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By

Bothina M ohammad Hussein Gannam
Supervisor

Dr. Anwar Saleh

Abstract

Wavelets are functions that satisfy certain requirements and are used
in representing and processing functions and signals, as well as, in
compression of data and images as in fields such as: mathematics, physics,
computer science, engineering, and medicine. The study of wavelet
transforms had been motivated by the need to overcome some weak points
in representing functions and signals by the classical Fourier transforms
such as the speed of convergence and Gibbs phenomenon. In addition,
wavelet transforms have showed superiority over the classica Fourier
transforms. In many applications, wavelet transforms converge faster than
Fourier transforms, leading to more efficient processing of signals and data.
In this thesis, we overview the theory of wavelet transforms, as well as, the
theory of Fourier transforms and we make a comparative theoretical study
between the two magor transforms proving the superiority of wavelet
transforms over the Fourier transforms in terms of accuracy and the speed

of convergence in many applications.
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Chapter 1
I ntroduction

Wavelets were introduced relatively recently, in the beginning of the
1980s. They attracted considerable interest from the mathematical
community and from members of many divers disciplines in which
wavelets had promising applications. A consequence of this interest is the
appearance of several books on this subject and a large volume of research
articles.

The goal of most modern wavelet research is to create asset of basis
functions and transforms that will give an informative, efficient, and useful
description of afunction or signal. If the signal is represented as a function
of time, wavelets provide efficient localization in both time and frequency
or scale. Another central idea is that multiresolution were the
decomposition of asignal isin terms of the resolution of detalil.

1.1 A Brief History of Wavelets

In the history of mathematics, wavelet analysis shows many different
origins. Much of the work was performed in the 1930s, and, the separate
efforts did not appear to be parts of a coherent theory. Wavelets are
currently being used in fields such as signa and image processing, human
and computer vision, data compression, and many others. Even though the
average person probably knows very little about the concept of wavelets,
the impact that they have in today's technological world is phenomenal.

The first known connection to modern wavelets dates back to a man

named Jean Baptiste Joseph Fourier. In 1807, Fourier's efforts with



frequency analysis lead to what we know as Fourier analysis. His work is
based on the fact that functions can be represented as the sum of sines and
CoSines.

Another contribution of Joseph Fourier's was the Fourier Transform.
It transforms a function f that depends on time into a new function which
depends on frequency. The notation for the Fourier Transform is indicated
below.

f(w) = j f (x)e™dx.

%

The next known link to wavelets came 1909 from Alfred Haar . It
appeared in the appendix of a thesis he had written to obtain his doctoral
degree. Haar's contribution to wavelets is very evident. There is an entire
wavelet family named after him. The Haar wavelets are the ssmplest of the
wavelet family and are easy to understand.

After Haar’s contribution to wavelets there was once again a gap of time
in research about the functions until a man named Paul Levy. Levy’s
efforts in the field of wavelets dealt with his research with Brownian
motion. He discovered that the scale-varying basis function — created by
Haar (i.e. Haar wavelets) were a better basis than the Fourier basis
functions. Unlike the Haar basis function, which can be chopped up into
different intervals — such as the interval from O to 1 or the interval from O
to %2 and Y2 to 1, the Fourier basis functions have only one interval.
Therefore, the Haar wavelets can be much more precise in modeling a

function.



Even though some individuals made slight advances in the field of
wavelets from the 1930's to 1970's, the next maor advancements came
from Jean Morlet around the year 1975. In fact, Morlet was the first
researcher to use the term "wavelet" to describe his functions. More
specifically, they were called "Wavelets of Constant Slope'.

Morlet had made quite an impact on the history of wavelets;
however, he wasn't satisfied with his efforts by any means. In 1981, Morlet
teamed up with a man named Alex Grossman. Morlet and Grossman
worked on the idea that Morlet discovered while experimenting on a basic
calculator. The idea was that a signal could be transformed into wavelet
form and then transformed back into the original signal without any
information being lost. When no information is lost in transferring a signal
into wavelets and then back, the process called lossless. Since wavelet deal
with both time and frequency, they thought a double integral would be
needed to transform wavelet coefficients back into the original signal.
However, in 1984, Grossman found that a single integral was all that was
needed.

While working on this idea, they also discovered another interesting
thing. Making a small change in the wavelets only causes asmall changein
the original signal. This is also used often with modern wavelets. In data
compression, wavelet coefficients are changed to zero to allow for more
compression and when the signal is recomposed the new signal is only

dlightly different from the original.



The next two important contributors to the field of wavelets were
Yves Meyer and Stephane Mallat. In 1986, Meyer and Mallat first
formulated the idea of multiresolution analysis (MRA) in the context of
wavelet analysis. Thisidea of multiresolution analysis was a big step in the
research of wavelets, which deals with a general formalism for construction
of an orthogonal basis of wavelets. Indeed, (MRA) is a centra to al
constructions of wavelet bases.

A couple of years later, Ingrid Daubechies, who is currently a
professor at Princeton University, used Mallat's work to construct a set of
wavelet orthonormal basis functions, and have become the cornerstone of
wavel et applications today.

1.2 Wavelet

A wave is usually defined as an oscillation function of time or space,
such as a sinusoid. Fourier analysis is wave analysis. It expands signals or
functions in terms of sines and cosines which has proven to be extremely
valuable in mathematics, science, and engineering, especialy for periodic,
time-invariant, or stationary phenomena. A wavelet is a "small wave",
which has its energy concentrated in time to give atool for the analysis of
transient, nonstationary phenomena.

A reason for the popularity of wavelet is its effectiveness in
representation of nonstationary (transient) signals. Since most of natural
and human-made signals are transient in nature, different wavelets have
been used to represent this much larger class of signals than Fourier

representation of stationary signals. Unlike Fourier- based analyses that use



global (nonlocal) sine and cosine functions as bases, wavelet analysis uses
bases that are localized in time and frequency to represent nonstationary
signals more effectively. As aresult, awavelet representation is much more
compact and easier to implement. Using the powerful multiresolution
analysis, one can represent a signa by a finite sum of components at
different resolutions so that each component can be processed adaptively
based on the objectives of the application. This capability to represent
signals compactly and in several levels of resolution is the major strength
of wavelet analysis.
1.3 Applications

Wavelet analysis is an exiting new method for solving difficult
problems in mathematics, physics, and engineering, with modern
applications as diverse as wave propagation, data compression, image
processing, pattern recognition, computer graphics, the detection of aircraft
and submarines, and improvement in CAT scans and other medical image
technology. Wavelets allow complex information such as music, speech,
Images, and patterns to be decomposed in to elementary forms, called the
fundamental building blocks, at different positions and scales and
subsequently reconstructed with high precision.
1.4 Signal analysis

Fourier analysis and the wavelet analysis play the mgor role in
signal processing. In fact, large part of the development of such transforms

IS due to their role in signal processing. In this section, we give a short



overview of signals. Signals are categorized in two ways. Analog signals
and Discrete signals.

Definition 1.3.1 [8]: Analog Signals

An analog signal is a functionX:® - R, where ® is the set of red

numbers, and X(t) isthe signal value at timet.

Example 1.3.1: Unit step signal

The unit step signal X(t) isdefined by:

(1) = 1 if t>0
o if t<O

and it is a building block for signals that consist of rectangular shapes and
sguare pul ses.

Unlike analog signals, which have a continuous domain, the set of real
numbersi, discrete signals take values on the set of integersz. Each
integer n in the domain of x represents atime instant at which the signal has
avaluex (n).

Definition 1.3.2 [8]: Discrete and Digital Signals

A discrete-time signal is a rea-valued functionx:z — %, with domain is
the set of integer set Z.x(n) is the signal value at time instant n. A digital
signal is an integer-valued functionx:z —[- N,N], with domain z, and
NeZ, N>O0.

Example 1.3.2: Discrete Unit step
The unit step signal x(n) isdefined by:

1 if n>0
X(n) = .
0 if n<O



The most important signal classes are the discrete and analog finite energy
signals.

Definition 1.3.3[8]: Finite-Energy Discrete Signals
A discrete signal x(n) has finite-energy if " [x(n)” <<

neZ

Definition 1.3.4 [8]: Finite-Energy Analog Signals

Ananalog signal X (t)isfinite-energy if [|X(t)]" <<

The term" finite-energy" has a physical meaning. The amount of energy
required to generate a real-world signal is proportional to the total squares
of itsvalues.

1.5 Why wavelet?

One disadvantage of Fourier series is that its building blocks, sines and
cosines, are periodic waves that continue forever. While this approach may
be appropriate for filtering or compressing signas that have time-
independent wavelike features, other signas may have more localized
features for which sines and cosines do not model very well. A different set
of building blocks, called wavelets, is designed to model these types of
signals.

Another shortcoming of Fourier series exists in convergence. In 1873,
Paul Du Bois-Reymond constructed a continuous, 2z-periodic function,
whose Fourier series diverge at a given point. Many years later
Kolmogorove (1926) had proved the existence of an example of 2z-
periodic, L' function has Fourier series diverged at every point. This raised
the question of convergence of Fourier series and motivated

mathematicians to think of other possible orthogonal system that is suitable



for any 2z-periodic function by avoiding divergence of the Fourier series
representation.

This thesis consists of three chapters. In chapter 2, the basics of Fourier
series and several convergence theorems are presented with ssimplifying
hypothesis so that their proofs are manageable. The Fourier transform is
also presented with a forma proof of the Fourier inversion formula.
Several important results including the convolution theorem, parseval's
relation, and various summability kernels are discussed in some detail.
Included are Poisson's summation formula, Gibbs's phenomenon, the
Shannon sampling theorem.

Chapter 3 is devoted to wavelets and wavelet transforms with examples.
The basic ideas and properties of wavelet transforms are mentioned. In
addition, the formal proofs for the parseval's and the inversion formulas for
the wavelet transforms are presented. Our presentation of wavelets starts
with the case of the Haar wavelets. The basic ideas behind a
multiresolution analysis and desired features of wavelets, such as
orthogonality, are easy to describe with the explicitly defined Haar
wavelets. Finally, some convergence theorems for the wavelet series are
presented.

In chapter 4, the speed of convergence for Fourier and wavelet series by
studying the rate of decay for those coefficients have been discussed. At the
end of this chapter we set some differences between the Fourier and

wavel et transforms.
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Chapter 2
Fourier Analysis

2.1 Introduction

Historically, Joseph Fourier (1770-1830) first introduced the
remarkable idea of expansion of afunction in terms of trigonometric series
without rigorous mathematical analysis. The integral formulas for the
coefficients were already known to Leonardo Euler (1707-1783) and
others. In fact, Fourier developed his new idea for finding the solution of
heat equation in terms of Fourier series so that the Fourier series can be
used as a practical tool for determining the Fourier series solution of a
partia differential equation under prescribed boundary conditions.

The subject of Fourier analysis (Fourier series and Fourier transform) is
an old subject in mathematical analysis and is of great importance to
mathematicians, scientist, and engineers alike. The basic goal of Fourier
series is to take a signal, which will be considered as a function of time
variable t, and decompose into various frequency components. In other
words, transform the signal from time domain to frequency domain, so it
can be analyzed and processed. As an application is the digital signal
processing. The basic building blocks are the sine and cosine functions,
which vibrate at frequency of n times per 2z intervals.

2.2 Fourier series

Fourier series is a mathematical tool used to analyze periodic functions

by decomposing such functions into sum of simple functions, which may

be sines and cosines or may be exponentials.
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Definition 2.2.1 [24]: Fourier series
If  is periodic function with period 2z and is integrable on[- 7, 7], then the

Fourier series expansion of f isdefined as: a, + ) a, cosnx+b, sinnx, where

n=1

the coefficientsay,a,.b,,(nez*) in this series, caled the Fourier
coefficients of f , are defined by:

1 T
a, :Zif(x)dx

(2.2.1)
a, = 1 7]f (X) cosnxdx
4 -
(2.2.2)
b, :1 7]f (X) sin nxdx
4 -
(2.2.3)

This definition can be generalized to include periodic functions with
period p=2L, for any positive rea numberL, by using the trigonometric

functionsw{nTﬂxj : sin(nTﬂXj and the following lemma.

Lemma 2.2.2 [4]: Suppose f isany 2z -periodic function and ¢ isany real

number, Then

n+C

ju@mz?u@m

—rn+C

The following theorem illustrates the generalization of Fourier series to

functions of any period.
Theorem 2.2.3[4]: If f(x)=a,+ ian co{nT”Xj +b, sin[nTﬂxj on the interval

[- L,L], then
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1 L
a, :Z{ f (x)dx
L
a, = 1 '[f (X) co{n—ﬂxjdx
L L
L
b =+ [ f(x)sin(%]dx
L L

One major application of Fourier series is in signa analysis where
signads are analyzed and processed. Many signals are periodic or
symmetric. In fact, any signal can be decomposed into an even part and odd

part, where analysis can be easier.

Theorem 2.2.4 [4]: Suppose f is a periodic function with period
p=2L defined on theinterval [- L, L] .

a If fiseven, then the Fourier series of f reduces to the Fourier cosine

series. f (x)~a, + ian cosnx , with

n=1

LI f(X) co{%jdx

b. If fisodd, then the Fourier series reduces to the Fourier sine series:

®© L
f (x) ~ Z;‘bnsinnx, withb, =%If(x)sin(nTﬂdex, n=123,..
n= 0

Example 2.2.1: consider the even function f(x)=|x, xe[-11], and assume

that f is periodic with period p = 2L = 2. The Fourier coefficients in the
expansion of f are given by:

1
aO:%éﬂx|dx:%. For n>1,

1 1
a, = % ﬂ Xcos(nzx) dx = 2.[x cos(nzx)dx = (cosnz -1)
0 0

n?r?
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0 if n even

a. = _
"“1=% i nodd

nz?
o0

£(x) ~%+ ;mcos((% 1)) .
Even and Odd Functions

Before looking at further examples of Fourier series it is useful to
distinguish between two classes of functions for which the Euler—Fourier
formulas can be simplified. These are even and odd functions, which are
characterized geometrically by the property of symmetry with respect to
the y-axis and the origin, respectively.
Analytically, f is an even function if its domain contains the point —x
whenever it contains the point x, and if f(x)= f(-x)for each x in the
domain of f. Similarly, f is an odd function if its domain contains —x

whenever it contains x, and if f(-x) =-f(x) for each x inthe domain of f.

Even and odd functions are particularly important in applications of Fourier
series since their Fourier series have special forms, which occur frequently
in physical problems.

Definition 2.2.5 [21]: Even periodic extension

Suppose f is defined on the interva [0,L]. The periodic even extension
for 0<x<L

of  is defined as: fe(x):{:g)x) o gand fxe D= (0

Definition 2.2.6 [21]: Odd periodic extension
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Let f be a function defined on the interval[0,L]. The periodic odd
f(x) forO<x<L

extension of f isdefined as: f,(x)=40 for x=0 and
—f(-x) for—-L<x<O

f(x+L)=f(x).

Example2.2.2:  consider the function f(x) = x> +1 ,x<[04], the periodic
x*+1 forO<x<1

odd extension of fisdefined as. f (x) =10 for x=0
-x*-1 for-1<x<0

The graphs of fand f are shown in Figures 1 and 2 respectively.

22/ v

1.5-:
17 P —
1 -2 -1 1 2
0.5 v
L A WaRve
- ,
Figurel Figure2

Example 2.2.3: letf be 2z periodic function defined on the

interval [- 7, 7], as

=X, Xe[O,;r]
f(x)_{—ﬂ—x, Xe[—;r,O)

f isodd functionso a_ =0 for n>0 , andb, =+ jf(x)sinnxdx:g.
7 n

So
sinnx
n

F(x)~ 23

Example2.2.4: let f(x) = {0, if xe[-,0)

1, if xelo,7)

Then
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0

1
f(X)~§+nz:£(2n—1)

sin(2n-1x.

2.3 Functional spaces

Definition 2.3.1: L°-space

Let p>1 berea number. Then the LP-space is the set of all real-valued (or
complex-valued) functions f on | , such that j|f(x)|pdx<oo.

If f eLP(1), thenits L?-norm defined as. ||f||p :[j|f(x)|"dep :

Example 2.3.1:

a. The space L'(1) isthe set of al integrable functionsf onl , withL*-norm
defined by |, = [|f ()] dx< .

b. The space L?(1) is the set of all sguare integrable functionsf on I,

1

withL> —norm defined by |f|, =U|f(x)|2dx]2 <o, and we say that the

function has finite energy.

Remarks[1]:

a. Any continuous or piecewise continuous function with finite number of
jump discontinuities on afinite closed interval | isinL'(1) .

b. Any function bounded on finite interval | is square integrable on I. This
includes continuous and piecewise continuous functions with finite
jump discontinuities on afinite closed interval.

Theorem 2.3.2 [1]: Let| beafiniteinterval. If f e L>(1), thenf e L'(1). In

other words, a square integrable function on afinite interval isintegrable.

Remarks[1]:
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a. The conclusion of theorem 2.3.2 doesn't hold if | is an infinite interval,

for example

1

—, x=1
f(x)=14x

0, x«1

fel®()butfel(l).

b. The converse of theorem 2.3.2 is not true, for example f(x)= 1

Jx
,xe(01), isin L*(01)) but not inL*((0,2).

Definition 2.3.3[4]: TheL?-inner product on L*(1) isdefined as
(f,9). = jf(x)m dx , f,geL?(l), where g isthe complex conjugate of g.

In case where the signal is discrete, we represent the signal as a

sequenceX = {x,}~__, where each x_ isthe numerical value of the signal at

n=—o !

then™ timeinterval[t, ,t, ] -

Definition 2.3.4 [4]: Let p>1 berea number. Then the |°-space is the set
of all real-valued (or complex-valued) sequences X, such that i|xn|p <o,

N=-w0

The space 1° is the set of all sequencesx, with Zw:|xn|2<oo. The inner

product on this space is defined by

<X,Y .= XY,

where X ={x,}> ,andY={y,}

0
Nn=—ow ! n=—ow "

Let {f,}7, be a sequence of rea-valued or complex-valued functions

defined on some interval 1 of the real line. We consider four types of

convergence:
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a. Pointwise convergence. A sequence of functions f, converges to f
pointwise onl if for each xe1 and for each small¢ >0, there exist a
positive integer N such that if n> N, then|f (x)- f(x)|<¢.

b. Uniform convergence. A sequence of functions f, converges to f
uniformly on the interval | if for each small ¢ >0, there exist a positive
integer N such that if n> N then|f (x)- f(x)|<¢.

c. Convergencein L? -norm. A sequence of functions f, convergesto f
in (1) if |f,(0-f(x)], >0 asn—x, i.e given anys >0, there exist
N >0 suchthatif n> N, then |[f (x) - f(X)|, <.

d. Convergencein L'—norm. A sequence of functions f, convergesto f
in L'(1) if for anye>0, there exist N>0 such that ifn>N,
[f,00-f(X), <e.

Remarks:

a If the interval | is bounded, then the uniform convergence implies
convergence in both L and L* norm.

b. The uniform converge always implies the pointwise converges, but the
converse is not true.

c. The uniform convergence is very useful when we want to approximate

some function by sequence of continuous function f_(x).

Theorem 2.3.5: Uniform conver gence theorem

Let {f,}” be a sequence of continuous functions on | and suppose

N=-—ow

f — f uniformly onl , then f iscontinuousfunctiononi .

Proof: Suppose f, — f uniformly and each f. is continuous. Then given

any & >0, thereexist N suchthat n > N implies |f(x) - fn(x)|<% for all x.
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Pick an arbitrary n larger than N. Since f_ is continuous, given any point

X, €1, 36 >0 such that 0<|x—x,|< 5= |f,(X) - fn(x0)|<%.
Therefore, given any s >0, 35 >0 such that 0<|x—x,|<5=

[£00 = ()| [T (¥) = £, (0] +]F,00 = £, )] + | T (%) = (%))

& g &
<—+—+—=¢.
3 3 3

Therefore, f iscontinuous function oni .
2.4 Convergence of Fourier series

We dtart this section by discussing two important properties of the
Fourier coefficients: Bessdl's inequality which relates the energy of a
square integrable function to its Fourier coefficients, and the Riemann—
Lebesgue lemma ensures the vanishing of the Fourier coefficients of a
function.

Theorem 2.4.1: (Bessel'sinequality).

If f isasguareintegrable function on[-z, 7], i.e. 7]|f(x)|2dx isfinite, then

-

0 1 s
Zag|” + Ellanl2 M L

Where a,,a,,b, are the Fourier coefficients of f .

Bessal's inequality saysthat if f has finite energy, then the module-square
of the

Fourier coefficients are also finite.

Lemma 2.4.2 [4]: (The Riemann-L ebesgue L emma)
Suppose f is piecewise continuous function on the interval [a,b], Then

b b
lim [ f(x)sinnx dx = lim [ f (x)cosnx dx =0

n—w
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Proof: consider the integral

b
[f(9sinnxdx,

we have

— f(X) cosnx °

n

dx

b
'[f(x)sinnx dx =
] n

b
cosnx
+If’
a

as n—wo , the right integral becomes zero (by using the sandwich

theorem). So that

b

lim [f(x)sinnxdx=0

n—o

Similarly,

b
lim [ f (x) cosnx dx = 0.

n—oo

There are two consequence of this theorem one of them is that only the
first few terms in the Fourier series are the most important since they
contribute more to the sum which means that only finite number of terms
can be used to approximate the function. This is especialy important in
data compression. Another one is used to proof our convergence result.

Convergence theorems are concerned with how the partial sum

N
Sy (X) =a, + Y a, cosnx+b, sinnx
n=1

converge to f (x). The partial sum can be written in terms of an integra as

follows:
N
Sy (X) =a, + Y a, cosnx+b, sinnx

n=1

n=1\ _7

= %j’;f (t)at + %ZN:[ lj'f (t) cos(nx) cos(nt)dt + lf (t)Sin(nX)sin(nt)dtJ )

-2 ”ff (t)(% + i cos(nx) cos(nt) + sin(nx) sin(nt)J dt .
7 - n=1
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1 ”ff (t)(1 + i cos(n(t - x))] dt

sn((N+22)t-x))) . _ 17 ~
j()( Sn(=/2) jdt— ﬂ{f(t)DN(t x) dt

So, by change of variable(u=t-x), and using lemma 2.2.2, we have
Sy (X) =i 7]'f (u+Xx)Dy (u)du,
4 -

sin(N +2/2)u

: ,iscalled Dirichlet Kernel of order N.
2sin(u/2)

whereD,, (u) =

Convergence of Fourier series depends on the Dirichlet kernel. The
following theorem states the basic property of thiskernel.

Theorem 2.4.3[19]: The Dirichlet kernel satisfies the following property:

a. Each D (t) isreal valued, continuous, 2z -periodic function

b. Each D (t) isan even function.

c. ForeachN, D, (0) = N+%, and|D, (t)] < N+%.

d. For eachN, ljDN(t) dt:gﬂjDN(t) dt = 1.
0

e. Foro<ft|<z, Dy (t)|_2|t|

f. 2Dy (t)], = o, @SN — 0.

Some of the features of the Dirichlet kernel can be seen Figure 3. The
symmetry is certainly apparent (D, (t) iseven) and that the graph oscillates
above and below the horizontal axisis evident. The value of the function is
small except close to O where the function is large, and as N increases this
feature becomes more clear. The total area remains fixed always a

because of cancellations.



Figure3: D, (t)

The following theorem gives conditions for convergence at a point of
continuity.

Theorem 2.4.4 [4]: Suppose f is a continuous, 2z periodic function.
Then for each point x where the derivative of f is defined, the Fourier
seriesof f a x convergesto f (x) .

Proof: letS, () == [f (u+x)D, (u) du, we want to show that
ﬂ—ﬂ'
ijf(u+x)DN(u)du—> f(x) aSN — o,
ﬂ-—zr

(by theorem 2.4.3, d) we have
f(x) = 1 ”If (X)Dy (u) du,
T -

S0 we must show that:

L } 1 fu+x)- (%
;i(f(u+X) f(x))DN(U)dU—,,i sin(u/2)

jsin((N+]/2)u)du—>O

aSN — o,
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T~ The only possible value of u< [- 7,7],where g(u)

LetoW) =—3 02

could be discontinuousisu =0, SO
flu+x)—f(x) u/2

- 'sin(u/z)'2: f(x).2.1= 2 (X).

ima(e)=lim
Since f' isexist, then g(u)is continuous and by Riemann- |ebesgue lemma
the last integral is zero as N large enough and this finish the proof.

Note that the hypothesis of this theorem requires the function f to be
continuous. However, there are many functions of interest that are not

continuous. So the following theorem gives conditions for convergence at a
point of discontinuity.

Theorem 2.4.5 [4]: Suppose f is periodic and piecewise continuous,
suppose xis a point where f is left and right differentiable (but not

necessarily continuous).Then the Fourier series of f a x converge
tof(x+0)42rf(x—0).

Proof: we must show that
f(x+0)+ f(x-0)
2

2 [fu+D, (Wdu - as N
T 5

where 1 jDN (U)du =1, in other words,
4 -

2 [t 0, @du > L0
7[0

f (x—0)

1 Ojf(u+ X)D,, (U)du —
T 5

these limits are equivalent to the following limits respectively,

17](f(u+x)— f (x+0))D,, (U)du — 0, and = Oj(f(u+x)— f (x—0))D, (U)du — O
7[0 ﬂ-—;r

by definition of D, (u) and Riemann lebesgue lemmawe have
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1% fu+rx)—f(x+0)) .
EJ( @2 jsm((N +1/2u)du— 0

f(u+x)— f(x+0)

LetoW =——5 w2

since u is positive its enough to show that g(u) is continuous from the right
flu+x)— f(x+0) u/2

'sjn(u/z)'2: f'(x+0).2.1=2f"(x+0).

limg(u) = lim
u—>0* u—0"
since f isassumed to be right differentiable then the proof is finish.

0
Similarly, we can show that 1 j(f(u+ X) — f (x—0))D, (u)du — 0 aSN — .
72-—7[

In example (2.2.1), the function f is continuous on[-11]. Therefore, its
Fourier series converges for al xe[-11]. Figure 4 shows the graphs f

together with the partial sumss,, S, and S, of its Fourier series.

13
8

(©) Sp (d) S,

Figure4
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In example (2.2.3) f has ajump discontinuity atx=0, so Fourier series
converges at each point in [- 7, z] except atx= 0. Figure 5 shows the graphs

f together with the partial sumss,,, S,,and S, of its Fourier series.

3 3
7 2
1 1
— 1 }{2' 3
1 }{2 3
(@ f (b) S,

3
2
1

7377 1,2 3

(C) Sso (d) S0

Figure5

The following theorem gives conditions for the uniform convergence.
Theorem 2.4.6 [4]: The Fourier series of piecewise smooth, 2z -periodic
function f converges uniformly to f on[-z,z].

Proof: To simplify the proof we can assume that the function f is twice

differentiable. Consider the Fourier series of both f, f”, respectively;

f(x) ~a, + Y, a, cosnx+b, sinnx,

n=1
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f"(X) ~ag + > a) cosnx+b! sinnx,
n=1

we have the following relation between the coefficients of f and the

coefficientsof f”:

_ -1 "
a, —?an

If f” iscontinuous, then both thea” andb’ stay bounded by some number

M (in fact, by Riemann-Lebesgue lemma, a’ and b’ converges to zero as
n— o .Therefore,

- = [ag] + b5 &M+ M
Sal+fo, - S LB S MM,

5 <
N

+

14
an

the last series is convergence and hence, iﬂan| + b, | )< .
n=1

< iﬂan| +|b, | ) uniformly for all x.

n=N+1

D" a, cosnx+b, sinnx
n=N+1

HORENOE

But iﬂan| + b, | ) is small for largeN, so given ¢>0,3N, >0 such that if

n=N+1

N>N,, then|f(x)-S,(x)|<evx. N doesn't depend onx, thus the

convergence of S (x) isuniformly.

Example 2.4.1: Gibbs phenomena[17]
Let's return to our example 2.2.3. f has a discontinuity a x = O so the
convergence of its Fourier series can't be uniform. Let's examine this case

carefully. What happens to the partial sums near the discontinuity?
N, sinnx

Here, S, (x)=2>’ o)
n=1
<n NxCOS(N +1)x
N : —~
S’N(x)=ZZCosnx:sn(_l\l—+]/2)X—1=2 2 2 x=0.
1 sin(x/2) o X
sin

Thus, since S, (0) =0 and we have
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Nt (N +2)
X X SIN—COS————
S (¥ = [ Sy(dt = [ 2—2 t 2 .
0 0 Sini
2

Notethat S (0) >0 sothat S, startsout at zero for x = 0 and then increases.

Looking at the derivative of S, we see that the first maximum is at the

critical point x, = Nll(the first zero of cos@as X increases from 0).
_l’_

Here, f(xy)=7—X,.

The error is
‘" sm(N +;jt
Sy (xy)— f(xy)= _[2 —dt-z
0 s'ni
N sm(N +jt ‘o 5 2 1
= jz dt + j( _ ——j.sin(N +—jt dt— 7.
3 t slsint/2) t
=1(Xy)+I(Xy)—7.
Where

Xy S‘”(NJ“Z}[ (N2xy o * dn
()= [2————dt= [ 27 "du— [27 " du~ 3702794104
" 0 t 0 u 0 u

306) = | —2——2|[sinNtcost + cosNtsint .
sin(t/2) t 2 2

0

By Riemann-Lebesgue lemma J(x,) — 0 aSN — .

We conclude that
lim[S, (xy )~ f(xy )] = 3.702794104— 7 ~ .559.

The partial sum is overshooting the correct value by about 17.8635%! This
IS due the Gibbs Phenomenon. At the location of the discontinuity itself,

the partial Fourier series will converge to the midpoint of the jump.



28

In mathematics, the Gibbs phenomenon, named after the American
physicist JWillard Gibbs, is the peculiar manner in which the Fourier
series of a piecewise continuously differentiable periodic function f
behaves at a jump discontinuity: the nth partial sum of the Fourier series
has large oscillations near the jump, which might increase the maximum of
the partial sum above that of the function itself. The overshoot does not die
out as the frequency increases, but approaches afinite limit.

Note that the differentiability condition cited in theorems 2.4.4 through
theorem 2.4.6 is to ensure the convergence of the Fourier series of f . So, in
the case where the function is continuous but not piecewise differentiable,
it's impossible to say that the Fourier series of such function is converge to
f (pointwise or uniformly).

In 1873, Due Bois-Raymond, showed that there is a continuous function
whose Fourier series diverge everywhere on accountably infinite set of
point. The construction of this example is in [20]. Many years earlier
Kolmogorove [5],(1926), had proved the existence of an example of a 2x -

periodic, L' function that has Fourier series diverges at every points.

Kolmogorove example [5]: let {f,}”, be a sequence of trigonometrical
polynomials of orders v,,v,,v,,...with the following properties:
a f (x)=0.

2z
b. Ifn(x)dx =2r.

Moreover, suppose that to every f,  corresponds an integeri,, where

0< 4, <v,,anumber A >0, and apoint setE,, such that
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a If xeE,, thereisaninteger K =K,, 1, <K <v, forwhich S, (x;f)> A, .
b. A >wx.

C. 4,—>o.

d EcEc..c,, E,+E, +..=(027).

Under these conditions, {n,} tends to « sufficiently rapidly, the Fourier

o f
seriesof the function  f(x)=> —* >

K=1 \/KnK

The proof isvery difficult, so you can found it in [5].

, diverges every where.

In the case where a Fourier series doesn't converge uniformly or pointwise
it may be converge in weaker sense such as in L*.i.e. Convergence in the
mean

Theorem 2.4.7 [4]: suppose f e L2([- 7, 7)),

N
let f (X) =a, +Y_a, cosnx+b, sinnx.
n=1

Wherea,, and b,, n =0,1,2,..., are the coefficients of f , then f, converge
to finl’.i.e|fy-f|, >0 asN >

Remark: f, in Vv, =thelinear span of {1, cosnx,sinnx}, which is the closest in

the L?-norm, i.e. ||f, - f[, =min

gev,

g_fnz

Proof: The proof consists of two steps:

1* step, any function can be approximated arbitrarily by a smooth, 2z -
periodic function say g.

2" step, this function g can be approximate uniformly and therefore in
L*>by its Fourier series.

Assume we proved thel® step, so for any f € L*([-x,7]), there exists a 2 -

periodic and smooth function g such that:



30
lg—f], <e (2.4.1)

N
Let g,(X)=c,+ > c,cosnx+d, sinnx, where c,,d, arethe coefficientsof g.

n=1

Since g is differentiable, then we can approximate g uniformly by g,, by

choosing N, large enough such that

19(%) - gy (X)| < &,Vxe[-7,7] (2.4.2)
for N>N,, we have
lo=ou] = [ [909- gy dx < [2%dx = 2762 (24.3)
= lg-gy| <27 (2.4.4)

by (2.4.1) > (2.4.4)
If—aul,=]f-g+g-gy|<|g-f[+ |g-gu|

<E+A2re, fOI’N>N0,

but g, inv,, so

|fy = f[, =minfg— ], <[ - gu] < l+v2z ), for N> N,

geVy,

since ¢ arbitrary = the proof isfinish.
2.5 Summability of Fourier series

A study of convergence property of Fourier series partial sum will face
some problems, such as Kolomogrove example, and Gibb's phenomenon in
the partial sums for discontinuous function, finally, Du' Bois Raymond
example of continuous function whose Fourier series diverge some where.
All of these difficulties can be solved by using other summation formula or
method, one of them is to take the arithmetic mean of the partial sums of

the Fourier series[19]:

on (¥) = (Sy(¥) + S,(¥) + oo + Sy, (X))/N . (25.1)
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where

K. (% :%ZDJ ) :%(sjn Nx/2

sinx/2

2
j ,iscalled Fger Kernel of order N.

The idea of forming averages for divergent series formula studied by
Ernesto Cesaro [19] in 1890, and then the mathematician Leopold Fejer
[19] first applied it in 1990 to study the Fourier series and he had shown
that Cesaro summability was a way to overcome the problem of divergence
of aclassical Fourier seriesfor the case of continuous functions.

Now, we will set the basic properties of this kernel in the following
theorem

Theorem 2.5.1[19]: (Propertiesof Feer kernel)
Let K, (x) bethe Fgjer Kernel.

a. Each K (x) isreal valued, non negative, continuous function.
b. Each K (x) isan even function.

c. For each N, EJ.KN(X)dx:EJKN(X)dX:l.
ﬂ-l 7[0

d. Foreach N,K,(0)=N.

The reason why the formula (2.5.1) is better properties than ordinary
partial sums is that the Fgjer kernel is nonnegative. So, its graph here
doesn't oscillate above and below the horizontal axis like Diriklet kernel,

but remains on or above. The total area under the graph of Feger kernel (see
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Figure 6) remains fixed at ~, but this is not because of any cancellation,
and for this reason the Cesaro means of the Fourier series of continuous

function can converge even though the series diverges.

Figure 6

The following theorem gives conditions for the Convergence in Cesaro
mean.
Theorem 2.5.2[19]: let f beintegrable function, and let & (x) denote the

Cesaro mean of the Fourier series of f , if f is piecewise continuous, x,is

the point of discontinuity, then
f(x, +0)+ f(x,—0)
2

limoy (X) =
N—ow

Moreover, If f isa2z -periodic function that is continuous at each point on

I, thens, (x) convergeto f uniformly for eachx in |I.

Proof: let ¢>0 choose § >0 such that for every0o<t<s, we have
(% +t) + T (% 1) —2f ()| <& (2.5.2)
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By theorem (2.5.1, c) theintegra gﬂjf(xo)KN(t)dtz f(x,) ,
T 0

ok (09— £ ()=

L7 0 0+ £ 06 DK Ot =2 1 (1)K, Dck
7[0 7[0

i’](f(xo T+ f (% —t)— 2 (%))K,, (D)t
72-0

siﬂﬂf(xo P+ F (% — 1) — 2 (%K (D)c
7[0

=1, +1,
wherel, isthe integral over the interva [0,6], and 1, is the integral over the
interval [, 7].

5
By (2.5.2), IlgﬁfKN(t)dth, and for large N, 1, becomes small, because
ﬂ’-O

the bound of the size of K (t) for t away from zero.
Letx, =sup{K, (), <t <z}, by theorem (2.5.1, f) x, -0 asN - «. So,

”ﬂf(xo + )|+ | f (X — )]+ 2 f (x))|dt .

s

K&
N

1, <

T

So, for large N, 1, becomes small, and since ¢ is arbitrary, then
lim oy (%) = f(x,)and if f is continuous at each point on I, then the last

limit apply uniformly. So that o (x) convergeto f uniformly for eachx in
l.

Lemma 2.5.3 [17]: Suppose f e l?*(-z,z))and 2z -periodic function is

bounded by M , then |o, (x| <M vx and for all N .

As a result of lemma 2.5.3, Gibbs phenomenon will disappear. To show
this, we use the sandwich theorem.
0<[f oy <[f]-[o]

0< lim|f -y < lim| ]~ lim|o,|

N— o N— o0 N—

<M-M=0
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Hence, lim||f o[ =0.

2.6 Generalized Fourier series

The classical theory of Fourier series has undergone extensive
generaizations during the last two hundred years. For example, Fourier
series can be viewed as one aspect of a general theory of orthogonal series
expansions. Later, we shall discuss a few of the more orthogonal series,
such as Haar series, and wavelet series. But now we give a formal

definition of orthogonality of such system .

Definition 2.6.1 [1]: Orthogonality

A collection of functions {g,(x)}. . € L?*(1) forms an orthogonal system on |

neN
if:

a .[gn(x)gm(x)dx:o forn=m.

b. [9,099,(x)ax= [|g, (x| dx>0

where g isthe complex conjugate of g.

If in addition:

C. [g,(09,(dax= [lg,()[ dx=1.

Then the system is orthonormal on |
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Example 2.6.1:
The set {1,sin(nx),cos(nx)}, ., is an orthogona system over[- z,z|, and the set
1 .
sin(nx cos(nx iIs an orthonormal stem over the
s s feosod) M

interval [— 7[,7[].

Definition 2.6.2 [1]: Generalized Fourier series
Let fel?() and let {g,(x)} _,be an orthonorma system on I. The

generalized Fourier seriesis:
FO)~D <f.9,>09,09.

neN

The fundamental question about Fourier series is: When is an arbitrary
function equal to its Fourier series and in what sense does that Fourier
series converge? The answer lies in the notation of a complete orthonormal

system.

Definition 2.6.3 [1]: Given a collection of functions{g,(x)}._. € L?(1), the

span of {g, (%)}, denoted by span{g,(x)}. . is the collection of al finite

neN

linear combinations of the elements of {g, (x)} . The mean-square closure

neN *

of span{g,(x)} ., denoted span(g,(x)) is defined as follows: A function

f e span(g, (x)) if for everys >0 , there is a function g(x) e span{g, (x)}

neN

suchthat|f -g|, <«.

Definition: 2.6.4 [1]: Completeness

If every function inL?(1) is in span(g,(x))where {g,(x)}. . is orthonormal

neN
system, then we say that {g,(x)}_, iScomplete on I, this means that every
function inL?(1)is equal to its Fourier series inL*(1). A complete

orthonormal system is called an orthonormal basis.



36

The following two lemmas related to very important inequalities that will

be very useful in the next theorem.

Lemma 2.6.5 [1]: Let{g, (¥} is the orthonorma system on I, then for

neN

every f e L*(1),

N 2 N
-3 tg,50) IE-Sh t0,f
n=1 2 n=1

The next theorem gives several equivalent criteria for an orthonormal

system to be complete.

Lemma 2.6.6 [1]: Let {g,(x)} ., is the orthonormal system on I, then for

every f e L2(1), and every finite sequence of numbers {a(n)}",

N 2 N 2
Hf - > a(n)g, =Hf ->.<f.0,>9,
n=1 2 n=1

+ZN:|a(n)— < f,g, >|2 :
n=1

2

Theorem 2.6.7 [1]: Let {g,(x} ., bean orthonorma system on | then the

following are equivalent.

a {9,(x} _, iscompleteonI.

b. Forevery f eL*(), f(x)=> < f,g,>0g,(X) inL*(l).

neN

c. Every function f,C.,’on | can be written asf(x)=> < f,g, > g,(x), and

neN

] = It ol =3 | f.g, >

The last statement convert the inequality in Bessel's inequality to equality,
which means that the sum of the moduli-squared of the Fourier coefficient

Is precisely the same asthe energy of f .

Proof: a=b
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If {g,(¥)}._, IS complete, by definition of a complete set, every f e L*(1)is
inspan(g,(x)), so lete>0, then there exist a finite sequencefa(n)}™,,
N, e N (by definition of span(g, (x))), such that

<E&.
2

f->alng,

So by lemma (2.6.5)

No 2
“f - :E: < f 9 >0,
n=1

2
<
2

No
=Hf -2 an)g,
n=1

No No
f-><fg,>0, +D|a(n-<f,g, >|2
n=1 n=1

2
2

<g?.

2

N
But {Hf > <f,0,>0,

n=1

} Is decreasing sequence, so for every N > N,
2 ) neN

2

<¢&.

n=1 2

Hf —ZN:< f,0,>0,

b=c

Every function f,C onlisinLl?(1) , by (b): f(x)=> < f,g,>g,(x).

=0 foral f,clonl.

2

But the last equation hold iff lim

f—ZN:< f,0,>0,
n=1

by lemma (2.6.6), we have

N 2 N
-3 tg,00) <[ili-Sk o of
n=1 2 n=1

N
. . . 2 2
and this equivalent to lim(|f [, —§|< f,g9,>")=0 ,hencechold.

2.7 Fourier Transform
The Fourier transform can be thought of as a continuous form of Fourier

series. A Fourier series decomposes a signal on [-z,z] into components

that vibrate at integer frequencies. By contrast, the Fourier transform
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decomposes a signal defined on an infinite time interval into a w-

frequency component, where w can be any real (or even complex number).

As we have seen, any sufficiently smooth function f that is periodic can

be built out of sine and cosine. We can aso see that complex exponentials
may be used in place of sine and cosine. We shall now use complex

exponentials because they lead to less and ssmpler computations.

If f has period 2L, its complex Fourier series expansion is
© inzx ) 1 L —inzx
f(x):n;cne L, Wlthcnzz:[f(x)e L dx.

Non-periodic functions can be considered as periodic functions with period

L=, and the Fourier series becomes Fourier integral

Fourier transform on L'(%)
Definition 2.7.1[12]: Fourier transform on L'(R)
Let f e L}(R), the Fourier transform of f(x) of is denoted by f(w) and

defined by
f(w) = ?f(x)eiwxdx

Physically, the Fourier transform, f (w) , measures oscillation of f(x) at the
frequencyw, and f(w) is caled frequency spectrum of a signa or
waveform f (x) .

Theorem 2.7.2 [4]. (Fourier inversion formula)

If  fel'(R) is continuously differentiable  function, then

f(x) = % ?f (w)e"™ dw

If the function f(x) has points of discontinuity, then the preceding formula

holds with f (x) replaced by the average of the left and right hand limits.
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Note: The assumption f e L'(R) in theorem (2.7.2) is needed to ensure that
the improper integral defining f (w) converges.

Proof: we want to prove that f (x) =2i [ [f e’ dtdw
T

—00—00

If fisnon zero only finite interval, then the t —integral occurs only on this
finite interval. The w- integral still involves on infinite interval and this
must be handled by integrating over afinite interval of theform-L<w<L,

and then lettingL — «.
L o
So we must show that f (x) = —lim | [f (e *"clclw.
27 Lo

—L-o
Using the definition of complex exponential " = cosu +isinu, the preceding
limit is equivalent to showing

f(x)= % lim ij (t)[cos(t — x)w—isin(t — x)w]dtdw .

—L-

Since sineis an odd function, thew- integral involvingsin(t - x)w=0, S0

F(x) = %l im T]f ()[cosit — x)w]dtcw

and this IS because cosine IS an even function.

now Icos(t—x)de:M, replacing t by x+u, the preceding limit is
; _
equivalent to
£ (%) = lim O]f(x+ u)%u (2.7.1)
7Z-L—>oc_oo

To prove (2.7.1), we must show that for anys > 0, the difference between

f (x) and the integral on the right is less thane for sufficiently large L. For

thise , we can choose ¢ > 0 such that

)
1 ﬂ f(x+u)du<e (2.7.2)
T s
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we will use thisinequality at the end of the proof.

Now we need to use the Riemann- Lebesgue lemma which state.

b
lim J.g(u)sin(Lu)du =0, where g is any piecewise continuous function. Here,

a and b could beinfinity if g is nonzero only on afiniteinterval. By letting

g(u) = f (x+u)/u, we get the integrals

) - © .
1 If(x+u)Mdu and i_[f(xqtu)wdu
T, u T3 u

which tends to zero asL — «. Thus the limit in (2.7.1) is equivaent to

showing
f(x):inm jf(x+u)wdu (2.7.3)
T Lo s u
1 sin((n+1/2)u)
but f (x) = . !gg{f (X + U)Wdu (2.7.4)

(See theorem 2.4.4), so the proof of (2.7.3) will proceed in two steps.

Step 1.
= li[f (x+ U)Mdu—l (]f (x+ u)—dsin((n+]/2)u) u
T 2 2sin(u/2) T s u

1° . 1 1
= ;if (x+u)sin((n +]/2)u){m - ﬂdu

since the integration over (- z,-5) and (5,7) is zero asn — «, by Riemann-
|ebesgue lemma.
1 1

In addition, the quantity [m—aj Is continuous on the

interval -5 <u< ¢, because the only possible discontinuity occurs atu =0,
and the limit of this expression asu — 0 is zero. So

%If (X + u)sin((n+]/2)u){;u/2)—ﬂdu —0 asn—w.

2sin(

Together with (2.7.4) , we show that
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i?( )—ds'”((“”/z) u— f(x)asn - (2.7.5)

-5
Which isthe same limitin (2.7.3) for L of theformL =n+1/2.
Step 2:

Any L >0 can bewritten asL =n+h,he[0]1), to show

1 ‘]-f(XJru)[sin((nH/Z)u) _sin Lu}du £
T u u 2

By using mean value theorem, we have
lsin((n+1/2)u) —sin Lu| =|sin((n+1/2)u) —sin(n+ h)u|

=|cost||u/2-hu| <|u|/2, sinceh e [0]).

Therefore
f( (sm(n+]/2)u) smLuj
u

i B
dug—j|f(x+u)|—du_
T s

Finally, we can choose N large enough so that if n> N, then
S .
‘f(x)_l J.f (X+ u)Mdu‘ <£
T u

this inequal ity together with the onein step (2.7.2) yields.
f(x)—— jf(x u)sm(Lu)d

5

ol

-0

du

f(x)—; jf(x+ Md

f(x+u

)[sin((n+1/2u)u)—sin Luj

<%+%: ¢, If n> N. Hence the proof is complete.

X+7mw, XEe€ [—7:,0]

Example 2.7.1: The Fourier transform of f(x) = {
T—X, Xe€ (O, 7[]

- |2 o)

the graph of f and its Fourier transform are given in Figure (10).

Is given by
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@: f(3) (b): f(w)
Figure10
Example 2.7.2: Characteristic function

Let;(,(x):{l' Xe(_”),then ;g,(w)zv%s'nwf.

0 otherwise
Note that y_(x) e L'(R), but its Fourier transform is not inL*(R). The graph

of ».(x) and 7, (w) isgivenin Figure (11).

@ 7. (b) : z.(W)
Figure1l

Remarks[12]:
a. Note that the Fourier transform in example (2.7.1) decay at the ratei2
W

asw—>«, which is faster than the decay rate of Viv exhibited by the

Fourier transform in  example (2.7.2), the faster decay in example
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(2.7.1) result from the continuity of the function. Note the similarity to

the Fourier coefficients a, , b, in examples 2.2.1 and 2.2.3 of section 2.2.
b. Some elementary functions, such as the constant function c,cosax,sinax

, do not belong toL*(R), and hence do not have Fourier transform. But

when these functions are multiplied by the characteristic function y. (x),
the resulting functions belong to L' (R) , and have Fourier transform.

Example 2.7.3: Gaussian function

The Fourier transform of Gaussian function f(x) =e** isdefined by

\/_WZ

f(w) = —e4a , Wwherea > 0.

The graph of f(x) , f(w) is given in Figure (12). Note that the Fourier

transform of Gaussian function, is again Gaussian function.

@: f(t)ata=1 (b): f(wata=1
Figure 12

Basic Properties of Fourier transform

In this section, we set down most of the basic properties of the Fourier

transform. First, we introduce the aternative notation F(f)w)= f(w) for

the Fourier transform of f(x)and F*(f)(x) for the inverse Fourier

transform.



Theorem 2.7.3 [4]: Let f andg be differentiable functions defined on the
real line with f (x) = 0 for large|x|, then the following properties holds:
1. Linearity: The Fourier transform and its inverse are linear operator.
That isfor any constant ¢
-F(f +g9)=F(f)+F(g) andF(cf)=cF(f).
-FHN(f+g)=F ' (f)+F*(g) and F*(cf)=cF™*(f).
2. Trandation: F(f(x—a))(w)=e""F(f)(w).
3. Rescaling; F(f(bx)(w):%F(f)(VBv).
4. The Fourier transform of aproduct of f with x" is

FOC 00N = (17) (R (W),

5. Theinverse Fourier transform of aproduct of f with w" is

FAW W = () S F (D)

6. The Fourier transform of an n" derivativeis
F(f ™ 09)(w) = (iw)"{F (f)(w)}

7. Theinverse Fourier transform of n" derivativeis
F2(F @) () = (-X)"F ()%}

Note that we assume that f is differentiable function with compact
support , and we don’t say that f e L'(%), and this is because the Fourier
transform of some function in L'(R) like the characteristic function, do not
belong to the L' - space, hence we can't talk about the inverse of the Fourier
transform.

Theorem 2.7.4[12]: Continuity

If fel}(R),then f(w) iscontinuouson x.
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Proof : for anyw,he R, we have

‘f(w+h)—f(w)‘:

O]‘eiwx (e"™ —1) f (x)dx

< ]e-‘“x =1 f ()] x
since |e"™ -1|f (| < 2/f (| and lime ™ -1 =0,vxe R

we conclude that ash — 0, ‘f(w+ h) f(w)‘ 0.

Which is independent of w, by the lebesgue dominated convergence

theorem. This proves that f(w) is continuous on ®. In fact, f(w) is
uniformly continuouson R .

Theorem 2.7.5[12]: (Riemann- Lebesgue lemma)

If f e LX), then um‘f(w)‘:

Proof : since ™ = —e """ we have

f(w)z—mjf(x—

z)e—iwx dX - _ If (X)e—iw(x+7z/w)dx’
W 00

f‘(w)—%ﬁ (x)e™™ dx— jf(x— Zyewx dx}
%Z{f(x)— f(x——)} e dx

clearly,

lim dx=0

‘W‘%oo

f (w)‘ <

| f(x)— f(x=")e ™
* W

Observe that the space C,(%) of al continuous on % which decay at

infinity, that is f(x) > 0as| -« , is norm space with respect to the norm
defined by || = Sup|f|.

It follows from above theorem that the Fourier transform is continuous

linear operator from L*(R) toC,(R).
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Fourier transform on L*(®)
Until now, we have been making the assumption that afunction f must
beinL'(R)in order for its Fourier transform to be defined. But we have seen

example like the constant function doesn't belong to L'(R), suggest that we

need to expand the definition to a large class of functions,L> - functions.

The formal definition (2.7.1) of the Fourier transform doesn’t make sense

for agenera f < L?(R), because there is a square integrable function do not

belong to L(R), and hence f(w) doesn’t converge . So, we can define the

Fourier transform for such function as follows:

Let f e L*(R), thenf, = f z € L'(R), now the space of step functions is

dense in L?(R), so we can fined a convergent sequence of step functions
{s,} suchthat lim|f -s || . =0.

Note that the sequence of functions {f, = f y,jconvergesto f pointwise
asN — «, and each f, e (L'("|L*)(R).

Lemma 2.7.6 [17]: Let {f, = f z_y ), then {f,} is a Cauchy sequence in
the norm of L?(%) and lim|[f - fy].=0.

Proof : given any ¢>0,3 a step function s, such that|f —sm||§<g/2,
choose N so large that the support of s, iscontained in[- N, N], then

N )
5 ulf = fisn— a7t = [, 1[0t =]s, 1]},
_N -0

S0,
[ = full=1(F = 80)+ (5= 1)
<|(F =) ] (50 1)

<2|f -5 <.
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Notethat if {s,} isaCauchy sequence of step functions that convergesto f ,
then F({s,}) is also Cauchy sequence, so we can defined F(f) by
F(f)=limF({s,}) . Moreover, the definition of f(w) for L*(%) functions
doesn’t depend on the choice of such sequencein (L'(L*)(%) , so any other
Cauchy sequence from(L'(L*)(®) that approximate f < L*(R) can be used
to define F(f) like {f,}.

Theorem 2.7.7 [12]: If f e L2(R®), f(w) = lim—=— Njf(x)e-”“dx,

where the convergence in the L? — norm.

Proof : by lenma2.7.6 |f - f |, > 0,as N - where f isthe truncated

functions have a Fourier transform givenby ~ f, (w) = %N{f (x)e""dx.
S0,

=4, =IFCE =t =] =l
hence,

lim| f =0. The proof is complete.

N—o

Lemma2.7.8[12]: If f eL*(®) andg=f,thenf=4g.

Theorem 2.7.9[12]: Inversion formula for L* - functions

If f e L2(R), then f(x)—Ilm— jf(w)e'Wde

Where the convergence is respect to the L* - norm.

Proof : If fel2(®)andg=f, by lemma2.7.8

f=g= I|mi Ie"W‘ (w)dw

n—)oo

= I|m Ie'“g(w) dw

n—>oo
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Corollary 2.7.10[12]: If f e (L'("\L*)(R), then f(x):%wjf(w)e‘wxdw.
T —0

Holds almost everywherein®i .

It's easy to show that the Fourier transform is one to one map of L*(%R) on to
itself. This ensures that every square integrable function is the Fourier
transform of a square integrable function.

Par seval's Relation

The energy carried by asignal f(x) is: wﬂ f(x)|°dt = wjf (x) f () dx

Where

1 %, i wx _ 1 7 _iwx £
f(x):gif(w)e dx_gie f(w)dx ,

So, we have that,
b 2 l T FroN —i WX
£|f(x)| dx=— Hf(x)f(w)e dwdx

—00—00

o0

j f (w){ wff (x)e ™ dx} adw

1
2w
1“5 1%,
:E_JOf(w)f(w)dw:E_JJf(w)‘ ow .
Thisformulawﬂ f9 = dx2i wﬂ f(w)‘zdw, is called Parseval's Relation.
—o0 ﬂ.—oc

The general Parseval's Relation is defined by:
<f,g N f,g>,wheref,ge L2(R).
2r

Theorem 2.7.11 [17]: Convolution Theorem
If fand g inL'(R), and the convolution between fand g is defined

by (f * g)(x) = wjf(x—u)g(u)du, where *: is the convolution operator. Then
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The Fourier transform of the convolution(f * g)(x) is the product of the

Fourier transform of these functions.

Remarks[1]:

a. We can see that the convolution of a bounded function with an
integrable function and the convolution of two sguare integrable

functions produce a continuous function.

b. The convolution in L'(R) tends to make functions smoother but less
localize, for exampleif fandgin L'(%) with compact support equal to
say, [-a,a] and [-b,b] , then the support of (f*g)(x) will be equal
to[- (a+b),(a+b)].

Poisson Summation Formula

In many applications it is necessary to form a periodic function from a

nonperiodic function with finite energy for the purpose of analyzing.

Poisson's summation formula is useful in relating the time-domain

information of such afunction with its spectrum.
Theorem 2.7.12 [12]: If f e L'(R), then the series i f (x+2n7z) converges

absolutely for ailmost all x<(0,27) , and its sum
F(x) e L'(0,27) with F(x+2n7z)=F(x), xe®R.
And, if a, denotesthe Fourier coefficient of F, then

a, = i2_7|£F (x)e"™ dx = 1 o]f (x)e"™dx = =S f (n)
" 27 2r 2 2 '

Proof : we have

w 27 27
>, JIf (x+2nm)dx= lim i [|f (x+ 2n7)| dx
n=—w _mcr'l:—N
’ - N 2(:+1)7z
_lN'mon:ZN I @)]ct

- 2nzr
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27(N+1)

=lim  [[f®)[dt

-2z N

:]Hmm<w.

It follows from lebesgue theorem on monotone convergence that

27 w 27

[DIf(x+2nm)dx= Y [|f (x+2n7) dx < o

0 N=- N=—c Q

hence, the serieszw:f(x+ 2nz) converges absolutely for almost all x, and

F(X) = if(x+ 2nrz) e L'(0,27) with F(x+2n7z)=F(x), xe®R

N=—w

so, we consider the Fourier series of F given by F(x) = Zw:ame”“x , Where the

mM=—c0
coefficient a,, is

1 2z ) 1 27 . .
a =— |[F(X) e dx=— |(limF (x))e"'™ dx
. Zﬂoj (%) o OI(M v ()

17 .
= lim == [ 3" f(x+2n7)e"™ dx

N—ow 272' 0 =N

N 27

> [fe™dt

|
N—w 272- n—N 257

27(N+1)

=lim—=—  [f(t)e'™dt

N—>ow 272- oNr

1 7 - 1.,
=— [f(t)e'™ dt =— f(m).
2ﬂ£ (t) 5 fm

Hence if the Fourier series of F(X) convergesto F(X), then for xe R
F(X) = i f (X+ 2n7Z') = i Zif(n)einx
JT

Putx =0, the last formula becomesif(Zn;z) = i 1
T

N=—c0 N=—c0 2

f(n) , which is called

Poisson summation formula.
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Sampling Theorem

One of the fundamental results in Fourier analysis is the Shannon
sampling theorem which asserts that a band limited function can be
recovered from its samples on a regularly spaced set of pointsin ® .This
result is basic in continuous-to- digital signal processing.
Definition 2.7.13[12]: A function f issaid to be frequency band limited if
there exist aconstant > 0, such that f(w) =0 forjw> Q.

When Q isthe smallest frequency for which the preceding equation is true,
the natural frequency y = 22 is called the Nyquist frequency, and 2y = @
T T

Isthe Nyquist rate.
Theorem 2.7.14 [4]: Shannon — Whittaker sampling theorem

Suppose that f(w) is piecewise smooth continuous, and that f(w)=0

for|w|>Q.

Then f is completely determined by its vaue a the point

t :J_” j=04142,..

J

More precisely, f hasthe following series expansion

where the series converge uniformly.

Proof : expand f(w)as aFourier series on theinterval [-Q,0Q]

irkw Q —ikzw

f(w) = cheQ : ck:% f(we © dw
k=— -0

since f(w) =0 for w>Q ,then

/ —ikzw
C, = vew 1 jf e ¢ dw
20 ,/ 27
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By theorem 2.7.2,c, :% f[%} so by changing the summation index

fromk to j = -k, and using the expression for c, , we obtain

f(W)— Z \/Zf(jﬂ'j IQW-

20 Q

j=—o
Since f(w) is continuous, piecewise smooth function the last series is

converge uniformly.

f (X) :%2[1?(W)e‘wt dw, since f(w) =0 for |w>Q
by some calculation we have

oV (n P e sin(xQ - jz)
f(x)_j_wﬁf( j@je dw but je dw = 29m
3o,
f(x) = Z f(J” M_

QX— |7

The convergence rate in the last series is slow since the coefficient in
absolute value decay like % . The convergence rate can be increased so that

the terms behaves Iikej—lz, by atechnique called Over sampling.

If a signa is sampled below the Nyquest rate, then the signa
reconstructed will not only missing high frequency components transferred
to low frequencies that may not have been in the signal at all. This
phenomenon is called aliasing.

Example 2.7.4:
Consider the function f defined by f(w)= @(1_\’\/) 'If jwf <1
0 if |W| >1
4sin X — 4xcosX

f(x)= 3 . Theplot of f isgivenin Figure (13).
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Since f(w)=0 forjw>1, the frequency @ from the sampling theorem can

be chosen to be any number that is greater than or equal to 1. With Q =1,
we graph the partial sum of the first 30 terms in the series given in the
sampling theorem in Figure (13); note that the two graph are nearly

identical.

-0 84 201 2 fi“}{\é/é: 10
(@: f (b): s,

Figure 13
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Chapter three
Wavelets Analysis
3.1. Introduction
3.2. Continuous Wavelet Transform
3.3. Wavelet Series
3.4. Multiresolution Analysis (MRA)

3.5. Representation of functions by Wavelets
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Chapter 3
Wavelets Analysis

3.1 Introduction

Wavelets are mathematical functions that cut up data into different
frequency components, and then study each component with a resolution
matched to its scale. They have advantages over traditional Fourier
methods in analyzing physical situations where the signa contains
discontinuities and sharp spikes. Like Fourier analysis, wavelet analysis
deals with expansion of functions in terms of a set of basis functions.
Unlike Fourier analysis, wavelet analysis expands functions not in terms of
trigonometric polynomials but in terms of wavelets, which are generated in
the form of translations and dilations of a fixed function cared the mother
wavelet.
3.2 Continuous Wavelet Transform

The continuous wavelet transform (CWT) provides a method for
displaying and anayzing characteristic of signals that are dependent on
time and scale. The CWT is similar to the Fourier transform in the since
that its based on a single function  and that this function is scaled. But
unlike the Fourier transform, we aso shift the function, thus, the CWT is
an operator that takes a signal and produces a function of two variables:
time and scale, as a function of two variables, it can be considered as
surface or image.

In this section, we give formal definitions of wavelet and CWT of a

function, and the basic properties of them. In addition, we will introduce
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theinversion formulafor the CWT asin case for the Fourier transform. The
CWT is defined with respect to a particular function, called mother
wavelet, which satisfies some particular properties. As the kernel function
of asigna transform, its important that the mother wavelet be designed so
that the transform can be inverted. Even if the application of the CWT
doesn’t require such transform inversion, the invertibility of the CWT is
necessary to ensure that no signal informationislost in the CWT.
Definition 3.2.1 [12]: Integral waveletstransform

o0

If yel?(R) satisfies the admissibility conditionC, = (W)

o W

dw< o, then

w iscalled basic wavelet or mother wavelet.

Relative to every mother wavelet, the integral wavelet transform on L*(%)

is defined by: (WV/fXa,b)zﬁo]'f(x)W(%bjdx, fel2(R).

Where a,be R

The most important property that must be satisfied by mother wavelet is
the admissibility condition which required for an inverse wavelet transform
to exist. We suppose thaty is continuous with continuous Fourier
transform, ify(0)=0, then from continuity there is small interval |
containing 0, ande>0 such that |y(w)>e, vwel but it would be
followed

)
P

d jgzd
W> |— aQw= o0 .
W
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The admissibility condition therefore implies that (0)=0 or O]t//(X)dX: 0,

for this to occur the mother wavelet must contain oscillations, it must have
sufficient negative areato cancel out the positive area.

Example 3.2.1: Haar wavelet

The Haar wavelet is one of the classic example defined by

1 ,Osxs1
2

w(x)=4-1 ,%sxsl

0 , otherwise

The Haar wavelet has compact support, and clearly O]t//(X)dXzO, and

w e L*(R),But this wavelet is not continuous, its Fourier transform is given

by
. M sin®(w/4)
plw=ie* =0

where

2
C, = _I—dw— 16_j|w|

W

Both v andy are plotted in Figure 1, 2 respectively.

4
. W
Snz‘ dw< .

L Vi (@)

0.5
5 R 0 2
] JAVN

057 0 4r 8m 167

14

Figurel Figure2
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These Figures indicate that the Haar wavelet has good time localization but

poor frequency localization, and this because the function

yw(w) iseven and

decays slowly as% as w—> o, Which means that it doesn't have compact

support in the frequency domain.

Most of applications of wavelets exploit their ability to approximate
functions as efficiently as possible, that is few coefficients as possible, so
In addition to the admissibility condition, there are other properties that
may be useful in particular application [1].

Localization property: we want  to be well localized in both time and
frequency. In other word, w and its derivative must decay very rapidly. For
frequency localization y(w) must decay sufficiently rapidly as w— o
and y(w) should be flat in the neighborhood of w = 0. The flatnessat w =0
Is associated with the number of vanishing moments of . A wavelet is said

to be M vanishing moment if ~ [y/(x)x"dx=0 ,m=0,1, ,M-1.

Wavelets with large number of vanishing moment result in more flatness
when frequency wis small.
Smoothness. The smoothness of the wavelet increase with the number of

vanishing moment.

Compact support: We say that y has compact support on | if its vanish
outside these interval. If v has M vanishing moment, then its support is at
least of length 2M-1, so the Haar wavelet has minimum support equal to 1.
Also, [The smoother wavelet, the longer support] this relation implies that

thereis no orthogonal wavelet that is C* and has compact support.
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Example 3.2.2: consider the sinc wavelet system

@ =s€in(nx)/ nx, where ¢ is the scaling function. The corresponding mother
wavelet v = 2p(2x) - p(X) .
This wavelet has infinite number of vanishing moment and hence has

infinite support see Figure 3.

Figure3

Theorem 3.2.2 [12]: If v is a wavelet and ¢ is bounded integrable
function, then the convolution function y * ¢ isawavelet.

Note that we can use theorem 3.2.2 to generate other wavelets, for example
smooth wavelet.

Example 3.2.3: The convolution of the Haar wavelet with the

functiong(x) = e, generate smooth wavelet, as shown in Figure 4.
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—0.1 —§—

—0.2 4

Figure4

Example 3.2.4: Mexican hat wavelet

Its defined by the second derivative of a Gaussian function
w(x)=(1- x’-’)e_;z , wherey(w) = v27r w? e¥ , see Figure 5, 6 related to y andy
respectively.

This wavelet is smooth, and has two vanishing moment. In the contrast of

the Haar wavelet, this wavelet has excellent localization in both time and

frequency domain.

RVIIVS

Figure5 Figure 6
Basic property of wavelet transform
The following theorem gives several properties of CWT.
Theorem 3.2.3[12]: If yand® are wavelets, and let f ,ge L*(%R), then

1. Linearity, W, (af +gg)=alW, f)+ W, g) a,feR
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2. Trandation, W, (T,f)=(W, f ka,b-c).

3. Dilation, W, (D, f) = \/_(W f{i 2} ,c>0.

4. Symmetry, W, () =W, & ?bj ,a=0.
5. Antilinearity, W, ., f =a@(W, f )+ W, g)

Theorem 3.2.4[12]. Parsival'sformulafor wavelet transform

If yel?(®) and W, f(ab) is the wavelet transform of f , then for any

f,geL*(R)
dbda

(3.2.1)

—00—00

where

C, = J-|W( )| dw<

W

Proof: By Parsival's relation for the Fourier transforms, we have

(W, f Ya,b)= ﬁif (X) V(%bJ dx

=< f’l//ab >

—i<f >
272_ l//ab

- E.\/Hwﬁ(w) €™y (aw) dw (3.2.2)

- iﬁﬁ e e y(ac)do . (3.2.3)

Substituting (3.2.2) and (3.2.3) in the lift-hand side of (3.2.1) gives
J- dbda

—00—00
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H D 1 Ja 0 5(0) 7 (aw) i (a0) < explibfin- o )lwe

Which is, by interchanging the order of integration,

o I 1] f(w)g(a)w(aw)w(aa)dwdax—jexp w— o )jdb

—00—00

1 I _” §(o) v (aw) y(ac) 5(c — w)dwdo

which is, again interchanging the order of integration and puttingaw = x,

AXZ © .
dx. jf (W) §(w) dw.

3 1
G 4

0

=cw.i< f (W), g(w) >.
2
| nversion formula

In chapter 2 we shown that the inversion formulafor f can be written

as f(x)= Zi wjf (w)e"dw, and this formula express the fact that f can be
T —o0

written as weighted sum of its various frequency component. The wavelet
transform and its associated inversion formula also decompose a function
in to weighted sum of its various frequency component. The difference
between them that the wavelet inversion formula, two parameter a and b
are involved since the wavelet transform involves a measure of frequency
of f near the point x = b.

Theorem 3.2.5[4]: Inversion formula

Suppose y is continuous wavelet satisfying the following

a. v hasexponential decay,y < L*(®).

b. wfl//(x)dx =0.
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Then for anyf e L?(R), f can be reconstruct by the formula
12 x—b')dbda
F=c ] w, 1o %22 |8,

(// —00—a0

where the equality holds ailmost every where.
Proof: Let G(X) be the quantity given on the right of the main statement of
the theorem; that is,

G(x) = (3.2.4)

74

T X—b dbda
a2

—00—00

we must show that G(x) = f(x).
By applying Plancherel's formula, which state that juv = |F(U)F(v) to the b-

integral occurring in the definition of G(x) and where v(b) =W, f(a,b)

andu(b) = 1//[ abj we can rewrite (3.2.4) as

GC=¢

f \FI W, (a, b)}(y)FH—j}(y) dy (3.2.5)

where F{} stands for the Fourier transform of the quantity inside the
brackets{}, with respect to the variable b.
In order to apply the Plancherdl's theorem, both of these functions must

belong toL>(R®). If f and  have finite support, then the b-support of
W, f (a,b) will also be finite and so W, f (a,b) and 1//( bjareL2 functionsin

b. But
X-b jyx A
F, {W(Tj}(y) =ae”"y(ay) (3.2.6)
Fb{vv,,,f(ab)ky):aJ%—v}(ay)f(y) (3.27)

Substitute (3.2. 6) and (3.2.7) in (3.2.5), we obtain

G( )_Cw £ mdaj (ay)” f (y)e”"dy
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= Cl [V2r i (y)er ey j"” Y (3.2.8)

d

Where the last equality follows by interchanging the order of the y- and a-

integrals.To calculate the a- integral on the right, we make a change of
variables u = ay provided that y 0 to obtain

e e,
—0o0 |a| © |u|
C,
=L (3.2.9)

Now, substitute (3.2.9) into (3 2.8) to obtain

G = [Nz f(y)e 'yx S Sody
W —o©

) % [ ieray=109.

where the last equality follows from the Fourier inversion theorem. This
finish the proof.
3.3 Wavelet Series

It has been stated in section 3.2 that the continuous wavelet transform is
a two-parameter representation of a function. In many applications,
especialy in signal processing, data are represented by a finite number of
values, so it isimportant and often useful to consider discrete version of the
continuous wavelet transform.
Basisfor L*(%).

Note that any periodic function f e L?([0,2z])can be expand as Fourier

series.  f(x) = icne"‘x ,where ¢, isthe Fourier coefficient of f, and we

N=—cw0

show that the equality hold if the system {¢™ |, is a complete orthonormal

system. Now we consider to look for a basis for L*(%). Since every function
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inL?(R) must decay to zero at+«, the trigonometric function do not belong
to L?(R). In fact, if we look for basis (waves) that generateL?(%), these
waves should decay to zero at +«. Three simple operators on functions
defined on ® play an important role in measure theory: trandation,
dilation, and modulation. We can apply some of these operators to
construct orthonormal basis of L*(%) from single function in L*(R) sayy .
These basis are defined byy , (X) = 2/2y(2' x- k), where the factor2/2 is to
ensure the normalization of y,, [6].

Definition 3.3.1 [3,12]: Orthonor mal wavelet
A function y e L2(®) is called an orthonormal wavelet, if the family {y,, |

is an orthonormal basis of L*(%).

There are several advantages to requiring that the scaling functions and
wavelets be orthogonal. Orthogonal basis functions alow simple
calculation of expansion coefficients and have Parseval's theorem that
allows a partitioning of the signal energy in the wavelet transform domain.
Haar wavelets

The simplest example of an orthonormal wavelet is the classic Haar
wavelet. It was introduced by Haar in 1910 in his PhD thesis. Haar's
motivation was to find a basis of L?([01]) that unlike the trigonometric
system, will provide uniform convergence to the partia sums for
continuous functions on [0,1]. This property is shared by most wavelets, in
contrast with the Fourier basis for which the best we can expect for

continuous functions is pointwise convergence a.e. There are two functions

that play a primary role in wavelet analysis, the scaling function ¢ and the
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wavelet. These two functions generate a family of functions that can be

used to break up or reconstruct asignal.

: : 1 ,0<x<1
For the Haar system, let the scaling function beg = X==
0 ,otherwise
Figure 7
1_—
0.6
0.6
0.4
0.2
2 1 U 1 2
X
Figure?7

Let V, = span({p(x-k)},.,) consists of all piecewise constant functions whose

discontinuities are contained in the set of integers. Likewise, the subspaces

V, = span({p(2’ x- k) },_, ) are piecewise congtant functions with jumps only at

the integer multiples of 27'. Since k range over afinite set, each element of

V, is zero outside a bounded set. Such a function is said to have finite or

compact support.

There are some basic properties of ¢ which are [4]:

a f()eV,iff f(2/x)ev, andf(x) eV, iff f(27x)eV, .

b. {p(x-K)}., is an orthonormal basis forv,, and {2/?p(2' x-k)},_, is an

orthonormal basisforyv;, .
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One way to constructy , by decompose Vv, as an orthogonal sum of v, and

its complement. Start with j=1 and identify the orthogonal complement of

V, inv, ,two key facts are needed to constructy [4]:
a yeV,andy canbeexpressas > ap(2x-k) for some choice of a, .

kezZ

b. y isorthogonal tov,, i.e. [y (p(x-k)dx=0 ,vkeZ .

The smplest  satisfying above condition is the function whose graph
appears in Figure 1; this function can be written as y(x) = ¢(2x) - p(2x-1)

and is called the Haar wavelet.

Note that any function in Vv, is orthogonal to Vv, Iiff it is in

W, = span({w(x-k}._,).In otherworld, Vv, =V, ®W, . In a similar manner, the

following more general result can be established.
Theorem 3.3.2[4]: Let W, be the space of functions of the form
Zakl,u(zj X— k) a, eR

keZ

where we assume that only a finite number of a, are zero. w, is the

orthogonal complement of v, inv,,, and Vv, =V, &W,.
Moreover, The wavelet{y, , | form an orthonormal basis for w, .
So, we can rewriteVv, as.

V, =V, ®W_ =V, ,0W_, W,

=V, ®W, ® OW,OW,,

and hence, the following theorem hold.
Theorem 3.3.3 [4]: The space L*(%) can be decomposed as an infinite

orthogonal direct sum L®=\, oW e  eW,ewW,
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The most useful class of scaling functions are those that have compact
support, the Haar scaling function is a good example of a compactly
support function. The disadvantage of the Haar wavelets is that they are
discontinuous and therefore do not approximate continuous functions very
well. What is needed is a theory similar to what has been described above
but with continuous versions of our building blocks, wande. The result
theory, dueto Stephen Mallat is called a multiresolution analysis.

3.4 Multiresolution Analysis (MRA)

The concept of multiresolution is intuitively related to the study of
signals or images at different levels of resolution. The resolution of asignal
IS aqualitative description associated with its frequency content.

In 1986, Stephane Mallat and Yves Meyer first formulated the idea of
multiresolution analysis in the context of wavelet analysis. This is a new
and remarkable idea which deals with a general formalism for construction
of an orthogonal bases of wavelets. Indeed, multiresolution analysis is
central to al constructions of wavelets basis.

Mathematically, the fundamental idea of multiresolution analysis is
to represent a function f as a limit of successive approximations, each of
which is afiner version of the function f. These successive approximations
correspond to different levels of resolutions. Thus, multiresolution analysis
is a forma approach to constructing orthogonal wavelet bases using a

definite set of rules and procedures.
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Definition 3.4.1 [6]: Multiresolution Analysis
Let v, _, be asequence of subspaces functionsinL*(%)is called MRA with

scaling function ¢ if the following conditions hold:-

1. (Nested), vV, cV,, VjeZ
2. (Scaling), f eV, iff f(277x)eV, Vjez
3. (Separation), NV, = {0}.
jez
4. ( Density), UV, = L*(R)
jez

5. There exists afunction ¢ eV, such that {p(x - k)},_, iS an orthonormal basis

for v,, that s,

[ :°]|f|2dx:g< fon s” VE eV,

Sometimes, condition 5 is relaxed by assuming that {p(x-k)},_, is Riesz

basis forv,, that is for every fev,, there exists a unique
sequence {C, §,_, €1?(z) such that f(x)=> C,p(x-k), with convergence

kez

inL?(R), and there exist two positive constant A and B independent of fe Vv,

such that
A e <[f]" <BX|c.[
kez kez
where 0< A< B<w.
In this case, we have a MRA with Riesz basis and we can then use ¢ to
obtain anew scaling function ¢ for which {@(x-k)},_, is orthonormal.

Example 3.4.1: The collection of subspacesV,, consisting of the space of

piecewise constant functions of finite support whose discontinuities are

contained in the set of integer multiple of 27, together with the Haar
scaling functiong, satisfies the definition of MRA.
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Example 3.4.2: Shannon multiresolution analysis

Here V, is the space of band-limited signals f  L*(%), with frequency band

contained in the interval |- 2/ z,2' z|. The scaling function defined by
1 x=0
o(X) =1 sin zx
7iX

xz0

The Fourier transform of pis given by g(w) = 7. .,(w).

Clearly, the Shannon scaling function doesn't have finite support. However,
its Fourier transform has a finite support in the frequency domain and has
good frequency localization.

We turn to a discussion of properties common to every multiresolution
analysis; our first result isthat{p,, |, isan orthonormal basisforv; .

Theorem 3.4.2 [4]: Suppose {v,| _is a multiresolution analysis with

scaling function ¢. Thenfor any j € Z, the set of functions
{goj'k(x) = 2j/2go(2j X— k)}kez
is an orthonormal basis for v,
Proof: [4].
We are now ready to state the central equation in MRA, the scaling
relation, which is also called two-scale relation, since its relates ¢(x) and

the translates of ¢(2x).

Theorem 3.4.3 [4]: scaling relation
Suppose Y, | is a multiresolution analysis with scaling functione.Then

the following scaling relation holds:

o)=Y pol2x—K)  where p, =2 [ol(xlol2x—K)ox

kezZ

Moreover, we aso have



71

o2 x-1)= > P02 x—K) .

kez
proof: [4].
Example 3.4.3: Thevalues of thep, for the Haar system are

P,=p, =1
and all other p, are zero.
Construction of wavelet from a multiresolution analysis
We now pass to the construction of orthonormal wavelets from an MRA.
Let w,be the orthogonal complement ofv, inv,; that is,v, =v, ®w,. If we
dilate the elements of w, by2’, we obtain closed subspacew, of V,,,, such
that v, =V, ®W,,vj e Z

Since
. J -
V,>{0jas j>-0 = Via= & W V]

and
V> LPR)as joo

we have L*(R)= é W,

To find an orthonormal wavelet, as in case of the Haar system, all we need
to do is to find a function y eW, suchthatw(x—k) is an orthonormal basis

forw,. In fact, if this is the case, then {2/2y(2'x-k)},_, is an orthonormal

basis forw, vjez, and hence i, | _is an orthonormal basis forL*(%),
’ i€z

which shows that y isan orthonormal basisfor:.
The scaling relation can be used to construct the associated functiony that
generatesw, .

Theorem 3.4.4 [4]: Suppose }jgzis a multiresolution analysis with

scaling function
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% X): Z pk¢(2X_ k)

kezZ

(p,are the coefficients in theorem 3.4.3). Let W be the span

of (2! x- k)., , where
= Z (-1 kE(D(ZX - k) and Vil (X) =2 Z (D" Pry.a Pk

kez kezZ

Then W, cV,,is the orthogona complement ofv, inv, . Furthermore,

j+1 j+1

W« (x):=2"2y(2'x~k)}__ is an orthonormal basis forw, , and hence the set

of al wavelets, iy, j, ,_,isan orthonormal basisfor L*(%).

Proof: [12].
Daubechies wavelet

The wavelet that we looked at so far, Haar, Shannon wavelets have all
major drawbacks. Haar wavelets have compact support but are
discontinuous. Shannon wavelets are very smooth but extend throughout
the whole real line. These wavelets, together with a few others having
similar properties, were the only ones available before Ingrid Daubechies
discovered the hierarchy of wavelets that the Haar wavelet, which is the
only discontinuous one. The other wavelets in the hierarchy are compactly
supported and continuous. Wavelet with compact support have many
interesting properties. They can be constructed to have a given number of

derivatives and to have a given number of vanishing moments [4].

Example 3.4.4: The associated value of the p, can be computed to be
_1+\/§ 0 _3+\/§ 0 _3—\/§ 0 _1—\/§

po_ 4 1 1~ 4 ) 3 4 ) 4 — 4

Consequently, the Daubechies scaling function (see Figure 8) becomes

0= 22 (0) 233 1) 302 ) I3 g,
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And the corresponding mother wavelet v is

l/,(x):_“f‘ (,,(2x_1)+3+4¢§ o263 f o(2x5 1)+ Y3 p2x1 2).
and thisis called the Daubechies wavelet, see Figure 9.
Figure: 8 Figure: 9

3.5 Representation of functions by Wavelets
Since awavelet systemiy,, j, . is an orthonormal basis for L*(%), we

know that for any f € L*(%),

F=2 2 <fwi>v

jeZ keZ

with convergence in theL?(%)-norm.

The goal of most expansions of a function or signal is to have the
coefficients of the expansion a,, give more information about the signal
than is directly obvious from the signal itself. A second goa is to have
most of the coefficients be zero or very small. Thisiswhat is called a spare
representation and is extremely important in applications for statistical
estimation and data compression.

Although this expansion is called the discrete wavelet transform (DWT),

it probably should be called a wavelet series since it is a series expansion



74

which maps a function of a continuous variable into sequence of
coefficients much the same way the Fourier series does.

This wavelet series expansion is in terms of two indices, the time
trandation k and the scaling index j. For the Fourier series, there are only
two possible values of k, zero and~/2, which give the sine terms and the
cosine terms. The values | give the frequency harmonics. In other words,
the Fourier series is also a two-dimensional expansion, but that is not seen
in the exponential form and generally not noticed in the trigonometric
form.

The coefficients in this wavelet expansion are called the discrete
wavelet transform of the signal f, these wavelet coefficients can be
completely describe the original signal and can be used in away similar to
Fourier series coefficients for analysis, description, approximation, and
filtering. If the wavelet system is orthogonal, these coefficients can be
calculated by inner products.

The DWT is similar to a Fourier series but, in many ways, is much
more flexible and informative. It can be made periodic like a Fourier series
to represent periodic signals efficiently. However, unlike a Fourier series, it
can be used directly on non-periodic transient signals with excellent results.

The main purpose of this section is to study if such expansions are well
defined and converge in then setting of other function spaces. In particular
we shall study the convergence in L?-norm and the uniform convergence of

wavelet expansions on thereal line.
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Convergence of the Haar series

We know that the Haar wavelet form an orthonormal basis for L?(%),

then for any f < L*(%), we have

f=>c v (3.5.1)

j.kezZ
Isthe Haar series of f, the Haar coefficients defined by

Cu =< Fuwju >= [F 0w (X

The completeness of L?(%) further assures that the series above converges
inL?(R). In order to identify the sum of the Haar series, let p,,ne Z be the

projection operator of f e L?(%)on to the space v, defined by [14]:
p.()=2" [f(y)dy where I,, = ((k-1)/2" k/2"]

This formula can be written explicitly in terms of the Haar scaling function
p.(f) = [K (6 y) F(y)dy

where

Kn(x1 y) = ZHZ(p(ZnX— k)gp(Z“ y— k):

kezZ

2" x,yel,,
0 ,otherwise

= p, increasing and converge to the identity function in the sense that

a p,f="1f implies p,f=*f.
b. limp,f=f inl%(R) .

]

Moreover, letL (x,y) =K, .,(x, y)- K, (X, y), in terms of the Haar function we

get
L. (Xy)= 2”21//(2” X — k)l//(Z” y— k)

kezZ
So, we have

pn+lf - pn f = Zl//n,k (X)(J‘f (y)Wnk (y)dyj (352)

kez
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hence we can write the original projection operator in the form

Pria = pof +Z pj+1f Y f
j=0

asn — «, thisyield to the one-sided Haar series representation

f = pf &zwj,{Jf(y)w,-,k(y)dyj

j=0 keZ

Completenessthe Haar system
To prove the validity of the two-sided Haar series (3.5.1), we go back to

(3.5.2) and write
Praf —Pnf = z ZCj,k‘//j,k (353)

j=—mkeZ

so, it remainsto provethatp ,f -0 and p,,f — f when mn— .
First, we prove that the operators p, have uniformly bounded operators

norm.
Lemma35.1[14]: Forany f eL"(%),1< p<eo, then |p, f| <|f[ ,vn.

Proof : Forp=2

From the definition of p, f , we apply Cauchy-Schwarz inequality to obtain
P f )" <2" [|f(y)’dy for xel,

= [lp.fO[dx< [|f (0] dx
I i

= [lp.fO9[ dx< [|f(x)"dx.
RN R

For p=2

Setp'zi, where p > 1, then Holder's inequality gives

1-p

1

P, f(X) 32”[ j|f(y)|pdyJ 27V xel,,

= [p,f()| gznp[ I|f(y)|pdyJ 2"P/¥
[
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= [lp. 9" ax< 2722 [ (y)"dy = [|f(y)|"dy

=N j|pnf(x)|"dxsj|f(x)|"dx.

This proof also appliesin case p =1, by setting 1 _ o whenever p’ appears.
o0

Let we define C,(R) to be the set of continuous functions vanishing at

infinity and C,,(%)to be the set of continuous functions with compact

support.

Lemma 3.5.2 [14]:

1. If f €C,(R), wehave|p_,f| —0as m— .
2. If f eL*(®), we have|p_,f|, >0 asm— o,
Proof : 1. if geC, (%) hassupport in [-k, K], then

k
0<x<2"= |p,g(x)=2" I|g|dx -0
0

and
—2"<x<0= |p,g(x)=2" J'|g|dx —0.
—k
hence, | p_,g|. — 0. But these functions are dense inC,(R%); given f e Cy(R)

ande >0, there existg e C,,(R%), he Cy(R) such that f = g + h, with|h| <e.

Then

lim sup| p_, f|, < lim sup|p_,h|, <&

since ¢ isarbitrary, this proves the required convergence.
2. 1f f e ’(®), for anye >0, f = g + h, where g is continuous function with

compact support in [-k, K], k> 0, and|jh|, < £. Then for2™ > k, we have

k
—2"<x<2"= |pLg(x)|=2" [lgdx<2"V2K|g],.
X

[P-w9 (), <vak2™[g],
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[P O, <[P0, +[P-ahf, <[Pl +
= limsup|p_,f|, <&, since ¢ isarbitrary, we conclude that

m—o0

p.f—>0am->w
To provethat p, f — f as n— o, wefirst prove that this holds on the dense
subset of C,(R).

Lemma 3.5.3 [14]: If f eC,(R), then p,f — f uniformly and inL*(R),

whenn - .
Proof : let f be supported in [-k, K], k>1. Givene >0, from the uniform

continuity of f,35 >0 suchthat |f(y)- f(x)|<E,Whenever x-y|<s.1f2" <5,

we have
P, F (%) — f ()| < —= <, Vx
J2k

Which prove the uniform convergence.

To prove the L*-convergence

k 2
[CACR f(X)|2dX£{%dxggz.
=|p,f-f|,>0as n>w

So, by lemma 3.5.2 and 3.5.3, we have thus proved the L?-convergence of
the Haar series.

Haar seriesin C,and L°spaces

We have treated the?-convergence of the Haar series, now; we discuss the

uniform convergence in spaces of continuous functions, as well as the norm
convergencein LP(R) 1< p<wo.

First, we treat the convergence in the spaceC, (%), by lemma 3.14, 3.15, we

have
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p,f—>0am->wandp,f - f an-w,respectively.
Since the spaceC,(®) contains as a dense subspace the set of C, (®).It

remains to prove that the operators are uniformly bounded

Lemma 3.5.4 [14]: For any f e B, (%),(the space of bounded continuous

functions), we have |p, f|<|f|..
Proof: forxel,,, wehave |p,f(x)| <2" j|f(y)| dy <|f].
I

Thisleads to the following general proposition on uniform convergence.

Proposition 3.5.5 [14]: If f € C,(R), then the Haar series (3.5.3) converge
uniformly on the entire real line.
To prove the LP-convergence, we must check that p  f >0asm—w
andp, f > f asn—ow.
Lemma35.6[14]: Let1<p<w.Then|p,f-f| —0asn—e.
Proof : The space C,(®R) is dense inL?(%), from lemma 3.5.3 we have
uniform convergence on this space. In particular ifsupp(f)c[-kk],
forn> N(g) , we have

[Pt 00— (| dx< 2Ke".

%
which showsthat |p,f - f| < g(2k)§ :

Lemma35.7[14]: Let1<p<eo,then|p.,f| — 0 when m—co .

Proof : it suffices to check this for g continuous with compact support in [-
k, K], if 2" > k, then

0<x<2"= |p,g(x|=2"

| g(y)dy‘

o k
[[p_ng (] dx=2"2"| [la(y)|"dy | (2K)*"*
0 -k
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which tend to zero when m— «. For-2" < x<0, we use the same fashion.
Hence we can conclude the following.
Proposition 3.5.8 [14]: Let 1< p<w, for any f € L°(R), the Haar series
(3.5.3) converges in the norm of L°(%). And for 1< p<«, the one-sided
Haar series are hold.
Convergence of the wavelet expansion inL?(R)

All the wavelet we will use in this subsection are assumed to arise from
a multiresolution analysis (MRA). For the MRA we shall assume that the
scaling function ¢ and the wavelet  have controlled decrease at infinity.
Moreprecisely, there is a bounded function. W :[0,.0) » %", which is a
radial decreasing L' —~majorant of pory, if |p(x)| <W(x) and W satisfies the
following conditions [6]:-
1. We LY([0,)) .
2. Wisdecreasing.
3. W0)<w.
Example 3.5.1: Two particularly natural choicesfor W are

W(x)=ce™ forsome & >0

and

W(jxl):L for some a > 0.

(1[4

Both examples are good mgjorants for the compactly support wavelets [6].

Suppose that we have a wavelet v arise from MRA with scaling

functiony . Associated with the increasing sequence of subspacesyv, |, we

have the orthogonal projections of L?(%) onto Vv, given by
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pjf :Z< f,gpjyk > Qi s fe LZ(SR)

kez

As in the Haar series representation we can write < f,p,, > as an integral

and interchanging the order of summation and integration, to obtain

p, f(X) = sz (2'x,2' y)f (y)dy (3.5.4)
where
= p(x—Kk)p(y-kK)
keZ
Isthe wavelet kernel.

Proposition 3.5.9 [6, 14]: The wavelet kernel K (x,y) enjoys the following
properties:
1 K, ell(®?)

2. K, (xy)=K,(xy)
K, (%, y)‘dy£C<oo and IK¢(X, y)dy =1
R R

‘K (x, y)‘ < CW(| 2y|] (3.5.5)

The main purposeis to prove that

a pf->0a j—>-w.
b. pf>fasjoow.
Proposition 3.5.10 [6]: Suppose ¢ has radial decreasingL' - majorant W,
then there exist C > 0 independent of j such thatvf e L(®),1< p<w, we

have

[p; f], <clw
Proof : if p=w, by using (3.5.4) and (3.5.5) we get
\mf(x)\scjww( e ']|f<y>|dy<c|| LWl

Ll[O,oo)” f ” P

Ifp=1
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flp; f00|ax< cj[ jziw(z |X2_ y|J| f (y)|ddex
=c|f (y)|( [2'w(2x- y|)dedy

< CW] o, 11

These bounds alow us to formulate and prove a general theorem on the
convergence of the scale projection operator.

Theorem 3.5.11 [14]: Suppose ¢ isthe scaling function of an MRA which

has radial decreasingL' - mgorant W
1- If feB,(®), then |p,f—f| >0as e

2- If feLP(%), then |p; f - pr >0a j>w,l<p<w
Proof : first we note that p,1=1, which follows from ij(x, y)dy =1, this
RN

allows one to write
f-p,f=2[K,(2'x2'y)[f(x- f(y)dy, since f is continuous, givene >0,
R

let 5>0 such that |f(x)- f(y)|<2iC whenever [x-y| <5 , SO

f(x)—p]f(x)Zj[ [ + jJ[f(x)—f(y)]K(p(ZJx,ziy)dy
ly-X<5  |y-X>5

by apply the bound ﬂKq)(x, y)ldy <c in the first integral we conclude that

this term is less than%,Vj . To estimate the second integral, we use the

boundedness to obtain the upper bound
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G  (2l]y-
2[f], [2'[K,(2'x2'y)dy<C|f], jzlw(dey

|y-X>5 |y-X>0

cJf],  wlu-2"K

‘u—zj’lx‘>21’15
=C|f|. IW(v)dv

|v>217ts
which tend to zero asj — «, by the dominate convergence theorem. Thisis
a uniform bound independent of xe %, from which we obtain the asserted
uniform convergence.
To prove LPconvergence, we first discuss the case p = 1. From the uniform
boundedness|p, |, <[ f|,, it suffices to prove theL’convergence on the
dense set of continuous functions with compact support in [-R, R], for such
f, wehave

Hf - pJfH = I|f(x)|dx+ 'ﬂpjf(x)‘dx
[x<2R [x|>2R

The first integral tends to zero by virtue of the uniform convergence

already proved, to estimate the second integral, we write

ﬂpjf(x)‘dxs”f” J'[ J'zl zszjy)dy}dx

[x>2R [¥>2R\ |y|<R

<C j j ZJW(MJdXdy

|y|<R |x>2R

<C j j ZJW(MJdXdy

|y|<R |x-y|>R
j
<C | IZjW[Z—Mdedu
|y|<R|u[>R 2

<2CR  [W(v)dv— 0 when j — .

|v>2!R

which complete the proof of LPconvergence.
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To treat the casel< p<w, it again suffices to deal with continuous

functions with compact support. In this case we have the bounds
f0)-p, f(|" <|f-p, fuz‘l\f(x)— p; f (%)
[[f09-p; f (0| ax<|f - p, fuz‘lﬂf(x)— p; f (x)]dx

_1‘

=[t=ptl - pifl

Which tendsto zero, by the convergencein case p = 1, already proved. This
proves the theorem.

Largescale analysis

To complete the analysis of LPconvergence of genera wavelet series, it

remains to prove thatp, f -0 as j »—. Asin the case of Haar series, we
expect only that this will take place forL°(%),1< p<« and in the space
Co(R) .

Proposition 3.5.12 [14]:
1- If f eC,(®), then |p; f| — 0 when j— —o.

2- If fel’(%), 1< p<oo, then |p, pr —> 0 when j — —o.
Proof : we begin with f e Cy,(R). If f(x) = 0for | > R, we can write

p..f(x)=2"C Fj'f (YK(2™x,2"y)dy (3.5.6)
. XY
<2 C__ﬂf(y)hlv(z |y

hence,
p_f(x)<2"C|f| 2RW(0) >0, m-—>co.

But C,,(%) isdensein C,(%t) where we have the estimate| p; f| <cC|f|, .
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To prove the L"convergence, it suffices to takef € C,(R%). For [ <R the

R
estimate (3.5.6) shows that ||p_,f(x)|"dx—0.For x>Rwe make the
-R

substitution v=2"(x-vy) towrite

2—m(x+R)

DL FOU<]f],  [W)dv

_2—m(x+ R)

<27"|f|. RW(2""(x-R))

mﬂ p_, f ()] dx< 27™| f ||£D]"\N(2m(x— R))" dx
R R

~2 21| fwiy)' o
0
~2 o >0

with asimilar estimate for t < -R.

In exact parallel with the case of Haar series, the large scale projection

operators to do not behave well onL*(R®). This means that we restrict the

range of p when formulating a general L° convergence theorem for wavel et

series. Similarly, we must restrict toC,(%), since the identity p,1=1 shows

that p, f — 0 isfalsein general when f e B (R), for j — —o.

Combining proposition (3.5.12) and theorem (3.5.11), gives a complete

picture of the convergence of one-dimensional wavelet series in the spaces

C,(%) andL’(R), 1< p <. Thiscan be restated in a separate theorem.

Theorem 3.5.13 [6, 14]: Suppose that the scaling function ¢ has radia

decreasing L'-magjorant W.
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1. If fecC,(®) , then the sum Zn:Z gojyk(x)jf(y)ajyk(y)dy converges

j=—mkeZ

uniformly to f when m,n — o.

2. If f e L’(R),1< p<, then the sum zn: > goj,k(x)jf(y)aj,k(y)dyconverges

j=—mkeZ

tofin L°(R) when m,n— oo.
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Chapter four
Convergence Analysis

4.1 Introduction

Under certain conditions, a function can be represented with a sum
of sine and cosine functions, which is called a Fourier series. This classical
method is used in applications such as storage of sound waves and visual
Images on a computer. One problem with representing a functions with this
type of seriesis that it takes an infinite number of terms to represent such
function. In practice, only a finite number of terms can be used. Higher
accuracy require the sum of more terms in this series and this will take up
more computer time and storage space. A new type of sum called awavelet
series was first introduced in the 1980's and found to be more efficient, in
storage and processing, than Fourier series. Efficiency of a series
representation of a signal (function) depends on its convergence which in
turn depends on the rate of decay in its coefficients. In this chapter, we will
Investigate the superiority of the wavelet series in representing signals over
the Fourier series through the rate of decay of the coefficients for both
Fourier and wavelet series.
4.2 Rates of decay of Fourier coefficients

The Riemann- Iebesgue lemma state that the Fourier coefficients of
an integrable and 2 -periodic function f vanish at infinity, but it provides
no further information about the speed of convergence to zero for such

function. In this section, we shall show the relationship between the
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smoothness of f and the magnitude of its Fourier coefficientsc,. (The
smoothness of f ismeasured by the number of timesit is differentiable).

Definition 4.2.1 [16]: Class C*
We say that f belong to the class C* if f is K times continuously

differentiable.
Definition 4.2.2 [14]: a Holder condition
Let f beafunction defined on%. We say that f satisfy a Holder condition

with exponenta  (0), if[f (x) - f(y)| <M|x-y“,M >0.

Remark [16]:
Belonging to the class C* or satisfying a Holder condition are two possible
ways to describe the smoothness of afunction.

Proposition 4.2.3 [14]: Supposethat f € C(%) has amodulus of continuity:
o(5):= sup [f(x) - f(y)]. Then c | < %a)(%j

|x-y|<o

Proof: Since e™ =-e™"*"" we have
2z o7 2p
J.f (X) e*inxd)( =— J‘f (X+ ﬂ-/n) eiinXdX — % J‘[f (X) —f (X+ ﬂ_/n]efinxdx
2z

and hence, c, _ 1 I[f (x) - f(x+z/n)]e"™dx,
4 ¢

S0,
1 2z )
c,|<— [[f(¥)— f(x+z/n)je™
el | H

o
= i\l\l(ﬂ/ n).2z

1
= Evv(ﬂ/ n).

Corollary 4.2.4 [14]: If f satisfies a Holder condition with exponent

a €(01), weseethat ¢, =O(n ) [ — .
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Proof: f satisfiesaHolder condition with exponent « € (0,1) means:
[f(x)— f(x+h)|<Ch®, C: constant, takeh=z/n, and use proposition (4.2.3)

to get
1 i —inx
eal< 6ﬂf(x)— f(x+7/n)[e

o

= iC(;r/ n)*.2z
4

(S

Therefore, ¢, =O(n™ ), [N — .

If we want to obtain a more precise estimation, we can assume that f is

absolutely continuous as follows:
Proposition 4.2.5[14]: If f eC*(%),K =1 are absolutely continuous. Then
c, = o). [
Proof: Assumef e C*(®),K >1. Then
' 1 = i —inx
C, :Z Off (x)e"™dx

1 _ 27
- — f(x)e™
o (x)

1 2z )
+in2= [f(x)e"™dx
2r

0

=inc,,

which by induction yields
CK
=", 42.1
0= o (421)
Since f* e L'(%), we have limc* =0, which implies

\n\—m

=limcX =0. Soc, =o(]/|n|K),|n|—>oo.

‘n‘%w

lim|n“c,

‘r‘l‘%oo

Corollary 4.2.6 [14]: If % satisfies a Holder condition with

exponenta  (01), then ¢, = O(n™*), || - oo

Proof: By (4.2.1)
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n

(in)“c, =c," =$zj‘[f (%) — £ (x+z/n)|.e™™dx

2z
4;;|1n|K ﬂf “(9- 4 (x+z/n) g™
1

S .C(EJ 27
47r| n| n

:(C"’aj_ N

- | <

o

2 n“.n®
Note that the smoothness of f isdirectly related to the decay of the Fourier

coefficients, and in general, the smoother of the function, the faster decay.
As a result, we can expect that relatively smooth functions equal their
Fourier series.

4.3 Rate of convergence of Fourier seriesin L?

Definition 4.3.1: Mean square error

The mean square error ||S, f — f||’ of the Fourier seriesof f is defined by:

1 T
ISy f -] :E_ﬂf -8, f[ dx

Where S f isthe N™ partial sum of f .

Parseval's theorem allows us to reduce the study of rate of convergence to

the estimation of series. The N™ Fourier coefficient of S f - f is zero for
<N, therefore S, f - f = > ¢ e™, hence by Parseval's theorem we have

[n|>N

ISy f - f||§ = ;&JCHF (4.3.1)

This can be used to estimate the mean square error in terms of the
smoothness of f .

Proposition 4.3.2 [14]: Suppose that f e C*(%), then c, :o(]/|n|K)|n|—>oo
and S, f-f[5=CYn2 =0O(N**) N-w.

n>N

Which gives an upper bound for the mean square error whenN — « .
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Proof: By (4.2. 1) we have
K
c =0 j £X (%) e ™clx

(in)" (m)
|C”|SW Oﬂf Kdelsm, and hence c, = OY/|n* ) |n| > oo.

Now by (4.3.1),
st - £l —ZICI - —CZH‘ZK
[n|>N [n[>N n [n|>N

Example 4.3.1: Consider the functionf(x)=x3—7z2x, over [-z,z].The

Fourier seriesof f isdefined by: f(x)= 122 1)nsmnx

Soby (4.3.1), wefindthat |S,f-f| =Y ﬂj

>N N
Example 4.3.2: Let f(x) = x*, over[-z,z], then the Fourier series of f is

defined by:  f(x) :”—2+i4(_21)n cosnx. SO

n

16
IS f - £, = 2

L

4.4 Rates of decay of Haar coefficients

We have seen that the smoothness of the function is reflected in the
decay of its Fourier coefficients. Specifically, if f is periodic and C*
on%, then c, = (]/|n| ) I — . Where c, is the Fourier coefficient of f .
This can be regarded as a statement about the frequency content of smooth
functions, namely that smoother functions tend to have smaller high
frequency components than do functions that are not smooth.

However, no such estimate holds for the Haar series. To see this, smply

note that the function f(x)=¢e is periodic and is C*on % with al of its

derivatives bounded by 1. But have
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e Sne(a)2)
“az)

and since sin(1/4)27)~(4)2') for large j. this means that

‘<f,1//j'k>‘:

\< fw, >‘z2_3“2.% for large j. But this is the same rate of decay as we

will see later for functions continuous but with a discontinuous first
derivative. Hence, the smoothness of a function does not affect the rate of
decay of its Haar coefficients.

Proposition 4.4.1: If f satisfies aHolder condition with exponent« < (0],

then
<o >= O(ij(a+l/2))

Haar Coefficientsnear Jump Discontinuity [1]

Suppose that f is afunction defined on [0.1], with a jump discontinuity
at x, (0,1) and continuous at all other points in [01]. Here we analyze the
behavior of Haar coefficients when x, is inside or outside the dyadic
interval 1, , . In particular, we can find the location of a jump discontinuity
just by examining the absolute value of the Haar coefficients.

For simplicity, let us assume that f is C? on [0,x,] and[x,.1]. This means
that both ' and f” exist, and continuous functions, and hence bounded on
each of these intervals. For fixed j>0 ando<k<2'-1, and let x;, bethe

mid point of the interval |, ,; that is,x;, :(k+%)21. There are now two

possibilities, either x, el orx, 1, .
Casel: Ifx, ¢1;,, thenfor largej,
‘< f’Wj,k >‘ z(%jzfﬁj/Z‘fl(Xij)‘ _ 0(2731/2)

Proof: Ifx, ¢ 1,,, then expanding f(x) about x;, by Taylor'sformula
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f(x)= f(Xj,k)+ f'(Xj,k)(X_ Xj,k)"’% f ”(é:j,k)(x_ Xj,k)2

where,, el;,.  Now using the fact  that [y, (9dx=0,

< fop >= J'f(x)t//j’k(x)dx

Ik

= £(x;0) [ w00 e+ £70%,) [, (=, Jax

Ik Ik

# 2 [ DX (9 o

= F/(x,0) [xw () dx+ 1, (%) (4.4.1)

j.k

Where\r i (x)‘ :%

[ 17500 (=%, P (9 d»{ :

Now
(k+1/2)27} _ (k+l)2’j.
J‘ij’k(x)dxz J'Z‘/Zxdx— IZJ/Zxdx
|

ik k27 (k+1/2)27]
5 (k+1/2)27) 5 (k)27
{ 2 k27l 2 (k+1/2)27}
2 2
_oirga Lify L —k?—(k+1)* + o+t
2 2 2

_ _%2—31/2_ (4.4.2)

From (4.4.1) and (4.4.2)

l -3j '
<fw, >=_22 SZEX )+ (X)

Now
‘rj’k(x)‘ < %max f" ()| _[(x— xj’k)z‘y/j]k(x)‘ dx

Xe ik

ok
i/2 (k+1/2)27]
< 2Tmax f"()| I(x— X; 1 J dx
Xelj k2~
i2 53
R~ f"(x)
2 34 xel |

_ L s ma £ "(X)] -
24 xelj
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For largej, 2°/% isvery small compared with 27/, So
< fpp,>|= (%J 27312 o(297?) (4.4.3)

Case2: Ifx, el ;,, thenfor large]j,

< fp . >|= ( jz V2|t () -

oz

Proof: Ifx, 1 ,,, then either itisin 1;, orin I}, . Weassumethat x,e1;,,

and the other case is similar. Now expanding f(x) about x, by Taylor's
formula, we have

f(X)= )+ F'(E)x=%), xel[0x,) & e[xx]

FO)=f0g)+ F/(ENX=%), xe[xL), & e[x,x].

Therefore
<fy>= [0, (9 dx
IJk
(k+1/2)27] (k+1)27!
= IZ‘/Z )dx+ _[ 2’/2 dx — .[2"/2 f(xg)dx+ Eix
k2] (k+1/2)271
= 212(x, k277 )(F (%) = F )+ & 4 (4.4.4)
where
Xy (k+1)27
ik = J‘fl(f )(X X )l//JkdX+ If X Xo)ijdX
k27! Xo
Thus
2 < m X=Xl ()] o
Xe']k {%0}
< 2% max| f (x)| _ﬂx Xo| dX
xel i\ I

< 212 max| f'(x)| Lo
XEIij\{xo}

= 1max| fr(x)|. 2772,
xelj Mo}

For largej, 27%/? isvery small compared with 2772, So
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< Ly =272 |x = k27| F () = ()] -

The quantity |x,—k27/| is very small if x, is close to the Ieft end point of

I}, and can even be zero. However, we can expect that in most cases, x,

will beinthemiddle of 1!, sothat \xo—kz‘l'\z%.z-j.Thusforlargej,

\ <ty >\ ~ GJ 2*1/2\ f(x)— f(x3)|=0(277?) (4.4.5)

Comparing (4.4.3) and (4.4.5), we see that the decay of |< f,y, >| for

large j is considerably slower if x, 1, thanifx, ¢1,,.

4.5 Rate of convergence of Haar series

Proposition 4.5.1 [25]: Let f be continuous in L°(%), 1< p<« and the

partial sum of the Haar wavelet seriesis

J-1211

fy :ZZ< fowie >wix

j=0 k=0

where N =2’ for someJ e N. Then the error of approximation in L°(R) is
defined by:|f - f, | =0(2""2).

As special case for p = 2, the mean square error is| f - f,|> = 0(27).

Proof: The error of approximationin L?(®) is

J-1211

|f- fN”p =|f =22 <fwi v

=0 k=0

P
21

<t >wi

k=0

Il
NgE

J

-2

j=J k=0

I
(&

p

Yp
‘<: fwix :4'33

21
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4.6 Rate of convergence of wavelet series
In this section we will examine how well a function f can be

approximated pointwise by wavelets in Vv, , as well as approximated in the

L>sense. We will also look at the rate of decay of the wavelet coefficients

<ty >a jox.

Let's start with poitwise convergence. Fix j=J and suppose that

f eC“(T), where T: is the neighborhood |x—x0|s2iJ of x,. We want to

estimate the pointwise error |f —p, f[ in T.

Proposition 4.6.1 [17]: Suppose that f e C*(T), and |f*| has upper bound

M, inT, then
CM
|f - P f| = 23(K+K1) = O(Zij(Kﬂ))

where C isaconstant, independent of f andJ.

Proof: The proof can be found in [17]

Note that this is alocal estimate; it depends on the smoothnessof f in T.

Thus once the wavelets is fixed, the local rate of convergence depending
only on the local behavior of f . Thisis different from the Fourier series or
Fourier integrals where a discontinuity of a function at one point can slow
the rate of convergence at al points.

Now we turn to the estimation of the wavelet expansion

coefficients< f,y,, >. Recal that any wavelet w(x) that comes from an
MRA must satisfy jgu(x)dx: 0 , and we say that the zeroth moment of y(x)

Is vanishing, so if the integral jx*ﬂy(x)dx: 0, we say that the Kth moment

of yw(x) is vanishing. We will see that vanishing moment have results for
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the efficient representation of functions. Specifically we will see that the
wavelet series of a smooth function will converge very rapidly to the
function as long as the wavelet has alot of vanishing moments. This means
that in this case, relatively few wavelet coefficients will be required in

order to get a good approximation. Now we will show that the wavelet
coefficients of such functions will have rapid decay as j — «. To make the
proof easier, we will assume that y(x) has compact support.

Proposition 4.6.2 [1]: Suppose that f < C*(%),K N, and |f*)(x)| has a

uniform upper bound M, on%. Assume that the function y(x) has K
vanishing moment with compact support, and ﬂy/jyk(x)\zdxﬂw,kez ,then
R

we have the estimate

‘< foyix >‘ < % = O(2"“K+1/2))

where C isaconstant, independent of f, j k.

Proof: Suppose that (x) is supported in the interval | , which has the form
l,, =[0,a] for somea> 0. It follows that the function v, (x) is supported in
the intervall,, =[27k 27 (k+a),  and|i|=27a. Now It
x;, =2"a+2k bethe center of theinterval I, .

Sincef eC*(R), for eachj,kez, f(x) can be expanded in a Taylor

expansion about the pointx; . That is,

FO) = (X)) + (X=X F /(X )+t (x- Xj,k)K_l f (K_l)(xj,k)+ R (%),

(K -1

where
Re (%) =%<x—x1,k>*< £ ()

for some ¢ between x,, and x. If xel,,, then we have the estimate
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1 ki
|RK(X)|SE2 ' a@ﬁf

f0 (). (4.6.1)

Now we can compute the wavel et coefficients as follows:
<fyw>:jumwﬂmm
=

I(Z%’(X_ Xj,k)l f (I)(Xj,k) + RK (x)]l//j’k(X) dx

w\l=0":

= [Z%, Jox=x,0' w5, (0 dx} JR O v (X cx

ROy () .

Now applying the estimate (4.6.1) and the Cauchy-Schwarz inequality,

‘< fowix >‘: J-RK (X)‘//j,k(x)dK‘

1

S%Z—K(i+l)ariﬁf‘f (K)(x)‘lj;z//j‘k(x)‘dx

< %Z.K(nnaglﬁf‘f(m(x)”l J,k‘m[ j

1/2
2
e dx]

Ik

1 y
=2 K(J*l)amax‘f (K)(x)‘.z 112 gt'2
KI XEllyk

_ 2j(K+l/2)(% max‘f (K)(X)‘.aS/z ZKJ

H Xell_k

IA

2—j(K+l/2) (ias/z 27K M Kj
K!
Note that with C = %a‘”z 27", the proof is complete.

We aready know that the wavelet basis is complete in L*[-w,]. Let

consider the decomposition: L?[-cw,]=V, ® iwj .

j=J

We want to estimate the L2 error ||f - p, f|> asfollows:

Proposition 4.6.3: Suppose that f e C*(R) and has bounded support say

theinterval (0,a), if |f*(x)| has auniform upper bound M, then
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3k 2C°M 2 )
||f—p3f||§=ZZ‘< f"//j,k >‘2< 22KJKa:O(21 2KJ)-

j=J k=0

Proof: The proof is easy by using Proposition 4.6.2.
Jackson's approximation theorem

Now we formulate results that relate the speed of convergence of wavelet

series to the smoothness of f . We focus attention on the rate of decay of
[t-p1],.

In order to measure the smoothness of a function, we introduce the L°
modulus of continuity:

w,(f;6) = sup||f(x) - 1:(x—h)||p
O<h<és

Thisisdefined if f e L°(%) or not.
Proposition 4.6.4 [14, 18]: The L® modulus of continuity satisfies the

following conditions:

a. 6 - w,(f;5) ismonotone increasing.

b. If feLP(®),then w,(f;6) >0ass—0.

C. 0,(f;6,+8,)<a,(f;5)+a0,(f;5,).

d. o, (f,+1,;0) <o, (f;6)+o,(f,;5).

e If w,(f;8) <o, v 6>0,then [f|” e L (R).

f. o, (f;ms)<mo,(f;5).

Proof: The proof can be found in [14].

In order to prove suitable approximation theorems, we need to consider a

small class of scaling functions, defined by an estimate of the form

lp(x)| < A ~,B>2, (4.6.1)
(L)
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Lemma 4.6.5 [14]: If ¢ satisfies (4.6.1), then the wavelet kernel K(x,y)

satisfies the estimate

IK(x,y)| < (4.6.2)

1+ [x- )
The direct approximation (Jackson's estimate) is the following statement.
Theorem 4.6.6 [14, 18]: Jackson'sinequality
Suppose that the scaling function satisfies (4.6.1). Then there exist a
constant C such that for al f e MC_(®)

[f=p,f] <Co,lfi2?) (4.6.3)
where the space MC () isdefined by:={ f :w,(f;5)<w foral >0 |.
Note that we do not assumethat f € L°(R).

We can reduce thisto study of p, by introducing the dilation operator.

Definition 4.6.7 [14]: Dilation operator

The dilation operator defined by: J f(x)= f(2"x), r e Z.And satisfies the
following properties:

a. Commutation relation: p,J, =J p,,.

b. Norm relation: |J, pr =270"°)f] .

C. w,(3,f;8)=2""Pw (f;2%5).

Now we return to proof theorem (4.6.6).

Proof: Suppose we have (4.6.3) for j=0 with some constant C. Then by

using the properties a, b and c in definition (4.6.7) we get
[Pyt = 1], =[9,ped-s T = 3,9,

=273 f -3 f|

<C2'Pw (3 1) =Ca,(f;27).
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So it suffices to consider j=0. From (3.5.4) using property (3) for the

wavelet kernel we can write

FO)—Pef ()= [T - F(MIK(xY)dy

From (4.6.2) we get

[f=pofl} = |

() - f(y)|ay)”
_f[f ey | &

f( HOE f(x+u)|duJ
I dx
S\ (@Hup®

We pick a>0b>0 so that B=a+b and ap>p+Lbp'>1 (where as

p

f[f9— F(MIK(x,y)dy| dx

—00

—l

p™+ p' =1)and applying Holder's inequality to the inside integral we get
f(x)— f(x+u)|"du
- poil; <A |
M (L o)™ @ o)
p/p
J.J.|f(x) f(x+u)|”du J- dub’ i
A (L |u))® Sa|u)”
A “o,(f;|u)Pdu

A

We divide the last integral in to two parts and estimate each part separately

asfollows:
1Ia)p(f ;Jup P du

o

<Co,(f)",

and

]. +°].a) o (f3]u])Pdu °°Ia> o (f3[u])Pdu
© 1 1+|U| 1 1+|U|

using proposition (4.6.4,f) to get
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] +f}w J(Flu)Pdu ? o, (:1)°du
1 1+|u| i @+u)?®

u’du

+u)?

<Caw,(f;1)° j
<Caw,(f;)"
since ap> p+1.

Corollary 4.6.8 [14]: If f satisfies a Holder condition with

exponenta (0], then | —p, f| <c27* =of27).

4.7 Conclusion

We can summarize the results we obtained in this chapter as follows:

1. If afunction f is sufficiently smooth; i.e. f e C*(R), then the rate of
decay of the Fourier coefficients of f is of order O(n™) with mean
square error of order O(N*?), whereas the rate of decay of its wavelet
coefficients is of order O(27/**») with mean square error of order
o2+ ),

2. If afunction f is satisfies a Holder condition with exponent« < (0],
then the rate of decay of the Fourier coefficients of f is of order
o(n™), whereas the rate of decay of its wavelet coefficients is of order
0(2— i(a+1/2) ) _

Note that the smoothness of f is directly related to the rate of decay for

both coefficients; Fourier and wavelet, but does not affect the rate of decay

of the Haar coefficients. See figure (1).
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From the above results we expect that under the same condition of f the

speed of convergence of wavelet series is faster than the speed of

convergence of its Fourier series, and thisis one advantage for wavelet. See

figure (2).
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Finally, I will end this thesis by setting some differences between both

Fourier and wavelets transform.

1. As we show in chapter 2, the Fourier series of a function with a jump
discontinuity exhibits Gibb's phenomenon. That is, the partial sums
overshoot the function near the discontinuity and this overshoot
continues no matter how many terms are taken in the partial sum. Gibb's

phenomenon does not occur if the partial sum replaced by the arithmetic
meanao, . Since the wavelet expansions have convergence properties

similar tos,,, we might expect them not to exhibit Gibb's phenomenon.

2. We can see that unlike the trigonometric system the Haar system
provide the uniform convergence on the partial sums for continuous
function on[0]. This property is shared by most wavelets in contrast
with the Fourier basis for which the best we can expect for continuous
functions is pointwise convergence a.e. Also, the partial sums of the
Fourier series of continuous functions do not necessarily converge. To
expect the uniform convergence we assume that f is a piecewise
smooth function.

3. The wavelet coefficients in the wavelet series expansion of a function

are the integral wavelet transform of the function evaluated at certain

dyadic points [Z—liij No such relationship exists between Fourier

2]

series and Fourier transform, which are applicable to different classes of
functions; Fourier series applies to functions that are square integrable

in [0,27], whereas Fourier transform is for functions that are in L*(%).

Both wavelet series and wavelet transform are applicable to functions
inL%(R)
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Appendix
Basic Theorems

Theorem 1. Cauchy-Schawrz Inequality
Let f(x) and g(x) be L? ontheinterva I, then

12 12
s[ﬂf(x)fde U|g(x)|2dxj

Theorem 2: Holder Inequality

‘jf (X) g(X) dx

If p and g are non negative real numbers such that 1+1=1, and if felLP

P q
and ge L, then fgeL* and |fgf, <|f] |g..

Theorem 3: Dominated conver gence theorem
Suppose f,(x) > f(x) almost everywhere. If |f (x)|<g(x) for al n, and
[a(x)ax <=, then fisintegrable, and [f (x)cx =lim [f.(dx.

Theorem 4: Taylor's Theorem
Suppose that f(x) is n-times continuously differentiable on some interval |

containing the point x,. Thenfor xe 1, f(x) can bewritten
(X=%)° ,, (X— Xo)nfl (n-1) (X=%)" ¢ ()
0 f (XO)+...+W f (XO)+Tf (Zj)

FX) = 10%) +(x=%) F'(x) +

where £is some point between x, and x.

Theorem 5: Minkowski's | nequality
Let f(x) and g(x) be L* ontheinterva I, then

12 12 12
(ﬂ f(X)+ g(x)|2dx} < (ﬂ f (x)|2de +U|g(x)|2de

Theorem 6: If f(x) iscontinuous on aclosed, finiteinterval I, then f(x) is

uniformly continuous on I, and its bounded on I; that is there exist a
number M >0 suchthat |f(x)|<M vxel.
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