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Mathematical Theory of Wavelets 
By 

Bothina Mohammad Hussein Gannam 
Supervisor  

Dr. Anwar Saleh   

Abstract  

Wavelets are functions that satisfy certain requirements and are used 

in representing and processing functions and signals, as well as, in 

compression of data and images as in fields such as: mathematics, physics, 

computer science, engineering, and medicine. The study of wavelet 

transforms had been motivated by the need to overcome some weak points 

in representing functions and signals by the classical Fourier transforms 

such as the speed of convergence and Gibbs phenomenon. In addition, 

wavelet transforms have showed superiority over the classical Fourier 

transforms. In many applications, wavelet transforms converge faster than 

Fourier transforms, leading to more efficient processing of signals and data.  

In this thesis, we overview the theory of wavelet transforms, as well as, the 

theory of Fourier transforms and we make a comparative theoretical study 

between the two major transforms proving the superiority of wavelet 

transforms over the Fourier transforms in terms of accuracy and the speed 

of convergence in many applications.  
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Chapter 1 

Introduction 

    Wavelets were introduced relatively recently, in the beginning of the 

1980s. They attracted considerable interest from the mathematical 

community and from members of many divers disciplines in which 

wavelets had promising applications. A consequence of this interest is the 

appearance of several books on this subject and a large volume of research 

articles.      

The goal of most modern wavelet research is to create asset of basis 

functions and transforms that will give an informative, efficient, and useful 

description of a function or signal. If the signal is represented as a function 

of time, wavelets provide efficient localization in both time and frequency 

or scale. Another central idea is that multiresolution were the 

decomposition of a signal is in terms of the resolution of detail. 

1.1 A Brief History of Wavelets  

In the history of mathematics, wavelet analysis shows many different 

origins. Much of the work was performed in the 1930s, and, the separate 

efforts did not appear to be parts of a coherent theory. Wavelets are 

currently being used in fields such as signal and image processing, human 

and computer vision, data compression, and many others.  Even though the 

average person probably knows very little about the concept of wavelets, 

the impact that they have in today's technological world is phenomenal.  

The first known connection to modern wavelets dates back to a man 

named Jean Baptiste Joseph Fourier. In 1807, Fourier's efforts with 
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frequency analysis lead to what we know as Fourier analysis. His work is 

based on the fact that functions can be represented as the sum of sines and 

cosines.  

Another contribution of Joseph Fourier's was the Fourier Transform. 

It transforms a function f that depends on time into a new function which 

depends on frequency. The notation for the Fourier Transform is indicated 

below. 
dxexfwf iwx)()( .  

The next known link to wavelets came 1909 from Alfred Haar . It 

appeared in the appendix of a thesis he had written to obtain his doctoral 

degree. Haar's contribution to wavelets is very evident. There is an entire 

wavelet family named after him. The Haar wavelets are the simplest of the 

wavelet family and are easy to understand.  

After Haar s contribution to wavelets there was once again a gap of time 

in research about the functions until a man named Paul Levy. Levy s 

efforts in the field of wavelets dealt with his research with Brownian 

motion.  He discovered that the scale-varying basis function 

 

created by 

Haar (i.e. Haar wavelets) were a better basis than the Fourier basis 

functions.  Unlike the Haar basis function, which can be chopped up into 

different intervals 

 

such as the interval from 0 to 1 or the interval from 0 

to ½ and ½ to 1, the Fourier basis functions have only one interval.  

Therefore, the Haar wavelets can be much more precise in modeling a 

function.   
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Even though some individuals made slight advances in the field of 

wavelets from the 1930's to 1970's, the next major advancements came 

from Jean Morlet around the year 1975. In fact, Morlet was the first 

researcher to use the term "wavelet" to describe his functions. More 

specifically, they were called "Wavelets of Constant Slope".  

Morlet had made quite an impact on the history of wavelets; 

however, he wasn't satisfied with his efforts by any means. In 1981, Morlet 

teamed up with a man named Alex Grossman. Morlet and Grossman 

worked on the idea that Morlet discovered while experimenting on a basic 

calculator. The idea was that a signal could be transformed into wavelet 

form and then transformed back into the original signal without any 

information being lost. When no information is lost in transferring a signal 

into wavelets and then back, the process called lossless. Since wavelet deal 

with both time and frequency, they thought a double integral would be 

needed to transform wavelet coefficients back into the original signal. 

However, in 1984, Grossman found that a single integral was all that was 

needed.  

While working on this idea, they also discovered another interesting 

thing. Making a small change in the wavelets only causes a small change in 

the original signal. This is also used often with modern wavelets. In data 

compression, wavelet coefficients are changed to zero to allow for more 

compression and when the signal is recomposed the new signal is only 

slightly different from the original. 
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The next two important contributors to the field of wavelets were 

Yves Meyer and Stephane Mallat. In 1986, Meyer and Mallat first 

formulated the idea of multiresolution analysis (MRA) in the context of 

wavelet analysis. This idea of multiresolution analysis was a big step in the 

research of wavelets, which deals with a general formalism for construction 

of an orthogonal basis of wavelets. Indeed, (MRA) is a central to all 

constructions of wavelet bases.  

A couple of years later, Ingrid Daubechies, who is currently a 

professor at Princeton University, used Mallat's work to construct a set of 

wavelet orthonormal basis functions, and have become the cornerstone of 

wavelet applications today. 

1.2 Wavelet 

     A wave is usually defined as an oscillation function of time or space, 

such as a sinusoid. Fourier analysis is wave analysis. It expands signals or 

functions in terms of sines and cosines which has proven to be extremely 

valuable in mathematics, science, and engineering, especially for periodic, 

time-invariant, or stationary phenomena. A wavelet is a "small wave", 

which has its energy concentrated in time to give a tool for the analysis of 

transient, nonstationary phenomena.  

    A reason for the popularity of wavelet is its effectiveness in 

representation of nonstationary (transient) signals. Since most of natural 

and human-made signals are transient in nature, different wavelets have 

been used to represent this much larger class of signals than Fourier 

representation of stationary signals. Unlike Fourier- based analyses that use 
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global (nonlocal) sine and cosine functions as bases, wavelet analysis uses 

bases that are localized in time and frequency to represent nonstationary 

signals more effectively. As a result, a wavelet representation is much more 

compact and easier to implement. Using the powerful multiresolution 

analysis, one can represent a signal by a finite sum of components at 

different resolutions so that each component can be processed adaptively 

based on the objectives of the application. This capability to represent 

signals compactly and in several levels of resolution is the major strength 

of wavelet analysis. 

1.3 Applications  

Wavelet analysis is an exiting new method for solving difficult 

problems in mathematics, physics, and engineering, with modern 

applications as diverse as wave propagation, data compression, image 

processing, pattern recognition, computer graphics, the detection of aircraft 

and submarines, and improvement in CAT scans and other medical image 

technology. Wavelets allow complex information such as music, speech, 

images, and patterns to be decomposed in to elementary forms, called the 

fundamental building blocks, at different positions and scales and 

subsequently reconstructed with high precision. 

1.4 Signal analysis    

Fourier analysis and the wavelet analysis play the major role in 

signal processing. In fact, large part of the development of such transforms 

is due to their role in signal processing. In this section, we give a short 
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overview of signals. Signals are categorized in two ways: Analog signals 

and Discrete signals. 

Definition 1.3.1 [8]: Analog Signals 

An analog signal is a function :X , where 

 

is the set of real 

numbers, and )(tX  is the signal value at time t.  

Example 1.3.1: Unit step signal 

The unit step signal )(tX  is defined by: 

                       
0  if     0

0   if     1
)(

t

t
tX 

and it is a building block for signals that consist of rectangular shapes and 

square pulses.  

Unlike analog signals, which have a continuous domain, the set of real 

numbers , discrete signals take values on the set of integers . Each 

integer n in the domain of x represents a time instant at which the signal has 

a value x (n).  

Definition 1.3.2 [8]: Discrete and Digital Signals 

A discrete-time signal is a real-valued function :x , with domain is 

the set of integer set . )(nx is the signal value at time instant n. A digital 

signal is an integer-valued function NNx ,: , with domain , and 

N , 0N . 

Example 1.3.2: Discrete Unit step  

The unit step signal )(nx  is defined by: 

                       
0  if     0

0   if     1
)(

n

n
nx 
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The most important signal classes are the discrete and analog finite energy 

signals. 

Definition 1.3.3 [8]: Finite-Energy Discrete Signals 
A discrete signal )(nx has finite-energy if   2

n

nx 

Definition 1.3.4 [8]: Finite-Energy Analog Signals 
An analog signal )(tX is finite-energy if  2

)(tX 

The term" finite-energy" has a physical meaning. The amount of energy 

required to generate a real-world signal is proportional to the total squares 

of its values. 

1.5 Why wavelet? 

One disadvantage of Fourier series is that its building blocks, sines and 

cosines, are periodic waves that continue forever. While this approach may 

be appropriate for filtering or compressing signals that have time-

independent wavelike features, other signals may have more localized 

features for which sines and cosines do not model very well. A different set 

of building blocks, called wavelets, is designed to model these types of 

signals. 

Another shortcoming of Fourier series exists in convergence. In 1873, 

Paul Du Bois-Reymond constructed a continuous, 2 -periodic function, 

whose Fourier series diverge at a given point. Many years later 

Kolmogorove (1926) had proved the existence of an example of 2 -

periodic, 1L

 

function has Fourier series diverged at every point. This raised 

the question of convergence of Fourier series and motivated 

mathematicians to think of other possible orthogonal system that is suitable 
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for any 2 -periodic function by avoiding divergence of the Fourier series 

representation. 

This thesis consists of three chapters. In chapter 2, the basics of Fourier 

series and several convergence theorems are presented with simplifying 

hypothesis so that their proofs are manageable. The Fourier transform is 

also presented with a formal proof of the Fourier inversion formula. 

Several important results including the convolution theorem, parseval's 

relation, and various summability kernels are discussed in some detail. 

Included are Poisson's summation formula, Gibbs's phenomenon, the 

Shannon sampling theorem. 

Chapter 3 is devoted to wavelets and wavelet transforms with examples. 

The basic ideas and properties of wavelet transforms are mentioned. In 

addition, the formal proofs for the parseval's and the inversion formulas for 

the wavelet transforms are presented. Our presentation of wavelets starts 

with the case of the Haar wavelets. The basic ideas behind a 

multiresolution analysis and desired features of wavelets, such as 

orthogonality, are easy to describe with the explicitly defined Haar 

wavelets. Finally, some convergence theorems for the wavelet series are 

presented. 

In chapter 4, the speed of convergence for Fourier and wavelet series by 

studying the rate of decay for those coefficients have been discussed. At the 

end of this chapter we set some differences between the Fourier and 

wavelet transforms.    



  
10 

Chapter two 

Fourier Analysis 

2.1. Introduction 

2.2. Fourier series 

2.3. Functional spaces  

2.4. Convergence of Fourier series 

2.5. Summability of Fourier series 

2.6. Generalized Fourier series 

2.7. Fourier Transform 



  
11

Chapter 2 

Fourier Analysis 

2.1 Introduction  

Historically, Joseph Fourier (1770-1830) first introduced the 

remarkable idea of expansion of a function in terms of trigonometric series 

without rigorous mathematical analysis. The integral formulas for the 

coefficients were already known to Leonardo Euler (1707-1783) and 

others. In fact, Fourier developed his new idea for finding the solution of 

heat equation in terms of Fourier series so that the Fourier series can be 

used as a practical tool for determining the Fourier series solution of a 

partial differential equation under prescribed boundary conditions.  

     The subject of Fourier analysis (Fourier series and Fourier transform) is 

an old subject in mathematical analysis and is of great importance to 

mathematicians, scientist, and engineers alike. The basic goal of Fourier 

series is to take a signal, which will be considered as a function of time 

variable t, and decompose into various frequency components. In other 

words, transform the signal from time domain to frequency domain, so it 

can be analyzed and processed. As an application is the digital signal 

processing. The basic building blocks are the sine and cosine functions, 

which vibrate at frequency of n times per 2  intervals. 

2.2 Fourier series 

Fourier series is a mathematical tool used to analyze periodic functions 

by decomposing such functions into sum of simple functions, which may 

be sines and cosines or may be exponentials. 
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Definition 2.2.1 [24]: Fourier series 

If f is periodic function with period 2 and is integrable on , , then the 

Fourier series expansion of f  is defined as: 
1

0 sincos
n

nn nxbnxaa , where 

the coefficients nn baa ,,0 , Zn in this series, called the Fourier 

coefficients of f , are defined by: 

dxxfa )(
2

1
0           

(2.2.1)                                                                                       

nxdxxfan cos)(
1         

(2.2.2) 

nxdxxfbn sin)(
1          

(2.2.3) 

This definition can be generalized to include periodic functions with 

period Lp 2 , for any positive real number L , by using the trigonometric 

functions
L

xn
cos , 

L

xn
sin  and the following lemma.  

Lemma 2.2.2 [4]: Suppose f  is any 2 -periodic function and c  is any real 

number,   Then              

                        dxxfdxxf
c

c

)()(    

The following theorem illustrates the generalization of Fourier series to 

functions of any period. 

Theorem 2.2.3 [4]:  If  
1

0 sincos)(
n

nn L

xn
b

L

xn
aaxf  on the interval 

LL, , then 
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L

L

dxxf
L

a )(
2

1
0 

                   
L

L

n dx
L

xn
xf

L
a cos)(

1 

                    
L

L

n dx
L

xn
xf

L
b sin)(

1   

One major application of Fourier series is in signal analysis where 

signals are analyzed and processed. Many signals are periodic or 

symmetric. In fact, any signal can be decomposed into an even part and odd 

part, where analysis can be easier.  

Theorem 2.2.4 [4]: Suppose f is a periodic function with period 

Lp 2 defined on the interval LL,  . 

a. If f is even, then the Fourier series of f reduces to the Fourier cosine 

series: 
1

0 cos~)(
n

ne nxaaxf , with 

L

dx
L

xn
xf

L
a

0

0 cos)(
1

 

    
L

n dx
L

xn
xf

L
a

0

cos)(
2 , ,...3,2,1n 

b. If f is odd, then the Fourier series reduces to the Fourier sine series: 

1

sin~)(
n

no nxbxf , with
L

n dx
L

xn
xf

L
b

0

sin)(
2 , ,...3,2,1n 

Example 2.2.1:  consider the even function xxf )( , 1,1x , and assume 

that  f is periodic with period p = 2L = 2. The Fourier coefficients in the 

expansion of f are given by: 

.
2

1

2

1 1

0

0 dxxa   For  1n ,  

1cos
2

)cos(2)cos(
1

2
22

1

0

1

0

n
n

dxxnxdxxnxan  
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So, 

odd    if    
4

even    if           0

22
n

n

n
an

 

))12cos((
)12(

4

2

1
~)(

1
22

xk
k

xf
k

. 

Even and Odd Functions 

Before looking at further examples of Fourier series it is useful to 

distinguish between two classes of functions for which the Euler Fourier 

formulas can be simplified. These are even and odd functions, which are 

characterized geometrically by the property of symmetry with respect to 

the y-axis and the origin, respectively. 

Analytically, f is an even function if its domain contains the point x 

whenever it contains the point x, and if )()( xfxf for each x in the 

domain of f. Similarly, f is an odd function if its domain contains x 

whenever it contains x, and if )()( xfxf  for each x in the domain of f . 

Even and odd functions are particularly important in applications of Fourier 

series since their Fourier series have special forms, which occur frequently 

in physical problems. 

Definition 2.2.5 [21]: Even periodic extension   

Suppose  f is defined on the interval L,0 . The periodic even extension 

of f is defined as: 
0for     )(

0for       )(
)(

xLxf

Lxxf
xfe and )()( xfLxfe

 

Definition 2.2.6 [21]: Odd periodic extension  
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Let f be a function defined on the interval L,0 . The periodic odd 

extension of f is defined as: 
0for    )(

0for                 0

0for          )(

)(

xLxf

x

Lxxf

xfo  and  

)()( xfLxfo . 

Example 2.2.2: consider the function 1)( 2xxf , 1,0x , the periodic 

odd extension of f is defined as: 
01for     1

0for                 0

10for        1

)(
2

2

xx

x

xx

xfo 

The graphs of   f and of are shown in Figures 1 and 2 respectively. 

                                

 

                      Figure 1                                                                                            Figure 2  

Example 2.2.3: let f be 2 periodic function defined on the 

interval , , as 

   
0,  ,

,0     ,
)(

xx

xx
xf 

f  is odd function so 0na  for 0n  , and
n

nxdxxfbn

2
sin)(

1 . 

So 

          
1

sin
2~)(

n n

nx
xf 

Example 2.2.4:  let 
,0if    ,1

0,if   ,0
)(

x

x
xf     

Then 
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1

)12sin(
)12(

2

2

1
~)(

n

xn
n

xf .                                                                                                      

2.3 Functional spaces 

Definition 2.3.1:  pL -space 

Let 1p be real number. Then the pL -space is the set of all real-valued (or 

complex-valued) functions f on I , such that
I

p
dxxf )( . 

If )(ILf p , then its pL -norm defined as: 
p

I

p

p
dxxff

1

)(  . 

Example 2.3.1:   

a. The space )(1 IL is the set of all integrable functions f on I , with 1L -norm 
defined by dxxff )(

1
.   

b. The space )(2 IL is the set of all square integrable functions f on I, 

with 2L norm defined by 
2

1

2

2
)(

I

dxxff , and we say that the 

function has finite energy.  

Remarks [1]: 

a. Any continuous or piecewise continuous function with finite number of 

jump discontinuities on a finite closed interval I is in )(1 IL .  

b. Any function bounded on finite interval I is square integrable on I. This 

includes continuous and piecewise continuous functions with finite 

jump discontinuities on a finite closed interval. 

Theorem 2.3.2 [1]:  Let I be a finite interval. If f )(2 IL , then f )(1 IL . In 

other words, a square integrable function on a finite interval is integrable. 

Remarks [1]: 
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a. The conclusion of theorem 2.3.2 doesn't hold if I is an infinite interval, 

for example 

     
1   ,0

1    , 
1

)(
x

x
xxf  

     f )(2 IL but f )(1 IL .  

b. The converse of theorem 2.3.2 is not true, for example
x

xf
1

)(

 

, 1,0x , is in 1,01L  but not in ))1,0((2L . 

Definition 2.3.3 [4]:  The 2L -inner product on 2L ( I ) is defined as  

I
L

dxxgxfgf )()(, 2  , )(, 2 ILgf , where g  is the complex conjugate of g . 

In case where the signal is discrete, we represent the signal as a 

sequence nnxX , where each nx is the numerical value of the signal at 

the thn  time interval ],[ 1nn tt . 

Definition 2.3.4 [4]: Let 1p be real number. Then the pl -space is the set 

of all real-valued (or complex-valued) sequences X, such that 
n

p

nx . 

The space 2l is the set of all sequences X , with
n

nx
2 . The inner 

product on this space is defined by  

n
nnl

yxYX 2, , 

where  nnxX  , and nnyY  . 

 Let 1nnf  be a sequence of real-valued or complex-valued functions 

defined on some interval I

 

of the real line. We consider four types of 

convergence:  
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a. Pointwise convergence. A sequence of functions nf  converges to f 

pointwise on I

 
if for each Ix

 
and for each small 0 , there exist a 

positive integer N such that if Nn , then )()( xfxfn . 

b. Uniform convergence.  A sequence of functions nf  converges to f 

uniformly on the interval I

 

if for each small 0 , there exist a positive 

integer N such that if Nn ,then )()( xfxfn . 

c. Convergence in 2L norm. A sequence of functions nf  converges to f 

in 2L ( I ) if 0)()(
2

xfxfn as n , i.e given any 0 , there exist 

0N  such that if Nn , then 
2

)()( xfxfn . 

d. Convergence in 1L norm. A sequence of functions nf  converges to f 

in )(1 IL if for any 0 , there exist 0N such that if Nn , 

1
)()( xfxfn . 

Remarks: 

a. If the interval I

 

is bounded, then the uniform convergence implies 

convergence in both 1L  and 2L  norm. 

b. The uniform converge always implies the pointwise converges, but the 

converse is not true. 

c. The uniform convergence is very useful when we want to approximate 

some function by sequence of continuous function )(xfn . 

Theorem 2.3.5: Uniform convergence theorem  

Let nnf be a sequence of continuous functions on I

 

and suppose 

ff n  uniformly on I , then f  is continuous function on I .  

Proof: Suppose ff n

 

uniformly and each nf is continuous. Then given 

any 0 , there exist N such that n > N  implies 
3

)()( xfxf n  for all x. 
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Pick an arbitrary n larger than N. Since nf is continuous, given any point 

Ix0 , 0  such that 00 xx
3

)()( 0xfxf nn . 

Therefore, given any 0 , 0  such that 00 xx 

               )()()()()()()()( 0000 xfxfxfxfxfxfxfxf nnnn

  

                                      
333

. 

 Therefore, f  is continuous function on I . 

2.4 Convergence of Fourier series 

We start this section by discussing two important properties of the 

Fourier coefficients: Bessel's inequality which relates the energy of a 

square integrable function to its Fourier coefficients, and the Riemann

Lebesgue lemma ensures the vanishing of the Fourier coefficients of a 

function. 

Theorem 2.4.1: (Bessel's inequality). 

 If f  is a square integrable function on ],[ , i.e. dxxf
2

)(  is finite, then 

                                  2

1

222

0 )(
1

2 xfbaa
n

nn 

Where nn baa ,,0  are the Fourier coefficients of f . 

Bessel's inequality says that if f has finite energy, then the module-square 

of the  

Fourier coefficients are also finite.  

Lemma 2.4.2 [4]: (The Riemann-Lebesgue Lemma) 

Suppose f  is piecewise continuous function on the interval ba, , Then 

                       0cos)(limsin)(lim
b

a
n

b

a
n

dxnxxfdxnxxf 
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Proof:  consider the integral 
b

a

dxnxxf sin)( , 

we have 
b

a

dxnxxf sin)(  = 
b

a

b

a

dx
n

nx
f

n

nxxf coscos)( 

 as n

 

, the right integral becomes zero (by using the sandwich 

theorem). So that       

0sin)(lim
b

a
n

dxnxxf     

Similarly,  

0cos)(lim
b

a
n

dxnxxf . 

There are two consequence of this theorem one of them is that only the 

first few terms in the Fourier series are the most important since they 

contribute more to the sum which means that only finite number of terms 

can be used to approximate the function. This is especially important in 

data compression. Another one is used to proof our convergence result. 

Convergence theorems are concerned with how the partial sum  
N

n
nnN nxbnxaaxS

1
0 sincos)( 

converge to )(xf . The partial sum can be written in terms of an integral as 

follows: 
N

n
nnN nxbnxaaxS

1
0 sincos)(  

           
N

n

dtntnxtfdtntnxtfdttf
1

)sin()sin()()cos()cos()(
1

)(
2

1   . 

           dtntnxntnxtf
N

n 1

)sin()sin()cos()cos(
2

1
)(

1   . 
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           dtxtntf
N

n 1

cos
2

1
)(

1 . 

           dt
xt

xtN
tf

2)(sin

21sin
)(

2

1 = dtxtDtf N )()(
1 

So, by change of variable )( xtu , and using lemma 2.2.2, we have 

                duuDxufxS NN )()(
1

)( , 

where
)2sin(2

)21sin(
)(

u

uN
uDN , is called Dirichlet Kernel of order N. 

Convergence of Fourier series depends on the Dirichlet kernel. The 

following theorem states the basic property of this kernel. 

Theorem 2.4.3 [19]:  The Dirichlet kernel satisfies the following property: 

a. Each )(tDN  is real valued, continuous, 2 -periodic function 

b. Each )(tDN  is an even function. 

c. For each N , 
2

1
)0( NDN , and

2

1
)( NtDN . 

d. For each N , 1)(
2

)(
1

0

dttDdttD N

I

N . 

e. For t0 , 
t

tDN 2
)( . 

f. ,)(2
IN tD  as N . 

Some of the features of the Dirichlet kernel can be seen Figure 3. The 

symmetry is certainly apparent ( )(tDN is even) and that the graph oscillates 

above and below the horizontal axis is evident. The value of the function is 

small except close to 0 where the function is large, and as N increases this 

feature becomes more clear. The total area remains fixed always at 

 

because of cancellations.  
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Figure 3 : )(tDN 

      

The following theorem gives conditions for convergence at a point of 

continuity. 

Theorem 2.4.4 [4]:  Suppose f is a continuous, 2 periodic function. 

Then for each point x

 

where the derivative of  f is defined, the Fourier 

series of f at x  converges to )(xf . 

Proof: let duuDxufxS NN )()(
1

)( , we want to show that  

                      )()()(
1

xfduuDxuf N  as N , 

(by theorem 2.4.3, d) we have 

                      duuDxfxf N )()(
1

)( ,  

so we must show that: 

021sin
)2sin(

)()(1
)())((

1
duuN

u

xfxuf
duuDxfxuf N

 

as N . 
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 Let
)2sin(

)()(
)(

u

xfxuf
ug . The only possible value of ,u ,where )(ug 

could be discontinuous is 0u , so 

).(21.2).(2.
2sin

2
.

)()(
lim)(lim

00
xfxf

u

u

u

xfxuf
ug

uu

 

Since f

 

is exist, then )(ug is continuous and by Riemann- lebesgue lemma 

the last integral is zero as N large enough and this finish the proof.  

Note that the hypothesis of this theorem requires the function f to be 

continuous. However, there are many functions of interest that are not 

continuous. So the following theorem gives conditions for convergence at a 

point of discontinuity.  

Theorem 2.4.5 [4]: Suppose f is periodic and piecewise continuous, 

suppose x is a point where f is left and right differentiable (but not 

necessarily continuous).Then the Fourier series of f at x

 

converge 

to
2

)0()0( xfxf . 

Proof: we must show that     

duuDxuf N )()(
1

2

)0()0( xfxf  as  N 

where 1)(
1

duuDN , in other words,   

2

)0(
)()(

1

0

xf
duuDxuf N     

2

)0(
)()(

1 0 xf
duuDxuf N

 

these limits are equivalent to the following limits respectively,  

0)())0()((
1

0

duuDxfxuf N , and 0)())0()((
1 0

duuDxfxuf N 

by definition of )(uDN  and Riemann lebesgue lemma we have      
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021sin
)2sin(

)0()(

2

1

0

duuN
u

xfxuf     

Let
)2sin(

)0()(
)(

u

xfxuf
ug , 

 since u  is positive its enough to show that )(ug is continuous from the right 

).0(21.2).0(2.
2sin

2
.

)0()(
lim)(lim

00
xfxf

u

u

u

xfxuf
ug

uu 

since f  is assumed to be right differentiable then the proof is finish. 

Similarly, we can show that 0)())0()((
1 0

duuDxfxuf N  as N . 

In example (2.2.1), the function f is continuous on 1,1 . Therefore, its 

Fourier series converges for all 1,1x . Figure 4 shows the graphs f 

together with the partial sums 2S , 10S , and 50S of its Fourier series.  

               

 

              (a) f                          (b) 2S   

    

  

                  (c) 10S                                                               (d) 50S      

Figure 4  
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In example (2.2.3) f  has a jump discontinuity at 0x , so Fourier series 

converges at each point in ,  except at 0x . Figure 5 shows the graphs 

f  together with the partial sums 10S , 50S and 200S of its Fourier series.  

 

    (a) f                                                         (b) 10S 

                                                                                                      

                                        

  

             (c) 50S                                                                      (d) 200S                         

Figure 5                        

The following theorem gives conditions for the uniform convergence. 

Theorem 2.4.6 [4]: The Fourier series of piecewise smooth, 2 -periodic 

function f converges uniformly to f  on , . 

Proof: To simplify the proof we can assume that the function f is twice 

differentiable. Consider the Fourier series of both ff , , respectively; 

1
0 sincos~)(

n
nn nxbnxaaxf , 
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1
0 sincos~)(

n
nn nxbnxaaxf , 

we have the following relation between the coefficients of f and the 

coefficients of f :  

nn a
n

a
2

1   

nn b
n

b
2

1  . 

If  f

 

is continuous, then both the na

 

and nb

 

stay bounded by some number 

M (in fact, by Riemann-Lebesgue lemma, na

 

and nb

 

converges to zero as 

n .Therefore, 

        
1

2
1

2
1 nn

nn
n

n
n

n

MM

n

ba
ba ,  

the last series is convergence and hence, 
1n

nn ba . 

11

sincos)()(
Nn

nn
Nn

nnN banxbnxaxSxf   uniformly for all x . 

But 
1Nn

nn ba is small for large N , so given 0,0 0N

 

such that if 

,0NN

 

then xxSxf N ,)()( . N doesn't depend on x , thus the 

convergence of )(xS N  is uniformly. 

Example 2.4.1: Gibbs phenomena [17] 

Let's return to our example 2.2.3.  f has a discontinuity at x = 0 so the 

convergence of its Fourier series can't be uniform. Let's examine this case 

carefully. What happens to the partial sums near the discontinuity?  

Here, 
N

n
N n

nx
xS

1

sin
2)(  so 

0,

2
sin

2

1
cos

2
sin

21
)2sin(

)21sin(
cos2)(

1

x
x

xNNx

x

xN
nxxS

N

n
N . 

Thus, since 0)0(NS  and we have 
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dttSxS N

x

N )()(
0

dt
t

tNNt
x

2
sin

2

1
cos

2
sin

2
0

. 

Note that 0)0(NS  so that NS  starts out at zero for x = 0 and then increases. 

Looking at the derivative of NS we see that the first maximum is at the 

critical point 
1N

xN (the first zero of 
2

1
cos

xN as x increases from 0). 

Here, NN xxf . 

The error is  

NNN xfxS dt
t

tN
Nx

2
sin

2

1
sin

2
0

. 

                          
NN xx

dttN
tt

dt
t

tN

00 2

1
sin.

2

)2sin(

22

1
sin

2 . 

                          )()( NN xJxI . 

Where  

Nx

N dt
t

tN

xI
0

2

1
sin

2)(
NxN

du
u

u
)21(

0

sin
2 702794104.3

sin
2

0

du
u

u 

)( NxJ dt
t

Nt
t

Nt
tt

Nx

]
2

sincos
2

cos.[sin
2

)2sin(

2

0

. 

By Riemann-Lebesgue lemma 0)( NxJ  as N . 

We conclude that  

.559.702794104.3][lim NNN
N

xfxS 

The partial sum is overshooting the correct value by about 17.8635%! This 

is due the Gibbs Phenomenon. At the location of the discontinuity itself, 

the partial Fourier series will converge to the midpoint of the jump. 
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In mathematics, the Gibbs phenomenon, named after the American 

physicist J.Willard Gibbs, is the peculiar manner in which the Fourier 

series of a piecewise continuously differentiable periodic function f 

behaves at a jump discontinuity: the nth partial sum of the Fourier series 

has large oscillations near the jump, which might increase the maximum of 

the partial sum above that of the function itself. The overshoot does not die 

out as the frequency increases, but approaches a finite limit. 

Note that the differentiability condition cited in theorems 2.4.4 through 

theorem 2.4.6 is to ensure the convergence of the Fourier series of f . So, in 

the case where the function is continuous but not piecewise differentiable, 

it's impossible to say that the Fourier series of such function is converge to 

f  (pointwise or uniformly). 

In 1873, Due Bois-Raymond, showed that there is a continuous function 

whose Fourier series diverge everywhere on accountably infinite set of 

point. The construction of this example is in [20]. Many years earlier 

Kolmogorove [5],(1926), had proved the existence of an example of  a 2 -

periodic, 1L  function that has Fourier series diverges at every points. 

Kolmogorove example [5]: let 1nnf be a sequence of trigonometrical 

polynomials of orders ,...,, 321 with the following properties: 

a. 0)(xfn .     

b.  
2

0

2dxxfn . 

Moreover, suppose that to every nf corresponds an integer n , where  

nn0 ,a number nA >0, and a point set nE , such that 



  
29

a. If nEx , there is an integer ,xKK

 
nn K  for which nnK AfxS );( . 

b. nA  .     

c. n . 

d.  ,...21 EE  ,  )2,0(...21 EE . 

Under these conditions, Kn tends to 

 

sufficiently rapidly, the Fourier 

series of the function     
1

)(
)(

K n

n

K

K

A

xf
xf      , diverges every where. 

The proof is very difficult, so you can found it in [5].  

In the case where a Fourier series doesn't converge uniformly or pointwise 

it may be converge in weaker sense such as in 2L .i.e. Convergence in the 

mean 

Theorem 2.4.7 [4]: suppose ,2Lf , 

let
N

n
nnN nxbnxaaxf

1
0 sincos)( . 

Where na , and nb , n =0,1,2, , are the coefficients of f , then Nf converge 

to f in 2L . i.e 0
2

ff N  as N 

Remark: Nf in nV = the linear span of nxnx sin,cos,1 , which is the closest in 

the 2L -norm, i.e. 
22

min fgff
nVg

N

 

Proof: The proof consists of two steps: 

st1 step, any function can be approximated arbitrarily by a smooth, 2 -

periodic function say g.  

nd2 step, this function g can be approximate uniformly and therefore in 

2L by its Fourier series. 

Assume we proved the st1 step, so for any ]),([2Lf , there exists a 2 -

periodic and smooth function g such that:      
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2

fg                                                   (2.4.1)                 

 Let   
N

n
nnN nxdnxccxg

1
0 sincos)( , where nn dc ,  are the coefficients of g . 

Since g

 

is differentiable, then we can approximate g uniformly by Ng , by 

choosing 0N  large enough such that 

                              ,,)()( xxgxg N                                 (2.4.2)                   

for  N > 0N , we have  

                 2222
2)()( dxdxxgxggg NN                      (2.4.3)         

                  2Ngg                                                         (2.4.4)  

by (2.4.1)  (2.4.4) 
         NNN ggfggggfgf

2
                                               

                                                 ,2

 

for 0NN , 

 but Ng  in nV , so  

         21min
22 N

Vg
N gffgff

n

, for 0NN

  

 since  arbitrary  the proof is finish.  

2.5 Summability of Fourier series 

A study of convergence property of Fourier series partial sum will face 

some problems, such as Kolomogrove example, and Gibb's phenomenon in 

the partial sums for discontinuous function, finally, Du' Bois Raymond 

example of continuous function whose Fourier series diverge some where.        

All of these difficulties can be solved by using other summation formula or 

method, one of them is to take the arithmetic mean of the partial sums of 

the Fourier series [19]:  

NxSxSxSx NN )(......)()()( 110 .                                          (2.5.1)            
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1

0

2

0

)(
1 N

j
j dttftxD

N

 
           dttftxD

N

N

j
j )(

12

0

1

0

 

           dttftxK N )()(
1 2

0

 

where 

      
2

1

0 2sin

2sin1
)(

1
)(

x

Nx

N
xD

N
xK

N

j
jN , is called Fejer Kernel of order N. 

The idea of forming averages for divergent series formula studied by 

Ernesto Cesaro [19] in 1890, and then the mathematician Leopold Fejer 

[19] first applied it in 1990 to study the Fourier series and he had shown 

that Cesaro summability was a way to overcome the problem of divergence 

of a classical Fourier series for the case of continuous functions. 

Now, we will set the basic properties of this kernel in the following 

theorem 

Theorem 2.5.1 [19]:  (Properties of Fejer kernel) 

Let )(xK N  be the Fejer Kernel. 

a. Each )(xK N  is real valued, non negative, continuous function. 

b. Each )(xK N  is an even function. 

c. For each N, 
I

N dxxK )(
1

1)(
2

0

dxxK N . 

d. For each N, NK N )0( . 

The reason why the formula (2.5.1) is better properties than ordinary 

partial sums is that the Fejer kernel is nonnegative. So, its graph here 

doesn't oscillate above and below the horizontal axis like Diriklet kernel, 

but remains on or above. The total area under the graph of Fejer kernel (see 
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Figure 6) remains fixed at , but this is not because of any cancellation, 

and for this reason the Cesaro means of the Fourier series of continuous 

function can  converge even though the series diverges.  

                              

Figure 6  

The following theorem gives conditions for the Convergence in Cesaro 

mean. 

Theorem 2.5.2 [19]:  let f be integrable function, and let )(xN

 

denote the 

Cesaro mean of the Fourier series of f , if f is piecewise continuous, 0x is 

the point of discontinuity, then  

            
2

)0()0(
)(lim 00 xfxf

xN
N

,  

Moreover, If f  is a 2 -periodic function that is continuous at each point on 

I, then )(xN  converge to f  uniformly for each x  in  I. 

Proof:  let  0  choose 0  such that for every t0 , we have 

                     )(2)()( 000 xftxftxf                                     (2.5.2)              
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By theorem (2.5.1, c) the integral  
0

00 )()()(
2

xfdttKxf N  , 

  
0 0

000 )()(
2

)()()(
1

)()( dttKxfdttKtxftxfxfx NNN 

                     
0

000 )()(2)()(
1

dttKxftxftxf N 

                          dttKxftxftxf N )()(2)()(
1

0

000

  

                          21 II     

where 1I is the integral over the interval ,0 , and 2I is the integral over the 

interval , .  

By (2.5.2), 
0

1 )( dttKI N , and for large N , 1I becomes small, because 

the bound of the size of )(tK N  for t away from zero.  

Let ttK NN ),(sup , by theorem (2.5.1, f) 0N  as N . So, 

              dtxftxftxfI N )(2)()( 0002 . 

So, for large N, 2I becomes small, and since 

 

is arbitrary, then 

)()(lim 00 xfxN
N

and if f is continuous at each point on I, then the last 

limit apply uniformly. So that )(xN

 

converge to f uniformly for each x

 

in 

I.  

Lemma 2.5.3 [17]:  Suppose ),(2Lf and 2 -periodic function is 

bounded by M , then MxN )(   x  and for all N . 

As a result of lemma 2.5.3, Gibbs phenomenon will disappear. To show 

this, we use the sandwich theorem. 

     NN ff0 

     N
NN

N
N

ff limlimlim0 

                                 0MM 
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Hence, 0lim N
N

f . 

2.6 Generalized Fourier series 

The classical theory of Fourier series has undergone extensive 

generalizations during the last two hundred years. For example, Fourier 

series can be viewed as one aspect of a general theory of orthogonal series 

expansions. Later, we shall discuss a few of the more orthogonal series, 

such as Haar series, and wavelet series. But now we give a formal 

definition of orthogonality of such system . 

Definition 2.6.1 [1]: Orthogonality 

A collection of functions )()( 2 ILxg nn

 

forms an orthogonal system on I 

if: 

a. 0)()(
I

mn dxxgxg     for mn . 

b. 0)()()(
2
dxxgdxxgxg

I

n

I

nn 

where  g  is the complex conjugate of g. 

If in addition:  

c. 1)()()(
2
dxxgdxxgxg

I

n

I

nn . 

Then the system is orthonormal on I    
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Example 2.6.1: 

The set nnxnx )cos(),sin(,1 is an orthogonal system over , , and the set 

n

nxnx )cos(
1

),sin(
1

,
2

1 is an orthonormal system over the 

interval , . 

Definition 2.6.2 [1]: Generalized Fourier series 

  Let )(2 ILf

 

and let nn xg )( be an orthonormal system on I. The 

generalized Fourier series is: 

                                               
n

nn xggfxf )(,~)( . 

The fundamental question about Fourier series is: When is an arbitrary 

function equal to its Fourier series and in what sense does that Fourier 

series converge? The answer lies in the notation of a complete orthonormal 

system.  

Definition 2.6.3 [1]: Given a collection of functions )()( 2 ILxg nn , the 

span of nn xg )( denoted by nn xg )(span is the collection of all finite 

linear combinations of the elements of nn xg )( . The mean-square closure 

of nn xg )(span , denoted )(span xgn is defined as follows: A function 

)(span xgf n

 

if for every 0

 

, there is a function nn xgxg )(span)( 

such that
2

gf . 

Definition: 2.6.4 [1]: Completeness 

If every function in )(2 IL is in )(span xgn where nn xg )( is orthonormal 

system, then we say that nn xg )( is complete on I, this means that every 

function in )(2 IL is equal to its Fourier series in )(2 IL . A complete 

orthonormal system is called an orthonormal basis. 
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The following two lemmas related to very important inequalities that will 

be very useful in the next theorem. 

Lemma 2.6.5 [1]: Let nn xg )( is the orthonormal system on I, then for 

every )(2 ILf , 

                       
N

n
n

N

n
nn gffggff

1

22

2

2

21

,,                           

The next theorem gives several equivalent criteria for an orthonormal 

system to be complete.   

Lemma 2.6.6 [1]: Let nn xg )( is the orthonormal system on I, then for 

every )(2 ILf , and every finite sequence of numbers N
nna 1)(

  

              
N

n
n

N

n
nn

N

n
n gfnaggffgnaf

1

2
2

21

2

21

,)(,)( .  

Theorem 2.6.7 [1]:  Let  nn xg )( be an orthonormal system on I then the 

following are equivalent. 

a.  nn xg )(  is complete on I. 

b. For every )(2 ILf  , 
n

nn xggfxf )(,)(  in )(2 IL .  

c. Every function f , 0
cC on I can be written as

n
nn xggfxf )(,)( , and  

n
n

I

gfdxxff
222

2
,)( . 

The last statement convert the inequality in Bessel's inequality to equality, 

which means that the sum of the moduli-squared of the Fourier coefficient 

is precisely the same as the energy of f  . 

Proof:  ba
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If nn xg )( is complete, by definition of a complete set, every )(2 ILf is 

in )(span xgn , so let 0 , then there exist a finite sequence 0

1)( N
nna , 

0N (by definition of )(span xgn ), such that    

                                
21

)(
N

n
ngnaf .  

So by lemma (2.6.5)  
000

1

2
2

21

2

21

,)(,,
N

n
n

N

n
nn

N

n
nn gfnaggffggff                                                 

 

                          = 2

2

21

0

)(
N

n
ngnaf . 

But    
n

N

n
nn ggff

21

, is decreasing sequence, so for every 0NN

 

                                  
2

21

,
N

n
nn ggff . 

cb

 

Every function f , 0
cC on I is in )(2 IL , by (b):

n
nn xggfxf )(,)( . 

But the last equation hold  iff  0,lim
2

21
0

N

n
nn

N
ggff  for all  f , 0

cC on I. 

by lemma (2.6.6), we have 

                       
N

n
n

N

n
nn gffggff

1

22

2

2

21

,, 

and this equivalent to 0),(lim
1

22

20

N

n
n

N
gff    , hence c hold.  

2.7 Fourier Transform 

The Fourier transform can be thought of as a continuous form of Fourier 

series. A Fourier series decomposes a signal on ,

  

into components 

that vibrate at integer frequencies. By contrast, the Fourier transform 
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decomposes a signal defined on an infinite time interval into a w - 

frequency component, where w  can be any real (or even complex number). 

As we have seen, any sufficiently smooth function f that is periodic can 

be built out of sine and cosine. We can also see that complex exponentials 

may be used in place of sine and cosine. We shall now use complex 

exponentials because they lead to less and simpler computations. 

If f  has period 2L, its complex Fourier series expansion is 

n

L

xin

necxf )(  ,   with dxexf
L

c
L

L

L

xin

n )(
2

1 . 

Non-periodic functions can be considered as periodic functions with period 

L= , and the Fourier series becomes Fourier integral 

Fourier transform on 1L 

Definition 2.7.1 [12]:  Fourier transform on 1L 

Let 1Lf , the Fourier transform of )(xf of is denoted by )(wf and 

defined by 

                                     dxexfwf iwx)()(

  

Physically, the Fourier transform, )(wf , measures oscillation of )(xf at the 

frequency w , and )(wf is called frequency spectrum of a signal or 

waveform )(xf . 

Theorem 2.7.2 [4]:  (Fourier inversion formula)  

If 1Lf  is continuously differentiable function, then 

dwewfxf iwx)(
2

1
)(         

If the function )(xf has points of discontinuity, then the preceding formula 

holds with )(xf  replaced by the average of the left and right hand limits. 
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Note: The assumption 1Lf in theorem (2.7.2) is needed to ensure that 

the improper integral defining )(wf converges. 

Proof: we want to prove that dwdtetfxf wxti )()(
2

1
)(

  

If f is non zero only finite interval, then the t integral occurs only on this 

finite interval. The w

 

integral still involves on infinite interval and this 

must be handled by integrating over a finite interval of the form LwL , 

and then letting L . 

So we must show that
L

L

wxti

L
dtdwetfxf )()(lim

2

1
)( . 

Using the definition of complex exponential uiueiu sincos , the preceding 

limit is equivalent to showing  
L

L
L

dtdwwxtiwxttfxf sincos)(lim
2

1
)( . 

Since sine is an odd function, the w  integral involving 0sin wxt , so 
L

L
dtdwwxttfxf

0

cos)(lim
1

)(

 

and this is because cosine is an even function. 

now
L

xt

Lxt
wdwxt

0

)sin(
)cos( , replacing t

 

by ux , the preceding limit is 

equivalent to 

du
u

Lu
uxfxf

L

)sin(
)(lim

1
)(                                                            (2.7.1)            

To prove (2.7.1), we must show that for any 0 , the difference between 

)(xf and the integral on the right is less than

 

for sufficiently large L. For 

this , we can choose 0  such that 

duuxf )(
1                                                                                 (2.7.2)               
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we will use this inequality at the end of the proof. 

Now we need to use the Riemann- Lebesgue lemma which state. 

0)sin()(lim
b

a
L

duLuug , where g is any piecewise continuous function. Here, 

a  and b  could be infinity if g is nonzero only on a finite interval. By letting 

uuxfug )()( , we get the integrals 

du
u

Lu
uxf

)sin(
)(

1    and    du
u

Lu
uxf

)sin(
)(

1  

which tends to zero as L . Thus the limit in (2.7.1) is equivalent to 

showing  

du
u

Lu
uxfxf

L

)sin(
)(lim

1
)(                                                         (2.7.3)           

but du
u

un
uxfxf

n 2sin2

)21sin(
)(lim

1
)(                                            (2.7.4)            

(See theorem 2.4.4), so the proof of (2.7.3) will proceed in two steps. 

Step 1: 

du
u

un
uxfdu

u

un
uxf

)21sin(
)(

1

2sin2

)21sin(
)(

1 

du
uu

unuxf
1

2sin2

1
)21sin()(

1     

since the integration over , and , is zero as n , by Riemann-

lebesgue lemma.  

In addition, the quantity 
uu

1

2sin2

1 is continuous on the 

interval u , because the only possible discontinuity occurs at 0u , 

and the limit of this expression as 0u  is zero. So    

0
1

2sin2

1
)21sin()(

1
du

uu
unuxf  as n . 

Together with (2.7.4) , we show that 
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)(
)21sin(

)(
1

xfdu
u

un
uxf as n                                          (2.7.5)            

Which is the same limit in (2.7.3) for L of the form 21nL . 

Step 2: 

Any L > 0 can be written as hnL , 1,0h , to show               

2

sin)21sin(
)(

1
du

u

Lu

u

un
uxf 

By using mean value theorem, we have         

uhnunLuun sin)21sin(sin)21sin(                                                  

                               = 22cos uhuut , since 1,0h . 

Therefore,  

22
.)(

1sin)21sin(
)(

1
du

u

u
uxfdu

u

Luun
uxf    

Finally, we can choose N large enough so that if n > N, then       

2

)21sin(
)(

1
)( du

u

un
uxfxf 

this inequality together with the one in step (2.7.2) yields.         

du
u

Lu
uxfxf

)sin(
)(

1
)(       

du
u

Luun
uxfdu

u

un
uxfxf

sin)21sin(
)(

1)21sin(
)(

1
)(     

,
22

 If n > N. Hence the proof is complete.  

Example 2.7.1:  The Fourier transform of 
,0,

0,,
)(

xx

xx
xf  

Is given by 

                   
2

cos12
)(

w

w
wf

  

the graph of f  and its Fourier transform are given in Figure (10).   
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               (a): )(xf                                                     ( b): )(wf 

  Figure 10                                                           

Example 2.7.2: Characteristic function          

Let 
otherwise0

,,1
)(

x
x  , then   w

w
w sin

2
)( . 

Note that )()( 1Lx , but its Fourier transform is not in )(1L . The graph 

of )(x  and )(w  is given in Figure (11). 

                                                                                                           

                                          

  

      

            (a) : )(x

                                                             

(b) : )(w                                                                            

Figure 11 

Remarks [12]:  

a. Note that the Fourier transform in example (2.7.1) decay at the rate
2

1

w
  

as w , which is faster than the decay rate of 
w

1 exhibited by the  

Fourier transform in   example (2.7.2), the faster decay in example 
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(2.7.1) result from the continuity of the function. Note the similarity to 

the Fourier coefficients nn ba ,  in examples 2.2.1 and 2.2.3 of section 2.2.  

b. Some elementary functions, such as the constant function  axaxc sin,cos,   

, do not belong to )(1L , and hence do not have Fourier transform. But 

when these functions are multiplied by the characteristic function )(x , 

the resulting functions belong to )(1L , and have Fourier transform. 

Example 2.7.3:  Gaussian function 

The Fourier transform of Gaussian function 
22

)( xaexf  is defined by 

2

2

4

4
)( a

w

ewf  , where a > 0. 

The graph of )(,)( wfxf is given in Figure (12). Note that the Fourier 

transform of Gaussian function, is again Gaussian function.  

                            

 

(a): 1at)( atf                                                                     (b): 1at)( awf 

     Figure 12                           

Basic Properties of Fourier transform  

In this section, we set down most of the basic properties of the Fourier 

transform. First, we introduce the alternative notation )())(( wfwfF

 

for 

the Fourier transform of ))((and)( 1 xfFxf

 

for the inverse Fourier 

transform. 
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Theorem 2.7.3 [4]: Let gf and be differentiable functions defined on the 

real line with 0)(xf  for large x , then the following properties holds: 

1. Linearity: The Fourier transform and its inverse are linear operator. 

That is for  any constant c

 

     - )()()( gFfFgfF and )()( fcFcfF . 

     - )()()( 111 gFfFgfF and )()( 11 fcFcfF . 

2. Translation: ))(()))((( wfFewaxfF awi . 

3. Rescaling: ))((
1

))(((
b

w
fF

b
wbxfF . 

4. The Fourier transform of a product of  f  with nx  is 

      ))(()()))((( wfF
dw

d
iwxfxF

n

n
nn . 

5. The inverse Fourier transform of a product of f with nw  is 

     ))(()()))((( 11 xfF
dt

d
ixwfwF

n

n
nn

 

6. The Fourier transform of an thn  derivative is  

      ))(()()))((( )( wfFiwwxfF nn

 

7. The inverse Fourier transform of thn  derivative is  

       ))(()())(( 1)(1 xfFixxfF nn . 

Note that we assume that f is differentiable function with compact 

support , and we don t say that )(1Lf , and this is because the Fourier 

transform of some function in )(1L like the characteristic function, do not 

belong to the 1L - space, hence we can't talk about the inverse of the Fourier 

transform. 

Theorem 2.7.4 [12]:  Continuity 

If )(1Lf , then )(wf  is continuous on . 
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Proof : for any hw , , we have  

dxxfeewfhwf xhixwi )()1()()(                               

                            dxxfe xhi )(1 

since )(.2)(1 xfxfe xhi  and xe xhi

h
,01lim

0 

we conclude that as 0)()(,0 wfhwfh . 

Which is independent of w, by the lebesgue dominated convergence 

theorem. This proves that )(wf is continuous on . In fact, )(wf is 

uniformly continuous on . 

Theorem 2.7.5 [12]:  (Riemann- Lebesgue lemma) 
If )(1Lf , then 0)(lim wf

w 

Proof :  since wxwixwi ee , we have 

           dxexfdxe
w

xfwf wxwixwi )()()()( , 

 Thus,  

           dxe
w

xfdxexfwf xwiwxi )()(
2

1
)(

   

                 dxe
w

xfxf xwi)()(
2

1

 

clearly,        

             0)()(lim
2

1
)(lim dxe

w
xfxfwf wxi

ww

  

Observe that the space 0C of all continuous on 

 

which decay at 

infinity, that is xxf as0)( , is norm space with respect to the norm 

defined by ff
x

Sup . 

It follows from above theorem that the Fourier transform is continuous 

linear operator from )(1L  to 0C . 
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Fourier transform on 2L 

Until now, we have been making the assumption that a function  f must 

be in )(1L in order for its Fourier transform to be defined. But we have seen 

example like the constant function doesn't belong to )(1L , suggest that we 

need to expand the definition to a large class of functions, 2L

 

functions. 

The formal definition (2.7.1) of the Fourier transform doesn t make sense 

for a general 2Lf , because there is a square integrable function do not 

belong to )(1L , and hence )(wf doesn t converge . So, we can define the 

Fourier transform for such function as follows:  

Let 2Lf , then )(1
, Lff NNN , now the space of step functions is 

dense in 2L , so we can fined a convergent sequence of step functions 

ns  such that 0lim 2Ln
n

sf .  

Note that the sequence of functions NNN ff , converges to f  pointwise 

as N , and each )( 21 LLf N . 

Lemma 2.7.6 [17]: Let NNN ff , , then Nf is a Cauchy sequence in 

the norm of 2L  and 0lim 2LN
N

ff . 

Proof :  given any ,0

 

a step function ms such that 2/
2

2msf , 

choose N so large that the support of ms  is contained in NN , , then  

2

2

222

2
fsdtfsdtfsfs mm

N

N

NmNm   ,  

so, 

NmmN fssfff

 

           

            Nmm fssf

 

            msf2 . 



  
47

Note that if ns  is a Cauchy sequence of step functions that converges to f , 

then )( nsF is also Cauchy sequence, so we can defined )( fF by 

)( fF
n
lim )( nsF . Moreover, the definition of )(wf for  2L functions 

doesn t depend on the choice of such sequence in )( 21 LL  , so any other 

Cauchy sequence from )( 21 LL that approximate 2Lf can be used 

to define )( fF  like Nf . 

Theorem 2.7.7 [12]: If 2Lf , dxexfwf
N

N

xwi

N
)(

2

1
lim)( ,  

where the convergence in the 2L  norm. 

Proof :  by lemma 2.7.6 Nff N as,0
2 

where Nf is the truncated 

functions have a Fourier transform given by    dxexfwf
N

N

xwi
N )(

2

1
)( . 

So, 

          
222

NNN ffffFff , 

 hence, 

          0lim
2

N
N

ff . The proof is complete.  

Lemma 2.7.8 [12]:  If 2Lf  and fg , then gf . 

Theorem 2.7.9 [12]: Inversion formula for 2L  functions 

If 2Lf , then dwewfxf
n

n

xwi

n
)(

2

1
lim)(

 

Where the convergence is respect to the 2L  norm. 

Proof : If  2Lf  and fg , by lemma 2.7.8  

   
n

n

twi

n
dwwgegf )(

2

1
lim

 

           = dwwge
n

n

twi

n
)(

2

1
lim
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            = dwwfe
n

n

twi

n
)(

2

1
lim . 

Corollary 2.7.10 [12]:  If )( 21 LLf , then dwewfxf xwi)(
2

1
)( . 

Holds almost everywhere in . 

 It's easy to show that the Fourier transform is one to one map of 2L  on to 

itself. This ensures that every square integrable function is the Fourier 

transform of a square integrable function. 

Parseval's Relation  

The energy carried by a signal )(xf  is:  dxxfxfdtxf )()()(
2 

Where  

          dxwfedxewfxf wxixwi )(
2

1
)(

2

1
)(  , 

So, we have that,  

         dxdwewfxfdxxf xwi)()(
2

1
)(

2

 

               dwdxexfwf xwi)()(
2

1

 

                    dwwfdwwfwf
2

)(
2

1
)()(

2

1  . 

This formula dwwfdxxf
22

)(
2

1
)( , is called Parseval's Relation. 

The general Parseval's Relation is defined by: 

gfgf ,
2

1
, , where 2, Lgf . 

Theorem 2.7.11 [17]: Convolution Theorem  

If f and g in )(1L , and the convolution between f and g is defined 

by duuguxfxgf )()())(*( , where *: is the convolution operator. Then 
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The Fourier transform of the convolution ))(*( xgf is the product of the 

Fourier transform of these functions. 

Remarks [1]:  

a. We can see that the convolution of a bounded function with an 

integrable function and the convolution of two square integrable 

functions produce a continuous function. 

b. The convolution in )(1L tends to make functions smoother but less 

localize, for example if f and g in  )(1L with compact support equal to 

say, aa,

 

and bb,

 

, then the support of ))(*( xgf will be equal 

to )(),( baba . 

Poisson Summation Formula 

In many applications it is necessary to form a periodic function from a 

nonperiodic function with finite energy for the purpose of analyzing.  

Poisson's summation formula is useful in relating the time-domain 

information of such a function with its spectrum.  

Theorem 2.7.12 [12]:  If )(1Lf , then the series )2( nxf converges 

absolutely for almost all 2,0x , and its sum  

    xxFnxFLxF   ,)()2(  with  2,0)( 1 . 

And, if na  denotes the Fourier coefficient of F, then  

)(
2

1
)(

2

1
)(

2

1 2

0

nfdxexfdxexFa xinxni
n . 

Proof : we have  
N

Nn
N

n

dxnxfdxnxf
2

0

2

0

)2(lim)2(                                  

                       =
N

Nn

n

n
N

dttf
)1(2

2

)(lim                                 
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                       =
12

2

)(lim
N

N
N

dttf

 
                            = dttf )( . 

It follows from lebesgue theorem on monotone convergence that  

   
nn

dxnxfdxnxf
2

0

2

0

)2()2( 

hence, the series )2( nxf converges absolutely for almost all x , and                          

xxFnxFLnxfxF
n

  ,)()2( with  2,0)2()( 1

 

so, we consider the Fourier series of F given by
m

xmi
meaxF )( , where the 

coefficient ma  is    

         
2

0

2

0

))(lim(
2

1
)(

2

1
dxexFdxexFa xmi

N
N

xmi
m 

                                        
N

Nn

xmi

N

N

Nn

xmi

N

dxenxf

dxenxf

2

0

2

0

)2(
2

1
lim

)2(
2

1
lim  

                
)1(2

2

)1(2

2

)(
2

1
lim

)(
2

1
lim

N

N

tmi

N

N

Nn

n

n

tmi

N

dtetf

dtetf

                                             

                                       = )(
2

1
)(

2

1
mfdtetf tmi . 

Hence if the Fourier series of F(x) converges to F(x), then for x 

xni

nn

enfnxfxF )(
2

1
)2()(                             

Put 0x , the last formula becomes )(
2

1
)2( nfnf

nn

, which is called 

Poisson summation formula.  
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Sampling Theorem 

One of the fundamental results in Fourier analysis is the Shannon 

sampling theorem which asserts that a band limited function can be 

recovered from its samples on a regularly spaced set of points in 

 

.This 

result is basic in continuous-to- digital signal processing.  

Definition 2.7.13 [12]:  A function f is said to be frequency band limited if 

there exist a constant 0 , such that 0)(wf  for w . 

When 

 

is the smallest frequency for which the preceding equation is true, 

the natural frequency 
2

:  is called the Nyquist frequency, and   :2 

is the Nyquist rate. 

Theorem 2.7.14 [4]:  Shannon  Whittaker sampling theorem 

Suppose that )(wf is piecewise smooth continuous, and that 0)(wf 

for w . 

Then  f is completely determined by its value at the point 

,...2,1,0, j
j

t j

 

More precisely, f has the following series expansion           

               
j jx

jxj
fxf

)sin(
)()(   , 

 where the series converge uniformly.  

Proof :  expand )(wf as a Fourier series on the interval , 

k

wki

k ecwf )(   ,   dwewfc
wki

k 2

1 

since 0)(wf  for w  ,then   

dwewfc
wki

k
2

1

2

2 
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By theorem 2.7.2, k
fck 2

2 , so by changing the summation index 

from k  to kj , and using the expression for kc , we obtain  
wji

j

e
j

fwf
2

2
)( . 

Since )(wf is continuous, piecewise smooth function the last series is 

converge uniformly. 

dwewfxf iwt

2

1
)( , since 0)(wf  for w 

by some calculation we have 

dwe
j

fxf iwx

wji

j 2

1

2

2
)(   but 

)(

sin
2

jx

jx
dwe iwx

wji

 

So,   

j jx

jxj
fxf

)sin(
)()( .  

The convergence rate in the last series is slow since the coefficient in 

absolute value decay like 
j

1  . The convergence rate can be increased so that 

the terms behaves like
2

1

j
, by a technique called Over sampling. 

If a signal is sampled below the Nyquest rate, then the signal 

reconstructed will not only missing high frequency components transferred 

to low frequencies that may not have been in the signal at all. This 

phenomenon is called aliasing. 

Example 2.7.4:  

Consider the function f  defined by  
1 if0

1if12
)(

2

w

ww
wf

 

3

cos4sin4
)(

x

xxx
xf . The plot of f  is given in Figure (13). 
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Since 0)(wf for 1w , the frequency 

 
from the sampling theorem can 

be chosen to be any number that is greater than or equal to 1. With 

 
=1, 

we graph the partial sum of the first 30 terms in the series given in the 

sampling theorem in Figure (13); note that the two graph are nearly 

identical.  

                               

 

                        (a): f                                                            (b):  30S 

Figure 13 
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Chapter three 

Wavelets Analysis 

3.1. Introduction 

3.2. Continuous Wavelet Transform 

3.3. Wavelet Series 

3.4. Multiresolution Analysis (MRA) 

3.5. Representation of functions by Wavelets               
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Chapter 3 

Wavelets Analysis 

3.1 Introduction 

Wavelets are mathematical functions that cut up data into different 

frequency components, and then study each component with a resolution 

matched to its scale. They have advantages over traditional Fourier 

methods in analyzing physical situations where the signal contains 

discontinuities and sharp spikes. Like Fourier analysis, wavelet analysis 

deals with expansion of functions in terms of a set of basis functions. 

Unlike Fourier analysis, wavelet analysis expands functions not in terms of 

trigonometric polynomials but in terms of wavelets, which are generated in 

the form of translations and dilations of a fixed function cared the mother 

wavelet. 

3.2 Continuous Wavelet Transform            

The continuous wavelet transform (CWT) provides a method for 

displaying and analyzing characteristic of signals that are dependent on 

time and scale. The CWT is similar to the Fourier transform in the since 

that its based on a single function 

  

and that this function is scaled. But 

unlike the Fourier transform, we also shift the function, thus, the CWT is 

an operator that takes a signal and produces a function of two variables: 

time and scale, as a function of two variables, it can be considered as 

surface or image.  

In this section, we give formal definitions of wavelet and CWT of a 

function, and the basic properties of them. In addition, we will introduce 
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the inversion formula for the CWT as in case for the Fourier transform. The 

CWT is defined with respect to a particular function, called mother 

wavelet, which satisfies some particular properties. As the kernel function 

of a signal transform, its important that the mother wavelet be designed so 

that the transform can be inverted. Even if the application of the CWT 

doesn t require such transform inversion, the invertibility of the CWT is 

necessary to ensure that no signal information is lost in the CWT. 

Definition 3.2.1 [12]: Integral wavelets transform  

If 2L

 

satisfies the admissibility condition dw
w

w
C

2
)(

: , then 

 is called basic wavelet or mother wavelet. 

Relative to every mother wavelet, the integral wavelet transform on 2L 

is defined by:   2,)(
1

, Lfdx
a

bx
xf

a
bafW . 

Where .,ba       

The most important property that must be satisfied by mother wavelet is 

the admissibility condition which required for an inverse wavelet transform 

to exist. We suppose that

 

is continuous with continuous Fourier 

transform, if 00 , then from continuity there is small interval I 

containing 0, and 0

 

such that  Iww ,

 

but it would be 

followed  

                     
II

dw
w

dw
w

w
dw

w

w 222
)()(

.  
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The admissibility condition therefore implies that 00

 
or 0dxx , 

for this to occur the mother wavelet must contain oscillations, it must have 

sufficient negative area to cancel out the positive area. 

Example 3.2.1:  Haar wavelet 

The Haar wavelet is one of the classic example defined by 

                                 

otherwise,0

1
2

1
,1

2

1
0,1

x

x

x

 

The Haar wavelet has compact support, and clearly 0dxx , and 

2L ,But this wavelet is not continuous, its Fourier transform is given 

by 

             
4

4sin 2
2

w

w
eiw

iw

         

where 

             dw
w

wdw
w

w
C

4
3

2

4
sin16

)(
: . 

Both and  are plotted in Figure 1, 2 respectively.    

                                                                                                                                   

                  Figure 1                                                                           Figure 2                                                               
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These Figures indicate that the Haar wavelet has good time localization but 

poor frequency localization, and this because the function w

 
is even and 

decays slowly as w
w

as
1 , which means that it doesn't have compact 

support in the frequency domain. 

Most of applications of wavelets exploit their ability to approximate 

functions as efficiently as possible, that is few coefficients as possible, so 

in addition to the admissibility condition, there are other properties that 

may be useful in particular application [1]. 

Localization property:  we want 

 

to be well localized in both time and 

frequency. In other word,  and its derivative must decay very rapidly. For 

frequency localization w

 

must decay sufficiently rapidly as w

  

, 

and w

 

should be flat in the neighborhood of w = 0. The flatness at w = 0 

is associated with the number of vanishing moments of . A wavelet is said 

to be M vanishing moment if  0dxxx m   , m = 0, 1,    , M-1.   

Wavelets with large number of vanishing moment result in more flatness 

when frequency w is small.  

Smoothness: The smoothness of the wavelet increase with the number of 

vanishing moment. 

Compact support:  We say that  

 

has compact support on I if its vanish 

outside these interval. If 

 

has  M vanishing moment, then its support is at 

least of length 2M-1, so the Haar wavelet has minimum support equal to 1. 

Also, [The smoother wavelet, the longer support] this relation implies that 

there is no orthogonal wavelet that is C  and has compact support. 
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Example 3.2.2:  consider the sinc wavelet system   

nxnx /)sin( , where 

 
is the scaling function. The corresponding mother 

wavelet )()2(2 xx  .  

This wavelet has infinite number of vanishing moment and hence has 

infinite support see Figure 3.   

  

Figure 3  

Theorem 3.2.2 [12]:  If 

 

is a wavelet and 

 

is bounded integrable 

function, then the convolution function  is a wavelet. 

Note that we can use theorem 3.2.2 to generate other wavelets, for example 

smooth wavelet. 

Example 3.2.3: The convolution of the Haar wavelet with the 

function
2xex , generate smooth wavelet, as shown in Figure 4. 
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 Figure 4 

Example 3.2.4:   Mexican hat wavelet 

Its defined by the second derivative of a Gaussian function 

22

2

1
x

exx , where 22

2

2
w

eww , see Figure 5, 6 related to and 

respectively. 

This wavelet is smooth, and has two vanishing moment. In the contrast of 

the Haar wavelet, this wavelet has excellent localization in both time and 

frequency domain.  

                             

 

                   Figure 5                                                                          Figure 6 

Basic property of wavelet transform 

The following theorem gives several properties of CWT. 

Theorem 3.2.3 [12]: If and  are wavelets, and let 2, Lgf , then  

1. Linearity ,  ,.)( gWfWgfW 
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2. Translation, cbafWfTW c ,)( . 

3. Dilation, 0,,
1

)( c
c

b

c

a
fW

c
fDW c . 

4. Symmetry, 0,,
1

)( a
a

b

a
WfW f . 

5. Antilinearity, .)( gWfWfW     

Theorem 3.2.4 [12]:  Parsival's formula for wavelet transform 

If 2L

 

and bafW ,

 

is the wavelet transform of  f , then for any 

2, Lgf 

                        
2

),(),(,
a

dadb
bagWbafWgfC                        (3.2.1)  

  where 

                        dw
w

w
C

2
)(

: . 

Proof: By Parsival's relation for the Fourier transforms, we have 

dx
a

bx
xf

a
bafW )(

1
, 

                   baf ,,

 

                   baf ,,
2

1

 

                   dwawewfa bwi )()(.
2

1                                           (3.2.2) 

Similarly, 

dx
a

bx
xg

a
bagW )(

1
, 

                   daega ib)(.
2

1 .                                          (3.2.3)              

Substituting (3.2.2) and (3.2.3) in the lift-hand side of (3.2.1) gives 

2
),(),(

a

dadb
bagWbafW
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         ddwwbiaawgwfa
a

dadb
exp )()()()(

2

1
22

. 

Which is, by interchanging the order of integration, 

      dbwbiddwaawgwf
a

da
exp

2

1 
)()()()(

2

1

-  

      ddwwaawgwf
a

da
)()()()(

2

1 

      dwawwgwf
a

da 2
)()()(

2

1

  

which is, again interchanging the order of integration and putting xaw ,  

         dwwgwfdx
x

x
)()(.

)(

2

1
2

. 

      )(),(
2

1
. wgwfC . 

Inversion formula   

In chapter 2 we shown that the inversion formula for f can be written 

as        dwewfxf iwt)(
2

1
)( , and this formula express the fact that f can be 

written as weighted sum of its various frequency component. The wavelet 

transform and its associated inversion formula also decompose a function 

in to weighted sum of its various frequency component. The difference 

between them that the wavelet inversion formula, two parameter a and b 

are involved since the wavelet transform involves a measure of frequency 

of f near the point x = b. 

Theorem 3.2.5 [4]:   Inversion formula 

Suppose  is continuous wavelet satisfying the following 

a.  has exponential decay, 2L . 

b. 0dxx . 
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Then for any 2Lf , f can be reconstruct by the formula  

        
2

21
),(

1
)(

a

dadb

a

bx
bafWa

C
xf ,  

where the equality holds almost every where. 

Proof:  Let G(x) be the quantity given on the right of the main statement of 

the theorem; that is, 

                           
2

21
),(

1
)(

a

dadb

a

bx
bafWa

C
xG                  (3.2.4)             

we must show that G(x) = f(x). 

By applying Plancherel's formula, which state that )()( vFuFuv  to the b-

integral occurring in the definition of G(x) and where ),()( bafWbv

 

and
a

bx
bu )( , we can rewrite (3.2.4) as                     

            dyy
a

bx
FybafWF

aa

da

C
xG bb )()(),(

1
)(

2
             (3.2.5) 

where .F stands for the Fourier transform of the quantity inside the 

brackets . , with respect to the variable b. 

In order to apply the Plancherel's theorem, both of these functions must 

belong to )(2L . If f and 

 

have finite support, then the b-support of 

),( bafW

 

will also be finite and so ),( bafW and 
a

bx are 2L

 

functions in 

b. But 

                )()( ayeay
a

bx
F xiy

b                                                  (3.2.6)         

            yfay
a

aybafWFb )(
2

)(),(                                            (3.2.7)             

Substitute (3.2.6) and (3.2.7) in (3.2.5), we obtain 

            dyeyfay
a

da

C
xG xiy21
)(

2
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                     = da
a

ay
dyeyf

C
xiy

2

2
1                                   (3.2.8)               

Where the last equality follows by interchanging the order of the y- and a-

integrals.To calculate the a- integral on the right, we make a change of 

variables u = ay provided that 0y  to obtain 

                du
u

u
da

a

ay
22

  

                                     
2

C
.                                                            (3.2.9)                    

Now, substitute (3.2.9) into (3.2.8) to obtain 

          dy
C

eyf
C

xG xiy

2
2

1
)(

 

                    )(
2

1
xfdyeyf xiy .                             

where the last equality follows from the Fourier inversion theorem. This 

finish the proof. 

3.3 Wavelet Series  

It has been stated in section 3.2 that the continuous wavelet transform is 

a two-parameter representation of a function. In many applications, 

especially in signal processing, data are represented by a finite number of 

values, so it is important and often useful to consider discrete version of the 

continuous wavelet transform. 

Basis for 2L . 

Note that any periodic function 2,02Lf can be expand as Fourier 

series:  n
n

xin
n cecxf where,)(

  

is the Fourier coefficient of f , and we 

show that the equality hold if the system 0n
xnie is a complete orthonormal 

system. Now we consider to look for a basis for 2L . Since every function 
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in 2L must decay to zero at , the trigonometric function do not belong 

to 2L . In fact, if we look for basis (waves) that generate 2L , these 

waves should decay to zero at . Three simple operators on functions 

defined on 

 

play an important role in measure theory: translation, 

dilation, and modulation. We can apply some of these operators to 

construct orthonormal basis of 2L from single function in 2L say . 

These basis are defined by kxx jj
kj 22)( 2

, , where the factor 22 j is to 

ensure the normalization of kj , [6]. 

Definition 3.3.1 [3,12]: Orthonormal wavelet  

A function 2L

 

is called an orthonormal wavelet, if the family kj ,

 

is an orthonormal basis of 2L . 

There are several advantages to requiring that the scaling functions and 

wavelets be orthogonal. Orthogonal basis functions allow simple 

calculation of expansion coefficients and have Parseval's theorem that 

allows a partitioning of the signal energy in the wavelet transform domain. 

Haar wavelets 

The simplest example of an orthonormal wavelet is the classic Haar 

wavelet. It was introduced by Haar in 1910 in his PhD thesis. Haar's 

motivation was to find a basis of 1,02L that unlike the trigonometric 

system, will provide uniform convergence to the partial sums for 

continuous functions on [0,1]. This property is shared by most wavelets, in 

contrast with the Fourier basis for which the best we can expect for 

continuous functions is pointwise convergence a.e. There are two functions 

that play a primary role in wavelet analysis, the scaling function 

 

and the 
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wavelet. These two functions generate a family of functions that can be 

used to break up or reconstruct a signal.  

For the Haar system, let the scaling function be
otherwise,0

10,1 x
, see 

Figure 7                                                  

  

Figure 7 

Let kkxV )-(span0

 

consists of all piecewise constant functions whose 

discontinuities are contained in the set of integers. Likewise, the subspaces 

k
j

j kxV )-(2span

 

are piecewise constant functions with jumps only at 

the integer multiples of j2 . Since k range over a finite set, each element of 

jV is zero outside a bounded set. Such a function is said to have finite or 

compact support. 

There are some basic properties of  which are [4]:  

a. j
j VxfVxf 2iff)( 0  and 02iff)( VxfVxf j

j . 

b. kkx )(

 

is an orthonormal basis for 0V , and k
jj kx )2(2 2

 

is an 

orthonormal basis for jV . 
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One way to construct , by decompose jV as an orthogonal sum of 1jV  and 

its complement. Start with  j=1 and identify the orthogonal complement of 

0V  in 1V  ,two key facts are needed to construct  [4]: 

a. and1V  can be express as 
k

k kxa 2  for some choice of ka . 

b.  is orthogonal to 0V , i.e. kdxkxx ,0)()(   . 

The simplest 

 

satisfying above condition is the function whose graph 

appears in Figure 1; this function can be written as 122 xxx

 

and is called the Haar wavelet. 

Note that any function in 1V is orthogonal to 0V iff it is in 

kkxW -(span0 .In otherworld, 001 WVV

 

. In a similar manner, the 

following more general result can be established. 

Theorem 3.3.2 [4]: Let jW  be the space of functions of the form 

k
k

j
k akxa        2

  

where we assume that only a finite number of ka are zero. jW is the 

orthogonal complement of jV  in 1jV  and jjj WVV 1 . 

Moreover, The wavelet kj ,  form an orthonormal basis for jW . 

So, we can rewrite jV  as: 

1-j2-j00

12211

WW                                       WV

WWVWVV jjjjjj  

and hence, the following theorem hold.  

Theorem 3.3.3 [4]: The space 2L can be decomposed as an infinite 

orthogonal direct sum 1-j2-j00
2 WW            L                 WV 
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The most useful class of scaling functions are those that have compact 

support, the Haar scaling function is a good example of a compactly 

support function. The disadvantage of the Haar wavelets is that they are 

discontinuous and therefore do not approximate continuous functions very 

well. What is needed is a theory similar to what has been described above 

but with continuous versions of our building blocks, 

 

and . The result 

theory, due to Stephen Mallat is called a multiresolution analysis. 

3.4 Multiresolution Analysis (MRA) 

The concept of multiresolution is intuitively related to the study of 

signals or images at different levels of resolution. The resolution of a signal 

is a qualitative description associated with its frequency content. 

 In 1986, Stephane Mallat and Yves Meyer first formulated the idea of 

multiresolution analysis in the context of wavelet analysis. This is a new 

and remarkable idea which deals with a general formalism for construction 

of an orthogonal bases of wavelets. Indeed, multiresolution analysis is 

central to all constructions of wavelets basis.   

Mathematically, the fundamental idea of multiresolution analysis is 

to represent a function f as a limit of successive approximations, each of 

which is a finer version of the function f. These successive approximations 

correspond to different levels of resolutions. Thus, multiresolution analysis 

is a formal approach to constructing orthogonal wavelet bases using a 

definite set of rules and procedures.    
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Definition 3.4.1 [6]:  Multiresolution Analysis 

Let 
jjV be a sequence of subspaces functions in 2L is called MRA with 

scaling function  if the following conditions hold:- 

1. ( Nested), .1 jVV jj 

2. ( Scaling), .2  iff 0 jVxfVf j
j 

3. ( Separation), 0
j

jV . 

4. ( Density), .2LV
j

j

 

5. There exists a function kkxV such that  0 is an orthonormal basis 

for  0V , that is,  

               
k

k Vffdxff 0

2

,0

22
, . 

Sometimes, condition 5 is relaxed by assuming that kkx

 

is Riesz 

basis for 0V , that is for every f 0V , there exists a unique 

sequence 2 lC kk such that 
k

k kxCxf )()( , with convergence 

in 2L , and there exist two positive constant  A and B independent of f 0V 

such that   
                                   

k
k

k
k CBfCA

222  

where 0< A< B< . 

In this case, we have a MRA with Riesz basis and we can then use 

 

to 

obtain a new scaling function ~  for which kkx~

 

is orthonormal. 

Example 3.4.1:  The collection of subspaces jV , consisting of the space of 

piecewise constant functions of finite support whose discontinuities are 

contained in the set of integer multiple of j2 , together with the Haar 

scaling function , satisfies the definition of MRA.   
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Example 3.4.2:  Shannon multiresolution analysis 

Here jV is the space of band-limited signals 2Lf , with frequency band 

contained in the interval jj 2,2 . The scaling function defined by 

              
0      

sin

0              1

x
x

x

x
x

 

The Fourier transform of is given by )()( , ww . 

Clearly, the Shannon scaling function doesn't have finite support. However, 

its Fourier transform has a finite support in the frequency domain and has 

good frequency localization.  

We turn to a discussion of properties common to every multiresolution 

analysis; our first result is that
kkj , is an orthonormal basis for jV . 

Theorem 3.4.2 [4]:  Suppose 
JjV is a multiresolution analysis with 

scaling function . Then for any j , the set of functions                           

                                            
k

jj
kj kxx 22 2

,     

is an orthonormal basis for jV 

Proof: [4].  

We are now ready to state the central equation in MRA, the scaling 

relation, which is also called two-scale relation, since its relates x

 

and 

the translates of x2 .  

Theorem 3.4.3 [4]: scaling relation 

Suppose 
JjV is a multiresolution analysis with scaling function .Then 

the following scaling relation holds: 

                       dxkxxpkxpx k
k

k 22   ere        wh2

  

Moreover, we also have                            
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k

j
lk

j kxplx 22 2
1  .  

proof: [4].                      

Example 3.4.3:  The values of the kp for the Haar system are                

                               .110 pp 

and all other kp are zero. 

 Construction of wavelet from a multiresolution analysis 

We now pass to the construction of orthonormal wavelets from an MRA. 

Let 0W be the orthogonal complement of 10 in  VV ; that is, 001 WVV . If we 

dilate the elements of  0W  by j2 , we obtain closed subspace 1 of jj VW , such 

that jWVV jjj ,1 

Since    

           jWVjV L

j

L
jj 1  as  0 

and            

           jLV j   as  2   , 

 we have  L
L

WL2     

To find an orthonormal wavelet, as in case of the Haar system, all we need 

to do is to find a function kxW such that   0 is an orthonormal basis 

for 0W . In fact, if this is the case, then k
jj kx22 2 is an orthonormal 

basis for jW j , and hence 
jkkj ,, is an orthonormal basis for 2L , 

which shows that  is an orthonormal basis for . 

The scaling relation can be used to construct the associated function

 

that 

generates jW .  

Theorem 3.4.4 [4]:  Suppose 
jjV is a multiresolution analysis with 

scaling function 
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k

k kxpx 2                         

( kp are the coefficients in theorem 3.4.3). Let jW be the span 

of k
j kx2 , where          

k
k

k kxpx 2)1( 1   and  
k

kjlk
k

lj px ,121
21

, )1(2

 

Then 1jj VW is the orthogonal complement of jV in 1jV . Furthermore,   

k

jj
kj kxx 22: 2

,

 

is an orthonormal basis for jW , and hence the set 

of all wavelets, 
jkkj ,, is an orthonormal basis for 2L . 

Proof: [12]. 

Daubechies wavelet 

The wavelet that we looked at so far, Haar, Shannon wavelets have all 

major drawbacks. Haar wavelets have compact support but are 

discontinuous. Shannon wavelets are very smooth but extend throughout 

the whole real line. These wavelets, together with a few others having 

similar properties, were the only ones available before Ingrid Daubechies 

discovered the hierarchy of wavelets that the Haar wavelet, which is the 

only discontinuous one. The other wavelets in the hierarchy are compactly 

supported and continuous. Wavelet with compact support have many 

interesting properties. They can be constructed to have a given number of 

derivatives and to have a given number of vanishing moments [4].     

Example 3.4.4:  The associated value of the kp can be computed to be 

                      
4

31
,

4

33
,

4

33
,

4

31
4310 pppp  . 

Consequently, the Daubechies scaling function (see Figure 8) becomes    

     32
4

31
22

4

33
12

4

33
2

4

31
xxxxx . 
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And the corresponding mother wavelet  is  

      22
4

31
12

4

33
2

4

33
12

4

31
xxxxx . 

and this is called the Daubechies wavelet, see Figure 9. 

                                

     

              Figure: 8                                                                              Figure: 9 

3.5 Representation of functions by Wavelets   

Since a wavelet system
jkkj ,, is an orthonormal basis for 2L , we 

know that for any 2Lf , 
                                               

j k
kjkjff ,,,

  

with convergence in the 2L -norm.      

The goal of most expansions of a function or signal is to have the 

coefficients of the expansion kja , give more information about the signal 

than is directly obvious from the signal itself. A second goal is to have 

most of the coefficients be zero or very small. This is what is called a spare 

representation and is extremely important in applications for statistical 

estimation and data compression.     

Although this expansion is called the discrete wavelet transform (DWT), 

it probably should be called a wavelet series since it is a series expansion 
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which maps a function of a continuous variable into sequence of 

coefficients much the same way the Fourier series does.         

This wavelet series expansion is in terms of two indices, the time 

translation k and the scaling index j. For the Fourier series, there are only 

two possible values of k, zero and 2 , which give the sine terms and the 

cosine terms. The values j give the frequency harmonics. In other words, 

the Fourier series is also a two-dimensional expansion, but that is not seen 

in the exponential form and generally not noticed in the trigonometric 

form.         

The coefficients in this wavelet expansion are called the discrete 

wavelet transform of the signal f, these wavelet coefficients can be 

completely describe the original signal and can be used in a way similar to 

Fourier series coefficients for analysis, description, approximation, and 

filtering. If the wavelet system is orthogonal, these coefficients can be 

calculated by inner products.        

The DWT is similar to a Fourier series but, in many ways, is much 

more flexible and informative. It can be made periodic like a Fourier series 

to represent periodic signals efficiently. However, unlike a Fourier series, it 

can be used directly on non-periodic transient signals with excellent results.    

The main purpose of this section is to study if such expansions are well 

defined and converge in then setting of other function spaces. In particular 

we shall study the convergence in pL -norm and the uniform convergence of 

wavelet expansions on the real line.  
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Convergence of the Haar series 

       We know that the Haar wavelet form an orthonormal basis for 2L , 

then for any 2Lf , we have  

                                     
kj

kjkjcf
,

,,                                              (3.5.1)               

is the Haar series of f , the Haar coefficients defined by 

                                        dxxxffc kjkjkj )()(, ,,,                              

The completeness of 2L further assures that the series above converges 

in 2L . In order to identify the sum of the Haar series, let npn , be the 

projection operator of 2Lf on to the space jV  defined by [14]: 

                   nn
kn

I

n
n kkIdyyffp

kn

2,21:  e      wher)(2)(    

This formula can be written explicitly in terms of the Haar scaling function  
                  dyyfyxKfp nn )(),()(   ,   

where  

               
otherwise ,      0

, ,    2
222),( kn

n
n

k

nn
n

Iyx
kykxyxK

  

np  increasing and converge to the identity function in the sense that  

a. .   implies   1 ffpffp nn

  

b. 2in lim Lffpn
n

 . 

Moreover, let ),(),(),( 1 yxKyxKyxL nnn , in terms of the Haar function we 

get 
                  kykxyxL n

k

nn
n 222),(

 

So, we have  

                  
k

knknnn dyyyfxfpfp )()()( ,,1                        (3.5.2)           
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hence we can write the original projection operator in the form 

                  
n

j
jjn fpfpfpp

0
101 

as n , this yield to the one-sided Haar series representation 

                  
0

,,0 )()(
j k

kjkj dyyyffpf

 

Completeness the Haar system 

To prove the validity of the two-sided Haar series (3.5.1), we go back to 

(3.5.2) and write 

                       
n

mj k
kjkjmn cfpfp ,,1                                           (3.5.3)            

so, it remains to prove that nmffpfp nm ,  when    and  0 1 . 

First, we prove that the operators np have uniformly bounded operators 

norm. 

Lemma 3.5.1 [14]:  For any pLf , p1 , then nffp
ppn , . 

Proof : For p = 2 

From the definition of fpn , we apply Cauchy-Schwarz inequality to obtain 

       
knI

n
n dyyfxfp

22
)(2)(   for  knIx

 

   
knkn II

n dxxfdxxfp
22

)()( 

   dxxfdxxfpn

22
)()( . 

For 2p 

Set
p

p
p

1
, where p > 1, then Holder's inequality gives                       

pn
p

I

pn
n

kn

dyyfxfp 22)(

1

      , knIx

 

   pnp

I

pnpp

n

kn

dyyfxfp 22)( 
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knknkn I

p

I

ppnpnpn

I

p

n dyyfdyyfdxxfp )()(222)(  

     dxxfdxxfp
p

I

p

n

kn

)()( . 

This proof also applies in case p = 1, by setting 0
1  whenever p  appears. 

Let we define 0C to be the set of continuous functions vanishing at 

infinity and 00C to be the set of continuous functions with compact 

support. 

Lemma 3.5.2 [14]:   

1. If 0Cf , we have mfp m   as  0 . 

2. If 2Lf , we have mfp m   as  0
2

. 

Proof : 1. if 00Cg  has support in [-k, k], then  

          0220
0

k
m

m
m dxgxgpx  

and 

         0202
o

k

m
m

m dxgxgpx . 

hence, 0gp m . But these functions are dense in 0C ; given 0Cf 

and 0 , there exist 00Cg , 0Ch such that f = g + h, with h . 

Then 

           hpfp m
m

m
m

suplimsuplim  

since  is arbitrary, this proves the required convergence.  

2. If 2Lf , for any 0 , f = g + h, where g is continuous function with 

compact support in [-k, k], k > 0, and
2

h . Then for km2 , we have 

            
2

222)(22 gkdxgxgpx m
k

k

m
m

mm .  

                                          
2

2

2
24)( gkxgp m

m
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2222

)( gphpgpxfp mmmm     

2
suplim fp m

m
, since  is arbitrary, we conclude that 

                                       mfp m   as  0    . 

To prove that nffpn   as  , we first prove that this holds on the dense 

subset of 00C . 

Lemma 3.5.3 [14]:  If 00Cf , then ffpn

 

uniformly and in 2L , 

when n . 

Proof : let f be supported in [-k, k], 1k . Given 0 , from the uniform 

continuity of f , yx
k

xfyf -  whenever ,)()( such that   0 . If n2 , 

we have  

        .,
2

)()( x
k

xfxfpn

 

Which prove the uniform convergence. 

To prove the 2L -convergence 

.
2

)()( 2
2

2
dx

k
dxxfxfp

k

k

n 

.  as  0
2

nffpn 

So, by lemma 3.5.2 and 3.5.3, we have thus proved the 2L -convergence of 

the Haar series. 

Haar series in 0C and pL spaces 

We have treated the 2L -convergence of the Haar series, now; we discuss the 

uniform convergence in spaces of continuous functions, as well as the norm 

convergence in pL p1 . 

First, we treat the convergence in the space 0C , by lemma 3.14, 3.15, we 

have    
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           mfp m   as  0  and nffpn   as  , respectively. 

Since the space 0C contains as a dense subspace the set of 00C .It 

remains to prove that the operators are uniformly bounded 

Lemma 3.5.4 [14]:  For any cBf ,(the space of bounded continuous 

functions), we have   .ffpn 

Proof:  for knIx , we have  fdyyfxfp
knI

n
n )(2)(    

This leads to the following general proposition on uniform convergence. 

Proposition 3.5.5 [14]: If 0Cf , then the Haar series (3.5.3) converge 

uniformly on the entire real line. 

To prove the pL -convergence, we must check that mfp m   as  0 

and nffpn   as  . 

Lemma 3.5.6 [14]:  Let p1 . Then .  as  0 nffp
pn 

Proof : The space 00C is dense in pL , from lemma 3.5.3 we have 

uniform convergence on this space. In particular if kk,) f ( supp , 

for Nn  , we have  

                      .2)()( PP

n Kdxxfxfp

 

which shows that    2 p

1

kffp
pn . 

Lemma 3.5.7 [14]:   Let

 

  when  0 then , 1 mfpp
pm . 

Proof : it suffices to check this for g continuous with compact support in [-

k, k], if km2 , then    

          
k

m
m

m dyygxgpx
0

)(220  

                             pp
k

k

pmmpp

m kdyygdxxgp 2.)(22)(
0 
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which tend to zero when m  . For 02 xm , we use the same fashion. 

Hence we can conclude the following. 

Proposition 3.5.8 [14]: Let  , 1 p for any pLf , the Haar series 

(3.5.3) converges in the norm of pL . And for p1 , the one-sided 

Haar series are hold. 

Convergence of the wavelet expansion in pL  

All the wavelet we will use in this subsection are assumed to arise from 

a multiresolution analysis (MRA). For the MRA we shall assume that the 

scaling function 

 

and the wavelet 

 

have controlled decrease at infinity. 

Moreprecisely, there is a bounded function.  ,0:W , which is a 

radial decreasing 1L majorant of or , if xWx)(

 

and W satisfies the 

following conditions [6]:- 

1. ,01LW  . 

2. W is decreasing. 

3. 

 

W(0) . 

Example 3.5.1:  Two particularly natural choices for W are  

         0  somefor     xcexW  

and 

       0  somefor     
1 x

c
xW . 

Both examples are good majorants for the compactly support wavelets [6].  

Suppose that we have a wavelet 

 

arise from MRA with scaling 

function . Associated with the increasing sequence of subspaces
jjV , we 

have the orthogonal projections of 2L  onto jV  given by  
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                                      2
,,   ,  , Lfffp

k
kjkjj

 
As in the Haar series representation we can write kjf ,,

 
as an integral 

and interchanging the order of summation and integration, to obtain 

                dyyfyxKxfp jjj
j )(2,22)(                                         (3.5.4)            

where  
               

k

kykxyxK , 

is the wavelet kernel. 

Proposition 3.5.9 [6, 14]: The wavelet kernel yxK ,  enjoys the following 

properties: 

1.  21
locLK

 

2.  ),(),( yxKyxK

 

3.    1),(   and    ),( dyyxKcdyyxK

 

4.  
2

),(
yx

cWyxK .                                                                  (3.5.5)             

The main purpose is to prove that  

a. jfp j   as  0 .     

b. jffp j   as  . 

Proposition 3.5.10 [6]:  Suppose 

 

has radial decreasing 1L majorant W; 

then there exist C > 0 independent of j such that pLf p 1, , we 

have  

                    
pLpj fWCfp

,01 

Proof : if p , by using (3.5.4) and (3.5.5) we get 

                       
,01)(

2

2
2)(

L

j
j

j WfCdyyf
yx

WCxfp 

If p = 1 
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       dxdyyf
yx

WCdxxfp
j

j
j )(

2

2
2)( 

                            
.

22)(

1,0

1

1 fWC

dydxyxWyfC

L

jj

 

These bounds allow us to formulate and prove a general theorem on the 

convergence of the scale projection operator. 

Theorem 3.5.11 [14]:  Suppose  is the scaling function of an MRA which 

has radial decreasing 1L majorant W 

1- If .  as  0 then  , jffpBf juc  

2- If jffpLf
pj

p   as  0 then  , , p1 

Proof : first we note that 11jp , which follows from 1, dyyxK , this 

allows one to write  
  dyyfxfyxKfpf jjj

j )()(2,22 , since f is continuous, given 0 , 

let 0  such that yx
c

yfxf -r     wheneve
2

)()(  , so 

             dyyxKyfxfxfpxf jj

xyxy

j
j 2,2)()(2)()(

 

by apply the bound cdyyxK ),(

 

in the first integral we conclude that 

this term is less than j,
2

. To estimate the second integral, we use the 

boundedness to obtain the upper bound 
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2                                             

2

2
22,222

1

11

2

22

1

j

jj

v

xu

j

xy

j
j

xy

jjj

dvvWfC

duxuWfC

dy
xy

WfCdyyxKf 

which tend to zero as j , by the dominate convergence theorem. This is 

a uniform bound independent of x , from which we obtain the asserted 

uniform convergence. 

To prove pL convergence, we first discuss the case p = 1. From the uniform 

boundedness
11

ffp j , it suffices to prove the pL convergence on the 

dense set of continuous functions with compact support in [-R , R], for such 

f , we have 
                         

Rx

j

Rx

j dxxfpdxxffpf
22

1
)()( 

The first integral tends to zero by virtue of the uniform convergence 

already proved, to estimate the second integral, we write 

                  
Rx Ry

jjj

Rx

j dxdyyxKfdxxfp
22

2,22)(

 

                                       dydx
yx

WC
Ry Rx

j
j

2 2

2
2 

                                       dydx
yx

WC
Ry Ryx

j
j

2

2
2 

                                       dudx
u

WC
Ry Ru

j
j

2

2
2 

                                       .  when  02
2

jdvvWCR
Rv j 

which complete the proof of pL convergence. 



  
84

To treat the case p1 , it again suffices to deal with continuous 

functions with compact support. In this case we have the bounds 

        )()()()(
1

xfpxffpfxfpxf j

p

j

p

j

  

        dxxfpxffpfdxxfpxf j

p

j

p

j )()()()(
1 

                                   
1

1
fpffpf j

p

j . 

Which tends to zero, by the convergence in case p = 1, already proved. This 

proves the theorem. 

Large scale analysis 

To complete the analysis of pL convergence of general wavelet series, it 

remains to prove that jfp j   as  0 . As in the case of Haar series, we 

expect only that this will take place for pL , p1 and in the space 

0C . 

Proposition 3.5.12 [14]:   

1- If 0Cf , then .  when  0 jfp j    

2- If pLf , p1 , then .  when  0 jfp
pj  

Proof : we begin with f 00C . If Rxxf for  0)( , we can write 

                           dyyxKyfCxfp
R

R

mmm
m )2,2()(2)(                  (3.5.6) 

                                       dy
yx

WyfC
R

R

mm

2
2)(2 

 hence,       

             .,0)0(22)( mRWfCxfp m
m 

But 00C  is dense in 0C  where we have the estimate fCfp j . 
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To prove the pL convergence, it suffices to take f 00C . For Rx

 
the 

estimate (3.5.6) shows that Rxdxxfp
R

R

p

m For   . 0)( we make the 

substitution )(2 yxv m  to write 

                            
)(

)(

2

2

)()(

Rxm

Rxm

dvvWfxfp m  

                                         )(22 RxRWf mm

  

                   
R

pmpmp

R

p

m dxRxWfdxxfp )(22)( 

                                       
0

22 dyyWf
ppmmp 

                                       02 )1( p

p

ppm Wf 

with a similar estimate for t < -R.   

In exact parallel with the case of Haar series, the large scale projection 

operators to do not behave well on 1L . This means that we restrict the 

range of p when formulating a general pL convergence theorem for wavelet 

series. Similarly, we must restrict to 0C , since the identity 11jp shows 

that 0fp j  is false in general when .for   , jBf uc  

Combining proposition (3.5.12) and theorem (3.5.11), gives a complete 

picture of the convergence of one-dimensional wavelet series in the spaces 

0C and pL , p1 . This can be restated in a separate theorem. 

Theorem 3.5.13 [6, 14]: Suppose that the scaling function 

 

has radial 

decreasing 1L -majorant W. 
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1. If 0Cf , then the sum 
n

mj
kjkj

k

dyyyfx )()()( ,,

 
converges 

uniformly to f when .,nm

 

2. If pLf , p1 , then the sum
n

mj
kjkj

k

dyyyfx )()()( ,, converges 

to f in  pL  when .,nm
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Chapter four 

Convergence Analysis 

4.1 Introduction  

Under certain conditions, a function can be represented with a sum 

of sine and cosine functions, which is called a Fourier series. This classical 

method is used in applications such as storage of sound waves and visual 

images on a computer. One problem with representing a functions with this 

type of series is that it takes an infinite number of terms to represent such 

function. In practice, only a finite number of terms can be used. Higher 

accuracy require the sum of more terms in this series and this will take up 

more computer time and storage space. A new type of sum called a wavelet 

series was first introduced in the 1980's and found to be more efficient, in 

storage and processing, than Fourier series. Efficiency of a series 

representation of a signal (function) depends on its convergence which in 

turn depends on the rate of decay in its coefficients. In this chapter, we will 

investigate the superiority of the wavelet series in representing signals over 

the Fourier series through the rate of decay of the coefficients for both 

Fourier and wavelet series.  

4.2 Rates of decay of Fourier coefficients   

The Riemann- lebesgue lemma state that the Fourier coefficients of 

an integrable and 2 -periodic function f vanish at infinity, but it provides 

no further information about the speed of convergence to zero for such 

function. In this section, we shall show the relationship between the 
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smoothness of f and the magnitude of its Fourier coefficients nc . (The 

smoothness of f  is measured by the number of times it is differentiable).  

Definition 4.2.1 [16]: Class KC 

We say that f belong to the class KC if f is K times continuously 

differentiable. 

Definition 4.2.2 [14]: a Holder condition 

Let f  be a function defined on . We say that f  satisfy a Holder condition 

with exponent 1,0 , if yxMyfxf )()( , 0M . 

Remark [16]:  

Belonging to the class KC or satisfying a Holder condition are two possible 

ways to describe the smoothness of a function. 

Proposition 4.2.3 [14]: Suppose that Cf has a modulus of continuity: 

)()(sup: yfxf
yx

. Then 
n

cn 2

1 .  

Proof:  Since )( nxininx ee , we have 
2

0

2

0

2

0

()(
2

1
)()( dxenxfxfdxenxfdxexf inxinxinx 

and hence, 
2

0

)()(
4

1
dxenxfxfc inx

n ,  

So, 

     

..
2

1
      

2..
4

1
      

)()(
4

1 2

0

nw

nw

dxenxfxfc inx
n

  

Corollary 4.2.4 [14]: If f satisfies a Holder condition with exponent 

1,0 , we see that nnOcn , . 
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Proof: f  satisfies a Holder condition with exponent 1,0  means:  

constant  :  ,)()( CChhxfxf , take nh , and use proposition (4.2.3) 

to get 

n

nC

dxenxfxfc inx
n

1

2

C
      

2..
4

1
      

)()(
4

1 2

0 

Therefore, nnOcn , . 

If we want to obtain a more precise estimation, we can assume that f is 

absolutely continuous as follows: 

Proposition 4.2.5 [14]: If KCf , 1K

 

are absolutely continuous. Then 
K

n noc 1 , n 

Proof: Assume KCf , 1K . Then 

          
2

0

)(
2

1
dxexfc inx

n 

               
2

0

2

0

)(
2

1
)(

2

1
dxexfinexf inxinx 

               ninc , 

which by induction yields 

                               
K

K
n

n
in

c
c .                                                      (4.2.1)  

Since 1Lf K , we have 0lim K
n

n
c , which implies 

0limlim K
n

n
n

K

n
ccn . So nnoc

K

n ,1 . 

Corollary 4.2.6 [14]: If )(Kf satisfies a Holder condition with 

exponent 1,0 , then nnOc K
n , . 

Proof: By (4.2.1) 
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2

0

.)(
4

1
dxenxfxfccin inxKKK

nn
K 

    

  
    

2

0

.)(
4

1
dxenxfxf

n
c inxKK

Kn  

                     2..
4

1

n
C

n
K  

                     K
K

nM
nn

C
).(

.

1
.

2

.  .        

Note that the smoothness of f  is directly related to the decay of the Fourier 

coefficients, and in general, the smoother of the function, the faster decay. 

As a result, we can expect that relatively smooth functions equal their 

Fourier series. 

4.3 Rate of convergence of Fourier series in 2L

 

Definition 4.3.1: Mean square error  

The mean square error 2

2
ffS N  of the Fourier series of f is defined by: 

dxfSfffS NN

22

2 2

1 

Where fS N  is the thN  partial sum of f . 

Parseval's theorem allows us to reduce the study of rate of convergence to 

the estimation of series. The thN Fourier coefficient of ffS N

 

is zero for 
Nn , therefore 

Nn

inx
nN ecffS , hence by Parseval's theorem we have                                                                                          

Nn
nN cffS

22

2
                                                                            (4.3.1) 

This can be used to estimate the mean square error in terms of the 

smoothness of f .  

Proposition 4.3.2 [14]: Suppose that KCf , then nnOc
K

n ,1 

and  NNOnCffS K

Nn

K
N ,2122

2
. 

Which gives an upper bound for the mean square error when N . 
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Proof: By (4.2.1), we have 
2

0

)(
2

1
dxexf

inin

c
c inxK

KK

K
n

n 

K

K

Kn
n

M
dxf

n
c

2

02

1 , and hence nnOc
K

n ,1 . 

Now by (4.3.1),  

Nn

K

Nn
K

Nn
nN nC

n

M
cffS 2

2

2
22

2 

Example 4.3.1: Consider the function xxxf 23)( , over , .The 

Fourier series of f  is defined by: 
1

3
sin

1
12)(

n

n

nx
n

xf . 

So by (4.3.1), we find that   
Nn

N
n

ffS
6

2

2

144 

Example 4.3.2: Let 2)( xxf , over , , then the Fourier series of f is 

defined by:   
1

2

2

cos
14

3
)(

n

n

nx
n

xf . So 

Nn
N

n
ffS

4

2

2

16 

4.4 Rates of decay of Haar coefficients 

We have seen that the smoothness of the function is reflected in the 

decay of its Fourier coefficients. Specifically, if f is periodic and KC 

on , then nnOc
K

n ,1 . Where nc is the Fourier coefficient of f . 

This can be regarded as a statement about the frequency content of smooth 

functions, namely that smoother functions tend to have smaller high 

frequency components than do functions that are not smooth. 

However, no such estimate holds for the Haar series. To see this, simply 

note that the function xiexf )( is periodic and is C on 

 

with all of its 

derivatives bounded by 1. But have 
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j

j
j

kjf
241

241sin
2,

2
2/

,

 
and since jj 241241sin for large j. this means that 

4

1
.2, 2/3

,
j

kjf

 

for large j. But this is the same rate of decay as we 

will see later for functions continuous but with a discontinuous first 

derivative. Hence, the smoothness of a function does not affect the rate of 

decay of its Haar coefficients. 

Proposition 4.4.1: If f satisfies a Holder condition with exponent 1,0 , 

then 
)2/1(

, 2, j
kj Of 

Haar Coefficients near Jump Discontinuity [1] 

Suppose that f is a function defined on 1,0 , with a jump discontinuity 

at 1,00x and continuous at all other points in 1,0 . Here we analyze the 

behavior of Haar coefficients when 0x is inside or outside the dyadic 

interval kjI , . In particular, we can find the location of a jump discontinuity 

just by examining the absolute value of the Haar coefficients. 

For simplicity, let us assume that f is 2C on 0,0 x and 1,0x . This means 

that both f

 

and f

 

exist, and continuous functions, and hence bounded on 

each of these intervals. For fixed 0j and 120 jk , and let kjx , be the 

mid point of the interval kjI , ; that is, j
kj kx 2

2

1
, . There are now two 

possibilities, either kjIx ,0  or kjIx ,0 . 

Case 1: If kjIx ,0 , then for large j, 

                         23
,

23
, 2)(2

4

1
, j

kj
j

kj Oxff                                

Proof: If kjIx ,0 , then expanding )(xf  about kjx ,  by Taylor's formula 
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2
,,,,, ))((

2

1
))(()()( kjkjkjkjkj xxfxxxfxfxf

 
where kjkj I ,, . Now using the fact that 0)(, dxxkj ,        

 

(4.4.1)                                                          )()()(                  

)()(
2

1
                       

)()()()(                  

)()(,

,

, ,

,

,,,

,
2

,,

,,,,,

,,

kj

kj kj

kj

I

kjkjkj

kjkjkj

I I

kjkjkjkjkj

I

kjkj

xrdxxxxf

dxxxxf

dxxxxxfdxxxf

dxxxff

 

where
kjI

kjkjkjkj dxxxxfxr
,

)()(
2

1
)( ,

2
,,, . 

Now 

          
j

j

j

j
kj

k

k

k

k

jj

I

kj dxxdxxdxxx
221

2

2)1(

221

22
, 22)(

,

  

                          
j

j

j

j

k

k

k

k

xx
2)1(

221

2221

2

2
2j

22
2     

                          
2

22
2

22

2

1
1

2

1

2

1
.2.2 kkkkjj                                                                                   

                          

 

.2
4

1 23 j

                                                          

(4.4.2) 

From (4.4.1) and (4.4.2) 

                    )()(2
4

1
, ,,

23
, xrxff kjkj

j
kj . 

Now  

            
kjkj I

kjkj
Ix

kj dxxxxxfxr
,,

)()(max
2

1
)( ,

2
,,

  

                        
j

jkj

k

k

kj
Ix

j

dxxxxf
221

2

2
,

2

,

)(max
2

2 

                        
kjIx

jj

xf
,

)(max.
4.3

2
.

2

2 32

 

                        
kjIx

j xf
,

)(max.2.
24

1 25 . 
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For large j, 252 j  is very small compared with 232 j . So 

             
23

,
23

, 2)(2
4

1
, j

kj
j

kj Oxff                                    (4.4.3) 

Case 2: If kjIx ,0 , then for large j, 

              2
00

2
, 2)()(2

4

1
, jj

kj Oxfxff                          

Proof: If kjIx ,0 , then either it is in l
kjI , or in r

kjI , . We assume that l
kjIx ,0 , 

and the other case is similar. Now expanding )(xf about 0x by Taylor's 

formula, we have 

            0000 ,   ,,0    ),)(()()( xxxxxxfxfxf

 

            xxxxxxfxfxf ,   ,1,    ),)(()()( 0000 . 

Therefore 
           )()(,

,

,,

kjI

kjkj dxxxff

 

                         kj

k

x

k

k

jj
x

k

j

j j

jj

dxxfdxxfdxxf ,

221 2)1(

221

0
2

0
2

2

0
2

0

0

222

 

                         kj
jj xfxfkx ,000

2 )()(22 ,                       (4.4.4)  

where  

            
j

j

k

x

kj

x

k

kjkj dxxxfdxxxf
21

,0

2

,0,

0

0

. 

Thus  
            

kjkj I

kj
xIx

kj dxxxxxf
,0,

)()(max ,0
\

,

 

                    
kjkj IxIx

j dxxxxf
,0,

0
\

2 )(max2  

                    j

xIx

j

kj

xf 2

\

2 2
4

1
.)(max2

0,

 

                    23

\

2.)(max
4

1

0,

j

xIx kj

xf . 

For large j, 232 j  is very small compared with 22 j . So 
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                  )()(22, 000
2

, xfxfkxf jj
kj  . 

The quantity jkx 20 is very small if 0x is close to the left end point of 

l
kjI , and can even be zero. However, we can expect that in most cases, 0x 

will be in the middle of  l
kjI ,  so that  jjkx 2.

4

1
20 . Thus for large j, 

           2
00

2
, 2)()(2

4

1
, jj

kj Oxfxff                           (4.4.5)          

Comparing (4.4.3) and (4.4.5), we see that the decay of kjf ,,

 

for 

large j is considerably slower if kjIx ,0  than if kjIx ,0 .  

4.5 Rate of convergence of Haar series 

Proposition 4.5.1 [25]: Let f be continuous in pL , p1 and the 

partial sum of the Haar wavelet series is  

                          
1

0

12

0
,,,

J

j k
kjkjN

j

ff

 

where JN 2

 

for some J . Then the error of approximation in pL is 

defined by: 2/2 J

pN Off . 

As special case for p = 2, the mean square error is J
N Off 2

2

2
. 

Proof: The error of approximation in pL  is 

p

J

j k
kjkjpN

j

ffff
1

0

12

0
,,,

 

               
pJj k

kjkj

j

f
12

0
,,,

 

               
p

Jj k

p

kj

j

f

1
12

0
,,

 

               22

1

2 22~2~ JJ

p

Jj

jp O .   
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4.6 Rate of convergence of wavelet series  

In this section we will examine how well a function  f can be 

approximated pointwise by wavelets in jV , as well as approximated in the 

2L sense. We will also look at the rate of decay of the wavelet coefficients 

kjf ,,  as j .  

Let's start with poitwise convergence. Fix Jj

 

and suppose that 

)(TCf K , where T : is the neighborhood 
J

xx
2

1
0

 

of 0x . We want to 

estimate the pointwise error fpf J  in T . 

Proposition 4.6.1 [17]: Suppose that )(TCf K , and Kf has upper bound 

KM  inT , then  

)1(
)1(

2
2

KJ
KJ

K
J O

CM
fpf 

where C  is a constant, independent of f  and J .  

Proof: The proof can be found in [17] 

Note that this is a local estimate; it depends on the smoothness of f in T . 

Thus once the wavelets is fixed, the local rate of convergence depending 

only on the local behavior of f . This is different from the Fourier series or 

Fourier integrals where a discontinuity of a function at one point can slow 

the rate of convergence at all points.  

Now we turn to the estimation of the wavelet expansion 

coefficients kjf ,, . Recall that any wavelet )(x

 

that comes from an 

MRA must satisfy 0)( dxx

 

, and we say that the zeroth moment of )(x

 

is vanishing, so if the integral 0)( dxxx K , we say that the Kth moment 

of )(x

 

is vanishing. We will see that vanishing moment have results for 
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the efficient representation of functions. Specifically we will see that the 

wavelet series of a smooth function will converge very rapidly to the 

function as long as the wavelet has a lot of vanishing moments. This means 

that in this case, relatively few wavelet coefficients will be required in 

order to get a good approximation. Now we will show that the wavelet 

coefficients of such functions will have rapid decay as j . To make the 

proof easier, we will assume that )(x  has compact support. 

Proposition 4.6.2 [1]: Suppose that KCf K ),( , and )()( xf K has a 

uniform upper bound KM on . Assume that the function )(x

 

has K 

vanishing moment with compact support, and kjdxxkj ,,1)(
2

,

 

,then 

we have the estimate 
)2/1(

)2/1(, 2
2

, Kj

Kj
K

kj O
CM

f

 

where C  is a constant, independent of kjf ,, .  

Proof: Suppose that )(x

 

is supported in the interval I , which has the form 

aI ,00,0

 

for some 0a . It follows that the function )(, xkj

 

is supported in 

the interval )(2,2, akkI jj
kj , and aI j

kj 2, . Now let 

kax jj
kj 22 )1(

,  be the center of the interval kjI , .  

Since )(KCf , for each kj, , )(xf can be expanded in a Taylor 

expansion about the point kjx , . That is, 

      )()()(
)!1(

1
...)()()()( ,

)1(1
,,,, xRxfxx

K
xfxxxfxf Kkj

KK
kjkjkjkj ,  

where 

      )()(
!

1
)( )(

,
KK

kjK fxx
K

xR                                                                         

for some  between kjx ,  and x . If kjIx , , then we have the estimate  
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     )(max2
!

1
)( )()1(

,

xfa
K

xR K

Ix

jK
K

kj

.                                                      (4.6.1)            

Now we can compute the wavelet coefficients as follows: 

     

 

.)()(                      

)()()()(
!

1
                      

)()()()(
!

1
                      

)()(,

,

,

,

1

0
,,

,

1

0
,

)(
,

,,

kjI

kjK

kjK
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l
kj

l
kj

kj

K

l
Kkj

ll
kj

kjkj

dxxxR

dxxxRdxxxx
l

dxxxRxfxx
l

dxxxff

   

Now applying the estimate (4.6.1) and the Cauchy-Schwarz inequality, 

2/12/)()1(-

2/1

2

,

2/1

,
)()1(-

,
)()1(-

,,

2.)(max2
!

1
                      

)()(max2
!

1
                      

)()(max2
!

1 
                    

)()( ,

,

,
,

,
,

,

axfa
K

dxxIxfa
K

dxxxfa
K

dxxxRf

jK

Ix

jK

I

kjkj
K

Ix

jK

I

kj
K

Ix

jK

I

kjKkj

kj

kj
kj

kj
kj

kj

     

K
KKj

KK

Ix

Kj

Ma
K

axf
K kj

2
!

1
2                      

2.)(max
!

1
2                      

2/3)2/1(

2/3)()2/1(

,    

Note that with Ka
K

C 2
!

1 2/3 , the proof is complete. 

We already know that the wavelet basis is complete in ,2L . Let 

consider the decomposition: 
Jj

jJ WVL ,2 . 

We want to estimate the 2L  error 2

2
fpf J  as follows:  

Proposition 4.6.3: Suppose that )(KCf and has bounded support say 

the interval a,0 , if )()( xf K  has a uniform upper bound KM  then  
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KJ
KJ

K

Jj

a

k
kjJ O

aMC
ffpf

j

21
2

222

0

2

,

2

2
2

2

2
, . 

Proof: The proof is easy by using Proposition 4.6.2.  

Jackson's approximation theorem 

Now we formulate results that relate the speed of convergence of wavelet 

series to the smoothness of f . We focus attention on the rate of decay of 

pj fpf . 

In order to measure the smoothness of a function, we introduce the pL

 

modulus of continuity: 
                    

p
h

p hxfxff )()(sup);(
0

 

This is defined if pLf  or not. 

Proposition 4.6.4 [14, 18]: The pL

 

modulus of continuity satisfies the 

following conditions: 

a. );( fp  is monotone increasing. 

b. If pLf , then 0  as  0);( fp . 

c. );();();( 2121 fff ppp . 

d. );();();( 2121 ffff ppp . 

e. If 0    ,);( fp , then 1
locLf

p . 

f. );();( fmmf pp . 

Proof: The proof can be found in [14]. 

In order to prove suitable approximation theorems, we need to consider a 

small class of scaling functions, defined by an estimate of the form  

   2,
1

)( B
x

A
x

B
.                                                                        (4.6.1) 
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Lemma 4.6.5 [14]: If 

 
satisfies (4.6.1), then the wavelet kernel ),( yxK 

satisfies the estimate 

         
B

yx

A
yxK

1
),(                                                                (4.6.2) 

 The direct approximation (Jackson's estimate) is the following statement. 

Theorem 4.6.6 [14, 18]: Jackson's inequality 

Suppose that the scaling function satisfies (4.6.1). Then there exist a 

constant C such that for all pMCf 

                      j
ppj fCfpf 2;                                                  (4.6.3) 

where the space pMC  is defined by:= 0  allfor        ;: ff p . 

Note that we do not assume that pLf . 

We can reduce this to study of 0p  by introducing the dilation operator. 

Definition 4.6.7 [14]: Dilation operator  

The dilation operator defined by: rxfxfJ r
r ),2()( .And satisfies the 

following properties: 

a. Commutation relation: rjrrj pJJp . 

b. Norm relation: 
p

pj

pj ffJ /2 . 

c. )2;(2);( / a
p

pa
ap ffJ . 

Now we return to proof theorem (4.6.6). 

Proof: Suppose we have (4.6.3) for 0j with some constant C. Then by 

using the properties a, b and c in definition (4.6.7) we get 

).2;()1;(2 C                   

2                   

/

0
/

0

j
pjp

pj

pjj
pj

pjjjjpj

fCfJ

fJfJp

fJJfJpJffp
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So it suffices to consider 0j . From (3.5.4) using property (3) for the 

wavelet kernel we can write 

                    dyyxKyfxfxfpxf ),()]()([)()( 0 

From (4.6.2) we get 

                    

  
)1(

)()(
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dxdyyxKyfxffpf
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p 

We pick 0,0 ba so that baB

 

and 1,1 pbpap (where as 

111 pp )and applying Holder's inequality to the inside integral we get 
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We divide the last integral in to two parts and estimate each part separately 

as follows: 
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using proposition (4.6.4,f) to get 
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since 1pap . 

Corollary 4.6.8 [14]: If f satisfies a Holder condition with 

exponent 1,0 , then jj

pj OCfpf 22 . 

4.7 Conclusion  

We can summarize the results we obtained in this chapter as follows:  

1. If a function f is sufficiently smooth; i.e. )(KCf , then the rate of 

decay of the Fourier coefficients of f is of order  KnO

 

with mean 

square error of order KNO 21 , whereas the rate of decay of its wavelet 

coefficients is of order )2/1(2 KjO with mean square error of order 

KJO 212 . 

2. If a function f is satisfies a Holder condition with exponent 1,0 , 

then the rate of decay of the Fourier coefficients of f is of order  

nO , whereas the rate of decay of its wavelet coefficients is of order 

)2/1(2 jO . 

Note that the smoothness of f is directly related to the rate of decay for 

both coefficients; Fourier and wavelet, but does not affect the rate of decay 

of the Haar coefficients. See figure (1).  
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(a) (b) 

Figure 1 

From the above results we expect that under the same condition of f the 

speed of convergence of wavelet series is faster than the speed of 

convergence of its Fourier series, and this is one advantage for wavelet. See 

figure (2).  

          

                          (a)                                                (b) 

Figure 2 



  
105

Finally, I will end this thesis by setting some differences between both 

Fourier and wavelets transform.   

1. As we show in chapter 2, the Fourier series of a function with a jump 

discontinuity exhibits Gibb's phenomenon. That is, the partial sums 

overshoot the function near the discontinuity and this overshoot 

continues no matter how many terms are taken in the partial sum. Gibb's 

phenomenon does not occur if the partial sum replaced by the arithmetic 

mean N . Since the wavelet expansions have convergence properties 

similar to N , we might expect them not to exhibit Gibb's phenomenon. 

2.  We can see that unlike the trigonometric system the Haar system 

provide the uniform convergence on the partial sums for continuous 

function on ]1,0[ . This property is shared by most wavelets in contrast 

with the Fourier basis for which the best we can expect for continuous 

functions is pointwise convergence a.e. Also, the partial sums of the 

Fourier series of continuous functions do not necessarily converge. To 

expect the uniform convergence we assume that f is a piecewise 

smooth function. 

3. The wavelet coefficients in the wavelet series expansion of a function 

are the integral wavelet transform of the function evaluated at certain 

dyadic points 
jj

k

2

1
,

2
. No such relationship exists between Fourier 

series and Fourier transform, which are applicable to different classes of 

functions; Fourier series applies to functions that are square integrable 

in 2,0 , whereas Fourier transform is for functions that are in 2L . 

Both wavelet series and wavelet transform are applicable to functions 

in 2L 
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Appendix 

Basic Theorems 

Theorem 1: Cauchy-Schawrz Inequality  

Let )(xf  and )(xg  be 2L  on the interval I, then 
21

2

21

2
)()()()(

III

dxxgdxxfdxxgxf 

Theorem 2: Holder Inequality                                 

If  p and q are non negative real numbers such that 1
11

qp
, and if pLf

 

and qLg , then 1Lgf  and 
qp

gfgf
1

. 

Theorem 3: Dominated convergence theorem 

Suppose )()( xfxfn

 

almost everywhere. If )()( xgxfn

 

for all n, and 

dxxg )( , then f is integrable, and dxxfdxxf n
n

)(lim)( . 

Theorem 4: Taylor's Theorem                               

Suppose that )(xf is n-times continuously differentiable on some interval I 

containing the point 0x . Then for Ix , )(xf  can be written  

)(
!

)(
)(

)!1(

)(
...)(

2

)(
)()()()( )(0

0
)1(

1
0

0

2
0

000
n

n
n

n

f
n

xx
xf

n

xx
xf

xx
xfxxxfxf

where is some point between 0x  and x. 

Theorem 5: Minkowski's Inequality                        

Let )(xf  and )(xg  be 2L  on the interval I, then 
21

2

21

2

21

2
)()()()(

III

dxxgdxxfdxxgxf 

Theorem 6: If )(xf  is continuous on a closed, finite interval I, then )(xf  is 

uniformly continuous on I, and its bounded on I; that is there exist a 

number M > 0 such that  IxMxf )( . 
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