

An-Najah National University

Faculty of Graduate Studies

Singular Two Points

Boundary Value Problem

By

 Sawsan Mohammad Hamdan

Supervised by

Dr. Samir Matar

This thesis is submitted in partial fulfillment of the requirements for the

Degree of Master in Computational Mathematics, Faculty of Graduate

Studies at An-Najah National University, Nablus, Palestine

 2010

III

Dedication

To My Parents, My Husband, My children Raghad, Saif Al-deen, Mayar, My

Sisters, Brothers, and to the Soul of the martyr Ihsan and to all who helped

me to fulfill this thesis, I dedicate it.

IV

Acknowledgments

 First, my greatest thanks for allah for helping me finish this work as good as

I hope.

Then my all thanks and wishes for my supervisor Dr. Samir Matar who

directed me to finish this research successfully.

Dr. Mohammad N. Ass'ad who supported and helped me to be one of

researcher students and granted me his trust.

Finally, my all thanks and wishes for my mother, father and husband

especially, for their help and encouragement, and to my friends for all kinds

of support and concern.

V

Singular Two Points

Boundary Value Problem

Declaration

The work provided in this thesis, unless otherwise referenced, is the

researcher's own work, and has not been submitted elsewhere for any other

degree or qualification.

 Student's name:

 Signature:

 Date:

VI

Table Of CONTENTS

Declaration V

List Of Tables VIII

List of Figures IX

Abstract X

Chapter 1: Introduction

1.1 Introduction 2

1.2 Differential Equation 3

1.3 Ordinary Differential equations 4

1.4 Initial Value Problems 5

1.5 Boundary Value Problems (BVPs) 5

1.6 Singular BVPs 7

1.7 Previous Works 8

Chapter 2: Some Numerical Methods for Solving Boundary Value

Problems

2.1 Introduction 12

2.2 General Forms For The Differential Equations 13

2.3 General Forms For The Boundary Conditions 15

2.4 Type of Boundary Conditions 17

2.5 Linear Second-Order BVPs 19

2.6 Shooting Method 19

2.6.1 Shooting For Linear Problems 21

2.6.2 Shooting For Non-Linear Problems 31

2.7 Finite Difference Methods 44

VII

2.7.1 Simple One-Step Schemes For Linear Systems 45

2.7.2 Finite Difference Method For Linear Problems 47

2.7.3 Neumann Boundary Conditions 49

2.7.4 Finite Difference Method For Nonlinear Problems 59

Chapter 3: Singular Two-Points BVP

3.1 Introduction 70

3.2 Regular Singular Point, Singularities of The First Kind 70

3.3 Irregular Singular Point 74

3.4 Other Singular Problem 75

3.5 Finite Difference (Pade Based) Method 78

3.5.1 A Numerical Method Based on the (2,0) Pade Approximant 80

3.5.2 A Numerical Method Based on the (3,0) Pade Approximant 83

Appendix 99

References 136

 ب الملخص

VIII

List of Tables

Table page

 Table (2.1) : The approximate and exact solution for example 2.1. 26

 Table (2.2) : The approximate and exact solution for example 2.2. 29

 Table (2.3) : The approximate and exact solution for example 2.3. 39

Table (2.4) : The approximate and exact solution for example 2.4. 42

Table (2.5) : The approximate and exact solution for example 2.5. 54

Table (2.6) : The approximate and exact solution for example 2.6. 57

Table (2.7) : The approximate and exact solution for example 2.7. 65

Table (2.8) : The approximate and exact solution for example 2.8. 67

Table (3.1) : The approximate and exact solution for example 3.1. 87

Table (3.2) : The approximate and exact solution for example 3.1 89

Table (3.3) : The approximate and exact solution for example 3.1. 91

Table (3.4) : The approximate and exact solution for example 3.1. 92

Table (3.5) : The approximate and exact solution for example 3.2. 97

IX

List of Figures

Figures Page

Figure (1) : shows the approximate and the exact solution for example (2.1) that was

solved by shooting method.

27

Figure(2) : shows the approximate and the exact solution for example (2.2) that was

solved by shooting method.

30

Figure (3) : shows the approximate and the exact solution for example (2.3) that was

solved by shooting method.

40

Figure (4): shows the approximate and the exact solution for example (2.4) that was

solved by shooting method.

43

Figure (5): shows the approximate and the exact solution for example

 (2.5) that was solved by finite difference method.

55

Figure (6) : shows the approximate and the exact solution for example (2.6) that was

solved by finite difference method.

58

Figure(7): shows the approximate and the exact solution for example (2.7) that was

solved by finite difference method.

66

Figure(8) : shows the approximate and the exact solution for example (2.8) that was

solved by finite difference method.

68

Figure(9): shows the approximate and the exact solution for example (3.1) that was

solved by finite difference method.

88

Figure(10): shows the approximate and the exact solution for example (3.1) that

was solved by shooting method.

90

 Figure(11): Emden problem – BVP with singular term.

96

X

Singular Two Points

Boundary Value Problem

By

 Sawsan Mohammad Hamdan

Supervised by

Dr. Samir Matar

Abstract

A singular Two points boundary value problem occur frequently in

mathematical modeling of many practical problems. To solve singular two

points boundary value problem for certain ordinary differential equations

having singular coefficients. Many numerical method such as shooting

method, finite difference method and pade approximation methods, have

been studied and analysed.

Chapter one

2

Introduction

1.1 Introduction

Mathematics is the body of knowledge centered on such concepts as

quantity, structure, space, and change, and also the academic discipline that

studies them. Benjamin Pierce called it " the science that draws necessary

conclusions".

Other practitioners of mathematics maintain that mathematics is the science

of pattern, and that mathematicians seek out patterns whether found in

numbers, space, science, computers, imaginary abstractions, or elsewhere.

Mathematicians explore such concepts, aiming to formulate new conjectures

and establish their findings by rigorous deduction from appropriately chosen

axioms and definitions.

Though the use of abstraction and logical reasoning, mathematics evolved

from counting, calculation, measurement, and the systematic study of the

shapes and motions of physical objects. Knowledge and use of basic

mathematics have always been an inherent and integral part of individual

and group life. Refinements of the basic ideas are visible in mathematical

texts originating in the ancient Egyptian, Mesopotamian, Indian, Chinese,

Greek and Islamic worlds. Rigorous arguments first appeared in Greek

mathematics, most notably in Euclid's elements. The development continued

in fitful bursts until the renaissance period of the 16
th
 century,

when mathematical innovations interacted with new scientific discoveries,

leading to an acceleration in research that continues to the present day.

3

Today, mathematics is used throughout the world in many fields, including

natural science, engineering, medicine, and the social sciences such as

economics.

Applied mathematics, the application of mathematics to such fields, inspires

and makes use of new mathematical discoveries and sometimes leads to the

development of entirely new disciplines. See [13]

1.2 Differential Equation

A differential equation is a mathematical equation for an unknown function

of one or several variables that relates the values of the function itself and of

its derivatives of various orders. Differential equations play a prominent role

in engineering, physics, economics and other disciplines.

Differential equations arise in many areas of science and technology,

whenever a deterministic relationship involving some continuously changing

quantities (modeled by functions) and their rates of change (expressed as

derivatives) is known or postulated. This is well illustrated by classical

mechanics, where the motion of a body is described by its position and

velocity as the time varies. Newton's laws allow one to relate the position,

velocity, acceleration and various forces acting on the body and state this

relation as a differential equation for the unknown position of the body as a

function of time. In many cases, this differential equation may be solved

explicitly, yielding the law of motion. See [3]&[13]

4

1.3 Ordinary Differential Equations

In mathematics, an ordinary differential equation (or ODE) is a relation that

contains functions of only one independent variable, and one or more of the

function's derivatives with respect to that independent variable.

A simple example is Newton's second law of motion, which leads to the

differential equation

 
))((

2

2

txF
dt

txd
m  (1.1)

For the motion of a particle of mass m. In general, the force F depends upon

the position of the particle x (t) at time t, and thus the unknown function x (t)

and its derivatives appears on both sides of the differential equation .

Ordinary differential equations are to be distinguished from partial

differential equations where there are several independent variables

involving partial derivatives.

Ordinary differential equations arise in many different contexts including

geometry, mechanics, astronomy and population modeling. Many famous

mathematicians have studied differential equations and contributed to the

field, including Newton, the Bernoulli family, Reccati, Clairaut and Euler.

Many studies has been devoted to the solution of ordinary differential

equations. In the case where the equation is linear, it can be solved by

analytical methods, but the most of the interesting differential equations are

non-linear and can‟t be solved exactly. Numerical methods that approximate

solutions can be established by using computer. See[3]&[13]

5

1.4 Initial Value Problems

In mathematics, in the field of differential equations, an initial value problem

(IVP) is an ordinary differential equation together with specified values,

called the initial conditions, of the unknown function at a given point in the

domain of the solution. In physics or other sciences, modeling a system

frequently amounts to solving an initial value problem the differential

equation is an evolution equation specifying how, given initial conditions.

A simple form of initial value problem (IVP) is a differential equation

 y' (t) = f (t , y (t)) (1.2)

with initial condition 00)(yty  .

A solution to an initial value problem is a function y that is a solution to the

differential equation and satisfies the initial condition 00)(yty  .

1.5 Boundary Value Problems

A boundary value problems (BVP) is a differential equation together with a

set of additional restrictions on the boundaries, called the boundary

conditions. A solution to the boundary value problem is a solution to the

differential equation which also satisfies the boundary conditions.

Boundary value problems arise in several branches of science. For example

in physical differential equation for some problems involving the wave

equation, such as the determination of normal modes, are often stated as

boundary value problems.

6

To be useful in applications, a boundary value problem should be well-posed

this means that given the input to the problem there exists a unique solution,

which depends continuously on the input. Much theoretical work in the field

of partial differential equation is devoted to proving that boundary value

problems arising from scientific and engineering applications are in fact

well-posed.

For a boundary value problem, information about a solution to the

differential equation(s) may be generally specified at more than one point .

Often there are two points, which correspond physically to the boundaries of

some region, so that it is a two-points boundary value problem. A simple and

common form for a two-points boundary value problem involve a second-

order differential equation is:

y" = f (x ,y , y') , a ≤ x ≤ b (1.3)

together with the boundary conditions

 )()(byanday

where α and β are known constants and the known endpoints a and b may

be finite or infinite. See [1]&[3]

A more mathematical way to picture the difference between an initial value

problem and a two-points boundary value problem is that (IVP) has all of the

conditions specified at the same value of the independent variable in the

equation (and that value is at the lower boundary of the domain , thus the

term "initial value").

 On the other hand, a two-points boundary value problem has

conditions specified at the extremes of the independent variable.

7

For example, if the independent variable is time t over the domain [0,1], an

initial value problem would specify a value of y (t) and / or y' (t) at time t

= 0, while a two-points boundary value problem specify values for y (t) or

y' (t) at both point‟s t = 0 and t = 1. See [13]

1.6 Singular BVPs

Many problems in varied fields as thermodynamics, electrostatics, physics,

and statistics give rise to ordinary differential equations of the form

- (p y′)′ + q y = w f

On some interval of the real line with some boundary conditions. Very often

singularities are encountered at one or more points in that interval. Singular

two-points boundary value problem occur frequently in mathematical

modeling of many practical problems.

Singular point of a differential equation, a point at which the coefficients are

not expandable in a Taylor series.

 We mention here three examples to illustrate the point.

(1) The equation

],0[,0)(])sin()([
)sin(

1





Appears when separation of variables is attempted on the heat equation in a

solid sphere or the electrostatic potential in the sphere. The source of the

singularity here is the vanishing of the function p at the endpoints.

8

(2) The equation

]1,1[),())1((2  xxfux

Represents the steady state temperature distribution in a bar extending from

 -1 to 1 if the thermal conductivity is .The same type of

singularity occurs here also. See [5]

 (3) An example of a class of singular BVP s is:

),()''(yxfyx 
 (1.4)

0 < x ≤ 1 , y (0) = A , y (1) = B

 In which 0 < α ≤ 1 and A , B are finite constants. We assume also that

for 0 < x < 1, the real-valued function f (x , y) is continuous
y

f




 exists

and is continuous and that 0




y

f
. See [10]

The obvious difficulty of the equation above is the behavior of the term

 near x = 0.

1.7 Previous Works

 Many previous works have been done on studied numerical methods for

solving singular BVPs, Gustafsson used some numerical methods that

treated only scalar problems, not systems, and does not deal at all with

existence or uniqueness of solutions. Natterer has treated systems, using a

projection method and has get)][ln(2 rhhO accuracy. He also has dealt

)1(2x

9

with existence and uniqueness of solutions, but has used unnatural looking

boundary conditions, and has not state when the problem will have a

solution, only when the operator is Fredholm with index zero (not when the

operator's inverse exists). Jamet also has treated only scalar equations and

has used three-point finite difference schemes, which, for a model problem,

with)(1 hO accurate solutions)1,0(( is a parameter of the

problem). Shampine has dealt with a class of nonlinear second order scalar

equations, all with the same linear differential operator. He has proved

existence and uniqueness of solutions of this equation for certain boundary

value problems and the convergence of collocation and finite difference

methods. See [2]

 [10] Twizell (1988) has developed numerical methods for this class of

BVPs (1.4). Twizell's methods gave more accurate numerical results than

those previously available (such as those of Chawla and Katti (1982)). They

are also more economical and easier to implement. See [10]

In this thesis we have explored some numerical methods for solving singular

two-points boundary value problem and we have written some codes in

matlab.

This thesis contains three chapters. Chapter 2 contains the general forms for

the differential equation, and the type of boundary conditions, then we

discuss a numerical methods to solve BVP, Shooting method, and Finite

Difference method, for linear and nonlinear BVP.

01

Chapter 3 is devoted to singular two-points BVP. We discuss regular

singular point, singularities of the first kind, irregular singular point, infinite

interval problem, and other singular problem. Then some numerical methods

were used to solve singular two-points BVP.

In this work, some numerical methods for solving these problems have been

studied and analysed.

MATLAB is used as a computational tool during the development of this

thesis.

00

Chapter Two

02

Some Numerical methods for Solving Boundary Value

Problems

 2.1 Introduction

A system of ordinary differential equations may have many solutions.

Commonly a solution of interest is determined by specifying the values of all

its components at a single point x = a. This point and a direction of

integration define an initial value problem (IVP).

 In many applications the solution of interest is determined in a more

complicated way. A boundary value problem (BVP) specifies values or

equations for solution components at more than one point in the range of the

independent variable x. Generally IVP has a unique solution, but this is not

true for BVPs. Like a system of linear algebraic equations, a BVP may not

have a solution at all, or may have a unique solution, or may have more than

one solution. Because there might be more than one solution, BVP solvers

require an estimate (guess) for the solution of interest. Often there are

parameters that must be determined in order for the BVP to have a solution.

Associated with a solution there might be just one set of parameters, a finite

number of possible sets, or an infinite number of possible sets. See [9]

03

2.2 General Forms for the Differential Equations

 For a second order non-linear BVPs we have the general form

y" (x) = f (x ,y (x) ,y' (x)) a ≤ x ≤ b

and the particular form that can be derived from the general one

 y"(x) = f (x ,y (x)) a ≤ x ≤ b

These differential equations, valid in some interval [a , b], together with

(boundary) conditions imposed on the dependent variable and / or its first

derivative at the two points x = a and x = b give rise to the second order

general and special boundary value problems respectively.

For a linear boundary value problem which has the form

y" (x) = p (x) y' + q (x) y + r (x) a ≤ x ≤ b ,

with boundary conditions y (a) = α , y (b) = β

where p , q and r continuous functions on the interval [a , b].

 Usually one assumes that a general ordinary differential equation can be

written as a first-order system

 y ' = f (x , y) a < x < b (2.1)

where (x)) y (x),..., y (x), (y (x) T

n21 y is the unknown vector function y

 nR and
T

n21))y ,(x f, , y) ,(x f , y) ,(x (f y) ,(x f is the (generally

nonlinear) right-hand side. The interval ends a and b are finite or infinite

constants. For a linear problem, the ODE simplifies to

 y' =A (x) y + q (x) a < x < b (2.2)

04

where the matrix A and the vector q are functions of x, A (x)  R
n x n

and q (x)  R
 n

. The linear system (2.2) is called homogeneous if q = 0,

and it is non-homogeneous otherwise.

 High-order ODEs can normally be converted to the first-order form.

 Given any scalar differential equation

 u
(n)

= f (x , u ,u ' , ...,u
n-1

) a < x < b (2.3)

 let y (x) = (y 1 (x),y 2 (x),…..y n (x))
 T

 be defined by

y1 (x) = u(x)

y2 (X) = u'(x) (2.4)

 .

 .

y n(x)=u
n-1

(x)

Then the ODE can be converted to the equivalent first-order Form

y1' =y2

y2' =y3

.

.

yn-1' =y n

y n' =f (x ,y1,y2, y n)

This is in the form (2.1).

05

2.3 General Forms for the Boundary Conditions

 A first-order system of ODEs like (2.1) has normally n boundary con-

ditions (BCs)

 g (y (a) , y (b)) = 0 (2.5)

 where g = (g 1,..., g n)
 T

 is a (generally nonlinear) vector function and 0 is

a vector of n zeros. The simplest instance of g is the case for an IVP. Then

the solution is given at the initial point; that is,

y(a) = α (2.6)

 where α =(α 1,..., α n)
 T

  R
 n
 is a known vector of initial conditions

which uniquely determines y (x) near a .

The general form of linear two-point BC for a first- order

system (or for a higher-order ODE) is

 B a y (a) + B b y (b) = β (2.7)

 Here B a and B b  R
n x n

 and β  R
n
.

 we see that for the linear BVP (2 .2) and (2.7) to have a unique

solution, it is necessary but not sufficient that these BCs be linearly

independent; that is, the matrix (B a ,B b) have n linearly independent

columns, or simply rank (B a , B b) = n .

BC of the general form (2.7) are called non- separated BC, since each

involve information about y (x) at both endpoints. However it frequently

06

happens that rank (B a) < n or rank (B b) < n, or both. If either holds we call

the boundary condition partially separated.

In the case rank (B b) = q < n, the BVP can be transformed to one where the

BC have the form

Ba1y (a) = β 1

 B a2 y (a) + B b2 y (b) = β 2 (2.8)

 where B alR
p X n

(p := n - q), B a2 and B b2R
q X n

, β1  R
p
and β2R

q
.

The BC are called separated if they simplify further to

Ba1 y (a) = β1

 Bb2 y (b) = β2 (2.9)

The nonlinear BC (2.5) can also occur in partially separated or separated

form. Thus, the boundary conditions are separated if they are of the form

g 1 (y (a)) = 01

 g 2 (y (b)) = 02 (2.10)

 where g 1, 01  R
p
 and g 2, 0 2  R

q
 with n = p + q.

In fact, a significant portion of the currently available software for BVPs

assumes that the BC are separated. See [1]

07

2.4 Types of Boundary Conditions

For linear boundary value problems there are three types of conditions:

1. Functional boundary conditions i.e. y (a) = A and y (b) = B are given.

2. Derivative boundary conditions i.e. y' (a) = α and y' (b) = β are given.

3. Mixed boundary condition i.e. conditions in the form

p0 y (a) + q 0 y' (a) = r0

p1 y (b) + q1 y' (b) = r1

All three types of linear boundary conditions may be expressed in vector –

matrix form as :












































1

0

11

00

)(

)('00

)(

)('

00 r

r

by

by

pqay

aypq

so that 0 q q 10  gives type 1, 0 p p 10  gives type 2 and type 3 occurs

when all four constants are non-zero. Type 3 boundary conditions can be

written in the vector form (2.7).

Theorem 2.1

Suppose the function f in the boundary-value problem which has the form y"

= f (x ,y , y') , a ≤ x ≤ b

where y (a) = α, y (b) = β is continuous on the set

D = {(x ,y ,y') , a ≤ x ≤ b , -∞ < y < ∞ , -∞ < y' < ∞}

and that the partial derivatives f y and f y' are also continuous on D. If

08

(i) f y(x ,y ,y') > 0 For all (x ,y ,y')  D and

(ii) a constant M exists with

| f y' (x ,y ,y') | ≤ M for all (x, y , y')  D

Then the boundary-value problem has a unique solution. See[11]

* Note that theorem (2.1) gives the conditions under which the general BVP

with type 1 boundary condition has unique solution (existence and

uniqueness).

When f (x ,y ,y') has the form

f (x ,y ,y') = p (x) y' + q (x) y + r (x)

the differential equation (1.3) is said to be linear.

Theorem (2.1) can be replaced by the following theorem:

Theorem 2.2

If the linear boundary value problem:

 y" (x) = p (x) y' + q (x) y + r (x) (2.11)

a ≤ x ≤ b , y (a) = α , y (b) = β

satisfies:

(i) p (x), q (x) and r (x) are continuous on [a ,b]

(ii) q (x) > 0 on [a , b]

then (2.11) has a unique solution. See [11]

09

2.5 Linear Second-Order BVP s

Consider the linear second order BVP (2.11). let y o= y, y1= y' then (2.11)

can be written as the system of first order differential equations:






































ry

y

pqy

y 010

'

'

1

0

1

0

Which can be written in vector-matrix form as:

 D y = Q y + P (2.12)

With boundary conditions y0 (0) = A , y1 (1) = B. See [10]

Numerical Methods To Solve BVP.

2.6 Shooting Method:

 The simplest initial value method for BVPs is the single shooting method,

it's one of the more successful numerical techniques for solving the general

BVP with type 1 boundary conditions based on the idea of reformulating the

problem as a sequence of IVPs of the form (1. 3) with y (a) = A

 z (a) y' i , i = 0,1, …. (2.13)

To do this all conditions must be specified at one point. Suppose we choose

to impose some initial condition, at t = a, where there are some boundary

conditions are already known.

We guess the remaining boundary conditions at this point and, for the

moment, ignore the known boundary conditions at t = b. We now have an

IVP which can be solved using Range Kutta or any other appropriate

21

method to obtain a numerical solution at t = b. These numerical values are

then compared with the known boundary condition at t = b. If the guessed

initial conditions are correct, there will be no discrepancies with the known

boundary conditions at t = b, and the solution to the IVP will be the solution

to BVP. If not, we need to modify the guessed initial conditions at t = a.

This is called the shooting method, for obvious reasons. See [3]

It is probably clear to the reader that 'shooting methods' are so-called

because of the analogy of firing missiles at a stationary target. Starting with

the parameter 0z , which determines the initial elevation at which the missile

is discharged from the point (x , y) = (a , A). The trajectory of the missile is

computed by solving the initial value problem given by (1.3) and (2.13) with

i > 0. If the point of landing, (x , y) = (b , y (b,
0

z)) is not sufficiently close

to (b , B), the approximation is corrected by choosing another elevation 1z ,

and so on, until y(b , kz) is acceptably close to the 'target' y (b) = B. See

[11]

Definition : A function f (t, y) is said to satisfy a Lipschitz condition in the

variable y on a set 2RD if a constant L > 0 exists with

2121),(),(yyLytfytf 

Whenever Dytyt ),(),,(21 . The constant L is called a Lipschitz constant

for f.

20

2.6.1 Shooting For Linear Problems

Consider the initial-value problems

 bxaxryxqyxpy )()()((2.14)

 )(ay (2.15)

 0)( ay (2.16)

 And

 bxayxqyxpy )()((2.17)

 0)(ay (2.18)

 1)( ay (2.19)

If p, q, r continuous and q > 0 on [a,b] then the Lipschitz condition exists and

(2.14) to (2.19) have unique solutions.

Take)(1 xy solution of (2.14) to (2.16), and)(2 xy solution of (2.17) to

(2.19), and take

)(
)(

)(
)()(2

2

1
1 xy

by

by
xyxy





 0)(2 by (2.20)

Where)(1 by is the approximated solution for (2.14) to (2.16) at x = b,

and)(2 by is the approximated solution for (2.17) to (2.19) at x = b.

Can be checked to be unique solution of BVP (2.11), and

)(
)(

)(
)()(2

2

1
1 xy

by

by
xyxy 





 (2.21)

22

)(
)(

)(
)()(2

2

1
1 xy

by

by
xyxy 





 (2.22)

So

).()()(()()(

)()
)(

)(
)(()

)(

)(
)((

))()((
)(

)(
)()()(

2

2

1
12

2

1
1

22

2

1
11

xrxyxqxyxp

xry
by

by
yxqy

by

by
yxp

yxqyxp
by

by
xryxqyxpy




















The shooting method for linear equations is based on the replacement of the

linear boundary-value problem by two initial-value problems.

See [3]&[12].

23

Algorithm 2.1

Linear shooting

To approximate the solution of the boundary-value problem

:)(,)(..0)()(')("   byaybxaxryxqyxpy

INPUT :endpoints a, b; boundary conditions , ; number of subintervals N.

OUTPUT : approximations iw ,1 to)(ixy ; iw ,2 to)(' ixy for each i =

0,1,…..,N.

Step 1 Set h = (b-a) / N:

.1

;0

;0

;

0,2

0,1

0,2

0,1









v

v

u

u 

Step 2 For i = 0,…..,N-1 do steps 3 and 4.

 (The Runge-Kutta method for systems is used in steps 3 and 4).

Step 3 Set x = a + ih.

Step 4 Set

];[

)];2/())(2/(

))(2/([

];[

)];()()([

;

2,22
1

,21,3

1,12
1

,1

2,12
1

,22,2

2,12
1

,21,2

,1,22,1

,21,1

kuhk

hxrkuhxq

kuhxphk

kuhk

xruxquxphk

huk

i

i

i

i

ii

i













24

].22[

];22[

)];)(())(([

];[

)];,)(2/())(2/([

];[

)];)(2/())(2/([

];[

];)()([

;

];22[

];22[

)];())(())(([

];[

)];2/())(2/(

))(2/([

2,42,32,22,16
1

,21,2

1,41,31,21,16
1

,11,1

1,3,12,3,22,4

2,3,21,4

1.22
1

,12,22
1

,22,3

2,22
1

,21,3

1,12
1

,12,12
1

,22,2

2,12
1

,21,2

,1,22,1

,21,1

2,42,32,22,16
1

,21,2

1,41,31,21,16
1

,11,1

1,3,12,3,22,4

2,3,21,4

1,22
1

,1

2,22
1

,22,3

kkkkvv

kkkkvv

kvhxqkvhxphk

kvhk

kvhxqkvhxphk

kvhk

kvhxqkvhxphk

kvhk

vxqvxphk

hvk

kkkkuu

kkkkuu

hxrkuhxqkuhxphk

kuhk

hxrkuhxq

kuhxphk

ii

ii

ii

i

ii

i

ii

i

ii

i

ii

ii

ii

i

i

i









































Step 5 Set

N

N

v

u
w

w

,1

,1

0,2

0,1 ;










;

 OUTPUT),,(0,20,1 ww

Step 6 For i = 1, …. ,N

 Set
;2

;1

,20,2,2

,10,2,1

ii

ii

vwuW

vwuW





 x = a +ih;

 OUTPUT (x,W1,W2), (Output is ii ww ,2,1 ,, .)

25

Step 7 STOP. (The process is complete.)See [3]

Example 2.1

The linear boundary-value problem

21,
)sin(ln22

22
 x

x

x
y

x
y

x
y

y (1) = 1, y (2) = 2

has the exact solution

)cos(ln
10

1
)sin(ln

10

3
2

2
1 xx

x

c
xcy 

Where

00392070132.0)]cos(ln4)2sin(ln128[
70

1
2  xc

And

1392070132.1
10

11
21  cc

Applying shooting method to this problem requires approximating the

solutions to the initial-value problems

21,
)sin(ln22

21211  x
x

x
y

x
y

x
y

,0)1(,1)1(11  yy and

1)1(,0)1(21,
22

222222  yyxy
x

y
x

y

26

Algorithm 2.1 uses the fourth-order Runge-Kutta technique to find the

approximation to y1(x) and y2(x).

The results of the calculations with N =10 and h = 0.1 are given in table

(2.1). The value listed as iw approximates and)(ixy is the exact solution

and iee is the error between the exact solution and the approximate solution.

)(
)2(

)2(2
)()(2

2

1
1 iii xy

y

y
xyxy


 . See [3] Program 1

Table (2.1) : The approximate and exact solution for example 2.1.

ix iw
)(ixy

iii wxyee )(

1.000 1.000000 1.000000 0.000000

1.100 1.098134 1.092629 0.005505

1.200 1.194476 1.187084 0.007391

1.300 1.290881 1.283382 0.007498

1.400 1.388198 1.381445 0.006753

1.500 1.486792 1.481159 0.005633

1.600 1.586783 1.582392 0.004391

1.700 1.688171 1.685013 0.003157

1.800 1.790895 1.788898 0.001997

1.900 1.894870 1.893929 0.000941

2.000 2.000000 2.000000 0.000000

The maximum error is 0.007498.

27

 Figure (1) : shows the approximate and the exact solution for example (2.1) that was

solved by shooting method.

28

Example 2.2

The boundary-value problem

10),(4  xxyy , y (0) = 0, y (1) =1

has the exact solution

xeeeexy xx  )()1()(22142

Applying the shooting method to this problem requires approximating the

solutions to the initial-value problems

0)0(0)0(10),(4 1111  yyxxyy

0)0(0)0(10),(4 2222  yyxyy

Algorithm 2.1 uses the fourth-order Runge-Kutta technique to find the

approximation to y1(x) and y2(x), which can be found in page 22.

The results of the calculations with N = 20 and h =1/20 are given in table

(2.2). The value listed as iw approximates and)(ixy is the exact solution

and iee is the error between the exact solution and the approximate solution.

)(
)1(

)1(1
)()(2

2

1
1 iii xy

y

y
xyxy


 . See [3] program 2

29

 Table (2.2) : The approximate and exact solution for example 2.2.

ix iw iy)()(iii xyyxyee 

0.000 0.000000 0.000000 0.000000

0.050 0.077831 0.077618 0.000213

0.100 0.155918 0.155512 0.000406

0.150 0.234541 0.233962 0.000579

0.200 0.313987 0.313252 0.000734

0.250 0.394548 0.393676 0.000872

0.300 0.476531 0.475538 0.000993

0.350 0.560254 0.559157 0.001097

0.400 0.646053 0.644869 0.001184

0.450 0.734285 0.733031 0.001253

0.500 0.825330 0.824027 0.001303

0.550 0.919596 0.918265 0.001331

0.600 1.017525 1.016189 0.001336

0.650 1.119593 1.118278 0.001314

0.700 1.226316 1.225055 0.001261

0.750 1.338260 1.337086 0.001174

0.800 1.456040 1.454992 0.001047

0.850 1.580329 1.579455 0.000874

0.900 1.711865 1.711217 0.000647

0.950 1.851459 1.851099 0.000359

1.000 2.000000 2.000000 0.000000

 The maximum error is 0.001336

31

 Figure(2) : shows the approximate and the exact solution for example (2.2) that was

solved by shooting method.

30

2.6.2 Shooting For Non-Linear Problems

The shooting principle extends to nonlinear problems. Consider the

following very simple model of a chemical reaction

 100"  xeu u
 (2.23)

 0)1()0( uu (2.24)

 As an initial value problem. With u (0) = 0 and tu )0(' the problem

(2.23) has a unique solution. For each real t; denoted by u (x , t). Now if we

find the correct "angle of shooting ", t* such that u (1; t*) = 0, then the

solution of the IVP also solves the BVP (2.23), (2.24).

 Find t = t* which satisfies the equation

u (1 ; t) = 0

 This latter problem can be solved numerically by an iterative scheme.

Note that each function evaluation in this iterative scheme involves the

(numerical) solution of an IVP. See [1]

 The shooting technique for the nonlinear second-order BVP (1.3) is

similar to the linear technique, except that the solution to a nonlinear

problem cannot be expressed as a linear combination to two initial value

problems. Instead, the solution to the boundary value problem is

approximate by using the solution to a sequence of initial value problem

involving a parameter t. These problems have the form

 y" = f (x ,y , y'), a ≤ x ≤ b , y(a) = α , y'(a) = t (2.25)

32

We do this by choosing the parameters t = tk in manner to ensure that




)(),(lim bytby k
k

Where y(x, tk) denotes the solution to the initial value problem (2.25) with

t = tk and y (x) denotes the solution to the boundary value problem (1.3).

 Start with a parameter t0 that determines the initial elevation at which the

object is fired from the point (a, α) and along the curve described by the

solution to the initial value problem:

y" = f (x ,y , y'), a ≤ x ≤ b , y (a) = α , y' (a) = t0 .

 If y (b, t0) is not sufficiently close to β, we correct our approximation

by choosing elevations t1, t2, and so on, until y(b, tk) is sufficiently close to

β.

 To determine the parameters tk, suppose a boundary value problem of

the form (1.3) satisfies theorem 2.1, 2.2 . If y(x, t) denotes the solution to the

initial value problem (2.25) we next determine t with

y (b, t) – β = 0 (2.26)

 This is a nonlinear equation that can be solved by Newton's method

which use to generate the sequence { tk }, only one initial approximation, t0,

is needed.

 The iteration has the form

33

),(

),(

1

1
1









k

k
kk

tb
dt

dy

tby
tt


 (2.27)

and it requires the knowledge of (dy/ dt) (b, tk-1). This presents a difficulty

since an explicit representation for y(b, t) is not known; we know only the

values y (b, t0), y (b, t1), …. , y (b, tk-1).

 Suppose we rewrite the initial value problem (2.25), emphasizing that the

solution depends on both x and the parameter t:

 y"(x, t) = f (x ,y(x, t) , y'(x, t)),a ≤ x ≤ b , y (a, t) = α , y' (a, t) = t (2.28)

 We have retained the prime notation to indicate differentiation with

respect to x. Since we need to determine (dy/ dt) (b, t) when t = tk-1, we first

take the partial derivative of (2.28) with respect to t. This implies that

).,(
'

)),('),,(,(
'

),()),('),,(,()),('),,(,(

)),('),,(,(),(
"

tx
t

y
txytxyx

y

f

tx
t

y
txytxyx

y

f

t

x
txytxyx

x

f

txytxyx
t

f
tx

dt

dy

































Since x and t are independent, 0/  tx and

),(
'

)),('),,(,(
'

),()),('),,(,(),(
"

tx
t

y
txytxyx

y

f
tx

t

y
txytxyx

y

f
tx

t

y






















(2.29)

For a ≤ x ≤ b. This initial conditions give

1),(
'

0),(








ta

t

y
andta

t

y

34

 If we simplify the notation by using z (x, t) to denote),)(/(txty  and

assume that the order of differentiation of x and t can be reversed, (2.29)

with the initial conditions becomes the initial value problem

),(')',,(
'

),()',,(),(" txzyyx
y

f
txzyyx

y

f
txz









 (2.30)

a ≤ x ≤ b, z (a, t) = 0, z (a, t) = 1

 Newton's method therefore requires that two initial value problems be

solved for each iteration, (2.28) and (2.30). Then from (2.27),

),(

),(

1

1
1









k

k
kk

tbz

tby
tt


 (2.31)

Of course, none of these initial value problems are solved exactly; the

solution are approximated. See [3] & [6]

Algorithm 2.2

Nonlinear Shooting with Newton’s Method

To approximate the solution of the nonlinear boundary-value problem

:)(,)(,).,,(  byaybxayyxfy

INPUT : endpoints a, b; boundary conditions , ; number of subintervals N

≥ 2; tolerance TOL; maximum number of iterations M.

35

OUTPUT : approximations iw ,1 to ii wxy ,2);(
to

)(' ixy
for each

i = 0,1, ……,N or a massage that the maximum number of iterations was

exceeded.

Step 1 Set h = (b-a) / N;

 K = 1;

 TK = ( - ) / (b - a). (note: TK could also be input.)

Step 2 While (k ≤ M) do steps 3-10.

Step 3 Set

.1

;0

;

2

1

0,2

0,1









u

u

TKw

w 

Step 4 For i =1,…….,N do steps 5 and 6.

 (The Runge-Kutta method for systems is used in steps 5and 6.)

Step 5 Set x = a +(i-1)h.

Step 6 Set

36

37

Step 7 If Nw ,1 ≤ TOL then do steps 8 and 9.

Step 8 For i = 0,1,……,N

 set x = a + ih;

 OUTPUT),,(,2,1 ii wwx .

Step 9 (The procedure is complete.)

 STOP.

Step 10 Set
1

,1

u

w
TKTK N




 (Newton‟s method is used to compute TK.)

 k = k+1.

Step 11 OUTPUT („Maximum number of iterations exceeded‟);

 (The procedure was unsuccessful.)

 STOP. See[3]

38

Example 2.3

Consider the boundary-value problem

3

43
)3(,17)1(,31),232(

8

1 3  yyxyyxy

has the exact solution

x

16
xy(x) 2 

Applying shooting method to this problem requires approximating the

solutions to the initial-value problems

ktyyxyyxy )1(,17)1(,31),232(
8

1 3

 1)1(,0)1(,31),(
8

1
 zzxzyzyz

Algorithm 2.2 uses the Runge-Kutta method of order four to approximate

both solutions required by Newton‟s method. The value listed as

iw approximates and)(ixy is the exact solution and iee is the error

between the exact solution and the approximate solution. The results of the

calculations with N = 20 are given in table (2.3), See [3] program 3

39

Table (2.3) : The approximate and exact solution for example 2.3.

ix iw ,1)(ixy)(,1 iii xywee 

1.000 17.000000 17.000000 0.000000

1.100 15.755485 15.755454 0.000038

1.200 14.773372 14.773333 0.000035

1.300 13.9 97727 13.997692 0.000027

1.400 13.388599 13.388571 0.000017

1.500 12.916684 12.916666 0.000007

1.600 12.560007 12.560000 0.000002

1.700 12.301761 12.301764 0.000012

1.800 12.128876 12.128888 0.000021

1.900 12.031031 12.031052 0.000028

2.000 11.999971 12.000000 0.000036

2.100 12.029011 12.029047 0.000042

2.200 12.112684 12.112727 0.000047

2.300 12.246473 12.246521 0.000052

2.400 12.426614 12.426666 0.000056

2.500 12.649943 12.650000 0.000059

2.600 12.913786 12.913846 0.000062

2.700 13.215863 13.215925 0.000064

2.800 13.554221 13.554285 0.000066

2.900 13.927175 13.927241 0.000067

3.000 14.333266 14.333333 0.000000

 The maximum error is 0.000067

41

Figure (3) : shows the approximate and the exact solution for example (2.3) that was

solved by shooting method.

40

Example 2.4

Consider the non-linear boundary-value problem

3

1
)2(,

2

1
)1(,21,3  yyxyyyy

has the exact solution

1)1()( xxy

Applying shooting method to this problem requires approximating the

solutions to the initial-value problems

ktyyxyyyy )1(,
2

1
)1(,21,3

1)1(,0)1(,21),( zzxzyzyz

Algorithm 2.2 uses the Runge-Kutta method of order four to approximate

both solutions required by Newton‟s method (page 35). The value listed as

iw approximates and)(ixy is the exact solution and iee is the error

between the exact solution and the approximate solution. The results of the

calculations with N = 10 are given in table (2.4). See [3] program 3

42

Table (2.4) :The approximate and exact solution for example 2.4.

 1.000 0.500000 0.500000 0.000000

 1.100 0.476191 0.476190 0.000002

 1.200 0.454547 0.454545 0.000003

 1.300 0.434786 0.434782 0.000004

 1.400 0.416671 0.416666 0.000006

 1.500 0.400006 0.400000 0.000007

 1.600 0.384622 0.384615 0.000008

 1.700 0.370378 0.370370 0.000009

 1.800 0.357152 0.357142 0.000010

 1.900 0.344838 0.344827 0.000011

 2.000 0.333345 0.333333 0.000000

 The maximum error is 0.000011

ix iw ,1)(ixy)(,1 iii xywee 

43

Figure (4): shows the approximate and the exact solution for example (2.4) that was

solved by shooting method.

44

2.7 Finite Difference Methods

 In these methods, no initial value problems are explicitly integrated.

Rather, an approximate solution representation is sought over the entire

interval of interest. Thus, these methods are sometimes referred to as global

methods.

The basic steps of a finite difference method are outlined as follows,

we choose a mesh Ω to the interval [a,b], where

 b)x ..xx(a 1N21   then approximate solution values are

then sought at these mesh points ix for i=2, 3, …, n

Form a set of algebraic equations for the approximate solution values by

replacing derivatives with difference quotients in the differential equations

and boundary conditions that the exact solution satisfies.

Finally, solve the resulting system of equations for the approximate solution,

this gives a set of discrete solution values)(ii xyy  .

Finite difference methods proceed by replacing the derivatives in the

differential equations by finite difference approximations. This gives a large

algebraic system of equations to be solved in place of differential equation.

To approximate y' we can use one-sided approximation

h

xyhxy
yxyD

)()(
')(


 or

h

hxyxy
yxyD

)()(
')(




45

Or we can use centered approximation :

h

hxyhxy
yxyD

2

)()(
')(0




Which is the average of the two one-sided approximations. It is clear that

Doy(x) gives a better approximation than either of the one-sided

approximations also it gives us a second order accurate approximation .

We can use finite difference to solve a differential equation consider the

second order differential equation

 y"(x) = f (x), 0 < x < 1 (2.32)

y (0) = α y (1) = β

The function f (x) is specified and we wish to determine y (x) in the interval

0 < x < l. This problem is called two points boundary value problem. Since

boundary conditions are given at the two distinct points 0 and 1.

2.7.1 Simple One-Step Schemes for Linear first-order Systems

Consider now the linear first-order system

 y' = A (x) y + f (x) , x  [a , b] , y  R
n
 (2.33)

 B a y (a) + B b y (b) = β (2.34)

and we seek numerical methods which work equally well for non-uniform

meshes. This naturally leads to one-step schemes, schemes which define the

difference operator based only on values related to one subinterval

46

 1ii x,x  of the mesh Ω at a time. The two simplest such finite difference

schemes are the midpoint and the trapezoidal schemes.

For a (generally non-uniform) mesh Ω, a discrete numerical solution

T

Nyyy),......,,(y 121   is sought, Where yi is to approximate

component-wise the exact solution y(x) at ixx  , i = 2, 3, …., N. The

numerical solution (in all methods based on one-step schemes) is required to

satisfy the boundary condition (2.34).

For the interior mesh points, two difference schemes are presented. For each

subinterval  1ii x,x  i=1,2,3,…..,N-1,N, of Ω the derivative in (2.33) is

replaced by
i

ii

h

yy 1

. This approximation is centered at

iii hxx
2

1
:2/1  , with)xx(:h i1ii   at the middle of the subinterval.

Then A (x) y (x) + f (x) is approximated by a centered approximation,

yielding second-order accuracy. The trapezoidal scheme is defined by:

    NixfxfyxAyxA
h

yy
iiiiii

i

ii 




 1)()(
2

1
)()(

2

1
111

1
(2.35)

and the midpoint scheme is defined by:

 NixfyyxA
h

yy
iiii

i

ii 



 1)())((

2

1
2/112/1

1
 (2.36)

47

 The latter scheme (2.36) is also known as the box scheme. In vector-matrix

form, both of these methods can be written as

 FAy 


 (2.37)

and, in detail,

















































































 

N

Nba

NN f

f

f

y

y

y

BB

RS

RS

RS

.

.

.

.

.

.

.

2

1

1

2

1

22

11

 (2.38)

Where ii R,S are n x n matrices. For the trapezoidal scheme

  Nixfxff

xAIhxAIh

iii

iiiiii











1)()(
2

1

)(),(

1

12
11

2
11 RS

 (2.39)

while for the midpoint scheme

Nixff

xAIhxAIh

ii

iiiiii















1)(

)(),(

2/1

2/12
11

2/12
11 RS

 ;(2.40) See [1]

2.7.2 Finite-Difference Methods for Linear Problems

Consider more general linear equation

)()()(xryxqyxpy 

Together with two boundary conditions, "Dirichlet conditions "

48

y (a) = α , y (b) = β

Let ,ihaxi  i = 0, 1, 2, …, N+1 and ii xxh  1

This equation can be discretized to second order by:

iii
ii

i
iii ryq

h

yy
p

h

yyy





 

2

)()2(11

2

11
, I = 1 ,2, …, N

Where, for example,)(),(iiii xqqxpp  and)(ii xrr  , this gives the

linear system A Y = F where A is the tri-diagonal matrix.











































)2()2/1(

)2/1()2()2/1(

...

...

...

)2/1()2()2/1(

)2/1()2(

1

2

11

2

1

22

2

2

11

2

2

NN

NNN

qhhp

hpqhhp

hpqhhp

hpqh

h
A





































































)2//1(

.

.

.

)2//1(

,

.

.

.

2

1

2

1

2

1

1

2

1

hphr

r

r

hphr

F

Y

Y

Y

Y

Yand

NN

N

N

N

 This linear system can be solved with standard techniques assuming the

matrix is nonsingular. A singular matrix would be a sign that the discrete

system does not have a unique solution, which may occur if the original

problem, or nearby problem, is not well posed.

49

 The discretization used above, while second order accurate, may not

be the best discretization to use for certain problems of this type. Often the

physical problem has certain properties that we would like to preserve with

our discretization, and it is important to understand the underlying problem

and be aware of its mathematical properties before blindly applying

numerical method. See [8]

2.7.3 Neumann Boundary Conditions

 Consider we have one or more Neumann boundary conditions, instead

of Dirichlet boundary conditions, meaning that a boundary condition on the

derivative y' is given rather than a condition on the value of y itself. We

might have heat flux at a specified rate giving y' = α at this boundary.

 Consider the equation (2.32) with boundary conditions:

 y' (0) = α y (1) = β (2.41)

to solve this problem numerically, we need to introduce one more unknown

than we previously had: Yo at the point xo= 0 since this is now an unknown

value. We also need to augment the system (2.37) with one more equation

that models the boundary conditions (2.41). As a first try, we might use a

one-sided expression for y'(0) such as:

 


h

yy 01
 (2.42)

51

If we append this equation to the system (2.37) we obtain the following

system of equation for the unknowns Yo,Y1, … ,YN































































































)/(

)(

.

.

)(

)(

.

.

21

121

..

.

.

..

121

121

1

2

1

2

1

1

2

1

0

2

hxf

xf

xf

xf

Y

Y

Y

Y

Yhh

h

N

N

N

N





 (2.43)

 Solving this system of equations does give an approximation to the true

solution. To obtain a second-order accurate method, we should use a

centered approximation to y'(0) = α, instead of the one-sided approximation

(2.42). We can introduce another unknown Y-1 and instead of the single

equation (2.42), use the following two equations:

2

1

h
(Y-1- 2Y0+Y1) = f (x0)

 (2.44)

h2

1
(Y1-Y-1) = α

This results in a system of N+2 equation.

 Introducing the unknown Y-1 outside the interval [0,1] where the

original problem is posed may seem unsatisfactory. We can avoid this by

eliminating the unknown Y-1 from the two equation (2.44) resulting in a

single equation that can be written as:

h

1
(-Y0+Y1) = α +

2

h
 f (x0) (2.45)

50

We have now reduced the system to one with only N+1 equation for the

unknowns Y0,Y1, … ,YN. The matrix is exactly the same as the matrix in

(2.43) which came from the one-sided approximation, the only difference in

the linear system is that the first element in the right hand side of (2.43) is

now changed from α to α +
2

h
 f (x0) we can view the left hand side of

(2.45) as a centered approximation to y' (x0 +
2

h
) and the right hand side as

the first two terms in the Taylor series expansion of this value

y' (x0 +
2

h
) = y' (x0)+

2

h
 y''(x0)+ … = α +

2

h
f (x0)+……

Algorithm 2.3

Linear Finite-Difference

To approximate the solution of the boundary-value problem

:)(,)(,),()()(  byaybxaxryxqyxpy

INPUT : endpoints a, b; boundary conditions , ; integer N ≥ 2, and

elements of matrix A and the right hand side.

OUTPUT : approximations iw to)(ixy for each i = 0 , 1 , ……. , N+1.

52

Step 1 Set

.))()2/(1()(

);()2/(1

);(2

;

);1/()(

2

1

1

2

1

xphxrhd

xphb

xqha

hax

Nabh











Step 2 For i = 2,……, N-1

 Set

).(

);()2/(1

);()2/(1

);(2

;

2

2

xrhd

xphc

xphb

xqha

ihax

i

i

i

i











Step 3 Set

.))()2/(1()(

);()2/(1

);(2

;

2

2

xphxrhd

xphc

xqha

hbx

N

N

N









Step 4 Set 11 al  ; (steps 4-8 solve a tridiagonal linear system algorithm.)

./

;/

111

111

ldz

abu





53

Step 5 For i = 2,……,N-1 set

iiiii

iii

iiii

lzcdz

lbu

ucal

/)(

/

1

1











Step 6 Set

./)(

;

1

1

NNNNN

NNNN

lzcdz

ucal









Step 7 Set

.

;

;

1

0

NN

N

zw

w

w







 



Step 8 For i = N-1, …… ,1 set .1 iiii wuzw

Step 9 For i = 0, ……. , N + 1 set x = a + ih;

 OUTPUT),(iwx .

Step 10 STOP. (The procedure is complete.)

54

Example 2.5

Algorithm (2.3) will be used to approximate the solution to the boundary-

value problem

21,
)sin(ln22

22
 x

x

x
y

x
y

x
y

y (1) = 1, y (2) = 2

with h = 0.1 which was also approximated by the shooting method in

example (2.1), gives the results listed in table (2.5). The value listed as

iw approximates and)(ixy is the exact solution and iee is the error

between the exact solution and the approximate solution. program 4

Table(2.5) : The approximate and exact solution for example 2.5.

ix iw iy)()(iii xyxwee 

The maximum error is 0.000045

 1.000 1.000000 1.000000 0.000000

 1.100 1.092600 1.092629 0.000028

 1.200 1.187043 1.187084 0.000041

 1.300 1.283336 1.283382 0.000045

 1.400 1.381402 1.381445 0.000043

 1.500 1.481120 1.481159 0.000039

 1.600 1.582359 1.582392 0.000032

 1.700 1.684989 1.685013 0.000024

 1.800 1.788881 1.788898 0.000016

 1.900 1.893921 1.893929 0.000008

 2.000 2.000000 2.000000 0.000000

55

Figure (5): shows the approximate and the exact solution for example

 (2.5) that was solved by finite difference method.

56

Example 2.6

Algorithm (2.3) will be used to approximate the solution to the boundary-

value problem

10),(4  xxyy , y (0) = 0, y (1) =1

with h = 1/20, which was also approximated by the shooting method in

example (2.2), gives the results listed in table (2.6). The value listed as

iw approximates and)(ixy is the exact solution and iee is the error

between the exact solution and the approximate solution. program 5

57

Table (2.6) : The approximate and exact solution for example 2.6.

ix iy iyy)()(iii xyyxyee 

 0.000 0.000000 0.00000 0.000000

 0.050 0.077616 0.077618 0.000001

 0.100 0.155509 0.155512 0.000003

 0.150 0.233957 0.233962 0.000005

 0.200 0.313244 0.313252 0.000008

 0.250 0.393664 0.393676 0.000012

 0.300 0.475520 0.475538 0.000017

 0.350 0.559132 0.559157 0.000024

 0.400 0.644835 0.644869 0.000033

 0.450 0.732986 0.733031 0.000045

 0.500 0.823967 0.824027 0.000059

 0.550 0.918188 0.918265 0.000076

 0.600 1.016091 1.016189 0.000098

 0.650 1.118155 1.118278 0.000123

 0.700 1.224900 1.225055 0.000154

 0.750 1.336894 1.337086 0.000191

 0.800 1.454757 1.454992 0.000235

 0.850 1.579168 1.579455 0.000286

 0.900 1.710870 1.711217 0.000347

 0.950 1.850682 1.851099 0.000417

 1.000 2.000000 2.000000 0.000000

The maximum error is 0.000417

58

Figure (6) : shows the approximate and the exact solution for example (2.6) that was

solved by finite difference method.

59

2.7.4 Finite-Difference Method for Nonlinear Problems

 For the general nonlinear boundary-value problem y" = f (x ,y , y'),

a ≤ x ≤ b, if the function f satisfies the following conditions:

1. f and the partial derivatives fy and fy‟ are all continuous on

 D = {(x ,y ,y') , a ≤ x ≤ b , -∞ < y < ∞ , -∞ < y' < ∞};

2. fy (x, y, y') ≥ δ on D, for some δ > 0;

3. Constants k and L exist, with

.)',,()',,('

)',,()',,(
maxmax yyxfLandyyxfk y

Dyyx

y
Dyyx 



 This ensures, by Theorem 2.1 page 17, that a unique solution exists.

 Discretizing the interval a ≤ x ≤ b into N+1 subintervals each of

width h so that (N+1) h = b – a, a numerical method determines a vector Y

= [y1, y2, …. , yN]
T

, where yi is an approximation to y (xi). The derivatives

y''(x) and y'(x) will be replaced by their second-order central difference

approximants to the equation

y'' (xi) = f (xi , y(xi), y'(xi))

for each i = 1,2, … ,N this gives

)
2

)()(
),(,f(x

)()(2)y(x 11
i2

11i

h

xyxy
xy

h

xyxy ii
i

ii  




 Where y0 = α and yN+1= β. The solution is thus found by solving the N×N

nonlinear system

61

2y1 – y2 + h
2

f (x1, y1, (y2 – α) / 2h) = α,

– y1 +2y2 – y3 + h
2

f (x2 , y2 , (y3 – y1) / 2h) = 0,

 … … (2.48)

– yN-2 +2yN-1 – yN + h
2

f (xN-1 , yN-1 , (yN – yN-2) / 2h) = 0,

– yN-1 +2yN + h
2

f (xN, yN, (β – yN-1) / 2h) = β,

 We use Newton‟s method for nonlinear systems, to approximate the

solution to this system. A sequence of iterates {(y1
(k)

,

y2

(k)
, …., yN

(k)
)

t
} is

generated that may converges to the solution of the system (2.48), provided

that the initial approximation (y1
(0)

,

y2

(0)
, …., yN

(0)
)

t
is sufficiently close to

the solution (y1,

y2, …., yN)

t
, and that the Jacobian matrix for the system is

nonsingular. For system (2.48), the Jacobian matrix J(y1,…., yN) is a

tridiagonal with ij-th entry




















































,1,...,11),
2

,,(
2

1

,,...,1),
2

,,(2

,,...,21),
2

,,(
2

1

),...,(

11
'

112

11
'

1

Njandjifor
h

yy
yxf

h

Njandjifor
h

yy
yxfh

Njandjifor
h

yy
yxf

h

yyJ

ii
iiy

ii
iiy

ii
iiy

ijN

Newton‟s method for nonlinear system requires that at each iteration the

N×N linear system

60

J(y1,

…., yN) (v1,

…., vN)

t
 =

tN
NNNN

NN
NNNNN

h

y
yxfhyy

h

yy
yxfhyyy

h

yy
yxfhyyy

h

y
yxfhyy

))
2

,,(2

),
2

,,(2

),...,
2

,,(2

),
2

,,(2(

12

1

2
11

2

12

13
22

2

321

2
11

2

21



























Be solved for v1, v2

…., vN, since yi

 (k)
 = yi

 (k-1)
+ vi, for each i = 1, 2, … ,N.

See [3] & [10]

Algorithm 2.4

Nonlinear Finite-Difference

 To approximate the solution to the nonlinear boundary-value problem

 :)(,)(,).,,(  byaybxayyxfy

INPUT : endpoints a, b; boundary conditions , ; integer N ≥ 2, tolerance

TOL; maximum number of iterations M.

OUTPUT : approximations iw to)(ixy for each i = 0,1,……,N+1 or a

message that the maximum number of iterations was exceeded.

Step 1 Set

.

;

);1/()(

1

0











Nw

w

Nabh

Step 2 For i = 1 ,……, N set .)(h
ab

iwi








62

Step 3 Set k = 1.

Step 4 While K ≤ M do steps 5-16.

Step 5 Set

)).,,(2(

);,,()2/(1

);,,(2

);2/()(

;

1

2

211

11

1

2

1

2

twxfhwwd

twxfhb

twxfha

hwt

hax

y

y

















Step 6 For i = 2,……, N-1

 set

)).,,(2(

);,,()2/(1

);,,()2/(1

);,,(2

);2/()(

;

2

11

2

11

twxfhwwwd

twxfhc

twxfhb

twxfha

hwwt

ihax

iiiii

iyi

iyi

iyi

ii





















Step 7 Set

)).,,(2(

);,,()2/(1

);,,(2

);2/()(

;

2

1

2

1

twxfhwwd

twxfhc

twxfha

hwt

hbx

NNNN

NyN

NyN

N





















Step 8 Set 11 al  ; (steps 8-12 solve a tridiagonal linear system.)

./

;/

111

111

ldz

abu





63

Step 9 For i = 2,……, N-1 set

./)(

;/

;

1

1

iiiii

iii

iiii

lzcdz

lbu

ucal











Step 10 Set

./)(

;

1

1

NNNNN

NNNN

lzcdz

ucal









Step 11 Set

 .

;

NNN

NN

vww

zv





Step 12 For i = N-1,……,1 set

.

;1

iii

iiii

vww

vuzv



 

Step 13 If TOLv  Then do steps 14 and 15.

Step 14 For i = 0,……,N+1 set x = a + ih;

 OUTPUT),(iwx .

Step 15 STOP. (The procedure was successful.)

Step 16 Set k = k + 1.

Step 17 OUTPUT („Maximum number of iterations exceeded‟);

 (The procedure was unsuccessful.)

 STOP.

64

Example 2.7

Consider the boundary-value problem

3

43
)3(,17)1(,31),232(

8

1 3  yyxyyxy

 has the exact solution

x

16
xy(x) 2 

Applying finite difference method to this problem the solutions results in

table (2.7). The value listed as iw approximates and)(ixy is the exact

solution and iee is the error between the exact solution and the approximate

solution. program 6

65

Table (2.7) : The approximate and exact solution for example 2.7.

ix iw iy)()(iii xyxwee 

 1.000 17.000000 17.000000 0.000000

 1.100 15.754502 15.755454 0.000951

 1.200 14.771740 14.773333 0.001593

 1.300 13.995677 13.997692 0.002014

 1.400 13.386296 13.388571 0.002274

 1.500 12.914252 12.916666 0.002413

 1.600 12.557538 12.560000 0.002461

 1.700 12.299326 12.301764 0.002438

 1.800 12.126529 12.128888 0.002359

 1.900 12.028813 12.031052 0.002238

 2.000 11.997915 12.000000 0.002084

 2.100 12.027142 12.029047 0.001905

 2.200 12.111019 12.112727 0.001707

 2.300 12.245024 12.246521 0.001496

 2.400 12.425388 12.426666 0.001278

 2.500 12.648944 12.650000 0.001055

 2.600 12.913012 12.913846 0.000833

 2.700 13.215311 13.215925 0.000614

 2.800 13.553885 13.554285 0.000400

 2.900 13.927046 13.927241 0.000195

 3.000 14.333333 14.333333 0.000000

The maximum error is 0.002461

66

Figure(7): shows the approximate and the exact solution for example (2.7) that was

solved by finite difference method.

67

Example 2.8

Consider the boundary-value problem

2

5
)2(2)1(21262 33  yyxxyyy

has the exact solution

1)( xxxy

Applying finite difference method to this problem the solutions results in

table (2.8). The value listed as iw approximates and)(ixy is the exact

solution and iee is the error between the exact solution and the approximate

solution. program 7

Table (2.8) : The approximate and exact solution for example 2.8.

ix iw iy)()(iii xyxwee 

 1.000 2.000000 2.000000 0.000000

 1.100 2.009256 2.009090 0.000165

 1.200 2.033570 2.033333 0.000237

 1.300 2.069431 2.069230 0.000200

 1.400 2.114447 2.114285 0.000161

 1.500 2.166795 2.166666 0.000129

 1.600 2.225105 2.225000 0.000105

 1.700 2.288321 2.288235 0.000085

 1.800 2.355607 2.355555 0.000051

 1.900 2.426252 2.426315 0.000063

 2.000 2.500000 2.500000 0.000000

The maximum error is 0.000237

68

Figure(8) : shows the approximate and the exact solution for example (2.8) that was

solved by finite difference method.

69

Chapter Three

71

Singular Two-Points BVP

3.1 Introduction

Singular two-points boundary value problem occur frequently in

mathematical modeling of many practical problems.

We consider first a system of linear ordinary differential equations on a

finite interval with a singularity of the first kind at one endpoint. We treat the

same problem with singularities at both endpoints and with a singularity on

the interior of the interval.

Consider a class of singular BVPs:

 ByAyxyxfyx )1(,)0(,10),,()''(
 (3.1)

In which 10  and A , B are finite constants, we assume also that for

0 < x < 1, the real-valued function f (x , y) is continuous,
dy

df
exists and is

continuous and that
dy

df
 > 0. See [2]

3.2 Regular Singular Point ,Singularities of The First Kind

 Consider the ODE

-)'(yx f (x, y) = 0 0 < x < 1 (3.2)

If we assume here that α = 1 in (3.2). The assumptions on the regularity of a

solution y (x) of (3.2) imply that lim y (x) exists, as x decreases to 0.

70

This is needed in order to make the BVP for (3.2) meaningful, and is

reasonable in most applications. These assumptions further yield that

 f (0 , y (0)) = 0 (3.3)

which must be compatible with the prescribed BC. In fact, the requirement

(3.3) is often used to determine part of the BC.

To be more specific, let us consider now the linear BVP which has a singular

point of the first kind

 y' = A (x) y + q (x) 0 < x < 1 (3.4)

where)(
~1

)(x
x

x ARA  (3.5)

here y (x), q (x), are n component vec n x n

matrices. R is a constant matrix, and q (x)  C (0,1].

For any solution y (x) of (3.4), we require y (x)  C¹(0,1] , we also impose a

linear system of two-points boundary conditions written as

   


)1()(lim 10
0

yBxyB
x

 (3.6)

note that we cannot merely write

 y(1)B y(0)B 10  (3.7)

because y (x) is not even necessarily defined at x = 0. Notice also (3.7)

implies that)(lim 0
0

xyB
x 

 is bounded.

72

Let the fundamental solution matrix, Y (x), for the homogeneous equation

for (3.4). That is, Y (x) satisfies

 Y' = A (x) Y, x  (0,1], Y (0x) = I, 0x  (0,1] (3.8)

Then every solution to (3.4) can be written

]1,0()((x)cy(x)  xxyY P (3.9)

where y (x) is any particular solution of (3.4) and where c is a constant

vector. where the particular solution py (x) satisfies

 0)(,10)(  pp yxxy (3.10)

Where 0 < δ < 1, See [2] & [7]

 The smoothness of f (x, y) in (3.2) [or of A (X) and q (x) in (3.4)] does

not imply corresponding smoothness of y(x) near x = 0.

 For example, the IVP

0 y(0) y, xy'
2
1 

has the solution x (x)y  , which has an unbounded first derivative at

x = 0. However, where often the solution y (x) is nonetheless smooth near

the singularity. The performance of numerical methods for problems with

singularities of the first kind where the solution is smooth at the singularities.

73

The situation is much less straightforward for some of the initial value. This

is because not all fundamental solution components of (3.4) may be expected

to be as smooth near the singularity as the solution y(x) is.

For example, the IVP

x
y

x

22
y' 




y (0) = 1

has the solution y (x) = 1 and a fundamental solution 2x

1
 y(x) .Therefore

a special treatment near x = 0 is often required before a code based on an

initial value approach can be used.

 Such a special treatment may consist of power expansion of a fundamental

solution in the vicinity of x = 0, followed by use of an initial value code

when we are sufficiently far away from the singularity. Once a fundamental

solution  x 0 y(x),  , has been found in this way, an appropriate

particular solution can be found as well, and the boundary condition

 

~
)1(yB)(yB 1 (3.11)

can be constructed to replace (3.6). The location of the joint 0  has to be

small enough so that the power series expansion for Y(x) on [0,δ] can be

easily and efficiently constructed, and at the same time large enough so that

74

the BVP (3.4), (3.11) on ,1][ can be solved by a standard initial value

method without difficulty. See [1]

3.3 Irregular Singular Point

There is at present no theoretical work justifying numerical methods for

solving problems with irregular singular points. The main practical

occurrence of such problems seems to be those formulated on infinite

intervals and we examine some simple examples here. See [7]

Suppose that we have the ODE

 0(x)y)(x, '  ayAfy (3.12)

Then a transformation

 t =
x

a
 (3.13)

reformulates (3.12) as an ODE defined on the interval (0,1], namely

),(2 y
t

a
af

dt

dy
t  (3.14)

in which we recognize an ODE with a singularity of the second kind. In

(3.13) we have assumed that a > 0. If a ≤ 0 then the transformation

ax
t




1

1
 and reformulates (3.12) as an ODE defined on the interval

(0,1], namely.

),1
1

(2 ya
t

f
dt

dy
t 

75

Since the formulation (3.12) is more natural, and since it turns out to be usu-

ally preferable for numerical discretization as well.

 Of course, when it comes to numerical discretization the infinite

interval][a, has to be replaced by a finite one, say [a, b] where b is

"large". See [1]

3.4 Other Singular Problem

We now consider three cases of singularities . The first of three is the case

of an equation with a singularity at both ends of the interval [0,1]:

)1,0(),())(
~

1

11
(10 


 xxx

xx
byARRy (3.15)

Where 0R and 1R are constant n x n matrices, and b (x) C(0,1). We use

the boundary conditions

 
 

)1(lim)(lim 1
1

0
0

yBxyB
xx

 (3.16)

Substituting the form of y (x) (3.9) & (3.10) into this boundary condition we

have


 

)]()([lim)]()([lim 11
1

00
0

xyBxcYBxyBxcYB p
x

p
x

 (3.17)

 For 0)(
~

xA , then)(
~

xA may have singularities which are weaker than

10
1

11
R

x
R

x 
 .

76

The second case is the case of a singularity in the interior of the interval. The

equation is the same as our original equation (3.4) but on the interval

]1,0()0,1[x .

]1,0()0,1[),())(
~1

( xxx
x

byARy (3.18)

We use a system of boundary conditions at -1 and 1:

 βyByB )1()1(11 (3.19)

By a solution to (3.18), (3.19) we mean any of the functions

]1,0()0,1[),()()( xxyxcYxy p (3.20)

Which satisfies (3.19). In satisfying (3.19), we must have

)1()1()]1()1([1111 pp yByBcYBYB    (3.21)

Since Y(-1),Y(1),)1(py , and)1(py exist with no singularities. Then here

the singularity index is zero, so that if a solution is required for every β,

)1()1(11 YBYB  must be nonsingular. If)1()1(11 YBYB  is singular,

then)1()1(11 pp yByB   must lie in its range .

 The third and final case is simply treating the case of a regular

differential equation on an infinite interval. We will illustrate this case for a

semi-infinite interval, treating the problem

77

(a)),0[),()( xxx byAy

(b) 


)0()(lim 0 yBxyB
x

. (3.22)

If we make the change of variable

1
1

,
1

1





t
xor

x
t (3.23)

We map),0[x into)0,1[t . Letting

)1
1

()(ˆ),1
1

()(ˆ),1
1

()(ˆ 
t

t
t

t
t

t bbAAyy ,

the problem is then transformed into

(a))0,1[),(ˆ1
)(ˆ)(ˆ1

)(ˆ
22

 tt
t

tt
t

t byAy

(b) 
 

)1(ˆ)(ˆlim 0
0

yBtyB
t

 (3.24)

Then a necessary and sufficient condition for (3.24) to have at most a

singularity of the first kind at t = 0 is and A (∞) = 0.

This statement implies that if

)
1

(
1

)(
2x

oR
x

xA  as x → ∞, (3.25)

(3.24) will have exactly a singularity of the first kind if R is not the zero

matrix. See [2]

78

3.5 Finite Difference (Pade Based) Methods

We now describe schemes of finite difference methods based on pade

rational approximation. These methods are based on rational approximants

to the exponential function.

 Pade approximants are defined as follows:

Let Czzf ),(,be function in a region of the complex plane

containing the origin z = 0.

A pade approximant.)(, zR  to the function f (z) is defined as by:

)(

)(
)(

zQ

zP
zf



 ,where)(zP and)(zQ , are polynomials of degrees

κ and μ respectively.

For the function
ze)z(f  , the polynomials)(zP and)(zQ , are given

explicitly as:

)(
)!(!)!(

!)!(
)(

0

j

j

z
jj

j
zP 

 






 



And

)(
)!(!)!(

!)!(
)(

0

j

j

z
jj

j
zQ 















79

If)(
)(

)(
, zT

zQ

zP
e z





  , then the remainder)(, zT  is given

by:











1

0

)1())1((
)1(1

,
)()!(

)1(
)(due

zQ

z
zT uuuz 








 The Pade approximants for
ze)z(f  (for =1,2,3,4. and κ =1,2,3,4)

Can be generated from the above equations .

Example : When κ = 0 & μ = 2 we will have

2

2

1
1

1

zz

e z





See Appendix for more function approximations.

81

3.5.1 A Numerical Method Based on The (2,0) Pade

Approximant

Consider the linear second order BVP (2.11). let y o= y, y1= y' then (2.11)

can be written as the system of first order differential equations:






































ry

y

pqy

y 010

'

'

1

0

1

0

Which can be written in vector-matrix form as:

D y = Q y + P

With boundary conditions y0 (0) = A , y1 (1) = B. See [10]

To solve this class of singular BVP

B)1(y,A)0(y,1x0),y,x(f)''yx(
 (3.26)

In which 0 < α ≤ 1 and A, B are finite constants.

)y,x(f'y
x

x
''y

1






This problem can be written in vector-matrix form as

 p y Q y D (3.27)

With special case that is 0p .

80

 The boundary conditions become ByAy )1(,)0(10 . Using the

relation,)x(ye)hx(y hD and replacing the exponential term by its (2,0)

Pade approximant, we get

)x(y)Dy(D
2

h
hDyI

)h(o)x(y)hx(y]D
2

h
hDI[

2

32
2





Using (3.27) and its second derivative and applying the resulting equation to

the discrete point, of Ω (where Ω is the grid

bxx.,,.........xxxa 1NN210   obtained by discretizing the interval

[a, b] into N+1 subintervals each of width
*zN

1N

ab
h 




) leads to

the finite-difference formula:

),.....,2,1,0(,11 Nkkkkk  0yByA (3.28)

Where I,IBk  is the identity matrix,
T

k0k1k]y,y[y  and the

elements of the matrix 1KA  are

















2,2,11,2,1

2,1,11,1,1

1KA
kk

kk

aa

aa

Such that

82

q
h

a

ph
ha

pqq
h

hqa

qpp
h

hpa

k

k

k

k

2
1

2

)'(
2

)'(
2

1

2

2,2,1

2

1,2,1

2

2,1,1

2
2

1,1,1

















Here the functions p, q and their first derivatives are functions of the

independent discrete points 1kx .

After the vector-matrix equation (3.28) has been applied to the discrete

points ofxxxx N ,.,,.........,, 210 ,the result is a system linear equations

with 2 (N+1) equations in 2 (N+1) unknowns:

A Y = G

Where





























1

32

21

01

NN AB

AB

AB

BA

A

83

KA and KB (k = 1,2,…,N) are as defined in (3.28)

T

Nyyy].,,.........,[121 Y , where),....,2,1(],[01 Nkyy T

kkk y .

The last vector
T

NN yy],[101,11  y and in this case the two matrices

0B and 1NA  will be defined as 






 


00

10
B0 and 















0

0

1,2,1

1,1,1

1

N

N

N
a

a
A

respectively.

The vector G is defined by

T

NNN

T

k

NN
yayaand

yNk

],[

],0[),,.....,4,3,2(,

11

0

02,2,102,1,11

01

  



g

g0g

.

3.5.2 A Numerical Method Based on The(3,0)Pade

Approximant

Using the relation)x(ye)hx(y hD and replacing the exponential term

by its (3,0) Pade approximant gives:

)h(o)x(y)hx(y]D)
6

h
(D)

2

h
(hDI[43

3
2

2



Using (3.27) and its second and third derivatives leads to the finite difference

method

),.....,2,1,0(,11 Nkkkkk  0yByA (3.29)

84

Where I,IBK  is the identity matrix,
T

k kk
yyy],[01 and the

elements of the matrix 1kA  are

)'(
62

1

)'(
62

)''2''(
6

)'(
2

)2'2'3''(
6

)'(
2

1

32

2,2),1(

2
32

1,2),1(

22
32

2,1),1(

3
3

2
2

1,1)1(

pqq
h

q
h

a

qpp
h

p
h

ha

qqppqqpq
h

pqq
h

hqa

pqpqppp
h

qpp
h

hpa

k

k

k

k

















Here the functions p, q and their first and second derivatives are functions of

the independent variable x at the discrete point 1kx  .

After applying the vector-matrix equation (3.29) to the discrete points

Nxxxx .,,.........,, 210 . We obtain the system of linear equations with

 2 (N+1) equations in 2 (N+1) unknowns:

A y = G

Where kA and kB are as defined in (3.29). The 2(N+1) vector

T

Nyyyyy].,,.........,,[210 contains the 2 x 1 sub-vectors

)N,.....,2,1,0k(yk  , where
T

k kk
yyy],[01 .

85

The last sub-vectors in y is
T

N yyy
N

],[
01 111 

 . Its structure depends on

the type of boundary conditions. Also in this case the two matrices 0B and

1NA  are defined respectively as :








 


00

10
B0 and



















0

0

1,2),1(

1,1),1(

1

N

N

N
a

a
A

The vector
T

NgggG].,,.........,[121  contains the sub-vectors

),.....,2,1,0(, Nkk  0g . The first and last sub-vectors 1g

and 1Ng  are updated, because of the boundary conditions , to

Ty],0[
001 g and

T

NNN NN
yaya],[

12,212,1 0)1(0)1(1   g respectively.

See [4]&[10]

86

 Example 3.1

10,)1()()2(  xyxxyx  

With boundary conditions y (0) = 1, y (1) = e.

 With α = 0.5 and β = 4,

Which has the exact solution y (x) =
xe , this problem is linear and it has

singularity at x = 0 , The value listed as iw approximates and)(ixy is the

exact solution and iee is the error between the exact solution and the

approximate solution. Applying algorithm 2.3 to this problem the solutions

results in table (3.1) , program 8

87

Table (3.1) : The approximate and exact solution for example 3.1.

ix iw iy)()(iii xyxwee 

 0.00000 1.000000 1.000000 0.000000

 0.06250 1.002787 1.000015 0.002772

 0.12500 1.004631 1.000244 0.004387

 0.18750 1.006828 1.001236 0.005592

 0.25000 1.010477 1.003913 0.006563

 0.31250 1.016962 1.009582 0.007379

 0.37500 1.028057 1.019972 0.008085

 0.43750 1.046027 1.037315 0.008711

 0.50000 1.073772 1.064494 0.009278

 0.56250 1.115088 1.105295 0.009792

 0.62500 1.175092 1.164844 0.010247

 0.68750 1.260930 1.250325 0.010604

 0.75000 1.382958 1.372187 0.010771

 0.81250 1.556749 1.546209 0.010540

 0.87500 1.806589 1.797113 0.009475

 0.93750 2.171762 2.165120 0.006641

 1.00000 2.718281 2.718281 0.000000

The maximum error is 0.010771

88

Figure (9): shows the approximate and the exact solution for example (3.1) that was

solved by finite difference method.

89

Applying algorithm 2.1 to example 3.1 ,The results of the calculations with

N =10 and h = 0.1 are given in table (3.2).

Table (3.2) : The approximate and exact solution for example 3.1.

ix iw
iy)()(iii xyxwee 

 0.000 1.000000 1.000100 0.000100

 0.100 1.009164 1.000100 0.009064

 0.200 1.018424 1.001601 0.016823

 0.300 1.030473 1.008132 0.022340

 0.400 1.052422 1.025930 0.026491

 0.500 1.094095 1.064494 0.029601

 0.600 1.170135 1.138372 0.031762

 0.700 1.304094 1.271376 0.032718

 0.800 1.537564 1.506215 0.031348

 0.900 1.951364 1.927261 0.024103

 1.000 2.718281 2.718281 0.000000

The maximum error is 0.032718

91

Figure (10): shows the approximate and the exact solution for example (3.1) that was

solved by shooting method.

90

To solve example (3.1) using pade (2,0) and pade (3,0) with α = 0.5 and

 β = 4 the results in table (3.3) and (3.4) respectively.

Table (3.3): The approximate and exact solution for example 3.1.

1.0e+012 *

ix iw
iy

)(

))()((

i

ii
i

xy

xyxw
ee




 0.00000000000006 -0.00000000000418 0.00000000000100 0.00000000000518

 0.00000000000013 0.00000000002646 0.00000000000100 0.00000000002545

 0.00000000000019 -0.00000000036398 0.00000000000100 0.00000000036453

 0.00000000000025 0.00000000913803 0.00000000000100 0.00000000910140

 0.00000000000031 -0.00000015338691 0.00000000000101 0.00000015193205

 0.00000000000038 0.00000081648072 0.00000000000102 0.00000080049210

 0.00000000000044 0.00000963647942 0.00000000000104 0.00000928982185

 0.00000000000050 -0.00012760212962 0.00000000000106 0.00011987110841

 0.00000000000056 -0.00001325637190 0.00000000000111 0.00001199350800

 0.00000000000062 0.00600375866353 0.00000000000116 0.00515412737749

 0.00000000000069 -0.01569498348483 0.00000000000125 0.01255271789526

 0.00000000000075 -0.13140344030893 0.00000000000137 0.09576200872853

 0.00000000000081 0.57807099917539 0.00000000000155 0.37386337482886

 0.00000000000088 1.22280382687261 0.00000000000180 0.68042668483199

 0.00000000000094 -9.02533317841833 0.00000000000217 4.16851236290096

 0.00000000000100 0.00000000001333 0.00000000000272 0.00000000000391

92

Table (3.4) : The approximate and exact solution for example 3.1.

1.0e+014 *

ix iw
iy

)(

))()((

i

ii
i

xy

xyxw
ee




 0.00000000000000 -0.00000000000005 0.00000000000001 0.00000000000006

 0.00000000000000 0.00000000000078 0.00000000000001 0.00000000000077

 0.00000000000000 -0.00000000007366 0.00000000000001 0.00000000007358

 0.00000000000000 0.00000000366492 0.00000000000001 0.00000000365062

 0.00000000000000 -0.00000007717323 0.00000000000001 0.00000007644076

 0.00000000000000 0.00000053492313 0.00000000000001 0.00000052444872

 0.00000000000000 0.00000381175595 0.00000000000001 0.00000367463426

 0.00000000000001 -0.00006697411107 0.00000000000001 0.00006291635482

 0.00000000000001 0.00005736275989 0.00000000000001 0.00005189811113

 0.00000000000001 0.00294360222848 0.00000000000001 0.00252703376125

 0.00000000000001 -0.00953942058839 0.00000000000001 0.00762954963518

 0.00000000000001 -0.06223875592692 0.00000000000001 0.04535732302178

 0.00000000000001 0.31221754240677 0.00000000000002 0.20192451143853

 0.00000000000001 0.57403913840400 0.00000000000002 0.31942290277875

 0.00000000000001 -4.77720221691693 0.00000000000002 2.20643671625442

 0.00000000000001 0.00000000000012 0.00000000000003 0.00000000000003

93

The function bvp4c solves a class of singular BVPs of the form

It can also accommodate unknown parameters for problems of the form

Singular problems must be posed on an interval [0,b] with b>0. Use bvpset

to pass the constant matrix to bvp4c as the value of the 'SingularTerm'

integration property. Boundary conditions at x = 0 must be consistent with

the necessary condition for a smooth solution, Sy(0) = 0. An initial guess

should also satisfy this necessary condition.

When you solve a singular BVP in Matlab using

sol = bvp4c(@odefun,@bcfun,solinit,options)

bvp4c requires that your function odefun(x, y) return only the value of the

f (x, y) term.

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvp4c.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvpset.html

94

Example 3.2

Emden's equation. Emden's equation arises in modeling a spherical body

of gas. The PDE of the model is reduced by symmetry to the ODE

on an interval . The coefficient 2 / x is singular at x = 0, but symmetry

implies the boundary condition y'(0) = 0. With this boundary condition, the

term

is well-defined as x approaches 0. For the boundary condition ,

this BVP has the solution

Rewrite the problem as a first-order system and identify the singular

term. Using a substitution yy 1 and yy 2 , write the differential

equation as a system of two first-order equations

The boundary conditions become

Writing the ODE system in a vector-matrix form

95

the terms are identified as

and

Code the ODE and boundary condition functions. Code the differential

equation and the boundary conditions as functions that bvp4c can use.

function dydx = emdenode(x,y)

dydx = [y(2)

 -y(1)^5];

function res = emdenbc(ya,yb)

res = [ya(2)

 yb(1) - sqrt(3)/2];

Setup integration properties. Use the matrix as the value of the 'Singular

Term' integration property.

S = [0,0;0,-2];

options = bvpset('SingularTerm',S);

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvp4c.html

96

Create an initial guess. This example starts with a mesh of five points and a

constant guess for the solution.

Use bvpinit to form the guess structure

guess = [sqrt(3)/2;0];

solinit = bvpinit(linspace(0,1,5),guess);

Solve the problem in Matlab. Use the standard bvp4c syntax to solve the

problem.

sol = bvp4c(@emdenode,@emdenbc,solinit,options);

View the results. This problem has solution

The example evaluates the solution at 100 equally spaced points and plots it

along with the numerical solution computed using bvp4c.

x = linspace(0,1);

truy = 1 ./ sqrt(1 + (x.^2)/3);

plot(x,truy,sol.x,sol.y(1,:),'ro');

title('Emden problem -- BVP with singular term.')

legend('Computed');

xlabel('x');

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvpinit.html

97

ylabel('solution y'); See [14]

Table (3.5) : The approximate and exact solution for example 3.2.

ix iw iy)()(iii xyxwee 

 0.000 1.0000005109 1.0000000000 0.0000005109

 0.125 0.9974064705 0.9974059619 0.0000005086

 0.250 0.9897438277 0.9897433186 0.0000005091

 0.500 0.9607707751 0.9607689228 0.0000018522

 0.750 0.9176644937 0.9176629354 0.0000015582

 1.000 0.8660254037 0.8660254037 0.0000000000

The maximum error is 0.0000018522

Figure(11): Emden problem – BVP with singular term.

98

Conclusion and Results

 Various numerical methods namely: Finite Difference, Shooting, Pade

Approximant, have been studied to compare the efficiency of these methods.

It is desirable to develop the results to Pade Approximant to obtain more

accurate for the approximate solution.

 From the above work, we see that shooting method is more accurate

for non-linear problems, on the other hand, finite difference method is more

accurate for linear problems.

99

Appendix

011

Matlab Programs

Program 1:

format long

`

clc

a=1;

b=2;

h=1/10;

n=10;

x(1)=1;

m(1)=1;

w(1)=0;

m1(1)=0;

w1(1)=1;

k=zeros(4,2);

for i=1:n

 k(1,1)=h*w(i);

 k(1,2)=h*[(-2/x(i))*w(i)+(2/(x(i))^2)*m(i)+(sin(log(x(i))))/(x(i))^2];

 k(2,1)=h*[w(i)+(1/2)*k(1,2)];

 k(2,2)=h*[(-(2/(x(i)+(h/2))))*(w(i)+(1/2)*k(1,2))+(2/(x(i)+(h/2))^2)*

(m(i)+(1/2)*k(1,1))+(sin(log(x(i)+(h/2))))/(x(i))^2];

 k(3,1)=h*[w(i)+(1/2)*k(2,2)];

 k(3,2)=h*[(-(2/(x(i)+(h/2))))*(w(i)+(1/2)*k(2,2))+(2/(x(i)+(h/2))^2)*

(m(i)+(1/2)*k(2,1))+(sin(log(x(i)+(h/2))))/(x(i))^2];;

010

 k(4,1)=h*[w(i)+(1/2)*k(3,2)];

 k(4,2)=h*[(-(2/(x(i)+(h))))*(w(i)+k(3,2))+(2/(x(i)+(h))^2)*

(m(i)+k(3,1))+(sin(log(x(i)+(h))))/(x(i))^2];

 m(i+1)=m(i)+(1/6)*(k(1,1)+2*k(2,1)+2*k(3,1)+k(4,1));

 w(i+1)=w(i)+(1/6)*(k(1,2)+2*k(2,2)+2*k(3,2)+k(4,2));

 x(i+1)=a+h*i;

end

kk=zeros(4,2);

for i=1:n

 kk(1,1)=h*w1(i);

 kk(1,2)=h*[(-2/x(i))*w1(i)+(2/(x(i))^2)*m1(i)];

 kk(2,1)=h*[w1(i)+(1/2)*k(1,2)];

 kk(2,2)=h*[(-(2/(x(i)+(h/2))))*(w1(i)+(1/2)*k(1,2))+(2/(x(i)+(h/2))^2)

*(m1(i)+(1/2)*k(1,1))];

kk(3,1)=h*[w1(i)+(1/2)*k(2,2)];

 kk(3,2)=h*[(-(2/(x(i)+(h/2))))*(w1(i)+(1/2)*k(2,2))+(2/(x(i)+(h/2))^2)

*(m1(i)+(1/2)*k(2,1))];

 kk(4,1)=h*[w1(i)+(1/2)*k(3,2)];

 kk(4,2)=h*[(-(2/(x(i)+(h))))*(w1(i)+k(3,2))+(2/(x(i)+(h))^2)

*(m1(i)+k(3,1))];

 m1(i+1)=m1(i)+(1/6)*(kk(1,1)+2*kk(2,1)+2*kk(3,1)+kk(4,1));

 w1(i+1)=w1(i)+(1/6)*(kk(1,2)+2*kk(2,2)+2*kk(3,2)+kk(4,2));

 end

012

y=m+((2-m(n+1))/m1(n+1))*m1;

for j=1:n+1

 yy(j)=1.1392070132*x(j)+(-0.03920701320/(x(j))^2)-

(3/10)*sin(log(x(j)))-(1/10)*cos(log(x(j)));

 ee(j)=abs(y(j)-yy(j));

end

[x' y' yy' ee']

plot (x,y,x,yy)

legend('Approx. Sol.','Exact Sol.');

Program 2

format long

clear

clc

a=0;

b=1;

h=1/20;

n=20;

x(1)=0;

m(1)=0;

w(1)=0;

m1(1)=0;

w1(1)=1;

k=zeros(4,2);

013

for i=1:n

 k(1,1)=h*w(i);

 k(1,2)=h*[(0)*w(i)+(4)*m(i)+(-4*(x(i)))];

 k(2,1)=h*[w(i)+(1/2)*k(1,2)];

 k(2,2)=h*[(0)+(4)*(m(i)+(1/2)*k(1,1))-(4*(x(i)+(h/2)))];

 k(3,1)=h*[w(i)+(1/2)*k(2,2)];

 k(3,2)=h*[(0)+(4)*(m(i)+(1/2)*k(2,1))-(4*(x(i)+(h/2)))];;

 k(4,1)=h*[w(i)+(1/2)*k(3,2)];

 k(4,2)=h*[(0)+(4)*(m(i)+k(3,1))-(4*(x(i)+h))];

 m(i+1)=m(i)+(1/6)*(k(1,1)+2*k(2,1)+2*k(3,1)+k(4,1));

 w(i+1)=w(i)+(1/6)*(k(1,2)+2*k(2,2)+2*k(3,2)+k(4,2));

 x(i+1)=a+h*i;

end

kk=zeros(4,2);

for i=1:n

 kk(1,1)=h*w1(i);

 kk(1,2)=h*[(0)+4*m1(i)];

 kk(2,1)=h*[w1(i)+(1/2)*kk(1,2)];

 kk(2,2)=h*[0+(4)*(m1(i)+(1/2)*kk(1,1))];

 kk(3,1)=h*[w1(i)+(1/2)*kk(2,2)];

 kk(3,2)=h*[(0)+(4)*(m1(i)+(1/2)*kk(2,1))];

 kk(4,1)=h*[w1(i)+(1/2)*kk(3,2)];

 kk(4,2)=h*[(0)+(4)*(m1(i)+kk(3,1))];

 m1(i+1)=m1(i)+(1/6)*(kk(1,1)+2*kk(2,1)+2*kk(3,1)+kk(4,1));

014

 w1(i+1)=w1(i)+(1/6)*(kk(1,2)+2*kk(2,2)+2*kk(3,2)+kk(4,2));

 end

y=m+((2-m(n+1))/m1(n+1))*m1;

for j=1:n+1

 yy(j)=(exp(1))^(2)*(((exp(1))^(4)-1)^(-1))*((exp(1))^(2*x(j))-((exp(1))^(-

2*x(j))))+x(j);

ee(j)=y(j)-yy(j);

end

[x' y' yy' ee']

plot (x,y,x,yy)

legend('Approx. Sol.','Exact Sol.');

program 3

% To approximate the solution of the nonlinear boundary-value problem

% Y'' = F(X,Y,Y'), A<=X<=B, Y(A) = ALPHA, Y(B) = BETA:

% INPUT: Endpoints A,B; boundary conditions ALPHA, BETA; number

%of subintervals N; tolerance TOL; maximum number of iterations M.

% OUTPUT: Approximations W(1,I) TO Y(X(I)); W(2,I) TO Y'(X(I))

% for each I=0,1,...,N or a message that the maximum number of iterations

was exceeded.

 syms('OK', 'A', 'B', 'ALPHA', 'BETA', 'TK', 'AA', 'N');

 syms('TOL', 'NN', 'FLAG', 'NAME', 'OUP', 'H', 'K', 'W1' ,'YY1','EE');

 syms('W2', 'U1', 'U2', 'I', 'X', 'T', 'K11', 'K12', 'K21');

 syms('K22', 'K31', 'K32', 'K41', 'K42', 'J', 's', 'x', 'y', 'z');

015

 TRUE = 1;

 FALSE = 0;

 fprintf(1,'This is the Nonlinear Shooting Method.\n');

 fprintf(1,'Input the function F(X,Y,Z) in terms of x, y, z.\n');

 fprintf(1,'followed by the partial of F with respect to y on the \n');

 fprintf(1,'next line followed by the partial of F with respect to \n');

 fprintf(1,'z or y-prime on the next line. \n');

 fprintf(1,'actual solution .\n');

 fprintf(1,'For example: (32+2*x^3-y*z)/8 \n');

 fprintf(1,' -z/8 \n');

 fprintf(1,' -y/8 \n');

 fprintf(1,' x^2+16/x \n');

 s = input(' ','s');

 F = inline(s,'x','y','z');

 s = input(' ','s');

 FY = inline(s,'x','y','z');

 s = input(' ','s');

 FYP = inline(s,'x','y','z');

 s = input(' ','s');

 YY11 = inline(s,'x','y','z');

 OK = FALSE;

 while OK == FALSE

 fprintf(1,'Input left and right endpoints on separate lines.\n');

 A = input(' ');

016

 B = input(' ');

 if A >= B

 fprintf(1,'Left endpoint must be less than right endpoint.\n');

 else OK = TRUE;

 end;

 end;

 fprintf(1,'Input Y(%.10e).\n', A);

 ALPHA = input(' ');

 fprintf(1,'Input Y(%.10e).\n', B);

 BETA = input(' ');

 TK = (BETA-ALPHA)/(B-A);

 fprintf(1,'TK = %.8e\n', TK);

 fprintf(1,'Input new TK? Enter Y or N.\n');

 AA = input(' ','s');

 if AA == 'Y' | AA == 'y'

 fprintf(1,'input new TK\n');

 TK = input(' ');

 end;

 OK = FALSE;

 while OK == FALSE

 fprintf(1,'Input an integer > 1 for the number of subintervals.\n');

 N = input(' ');

 if N <= 1

 fprintf(1,'Number must exceed 1.\n');

017

 else

 OK = TRUE;

 end;

 end;

 OK = FALSE;

 while OK == FALSE

 fprintf(1,'Input Tolerance.\n');

 TOL = input(' ');

 if TOL <= 0

 fprintf(1,'Tolerance must be positive.\n');

 else

 OK = TRUE;

 end;

 end;

 OK = FALSE;

 while OK == FALSE

 fprintf(1,'Input maximum number of iterations.\n');

 NN = input(' ');

 if NN <= 0

 fprintf(1,'Must be positive integer.\n');

 else

 OK = TRUE;

 end;

 end;

018

 if OK == TRUE

 fprintf(1,'Choice of output method:\n');

 fprintf(1,'1. Output to screen\n');

 fprintf(1,'2. Output to text File\n');

 fprintf(1,'Please enter 1 or 2.\n');

 FLAG = input(' ');

 if FLAG == 2

 fprintf(1,'Input the file name in the form - drive:\\name.ext\n');

 fprintf(1,'for example A:\\OUTPUT.DTA\n');

 NAME = input(' ','s');

 OUP = fopen(NAME,'wt');

 else

 OUP = 1;

 end;

 fprintf(OUP, 'NONLINEAR SHOOTING METHOD\n\n');

 fprintf(OUP, ' X(I) W1(I) YY1(I) EE(I)\n');

% STEP 1

 W1 = zeros(1,N+1);

 W2 = zeros(1,N+1);

 H = (B-A)/N;

 K = 1;

% TK already computed

 OK = FALSE;

% STEP 2

019

 while K <= NN & OK == FALSE

% STEP 3

 W1(1) = ALPHA;

 W2(1) = TK;

 U1 = 0 ;

 U2 = 1;

% STEP 4

% Runge-Kutta method for systems is used in STEPS 5 and 6

 for I = 1 : N

% STEP 5

 X = A+(I-1)*H;

 T = X+0.5*H;

 % STEP 6

 K11 = H*W2(I);

 K12 = H*F(X,W1(I),W2(I));

 K21 = H*(W2(I)+0.5*K12);

 K22 = H*F(T,W1(I)+0.5*K11,W2(I)+0.5*K12);

 K31 = H*(W2(I)+0.5*K22);

 K32 = H*F(T,W1(I)+0.5*K21,W2(I)+0.5*K22);

 K41 = H*(W2(I)+K32);

 K42 = H*F(X+H,W1(I)+K31,W2(I)+K32);

 W1(I+1) = W1(I)+(K11+2*(K21+K31)+K41)/6;

 W2(I+1) = W2(I)+(K12+2*(K22+K32)+K42)/6;

 K11 = H*U2;

001

 K12 = H*(FY(X,W1(I),W2(I))*U1+FYP(X,W1(I),W2(I))*U2);

 K21 = H*(U2+0.5*K12);

K22=H*(FY(T,W1(I),W2(I))*(U1+0.5*K11)+FYP(T,W1(I),W2(I))*(U2+0.

5*K21));

 K31 = H*(U2+0.5*K22);

K32=H*(FY(T,W1(I),W2(I))*(U1+0.5*K21)+FYP(T,W1(I),W2(I))*(U2+0.

5*K22));

 K41 = H*(U2+K32);

K42=H*(FY(X+H,W1(I),W2(I))*(U1+K31)+FYP(X+H,W1(I),W2(I))*(U2+

K32));

 U1 = U1+(K11+2*(K21+K31)+K41)/6;

 U2 = U2+(K12+2*(K22+K32)+K42)/6;

 end;

% STEP 7

% test for accuracy

 if abs(W1(N+1)-BETA) < TOL

% STEP 8

 I = 0;

 Fprintf(OUP, '%3d %13.8f %13.8f %13.8f\n', I, A, ALPHA, TK);

 for I = 1 : N

 J = I+1;

 X = A+I*H;

000

 YY1(J)=YY11(X,W1(J),W2(J));

 EE(J)=abs(YY1(J)-W1(J));

 Fprintf(OUP, ' %13.8f %13.8f %13.8f %13.8f \n', X, W1(J),

YY1(J),EE(J));

 end;

 fprintf(OUP, 'Convergence in %d iterations\n', K);

 fprintf(OUP, ' t = %14.7e\n', TK);

% STEP 9

 OK = TRUE;

 else

% STEP 10

% Newton's method applied to improve TK

 TK = TK-(W1(N+1)-BETA)/U1;

 K = K+1;

 end;

 end;

% STEP 11

% method failed

 if OK == FALSE

 fprintf(OUP, 'Method failed after %d iterations\n', NN);

 end;

 end;

 if OUP ~= 1

 fclose(OUP);

002

 fprintf(1,'Output file %s created successfully \n',NAME);

 end;

program 4

format long

clear

clc

a=1;

b=2;

h=1/10;

n=11;

y=zeros(10,1);

for i=1:10

 x(i)=a+(i)*h;

 yy(i)=1.1392070132*x(i)+(-0.03920701320/(x(i)^2))-

(3/10)*sin(log(x(i)))-(1/10)*cos(log(x(i)));

end

[x' yy'];

u=zeros(9,9);

bb=zeros(9,1);

u(1,1)=-((2*(h)^2/(x(1))^(2))+2);

u(1,2)=(1+(h/x(1)));

u(2,1)=(1-(h/x(2)));

bb(1)=((h)^2)*sin(log(x(1)))/(x(1))^(2)-(1-(h/x(1)));

for j=2:8

003

 for k=2:8

 if j==k

 u(j,k)=-1*((2*(h)^(2)/(x(j))^(2))+2);

 elseif j==k+1

 u(j,k)=(1-(h/x(j)));

 elseif j==k-1

 u(j,k)=(1)+(h/x(j));

 else u(j,k)=0;

 end

 end

end

u(9,8)=(1-(h/x(9)));

u(9,9)=-(2*(h)^(2)/(x(9))^(2)+2);

u(8,9)=(1+(h/x(8)));

u;

for oo=2:8

 ll(oo)=log(x(oo));

 bb(oo)=((h)^(2)*sin(ll(oo)))/(x(oo))^(2);

end

bb(9)=((h)^2)*sin(log(x(9)))/(x(9))^(2)-(2*(1+(h/x(9))));

[L U]=lu(u);

z=inv(L)*bb;

y=inv(U)*z;

y(10)=2;

004

for rr=1:10

 ee(rr)=abs(y(rr)-yy(rr));

end

[x' y yy' ee']

 plot(x,y,x,yy);

 xlabel('Time');

 legend('Approx. Sol.','Exact Sol.');

program 5

clc

clear

format long

a=0;

b=1;

n=19;

h=1/20;

y=zeros(20,1);

%y(1)=1;

for i=1:20

 x(i)=a+(i)*h;

end

 for jj=1:20

 yy(jj)=(exp(1))^(2)*(((exp(1))^(4)-1)^(-1))*((exp(1))^(2*x(jj))-

((exp(1))^(-2*x(jj))))+x(jj);

005

 end

[x' yy'];

u=zeros(19,19);

bb=zeros(19,1);

u(1,1)=-(2+(4*(h)^2));

u(1,2)=(1);

u(2,1)=(1);

bb(1)=(-4*x(1)*(h)^(2));

for j=2:18

 for k=2:18

 if j==k

 u(j,k)=-1*(2+(4*(h)^(2)));

 elseif j==k+1

 u(j,k)=(1);

 elseif j==k-1

 u(j,k)=(1);

 else u(j,k)=0;

 end

 end

end

u(19,18)=(1);

u(19,19)=-(2+(4*(h)^(2)));

u(18,19)=(1);

u;

006

for oo=2:18

 bb(oo)=(-4*(x(oo))*(h)^(2));

 end

bb(19)=(-4*(x(oo))*(h)^(2))-2;

bb;

[L U]=lu(u);

z=inv(L)*bb;

y=inv(U)*z;

y(20)=2;

 for rr=1:20

 ee(rr)=abs(y(rr)-yy(rr));

 end

 [x' y yy' ee']

 plot(x,y,x,yy);

 xlabel('Time');

 legend('Approx. Sol.','Exact Sol.');

program 6

clc

format long

clear

a=1;

b=3;

y0=17;

007

h=0.1;

n=(b-a)/h-1;

yn=(43/3);

x=[a+h:h:b-h];

y=17*ones(n,1);k=1;

c=zeros(n,1);j=zeros(19,19);m=50;

while norm (c-y ,inf)>0.000001

 %finding he jacobian matrix

 j(1,1)=-2+(1/16)*h*(y(2)-y0);

 j(1,2)=1+(1/16)*h*y(1);

 for i=2:n-1

 for t=2:n-1

 if i==t

 j(i,t)=-2+(1/16)*h*(y(i+1)-y(i-1));

 elseif i==t+1

 j(i,t)=1-(1/16)*h*y(i);

 elseif i==t-1

 j(i,t)=1+(1/16)*h*y(i);

 end

 end

 end

 j(n-1,n)=1+(1/16)*h*y(n-1);

 j(n,n-1)=1-(1/16)*h*yn;

008

 j(n,n)=-2+(1/16)*h*yn-(1/8)*h*y(n-1);

 %==

f(1,1)=(y(2)-2*y(1)+y0)-((h)^(2)/8)*(32+(2*(x(1).^3))-(y(1)*((y(2)-

y0)/(2*h))));

 for i=2:n-1

 f(i,1)= (y(i+1)-2*y(i)+y(i-1))-((h)^(2)/8)*(32+(2*(x(i).^3))-

(y(i)*((y(i+1)-y(i-1))/(2*h))));

 end

 f(n,1)=(yn-2*y(n)+y(n-1))-((h)^(2)/8)*(32+(2*(x(n)^3))-(y(n)*((yn-y(n-

1))/(2*h))));

 f;

 z=inv(j)*(-1*f);

 c=y;

 y=y+z;

 y

 end

xx=[a,x,b];

 y1=[y0,y',yn];

for tt=1:n+2

 yy(tt)=(xx(tt))^(2)+(16/xx(tt));

 e(tt)=abs(y1(tt)-yy(tt));

end

 [xx;y1;yy;e]'

009

 plot(xx,y1,xx,yy);

 xlabel('Time');

 legend('Approx. Sol.','Exact Sol.');

 program 7

clc

format long

clear

a=1;

b=2;

y0=2;

h=0.1;

n=(b-a)/h-1;

yn=(5/2);

x=[a+h:h:b-h];

y=2*ones(n,1);k=1;

c=zeros(n,1);j=zeros(n,n);m=50;

while norm (c-y ,inf)>0.000001

 %finding he jacobian matrix

 j(1,1)=((-2/(h)^2)-2*(y(1))^2+6);

 j(1,2)=1/(h)^2;

 for i=2:n-1

 for t=2:n-1

 if i==t

021

 j(i,t)=((-2/(h)^2)-2*(y(i))^2+6);

 elseif i==t+1

 j(i,t)=1/(h)^2;

 elseif i==t-1

 j(i,t)=1/(h)^2;

 end

 end

 end

 j(n-1,n)=1/(h)^2;

 j(n,n-1)=1/(h)^2;

 j(n,n)=((-2/(h)^2)-2*(y(n))^2+6);

 %==

 f(1,1)=(y(2)-2*y(1)+y0)+((h)^(2))*(-2*(y(1))^3+6*(y(1))+2*(x(1))^3);

 for i=2:n-1

 f(i,1)= (y(i+1)-2*y(i)+y(i-1))+((h)^(2))*(-

2*(y(i)^3)+6*(y(i))+2*(x(i))^3);

 end

 f(n,1)=(yn-2*y(n)+y(n-1))+((h)^(2))*(-2*(y(n)^3)+6*(y(n))+2*(x(n))^3);

 f;

 z=inv(j)*(-1*f);

 c=y;

 y=y+z;

 y;

 end

020

xx=[a,x,b];

 y1=[y0,y',yn];

for tt=1:n+2

 yy(tt)=(xx(tt))+(xx(tt))^(-1);

 e(tt)=abs(y1(tt)-yy(tt));

end

[xx;y1;yy;e]'

 plot(xx,y1,xx,yy);

 xlabel('Time');

 legend('Approx. Sol.','Exact Sol.');

program 8

clc

clear

ba=0;

bb=1;

n=15;

h=1/16;

alpha=1;

beta=2.718281828;

aa=0.5;

k=4;

for i=1:n

 t(i)=ba+i*h;

022

end

t

for j=1:n

p1((j))=aa/t(j);

q1((j))=(k*(t(j))^(aa+k-2)*(aa+k-1+k*(t(j))^(k)))/(t(j))^(aa);

end

[t' p1' q1']

a(1)=(-4-2*((h)^2)*q1((1)));

c(1)=(2+h*p1((1)));

for i=2:n-1

 a(i)=(-4-2*((h)^2)*q1((i)));

 c(i)=(2+h*p1((i)));

 d(i)=(2-h*p1((i)));

end

a(n)=-4-2*((h)^2)*q1((n));

d(n)=2-h*p1((n));

l(1)=a(1);u(1)=c(1)/l(1);

for i=2:n-1

 l(i)=a(i)-d(i)*u(i-1);

 u(i)=c(i)/l(i);

end

l(n)=a(n)-d(n)*u(n-1);

dd(1)=-(2-h*p1(1))*alpha;

for i=2:n-1

023

 dd(i)=0;

end

dd(n)=-(2+h*p1(n))*beta;

z(1)=dd(1)/l(1);

for i=2:n

 z(i)=(dd(i)-d(i)*z(i-1))/l(i);

end

y(n)=z(n);

for i=n-1:-1:1

 y(i)=z(i)-u(i)*y(i+1);

end

y

for i=1:n

 yy(i)=(2.718281828)^((t(i))^k);

end

yy

for i=1:n

ee(i)=y(i)-yy(i);

end

ee

 [t' y' yy' ee']

 plot(t',y',t',yy')

 legend('Approx. Sol.','Exact Sol.');

024

program 9

format long

clear

clc

a=0;

b=1;

aa=0.5;

k1=4;

h=1/10;

n=10;

x(1)=0.1;

m(1)=1;

w(1)=0;

m1(1)=0;

w1(1)=1;

k=zeros(4,2);

for i=1:n

 k(1,1)=h*w(i);

 k(1,2)=h*[(-aa/x(i))*w(i)+((((k1*(x(i))^(aa+k1-2))*(aa+k1-

1+k1*(x(i))^(k1)))/(x(i))^(aa))*m(i))+(0*(x(i)))];

 k(2,1)=h*[w(i)+(1/2)*k(1,2)];

 k(2,2)=h*[(-aa/(x(i)+(h/2)))*(w(i)+(1/2)*k(1,2))+((((k1*((x(i)+(h/2))

^(aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))^(k1)))/(x(i)+(h/2))^(aa)))

*(m(i)+(1/2)*k(1,1)))-(0*(x(i)+(h/2)))];

025

 k(3,1)=h*[w(i)+(1/2)*k(2,2)];

 k(3,2)=h*[(-aa/(x(i)+(h/2)))*(w(i)+(1/2)*k(2,2))+

((((k1*((x(i)+(h/2))^(aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))^(k1)))/(x(i)

+(h/2))^(aa)))*(m(i)+(1/2)*k(2,1)))-(0*(x(i)+(h/2)))];;

 k(4,1)=h*[w(i)+(1/2)*k(3,2)];

 k(4,2)=h*[(-aa/(x(i)+h))*(w(i)+k(3,2))+((((k1*((x(i)+h)^(aa+k1-

2))*(aa+k1-1+k1*(x(i)+h)^(k1)))/(x(i)+h)^(aa)))*(m(i)+k(3,1)))-

(0*(x(i)+h))];;

 m(i+1)=m(i)+(1/6)*(k(1,1)+2*k(2,1)+2*k(3,1)+k(4,1));

 w(i+1)=w(i)+(1/6)*(k(1,2)+2*k(2,2)+2*k(3,2)+k(4,2));

 x(i+1)=a+h*i;

end

x

kk=zeros(4,2);

for i=1:n

 kk(1,1)=h*w1(i);

 kk(1,2)=h*[(-aa/x(i))*w1(i)+((((k1*(x(i))^(aa+k1-2))*(aa+k1-

1+k1*(x(i))^(k1)))/(x(i))^(aa))*m1(i))];

 kk(2,1)=h*[w1(i)+(1/2)*kk(1,2)];

 kk(2,2)=h*[(-aa/(x(i)+(h/2)))*(w1(i)+(1/2)*kk(1,2))

+(((((k1*(x(i)+(h/2))^(aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))^(k1)))/

(x(i)+(h/2))^(aa)))*(m1(i)+(1/2)*kk(1,1)))];

 kk(3,1)=h*[w1(i)+(1/2)*kk(2,2)];

 kk(3,2)=h*[(-aa/(x(i)+(h/2)))*(w1(i)+(1/2)*kk(2,2))

026

+((((k1*((x(i)+(h/2))^(aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))^(k1)))/

(x(i)+(h/2))^(aa)))*(m1(i)+(1/2)*kk(2,1)))];

 kk(4,1)=h*[w1(i)+(1/2)*kk(3,2)];

 kk(4,2)=h*[(-aa/(x(i)+h))*(w1(i)+kk(3,2))+((((k1*((x(i)+h)^(aa+k1-

2))*(aa+k1-1+k1*(x(i)+h)^(k1)))/(x(i)+h)^(aa)))*(m1(i)+kk(3,1)))];

 m1(i+1)=m1(i)+(1/6)*(kk(1,1)+2*kk(2,1)+2*kk(3,1)+kk(4,1));

 w1(i+1)=w1(i)+(1/6)*(kk(1,2)+2*kk(2,2)+2*kk(3,2)+kk(4,2));

 end

y=m+(((exp(1))-m(n+1))/m1(n+1))*m1;

for j=1:n+1

 yy(j)=(2.718281828)^((x(j))^k1);

 ee(j)=abs(y(j)-yy(j));

end

[x' y' yy' ee']

plot (x,y,x,yy)

legend('Approx. Sol.','Exact Sol.');

program 10

%PADE APPROXIMATE METHOD (2,0) TO SOLVE BVP

%((x)^(aa)*y)'=k*x(aa+k-2)*(aa+k-1+k*(x)^k)*y

%0<x<1 y(0)=1 y(1)=e(1)

%=======================================

clc

clear

027

format long

D=[0 1];

n=15;

a=.5;

b=4;

h=(D(2)-D(1))/(n+1);

xx=D(1)+h+[0:h:D(2)-h];

xx

P=inline('-a/x','x','a');

Q=inline('(b*x^(a+b-2)*(a+b-1+b*x^b))/(x^a)','x','a','b');

PP=inline('a/(x^2)','x','a');

QQ=inline('28*x+96*x^5','x');

PPP=inline('-1/(x)','x');

QQQ=inline('28+480*x^4','x');

f=[-1 0;0 -1]

for i=1:1:n+1

 aa(1,1)=h*P(xx(i),a)+(h^2*(-PP(xx(i),a)+(P(xx(i),a))^2-

Q(xx(i),a,b)))/2+h^3*(PPP(

 xx(i))-3*P(xx(i),a)*PP(xx(i),a)+2*QQ(xx(i))+(P(xx(i),a))^3-

2*P(xx(i),a)*Q(xx(i),a,b))/6;

 aa(1,2)=h*Q(xx(i),a,b)+h^2*(-

QQ(xx(i))+P(xx(i),a)*Q(xx(i),a,b))/2+(h^3*(QQQ(xx(i))-2*

028

 PP(xx(i),a)*Q(xx(i),a,b)-

P(xx(i),a)*QQ(xx(i))+(P(xx(i),a))^2*Q(xx(i),a,b)-(Q(xx(i),a,b))^2))/6;

 aa(2,1)=-h-(h^2*P(xx(i),a))/2+h^3((PP(xx(i),a)-

(P(xx(i),a))^2+Q(xx(i),a,b)))/6;

 aa(2,2)=-1*(h^2*Q(xx(i),a,b))/2+h^3(QQ(xx(i))-

P(xx(i),a)*Q(xx(i),a,b))/6;

 AA(2*i-1,2*i-1)=aa(1,1);

 AA(2*i-1,2*i)=aa(1,2);

 AA(2*i,2*i-1)=aa(2,1);

 AA(2*i,2*i)=aa(2,2);

end

for r=1:1:n

 AA(2*r+1:2*r+2,2*r-1:2*r)=f;

end

AA(1,end)=-1;

AA(end-1,end)=0;

AA(end,end)=0;

 AA

 G=zeros(2*n+2,1);

 G(2)=1;

 G(2*n+1)=-1.6035*exp(1);

 G(2*n+2)=-0.9414*exp(1);

 G;

 [l,u]=lu(AA);

029

 t=inv(l)*G;

 y=inv(u)*t;

 y;

 y1(1)=y(2)

for jj=4:2: 32 %(2*(n+1))

 y1(jj/2)=y(jj);

end

y1

for i=1:n+1

 yy(i)=(2.718281828)^((xx(i))^b);

end

yy

for i=1:n+1

ee(i)=abs(yy(i)-y1(i));

end

[xx' y1' yy' ee']

Program 11

%PADE APPROXIMATE METHOD (3,0) TO SOLVE BVP

%((x)^(aa)*y)'=k*x(aa+k-2)*(aa+k-1+k*(x)^k)*y

%0<x<1 y(0)=1 y(1)=e(1)

%=======================================

clc

clear

031

format long

D=[0 1];

n=15;

a=.5;

b=4;

h=(D(2)-D(1))/(n+1);

xx=D(1)+h+[0:h:D(2)-h];

xx

P=inline('-a/x','x','a');

Q=inline('(b*x^(a+b-2)*(a+b-1+b*x^b))/(x^a)','x','a','b');

PP=inline('a/(x^2)','x','a');

QQ=inline('28*x+96*x^5','x');

PPP=inline('-1/(x)','x');

QQQ=inline('28+480*x^4','x');

f=[-1 0;0 -1]

for i=1:1:n+1

 aa(1,1)=h*P(xx(i),a)+(h^2*(-PP(xx(i),a)+(P(xx(i),a))^2-

Q(xx(i),a,b)))/2+h^3*(PPP(xx(i))-

3*P(xx(i),a)*PP(xx(i),a)+2*QQ(xx(i))+(P(xx(i),a))^3-

2*P(xx(i),a)*Q(xx(i),a,b))/6;

 aa(1,2)=h*Q(xx(i),a,b)+h^2*(-

QQ(xx(i))+P(xx(i),a)*Q(xx(i),a,b))/2+(h^3*(QQQ(xx(i))-

2*PP(xx(i),a)*Q(xx(i),a,b)-

P(xx(i),a)*QQ(xx(i))+(P(xx(i),a))^2*Q(xx(i),a,b)-(Q(xx(i),a,b))^2))/6;

030

 aa(2,1)=-h-(h^2*P(xx(i),a))/2+h^3*((PP(xx(i),a)-

(P(xx(i),a))^2+Q(xx(i),a,b)))/6;

 aa(2,2)=-1*(h^2*Q(xx(i),a,b))/2+h^3*(QQ(xx(i))-

P(xx(i),a)*Q(xx(i),a,b))/6;

 AA(2*i-1,2*i-1)=aa(1,1);

 AA(2*i-1,2*i)=aa(1,2);

 AA(2*i,2*i-1)=aa(2,1);

 AA(2*i,2*i)=aa(2,2);

end

for r=1:1:n

 AA(2*r+1:2*r+2,2*r-1:2*r)=f;

end

AA(1,end)=-1;

AA(end-1,end)=0;

AA(end,end)=0;

 AA

 G=zeros(2*n+2,1);

 G(2)=1;

 G(2*n+1)=1.5891723*exp(1);

 G(2*n+2)=-0.0529378*exp(1);

 G;

 [l,u]=lu(AA);

 t=inv(l)*G;

 y=inv(u)*t;

032

 y;

 y1(1)=y(2)

for jj=4:2: 32 %(2*(n+1))

 y1(jj/2)=y(jj);

end

y1

for i=1:n+1

 yy(i)=(2.718281828)^((xx(i))^b);

end

yy

for i=1:n+1

ee(i)=abs(yy(i)-y1(i));

end

[xx' y1' yy' ee']

Example

 Find pade approximations for
x

xf



1

1
)(expanded about 00 x

:
1

1
)(

x
xf




x0 = 0;

a = -1.5;

b = 1.5;

c = 0.0;

d = 8.5;

033

a0 = -1.0;

b0 = 1.0;

Needs [“Graphics‟ Colors”];

Needs [“Calculus „ pade”];

Cdot = Graphics [{{Red, PointSize [0.02], Point [{x0, f[x0]}]}}];

Rends=Graphics[{{Green,Line[{{a0,c},{a0,d}}]},{Red,

Line[{{a0,c},{x0,d}}]},{Green, Line[{{b0,c},{b0,d}}]}}];

For [n=1, n≤5, n++,

P[x_] = Together [Pade[f[x], {x, x0, n, n}]];

graph1= plot[f[x],{x,-1.5,0.9999}, PlotStyle→Magenta,

DisplayFunction→Identity];

graph2= Plot[P[x],{x,-1.5,1.5},PlotStyle→Blue,DisplayFunction→Identity];

Show[graph1, graph2, Cdot, Rends, PlotRange → {{a,b},{c,d}}, Tricks→

{Range[-1.5, 1.5, 0.5], Range[0, 5, 1]}, DisplayFunction→

$DisplayFunction];

Print [“f(x)=”,f[x]];

Print[“ nnP , ”,”[x]=”,P[x]],] See [15]

034

035

036

References

 [1] Ascher, Mattheij, R.M.M, RUSSELL,r.d, (1995). Numerical Solution

of Boundary Value Problems For Ordinary Dfferential Equations.

[2] Brabston, D.C. (1974). Numerical Solution of Singular Endpoint

Boundary Value Problems, Pasadena, California.

[3] Burden, R.L, Faires,J.D, (2001). Numerical Method, Youngstown

State University, seventh edition.

[4] Butcher, J.C. (2008). Numerical methods for ordinary differential

equations, Wiley.

[5] E1-gebeily, M.A, Attili, B.S,(2003). An Iterative Shooting Method

For a certain Class of Singular Two-point Boundary Value Problems,

King Fahd University of Petroleum And Minerals.

[6] Isaacson.E and keller.H.B,(1960). Analysis of Numerical Methods,

1NC, Newyourk.

[7] Keller,H.B, (1976). Numerical Solution of Two-point Boundary

Value Problems, California Institute of Technologe.

[8] Leveque,R.J,(2006). Finite Difference Methods For Differential

Equations, Washington University.

[9] Shampine.L.F, Gladwell.I , Thompson.S, (2003). Solving ODEs with

MATLAB, Cambridge, University Press.

[10] Thompson.P.A.O, (1996).Sequential And Parallel Numerical

Methods For Second Order Two-point Boundary Value Problems;

037

Brunel University.

[11] Twizell,E.I-J,(1988). Numerical Methods, With Applications In

The Biomedical Sciences, Brunel University.

[12] www.physics.arizona.edu.

[13] www.wikipedia.org.

[14] www.mathworks.com.

[15]www.math.fullerton.edu.

http://www.wikipedia.org/

2010

 ب

pade approximation methodsshooting method

