4 for 23-H and 

LUMO+8 for 27-H.  

 

Table 30 Composition of selected frontier orbitals of 23-H, 25-H and 27-H. 

  ε(eV) %Ru %Tp %PPh3 %CO %Cα %Cβ %Aryl %R-group 

23-H HOMO -5.76 26 4 2 0 16 22 30 - 

 LUMO+4 0.65 2 17 38 2 10 4 28 - 

25-H HOMO -6.26 31 6 2 0 13 23 23 3 

 LUMO 1.41 1 0 0 0 7 0 32 58 

27-H HOMO -5.53 18 3 1 0 16 18 36 7 

 LUMO+8 1.19 4 31 11 1 9 2 40 2 
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Figure 45 Contour plots: left; HOMO of 23-H, centre; -HOSO, right; -LUSO of 

[23-H]
+
. 

 

     

Figure 46 Contour plots: left; HOMO of 25-H, centre; -HOSO, right; -LUSO of 

[25-H]
+
. 

 

     

Figure 47 Contour plots: left; HOMO of 27-H, centre; -HOSO, right; -LUSO of 

[27-H]
+
. 

 

For each of the neutral (18-electron, closed shell) systems 23-H, 25-H and 27-H the 

most significant absorption band in the visible region is calculated to arise from 

transitions from the “ML” centred HOMO to the LUMO for 25-H, LUMO+4 for 23-

H and LUMO+8 for 27-H, and can hence be designated as an ML-LCT transition.   

Unsurprisingly, the transition energy is sensitive to the electronic nature of the para-

substituent, with a bathochromic shift in evidence as the substituent becomes more 

and more electron withdrawing.   The solvatochromism that is evidenced from the 

data presented in Table 31 is consistent with the degree of charge transfer associated 

with the transition. 
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Table 31 Electronic transitions for [23]
n+

 and  [25]
n+

 in both CH2Cl2 and THF with a 

supporting 0.1 M [NBu4][BF4] electrolyte. 

 wavenumber / 

cm
-1

 [M-1
cm

-1
] 

wavenumber / 

cm-1 [f] 

Orbital Designation Assignment 

23 32900 [18570] 37600 [0.120] HOMO → LUMO+4 ML-LCT 

[23]+ 24390 [3270] 

 

26020 [0.085] α-HOSO → α-LUSO  ML-LCT 

 13040 [1070] 13880 [0.178] β-HOSO → β-LUSO M-MLCT  

23 
a
 33200 [10800] 37600 [0.120] HOMO → LUMO+4 ML-LCT 

[23]+ a 22300 [1500]  

 

26020 [0.085] α-HOSO → α-LUSO  ML-LCT 

 13900 [230] 13880 [0.178] β-HOSO → β-LUSO M-MLCT  

25 22830 [28750] 29600 [0.688] HOMO → LUMO ML-LCT 

[25]+ 16050 [4020]   

 

24500 [0.105] α-HOSO → α-LUSO ML-LCT 

 12800 [1070]    14700 [0.182] β-HOSO → β-LUSO M-MLCT  

25 
a
 23300 [8400] 29600 [0.688] HOMO → LUMO ML-LCT 

[25]+ a  16500 [1800]  

 

24500 [0.105] α-HOSO → α-LUSO ML-LCT 

 12450 [350] 14700 [0.182] β-HOSO → β-LUSO M-MLCT  

a Measurements taken in THF. 

 

In the experimental studies, oxidation of 23 and 25 to [23]
+
 and [25]

+
 causes a 

collapse of the ML-LCT transition associated with the neutral species, with two 

smaller absorption bands growing into the spectrum at lower energy.   On the basis 

of the TD DFT calculations, these lower energy bands can be assigned to the 

transitions from the -HOSO to the -LUSO and from the -HOSO to the -LUSO.   

The -HOSO and -LUSO of the monocations are both similar in composition to 

the HOMO (Figure 45, Figure 46 and Figure 47).   The -LUSO is similar in 

composition to the L orbitals described above (i.e. LUMO for 25-H, LUMO+4 for 

23-H and LUMO+8 for 27-H), whilst the -HOSO is rather more metal in character 

(Figure 48, Table 32). 
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Figure 48 Contour plots of LUMO+4, -LUSO and -HOSO for 23-H/[23-H]
+
. 

 

Table 32 Composition of the -HOSO and -LUSO of [23-H]
+
, [25-H]

+
 and [27-

H]
+
. 

  ε(eV) %Ru %Tp %PPh3 %CO %Cα %Cβ %Aryl %R-group 

[23-H]+ -HOSO -9.88 20 26 7 0 16 1 30 - 

 -LUSO -3.16 6 3 18 4 26 8 34 - 

[25-H]+ -HOSO -10.26 13 26 13 0 18 4 23 1 

 -LUSO -4.23 2 1 1 0 14 1 39 43 

[27-H]+ -HOSO -9.49 27 20 3 0 9 0 30 10 

 -LUSO -3.08 4 3 10 2 29 9 40 3 

 

On this basis, the -HOSO - -LUSO transition is also ML-LCT in character, while 

the -HOSO - -LUSO transition can be better described as M-MLCT in character. 

 

 

4.2.9 Conclusions Drawn from the Electrochemical and 

Spectroelectrochemical Properties and Electronic Structures of Mono 

Hydroruthenated Acetylene Complexes 

 

The studies described above have shown that the vinyl ligand in the complexes 

[Ru(CH=CHC6H4R-4)(CO)(PPh3)Tp]
n+

 (n = 0, 1) is significantly involved in both 

the HOMO of the neutral complexes and the -LUSO of the monocations.   Thus, as 

has been found in related systems studied by Winter, the vinyl ligand can be 

described as redox non-innocent.   The involvement of the vinyl ligand in the redox-

active orbitals is reflected in the relatively small positive shift of the ν(C≡O) 

frequencies that accompany oxidation of 23 – 27, which is found in the 
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spectroelectrochemical studies, and reproduced in frequency calculations of [23]
+
, 

[25]
+
 and [27]

+
.   Spin density calculations and analysis of the frontier molecular and 

spin orbitals are consistent with this description, with both the metal and vinyl 

ligand being involved in the HOMO of 23 – 27 and the -LUSO of [23]
+
 - [27]

+
.   

The relative contributions of metal and vinyl are sensitive to the vinyl ligand 

substituent, permitting a degree of tuning of the electronic structure. 

 

 

4.3 Bis- Hydroruthenated Linear and Branched Chain Acetylene 

Complexes 

 

During the course of the studies that form this thesis, Winter et al reported the 

synthesis of some butadienyl 
288

 and divinylphenylene-bridged diruthenium 

complexes, 
41, 42

 and the analysis of their redox products by electrochemical, IR and 

UV-vis-NIR spectroelectrochemical means.  The DFT studies of 

[{RuCl(CO)(PPh3)2}2(μ-C4H4)]
n+

 (n = 0, 1, 2) (32) (Chart 8) revealed that all three 

oxidation states, the ground state geometries are approximately symmetric with an 

inversion point passing through the midpoint of the central C-C bond of the 

butadienyl bridging ligand.   The strong mixing between the ruthenium d-orbitals 

and ligand based -orbitals in the HOMO (with 62% C4H4 character, 33% Ru2) of 

all oxidation states lead to an extensive electron delocalisation and extended π-

system makes the designation of redox events as metal or ligand centred processes 

tenuous, with the mixed valence mono-oxidised species being either intrinsically 

delocalised Class III in the Robin-Day classification, or nearly so.   Investigations 

with 1,4- and 1,3-[{RuCl(CO)(P
i
Pr3)2}2(μ-CH=CHC6H4CH=CH)] (33) and (34) 

(Chart 8) have revealed that the oxidation processes are centred at the organic 

bridging ligand.  

 

IR spectroelectrochemical studies on 1,4- and 1,3-[{RuCl(CO)(P
i
Pr3)2}2(μ-

CH=CHC6H4CH=CH)], 33 and 34, showed that on oxidation of the neutral para- 

substituted complex 33, the single (C≡O) band at 1910 cm
-1

 disappeared with a 

structured band appearing at 1932 cm
-1

 featuring high- and low- energy shoulders. 
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Chart 8 Bis-metallated bridging ligand complexes 32, 33 and 34. 

 

On oxidation to the dication [33]
2+

 these (C≡O) bands collapsed to be replaced by 

one (C≡O) band at 1995 cm
-1

.   Oxidation of the neutral meta- substituted complex 

34 to [34]
+
 resulted in the replacement of the neutral (C≡O) band at 1910 cm

-1
 by 

two equally intense bands at 1915 and 1971 cm
-1

.   On oxidation of [34]
+
 to the 

dication [34]
2+

 the two (C≡O) bands collapsed, being replaced by a single (C≡O) 

band at 1983 cm
-1

.   Computational studies on the two isomers, 1,4- and 1,3-

[{RuCl(CO)(P
i
Pr3)2}2(μ-CH=CHC6H4CH=CH)], 33 and 34, showed that, in the 

neutral states, they closely resemble each other with respect to the composition of 

the frontier orbitals that are relevant for their optical and electrochemical properties.   

The HOMO and the HOMO-1 for both complexes have a large contribution from 

the divinylphenylene interacting with the appropriate combinations of metal d-

orbitals.   In the meta- connected complex, the HOMO and HOMO-1 are nearly 

degenerate, whereas in the para- connected complex, there is an energy gap of 

nearly 1 eV.   The LUMO and LUMO+1 of the two complexes are heavily centred 

on the metal end groups, admixed with some phosphine character.   The 

computational models of [33]
+
 and [34]

+
 are symmetric, with the charge delocalised 

over the two metals and bridge.   The authors note that the inherent asymmetry of 

the meta mono-cation [34]
+
 demonstrated by the experimental spectroscopic data is 

not adequately reproduced in the calculations. 
42
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Interestingly the 1,4-di(butadienyl)benzene Tp
-
 capped diruthenium complex has 

been synthesised via Wittig-style chemistry (Scheme 17).   However, this compound 

has only been characterised by 
1
H, 

31
P NMR and elemental analysis, and details of 

the IR and UV-vis-NIR spectra, electrochemical properties, spectroelectrochemical 

properties, and electronic structure have not yet been reported. 
161

 

 

 

Scheme 17 Synthesis of bis-{Ru(CO)(PPh3)Tp}-di-butadienyl-benzene. 
161

 

 

Extended chain complexes based on ruthenium vinyl building blocks have also been 

assembled.   The use of 4-ethynyl-pyridine as the “6
th

 ligand” in bimetallic 1,3 and 

1,4- divinylbenzene complexes (Scheme 18), introduces a reactive ethynyl moiety 

that can be further hydroruthenated to give tetrametallic, wire-like complexes.   The 

tetra-oxidised tetraruthenium complexes are unique examples of organometallic 

complexes where the two different oxidised ligands are coordinated to the same 

metal atom. 
248
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Scheme 18 Extension of diruthenium 1,4-divinylbenzene to a tetraruthenium 

bis(vinylpyridine) 1,4-divinylbenzene complex. 
248

 

 

The aim of this portion of the work was to synthesise purify and assess the 

electronic structures of some bimetallic ruthenium vinyl complexes featuring 

Ru(CO)(PPh3)Tp metal centres and a conjugated organic bridging ligand based on 

1,4- and 1,3- phenylene cores.  

 

4.3.1 Syntheses 

 

The reaction of an excess of RuHCl(CO)(PPh3)3 with 1,4- or 1,3-diethynylbenzene 

in dichloromethane under nitrogen resulted in hydroruthenation of each ethynyl 

moiety.   The progress of the hydroruthenation reaction was followed by IR 

spectroscopy, with the complete reaction being indicated by the disappearance of the 
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stretching frequencies of the C≡C and the C-H bonds of the alkyne.   The subsequent 

capping of the metal end-caps in these five coordinate vinyl complexes by KTp gave 

1,4-[{Ru(CO)(PPh3)Tp}2(CH=CHC6H4CH=CH)] (35) and 1,3-

[{Ru(CO)(PPh3)Tp}2(μ-CH=CHC6H4CH=CH)] (36) respectively (Chart 9), the 

reactions being adjudged complete when there were no further changes in the 

(C≡O) and (B-H) bands in the IR spectra of the crude reaction mixtures (ca. 2 h).   

Purification of 35 and 36 was achieved by extraction with hot ethanol and washing 

with hexane to remove liberated triphenylphosphine and the phosphine oxide formed 

by adventious oxidation in the sample, as indicated by 
31

P NMR.   However, 

accurate elemental analyses were not obtained, possibly due to traces of entrained 

triphenylphosphine or the phosphine oxide.  

 

 

Chart 9 The bimetallic complexes 35 and 36 synthesised in this Chapter. 

 

It is important to note at this point that each of the metal centres in 35 and 36 are 

chiral.   As such, the bimetallic complexes 35 and 36 exist as pairs of 

diastereoisomers.   However, the stereochemical problem is augmented by further 

complications from the relative disposition of the metal-vinyl fragments arising from 

rotation around the CAr-Cβ bond, and rotation around the Ru-Cα bond (Figure 49, 

Figure 50), all of which lead to complex NMR spectra.   Not surprisingly the 
31

P 

NMR spectra were less sensitive to some of these complications, with only two 

resonances being observed arising from each pair of diastereoisomers (
31

P δ 35 51.1, 

51.2 ppm; 36, 50.7, 51.5 ppm).   The ν(C≡O) and ν(B-H) are both insensitive to the 

stereochemistry of the metal centre, and the complexes were further characterised by 

MALDI mass spectrometry (35, m/z 1337.2 ; 36 m/z 1337.2). 
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Figure 49 An illustration of some of the stereochemical complications associated 

with 35. 

 

 

Figure 50 An illustration of some of the stereochemical complications associated 

with 36. 
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4.3.2 Cyclic Voltammetry 

 

Each of the complexes 35 and 36 exhibited two closely spaced one electron 

oxidation waves, which were only fully resolved in the case of 35 (Table 33). 
230

   

The separation of these redox waves reflects the relative thermodynamic stability of 

the intermediate mono-oxidised state compared with the neutral and dicationic 

forms.   This relative stability can be expressed in terms of the comproportionation 

constant Kc, which is the equilibrium constant for the reaction  

 

 

 

and can be extracted from the voltammetric data from the expression  

 

Kc = exp{(ΓE)F/RT} 

 

From the data in Table 33, the comproportionation constants for [35]
+
 (Kc = 2.5 × 

10
5
) and [36]

+
 (Kc = 22) can be calculated. 

 

Table 33  Electrochemical data for 35 and 36 in MeCN 0.1 M [NBu4][BF4]. 

Complex E0/+
 E+/2+

 ∆Ep / mV a ic/ia 

35 0.02b 0.34b 114 / 124 1.0 / 1.0 

36 0.28c 0.36c Unresolved unresolved 

a ∆Ep is the peak-to-peak separation of the cathodic and anodic waves of the first / second 

redox process. 
b Potentials are reported vs FcH/FcH+ = 0 V, using decamethylferrocene as an internal 

reference (Fc*H/Fc*H+ = -0.51 V vs FcH/FcH+).  
c Potentials are reported vs FcH/FcH+ = 0 V, using ferrocene as an internal reference. 

Potentials are estimated from two closely spaced waves. 

 

Although the waves were not fully resolved in the case of 36, the first oxidation is 

largely in agreement with the oxidation potentials observed for the analogous 

mononuclear vinyl complexes 23 (E1/2 = 0.31 V) and the OMe bearing derivative 27 

(E1/2 = 0.22 V).   In contrast, oxidation of the 1,4-substituted bimetallic complex 35 
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is much more thermodynamically favourable than 36 and the related mononuclear 

compounds.   Winter has observed similar patterns in studies of 1,4- and 1,3-

[{RuCl(CO)(P
i
Pr3)2}2(μ-CH=CHC6H4CH=CH)], 33 and 34 with the 1,4-isomer 

being considerable easier to oxidise than the 1,3-version.   This observation was 

attributed to the mutual conjugation of two metal donors in the 1,4-isomer to the 

redox active phenylene vinylene redox centre. 
42

 

 

 

4.3.3 IR Studies 

 

Each of the complexes 35 and 36 are characterised by (C≡O) bands near 1940 cm
-1

 

and (BH) bands from the Tp ligand near 2480 cm
-1

 which are essentially identical 

to the mononuclear systems 23 – 27 described above. 

 

Table 34  IR stretching frequencies for 35 and 36, run in CH2Cl2. 

Complex ν(C≡O) / cm-1 
(B-H) / cm-1 

35 1942 2482 

36 1941 2481 

 

 

4.3.4 IR Spectroelectrochemical Studies 

 

As with the mononuclear systems, spectroscopic data from the binuclear complexes 

35 and 36 in their accessible oxidation states were obtained using 

spectroelectrochemical methods.   In the case of 35, which gave better resolved 

voltammetric response, and consequently larger Kc values for [35]
+
, one-electron 

oxidation resulted in a shift of the single (C≡O) band in 35 from 1942 cm
-1

 to a 

single band at 1972 cm
-1

 in [35]
+
 (Table 34, Figure 51).   The observation of only a 

single (C≡O) band in the IR spectrum of [35]
+
 clearly indicates that on the IR 

timescale, the metal centres in [35]
+
 are identical.   The shift of +30 cm

-1
 is 
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significantly smaller the ca. +50 cm
-1

 observed in the case of oxidation of 

mononuclear examples such as 23 ((C≡O) 1942 cm
-1

) and [23]
+
 ((C≡O) 1999 cm

-

1
), and very much smaller than might be expected for a purely metal centred 

oxidation.  

 

Given the equivalence of the metal centres on the IR timescale, two extreme 

scenarios can be envisioned:  

 

 the odd electron (or hole) may be in rapid (faster than 10
13

 s
-1

) exchange 

between the metal centres;  

 the odd electron (or hole) may be delocalised over the metal centres and the 

bridging ligand;  

 

In the second scenario it is possible to debate the interpretation further, subject to the 

relative contributions of the metal centres and the bridging ligand to the redox-active 

orbital. 

 

Table 35  IR spectroelectrochemical data for complexes 35 and 36 in CH2Cl2 0.1 M 

[NBu4][BF4]. 

 ν(C≡O) / cm-1  
 

Complex Neutral Cation Dication 

35 1942 1972 1996, 2071 

36 1942 1972* 2005, 2072 

 *The pure monocation of 36 was not isolated.   
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Figure 51  The change in ν(C≡O) as 35 is oxidised to [35]
+
 in CH2Cl2 0.1 M 

[NBu4][BF4]. 

 

Figure 52  The change in ν(C≡O) as [35]
+
 is oxidised to [35]

2+
 in CH2Cl2, 0.1 M 

[NBu4][BF4]. 

 

Further oxidation of [35]
+
 to [35]

2+
 causes the (C≡O) band to split into two higher 

frequency bands.   The first, at 1996 cm
-1

, is similar to that found in the case of the 
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monocations [23]
+
 and [25]

+
.   The second peak is shifted by a much greater extent 

to 2070 cm
-1

 (Figure 52).   A large shift of ~ 130 cm
-1

 in the ν(C≡O) band is 

characteristic of a metal based oxidation, so to a first approximation it may be 

concluded that the first oxidation occurs on the vinyl aryl moiety (i.e. the ligand) 

with a modest contribution from the metal, whilst the second oxidation is more 

heavily based on one of the pendant metal centres (Figure 53).   Curiously, this 

behaviour of the dication differs from the Winter complex 1,4-

[{RuCl(CO)(P
i
Pr3)2}2(μ-CH=CHC6H4CH=CH)]

2+
 [33]

2+
 in which only a single 

(C≡O) band was observed. 

 

 

Figure 53  A schematic representation of [35]
2+

 showing an idealised representation 

of the charge distribution. 

 

In the case of 36, the small comproportionation constant associated with [36]
+
 made 

it impossible to obtain spectra of this species free of 36 and [36]
2+

.   Nevertheless, 

from intermediate spectra collected during the oxidation of 36 to [36]
2+

, an 

intermediate with (C≡O) 1972 cm
-1

 could be observed, and assigned to [36]
+
.   The 

data summarised in Table 35 clearly show the remarkable similarity of the (C≡O) 

frequencies of [35]
n+

 and [36]
n+

.   Given the sensitivity of (C≡O) frequencies to 

metal charge density (oxidation state) it seems probable that the charge distribution 

in both families of complexes derived from 35 and 36 are similar as a function of 

overall complex oxidation state.   The similar distribution of charge in the 

monocations [35]
+
 and [36]

+
 evidenced by the similar (C≡O) frequencies together 

with the small (CO) shifts upon change in redox state suggests strongly that these 

monocations be considered as being in fast exchange, rather than delocalised 

structures (Figure 54). 
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Figure 54 A schematic representation of [36]
+
 showing an idealised representation of 

the localised charge distribution. 

 

Figure 55  The change in ν(C≡O) as 36 is oxidised to [36]
2+

 in CH2Cl2 0.1 M 

[NBu4][BF4]. 

 

By assuming that the absorption bands in the IR spectra are Gaussian in profile, it is 

possible to attempt to deconvolute the experimental spectra of the oxidation of 36 to 

[36]
2+

.   The single (C≡O) band in the IR spectrum of 36 can be fitted to one 

Gaussian band at 1942 cm
-1

.   The two (C≡O) bands in the IR spectrum of the 

dication [36]
2+

, can also be fitted, quite easily to two Gaussian bands. The first of 

these components at 2005 cm
-1

, is similar to the (C≡O) band in the mono oxidised 

mono vinyl complexes ([23]
+
 - [27]

+
), the second at 2072 cm

-1
 is similar to that 

previously seen in the dicationic species [35]
2+

, and has been assigned as the (C≡O) 

band of the “pendant” Ru-CO centre.   A fourth Gaussian band can be deconvoluted 

from the intermediate IR spectra of the oxidation of 36 to [36]
2+

, by varying the 
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amounts of the (C≡O) band corresponding to the neutral (1942 cm
-1

) and the 

(C≡O) bands corresponding to the dication (2005 cm
-1

 and 2072 cm
-1

).   Figure 56 

shows snap shots of the oxidation of 36 to [36]
2+

, with the deconvoluted Gaussian 

bands.   The fourth Gaussian band at 1972 cm
-1

, which is in a similar region as that 

of the symmetric [35]
+
,  could be, without much persuasion, assigned to the (C≡O) 

frequency of the fast exchange [36]
+
 cation. 
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e) End 

Figure 56 Deconvolution of the IR spectra of the oxidation of 36 to [36]
2+

, into the 

four Gaussian shaped peaks, at 1942, 1972, 2005 and 2072 cm
-1

.   Examples a) – e) 

range from early in the oxidation to near completion of oxidation to [36]
2+

. 
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4.3.5 UV-Vis-NIR Spectroelectrochemical Studies 

 

Due to the complications associated with disproportionation of the mono-oxidised 

[36]
+ 

no further work on the characterising of 36 and its oxidised forms was 

undertaken.  However, the neutral and oxidised forms of 35 were further 

characterised by UV-vis-NIR spectroelectrochemical methods (Figure 57).   These 

spectroscopic data are summarised in Table 36, with assignments given based on 

results of the electronic structure and TD DFT calculations described in more detail 

below. 

 

Table 36  UV-vis-NIR spectroscopic data for 35 in CH2Cl2 0.1 M [NBu4][BF4].   

Some extinction coefficients were not reported due to broad indistinct peaks.   

Complex ν / cm-1, (εmax / M
-1cm-1) 

[35] 28990 (13110) 

[35]+
 12600 – 27100 

[35]2+
 12800 – 26800 

 2750 – 3400 
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Figure 57 UV-vis-NIR spectra of [35]
n+

 (n = 0, 1, 2), CH2Cl2 0.1 M [NBu4][BF4]. 
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4.3.6 Electronic Structure Calculations 

 

The theoretical investigation conducted at the DFT level, initially on the model 

system [Ru(CH=CHPh)(CO)(PPh3)Tp], was extended to the bis- hydroruthenated 

compounds.   Full structural model systems of 1,4-[{Ru(CO)(PPh3)Tp}2(μ-

CH=CHC6H4CH=CH)] (35-H) and 1,3-[{Ru(CO)(PPh3)Tp}2(μ-

CH=CHC6H4CH=CH)] (36-H) were used.   Where isomers were possible only the 

isomer with the lowest computed energy was used in further calculations to 

minimise resource demands.   The discussion which follows refers to results 

obtained from calculations at the MPW1K/LANL2DZ/3-21G* level of theory with 

no symmetry constraints.  

 

The optimised geometries of the neutral forms of both 35-H and 36-H are 

symmetric, with 35-H having a C2 symmetry rotational axis normal to the plane of 

the benzene ring, whereas the C2 symmetry axis in 36-H lies in the plane.   

Important bond lengths are similar to those of 23 and other mono-metallic vinyl 

complexes described earlier in this Chapter (Table 37 and Table 38, Figure 58). 

  

Table 37 Selected bond lengths (Å) of the optimised geometries of the neutral 

bimetallics 35-H and 36-H and 23-H. 

Bond Length 35-H 36-H 23-H 

Ru-Cα 2.047 2.045 2.047 

Ru-CO 1.871 1.870 1.873 

Ru-P 2.333 2.333 2.327 

C≡O 1.161 1.161 1.160 

CαCβ 1.342 1.342 1.342 

Cβ-C1 1.469 1.471 1.470 

Ru-N1 (trans to PPh3) 2.089 2.089 2.089 

Ru-N3 (trans to CO) 2.116 2.119 2.116 

Ru-N5 (trans to vinyl) 2.160 2.160 2.157 
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Figure 58 Bond lengths around the aromatic ring in 35-H, 36-H and 23-H. 

 

Table 38 Selected bond angles / dihedral angles table of the optimised geometries of 

the neutral bimetallics 35-H and 36-H and 23-H. 

 35-H 
a 36-H 

a 23-H 

CO-Ru-Cα 89.21 89.25 89.00 

CO-Ru-N3 173.41 173.69 173.54 

Cα-Ru-N5 172.70 173.43 172.26 

CO-Ru-P 94.17 94.31 94.09 

Cα-Ru-P 88.26 87.25 89.68 

N1-Ru-P 174.75 173.73 175.29 

Cβ-Cα-Ru 131.04 130.39 130.70 

Cα-Cβ-C1 126.41 126.42 126.18 

CO-Ru-Cα-Cβ -16.81 -15.43 -18.87 

Ru-Cα-Cβ-C1 -177.79 -176.61 178.72 

Cα-Cβ-C1-C2 -7.54 7.50 -17.21 

a Neutral complexes 35-H and 36-H are geometrically symmetric 

 

Table 39 shows good agreement of the calculated (C≡O) and observed (C≡O) 

frequencies, which gives further confidence in the accuracy of the optimised 

geometries. 

 



 

144 

 

Table 39 Comparison of the experimental ν(C≡O) of neutral 35 and 36, with the 

calculated ν(C≡O) of 35-H and 36-H. 

 (C≡O) / cm-1 

35 (35-H) 1942 (1941) 

36 (36-H) 1942 (1940) 

 

Table 40 and Table 41 summarise the composition of the frontier orbitals of 35-H 

and 36-H, with representative contour plots of key orbitals from 35-H and 36-H, 

illustrated in Figure 59 and Figure 60.   In the neutral system 35-H the HOMO is 

mainly divinylphenylene in character, with a small metal contribution (79 / 16 %), 

and well removed from the other occupied and non-occupied orbitals.   In the case of 

36-H, the HOMO is also heavily divinylphenylene in character (73 / 20 %) but now 

the HOMO-1 has risen in energy, resulting in the HOMO and HOMO-1 being close 

in energy, but well removed from the other orbitals.   Figure 59 and Figure 60 show 

the HOMOs and HOMO-1 of 35-H and 36-H.   Given the large contribution of the 

divinylphenylene ligand to these frontier orbitals, it seems more appropriate to 

discuss the structures in terms of organic redox systems, supported by electron-

donating metal groups. 

 

 

Figure 59 The HOMO (top) and HOMO-1 (bottom) of 35-H plotted with contour 

values ±0.04 (e/bohr
3
)
1/2

. 



 

145 

 

 
Figure 60 The HOMO (left) and [HOMO-1] (right) of 36-H plotted with contour 

values ±0.04 (e/bohr
3
)
1/2

. 

 

Not unlike the mononuclear systems, the LUMOs for the bimetallic 35-H and 36-H 

complexes, are phosphine *-orbital in character, with a small contribution from 

both of the metal centres, with the bridge *- vinyl system comprising the LUMO+6 

and the LUMO+8 for 35-H and the LUMO+6 and the LUMO+10 for 36-H (Table 

40 and Table 41). 
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Table 40 Contributions of the frontier molecular orbitals of 35-H. 

35-H 

MO 

 LUMO+7 LUMO+6 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 HOMO-5 

(eV) 0.52 0.45 0.22 0.21 0.06 0.05 -5.06 -6.20 -6.82 -6.82 -6.88 -7.17 

Occ 0 0 0 0 0 0 2 2 2 2 2 2 

%Ru 2, 2 3, 3 1, 1 1, 1 3, 3 3, 3 8, 8 24, 24 29, 29 29, 29 23, 23 0 

%Tp 2, 2 4, 4 0, 0 1, 1 2, 2 2, 2 1, 1 6, 6 14, 14 14, 14 16, 16 0 

%CO 1, 1 1, 1 0, 0 0, 0 1, 1 1, 1 0, 0 0, 0 3, 3 3, 3 1, 1 0 

%PPh3 31, 31 29, 29 48, 47 46, 46 45, 44 42, 43 1, 1 1, 1 1, 1 1, 1 3, 3 0 

%Cα 0, 0 5, 5 0, 0 0, 0 0, 0 1, 1 12, 12 4, 4 2, 2 2, 2 2, 2 0 

%Cβ 0, 0 1, 1 0, 0 0, 0 0, 0 0, 0 10, 10 12, 12 3, 3 3, 3 0, 0 0 

%Aryl 0, 0 14 1 2 0 2 35 7 0 0 9 100 
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Table 41 Contributions of the frontier molecular orbitals of 36-H. 

36-H 

MO 

 LUMO+7 LUMO+6 LUMO+4 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 HOMO-5 

(eV) 0.71 0.53 0.37 0.23 0.11 0.10 -5.47 -5.79 -6.84 -6.84 -6.94 -6.98 

Occ 0 0 0 0 0 0 2 2 2 2 2 2 

%Ru 3, 3 3, 3 0, 0 2, 2 3, 3 3, 3 10, 10 15, 15 27, 31 32, 27 22, 22 18, 18 

%Tp 29, 29 6, 6 0, 0 1, 1 2, 2 2, 2 2, 2 2, 2 12, 14 14, 12 15, 15 13, 13 

%CO 7, 7 1, 1 0, 0 1, 1 1, 1 1, 1 0, 0 0, 0 3, 4 4, 3 1, 1 1, 1 

%PPh3 11, 11 33, 33 49, 46 47, 45 44, 44 44, 44 1, 1 1, 1 1, 1 1, 1 4, 4 3, 3 

%Cα 0, 0 2, 2 0, 0 0, 0 0, 0 0, 0 9, 9 8, 8 2, 2 2, 2 2, 2 2, 2 

%Cβ 0, 0 1, 1 0, 0 0, 0 0, 0 0, 0 9, 9 13, 13 0, 0 0, 0 0, 0 0, 0 

%Aryl 0 8 1 1 0 1 37 23 1 1 13 24 
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Upon oxidation of 35-H to the mono-oxidised species [35-H]
+
, in which both metal 

centres are in identical structural environments, the CO-Ru-Cα-Cβ dihedral angle 

increases from -16.8  to -17.2 , (similar to the increase, in the oxidation of 23-H to 

[23-H]
+
; 3 ).   The vinyl-aromatic ring dihedral angle Cα-Cβ-C1-C2 is also rotated by 

~5 , decreasing to result in a near planar arrangement of the para-substituted 

aromatic ring and the two vinyl moieties, probably driven by the increase in 

quinoidal character of the organic bridge.   The gross structural features of [35]
n+

 are 

therefore similar, regardless of oxidation state. 

 

As described for the mono-metallic complexes [23-H]
+
 - [27-H]

+
, the bimetallic 

cation [35-H]
+
 features a Ru-Cα bond somewhat shorter than the closed shell 

precursor 35-H (Table 42).    

 

Table 42 Bond lengths (Å) of the optimised geometries of 35-H and [35-H]
+
 and 

differences with data from 23-H and [23-H]
+
  for comparison. 

Bond Length 35-H [35-H]+ %Γa [35-H]+ %Γb [23-H]+ 

Ru-Cα 2.047 1.997 -2.44 -4.00 

Ru-CO 1.871 1.885 +0.75 +2.35 

Ru-P 2.333 2.355 +0.94 +3.14 

C≡O 1.161 1.157 -0.34 -0.86 

Cα=Cβ 1.342 1.376 +2.53 +2.61 

Cβ-C1 1.469 1.422 -3.20 -1.90 

Ru-N1 (trans to PPh3) 2.089 2.093 +0.20 ~ 0 

Ru-N3 (trans to CO) 2.116 2.106 -0.47 -1.37 

Ru-N5 (trans to vinyl) 2.160 2.146 -0.65 -0.74 
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Figure 61 Aromatic bond lengths in: left; 35, and right; cation [35]
+
. 

 

There is a good agreement with the experimental IR spectra of 35
+
 and [35-H]

+
, 

even though there may be an underestimation of the shift of the ν(C≡O) frequency 

(Table 43). 

 

Table 43 Comparison of the experimental and calculated ν(C≡O) frequencies of 

[35]
+
 and [35-H]

+
. 

 [35]+ [35-H]+ 

ν(C≡O) 1972 cm-1  1958 cm-1 

Γ ν(C≡O) 30 cm-1 17 cm-1 

 

Structural changes upon oxidation are also evidenced in the elongation of the metal-

phosphine bond lengths (Table 42).   Carbonyl bond lengths, and hence the ν(C≡O), 

are also sensitive to the net electron density at the metal centre.   The CO bond 

length in the [35-H]
+
 is modestly shorter than in 35-H, leading to a higher ν(C≡O) 

frequency [35-H, 1941 cm
-1

; [35-H]
+
, 1958 cm

-1
].    

 

From Table 42 it can be seen that the percentage difference in the C≡O bond lengths 

of 35-H and [35-H]
+
 is roughly half that of the mononuclear system [23] and [23]

+
 (-

0.34 % and -0.86 %).   
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The molecule orbital calculations of 23-H – 27-H showed the HOMO has 

significant vinyl character, which is also true of the bimetallic complexes 35-H - 36-

H.    Thus the effect of the oxidation, which is occurring mainly on the aromatic 

ring, is shared between the two metal centres in [35]
+
, consequently, the shift in 

ν(C≡O) in 35 and [35]
+
 is roughly half that found in 23-H and [23-H]

+
 (17 cm

-1
 

compared with 56 cm
-1

)   

 

Table 44 summarises the composition of the frontier orbitals of [35-H]
+
 with 

representative contour plots of -LUSO from [35-H]
+
 illustrated in Figure 62.   In 

[35-H]
+
, the -HOSO and -LUSO are similar in composition and mainly 

divinylphenylene in character, with a small metal contribution (70 / 22 %) and (75 / 

20 %) respectively (Figure 62).   The -LUSO is essentially the divinylbenzene π* 

system, whilst the -HOSO is rather more metal in character (Table 44). 

 

 

 

Figure 62 The -LUSO (top) and the -HOSO (bottom) of [35-H]
+
 plotted with 

contour values ±0.04 (e/bohr
3
)

1/2
.  
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Table 44 Molecular contributions for the frontier orbitals of [35-H]
+
. 

[35-H]+ 

MO 

 317β 317α 315β 315α 314β 314α 313β 313α 312β 312α 311β 311α 309β 309α 

 β-

[LUSO+4] 

α-

[LUSO+3] 

β-

[LUSO+2] 

Α-

[LUSO+1] 

β-

[LUSO+1] 

α- 

[LUSO] 

β- 

[LUSO] 

α- 

[HOSO] 

β- 

[HOSO] 

α- 

[HOSO-1] 

β- 

[HOSO-1] 

α- 

[HOSO-2] 

β- 

[HOSO-3] 

α- 

[HOSO-4] 

(eV) -1.72 -1.72 -1.99 -2.01 -2.41 -2.92 -5.47 -7.99 -8.14 -9.01 -9.08 -9.28 -9.22 -9.42 

Occ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

%Ru 3, 3 3, 3 5, 5 5, 5 4, 4 2, 2 10, 10 11, 11 23, 23 23, 23 19, 19 3, 40 27, 19 12, 12 

%Tp 2, 2 2, 2 2, 2 2, 2 2, 2 1, 1 1, 1 2, 2 6, 6 16, 16 19, 20 4, 44 26, 18 24, 24 

%CO 2, 2 2, 2 1, 1 1, 1 1, 1 0, 0 0, 0 0, 0 0, 0 0, 0 1, 1 0, 4 3, 2 1, 1 

%PPh3 45, 42 45, 42 41, 41 40, 40 6, 6 2, 2 1, 1 1, 1 1, 1 1, 1 3, 3 0, 2 1, 1 9, 9 

%Cα 0, 0 0, 0 0, 0 1, 1 18, 18 17, 17 11, 11 11, 11 1, 1 1, 1 4, 4 0, 2 1, 1 2, 2 

%Cβ 0, 0 0, 0 0, 0 0, 0 1, 1 3, 3 10, 10 9, 9 12, 12 7, 7 0, 0 0, 0 0, 0 0, 0 

%Aryl 0 0 1 1 38 49 33 30 13 5 9 0 0 5 
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Table 45 Spin Density Table [35-H]
+
. 

 [35-H]+ 

 Centre A Centre B 

Ru 0.113, 0.113, 

P -0.003, -0.003, 

C (CO) -0.004 -0.004 

Cα 0.213 0.213 

Cβ 0.059 0.059 

N trans to CO -0.001 -0.001 

N trans to vinyl -0.004 -0.004 

N trans to PPh3 0.003 0.003 

Aryl 0.278 

 

From the spin density calculations on [35-H]
+
 it can be seen that the 82% of the spin 

is symmetrically delocalised on the divinylbenzene moiety (Table 45). 

 

From Table 46 it can be seen that the calculated geometry of [36-H]
+
 is asymmetric 

with one of the metals in a similar spatial geometry to that of the neutral species 36, 

and the other metal centre similar to the metal centres of the mono-oxidised 

mononuclear vinyl complexes.   This geometry leads to a localised oxidation, 

heavily involving one of the metal centres and the bridging ligand.   Hence the 

calculated IR gave two ν(C≡O) bands, one similar to the neutral system (1947 cm
-1

) 

and another, at a shift of ~35 cm
-1

, similar to the mono-oxidised mononuclear vinyl 

complexes (1982 cm
-1

).    
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Table 46 Optimised geometries of 36-H and [36-H]
+
 and the bond length differences 

between the two oxidation states. 

Bond Length / Å 36-H [36-H]+ Γ 

Ru(A)-Cα 2.045 1.958 -0.087 

Ru(A)-CO 1.870 1.902 +0.032 

Ru(A)-P 2.333 2.396 +0.066 

C≡O 1.161 1.153 -0.008 

Cα=Cβ 1.342 1.384 +0.042 

Cβ-C1 1.471 1.433 -0.038 

Ru(A)-N1 (trans to 

PPh3) 
2.089 2.089 ~ 0 

Ru(A)-N3 (trans to 

CO) 
2.119 2.095 -0.024 

Ru(A)-N5 (trans to 

vinyl) 
2.160 2.149 -0.011 

Ru(B)-Cα‟ 2.045 2.042 -0.003 

Ru(B)-CO 1.870 1.875 +0.005 

Ru(B)-P 2.333 2.339 +0.006 

C≡O 1.161 1.159 -0.002 

Cα‟=Cβ‟ 1.342 1.347 +0.005 

Cβ‟-C1‟ 1.471 1.464 -0.007 

Ru(B)-N1‟ (trans to 

PPh3) 
2.089 2.093 +0.004 

Ru(B)-N3‟ (trans to 

CO) 
2.119 2.113 -0.006 

Ru(B)-N5‟ (trans to 

vinyl) 
2.160 2.150 -0.010 

 

The composition of the frontier orbitals of [36-H]
+
 are summarised in Table 47 with 

representative contour plots of -HOSO, -LUSO, -HOSO and -LUSO illustrated 

in Figure 63.   The -HOSO and -LUSO of [36-H]
+
 are both similar in 

composition, and again are mainly divinylphenylene in character, with a 

considerable metal contribution (49 / 39 %) and (59 / 30 %) respectively (Figure 

63).   Again, the -LUSO is essentially the divinylbenzene π* system, whilst the -

HOSO is rather more metal in character (Figure 63, Table 47). 
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Figure 63 The -LUSO (top left) the -HOSO (bottom left), the -LUSO (top right) 

and the -HOSO (bottom right) of [36-H]
+
 plotted with contour values ±0.04 

(e/bohr
3
)
1/2

. 
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Table 47 Contributions of the frontier molecular orbitals of [36-H]
+
. 

[36-H]+ 

MO 

 316β 316α 315β 315α 314β 314α 313β 313α 312β 312α 311β 311α 310β 310α 

 β-

[LUSO+3] 

α-

[LUSO+2] 

β-

[LUSO+2] 

α-

[LUSO+1] 

β-

[LUSO+1] 

α- 

[LUSO] 

β- 

[LUSO] 

α- 

[HOSO] 

- 

[HOSO] 

α- 

[HOSO-1] 

β- 

[HOSO-1] 

α- 

[HOSO-2] 

β- 

[HOSO-2] 

α- 

[HOSO-3] 

(eV) -2.23 -2.27 -2.26 -2.47 -2.51 -2.80 -5.89 -8.14 -7.84 -8.91 -8.89 -9.09 -9.04 -9.19 

Occ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

%Ru (A) 13 12 12 19 12 5 30 0 5 0 0 8 2 8 

%Tp (A) 9 13 13 7 5 3 4 0 1 0 0 2 1 3 

%CO (A) 2 19 18 3 6 2 0 0 0 0 0 0 0 0 

%PPh3 (A) 29 54 56 62 56 12 2 0 0 0 0 1 0 1 

%Cα (A) 13 0 0 3 6 28 11 0 0 0 0 7 0 6 

%Cβ (A) 4 0 0 0 3 8 21 0 3 0 0 9 0 11 

%Aryl 28 0 0 5 11 40 27 18 16 1 1 26 9 23 

%Cβ (B) 0 0 0 0 0 0 1 22 22 1 1 1 3 4 

%Cα (B) 0 0 0 0 0 1 2 9 10 4 2 4 7 3 

%PPh3 (B) 0 0 0 0 0 0 0 2 2 2 2 6 10 10 

%CO (B) 0 0 0 0 0 0 0 0 0 7 7 1 2 2 

%Tp (B) 0 0 0 0 0 0 0 10 7 32 32 17 32 13 

%Ru (B) 0 0 0 0 0 0 1 39 33 54 54 16 32 15 
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The spin density calculations of [36-H]
+
 (Table 48), agree with the optimised 

geometry of [36-H]
+
, with the charge being asymmetrically distributed. 

 

Table 48 Spin Densities for [36-H]
+
. 

 [36-H]+ 

 Centre A Centre B 

Ru 0.460 0.003 

P -0.015 0 

C (CO) -0.012 0 

Cα -0.035 -0.055 

Cβ 0.403 0.050 

N trans to CO -0.004 0 

N trans to vinyl -0.005 0 

N trans to PPh3 -0.004 0 

Aryl 0.219 

 

The optimised geometries of both of the possible spin states, singlet (low spin) and 

triplet (high spin), of both [35-H]
2+

 and [36-H]
2+

, gave symmetric geometries.   The 

DFT calculated ν(C≡O) frequencies for LS and HS [35-H]
2+

, and LS and HS [36-

H]
2+

, gave poor agreement with the experimental result.   Due to these geometry, 

frequency and spin issues, and given the limited computational resources available, 

the theoretical study of these rather large dicationic complexes was not pursued 

further. 

 

 

4.3.7 UV-vis Absorptions from the TD DFT Calculations 

 

To aid in the assignment of the electronic transitions observed in the experimental 

work (Section 4.3.5) TD DFT calculations were carried out on the model system 

1,4-[{Ru(CO)(PPh3)Tp}(μ-CH=CHC6H4CH=CH)]
n+

 ([35-H]
n+

, n = 0, 1).   Before 

discussing the TD DFT results from 35-H, a few of the pertinent points of the 

electronic structure of this compound, will be summarised, to aid the reader.   In a 

manner similar to that described for the mono-metallic compounds 23 – 27, the 
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HOMO in 35 is predominately comprised of a Ru-CH=CH-Ar-CH=CH-Ru -type 

system and can be termed a “metal-ligand” (ML) orbital (Table 49, Figure 64).   The 

corresponding * system (LUMO+6) with a node between the vinyl carbon atoms 

features an appreciably smaller metal contribution (Table 49) and can be designated 

a “ligand” (L) orbital.   The orbital composition of 35-H compares most closely to 

that of 27-H (Table 49), suggesting that it is appropriate to consider the second 

metal centre as a good electron donor.  

 

Table 49  Composition of selected frontier orbitals of 35-H and 27-H. 

  ε(eV) %Ru %Tp %PPh3 %CO %Cα %Cβ %Aryl %R-group 

35-H HOMO -5.09 16 2 2 0 24 20 35 - 

 LUMO+6 0.45 6 8 58 2 10 2 14 - 

27-H HOMO -5.53 18 3 1 0 16 18 36 7 

 LUMO+8 1.19 4 31 11 1 9 2 40 2 

 

For the neutral (18-electron, closed shell) system 35-H the most significant 

absorption band in the visible region is calculated to arise from transitions from the 

“ML” centred HOMO to the LUMO+6, and can hence be designated as an ML-LCT 

transition. 

 

In the experimental studies, oxidation of 35 to [35]
+
 causes a collapse of the ML-

LCT transition associated with the neutral species, with smaller absorption bands 

growing into the spectrum at lower energy.   On the basis of the TD DFT 

calculations, and the TD DFT calculations of the mono-vinyl complexes 23 – 27, 

these lower energy bands can be assigned to the transitions from the -HOSO to the 

-LUSO and from the -HOSO to the -LUSO.   The -HOSO and -LUSO of 

[35]
+
 are both similar in composition to the HOMO (Figure 64).   The -LUSO is 

similar in composition to the L orbitals described above (i.e. LUMO+6), whilst the 

-HOSO is rather more metal in character (Figure 65, Table 50). 
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Figure 64 Contour plots: left; HOMO of 35-H, centre; -HOSO, right; -LUSO of 

[35-H]
+
. 

 

  

Figure 65 Contour plots: left; LUMO+6 of 35-H, centre; -LUSO, right; -HOSO 

of [35-H]
+
. 

 

Table 50 Composition of the -HOSO and -LUSO of [35-H]
+
, [27-H]

+
 and [23-

H]
+
. 

  ε(eV) %Ru %Tp %PPh3 %CO %Cα %Cβ %Aryl %R-group 

[35-H]+ -HOSO -8.14 46 12 2 0 2 24 13 - 

 -LUSO -7.99 22 4 2 0 22 18 30 - 

[27-H]+ -HOSO -9.49 27 20 3 0 9 0 30 10 

 -LUSO -3.08 4 3 10 2 29 9 40 3 

[23-H]+ -HOSO -9.88 20 26 7 0 16 1 30 - 

 -LUSO -3.16 6 3 18 4 26 8 34 - 

 

On this basis, the -HOSO - -LUSO transition is also ML-LCT in character, while 

the β-HOSO - β-LUSO transition can be better described as M-MLCT in character. 

 

As the DFT calculations were unable to successfully model the dication [35]
2+

, the 

UV-vis absorptions assignments had to be done manually, hence the assignment of 

the band at roughly 24000 cm
-1

 is tentatively assigned as ML-LCT in character, akin 

to the higher energy absorption in the mono-vinyl complexes, and the band at lower 

energy band at roughly 13000 cm
-1

 as M-MLCT in character, similar to the 
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assignment of the band in the cationic species [35]
+
.   Any assignment of d-d or M-

MCT bands in the NIR region, would be foolhardy as the quality of the data is poor 

and hence has not been attempted. 

 

 

4.3.8 Conclusions Drawn from the Electrochemical and 

Spectroelectrochemical Properties and Electronic Structures of Bis 

Hydroruthenated Acetylene Complexes 

 

Table 40 and Table 41, Table 44 and Table 47 summarise the composition of the 

frontier orbitals of 35 and 36 and their mono-oxidised analogues, with representative 

contour plots of key orbitals from 35, 36 and [35]
+
 and [36]

+
 illustrated in Figure 59 

and Figure 60.   The HOMOs of both 35 and 36, is the -system of the metal vinyl 

aryl fragment, with metal / vinyl contributions of (16 / 79 %) and (20 / 73 %) for 35 

and 36 respectively.   For both 35 and 36 the LUMO is essentially a phosphine *-

orbital, with contributions from the metal centre, the vinyl * system comprising the 

LUMO+6 and the LUMO+6, for 35 and 36 respectively.   Similarly significant 

contributions (69 – 71 %) of the vinyl ligand to the HOMOs in complexes 1,4- and 

1,3- [{RuCl(CO)(P
i
Pr3)2}2(μ-CH=CHC6H4CH=CH)], 33 and 34 have been 

computed by Winter and his team. 
42

   The orbital characteristics of 35 and 36 are 

largely retained upon oxidation (Table 44 and Table 47), although the metallic 

contribution to the β-LUSO is generally somewhat greater than in the HOMO of the 

corresponding neutral system.   The calculated (C≡O) frequencies for the 

bimetallic neutral species are in good agreement with those observed from the 

spectroelectrochemical experiments, with the small increase in frequency of the 

(C≡O) band upon oxidation to the monocation is consistent with the structure of 

the -LUSO.   However the optimised geometry and hence the calculated (C≡O) 

frequencies for the dications does not agree with the experimental data, with two 

distinct oxidation centres.   Spin density calculations on the optimised geometry of 

[35-H]
+
 agrees with that seen with the mono-vinyl complexes, with the vinyl ligand 

supporting progressively more of the electron spin as the donating properties of the 

vinyl substituent increase, where the second metal centre acts as a pseudo electron 

donor group (Table 45).   The optimised geometry of [36-H]
+
 results in a localised 
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geometry with the oxidation being localised towards one side of the divinylbenzene 

fragment, with the calculated (C≡O) frequencies for [36-H]
+
 resulting in two 

(C≡O) bands at positions similar to the calculated (C≡O) frequencies of 23-H and 

[23-H]
+
.   The experimental observation of a single (C≡O) band in the 1,3-isomer 

[36]
+
 may be described in terms of an average of the two rapidly exchanged cationic 

forms. 

 

 

4.4 Tris- Hydroruthenated Complexes 

 

In seeking to extend the structures further, attention was turned to the study of 

trivinyl complexes prepared from 1,3,5-triethynyl benzene. Over the past decades, 

1,3,5-triethynyl benzene has often been used as a convenient ligand through which 

trimetallic complexes that exhibit a variety of properties ranging from reversible 

oxidation, 
289, 290

 luminescence, 
213

 photo- induced electron or energy transfer 
291

  

and even liquid crystal behaviour can be assembled. 
292

   Some of Lang‟s recent 

work serves as an illustration of the some of these points. 
207

 

 

The incorporation of metal end groups around the periphery of the organic benzene 

ligand has given rise to homometallic iron-, iridium- chromium, gold and platinum 

complexes 
208, 293-295

 and heterometallic examples. 
211, 296

   Much of the recent work 

concerning heterometallic complexes featuring a 1,3,5-triethynylbenzene ligand has 

been carried out by Lang, with a variety of metal centres such as Ru(dppf)Cp, 

Os(PPh3)2Cp, Re(
t
Bu2bpy)(CO)3 and ferrocenyl units being incorporated into the 

extended -system of the ligand. 
207, 297

 

 

Of particular relevance to the current studies are the tris(hydrometallated) 

compounds prepared by Jia. 
282

   Addition of three equivalents of the ruthenium 

complex RuHCl(CO)(PPh3)3, to 1,3,5-triethynylbenzene in CH2Cl2, gave the 

trimetallic five-coordinate complex [{RuCl(CO)(PPh3)2(CH=CH)}3C6H3] which can 

be either capped using a 2e
-
 nitrogen donor ligands [L = pyridine (Py) or 4-

phenylpyridine (PhPy)] to give the six-coordinate 
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[{RuCl(CO)(PPh3)2L(CH=CH)}3C6H3] (29 and 37) (Chart 10), or treated with 

trimethylphospine (PMe3), to give the six-coordinate 

[{RuCl(CO)(PMe3)3(CH=CH)}3C6H3] complex, where the PMe3 ligands are in a 

mer- configuration, indicated by the AM2 pattern 
31

P{
1
H} NMR spectrum.   X-ray 

studies of [{RuCl(CO)(PPh3)2Py(CH=CH)}3C6H3] (29) showed that the three Ru 

centres are related by a pseudo-C3 rotation axis.   Interestingly the vinyl groups in 29 

are not coplanar with the Ru-CO bond in contrast with other related mono and 

bimetallic ruthenium hydride compounds. 

 

 

Chart 10 Six-coordinate tris-metallated 1,3,5-triethynylbenzene complexes 29 and 

37. 

 

Attempts to metallate 1,3,5-triethynylbenzene using OsHCl(CO)(PPh3)3, afforded 

the bimetallated 1-HC≡C-3,5-[{OsCl(CO)(PPh3)3(CH=CH)}2C6H3] which does not 

further metallate.   On treatment with PMe3 only the PPh3 trans to the vinyl 

fragment was replaced. 

 

Electrochemical analysis of the capped six-coordinated trimetallic compounds 29 

and 37, revealed three well resolved oxidation waves, (0.54, 0.92 and 1.19 V ; 0.54, 

0.90 and 1.10 V, for 29 and 37 respectively, vs Ag/AgCl), which the authors have 

tentatively attributed to the formation of (Ru(II)/Ru(II)/Ru(III)), 

(Ru(II)/Ru(III)/Ru(III)) and (Ru(III)/Ru(III)/Ru(III)) and used the relatively large Kc 
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values as an indication of electronic interactions between the metal centres.   

However, the uncapped five-coordinate trimetallic parent complex and the PMe3 

treated complex showed both irreversible oxidation waves and unresolvable 

irreversible multiple oxidation waves. 

 

The trimetallic complex 1,3,5-[{Ru(CO)(PPh3)TpCH=CH}3C6H3] 38 (Figure 66) 

was prepared in a manner entirely analogous to that described for 35 and 36, from 

KTp and [{RuCl(CO)(PPh3)2}3(CH=CH)3C6H3]. 
282

 

 

 

Figure 66 Tp
-
 capped trimetallic trivinylbenzene complex 38. 

 

With a linear molecule with three stereogenic centres, the number of stereoisomers 

is 8 (=2
3
), resulting in four diastereoisomers, each a pair of two enantiomers.   

However with possible C3 symmetry some of these stereoisomers are essentially the 

same, i.e. RRS ≡ SRR ≡ RSR.   The arrangement of the three vinyl moieties also 

plays a part in the complication of the spectroscopic determination, as even 

restricting them to be planar with the aryl ring (in agreement with the crystal 

structures of the mono-metallic compounds), there are two arrangements that will 

give differing spectroscopic data (Figure 67).   This picture is further complicated by 

the fact that was shown earlier in the Chapter, in that there are two vinyl spatial 

arrangements with respect to the Ru-CO bond, one essentially coplanar to the 

carbonyl and the other (dihedral angle ~135 ˚ to the Ru-CO bond) nestled between 

two pyrazolyl rings. 
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Figure 67 The two arrangements of the three vinyl moieties planar to the aryl ring. 

 

Due to this, definitive assignment of the rather complex 
1
H NMR spectrum is not 

possible and characterisation rests on the mass spectrometric data, 
31

P NMR 

spectroscopy and IR spectroscopy.   The 
31

P NMR of 38 shows five peaks (50.5, 

50.6, 50.7, 51.7, 52.6 ppm), the MALDI(+)-mass spectrometry featured the 

molecular ion; m/z 1966.4 amu.   Cyclic voltammetry showed poorly resolved 

electrode events, and the resulting small Kc rendered it impossible to generate 

spectra of pure intermediate oxidation states. 

 

The IR spectrum of the neutral complex 38 shows a single ν(C≡O) band at 1942 cm
-

1
, similar to both 35 and 36.   On oxidation to the fully oxidised species [38]

3+
, the 

IR shows a low intensity ν(C≡O) band at 1997 cm
-1

 and a strong intensity ν(C≡O) 

band at 2072 cm
-1

.    The position of these two ν(C≡O) bands are in a similar region 

as the IR bands of the dications of 35 and 36, (1996 cm
-1

 and 2071 cm
-1

; and 2005 

cm
-1

 and 2072 cm
-1

; for [35]
2+

 and [36]
2+

 respectively), however, with the intensities 

of the peaks reversed. 

 

This gives a picture which is consistent with the model proposed earlier for the 

dications of 35 and 36, where in this instance, instead of having only one “fully 

oxidised” pendant arm, the trication of 38 ([38]
3+

), has two (Figure 69).   The 

progression of the ν(C≡O) band(s), from neutral 38 to tricationic [38]
3+

, is similar to 

that of the progression seen in 36 to [36]
2+

.   Upon oxidation of the neutral 38 

species the initial ν(C≡O) band at 1942 cm
-1

, collapses, with two new bands 

forming/shifting to roughly 1974 and 1997 cm
-1

.   As the oxidation progresses 

towards the fully oxidised trication [38]
3+

 the band at 1974 cm
-1

 disappears, with a 
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new band at 2072 cm
-1

 emerging, whereby the intensity of this new band grows, as 

the band at 1997 cm
-1

, decreases in intensity, until [38]
3+

 is fully formed (Figure 68). 

 

Figure 68 IR spectra of the progression of ν(C≡O) band(s) on the oxidation of 38 to 

[38]
3+

. 

 

 

Figure 69 The proposed centres of oxidation in the trication [38]
3+

. 

 

One interesting aside, is the N-trimethylborazine analogous compound where the 

benzene ring in 38 has been conceptually changed to the N-trimethylborazine, 

resulting in the trimetallic complex [{RuCl(CO)(PPh3)2(CH=CH)}3B3N3Me3] 
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(Figure 70), which was synthesised from RuHCl(CO)(PPh3)3 and B-triethynyl-N-

trimethylborazine. 
298

  

 

 

Figure 70 Tris-metallic trimethylborazine complex 

[{RuCl(CO)(PPh3)2(CH=CH)}3B3N3Me3]. 
298

 

 

The trimetallated Tp capped- hydroruthenated product of tri-(ethynylphenyl)amine 

was also synthesized 39 (Figure 71), with the idea of conceptually adding a redox 

centre to the core of the molecule, that is para- to the metal vinyl end group on the 

benzene ring,  which may benefit the communication/delocalisation of electron 

density from one metal centre to the others, but again due to the increased 

complications of the chirality, and other structural spatial arrangement, no 

electrochemical or spectroelectrochemical work was done on this complex.   
1
H and 

31
P spectroscopy, MALDI(+) mass spectroscopy and IR spectroscopy was employed 

to attempt characterisation of the compound 39.   Literature searches seem to 

suggest that this is the first trimetallated tris(vinylphenyl)amine complex 

synthesised. 
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Figure 71 [{Ru(CO)(PPh3)Tp}3-(1,4-(CH=CH)(C6H4))3N] (39). 

 

In the 
1
H NMR, even though the peaks were significantly broadened by overlapping 

resonances, it was possible to assign some of the characteristic features seen in this 

series of mono-, bi- and tri- metallic vinyl compounds.   The H vinyl protons 

appear as a doublet of doublets with coupling of 
3
JHH = 17 Hz and 

3
JHP = 2 Hz, at δ 

7.99 ppm, which is a similar chemical shift as found in the vinyl complex that bears 

an electron donating substituent, complex 27 (R = OMe).   The H vinyl protons 

appear between δ 6.28 – 6.34 ppm, as a multiplet, again with a chemical shift as the 

H vinyl proton in 27.   There are also the characteristic three groups of peaks 

associated with the Tp
-
 protons, in the ranges δ 5.89 – 5.90 ppm, δ 6.08 – 6.79 ppm 

and δ 7.55 – 7.73 ppm.   Peaks associated to the aromatic pseudo-AB protons and 

the phenyls of the three phosphines can all be accounted for, but definitive 

assignment is tentative. 

 

The
 31

P NMR showed three close peaks at δ 51.3 – 51.4 ppm.   The MALDI(+)-mass 

spectroscopic data featured the molecular ion; m/z 2133.7.   The IR of the neutral 

complex 39, shows a single ν(C≡O) band at 1940 cm
-1

, and a single ν(B-H) band at 

2481 cm
-1

, these are again similar to the mono- and bimetallic vinyl complexes. 
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4.5 Conclusions 

 

The reaction of RuHCl(CO)(PPh3)3 with a number of acetylenes produced the five 

coordinate vinyl complexes Ru(CH=CHC6H4R-4)Cl(CO)(PPh3)2 which were not 

isolated but rather treated in situ with KTp, producing 

[{Ru(CO)(PPh3)2Tp}(CH=CHC6H4R-4)].   Molecular structures of 23, 24, 25 and 26 

reveal that the complexes are pseudo-octahedral.   There is no significant trend in 

ν(C≡O) as the R group is varied, and along with a small shift in ν(C≡O) on oxidation 

of the complex indicates that the aryl ligand plays a significant role in the oxidation 

of complex.   The electrochemical reversibility of the first oxidation process 

suggests that the mono oxidised forms are easily accessible and so could used as a 

potentially redox terminal for a molecular wire.   An electron acceptor group leads to 

a stabilisation of the HOMO and LUMO.   On oxidation, these orbitals were 

stabilised further.   With the aid of TD DFT the electronic transitions present in the 

neutral and cationic forms of 23 and 25 were assigned, with the main absorption in 

the neutral species being from the -system of the Ru-vinyl-aryl to the -system, 

ML-LCT in character.   The main absorptions in the cationic species arise from 

transitions from the -HOSO to the -LUSO and the -HOSO to the -LUSO, (M-

MLCT and ML-LCT in character, respectively). 

 

The reaction of RuHCl(CO)(PPh3)3 with 1,4- and 1,3-diethynylbenzene and the 

subsequent capping with KTp produced 35 and 36.   The monocation of 35 has 

typical attributes of Class III mixed valence systems.   On further oxidation 

however, characteristics emerge which are typical of Class II mixed valence 

systems.   Fundamentally, there is the development of an absorption band in the near 

infrared region.   The monocation of 36 could not be isolated, but its neutral and 

dicationic forms are similar to that of 35.   More work is required to resolve the 

absorption spectrum of [36]
+
 fully. 

 

The spectroscopic and structural nature of [23-H]
n+

 - [36-H]
n+

 (n = 0, 1) were 

satisfactorily reproduced with computational methods using the MPW1K functional.   

However the functional was not able to reproduced the spectroscopic characteristics 

of the dication of [35-H]
2+

 and [36-H]
2+

. 
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4.6 Experimental Details 

 

4.6.1 General Conditions 

 

All reactions were carried out using oven dried glassware, under an atmosphere of 

nitrogen using standard Schlenk techniques.   Reagents purchased commercially 

were used without further purification.   Starting materials were checked by using 

relevant spectroscopic techniques before use. RuHCl(CO)(PPh3)3 19 was prepared 

using the literature method. 
299

   NMR spectroscopies were carried out a room 

temperature and referenced against CDCl3 using the Varian Mercury-200 (
1
H 199.99 

MHz, 
31

P 80.96 MHz), Bruker and Varian Mercury-400 (
1
H 399.97 MHz, 

31
P 

161.10 MHz) or Varian Inova-500 (
1
H 499.77 MHz, 

13
C 125.67 MHz, 

31
P (202.31 

MHz).   Chemical shifts are reported in δ / ppm and coupling constants, J, in Hz.   

The assignments are such that Cα is the vinyl carbon closest to the ruthenium, the 

carbons on the aromatic ring are labelled C1 – C4 where C1 is closest to the 

ruthenium and the carbons on the triphenylphosphine rings are labelled Ci, Co, Cm, 

Cp dependent on if they are in the ipso, ortho, meta and para positions.   IR spectra 

were recorded using solution cells fitted with CaF2 windows by the Nicolet Avatar 

FT IR spectrophotometer.   Mass spectra were acquired using the Thermo- Finnigan 

LTQ FT spectrometer.   Single crystal X-ray structure determinations were carried 

out by Dr DS Yufit of this department using a Bruker 3-circle diffractometer with a 

SMART 6K area detector, using graphite-monochromated sealed-tube Mo-Kα 

radiation.   These data collections were performed at 120 K, and the temperature 

maintained using cryostream (Oxford cryosystem) open flow N2 cryostats.   

Reflection intensities were integrated using the SAINT program. 
300

   The molecular 

structures were solved using direct-methods and refined by full matrix least-squares 

F
2
 using SHELXTL software. 

148
   All non-hydrogen atoms were refined in 

anisotropic approximation.  Hydrogen atoms were placed into calculated positions, 

and refined isotropically using a riding model.   Electrochemical experiments were 

performed in an air tight one compartment cell, constructed by a carbon working 

electrode, a platinum pseudo reference electrode and a platinum counter electrode.   

These components were fixed into the system via a Teflon screw cap with a suitable 

fitting.  Voltammetric data were acquired using Autolab PG-STAT 30 in either 
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CH2Cl2 or MeCN solutions containing 0.1 M electrolyte solutions of [NBu4][BF4] at 

room temperature.   Potentials are referenced to ferrocene or decamethylferrocene as 

appropriate. 

 

4.6.2 Mono-Hydroruthenation Experimental 

 

4.6.2.1 Preparation of [{Ru(CO)(PPh3)Tp}(CH=CHC6H4Me-4)] (23) 

 

To a suspension of RuHCl(CO)(PPh3)3 19 (0.10 g, 0.105 mmol) in dichloromethane 

(10 ml) was added p-tolylacetylene (0.07 ml, 0.524 mmol).   The solution 

immediately turned red and was stirred for 30 min.   KTp (0.08 g, 0.315 mmol) was 

added and over the course of 1 hour, the solution turned green.   The reaction 

mixture was filtered through celite and the solvent removed.   The residual solid was 

re-dissolved in dichloromethane (2 ml), hexane was added (4 ml) and some solvent 

removed.   A light green powder was collected by filtration and dried under vacuum 

(0.051 g, 64 %).   Recrystallisation from dichloromethane and hexane (3:2) by slow 

diffusion gave yellow crystals.   
1
H NMR (200 MHz, CDCl3): δH  2.51 (s, 3H, CH3), 

5.94 (t, 
3
JHH = 2 Hz, 1H, Tp), 5.99 (t, 

3
JHH = 2 Hz, 1H, Tp), 6.12 (t, 

3
JHH = 2 Hz, 1H, 

Tp), 6.41 (d, 
3
JHH = 17 Hz, 1H, Ru-CH=CH), 6.79 (d, 

3
JHH = 2 Hz, 1H, Tp), 6.81 (d, 

3
JHH = 2 Hz, 1H, Tp), 6.87 (d, 

3
JHH = 2 Hz, 1H, Tp), 7.07 (dd, 

3
JHH = 11 Hz and 

3
JHP 

= 2 Hz, 2H, C6H4), 7.29 - 7.39 (m, 6H, Ph Ho), 7.42 - 7.51 (m, 8H, Ph Hm and C6H4), 

7.57 - 7.64 (m, 3H, Ph Hp), 7.85 (t, 
3
JHH = 2 Hz, 1H, Tp), 7.95 (t, 

3
JHH = 2 Hz, 1H, 

Tp), 8.00 (d, 
3
JHH = 2 Hz, 1H, Tp), 8.33 (dd, 

3
JHH = 17 Hz and 

3
JHP = 2 Hz, 1H, 

RuCH=CH).   
31

P NMR (200 MHz, CDCl3): δ 50.6 (s).   
13

C NMR (176 MHz, 

CDCl3) δC 21.3 (s, CH3), 105.3 (s, Tp), 105.4 (s, Tp), 105.5 (s, Tp), 124.6 (s, C2), 

128.2 (d, 
2
JCP = 10 Hz, Cm/m’), 129.1 (s, C3), 130.0 (d,

 4
JCP = 2 Hz, Cp/p’), 133.2 (s, 

C1), 133.3 (d, 
1
JCP = 44 Hz, Ci/i’), 134.4 (d, 

3
JCP = 10 Hz, Co/o’), 134.7 (d, 

3
JCP = 2 

Hz, Cβ), 135.1 (s, Tp), 135.5 (s, Tp), 136.8 (s, Tp), 139.4 (s, C4), 142.9 (s, Tp), 143.0 

(s, Tp), 144.2 (s, Tp), 160.4 (d, 
2
JCP = 13 Hz, Cα), 207.1 (d, 

2
JCP = 16 Hz, CO).   

ES(+)-MS (m/z) 722.2 [M + H]
+
.   IR (CH2Cl2, cm

-1
): ν(C≡O) 1942, (B-H) 2481.   

Elemental analysis: Calculated for C37H34BN6OPRu.0.25(CH2Cl2); C, 60.23; H, 

4.68; N, 11.31.   Found; C, 60.10; H, 4.79; N, 11.04.   
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4.6.2.2 Preparation of [{Ru(CO)(PPh3)Tp}(CH=CHC6H4CN-4)] (24) 

 

To a suspension of RuHCl(CO)(PPh3)3 19 (0.10 g, 0.105 mmol) in dichloromethane 

(10 ml) was added 4-ethynylbenzonitrile (0.04 g, 0.315 mmol).   A cloudy yellow 

suspension formed and was stirred for 3 h.   KTp was added (0.08 g, 0.315 mmol) to 

the reaction mixture and left to stir overnight.   The clear green solution was filtered 

through celite and the solvent removed.   The residual solid was re-dissolved in 

dichloromethane (2 ml), hexane added (4 ml) and some solvent removed.   A dull 

yellow powder was collected by filtration and dried under vacuum.   Purification 

was achieved by dissolving the powder in a minimum amount of dichloromethane, 

and layering with hexane, to give a bright yellow powder (0.035 g, 45 %).   

Recrystallisation from dichloromethane and ethanol (3:2) by slow diffusion gave 

yellow crystals.   
1
H NMR (200 MHz, CDCl3): δH  5.92 (t, 

3
JHH = 2 Hz, 1H, Tp), 

5.95 (t, 
3
JHH = 2 Hz, 1H, Tp), 6.08 (t, 

3
JHH = 2 Hz, 1H, Tp), 6.44 (d, 

3
JHH = 17 Hz, 

1H, RuCH=CH), 6.80 (dd, 
3
JHH = 6 Hz and 

3
JHH = 2 Hz, 2H, C6H4), 7.01 (m, 18H + 

Tp), 7.32 – 7.33 (m, 1H, Tp), 7.35 – 7.36 (m, 1H,  Tp), 7.42 – 7.46 (m, 1H, Tp), 

7.56 – 7.60 (m, 2H, Tp), 7.70 (dd, 
3
JHH = 6 Hz and 

3
JHH = 2 Hz, 2H, C6H4), 8.78 (dd, 

3
JHH = 17 Hz and 

3
JHP = 2 Hz, 1H, RuCH=CH).   

31
P NMR (200 MHz, CDCl3) δ 

50.9 (s). 

 

4.6.2.3 Preparation of [{Ru(CO)(PPh3)Tp}(CH=CHC6H4NO2-4)] (25) 

 

To a suspension of RuHCl(CO)(PPh3)3 19 (0.30 g, 0.315 mmol) in dichloromethane 

(10 ml) was added 1-ethynyl-4-nitrobenzene (0.09 g, 0.630 mmol).   The solution 

immediately turned dark green and was stirred for 30 min.   KTp (0.05 g, 0.210 

mmol) was added and over the course of 2 h, the solution turned red.   The solution 

was filtered through celite and the reaction removed.   The residual solid was re-

dissolved in dichloromethane (5 ml), hexane added (8 ml) and some solvent 

removed.   An orange powder was collected by filtration and dried under vacuum.  

Purification was achieved by dissolving the powder in a minimum amount of 

dichloromethane and layering with methanol, to give a bright orange powder (0.152 

g, 64 %).   Recrystallisation from dichloromethane and methanol by slow diffusion 

gave bright red crystals.   
1
H NMR (400 MHz, CDCl3) δH 5.93 (t, 

3
JHH = 2 Hz, 1H, 
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Tp), 5.96 (t, 
3
JHH = 2 Hz, 1H, Tp), 6.08 (t, 

3
JHH = 2 Hz, 1H, Tp), 6.54 (d, 

3
JHH = 17 

Hz, 1H, Ru-CH=CH),  6.74 (s, 1H, Tp), 6.78 (d, 
3
JHH = 2 Hz, 1H, Tp), 6.80 (dd, 

3
JHH 

= 17 Hz and 
3
JHP = 2 Hz, 2H, C6H4), 6.82 (d, 

3
JHH = 2 Hz, 1H, Tp), 7.02 - 7.07 (d, 

3
JHH = 9 Hz, 2H, C6H4),  7.10 – 7.14 (m, 6H. Ph Ho), 7.19 – 7.23 (m, 6H. Ph Hm), 

7.34 – 7.38 (m, 3H, Ph Hp), 7.58 (s, 1H, Tp), 7.70 (d, 
3
JHH = 2 Hz, 1H, Tp), 7.73 (d, 

3
JHH = 2 Hz, 1H, Tp), 8.05 (d, 

3
JHH = 9 Hz, 2H, C6H4), 9.03 (dd, 

3
JHH = 17 Hz and 

3
JHP = 2 Hz, 1H, RuCH=CH).   

31
P NMR (200 MHz, CDCl3) δ 50.7 (s).   

13
C NMR 

(CDCl3, 125 MHz) δC 105.6 (s, Tp), 105.7 (s, Tp), 105.8 (s, Tp), 124.3 (s, C2), 124.5 

(s, C3), 128.4 (d, 
2
JCP = 10 Hz, Cm/m’), 130.03 (d, 

4
JCP = 2 Hz, Cp/p’), 132.7 (d, 

1
JCP = 

44 Hz, Ci/i’), 134.2 (d, 
3
JCP = 10 Hz, Co/o’), 135.1 (d, 

3
JCP = 2 Hz, Cβ), 135.5 (s, Tp), 

135.7 (s, Tp), 136.0 (s, Tp), 142.9 (s, Tp), 144.0 (s, Tp), 144.4 (s, Tp), 146.6 (s, C4), 

179.2 (d, 
2
JCP = 12 Hz, Cα), 206.5 (d, 

2
JCP = 16 Hz, CO).  *C1 not observed.  

MALDI(+)-MS 753.10 [M + H]
+
.   IR (CH2Cl2, cm

-1
): ν(C≡O) 1945, (B-H) 2485.  

Elemental analysis:  Calculated for C36H31BN7O3PRu.0.75(CH2Cl2); C, 54.08; H, 

4.01; N, 12.01.  Found; C, 54.20; H, 4.21; N, 11.66. 

 

4.6.2.4 Preparation of [{Ru(CO)(PPh3)Tp}(CH=CHC6H4CO2Me-4)] (26) 

 

To a suspension of RuHCl(CO)(PPh3)3 19 (0.30 g, 0.315 mmol) in dichloromethane 

(10 ml) was added methyl 4-ethynylbenzoate (0.06 g, 0.400 mmol).   The solution 

immediately turned brown and was stirred for 30 min.   KTp was added (0.12 g, 

0.476 mmol) and the solution turned green over the course of 3 h.   The reaction 

mixture was filtered through celite and the solvent removed.   The residual solid was 

re-dissolved in diethylether (6 ml) to which hexane was added (10 ml).   The light 

green powder was collected by filtration and dried under vacuum (0.134 g, 56 %).  

Recrystallisation from dichloromethane and methanol by slow diffusion gave 

colourless crystals.   
1
H NMR (400 MHz, CDCl3): δH 3.95 (s, 3H, OCH3), 5.91 (t, 

3
JHH = 2 Hz, 1H, Tp), 5.94 (t, 

3
JHH = 2 Hz, 1H, Tp), 6.07 (t, 

3
JHH = 2 Hz, 1H, Tp), 

6.47 (d, 
3
JHH = 17 Hz, 1H, RuCH=CH), 6.78 (d, 

3
JHH = 2 Hz, 1H, Tp), 6.81 (d, 

3
JHH 

= 2 Hz, 1H, Tp), 7.04 – 7.09 (m, 7H, Ph Ho + Tp), 7.13 (d, J = 8 Hz, 2H, C6H4), 7.18 

– 7.23 (m, 6H, Ph Hm), 7.31 – 7.35 (m, 3H, Ph Hp), 7.52 – 7.62 (m, 1H, Tp), 7.60 – 

7.71 (m, 1H, Tp), 7.69 (d, 
3
JHH = 2 Hz, Tp), 7.71 (d, 

3
JHH = 2 Hz, Tp), 7.86 (d, 

3
JHH 

= 8 Hz, 2H, C6H4), 8.68 (dd, 
3
JHH = 17 Hz and 

3
JHP = 2 Hz, 1H, RuCH=CH).   

31
P 
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NMR (200 MHz, CDCl3) δ 50.9 (s).   
13

C NMR (176 MHz, CDCl3) δC 52.0 (s, 

OMe), 105.5 (s, Tp), 105.6 (s, Tp), 105.7 (s, Tp), 124.2 (s, C2), 125.0 (s, C1), 128.3 

(d, 
2
JCP = 10 Hz, Cm/m’), 130.1 (s, C3), 130.2 (d, 

4
JCP = 2 Hz, Cp/p’), 133.0 (d, 

1
JCP = 

43 Hz, Ci/i’), 134.3 (d, 
3
JCP = 10 Hz, Co/o’), 134.9 (d, 

3
JCP = 2 Hz, Cβ), 135.3 (s, Tp), 

135.6 (s, Tp), 136.7 (s, Tp), 142.9 (s, Tp), 143.0 (s, Tp), 144.3 (s, Tp), 145.5 (s, C4), 

168.0 (s, CO of ligand), 171.3 (d, 
2
JCP = 13 Hz, Cα), 206.8 (d, 

2
JCP = 16 Hz, CO).   

MALDI(+)-MS 766.2 [M + H]
+
.   IR (CH2Cl2, cm

-1
): ν(C≡O) 1940, (B-H) 2483.   

Elemental analysis: Calculated for C38H34BN6O3PRu; C, 59.62; H, 4.48; N, 10.98.  

Found; C, 58.74; H, 4.34; N 10.25. 

 

4.6.2.5 Preparation of [{Ru(CO)(PPh3)Tp}(CH=CHC6H4OMe-4)] (27) 

 

To a suspension of RuHCl(CO)(PPh3)3 19 (0.10 g, 0.105 mmol) in dichloromethane 

was added 1-ethynyl-4-methoxybenzene (0.03 ml, 0.210 mmol).   The solution 

immediately turned dark red and was stirred for 30 min.   KTp was added (0.05 g, 

0.210 mmol) and the solution turned light yellow over the course of 2 h.   The 

reaction mixture was filtered through celite and the solvent removed.   The residual 

solid was re-dissolved in dichloromethane (3 ml) to which hexane was added (5 ml), 

and some solvent was removed.   An off white powder was collected by filtration 

and dried under vacuum (0.036 g, 43 %).   
1
H NMR (200 MHz, CDCl3) δH 3.78 (s, 

3H, OCH3), 4.6 (br s, 1H, B-H), 5.89 (t, 
3
JHH = 2 Hz, 1H, Tp), 5.91 (t, 

3
JHH = 2 Hz, 

1H, Tp), 6.05 (t, 
3
JHH = 2 Hz, 1H, Tp), 6.31 (d, 

3
JHH = 17 Hz, 1H, Ru-CH=CH),  6.35 

(d, 
3
JHH = 2 Hz, 1H, Tp), 6.45 (d, 

3
JHH = 2 Hz, 1H, Tp), 6.77 (d, 

3
JHH = 2 Hz, 1H, 

Tp), 7.07 – 7.12 (m, 6H, Ph Ho and 2H C6H4), 7.18 – 7.23 (m, 6H, Ph Hm), 7.31 – 

7.35 (m, 3H, Ph Hp), 7.55 (d, 
3
JHH = 1 Hz, 1H, Tp), 7.61 (d, 

3
JHH = 2 Hz, 1H, Tp), 

7.66 – 7.70 (m, 1H, Tp and 2H C6H4), 7.97 (dd, 
3
JHH = 17 Hz and 

3
JHP = 2 Hz, 1H, 

RuCH=CH).   
31

P NMR (CDCl3, 200 MHz) δ 51.3 (s).   
13

C NMR (CDCl3, 126 

MHz) δC 55.6 (s, OMe), 105.3 (s, Tp), 105.4 (s, Tp), 105.5 (s, Tp), 113.8 (s, C3), 

125.5 (s, C2), 128.2 (d, 
3
JCP = 10 Hz, Cm/m’), 130.0 (d, 

4
JCP = 2 Hz, Cp/p’), 133.3 (d, 

1
JCP = 43 Hz, Ci/i’), 134.3 (d, 

2
JCP = 10 Hz, Co/o’), 134.7 (d, 

3
JCP = 2 Hz, Cβ), 135.1 

(s, Tp), 135.5 (s, Tp), 135.6 (s, C1), 136.0 (s, Tp), 142.9 (s, Tp), 143.0 (s, Tp), 144.2 

(s, Tp), 156.7 (s, C4), 158.5 (d, 
2
JCP = 13 Hz, Cα), 201.1 (d, 

2
JCP = 16 Hz, CO),.   

MALDI(+)-MS 738.2 [M + H]
+
.   IR (CH2Cl2, cm

-1
): ν(C≡O) 1940, (B-H) 2479.  
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Elemental analysis: Calculated for C37H34BN6O2PRu; C, 60.25; H, 4.64; N, 11.39.  

Found; C, 54.11; H, 4.15; N, 9.16. 

 

 

4.6.3 Multi-Hydroruthenation Experimental 

 

4.6.3.1 Preparation of 1,4-[{Ru(CO)(PPh3)Tp}2(μ-CH=CHC6H4CH=CH)] 

(35) 

 

To a suspension of RuHCl(CO)(PPh3)3 19 (0.21 g, 0.218 mmol) in dichloromethane 

(10 ml) was added 1,4-diethynylbenzene (0.01 g, 0.087 mmol).  The solution 

immediately turned red and was stirred for 2 h.  KTp was added (0.09 g, 0.350 

mmol) and the solution turned green over the course of a further two hours.   The 

reaction mixture was reduced to dryness, re-dissolved in the minimum amount of 

dichloromethane and filtered through celite.   Hexane was added (10 ml) to the 

filtrate and some solvent was removed.   A green powder collected by filtration was 

subsequently heated in ethanol, and allowed to cool.  This was filtered, washed with 

hexane, and dried under vacuum.   (0.082 g, 70 %).   
1
H NMR (500 MHz, CDCl3): 

δH 5.94 – 5.95 (m, 4H, Tp), 6.09 (s, 2H, Tp), 6.38 (d, 
3
JHH = 17 Hz, 1H, RuCH=CH), 

6.42 (d, 
3
JHH = 17 Hz, RuCH=CH), 6.80 (d, 

3
JHH = 7 Hz, 2H, C6H4), 6.84 (d, 

3
JHH = 

7 Hz, 2H, C6H4), 6.98 – 7.00 (m, 2H, Tp), 7.06 – 7.11 (m, 2H, Tp), 7.15 – 7.21 (m, 

12H, Ph Hm), 7.25 – 7.28 (m, 12H, Ph Ho), 7.34 – 7.40 (m, 6H, Ph Hp), 7.49 – 7.52 

(m, 1H, Tp), 7.57 – 7.60 (s, 1H, Tp), 7.71 – 7.77 (m, 6H, Tp), 8.12 (unresolved dd, 

3
JHH = 17 Hz, 2H, RuCH=CH).   

31
P NMR (161 MHz, CDCl3): δ 51.1 (s) and 51.2 

(s).   
13

C NMR (126 MHz, CDCl3): δC 105.7, 105.6 (6 Tp environments), 124.8 (s, 

C2 and C3), 124.8 (s, C2 and C3), 128.5 (d, 
2
JCP = 10 Hz, Co/o’), 130.2 (s, Cp/p*), 130.2 

(s, Cp/p’), 133.6 (d, 
1
JCP = 43 Hz, Ci/i*), 133.6 (d, 

1
JCP = 42 Hz, Ci/i’), 134.6 (d, 

3
JCP = 

10 Hz, Cm/m’), 134.9 (unresolved doublet, Cβ), 135.3 (s, Tp), 135.5 (s, Tp), 135.7 (s, 

Tp), 135.7 (s, Tp), 137.5 (s, Tp), 137.6 (s, Tp), 138.2 (s, C1 and C4), 143.2 (s, Tp), 

143.3 (s, Tp), 143.4 (bs, 2 Tp environments), 144.4 (s, 2 Tp environments), 158.9 (d, 

2
JCP = 13 Hz, Cα), 159.0 (d, 

2
JCP = 12 Hz, Cα), 207.4 (d, 

2
JCP = 15 Hz, 2 CO 

environments).   MALDI(+)-MS 1337.2 [M + H]
+
.   IR (CH2Cl2, cm

-1
): ν(C≡O) 
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1942, ν(B-H) 2482 .  Elemental analysis: Calculated for C66H58B2N12O2P2Ru2; C, 

59.29; H, 4.37; N, 12.57.  Found; C, 51.91; H, 3.78; N, 8.74. 

 

 

4.6.3.2 Preparation of 1,3-[{Ru(CO)(PPh3)Tp}2(μ-CH=CHC6H4CH=CH)] 

(36) 

 

To a suspension of RuHCl(CO)(PPh3)3 19 (0.240 g, 0.25 mmol) in dichloromethane 

(10 ml) was added 1, 3-diethynylbenzene (0.028 ml, 0.1 mmol).   The solution 

immediately turned red and was stirred for 3 h.   KTp was added (0.08 g, 0.158 

mmol) and the solution turned dark green over the course of two hours.   The 

reaction was reduced to dryness, re-dissolved in the minimum amount of 

dichloromethane and filtered through celite.   Hexane was added (10 ml) to the 

filtrate and some solvent was removed.   A light green powder collected by filtration 

was subsequently heated in ethanol, and allowed to cool.   This was filtered, washed 

with hexane, and dried under vacuum (0.080 g, 60 %).   
1
H NMR (500 MHz, 

CDCl3) δH 5.97 (s, 1H, Tp), 6.02 (s, 3H, Tp), 6.18 (s, 2H, Tp), 6.44 (d, 
3
JHH = 17 Hz, 

1H, RuCH=CH), 6.60 (d, 
3
JHH = 17 Hz, 1H, RuCH=CH), 6.75 (s, 1H, Ha), 6.90 (s, 

1H, Ha‟), 6.92 (unresolved doublet, 2H, Hb), 6.98 (unresolved doublet, 2H, Hb‟), 6.98 

– 7.02 (unresolved triplet, 2H, Hc), 7.06 – 7.07 (m, 2H, Tp), 7.18 – 7.20 (m, 1H, Tp), 

7.18 – 7.25 (m, 12H, Ph Hm), 7.29 – 7.32 (m, 12H, Ph Ho), 7.35 – 7.45 (m, 6H, Ph 

Hp), 7.57 – 7.59 (m, 1H, Tp), 7.64 – 7.70 (m, 2H, Tp), 7.78 – 7.92 (m, 6H, Tp), 8.23 

(dd, 
3
JHH = 17 Hz  

3
JHP = 2 Hz, 1H, RuCH=CH), 8.30 (dd, 

3
JHH = 17 Hz  

3
JHP = 2 

Hz, 1H, RuCH=CH).   
31

P NMR (161 MHz, CDCl3) δ 50.7 (s) and 51.5 (s).   
13

C 

NMR (126 MHz, CDCl3) δC 105.2, 105.5 105.6 (6 Tp environments), 128.2 (d, 
2
JCP 

= 9 Hz, Co/o*), 128.2 (d, 
2
JCP = 9 Hz, Co/o’), 129.9 (s, Cp), 133.2 (d, 

1
JCP = 43 Hz, 

Ci/i*), 133.3 (d, 
1
JCP = 43 Hz, Ci/i’), 134.3 (d, 

3
JCP = 10 Hz, Cm/m’), 134.3 (d, 

3
JCP = 10 

Hz, Cm/m’), 134.7 (s, Cβ), 135.0 (s, Tp), 135.1 (s, Tp), 135.4 (s, Tp), 135.5 (s, Tp), 

137.4 (s, Tp), 137.8 (s, Tp), 140.2 (broad, 2 C1 environments and 2 C3 

environments), 141.4 (s, Tp), 141.6 (s, Tp), 142.6 (s, Tp), 143.1 (s, 2 C2 

environments), 143.2 (bs, Tp), 144.2 (s, Tp), 144.2 (s, Tp),207.2 (d, 
2
JCP = 15 Hz, 

CO), 159.9 (d, 
2
JCP = 12 Hz, Cα‟), 160.6 (d, 

2
JCP = 13 Hz, Cα), 207.1 (d, 

2
JCP = 13 

Hz, CO), 124.5 – 120.4 (remaining aromatic environments).   MALDI(+)-MS 
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1337.2 [M + H]
+
.  IR (CH2Cl2, cm

-1
): ν(C≡O) 1941 ν(B-H) 2481.  Elemental 

analysis: Calculated for C66H58B2N12O2P2Ru2; C, 59.29; H, 4.37; N, 12.57.  Found; 

C, 47.22; H, 3.50; N, 8.13 

 

4.6.3.3 Preparation of 1,3,5-[{Ru(CO)(PPh3)Tp(CH=CH)}3C6H3] (38) 

 

To a suspension of RuHCl(CO)(PPh3)3 19 (0.36 g, 0.375 mmol) in dichloromethane 

(12 ml) was added 1, 3, 5 – triethynylbenzene (0.01 g, 0.093 mmol) in 

dichloromethane (3 ml).   The solution immediately turned red and was stirred for 3 

h.   KTp was added (0.08 g, 0.315 mmol) and the solution turned dark green 

overnight.   The reaction mixture was reduced to dryness, re-dissolved in the 

minimum amount of dichloromethane and filtered through celite.   Hexane was 

added (10 ml) to the filtrate and some solvent was removed.   A blue powder was 

collected by filtration, heated in ethanol, allowed to cool and filtered again.   The 

powder was washed in hexane, and dried under vacuum (0.093 g, 51 %).   

Characterisation incomplete.   
31

P NMR (126 MHz, CDCl3) δ 50.5 (s), 50.6 (s), 50.7 

(s), 51.7 (s), 52.6 (s).   MALDI(+)-MS 1966.4. [M + H]
+
.   IR (CH2Cl2, cm

-1
): 

ν(C≡O) 1942, ν(B-H) 2481.   Elemental analysis: Calculated for 

C96H84B3N18O3P3Ru3; C, 58.64; H, 4.30; N, 12.82.  Found; C, 52.49; H, 3.89; N, 

10.28. 

 

 

4.6.3.4 Preparation of [{Ru(CO)(PPh3)Tp}3-(1,4-(CH=CH)(C6H4))3N] (39) 

 

To a suspension of RuHCl(CO)(PPh3)3 19 (0.22 g, 0.228 mmol) in dichloromethane 

(10 ml) was added tris(4-ethynylphenyl)amine (0.02 g, 0.07 mmol) in 

dichloromethane (2 ml).  The solution immediately turned red and was stirred for 3 

h.   KTp was added (0.06 g, 0.243 mmol) and the solution turned yellow over the 

course of two hours.   The reaction mixture was reduced to dryness, re-dissolved in a 

minimum amount of dichloromethane and filtered through celite.   Hexane was 

added (10 ml) to the filtrate and some solvent removed.   A yellow powder was 

collected by filtration, heated in ethanol, allowed to cool, and filtered again.   The 
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powder was washed in hexane and dried under vacuum (0.087 g, 58 %).   
1
H NMR 

(400 MHz, CDCl3): δH 5.89 – 5.90 (m, 9H, Tp), 6.08 – 6.09 (m, 3H, Tp), 6.28 – 6.34 

(m, 3H, RuCH=CH), 6.77 – 6.79 (m, 6H, Tp), 6.95 – 7.02 (m, 6H, C6H4), 7.08 – 

7.13 (m, 12H, Ph Hm), 7.20 – 7.24 (m, 12H, Ph Ho), 7.33 – 7.36 (m, 9H, Ph Hp), 7.55 

– 7.56 (m, 3H, Tp), 7.67 – 7.69 (m, 3H, Tp), 7.73 (bs, 3H, Tp), 7.99 (dd, 
3
JHH = 17 

Hz and 
3
JHP = 2 Hz, 3H, RuCH=CH).   

31
P NMR (126 MHz, CDCl3): δ 51.3 (s), 51.3 

(s), 51.4 (s).   MALDI(+)-MS 2133.7 [M + H]
+
.   IR (CH2Cl2, cm

-1
): ν(C≡O) 1940, 

ν(B-H) 2481.   Elemental analysis: Calculated for C108H93B3N19O3P3Ru3; C, 60.78; 

H: 4.39; N, 12.47.  Found; C, 57.10; H, 4.10; N, 10.09. 

 

 

4.6.4 Computations 

 

All ab initio computations were carried out with the Gaussian 03 package. 
301

   The 

model geometries of the mononuclear [23-H]
n+

 to [36-H]
n+ 

(n = 0, 1), and dinuclear 

systems [35-H]
n+

 and [36-H]
n+

 (n = 0, 1, 2) discussed here were optimised using the 

MPW1K/LANL2DZ/3-21G* level of theory with no symmetry constraints. 
228, 241-243

   

This MPW1K/3-21G* level of theory proved to be suitable for ruthenium complexes 

elsewhere. 
43, 229

   The keywords used in Gaussian03 for the MPW1K functional 
228, 

241
 here are MPWPW91 and iop(3/76=0472005280). Frequency calculations were 

computed on these optimised geometries at the corresponding levels and no 

imaginary frequencies were found in these geometries unless otherwise stated.  A 

scaling factor of 0.94 was applied to the calculated frequencies as it is known that 

DFT calculations over estimate the acetylide (C≡C) and acetylide ring substituent 

(C=C) frequencies. 
244, 245

   The MO diagrams and orbital contributions were 

generated with the aid of GaussView 
246

 and GaussSum 
247

 packages respectively. 
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Chapter 5 : Synthesis and Metallation of Triethynyl 

Methanols 
 

5.1 Introduction 

 

Organometallic complexes in which metal centres are linked by all carbon 
55, 181

 or 

carbon-rich, 
302-304

 ligands have been the subject of a considerable body of research 

in recent decades.   Prominent within this work are studies of linear ligands capable 

of bridging two metal centres.   The structurally simple examples derived from 

polyyndiyl ligands have proven to be particularly effective at promoting interactions 

between iron, ruthenium and rhenium based metal end-caps, and examples featuring 

all-carbon chains of truly impressive length have been structurally characterised in 

the case of platinum complexes. 
94, 155, 156, 302, 305

 

 

Equally, more synthetically accessible carbon rich ligands based on diethynyl 

aromatic scaffolds have also attracted considerable attention. Compounds featuring 

1,4-diethynyl benzene based ligands have long been known, 
72, 103, 169, 306-310

 but 

surprisingly, detailed studies of the electronic structure, redox properties and 

magnetic characteristics of these almost prototypical examples of LnM-B-MLn 

systems have only recently been undertaken, 
79, 92, 93, 178

 and extended towards other 

aromatic cores, 
289, 311

 notably but not exclusively, thiophene based systems. 
312-323

   

Current research is now largely directed towards the study of carbon-rich bridging 

ligands featuring extended -conjugated systems, including oligomeric 

polyacetylenes, 
159, 160, 162, 163, 324

  (phenylene ethynylene)s 
91, 178

 and dendritic 

structures. 
104, 108, 112, 325

 

 

In recent times, consideration has been given to the role of branched all-carbon and 

carbon-rich ligands that may be suitable for the construction of mixed-valence 

compounds in which more than two metal centres are linked through a common 

core.
58, 59, 98, 111

   Previous Chapters have shown that the meta-connection of Ru-

based auxiliaries through the carbon-rich 1,3-diethynylbenzene fragment does not 

permit significant delocalisation between the metal centres.   Similarly, the 
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conceptual extension of the 1,3-diethynylbenzene core to 1,3,5-triethynylbenzene 

does not provide access to “multi-centre” (i.e. >2) mixed valence systems with 

strong interactions between the remote metal centres. 
116, 207, 214

    

 

Both Winter and Akita have independently been drawn to tetraphenylethene based 

ligand systems.   In the case of the Akita system 40 (Scheme 19), the individual 

oxidation processes of the four iron centres were found to take place at very similar 

potentials, which was interpreted by those authors as evidence for only weak 

interactions between the metal sites. 
58

   However, as noted elsewhere in this thesis, 

conclusions drawn from the electrochemical data in isolation should be treated with 

care. Winter‟s tetra(vinyl) system 22 was shown by spectroelectrochemical methods 

to possess a redox active carbon-rich core, 
59

 and hence discussions of electron 

transfer between the metal centres are fraught with conceptual difficulty.   In a 

similar vein, the preparation of trimetallic complexes using a cyclopropenium 

bridging ligand are also worthy of note (Figure 72), 
326, 327

 but the preparation of 

mixed valence compounds from this system have not yet been achieved.   The 

metal-carbon bonds have been shown to be essentially  in nature. 
328
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Scheme 19 Tetrametallated complexes 40 and 22 prepared from 

tetrakis(ethynylphenyl)ethene. 

 

 

Figure 72 Trimetallatic cyclopropenium complexes. 

 

With a view to the de novo design of a carbon fragment for the interconnection of 

multiple metal fragments, it is appropriate to consider the simplest possible 

fragment, namely the sp
2
-hybridised carbon centre (Figure 73). 

 

 

Figure 73 sp
2
 hybrised C atom. 
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The D3h sp
2
 hybridised carbon centre offers a p-orbital of appropriate symmetry to 

interact with three -donors, and it is possible to envision a carbon-rich 

“triethynylmethyl” radical or cation based bridging ligand that would allow 

delocalisation between three metal based d-systems (Figure 74). 

 

 

Figure 74 Delocalisation of the π-system over: (a) a C7H3 cationic fragment; (b) a 

metallated C7M3 fragment. 

 

The trityl cation ([CPh3]
+
) is a textbook example of a stable cationic sp

2
 carbon 

centre, and various metal complexes stabilising adjacent carbon cation cores have 

long been known. 
329-332

 

 

Triethynyl methyl cations which feature three ethynyl groups in conjugation with 

the carbocation (Figure 74) are also known to be sufficiently stable to permit the 

recording of NMR spectra. 
333-335

   These triethynyl methyl cations can be 

considered as derivatives of propargyl cations, and consequently metal stabilised 

examples have also been isolated 
336

 and in one case crystallographically 

characterised (Figure 75). 
337
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Figure 75 A triethynyl methyl cation stabilised by incorporation of cobalt clusters. 

 

The use of a R3C
+
 carbocation based bridging ligand, was therefore considered to be 

a very interesting area of study.   Triethynylmethanols provide a convenient entry to 

this chemistry through treatment with strong acids (Scheme 20), 
333-338

 although 

many organometallic derivatives are likely to be incompatible with this approach.    

 

 

Scheme 20 Treatment of triethynylmethanols with strong acids to afford the 

triethynyl methane cation. 

 

Curiously, despite the demonstrations of simple conversions of propargyl alcohols to 

allenylidenes by Selegue 
339

 (Scheme 21) and the wide-spread adoption of this 

chemistry in the synthesis of carbon-rich metal complexes, 
340-343

 triethynyl 

methanol based systems have been essentially ignored as ligands and ligand 

precursors.   Triethynyl methanols have, however, found considerable application as 

building blocks in the construction of carbon-rich molecules with unusual three 

dimensional structures, such as the expanded cubane [41] 
344

 (Scheme 22), and a 

range of extended allenes. 
345, 346

  

 

 
Scheme 21 Synthesis of an allenylidene complex from a propagylic alcohol. 
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Scheme 22 Synthesis of the expanded cubane [41]; a) Et3SiC≡CH, BuLi, THF, 0 °C, 

3 h, 95%, b) 1 N NaOH, MeOH/THF (1/1), rt, 1 h, 86%, c) BuLi, THF, -78 °C, 10 

min, then MeI, -78 °C rt, 16 h, 98%, d) CuCl, TMEDA, air, CH2Cl2, rt, 5 h 97%, e) 

K2CO3, MeOH/THF (1/1), rt, 3 h, 93%, f) CuCl, TMEDA, air, CH2Cl2, rt, 18 h, 8 / 

18 / 36 / 10%, g) Bu4NF, wet THF, -15 °C, 3 h, 87%, h) CuCl, TMEDA, air, 

CH2Cl2, rt, 3 h, 16%. 
344

 

 

The synthesis of triethynyl methanols is most commonly achieved via a sequence of 

transformations from diethyl carbonate 
333, 334

 or ethyl formate. 
347-349

   Interestingly, 

in one of the earliest preparations of triethynyl methanols, Gray and Marvel 

investigated the use of chloroethyl formate with NaC≡C
t
Bu to successfully prepare 

(
t
BuC≡C)3COH, albeit in ca. 30% yield. 

350
   The use of this reagent in the 

preparation of related systems seems to have been overlooked. 

 

The synthesis of the parent triethynylmethanol (HC≡C)3COH described by Alberts 

347
 serves to illustrate the general principles involved in the preparation of this class 

of compounds (Scheme 23).   Treatment of ethyl formate with LiC≡CSiMe3 affords 

1,5-bis(trimethylsilyl)-pentan-1,4-diyne-3-ol, after conventional workup.   Oxidation 

of the secondary alcohol to the diethynyl ketone (K2Cr2O7 or MnO2) reintroduces an 

electrophilic carbonyl centre, which is subsequently treated with a third equivalent 
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of LiC≡CSiMe3 to give (Me3SiC≡C)3COH.   Desilylation affords the parent 

triethynyl methanol in good yield.  

 

In the first step of the reaction, ethyl formate reacts with the acetylide anion to 

afford an intermediate ethynyl aldehyde.   However, the reaction cannot be stopped 

at this point as the aldehyde reacts with the acetylide anion faster than the formate, 

leading exclusively to the diethynyl alcohol. Oxidation of the secondary alcohol 

gives a diethynyl ketone.   The reaction of the diethynyl ketone with a differentially 

substituted acetylide is possible, leading to not only “A3” substituted triethynyl 

methanols, but also “AB2” derivatives.   However, a significant disadvantage of the 

route as described rests on the use of the strongly oxidising reagents K2Cr2O7 or 

MnO2 in the conversion of the secondary alcohol to the diethynyl ketone, which 

prevents the use of acetylenic reagents bearing oxidatively sensitive substituents.   

Although the oxidation step can be avoided through the use of diethynyl carbonate 

as the initial building block, only A3 systems can be prepared in this manner. 

 

 

Scheme 23 The preparation of triethynyl methanols from ethyl formate. 
347

 

 

In this Chapter, a revised synthesis of triethynyl methanols is described.   Through 

the use of chloroethylformate as a key building block not only are the strongly 

oxidising conditions avoided, but AB2 systems can also be readily prepared.   The 

use of triethynyl methanols as ligand precursors has also been investigated, although 

with less success. 
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5.2 Results and Discussion 

 

5.2.1 Syntheses 

 

The simplified synthetic method used is a modification of the Alberts method, 
347

 in 

which chloroethyl formate has been utilised as the key carbon building block rather 

than ethyl formate.   For example, the addition of a three-fold excess of lithium 

trimethylsilylacetylide to chloroethyl formate affords the silyl-protected 

triethynylmethanol in good yield (Scheme 24). 

 

 

Scheme 24 The preparation of a triethynyl methanol from chloroethyl formate. 

 

Given the order of reactivity of carbonyl carbons towards nucleophilic substitution 

131
 is  

 

 

the addition of three ethynyl arms in the presence of excess lithiated acetylide is 

unavoidable. 

 

 However, in the case of ethyl chloroformate, reaction with strictly one equivalent of 

acetylide anion results exclusively in substitution of the chloride, providing very 

convenient entry to a range of ethynyl esters (Scheme 25).   The further reaction of 

these ethynyl esters with two equivalents of acetylide anions permits synthesis of not 

only symmetric A3 triethynyl methanols, but also AB2 systems rapidly and in high 
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yield (Table 51, Chart 11).   Critically, this route avoids the use of the strongly 

oxidising reagents that underpin the established route.   

 

 

Scheme 25 The preparation of “A3” and “AB2” substituted triethynyl methanols 

from chloroethyl formate. 
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Chart 11 The acetylenic esters and triethynyl methanols prepared or discussed in this 

Chapter. 
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Table 51 The acetylenic esters and triethynyl methanols prepared in this work. 

Compound Yield % 

(Me3SiC≡C)3COH 42 80 

Me3SiC≡C(C=O)OEt 43 82 

Me3SiC≡C(COH)(C≡CC6H4CH3)2 44 64 

HC≡C(COH)(C≡CC6H4CH3)2 45 73 

(Me3CC≡C)3COH 46 44 

(PhC≡C)3COH 47 70 

(PhC≡C)3COH 47 (KOtBu method)  47 

Me3SiC≡C(COH)(C≡CtBu)2 48 76 

{Fe(C5H5)}(C5H4)C≡C(C=O)OEt 49 16 

({Fe(C5H5)}(C5H4)C≡C)3COH 50 (method A) 87 

({Fe(C5H5)}(C5H4)C≡C)3COH 50 ( method B ) 55 

Me3SiC≡C(COH)(C6H4I)2 51 90 

HC≡C(COH)(C6H4I)2 52 69 

 

A minor variation to this general synthetic method uses mixtures of the terminal 

acetylene and KO
t
Bu as a base in situ, instead of the pregeneration of LiC≡CR from 

the alkyne and BuLi.   Thus, the reaction of a terminal acetylene with ethyl 

chloroformate and potassium t-butoxide in refluxing methanol, affords the 

corresponding A3 triethynylmethanol (Scheme 26). 
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Scheme 26 Alternative synthetic method to form 47 using KO
t
Bu. 

 

With a range of triethynyl methanols in hand, attention was turned to the use of 

these systems in the construction of metal complexes.   Trimethylsilylacetylenes 

Me3SiC≡CR have been shown to react with RuCl(PPh3)2Cp and closely related 

systems in the presence of KF / NH4PF6 to give metal acetylide complexes 

Ru(C≡CR)(PPh3)2Cp. 
351

   However, the reaction of equimolar amounts 

RuCl(PPh3)2Cp, (Me3SiC≡C)3COH, NH4PF6 and catalytic KF in refluxing methanol 

gave purple solutions, from which only small amounts of an unidentified purple 

solid could be obtained (Scheme 27).     

 

 

Scheme 27 The proposed desilylation / metallation reactions of RuCl(PPh3)2Cp with 

a trimethylsilyl masked triethynyl methanol. 
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Terminal alkynes react with many metal systems to give vinylidene complexes, 

which can be easily deprotonated to afford the corresponding acetylide. 
341

   The 

silyl-protected compound 42 was converted to the parent triethynyl methanol by 

reaction with a solution of K2CO3 in methanol. 
352

   After reaction the compound 

was washed with H2O/Et2O, and extracted into diethylether.   The literature suggests 

that this (HC≡C)3COH solution can be concentrated to give (HC≡C)3COH as a 

temperamental solid. 
347

   Rather than isolate a potentially hazardous material, an 

assumption was made that the desilylation step went 100% conversion and the 

diethylether extraction was used as a (HC≡C)3COH solution (Scheme 28). 

 

 

Scheme 28 The preparation of the parent triethynyl methanol (HC≡C)3COH. 

 

Attempts at metallation of (HC≡C)3COH  with RuCl(PPh3)2Cp using a large excess 

of the terminal tris(alkyne) in the presence of NH4PF6 in refluxing methanol were 

made.   The characteristic purple colour of the ruthenium allenylidene compounds 

([Ru(=C=C=CR2)(PPh3)2Cp]
+
) was observed but again any spectroscopic 

characterisation was hampered by the lack of compound obtained after work up. 

 

In seeking to understand the complications encountered, we can consider the work 

of Phillip Zuber, a former project student in the Low group, with ferrocenyl 

substituted triethynyl methanols. 
353

   Dehydration of 55 by addition of HBF4.Et2O 

results in a rearrangement of the triethynyl methanol core, and the generation of a 

carbonyl (Scheme 29).   Similar rearrangements have been reported elsewhere. 
354, 

355
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Scheme 29 Acid catalysed hydroxyl arrangement of 55. 

 

The ketone product was crystallographically characterised as the Co2(CO)4(dppm) 

derivative 56 following reaction with Co2(CO)6(dppm) (Scheme 30 and Figure 76). 

 

 

Scheme 30 Formation of the cobalt carbonyl cluster derivative 56.  
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Figure 76 Molecular structure of 56.   Hydrogen atoms have been removed, except 

for the carbonyl hydrogen, for clarity. 

 

It is possible that the ruthenium-mediated elimination of water from the triethynyl 

methanol could be complicated by similar water additions, but this remains 

speculative.   Another source of complications could be from the possibility of 

attack of an alkyne, either inter- or intramolecularly, on a Grubbs-style intermediate 

(Scheme 31). 

 

 

Scheme 31 Possible intermolecular alkyne attack 

 

With the chemical complications associated with preparing metal complexes in 

which the triethynyl methyl cation was stabilised by -bonded metal moieties in 
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evidence, the ligand structure was altered in an effort to introduce greater inherent 

chemical stability.   The trityl cation [CPh3]
+
 is sufficiently stable to be isolated as 

the [PF6]
-
 salt which can be handled in air for relatively long periods.   The 

introduction of phenylene rings into the ligand structure was planned in the manner 

shown in Scheme 32. 

 

Scheme 32 Introduction of phenylene rings into the ligand structure. 

 

The reaction of diiodobenzene with two equivalents of 
t
BuLi affords 

lithio(iodo)benzene, butene and LiI.   Trapping of the aryllithium by reaction with 

one half equivalent of Me3SiC≡C(C=O)OEt 43 proceeded smoothly to give 51 in 

90% isolated yield (Scheme 32).   The trimethyl silyl group in 51 could be removed 

in the usual fashion (K2CO3 / MeOH) to give 52. 

 

The compounds 51 and 52 offer two complimentary routes to trimetallic complexes 

either through ligand expansion and subsequent metallation (Scheme 33) or by 

initial coordination to form a functionalised allenylidene complex, which can be 

extended if required (Scheme 34).   Each of these methods represents an alternative 

to strategies employed by the Dixneuf group in the preparation of 57 (Scheme 35). 
71
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Scheme 33 Reaction scheme for 51, and ligand extension and metallation, with some 

possible canonical structures. 

 

Unfortunately, attempts to cross couple 51 with HC≡CSiMe3 using established 

Sonogashira protocols were not successful, with multiple products being formed as 

evidenced by TLC, IR and 
1
H NMR spectroscopies, and in light of time constraints, 

reaction conditions could not be investigated further.   Reaction of 52 with 

RuCl(PPh3)2Cp in the presence of NH4PF6 proceeded relatively smoothly to afford 

the diiodo allenylidene [Ru(C=C=C(C6H4I-4)2)(PPh3)2Cp]PF6 (58, (C=C=C) 1926 

cm
-1

).   However, attempts to further cross-couple 58 with HC≡CSiMe3 were 

unsuccessful, with a plethora of purple coloured compounds being observed by TLC 

analysis of the reaction mixture.   In light of time constraints, this line of 

investigation was, with reluctance, abandoned.  
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Scheme 34 Reaction scheme for 52, initial metallation, then ligand extension and 

subsequent metallation  
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Scheme 35 The reaction scheme utilised by Dixneuf for the synthesis of 57. 
71

 

 

 

5.2.2 Molecular Structure Analyses 

 

Single crystals of 51 and 52 suitable for X-ray diffraction were obtained, the 

structures of related complexes HC≡C(COH)(C6H4Br)2 53 and 

HC≡C(COH)(C6H4Cl)2 54 having been reported earlier. 
356

   All four complexes 

discussed in this section are displayed in Chart 12.   Crystallographic data and 
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important bond lengths and angles are summarized in Table 52, Table 53 and Table 

54, with plots of 51 and 52, illustrated in Figure 79 to Figure 82.  

 

 

Chart 12 p-substituted aryl ethynyl methanols 51, 52, 53 and 54. 

 

All of the structures 51, 52, 53 and 54 are tetrahedral at the central C atom, in 

agreement with the sp
3
 hybridised nature of this carbon.  

 

In contrast to the silyl-protected derivative 51, the three terminal acetylene 

derivatives 52, 53 and 54 lack O–H ∙ ∙ ∙O hydrogen bonding.   This complete lack of 

expected O–H ∙ ∙ ∙O hydrogen bonding in gem-alkynol complexes, has been 

accounted for by Allen and Bilton, 
356

 in terms of “the OH group in gem-alkynols 

being sterically hindered by the ethynyl arm and the increased difficulty by the 

presence of the additional phenyl substituents at the gem-alkynol centre”.   Instead 

the two most acidic protons of the molecule, O–H and C≡CH, participate in weak 

hydrogen bonding to -acceptors.    

 

All three of the terminal acetylene derivatives 52, 53 and 54 all form dimers through 

the C≡CH ∙ ∙ ∙π(arene) interactions (Figure 77).   Each molecule in this dimer, is 

further dimerised via a pair of weaker C(phenyl)–H ∙ ∙ ∙O interactions to form stacks 
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along the b axis.   These stacks are linked along the a axis by two weak interactions; 

O–H ∙ ∙ ∙ π(arene) and C(phenyl)–H ∙ ∙ ∙π(ethynyl). 

 

 

Figure 77 Schematic representation of the C≡CH ∙ ∙ ∙π(arene) interactions in 52, 53 

and 54. 

 

These molecular stacks are further cross-linked along the c axis by halogen-halogen 

interactions (Figure 82).   Studies on the nature of halogen∙ ∙ ∙ halogen interactions 

by Desiraju has shown that carbon-bound halogens in a sufficiently electron-

withdrawing environment cause an anisotropic charge distribution δ
+
 forward of the 

halogen directly along the C-halogen bond vector, and δ
-
 perpendicular to the bond 

vector. 
357

   The halogen-halogen geometry in 52, 53 and 54 is in almost perfect 

arrangement for type II halogen∙ ∙ ∙ halogen interactions (Figure 78) described by 

Desiraju 
357

, with the Cl∙ ∙ ∙ Cl, Br∙ ∙ ∙ Br and I∙ ∙ ∙ I distances shorter than the 

appropriate van der Waals limits by 0.12, 0.20 and 0.20 Å, respectively. 
358

  

 

 

Figure 78 Type II halogen – halogen interaction geometry ( = 90 °). 
357
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Figure 79 The molecular structure of 51 showing the atom labelling scheme. 

 

 

Figure 80 A plot showing the packing of 51 within the crystal lattice. 
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Figure 81 A plot of a molecule of 52 showing the atom labelling scheme. 

 

 

Figure 82 A plot showing the packing of 52 within the crystal lattice. 
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Table 52 Crystal data and experimental parameters of 51, 52, 53 and 54. 

 51 52 53 
356

 54 
356 

Empirical formula C18H18OSiI2 C15H10OI2 C15H10Br2O C15H10Cl2O 

Formula weight 532.21 460.03 366.05 277.13 

Temperature 120(2) 120(2) 150 150 

Crystal system Triclinic Triclinic Triclinic Triclinic 

Space group P-1 P-1 P-1 P-1 

Cell parameters / Å 

a 9.5710(2), 

b 9.9895(2), 

c 11.8785(2) 

a 5.8409(1), 

b 11.1705(3), 

c 12.5506(3) 

a 5.7906(12), 

b 11.325(2), 

c 11.907(2) 

a 5.7082(1), 

b 11.3645(2), 

c 11.5167(1) 

Cell angles /  

α 93.0570(10)  

β 106.5880(10) 

γ 112.4320(10) 

α 113.64 (1),  

β 98.85 (1),  

γ 98.44(1) 

α 115.67(3),  

β 99.43 (3),  

γ 97.91(3) 

α 117.268 (1),  

β 99.257 (1),  

γ 96.726(1) 

Volume / Å3 989.05(3) 721.34(4) 674.8(2) 639.734(17) 

Z 2 2 2 2 

ρcalc mg/mm3 1.787 2.118 1.801 1.439 

μ/mm-1 3.240 4.345 5.990 0.490 

F(000) 508 428 998 500 

Crystal size 0.31 × 0.18 × 0.06 0.34 × 0.2 × 0.16 0.4 × 0.3 × 0.2 0.5 × 0.4 × 0.4 

Theta range for data 

collection  
2.24 to 30.50 ° 1.82 to 30.49 ° 4.26 to 30.50 ° 5.44 to 29.17 ° 

Index ranges 

-13 ≤ h ≤ 13,  

-14 ≤ k ≤ 14, 

-16 ≤ l ≤ 16 

-8 ≤ h ≤ 8,  

-15 ≤ k ≤ 15,  

-17 ≤ l ≤ 17 

-6 ≤ h ≤ 8,  

-15 ≤ k ≤ 12,  

-15 ≤ l ≤ 16 

-6 ≤ h ≤ 7,  

-11 ≤ k ≤ 14,  

-14 ≤ l ≤ 12 

Reflections 

collected 
14745 9930 5364 4371 

Independent 

reflections 

6022[R(int) = 

0.0138] 

4383[R(int) = 

0.0158] 

3456[R(int) = 

0.0287] 

2826[R(int) = 

0.0425] 

Data/restrains/ 

parameters 
6022/1.0000P/203 4383/0.7000P/203 3456/-/203 2826/-/203 

Goodness-of-fit on 

F2 
1.104 1.025 1.071 1.110 

Final R indexes 

[I>2ζ(I)] 

R1 = 0.0234,  

wR2 = 0.0543 

R1 = 0.0220,  

wR2 = 0.0559 

R1 = 0.0276,  

wR2 = 0.0718 

R1 = 0.0378,  

wR2 = 0.1043 

Final R indexes [all 

data] 

R1 = 0.0260,  

wR2 = 0.0558 

R1 = 0.0259,  

wR2 = 0.0582 
- - 

Largest diff. 

peak/hole 
1.214/-1.090 1.166/-0.810 - - 
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Table 53 Selected bond lengths (Å) of 51, 52, 53 and 54. 

Bond Lengths / 

Å 
51 52 53 

356
 54 

356
 

C1 ≡ C2 1.197(3) 1.190(3) 1.183(4) 1.183(2) 

C1 – R  1.848(2) 0.90(3) 0.90(5) 0.90(3) 

C2 – C3 1.485(3) 1.482(3) 1.483(3) 1.479(2) 

C3 – O 1.434(2) 1.435(3) 1.438(3) 1.429(2) 

C3 – C4/C10 1.533(3), 1.531(3) 1.534(3), 1.535(3) 1.538(3), 1.543(4) 1.534(3), 1.535(3) 

Ar – X 
2.0929(19),  

2.098(2) 

2.105(2), 

2.100(2) 

1.905(2),  

1.906(3) 

1.741(2), 

1.740(2) 

C4 – C5/9 
1.377(3), 1.394(3) 

1.392(3), 1.393(3) 

1.395(3), 1.402(3) 

1.385(3), 1.396(3) 

1.384(2), 1.400(3) 

1.393(3), 1.398(3) 

1.389(2), 1.394(2) 

1.389(2), 1.395(3) 

C5/9 – C6/8 
1.393(3),1.390(3) 

1.385(3), 1.389(3) 

1.397(3), 1.390(3) 

1.390(3), 1.403(3) 

1.400(3), 1.387(3) 

1.393(4), 1.393(4) 

1.381(3), 1.390(3) 

1.385(3), 1.393(3) 

C6/8 – C7 
1.389(3), 1.387(3) 

1.384(3), 1.391(3) 

1.379(3), 1.399(3) 

1.390(3), 1.388(3) 

1.384(3), 1.390(2) 

1.385(3), 1.391(3) 

1.384(2), 1.387(3) 

1.379(3), 1.389(2) 

 

Table 54 Selected bond angles () of 51, 52, 53 and 54. 

Bond Angles /  51 52 53 54 

C1-C2-C3 177.5(2) 179.6(3) 179.4(3) 179.1(3) 

C2-C3-C4/C10 
111.95(17), 

110.44(16) 

111.30(18), 

109.01(18) 

111.31(17), 

109.13(16) 

111.25(16), 

109.22(17) 

C4-C3-C10 107.78(15) 108.97(17) 108.89(18) 108.87(16) 

 

 

5.3 Conclusions 

 

This Chapter has described a simple protocol that allows the preparation of either 

“symmetric” A3 or “asymmetric” AB2 triethynyl methanol derivatives through the 

reaction of acetylide anions with chloroethylformate. By adopting 

chloroethylformate as a key synthetic building block reactions that are both high 
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yielding and avoid the use of strongly oxidising conditions, which have previously 

limited the variety of substituents built into the triethynyl methanol framework to 

oxidatively non-sensitive substituents, have been devised.   The introduction of 

phenylene units into the ligand structure to alleviate complications arising from 

suspected rearrangement processes, and help stabilise the possible carbocation, have 

commenced, although ligand extension via the use of ligand 51, either before or after 

metallation to the allenylidene, had limited success. Although these two interesting 

synthetic avenues of chemistry were not fully investigated due to time restraints, 

they still merit further work. 

 

 

5.4 Experimental Details 

 

5.4.1 General Conditions 

 

All reactions were carried out using oven dried glassware, under an atmosphere of 

nitrogen using standard Schlenk techniques.   Reagents purchased commercially 

were used without further purification.   Starting materials were checked by using 

relevant spectroscopic techniques before use.   NMR spectroscopies were carried out 

a room temperature and referenced against CDCl3 using the Varian Mercury-200 (
1
H 

199.99 MHz), Bruker and Varian Mercury-400 (
1
H 399.97 MHz) or Varian Inova-

500 (
1
H 499.77 MHz, 

13
C 125.67 MHz).   Chemical shifts are reported in δ / ppm 

and coupling constants, J, in Hz.   IR spectra were recorded using solution cells 

fitted with CaF2 windows by the Nicolet Avatar FT IR spectrophotometer.   Mass 

spectra were acquired using the Thermo- Finnigan LTQ FT spectrometer.   Single 

crystal X-ray structure determinations were carried out by Dr DS Yufit of this 

department using a Bruker 3-circle diffractometer with a SMART 6K area detector, 

using graphite-monochromated sealed-tube Mo-Kα radiation.   These data 

collections were performed at 120 K, and the temperature maintained using 

cryostream (Oxford cryosystem) open flow N2 cryostats.   Reflection intensities 

were integrated using the SAINT program. 
300

   The molecular structures were 

solved using direct-methods and refined by full matrix least-squares F
2
 using 
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SHELXTL software. 
148

   All non-hydrogen atoms were refined in anisotropic 

approximation.   Hydrogen atoms were placed into calculated positions, and refined 

isotropically using a riding model.   

 

5.4.2 Preparation of (Me3SiC≡C)3COH [42] 

1,5-Bis-(trimethyl-silanyl)-3-(trimethyl-silanylethynyl)-penta-1,4-diyn-3-ol 

 

Ethyl chloroformate (1 mL, 10.50 mmol) in THF (5 mL) was added to a solution of 

lithium trimethylsilylacetylide [prepared by treating trimethylsilylacetylene (4.5 mL 

31.70 mmol) in THF (10 mL) at –78 °C with 
n
BuLi (20 mL, of a 1.6 M solution in 

hexane, 31.80 mmol)] at –78 °C and stirred for 30 min.  The solution was then 

warmed to room temperature and became dark red in colour, which became dark 

brown on the addition of a sat. aqueous NH4Cl (100 mL).  The organic layer was 

separated and the aqueous phase was extracted with diethyl ether.  The combined 

organic layers were dried over MgSO4 and evaporated.  The residue was purified by 

column chromatography (silica, CH2Cl2:Hexane 1:1), to afford [42] as pale yellow 

crystals (2.68 g, 80 %).  IR (CH2Cl2): (C≡C) 2160m, (OH) 3544s cm
-1

. 
1
H NMR 

(CDCl3): H 0.21 (s, 27H, SiMe3), 2.79 (s, 1H, OH).  
13

C NMR (CDCl3): C -0.5 (s, 

SiMe3), 54.7 (s, C-OH), 88.05, 101.4 (s, C≡C).  ES-MS (m/z): 320, [M]
+
; 303, [M - 

OH]
+
; 288, [M – OH- CH3]

+
; 261, [M – OH-3Me + 3H]

+
; 230, [M – OH - SiMe3]

+
; 

215, [M- OH- CH3-SiMe3]
+
, 191, [M – OH – (C≡C)SiMe3 – CH3 ]

+
; 179, [M – OH – 

(C≡C)SiMe3 – 2Me + 3H]
+
; 133, [M – OH – {Me3Si(C≡C)} –Me3Si ]

+
; 121[M – OH 

– {Me3Si(C≡C) - Me3SiC}]; 109, [M – OH – 2{Me3Si(C≡C)]. 
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5.4.3 Preparation of Me3SiC≡C(C=O)OEt [43] 

Ethyl 3-(trimethylsilyl)propiolate 

 

Ethyl chloroformate (1 mL, 10.50 mmol) in THF (5 mL) was added to a solution of 

lithium trimethylsilylacetylide [prepared by treating trimethylsilylacetylene (1.48 

mL 10.50 mmol) in THF (10 mL) at –78 °C with 
n
BuLi (6.5 mL, of a 1.6 M solution 

in hexane, 10.50 mmol)] at –78 °C and stirred for 30 min.  The solution was then 

warmed to room temperature and became dark red in colour, which became dark 

brown on the addition of a sat. aqueous NH4Cl (100 mL).  The organic layer was 

separated and the aqueous phase was extracted with diethyl ether.  The combined 

organic layers were dried over MgSO4 and evaporated to afford a light brown oil.   

Fractional distillation of the light brown oil at 40 °C / 80 mmHg affords a clear oil. 

(Yield 1.46 g, 82 %).   IR (CH2Cl2): (C≡C) 2185m, (C═O) 1713s, (O-Et) 3397m 

cm
-1

.   
1
H NMR (CDCl3): H 0.19 (s, 9H, SiMe3), 1.26 (t, JHH = 7 Hz, 3H, CH3), 4.16 

(q, JHH = 7 Hz, 2H, CH2).   
13

C NMR (CDCl3): C -0.95 (s, SiMe3), 13.9 (s, CH3), 

61.9 (s, CH2), 93.6, 94.6 (s, C≡C), 153.0 (s, C=O).   EI-MS (m/z): 229, [M]
+
; 126.1, 

[M-OEt]
+
; 98.0, [M-SiMe3]

+
. 

 

5.4.4 Preparation of Me3SiC≡C(COH)(C≡CC6H4CH3)2 [44] 

1-(trimethylsilyl)-5-p-totyl-3-(2-p-tolylethynyl)penta-1,4-diyn-3-ol 

 

Ethyl 3-(trimethylsilyl)propiolate 43 (1 mL, 5.3 mmol) in THF (5mL) was added to 

a solution of lithium (p-tolylacetylide) [prepared by treating p-tolylacetylene (1.4 

mL, 11 mmol) in THF (5 mL) at –78 °C with 
n
BuLi (7 mL, of a 1.6 M solution in 

hexane, 11 mmol)] at –78 °C and stirred for 30 min.   The solution was then warmed 
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to room temperature and became dark red in colour, which became dark brown on 

the addition of a sat. aqueous NH4Cl (100 mL).   The organic layer was separated 

and the aqueous layer was extracted with diethyl ether.   The combined organic 

layers were dried over MgSO4 and evaporated.   The residue was purified by column 

chromatography (silica, CH2Cl2:Hexane 1:1), to afford 44 as an off-white powder 

(1.2 g, 64 %).   IR (nujol): (C≡C-tolyl) 2228s, (C≡C-SiMe3) 2190m, (O-H) 

3512m, cm
-1

.   
1
H NMR (CDCl3): H 0.24 (s, 9H, SiMe3), 2.36 (s, 6H, 2 p-CH3), 

2.99 (s, 1H, O-H), 7.14 (pseudo d, JHH = 8 Hz, 4H, Ar C6H4), 7.41 (pseudo d, JHH = 

8 Hz, 4H, Ar C6H4).  
13

C NMR (CDCl3) C -0.29 (s, SiMe3), 21.6 (s, Me), 55.5 (s, C-

OH), 83.2 (s, C≡C-tolyl), 86.0 (s, C≡C-tolyl), 88.2 (s, C≡C-SiMe3), 101.8 (s C≡C-

SiMe3), 118.6 (s, Ci, tolyl), 129.1, 132.0 (2s, Cm , Co, tolyl), 139.3 (s, Cp, tolyl). EI-

MS (m/z): 356, [M]
+
; 341.1, [M-CH3]

+
. 

 

5.4.5 Preparation of HC≡C(COH)(C≡CC6H4CH3)2 [45] 

1-p-tolyl-3-(2-p-tolylethynyl)penta-1,4-diyn-3-ol 

 

Desilylation of 44 (200 mg, 0.56 mmol) was carried out by treating a solution of 44 

in MeOH (10 mL) with K2CO3 (940 mg, 6.8 mmol).  After 1 h stirring, the organic 

phase was extracted using CH2Cl2 (3 x 10 mL). The combined organic layers were 

dried over MgSO4 and evaporated, to afford an off-white solid (100 mg, 73 %).   IR 

(CH2Cl2): (H-CC) 3294s, (C≡C-tolyl) 2224s, (C≡C-H) 2128m, (O-H) 3554m 

cm
-1

.   
1
H NMR (CDCl3): H 2.35 (s, 6H, 2 p-CH3), 2.90 (s, 1H, O-H), 3.05 (s, 1H, 

H-C≡C), 7.14 (pseudo d, JHH = 8Hz, 4H, AB C6H4), 7.41 (pseudo d, JHH = 8Hz, 4H, 

AB C6H4).   
13

C NMR (CDCl3): C 21.7 (s, Me), 55.1 (s, C-OH), 71.5 (s, C≡CH), 

81.6 (s, C≡CH), 83.6 (s, C≡C-tolyl), 85.6 (s, C≡C-tolyl), 118.4 (s, Ci, tolyl), 129.2, 

132.0 (2s, Cm , Co, tolyl), 139.5 (s, Cp, tolyl). EI-MS (m/z): 308.9, [M]
+
; 291.9 , [M-

OH]
+
; 218.0, [M-C6H4CH3]

+
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5.4.6 Preparation of (Me3CC≡C)3COH [46]  

5-(3,3-dimethyl-but-1-ynyl)-2,2,8,8-tetramethyl-nona-3,6-diyn-5-ol. 

 

To 3,3-dimethyl-1-butyne (2.29 mL, 18.6 mmol) in THF (10 mL) at –78 °C, 
n
BuLi 

(7.36 mL of a 2.5 M solution in hexane, 18.6 mmol) was added dropwise and the 

solution was allowed to stir (30 min) causing a colour change to pale yellow.  Ethyl 

chloroformate was added dropwise (0.6 mL, 6.2 mmol) and the solution darkened in 

colour slightly.   The reaction was allowed to warm to room temperature and left to 

stir (24 h).   The reaction was quenched with (50 mL) of sat. aqueous NH4Cl 

solution.   The layers formed were separated, extracted with diethyl ether and the 

combined organic layers were dried with MgSO4 and evaporated to give a pale 

yellow oil.   The oil was recrystallised from hot hexane to give white crystals of 46 

(0.74 g, 44 %).  IR (nujol): (C≡C) 2246, (OH) 3560, cm
-1

.  
1
H NMR (CDCl3): H 

1.2-1.3 (m, 27H, (CMe3)3), 2.6 (broad, OH).   
13

C NMR (CDCl3): C 27.3 (s, 

CMe3)3), 30.5 (s, CMe3)3), 78.2, 90.6 (s, C≡C).   ES(+)-MS (m/z): 272, [M]
+
; 257, 

[M-CH3]
+
; 242, [M-2Me]

+
; 227, [227, [M-3Me]

+
; 215 [M-CMe3]

+
. 

 

5.4.7 Preparation of (PhC≡C)3COH [47] 

1,5-Diphenyl-3-phenylethynyl-penta-1,4-diyn-3-ol.  

 

Method A 

Ethyl chloroformate (0.59 mL, 6.17 mmol) in THF (5 mL) was added to a solution 

of PhC≡CLi [prepared from phenylacetylene (2.02 mL, 18.39 mmol) and 
n
BuLi 

(7.37 mL, 2.5 M, 18.43 mmol) in dry THF (10 mL) at –78 °C] at –78 °C.  The 
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solution was allowed to warm to room temperature and stirred for 18 h.  The 

reaction was quenched with sat. aqueous NH4Cl, the organic phase was separated 

and extracted with diethyl ether.  The combined organic fractions were dried over 

MgSO4 and evaporated to produce a red oil.  This red oil was purified by 

chromatography (silica, CH2Cl2:hexane 1:1) and washed in hexane to afford creamy 

white powder (1.44 g, 70 %).   

 

Method B 

Potassium tert-butoxide (2.09 g, 18.6 mmol) was added to a Schlenk flask 

containing phenylacetylene (2.04 mL, 18.6 mmol) and ethyl chloroformate (0.6 mL, 

6.2 mmol) in THF (20 mL) and then heated under reflux (3 h).  After cooling, water 

(30 mL) and dichloromethane (30 mL) were added to the solution and separated.  

The organic phase was washed with water and the aqueous phase with 

dichloromethane.  The organic fractions were combined, dried with MgSO4 and 

evaporated to give a dark orange/brown oil. (3.6 g). The crude product was purified 

using column chromatography (silica, 1:1) (CH2Cl2:hexane) to give 5 as a pale 

yellow/white crystalline solid. Yield (0.97 g, 2.9 mmol, 47 %). 

 

IR (CH2Cl2): (O-H) 3553s, (C≡C) 2228s cm
-1

.   
1
H-NMR (CDCl3): H 3.20 (s, 1H, 

OH), 7.36 (m, 3H, C6H5), 7.57 (dd, JHH = 2 Hz, JHH = 7 Hz, 2H, C6H5).   
13

C-NMR 

(CDCl3): C 55.7 (s, C-OH), 83.1, 86.5 (2s, C≡C), 121.5 (s, Ci), 128.3 (s, Co/m), 

129.1 (s, Cp), 132.1 (s, Co/m).   EI-MS (m/z): 332, [M]
+
; 315, [M – OH]

+
; 255 [M – 

C6H5]
+
; 230, [M – H – C6H5C≡C]

+
; 178, [M – 2{C6H5}]

+
. 
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5.4.8 Preparation of Me3SiC≡C(COH)(C≡C
t
Bu)2 [48] 

2,2,8,8-tetramethyl-5-(2-(trimethylsilyl)ethynyl)nona-3,6-diyn-5-ol 

 

Ethyl 3-(trimethylsilyl)propiolate 43 (1 mL, 5.3 mmol) in THF (5 mL) was added to 

a solution of lithium (
t
butylacetylide) [prepared by treating 

t
butylacetylene (1.4 mL, 

11.4 mmol) in THF (5 mL) at –78 °C with 
n
BuLi (7.2 mL, of a 1.6 M solution in 

hexane, 11.5 mmol)] at –78 °C and stirred for 30 min.   The solution was then 

warmed to room temperature and became dark red in colour, which became dark 

brown on the addition of a sat. aqueous NH4Cl (100 mL).   The organic layer was 

separated and the aqueous layer was extracted with diethyl ether.   The combined 

organic layers were dried over MgSO4 and evaporated, to afford a light brown waxy 

solid (1.15 g, 76 %).  IR (CH2Cl2): (C≡C-
t
Bu) 2241s, (C≡C-SiMe3) 2167m, (O-

H) 3554m cm
-1

.   
1
H NMR (CDCl3): H 0.18 (s, 9H, SiMe3), 1.23 (s, 18H, 2 

t
Bu 

CH3), 2.78 (s, 1H, O-H).   
13

C NMR (CDCl3): C -0.4 (s, SiMe3), 27.5 (s, C-Me3), 

30.5 (s, Me3), 54.8 (s, C-OH), 86.6 (s, C≡C-SiMe3), 91.4 (s C≡C-
t
Bu), 101.7 (s 

C≡C-SiMe3) 103.4 (s, C≡C-
t
Bu).   EI-MS (m/z): 288.2, [M]

+
;  271.2 [M-OH]

+
; 259.2 

[M-2Me]
+
; 229.1 [M-4Me]

+
; 215.2, [M-SiMe3]

+
. 

 

5.4.9 Preparation of {Fe(C5H5)}(C5H4)C≡C(C=O)OEt [49] 

Ethyl (Ferrocenyl)-propynoate. 

 

Ethyl chloroformate (0.10 mL, 1.05 mmol) in THF (5 mL) was added to a solution 

of FcC≡CLi [prepared from ethynylferrocene (220 mg, 1.05 mmol) and 
n
BuLi (0.45 

mL, 2.5 M, 1.05 mmol) in THF (10 mL) at –78 °C] at –78 °C.   After stirring (30 
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min) at –78 °C sat. aqueous NH4Cl solution (100 mL) was added and the organic 

phase separated and extracted with diethyl ether.   Combined organic layers were 

dried over magnesium sulfate and evaporated.   The residue was purified by 

preparative TLC, (silica plate, CH2Cl2:Hexane 60:40) to afford 49 as an orange-red 

solid (0.05 g, 16 %).   Rf = 0.6 (CH2Cl2:hexane 60:40).   IR (Nujol): (C=O) 1712w, 

1691w, (C≡C), 2209w, 2249w cm
-1

.   
1
H NMR (CDCl3): H 1.36 (t, JHH = 7 Hz, 3H 

CH3), 4.27 (s, 5H C5H5), 4.28 (q, JHH = 7 Hz, 2H CH2), 4.34 (t, JHH = 2 Hz, 2H 

C5H4), 4.60 (t, JHH = 2 Hz, 2H C5H4).   
13

C NMR (CDCl3): C 14.1 (s, CH3), 61.8, (s, 

CH2), 72.9 (s, C5H4, CH), 70.3 (s, C5H4, Ci), 70.3 (s, C5H4, CH), 70.3 (s, C5H4, 

C5H5), 78.1, 88.5 (2 × s, C≡C), 154.2 (s, CO2Et).   EI-MS (m/z): 282, M
+
; 254, [M – 

C2H4]
+
; 237, [M – CO2 – H]

+
; 210, [M –C2H4 –CO2]

+
. 

 

5.4.10 Preparation of ({Fe(C5H5)}(C5H4)C≡C)3COH [50] 

 

Method A 

49 (0.062 g, 0.22 mmol) in THF (2 mL) was added to a solution of FcC≡CLi 

[prepared from ethynyl ferrocene (0.093 g, 0.44 mmol) and 
n
BuLi (0.21 mL of a 

2.5M solution in hexane, 0.53 mmol) in THF (2 mL) at –78 °C] at –78 °C.  The 

solution was stirred at –78 °C for 35 min and then allowed to warm to room 

temperature and stirred for a further 90 min and then evaporated.  The residue was 

washed successively (repeatedly) with hexane to afford 50 as an orange solid (0.126 

g, 87 %).   
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Method B 

To ethynylferrocene (0.210 g, 1.00 mmol) in THF (10 mL), at –78 °C, 
n
BuLi (0.625 

mL of a 1.6 M solution in hexane, 1.00 mmol) was added dropwise and the solution 

was allowed to stir (30 min) while warming to room temperature.  To this ethyl 

chloroformate (0.034 g, 3.33 x 10
-4

 mol) in THF (5 mL) was added and stirred 

overnight at room temperature.  The solvent was removed under reduced pressure 

and the crude product was dissolved in dichloromethane and washed twice with 

water.   The solvent was removed and the dark brown solid was washed with hexane 

to yield the product.   Yield (0.120 g, 0.183 mmol, 55 %).  IR (Nujol): (C≡C) 

2233s, 3566w cm
-1

.   
1
H NMR (CDCl3): H 2.92 (s, 1H OH), 4.24 (dd, JHH 1.6 Hz, 

6H, C5H5), 4.29 (m, 15H, C5H5), 4.54 (dd, JHH = 1.6 Hz, 6H, C5H4).   
13

C NMR 

(CDCl3): C 63.3 (s, C5H4), 69.0, (s, C5H4), 70.0 (s, C5H5), 71.7 (s, C5H4), 82.0 (s, 

C≡C), 83.7 (s, C≡C).   EI-MS (m/z): 656 [M]
+
; 446, [M – FcC≡CH]

+
;  

 

5.4.11 Preparation of Me3SiC≡C(COH)(C6H4I)2 [51] 

1,1-bis(4-iodophenl)-3-(trimethylsilyl)prop-2-yn-1-ol 

 

Ethyl 3-(trimethylsilyl)propiolate 43 (1 mL, 5.3 mmol) in THF (5 mL) was added to 

a solution [prepared by treating 1,4-diiodobenzene (3.5 g, 10.6 mmol) in diethyl 

ether (100 mL) at -78 °C with 
t
BuLi (11.8 mL, of a 1.8 M solution in hexane, 21.2 

mmol)] at –78 °C and stirred for 30 min.   The solution was then warmed to room 

temperature and became pale yellow in colour, which became yellow on the addition 

of a sat. aqueous NH4Cl (100 mL).   The organic layer was separated and the 

aqueous layer was extracted with CH2Cl2.   The combined organic layers were dried 

over MgSO4 and evaporated, to afford a white semi-crystalline solid, (2.5 g, 90 %).   

Crystals were grown from CH2Cl2/Hexane.   IR (CH2Cl2): (C≡C-SiMe3) 2167m 

cm
-1

.   
1
H NMR (CDCl3): H 0.22 (s, 1H, SiMe3), 2.74 (s, 1H, O-H), 7.30 (d, JHH = 

8.8 Hz, 2H, Ar Ho), 7.65 (d, JHH = 8.8 Hz, 2H, Ar Hm).   
13

C (CDCl3): C 0.09 (s, 9H, 
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SiMe3), 74.1 (s, C-OH), 93.2 (s, C≡C-SiMe3), 93.9 (s, Cp-I), 106.6 (s, C≡C-SiMe3), 

128.0 (s, Co), 137.6 (s, Cm), 144.3 (s, Ci).   EI-MS (m/z): 532.9, [M]
+
; 459.9, [M-

SiMe3]
+
; 406.0, [M-I]

+
; 323.9, [M-C6H4I]

+
; 

 

5.4.12 Preparation of HC≡C(COH)(C6H4I)2 [52] 

1,1-bis(4-iodophenl)prop-2-yn-1-ol 

 

Desilylation of 51 (550 mg, 1.03 mmol) was carried out by treating a solution of 51 

in MeOH (10 mL) with K2CO3 (570 mg, 4.1 mmol).   After 1 h stirring, the organic 

phase was extracted using CH2Cl2 (3 x 10 mL).   The combined organic layers were 

dried over MgSO4 and evaporated, to afford an off-white solid (328 mg, 69 %).  

Crystals were grown from CH2Cl2/Hexane.   IR (CH2Cl2): (C≡CH) 2120m cm
-1

.   

1
H NMR (CDCl3): H 3.06 (s, 1H, O-H), 3.46 (s, 1H, C≡CH), 7.31 (d, JHH = 8 Hz, 

2H, Ar Ho), 7.66 (d, JHH = 8 Hz, 2H, Ar Hm).   
13

C NMR (CDCl3): C 73.7 (s, 

C(OH)), 76.5 (s, C≡CH), 85.4 (s, C≡CH), 94.1 (s, Cp-I), 128.0 (s, Co), 137.6 (s, Cm), 

143.9 (s, Ci).   EI-MS (m/z): 459.7, [M]
+
; 332.8, [M-I]

+
; 255.8, [M-C6H4I]

+
; 205.9, 

[M-2I]
+
 

 

5.4.13 Preparation of Ru(C=C=C(C6H4I-4)2)(PPh3)2Cp]PF6 [58] 

 

RuCl(PPh3)2Cp (300 mg, 0.41 mmol) HC≡C(COH)(C6H4I)2 52 (203 mg, 0.44 

mmol) and NH4PF6 (70 mg, 0.43 mmol) was stirred in MeOH (30 mL) for 2 h.   The 

resulting purple solution was filtered and the solvent removed.   The residue was 

taken up in the minimum of CH2Cl2 and precipitate into diethylether, and filtered, 
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yielding (265 mg, 60 %).   IR (CH2Cl2): (C=C=C) 1926 cm
-1

.   
1
H NMR 

(400MHz): H 5.12 (s, 5H, Cp), 7.00 (dd, 12H, 
3
JHH = 8 Hz, 

3
JHP = 2 H, Ho), 7.13 (t, 

6H, 
3
JHH = 8Hz, Hm), 7.23 (pseudo d, 4H, Ar H), 7.34 (t, 6H, 

3
JHH = 8Hz, Hm’), 7.4-

7.6 (m, 6H, Hp).   
31

P NMR (161.9 MHz):  47.0   
13

C NMR (125.66 MHz): C 94.3 

(s, Cp), 100.1 (s, Cp-I), 142.8 (s, Cm-I), 155.5 (s, Ru=C=C=C), 214.6 (s, Ru=C=C), 

294.3 (t, 
2
JCP = 17.6 Hz, Ru=C).   ES(+)MS: 1132.8, [M-PF6]

+
; 1007.0, [M-PF6-I]

+
.   

ES(+)MS: 1132.8, [M-PF6]
+
; 1007.0, [M-PF6-I]

+
.    Anal. Found: C 59.63; H, 3.73, 

Calc: C 59.31; H, 3.82 
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Chapter 6 : Aryl Amine Ligands and Metallated Complexes 
 

6.1 Introduction 

 

Triarylamines are remarkably stable organic one electron redox systems that have 

found use in a multitude of applications from hole-transport, 
359

 to photorefractive 

materials for optical data storage, 
360

 electrochromic polymers used in anti-glare 

mirrors, 
361

 and are commonly used as photoconductors in the Xerox
®

 process in  

laser printers and photocopiers.  
362, 363

   Consequently there has been rapid 

development in the synthetic chemistry associated with the NAr3 moiety. 
364

   With 

NAr3 moieties readily available via synthetic protocols that are compatible with 

other functional groups, including acetylenes and vinyl groups, it is unsurprising that 

recent work has been undertaken that has hinted towards the possible use of NAr3 

systems as redox active bridging ligands. 
98, 112, 325

 

 

With a view to utilising approximately D3h symmetric NAr3 systems as a key 

component in a bridging ligand capable of linking more than two metal centres, we 

chose to examine complexes containing (phenylethynyl) amine ligands.  

Monometallic complexes derived from HC≡CC6H4NTol2 have been used as models 

to help distinguish metal-ligand affects from genuine metal-metal interactions.   It 

has been demonstrated in previous Chapters in this thesis and elsewhere, 
87, 88, 115, 365

 

that ruthenium mixes strongly with the ethynyl bridge, resulting in bridge-centred 

redox properties.   With iron, the metal orbitals are highly lying in energy, and 

consequently iron acetylide complexes feature more metal character in the redox 

orbitals than analogous ruthenium systems. 
227, 233, 366

   Therefore, in order to 

engineer systems more likely to display “true” mixed valence character, iron 

complexes were especially targeted in the work described in this Chapter. 

 

Despite the vast body of metal acetylide chemistry, there are surprisingly few 

examples of transition metal complexes derived from mono-metallated mono-

ethynyl aryl amines, in the literature; two organotin (tributyl and trimethyl), capped 

ethynylphenyl[bis(methoxyphenyl)]amines are also known. 
367

   Onitsuka has 
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synthesised two Ru(dppe)2-ethynylphenyl bisphenylamines, 59 and 60 capped with 

either Cl or phenylacetylene (Chart 13) from cis-RuCl2(dppe)2 using the chemistry 

summarised in Chapter 2. 
98

   

 

 

Chart 13 Ru(dppe)2 ethynylphenyl bisphenylamine complexes 59 and 60. 
98

 

 

The cyclic voltammogram of complex 59 showed two quasi-reversible waves at E1/2 

= –0.03 V and 0.48 V.   The UV-vis spectra of 59 and 60 both contain an MLCT 

band at 349 nm, with compound 60 chosen for further study.   Upon oxidation of 60 

to [60]
+
, the absorption band at 349 nm disappeared with a new band at 456 nm 

associated with [60]
+
 being observed.   With successive reduction and oxidation, the 

spectra are more or less reversibly obtained, but with a gradual decrease in the peak 

intensities indicating slow decomposition of the sample.   The assignment of LMCT 

or MLCT character to the 456 nm transition in [60]
+
 obviously depends on the 

correct assignment of the site of oxidation within [60]
+
.   The UV-vis spectrum of 

the dicationic species [60]
2+

 was not investigated, nor were IR 

spectroelectrochemical studies carried out to confirm the site of oxidation.   Thus, 

whilst the Onitsuka study clearly demonstrates that metal complexes of triaryl 

amines have potentially useful redox character, the system remains to be fully 

explored.   The related tris ruthenium complexes are discussed later on in this 

section. 
98

 

 

One of the complexes in the class of luminescent gold(III) alkynyl complexes 

Vivian Yam and Hoi-Sing Kwok have recently investigated, and which demonstrate 

both electroluminescence properties and the ability to act as an emitter or dopant in 

organic light emitting diodes (OLEDs), is based on the organic ligand 

ethynylphenyl-diphenylamine 61.   Synthesis of 62 was achieved by reaction of 

Au(2,6-diphenylpyridine)Cl ([Au(CNC)]Cl) with 61, in the presence of a catalytic 
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amount of copper(I) iodide in triethylamine and dichloromethane (Scheme 36).   It 

has been demonstrated that the incorporation of a strong -donating alkynyl ligand 

(such as ethynylaniline) onto the [Au(CNC)] moiety enriches the photoluminescence 

properties of gold acetylide complexes. 
368

   In solid-state thin films 62 displays a 

low-energy structureless emission band at about 570 nm, which has been assigned to 

the dimeric/oligomeric or excimeric emission arising from the - stacking of the 

planar CNC supporting ligand observed in the crystal packing.   Utilising this 

photoluminescence (PL) property, organic light emitting diodes have been 

constructed using complex 62 as: a) the emitter layer, with the device producing an 

electroluminescence (EL) spectrum the same as the PL spectrum for 62; and b) the 

dopant, into a host material of 4,4‟-N,N‟-dicarbozole-biphenyl (CBP), where, with 

varying the dopant level from 1 to 100 wt%, upon applying a voltage the EL 

maxima red-shifted from 500 to 580 nm.   This red-shift has been attributed to a 

higher order and better packing of the molecules, and strong -stacking of the CNC 

ligand, as the dopant concentration increases. 
369

 

 

 

Scheme 36 Synthesis of 62, from [Au(CNC)]Cl and 61 .
368

 

 

The final example of a mono-metallic complex based on an ethynylphenyldiaryl 

amine known to date is the Pt-bridged bis-ethynylphenyldi(methoxyphenyl)amine 

63.   This L–M–L complex was synthesis by reacting the terminal ethynyl ligand 

with trans-PtCl2(PEt3)2, in HNEt2 (Chart 14).   This complex has been used to assess 

the effect Pt has on the electronic delocalisation throughout the molecule.   

Crystallographic studies on the neutral species confirm that the two amine ligands 

are arranged trans- across a square planar Pt centre.   The electronic spectrum 63 

featured two strong transitions at 373 and 307 nm, and the luminescence spectrum 

showed a weak band at 405 nm assigned to S1 → S0 relaxation and an intense T1→ 

S0 transition at 494 nm.   TDDFT calculations on the excited state of 63 revealed 
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that the T1 and S1 state originate from orbitals, delocalised over the molecule, with 

mixed triarylamine and ethynyl character.   The MV species afforded by oxidation 

of 63 by (p-BrPh)4NHSbF6 displays an IVCT band in the NIR region at 6450 cm
-1

, 

along with peaks around 10000 - 15000 cm
-1

, which have been assigned to Pt → N
+
 

charge transfer and triarylaminium excitation.   Analysis of the IVCT band at 6450 

cm
-1

 showed that the band to be broader than Hush model 
27

 predicts (4240 cm
-1

), 

consistent with the MV species belonging to  Class II (Hab = 350 cm
-1

) in the Robin-

Day classification system. 
25

   The conclusions of this comparative study of Pt-

bridged triarylamine and an all-organic structural analogue reported by Lambert, 
370

 

is that electronic delocalisation in Pt-alkynyl -conjugated systems is not 

substantially different when compared to all-organic oligo(phenylethynylenes). 
371

 

 

 

Chart 14 Platinum bridged bis-ethynylphenyldi(methoxyphenyl)amine 63. 
371

 

 

Previous metallation reactions of the tris-ethynylphenyl amine ligand have centred 

mainly on the use of the cis-RuCl2(dppe)2 building block, to form the tris(trans-

RuCl(dppe)2C≡CC6H4)3N 64, which can be reacted with HC≡CPh to give to the tris 

(ruthenium bis(acetylide)) complex 65 (Scheme 37). 
98
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Scheme 37 Synthetic route from 64 to 65. 
98

 

 

Electrochemical studies of 64 and 65 showed each complex exhibits four quasi-

reversible waves, E1/2 = -0.17, 0.11, 0.29 and 0.60 V 64, and E1/2 = -0.17, 0.10, 0.23 

and 0.51 V 65 against Ag/AgCl reference.   The first three redox events have been 

assigned to the stepwise Ru(II)-Ru(III) oxidation processes in each case, with the 

fourth wave assigned to the oxidation on the triphenylamine core, (c.f. the 

trimethylsilylated ligand precursor E1/2 = 0.77 V).  This cathodic shift of the stepped 

Ru(II)-Ru(III) oxidation events compared to the Ru(II)-Ru(III) couples in 59 (E1/2 = 

-0.03 and 0.48 V), has been attributed to the strong electron-donating properties of 

the Ru(II) moieties with the separation of the waves taken as evidence for electronic 

interactions between the metal centres through the tri(p-ethynylphenyl)amine bridge. 

 

NIR studies of [65]PF6, obtained by chemical oxidation of 65, showed a broad 

absorption at 4760 cm
-1

, in a region where no absorptions were detected for the 

neutral species 65.   This absorption band was attributed to an IVCT process, with 

the calculated half-width (Γ1/2) close to that of Class II mixed valence compounds. 

25, 27
   The authors have deduced that the structure of [65]

+
 consists of one ruthenium 

allenylidene unit stabilised by the central nitrogen atom: the various valence forms 

can interconvert wither through thermal / ground state or photochemical (IVCT) 

processes (Scheme 38). 
98
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Scheme 38 Proposed IVCT processes in [65]
+
. 

98
 

 

The failure of this incomplete body of work to fully take into account all possible 

interpretations of the available data, particularly the assignment of IVCT character 

to the NIR band and the assumption of metal centred redox character, means that the 

conclusions in this paper must be treated with a degree of caution.   A more 

comprehensive study of this group of complexes is needed to provide greater 

confidence in the conclusions drawn from the results. 
325

 

 

Apart from the tris-trimethylstannyl capped triethynylphenyl amine complex, 

produced by first lithiating tris(4-ethynylphenyl)amine with 
n
BuLi, and subsequent 

addition of trimethyltin chloride, which was used to prepare tris[4-(pyridin-4-

ylethynyl)phenyl]amine (Chart 15), 
372

 the only other metallated triethynylphenyl 

amine complexes synthesised have Pt(PEt3)2 fragments attached (Scheme 39). 

 

 

Chart 15 Tris((trimethylstannyl)-4-ethynylphenyl)amine. 
372
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Scheme 39 Synthesis of 66 and 67, from tris(p-ethynylphenyl)amine. 
373

 

 

Complex 67 has been used in an ingenious way to synthesis an organometallic 

version of bicyclo[2,2,2]octane, via a self-assembly reaction with three equivalents 

of a bidentate ligand, 1,3-bis(3-pyridyl)isophthalic amide, to two equivalents of the 

tris(Pt(PEt3)2ONO2) amine complex. 
373

 

 

As well as the directly coordinated tris metal complexes, mentioned above, 

ferrocene-based end groups have also been attached via a linker to the central 

triethynylphenyl amine core.   The triferrocene triphenylamine complexes were 

synthesised by palladium catalysed cross-coupling reactions of ferrocenyl alkynes 

and 4,4‟,4‟‟-triiodotriphenylamine (Scheme 40). 
374

   These complexes are 

symmetric in nature in solution, for example in 68 there are three CH peaks at δH 

4.21, 4.26 and 4.48 ppm; the first corresponding to the three unsubstituted Cp rings, 

the second two corresponding to the three alkyne substituted Cp rings.   The pseudo-

doublets seen in the p-substituted triphenylamines is also seen ~ δH 7 ppm.   

Electrochemical data of all of these complexes showed only one oxidation wave for 

the oxidation of ferrocene to the ferrocinium ion, possibly reflecting the absence of 
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electronic communication between the three ferrocene centres. 
375, 376

   The nature of 

the bridging has been proven crucial for efficient electronic communication between 

ferrocene centres, with benzene 
376, 377

 and ethynylbenzene 
375

 ferrocenyl derivatives 

not exhibiting any electronic communication, whereas with a cyclopropenium core, 

separate one electron oxidation steps were observed and ascribed to a strong 

interaction between the ferrocene centres. 
378

 

 

In this Chapter, a series of complexes derived from ethynyl derivatives of triaryl 

amines have been prepared, and studied using a combination of electrochemical, 

UV-vis-NIR and IR spectroelectrochemical methods, supported by computational 

investigations of electronic structure. 

 

 

Scheme 40 Triferrocene triphenylamine complexes, 68, 69 and 70. 
374
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6.2 Results and Discussion 

 

The pro-ligands and precursors used in this Chapter are shown in Chart 16.  

 

 

Chart 16 Pro-ligands used in this Chapter (72 – 75). 

 

The decision to use ditolylamine over diphenylamine in the preparation of the amine 

ligands was taken to prevent any phenyl – phenyl coupling of the amine rings 

following oxidation (Scheme 41). 
379, 380
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Scheme 41 Oxidative coupling of diphenyl ligands, based on the redox chemistry 

known for triphenylamine. 
379, 380

 

 

The synthesis of the mono-ethynyl compound HC≡CC6H4NTol2 73 is shown in 

Scheme 42. 

 

 

Scheme 42 The synthesis of HC≡CC6H4NTol2 73. 

 



 

223 

 

The first step of the synthesis of 73 is an N-C bond forming reaction between 1-

bromo-4-iodobenzene and ditolylamine (Scheme 42).   A N-C bond can be formed 

by many synthetic routes, with the Buchwald-Hartwig amination (Scheme 43), in 

which an organic aryl halide is coupled to an amine in the presence of a base with 

the use of a palladium catalyst, being a modern method of choice. 
364, 381-383

   Along 

with a large variety of aryl halides, 
364

 the Buchwald-Hartwig protocol has been 

shown to work well with pseudohalides, such as triflates, 
384

 and both primary and 

secondary amines can be used to good effect in the cross-coupling reaction. 
384, 385

   

The choice of Pd catalyst will depend on the requirements for the desired compound, 

for example chiral selectivity, and therefore a wide variety of Pd catalysts have been 

investigated. 
364, 385

   However, the Pd catalysts most commonly used with this 

reaction are Pd(PPh3)4, PdCl2(dppf) and Pd2(dba)3/phosphine. 

 

 

Scheme 43 The Buchwald-Hartwig N-C cross-coupling reaction.  

 

If a Pd
II
 system is employed, the initial step in the reaction mechanism (Scheme 44) 

is the reduction of the Pd
II
 catalyst (strictly a pre-catalyst), to an active Pd

0
 species. 

The next step is the oxidative addition of the aryl halide to the Pd
0
 catalyst, followed 

by the coordination of the amine through the nitrogen atom.   The addition of a 

strong base abstracts the amine proton, which is followed by either reductive 

elimination to the desired aryl amine or the undesired β–hydride elimination to the 

arene and the imine.   The β–hydride elimination can be prevented by selecting 

amine substituents that do not have β–hydride to eliminate, such as aryl rings and 

tertiary organic fragments, or the use of a bidentate chelating phosphine ligand on 

the palladium such as diphenylphosphinoferrocene (dppf). 
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Scheme 44 The Buchwald-Hartwig reaction mechanism. 

 

The use of a tertiary butoxide salt, e.g. NaO
t
Bu, as the base in the Buchwald-

Hartwig reaction can help to simplify the reaction work up, as the by-products of the 

deprotonation step are sodium chloride and 
t
butanol. 

 

The Ullmann-type reaction (Scheme 45, Scheme 46), another N-C bond forming 

reactions, is an older, but still valuable alternative to the Buchwald-Hartwig 

amination reaction, especially in the case of electron-rich aryl halides and aryl-

iodides. 
386

 

 

 

Scheme 45 The Ullmann-type coupling reaction route. 
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Scheme 46 The Ullmann-type reaction mechanism. 

 

In this work, bromo-functionalised triaryl amines were prepared either by Ullmann-

type coupling of 1-bromo-4-iodo-benzene with ditolylamine (Scheme 42), or by 

bromination of triphenyl amine (see below).   With bromo-functionalised triaryl 

amines in hand, ethynyl groups can be introduced through another cross-coupling 

sequence, this time directed towards C-C bond forming reactions, using the 

Sonogashira protocols (Scheme 47). 
387

 

 

 

Scheme 47 The Sonogashira cross-coupling reaction. 
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Scheme 48 The Sonogashira cross-coupling reaction mechanism. 

 

On the most elementary level, the mechanism of the Sonogashira cross coupling 

reaction involves two cycles (Scheme 48), one around palladium and another around 

copper.   The initial step in the palladium cycle involves oxidative addition of an 

aryl halide to an active 14e
-
 palladium species Pd

0
L2 to form a Pd

II
 complex.   The 

resulting 16e
-
 complex reacts in a rate limiting transmetallation step with the copper 

acetylide, produced in the copper cycle; to give the trans- square planar palladium 

acetylide, and expelling a copper halide in the process.   Trans-cis isomerisation of 

the palladium acetylide is followed by a reductive elimination step which releases 

the final product and regenerates the Pd
0
 catalyst.   In the copper cycle, the copper 
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halide generates a copper acetylide, which reacts with the Pd
II
L2RI in the 

transmetallation step, regenerating the copper halide.   The precise details of the 

Sonogashira reaction and the underlying mechanism (or mechanisms, as there may 

be different mechanisms taking place under different conditions), have been 

thoroughly described elsewhere. 
387

 

 

Since the work described later in this Chapter necessitate the use of terminal 

acetylenes, it is simply worth noting at this point that trimethylsilyl acetylene has 

been used widely as the alkyne coupling partner in the Sonogashira work.   The 

terminal alkynes can then be readily obtained in the final step, using K2CO3 in 

MeOH as a source of nucelophilic MeO
-
 (Scheme 49).   The preparation of tris(4-

ethynylphenyl)amine is similar (Scheme 50). 

 

 

Scheme 49 Desilylation of a trimethylsilyl protected acetylene using potassium 

carbonate in methanol. 
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Scheme 50 Synthesis of tris(4-ethynylphenyl)amine 75. 

 

The amine substituent is both ortho- and para- directing to aryl halogenations, 

however, due to steric hindrance and the low temperature conditions employed in 

the bromination reaction, only the tris para-substituted compound is obtained 

(Scheme 51). 

 

 

Scheme 51 Aryl halogenation of triphenylamine. 
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Three mono-metallic complexes were synthesised from the terminal alkyne 73 

(Chart 17): Ru(C≡CC6H4NTol2)(PPh3)2Cp (76); Ru(C≡CC6H4NTol2)(dppe)Cp* 

(77); Fe(C≡CC6H4NTol2)(dppe)Cp (78).    

 

 

Chart 17 The mono-metallic complexes 76, 77 and 78 synthesised in this Chapter. 

 

The ruthenium complexes are prepared from RuCl(PPh3)2Cp (for 76) or 

RuCl(dppe)Cp* (for 77), a slight excess of the alkyne 73, and NH4PF6, in refluxing 

methanol.   The resulting vinylidenes were not isolated, but rather deprotonated by 

addition of a suitable base (NaOMe) to give the acetylide complexes (Scheme 52).   

The synthesis of 78 is essentially the same as the two ruthenium complexes, with the 

use of an „in situ‟ base for convenience (Scheme 53), using established protocols. 
388
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Scheme 52 Synthetic route for compounds 76 and 77 via the vinylidene complex. 

 

 

Scheme 53 Synthesis of 78, with the use of an „in situ‟ base. 

 

The 
31

P NMR spectra of all three mono-metallic complexes 76 – 78 gave a single 

peak corresponding to the supporting phosphine ligands, at δP 51.4 (PPh3), 82.0 

(dppe) and 108.2 (dppe) ppm, for 76, 77 and 78 respectively, and a single Cp or Cp* 

ligand resonance in both the 
1
H and 

13
C NMR spectra in the usual regions (CpRu: δH 

= 4.3 ppm; Cp*Ru: δH = 1.57 ppm; δC = 10.0 ppm (C5Me5) and 92.6 ppm (C5Me5); 

CpFe: δH = 4.23 ppm; δC = 79.1 ppm).   The characteristic set of two pseudo doublets 
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of the ligand aryl system, one with an integral of 4H, the other 8H, is also observed 

in the 
1
H NMR spectra of all three complexes, in the range δH  6.2 – 7.2 ppm.   The 

ES(+)-MS of the complexes 76 – 78 all feature the molecular ion (m/z 988.1 76, m/z 

930.3 77, m/z 814.2 78).   The IR spectra of the mono-metallic complexes exhibit 

(C≡C) bands at 2074 cm
-1

 76, 2069 cm
-1

 77 or 2062 cm
-1

 78, somewhat lower in 

energy than that of the precursor alkyne 73 (2120 cm
-1

). 

 

The synthesis of 79 is similar to that described for 78, with a slight excess of the 

metal chloride used to ensure complete metallation, in a 1:1 solution of 

triethylamine and THF (Scheme 54).   A small amount of KO
t
Bu was also added to 

the final reaction mixture to make sure all of the vinylidene intermediate was 

deprotonated to the required metal acetylide complex. 

 

 

Scheme 54 Synthesis of 79 from FeCl(dppe)Cp and 75. 

 

The 
31

P NMR spectrum of 79 gave a singlet at δP 108.4 ppm (dppe), and a singlet Cp 

ligand resonance in both the 
1
H and 

13
C NMR spectra was found (CpFe: δH = 4.30 

ppm; δC = 79.0 ppm); these are unsurprisingly very similar to mono-iron complex 

78. The ES(+)-MS (electrospray positive - mass spectrometry) of the complex 79 

featured the molecular ion; (m/z 1872.0), along with the fragment ions at m/z;  

1354.0, [M-[Fe]]
+
, 835.3, [M-2[Fe]]

+
, 677.7, [M-[Fe]]

2+
, ([Fe] = Fe(dppe)Cp).   The 

IR spectrum of the tris-metallic complex exhibits a (C≡C) band at 2062 cm
-1

 (c.f. 

(C≡C) 78 2062 cm
-1

, 73 2120 cm
-1

). 
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6.2.1 Molecular Structure Analyses of Me3SiC≡CC6H4NTol2 and 

HC≡CC6H4NTol2 

 

Single crystals of 72 and 73 suitable for X-ray diffraction were obtained from 

hexane, and the molecular structures determined by single crystal X-ray diffraction 

(Figure 84 and Figure 85).   Crystallographic data, selected bond lengths and angles 

are listed in Table 55 and Table 56. 

 

Crystals of 72 crystallised in the monoclinic space group (P 1 21/c 1) with four 

molecules of in the asymmetric unit, whilst 73 crystallised in the orthorhombic 

space group (Pna21) with four molecules in the asymmetric unit cell.   The Si(1)-

C(1)-C(2)-C(3) chain is essentially linear, in both the protected and deprotected 

ligands, with any slight bending due to the crystal packing forces.   The N centre in 

both 72 and 73 is approximately trigonal planar, with the tolyl groups pushed back 

slightly causing the C(9)-N(1)-C(16) angle to decrease from the ideal trigonal planar 

geometry (120 ) to 117.13(10)  and 117.64(12)  for 72 and 73 respectively.   To 

be perfectly sp
2
 hybridised, the angles between the three N-C bonds should be 120 , 

however, as can be seen in Table 56, even though all three Aryl-N-Aryl bond angles 

sum to 360 , there is some deviation from the perfect sp
2
 arrangement. The planar 

nature of the N centre in triphenylamines is in contrast to the pyramidal nature 

associated with alkyl amines, and can be attributed to a degree of delocalisation 

between the nitrogen centre and the aryl rings, and steric constraints.    

 

Due to the same steric constraints around the sp
2
 hybridised nitrogen the three 

aromatic rings have to twist out of the plane. 
389, 390

   As both 72 and 73 can be 

considered as triaryl amines of general form NAr(Ar‟)2, instead of having the same 

or equivalent pitch for each of the aromatic rings, two angles are observed, one 

corresponding to the Ar substituent and another set of pitches for the two Ar‟ 

substituents, which are the same or equivalent.   [Pitch being the angle between the 

plane of the respective aromatic ring and the C(6)-C(9)-C(16) plane; Figure 83].   

This is the case with the TMS protected alkyne 72, where the pitch for the aromatic 

ring with the alkyne moiety attached to it is ~22 , and the pitch for the two tolyl 

rings are 50  and 51 .   In the deprotected form 73, the acetylene substituted 

aromatic ring has a pitch of 25 .  However the two tolyl rings in 73 are not 
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equivalent (N(1)-C(16) bond length 1.4198(19) Å vs N(1)-C(9) 1.4341(19) Å), and 

the pitch of the two rings are 41  and 50  respectively.  This increase in pitch is 

brought about by the increased packing in the solid state, and hence elongation of 

the N(1)-C(9) bond follows as the bond has more single bond character with less 

N(p)-aryl(π*) overlap. 

 

 

Figure 83 Schematic diagram of the angle between the plane of the phenyl ring (bold 

black line) and the plane of the three ipso C atoms [C(6)-C(9)-C(16)]. 

 

 

Figure 84 The molecular structure of the trimethylsilylated ligand 72. 
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Figure 85 The molecular structure of the terminal alkyne ligand 73. 
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Table 55 Crystal data and experimental parameters of aryl amine ligands 72 and 73, 

with crystal data of NPh3. 

 72 73 NPh3
391 

Empirical Formula C25H27NSi C22H19N C18H15N 

Formula Weight 369.57 297.39 245.2 

Temperature (K) 120(2) 110(2) 297 

Crystal System Monoclinic Orthorhombic Monoclinic 

Space Group P 1 21/c 1 Pna21 Bb 

a (Å) 12.3975(2) 10.1931(3) 15.655(5) 

b (Å) 16.3669(3) 16.2072(5) 22.257(7) 

c (Å) 10.8092(2) 10.3679(3) 15.807(5) 

α () 90.00 90.003(3) 90.00 

β () 98.325(10) 90.014(3) 90.00 

γ () 90.00 89.997(3) 91.04(2) 

Volume (Å3) 2170.17(7) 1712.79(9) 5507(3) 

Z 4 4 16 

ρcalc (mg/mm3) 1.131 1.153 1.18 

Abs Coeff (mm-1) 0.117 0.505 0.64 

F (000) 792 632 2080 

Crystal Size 0.32  0.25  0.22 0.4  0.3  0.08 0.32  0.39  0.50 

θ Range for Data 

Collection 

1.66 – 29.50  5.03 – 59.95  20 – 30   

Index Ranges -17 ≤ h ≤ 17,  

-22 ≤ k ≤ 22,  

-14 ≤ l ≤ 14 

-11 ≤ h ≤ 11,  

-18 ≤ k ≤ 18,  

-11 ≤ l ≤ 10 

-16 ≤ h ≤ 16,  

0 ≤ k ≤ 26,  

0 ≤ l ≤ 16 

Reflections Collected 29442 15035 3582 

Independent Reflections 6040 2445  

Data / Parameters 6040/352 2445/284  

Goodness-Of-Fit on F2 1.055 1.105  

Final R indexes 

[I>2ζ>(I)] 

R1 = 0.0419, wR2 = 

0.1065 

R1 = 0.0269, wR2 = 

0.0732 

 

Final R indexes [all 

data] 

R1 = 0.0685, wR2 = 

0.1164 

R1 = 0.0277, wR2 = 

0.0738 

 

Largest Diff Peak/Hole 0.322/-0.223 0.117/-0.110  
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The molecules of 72 and 73, illustrated in Figure 84 and Figure 85 to show the atom 

labelling scheme.   Selected bond lengths and angles are summarised in Table 56.   

 

Table 56 Selected bond lengths (Å) and angles (º) for NPh3 , 72, 73 and 78. 

 NPh3 
391 72 73 78 

N(1) – C(6) 1.416(7) 

1.418(7) 

1.423(6) 

1.4055(16) 1.405(2) 1.435(3) 

N(1) – C(9) 1.4294(16) 1.4341(19) 1.420(3) 

N(1) – C(16) 1.4312(16) 1.4198(19) 1.421(3) 

C(1) – C(2) - 1.2050(18) 1.175(2) 1.218(3) 

C(1) – R - 1.8372(13) 1.070 1.900(2) 

     

C(6) – N(1) – C(9) 118.6(4), 

120.0(4), 

120.4(4) 

120.60(11) 120.09(11) 119.32(17) 

C(6) – N(1) – C(16) 120.75(11) 122.17(11) 118.49(18) 

C(9) – N(1) – C(16) 117.13(10) 117.64(12) 121.83(18) 

Sum of C-N-C 359.0(12) 358.48(32) 359.90(34) 359.64(53) 

Pitch A 

44 (mean) 

22 25 46 

Pitch B 50 50 30 

Pitch C 50 41 32 

 

 

6.2.2 Molecular Structure Analyses of Fe(C≡CC6H4NTol2)(dppe)Cp and 

Ru(C≡CC6H4NTol2)(dppe)Cp* 

 

Complex 78 crystallises in the orthorhombic crystal system (space group P 212121), 

with four molecules in the asymmetric unit cell (Table 57).   Whereas the 

monoclinic and triclinic crystal systems are more prevalent for both neutral and 

cationic piano-stool ζ-organoiron complexes 
227, 392, 393

, the orthorhombic crystal 

system has been obtained only a handful of times, in such complexes as 

[Fe(C≡CAnth-CN-4)(dppe)Cp*] 
394

 and [Fe(C≡CPh)(dppe)Cp*]
+
. 

227
   The structure 

of the iron acetylide complex illustrates the usual piano stool geometry around the 

Fe, of related iron acetylide complexes.   On the whole, the bond distances and 

angles are typical for piano-stool ζ-organoiron(II)  complexes. 
9
   The bending of the 
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Fe–C(1)-C(2)-C(3) chain from linear  (158 ) is due to crystal packing constraints 

and a number of C-H … π, interactions between the tolyl rings on the ligand and the 

diphenyl phosphine (dppe) and C-H … C-H interactions between tolyl rings of 

neighbouring complex molecules.   This bending masks the straightening effect on 

the C(1)-C(2)-C(3) axis by electron donating substituents, previously observed by 

Lapinte in similar iron acetylide complexes. 
392

   The phenyl ring is twisted, so that 

the phenyl plane is coplanar with one of the Fe-P bonds, which is typical of neutral 

complexes of the form Fe(C≡CR)(dppe)Cp*. 
118, 393

   The Fe-C(1) [1.900(2) Å], the 

C(1)-C(2) [1.218(3) Å] and C(2)-C(3) [1.442(3) Å] bond lengths in 78 (Table 58) 

are comparable to other iron piano-stool complexes of the form Fe(C≡CC6H4R-

4)(dppe)Cp*; ([Fe-C(1); 1.876(3) – 1.916(4) Å], [C(1) – C(2); 1.210(4) – 1.222(5) 

Å] and [C(2) – C(3); 1.419(4) – 1.440(5) Å]). 
118, 392

   The Fe-P bonds are a little 

shorter in 78 [2.1658(7), 2.1705(6) Å] compared with [2.1843(10), 2.1875(10) Å] 

that in 80 (Chart 18) and other related Fe(dppe)Cp* acetylide complexes, 
118, 392, 394

 

but this is more likely due to increased steric bulk of the Cp* ligand causing an 

elongation of the Fe-P bonds than any electronic influence.   The Fe-Cpcentroid in 78 

is also shorter (1.710 Å) than in 80 [1.745 Å], this again is likely due to the 

differences in steric properties of the Cp and Cp* ligands than any underlying 

electronic effect.  

 

 

Chart 18 The crystallographically characterised complexes 80 and 81, closely related 

to 77 and 78. 
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Figure 86 Plot of 78.  Hydrogen atoms have been omitted for clarity. 

 

 

Figure 87 Plot of 77.  Hydrogen atoms have been omitted for clarity. 

 

As with the ligands, the amine substituent part of the iron complex also has a 

propeller arrangment of the aromatic rings.   The pitch of the phenyl ring attached to 

the metal fragment, to the C(6)-C(9)-C16) plane, has increased to 46 , whereas the 

pitch of the two tolyl rings are 30  and 32 .   The C(6)-N(1) bond is comparable 

longer than in both the TMS protected- and deprotected- ligand (1.435(3) Å vs 

1.4055(16) Å). 
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In comparison the N(1)-C(9) and N(1)-C(16) bond lengths in 72 and 78 are 

indistinguishable within the experimental error [N(1)-C(9)  1.4294(16) and 1.420(3) 

Å; N(1)-C(16) 1.4312(16) and 1.421(3) Å for 72 and 78 respectively].   The C(6)-

N(1) bond distance, in 78 is slightly longer than usually observed for sp
2
-hybridised 

amino substituents (1.435(3) Å  vs 1.394 Å). 
395
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Table 57 Crystal data and experimental parameters of 78 and 77, with crystal data of 

related complexes 80 
118

 and 81 
224

. 

 78 80 b 77 81 

Empirical Formula C53H47NP2Fe C44H45NP2Fe C58H57NP2Ru 

0.5 CH2Cl2 

C44H45NP2Ru 

Formula Weight 815.71 705.60 973.52 750.82 

Temperature (K) 120(2) 293(2) 120(2) 293(2) 

Crystal System Orthorhombic Monoclinic Monoclinic Monoclinic 

Space Group P 21 21 21 P21/c P21/c P21/c 

a (Å) 12.0416(5) 15.4172(4) 13.7897(6) 15.602(5) 

b (Å) 16.2740(7) 11.0980(3) 33.1250(10) 11.132(5) 

c (Å) 21.2001(9) 22.3218(7) 10.9205(4) 22.277(5) 

α () 90.000(10) 90.00 90.00 90.00 

β () 90.000(10) 107.535(1) 103.93(2) 108.800(5) 

γ () 90.000(10) 90.00 90.00 90.00 

Volume (Å3) 4154.5(3) 3641.8(2) 4841.5(3) 3663(2) 

Z 4 4 4 4 

ρcalc (mg/mm3) 1.304 1.287 1.336 1.362 

Abs Coeff (mm-1) 0.478 0.534 0.485 0.548 

F (000) 1712 1488 2028 1560 

Crystal Size 0.3  0.2  0.1 0.35  0.22  

0.20 

0.24  0.11  

0.05 

0.19  0.16  

0.07 

θ Range for Data 

Collection 

1.92 – 29.50  2.00 – 27.53  2.02 – 28.50  2.65 – 27.54  

Index Ranges -16 ≤ h ≤ 16, 

-21 ≤ k ≤ 22,  

-29 ≤ l ≤ 29 

0 ≤ h ≤ 20,  

0 ≤ k ≤ 14,  

-28 ≤ l ≤ 27 

-16 ≤ h ≤ 18,  

-44 ≤ k ≤ 44,  

-14 ≤ l ≤ 14 

-20 ≤ h ≤ 20,  

-12 ≤ k ≤ 14,  

-26 ≤ l ≤ 28 

Reflections Collected 38868 8371 36417 38712 

Independent 

Reflections 

11509 8371 12088 8338 

Data / Parameters 11509/514 8371/440 12088/579 8338/434 

Goodness-Of-Fit on 

F2 

1.045 1.005 1.037 1.035 

Final R indexes 

[I>2ζ>(I)] 

R1 = 0.0429, 

wR2 = 0.0859 

R1 = 0.055, 

wR2 = 0.140 

R1 = 0.0498, 

wR2 = 0.1111 

R1 = 0.039, 

wR2 = 0.084 

Final R indexes [all 

data] 

R1 = 0.0622, 

wR2 = 0.0925 

R1 = 0.1175, 

wR2 = 0.1730 

R1 = 0.0859, 

wR2 = 0.1289 

R1 = 0.0733, 

wR2 = 0.0956 

Largest Diff 

Peak/Hole 

0.409/-0.314 0.618/-0.368 1.152/-1.422 0.441/-0.400 
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Table 58 Selected bond lengths (Å) and angles (º) for 72, 78, 80, 77 and 81. 

 72 78 80 77 81 

M – Cpcentroid - 1.710 1.745a 1.895 1.901 

M – P(1) - 2.1658(7) 2.1843(10) 2.2531(9) 2.2622(11) 

M – P(2) - 2.1704(6) 2.1875(10) 2.2568(9) 2.2625(11) 

M – C(1) - 1.900(2) 1.916(4) 2.007(3) 2.026(3) 

TMS – C(1) 1.8372(13) - - - - 

C(1) – C(2) 1.2050(18) 1.218(3) 1.216(5) 1.206(4) 1.202(4) 

C(2) – C(3) 1.4377(17) 1.442(3) 1.439(5) 1.436(4) 1.444(4) 

C(6) – N(1) 1.4055(16) 1.435(3) 1.406(5) 1.439(4) 1.404(4) 

N(1) – C(9) 1.4294(16) 1.420(3) - 1.409(4) - 

N(1) – C(16) 1.4312(16) 1.421(3) - 1.427(4) - 

      

P(1) – M – P(2) - 86.58(3) 85.87(4) 82.99(3) 83.12(3) 

C(9) – N(1) – 

C(16) 
117.13(10) 121.83(18) - 122.4(3) 

- 

P1-Fe-C3-C4 - -2.8 -118.1 -61.5 -25.5 

a Cp* instead of Cp 

 

Complex 77 crystallises in the monoclinic crystal system (space group P 21/c) with 

four molecules in the asymmetric unit cell (Table 57).   The structure of the 

ruthenium acetylide complex illustrates the usual piano stool geometry around the 

Ru, of related ruthenium acetylide complexes. 
226, 396-400

   One obvious difference in 

the structure of 77 and related Ru(C≡CC6H4R-4)(dppe)Cp* compared to the Cp 

analogues in the orientation of the aryl ring, with the plane of the ring in roughly 

perpendicular to the Ru-Cp*centroid, whereas with the Cp analogous complexes, the 

aryl plane is close to parallel. 
398

   Compared to complex 78, the Ru-C(1)-C(2)-C(3) 

chain is essentially linear, as is the case in the closely related aniline complex 

Ru(C≡CC6H4NH2)(dppe)Cp* 81. 
224

   The Ru – C(1) [2.007(3) Å], C(1)-C(2) 

[1.206(4) Å] and C(2)-C(3) [1.436(4) Å] (Table 58) bond lengths in 77 are 

comparable to other ruthenium piano-stool complexes of the form Ru(C≡CC6H4R-4) 

(dppe)Cp*; ([Ru-C(1); 2.004(6) – 2.026(3) Å], [C(1) – C(2); 1.195(7) – 1.225(8) Å] 



 

242 

 

and [C(2) – C(3); 1.431(5) – 1.445(4) Å]). 
224

   The P(1)-M-P(2) bond angle in 77 

are  understandably similar to that of 81, (82.99(3) ° vs 83.12(3) °), 
224

 but, not 

surprisingly, smaller that the same angle in the 78 complex (86.58 (3) °). 

 

The amine substituent part of the ruthenium complex also has a propeller 

arrangement of the aromatic rings. 
389, 390

   The pitch of the phenyl ring attached to 

the metal fragment to the C(6)-C(9)-C(16) plane has increased to 56 , whereas the 

pitch of the two tolyl rings are 49  and 24 .   The N centre in 77 is planar, the 

angles between the aryl substituents on the amine adding to 360 °.   Again the C(6)-

N(1) bond is longer in the metallic complex 77 than in both the TMS protected 72 

and deprotected 73 ligand (1.439(4) Å vs 1.4055(16) Å and 1.405(2) Å). 

 

Within the asymmetric unit cell, the four molecules (Z = 4), are paired, with the 

organic fragments of the two paired molecules forming a cross when viewing the 

molecular pair side on.   These pairs form lines of paired molecules along the c-axis, 

within which are number of C-H … π interactions between the tolyl rings on the 

ligand and the diphenyl phosphine (dppe), the phenyl ring on the amine substituent 

and the tolyl rings on a paired molecule.   These crossed molecular stacks along the 

c-axis form layers of molecular stacks along the b-axis, with C-H … π interactions 

between the tolyl rings of one molecule and the aromatic Cp* of a molecule the 

layer below.   There are also interactions between the dppe phenyl rings and the 

CH2Cl2 molecules within the crystal. 

 

There are two other crystallographically studied mono-metallic ethynyl 

diphenylamine complexes, 62 and 63.   Both of these complexes show the same 

amine propeller arrangement with the two peripheral phenyl rings at a greater pitch 

to the plane of the carbon atoms adjacent to the nitrogen atom, than the phenyl ring 

attached to the metal.   Table 59 shows that the M-C(1), C(1)-C(2), C(2)-C(3), and 

C(3)-N(1) bonds of both complexes 62 and 63 are comparative to that of the 

crystallographically determined complexes here. (77 and 78). 
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Table 59 Selected bond lengths (Å) of related ethynylphenyldiphenylamine 

complexes, 62 and 63. 

 62 369 63 371 

M – C(1) 1.977(9) 2.008(4) 

C(1) – C(2) 1.18(1) 1.171(6) 

C(2) – C(3) 1.44(1) 1.476(6) 

C(6) – N(1) 1.41(1) 1.399(6) 

N(1) – C(9) 1.41(1) 1.442(7) 

N(1) – C(16) 1.452(8) 1.432(6) 

 

 

6.2.3 Cyclic Voltammetry 

 

Compound 73 undergoes one essentially chemically reversible, one-electron 

oxidation events at potential E1 = +1.06 V, giving rise to [73]
+
.   The iron complex 

78 undergoes two one-electron oxidation events at potentials E1 (-0.09 V) and E2 

(0.62 V), resulting in [78]
+
 and [78]

2+
 (Table 60).   The redox couples of the two 

oxidation events in 78 are very similar to those of Fe(C≡CC6H4X)(dppe)Cp*, where 

X = NH2 and NMe2 (E1 = -0.25 V, -0.25V and E2 = 0.68 V, 0.53V, for X = NH2 and 

NMe2 respectively). 
392

   The first oxidation wave is assigned to the Fe(II)/Fe(III) 

oxidation, with the second occurring largely on the amine substituent. This 

assignment is supported by spectroelectrochemical and DFT studies described 

below. 

 

Table 60 Oxidation potentials for complexes 73 and 78. 
a
 

 E1 / V ΔEp / V Ic/Ia / V E2 / V ΔEp / V Ic/Ia / V 

73 1.06 0.12 0.9 - - - 

78 
b -0.09 0.10 1 0.62 0.115 0.9 

a Data recorded from solutions in CH2Cl2 containing 0.1 M [NBu4]BF4 supporting 

electrolyte and referenced against decamethylferrocene/decamethylferrocenium 

Fc*H/Fc*H+ couple at -0.07 V vs SCE scan rate 100 mV/s. 
b Fc/FcH used as the internal reference. 
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6.2.4 IR Spectroelectrochemical Studies 

 

The chemical stability of [HC≡CC6H4NTol2]
+
 [73]

+
 under the conditions of cyclic 

voltammetry experiments prompted more thorough spectroscopic characterisation of 

the ligands, complexes and the various products derived from one-electron oxidation 

by spectroelectrochemical means.   However as the timescale of the IR and UV 

spectroelectrochemical redox process is significantly longer than that of the 

voltammetric study, the oxidation of the (presumably) more stable trimethylsilyl 

protected analogue of 73, 72 was monitored in both IR and UV-Vis-NIR 

spectroscopic regions. For this study and others in this Chapter, described in more 

detail below, an air-tight spectroelectrochemical cell fitted with CaF2 windows to 

provide transparency across the spectroscopic region of interest was employed. 
239

 

 

On oxidation of 72 the intensity of the ν(C≡C) band at 2150 cm
-1

 decreased, being 

replaced by a new absorption at ~2110 cm
-1

, with new bands in the aromatic ν(CC) 

region also observed.   On back-reduction the original spectrum was fully recovered, 

confirming the assignment of the new bands to [72]
+
.   The shift of the ν(C≡C) band 

by 40 cm
-1

 upon oxidation indicates a depopulation of an orbital with a small 

amount of C≡C bonding character. 

 

In the neutral oxidation state 78 has a strong ν(C≡C) band at 2060 cm
-1

, which is 

characteristic of the 18-electron iron acetylide, and is comparable to other iron aryl 

acetylides. 
392, 401

   On oxidation to [78]
+
 the intensity of the characteristic ν(C≡C) 

band decreased, being replaced by a new, more intense band at 1962 cm
-1

 (Table 61, 

Figure 88).   In addition, new bands in the aromatic ν(CC) region were also 

observed.   On back-reduction the original spectrum was fully recovered, which 

confirmed the assignment of the new bands to [78]
+
, and not to some product of an 

electro-chemical (EC) process.   The position and shift of the new ν(C≡C) band of 

[78]
+
, is in agreement with other mono-oxidised iron aryl acetylides with electron 

donor groups para to the FeC≡C fragment. 
392, 401

   As the complex features two 

redox active groups (the metal fragment and the triaryl amine), a second one-

electron oxidation can take place.   The intensity of the ν(C≡C) band of the [78]
+
 

species decreased on oxidation with a small new band appearing at 1860 cm
-1

, as 

well as new bands in the aromatic ν(CC) region.   The original spectrum of [78]
+
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was fully recovered on back-oxidation, confirming the assignment of the new bands 

to [78]
2+

.   The shifts of the ν(C≡C) band by 98 cm
-1

 and 102 cm
-1

 upon oxidation 

(neutral to +1 and +1 to +2 respectively) indicates the appreciable depopulation of 

an orbital with C≡C bonding character, in both the neutral and mono-oxidised states.   

There is also an electronic absorption band rising into the NIR region in the 

spectrum of [78]
+
, which fully collapses on oxidation to [78]

2+
. This absorption band 

is either a forbidden dd band or the tail of an NIR band with LMCT character. 

 

Table 61 IR data (cm
-1

) for compounds 78 and 80 and the corresponding cations. 

 Neutral Cation Dication 

 ν(C≡C) ν(Aryl) ν(C≡C) ν(Aryl) ν(C≡C) ν(Aryl) 

78 a 2060 1606 1962 1578 1860 1608 

80 
b 2060 - 1988 (sh), 

1962 

- - - 

a data from CH2Cl2 solutions containing 0.1 M NBu4BF4 supporting electrolyte at ambient 

temperature 
b data from Nujol mull of a solid state chemically oxidised  
c complex [80][PF6] obtained by chemically oxidisation of 80 using [FcH][PF6] 

 

 

Figure 88 IR spectrum of [78]
n+

 (n = 0, 1, 2), in CH2Cl2 0.1 M NBu4BF4. 
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Since 78 behaved well under spectroelectrochemical conditions, spectroscopic 

characterisation of 79 and of the products derived from oxidation by 

spectroelectrochemical means, was also undertaken.. 

 

Like the mono-metallated complex 78, in the neutral oxidation state 79 has a strong 

ν(C≡C) band at 2060 cm
-1

 (Table 62, Figure 89) which is also comparable to the tris-

Fe(dppe)Cp*-1,3,5-benzene complex 13 (2050 cm
-1

). 
293

   Upon the first oxidation 

the intensity of the characteristic ν(C≡C) band decreased about a third, with a slight 

shift to lower wavenumber, and a new ν(C≡C) band appeared at 1962 cm
-1

.   Akin to 

[78]
n+

, new bands in the aromatic ν(CC) region were also observed.   Oxidation from 

[79]
+
 to [79]

2+
, resulted in another decrease in the intensity of the ν(C≡C) band 

around 2060 cm
-1

 and the ν(C≡C) band at 1960 cm
-1

 increased in intensity.   On 

oxidation to the homovalent complex [79]
3+

, the band at 2060 cm
-1

 disappeared, 

with only one ν(C≡C) band in the spectrum (1962 cm
-1

).   The IR spectrum of [79]
3+

 

is similar to that of [78]
+
. All told, the IR spectroelectrochemical results are 

consistent with sequential iron centred oxidations. The first three oxidations are all 

fully reversible, with the spectrum of the preceding oxidation state being recovered 

after back-reduction.   As with 78, oxidation can also occur on the triaryl amine 

centre in 79, oxidation from  [79]
3+

 to [79]
4+

 resulted in the single ν(C≡C) band (for 

the tris-oxidised species) at 1962 cm
-1

 disappearing with a small ν(C≡C) band at 

1860 cm
-1

 appearing, similar to the IR spectrum of [78]
2+

.    
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Figure 89 IR spectrum of 79, [79]
+
, [79]

2+
 and [79]

3+
, in CH2Cl2 0.1 M NBu4BF4. 

 

Table 62 IR data (cm
-1

) for compound 79 and the corresponding cations 
a
 

 Neutral Cation Dication Trication 

 ν(C≡C) ν(Aryl) ν(C≡C) ν(Aryl) ν(C≡C) ν(Aryl) ν(C≡C) ν(Aryl) 

79 2060 1594 2056, 

1959b 

1595, 

1575 

2056, 

1961b 

1595, 

1575 

1962 1632, 

1575 

a
 data from CH2Cl2 solutions containing 0.1 M NBu4BF4 supporting electrolyte at ambient 

temperature 
b
 ν(C≡C) of the oxidised ethynyl arm 

 

 

6.2.5 UV-Vis Spectroelectrochemical Studies  

 

The neutral and monocation form of [72], [78] and [79], were further characterised 

by UV-vis-NIR spectroelectrochemical methods.   The spectroscopic data are 

summarised in Table 63.   TD-DFT calculations that are summarised below support 

the conclusions drawn from the analysis of these data. 
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Table 63 UV-vis-NIR spectroscopic data for [72]
x+

, [78]
y+

 and [79]
z+

 (x = 0, 1; y = 

0, 1, 2; z = 0, 1, 2, 3). 

Complex Wavenumber / 

cm
-1

 [ε / M
-1

cm
-1

] 

Wavenumber / 

cm-1 [f] 

Orbitals Character 

72 29500 [27000] 29000 [0.731] HOMO → LUMO π - π* 

 33000 [20000] 32500 [0.252] HOMO → LUMO+2 π - π* 

[72]
+
 11000 [sh, 6000] - - - 

 14800 [16200] 12670 [0.338] β-HOSO → β-LUSO π - π* 

 24000 [10000] 26150 [0.280] α-HOSO → α-LUSO 

β-HOSO → β-LUSO+1 

π - π* 

π - π* 

 27000 [13900] 29500 [0.086] α-HOSO → α-LUSO+1 

α-HOSO → α-LUSO+2 

π - π* 

π - π* 

 36800 [14000] 37700 [0.144] α-HOSO-1 → α-LUSO 

β-HOSO → β-LUSO+1 

π - π* 

π - π* 

78 28900 [31000] 28460 [0.194] HOMO → LUMO+6 

HOMO-1 → LUMO+6 

MLCT 

MLCT 

 32300 [25500] 37000 [0.097] HOMO → LUMO+9 Fe – dppe (π - π*) 

[78]
+
 10500 [21800] 10550 [0.380] β-HOSO → β-LUSO LMCT 

 22730 [14200] 24000 [0.122] a-HOSO → α-LUSO+4 C2PhNTol π – C2Ph π* 

 33300 [24500] 31550 [0.118] α-HOSO → α-LUSO+6 C2PhNTol2 – Fe-dppe 

(π - π*) 

[78]
2+

 8800 [12700] - -  

 12900 [sh, 7200] - -  

 16600 [10900] - -  

 22100 [11700] - -  

 35000 [sh, 24000] - -  

79 26900 [38200] 26200 [0.903] HOMO → LUMO+1 MLCT 

[79]
+
 6640 [sh, 4000] - - IVCT 

 10600 [9100] - - LMCT 

 21900 [sh, 11900] - - π - π* 

 29000 [28700] - - π - π* 

[79]
2+

 6640 [3000] - - IVCT 

 10650 [14100] 16000 [0.258]  β-HOSO → β-LUSO * LMCT 

 21800 [13500] - - π - π* 

 29200 [28200] - - π - π* 

[79]
3+

 6640 [1000] - - IVCT 

 10700 [18500] - - LMCT 

 22400 [13900] - - π - π* 

 29600 [28300] - - π - π* 

* TD DFT Calculation run using MPW1K/6-31G* 

 

The main absorption band in 72 (Figure 90) at 31000 cm
-1

 is split into two 

discernable bands, one at 29500 cm
-1

 and one at 33000 cm
-1

 with the lower 

wavenumber component being the more intense of the two.   This splitting of the 

main absorption band in neutral amine systems has been seen before, in asymmetric 
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tri(p-aryl)amines. 
402

   With neutral tri(p-aryl)amines of C3 symmetry the main 

absorption band can be explained by one intense HOMO → LUMO (S0 → S1) 

excitation into a degenerate (E) S1 state. 
402

   However breaking the C3 symmetry as 

in 72, results in the splitting of the degenerate LUMO orbitals. 
402

   Hence two 

excitations are seen, one being the HOMO → LUMO and the other HOMO → 

LUMO+1 or higher.   Upon oxidation to the cation species [72]
+
, the absorption at 

~31000 cm
-1

, is replaced by two medium intensity absorption bands, one around 

27000 cm
-1

 and the second a much sharper absorption at 14800 cm
-1

.   There is also 

a broad shoulder at ~11000 cm
-1

.   This sharp absorption, seen before in asymmetric 

cationic tri(p-aryl)amines between 13000 cm
-1

 and 15000 cm
-1

, with electron 

withdrawing groups such as chloro and methoxy substituents shifting the absorption 

maximum to lower wavenumbers, caused by the extension of the π-system. 
403

   This 

absorption has been shown to be a HOMO → SOMO, being π – π* in character. 
402

 

 

 

Figure 90 UV-vis-NIR spectra of [72]
n+

 (n = 0, 1), CH2Cl2, 0.1 M NBu4BF4. 

 

The UV-vis-NIR spectrum of the neutral species 78 (Figure 91) has two absorption 

bands, the band above 36000 cm
-1

, can safely attributed to π – π* phosphine ligand 

centred transitions, with the broader, less intense transition, which has two 

discernable maxima at roughly 32300 and 28900 cm
-1

, with the maxima at lower 
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wavenumber being the more intense of the two.   This spectra of 78 resembles 

spectra of related Fe(II) acetylides previously reported. 
404, 405

   The broader, lower 

energy transition, which is the origin of the orange colour of the Fe(II) acetylides, 
392

 

has been attributed as MLCT in character.   The position of the MLCT band in 

Fe(II) acetylide has been shown to shift to higher energy with increasing electron 

donating nature of the para- substituent. 
392

   Even with a less electron rich metal 

centre (Fe(dppe)Cp), the position of the MLCT maxima in 78 is comparable to that 

of 80 
392

 with the more electron rich [FeCp*] centre. (λmax / nm: 78 310 and 346; 80 

322). 

 

Upon oxidation to the cation species [78]
+
, the absorption band at about 30000 cm

-1
 

is replaced by several absorptions that have been seen in related Fe(II) acetylides. 

221, 319, 406
   Two bands appear at 22720 cm

-1
 and 10530 cm

-1
, which the lower energy 

band has previously been shown to shift bathochromically and grow in intensity as 

the para- substituent becomes more and more electron donating (λmax / cm
-1

 ; 

Fe(C≡CC6H4R-4)(dppe)Cp*: R = NO2 15400; H 15100; NH2 12680; NMe2 11185). 

227
   This shift indicates the band at 10530 cm

-1
 has LMCT in character. 

 

In the NIR region of the cation [78]
+
 there is a broad absorption band from 10000 

cm
-1

 to 4000 cm
-1

, with an intensity of roughly 1 × 10
3
 M

-1
cm

-1
.   In the related 

[Fe(C≡CC6H4R-4)dppe)Cp*]
+
 complexes, an absorption band was observed in the 

NIR region that was sensitive to the electronic nature of the para- substituent, being 

hypsochromically shifted with increased electron donating property.   The NIR 

absorption for the [80]
+
 complex is observed at 6200 cm

-1
. 

227
   This weak NIR 

absorption has been described as a forbidden metal centred ligand field (LF) 

electronic transition, as similar absorptions are also seen in [FeCl(dppe)Cp*]
+
 and 

[FeH(dppe)Cp*]
+
, which lack the acetylide ligand. 

227
   

 

Upon oxidation to the dication [78]
2+

, the absorption peaks associated with the 

cation [78]
+
 disappear, with new signatures at 22100 cm

-1
, 16600 cm

-1
,  12900 cm

-1
 

and 8800 cm
-1

 appearing (Figure 91).   If the transition at 10500 cm
-1

 in [78]
+
 is 

LMCT, the new absorption at 8800 cm
-1

 cannot be LMCT in character.   The low 

intensity absorptions in the NIR region are shown in Figure 92. 
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Figure 91 UV-vis-NIR spectra of [78]
n+

 (n = 0, 1, 2), CH2Cl2, 0.1 M NBu4BF4 

 

 

Figure 92 The deconvolution of the lower energy region of the electronic absorption 

spectrum of [78]
2+

 into Gaussian components.   The incomplete oxidation before 

decomposition of the sample is evidenced by the residual LMCT absorption at 

10530 cm
-1

. 
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The UV-vis-NIR spectrum of the neutral species 79 (Figure 93), which is very 

similar to the UV-vis-NIR spectrum of 78, also has two absorption bands, one band 

above 36000 cm
-1

, and one at 26900 cm
-1

, which like the mono iron complex is 

assigned to be MLCT in character.   Upon oxidation to the monocation [79]
+
, the 

absorption band at 26900 cm
-1

, shifts to higher wavenumbers and decreases in 

intensity.   Two bands in similar regions to the [78]
+
 also grow in, 21900 cm

-1
 and 

10600 cm
-1

 (compared to 22730 cm
-1

 and 10500 cm
-1

 [78]
+
).   Further oxidation of 

the monocation [79]
+
 through the dication [79]

2+
 to the trication [79]

3+
, leads to the 

absorption band at 10600 cm
-1

, growing in intensity, where it reaches a maximum at 

[79]
3+

 (ε ~ 20000 M
-1

cm
-1

), the two bands at 29600 cm
-1

 and 22400 cm
-1

 remain at 

the same wavenumber and intensity, but with a more distinct absorption profile.   

Unsurprisingly the UV-vis-NIR spectra of [79]
3+

, is very similar to the mono-

oxidised [78]
+
, with both spectra showing three very similar relative intensities 

absorption bands; one at ~11000 cm
-1

, one at ~21000 cm
-1

 and one ~ 33000 cm
-1

.   

The band at 11000 cm
-1

 in [79]
+/2+/3+

 is assigned as LMCT in character, the same as 

in [78]
+
. 

 

In the NIR region, below 10000 cm
-1

, there is a reasonably sized shoulder absorption 

band (ε ~ 4000 M
-1

cm
-1

), that tails off into the IR region.   This band is grows in 

intensity on oxidation from the neutral species 79 to the cationic [79]
+
.   On 

oxidation to [79]
2+

 and further, this NIR band decreases in intensity, until it almost is 

non-existent in the trication [79]
3+

. 

 

It is possible to fit Gaussian profiled bands to the NIR region of the UV-vis-NIR 

spectra of the oxidation of 79 to [79]
3+

.   Figure 94 show the three deconvoluted 

absorption bands and the summed absorption of the lower energy region of the 

spectra of [79]
n+

 (n = 1, 2, 3).   Within each oxidation state these NIR bands all have 

similar intensities ([78]
+
  ε ~2500 M

-1
cm

-1
) , with the greatest intensities in the mono 

oxidised cation [78]
+
, steadily decreasing to ε ~200 M

-1
cm

-1
 for the spectra of the 

trication [79]
3+

.   Table 64 shows the position and intensities of the LMCT 

absorption band and the three NIR bands for [79]
+/2+/3+

. 
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Figure 93 UV-vis-NIR spectra of [79]
n+

 (n = 0, 1, 2, 3), CH2Cl2, 0.1 M NBu4BF4. 
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Figure 94 Gaussian Fitting of [79]

n+
 (n = 1 (top), = 2 (middle), = 3 (bottom)). 
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Table 64 Position of LMCT and NIR bands from a Gaussian fitting of [79]
n+

 (n = 1, 

2, 3).   Intensities are in parentheses (ε / M
-1

cm
-1

). 

 Assignment [79]+ [79]2+ [79]3+ 

Gauss 1 LMCT 10520 (9100) 10520 (14400) 10580 (18800) 

Gauss 2 IVCT3 8450 (2700) 8400 (2150) 8400 (1050) 

Gauss 3 IVCT2 7000 (2500) 7000 (2000) 7000 (750) 

Gauss 4 IVCT1 5250 (2100) 5200 (1250) 5150 (450) 

 

Multiple low energy transitions have been noted before in d
5
/d

6
 mixed valence 

compounds.   In d
5
/d

6
 mixed valence compounds it has been noted that up to three 

IVCT transitions can occur in the NIR region.   However these normally only gain 

appreciable intensity in heavy metal complexes in which spin orbit coupling serves 

to help break the selection rules.   From the experimental data it can clearly be seen 

that the three NIR transitions in the spectra of 78 and 79 are associated with the 

intermediate oxidation states and are likely due to the three possible IVCT 

transitions in d
5
/d

6
 mixed valence systems. 

24
 

 

To help to understand the spectroelectrochemical data of the oxidation processes of 

[72]
x+

, [78]
y+

 and [79]
z+

 (x = 0, 1; y = 0, 1, 2; z = 0, 1, 2, 3), and to assist in the 

correct assignment of transitions, a theoretical study at DFT level was undertaken. 

 

 

6.2.6 Electronic Structure Calculations 

 

A theoretical investigation was conducted at the DFT level, initially on the model 

systems, Me3SiC≡CC6H4NTol2 72-H and Fe(C≡CC6H4NPh2)(PPh2(CH2)2PPh2)Cp 

78-H which were used to mimic complexes, 72 and 78, and the corresponding 

radical cations [72]
+
 and [78]

+/2+
 at the B3LYP/6-31G* level which gave good 

agreement with the experimental data. 
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6.2.6.1 Ligand DFT Calculations 

 

There is excellent agreement between the crystallographically determined structure 

of 72 and the DFT optimised geometry determined here (Table 65).   Important 

vibrational frequencies are summarised in Table 66.   Energies and composition of 

the frontier orbitals are summarised in Table 67 for 72-H and [72-H]
+
, whilst 

Scheme 55 illustrates the labelling scheme. 

 

 

Scheme 55 The labelling scheme used in the discussion of the DFT results for the 

ligand 72-H and [72-H]
+
. 

 

At the level of theory employed the optimised geometries for 72-H and [72-H]
+
 are 

very similar, (Table 65), with some small contractions and elongations in specific 

areas of the molecular system.   There is good agreement between the 

crystallographic determined geometry of 72 and the DFT optimised geometry of 72-

H (Table 65).   On oxidation to [72-H]
+
 there is little structural change with some 

small contractions and elongations along the acetylene chain; with the Cα – Cβ bond 

length increasing slightly (1.222 Å vs 1.225 Å), and the Me3Si – Cα bond length also 

increasing slightly (1.837 Å vs 1.866 Å), and the Cβ – C(1) bond length decreasing 

slightly (1.425 Å vs 1.412 Å).   There is little evidence of evolution of quinoidal 

character along the ethynylphenyl in the optimised geometry of [72-H]
+
.   On 

oxidation there is some evidence of pertubance of the aryl amine part of the ligand, 

with a small decrease in the N – C bond lengths (~ 0.013 Å), and a decrease in the 

pitch of the propeller arrangement of the aryl rings (44 ° vs 41 °). 
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Table 65 Optimised bond lengths (Å) and angles () for 72, 72-H and [72-H]
+
. 

 72 72-H [72-H]+ Δ 
a 

Me3Si – Cα 1.8372(13) 1.837 1.866 +0.029 

Me – Si 1.8549(17) 1.891 1.885 -0.006 

Cα – Cβ 1.2050(18) 1.222 1.225 +0.003 

Cβ – C1 1.4377(17) 1.425 1.412 -0.013 

C4 – N 1.4055(16) 1.413 1.400 -0.013 

N – C7 1.4294(16) 1.425 1.419 -0.006 

N – C13 1.4312(16) 1.425 1.419 -0.006 

C1 –C2,6 1.398 1.409 1.418 +0.009 

C2,6– C3,5 1.383 1.388 1.380 -0.008 

C3,5 – C4 1.399 1.408 1.416 +0.008 

     

C4 – N – C7 /  120.6 120.4 120.4 - 

C4 – N – C13  /  120.8 120.4 120.4 - 

C7 – N – C13  /  117.2 119.2 119.2 - 

     

Pitch A 22 35.4 34.1 -1.3 

Pitch B 50 43.9 41.3 -2.6 

Pitch C 51 44.1 41.3 -2.8 

a Δ = [72-H]+ - 72-H 

 

The lack of elongation of the Cα≡Cβ is supported by the small shift in the calculated 

ν(C≡C) frequencies of 72-H (2141 cm
-1

) and [72-H]
+
 (2114 cm

-1
), a shift of ~27 cm

-

1
 (Figure 95, Table 66).   
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Figure 95 DFT Calculated IR spectra of [72-H]
n+

, (n = 0, 1). 

 

Table 66 Experimental and calculated (C≡C) frequencies for [72]
n+

 and [72-H]
n+

 (n 

= 0, 1). 

 72 (72-H) [72]+ ([72-H]+) 

(C≡C) / cm-1 2150 (2141) 2110 (2114) 

 

The lack of elongation of the acetylide C≡C bond in [72-H]
+
 when compared with 

the neutral model system 72-H reflects the very small contribution of the C≡C 

character in the HOMO of 72-H and the β-LUSO of [72-H]
+ 

(Chart 19).  
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Table 67 Energy, occupancy and composition of frontier orbitals in the model complexes 72-H and [72-H]
+
 (B3LYP/6-31G*). 

72-H 

MO 

 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 

(eV) 0.19 0.17 -0.26 -0.37 -0.83 -4.87 -6.24 -6.65 -6.74 -6.85 

Occ 0 0 0 0 0 2 2 2 2 2 

%SiMe3 0 0 0 0 6 1 5 0 1 0 

%Cα 0 0 0 0 14 7 20 0 1 0 

%Cβ 0 0 0 0 6 1 12 0 1 0 

%Ph 68 0 3 31 57 26 29 22 1 29 

%N 0 0 1 0 1 24 2 0 0 0 

%Tol2 32 100 96 71 16 42 32 88 96 71 

 

 
[72-H]+ 

MO 

 102β 102α 101β 101α 100β 100α 99β 99α 98β 98α 97β 97α 96β 96α 

 β- 

[LUSO+3] 

α- 

[LUSO+2] 

β- 

[LUSO+2] 

α- 

[LUSO+1] 

β- 

[LUSO+1] 

α-

LUSO 

β- 

LUSO 

α-

HOSO 

β-

HOSO 

α- 

[HOSO-1] 

β- 

[HOSO-1] 

α- 

[HOSO-2] 

β- 

[HOSO-2] 

α- 

[HOSO-3] 

(eV) -3.65 -3.79 -3.75 -3.85 -4.19 -4.41 -7.24 -8.66 -9.24 -9.56 -9.74 -9.76 -9.89 -10.10 

Occ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

%SiMe3 0 0 0 0 3 3 1 3 10 15 40 42 0 0 

%Cα 0 0 0 0 14 12 8 11 19 16 25 24 0 0 

%Cβ 0 0 0 0 2 3 2 4 18 14 31 30 0 0 

%Ph 3 18 41 30 59 65 26 27 25 16 4 4 4 7 

%N 1 1 0 1 2 1 22 14 2 2 0 0 0 0 

%Tol2 96 82 59 70 20 16 40 40 26 36 0 0 95 93 
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          (a)          (e)                   (i) 

          (b)               (f)                   (j) 

          (c)          (g)                   (k) 

          (d)           (h)        (i)                       

Chart 19 The (a) [LUMO+1], (b) LUMO, (c) HOMO, (d) [HOMO-1] of 72-H 

together with (e) α-[LUSO+1], (f) α-LUSO, (g) α-HOSO, (h) α-[HOSO-1], and (i) 

β-[LUSO+2], (j) β- [LUSO+1], (k) β-LUSO, (l) β-HOSO of [72-H]
+
 plotted with 

contour values of ±0.05 (e/bohr
3
)

1/2
. 

 

From Table 68, it can be seen that 78 % of the charge in [72-H]
+
 is localised over 

the triarylamine part of the ligand, with 40 % of that being localised on the nitrogen 

atom. 
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Table 68 Calculated spin densities of [72-H]
+
. 

 SiMe3 Cα Cβ C6H4 N Tol 1 Tol 2 

[72-H]+ 0.007 0.155 -0.06 0.107 0.319 0.176 0.176 

 

 

6.2.6.2 UV-vis Absorptions from the TD DFT Calculations 

 

To aid in the assignment of the electronic transitions observed in the experimental 

work (Section 6.2.5) TD DFT calculations were carried out on the model ligand 

[72]
n+

 (n = 0, 1).   To recap the HOMO of the neutral compound 72-H is based 

largely on the triarylamine fragment (92 %), with a small contribution from the 

acetylide (8 %), with the LUMO being predominately the phenyl π*-system and the 

LUMO+2 being the π*-system on the tolyl rings.   The split absorption, at around 

31000 cm
-1

, in the spectrum of the neutral 72 is made up of HOMO → LUMO and 

HOMO → LUMO+2.   Hence these transitions can be assigned as π-π* in character. 

 

In the experimental studies, oxidation of 72 to [72]
+
 causes the replacement of the π-

π* band at 31000 cm
-1

 in the neutral species with two lower energy, structured 

absorptions bands growing in at 24000 to 29000 cm
-1

 and 13000 to 17000 cm
-1

.   On 

the basis of the TD DFT calculations the lower energy structured band can be 

assigned to be the transitions from the β-HOSO to β-LUSO and the β-HOSO-2 to β-

LUSO, both π-π* in character, with the β-HOSO having similar composition to the 

HOMO.   The structured absorption band at ~27000 cm
-1

 can be assigned to the 

transitions from the α-HOSO to α-LUSO and from the α-HOSO to α-LUSO+2.    

 

 

6.2.6.3 Mono- and Tri-metallated Ligand Complex DFT Calculations 

 

Following the theoretical study on [72-H]
n+

 to model [72]
n+

, the model 

[Fe(C≡CC6H4NPh2)(PPh2(CH2)2PPh2)Cp] (78-H) was used to mimic complex 78, 

and the corresponding radical cations [78]
+/2+

, which was done at the B3LYP/6-
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31G* level, with no symmetry constraints.   There is excellent agreement between 

the crystallographically determined structure of 78 and the DFT optimised geometry 

determined here (Table 69).   Figure 96 illustrates the labelling scheme, used in this 

section. 

 

 

Figure 96 The labelling scheme used in the discussion of the DFT results. 
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Table 69 Bond lengths (Å) and bond angles (º) of crystallographically determined 

and optimised geometry of 78 and 78-H. 

 78 78-H [78-H]+ Γ 

Fe-Cpcentroid 1.710 1.731 1.758 +0.027 

Fe-P1,2 2.1658(7) 
2.213, 

2.206 

2.275, 

2.277 
+0.067 

Fe-Cα 1.900(2) 1.909 1.851 -0.058 

Cα-Cβ 1.218(3) 1.222 1.240 +0.018 

Cβ-C1 1.442(3) 1.422 1.410 -0.012 

C1-C2,6 
1.398(3) 

1.411(3) 
1.399 1.418 +0.019 

C2,6-C3,5 
1.383(3) 

1.391(3) 
1.381 1.382 ~0 

C3,5-C4 
1.389(3) 

1.389(3) 
1.392 1.416 +0.024 

C4-N 1.435(3) 1.427 1.393 -0.034 

N-C7 1.420(3) 1.418 1.433 +0.015 

N-C13 1.421(3) 1.418 1.433 +0.015 

     

P-Fe-P /  86.58(3) 86.9 85.7 -1.2 

C4 – N – C7 /  119.32(17) 119.5 121.1 +1.6 

C4 – N – C13  /  118.49(18) 119.6 121.2 +1.6 

C7 – N – C13  /  121.83(18) 120.9 117.6 -3.3 

     

Pitch A /  44.0(3) 48.6 24.8 -23.8 

Pitch B /  27.1(3) 38.9 51.9 +13.0 

Pitch C /  29.2(3) 37.4 50.5 +13.1 

P1-Fe-C1-C6 -2.8 -21.0 35.0 +56.0 

a Γ = [78-H]+ - 78-H 
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Figure 97 Schematic diagram the orientations of the phenyl plane (black line) and 

C4-C7-C13 plane (blue line) in the neutral 78-H (left) and the cation [78-H]
+
 (right) 

optimised geometries. 

 

On oxidation to the mono-oxidised species [78-H]
+
, there is an expansion of the 

coordination sphere of the iron centre, with the Fe-Cpcentroid distance increasing 

(1.758 Å vs 1.731 Å), and the two Fe-P bond lengths increasing as well (2.276 Å vs 

2.210 Å), (average length).   This bond length increase leads to a decreased P-Fe-P 

bond angle.   There is a slight increase in the acetylide Cα≡Cβ bond length from 

1.222 Å 78-H to 1.240 Å in [78-H]
+
.   The Fe-Cα and Cβ-C1 bond lengths decrease 

on oxidation, by -0.058 and -0.012 Å respectively. There is evidence of evolution of 

quinoidal character in the calculated bond lengths of the cation [78-H]
+
 along the 

metal-acetylide-phenyl ring-nitrogen skeleton (Figure 98, Table 69).   These 

structural changes are consistent with oxidation of related metal acetylides. 
227

  

 

 

Figure 98 Possible resonance forms showing the evolution of quinoidal character in 

the cation [78-H]
+
. 

 

Other notable changes to the structure of the complex on oxidation occur within the 

arylamine fragment.  On oxidation to [78-H]
+
, the pitch of the para- substituted 

phenyl ring decrease from 48.6 ° to 28.4 °, probably to maximise delocalisation of 

the positive charge.   This decrease in pitch pushes the tolyl rings on the amine 
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closer together (C7-N-C13: 78-H 120.9 °, [78-H]
+
 117.6 °), which in turn causes the 

tolyl rings to twist further out of the (C4-C7-C13) plane, hence an increased pitch (52 

° vs 39 °). 

 

At the level of theory employed, the aromatic substituent in the neutral system 78-H 

lie in the plane approximately parallel to one of the Fe-P bonds.  In contrast, the 

aromatic substituent in the mono-oxidised species [78-H]
+
 are found approximately 

bisecting the P-Fe-P angle.   On oxidation to the dication [78-H]
2+

, there are two 

possible spin configurations, a low spin singlet (LS) and high spin triplet (HS).   

Table 70 compares the two optimised geometries with that of [78-H]
+
.   Depending 

upon the spin, singlet or triplet, of the dication, the aromatic substituent can either 

lie bisecting the P-Fe-P angle, like the mono-oxidised species [78-H]
+
, or lie in the 

plane approximately parallel to the Cp ring, like the neutral species 78-H. 
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Table 70 Selected bond lengths (Å) and angles () of the optimised geometries of 

[78-H]
+
, LS-[78-H]

2+
 and HS-[78-H]

2+
. 

 [78-H]+ 
LS- 

[78-H]2+ 
Γ1

a 
HS- 

[78-H]2+ 
Γ2

b 

Fe-Cpcentroid 1.758 1.754 -0.004 1.769 +0.011 

Fe-P1,2 (aver) 2.276 2.287 +0.011 2.313 +0.026 

Fe-Cα 1.851 1.775 -0.076 1.882 +0.031 

Cα-Cβ 1.240 1.265 +0.025 1.236 -0.004 

Cβ-C1 1.410 1.370 -0.040 1.410 ~0 

C1-C2,6 1.418 1.441 +0.021 1.421 +0.003 

C2,6-C3,5 1.382 1.364 -0.018 1.379 -0.003 

C3,5-C4 1.416 1.437 +0.021 1.418 +0.002 

C4-N 1.393 1.358 -0.035 1.394 ~0 

N-C7 1.433 1.440 +0.007 1.424 -0.009 

N-C13 1.433 1.440 +0.007 1.424 -0.009 

      

P-Fe-P /  85.7 85.2 -0.5 85.0 -0.7 

C4 – N – C7 /  121.1 121.7 +0.6 120.6 -0.5 

C4 – N – C13  /  121.2 121.7 +0.5 120.8 -0.4 

C7 – N – C13  /  117.6 116.6 -1.0 118.6 +1.0 

      

Pitch A /  24.8 20.2 -4.6 31.2 +6.4 

Pitch B /  51.9 52.1 +0.2 43.8 -8.1 

Pitch C /  50.5 49.7 -0.8 42.3 -8.2 

P1-Fe-C1-C6 35.0 41.4 +6.4 -42.6 -77.6 

a Γ1 = LS-[78-H]2+ - [78-H]+. 
b Γ2 = HS-[78-H]2+ - [78-H]+. 

 

Frequencies calculation were carried out at the same level of theory used in 

optimising the geometries of 78-H, [78-H]
+
, LS-[78-H]

2+
 and HS-[78-H]

2+
, with the 

calculated (C≡C) frequencies in Table 71.   There is very good agreement with the 
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experimental (C≡C) frequencies and the calculated (C≡C) frequencies for the 

neutral species 78-H and the cationic species [78-H]
+
.   Of the two calculated 

(C≡C) frequencies for the dication [78-H]
2+

, the (C≡C) frequencies calculated for 

the LS dication configuration provides a better fit to the experimental data (Figure 

99). 

 

Table 71 Calculated (C≡C) frequencies of 78-H, [78-H]
+
, LS-[78-H]

2+
 and HS-

[78-H]
2+

. 

 78-H [78-H]+ LS-[78-H]2+ HS-[78-H]2+ 

(C≡C) / cm-1 2065 1976 1895 1998 

 

Figure 99 Calculated IR spectra of [78-H]
n+

 (n = 0, 1, 2). 
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Table 72 Energy, occupancy and composition of frontier orbitals in the model complexes 78-H and [78-H]
+
 (B3LYP/6-31G*). 

78-H 

MO 

 LUMO+6 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 

(eV) -0.15 -0.49 -0.56 -0.64 -0.74 -4.23 -4.54 -4.93 -5.24 -6.06 

Occ 0 0 0 0 0 2 2 2 2 2 

%Fe 4 5 5 12 2 27 44 47 37 46 

%Cp 0 2 1 5 1 3 6 8 9 6 

%dppe 12 93 92 82 97 2 5 10 8 10 

%Cα 10 0 0 0 0 9 7 0 6 12 

%Cβ 1 0 0 0 0 15 21 4 11 3 

%Ph 53 0 2 0 0 21 6 4 6 14 

%N 1 0 0 0 0 9 4 9 6 1 

%Tol2 19 0 0 0 0 14 8 18 16 8 

 
[78-H]+ 

MO 

 209β 209α 208β 208α 207β 207α 206β 206α 205β 205α 204β 204α 203β 203α 

 β- 

[LUSO+3] 

α- 

[LUSO+2] 

β- 

[LUSO+2] 

α- 

[LUSO+1] 

β- 

[LUSO+1] 

α-

LUSO 

β- 

LUSO 

α-

HOSO 

β-

HOSO 

α- 

[HOSO-1] 

β- 

[HOSO-1] 

α- 

[HOSO-2] 

β- 

[HOSO-2] 

α- 

[HOSO-3] 

(eV) -3.11 -3.13 -3.17 -3.35 -3.53 -3.83 -5.30 -7.02 -7.15 -8.17 -8.17 -8.42 -8.47 -8.66 

Occ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

%Fe 9 2 20 39 45 47 44 4 12 13 47 36 9 3 

%Cp 3 1 6 15 16 19 7 1 2 5 2 2 1 2 

%dppe 87 96 71 38 39 34 4 1 2 8 3 3 6 5 

%Cα 1 0 1 5 0 0 3 9 4 8 13 17 15 0 

%Cβ 0 0 1 2 0 0 17 4 2 16 31 35 3 1 

%Ph 0 1 0 1 0 0 17 32 23 13 3 4 19 1 

%N 0 0 0 0 0 0 5 21 21 3 0 0 0 0 

%Tol2 0 0 0 0 0 0 4 29 34 34 0 2 47 87 
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Table 73 Energy, occupancy and composition of frontier orbitals in the model complexes LS-[78-H]
2+

 and HS-[78-H]
2+

 (B3LYP/6-31G*). 

LS -[78-H]2+ 

MO           

 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 

(eV) -5.47 -5.72 -6.03 -6.18 -8.82 -10.50 -11.00 -11.05 -11.13 -11.15 

Occ 0 0 0 0 0 2 2 2 2 2 

%Fe 0 47 8 47 26 16 13 13 2 33 

%Cp 0 18 2 19 4 4 6 2 2 2 

%dppe 0 26 2 32 4 7 77 69 96 40 

%Cα 0 5 14 0 6 1 1 3 0 5 

%Cβ 0 3 1 0 14 6 1 11 0 18 

%Ph 78 0 57 1 26 14 1 1 0 2 

%N 0 0 4 0 9 10 0 0 0 0 

%Tol2 21 0 12 0 10 41 2 0 0 2 

 
HS-[78-H]2+ 

MO 

 209β 209α 208β 208α 207β 207α 206β 206α 205β 205α 204β 204α 203β 203α 

 β- 

[LUSO+4] 

α- 

[LUSO+2] 

β- 

[LUSO+3] 

α- 

[LUSO+1] 

β- 

[LUSO+2] 

α-

LUSO 

β- 

[LUSO+1] 

α-

HOSO 

β-

LUSO 

α- 

[HOSO-1] 

β- 

HOSO 

α- 

[HOSO-2] 

β- 

[HOSO-1] 

α- 

[HOSO-3] 

(eV) -5.59 -5.83 -5.77 -6.27 -6.16 -6.77 -7.52 -10.04 -8.71 -10.93 -10.53 -11.04 -10.98 -11.19 

Occ 0 0 0 0 0 0 0 1 0 1 1 1 1 1 

%Fe 16 5 38 48 51 46 63 4 4 11 25 8 24 3 

%Cp 6 2 12 21 19 23 11 1 0 12 2 3 8 1 

%dppe 6 2 24 18 30 32 8 1 0 58 2 14 64 86 

%Cα 11 12 6 8 0 0 1 10 7 4 9 10 2 2 

%Cβ 2 2 2 3 0 0 16 5 2 12 18 14 2 2 

%Ph 44 61 13 2 0 0 1 29 27 2 18 14 0 86 

%N 2 2 1 0 0 0 0 16 22 0 3 3 0 0 

%Tol2 14 14 4 0 0 0 0 36 38 2 24 35 0 4 
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          (a)            (e)            (i) 
 

 
          (b)                 (f)            (j) 
 

          (c)            (g)            (k) 
 

 
                     (d)            (h)            (l) 
 

Chart 20 The (a) [LUMO+1], (b) LUMO, (c) HOMO, (d) [HOMO-1] of 78-H 

together with (e) α-[LUSO+1], (f) α-LUSO, (g) α-HOSO, (h) α-[HOSO-1] and (i) β-

[LUSO+2], (j) β-[LUSO+1], (k) β-LUSO, (l) β-HOSO of [78-H]
+
 (B3LYP/6-31G*), 

plotted with contour values of ±0.05 (e/bohr
3
)

1/2
. 

 

Table 72 and Table 73, summarises the composition of the frontier orbitals of 78-H 

and its oxidised forms [78-H]
+
 , LS- and HS-[78-H]

2+
, with representative contour 

plots of key orbitals of 78-H and [78-H]
+
 illustrated in Chart 20.   In the neutral 

system, the HOMO and HOMO-1 are based mainly on the Fe-C≡C π system, with 

the HOMO-1 consisting to the Fe-C≡C π manifold parallel to the plane of the phenyl 

ring, and the HOMO the Fe-C≡C π manifold perpendicular to the phenyl ring, where 
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the π system includes both the phenyl and nitrogen atom.   The LUMO and the 

LUMO+1 are largely phosphine π* and Fe – Cp antibonding in character, 

respectively.   The phenyl π* system comprises the LUMO+6 (Figure 100), 0.6 eV 

above the LUMO. 

 

 

Figure 100 The LUMO+6 of 78-H plotted with contour values of ± 0.04 (e/bohr
3
)
1/2

. 

 

In the cation species [78-H]
+
 the α-HOSO and the β-LUSO have similar orbital 

character (FeC2PhNTol2 π-system) to the HOMO of the neutral 78-H, (Table 74), 

but with the β-LUSO having more metal character and less NTol2, than the HOMO.   

The opposite is true of the α-HOSO. 

 

Table 74 Composition of the HOMO of 78-H and the α-HOSO and β-LUSO of [78-

H]
+
. 

  % Fe % Cp % dppe % Cα % Cβ % Ph % N % Tol2 

78-H HOMO 27 3 2 9 15 21 9 14 

[78-H]+ α-HOSO  4 1 1 9 4 32 21 29 

[78-H]+ β-LUSO  44 7 4 3 17 17 5 4 

 

The HOMO of the LS-[78-H]
2+

 (Chart 21) is located mainly on the NTol2 portion of 

the complex, with some metal and phenyl character, with a node at the Cα.   The 

LUMO of the LS-[78-H]
2+

, has a similar composition to the β-LUSO of the [78-H]
+
, 

but less metal character (26 % vs 44 %) and more phenyl ring character (26 % vs 17 

%).    
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Chart 21 The HOMO (left) and LUMO (right) of LS-[78-H]

2+
 plotted with contour 

values of ±0.05 (e/bohr
3
)
1/2

. 

 

The spin density calculation on the optimised geometry of [78-H]
+
 (Table 75), 

compared to spin density calculations of the optimised [72-H]
+
 supports the general 

conclusion that with the 78 complex, the first oxidation occurs on the metal centre 

and the second occurs on the arylamine substituent.  

 

Table 75 Calculated spin densities of [72-H]
+
, [78-H]

+
 and using B3LYP / 6-31G*. 

 Fe/Si Cp P1 P2 Cα Cβ C6H4 N Tol 1 Tol 2 

[72-H]+ -0.057 - - - 0.155 -0.061 0.228 0.319 0.176 0.176 

[78-H]
+
 0.830 -0.052 -0.032 -0.035 -0.091 0.206 0.081 0.056 0.012 0.012 

 

From Table 65 and Table 69 it can be seen that B3LYP/6-31G* gave good 

agreement between the experimental and theoretical data, for both 72-H and 78-H.   

To facilitate the comparison of results between all three sets of model system, the 

same level of theory was used in the modelling the trimetallic complex 79-H.   

However to make the DFT calculations for the tri-metallic complex manageable a 

simplified system [{Fe(C≡CC6H4-)(PH2(CH2)2PH2)Cp}3N]
n+

 was used [79-H]
n+

 (n = 

0, 1, 2, 3).   To help the reader, Figure 96 illustrates the labelling scheme used in this 

section. 

 

The optimised geometry of the neutral tris- iron complex 79-H has C3 symmetry 

around the nitrogen atom at the centre of the complex.   Table 76 contains selected 

bond lengths and angles of 79-H compared to the mono metallic analogy 78-H.   

The spatial geometry of each of the three [Fe]C≡CC6H4- arms is in a similar 

geometry to that of the mono metallic 78-H complex, with any bond length 

differences due to the change of phosphine ligands from dppe to dHpe. 
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Frequency calculations on the symmetric 79-H resulted in a single calculated 

(C≡C) frequency of 2071 cm
-1

, which is similar to that of the neutral 78-H 2065 

cm
-1

. 

 

Table 76 Selected bond lengths (Å) and angles (°) of 78-H and 79-H. 

 78-H 79-H 

Fe-Cpcentroid 1.731 1.712 

Fe-P1,2 (aver.) 2.210 2.185 

Fe-Cα 1.909 1.908 

Cα-Cβ 1.222 1.231 

Cβ-C1 1.422 1.426 

C1-C2,6 1.399 1.412 

C2,6-C3,5 1.381 1.389 

C3,5-C4 1.392 1.405 

C4-N 1.427 

1.420 N-C7 1.418 

N-C13 1.418 

   

P-Fe-P /  86.9 86.4 

C4 – N – C7 /  119.5 

120.0 C4 – N – C13  /  119.6 

C7 – N – C13  /  120.9 

   

Pitch A /  48.6 41.5 

Pitch B /  38.9 41.3 

Pitch C /  37.4 42.2 

P1-Fe-C1-C6 -21.0 -18.3 
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Table 77 summaries the occupancies, compositions and energies of the frontier 

orbital of 79-H, with some representative molecular orbitals of 79-H illustrated in 

Chart 22.   The HOMO is the π-system is delocalised evenly over the entire 

{[Fe]C≡CC6H4}3N skeleton.   The LUMO is metal-dppe-Cp antibonding on one of 

the metal centres.   The LUMO+1, and the near degenerate LUMO+2 are the π*-

system, with the LUMO+1 on two of the [Fe]C≡CC6H4 arms, and the LUMO+2 

based mainly on the other of the three arms.  

 

 

Chart 22 The HOMO (left), the LUMO (middle) and the LUMO+1 (right) of 79-H 

plotted with contour values of ± 0.03 (e/bohr
3
)
1/2

, calculated using B3LYP/6-31G*. 

 

On modelling the cationic species [79-H]
+
, the optimised geometry obtained was 

symmetric, with all three FeC2Ph arms in the same spatial conformation, which is 

not in agreement with the localised state inferred by the IR results. DFT methods, 

even those using common hybrid functionals such as B3LYP, often fail to accurately 

model charge separated states.   The origin of this can be traced to the failure of DFT 

methods to adequately model electron-hole correlations. 
42, 45

 

  

Given this failure at the B3LYP/6-31G* level, the modelling was attempted using an 

alternative functional with more Hartree Fock character (MPW1K/6-31G*).   

However to facilitate the comparison of the results of the mono-metallic 78-H and 

the trimetallic 79-H, it is required that the monometallic 78-H be modelled using the 

same level.   From Table 78 it can be seen that there is good agreement between the 

optimised geometries of 78-H using both B3LYP/6-31G* and MPW1K/6-31G* and 

crystallographically determined geometry of 78. 
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Table 77 Energy, occupancy and composition of frontier orbitals in the complexes 79-H, using B3LYP/6-31G*. 

79-H 

MO LUMO+5 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 HOMO-5 

(eV) 0.24 -0.05 -0.13 -0.16 -0.17 -0.18 -3.86 -4.46 -4.51 -4.66 -4.78 -4.83 

Occ 0 0 0 0 0 0 2 2 2 2 2 2 

%Fe (A) 23 0 0 2 8 52 4 1 21 17 8 25 

%Cp (A) 2 0 0 0 2 18 0 0 3 3 1 3 

%dppe (A) 16 0 0 2 6 24 0 0 2 1 1 2 

%Cα (A) 0 0 0 2 5 0 5 0 6 2 2 7 

%Cβ (A) 1 0 0 0 1 0 3 0 12 9 4 15 

%Ph (A) 1 0 0 10 30 3 15 1 9 1 2 7 

%Fe (B) 17 0 55 2 5 0 5 14 18 10 18 19 

%Cp (B) 1 0 20 0 0 0 0 2 3 2 2 2 

%dppe (B) 13 0 23 2 5 0 0 1 1 1 1 1 

%Cα (B) 0 0 0 2 5 0 5 3 3 1 4 4 

%Cβ (B) 1 0 0 1 1 0 3 7 9 5 9 9 

%Ph (B) 2 0 1 13 29 1 15 5 4 1 4 4 

%Fe (C) 9 56 0 6 0 0 5 32 5 22 22 1 

%Cp (C) 1 20 0 0 0 0 0 5 1 3 2 0 

%dppe (C) 8 24 0 6 0 0 0 2 0 2 2 0 

%Cα (C) 0 0 0 7 0 0 5 5 1 4 4 0 

%Cβ (C) 1 0 0 2 0 0 3 16 2 11 10 0 

%Ph (C) 3 0 0 42 1 0 16 7 1 4 5 0 

%N 1 0 0 1 1 0 15 0 0 1 0 0 

.
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Table 78 Comparison of selected bond lengths (Å) and angles (°) of 78 and 

optimised geometry of 78-H using B3LYP/6-31G* and MPW1K/6-31G*. 

 78 78-H 78-H 

  B3LYP/6-31G* MPW1K/6-31G* 

Fe-Cpcentroid 1.710 1.731 1.710 

Fe-P1,2 2.1658(7) 2.213, 2.206 2.213, 2.206 

Fe-Cα 1.900(2) 1.909 1.909 

Cα-Cβ 1.218(3) 1.222 1.222 

Cβ-C1 1.442(3) 1.422 1.422 

C1-C2,6 
1.398(3) 

1.411(3) 
1.399 1.399 

C2,6-C3,5 
1.383(3) 

1.391(3) 
1.381 1.381 

C3,5-C4 
1.389(3) 

1.389(3) 
1.392 1.391 

C4-N 1.435(3) 1.427 1.412 

N-C7 1.420(3) 1.418 1.403 

N-C13 1.421(3) 1.418 1.403 

    

P-Fe-P /  86.58(3) 86.9 86.3 

C4 – N – C7 /  119.32(17) 119.5 119.5 

C4 – N – C13  /  118.49(18) 119.6 119.5 

C7 – N – C13  /  121.83(18) 120.9 121.0 

    

Pitch A /  44.0(3) 48.6 48.6 

Pitch B /  27.1(3) 38.9 37.4 

Pitch C /  29.2(3) 37.4 36.6 

P1-Fe-C1-C6 -2.8 -21.0 -23.3 
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Table 79 Comparison of experimental and calculated (C≡C) frequencies of [78]
n+

 

and [78-H]
n+

 (n = 0, 1, 2) modelled using B3LYP/6-31G* and MPW1K/6-31G*. 

 78 78-H  

B3LYP/6-31G* 

78-H  

MPW1K/6-31G* 

Neutral 2060 2065 2065 

Cation 1962 1976 2014 

Dication 1860 LS(1895), HS(1998) LS(1875), 

HS(2029)* 

* includes a negative frequency. 

 

Table 79 shows that there is good agreement between the experimental IR data and 

the calculated frequencies of [78-H]
n+

 (n = 0, 1, 2) for both functional and basis sets 

used.   The only exception is with the modelling of the cationic species of [78-H]
+
, 

when using the MPW1K/6-31G* level, which calculates a (C≡C) frequency of 

(2014 cm
-1

), which is high compared with the experimental data.   However, there is 

generally good agreement between the two functional basis sets used and the 

experimental data, which is further seen in the similar energies and compositions of 

the frontier molecular orbitals of the neutral 78-H and the LS[78-H]
2+

 (Table 80 and 

Table 81 compared with Table 72 and Table 73), and bodes well for the use of the 

MPW1K/6-31G* level to be used to model the [79-H]
n+

 (n = 0 → 4). 

 

Like with the B3LYP/6-31G*, the HOMO and HOMO-1 in the neutral system 78-H, 

using MPW1K/6-31G* are based mainly on the Fe-C≡C π system, with the HOMO-

1 consisting to the Fe-C≡C π manifold parallel to the plane of the phenyl ring, and 

the HOMO the Fe-C≡C π manifold perpendicular to the phenyl ring, where the π 

system includes both the phenyl and nitrogen atom.   Both of the LUMO and the 

LUMO+1 are largely phosphine π* in character.   The phenyl π* system comprises 

the LUMO+5 and LUMO+6, ~0.5 eV above the LUMO. 
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Table 80 Energy, occupancy and composition of frontier orbitals in the model complexes 78-H using MPW1K/6-31G*. 

78-H 

MO 
 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 

(eV) 0.44 0.31 0.21 0.13 -0.02 -5.30 -5.89 -6.24 -6.51 -7.39 

Occ 0 0 0 0 0 2 2 2 2 2 

%Fe 4 6 2 3 2 9 38 36 33 8 

%Cp 1 2 1 1 0 1 8 4 22 10 

%dppe 93 92 95 93 98 1 8 5 14 58 

%Cα 0 0 0 0 0 11 10 6 7 11 

%Cβ 0 0 0 1 0 10 27 13 7 7 

%Ph 1 0 2 2 0 28 3 6 6 5 

%N 0 0 0 0 0 15 2 8 2 0 

%Tol2 0 0 0 0 0 26 6 22 8 2 

 

Table 81 Energy, occupancy and composition of frontier orbitals in the model complexes LS-[78-H]
2+

 using MPW1K/6-31G*. 

LS-[78-H]
2+

 

MO 
 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 

(eV) -4.68 -4.79 -5.14 -5.37 -8.53 -11.40 -12.16 -12.22 -12.32 -12.33 

Occ 0 0 0 0 0 2 2 2 2 2 

%Fe 0 24 41 9 23 12 3 1 1 2 

%Cp 0 9 17 1 4 3 4 2 1 0 

%dppe 1 62 33 11 5 5 84 89 97 10 

%Cα 0 2 1 13 7 1 1 1 0 0 

%Cβ 0 3 0 1 16 6 1 1 0 0 

%Ph 79 1 5 51 30 15 1 1 0 2 

%N 0 0 0 4 8 10 0 0 0 0 

%Tol2 20 0 2 10 8 47 6 4 0 84 
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There is good agreement between the two optimised geometries of 79-H using 

B3LYP/6-31G* and MPW1K/6-31G* (Table 82) and the calculated (C≡C) 

frequencies of 79-H at these levels give good agreement with the experimental IR 

data (Table 83). 

 

Table 82 Selected bond lengths (Å) and angles (°) of 79-H using B3LYP/6-31G* 

and MPW1K/6-31G*. 

 79-H  79-H  

 B3LYP/6-31G* MPW1K/6-31G* 

Fe-Cpcentroid 1.712 1.693 

Fe-P1,2 (aver) 2.185 2.185 

Fe-Cα 1.908 1.909 

Cα-Cβ 1.231 1.221 

Cβ-C1 1.426 1.423 

C1-C2,6 1.411 1.398 

C2,6-C3,5 1.389 1.380 

C3,5-C4 1.405 1.394 

C4-N 1.420 1.405 

   

Aryl-N-Aryl /  120.0 120.0 

Pitch A /  41.0 40.3 

Pitch B /  41.7 40.8 

Pitch C /  40.8 39.3 

P1-Fe-C1-C6 -18.3 -20.6 

 

Table 83 Experimental and calculated (C≡C) frequencies of 79 and 79-H. 

 Experimental B3LYP/6-31G* MPW1K/6-31G* 

(C≡C) / cm-1 2060 2071 2068 
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Table 84 MPW1K 6-31G* Molecular Contributions 79-H. 

79-H 

MO 

 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 

ε(eV) 1.09 1.04 0.95 0.48 0.46 -4.85 -5.79 -5.83 -6.13 -6.22 

Occ 0 0 0 0 0 2 2 2 2 2 

%Fe (A) 4 14 0 1 3 2 6 12 28 11 

%Cp (A) 0 0 0 0 0 0 1 2 5 1 

%dppe (A) 4 12 0 2 4 0 1 1 3 1 

%Cα (A) 0 0 0 2 6 5 4 7 8 5 

%Cβ (A) 0 1 0 1 2 2 6 11 20 9 

%Ph (A) 0 2 33 13 34 18 7 11 3 3 

%Fe (B) 29 20 0 1 3 2 2 13 7 15 
%Cp (B) 1 0 0 0 0 0 0 2 1 3 

%dppe (B) 25 19 0 2 4 0 0 2 1 2 

%Cα (B) 0 0 0 2 6 5 2 9 2 6 

%Cβ (B) 0 1 0 1 2 2 3 13 5 12 

%Ph (B) 2 1 33 12 34 18 3 15 1 3 

%Fe (C) 19 14 0 4 0 3 18 0 6 12 
%Cp (C) 0 0 0 0 0 0 3 0 1 2 

%dppe (C) 16 13 0 5 0 0 2 0 1 1 

%Cα (C) 0 0 0 8 0 5 10 0 1 4 

%Cβ (C) 0 1 0 2 0 2 16 0 4 9 

%Ph (C) 1 2 33 45 1 18 16 1 1 2 

% N 0 0 0 1 1 16 0 0 1 0 

.
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Table 85 summaries the occupancies, compositions and energies of the frontier 

orbitals of 79-H, with some representative molecular orbitals of 79-H illustrated in 

Chart 23 and Figure 101.   The HOMO of 79-H computed using the MPW1K/6-

31G* level of theory is very similar to that computed with B3LYP/6-31G*, where 

the π-system is delocalised evenly over the entire {[Fe]C≡CC6H4}3N skeleton.   The 

LUMO and LUMO+1 are the π*-system, with the LUMO on two of the 

[Fe]C≡CC6H4 arms, and the LUMO+1 based mainly on the other of the three arms.   

Interestingly the LUMO+2 is comprised of just the π*-system of the three phenyl 

rings. 

 

 

Chart 23 The HOMO (left), LUMO (middle), and the LUMO+1 (right) of 79-H 

plotted with contour values of ± 0.03 (e/bohr
3
)
1/2

, calculated using MPW1K/6-31G*. 

 

 

Figure 101 The LUMO+2 of 79-H, plotted with contour values of ± 0.03 

(e/bohr
3
)
1/2

. 

 

However on modelling the cation [79-H]
+
 with MPW1K/6-31G*, the calculations 

fail to find a minimum.   This is perhaps not surprising, since there were problems 

using this level of theory in modelling the monocation of the mono-iron complex 

[78-H]
+
. More success was gained on modelling the [79-H]

2+
 with the calculations 
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finding a preference for HS-[79-H]
2+

.   Calculations on the LS-[79-H]
2+

 did not give 

rise to a stable minimum.   On viewing the optimised geometry of HS-[79-H]
2+

 

(Table 85), it can be seen that there are two different configurations of the three 

[Fe]C≡CC6H4 arms, most notable is the orientation of the phenyl rings with respect 

to the Fe-P1 bonds. 

 

Table 85 Selected computational determined bond lengths (Å) and angles (°) of 79-

H and HS-[79-H]
2+

 using MPW1K/6-31G*. 

 79-H HS-[79-H]2+ 

  Arm A Arm B Arm C 

Fe-Cpcentroid 1.693 1.696 1.716 1.717 

Fe-P1,2 (aver) 2.185 2.188 2.241 2.233 

Fe-Cα 1.909 1.901 1.877 1.877 

Cα-Cβ 1.221 1.223 1.223 1.223 

Cβ-C1 1.423 1.417 1.417 1.416 

C1-C2,6 1.398 1.401 1.399 1.399 

C2,6-C3,5 1.380 1.380 1.377 1.376 

C3,5-C4 1.394 1.389 1.398 1.399 

C4-N 1.405 1.425 1.395 1.391 

     

P-Fe-P /  85.8 85.7 83.9 83.9 

Pitch /  40.3,  

40.8,  

39.3 

61.4 33.1 30.3 

P1-Fe-C1-C6 -20.6 -25.2 37.2 29.1 

 

Frequency calculations on the optimised geometry of the HS-[79-H]
2+

, result in two 

sets of (C≡C) frequencies (Table 86), one at 2060 cm
-1

, corresponding to the C≡C 

bond of the [Fe]C≡CC6H4 arm in a similar configuration state as the neutral species 

79-H.   The other calculated (C≡C) frequencies are at 2010 and 2018 cm
-1

, 

comprising a broad band, are from the two oxidised arms. 

 



 

283 

 

Table 86 Experimental and calculated (C≡C) frequencies for [79]
0/2+

 and HS[79-

H]
0/2+

. 

 Experimental / cm-1 Calculated / cm-1 

 (C≡C) (C≡C)+ (C≡C) (C≡C)+ 

Neutral 2060 - 2068 - 

Dication 2056 1962 2060 2010, 2018 

 

Table 87 summarises the composition of the frontier orbitals of HS-[79-H]
2+

, with a 

selection of key orbitals illustrated in Chart 24.   Both the α-HOSO and the β-HOSO 

have a similar composition, localised on the neutral iron acetylide aryl framework 

and are derived from the mixing of the metal d orbital and the acetylide π-system 

perpendicular to the phenyl ring.   The α-HOSO-1 and the β-HOSO-1 are also 

similar to one another, but involve the acetylide π-system, on the neutral arm, 

parallel to the phenyl ring, and have more metal character than α-HOSO and β-

HOSO, (37 % and 37 % compared to 30 % and 36 %).   The α- and β-LUSOs and 

higher alternate in being localised on one of other of the metal centres of the 

oxidised arms, varying from consisting of either metal – Cp antibonding, metal – 

dHpe antibonding or the phenyl π*-system. 
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a) e)  

b) f)  

c) g)  

d) h)  

Chart 24 The a) α-[LUSO]+1, b) α-[LUSO], c) α-[HOSO] and d) α-[HOSO]-1, and 

e) β-[LUSO]+1, f) β-[LUSO], g) β-[HOSO] and h) β-[HOSO]-1, of [79-H]
2+

 plotted 

at contour values of ± 0.03 (e/bohr
3
)
1/2

, using MPW1K/6-31G*. 
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Table 87 Molecular Contribution of HS-[79-H]
2+

 MPW1K 6-31G*. 

HS- [79-H]2+ 

MO 251β 251α 250β 250α 249β 249α 248β 248α 247β 247α 246β 246α 245β 245α 

 
β-

[LUSO+4] 

α-

[LUSO+2] 

β-

[LUSO+3] 

α-

[LUSO+1] 

Β-

[LUSO+2] 

α-

[LUSO] 

β- 

[LUSO+1] 

α-

[HOSO] 

β- 

[LUSO] 

α- 

[HOSO-1] 

β- 

[HOSO] 

α- 

[HOSO-2] 

β- 

[HOSO-1] 

α- 

[HOSO-3] 

ε(eV) -3.87 -4.47 4.14 -4.76 -4.22 -5.03 -5.65 -8.55 -5.98 -8.85 -8.49 -9.20 -8.82 -9.55 

Occ 0 0 0 0 0 0 0 1 0 1 1 1 1 1 

%Fe (A) 0 0 0 0 0 0 0 30 0 37 36 50 37 7 

%Cp (A) 0 0 0 0 0 0 0 6 0 7 7 27 7 5 

%dppe (A) 0 0 0 0 0 0 0 3 0 3 3 12 3 1 

%Cα (A) 0 0 0 0 0 0 0 12 0 11 10 2 12 3 

%Cβ (A) 0 0 0 0 0 0 0 23 0 25 24 1 24 8 

%Ph (A) 0 0 0 0 0 0 1 18 0 10 15 2 12 5 

%Fe (B) 45 50 0 0 58 52 42 0 7 0 0 0 0 1 

%Cp (B) 11 21 0 0 19 23 13 0 2 0 0 0 0 0 

%dppe (B) 39 19 0 0 23 24 5 0 1 0 0 0 0 0 

%Cα (B) 1 5 0 0 0 0 1 0 0 0 0 0 0 4 

%Cβ (B) 4 4 0 0 0 0 14 0 3 0 0 0 0 1 

%Ph (B) 1 0 0 0 0 0 9 2 3 2 1 2 2 21 

%Fe (C) 0 0 57 54 0 0 7 0 41 0 0 0 0 1 

%Cp (C) 0 0 19 22 0 0 2 0 10 0 0 0 0 0 

%dppe (C) 0 0 23 24 0 0 1 0 4 0 0 0 0 0 

%Cα (C) 0 0 0 0 0 0 0 0 1 0 0 0 0 4 

%Cβ (C) 0 0 0 0 0 0 2 0 15 0 0 0 0 1 

%Ph (C) 0 0 0 0 0 0 2 2 11 2 1 2 2 21 

% N 0 0 0 0 0 0 2 2 1 2 1 1 1 15 

.
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Table 88 Calculated spin densities for [78-H]
+
 and HS-[79-H]

2+
 using MPW1K/6-

31G* 

[78-H]+ HS-[79-H]2+ 

  Neutral Arm Cation Arm Cation Arm 

Fe 1.177 Fe (A) 0.000658 Fe (B) 1.156 Fe (C) 1.148 

Cp -0.107 Cp (A) -0.000014 Cp (B) -0.118 Cp (C) -0.116 

P1 -0.056 P1 (A) -0.000061 P1 (B) -0.043 P1 (C) -0.043 

P2 -0.065 P2 (A) -0.000016 P2 (B) -0.048 P2 (C) -0.048 

Cα -0.214 Cα (A) 0.0046 Cα (B) -0.202 Cα (C) -0.202 

Cβ 0.231 Cβ (A) -0.003 Cβ (B) 0.225 Cβ (C) 0.224 

Ar 0.026 Ar (A) 0.004 Ar (B) 0.034 Ar (C) 0.037 

N 0.015 N 0.021     

Tol1 0.003       

Tol2 0.003       

 

Spin density calculations on the optimised geometry of HS-[79-H]
2+

, shows that the 

spin density is localised on two iron centres (Table 88).   The iron centres with the 

localised charges are on the two metal ethynyl phenyl arms that are in a similar 

orientation/geometry of the monocation species [78-H]
+
. 

 

 

6.3 Conclusions 

 

In this Chapter four pro-ligands 72, 73, 74, and 75 have been synthesised and with 

the subsequent metallation, four mono and multi-metallic complexes have been 

made (76 – 79).   The molecular structures of 72 and 73 reveal the usual propeller 

arrangement of the aryl rings around the amine core ubiquitous with triaryl amines. 

389, 390
   The molecular structures of the mono-metallic complexes 77 and 78 also 

show this triaryl amine propeller arrangement.   The electrochemical data from the 

model ligand 73 and the iron metallated complex 78, reveals that the first oxidation 

of 78 to [78]
+
 occurs on the metal centre with the second oxidation event occurring 
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on the amine substituent para- to the metal centre.   The spectroelectrochemical 

studies of the amine 72, mono-metallic 78 and the trimetallic 79 agree with this 

conclusion.   The spectroscopic and structural nature of [72]
x+

 and [78]
y+

 (x = 0, 1; y 

= 0, 1, 2) were satisfactorily reproduced with computational methods using the 

B3LYP functional at the 6-31G* level.   The MPW1K functional at the 6-31G* level 

was also used to model [78]
y+

, which gave comparative reproduction of IR 

spectroscopic and structural results as using B3LYP/6-31G*.   Computational effort 

to model the oxidation states of the trimetallic complex 79 above the neutral species, 

was fraught with difficulty, however the dication of [79]
2+

 was modelled with some 

success using the MPW1K/6-31G* level of theory.   These results for the trimetallic 

complex 79 are the best obtained with the functionals available at the time.   With 

the aid of TD DFT the electronic transitions present in the neutral and cationic forms 

of 72 were assigned, with the main absorption in the neutral species being from the 

π-system of the acetylene-substituented-triarylamine to the π*-system.   The main 

absorptions in the cationic species [72]
+
 arise from the transitions from the β-HOSO 

to the β-LUSO and the α-HOSO to the α-LUSO, (also π-π* in character). 

 

The electronic transitions from the oxidation states of [78] (78, [78]
+
 and [78]

2+
), 

were also assigned with the aid of TD DFT.   In the neutral species 78 the main 

absorption, which has previously been seen in related complexes, 
118, 221, 392

 being 

from the Fe-C2Ph π-system, (HOMO and the HOMO-1) to the C2Ph π*-system, 

(LUMO+6), MLCT in character.   The main absorptions in the cationic species 

originate from transitions from the β-HOSO to the β-LUSO and the a-HOSO to the 

a-LUSO+4, (LMCT and C2PhNTol π – C2Ph π* in character, respectively).   The TD 

DFT for the dication [78]
2+

 did not give good agreement, however for the LS-[78]
2+

 

the assignment of π – π*, for the absorption at ~9000 cm
-1

, seems appropriate. 

 

The UV-vis-NIR absorptions in the four oxidation states of the tris-metallic complex 

[79]
0/+/2+/3+

 are similar to the absorptions of 78 and [78]
+
.   The main absorption in 

the neutral species 79 is from the HOMO, which is the {Fe}3N π-system to the π*-

systems of the FeC≡CAr arms and to the metal-Cp antibonding centres.   By analogy 

the absorption at ~11000 cm
-1

, in the oxidised species [79]
+/2+/3+

, is LMCT in 

character.  
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The NIR transitions observed in [79]
+
 and [79]

2+
 likely have IVCT character.   [79] 

therefore represents a well characterised case of a “three site” mixed-valence 

architecture. 

 

 

6.4 Experimental Details 

 

6.4.1 General Conditions 

 

All reactions were carried out using oven dried glassware, under an atmosphere of 

nitrogen using standard Schlenk techniques.   Reagents purchased commercially 

were used without further purification, but checked by using relevant spectroscopic 

techniques before use.   The compounds 71, 
407

 and 74 
98

 were prepared by literature 

methods.   NMR spectroscopies were carried out a room temperature and referenced 

against CDCl3 using the Varian Mercury-200 (
1
H 199.99 MHz), Bruker and Varian 

Mercury-400 (
1
H 399.97 MHz) or Varian Inova-500 (

1
H 499.77 MHz, 

13
C 125.67 

MHz).   Chemical shifts are reported in δ / ppm and coupling constants, J, in Hz.   

IR spectra were recorded using solution cells fitted with CaF2 windows by the 

Nicolet Avatar FT IR spectrophotometer.   Mass spectra were acquired using the 

Thermo- Finnigan LTQ FT spectrometer.   Single crystal X-ray structure 

determinations were carried out by Dr DS Yufit of this department using a Bruker 3-

circle diffractometer with a SMART 6K area detector, using graphite-

monochromated sealed-tube Mo-Kα radiation.   These data collections were 

performed at 120 K, and the temperature maintained using cryostream (Oxford 

cryosystem) open flow N2 cryostats.   Reflection intensities were integrated using the 

SAINT program. 
300

   The molecular structures were solved using direct-methods 

and refined by full matrix least-squares F
2
 using SHELXTL software.

 148
   All non-

hydrogen atoms were refined in anisotropic approximation.   Hydrogen atoms were 

placed into calculated positions, and refined isotropically using a riding model.   

Electrochemical experiments were performed in an air tight one compartment cell, 

constructed by a carbon working electrode, a platinum pseudo reference electrode 

and a platinum counter electrode.   These components were fixed into the system via 
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a Teflon screw cap with a suitable fitting.   Voltammetric data were acquired using 

Autolab PG-STAT 30 in CH2Cl2 solutions containing 0.1 M electrolyte solutions of 

NBu4BF4 at room temperature.   Potentials are referenced to ferrocene or 

decamethylferrocene as appropriate. 

 

6.4.2 Ligand Experimental 

 

6.4.2.1 Preparation of p-bromophenylditolylamine [71] 
407

 

 

To an oven dried flask purged with nitrogen (equipped with an overhead mechanical 

stirrer and reflux condenser) is added the amine (9.60 g, 48.7 mmol), halide (21.50 

g, 76.0 mmol), copper chloride (0.70 g, 7.10 mmol), 1,10-phenanthroline (0.91 g, 

5.0 mmol) and o-xylene (ml).  The system is stirred for about 30 minutes at 130-140 

°C then KOH (45.0 g, 802.1 mmol) is added (as flakes or better as powder) and 

refluxed over night.   The cooled mixture was neutralized with acetic acid (2M) 

filtered then washed with water (2 x 150 ml).   The aqueous washes are extracted 

with CH2Cl2 (2 x 50 ml) and organic phases combined and again washed with water 

(2 x 150 ml) dried over MgSO4 before removing solvent in vacuo.   Product was 

isolated by column chromatography on silica eluted with hexane increasing polarity 

to 10:1 hexane:CH2Cl2 finally 4:1 hexane: CH2Cl2.   The product was obtained as a 

white crystalline solid.   (11.48 g, 67 %).   
1
H NMR (CDCl3): δH 2.31 (s, 6H, CH3), 

6.88 (pseudo d, 2H, J = 9 Hz, Ar AB), 6.96 (pseudo d, 4H, J = 8 Hz, Ar AB), 7.06 

(pseudo d, 4H, J = 8 Hz, Ar AB), 7.27 (pseudo d, 2H, J = 9 Hz, Ar AB).   
13

C NMR 

(CDCl3): δC 20.8 (s, 2 x CH3, tol), 113.6 (s, Cp-Br), 123.9 (s, Co), 124.7 (s, Cm’), 

130.0 (s, Co’), 131.9 (s, Cm), 132.9 (s, 2 x Cp’), 145.0 (s, 2 x Ci‟), 147.5 (s, Ci-Br).   

MS (MALDI): 353 (15%), 273 (100%). 
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6.4.2.2 Preparation of (4-((trimethylsilyl)ethynyl)phenyl)ditolylamine [72] 

 

Degassed triethyl amine (150 ml), p-bromophenylditolylamine 71 (1.76 g, 5.00 

mmol), trimethylsilyl acetylene (0.85 ml, 6.00 mmol), copper(I) iodide (0.024 g, 

0.125 mmol) and palladium tetrakis(triphenylphosphine) (0.175 g, 0.250 mmol) 

were added to the amine and the pale yellow suspension refluxed overnight.   After 

18 hours the solvent was filtered from the black solid and removed under vacuo with 

gentle warming.   The residue was washed with water and extracted with hexane.   

The organic fractions were combined, dried over MgSO4 and condensed to isolate a 

yellow powder. (1.09 g, 59%).   IR (CH2Cl2): 2150 cm
-1

.   
1
H NMR (CDCl3): δH 

7.27 (d, 2H, J = 9 Hz), 7.07 (d, 4H, J = 9 Hz), 6.99 (d, 4H, J = 9 Hz), 6.89 (d, 2H, J 

= 9 Hz), 2.39 (s, 6H, CH3), 0.24 (s, 9H, SiMe3).   
13

C NMR (CDCl3): δC 148.4 (s, 

Ci), 144.6 (s, 2 x Ci’), 133.2 (s, 2 x Cp’), 132.7 (s, Cm), 129.9 (s, Co’), 125.2 (s, Cm’), 

120.7 (s, Co), 118.4 (s, Cp), 105.6 (s, C≡C-SiMe3), 92.5 (s, C≡C-SiMe3), 20.7 (s, 2 x 

CH3, tol), 0.0 (s, SiMe3).   MS (GC EI): 369 (100%), 354 (45%); 

 

6.4.2.3 Preparation of 4-Ethynylphenyl-ditolylamine [73] 

 

Methanol (50 ml) was added to a THF solution (10 ml) of 72 (1.0 g, 2.73 mmol).  

Excess potassium carbonate (0.38 g, 10.9 mmol) was added and the reaction 

monitored by TLC.   After 2 h. the mixture was poured into water and the 

precipitated product extracted with CH2Cl2 (3 x 30 ml).   The combined organic 

extracts were washed with water (3 x 20 ml) and dried over MgSO4 before removing 

the solvent in vacuo.   The product was purified by passing through a silica column 

eluting with hexane to obtain a pale yellow solid.   (0.68 g, 84%).   IR (CH2Cl2): 

2120 cm
-1

.   
1
H NMR (CDCl3): δH 7.30 (d, 2H, J = 9 Hz), 7.09 (d, 4H, J = 9 Hz), 

7.00 (d, 4H, J = 9 Hz), 6.91 (d, 2H, J = 9 Hz), 3.01 (s, 1H, C≡CH), 2.32 (s, 6H, 2 x 

CH3).   
13

C NMR (CDCl3): δC 148.8 (s, Ci), 144.6 (s, 2 x Ci’), 133.4 (s, 2 x Cp’), 

132.9 (s, Cm), 130.0 (s, 2 x Co’), 125.3 (s, 2 x Cm’), 120.8 (s, Co), 113.7 (s, Cp), 84.2 

(s, C≡C-H), 75.8 (s, C≡C-H), 20.9 (2 x CH3, tol).   MS (GC EI): 297 (100%). 



 

291 

 

6.4.2.4 Preparation of Tris(4-((trimethylsilyl)ethynyl)phenyl)amine [74]. 

 

Triethyl amine (250 ml) was degassed by freeze-pump-thaw method in an oven 

dried flask.   Tris(p-bromophenyl)amine (12.10 g, 25.0 mmol), trimethylsilyl 

acetylene (53.4 ml, 375 mmol), copper(I) iodide (0.12 g, 0.625 mmol) and palladium 

tetrakis(triphenylphosphine) (0.72 g, 0.625 mmol) were added to the amine and the 

pale yellow suspension refluxed overnight.   After 18 h. the amine was removed 

from the black mixture (containing a heavy grey precipitate) using vacuum with 

gentle warming.   The crude product was passed through a silica column eluted with 

hexane then 10:1 hexane:CH2Cl2.   The product was isolated as a pale yellow solid.   

(12.73 g, 95%).   IR (CH2Cl2): 2160 cm
-1

.   
1
H NMR (CDCl3): δH 7.35 (d, 6H, J = 9 

Hz, Hm), 6.96 (6H, d, J = 9 Hz, Ho), 0.24 (s, 18H, SiMe3).   
13

C NMR (CDCl3): δC 

146.8 (s, Ci), 133.2 (s, Cm), 123.8 (s, Co), 117.8 (s, Cp), 104.9 (s, C≡C-SiMe3), 94.0 

(s, C≡C-SiMe3), 0.0 (s, SiMe3).   MS (GC EI): 553 (100%), 518 (25%). 

 

6.4.2.5 Preparation of Tris(4-ethynylphenyl)amine [75]. 

 

Methanol (150 ml) was added to a THF solution (30 ml) of 74 (3.00 g, 5.62 mmol).  

Excess potassium carbonate (11.70 g, 84.30 mmol) was added and the reaction 

monitored by TLC.   After 2 h. the mixture was poured into water and the 

precipitated product extracted with CH2Cl2 (3 x 75 ml).   The combined organic 

extracts were washed with water (3 x 50 ml) and dried over MgSO4 before removing 

the solvent in vacuo.   The product was purified by passing through a silica column 

eluting with hexane to obtain a pale yellow solid.   (1.57 g, 88%).   IR (CH2Cl2): 

2125 cm
-1

.   
1
H NMR (CDCl3): δH 7.39 (d, 6H, J = 9 Hz, Hm), 7.01 (d, 6H, J = 9 Hz, 

Ho), 3.06 (s, 3H, C≡CH).   
13

C NMR (CDCl3): δC 147.0 (s, Ci), 133.4 (s, Cm), 123.9 

(s, Co), 116.9 (s, Cp), 83.4 (s, C≡C-H), 77.0 (s, C≡C-H).   MS (MALDI): 317 

(100%). 
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6.4.3 Metallated Aryl Amine Experimental 

 

6.4.3.1 Preparation of Ru(C≡CC6H4NTol2)(PPh3)2Cp [76] 

 

RuCl(PPh3)2Cp (100 mg, 0.138 mmol), HC≡CC6H4NTol2 73 (45 mg, 0.16 mmol) 

and NH4PF6 (45 mg, 0.28 mmol) were added to dry, degassed methanol (10 ml).  

Refluxed for 30 min, reaction mixture turned from orange suspension to red 

solution.  Addition of NaOMe (2-3 drops) gave a yellow precipitate which was 

collected and washed with hexane.   The yellow solid obtained was dried in vacuo, 

(70 mg, 52 %).  IR (CH2Cl2): (C≡C) 2074m cm
-1

.   
1
H NMR (CDCl3): H 2.30 (s, 

6H, 2 PhMe), 4.30 (s, 5H, Cp), 6.85 (d, 2H, J = 8 Hz, AB Ar H), 7.10 (d, 4H, J = 8 

Hz, AB Ar), 7.17 (d, 4H, J = 8 Hz, AB Ar), 7.19 (d, 2H, J = 8 Hz, AB Ar). 6.90 – 

7.50 (m, 30H, Ph).   
31

P NMR:  51.4 (PPh3).   ES(+)-MS (m/z): 987.6, [M]
+
; 765.6, 

[M-PPh3+K]
+
; 726.2, [M-PPh3]

+
. 

 

6.4.3.2 Preparation of Ru(C≡CC6H4NTol2)(dppe)Cp [77] 

 

RuCl(dppe)Cp* (100 mg, 0.15 mmol), HC≡CC6H4NTol2 73 (50 mg, 0.17 mmol) and 

NH4PF6 (49 mg, 0.3 mmol) were added to dry, degassed methanol (10ml).  Refluxed 

for 20 min, reaction mixture turned from orange suspension to red solution.  

Addition of 
t
BuOK / MeOH (2-3 drops) gave a yellow precipitate which was 

collected, washed with hexane and dried in vacuo, 74 mg, 58 %.   IR (CH2Cl2): 

(C≡C) 2069m cm
-1

.   
1
H NMR (CD2Cl2): H 1.57 (s, 15H, Cp*),  2.28 (s, 6H, 2 

Me), 2.0-2.8 (2m, 4H, dppe), 6.64 (pseudo d, 2H, J = 8 Hz, AB Ar H), 6.75 (pseudo 

d, 2H, J = 8 Hz, AB Ar), 6.92 (pseudo d, 4H, J = 8 Hz, AB Ar), 7.00 (pseudo d, 4H, 

J = 8 Hz, AB Ar), 7.20 – 7.90 (m, 20H, Ph).   
31

P NMR:  82.0 (dppe).   
13

C NMR 

(CD2Cl2): C 10.0 (s, Me Cp*), 20.6 (s, Me), 29.4 (s, dppe), 92.6 (s, Cp*), 109.2 (s, 

Cβ), 110.6 (s, C1), 123.7 (s, tolC2), 124.0 (s, C3), 126.1 (s(br), Cα), 127.4, 127.7 (s, 

Cm, Cm’, PPh), 129.1 (s, Cp, PPh), 129.8 (s, tolC3), 130.8 (s, C2), 131.7 (s, tolC4), 

133.3, 134.0 (s, Co, Co’, PPh), 137.0 (s, Ci, PPh), 139.2 (s, Ci’, PPh), 145.9 (s, tolC1), 

149.6 (s, C4).   ES(+)-MS (m/z): 932.6, [M]
+
. 
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6.4.3.3 Preparation of Fe(C≡CC6H4NTol2)(dppe)Cp [78] 

 

FeCl(dppe)Cp (100 mg, 0.18 mmol), HC≡CC6H4NTol2  73 (62 mg, 0.21 mmol) and 

NaBPh4 (72 mg, 0.21 mmol) were added to dry, degassed NEt3 (6 ml) and THF (6 

ml).   Stirred for 3 h, reaction mixture turned from bright red solution to brown 

solution with orange precipitate.   After evaporation of the solvent, the residue was 

extracted with diethyl ether.   The extract was concentrated.   Purification done by 

preparative thin layer chromatography (PTLC) using 90:10 hexane:acetone.  An 

orange band was collected to afford an orange solid.   Yield (50 mg, 40 %).  IR 

(CH2Cl2): (C≡C) 2062m cm
-1

.   
1
H NMR (CDCl3): H 2.20 (m, 2H dppe), 2.30 (s, 

6H, 2 × Me), 2.55 (m, 2H, dppe), 4.23 (s, 5H, Cp),  6.20 (pseudo d, 2H, J = 9 Hz, 

AB Ar H), 6.65 (pseudo d, 2H, J = 9 Hz, AB Ar H), 6.80 (pseudo d, 4H, J = 9 Hz, 

AB Ar), 6.95 (pseudo d, 4H, J = 9 Hz, AB Ar), 7.10 - 7.90 (m, 20H, Ar).   
31

P NMR: 

 108.2 (dppe).   
13

C NMR (CDCl3): C 20.7 (s, 2 Me), 28.1 (m, dppe), 79.1 (s, Cp), 

118.3 (s, Cβ), 123.2, 123.7, (2s, C3 + tolC2), 127.5, 127.9 (s, Cm + Cm’, PPh), 128.7 

(s, Cp, PPh), 129.1 (s, Cp’, PPh), 129.5, (2s, ArC2 + tolC3), 131.4, (s, tolC4), 131.7, 

(s, Co, PPh), 132.4 (s(br), Cα), 133.8 (s, Co’, PPh), 137.9 (s, Ci, PPh), 143.3 (s, Ci’, 

PPh), 145.5, (s, tolC1), 148.7, (s, ArC4).   ES(+)-MS (m/z): 816.3, [M]
+
.   Elemental 

analysis for C53H47NP2Fe: C, 78.01; H, 5.81; N, 1.72. Found: C, 78.31; H, 5.90; N, 

1.68. 

 

6.4.3.4 Preparation of [{Fe(dppe)Cp}3(μ-(C≡CC6H4)3N)]  [79]. 

 

FeCl(dppe)Cp (400 mg, 0.72 mmol), (HC≡CC6H4)3N 75 (124 mg, 0.24 mmol) and 

NaBPh4 (144 mg, 0.76 mmol) were added to dry, degassed NEt3 (20 ml) and THF 

(30 ml).   Stirred for 4 h. reaction mixture turned from bright red solution to brown 

solution with orange precipitate.   After evaporation of the solvent, the residue was 

extracted with diethyl ether.   The extract was concentrated.   A dark orange powder 

was obtained by triturating with hexane, (134 mg, 30 %).   IR (CH2Cl2): (C≡C) 

2062m cm
-1

. 
1
H NMR (CDCl3): H 2.0-2.8 (2m, 12H, dppe), 4.20 (s, 15H, Cp), 6.80 

(pseudo d, 6H, J = 9 Hz, AB Ar), 6.95 (pseudo d, 6H, J = 9 Hz, AB Ar), 7.10 - 7.90 

(m, 20H, PPh).   
31

P NMR (CDCl3):  107.4 (dppe).  
13

C NMR (CDCl3): C 28.3 (m, 
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dppe), 79.0 (s, Cp), 118.2 (s, Cβ), 123.2 (s, C3), 127.5, 127.9 (2s, Cm + Cm’, PPh), 

128.7 (s, Cp, PPh), 129.1 (s, Cp’, PPh), 129.8, (s, C2), 131.8, (s, Co, PPh), 132.3 (s, 

Cα), 134.0 (s, Co’, PPh), 137.7 (s, Ci, PPh), 143.2 (s, Ci’, PPh), 148.7, (s, C4).   

ES(+)-MS (m/z): 1872, [M]
+
, 1354.0, [M-[Fe]]

+
, 835.3, [M-2[Fe]]

+
, 677.7, [M-

[Fe]]
2+

. 

 

6.4.4 Computations 

 

All ab initio computations were carried out with the Gaussian 03 package. 
301

   The 

model geometries of the ligand [72-H]
x+

 and mono-metallic iron complex [78-H]
y+ 

(x = 0, 1, and y = 0, 1, 2), discussed here were optimised using the B3LYP/6-31G* 

level of theory with no symmetry constraints. 
241, 243, 408

   The mono-metallic iron 

complex [78-H]
y+ 

and trimetallic iron complex [79-H]
z+

 (y = 0, 1, 2, and z = 0, 1, 2) 

discussed here were also optimised using the MPW1K/6-31G* level of theory.   The 

keywords used in Gaussian03 for the MPW1K functional 
228, 241

 here are 

MPWPW91 and iop(3/76=0472005280). Frequency calculations were computed on 

these optimised geometries at the corresponding levels and no imaginary frequencies 

were found in these geometries unless otherwise stated.  A scaling factor of 0.95 was 

applied to the calculated frequencies calculated using the B3LYP/6-31G* level of 

theory, whereas a scaling factor of 0.91 was applied when MPW1K/6-31G* was 

used, as it is known that DFT calculations over estimate the acetylide (C≡C) and 

acetylide ring substituent (C=C) frequencies. 
244, 245

   The MO diagrams and orbital 

contributions were generated with the aid of GaussView 
246

 and GaussSum 
247

 

packages respectively. 
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Summary 
 

This thesis has addressed some of the issues surrounding the design of complexes 

containing two or more metal centres linked through a common carbon-rich bridging 

ligand, and the study of bridge-mediated charge transfer in these systems. 

 

An improved synthetic route to trans-RuCl(C≡CR)(dppe)2 acetylide complexes from 

the five coordinate complex [RuCl(dppe)2]OTf was devised, which is more 

convenient that the long-standing methods based on cis-RuCl2(dppe)2. Metal 

acetylide complexes based on the 1,3-diethynylbenzene core and trans-

RuCl(C≡CR)(dppe)2 and the similar half-sandwich Ru(dppe)Cp* centre have been 

shown to form thermodynamically stable mono-cations, which have been described 

as valence trapped mixed-valence compounds.  The stabilisation of the mixed-

valence state seems to arise from the delocalisation of the unpaired electron between 

the formally oxidised metal centre and the arylacetylide fragment. 

 

A series of mono, bi- and tri-metallic ruthenium vinyl complexes were prepared via 

the trans- addition of the Ru-H bond in RuHCl(CO)(PPh3)3 across a ethynyl C≡CH 

bond.   The monometallic complexes possess redox-non-innocent vinyl ligands, 

similar in many respects to acetylide analogues.   The bimetallic complexes showed 

interesting oxidation properties, with the first oxidation occurring on the divinylaryl 

ligand and the second occurring on a pendant metal centre.   The trimetallic vinyl 

complexes exhibit similar electronic structures on stepwise oxidation.  

 

Two alternative “Y-shaped” ligand systems based on triethynyl methanol and tris(4-

ethynylphenyl)amine have been investigated.   An improved method to 

triethynylmethanol carbon skeleton that uses chloroethylformate as the key synthetic 

building block has been developed.   Although metallation attempts were not 

successful, complexes derived from triethynyl methanols provide an interesting area 

of chemistry that should be further investigated.   The mono- and tri-metallic triaryl 

acetylide complexes showed metal centred oxidation, with the possibility to 

sequentially oxidise the three iron centres in the trimetallic complex, leading to one 

of the first trimetallic mixed-valence compounds.  



 

296 

 

References 
 

†
 Note that the mixing of acetylide and metal based orbitals makes the assignment of 

a formal metal oxidation state tenuous.   The oxidation states are assigned here 

based on conventional electron counting protocols as is commonly found in the 

literature.   For a more detailed discussion on elements of the problem, see Chapter 

3. 

 

‡
 Kc is a measure of the position of the comproportionation equilibrium, and 

therefore can be influenced by factors such as solvation and ion-pairing energies.   

Whilst Kc has been widely used in the literature as a measure of the magnitude of 

“electronic interactions”, such data should be treated judiciously. 

 

1. http://www.intel.com/technology/mooreslaw/index.htm. 

2. http://www.intel.com/technology/architecture-silicon/32nm/index.htm. 

3. J. M. Tour, Acc. Chem. Res., 2000, 33, 791-804. 

4. L. B. Kish, Phys. Lett. A., 2002, 305, 144-149. 

5. A. Aviram and M. A. Ratner, Chem. Phys. Lett., 1974, 29, 277-283. 

6. E. Hitt, P. Natl. Acad. Sci. USA., 2004, 101, 7213-7214. 

7. R. M. Metzger, Chem. Rev., 2003, 103, 3803-3834. 

8. L. A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin, L. 

Jones, D. L. Allara, J. M. Tour and P. S. Weiss, Science, 1996, 271, 1705-

1707. 

9. F. Paul and C. Lapinte, Coordin. Chem. Rev., 1998, 180, 431-509. 

10. N. Robertson and C. A. McGowan, Chem. Soc. Rev., 2003, 32, 96-103. 

11. M. D. Ward, J. Chem. Educ., 2001, 78, 321-328. 

12. R. Dembinski, T. Bartik, B. Bartik, M. Jaeger and J. A. Gladysz, J. Am. 

Chem. Soc., 2000, 122, 810-822. 

13. P. Avouris, Acc. Chem. Res., 2002, 35, 1026-1034. 

14. G. Seifert, T. Kohler and T. Frauenheim, Appl. Phys. Lett., 2000, 77, 1313-

1315. 

15. A. J. Heeger, J. Phys. Chem. B, 2001, 105, 8475-8491. 

16. F. C. Grozema, Y. A. Berlin and L. D. A. Siebbeles, J. Am. Chem. Soc., 

2000, 122, 10903-10909. 

17. M. J. Crossley and P. L. Burn, J. Chem. Soc. Chem. Commun., 1991, 1569-

1571. 

18. J. Chen, M. A. Reed, C. L. Asplund, A. M. Cassell, M. L. Myrick, A. M. 

Rawlett, J. M. Tour and P. G. Van Patten, Appl. Phys. Lett., 1999, 75, 624-

626. 

19. J. D. Monnell, J. J. Stapleton, S. M. Dirk, W. A. Reinerth, J. M. Tour, D. L. 

Allara and P. S. Weiss, J. Phys. Chem. B, 2005, 109, 20343-20349. 

20. D. K. James and J. M. Tour, Chem. Mater., 2004, 16, 4423-4435. 

21. F. Barigelletti and L. Flamigni, Chem. Soc. Rev., 2000, 29, 1-12. 

22. C. Creutz, Prog. Inorg. Chem., 1983, 30, 1-73. 

http://www.intel.com/technology/mooreslaw/index.htm
http://www.intel.com/technology/architecture-silicon/32nm/index.htm


 

297 

 

23. J. J. Concepcion, D. M. Dattelbaum, T. J. Meyer and R. C. Rocha, Philos. 

Trans. Soc. A, 2008, 366, 163-175. 

24. K. D. Demadis, C. M. Hartshorn and T. J. Meyer, Chem. Rev., 2001, 101, 

2655-2685. 

25. M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem., 1967, 10, 247-422. 

26. G. C. Allen and N. Hush, Prog. Inorg. Chem., 1967, 8, 357-390. 

27. N. Hush, Prog. Inorg. Chem., 1967, 8, 391-444. 

28. D. M. D'Alessandro and F. R. Keene, Chem. Soc. Rev., 2006, 35, 424-440. 

29. J. Bonvoisin, J. P. Launay, M. Vanderauweraer and F. C. Deschryver, J. 

Phys. Chem., 1994, 98, 5052-5057. 

30. J. Bonvoisin, J. P. Launay, W. Verbouwe, M. VanderAuweraer and F. C. 

DeSchryver, J. Phys. Chem., 1996, 100, 17079-17082. 

31. J. C. Salsman, S. Ronco, C. H. Londergan and C. P. Kubiak, Inorg. Chem., 

2006, 45, 547-554. 

32. B. S. Brunschwig, C. Creutz and N. Sutin, Chem. Soc. Rev., 2002, 31, 168-

184. 

33. D. M. D'Alessandro, A. C. Topley, M. S. Davies and F. R. Keene, Chem. 

Eur. J., 2006, 12, 4873-4884. 

34. P. Y. Chen and T. J. Meyer, Chem. Rev., 1998, 98, 1439-1477. 

35. F. Coat, M. A. Guillevic, L. Toupet, F. Paul and C. Lapinte, 

Organometallics, 1997, 16, 5988-5998. 

36. W. Kaim and B. Sarkar, Coordin. Chem. Rev., 2007, 251, 584-594. 

37. C. G. Atwood and W. E. Geiger, J. Am. Chem. Soc., 2000, 122, 5477-5485. 

38. J. P. Launay, Chem. Soc. Rev., 2001, 30, 386-397. 

39. C. H. Londergan, J. C. Salsman, S. Ronco, L. M. Dolkas and C. P. Kubiak, J. 

Am. Chem. Soc., 2002, 124, 6236-6237. 

40. B. J. Lear, S. D. Glover, J. C. Salsman, C. H. Londergan and C. P. Kubiak, J. 

Am. Chem. Soc., 2007, 129, 12772-12779. 

41. J. Maurer, R. F. Winter, B. Sarkar, J. Fiedler and S. Zalis, Chem. Commun., 

2004, 1900-1901. 

42. J. Maurer, B. Sarkar, B. Schwederski, W. Kaim, R. F. Winter and S. Zalis, 

Organometallics, 2006, 25, 3701-3712. 

43. M. A. Fox, R. L. Roberts, T. E. Baines, B. Le Guennic, J. F. Halet, F. Hartl, 

D. S. Yufit, D. Albesa-Jove, J. A. K. Howard and P. J. Low, J. Am. Chem. 

Soc., 2008, 130, 3566-3578. 

44. N. S. Hush and J. R. Reimers, Chem. Rev., 2000, 100, 775-786. 

45. A. Vlcek and S. Zalis, Coordin. Chem. Rev., 2007, 251, 258-287. 

46. L. H. Thomas, Proc. Cambridge Phil. Soc., 1927, 23, 542-548. 

47. P. Hohenberg and W. Kohn, Phys. Rev., 1964, B136, 864-872. 

48. W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, 1133-1138. 

49. L. Pollack and J. P. Perdew, J. Phys. Condens. Mat., 2000, 12, 1239-1252. 

50. J. P. Perdew, A. Ruzsinszky, J. M. Tao, V. N. Staroverov, G. E. Scuseria and 

G. I. Csonka, J. Chem. Phys., 2005, 123. 

51. M. StClair, W. P. Schaefer and J. E. Bercaw, Organometallics, 1991, 10, 

525-527. 

52. P. Binger, P. Muller, P. Philipps, B. Gabor, R. Mynott, A. T. Herrmann, F. 

Langhauser and C. Kruger, Chem. Ber. Recl., 1992, 125, 2209-2212. 

53. G. A. Koutsantonis and J. P. Selegue, J. Am. Chem. Soc., 1991, 113, 2316-

2317. 

54. R. J. Cross and M. F. Davidson, J. Chem. Soc. Dalton Trans., 1986, 411-414. 



 

298 

 

55. M. I. Bruce and P. J. Low, Adv. Organomet. Chem., 2004, 50, 179-444. 

56. M. Brady, W. Q. Weng, Y. L. Zhou, J. W. Seyler, A. J. Amoroso, A. M. 

Arif, M. Bohme, G. Frenking and J. A. Gladysz, J. Am. Chem. Soc., 1997, 

119, 775-788. 

57. T. Bartik, W. Q. Weng, J. A. Ramsden, S. Szafert, S. B. Falloon, A. M. Arif 

and J. A. Gladysz, J. Am. Chem. Soc., 1998, 120, 11071-11081. 

58. Y. Tanaka, T. Ozawa, A. Inagaki and M. Akita, Dalton Trans., 2007, 928-

933. 

59. M. Linseis, R. F. Winter, B. Sarkar, W. Kaim and S. Zalis, Organometallics, 

2008, 27, 3321-3324. 

60. D. Touchard, C. Morice, V. Cadierno, P. Haquette, L. Toupet and P. H. 

Dixneuf, J. Chem. Soc. Chem. Commun., 1994, 859-860. 

61. D. Touchard, P. Haquette, S. Guesmi, L. LePichon, A. Daridor, L. Toupet 

and P. H. Dixneuf, Organometallics, 1997, 16, 3640-3648. 

62. P. Haquette, D. Touchard, L. Toupet and P. Dixneuf, J. Organomet. Chem., 

1998, 565, 63-73. 

63. C. Lebreton, D. Touchard, L. Le Pichon, A. Daridor, L. Toupet and P. H. 

Dixneuf, Inorg. Chim. Acta., 1998, 272, 188-196. 

64. C. W. Faulkner, S. L. Ingham, M. S. Khan, J. Lewis, N. J. Long and P. R. 

Raithby, J. Organomet. Chem., 1994, 482, 139-145. 

65. S. Rigaut, J. Perruchon, L. Le Pichon, D. Touchard and P. H. Dixneuf, J. 

Organomet. Chem., 2003, 670, 37-44. 

66. S. Rigaut, F. Monnier, F. Mousset, D. Touchard and P. H. Dixneuf, 

Organometallics, 2002, 21, 2654-2661. 

67. B. Gomez-Lor, A. Santos, M. Ruiz and A. M. Echavarren, Eur. J. Inorg. 

Chem., 2001, 2305-2310. 

68. D. Touchard, P. Haquette, A. Daridor, L. Toupet and P. H. Dixneuf, J. Am. 

Chem. Soc., 1994, 116, 11157-11158. 

69. R. F. Winter, K. W. Klinkhammer and S. Zalis, Organometallics, 2001, 20, 

1317-1333. 

70. M. Uno and P. H. Dixneuf, Angew. Chem. Int. Ed., 1998, 37, 1714-1717. 

71. S. Rigaut, J. Perruchon, S. Guesmi, C. Fave, D. Touchard and P. H. Dixneuf, 

Eur. J. Inorg. Chem., 2005, 447-460. 

72. O. Lavastre, J. Plass, P. Bachmann, S. Guesmi, C. Moinet and P. H. Dixneuf, 

Organometallics, 1997, 16, 184-189. 

73. J. L. Fillaut, N. N. Dua, F. Geneste, L. Toupet and S. Sinbandhit, J. 

Organomet. Chem., 2006, 691, 5610-5618. 

74. S. K. Hurst, N. T. Lucas, M. G. Humphrey, T. Isoshima, K. Wostyn, I. 

Asselberghs, K. Clays, A. Persoons, M. Samoc and B. Luther-Davies, Inorg. 

Chim. Acta., 2003, 350, 62-76. 

75. S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. 

Samoc, B. Luther-Davies, I. Asselberghs and A. Persoons, J. Organomet. 

Chem., 2002, 642, 259-267. 

76. J. P. L. Morrall, M. P. Cifuentes, M. G. Humphrey, R. Kellens, E. Robijns, I. 

Asselberghs, K. Clays, A. Persoons, M. Samoc and A. C. Willis, Inorg. 

Chim. Acta., 2006, 359, 998-1005. 

77. S. K. Hurst, M. G. Humphrey, T. Isoshima, K. Wostyn, I. Asselberghs, K. 

Clays, A. Persoons, M. Samoc and B. Luther-Davies, Organometallics, 

2002, 21, 2024-2026. 



 

299 

 

78. S. K. Hurst, M. G. Humphrey, J. P. Morrall, M. P. Cifuentes, M. Samoc, B. 

Luther-Davies, G. A. Heath and A. C. Willis, J. Organomet. Chem., 2003, 

670, 56-65. 

79. M. Samoc, N. Gauthier, M. P. Cifuentes, F. Paul, C. Lapinte and M. G. 

Humphrey, Angew. Chem. Int. Ed., 2006, 45, 7376-7379. 

80. G. T. Dalton, M. P. Cifuentes, S. Petrie, R. Stranger, M. G. Humphrey and 

M. Samoc, J. Am. Chem. Soc., 2007, 129, 11882-11883. 

81. C. E. Powell, M. P. Cifuentes, J. P. Morrall, R. Stranger, M. G. Humphrey, 

M. Samoc, B. Luther-Davies and G. A. Heath, J. Am. Chem. Soc., 2003, 125, 

602-610. 

82. M. P. Cifuentes, C. E. Powell, J. P. Morrall, A. M. McDonagh, N. T. Lucas, 

M. G. Humphrey, M. Samoc, S. Houbrechts, I. Asselberghs, K. Clays, A. 

Persoons and T. Isoshima, J. Am. Chem. Soc., 2006, 128, 10819-10832. 

83. S. K. Hurst, M. P. Cifuentes, J. P. L. Morrall, N. T. Lucas, I. R. Whittall, M. 

G. Humphrey, I. Asselberghs, A. Persoons, M. Samoc, B. Luther-Davies and 

A. C. Willis, Organometallics, 2001, 20, 4664-4675. 

84. M. P. Cifuentes, C. E. Powell, M. G. Humphrey, G. A. Heath, M. Samoc and 

B. Luther-Davies, J. Phys. Chem. A, 2001, 105, 9625-9627. 

85. J. L. Fillaut, J. Andries, J. Perruchon, J. P. Desvergne, L. Toupet, L. Fadel, 

B. Zouchoune and J. Y. Saillard, Inorg. Chem., 2007, 46, 5922-5932. 

86. J. L. Fillaut, J. Andries, R. D. Marwaha, P. H. Lanoe, O. Lohio, L. Toupet 

and J. A. G. Williams, J. Organomet. Chem., 2008, 693, 228-234. 

87. O. F. Koentjoro, R. Rousseau and P. J. Low, Organometallics, 2001, 20, 

4502-4509. 

88. M. I. Bruce, P. J. Low, K. Costuas, J. F. Halet, S. P. Best and G. A. Heath, J. 

Am. Chem. Soc., 2000, 122, 1949-1962. 

89. B. Kim, J. M. Beebe, C. Olivier, S. Rigaut, D. Touchard, J. G. Kushmerick, 

X. Y. Zhu and C. D. Frisbie, J. Phys. Chem. C., 2007, 111, 7521-7526. 

90. N. Gauthier, G. Argouarch, F. Paul, M. G. Humphrey, L. Toupet, S. Ababou-

Girard, H. Sabbah, P. Hapiot and B. Fabre, Adv. Mater., 2008, 20, 1952. 

91. A. Klein, O. Lavastre and J. Fiedler, Organometallics, 2006, 25, 635-643. 

92. C. Olivier, B. Kim, D. Touchard and S. Rigaut, Organometallics, 2008, 27, 

509-518. 

93. N. Gauthier, C. Olivier, S. Rigaut, D. Touchard, T. Roisnel, M. G. 

Humphrey and F. Paul, Organometallics, 2008, 27, 1063-1072. 

94. S. Rigaut, C. Olivier, K. Costuas, S. Choua, O. Fadhel, J. Massue, P. Turek, 

J. Y. Saillard, P. H. Dixneuf and D. Touchard, J. Am. Chem. Soc., 2006, 128, 

5859-5876. 

95. S. Rigaut, L. Le Pichon, J. C. Daran, D. Touchard and P. H. Dixneuf, Chem. 

Commun., 2001, 1206-1207. 

96. Z. Q. Wei, S. Guo and S. A. Kandel, J. Phys. Chem. B, 2006, 110, 21846-

21849. 

97. H. Qi, A. Gupta, B. C. Noll, G. L. Snider, Y. H. Lu, C. Lent and T. P. 

Fehlner, J. Am. Chem. Soc., 2005, 127, 15218-15227. 

98. K. Onitsuka, N. Ohara, F. Takei and S. Takahashi, Dalton Trans., 2006, 

3693-3698. 

99. Q. Y. Hu, W. X. Lu, H. D. Tang, H. H. Y. Sung, T. B. Wen, I. D. Williams, 

G. K. L. Wong, Z. Y. Lin and G. C. Jia, Organometallics, 2005, 24, 3966-

3973. 



 

300 

 

100. M. Samoc, N. Gauthier, M. P. Cifuentes, F. Paul, C. Lapinte, M. G. 

Humphrey and G. T. Dalton, Angew. Chem. Int. Ed., 2008, 47, 629-629. 

101. S. Guesmi, D. Touchard and P. H. Dixneuf, Chem. Commun., 1996, 2773-

2774. 

102. D. Touchard, P. Haquette, A. Daridor, A. Romero and P. H. Dixneuf, 

Organometallics, 1998, 17, 3844-3852. 

103. O. Lavastre, M. Even, P. H. Dixneuf, A. Pacreau and J. P. Vairon, 

Organometallics, 1996, 15, 1530-1531. 

104. C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. 

Samoc and M. G. Humphrey, Organometallics, 2007, 26, 4456-4463. 

105. S. K. Hurst, M. P. Cifuentes and M. G. Humphrey, Organometallics, 2002, 

21, 2353-2355. 

106. N. Matsumi, Y. Chujo, O. Lavastre and P. H. Dixneuf, Organometallics, 

2001, 20, 2425-2427. 

107. G. R. Whittell and I. Manners, Adv. Mater., 2007, 19, 3439-3468. 

108. M. Samoc, J. P. Morrall, G. T. Dalton, M. P. Cifuentes and M. G. 

Humphrey, Angew. Chem. Int. Ed., 2007, 46, 731-733. 

109. C. E. Powell, J. P. Morrall, S. A. Ward, M. P. Cifuentes, E. G. A. Notaras, 

M. Samoc and M. G. Humphrey, J. Am. Chem. Soc., 2004, 126, 12234-

12235. 

110. A. M. McDonagh, M. G. Humphrey, M. Samoc and B. Luther-Davies, 

Organometallics, 1999, 18, 5195-5197. 

111. A. M. McDonagh, C. E. Powell, J. P. Morrall, M. P. Cifuentes and M. G. 

Humphrey, Organometallics, 2003, 22, 1402-1413. 

112. R. L. Roberts, T. Schwich, T. C. Corkery, M. P. Cifuentes, K. A. Green, J. 

D. Farmer, P. J. Low, T. B. Marder, M. Samoc and M. G. Humphrey, Adv. 

Mater., 2009, 21, 2318-2322. 

113. N. Gauthier, N. Tchouar, F. Justaud, G. Argouarch, M. P. Cifuentes, L. 

Toupet, D. Touchard, J. F. Halet, S. Rigaut, M. G. Humphrey, K. Costuas 

and F. Paul, Organometallics, 2009, 28, 2253-2266. 

114. M. A. Fox, J. D. Farmer, R. L. Roberts, M. G. Humphrey and P. J. Low, 

Organometallics, 2009, 28, 5266-5269. 

115. M. A. Fox, R. L. Roberts, W. M. Khairul, F. Hartl and P. J. Low, J. 

Organomet. Chem., 2007, 692, 3277-3290. 

116. R. Packheiser, M. Lohan, B. Brauer, F. Justaud, C. Lapinte and H. Lang, J. 

Organomet. Chem., 2008, 693, 2898-2902. 

117. Y. Liao, J. K. Feng, L. Yang, A. M. Ren and H. X. Zhang, Organometallics, 

2005, 24, 385-394. 

118. K. Costuas, F. Paul, L. Toupet, J. F. O. Halet and C. Lapinte, 

Organometallics, 2004, 23, 2053-2068. 

119. Z. Atherton, C. W. Faulkner, S. L. Ingham, A. K. Kakkar, M. S. Khan, J. 

Lewis, N. J. Long and P. R. Raithby, J. Organomet. Chem., 1993, 462, 265-

270. 

120. M. Younus, N. J. Long, P. R. Raithby, J. Lewis, N. A. Page, A. J. P. White, 

D. J. Williams, M. C. B. Colbert, A. J. Hodge, M. S. Khan and D. G. Parker, 

J. Organomet. Chem., 1999, 578, 198-209. 

121. Y. F. Liu, C. Lagrost, K. Costuas, N. Tchouar, H. Le Bozec and S. Rigaut, 

Chem. Commun., 2008, 6117-6119. 

122. D. Weiss and P. H. Dixneuf, Organometallics, 2003, 22, 2209-2216. 



 

301 

 

123. B. Chaudret, G. Commenges and R. Poilblanc, J. Chem. Soc. Dalton Trans., 

1984, 1635-1639. 

124. I. P. Evans, A. Spencer and G. Wilkinson, J. Chem. Soc. Dalton Trans., 

1973, 204-209. 

125. M. T. Bautista, E. P. Cappellani, S. D. Drouin, R. H. Morris, C. T. 

Schweitzer, A. Sella and J. Zubkowski, J. Am. Chem. Soc., 1991, 113, 4876-

4887. 

126. L. Russo, J. Figueira, J. Rodrigues and K. Rissanen, Acta. Cryst., 2006, E62, 

M1154-M1155. 

127. B. Chin, A. J. Lough, R. H. Morris, C. T. Schweitzer and C. Dagostino, 

Inorg. Chem., 1994, 33, 6278-6288. 

128. Y. Nishibayashi, S. Takemoto, S. Iwai and M. Hidai, Inorg. Chem., 2000, 39, 

5946-5957. 

129. S. J. Higgins, A. La Pensee, C. A. Stuart and J. M. Charnock, J. Chem. Soc. 

Dalton Trans., 2001, 902-910. 

130. J. R. Polam and L. C. Porter, J. Coord. Chem., 1993, 29, 109-119. 

131. N. Mantovani, M. Brugnati, L. Gonsalvi, E. Grigiotti, F. Laschi, L. Marvelli, 

M. Peruzzini, G. Reginato, R. Rossi and P. Zanello, Organometallics, 2005, 

24, 405-418. 

132. J. Chatt and R. G. Hayter, J. Chem. Soc., 1961, 896-904. 

133. T. A. Stephenson and G. Wilkinson, J. Inorg. Nucl. Chem., 1966, 28, 2285-

2291. 

134. P. S. Hallman, T. A. Stephenson and G. Wilkinson, Inorg. Synth., 1970, 12, 

237. 

135. R. Mason, D. W. Meek and G. R. Scollary, Inorg. Chim. Acta., 1976, 16, 

L11-L12. 

136. M. Rohr, M. Gunther, F. Jutz, J. D. Grunwaldt, H. Emerich, W. van Beek 

and A. Baiker, Appl. Catal. A-Gen., 2005, 296, 238-250. 

137. D. N. Cheredilin, F. M. Dolgushin, E. V. Balagurova, I. A. Godovikov and I. 

T. Chizhevsky, Russ. Chem. B+. 2004, 53, 2086-2089. 

138. A. A. Batista, L. A. C. Cordeiro and G. Oliva, Inorg. Chim. Acta., 1993, 203, 

185-191. 

139. A. Mezzetti, A. Delzotto, P. Rigo and N. B. Pahor, J. Chem. Soc. Dalton 

Trans., 1989, 1045-1052. 

140. J. Diez, M. P. Gamasa, J. Gimeno, Y. Rodriguez and S. Garcia-Granda, Eur. 

J. Inorg. Chem., 2004, 2078-2085. 

141. R. M. Stoop, C. Bauer, P. Setz, M. Worle, T. Y. H. Wong and A. Mezzetti, 

Organometallics, 1999, 18, 5691-5700. 

142. J. K. Burdett, M. A. Graham, R. N. Perutz, M. Poliakoff, A. J. Rest, J. J. 

Turner and R. F. Turner, J. Am. Chem. Soc., 1975, 97, 4805-4808. 

143. P. J. Hay, J. Am. Chem. Soc., 1978, 100, 2411-2417. 

144. I. E. Rachidi, O. Eisenstein and Y. Jean, New. J. Chem., 1990, 14, 671-677. 

145. D. L. Thorn and R. Hoffmann, Nouv. J. Chim., 1979, 3, 39-45. 

146. J. E. McGrady, T. Lovell, R. Stranger and M. G. Humphrey, 

Organometallics, 1997, 16, 4004-4011. 

147. C. D. Delfs, R. Stranger, M. G. Humphrey and A. M. McDonagh, J. 

Organomet. Chem., 2000, 607, 208-212. 

148. SHELXTL, version 6.14, Bruker, AXS, Madison, Wisconsin, USA, 2000 

149. W. A. Chalifoux and R. R. Tykwinski, C.R. Chim., 2009, 12, 341-358. 



 

302 

 

150. W. Y. Kim, Y. C. Choi, S. K. Min, Y. Cho and K. S. Kim, Chem. Soc. Rev., 

2009, 38, 2319-2333. 

151. R. Mas-Balleste, O. Castillo, P. J. S. Miguel, D. Olea, J. Gomez-Herrero and 

F. Zamora, Eur. J. Inorg. Chem., 2009, 2885-2896. 

152. D. Mihailovic, Prog. Mater. Sci, 2009, 54, 309-350. 

153. M. I. Bruce, M. Z. Ke and P. J. Low, Chem. Commun., 1996, 2405-2406. 

154. M. I. Bruce, L. I. Denisovich, P. J. Low, S. M. Peregudova and N. A. 

Ustynuk, Mendeleev Commun., 1996, 200-201. 

155. S. Szafert and J. A. Gladysz, Chem. Rev., 2003, 103, 4175-4205. 

156. S. Szafert and J. A. Gladysz, Chem. Rev., 2006, 106, PR1-PR33. 

157. M. I. Bruce, B. G. Ellis, M. Gaudio, C. Lapinte, G. Melino, F. Paul, B. W. 

Skelton, M. E. Smith, L. Toupet and A. H. White, Dalton Trans, 2004, 1601-

1609. 

158. F. Coat, F. Paul, C. Lapinte, L. Toupet, K. Costuas and J. F. Halet, J. 

Organomet. Chem., 2003, 683, 368-378. 

159. S. H. Liu, Y. H. Chen, K. L. Wan, T. B. Wen, Z. Y. Zhou, M. F. Lo, I. D. 

Williams and G. C. Jia, Organometallics, 2002, 21, 4984-4992. 

160. S. H. Liu, H. P. Xia, T. B. Wen, Z. Y. Zhou and G. C. Jia, Organometallics, 

2003, 22, 737-743. 

161. S. H. Liu, H. P. Xia, K. L. Wan, R. C. Y. Yeung, Q. Y. Hu and G. C. Jia, J. 

Organomet. Chem., 2003, 683, 331-336. 

162. S. H. Liu, Q. Y. Hu, P. Xue, T. B. Wen, I. D. Williams and G. C. Jia, 

Organometallics, 2005, 24, 769-772. 

163. P. Yuan, S. H. Liu, W. C. Xiong, J. Yin, G. A. Yu, H. Y. Sung, I. D. 

Williams and G. C. Jia, Organometallics, 2005, 24, 1452-1457. 

164. S. Ibn Ghazala, F. Paul, L. Toupet, T. Roisnel, P. Hapiot and C. Lapinte, J. 

Am. Chem. Soc., 2006, 128, 2463-2476. 

165. L. Droz, M. A. Fox, D. Hnyk, P. J. Low, J. A. H. MacBride and V. Vsetecka, 

Collect. Czech, Chem. C., 2009, 74, 131-146. 

166. S. Kim, A. Oehlhof, B. Beile and H. Meier, Helv. Chim. Acta., 2009, 92, 

1023-1033. 

167. H. Meier, Angew. Chem. Int. Ed., 2005, 44, 2482-2506. 

168. N. Lenarvor and C. Lapinte, Organometallics, 1995, 14, 634-639. 

169. M. I. Bruce, B. C. Hall, P. J. Low, B. W. Skelton and A. H. White, J. 

Organomet. Chem., 1999, 592, 74-83. 

170. J. N. Wilson, P. M. Windscheif, U. Evans, M. L. Myrick and U. H. F. Bunz, 

Macromolecules., 2002, 35, 8681-8683. 

171. Y. Q. Wang, B. Erdogan, J. N. Wilson and U. H. F. Bunz, Chem. Commun., 

2003, 1624-1625. 

172. S. Shotwell, P. M. Windscheif, M. D. Smith and U. H. F. Bunz, Org. Lett., 

2004, 6, 4151-4154. 

173. B. C. Englert, M. D. Smith, K. I. Hardcastle and U. H. F. Bunz, 

Macromolecules., 2004, 37, 8212-8221. 

174. C. D. Zangmeister, S. W. Robey, R. D. van Zee, Y. X. Yao and J. M. Tour, 

J. Am. Chem. Soc., 2004, 126, 3420-3421. 

175. C. Risko, C. D. Zangmeister, Y. Yao, T. J. Marks, J. M. Tour, M. A. Ratner 

and R. D. van Zee, J. Phys. Chem. C., 2008, 112, 13215-13225. 

176. F. R. F. Fan, R. Y. Lai, J. Cornil, Y. Karzazi, J. L. Bredas, L. T. Cai, L. 

Cheng, Y. X. Yao, D. W. Price, S. M. Dirk, J. M. Tour and A. J. Bard, J. Am. 

Chem. Soc., 2004, 126, 2568-2573. 



 

303 

 

177. A. Funston, J. P. Kirby, J. R. Miller, L. Pospisil, J. Fiedler, M. Hromadova, 

M. Gal, J. Pecka, M. Valasek, Z. Zawada, P. Rempala and J. Michl, J. Phys. 

Chem. A, 2005, 109, 10862-10869. 

178. G. T. Dalton, M. P. Cifuentes, L. A. Watson, S. Petrie, R. Stranger, M. 

Samoc and M. G. Humphrey, Inorg. Chem., 2009, 48, 6534-6547. 

179. B. Babgi, L. Rigamonti, M. P. Cifuentes, T. C. Corkery, M. D. Randles, T. 

Schwich, S. Petrie, R. Stranger, A. Teshome, I. Asselberghs, K. Clays, M. 

Samoc and M. G. Humphrey, J. Am. Chem. Soc., 2009, 131, 10293-10307. 

180. T. L. Stott and M. O. Wolf, Coordin. Chem. Rev., 2003, 246, 89-101. 

181. P. J. Low and M. I. Bruce, Adv. Organomet. Chem., 2001, 48, 71-288. 

182. Y. B. Zhu and M. O. Wolf, J. Am. Chem. Soc., 2000, 122, 10121-10125. 

183. Y. B. Zhu, D. B. Millet, M. O. Wolf and S. J. Rettig, Organometallics, 1999, 

18, 1930-1938. 

184. N. D. Jones, M. O. Wolf and D. M. Giaquinta, Organometallics, 1997, 16, 

1352-1354. 

185. Y. B. Zhu, O. Clot, M. O. Wolf and G. P. A. Yap, J. Am. Chem. Soc., 1998, 

120, 1812-1821. 

186. J. Sedlacek, J. Vohlidal, N. Patev, M. Pacovska, S. Cabioch, O. Lavastre, P. 

H. Dixneuf, H. Balcar and P. Matejka, Macromol. Chem. Physic., 1999, 200, 

972-976. 

187. C. Olivier, S. Choua, P. Turek, D. Touchard and S. Rigaut, Chem. Commun., 

2007, 3100-3102. 

188. S. Rigaut, J. Massue, D. Touchard, J. L. Fillaut, S. Golhen and P. H. 

Dixneuf, Angew. Chem. Int. Ed., 2002, 41, 4513-4517. 

189. P. Hamon, F. Justaud, O. Cador, P. Hapiot, S. Rigaut, L. Toupet, L. Ouahab, 

H. Stueger, J. R. Hamon and C. Lapinte, J. Am. Chem. Soc., 2008, 130, 

17372-17383. 

190. C. S. Lent, B. Isaksen and M. Lieberman, J. Am. Chem. Soc., 2003, 125, 

1056-1063. 

191. M. Lieberman, S. Chellamma, B. Varughese, Y. L. Wang, C. Lent, G. H. 

Bernstein, G. Snider and F. C. Peiris, Ann. NY. Acad. Sci., 2002, 960, 225-

239. 

192. A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent and G. L. Snider, 

Science, 1997, 277, 928-930. 

193. G. L. Snider, O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, J. L. Merz and 

W. Porod, Solid State Electron., 1998, 42, 1355-1359. 

194. C. S. Lent, Science, 2000, 288, 1597-1599. 

195. J. C. Ellenbogen and J. C. Love, P. IEEE., 2000, 88, 386-426. 

196. A. P. de Silva and N. D. McClenaghan, Chem. Eur. J., 2004, 10, 574-586. 

197. F. M. Raymo, Adv. Mater., 2002, 14, 401-414. 

198. V. Balzani, A. Credi and M. Venturi, Chemphyschem, 2003, 4, 49-59. 

199. A. P. De Silva, Nat. Mater., 2005, 4, 15-16. 

200. Z. H. Li, A. M. Beatty and T. P. Fehlner, Inorg. Chem., 2003, 42, 5707-5714. 

201. Z. H. Li and T. P. Fehlner, Inorg. Chem., 2003, 42, 5715-5721. 

202. J. Y. Jiao, G. J. Long, F. Grandjean, A. M. Beatty and T. P. Fehlner, J. Am. 

Chem. Soc., 2003, 125, 7522-7523. 

203. J. Y. Jiao, G. J. Long, L. Rebbouh, F. Grandjean, A. M. Beatty and T. P. 

Fehlner, J. Am. Chem. Soc., 2005, 127, 17819-17831. 

204. V. C. Lau, L. A. Berben and J. R. Long, J. Am. Chem. Soc., 2002, 124, 9042-

9043. 



 

304 

 

205. M. I. Bruce, N. N. Zaitseva, P. J. Low, B. W. Skelton and A. H. White, J. 

Organomet. Chem., 2006, 691, 4273-4280. 

206. M. Akita, Y. Tanaka, C. Naitoh, T. Ozawa, N. Hayashi, M. Takeshita, A. 

Inagaki and M. C. Chung, Organometallics, 2006, 25, 5261-5275. 

207. R. Packheiser, P. Ecorchard, T. Ruffer, M. Lohan, B. Brauer, F. Justaud, C. 

Lapinte and H. Lang, Organometallics, 2008, 27, 3444-3457. 

208. M. J. Irwin, L. ManojlovicMuir, K. W. Muir, R. J. Puddephatt and D. S. 

Yufit, Chem. Commun., 1997, 219-220. 

209. S. H. F. Chong, S. C. F. Lam, V. W. W. Yam, N. Y. Zhu, K. K. Cheung, S. 

Fathallah, K. Costuas and J. F. Halet, Organometallics, 2004, 23, 4924-4933. 

210. I. R. Whittall, M. G. Humphrey, S. Houbrechts, J. Maes, A. Persoons, S. 

Schmid and D. C. R. Hockless, J. Organomet. Chem., 1997, 544, 277-283. 

211. C. E. Powell, M. P. Cifuentes, M. G. Humphrey, A. C. Willis, J. P. Morrall 

and M. Samoc, Polyhedron., 2007, 26, 284-289. 

212. V. W. W. Yam, L. J. Zhang, C. H. Tao, K. M. C. Wong and K. K. Cheung, J. 

Chem. Soc. Dalton Trans., 2001, 1111-1116. 

213. N. J. Long, A. J. Martin, F. F. de Biani and P. Zanello, J. Chem. Soc. Dalton 

Trans., 1998, 2017-2021. 

214. N. J. Long, A. J. Martin, A. J. P. White, D. J. Williams, M. Fontani, F. 

Laschi and P. Zanello, J. Chem. Soc. Dalton Trans., 2000, 3387-3392. 

215. R. M. Medina, C. Moreno, M. L. Marcos, J. A. Castro, F. Benito, A. Arnanz, 

S. Delgado, J. Gonzalez-Velasco and M. J. Macazaga, Inorg. Chim. Acta., 

2004, 357, 2069-2080. 

216. C. Moreno, M. L. Marcos, G. Dominguez, A. Arnanz, D. H. Farrar, R. 

Teeple, A. Lough, J. Gonzalez-Velasco and S. Delgado, J. Organomet. 

Chem., 2001, 631, 19-28. 

217. S. M. Draper, M. Delamesiere, E. Champeil, B. Twamley, J. J. Byrne and C. 

Long, J. Organomet. Chem., 1999, 589, 157-167. 

218. S. K. Hurst and T. Ren, J. Organomet. Chem., 2002, 660, 1-5. 

219. T. Weyland, C. Lapinte, G. Frapper, M. J. Calhorda, J. F. Halet and L. 

Toupet, Organometallics, 1997, 16, 2024-2031. 

220. D. Beljonne, M. C. B. Colbert, P. R. Raithby, R. H. Friend and J. L. Bredas, 

Synthetic. Met., 1996, 81, 179-183. 

221. T. Weyland, K. Costuas, L. Toupet, J. F. Halet and C. Lapinte, 

Organometallics, 2000, 19, 4228-4239. 

222. T. Weyland, K. Costuas, A. Mari, J. F. Halet and C. Lapinte, 

Organometallics, 1998, 17, 5569-5579. 

223. M. C. B. Colbert, J. Lewis, N. J. Long, P. R. Raithby, M. Younus, A. J. P. 

White, D. J. Williams, N. N. Payne, L. Yellowlees, D. Beljonne, N. 

Chawdhury and R. H. Friend, Organometallics, 1998, 17, 3034-3043. 

224. F. Paul, B. G. Ellis, M. I. Bruce, L. Toupet, T. Roisnel, K. Costuas, J. F. 

Halet and C. Lapinte, Organometallics, 2006, 25, 649-665. 

225. R. Packheiser, P. Ecorchard, T. Ruffer and H. Lang, Organometallics, 2008, 

27, 3534-3546. 

226. M. I. Bruce, K. Costuas, T. Davin, B. G. Ellis, J. F. Halet, C. Lapinte, P. J. 

Low, M. E. Smith, B. W. Skelton, L. Toupet and A. H. White, 

Organometallics, 2005, 24, 3864-3881. 

227. F. Paul, L. Toupet, J. Y. Thepot, K. Costuas, J. F. Halet and C. Lapinte, 

Organometallics, 2005, 24, 5464-5478. 



 

305 

 

228. B. J. Lynch, P. L. Fast, M. Harris and D. G. Truhlar, J. Phys. Chem. A, 2000, 

104, 4811-4815. 

229. N. J. Brown, P. K. Eckert, M. A. Fox, D. S. Yufit, J. A. K. Howard and P. J. 

Low, Dalton Trans., 2008, 433-436. 

230. D. E. Richardson and H. Taube, Inorg. Chem., 1981, 20, 1278-1285. 

231. D. E. Richardson and H. Taube, Coordin. Chem. Rev., 1984, 60, 107-129. 

232. M. E. Stoll, S. R. Lovelace, W. E. Geiger, H. Schimanke, I. Hyla-Kryspin 

and R. Gleiter, J. Am. Chem. Soc., 1999, 121, 9343-9351. 

233. F. Paul, G. da Costa, A. Bondon, N. Gauthier, S. Sinbandhit, L. Toupet, K. 

Costuas, J. F. Halet and C. Lapinte, Organometallics, 2007, 26, 874-896. 

234. M. I. Bruce, B. G. Ellis, P. J. Low, B. W. Skelton and A. H. White, 

Organometallics, 2003, 22, 3184-3198. 

235. M. A. Fox, J. E. Harris, S. Heider, V. Perez-Gregorio, M. E. Zakrzewska, J. 

D. Farmer, D. S. Yufit, J. A. K. Howard and P. J. Low, J. Organomet. 

Chem., 2009, 694, 2350-2358. 

236. D. L. Trumbo and C. S. Marvel, J. Polym. Sci. A1., 1986, 24, 2231-2238. 

237. C. Bitcon and M. W. Whiteley, J. Organomet. Chem., 1987, 336, 385-392. 

238. N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877-910. 

239. M. Krejcik, M. Danek and F. Hartl, J. Electroanal. Chem., 1991, 317, 179-

187. 

240. M. L. Gou, M. Dai, X. Y. Li, L. Yang, M. J. Huang, Y. S. Wang, B. Kan, Y. 

Lu, Y. Wei and Z. Y. Qian, Colloid. Surface. B., 2008, 64, 135-139. 

241. B. J. Lynch, Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2003, 107, 1384-

1388. 

242. G. A. Petersson and M. A. Allaham, J. Chem. Phys., 1991, 94, 6081-6090. 

243. G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Allaham, W. A. Shirley 

and J. Mantzaris, J. Chem. Phys., 1988, 89, 2193-2218. 

244. A. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502-16513. 

245. J. C. Roder, F. Meyer, I. Hyla-Kryspin, R. F. Winter and E. Kaifer, Chem. 

Eur. J., 2003, 9, 2636-2648. 

246. GaussView, version 4.0, R. Dennington II, T. Keith and J. Millam, 

Semichem, Inc., Shawnee Mission, KS, 2007 

247. GaussSum, version 2.1.4, N. M. O'Boyle and J. G. Vos, Dublin City 

University, 2007 

248. J. Maurer, B. Sarkar, W. Kaim, R. F. Winter and S. Zalis, Chem. Eur. J., 

2007, 13, 10257-10272. 

249. J. Maurer, M. Linseis, B. Sarkar, B. Schwederski, M. Niemeyer, W. Kaim, S. 

Zalis, C. Anson, M. Zabel and R. F. Winter, J. Am. Chem. Soc., 2008, 130, 

259-268. 

250. K. Kowalski, M. Linseis, R. F. Winter, M. Zabel, S. Zalis, H. Kelm, H. J. 

Kruger, B. Sarkar and W. Kaim, Organometallics, 2009, 28, 4196-4209. 

251. S. D. Glover, J. C. Goeltz, B. J. Lear and C. P. Kubiak, Eur. J. Inorg. Chem., 

2009, 585-594. 

252. M. R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 1986, 

309, 169-177. 

253. M. R. Torres, A. Santos, J. Ros and X. Solans, Organometallics, 1987, 6, 

1091-1095. 

254. A. Romero, A. Santos and A. Vegas, Organometallics, 1988, 7, 1988-1993. 

255. A. Romero, A. Santos, J. Lopez and A. M. Echavarren, J. Organomet. 

Chem., 1990, 391, 219-223. 



 

306 

 

256. M. R. Torres, A. Santos, A. Perales and J. Ros, J. Organomet. Chem., 1988, 

353, 221-228. 

257. A. F. Hill, eds. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, 

Oxford, 1995, vol. 7, pp. 400-410. 

258. M. R. Torres, A. Perales and J. Ros, Organometallics, 1988, 7, 1223-1224. 

259. M. R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 1987, 

326, 413-421. 

260. A. F. Hill and R. P. Melling, J. Organomet. Chem., 1990, 396, C22-C24. 

261. D. S. Bohle, G. R. Clark, C. E. F. Rickard, W. R. Roper, W. E. B. Shepard 

and L. J. Wright, J. Chem. Soc. Chem. Commun., 1987, 563-565. 

262. M. Herberhold and A. F. Hill, J. Organomet. Chem., 1990, 395, 315-326. 

263. A. Gieren, C. Ruizperez, T. Hubner, M. Herberhold and A. F. Hill, J. Chem. 

Soc. Dalton Trans., 1988, 1693-1696. 

264. W. R. Roper, G. E. Taylor, J. M. Waters and L. J. Wright, J. Organomet. 

Chem., 1978, 157, C27-C29. 

265. W. R. Roper, G. E. Taylor, J. M. Waters and L. J. Wright, J. Organomet. 

Chem., 1979, 182, C46-C48. 

266. N. W. Alcock, A. F. Hill and R. P. Melling, Organometallics, 1991, 10, 

3898-3903. 

267. J. D. E. T. Wilton-Ely, S. J. Honarkhah, M. Wang, D. A. Tocher and A. M. 

Z. Slawin, Dalton Trans., 2005, 1930-1939. 

268. H. Werner, M. A. Esteruelas and H. Otto, Organometallics, 1986, 5, 2295-

2299. 

269. H. Werner, W. Stuer, J. Wolf, M. Laubender, B. Weberndorfer, R. Herbst-

Irmer and C. Lehmann, Eur. J. Inorg. Chem., 1999, 1889-1897. 

270. M. A. Esteruelas and H. Werner, J. Organomet. Chem., 1986, 303, 221-231. 

271. C. S. Yi and D. W. Lee, Organometallics, 1999, 18, 5152-5156. 

272. A. V. Marchenko, H. Gerard, O. Eisenstein and K. G. Caulton, New. J. 

Chem., 2001, 25, 1244-1255. 

273. J. T. Poulton, M. P. Sigalas, K. Folting, W. E. Streib, O. Eisenstein and K. G. 

Caulton, Inorg. Chem., 1994, 33, 1476-1485. 

274. H. P. Xia, R. C. Y. Yeung and G. C. Jia, Organometallics, 1998, 17, 4762-

4768. 

275. X. H. Wu, S. Jin, J. H. Liang, Z. Y. Li, G. A. Yu and S. H. Liu, 

Organometallics, 2009, 28, 2450-2459. 

276. A. M. McNair, D. C. Boyd and K. R. Mann, Organometallics, 1986, 5, 303-

310. 

277. M. A. J. Tenorio, M. J. Tenorio, M. C. Puerta and P. Valerga, 

Organometallics, 1997, 16, 5528-5535. 

278. M. J. Tenorio, M. A. J. Tenorio, M. C. Puerta and P. Valerga, Inorg. Chim. 

Acta., 1997, 259, 77-84. 

279. N. W. Alcock, I. D. Burns, K. S. Claire and A. F. Hill, Inorg. Chem., 1992, 

31, 2906-2908. 

280. C. Bohanna, M. A. Esteruelas, A. V. Gomez, A. M. Lopez and M. P. 

Martinez, Organometallics, 1997, 16, 4464-4468. 

281. I. D. Burns, A. F. Hill, A. J. P. White, D. J. Williams and J. D. E. T. Wilton-

Ely, Organometallics, 1998, 17, 1552-1557. 

282. H. P. Xia, T. B. Wen, Q. Y. Hu, X. Wang, X. G. Chen, L. Y. Shek, I. D. 

Williams, K. S. Wong, G. K. L. Wong and G. C. Jia, Organometallics, 2005, 

24, 562-569. 



 

307 

 

283. P. Yuan, J. Yin, G. A. Yu, Q. Y. Hu and S. H. Liu, Organometallics, 2007, 

26, 196-200. 

284. B. J. Coe and S. J. Glenwright, Coordin. Chem. Rev., 2000, 203, 5-80. 

285. S. H. Choi, I. Bytheway, Z. Y. Lin and G. C. Jia, Organometallics, 1998, 17, 

3974-3980. 

286. K. B. Wiberg and E. Martin, J. Am. Chem. Soc., 1985, 107, 5035-5041. 

287. A. E. Dorigo, D. W. Pratt and K. N. Houk, J. Am. Chem. Soc., 1987, 109, 

6591-6600. 

288. J. Maurer, R. F. Winter, B. Sarkar and S. Zalis, Journal of Solid State 

Electrochemistry, 2005, 9, 738-749. 

289. F. de Montigny, G. Argouarch, K. Costuas, J. F. Halet, T. Roisnel, L. Toupet 

and C. Lapinte, Organometallics, 2005, 24, 4558-4572. 

290. M. Younus, N. J. Long, P. R. Raithby and J. Lewis, J. Organomet. Chem., 

1998, 570, 55-62. 

291. J. Otsuki, T. Akasaka and K. Araki, Coordin. Chem. Rev., 2008, 252, 32-56. 

292. M. Fischer, G. Lieser, A. Rapp, I. Schnell, W. Mamdouh, S. De Feyter, F. C. 

De Schryver and S. Hoger, J. Am. Chem. Soc., 2004, 126, 214-222. 

293. T. Weyland, K. Costuas, A. Mari, J. F. Halet and C. Lapinte, 

Organometallics, 1998, 17, 5569-5579. 

294. R. R. Tykwinski and P. J. Stang, Organometallics, 1994, 13, 3203-3208. 

295. T. J. J. Muller and H. J. Lindner, Chem. Ber., 1996, 129, 607-613. 

296. J. Vicente, M. T. Chicote, M. M. Alvarez-Falcon and P. G. Jones, 

Organometallics, 2005, 24, 2764-2772. 

297. R. Packheiser, P. Ecorchard, T. Ruffer, B. Walforta and H. Lang, Eur. J. 

Inorg. Chem., 2008, 4152-4165. 

298. Q. Y. Hu, M. F. Lo, I. D. Williams, N. Koda, Y. Uchimaru and G. C. Jia, J. 

Organomet. Chem., 2003, 670, 243-247. 

299. A. Ahmad, J. J. Levison, S. D. Robinson and M. F. Uttley, Inorg. Syn., 1974, 

15, 45-64. 

300. SAINT V6.45, Bruker, AXS, Madison, Wisconsin, USA, 2001 

301. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. 

E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. 

N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. 

Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, 

M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. 

Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. 

Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. 

Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, 

P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. 

Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. 

Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, 

A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. 

Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. 

Allaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. 

Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 

Inc., Wallingford, CT., 2004 

302. M. Akita and T. Koike, Dalton Trans., 2008, 3523-3530. 

303. F. Diederich, Chem. Commun., 2001, 219-227. 

304. D. Touchard and P. H. Dixneuf, Coordin. Chem. Rev., 1998, 178, 409-429. 

305. B. Xi and T. Ren, C.R. Chim., 2009, 12, 321-331. 



 

308 

 

306. D. J. Armitt, M. I. Bruce, M. Gaudio, N. N. Zaitseva, B. W. Skelton, A. H. 

White, B. Le Guennic, J. F. Halet, M. A. Fox, R. L. Roberts, F. Hartl and P. 

J. Low, Dalton Trans., 2008, 6763-6775. 

307. B. F. G. Johnson, A. K. Kakkar, M. S. Khan and J. Lewis, J. Organomet. 

Chem., 1991, 409, C12-C14. 

308. S. J. Davies, B. F. G. Johnson, M. S. Khan and J. Lewis, J. Chem. Soc. 

Chem. Commun., 1991, 187-188. 

309. G. C. Jia, R. J. Puddephatt, J. D. Scott and J. J. Vittal, Organometallics, 

1993, 12, 3565-3574. 

310. I. R. Whittall, A. M. McDonagh, M. G. Humphrey and M. Samoc, Adv. 

Organomet. Chem., 1998, 42, 291-362. 

311. Y. Tanaka, J. A. Shaw-Taberlet, F. Justaud, O. Cador, T. Roisnel, M. Akita, 

J. R. Hamon and C. Lapinte, Organometallics, 2009, 28, 4656-4669. 

312. L. S. Devi, M. K. Al-Suti, N. Zhang, S. J. Teat, L. Male, H. A. Sparkes, P. R. 

Raithby, M. S. Khan and A. Kohler, Macromolecules., 2009, 42, 1131-1141. 

313. L. B. Gao, J. Kan, Y. Fan, L. Y. Zhang, S. H. Liu and Z. N. Chen, Inorg. 

Chem., 2007, 46, 5651-5664. 

314. L. Medei, L. Orian, O. V. Semeikin, M. G. Peterleitner, N. A. Ustynyuk, S. 

Santi, C. Durante, A. Ricci and C. Lo Sterzo, Eur. J. Inorg. Chem., 2006, 

2582-2597. 

315. R. D'Amato, I. Fratoddi, A. Cappotto, P. Altamura, M. Delfini, C. Bianchetti, 

A. Bolasco, G. Polzonetti and M. V. Russo, Organometallics, 2004, 23, 

2860-2869. 

316. A. Kohler and D. Beljonne, Adv. Funct. Mater., 2004, 14, 11-18. 

317. S. Roue, S. Le Stang, L. Toupet and C. Lapinte, C.R. Chim., 2003, 6, 353-

366. 

318. A. Kohler, J. S. Wilson, R. H. Friend, M. K. Al-Suti, M. S. Khan, A. Gerhard 

and H. Bassler, J. Chem. Phys., 2002, 116, 9457-9463. 

319. S. Le Stang, F. Paul and C. Lapinte, Organometallics, 2000, 19, 1035-1043. 

320. N. Chawdhury, A. Kohler, R. H. Friend, M. Younus, N. J. Long, P. R. 

Raithby and J. Lewis, Macromolecules., 1998, 31, 722-727. 

321. J. Lewis, N. J. Long, P. R. Raithby, G. P. Shields, W. Y. Wong and M. 

Younus, J. Chem. Soc. Dalton Trans., 1997, 4283-4288. 

322. E. Viola, C. LoSterzo and F. Trezzi, Organometallics, 1996, 15, 4352-4354. 

323. E. Viola, C. LoSterzo, R. Crescenzi and G. Frachey, J. Organomet. Chem., 

1995, 493, C9-C13. 

324. M. C. Chung, X. H. Gu, B. A. Etzenhouser, A. M. Spuches, P. T. Rye, S. K. 

Seetharaman, D. J. Rose, J. Zubieta and M. B. Sponsler, Organometallics, 

2003, 22, 3485-3494. 

325. K. Onitsuka, N. Ohara, F. Takei and S. Takahashi, Organometallics, 2008, 

27, 25-27. 

326. M. S. Morton and J. P. Selegue, J. Am. Chem. Soc., 1995, 117, 7005-7006. 

327. M. S. Morton, J. P. Selegue and A. Carrillo, Organometallics, 1996, 15, 

4664-4666. 

328. N. Re, A. Sgamellotti and C. Floriani, Organometallics, 1996, 15, 5330-

5334. 

329. M. Gruselle, H. Elhafa, M. Nikolski, G. Jaouen, J. Vaissermann, L. J. Li and 

M. J. McGlinchey, Organometallics, 1993, 12, 4917-4925. 

330. I. V. Barinov, O. A. Reutov, A. V. Polyakov, A. I. Yanovsky, Y. T. 

Struchkov and V. I. Sokolov, J. Organomet. Chem., 1991, 418, C24-C27. 



 

309 

 

331. S. F. T. Froom, M. Green, K. R. Nagle and D. J. Williams, J. Chem. Soc. 

Chem. Commun., 1987, 1305-1307. 

332. D. Osella, G. Dutto, G. Jaouen, A. Vessieres, P. R. Raithby, L. Debenedetto 

and M. J. McGlinchey, Organometallics, 1993, 12, 4545-4552. 

333. G. A. Olah, R. Krishnamurti and G. K. S. Prakash, J. Org. Chem., 1990, 55, 

6061-6062. 

334. C. K. Tseng, Migliore.Kg and S. I. Miller, Tetrahedron, 1974, 30, 377-383. 

335. H. G. Richey, L. E. Rennick, A. S. Kushner, J. M. Richey and J. C. Philips, 

J. Am. Chem. Soc., 1965, 87, 4017-4019. 

336. T. J. J. Muller, Eur. J. Org. Chem., 2001, 2021-2033. 

337. G. G. Melikyan, S. Bright, T. Monroe, K. I. Hardcastle and J. Ciurash, 

Angew. Chem. Int. Ed., 1998, 37, 161-164. 

338. S. Nakatsuji, K. Nakashima, K. Yamamura and S. Akiyama, Tetrahedron 

Lett., 1984, 25, 5143-5146. 

339. J. P. Selegue, B. A. Young and S. L. Logan, Organometallics, 1991, 10, 

1972-1980. 

340. J. P. Selegue, Coordin. Chem. Rev., 2004, 248, 1543-1563. 

341. M. I. Bruce, Chem. Rev., 1991, 91, 197-257. 

342. M. I. Bruce and A. G. Swincer, Adv. Organomet. Chem., 1983, 22, 59-128. 

343. M. I. Bruce, Chem. Rev., 1998, 98, 2797-2858. 

344. P. Manini, W. Amrein, V. Gramlich and F. Diederich, Angew. Chem. Int. 

Ed., 2002, 41, 4339-4343. 

345. M. B. Nielsen and F. Diederich, Synlett, 2002, 544-552. 

346. T. Lange, J. D. vanLoon, R. R. Tykwinski, M. Schreiber and F. Diederich, 

Synthesis-Stuttgart, 1996, 537-550. 

347. A. H. Alberts and H. Wynberg, J. Chem. Soc. Chem. Commun., 1988, 748-

749. 

348. Y. Rubin, C. B. Knobler and F. Diederich, Angew. Chem. Int. Ed., 1991, 30, 

698-700. 

349. H. Hauptmann, Tetrahedron Lett., 1974, 15, 3587-3588. 

350. A. E. Gray and C. S. Marvel, J. Am. Chem. Soc., 1925, 47, 2796-2802. 

351. M. I. Bruce, B. C. Hall, B. D. Kelly, P. J. Low, B. W. Skelton and A. H. 

White, J. Chem. Soc. Dalton Trans., 1999, 3719-3728. 

352. J. Anthony, A. M. Boldi, Y. Rubin, M. Hobi, V. Gramlich, C. B. Knobler, P. 

Seiler and F. Diederich, Helv. Chim. Acta., 1995, 78, 13-45. 

353. P. Zuber and P. J. Low, unpublished work 

354. T. S. Abram and W. E. Watts, J. Chem. Soc. Perkin Trans. 1, 1977, 1532-

1536. 

355. V. I. Boev and A. V. Dombrovskii, J. Org. Chem. USSR (Eng. Transl.), 

1985, 21, 575-579. 

356. C. Bilton, J. A. K. Howard, N. N. L. Madhavi, A. Nangia, G. R. Desiraju, F. 

H. Allen and C. C. Wilson, Acta. Cryst., 2000, B56, 1071-1079. 

357. V. R. Pedireddi, D. S. Reddy, B. S. Goud, D. C. Craig, A. D. Rae and G. R. 

Desiraju, J. Chem. Soc. Perkin Trans. 2, 1994, 2353-2360. 

358. A. Bondi, J. Phys. Chem., 1964, 68, 441-451. 

359. Y. Shirota, J. Mater. Chem., 2000, 10, 1-25. 

360. W. E. Moerner and S. M. Silence, Chem. Rev., 1994, 94, 127-155. 

361. Y. Nishikitani, M. Kobayashi, A. Uchida and T. Kubo, Electrochimica Acta, 

2001, 46, 2035-2040. 

362. D. M. Pai and B. E. Springett, Rev. Mod. Phys., 1993, 65, 163-211. 



 

310 

 

363. M. Stolka, J. F. Yanus and D. M. Pai, J. Phys. Chem., 1984, 88, 4707-4714. 

364. J. F. Hartwig, Acc. Chem. Res., 2008, 41, 1534-1544. 

365. P. J. Low, R. Rousseau, P. Lam, K. A. Udachin, G. D. Enright, J. S. Tse, D. 

D. M. Wayner and A. J. Carty, Organometallics, 1999, 18, 3885-3897. 

366. H. J. Jiao, K. Costuas, J. A. Gladysz, J. F. Halet, M. Guillemot, L. Toupet, F. 

Paul and C. Lapinte, J. Am. Chem. Soc., 2003, 125, 9511-9522. 

367. C. Lambert, G. Noll, E. Schmalzlin, K. Meerholz and C. Brauchle, Chem.-

Eur. J., 1998, 4, 2129-2135. 

368. V. W. W. Yam, K. M. C. Wong, L. L. Hung and N. Y. Zhu, Angew. Chem. 

Int. Ed., 2005, 44, 3107-3110. 

369. K. M. C. Wong, X. L. Zhu, L. L. Hung, N. Y. Zhu, V. W. W. Yam and H. S. 

Kwok, Chem. Commun., 2005, 2906-2908. 

370. C. Lambert and G. Noll, J. Am. Chem. Soc., 1999, 121, 8434-8442. 

371. S. C. Jones, V. Coropceanu, S. Barlow, T. Kinnibrugh, T. Timofeeva, J. L. 

Bredas and S. R. Marder, J. Am. Chem. Soc., 2004, 126, 11782-11783. 

372. C. Lambert, W. Gaschler, G. Noll, M. Weber, E. Schmalzlin, C. Brauchle 

and K. Meerholz, J. Chem. Soc. Perkin Trans. 2, 2001, 964-974. 

373. S. Ghosh and P. S. Mukherjee, Organometallics, 2008, 27, 316-319. 

374. K. R. J. Thomas and J. T. Lin, J. Organomet. Chem., 2001, 637, 139-144. 

375. H. Fink, N. J. Long, A. J. Martin, G. Opromolla, A. J. P. White, D. J. 

Williams and P. Zanello, Organometallics, 1997, 16, 2646-2650. 

376. Nakashim.T and T. Kunitake, B. Chem. Soc. Jpn., 1972, 45, 2892-2895. 

377. M. Iyoda, T. Kondo, T. Okabe, H. Matsuyama, S. Sasaki and Y. Kuwatani, 

Chemistry Letters, 1997, 35-36. 

378. A. J. Fry, P. S. Jain and R. L. Krieger, J. Organomet. Chem., 1981, 214, 381-

390. 

379. P. J. Low, M. A. J. Paterson, A. E. Goeta, D. S. Yufit, J. A. K. Howard, J. C. 

Cherryman, D. R. Tackley and B. Brown, J. Mater. Chem., 2004, 14, 2516-

2523. 

380. K. Sreenath, C. V. Suneesh, V. K. R. Kumar and K. R. Gopidas, J. Org. 

Chem., 2008, 73, 3245-3251. 

381. B. H. Yang and S. L. Buchwald, J. Organomet. Chem., 1999, 576, 125-146. 

382. A. R. Muci and S. L. Buchwald, in Cross-Coupling Reactions, 2002, vol. 

219, pp. 131-209. 

383. J. F. Hartwig, Acc. Chem. Res., 1998, 31, 852-860. 

384. L. M. Alcazar-Roman and J. F. Hartwig, Organometallics, 2002, 21, 491-

502. 

385. J. Louie, M. S. Driver, B. C. Hamann and J. F. Hartwig, J. Org. Chem., 

1997, 62, 1268-1273. 

386. I. P. Beletskaya and A. V. Cheprakov, Coordin. Chem. Rev., 2004, 248, 

2337-2364. 

387. R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874-922. 

388. M. E. Smith, R. L. Cordiner, D. Albesa-Jove, D. S. Yufit, F. Hartl, J. A. K. 

Howard and P. J. Low, Can. J. Chem., 2006, 84, 154-163. 

389. M. Malagoli and J. L. Bredas, Chem. Phys. Lett., 2000, 327, 13-17. 

390. P. J. Low, M. A. J. Paterson, H. Puschmann, A. E. Goeta, J. A. K. Howard, 

C. Lambert, J. C. Cherryman, D. R. Tackley, S. Leeming and B. Brown, 

Chem. Eur. J., 2004, 10, 83-91. 

391. A. N. Sobolev, V. K. Belsky, I. P. Romm, N. Y. Chernikova and E. N. 

Guryanova, Acta. Cryst., 1985, 41, 967-971. 



 

311 

 

392. R. Denis, L. Toupet, F. Paul and C. Lapinte, Organometallics, 2000, 19, 

4240-4251. 

393. J. Courmarcel, G. Le Gland, L. Toupet, F. Paul and C. Lapinte, J. 

Organomet. Chem., 2003, 670, 108-122. 

394. F. de Montigny, G. Argouarch, T. Roisnel, L. Toupet, C. Lapinte, S. C. F. 

Lam, C. H. Tao and V. W. W. Yam, Organometallics, 2008, 27, 1912-1923. 

395. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. 

Taylor, J. Chem. Soc. Perkin Trans. 2, 1987, S1-S19. 

396. M. I. Bruce, B. G. Ellis, P. J. Low, B. W. Skelton and A. H. White, 

Organometallics, 2003, 22, 3184-3198. 

397. M. I. Bruce, B. W. Skelton, A. H. White and N. N. Zaitseva, J. Organomet. 

Chem., 2002, 650, 141-150. 

398. C. E. Powell, M. P. Cifuentes, A. M. McDonagh, S. K. Hurst, N. T. Lucas, 

C. D. Delfs, R. Stranger, M. G. Humphrey, S. Houbrechts, I. Asselberghs, A. 

Persoons and D. C. R. Hockless, Inorg. Chim. Acta., 2003, 352, 9-18. 

399. I. R. Whittall, M. G. Humphrey and D. C. R. Hockless, Organometallics, 

1995, 14, 3970-3979. 

400. M. I. Bruce, M. G. Humphrey, M. R. Snow and E. R. T. Tiekink, J. 

Organomet. Chem., 1986, 314, 213-225. 

401. F. Paul, J. Y. Mevellec and C. Lapinte, J. Chem. Soc. Dalton Trans., 2002, 

1783-1790. 

402. S. Amthor, B. Noller and C. Lambert, Chem. Phys., 2005, 316, 141-152. 

403. S. Dapperheld, E. Steckhan, K. H. G. Brinkhaus and T. Esch, Chem. Ber., 

1991, 124, 2557-2567. 

404. S. Le Stang, D. Lenz, F. Paul and C. Lapinte, J. Organomet. Chem., 1999, 

572, 189-192. 

405. S. Le Stang, F. Paul and C. Lapinte, Inorg. Chim. Acta., 1999, 291, 403-425. 

406. F. Paul, L. Toupet, T. Roisnel, P. Hamon and C. Lapinte, C.R. Chim., 2005, 

8, 1174-1185. 

407. R. Anemian, D. C. Cupertino, P. R. Mackie and S. G. Yeates, Tetrahedron 

Lett., 2005, 46, 6717-6721. 

408. G. A. Petersson, T. G. Tensfeldt and J. A. Montgomery, J. Chem. Phys., 

1991, 94, 6091-6101. 

 

 

 


