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Abstract 

A singular Two points boundary value problem occur frequently in 

mathematical modeling of many practical problems. To solve singular two 

points boundary value problem for certain ordinary differential equations 

having singular coefficients. Many numerical method such as shooting 

method, finite difference method and pade approximation methods, have 

been studied and analysed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter one 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

Introduction 

1.1  Introduction 

Mathematics  is  the body of  knowledge centered on such concepts as 

quantity, structure, space, and change, and also the academic discipline that 

studies them. Benjamin Pierce called it " the science that draws necessary 

conclusions".  

Other practitioners of  mathematics maintain that mathematics is the science 

of pattern, and that mathematicians seek out patterns whether found in 

numbers, space, science, computers, imaginary abstractions, or elsewhere.  

Mathematicians explore such concepts, aiming to formulate new conjectures 

and establish their findings by rigorous deduction from appropriately chosen 

axioms and definitions.  

Though the use of abstraction and logical reasoning, mathematics evolved 

from counting, calculation, measurement, and the systematic study of the 

shapes and motions of physical objects. Knowledge and use of basic 

mathematics have always been an inherent and integral part of  individual 

and group life. Refinements of the basic ideas are visible in mathematical 

texts originating in the ancient Egyptian, Mesopotamian, Indian, Chinese, 

Greek and Islamic worlds. Rigorous arguments first appeared in Greek 

mathematics, most notably in Euclid's elements. The development continued 

in fitful bursts until the renaissance period of the 16
th
 century,                             

when mathematical innovations interacted with new scientific discoveries, 

leading to an acceleration in research that continues to the present day. 
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Today, mathematics is used throughout the world in many fields, including 

natural science, engineering, medicine, and the social sciences such as 

economics. 

Applied mathematics, the application of mathematics to such fields, inspires 

and makes use of new mathematical discoveries and sometimes leads to the 

development of entirely new disciplines. See [13] 

 

1.2 Differential Equation 

A differential equation is a mathematical equation for an unknown function 

of one or several variables that relates the values of the function itself and of 

its derivatives of various orders. Differential equations play a prominent role 

in engineering, physics, economics and other disciplines. 

Differential equations arise in many areas of science and technology, 

whenever a deterministic relationship involving some continuously changing 

quantities (modeled by functions) and their rates of change (expressed as 

derivatives) is known or postulated. This is well illustrated by classical 

mechanics, where the motion of a body is described by its position and 

velocity as the time varies. Newton's laws allow one to relate the position, 

velocity, acceleration and various forces acting on the body and state this 

relation as a differential equation for the unknown position of the body as a 

function of time. In many cases, this differential equation may be solved 

explicitly, yielding the law of motion. See [3]&[13]  
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1.3 Ordinary Differential Equations 

In mathematics, an ordinary differential equation (or ODE) is a relation that 

contains functions of only one independent variable, and one or more of the 

function's derivatives  with respect  to that independent variable. 

A simple example is Newton's second law of motion, which leads to the 

differential equation 

 
))((

2

2

txF
dt

txd
m                                                ( 1.1) 

For the motion of a particle of mass m. In general, the force F depends upon 

the position of the particle x (t) at time t, and thus the unknown function x (t) 

and its derivatives appears on both sides of the differential equation . 

Ordinary differential equations are to be distinguished from partial 

differential equations where there are several independent variables 

involving partial derivatives. 

Ordinary differential equations arise in many different contexts including 

geometry, mechanics, astronomy and population modeling. Many famous 

mathematicians have studied differential equations and contributed to the 

field, including Newton, the Bernoulli family, Reccati, Clairaut and Euler. 

Many studies has been devoted to the solution of ordinary differential 

equations. In the case where the equation is linear, it can be solved by 

analytical methods, but the most of the interesting differential equations are 

non-linear and can‟t be solved exactly. Numerical methods that approximate 

solutions can be established by using computer.     See[3]&[13]    
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1.4 Initial Value Problems   

In mathematics, in the field of differential equations, an initial value problem 

(IVP) is an ordinary differential equation together with specified values, 

called the initial conditions, of the unknown function at a given point in the 

domain of the solution. In physics or other sciences, modeling a system 

frequently amounts to solving an initial value problem the differential 

equation is an evolution equation specifying how, given initial conditions. 

A simple form of initial value problem (IVP) is a differential equation 

 y' (t) = f ( t , y (t) )                                              (1.2) 

with initial condition 00 )( yty  . 

A solution to an initial value problem is a function y that is a solution  to the 

differential equation and satisfies the initial condition 00 )( yty  . 

 

1.5 Boundary Value Problems 

A boundary value problems (BVP) is a differential equation together with a 

set of additional restrictions on the boundaries, called the boundary 

conditions. A solution to the boundary value problem is a solution to the 

differential equation which also satisfies the boundary conditions. 

Boundary value problems arise in several branches of science. For example 

in physical differential equation for some problems involving the wave 

equation, such as the determination of normal modes, are often stated as 

boundary value problems. 
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To be useful in applications, a boundary value problem should be well-posed 

this means that given the input to the problem there exists a unique solution, 

which depends continuously on the input. Much theoretical work in the field 

of partial differential equation is devoted to proving that boundary value 

problems arising from scientific and engineering applications are in fact 

well-posed. 

For a boundary value problem, information about a solution to the 

differential equation(s) may be generally specified at more than one point . 

Often there are two points, which correspond  physically to the boundaries of 

some region, so that it is a two-points boundary value problem. A simple and 

common form for a two-points boundary value problem involve a second-

order differential equation is: 

y"  = f  ( x ,y , y') ,    a ≤ x ≤ b                              (1.3) 

together with the boundary conditions 

  )()( byanday  

where α and   β     are known constants and the known endpoints a and b may 

be finite or infinite. See [1]&[3] 

A more mathematical way to picture the difference between an initial value 

problem and a two-points boundary value problem is that (IVP) has all of the 

conditions specified at the same value of the independent variable in the 

equation ( and that value is at the lower boundary of the domain , thus the 

term "initial value" ). 

         On the other hand, a two-points boundary value problem has 

conditions specified at the extremes of the independent variable. 
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For example, if the independent variable is time t over the domain [0,1], an 

initial value problem would specify a value of y (t) and / or  y' (t)  at time   t 

= 0, while a two-points boundary value problem specify values for  y (t) or  

y' (t) at both point‟s t = 0 and t = 1. See [13] 

 

1.6 Singular BVPs 

Many problems in varied fields as thermodynamics, electrostatics, physics, 

and statistics give rise to ordinary differential equations of the form 

- ( p y′ )′ + q y = w f  

On some interval of the real line with some boundary conditions. Very often 

singularities are encountered at one or more points in that interval. Singular 

two-points boundary value problem occur frequently in mathematical 

modeling of many practical problems. 

Singular point of a differential equation, a point at which the coefficients are 

not expandable in a Taylor series. 

 We mention here three examples to illustrate the point. 

 

(1)  The equation  

],0[,0)(])sin()([
)sin(

1



  

Appears when separation of variables is attempted on the heat equation in a 

solid sphere or the electrostatic potential in the sphere. The source of the 

singularity here is the vanishing of the function p at the endpoints. 
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(2) The equation  

]1,1[),())1(( 2  xxfux  

Represents the steady state temperature distribution in a bar extending from 

 -1 to 1 if the thermal conductivity is .The same type of 

singularity occurs here also. See [5]  

      (3) An example of a class of singular BVP s is: 

),()''( yxfyx 
                                               (1.4) 

0 < x ≤ 1     ,     y (0) = A      , y (1) = B 

         In which 0 < α ≤ 1 and A , B are finite constants. We assume also that 

for 0 < x < 1, the real-valued function f  (x , y ) is continuous 
y

f




  exists 

and is continuous and that 0




y

f
. See [10] 

The obvious difficulty of  the equation above is the behavior of the term 

 near x = 0. 

 

1.7 Previous Works  

      Many previous works have been done on studied numerical methods for 

solving singular BVPs, Gustafsson used some numerical methods that 

treated only scalar problems, not systems, and does not deal at all with 

existence or uniqueness of solutions. Natterer has treated systems, using a 

projection method and has get )][ln( 2 rhhO  accuracy. He also has dealt 

)1( 2x
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with existence and uniqueness of solutions, but has used unnatural looking 

boundary  conditions, and has not state when the problem will have a 

solution,  only when the operator is Fredholm with index zero (not when the 

operator's inverse exists). Jamet also has treated only scalar  equations and 

has used three-point finite difference schemes, which, for a model problem, 

with )( 1 hO  accurate solutions )1,0((   is a parameter of the 

problem). Shampine has dealt with a class of nonlinear second order scalar 

equations, all with the same linear differential operator. He has proved 

existence and uniqueness of solutions of this equation for certain boundary 

value problems and the convergence of collocation and finite difference 

methods. See [2] 

     [10] Twizell (1988) has developed numerical methods for this class of  

BVPs (1.4). Twizell's  methods gave more accurate numerical results than 

those previously available (such as those of Chawla and Katti (1982) ). They 

are also more economical and easier to implement. See [10] 

In this thesis we have explored some numerical methods for solving singular 

two-points boundary value problem and we have written some codes in 

matlab. 

This thesis contains three chapters. Chapter 2 contains the general forms for 

the differential equation, and the type of boundary conditions, then we 

discuss a numerical methods to solve BVP, Shooting method, and  Finite 

Difference method, for linear and nonlinear BVP. 
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Chapter 3 is devoted to singular two-points BVP. We discuss regular 

singular point, singularities of the first kind,  irregular singular point, infinite 

interval problem, and other singular problem. Then some numerical methods 

were used to solve singular two-points BVP. 

In this work, some numerical methods for solving these problems have been 

studied and analysed. 

MATLAB is used as  a computational tool during the development of this 

thesis. 
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Chapter Two 
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Some Numerical methods for Solving Boundary Value 

Problems 
 

 2.1  Introduction 

A system of ordinary differential equations may have many solutions. 

Commonly a solution of interest is determined by specifying the values of all 

its components at a single point x = a. This point and a direction of 

integration define an initial value problem (IVP). 

         In many applications the solution of interest is determined in a more 

complicated way. A boundary value problem (BVP) specifies values or 

equations for solution components at more than one point in the range of the 

independent variable x. Generally IVP has a unique solution, but this is not 

true for BVPs. Like a system of linear algebraic equations, a BVP may not 

have a solution at all, or may have a unique solution, or may have more than 

one solution. Because there might be more than one solution, BVP solvers 

require an estimate (guess) for the solution of interest. Often there are 

parameters that must be determined in order for the BVP to have a solution. 

Associated with a solution there might be just one set of parameters, a finite 

number of possible sets, or an infinite number of possible sets. See [9] 
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2.2 General Forms for the Differential Equations  

       For a second order non-linear BVPs we have the general form  

y" (x) = f (x ,y (x) ,y' (x))       a ≤ x ≤ b 

and the particular form that can be derived from the general one  

    y"(x) = f (x ,y (x))              a ≤ x ≤ b 

These differential equations, valid in some interval [ a , b ], together with 

(boundary) conditions imposed on the dependent variable and / or its first 

derivative at the two points x = a and x = b give rise to the second order 

general and special boundary value problems respectively. 

For a linear boundary value problem which has the form   

y" (x) = p (x) y' + q (x) y + r (x)     a ≤ x ≤ b   , 

with boundary conditions    y (a) = α  , y (b) =  β 

where p , q and r continuous functions on the interval [a , b]. 

 Usually one assumes that a general ordinary differential equation can be 

written as a first-order system 

                                     

                        y ' = f ( x , y)       a < x < b                              (2.1) 

where  (x)) y  (x),..., y  (x), (y   (x) T

n21 y  is the unknown vector function y 

 nR   and 
T

n21 ))y  ,(x f, , y) ,(x  f , y) ,(x  (f  y) ,(x  f  is the (generally 

nonlinear) right-hand side. The interval ends a and b are finite or infinite   

constants. For a linear problem, the ODE simplifies to 

                           

                                y' =A (x) y +  q (x)       a < x < b                         (2.2)    



04 

 

where   the matrix A and   the vector q are functions of x, A (x)     R 
n x n

 

and q (x)   R
 n

.   The linear system (2.2) is called homogeneous if q = 0, 

and it is non-homogeneous otherwise. 

 High-order ODEs can normally be converted to the first-order form. 

 Given any scalar differential equation   

              

                                 u 
( n) 

= f ( x , u ,u ' , ...,u 
n-1

 )      a < x < b               (2.3) 

  let y (x) = (y 1 (x),y 2 (x),…..y n (x))
 T

 be defined by                                    

y1 (x) = u(x) 

y2 (X) = u'(x)                                          (2.4)     

    .  

                                                                .       

 

y n(x)=u 
n-1 

(x) 

Then the ODE can be converted to the equivalent first-order Form 

y1' =y2 

y2' =y3 

. 

. 

yn-1' =y n 

y n' =f (x ,y1,y2, y n) 

 

This is in the form (2.1).                                                                     
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2.3 General Forms for the Boundary Conditions                     

         A first-order system of ODEs like (2.1) has normally n boundary con-

ditions (BCs) 

                                                                       

                 g ( y (a) , y (b)) = 0                                              (2.5) 

    where g = (g 1,..., g n )
 T

 is a (generally nonlinear) vector function and 0 is 

a vector of n zeros. The simplest instance of g is the case  for an IVP. Then 

the solution is given at the initial  point; that is, 

 

y(a) = α                                                           (2.6) 

   where α =( α 1,..., α n)
 T

    R
 n
 is a known vector of initial conditions                

which uniquely determines y (x) near a .                                                    

The general form of linear two-point BC for a first- order                        

system (or for a higher-order ODE) is  

 

                B a y (a) + B b  y (b) = β                                       (2.7) 

     Here B a and B b   R 
n x n

 and β   R 
n
.                                                               

            we see that for the linear  BVP (2 .2 ) and (2.7) to have a unique 

solution, it is necessary but not sufficient that these BCs be   linearly                                                 

independent; that is, the matrix (B a ,B b ) have n  linearly independent                                    

columns, or simply  rank (B a , B b ) = n .                                     

BC of the general form (2.7) are called non- separated BC, since each 

involve information about y (x) at  both endpoints. However it frequently 
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happens that  rank (B a) < n or rank (B b ) < n, or both. If either holds we call 

the boundary condition partially separated.  

In the case rank (B b) = q < n, the BVP can be transformed  to one where the 

BC have the form      

                                                         

Ba1y (a) = β 1 

                               B a2 y (a) + B b2 y (b) = β 2                          (2.8) 

 where B alR 
p X n 

(p := n - q), B a2 and B b2R 
q X n

, β1   R 
p 
and β2R 

q
.                                                                                                                               

The BC are called separated if they simplify further to  

           

Ba1 y (a) = β1 

                     Bb2 y (b) = β2                                                                  (2.9) 

The nonlinear BC (2.5) can also occur in partially separated or separated 

form. Thus, the boundary conditions are separated if they are of the form 

                                                       

g 1 (y (a)) = 01 

                                    g 2 (y (b)) = 02                                                               (2.10) 

       where g 1, 01   R 
p
 and g 2, 0 2   R 

q
 with n = p + q.  

In fact, a significant portion of the currently available software for BVPs 

assumes that the BC are separated. See [1] 
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2.4 Types of Boundary Conditions  

For linear boundary value problems there are three types of conditions: 

1. Functional boundary conditions i.e. y (a) = A and y (b) = B are given. 

2. Derivative boundary conditions i.e. y' (a) = α and y' (b) = β are given. 

3. Mixed boundary condition i.e. conditions in the form 

 

p0 y (a) + q 0 y' (a) = r0  

p1 y (b) + q1 y' (b) = r1 

All three types of linear boundary conditions may be expressed in vector – 

matrix form as : 












































1

0

11

00

)(

)('00

)(

)('

00 r

r

by

by

pqay

aypq
 

so that   0 q  q 10  gives type 1,  0  p  p 10  gives type 2 and type 3 occurs 

when all four constants are non-zero. Type 3 boundary conditions can be 

written in the vector form (2.7). 

 

Theorem 2.1 
 

Suppose the function f in the boundary-value problem which has the form y"  

= f  ( x ,y , y') ,    a ≤ x ≤ b 

where   y (a ) = α, y (b) = β   is continuous on the set 

D = {(x ,y ,y')  , a ≤ x ≤ b , -∞ < y < ∞ , -∞ < y' < ∞} 

and that the partial derivatives f y and f y' are also continuous on D. If 
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(i) f y(x ,y ,y') > 0    For all (x ,y ,y')   D and 

(ii) a constant M exists with 

| f y' ( x ,y ,y') | ≤ M for all ( x, y , y' )   D 

Then the boundary-value problem has a unique solution. See[11] 

* Note that theorem (2.1) gives the conditions under which the general BVP 

with type 1 boundary condition has unique solution (existence and 

uniqueness). 

 

When f (x ,y ,y') has the form 

 

f ( x ,y ,y') = p (x) y' + q (x) y + r (x) 

the differential equation (1.3) is said to be linear. 

Theorem (2.1) can be replaced by the following theorem: 

Theorem 2.2 

If the linear boundary value problem: 

 

                                  y" (x) = p (x) y' + q (x) y + r (x)                          (2.11) 

a ≤ x ≤ b   ,    y (a) = α  , y (b) =  β 

satisfies: 

(i) p (x), q (x) and r (x) are continuous on [a ,b] 

(ii) q (x) > 0   on [a , b] 

then (2.11) has a unique solution. See [11] 
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2.5 Linear Second-Order BVP s 

Consider the linear second order BVP (2.11). let y o= y, y1= y' then (2.11) 

can be written as the system of first order differential equations: 

 






































ry

y

pqy

y 010

'

'

1

0

1

0

 

Which can be written in  vector-matrix form as:  

                                   D y = Q y + P                                      (2.12) 

With boundary conditions y0 (0) = A , y1 (1) = B. See [10] 

Numerical Methods To Solve BVP. 

2.6  Shooting Method: 

    The simplest initial value method for BVPs is the single shooting method, 

it's one of the more successful numerical techniques for solving the general 

BVP with type 1 boundary conditions based on the idea of reformulating the 

problem as a sequence of  IVPs of the form (1. 3) with     y (a) = A 

                                        z  (a) y' i , i = 0,1, ….                       (2.13)  

To do this all conditions must be specified at one point. Suppose we choose 

to impose some initial condition, at  t = a, where there are some  boundary 

conditions are already known.  

We guess the remaining boundary conditions at this point and, for the 

moment, ignore the known boundary conditions at t = b. We now have an 

IVP which can be solved using  Range Kutta or any other appropriate 



21 

 

method to obtain a numerical solution at t = b. These numerical values are 

then compared with the known boundary condition at t = b. If the guessed 

initial conditions are correct, there will be no discrepancies with the known 

boundary conditions at t = b, and the solution to the IVP will be the solution 

to BVP. If not, we need to modify the guessed initial conditions at  t = a. 

This is called the shooting method, for obvious reasons. See [3] 

It is probably clear to the reader that 'shooting methods' are so-called 

because of the analogy of firing missiles at a stationary target. Starting with 

the parameter 0z , which determines the initial elevation at which the missile 

is discharged from the point (x , y ) = (a , A). The trajectory of the missile is 

computed by solving the initial value problem given by (1.3) and (2.13) with    

i > 0. If the point of landing, (x , y) = (b , y ( b, 
0

z  )) is not sufficiently close 

to (b , B), the approximation is corrected by choosing another elevation 1z , 

and    so on, until y(b , kz ) is acceptably close to the 'target' y (b) = B. See 

[11] 

Definition : A function f (t, y) is said to satisfy a Lipschitz condition in the 

variable y on a set 2RD  if a constant L > 0 exists with  

2121 ),(),( yyLytfytf   

Whenever Dytyt ),(),,( 21 . The constant L is called a Lipschitz constant 

for f. 
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2.6.1 Shooting For Linear Problems 

Consider the initial-value problems 

                     bxaxryxqyxpy  )()()(                                   (2.14) 

                                                        )(ay                                               (2.15)                               

                                                       0)(  ay                                            (2.16) 

 

 And  

                                   bxayxqyxpy  )()(                         (2.17) 

                                                            0)( ay                                             (2.18) 

                                                            1)(  ay                                             (2.19) 

If p, q, r continuous and q > 0 on [a,b] then the Lipschitz condition exists and 

(2.14) to (2.19) have unique solutions. 

Take )(1 xy  solution of (2.14) to (2.16), and )(2 xy  solution of (2.17) to 

(2.19), and take 

              )(
)(

)(
)()( 2

2

1
1 xy

by

by
xyxy





    0)(2 by                (2.20) 

Where )(1 by is the approximated solution for (2.14) to (2.16) at x = b, 

and )(2 by  is the approximated solution for (2.17) to (2.19) at x = b. 

Can be checked to be unique solution of BVP (2.11), and   

                                )(
)(

)(
)()( 2

2

1
1 xy

by

by
xyxy 





                       (2.21) 
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                                 )(
)(

)(
)()( 2

2

1
1 xy

by

by
xyxy 





                          (2.22)                  

 

So  

).()()(()()(

)()
)(

)(
)(()

)(

)(
)((

))()((
)(

)(
)()()(

2

2

1
12

2

1
1

22

2

1
11

xrxyxqxyxp

xry
by

by
yxqy

by

by
yxp

yxqyxp
by

by
xryxqyxpy




















 

The shooting method for linear equations is based on the replacement of the 

linear boundary-value problem by two initial-value problems.  

See [3]&[12]. 
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Algorithm 2.1 

Linear shooting 

To approximate the solution of the boundary-value problem  

:)(,)(..0)()(')("   byaybxaxryxqyxpy  

INPUT :endpoints a, b; boundary conditions , ; number of subintervals N. 

OUTPUT : approximations iw ,1  to )( ixy ; iw ,2 to )(' ixy for each i = 

0,1,…..,N. 

Step 1 Set h = (b-a) / N: 

        

.1

;0

;0

;

0,2

0,1

0,2

0,1









v

v

u

u 

 

Step 2  For i = 0,…..,N-1 do steps 3 and 4. 

            (The Runge-Kutta method for systems is used in steps 3 and 4). 

Step 3  Set x = a + ih. 

Step 4 Set 

];[

)];2/())(2/(

))(2/([

];[

)];()()([

;

2,22
1

,21,3

1,12
1

,1

2,12
1

,22,2

2,12
1

,21,2

,1,22,1

,21,1

kuhk

hxrkuhxq

kuhxphk

kuhk

xruxquxphk

huk

i

i

i

i

ii

i












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].22[

];22[

)];)(())(([

];[

)];,)(2/())(2/([

];[

)];)(2/())(2/([

];[

];)()([

;

];22[

];22[

)];())(())(([

];[

)];2/())(2/(

))(2/([

2,42,32,22,16
1

,21,2

1,41,31,21,16
1

,11,1

1,3,12,3,22,4

2,3,21,4

1.22
1

,12,22
1

,22,3

2,22
1

,21,3

1,12
1

,12,12
1

,22,2

2,12
1

,21,2

,1,22,1

,21,1

2,42,32,22,16
1

,21,2

1,41,31,21,16
1

,11,1

1,3,12,3,22,4

2,3,21,4

1,22
1

,1

2,22
1

,22,3

kkkkvv

kkkkvv

kvhxqkvhxphk

kvhk

kvhxqkvhxphk

kvhk

kvhxqkvhxphk

kvhk

vxqvxphk

hvk

kkkkuu

kkkkuu

hxrkuhxqkuhxphk

kuhk

hxrkuhxq

kuhxphk

ii

ii

ii

i

ii

i

ii

i

ii

i

ii

ii

ii

i

i

i









































       

Step 5   Set    

N

N

v

u
w

w

,1

,1

0,2

0,1 ;










; 

           OUTPUT ),,( 0,20,1 ww  

Step 6  For i = 1, …. ,N 

            Set 
;2

;1

,20,2,2

,10,2,1

ii

ii

vwuW

vwuW




 

                   x = a +ih; 

                  OUTPUT (x,W1,W2), (Output is ii ww ,2,1 ,, .) 



25 

 

Step 7 STOP.  (The process is complete.)See [3] 

Example 2.1 

The linear boundary-value problem  

21,
)sin(ln22

22
 x

x

x
y

x
y

x
y  

y (1) = 1, y (2) = 2 

has the exact solution 

)cos(ln
10

1
)sin(ln

10

3
2

2
1 xx

x

c
xcy   

Where  

00392070132.0)]cos(ln4)2sin(ln128[
70

1
2  xc  

And 

1392070132.1
10

11
21  cc  

Applying shooting method to this problem requires approximating the 

solutions to the initial-value problems  

 

21,
)sin(ln22

21211  x
x

x
y

x
y

x
y  

,0)1(,1)1( 11  yy   and  

1)1(,0)1(21,
22

222222  yyxy
x

y
x

y  
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Algorithm 2.1 uses the fourth-order Runge-Kutta technique to find the 

approximation to  y1(x) and y2(x). 

The  results of the calculations with N =10 and h = 0.1 are given in table 

(2.1). The value listed as iw approximates and )( ixy  is the exact solution 

and iee  is the error between the exact solution and the approximate solution. 

)(
)2(

)2(2
)()( 2

2

1
1 iii xy

y

y
xyxy


 . See [3] Program 1 

Table (2.1) : The approximate and exact solution for example 2.1. 

ix  iw  
)( ixy  

iii wxyee  )(  

1.000 1.000000 1.000000 0.000000 

1.100 1.098134 1.092629 0.005505 

1.200 1.194476 1.187084 0.007391 

1.300 1.290881 1.283382 0.007498 

1.400 1.388198 1.381445 0.006753 

1.500 1.486792 1.481159 0.005633 

1.600 1.586783 1.582392 0.004391 

1.700 1.688171 1.685013 0.003157 

1.800 1.790895 1.788898 0.001997 

1.900 1.894870 1.893929 0.000941 

2.000 2.000000 2.000000 0.000000 

The maximum error is   0.007498.  
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 Figure (1) : shows the approximate and the exact solution for example (2.1) that was        

solved by shooting method. 
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Example 2.2  

The boundary-value problem  

10),(4  xxyy  ,              y (0) = 0,                y (1) =1 

has the exact solution 

xeeeexy xx   )()1()( 22142
 

Applying the shooting method to this problem requires approximating the 

solutions to the initial-value problems  

 

0)0(0)0(10),(4 1111  yyxxyy  

0)0(0)0(10),(4 2222  yyxyy  

Algorithm 2.1 uses the fourth-order Runge-Kutta technique to find the 

approximation to  y1(x) and y2(x), which can be found in page 22. 

The  results of the calculations with N = 20 and h =1/20 are given in table 

(2.2). The value listed as iw approximates and )( ixy  is the exact solution 

and iee  is the error between the exact solution and the approximate solution. 

)(
)1(

)1(1
)()( 2

2

1
1 iii xy

y

y
xyxy


 . See [3] program 2 
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    Table (2.2) : The approximate and exact solution for example 2.2. 

ix  iw  iy  )()( iii xyyxyee   

0.000               0.000000                 0.000000                 0.000000 

0.050               0.077831                  0.077618                0.000213 

0.100               0.155918                  0.155512                0.000406 

0.150               0.234541                  0.233962                0.000579 

0.200               0.313987                  0.313252                0.000734 

0.250               0.394548                  0.393676                0.000872 

0.300               0.476531                  0.475538                0.000993 

0.350               0.560254                  0.559157                0.001097 

0.400               0.646053                  0.644869                0.001184 

0.450               0.734285                  0.733031                0.001253 

0.500               0.825330                  0.824027                0.001303 

0.550               0.919596                  0.918265                0.001331 

0.600               1.017525                  1.016189                0.001336 

0.650               1.119593                  1.118278                0.001314 

0.700               1.226316                  1.225055                0.001261 

0.750               1.338260                  1.337086                0.001174 

0.800               1.456040                  1.454992                0.001047 

0.850               1.580329                  1.579455                0.000874 

0.900               1.711865                  1.711217                0.000647 

0.950               1.851459                  1.851099                0.000359 

1.000               2.000000                  2.000000                0.000000 

   The maximum error is   0.001336 
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 Figure(2) : shows the approximate and the exact solution for example (2.2) that was 

solved by shooting method. 
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2.6.2  Shooting For Non-Linear Problems 

The shooting principle extends to nonlinear problems. Consider the 

following very simple model of a chemical reaction 

  

               100"  xeu u
             (2.23) 

                           0)1()0(  uu                       (2.24) 

        As an initial value problem. With u (0) = 0 and tu )0('  the problem 

(2.23) has a unique solution. For each real t; denoted by u (x , t ). Now if we 

find the correct "angle of shooting ", t* such that u (1; t*) = 0, then the 

solution of the IVP also solves the BVP (2.23), (2.24). 

          Find t = t* which satisfies the equation  

u (1 ; t) = 0 

     This latter problem can be solved numerically by an iterative scheme. 

Note that each function evaluation in this iterative scheme involves the 

(numerical) solution of an IVP. See [1] 

     The shooting technique for the nonlinear second-order BVP (1.3) is 

similar to the linear technique, except that the solution to a nonlinear 

problem cannot be expressed as a linear combination to two initial value 

problems. Instead, the solution to the boundary value problem is 

approximate by using the solution to a sequence of initial value problem 

involving a parameter t. These problems have the form  

             y"  = f  ( x ,y , y'), a ≤ x ≤ b ,   y(a) = α ,   y'(a) = t     (2.25) 
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We do this by choosing the parameters t = tk in manner to ensure that 




)(),(lim bytby k
k

 

Where y(x, tk) denotes the solution to the initial value problem (2.25) with      

t = tk and y (x) denotes the solution to the boundary value problem (1.3). 

 Start with a parameter  t0 that determines the initial elevation at which the 

object is fired from the point (a, α) and along the curve described by the 

solution to the initial value problem: 

 

y"  = f  ( x ,y , y'), a ≤ x ≤ b ,   y (a) = α ,   y' (a) = t0  . 

       If  y (b, t0) is not sufficiently close to  β, we correct our approximation 

by choosing elevations t1,  t2, and so on, until y(b, tk ) is sufficiently close to 

β. 

       To determine the parameters tk, suppose a boundary value problem of 

the form (1.3) satisfies theorem 2.1, 2.2 . If y(x, t) denotes the solution to the 

initial value problem (2.25) we next determine t with  

 

y (b, t) – β = 0                                          (2.26) 

      This is a nonlinear equation that can be solved by Newton's method 

which use to generate the sequence { tk }, only one initial approximation,  t0, 

is needed. 

 

      The iteration has the form   
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),(

),(

1

1
1









k

k
kk

tb
dt

dy

tby
tt


                             (2.27) 

and it requires the knowledge of (dy/ dt) (b, tk-1). This presents a difficulty 

since an explicit representation for y(b, t) is not known; we know only the 

values y (b, t0),  y (b, t1), …. , y (b, tk-1). 

     Suppose we rewrite the initial value problem (2.25), emphasizing that the 

solution depends on both x and the parameter t:                                                  

   y"(x, t)  = f  ( x ,y(x, t) , y'(x, t)),a ≤ x ≤ b ,  y (a, t) = α ,  y' (a, t) = t (2.28) 

     We have retained the prime notation to indicate differentiation with 

respect to x. Since we need to determine (dy/ dt) (b, t) when t = tk-1, we first 

take the partial derivative of (2.28) with respect to t. This implies that  

 

).,(
'

)),('),,(,(
'

),()),('),,(,()),('),,(,(

)),('),,(,(),(
"

tx
t

y
txytxyx

y

f

tx
t
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txytxyx

y

f

t

x
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x

f

txytxyx
t

f
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































 

Since x and t are independent, 0/  tx  and 

),(
'

)),('),,(,(
'

),()),('),,(,(),(
"

tx
t

y
txytxyx

y

f
tx

t

y
txytxyx

y

f
tx

t

y






















(2.29) 

For  a ≤ x ≤ b. This initial conditions give  

1),(
'

0),( 








ta

t

y
andta

t

y
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    If we simplify the notation by using z (x, t) to denote  ),)(/( txty  and 

assume that the order of differentiation of x and t can be reversed, (2.29) 

with the initial conditions becomes the initial value problem 

  

                 ),(')',,(
'

),()',,(),(" txzyyx
y

f
txzyyx

y

f
txz









                 (2.30) 

a ≤ x ≤ b,       z (a, t) = 0,           z (a, t) = 1 

    Newton's method therefore requires that two initial value problems be 

solved for each iteration, (2.28) and (2.30). Then from (2.27), 

 

                           ),(

),(

1

1
1









k

k
kk

tbz

tby
tt


                             (2.31) 

Of course, none of these initial value problems are solved exactly; the 

solution are approximated. See [3] & [6] 

 

Algorithm 2.2 

Nonlinear Shooting with Newton’s Method   

To approximate the solution of the nonlinear boundary-value problem 

 

:)(,)(,).,,(   byaybxayyxfy  

INPUT :  endpoints a, b; boundary conditions , ; number of subintervals N 

≥ 2; tolerance TOL; maximum number of iterations M. 
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OUTPUT : approximations iw ,1 to ii wxy ,2);(
to 

)(' ixy
for each                

i = 0,1, ……,N or a massage that the maximum number of iterations was 

exceeded. 

 

Step 1  Set    h = (b-a) / N; 

                    K = 1; 

                    TK = ( - ) / (b - a). (note: TK could also be input.) 

Step 2  While (k ≤ M) do steps 3-10. 

Step 3  Set   

.1

;0

;

2

1

0,2

0,1









u

u

TKw

w 

               

Step  4  For i =1,…….,N do steps 5 and 6. 

             (The Runge-Kutta method for systems is used in steps 5and 6.) 

Step  5  Set x = a +(i-1)h. 

Step  6  Set        
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Step 7  If Nw ,1 ≤ TOL  then do steps 8 and 9. 

Step  8  For i = 0,1,……,N 

                 set   x = a + ih; 

                 OUTPUT ),,( ,2,1 ii wwx . 

Step  9  (The procedure is complete.) 

               STOP. 

Step  10   Set   
1

,1

u

w
TKTK N


  

                        (Newton‟s method is used to compute TK.) 

                        k = k+1. 

Step   11   OUTPUT  („Maximum number of iterations exceeded‟); 

                  (The procedure was unsuccessful.) 

                   STOP. See[3] 
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Example 2.3 

Consider the boundary-value problem 

3

43
)3(,17)1(,31),232(

8

1 3  yyxyyxy                             

has the exact solution 

x

16
xy(x) 2   

Applying shooting method to this problem requires approximating the 

solutions to the initial-value problems 

ktyyxyyxy  )1(,17)1(,31),232(
8

1 3
 

           1)1(,0)1(,31),(
8

1
 zzxzyzyz        

Algorithm 2.2 uses the Runge-Kutta method of order four to approximate 

both solutions required by Newton‟s method. The value listed as 

iw approximates and )( ixy  is the exact solution and iee  is the error 

between the exact solution and the approximate solution. The  results of the   

calculations with N = 20 are given in table (2.3),  See [3] program 3 

 

 

 

 



39 

 

Table (2.3) : The approximate and exact solution for example 2.3. 

ix  iw ,1  )( ixy  )(,1 iii xywee   

1.000              17.000000              17.000000              0.000000 

1.100              15.755485              15.755454              0.000038 

1.200              14.773372              14.773333              0.000035 

1.300             13.9 97727              13.997692              0.000027 

1.400             13.388599               13.388571              0.000017 

1.500             12.916684               12.916666              0.000007 

1.600             12.560007               12.560000              0.000002 

1.700             12.301761               12.301764              0.000012 

1.800             12.128876               12.128888              0.000021 

1.900             12.031031               12.031052              0.000028 

2.000             11.999971               12.000000              0.000036 

2.100             12.029011               12.029047              0.000042 

2.200             12.112684               12.112727              0.000047 

2.300             12.246473               12.246521              0.000052 

2.400             12.426614               12.426666              0.000056 

2.500             12.649943               12.650000              0.000059 

2.600             12.913786               12.913846              0.000062 

2.700             13.215863               13.215925              0.000064 

2.800             13.554221               13.554285              0.000066 

2.900             13.927175               13.927241              0.000067 

3.000             14.333266               14.333333              0.000000 

 The maximum error is  0.000067 
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Figure (3) : shows the approximate and the exact solution for example (2.3) that was 

solved by shooting method. 
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Example 2.4 

Consider the non-linear boundary-value problem 

3

1
)2(,

2

1
)1(,21,3  yyxyyyy  

has the exact solution 

1)1()(  xxy  

Applying shooting method to this problem requires approximating the 

solutions to the initial-value problems 

ktyyxyyyy  )1(,
2

1
)1(,21,3

 

1)1(,0)1(,21),(  zzxzyzyz  

Algorithm 2.2 uses the Runge-Kutta method of order four to approximate 

both solutions required by Newton‟s method (page 35). The value listed as 

iw approximates and )( ixy  is the exact solution and iee  is the error 

between the exact solution and the approximate solution. The results of the 

calculations with N = 10 are given in table (2.4). See [3] program 3 
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Table (2.4) :The approximate and exact solution for example 2.4. 

         1.000                  0.500000               0.500000                 0.000000 

         1.100                  0.476191               0.476190                 0.000002 

         1.200                  0.454547               0.454545                 0.000003 

         1.300                  0.434786               0.434782                 0.000004 

         1.400                  0.416671               0.416666                 0.000006 

         1.500                  0.400006               0.400000                 0.000007 

         1.600                  0.384622               0.384615                 0.000008 

         1.700                  0.370378               0.370370                 0.000009 

         1.800                  0.357152               0.357142                 0.000010 

         1.900                  0.344838               0.344827                 0.000011 

         2.000                  0.333345               0.333333                 0.000000 

 The maximum error is  0.000011 

 

 

 

 

 

 

 

 

 

ix  iw ,1  )( ixy  )(,1 iii xywee   



43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4): shows the approximate and the exact solution for example (2.4) that was 

solved by shooting method. 
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2.7  Finite Difference Methods  

            In these methods, no initial value problems are explicitly integrated. 

Rather, an approximate solution representation is sought over the entire 

interval of interest. Thus, these methods are sometimes referred to as global 

methods.  

The basic steps of a finite difference method are outlined as follows, 

we choose a mesh Ω to the interval [a,b], where 

  b)x ..xx(a 1N21   then approximate solution values are 

then sought at these mesh points ix for i=2, 3, …, n 

Form a set of algebraic equations for the approximate solution values by 

replacing derivatives with difference quotients in the differential equations 

and boundary conditions that the exact solution satisfies. 

Finally, solve the resulting system of equations for the approximate solution, 

this gives a set of discrete solution values )( ii xyy  . 

Finite difference methods proceed by replacing the derivatives in the 

differential equations by finite difference approximations. This gives a large 

algebraic system of equations to be solved in place of differential equation. 

 

To approximate y'  we can use one-sided approximation 

h

xyhxy
yxyD

)()(
')(


  or 

h

hxyxy
yxyD

)()(
')(


  
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Or we can use centered approximation : 

h

hxyhxy
yxyD

2

)()(
')(0


  

Which is the average of the two one-sided approximations. It is clear that      

Doy(x) gives a better approximation than either of the one-sided  

approximations also it gives us a second order accurate approximation . 

We can use finite difference to solve a differential equation consider the 

second order differential equation 

 

                                y"(x) = f (x),     0 < x < 1                                 (2.32) 

y (0) = α          y (1) = β 

The function f (x) is specified and we wish to determine y (x) in the interval  

0 < x < l. This problem is called two points boundary value problem. Since 

boundary conditions are given at the two distinct points 0 and 1. 

 

2.7.1 Simple One-Step Schemes for Linear first-order Systems 

Consider now the linear first-order system 

            y' = A (x) y + f (x) , x   [a , b] , y   R 
n 
                 (2.33) 

              B a y (a) + B b y (b) = β                                       (2.34) 

and we seek numerical methods which work equally well for non-uniform 

meshes. This naturally leads to one-step schemes, schemes which define the 

difference operator based only on values related to one subinterval 
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 1ii x,x  of the mesh Ω at a time. The two simplest such finite difference 

schemes are the midpoint and the trapezoidal schemes. 

For a (generally non-uniform) mesh Ω, a discrete numerical solution 

 
T

Nyyy ),......,,(y 121    is sought, Where yi  is to approximate 

component-wise the exact solution y(x) at ixx  , i = 2, 3, …., N. The 

numerical solution (in all methods based on one-step schemes) is required to 

satisfy the boundary condition (2.34). 

For the interior mesh points, two difference schemes are presented. For each 

subinterval  1ii x,x  i=1,2,3,…..,N-1,N, of Ω the derivative in (2.33) is 

replaced by 
i

ii

h

yy 1

. This approximation is centered at 

iii hxx
2

1
:2/1  , with )xx(:h i1ii    at the middle of the subinterval.                               

Then A (x) y (x) + f (x) is approximated by a centered approximation, 

yielding second-order accuracy. The trapezoidal scheme is defined by: 

    NixfxfyxAyxA
h

yy
iiiiii

i

ii 




 1)()(
2

1
)()(

2

1
111

1
(2.35) 

and the midpoint scheme is defined by: 

    NixfyyxA
h

yy
iiii

i

ii 



 1)())((

2

1
2/112/1

1
     (2.36)                                                                                      
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  The latter scheme (2.36) is also known as the box scheme. In vector-matrix 

form,  both of these methods can be written as                                         

                                          FAy 


                                           (2.37) 

and, in detail, 

















































































 

N

Nba

NN f

f

f

y

y

y

BB

RS

RS

RS

.

.

.

.

.

.

.

2

1

1

2

1

22

11

                    (2.38) 

Where ii R,S  are n x n matrices. For the trapezoidal scheme 

  Nixfxff

xAIhxAIh

iii

iiiiii











1)()(
2

1

)(),(

1

12
11

2
11 RS

                (2.39) 

while for the midpoint scheme 

Nixff

xAIhxAIh

ii

iiiiii















1)(

)(),(

2/1

2/12
11

2/12
11 RS

   ;(2.40) See [1] 

 

2.7.2 Finite-Difference Methods for Linear Problems 

Consider more general linear equation  

)()()( xryxqyxpy                 

Together with two boundary conditions, "Dirichlet conditions " 
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y (a) = α       , y (b) = β 

Let ,ihaxi  i = 0, 1, 2, …, N+1 and ii xxh  1  

This equation can be discretized to second order by: 

 

iii
ii

i
iii ryq

h

yy
p

h

yyy





 

2

)()2( 11

2

11
, I = 1 ,2, …, N 

Where, for example, )(),( iiii xqqxpp   and )( ii xrr  , this gives the 

linear system A Y = F where A is the tri-diagonal matrix. 

 











































)2()2/1(

)2/1()2()2/1(

...

...

...

)2/1()2()2/1(

)2/1()2(

1

2

11

2

1

22

2

2

11

2

2

NN

NNN

qhhp

hpqhhp

hpqhhp

hpqh

h
A

 





































































)2//1(

.

.

.

)2//1(

,

.

.

.

2

1

2

1

2

1

1

2

1

hphr

r

r

hphr

F

Y

Y

Y

Y

Yand

NN

N

N

N

 

       This linear system can be solved with standard techniques assuming the 

matrix is nonsingular. A singular matrix would be a sign that the discrete 

system does not have a unique solution, which may occur if the original 

problem, or nearby problem, is not well posed. 
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          The discretization used above, while second order accurate, may not 

be the best discretization to use for certain problems of this type. Often the 

physical problem has certain properties that we would like to preserve with 

our discretization, and it is important to understand the underlying problem 

and be aware of its mathematical properties before blindly applying 

numerical  method. See [8] 

 

 

2.7.3 Neumann Boundary  Conditions  

           Consider we have one or more Neumann boundary conditions, instead 

of Dirichlet boundary conditions, meaning that a boundary condition on the 

derivative y' is given rather than a condition on the value of y itself. We 

might have heat flux at a specified rate giving y' = α at this boundary. 

 

        Consider the equation (2.32) with boundary conditions: 

                                       y' (0) = α y (1) = β                             (2.41) 

to solve this problem numerically, we need to introduce one more unknown 

than we previously had: Yo at the point xo= 0 since this is now an unknown 

value. We also need to augment the system (2.37) with one more equation 

that models the boundary conditions (2.41). As a first try, we might use a 

one-sided expression for y'(0) such as:  

                        


h

yy 01
                        (2.42) 
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If we append this equation to the system (2.37) we obtain the following 

system of equation for the unknowns Yo,Y1,  …  ,YN                     































































































)/(

)(

.

.

)(

)(

.

.

21

121

..

.

.

..

121

121

1

2

1

2

1

1

2

1

0

2

hxf

xf

xf

xf

Y

Y

Y

Y

Yhh

h

N

N

N

N





   ( 2.43)  

      Solving this system of equations does give an approximation to the true 

solution. To obtain a second-order accurate method, we should use a 

centered approximation to y'(0) = α, instead of the one-sided approximation 

(2.42). We can introduce another unknown Y-1 and instead of the single 

equation (2.42), use the following two equations: 

2

1

h
(Y-1- 2Y0+Y1)   = f (x0)                  

                                                                                                     (2.44) 

h2

1
(Y1-Y-1) = α 

This results in a system of N+2 equation. 

              Introducing the unknown Y-1 outside the interval [0,1] where the 

original problem is posed may seem unsatisfactory. We can avoid this by 

eliminating the unknown Y-1 from the two equation (2.44) resulting in a 

single equation that can be written as: 

 

                                 
h

1
(-Y0+Y1) = α + 

2

h
 f (x0)                                 (2.45) 
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We have now reduced the system to one with only N+1 equation for the 

unknowns Y0,Y1, … ,YN. The matrix is exactly the same as the matrix in 

(2.43) which came from the one-sided approximation, the only difference in 

the linear system is that the first element in the right hand side of (2.43) is 

now changed from α  to α +
2

h
 f (x0)   we can view the left hand side of 

(2.45) as a centered approximation to y' (x0 + 
2

h
) and the right hand side as 

the first two terms in the Taylor series expansion of this value 

y' (x0 + 
2

h
) = y' (x0 )+  

2

h
 y''(x0)+   …  = α +

2

h
f (x0)+…… 

Algorithm 2.3 

Linear Finite-Difference 

To approximate the solution of the boundary-value problem 

:)(,)(,),()()(   byaybxaxryxqyxpy  

INPUT : endpoints a, b; boundary conditions , ; integer N ≥ 2, and 

elements of matrix A and the right hand side. 

OUTPUT : approximations iw  to )( ixy  for each i = 0 , 1 , ……. , N+1. 
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Step 1  Set   

                  

.))()2/(1()(

);()2/(1

);(2

;

);1/()(

2

1

1

2

1

xphxrhd

xphb

xqha

hax

Nabh











 

 

 

Step   2    For i = 2,……, N-1 

                 Set 

                         

).(

);()2/(1

);()2/(1

);(2

;

2

2

xrhd

xphc

xphb

xqha

ihax

i

i

i

i











 

Step   3    Set 

                         

.))()2/(1()(

);()2/(1

);(2

;

2

2

xphxrhd

xphc

xqha

hbx

N

N

N









 

Step  4   Set   11 al  ; (steps 4-8 solve a tridiagonal linear system algorithm.) 

              
./

;/

111

111

ldz

abu




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Step 5  For i = 2,……,N-1 set  

                                                          

iiiii

iii

iiii

lzcdz

lbu

ucal

/)(

/

1

1











 

 

Step 6  Set 

                    
./)(

;

1

1

NNNNN

NNNN

lzcdz

ucal








 

 

Step 7  Set  

                       

.

;

;

1

0

NN

N

zw

w

w







 



 

Step   8    For i = N-1, …… ,1  set .1 iiii wuzw  

Step   9    For i = 0, ……. , N + 1    set  x = a + ih; 

                                                         OUTPUT ),( iwx . 

Step    10    STOP. (The procedure is complete.)  
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Example 2.5 

Algorithm (2.3) will be used to approximate the solution to the boundary-

value problem  

21,
)sin(ln22

22
 x

x

x
y

x
y

x
y  

 

y (1) = 1, y (2) = 2 

with h = 0.1 which was also approximated by the shooting method in 

example (2.1), gives the results listed in table (2.5). The value listed as 

iw approximates and )( ixy  is the exact solution and iee  is the error 

between the exact solution and the approximate solution. program 4 

 

Table(2.5) : The approximate and exact solution for example 2.5. 

ix  iw  iy  )()( iii xyxwee   

The maximum error is  0.000045  

        1.000                  1.000000                1.000000               0.000000 

        1.100                  1.092600                1.092629               0.000028 

        1.200                  1.187043                1.187084               0.000041 

        1.300                  1.283336                1.283382               0.000045 

        1.400                  1.381402                1.381445               0.000043 

        1.500                  1.481120                1.481159               0.000039 

        1.600                  1.582359                1.582392               0.000032 

        1.700                  1.684989                1.685013               0.000024 

        1.800                  1.788881                1.788898               0.000016 

        1.900                  1.893921                1.893929               0.000008 

        2.000                  2.000000                2.000000               0.000000 
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Figure (5): shows the approximate and the exact solution for example  

 (2.5) that was solved by finite difference method. 
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Example 2.6 

Algorithm (2.3) will be used to approximate the solution to the boundary-

value problem  

10),(4  xxyy  ,              y (0) = 0,                y (1) =1 

with h = 1/20, which was also approximated by the shooting method in 

example (2.2), gives the results listed in table (2.6). The value listed as 

iw approximates and )( ixy  is the exact solution and iee  is the error 

between the exact solution and the approximate solution. program 5 
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Table (2.6) : The approximate and exact solution for example 2.6. 

ix  iy  iyy  )()( iii xyyxyee   

          0.000             0.000000               0.00000                 0.000000 

          0.050             0.077616               0.077618               0.000001 

          0.100             0.155509               0.155512               0.000003 

          0.150             0.233957               0.233962               0.000005 

          0.200             0.313244               0.313252               0.000008 

          0.250             0.393664               0.393676               0.000012 

          0.300             0.475520               0.475538               0.000017 

          0.350             0.559132               0.559157               0.000024 

          0.400             0.644835               0.644869               0.000033 

          0.450             0.732986               0.733031               0.000045 

          0.500             0.823967               0.824027               0.000059 

          0.550             0.918188               0.918265               0.000076 

          0.600             1.016091               1.016189               0.000098 

          0.650             1.118155               1.118278               0.000123 

          0.700             1.224900               1.225055               0.000154 

          0.750             1.336894               1.337086               0.000191 

          0.800             1.454757               1.454992               0.000235 

          0.850             1.579168               1.579455               0.000286 

          0.900             1.710870               1.711217               0.000347 

          0.950             1.850682               1.851099               0.000417 

          1.000             2.000000               2.000000               0.000000 

The maximum error is   0.000417 
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Figure (6) : shows the approximate and the exact solution for example (2.6) that was 

solved by finite difference method. 
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2.7.4  Finite-Difference Method for Nonlinear Problems 

        For the general nonlinear boundary-value problem y"  = f  ( x ,y , y'),        

a ≤ x ≤ b, if the function f satisfies the following conditions: 

1. f and the partial derivatives fy  and  fy‟ are all continuous on    

        

                 D = {(x ,y ,y')  , a ≤ x ≤ b , -∞ < y < ∞ , -∞ < y' < ∞}; 

2. fy (x, y, y') ≥ δ on D, for some δ > 0; 

3. Constants k and L exist, with  

.)',,()',,( '

)',,()',,(
maxmax yyxfLandyyxfk y

Dyyx

y
Dyyx 

  

 This ensures, by Theorem 2.1 page 17, that a unique solution exists. 

            Discretizing the interval a ≤ x ≤ b into N+1 subintervals each of 

width    h so that (N+1) h = b – a, a numerical method determines a vector Y 

= [y1, y2, …. , yN ]
T 

, where yi  is an approximation to y (xi). The derivatives 

y''(x) and y'(x) will be replaced by their second-order central difference 

approximants to the equation  

 

y'' (xi ) = f (xi , y(xi ), y'(xi )) 

for each i = 1,2, … ,N this gives  

)
2

)()(
),(,f(x 

)()(2)y(x 11
i2

11i

h

xyxy
xy

h

xyxy ii
i

ii  



 

     Where y0 = α  and yN+1= β. The solution is thus found by solving the N×N 

nonlinear system  
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2y1 –  y2  + h
2  

f ( x1,  y1,  (y2 – α) / 2h) = α, 

–  y1  +2y2 –  y3 + h
2  

f ( x2 ,  y2 ,  (y3 – y1) / 2h) = 0, 

                                         …                    …                                       (2.48) 

– yN-2  +2yN-1 –  yN + h
2  

f ( xN-1 ,  yN-1 ,  (yN – yN-2) / 2h) = 0, 

– yN-1  +2yN + h
2  

f ( xN,  yN,  (β – yN-1) / 2h) =  β, 

          We use Newton‟s method for nonlinear systems, to approximate the 

solution to this system. A sequence of iterates {( y1
(k)

,
 
y2

(k)
, …., yN

(k)
 )

t
} is 

generated that may converges to the solution of the system (2.48), provided 

that the initial approximation ( y1
(0)

,
 
y2

(0)
, …., yN

(0)
 )

t  
is sufficiently close to 

the solution (y1,
 
y2, …., yN)

t
, and that the Jacobian matrix for the system is 

nonsingular. For system (2.48), the Jacobian matrix J(y1,…., yN) is a 

tridiagonal with ij-th entry 
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h
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h
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Newton‟s method for nonlinear system requires that at each iteration the 

N×N linear system 
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J(y1,
 
…., yN) (v1,

 
…., vN)

t
 = 

tN
NNNN

NN
NNNNN

h

y
yxfhyy

h

yy
yxfhyyy

h

yy
yxfhyyy

h

y
yxfhyy

))
2

,,(2

),
2

,,(2

),...,
2

,,(2

),
2

,,(2(

12

1

2
11

2

12

13
22

2

321

2
11

2

21



























 

Be solved for v1, v2
 
…., vN, since yi

 (k)
 = yi

 (k-1) 
+ vi, for each i = 1, 2, … ,N. 

See [3] & [10] 

Algorithm 2.4 

Nonlinear Finite-Difference 

 To approximate the solution to the nonlinear boundary-value problem 

                :)(,)(,).,,(   byaybxayyxfy  

INPUT : endpoints a, b; boundary conditions , ; integer N ≥ 2, tolerance 

TOL; maximum number of iterations M. 

OUTPUT : approximations iw to )( ixy for each i = 0,1,……,N+1 or a 

message that the maximum number of iterations was exceeded. 

Step   1   Set    

                                 

.

;

);1/()(

1

0











Nw

w

Nabh

 

Step    2   For   i = 1 ,……, N  set .)( h
ab

iwi






  
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Step    3    Set k = 1. 

Step   4      While K ≤  M  do steps 5-16. 

Step 5      Set  

                          

)).,,(2(

);,,()2/(1

);,,(2

);2/()(

;

1

2

211

11

1

2

1

2

twxfhwwd

twxfhb

twxfha

hwt

hax

y

y

















 

Step 6     For   i = 2,……, N-1 

                   set  

                                  

)).,,(2(

);,,()2/(1

);,,()2/(1

);,,(2

);2/()(

;

2

11

2

11

twxfhwwwd

twxfhc

twxfhb

twxfha

hwwt

ihax

iiiii

iyi

iyi

iyi

ii





















 

Step 7     Set    

                                 

)).,,(2(

);,,()2/(1

);,,(2

);2/()(

;

2

1

2

1

twxfhwwd

twxfhc

twxfha

hwt

hbx

NNNN

NyN

NyN

N





















 

Step 8    Set  11 al  ; (steps 8-12 solve a tridiagonal linear system.) 

                        
./

;/

111

111

ldz

abu




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Step    9    For i = 2,……, N-1  set 

                                                            

./)(

;/

;

1

1

iiiii

iii

iiii

lzcdz

lbu

ucal











 

Step   10     Set   

                                 
./)(

;

1

1

NNNNN

NNNN

lzcdz

ucal








 

Step   11  Set    

                                  .

;

NNN

NN

vww

zv




 

Step     12    For i = N-1,……,1  set 

                                                                  
.

;1

iii

iiii

vww

vuzv



 

 

Step       13     If  TOLv   Then do steps 14 and 15. 

Step        14      For  i = 0,……,N+1     set   x = a + ih; 

                                                                   OUTPUT ),( iwx . 

Step     15    STOP. (The procedure was successful.)  

Step      16   Set   k = k + 1. 

Step       17   OUTPUT  („Maximum number of iterations exceeded‟); 

                  (The procedure was unsuccessful.) 

                   STOP. 
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Example 2.7 

Consider the boundary-value problem 

3

43
)3(,17)1(,31),232(

8

1 3  yyxyyxy  

 has the exact solution 

x

16
xy(x) 2   

Applying finite difference  method to this problem the solutions results in 

table (2.7). The value listed as iw approximates and )( ixy  is the exact 

solution and iee  is the error between the exact solution and the approximate 

solution. program 6 
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Table (2.7) : The approximate and exact solution for example 2.7. 

ix  iw  iy  )()( iii xyxwee   

          1.000                  17.000000                17.000000              0.000000                   

          1.100                  15.754502                15.755454              0.000951 

          1.200                  14.771740                14.773333              0.001593 

          1.300                  13.995677                13.997692              0.002014 

          1.400                  13.386296                13.388571              0.002274 

          1.500                  12.914252                12.916666              0.002413 

          1.600                  12.557538                12.560000              0.002461 

          1.700                  12.299326                12.301764              0.002438 

          1.800                  12.126529                12.128888              0.002359 

          1.900                  12.028813                12.031052              0.002238 

          2.000                  11.997915                12.000000              0.002084 

          2.100                  12.027142                12.029047              0.001905 

          2.200                  12.111019                12.112727              0.001707 

          2.300                  12.245024                12.246521              0.001496 

          2.400                  12.425388                12.426666              0.001278 

          2.500                  12.648944                12.650000              0.001055 

          2.600                  12.913012                12.913846              0.000833 

          2.700                  13.215311                13.215925              0.000614 

          2.800                  13.553885                13.554285              0.000400 

          2.900                  13.927046                13.927241              0.000195 

          3.000                  14.333333                14.333333              0.000000 

The maximum error is  0.002461 
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Figure( 7): shows the approximate and the exact solution for example (2.7) that was 

solved by finite difference method. 
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Example 2.8 

Consider the boundary-value problem 

2

5
)2(2)1(21262 33  yyxxyyy  

has the exact solution 

1)(  xxxy  

Applying finite difference  method to this problem the solutions results in 

table (2.8). The value listed as iw approximates and )( ixy  is the exact 

solution and iee  is the error between the exact solution and the approximate 

solution. program 7 

Table (2.8) : The approximate and exact solution for example 2.8. 

ix  iw  iy  )()( iii xyxwee   

           1.000                  2.000000              2.000000                 0.000000 

           1.100                  2.009256              2.009090                 0.000165 

           1.200                  2.033570              2.033333                 0.000237 

           1.300                  2.069431              2.069230                 0.000200 

           1.400                  2.114447              2.114285                 0.000161 

           1.500                  2.166795              2.166666                 0.000129 

           1.600                  2.225105              2.225000                 0.000105 

           1.700                  2.288321              2.288235                 0.000085 

           1.800                  2.355607              2.355555                 0.000051 

           1.900                  2.426252              2.426315                 0.000063 

           2.000                  2.500000              2.500000                 0.000000 

The maximum error is  0.000237 
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Figure( 8) : shows the approximate and the exact solution for example (2.8) that was 

solved by finite difference method. 

 

 

 



69 

 

 

 

 

 

 

 

 

 

 

 

Chapter Three 
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Singular Two-Points BVP 

3.1 Introduction  

Singular two-points boundary value problem occur frequently in 

mathematical  modeling of many practical problems. 

We consider first a system of linear ordinary differential equations on a 

finite interval with a singularity of the first kind at one endpoint. We treat the 

same problem with singularities at both endpoints and with a singularity on 

the interior of the interval.  

Consider a class of singular BVPs: 

 

 ByAyxyxfyx  )1(,)0(,10),,()''( 
       (3.1) 

In which 10  and A , B are finite constants, we assume also that for   

0 < x < 1, the real-valued function f  (x , y) is continuous, 
dy

df
exists and is 

continuous and that 
dy

df
 > 0. See [2] 

3.2 Regular Singular Point ,Singularities of The First Kind 

           Consider the ODE 

-)'( yx f (x, y) = 0      0 < x < 1                        (3.2) 

If we assume here that α  = 1 in (3.2). The assumptions on the regularity of a 

solution y (x) of (3.2) imply that lim y (x) exists, as x decreases to 0.  
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This is needed in order to make the BVP for (3.2) meaningful, and is 

reasonable in most applications. These assumptions further yield that 

 

                                           f (0 , y (0)) = 0                                         (3.3) 

which must be compatible with the prescribed BC. In fact, the requirement 

(3.3) is often used to determine part of the BC. 

To be more specific, let us consider now the linear BVP which has a singular 

point of the first kind 

 

                         y' = A (x) y + q (x)                  0 < x < 1                       (3.4) 

where               )(
~1

)( x
x

x ARA                                   (3.5) 

here y (x), q (x), are  n component vec  n x n  

matrices. R is a constant matrix, and q (x)   C (0,1]. 

For any solution y (x) of (3.4), we require y (x)   C¹(0,1] , we also impose a 

linear system of two-points boundary conditions written as  

                  


)1()(lim 10
0

yBxyB
x

                            (3.6) 

note that we cannot merely write  

  y(1)B  y(0)B 10                                    (3.7) 

because y (x) is not even necessarily defined at x = 0. Notice also (3.7) 

implies that )(lim 0
0

xyB
x 

 is bounded.  
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Let the fundamental solution matrix, Y (x), for the homogeneous equation 

for (3.4). That is, Y (x) satisfies  

     Y' = A (x) Y,    x    (0,1],       Y ( 0x ) = I,   0x     (0,1]               (3.8)  

Then every solution to (3.4) can  be written 

             ]1,0()(  (x)cy(x)  xxyY P                        (3.9) 

where y (x) is any particular solution of (3.4) and where c is a constant 

vector. where the particular solution py  (x) satisfies 

         0)(,10)(   pp yxxy                      (3.10) 

Where 0 < δ < 1, See [2] & [7] 

          The smoothness of f (x, y) in (3.2) [or of A (X) and q (x) in (3.4)] does 

not imply corresponding smoothness of y(x) near x = 0.  

          For example, the IVP 

0  y(0)    y,  xy'
2
1   

has the solution  x  (x)y  , which has an unbounded first derivative at    

x = 0. However, where often the solution y (x) is nonetheless smooth near 

the singularity. The performance of numerical methods for problems with 

singularities of the first kind where the solution is smooth at the singularities. 
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The situation is much less straightforward for some of the initial value. This 

is because not all fundamental solution components of (3.4) may be expected 

to be as smooth near the singularity as the solution y(x) is.  

 

For example, the IVP 

x
y

x

22
y' 


  

y (0) = 1 

has the solution y (x) = 1 and a fundamental solution 2x

1
  y(x) .Therefore 

a special treatment near x = 0 is often required before a code based on an 

initial value approach can be used. 

 Such a special treatment may consist of power expansion of a fundamental 

solution in the vicinity of x = 0, followed by use of an initial value code 

when we are sufficiently far away from the singularity. Once a fundamental 

solution   x 0 y(x),  , has been found in this way, an appropriate 

particular solution can be found as well, and the boundary condition 

                                

~
)1(yB)(yB 1                                    (3.11) 

can be constructed to replace (3.6). The location of the joint  0   has to be 

small enough so that the power series expansion for Y(x) on [0,δ] can be 

easily and efficiently constructed, and at the same time large enough so that 
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the BVP (3.4), (3.11) on  ,1][ can be solved by a standard initial value 

method without difficulty. See [1] 

3.3  Irregular Singular Point  

There is at present no theoretical work justifying numerical methods for 

solving problems with irregular singular points. The main practical 

occurrence of such problems seems to be those formulated on infinite 

intervals and we examine some simple examples here. See [7] 

 

Suppose that we have the ODE 

        0(x)y)(x,  '  ayAfy                 (3.12) 

Then a transformation 

                                          t = 
x

a
                                            (3.13)  

reformulates (3.12) as an ODE defined on the interval (0,1], namely 

                     ),(2 y
t

a
af

dt

dy
t                    (3.14) 

in which we recognize an ODE with a singularity of the second kind. In   

(3.13) we have assumed that a > 0. If  a ≤ 0 then the transformation  

ax
t




1

1
 and reformulates (3.12) as an ODE defined on the interval 

(0,1], namely. 

),1
1

(2 ya
t

f
dt

dy
t   
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Since the formulation (3.12) is more natural, and since it turns out to be usu-

ally preferable for numerical discretization as well.  

        Of course, when it comes to numerical discretization the infinite 

interval ][a, has to be replaced by a finite one, say [a, b ] where b is 

"large". See [1] 

 

3.4 Other Singular Problem  

We now consider three cases of singularities . The first of three is the case  

of an equation with a singularity at both ends of the interval [0,1]: 

  )1,0(),())(
~

1

11
( 10 


 xxx

xx
byARRy        (3.15) 

Where 0R and 1R are constant n x n matrices, and   b (x) C(0,1). We use 

the boundary conditions   

          
 

)1(lim)(lim 1
1

0
0

yBxyB
xx

                    (3.16) 

Substituting the form of y (x) (3.9) & (3.10) into this boundary condition we 

have  


 

)]()([lim)]()([lim 11
1

00
0

xyBxcYBxyBxcYB p
x

p
x

   (3.17) 

           For 0)(
~

xA , then )(
~

xA may have singularities which are weaker than 

10
1

11
R

x
R

x 
 .  
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The second case is the case of a singularity in the interior of the interval. The 

equation is the same as our original equation (3.4) but on the interval 

]1,0()0,1[ x . 

]1,0()0,1[),())(
~1

(  xxx
x

byARy                         (3.18) 

We use a system of boundary conditions at -1 and 1: 

            βyByB  )1()1( 11                                        (3.19) 

By a solution to (3.18), (3.19) we mean any of the functions  

  ]1,0()0,1[),()()(  xxyxcYxy p                (3.20) 

Which satisfies (3.19). In satisfying (3.19), we must have  

  )1()1()]1()1([ 1111 pp yByBcYBYB              (3.21) 

Since Y(-1),Y(1), )1(py ,  and )1(py  exist with no singularities. Then here 

the singularity index is zero, so that if a solution is required for every β, 

)1()1( 11 YBYB   must be nonsingular. If )1()1( 11 YBYB  is singular, 

then )1()1( 11 pp yByB    must lie in its range .  

             The third and final case is simply treating the case of a regular 

differential equation on an infinite interval. We will illustrate this case for a 

semi-infinite interval, treating the problem  
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(a) ),0[),()(  xxx byAy  

(b) 


)0()(lim 0 yBxyB
x

.                                                        (3.22) 

If we make the change of variable 

1
1

,
1

1





t
xor

x
t                                   (3.23) 

We map ),0[ x into )0,1[t  . Letting 

)1
1

()(ˆ),1
1

()(ˆ),1
1

()(ˆ 
t

t
t

t
t

t bbAAyy ,  

the problem is then transformed into  

(a) )0,1[),(ˆ1
)(ˆ)(ˆ1

)(ˆ
22

 tt
t

tt
t

t byAy  

(b) 
 

)1(ˆ)(ˆlim 0
0

yBtyB
t

                                         (3.24) 

Then a necessary and sufficient condition for (3.24) to have at most a 

singularity of the first kind at t = 0 is and A (∞) = 0. 

This statement implies that if  

)
1

(
1

)(
2x

oR
x

xA   as x → ∞,                   (3.25) 

(3.24) will have exactly a singularity of the first kind if R is not the zero 

matrix. See [2] 
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3.5  Finite Difference (Pade Based) Methods 

We now describe schemes of finite difference methods based on pade 

rational approximation. These methods are based on rational approximants 

to the exponential function. 

         Pade approximants are defined as follows:  

Let Czzf ),( ,be function in a region of the complex plane 

containing the origin z = 0. 

A pade approximant. )(, zR   to the function f (z) is defined as by: 

)(

)(
)(

zQ

zP
zf



 ,where )(zP and )(zQ , are polynomials of degrees  

κ and μ  respectively. 

For the function 
ze)z(f  , the polynomials )(zP and )(zQ , are given 

explicitly as: 

)(
)!(!)!(

!)!(
)(

0

j

j

z
jj

j
zP 

 






 


 

And 

)(
)!(!)!(

!)!(
)(

0

j

j

z
jj

j
zQ 














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If )(
)(

)(
, zT

zQ

zP
e z





  , then the remainder )(, zT  is given 

by: 











1

0

)1())1((
)1(1

,
)()!(

)1(
)( due

zQ

z
zT uuuz 






  

 The Pade approximants for 
ze)z(f   (for =1,2,3,4. and κ =1,2,3,4) 

Can be generated from the above equations . 

Example : When κ = 0 & μ = 2 we will have  

 
2

2

1
1

1

zz

e z




 

See Appendix for more function approximations. 
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3.5.1 A Numerical Method Based on The (2,0) Pade 

Approximant 

Consider the linear second order BVP (2.11). let y o= y, y1= y' then (2.11) 

can be written as the system of first order differential equations: 

 






































ry

y

pqy

y 010

'

'

1

0

1

0

 

Which can be written in  vector-matrix form as:  

D y = Q y + P 

With boundary conditions y0 (0) = A , y1 (1) = B. See [10] 

To solve this class of singular BVP 

B)1(y,A)0(y,1x0),y,x(f)''yx( 
  (3.26) 

In which 0 < α ≤ 1 and A, B are finite constants. 

)y,x(f'y
x

x
''y

1






 

This problem can be written in vector-matrix form as 

                                       p y Q  y D                                          (3.27) 

With special case that is 0p . 
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 The boundary conditions become ByAy  )1(,)0( 10 . Using the 

relation, )x(ye)hx(y hD  and replacing the exponential term by its (2,0) 

Pade approximant, we get  

)x(y)Dy(D
2

h
hDyI

)h(o)x(y)hx(y]D
2

h
hDI[

2

32
2





 

Using (3.27) and its second derivative and applying the resulting equation to 

the discrete point, of Ω (where Ω is the grid 

bxx.,,.........xxxa 1NN210    obtained by discretizing the interval 

[a, b] into  N+1 subintervals each of width 
*zN

1N

ab
h 




 ) leads to 

the finite-difference formula: 

         ),.....,2,1,0(,11 Nkkkkk  0yByA                           (3.28) 

Where I,IBk  is the identity matrix, 
T

k0k1k ]y,y[y   and the 

elements of the matrix 1KA  are  

















2,2,11,2,1

2,1,11,1,1

1KA
kk

kk

aa

aa

 

Such that  
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q
h

a

ph
ha

pqq
h

hqa

qpp
h

hpa

k

k

k

k

2
1

2

)'(
2

)'(
2

1

2

2,2,1

2

1,2,1

2

2,1,1

2
2

1,1,1

















 

Here the functions p, q and their first derivatives are functions of the 

independent discrete points 1kx . 

After the vector-matrix equation (3.28) has been applied to the discrete 

points ofxxxx N ,.,,.........,, 210  ,the result is a system linear equations 

with 2 (N+1) equations in 2 (N+1) unknowns:  

A Y = G 

Where  





























1

32

21

01

NN AB

AB

AB

BA

A
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KA  and KB   (k = 1,2,…,N) are as defined in (3.28) 

T

Nyyy ].,,.........,[ 121 Y , where ),....,2,1(],[ 01 Nkyy T

kkk y . 

The last vector 
T

NN yy ],[ 101,11  y and in this case the two matrices  

0B  and 1NA  will be defined as 






 


00

10
B0 and 















0

0

1,2,1

1,1,1

1

N

N

N
a

a
A

 

respectively. 

The vector G is defined by 

T

NNN

T

k

NN
yayaand

yNk

],[

],0[),,.....,4,3,2(,

11

0

02,2,102,1,11

01

  



g

g0g

. 

3.5.2 A Numerical Method Based on The(3,0)Pade 

Approximant 

Using the relation )x(ye)hx(y hD and replacing the exponential term 

by its (3,0) Pade approximant gives: 

)h(o)x(y)hx(y]D)
6

h
(D)

2

h
(hDI[ 43

3
2

2

  

Using (3.27) and its second and third derivatives leads to the finite difference 

method  

),.....,2,1,0(,11 Nkkkkk  0yByA      (3.29) 
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Where I,IBK   is the identity matrix, 
T

k kk
yyy ],[ 01 and the 

elements of the matrix 1kA    are 

)'(
62

1

)'(
62

)''2''(
6

)'(
2

)2'2'3''(
6

)'(
2

1

32

2,2),1(

2
32

1,2),1(

22
32

2,1),1(

3
3

2
2

1,1)1(

pqq
h

q
h

a

qpp
h

p
h

ha

qqppqqpq
h

pqq
h

hqa

pqpqppp
h

qpp
h

hpa

k

k

k

k

















 

Here the functions p, q and their first and second derivatives are functions of 

the independent variable x at the discrete point 1kx  . 

After applying the vector-matrix equation (3.29) to the discrete points 

Nxxxx .,,.........,, 210 . We obtain the system of linear equations with 

 2 (N+1) equations in 2 (N+1) unknowns: 

A y = G 

Where kA and kB are as defined in (3.29). The 2(N+1) vector 

T

Nyyyyy ].,,.........,,[ 210  contains the 2 x 1 sub-vectors 

)N,.....,2,1,0k(yk  , where 
T

k kk
yyy ],[ 01 . 
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The last sub-vectors in y is 
T

N yyy
N

],[
01 111 

 . Its structure depends on 

the type of boundary conditions. Also in this case the two matrices 0B and 

1NA  are defined respectively as : 








 


00

10
B0  and 



















0

0

1,2),1(

1,1),1(

1

N

N

N
a

a
A

 

The vector 
T

NgggG ].,,.........,[ 121  contains the sub-vectors 

),.....,2,1,0(, Nkk  0g . The first and last sub-vectors 1g  

and 1Ng  are updated, because of the boundary conditions , to 

Ty ],0[
001 g and 

T

NNN NN
yaya ],[

12,212,1 0)1(0)1(1   g respectively. 

See [4]&[10] 
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 Example 3.1  

10,)1()( )2(   xyxxyx   

With boundary conditions y (0) = 1, y (1) = e. 

 With α = 0.5 and β = 4,  

Which has the exact solution y (x) = 
xe , this problem is linear and it has 

singularity at x = 0 , The value listed as iw approximates and )( ixy  is the 

exact solution and iee  is the error between the exact solution and the 

approximate solution.  Applying algorithm 2.3 to this problem the solutions 

results in table (3.1) , program 8 
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Table (3.1) : The approximate and exact solution for example 3.1. 

ix  iw  iy  )()( iii xyxwee   

         0.00000               1.000000                1.000000                 0.000000 

         0.06250               1.002787                1.000015                 0.002772 

         0.12500               1.004631                1.000244                 0.004387 

         0.18750               1.006828                1.001236                 0.005592 

         0.25000               1.010477                1.003913                 0.006563 

         0.31250               1.016962                1.009582                 0.007379 

         0.37500               1.028057                1.019972                 0.008085 

         0.43750               1.046027                1.037315                 0.008711 

         0.50000               1.073772                1.064494                 0.009278 

         0.56250               1.115088                1.105295                 0.009792 

         0.62500               1.175092                1.164844                 0.010247 

         0.68750               1.260930                1.250325                 0.010604 

         0.75000               1.382958                1.372187                 0.010771 

         0.81250               1.556749                1.546209                 0.010540 

         0.87500               1.806589                1.797113                 0.009475 

         0.93750               2.171762                2.165120                 0.006641 

         1.00000               2.718281                2.718281                 0.000000            

The maximum error is  0.010771 
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Figure (9): shows the approximate and the exact solution for example (3.1) that was 

solved by finite difference method. 
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Applying  algorithm  2.1 to example 3.1 ,The  results of the calculations with 

N =10 and h = 0.1 are given in table (3.2). 

 

Table (3.2) : The approximate and exact solution for example 3.1. 

ix  iw  
iy  )()( iii xyxwee   

          0.000                  1.000000             1.000100                   0.000100 

          0.100                  1.009164             1.000100                   0.009064 

          0.200                  1.018424             1.001601                   0.016823 

          0.300                  1.030473             1.008132                   0.022340 

          0.400                  1.052422             1.025930                   0.026491 

          0.500                  1.094095             1.064494                   0.029601 

          0.600                  1.170135             1.138372                   0.031762 

          0.700                  1.304094             1.271376                   0.032718 

          0.800                  1.537564             1.506215                   0.031348 

          0.900                  1.951364             1.927261                   0.024103 

          1.000                  2.718281             2.718281                   0.000000 

 

The maximum error is  0.032718 
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Figure (10): shows the approximate and the exact solution for example (3.1) that was 

solved by shooting method. 
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To solve example (3.1) using pade (2,0) and pade (3,0) with α = 0.5 and 

 β = 4 the results  in table (3.3) and (3.4) respectively. 

 

Table (3.3): The approximate and exact solution for example 3.1. 

1.0e+012 * 

ix  iw  
iy  

)(

))()((

i

ii
i

xy

xyxw
ee


  

   0.00000000000006  -0.00000000000418   0.00000000000100   0.00000000000518 

   0.00000000000013   0.00000000002646   0.00000000000100   0.00000000002545 

   0.00000000000019  -0.00000000036398   0.00000000000100   0.00000000036453 

   0.00000000000025   0.00000000913803   0.00000000000100   0.00000000910140 

   0.00000000000031  -0.00000015338691   0.00000000000101   0.00000015193205 

   0.00000000000038   0.00000081648072   0.00000000000102   0.00000080049210 

   0.00000000000044   0.00000963647942   0.00000000000104   0.00000928982185 

   0.00000000000050  -0.00012760212962   0.00000000000106   0.00011987110841 

   0.00000000000056  -0.00001325637190   0.00000000000111   0.00001199350800 

   0.00000000000062   0.00600375866353   0.00000000000116   0.00515412737749 

   0.00000000000069  -0.01569498348483   0.00000000000125   0.01255271789526 

   0.00000000000075  -0.13140344030893   0.00000000000137   0.09576200872853 

   0.00000000000081   0.57807099917539   0.00000000000155   0.37386337482886 

   0.00000000000088   1.22280382687261   0.00000000000180   0.68042668483199 

   0.00000000000094  -9.02533317841833   0.00000000000217   4.16851236290096 

   0.00000000000100   0.00000000001333   0.00000000000272   0.00000000000391 
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Table (3.4) : The approximate and exact solution for example 3.1. 

1.0e+014 * 

ix  iw  
iy  

)(

))()((

i

ii
i

xy

xyxw
ee


  

   0.00000000000000  -0.00000000000005   0.00000000000001   0.00000000000006 

   0.00000000000000   0.00000000000078   0.00000000000001   0.00000000000077 

   0.00000000000000  -0.00000000007366   0.00000000000001   0.00000000007358 

   0.00000000000000   0.00000000366492   0.00000000000001   0.00000000365062 

   0.00000000000000  -0.00000007717323   0.00000000000001   0.00000007644076 

   0.00000000000000   0.00000053492313   0.00000000000001   0.00000052444872 

   0.00000000000000   0.00000381175595   0.00000000000001   0.00000367463426 

   0.00000000000001  -0.00006697411107   0.00000000000001   0.00006291635482 

   0.00000000000001   0.00005736275989   0.00000000000001   0.00005189811113 

   0.00000000000001   0.00294360222848   0.00000000000001   0.00252703376125 

   0.00000000000001  -0.00953942058839   0.00000000000001   0.00762954963518 

   0.00000000000001  -0.06223875592692   0.00000000000001   0.04535732302178 

   0.00000000000001   0.31221754240677   0.00000000000002   0.20192451143853 

   0.00000000000001   0.57403913840400   0.00000000000002   0.31942290277875 

   0.00000000000001  -4.77720221691693   0.00000000000002   2.20643671625442 

   0.00000000000001   0.00000000000012   0.00000000000003   0.00000000000003 
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The function bvp4c solves a class of singular BVPs of the form 

 

It can also accommodate unknown parameters for problems of the form  

 

Singular problems must be posed on an interval [0,b] with b>0. Use bvpset 

to pass the constant matrix  to bvp4c as the value of the 'SingularTerm' 

integration property. Boundary conditions at x = 0 must be consistent with 

the necessary condition for a smooth solution, Sy(0) = 0. An initial guess 

should also satisfy this necessary condition.  

When you solve a singular BVP in Matlab using  

sol = bvp4c(@odefun,@bcfun,solinit,options) 

bvp4c requires that your function odefun(x, y) return only the value of the    

f (x, y) term. 

 

 

 

 

 

 

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvp4c.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvpset.html
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Example 3.2 

Emden's equation.   Emden's equation arises in modeling a spherical body 

of gas. The PDE of the model is reduced by symmetry to the ODE 

 

on an interval . The coefficient 2 / x is singular at x = 0, but symmetry 

implies the boundary condition y'(0) = 0. With this boundary condition, the 

term  

 

is well-defined as x approaches 0. For the boundary condition , 

this BVP has the solution  

 

Rewrite the problem as a first-order system and identify the singular 

term. Using a substitution yy 1  and yy 2 , write the differential 

equation as a system of two first-order equations 

 

The boundary conditions become 

 

Writing the ODE system in a vector-matrix form 



95 

 

 

the terms are identified as 

 

and  

 

Code the ODE and boundary condition functions. Code the differential 

equation and the boundary conditions as functions that bvp4c can use. 

function dydx = emdenode(x,y) 

dydx = [  y(2)  

         -y(1)^5 ]; 

function res = emdenbc(ya,yb) 

res = [ ya(2) 

        yb(1) - sqrt(3)/2 ]; 

Setup integration properties. Use the matrix as the value of the 'Singular 

Term' integration property. 

S = [0,0;0,-2]; 

options = bvpset('SingularTerm',S); 

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvp4c.html


96 

 

Create an initial guess. This example starts with a mesh of five points and a 

constant guess for the solution. 

 

Use bvpinit to form the guess structure 

guess = [sqrt(3)/2;0]; 

solinit = bvpinit(linspace(0,1,5),guess); 

Solve the problem in Matlab. Use the standard bvp4c syntax to solve the 

problem. 

sol = bvp4c(@emdenode,@emdenbc,solinit,options); 

View the results. This problem has solution 

 

The example evaluates the solution at 100 equally spaced points and plots it 

along with the numerical solution computed using bvp4c. 

x = linspace(0,1); 

truy = 1 ./ sqrt(1 + (x.^2)/3); 

plot(x,truy,sol.x,sol.y(1,:),'ro'); 

title('Emden problem -- BVP with singular term.') 

legend('Computed'); 

xlabel('x'); 

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bvpinit.html
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ylabel('solution y'); See [14] 

Table (3.5) : The approximate and exact solution for example 3.2. 

ix  iw  iy  )()( iii xyxwee   

   0.000             1.0000005109            1.0000000000            0.0000005109 

      0.125              0.9974064705            0.9974059619            0.0000005086 

      0.250              0.9897438277            0.9897433186            0.0000005091 

      0.500              0.9607707751            0.9607689228            0.0000018522 

      0.750              0.9176644937            0.9176629354            0.0000015582 

      1.000              0.8660254037            0.8660254037            0.0000000000 

The maximum error is  0.0000018522 

 

 
Figure( 11): Emden problem – BVP with singular term. 
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Conclusion and Results  

          Various numerical methods namely: Finite Difference, Shooting, Pade 

Approximant, have been studied to compare the efficiency of these methods. 

It is desirable to develop the results to Pade Approximant to obtain more 

accurate for the approximate solution. 

          From the above work, we see that shooting method is more accurate 

for non-linear problems, on the other hand, finite difference method is more 

accurate for linear problems.   
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Matlab Programs 

Program 1: 

format long 

` 

clc 

a=1; 

b=2; 

h=1/10; 

n=10; 

x(1)=1; 

m(1)=1; 

w(1)=0; 

m1(1)=0; 

w1(1)=1; 

k=zeros(4,2); 

for i=1:n 

    k(1,1)=h*w(i); 

    k(1,2)=h*[(-2/x(i))*w(i)+(2/(x(i))^2)*m(i)+(sin(log(x(i))))/(x(i))^2]; 

    k(2,1)=h*[w(i)+(1/2)*k(1,2)]; 

    k(2,2)=h*[(-(2/(x(i)+(h/2))))*(w(i)+(1/2)*k(1,2))+(2/(x(i)+(h/2))^2)* 

(m(i)+(1/2)*k(1,1))+(sin(log(x(i)+(h/2))))/(x(i))^2]; 

    k(3,1)=h*[w(i)+(1/2)*k(2,2)]; 

    k(3,2)=h*[(-(2/(x(i)+(h/2))))*(w(i)+(1/2)*k(2,2))+(2/(x(i)+(h/2))^2)* 

(m(i)+(1/2)*k(2,1))+(sin(log(x(i)+(h/2))))/(x(i))^2];; 
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    k(4,1)=h*[w(i)+(1/2)*k(3,2)]; 

    k(4,2)=h*[(-(2/(x(i)+(h))))*(w(i)+k(3,2))+(2/(x(i)+(h))^2)* 

(m(i)+k(3,1))+(sin(log(x(i)+(h))))/(x(i))^2]; 

    m(i+1)=m(i)+(1/6)*(k(1,1)+2*k(2,1)+2*k(3,1)+k(4,1)); 

    w(i+1)=w(i)+(1/6)*(k(1,2)+2*k(2,2)+2*k(3,2)+k(4,2)); 

    x(i+1)=a+h*i; 

end 

kk=zeros(4,2); 

for i=1:n 

   kk(1,1)=h*w1(i); 

    kk(1,2)=h*[(-2/x(i))*w1(i)+(2/(x(i))^2)*m1(i)]; 

    kk(2,1)=h*[w1(i)+(1/2)*k(1,2)]; 

    kk(2,2)=h*[(-(2/(x(i)+(h/2))))*(w1(i)+(1/2)*k(1,2))+(2/(x(i)+(h/2))^2) 

*(m1(i)+(1/2)*k(1,1))]; 

kk(3,1)=h*[w1(i)+(1/2)*k(2,2)]; 

    kk(3,2)=h*[(-(2/(x(i)+(h/2))))*(w1(i)+(1/2)*k(2,2))+(2/(x(i)+(h/2))^2) 

*(m1(i)+(1/2)*k(2,1))]; 

    kk(4,1)=h*[w1(i)+(1/2)*k(3,2)]; 

    kk(4,2)=h*[(-(2/(x(i)+(h))))*(w1(i)+k(3,2))+(2/(x(i)+(h))^2) 

*(m1(i)+k(3,1))]; 

    

    m1(i+1)=m1(i)+(1/6)*(kk(1,1)+2*kk(2,1)+2*kk(3,1)+kk(4,1)); 

    w1(i+1)=w1(i)+(1/6)*(kk(1,2)+2*kk(2,2)+2*kk(3,2)+kk(4,2)); 

    end 
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y=m+((2-m(n+1))/m1(n+1))*m1; 

for j=1:n+1 

    yy(j)=1.1392070132*x(j)+(-0.03920701320/(x(j))^2)-

(3/10)*sin(log(x(j)))-(1/10)*cos(log(x(j))); 

    ee(j)=abs(y(j)-yy(j)); 

end 

[x' y'  yy'   ee'] 

plot (x,y,x,yy) 

legend('Approx. Sol.','Exact Sol.'); 

 

Program 2  

format long 

clear 

clc 

a=0; 

b=1; 

h=1/20; 

n=20; 

x(1)=0; 

m(1)=0; 

w(1)=0; 

m1(1)=0; 

w1(1)=1; 

k=zeros(4,2); 
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for i=1:n 

    k(1,1)=h*w(i); 

    k(1,2)=h*[(0)*w(i)+(4)*m(i)+(-4*(x(i)))]; 

    k(2,1)=h*[w(i)+(1/2)*k(1,2)]; 

    k(2,2)=h*[(0)+(4)*(m(i)+(1/2)*k(1,1))-(4*(x(i)+(h/2)))]; 

    k(3,1)=h*[w(i)+(1/2)*k(2,2)]; 

    k(3,2)=h*[(0)+(4)*(m(i)+(1/2)*k(2,1))-(4*(x(i)+(h/2)))];; 

    k(4,1)=h*[w(i)+(1/2)*k(3,2)]; 

    k(4,2)=h*[(0)+(4)*(m(i)+k(3,1))-(4*(x(i)+h))]; 

    m(i+1)=m(i)+(1/6)*(k(1,1)+2*k(2,1)+2*k(3,1)+k(4,1)); 

    w(i+1)=w(i)+(1/6)*(k(1,2)+2*k(2,2)+2*k(3,2)+k(4,2)); 

    x(i+1)=a+h*i; 

end 

kk=zeros(4,2); 

for i=1:n 

   kk(1,1)=h*w1(i); 

    kk(1,2)=h*[(0)+4*m1(i)]; 

    kk(2,1)=h*[w1(i)+(1/2)*kk(1,2)]; 

    kk(2,2)=h*[0+(4)*(m1(i)+(1/2)*kk(1,1))]; 

    kk(3,1)=h*[w1(i)+(1/2)*kk(2,2)]; 

    kk(3,2)=h*[(0)+(4)*(m1(i)+(1/2)*kk(2,1))]; 

    kk(4,1)=h*[w1(i)+(1/2)*kk(3,2)]; 

    kk(4,2)=h*[(0)+(4)*(m1(i)+kk(3,1))]; 

    m1(i+1)=m1(i)+(1/6)*(kk(1,1)+2*kk(2,1)+2*kk(3,1)+kk(4,1)); 
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    w1(i+1)=w1(i)+(1/6)*(kk(1,2)+2*kk(2,2)+2*kk(3,2)+kk(4,2)); 

    end 

y=m+((2-m(n+1))/m1(n+1))*m1; 

for j=1:n+1 

    yy(j)=(exp(1))^(2)*(((exp(1))^(4)-1)^(-1))*((exp(1))^(2*x(j))-((exp(1))^(-

2*x(j))))+x(j); 

ee(j)=y(j)-yy(j); 

end 

[x' y'  yy'   ee'] 

plot (x,y,x,yy) 

legend('Approx. Sol.','Exact Sol.'); 

 

program 3 

% To approximate the solution of the nonlinear boundary-value problem 

%          Y'' = F(X,Y,Y'), A<=X<=B, Y(A) = ALPHA, Y(B) = BETA: 

% INPUT:   Endpoints A,B; boundary conditions ALPHA, BETA; number 

%of subintervals N; tolerance TOL; maximum number of iterations M. 

% OUTPUT:  Approximations W(1,I) TO Y(X(I)); W(2,I) TO Y'(X(I)) 

% for each I=0,1,...,N or a message that the maximum number of iterations 

was exceeded. 

 syms('OK', 'A', 'B', 'ALPHA', 'BETA', 'TK', 'AA', 'N'); 

 syms('TOL', 'NN', 'FLAG', 'NAME', 'OUP', 'H', 'K', 'W1' ,'YY1','EE'); 

 syms('W2', 'U1', 'U2', 'I', 'X', 'T', 'K11', 'K12', 'K21'); 

 syms('K22', 'K31', 'K32', 'K41', 'K42', 'J', 's', 'x', 'y', 'z'); 
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 TRUE = 1; 

 FALSE = 0; 

 fprintf(1,'This is the Nonlinear Shooting Method.\n'); 

 fprintf(1,'Input the function F(X,Y,Z) in terms of x, y, z.\n'); 

 fprintf(1,'followed by the partial of F with respect to y on the \n'); 

 fprintf(1,'next line followed by the partial of F with respect to \n'); 

 fprintf(1,'z or y-prime on the next line. \n'); 

 fprintf(1,'actual solution .\n'); 

 fprintf(1,'For example:   (32+2*x^3-y*z)/8 \n'); 

 fprintf(1,'               -z/8 \n'); 

 fprintf(1,'               -y/8 \n'); 

 fprintf(1,'               x^2+16/x \n'); 

 s = input(' ','s'); 

 F = inline(s,'x','y','z'); 

 s = input(' ','s'); 

 FY = inline(s,'x','y','z'); 

 s = input(' ','s'); 

 FYP = inline(s,'x','y','z'); 

 s = input(' ','s'); 

 YY11 = inline(s,'x','y','z'); 

 OK = FALSE; 

 while OK == FALSE  

 fprintf(1,'Input left and right endpoints on separate lines.\n'); 

 A = input(' '); 
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 B = input(' '); 

 if A >= B  

 fprintf(1,'Left endpoint must be less than right endpoint.\n'); 

 else OK = TRUE; 

 end; 

 end; 

 fprintf(1,'Input Y(%.10e).\n', A); 

 ALPHA = input(' '); 

 fprintf(1,'Input Y(%.10e).\n', B); 

 BETA = input(' '); 

 TK = (BETA-ALPHA)/(B-A); 

 fprintf(1,'TK = %.8e\n', TK); 

 fprintf(1,'Input new TK? Enter Y or N.\n'); 

 AA = input(' ','s'); 

 if AA == 'Y' | AA == 'y'  

 fprintf(1,'input new TK\n'); 

 TK = input(' '); 

 end; 

 OK = FALSE; 

 while OK == FALSE  

 fprintf(1,'Input an integer > 1 for the number of subintervals.\n'); 

 N = input(' '); 

 if N <= 1  

 fprintf(1,'Number must exceed 1.\n'); 
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 else 

 OK = TRUE; 

 end; 

 end; 

 OK = FALSE; 

 while OK == FALSE  

 fprintf(1,'Input Tolerance.\n'); 

 TOL = input(' '); 

 if TOL <= 0  

 fprintf(1,'Tolerance must be positive.\n'); 

 else 

 OK = TRUE; 

 end; 

 end; 

 OK = FALSE; 

 while OK == FALSE  

 fprintf(1,'Input maximum number of iterations.\n'); 

 NN = input(' '); 

 if NN <= 0  

 fprintf(1,'Must be positive integer.\n'); 

 else 

 OK = TRUE; 

 end; 

 end; 
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 if OK == TRUE  

 fprintf(1,'Choice of output method:\n'); 

 fprintf(1,'1. Output to screen\n'); 

 fprintf(1,'2. Output to text File\n'); 

 fprintf(1,'Please enter 1 or 2.\n'); 

 FLAG = input(' '); 

 if FLAG == 2  

 fprintf(1,'Input the file name in the form - drive:\\name.ext\n'); 

 fprintf(1,'for example  A:\\OUTPUT.DTA\n'); 

 NAME = input(' ','s'); 

 OUP = fopen(NAME,'wt'); 

 else 

 OUP = 1; 

 end; 

 fprintf(OUP, 'NONLINEAR SHOOTING METHOD\n\n'); 

 fprintf(OUP, '  X(I)         W1(I)             YY1(I)          EE(I)\n'); 

% STEP 1 

 W1 = zeros(1,N+1); 

 W2 = zeros(1,N+1); 

 H = (B-A)/N; 

 K = 1; 

% TK already computed 

 OK = FALSE; 

% STEP 2 
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 while K <= NN & OK == FALSE  

% STEP 3 

 W1(1) = ALPHA; 

 W2(1) = TK; 

 U1 = 0 ; 

 U2 = 1; 

% STEP 4 

% Runge-Kutta method for systems is used in STEPS 5 and 6 

 for I = 1 : N  

%  STEP 5 

 X = A+(I-1)*H; 

 T = X+0.5*H; 

 % STEP 6 

 K11 = H*W2(I); 

 K12 = H*F(X,W1(I),W2(I)); 

 K21 = H*(W2(I)+0.5*K12); 

 K22 = H*F(T,W1(I)+0.5*K11,W2(I)+0.5*K12); 

 K31 = H*(W2(I)+0.5*K22); 

 K32 = H*F(T,W1(I)+0.5*K21,W2(I)+0.5*K22); 

 K41 = H*(W2(I)+K32); 

 K42 = H*F(X+H,W1(I)+K31,W2(I)+K32); 

 W1(I+1) = W1(I)+(K11+2*(K21+K31)+K41)/6; 

 W2(I+1) = W2(I)+(K12+2*(K22+K32)+K42)/6; 

 K11 = H*U2; 
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 K12 = H*(FY(X,W1(I),W2(I))*U1+FYP(X,W1(I),W2(I))*U2); 

 K21 = H*(U2+0.5*K12); 

 

K22=H*(FY(T,W1(I),W2(I))*(U1+0.5*K11)+FYP(T,W1(I),W2(I))*(U2+0.

5*K21)); 

 K31 = H*(U2+0.5*K22); 

K32=H*(FY(T,W1(I),W2(I))*(U1+0.5*K21)+FYP(T,W1(I),W2(I))*(U2+0.

5*K22)); 

 K41 = H*(U2+K32); 

K42=H*(FY(X+H,W1(I),W2(I))*(U1+K31)+FYP(X+H,W1(I),W2(I))*(U2+

K32)); 

 U1 = U1+(K11+2*(K21+K31)+K41)/6; 

 U2 = U2+(K12+2*(K22+K32)+K42)/6; 

  

 end; 

% STEP 7 

% test for accuracy 

 if abs(W1(N+1)-BETA) < TOL  

% STEP 8 

 I = 0; 

 Fprintf(OUP, '%3d %13.8f %13.8f %13.8f\n', I, A, ALPHA, TK); 

 for I = 1 : N  

 J = I+1; 

 X = A+I*H; 
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 YY1(J)=YY11(X,W1(J),W2(J)); 

 EE(J)=abs(YY1(J)-W1(J)); 

 Fprintf(OUP, ' %13.8f %13.8f %13.8f %13.8f \n',  X, W1(J), 

YY1(J),EE(J)); 

 end; 

 fprintf(OUP, 'Convergence in %d iterations\n', K); 

 fprintf(OUP, ' t = %14.7e\n', TK); 

% STEP 9 

 OK = TRUE; 

 else 

% STEP 10 

% Newton's method applied to improve TK 

 TK = TK-(W1(N+1)-BETA)/U1; 

 K = K+1; 

 end; 

 end; 

% STEP 11 

% method failed 

 if OK == FALSE  

 fprintf(OUP, 'Method failed after %d iterations\n', NN); 

 end; 

 end; 

 if OUP ~= 1  

 fclose(OUP); 
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 fprintf(1,'Output file %s created successfully \n',NAME); 

 end; 

program 4  

format long 

clear 

clc 

a=1; 

b=2; 

h=1/10; 

n=11; 

y=zeros(10,1); 

for i=1:10 

    x(i)=a+(i)*h; 

    yy(i)=1.1392070132*x(i)+(-0.03920701320/(x(i)^2))-

(3/10)*sin(log(x(i)))-(1/10)*cos(log(x(i))); 

end 

[x'   yy']; 

u=zeros(9,9); 

bb=zeros(9,1); 

u(1,1)=-((2*(h)^2/(x(1))^(2))+2); 

u(1,2)=(1+(h/x(1))); 

u(2,1)=(1-(h/x(2))); 

bb(1)=((h)^2)*sin(log(x(1)))/(x(1))^(2)-(1-(h/x(1))); 

for j=2:8 
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    for k=2:8 

        if j==k 

            u(j,k)=-1*((2*(h)^(2)/(x(j))^(2))+2); 

        elseif j==k+1 

            u(j,k)=(1-(h/x(j))); 

        elseif j==k-1 

            u(j,k)=(1)+(h/x(j)); 

        else u(j,k)=0; 

        end 

    end 

end 

u(9,8)=(1-(h/x(9))); 

u(9,9)=-(2*(h)^(2)/(x(9))^(2)+2); 

u(8,9)=(1+(h/x(8))); 

u; 

for oo=2:8 

    ll(oo)=log(x(oo)); 

    bb(oo)=((h)^(2)*sin(ll(oo)))/(x(oo))^(2); 

end 

bb(9)=((h)^2)*sin(log(x(9)))/(x(9))^(2)-(2*(1+(h/x(9)))); 

[L U]=lu(u); 

z=inv(L)*bb; 

y=inv(U)*z; 

y(10)=2; 



004 

 

for rr=1:10 

    ee(rr)=abs(y(rr)-yy(rr)); 

end 

[x' y yy' ee'] 

 plot(x,y,x,yy); 

 xlabel('Time'); 

 legend('Approx. Sol.','Exact Sol.'); 

 

program 5 

clc 

clear 

format long 

a=0; 

b=1; 

n=19; 

h=1/20; 

y=zeros(20,1); 

%y(1)=1; 

for i=1:20 

    x(i)=a+(i)*h; 

end  

 for jj=1:20 

     yy(jj)=(exp(1))^(2)*(((exp(1))^(4)-1)^(-1))*((exp(1))^(2*x(jj))-

((exp(1))^(-2*x(jj))))+x(jj); 
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 end 

[x'  yy']; 

u=zeros(19,19); 

bb=zeros(19,1); 

u(1,1)=-(2+(4*(h)^2)); 

u(1,2)=(1); 

u(2,1)=(1); 

bb(1)=(-4*x(1)*(h)^(2)); 

for j=2:18 

    for k=2:18 

        if j==k 

            u(j,k)=-1*(2+(4*(h)^(2))); 

        elseif j==k+1 

            u(j,k)=(1); 

        elseif j==k-1 

            u(j,k)=(1); 

        else u(j,k)=0; 

        end 

    end 

end 

u(19,18)=(1); 

u(19,19)=-(2+(4*(h)^(2))); 

u(18,19)=(1); 

u; 
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for oo=2:18 

     bb(oo)=(-4*(x(oo))*(h)^(2)); 

    end 

bb(19)=(-4*(x(oo))*(h)^(2))-2; 

bb; 

[L U]=lu(u); 

z=inv(L)*bb; 

y=inv(U)*z; 

y(20)=2; 

 for rr=1:20 

     ee(rr)=abs(y(rr)-yy(rr)); 

 end 

 [x' y yy' ee'] 

 plot(x,y,x,yy); 

 xlabel('Time'); 

 legend('Approx. Sol.','Exact Sol.'); 

 

program 6 

clc 

format long 

clear 

a=1; 

b=3; 

y0=17; 
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h=0.1; 

n=(b-a)/h-1; 

yn=(43/3); 

 

x=[a+h:h:b-h]; 

y=17*ones(n,1);k=1; 

c=zeros(n,1);j=zeros(19,19);m=50; 

while norm (c-y ,inf)>0.000001 

    %finding he jacobian matrix 

  j(1,1)=-2+(1/16)*h*(y(2)-y0); 

  j(1,2)=1+(1/16)*h*y(1); 

  for i=2:n-1 

      for t=2:n-1 

          if i==t 

              j(i,t)=-2+(1/16)*h*(y(i+1)-y(i-1)); 

          elseif i==t+1 

              j(i,t)=1-(1/16)*h*y(i); 

          elseif i==t-1 

              j(i,t)=1+(1/16)*h*y(i); 

          end 

      end 

  end 

  j(n-1,n)=1+(1/16)*h*y(n-1); 

  j(n,n-1)=1-(1/16)*h*yn; 
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  j(n,n)=-2+(1/16)*h*yn-(1/8)*h*y(n-1); 

  %====================================================    

f(1,1)=(y(2)-2*y(1)+y0)-((h)^(2)/8)*(32+(2*(x(1).^3))-(y(1)*((y(2)-

y0)/(2*h)))); 

    for i=2:n-1 

        f(i,1)= (y(i+1)-2*y(i)+y(i-1))-((h)^(2)/8)*(32+(2*(x(i).^3))-

(y(i)*((y(i+1)-y(i-1))/(2*h)))); 

    end 

   f(n,1)=(yn-2*y(n)+y(n-1))-((h)^(2)/8)*(32+(2*(x(n)^3))-(y(n)*((yn-y(n-

1))/(2*h)))); 

   f; 

   z=inv(j)*(-1*f); 

   c=y; 

   y=y+z; 

   y 

     end 

xx=[a,x,b]; 

 y1=[y0,y',yn]; 

for tt=1:n+2 

    yy(tt)=(xx(tt))^(2)+(16/xx(tt)); 

    e(tt)=abs(y1(tt)-yy(tt)); 

end 

 

  [xx;y1;yy;e]'  
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    plot(xx,y1,xx,yy); 

 xlabel('Time'); 

 legend('Approx. Sol.','Exact Sol.'); 

 

  program 7  

clc 

format long 

clear 

a=1; 

b=2; 

y0=2; 

h=0.1; 

n=(b-a)/h-1; 

yn=(5/2); 

x=[a+h:h:b-h]; 

y=2*ones(n,1);k=1; 

c=zeros(n,1);j=zeros(n,n);m=50; 

while norm (c-y ,inf)>0.000001 

    %finding he jacobian matrix 

  j(1,1)=((-2/(h)^2)-2*(y(1))^2+6); 

  j(1,2)=1/(h)^2; 

  for i=2:n-1 

      for t=2:n-1 

          if i==t 
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              j(i,t)=((-2/(h)^2)-2*(y(i))^2+6); 

          elseif i==t+1 

              j(i,t)=1/(h)^2; 

          elseif i==t-1 

              j(i,t)=1/(h)^2; 

          end 

      end 

  end 

  j(n-1,n)=1/(h)^2; 

  j(n,n-1)=1/(h)^2; 

  j(n,n)=((-2/(h)^2)-2*(y(n))^2+6); 

  %==================================================== 

    f(1,1)=(y(2)-2*y(1)+y0)+((h)^(2))*(-2*(y(1))^3+6*(y(1))+2*(x(1))^3); 

    for i=2:n-1 

        f(i,1)= (y(i+1)-2*y(i)+y(i-1))+((h)^(2))*(-

2*(y(i)^3)+6*(y(i))+2*(x(i))^3); 

    end 

   f(n,1)=(yn-2*y(n)+y(n-1))+((h)^(2))*(-2*(y(n)^3)+6*(y(n))+2*(x(n))^3); 

   f; 

   z=inv(j)*(-1*f); 

   c=y; 

   y=y+z; 

   y; 

     end 
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xx=[a,x,b]; 

 y1=[y0,y',yn]; 

for tt=1:n+2 

    yy(tt)=(xx(tt))+(xx(tt))^(-1); 

    e(tt)=abs(y1(tt)-yy(tt)); 

end 

[xx;y1;yy;e]' 

 plot(xx,y1,xx,yy); 

 xlabel('Time'); 

 legend('Approx. Sol.','Exact Sol.'); 

 

program 8 

clc 

clear 

ba=0; 

bb=1; 

n=15; 

h=1/16; 

alpha=1; 

beta=2.718281828; 

aa=0.5; 

k=4; 

for i=1:n 

    t(i)=ba+i*h; 
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end 

t 

for j=1:n 

p1((j))=aa/t(j); 

q1((j))=(k*(t(j))^(aa+k-2)*(aa+k-1+k*(t(j))^(k)))/(t(j))^(aa); 

end 

[t' p1' q1'] 

a(1)=(-4-2*((h)^2)*q1((1))); 

c(1)=(2+h*p1((1))); 

for i=2:n-1 

    a(i)=(-4-2*((h)^2)*q1((i))); 

    c(i)=(2+h*p1((i))); 

    d(i)=(2-h*p1((i))); 

end 

a(n)=-4-2*((h)^2)*q1((n)); 

d(n)=2-h*p1((n)); 

l(1)=a(1);u(1)=c(1)/l(1); 

for i=2:n-1 

    l(i)=a(i)-d(i)*u(i-1); 

    u(i)=c(i)/l(i); 

end 

l(n)=a(n)-d(n)*u(n-1); 

dd(1)=-(2-h*p1(1))*alpha; 

for i=2:n-1 
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    dd(i)=0; 

end 

dd(n)=-(2+h*p1(n))*beta; 

z(1)=dd(1)/l(1); 

for i=2:n 

    z(i)=(dd(i)-d(i)*z(i-1))/l(i); 

end 

y(n)=z(n); 

for i=n-1:-1:1 

    y(i)=z(i)-u(i)*y(i+1); 

end 

y 

for i=1:n 

    yy(i)=(2.718281828)^((t(i))^k); 

end 

yy 

for i=1:n 

ee(i)=y(i)-yy(i); 

end 

ee 

 [t' y' yy' ee'] 

  plot(t',y',t',yy') 

 legend('Approx. Sol.','Exact Sol.'); 
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program 9  

format long 

clear 

clc 

a=0; 

b=1; 

aa=0.5; 

k1=4; 

h=1/10; 

n=10; 

x(1)=0.1; 

m(1)=1; 

w(1)=0; 

m1(1)=0; 

w1(1)=1; 

k=zeros(4,2); 

for i=1:n 

    k(1,1)=h*w(i); 

    k(1,2)=h*[(-aa/x(i))*w(i)+((((k1*(x(i))^(aa+k1-2))*(aa+k1-

1+k1*(x(i))^(k1)))/(x(i))^(aa))*m(i))+(0*(x(i)))]; 

    k(2,1)=h*[w(i)+(1/2)*k(1,2)]; 

    k(2,2)=h*[(-aa/(x(i)+(h/2)))*(w(i)+(1/2)*k(1,2))+((((k1*((x(i)+(h/2)) 

^(aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))^(k1)))/(x(i)+(h/2))^(aa))) 

*(m(i)+(1/2)*k(1,1)))-(0*(x(i)+(h/2)))]; 
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    k(3,1)=h*[w(i)+(1/2)*k(2,2)]; 

    k(3,2)=h*[(-aa/(x(i)+(h/2)))*(w(i)+(1/2)*k(2,2))+ 

((((k1*((x(i)+(h/2))^(aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))^(k1)))/(x(i) 

+(h/2))^(aa)))*(m(i)+(1/2)*k(2,1)))-(0*(x(i)+(h/2)))];; 

    k(4,1)=h*[w(i)+(1/2)*k(3,2)]; 

    k(4,2)=h*[(-aa/(x(i)+h))*(w(i)+k(3,2))+((((k1*((x(i)+h)^(aa+k1-

2))*(aa+k1-1+k1*(x(i)+h)^(k1)))/(x(i)+h)^(aa)))*(m(i)+k(3,1)))-

(0*(x(i)+h))];; 

    m(i+1)=m(i)+(1/6)*(k(1,1)+2*k(2,1)+2*k(3,1)+k(4,1)); 

    w(i+1)=w(i)+(1/6)*(k(1,2)+2*k(2,2)+2*k(3,2)+k(4,2)); 

    x(i+1)=a+h*i; 

end 

x 

kk=zeros(4,2); 

for i=1:n 

   kk(1,1)=h*w1(i); 

    kk(1,2)=h*[(-aa/x(i))*w1(i)+((((k1*(x(i))^(aa+k1-2))*(aa+k1-

1+k1*(x(i))^(k1)))/(x(i))^(aa))*m1(i))]; 

    kk(2,1)=h*[w1(i)+(1/2)*kk(1,2)]; 

    kk(2,2)=h*[(-aa/(x(i)+(h/2)))*(w1(i)+(1/2)*kk(1,2)) 

+(((((k1*(x(i)+(h/2))^(aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))^(k1)))/ 

(x(i)+(h/2))^(aa)))*(m1(i)+(1/2)*kk(1,1)))]; 

    kk(3,1)=h*[w1(i)+(1/2)*kk(2,2)]; 

    kk(3,2)=h*[(-aa/(x(i)+(h/2)))*(w1(i)+(1/2)*kk(2,2)) 
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+((((k1*((x(i)+(h/2))^(aa+k1-2))*(aa+k1-1+k1*(x(i)+(h/2))^(k1)))/ 

(x(i)+(h/2))^(aa)))*(m1(i)+(1/2)*kk(2,1)))]; 

    kk(4,1)=h*[w1(i)+(1/2)*kk(3,2)]; 

    kk(4,2)=h*[(-aa/(x(i)+h))*(w1(i)+kk(3,2))+((((k1*((x(i)+h)^(aa+k1-

2))*(aa+k1-1+k1*(x(i)+h)^(k1)))/(x(i)+h)^(aa)))*(m1(i)+kk(3,1)))]; 

      m1(i+1)=m1(i)+(1/6)*(kk(1,1)+2*kk(2,1)+2*kk(3,1)+kk(4,1)); 

    w1(i+1)=w1(i)+(1/6)*(kk(1,2)+2*kk(2,2)+2*kk(3,2)+kk(4,2)); 

    end 

y=m+(((exp(1))-m(n+1))/m1(n+1))*m1; 

for j=1:n+1 

    yy(j)=(2.718281828)^((x(j))^k1); 

   ee(j)=abs(y(j)-yy(j)); 

end 

[x' y'  yy'   ee'] 

plot (x,y,x,yy) 

legend('Approx. Sol.','Exact Sol.'); 

 

program 10 

%PADE APPROXIMATE METHOD (2,0) TO SOLVE BVP 

%((x)^(aa)*y)'=k*x(aa+k-2)*(aa+k-1+k*(x)^k)*y 

%0<x<1          y(0)=1     y(1)=e(1)      

%======================================= 

clc  

clear 
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format long 

D=[0 1]; 

n=15; 

a=.5; 

b=4; 

h=(D(2)-D(1))/(n+1); 

xx=D(1)+h+[0:h:D(2)-h]; 

xx 

P=inline('-a/x','x','a'); 

Q=inline('(b*x^(a+b-2)*(a+b-1+b*x^b))/(x^a)','x','a','b'); 

PP=inline('a/(x^2)','x','a'); 

QQ=inline('28*x+96*x^5','x'); 

PPP=inline('-1/(x)','x'); 

QQQ=inline('28+480*x^4','x'); 

f=[-1 0;0 -1] 

for i=1:1:n+1 

    aa(1,1)=h*P(xx(i),a)+(h^2*(-PP(xx(i),a)+(P(xx(i),a))^2-

Q(xx(i),a,b)))/2+h^3*(PPP( 

 xx(i))-3*P(xx(i),a)*PP(xx(i),a)+2*QQ(xx(i))+(P(xx(i),a))^3-

2*P(xx(i),a)*Q(xx(i),a,b))/6; 

    

    aa(1,2)=h*Q(xx(i),a,b)+h^2*(-

QQ(xx(i))+P(xx(i),a)*Q(xx(i),a,b))/2+(h^3*(QQQ(xx(i))-2* 
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    PP(xx(i),a)*Q(xx(i),a,b)-

P(xx(i),a)*QQ(xx(i))+(P(xx(i),a))^2*Q(xx(i),a,b)-(Q(xx(i),a,b))^2))/6; 

    aa(2,1)=-h-(h^2*P(xx(i),a))/2+h^3((PP(xx(i),a)-

(P(xx(i),a))^2+Q(xx(i),a,b)))/6; 

    aa(2,2)=-1*(h^2*Q(xx(i),a,b))/2+h^3(QQ(xx(i))-

P(xx(i),a)*Q(xx(i),a,b))/6; 

    AA(2*i-1,2*i-1)=aa(1,1); 

    AA(2*i-1,2*i)=aa(1,2); 

    AA(2*i,2*i-1)=aa(2,1); 

    AA(2*i,2*i)=aa(2,2);   

end 

for r=1:1:n 

    AA(2*r+1:2*r+2,2*r-1:2*r)=f; 

end 

AA(1,end)=-1; 

AA(end-1,end)=0; 

AA(end,end)=0; 

 AA 

 G=zeros(2*n+2,1); 

 G(2)=1;  

 G(2*n+1)=-1.6035*exp(1); 

 G(2*n+2)=-0.9414*exp(1); 

 G; 

 [l,u]=lu(AA); 
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 t=inv(l)*G; 

 y=inv(u)*t; 

 y; 

 y1(1)=y(2) 

for jj=4:2: 32           %(2*(n+1)) 

    y1(jj/2)=y(jj); 

end 

y1 

for i=1:n+1 

    yy(i)=(2.718281828)^((xx(i))^b); 

end 

yy 

for i=1:n+1 

ee(i)=abs(yy(i)-y1(i)); 

end 

[xx' y1' yy' ee'] 

 

Program 11 

%PADE APPROXIMATE METHOD (3,0) TO SOLVE BVP 

%((x)^(aa)*y)'=k*x(aa+k-2)*(aa+k-1+k*(x)^k)*y 

%0<x<1          y(0)=1     y(1)=e(1)      

%======================================= 

clc  

clear 
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format long 

D=[0 1]; 

n=15; 

a=.5; 

b=4; 

h=(D(2)-D(1))/(n+1); 

xx=D(1)+h+[0:h:D(2)-h]; 

xx 

P=inline('-a/x','x','a'); 

Q=inline('(b*x^(a+b-2)*(a+b-1+b*x^b))/(x^a)','x','a','b'); 

PP=inline('a/(x^2)','x','a'); 

QQ=inline('28*x+96*x^5','x'); 

PPP=inline('-1/(x)','x'); 

QQQ=inline('28+480*x^4','x'); 

f=[-1 0;0 -1] 

for i=1:1:n+1 

    aa(1,1)=h*P(xx(i),a)+(h^2*(-PP(xx(i),a)+(P(xx(i),a))^2-

Q(xx(i),a,b)))/2+h^3*(PPP(xx(i))-

3*P(xx(i),a)*PP(xx(i),a)+2*QQ(xx(i))+(P(xx(i),a))^3-

2*P(xx(i),a)*Q(xx(i),a,b))/6;    

    aa(1,2)=h*Q(xx(i),a,b)+h^2*(-

QQ(xx(i))+P(xx(i),a)*Q(xx(i),a,b))/2+(h^3*(QQQ(xx(i))-

2*PP(xx(i),a)*Q(xx(i),a,b)-

P(xx(i),a)*QQ(xx(i))+(P(xx(i),a))^2*Q(xx(i),a,b)-(Q(xx(i),a,b))^2))/6; 
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    aa(2,1)=-h-(h^2*P(xx(i),a))/2+h^3*((PP(xx(i),a)-

(P(xx(i),a))^2+Q(xx(i),a,b)))/6; 

    aa(2,2)=-1*(h^2*Q(xx(i),a,b))/2+h^3*(QQ(xx(i))-

P(xx(i),a)*Q(xx(i),a,b))/6; 

    AA(2*i-1,2*i-1)=aa(1,1); 

    AA(2*i-1,2*i)=aa(1,2); 

    AA(2*i,2*i-1)=aa(2,1); 

    AA(2*i,2*i)=aa(2,2);   

end 

for r=1:1:n 

    AA(2*r+1:2*r+2,2*r-1:2*r)=f; 

end 

AA(1,end)=-1; 

AA(end-1,end)=0; 

AA(end,end)=0; 

 AA 

 G=zeros(2*n+2,1); 

 G(2)=1;  

 G(2*n+1)=1.5891723*exp(1); 

 G(2*n+2)=-0.0529378*exp(1); 

 G; 

 [l,u]=lu(AA); 

 t=inv(l)*G; 

 y=inv(u)*t; 



032 

 

 y; 

 y1(1)=y(2) 

for jj=4:2: 32           %(2*(n+1)) 

    y1(jj/2)=y(jj); 

end 

y1 

for i=1:n+1 

    yy(i)=(2.718281828)^((xx(i))^b); 

end 

yy 

for i=1:n+1 

ee(i)=abs(yy(i)-y1(i)); 

end 

[xx' y1' yy' ee'] 

 

Example  

 Find pade approximations for 
x

xf



1

1
)( expanded about 00 x  

:
1

1
)(

x
xf


  

x0 = 0; 

a = -1.5; 

b = 1.5; 

c = 0.0; 

d = 8.5; 
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a0 = -1.0; 

b0 = 1.0; 

Needs [“Graphics‟ Colors”]; 

Needs [“Calculus „ pade” ]; 

Cdot = Graphics [{{Red, PointSize [0.02], Point [ {x0, f[x0]}]}}]; 

Rends=Graphics[{{Green,Line[{{a0,c},{a0,d}}]},{Red, 

Line[{{a0,c},{x0,d}}]},{Green, Line[{{b0,c},{b0,d}}]}}]; 

For [ n=1, n≤5, n++, 

P[x_] = Together [Pade[f[x], {x, x0, n, n}]]; 

graph1= plot[f[x],{x,-1.5,0.9999}, PlotStyle→Magenta, 

DisplayFunction→Identity]; 

graph2= Plot[P[x],{x,-1.5,1.5},PlotStyle→Blue,DisplayFunction→Identity]; 

Show[graph1, graph2, Cdot, Rends, PlotRange → {{a,b},{c,d}}, Tricks→ 

{Range[-1.5, 1.5, 0.5], Range[0, 5, 1]},  DisplayFunction→ 

$DisplayFunction]; 

Print [“f(x)=”,f[x]]; 

Print[“ nnP , ”,”[x]=”,P[x]],] See [15] 
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