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ABSTRACT 

STUDY OF SPATIOTEMPORAL RAINFALL STRUCTURE AND OPTIMIZED 

LOCAL RADAR RAINFALL APPLICATION TO URBAN WATERSHED, 

LOUISVILLE, KENTUCKY 

Jin-Young Hyun 

September 29, 2016 

In urban areas, a prevalence of combined sewer systems (CSS) exist that carry 

both storm water runoff and sanitary sewer flows in a single pipe, these system are 

considered combined sewers.  In the absence of rainfall-runoff most of these systems 

function adequately, however CSS capacity is typically inadequate to carry peak 

stormwater runoff volume.  In order to minimize sewage flooding into streets and 

backups into homes and businesses, most CSSs (as well as separate sanitary sewer 

systems) are designed to overflow into surface waters such as streams and rivers, lakes 

and seas.  This occurrence is considered a combined sewer overflow (CSO) event and has 

a critical impact on urban aquatic environment and degrades downstream water quality. 

This investigation provides a framework for the application of radar-rainfall data to 

estimate the characteristics of rainfall events that produce a CSO event.   The process 

addresses an urban sewer-shed, denoted as CSO 130, located in Louisville, Kentucky 

(USA).  The characteristics of each heavy rainfall event; total volume, intensity, duration, 

continuity, and storm types govern the overflow in the approximately 13-ha (30-ac) 

sewer-shed.
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In urban hydrology, accurate fine resolution temporal and spatial rainfall 

observations is a key factor for managing urban hydrologic systems and forecasting storm 

water runoff, particularly in the current era of higher variability in recent rainfall events. 

To study this issue, rain gauge data from a ground based rainfall measurement network 

operated by the local stormwater management agency, Metropolitan Sewer District 

(MSD), in Jefferson County Kentucky is studied. Rainfall spatial characteristics are 

evaluated through correlation spectrum by distance and this reveals a spatial rainfall 

variation concave relationship. Besides, the event based rainfall classification has been 

performed to provide a context for identification and description of rain events that may 

be useful as guidance for urban stormwater management. Based on this study, the 

limitation of the one dimensional rainfall monitoring system has been revealed by the 

severe variation of the rainfall characteristics.  

In order to overcome this issue, the reliable areal rainfall measurement with fine 

spatiotemporal resolutions is urgently required to investigate the urban hydrologic issues. 

The radar data utilized in this study are from the weather radar associated with the 

National Weather Service (NWS) Forecast Office Louisville, Kentucky (denoted by call 

letters KLVX) and rain gauge data are from a regional network. The study applies fine 

resolution radar rainfall in this urban hydrologic system to reveal insights for planning 

CSO control and prevention under a range of rainfall event regimes.  Weather radar data 

from the local NWS site is optimized using support vector classification (SVC) and 

serves as rainfall input for the urban sewer-shed.  The radar-rainfall data were optimized 

through a comparison with NWS radar rainfall and a gauge network, the local stormwater 

and sewer agency. The optimized radar rainfall estimation has the highest spatiotemporal 
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correlation in quarter hourly temporal resolution. The rainfall and flow events are defined 

using the criteria proposed by United States Environmental Protection Agency (USEPA) 

to define the physical continuity of natural rainfall processes and the corresponding 

hydrologic response. 

The   optimized rainfall product has applied to the small scale urban watershed, 

CSO130 to investigate the sewer water overflow.   In this setting, the extremity of the 

rainfall governs the overflow mainly with volumetric rainfall in the event based rainfall  

and its corresponding overflow with other decisive factors; rainfall intensity, duration, 

rain type as well as rainfall continuity.   Discriminant analysis is introduced to classify 

these precipitation factors. 

 The objective of this study is that downscaled hydrologic application to the places 

where the   sub-hourly rainfall data is required such as a complex urban watershed in 

order to investigate the fast inundated floods, overflows in the artificial watersheds or any 

hydrologic preparation.
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CHAPTER1     INTRODUCTION 

Historically, the early human civilizations have prospered near sources of water as 

an essential substance to live. Almost all human activities require clean enough water for 

the purpose of drinking, livestock, sanitation, entertainment and irrigation. An 

accessibility to clean water for these various purposes is still essential a prerequisite for 

human’s civil activities.  

In recent years, damage from floods has been reported more frequently and 

severely around the world. Specially, people are concerned that water related natural 

disaters are related to an apocalyptic threat of the climate change. No one is undoubtedly 

sure of the strong correlation of these issues, but the current unstable tendency of the 

increasing severity of the floods is true and many strong scientific factors support it 

(Hlavčová et al. 2015, Riboust and Brissette 2015). The damages induced by climate 

related floods sweep densely populated areas. The imperviousness of the surface in this 

area is a general characteristic of crowded urban cities and the expected runoff is greater 

compared to rural areas. Therefore, this study focuses on the metro-city, Louisville, 

Kentucky to evaluate extreme storms and its impacts on the artificial urban watershed 

system. The study area, Louisville Metropolitan (Jefferson County) is a historical city in 

the United States. The city lies along the Ohio River which is the geographic border line 

between the states of Kentucky and Indiana. The city was built on the flat floodplain and 

swampland after drain out.In other words, the city is maintained by artificial structures 
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and draining systems to prevent intrusion of the water from the Ohio River which 

flows through the part of the northern borderline in the figure 1.1. 

 

Figure1.1     Areal map of the study area: locations of the MSD rain gauge (circle), 

NOAA rain gauge (triangle) and the boundary of Jefferson County, Kentucky. 

Fundamentally, this area is vulnerable to floods and the rational research and 

preparations are necessarily required to minimize damage from the floods. Recently, the 

type of sudden inundated flood refered to as the flash flood has emerged as a new storm-

related disaster in the hydrologic field, and this study centered on fine resolution of 

spatiotemporal rainfalls over the study area for a downscaled hydrologic approach.     
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Overall, the interaction between heavy storms and small scaled urban watershed is 

investigated. The city watersheds are relatively small and responded faster than a natural 

watershed. Based on this condition, rainfall occurrence within a short period of time is a 

decisive factor for urban hydrology. The rainfall data accuracy is also an essential 

requirement to consider the rapid runoff response. Therefore, the quality of rainfall data 

is important for sub-hourly hydrologic research and evaluation of urban watershed 

response. The two types of the rainfall estimations incorporated in this work are from a 

ground-based rain gauge network of tipping bucket type devices and the indirect or 

remote-sensing of rainfall and ground-level rain estimation methods using reflectivity 

data from the local weather radar. 

In chapter 2, the ground-based rainfall structure is investigated using the a 

common and historical data acquisition device, a tipping bucket rain gauge network at 

point locations shown in figure 1.1. The local municipal sewer district (MSD) operates 

this network of multiple rain gauges over the city and the spatiotemporal correlation 

variations were derived from these data as a representative of the rainfall structure. 

Moreover, the quantile analysis with different temporal resolutions are studied in order to 

understand the tendency of rain structure with rainfall severity. A gauge rainfall detection 

is a point measurement of the rainfall, and it has a serious limitation due to its narrow 

spatial coverage. This chapter reveals the limitation of the ground-based rainfall 

measurement system even in the densely deployed rain gauges throughout the city.  

In chapter 3, the temporal resolution (minute-unit) of the gauge rainfall data were 

gathered by the continuous concept of rainfall, rainfall event, by use of public policy and 

regulatory definitions. The K-means clustering technique is used on the two-dimensional 
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organization of the axials of the total volume and the peak rainfall values to categorize 

the rainfall events into the three groups; a high intensity group, a high volume group and 

a light rainfall group. After that, the spatial variogram is applied to describe the spatial 

correlation and its spatial scope.  

In chapter 4, a more sophisticated rainfall estimation using the weather radar is 

introduced. The radar rainfall estimation is an areal rainfall acquisition system which 

provides an improved definition of rainfall spatial variation measurement relative to the 

point gauge. Paradoxically, the gauge network in Louisville in figure1.1 is used as 

reference data to evaluate radar rainfall estimation. This is due to the nature of this 

application study whereby ground-level rainfall amounts (depths) are desired, and the 

ground-level gauge remains a useful record for point rainfall depth.  The radar estimation 

is an indirect rainfall measurement system in which radar receives the scattering backed 

electromagnetic signal by the falling rain drop particle in the air. The NWS adapted the 

empirical conversion from the received reflectivity to the rainfall intensity (called Z-R 

relationship) which is meaningful value of rainfall volume. Still, the radar rainfall 

estimation may require consideration of error sources. This study focused on the 

calibration of an individual radar site where the use of the generalized Z-R relationship is 

not universally applicable. The local NWS radar, KLVX in Fort Knox, KY, which covers 

the study area is investigated by using supporting vector classification to derivean 

adjusted Z-R relationship for the purpose of local radar rainfall optimization.  

From the previous study, the refined rainfall data has been studied to ensure the 

data quality. In this section, chapter 5, the rainfall data were applied to research the 

interaction of the extreme rainfall and the artificial urban watershed response using the 
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coupled radar rainfall and the sewer water overflow which flows into the urban aquatic 

environment. The small scaled Combined Sewer Overflow (CSO 130), located in the 

Louisville downtown area, is studied under extreme rainfall conditions to understand the 

rainfall conditions triggering the undesirable overflow events. The role of rain data is 

considered in terms of storm type (intensity, spatial scale) and storm characteristics 

(duration, inter-event time). This study suggests an approach for the evaluation and 

analysis  for decreasing or mitigating the occurrence of CSO events. The two-

dimensional ratio field of the rainfall and overflow was introduced to determine the 

reliable data set of coupled rainfall-runoff records prior to the analysis. The data driven 

rainfall-CSO overflow relationship demonstrates a dependency between the CSO 

overflow and the extremity of the rainfall.  In this urbanized small scaled sewer-shed, the 

rainfall governs the overflow with interdisciplinary rainfall event factors; total rain 

volume, peak rainfall, duration, rainfall continuity as well as rain type. The discriminant 

analysis was used to separate the overflow into two severity groups by the rainfall 

characteristics.  

One finding of this research is that urban hydrologic study requires use of 

accurate rainfall sources at high spatiotemporal time and space resolutions. The historic 

seasonal or event daily resolution of rainfall data with limited or no spatial variation does 

not represent rainfall variability at time and space scales required to evaluate runoff for 

urban areas in denser areas of cities. Therefore, this study investigated all the possible 

rainfall measurement equipment such as rain gauge network and the weather radar. The 

areal rainfall measurement instrument, the weather radar, was optimized in order to 

improve reliability at sub-hourly rainfall periods. The prepared rainfall product was 
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applied to demonstrate the relationship between rainfall extremes and overflow volume 

for the small scale sewer-shed. This study positively contributes to the urban hydrologic 

preparation and design. 

The following four chapters consist of the academic journal publications 

developed from this dissertation research.  Each chapter is a separate journal paper and is 

presented in a form identical to the published form or in the latest form available for 

publications submitted or under review.  The final chapter provides a brief summary of 

this work. 

 



7 

CHAPTER 2     SPATIOTEMPORAL STRUCTURE OF RAINFALL 

2.1 Introduction 

 In recent years, perceived flood severity has increased due to impacts on 

populations and economies through disruptions to transportation systems and displacement 

of residents.  While flood risk has increased, hydrometeorologic measurement technology, 

rain gauges and weather radar, have also increased the capacity of municipal agencies to 

evaluate extreme rainfall events and develop strategies to mitigate adverse impacts 

(Karamouz 2013; Qin and Lu 2014; Salathé 2014; Wang 2014).  More detailed 

observations provide improved definition of the spatial distribution and intensity variation 

of rainfall events and this information can be used to enhance estimates of flood impact at 

specific locations. Managing adverse impacts of severe heavy rainfall and resulting 

localized flooding may be reduced through a greater understanding of rainfall 

characteristics in terms of occurrence and magnitude.   

 In engineering design, use of design rainfall depth from a historical rainfall 

frequency duration curve, may not adequately represent observed rainfall-runoff 

characteristics (Einfalt 2009).  Detailed rainfall spatiotemporal information can lead to 

insights about the runoff characteristics for specific watersheds.  In urban areas, the 

prevalence of impervious land-cover and shorter runoff travel time, contribute to increased 

runoff volume and higher runoff discharge rates.  Description of regional specific rainfall 

characteristics can lead to improved planning, management and design directed toward 

reducing sewer system overflows and reducing inundation of urban 
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properties. Historically, rainfall monitoring by ground-level rain gauges is considered 

the most reliable measurement system for hydrologic applications because it physically 

captures pluvial water.  In hydrologic engineering and research, rain gauge measurements 

frequently serve as reference data for evaluation of indirect or remote sensing rainfall 

systems such as weather radars and satellites (Krajewski and Smith 2002; Seo and 

Breidenbach 2002; Habib 2012; Price 2014; Chen 2015; Fencl 2015).  However, 

limitations must be considered since a single rain gauge is a point measurement with 

limited direct information defining spatial variation of rainfall across an area. Over a large 

areal region, or for a highly variable localized rain storm, a single rain gauge measurement 

may not describe the rainfall amount.  In other words, when rain gauge data are measured 

at some distance from the area of interest, or a storm is non-uniform across the region, a 

network of several rain gauges is necessary to represent the variability of a storm event. 

For instance, a convective storm in a hot and humid season may generate significant rain 

on small areas and is spatially erratic across the spatial scale typical of a city region. A 

dense rain gauge network is needed to adequately observe storm characteristics.  In this 

case study, the quantitative variability of rainfall observations from multiple rain gauges is 

investigated using measurement records from an operational rain gauge network. 

 The main objectives of this case study include evaluation of rainfall variation using 

spatio-temporal indicator statistics, and a quantile analysis to assess the variation of rainfall 

intensity across the study region.  The region of interest is the city of Louisville 

Metropolitan area in Kentucky (USA), and focuses on a time period where mesoscale 

rainfall investigation is applicable, January 2010 to December 2014.    As a part of data 

quality control review and pre-processing, data were validated using independent records 
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from the NWS/NOAA rain gauge network. Both first and second order statistics and 

critical correlation distance served as indicators to confirm data parsimony from the two 

independent sources. The spatial correlogram across a spectrum of temporal resolutions is 

investigated to indicate the spatio-temporal dynamics of rainfall. The quantile analysis of 

correlation is introduced to interpret spatio-temporal rainfall structure with rainfall 

intensity.   

2.2 Data sources and preprocessing 

      The city of Louisville, Kentucky (metropolitan region covers Jefferson County, 

Kentucky) is geographically located in 38°15´N, 85°46´W along the Ohio River on the 

border between the states of Kentucky and Indiana. The area of the city is about 1022 km2 

(399 mi2) and this falls into the mesoscale range. The Metropolitan Sewer District (MSD) 

agency is responsible for flood protection, stormwater runoff, and wastewater treatment in 

the region.  As part of its data collection systems, the MSD maintains a rain gauge network 

which is evenly spread over the Louisville Metro area. The minimum and maximum 

distance between nearest gauges are 4.52 km and 11.06 km respectively. The NOAA 

gauges serve as a reference for a data quality control comparison of characteristics 

developed from data recorded by the MSD network.  There are 17 rain gauges in the MSD 

network with a complete record for the study period years 2011 to 2014.  The MSD gauges 

are tipping bucket type with 0.254 mm (0.01 in) resolution and report accumulated rainfall 

every 5 minutes. The tipping bucket type rain gauge is desirable since it can record rainfall 

increments at a depth precision of 0.254 mm (0.01 in), however it is considered a high 

maintenance mechanical device.  Many factors affect rainfall recordings by this type of 

device such as inadequate calibration of individual gauges, mechanical or electrical 
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problems, clogging, freezing, and wind effect as well as vandalism (Nešpor and Sevruk 

1998; Wang 2008). Furthermore, there are errors associated with each precipitation type. 

The measurement error is most pronounced during extreme rainfall and light drizzle 

(Humphrey 1997).  

 A gauge record may be quality controlled by inter-gauge calibration using 

collocated gauges of similar type (Ciach and Krajewski 1999; Habib and Krajewski 2002; 

Ciach 2003; Ciach and Krajewski 2006; Tokay and Öztürk 2012; Jung 2014). However, 

inter-gauge analysis was not part of this study due to, as in most practical or operational 

network situations, no collocated gauges being available.  Since quality control by inter-

gauge calibration was not possible, the alternative approach was implemented whereby the 

MSD network data were reviewed and verified using coherent data from the NOAA rain 

gauge network.  

 Twelve NOAA rain gauges are deployed in the study area and provide daily 

accumulations. The purpose of comparison between these two network records is to 

evaluate rain gauge coherence and identify missing or erroneous data periods.  Comparison 

of data records from the different institutes can serve as an acceptable substitute to validate 

the rain gauge system in practical situations.  The main concerns regarding the gauge data 

reliability are the maintenance and calibration of the mechanical device rather than issues 

regarding detection of rainfall for a specific event.  This means the case study comparing 

the MSD network data with the NOAA network is a sufficient indictor to explain the MSD 

data as a valid quantitative rainfall record. The daily total depth rain data from 12 NOAA 

rain gauges in the study area were retrieved from the NOAA National Climate Data Center 
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(NCDC). The daily data are a component of the archive of Global Historical Climatology 

Network–Daily (GHCN daily), Version 3 (Menne 2012). 

 

Figure 2.1     Years 2010-2014 gauge-averaged monthly rainfall accumulation (mm) from 

2 co-regional gage networks: MSD (solid bar, 15 gauges) and NOAA (open bar, 12 

gauges)  

 The monthly accumulated rainfall totals are shown in figure 2.l indicating an overall 

match between the 2 rain gauge networks for the study period. The monthly rainfall totals 

by gauge were averaged for each rainfall gauge network, and the monthly accumulation 

comparison of the two networks yield a correlation coefficient, is 0.97. This indicates the 

rain gauge networks have a similar tendency in rainfall observation (with the implicit 

smoothing of spatial and temporal variation detection). Initial screening indicated two 

MSD gauges located the furthest from the study region consistently underreport rain depth 

and for this reason excluded from the case study.  For daily accumulation, pairs of MSD 

and NOAA rain gauges within a minimum distance are selected to evaluate the MSD rain 

gauge data. Among twelve NOAA gauges, there are three NOAA referencing gauges.  The 

reference locations were selected due to geographic location and data quality and the sites 
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are Louisville International Airport (Standiford Field), Louisville Bowman Field (Airport), 

and the National Weather Service Louisville Forecast Office.  

 These 3 gauges are centered in the study area in roughly equilateral triangle form 

which allows some detection of rainfall spatial variation. Moreover, these gauges are well 

maintained and have no missing data periods. The fifteen MSD rain gauges were paired 

with the closest NOAA gauge among these three. Gauge paring in this study means using 

the paired rain gauge records to investigate the spatial structure of rainfall. The distance 

between paired gauges was defined by the North Zone of Kentucky, State Plane 

Coordinate System (NOAA 1983). The averaged and maximum distances of the two 

closest gauges of the paired set of MSD and NOAA gauges are 8.9 km and 16.7 km 

respectively.  

 

Figure 2.2     Daily rainfall accumulation for closest distance paired gauges using MSD 

and NOAA gauge networks (mm) 
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The MSD daily rainfall accumulations closely followed the depths recorded by the 

NOAA rain gauges as shown in Figure 2.2 All paired gauge data sets show a strong 

linearity with relatively high values of correlation coefficients, over the range of 0.85 to 

0.94, irrespective of distance.  

 There is a decreasing tendency of daily rainfall correlation with distance. This 

result indicates that at a daily accumulation resolution, the quantitative comparison by 

depth magnitude and correlation coefficient indicates agreement between the NOAA and 

MSD rain gauge networks, and the MSD data are considered valid for use in this case 

study. Although this verification is limited to a daily temporal scale due to data 

resolution, it is a practical and meaningful validation for applications dealing with 

operational hydrologic systems since daily data incorporated any missing period in the 

MSD records. 

2.3 Methodology and analysis 

2.3.1 Spatiotemporal correlation coefficient 

 Understanding the spatial variation of rainfall is useful for understanding expected 

rainfall variations and for the management of stormwater.  Observations recorded directly 

in the operational region and at a temporal scale useful for planning real-time actions are 

important issues for implementing management practices.  Therefore, local rainfall spatial 

and temporal structure and variations must be understood or described at temporal scales 

within the sub-hour range. To describe the spatio-temporal structure of rainfall, a 

quantitative measure is possible through the Pearson’s product moment correlation 

coefficient (PPMCC).  The PPMCC, R, can describe the linear dependence of paired data 
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from the MSD network. The PPMCC is widely used for indicating spatial structure in 

hydrology (Mandapaka and Qin 2013; Jung 2014).  

R𝑖,𝑗 =
∑ (𝐺1,𝑖 − 𝐺1

̅̅ ̅)(𝐺2,𝑖 − 𝐺2
̅̅ ̅)𝑛

𝑖=1

√∑ (𝐺1,𝑖 − 𝐺1
̅̅ ̅)𝑛

𝑖=1

2
√∑ (𝐺2,𝑖 − 𝐺2

̅̅ ̅)𝑛
𝑖=1

2
  (Equation 2.1) 

      Equation (2.1) is the standard correlation equation for all possible paired rain gauge 

combinations in the network. The indices denoted as 1 and 2 indicate any 2 network gauges 

and n is the total number of gauges. Prior to determining the PPMCC values, it is useful to 

review the data characteristics necessary for the PPMCC method to be suited to a 

quantitative application (Habib 2001). First, there is a tendency of upward bias of PPMCC 

with a decrease in sample size. In this application, data records consist of a five year period 

with fine-scale temporal resolution, the finest resolution being a five minute time period.  

A study of the data record determined the frequency of corresponding rain 

detection and non-detection between paired gauges (from 2 independent gauges in the 

MSD network) and the influence of this on the PPMCC values. The number of rain 

detections observed across the network of MSD rain gauges appears uniformly 

distributed throughout the data record.  Meaning no single gauge indicates unusual 

frequency in the number of isolated positive records, such as a single data signal record 

within a multi-hour period. As summarized in figure 3.3 (left), rainfall detections at 

neighboring gauges becomes more uniform as threshold depth and temporal resolution 

increase. 
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Figure 2.3     Comparison of rainfall data filtering on rainfall detection.  Left side: 

Rainfall detection after elimination of isolated single tip signals and rainfall detection 

after discarding values 1mm or less (left), PPMCC sensitivity to heavy rainfall (right) 

This indicates a more consistent data record and smaller variation as possible 

outlier records are filtered.  The number of isolated rain detections has the largest sample 

size regardless of temporal resolution. However, the sample size varies among the 

different temporal resolutions.  Especially, at the daily resolution, there are relatively 

fewer numbers of paired rainfall detections. Therefore, the daily rainfall is not considered 

further in the analysis. In summary, this review indicates that more than two thirds of the 

rainfall detection records consist of an isolated one tipping in a 5 minute resolution, and 

the review of daily paired rain data indicate 20 percent of the records are “1-tip” rainfalls. 

These isolated 1-tip records may not be due to actual rainfall but are likely erroneous due 

to mechanical device calibration and sensitivity. A case for discarding rainfall less than 1-

mm is evident since these isolated values have a small influence on sample size across 

temporal resolutions, and 1-mm rainfall depths would only influence applications at short 
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time scales. For these reasons, the 1-tip rainfall values were excluded.  Another 

consideration is that the presence of even a few samples of extreme large rainfall depth 

may overestimate the representative PPMCC (Habib 2001). The nature of the correlation 

coefficient is sensitive to outliers, and so the influence of intense rainfall values is 

considered. On the other hand, the actual rainfall representative of the specific region 

must be incorporated, even when extreme values are present.  Otherwise, the correlation 

coefficient cannot represent the entire domain of precipitation; the sensitivity and 

distortion of PPMCC by extreme rain values must be addressed carefully. 

Figure 2.3 (right) shows the correlation moderately drops as larger portion of the 

high extreme rain values are extracted. The correlation coefficient values in this figure 

are the averaged correlation value for all pairs of gauges. The quality of the correlation at 

5 minute temporal resolution is considered extremely poor and not used in the  

patiotemporal correlation analysis.  

As a result of this data quality control review, four temporal resolutions of gauge 

data remain for spatio-temporal correlation analysis exclusive of the daily and five 

minute resolution data.  Although there remains uncertainty associated with the sample 

size necessary for this study, which addresses precipitation characteristics across a local 

region, the application of PPMCC has other obstacles that remain controversial in Statis 

statistics (Kowalski 1972; Hutchinson 1997).
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Figure 2.4     Spatiotemporal correlation structure: temporal resolution = 15-minute 

(upper-left), 30-minute (upper-right), 1-hour (lower-left), and 3-hour (lower-right). The 

critical distance (e-folding decay, 1/e) and shape factor are shown in brackets 

 The nature of the distribution of rainfall intensity is skewed to the right even after 

trimming out the portion of 1-tip records. In other words, a Gaussian bell-shape 

distribution of precipitation and intensity is not physically possible in a hydro-

meteorological field (Amburn 2015, Scheuerer and Hamill 2015). Nevertheless, this 

selection of data is meaningful and provides a way to define the spatiotemporal 

correlation while recognizing variation in sample size and dispersion. Finally, this 
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selection process identifies relevant data in a meaningful way to address concerns and 

allow objective application of the PPMCC to the precipitation phenomenon.   

Results of the PPMCC study for the spatiotemporal rainfall variation in Louisville is 

shown in Figure 2.4. The concave tendencies of exponential d  ecay are observed through 

the sub-hour temporal resolutions in the scattering plots. The best-fit line is derived from 

Equation (2) (Ciach 2006). 

R𝑖,𝑗 = exp [− (
𝑑𝑖,𝑗

𝑑𝑐
)

𝑠

] , 0 ≤ 𝑠 ≤ 2  (Equation 2.2) 

Due to occurrence of multiple gauge pairs in the same space within several meters, 

the nugget parameter is not considered, but the critical distance, 𝑑𝑐, and shape parameter, 

𝑠, were found.  The two parameters were found using the minimum value of Root-Mean-

Square-Error (RMSE) and the exhaustive iteration of 0.01 km and 0.01 incremental 

resolutions of critical distance and shape parameter respectively. Using this approach, the 

critical distance corresponds to the e-folding decay (1/e) correlation. The critical distance 

is meaningful when comparing results of PPMCC applications from other regions. In the 

Louisville Metro region, the spatial variation is relatively smaller than other regions in 

other selected studies. The critical distance varies from 14.84 km to 89.32 km for the 15 

minute to 3 hour temporal ranges respectively. The critical distance is primarily governed 

by the regional hydrologic climate regime and is slightly less than other study areas (Ha 

2007; Villarini 2008).  

The shape of the fit-line in figure 2.4 represents the decay rate and ranges from 0.72 km-1 

to 0.61 km-1 for 15 minute to 3 hour temporal resolution respectively. Considering the 

smallest temporal scale (15 minute temporal resolution), the spatial variation is most 
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significant. The rate of correlation decrease within the 10 km range and 15 minute 

resolution is sharp and decay rate flattens as temporal resolution increases. At the 3 hour 

time resolution correlation remained above 0.8 to 7.5 km distance.  The PPMCC variation 

with distance functions as a good descriptor of the linearity of rainfall across the space and 

time scales. 

2.3.2 Quantile/threshold-range effect on correlation 

     The PPMCC depends on the distance between gauges as previously stated. Correlation 

decreases with distance in a concave form across all temporal resolutions.  In consideration 

of hydrologic climate, a variety of seasonal and event-specific precipitation types and 

associated intensity regimes exist and become summarized in the rainfall record. In order 

to further understand the regional rainfall regime an analysis of correlation coefficient 

stratified by rainfall intensities is conducted.  The variation in correlation coefficient with 

the rainfall intensity, as denoted by quantiles across a series of distance ranges is 

investigated.  

The quantiles are established as shown in figure. 2.5. The left and right bar plots 

represent the average rainfall depth and corresponding standard deviation for which the 

rainfall data records fall into the quantile classes.  
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Figure 2.5     Quantile rainfall summary for time-averaged depth (mm) (left) and rainfall 

depth standard deviation (mm) (right) – for categories:  entire domain, 50% or higher, 75% 

or higher, 90% or higher, and 95% or higher 

Results of the study of correlation variation with distances and thresholds of rainfall 

are provided in figure 2.6. The horizontal and vertical axes represent the west-east and 

north-south directional distance. Due to the shape of the study area, the range in east-west 

direction is about 40 km, but the maximum north-south distance is less than 30 km. In 

figure 2.6, overall, the correlation increased proportionally with a decrease in temporal 

resolution. Correlation values with magnitude less than 0.5 dominate.  Alternatively, Figure 

2.6 provides a convenient and efficient format to visualization rainfall behavior and 

corresponding variation of correlation with range and specific direction. Correlation values 

greater than 0.7 remarkably stand out in each of the hourly temporal resolution results at 

the shorter distance range. This result indicates adjacent rainfall depths recorded within 20 

km over a time period of 1-hour or longer, are expected to be associated with a correlation 

above 0.7. The correlation is shown to be strongly influenced by rainfall intensity and 
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distance range at finer temporal resolutions. The spatial correlations decrease as rainfall 

intensity increases.  

Figure 2.6     Correlation spatial variation (distance and direction) for paired gauges 

according to thresholds on depth and duration (East-West is x axis and North-South is y 

axis) across the study area.  Correlations shown for time intervals: 15 min, 30 min, 1 hr, 

and 3 hr, and depths: all depths (entire), 0.50 inch or higher, 0.75 inch or higher, 1.0 inch 

or higher, and 2.0 inch or higher 
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This may indicate the higher spatial variation typical of severe and convective 

heavy rainfall at sub-hour scales. On the contrary, at the hourly temporal resolution, the 

tendency of increasing correlation was observed as long as rainfall intensity increased and 

a threshold of rainfall greater than 0.75inch. The similar tendency is observed at 3 hour 

temporal resolution and rainfall threshold 1inch or greater.  

Figure 2.7     Correlation structure variation for accumulation interval (15 min, 30 min, 1 

hr, 3 hr) by rainfall threshold (0.50 inch or higher, 0.75 inch or higher, 1.0 inch or higher, 

2.0 inch or higher) and distance range (0-40 km, 0-10 km, 10-20 km, 20-30km, 30-40 

km) 
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In figure 2.7, the plots show the variation in correlation coefficient averaged with 

distance range and for each rainfall intensity threshold. Overall, across all temporal 

resolution categories, the variation of correlation with distance interval is similar.  The 

averaged correlation decreases with increase in distance, i.e., the nearest distance range has 

the highest correlations throughout all quantiles. The notable point in Figure 2.7 is that the 

response of the correlation due to the rainfall intensity differs for each temporal resolution. 

In the coarse temporal resolutions, 1-hourly and 3-hourly, there is a tendency toward 

increasing correlation magnitude as the rainfall intensity increases. The correlation 

magnitudes abruptly increase at the rainfall intensity of 0.75 inch and 1.0 inch for 1hourly 

and 3hourly the temporal resolutions respectively without reference to the distance ranges. 

It means that the quality of the rainfall data by rain gauge within sub-daily temporal 

resolutions is consistent, especially in heavy rainfall analysis. On the contrary, the 

correlations continuously fall in the sub-hourly the temporal resolutions (15 minute and 30 

minute). In short, heavy rainfall data records for sub-hourly temporal resolution show a 

decrease in correlation with rain intensity.  The hydrologic climate region, meteorological 

rainfall pattern, and areal extent of the study area contribute to these characteristics. In a 

mesoscale region, each gauge in the network influences and contributes to not only the 

distance data available but also to the definition of the temporal resolution and rainfall 

intensity details. 

2.4 Results and conclusions 

     The PPMCC depends on the distance between gauges as previously stated. Correlation 

decreases with distance in a concave form across all temporal resolutions.  In consideration 

of hydrologic climate, a variety of seasonal and event-specific precipitation types and 
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associated intensity regimes exist and become summarized in the rainfall record. In order 

to further understand the regional rainfall regime an analysis of correlation coefficient 

stratified by rainfall intensities is conducted.  The variation in correlation coefficient with 

the rainfall intensity, as denoted by quantiles across a series of distance ranges is 

investigated.  

The quantiles are established as shown in figure 2.5. The left and right bar plots 

represent the average rainfall depth and corresponding standard deviation for which the 

rainfall data records fall into the quantile classes. Results of the study of correlation 

variation with distances and thresholds of rainfall are provided in figure 2.6. The horizontal 

and vertical axes represent the west-east and north-south directional distance. Due to the 

shape of the study area, the range in east-west direction is about 40 km, but the maximum 

north-south distance is less than 30 km. In figure 2.6, overall, the correlation increased 

proportionally with a decrease in temporal resolution. Correlation values with magnitude 

less than 0.5 dominate.  Alternatively, figure 2.6 provides a convenient and efficient format 

to visualization rainfall behavior and corresponding variation of correlation with range and 

specific direction. Correlation values greater than 0.7 remarkably stand out in each of the 

hourly temporal resolution results at the shorter distance range. This result indicates 

adjacent rainfall depths recorded within 20 km over a time period of 1-hour or longer, are 

expected to be associated with a correlation above 0.7. The correlation is shown to be 

strongly influenced by rainfall intensity and distance range at finer temporal resolutions. 

The spatial correlations decrease as rainfall intensity increases. This may indicate the 

higher spatial variation typical of severe and convective heavy rainfall at sub-hour scales. 

On the contrary, at the hourly temporal resolution, the tendency of increasing correlation 
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was observed as long as rainfall intensity increased and a threshold of rainfall greater than 

0.75inch. The similar tendency is observed at 3 hour temporal resolution and rainfall 

threshold 1inch or greater. In figure 2.7, the plots show the variation in correlation 

coefficient averaged with distance range and for each rainfall intensity threshold. Overall, 

across all temporal resolution categories, the variation of correlation with distance interval 

is similar.  The averaged correlation decreases with increase in distance, i.e., the nearest 

distance range has the highest correlations throughout all quantiles.  

The notable point in figure 2.7 is that the response of the correlation due to the 

rainfall intensity differs for each temporal resolution. In the coarse temporal resolutions, 1-

hourly and 3-hourly, there is a tendency toward increasing correlation magnitude as the 

rainfall intensity increases. The correlation magnitudes abruptly increase at the rainfall 

intensity of 0.75 inch and 1.0 inch for 1hourly and 3hourly the temporal resolutions 

respectively without reference to the distance ranges. It means that the quality of the rainfall 

data by rain gauge within sub-daily temporal resolutions is consistent, especially in heavy 

rainfall analysis. On the contrary, the correlations continuously fall in the sub-hourly the 

temporal resolutions (15 minute and 30 minute). In short, heavy rainfall data records for 

sub-hourly temporal resolution show a decrease in correlation with rain intensity.  The 

hydrologic climate region, meteorological rainfall pattern, and areal extent of the study 

area contribute to these characteristics. In a mesoscale region, each gauge in the network 

influences and contributes to not only the distance data available but also to the definition 

of the temporal resolution and rainfall intensity details.
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CHAPTER 3     RAINFALL CLASSIFICATION 

3.1 Introduction 

Throughout many regions of the world, densely populated urban communities 

face serious flooding issues. In recent years, the severity of damage has increased due to 

both higher variation in rainfall extremes and urban expansion (Qin and Lu 2014; Salathé 

et al. 2014; Wang et al. 2014). In urban areas, traditional hydrologic design methods, 

including selection of rainfall amount from historical rainfall frequency duration curves, 

often does not adequately describe local or more recent observed rainfall characteristics 

(Einfalt et al. 2009). An understanding of local and regional rainfall intensity and 

frequency characteristics for specific watersheds is necessary to implement plans and 

design procedures directed toward reducing sewer system overflows and reducing 

inundation of urban properties. This implies that traditional historic rainfall summaries 

may not characterize recent rainfall extremes, producing unexpected extreme floods.  

Improved understanding of ground-level rainfall intensity and spatial variability in urban 

areas can be thus be useful. 

The US Environmental Protection Agency (EPA) regulates the amount and 

frequency of urban runoff from combined sewer systems that may overflow into natural 

streams, or combined sewer overflow (CSO) events.  Municipal sewer agencies must 

attempt to meet EPA mandated constraints and conditions minimizing CSO occurrence or 

face penalties.  
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Typically, CSO occurrences are related to identifiable rainfall event characteristics such 

as depth and duration, and result in regulatory agencies such as the EPA having an 

interest in understanding rainfall variability. This work identifies rainfall events using the 

EPA inter-event time criteria for urban areas.  The rain events are clustered using a K-

means method based on three pre-assigned groups: low-intensity, high-intensity and high 

volume.  The spatial variation of rainfall events which fluctuate in size, rainfall intensity, 

duration and total rainfall volume are evaluated using a variogram analysis.  This 

information can provide guidance to plan and evaluate hydrologic measurement and 

design planning in the urban area. 

3.2 Data and preprocessing 

The study region is meso-scale city, the Louisville metropolitan area which is about 

1022 km2 (399 mi2) and a primarily urbanized area with a population of 1.3 million by 

2013 census. This study focuses on a recent period with a complete record of rainfall 

available, January 2010 to December 2014.  The investigation characterizes rainfall events 

in a practical and meaningful way in order to understand rainfall spatial and temporal 

variability in the context of rainfall events as defined by the United States Environmental 

Protection Agency (USEPA).   

 The data records from an operational rain gauge network, deployed and maintained 

by the local Metropolitan Sewer District (MSD) agency responsible for flood protection, 

stormwater runoff, and wastewater treatment in Jefferson County Kentucky, were utilized. 

The rain gauge locations are spread across the Louisville metro area as shown in Figure 

3.1 (MSD gauges indicated by circle markers).  There are 17 rain gauges in the MSD 

network as well as NOAA-NWS rain gauges (triangle markers). The minimum and 
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maximum distances between closest gauges are 4.52-km and 11.06-km respectively. The 

NOAA gauges serve as a reference for data quality control through comparison with data 

recorded by the MSD network.  The MSD gauges are tipping bucket type with 0.254 mm 

(0.01 in) resolution and report accumulated rainfall every 5 minutes.  

Figure 3.1     Monthly accumulation of rainfall of TR17, TR18, average value of other 

MSD gauges, and NOAA rain gauge at Galena, IN for 2010-2014 

 Two MSD gauges, Mt. Saint Francis Seminary (TR17) and Ivey Tech (TR18), were 

found to consistently underestimate rainfall depth relative to the network-averaged MSD 

monthly accumulation and NOAA gauge records as summarized in figure 2.2 (Hyun et al. 

2016).  Additionally, these two gauges are located in the northwestern region beyond the 

Jefferson County boundary.  Data records from the single nearest neighboring NOAA 

gauge are compared to TR17 and TR18 as well as the average value from all MSD gauges 

(excluding TR17 and TR18). The NOAA comparison gauge, Galena 4_3ENE, was chosen 

due to its close proximity to the two MSD gauges, 5.8km and 9.4km from TR17 and TR18 
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respectively. Based on the information summarized in figure 3.1, both TR17 and TR18 

data are considered biased for unknown reasons and these data are excluded from this work.  

To address data quality validation further, twelve NOAA rain gauges in the study area 

(figure 2.2) were utilized for daily accumulation comparisons.  Comparison of data 

records from different institutes can serve as an acceptable substitute to validate the rain 

gauge system in practical situations. The daily data are a component of the archive of 

Global Historical Climatology Network–Daily (GHCN daily) Version 3 (Menne et al. 

2012). For daily accumulation comparison, each MSD gauge is paired with the nearest 

NOAA gauge.  Figure 2.2 shows a Pearson’s coefficient range of 0.85 to 0.94 for all 

gauge pairs. The expected decrease in correlation with distance is observed and daily 

accumulation comparison indicates agreement between the NOAA and MSD rain gauge 

networks (Hyun et al. 2016).   

3.3 Methodology 

Initial work required identification of rainfall events from the data records.  For 

hydrologic studies with regulatory implications, a rainfall event may be defined in terms 

of depth, duration, intensity, and runoff.  For example, municipal agencies responsible for 

urban runoff management may be required to refer to the EPA regulatory definition of the 

inter-event time (IET).  The concept of partitioning rainfall into events with specific 

durations or non-rain periods follows from the EPA rain event definition (Driscoll et al. 

1989): “An underlying assumption necessary for the manipulation of probability density 

functions is that the event must be independent.  One of the requirements associated with 

storm event analysis is selecting an appropriate inter-event time (IET). IET values of 

about 6-hours are found to be suitable for locations in the eastern part of the country”, 
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and this is done by grouping hourly values in accordance with the minimum number of 

consecutive dry hours.  The EPA definition provides the inter-event time, IET, and 

further defines a rainfall event as (Driscoll et al. 1989): “A minimum storm volume of 

2.54-mm (0.1-inch) was specified for the analysis performed, so that the analysis would 

produce statistics of ‘runoff producing’ events within 6-hours.” 

This study adopted the EPA IET definition and considered a 6-hour time window 

as the initializing constraint defining the urban watershed state to be in a dry initial 

condition, and the constraint was found to provide an acceptable partitioning of rainfall-

runoff events for the study area.  Based on this IET, there are 558 rainfall events in the 

study period.  When the minimum volume of rainfall was observed among 15 rain 

gauges, rainfall event duration continued until the last minimum rainfall was captured by 

the rain gauge network.   

It is challenging to identify metrics to fully quantify the physical continuity of 

natural rainfall processes.  In this section, the continuous spatial structure of rainfall 

events is investigated using the clustered-variogram.  Prior to determining the variogram, 

it is critical to assume that the rainfall meets the stationary status.  In general, climatic 

phenomena have non-stationary characteristics and a simple application of a mean value 

to the variogram may not be suitable for the entire study period.  In order to lessen the 

influence of non-stationary characteristics, the K-means clustering method was applied to 

objectively partition rainfall events by similarity in intensity and similarity in average 

rain depth as shown in figure 4 (Ciach and Krajewski 2006; Dong et al. 2013; Jung et al. 

2014; Khalid 2011; Tokay and Öztürk 2012; Zhang and Yan 2014).  The rainfall events 

spread across the 2-dimensional rainfall intensity-volume field (upper-left) and three 



31 

cluster centers were selected based on the ideal position for each group.  For example, the 

initial centroid at the upper-left corner represents the centroid of the high intensity group. 

The finalized cluster areas are: (1) high intensity events in the upper left cluster, (2) high 

depth events at the lower right cluster, and (3) lower depth, lower intensity events in the 

cluster area near the origin. The K-means process uses a weighting to define the centroid 

of each region, and once centroid locations are within a resolution of 0.001 in the 

normalized field the solution is complete;  results are as shown in the lower right of 

figure 3.2.  There are 358, 163, and 37 events in the light event, high intensity event, and 

high depth event clusters respectively.  The light rainfall cluster data were not considered 

beyond this point since interest is in runoff and flood producing rainfall, and only the 

extreme events in intensity or volume were investigated. 
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Figure 3.2     Rainfall event clustering classification as light rainfall, high intensity, 

and high depth groups using the K-means clustering method: Initial status of scatter plot 

of averaged rain depth vs. maximum rainfall intensity (upper-left); Predefined centers for 

each group; light rainfall event at the origin, high intensity rainfall event at upper left 

corner, and high depth rainfall event at lower right corner in the 2-dimensional surface 

(upper-right); Final K-means clustered groups (lower-left), General statistics, mean and 

dispersion of duration for clustered groups (lower-right) 

In the lower right plot of figure 3.2, a notable difference in mean duration is 

indicated. Duration is an important factor to characterize rainfall and the high intensity 

rainfall cluster takes place well within a day and close to a half-day mean duration. 
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Meanwhile, the high depth rainfall events show duration closer to two days. These two 

mean values were applied using Equation 3.1 to establish the clustered-variogram (Cheng 

et al. 2008).  

γ𝑖,𝑗 =   
1

2
𝐸 [((𝐺𝑖 − 𝐺𝑐) − (𝐺𝑗 − 𝐺𝑐))

2

]  (Equation 3.1) 

 As expected, the two rainfall clusters responded differently in spatial variation 

characteristics.  The high intensity event cluster is more variable in terms of total rain 

depth compared to the high depth event cluster.    

 

Figure 3.3     Spatial-variogram of the two rainfall groups, high intensity rainfall event 

group and high depth rainfall event group 
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Figure 3.3 shows the second order poly-fit lines for scatter plots of the variation in event 

accumulations.  The high intensity cluster reaches a sill, with asymptotic value around 

30-km, but the high depth event cluster sill is beyond the size of the study area.  This 

indicates that storms with larger intensity exhibit less uniform rainfall intensity during an 

event (less than 1-day), or that a series of intense storms with strong convective cores 

pass through the study area.  However, the larger volumetric rainfall events have 

relatively smaller variation spatially and this is likely associated with the longer duration 

of the event (2-day) and the storm characteristics are more stable and uniform.  These 

common meteorological conditions may explain the lower spatial variation with longer 

range variogram in the high depth group. 

3.4 Conclusion and Discussion 

Rainfall event characteristics for the Jefferson County Kentucky Metro region were 

evaluated using data records from a local rain gauge network. This work is relevant in the 

context of understanding rainfall event characteristics in the context of regulatory 

requirements and identification of urban rainfall events leading to flooding and sewer 

overflows. 

The K-mean clustering method identified the extreme rainfall event groups 

resulting in an intensity-based cluster and a volume-based cluster. The two cluster groups 

indicate a notable difference in mean event duration. The clustered-variogram reveals a 

change in magnitude and influential range (sill) of spatial variation for each cluster group. 

The high intensity cluster contains higher intensity, short duration events and indicates 

higher spatial variation relative to the volumetric extreme, longer duration cluster.   
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In conclusion, this study identifies rain event spatial structure using the clustered 

variogram of ground rainfall detected by a gauge network. This can be helpful in terms of 

understanding historical rain event patterns, spatial distribution, and managing 

deployment of rain gauges. The remarkable findings include that spatial variation in rain 

events depends not only on distance but also rainfall types: volume and intensity.  

Moreover, partitioning the rainfall record into rain events according to a defined IET may 

influence the number and characteristics of rain events identified in the historical record.  

This may further have an impact for small-scale watersheds in the urban area where 

runoff and sewer overflows are evaluated.
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CHAPTER 4     RADAR RAINFALL OPTIMIZATION 

4.1 Introduction 

 In this era of climate variation and weather extremes, heavy rain storms have 

emerged as a critical issue due to the associated increase in damage to community 

facilities and displacement of resident populations. Hydrological disasters, while 

anticipated in tropical and subtropical regions are becoming more common in other 

regions.  Extreme rainfall is ubiquitous and remains difficult to predict with certainty.  

This is partially due to the rapid formation, high intensity and localized character of 

convective storms and results in a perceived increase in flood severity threat for entire 

communities and economies (Kundzewicz et al. 2014; Qin et al. 2014; Wernstedt and 

Carlet 2014). Scientists and engineers seek to improve infrastructure design and 

management of runoff control facilities to prevent or alleviate hydro-natural disasters 

(Wang et al. 2015; Woodward et al. 2014).  A critical component in storm runoff 

management and mitigation is a real-time rainfall measurement system.  Defining rainfall 

spatial and temporal quantities (depth, duration, intensity, areal extent) in real-time 

enables stormwater managers to plan and enact strategies to alleviate flood impacts.

 To acquire real-time and historical records of rainfall, ground-based and remote-

sensing measurement systems are commonly used.  Instrumenting a region with a 

network of rain gauges is advantageous as the gauges directly measures pluvial water at 

the ground level. However, a rain gauge provides only a depth-time record with limited 



37 

spatial variation information.  Thus, the quality of regional rainfall estimates from gauge 

networks is proportional to the density and distribution of gauges.  In operational 

applications, the nearest rain gauge may be several kilometers from the catchment where 

rainfall amounts are required. 

 A means to define the spatial variation of rainfall and supplement the rain gauge 

network measurement is available through weather radar systems.  The National Weather 

Services (NWS) operates the NEXRAD (Next Generation Radar) weather radar network 

which provides real-time monitoring of weather system occurrence, location and 

movement over the radar surveillance region.  The challenge, however, is that 

observations are in form of radar reflectivity and this value must be transformed into a 

ground level rainfall estimate. 

Many researchers have worked to develop algorithms that will transition radar 

reflectivity data to ground-level rainfall characteristics (Baeck and Smith 1998).  As an 

example, rainfall intensity may be inferred from radar reflectivity (back-scattered radar 

power, dBZ) based on an exponential relationship (Z-R conversion) implicitly 

incorporating physics of Rayleigh scattering and assumptions regarding in-cloud drop size 

distribution (Schmidt et al. 2012).  The exponential power relationship (Z=aRb) between 

reflectivity (dBZ) and rainfall intensity (mm/hour) is illustrated in figure 4.1.  The 

appropriate Z-R parameters (a, b) are typically identified empirically, and in the case of the 

NWS weather radar system there are four standard Z-R relations for the following rainfall 

types: convective, tropical, east cool stratiform and stratiform  (Hogan 2007; Krajewski 

and Smith 2002).  To generate rainfall products, one of the four Z-R relationships is 

assigned to each radar site (for a specific length of time or season); the default rainfall type 
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is convective where parameter “a” is 300 and “b” is 1.4.  At a reflectivity level near 36 

dBZ (vertical dashed line on the right-side Figure 4.1) the four Z-R relationships begin to 

diverge from one another.  Thus, above this value, the importance of selecting the 

appropriate Z-R relationship of the Z-R relationship increases.  Unfortunately, the Z-R 

relationship is not typically calibrated for a particular hydrologic climate or rainfall type 

and no real-time automated optimization is implemented (Chumchean et al. 2003; Ice 

2014). 

 

Figure 4.1     NWS Z-R relationships by storm type, 0-60dBZ range (left) and 30-

40dBZ range (right) 

 While existing research has been directed to developing Z-R relationships for 

one-hour rainfall accumulations (Baeck and Smith 1998), this study focused on linking 

radar reflectivity to rain gauge networks for short duration applications (less than one-

hour).  By synchronizing radar rainfall with rain gauge measurements the dependency 

(and associated uncertainty) of the Z-R conversion on storm type classification 

(convective, tropical, east cool stratiform and stratiform) is diminished. 
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 Merging information from both the ground-level rain gauge and weather radar 

systems to assess real-time rainfall characteristics can improve stormwater management 

practices for small catchments in urban areas.  Currently, NWS products available to 

support flash flood and storm warnings include the AFWS (Automated Flood Warning 

System) and IFLOWS (Integrated Flood Observing and Warning System) rain gauge 

network operates in remote and rural areas with inter-gauge distances from near 5 to over 

15 km and reports 15-minute accumulations, to the Advanced Hydrologic Prediction 

Service product for daily precipitation at 16 km2 for the entire USA (NWS 2016).  While 

both NWS products serve a useful purpose, neither provides the type of rainfall spatial 

and temporal detail to meet the needs for urban catchment runoff estimation.  

Synchronizing radar reflectivity data with the rain gauge network, a more precise 

estimate of rainfall (depth, spatial and temporal variations) indicate improved rainfall 

estimates at scales of 0.5 km2 and 0.5 hours.  Optimizing spatial and temporal estimates 

of rainfall variation can improve stormwater modeling and runoff estimation for small 

urban watersheds. 

4.2 Material and methods 

 The study region for this work is the city of Louisville, Kentucky (USA) during 

the period January 2010 to December 2014.  Rainfall data from an operational rain gauge 

network, managed by the local utility agency Metropolitan Sewer District (MSD), are the 

ground reference values (Hyun et al. 2016).  The region’s Next-Generation Radar 

(NEXRAD) (denoted by call letters KLVX) is located at Fort Knox, Kentucky about 40-

km southwest of the city of Louisville.   
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 In case studies of rainfall spatiotemporal structure, a correlation near 0.6 at 5-km 

distance for quarter-hour temporal resolution using ground based rain gauges is shown 

(Ciach and Krajewski 2006; Jung et al. 2014; Mandapaka and Qin 2013).  The average 

inter-gauge distance in this application is slightly greater and the gauge network can 

therefore benefit from the complementary spatial detail provided by weather radar.  

Although the radar data are not explicitly filtered for error adjustment, the large quantity 

of data compiled for use, from gauge network and radar archives, is expected to minimize 

bias.   Additionally, the proximity of the study area relative to the radar site, at about 40 

km range, is expected to diminish the influence of common radar error influences such as 

range effects of signal attenuation, anomalous propagation, beam blockage, and beam 

spreading (Ciach et al. 2003; Gorgucci and Baldini 2015; Hunter 1996; Kalogiros et al. 

2013; Krajewski and Vignal 2001; Morin et al. 2003; Seo et al. 2000; Vignal and Krajewski 

2001). 

 The support vector classification (SVC) application not only serves to partition the 

storm events by underlying characteristics and identify the appropriate Z-R relationship, 

but includes an optimization process for Z-R parameter estimation.  

4.2.1 Data sources 

The fifteen rain gauges of the MSD network are mechanical tipping-bucket type 

with resolution of 0.01 inch and temporal interval of five minutes. The data records for 

radar base-scan reflectivity (Level II - NEXRAD dual polarization, 0.5 dBZ increment) 

were retrieved from the National Climatic Data Center (NCDC) at National Oceanic and 

Atmospheric Administration (NOAA). The data cover the entire five-year study period, 

2010-2014, in the format of coded reflectivity volume scans.  The raw reflectivity was 
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converted to a Cartesian coordinate (ESRI ASCII grid files) system using NCDC’s 

Weather and Climate Tool Kit (WCT), version 3.7. The WCT provides visualization and 

export tools to manipulate radar data.  The Constant Altitude Plan Position Indicator 

(CAPPI) data, 1-km above the radar elevation, forms the base-scan reflectivity array over 

the study area. The spatial pixels are approximately 220-m square in a Cartesian coordinate 

grid over the study area, thus pixel area is less than 5-hectare (15-acre).  

4.2.2 Data preprocessing 

The raw radar reflectivity data are instantaneous values and require conversion to 

rainfall intensity and accumulation to define volumetric rainfall.  In order to geo-

synchronize reflectivity pixel locations with reference network gauge locations, radar 

reflectivity pixels with spatial locations corresponding to MSD gauge locations were 

identified. In the same vein, a temporal synchronization was performed to identify radar 

scan time stamps corresponding to the local time zone (accounting for daylight savings 

time as appropriate).  For each rain gauge site, the collocated radar pixel and adjacent eight 

pixels were identified for use in data evaluation.  Among these nine radar pixels, the single 

collocated radar pixel value was selected when reflectivity was within 50% of the average 

of surrounding pixel values.  Where the difference between the center pixel value and 

surrounding values was more than 50%, the averaged reflectivity value was assigned.  In 

the case where a majority of the 9 radar reflectivity data showed a status or condition as 

“not available” the pixel status was defined “not available”. The histogram in figure 4.2 

shows the frequency distribution of reflectivity for the 15 gauge locations over the length 

of the study period. The distribution of reflectivity is understandable in the nature of the 
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precipitation, skewed to the right. The maximum frequency falls near 55 dBZ and the most 

frequent range of the reflectivity is near zero. 

 

Figure 4.2     Histogram of Level 2, radar reflectivity at KLVX, Fort Knox, Kentucky, 

Jan. 2010 – Dec. 2014 

The KLVX radar data management system applies a Z-R relationship as described 

earlier according to four storm types: convective, tropical convective, stratiform, and east 

cool stratiform.  Reflectivity transforms into rainfall intensity as an instantaneous value, 

whereas the gauge values are demonstrate accumulated rainfall over five minutes (Ulbrich 

and Lee 1999). Therefore, instantaneous intensity is further transformed into accumulated 

rainfall following application of the Z-R relationship.  The first step considers all four 

reflectivity to rainfall intensity (mm/hr) conversions. Additionally, temporal 

synchronization was required since radar observations are not recorded at equal or uniform 

temporal intervals.  Instead, reflectivity scan intervals cover a 4- to 10-minute range due to 

the operational mode of the weather radar.  Generally, three or four instantaneous base 

scans cover the quarter-hourly period, and each volumetric scan is weighted according to 
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the inter-scan time interval within the quarter-hour interval.  The product of rainfall 

intensity and time interval provides a part of the quarter-hourly volumetric rainfall 

accumulation.  

RQ(t, x) = ∑ (
Ri

4
) (

ti+1 − ti

2
) (Equation 4.1)

n

i=1

 

  

Figure 4.3     Gauge and Radar rainfall depth in 2 dimensional space (gauge-radar 

volume) across temporal resolutions: monthly (upper- left), daily (upper-right), hourly 

(lower-left), quarter-hourly (lower-right) 
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The process is defined in equation 4.1 based on a weighted time of occupation for 

each scan within the quarter-hourly interval. For each reflectivity volume scan, the time 

interval is defined as the duration from the observation until the next observation recorded 

(inter-scan interval) or the end of the fifteen-minute accumulation window. 

Figure. 4.3 illustrates the volumetric radar rainfall products at monthly to quarter-

hour temporal resolutions.  The quality of quarter-hourly radar rainfall estimation is 

relatively low while hourly and longer accumulated rainfall products reveal better 

agreement with gauge rainfall. However, this study focuses on the shorter duration, quarter-

hourly interval, in order to illustrate radar rainfall products for use in smaller urban 

catchment applications (Cunha et al. 2015; Krajewski et al. 2010; Smith et al. 2007; Wright 

et al. 2014).   

 

Figure 4.4     Histogram of rain gauge values for cases where radar data is not observed 

(Not Available (NA)) or radar intensity is below the 5mm/15min threshold 
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 In figure 4.3, most data are found at the depth range of 5 mm or less for quarter-

hourly rainfall and figure 4.4 demonstrates that a majority of this low- depth or low- 

intensity radar data is associated with low-intensity rainfall.  Furthermore, rain gauge data 

reliability and detection is also sensitive during light rainfall (Ciach 2002; Humphrey et 

al. 1997).  For these reasons, a quarter-hour rainfall accumulation threshold of 5 mm was 

implemented for evaluating the Z-R relationship in the remaining portion of this study.  

This is also in line with a focus on rainfall events relevant for potential urban inundation 

and flooding events. 

4.3 Theory and applications 

Application of the optimal Z-R relationship, selected as the one yielding lowest 

RMSE, for each 15-min rainfall accumulation and each rainfall type category, is 

summarized in figure 4.5 (origin at 5mm rainfall threshold). The rain type categories 

corresponding to tropical and east cool stratiform show a dispersed result. Conversely, the 

convective and stratiform types tend toward agreement with gauge values as indicated by 

the lower variance and narrower clustering along the one-to-one line.  Further optimization 

processes are considered for the stratiform type rainfall values since the result shown is 

considered adequate for this work.  In the case of east cool stratiform type, most rainfall 

depths are less than 10 mm, and this depth is less significant from a hydrologic runoff 

generation perspective.  For this reason, the east cool stratiform rainfall type is not 

considered in the remaining part of this study.  This leaves convective and tropical type 

rain categories for consideration, and the focus is on development of an optimization 

process to improve agreement of radar-based and gauge-measured rainfall accumulate.  
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Figure 4.5     Scatter plots of rainfall volumes for each storm type after optimization 

(minimum RMSE error): convective type (upper-left), tropical type (upper-right), east-

cool-stratiform type (lower-left), stratiform – Marshall/Palmer - type (lower-right) 

Figure 4.6 presents a comparison of the convective storm type radar depths and the 

gauge rainfall depths.  The lighter shaded markers indicate use of the standard Z-R 

transformation with parameters (a:300, b:1.4) and the darker marker dots indicate the 

optimized Z-R result.  A simplex optimization procedure was applied to optimize the Z-R 
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parameters over value ranges of 10 to 500 and 0.5 to 3 for a and b respectively.  

Optimization decreased RMSE and Z-R parameters values of 300 and 1.4 were modified 

to 250 and 1.4 for a and b respectively. The optimized Z-R parameters eliminated the 

systematic underestimation but the dispersion is unchanged;  the simplex optimization 

centered all values about the one-to-one line. 

 

Figure 4.6     Convective rainfall type: radar and gauge comparison with (a) 

standard NWS Z-R relation (light shade marker), and (b) optimized Z-R relation 

(minimum RMSE error) 
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The tropical convective rainfall type contains a large number of high intensity 

values and has the widest spread of the comparison groups.  An interesting and challenging 

issue is that bias cannot be eliminated by calibration of the Z-R parameters alone.   

Figure 4.7     Tropical type rainfall results: Optimized minimum RMSE error 

(upper-left); Decision schematic for SVC kernel within least RMSE error range (upper-

right); SVC binary clustering hyperplane (lower-left), SVC-based optimization with two 

rainfall groups (lower-right) 
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As shown in figure 4.7 (upper-left), underestimation of rainfall remains following 

optimization of Z-R parameters a and b.  In figure 4.5 (upper-right, red), the result is shown 

for the best fit Z-R, yet the tropical type rainfall appears to form two distinct groups.  The 

first group is slightly above the one-to-one line with limited dispersion, whereas a second 

group is under the one-to-one line with wider variability. This indicates that a single Z-R 

relationship for tropical type may not suffice to encompass the observed characteristics of 

tropical type rainfall for this region.  In order to investigate a solution for this issue, a 

support vector classification (SVC) optimization procedure was developed.  The SVC 

optimization incorporates an unsupervised learning algorithm applied in the context of a 

two dimensional surface (x-axis: gauge rainfall and y-axis: radar rainfall).  The concept is 

a data-based learning process; the SVC creates a linear hyperplane separating two binary 

groups according to a separation margin criteria. The hyperplane forms a linear separation 

at the maximum margin and is highly efficient in differentiating the non-linear rainfall 

characteristics. The determinant in the SVC is a kernel method transformation into a feature 

vector (Cristianini and Shawe-Taylor 2003).  In figure 4.7 (upper-right), the maximum 

instantaneous reflectivity among the group of influential reflectivity values for quarter-

hourly rainfall accumulation defines the kernel.  The averaged radar rainfall error 

(difference from gauge value) is at the range of 44 dBZ to 47 dBZ and reflectivity of 46 

dBZ is selected in order to balance the number of data values in each group.   

ŷ = sgn ∑ wiyik(Ri, Ŕ)

n

i=1

 (Equation 4.2) 

The kernel method is described in equation 4.2 in the Appendix and defines the two 

groups through the linear hyperplane. The similarity function of the kernel method follows 
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training data instead of a fixed set of parameters, and this feature involves the similarity 

function k, denoted as kernel in equation 4.2. More simply, the kernel is a weighted sum 

of similarities between the trained example input and the new unknown input. The kernel 

is used as a binary classifier in terms of ŷ, the binary classifier for clustering the two tropical 

groups.  In figure 4.7 (lower-left) the linear hyperplane shows two data groups, one group 

fit with the tropical type Z-R relationship and the second group in the underestimated 

region. Following the SVC process, calibration of the Z-R parameters (RMSE minimum) 

was completed and the result is shown in figure 4.7 (lower-right).   This result demonstrates 

gains in information for the tropical type rainfall when two Z-R parameter sets (a, b) are 

used.  The original fan-shaped dispersion is greatly reduced, as well as the original 

underestimation issue.  The SVC-based solution process provides a multi-category 

classification and overcomes limitations of binary classification (Xie et al. 2013).   

4.4 Results and discussion 

4.4.1 Results 

Use of an uncalibrated Z-R relationship for conversion of reflectivity to rainfall 

intensity for short-duration accumulations may result in differences from ground-level rain 

gauge observations.  An example of these differences is presented in Figure 4.8 (upper-

left) where results show a fan-shaped spreading with correlation of 0.68 between gauge 

and radar rainfall. Coincidentally, underestimation of rainfall may be more problematic 

than overestimation in applications of hydrological management and design, and this result 

is relevant for the tropical type rainfall category.  In figure 4.8 (upper-left), the comparison 

shows the best fit standard Z-R relationship (minimum RMSE), and the tropical Z-R 

relationship corresponding to the solid red line in figure 4.8 (upper-right).  This indicates 
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the tropical Z-R may not capture a complete description of rainfall variability at higher 

intensity rainfall rates. This study introduced an alternate Z-R relationship formed using an 

SVC optimization process.  Use of the alternate Z-R relationship produced the results in 

figure 4.8 (lower-left) and figure 4.8 (lower-right).  A comparison of the alternate Z-R (red 

dotted line) and NWS tropical Z-R (red solid line) relationships are included. This alternate 

Z-R relationship, designated as “tropical-2”, is more influential in the higher reflectivity 

range (greater or equal to 46 dBZ).  The Z-R relations shown in figure 4.8 (lower-right) 

illustrate the placement of the existing NWS tropical (tropical-1) Z-R relationship between 

the convective (black solid line) and tropical-2 (red dotted line). Graphically, the tropical-

1 relationship fills the gap between the other two convective Z-R relationships.  A notable 

point is that a large portion of the quarter-hourly rainfall accumulations occurring at lower 

radar reflectivity, less than 46 dBZ, are well represented by the tropical-1 Z-R relationship. 

The focus of this study on a relatively shorter, quarter-hourly, rainfall accumulation 

interval, and the focus on more intense rainfall values are factors influencing the need to 

partition this extreme- type rainfall (NWS tropical) into two sub-groups.  

In general, the two tropical sub-groups are similar in the low reflectivity range and 

deviate more from one another for reflectivity above 45 dBZ to 50 dBZ.  Based on the use 

of categorized Z-R relationships in the region of more extreme rainfall intensity, quarter-

hourly rainfall estimation is improved with a correlation of 0.72 in figure 4.8 (lower-left). 

For applications in urban hydrologic designs and simulation of historical events, the shorter 

temporal resolution of rainfall is useful. 
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Figure 4.8     Comparison of local radar rainfall estimations and corresponding Z-

R relationships: Standard Z-R-based quarter-hourly rainfall accumulation (upper-left); 

four NWS Z-R relationships (upper-right); Optimal SVC-based quarter-hourly rainfall 

accumulation (lower-left); SVC-based optimal Z-R relationships (lower-right) 

4.4.2 Discussion 

The inherent characteristics of rainfall are spatiotemporally dynamic and it remains 

difficult to define short-time interval volumetric rainfall for a local specific region such as 

a small urban catchment.  Rain storm dynamics are challenging to predict due to 
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uncertainties in storm characteristics and the influential environmental factors (Coniglio et 

al. 2010; Panthou et al. 2014).  A study of cloud microphysics can identify and record 

observations of key environmental variables yet the complex interactions between water 

vapour, in-cloud liquid droplets, and falling hydrometeors make rainfall estimation at the 

surface using parameterization methods challenging (Cui et al. 2014; Hu and Feng 2002; 

Morrison and Milbrandt 2015; Nogueira and Keim 2010). Radar rainfall estimation is a 

remote-sensing method measuring reflectivity rather than directly measuring rainfall rate. 

The Z-R relationship is the most common approach used to transform the radar signal into 

rainfall intensity.  The value in recognizing rainfall type or category is one issue considered 

in this study.   In particular, the influence of the reflectivity-rainfall transformation for 

higher spatiotemporal resolution is illustrated.  This study illustrates an approach, the SVC 

classification procedure, as a means of improving the estimation of tropical type rainfall 

through transformation of radar reflectivity. 

4.5 Conclusions 

This study investigated optimization of the reflectivity-rainfall (Z-R) relationship to 

determine rainfall accumulations for quarter-hour temporal intervals in an operational 

setting.  The study involved 3 primary components:  1 - optimization of Z-R relationship 

selection from a number of existing forms; 2 - calibration of Z-R relationship parameters; 

and 3 – implementation of an SVC optimization algorithm to classify radar reflectivity data 

in two groups and calibrate Z-R parameters for these groups.  The selection or application 

of a Z-R relationship according to rainfall type at an individual radar site can provide 

adequate results for coarse temporal resolution rainfall products.  However, differences 

between rainfall observed at ground level are increased at finer spatiotemporal scales 
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approaching sub-kilometer and sub-hour.  Understandably, the operational approach to 

radar rainfall estimation does not address localized fine resolution rainfall estimation for 

urban hydrology applications.  In this work, a binary clustering algorithm, SVC, partitioned 

tropical rainfall type data into two groups using a kernel optimization method.  Results 

indicate application of the SVC classification algorithm, followed by application of Z-R 

relationships based on identified rainfall type groups, improved radar rainfall accumulation 

estimates for short duration time intervals.
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CHAPTER 5     APPLICATION OF RADAR RAINFALL TO URBAN AREA 

5.1     Introduction 

 In many urban areas, combined sewer systems (CSS) carry both storm water 

runoff and sanitary sewer flows in a single pipe.  In the absence of rainfall-runoff most 

CSS adequately convey waste water flow, however system capacity may be overwhelmed 

when it must also transport significant stormwater runoff.  In order to prevent sewage 

from flooding streets and backups into homes and businesses, most CSS (as well as 

separated sanitary sewer systems) are designed to overflow into surface waters such as 

streams and rivers, lakes and seas.  This overflow occurrence is considered a combined 

sewer overflow (CSO) event and has a detrimental impact on aquatic environments and 

degrades downstream water quality.   

 In the United States (USA), regulations were established to eliminate CSO events 

in urban areas (EPA 1994).  Although CSS are considered an outdated approach to waste 

water collection, these legacy water collection systems form a considerable portion of the 

sanitary sewer network in the United States.  It is estimated that 860 communities across 

the USA are served by combined sewer systems with over 10,000 CSO outfalls directed 

into natural surface waters.  These communities include approximately 40 million people 

in more than 30 states (EPA 2004).  The direct solution to eliminate overflow occurrence 

through modification or replacement of CSS with separate sewer and storm drains is cost 
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prohibitive, disruptive to the community, and difficult or infeasible to accomplish in 

existing urban environments (Lyandres and Welch, 2012).   

 When a CSO event occurs, the effect on receiving waters can be significant.  The 

flow transports microbial pathogens, oxygen depleting substances, suspended solids, 

toxics, nutrients, and debris including floatables and trash directly into the natural aquatic 

environment (EPA 2004).  Furthermore, in most urban areas CSO occurrence is often a 

sudden phenomenon, due to both characteristics of the triggering rain storm and 

hydrologic conditions in the sewershed, resulting in a surge of runoff  (Romnée et al. 

2015).   

 Understanding characteristics of CSO triggering rain storm events is important to 

utilities as when specific event characteristics are identified, a plan to mitigate unsafe 

occurrences can be developed.  The challenge, however, is that in most sewersheds, the 

common operationally measured rainfall characteristics (rain event duration, total rain 

volume, intensity, continuity (inter-event time, IET), seasonality and storm type (e.g., 

stratiform, convective, frontal, orographic, tropical storm remnants), are determined 

based on spatially distant point source rain gauges and lack catchment specific detail.  

Rain events identified in a precipitation record may be compared with sewershed CSO 

flow records to identify a record of coupled rainfall-CSO events.   

 Historically, rainfall monitoring by ground-level rain gauge networks is 

considered a reliable measurement system for many hydrologic applications because it 

physically captures pluvial water.  In hydrologic engineering and research, rain gauge 

measurements frequently serve as a reference for evaluation of indirect or remote sensing 

rainfall estimation systems such as weather radars and satellites (Habib et al., 2012; Price 
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et al., 2014; Chen et al., 2015; Fencl et al., 2015).  However, the spatial variation 

detection of rainfall measurement by gauge networks is limited, in particular at finer 

temporal resolution. Thus, characteristics of the localized rainfall events, which can vary 

significantly from spatial averages and are influential in triggering CSO events, is not 

captured. 

 Hydrometeorologic rainfall monitoring and measurement technology has 

advanced in recent decades (Karamouz and Nazif, 2013; Morita, 2011; Yang et al., 

2013).  The availability of quantitative two-dimensional measurements from weather 

radar has increased the availability of rain detection at higher spatial and temporal 

resolution.  From radar rainfall archives, areal rainfall observations are available at the 

sub-hectare (radar polar coordinated pixel size) resolution at sub-hour temporal intervals. 

Identification of rainfall events, for example, using the EPA criteria for urban areas and a 

defined inter-event time (IET), provides the context for identifying rainfall spatial and 

temporal characteristics associated with CSO overflow events. Accordingly, preparation 

of accurate rainfall data, quality controlled weather radar data, identification of 

independent rainfall events and the corresponding CSO event hydrographs are essential 

to developing a quantitative understanding of this phenomenon. 

 To this end, an objective for this study includes application of locally optimized 

radar-rainfall to an urban sewershed (watershed) using fine-scale spatiotemporal 

resolution data, and evaluation of rain event characteristics resulting in CSO events. 

Categorization of the severe rainfall events inducing CSO can provide insights for 

hydrologic and hydraulic design guidelines to reduce sewer overflows from combined 

sewer systems in an urban area. 
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5.2     Case Study 

5.2.1     Urban sewershed setting and CSO location 

The sewershed CSO130 is part of the urban CSS and located in an older neighbourhood, 

called Buchertown, in Louisville, Kentucky.  The specific location of CSO130 is along 

Webster Street and its overflow control structure type is a diversion dam. The sewershed 

is approximately 13-ha (30-ac) and land-use is a mixture of commercial and dense 

residential.  The land-use is about 75% impervious with the portions distributed as 

residential (24%), commercial (25%), industrial (32%), vacant land (6%), and roads and 

other uses (13%).  The CSO130 outfall discharges into the nearby stream, Beargrass 

Creek, which is a tributary of the Ohio River. 

The regional sewer agency, Metropolitan Sewer District (MSD) operates a rain gauge 

network across the city region and one rain gauge is located near the study area.  

However, data from this gauge serves only as a reference to evaluate radar rainfall quality 

rather than as rainfall for the sewershed.  Hyun et al. (2016a, 2016b) characterize the 

spatial and temporal variation of rainfall using the MSD rain gauge network for the meso-

scale region of the city of Louisville, Kentucky.  The benefit and challenge of using 

weather radar data for operational applications is illustrated and the spatial variation of 

rainfall derived from weather radar products described (Hyun et al. 2016a, 2016b). 

Additionally, radar-rainfall data from the National Climatic Data Center (NCDC) archive 

of National Weather Service (NWS) NEXRAD radar, for the Fort Knox, Kentucky 

location (denoted by call letters KLVX) are incorporated.  The radar records are extracted 

and optimized, with spatiotemporal resolution of quarter-hour and less than five-hectare 

(15-acre), in order to be applicable for the urban hydrologic scale. 
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5.2.2     Coupled radar rainfall and overflow event record   

 Only rain events resulting in a CSO event are considered and a quality control 

threshold is applied to select rain-overflow events exceeding a ratio of 0.60 for overflow 

depth to rainfall depth.  Discriminant analysis is used to categorize the coupled rainfall-

overflow events according to overflow severity; a threshold of the overflow depth of 1.5-

mm partitions the event categories. Results indicate that overflow depth has a strong 

linear relationship with rainfall depth and other environmental factors are influential.  

 Identification of rainfall events, using the EPA criteria for urban areas and a 

defined inter-event time (IET), provides the context for identifying overflow events in the 

CSO flow record. Accordingly, preparation of accurate rainfall data, quality controlled 

weather radar data, and a record of independent rainfall events, are essential.  In radar 

rainfall estimation, areal rainfall observation is available at the sub-hectare (pixel size) 

radar resolution. The NCDC archive of NWS radar data provides super-resolution radar 

rainfall at a pixel scale of 250-m by 0.5° in polar coordinates, and this product is suitable 

to define rainfall variation over urban areas. However, the quality control of the data 

record provides an improved rainfall product (Hunter, 1996).  To address this issue, Hyun 

et al. (2016c) focused on data quality control, calibrating the radar to local conditions 

through adjustment of the empirical Z-R relationship transforming observed radar 

reflectivity (Z dBZ) to rainfall intensity (R mm/hr). The radar rainfall optimization 

identified the Z-R relationship shown in figure 4.8. Figure 4.8 shows quarter-hourly radar 

derived accumulation compared to rain gauge values have a correlation of 0.68, and an 

underestimation tendency by the radar.  To address this issue, rainfall data were clustered 

and partitioned using support vector classification (SVC), with the underestimated group 
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assigned a new Z-R relationship (lower-right figure 4.8).  This resulted in improved data 

agreement for quarter-hour temporal resolution indicated by the correlation of 0.72.  

Additionally, figure 5.1 shows radar rainfall comparisons with gauge rainfall data sources 

near the study area. An MSD rain gauge, gauge number TR05, is located about 600-m 

away from the study area, and this data record is used as a reference to evaluate spatial 

variation of rainfall.  The improved radar data shown in figure 5.1 (upper-right) has 

improved the correlation to 0.79 compared with a 0.70 correlation in the original estimate 

(figure 5.1 upper-left).  Two other rain gauges, TR12 and TR03 show correlation of 0.55 

and 0.05 with the TR05 data respectively.  Within a distance of 15-km, rainfall is 

spatially uncorrelated (ρ=0.05), and correlation decreased to 0.55 within 5km distance at 

TR12.  This reveals the high spatial variation of the rainfall at quarter-hourly temporal 

resolution and the benefit of radar-rainfall over the limitation of reliance solely on 

ground-based rainfall measurement.. 
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Figure 5.1     Rainfall data quality comparisons with the reference rainfall data (TR05): 

NWS radar data (upper-left), Quality-improved radar data by SVC (upper-right), MSD 

rain gauge-TR12; 4.9km away from the study area (lower-left), and MSD rain gauge-

TR03; 15.3km away from the study area (lower-right) 

   

The CSO mechanism in the sewershed is not only related to the rainfall 

characteristics; depth, duration and intensity, but also the continuity of the rainfall event.  
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Figure 5.2     Selected CSO events and corresponding rainfall events; Event number 

denotes the rank of the overflow amount through the outfall structure to Beargrass Creek, 

Louisville, KY 

Figure 5.2 illustrates the extreme overflow cases at CSO130 in time-flow manner 

and the hydrologic response is related to rainfall variations within the rain event. The 

nine overflow events shown indicate that most were triggered immediately following the 

heaviest rainfall interval.  Naturally, the rainfall volume is the primary influence on 

overflow amount, but it is not the only factor. The more sizeable rainfall peaks affect the 

overflow amount and time distribution.  For example, the sixth greatest overflow in 

figure 5.2, with overflow amount of 10.68-mm, has precipitation duration less than an 

hour but the overflow was significant because of high intensity rainfall. On the contrary, 

the overflow event which ranked in fourth has no clear intense rainfall observed; instead 

rainfall is steady and uninterrupted. These results indicate rainfall event continuity as 

another factor triggering overflow event occurrence. 

 One definition of a rainfall event is provided by the EPA for rainfall event in the 

context for urban regulatory settings (Driscoll et al. 1989).  The EPA document defines a 
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rainfall event as “A minimum storm volume of 0.1-inch (2.54-mm) was specified for the 

analysis that were performed, so that the analysis would produce statistics of ‘runoff 

producing’ events within 6 hours.” In short, a single rainfall event is completely 

independent if no sizeable rainfall, greater than 2.54-mm (0.1-inch), occurs within six 

hours. The rainfall event defined by EPA regulation and corresponding time for the 

overflow event were determined from the time rainfall began until six hours from the end 

of the rainfall event. By EPA definition, a rainfall event is followed by at least a six-hour 

dry period and so the implied time available for overflow to occur is limited to six hours 

following the rain event. Based on this, there are 95 rain events with coupled CSO 

occurrence in the sewershed for CSO130 over the three-year study period, January 2011 

to December 2013. 

5.3     CSO130 overflow analysis 

 The CSS CSO130 control structure is a 0.61-m (24-inch) circular brick sewer pipe 

flowing with an average of 12 overflow incidents (events) per year (averaged 2.33 hours 

of duration and 90,000 gallons of combined sewer per incident) (MSD, 2014). 

5.3.1     Quality control of coupled rainfall/overflow event 

 The number of CSO events identified directly from data records of rainfall and 

overflow analysis indicates the number of incidents is 95, and this is a greater number 

than the 35 to 40 otherwise expected according to the average number of reported 

incidents over the same three-year study period (MSD 2104). Potentially, the method of 

identification and event partitioning (IET) may influence the number, but proper quality 

confirmation is required for data reliability. To this end, a means of screening outliers and 
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poor quality data records is utilized.  Application of a common rainfall-runoff index 

threshold screening, based on watershed characteristics, is not possible since the total 

runoff for each CSO event partitions flow into two directions, one part is the overflow 

and the remaining portion continues to the water treatment plant.  During an overflow 

event it is not possible to separate the portion attributed only to stormwater runoff.  To 

address this issue, CSO event data are partitioned into acceptable and non-acceptable 

clusters.  Figure 5.3 (left) shows the normalized runoff-rainfall index ratios of overflow 

depth to radar-rainfall depth and overflow depth to gauge rain depth for each event.  The 

plot spreads in a two-dimensional field; with x-axis: ratio for rain gauge MSD TR05 

(600m from CSO130), and y-axis: ratio for radar rainfall.  A ratio greater than 1 indicates 

runoff greater than rainfall, and this unlikely occurrence may indicate data error or other 

issues; for this reason, these data are excluded from the study.  The use of two rainfall 

sources lessens the uncertainty concerning rainfall occurrence and incorporates both these 

practical hydrologic observations into this study.   
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Figure 5.3     Overflow ratio plots. Left side: Two-dimensional radar & gauge rainfall 

field; x-axis shows rain gauge ratio-MSD TR05 (nearest study area), y-axis shows radar 

ratio-NWS weather radar KLVX.  Right side: Criteria threshold for valid event selection: 

52 acceptable events (blue) below the 0.60 overflow/rainfall threshold, and 43 non-

acceptable events (red) exceed the threshold 

 Figure 5.3 shows a notable absence of overflow occurrence between ratio values 

of 0.60 and 0.80.  Therefore, a threshold ratio of 0.60 was defined as the acceptable 

coupled rainfall and overflow event criteria; this is the boundary where data are densely 

populated and shown as the inner region defined by a bold solid line forming a quarter-

circle in figure 5.3 (left). The right portion of figure 5.3 shows all CSO events and the 

bold solid line indicates a value of 0.6 for the radar overflow ratio.  The result identifies 

two groups of CSO events: acceptable (blue) and non-acceptable (red). This process 

indicates 52 coupled rain-overflow events and this corresponds well with the expected 

number as suggested by the MSD report for the three-year study period (MSD, 2014). 

5.3.2     Analysis of coupled rainfall and overflow events 

5.3.2.1     Overflow relation to rainfall depth, intensity and duration 
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 The coupled rain and overflow record for CSO130 shows the sewershed runoff 

response is prompt with a hydrograph form similar to a smoothed and time-lagged 

reflection of the hyetograph. That being so, understanding the rain event characteristics 

provides insights into the timing, intensity and amount of overflow.  Fundamentally, the 

quantitative relation between rainfall and overflow has a visible linearity as in figure 5.4 

(left).  Rain volume is an important factor and shows a linear relationship with overflow.  

As shown in figure 5.4, when rainfall is less than about 8-mm a low overflow volume 

occurs and overflow amount increases linearly above this rainfall depth. For overflow 

values above a 0.40 ratio of rainfall volume the sewer overflow volume is more 

significant and likely to impact environmental quality in the Beargrass Creek.  It is 

expected that total rainfall depth is a significant factor triggering an overflow, but this 

simplified conclusion cannot completely explain the behaviour and a search to 

understand the contributing factors causing overflow events is warranted.   

 

Figure 5.4     Event-based rain depth versus overflow depth (left), and rain event duration 

versus rainfall depth grouped by peak rain intensity (right).  Intensity threshold peak is 

4.87mm/15minute to identify weak (blue) and strong (red) peak event groups 
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 The rain event duration and peak intensity (15-minute temporal resolution) are 

important in determining overflow volume in figure 5.4 (right). In the duration versus 

rainfall depth field (figure 5.4 right), the events clearly divide into two groups when 

clustered by peak rainfall intensity.  The two groups have somewhat different tendencies 

in the two-dimensional space with the strong peak intensity group showing a relatively 

short duration but larger volume of rainfall.  On the other hand, rainfall volume tends to 

be relatively stable and less relevant as an overflow trigger no matter the event duration.  

In the small-scale urban watershed setting, existence of high-intensity peak rainfall may 

produce significant volumetric rainfall, thus, rainfall intensity significantly impacts 

drainage system performance in urban areas (Arnbjerg-Nielsen et al., 2013; Mamo, 

2015).  Considering this result in a practical application, rainfall depth, intensity and 

duration are all factors indirectly incorporated into historic intensity-duration-frequency 

(IDF) curve used to define volumetric rainfall for urban hydrologic design.  However, 

variations between rainfall observations and IDF design values illustrates the uncertainty 

for applications requiring fine spatiotemporal resolution such as urban sewersheds where 

runoff response occurs well under the sub-hour temporal scale. 

5.3.2.2     Overflow relation to rainfall depth, storm type and continuity of rain 

 There is a thread of inter-connection between instantaneous heavy rainfall, storm 

type and resulting overflow in this small watershed. A concurrence of rainfall 

characteristics and watershed condition, for instance, existing antecedent moisture, wet or 

dry surfaces and soils, which effect rainfall retention and percolation, may influence 

overflow occurrence.  Therefore, rainfall continuity in terms of single events is 

considered as an additional factor.  The extreme overflow events in figure 5.2 reveal the 
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importance of the rainfall continuity since there are four high ranked overflows (rank 

number: 3, 4, 8, and 9) associated with rainfall events with relatively insignificant peak 

intensity (below 5-mm/15minute), but continuous and uninterrupted rainfall.  In other 

words, the length of the duration of rainfall within a single event is an influencing factor 

related to the CSS capacity and resulting CSO for this sewershed.   

 

Figure 5.5     Rainfall occupancy ratio (ratio of continuous rain duration to total event 

duration) and total rainfall event depth: convective event type in warm season (magenta), 

convective type in cold season (red) and stratiform (blue) (left).  Event-based rainfall 

depth versus overflow depth: convective-warm season (magenta), convective-cold season 

(red), stratiform-warm season (cyan), and stratiform-cold season (blue) (right) 

 The ratio of the time rain falls during a rain “event” to total event duration 

represents the continuity of the rainfall or rainfall occupancy ratio.  Figure 5.5 (left) 

illustrates the relationship between rainfall depth and rainfall occupancy by rain type and 

season; warm season (April to September) and cold season (October to March). The radar 

rainfall product indicates rainfall type for each 15-minute rainfall accumulation.  The 

characteristics of a single storm, in motion over CSO130 sewershed, are dynamic and a 
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series of storm cells may move over the area.  The convective storm type may have a 

single or multiple cells within the developed storm structure associated with severe 

rainfall (Caine et al, 2013; Cetrone and Houze, 2006; Feng et al., 2014; Peter et al., 2015; 

Zawilski and Brzezińska, 2014).  

 Identification of rainfall type is based on the ratio of number of convective type 

radar pixels to total rain pixels in the storm.  Applying a threshold ratio of 0.45 results in 

the two event groups; a convective prevalence group and a stratiform prevalence group. 

The stratiform group has no discernible spatial pattern features other than the continuity 

of rainfall coverage, while the convective group has a tendency toward increasing 

intensity beginning around a ratio of 0.60.  The highest three rain depth events are in the 

convective group. The reappearance of the rainfall overflow plot (figure 5.5, right), with 

seasonal rainfall group details added, demonstrates the characteristics of the overflow 

inducing rainfall events.  Prior to presentation of this figure, the nine ranked overflow 

inducing rainfall events show a 0.81 ratio of rainfall occupancy and no event with lower 

than a 0.60 ratio. This indicates the rainfall event group most likely to generate a CSO are 

the convective rain group in summer season. The mitigation of combined sewer overflow 

events can use this information in hydrologic design to improve future approaches to 

stormwater runoff reduction. The overflow of CSO130 is a response to the interaction of 

natural rainfall variability, the urban landscape, land-use and hydrologic environment.  In 

addition to rainfall variability, other qualitative factors influence the likelihood of 

overflow occurrence. Therefore, understanding the temporal and spatial structure of 

overflow inducing rain events is useful to estimate overflows in CSOs. 

5.3.2.3     Discriminant analysis in overflow inducing rainfall events 



70 

This study shows that an overflow event in a sewershed is induced through the 

integration of factors from two fields; natural rainfall variability and the constructed 

sewershed conditions. The fundamental assumption is that rainfall induces the overflow 

event in a small-scale sewershed because the runoff response is rapid and the hydrograph 

structure resembles the hyetograph. Thus, preventing overflow events inevitably requires 

understanding of rainfall characteristics. The volumetric rainfall depth was shown to 

relate linearly with overflow and other factors, such as rainfall intensity, duration, and 

continuity of rainfall (as a ratio of rainfall occupancy) as influential factors.  Discriminant 

analysis is introduced to classify these precipitation factors. The discriminant analysis 

uses the combination of features from the continuous independent variable (rainfall 

characteristics) to define a separation of the discrete dependent variable (Martinez and 

Kak, 2001; Tahmasebi et al., 2010) and is applied broadly in water resource (Sangam et 

al., 2008, Boyacioglu, 2010). In order to apply discriminant analysis, the dependent 

variable (overflow) must be categorical unlike the continuous independent variables. In 

Figure 5.6, a threshold overflow depth set at 1.5-mm, for the CSO130 sewershed, and 

categorizes the coupled rainfall-overflow events into two groups; a significant overflow 

group (23 events referred to as group-1) and non-significant overflow group (29 events 

referred to as group- 0). 
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Figure 5.6     Overflow event and 1.5-mm depth threshold separating overflow events into 

two binary categories – significant (denoted as 1) and non-Significant (denoted as 0) 

 In table 5.1, the mean values of the rainfall related variables influencing the 

overflow events are presented in discriminant groups.  As expected, this highlights 

differences between groups and provides a quantitative distinction of the decisive 

overflow factors. The mean rainfall depth is 8.85-mm in the non-significant group 

(group-0) and 23.70-mm in the significant group (group-1). Overall, volumetric rainfall 

governs the overflow in this small scale sewershed. The peak rain intensity has a similar 

tendency showing 3.76-mm per 15-minute and 6.20-mm per 15-minute for group-0 and 

group-1, respectively. Commonly, the rainfall depth and the rainfall intensity (peak) have 

positive correlation with overflow amount. However, the duration of rainfall indicates a 

contrast to this expected result. In figure 5.4 (right), the majority high rainfall depth 

events have shorter durations. These shorter rainfall duration events are expected to fall 

into group-1 considering the relationship between rainfall depth, intensity and overflow 
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occurrence. In this case, the continuous, uninterrupted and longer duration rainfall 

induces the overflow.  This is due to the inverse correlation between rainfall duration and 

rainfall continuity, where a correlation of -0.64 is indicated between these independent 

variables.  A longer rainfall duration is more likely to also contain a non-rain period 

resulting in proportionally lower continuity.  

Groups Variables Mean 

 

 

Non-Significant Overflow  

(group 0) 

 Duration (hour)  4.57 

Rain Total (mm) 8.85 

Rain Peak (mm/15min) 3.76 

Rain Type (convective ratio) 0.47 

Rain Continuity ratio 0.56 

 

 

Significant Overflow  

(group 1) 

Duration (hour) 6.14 

Rain Total (mm) 23.7 

Rain Peak (mm/15min) 6.20 

Rain Type (convective ratio) 0.50 

Rain Continuity ratio 0.60 

 

 

Total Events 

Duration (hour) 5.37 

Rain Total (mm) 15.4 

Rain Peak (mm/15min) 4.84 

Rain Type (convective ratio) 0.48 

Rain Continuity 0.58 

Table 5.1     Group Mean Values of Rainfall Characteristics by Discriminant Analysis 

 Another matter that merits mention is the definition of rainfall event duration. The 

study incorporates the USEPA (EPA, 2004) definition for continuous rainfall and 

independent event identification. The emphasis is on whether event independence, using 
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the temporal separation of a six-hour dry period for a small-scale sewershed, is 

appropriate since both the sequence of rain depth and continuity of rainfall within the rain 

event are influencing factors. The differences are investigated here using discriminant 

grouping by rain type and rainfall continuity, nevertheless overflow occurrence is 

associated more with rain events in group-1. The definition of a rainfall event may be 

improved with incorporation of factors such as watersheds size, land-use characteristics, 

and hydrologic goals.   

Overflow Severity Predicted Group Membership Total 

Non-Significant Significant 

Original Count Non-Significant 29 0 29 

Significant 11 12 23 

Percentage Non-Significant 100 0 100 

Significant 47.8 52.2 100 

Table 5.2      Classification Result and Predicted Group Membership by Discriminant 

Analysis 

 Table 5.2 shows 78.8% (41 of 52) rainfall events are correctly classified using the 

linear combinations identified by discriminant analysis. Under the predefined threshold 

overflow depth of 1.5-mm, the 29 and 23 coupled events fall into non-significant and 

significant groups respectively. This threshold considered a balance for the number of 

events in each group. The objective discriminant group clustering indicates 12 events in 

the significant group and 40 events in the non-significant group. The linear combination 

of rainfall factors, w ⃗· µ ⃗, include the mean and variance for the clustered factors. The 

cluster grouping decision includes the ratio of variances within and between the groups as 

defined by equation (5.1) (appendix).  Based on this formulation, each group was 
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established by the lowest variance of rainfall factors. The corresponding overflow depth 

is found to be about 4.6-mm for a rain event with 24-mm depth (single rain event 

category).   

 This type of information, specifically identifying overflow volume associated 

with rainfall event characteristics, may serve as an indicator of overflow potential in a 

CSO sewershed. Information defining a gradation of overflow potential may be useful for 

operational optimization such as, real-time likelihood of an overflow occurrence, design 

of overflow dam height or pipe size, or design of retro-fit infrastructure to mitigate 

significant overflow events. In this study, CSO occurrence in a small-scale sewershed is 

investigated with a focus primarily on rainfall characteristics. 

5.4     Conclusions and future works 

 Improving and preserving water quality and the aquatic environment in urban 

areas is a focus of the EPA and a component of regulatory guidelines limits the allowable 

occurrence of CSO (combined sewer overflow) events (EPA 1994, EPA 2004). The 

approaches for mitigating overflow events require information to define existing CSO 

conditions and event occurrence in terms of flow volume, seasonal variation, and 

pollutant type and concentration. In this study, the volumetric approach of CSS overflow 

event study in a small-scale sewershed was presented using the radar-rainfall 

characteristics. The study incorporated details of radar-rainfall data evaluation, rain event 

definition, and reveals the dependency of CSS overflow events on rainfall depth, 

duration, intensity, type and continuity. The radar-rainfall data are optimized by 

incorporating a Z-R relationship for the extreme rainfall group (tropical rainfall type).  

The radar data are validated with local rainfall sources; rain gauges from NWS and MSD 
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networks at locations closest to the study area. The radar derived rainfall is necessary to 

determine rain depth over the region of interest where the coverage of rain gauges is 

limited.   

Fundamentally, a linear relation exists between rainfall and overflow depths governing 

the occurrence of CSO events in this small-scale sewershed. However, other factors 

influence the overflow hydrograph shape and flow volume, as surmised from the record 

of coupled rainfall and overflow events. The identification of corresponding rainfall and 

overflow events requires evaluation of coupled rain-overflow events and the study 

determined an overflow depth to rainfall depth ratio of 0.60 indicative of valid events.  

The discriminant analysis clustered overflow events into overflow severity classes. The 

objective classification categorized most events correctly and the discriminant analysis 

provided an indication of the volumetric relationship between the rainfall and overflow in 

this sewershed system.  

In our era of climate change, the rainfall has a tendency to increase in intensity and 

spatial variation which is expected to induce localized flash floods, and in turn generate 

increased CSS overflows.  In the same vein, quality two-dimensional rainfall 

observations at suitable spatiotemporal resolutions provide a means to evaluate existing 

hydrologic infrastructure and implement optimal designs in specific in urban area. The 

more significant sewer overflow events occur rapidly, typically within a few hours 

following rainfall and from rainfall event durations less than a half day.  This means daily 

or longer rainfall records may not be suitable for overflow analysis for small-scale 

sewersheds.  This is in part due to the lack of independence in the identification of 

overflow inducing rain events where rain intensity, rain continuity and variability 
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definition within a single rain event are necessary.  An in-depth investigation of rainfall 

and overflow relationships across a range of hydrologic settings and sewershed 

characteristics may reveal an index for the practical design of a sewer overflow 

prevention structures. This type of study is essential for optimal development of objective 

and quantitative methods to mitigate CSS overflows in urban environmental systems.  
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CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 

 A new technology has changed people’s lives and make the impossible possible. 

The fine resolution of the radar rainfall with much more sophisticated error removing 

algorithms is one of the cases. The size of the radar pixel is just 15 acres with fine 

resolution of the temporal resolutions as in chapter 3. In chapter 2, the limitation of the 

one dimensional rainfall measurement came to the surface due to the spatial variation, 

particularly in the fine temporal resolution by the spatiotemporal structure of the ground-

based rainfall. Although the study area, Louisville Metropolitan has a well maintained 

gauge network (15 rain MSD rain gauges are in operation), the rainfall spatial variation 

causes the limited use of the ground-based rainfall estimation. The urban hydrologic 

application requires the fine resolutions of rainfall data to investigate the local floods 

which take place suddenly.  

 In chapter 2, the spatiotemporal  structure was studied by using PPMCC variation 

over the ground for four different temporal resolutions; quarter hourly, semi hourly, 

hourly and three hourly. All correlations of the rainfall dropped rapidly within the 5km 

range and it hit 0.6 around 5km range in the quarter hourly temporal resolution. The sub-

hourly rainfall application is required for the urban hydrologic modelings and 

preparations and the expected correlation is only about 0.6 due to the spread of this gauge 

network (the distance range between gauges is 4.6km to 11km). Quantile analysis reveals 

another aspect of the undesirable output. The correlations have a decreasing tendency in 
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sub-hourly accumulations. Most of the hydrologic preparation and forecasting of the 

extreme storm focuses on the heavy rainfall, but less correlated tendencies are observed 

along with the magnitude of the rainfall. Chapter 2 informed the soatiotemporal 

limitations of the ground-based rainfall measurement system which engineers have 

believed to be the most reliable rainfall detection system.  

 Chapter 3 focuses on the continuity of the rainfall according to the hydrologic 

response of the watershed. This encapsulation is defined as the ‘rainfall event’ using 

EPA’s definition for urban applications for the rain gauge network. During the five years 

of the study period, 558 rainfall events were created by the definition. In other words, 

more than two rainfall events occurred weekly over the study aera. The variogram is 

introduced to analyze the spatial correlation, and it requires  the stationary of the data 

characteristics. Rainfall is natural phenomena, and it is hard to expect the stationaries. 

The clustering of the rainfall events was performed to fit this requirement by using K-

means clustering. In the normalized two dimensional field of rainfall volume and 

intensity, the three groups; high intensity rainfall, high volume rainfall, low rainfall, were 

prepared in order to maximize the rainfall stationary within a group. Due to the 

variogram, the high intensity group reached the sill around the 20km and the correlated 

range is much shorter than the high volumetric group. The pouring rain may cause a 

sizeable amount of the runoff in the impervious urban situation and the spatial variation is 

huge and problematic. This chapter gives the meaningful unit of the rainfall for the 

hydrologic application, and the clustering of the rainfall events will give tips to access to 

the urban hydrologic modeling.  
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 For the last few decades, the radar rainfall estimation has evolved and, currently, 

it is practical to get fine enough spatiotemporal data. However, the radar rainfall 

estimation is a fundamentally indirect method to measure the rainfall, and the user should 

consider the limitations. Chapter 4 addressed the local radar rainfall optimization by 

redefining the Z-R relationship based on the hardship of the calibration of the individual 

radar. The concept of this approach is like a mosaic of the radars over the nation. 

Currently, NWS used a single index of the reflectivity-rainfall intensity relationship due 

to the storm type. It causes serious errors because a storm has many dynamic factors; 

advection, developing, decaying, and spatial variation especially in the sub-hourly 

temporal resolution. Using the SVC, the extreme case of the storms were binarily divided 

into two different groups. As a result, an additional Z-R relationship improved the radar 

data quality, and it is applicable to the practical hydrologic situation with the highest 

correlation with the reference data.  

 In the last chapter, chapter 5, the application of the locally optimized radar rainfall 

to the artificial watershed is investigated to explain the causal relationship of the rainfall 

extremity and the overflow of the sewer water into the urban aquatic environment. More 

specifically, characteristics of the rainfall in a single event influence the overflow in this 

small scaled sewer-shed, CSO130. The study trimmed out the doubtable data before use 

using the two different rainfall sources, the radar and the nearest gauge. As the coupled 

rainfall-overflow events which created the maximum volume of overflows, the 

simplization of the relationship by the volumetric approach will fail in some cases. In 

short, the many factors such as intensity, duration, storm type, and continuity are 
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important with the volumetric governance. The discriminant analysis confirmed the result 

and suggested the numerical guideline for each factors.  

 In this climate changing era,  this is an understandable effort to change the old-

fashioned rainfall estimation system such as Intensity-Duration-Frequency (IDF) curve. It 

may still work in coarse resolution of the data, but far beyond the capacity of the current 

requirement in hydrology, peak flow analysis for sub-daily or sub-hourly. Furthermore, 

the rainfall variation is severe using the ground-based rainfall and rain gauge network for 

the small scaled watershed. Practically, the radar rainfall estimation could be a solution to 

fulfill all the requirements, particularly for the complex urban hydrologic application 

which required fine spatiotemporal resolutions. However, the users need to be concern 

with the quality issues on the radar rainfall estimation, even though continuous 

development is currently going on. The one of the main issues of the radar rainfall quality 

is the hardship of the radar calibration nationally. A single radar involves the local aspect 

of the climate and rainfall characteristics within its reliable range and an independent 

algorithms and relations should developed for the downscaling purpose in the hydrologic 

field. One more concern is that the the timely assigned storm type for the Z-R 

relationship application cannot represent the storms passing through the radar range. The 

statistical approach is required which considers the storm’s characteristics; advection, 

developing, decaying, uniting and breaking off of the rainy cloud for the better weather 

forecast and hydrologic preparations.  

  This research focused on the production of reliable rainfall estimation and its 

application over the small scale urban watershed. In short, the urban hydrology required 

the sub-hourly analysis to suggest the new modeling to protect from the degrading water 
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quality phenomenon, overflow of sewer water. With the production of the fine enough 

resolutions of rainfall data as a input source for the hydrologic modeling, better solutions 

will be produced to save both life and property. Previous coarse resolution of the rainfall 

product or point measurement of the rainfall does not satisfy and solve the current 

hydrologic problems. The hydrologic researchers and engineers have a sense of duty to 

prepare efficient solutions to minimize the undesirable water related natural disasters.
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Appendix B. Theoretical Equations 

Equation 2.1 

R𝑖,𝑗 =
∑ (𝐺1,𝑖 − 𝐺1

̅̅ ̅)(𝐺2,𝑖 − 𝐺2
̅̅ ̅)𝑛

𝑖=1

√∑ (𝐺1,𝑖 − 𝐺1
̅̅ ̅)𝑛

𝑖=1

2
√∑ (𝐺2,𝑖 − 𝐺2

̅̅ ̅)𝑛
𝑖=1

2
 

R𝑖,𝑗 = Pearson’s product moment correlation coefficient between paired gauges 

𝐺1,𝑖, 𝐺2,𝑖= indices of any possible two network gauges 

𝐺1
̅̅ ̅, 𝐺2

̅̅ ̅ = mean values of each gauge in the pair 

Equation 2.2 

R𝑖,𝑗 = exp [− (
𝑑𝑖,𝑗

𝑑𝑐
)

𝑠

] , 0 ≤ 𝑠 ≤ 2 

𝑑𝑐 = critical distance 

𝑑𝑖,𝑗 = distance between two gauges in paired set 

𝑠 = shape parameter 

Equation 3.1 

γ𝑖,𝑗 =   
1

2
𝐸 [((𝐺𝑖 − 𝐺𝑐) − (𝐺𝑗 − 𝐺𝑐))

2

] 

γ𝑖,𝑗 = variogram 

𝐺𝑐 = mean value of gauge accumulation of rainfall event for the same cluster 

𝐺𝑖, 𝐺𝑗  = gauge rainfall accumulation in an event 

Equation 4.1 

RQ(t, x) = ∑(
Ri

4
)(

ti+1 − ti

2
)

n

i=1

 

RQ(t, x) = weighted accumulation of quarter hourly rainfall capsule at the fixed location 

where reference data are corresponded in arbitrary time, t 

n = influential number of reflectivity values for  RQ(t, x) which fall into the quarter hourly 

capsule and front and the rear reflectivity value when it is influential to the capsule.  

Ri  = converted rainfall rate in millimeter per hour among four different NWS Z-R 

relationships 



107 

ti = time of observation of instantaneous radar base scan 

Equation 4.2 

ŷ = sgn ∑ wiyik(Ri, Ŕ)

n

i=1

 

Ri and yi are instance-based learners for the i-th training example  

wi = a corresponding weight  

Ŕ = an unlabeled input 

k = a function of the weighted sum of similarities which is called kernel 

ŷ = a prediction label of kernelized binary classifier 

Equation 5.1 

𝑻 =
(�⃗⃗⃗� ·  µ⃗⃗𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕 − �⃗⃗⃗� ·  µ⃗⃗𝑵𝒐𝒏−𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕)𝟐

�⃗⃗⃗�𝑻𝑪𝑶𝑽(𝑹𝒊,𝒋)𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕�⃗⃗⃗� +  �⃗⃗⃗�𝑻𝑪𝑶𝑽(𝑹𝒊,𝒋)𝑵𝒐𝒏−𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕�⃗⃗⃗�
 

𝐓 = a decision factor for the clustering of Significant and Non-Significant groups of the 

overflow event 

µ𝒊⃗⃗⃗⃗  = mean value for the clustered group.   

𝐑𝐢,𝐣 = rainfall variables among rainfall depth, duration, intensity, type, continuity.   
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Appendix C. MATLAB Codes 

 This research requires  programming intensive procedures  to conducting data 

extraction, assimilation and evaluation. MATLAB is mostly used as a programming tool 

to handling the analysis and creating figures.    

 The gauge and radar rainfall data are extracted and paired with statiotemporal 

synchronization (local time which considers daylignt saving) [Appendix C. Chapter2. b. 

Temporal matching MSD gauge network (15 gauges over Louisville area)]. The 1 tipping  

amount of the rainfall (0.01inch) in 5 minute time resolution for chapter 2 is discarded 

due to the data quality issue as well as in 15 minute    resolution for chapter 3, 4, and 5. 

The gauge rainfall matrix consists of 5 minute rainfall values from 15 multiples gauges 

which is operated by MSD [Appendix C. Chapter2. a. gauge data extraction and 

preprocessing]. The smallest unit of the gauge rainfall data were accumulated by quarther 

hourly, half hourly, one hourly and three hourly for the spatial variation with different 

temporal scales [Appendix C. Chapter 2. c. Accumulation of raw data into hourly]. The 

general statistics and spaiotemporal structure of the ground-based rainfall is investigated 

by the code of [Appendix C. Chapter 2. d. General statistics and spatiotemporal 

correlation for MSD rain gauge network, Louisville, KY].  

 In chapter 3, the rainfalls are encapsulized by the EPA rainfall event definition 

and clustered by [Appendix C. Chapter3. a. Clustering of rainfall events]. After the 

grouping of the rainfall event by intense and volumetric considerations, the variogram 

analysis has been performed using [Appendix C. Chapter3. b. Clustered variogram]. 

The core optimization of the local radar rainfall estimation by using the 

[Appendix C. Chapter 4. a. Support Vector Classification of tropical type rainfall values]. 
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The support vector classivication created an additional Z-R relationship in the tropical 

storm group. 

Chapter 5 illustrates the relationship between the encapsulated rainfall event and 

its corresponding sewershed overflow. [Appendix C. Chapter 5. a. Generate matched 

Hythograph and CSO130 overflow Hydrograph]  performed the coupling of these two 

hydrologic phenomena.  
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Chapter 2 

a. gauge data extraction and preprocessing 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%        Data Preprocessing 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% data quality check 

% 1. annual accumulation 

% col 6-22: MSD rainfall 5minute Accumulation in inch & 

mm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% 

% 01/20/2015 

% Developed by Jin-Young Hyun 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% 

clear all; 

accum5minTR17n18='Z:/DATA/GroundBasedRainfall/MSD
rainGauge/MSDrainfall_inch_mm/RainGaugeMSDincludeT

R1718inMM.out'; 

open5min=dlmread(accum5minTR17n18); 

% year accumulation 

RaccumYr=zeros(5,17); 

for i=2010:2014 

    for j=6:22 

        findYr=find(open5min(:,1)==i); 

        yrSum=sum(open5min(findYr,j)); 

        RaccumYr((i-2009),(j-5))=yrSum; 

        disp(yrSum); 

    end 

end 

% year average 

RyrAvg=zeros(5,1); 

for i=1:5 

    RyrAvg(i,1)=mean(RaccumYr(i,:)); 

    disp(RyrAvg(i,1)); 

end 

totalAvg=mean(RyrAvg); 

% plot the bar graph of yearly accumulation 

figure; 

YEARlist={'2010','2011','2012','2013','2014'}; 

%XTICKS={'01','02','03','04','05','06','07','08','09','10','11','12'

,'13','14','15','17','18'}; 

XTICKS=['01';'02';'03';'04';'05';'06';'07';'08';'09';'10';'11';'12';'

13';'14';'15';'17';'18']; 

Ravg=zeros(1,17); 

for i=1:5 

    subplot(5,1,i); 

    bar(1:17,RaccumYr(i,:),0.3,'black'); 

    avgYr=mean(RaccumYr(i,:)); 

    Ravg(1,1:17)=avgYr; 

    hold on; 

    plot(1:17,Ravg,'black:'); 

    hold off; 

    titleName=strcat('Year: ',YEARlist(i)); 

    title(titleName,'fontweight','bold','fontsize',11); 

    legend('Annual rainfall for each gauge','Averaged annual 
rainfall'); 

    ylim([500 2000]); 

    set(gca,'XLim',[0.5 17.5]) 

    set(gca,'XTick',[1:1:17]) 

    set(gca,'XTickLabel',XTICKS) 

    if i==3 

        ylabel('Yearly rainfall accumulated rainfall in mm'); 

    elseif i==5 

        xlabel('MSD rain gauges ID'); 

    end 

end 

% open NOAA rain gauge Galena4_3ENE and TR17 and 
TR18 

TR17='Z:/DATA/GroundBasedRainfall/MSDrainGauge/MS
Drainfall_inch_mm/numericRG_MSD_TR17_MtStFrancis.o

ut'; 

TR18='Z:/DATA/GroundBasedRainfall/MSDrainGauge/MS

Drainfall_inch_mm/numericRG_MSD_TR18_IVY_Tech.out

'; 

openTR17=dlmread(TR17); 

openTR18=dlmread(TR18); 

NOAAgalena='Z:/DATA/GroundBasedRainfall/Accumulatio
nMSDgaugeDaily_discardedTR17_18MM.out'; 

openNOAA=dlmread(NOAAgalena); 

Rmonth=zeros(12,5); 

%findMissTR17=find(openTR17(:,7)<0); 
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%findMissTR18=find(openTR18(:,7)<0); 

for i=1:12 

    Rmonth(i,1)=i; 

    findMonTR17=find(openTR17(:,2)==i); 

    findMonTR18=find(openTR18(:,2)==i); 

    findMonNOAA=find(openNOAA(:,2)==i); 

    sumTR17=sum(openTR17(findMonTR17,7)); 

    sumTR18=sum(openTR18(findMonTR18,7)); 

    % other MSD gauges 

    sumOtherTRs=sum(openNOAA(findMonNOAA,4:18)); 

    avgOtherTRs=mean(sumOtherTRs); 

    % NOAA_Galena4_3ENE 

    sumGalena=sum(openNOAA(findMonNOAA,22)); 

    % store 

    Rmonth(i,2)=sumTR17; 

    Rmonth(i,3)=sumTR18; 

    Rmonth(i,4)=avgOtherTRs; 

    Rmonth(i,5)=sumGalena; 

end 

% monthly bar graph for TR17 and TR18 validation 

figure; 

fH=gcf;  

colormap('gray'); 

x=Rmonth(:,1); 

y=Rmonth(:,2:5); 

b=bar(x,y); 

xlim([0 13]); 

ylim([200 1000]); 

xlabel('Months'); 

ylabel('Rainfall accumulation in mm (2010-2014)'); 

legend('MSD:TR17-MtStFrancic', 'MSD:TR18- IVY tech', 

'MSD: Averaged other Gauges', 'NOAA: Galena4-3ENE'); 

% averaged monthly accumulation of TR01-15 and NOAA1-
12 for each year 

RmonYr=zeros(12,3,5); 

YEAR=2010; 

% discard -999 

MISS=0; 

for i=1:length(openNOAA) 

    for j=4:30 

        value=openNOAA(i,j); 

        if value>=0 

            continue; 

        else 

            openNOAA(i,j)=0; 

            MISS=MISS+1; 

            XX=['Missing: ',num2str(MISS)]; 

            disp(XX); 

        end 

    end 

end 

 

for i=1:5 

    Rm=zeros(12,2); 

    for j=1:12 

        findMonYr=find(openNOAA(:,1)==YEAR & 

openNOAA(:,2)==j); 

        sumTRs=sum(openNOAA(findMonYr,4:18)); 

        avgTRs=mean(sumTRs); 

        sumNOAAs=sum(openNOAA(findMonYr,19:30)); 

        avgNOAAs=mean(sumNOAAs); 

        RmonYr(j,1,i)=j; 

        RmonYr(j,2,i)=avgTRs; 

        RmonYr(j,3,i)=avgNOAAs; 

    end 

    YEAR=YEAR+1; 

end 

Rstreach=zeros(60,3); 

for i=1:60 

    Rstreach(i,1)=i; 

end 

Rstreach(1:12,2:3)=RmonYr(:,2:3,1); 

Rstreach(13:24,2:3)=RmonYr(:,2:3,2); 

Rstreach(25:36,2:3)=RmonYr(:,2:3,3); 

Rstreach(37:48,2:3)=RmonYr(:,2:3,4); 

Rstreach(49:60,2:3)=RmonYr(:,2:3,5); 

figure; 
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colormap('gray'); 

x=Rstreach(:,1); 

y=Rstreach(:,2:3); 

b=bar(x,y); 

xlim([0 61]); 

ylim([0 400]); 

legend('MSD rain gauges','NOAA rain gauges'); 

xlabel('Months'); 

ylabel('Rainfall accumulation in mm'); 

figure; 

scatter(Rstreach(:,3),Rstreach(:,2),50,'filled','black'); 

% monthly comparison with 15 MSD and 12 gauges 

RcorMon=corrcoef(Rstreach(:,2),Rstreach(:,3)); 

Rdiff=zeros(60,2); 

 

for i=1:60 

    diff=Rstreach(i,2)-Rstreach(i,3); 

    Rdiff(i,1)=diff; 

    Rdiff(i,2)=abs(diff); 

    disp(Rdiff(i,1)); 

end 

maxDiff=max(Rdiff(:,2)); 

avgDiff=mean(Rdiff(:,2)); 

figure; 

for i=1:5 

    subplot(5,1,i); 

    %fH=gcf;  

    colormap('gray'); 

    x=RmonYr(:,1,i); 

    y=RmonYr(:,2:3,i); 

    b=bar(x,y); 

    xlim([0 13]); 

    ylim([0 400]); 

    titleName=strcat('Year: ',YEARlist(i)); 

    title(titleName,'fontweight','bold','fontsize',11); 

end 

legend('MSD rain gauges','NOAA rain gauges'); 

xlabel('Months'); 

ylabel('Rainfall accumulation in mm'); 

% 

figure; 

fH=gcf;  

colormap('gray'); 

x=Rmonth(:,1); 

y=Rmonth(:,2:5); 

b=bar(x,y); 

xlim([0 13]); 

ylim([200 1000]); 

xlabel('Months'); 

ylabel('Rainfall accumulation in mm (2010-2014)'); 

legend('MSD:TR17-MtStFrancic', 'MSD:TR18- IVY tech', 

'MSD: Averaged other Gauges', 'NOAA: Galena4-3ENE'); 

 

% daily comparison with 15 MSD and 12 gauges 

openDaily=dlmread(NOAAgalena); 

% check 

for i=4:30 

    sumG=sum(openDaily(:,i)); 

    disp(sumG); 

end 

% pair the closest rain gauges from MSD and NOAA 

locInfo='Y:/projects/CSOsMSD/LouMetroGauge/locationGN

etwork4KyStatePlaneNorthZone_KYNZ83.txt'; 

openLoc=dlmread(locInfo); 

lengthLoc=length(openLoc); 

Rpaired=zeros(15,5); 

for i=1:15 

    xIni=openLoc(i,3); 

    yIni=openLoc(i,2); 

    RdistList=zeros(12,2); 

    for j=16:27 

        xNOAA=openLoc(j,3); 

        yNOAA=openLoc(j,2); 

        xDist=abs(xIni-xNOAA); 

        yDist=abs(yIni-yNOAA); 

        dist=sqrt(xDist*xDist+yDist*yDist)*1200/3937*0.001; 

        RdistList((j-15),1)=openLoc(j,1); 
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        RdistList((j-15),2)=dist; 

    end 

    RdistList(1:2,:)=[]; 

    RdistList(2:4,:)=[]; 

    RdistList(4,:)=[]; 

    RdistList(5:6,:)=[]; 

    RdistList(1,:)=[]; 

    minD=min(RdistList(:,2)); 

    rowMin=find(RdistList(:,2)==minD); 

    Rpaired(i,1)=i; 

    Rpaired(i,2)=RdistList(rowMin,1); 

    Rpaired(i,3)=RdistList(rowMin,2); 

    Rpaired(i,4)=i+3; 

    Rpaired(i,5)=Rpaired(i,2)/100+18; 

end 

avgDist=mean(Rpaired(:,3)); 

maxDist=max(Rpaired(:,3)); 

minDist=min(Rpaired(:,3)); 

 

% daily data comparison 

figure; 

Rcc=zeros(15,2); 

for i=1:15 

    RpairDay=zeros(length(openDaily),2); 

    RpairDay(:,1)=openDaily(:,(i+3)); 

    pairNOAA=Rpaired(i,5); 

    RpairDay(:,2)=openDaily(:,pairNOAA); 

    subplot(3,5,i); 

    findMissing=find(RpairDay(:,2)<0); 

    missing=isempty(findMissing); 

    %if findMissing==1 

    %    continue; 

    %else 

    %    RpairDay(findMissing,:)=[]; 

    %end 

    findNoRain=find(RpairDay(:,1)==0 & RpairDay(:,1)==0); 

    RpairDay(findNoRain,:)=[]; 

    lenPair=length(RpairDay); 

    %disp(lenPair); 

    % calc fault rain detection 

    findFRD=find(RpairDay(:,1)>5 & RpairDay(:,2)==0); 

    lenFRD=length(findFRD); 

    %disp(lenFRD); 

    %scatter(RpairDay(:,2),RpairDay(:,1),2.5,'o','filled','black')
; 

    scatter(RpairDay(:,2),RpairDay(:,1),3,'filled','black','o'); 

    grid on; 

    box on; 

    set(gca,'gridlinestyle','--'); 

    set(gca,'xcolor',[0.3 0.3 0.3]); 

    set(gca,'ycolor',[0.3 0.3 0.3]);     

    set(gca,'xscale','log'); 

    set(gca,'yscale','log'); 

    xlim([0 150]); 

    ylim([0 150]); 

    hold on; 

    plot(1:150,1:150,'black'); 

    hold off; 

    gaugeName=strcat('TR',num2str(i),' 

(',num2str(Rpaired(i,3)),'km)'); 

    t=title(gaugeName); 

    set(t, 'FontSize',14); 

    set(t,'FontName','Times') 

    if i==11 

        xt=xlabel('Log-NOAA daily rainfall in mm'); 

        yt=ylabel('Log-MSD daily rainfall in mm'); 

        set(xt,'FontSize',12); 

        set(yt,'FontSize',12); 

        set(xt,'FontName','Times') 

        set(yt,'FontName','Times') 

    elseif i>=12 

        xt=xlabel('Log-NOAA daily rainfall in mm'); 

        set(xt,'FontSize',12); 

        set(xt,'FontName','Times') 

    elseif i==1 || i==6 || i==11 

        yt=ylabel('Log-MSD daily rainfall in mm'); 

        set(yt,'FontSize',12); 
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        set(yt,'FontName','Times') 

    end 

    rCorr=corrcoef(RpairDay(:,1),RpairDay(:,2)); 

    Rcc(i,2)=rCorr(1,2); 

    cc=strcat('R: ',num2str(rCorr(1,2),2)); 

    tex=text(35,1.5,cc);   

    set(tex, 'FontSize',14); 

    set(tex,'FontName','Times') 

    disp(cc); 

end 

Rcc(:,1)=Rpaired(:,3); 

figure; 

scatter(Rcc(:,1),Rcc(:,2)); 

 

b. Temporal matching MSD gauge network (15 gauges over 
Louisville area) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%        Matching closest 

Gauges: MSD and NOAA  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 11/04/2014 

% Developed by Jin-Young Hyun 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%clear all 

% calculate distace between two different gauges and choose 
the closest one 

MSD='Y:/projects/CSOsMSD/LouMetroGauge/lists/MSDloc

ations.txt'; 

NOAA='Y:/projects/CSOsMSD/LouMetroGauge/lists/NOA

Alocations.txt'; 

openMSD=dlmread(MSD); 

openNOAA=dlmread(NOAA); 

lenMSD=length(openMSD); 

lenNOAA=length(openNOAA); 

RcloseDist=zeros(lenMSD,4); 

for i=1:lenMSD 

    Rdist=zeros(lenNOAA,2); 

    for j=1:lenNOAA 

        LonDist=abs(openMSD(i,1)-openNOAA(j,1)); 

        LatDist=abs(openMSD(i,2)-openNOAA(j,2)); 

        dist=sqrt(LonDist*LonDist+LatDist*LatDist); 

        Rdist(j,1)=j+3; % data stored column PRCP 

        Rdist(j,2)=dist; 

    end 

    RcloseDist(i,1)=i; % TR number 

    minDist=min(Rdist(:,2)); 

    findMinDist=find(Rdist(:,2)==minDist); 

    RcloseDist(i,2)=Rdist(findMinDist,1); % corresponding 

NOAA 

    RcloseDist(i,3)=minDist; % dist in deg 

    RcloseDist(i,4)=minDist*111.18; % dist in km  

end 

dlmwrite('GaugeOutput/matchedGaugesMSD_NOAA.out',R

closeDist,'delimiter',',','precision','%6.2f'); 

 

% create the matching rainfall  

TRmm='Z:/DATA/GroundBasedRainfall/MSDrainGauge/M
SDrainfall_inch_mm/RainGaugeMSDinMM.out'; 

NOAAmm='Z:/DATA/GroundBasedRainfall/MSDrainGauge
/MSDrainfall_inch_mm/RainGaugeMSDinInch.out'; 

openTRmm=dlmread(TRmm,','); 

openTRinch=dlmread(TRinch,','); 

numTR=length(openTRmm); 

% calculation JulianDate 

jdate=zeros(numTR,1); 

for i=1:numTR 

    YYYY=openTRinch(i,1); 

    MO=openTRinch(i,2); 

    DD=openTRinch(i,3); 

    HH=openTRinch(i,4); 

    MM=openTRinch(i,5); 

    JD=datenum(YYYY,MO,DD,HH,MM,0); 

    jdate(i,1)=JD; 

end 

% Daily and Hourly Accumulations 

DaysIn5yr=365+365+366+365+273; 

StartTime=datenum(2010,1,1,0,0,0); 

EndTime=datenum(2014,10,1,0,0,0); 

DayItv=datenum(2010,1,2,0,0,0)-StartTime; 

StartDay=StartTime; 

Rdays=zeros(DaysIn5yr,21); 
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for i=1:DaysIn5yr 

    EndDay=StartDay+DayItv; 

    dayList=find(jdate(:,1)>StartDay & jdate(:,1)<=EndDay); 

    numDayList=length(dayList); 

    % days in Gregorian Days 

    GDday=strsplit(datestr(StartDay,2),'/'); 

    Rdays(i,1)=2000+str2num(char(GDday(3))); 

    Rdays(i,2)=str2num(char(GDday(1))); 

    Rdays(i,3)=str2num(char(GDday(2))); 

    if numDayList==0 

        AccumDay=0; 

        Rdays(i,4)=0; 

    else 

        for j=6:23 

            AccumDay=sum(openTRmm(dayList,j)); 

            Rdays(i,(j-2))=AccumDay; 

            disp(GDday); 

        end 

    end 

    StartDay=StartDay+DayItv; 

end 

dlmwrite('Z:/DATA/GroundBasedRainfall/MSDrainGauge/

MSDrainfall_inch_mm/AccumulationMSDgaugeDailyMM.o
ut',Rdays,'delimiter',',','precision','%6.2f'); 

 

c. Accumulation of raw data into hourly 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%        1 Hourly 
Accumulation MSD rain gauges  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%    end hourly 

accumulated values 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 01/14/2015 

% Developed by Jin-Young Hyun 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%clear all; 

MSD5min='Z:/DATA/GroundBasedRainfall/MSDrainGauge
/MSDrainfall_inch_mm/RainGaugeMSDinMM.out'; 

openMSD5min=dlmread(MSD5min,','); 

numMSD5min=length(openMSD5min); 

% trimming the data to discard TR17 and TR18 

%openMSD5min(:,21:22)=[]; 

% calculation JulianDate 

R_jd=zeros(numMSD5min,1); 

for i=1:numMSD5min; 

    YYYY=openMSD5min(i,1); 

    MO=openMSD5min(i,2); 

    DD=openMSD5min(i,3); 

    HH=openMSD5min(i,4); 

    MM=openMSD5min(i,5); 

    JD=datenum(YYYY,MO,DD,HH,MM,0); 

    R_jd(i,1)=JD; 

end 

 

% hourly and 3 hourly Accumulations 

HoursIn5yr=(365+365+366+365+365)*24; 

StartTime=datenum(2010,1,1,0,0,0); 

EndTime=datenum(2015,1,1,0,0,0); 

HourItv=datenum(2010,1,1,1,0,0)-StartTime; 

StartHour=StartTime; 

Rhours=zeros(HoursIn4yr,19); 

for i=1:HoursIn4yr 

    EndHour=StartHour+HourItv; 

    hoursList=find(R_jd(:,1)>StartHour & 

R_jd(:,1)<=EndHour); 

    numHourList=length(hoursList); 

    % days in Gregorian Days 

    GDday=datestr(EndHour,30); 

    Rhours(i,1)=str2num(GDday(1:4)); 

    Rhours(i,2)=str2num(GDday(5:6)); 

    Rhours(i,3)=str2num(GDday(7:8)); 

    Rhours(i,4)=str2num(GDday(10:11)); 

    for j=6:20 

        if numHourList==0 

            Rhours(i,j)=0; 

        else 

            AccumHour=sum(openMSD5min(hoursList,j)); 

            Rhours(i,(j-1))=AccumHour; 

            disp(GDday); 
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        end 

    end 

    StartHour=StartHour+HourItv; 

end 

dlmwrite('Y:/projects/CSOsMSD/LouMetroGauge/Accumula

tionMSDgauge1hourlyMM.out',Rhours,'delimiter',',','precisio

n','%6.2f'); 

dlmwrite('Z:/DATA/GroundBasedRainfall/MSDrainGauge/

MSDrainfall_inch_mm/AccumulationMSDgauge1hourlyMM
.out',Rhours,'delimiter',',','precision','%6.2f');     

% check 

% bar(1:HoursIn5yr,Rhours(:,19)); 

d. General statistics and spatiotemporal correlation for MSD 

rain gauge network, Louisville, KY 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

%        General Statistics and Correllogram of Combined 

Rain Gauge Network (MSD & NOAA) for Lou. Metro  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

% 01/12/2015 

% Developed by Jin-Young Hyun 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

clear all; 

% open daily rainfall from network 

gaugeNet='Z:/DATA/GroundBasedRainfall/AccumulationM

SDgaugeDaily_discardedTR17_18MM.out'; 

openGNet=dlmread(gaugeNet,','); 

lenGNet=length(openGNet); 

% open location data  

% distance between gauges (27 gauges) 

%R_4KyStateNorthZoneNAD83=zeros(lenLocGNet,4); 

%R_4KyStateNorthZoneNAD83(:,1)=openLocGNet(:,1); 

%R_4KyStateNorthZoneNAD83(:,2)=openLocGNet(:,3); 

%R_4KyStateNorthZoneNAD83(:,3)=openLocGNet(:,2); 

%R_4KyStateNorthZoneNAD83(:,4)=1:27; 

%dlmwrite('locationGNetwork4KyStatePlaneNorthZone.txt',

R_4KyStateNorthZoneNAD83,'delimiter',',','precision','%6.2f

'); 

locGNET='Y:/projects/CSOsMSD/LouMetroGauge/location

GNetwork.txt'; 

openLocGNet=dlmread(locGNET,','); 

locKyNorthZoneStatePlane='Y:/projects/CSOsMSD/LouMet

roGauge/locationGNetwork4KyStatePlaneNorthZone_KYN
Z83.txt'; 

openLocGNetKY=dlmread(locKyNorthZoneStatePlane,','); 

lenLocGNet=length(openLocGNet); 

distNum=0; 

R_dist=zeros(lenLocGNet*lenLocGNet,3); 

for i=1:27 

    idBaseG=openLocGNetKY(i,1); 

    verBaseG=openLocGNetKY(i,2); 

    horBaseG=openLocGNetKY(i,3); 

    for j=1:27 

        idG=openLocGNetKY(j,1); 

        verG=openLocGNetKY(j,2); 

        horG=openLocGNetKY(j,3); 

        % distance in km 

        yDist=abs(verBaseG-verG); 

        xDist=abs(horBaseG-horG); 

        dist=sqrt(xDist*xDist+yDist*yDist)*1200/3937*0.001; 

        distNum=distNum+1; 

        R_dist(distNum,1)=idBaseG; 

        R_dist(distNum,2)=idG; 

        R_dist(distNum,3)=dist; 

        

X=strcat('Gauge_A_',num2str(idBaseG),'::Gauge_B_',num2s

tr(idG),'__distance: ',num2str(dist),'km'); 

        disp(X); 

    end     

end 

% NOAAs missing data control 

R_MissAnal=zeros(100,9); 

findMissing=0; 

countMiss=0; 

for i=19:30 

    idG=openLocGNet((i-3),1); 

    searchG=find(openGNet(:,i)<0); 

    checkG=isempty(searchG); 

    if checkG ==1 

        numMissG=0; 

        disp(numMissG); 
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        continue; 

    else 

        numMissG=length(searchG); 

        for j=1:numMissG 

            R_list=zeros(lenLocGNet,2); 

            countMiss=countMiss+1; 

            R_MissAnal(countMiss,9)=countMiss; 

            missingDay=searchG(j); 

            % averaged rainfall for other gauges 

            a=sort(openGNet(missingDay,4:30)); 

            averagedOG=mean(a(2:27)); 

            disp(averagedOG); 

            R_MissAnal(countMiss,1)=idG; 

            

R_MissAnal(countMiss,2)=openGNet(missingDay,1); 

            

R_MissAnal(countMiss,3)=openGNet(missingDay,2); 

            

R_MissAnal(countMiss,4)=openGNet(missingDay,3); 

            % find closest gauge and its number 

            closestGlist=find(R_dist(:,1)==idG); 

            R_list=R_dist(closestGlist,2:3); 

            minDist=10000; 

            minG=1000; 

            for k=1:lenLocGNet 

                distG2G=R_list(k,2); 

                if distG2G==0 

                    continue; 

                elseif distG2G>0 

                    if distG2G<minDist 

                        minDist=distG2G; 

                        minG=R_list(k,1); 

                    else 

                        continue; 

                    end 

                end 

            end 

            R_MissAnal(countMiss,5)=minG; 

            R_MissAnal(countMiss,6)=minDist; 

            R_MissAnal(countMiss,7)=averagedOG; 

            if minG>=100 

                nearG=(minG/100)+18; 

            else 

                nearG=minG+3; 

            end 

        

R_MissAnal(countMiss,8)=openGNet(missingDay,nearG); 

        end 

    end 

end 

% General Statistics 

% monthly averaged rainfall amount of MSD and NOAA 

% correllogram 

R_corr=zeros(lenLocGNet*lenLocGNet,4); 

R_corr(:,1:3)=R_dist; 

numCorr=0; 

for i=1:27 

    for j=1:27 

        pair=zeros(lenGNet,2); 

        pair(:,1)=openGNet(:,i+3); 

        pair(:,2)=openGNet(:,j+3); 

        % find missing data 

        missingsGbase=find(pair(:,1)<0); 

        missingsGcomp=find(pair(:,2)<0); 

        missOXGbase=isempty(missingsGbase); 

        missOXGcomp=isempty(missingsGcomp); 

        if missOXGbase==1 && missOXGcomp 

            numCorr=numCorr+1; 

            R=corrcoef(pair(:,1),pair(:,2)); 

            R_corr(numCorr,4)=R(1,2); 

            disp(R_corr(numCorr,4)); 

        else 

            numCorr=numCorr+1; 

            if missOXGbase~=1 && missOXGcomp~=1 

                pair(missOXGbase,:)=[]; 

                pair(missOXGcomp,:)=[]; 

            elseif missOXGbase~=1 
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                pair(missOXGbase,:)=[]; 

            elseif missOXGcomp~=1 

                pair(missOXGcomp,:)=[]; 

            end 

            R=corrcoef(pair(:,1),pair(:,2)); 

            R_corr(numCorr,4)=R(1,2); 

            disp(R_corr(numCorr,4)); 

        end 

    end 

end 

figure; 

scatter(R_corr(:,3),R_corr(:,4),40,'filled','black'); 

% correllogram MSD only 

distNum=0; 

R_dist=zeros(15*15,3); 

for i=1:15 

    idBaseG=openLocGNetKY(i,1); 

    verBaseG=openLocGNetKY(i,2); 

    horBaseG=openLocGNetKY(i,3); 

    for j=1:15 

        idG=openLocGNetKY(j,1); 

        verG=openLocGNetKY(j,2); 

        horG=openLocGNetKY(j,3); 

        % distance in km 

        yDist=abs(verBaseG-verG); 

        xDist=abs(horBaseG-horG); 

        dist=sqrt(xDist*xDist+yDist*yDist)*1200/3937*0.001; 

        distNum=distNum+1; 

        R_dist(distNum,1)=idBaseG; 

        R_dist(distNum,2)=idG; 

        R_dist(distNum,3)=dist; 

        

X=strcat('Gauge_A_',num2str(idBaseG),'::Gauge_B_',num2s
tr(idG),'__distance: ',num2str(dist),'km'); 

        disp(X); 

    end     

end 

% call 5minute rainfall data 

MSD5min='Z:/DATA/GroundBasedRainfall/MSDrainGauge

/MSDrainfall_inch_mm/RainGaugeMSDinMM.out'; 

open5min=dlmread(MSD5min); 

len5min=length(open5min); 

open5min(:,21:22)=[]; 

R_corr=zeros(15*15,4); 

R_corr(:,1:3)=R_dist; 

numCorr=0; 

for i=1:15 

    for j=1:15 

        pair=zeros(len5min,2); 

        pair(:,1)=open5min(:,i+5); 

        pair(:,2)=open5min(:,j+5); 

        numCorr=numCorr+1; 

        R=corrcoef(pair(:,1),pair(:,2)); 

        R_corr(numCorr,4)=R(1,2); 

        disp(R_corr(numCorr,4)); 

 

        % find missing data 

        %missingsGbase=find(pair(:,1)<0); 

        %missingsGcomp=find(pair(:,2)<0); 

        %missOXGbase=isempty(missingsGbase); 

        %missOXGcomp=isempty(missingsGcomp); 

        %if missOXGbase==1 && missOXGcomp 

            %numCorr=numCorr+1; 

            %R=corrcoef(pair(:,1),pair(:,2)); 

            %R_corr(numCorr,4)=R(1,2); 

            %disp(R_corr(numCorr,4)); 

        %else 

            %numCorr=numCorr+1; 

            %if missOXGbase~=1 && missOXGcomp~=1 

                %pair(missOXGbase,:)=[]; 

                %pair(missOXGcomp,:)=[]; 

            %elseif missOXGbase~=1 

                %pair(missOXGbase,:)=[]; 

            %elseif missOXGcomp~=1 

                %pair(missOXGcomp,:)=[]; 

            %end 
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            %R=corrcoef(pair(:,1),pair(:,2)); 

            %R_corr(numCorr,4)=R(1,2); 

            %disp(R_corr(numCorr,4)); 

        %end 

    end 

end 

figure; 

scatter(R_corr(:,3),R_corr(:,4),40,'filled','black'); 

R_MissAnal((countMiss+1):100,:)=[]; 

days = 0:5:35; 

conc = [515,420,370,250,135,120,60,20]; 

temp = [29,23,27,25,20,23,23,27]; 

[ax,hBar,hLine] = plotyy(days,temp,days,conc,'bar','plot'); 

[ax,hBar,hLine] = 

plotyy(R_MissAnal(:,9),R_MissAnal(:,8),R_MissAnal(:,9),R

_MissAnal(:,6),'bar','plot'); 

%NOAAmm='Z:/DATA/GroundBasedRainfall/NWSrainGau

ge/gaugeNOAA_PRCP_inMM.out'; 

NOAAmm='Z:/DATA/GroundBasedRainfall/NWSrainGaug

e/gaugeNOAA_PRCP_inMM.out'; 

openNOAAmm=dlmread(NOAAmm,','); 

% dimensions 

lenDays=length(openMSDmm); 

numCols=3+17+13; 

% combining MSD and NOAA daily rainfall accumulations 

Rcombine=zeros(lenDays,numCols); 

Rcombine(:,1:20)=openMSDmm(:,1:20); 

Rcombine(:,21:numCols)=openNOAAmm(:,4:16); 

% find missing of NOAA 

rainyDays=0; 

for i=1:lenDays 

    dayData=Rcombine(i,4:33); 

    rainObs=length(find(Rcombine(i,4:33)>0)); 

    if rainObs>0 

        rainyDays=rainyDays+1; 

    end 

    missings=find(dayData<0); 

    numMissing=length(missings); 

    if numMissing == 0 

        continue; 

    else 

        %disp(numMissing); 

        otherGauges=find(dayData>=0); 

        avgOG=mean(dayData(otherGauges)); 

        

date=strcat(num2str(Rcombine(i,1)),'/',num2str(Rcombine(i,2

)),'/',num2str(Rcombine(i,3))); 

        X=strcat('Missing on_',date,': 

',num2str(numMissing),'with other gauges avg rainfall 
of','_',num2str(avgOG)); 

        disp(X); 

    end 

end 

disp(rainyDays); 

% bar plots for daily data from MSD and NOAA 

R_figure=zeros(lenDays,33); 

%R_missing=zeros(lenDays,33); 

R_figure(:,1:3)=Rcombine(:,1:3); 

%R_missing(:,1:3)=Rcombine(:,1:3); 

for i=4:33 

    findRain=find(Rcombine(:,i)>0); 

    %findMiss=find(Rcombine(:,i)<0); 

    R_figure(findRain,i)=Rcombine(findRain,i); 

    %R_missing(findMiss,i)=0; 

    disp(i); 

end 

TR_MSD={'01','02','03','04','05','06','07','08','09','10','11','12','
13','14','15','17','18',... 

'Anchorage2_8NE','Charlestown2_6N','FoxChase1_4W','Gal
ena4_3ENE','Jeffersonville0_4SE','Jeffersonville0_8NW',... 

    
'LouBowmanField','LouIntAirport','LouUpperGage','LouWF

Office',... 

    

'OldBrownsboroP0_3SW','PRP0_6NNW','Shepherdsville5N

E'}; 

h=figure; 

figures=0; 

for i=4:33 

    if i<21 

        PREFIX='MSD Daily Rainfall Accumulation_TR'; 

    else 
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        PREFIX='NOAA Daily Rainfall Accumulation'; 

    end 

    % total sum of the gauge for the study period 

    totalSum=sum(R_figure(:,i)); 

    numMissing=length(find(R_figure(:,i)<0)); 

    %X=['Total Accummulation in mm of ',TRs(i-
5),char(num2str(totalSum)),' with 

',char(num2str(numMissing)),' missings']; 

    X=strcat('Total Accummulation in mm of ',TR_MSD(i-

3),': ',num2str(totalSum),' with_',num2str(numMissing),' 

missings'); 

    disp(char(X))     

    subplot(3,1,numFig); 

    bar(1:lenDays,R_figure(:,i),'black'); 

    %hold on; 

    %bar(1:lenDays,R_missing(:,i),'black'); 

    %hold off; 

    titleName=char(strcat(PREFIX,TR_MSD(i-3))); 

    title(titleName); 

    ylim([0 200]); 

    if numFig<3 

        if numFig==2 

            ylabel('Daily Rainfall Accum. in mm'); 

        end 

        numFig=numFig+1; 

    elseif numFig==3 

        xlabel('Daily Interval'); 

        figures=figures+1; 

        

saveName=char(strcat('Z:/DATA/GroundBasedRainfall/figur

es/MSDdaily',num2str(figures),'.jpg')); 

        saveas(h,saveName); 

        numFig=1; 

    end 

end 

% discard TR17 and TR18 due to the too low intensities... 

Rcombine(:,19:20)=[]; 

dlmwrite('Z:/DATA/GroundBasedRainfall/AccumulationMS

DgaugeDaily_discardedTR17_18MM.out',Rcombine,'delimit
er',',','precision','%6.2f'); 

 

Chapter 3 

a. Clustering of rainfall events 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 

%        Clustering of Rainfall Event of MSD rain gauges by 
distance between them for Lou. Metro  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 

% rainfall definition by EPA 0.1inch(0.254mm for 6hours) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

% 04/28/2015 

% Developed by Jin-Young Hyun 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 

clear all; 

% startTime, EndTime 

openEvt=dlmread('Z:/DATA/GroundBasedRainfall/events/E

ventsMSDgaugeRainfall_mm.out',','); 

numEvt=max(openEvt(:,21)); % 558 

rainfallEvt=zeros(5,16,numEvt); 

Rcategory=zeros(numEvt,1); 

RmaxAccum=zeros(numEvt,1); 

for i=1:numEvt 

    EvtList=find(openEvt(:,21)==i); 

    STARTE=EvtList(1); 

    month=openEvt(STARTE,2); 

    % categories by seasons 

    if month>2 && month<10 

        category=1; 

    elseif month==3 || month==10 

        category=2; 

    else 

        category=3; 

    end 

    Rcategory(i,1)=category;     

    ENDE=EvtList(length(EvtList)); 

    rainfallEvt(2,1,i)=(ENDE-STARTE+1)*5/60; % duration 

of event in hour;  

    rainSum=sum(openEvt(EvtList,6:20)); 

    RmaxAccum(i,1)=max(rainSum); 
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    rainfallEvt(3,2:16,i)=rainSum; % rainfall depth for each 

gauge during the event  

     

    for j=6:20 

        ObsList=find(openEvt(EvtList,j)>0); 

        lenObs=length(ObsList); 

        if lenObs==0 

            disp('no rain for this gauge.'); 

        else 

            rainfallEvt(1,(j-4),i)=1; 

            STARTG=EvtList(ObsList(1)); 

            ENDG=EvtList(ObsList(lenObs)); 

            rainfallEvt(2,(j-4),i)=(ENDG-STARTG+1)*5/60; % 

duration of gauge site rainfall event in hour;  

            rainfallEvt(4,(j-

4),i)=var(openEvt(STARTG:ENDG,j)); % variance of gauge 

rainfall;  

            rainfallEvt(5,(j-

4),i)=max(openEvt(STARTG:ENDG,j)); % max 5min 
rainfall of gauge rainfall;  

        end 

    end 

    rainfallEvt(1,1,i)=sum(rainfallEvt(1,2:16,i)); % number of 

gauge which observed rainfall  

    %rainfallEvt(3,1,i)=sum(rainSum)/rainfallEvt(1,1,i); % 

avg depth in the event  

    rainfallEvt(3,1,i)=sum(rainSum)/15; % avg depth in the 

event  

    rainfallEvt(4,1,i)=var(rainfallEvt(3,2:16,i)); % var of var 

for the event;  

    rainfallEvt(5,1,i)=max(rainfallEvt(5,2:16,i)); % max of 

5min for the event;  

    disp(i); 

end 

% check the collection 

Rplots=zeros(558,7); 

for i=1:558 

    Rplots(i,1)=rainfallEvt(1,1,i); 

    Rplots(i,2)=rainfallEvt(2,1,i); 

    Rplots(i,3)=rainfallEvt(3,1,i); 

    Rplots(i,4)=rainfallEvt(4,1,i); 

    Rplots(i,5)=rainfallEvt(5,1,i); 

    Rplots(i,6)=Rcategory(i,1); 

    Rplots(i,7)=RmaxAccum(i,1); 

end 

% extreme case only for the rain depth and max rainfall 

figure; 

subplot(2,2,1); 

scatter(Rplots(:,2),Rplots(:,3),5,'filled','black'); 

%scatter(RplotsFS(:,2),RplotsFS(:,3),5,'filled','black'); 

grid on; 

box on; 

xlabel('Duration in hour'); 

ylabel('Averaged rainfall depth in mm'); 

subplot(2,2,2); 

scatter(Rplots(:,2),Rplots(:,5),5,'filled','black'); 

%scatter(RplotsFS(:,2),RplotsFS(:,5),5,'filled','black'); 

grid on; 

box on; 

xlabel('Duration in hour'); 

ylabel('Max rainfall intensity in mm/5min'); 

subplot(2,2,3); 

scatter(Rplots(:,3),Rplots(:,5),5,'filled','black'); 

%scatter(RplotsFS(:,3),RplotsFS(:,5),5,'filled','black'); 

grid on; 

box on; 

xlabel('Averaged rainfall depth in mm'); 

ylabel('Max rainfall intensity in mm/5min'); 

subplot(2,2,4); 

scatter3(Rplots(:,2),Rplots(:,3),Rplots(:,5),5,'filled','black'); 

%scatter3(RplotsFS(:,2),RplotsFS(:,3),RplotsFS(:,5),5,'filled',
'black'); 

grid on; 

box on; 

xlabel('Duration in hour'); 

ylabel('Averaged rainfall depth in mm'); 

zlabel('Max rainfall intensity in mm/5min'); 

% feature scaling 

RplotsFS=zeros(length(Rplots),8); 

RplotsFS(:,6)=1:558; 

RplotsFS(:,7)=Rplots(:,6); 



122 

RplotsFS(:,8)=Rplots(:,7); 

for i=2:5 

    maxVal=max(Rplots(:,i)); 

    minVal=min(Rplots(:,i)); 

    for j=1:length(Rplots) 

        val=Rplots(j,i); 

        RplotsFS(j,i)=((val-minVal)/(maxVal-minVal)); 

        disp(val); 

    end 

end 

maxVal=max(Rplots(:,7)); 

minVal=min(Rplots(:,7)); 

for j=1:length(Rplots) 

    val=Rplots(j,7); 

    RplotsFS(j,8)=((val-minVal)/(maxVal-minVal)); 

    disp(val); 

end 

% Kmeans clustering: 3 initial centers. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 

% three initial mean points: at the corners 

r1x=0; % high intensity/ low vol. 

r1y=1; % high intensity/ low vol. 

r2x=1; % low intensity/ high vol. 

r2y=0; % low intensity/ low vol. 

r3x=0; % low intensity/ low vol. 

r3y=0; % low intensity/ low vol. 

%r4x=1; % high intensity/ high vol. 

%r4y=1; % high intensity/ high vol. 

BreakPoint=0.00001; 

numIteration=0; 

distMatrix=zeros(1,3); 

newThresh=0; 

while 1 

    %storage 

    storage1=zeros(length(RplotsFS),5); 

    storage2=zeros(length(RplotsFS),5); 

    storage3=zeros(length(RplotsFS),5); 

    %storage4=zeros(length(RplotsFS),4); 

    moveCenter=zeros(1,3); 

    num1=0; 

    num2=0; 

    num3=0; 

    %num4=0; 

    % calculate possessions  

    for i=1:length(RplotsFS) 

        xPt=RplotsFS(i,3); 

        yPt=RplotsFS(i,5); 

        evtNum=RplotsFS(i,6); 

        evtCategory=RplotsFS(i,7); 

        dist2mean1=sqrt((xPt-r1x)*(xPt-r1x)+(yPt-r1y)*(yPt-

r1y)); % atv1 

        distMatrix(1,1)=dist2mean1; 

        dist2mean2=sqrt((xPt-r2x)*(xPt-r2x)+(yPt-r2y)*(yPt-

r2y)); % atv2 

        distMatrix(1,2)=dist2mean2; 

        dist2mean3=sqrt((xPt-r3x)*(xPt-r3x)+(yPt-r3y)*(yPt-
r3y)); % iatv1 

        distMatrix(1,3)=dist2mean3; 

        %dist2mean4=sqrt((xPt-r4x)*(xPt-r4x)+(yPt-r4y)*(yPt-

r4y)); % iatv2 

        %distMatrix(1,4)=dist2mean4; 

        minDist=min(distMatrix); 

        posession=find(distMatrix(1,:)==minDist); 

        %store values to the closest sub-cluster 

        if posession==1 

            num1=num1+1; 

            storage1(num1,1)=num1; 

            storage1(num1,2)=xPt; 

            storage1(num1,3)=yPt; 

            storage1(num1,4)=evtNum; 

            storage1(num1,5)=evtCategory; 

        elseif posession==2 

            num2=num2+1; 

            storage2(num2,1)=num2; 

            storage2(num2,2)=xPt; 

            storage2(num2,3)=yPt; 

            storage2(num2,4)=evtNum; 
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            storage2(num2,5)=evtCategory; 

        elseif posession==3 

            num3=num3+1; 

            storage3(num3,1)=num3; 

            storage3(num3,2)=xPt; 

            storage3(num3,3)=yPt; 

            storage3(num3,4)=evtNum; 

            storage3(num3,5)=evtCategory; 

        %else 

        %    num4=num4+1; 

        %    storage4(num4,1)=num4; 

        %    storage4(num4,2)=xPt; 

        %    storage4(num4,3)=yPt; 

        %   storage4(num4,4)=evtNum; 

        end 

    end 

    storage1((num1+1):length(RplotsFS),:)=[]; 

    storage2((num2+1):length(RplotsFS),:)=[]; 

    storage3((num3+1):length(RplotsFS),:)=[]; 

    %storage4((num4+1):length(RplotsFS),:)=[]; 

    x1new=mean(storage1(:,2)); 

    y1new=mean(storage1(:,3)); 

    x2new=mean(storage2(:,2)); 

    y2new=mean(storage2(:,3)); 

    x3new=mean(storage3(:,2)); 

    y3new=mean(storage3(:,3)); 

    %x4new=mean(storage4(:,2)); 

    %y4new=mean(storage4(:,3)); 

    dist1=sqrt((r1x-x1new)*(r1x-x1new)+(r1y-y1new)*(r1y-

y1new)); 

    dist2=sqrt((r2x-x2new)*(r2x-x2new)+(r2y-y2new)*(r2y-

y2new)); 

    dist3=sqrt((r3x-x3new)*(r3x-x3new)+(r3y-y3new)*(r3y-

y3new)); 

    %dist4=sqrt((r4x-x4new)*(r4x-x4new)+(r4y-y4new)*(r4y-

y4new)); 

    moveCenter(1,1)=dist1; 

    moveCenter(1,2)=dist2; 

    moveCenter(1,3)=dist3; 

    %moveCenter(1,4)=dist4; 

    newThresh=max(moveCenter); 

    numIteration=numIteration+1; 

    disp(numIteration); 

    %disp(newThresh); 

    if newThresh<=BreakPoint 

        break; 

    else 

        r1x=x1new; 

        r1y=y1new; 

        r2x=x2new; 

        r2y=y2new; 

        r3x=x3new; 

        r3y=y3new; 

        %r4x=x4new; 

        %r4y=y4new; 

    end 

end 

% export clusterred rainfall event 

% labeling: 1-high intensity, 2-high depth, 3-light 

Rcluster=zeros(numEvt,2); 

for i=1:numEvt 

    Rcluster(i,1)=i; 

    highInt=length(find(storage1(:,4)==i)); 

    highDepth=length(find(storage2(:,4)==i)); 

    light=length(find(storage3(:,4)==i)); 

    if highInt==1 

        Rcluster(i,2)=1; 

        disp('High intensity of rainfall event'); 

    elseif highDepth==1 

        Rcluster(i,2)=2; 

        disp('High depth of rainfall event'); 

    elseif light==1 

        Rcluster(i,2)=3; 

        disp('Light event'); 

    end 

end 

dlmwrite('Z:/DATA/GroundBasedRainfall/events/eventClust
eredRainfall.out',Rcluster,'delimiter',',','precision','%6.2f'); 
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% num event in a cluster 

LE=length(find(Rcluster(:,2)==3)); 

HIevts=length(find(Rcluster(:,2)==1)); 

HDevts=length(find(Rcluster(:,2)==2)); 

 

figure; 

subplot(2,2,1); 

scatter(Rplots(:,3),Rplots(:,5),5,'filled','black'); 

%scatter(RplotsFS(:,3),RplotsFS(:,5),5,'filled','black'); 

grid on; 

box on; 

t=title('Averaged rain depth vs. intensity'); 

set(t,'FontSize',12); 

set(t,'FontName','Times') 

xt=xlabel('Averaged rainfall depth in mm'); 

set(xt,'FontSize',11); 

set(xt,'FontName','Times') 

yt=ylabel('Max rainfall in mm/5min'); 

set(yt,'FontSize',11); 

set(yt,'FontName','Times') 

lt=legend('Event'); 

set(lt,'FontSize',11); 

set(lt,'FontName','Times') 

% initial centroid 

iniCnt=zeros(4,2); 

iniCnt(1,1)=0; 

iniCnt(1,2)=1; 

iniCnt(2,1)=1; 

iniCnt(2,2)=0; 

iniCnt(3,1)=0; 

iniCnt(3,2)=0; 

%iniCnt(4,1)=1; 

%iniCnt(4,2)=1; 

subplot(2,2,2); 

scatter(RplotsFS(:,3),RplotsFS(:,5),5,'filled','black'); 

%scatter(RplotsFS(:,3),RplotsFS(:,5),5,'filled','black'); 

grid on; 

box on; 

hold on; 

scatter(iniCnt(:,1),iniCnt(:,2),30,'black','s'); 

hold off; 

t=title('K-means Cluster: initial mean points'); 

set(t,'FontSize',12); 

set(t,'FontName','Times'); 

xt=xlabel('Normalized averaged rainfall depth in mm'); 

set(xt,'FontSize',11); 

set(xt,'FontName','Times') 

yt=ylabel('Normalized max rainfall in mm/5min'); 

set(yt,'FontSize',11); 

set(yt,'FontName','Times'); 

lt=legend('events','initial centers'); 

set(lt,'FontSize',11); 

set(lt,'FontName','Times'); 

% final centroid and groups 

fnCnt=zeros(3,2); 

fnCnt(1,1)=r1x; 

fnCnt(1,2)=r1y; 

fnCnt(2,1)=r2x; 

fnCnt(2,2)=r2y; 

fnCnt(3,1)=r3x; 

fnCnt(3,2)=r3y; 

%fnCnt(4,1)=r4x; 

%fnCnt(4,2)=r4y; 

subplot(2,2,3); 

scatter(storage1(:,2),storage1(:,3),25,'black','s'); 

grid on; 

box on; 

hold on; 

scatter(storage2(:,2),storage2(:,3),35,'black','X'); 

hold on; 

scatter(storage3(:,2),storage3(:,3),3,'black','filled','o'); 

%hold on; 

%scatter(storage4(:,2),storage4(:,3),20,'black','d'); 

hold off; 

t=title('K-means Cluster: final clusters'); 

set(t,'FontSize',12); 
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set(t,'FontName','Times'); 

xt=xlabel('Normalized averaged rainfall depth in mm'); 

set(xt,'FontSize',11); 

set(xt,'FontName','Times') 

yt=ylabel('Normalized max rainfall in mm/5min'); 

set(yt,'FontSize',11); 

set(yt,'FontName','Times'); 

lt=legend('high intensity events','high depth events','light 

events'); 

set(lt,'FontSize',11); 

set(lt,'FontName','Times'); 

% eventClustering; 

subplot(2,2,4); 

RevtStat=zeros(2,3); 

% mean duration over the area 

RevtStat(1,1)=mean(Rplots(highR,2)); 

RevtStat(1,2)=mean(Rplots(storage1(:,4),2)); 

RevtStat(1,3)=mean(Rplots(storage2(:,4),2)); 

% std duration over the area 

RevtStat(2,1)=std(Rplots(highR,2)); 

RevtStat(2,2)=std(Rplots(storage1(:,4),2)); 

RevtStat(2,3)=std(Rplots(storage2(:,4),2)); 

% mean max intensity 

%RevtStat(3,1)=mean(Rplots(highR,5)); 

%RevtStat(3,2)=mean(Rplots(storage1(:,4),5)); 

%RevtStat(3,3)=mean(Rplots(storage2(:,4),5)); 

% std max intensity 

%RevtStat(4,1)=std(Rplots(highR,5)); 

%RevtStat(4,2)=std(Rplots(storage1(:,4),5)); 

%RevtStat(4,3)=std(Rplots(storage2(:,4),5)); 

bar(RevtStat); 

grid on; 

box on; 

xlim([0 3]); 

set(gca,'XTickLabel',{'mean duration','std duration','mean 

max intensity','std max intensity'}) 

t=title('General statistics of Cluster events'); 

set(t,'FontSize',12); 

set(t,'FontName','Times'); 

%xt=xlabel('statistics'); 

%set(xt,'FontSize',11); 

%set(xt,'FontName','Times') 

yt=ylabel('duraion in hour'); 

set(yt,'FontSize',11); 

set(yt,'FontName','Times'); 

lt=legend('Total event','High intensity events','High depth 

events'); 

set(lt,'FontSize',11); 

set(lt,'FontName','Times'); 

% additional 

RANGEname={'0-5km','5-10km','10-15km','15-20km','20-

25km','25-30km','30-35km','35-40km'}; 

RANGEtemp={'15minute','30minute','1hour','3hour'}; 

QUANTILES=[0.00000001,0.25,0.5,0.75,0.9,0.95]; 

xlabel('Normalized Averaged rainfall depth in mm'); 

ylabel('Normalized Max rainfall intensity in mm/5min'); 

legend(); 

% categorical by season  

% hot season: 4-9 

% transitional: 3,10 

% cold season: 11-2 

highIhot=find(storage1(:,5)==1); 

highItran=find(storage1(:,5)==2); 

highIcold=find(storage1(:,5)==3); 

highDhot=find(storage2(:,5)==1); 

highDtran=find(storage2(:,5)==2); 

highDcold=find(storage2(:,5)==3); 

%highLhot=find(storage3(:,5)==1); 

%highLtran=find(storage3(:,5)==2); 

%highLcold=find(storage3(:,5)==3); 

% event statistics 

% highI 

HIhot=storage1(highIhot,4); 

highIhot=Rplots(HIhot,:); 

HIhotDuration=mean(highIhot(:,2)); 

HIhotDepth=mean(highIhot(:,3)); 

HIhotVar=mean(highIhot(:,4)); 

HIhotIntensity=mean(highIhot(:,5)); 
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HItran=storage1(highItran,4); 

highItran=Rplots(HItran,:); 

HItranDuration=mean(highItran(:,2)); 

HItranDepth=mean(highItran(:,3)); 

HItranVar=mean(highItran(:,4)); 

HItranIntensity=mean(highItran(:,5)); 

HIcold=storage1(highIcold,4); 

highIcold=Rplots(HIcold,:); 

HIcoldDuration=mean(highIcold(:,2)); 

HIcoldDepth=mean(highIcold(:,3)); 

HIcoldVar=mean(highIcold(:,4)); 

HIcoldIntensity=mean(highIcold(:,5)); 

% highD 

HDhot=storage2(highDhot,4); 

highDhot=Rplots(HDhot,:); 

HDhotDuration=mean(highDhot(:,2)); 

HDhotDepth=mean(highDhot(:,3)); 

HDhotVar=mean(highDhot(:,4)); 

HDhotIntensity=mean(highDhot(:,5)); 

HDtran=storage2(highDtran,4); 

highDtran=Rplots(HDtran,:); 

HDtranDuration=mean(highDtran(:,2)); 

HDtranDepth=mean(highDtran(:,3)); 

HDtranVar=mean(highDtran(:,4)); 

HDtranIntensity=mean(highDtran(:,5)); 

HDcold=storage3(highDcold,4); 

highDcold=Rplots(HDcold,:); 

HDcoldDuration=mean(highDcold(:,2)); 

HDcoldDepth=mean(highDcold(:,3)); 

HDcoldVar=mean(highDcold(:,4)); 

HDcoldIntensity=mean(highDcold(:,5)); 

% low 

low=storage3(:,4); 

lowEvt=Rplots(low,:); 

LEduration=mean(lowEvt(:,2)); 

LEdepth=mean(lowEvt(:,3)); 

LEvar=mean(lowEvt(:,4)); 

LEintensity=mean(lowEvt(:,5)); 

% significant rainfall only 

highR=zeros((length(storage1)+length(storage2)),1); 

highR(1:length(storage1))=storage1(:,4); 

highR((length(storage1)+1):length(highR))=storage2(:,4); 

b. Clustered variogram 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%        Clustering of 

Rainfall Event of MSD rain gauges by distance between them 

for Lou. Metro  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% rainfall definition by 
EPA 0.1inch(0.254mm for 6hours) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 04/28/2015 

% Developed by Jin-Young Hyun 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

        lenObs=length(ObsList); 

        if lenObs==0 

            disp('no rain for this gauge.'); 

        else 

            rainfallEvt(1,(j-4),i)=1; 

            STARTG=EvtList(ObsList(1)); 

            ENDG=EvtList(ObsList(lenObs)); 

            rainfallEvt(2,(j-4),i)=(ENDG-STARTG+1)*5/60; % 

duration of gauge site rainfall event in hour;  

            rainfallEvt(4,(j-

4),i)=var(openEvt(STARTG:ENDG,j)); % variance of gauge 
rainfall;  

            rainfallEvt(5,(j-
4),i)=max(openEvt(STARTG:ENDG,j)); % max 5min 

rainfall of gauge rainfall;  

        end 

    end 

    rainfallEvt(1,1,i)=sum(rainfallEvt(1,2:16,i)); % number of 

gauge which observed rainfall  

    rainfallEvt(3,1,i)=sum(rainSum)/rainfallEvt(1,1,i); % avg 

depth in the event  

    rainfallEvt(4,1,i)=var(rainfallEvt(3,2:16,i)); % var of var 

for the event;  

    rainfallEvt(5,1,i)=max(rainfallEvt(5,2:16,i)); % max of 

5min for the event;  

    disp(i); 

end 

% check the collection 
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Rplots=zeros(558,7); 

for i=1:558 

    Rplots(i,1)=rainfallEvt(1,1,i); 

    Rplots(i,2)=rainfallEvt(2,1,i); 

    Rplots(i,3)=rainfallEvt(3,1,i); 

    Rplots(i,4)=rainfallEvt(4,1,i); 

    Rplots(i,5)=rainfallEvt(5,1,i); 

    Rplots(i,6)=Rcategory(i,1); 

    Rplots(i,7)=RmaxAccum(i,1); 

end 

% check stability 

figure; 

subplot(3,1,1); 

plot(1:numEvt,Rplots(:,3),'black'); 

subplot(3,1,2); 

plot(1:numEvt,Rplots(:,5),'blue'); 

subplot(3,1,3); 

plot(1:numEvt,Rplots(:,7),'red'); 

% moving average of the rainfall event 

for i=1:(numEvt-4) 

    windowList=i:(i+4) 

         

 

 

% extreme case only for the rain depth and max rainfall 

figure; 

subplot(2,2,1); 

scatter(Rplots(:,2),Rplots(:,3),5,'filled','black'); 

%scatter(RplotsFS(:,2),RplotsFS(:,3),5,'filled','black'); 

grid on; 

box on; 

xlabel('Duration in hour'); 

ylabel('Averaged rainfall depth in mm'); 

subplot(2,2,2); 

scatter(Rplots(:,2),Rplots(:,5),5,'filled','black'); 

%scatter(RplotsFS(:,2),RplotsFS(:,5),5,'filled','black'); 

grid on; 

box on; 

xlabel('Duration in hour'); 

ylabel('Max rainfall intensity in mm/5min'); 

subplot(2,2,3); 

scatter(Rplots(:,3),Rplots(:,5),5,'filled','black'); 

%scatter(RplotsFS(:,3),RplotsFS(:,5),5,'filled','black'); 

grid on; 

box on; 

xlabel('Averaged rainfall depth in mm'); 

ylabel('Max rainfall intensity in mm/5min'); 

subplot(2,2,4); 

scatter3(Rplots(:,2),Rplots(:,3),Rplots(:,5),5,'filled','black'); 

%scatter3(RplotsFS(:,2),RplotsFS(:,3),RplotsFS(:,5),5,'filled',
'black'); 

grid on; 

box on; 

xlabel('Duration in hour'); 

ylabel('Averaged rainfall depth in mm'); 

zlabel('Max rainfall intensity in mm/5min'); 

% feature scaling 

RplotsFS=zeros(length(Rplots),8); 

RplotsFS(:,6)=1:558; 

RplotsFS(:,7)=Rplots(:,6); 

RplotsFS(:,8)=Rplots(:,7); 

for i=2:5 

    maxVal=max(Rplots(:,i)); 

    minVal=min(Rplots(:,i)); 

    for j=1:length(Rplots) 

        val=Rplots(j,i); 

        RplotsFS(j,i)=((val-minVal)/(maxVal-minVal)); 

        disp(val); 

    end 

end 

% Kmeans clustering: 3 initial centers.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 

% three initial mean points: at the corners 

r1x=0; % high intensity/ low vol. 

r1y=1; % high intensity/ low vol. 
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r2x=1; % low intensity/ high vol. 

r2y=0; % low intensity/ low vol. 

r3x=0; % low intensity/ low vol. 

r3y=0; % low intensity/ low vol. 

%r4x=1; % high intensity/ high vol. 

%r4y=1; % high intensity/ high vol. 

BreakPoint=0.00001; 

numIteration=0; 

distMatrix=zeros(1,3); 

newThresh=0; 

while 1 

    %storage 

    storage1=zeros(length(RplotsFS),5); 

    storage2=zeros(length(RplotsFS),5); 

    storage3=zeros(length(RplotsFS),5); 

    %storage4=zeros(length(RplotsFS),4); 

    moveCenter=zeros(1,3); 

    num1=0; 

    num2=0; 

    num3=0; 

    %num4=0; 

    % calculate possessions  

    for i=1:length(RplotsFS) 

        xPt=RplotsFS(i,3); 

        yPt=RplotsFS(i,5); 

        evtNum=RplotsFS(i,6); 

        evtCategory=RplotsFS(i,7); 

        dist2mean1=sqrt((xPt-r1x)*(xPt-r1x)+(yPt-r1y)*(yPt-
r1y)); % atv1 

        distMatrix(1,1)=dist2mean1; 

        dist2mean2=sqrt((xPt-r2x)*(xPt-r2x)+(yPt-r2y)*(yPt-

r2y)); % atv2 

        distMatrix(1,2)=dist2mean2; 

        dist2mean3=sqrt((xPt-r3x)*(xPt-r3x)+(yPt-r3y)*(yPt-

r3y)); % iatv1 

        distMatrix(1,3)=dist2mean3; 

        %dist2mean4=sqrt((xPt-r4x)*(xPt-r4x)+(yPt-r4y)*(yPt-
r4y)); % iatv2 

        %distMatrix(1,4)=dist2mean4; 

        minDist=min(distMatrix); 

        posession=find(distMatrix(1,:)==minDist); 

        %store values to the closest sub-cluster 

        if posession==1 

            num1=num1+1; 

            storage1(num1,1)=num1; 

            storage1(num1,2)=xPt; 

            storage1(num1,3)=yPt; 

            storage1(num1,4)=evtNum; 

            storage1(num1,5)=evtCategory; 

        elseif posession==2 

            num2=num2+1; 

            storage2(num2,1)=num2; 

            storage2(num2,2)=xPt; 

            storage2(num2,3)=yPt; 

            storage2(num2,4)=evtNum; 

            storage2(num2,5)=evtCategory; 

        elseif posession==3 

            num3=num3+1; 

            storage3(num3,1)=num3; 

            storage3(num3,2)=xPt; 

            storage3(num3,3)=yPt; 

            storage3(num3,4)=evtNum; 

            storage3(num3,5)=evtCategory; 

        %else 

        %    num4=num4+1; 

        %    storage4(num4,1)=num4; 

        %    storage4(num4,2)=xPt; 

        %    storage4(num4,3)=yPt; 

        %   storage4(num4,4)=evtNum; 

        end 

    end 

    storage1((num1+1):length(RplotsFS),:)=[]; 

    storage2((num2+1):length(RplotsFS),:)=[]; 

    storage3((num3+1):length(RplotsFS),:)=[]; 

    %storage4((num4+1):length(RplotsFS),:)=[]; 

    x1new=mean(storage1(:,2)); 

    y1new=mean(storage1(:,3)); 

    x2new=mean(storage2(:,2)); 
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    y2new=mean(storage2(:,3)); 

    x3new=mean(storage3(:,2)); 

    y3new=mean(storage3(:,3)); 

    %x4new=mean(storage4(:,2)); 

    %y4new=mean(storage4(:,3)); 

    dist1=sqrt((r1x-x1new)*(r1x-x1new)+(r1y-y1new)*(r1y-
y1new)); 

    dist2=sqrt((r2x-x2new)*(r2x-x2new)+(r2y-y2new)*(r2y-
y2new)); 

    dist3=sqrt((r3x-x3new)*(r3x-x3new)+(r3y-y3new)*(r3y-
y3new)); 

    %dist4=sqrt((r4x-x4new)*(r4x-x4new)+(r4y-y4new)*(r4y-
y4new)); 

    moveCenter(1,1)=dist1; 

    moveCenter(1,2)=dist2; 

    moveCenter(1,3)=dist3; 

    %moveCenter(1,4)=dist4; 

    newThresh=max(moveCenter); 

    numIteration=numIteration+1; 

    disp(numIteration); 

    %disp(newThresh); 

    if newThresh<=BreakPoint 

        break; 

    else 

        r1x=x1new; 

        r1y=y1new; 

        r2x=x2new; 

        r2y=y2new; 

        r3x=x3new; 

        r3y=y3new; 

        %r4x=x4new; 

        %r4y=y4new; 

    end 

end 

% group analysis 

figure; 

subplot(2,2,1); 

scatter(Rplots(:,3),Rplots(:,5),5,'filled','black'); 

%scatter(RplotsFS(:,3),RplotsFS(:,5),5,'filled','black'); 

grid on; 

box on; 

title('Scattering of rain depth and intensity'); 

xlabel('Averaged rainfall depth in mm'); 

ylabel('Max rainfall intensity in mm/5min'); 

% initial centroid 

iniCnt=zeros(4,2); 

iniCnt(1,1)=0; 

iniCnt(1,2)=1; 

iniCnt(2,1)=1; 

iniCnt(2,2)=0; 

iniCnt(3,1)=0; 

iniCnt(3,2)=0; 

%iniCnt(4,1)=1; 

%iniCnt(4,2)=1; 

subplot(2,2,2); 

scatter(RplotsFS(:,3),RplotsFS(:,5),5,'filled','black'); 

%scatter(RplotsFS(:,3),RplotsFS(:,5),5,'filled','black'); 

grid on; 

box on; 

hold on; 

scatter(iniCnt(:,1),iniCnt(:,2),30,'black','s'); 

hold off; 

title('Kmeans: initial mean points'); 

xlabel('Normalized Averaged rainfall depth in mm'); 

ylabel('Normalized Max rainfall intensity in mm/5min'); 

legend('events','initial centers'); 

% final centroid and groups 

fnCnt=zeros(3,2); 

fnCnt(1,1)=r1x; 

fnCnt(1,2)=r1y; 

fnCnt(2,1)=r2x; 

fnCnt(2,2)=r2y; 

fnCnt(3,1)=r3x; 

fnCnt(3,2)=r3y; 

%fnCnt(4,1)=r4x; 

%fnCnt(4,2)=r4y; 

subplot(2,2,3); 

scatter(storage1(:,2),storage1(:,3),25,'black','s'); 
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grid on; 

box on; 

hold on; 

scatter(storage2(:,2),storage2(:,3),35,'black','X'); 

hold on; 

scatter(storage3(:,2),storage3(:,3),3,'black','filled','o'); 

%hold on; 

%scatter(storage4(:,2),storage4(:,3),20,'black','d'); 

hold off; 

title('Kmeans: final groups'); 

xlabel('Normalized Averaged rainfall depth in mm'); 

ylabel('Normalized Max rainfall intensity in mm/5min'); 

legend('high intensity events','high depth events','light 

events'); 

% categorical by season  

% hot season: 4-9 

% transitional: 3,10 

% cold season: 11-2 

highIhot=find(storage1(:,5)==1); 

highItran=find(storage1(:,5)==2); 

highIcold=find(storage1(:,5)==3); 

highDhot=find(storage2(:,5)==1); 

highDtran=find(storage2(:,5)==2); 

highDcold=find(storage2(:,5)==3); 

%highLhot=find(storage3(:,5)==1); 

%highLtran=find(storage3(:,5)==2); 

%highLcold=find(storage3(:,5)==3); 

% event statistics 

% highI 

HIhot=storage1(highIhot,4); 

highIhot=Rplots(HIhot,:); 

HIhotDuration=mean(highIhot(:,2)); 

HIhotDepth=mean(highIhot(:,3)); 

HIhotVar=mean(highIhot(:,4)); 

HIhotIntensity=mean(highIhot(:,5)); 

HItran=storage1(highItran,4); 

highItran=Rplots(HItran,:); 

HItranDuration=mean(highItran(:,2)); 

HItranDepth=mean(highItran(:,3)); 

HItranVar=mean(highItran(:,4)); 

HItranIntensity=mean(highItran(:,5)); 

HIcold=storage1(highIcold,4); 

highIcold=Rplots(HIcold,:); 

HIcoldDuration=mean(highIcold(:,2)); 

HIcoldDepth=mean(highIcold(:,3)); 

HIcoldVar=mean(highIcold(:,4)); 

HIcoldIntensity=mean(highIcold(:,5)); 

% highD 

HDhot=storage2(highDhot,4); 

highDhot=Rplots(HDhot,:); 

HDhotDuration=mean(highDhot(:,2)); 

HDhotDepth=mean(highDhot(:,3)); 

HDhotVar=mean(highDhot(:,4)); 

HDhotIntensity=mean(highDhot(:,5)); 

HDtran=storage2(highDtran,4); 

highDtran=Rplots(HDtran,:); 

HDtranDuration=mean(highDtran(:,2)); 

HDtranDepth=mean(highDtran(:,3)); 

HDtranVar=mean(highDtran(:,4)); 

HDtranIntensity=mean(highDtran(:,5)); 

HDcold=storage3(highDcold,4); 

highDcold=Rplots(HDcold,:); 

HDcoldDuration=mean(highDcold(:,2)); 

HDcoldDepth=mean(highDcold(:,3)); 

HDcoldVar=mean(highDcold(:,4)); 

HDcoldIntensity=mean(highDcold(:,5)); 

% low 

low=storage3(:,4); 

lowEvt=Rplots(low,:); 

LEduration=mean(lowEvt(:,2)); 

LEdepth=mean(lowEvt(:,3)); 

LEvar=mean(lowEvt(:,4)); 

LEintensity=mean(lowEvt(:,5)); 

% significant rainfall only 

highR=zeros((length(storage1)+length(storage2)),1); 

highR(1:length(storage1))=storage1(:,4); 
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highR((length(storage1)+1):length(highR))=storage2(:,4); 

% eventClustering; 

subplot(2,2,4); 

%figure; 

RevtStat=zeros(7,3); 

RevtStat(1,1)=mean(Rplots(highR,3)); 

RevtStat(1,2)=mean(Rplots(HIhot,3)); 

RevtStat(1,3)=mean(Rplots(HItran,3)); 

RevtStat(1,4)=mean(Rplots(HIcold,3)); 

RevtStat(1,5)=mean(Rplots(HDhot,3)); 

RevtStat(1,6)=mean(Rplots(HDtran,3)); 

RevtStat(1,7)=mean(Rplots(HDcold,3)); 

RevtStat(2,1)=std(Rplots(highR,3)); 

RevtStat(2,2)=std(Rplots(HIhot,3)); 

RevtStat(2,3)=std(Rplots(HItran,3)); 

RevtStat(2,4)=std(Rplots(HIcold,3)); 

RevtStat(2,5)=std(Rplots(HDhot,3)); 

RevtStat(2,6)=std(Rplots(HDtran,3)); 

RevtStat(2,7)=std(Rplots(HDcold,3)); 

RevtStat(3,1)=std(Rplots(highR,7)); 

RevtStat(3,2)=std(Rplots(HIhot,7)); 

RevtStat(3,3)=std(Rplots(HItran,7)); 

RevtStat(3,4)=std(Rplots(HIcold,7)); 

RevtStat(3,5)=std(Rplots(HDhot,7)); 

RevtStat(3,6)=std(Rplots(HDtran,7)); 

RevtStat(3,7)=std(Rplots(HDcold,7)); 

bar(RevtStat); 

legend('total event','high intensity events-hot','high intensity 
events-tran','high intensity events-cold',... 

    'high depth events-hot','high depth events-tran','high depth 
events-cold'); 

% additional 

subplot(2,2,4); 

figure; 

scatter(storage1(highIhot,2),storage1(highIhot,3),25,'red','s'); 

grid on; 

box on; 

hold on; 

scatter(storage1(highItran,2),storage1(highItran,3),25,'filled','

black','s'); 

hold on; 

scatter(storage1(highIcold,2),storage1(highIcold,3),25,'filled',

'blue','s'); 

hold on; 

scatter(storage2(highDhot,2),storage2(highDhot,3),25,'red','X
'); 

hold on; 

scatter(storage2(highDtran,2),storage2(highDtran,3),25,'blac

k','X'); 

hold on; 

scatter(storage2(highDcold,2),storage2(highDcold,3),25,'blue

','X'); 

hold on; 

%scatter(storage3(highLhot,2),storage3(highLhot,3),25,'red','
o'); 

%hold on; 

%scatter(storage3(highLtran,2),storage3(highLtran,3),25,'bla

ck','o'); 

%hold on; 

%scatter(storage3(highLtran,2),storage3(highLtran,3),25,'o'); 

scatter(storage3(:,2),storage3(:,3),3,'black','filled','o'); 

scatter(storage2(:,2),storage2(:,3),35,'black','X'); 

hold on; 

scatter(storage3(:,2),storage3(:,3),3,'black','filled','o'); 

Chapter 4 

a. Support Vector Classification of tropical type rainfall 

values 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%        Rainfall >=35dBZ 
onlyh 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% outputs  

% 1-5: time information - year,month,day,hour,minute  

% 6: TR ID # 

% 7: total available inner scans of KLVX 

% 8: # of NA (-999) in 15minute Scan 

% 9: max interval within 15min capsule in min 

% 10: type of rainfall - - 1(convective), 2(tropical), 3(ECS), 

4(stratiform) 

% 11: gauge accumulation mm/15min (quarter hour) 

% 12: KLVX radar accumulation mm/15min (quarter hour) 
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% 13: KLVX reflectivity in dBZ 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 10/03/2015 

% Developed by Jin-Young Hyun 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%clear all; 

openData=dlmread('Z:/DATA/KLVXoutput/tropicalHighRef
Only.out',','); 

lenData=length(openData); 

winterT2=find(openData(:,2)>9 | openData(:,2)<4); 

lenT2winter=length(winterT2); 

summerT2=find(openData(:,2)>3 & openData(:,2)<10); 

lenT2summer=length(summerT2); 

% check high REFLECTIVITY in the first half water year 

winterOnly=openData(winterT2,:); 

winterKernel=zeros(length(winterOnly),1); 

DIVw=32; 

lowREFw=find(winterOnly(:,13)<DIVw); 

highREFw=find(winterOnly(:,13)>=DIVw); 

winterKernel(highREFw,1)=1; 

winterKernel(lowREFw,1)=-1; 

svmStruct = 

svmtrain(winterOnly(:,11:12),winterKernel(:,1)); 

figure; 

svmStructV = 

svmtrain(winterOnly(:,11:12),winterKernel(:,1),'ShowPlot',tr
ue); 

group=svmclassify(svmStruct,winterOnly(:,11:12)); 

G1=find(group(:,1)==1); 

G2=find(group(:,1)==-1); 

SVMhighREFw=winterOnly(G1,:); 

RerrorW=zeros(length(SVMhighREFw),3); 

numIteration=1; 

for i=32.1:0.1:34.4 

    DIVw=i;     

    lowREFwH=find(SVMhighREFw(:,13)<DIVw); 

    highREFwH=find(SVMhighREFw(:,13)>=DIVw); 

    winterKernelH=zeros(length(SVMhighREFw),1); 

    winterKernelH(highREFwH,1)=1; 

    winterKernelH(highREFwH,1)=-1; 

    

svmStructH=svmtrain(SVMhighREFw(:,11:12),winterKernel
H); 

    
groupH=svmclassify(svmStructH,SVMhighREFw(:,11:12)); 

    G1H=find(groupH(:,1)==-1); 

    G2H=find(groupH(:,1)==0); 

    prevE1=1000000000000; 

    for j=0.1:0.1:20 

        for k=10:10:1000 

            

rainRate=(((10.^(SVMhighREFw(G1H,13)./10))/k).^(1/j))./4;  

            error=sum(abs(rainRate-SVMhighREFw(G1H,11))); 

            if error<prevE1 

                a1=k; 

                b1=j; 

                %XX=[a1,b1]; 

                %disp(XX); 

                prevE1=error; 

            end 

        end    

    end 

    % find the best G2 for each group 

    prevE2=1000000000000; 

    for j=0.1:0.1:20 

        for k=10:10:1000 

            
rainRate=(((10.^(SVMhighREFw(G2H,13)./10))/k).^(1/j))./4;  

            error=sum(abs(rainRate-SVMhighREFw(G2H,11))); 

            if error<prevE2 

                a2=k; 

                b2=j; 

                %XX=[a2,b2]; 

                %disp(XX); 

                prevE2=error; 

            end 

        end    

    end 

    totalE=prevE1+prevE2; 

    RerrorW(numIteration,1)=i; 
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    RerrorW(numIteration,2)=totalE/length(SVMhighREFw); 

    

RerrorW(numIteration,3)=length(G1H)/(length(G1H)+length

(G2H)); 

    disp(numIteration); 

    numIteration=numIteration+1; 

end 

figure; 

subplot(2,2,1) 

svmStruct = 
svmtrain(winterOnly(:,11:12),winterKernel(:,1),'ShowPlot',tr

ue); 

xlim([0 30]); 

ylim([0 30]); 

hold on; 

plot(0:30,0:30,':black'); 

box on; 

grid on; 

hold on; 

subplot(2,2,2) 

svmStructH=svmtrain(SVMhighREFw(:,11:12),winterKernel

H,'ShowPlot',true); 

xlim([0 30]); 

ylim([0 30]); 

hold on; 

plot(0:30,0:30,':black'); 

box on; 

grid on; 

hold on; 

T2=scatter(winterOnly(:,11),winterOnly(:,12),25,'d','filled','bl

ack'); 

figure; 

hist(SVMhighREFw(:,9),20); 

figure; 

DIV=33.5; 

subplot(1,3,1); 

T2=scatter(SVMhighREFw(:,11),SVMhighREFw(:,12),25,'d'
,'filled','black'); 

xlim([0 30]); 

ylim([0 30]); 

hold on; 

plot(0:30,0:30,':black'); 

box on; 

grid on; 

subplot(1,3,2); 

extremeInt=find(SVMhighREFw(:,13)>=DIV); 

T2extreme=scatter(SVMhighREFw(extremeInt,11),SVMhig
hREFw(extremeInt,12),25,'d','filled','red'); 

xlim([0 30]); 

ylim([0 30]); 

hold on; 

plot(0:30,0:30,':black'); 

box on; 

grid on; 

subplot(1,3,3); 

normInt=find(SVMhighREFw(:,13)<DIV); 

T2extreme=scatter(SVMhighREFw(normInt,11),SVMhighR

EFw(normInt,12),25,'d','filled','blue'); 

xlim([0 30]); 

ylim([0 30]); 

hold on; 

plot(0:30,0:30,':black'); 

box on; 

grid on; 

RcaliW(:,3)=(((10.^(openData(winterT2,13)./10))/a).^(1/b))./

4; 

svmStruct = svmtrain(dataW,RcaliW(:,5),'ShowPlot',true); 

highREFw=find(RcaliW(:,6)>=DIVw); 

lowREFw=find(RcaliW(:,6)<DIVw); 

RcaliW(highREFw,5)=1; 

RcaliW(lowREFw,5)=-1; 

dataW=RcaliW(:,1:2); 

group=svmclassify(svmStruct,RcaliW(:,1:2)); 

G1=find(group(:,1)==1); 

G2=find(group(:,1)==-1); 

highCheck=zeros((openData(:,2)>9 | openData(:,2)<4) & 

openData(:,13)<32); 

% T2 winter adjustment for entire domain 

prevE=1000000000000; 

for i=0.1:0.1:20 

    for j=10:10:1000 
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rainRate=(((10.^(openData(winterT2,13)./10))/j).^(1/i))./4;  

        error=sum(abs(rainRate-openData(winterT2,11))); 

        if error<prevE 

            a=j; 

            b=i; 

            %XX=[a,b]; 

            %disp(XX); 

            prevE=error; 

        end 

    end 

end 

RcaliW=zeros(lenT2winter,7); 

RcaliW(:,1)=openData(winterT2,11); 

RcaliW(:,2)=openData(winterT2,12); 

RcaliW(:,3)=(((10.^(openData(winterT2,13)./10))/a).^(1/b))./

4; 

RcaliW(:,4)=openData(winterT2,9); 

RcaliW(:,6)=openData(winterT2,13); 

%support vector classifier winter 

minWinterREF=min(RcaliW(:,6)); 

maxWinterREF=max(RcaliW(:,6)); 

prevTotalE=1000000000; 

RerrorW=zeros(36,3); 

DIVw=32; 

highREFw=find(RcaliW(:,6)>=DIVw); 

lowREFw=find(RcaliW(:,6)<DIVw); 

RcaliW(highREFw,5)=1; 

RcaliW(lowREFw,5)=-1; 

dataW=RcaliW(:,1:2); 

svmStruct = svmtrain(dataW,RcaliW(:,5)); 

group=svmclassify(svmStruct,RcaliW(:,1:2)); 

G1=find(group(:,1)==1); 

G2=find(group(:,1)==-1); 

% scatter plot of first half water year 

figure; 

subplot(2,2,1); 

svmStruct = svmtrain(dataW,RcaliW(:,5),'ShowPlot',true); 

box on; 

grid on; 

xlim([0 30]); 

ylim([0 30]); 

high1stREF=zeros(length(G1),3); 

low1stREF=zeros(length(G2),3); 

subplot(2,2,2); 

high1stREF(:,1)=RcaliW(G1,1); 

high1stREF(:,2)=RcaliW(G1,6); 

high1stREF(:,3)=(((10.^(high1stREF(:,2)./10))/50).^(1/1.1))./
4;  

low1stREF(:,1)=RcaliW(G2,1); 

low1stREF(:,2)=RcaliW(G2,6); 

low1stREF(:,3)=(((10.^(low1stREF(:,2)./10))/230).^(1/0.5))./

4;  

high1st=scatter(high1stREF(:,1),high1stREF(:,3),30,'d','filled'

,'red'); 

box on; 

grid on; 

xlim([0 30]); 

ylim([0 30]); 

hold on; 

low1st=scatter(low1stREF(:,1),low1stREF(:,3),'d','filled','blu

e'); 

hold on; 

high1stLL=lsline; 

set(high1stLL,'Color','black'); 

set(high1stLL,'LineWidth',2); 

for i=31.1:0.1:34.6 

    DIV=i; 

    highREFw=find(RcaliW(:,6)>=DIV); 

    lowREFw=find(RcaliW(:,6)<DIV); 

    RcaliW(highREFw,5)=1; 

    RcaliW(lowREFw,5)=-1; 

    dataW=RcaliW(:,1:2); 

    svmStruct = svmtrain(dataW,RcaliW(:,5)); 

    group=svmclassify(svmStruct,RcaliW(:,1:2)); 

    G1=find(group(:,1)==1); 

    G2=find(group(:,1)==-1); 

    % find the best G1 for each group 

    prevE1=1000000000000; 
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    for j=0.1:0.1:20 

        for k=10:10:1000 

            rainRate=(((10.^(RcaliW(G1,6)./10))/k).^(1/j))./4;  

            error=sum(abs(rainRate-RcaliW(G1,1))); 

            if error<prevE1 

                a1=k; 

                b1=j; 

                %XX=[a1,b1]; 

                %disp(XX); 

                prevE1=error; 

            end 

        end    

    end 

    % find the best G2 for each group 

    prevE2=1000000000000; 

    for j=0.1:0.1:20 

        for k=10:10:1000 

            rainRate=(((10.^(RcaliW(G2,6)./10))/k).^(1/j))./4;  

            error=sum(abs(rainRate-RcaliW(G2,1))); 

            if error<prevE2 

                a2=k; 

                b2=j; 

                %XX=[a2,b2]; 

                %disp(XX); 

                prevE2=error; 

            end 

        end    

    end 

    totalE=prevE1+prevE2; 

    RerrorW(numIteration,1)=i; 

    RerrorW(numIteration,2)=totalE/lenT2winter; 

    

RerrorW(numIteration,3)=length(G1)/(length(G1)+length(G2
)); 

    disp(numIteration); 

    numIteration=numIteration+1; 

end 

minErrorW=min(RerrorW(:,2)); 

rowMinW=find(RerrorW(:,2)==minErrorW); 

optREFw=RerrorW(rowMinW,1); 

% T2 winter adjustment for entire domain 

prevE=1000000000000; 

for i=0.1:0.1:20 

    for j=10:10:1000 

        
rainRate=(((10.^(openData(summerT2,13)./10))/j).^(1/i))./4;  

        error=sum(abs(rainRate-openData(summerT2,11))); 

        if error<prevE 

            a=j; 

            b=i; 

            %XX=[a,b]; 

            %disp(XX); 

            prevE=error; 

        end 

    end 

end 

RcaliS=zeros(lenT2summer,7); 

RcaliS(:,1)=openData(summerT2,11); 

RcaliS(:,2)=openData(summerT2,12); 

RcaliS(:,3)=(((10.^(openData(summerT2,13)./10))/a).^(1/b)).

/4; 

RcaliS(:,4)=openData(summerT2,9); 

RcaliS(:,6)=openData(summerT2,13); 

%support vector classifier summer 

minSummerREF=min(RcaliS(:,6)); 

maxSummerREF=max(RcaliS(:,6)); 

prevTotalE=1000000000; 

RerrorS=zeros(36,3); 

numIteration=1; 

for i=31.1:0.1:34.6 

    DIV=i; 

    highREFs=find(RcaliS(:,6)>=DIV); 

    lowREFs=find(RcaliS(:,6)<DIV); 

    RcaliS(highREFs,5)=1; 

    RcaliS(lowREFs,5)=-1; 

    dataS=RcaliS(:,1:2); 

    svmStruct = svmtrain(dataS,RcaliS(:,5)); 

    group=svmclassify(svmStruct,RcaliS(:,1:2)); 
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    G1=find(group(:,1)==1); 

    G2=find(group(:,1)==-1); 

    % find the best G1 for each group 

    prevE1=1000000000000; 

    for j=0.1:0.1:20 

        for k=10:10:1000 

            rainRate=(((10.^(RcaliS(G1,6)./10))/k).^(1/j))./4;  

            error=sum(abs(rainRate-RcaliS(G1,1))); 

            if error<prevE1 

                a1=k; 

                b1=j; 

                %XX=[a1,b1]; 

                %disp(XX); 

                prevE1=error; 

            else 

                continue; 

            end 

        end    

    end 

    % find the best G2 for each group 

    prevE2=1000000000000; 

    for j=0.1:0.1:20 

        for k=10:10:1000 

            rainRate=(((10.^(RcaliS(G2,6)./10))/k).^(1/j))./4;  

            error=sum(abs(rainRate-RcaliS(G2,1))); 

            if error<prevE2 

                a2=k; 

                b2=j; 

                %XX=[a2,b2]; 

                %disp(XX); 

                prevE2=error; 

            end 

        end    

    end 

    totalE=prevE1+prevE2; 

    RerrorS(numIteration,1)=i; 

    RerrorS(numIteration,2)=totalE/lenT2summer; 

    

RerrorS(numIteration,3)=length(G1)/(length(G1)+length(G2)
); 

    disp(numIteration); 

    numIteration=numIteration+1; 

end 

minErrorS=min(RerrorS(:,2)); 

rowMinS=find(RerrorS(:,2)==minErrorS); 

optREFs=RerrorW(rowMinS,1); 

% figure for critical reflectivity 

maxRerrorW=max(RerrorW(:,2)); 

normRerrorW=RerrorW(:,2)./maxRerrorW; 

maxRerrorS=max(RerrorS(:,2)); 

normRerrorS=RerrorW(:,2)./maxRerrorS; 

lenS=length(RerrorS(:,3)); 

RerrorS(lenS,3)=RerrorS((lenS-1),3); 

figure; 

subplot(1,2,1); 

[refW,RMSEw,ratioW]=plotyy(RerrorW(:,1),RerrorW(:,2),R
errorW(:,1),RerrorW(:,3),'plot'); 

set(RMSEw,'LineWidth',2); 

set(ratioW,'LineWidth',2); 

box on; 

grid on; 

hold on; 

lineW=plot([32,32,32,32,32],1.8:0.2:2.6,':black'); 

set(lineW,'LineWidth',3); 

hold off; 

t=title('First Half Water Year'); 

set(t,'FontWeight','bold'); 

set(t,'FontSize',14); 

set(t,'FontName','Times'); 

xt=xlabel('Radar Reflectivity in dBZ'); 

set(xt,'FontSize',12); 

set(xt,'FontName','Times'); 

yt1=ylabel(refW(1),'Averaged Minimum RMSE in 

mm/15min'); 

set(yt1,'FontSize',12); 

set(yt1,'FontName','Times'); 
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yt2=ylabel(refW(2),'Occupancy Ratio for Strong Reflectivity 

Group'); 

set(yt2,'FontSize',12); 

set(yt2,'FontName','Times'); 

subplot(1,2,2); 

[refS,RMSEs,ratioS]=plotyy(RerrorS(:,1),RerrorS(:,2),Rerror

S(:,1),RerrorS(:,3),'plot'); 

set(RMSEs,'LineWidth',2); 

set(ratioS,'LineWidth',2); 

ylim([2.6 2.95]); 

box on; 

grid on; 

hold on; 

lineS=plot([31.4,31.4,31.4,31.4,31.4,31.4,31.4,31.4],2.6:0.05:

2.95,':black'); 

set(lineS,'LineWidth',3); 

hold off; 

t=title('Second Half Water Year'); 

set(t,'FontWeight','bold'); 

set(t,'FontSize',14); 

set(t,'FontName','Times'); 

xt=xlabel('Radar Reflectivity in dBZ'); 

set(xt,'FontSize',12); 

set(xt,'FontName','Times'); 

yt1=ylabel(refS(1),'Averaged Minimum RMSE in 

mm/15min'); 

set(yt1,'FontSize',12); 

set(yt1,'FontName','Times'); 

yt2=ylabel(refS(2),'Occupancy Ratio for Strong Reflectivity 

Group'); 

set(yt2,'FontSize',12); 

set(yt2,'FontName','Times'); 

lt=legend('Averaged minimum RMSE','Group 

Ratio','Optimised Reflectivity'); 

set(lt,'FontSize',12); 

set(lt,'FontName','Times'); 

subplot(1,2,2); 

pOptS=plot(RerrorS(:,1),RerrorS(:,2),RerrorS(:,1),RerrorS(:,

3),'plot'); 

box on; 

grid on; 

set(pOptW,'LineWidth',3); 

hold on; 

plot(,115:145,':black'); 

box on; 

grid on; 

subplot(1,2,2); 

pOptS=plot(RerrorS(:,1),RerrorS(:,2),'red'); 

set(pOptS,'LineWidth',3); 

box on; 

grid on; 

    figure; 

    subplot(1,2,1); 

    plot(0:30,0:30,'black'); 

    box on; 

    grid on; 

    xlim([0 30]); 

    ylim([0 30]); 

    hold on; 

    svmStruct = svmtrain(dataW,RcaliW(:,5),'ShowPlot',true); 

    hold off; 

    subplot(1,2,2); 

    plot(0:30,0:30,'black'); 

    hold on; 

    
T2winLow=scatter(RcaliW(G1,1),Rlow(:,2),30,'d','filled','blu

e'); 

    hold on; 

    

T2winHigh=scatter(Rhigh(:,1),Rhigh(:,2),30,'d','filled','red'); 

    hold on; 

    f=fit(conSVMadjust(:,1),conSVMadjust(:,2),'poly2'); 

    plot(f); 

    xlim([0 20]); 

    ylim([0 20]); 

    box on; 

    grid on; 

    hold off; 

subplot(2,4,6); 

plot(0:30,0:30,'black'); 
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box on; 

grid on; 

xlim([0 30]); 

ylim([0 30]); 

hold on; 

T2adjust=scatter(RcaliS(:,1),RcaliS(:,3),25,'d','filled','black'); 

f=fit(RcaliS(:,1),RcaliS(:,3),'poly2'); 

hold on; 

plot(f); 

hold off; 

t=title('Adjusted Summer Tropical'); 

lt=legend('1:1 line','data','fitted curve'); 

set(t,'FontWeight','bold'); 

set(t,'FontSize',14); 

set(t,'FontName','Times'); 

set(lt,'FontSize',12); 

set(lt,'FontName','Times'); 

xt=xlabel('Gauge Rainfall in mm/15min'); 

set(xt,'FontSize',12); 

set(xt,'FontName','Times'); 

 

    %conSVMadjust=vertcat(G1,G2); 

    subplot(3,6,numFig); 

    box on; 

    grid on; 

    xlim([0 30]); 

    ylim([0 30]); 

    hold on; 

    plot(0:30,0:30,'black'); 

    hold off; 

    svmStruct.SupportVectors 

C=-svmStruct.Bias/w2; 

w=-(w1/w2); 

 % or with line given as y = a*x + b 

% using support vector machine....adjustment 

for i=1:lenT2winter 

    NWS=Rcali(i,2); 

    HP=(0.1)*Rcali(i,1)+3.9; 

    if NWS>=HP 

        Rcali(i,7)=1; 

    else 

        Rcali(i,7)=-1; 

    end 

end 

highREF=find(Rcali(:,7)==1); 

lowREF=find(Rcali(:,7)==-1); 

prevE=1000000000000000; 

for i=0.1:0.1:20 

    for j=10:10:1000 

        %rainRate=(((10.^(Rcali(highREF,6)./10))/j).^(1/i))./4;  

        %error=sum(abs(rainRate-Rcali(highREF,1))); 

        rainRate=(((10.^(Rcali(lowREF,6)./10))/j).^(1/i))./4;  

        error=sum(abs(rainRate-Rcali(lowREF,1))); 

        if error<prevE 

            a=j; 

            b=i; 

            XX=[a,b]; 

            disp(XX); 

            prevE=error; 

        end 

    end 

end 

Rhigh=zeros(length(highREF),2); 

Rlow=zeros(length(lowREF),2); 

Rhigh(:,1)=Rcali(highREF,1); 

Rhigh(:,2)=(((10.^(Rcali(highREF,6)./10))/50).^(1/1.1))./4; 

Rlow(:,1)=Rcali(lowREF,1); 

Rlow(:,2)=(((10.^(Rcali(lowREF,6)./10))/230).^(1/0.5))./4; 

% concatenating two 

conSVMadjust=vertcat(Rhigh,Rlow); 

subplot(2,2,4); 

plot(0:20,0:20,'black'); 

hold on; 

T2winLow=scatter(Rlow(:,1),Rlow(:,2),30,'d','filled','blue'); 

hold on; 

T2winHigh=scatter(Rhigh(:,1),Rhigh(:,2),30,'d','filled','red'); 
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hold on; 

f=fit(conSVMadjust(:,1),conSVMadjust(:,2),'poly2'); 

plot(f); 

xlim([0 20]); 

ylim([0 20]); 

box on; 

grid on; 

hold off; 

end 

svmStruct = svmtrain(dataW,RcaliW(:,5),'ShowPlot',true); 

hold on; 

f=fit(dataW(:,1),dataW(:,2),'poly2'); 

plot(f); 

xlim([0 20]); 

ylim([0 20]); 

box on; 

grid on; 

hold off; 

t=title('SVM Classification by Reflectivity'); 

xt=xlabel('Gauge Rainfall in mm/15min'); 

yt=ylabel('Radar Rainfall in mm/15min'); 

lt=legend('weak reflectivity','strong reflectivity','Support 

Vector'); 

set(t,'FontWeight','bold'); 

set(t,'FontSize',14); 

set(xt,'FontSize',12); 

set(yt,'FontSize',12); 

set(lt,'FontSize',12); 

set(t,'FontName','Times'); 

set(xt,'FontName','Times'); 

set(yt,'FontName','Times'); 

set(lt,'FontName','Times'); 

% find a hyperplane line 

% getting parameters for equation separation line from 

svmStruct 

 % w1*x+w2*y+bias = 0 

t=title('SVM Adjusted Winter Tropical'); 

xt=xlabel('Gauge Rainfall in mm/15min'); 

lt=legend('1:1 line','weak reflectivity','strong 

reflectivity','fitted curve'); 

set(t,'FontWeight','bold'); 

set(t,'FontSize',14); 

set(xt,'FontSize',12); 

set(lt,'FontSize',12); 

set(t,'FontName','Times'); 

set(xt,'FontName','Times'); 

set(lt,'FontName','Times'); 

highREFs=find(RcaliS(:,6)>=32); 

lowREFs=find(RcaliS(:,6)<32); 

RcaliS(highREFs,5)=1; 

RcaliS(lowREFs,5)=-1; 

dataS=RcaliS(:,1:2); 

% Create textbox 

annotation(figure1,'textbox',... 

    [0.76087951807227 0.149655172413792 
0.120201563008811 0.0280172413793102],... 

    'String',{'a=230, b=0.5'},... 

    'FontWeight','bold',... 

    'FontSize',12,... 

    'FontName','Times New Roman',... 

    'FitBoxToText','off',... 

    'Color',[0 0 1]); 

% open reflectivity 

openConv=dlmread('Z:/DATA/KLVXoutput/ZRconvective.o
ut',','); 

%(RAIN)^(1.4)=(10^(REF/10))/300; % standard 
convective_CSO130 in mm/5min 

lenScan=length(openConv); 

format long; 

% julian dates of selected gauge data 

RjdG=zeros(lenData,2); 

QuarterHr=1/24/4; 

for i=1:lenData 

    YYYY=openData(i,1); 

    MO=openData(i,2); 

    DD=openData(i,3); 

    HH=openData(i,4); 

    MM=openData(i,5); 
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    JD=datenum(YYYY,MO,DD,HH,MM,0); 

    RjdG(i,1)=JD-QuarterHr; 

    RjdG(i,2)=JD; 

    disp(i); 

end     

% julian date of KLVX scan 

RscanJD=zeros(lenScan,1); 

for i=1:lenScan 

    YYYY=openConv(i,1); 

    MO=openConv(i,2); 

    DD=openConv(i,3); 

    HH=openConv(i,4); 

    MM=openConv(i,5); 

    SS=openConv(i,6); 

    JD=datenum(YYYY,MO,DD,HH,MM,SS); 

    RscanJD(i,1)=JD; 

    disp(i); 

end 

% selection of weighted reflectivity 

Rann=zeros(lenData,11); 

Rann(:,1:6)=openData(:,1:6); 

qtHrRain=openData(:,7); 

Rann(:,7)=qtHrRain; 

 

conv=find(openData(:,10)==1); 

trop=find(openData(:,10)==2); 

ecs=find(openData(:,10)==3); 

strat=find(openData(:,10)==4); 

Rann(conv,11)=1; 

Rann(trop,11)=2; 

Rann(ecs,11)=3; 

Rann(strat,11)=4; 

for i=1:lenData 

    jdStart=RjdG(i,1); 

    jdEnd=RjdG(i,2); 

    TR=Rann(i,6); 

    listScan=find(RscanJD(:,1)>jdStart & 
RscanJD(:,1)<=jdEnd); 

    Rlist=zeros(length(listScan),5); 

    Rlist(:,1)=RscanJD(listScan,1); % julian data of scans 

    Rlist(:,2)=openConv(listScan,(6+TR)); % conv rain rate 
scans 

    NAlist=find(Rlist(:,2)==-999 | Rlist(:,2)>=500); 

    if length(NAlist)>0 

        Rlist(NAlist,:)=[]; 

    end 

    numScan=length(Rlist(:,1)); 

    for j=1:numScan 

        ref=10*log10(300*Rlist(j,2)^(1.4)); 

        Rlist(j,3)=ref; % reflectivity 

        if numScan==1 

            Rlist(j,4)=1; % weight 

            prevInt=(Rlist(1,1)-jdStart)*24*60; 

            postInt=(jdEnd-Rlist(1,1))*24*60; 

            maxInt=max(prevInt, postInt); % max interval in the 
15minute capsule 

            Rlist(j,5)=maxInt; 

        elseif numScan>1 

            if j==1 

                prevScan=(Rlist(j,1)-jdStart)*24*60; 

                postScan=(Rlist((j+1),1)-(Rlist(j,1)))*24*60/2; 

                scanRatio=(prevScan+postScan)/15; 

                Rlist(j,4)=scanRatio; 

                Rlist(j,5)=prevScan+postScan; 

            elseif j==numScan 

                prevScan=(Rlist(j,1)-Rlist((j-1),1))*24*60/2; 

                postScan=(jdEnd-Rlist(j,1))*24*60; 

                scanRatio=(prevScan+postScan)/15; 

                Rlist(j,4)=scanRatio; 

                Rlist(j,5)=prevScan+postScan; 

            else 

                prevScan=(Rlist(j,1)-Rlist((j-1),1))*24*60/2; 

                postScan=(Rlist((j+1),1)-Rlist(j,1))*24*60/2; 

                scanRatio=(prevScan+postScan)/15; 

                Rlist(j,4)=scanRatio; 

                Rlist(j,5)=prevScan+postScan; 

            end 
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        end 

    end 

    if numScan==0; 

        Rann(i,8:10)=-999; 

    else 

        Rann(i,8)=numScan; 

        Rann(i,9)=max(Rlist(:,5)); 

        ratioRef=sum(Rlist(:,3).*Rlist(:,4)); 

        Rann(i,10)=ratioRef; 

        disp(i); 

    end 

end 

% check Rann 

ndANN=find(Rann(:,10)==-999); 

Rann(ndANN,:)=[]; 

figure; 

%scatter(Rann(:,7),Rann(:,10),5,'filled','black'); 

subplot(1,2,1); 

hist(Rann(:,10),12); 

subplot(1,2,2); 

hist(Rann(:,7),12); 

dlmwrite('Z:/DATA/KLVXoutput/pair4ANN.out',Rann,'deli

miter',',','precision','%10.6f'); 

% bar plot of rainfall type 

figure; 

bar(Rvals4(:,1),'black'); 

xlim([0 1000]); 

hold on; 

bar(Rvals4(:,2),'red'); 

xlim([0 1000]); 

hold on; 

bar(Rvals4(:,3)); 

xlim([0 1000]); 

hold on; 

bar(Rvals4(:,4),'yellow'); 

xlim([0 1000]); 

hold off; 

t=title('Rainfall Type Variaton'); 

xt=xlabel('sequence'); 

yt=ylabel('rainfall accumulation in mm/15min'); 

lt=legend('convective','tropical','east cool 
stratiform','stratiform'); 

set(t,'FontWeight','bold'); 

set(t,'FontSize',14); 

set(xt,'FontSize',12); 

set(yt,'FontSize',12); 

set(lt,'FontSize',12); 

set(t,'FontName','Times'); 

set(xt,'FontName','Times'); 

set(yt,'FontName','Times'); 

set(lt,'FontName','Times'); 

Chapter5 

a. Generate matched Hythograph and CSO130 overflow 

Hydrograph 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% 

%       Generate Event Hydrograph 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% 

% input: R  

% 1-5: time information - year,month,day,hour,minute  

% 6:TR3, gauge Accumulation quarter hour in mm (15.3km 

away from study site) 

% 7:TR5, gauge Accumulation quarter hour in mm (0.8km 

away from study site) 

% 8:TR9, gauge Accumulation quarter hour in mm - No use 

% 9:TR12, gauge Accumulation quarter hour in mm (4.9 
away from study site) 

% 10: total available scans of KLVX 

% 11: max interval within 15min capsule in min 

% 12: NWS type of rainfall - - 1(convective), 2(tropical), 

3(ECS), 4(stratiform) 

% 13: NWS KLVX radar accumulation mm/15min (quarter 

hour) 

% 14: SVC type of rainfall - - 1(convective), 2(tropical), 

3(ECS), 4(stratiform) 

% 15: SVC KLVX radar accumulation mm/15min (quarter 

hour) 

% 16: CSO overflow in MGD 
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% 17: CSO overflow in mm 

% 18: rainfall event 

% 19: overflow event in number 

 

% input: Rinfo 

% 1-5: start time info - year,month,day,hour,minute 

% 6-10: end time info - year,month,day,hour,minute 

% 11: duration in hour 

% 12: total event rainfall volume in mm 

% 13: standard deviation in mm 

% 14: peak of 15minute rainfall in mm 

% 15: stratiform ratio 

% 16: convective ratio 

% output: Rinfo 

% 17: overflow duration in hr 

% 18: sum overflow in mm 

% 19: peak overflow in mm 

% 20: overflow number 

% 21: rainfall occupancy ratio 

% 22: number of local peak 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% 

% 03/24/2016 

% Developed by Jin-Young Hyun 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% 

clear all; 

% call matrix and four groups of rainfall/discharge 

combination 

openMatrix=dlmread('Z:/DATA/CSO130appData/matrixRai

nOverflow2.out',','); 

openInfo=dlmread('Z:/DATA/CSO130appData/systemDyna

micsModel_CSO130.out'); 

% sort by sum overflow in mm 

openInfo=sortrows(openInfo,18); 

lenOpenInfo=length(openInfo); 

% flip array 

openInfo=flipud(openInfo); 

% extract top 12 most overflow volume 

openInfo=openInfo(1:9,:); 

figure; % for overflow generating Strong Peak: Rainfall 

for i=1:9 

    subplot(3,3,i); 

    evtNum=openInfo(i,20); 

    evtList=find(openMatrix(:,18)==evtNum); 

    evtListFlow=find(openMatrix(:,19)==evtNum); 

    startRainRow=evtList(1); 

    for j=evtList(length(evtList)):-1:evtList(1) 

        rainVal=openMatrix(j,15); 

        if rainVal>0 

            endRainRow=j; 

            break; 

        else 

            continue; 

        end 

    end 

    for j=evtListFlow(length(evtListFlow)):-1:evtListFlow(1) 

        rainVal=openMatrix(j,15); 

        if rainVal>0 

            endFlowRow=j; 

            %disp(j); 

            break; 

        else 

            continue; 

        end 

    end     

    if endRainRow>=endFlowRow 

        endCouple=endRainRow; 

    else 

        endCouple=endFlowRow;     

    end 

    lenCouple=endCouple-startRainRow+1; 

    Rcouple=zeros(lenCouple,2); 

    Rcouple(1:(endRainRow-(startRainRow-

1)),1)=openMatrix(startRainRow:endRainRow,15); 

    Rcouple(1:(endFlowRow-(startRainRow-

1)),2)=openMatrix(startRainRow:endFlowRow,17); 
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    rainBar=bar(Rcouple(:,1));     

    xlim([0 (lenCouple+1)]); 

    ylim([0 15]); 

    grid on; 

    box on; 

    set(rainBar,'FaceColor',[1 1 
1],'EdgeColor','blue','barWidth',0.7); 

    hold on; 

    flowBar=bar(Rcouple(:,2),'red');     

    xlim([0 (lenCouple+1)]); 

    ylim([0 15]); 

    set(flowBar,'EdgeColor','red','barWidth',0.4); 

    hold off; 

    totalOverflow=openInfo(i,18); 

    titleName=strcat(num2str(i),':','Overflow amount: 

',num2str(totalOverflow),'mm'); 

    t=title(titleName); 

    set(t,'FontWeight','bold'); 

    set(t,'FontSize',12); 

    set(t,'FontName','Times'); 

    if i==4 

        yt=ylabel('rainfall/overflow amount in mm'); 

        set(yt,'FontSize',14); 

        set(yt,'FontName','Times'); 

    elseif i==8 

        xt=xlabel('rainfall event timeflow in minute'); 

        set(xt,'FontSize',14); 

        set(xt,'FontName','Times'); 

    elseif i==9     

        lt=legend('rainfall event','CSO130 overflow'); 

        set(lt,'FontSize',13); 

        set(lt,'FontName','Times'); 

    end 

end 

meanConn=mean(openInfo(:,21)); 
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