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Abstract
A singular Two points boundary value problem occur frequently in
mathematical modeling of many practical problems. To solve singular two
points boundary value problem for certain ordinary differential equations
having singular coefficients. Many numerical method such as shooting
method, finite difference method and pade approximation methods, have

been studied and analysed.



Chapter one



Introduction

1.1 Introduction

Mathematics is the body of knowledge centered on such concepts as
quantity, structure, space, and change, and also the academic discipline that
studies them. Benjamin Pierce called it " the science that draws necessary
conclusions".

Other practitioners of mathematics maintain that mathematics is the science
of pattern, and that mathematicians seek out patterns whether found in
numbers, space, science, computers, imaginary abstractions, or elsewhere.
Mathematicians explore such concepts, aiming to formulate new conjectures
and establish their findings by rigorous deduction from appropriately chosen
axioms and definitions.

Though the use of abstraction and logical reasoning, mathematics evolved
from counting, calculation, measurement, and the systematic study of the
shapes and motions of physical objects. Knowledge and use of basic
mathematics have always been an inherent and integral part of individual
and group life. Refinements of the basic ideas are visible in mathematical
texts originating in the ancient Egyptian, Mesopotamian, Indian, Chinese,
Greek and Islamic worlds. Rigorous arguments first appeared in Greek
mathematics, most notably in Euclid's elements. The development continued
in fitful bursts until the renaissance period of the 16™ century,
when mathematical innovations interacted with new scientific discoveries,

leading to an acceleration in research that continues to the present day.



Today, mathematics is used throughout the world in many fields, including
natural science, engineering, medicine, and the social sciences such as
economics.

Applied mathematics, the application of mathematics to such fields, inspires
and makes use of new mathematical discoveries and sometimes leads to the

development of entirely new disciplines. See [13]

1.2 Differential Equation

A differential equation is a mathematical equation for an unknown function
of one or several variables that relates the values of the function itself and of
its derivatives of various orders. Differential equations play a prominent role
In engineering, physics, economics and other disciplines.

Differential equations arise in many areas of science and technology,
whenever a deterministic relationship involving some continuously changing
quantities (modeled by functions) and their rates of change (expressed as
derivatives) is known or postulated. This is well illustrated by classical
mechanics, where the motion of a body is described by its position and
velocity as the time varies. Newton's laws allow one to relate the position,
velocity, acceleration and various forces acting on the body and state this
relation as a differential equation for the unknown position of the body as a
function of time. In many cases, this differential equation may be solved

explicitly, yielding the law of motion. See [3]&[13]
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1.3 Ordinary Differential Equations

In mathematics, an ordinary differential equation (or ODE) is a relation that
contains functions of only one independent variable, and one or more of the
function's derivatives with respect to that independent variable.

A simple example is Newton's second law of motion, which leads to the
differential equation

d’x(t) _
T F(x(t)) (1.1)

m

For the motion of a particle of mass m. In general, the force F depends upon
the position of the particle x (t) at time t, and thus the unknown function x (t)
and its derivatives appears on both sides of the differential equation .
Ordinary differential equations are to be distinguished from partial
differential equations where there are several independent variables
involving partial derivatives.

Ordinary differential equations arise in many different contexts including
geometry, mechanics, astronomy and population modeling. Many famous
mathematicians have studied differential equations and contributed to the
field, including Newton, the Bernoulli family, Reccati, Clairaut and Euler.
Many studies has been devoted to the solution of ordinary differential
equations. In the case where the equation is linear, it can be solved by
analytical methods, but the most of the interesting differential equations are
non-linear and can’t be solved exactly. Numerical methods that approximate

solutions can be established by using computer.  See[3]&[13]



1.4 Initial Value Problems
In mathematics, in the field of differential equations, an initial value problem
(IVP) is an ordinary differential equation together with specified values,
called the initial conditions, of the unknown function at a given point in the
domain of the solution. In physics or other sciences, modeling a system
frequently amounts to solving an initial value problem the differential
equation is an evolution equation specifying how, given initial conditions.
A simple form of initial value problem (I\VVP) is a differential equation

y () =f(t,y()) (1.2)
with initial condition Y(t,) =Y, .

A solution to an initial value problem is a function y that is a solution to the

differential equation and satisfies the initial condition yt) =Y.

1.5 Boundary Value Problems

A boundary value problems (BVP) is a differential equation together with a
set of additional restrictions on the boundaries, called the boundary
conditions. A solution to the boundary value problem is a solution to the
differential equation which also satisfies the boundary conditions.

Boundary value problems arise in several branches of science. For example
in physical differential equation for some problems involving the wave
equation, such as the determination of normal modes, are often stated as

boundary value problems.



To be useful in applications, a boundary value problem should be well-posed
this means that given the input to the problem there exists a unique solution,
which depends continuously on the input. Much theoretical work in the field
of partial differential equation is devoted to proving that boundary value
problems arising from scientific and engineering applications are in fact
well-posed.
For a boundary value problem, information about a solution to the
differential equation(s) may be generally specified at more than one point .
Often there are two points, which correspond physically to the boundaries of
some region, so that it is a two-points boundary value problem. A simple and
common form for a two-points boundary value problem involve a second-
order differential equation is:
y*=f(xy.,y) . a<x<b (1.3)
together with the boundary conditions
y(@) =« and y(b) =5

where ooand 3 are known constants and the known endpoints a and b may
be finite or infinite. See [1]&[3]
A more mathematical way to picture the difference between an initial value
problem and a two-points boundary value problem is that (IVP) has all of the
conditions specified at the same value of the independent variable in the
equation (and that value is at the lower boundary of the domain , thus the
term "initial value™ ).

On the other hand, a two-points boundary value problem has

conditions specified at the extremes of the independent variable.



For example, if the independent variable is time t over the domain [0,1], an
initial value problem would specify a value of y (t) and /or y' (t) attime t
= 0, while a two-points boundary value problem specify values for vy (t) or

y' (t) at both point’s t =0 and t = 1. See [13]

1.6 Singular BVPs

Many problems in varied fields as thermodynamics, electrostatics, physics,

and statistics give rise to ordinary differential equations of the form
-(py)+qy=wf

On some interval of the real line with some boundary conditions. Very often

singularities are encountered at one or more points in that interval. Singular

two-points boundary value problem occur frequently in mathematical

modeling of many practical problems.

Singular point of a differential equation, a point at which the coefficients are

not expandable in a Taylor series.

We mention here three examples to illustrate the point.

(1) The equation
1 v ,
-— [P (p)sin(p)] + 10(p) =0,  ¢€[0,7]
sin(¢p)
Appears when separation of variables is attempted on the heat equation in a
solid sphere or the electrostatic potential in the sphere. The source of the

singularity here is the vanishing of the function p at the endpoints.



(2) The equation
—((A—x*u)' = f(x), X e [-11]

Represents the steady state temperature distribution in a bar extending from
-1 to 1 if the thermal conductivity is a— XZ) .The same type of
singularity occurs here also. See [5]

(3) An example of a class of singular BVP s is:
(x7y')=f(x,y) (1.4)
0<x<1 , y@0O=A ,y(1)=B

Inwhich0 < a<1and A, B are finite constants. We assume also that

: : : of .
for 0 < x < 1, the real-valued function f (x , y ) is continuous a—y exists
_ ] of
and is continuous and that 5 > 0 . See [10]

The obvious difficulty of the equation above is the behavior of the term

y/x near x = 0.

1.7 Previous Works

Many previous works have been done on studied numerical methods for
solving singular BVPs, Gustafsson used some numerical methods that
treated only scalar problems, not systems, and does not deal at all with

existence or uniqueness of solutions. Natterer has treated systems, using a

projection method and has get O(h?[In h]") accuracy. He also has dealt
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with existence and uniqueness of solutions, but has used unnatural looking
boundary conditions, and has not state when the problem will have a
solution, only when the operator is Fredholm with index zero (not when the
operator's inverse exists). Jamet also has treated only scalar equations and

has used three-point finite difference schemes, which, for a model problem,

with O(h'™7) accurate solutions (o < (0,1) is a parameter of the

problem). Shampine has dealt with a class of nonlinear second order scalar
equations, all with the same linear differential operator. He has proved
existence and uniqueness of solutions of this equation for certain boundary
value problems and the convergence of collocation and finite difference

methods. See [2]

[10] Twizell (1988) has developed numerical methods for this class of
BVPs (1.4). Twizell's methods gave more accurate numerical results than
those previously available (such as those of Chawla and Katti (1982) ). They
are also more economical and easier to implement. See [10]

In this thesis we have explored some numerical methods for solving singular
two-points boundary value problem and we have written some codes in
matlab.

This thesis contains three chapters. Chapter 2 contains the general forms for
the differential equation, and the type of boundary conditions, then we
discuss a numerical methods to solve BVP, Shooting method, and Finite

Difference method, for linear and nonlinear BVVP.
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Chapter 3 is devoted to singular two-points BVP. We discuss regular
singular point, singularities of the first kind, irregular singular point, infinite
interval problem, and other singular problem. Then some numerical methods
were used to solve singular two-points BVP.

In this work, some numerical methods for solving these problems have been
studied and analysed.

MATLAB is used as a computational tool during the development of this

thesis.
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Chapter Two
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Some Numerical methods for Solving Boundary Value
Problems

2.1 Introduction

A system of ordinary differential equations may have many solutions.
Commonly a solution of interest is determined by specifying the values of all
its components at a single point x = a. This point and a direction of

integration define an initial value problem (IVP).

In many applications the solution of interest is determined in a more
complicated way. A boundary value problem (BVP) specifies values or
equations for solution components at more than one point in the range of the
independent variable x. Generally IVP has a unique solution, but this is not
true for BVPs. Like a system of linear algebraic equations, a BVP may not
have a solution at all, or may have a unique solution, or may have more than
one solution. Because there might be more than one solution, BVP solvers
require an estimate (guess) for the solution of interest. Often there are
parameters that must be determined in order for the BVP to have a solution.
Associated with a solution there might be just one set of parameters, a finite

number of possible sets, or an infinite number of possible sets. See [9]
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2.2 General Forms for the Differential Equations

For a second order non-linear BVVPs we have the general form

y' ) =fxy(x)y () asx<b
and the particular form that can be derived from the general one

y'(x) =1 (x.y (x)) a<x<b

These differential equations, valid in some interval [ a, b ], together with

(boundary) conditions imposed on the dependent variable and / or its first

derivative at the two points x = a and x = b give rise to the second order

general and special boundary value problems respectively.

For a linear boundary value problem which has the form
y'®)=pXy+aqXx)y+r(x) asx<b,

with boundary conditions y(@)=a ,y(b)= B

where p, g and r continuous functions on the interval [a , b].

Usually one assumes that a general ordinary differential equation can be

written as a first-order system
y'=f(x,y) a<x<b (2.1)

where Y =, 0, ¥, ®,. Y, ®)" is the unknown vector function y
eR" and fxx,y)=@Ff (x,y),f,(x,y),...f,(x,y)" is the (generally
nonlinear) right-hand side. The interval ends a and b are finite or infinite

constants. For a linear problem, the ODE simplifies to

y'=AX)Yy+ g(x) a<x<b (2.2)
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where the matrix A and the vector g are functions of x, A (x) € R"*"
and g (x) € R". The linear system (2.2) is called homogeneous if q = 0,
and it is non-homogeneous otherwise.

High-order ODEs can normally be converted to the first-order form.

Given any scalar differential equation

u=f(x,uu',..u™) a<x<b (2.3)
lety (X) = (Y 1(X),Y 2(X),.....y n (X)) " be defined by
y1 (X) = u(x)
Y2 (x) = U'(x) (2.4)

y n(¥)=u " (x)
Then the ODE can be converted to the equivalent first-order Form

Yi' =Yo
Yo' =Y

yn-lI :yn
ya'=f (X,Y1,Y2, Y n)

This is in the form (2.1).
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2.3 General Forms for the Boundary Conditions
A first-order system of ODEs like (2.1) has normally n boundary con-
ditions (BCs)

g(y(@,y()=0 (2.5)

where g = (g 1,..., gn ) ' is a (generally nonlinear) vector function and 0 is
a vector of n zeros. The simplest instance of g is the case for an IVP. Then

the solution is given at the initial point; that is,

y(@) =a (2.6)

where o =( d 1,..., 0L ) T € R"is a known vector of initial conditions
which uniquely determines y (x) near a .
The general form of linear two-point BC for a first- order

system (or for a higher-order ODE) is

Bay(@+Byry(b)=p (2.7)

HereB.,andB, € R"™"andp € R".

we see that for the linear BVP (2 .2 ) and (2.7) to have a unique
solution, it is necessary but not sufficient that these BCs be linearly
independent; that is, the matrix (B , ,B ) have n linearly independent
columns, or simply rank (B ., Bp)=n.
BC of the general form (2.7) are called non- separated BC, since each

involve information about y (x) at both endpoints. However it frequently
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happens that rank (B ;) <n or rank (B ) < n, or both. If either holds we call
the boundary condition partially separated.
In the case rank (B ) = g <n, the BVP can be transformed to one where the

BC have the form

Baly (a) = B 1
By @ +Bry((b) =P (2.8)

whereB ,€RP*"(p:=n-q),BpandBpeR " B, € RPandp,€R?
The BC are called separated if they simplify further to

Bay (a) = B1

B2y (b) = B2 (2.9)

The nonlinear BC (2.5) can also occur in partially separated or separated

form. Thus, the boundary conditions are separated if they are of the form

g1(y(@)=0
g2(y (b)) =0, (2.10)

whereg,,0;, € R?andg, 0, € R%withn=p +q.

In fact, a significant portion of the currently available software for BVPs

assumes that the BC are separated. See [1]
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2.4 Types of Boundary Conditions

For linear boundary value problems there are three types of conditions:
1. Functional boundary conditions i.e. y (a) = A and y (b) = B are given.
2. Derivative boundary conditions i.e. y* (a) = a and y' (b) =  are given.

3. Mixed boundary condition i.e. conditions in the form

Poy (@) +doY () =ro
pry (0) + a1y (b) =11
All three types of linear boundary conditions may be expressed in vector —

matrix form as :
[qo po}[y' (a)} . [ 0O o }[y'(b)} _ [ro}
0O 0 J y@® . P, y(b) N
sothat 4, =0, =0 givestype 1, P, =P, =0 gives type 2 and type 3 occurs

when all four constants are non-zero. Type 3 boundary conditions can be

written in the vector form (2.7).

Theorem 2.1

Suppose the function f in the boundary-value problem which has the form y
=f (x.y,y), as<x=b
where y(a)=a,y(b) =B iscontinuous on the set
D={(xyy) asxsb,-w0<y<ow,-0<y <o}

and that the partial derivatives f yand f . are also continuous on D. If
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(M fyx,y,y)>0 Forall (x,y,y) € Dand
(i) a constant M exists with
|fy(Xx)yy)|<Mforall(x,y,y') € D

Then the boundary-value problem has a unique solution. See[11]

* Note that theorem (2.1) gives the conditions under which the general BVP
with type 1 boundary condition has unique solution (existence and

unigueness).

When f (x,y,Yy') has the form

f(xyY)=pX)Yy+qX)y+r(x)

the differential equation (1.3) is said to be linear.
Theorem (2.1) can be replaced by the following theorem:

Theorem 2.2

If the linear boundary value problem:

Y'X)=pXy+qXx)y+r(x) (2.11)

a<x<b , y@=a.,yb)=2p8

satisfies:
(i) p (X), g (X) and r (x) are continuous on [a ,b]
(i) g(x)>0 on]Ja,b]

then (2.11) has a unique solution. See [11]
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2.5 Linear Second-Order BVP s

Consider the linear second order BVP (2.11). let y .=y, yi= VY then (2.11)

can be written as the system of first order differential equations:

e Sl

Which can be written in vector-matrix form as:
Dy=Qy+P (2.12)
With boundary conditions y, (0) = A, y1 (1) = B. See [10]

Numerical Methods To Solve BVP.

2.6 Shooting Method:

The simplest initial value method for BVPs is the single shooting method,
it's one of the more successful numerical techniques for solving the general
BVP with type 1 boundary conditions based on the idea of reformulating the

problem as a sequence of IVPs of the form (1. 3) with y (@) = A
y@=z ,i=o01,... (2.13)

To do this all conditions must be specified at one point. Suppose we choose
to impose some initial condition, at t = a, where there are some boundary
conditions are already known.

We guess the remaining boundary conditions at this point and, for the
moment, ignore the known boundary conditions at t = b. We now have an

IVP which can be solved using Range Kutta or any other appropriate
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method to obtain a numerical solution at t = b. These numerical values are
then compared with the known boundary condition at t = b. If the guessed
initial conditions are correct, there will be no discrepancies with the known
boundary conditions at t = b, and the solution to the IVP will be the solution
to BVP. If not, we need to modify the guessed initial conditions at t = a.
This is called the shooting method, for obvious reasons. See [3]
It is probably clear to the reader that 'shooting methods' are so-called
because of the analogy of firing missiles at a stationary target. Starting with
the parameter Z,, which determines the initial elevation at which the missile
Is discharged from the point (x , y) = (a, A). The trajectory of the missile is
computed by solving the initial value problem given by (1.3) and (2.13) with
I > 0. If the point of landing, (x ,y) = (b, y (b, Z, )) is not sufficiently close
to (b , B), the approximation is corrected by choosing another elevation z,,
and soon, until y(b, £, ) is acceptably close to the 'target' y (b) = B. See
[11]
Definition : A function f (t, y) is said to satisfy a Lipschitz condition in the
variable y on a set D < R? if a constant L > 0 exists with

[f oy — Ty <Ly, — Y,
Whenever (t, Y1), (t, ¥,) € D . The constant L is called a Lipschitz constant

for f.
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2.6.1 Shooting For Linear Problems

Consider the initial-value problems

y'=pX)Yy +a(x)y+r(x) asx<b (2.14)
y@)=a (2.15)
y'(@)=0 (2.16)

And
y'=p(X)y+a(x)y as<x<b (2.17)
y(@) =0 (2.18)
y'(a)=1 (2.19)

If p, g, r continuous and g > 0 on [a,b] then the Lipschitz condition exists and

(2.14) to (2.19) have unique solutions.

Take Y;(X) solution of (2.14) to (2.16), and Y, (X) solution of (2.17) to

(2.19), and take

y(x) = y,(x) + 2= zgg)yz(x) y, (b) %0 (2.20)

Where Y; (D) is the approximated solution for (2.14) to (2.16) at x = b,

and Y, (D) is the approximated solution for (2.17) to (2.19) at x = b.

Can be checked to be unique solution of BVP (2.11), and

B - yl()yz()

y'(X) = y1(X) + 0

(2.21)
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Y(x) = Y/(x) + ﬂy‘z—{;f)b) /(%) (2.22)
So
Y= p(x)y;+q<x)y1+r(x>+ﬂy‘—{;f)b)(p(x)y; +q00Y,)
_ ' ﬂ_yl(b) ' ﬂ_yl(b)
= p(X)(y; + v,(0) Y5) +a(x)(y, + v,(0) Y,) +1(X)

= p(X)y'(x) +a(x)(y(x) +r(x).
The shooting method for linear equations is based on the replacement of the
linear boundary-value problem by two initial-value problems.

See [3]&[12].
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Algorithm 2.1
Linear shooting

To approximate the solution of the boundary-value problem
—YV'4+pX)Yy+g(X)y+r(x) =0. a<x<b. y@=«a, yb)=27:

INPUT :endpoints a, b; boundary conditions o, 3; number of subintervals N.

OUTPUT : approximations Wai to Y(Xi); W2.i to Y (X;) for each i =

0,1,.....N.

Step 1 Set h = (b-a) / N:

U, = «,
u,, = 0;
Vio = O;
Vv, o, =1.

Step 2 Fori=0,.....,N-1 do steps 3 and 4.

(The Runge-Kutta method for systems is used in steps 3 and 4).
Step 3 Setx =a+ ih.
Step 4 Set

k1,1 = hu2,i;

k1,2 = h[p(X)UZ,i + q(X)ul,i + r(x)];

Koo =hluy; + 5K, 15

k2,2 = h[p(x + h/2)(uz,i + %kl,z)
+g(X+h/2)u,; +5k,)+r(x+h/2)J;

k3,1 = h[uz,i +3 kz,z];
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Ky, =h[p(X+h/2)(u,; +5K,,)
+q(x+h/2)(u,; +3k,,)+r(x+h/2)];
K,, =hl[u,; +k;,];
Kso =hIP(X+h)(uy; +Ky,) +a(x+h)(uy; +Kk; ) +r(x+h)];
Uiy =U; +5k, + 2K, + 2Ky, + K, 15
Uy i = Uy, +%[k1,2 + 2k2,2 + 2k3,2 + k4,2];
ki, =hv,;;
ki, =h[p(X)Vv,; +a(X)v;1;
koo =hlv,; + ki, 1;
ké,z =h[p(x+h/2)(v,, +%k1,,2) +q(x+h/2)(v,; +%k1,,1)];
Kga =Nlvy; +3K3,15
Ki, =h[p(X+h/2)(v,; +5K;,)+q(x+h/2)(v;; +5K',,.)];
kii =hlv,; +Kk;.1;
Kio =hIPp(X+h)(vy; +K35) +a(x+h)(vy; + ks,
=V T %[kl’,l + 2k£,1 + 2ké,1 + k:l,l];

_ 1 ’ ’ ’ ’
V2,i+l - V2,i +€[k1,2 + 2k2,2 + 2k3,2 + k4,2]-

Vl,i+1
Wl,O =,

Step5 Set WZOZ'B_ULN :
’ Vl,N

OUTPUT (&, W, 4, W,,)
Step 6 Fori=1,.... ,N

W1l= Uy + W, oVyi;

Set W2 = Uy + W5 0Vs s

X =a +ih;

OUTPUT (X,W1,W2), (Output is e, w,;,W,;.)
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Step 7 STOP. (The process is complete.)See [3]
Example 2.1

The linear boundary-value problem

y":_gy'+%y+w’ 1< x<?2
X X X

y(1)=1y(@)=2

has the exact solution
C 3 . 1
=C, X+ —2 ——sin(In x) — —cos(Inx
y =+ % —=sin(in x) — 7o cos(Inx)
Where
C, = %[8—123in(ln 2) —4cos(Inx)] = —0.03920701320

And

01 :%—cz +1.1392070132

Applying shooting method to this problem requires approximating the

solutions to the initial-value problems

" 2, 2 sin(In x
ylz——y1+—2yl+¥,1gxgz
X X X

Y1(1) =1, y,1(1) =0, and

” 2 4 2 !
yZ:_;yszFyZ’ 1<x<?2 yz(l)zoi y2(1):1
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Algorithm 2.1 uses the fourth-order Runge-Kutta technique to find the
approximation to y;(x) and y,(x).

The results of the calculations with N =10 and h = 0.1 are given in table

(2.1). The value listed as W; approximates and Y(X;) is the exact solution

and €€; is the error between the exact solution and the approximate solution.

2— y1(2)

y(x) =y, () + Y2 (X;) . See [3] Program 1

Y2 (2)

Table (2.1) : The approximate and exact solution for example 2.1.

X, (72 y (%) ee, =|y(x) - w|
1.000 1.000000 1.000000 0.000000
1.100 1.098134 1.092629 0.005505
1.200 1.1944776 1.187084 0.007391
1.300 1.290881 1.283382 0.007498
1.400 1.388198 1.381445 0.006753
1.500 1.486792 1.481159 0.005633
1.600 1.586783 1.582392 0.004391
1.700 1.688171 1.685013 0.003157
1.800 1.790895 1.788898 0.001997
1.900 1.894870 1.893929 0.000941
2.000 2.000000 2.000000 0.000000

The maximum error is 0.007498.
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©  Approx. Sol.

19 Exact Sol. )

1 | | 1 1 | | | 1 1
1 117 12 13 14 15 16 17 18 179 Z
X

Figure (1) : shows the approximate and the exact solution for example (2.1) that was
solved by shooting method.
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Example 2.2

The boundary-value problem

y'=4(y—-x), 0<x<1, y (0) =0, y (1) =1

has the exact solution
y(x)=e’*(e* -D (e —e ™) +x

Applying the shooting method to this problem requires approximating the
solutions to the initial-value problems
yr=4(y;—x), 0<x<1 y,(0)=0 y;(0)=0

yg = 4(3’2)’ 0<x<1 yz(o) =0 y;(O) =0
Algorithm 2.1 uses the fourth-order Runge-Kutta technique to find the
approximation to y;(x) and y,(x), which can be found in page 22.

The results of the calculations with N = 20 and h =1/20 are given in table

(2.2). The value listed as W; approximates and Y(X;) is the exact solution

and €€; is the error between the exact solution and the approximate solution.

11—y, (D)
Y. (@D

Y(x) =y, () + Y2 (%) | See [3] program 2
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Table (2.2) : The approximate and exact solution for example 2.2.

Xi Wi Yi ee =|y(x) - yy(%))
0.000 0.000000 0.000000 0.000000
0.050 0.077831 0.077618 0.000213
0.100 0.155918 0.155512 0.000406
0.150 0.234541 0.233962 0.000579
0.200 0.313987 0.313252 0.000734
0.250 0.394548 0.393676 0.000872
0.300 0.476531 0.475538 0.000993
0.350 0.560254 0.559157 0.001097
0.400 0.646053 0.644869 0.001184
0.450 0.734285 0.733031 0.001253
0.500 0.825330 0.824027 0.001303
0.550 0.919596 0.918265 0.001331
0.600 1.017525 1.016189 0.001336
0.650 1.119593 1.118278 0.001314
0.700 1.226316 1.225055 0.001261
0.750 1.338260 1.337086 0.001174
0.800 1.456040 1.454992 0.001047
0.850 1.580329 1.579455 0.000874
0.900 1.711865 1.711217 0.000647
0.950 1.851459 1.851099 0.000359
1.000 2.000000 2.000000 0.000000

The maximum error is 0.001336
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T Approx. Sol.
Exact Sol. =

1.8

1.6

14

1.2

0.8

0.6

04

0.2

Figure(2) : shows the approximate and the exact solution for example (2.2) that was
solved by shooting method.
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2.6.2 Shooting For Non-Linear Problems

The shooting principle extends to nonlinear problems. Consider the

following very simple model of a chemical reaction

u'+e" =0 O<x<1 (2.23)

u(O) =u@ =0 (2.24)
As an initial value problem. With u (0) =0 and u'(0) =t the problem

(2.23) has a unique solution. For each real t; denoted by u (x, t ). Now if we
find the correct "angle of shooting ", t* such that u (1; t*) = 0, then the
solution of the IVP also solves the BVP (2.23), (2.24).

Find t = t* which satisfies the equation

u(l;t)=0

This latter problem can be solved numerically by an iterative scheme.
Note that each function evaluation in this iterative scheme involves the
(numerical) solution of an IVP. See [1]

The shooting technique for the nonlinear second-order BVP (1.3) is
similar to the linear technique, except that the solution to a nonlinear
problem cannot be expressed as a linear combination to two initial value
problems. Instead, the solution to the boundary value problem is
approximate by using the solution to a sequence of initial value problem
involving a parameter t. These problems have the form

y'=f (x,y,Y), as<x<b, y@=a, y@=t (2.25
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We do this by choosing the parameters t = t, in manner to ensure that
Iim y(b,t,) = y() =4

Where y(X, tx) denotes the solution to the initial value problem (2.25) with
t =t and y (x) denotes the solution to the boundary value problem (1.3).

Start with a parameter t, that determines the initial elevation at which the
object is fired from the point (a, o) and along the curve described by the

solution to the initial value problem:

y' =f (xy,y), as<x<b, y@=oa, Y@=t .

If y (b, to) is not sufficiently close to [ we correct our approximation
by choosing elevations t;, t,, and so on, until y(b, ty) is sufficiently close to
B.

To determine the parameters ty, suppose a boundary value problem of
the form (1.3) satisfies theorem 2.1, 2.2 . If y(X, t) denotes the solution to the

initial value problem (2.25) we next determine t with
y(b,)-p=0 (2.26)

This is a nonlinear equation that can be solved by Newton's method
which use to generate the sequence { tx }, only one initial approximation, to,

IS needed.

The iteration has the form
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. y(b’ tk—l) _ /8

L=t
d
SR

(2.27)

and it requires the knowledge of (dy/ dt) (b, tc.1). This presents a difficulty

since an explicit representation for y(b, t) is not known; we know only the

values y (b, tp), y (b, ty), ...., y (b, t.1).
Suppose we rewrite the initial value problem (2.25), emphasizing that the
solution depends on both x and the parameter t:
v, ) =f (x,y(x, 0,y t),as<x<b,y@t=a, y(at)=t(2.28)
We have retained the prime notation to indicate differentiation with
respect to X. Since we need to determine (dy/ dt) (b, t) when t = t,4, we first

take the partial derivative of (2.28) with respect to t. This implies that

dy” o = oF '
g D =5 YDy (x.1)

_of (o tn X o (N
= (X, y(x,1),y'(x,1)) P & (X, y(x,1),y'(x,1)) po (x,1)
o 2
+ ay.(><, y(x,1),y'(x,1)) p (x,1).
Since x and t are independent, ox/ot =0 and
Nt Y xn+ () Y
po (x1) = o (X y(x1), y'(x,1)) p (x, 1)+ Y (x y(x1), y'(x,1)) - (x,1) (2.29)
For a <x <h. This initial conditions give

¥ (at) = ¥ at) =
at(a,t)—O and at(a,t) 1
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If we simplify the notation by using z (x, t) to denote (Sy/ot)(X,t) and
assume that the order of differentiation of x and t can be reversed, (2.29)

with the initial conditions becomes the initial value problem

2 (%,t) = %(x, y, y')z(x,t)+%(x, v, ¥)2' (1) (2.30)
as<x<b, z(at)=0, z(@t=1

Newton's method therefore requires that two initial value problems be

solved for each iteration, (2.28) and (2.30). Then from (2.27),

. y(b’ tk—l) — /8

=t z(b,t, ) (2.31)

Of course, none of these initial value problems are solved exactly; the

solution are approximated. See [3] & [6]

Algorithm 2.2
Nonlinear Shooting with Newton’s Method

To approximate the solution of the nonlinear boundary-value problem

y'=1(X,y,Y). a<x<b, y(@A)=«, y(b)=7:

INPUT : endpoints a, b; boundary conditions o, 3; number of subintervals N

> 2; tolerance TOL; maximum number of iterations M.
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_ X: ), W, . "(X.
OUTPUT : approximations Wiitg Y ') 2t Y (%) for each
1=0,1, ...... ,N or a massage that the maximum number of iterations was
exceeded.

Stepl Set h=(b-a)/N;
K=1,
TK=(B-a)/(b-a). (note: TK could also be input.)

Step 2 While (k < M) do steps 3-10.

Step 3 Set u, = 0;

Step 4 Fori=l1,....... ,N do steps 5 and 6.
(The Runge-Kutta method for systems is used in steps 5and 6.)
Step 5 Setx =a +(i-1)h.

Step 6 Set
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kyy =Mhwy, .

kya = hf (x99, 0954)0

kyy=hGwy,, + 5k ).

kao=hf (x+h/2,w, + 3k, Wy +55K3);
Fesy =h(Qwy, + 5k55);

ks =hf (x+h!2,, gk W %3k ,)
oy = h(Owg,y +ks,);

koo =W (x+how,  +ksywy,  +k3,)

Wie ™= Wopay T 00+ 200 4 20, 4 Ky )T 6

Wy, =Wy, y+(h,+ 2k 5 + 2k, +k,,) /6,
k', = hu,.

]"1',2 = h[fy (299 4 g W0 D0y # fy'(‘\“1rl,i—l Wy 4 Y3 j 4
k'yi=hlu; + k2 1

ks, =hlf,(x+h/2w, ,w,, J(u + k)

+ [+ /20w oy, gy + LR )T

iy = h(uy + 5k ,);
kyo=hlf,(x+h/2,w, 0w, )y +5k;))
+ [+ bl 2w, wa,  Wag + 555 5));
kyy = h(uy +k; ).
(a2 = hLf, (x+ howy oy wg )y + kyy)
# Jor & Wy W 0 J(Utg 4 K55)]
ty =ty + ¢ [k, + 205, + 203, + kg );

_ i A ! = ¢
ty =ty gl g% gy 4 2hsq +hys ]
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Step 7 If ‘WLN —,3‘ <TOL then do steps 8 and 9.
Step 8 Fori=0,1,...... N
set x=a+ih;
OUTPUT (X, Wy;, W),

Step 9 (The procedure is complete.)

STOP.

Wl,N _ﬁ

U,

Step 10 Set TK =TK —

(Newton’s method is used to compute TK.)
k =k+1.
Step 11 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was unsuccessful.)

STOP. See[3]
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Example 2.3

Consider the boundary-value problem

y”:%(32+2x3—yy’), 1<x<3, y(1)=17, y(3):§

has the exact solution
Y(x) = x% + —
x

Applying shooting method to this problem requires approximating the

solutions to the initial-value problems

y”:%(32+2x3—yy’), 1<x<3, yO =17, vy =t,

z”=—%(y’z+yz’), 1<x<3 z()=0, ZQ=1

Algorithm 2.2 uses the Runge-Kutta method of order four to approximate
both solutions required by Newton’s method. The value listed as
w; approximates and Y(X;) is the exact solution and €€ is the error

between the exact solution and the approximate solution. The results of the

calculations with N = 20 are given in table (2.3), See [3] program 3
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Table (2.3) : The approximate and exact solution for example 2.3.

X; W ; y(x) ee, =|w,; — y(x,)|
1.000 17.000000 17.000000 0.000000
1.100 15.755485 15.755454 0.000038
1.200 14.773372 14.773333 0.000035
1.300 13.9 97727 13.997692 0.000027
1.400 13.388599 13.388571 0.000017
1.500 12.916684 12.916666 0.000007
1.600 12.560007 12.560000 0.000002
1.700 12.301761 12.301764 0.000012
1.800 12.128876 12.128888 0.000021
1.900 12.031031 12.031052 0.000028
2.000 11.999971 12.000000 0.000036
2.100 12.029011 12.029047 0.000042
2.200 12.112684 12.112727 0.000047
2.300 12.246473 12.246521 0.000052
2.400 12.426614 12.426666 0.000056
2.500 12.649943 12.650000 0.000059
2.600 12.913786 12.913846 0.000062
2.700 13.215863 13.215925 0.000064
2.800 13.554221 13.554285 0.000066
2.900 13.927175 13.927241 0.000067
3.000 14.333266 14.333333 0.000000

The maximum error is 0.000067
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17(‘ | | | | | I | | |

O Approx. Sol. ||
— Exact Sol

16.5¢

161

155+

151

= 145F

14+

135+

13+

125+

12
1

Figure (3) : shows the approximate and the exact solution for example (2.3) that was
solved by shooting method.
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Example 2.4
Consider the non-linear boundary-value problem
” 4 1 1
Yy = y3_yy, 1<x<2, y(l):E’ y(2):§

has the exact solution

YOO = (x+17

Applying shooting method to this problem requires approximating the
solutions to the initial-value problems
1

y' =y’ —yy, 1<x<2, y(1)=§, y'@ =t

z2"=—(y'z+yz"), 1<x<2, z1=0, z’(1) =1

Algorithm 2.2 uses the Runge-Kutta method of order four to approximate
both solutions required by Newton’s method (page 35). The value listed as
w; approximates and Y(X;) is the exact solution and €€; is the error
between the exact solution and the approximate solution. The results of the

calculations with N = 10 are given in table (2.4). See [3] program 3
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Table (2.4) :The approximate and exact solution for example 2.4.

X; W, ; y(x) ee, = |w,; — y(x))
1.000 0.500000 0.500000 0.000000
1.100 0.476191 0.476190 0.000002
1.200 0.454547 0.454545 0.000003
1.300 0.434786 0.434782 0.000004
1.400 0.416671 0.416666 0.000006
1.500 0.400006 0.400000 0.000007
1.600 0.384622 0.384615 0.000008
1.700 0.370378 0.370370 0.000009
1.800 0.357152 0.357142 0.000010
1.900 0.344838 0.344827 0.000011
2.000 0.333345 0.333333 0.000000

The maximum error is 0.000011
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05(\ | | | | | | | | |
O Approx. Sol.
— Exact Sol

048+

046+

0.44}

042}

04F

036+

036+

034+

032 | ] | | | | | | ]

Figure (4): shows the approximate and the exact solution for example (2.4) that was
solved by shooting method.
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2.7 Finite Difference Methods

In these methods, no initial value problems are explicitly integrated.
Rather, an approximate solution representation is sought over the entire
interval of interest. Thus, these methods are sometimes referred to as global

methods.

The basic steps of a finite difference method are outlined as follows,

we choose a mesh Q to the interval [ab], where

Q=(@=X, <X, <....<Xy,; =b) then approximate solution values are

then sought at these mesh points X; fori=2, 3, ..., n

Form a set of algebraic equations for the approximate solution values by
replacing derivatives with difference quotients in the differential equations
and boundary conditions that the exact solution satisfies.

Finally, solve the resulting system of equations for the approximate solution,

this gives a set of discrete solution values Y; = Yo (X;) .

Finite difference methods proceed by replacing the derivatives in the
differential equations by finite difference approximations. This gives a large

algebraic system of equations to be solved in place of differential equation.

To approximate y' we can use one-sided approximation

Y+ =Y0) 1 p y(x) = yra YR ZYX=P)

D v(x)=Vy'=
Y(X) =y - n



45

Or we can use centered approximation :

y(x+h)—y(x—h)
2h

Dyy(x)=y'=

Which is the average of the two one-sided approximations. It is clear that
Doy(X) gives a better approximation than either of the one-sided
approximations also it gives us a second order accurate approximation .

We can use finite difference to solve a differential equation consider the

second order differential equation

y'®)=f(x), 0<x<1 (2.32)

y(0)=a y(@)=8

The function f (x) is specified and we wish to determine y (x) in the interval
0 < x < I. This problem is called two points boundary value problem. Since

boundary conditions are given at the two distinct points 0 and 1.

2.7.1 Simple One-Step Schemes for Linear first-order Systems
Consider now the linear first-order system
y=AXy+f(x),x € [a,b],y €R" (2.33)
Bay (@) +Bpy(b)=p (2.34)
and we seek numerical methods which work equally well for non-uniform
meshes. This naturally leads to one-step schemes, schemes which define the

difference operator based only on values related to one subinterval
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[X X.+1] of the mesh Q at a time. The two simplest such finite difference

schemes are the midpoint and the trapezoidal schemes.

For a (generally non-uniform) mesh €, a discrete numerical solution
T : :
0=V Yorees Ynia) s sought, Where y; is to approximate

component-wise the exact solution y(x) at X = X;,i=2,3, ...., N. The
numerical solution (in all methods based on one-step schemes) is required to
satisfy the boundary condition (2.34).

For the interior mesh points, two difference schemes are presented. For each

subinterval [X X,+1]1=1,2,3,.....,N—1,N, of Q the derivative in (2.33) is

yi +1 yi ) . . .
replaced by h . This approximation is centered at

Xivaj2 =X+ N with h. = (X.,—X:) at the middle of the subinterval.

Then A (x) y (x) + f (x) is approximated by a centered approximation,

yielding second-order accuracy. The trapezoidal scheme is defined by:

y|+1 yl
h.

= 1A Vi + AGO)Y, 45T ) + FOORSE N 2.35)

and the midpoint scheme is defined by:

1 -
yth_ Yi — E A(Xi+1/2)(yi+1 + yl) + f(xi+1/2) 1<i1<N (236)
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The latter scheme (2.36) is also known as the box scheme. In vector-matrix

form, both of these methods can be written as

Ay =F (2.37)
and, in detail,
_SlRl __yl ] i fl |
SZRZ y2 f2
. . e (2.38)
SyRy | - fy
_Ba Bb__yN+1_ _ﬂ |

Where S,;, R; are n x n matrices. For the trapezoidal scheme

S, =—h'1-1A(x), R, =h?l-2A(x,,)

fi Z%[f (%) + F(x)] 1<i<N (2.39)

while for the midpoint scheme

S, :_hi_ll —3 AX,2), Ry = hi_lI —3 AlX;1/2)
f.=1(x,,,) 1<i<N

;(2.40) See [1]

2.7.2 Finite-Difference Methods for Linear Problems

Consider more general linear equation
y"=p(X)y'+a(x)y+r(x)

Together with two boundary conditions, "Dirichlet conditions "
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y@=o ,yMb)=p
Let X, =a+1h,j=0,1,2 .. N+land N= X, — X

This equation can be discretized to second order by:

(yi—l — ZYi + yi+1) -p (yi+1 — yi—l) _
h’ ' 2h

Where, for example, p; = p(X;), d; = a(x;) and I, =r(X), this gives the

qy,=r,1=1,2,....N

linear system A'Y = F where A is the tri-diagonal matrix.

| —(2+h%q,) (1+hp,/2)
(1-hp,/2) —(2+h*q,) (1+hp,/2)

1
A
(l_ hprl/Z) _(2+ thN—l) (1+ hprl/Z)
! (1-hpy/2) —(2+h%qy) ]
Y, ] r,—(@/h?+ p,/2h)a |
Y, P!
and Y= . | F =
Y N1
Yy | ry —(@/h?+ py/2h)4]|

This linear system can be solved with standard techniques assuming the
matrix is nonsingular. A singular matrix would be a sign that the discrete
system does not have a unique solution, which may occur if the original

problem, or nearby problem, is not well posed.
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The discretization used above, while second order accurate, may not
be the best discretization to use for certain problems of this type. Often the
physical problem has certain properties that we would like to preserve with
our discretization, and it is important to understand the underlying problem
and be aware of its mathematical properties before blindly applying

numerical method. See [8]

2.7.3 Neumann Boundary Conditions

Consider we have one or more Neumann boundary conditions, instead
of Dirichlet boundary conditions, meaning that a boundary condition on the
derivative y' is given rather than a condition on the value of y itself. We

might have heat flux at a specified rate giving y' = a at this boundary.

Consider the equation (2.32) with boundary conditions:

y (@) =ay(@)=p (2.41)

to solve this problem numerically, we need to introduce one more unknown
than we previously had: Y, at the point x,= 0 since this is now an unknown
value. We also need to augment the system (2.37) with one more equation
that models the boundary conditions (2.41). As a first try, we might use a
one-sided expression for y'(0) such as:

Y1 — Yo

T h = (2.42)
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If we append this equation to the system (2.37) we obtain the following

system of equation for the unknowns Y,, Yy, ... ,Yy
" —h h 171 Y, I a ]
1 -2 1 Y, f(x)
1 1 -2 1 Y, f(x,)
h? - N (2.43)
1 -2 1 A\ f(Xy_)
i 1 -2 IR _f(xN—ﬂ/hZ)_

Solving this system of equations does give an approximation to the true
solution. To obtain a second-order accurate method, we should use a
centered approximation to y'(0) = a, instead of the one-sided approximation
(2.42). We can introduce another unknown Y_; and instead of the single

equation (2.42), use the following two equations:
1
F (Y-l- 2Y0+Y1) =f (Xo)
(2.44)
1
2n (Yi-Y) =«

This results in a system of N+2 equation.

Introducing the unknown Y_; outside the interval [0,1] where the
original problem is posed may seem unsatisfactory. We can avoid this by
eliminating the unknown Y_ from the two equation (2.44) resulting in a

single equation that can be written as:

%0YﬁYQ=a+gf@@ (2.45)
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We have now reduced the system to one with only N+1 equation for the
unknowns Y,,Yq, ... ,Yn. The matrix is exactly the same as the matrix in
(2.43) which came from the one-sided approximation, the only difference in

the linear system is that the first element in the right hand side of (2.43) is

now changed from o to o +g f (Xxo) we can view the left hand side of

(2.45) as a centered approximation to y' (X, + g) and the right hand side as
the first two terms in the Taylor series expansion of this value
\ h : h ., h
Y o+ 2)=Y (o)t 5 V')t - =at S (ot

Algorithm 2.3

Linear Finite-Difference

To approximate the solution of the boundary-value problem

y'=p(X)y +a(x)y+r(x), asx<b, y(@=«a, yb)=45:
INPUT : endpoints a, b; boundary conditions o, 3; integer N > 2, and

elements of matrix A and the right hand side.

OUTPUT : approximations W; to y(X;) foreachi=0,1, ....... , N+1.
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Step 1 Set

h=((Mm-—a)/(N +1);

X =a+ h;

a, =2+ h*q((x);

b, =—1+(/2)p(x);

d, = —h’r(x) + @+ (h/2) p(x))c.

Step 2 Fori=2,...... , N-1
Set
X=a+ih;
a, =2+h*q(x);

b, =-1+(h/2)p(x);
¢; =—1-(h/2)p(x);
d, =—-h?r(x).

Step 3 Set

X=b-h;

a, =2+h?*q(x);

cy =—1-(h/2)p(x);

d, =-h’r(x) + (@A—(h/2)p(x))s.

Step 4 Set 1, =a; (steps 4-8 solve a tridiagonal linear system algorithm.)

u1:b1/a1;
z, =d, /1,.
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Step 5 Fori=2,...... ,N-1 set

Ii =a; —GU; 4
u =b /L
Z; = (di _Cizi—l)/li

Step 6 Set

IN =ay —CyUy_1;
Zy = (dN _CNZN—l)/IN'

Step 7 Set

W, = «&;

Wy = B
Wy = Zy -

Step 8 Fori=N-1,...... 1 set w, =z, —u,w,,,.
Step 9 Fori=0,....... ,N+1 set x=a+ih;
OUTPUT (X, W) .

Step 10 STOP. (The procedure is complete.)
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Example 2.5
Algorithm (2.3) will be used to approximate the solution to the boundary-

value problem

y :—zy +£2y+sm(lglx)’ 1<x<2
X X X

y)=1y(2)=2
with h = 0.1 which was also approximated by the shooting method in

example (2.1), gives the results listed in table (2.5). The value listed as

w; approximates and Y(X;) is the exact solution and €€; is the error

between the exact solution and the approximate solution. program 4

Table(2.5) : The approximate and exact solution for example 2.5.

Xi W, Yi €6 = ‘W(Xi) - Y(Xi )‘
1.000 1.000000 1.000000 0.000000
1.100 1.092600 1.092629 0.000028
1.200 1.187043 1.187084 0.000041
1.300 1.283336 1.283382 0.000045
1.400 1.381402 1.381445 0.000043
1.500 1.481120 1.481159 0.000039
1.600 1.582359 1.582392 0.000032
1.700 1.684989 1.685013 0.000024
1.800 1.788881 1.788898 0.000016
1.900 1.893921 1.893929 0.000008
2.000 2.000000 2.000000 0.000000

The maximum error is 0.000045




55

C Approx. Sol.
T — Exact Sol.

Figure (5): shows the approximate and the exact solution for example
(2.5) that was solved by finite difference method.
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Example 2.6

Algorithm (2.3) will be used to approximate the solution to the boundary-

value problem
y"=4(y-x), 0<x<1, y (0) =0, y (1) =1
with h = 1/20, which was also approximated by the shooting method in

example (2.2), gives the results listed in table (2.6). The value listed as

w; approximates and Y(X;) is the exact solution and €€; is the error

between the exact solution and the approximate solution. program 5
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Table (2.6) : The approximate and exact solution for example 2.6.

Xi Yi YYi €6 = ‘Y(Xi) - yy(Xi)‘
0.000 0.000000 0.00000 0.000000
0.050 0.077616 0.077618 0.000001
0.100 0.155509 0.155512 0.000003
0.150 0.233957 0.233962 0.000005
0.200 0.313244 0.313252 0.000008
0.250 0.393664 0.393676 0.000012
0.300 0.475520 0.475538 0.000017
0.350 0.559132 0.559157 0.000024
0.400 0.644835 0.644869 0.000033
0.450 0.732986 0.733031 0.000045
0.500 0.823967 0.824027 0.000059
0.550 0.918188 0.918265 0.000076
0.600 1.016091 1.016189 0.000098
0.650 1.118155 1.118278 0.000123
0.700 1.224900 1.225055 0.000154
0.750 1.336894 1.337086 0.000191
0.800 1.454757 1.454992 0.000235
0.850 1.579168 1.579455 0.000286
0.900 1.710870 1.711217 0.000347
0.950 1.850682 1.851099 0.000417
1.000 2.000000 2.000000 0.000000

The maximum error is 0.000417
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G Approx. Sol.
18§ — Exact Sal.

1.6F

14+

1.2F

08r

06r

04F

02r

Figure (6) : shows the approximate and the exact solution for example (2.6) that was
solved by finite difference method.
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2.7.4 Finite-Difference Method for Nonlinear Problems

For the general nonlinear boundary-value problem y* =f (x,y, V),
a < x <b, if the function f satisfies the following conditions:

1. f and the partial derivatives f, and f,. are all continuous on

D={(x.yy) ,a<x<b,-0<y<ow,-0<y <o},
2.fy(X, y,¥") >0 on D, for some 6 > 0;

3. Constants k and L exist, with

k = (mg(@‘ f,(x,y,y) and L= (Wm‘ f. (XY, y").
This ensures, by Theorem 2.1 page 17, that a unique solution exists.
Discretizing the interval a < x < b into N+1 subintervals each of
width  h so that (N+1) h = b — a, a numerical method determines a vector Y
= [yLYs. ... yn1", Where y; is an approximation to y (x;). The derivatives
y'(x) and y'(x) will be replaced by their second-order central difference

approximants to the equation

y' (i) = (i, y(xi), y'(i))

for eachi=1,2, ... ,N this gives

y(Xi+1) T 2Y(Xi) + y(Xi—l) _ y(Xi+1) B y(Xi—l)
" =T(x, y(x), oh )

Where yo= o and yn+1= . The solution is thus found by solving the NxN

nonlinear system
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2y1— Yo +h? £ ( Xy v (Yo—a)/2h) = q,
— Y1 +2y2— Ya+ h* f (X2, y2, (ys—y1) / 2h) =0,
(2.48)

—Yn-2 F2YN1— YNt h f ( Xn-1, Y1, (Yn—Yn-2) 1 2h) =0,

—Yn1 F2yn+ 0P (Xn, Yn, (B — Yna) /20) = B,

We use Newton’s method for nonlinear systems, to approximate the
solution to this system. A sequence of iterates {( y:%, y,%, ...., yw® )} is
generated that may converges to the solution of the system (2.48), provided
that the initial approximation ( y:?, v,, ...., yn@ ) is sufficiently close to
the solution (ys, Y, ..., yn), and that the Jacobian matrix for the system is
nonsingular. For system (2.48), the Jacobian matrix J(yi,...., yn) IS a

tridiagonal with ij-th entry

h Yoy = Vi . :
“1+=fo(x,y, 222 for i=j-1 and =2, ... N,
+ (%Y, o ) J J

30h - )y =200, 000, L2, dor =) and =L N
h

Yo=Y o .
—1-—f.(x,y., L), for i=j+1 and =1 .. N-1
> (%Y, o ) j+ J

Newton’s method for nonlinear system requires that at each iteration the

NxN linear system
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04
_(2y1_y2_a+h2f(x1,y1,y2 )

2h
_y1+2y2 —y3+h2f(X2,y2, ygz_hyl)a---’

J(y]_, ey yN) (Vl, e VN)t = -V
—Ynoo T 2yN—l —Yut h2 f (XN—l’ yN—l’M)!

2h
IB_ yN—l
2h

_nyl+2yN+h2f(XN’yN1 )_ﬁ)t

Be solved for vy, Vs...., vy, since vi ® = y; &P+ v, foreachi=1, 2, ... ,N.

See [3] & [10]

Algorithm 2.4

Nonlinear Finite-Difference

To approximate the solution to the nonlinear boundary-value problem
y'=f(xy,y) a<x<b, y(@=«, yb)=2:

INPUT : endpoints a, b; boundary conditions a, 3; integer N > 2, tolerance

TOL; maximum number of iterations M.

OUTPUT : approximations W; to Y(X;) for eachi=0,1,...... N+1 ora

message that the maximum number of iterations was exceeded.

Step 1 Set
h=(b-a)/(N +1);
W, = a;
Wy, = B
. _ i ﬂ_ h
Step 2 For i=1,...... , N set Wi_a+l(b_ )



Step 3 Setk=1.

Step 4

Step 5

Step 6 For 1=2,

Step 7
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While K < M do steps 5-16.

Set

set

Set

X=a+h;

t=(w, —a)/(2h);

a, =2+h*f (x,w,1);
==1+(h/2)f, (X, w,1);

= (2w, W, —a +h? f (x,w, ).

Xx=a+ih;

t= (Wi+1 _Wi—l) /(Zh);

a, =2+h*f, (x,w,t);

b, :—1+(h/2)fy,(x,Wi,t);
c,=—-1-(h/2) fy,(x,wi,t);

d; =—(2w, =W, =W, +h* f (x,w;, 1)).

X=b-h;

t=(8-wy,)/(2h);

ay =2+h*f (x,wy,t);

¢y =-1-(h/2)f, (x,wy,1);

d, =—-(2w, —w,,, — B+h*f(x,w,,1)).

Step 8 Set |, =a,; (steps 8-12 solve a tridiagonal linear system.)

u1:b1/a1;
z,=d, /1.
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Step

Step

Step

Step

Step

Step
Step

Step
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9 Fori=2,...... , N-1 set

Ii =a; —GU;_4,

u, =b /1;;

z; =(d; —c;z; /.
10 Set

IN =ay —CyUy_1;
zy =(dy —cyzya) /-

11 Set
Vy =2y
12 Fori=N-1,...... ,1 set
Vi =4 =WV,
W, =W, +V,.

13 If ||v||<TOL Then do steps 14 and 15.
14 For i=0,...... N+1 set x=a +ih;
OUTPUT (x,w;) .
15 STOP. (The procedure was successful.)
16 Set k=k+1,
17 OUTPUT (‘Maximum number of iterations exceeded’);

(The procedure was unsuccessful.)

STOP.
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Example 2.7

Consider the boundary-value problem

y":%(32+2x3—yy'), 1<x<3, y@1)=17, y(?»):%3

has the exact solution

y(x) = x2 + 12
X

Applying finite difference method to this problem the solutions results in

table (2.7). The value listed as W; approximates and Y(X;) is the exact

solution and €€; is the error between the exact solution and the approximate

solution. program 6
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Table (2.7) : The approximate and exact solution for example 2.7.

X; W, Y, ee; =|W(x;)— y(X)|
1.000 17.000000 17.000000 0.000000
1.100 15.754502 15.755454 0.000951
1.200 14.771740 14.773333 0.001593
1.300 13.995677 13.997692 0.002014
1.400 13.386296 13.388571 0.002274
1.500 12.914252 12.916666 0.002413
1.600 12.557538 12.560000 0.002461
1.700 12.299326 12.301764 0.002438
1.800 12.126529 12.128888 0.002359
1.900 12.028813 12.031052 0.002238
2.000 11.997915 12.000000 0.002084
2.100 12.027142 12.029047 0.001905
2.200 12.111019 12.112727 0.001707
2.300 12.245024 12.246521 0.001496
2.400 12.425388 12.426666 0.001278
2.500 12.648944 12.650000 0.001055
2.600 12.913012 12.913846 0.000833
2.700 13.215311 13.215925 0.000614
2.800 13.553885 13.554285 0.000400
2.900 13.927046 13.927241 0.000195
3.000 14.333333 14.333333 0.000000

The maximum error is 0.002461
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O Approx. Sal.
— Bxact 5ol |7

16.5¢

16F

155¢

15f

= 145r

idr

135¢

13

125¢

12

Figure( 7): shows the approximate and the exact solution for example (2.7) that was
solved by finite difference method.
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Example 2.8

Consider the boundary-value problem
y' =2y -6y —2x° 1=<x<2 y@d =2 y(2)=g
has the exact solution

y(X) =X+ X"
Applying finite difference method to this problem the solutions results in
table (2.8). The value listed as W; approximates and Y(X;) is the exact

solution and €€; is the error between the exact solution and the approximate

solution. program 7

Table (2.8) : The approximate and exact solution for example 2.8.

X; W, Y; ee, =|w(x;) — y(x)|
1.000 2.000000 2.000000 0.000000
1.100 2.009256 2.009090 0.000165
1.200 2.033570 2.033333 0.000237
1.300 2.069431 2.069230 0.000200
1.400 2.114447 2.114285 0.000161
1.500 2.166795 2.166666 0.000129
1.600 2.225105 2.225000 0.000105
1.700 2.288321 2.288235 0.000085
1.800 2.355607 2.355555 0.000051
1.900 2.426252 2.426315 0.000063
2.000 2.500000 2.500000 0.000000

The maximum error is 0.000237
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2.5 I I I I I I r:'
O Approx. Sol.

Exact Sol. -

245

24

2.35

2.3

= 225¢ -

21

e
.
T
1

]
—
[ ]
T
1

Figure( 8) : shows the approximate and the exact solution for example (2.8) that was
solved by finite difference method.
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Chapter Three
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Singular Two-Points BVP

3.1 Introduction

Singular two-points boundary value problem occur frequently in
mathematical modeling of many practical problems.

We consider first a system of linear ordinary differential equations on a
finite interval with a singularity of the first kind at one endpoint. We treat the
same problem with singularities at both endpoints and with a singularity on
the interior of the interval.

Consider a class of singular BVPs:

Xy )y=f(x,y), 0<x<1 y(0)=A y@®=B (31)

In which O < oo <1and A, B are finite constants, we assume also that for

: : _ daf :
0 < x < 1, the real-valued function f (x, y) is continuous, d—y exists and is

df
continuous and that d_y > 0. See [2]

3.2 Regular Singular Point ,Singularities of The First Kind
Consider the ODE
(X“y")' -f(x,y)=0 0<x<1 (3.2)

If we assume here that oo = 1 in (3.2). The assumptions on the regularity of a

solution y (x) of (3.2) imply that lim y (X) exists, as x decreases to 0.
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This is needed in order to make the BVP for (3.2) meaningful, and is

reasonable in most applications. These assumptions further yield that
f(0,y(0)=0 (33)

which must be compatible with the prescribed BC. In fact, the requirement
(3.3) is often used to determine part of the BC.
To be more specific, let us consider now the linear BVP which has a singular

point of the first kind
y'=AXYy+q(x 0<x<1 (3.4)
1 _—
where A(X) = = R+ A(X) (3.5)
here y (x), g (x), are n component vectors, and A (x), R, A(x) aren xn
matrices. R is a constant matrix, and g (x) € C (0,1].

For any solution y (x) of (3.4), we require y (x) € C'(0,1] , we also impose a

linear system of two-points boundary conditions written as
lim {B, y(x)}+ B,y()) = & (3.6)
note that we cannot merely write
Boy(0) +By(1) =45 3.7)
because y (X) is not even necessarily defined at x = 0. Notice also (3.7)

implies that IM B,y (X) is bounded.
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Let the fundamental solution matrix, Y (x), for the homogeneous equation

for (3.4). That is, Y (X) satisfies

Y'=AKXY, x€ (01], Y(X)=1, X € (0,1] (3.8)
Then every solution to (3.4) can be written

Yy =cY () +yp(x) xe(0.1] (3.9)

where y (x) is any particular solution of (3.4) and where c is a constant

vector. where the particular solution Y, (x) satisfies

Yo =L(X) O0<x<1y,(0)=0 (3.10)
Where 0 <35 <1, See [2] & [7]
The smoothness of f (X, y) in (3.2) [or of A (X) and g (x) in (3.4)] does
not imply corresponding smoothness of y(x) near x = 0.

For example, the IVP
xy'=3Yy, YO =0
has the solution y () =~/X . which has an unbounded first derivative at

x = 0. However, where often the solution y (x) is nonetheless smooth near
the singularity. The performance of numerical methods for problems with

singularities of the first kind where the solution is smooth at the singularities.
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The situation is much less straightforward for some of the initial value. This
Is because not all fundamental solution components of (3.4) may be expected

to be as smooth near the singularity as the solution y(x) is.

For example, the IVP

_2 2

y'=—y+—

X X
y(@0)=1

1
has the solution y (x) = 1 and a fundamental solution Y(X)= <.z -Therefore

a special treatment near x = 0 is often required before a code based on an
initial value approach can be used.

Such a special treatment may consist of power expansion of a fundamental
solution in the vicinity of x = 0, followed by use of an initial value code

when we are sufficiently far away from the singularity. Once a fundamental
solution y(¥, 0<x<d, has been found in this way, an appropriate
particular solution can be found as well, and the boundary condition
B,Y(8) + B,y®) =B (3.11)
can be constructed to replace (3.6). The location of the joint >0 has to be

small enough so that the power series expansion for Y(x) on [0,6] can be

easily and efficiently constructed, and at the same time large enough so that
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the BVP (3.4), (3.11) on [6,1] can be solved by a standard initial value
method without difficulty. See [1]

3.3 Irregular Singular Point

There is at present no theoretical work justifying numerical methods for
solving problems with irregular singular points. The main practical
occurrence of such problems seems to be those formulated on infinite

intervals and we examine some simple examples here. See [7]

Suppose that we have the ODE
y'=FfX y)=AKXYy a>0 (3.12)
Then a transformation
1= = (3.13)
X

reformulates (3.12) as an ODE defined on the interval (0,1], namely

dy a
t? —= = —af (—, ,
™ ¢ . V) (3.14)

in which we recognize an ODE with a singularity of the second kind. In

(3.13) we have assumed that a > 0. If a < 0 then the transformation

1
t= x+l_a and reformulates (3.12) as an ODE defined on the interval
(0,1], namely.

tz%z—f(%+a—1, v)
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Since the formulation (3.12) is more natural, and since it turns out to be usu-

ally preferable for numerical discretization as well.

Of course, when it comes to numerical discretization the infinite

interval [@,00] has to be replaced by a finite one, say [a, b ] where b is

"large". See [1]

3.4 Other Singular Problem

We now consider three cases of singularities . The first of three is the case

of an equation with a singularity at both ends of the interval [0,1]:
, 1 1 ~
y = (; R, + ERl +A(X)y +b(x), xe(0,1) (3.15)

Where R;and R,are constant n x n matrices, and b (x) € C(0,1). We use

the boundary conditions

lim Boy(x)+1LT_ B,y =24 (3.16)

x—0*

Substituting the form of y (x) (3.9) & (3.10) into this boundary condition we

have
lim [B,eY () + By, (0] + im[BY () + By, (0= 3.7
For f&(x) =0, then A(x) may have singularities which are weaker than
1 R, + 1 R, .

X 1-x
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The second case is the case of a singularity in the interior of the interval. The

equation is the same as our original equation (3.4) but on the interval

xe[-1,0)U(0,]].
y = (%R LAY +b(), xe[-10)U (0] (3.18)

We use a system of boundary conditions at -1 and 1:
B.y(-D)+B,y =8 (3.19)
By a solution to (3.18), (3.19) we mean any of the functions
y(x) =cY(X)+Yy,(x), xe[-1,0)U(01] (3.20)
Which satisfies (3.19). In satisfying (3.19), we must have

[BLY(-D)+BY@lc=4-B,y,(-1)-By, (1) (3.21)

Since Y(-1),Y(2), yp(-l), and yp(l) exist with no singularities. Then here
the singularity index is zero, so that if a solution is required for every B,
B,Y (—1) + B,Y (1) must be nonsingular. If B,Y (=1)+B,Y () is singular,
then B—B.Y, (-1 —B,y, (1) must lie in its range .

The third and final case is simply treating the case of a regular
differential equation on an infinite interval. We will illustrate this case for a

semi-infinite interval, treating the problem
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) Y =A(X)y +b(x), xe[0,x)
(o) Im B, y(x)+By(0)=4. (3.22)
If we make the change of variable

t —

1 1
;—1 (3.23)

, Or X =
X +1
We map X €[0,) into t €[1,0) . Letting
A 1 A 1 ~ 1
y() = Y(¥ —-D,A@l) = A(; —1),b(t) = b({ -1,
the problem is then transformed into

@ YO =—FAOY® + 3 B®.t <[10)

b) im B, y(®)+ B,y = S 3.24)

Then a necessary and sufficient condition for (3.24) to have at most a
singularity of the first kind att = 0 is and A () = 0.
This statement implies that if

1
<2

A(X) = % R+ 0(-%) asxom (3.25)

(3.24) will have exactly a singularity of the first kind if R is not the zero

matrix. See [2]
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3.5 Finite Difference (Pade Based) Methods

We now describe schemes of finite difference methods based on pade
rational approximation. These methods are based on rational approximants
to the exponential function.

Pade approximants are defined as follows:

Let T(z),Z<C pe function in a region of the complex plane

containing the origin z = 0.
A pade approximant. R,J,,{ (2) to the function f (2) is defined as by:

P.(2)
f(z) = Q,(2) where P_(z)and Q,(2), are polynomials of degrees

Kand i respectively.

For the function f(z) =€’ , the polynomials P.(2)and Qﬂ (2) , are given

explicitly as:

= (e +x — ) K1 i
P = 2 o at e i)

And

- (=)
R B s VS TR PR T



79

If € = m + T, (Z) | then the remainder T, . (2)is given

by:

(_1 K+1Z(,u+/<+1) 1 . y
j’e(z(l—u))u W’ qu

T = or 0.

The Pade approximants for f(z) =e* (for 1L =1,2,3,4. and k =1,2,3,4)
Can be generated from the above equations .

Example : When k =0 & p = 2 we will have

, 1
e —=

1—z+122
2

See Appendix for more function approximations.
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3.5.1 A Numerical Method Based on The (2,0) Pade

Approximant

Consider the linear second order BVP (2.11). lety .=y, y1= y' then (2.11)

can be written as the system of first order differential equations:

\Z8 —qg — P Y1 r
Which can be written in vector-matrix form as:
Dy=Qy+P

With boundary conditions y, (0) = A, y1 (1) = B. See [10]

To solve this class of singular BVP

(x“y')y=f(x,y), 0<x<1, y0)=A, y1)=B (3.26)
Inwhich0<a <1 and A, B are finite constants.

o—1

Y''+oa y'=1t(X,¥y)

This problem can be written in vector-matrix form as
Dy=Qy+p (3.27)

With special case thatis P = O.
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The boundary conditions become Y,(0)=A , y,()=B. Using the

relation, Y(X +h) =€"™y(x) and replacing the exponential term by its (2,0)

Pade approximant, we get

2

[1— hD—|—h7 D*ly(x + h) = y(x) +0o(h?®)

2

| — hDy + % D(Dy) = y(x)

Using (3.27) and its second derivative and applying the resulting equation to

the  discrete  point, of Q (where Q is the grid

8= Xy <Xy <X o <Xy <Xy1 =D obtained by discretizing the interval

[a, b] into N+1 subintervals each of width h = % N ez") leads to
the finite-difference formula:

A.Y.+BY =0 ,(k=012,..., N) (3.28)
Where B, =—1 , s the identity matrix, Y« =[Yu: Yol and the

elements of the matrix A K 41are

ak+1,1,1 ak+1,1, 2
A Kl — |:

ak+1,2,1 a'k+1,2,2

Such that
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h? :
Q110 =1+ hp+?(— P+ p2 —q)

2

h .
Q112 = hqg + 7 (—a'+ pa)

h?p
A 1,01 = —h — >
h2
A 1,22 21_?(:'

Here the functions p, q and their first derivatives are functions of the

independent discrete points X1 .
After the vector-matrix equation (3.28) has been applied to the discrete
points Xg, Xy X yeeeens 2 Xy, Of Q  the result is a system linear equations
with 2 (N+1) equations in 2 (N+1) unknowns:

AY =G

Where

A B,
B, A
B

A . A

BN AN +1



&3

A and By (k=1,2,...,N) are as defined in (3.28)
Y = (Yo Vs o Ynal ', where Yoo = [Yao Yol (K =12, N).

The last vector ¥n. = [Yinats )’10]T and in this case the two matrices
0 -1 A = AN 0
By and A.will be defined as B0 =| ) and v = Ay O

respectively.

The vector G is defined by

and Onu = [_aN+1,l,2 yON+1’_aN+l,2,2 yo,M]T -
3.5.2 A Numerical Method Based on The(3,0)Pade

Approximant
Using the relation Y(X -+ h) = e"°y(X) and replacing the exponential term
by its (3,0) Pade approximant gives:
h? h?
[1—hD+ (?)DZ — (?)D?’]y(x +h) = y(x) +o(h*)

Using (3.27) and its second and third derivatives leads to the finite difference

method

A Y +By, =0 , (k=012,..,N) (329
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T
Where B,.=—I , | isthe identity matrix, Y« :[y1k1y0k] and the

elements of the matrix Ay,; are

2 3

h , he
Y =1+hp+7(—p+p2—q)+g(p —3pp'+2q+p° —2pq)

h he |
1112 =hCI+7(—CI+IOCI)+E(CI -2p'q- pg+p’q—q°)
2 3

h h
a =—h-——p+—(p—-p°+
(k+1),2,1 > P 5 (p—p°+0q)

2 3

h .
Q1122 =1— ) q+ 5 (9'-pa)
Here the functions p, g and their first and second derivatives are functions of

the independent variable x at the discrete point X, .

After applying the vector-matrix equation (3.29) to the discrete points

Xoy X153 X5 erennnans -» Xy . We obtain the system of linear equations with

2 (N+1) equations in 2 (N+1) unknowns:

Ay=G
Where Ayand B, are as defined in (3.29). The 2(N+1) vector

.
Y =[Yo Y11 Vs 2 Yn] contains the 2 x 1 sub-vectors

Vi(k=0,12,..... N) where Yk =[¥1 Yo, I
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The last sub-vectors in y is Yn.1 = [ylN+1 , ylo] . Its structure depends on
the type of boundary conditions. Also in this case the two matrices B o and

A\ .1 are defined respectively as :
B 0O — A AN+1)11 0
o — N+l —
0 ofand Ansy21 O
The vector G =[07, 5 eeeeenne 2 On +1]T contains the sub-vectors

g. =0 ,(k=0,12,....., N) . Thefirst and last sub-vectors 9,

and 9 -1 are updated, because of the boundary conditions , to

T
o= [0, Yo, ]T and 9N+1:[_‘3‘(1\1+1)1,2 yON+1’_a(N+1)sz yoNH] respectively.

See [4]&[10]
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Example 3.1
(x“yY =8 X Na+ -1+ xP)y, 0<x<1
With boundary conditionsy (0) =1,y (1) =e.
With o= 0.5 and B =4,
Which has the exact solution y (x) = exﬁ , this problem is linear and it has
singularity at x = 0, The value listed as W; approximates and Y(X;) is the

exact solution and €€; is the error between the exact solution and the

approximate solution. Applying algorithm 2.3 to this problem the solutions

results in table (3.1) , program 8
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Table (3.1) : The approximate and exact solution for example 3.1.

X. W Y, ee, = W(x) — y(X,)
0.00000 1.000000 1.000000 0.000000
0.06250 1.002787 1.000015 0.002772
0.12500 1.004631 1.000244 0.004387
0.18750 1.006828 1.001236 0.005592
0.25000 1.010477 1.003913 0.006563
0.31250 1.016962 1.009582 0.007379
0.37500 1.028057 1.019972 0.008085
0.43750 1.046027 1.037315 0.008711
0.50000 1.073772 1.064494 0.009278
0.56250 1.115088 1.105295 0.009792
0.62500 1.175092 1.164844 0.010247
0.68750 1.260930 1.250325 0.010604
0.75000 1.382958 1.372187 0.010771
0.81250 1.556749 1.546209 0.010540
0.87500 1.806589 1.797113 0.009475
0.93750 2.171762 2.165120 0.006641
1.00000 2.718281 2.718281 0.000000

The maximum error is 0.010771
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2= - '
O Approx. Sol.

— Exact Sol.

1.8F

= 16F

14r

— g

Figure (9): shows the approximate and the exact solution for example (3.1) that was
solved by finite difference method.



Applying algorithm 2.1 to example 3.1 ,The results of the calculations with

89

N =10 and h = 0.1 are given in table (3.2).

Table (3.2) : The approximate and exact solution for example 3.1.

X, W, V. e, =|w(x,) - y(x)
0.000 1.000000 1.000100 0.000100
0.100 1.009164 1.000100 0.009064
0.200 1.018424 1.001601 0.016823
0.300 1.030473 1.008132 0.022340
0.400 1.052422 1.025930 0.026491
0.500 1.094095 1.064494 0.029601
0.600 1.170135 1.138372 0.031762
0.700 1.304094 1.271376 0.032718
0.800 1.537564 1.506215 0.031348
0.900 1.951364 1.927261 0.024103
1.000 2.718281 2.718281 0.000000

The maximum error is 0.032718
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E.E | I | I I I
© Approx. Sol. N

25 Exact Sol.

24

22

1.8

1.6

14

1.2

T
=

Figure (10): shows the approximate and the exact solution for example (3.1) that was
solved by shooting method.
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To solve example (3.1) using pade (2,0) and pade (3,0) with .= 0.5 and

B =4 the results in table (3.3) and (3.4) respectively.

Table (3.3): The approximate and exact solution for example 3.1.

1.0e+012 *

X.

Yi

(W(x) = y(x))
y(x)

0.00000000000006

-0.00000000000418

0.00000000000100

0.00000000000518

0.00000000000013

0.00000000002646

0.00000000000100

0.00000000002545

0.00000000000019

-0.00000000036398

0.00000000000100

0.00000000036453

0.00000000000025

0.00000000913803

0.00000000000100

0.00000000910140

0.00000000000031

-0.00000015338691

0.00000000000101

0.00000015193205

0.00000000000038

0.00000081648072

0.00000000000102

0.00000080049210

0.00000000000044

0.00000963647942

0.00000000000104

0.00000928982185

0.00000000000050

-0.00012760212962

0.00000000000106

0.00011987110841

0.00000000000056

-0.00001325637190

0.00000000000111

0.00001199350800

0.00000000000062

0.00600375866353

0.00000000000116

0.00515412737749

0.00000000000069

-0.01569498348483

0.00000000000125

0.01255271789526

0.00000000000075

-0.13140344030893

0.00000000000137

0.09576200872853

0.00000000000081

0.57807099917539

0.00000000000155

0.37386337482886

0.00000000000088

1.22280382687261

0.00000000000180

0.68042668483199

0.00000000000094

-9.02533317841833

0.00000000000217

4.16851236290096

0.00000000000100

0.00000000001333

0.00000000000272

0.00000000000391
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Table (3.4) : The approximate and exact solution for example 3.1.

1.0e+014 *

X.

W.

Yi

(w(x) = y(x))
y(%)

ee =

0.00000000000000

-0.00000000000005

0.00000000000001

0.00000000000006

0.00000000000000

0.00000000000078

0.00000000000001

0.00000000000077

0.00000000000000

-0.00000000007366

0.00000000000001

0.00000000007358

0.00000000000000

0.00000000366492

0.00000000000001

0.00000000365062

0.00000000000000

-0.00000007717323

0.00000000000001

0.00000007644076

0.00000000000000

0.00000053492313

0.00000000000001

0.00000052444872

0.00000000000000

0.00000381175595

0.00000000000001

0.00000367463426

0.00000000000001

-0.00006697411107

0.00000000000001

0.00006291635482

0.00000000000001

0.00005736275989

0.00000000000001

0.00005189811113

0.00000000000001

0.00294360222848

0.00000000000001

0.00252703376125

0.00000000000001

-0.00953942058839

0.00000000000001

0.00762954963518

0.00000000000001

-0.06223875592692

0.00000000000001

0.04535732302178

0.00000000000001

0.31221754240677

0.00000000000002

0.20192451143853

0.00000000000001

0.57403913840400

0.00000000000002

0.31942290277875

0.00000000000001

-4.77720221691693

0.00000000000002

2.20643671625442

0.00000000000001

0.00000000000012

0.00000000000003

0.00000000000003
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The function bvp4c solves a class of singular BVPs of the form

»

y
]

18y + fx. y)

gyt 0y, y(b))
It can also accommodate unknown parameters for problems of the form

¥

y
]

1
;S}' +fix, ¥, p)

gly(0), y&).p)

Singular problems must be posed on an interval [0,b] with b>0. Use bvpset
to pass the constant matrix s to bvp4c as the value of the 'SingularTerm'
integration property. Boundary conditions at x = 0 must be consistent with
the necessary condition for a smooth solution, Sy(0) = 0. An initial guess
should also satisfy this necessary condition.

When you solve a singular BVP in Matlab using

sol = bvp4c(@odefun,@bcfun,solinit,options)

bvp4c requires that your function odefun(x, y) return only the value of the

f (x,y) term.


http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvp4c.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvpset.html
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Example 3.2
Emden’s equation. Emden's equation arises in modeling a spherical body

of gas. The PDE of the model is reduced by symmetry to the ODE
y %}"+ ¥ =0

on an interval [0. 1. The coefficient 2 / x is singular at x = 0, but symmetry
implies the boundary condition y'(0) = 0. With this boundary condition, the

term

2
2710

is well-defined as x approaches 0. For the boundary condition ¥(1) = 372,

this BVP has the solution

2 12
yix) = (1+"’§]

Rewrite the problem as a first-order system and identify the singular

term. Using a substitution y,=Y and Y, =Y', write the differential

equation as a system of two first-order equations

r

Y1 = ¥o
e 2 5
Yo = __;}2_3*1

The boundary conditions become
¥o(0) =10
y4(1) = f3r2

Writing the ODE system in a vector-matrix form



the terms are identified as

g- |00
-2
¥o
filx,y) = l: {I
|

Code the ODE and boundary condition functions. Code the differential

and

equation and the boundary conditions as functions that bvp4c can use.
function dydx = emdenode(X,y)
dydx = [ y(2)
YIS T;
function res = emdenbc(ya,yb)
res = [ ya(2)
yb(1) - sqrt(3)/2 ];
Setup integration properties. Use the matrix as the value of the 'Singular
Term' integration property.
S =[0,0;0,-2];

options = bvpset('SingularTerm',S);


http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvp4c.html
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Create an initial guess. This example starts with a mesh of five points and a

constant guess for the solution.

y(x)=Af3/2
Yolx)=0

Use bvpinit to form the guess structure

guess = [sqrt(3)/2;0];

solinit = bvpinit(linspace(0,1,5),guess);

Solve the problem in Matlab. Use the standard bvp4c syntax to solve the
problem.

sol = bvp4c(@emdenode, @emdenbc,solinit,options);

View the results. This problem has solution

1;2 -1.2

v = (1+5 ]
The example evaluates the solution at 100 equally spaced points and plots it
along with the numerical solution computed using bvp4c.
x = linspace(0,1);
truy =1 ./ sgrt(1 + (x.2)/3);
plot(x,truy,sol.x,sol.y(1,:),'ro’);
title("Emden problem -- BVP with singular term.")
legend('Computed");

xlabel('x");


http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvpinit.html

ylabel('solution y'); See [14]
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Table (3.5) : The approximate and exact solution for example 3.2.

X, w, Yi ee, = |w(x) - y(x)|
0.000 1.0000005109 1.0000000000 0.0000005109
0.125 0.9974064705 0.9974059619 0.0000005086
0.250 0.9897438277 0.9897433186 0.0000005091
0.500 0.9607707751 0.9607689228 0.0000018522
0.750 0.9176644937 0.9176629354 0.0000015582
1.000 0.8660254037 0.8660254037 0.0000000000

The maximum error is 0.0000018522
' i ‘— dralwical
O Computed

! 1 1 1
0 o2 04 0.6 as 1
x

Figure( 11): Emden problem — BVP with singular term.
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Conclusion and Results

Various numerical methods namely: Finite Difference, Shooting, Pade
Approximant, have been studied to compare the efficiency of these methods.
It is desirable to develop the results to Pade Approximant to obtain more
accurate for the approximate solution.

From the above work, we see that shooting method is more accurate
for non-linear problems, on the other hand, finite difference method is more

accurate for linear problems.
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Appendix



100

Matlab Programs
Program 1:

format long

x(1)=1,;

m(1)=1,;

w(1)=0;

m1(1)=0;

wl(1)=1;

k=zeros(4,2);

fori=1:n
k(1,1)=h*w(i);
k(1,2)=h*[(-2/x(1))*w(i)+(2/(x(1))"2)*m(i)+(sin(log (x(1))))/(x(1))"2];
k(2,1)=h*[w(i)+(1/2)*k(1,2)];
k(2,2)=h*[(-(2/(x(i)+(h/2))))*(w(i)+(1/2)*k(1,2))+(2/(x(i)+(h/2))2)*

(m(i)+(1/2)*k(1,1))+(sin(log(x(i)+(h/2))))/(x(i))"2];
k(3,1)=h*[w(i)+(1/2)*k(2,2)];
k(3,2)=h*[(-(2/(x(i)+(h/2))))*(w(i)+(1/2)*k(2,2))+(2/(x(i)+(h/2))2)*

(m(1)+(172)*k(2,1))+(sin(log(x(i)+(h/2)))/(x(1))"2]:;
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k(4,1)=h*[w(i)+(1/2)*k(3,2)];
k(4,2)=h*[(-(2/(x(1)+(N))))*(W(i)+k(3,2))+(2/(x(i)+(h))*2)*
(Mm(1)+k(3,1))+(sin(log(x(1)+(M))))/(x(1))"2];
m(i+1)=m(i)+(1/6)*(k(1,1)+2*k(2,1)+2*k(3,1)+k(4,1));
w(i+1)=w(i)+(1/6)*(k(1,2)+2*k(2,2)+2*k(3,2)+k(4,2));
x(i+1)=a+h*i;
end
kk=zeros(4,2);
fori=1:n
kk(1,1)=h*w1(i);
kk(1,2)=h*[(-2/x(i))*w1(i)+(2/(x(i))"2)*m1(i)];
kk(2,1)=h*[w1(i)+(1/2)*k(1,2)];
kk(2,2)=h*[(-(2/(x(i)+(h/2))))*(W1(i)+(1/2)*k(1,2))+(2/(x(i)+(h/2))"2)
*(m1(i)+(1/2)*k(1,2)];
kk(3,1)=h*[w1(i)+(1/2)*k(2,2)];
kk(3,2)=h*[(-(2/(x(i)+(h/2))))*(W1(i)+(1/2)*k(2,2))+(2/(x(i)+(h/2))"2)
*(m1(i)+(1/2)*k(2,2)];
kk(4,1)=h*[w1(i)+(1/2)*k(3,2)];
kk(4,2)=h*[(-(2/(x(1)+(n))))*(W1(i)+k(3,2))+(2/(x(1)+(h))"2)
*(m1()+k(3,1)I;

mM1(i+1)=m1(i)+(1/6)*(kk(1,1)+2*kk(2,1)+2*kk(3,1)+kk(4,1)):
W (i+1)=W1(i)+(1/6)*(kk(1,2)+2*kk(2,2)+2*KkK(3,2)+kk(4,2)):

end
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y=m+((2-m(n+1))/m1(n+1))*m1;

for j=1:n+1
yy(j)=1.1392070132*x(j)+(-0.03920701320/(x(j))"2)-

(3/10)*sin(log(x(j)))-(1/10)*cos(log(x()));
ee(j)=abs(y(1)-yy());

end

X'y yy' ee]

plot (X,y,X,yy)

legend(‘Approx. Sol.','Exact Sol.");

Program 2
format long
clear

clc

a=0;

b=1;
h=1/20;
n=20;
x(1)=0;
m(1)=0;
w(1)=0;
m1(1)=0;
wl(1)=1;
k=zeros(4,2);
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for i=1:n
k(1,1)=h*w(i);
k(1,2)=h*[(0)*w(i)+(4)*m(i)+(-4*(x()))];
k(2,1)=h*[w(i)+(1/2)*k(1,2)];
k(2,2)=h*[(0)+(4)*(m(1)+(1/2)*k(1,1))-(4*(x(D+(h/2)];
k(3,1)=h*[w(i)+(1/2)*k(2,2)];
k(3,2)=h*[(0)+(4)*(m(1)+(1/2)*k(2,1))-(4*(x(1)+(h/2)))]:;
k(4,1)=h*[w(i)+(1/2)*k(3,2)];
k(4,2)=h*[(0)+(4)*(m(i)+k(3,1))-(4*(x()+h))];
m(i+1)=m(i)+(1/6)*(k(1,1)+2*k(2,1)+2*k(3,1)+k(4,1));
w(i+1)=w(i)+(1/6)*(k(1,2)+2*k(2,2)+2*k(3,2)+k(4,2));
X(i+1)=a+h*i;

end

kk=zeros(4,2);

fori=1:n
kk(1,1)=h*w1(i);
kk(1,2)=h*[(0)+4*m1(i)];
kk(2,1)=h*[w1(i)+(1/2)*kk(1,2)];
kk(2,2)=h*[0+(4)*(m1(i)+(1/2)*kk(1,1))];
kk(3,1)=h*[w1(i)+(1/2)*kk(2,2)];
kk(3,2)=h*[(0)+(4)*(m21(i)+(1/2)*kk(2,1))];
kk(4,1)=h*[w1(i)+(1/2)*kk(3,2)];
kk(4,2)=h*[(0)+(4)*(m1(i)+kk(3,1))];
m1(i+1)=m1(i)+(1/6)*(kk(1,1)+2*kk(2,1)+2*kk(3,1)+kk(4,1));
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wl(i+1)=w1(i)+(1/6)*(kk(1,2)+2*kk(2,2)+2*kk(3,2)+kk(4,2));
end

y=m+((2-m(n+1))/m1(n+1))*m1,;

for j=1:n+1
yy()=(exp(1))*(2)*(((exp(1))*(4)-1)"(-1))*((exp(1))*(2*x(1))-((exp(1))(-

22x@MN+x0);

ee())=y(Q)-yy(Q);

end

X'y yy' ee]

plot (x,y,x.yy)

legend(‘Approx. Sol.','Exact Sol.");

program 3

% To approximate the solution of the nonlinear boundary-value problem
% Y" = F(X,Y,Y"), A<=X<=B, Y(A) = ALPHA, Y(B) = BETA:

% INPUT: Endpoints A,B; boundary conditions ALPHA, BETA; number
%of subintervals N; tolerance TOL; maximum number of iterations M.

% OUTPUT: Approximations W(1,1) TO Y(X(1)); W(2,1) TO Y'(X(I))

% for each 1=0,1,...,N or a message that the maximum number of iterations
was exceeded.

syms('OK', 'A’, 'B', '"ALPHA'", 'BETA', 'TK', 'AA", 'N");

syms("TOL', 'NN', 'FLAG', 'NAME', 'OUFP’, 'H', 'K', 'W1' 'YY1''EE";
syms(‘'W2', 'U1', 'U2','I', 'X', 'T', 'K11', 'K12', 'K21");

syms('K22', 'K31', 'K32', 'K41', 'K42', '), 's', X', 'y', '2");
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TRUE =1;

FALSE = 0;

fprintf(1,'This is the Nonlinear Shooting Method.\n');
fprintf(1,'Input the function F(X,Y,Z) in terms of X, y, z.\n");
fprintf(1,'followed by the partial of F with respect to y on the \n');
fprintf(1,'next line followed by the partial of F with respect to \n');
fprintf(1,'z or y-prime on the next line. \n");

fprintf(1,'actual solution .\n");

fprintf(1,'For example: (32+2*x"3-y*z)/8 \n');

fprintf(1, -z/8\n";
fprintf(1,’ -y/8 \n’);
fprintf(1, X"2+16/x \n');
s = input('','s");

F = inline(s,'x",'y','");

s = input("",'s");

FY = inline(s,’x’,'y",'2");

s = input(*','s";

FYP = inline(s,’x,'y','z);

s =input("','s);

YY11 = inline(s,x,y','2");

OK = FALSE;

while OK == FALSE

fprintf(1,'Input left and right endpoints on separate lines.\n’);

A =input('");
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B = input(" ");

ifA>=B

fprintf(1,'Left endpoint must be less than right endpoint.\n');
else OK = TRUE;

end;

end,

fprintf(1,'Input Y (%.10e).\n', A);

ALPHA = input(* );

fprintf(1,'Input Y (%.10e).\n', B);

BETA = input(*");

TK = (BETA-ALPHA)/(B-A);
fprintf(1, TK = %.8e\n’, TK);
fprintf(1,'Input new TK? Enter Y or N.\n’);
AA = input('','s");

IfAA=="Y'| AA==Y

fprintf(1,'input new TK\n');

TK = input("");

end;

OK = FALSE;

while OK == FALSE

fprintf(1,'Input an integer > 1 for the number of subintervals.\n');
N = input(' ");

ifN<=1

fprintf(1,'Number must exceed 1.\n’);
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else

OK = TRUE;

end;

end;

OK = FALSE;

while OK == FALSE

fprintf(1,'Input Tolerance.\n');

TOL = input(*");

if TOL<=0

fprintf(1, Tolerance must be positive.\n');
else

OK =TRUE;

end;

end;

OK = FALSE;

while OK == FALSE

fprintf(1,' Input maximum number of iterations.\n");
NN = input(' 9;

if NN <=0

fprintf(1,'Must be positive integer.\n");
else

OK =TRUE;

end;

end;
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if OK==TRUE

fprintf(1,'Choice of output method:\n’);

fprintf(1,'1. Output to screen\n’);

fprintf(1,'2. Output to text File\n");

fprintf(1,'Please enter 1 or 2.\n");

FLAG = input(*");

If FLAG ==

fprintf(1,'Input the file name in the form - drive:\\name.ext\n’);
fprintf(1,'for example A:\\OUTPUT.DTA\n');

NAME = input('','s");

OUP = fopen(NAME,'wt");

else

OUP =1,

end;

fprintf(OUP, 'NONLINEAR SHOOTING METHOD\n\n");
fprintf(OUP, ' X(I) W1(l) YY1(I) EE()\nY);
% STEP 1

W1 = zeros(1,N+1);

W2 = zeros(1,N+1);

H = (B-A)/N;

K=1;

% TK already computed

OK = FALSE;

% STEP 2
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while K <= NN & OK == FALSE

% STEP 3

W1(1) = ALPHA;

W2(1) = TK;

Ul=0;

uz2=1,;

% STEP 4

% Runge-Kutta method for systems is used in STEPS 5 and 6
forl=1:N

% STEP5

X = A+(I-1)*H;

T = X+0.5*H;

% STEP 6

K11 = H*W2(I);

K12 = H*F(X,W1(1),W2(1));

K21 = H*(W2(1)+0.5*K12);

K22 = H*F(T,W1(1)+0.5*K11,W2(1)+0.5*K12);
K31 = H*(W2(1)+0.5*K22);

K32 = H*F(T,W1(1)+0.5*K21,W2(1)+0.5*K22);
K41 = H*(W2(1)+K32);

K42 = H*F(X+H,W1(1)+K31,W2(1)+K32);
W1(1+1) = WL(1)+(K11+2*(K21+K31)+K41)/6;
W2(1+1) = W2(I)+(K12+2*(K22+K32)+K42)/6;
K11 = H*UZ2;
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K12 = H*(FY (X, W1(1), W2(1))*UL+FYP(X,W1(1),W2(1))*U2):
K21 = H*(U2+0.5*K12):

K22=H*(FY (T,W1(1),W2(1))*(U1+0.5*K11)+FYP(T,W1(1), W2(1))*(U2+0.

5*K21)):

K31 = H*(U2+0.5*K22);

K32=H*(FY (T, W1(1), W2(1))*(U1+0.5*K21)+FYP(T,W1(l), W2(1))*(U2+0.

5%K22));

K41 = H*(U2+K32);

K42=H*(FY (X+H,W1(1), W2(1))*(U1+K31)+FYP(X+H,W1(l), W2(1))*(U2+
K32));

U1 = UL+(K11+2*(K21+K31)+K41)/6;

U2 = U2+(K12+2*(K22+K32)+K42)/6;

end;
% STEP 7

% test for accuracy

if abs(W1(N+1)-BETA) < TOL

% STEP 8

I =0;

Fprintf(OUP, '%3d %13.8f %13.8f %13.8f\n’, I, A, ALPHA, TK);
forl=1:N

J=1+1;

X = A+1*H;
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YY1(9)=YY11(X,W1(J),W2(J));
EE(J)=abs(YY1(J)-W1(J));

Fprintf(OUP, ' %13.8f %13.8f %13.8f %13.8f \n', X, W1(J),
YY1(3),EE()));

end;

fprintf(OUP, 'Convergence in %d iterations\n', K);
fprintf(OUP, 't = %14.7e\n', TK);

% STEP 9

OK = TRUE;

else

% STEP 10

% Newton's method applied to improve TK

TK = TK-(W1(N+1)-BETA)/U1;

K= K+1,;

end;

end;

% STEP 11

% method failed

iIf OK == FALSE

fprintf(OUP, 'Method failed after %d iterations\n', NN);
end;

end;

if OUP ~=1

fclose(OUP);
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fprintf(1,'Output file %s created successfully \n', NAME);
end;

program 4

format long

clear

clc

a=1;

b=2;

y=zeros(10,1);
for i=1:10
x(i)=a+(i)*h;
yy(i)=1.1392070132*x(i)+(-0.03920701320/(x(i)*2))-
(3/10)*sin(log(x(i)))-(1/10)*cos(log(x(1)));
end
X vyl
u=zeros(9,9);
bb=zeros(9,1);
u(1,1)=-((2*(h)"2/(x(1))*(2))+2);
u(1,2)=(1+(h/x(2)));
u(2,1)=(1-(h/x(2)));
bb(1)=((h)"2)*sin(log(x(1)))/(x(1))*(2)-(1-(h/x(1)));
for j=2:8



113

for k=2:8
if j==k
u@.k)=-1*((2*()*(2)/(x())"(2))+2);
elseif j==k+1
u@i.k)=(1-(h/x()));
elseif j==k-1
u@.k)=(1)+(n/x());
else u(j,k)=0;
end
end
end
u(9,8)=(1-(h/x(9)));
u(9,9)=-(2*(h)*(2)/(x(9))"(2)+2);
u(8,9)=(1+(h/x(8)));
u;
for 00=2:8
lI(00)=log(x(00));
bb(00)=(()"(2)*sin(l1(00)))/(x(00))*(2);
end
bb(9)=((h)"2)*sin(log(x(9)))/(x(9))"(2)-(2*(1+(h/x(9))));
[L U]=lu(u);
z=inv(L)*bb;
y=inv(U)*z;
y(10)=2;



114

for rr=1:10
ee(rr)=abs(y(rr)-yy(rr));

end

[X'yyy ee]

plot(X,y,X,yy);

xlabel('Time");

legend('Approx. Sol.",'Exact Sol.");

program 5

clc

clear

format long

a=0;

b=1;

n=19;

h=1/20;

y=zeros(20,1);

%y(1)=1;

for i=1:20
x(i)=a+(i)*h;

end

for jj=1:20
yy())=(exp(1))*(2)*(((exp(1))*(4)-1)*(-1))*((exp(1))*(2*x(1)))-

((exp(L))*(-2*xUNN)+x());



end
X yyT,
u=zeros(19,19);
bb=zeros(19,1);
u(1,1)=-(2+(4*(h)"2));
u(1,2)=(1);
u(2,1)=(1);
bb(1)=(-4*x(1)*(h)*(2));
for j=2:18

for k=2:18

if j==k

u@J,k)=-1*(2+(4*(h)*(2)));

elseif j==k+1
u@,k)=(2);
elseif j==k-1
u@.k)=(1);
else u(j,k)=0;
end
end
end
u(19,18)=(2);
u(19,19)=-(2+(4*(h)*(2)));
u(18,19)=(1);

u;
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for 00=2:18
bb(00)=(-4*(x(00))*(N)*(2));
end

bb(19)=(-4*(x(00))*(n)"(2))-2;

bb;

[L Ul=lu(u);

z=inv(L)*bb;

y=inv(U)*z;

y(20)=2;

for rr=1:20
ee(rr)=abs(y(rr)-yy(rr));

end

[X'yyy ee]

plot(x,y,x,yy);

xlabel('Time");

legend('Approx. Sol.",'Exact Sol.");

program 6
clc

format long
clear

a=1;

b=3;
y0=17;
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h=0.1;
n=(b-a)/h-1,
yn=(43/3);

x=[a+h:h:b-h];
y=17*ones(n,1);k=1;
c=zeros(n,1);j=zeros(19,19);m=50;
while norm (c-y ,inf)>0.000001
%finding he jacobian matrix
1(1,1)=-2+(1/16)*h*(y(2)-y0);
J(1,2)=1+(1/16)*h*y(1);
for i=2:n-1
for t=2:n-1
if i==t
J(1,0)=-2+(1/16)*h*(y(i+1)-y(i-1));
elseif i==t+1
j(1,0)=1-(1/16)*h*y(i);
elseif i==t-1
j(i,0)=1+(1/16)*n*y(i);
end
end
end
J(n-1,n)=1+(1/16)*h*y(n-1);
j(n,n-1)=1-(1/16)*h*yn;
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j(n,n)=-2+(1/16)*h*yn-(1/8)*h*y(n-1);

f(1,1)=(y(2)-2*y(1)+y0)-((h)*(2)/8)*(32+(2*(x(1)."3))-(y(1) *((y(2)-
y0)/(2*h))));

for i=2:n-1

f(1,1)= (y(i+1)-2*y(i)+y(i-1))-((h)*(2)/8)*(32+(2*(x(1)."3))-

(y()*((y(i+1)-y(i-1))/(2*))));

end

f(n,1)=(yn-2*y(n)+y(n-1))-((h)"(2)/8)*(32+(2*(x(n)"3))-(y(n)*((yn-y(n-
)(*):

f;

z=inv(j)*(-1*f);

C=y;

y=y+z,

y

end

xx=[a,x,b];
y1=[y0,y'yn];
for tt=1:n+2

yy(tt)=(xx(tt))(2)+(16/xx(tt));

e(t)=abs(y1(tt)-yy(tt));

end

[xx;yl,yy;e]
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plot(xx,y1,xX,yy);
xlabel('Time");

legend('Approx. Sol.",'Exact Sol.");

program 7
clc
format long

clear

h=0.1;
n=(b-a)/h-1;
yn=(5/2);
x=[a+h:h:b-h];
y=2*ones(n,1);k=1;
c=zeros(n,1);j=zeros(n,n);m=50;
while norm (c-y ,inf)>0.000001
%finding he jacobian matrix
1(1,1)=((-2/(h)"2)-2*(y(1))"2+6);
j(1,2)=1/(h)"2;
for i=2:n-1
for t=2:n-1

if i==t
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1(1,0)=((-2/(h)"2)-2*(y(1))"2+6);

elseif i==t+1
J(1,0)=1/(h)"2;
elseif i==t-1

J(1,9=1/(h)"2;
end
end
end
1(n-1,n)=1/(h)"2;
j(n,n-1)=1/()"2;
J(n.m)=((-2/(h)*2)-2*(y(n))"2+6);

f(1,1)=(y(2)-2*y(1)+y0)+((h)"(2))*(-2*(y(1))*3+6*(y(1))+2*(x(1))"3);
for i=2:n-1
f(i,1)= (y(i+1)-2*y(i)+y(i-1))+((h)(2))*(-

2*(y(i)"3)+6*(y(1))+2*(x(1))"3);

end

f(n,1)=(yn-2*y(n)+y(n-1))+(()"(2))*(-2*(y(n)*3)+6*(y(n)) +2*(x(n))"3);

f,

z=inv(j))*(-1*h);

c=y,

y=y+z;

Y,

end
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xx=[a,x,b];

y1=[y0,y",yn];

for tt=1:n+2
yy(t)=(xx(tt))+(xx(tt))*(-1);
e(tt)=abs(y1(tt)-yy(tt));

end

[xx;yliyye]

plot(xx,y1,xx,yy);

xlabel('Time");

legend('Approx. Sol.",'Exact Sol.");

program 8
clc

clear
ba=0;
bb=1;
n=15;
h=1/16;
alpha=1;
beta=2.718281828;
aa=0.5;
k=4;:

for i=1:n

t(i)=ba+i*h;
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end

t

for j=1:n

p1(0))=aa/t());

q1(0))=(k*(t0))"(aa+k-2)*(aa+k-1+k*(t(1))"(k)))/(t())"(aa);

end

[t pl'ql]

a(1)=(-4-2*((h)"2)*q1((1)));

c(1)=(2+h*p1((1)));

for i=2:n-1
a(i)=(-4-2*((h)"2)*q1((1));
c()=(2+h*p1((1)));
d(i)=(2-h*p1((1)));

end

a(n)=-4-2*((h)"2)*q1((n));

d(n)=2-h*p1((n));

I(1)=a(1);u(1)=c(1)/1(1);

for i=2:n-1
I(i)=a(i)-d(i)*u(i-1);
u(i)=c(i)/(i):

end

I(n)=a(n)-d(n)*u(n-1);

dd(1)=-(2-h*p1(1))*alpha;

for i=2:n-1



dd(i)=0;
end
dd(n)=-(2+h*p1(n))*beta;
z(1)=dd(1)/1(2);
fori=2:n
z(1)=(dd(i)-d(i)*z(i-1))/I(i);
end
y(n)=z(n);
fori=n-1:-1:1
y()=z(i)-u(i)*y(i+1);
end

y

for i=1:n

yy(i)=(2.718281828)((t(i))"k):

end
yy
for i=1:n
ee(i)=y(i)-yy(i);
end
ee
[ty yy ee]
pIOt(tl1y'1tliyy')

legend('Approx. Sol.",'Exact Sol.");
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program 9

format long

clear

clc

a=0;

b=1;

aa=0.5;

k1=4;

h=1/10;

n=10;

x(1)=0.1;

m(1)=1;

w(1)=0;

m1(1)=0;

wl(1)=1;

k=zeros(4,2);

for i=1:n
k(1,1)=h*w(i);
k(L,2)=h*[(-aa/x(i))*w(i)+((((KL*(x(i))(aa+k1-2))*(aa+k1-

1+k1*(x()* (k1)) (x())"(aa))*m(1))+(0*(x())];
k(2,1)=h*[w(i)+(1/2)*k(1,2)];
k(2,2)=h*[(-aa/(x(i)+(h/2)))*(w(i)+(1/2)*k(1,2))+((((k1*((x(i)*+(h/2))

A(aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2)) (K1) (x(i)+(h/2))(aa)))

*(m()+(1/2)*k(1,1)))-(0*(x(1)+(h/2))];
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k(3,1)=h*[w(i)+(1/2)*k(2,2)];
k(3,2)=h*[(-aa/(x(i)+(h/2)))*(w(i)+(1/2)*k(2,2))+

((((K1*((x(i)*+(h/2))N(@aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))N(k1)))/(x(i)

+(n/2))"(aa)))*(m(i)+(1/2)*k(2,1)))-(0*(x(D)+(h/2))]:;
k(4,1)=h*[w(i)+(1/2)*k(3,2)];
k(4,2)=h*[(-aa/(x(i)+h))*(w(i)+k(3,2))+((((k1*((x(i)+h)"(aa+k1-

2))*(aa+k1-1+k1*(x(i)+h)"(k1)))/(x(i)+h)(aa)))*(m(i)+k(3,1)))-

O*(x()+h)L:;
m(i+1)=m(i)+(1/6)*(k(1,1)+2*k(2,1)+2*k(3,1)+k(4,1));
w(i+1)=w(i)+(1/6)*(k(1,2)+2*k(2,2)+2*k(3,2)+k(4,2));
x(i+1)=a+h*i;

end

X

kk=zeros(4,2);

fori=1:n
kk(1,1)=h*w1(i);
kk(1,2)=h*[(-aa/x(i))*wW1(i)+((((k1*(x(i))*(aa+k1-2))*(aa+k1-

1+KI*(x())MK1))/(x(1))*(aa))*m1(i))];
kk(2,1)=h*[w1(i)+(1/2)*kk(1,2)];
kk(2,2)=h*[(-aa/(x(i)+(h/2)))*(w1(i)+(1/2)*kk(1,2))

+(((((k1*(x(1)+(h/2))M(aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))M(k1)))/

(x(D)+(h/2))"(aa)))*(m1(i)+(1/2)*kk(L,1))I;
kk(3,1)=h*[w1(i)+(1/2)*kk(2,2)];
kk(3,2)=h*[(-aa/(x(i)+(h/2)))*(w1(i)+(1/2)*kk(2,2))
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+((((KL*((x(1)+(h/2))M(aat+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))Mk1)))/

(x(i)+(h/2))*(aa)))*(m1(i)+(1/2)*kk(2,1)))];
kk(4,1)=h*[w1(i)+(1/2)*kk(3,2)];
kk(4,2)=h*[(-aa/(x(i)+h))*(W1(i)+kk(3,2))+((((K1*((x(i)+h)*(aa+k1-

2))*(aa+k1-1+k1*(x(i)+h)(k1)))/(x(i)+h)"(aa))) *(m1(i)+kk(3,2)))];

m1(i+1)=m1(i)+(1/6)*(kk(1,1)+2*kk(2,1)+2*kk(3,1)+kk(4,1));

wl(i+1)=wl(i)+(1/6)*(kk(1,2)+2*kk(2,2)+2*kk(3,2)+kk(4,2));
end

y=m+(((exp(1))-m(n+1))/m1(n+1))*m1;

for j=1:n+1
yy(j)=(2.718281828)"((x(j))"K1);
ee(J)=abs(y()-yy());

end

Xy yy ee]

plot (x,y.x,yy)

legend('Approx. Sol.''Exact Sol.");

program 10

%PADE APPROXIMATE METHOD (2,0) TO SOLVE BVP
%((x)"(aa)*y)'=k*x(aa+k-2)*(aa+k-1+k*(x)"k)*y

%0<x<1 y(0)=1 y(1)=e(1)
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format long

D=[0 1];

n=15;

a=.9;

b=4,

h=(D(2)-D(1))/(n+1);

xx=D(1)+h+[0:h:D(2)-h];

XX

P=inline("-a/x','x','a’);

Q=inline(‘(b*xM(a+b-2)*(a+b-1+b*x”b))/(x"a)",'x','a’,'d");

PP=inline('a/(x"2)','x','a");

QQ=inling('28*x+96*x"5','X');

PPP=inline(’-1/(x)','x");

QQQ=inline('28+480*x ', 'X):

f=[-1 0;0 -1]

fori=1:1:n+1
aa(1,1)=h*P(xx(i),a)+(h"2*(-PP(xx(i),a)+(P(xx(i),a))"2-

Q(xx(i),a,b)))/2+h"3*(PPP(

xX(1))-3*P(xx(i),8)*PP(xx(i),a) +2*QQ(xx(i))+(P(xx(i),a))"3-

2*P(xx(i),a)*Q(xx(i),a,b))/6;

aa(1,2)=h*Q(xx(i),a,b)+h"2*(-
QQ(xx(1))+P(xx(1),2)*Q(xx(i),a,0))/2+(h"3*(QQQ(xx(I))-2*
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PP(xx(i),a)*Q(xx(i),a,b)-
POxx(1),a)*QQ(xx(P))+(P(xx(i),a))*2*Q(xx(i),a,b)-(Q(xx(i),a,b))"2))/6;
aa(2,1)=-h-(h"2*P(xx(i),a))/2+h*3((PP(xx(i),a)-
(P(xx(i),2))"2+Q(xx(i).a,b)))/6;
aa(2,2)=-1*(h"2*Q(xx(i),a,b))/2+h"3(QQ(xx(i))-
P(xx(1),a)*Q(xx(i),a,b))/6;
AA(2*%i-1,2*i-1)=aa(1,1);
AA(2*i-1,2*i)=aa(1,2);
AA(2*1,2*i-1)=aa(2,1);
AA(2*i,2*i)=aa(2,2);
end
for r=1:1:n
AA(2*r+1:2*r+2,2*r-1:2*r)=f;
end
AA(1,end)=-1;
AA(end-1,end)=0;
AA(end,end)=0;
AA
G=zeros(2*n+2,1);
G(2)=1,
G(2*n+1)=-1.6035%*exp(L);
G(2*n+2)=-0.9414*exp(1);
G;
[lLu]=lu(AA);



t=inv()*G;

y=inv(u)*t;

Yi

y1(1)=y(2)

for jj=4:2: 32
y101/2)=y(i);

end

%(2*(n+1))

yl

fori=1:n+1
yy(i)=(2.718281828)"((xx(i))"b);

end

yy

fori=1:n+1

ee(i)=abs(yy(i)-y1(i));

end

[xx'yl'yy' ee']

Program 11
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%PADE APPROXIMATE METHOD (3,0) TO SOLVE BVP

%((X)"(aa)*y)'=k*x(aa+k-2)*(aa+K-1+k*(x)"K)*y

%0<x<1 y(0)=1 y(1)=e(1)
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format long

D=[0 1];

n=15;

a=.9;

b=4,

h=(D(2)-D(1))/(n+1);

xx=D(1)+h+[0:h:D(2)-h];

XX

P=inline("-a/x','x','a’);

Q=inline(‘(b*xM(a+b-2)*(a+b-1+b*x”b))/(x"a)",'x','a’,'d");

PP=inline('a/(x"2)','x','a");

QQ=inling('28*x+96*x"5','X');

PPP=inline(’-1/(x)','x");

QQQ=inline('28+480*x 4','X):;

f=[-1 0;0 -1]

fori=1:1:n+1
aa(1,1)=h*P(xx(i),a)+(h"2*(-PP(xx(i),a)+(P(xx(i),a))"2-

Q(xx(i),a,b)))/2+h"3*(PPP(xx(i))-

3*P(xx(i),a)*PP(xx(i),a) +2*QQ(xx(i))+(P(xx(i),a))"3-

2*P(xx(i),a)*Q(xx(i),a,b))/6;
aa(1,2)=h*Q(xx(i),a,b)+h"2*(-

QQxx(1))+P(xx(i),2)*Q(xx(i),a,0))/2+(h"3*(QQQ(xx(I))-

2*PP(xx(i),8)*Q(xx(i),a,b)-

POxx(1),2)* QQIxx(1))+(P(xx(i),a))"2*Q(xx(i),a,b)-(Q(xx(i),a,0))"2))/6;
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aa(2,1)=-h-(h"2*P(xx(i),a))/2+h"3*((PP(xx(i),a)-

(P(xx(i),a))"2+Q(xx(i),a,b)))/6;
aa(2,2)=-1*(h"2*Q(xx(i),a,b))/2+h"3*(QQ(xx(i))-

P(xx(i),a)*Q(xx(i),a,b))/6;
AA(2*i-1,2*i-1)=aa(l,1);
AA(2*i-1,2*1)=aa(1,2);
AA(2*i,2*i-1)=aa(2,1);
AA(2*i,2*i)=aa(2,2);

end

forr=1:1:n
AA(2*1+1:2%r+2,2*1-1:2%r)=F;

end

AA(1,end)=-1;

AA(end-1,end)=0;

AA(end,end)=0;

AA

G=zeros(2*n+2,1);

G(2)=1;

G(2*n+1)=1.5891723*exp(1);

G(2*n+2)=-0.0529378*exp(1);

G;

[LLu]=lu(AA);

t=inv(l)*G;

y=inv(u)*t;
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Yi

y1(1)=y(2)

for jj=4:2: 32 %(2*(n+1))
y1(i/2)=y(i);

end

yl

fori=1:n+1
yy(i)=(2.718281828)"((xx(i))"b);

end

yy

for i=1:n+1

ee(i)=abs(yy(i)-y1(i));

end

[xx' y1'yy' eeT]

Example

Find pade approximations for f(x)= expanded about X, =0

1
J1-X
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a0 =-1.0;

b0 = 1.0;

Needs [“Graphics’ Colors™];

Needs [“Calculus “ pade” |;

Cdot = Graphics [{{Red, PointSize [0.02], Point [ {x0, f[x0]}1}};
Rends=Graphics[{{Green,Line[{{a0,c},{a0,d}}]} {Red,
Line[{{a0,c}{x0,d}}1},{Green, Line[{{bO0,c},{b0,d}}1}};

For [ n=1, n<5, nt++,

P[x_] = Together [Pade[f[x], {X, X0, n, n}]];

graphl= plot[f[x],{x,-1.5,0.9999}, PlotStyle—Magenta,
DisplayFunction—Identity];

graph2= Plot[P[x],{x,-1.5,1.5} ,PlotStyle—Blue,DisplayFunction—Identity];
Show[graphl, graph2, Cdot, Rends, PlotRange — {{a,b},{c,d}}, Tricks—
{Range[-1.5, 1.5, 0.5], Range[0, 5, 1]}, DisplayFunction—
$DisplayFunction];

Print [“f(x)=",f]x]];

Print[“ P, » »,”[x]=",P[x]],] See [15]

I — L
1.5 -1 0.5 0.5 1 1.5
1
E[=x] =
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P %] —d 4+
1.1 x = -
=g+ Fx
5
3
2
z
______._.i-l
-1_5 -1 -0_5& no_5 1
1
£lx] =
l1-x
16-12% + x°
Pael®] = ———8—
16- 20 + 5 x?
5
3
2
Z
___________.—.H
-1.5 -1 -0_5 a_5 1
fix] =
l1-x
644+ 80x - 24xt +x°
Pyalx] =
6+ 112 % - 56 %t + Txd
5
3
2
z
___________._.H
-1_5 -1 -0_5 a_5 1

l-x=
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256 - 448 x + 240 k% - 40 %% + =t

Py.a[x] =
ZEE - 576 x + 432 xE - 120x% + 9 xt
5
a
2
z
-1.5 -1 -0._5 0.k 1 1.5
1
£lx] =
1-x

1024 +2304% - 1792 %% + S60%° —p0x? +uf
_1024 4+ 2816 % - 2616t + 1232 k% - 220 %%+ 11 %°

P s[x]
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