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On Best Approximation Problems In Normed Spaces With S-property 
By  

 Ghadeer Ghanem Fayez Qwadreh 
Supervisor  

 Dr. Abdallah Hakawati 

Abstract  

The problem of best approximation is the problem of finding, for a 

given point x X and a given set G in a normed linear space ( X, ), a 

point g 0  G which should be nearest to x among all points of the set G.  

This thesis contains properties of best approximations in spaces with 

the S property. We provide original results about Orlicz subspaces, and 

about pXLp 1),,(  subspaces with the S property. 

As a major result we prove that: if G is a closed subspace of X and 

has the S property. Then the following are equivalent: 

1. G is a Chebyshev subspace of X. 

2. L ( ,G) is a Chebyshev subspace of L ( ,X). 

3. L p ( ,G) is a Chebyshev subspace of L p ( ,X), 1

 

p < .
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Preface           

The problem of best approximation is the problem of finding, for  

a given point x X and a given set G in a normed linear space ( X, )  

a point g 0  G which should be nearest to x among all points of the set G. 

We shall denote by P(x,G), the set of all elements of best 

approximants (approximations) of x in G,   

i.e. P(x,G) = { g 0  G : }:inf{0 Gggxgx }.            

The problem of best approximation began, in 1853, with P.L. 

Chebyshev who was led to state, the problem of finding for a real 

continuous function x(t) on a segment [a,b], an algebraic polynomial    

g 0 (t) = 1

1

)0( i
n

i
i t  of degree  n 1, such that the deviation of the polynomials 

from the function x(t) on the segment [a,b] be the least possible among the 

deviations of all algebraic polynomials g(t) 1

1

i
n

i
i t of degree 

 

n 1. In 

other words; the problem of best approximation of the function x(t) by 

algebraic polynomials g(t) of degree 

 

n 1 [9]. 

Many remarkable results appeared in Al Dwaik's Masters Thesis 

[7]. Al Dwaik gave the following definition : given a Banach space X, and 

a closed subspace G, then the subspace G is said to have the S property    

in X if z 1 P(x 1 ,G) and z 2 P(x 2 ,G) imply that z 1 + z 2 P(x 1 + x 2 ,G) 

).,( 21 Xxx

 

Chapter four of Al Dwaik's thesis contains the following results: 
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1- Let X be any Banach space and G be a closed subspace of X with the            

S property, then L 1 (µ ,G) is proximinal in 1L (µ ,X) if and only if 

L (µ ,G) is proximinal in L (µ ,X). 

2- Let X be any Banach space and G be a closed subspace of X which has 

the S property. The following are equivalent : 

    (i)- G is proximinal in X. 

    (ii)- L 1 (µ ,G) is proximinal in 1L (µ ,X). 

3- If G has the S property in X, then L (µ ,G) has the S property in 

L (µ ,X). 

Many other results can be found in there.  

In this thesis we adopt the same definition as in Al Dwaik [7], but X 

is a metric linear space, instead of a Banach space. My thesis consists of 

three chapters; each chapter is divided into sections. A triple like 1.3.2 

indicates item (definitions, theorems, corollary, lemma etc) number two 

in section three of chapter one. At the end of the thesis we present a 

collection of references, an appendix and abstract in Arabic. 

In chapter one, we introduce the basic results and definitions which 

shall be needed in the following chapters. The topics include metric linear 

spaces, Hilbert spaces, Banach spaces, projections, orthogonality, 

measurable spaces and integrable functions.  
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Chapter two will be devoted to an introduction to fundamental ideas 

behind best approximations in normed linear spaces, Orlicz spaces, and the 

spaces L p ( , X), 1 

 
p

 
, which we need in chapter three. Section (2.1) 

contains some properties of P(x,G) and theorems on best approximation. In 

Section (2.2) we define the 1 complemented subspace and L p summand 

subspace, 1

 

p < . We also have theorems on best approximations in these 

subspaces and prove that if G is an L p summand subspace, then G is a 

Chebyshev subspace. In Section (2.3) we define the modulus function ( ), 

Orlicz space, and will have theorems on best approximations in subspaces 

of Orlicz space and L p ( ,X), 1 

 

p 

 

, which we need in section (3.2). 

Chapter three is the main part of the thesis and contains two sections. 

Section (3.1) contains some theorems and consequences from Al Dwaik 

[7], and the following new results: 

1. In Example (3.1.3) we will see that if G is proximinal in X, it does not 

necessarily follow that G has the S property. 

2. In Remark (3.1.2) we will see that if G has the S property, it does not 

necessarily follow that G is proximinal.  

3. If G is an L p summand, 1

 

p < , then G has the S property. 

4. In Example (3.1.19) we will see that if P 1
G (0) is proximinal in X which 

has the S property and G has the S property, and then G is proximinal. 

5. Let X be a normed linear space, then any closed subspace G of X which 

has the S property is a semi Chebyshev subspace of X. 
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6. Let X be a normed linear space. If P 1
G (0) is a closed subspace of X, then 

G has the S property in X. 

7. Let G be a closed subspace of a normed linear space X which has the 

S property. If G is proximinal, then G is a Chebyshev subspace of X. 

There are more results which can be found in section (3.1).   

In section (3.2) we have many results about the Orlicz subspaces and 

L p ( ,X), 1

 

p , subspaces with the S property. The following are the 

main theorems in this section: 

1. Theorem (3.1.4) and Theorem (3.1.5) imply that L p ( ,G) has the 

S property in L p ( ,X) 1

 

p <

 

G has the S property in X. 

2. L ( ,G) has the S property in L ( ,X) 

 

G has the S property in X. 

3. Let L ( ,G) be a Chebyshev subspace of L ( ,X). If G has the 

S property, then L ( ,G) has the S property in L ( ,X). 

4. L ( ,G) has the S property in L ( ,X) G has the S property in X. 

5. If ),( GS

 

has the S property in ),( XS , then G has the S property 

in X.  

The most important consequence of the above theorems is that: if G 

is a closed subspace of X and has the S property. Then the following are 

equivalent: 

a) G is a Chebyshev subspace of X. 
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b) L ( ,G) is a Chebyshev subspace of L ( ,X). 

c) L p ( ,G) is a Chebyshev subspace of L p ( ,X), 1

 
p < .   

          Finally; I ask God to be our assistant always we do remain.              
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Chapter One 

Preliminaries 

1. Introduction 

In this chapter we present some definitions and theorems on metric 

topics which will be needed in the next chapters. These definitions and 

theorems can be found in the texts and are foundational to the study of best 

approximations and the S property.  

1.1 . Metric and Normed Linear Spaces  

The following are the definitions and theorems regarding metric and 

normed linear spaces and they are essential to prove properties of best 

approximations. These can be found in textbooks of functional analysis by 

Kantorovich et al. and Lebedev et al. and Singer on best approximations in 

normed linear spaces [11, 12, and 9].  

Definition 1.1.1: (Akilov [11]). A set X is called a metric space if to each 

pair of elements x, y 

 

X there is associated a real number d(x,y), the 

distance between x and y, subject to the following conditions: 

M1:- d(x,y) 

 

0 , and d(x,y) = 0 iff x = y. 

M2:- d(x,y) = d(y,x). 

M3:- d(x,y) 

 

d(x,z) + d(z,y)   for any z X (This is the triangle inequality). 

Such function d: X× X 

 

R is called a metric on X.   
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Theorem 1.1.2: (Akilov [11]). d(x,y) is a continuous function on its 

arguments, that is, if nx  x and ny

 
y, then d( nx , ny )

 
d(x,y).   

Definition 1.1.3: (Akilov [11]). A set G X is said to be closed if every 

convergent sequence { nx } G converges to a point in G.     

 

Definition 1.1.4: (Akilov [11]). The distance of a point x 0 from a set G X 

such that (X,d) is a metric space, is given by  

                               d( 0x ,G) = inf {d( 0x , g): g G}.       

 

Definition 1.1.5: (Lebedev [12]). Let K be the field of real or complex 

numbers (the field of scalars). A set X is called a vector (or linear) space 

over K if for every two of its elements x and y there is defined a sum x + y 

an element of X, and if for every element x X and every scalar K there 

is defined a product x also an element of X, such that the following 

axioms are satisfied for all elements x, y, z X and all scalars , K: 

1. x + y = y + x; 

2. x + (y + z) = (x + y)+ z; 

3. there is a zero element, 0 X, such that x + 0 = x ; 

4. ( x)= x)( ;    

5. yxyx )( ; 

6. xxx)( .  
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Remark 1.1.6: (Akilov [11]). Let X be a vector space. Then: 

1. x = y is equivalent to x  y = 0. 

2. For all Xx , there is a unique x

 

X such that x + x  = 0. In fact    

x  = ( 1)x and x  is usually written as x and is called the negative of x.  

Definition 1.1.7: (Lebedev [12]). 

 

is called a norm of x in a linear space 

X if it is a real valued function defined for every x X

 

which satisfies the 

following norm axioms: 

N1: x   0, and x = 0 iff x = 0. 

N2: x  = x . 

N3: yxyx

 

(This is the triangle inequality). 

A vector space X having a fixed norm on it is called a normed linear 

space.

 

Remark 1.1.8: (Akilov [11]). Let X be a normed linear space, then: 

1. If we set d(x,y) = yx , Xyx, , then d is a metric on X.  

2. yx

 

yx . 

3. x  is a continuous function of x, that is, if x n

 

x, then nx 

 

x .  

Definition 1.1.9: (Lebedev [12]). Let X be a normed linear space and 

suppose G X, G is called a subspace of X if it is a linear space; i.e. one 

which satisfies conditions (1 6) listed in definition 1.1.5, and has the norm 
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on G obtained by restricting the norm on X to the subset G. The norm on G 

is said to be induced by the norm on X.          

 

Theorem 1.1.10 : (Singer [9]). Let X be a normed linear space and G a 

linear subspace of X. Then:- 

1. d(x + g,G) = d(x,G)                                  (x X, g G). 

2. d(x + y,G) 

 

d(x,G) + d(y,G)                    (x, y X). 

3. d( x,G) = 

 

d(x,G)                                (x X,  scalar). 

4. yxGydGxd ),(),(                         (x, y X). 

5. d(x,G) x                                               (x X).      

Proof: - For (1). Let x 

 

X, g 

 

G and 

 

> 0 be arbitrary, by the definition 

of d(x,G) = inf { Gggx : } there exists g 0 G such that  

),(0 Gxdgx                                                  (1.1) 

Consequently, we have  

d(x + g,G) )( 0 gggx = 0gx d(x,G) + 

 

But x X, g G and  > 0 were arbitrary, hence  

d(x + g,G) 

 

d(x,G)             (x X, g G).                (1.2) 

Applying these relations for x+g X instead of x and for 

 

g G 

instead of g G, we obtain  
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d(x,G) 

 
d(x + g,G)            ( x X, g G).                (1.3)  

From (1.2) and (1.3) we get d(x + g,G) = d(x,G), x  X, g  G. 

For (2) of the theorem: Let x, y 

 

X and  

 

> 0 be arbitrary. By the 

definition of  d(x,G) and d(y,G) there exist g 1 , g 2 G such that  

           1gx

  

d(x,G) + /2                    2gy

  

d(y,G) + /2 

Consequently, we have  

d(x + y,G) )( 21 ggyx 1gx  + 2gy

 

d(x,G) + d(y,G) + 

 

But x, y X, and  > 0 were arbitrary, hence  

d(x + y,G)  

 

d(x,G) + d(y,G)         (x, y X). 

For (3) of the theorem: Let x  X, 0  a scalar, and  > 0 be arbitrary and 

take g 0  G for which 

0gx

 

d(x,G) + ( / ).                                       (1.4) 

We have  

d( x ,G) 

 

0gx = 0gx

 

d(x,G) + . 

It follows that  

d( x ,G) 

 

d(x,G).                                               (1.5) 

Applying this relation for x

 

instead of x and for 1/

 

instead of 

 

we 

obtain: 
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d(x,G) = d(1/  ( x ), G) (1/ ) d( x ,G). 

Hence   

 
d(x,G) 

 
d( x ,G).                                                                (1.6) 

From (1.5) and (1.6) and since d(0,G ) = 0, we get  

 

d(x,G) = d( x ,G).              

For (4): Let x, y  X and  > 0 be arbitrary and take g 0  G with 

0gy

  

d(y,G)+ .                                                 (1.7) 

We have  

d(x,G) 0gx yxgyyx 0  + d(y,G) + . 

But x, y and  > 0 were arbitrary, there follows  

d(x,G) 

 

d(y,G) yx .   

In these relations, interchange x and y to yield: 

d(y,G)  

 

d(x,G) yx .   

Hence   yxGydGxd ),(),( .                                                        (1.8) 

For (5) of the theorem: Let x  X and y = 0, then by relation (1.8) 

  0),0(),( xGdGxd 

But d(0,G) = 0, then d(x,G) x ,      x  X .       
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Theorem 1.1.11: (Singer [9]). Let X be a normed linear space and G a 

linear subspace of X. Then we have  

                        d(x,G) = inf  { gx  : g G, 2g x  }.    

Proof: - If x X, g 0 G and 20g x , then taking into account  

d(x,G) x ,  x  X, (part (5) of Theorem 1.1.10). One has 

xxxxggx 200 d(x,G). 

Since for all g 0 G such that 20g x , we have d(x,G) < 0gx , then 

d(x,G) = inf  { gx  : g G, 2g x  }.       

 

Definition 1.1.12: (Lebedev [12]). A space S is said to be a linear subspace 

of a linear space X if S is linear space and S is a subset of X. 

 

Definition 1.1.13: (Lebedev [12]). A metric space X is said to be complete 

if any Cauchy sequence in X has a limit in X; otherwise it is said to be 

incomplete. 

 

1.2. Linear Operators  

Essential definitions and fundamental theorems on linear operators 

that will be required in many places of the thesis can be found in texts by 

Siddiqi and by Kreyszig, as well as by singer, and by Lebedev et al.        

[14, 10, 9, 12]. 
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Definition 1.2.1: (Lebedev [12]). The operator A is a linear operator from 

X into Y and X, Y are linear spaces, if its domain D(A) is a linear subspace 

of X and for every x 1 , x 2

 
D(A), and every , (scalars) we have : 

A( x 1 + x 2 ) = A( x 1 ) +

 

A(x 2 ) 

For a linear operator A, the image A(x) is usually written Ax. 

 

The null space N (A) consisting of all x X such that Ax = 0 is a subspace  

of X.  

Definition 1.2.2: (Kreyszig [10]). Let X and Y be normed linear spaces and 

T: D (T) Y a linear operator where D (T) .X The operator T is said to 

be bounded if there is a real number k such that for all x )(TD , 

xkTx .

 

Theorem 1.2.3: (Siddiqi [14]). Let A: D (A) 

 

Y be a linear operator 

where D (A)

 

X and X, Y are normed linear spaces, Then: 

1. A is continuous iff A is bounded. 

2. If A is bounded, then N (A) is closed subspace. 

Definition 1.2.4: (Kreyszig [10]). A linear functional f is a linear operator 

with domain in a vector space X and range in the scalar field K of X.  

  

Definition 1.2.5: (Kreyszig [10]). 

1. The set of all linear functionals defined on a vector space X can itself be 

made into a vector space and is denoted by X

 

and is called the dual 
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space. The sup norm on the unit disc of X will turn X

 
into a normed 

linear space. 

2. B[X] is the set of all bounded operators from X into X.      

 

Definition 1.2.6: (Singer [9]). A subset H of a vector space X is called a 

hyperplane if there exists a bounded linear functional, f 

 

0, defined on X 

and a scalar  such that H = {x X: f (x) = }.  

  

Theorem 1.2.7: (Singer [9]). Let X be a normed linear space and  

H={x X: f (x) = } be a hyperplane of X then the distance of the point x to 

the hyperplane H is  

d(x,H) = 
f

xf )(
.                                             

Remark 1.2.8: (Siddiqi [14]). An arbitrary f 

 

c (The space c consists of 

all convergent sequences of scalars with the sup norm) can be expressed as 

f (x) = y 0
1

lim
n

nn
n

n xyx   where x = (x 1 , x 2 , x 3 , ) 

 

c and  

y = (y 0 , y 1 , y 2 , ) such that 
1i

iy  and 
1

0
i

iyyf .  

1.3. Hilbert and Banach Spaces:- 

We need to define Hilbert and Banach spaces for the next chapters, 

and we can find the definitions in texts by Lebedev et al. and by Kreyszig 

[10, 12].  
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Definition 1.3.1: (Lebedev [12]). A complete normed linear space is called 

a Banach space.      

  

Definition 1.3.2: (Kreyszig [10]). Let X be a vector space over the field K. 

An inner product on X is a function <, >: X X 

 

K such that for all           

x, y, z X and a scalar  , we have:- 

P1: <x + y, z> = <x, z> + <y, z> 

P2: < x, y> = <x, y> 

P3: <x, y> = xy,    

P4: <x, x> 

 

0 x X, and <x, x> = 0 iff x = 0. 

An inner product on X defines a norm on X given by xxx , and      

a metric on X given by d(x, y) = yxyxyx ,  .                      

An inner product space is a linear space with an inner product on it.  

 

Definition 1.3.3: (Lebedev [12]). A complete inner product space is called 

a Hilbert space.        

 

Remark 1.3.4: (Kreyszig [10]). If H is a Hilbert space, then for elements  

x, y H we have the equation (This is the parallelogram law)  

)(2
2222

yxyxyx . 
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1.4. Orthogonal Sets  

       Kreyszig's book on functional analysis provides necessary 

definitions and theorems regarding orthogonal sets and direct sums of 

Hilbert spaces, but the properties of orthogonal elements in normed linear 

spaces can be found in Singer [10, 9].   

Definition 1.4.1: (Singer [9]). An element x of a normed linear space X is 

said to be orthogonal to an element y X, and we write x y, if we have 

xyx  for every scalar . 

 

Remark 1.4.2: (Singer [9]). Two vectors x and y in an inner product space 

X are called orthogonal, written as (x y), if and only if < x, y > = 0.      

Proof: Let Xyx,  and < x, y > 

 

0. Then for 
yy

yx

,

,
 we have  

.

,

,

,
,

,
,

,

,

,
2,

,

,
,

,

,

2

2

2

22

2

x

xx

yy

yx
xx

yy
yy

yx

yy

yx
xx

y
yy

yx
xy

yy

yx
xyx

 

This contradicts our assumption. Therefore xyx , hence x y. 

For the converse, let < x, y > = 0. Then for every scalar  we have  
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.,
22222

xyxyxyxyx

 
Hence  x y.  

 

Definition 1.4.3: (Kreyszig [10]). A vector space X is said to be the direct 

sum of two subspaces Y and Z of X, written X= Y ,Z

 

if each x X has a 

unique representation x = y + z, y ,Y

 

z Z .  

Then Z is called an algebraic complement of Y in X and vice versa, 

and Y, Z are called a complementary pair of subspaces in X.     

 

In the general Hilbert space X, we obtain the interesting 

representation of X as a direct sum of any closed subspace M of X and its 

orthogonal complement M = {x X: x M} which is the set of all vectors 

orthogonal to each member of M [10]. 

Theorem 1.4.4: (Kreyszig [10]). If M is a closed subspace of a Hilbert 

space X, then  

X = M M . 

Theorem 1.4.5: (Kreyszig [10]). If x y in an inner product space X, then 

222
yxyx . 

1.5. Projections  

Requisite theorems on projections on Banach spaces can be found in 

Limaye [15]. 
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Definition 1.5.1: (Limaye [15]). If X is a normed linear space and P B[X] 

satisfies P 2 = P, then P is called a projection. 

 

Theorem 1.5.2: (Limaye [15]). If P is a projection on a Banach space X 

and if M and N are its range and null space, respectively, then M and N are 

closed subspaces and  X=M N. 

Theorem 1.5.3: (Limaye [15]). Let X be a Banach space, and M and N be 

closed subspaces of X such that X=M N. The mapping defined on each    

z = x + y, x M, y N, by P(z) = x is a projection on X whose range is M 

and whose null space is N. 

1.6. Measurable Spaces and Integrable Functions  

Rudin's Real and Complex analysis contains definitions for measure 

spaces and integrable functions and we will use a definition from Deeb and 

Khalil for Bochner p integrable functions [13, 1]. 

Definition 1.6.1: (Rudin [13]). 

(a) A collection 

 

of subsets of a set X is said to be a algebra in X if it 

has the following properties: 

1. X

  

2. If A , then A c  where A c is the complement of A relative to X 

3. If A = ,
1n

nA A n   for n = 1,2,3, ., then A
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(b) If 

 
is a algebra in X, then X is called a measurable space, and the 

members of  are called the measurable sets in X. 

(c) If X is a measurable space, Y is a topological space, and f is a mapping 

of X into Y, then f is said to be measurable provided that 1f (V) is a 

measurable set in X for each open set V in Y. 

For the subset E of X, let E denote the characteristic function of E. E is 

measurable iff E is measurable.     

 

Definition 1.6.2: (Rudin [13]). 

(a) A positive measure is a function µ , defined on a algebra , whose  

range is in [0, ] and which is countably additive. This means that if {A n } 

is a disjoint countable collection of members of , then  

µ(
1n

nA ) = 
1

)(
n

nA

 

(b) A measure space is a measurable space which has a measure defined on 

the algebra of its measurable sets. 

A property which is true except for a set of measure zero is said to hold 

almost everywhere (a.e.).     

 

Definition 1.6.3: (Rudin [13]). A function f: X is said to be simple if 

its range contains only finitely many points x 1 , x 2 , , x n and if 1f (x i ) is 

measurable for i = 1,2,3, ,n. Such a function then can be written as           

f=
n

i
ix

1
iE where for each i, E i = 1f (x i ). We define 

E

f dµ = .)(
1

n

i
ii EEx
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If f is a non-negative measurable function on E, then we define  

E

f dµ =sup{
E

sdµ: 0 s f, and s is a simple and measurable function on E}.  

Remark 1.6.4: (Rudin [13]). The following propositions are immediate 

consequences of the definition. Functions and sets are assumed to be 

measurable on a measure space E: 

1. If BA  and f 

 

0, then
BA

dfdf . 

2. If  f 

 

0 and 
E

f dµ = 0, then f = 0  a.e. on E. 

3. If c is constant, then 
E

c dµ = c µ(E). 

4. If 0   f  g, then 
E

 f dµ 

 

E

g dµ. 

5. If E = E 1 E 2 , where E 1 and E 2  are disjoint, then 

E

f dµ  = 
1E

f dµ + 
2E

f dµ. 

Definition 1.6.5: (Deeb [1]). Let X be a real Banach space, and ( , ) be a 

finite measure space. The space of Bochner p integrable functions defined 

on ( , ) with values in the Banach space X is denoted ),( XLp . For 

f ),( XLp , we define the norm  

p
f

)(sup.

)()(

)()(
1

tfess

tdtf

tdtf

t

p

p
p

   

p

p

p

10

1 
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Where f ess. )(sup tf
t

inf {M :  {t : )(tf  > M } = 0 }. 

 
It is clear that if f ),( XL , then )(tf

 
f   a.e.  t. by the definition of 

essential supremum in Rudin [13].        

Although the preceding is not an exhaustive list of theorems and 

proofs concerning the study of the S property, they are central in the 

following discussion. We will use these tools to build our understanding of 

properties of the set of best approximations.      
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Chapter Two 

Best Approximation in Normed Linear Space 

2. Introduction.    

Let X be a normed linear space and G be a subspace of X and x X; 

then the problem of best approximation consists of finding an element 

g 0 G such that 0gx d(x,G) = inf { gx   :  g G}.  

Every g 0 G with this property is called an element of best 

approximation of x, or g 0 is a best approximant of x in G. We see that for 

all x X a best approximation of x in G is an element of minimal distance 

from the given x. Such a g 0 G may or may not exist. We shall denote the 

set of all elements of best approximation of x by elements of the set G by 

P(x,G), i.e. P(x,G) = { g 0 G : 0gx d(x,G)}.  

2.1 . The Proximinal Sets and The Set of Best Approximations     

Singer's book and Al Dwaik's thesis provide the basic theorems on 

proximinal sets and the set of best approximations which we will need in 

our study [9, 7]. 

First, we will begin with some properties of P(x,G). 

Theorem 2.1.1: (Singer [9]). Let G be a subspace of a normed linear   

space X:  
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1. If x G, then P(x,G) ={x}. 

2. If G is not closed and x G /G, then P(x,G) = . 

Theorem 2.1.2: (Al Dwaik [7]). Let G be a subspace of a normed space X, 

then, for x X: 

1. P(x,G) is a bounded set. 

2. If G is a closed subspace of X, then P(x,G) is a closed set.   

Proof: - For (1), let g 0

 

P(x,G), then 0g x2  by Theorem 1.1.11. 

Thus P(x,G) is a bounded set. 

For (2), we show that if {g n } is a sequence in P(x,G), such that g n

 

g, 

then g P(x,G). Now g n P(x,G) n N, so ngx =d(x,G)= , n N. 

Also g n  G. Since G is a closed subspace, then g G. 

But the function xF :G R defined by xF (g) = gx

 

g G is continuous 

by part (3) of Remark 1.1.8 .So xF (g n ) xF (g) implies that  

ngx gx .                                                    (2.1) 

But ngx  = , n N, so gx  = . Therefore g P(x,G).  

  

The following theorem is proved by Al Dwaik, but we will provide 

another proof.  

Theorem 2.1.3: (Al Dwaik [7]). Let G be a subspace of a normed linear 

space X: 
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1. If z P(x,G), then z P( x,G) for all scalars . 

2. If z P(x,G), then z + g P(x + g,G) for all g G. 

Proof: For part (1): Let x X and z P(x,G); we want to show that 

z P( x,G) for any scalar . 

)( zxzx

 

               =

 

zx

 

               =

 

d(x,G)               because z P(x,G). 

                = d( x,G)               by part (3) of Theorem 1.1.10. 

Consequently, for x X and scalar we have  

),( Gxdzx .                                                 (2.2) 

Therefore z P( x,G), for  x X and  scalar . 

For part (2): Let x X, g G and z P(x,G); we want to show that                 

z + g P(x + g,G). 

zxgzgx )( 

                                     = d(x,G)          because z P(x,G). 

                                     = d(x + g,G)     by part (1) of Theorem 1.1.10. 

Consequently, we have  

),()( Ggxdgzgx , g G.                     (2.3) 
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Therefore   z + g P(x + g,G), for any g G. 

  
Any set G 

 
X which has the property that P(x,G) , ,Xx

 
is 

called a proximinal set in X. We call G a semi Chebyshev set if for every 

x X, the set P(x,G) contains at most one element. G is called Chebyshev if 

it is simultaneously proximinal and semi Chebyshev, i.e. if for every x X 

the set P(x,G) contains exactly one element [9]. 

Lemma 2.1.4: (Singer [9]). Let X be a normed linear space, G a linear 

subspace of X, x GX \ and g G0 . We have g ),(0 GxP

 

if and only if 

Ggx 0 . 

Proof: By the definition of orthogonality, we have  

00 gxggx        (g G,  being scalar)                      (2.4) 

and this is obviously equivalent to g 0 P(x,G).       

 

Theorem 2.1.5: (Singer [9]). Let X be a normed linear space and H a 

hyperplane in X, passing through the origin. H is proximinal if and only if 

there exists an element z X \{0} such that ),(0 HzP (i.e. such that 

z H ). 

Theorem 2.1.6: (Al Dwaik [7]). For a subspace G of a normed linear 

space X, the following are equivalent: 

1. G is proximinal in X. 

2. X = G + P 1

G (0) where P 1

G (0) = { x X : 0 P(x,G)}. 
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Proof: (1) (2). If G is proximinal and x X, then  

x = g 0  + (x

 
g 0 ) G +P 1

G (0), where g 0 P(x,G). 

(2)  (1). Let x X and x = g 0 + y G + P 1
G (0) where g 0 G and y P 1

G (0) 

then 0 P(y,G) = P(x

 

g 0 ,G). This implies that 

         d(x

 

g 0 ,G) = 0gx d(x,G) = 0gx .  

Hence g 0 P(x,G), so G is proximinal.   

 

2.2. 1 complemented and pL summand Subspaces   

Deeb and Khalil defined the 1 complemented subspace and 
pL summand subspace, 1 p , and gave theorems on best 

approximations in these spaces [6, 1]. 

Definition 2.2.1: (Deeb [1]). A subspace G of a Banach space X is called             

1 complemented in X if there is a closed subspace W in X such that             

X = G W and the projection P: X W is a contractive projection, (i.e. 

XxxPx , ).    

Lemma 2.2.2: (Deeb [1]). If G is 1 complemented in X, then G is 

proximinal in X.    

Proof: Let X= G W and x X. Then x = g + w, where g G, w W 

and xw , we show that yxgx

 

Gy . Assume that there 

exists g 1 g G such that gxgx 1 . Set w 1 = x 

 

g 1 . By the 

uniqueness of the representation of x we have w 1 .W
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Hence w 1 = 22 wg , where g 2 G, w 2 W and 12 ww . Therefore  

x = w 1  + g 1 = (g 2 + w 2 ) + g 1 = (g 1 + 2g ) + w 2 

and consequently  21 ggg  and w = 2w . Thus  

12 www                                               (2.5) 

But by assumption, 11 gxw < wgx

 

This contradicts the assumption. Consequently yxgx

 

y G. 

Hence G is proximinal in X.     

 

Now we need the following definition of L p summand subspaces.  

Definition 2.2.3: (Khalil [6]). A closed subspace G of a Banach space       

X is called an L p summand, 1 p , if there is a bounded projection               

P: X G which is onto, and
ppp

xPxxPx .   

 

Theorem 2.2.4: (Khalil [6]). If G is an L p summand, then G is proximinal 

in X. 

Proof: Let x X, for every g G we have  

ppp
gxPgxgxPgx

 

             =
pp

xPxgxP

 

             
p

xPx

 

Hence xPxgx , i.e. P(x) P(x,G). Thus G is proximinal in X.
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Now, we prove this new result on pL summand, 1 p < . 

Theorem 2.2.5: Let X be a Banach space and G be a closed subspace of X. 

If G is an pL summand, 1 p < , then G is a Chebyshev subspace. 

Proof: Let x X and G be an pL summand, then there exists a bounded 

projection T: X G which is onto, and so by the proof of Theorem 2.2.4 

we have T(x) P(x,G). 

Now, assume that g 0 P(x,G), then  

pp
xTxgx 0                                                (2.6) 

So, for 1 p , we have  

ppp
gxTgxgxTgx 0000                              (2.7) 

               
pp

xTxgxT 0 

Consequently, we have  

0gxT = 0   T(x) = g 0   (by the definition of the norm ). 

Therefore G is Chebyshev.   

  

2.3 Approximation in Orlicz Spaces and in L ),( Xp , 1  p 

    

This section contains the concept of a modulus function and Orlicz 

spaces, in which we have some theorems on best approximation. Moreover, 

many of theorems and definitions in this section can be found in the   
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articles by Deeb and by Khalil, also by Al Dwaik and by Cheney et al.                

[1, 2, 3, 4, 5, 7, 8]. 

Definition 2.3.1: 

a) (Deeb [5]). A function : [0, ) [0, ) is called a modulus function if:  

  (i)   is continuous at 0 and is increasing. 

 (ii)  (x) = 0 

 

x = 0. 

 (iii) (x + y) (x) + (y), (  is a subadditive function). 

Examples of such functions are (x) = ,px 0 < p 1, and (x) = ln(1+x).  

In fact if 

 

is a modulus function, then 
x

x
x

1 
is also a modulus 

function.   

b) (Deeb [5]). Let X be a real Banach space, and ( , ) be a finite measure 

space. For a given modulus function , we define the Orlicz space  

L ( ,X) = {measurable function f: X  : tdtf }. 

The function d: L ( ,X)

 

L ( ,X) ,0 , given by  

d( f,g) = tdtgtf                                                       (2.8)  

defines a metric on L ( ,X), under which it becomes a complete 

metric linear space. For f XL , , we write tdtff . 



 
30

Then ),,( XL  is a complete metric linear space. If ,pxx

 
0<p 1, 

then L ( ,X) is the space L p ( ,X), 0 < p 1(p-Bochner space ) and if 

 
is bounded, then L ( ,X) becomes the space of all measurable functions. 

c) (Deeb [4]). For a Banach space X, we define  

X  = {
1

:
n

nfnf ,  f n X, Nn } 

For f X , set f = 
1n

nf . Then ),(X

 

is a complete metric 

linear space.   

 

Clearly; for every nonnegative integer m we have: (mx) m (x) x 

 

0 

and we will use this result in proof the following theorem; then turn to a list 

of useful facts which we will need. 

Theorem 2.3.2: (Deeb [5]). If 

 

is a modulus function and X is a Banach 

space, then L X,1  L ( ,X). 

Proof: For each real number y 0 , we have [y] y < [y]+1, where             

[] denotes the greatest integer function. But 

 

is increasing and 

subadditive, then:  

(y) ([y] +1) ([y])+ (1) [y] (1)+ (1) y (1)+ (1) (y+1) (1) 

If y > 1, then (y) < 2y (1); and if y 1, then (y) (1) 

Now, let f L X,1

 

and A = {t : 1)(tf } and B = { t : 1)(tf }   
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Then we have  

          tdtff

 

       
A

tdtf
B

tdtf

 

       )()1()(2)()1( tdtftd

 

       
1

)1(2)()1( f < . Hence f  L ( ,X) .  

 

Theorem 2.3.3: (Deeb [4]). Let G be a closed subspace of a Banach space 

X. If g is a best approximant of f in L G, , then g(t) is a best 

approximant of f (t) in G for almost all t . 

Corollary 2.3.4: (Cheney [8]). Let G be a closed subspace of a Banach 

space X. If g is a best approximant of f in L G,1 , then g(t) is a best 

approximant of f (t) in G for almost all t . 

Theorem 2.3.5: (Deeb [4]). Let G be a closed subspace of a Banach space 

X and 

 

be a strictly increasing modulus function. If G is a proximinal 

subspace of X, then G  is a proximinal subspace of X . 

Proof: - Let a sequence f = )(nf X , since G is a proximinal in X, 

for each n, there exists g(n) G such that d( )(nf ,G) = )()( ngnf .  

Furthermore  

)()()()( nfnfngng )()(0 nfnf )(2 nf .     (2.9) 

Consequently, g = {g(n)} G . 
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Now, we claim that g is a best approximation for f in G . To see 

that, let h be any element of G , then  

hf 
1

)()(
n

nhnf

 

1

)()(
n

ngnf

 
gf . 

Hence d( f, G ) gf , and g P( f, G ).                                     

 

Theorem 2.3.6: (Deeb [4]). Let G be a proximinal subspace of X. Then for 

every simple function f  L X, , P( f , L G, ) is not empty. 

Proof: Let f =
n

i 1
iE x

i
, where E i are disjoint measurable sets in . Set      

g =
n

i 1
iE y

i
, where y i P(x i ,G). If h is an arbitrary element in L G,

 

then we have       

       thtfhf ))()((

 

d (t) 

          
n

i Ei

thtf
1

))()((

 

d (t) 

                     
n

i E
i

i

thx
1

))((

 

d (t) 

                      
n

i E
ii

i

yx
1

)(

 

d (t) 

                      
n

i Ei

tgtf
1

))()((

 

d (t) 

                      tgtf ))()((

 

d (t) gf . 

Hence gf inf { hf  : h  L G, } = d( f,L G, ).  

Therefore  g P (f, L G, ).   
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Theorem 2.3.7: (Deeb [4]). Let G be a closed subspace of X. Then the 

following are equivalent: 

(i)  L G,  is proximinal in L X, . 

(ii) L G,1  is proximinal in L X,1 . 

Proof: (i) (ii). Let f L X,1 . Since L X,1 L X, , then 

f L X, , but L G,

 

is proximinal in L X,

 

so there exists 

g L G,  such that  

hfgf    h  L G, . 

Theorem 2.3.3 implies that 

ytftgtf )()()(   y G, a.e.  t .                              (2.10) 

Theorem 1.1.10 part (5) implies that )()()( tftgtf , a.e.  t . 

Hence )()()()( tftftgtg

  

)(2 tf  a.e.  t , thus g

 

L G,1 . 

From (2.10) we get  

)()()()( tktftgtf   k  L G,1   a.e   t.                     (2.11) 

Integrating both sides we get: 

11
kfgf   k  L G,1 .                                          (2.12) 

Therefore L G,1  is proximinal in L X,1 . 
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Conversely, (ii) 

 
(i). Define the map J: L X,

 
L X,1

 
by J(f)= f

 
where  

f (t) = 
0

)())(()( tftftf
        

0)(

0)(

tf

tf
                                (2.13) 

At first we show that  f

 

L X,1 . 

tff )(
1 

d (t) 

       tf
tf

tf
)(

)(

))((

 

d (t) 

       tf ))((

 

d (t) f . 

Second, we claim that J is onto. 

Let g  L X,1  and let f (t) =  
0

)())(()( 1 tgtgtg
        

0)(

0)(

tg

tg 

Then f tf ))((

 

d )(t

 

                tg
tg

tg
)(

)(

))((1

 

d )(t

 

                tg )( d )(t

  

                
1

g . 

Hence f 

 

L X, and J ( f ) = g.  

Finally since 

 

is one to one it follows that J is one-to-one. It is now clear 

that J(L G, ) = L G,1 .  
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Now, let f L X, .Then J(f )= f L X,1 and there exists g L G,1

 
such that 

1
gf

1
hf

 
for all h

 
L G,1 . By Corollary 2.3.4; we 

have  

)()( tgtf ytf )(    y G  a.e.  t.                                     (2.14) 

Since g L G,1  and J is onto, there exists g L G, such that J(g)= g . 

Hence y
tf

tf
tf

tgtf

tgtftg
tf

))((

)(
)(

)())((

)()())((
)(    a.e.  t. and  y G.  

Now take h  L G, . Then Gth
tf

tf
)(

)(

))((
 a.e.  t. 

Hence )()( twtf )()( thtf   a.e.  t. and h L G, , where        

w(t) = )(
)())((

)())((
tg

tgtf

tftg
. 

Using the fact that  )(2)( tftg  we see that w  L G,  as follows  

)(tw .)(
)())((

)())((
tg

tgtf

tftg
                                                    (2.15) 

           
))((

)())((2

tf

tftf

 

           .)(2 tf

 

Hence w  L G, . Thus L G,  is proximinal in L X, .               

  

In a similar way we can prove the following theorem. 
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Theorem 2.3.8: (Deeb [2]). Let G be a closed subspace of a Banach space 

X. If 1<p< , the following are equivalent: 

(i)  L Gp ,  is proximinal in L Xp , . 

(ii) L G,1  is proximinal in L X,1 . 

Theorem 2.3.9: (Deeb [1]). Let G be a closed subspace of a Banach space 

X. If L G,1

 

is proximinal in L X,1 , then L G,

 

is proximinal in 

L X, . 

Proof: Let f

 

L X, . Since L X, L X,1 , f L X,1  and there 

exists g  L G,1  such that ,(
1

fdgf

 

L G,1 ). 

By Corollary 2.3.4, it follows that  

),(()()( tfdtgtf G)       a.e.  t.                                            (2.16) 

Hence 

ytftgtf )()()(         a.e.  t, y G.                                (2.17) 

In particular  

)()()()( thtftgtf       a.e.  t, h L .,1 G                     (2.18)   

But L G,

 

L G,1 , and hence, for every k in L G, , we have 

)()()()( tktftgtf                a.e.  t.                                  (2.19)  

Now since )(2)( tftg   a.e.  t. Hence g  L G, .   
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And so it follows from relation (2.19) that    

kfgf       k  L G,  . 

Consequently, L G,  is proximinal in L X, .   

 

Theorem 2.3.10: (Al Dwaik [7]). Let G be a closed subspace of a Banach 

space X. If L ),( G  is proximinal in L ),( X , then G is proximinal in X.   

Proof: Let x X, we define f (t) = x, t , then f L ),( X (because 

tdtf )()( = xtdx )()( (since x and ( , ) is 

a finite measure space). Since L ),( G

 

is proximinal in L ),( X , there 

exists g L ),( G

 

such that )),(,( GLfdgf . Theorem 2.3.3 

implies  

ytftgtf )()()(        a.e.  t, and 

 

y G.                         (2.20) 

Hence yxtgx )(     a.e.  t, and  y G . 

Consequently, G is proximinal in X.   

  

The following theorem is proved by Al Dwaik [7], but we will 

provide another proof.  

Theorem 2.3.11:  Let G be a closed subspace of a Banach space X. If 

L ),( G is proximinal in L ),( X , then G is proximinal in X. 

Proof: Let x X and  denote the norm of X. Consider the function f (t) = x, 

t . Then f L ),( X . Since L ),( G is proximinal in L ),( X , then 

g L ),( G  such that  
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           ess. ))((sup tgf
t

gf = d (f, L ),( G ). 

Hence for all h  L ),( G we have   gf hf . And so we have  

)()( tgtf  = )(tgx

  

gf hf     a.e.   t.            (2.21) 

In particular, let h y (t) = y, t

 

and y G, then h y L ),( G

  

and so     

by (2.21) we have  

)(tgx
yhf       a.e.  t.                                                    (2.22)          

But   yhf  = inf {M: {t : )()( thtf y  > M} = 0} 

               = inf {M: {t : yx  > M} = 0} 

               = yx .  

By relation (2.22) we have  

)(tgx

  

yx        a.e.  t, and y G.                                     (2.23) 

Since y G is arbitrary, then relation (2.23) is true for all y G and so  

g(t) 

 

P(x,G)     a.e.  t, and  x X. 

We have proved that P(x,G) contains g(t) almost every t, and all what we 

need is just one such g(t). Hence G is proximinal in X.     

 

Theorem 2.3.12: (Deeb [3]). Let G be a closed subspace of a Banach space 

X. If L ),( Gp is proximinal in L ),( Xp for 1< p < , then G is proximinal 

in X.     
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Proof: If L ),( Gp is proximinal in L ),( Xp

 
for 1 < p < , then theorem 

2.3.8 implies that L ),(1 G

 
is proximinal in L ).,(1 X Theorem 2.3.9 

implies L ),( G

 
is proximinal in L ),( X . Now, theorem 2.3.11 implies 

that G is proximinal in X. 

  

Theorem 2.3.13: (Al Dwaik [7]). If G is 1 complemented in X, then 

L ),(1 G  is 1 complemented in L ),(1 X . 

Proof: Let X = G W

 

and let P: X W

 

be a contractive projection. 

Hence x = (I P)(x) +P(x) and xxP )( . For f  L ),(1 X , set 

1f = (I P) f ,  2f =P f, then  

tff )(212 d )(t = tfP ))(( d )(t

 

tf )( d )(t =
1

f . 

Hence 2f  L ),(1 W . Also 

tff )(111 d )(t  = tfPI ))()(( d )(t

 

tfPtf ))(()( d )(t

  

       tf )( d )(t + tfP ))(( d )(t tf )( d )(t + tf )( d )(t

 

       = 2 
1

f  .  

Hence 1f

 

L ),(1 G . Clearly f = 1f  + 2f . 

Since W is a closed subspace of X, then L ),(1 W

 

is a closed subspace of 

L ),(1 X . Also if f L ),(1 W L ),(1 G , then f L ),(1 W and f L ),(1 G . 

Thus f (t) W and f (t) G, t , but G W = {0},  

so f(t) = 0, t f 0. 
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Hence L ),(1 X =L ),(1 G L ),(1 W . Define P

 
: L ),(1 X

 
L ),(1 W

 
by P ( f ) = P f = 2f   

 
f 

 
L ),(1 X , P  is a contractive projection.  

So L ),(1 G is 1 complemented in L ),(1 X .    

 

Corollary 2.3.14: (Al Dwaik [7]). If G is 1 complemented in X, then 

L ),(1 G  is proximinal in L ),(1 X . 

Proof: The Corollary follows from the above Theorem and Lemma 2.2.2.  

Definition 2.3.15: (Deeb [4]). A closed subspace G of a Banach space X is 

called a summand of X if there is a bounded projection P: X G such 

that   

           ( x ) = ( )(xP ) + ( )(xPx )     

 

x X;                       (2.24) 

where  is a modulus function.     

 

Theorem 2.3.16: (Deeb [4]). If G is a summand of a Banach space X, 

then G is proximinal in X.  

Proof: - Let x  X, for every g G we have  

( gx ) = ( )( gxP ) +  ( )()( gxPgx )   

                  =  ( )( gxP ) +  ( )(xPx )    

                      ( )(xPx ).   

Hence )(xPxgx (i.e. P(x) P(x,G)). Thus G is proximinal in X. 

  

Remark 2.3.17: (Al Dwaik [7]). If G is a summand of a Banach space 

X, then G is a Chebyshev subspace. 
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Proof: Assume that G is a summand of X. The above theorem implies 

that P(x)

 
P(x,G).                      

Now suppose g 0 P(x,G) i.e. )(0 xPxgx . But x

 
g 0 X, then 

( 0gx ) = ( )( 0gxP ) + ( )( 00 gxPgx ) 

                    = ( 0)( gxP ) +  ( )(xPx ). 

Hence ( 0)( gxP ) = 0  

 

P(x) = g 0 . 

Therefore P(x) is the unique best approximant of x in G. Thus G is 

Chebyshev.      

           

In the remaining part of the thesis, we will assume that the modulus 

function 

 

is positive homogeneous (i.e. for 0

 

)()( xx

 

[11]) to 

make Orlicz spaces normed linear.  

Theorem 2.3.18: Let X be a Banach space and G be a closed subspace of 

X. If G is a summand of X, then )(G  is a 1 summand of )(X . 

Proof: Let P: X G be a bounded linear projection with 

))(())(()( xPxxPx , x X. 

Let Q: )(X

 

)(G

 

be defined as Q( f ) = Q({f (n)}) = ))(( nfP . We 

claim that ))(( nfP )(G .  Clearly; P( f (n)) G  n. 

Since P is bounded, then there exists a real number k such that x X we 

have, xkPx . And so 
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fknfknfknfPnfPfQ )()())(())(()( 

Therefore ))(()( nfPfQ )(G , and Q is a bounded linear projection. 

Since f (n) X, n, and since G is a summand of X;  

           ))()(())(()( nfPInfPnf , n.                  (2.25) 

           

 

111

))()(())(()(
nnn

nfPInfPnf .                  (2.26) 

           

 

))(()( fQIfQf ; and consequently, Q is the 

required projection. 

Therefore )(G  is a 1 summand of )(X .      

 

Corollary 2.3.19: If G is a summand of X, then )(G is a Chebyshev 

subspace in )(X . 

Proof: - Let G be a summand of X. Theorem 2.3.18 implies )(G

 

is a 

1 summand of )(X . Theorem 2.3.17 implies )(G

 

is a Chebyshev 

subspace in )(X .  

 

For the general case we have the following theorem: 

Theorem 2.3.20: (Deeb [4]). Let G be a summand of X, then L ),( G is 

1 summand of L ),( X .  

Proof: Let P: X G be the associated projection for G. Let 

              P
~

 : L ),( X  L ),( G , be defined by P
~

f  (t) = P( f (t)). 

Clearly P
~

f  L ),( G . Furthermore  
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             )()())(()( tfPItfPtf .                                     (2.27) 

Hence  

)()()()())(()()( tdtfPItdtfPtdtf

 

So, fPIfPf )
~

(
~

. 

Consequently, P
~

 

is the required projection and so L ),( G

 

is a 

1 summand of L ),( X .    

  

Corollary 2.3.21: If G is a summand of X, then L ),( G

 

is a 

Chebyshev subspace of L ),( X .  

Proof: Let G be a summand of X. Theorem 2.3.20 implies   L ),( G

 

is 

a 1 summand of L ),( X . Theorem 2.3.17 implies L ),( G

 

is a 

Chebyshev subspace L ),( X .  

 

Definition 2.3.22: (Cheney [8]). If S is a compact Hausdorff space and X is 

a Banach space; C(S,X) denotes the Banach space of all continuous maps f 
from S into X with norm defined by )(sup

1

sff
s

, and we define 

(S,X) by the set of all bounded maps from S into X with norm defined 

by )(sup
1

sff
s

.      

 

Theorem 2.3.23: (Cheney [8]). Let G be a closed subspace of a Banach 

space X. Let S be a compact Hausdorff space. For each f  C(S,X) we have  

d( f,C(S,G)) = d( f, (S,G)) = 
s

sup d( f (s),G).                           (2.28)  
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Chapter Three 

The S-property 

3. Introduction 

Let X be a linear metric space and G a closed subspace of X. The 

space G is said to have the S property in X if z ),( 11 GxP and z ),( 22 GxP

 

imply that z 1 + z 2 P( Gxx ,21 ) x 1 , x 2 X. This chapter has many new 

results which will be proved. We also give examples that answer some 

open questions. More results are found in Al Dwaik's thesis [7]. 

3.1. The S property and Best Approximation    

Many interesting theorems on the S property can be found in [7], 

and here we present new results which describe the relation between the 

S property and best approximations. Also between the S property and 

P )0(1
G [7].   

In the following example we see a subspace G X which has the 

S property.  

Example 3.1.1 (Al Dwaik [7]) Let X = R3 and G be the xy plane, then for 

a given point h = (x0, y0, z0), the unique best approximation of h in G is 

g0=(x0, y0, 0) and the distance from h to G is 0z (i.e. d(h,G) = 0z ) and 

since h is arbitrary, then P(h,G) 

 

, h X  

Now assume g 1 P(h 1 ,G) and g 2 P(h 2 ,G) where h 1 = (x 1 , y 1 , z 1 ) 

and  h 2 = (x 2 , y 2 , z 2 ), then g 1 = (x 1 , y 1 , 0) and g 2 = (x 2 , y 2 , 0).  
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Since h 1 + h 2 = (x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) and g 1 + g 2 = (x 1 + x 2 , y 1 + y 2 , 0). 

Therefore g 1 + g 2 P(h 1 + h 2 ,G), thus G has the S property.   

  

Remark 3.1.2:  In a Banach space X, if G has the S property, it does not 

necessarily follow that G is proximinal in X. For example, take X = c 0 (the 

space of all sequences of scalars converging to zero) and here we use the 

real sequences with 
n

x sup nx and G ={x={x n } c 0 : n
n

n x
1

2 = 0}. First, 

we claim that G {0}, (0 is the zero sequence)."This construction is due to 

Dr. Justin Heavilin who was visiting at An-Najah University in the year 

2007/2008". To begin with; choose a real sequence x 0c \G such 

that
1

2
n

n

n x , and assume  

                            = 02
1n

n

n x .                                                          (3.1) 

Now consider the sequence y = { ny }, with  

.2,

1,

1
n

n

x
y

n

n

 

It is clear that y 0 and we want to show that y G. 

         
1

2
n

n

n y = 
2

 + 
2

2
n

n

n y 

             = 
2

 + 
1

12
m

m

m x 

             = 
2

 + 
1

2
2

1

m
m

m x     

             = 
2

 +
2

 = 0 (from (3.1) we have 
2

 = 
1

2
2

1

m
m

m x  ). 
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Therefore  y 

 
G. Thus G {0} (i.e. G is not trivial). 

Now, consider the linear functional f (x) = ,2
1

n
n

n x  such that f  c 0  and by 

Remark 1.2.8 we have f =1. It is clear that N( f ) = G = {x : f (x) = 0}, and 

so by Theorem 1.2.3, we have G is a closed hyperplane in c 0 . 

Letting e )1(  = (1, 0, 0, )

 

c 0 \G. Theorem 1.2.7 implies that  

d(e )1( ,G) =
2

1
.  Assume that g = (g n ) G  satisfies ge )1(  = 

2

1
. Then  

     ge )1( = ,...3,2,1:sup )1( kge kk 

                     =sup ,...,,1 321 ggg  =
2

1
. 

Therefore 
2

1
1 1g   

 

2

1
1 1g 

2

1
1g   and 

2

1
kg , k 

 

2. 

 Since n
n

n g
1

2 = 0, we get that  

2

1
g 1 + n

n

n g
2

2 = 0 n
n

n g
2

2 = 
2

1
g 1 1

2 2

1
2 gg

n
n

n ,  then we have    

4

1
)

2

1
(222

2

1

4

1

222
1

n

n

n
n

n

n
n

n ggg .                         (3.2) 

          
2

1
1g  and 

4

1
2

2n
n

n g . 

Since
4

1
2

2n
n

n g , then we have 

2
3

3
2

4

1

4

1
2

4

1
2

4

1

gg

gg

n
n

n

n
n

n
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.
8

1

2

1
1

4

1
1

4

1
2g 

.
2

1

.
8

1
1

4

1

.
8

1
2

2

1
21

4

1

8

1

2

2

33
2

g

g

gg
n

n

n
n

n  

So we must have equality in (3.2), and that can happen only if  

2

1
ng for all n. But this contradicts our assumption that g c 0 . Thus G is 

not proximinal in c 0 . 

Finally; let x c 0 \G and suppose that P(x,G) , i.e. z P(x,G); so        

0 P(x

 

z,G) by part (2) of Theorem 2.1.3.  

This means that there exists x

 

z c 0 \{0} such that 0 P(x

 

z,G). Theorem 

2.1.5 implies that G is proximinal in c 0 which is a contradiction to the 

above discussion for e )1( . Therefore P(x,G)= 

 

.0 Gcx

 

Hence G has 

the S property "vacuously" in c 0 .    

  

In the following example we see that if X is a Banach space and G is 

a proximinal subspace, it is not necessarily implied that G has the         

S property. 

Example 3.1.3: Let X=R 2 with 21 xxx

 

and let G = {( , ): R}. 

We claim that G is proximinal in X. Let x = ( 21 , xx ) X

 

and for any                                       

g = ( , ) G, we have   
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21 xxgx 

             = 21 xx

 

             21 xx

 

 d(x,G) 21 xx                                                                                 (3.3) 

Since ( 22 , xx ) G, then 

d(x,G) ),( 22 xxx

 

          = 2221 xxxx   = 21 xx . 

Hence d(x,G) 21 xx .                                                                          (3.4) 

By (3.3) and (3.4) we have    

d(x,G) = 21 xx , .),( 21 Xxxx

 

Therefore P(x,G) 

 

, .Xx Thus G is proximinal in X. 

Now let x = (1, 1) and y= x =( 1, 1) in X \G. 

 It is clear (1,1), ( 1, 1) 

 

P(x,G).  Part (1) of Theorem 2.1.3 implies 

 (1,1), ( 1, 1) P(y,G). 

Now take (1,1) P(x,G) and (1,1) P(y,G), so that  

(1,1) + (1,1) = (2,2) and x + y = x + ( x) = 0. But (2,2) ),( GyxP

 

i.e. 

(2,2) ),0( GP = {0}.Therefore G does not have the S  property .    
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Theorem 3.1.4: Let X be a normed linear space, then any closed subspace 

G with the S property is a semi Chebyshev. 

Proof: Let x X \G and z 1 , z 2 P(x,G), then 

 

z 1 ,

 

z 2 P( x,G) by part (1) 

of Theorem 2.1.3. 

Since G has the S property and z 1 P(x,G), 

 

z 2 P(

 

x,G), then 

z ),0()),(()( 2121 GPzzGxxPz

 

But P(0,G) = {0}, since 0 G 2121 0 zzzz . 

Therefore G is a semi Chebyshev subspace of X.   

  

We know that a Chebyshev subspace is a special case of a semi

 

Chebyshev subspace and so we have the following corollary. 

Corollary 3.1.5: Let X be a normed linear space and G be a closed 

subspace of X and G has the S property. If G is proximinal, then G is         

a Chebyshev subspace. 

Proof: Let G be a closed subspace which is proximinal and has the 

S property in X. Theorem 3.1.4 implies G is proximinal and semi

Chebyshev, then G is a Chebyshev subspace.         

We need the following theorem from Al Dwaik's thesis to show that 

G is a closed subspace of a Banach space X which has the S property if 

and only if P )0(1
G  is a subspace of X.   
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Theorem 3.1.6: (Al Dwaik [7]). Let X be a Banach space, and G a closed 

subspace of X which has the S property, then P )0(1

G is a closed subspace of 

X and P )0(1
G G = {0}. 

Proof: Let x 1 , x 2 P )0(1
G , so; 0 P(x 1 ,G) and 0 P(x 2 ,G). Since G has the 

S property we get 0 P(x 1 + x 2 ,G). Hence    

         x 1 + x 2  P )0(1
G .                                              (3.5) 

Let x  P )0(1
G  and be any scalar. Then  

d( Gx, )= d(x,G)= xx 0 P( Gx, ).    

)0(1
GPx .              (3.6) 

By (3.5) and (3.6) P )0(1
G  is a subspace of X. 

Now let (x n ) be a sequence in P )0(1
G and x X such that 

n
lim x n = x. By   

part (5) of Theorem 1.1.10 we have d(x,G) x .  

Given  > 0. There exists a natural number N( ) such that xxn

 

for all 

n>N( ). Fixing n > N( ) we have : 

nnnn xxxxxxx

 

                            <  + nx  

                            

 

 + gxn                 

                            

 

 + gxxxn

 

                            

 

2  + gx , Gg .   
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Since 

 
> 0 was arbitrary, then gxx Gg ; and so by the definition 

of best approximation we have 0 ),( GxP , hence x )0(1

GP . 

Thus )0(1
GP  is a closed subspace in X. 

Let g G )0(1
GP  g P )0(1

G and g G  

 

g G and ),(0 Ggdg = 0 g = 0  

Therefore G )0(1
GP = {0}.    

   

Now, we will prove the converse of Theorem 3.1.6 for normed linear 

spaces. 

Theorem 3.1.7: Let X be a normed linear space. If )0(1
GP is a closed 

subspace of X, then G has the S property in X. 

Proof: Let x, y 

 

X and g 1 P(x,G), g 2 P(y,G), then x 

 

g 1 )0(1

GP and   

y  g 2 )0(1
GP . Since )0(1

GP  is a closed subspace of X and  x  g 1 )0(1
GP 

y  g 2 )0(1
GP , then we have                

x + y  g 1  g 2 )0(1

GP

 

0 P(x + y  g 1  g 2 ,G)  g 1 + g 2 P(x + y,G).  

Therefore G has the S property.             

The following theorem can be proved immediately by the 

S property, but here we will provide another proof.  

Theorem 3.1.8: Let X be a normed linear space. If )0(1
GP is a linear 

subspace of X, then G is semi Chebyshev. 
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Proof: Let x X and g 1 , g 2 P(x,G), then x

 
g 1 )0(1

GP  and x 

 
g 2 )0(1

GP . 

Since )0(1

GP  is a closed subspace of X, then  

x  g 1

 

(x  g 2 ) )0(1
GP 

 

g 1  g 2 )0(1
GP   and since g 1 ,g 2 G, then 

g 1  g 2 )0(1
GP  G    g 1  g 2 = 0 

                                   

 

 g 1 = g 2 ,   by Remark 1.1.6. 

Hence G is a semi Chebyshev subspace of X.    

  

In chapter two we see that if G is 1 complemented, then G is 

proximinal subspace, Al Dwaik proved that the converse is true if G has 

the S property. 

Theorem 3.1.9: (Al Dwaik [7]). Let X be any Banach space, and G a 

closed subspace of X which has the S property. G is proximinal in X if and 

only if G is 1 complemented in X.  

Proof: If G is 1 complemented in X, then by Lemma 2.2.2 it is proximinal 

in X. Now suppose that G is proximinal in X. Theorem 2.1.6 implies                     

X = G + )0(1
GP . Theorem 3.1.6 implies that )0(1

GP is a closed subspace of 

X and )0(1
GP G = {0}. Hence X =G )0(1

GP .  

Now define P: X )0(1

GP  by  

P(x) = P(g + z) = z where x = g + z, g G, z )0(1
GP . 
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          x d(x,G) = d(g + z ,G) 

                    = d(z ,G) 

                               = z . 

Therefore x z . 

Hence P is a contractive projection. Thus G is 1 complemented in X.      

  

Corollary 3.1.10: Let X be a Banach space, and G be a closed subspace of 

X which has the S property. G is a Chebyshev subspace in X if and only if 

it is 1 complemented in X.                                                                                 

Proof: Suppose G has the S property, then G is Chebyshev if and only if G 

is proximinal in X by Corollary 3.1.5. Theorem 3.1.9 implies G is 

Chebyshev if and only if it is 1 complemented in X. 

 

Theorem 3.1.11: Let X be a Banach space and G be a closed subspace of 

X. If G is an L p summand subspace of X, 1

 

p < , then G has the 

S property.  

Proof: Let x 1 , x 2

 

X and G be an L p summand subspace, then there 

exists a bounded projection E: X G which is onto G. By Theorem 2.2.5 

we have P(x 1 ,G) = {E(x 1 )} and P(x 2 ,G) = {E(x 2 )}.  ( x 1 , x 2 X).  

Since P(x 1 + x 2 ,G) = {E(x 1 + x 2 )} = {E(x 1 ) + E(x 2 )}. Therefore G has the 

S property. 

  

Corollary 3.1.12: Let G be a closed subspace of a Hilbert space X, then G 

has the S property. 
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Proof: Let X be a Hilbert space and G be a closed subspace. Theorem 1.4.4 

implies X = G G

 
such that G = {x X: x G}. Theorem 1.5.3 implies 

there exists a bounded projection E: X G. Theorem 1.4.5 implies that for 

all x X, we have  

222
)()( xExxEx    .Xx

  

By the definition of L p summand subspace, G is an L 2 summand 

subspace of X, and consequently Theorem 3.1.11 implies G has the 

S property.          

 

Theorem 3.1.13: (Al Dwaik [7]). Let X be a Banach space and G a closed 

subspace of X. If G is a summand of X, then G has the S property. 

Proof: Let z 1 P(x 1 ,G), z 2 P(x 2 ,G). Since G is a summand of X then 

there exists a projection E: X 

 

G such that E(x) is a unique best 

approximant of x in G x X by Theorem 2.3.16 and Remark 2.3.17. 

Hence  

z 1 = E(x 1 ) and z 2 = E(x 2 ). But z 1 + z 2 = E(x 1 ) + E(x 2 ) = E(x 1 + x 2 ) since 

E is linear. 

 This implies that z 1  + z 2  P(x 1 + x 2 ,G). Thus G has the S property.      

 

Theorem 3.1.14: (Al Dwaik [7]). Let X be a Banach space and G a closed 

subspace of X. If G is 1 complemented and Chebyshev in X, then G has the 

S property. 
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Proof: Let z 1 P(x 1 ,G), z 2 P(x 2 ,G). Since G is 1 complemented in X then 

there exists a closed subspace W X such that X = G W. This implies that 

x 1  and x 2  can be written uniquely in the form  

x 1  = g 1  + w 1  ,  x 2  = g 2 + w 2  

where g 1 , g 2

 

G, and w 1 ,w 2

 

W. From the proof of Lemma 2.2.2 and the 

assumption that G is Chebyshev we get that z 1  = g 1 , z 2 = g 2 .  

Now x 1 + x 2 = (g 1 + g 2 ) + (w 1 + w 2 ). Since G is a subspace, g 1 + g 2 G. 

Also W is a subspace, w 1 + w 2 W. It now follows that  

z 1 + z 2 =g 1 + g 2  P(x 1 + x 2 ,G). 

Thus G has the S property.      

 

Theorem 3.1.15: (Al Dwaik [7]). Let X be a Banach space and G a closed 

subspace of X which has the S property. If G is proximinal in X then 

P 1
G (0) is proximinal in X and has the  S property.  

Proof: Let x X. The proof of Theorem 3.1.9 implies that x can be written 

uniquely, in the form   

                 x = g + z    g G, z  P 1
G (0)                                             (3.7) 

Now g G 

 

g w w P 1

G (0) 

 

g  P 1

G (0) 

 

0 P(g,P 1

G (0)) 

          d(g,P 1

G (0)) = g .                                                                      (3.8) 
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From (3.7) and (3.8) we get  

d(x z, P 1
G (0)) = zx   

 
d(x, P 1

G (0)) = zx . 

Therefore z P(x, P 1
G (0)) i.e. z = x g where g P(x,G)                         (3.9) 

Thus, P 1
G (0) is proximinal in X. To show, 1

GP (0) has the S property, let 

z 1 P(x 1 , 1

GP  (0)) and z 2 P(x 2 , 1

GP  (0)).From (3.9) we get 

 x 1  z 1 P(x 1 ,G) and x 2  z 2 P(x 2 ,G).  

Since G has the S property, then  

x 1 + x 2

 

(z 1 + z 2 ) P(x 1 + x 2 ,G) z 1 + z 2 P(x 1 + x 2 ,P 1

G (0)). 

Thus P 1
G (0) has the S property.       

 

Now we have the following three corollaries.  

Corollary 3.1.16: Let X be a Banach space and G a closed subspace of X 

which has the S property. If G is a Chebyshev subspace, then P 1
G (0) is 

Chebyshev and has the S property. 

Proof: Let G have the S property. Theorem 3.1.15 implies P 1

G (0) is 

proximinal and has the S property. Corollary 3.1.5 implies P 1
G (0) is           

a Chebyshev subspace of X and has the S property.    

 

Corollary 3.1.17: Let X be a Banach space and G a closed subspace of X 

and Chebyshev. If P 1
G (0) is a closed subspace of X, then P 1

G (0) is                

a Chebyshev subspace of X. 
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Proof: Let P 1
G (0) be a closed subspace of X and G is Chebyshev. Theorem 

3.1.7 implies G has the S property and Chebyshev. Corollary 3.1.16 

implies P 1
G (0) is a Chebyshev subspace .                                       

 

Corollary 3.1.18: Let X be a Banach space and G be a summand of X, 

then P 1

G (0) has the S property and is a Chebyshev subspace.          

Proof: Let G be a summand of X. Theorem 3.1.13 implies that G has 

the S property and Chebyshev. Corollary 3.1.16 implies P 1
G (0) has the 

S property and is a Chebyshev subspace.        

 

In the following example we show that the converse of Theorem 3.1.15 is 

not true. 

Example 3.1.19: Let X = c 0 and G = {(x n ) : 
1

2
n

n

n x = 0}, with 

n
n

xx sup . Remark 3.1.2 shows that G is not proximinal in X and has the 

S property and that P(x,G) = , GXx \ ; so ),(0 GxP , GXx \      

and hence P 1
G (0)={0}. Clearly P 1

G (0) is a closed linear subspace of X and 

Chebyshev (being proximinal with the S property). Moreover,  

d(x,P 1
G (0))= xx 0 Xx P(x, P 1

G (0))={0}. 

Now let x, y X, then P(x, P 1
G (0))={0}, P(y, P 1

G (0))={0} and for x + y X   

P(x + y, P 1
G (0)) = {0}  P 1

G (0) has the S property. 

Therefore G has the S property and P 1

G (0) has the S property and is 

Chebyshev, but G is not proximinal.       
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Theorem 3.1.20: (Al Dwaik [7]). Let X be a Banach space and G be 

proximinal in X. If G has the S property, then 1

)0(1
GP

P (0) = G. 

Proof : Let g G  z g   z  P 1
G (0)  

 
g  P 1

G (0) 

 
0 P(g, P 1

G (0)) 

g 1

)0(1
GP

P  (0). 

Therefore  

G 1

)0(1
GP

P  (0)                                                                              (3.10) 

Now let x 1

)0(1
GP

P  (0). Then by the proof of Theorem 3.1.9 we have  

x = x 1  + x 2        where x 1 G and x 2  P 1

G (0).                            (3.11) 

Since G 1

)0(1
GP

P  (0), x 1 

 

1

)0(1
GP

P  (0), then x 2 = x  x 1
1

)0(1
GP

P  (0). 

But x 2

 

P 1
G (0). Theorem 3.1.9 implies x 2  = x  x 1 = 0. 

 x = x 1 x G  

Therefore  

1

)0(1
GP

P  (0) 

 

G                                                                             (3.12) 

From (3.10) and (3.12) we have 1

)0(1
GP

P  (0) = G.        

 

Theorem 3.1.21: (Al Dwaik [7]). If G is a semi Chebyshev hyperplane in 

a Banach space X passing through the origin, then G has the S property. 

Proof: case (1): G is proximinal in X. Let f X  so that  

G = {y X: f (y) = 0}. Fix an arbitrary z X\G so f(z) 0, and let  
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y 0 = x z 
)(

)(

zf

xf
where x X, so f (y 0 ) = 0, hence y 0 G. Consequently  

X = G [z] where [z] = { z :  scalar }.                                 (3.13) 

Now let z 1 P(x 1 ,G), z 2 P(x 2 ,G). It will be shown that 

                       z 1  + z 2 P(x 1 +x 2 ,G).                                                     (3.14) 

By (3.13) every x 1 , x 2 X can be written uniquely in the form  

x 1  = g 1  + 1 z ,     x 2 = g 2 + 2 z                                               (3.15) 

where g 1 , g 2 G and 1 , 2  are scalars. 

Now assume that g' P(x 1 +x 2 ,G), then by (3.15) 

g' P(g 1 + g 2 +( 1 + 2 )z , G). Theorem 2.1.3 implies  

g' = g 1 + g 2 +( 1 + 2 )w= g 1 + 1 w + g 2 + 2 w where w P(z,G).  

Since w P(z,G), Theorem 2.1.3 implies that   

g 1 + 1 w P(g 1 + 1 z,G)=P(x 1 ,G)and g 2 + 2 w P(g 2 + 2 z,G)= P(x 2 ,G). 

Hence g 1 + 1 w = z 1 , g 2 + 2 w = z 2 and g' = z 1  + z 2 . 

Therefore z 1  + z 2 P(x 1 +x 2 ,G). Thus G has the S property. 

Case (2): If G is not proximinal in X, then theorem 2.1.5 implies P(x,G)=    

x X

 

G. Thus G has the S property.  
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          Let X be a normed linear space, and G be proximinal in X, then any 

map which associates with each element of X one of its best 

approximations in G is called a proximity map. This mapping is, in general, 

nonlinear. 

Theorem 3.1.22: (Al Dwaik [7]). Let X be a Banach space, and G be a 

Chebyshev subspace of X. There exists a linear proximity map if and only 

if G has the S property. 

Proof: Let T be a linear proximity map. We claim that G has the             

S property. 

Let z 1 P(x 1 ,G) and z 2 P(x 2 ,G).  

Now z 1 + z 2 = T(x 1 ) + T(x 2 ) = T(x 1 +x 2 ) P(x 1 +x 2 ,G). Therefore G has 

the S property. 

Conversely, assume that G has the S property. 

Define T: X G such that T(x) P(x,G). Now we claim that T is linear. 

Let x 1 , x 2  X, we show that T (x 1 +x 2 ) = T(x 1 ) + T(x 2 ).  

Now T(x 1 ) P(x 1 ,G), T(x 2 ) P(x 2 ,G). Since G has the S property, then 

T(x 1 ) +T(x 2 ) P(x 1 +x 2 ,G). 

Also T(x 1 +x 2 ) P(x 1 +x 2 ,G) and Since G is Chebyshev, then  

T(x 1 +x 2 ) = T(x 1 ) + T(x 2 )                                                            (3.16) 
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Let x X, scalar then T(x) P(x,G). Theorem 2.1.3 implies that 

T(x) P( x,G), also T( x) P( x,G). 

Since G is a Chebyshev subspace of X, then  

T(x) = T( x)                                                                            (3.17) 

By (3.16) and (3.17) we have T is a linear map.    

 

3.2   The S property of Subspaces of Orlicz Spaces and ),( XLp

 

In this section we have many new consequences about the Orlicz 

subspaces and ),( XLp

 

subspaces which have the S property. First, we 

need the following theorem from Al Dwaik [7]. 

Theorem 3.2.1: (Al Dwaik [7]).  Let X be a Banach space and G be a 

closed subspace of X. If G has the S property in X, then L ( ,G) has the 

S property in L ( ,X).  

Proof: Let g 1 P( 1f ,L ( ,G)) and g 2 P( 2f ,L ( ,G)), we will show that  

g 1 + g 2 P( 1f + 2f , L ( ,G)). Now g 1 P( 1f ,L ( ,G)), Theorem 2.3.3 

implies g 1 (t) P( 1f (t),G) a.e  t .

 

Also g 2 P( 2f , L ( ,G)), Theorem 

2.3.3 implies g 2 (t) P( 2f (t),G)  a.e.   t . 

Hence 

d(( 1f + 2f )(t),G) = ))(())(( 2121 tggtff   a.e.  t.                (3.18) 



 
62

And we have  

))(())(( 2121 tggtff ytff ))(( 21   a.e.  t and y G.       (3.19) 

In particular  

))(())(( 2121 tggtff )())(( 21 thtff  a.e.  t and h  L ( ,G). 

Since  is increasing, then  

( ))(())(( 2121 tggtff ) ))())((( 21 thtff a.e. t, h L ( ,G).  

Integrating both sides we get  

)()( 2121 ggff hff )( 21     h L ( ,G).         (3.20) 

Hence d( 1f + 2f ,G) = )()( 2121 ggff . 

Therefore g 1 + g 2 P( 1f + 2f ,L ( ,G)). Thus L ( ,G) has the S property 

in L ( ,X).    

  

Now, we will present our results on Orlicz subspaces and L ),( Gp

 

with 

the S property, and will start with the converse of the last theorem. 

Theorem 3.2.2: Let X be a Banach space and G be a closed subspace of X. 

If L ( ,G) has the S property in L ( ,X), then G has the S property      

in X.  

Proof: Suppose L ( ,G) has the S property in L ( ,X), and let 

z i P(x i ,G) for  i=1, 2; we want to show z 1 + z 2 P(x 1 +x 2 ,G). 
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Now let if (t) = x i and g i (t) = z i , t and for i=1,2; and since x , 

x X (by definition of the norm ), then 1f , 2f ,g 1 ,g 2 L ),(1 X , Theorem 

2.3.2 implies 1f , 2f ,g 1 ,g 2 L ( ,X) such that g i  L ( ,G)  i=1, 2. 

First, we show that g i P( if , L ( ,G)) (i = 1, 2). 

Now for i =1, 2, we have  

z i P(x i ,G)  yxzx iii                   y G. 

                     ytftgtf iii )()()(       y G and 

 

t . 

                     )()()()( thtftgtf iii    

 

t  and h  L ( ,G). 

Since  is strictly increasing, then we have  

))()(())()(( thtftgtf iii

  

t  and h  L ( ,G).         (3.21)  

hfgf iii h L ( ,G)

 

g i P( if ,L ( ,G)) i =1, 2. 

Since L ( ,G) has the S property in L ( ,X), 

g 1 + g 2 P( 1f + 2f ,L ( ,G))                                                                 (3.22) 

Theorem 2.3.3 implies  

(g 1  + g 2 )(t) P(( 1f + 2f )(t), L ( ,G)))      a.e.   t.                    (3.23) 

Then z 1 + z 2 P(x 1 + x 2 ,G). Therefore G has the S property in X.

 

This section has many equivalent relations, and the following 

corollary is the first. 
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Corollary 3.2.3: Let X be a Banach space and G a closed subspace of X 

then the following are equivalent: 

1. G has the S property in X. 

2. L ),( G  has the S property in L ),( X . 

Proof: This corollary follows From Theorem 3.2.1 and Theorem 3.2.2 

immediately.

  

Moreover, some important results on ),( XLp

 

subspaces with the 

S property will now follow.  

 First, if p = 1. 

Theorem 3.2.4: Let X be a Banach space and G a closed subspace of X, 

then the following are equivalent: 

1. G has the S property in X. 

2. L ),(1 G  has the S property in L ),(1 X . 

Proof: (1) (2). Suppose (1) and let if L ),(1 X

 

and g i P( if ,L ),(1 G ) 

such that i=1, 2.We want to show that g 1 + g 2 P( 1f + 2f ,L ),(1 G ) . 

Now if g 1 P( 1f ,L ),(1 G ). Corollary 2.3.4 implies  

g 1 (t) P( 1f (t),G)     a.e.   t                                         (3.24) 

Also g 2 P( 2f ,L ),(1 G ). Corollary 2.3.4 implies  

        g 2 (t) P( 2f (t),G)   a.e.   t                                            (3.25) 
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Since G has the S property, from (3.24) and (3.25) we have  

(g 1 + g 2 )(t) P(( 1f + 2f )(t),G)   a.e.    t .                               (3.26) 

Hence  

d(( 1f + 2f )(t),G) = ))(())(( 2121 tggtff

 

 a.e.     t .     (3.27) 

Then we have  

))(())(( 2121 tggtff ytff ))(( 21 ,Gy  a.e.    t .   

Consequently, we have  

))(())(( 2121 tggtff )())(( 21 thtff ,  a.e.  t , h L ),(1 G . 

12121 )()( ggff
121 )( hff    h  L ),(1 G .                 (3.28) 

Therefore g 1 + g 2 P( 1f + 2f , L ),(1 G ). Thus L ),(1 G

 

has the S property 

in L ),(1 X . 

(2) (1). Suppose (2) and let x 1 , x 2 X and z 1 P(x 1 ,G), z 2 P(x 2 ,G). We 

want to show that z 1 + z 2 P(x 1 + x 2 ,G). 

Consider the constant functions 1f , 2f , g 1 , g 2 defined as follows 1f (t) = x 1 , 

2f (t) = x 2 , g 1 (t) = z 1 , g 2 (t) = z 2 t . Clearly 

  1f , 2f

 

L ),(1 X  and g 1 , g 2  L ),(1 G . 

First we show that g i P( if , L ),(1 G ), i =1, 2. 

 Now for i =1, 2 we have  
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         iiii zxtgtf )()(           t

  
                              yxi            Gy

 

                               ytfi )(         Gy  and t . 

Then 

 

h  L ),(1 G and i =1, 2, we have  

)()()()( thtftgtf iii , t  .                                        (3.29) 

11
hfgf iii , h 

 

L ),(1 G and i =1, 2.                             (3.30) 

Thus g i P( if , L ),(1 G ),  i=1, 2. 

Since L ),(1 G  has the S property in L ),,(1 X  then  

 g 1 + g 2 P( 1f + 2f ,L ),(1 G ).                                                     (3.31) 

By Corollary 2.3.4, we have (g 1 + g 2 ) (t) P(( 1f + 2f )(t),G)     t . 

Then   z 1 + z 2 P(x 1 + x 2 ,G). Therefore G has the S property in X.    

 

Second, if 1< p <

 

Theorem 3.2.5: Let X be a Banach space and G be a closed subspace of X 

then the following are equivalent:  

(i)  L p ( ,G) has the S property in L p ( ,X), 1 < p < . 

(ii) G has the S property in X. 

Proof: (i) (ii). Let x i X and z i P(x i ,G) for i =1, 2. We want to show 

that z 1 + z 2 P(x 1 + x 2 ,G). 
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Consider the constant functions if (t) = x i and g i (t) = z i , for i = 1, 2 and 

t . Clearly if

 
L p ( ,X), 1 < p < , and g i  L p ( ,G) for i=1, 2. 

We claim that g i P( if , L p ( ,G)) for i =1, 2. 

p

pii gf = )()()( tdtgtf
p

ii

 

                 = )(tdzx
p

ii

 

                  )(tdyx
p

i , y G because z i P(x i ,G). 

And so for all h

 

L p ( ,G) and i=1, 2, we get  

p

pii gf

  

)()( tdthx
p

i

 

                  = )()()( tdthtf
p

i

 

                  = .
p

pi hf

 

Then, for all h

 

L p ( ,G), we have 
pii gf

pi hf ,  i =1, 2. 

Hence g i P( if , L p ( ,G) ), i =1, 2.  

Since L p ( ,G)  has the S property in L p ( ,X) 1 < p < ,  then  

g 1 + g 2  P( 1f + 2f ,L p ( ,G))  

Thus for all h  L p ( ,G), we have  

pp
hffggff 212121 )( 

And 
p

p

p

p
hffggff 212121 )(    (1 < p < ). 
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Now we have  

p

p
ggff )( 2121 = )())(())(( 2121 tdtggtff

p

 

                                    = )()()( 2121 tdzzxx
p

     

 =
p

zzxx )()( 2121

 

)(                           (3.32)  

p

p
hff 21  = 

p
tdthtff )()())(( 21

 

                       = 
p

tdthxx )()()( 21 .                                             (3.33) 

From (3.32) and (3.33), we have 

p
zzxx )()( 2121

 

)(   

 

,)()()( 21

p
tdthxx

 

h

 

L p ( ,G).  

In particular, for y G, let yh (t) = y, 

 

t 

   

be a constant function, and 

clearly yh  L p ( ,G), and so we have  

p
zzxx )()( 2121

 

)(   

 

p
tdytxx )())(( 21

 

                                                =  
p

yxx )( 21 ).(     

Since ( , ) is a finite measure space (i.e. )( < ) and assume )( >0, 

then  

p
zzxx )()( 2121

 

.)( 21

p
yxx                                      (3.34)        

Since y G was arbitrary,  

)()( 2121 zzxx

 

yxx )( 21 , 

 

y G.                           (3.35) 
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Hence z 1 + z 2 P(x 1 + x 2 ,G). Therefore G has the S property in X. 

Conversely. Let if

 
L p ( ,X) and g i P( if , L p ( ,G)) for i =1, 2 and       

1 < p < . Then for any h L p ( ,G) we have 
pipii hfgf .  

 Using the same arguments as in Lemma 2.10 of Light and Cheney [8] we 

get  

ytftgtf iii )()()(     a.e.   t, y G and i =1, 2.               (3.36) 

Then we have g i (t) 

 

P( if  (t),G)    a.e.   t, and for i =1, 2. 

Since G has the S property in X, then  

( g 1 + g 2 )(t) P(( 1f + 2f )(t),G)     a.e.   t.                                     (3.37) 

Hence, for all y G, we have   

ytfftggtff ))(())(())(( 212121          a.e.   t.         (3.38) 

Hence h  L p ( ,G) we have   

)())(())(())(( 212121 thtfftggtff       a.e.   t. 

      
pp

thtfftggtff )())(())(())(( 212121    a.e.   t, 1 < p < .   

      

 

p

p

p

p
hffggff 212121 )(       

      
pp

hffggff 212121 )(       h  L p ( ,G).  

Hence  g 1 + g 2 P( 1f + 2f , L p ( ,G)), 1 < p < . Therefore  L p ( ,G) has 

the S property in L p ( ,X), 1 < p < . 
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From the previous theorems we have the following interesting result.  

Theorem 3.2.6: Let G be a closed subspace of a Banach space X which has 

the S property in X, then the following are equivalent: 

1. G is a Chebyshev subspace of X 

2. L ( ,G) is a Chebyshev subspace of  L ( ,X).  

3. L p ( ,G) is a Chebyshev subspace of  L p ( ,X) p1 . 

Proof: (1) (2). Let G have the S property in X. Theorem 3.2.4 implies 

L ),(1 G

 

has the S property in L ),(1 X . Since G is a Chebyshev 

(proximinal) G is 1 complemented in X by Corollary 3.1.10. Theorem 

2.3.13 implies that L ),(1 G

 

is 1 complemented in L ),(1 X , then by 

Lemma 2.2.2 we have L ),(1 G is proximinal in L ),(1 X . Since L ),(1 G is 

proximinal and has the S property in L ),(1 X , then L ),(1 G is a 

Chebyshev subspace of L ),(1 X , (by Corollary 3.1.5). And so  L ( ,G) is 

a proximinal subspace of  L ( ,X), (by Theorem 2.3.7); and since G has 

the S property in X, then L ( ,G) has the S property in L ( ,X) (by 

Theorem 3.2.1). Hence L ( ,G) is a Chebyshev subspace of L ),( X   

(by Corollary 3.1.5). 

(2) (3). Let L ( ,G) be a Chebyshev subspace of L ),( X

 

which  has 

the S property. Theorem 2.3.7 implies L ),(1 G

 

is proximinal (Chebyshev) 

subspace of L ),(1 X

 

and Theorem 2.3.8 implies L p ( ,G) is a proximinal 

subspace of  L p ( ,X). Theorem 3.2.5 implies L p ( ,G) has the S property 
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in L p ( ,X), then by Corollary 3.1.5 we have L p ( ,G) is a Chebyshev 

subspace of L p ( ,X). 

(3) (1). Let L p ( ,G) be a Chebyshev subspace of L p ( ,X), then by 

Theorem 2.3.12, G is proximinal in X but also G has the S property in X, 

so G is a Chebyshev subspace of X (by Corollary 3.1.5).  

 

Finally, if p = ; we have: 

Theorem 3.2.7: Let X be a Banach space and G be a closed subspace of X. 

If L ( ,G) has the S property in L ( ,X), then G has the S property.  

Proof: Suppose L ( ,G) has the S property in L ( ,X) and let x i X and 

z i P(x i ,G) for i = 1, 2. We want to show that z 1 + z 2 P(x 1 + x 2 ,G). 

Now consider the constant functions if (t) = x i and g i (t) = z i for i =1, 2 and 

t . It is clear if  L ( ,X) and g i  L ( ,G) for i = 1, 2. 

We claim that g i P( if , L ( ,G)) for i =1, 2. 

Now for i =1, 2 and t  we have  

         iiii zxtgtf )()( 

                    yxi       y G, because z i P(x i ,G) for i =1, 2. 

                    = ytfi )(    y G, i =1, 2. 

Then for all h  L ( ,G) we have  

                         )()()()( thtftgtf iii

 

t  and i =1, 2. 
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 Then we have hfgf iii  i =1, 2, h L ( ,G). 

Hence g i P( if , L ( ,G)) for i =1, 2. 

Because L ( ,G) has the S property in L ( ,X), then 

g 1 + g 2 P( 1f + 2f ,L ( ,G)) 

hffggff 212121 )( h ),( GL . 

But we have   

)( 2121 ggff inf {M : µ{t : Mtggtff ))(())(( 2121 }= 0} 

                                     = inf {M : µ{t : Mzzxx )()( 2121 } = 0}  

                                     = )()( 2121 zzxx

 

                                     = ))(())(( 2121 tggtff   t . 

In particular, let yh (t) = y, t such that y G be a constant function, 

then  yhff 21  = inf {M: µ  {t: Mthtff y )())(( 21 } =0} 

                                 = inf {M: µ  {t: Myxx )( 21 } = 0}  

                       = yxx )( 21 

                       = )())(( 21 thtff y   t . 
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Hence  

)()( 2121 zzxx  = )( 2121 ggff 

                                    

 
yhff 21 

                                     = yxx )( 21 ,  y G. 

Since y G was arbitrary, then  

)()( 2121 zzxx yxx )( 21 ,  y G.                          (3.39) 

Therefore z 1 + z 2 P(x 1 + x 2 ,G). Thus G has the S property in X.                  

We saw in the previous theorem that if L ( ,G) has the S property 

in L ( ,X), then G has the S property. Now what about the converse?; to 

answer this question we assume that L ( ,G) is a Chebyshev subspace of 

L ( ,X).  

Theorem 3.2.8: Let G be a closed subspace of a Banach space X and 

suppose L ( ,G) is a Chebyshev subspace of L ( ,X). If G has the 

S property in X, then L ( ,G) has the S property in L ( ,X). 

Proof: Let if L ( ,X), i=1,2. Since L ( ,G) is Chebyshev L ( ,G) 

is proximinal in L ( ,X) G is proximinal in X G is Chebyshev 

(because G has the S property in X). Theorem 3.2.4 and Theorem 3.2.6 

imply that L ),(1 G

 

is Chebyshev and has the S property in L ),(1 X . 

Then for i = 1, 2, ! h i

 

L ),(1 G

 

such that h i P( if ,L ),(1 G ); and since 

)(.2)( tfth ii

 

a.e. t, then h i L ( ,G). Using the same arguments as in 

Theorem 2.3.9 we have h i  P( if ,L ( ,G)).  

Now since h i P( if ,L ),(1 G ), i =1,2, and L ),(1 G has the S property in 

L ),,(1 X  then h 1 + h 2

 

P( 1f + 2f ,L ),(1 G ). 
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Since 1f + 2f

 
L ( ,G) and )()(.2)()( 2121 tftfthth

  
a.e.   t, then 

once again; using the same arguments as in Theorem 2.3.9 we have 

h 1 + h 2

 
P( 1f + 2f ,L ),( G ); and since L ),( G

 
is Chebyshev, then 

L ( ,G) has the S property in L ( ,X).   

 

Now, we have: 

Corollary 3.2.9: Let G be a closed subspace of a Banach space X which 

has the S property. If L ),( G

 

is a Chebyshev subspace of L ( ,X), then 

G is a Chebyshev subspace of X. 

Proof: By Theorem 2.3.11 and Theorem 3.2.8. 

 

Theorem 3.2.10: Let G be a closed subspace of the Banach space X and S 

be a compact Hausdorff space. If (S,G) has the S property in (S,X)  

then G has the S property in X. 

Proof: Let x i

 

X and z i P(x i ,G), i =1, 2. Consider the constant functions 

if (s) = x i , g i (s) = z i  for i = 1, 2 and s S. Then  

if , g i C(S,X) (S,X) i =1, 2; and for each i, we show that 

g i P( if , (S,G)). For i =1, 2.  

For i = 1, 2, we have 

)()(sup sgsfgf ii
s

ii = ii
s

zxsup = ii zx

 

yxi

 

y G. 

Because z i P(x i ,G), i =1, 2. Then, for all h (S,G) and i = 1, 2, we 

have  
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ii gf 

 
)(shxi   

s

sup )(shxi    

 
hfi  

Therefore g i P( if , (S,G)). 

Since (S,G) has the S property in (S,X), then 

g 1 + g 2

 

P( 1f + 2f , (S,G)). 

Now, Theorem 2.3.23 implies that  

)( 2121 ggff =
s

sup d(( 1f + 2f )(s),G)     ,  s S  

                                  =
s

sup d(x 1 + x 2 ,G)          , s S  

                                  = d(x 1 + x 2 ,G).                                                     (3.40) 

 By definition of the norm of (S,X) , we have  

)( 2121 ggff  =
s

sup ))(())(( 2121 sggsff     

                                   =
s

sup )( 2121 zzxx , s S. 

                                   = )( 2121 zzxx                                            (3.41) 

By relations (3.40) and (3.41) we have d(x 1 + x 2 ,G)  = )( 2121 zzxx . 

Therefore z 1 + z 2 P(x 1 + x 2 ,G). Hence G has the S property in X.          
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Conclusion  

This thesis contains a few properties of best approximations and the 

S property. We conclude from Remark 3.1.2 and Example 3.1.3 that if a 

subspace, G, has the S property, then G is not necessarily proximinal in X; 

and moreover, if G is proximinal in X, G does not necessarily possess the 

S property. However, we see that every closed subspace G with the 

S property is a semi Chebyshev subspace. Furthermore, from Theorem 

3.1.6 and Theorem 3.1.7 we conclude that G has the S property if and only 

if )0(1
GP is a closed subspace of X where X is a Banach space.   

In section 3.2 we have the most important results about Orlicz and 

L p ( ,X) subspaces. If G is a closed subspace of a Banach space X, then 

we have the following: 

1. G has the S property  L ( ,G) has the S property. 

2. G has the S property  L 1 ( ,G) has the S property. 

3. G has the S property  L p ( ,G) has the S property. 

4. L ( ,G) has the S property  G has the S property. 

5. (S,G) has the S property 

 

G has the S property.  

Other results can also be found in the thesis.   
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Appendix  

It was pointed out that Al-Dwaik's thesis is not published, so this 

appendix is intended to include the theorems that are not mentioned in this 

thesis, or which we give different proofs. 

Theorem 1: The infinite dimensional subspace 0c of c is proximinal in c. 

Proof: On c define the linear functional f by f (x) = lim yxn . 

Then 0c = {g = { ng } c : f (g) = 0} is the hyperplane of c and if x ,c

 

then 

d(x, 0c ) = y  by Theorem 1.2.6 and Remark 1.2.7. 

Let g = { ng } be defined as, .yxg nn

 

Now g 0c and gx sup{ Nngx nn : } 

                                     = sup{ Nnyxx nn :)( } = y . 

Hence d(x, 0c ) = gx  and so; g P(x, 0c ). 

Since x was arbitrary; 0c is proximinal in c. 

Theorem 2: Every modulus function is continuous on [0, ). 

Proof: Let x 0 [0, ). We show that 

 

is continuous at x 0 , i.e. 

)()(lim 0
0

xx
xx

. At first we show that 

)()()( yxyx

 

x, y ).,0[

 

Now yyxyyxx , since 

 

is increasing and subadditive we 

get )()()( yyxx . 
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So )()()( yxyx                                                                      (A1) 

If we interchange x and y, then we have  

)()()( yxxy

       

           (A2) 

By (A1) and (A2) we have  

,0,)()()( yxyxyx . 

Now given 

 

> 0, there exists ( ) > 0 such that if 0<x< ( ), then   

)(x , because 

 

is continuous at 0. But )()()( 0 yxxx

 

if 

0xx ( ). Hence 

 

is continuous at x 0 and since x 0 is arbitrary, then 

 

is continuous on [0, ). 

Theorem 3: Let G be a closed subspace of a Banach space X. If L ),( G is 

proximinal in L ),( X , then G is proximinal in X. 

Proof: Let x X. Consider the function f (t) =x t , then f

 

L ),( X . 

Hence there exists g  L ),( G such that )),(,( GLfdgf . 

By theorem [11, p.36] )),((sup Gtfdgf
t

. 

Hence ),(sup Gxdgf
t

, since f (t) =x t . 

            ).,( Gxdgf  But d(x,G)=sup{ ttgx :)( }. 

       ).()( Gxdtgx

 

Therefore G is proximinal in X.     
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Theorem 4: Let G be a closed subspace of a Hilbert space X, then G has 

the S property. 

Proof: Let ,Xxi

 
),( GxPz ii

 
for i=1, 2. We show ),( 2121 GxxPzz . 

Theorem 2.1.4 implies Gzx ii for i=1, 2. Hence  

< gzx ii , > = 0, g .G

  

Now, < gzzxx ),( 2121 > = < gzx ,11 >+< gzx ,22 > = 0, 

 

g .G

 

Hence Gzzxx )( 2121 . 

 Theorem 2.1.4 implies that ),( 2121 GxxPzz . Thus G has the 

S property.     

 

Theorem 5: Let G be a closed subspace of a Banach space X. If G has the 

S property, then ))0(,( 1

GPL )0(1

),( GL
P . 

Proof: Let f ))0(,( 1
GPL i.e. f (t) )0(1

GP ,t

 

and so .f Now 

we have  

0 ,,)()),(()),(( ttfGtfdGtfP

 

i.e. Gggtftf )()( 

and .t    

In particular:  

      ).,(,)()()( GLhthtftf

 

).,(,)()()( GLhthtftf

 

).,(, GLhhff
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Hence ,)),(,( fGLfd  therefore 0 ).0()),(,( 1

),( GL
PfGLfP

 
Thus ))0(,( 1

GPL )0(1

),( GL
P .             

      

Remark 6: If G is 1 complemented in X, then G may not be a Chebyshev 

subspace. 

For Example let X = R 2 and G = {(g,g) : Gg } with yxyx ),( , 

then G is proximinal and not Chebyshev.  

Now, let W = {(0,w) : w R}, then (x,y)=(x,x)+(0,y x ).  

Clearly R 2 = G W. 

We define P : X W as P(x,y) = P((x,x)+(0,y x)) = (0,y x) 

Now .),(),0( yxxyxyxyw

 

Hence P is a contractive projection. 

Therefore G is 1 complemented in X.    

     



          

)S(     

      

 .

     

. 
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)S( 

   

 .

   

xXG

 

X.

x)(

 

G

x . 
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