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Abstract 
 

         
The singular value decomposition of matrices stands as one of the most 

important concepts in mathematics, because of its variety of applications in 

mathematics, statistics, biology and many other areas of science. 

 In this thesis, we present the singular value decomposition and its relation 

to the spectral decomposition . We also investigate the singular value 

decomposition of a matrix together with some of its applications. Some of 

these applications include the Moore-Penrose psuedoinverse, the effective 

rank of matrices and image compression.          
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Introduction 
 The singular value decomposition (SVD) plays an important role in matrix 

theory. While some decompositions are restricted to real square matrices, 

the (SVD) can be applied to any rectangular matrix A. Through this 

decomposition, we study some of the properties of  A such as: the rank, the 

norm and the basis of the four fundamental subspaces related to A. It  also 

has many applications. In numerical analysis, the SVD provides a measure 

of the effective rank of a given matrix. In statistics, the SVD is a 

particularly useful tool for nding least-squares solutions and 

approximations. It has many applications in: signal processing, biology, 

statistical analysis and mathematical modeling.  

        In this thesis, two types of the (SVD) of A are defined and computed: 

the full and reduced; this decomposition is compared with the well known 

spectral decomposition of A (whenever exists); some properties of the 

matrix via its (SVD) are studied. The (SVD) is used to compute the  

Moore-Penrose pseudo inverse that can be used in solving a system of 

linear equations and can give the optimal solution of the least squares 

problem when solving an overdetermined system; we also use the (SVD) to 

compute the best low rank approximation according to either the Euclidean 

or the spectral norm. 

In the first chapter, some preliminary definitions are presented, as well as 

basic results and properties of matrices; some special matrices (unitary, 

normal and Hermitian) are reviewd. Eigenvalues, norms and computations 

of the condition number are also studied. 
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In the second chapter, the diagonalization of matrices is studied and that 

includes Schur's theorem and the spectral decomposition. 

 

In the third chapter, the singular value decomposition (SVD) is defined 

and its relation to the spectral decomposition is studied. Some properties of 

the original matrix are studied via its SVD and the geometric interpretation 

of SVD is also introduced. 

 

In the fourth chapter, the SVD is used to compute the Moore-Penrose 

pseudoinverse which is used for solving linear systems of equations. 

 

In the fifth chapter, the SVD is used in other applications such as, low 

rank approximation with respect to a given norm, image compression and 

finding the affective rank of a matrix.   
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History 

        The singular value decomposition has a long history. It was originally 

developed in the nineteenth century by differential geometers and 

algebraists who wanted to determine, for given 

matrices ][ ijaA = and ][ ijbB = )(RM n∈ , whether the two bilinear forms: 

∑Φ
=

=
n

j,i
jiijA yxa)y,x(

1

 and ∑Φ
=

=
n

ji
jiijB yxbyx

1,

),( ,  

could be made equal for every n
ii R]y[y&]x[x ∈== , under independent 

real orthogonal transformation of the two spaces it acts on; i.e, does there 

exist )(, 21 RMQQ n∈ such that ),(),( 21 yxyQxQ AB ΦΦ =  

for all nRyx ∈, ? 

 

        This problem could be approached by finding a canonical form to 

which any such bilinear form can be reduced by orthogonal substitution, or 

by finding a complete set of invariants for a bilinear form under orthogonal 

substitutions.  

 

        The Italian differential geometer Eugenio Beltrami discovered in 1873 

that for each real matrix )(RMA n∈ , there are always )(, 21 RMQQ n∈  such 

that 

(*)  ,

)(
.
)(

)(

2

1

21



















=Σ=

A

A
A

AQQ

n

T

σ

σ
σ
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where 022
2

2
1 ≥≥≥≥ )A(...)A()A( nσσσ  are the eigenvalues of TAA as well as 

AAT ; he also found that the columns of 1Q  are  eigenvectors of TAA and the 

columns of 2Q  are  eigenvectors of AAT .  

        Independently, in 1874, the French algebraist Camille Jordan came to 

the same canonical form but from a different point of view. He found that 

the eigenvalues of the 2n-by-2n real symmetric matrix 







0

0
TA

A are paired 

by sign and that its n largest eigenvalues are the desired coefficients 
)(),...,(1 AA nσσ of the canonical form nnnAQQ

AAT ηξσηξσηξ )(...)(),( 111
21

++=Φ . 

 

        In 1889/90 unaware of Beltrami and Jordan, James Joseph Sylvester 

gave a third proof to (*) for real square matrices and he called the s'σ  the 

canonical multipliers of the matrix A. 

 

        In 1902 L-Autone proved that every non singular complex 

matrix nMA∈  can be written as UPA= , where nMU ∈  is unitary and 

nMP ∈ is positive definite. In 1913/15 he returned to these ideas and used 

the similarity of ∗AA and AA∗ to show that any square complex matrix nMA∈  

can be written as ∗Σ= VUA  where nMVU ∈,  are unitary and nM∈Σ  is a 

nonnegative diagonal matrix. He also discovered that if A is nonsingular 

Hermitian then A can be written as TUUΣ for some unitary U, and a 

nonnegative diagonal matrix Σ . In 1910 Emile Picard call the numbers kσ 's 

singular values. 
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        In 1939 Eckart and Young gave the first complete proof of the 

singular value decomposition for rectangular complex matrix and they 

didn't give any name to the numbers kσ 's.  

        The existence proof of the singular value decomposition opens many 

ways for the mathematician to search for inequalities, properties and 

applications to this decomposition. 

        During 1949-50, a remarkable series of papers in the Proceeding of 

the National Academy of Science (U.S.) established all of the basic 

inequalities involving singular values and eigenvalues. One of these papers 

is "Inequalities Between the Two Kinds of Eigenvalues of a Linear 

Transformation", established by Weyl. 

        In 1950 Poyla gave an alternative proof of a key lemma in Weyl's 

1949 paper( also, established  by U.S.). 

        In 1954, A. Horn proved that Weyl's 1949 inequalites were sufficient 

for the existence of a matrix with prescribed singular values and 

eigenvalues, and in this paper he used the expression "singular values" in 

the context of matrices. 

        In 1954/55 practical methods for computing the SVD date back to 

Kogbetliantz .  

        Hestenes in 1958 resembling closely the Jacobi eigenvalue algorithm, 

used plane rotations or Givens rotations, i.e, .
cossin
sincos








 −
θθ
θθ  However, these 
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were replaced by the method of Gene Golub and William Kahan (the 

reduction to bidiagonal form) published in 1965, which uses Householder 

transformations or reflections; they introduce the SVD into numerical 

analysis. 

        It is a fact that the QR algorithm for the singular values of bidiagonal 

matrices was first derived by Golub in 1968 without reference to the QR 

algorithm, which has been the workhorse for two decade.  

        Recently in 1990, Demmel and Kahan have proposed an interesting 

alternative for 1968's Golub algorithm. 

        In  the  last  30  years, the  singular  value  decomposition  has  

become  a  popular  numerical  tool  in  statistical  data  analysis,  signal  

processing,  system identification  and  control  system  analysis  and  

design.                                                                                           [12 &23] 
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Chapter One 
Basic Concepts in Matrix Analysis 

In this chapter we review some preliminary concepts and definitions in 

matrix analysis and present some basic properties related to these 

definitions. 

Remark:  In our thesis, we denote by R the set of real numbers and by C 

the set of all complex numbers },,{ RC ∈+= yxiyx .  

 

1.1   Vector Spaces Over C 

Definition  1.1 

        A complex vector space V is a nonempty set of elements (called 

vectors) together with two operations: vector addition ⊕  and scalar 

multiplication Θ  satisfying the following properties: 

        For all C∈∈ dcVwvu and,and,  , then: 

(1)  a -   Vvu ∈⊕  (i.e. V is closed under vector addition ⊕ ) 

       b-   uvvu ⊕=⊕ .  

       c-    wvuwvu ⊕⊕=⊕⊕ )()( . 

d-    there is an element V∈0  such that uuu =+=+ 00  (0 is               

         called the additive identity). 

       e- Vu ∈−∃ such that 0=−⊕ uu . ( u−  is called the additive inverse). 

(2)  a- Vuc ∈Θ  (i.e. V is closed under scalar multiplication Θ ) 

       b- vcucvuc Θ⊕Θ=⊕Θ )(  . 

       c- uducudc Θ⊕Θ=Θ+ )( . 

       d- )()()( ucducdudc ΘΘ=Θ=ΘΘ . 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


  

 

8

       e- uu =Θ1 . 

Note: a real vector space has the same definition as a complex vector space 

except that the constants are real numbers.   

 

Example 1 

       Cn with the usual addition and scalar multiplication is a complex  

vector space: 

For any n
nnn wwwwvvvvuuuu C∈=== }.,.,.,{and}.,.,.,{,}.,.,.,{ 212121  

niCwvu iii ,...,2,1,and, =∈ and for any C∈dc and   then : 

(1)  a- n
nn vuvuvuvu C∈+++=+ }.,.,.,{ 2211 , so Cn is closed under addition. 

      b- uvuvuvuvvuvuvuvu nnnn +=+++=+++=+ }.,.,.,{}.,.,.,{ 22112211  

      c- )}(.,.),.(),({)( 222111 nnn wvuwvuwvuwvu ++++++=++  

                        wvuwvuwvuwvu nnn ++=++++++= )(})(.,.,.)(,){( 222111  

      d- nC∈)0,...,0,0(  is the additive identity. 

      e- The additive inverse for u is n
nuuuu C∈−−−=− }.,.,.,{ 21  

(2)  a- n
ncucucuuc C∈= }.,.,.,{ 21 , so Cn is closed under scalar multiplication. 

       b- )}(.,.),.(),({}.,.,.,{)( 22112211 nnnn vucvucvucvuvuvucvuc +++=+++=+  

}.,.,.,{}.,.,.,{}.,.,.,{ 21212211 nnnn cvcucvcucucucvcucvcucvcu +=+++=    

vcuc +=   

        c- (c+d)u =cu+du 

        d- c(du)=(cd)u 

        e- 1u=u  

Definition  1.2 
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        A subspace U of a vector space V over C is a nonempty subset of V 

which is by itself a vector space over C with respect to the operations on V. 

 

Example 2 

        U= },:)0,,{( R∈baba T  is a subspace of R3 which is a real vector space. 

 

Theorem 1.1 

        A nonempty subset U of V is a subspace of V if U is closed under the 

same operations Θ⊕ and on V.  

 

Definition  1.3 

        A set of vectors }{ k21 x,...,x,x in a vector space V is said to be linearly 

dependent over C if there exists coefficients C∈kaaa ,...,, 21  not all zero, such 

that 02211 =+⋅⋅⋅++ kkaaa xxx .  

        A set which is not linearly dependent is said to be linearly 

independent. 

 

Theorem 1.2 

        Let },...,,{ 21 kxxx be linearly independent vectors in Cn and P an n by n 

nonsingular matrix then nPPP xxx 1
2

1
1

1 ,...,, −−−  are also linearly independent 

vectors in Cn. 

 

Definition  1.4 
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        Let )(, CnmMA∈ . The rank of A denoted by r(A), is the number of 

linearly independent columns or rows of A, where )(, CnmM  denotes all m by 

n matrices with entries from C. 

 

Note:    rank A = rank A* A ( where A* is the conjugate transpose of A i.e., 

if ][then,],[ *
jiijij aAaaA =∈= C ), where " " denotes the conjugate.  

Definition  1.5 

        A subset },...,,{ 21 nS xxx= of  a vector space V is said to span V if every 

element Vv∈ can be represented as a linear combination of the elements of 

S ( i.e. nnn aaavaaaVv xxxC +⋅⋅⋅++=∈∃∈ 221121 thatsuch,...,,if ) . We then write  

V =Span S. 
 

Definition  1.6 

        A nonempty subset S of a vector space V is said to be a basis of V, if 

it's both linearly independent and if it spans V. The number of elements of 

elements of S (a basis) is called the dimension of V, denoted by dim V. 
 

Remark 

Most of our work in the thesis will be over finite dimensional vector 

spaces, unless otherwise stated. 

 

Note: If the vectors kvvv ,...,, 21  form a basis for a vector space V, then they 

must be distinct and nonzero, so we write them as a set{ }kvvv ,...,, 21 .  

Definition  1.7 
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 Let n

nn y

y
y

x

x
x

Cyx ∈



















=



















=
MM
2

1

2

1

, . The dot product of x and y is defined as 

[ ] nn

n

n yxyxyx

y

y
y

xxxyxyx +++=



















== .... 2211
2

1

21
*

M
L . 

The length of x is denoted by xxx .|||| =  .  

Definition  1.8      

        Two vectors nCyx ∈and  are said to be orthogonal if  x.y =  0. Two 

subspaces U and V of a vector space are said to be orthogonal if 

}and,0.{ VU ∈∈∀= vuvu  .  

 

Definition  1.9 

        Two vectors x and y are said to be orthonormal if x and y are 

orthogonal and of unit length each.  

 

Definition  1.10 

        A set of vectors n
k Cxxx ⊆},...,,{ 21 is said to be orthogonal if they are 

pairwise orthogonal. If in addition each xi has a unit length, (i.e. 

},...,{then),...,2,1,1|||| 21 ki ki xxxx == is an orthonormal set. 

 

 

 

Definition  1.11 
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        Let V be a subspace of nC . A subspace nCU ⊂ is said to be the 

orthogonal complement of V in nC if every vector U∈u is orthogonal to 

every V∈v and every if vector V∈v  is orthogonal to every U∈u .  V is also 

called the orthogonal complement of U. 

 

Example 3  
        

        W1= Span
















































7
0
5

,
4
2
1

 = span{u1,u2} and W2= span































−
−

1
3.1
4.1

= span {t1} 

are orthogonal complements of each other in nR , since u1. t1=0 , u2.t1=0. 
Then, every element in W1 is orthogonal to every element in W2 .  

Definition  1.12 

        Let )(, CnmMA∈  and suppose r(A)=rank(A)= r. Then there are four 

fundamental subspaces related to A: 

1- The Range of { }yxCxCy =∈∃∈= AA nm ,: . It is also called the column  

space of A, and dim (range A)= r . 

2- The Null space of { }0: ** =∈= yCy AA m  and its dimension = m-r. It is  

the orthogonal complement of range A.  

3- Range { }yxxCy =∈∃∈= ** ,: ACA mn  with dimension r . It is also called  

rowspace of A. 

4- The Null Space of { }0: =∈= yCy AA n  with dimension=n-r. It is the  

orthogonal complement of range A*. 

 

Example 4 

        Let  
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−
−−=
2174
6402

7351
A , 

Compute the four fundamental subspaces associated with A. 

Solution: 

By elementary row operations, the reduced row echelon form of A (written 

RREF(A)) is 















 −−
==

0000
2110
3201

)( BARREF  

Then 

1- rank(A)=2 

2-The basis of the column space of A is 















































=

7
0
5

,
4
2
1

S  

3- Now to find the basis of the null space of A*, find A*, 

 



















−
−−

=

267
143

705
421

*A . 

Again, by elementary row operations on A*, we obtain  























==∗

000
000

10
1310
5
701

)( CARREF  

Solving the linear system C x = 0, we get 
































−
−

=′

1
3.1
4.1

S is the basis of the null space of A*. 
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S and S' are orthogonal complements of each other in R3. 

4- [ ] [ ]{ }2110,3201 −−=T is a basis for the row space of A. 

5- To find the basis of the null space of A, solve the linear system Bx = 0  

to get 






































−


















−

=′

1
0
2

3

,

0
1
1

2

T  is a basis for the null space of A.  

 

Theorem 1.3 

        An orthonormal set of vectors is linearly independent. 

 

1.2  Gram-Schmidt Orthonormalization Process 

        In our work we require linearly independent sets to be orthonormal. 

We can convert a linearly independent set into orthonormal set in many 

ways. One simple way to obtain an orthogonal set from linearly 

independent set is the Gram-Schmidt process. 
        Let },...,,{ 21 nS uuu= be a set of linearly independent vectors in a 

complex vector space V then the following are the steps of the Gram-

Schmidt Orthonormalization Process. 

   1-    Let v1=  u1 

2-  Compute the vectors  vi = ui - ∑
−

=

⋅1

1
2 )

||||
(

i

k
k

k

ki v
v

vu   i=2,3, . . . ,n. The 

vectors {v1,v2,. . . ,vn} form an orthogonal set. 
     3- Let wi = |||| i

i

v
v  ,     1 ≤  i ≤ n. Then },...,,{ 21 nT www=  is an orthonormal  

set of vectors. 
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Example 5 

        Obtain an orthonormal set from 











































































=

0
1
0
1

,

1
3
2
2

,

1
2
0
1

S .                    

First, these vectors are linearly independent. 
1- Let v1=(1,0,2,1)T 

2- Compute vi = ui  - ∑
−

=

⋅1

1
2 )

||||
(

i

k
k

k

ki v
v

vu   i=2,3 

 v2 = u2 - 12
1

12 )
||||

.( v
v

vu = (2,2,3,1)T -
6
9 (1,0,2,1)T = (

2
1 ,2,0, 

2
1

− )T or (1,4,0,-1)T 

v3 = u3- 12
1

13 )
||||

.( v
v

vu - 22
2

23 )
||||

.
( v

v
vu  

v3 = ( 1,0,1,0)T - 
2
1 (1,0,2,1)T - T)1,0,4,1(

18
1  = (

9
4 ,

9
2− ,0, 

9
4− )T or (4,-2,0,-4)T 

you can see that v1,v2 and v3 are pairwise orthogonal. 
3- Compute wi =

|||| i

i

v
v , we obtain w1= )

6
1,

6
2,0,

6
1( T,  

w2= T)
23
1,0,

23
4,

23
1( − and w3= T)

3
2,0,

3
1,

3
2( −−  respectively. 

Note 

        This process may be applied to any finite or countable set of vectors 

(not necessary linearly independent). In this case at least one of the vi's will 

equal zero, and the set {v1,v2,. . . ,vn} will not be orthonormal. 

 

Example 6 

        Obtain an orthogonal set from  






























−















−

















−
=

3
2
3

,
2
0
3

,
1

2
3

T  

Solution: 
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Note that 














−
+

















−
=















−

2
0
3

2
1

2
3

1
3
2
3

 , so T is linearly dependent; thus we can't 

convert them to an orthonormal set, but orthogonal only: 

1- Let v1 = ( 3, 2, -1)T 

2- Compute vi = ui  - ∑
−

=

⋅1

1
2 )

||||
(

i

k
k

k

ki v
v

vu   i=2,3 

                  TT )0,0,0(and)
14
17,

14
22,

14
9( 32 =−= vv  

These vectors are orthogonal but v3 is not a unit vector . 
 

1.3  Some Special Matrices 

  1.3.1  Unitary Matrices 

Definition  1.13 

        A matrix )(CnMU∈  is said to be unitary if U*U=I .If U is real then U 

is called orthogonal. 

        We have some important theorems:  

Theorem 1.4 

       Let  )(CnMU∈ . The following are equivalent: 

1-  U is unitary. 

2-  U is non singular and U*= 1−U  (where 1−U denotes the inverse of U).  

3-  UU* = I.   

4-  U* is unitary.  

5-  the columns of U form an orthonormal set in Cn. 

6-  the rows of U form an orthonormal set in Cn. 

7-  U preserves length,  i.e., if ||||||||then,with, xyCxxy =∈= nU .     

       It is easy to prove this theorem and we prove only the last statement. 
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Suppose U is unitary then 2*****2 ||||)()(|||| xxxxxxxyyy ===== UUUU  

 

Example 7 

        Consider the unitary matrix 
















−

−

=

1053
1034

661
125

661
125

1053
1034

iiU  and the 

vector 







=

661
1053

x .    x 1545730||||Then, =  

        We have:    1545730||||with

59
50044

909

=



















−

−

= xU
i

Ux   

Theorem 1.5 

        If U is unitary then det(U)  = 1± .  

 

Theorem 1.6 

        If )(and CnMVU ∈   are unitary so is the product UV. 

        Special cases of unitary matrices are the permutation matrices. Define 
as follows: 

 

 

Definition  1.14 

        A square matrix P is a permutation matrix if its columns are a 
permutation of the columns of I. 

Example 8 
















=

010
100
001

A  
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is a permutation matrix. 

 

1.3.2  Normal Matrices 

 

Definition  1.15 

        A matrix )(CnMA∈  is said to be normal if AAAA ** =  

It is obvious that unitary and diagonal matrices are normal. 

 

Example 9 

        Let 









−−

=
53

32
i

i
A  

Then A is normal since 








 −
==

349
913**

i
i

AAAA  

 

 

 

1.3.3 Hermitian Matrices 

Definition  1.16 

        A matrix )(CnMA∈  is said to be Hermitian if AA =* . If A is real then A 

is said to be symmetric. It is skew Hermitian if AA −=* . 

It is obvious that Hermitian and skew Hermitian matrices are normal.       

 

Theorem 1.7 
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         Let )(CnMA∈  be Hermitian. Then: 

1- *,, AAAT  are all Hermitian and if in addition, A is non singular then A-1 

is also Hermitian. 

2- Axx*  is real for all  nx C∈  . 

 

Theorem 1.8 

        Let )(, CnmMA∈  then AAAA **and  are Hermitian matrices. 

Remark 

        The main diagonal entries of a Hermitian matrix are all real. 

 

Definition  1.17 

        A Hermitian matrix )(CnMA∈  is said to be positive definite if 0* >Axx  

for all nonzero ∈x Cⁿ. " It's positive semi definite if  0* ≥Axx "(note that 

since A is Hermitian then Axx*  is real ).  

 

 

Remark  

If )(, CnmMA∈  then  AA*and A*A are positive semi definite. If A has 

linearly independent columns then A*A is positive definite. 

Proof 

0,0||||)()( 2*** ≠∀≥== xxxxxx AAAAA . So A is positive semi definite. If in 

addition A has independent columns then 0allfor,0|||| ≠> xxA   

0,0||||)()( 2****** ≠∀>== xxxxxx AAAAA  
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Example 10 

Let 















=

00
21
11

A ,  then 







=

021
011*A . 

Therefor















==

1
0
0

givewill0* xxA  

Now, 















=

000
053
032

*AA  

[ ] [ ] 0although,0
1
0
0

000
1
0
0

000
053
032

100 ≠=















=
































x  

But [ ] 0
2

)
2
3(2562

53
32

and
53
32 2

222* ≠++=++=























=

bbababa
b
a

baAA  

except if both a and b =0. 

 

 

 

1.4    Eigenvalues and Eigenvectors 

Definition  1.18 

     Let )(CnMA∈ . The number C∈λ  is called an eigenvalue of A, if there 

exists a non zero vector nCx∈  such that xx λ=A . In this case, x is called 

eigenvector of A associated with the eigenvalue λ . The set of all 

eigenvalues of )(CnMA∈  is called the spectrum of A and is denoted by 

)(AΛ  . 

 

Theorem 1.9 
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        If x and y are eigenvectors of )(CnMA∈  associated with the eigenvalue 

λ  then: 

1) If yx βα + is not the zero vector, then yx βα +   is also an eigenvector of  

    A associated with the eigenvalue λ . 

2)  If A is also Hermitian then all its eigenvalues are real. 

3) If A is also positive definite then its eigenvalues are positive. 

 

Example 11 

         Let 







−

+
=

21
11

i
i

A  . Then A is Hermitian and note that   

 








 +−
=








=







 +−
1

)1(
0

0
0

1
)1( ii

A  

so 






 +−
=

1
)1(

1

i
x  is an eigenvector of A associated with the eigenvalue 0=λ   

  

also 






 +
=

2
1

2

i
x  is an eigenvector of A associated with the eigenvalue 3=λ . 

Thus  }3,0{)( =Λ A  

 

Definition  1.19 

        Let )(CnMA∈ . Then























−⋅⋅−−
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅−−

−−−

=−=

nnnn

n

nt

ataa

ata
aaat

AtIAf

21

2221

11211

.
..

det)det()(  

     is called the characteristic polynomial of A .  
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Theorem 1.10 

       The eigenvalues of A are the roots of the characterstic polynomial of A.  

 

        Thus to find the eigenvalues of a given matrix A we must find the 

roots of the characteristic polynomial. Then the corresponding eigenvectors 

are obtained by substituting the values of λ  in  the system of equations 

0)( =− xI Anλ  and solving the resulting system. So, the eigenvectors of A 

corresponding to λ  span  the null space of  )I( An −λ . 

        The characteristic polynomial can be written as the product of n 

factors each of the form )( iλλ − where iλ  is a root of the characteristic 

polynomial so we write =)(λtf rk
r

kk )(...)()( 21
21 λλλλλλ −−− , where 

rii ,...,2,1, =λ  are the distinct eigenvalues of A , and ki are integers whose 

sum is n and which is called the  algebraic multiplicity of rii ,...,2,1, =λ . 

Each eigenvalue has also a geometric multiplicity which is defined as the 

dimension of the subspace spanned by its eigenvectors. An eigenvalue is 

simple if its algebraic multiplicity is one in this case the algebraic and 

geometric multiplicities are equal.  

It is easy to show that the algebraic multiplicity of each eigenvector is 

greater than or equal to the geometric multiplicity. 

 

Example 12 

        Let 







=

1
1
i

i
A   

Its characteristic polynomial is 
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−−

−−
=

1
1

)(
λ

λ
λ

i
i

f )1)(1()1( 22 iii +−−−=−−= λλλ . 

Hence the eigenvalues are iandi −=+= 11 21 λλ ,  

Using the first eigenvalue i+= 11λ  and substituting in 0)( 2 =− xI Aλ gives  









=
















−

−
0
0

2

1

x
x

ii
ii  

the second row gives x1=x2. So, (1, 1)T is an eigenvector corresponding to 

i+= 11λ . The same argument with i−= 12λ gives the corresponding 

eigenvector .)1,1( T−                                        

 

Definition  1.20  

        The set of eigenvectors corresponding to an eigenvalue λ  togother 

with the zero vector form a subspace of Cn known as the eigenspace of λ . 

 

Definition  1.21 

        Let [ ] )(Cnij MaA ∈= . Then the trace of A is defined as ∑
=

=
n

i
iiaA

1
 

 

Theorem 1.11 

        Let )(CnMA∈ . Then the eigenvalues of A* are the complex conjugate 
of the eigenvalues of A. i.e., if )(AΛ∈λ then )( *AΛ∈λ   

        It follows from this theorem that for any matrix )(, CnmMA∈ , A*A and 

AA* have the same non zero eigenvalues. 

 

Theorem 1.12 
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        Let )(CnMA∈  be Hermitian. Then it has asset of n orthogonal 

eigenvectors.  

 

Example 13 

         Consider the Hermitian matrix 







−

+
=

21
11

i
i

A  in example 11, which 

has eigenvectors 






 +−
=

1
)1(

1

i
x  and 







 +
=

2
1

2

i
x  , to show that these vectors are 

linearly independent , we arrange them as columns in a matrix then 

transform it into row echelon form: 









 →







 +−−
10
21

21
11 R.E.Fii  

Since each column has a leading one , so these two vectors are linearly 

independent. 
 

1.5    Norm of Vectors and Matrices 

        One way to measure the size of vectors and matrices is to study the 

norm, so what is the norm? 
 

Definition  1.22 

        Let V be a vector space over the field of complex numbers, a function 

|| . || : V→  R   is a  vector norm if for all x ,y  ∈V  

1- ||x|| ≥ 0 

2- ||x|| = 0 iff x = 0 

3- ||c x|| = |c| ||x|| for all scalars ∈c  C  

4- ||x + y|| ≤ ||x|| + ||y| |   
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Note:  A function that satisfies axioms 1, 3 and 4 of definition 1.22 is 

called semi norm. 
 

Example 14  

1-  The Euclidean norm (or ℓ2 norm) on Cn is 
T

nn xxxxxx ),...,,(where)|||||(|.|||| 21
2
1

22
2

2
1

*
2 =+⋅⋅⋅++=== xxxxxx  

2-  The sum norm ( or ℓ1 norm) on Cⁿ is  
T

nn xxxxxx ),...,,(where|||||||||| 21211 =+⋅⋅⋅++= xx . 

 

Definition  1.23 

A norm is said to be unitarily invariant if |||||||| xx =U  for all ∈x Cⁿ and all 

unitary matrices )(CnMU∈  

Example 15 

The ℓ2 norm is unitarily invariant. 

 

Definition  1.24 

A function ||| . |||  : )(, CnmM  →  R   is a  matrix  norm if for all )(, , CnmMBA ∈  

1- |||A ||| ≥ 0 

2- ||| A|||=0 iff A=0 

3- |||c A||| = |c| |||A|||,          for all complex scalars c 

4- ||| A+B||| ≤ |||A|||+|||B|||                         triangle inequality  

5- |||AB||| ≤ |||A||| |||B|||                          (if n=m) sub multiplicative  

 

Remark 
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       By 5 of definition 1.24, for any nonzero matrix A for which A² = A, we 

have that |||A||| ≥ 1; this is because 22 |||||||||||||||||||||||||||||||||||| AAAAAAA =≤== . 

In particular ||| In ||| ≥ 1 for any matrix norm, so if A is invertible then 

||||||
1|||||||||||||||||||||||||||||| 111

A
AAAAAn ≥⇒≤= −−−I  for any matrix norm. 

 

Example 16 

        The Euclidean norm (ℓ2 or Frobenius norm) on )(, CnmM  is defined as  

||| A|||F = 
2
1

1 1

2|| 







∑∑

= =

m

i

n

j
ija . 

 

        Note that in the vector norms the Euclidean norm is denoted by ||x||2 

while in the matrix norms the ℓ2 norm is denoted by |||A|||F. 

 

Example 17 

        The spectral norm |||.|||2 is defined on )(, CnmM  by  

|||A|||2 = max { λλ : is an eigenvalue of AA*} 

|||A| ||2 is defined since AA* is positive semi definite and so all its 

eigenvalues are non negative.  
 

Note 

222 |||||||||||||| xx AA ≤ , where n
nmMA CxC ∈∈ and)(, .    

 

Definition 1.25 
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 The inner product of )(and , CnmMBA ∈  is defined as 

∑∑
= =

==⋅
n

j

m

i
ijijbaBAtrBA

1 1

* )( . We then write the Frobenius norm as 

AAA F ⋅=|||||| , 

 

Theorem 1.13 

        Let α||.|| be a given norm on nC and let α|||.||| be the matrix norm on 

)(, CnmM . Then 








≠= 0,
||||
||||

max|||||| x
x

Ax
A

α

α
α   

 

 

 

Definition  1.26 

        A matrix norm is said to be unitarily invariant if |||||||||||| AUAV =  for 

all )(, CnmMA∈  and all unitary matrices U and V. 
 

        For instance both the Spectral and Frobenius norms are unitary 

invariant i.e., FF UAVAandUAVA |||||||||||||||||||||||| 22 ==   for all unitary matrices 

U and V. 

 

1.6   Condition number 

        It's a measure for singularity defined as follow: 

Definition  1.27 

        The condition number of a square matrix A with respect to a given 

matrix norm is dened as: 
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∞
=

−

singular,
nonsinular,||||||||||||

)(cond
1

isA
isAAA

A  

 

The following theorem gives us some important properties of the condition 

number: 

 

Theorem 1.14 

1. For any matrix A, 1)(cond ≥A  . 

2. For the identity matrix, 1)I(cond = . 

4.5. For any matrix A and nonzero scalar )(cond)(cond, AA =αα  

Most of the material of this chapter can be found in [11] and [15]. 
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Chapter Two  
Similarity and Unitarily Diagonalization 

 

We start this chapter with the definition of matrix diagonalization.  

 

2.1  Diagonalization 

         

Definition  2.1   

        A matrix )(CnMB∈  is said to be similar to a matrix )(CnMA∈  if there 

exists a non singular matrix P such that BPPA 1−= . We say B is similar to A 

via P.  We also call P the matrix of similarity between A and B. 

 

        

        If B is similar to A then A is similar to B. So we can simply say A and B 

are similar. If P is unitary then A and B are said to be unitarily similar.  

 

Example 1 

        The matrix 







−
−

=
718
38

B  is similar to 







−

=
20

01
A  since:  

 

















−
−









−

−
=








−

=
23
11

718
38

13
12

20
01

A  

                                                       1−P             B           P 
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Definition 2.2 

        A matrix )(CnMB∈  is said to be diagonalizable (or can be diagonalized) 

if it is similar to an n by n diagonal matrix. We then write DPPB 1−= , where 

D is diagonal. 

 

Example 2 

        The matrix 







−
−

=
718
38

B  in Example 1 is diagonalizable since it is 

similar to the diagonal matrix 







−

=
20

01
A . 

 

Theorem 2.1 

        If a matrix )(CnMA∈  is diagonalizable then it has n linearly 

independent eigenvectors. 

Proof 

        Let )(CnMA∈  be diagonalizable. Then there exists a non singular matrix 

)(CnMP∈  and a diagonal matrix )(CnM∈Λ  such that 1−Λ= PPA  or  Λ= PAP  

Let [ ]nxxxP ..21=  with )(diagand ii
n

i dx =Λ∈C  where C∈iid , then 

[ ] [ ]


















=

nn

nn

d

d

xxxxA
.

.
....

11

11  

Comparing the left hand side with the right hand side column by column we 

have iiii xdAx = . Since P is non singular then its columns are linearly 

independent and none of them is zero. Then, by definition of the 
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eigenvectors, the columns of P are linearly independent eigenvectors of A 

corresponding to the eigenvalues dii.                                                           ■ 

Definition 2.3 

        A matrix )(CnMA∈  is unitarily diagonalizable if it is diagonalizable via 

a unitary matrix.  

 

Example 3 

         Let 



















−−

−
=

 
2
1       

2
5i  

    
2
5i         

2
1  

A  and let 



















−−
=

2
1

2

22
1

i

i

P . Then P is unitary and  

=Λ −1PP 







−

=



















−−















−−

−



















−− 30
02

2
1

2

22
1

2
1

2
5

2
5

2
1

2
1

2

22
1

i

i

i

i

i

i

 

So, A is unitarily diagonalizable. 

 

Definition 2.4 

        An eigenvalue )(of CnMA∈λ  is called defective if its geometric 

multiplicity is less than its algebraic multiplicity. A matrix A is defective if it 

has a defective  eigenvalue. Otherwise A is non defective.   

 

Note 

        If an eigenvalue is simple then it is non defective. 
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Example 4 

        The matrix 
















−

−
=

101
01-1
11-1

A  is non defective since its eigenvalues are –1, i 

and –i and they are all simple. 

 

Theorem 2.2 

        Similar matrices share the same eigenvalues with the same algebraic 

and geometric multiplicities. 

Proof 

Suppose A and B are similar, so there exists a non singular matrix P such 

that APPB 1−= . Then 

))(det()det()det()det()( 1111 PAIPAPPPPAPPIBIBPt −=−=−=− −−−− λλλλ  

 )()det()det()det()det( 1 APAIPAIP t=−=−= − λλ  

This means that both A and B have the same characteristic polynomial and 

so they have the same eigenvalues (roots) with the same algebraic 

multiplicity. If x is an eigenvector of A associated to λ , then xx λ=A  and 

xx λ=−1PBP  which gives )()( 111 xxx −−− == PPPB λλ , i.e., x1−P  is an eigenvector 

of B associated to λ ; hence, by theorem 1.2, A and B have the same  

geometric multiplicity.                                                ■  

 

Note 

        The zero matrix )(0 CnM∈  is non defective since it has only one  

eigenvalue (zero) with algebraic multiplicity n and neee ,...,, 21  are its 
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eigenvectors. So the geometric multiplicity of the zero eigenvalue is n;  so 

it's non defective.   

 

Remark  

        Any diagonal matrix is non defective.   

 

Example 5 

        Let  























=

20000
03000
00200
00020
00003

A . 

Then }3,2{)( =Λ A  with algebraic multiplicities 3 and 2, respectively. To find 

the geometric multiplicity for 2, we solve 0)2( =− xI5 A  which gives  

 























=













































−

−

0
0
0
0
0

00000
01000
00000
00000
00001

5

4

3

2

1

x
x
x
x
x

 

The solution of this equations are 041 == xx  and 532 and, xxx are free 

variables so we can choose the eigenvectors associated to 2 to be e2, e3 and 

e5. So, the geometric multiplicity for 2 is 3. 

In the same way we show that the geometric multiplicity for 3 is 2. So A is 

non defective.  
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Theorem 2.3 

        Let )(CnMA∈ . Then A is non defective if and only if it is 

diagonalizable. 

Proof 

 Suppose A is non defective then it has n linearly independent eigenvectors, 

nxxx ,...,, 21 . Since ],...,,[],...,,[then 221121 nnniii AA xxxxxxxx λλλλ ==  and hence 

Dn

n

n ],...,,[
.

.
],...,,[ 21

1

21 xxxxxx =



















λ

λ

. So, we have PDAP =  and hence  

DAPP =−1 , where .
.

.
}...,,{

1

1



















==

n

ndiagD

λ

λ

λλ  

Conversely,  

Suppose DAPP =−1 , where ],...,,[ 21 nP xxx=  and 


















=

nd

d

D
.

.
1

. Then A is 

similar to D and by Theorem 2.2 A have the same eigenvalues as D, namely 

ndd ...,,1 , with the same algebraic and geometric multiplicities. But D is 

diagonal and thus by the remark above it is non defective and so is A.     ■  

 

Not all matrices are diagonalizable, see the following example: 
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Example 6 

        The matrix 







−

−
=

10
11

A is not diagonalizable. To see this, note that 1−  

is an eigenvalue of A with algebraic multiplicity =2, but the eigenvectors 

associated to 1−  are (r,0)T. Hence, the geometric multiplicity of 1−  is 1 and 

so it is defective and so A is not diagonalizable. 

 

2.2  Schur's Theorem 

        In the previous section we showed that not all square matrices are 

diagonalizable. In this section we prove that all square matrices are unitarily 

similar to an upper triangular matrix. 

 

Theorem 2.4( Schur's  Theorem):  

        Given )(CnMA∈  with eigenvalues nλλλ .,.,., 21 , there is a unitary matrix 

)(CnMU∈  such that ][*
ijtTAUU == , where T is upper triangular, with   

nit iii ,..,.2,1, == λ .         [22]  

Proof  

Let x1 be a unit eigenvector associated to 1λ , so 11 xx λ=A . Since x1 is not 

zero we may use Gram Schmidt orthonormalization process to extend  

T1 ={x1} to an orthonormal basis{ x1, z2, z3,..., zn } of Cn. 

Then for the unitary matrix [ ]n21 zzx ..1 =U  
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[ ]









=























==

1

1

1
*
1

*

..
.
.

A

AAUUB

0

zzx

z

z
x

n21

*
n

*
2

*
1

λ

 

  The matrix )(11 C−∈ nMA , has eigenvalues nλλλ .,.,., 32 . We find a normalized 

eigenvector 1−∈ nC2x  of A1 corresponding to 2λ , and then extend T2 ={x2} to 

an orthonormal basis{ x2, w3,..., wn }of 1−nC . 

Determine a unitary matrix )(12 C−∈ nMU , where 









=

2

2
21

*
2

*
A

UAU
0
λ  

Let  









=

2

1
2

I
U

V
0

0  

where I1 is the 1by 1 identity matrix. Then V2 and U1V2 are unitary and  























==

2

2

1

21
*
1

*
22

*
2

0
*

)(
A

*
VAUUVVBV

0

λ
λ

 

Countinue this reduction to produce unitary matrices 

,1,...,3,2),(&1,...,2,1),(1 −=∈−=∈ +− niMVniMU niini CC then the matrix 

1321 ... −= nVVVUU  is unitary and U*AU=


















n

ijt

λ

λ

.
.

1

0
yields the 

desired form.            ■ 

Example 7 
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Let 

















−
−−

−
=

110
121

011
A  

The eigenvalues of A are 0, 1 and 3 and the normalized eigenvector 
corresponding to 0 is x1= T)

3
1,

3
1,

3
1( . Expand T1={x1} to a basis of C3, we 

obtain { }211 ,, eex  =



















































































0
1
0

,
0
0
1

,

3
1
3

1
3

1

 

Applying Gramschmidt orthonormalization process to these vectors to get 





















































−






















−

−























2
1
2

1

0

,

6
1
6
1
6

2

,

3
1
3

1
3

1

 , then the unitary matrix 























−−

−
=

2
1

6
1

3
1

2
1

6
1

3
1

0
6

2
3

1

1U is such 

that U1
*AU1 = 























−

−
=

















−−
−

















−
−−

−

















−
−−

2
5

2
30

2
3

2
30

000

)
312

312
022

6
1(

110
121

011

330
112
222

6
1  
















=

0
0

000

1A where )(

2
5

2
3

2
3

2
3

21 CMA ∈



















−

−

=  and its eigenvalues are 1 and 

3. The normalized eigenvector associated with 1 is x2= T)
2
1,

2
3( . Let T2 = 

{x2} and repeat the same steps as above to find 








−
=

31
13

2
1

2U  
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So, 







=

30
01

21
*
2 UAU and  








=

2

1
2

I
U

V
0

0























−

=

2
3

2
10

2
1

2
30

001

. 

Let 























−

−
=























−
















−−
−==

6
1

2
1

3
1

6
20

3
1

6
1

2
1

3
1

2
3

2
10

2
1

2
30

001

312
312

022

6
1

21VUU  

Then 















==

300
010
000

* AUUT  is upper triangular matrix with iiiit λ= . 

Note 

Neither U nor T in the theorem is unique. 

       Schur’s Theorem says that every square matrix is similar to an upper 

triangular matrix via a unitary matrix. In the next section, we consider 

similarity of a matrix to a diagonal matrix via a unitary matrix in what is 

known by the spectral decomposition theorem. 

 

2.3   Spectral Decomposition 
 

Lemma 1 

        Any upper triangular normal matrix must be diagonal. 

Proof   

        Let ][ ijtT = )(CnM∈  be upper triangular and normal. Then tij =0 for i>j 

and ** TTTT = . Comparing the diagonal entries of both sides, we obtain 

∑
=

=
n

k
kikittiiTT

1

* )( = ∑
=

=
n

k
ikikii ttTT

1

* )( ni ,...,2,1, =   
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By using the fact that T is upper triangular we have: 
2

11
2

11
2

2
1

2
11

1

2
1

1
1111

* ||0||||||||)( tttttttTT
n

k
k

n

k
k

n

k
kk =+=+=== ∑∑∑

===

                        (1) 

∑∑∑
===

+===
n

k
k

n

k
kk

n

k
k tttttTT

2

2
1

2
11

1

2
11

1
111

* ||||||)(                                              (2) 

The equality of (1) and (2) gives: 

                     1,00|| 1
2

2
1 >=⇒=∑

=
ktt k

n

k
k                                                     (3) 

Since tk2=0, k >2 (T is upper triangular) and from (3), 0|| 2
12 =t , we have:  

2
22

3

2
2

2
22

2
12

1

2
222

* ||||||||||)( tttttTT
n

k
k

n

k
k =++== ∑∑

==

                                      (4)  

And by (3)          

∑∑∑
===

+=++==
n

k
k

n

k
k

n

k
k ttttttTT

3

2
2

2
22

3

2
2

2
22

2
21

1

2
222

* ||||||||||||)(                           (5) 

The equality of  (4) and (5) gives:  

0||
3

2
2 =∑

=

n

k
kt  and hence 2,02 >= kt k .      

Continuing in the same way, we obtain tij =0 for all j > i , i = 1,2, . . ., 1−n .   

So T is a diagonal matrix .                                                                           ■    

 

Lemma 2 

        Let )(CnMA∈  be similar to a matrix T via a unitary matrix U. Then A is 

normal if and only if T is normal. 

Proof: 

         Let A be normal and AUUT *= , where U is unitary. Then 
************ TTUAAUUUUAAUAUAUAUUUAUTT ===== so, T is normal.   

Conversely, 

         If T is normal than A* A=AA*where *UTUA = .                                ■                            
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Theorem 2.5 (Spectral Theorem for Normal Matrices)   
        Let )(CnMA∈ . Then A is normal if and only if it's unitarily 

diagonalizable.           [11], [13] 

Proof  

        Let )(CnMA∈  with eigenvalues nλλλ ,...,, 21 . Then by Schur's theorem  

there exists upper triangular matrix AUUT *= ,where U is a unitary matrix. 

Since A is normal then by Lemma 2, T is normal and by Lemma 1, T is 

diagonal =D. So, A is unitarily diagonalizable. 

Conversely, let )(CnMA∈  be unitarily diagonalizable then *UDUA = , for 

some diagonal D and unitary U. Since D is diagonal then D is normal and 

hence by Lemma 2, A is normal.                                                                 ■                                                                             

By this theorem, only the normal matrices are unitarily diagonalizable. 

Example 8 

        Let 







=

1
1
i

i
A . Then 








−

−
=

1
1*

i
i

A  and 







==

20
02** AAAA . Hence,  

A is normal.  

We now show A is unitarily diagonalizable. 

The eigenvalues of A are 1+i and i−1 , with corresponding eigenvectors 

(1,1)T and T)( 1,1 − , respectively. [ see Example 12 in Chapter 1].  

The eigenvectors (1,1)T and T)( 1,1 − are orthogonal and so we have the 

unitary matrix 



















−
=

2
1

2
1

2
1

2
1

U and 







=

−

+

i

i
AUU

1

1* . So A is unitarily 

diagonalizable. 
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Corollary 1  

Let *UDUA =  be the spectral decomposition of A. Then *UUDA kk = , where k  

is any non negative integer (with A0=identity matrix) . 

proof 
4444 34444 21

timesk

k UDUUDUUDUA
−

= ))...()(( ***    

     **... UUDUDDDU k

timesk

==
−

321 .     

So, if A is normal then kAAA ,...,, 32  are all normal.                                         ■ 
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Chapter Three 

The Singular Value Decomposition 
 

This chapter is the main topic of our thesis "The Singular Value 

Decomposition (SVD)". We introduce its definition, investigate its proof of 

existence and clarify its relation to the spectral decomposition. We also 

investigate some of its properties.  

 

3.1    Definition and Computation of the SVD   

The spectral decomposition of a matrix A as shown in Chapter 2 exists only 

for normal matrices. We generalize this decomposition to any matrix using 

the SVD. 

        In this section we restrict our attention to the definition of SVD,  the 

way of computing  it and to the proof of its existence. 
 
 
Definition 3.1  
        Let )(, CnmMA∈ . A non negative real numberσ is said to be a singular value 
for A if there exists two unit length vectors mu C∈ and nv C∈ such that 

uAv σ= and vuA σ=* .      see [11, 6] 
 
Example 1 

        12 is a singular value of 







−

=
131
113

A since: 























=





































=























6
1
6

2
6

1

12

2
1
2

1

and

2
1
2

1

12

6
1
6

2
6

1

*AA  
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Theorem 3.1 ( The Singular Value Decomposition)     

        Let )(, CnmMA∈ , with nm ≥  and rank A = r. Then A can be written as  
*VUA Σ= , where )(CmMU∈  and )(CnMV∈  are unitary, )(, C

0 nmM
S

∈







=Σ , 

0),,..,,,...,,(diag 2121121 =σ=⋅⋅⋅=σ=σ>σ≥⋅⋅⋅≥σ≥σσσσσσ= +++ nrrrnrrS , 

)(, C0 nnmM −∈  and iσ 's are the square  roots of the eigenvalues of A*A .   [21, 14] 

Proof 

       Let )(, CnmMA∈  with nm ≥ . Then )(* CnMAA ∈  is Hermitian so it is 

normal. Let nλλλ ,...,, 21 be the eigenvalues of A*A, with associated 

orthonormal eigenvectors nvvv ,...,, 21 ,  i.e., niAA iii ,...,2,1* == vv λ  

Then niAAAAA iiiii ,...,2,1* === vvv λλ . So, iλ  is also an eigenvalue of  A A* 

with associated eignvector Avi .  

Now, iiiiiiiiiiiiii AAAAA λλλλ ======≤ 2
2

*****2
2 ||||)()(||||0 vvvvvvvvvv . 

So, iiAv λ=2|||| , which we denote by iσ .  

Since rank A = r = rank A*A =number of non zero eigenvalues of A*A, 
then rii ≤∀≠ ,0σ . Define riA

i

i
i ,...,2,1, ==

σ
vu . Then ui is a unit vector since 

1
||
|||||||| 2

2 ===
i

i

i

i
i

A
σ
σ

σ
vu . In addition, ruuu ,...,, 21  are orthonormal since 

0)(
****

** =====
ji

jij

ji

jji

ji

ji

j

j

i

i
ji

AAAA
σσ

λ
σσ

λ
σσσσ

vvvvvvvvuu , for ji ≠ .  

Now, 




=
≠

=====
ji
jiAA

AAA
i

ji
i

j

i

jji

i

j
**

i
j

i

i
ji σσ

λ
σ
λ

σσ
0

)( *
*

** vv
vvvv

vvvu    i,j=1,2,…,r 

since rvvv ,...,, 21  are orthonormal.  

Writing all these equations for i,j=1, 2, . . .,r in matrix form gives: 
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*
r

*
2

*
1

u
.
.

u
u

A[ ]r21 vvv ..  = 























σ

σ
σ

r

.
.

2

1

 

The orthonormal vectors ruuu ,...,, 21  form an m dimensional subspace of Cm, 

and can expand to a basis mrrr uuuuuu ,...,,,,...,, 2121 ++  of Cm. 

 Since 0=jσ  for all j > r then, 0* =ji Avu (because 0|||| 2 == jjA σv and so, 

0=jAv ) for rjri ≤> and  then 0soand ** === jjijijjj AA uuvuuv σσ , jri ≥>  

So, we have =AVU *  























*
m

*
2

*
1

u
.
.

u
u

A[ ]n21 vvv ..  = 





























σ

σ
σ

n

0

.
.

2

1









=Σ=

0
S , 

where nriS inrr ...,,1,0),,..,,,...,,(diag 121 +==σσσσσσ= + and )(, C0 nnmM −∈ .  

Defining [ ] )(..21 CMU mm ∈= uuu  and [ ] )(.. cMV n∈= n21 vvv , then  

both U and V are unitary and Σ=AVU*  , hence *VUA Σ=  as required.   ■   

 

Notes on the proof of this theorem: 

1. This decomposition can be applied to all rectangular complex 

matrices, and if m≤n we compute the SVD of A*. 

2. A and Σ  are nm× matrices. 

3. The square roots of the eigenvalues of A*A are the singular values of A.  

To see this, since *VUA Σ= , then we have Σ= UAV  in which we get 
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niA iii ,...,2,1, == uv σ . Similarly, ** Σ= VUA . Hence niA iii ,...,2,1,* =σ= vu  

and niA >= ,0*u . 

4. Rank A = r = number of nonzero singular values of A.     

5. The matrix Σ  is uniquely determined.  

6. The columns of U are orthonormal eigenvectors of AA* and are called 

left singular vectors and the columns of V are orthonormal 

eigenvectors of A*A and are called right singular vectors. 

 

Example 2 

    Let














 −
=

11
31
13

A . Then 







−

=
131
113*A  and 








=

111
111* AA . 

The eigenvalues of A*A are 10,12 and their associated eigenvectors are 
T)1,1( − and (1,1)T , respectively. Since these eigenvectors are orthogonal, 

define



















−=

2
1

2
1

2
1

2
1

V . So V is a unitary matrix whose columns are 

orthonormal eigenvectors of  A*A. 

Also , we find the eigenvalues of 















=

242
4100
2010

*AA  either by calculations or 

directly since they are the same as the eigenvalues of A*A plus 3-2=1 zero 

eigenvalues. So we have 12, 10 and 0 as simple eigenvalues of the 

symmetric matrix AA* and hence their associated  eigenvectors (1,2,1) T, 
T)0,1,2( −  and T)5,2,1( − , respectively, are orthogonal. Dividing each 

eigenvector by its length and by ordering these unit eigenvectors in a matrix 
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in decreasing order according to the associated eigenvalues we obtain the 

unitary matrix U as 























−

−
=

30
50

6
1

30
2

5
1

6
2

30
1

5
2

6
1

U . 

Now, to find Σ  we take the positive roots of the nonzero eigenvalues and 

populate them on the diagonal of Σ  in a decreasing order. 

10and12 21 =σ=σ . So, we have 

















=Σ







=

00
100
012

,
100
012S and  



















−






































−

−
=Σ= ∗

2
1

2
1

2
1

2
1

00
100
012

30
50

6
1

30
2

5
1

6
2

30
1

5
2

6
1

VUA . 

Example 3 

        Let 







=

221
221

B .  

Since ,32 nm =<= we then consider















==

22
22
11

*BA . 

Now, 







=

99
99* AA and its eigenvalues are 18 and 0 (so the singular values of 

the matrix A is 23181 ==σ and 02 =σ ), with associated orthonormal 

eigenvectors T)
2

1,
2

1(=1v and T)
2

1,
2

1( −=2v  

On the other hand, the matrix 
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=

884
884
442

*AA  

has eigenvalues 18, 0 and 0 with associated eigenvectors (1,2,2) T, T)1,0,2( −  

and T)0,1,2( −  , respectively. These eigenvectors are not orthonormal, so  

by Gram Schmidt orthonormalization process we obtain T)
3
2,

3
2,

3
1(1 =u  

T)
5
1,0,

5
2(2

−
=u and T)

53
4,

53
5,

53
2(3

−
=u as orthonormal eigenvectors of 

∗AA . 

Let V = [v1  v2] and U=[u1  u2  u3] then 



















−





































−

−
==

2
1

2
1

2
1

2
1

00
00
023

53
4

5
1

3
2

53
50

3
2

53
2

5
2

3
1

* AB  

And hence 























−

−



























−=

53
4

53
5

53
2

5
10

5
2

3
2

3
2

3
1

000
0023

2
1

2
1

2
1

2
1

B . 

 

In the following example we use Matlab to determine the SVD of A. Note 

that in Matlab, D is used instead of Σ . 
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Example 4 ( with Matlab) 

A = 

      1            4            0            0       

      2            2            1            0       

      1            1            1            0       

      1           -2           -1            1       

      0            1            1           -2 

   >> [U,D,V]=svd(A) 

U = 

-1502/2109    -420/1811     933/1723    -571/1799    -385/1814   

  -735/1537    -587/1526   -2355/4586     175/2171     539/907    

  -735/2812    -125/881     -686/1667     905/1923   -1309/1814   

   193/548     -634/1027    -763/2991    -325/538     -231/907    

  -697/2602    2969/4712   -5867/12844   -507/916     -231/1814   

 

D = 

  2635/477         0            0            0       

      0        1561/584         0            0       

      0            0        1679/880         0       

      0            0              0        914/1093   

      0            0              0             0       
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V = 

  -423/1481    -928/1409    -468/775    -1301/3756   

  -353/387       17/1756     451/1102      91/4496   

  -461/1873     202/749     -512/867      457/635    

   741/4610    -727/1035     322/933      347/577    

 

Theorem 3.2         

        Let )(, CnmMA∈ , nm ≥  with singular values },...,,{ 21 nσσσ of A. Then A*, 

A  and AT have the same singular values of A.    [11, 12] 

 

Proof 

Consider the SVD of *VUA Σ= whereΣ= 







0
S  and S = diag( 1σ , 2σ , . . . , nσ ). 

Then *** UVA Σ= , where *Σ  = [ ]0S  ,  V and U* are unitary.  So A and A* 

have the same singular values },...,,{ 21 nσσσ . 

Similarly, (since TUU and are unitary for any unitary matrix U) we show 

that A  and TA have the same singular values of A.                           ■ 

 

Theorem 3.3         

        If A is real then U and V can be chosen to be real.             [4]  

Proof 

Since A is real then AAT and TAA are symmetric and both have real 

eigenvalues. We then choose the eigenvectors of AAT and TAA to be real.   ■   
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The SVD decomposition that has been found in the examples above is the 

full SVD. Some applications require a faster and more economical SVD.  

We now consider reduced versions of the SVD: thin and compact SVD. 

 

1-  Thin SVD 

        With )(, CnmMA∈ , with m≥n , the full SVD of A is: *VUA Σ= , where 









=Σ

0
S . We can write U as [ Un Um-n]  where nmn MU ,∈ , nmmnm MU −− ∈ ,  

Noting that the elements of Um-n will multiply the zero elements of Σ , then 

write A as A=UnSV*. This version of SVD is called the thin SVD, where V is 

unitary but Un is no more unitary, but it has the property that Un
*Un=In(i.e., 

only has orthogonal columns). 

So, in the thin SVD we only need to calculate the first n columns of U, and 

obviously it is faster than the full SVD especially when m >> n. 

It is easy to see that if A is square, then the full and the thin SVD are the same.  

 

Example 5 

        Consider  














 −
=

11
31
13

A  as in Example 1 its full SVD was given by  

A= 























−

−

30
50

6
1

30
2

5
1

6
2

30
1

5
2

6
1

















00
100
012

 



















−
2
1

2
1

2
1

2
1
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Since 3-2=1 so we delete the last column of U, with 







=

100
012S  we get 

the thin SVD of A 

A =














 −

11
31
13

=























−

0
6

1
5
1

6
2

5
2

6
1










100
012



















−
2
1

2
1

2
1

2
1

 

Example 6( with Matlab): 

A = 

     1     2    -4     8 

     5     0     3     6 

     3     7     4     8 

    11    -2     0     0 

     0    -1     0     0 

>> [U,S,V]=svd(A,0) 

U = 

  -442/1061    -828/2591    -827/977     -365/4127   

  -327/656      625/4652     273/2518     405/491    

  -529/790   -27189/74770    893/1765    -216/577    

  -693/1928     621/719     -337/2939    -616/1865   

   135/6851     491/12201   -169/3312     434/1735   
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S = 

  4239/271         0            0            0       

      0        5713/515         0            0       

      0            0         239/37          0       

      0            0            0        1041/337    

V = 

-2833/4995    1214/1537    -109/14718  -1399/5998   

  -618/2005    -879/1969     383/1162   -1302/1685   

  -374/2333     237/11593   1029/1159    3617/8395   

 -1259/1686    -499/1188    -765/2383    1231/3050 

 

Note    

        *SVUA n= = [ ]nuuu ..21























nσ

σ
σ

0..0
0.0..
.0.0.
..00
0..0

2

1























*

*
2

*
1

.

.

nv

v
v

 

Where ui  and vi  , i=1,2, . . .,n . are the columns of U and V respectively . 

Then the outer product sum is defined as:  

 

A =[u1,u2, . . .,un]























*

*
22

*
11

.

.

nn v

v
v

σ

σ
σ

= *

1

*

1
i

r

i
iii

n

i
ii vuvu ∑∑

==

= σσ , since nrkk ,...,1,0 +==σ    [6] 
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2- Compact  SVD 

        If )(, CnmMA∈  with nm ≥  and rank r. Then the compact SVD of A 

is *
rrr VSUA= , where 





















σ

σ
σ

=

r

rS
.

2

1

, Ur has only the first r columns of U 

and Vr has only the first r columns of V corresponding to the non zero 

singular values of A. 

This is the second type of the reduced SVD, which is the same as the thin 

SVD if A has full rank, but if r <<n then this decomposition will be faster 

than both the full and the thin SVD.  

The compact SVD is sometimes called the economy version of the SVD. 

And it can be calculated by matlab with the order [U,S,V]=svds(A,(rank(A))). 

 

Example 7 

        Consider 














 −
=

11
31
13

A in Example 5, which has full rank =2, then the 

compact SVD is the same as the thin SVD which means that it has the same 

decomposition as in Example 5. 

 

3.2 The Singular Value Decomposition Versus the Spectral 

Decomposition 

        In this section. Let )(CnMA∈  be normal , and consider its spectral 

decomposition *UDUA =  and its SVD *WVA Σ=  with ),...,,(diag 21 nσσσ=Σ , 

),...,,(diag 21 nD λλλ=  and VU , and )(CnMW ∈ are unitary . 
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Note 

        We have shown that if A is real then V and W can be chosen to be real. 

But even if A is real then the spectral decomposition may not be real. 

 

But what is the relation between the spectral decomposition and the SVD, 

and when are they equal? 

 

Theorem 3.4 

        If )(CnMA∈  is normal . Then its SVD is given by *)(|| EUDUA =  where 

|D| = diag (| 1λ |, |
2λ |, . . . , | nλ | ) , E = diag (ei 1ϕ , ei 2ϕ , . . . , ei nϕ ) where 

),(,|| ππϕλλ ϕ −∈= k
i

kk
ke , are the eigenvalues of A.                [11] 

 Proof 

Since A is normal then its spectral decomposition is *UDUA = . For each 

eigenvalue λ of A, ),(,|| ππϕλλ ϕ −∈= k
i

kk
ke .  

So D = diag(| 1λ | ei 1ϕ , |
2λ | ei 2ϕ , . . . , | nλ | ei nϕ ) and hence 

D = diag(| 1λ |, |
2λ |, . . . , | nλ |) diag (ei 1ϕ , ei 2ϕ , . . . , ei nϕ ). 

Let  |D| = diag (| 1λ |, |
2λ |, . . . , | nλ | ) and  E = diag (ei 1ϕ , ei 2ϕ , . . . , ei nϕ ). 

Then ** )(|||| EUDUEUDUA ==  is the SVD of A with || D=Σ , EUV =  and the 

columns of U are orthonormal eigenvectors of A.                                     ■ 

Remark 

       If )(CnMA∈  is normal then we have niii ,...,2,1|,| == λσ . 
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Example 8 

        Consider the matrix 







=

1
1
i

i
A of Example 8 in Chapter 2.        

We know that 







=

1
1
i

i
A  is normal and its spectral decomposition is: 



















−
=

2
1

2
1

2
1

2
1

A 







−

+
i

i
10

01



















−
2

1
2

1
2

1
2

1

. 

Since )2,2()1,1(),( 44
21

ππ

λλ
ii

eeii
−

=−+= , then )2,2(diag=D and 

))1(
2

1),1(
2

1(),( 44 iieeE
ii

−+==
−

diagdiag
ππ

. 

So,  

*)(|| EUDUA = = 



















−
2

1
2

1
2

1
2

1










20
02

*

)1(
2

10

0)1(
2

1

2
1

2
1

2
1

2
1





































+

−



















− i

i
 

















+−−

++




























−
=

2
1

2
1

2
1

2
1

20
02

2
1

2
1

2
1

2
1

ii

ii

= *VUΣ is its SVD.   

 

Note     

       If we define sign




<−
≥

==
0if1
0if1

)sgn()(
i

i
ii λ

λ
λλ , and if in addition of 

normal,  A is Hermitian then all its eigenvalues are real so, EE =  and hence 

ei kϕ = 1± . Hence, E = diag( sgn( 1λ ) , sgn(
2λ ) , . . . , sgn( nλ ) ) where sgn(0)=1 

and ** )(|||| UEDUEUDUA == is the singular value decomposition of the 

Hermitian matrix A. 
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        If A is also positive definite then all the eigenvalues are real and 

positive and E=I  and in this case the spectral decomposition and the SVD 

are the same. 

 

Example 9 

        Find the SVD of  

















−
−−

−
=

3     2   3   
2  2     1

3     1    5   
A . 

Solution: 

The eigenvalues of A are 287/4705,   687/329 and  3211/409 are all positive 

real numbers then the matrix is positive definite so the spectral 

decomposition and the SVD are the same. 

The  spectral decomposition of A is *UDUA = where  

















 580/787     1247/3802  539/912− 
   539/912      580/787−  1247/3802 =

  1247/3802-    539/912-    580/787-
U and 

















287/4705         0            0    
      0         687/329         0    =
      0             0         3211/409  

D . 

 

Remark 

        If *VUA Σ= is the SVD of A then:  

          
******

******

VVVUUVAA
UUUVVUAA

ΣΣ=ΣΣ=

ΣΣ=ΣΣ=  

are the spectral decomposition of AA* and A*A, respectively. 
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3.3   Matrix Properties via SVD 

        The power of SVD comes from all the information that can be gleaned 

from it. In this section we show these information.  

 

        For the next theorems (see [1]), let )(, CnmMA∈  with m≥n , rank A=r 

with singular values nσσσ ,...,, 21 . 

 

Theorem 3.5   

Given the SVD of A as *VUA Σ=   then: 

1. The singular vectors ruuu ,...,, 21  form an orthonormal basis for Range A . 

2. The singular vectors nrr vvv ,...,, 21 ++  form an orthonormal basis for Null A 

3. The singular vectors rvvv ,...,, 21  form an orthonormal basis for Range A*. 

4. The singular vectors mrr uuu ,...,, 21 ++  form an orthonormal basis for Null A*.  

Proof 

By Definition 3.1 write *VUA Σ= as niA iii ,...,2,1, =σ= uv . 

(1)  If ii 0≠σ , then i
i

iA uv
=

σ
 and so ui is in the range of A. Since rank A = r, 

then there exist r non zero singular values and associated orthonormal 

eigenvectors ruuu ,...,, 21  that span Range(A). Since they are orthonormal then 

they are linearly independent, so, they form an orthonormal basis of the 

range of A. 

 (2)  For nri ...,,1+= , we have ,0=σi , then Avi=0, nri ...,,1+= and vi is in the 

null space of A. Since the vi's are orthonormal then they are linearly 
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independent; since there exists n-r  zero singular values, where r is the rank 

of A, then nrr vvv ,...,, 21 ++ form the basis of the null space of A.  

To prove 3 and 4, we use iiiA vu σ=* and the same idea as above.     ■ 

 

Example 10 

Let 
















−
−−=
2174
6402

7351
A , compute the four fundamental subspaces associated 

with A. 

Solution: 

The SVD of A is *VUA Σ=  where 

















   454/979      120/163−     452/917−  
   548/909−    1175/1754−   660/1523   =
   509/784-       283/2942          421/558-  

U   

 
















=Σ

      0            0                 0                  0      
      0            0           4772/599           0      
      0            0                 0         3571/295  

 

 



















=

  812/1485       825/1096-       528/1549-     1009/7478  
  273/8597       817/2237           382/891-        379/459   

   344/851         166/357      3119/5318-     531/1010-  
  1153/1574-    607/2097-        287/481-      443/2884-  

*V  

since r(A)=2, we  have: 

1- The first two columns of U form an orthonormal basis for range A. so 

 range A=span
































    120/163−
  1175/1754−

















  452/917−  
     660/1523   

  283/2942    
,

        421/558-  
.  

2- The last two columns of V form an orthonormal basis for null A. so 
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Null A =span

























































  812/1485   
  825/1096-  
  528/1549-  
  1009/7478  

,

   273/8597   
     817/2237   

     382/891-  
      379/459 

 

3- The first two columns of V form an orthonormal basis for range A*. so 

range A*=span

























































344/851     
       166/357     

    3119/5318-   
 531/1010-   

,

1153/1574-
    607/2097- 

      287/481- 
     443/2884- 

. 

4- The last column of V forms an orthonormal basis for null A*. so 

null A*= span
































   454/979
   548/909−
   - 509/784

. 

 

Theorem 3.6   

If )(CnMA∈  with non zero singular values and with SVD *VUA Σ= then 1−A  

exists and *11 UVA −− Σ= ∑= *1
ii

i

uv
σ

, where 1−Σ  = diag )1,...,1,1(
11 nσσσ

. [8, 12]  ■                                        

So, the singular values of 1−A are the reciprocal of the singular values of A.   

 

Theorem 3.7 

Let *VUA Σ=  then 

1-  12|||||| σ=A   

2-  
n

A
σ
1|||||| 2

1 =−  where A is square and non singular. 

3-  22
2

2
1|||||| nFA σσσ +++= L                   

Proof 

1- By definition of spectral norm |||A|||2 = max { λλ , is an eigenvalues of 

AA*}.  So 12|||||| σ=A . 
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2- By theorem 3.6, write *11 UVA −− Σ= , then since the spectral norm is unitary 
invariant we have 

n

UVA
σ
1|||||||||||||||||| 2

1
2

*1
2

1 =Σ=Σ= −−− .  

3- 22
2

2
1

* |||||||||||||||||| nFFF VUA σσσ +++=Σ=Σ= L . (Since the Frobenius norm 

is unitary invariant).                                                                           [22]     ■ 

 

Theorem 3.8        

The condition number of a non zero matrix A with respect to the spectral 

norm is 
n

A
σ
σ 1=                           [9] 

Proof 

If A is singular then 0=nσ and the condition number is ∞ , 

So suppose A is invertible then condition number is 
n

AA
σ
σ 1

2
1

2 |||||||||||| =−      ■ 

 

Theorem 3.9 

If )(CnMA∈ then ∏
=

=
n

i
iA

1

|det| σ             [ 12] 

Proof 

Let *VUA Σ=  be its SVD where )(CnM∈Σ , then 

 ∏
=

=Σ=Σ=Σ=Σ=
n

i
iVUVUA

1

** )det(|)det(||))))(det())(det((det(||)det(||)det(| σ  

Since the determinant of a unitary matrix is 1± and Σ  is diagonal.                 ■ 

 

Theorem 3.10     

For any )(CnMA∈  and unitary matrix W, the matrices A, AW and WA have 

the same singular values.                 [11, 12] 

Proof 
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Suppose *VUWA Σ=  is the SVD of WA. Then *** VHVUWA Σ=Σ= , where 

H=W*U is unitary. So, A and WA have the same singular values. 

Similarly, A and AW have the same singular values.                                      ■ 

 

Theorem 3.11 

A matrix )(CnMA∈ is unitary if and only if all its singular values are equal to 

one. 

Proof 

        Suppose A is unitary then .IAA =∗  The singular values of A are the 

positive square roots of the eigenvalues of IAA =∗  which are all equal to 1.  

Conversely, suppose that the singular values of A are all equal to 1, then 

 A = UIV* is the SVD of A, where U and V  are unitary. Hence A=UV*  and  

A is unitary             ■ 

 

3.4    Geometric Interpretation   

        The SVD provides us with a nice geometric interpretation of the action 

of a matrix; the image of the unit sphere under any m-by-n matrix is a 

hyperellipse (m-dimentional generalization of an ellipse). 

 

        One way to understand this is to consider the unit sphere in Rn. So,  

Suppose x lies on this unit sphere in Rn. Then x can be written as 

nnxxx vvvx +⋅⋅⋅++= 221 , with 1
1

2 =∑
=

n

i
ix  and where vi's are orthonormal 

basis in Rn. Let ∗Σ= VUA be the SVD of A. Then the image of x under A is  
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∑∑∑∑
====

=σ=σ=σ=
r

i
ii

r

i
iii

n

i
iiiiiii

n

i
iii yxxxA

111

*

1

* uuvvuvvux , where  iii xy σ= and  

r is the rank of A. 

So, the image of a unit sphere is rryyy uuu +⋅⋅⋅++ 2211 , where 

1
1

2
2

2

2
2

2
2

2
1

2
1 ≤=+⋅⋅⋅++ ∑

r

i
r

r x
yyy
σσσ

 

If A has full column rank, then n=r and so the inequality is actually an 

equality; otherwise, some of the xi are missing on the right, and the sum can 

be anything from 0 to 1. This shows that A maps the unit sphere of Rn to a k-

dimensional ellipsoid with semi-axes in the directions ui and with the 

magnitudes iσ . 

 

Example 11 

Consider a matrix 3R∈A  with rank 2, this matrix will affect the unit sphere 

in R3 as  figure (1) illustrates. 

 

 

 

                                           

                                               Figure (1) 
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Chapter Four 

Applications of the Singular Value Decomposition 

 

In mathematics, and particularly in linear algebra, the inverse of a matrix 

takes a big area in solving a set of linear equations. But since the inverse is 

not defined except for some square matrices, this fact pushed Moore (1912) 

and Penrose (1955) to establish -independently- a generalization of the 

inverse to rectangular matrices.                  

        In this chapter we describe the Moore-Penrose Pseudo inverse, how to 

compute it, study some of its properties and more important how to use it in 

solving a system of linear equations or gives a least square solution               

( whether it is overdetermined or underdetermined system ). 

  

4.1   Moore-Penrose Pseudoinverse  

        This is the first application of the SVD and it is defined as below. 

 Definition  4.1    

 Let )(, CnmMA∈ . The Moore-Penrose pseudoinverse of A is defined as the 

matrix )(, CmnMA ∈+  satisfying the following four criteria: 

1. AAAA =+  

2. +++ = AAAA  

3. )()( * ++ = AAAA  

4. )()( * AAAA ++ =  
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Remark 

        If A=[a] is a 11×  complex number then A+ is defined by: 







=

≠=+

0,0

0,1

aif

aif
aA  

 

Example 1 

        Let 







=

11
11

A  and 
















=

4
1

4
1

4
1

4
1

B . Then B is the Moore-Penrose 

pseudoinverse of A since it satisfies four criteria in Definition 4.1:  

















=
























=

2
1

2
1

2
1

2
1

4
1

4
1

4
1

4
1

11
11

AB  

1-  AAAB =







=

11
11

)(  

2- BABB =
















=

4
1

4
1

4
1

4
1

)(  

3- 
















==∗

2
1

2
1

2
1

2
1

)( ABAB and  

4- .

2
1

2
1

2
1

2
1

)(
















==∗ BABA  

So, B = A+. 

 

Before proving the existence of A+ we prove a remark and a lemma. 
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Remark 
        If [ ]ijaA=  and [ ]ijbB = are diagonal matrices and if C=AB, then C is 

diagonal with ijijij bac = . 

Proof 

.)(
1

∑
=

==
n

k
kjikijij baABc   

In the summation, if ik ≠ , then 0=ika and if jk ≠ , then 0=kjb . Hence, 

jjijijiiij babac += .  If ,ji = then iiiiij bac = . If ji ≠ , then 0== ijij ba and 

hence C=AB is diagonal and we have ijijij bac = .    ■                   
 

Lemma 1          

        If D is a diagonal matrix, then its pseudoinverse D+ is given by  





≠
=

=
+

+

ji
jiD

D ij
ij 0

)(                    [7] 

Proof  

1. DDDDDDDDDDDDDDDDD ijijijijijijijijijij =⇒==== +++++ )()(   

2. ++++++++++ =⇒=== DDDDDDDDDDDDDD ijijijijijijij )()(  

3. 
++

+++++++

=⇒

======

DDDD

DDDDDDDDDDDDDD ijijijjijijijijijijiij

*

*

)(

)()()()(  

4. Similar to 3                                                                                       ■ 

 

Theorem 4.1       

If )(, CnmMA∈ , then the Moore-Penrose pseudoinverse of A exists and is 

unique.           [3 & 14] 

Proof 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


  

 

66

Let )(, CnmMA∈  with nm ≥ .Use the thin SVD to write A =UnSV*, where V is 

unitary, Un
*Un=In and ),...,(diag 21 nS σσσ= . 

Define *
nUVSB += . Then BA =+  shown below: 

1. ASVUSVSSUSVUUVSSVUABA nnnnn ==== ++ *****  

2. BUVSUSSVSUVSSVUUVSBAB nnnn ==== +++++ *****  

3. ******** )()()()( nnnnnn USSUUSSUUVSSVUAB +++ ===  

 ABUVSSVUUSSU nnnn === ++ **)(  

4. ******** )()()()( VSSVSVVSSVUUVSBA nn
+++ ===    

  BASVUUVSVSSV nn === ++ ***)(  

So, *
nUVSA ++ =  satisfies pseudoinverse conditions.  

We now show the uniqueness. 

Suppose C )(, CmnM∈  be another pseudoinverse of A then: 

1. ABA=A                               1- ACA=A 

2. BAB=B                               2- CAC=C 

3. (AB)*=AB                           3- (AC)*=AC 

4. (BA)*= BA                          4- (CA)*=CA 

As a first step we show AB=AC 

AB=(AB)*=B*A*= B*( ACA)*= B* A*C*A*=(AB)* (AC)*= ABAC=AC 

In the same way we can show that BA=CA 

Now, B=BAB=BAC=CAC=C.                                                                ■ 
 

This theorem shows how to compute the Moore Penrose psuedoinvers of A, 

i.e., +++ = nUVSA , where *SVUA n= . 
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Note  

 The pseudoinverse is a generalization of the inverse, i.e., if the matrix is 

invertible then A+ = A-1.        [18] 

 

Lemma 2  

Let )(, CnmMA∈ . Then )()()()(,)()( ** ++++++ === AAandAAAA TT .  [3, 21] 

Proof 

We want to show that *)( +A is the pseudoinverse of A*. So, we examine the 

four conditions: 

1. ***** )()( AAAAAAA == ++  

2. ***** )()()()( +++++ == AAAAAAA  

3. ****** )()())(( AAAAAAAA ++++ ===  

4. ****** )()())(( ++++ === AAAAAAAA  .                                                    

In the same way we can prove that: 
TT AA )()( ++ =      and       )()( ++ = AA                                                          ■  

According to this lemma, we can state and prove the following theorem. 

 

Theorem 4.2 (Identity Transformation) 

1. **)( AAAA +++ =  

2. +++ = AAAA ** )(  

3. AAAA **)( +=  

4. ** )( += AAAA  

5. += AAAA **  

6. ** AAAA +=  
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Proof 

1. +++++++ === AAAAAAAAAA *** )()(  

2.  +++++++ === AAAAAAAAAA *** )()(  

3. AAAAAAAAAA === +++ *** )()(  

4. AAAAAAAAAA === +++ *** )()(  

5. This is the conjugate transpose of  3. 

6. This is the conjugate transpose of  4.                                                    ■ 

We now state: 

Theorem 4.3     

Let )(, CnmMA∈  and C∈k be nonzero. Then 

1- ++ = A
k

kA 1)( . 

2- AA =++ )( .                                                                                         [4] 

To prove ++ = A
k

kA 1)( ,  one can show that +A
k
1 satisfies the pseudoinverse 

conditions of kA. To prove AA =++ )( , one also shows that A satisfies the 

pseudoinverse conditions of .+A  

 

Lemma 2 and Theorem 4.3 give us some properties of A+  which are true for 
1−A , but it is not true that all properties of the inverse also hold for the 

psuedoinverse. For example +++ ≠ ABAB)(  in general.  

 

Example 2 

        Let [ ]10=A and 







=

1
1

B . Then 







=+

1
0

A  and 



=+

2
1

2
1B . 
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So, [ ] 11)( == ++AB , whereas 
2
1

1
0

2
1

2
1

=









=++ AB . 

 

But, when does +++ = ABAB)(  hold? 

There are more than one case in which +++ = ABAB)( holds.  

 

Theorem 4.4:       

If +)( * AA is the psuedoinverse of AA* , then ** )( AAAA ++ = .  

Similarly, if +)( *AA is the psuedoinverse of *AA , then ++ = )( ** AAAA .     [3] 

To prove this theorem we have to prove some lemma: 

 

Lemma 3 

        Let )(, CnmMA∈  such that 0* =AA . Then 0=A . 

Proof 

Fix nj ...,,1= . Then, ∑ ∑∑
= ==

====
m

i

m

i
ijijijij

m

i
jijj aaaaaAA

1 1

2

1

** 0||)(  and so,  

mia ij ,...,,0|| 1== . Hence, mia ij ,...,1,0 == .  Since j is chosen arbitrary, then 

this is true for all j, hence njmia ij ...,,,,...,1,0 1=== . Thus A=0.      ■ 

 

Lemma 4 

        If CABAthenCAABAA == **  ,and if ACABACAABA =⇒= **  

Proof: 

If B=C then BA=CA. So, suppose  .CB ≠  Then  

0)()(0)(0 ******* =−−⇒=−⇒=−⇒= CBACABAACABACAABAACAABAA  

CABACABACABACABA =⇒=−⇒=−− 0)3lemma(by0))(( * .                       ■ 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


  

 

70

 

Proof of Theorem 4.4 

To prove this theorem we have to show that ** )( AAAC += is the 

pseudoinverse of A by showing the four criteria: 

Since +)( * AA is the psuedoinverse of AA* , then:  

1-  AAAAAAAA **** )())(( =+ . Thus by Lemma 4, .))(( ** AAAAAA =+  

.,So. AACA=  

2- +++ = )())(()( **** AAAAAAAA . Multiplying the equation by A* from the right 

side gives ****** )())(())(( AAAAAAAAAA +++ = . So, CAC=C. 

3-  ******* ))(())(()( AAAAAAAAAC ++ == ACAAAA == + ** )(   

4- CAAAAAAAAAAAAACA ==== +++ )()())()(())(()( *********   

So, C satisfies the the psuedoinverse conditions. So, C=A+       ■ 

 

Theorem 4.5 

        Let )(, CkmMA∈  and )(, CnkMB∈ . 

1-  If A has orthonormal columns (A*A=Ik), then +++ = ABAB)( . 

2-  If B has orthonormal rows (BB* =Ik) then +++ = ABAB)( . 

 

Proof 

We only prove the first case. By, Theorem 4.4 we have 
********** )()()())(()( ABABBBABABABABABABAB +++++ ==== (applying 

Theorem 4.4 on B).  

Now, since A*A=Ik , then *** )( AAAAA == ++ . Hence +++ = ABAB)( .             ■ 
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Note 

If A has linearly independent columns, then 1)( −∗ AA exists and then 

*1* )( AAAA −+ = . If A has linearly independent rows then 1** )( −+ = AAAA  . 

 

According to this theorem the pseudoinverse of any vector v can be written 

as






=

≠== ++

00

0)( *

*

**

v

v
vv

v
vvvv

if

if . 

 

 

4.2    Computing the Moore-Penrose Pseudoinverse 

In proving Theorem 4.1, we gave a method for finding the pseudoinverse of 

any )(, CnmMA∈ , and in this section we give some numerical examples to 

illustrate. 

 

Note: the steps of finding the pseudoinverse is summarized in two steps: 

1-  if A has inverse then A+ = A-1 

2-  if A is not invertible write the thin SVD of *SVUA n= ,then *
nUVSA ++ =    

 

Example 3 

Let 















=

000
020
003

iA  which is a singular diagonal matrix, so by Lemma 1 of 

Section 4.1, 
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000

0
2

0

00
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iA  

Example 4 

Let 







=

11
11

A . It is obvious that A is singular and positive semi definite.  

Since A is positive semi definite then its SVD and spectral decomposition 

are the same. 









==

22
22** AAAA  

The eigenvalues of A are 2 and 0 corresponding to eigenvectors T)( 1,1 and 
T)( 1,1 − , respectively. We now have: 

VU =



















−
=

2
1

2
1

2
1

2
1

and 







=

0

2
S . 

 

Hence 






































−−
2

1

2

1
2

1

2

1

00
02

2

1

2

1
2

1

2

1

 is the SVD of A. 

 

So, 
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−































−
=+

4
1

4
1

4
1

4
1

2
1

2
1

2
1

2
1

00

0
2
1

2
1

2
1

2
1

2
1

A . 
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Example 5 

Let























−

−
=

021
43

200
201
432

ii
i

i

A . 

 

Then 















−−

+
=

25169
1629182
918215

*

i
ii

i
AA  

The eigenvalues of A*A are 10384/195, 2910/217 and 4600/1967.   

The normalized eigenvectors corresponding to these eigenvalues are 

 

















































−−

−

−

−−

−

−−

−

−

29352121171127

181310802864293

640503

&

2079365680551

313111103853490

33761395

486167868471

14871040223081351

26721229

,
i//  

i//   

             /

i// 

i//  

        /

i/     /  

i/  +  /

/

These normalized eigenvectors will be the columns of the unitary matrix V.  

 

To obtain the unitary matrix U, consider the normalized eigenvectors of  























−−−−
+−−

−−
+−−

=

5380162
3826222

02448
1456
62228629

*

ii
iii

ii
ii

iii

AA . 

The eigenvalues of AA* are  10384/195,  2910/217,  4600/1967 and zero of 

multiplicity 2. The normalized eigenvectors corresponding to the nonzero 

eigenvalues are 
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−−

−−

−

−

−

−

−

−

−−

−−

−

−

−

−−

−−

 i//

i/  /

  i/   /

    i/ /

     i/ +  /

i/    /   

 i/ +  /  

i/  /   

 i/     /  

i/    /

 i/   +   /

    i/    /  

    i/   /  

i/ / 

  i/ /

222717352407915

102045572269500

19672795621531

562153143081603

4166491616231

529910262101383

367918564507410

228010092649254

2649254641356

59375201225452

18523553554283

7394789869374

499674311489108

114891083326285

514922549523521

&,

 

 These normalized eigenvectors will be the columns of the matrix 3U . 

So, *
3SVUA=  is the thin SVD of A where 

 

 















=

 1072/701        0            0      

      0        4171/1139        0      

      0               0         3853/528

S and 















=+

701/1072           0                 0      

           0           1139/4171            0      

               0                  0           528/3853 
S . 

Thus, the Moore Penrose psuedoinverse is *
3UVSA ++ =  

 

















−−−

−−−−

−−−−−−+

 

 

 835621670638356283512835107835161670187167835124

835538352698356616718835188357816715835438352183514

83530616703691672183584835278353283532334838351183564

i//     i/+/       i/   i//      +i// 

 i/+/   i/ +/    i//    i//   i/+/

  i//   i/  /   i// i//  i/ /

 

The Moore Penrose pseudoinverse of a matrix )(, CnmMA∈  also can be 

computed using Matlab with the function pinv(A). 

Example 6 

A = 

        0 + 2.0000i        5.0000               0 + 4.0000i           0000.3−            

            2.0000                 0                       0                      0000.1−            

        0 i0000.2−         3.0000                  4.0000                  0 i0000.5+  

>> pinv(A)  

  i0162.0051.0 +−        i0185.05000.0 +    i0467.00134.0 −  
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    i0887.1553.0 +         i0610.02440.0 −    i1479.00647.0 −  

  i0564.00841.0 −−    i2957.01460.0 +−    i0841.01081.0 +  

  i0323.00102.0 +−      i0370.00000.0 +    i0933.00268.0 −  

 

Theorem 4.6       [4] 

Let )(, CnmMA∈ , then r(A)=r(A+). 

Proof 

The proof follows directly from the fact that *
nUVSA ++ =  

)()()()()( * ArSrSrUVSrAr n ==== +++    

 

Theorem 4.7 

Let )(, CnmMA∈ , with a zero last column. Then A+ is the pseudoinverse of the 

first 1−n  columns with a zero last row.  

Proof 

Write [ ]0BA =  , where )(1, C−∈ nmMB  and 0 is an m-dimensional zero 

column. 

We show that 







=

+

+
+

0
B

A , where B+ is the pseudoinverse of B and 0+ is an n-

dimensional zero row.  

Let 







=

+

+

0
B

C . We show that C satisfies the pseudoinverse conditions of A. 

1- [ ] [ ] [ ][ ] [ ] [ ] ABBBBBBBB
B

BACA ====







= ++

+

+

0000
0

0  

2- [ ] C
BBBBBBBB

B
B

CAC =







=








=
















=
















=

+

+

+

++

+

+

++

+

+

+

+

+

000000
0

0
0

0
 

3- [ ] [ ]( ) [ ] AC
B

BBBBB
B

BAC =







===


















=

+

+
++

+

+

0
0

0
0)( *

*

*  
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4- [ ] 







=


















=


















=

++

+

++

+

+

+

000
0)(

000
0

0
0

)(
***

* BBBB
B

B
CA   

  [ ] CAB
BBB

=







=








=

+

+

++

+

0
0000

0
 

So, C=A+. 

 

Note   

The same idea can be applied to )(, CnmMA∈ with last zero row. 

Example 7 

Find the Moore Penrose pseudoinverse of  

















−
−−

−
=

0145
0321
0311

A  

 

Write















=

0
0
0

BA where
















−
−−

−
=

145
321

311
B    

 

Then  
















==

−−

−−−+

    1/70        9/70         1/5     

    3/35         8/35       1/5    

    9/70         11/70         1/5     
1BB  

so  



















=
−−

−−+

                                   

    /        /         /  

    /         /        / 

    /         /          /

A

000

70170951

35335851

709701151  

. 

Example 8 
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Find the Moore Penrose pseudo inverse of  
















= −

    

   

000

000010000200002

000010000100003

                                                             

          .           .                .   

i.  i         .                   .

A  

By Matlab the Moore Penrose pseudoinverse of A is 

  
















=

−−

−−

−
+

      

  

011110148101111011110

011110351900556022220

016670074101111027780

    i       .  .i   . +  .  

          i       . +  .i  .  .   

             i     . +  .i   . . 

A  

 

Corollary 1 

Let )(, CnmMA∈  , with a jth zero column, then the pseudoinverse is just the  

pseudoinverse of the others 1−n columns with a jth zero row . 

Proof 

Let















= +− njj aaaaA ........ 111 0  where each m

k Ca ∈  and 0 is an m-

dimensional zero column. 

Post multiply A by the permutation matrix P that permutes cyclically the jth 

through the nth columns, in which the zero column (the jth) is transformed 

to the last column, i.e.,  
















= +− 0njj aaaaAP ........ 111 . 

Then by Theorem 4.7, we have:  
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=















=

+

+

+−

+

+−
+

0

0 njj
njj

aaaaaaaaAP ................)( 111
111

By Theorem 4.5 and since the permutation matrix has orthonormal rows ; we 

have +−+++ == APAPAP 1)(  















=

























=



































===

−

+
−

+
−

+

+

+−++−+

1

1

1

1

1

1111

.

.

.

.

.

........)(

n

j

j

n

njj

b

b

b

b

b

b

PaaaaPAPPAPPA 0

0
0

Note  

The same idea can be applied to )(, CnmMA∈ with a jth zero row. 

Example 9 

        Let 















=

34
00
57

A  

Delete the second row, we then have 









=

34
57

B .  

B has inverse 







−

−
=−

74
531B . 

So, 







−

−
=+

704
503

A  

 

Remark 
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Let )(, CnmMA∈ with some zero rows or columns, then we can delete them 

and find the psuedoinverse of the resulting matrix then replace the zero rows 

with zero columns and vise versa and the consequential matrix will be the 

pseudoinverse of A. 

 

Example 10 

Find the pseudoinverse of A where 


















−

=

0601
0000
0000
0203

A   

Solution: 

By corollary 1of Theorem 4.7, we can delete the second and forth columns 

and the second and third rows. 

The resulting matrix is 







− 61

23  which is invertible and its inverse is 















 −

20
3

20
1

10
1

10
3

 

Now  





















 −

=+

0000
20
300

20
1

0000
10

100
10
3

A  

one can examine the four criteria of the pseudoinverse. 

Example 11 

A = 

   3.0000                0                    2.0000                0             6.0000           

      0                      0                        0                     0                0           
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  0000.1−                 0                  i0000.20 +              0             3.0000           

  i0000.10 +                0                  i0000.10 −              0             3.0000           

>> pinv(A) 

   0.1902 + 0.0878i   0.0000 + 0.0000i  -0.1854 + 0.0683i  -0.1951 - 0.2439i 

  -0.0000 - 0.0000i  -0.0000 - 0.0000i  -0.0000 - 0.0000i   0.0000 + 0.0000i 

   0.0927 - 0.0341i  -0.0000 - 0.0000i  -0.0390 - 0.2488i  -0.1463 + 0.3171i 

        0                                0                                 0                  0           

   0.0407 - 0.0325i  -0.0000 + 0.0000i   0.1057 + 0.0488i   0.1463 + 0.0163i 

 

4.3  Linear Least Squares Problem  

        Let )(, CnmMA∈ . While solving the system Ax=b we have three cases : 

1.  Number of equations = the number of unknowns. 

2. Overdetermined system: number of equations > than the number of    

     unknowns.  

3.  Underdetermined system: number of equations < than the number of  

     unknowns. 

The solution of the above system exists only if b lies on the column space of 

A. If not, we can find a vector x that makes Ax as close as possible to b. 

This occurs sometimes if we have a matrix )(, CnmMA∈ , with nm ≥  and the 

solution of the system Ax=b doesn't exist. So we can find what is called the 

least squares solution. 

 

 

Definition 4.2        

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


  

 

81

        The optimal solution x~  of the system bx =A , where )(, CnmMA∈  with 

nm ≥  which satisfies 2||~|| xb A− is minimized overall vectors nCx∈ , is 

called the linear least squares solution.     [16]  

The least squares problem can be solved using the SVD. 

 

Theorem 4.8       

        Let the matrix )(, CnmMA∈ , with nm ≥  has full column rank and its thin 

SVD *SVUA n= . Then the least squares problem has the unique solution 
*1~
nUVS−=x .           [5, 6] 

Proof: 

By the SVD write A as [ ] **

0
V

S
UUVUA nmn 








=Σ= − , where 

),...,(diag 21 nS σσσ=  and 021 >≥⋅⋅⋅≥≥ nσσσ . 

 Using the fact that the norm is invariant under unitary transformations, we 

have: 

 
2
2

||*||2
2

||**||2
2

||
*

**
||2

2
||

0

*

*

*
||

2
2

||*
0

*||2
2

||*
0

||2
2

||*||2
2

||*
0

||2
2

||||

bxb
b

xbxb

xbxbxbxb

nm
USV

n
U

nm
U

SV
n

USV

nm
U

n
U

V
S

UV
S

UUV
S

UA

−
+−=

−

−
=−

−

=

−=−=−=−






















































 

The vector x~  that minimize 2
2|||| xAb − is x~  that sets the first sum to zero, i.e., 

,0~* =− ∗xb SVU n hence which equal .~ *1 bbx +− == AUVS n  

Since )1,...,1,1(diag
21

1

n

S
σσσ

=− then x~  can be written as ∑
=

=
n

i
i

i

i v
bu

1

*
~

σ
x             [9] 

Note that if m=n then .~ 1bx −= A  

 Example 12 

Find the least squares solution to the following system of linear equations: 
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−
=
















=

5
0
1

,
10
01
11

bA . 

The least square solution is the vector bx += A . Using SVD to find A+ give 

us 







=+

     2/3          1/3-         1/3  
     1/3-         2/3          1/3  

A  

So, 







−

== +

3
2

bx A  

But what if the rank is deficient? 

 

Theorem 4.9 

Let )(, CnmMA∈ , with nm ≥  and rank A =r <n then there is a set of (n-r) 

vectors that minimize 2
2|||| xb A− . 

Proof 

Since rank A= r then there are (n-r) vectors that spans the null space of A 

and let z be one of them. Then Az=0, So if x~  minimizes 2
2|||| xb A− then so 

does x~ +  z.                    ■ 

        

         The  above theorem shows that if A is rank deficient, then the least 

squares solution is not even unique, and the theorem below explains what 

kind of solution is it. 

 

 

 

Definition 4.3         
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Let mCMA nm Cb ∈∈ ),(, and let { }min||:|| 2 =−∈= xx b ACL n . A minimum 

norm solution is any L∈x~ such that 
2

~x  is minimum. 

Theorem 4.10 

Let )(, CnmMA∈ , nm ≥ , *VUA Σ= as described before and r(A) =r <n. Then the 

minimum norm solution of the least square solutions occurs at 

bx *1~
rrr USV −= , where Vr and Ur contain the first r-columns of V and U,  

respectively and ),...,,(diag 21 rrS σσσ= . 

Proof 

A can be written as 
*

*

*
*

00
0

][ rrr
rn

rr
rmr VSU

V
VS

UUVUA =















=Σ=

−
− . 

Then the error norm can now be written  

[ ] .
00
0

||||||error||
2

2
*

*
2
2

2
2 bbx x −
















==

−
−−

rn

rr
rmr V

VS
UUA  

Putting  

















=

−
==

2y
1y

x

x
xy *

*
*

rnV
rV

V , 
















−
=

b

b

2b
1b

*

*

rnU
rU  

and since the norm is unitarily invariant, then the error becomes 
2

2

2

21

2

2

2
2 00

0||error|| 211
2

1

2

1 bby
b
b

y
y

+−=− 















= S
Sr . 

Thus, we can minimize the error if we choose 1b1
1

−= rSy and so 











 −

==
2

1

2

1

y
b

y
y

y
1

rS , 

where y2 is arbitrary(it is in the null space since the columns of Vn-r span the 

null space of A), so the solution of the least squares is not unique so we  now 

have: 
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2

22
2

21
2

2

2

2
~ yyyx +== . 

Therefore, we can obtain the solution of the minimum norm by letting y2 = 0; 

in this case 111
*11~ bbyx rrrrrr USVSVV −=−== .                                                ■ 

Example 13 

        Let  





























−
=

−

−
=

2
0
2

,
31
00
31

bA  

Note that b lies on the column space of A, so it has a solution but it is not 

unique since r(A) =1. One of the solutions is (5,1)T another is (11,3)T but the 

solution with the minimum norm is bA+=x  































=

−
=

−
−

−

  / 

  /  

.               .

.             .  

53

51

2
0
2

1500150

0500050~x  

Example 14 

        Let  




























=

−

−
=

1
0
2

,
31
00
31

bA  

b doesn't lie in the column space of A, so this system doesn't have a solution 

but we have 







=

−
= +

    /    

    /      
A

203

201~ bx  as the least squares solution. 

The above two theorems illustrate how to solve an overdetermined system of 

linear equations using SVD, which can also solve an undetermined system 

of linear equations.  
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For the next theorem, let )(, CnmMA∈ , where m<n and suppose A have full 

row rank and let *VUA Σ= be its SVD as described before. Define 

{ }bxx =∈= AC nL :
~ . We now have 
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Theorem 4.11 

Let A and L~ be as described above. 

(a) The system bx =A  always has a solution but it is not unique. 

(b) Of all solutions to bx =A , the solution that has minimum norm is 

unique and it is given by  

(*)                                       bx *1~ USVm
−=  

Proof: 

(a) Given *VUA Σ= , we can write  

[ ] )(,0 *

*

Cmm
mn

m MV
V
V

SUA ∈







=

−

, where S is an mm× diagonal containing 

the nonzero singular values of A, so S it is nonsingular. 

Then [ ] [ ] by
y
y

2

1

x
x

x ==



=








=

−
1*

*

00 USSU
V
V

SUA
mn

m . 

So, we have ,* bx =mUSV so bx *1~ USVm
−= is a solution to .bx =A  

Since ,nm <  then the nullspace of A is nonempty and is spanned by the 

vectors nm vv ...,,1+ by Theorem 3.5. Let z be an element in the nullspace of A, 

then zx +~  is also a solution to bx =A and this proves (a). 

(b)  As seen in part (a), zx +~  represents all solutions to bx =A . Since 

bx *1~ USVm
−= , then x~ is a linear combination of the vectors mvv ...,,1 ; 

on the other hand z  is a linear combination of the vectors nm vv ...,,1+  

and since the columns of V are orthonormal, then x~ & z are 

orthogonal. Hence, 2
2

2
2

2
2 ||||||||||||| zxzx +=+  which is minimized only if 

of .0=z  So, the minimum norm solution to bx =A is as described by 

(*).           ■ 
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Example 15: 

Let  









=

0     4     3     
5     1     2     

A and 







=

3
1

b . 

Then the minimum norm solution for the system Ax=b is  

















      /−    
   /    == +

    

     
x

261
13063

    23/65 
bA  

 

The rank deficient may or may not have a solution depending on the right 

hand side, and it can be treated as in Theorem 4.10 

 

Summary: For any system of linear equations bA =x , the solution if exists is 

A+b; if there are more than one solution, then the minimum norm solution is 

also A+b; if we have no solution to the overdetermined system then, again, 

the minimum linear least squares solution is A+b.  
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Chapter Five 

More Applications of the Singular Value 
Decomposition 

        In this chapter we study more applications of SVD such as low rank 

approximation of matrices, determining the effective rank of matrices and  

study image compression as an application of SVD in image processing.        

 

5.1   Low Rank Approximation of Matrices 

        In science and engineering problems such as image processing, data 

compression and effective rank, one would like to approximate a given 

matrix by a lower rank matrix according to a given norm. One easy way to 

do this is simply the truncated SVD. 

        We will consider low-rank approximation of a matrix A according to 

spectral norm and Frobenius norm. First we give the theorem for the 

spectral norm. 

 

Recall that: 

        For any matrix )(, CnmMA∈ , the Frobenius norm is defined as  

||| A|||F = 
2
1

1 1

2|| 







∑∑

= =

m

i

n

j
ija . Whereas the spectral norm is defined as  

|||A|||2 = max { λλ : is an eigenvalues of AA* }. 
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Theorem 5.1:           

        Suppose )(, CnmMA∈  with rank r > k has SVD *VUA Σ= where 

)(and)( CC nm MVMU ∈∈ are unitary matrices and Σ  contains the singular 

values of A on its diagonal arranged in decreasing order. Then  
12)(rank

||||||min +=
σ=− kkZ

ZA  

This minimum occurs when 
*
kVkkUkAZ Σ==   

where )()...,,,( 21 CMU km,kk ∈= uuu , )()...,,,( 21 CMV kn,kk ∈= vvv  and   

)...,,,diag( 21 kk σσσ=Σ         [5] 

Proof 

We first show 12|||||| +=− kkAA σ , write *

1
i

n

i
iiA vu∑

=

= σ , and define 

*

1
i

k

i
iik vuA ∑

=

= σ . Then:  

 12
*

1
2 |||||||||||| +

+=

==− ∑ ki

n

ki
iik vuAA σσ . ( orderdecreasinginares'

i
σ ). 

It remains to show that there is no rank k matrix closer to A than Ak.    

Suppose there exists )(, CnmMB∈  with r(B)=k such that 

122 |||||||||||| +=−<− kkAABA σ . Since the dimension of the null space of B = n-

k, the space spanned by the set },...,,{ 121 += kvvvT has dimension k+1 and 

since the sum of the two dimensions is n+1, then there exists a unit vector 

w in their intersection. i.e., 0=wB and ∑
+

=

=
1

1

k

i
ii vcw with 1||||

1

1

22
2 == ∑

+

=

k

i
icw . 

Thus, we now have: 
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=Σ k
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kk

k
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c
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c
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c

V σσ
σ

σ

σ

σ

w . 

We now get: 
2

1
2
2

*2
2

*2
2

2
2

2
2 ||||||||||||||)(|||||||| +≥Σ=Σ==−≥− kVVUABABA σwwww , a contradiction.   ■ 

 

Example 1 

        Let  
















−=
00
30

02
A  

Find a rank 1 approximation of A with respect to the spectral norm. 

 Solution: 

We first find the SVD of A,                          








 −
































=Σ=

01
10

00
20
03

100
001
010

*VUA . 

The matrix A is of full rank, we want to approximate it with a rank 1 

matrix, so we find:                         

[ ]3,
0
1
0

11 =Σ















=U and [ ]10*

1 −=V . 
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Then  
















−=Σ=
00
30

00
*

1111 VUA with 2|||
00
00
02

||||||||| 2221 ==















=− σAA . 

Example 2 

Let 

















−
−

−
=

2    0    2     3     1 
1      2    0     3     2 
4       0    1    2     1 

A  

Find a rank 2 approximation of A with respect to the spectral norm. 

Solution: 

Using Matlab, the SVD of A is *VUΣ  where 

















−−
−−−

−
=

  8624373642971853515
291720281410277431298

1152587122366517291153 

 /      /    /  
  /   /     /  

  /     /     /
U , 

 
















=Σ

      0            0         803/494           0              0      
      0            0              0          2500/531        0      
      0            0              0                0       5139/892 

and 

 























−−
−−−

−
−−−

−−−

=

  /     /    /   /     /  
  /    /   /   /    /  

  /     /     /     /      /  
  /    /   /     /    /  
   /    /     /    /    /

V

39973351137428227215343411306882767
161257532738153746310113784734479392

5533112082370429369112995837865199
18401411415834710955063261351437203
6313071654397576111126201929797322  

* . 

This matrix is of rank 3, so we find *
2222 VUA Σ=  

 

















−−
−−

−
=

3642971853515
1410277431298
122366517291153 

/    /
/     /

 /     /
U , 








=Σ

   2500/531        0      
      0         5139/892 

2 and 
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−−−

−−−
=

  /    /   /     /    /
 /    /     /    /    /

V
18401411415834710955063261351437203

6313071654397576111126201929797322  * . 

 
The problem 22)(

||||||min ZA
Zrank

−
=

has the solution *
2222 VUAZ Σ== . 

So, 
















−−
−
−−

=
  116925333338235339568914724077480571

15318893196216745871409467221273701
1676402103149060776313092315635756 

2

/   /   /     /     /   
   /      /   /     /  /  
   /    /   /    /     / 

A  

with 494803|||||| 322 /AA  ==− σ . 

 

Example 3 

        Let  

















−
−
−

=
                      
                        

ii                   
A

110
442

1  
 

Approximate A with a rank 1 matrix( i.e., find A1). 

With Matlab *VUA Σ=  where  

 

















 /  +  /− /  + /−  /+/− 
 /  −  /    / + /    /+/− 

+−−
=

2003436145712644573223951371112342971026217
2671348175326626715211608215205221714891407

163142517535329513715955475410262173386257  

iii
iii

 i/    /    i/ -  /        i/-/
U , 

 

















                      0              0      
      0        1217/1085         0      =Σ

0

007534747                                /
and 

 

















/ + /      / + /                           
 /  +  /      /  − /−             /

−−
=

2741162235316582741162235316580
7313200809177731320080917714241353

858985726585898572651658517
*

ii
ii

       /                  /                   /
V . 
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Since r(A)=2, we find *
1111 VUA Σ= , where 

















−
−

−−
=

112342971026217
205221714891407
10262173386257  

1

i/   +   / 
 i/ +   / 
 i/    /

U , [ ]   4747/753  1 =Σ  , 

[ ]    858985726585898572651658517 *
1   /            /        / V −−=  and 

 

















−−
−−−

−−
=

        /               /               i/    /   
 i/    /    i/    +   /       i/      /   

  i/    /      i/   +   /      i/    +   /
A

133712071337120753302772297955
53302774101651533027741016512665554393730
393365266555439336526655542297955878131   

1

and computing  1217/1085 ==−  221 |||||| σAA .     
 

Fact  

For A and )(, CnmMB∈ , )()( ** BAtrBAtr = . 
 

Lemma 1 

Let )(, CnmMA∈ , with *VUA Σ= , then the matrices  

njmiji ,...,2,1,,...,2,1,* ==vu  

form an orthonormal basis for )(, CnmM . 

proof 

For ,ki ≠ iu and ku  are orthonormal and by Fact above, we have 

.0)()))((( **** == lkijlkji trtr vuuvvuvu  

Similarly, for ,jl ≠ .0)()))((( **** == lkijlkji trtr vuuvvuvu  

For ,& jlki == 1)()()).(( ***** === jjjiijjiji trtr vvvuuvvuvu . 

So the set of matrices njmiji ,...,2,1,,...,2,1,* ==vu are orthonormal and 

so linearly independent. Since we have mn such matrices then they form a 

basis for )(, CnmM .                                        ■ 
 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


  

 

94

 

Theorem 5.2         

Suppose )(, CnmMA∈  with rank r > k has SVD *VUA Σ= where 

)()( CandC nm MVMU ∈∈ are unitary matrices and Σ  contains the singular 

values of A on its diagonal arranged in decreasing order. Then  

∑
+==

σ=−
),min(

1

2

)(
||||||min

nm

ki
iFkZr

ZA  

And it occurs for 
*

kkkk VUAZ Σ==   

where )(),...,,(),(),...,,( ,21,21 CMVCMU knkkkmkk ∈=∈= vvvuuu  and  

),...,,(diag 21 kk σσσ=Σ .        [6] 

Proof 
Let )(, CnmMZ ∈ . By Lemma 1 above,  we write ∑=

ji
jiijZ

,

*vuµ  for some 

coefficients ijµ  and for an orthonormal basis )(, CnmM of the form  

njmiji ,...,2,1,,...,2,1,* ==vu . 

Now we have  

2

,

2

*

,

2

,

**

,

2 )()(|||||| ij
ji

ij

F

jiij
ji

ij

Fji
jiijj

ji
iijFZA µσµσµσ −=−=−=− ∑∑∑∑ vuvuvu  

∑∑
≠=

+−=
ji

ij
ji

iiii
22)( µµσ . For minimum choose the second term equal to zero. 

We then have 
∑=

i
iiiiZ *vuµ  

Since the rank of Z is equal to the number of terms in this sum, we see that 

the constraint r(Z)= k implies that we should have exactly k nonzero terms 

in the sum. To minimize the objective function, we then choose 
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kiiiii ,...,2,1, == σµ . So, *

1
i

k

i
iiZ vu∑

=

= σ  which gives the desired result.      ■ 

 

Example 4 

Consider the matrix
















−
−

−
=

2    0    2     3     1 
1      2    0     3     2 
4       0    1    2     1 

A in Example 5.2.Then 

the problem FZr
ZA ||||||

2)(
−

=
min has the same solution A2 with 

  803/494==− ∑
=

3

3

2
2

i
iF

AA σ . 

 

Example 5 

Consider the matrix 
















−
−
−

=
                      
                        

ii                   
A

110
442

1  
in Example 5.3. Then 

the problem FZr
ZA ||||||

1)(
−

=
min has the same solution A1 with 

1085/217
3

2

2
1 1==− ∑

=i
iF

AA σ .     

 

5.2 Image Compression Using the Singular Value Decomposition          

        Another approximation of SVD that will use the low rank 

approximation is the image compression, which we define below.      

        A computer represents an image on a display device with a set of 

evenly spaced coloured dots called pixels (picture elements). If these pixels 

are close enough together they approximate a continuous image.  

Each pixel represents a section of a picture, but how is all the relevant 

information associated? In a simple case of black and white pictures each 

pixel can be one of two states 0 or 1. This can be represented with elements 
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of Z2 (Integers modulo 2). If the picture is a greyscale then every pixel 

represents the intensity using a real number from 0 (black) to ∞. However 

any picture can be viewed as a matrix; the picture can be partitioned into 

tiny squares. Each square represents an entry in that matrix. If the picture is 

partitioned into m by n matrix, then we need mn spaces in the computer to 

store it. But we can compress (reduce the number of spaces in which we 

store the picture) some images using SVD. 

         Consider an image which is partitioned into m by n matrix with rank 

r, then we need r(m + n+1) spaces for storage by SVD instead of mn, this is 

because any matrix can be written with the SVD as **

1
rrri

r

i
ii VU Σ=∑

=

vuσ . That 

computes r(m + n+1) entries. 

We can further approximate the matrix by leaving off more singular terms 

of the matrix A. Since the singular values are arranged in decreasing order, 

the last terms will have the least effect on the  overall image. Doing this 

reduces the amount of space required to store the image on a computer. The 

following example illustrates this. 

 

Example 6  

Consider the black and white image of a tree in Figure 2 which we 

are going to compress to a computer using SVD. It is partitioned - for 

example - into (12)(12)=144 tiny squares (see Figure 3). Each square has a 

blackness level, and we assign the number 1 to any at least half black and 0 

otherwise. 
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The storage of this image needs 144 spaces. And this number increases if 

we partition this photo in more than 144  squares. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
      Figure (2)  The original image                                      Figure (3) 
 
 
 
The matrix that represents Figure (3) is  
 
 













































=

000000000000
000000000000
000001100000
011111111110
000111111000
000011110000
000111111000
000011110000
000011110000
000011110000
000001100000
000000000000

A  
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Using matlab the SVD of A is *VUA Σ= where  
 

U= 

  Columns 1 through 9  
         0           0            0            0             0           0            0            0          1.0000 

   -0.1721   -0.2350   -0.4472    0.4638   -0.0000   -0.0000   -0.0000   -0.0000         0 

   -0.3238   -0.2777   -0.0000   -0.2609    0.8614   -0.0849    0.0280   -0.0000          0 

   -0.3238   -0.2777   -0.0000   -0.2609   -0.2172    0.8111    0.2118   -0.0000          0 

   -0.3238   -0.2777   -0.0000   -0.2609   -0.3628   -0.5517    0.5604   -0.0000          0 

   -0.3982    0.1341    0.4472    0.3514   -0.0000    0.0000   -0.0000   -0.7071           0 

   -0.3238   -0.2777   -0.0000   -0.2609   -0.2815   -0.1746   -0.8002    0.0000          0 

   -0.3982    0.1341    0.4472    0.3514   -0.0000    0.0000    0.0000    0.7071           0 

   -0.4521    0.7383   -0.4472   -0.2249    0.0000   -0.0000   -0.0000   -0.0000          0 

   -0.1721   -0.2350   -0.4472    0.4638   -0.0000   -0.0000   -0.0000   -0.0000          0 

         0            0            0            0            0             0             0             0             0 

         0            0            0            0            0             0             0             0             0 

  Columns 10 through 12  
         0            0         0 

   -0.7071         0         0 

         0            0         0 

         0            0         0 

   -0.0000         0         0 

   -0.0000         0         0 

    0.0000         0         0 

    0.0000         0         0 

         0            0         0 

    0.7071         0         0 
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        0       1.0000       0 

        0            0      1.0000 

Σ =      

       5.7923    0         0         0         0         0         0         0          0     0      0      0 

         0    2.2109       0         0         0         0         0         0          0     0      0      0 

         0         0    1.4142         0         0         0         0         0         0     0      0      0 

         0         0         0    1.2494         0         0         0         0         0     0      0      0 

         0         0         0         0    0.0000         0         0         0         0     0      0      0 

         0         0         0         0         0    0.0000         0         0         0     0      0      0 

         0         0         0         0         0         0    0.0000         0         0     0      0      0 

         0         0         0         0         0         0         0    0.0000         0     0      0      0 

         0         0         0         0         0         0         0         0            0     0      0      0 

         0         0         0         0         0         0         0         0            0     0      0      0 

         0         0         0         0         0         0         0         0            0     0      0      0 

         0         0         0         0         0         0         0         0            0     0      0      0 

 

V=   

   Columns 1 through 9  

     0             0            0            0            0             0           0             0         1.0000 

   -0.0780    0.3339   -0.3162   -0.1800    0.6260   -0.2813   -0.3093   -0.4241         0 

   -0.0780    0.3339   -0.3162   -0.1800   -0.7721   -0.1665   -0.2371   -0.2619         0 

   -0.2155    0.4553    0.3162    0.3825    0.0087    0.6238   -0.1205   -0.3073         0 

   -0.4391   -0.0472    0.3162   -0.4527   -0.0236   -0.0852    0.5787   -0.3930         0 

   -0.4985   -0.2598   -0.3162    0.2898    0.0000   -0.0000    0.0000    0.0960         0 
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   -0.4985   -0.2598   -0.3162    0.2898   -0.0000    0.0000   -0.0000   -0.0960         0 

   -0.4391   -0.0472    0.3162   -0.4527    0.0236    0.0852   -0.5787    0.3930         0 

   -0.2155    0.4553    0.3162    0.3825   -0.0087   -0.6238    0.1205    0.3073         0 

   -0.0780    0.3339   -0.3162   -0.1800    0.0731    0.2239    0.2732    0.3430         0 

   -0.0780    0.3339   -0.3162   -0.1800    0.0731    0.2239    0.2732    0.3430        0 

         0            0             0           0            0              0              0           0             0 

 

  Columns 10 through 12  
         0             0            0 

   -0.0581         0            0 

   -0.0359   -0.0000         0 

   -0.0421    0.0000         0 

   -0.0539    0.0000         0 

   -0.7006   -0.0000         0 

    0.7006    0.0000         0 

    0.0539   -0.0000         0 

    0.0421    0.0000         0 

    0.0470   -0.7071         0 

    0.0470    0.7071         0 

     0               0        1.0000 

Since we have 4 nonzero singular values then r(A) = 4<12 ; so, using the 

compact SVD we can write A as *
444 VUA Σ= where  

U4 =  

         0           0            0            0              

   -0.1721   -0.2350   -0.4472    0.4638    
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   -0.3238   -0.2777   -0.0000   -0.2609     

   -0.3238   -0.2777   -0.0000   -0.2609    

   -0.3238   -0.2777   -0.0000   -0.2609    

   -0.3982    0.1341    0.4472    0.3514    

   -0.3238   -0.2777   -0.0000   -0.2609    

   -0.3982    0.1341    0.4472    0.3514    

   -0.4521    0.7383   -0.4472   -0.2249     

   -0.1721   -0.2350   -0.4472    0.4638    

         0            0            0            0             

         0            0            0            0             

=Σ 4  

    5.7923         0         0         0 

         0    2.2109         0         0 

         0         0    1.4142         0 

         0         0         0    1.2494 

and =4V     

        0            0            0           0 

   -0.0780    0.3339   -0.3162   -0.1800     

   -0.0780    0.3339   -0.3162   -0.1800    

   -0.2155    0.4553    0.3162    0.3825     

   -0.4391   -0.0472    0.3162   -0.4527    

   -0.4985   -0.2598   -0.3162    0.2898    

   -0.4985   -0.2598   -0.3162    0.2898    

   -0.4391   -0.0472    0.3162   -0.4527     
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   -0.2155    0.4553    0.3162    0.3825    

   -0.0780    0.3339   -0.3162   -0.1800     

   -0.0780    0.3339   -0.3162   -0.1800     

         0             0          0           0      

 

If we use rank 1 approximation for A we have: 

∑
=

=Σ=
1

1

**
1111

i
iii vuVUA σ (need ( 1(12+12+1)=25 spaces for storage) 

Columns 1 through 9  

         0         0         0         0         0         0         0         0         0 

         0    0.0778    0.0778    0.2149    0.4378    0.4971    0.4971    0.4378    0.2149 

         0    0.1464    0.1464    0.4042    0.8235    0.9349    0.9349    0.8235    0.4042 

         0    0.1464    0.1464    0.4042    0.8235    0.9349    0.9349    0.8235    0.4042 

         0    0.1464    0.1464    0.4042    0.8235    0.9349    0.9349    0.8235    0.4042 

         0    0.1800    0.1800    0.4971    1.0127    1.1498    1.1498    1.0127    0.4971 

         0    0.1464    0.1464    0.4042    0.8235    0.9349    0.9349    0.8235    0.4042 

         0    0.1800    0.1800    0.4971    1.0127    1.1498    1.1498    1.0127    0.4971 

         0    0.2044    0.2044    0.5644    1.1498    1.3055    1.3055    1.1498    0.5644 

         0    0.0778    0.0778    0.2149    0.4378    0.4971    0.4971    0.4378    0.2149 

         0          0           0             0              0            0              0             0             0 

         0           0           0             0             0             0             0              0            0 
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 Columns 10 through 12  

         0           0               0 

    0.0778    0.0778         0 

    0.1464    0.1464         0 

    0.1464    0.1464         0 

    0.1464    0.1464         0 

    0.1800    0.1800         0 

    0.1464    0.1464         0 

    0.1800    0.1800         0 

    0.2044    0.2044         0 

    0.0778    0.0778         0 

         0            0              0 

         0            0              0 

 

The picture that represents A1 is 

 
  

            
            
            
            
            
            
            
            
            
            
            
            

                                      
                                      Figure (4) 
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If we use rank 3 approximation for A we have: 

∑
=

=Σ=
3

1

**
3333

i
iii vuVUA σ (need 3(12+12+1)=75 spaces for storage) 

Columns 1 through 9 

         0         0            0            0             0            0            0            0           0 

         0    0.1043    0.1043   -0.2216    0.2624    0.8321    0.8321    0.2624   -0.2216 

         0   -0.0587   -0.0587    0.1247    0.8524    1.0944    1.0944    0.8524    0.1247 

         0   -0.0587   -0.0587    0.1247    0.8524    1.0944    1.0944    0.8524    0.1247 

         0   -0.0587   -0.0587    0.1247    0.8524    1.0944    1.0944    0.8524    0.1247 

         0    0.0790    0.0790    0.8321    1.1988    0.8728    0.8728    1.1988    0.8321 

         0   -0.0587   -0.0587    0.1247    0.8524    1.0944    1.0944    0.8524    0.1247 

         0    0.0790    0.0790    0.8321    1.1988    0.8728    0.8728    1.1988    0.8321 

         0    0.9494    0.9494    1.1075    0.8728    1.0814    1.0814    0.8728    1.1075 

         0    0.1043    0.1043   -0.2216    0.2624    0.8321    0.8321    0.2624   -0.2216 

         0         0           0             0            0            0            0              0           0 

         0         0           0             0            0            0            0              0           0 

 

  Columns 10 through 12  

         0            0            0 

    0.1043    0.1043         0 

   -0.0587   -0.0587         0 

   -0.0587   -0.0587         0 

   -0.0587   -0.0587         0 

    0.0790    0.0790         0 
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   -0.0587   -0.0587         0 

    0.0790    0.0790         0 

    0.9494    0.9494         0 

    0.1043    0.1043         0 

         0          0              0 

         0          0              0 

 

The picture that represents A3 is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                    Figure (5) 
 
 
we can see that bigger rank gives better approximation. 
 

Note 

A serious problem with the use of SVD for compression is that starting 

with a single m by n image matrix A and applying SVD results in a m×m, 

n×n, and a diagonal m × n matrix. If m = n, originally m2 values are 

required for picture, and after SVD we have 2m2+ m( values for an exact 

representation of picture where the rank of this picture = m. Therefore the 
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approximation must be at most rank m2/(2m+1) in order to have 

compressed the image at all, otherwise the storage requirements increase. 

 

 

5.3 Determination of the Effective Rank    

The SVD can be used to determine both the numerical (effective) and the 

actual rank of a matrix. This is done by counting the number of singular 

values that are above a certain tolerance,τ . The tolerance τ =0 is used for 

the actual rank and some small number determined by the user according to 

the application at hand for the numerical rank(i.e., τ >0 for numerical rank) 

,||||.,e.g( 12 εσ=ε=τ A where ε is machine precision). The numerical rank 

of a matrix is now defined as the number of singular values τσ > , 

})(,)(:{)( 1 τ≤στ>σ= +τ AAkAr kk . 
 

Example 5.4 

Let 



















=

−−

−

−−

−−

170002500020000100000

00003110000020001

050003700010000290000

000010100021000000001

.    .      .     .              

.     .                                    .  

         .     .      .    .  

.                   .      .     .  

A . 

Find the effective rank where the tolerance τ =0.5. By Matlab, the SVD of 

A is given by ∗Σ= VUA , where 

U= 

    0.2137   -0.2520   -0.9421   -0.0570 

   -0.9583   -0.2293   -0.1597    0.0600 

   -0.1740    0.9396   -0.2928    0.0330 
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    0.0758   -0.0317   -0.0346    0.9960    

 

=Σ  

    4.5791         0         0         0         0 

         0    3.2551         0         0         0 

         0         0    2.3230         0         0 

         0         0         0    0.0629         0 

 

and V* = 

   -0.1873    0.4249   -0.4571    0.7408   -0.1635 

    0.2056    0.1322    0.0448    0.2123    0.9451 

   -0.6187    0.0954    0.7378    0.2507    0.0299 

    0.5817   -0.4159    0.3596    0.5609   -0.2114 

    0.4488    0.7873    0.3397   -0.1695   -0.1858 

 

Since 21 ,σσ and τ>σ3 , but τ<=σ  0.06294 , then the matrix we want is A3  

and we find  

U3 = 

    0.2137   -0.2520   -0.9421 

   -0.9583   -0.2293   -0.1597 

   -0.1740    0.9396   -0.2928 

    0.0758   -0.0317   -0.0346 

=Σ3  

    4.5791         0         0 
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         0    3.2551         0 

         0         0    2.3230 

 =*
3V  

   -0.1873    0.4249   -0.4571    0.7408   -0.1635 

    0.2056    0.1322    0.0448    0.2123    0.9451 

   -0.6187    0.0954    0.7378    0.2507    0.0299 

and



















=Σ=

−−−

−−

−−

−

1568021490222501261003640

0004311120000700009019881

0008050213698619984189780

0008100200098720985000211 

*
3333

.    .     .   .   .

.    .    .    .      . 

.    .     .    .     . 

.    -.      .    .      .

VUA . 
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  جامعة النجاح الوطنية
  كلية الدراسات العليا

  
  
  

  
  

  حول تحليل القيمة المنفردة للمصفوفات المستطيلة
  
  
  

  إعداد 
  شيرين ناجح عيسى عودة

  
  
  
  

  إشراف
  عمران" محمد عثمان. "د

  
  
  
  
  
  
  

قدمت هذه الاطروحة استكمالا لمتطلبات درجة الماجستير في الرياضـيات بكليـة   
  .فلسطين. ة النجاح الوطنية في نابلسالدراسات العليا في جامع

2009  
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ب

  
  حول تحليل القيمة المنفردة للمصفوفات المستطيلة 

   

  اعداد
  شيرين ناجح عيسى عودة

  اشراف
  عمران " محمد عثمان"الدكتور

  الملخص
  

يعتبر تحليل القيمة المنفردة المصفوفات واحدا من أهـم  مفـاهيم الرياضـيات وذلـك             

بير من التطبيقات في الرياضيات والإحصاء والأحياء  والعديد مـن المجـالات   لارتباطه بعدد ك

  .العلمية الأخرى

نقوم في هذه الرسالة بتقديم تحليل القيمة المنفردة للمصفوفات ومقارنتها بالتحليل الطيفي،          

) مـور وبنـروز  (كما ونقوم بعرض لمجموعة من التطبيقات والتي تحوي النظيـر المزيـف ل  

  .الرتبة الفعالة للمصفوفات و ضغط الصورو

  
 

  

 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com



