
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2017

Development and evaluation of a biocompatible
electroactive sensor for continuous blood pressure
measurement.
Scott D. Cambron
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Biomechanical Engineering Commons, Biomedical Devices and Instrumentation
Commons, and the Molecular, Cellular, and Tissue Engineering Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Cambron, Scott D., "Development and evaluation of a biocompatible electroactive sensor for continuous blood pressure
measurement." (2017). Electronic Theses and Dissertations. Paper 2622.
https://doi.org/10.18297/etd/2622

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F2622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/296?utm_source=ir.library.louisville.edu%2Fetd%2F2622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=ir.library.louisville.edu%2Fetd%2F2622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=ir.library.louisville.edu%2Fetd%2F2622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/236?utm_source=ir.library.louisville.edu%2Fetd%2F2622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2622
mailto:thinkir@louisville.edu


 

 

 

DEVELOPMENT AND EVALUATION OF A BIOCOMPATIBLE 

ELECTROACTIVE SENSOR FOR CONTINUOUS BLOOD PRESSURE 

MEASUREMENT 

By 

Scott D. Cambron 

B.S., University of Louisville, 2003 

M.Eng., University of Louisville, 2007 

USA 

 

 

A Dissertation 

Submitted to the Faculty of the 

J.B. Speed School of Engineering of the University of Louisville  

in Partial Fulfillment of the Requirements  

for the Degree of 

 

Doctor of Philosophy in Mechanical Engineering  

 

Department of Mechanical Engineering 

University of Louisville 

Louisville, Kentucky 

 

 

May 2017 



 

 

 

Copyright 2017 by Scott Douglas Cambron 

All rights reserved 

 

 

 

 

 

 

 

 

 

 



 



ii 

 

 

 

DEVELOPMENT AND EVALUATION OF A BIOCOMPATIBLE 

ELECTROACTIVE SENSOR FOR CONTINUOUS BLOOD PRESSURE 

MEASUREMENT 

By 

Scott D. Cambron 

B.S., University of Louisville, 2003 

M.Eng., University of Louisville, 2007 

 

A Dissertation Approved on 

 

March 29, 2017 

 

 

by the following Dissertation Committee: 

 

_____________________________________________ 

Dissertation Co-Director 

Robert Keynton, Ph.D 

 

_____________________________________________ 

Dissertation Co-Director 

Stuart J. Williams, Ph.D 

 

_____________________________________________ 

Thomas A. Berfield, Ph.D 

 

_____________________________________________ 

Martin O’Toole, Ph.D 

 

_____________________________________________ 

Gamini U. Sumanasekera, Ph.D 

 



iii 

 

 

DEDICATION 

 

This dissertation is dedicated to my father Doug Cambron.  

Dad, I promised you I would finish. 

And I did. 

 

Dad, I would like to thank you for being my father and my friend, my only male 

companion in the Cambron household full of women, my mentor - teaching me how to 

also be a Jack-of-all-trades, my hunting buddy, my coach - showing me that sports are 

and will always be a game and that they should always be simply enjoyed being played. 

 

“Life isn't about waiting for the storm to pass.  It's about learning to dance in the rain.”   

 

 

I Love You Dad and Miss You Everyday 



iv 

 

 

ACKNOWLEDGEMENTS 
 

I would like to first thank my wife and best friend, Jessica Cambron: Thank you for 

rewarding me with our beautiful and intelligent daughter Sophia and for keeping 

everything together through all the late nights and long weekends while I worked towards 

this goal.  My parents, Doug and Janie Cambron, and my sisters, Terri Lynn, Renee, 

Ramona, Regina and Kimberly for being there through thick and thin, and understanding 

the sacrifices that needed to be made for me to succeed with my education, career and life.  

Their support has meant the world to me.    

Special thanks to Dr. Tommy Roussel, Doug Jackson, Alex Isham, Hanwen Yuan, 

and Dr. Mark Crain for assisting me with many aspects of my project and for putting up 

with all my disruptive questions and venting over the years.  Many thanks to Dr. O’Toole, 

Dr. Berfield, Dr. Sumanasekera, and Dr. Williams for the contributions and insight 

throughout this project and participating on my defense committee.    

Most of all I am greatly appreciative to Dr. Robert Keynton for not only being my 

advisor throughout this arduous and ongoing dissertation project but also giving that 19-

year-old “kid” a chance.  By giving me the opportunity as an undergraduate research 

assistant so long ago, to make all this happen.  He has undoubtedly assisted in molding me 

into not only the researcher/engineer that I am today, but also the man as well.   Thanks 

again for your guidance, patience and friendship Dr. K. 

 



v 

 

 

ABSTRACT 

 

DEVELOPMENT AND EVALUATION OF A BIOCOMPATIBLE 
ELECTROACTIVE SENSOR FOR CONTINUOUS BLOOD PRESSURE 

MEASUREMENT 

Scott Douglas Cambron 

March 29, 2017 

Piezo-active composites have been implemented for sensing and transduction for 

decades.  The 0-3 ceramic/polymer composite is one of the most common composite types 

used for sensing applications, owing to their tailorable properties of the two-phase 

composition, consisting of a three-dimensionally connected polymer/rubber matrix 

(inactive phase) with a dispersion of isolated piezo-ceramic particles (active phase). 

 This thesis describes a method to develop novel biocompatible perivascular band 

comprised of a two-phase piezo-active composite to be fabricated using simple 

manufacturing processes.  Biomaterials such as tissue scaffolds comprised of silk fibroin 

(SF) and chitosan (CS), and biocompatible soft rubbers will be implemented as the three 

dimensional inactive matrix, while a biocompatible piezo-ceramic nanoparticle such as 

Zinc Oxide (ZnO) will be pursued as the piezo-active ceramic particles.  Two compositions 

were pursued, 1.) a biocompatible/biodegradable approach consisting of tissue scaffold 
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(SFCS) and ZnO particle formulation and 2.) a biocompatible soft rubber and ZnO particle 

formulation.  Test samples were fabricated using aforementioned formulations and tested 

on a custom built dynamic biaxial testing apparatus to correlate mechanical strain to 

piezoelectric output correlation.   

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

 

TABLE OF CONTENTS 

 Introduction ............................................................................... 1 

 Purpose of Study ................................................................................................. 4 

 Specific Aims ...................................................................................................... 4 

 Significance of Study .......................................................................................... 6 

 Background ................................................................................ 7 

 Cardiovascular Anatomy, Physiology and Disease Review ............................... 7 

 The Cardiovascular System .......................................................................... 7 

 Cardiovascular Disease and Heart Failure .................................................... 8 

 Ventricular Assist Devices ............................................................................ 9 

 The Baroreflex ............................................................................................ 10 

 Blood Pressure and Hypertension ............................................................... 11 

 Arterial Wall Mechanics ............................................................................. 13 

 Blood Pressure Measurement and Sensing Technologies ................................ 17 

 Noninvasive Measurement Techniques ...................................................... 17 

 Invasive Measurement Techniques ............................................................. 18 

 Introduction Piezo-Composites ......................................................................... 20 



viii 

 Piezo Composites ........................................................................................ 20 

 Tissue Scaffolds .......................................................................................... 21 

 Zinc Oxide Nanoparticles ........................................................................... 23 

 Materials and Methods ............................................................ 25 

 Instrumentation and Equipment ........................................................................ 25 

 Laser Cutting System .................................................................................. 25 

 Operation  -  File Generation ............................................................... 26 

 Operation  -  Laser Cutter .................................................................... 27 

 Custom Material Mixing System ................................................................ 27 

 Viscometer .................................................................................................. 28 

 Operation ............................................................................................. 29 

 PH Meter ..................................................................................................... 31 

 Lyophilization System ................................................................................ 32 

 Operation ............................................................................................. 33 

 Digital-Control Water Bath......................................................................... 34 

 Scanning Electron Microscope ................................................................... 35 

 Operation ............................................................................................. 36 

 Sputtering Machine ..................................................................................... 41 

 Operation ............................................................................................. 41 

 Uniaxial Micro Tensile Tester System ....................................................... 42 



ix 

 Operation ............................................................................................. 43 

 Electrodynamic Shaker, Amplifier, and Waveform Generator .................. 44 

 Operation ............................................................................................. 45 

 Keithley Source Measure Unit ............................................................ 46 

 Hipotronics High Voltage DC Power Supply ............................................. 46 

 High Voltage Probe and Measurement Setup ............................................. 47 

 Analog to Digital Conversion ..................................................................... 48 

 Custom Designed and Fabricated Devices and Instrumentation ...................... 49 

 Custom Electrodynamic Planar Shear Displacement Apparatus ................ 49 

 Design Implemented in Investigation .................................................. 49 

 Custom Electrodynamic Vessel Distension Simulation Apparatus ............ 52 

 EVDSA Filling and Draining .............................................................. 55 

 Piezoelectric Poling System ........................................................................ 57 

 Custom Laser Cut Molds ............................................................................ 60 

 Porosity and Water Absorption Mold .................................................. 60 

 Shear Testing Mold ............................................................................. 61 

 Ring Test and Perivascular Band Mold ............................................... 62 

 Engineered Blood Vessel Mold ........................................................... 66 

 Custom Amplification Electronics .............................................................. 68 

 Methodology ..................................................................................................... 77 



x 

 Piezo Composite Formulation Using Tissue Scaffold Blends .................... 77 

 Tissue Scaffold Blends ........................................................................ 77 

 Silk Fibroin Extraction ........................................................................ 78 

 Fibroin Dissolution .............................................................................. 79 

 Chitosan Dissolution............................................................................ 79 

 Blending of Silk Fibroin with Chitosan ............................................... 79 

 Blending of SFCS with Zinc Oxide Nanoparticles ............................. 81 

 Silk Fibroin - Chitosan - ZnO Blend Scaffold Preparation ................. 81 

 Tissue Scaffold Porosity ...................................................................... 82 

 Tissue Scaffold Water Absorption ...................................................... 84 

 Mechanical characterization of biocompatible piezo-composites .............. 85 

 Dimensional Characteristics ................................................................ 85 

 Mechanical characteristics ................................................................... 85 

 Uniaxial Tensile Testing ................................................................. 85 

 Viscoelastic characteristics .................................................................. 89 

 Stress Relaxation ............................................................................. 89 

 Creep ............................................................................................... 91 

 Compliance and Circumferential Strain Testing ............................. 95 

 Electrical characterization of Biocompatible Piezo-Composites ................ 99 

 Shear Testing ....................................................................................... 99 



xi 

 Vessel Distension Testing ................................................................. 101 

 Determination of Electrode Placement for Vessel Distension Study 102 

 Summary ................................................................................................... 106 

 Results and Discussion .......................................................... 107 

 Formulation of Biocompatible Piezo-Composites .......................................... 107 

 SFCS-ZnO Blend Viscometry .................................................................. 107 

 pH Measurement of Composite Blends .................................................... 111 

 Water Absorption ...................................................................................... 115 

 Scaffold Metrology ................................................................................... 124 

 Imaging ..................................................................................................... 128 

 Porosity Measurement .............................................................................. 131 

 Mechanical Characterization of Biocompatible Piezo-Composites ............... 132 

 Uniaxial Tensile Testing ........................................................................... 133 

 Viscoelastic Testing .................................................................................. 144 

 Stress Relaxation ............................................................................... 145 

 Initial Stress ................................................................................... 147 

 Relaxation Rate ............................................................................. 149 

 Equilibrium Stress ......................................................................... 151 

 Creep Testing ..................................................................................... 154 

 Creep Strain ................................................................................... 156 



xii 

 Creep Recovery ............................................................................. 159 

 Creep Rate and Creep Recovery Rate ........................................... 161 

 Residual Creep Strain .................................................................... 167 

 Electrical characterization of biocompatible piezo-composites ..................... 169 

 Shear Testing ............................................................................................ 169 

 Frequency Dependence ...................................................................... 176 

 Poling Study ...................................................................................... 177 

 In Vitro Testing of SFCS-ZnO Blends in Mock Vessel Models .............. 179 

 Compliance and Circumferential Strain Testing ............................... 179 

 Electrode Placement Investigation .................................................... 184 

 Ex vivo testing of SFCS-ZnO samples on excised porcine aorta ................... 187 

 Conclusions ........................................................................... 190 

References…................................................................................................ 193 

Appendix 1 – Mechanical Drawings and Bill of Materials ......................... 203 

Appendix 2 - Electrical Drawings and Bill of Materials ............................. 211 

Appendix 3 - Program Algorithms and Code .............................................. 214 

Appendix 4 – Experimental Data ................................................................ 223 

Curriculum Vitae ......................................................................................... 237 

 



xiii 

 

 

LIST OF FIGURES 

Figure 2.1.  Illustration of the cardiovascular system, displaying the pulmonary and 

systemic flow circuits.  [9] .................................................................................................. 8 

Figure 2.2.  Examples of ventricular assist devices a.) Left Ventricular Assist Device 

LVAD, b.) Right Ventricular Assist Device RVAD [13] ................................................. 10 

Figure 2.3.  Representation of the pulse pressure waveform for the systemic loop (red) 

and the pulmonary loop (black).  (Redrawn from [16]).................................................... 13 

Figure 2.4.  Schematic representation of change in diameter of arterial vessel during 

change in pulse pressure ................................................................................................... 14 

Figure 2.5.  In vivo blood pressure cuff. [28] ................................................................... 18 

Figure 2.6.  In vivo data from In vivo blood pressure cuff. [28] ...................................... 19 

Figure 2.7.  Illustration displaying connectivity of piezocomposites.  Active phase 

(hatched cubes), inactive phase (white cubes) [31] .......................................................... 20 

Figure 2.8.  Illustration of a 0-3 composite [34] ............................................................... 21 

Figure 2.9.  Image of Bombyx mori silkworm, moth and cocoons. ................................. 22 

Figure 2.10.  Illustration of a.) cubic zinc blende and b.) hexagonal wurtzite.  Shaded gray 

and black spheres represent Zn and O atoms, respectively [42]. ...................................... 23 

Figure 3.1.  Image of Boss LS1630 60 Watt CO2 laser cutting system. ........................... 26 

Figure 3.2.  Image of Tri-R Stir-R Model X63C 1/15 HP variable speed laboratory mixer 

with modified laboratory spatula mounted in the ¼ inch Jacobs chuck. .......................... 28 

Figure 3.3.  Cone and plate viscometer with water bath circulator. ................................. 29 



xiv 

Figure 3.4.  pH Meter ........................................................................................................ 31 

Figure 3.5.  FreeZone Plus 4.5 Liter Cascade Console Freeze Dry System ..................... 33 

Figure 3.6.  Image of IsoTemp 215 digital control water bath ......................................... 35 

Figure 3.7.  Carl Zeiss LEO Supra 35VP Scanning Electron Microscope ....................... 36 

Figure 3.8.  3D rendering of custom lasercut SEM sample imaging array fixture ........... 37 

Figure 3.9.  Image of SEM sample holder for capturing cross sections of lyopholized 

SFCS-ZnO blends. ............................................................................................................ 39 

Figure 3.10.  Image of SEM sample holder for capturing cross sections of lyopholized 

SFCS-ZnO blends. ............................................................................................................ 40 

Figure 3.11.  DC Sputtering System for applying gold onto SFCS substrates. ................ 41 

Figure 3.12.  Admet eXpert 4000 Microtester alongside MTESTQuattro Controller, and 

Omega Temperature Controller. ....................................................................................... 43 

Figure 3.13.  Images of a.) electrodynamic shaker, b.) linear power amplifier, and 

waveform generator. ......................................................................................................... 45 

Figure 3.14.  Keithley 2410 Source Measure Unit ........................................................... 46 

Figure 3.15.  Image of front panel of the Hipotronics R30B HV DC power supply. ....... 47 

Figure 3.16.  Fluke HV Probe plugged into a multimeter. ............................................... 48 

Figure 3.17.  NI USB-6353 A/D converter ....................................................................... 49 

Figure 3.18.  Image of the fabricated and assembled custom electrodynamic planar shear 

displacement apparatus. .................................................................................................... 50 

Figure 3.19.  (Left) Image of displacement application to the linear potentiometer and 

(Right) Plot of Displacement – Potentiometer Output for position calibration. ............... 51 

Figure 3.20.  Image of shear electrode assembly with 2 mm gap set. .............................. 52 



xv 

Figure 3.21.  3D CAD rendering of vessel distension simulation system. ....................... 53 

Figure 3.22  3D CAD rendering of the closed volume subassembly for mounting an 

engineered or actual blood vessel. .................................................................................... 54 

Figure 3.23.  Cross Section View of a 3D CAD rendering of the vessel distension system.

........................................................................................................................................... 54 

Figure 3.24.  Image of PendoTECH luer style pressure sensor. ....................................... 55 

Figure 3.25.  Illustration of filling procedure to replace all incompressible air with 

compressible saline. .......................................................................................................... 56 

Figure 3.26.  Illustration of filling procedure to replace all incompressible air with 

compressible saline. .......................................................................................................... 57 

Figure 3.27.  3D rendering and exploded view of SFCS:ZnO polarization molds ........... 58 

Figure 3.28.  Keithley 2410 Sourcemeter sitting atop an acrylic enclosure with poling 

mold. ................................................................................................................................. 59 

Figure 3.29.  Hipotronics HV DC Power Supply sitting atop an acrylic enclosure with 

poling mold. ...................................................................................................................... 60 

Figure 3.30.  CAD rendering of coupon mold for porosity and water absorption samples

........................................................................................................................................... 61 

Figure 3.31.  CAD rendering of disc mold for shear testing samples ............................... 62 

Figure 3.32.  CAD rendering of ring mold for mechanical and distension testing samples

........................................................................................................................................... 63 

Figure 3.33.  CAD rendering of ring mold in stacked configuration ................................ 64 

Figure 3.34.  Left:  Image of stacked configuration of ring molds, Right:  Image of ....... 65 



xvi 

Figure 3.35.  Illustration describing metrology metrics of molded SFCS-ZnO ring 

specimen. .......................................................................................................................... 65 

Figure 3.36.  a.  3D CAD rendering of the assembled simulated blood vessel mold, b. a 

cross section view of said mold, and c. 3D CAD rendering of the molded vessel with 

cutaway view displaying the inner channel that flows elastomer resin into the annular 

region of the mold ............................................................................................................. 67 

Figure 3.37.  Schematic of differential amplifier .............................................................. 68 

Figure 3.38.  Illustration of connection pinout for the AD620 instrumentation amplifier.

........................................................................................................................................... 69 

Figure 3.39.  Schematic of the TLC2201CP operational amplifier. ................................. 70 

Figure 3.40.  Rendering of layout for the breadboard configuration of the differential 

amplifier. ........................................................................................................................... 72 

Figure 3.41.  Differential amplifier in actual breadboard layout. ..................................... 73 

Figure 3.42.  PCB layout of differential amplifier. ........................................................... 73 

Figure 3.43.  Images of differential amplifier, (Top Left) Isometric view, (Top Right) Top 

view, (Bottom) Front view ................................................................................................ 74 

Figure 3.44.  (Left) Rendering of voltage divider circuit for amplifier calibration drawn 

vie Fritzingand (Right) Populated breadboard .................................................................. 75 

Figure 3.45.  Illustration of silk fibroin extraction and dissolution process. (Redrawn from 

[44])................................................................................................................................... 77 

Figure 3.46.  Image of 10 mL pycnometer. ...................................................................... 84 



xvii 

Figure 3.47.  Graph representing a typical stress-strain relations of a SFCS-ZnO 

specimen, in which the modulus, yield stress, ultimate stress, and elongation at break are 

defined............................................................................................................................... 87 

Figure 3.48.  3D rendering of custom “hook type” fixture to effectively grip the 

fabricated ring devices. ..................................................................................................... 87 

Figure 3.49.  Inset of Testing Procedure from the Admet MTESTQuattro software. ...... 88 

Figure 3.50.  Illustration of Relaxation Test:  Constant strain input (left) and 

representative stress output (right). ................................................................................... 90 

Figure 3.51.  Illustration of Creep Test:  Constant stress input (top) and representative 

strain output (bottom). ...................................................................................................... 92 

Figure 3.52.  Linearity illustrated by an isochronous stress-strain plot at constant times 

from creep tests [50]. ........................................................................................................ 94 

Figure 3.53.  Image of the camera setup for capturing vessel diameters at varying static 

pressures. ........................................................................................................................... 96 

Figure 3.54.   Series of images taken at internal vessel pressures at a.) 70mmHg, b.) 80 

mmHg c.) 90 mmHg, d.) 100 mmHg, e.) 120 mmHg, and f.) 140 mmHg ....................... 97 

Figure 3.55.  Series of images taken at internal vessel pressures at a.) 70 mmHg, b.) 80 

mmHg, c.) 90 mmHg, d.) 100 mmHg, e.) 120mmHg, and f.) 140mmHg ........................ 98 

Figure 3.56.  Image of shear testing fixture with sample loaded and prepared for the test.

........................................................................................................................................... 99 

Figure 3.57.  Image of mounted ring sample on aorta. ................................................... 102 



xviii 

Figure 3.58.  CAD rendering illustrating location of wire electrodes placed at 45˚ (a. and 

b.), 90˚ (c. and d.), and 180˚ (e. and f.) oriented in both axial and radial configurations 

with respect to the vessel geometry. ............................................................................... 104 

Figure 3.59.  Images of actual electrode placement at 45˚, 90˚, and 180˚ oriented in both 

axial and radial configurations with respect to the vessel geometry. ............................. 105 

Figure 3.60.  Image of SFCS-ZnO ring sample mounted onto an excised descending aorta 

with electrode mounted in 180˚ axial orientation. .......................................................... 106 

Figure 4.1.  Viscosity Measurements of SFCS composites absent of ZnO nanoparticles

......................................................................................................................................... 108 

Figure 4.2.  Image of shear induced coagulation of ZnO nanoparticles in SFCS composite 

for a 2 mL SFCS-ZnO sample after exposed to shear via the cone and plate viscometer.  

Particle coagulation was clearly present.  (Additional images of unsuccessful blends are 

shown in Appendix 2.) .................................................................................................... 110 

Figure 4.3. Plot of Viscosity vs. Shear Rate for 30:70 SFCS blends with 200 nm particles 

at varying concentrations. ............................................................................................... 111 

Figure 4.4.  Bar chart of pH of aqueous dispersion ZnO nanoparticle. .......................... 112 

Figure 4.5.  Bar chart illustrating average pH of SFCS-ZnO blends with standard 

deviation. ......................................................................................................................... 114 

Figure 4.6.  Mass properties of pure SFCS blended scaffolds. ....................................... 115 

Figure 4.7.  Average change in mass for each of the SFCS-ZnO blends with 30 nm 

particles.  Note:  The 70:30, 30 nm, 10% by weight is not shown due to inability to mix 

the particular blend. ........................................................................................................ 116 



xix 

Figure 4.8.  Average change in mass for each of the SFCS-ZnO blends with 45 nm 

particles.  Note:  The 70:30, 45 nm, 10% by weight is not shown due to inability to mix 

the particular blend. ........................................................................................................ 117 

Figure 4.9.  Average change in mass for each of the SFCS-ZnO blends with 200 nm 

particles.  Note:  The 70:30, 200 nm, 10% by weight is not shown due to inability to mix 

the particular blend. ........................................................................................................ 118 

Figure 4.10.  Water absorption of pure SFCS blended scaffolds up to a time interval of 4 

hours. ............................................................................................................................... 120 

Figure 4.11.  Average water absorption data for SFCS-ZnO blends with 30 nm particles 

representing collection intervals up to 240 minutes.  Note:  The 70:30, 30 nm, 10% by 

weight is not shown due to inability to mix the particular blend. ................................... 121 

Figure 4.12.  Average water absorption data for SFCS-ZnO blends with 45 nm particles 

representing collection intervals up to 240 minutes.  Note:  The 70:30, 45 nm, 10% by 

weight is not shown due to inability to mix the particular blend. ................................... 122 

Figure 4.13.  Average water absorption data for SFCS-ZnO blends with 200 nm particles 

representing collection intervals up to 240 minutes.  Note:  The 70:30, 200 nm, 10% by 

weight is not shown due to inability to mix the particular blend. ................................... 123 

Figure 4.14.  Bar chart illustrating differences water absorption between SFCS-ZnO 

blends. ............................................................................................................................. 124 

Figure 4.15.  SEM image of a.) 30nm ZnO nanoparticle, b.)  45nm ZnO nanoparticle, and 

c.) 200nm ZnO nanoparticle ........................................................................................... 128 

Figure 4.16.  SEM images of pure 3070 SFCS tissue scaffold ....................................... 129 

Figure 4.17.  SEM images of pure 5050 SFCS tissue scaffold ....................................... 129 



xx 

Figure 4.18.  SEM images of pure 7030 SFCS tissue scaffold ....................................... 129 

Figure 4.19.  Low and high magnification SEM image of a cross section of 30:70 – 45nm 

– 2% SFCS-ZnO tissue scaffold. .................................................................................... 130 

Figure 4.20.  Low and high magnification SEM image of a cross section of 30:70 – 45nm 

– 5% SFCS-ZnO tissue scaffold. .................................................................................... 130 

Figure 4.21.  Low and high magnification SEM image of a cross section of 30:70 – 45nm 

– 10% SFCS-ZnO tissue scaffold. .................................................................................. 130 

Figure 4.22.  Bar chart exhibiting average porosity of all individual SFCS-ZnO blends132 

Figure 4.23.  Image of SFCS-ZnO sample mounted in custom ring testing fixture ....... 133 

Figure 4.24.  (Top) Stress – Strain and (Bottom) Stress – Time plot demonstrating sample 

preconditioning up to 50% strain in a typical SFCS-ZnO blend (30:70 – 30 nm – 2%) 134 

Figure 4.25.  Stress versus strain plot for three 70:30 – 45 nm – 5% SFCS-ZnO samples.

......................................................................................................................................... 135 

Figure 4.26.  Stress versus strain plot for one sample of each ZnO composition in 30:70 

blend. ............................................................................................................................... 135 

Figure 4.27.  Stress versus strain plot for one sample of each ZnO composition in 50:50 

blend ................................................................................................................................ 136 

Figure 4.28.  Stress versus strain plot for one sample of each ZnO composition in 70:30 

blend ................................................................................................................................ 136 

Figure 4.29.  Bar chart exhibiting average ultimate tensile strength of all individual 

SFCS-ZnO blends ........................................................................................................... 138 

Figure 4.30.  Barchart illustrating differences in average ultimate strength among SFCS-

ZnO blends of known ZnO weight percent..................................................................... 139 



xxi 

Figure 4.31.  Bar chart exhibiting average elastic modulus of all individual SFCS-ZnO 

blends .............................................................................................................................. 141 

Figure 4.32. Barchart illustrating differences in average elasticity among SFCS-ZnO 

blends of known ZnO weight percent. ............................................................................ 142 

Figure 4.33.  Bar chart exhibiting average % elongation of all individual SFCS-ZnO 

blends .............................................................................................................................. 143 

Figure 4.34.  Barchart illustrating differences in average elongation among SFCS-ZnO 

blends of similar ZnO weight percent. ............................................................................ 144 

Figure 4.35.  Representative plot of (Top) Strain – Time of the controlled cross head and 

(Bottom) a typical stress – time plot of a SFCS-ZnO blended sample (30:70 – 30 nm – 

2%). ................................................................................................................................. 146 

Figure 4.36.  Plot of stress relaxation versus time of a 3070-30nm-2% blended sample.

......................................................................................................................................... 147 

Figure 4.37.  Consolidated plots of initial modulus versus applied strain with respect to 

(Top) ZnO WT%, (Middle) ZnO Size, and (Bottom) SFCS blend ................................ 148 

Figure 4.38.  A log – log plot of stress relaxation versus time of 3070-30nm-2% blend.

......................................................................................................................................... 149 

Figure 4.39.  Consolidated plots of relaxation rate versus applied strain with respect to 

(Top) ZnO WT%, (Middle) ZnO Size, and (Bottom) SFCS blend ................................ 151 

Figure 4.40.  Consolidated plots of equilibrium modulus versus applied strain with 

respect to (Top) ZnO WT%, (Middle) ZnO Size, and (Bottom) SFCS blend ................ 153 

Other techniques for characterizing the viscoelastic time dependent behavior of the 

SFCS-ZnO blended materials are creep and creep recovery tests, where a constant force 



xxii 

is applied to the SFCS-ZnO sample, at a rate 50 mm/min to constant force values of 5.0, 

7.5 and 10.0 grams and held statically for the prescribed times noted in Section 3.3.5 

(Figure 4.41 (Top)) with a typical strain response shown in Figure 4.42 (bottom).   The 

induced strain of the SFCS-ZnO blended materials increases as the applied stress 

increases over time while held at the constant force. ...................................................... 154 

Figure 4.43.  SFCS-3070-30NM-2% .............................................................................. 154 

Figure 4.44.  Plot representing creep of a 3070-30NM-2% blended SFCS-ZnO sample155 

Figure 4.45.  Plot representing creep recovery of a 3070-30NM-2% blended SFCS-ZnO 

sample ............................................................................................................................. 156 

Figure 4.46.  Plot of creep strain with respect to (Top) ZnO WT%, (Middle) ZnO Size, 

and (Bottom) SFCS blend ............................................................................................... 158 

Figure 4.47.  Plot of creep recovery strain with respect to (Top) ZnO WT%, (Middle) 

ZnO Size, and (Bottom) SFCS blend .............................................................................. 160 

Figure 4.48.  A representative log – log plot of Strain – Time of a single creep strain data 

set of 3070-30nm-2% blend. ........................................................................................... 162 

Figure 4.49.  A representative log – log plot of Strain – Time of a single creep recovery 

strain data set of 3070-30nm-2% blend. ......................................................................... 162 

Figure 4.50.  Plots of rate of creep with respect to (Top) ZnO WT%, (Middle) ZnO Size, 

and (Bottom) SFCS blend ............................................................................................... 164 

Figure 4.51.  Plots of rate of creep recovery with respect to (Top) ZnO WT%, (Middle) 

ZnO Size, and (Bottom) SFCS blend .............................................................................. 166 

Figure 4.52.  Plot of residual creep strain with respect to (Top) ZnO WT%, (Middle) ZnO 

Size, and (Bottom) SFCS blend ...................................................................................... 168 



xxiii 

Figure 4.53.  Plot illustrating (Bottom) Electrode displacement (25% strain) and the (Top) 

Response of a SFCS-ZnO blend (70:30 with 30 nm at 2% ZnO) ................................... 169 

Figure 4.54.   Piezoelectric response to compressing a flexible film based device 

comprised of PZT [61] .................................................................................................... 171 

Figure 4.55.  Piezoelectric response to bending nanorod based device comprised of PZT 

[62]. ................................................................................................................................. 171 

Figure 4.56.  Piezoelectric response to bending a 0-3 nanoparticle composite based device 

comprised of ZnO dispersed within PDMS [63] ............................................................ 171 

Figure 4.57.  Barchart of 2%-30 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. ........................................................................................... 173 

Figure 4.58.  Barchart of 5%-30 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. ........................................................................................... 173 

Figure 4.59.  Barchart of 10%-30 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. ........................................................................................... 173 

Figure 4.60.  Barchart of 2%-45 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. ........................................................................................... 174 

Figure 4.61.  Barchart of 5%-45 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. ........................................................................................... 174 

Figure 4.62.  Barchart of 10%-45 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. ........................................................................................... 174 

Figure 4.63.  Barchart of 2%-200 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. ........................................................................................... 175 



xxiv 

Figure 4.64.  Barchart of 5%-200 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. ........................................................................................... 175 

Figure 4.65.  Barchart of 10%-200 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. ........................................................................................... 175 

Figure 4.66.  Barchart of pure SFCS sample response to 5%, 10%, and 25% shear strain 

at 0.6, 1.2 and 2.4 Hz. ..................................................................................................... 176 

Figure 4.67.  Plot representing frequency dependent reduction in electrical response [65]

......................................................................................................................................... 177 

Figure 4.68.  Image of damage resulted via applying a high voltage to the poling 

electrode assembly. ......................................................................................................... 179 

Figure 4.69. Diameter – Pressure plot of engineered Dragonskin vessel and a 15 kg 

porcine aorta.................................................................................................................... 183 

Figure 4.70.  Circumferential Strain – Pressure plot of engineered Dragonskin vessel and 

a 15 kg porcine aorta. ...................................................................................................... 184 

Figure 4.71.  5050-45nm-2%, 180 degree axial position, with amplification. ............... 186 

Figure 4.72.  Bar chart demonstrating output of SFCS ring samples wire electrodes 

placed at 45˚, 90˚, and 180˚ oriented in both axial and radial configurations with respect 

to the vessel geometry. .................................................................................................... 187 

Figure 4.73.  Plot of shaker stroke (Top), vessel pressure (Middle), and SFCS response 

(Bottom) for a 3070-45nm -5% sample .......................................................................... 189 

Figure 4.74.  Bar chart demonstrating output of SFCS ring samples when mounted to 

porcine aortic tissue and distended. ................................................................................ 189 

Figure 6.1.  Biaxial testing apparatus.............................................................................. 203 



xxv 

Figure 6.2.  Custom built biaxial testing apparatus. ....................................................... 204 

Figure 6.3.  Exploded view of custom built biaxial testing apparatus. ........................... 205 

Figure 6.4.  a.) CAD rendering of biaxial electrode mold.  b.) CAD rendering of test 

sample ............................................................................................................................. 207 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxvi 

 

 

LIST OF TABLES 

Table 2.1.  Normal and Hypertensive Systemic and Pulmonary Loop Blood Pressure 

Values [14] ........................................................................................................................ 11 

Table 2.2.  Pulmonary arterial distension and circumferential strain in healthy patients 

and patients with PH [18] ................................................................................................. 16 

Table 3.1.  Cone and plate viscometer parameter ranges. ................................................ 30 

Table 3.2.  Layout map of SEM specimen fixture. ........................................................... 38 

Table 3.3.  List of featured designed dimensions within mold. ........................................ 66 

Table 3.4.  Listing of individual and overall gain settings for custom differential 

amplifier. ........................................................................................................................... 71 

Table 3.5.  Theoretical and actual gain based on stage resistors and the measured voltage 

at the amplifier. ................................................................................................................. 76 

Table 3.6.  List of SFCS blends and corresponding volumes for 50 mL solution. ........... 80 

Table 3.7.  Applied shear strain to samples .................................................................... 100 

Table 3.8.  Permutations of programmed strains and frequencies applied during typical 

electrical test. .................................................................................................................. 100 

Table 3.9.  Permutations of pressures and frequencies applied during typical vessel 

distension test. ................................................................................................................. 102 

Table 4.1.  List of blends that yielded accurate (successful blends) and inaccurate 

(unsuccessful blends) viscosities.. .................................................................................. 109 

Table 4.3.  pH of SFCS composites without embedded ZnO nanoparticles................... 112 



xxvii 

Table 4.4.  Average outer diameter (Ø), wall thickness (WT), and height (H) of each 

SFCS-ZnO blend with respect to SFCS Blend. .............................................................. 126 

Table 4.5.  Average outer diameter (Ø), wall thickness (WT), and height (H) of each 

SFCS-ZnO blend with respect to Particle Size (nm). ..................................................... 126 

Table 4.6.  Average outer diameter (Ø), wall thickness (WT), and height (H) of each 

SFCS-ZnO blend with respect to ZnO Concentration. ................................................... 127 

Table 4.7.  List of compliance and circumferential strain data calculated from measured 

vessel diameters from an engineered tube comprised of DragonSkin®. ........................ 181 

Table 4.8.  List of compliance and circumferential strain data calculated from measured 

vessel diameters from a 15 kg pig aorta.......................................................................... 181 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

 

  

Cardiovascular disease is the leading cause of death for both men and women in 

America.  Approximately 600,000 Americans die from heart disease each year (1 in every 

4 deaths) [1] [2] [3].  Blood pressure is the internal pressure of the circulating blood pushing 

against the arterial walls, which is pumped from the heart to the rest of the body within the 

systemic cardiovascular loop. This systemic arterial pressure (SAP) normally rises and falls 

throughout the day depending on levels of exertion.  Normal resting blood pressure in 

adults is approximately 120/80 mmHg.  Systemic hypertension or high blood pressure 

(HBP) (typically 140+/90+ mmHg) increases a person’s risk of cardiovascular disease.  

Nearly 70 million Americans currently have HPB (1 in every 3 adults) which contributed 

to more than 360,000 American deaths in 2013 [4].   

The pulmonary loop of the cardiovascular system carries deoxygenated blood from 

the right side of the heart, to the lungs and returns oxygenated blood back to the left side 

of the heart, only to then return to the systemic loop through the aortic valve. The 

pulmonary loop is significantly shorter than the systemic, therefore the resting pulmonary 

arterial pressure (PAP) is normally much lower than SAP.  Normal resting PAP in adults 

is approximately 20/8 mmHg [6].  Pulmonary hypertension (PH) occurs when the pressure 

in the blood vessels leading from the heart to the lungs within the pulmonary loop is 

abnormally high (typically 30+/12+ mmHg), resulting in a narrowing of the arteries in the 

lungs, reducing blood flow, subsequently reducing oxygenation of blood.  Pulmonary 
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hypertension is a rare, devastating disease in which HPB in the pulmonary arteries can lead 

to right heart failure [7].  The number of PH related deaths and hospitalizations have 

significantly increased from 15,500 and 260,000 respectively in 2001 to 21,250 and 

405,000 respectively in 2010, a 36.5% and 96.7% increase respectively [8]. Ideal medical 

management requires regular PAP monitoring.  

 Measurement of systemic blood pressure has been utilized by the medical field 

since the mid-18th century.  In 1733, Reverend Stephen Hales first measured blood pressure 

by inserting tubes directly into the arteries of animals [9]. Riva Rocci, an Italian physician, 

developed the first conventional cuff based sphygmomanometer in 1896, when later in 

1905, Nicolai Korotkoff described various sounds while auscultating over the brachial 

artery during deflation of a Rocci style cuff.  Later coined Korotkoff Sounds, are used to 

determine the systolic and diastolic blood pressures.  The combination of these 2 

noninvasive techniques is still employed today and is considered the gold standard in the 

medical field for accurate intermittent noninvasive systemic blood pressure measurement 

[10].  Other noninvasive BP measurement approaches have been implemented in recent 

years.  The oscillometric method employs a sphygmomanometer cuff, similar to the 

auscultatory method, but with an electronic pressure sensor to monitor cuff pressure 

oscillations [10].  This method employs proprietary algorithms for calculating systemic 

systolic and diastolic blood pressure values.  Similar to the auscultatory method, the 

oscillometric method can only record intermittent blood pressure measurements.  As of 

late, systems similar to the CNAP Monitor 500 HD (CN Systems, Austria), a continuous 

noninvasive hemodynamic monitoring system, have been implemented primarily for 

surgical procedures such as cesarean section, orthopedic, laparoscopic and vascular surgery 
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[11].  All of the blood pressure measurement devices/systems mentioned above can and 

will only measure the SAP of the cardiovascular system.   

The most accurate method and the gold standard of measuring SAP is intra-arterial 

pressure measurement.  An invasive surgical procedure where a catheter based 

hydraulically coupled pressure sensor is typically inserted via radial (wrist), brachial 

(elbow), femoral (groin), or dorsalis pedis artery (foot).  This measurement system allows 

for continuous SAP monitoring.   

Pulmonary arterial pressure cannot be accurately measured via any noninvasive 

technique.  Echocardiography has been pursued as an avenue of noninvasive PAP 

measurement but has yet to yield repeatable and reliable results [12].  Intra-arterial PAP 

measurement, otherwise known as right heart catheterization is considered the gold 

standard, and currently the only reliable method of PAP measurement.  The 

CardioMEMSTM HF wireless measurement system, recently FDA approved (June 2014), 

is capable of monitoring PAP via a capacitive pressure sensor.  Intra-arterial pressure 

measurement being highly accurate can have negative attributes to overcome such as risk 

of post-op infection.  In the case of the CardioMEMSTM device, migration of device further 

into the pulmonary system potentially causing an embolism is possible as well as the 

possibility of post-op infection.   

A device that can measure arterial pressure of a vessel without penetrating the 

vessel wall would be beneficial, devoid of any cardiovascular issues of foreign objects 

being in the blood stream for an extended amount of time, such as thrombosis or pulmonary 

embolism.   
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 Purpose of Study 

The overall goal of this project is to design, develop, characterize and 

experimentally test an electroactive banding device consisting of organic and/or inorganic 

materials such as silk fibroin, chitosan, and zinc oxide particles.  The studies presented in 

this work will focus on: 1.) developing a recipe for manufacturing a material comprised of 

the ingredients previously listed that can withstand the strain generated by the distension 

of the pulmonary artery during normal and elevated cardiovascular function, 2.) 

determining the mechanical properties of said material via ASTM and or ISO standard 

testing procedures, 3.) determining an association between local mechanical strain and 

piezoelectric response of the biodegradeable electroactive material, and 4.) designing a 

band like geometry to be placed around a porcine pulmonary artery ex vivo, properly 

secured and evaluated on a custom built vascular distension simulation rig. 

 

 Specific Aims 

The specific aims for this project are: 

Specific Aim 1:  Develop compositions to create moldable biocompatible 

electroactive piezo-composite (0-3) materials.  Organic and inorganic materials such as 

silk fibroin (Bombyx mori silkworm), high molecular weight chitosan, and zinc oxide 

particles will be implemented to produce a band like structure that will be designed to 

withstand the stresses and strains experienced during distension. 
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Specific Aim 2:  Determine mechanical properties of the electroactive 

composite(s).  Following ASTM and or ISO standard procedures, mechanical properties 

such as elastic modulus, tensile strength, elongation (ASTM D412-06a, ASTM D638-14, 

ASTM D882-12), and viscoelasticity (ASTM-E328-02, ASTM-D2990-09) will be 

determined using the eXpert 4000 MicroTest System (Admet, ). 

Specific Aim 3:  Determine the correlation between mechanical strain and 

electrical response of the biocompatible electroactive composite material.  The 

piezoelectric performance of the device will be determined using two different 

experimental methods: 1.) dynamic testing to apply mechanical strain to the sample; and, 

2.) dynamic expansion of an engineered tubular structure by means of a custom vessel 

distension simulation system, where the fabricated device would be attached or adhered. 

Specific Aim 4:  Benchtop ex vivo testing of porcine arterial tissue.  Apply dynamic 

expansion of porcine pulmonary arterial tissue by means of a custom vessel distension 

simulation system, where the fabricated device would be attached or adhered around the 

perimeter of the vessel. 
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 Significance of Study 

In this project, an electroactive 0-3 connectivity piezo-composite sensing device 

will be developed and fabricated.  This device will be comprised of silk fibroin, chitosan, 

and zinc oxide particles.   

This project aims to generate a supplementary viable solution for measuring 

continuous or real time in vivo pulmonary arterial pressure by developing a compliant 

electroactive band that will circumscribe the vessel and monitor internal arterial pressure 

by correlating the circumferential and lateral strains to the electroactive devices response.  

To date, this type of 0-3 connectivity piezo-composite device for continuous in vivo 

pulmonary arterial pressure has not been reported. 
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 Cardiovascular Anatomy, Physiology and Disease Review 

 The Cardiovascular System 

 The cardiovascular system consists of three primary components, 1.) blood – the 

biofluid that circulates throughout the body carrying oxygen and nutrients to vital organs 

and cells, 2.) vasculature – the conduit through which the blood flows and 3.) heart – the 

pump that drives the flow of the blood through the vasculature [13].   Often referred to as 

the circulatory system, blood follows a circular path through the body.  The general pattern 

of the circulatory blood flow is shown in Figure 2.1 and comprises of two loops:  the 

pulmonary loop consisting of all vasculature within the lungs and those connecting the 

heart to the lung, and the systemic loop which includes the vasculature of the rest of the 

body.  The pulmonary loop of the cardiovascular system carries deoxygenated blood (blue 

in Figure 2.1) from the right side of the heart, to the lungs and returns oxygenated blood 

(red in Figure 2.1) back to the left side of the heart, only to then return to the systemic loop 

through the aortic valve to then be pumped to the rest of the body [13] [14].   
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Figure 2.1.  Illustration of the cardiovascular system, displaying the pulmonary and 

systemic flow circuits.  [9] 

 

 Cardiovascular Disease and Heart Failure 

Cardiovascular disease is the leading cause of death in both men and women in 

America.  Approximately 600,000 Americans die from heart disease each year (1 in every 

4 deaths) [3] [4].  Heart failure is typically the final path of most chronic cardiovascular 

diseases.  In 2005, Approximately 6 million Americans are currently living with heart 
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failure, of those, approximately 25% had advanced or end stage heart failure (ESHF) [15].  

Advanced forms of heart failure typically involve transplantation of the heart for patients 

who are eligible.  Ineligible patients whether due to age or other health problems are 

typically given a ventricular assist device (VAD) that can potentially extend the life of the 

patient [16].   

 

 Ventricular Assist Devices 

The introduction of the ventricular assist device in the 1980’s alongside the advances in 

cardiac transplantation, VADs were used for the salvage of patients with advanced heart 

failure accompanied by shock and multiple organ dysfunction, with the goal of future heart 

transplantation [15].  Traditionally a Left Ventricular Assist Device (LVAD) is employed 

to assist the left side of the heart (as an unloading mechanism) in pumping oxygenated 

blood through the systemic circuit, connecting the inflow cannula of the pump to the apex 

of the left ventricle and the pump outlet to the outflow cannula in the ascending aorta 

(Figure 2.2a).  Right Ventricular Assist Devices (RVAD) are typically employed to assist 

the right side of the heart in pumping deoxygenated blood through the pulmonary circuit 

[17], the inflow cannula channels blood from the right ventricle to the pump, and the 

outflow cannula channels blood from the pump to the pulmonary artery (Figure 2.2b). 

 It is common for VAD patients to develop HBP; physicians overseeing patients 

with implanted VADs will attempt to maintain normal blood pressure, by adjusting pump 

performance in combination with prescribing HBP medication [18].  The VAD 

performance adjustments are typically made while in the heart/device specialist office 

while closely monitoring BP.   
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Figure 2.2.  Examples of ventricular assist devices a.) Left Ventricular Assist Device 

LVAD, b.) Right Ventricular Assist Device RVAD [13] 

 

 The Baroreflex 

In a healthy cardiovascular system, BP is stabilized and kept near homeostasis with 

the assistance of the baroreflex [19].  This reflex is initiated by a series of internal pressure 

sensors termed baroreceptors, which are primarily located within the large arteries of 

thoracic and neck regions (i.e. carotid, aorta, and pulmonary artery) that sense the rapid 

change in blood pressure via distension of the blood vessel and sending that signal to the 

nervous system to make the desired adjustment to rapidly raise or lower SAP and/or PAP.  

This baroreflex is ineffective in patients with VADs, there is currently no feedback 
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mechanism that actively monitors BP and communicates said rapid changes to the VAD 

for immediate adjustment.   

 

 Blood Pressure and Hypertension 

Blood pressure (BP) is the internal pressure of the circulating blood pushing against 

the vessel walls, which is pumped from the heart to the rest of the body within the systemic 

loop [19].  This systemic arterial pressure (SAP) normally rises and falls throughout the 

day depending on levels of exertion.  Normal resting BP in adults is approximately 120/80 

mmHg (Table 2.1).  Systemic hypertension or high blood pressure (HBP) (typically 

140+/90+ mmHg) increases a person’s risk of cardiovascular disease.  Patients with SAP 

or left heart related heart failure will typically have a Left Ventricular Assist Device 

(LVAD) implanted to assist in pumping blood through the systemic loop [17].  Maintaining 

a stable systemic BP is critical for proper cardiovascular and other vital organ function 

throughout a healthy body.   

 

Table 2.1.  Normal and Hypertensive Systemic and Pulmonary Loop Blood Pressure 

Values [14] 

UNITS 

mmHg 

Systemic Loop Pulmonary Loop 

Normal Hypertensive Normal Hypertensive 

Systolic 90-140 140+ 20-30 30+ 

Diastolic 60-90 90+ 8-12 12+ 

Mean 70-100 100+ 25 25+ 
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The pulmonary loop is significantly shorter than the systemic loop; therefore the 

resting pulmonary arterial pressure (PAP) is normally much lower than SAP.  Normal 

resting PAP in adults is approximately 20/8 mmHg [8].  Pulmonary hypertension (PH) 

occurs when the pressure in the blood vessels leading from the heart to the lungs within the 

pulmonary loop is abnormally high (typically 30+/12+ mmHg) shown in Table 2.1, 

resulting in a narrowing of the arteries in the lungs, reducing blood flow, subsequently 

decreasing oxygenation of blood.  Pulmonary hypertension is a rare and devastating disease 

in which HBP in the pulmonary arteries can lead to right heart failure [7].  The number of 

PH related deaths and hospitalizations have significantly increased from 15,500 and 

260,000 respectively in 2001 to 21,250 and 405,000 respectively in 2010, a 36.5% and 

96.7% increase respectively [8].  Patients with PAP or right heart related heart failure will 

typically have a RVAD implanted to assist in pumping blood through the pulmonary loop. 

Pulse pressure (PP) is  

𝑃𝑃 = 𝑆𝑃 − 𝐷𝑃                                                             (1) 

where the systolic pressure (SP) is the point of maximum pressure in the Systole Period of 

ventricular contraction, forcing of blood into aorta and pulmonary artery, and the diastolic 

pressure (DP) is the point of minimum pressure in the Diastole Period of ventricular 

relaxation [13].  Figure 2.3 shows representative pulse pressure waveforms for normal SAP 

and PAP.   
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Figure 2.3.  Representation of the pulse pressure waveform for the systemic loop (red) 

and the pulmonary loop (black).  (Redrawn from [16]) 

 

 Arterial Wall Mechanics 

Arterial stiffness plays an essential role in cardiovascular disease and end stage 

heart failure.  During HBP progression, SAP and or PAP increases, the arterial vessels 

undergo remodeling, the vessel walls become thicker and the modulus of elasticity 

increases [20] [21] [22].  Both changes considerably affect arterial stiffness.  Figure 2.4 

shows a general representation of changes in diameter within a vessel during changes in 

pulse pressure.  The amount of expansion depends on the mechanical condition of the 

artery. 
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Figure 2.4.  Schematic representation of change in diameter of arterial vessel during 

change in pulse pressure 

 

As an arterial vessel remodels with increased stiffness, there are measurable metrics for 

evaluation, all of which are typically based upon the non-invasive measurement of vessel 

diameters and lumen areas during the cardiac cycle via techniques such as ultrasound, 

magnetic resonance imaging (MRI), and echo tracking [17].  Echo tracking devices can 

accurately measure diameter (d) and the stroke change in diameter (Δd) of various large 

arteries [23] [24].  Distension is the measurement of the change in vessel diameter  

 

𝐷 =  𝑑𝑆 − 𝑑𝐷                                                              (2) 

 

where dS is the systolic diameter and dD is the diastolic diameter.  The cross-sectional 

distensibility coefficient (DC) is considered a determinant of stress of the vessel wall is the 

relative change in lumen area for a given change in pressure 
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𝐷𝐶 =
𝐴𝑆−𝐴𝐷

𝐴𝐷×𝑃𝑃
                                                                (3) 

 

where the AS is the systolic cross-sectional lumen area, AD is the systolic cross-sectional 

lumen area and PP is the pulse pressure.  Cross-sectional compliance coefficient is the 

absolute change in lumen area for a given pulse pressure by 

 

𝐶𝐶 =  
𝐴𝑆−𝐴𝐷

𝑃𝑃
                                                                (4) 

 

The cross-sectional measurements can be implemented assuming the arterial vessels 

predominantly change in diameter and not length during the cardiac cycle [25].  Peterson’s 

Modulus is the inverse of distensibility and represents the ratio of stress to strain in terms 

of the pulse pressure and measurable lumen area parameters [26] 

 

𝐸𝑃 =
1

𝐷𝐶
=

𝐴𝐷×𝑃𝑃

𝐴𝑆−𝐴𝐷
                                                          (5) 

 

The elastic modulus of the arterial wall is denoted as 

 

𝐸𝑖𝑛𝑐 =
3(1+

𝐴𝐷
𝑊𝐶𝑆𝐴

)

𝐷𝐶
                                                           (6) 

 

where 

 

𝑊𝐶𝑆𝐴 =  
𝜋(𝑑𝑂

2 −𝑑𝐼
2)

4
                                                         (7) 
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where dO is the outer diameter and dI is the inner diameter of the arterial vessel.  

Circumferential strain is the measure of change in circumference of a vessel through 

diastole and systole, which is equivalent to 

 

𝜀𝐶 =  
𝜋(𝑑+∆𝑑)

𝜋𝑑
=  

𝑑𝑆−𝑑𝐷

𝑑𝐷
                                                        (8) 

 

where the changes circumference can be reduced to changes in diameter.  Table 2.2 shows 

measured systolic and diastolic lumen areas of healthy patients and patients with 

pulmonary hypertension [21].  Distension and circumferential strain were calculated from 

the measured lumen areas.   

 

Table 2.2.  Pulmonary arterial distension and circumferential strain in healthy patients 

and patients with PH [18] 

 Systolic 

Area (mm2) 

Diastolic 

Area (mm2) 
ΔA Δd εc (%) 

Healthy 

Patient 
710 450 260 6.13 25.6 

PH during 

exertion 
620 480 140 3.37 13.7 

PH at rest 1070 850 220 4.01 12.2 

 

The above-mentioned indices are a means of non-invasively quantifying the regional 

arterial stiffness of a patient to determine the level of severity of arterial stiffness related to 

hypertension and or other cardiovascular related diseases.   
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 Blood Pressure Measurement and Sensing Technologies 

Measurement of systemic BP has been utilized by the medical field since the mid-

18th century.  In 1733, Reverend Stephen Hales first measured BP by inserting tubes 

directly into the arteries of animals [9]. Riva Rocci, an Italian physician, developed the first 

conventional cuff based sphygmomanometer in 1896, when later in 1905, Nicolai 

Korotkoff described various sounds while auscultating over the brachial artery during 

deflation of a Rocci style cuff.  Later coined Korotkoff Sounds, are still used to determine 

the systolic and diastolic blood pressures. 

 Noninvasive Measurement Techniques 

The combination of the two abovementioned noninvasive techniques is still 

employed today and is considered the gold standard in the medical field for accurate 

intermittent noninvasive systemic BP measurement [10].  Other noninvasive BP 

measurement approaches have been implemented in recent years.  The oscillometric 

method employs a sphygmomanometer cuff, similar to the auscultatory method, but with 

an electronic pressure sensor to monitor cuff pressure oscillations [10].  This method 

employs proprietary algorithms for calculating systemic systolic and diastolic blood 

pressure values.  Similar to the auscultatory method, the oscillometric method can only 

record intermittent blood pressure measurements.  Recently, systems similar to the CNAP 

Monitor 500 HD (CN Systems, Austria), a continuous noninvasive hemodynamic 

monitoring system, have been implemented primarily for surgical procedures such as 

cesarean section, orthopedic, laparoscopic and vascular surgery [11].  All of the blood 
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pressure measurement devices/systems mentioned above can and will only measure the 

SAP of the cardiovascular system. 

 Invasive Measurement Techniques 

The most accurate method of measuring SAP is intra-arterial pressure 

measurement.  An invasive surgical procedure where a catheter based hydraulically 

coupled pressure sensor is typically inserted via radial (wrist), brachial (elbow), femoral 

(groin), or dorsalis pedis artery (foot).  This measurement system allows for continuous 

SAP monitoring [27].   

Cong et al developed an in vivo blood pressure monitoring system for small 

laboratory animals such as rats for real time measurement to be employed in  biomedical 

and genetic research to identify genetic variation susceptibility to diseases such as 

hypertension [28] [29].  This type of perivascular device is placed around the carotid artery 

of a rat, a capacitive pressure sensor is immersed in silicone oil and continuously monitors 

the systemic blood pressure (Figure 2.5).  Figure 2.5 displays actual laboratory rat blood 

pressure waveform recorded wirelessly with high fidelity and accuracy.   

 

 

Figure 2.5.  In vivo blood pressure cuff. [28]  
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Figure 2.6.  In vivo data from In vivo blood pressure cuff. [28]  

 

Pulmonary arterial pressure cannot be accurately measured via any noninvasive 

technique.  Echocardiography and MRI have been pursued as avenues of noninvasive PAP 

measurement but has yet to yield repeatable and reliable results [30].  Intra-arterial PAP 

measurement, otherwise known as right heart catheterization is considered the benchmark, 

and currently the only reliable method of PAP measurement [12].  The CardioMEMSTM 

HF wireless measurement system, recently FDA approved (June 2014), is capable of 

wireless monitoring PAP via a capacitive pressure sensor [7].    

 None of the aforementioned devices directly have the ability to act as a feedback 

control sensor to mimic the functionality of the baroreceptors of a healthy human 

cardiovascular and nervous systems.  
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 Introduction Piezo-Composites 

 Piezo Composites 

Piezo-active composites have been implemented for sensing and transduction for 

decades [31].  A traditional 2-phase composite is identified with a two number notation 

“m-n,” where m represents the connectivity of the active phase and n for the inactive phase.   

Figure 2.7 shows an array of possible connectivity configurations of piezocomposites 

between active and inactive phases (i.e. piezo ceramic rods within polymer matrix 

respectively, a 1-3 piezocomposite) [31] [32] [33].   

 

 

Figure 2.7.  Illustration displaying connectivity of piezocomposites.  Active phase 

(hatched cubes), inactive phase (white cubes) [31] 

 

 

The 0-3 ceramic/polymer composite is one of the most common composite types used for 

sensing applications, owing to their tailorable properties of the two-phase composition 
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[31], consisting of a three-dimensionally connected polymer/rubber matrix (inactive phase) 

with a dispersion of isolated piezo-ceramic particles (active phase), shown in Figure 2.8 

[34].  The 0-3 composite can have a high range of mechanical flexibility depending on 

whether a polymer or rubber is employed. 

 

 

Figure 2.8.  Illustration of a 0-3 composite [34] 

 

 Tissue Scaffolds 

Tissue engineering arose in the early 1990s to address boundaries of tissue grafting 

and repair [35].  There are a number of essential considerations when determining a suitable 

scaffold material: 1.) biocompatibility allowing cells to adhere, function normally and 

migrate onto and through the scaffold in order to proliferate, 2.) biodegradability 

permitting the cells to produce their own extracellular matrix (ECM) over time to replace 

the implanted scaffold without any toxic byproducts to effect other organs or functions, 3.) 

mechanical properties analogous to the implanted scaffold anatomical site and also strong 

enough to withstand physician handling during implantation, 4.) architecture primarily 

having a highly porous interconnected structure to ensure cellular growth penetration and 
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biofactor diffusion, and 5.) manufacturability being clinically and commercially viable 

fabrication procedure [36].   The concept of a scaffold is to transplant biofactors such as 

cells, genes and/or proteins, within the porous degradable scaffold to stimulate tissue 

repair.  The scaffold material and porous architecture play a significant role in tissue 

regeneration by preserving tissue volume, providing temporary mechanical function, and 

delivering biofactors. A successful scaffold should balance mechanical function with 

biofactor delivery, providing a successive transition in which the regenerated tissue 

assumes function as the scaffold degrades.  

 Silk fibroin (SF) is a natural fibrous protein employed in tissue scaffold applications 

due to having high permeability to water and oxygen, cell adhesion and growth 

characteristics, low inflammatory response and high tensile strength with flexibility [37] 

[38] [39].  The Bombyx mori silkworm cocoon shown in Figure 2.9 is one source for silk 

fibroin extraction.    

 

Figure 2.9.  Image of Bombyx mori silkworm, moth and cocoons.   

 

 Chitosan (CS) is a partially deacetylated product of chitin, a crystalline 

polysaccharide found in crustaceans such as shellfish.  This material has great potential as 

a component within tissue scaffolds due to being nontoxic, biodegradable, and having 

excellent wound healing characteristics [40] [41].   
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 The combination of the aforementioned biomaterials provides exceptional 

chemical, architectural, and mechanical properties which can be implemented into a highly 

porous tissue scaffold for tissue engineering applications.  This porous scaffold could act 

as the inactive n phase of a 0-3 piezocomposite. 

 

 Zinc Oxide Nanoparticles 

Zinc Oxide (ZnO) nanoparticles are a class of engineered ceramic particles that 

exhibit unique semiconducting and piezoelectric properties.  The crystal structure of ZnO 

can either be cubic zinc blende (Figure 2.10a) or hexagonal wurtzite (Figure 2.10b) where 

each anion is surrounded by four cations at the corners of a tetrahedron.  The natural and 

most stable crystalline structure is the wurtzite configuration, having low symmetry 

resulting in spontaneous polarization [42]. 

 

Zinc Blende Wurtzite

a.) b.)  

Figure 2.10.  Illustration of a.) cubic zinc blende and b.) hexagonal wurtzite.  Shaded gray 

and black spheres represent Zn and O atoms, respectively [42]. 
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ZnO has high piezoelectric constants with electromechanical coupling, making it an 

important material for piezo-transduction.  ZnO also possesses excellent antibacterial, 

antimicrobial, and biocompatible properties with no adverse effect on cellular function [41] 

[43].  This engineered ceramic nanoparticle is a viable option as the active m phase of a 0-

3 piezocomposite. 
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 Instrumentation and Equipment 

 Laser Cutting System 

The LS1630 laser cutting system (Boss Lasers, LLC, Sanford, FL, 

www.bosslaser.com) consists of a 60W CO2 laser tube traversing over a 30 inch (X) by 16 

inch (Y) honeycomb and knife blade material supporting platform (Figure 3.1).  The X-Y-

Z axis stage has an operational volume of 30.5 by 15.5 by 10 inches respectively with a 

positioning resolution of 0.001 inches along all three axes.  The Z axis has a contact based 

linear potentiometer auto focus attachment that rapidly adjusts the distance between the 

laser cutting head and material to be cut for optimal focal distance.  While the system is in 

operation and cutting materials such as sheet form of polymer, wood, or rubber, volatile 

fumes and particulates are typically released from the material. They have to be safely 

evacuated and/or filtered from the laser cutting enclosure.  A 250 cubic foot per minute 

(CFM) exhaust fan system is employed to vent the volatile fumes/particulates out of the 

laser cutting system enclosure and safely into the building HVAC fume extraction system.     

 

http://www.bosslaser.com/
clkerr01
Typewritten Text
CHAPTER 3:  MATERIALS AND METHODS
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Figure 3.1.  Image of Boss LS1630 60 Watt CO2 laser cutting system. 

 

 Operation  -  File Generation 

Design the desired structure of interest using SolidWorks or other computer-aided 

design (CAD) package of choice.  Import the 3D part file into a 2D drawing environment.  

Save the 2D file as an Adobe Illustrator file (.AI), then open the .AI file in adobe illustrator 

and immediately save it as .ai again.  This procedure repairs a conversion issue generated 

by the SolidWorks software within the *.AI file.  Import .ai file into the RDWorks software. 
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 Operation  -  Laser Cutter  

Turn on chiller.  Home the laser head.  Turn on laser cutter via key on top of enclosure near 

integrated control panel.  Open RD Works software.  Manipulate imported .ai file in 

RDWorks, creating an array of said part to generate an efficient nested group for cutting if 

needed.  Go to Handle > Cut Optimize to improve the order of cut operations between the 

part features to be cut.  Set cutting speed and laser power settings within the Work tab.  A 

power setting of 41% and cutting speed of 18 mm/s is utilized for cutting 3 mm thick 

acrylic.  Load material onto honeycomb material holding platform, tape edges down if 

material does not maintain stable flatness.  Position laser head to desired location over 

material to be cut.  Focus the laser head employing the auto focus attachment.  Save 

machine output file.  Turn on exhaust blower and laser head compressor via surge protector 

switch.  Run the machine output file. 

 

 Custom Material Mixing System 

The Tri-R Stir-R Model X63C 1/15 HP variable speed laboratory mixer (Tri-R 

Instruments, Jamaica, NY) has a functioning range of 0 – 12,000 RPM (Figure 3.2a).  This 

device was utilized to mechanically mix the SFCS and SFCS-ZnO blends using a custom 

made wire mixer head (Figure 3.2b) and modified laboratory spatula (Figure 3.2c).   The 

mixer was rigidly attached to the z-axis of a mechanical translation stage.  To allow for 

easy and precise placement of the mixer head within the sample vials. 
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Figure 3.2.  Image of Tri-R Stir-R Model X63C 1/15 HP variable speed laboratory mixer 

with modified laboratory spatula mounted in the ¼ inch Jacobs chuck. 

 

 Viscometer 

The LVDV-II+ Viscometer (Brookfield Ametek, Middleboro, MA) instrumented 

with cone and plate configuration (CP-52) is employed to measure the viscosities of the 

SFCS-ZnO blends.  This device operates by applying shear on a fluid between the rotating 

cone and the static plate, then measuring the rotational resistance exerted by the fluid.  

Using preprogrammed algorithms, the viscometer hardware converts the resistance torque 

to viscosity.  A constant, controllable temperature of the cone and plate assembly is 

maintained via the water jacketed assembly that is plumbed to a heated/refrigerated bath 

and circulator (TC-500, Brookfield Ametek, Middleboro, MA; Figure 3.3). 
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Figure 3.3.  Cone and plate viscometer with water bath circulator. 

 

 Operation 

Remove the cone from the viscometer spindle if one is mounted.  Turn on the 

viscometer (switch in rear) for the system to run an auto-diagnostic procedure with the 

spindle unloaded.  Mount the desired cone to the spindle when prompted by the viscometer 

Graphical User Interface (GUI).  The CP-52 is utilized for this investigation due to its broad 

viscosity and shear rate range (Table 3.1).  
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Table 3.1.  Cone and plate viscometer parameter ranges. 

Cone Spindle CP-52 

Shear Rate (s-1) 0 - 400 

Viscosity Range (cP) 4.6 – 92,130 

Sample Volume (mL) 0.5 

SMC 9.83 

SRC 2 

 

The full scale viscosity range is given by: 

 𝜂𝑠 = 𝑇𝐾 ×𝑆𝑀𝐶 × 
10000

𝑅𝑃𝑀
 

(9) 

 

where TK is the torque constant, equal to 0.03973 for the LVDV-II+, SMC is the spindle 

multiplier constant, shown in Table 3.1, and RPM is the spindle rotational speed in 

revolutions per minute.  While the Shear Rate is calculated by: 

 

 𝑆𝑅 = 𝑆𝑅𝐶 × 𝑅𝑃𝑀 
(10) 

 

where SRC is the shear rate constant (Table 3.1).  In order to determine the viscoelastic 

characteristics of the SFCS-ZnO blends, sample measurements are taken at varying shear 
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rates of 3, 6, 12, and 24 s-1, to determine the shear thinning phenomenon and non-

Newtonian nature of the blends.     

 

 PH Meter 

The pH and Electrochemistry Meter (Phi 570, Beckman Coulter Inc., Fullerton, 

CA) measures the pH of a solution, indicating its acidity or alkalinity (Figure 3.4).  The pH 

meter has a detection range from 0.00 to 14.00 pH with a resolution of 0.01 and an accuracy 

of ±0.01 pH.  The pH meter measures the difference in electrical potential between a pH 

sensing electrode and a reference electrode.  pH measurements sare recorded fromfor the 

pure SFCS blends, ZnO nanoparticle dispersions and SFCS-ZnO blends prior to fabrication 

of the final tissue scaffold structures. 

 

Figure 3.4.  pH Meter 
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pH measurements were recorded from the pure SFCS blends, ZnO nanoparticle dispersions 

and SFCS-ZnO blends prior to fabrication of final tissue scaffold structures. 

 

 Lyophilization System 

Upon blending of the SFCS-ZnO tissue engineered scaffold solution, in order to 

achieve high porosity, the lyophilization or freeze drying process was implemented.  

During freeze-drying, the sample is frozen using a -80°C freezer and then placed in glass 

vacuum jars that are plumbed to a refrigerated vacuum chamber of the FreeZone Plus 4.5 

Liter Cascade Console Lyophilization System (7751040, Labconco, Kansas City, MO; 

Figure 3.5).  A rotary vane vacuum pump (M8C Maxima™ C Plus, Fisher Scientific™) 

evacuates the air from the chamber and an upright refrigerated stainless steel moisture 

collector coil removes a maximum of 1.8 liters of water in 24 hours. The water in the frozen 

samples sublimates from ice directly into water vapor and collects onto the cold collector 

coil.  
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Figure 3.5.  FreeZone Plus 4.5 Liter Cascade Console Freeze Dry System 

 

 Operation 

Verify that the vacuum chamber lid, drain tube cap and all vacuum jar chamber ports 

are closed.  Press the button labeled “auto” to initially enable the refrigeration system.  

Once the temperature reaches -40°C in the collector coil, the vacuum pump engages and 

pumps down until ~50 mTorr.  Load frozen samples into vacuum jars and insert into the 

chamber ports.  Gradually open chamber port valves until the vacuum chamber pressure 

stabilizes below 100 mTorr and maintain this pressure for at least 24 hours to allow for 
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complete removal of water from the samples.  Initiate the shutdown procedure by pressing 

the “auto” button to disable the vacuum pump and refrigeration system.  Purge the vacuum 

chamber with atmospheric air and remove the samples from vacuum jars.  Remove vacuum 

chamber lid and drain tube cap.  Place open drain tube into a 4 liter Erlenmeyer flask to 

collect the melted ice from the collector coil and turn off the switch on right side of cabinet. 

 

 Digital-Control Water Bath 

The fabricated SFCS-ZnO are samples suspended in phosphate buffered saline 

(PBS) solution are placed water bath at 37°C to incubate the samples in 4 hour intervals, 

replenishing the PBS in order to leach out any residual chemicals implemented in the 

scaffold construction process. The IsoTemp 215 digital temperature-controlled water bath 

(IsoTemp 215, Fisher Scientific, Hampton, NH; Figure 3.6), with an operating temperature 

range from ambient to 100°C at a resolution of 0.1°C and thermal uniformity of ±0.24°C, 
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is thermally controlled via PID closed loop feedback system.  At a set temperature of 37°C, 

the water bath has an increased accuracy and stability of ±0.5°C. 

 

Figure 3.6.  Image of IsoTemp 215 digital control water bath 

 

 Scanning Electron Microscope 

The LEO Supra 35 variable pressure scanning electron microscope (VPSEM) (Carl 

Zeiss, Oberkochen, Germany) was used to image the SFCS-ZnO scaffolds in this 

investigation. The VPSEM has a nominal resolution of 1.7 nanometers at 15 kV, and a 

nominal resolution of 2.0 nanometers at 30 kV in variable pressure (VP) mode (Figure 3.7).  

It has a magnification range of 12x to 900,000x, and a VP vacuum range of 2 to 133 Pa in 

steps of 1 Pa.  The focused beam of electrons from the VPSEM impacts an electrically-

grounded sample with a focused beam of electrons, which dislodge additional electrons 

from the sample. While the beam scans the sample, the extricated electrons are collected 
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and converted to representative topographical imagery with a resolution of approximately 

2 nm.   

 

Figure 3.7.  Carl Zeiss LEO Supra 35VP Scanning Electron Microscope 

 

 Operation 

Typically, SEM samples must be electrically conductive, thereby providing a 

pathway for the bombarding of electrons to reach ground.  The SFCS samples were 

mounted to a custom laser cut acrylic platform for imaging the sample cross section (Figure 

3.8) and then attached to the SEM stage with conductive carbon tape.   Samples requiring 

a high magnification are sputter coated with a thin layer of gold-palladium alloy to increase 

conductivity. The sample door is sealed and the chamber evacuated to <7 X 10-5 Torr for 

samples requiring high magnification.  A potential of 2 - 10 kV was applied to drive the 

electrons toward the sample at a working distance of approximately 8 mm from the gun 
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aperture.  The image was focused and raster scanned (nominal scan speed = 5) to produce 

a high-quality image. 

 

 

Figure 3.8.  3D rendering of custom lasercut SEM sample imaging array fixture  

 

To reduce the overall time required to image a total of 27 SFCS-ZnO samples in the SEM; 

each individual SFCS-ZnO sample was mounted to the custom lasercut acrylic 45° sample 

holder to effectively and efficiently image the sliced cross sections, using the chart below 

which identifies each specimen location (Table 3.2). 
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Table 3.2.  Layout map of SEM specimen fixture.  

 

 

To reduce charging effects of the SFCS-ZnO samples, the custom sample holder was 

strategically mounted with copper tape to generate a conductive path from the sputtered 

SFCS-ZnO specimens to the grounded SEM stage (Figure 3.9).    
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Figure 3.9.  Image of SEM sample holder for capturing cross sections of lyopholized 

SFCS-ZnO blends. 

 

The SEM specimens were then placed on their corresponding locations with respect to the 

sample layout map (Figure 3.10) and then sputtered to ensure minimal charging effects 

during imaging.   
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Figure 3.10.  Image of SEM sample holder for capturing cross sections of lyopholized 

SFCS-ZnO blends. 
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 Sputtering Machine 

The benchtop sputtering machine (Quorum Technologies, Ltd., East Sussex, 

England) is employed to deposit a uniform thickness thin film of gold-palladium (Figure 

3.11).  

  

Figure 3.11.  DC Sputtering System for applying gold onto SFCS substrates. 

 

 Operation 

Open the valve on the argon tank.  Turn on the power to the sputtering machine 

digital voltage meter.  Place sample on platen and close lid.  Turn the right most knob to 

“Pump”.  Once e thvacuum gauge reads 0.1 Torr or less, introduce Argon into the chamber 

by turning the left most knob, the “Argon Leak Valve”, a full turn counter-clockwise.  Once 

the pressure levels reach 0.5 Torr, immediately close the valve.  Turn right most knob to 
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“Set HT” and slowly turn the center dial to increase the voltage to 1.4 kV.  Turn the right 

most knob to “Mode” and press “Timer” to start the timer as well as the sputtering process.  

When the timer has stopped, the high voltage will disengage.  Turn the right most knob to 

“Pump”, close the “Argon Leak Valve”, decrease the voltage knob to zero, and turn the 

unit off.  Release vacuum on the chamber and open the lid to remove the sample. 

 

 Uniaxial Micro Tensile Tester System 

A uniaxial micro tensile testing system (Admet Expert Microtester 4000,  Admet, 

Inc., Norwood, MA) is used to apply a uniaxial tension/compression loads to the small of 

biomaterials.  The unit is comprised of a heated fluid bath () with compatible temperature 

controller (Omega Engineering, Stamford, CT), a 150 gram tension/compression load cell 

(Honeywell Sensotech, Columbus, OH), an electromechanical linear actuator (Physik 

Instrumente (PI), Auburn, MA), and the MTESTQuattro controller unit (Admet, Inc., 

Norwood, MA).  The heated fluid bath reservoir is comprised of stainless steel and has a 

100 cc fluid capacity.  The bath is actively heated via two ceramic rod heating elements 

embedded within the fluid bath reservoir housing body and controlled via a closed loop 

PID feedback controller unit.  The effective controllable temperature range is 27.0°C up to 

70.0°C with a resolution of 0.1°C.  The 150 gram tension/compression load cell is 

constructed of stainless steel and has an accuracy, non-linearity and hysteresis of ±0.70%, 

0.25%, and 0.5% of full scale, respectively.  The load cell is submersible and mounted 

directly to the fluid bath reservoir housing body.  The linear actuator is driven by means of 

a stepper motor and leadscrew assembly and has a 25 mm stroke with a positional 
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repeatability of 0.1 μm and a maximum velocity of 50 mm/min.  The MTESTQuattro is a 

PC (Pavilion m7, Hewlett Packard, Palo Alto, CA) connected controller unit for the 

mechanical testing system.   The MTESTQuattro GUI provides connectivity and control to 

all the electromechanical testing systems.  The integrated analysis suite provides the 

flexibility to perform tests in accordance to ASTM, ISO or custom user test specifications.   

 

Figure 3.12.  Admet eXpert 4000 Microtester alongside MTESTQuattro Controller, and 

Omega Temperature Controller. 

 

 Operation 

Log into the PC connected to the tensile testing system.  Open the Expert 4000 

Microtester software (MTESTQuattro-4000.exe) and wait for initialization.  Turn the red 
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button on top of the MTESTQuattro controller clockwise to enable the controller.  Fill the 

fluid bath with water via the plumbed 120 mL syringe, ensuring the Type K shrouded 

thermocouple is submerged in the fluid bath.  Open the temperature controller software 

(Device Interface.exe) and set to COM2 and reconfigure.  Turn on the temperature 

controller unit that is programmed to a set point of 37°C.  Run the test procedure titled 

“Temp Settle”, for the programmed 1.5 hours to ensure that the temperature has stabilized 

along with the temperature compensated load cell.  Place a test sample in the heated bath 

and allow to acclimate for at least 15 minutes.  Mount the acclimatized ring sample in the 

custom fabricated loop tensile grips.  Run the desired test procedure.   Note: Individual test 

procedures will be discussed later in this chapter. 

 

 Electrodynamic Shaker, Amplifier, and Waveform Generator 

The LW126.138-13 electrodynamic system (EDS) (Labworks, Inc, Costa Mesa, 

CA; www.labworks-inc.com) is comprised of an electrodynamic shaker (ET-126-1; Figure 

3.13a) and linear power amplifier, (PA-138; Figure 3.13b) and a supplemental function 

generator (Model 33220A, Agilent Technologies, Santa Clara, CA).  The permanent 

magnet shaker generates a peak shock and sine wave force of 53 and 13 pounds, 

respectively, producing a maximum displacement of 0.75 inches peak-to-peak at zero load.  

The functional operating frequency range is from DC up to 8,500 Hertz.  The power 

amplifier electrically drives the shaker and can output up to 25 Volts rms and 20 Amps rms 

with a maximum continuous power dissipation of 450 Watts.  A function waveform 

generator is employed to drive the electrodynamic shaker at a user defined waveform (i.e. 

http://www.labworks-inc.com/
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sine, ramp, square wave) at a particular amplitude and frequency.  A calibration curve iss 

generated, correlating amplifier input voltage and measured shaker armature displacement. 

 

 

Figure 3.13.  Images of a.) electrodynamic shaker, b.) linear power amplifier, and 

waveform generator. 

 

 Operation   

Plug function generator into the PC (Pavilion m7, Hewlett Packard, Palo Alto, CA) 

via a USB connection and turn the power on.  Turn on the power amplifier and turn the 

amperage control knob to the 9 o’clock position.  Wait for the NI Function VISA software 

to open.  Plug in the USB cable from the NI-6353 USB DAQ card (National Instruments 

Corporation, Austin, TX) into the PC.  Select the desired waveform on the function 

generator and push the output button to initiate shaker displacement.     
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 Keithley Source Measure Unit 

 A Source Measure Unit (SMU; Keithley 2410, Keithley Instruments, Cleveland, 

OH) is a single-channel, DC parametric tester designed specifically for test applications 

demanding coupled sourcing and measurement.  The 2410 (Figure 3.14) is both a DC 

power source (up to 1100V, 1A, or 20W) and a true instrument-grade multimeter (with 

0.012% measurement accuracy).  In operation, this instrument can act as a voltage source, 

a current source, a voltage meter, a current meter, and an ohmmeter.  The SMU is employed 

to apply a DC electric field of up to 1 kV during the electrical poling process on the ZnO 

nanoparticle filled composites.   

 

Figure 3.14.  Keithley 2410 Source Measure Unit 

 

 Hipotronics High Voltage DC Power Supply 

A high voltage power supply (Hipotronics R30B High Voltage DC Power supply, 

Hubbell Inc., Brewster, NY) is employed to pole the SFCS-ZnO blends.  This high voltage 

power supply (Hubbell Inc., Brewster, NY) has a maximum DC voltage of 30 kV and a 
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maximum current of 50 μA.  The Hipotronics supply is employed to apply a DC electric 

field of up to 6 kV in during the electrical poling process on the ZnO nanoparticle filled 

composites.  The functional poling voltage applied to the SFCS-ZnO blends is between 3 

and 6 kV.   

 

Figure 3.15.  Image of front panel of the Hipotronics R30B HV DC power supply. 

 

 High Voltage Probe and Measurement Setup 

A high voltage probe (Fluke 80K-15, Fluke Corporation, Everett, WA) was 

implemented for measuring the output of the high voltage power supply.  This high voltage 

probe (Figure 3.16) is rated up to 15 kV DC with an accuracy of ±2% and is typically used 

in low energy applications.  The probe is a precision 1000:1 voltage divider formed via two 

matched resistors and can be simply plugged into a multimeter for an accurate readout.  For 

these experiments, the multimeter is set to measure the DC voltage (V),  and for easy 

conversion, the appropriate voltage range is set (i.e. 1 V reading per 1000 V input), then 
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the HV measurements are performed with the attached probe and multiply the multimeter 

reading by 1000 to retrieve the actual HV output.  

 

 

Figure 3.16.  Fluke HV Probe plugged into a multimeter. 

 

 Analog to Digital Conversion 

The Multi-Function X Series USB data acquisition unit (USB-6353, National 

Instruments Corp, Austin, TX) is implemented as the analog-to-digital (A/D) conversion 

unit for this investigation (detailed technical specifications are outlined in the Appendix).  

The unit shown in Figure 3.17 was inserted into the PC (Pavilion m7, Hewlett Packard, 

Palo Alto, CA) running Windows 7 (Microsoft Corporation, Redmond, WA).  The USB-

6353 A/D converts analog signals into an approximate digital representation at 16-bit (216 

levels) resolution and at a maximum acquisition rate of 1,250,000 samples/second within 

a maximum measurement range of ±10V.  The 16-bit resolution determines the smallest 

theoretical measurement level by the following relationship 
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 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑅𝑎𝑛𝑔𝑒

𝐴 𝐷⁄  𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=  

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

216
=  

20 𝑉

65536 𝑠𝑡𝑒𝑝𝑠
= 0.0003052 𝑉

𝑠𝑡𝑒𝑝⁄   

 

where Vmax and Vmin are the maximum and minimum values of the measurement range, 

+10 and -10 volts, respectively.  

 

 

Figure 3.17.  NI USB-6353 A/D converter 

 

 Custom Designed and Fabricated Devices and Instrumentation 

 Custom Electrodynamic Planar Shear Displacement Apparatus 

 Design Implemented in Investigation 

With the purpose of reducing specimen slippage and damage during shear tests, the 

custom electrodynamic planar shear displacement apparatus was designed and fabricated. 

Mr. Grip Stripped Screw Hole Repair Kit friction electrode plates were mounted to the 

laser-cut acrylic framework of the developed piece of equipment (Figure 3.18).  A linear 

potentiometer was employed to accurately measure the displacement of the moving 

electrode of the electrodynamic shearing device.  A 6-inch digital caliper was used to apply 

a known displacement to the potentiometer while recording the voltage from the digital 



50 

multimeter (Figure 3.19 Left).  A calibration curve was plotted for displacement – response 

of the linear potentiometer.  Figure 3.19 (Right) demonstrates the linear relationship, 

showing the slope and offset.  This data was then input into the LabVIEW program to 

directly convert change in the potentiometer voltage to displacement. 

 

 

Figure 3.18.  Image of the fabricated and assembled custom electrodynamic planar shear 

displacement apparatus. 
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Figure 3.19.  (Left) Image of displacement application to the linear potentiometer and 

(Right) Plot of Displacement – Potentiometer Output for position calibration. 

 

Upon testing, the SFCS-ZnO disc specimens were loaded between the parallel electrodes 

as shown in Figure 3.20.  The top electrode in Figure 3.20 was fixed and the bottom 

electrode was movable and attached to the electrodynamic shaker platen via an acrylic 

block.  The electrodes were wired directly into the differential amplifier before entering 

data acquisition system for recording.  A gauge block (not shown) was used to ensure a 2-

mm gap was set between the electrodes for each sample.  The electrodes were mounted to 

the frame via high bond double-sided adhesive (3M, Model #414/DC).  Multiple layers 

were added to the fixed electrode to account for fabrication and assembly errors to ensure 

the proper electrode gap distance.  
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Figure 3.20.  Image of shear electrode assembly with 2 mm gap set. 

 

 Custom Electrodynamic Vessel Distension Simulation Apparatus  

To mimic anatomical blood vessel distension a custom electrodynamic vessel 

distension simulation simulation apparatus (EVDSA) is developed.  A lasercut acrylic 

frame (6.34 mm thick) is designed to mount directly to the EDS support and isolation 

structure under the shaker unit.  The EDS is oriented in a horizontal position and two legs 
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are incorporated into the frame to level and stabilize the vessel distension unit (Figure 

3.21).    

 

 
Figure 3.21.  3D CAD rendering of vessel distension simulation system. 

 

The secondary vessel attachment subassembly (VAS) is designed to incorporate an internal 

closed volume where an engineered or anatomical blood vessel would be placed (Figure 

3.22).  The compliant vessel would attach to the barbed fittings on both ends of the 

subassembly via clamps or zip ties to seal off the closed internal volume.  The subassembly 

is mounted into the test frame that is attached to the EDS.   
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Figure 3.22  3D CAD rendering of the closed volume subassembly for mounting an 

engineered or actual blood vessel. 

 

A 12.7 mm diameter piston is fabricated from aluminum and mounted to the movable EDS 

platen.  The piston is enclosed and sealed via an o-ring within the cylinder block housing 

of the VAS.  With the fully assembled system and vessel mounted to barbed fittings, the 

closed volume can be filled with saline solution via the fluid inlet and outlet luer fittings.   

 
Figure 3.23.  Cross Section View of a 3D CAD rendering of the vessel distension system. 
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 EVDSA Filling and Draining 

Prior to filling, an inline pressure sensor (PRESS-S-000, PendoTECH, Princeton, 

NJ) is mounted to the lower luer fitting.  The pressure sensor is comprised of polycarbonate 

with inlet and outlet luer fittings (Figure 3.25).  It has an operating range of -362 mmHg to 

3879 mmHg, with an accuracy better than ±2% of reading within a range of 0 to 300 

mmHg.  Stopcock valves are then mounted on each luer fitting and used to close off the 

internal volume. 

 

Figure 3.24.  Image of PendoTECH luer style pressure sensor. 

 

To effectively fill the internal volume of the test sample with incompressible saline, 

the distal end of the EVDSA must be raised approximately 65 mm to allow for the 

compressible air to be evacuated during the filling procedure.  Both inlet and outlet 

stopcock valves are opened.  Saline is injected into the lower luer port shown in Figure 

3.25.  This inclined orientation allows for air to escape from the upper open luer port during 

filling process.  The internal volume is slowly filled using a 50 mL syringe, while gently 
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squeezing the attached and sealed compliant tube, whether engineered or anatomical, to 

assist in evacuation of air bubbles that may be trapped, until the saline begins to exit the 

upper luer fitting.  

Block to Elevate for 
assistance in air 

bubble evacuation

Fluid Fill In

Evacuate Air Out

 

Figure 3.25.  Illustration of filling procedure to replace all incompressible air with 

compressible saline. 

 

The piston stroke of the EDS is programmatically controlled through the EDS with 

a maximum stroke of 12.7 mm.  This change in stroke induces a change in internal fluid 

pressure to generate a desired dynamic pulse pressure waveform could be generated by 

adjusting the EDS piston stroke alongside the static internal pressure.   

After distension testing, to efficiently drain the internal volume of the tubular test 

sample, the proximal end of the EVDSA is raised 65 mm to allow for the saline to be 

displaced with air.  Both inlet and outlet stopcock valves are opened and air is injected into 
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the upper luer port.  This declined orientation allows for the saline to drain from the lower 

open luer port.  The internal volume is slowly filled with air using a 50 mL syringe, while 

gently squeezing the attached and sealed compliant tube to assist in the draining until the 

saline completely empties from the lower luer fitting (Figure 3.26). 

Block to Elevate for 
assistance in 
draining fluid

Air Fill In

Evacuate Fluid Out

 

Figure 3.26.  Illustration of filling procedure to replace all incompressible air with 

compressible saline. 

 

 Piezoelectric Poling System 

Poling electrodes are designed and developed to ensure a consistent electric field is 

applied across a constant SFCS sample thickness of 2 mm.  Generating an electric field 

strength up to 3 kV/mm.  Figure 3.27 displays the polarization mold that is implemented 

in the poling of SFCS-ZnO blends, comprising of a 7 layered stacked assembly.  Custom 

lasercut 80 X 80 X 6.3 mm acrylic base (a.) and top (g.) are used to ensure a uniform 
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clamping force of the mold.  Custom Ø75 X 1.8 mm PCB electrodes (b. and f.) are milled 

using a CNC board milling machine.  A custom lasercut 2 mm Delrin spacer (d.) is 

implemented to control the electrode gap thickness SFCS-ZnO during poling. 

 

a.

b.

c.

d.

e.

f.

g.

 

Figure 3.27.  3D rendering and exploded view of SFCS:ZnO polarization molds 

 

There are two polarization configurations pursued in this investigation a low 

voltage (≤ 1 Kv via Keithley) and a high voltage (up to 6 Kv via Hipotronics).  Figure 3.28 

displays the complete polarization setup with the Keithley SMU atop an acrylic enclosure 

that is utilized as a protective shield during the high voltage poling procedures, the 

polarization mold is shown within the protective enclosure.  Figure 3.29 displays the 

polarization configuration with the Hipotronics supply atop a benchtop fume hood with the 

acrylic enclosure placed inside to act as a secondary layer of protection against 

electrocution. 
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Figure 3.28.  Keithley 2410 Sourcemeter sitting atop an acrylic enclosure with poling 

mold. 
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Figure 3.29.  Hipotronics HV DC Power Supply sitting atop an acrylic enclosure with 

poling mold. 

 

 Custom Laser Cut Molds 

Several custom laser cut molds are employed to assist in the fabrication of a 

multitude of sample geometries for the SFCS blends for all experimental testing required 

for this investigation.  All of the planar molds were comprised of 1/8” thick acrylic and 

assembled with 8-32 socket head cap screws. 

 

 Porosity and Water Absorption Mold 

The samples for the porosity and water absorption experiments required a smaller 

geometry to fit within the sample holders.  In order to accommodate, a mold is fabricated 
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to make SFCS samples that are 10 mm X 18 mm X 3 mm.  An array of 9 total cavities fit 

within the mold platform (Figure 3.30). 

 

 
Figure 3.30.  CAD rendering of coupon mold for porosity and water absorption samples 

 

 Shear Testing Mold 

The samples for the electrical characterization via shear testing experiments require a flat 

geometry to fit within the parallel plate electrode geometry of the testing rig.  Thus, a new 

disc mold is fabricated to make samples that have a diameter of 22 mm and 2 mm thick.  

An array of 3 total cavities fit within the mold platform (Figure 3.31). 
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Figure 3.31.  CAD rendering of disc mold for shear testing samples  

 

 Ring Test and Perivascular Band Mold 

The samples for the mechanical testing and perivascular band experiments require 

an annular cylinder geometry to reduce the localized induced stresses caused by the grip 

area during mechanical testing while also making the band-like structure capable of being 

mounted to the simulated blood vessel.  The samples dimensions are 20 mm outer diameter, 

4 mm wall thickness, and 9.6 mm cylinder height.  An array of 7 total cavities fit within 

the circular mold platform (Figure 3.32).   The perivascular band mold is also designed to 
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accommodate for a stackable configuration.  The circular mold is primarily developed so 

the stacked molds (up to 4) would fit within a lyophilizer vacuum jar (Figure 3.33).      

 

 

Figure 3.32.  CAD rendering of ring mold for mechanical and distension testing samples 
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Figure 3.33.  CAD rendering of ring mold in stacked configuration 

 

The polymethylmethacrylate (PMMA) ring molds were successfully manufactured 

via lasercutting techniques and assembled using 8-32 fasteners.  A series of assembled 

molds were stacked by inserting the threaded ends of the 1 inch 8-32 socket head cap 

screws into the hexagonal heads of the fasteners of the assembled mold below, as seen in 

Figure 3.34a.  This assembled mold stack was easily inserted and removed from the 

lyophilizer vacuum jar and then separated to individual molds (Figure 3.34b).  
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Figure 3.34.  Left:  Image of stacked configuration of ring molds, Right:  Image of 

individual mold. 

 

 
Figure 3.35.  Illustration describing metrology metrics of molded SFCS-ZnO ring 

specimen. 

 

 

 

Table 3.3 lists the critical feature specifications that the acrylic molds were manufactured 

to.   

a.) b.) 



66 

Table 3.3.  List of featured designed dimensions within mold.  

 Mold Specification (mm) 

Outer Diameter (Ø) 20.0 

Wall Thickness (WT) 4.25 

Height (H) 9.5 

 

 

 Engineered Blood Vessel Mold 

Due to the lack of available off-the-shelf tubing that effectively simulate blood 

vessel distension, primarily due to the tubing wall thickness and effective durometer 

values, a custom mold is fabricated.  The simulated blood vessel has an exposed outer and 

inner diameter of 11mm and 7.75 mm, respectively, and an overall length of 95mm.  The 

custom tube is comprised of DragonSkin®10 Fast (Smooth-On, Macungie, PA), having a 

ShoreA hardness of 10A, tensile strength of 475 PSI, and a 100% modulus of 22 PSI.  This 

material is typically used as a blood vessel simulant for flow models and training of 

suturing techniques in cardiovascular surgery.    Figure 3.36a illustrates the CAD model of 

the overall mold, where Figure 3.36b shows the cross section of the mold, displaying the 

inner channels that allow for the injection of the DragonSkin®.  Figure 3.36c shows a 

rendering of the molded part with a partial cross section, exhibiting the inner channels that 

are cut away after the part has fully cured, leaving a simple tube of custom cross section 

that can be cut to any desired length for testing.  
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 a. 

 b. 

 c. 

Figure 3.36.  a.  3D CAD rendering of the assembled simulated blood vessel mold, b. a 

cross section view of said mold, and c. 3D CAD rendering of the molded vessel with 

cutaway view displaying the inner channel that flows elastomer resin into the annular 

region of the mold 
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 Custom Amplification Electronics 

A custom differential amplifier is developed to amplify the raw SFCS-ZnO sensor 

output voltage signal so that it is within the maximum measurement range yet above the 

minimum resolution of the A/D converter.  A differential amplifier is an electronic 

amplifier that amplifies the difference between the positive and negative analog input 

voltages and can ideally be represented as; 

 

 𝑉𝑜𝑢𝑡 = 𝐴𝐷(𝑉𝑖𝑛
+ − 𝑉𝑜𝑢𝑡

− ) (16) 

 

where AD is the amplifier gain.  The custom differential amplifier (schematic shown in 

Figure 3.37) developed for this investigation can be divided into 3 primary categories: 

amplification (Blue), gain adjustment (Red), and offset adjustment (Green).   

 

 
Figure 3.37.  Schematic of differential amplifier 
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The amplification occurs across 2 stages:  1.) differential amplification and 2.) an 

operational amplifier.  In the first stage, differential amplification employs an 

instrumentation amplifier (AD620, Analog Devices, Norwood, MA) as shown in Figure 

3.38.  

 

 

Figure 3.38.  Illustration of connection pinout for the AD620 instrumentation amplifier. 

 

 

where the theoretical gain (AD) can be calculated using the relationship: 

 

 𝐴𝐷 =   
49400

𝑅𝐺
+ 1 (17) 

 

 

where RG is the gain resistor value that allows for the differential gain to be 

programmatically adjusted with fine-tuning of one externally connected resistor.  The 

second stage employs an operational amplifier (TLC2201CP, Texas Instruments Inc., 
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Dallas, TX) in the non-inverting configuration (Figure 3.39).  The theoretical gain (AO) 

can be calculated as: 

 

 𝐴𝑂 =  
𝑅2

𝑅1
+ 1 (18) 

 

where R1 is the gain resistor value and R2 is the feedback resistor value. 

 

 
Figure 3.39.  Schematic of the TLC2201CP operational amplifier. 

  

 

To have some level of adjustability in the amplifier, gain adjustment switches are 

incorporated into the circuitry (red area in Figure 3.37).  The differential amplification 

stage (1) had a 2-position switch accounting for 2 individual gain resistor values while the 

operational amplification stage (2) had a 4-position switch accounting for 4 individual gain 
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resistor values.  To determine the overall theoretical gain of the circuit, the current gain 

values of each stage are in a cascaded series and are multiplied together as shown below; 

 

 𝐴𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  𝐴𝐷×𝐴𝑜 (19) 

 

Table 3.4 displays each theoretical gain setting for each stage switch position.  The total 

theoretical gain is listed in the far right column.  

 

Table 3.4.  Listing of individual and overall gain settings for custom differential 

amplifier. 

STAGE 1  

DIP 

SWITCH 

POSITION 

STAGE 1 

RESISTOR 

VALUE  

(Ω) 

STAGE 1  

GAIN 

SETTING 

 

STAGE 2  

DIP 

SWITCH 

POSITION 

STAGE 2 

RESISTOR 

VALUE  

(Ω) 

STAGE 2  

GAIN 

SETTING 

 

OVERALL 

GAIN  

Aoverall 

1 470 106.1 1 2200 3.2 340 

1 470 106.1 2 10000 11 1167 

1 470 106.1 3 56000 57 6048 

1 470 106.1 4 100000 101 10717 

2 1000 50.4 1 2200 3.2 161 

2 1000 50.4 2 10000 11 554 

2 1000 50.4 3 56000 57 2873 

2 1000 50.4 4 100000 101 5090 

 

A 100kΩ rotary potentiometer with linear output is implemented as the offset adjustment 

for the circuit (green area in Figure 3.37).  This potentiometer is used to manually offset 

the stable static signal back to zero upon loading of a new sample between experiments.  
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The concept of the differential amplifier circuit is laid out on a virtual breadboard in a 

software package titled Fritzing (FHP, Fachhochschule Potsdam, Potsdam, Germany) prior 

to prototyping on an actual breadboard, which enables the “build” of the circuit virtually 

with actual off-the-shelf electronic components (Figure 3.40).   The actual prototype 

breadboard is presented in Figure 3.41, with the 2 stage amplifiers (the two black DIP 

socket components), the gain adjustment switches for stage 1 (the red component with 2 

position switches) and stage 2 (the blue component with 4 position switches), and the offset 

adjustment potentiometer (the large black knob) represented in the figure.  The Fritzing 

software also converts the virtual breadboard layout to a PCB layout (Figure 3.42), so the 

designer can effectively click and drag to move the individual circuit components on the 

virtual PCB to generate an efficient and organized populated layout.  The size of the PCB 

can be manually adjusted to suit the desired footprint of the circuit as well. 

 

Figure 3.40.  Rendering of layout for the breadboard configuration of the differential 

amplifier. 
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Figure 3.41.  Differential amplifier in actual breadboard layout. 

 

The Fritzing software also converts the virtual breadboard layout to a PCB layout (Figure 

3.42).  The designer can effectively click and drag to move the individual circuit 

components on the virtual PCB to generate an efficient and organized populated layout.  

The size of the PCB can be manually adjusted to suit the desired footprint of the circuit as 

well. 

 

Figure 3.42.  PCB layout of differential amplifier. 
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Following assembly, the amplifier was mounted to a laser-cut acrylic frame for 

stability and portability (Figure 3.43).  The battery packs were then securely mounted to 

the frame via zip ties. 

  

 

Figure 3.43.  Images of differential amplifier, (Top Left) Isometric view, (Top Right) Top 

view, (Bottom) Front view 

 

Actual gain values of the amplifier were determined via the following calibration 

procedure.  A function generator, set to a voltage of 100 mV peak-to-peak and a frequency 

of 2 Hz, was wired into a dual stage voltage divider circuit consisting of two 1:10 divider 
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circuits in series that generated an overall theoretical 1:100 voltage division (Figure 3.44).  

This voltage divider was implemented to reduce the voltage output of the function 

generator to better emulate the low voltage signal (µV range) that the test specimen had 

outputted during preliminary experiments.   

 

 

Figure 3.44.  (Left) Rendering of voltage divider circuit for amplifier calibration drawn 

vie Fritzingand (Right) Populated breadboard  

 

This circuit was then wired directly into an oscilloscope for measurement of the 

circuit output, reducing the input voltage of 100 mVpp through the divider down to 720 

μV.  This known circuit output was then inputted from the function generator into the 

differential amplifier circuit to confirm the designed gain settings.  Prescribed gain resistors 

were adjusted via DIP switches on the amplifier and the actual voltage was measured 

(VMEAS) via the oscilloscope and recorded.  The actual gain settings of the amplifier were 

calculated via the following relationship: 
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 𝐺𝐴𝐶𝑇𝑈𝐴𝐿 =  
𝑉𝑀𝐸𝐴𝑆 (𝑉)

720 (𝜇𝑉)
×1000000 (20) 

 

The measured voltage values and calculated gains were listed in Table 3.5.  The percent 

error was calculated and found to be within ±3.1% for each gain setting.  This calibration 

method gives certainty to the measured electrical response of the SFCS-ZnO specimens 

that is amplified through the differential amplifier and recorded in LabVIEW. 

 

Table 3.5.  Theoretical and actual gain based on stage resistors and the measured voltage 

at the amplifier. 

STAGE 1 

DIP 

SWITCH 

POSITION 

STAGE 2 

DIP 

SWITCH 

POSITION 

STAGE 1 

RESISTOR 

VALUE (Ω) 

STAGE 2 

RESISTOR 

VALUE (Ω) 

GTHEOR VMEAS GACTUAL 
% 

Error 

1 1 470 2200 340 0.252 350.0 3.1% 

1 2 470 10000 1167 0.816 1133.3 -2.9% 

1 3 470 56000 6048 4.28 5944.4 -1.7% 

1 4 470 100000 10717 7.52 10444.4 -2.5% 

2 1 1000 2200 161 0.116 161.1 -0.1% 

2 2 1000 10000 554 0.388 538.9 -2.8% 

2 3 1000 56000 2873 2.02 2805.6 -2.3% 

2 4 1000 100000 5090 3.56 4944.4 -2.9% 
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 Methodology 

 Piezo Composite Formulation Using Tissue Scaffold Blends 

 Tissue Scaffold Blends 

The tissue scaffold based piezo composite is comprised of silk fibroin, chitosan, 

and ZnO nanoparticles.  Three blends of silk fibroin chitosan (SFCS) mixtures are 

investigated in this study, the SF and CS are mixed by volume to generate 70:30 (70%:30% 

by vol), 50:50 (50%:50% by vol) and 30:70 (30%:70% by vol) SF:CS.   The SFCS blends 

are employed as the inactive component of the piezocomposite.  The following procedures 

detail the overall processes for SF extraction and dissolution from Bombyx mori silk 

cocoons (Figure 3.45). 

 

Figure 3.45.  Illustration of silk fibroin extraction and dissolution process. (Redrawn from 

[44]) 
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 Silk Fibroin Extraction 

The silk from the Bombyx Mori cocoon comprises of two key fibroin protein 

chains, light (25 kDa) and heavy (325 kDa) chains [44]. These essential protein chains are 

enclosed in sericin, a glue-like protein securing the fibroin chains together to form the 

cocoon – a composite fiber structure that protects the growing worm.  To effectively 

process and extract the silk fibroin from the raw cocoons, the embedded sericin wax must 

be removed.   

A 2-liter glass beaker is filled with 2 liters of ultrapure water, covered with 

aluminum foil and heated to a boil.  Bombyx Mori cocoons are cut with scissors into dime-

sized pieces and the residual silkworm waste within the cocoons is disposed.  A 0.02 M 

solution of sodium carbonate (Na2CO3) is made by adding 4.24 grams of Na2CO3 to 2 L of 

boiling water to completely dissolve into solution.  Subsequently, 5 grams of cocoon pieces 

is added to the boiling Na2CO3-water solution for 30 minutes and intermittently stirred with 

a glass stir bar to promote silk fibroin dispersion.  After 30 minutes, the silk fibroin is 

promptly removed with a spatula and cooled under flowing ultrapure cold water.  Excess 

water is then pressed out of the silk, placed in a 1-liter glass beaker filled with ultrapure 

water and soaked for 20 minutes.  The rinse and soak procedure is repeated a total of three 

times.  After the third wash, the silk is pressed to remove residual water and spread out 

onto a clean piece of aluminum foil and allowed to dry in a fume hood overnight.  The 5 

grams of cocoon pieces generates 3.3 grams of dry silk wool after the sericin wax has been 

fully washed away. 
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 Fibroin Dissolution 

The dried silk fibroin is added to a calcium nitrate tetrahydrate–methanol solution 

(molar ratio 1:4:2 Ca:H2O:MeOH) at a 10% weight-to-volume concentration (mg/mL) in 

a sealed container and placed in an oven at 65°C for 3 hours to fully dissolve with 

intermittent stirring.  The fully dissolved fibroin solution (approximately 32 mL) is placed 

into a 22 mm diameter, 355 mm long dialysis tube with a molecular weight cut off of 7 

kDa (Snakeskin #68700, Thermo Scientific, Rockford, IL) with 2 weighted clips on the 

bottom of the tube and 3 floating clips on top of the tube, and all air is evacuated from the 

tube.  The clipped length of the dialysis tube is 305 mm.    The dissolved silk fibroin is 

dialyzed against deionized water in a 2-liter graduated cylinder for 4 days, changing the 

water every 24 hours.  The dialyzed SF solution is stored at 4°C until use. 

 

 Chitosan Dissolution 

High molecular weight chitosan (419419, Sigma-Aldrich Co., St. Louis, MO) is 

dissolved at 3.66% (g/mL) in 2% acetic acid.  Thoroughly mix the Chitosan blend for 15 

minutes at approximately 2000 RPM using the custom material mixing system described 

above in Section 3.1.2.  The fully blended chitosan is then stored at 4°C until use. 

 

 Blending of Silk Fibroin with Chitosan 

Three solutions of silk fibroin and chitosan are blended by volume and 

characterized for this investigation ( 
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Table 3.6).  The typical volume of the blended SFCS solution regardless of 

concentration is 50 mL; therefore, known volumes of each material blend are utilized in 

each experiment.  The blended SFCS solution is thoroughly mixed using the custom 

material mixing system for 15 minutes at approximately 2000 RPM.   

 

Table 3.6.  List of SFCS blends and corresponding volumes for 50 mL solution. 

SFCS 

Blend 
% SF % CS 

SF (V)  

{mL} 

CS (V) 

 {mL} 

30:70 30 70 15 35 

50:50 50 50 25 25 

70:30 70 30 35 15 

 

The blended solution is then equally divided (25 mL) and placed into two 22mm 

diameter, 250 mm long – 7 kDa dialysis tubes with 1 weighted clip on the bottom of the 

tube and 2 floating clips on the top of the tube, and all air is evacuated.  The clipped length 

is approximately 200 mm.  The blended SFCS is dialyzed against deionized water in a 7.5-

liter tub for 3 days with the water being changed every 24 hours.  Subsequently, the clear 

and homogeneous aqueous solution is stored at 4°C until use. 
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 Blending of SFCS with Zinc Oxide Nanoparticles 

ZnO nanoparticles (US Research Nanomaterials, Inc., Houston, TX) of 30 nm, 45 

nm and 200 nm average particle size are selected as the active phase of the piezocomposite.  

The ZnO nanoparticles for each respective size are ultrasonically dispersed in deionized 

water at a concentration of 250 mg/mL.  The final form of the piezocomposite tissue 

scaffolds is prepared using the process described next. 

 

 Silk Fibroin - Chitosan - ZnO Blend Scaffold Preparation 

The ZnO dispersions are combined with the SFCS blends to reach the desired 

weight fractions (2%, 5% and 10%) of SFCS:ZnO composite using a drip method while 

being stirred at 500 RPM on the custom material mixing system.  The ZnO:SFCS blends 

are injected into the laser cut acrylic molds described above via 5 mL pipetter and frozen 

in a -80°C freezer overnight.  The next day, the samples are lyophilized for 24 hours.  The 

dried samples are then removed from the molds and treated with 50:50 (v/v) MeOH:NaOH 

(1N) solution for 15 min, to crystallize the silk content and neutralize the chitosan content.  

The MeOH:NaOH solution is replaced with 1N NaOH solution and the samples are then 

treated for 12 hours.  The samples are promptly removed from the NaOH solution and 

immediately placed in a 1X phosphate buffered saline solution at 37°C to leach out the 

NaOH.  The phosphate buffered saline solution is changed every 4 hours until the solution 

pH has equilibrated to 7.4. 
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 Tissue Scaffold Porosity 

Tissue scaffolds containing a 3D porous matrix provide mechanical stability to 

support cell adhesion and expansion while allowing integration at a rate analogous with 

new tissue growth.  Porosity is also critical to provide sufficient opportunity for cell 

migration, adhesion, and expansion while sustaining adequate transport for nutrient and 

gas exchange [45] [46] [47].  The lyophilized SFCS tissue scaffolds typically have a high 

porosity and interconnected pores.  The addition of ZnO nanoparticles to the blended SFCS 

may affect the porous nature of the scaffold; thus, porosity characterization must be 

conducted.   

The following procedure is performed to obtain the pore and apparent scaffold 

volume. Next, the effective porosity of SFCS-ZnO samples is calculated by means of the 

fluid re-saturation method [47].  Specifically, pore volume is calculated using the 

relationship:  

 𝑉1 =  
(𝑀𝑎 − 𝑀𝑏) − 𝑀0

𝜌
 (21) 

 

where M0 is the dry mass of the lyophilized SFCS samples.  Ma is the mass of 2 mL of 

100% ethanol (ρ = 789 kg/m³) dispensed into a glass weighing dish with the dry SFCS 

samples fully immersed and saturated.  The saturated SFCS sample is then removed and 

the weighing dish is reweighed giving the mass Mb.  The change in mass divided by the 

density of the ethanol results in the pore volume. 
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 A 10 mL pycnometer (Figure 3.46) is filled with ethanol, weighed and recorded as 

M1. The ethanol is poured out and the wet scaffold, previously soaked in ethanol within 

the weighing dish, is placed in the pycnometer, and ethanol is added until the pycnometer 

is once again properly filled. The pycnometer is reweighed with the added SFCS sample 

and the mass denoted as M2.   The apparent scaffold volume is then calculated using: 

 𝑉2 =  
(𝑀𝑎 − 𝑀𝑏) − (𝑀2 − 𝑀1)

ρ
 (22) 

 

The effective porosity of the SFCS samples is calculated according to the following 

equation: 

 𝜀 = (
𝑉1

𝑉2
) ×100% =  (

𝑀𝑎 − 𝑀𝑏 − 𝑀0

(𝑀𝑎 − 𝑀𝑏) − (𝑀2 − 𝑀1)
) ×100% (23) 

 

where porosity is the ratio of the pore volume (V1) to effective scaffold volume (V2).   
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Figure 3.46.  Image of 10 mL pycnometer. 

 

 Tissue Scaffold Water Absorption 

A critical aspect of an engineered tissue scaffold is the capability of storing water, 

an essential characteristic for the support of a multitude of cellular functions by allowing 

ease of diffusion for cell nutrients and waste [37] [40] [48].    Thus, water absorption 

experiments are conducted on the SFCS scaffolds. The scaffolds are again freeze dried via 

lyophilization and weighed (Wdry). The samples are placed in saline and then placed in a 

heated water bath at 37°C.  The samples are removed from the bath at prescribed time 

intervals of 30, 60, 90, 120, 180, and 240 minutes and the mass is recorded.  Before the 

mass measurements are recorded, the SFCS samples are blotted to remove any excess 

water.  Water absorption is calculated according to the following equation:  
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 𝑊𝐴% =  
𝑊𝑤𝑒𝑡 − 𝑊𝑑𝑟𝑦

𝑊𝑑𝑟𝑦
×100 (24) 

 

where Wdry is the dry mass of the lyophilized SFCS samples and Wwet is the final measured 

mass of the wet sample after soaking in saline for 240 minutes.   

 

 Mechanical characterization of biocompatible piezo-composites 

 Dimensional Characteristics 

SFCS-ZnO blends are mixed and then injected into the ring-shaped molds.  A 

pipette is employed to dispense 1.5 mL of the SFCS-ZnO blend into each mold cavity.  

After curing, the SFCS-ZnO blends are removed from the mold and washed in 

MeOH/NaOH solutions. Finally, the blends are stored in 1X PBS and the outer diameter 

(OD), wall thickness (WT), and height (H) of the ring samples are measured with a pair of 

digital calipers and recorded.  These dimensions alongside the measured porosity of each 

blend are used to determine the actual cross sectional area of each sample blend. 

 

 Mechanical characteristics 

 Uniaxial Tensile Testing 

Mechanical and viscoelastic characteristics for all the SFCS-ZnO blends are 

evaluated in this study.  Uniaxial tensile, stress relaxation and creep tests are performed 
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using the ring-shaped samples. The selected geometry of the ring-shaped samples 

alleviated any experimental error due to localized failure via inappropriate clamping of the 

specimens as seen with the traditional dog-bone type tensile specimens.  Slippage and 

unwanted premature failure near the clamp grips are also common modes of failure and 

stress measurement uncertainty [49].  Specimen failure is defined as a complete breakage 

of the ring sample.  Several metrics are extracted from the uniaxial tensile test data such as 

modulus of elasticity, ultimate strength, yield strength, and elongation at break.  The 

modulus of elasticity of the material is defined as the slope of the linear portion of the 

stress-strain curve, is illustrated as the triangle in Figure 3.47 and is also represented as: 

 
𝐸 =  

∆𝜎

∆𝜀
 (25) 

The gray hatched areas also represent the linear region of the stress-strain curve.  The 

ultimate strength is represented as the maximum stress prior to failure of the specimen (Red 

X in Figure 3.47). The yield point or yield strength (Green + in Figure 3.47) is defined as 

the point at which the linear region began to change by at least 10% [49]. The SFCS-ZnO 

ring samples are subjected to tensile testing on the Admet Uniaxial Microtester 4000 

describe above.  The constructs are mounted between two custom fabricated hooks adapted 

to securely mount to the mechanical tester, as shown in Figure 3.48.  
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Figure 3.47.  Graph representing a typical stress-strain relations of a SFCS-ZnO 

specimen, in which the modulus, yield stress, ultimate stress, and elongation at break are 

defined. 

 

 
Figure 3.48.  3D rendering of custom “hook type” fixture to effectively grip the 

fabricated ring devices. 
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The center-to-center distance of the hook type fixture is set as the gauge length of the 

samples.  The rings are loaded at a displacement rate of 50 mm/min and preconditioned 

with 10 cyclic loading sequences and a displacement estimated at 25% of failure strain 

before performing the tensile test to failure, as shown in the programmed testing sequence 

in Figure 3.49. Ultimate tensile strength (σUTS) and elongation at break (εB) are defined by 

the peak stress experienced by the sample and maximum strain at failure by the samples, 

respectively.  Engineering stresses are calculated by dividing the recorded loads by the 

cross-sectional area of the SFCS-ZnO sample using the initial measured construct 

dimensions, while also compensating for material porosity.  Engineering strain is used to 

measure the deformation of the vascular constructs.  Stress-strain curves are plotted and 

analyzed using a Microsoft Excel script to calculate the tensile parameters.  

 

 

Figure 3.49.  Inset of Testing Procedure from the Admet MTESTQuattro software. 

 

 

 

 



89 

 Viscoelastic characteristics 

Biomaterials, such as tissue scaffolds, in particular the SFCS-ZnO composite, have 

a time dependent or viscoelastic behavior.  This time dependence is due to the distinct 

molecular structure of polymeric materials [50] [51] [52].   

 

 Stress Relaxation 

One essential technique for characterizing the viscoelastic time dependent behavior 

of a material is a stress relaxation test.  With this test, a constant strain is suddenly applied 

to a sample, being rapidly stretched at 50 mm/min to the new strained position and held for 

a prescribed time period (Figure 3.50 (left)).  The Relaxation Modulus is given by: 

 𝐸(𝑡) =  
𝜎(𝑡)

𝜀0
 (26) 

where σ(t) is the stress and ε0 is the constant strain value. The stress is calculated from the 

recorded force value that is needed to maintain the constant strain input, which decreases 

with time (Figure 3.50 (right)).  Since stress is a function of time, the Relaxation Modulus 

at a constant strain will also vary with time.  Equation () demonstrates the uniaxial stress-

strain relation for a viscoelastic material that is analogous to Hooke’s Law for a case of a 

constant strain input. 

 The Initial Modulus at a time of t = 0 seconds is given by: 
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 𝐸(𝑡 = 0) =  
𝜎(𝑡 = 0)

𝜀0
=  𝐸0 (27) 

where σ0  is the peak stress experienced by the sample upon application of constant strain.  

Similarly, the Equilibrium Modulus at a time of t = ∞ is given by: 

 𝐸(𝑡 = ∞) =  
𝜎(𝑡 = ∞)

𝜀0
=  𝐸∞ (28) 

where σ∞  is the relaxed stress experienced by the sample after of constant strain. 

 

 

Figure 3.50.  Illustration of Relaxation Test:  Constant strain input (left) and 

representative stress output (right). 

 

Stress-relaxation testing of the different SFCS-ZnO constructs is performed as 

described by others [53].  Like the uniaxial tensile testing, the SFCS-ZnO ring samples are 

molded, processed and then mounted between the two adapted hooks of the hook type 

fixture which is placed in the previously stated mechanical tester.  These tests require an 

extended timeframe; therefore, a heated bath is utilized to maintain the ring samples at a 

constant temperature (37°C) in saline during the entire programmed test.  The ring samples 



91 

are loaded at a displacement rate of 50 mm/min until an initial displacement value of 3.00 

mm is reached and held at this displacement value for 240 seconds. Then, the ring samples 

are subjected to five rapid incremental displacement steps of 0.5 mm and held for a period 

of 120 seconds for each incremental step to allow the SFCS-ZnO sample to reach 

equilibrium. Initial modulus, denoted as the maximum stress value recorded for each 

relaxation cycle.  Whereas, the equilibrium modulus, denoted as the minimum stress 

recorded at the end of each relaxation cycle.  Stress-relaxation data are plotted and analyzed 

using a custom Microsoft Excel script, allowing for the detection of peak and equilibrium 

values as well as calculation of the initial and equilibrium moduli. 

 

 Creep 

An additional method for characterizing the viscoelastic time dependent behavior 

of a material is using a creep test.  A sudden stress is applied to the sample at a rate 50 

mm/min and maintained to a constant value.  Strain under constant load increases with time 

and the below mentioned test defines a quantity called Creep Compliance that is given by: 

 𝐷(𝑡) =  
𝜀(𝑡)

𝜎0
 (29) 

where ε(t) is time dependent strain and σ0 is the applied constant stress value.  Strain is 

calculated from the recorded displacement necessary to maintain the constant stress input, 

which increases with time (Figure 3.51 (top)).  Point 1 in the bottom of Figure 3.51 

represents the end of the linear elastic strain region of the sample during sudden loading 

and the start of the viscoelastic creep region at a specific constant stress.  Point 2 represents 
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the end of the creep region for the specified 720 second creep test duration and the start of 

the sudden return to the sample zero stress state.  Point 3 represents the end of the sudden 

reduction of elastic strain induced by returning the material to a zero stress state as seen in 

the upper stress plot and the start of the creep recovery where the material attempts to return 

to the unloaded recovered position.  Point 4 represents the end of the creep recovery region 

for the specified 720 second creep recovery test duration, if this point is above a zero-strain 

state then a residual strain has been induced via the creep test. 

 

Figure 3.51.  Illustration of Creep Test:  Constant stress input (top) and representative 

strain output (bottom). 

 

 Linear Viscoelastic Behavior via Isochronous Stress-Strain Relationship 

One method to determine linearity is by conducting creep tests at different stress 

levels and obtaining the creep compliance at constant times as well as generating the 
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“isochronous” stress-strain diagram.  If this isochronous variation of the stress versus strain 

plot is linear at any recorded time, then the material demonstrates linear tendencies (Figure 

3.52).  If the variation in the plot is nonlinear, the material demonstrates nonlinear 

viscoelastic tendencies.  Linearity of the isochronous stress – strain plot derives from the 

fact that the ratio of the strain to stress at a given time, ti, from each stress level must be 

identical if the material is to be linear.  That is, for t1 we have 

 
𝐷(𝑡 =  𝑡1) =  

𝜀𝑎(𝑡=𝑡1)

𝜎0│𝑎
 = 

𝜀𝑏(𝑡=𝑡1)

𝜎0│𝑏
=  

𝜀𝑐(𝑡=𝑡1)

𝜎0│𝑐
 (30) 

 

which means that the compliance D(t = t1) is independent of stress level. 

 Similarly  

 
𝐷(𝑡 =  𝑡2) =  

𝜀𝑎(𝑡=𝑡2)

𝜎0│𝑎
 = 

𝜀𝑏(𝑡=𝑡2)

𝜎0│𝑏
=  

𝜀𝑐(𝑡=𝑡2)

𝜎0│𝑐
 (31) 

 

and  

 
𝐷(𝑡 =  𝑡3) =  

𝜀𝑎(𝑡=𝑡3)

𝜎0│𝑎
 = 

𝜀𝑏(𝑡=𝑡3)

𝜎0│𝑏
=  

𝜀𝑐(𝑡=𝑡3)

𝜎0│𝑐
 (32) 

 

The conditions above can be deduced from the requirement that the creep compliance is 

only a function of time (D(t)), and not a function of stress level (D(t,σ)), for a linear 

material. 
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Figure 3.52.  Linearity illustrated by an isochronous stress-strain plot at constant times 

from creep tests [50]. 

 

Creep testing of the different SFCS-ZnO constructs is performed as described by 

others [53].  Similar to the uniaxial tensile and stress relaxation testing, the SFCS-ZnO ring 

samples are molded, processed and then mounted between the two adapted hook type 

fixtures which is placed in previously stated mechanical tester.  These tests also require an 

extended timeframe; therefore, a heated bath is utilized to maintain the ring samples at a 

constant temperature (37°C) in saline during the entire programmed test.  The rings are 

loaded at a displacement rate of 50 mm/min until the initial creep force value of 5.00 grams 

is reached and then held within ±1% of the nominal force value for 720 seconds.  The force 

is then returned to near 0 grams for another 720 seconds allowing the material to recover.  
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This 1440 second cycle is followed by 2 additional creep and creep recovery cycles in 

incremental force steps of 2.5 grams for each additional step to allow the SFCS-ZnO 

sample to reach equilibrium.  The creep data is plotted and analyzed using a custom 

Microsoft Excel script, allowing the manual detection of points for the elastic strain (1), 

creep strain (2), elastic recovery (3), creep recovery (4), and residual strain (5) values. 

 

 Compliance and Circumferential Strain Testing 

The compliance and circumferential strain of the engineered tube and actual porcine 

aortic tissue was determined using the imaging rig shown in Figure 3.53.  The vessel was 

mounted in the custom distension unit and filled with saline.  A wireless 1080P camera 

(Hero 3+ Silver Edition, GoPro, Inc., San Mateo, CA) with attached microscope LED array 

ring light (LED-144A, Amscope, Irvine, CA) was employed to capture images of the 

distended state of the mounted vessel at internal pressures ranging from 70 mmHg up to 

140 mmHg.   
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Figure 3.53.  Image of the camera setup for capturing vessel diameters at varying static 

pressures. 

 

The captured images were imported into an image processing and analysis software 

(ImageJ, National Institutes of Health, Bethesda, MD) and the outer diameter was 

measured.  Figure 3.54(a.) – f.)) Figure 3.55 (a.) – f.)) demonstrate static vessel distension 

of the engineered elastomeric tube and descending porcine aorta, respectively.  The applied 

internal pressures ranged from 70 mmHg to 140 mmHg.   
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Figure 3.54.   Series of images taken at internal vessel pressures at a.) 70mmHg, b.) 80 

mmHg c.) 90 mmHg, d.) 100 mmHg, e.) 120 mmHg, and f.) 140 mmHg  

 

a.) 

b.) 

c.) 

d.) 

e.) 

f.) 
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Figure 3.55.  Series of images taken at internal vessel pressures at a.) 70 mmHg, b.) 80 

mmHg, c.) 90 mmHg, d.) 100 mmHg, e.) 120mmHg, and f.) 140mmHg 

 

 

 

a.) 

b.) 

c.) 

d.) 

e.) 

f.) 
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 Electrical characterization of Biocompatible Piezo-Composites 

Electrical characteristics for select SFCS-ZnO blends are evaluated in this study.  

Electrical response to shear stress and vessel distension are performed by means of the disc 

shaped (cookie) and ring-shaped (donut) samples, respectively. 

 

 Shear Testing 

Shear testing is performed on all SFCS-ZnO blends by employing the custom shear 

testing apparatus as described in Section 3.2.1.  The 2-mm thick SFCS-ZnO disk sample is 

mounted between the fixed and movable electrode plates (as shown in Figure 3.56).  A 

series of programmed displacements are applied to the disk samples.     

 

 
Figure 3.56.  Image of shear testing fixture with sample loaded and prepared for the test. 
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The programmed displacements and the calculated real shear strain are shown in Table 3.7.  

Permutations of the stated strain cycles were input thru a control and data acquisition 

software package (LabView, National Instruments Corp., Austin, TX) at three prescribed 

frequencies, 0.6, 1.2 and 2.4 Hz.  Table 3.8 represents the total number of strain/frequency 

permutations applied the samples during the shear tests. The measured shaker displacement 

and SFCS-ZnO sample electrical response is recorded for each experiment.   

 

Table 3.7.  Applied shear strain to samples 

Shaker Displacement 

(μm) 

Shear 

Strain 

100 5.0% 

200 10.0% 

500 25.0% 

 

Table 3.8.  Permutations of programmed strains and frequencies applied during typical 

electrical test. 

 Set 1 Set 2 Set 3 

Strain Amplitude (%) 5 10 25 

Frequency (Hz) 0.6 1.2 2.4 0.6 1.2 2.4 0.6 1.2 2.4 
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The primary purpose of these sets of experiments was to identify which blends 

generate the highest response to an applied strain to reduce the number of blends 

investigated in the distension testing trials.  The results will assist the investigator in 

narrowing the field of test samples to up to four independent blends that generate 

significantly higher response than others.  The four blend candidates with the highest 

electrical response will then be advanced into the vessel distension investigation for further 

study. 

 

 Vessel Distension Testing 

Vessel distension testing is performed on select SFCS-ZnO blends by employing 

the EVDSA as described in Section 3.2.2.  The SFCS-ZnO ring sample is mounted onto 

the vessel as shown in Figure 3.57 by sliding the sample over the cut ends prior to 

placement in EVDSA.  Table 3.9 represents the total number of pressure/frequency 

permutations applied to the samples during the distension tests. The measured shaker 

displacement, internal vessel pressure, and SFCS-ZnO sample electrical response is 

recorded for each experiment. 
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Figure 3.57.  Image of mounted ring sample on aorta. 

 

 

Table 3.9.  Permutations of pressures and frequencies applied during typical vessel 

distension test. 

 Set 1 Set 2 Set 3 

Strain Amplitude (%) 100/70 120/70 140/70 

Frequency (Hz) 0.6 1.2 2.4 0.6 1.2 2.4 0.6 1.2 2.4 

 

 Determination of Electrode Placement for Vessel Distension Study 

Placement of the wire electrodes may affect electrical response of the SFCS-ZnO 

sample .  Determining the optimal electrode location is investigated via testing six 

configurations.  Three positions with the electrode wires are aligned in the axial direction, 

with respect to the centerline of the distended vessel, at 45˚, 90˚, and 180˚ between them 

(Figure 3.58 a.), c.), and e.), respectively).  While the other three positions are aligned to 

the radial direction, also at 45˚, 90˚, and 180˚ between them (Figure 3.58 b.), d.), and f.), 

respectively).  The electrode placement investigation is performed on a single SFCS-ZnO 

blend, one of the four selected with significantly higher response from the shear testing 
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investigation.   The noted electrodes are 26G tinned copper wire (0.405 mm in diameter) 

with insulation.  The wires terminate directly into the inputs channels of the differential 

amplifier described in Section 3.2.5.  Figure 3.59 demonstrates the actual placement of the 

electrode wires in an SFCS-ZnO ring sample. 
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a.) 

 

b.) 

 

c.) 

 

d.) 

 

e.) 

 

f.) 

 

Figure 3.58.  CAD rendering illustrating location of wire electrodes placed at 45˚ (a. and 

b.), 90˚ (c. and d.), and 180˚ (e. and f.) oriented in both axial and radial configurations 

with respect to the vessel geometry. 
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Figure 3.59.  Images of actual electrode placement at 45˚, 90˚, and 180˚ oriented in both 

axial and radial configurations with respect to the vessel geometry. 

 

 

 

a.) b.) 

c.) d.) 

f.) e.) 
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Figure 3.60 demonstrates the typical placement of the tested samples with attached 

electrodes on the excised descending aorta.  

 

 

Figure 3.60.  Image of SFCS-ZnO ring sample mounted onto an excised descending aorta 

with electrode mounted in 180˚ axial orientation. 

 

 Summary 

The sections in this chapter have outlined the details taken to fabricate tissue 

scaffolds comprised of silk fibroin, chitosan, and zinc oxide nanoparticles.   Metrics such 

as porosity and water absorption are measured for scaffold performance to take up water 

and potentially nourish surrounding tissue upon potential implantation.  Mechanical and 

viscoelastic characteristics are established via uniaxial tensile, stress relaxation and creep 

testing, respectively.   Electrical response of the SFCS-ZnO samples is experienced and 

recorded from mechanical shear strain and circumferential strain via vessel distension.  The 

development of the blending techniques to the testing of a proof of concept perivascular 

band for measuring arterial distension will be discussed. 
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In this chapter, the results associated with the specific aims outlined in the 

introduction chapter will be examined.  The results of the biocompatible piezo composite 

formulation will be presented and metric data analyzed. The mechanical and viscoelastic 

properties of the composite materials will then be presented and evaluated.  The 

piezoelectric properties of the composite scaffold are then presented.  Finally, the electrical 

response of the piezo-composite will be analyzed while experiencing circumferential strain 

via distension of an engineered blood vessel and one extracted from an animal. 

 

 Formulation of Biocompatible Piezo-Composites 

 SFCS-ZnO Blend Viscometry 

The shear viscosity of the SFCS-ZnO blends was measured prior to the 

lyophilization step of the scaffold fabrication process using the cone-and-plate viscometer 

described in Section 3.1.3.  However, prior to measuring the shear viscosities of three 

SFCS-ZnO blends, the shear viscosities of the SFCS scaffolds at the three blended 

concentrations (30:70; 50:50 & 70:30) without ZnO nanoparticles were determined (Figure 

4.1).  Non-Newtonian thixotropic or shear thinning behavior was observed with each SFCS 

blend, demonstrating a reduction in shear viscosity as the shear strain increased.  The non-

Newtonian shear thinning behavior was anticipated since both SF and CS natively 
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demonstrate this phenomenon, due to the alignment of molecules and resistance to friction 

between adjacent fibers within the blend as the shear rate is increased [54].    

 

 
Figure 4.1.  Viscosity Measurements of SFCS composites absent of ZnO nanoparticles  

 

 

 

Subsequently, shear viscosity of the SFCS scaffolds with ZnO nanoparticles were 

measured for each ZnO nanoparticle size (30 nm, 45 nm & 200 nm) at the three different 

nanoparticle concentrations (2%, 5% & 10% nanoparticles by vol.)  While viscosity 

measurement experiments were conducted on all the blends, many of the blends were 

unable to yield reliable or accurate values due to torque overload on the cone and plate 

viscometer caused by shear-induced coagulation of the nanoparticles (Table 4.1). Shear-

induced coagulation has been reported to occur when particle-to-particle interaction 

increases with smaller particle size at constant weight fractions [55] [36].  This behavior 
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was observed in the SFCS-ZnO blends listed in (Table 4.1), so these blends were unable to 

yield accurate shear values and were eliminated from further investigation.  

 

Table 4.1.  List of blends that yielded accurate (successful blends) and inaccurate 

(unsuccessful blends) viscosities.. 

Unsuccessful Blends Successful Blends 

3070-30nm-10% 3070-30nm-2% 

3070-45nm-10% 3070-30nm-5% 

5050-30nm-10% 3070-45nm-2% 

5050-45nm-5% 3070-45nm-5% 

5050-45nm-10% 3070-200nm-2% 

5050-200nm-5% 3070-200nm-5% 

7030-30nm-2% 3070-200nm-10% 

7030-30nm-5% 5050-30nm-2% 

7030-45nm-2% 5050-30nm-5% 

7030-45nm-5% 5050-30nm-10% 

7030-200nm-2% 5050-45nm-2% 

7030-200nm-5% 5050-45nm-5% 

 5050-200nm-2% 
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Figure 4.2.  Image of shear induced coagulation of ZnO nanoparticles in SFCS composite 

for a 2 mL SFCS-ZnO sample after exposed to shear via the cone and plate viscometer.  

Particle coagulation was clearly present.  (Additional images of unsuccessful blends are 

shown in Appendix 2.) 

 

 

Just as observed with the SFCS only blends, non-Newtonian shear thinning was 

seen with each SFCS-ZnO blend with the viscosity decreasing as the strain rate increased 

(Figure 4.3).  This plot displays the 30:70 blends with 200 nm ZnO particles at all three 

weight fractions (WF) and represents a typical trend for all blends.  It is evident that the 

shear viscosity increases with WF.     
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Figure 4.3. Plot of Viscosity vs. Shear Rate for 30:70 SFCS blends with 200 nm particles 

at varying concentrations. 

 

 pH Measurement of Composite Blends 

The pH of each SFCS-ZnO scaffold blend was measured using the Beckman 

Coulter pH and Electrochemistry Meter.  The pH of the SFCS blends only (no ZnO 

nanoparticles) displayed a near neutral pH of approximately 6.5 with no significant 

difference in pH between each blend type (Table 4.2). While for the aqueous ZnO solutions 

(0.25 g/mL concentration), the pH was found to be of high alkalinity of approximately 9.5 

(Figure 4.4) and there was a significant difference in pH between the 30 nm and 45 nm (ρ* 

= 0.003) and 30 nm and 200 nm (ρ** = 0.016) solutions, while the pH values were 

insignificant between the 45 nm and 200 nm (ρ = 0.098).   
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Table 4.2.  pH of SFCS composites without embedded ZnO nanoparticles 

Blend Average pH Standard Deviation 

30:70 6.49 0.04 

50:50 6.44 0.05 

70:30 6.46 0.08 

 

 

 

 

 
Figure 4.4.  Bar chart of pH of aqueous dispersion ZnO nanoparticle. 
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The pH of each of the SFCS-ZnO blends were measured and an increase in pH was 

observed for the individual blends of SFCS-ZnO from 2% up to 10% (Figure 4.5), albeit 

not significant.    An analysis of variance (ANOVA) was performed to determine 

significance of individual factors, SFCS Blend (30:70, 50:50, 70:30), ZnO Particle Size 

(30 nm, 45 nm, 200 nm), and ZnO weight percent (2%, 5%, 10%).  Some significant 

differences were found for pH values between specific blend combinations; however, no 

general significant trend was seen.   
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Figure 4.5.  Bar chart illustrating average pH of SFCS-ZnO blends with standard 

deviation. 

 



115 

 Water Absorption 

As described in chapter 3, the total mass of the engineered SFCS-ZnO blended 

scaffolds soaked in water were recorded at prescribed time intervals (0 (dry), 30, 60, 90, 

120, 180, and 240 minutes).  The average change in the dry mass versus wet mass for each 

of the pure SFCS blends were plotted (Figure 4.6).  At the 240-minute interval, the 30:70, 

50:50, and 70:30 blends were all significantly different.  It was noted that increasing 

amounts of chitosan resulted in significantly higher mass due to chitosan’s ability to “take 

up” water more efficiently [37].   The average change in mass for each of the SFCS-ZnO 

blends was also found to significantly increase as the concentration of zinc oxide 

nanoparticles increased (Figure 4.7, Figure 4.8, Figure 4.9).   

    

Figure 4.6.  Mass properties of pure SFCS blended scaffolds. 
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Figure 4.7.  Average change in mass for each of the SFCS-ZnO blends with 30 nm 

particles.  Note:  The 70:30, 30 nm, 10% by weight is not shown due to inability to mix 

the particular blend.  
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Figure 4.8.  Average change in mass for each of the SFCS-ZnO blends with 45 nm 

particles.  Note:  The 70:30, 45 nm, 10% by weight is not shown due to inability to mix 

the particular blend. 
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Figure 4.9.  Average change in mass for each of the SFCS-ZnO blends with 200 nm 

particles.  Note:  The 70:30, 200 nm, 10% by weight is not shown due to inability to mix 

the particular blend. 
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Water absorption was calculated to delineate the effects of an increase in mass due 

to the addition of zinc oxide and the scaffold’s natural capability for absorbing water.  The 

capacity of each SFCS-ZnO blend to absorb water was calculated via Equation (33) and 

plotted at 30, 60, 90, 120, 180, and 240 minute intervals (Figure 4.10).  Measurements were 

concluded at the 240-minute interval due to all samples reaching steady state with an 

average percent change, %∆, of: 

 

 %∆ =  
𝐴240 − 𝐴180

𝐴180
 ×100% (33) 

 

where A240 and A180 were the measured water absorption values at the corresponding time 

intervals.  The average percent change among all datasets of the SFCS only blends was 

2.45%, therefore water absorption was determined to reach steady state. The water 

adsorption data for the SFCS only blends was found to follow the same trend as Figure 4.7, 

Figure 4.8, Figure 4.9, where the scaffolds with higher chitosan content also exhibited a 

higher affinity for water absorption.   
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Figure 4.10.  Water absorption of pure SFCS blended scaffolds up to a time interval of 4 

hours. 

 

Similarly, the capacity of each SFCS-ZnO blend to absorb water was calculated 

and plotted at 30, 60, 90, 120, 180, and 240 minute intervals (Figure 4.11, Figure 4.12, 

Figure 4.13). The data demonstrated that a higher ZnO content for any particular SFCS 

blend reduced the capacity of the scaffold to absorb water.  Furthermore, as the ZnO weight 

concentration increased, the blended sample’s ability to absorb water significantly 

decreased (Figure 4.14). This phenomenon was due to ZnO having a natural 

hydrophobicity [56] [57], which counteracted the hydrophilicity and natural ability of pure 

SFCS blends to take up water at higher concentrations, in addition to the nanoparticles 

physically occupying the spaces in the scaffold pores or matrix where the water would 

potentially reside.   
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Figure 4.11.  Average water absorption data for SFCS-ZnO blends with 30 nm particles 

representing collection intervals up to 240 minutes.  Note:  The 70:30, 30 nm, 10% by 

weight is not shown due to inability to mix the particular blend. 
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Figure 4.12.  Average water absorption data for SFCS-ZnO blends with 45 nm particles 

representing collection intervals up to 240 minutes.  Note:  The 70:30, 45 nm, 10% by 

weight is not shown due to inability to mix the particular blend. 
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Figure 4.13.  Average water absorption data for SFCS-ZnO blends with 200 nm particles 

representing collection intervals up to 240 minutes.  Note:  The 70:30, 200 nm, 10% by 

weight is not shown due to inability to mix the particular blend. 
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Figure 4.14.  Bar chart illustrating differences water absorption between SFCS-ZnO 

blends. 

 

 Scaffold Metrology 

Basic metrology was performed on the SFCS-ZnO ring specimens after being 

processed through the post lyophilization crystallization and neutralization process with 

MeOH:NaOH as described in Section 3.3.1.   Three samples from each blend were 

extracted from the PBS storage solution and the outer diameter (ɸ), wall thickness (WT) 

and the height of the ring (H) were recorded using a set of 6-inch digital calipers.   

The dimensional data was analyzed to determine whether SFCS blend, ZnO particle 

size, or ZnO concentration affected the overall dimensions of the fabricated rings within 
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the mold due to material shrinkage during the lyophilization, crystallization and 

neutralization processes. The SFCS blend was found to significantly affect (p < 0.05) the 

outer diameter, wall thickness, and height values of the SFCS-ZnO rings (Table 4.3). On 

the other hand, the particle size was found to have no significant effect (p > 0.05) on the 

outer diameter, wall thickness, and height of the SFCS-ZnO ring assemblies shown in 

Table 4.4.  Similar to the SFCS blend, the ZnO concentration was found to significantly 

effect (p < 0.05) the outer diameter, wall thickness, and height values of the SFCS-ZnO 

rings shown in Table 4.5.  
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Table 4.3.  Average outer diameter (Ø), wall thickness (WT), and height (H) of each 

SFCS-ZnO blend with respect to SFCS Blend. 

SFCS 

BLEND 

Ø (mm) 

Average ± Std. 

Dev. 

WT (mm) 

Average ± Std. 

Dev. 

H (mm) 

Average ± Std. 

Dev. 

3070 16.179 ± 0.704 3.436 ± 0.117 7.679 ± 0.498 

5050 15.820 ± 0.262 3.400 ± 0.090 7.430 ± 0.425 

7030 15.741 ± 0.536 3.186 ± 0.150 7.299 ± 0.541 

 

 

Table 4.4.  Average outer diameter (Ø), wall thickness (WT), and height (H) of each 

SFCS-ZnO blend with respect to Particle Size (nm). 

PARTICLE 

SIZE (nm) 

Ø (mm) 

Average ± Std. 

Dev. 

WT (mm) 

Average ± Std. 

Dev. 

H (mm) 

Average ± Std. 

Dev. 

30 15.995 ± 0.471 3.298 ± 0.124 7.459 ± 0.402 

45 16.035 ± 0.491 3.357 ± 0.199 7.351 ± 0.630 

200 15.773 ± 0.683 3.425 ± 0.111 7.662 ± 0.405 
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Table 4.5.  Average outer diameter (Ø), wall thickness (WT), and height (H) of each 

SFCS-ZnO blend with respect to ZnO Concentration. 

ZnO 

CONC. 

Ø (mm) 

Average ± Std. 

Dev. 

WT (mm) 

Average ± Std. 

Dev. 

H (mm) 

Average ± Std. 

Dev. 

2% 15.458 ± 0.394 3.311 ± 0.141 7.157 ± 0.403 

5% 16.100 ± 0.261 3.367 ± 0.191 7.503 ± 0.435 

10% 16.402 ± 0.536 3.422 ± 0.089 7.973 ± 0.222 

 

 

After the MeOH/NaOH crystallization and neutralization wash, the measured 

SFCS-ZnO scaffolds had a global average shrinkage value of 20.8% ± 1.9% for all 3 critical 

dimensions with respect the mold dimensions.  The methanol treatment of the SFCS-ZnO 

specimens induces the transition of random coil conformation to β-sheet structure of the 

silk fibroin which results in the shrinkage of materials [58].  Surface tension of the SFCS 

material itself contributed to the compacting of the overall porous structure, which resulted 

in the dimensional changes between the mold and final ring scaffolds.  Gobin et al. [37] 

also observed shrinkage, with up to a 75% dimensional change.  The design of a mold 

affects the scaffold architecture and the amount of shrinkage that the sample experiences; 

this is a common occurrence among any engineered part that is injection molded. 
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 Imaging 

Metrology was performed on the SFCS-ZnO blended specimens via the LEO Supra 

35 VPSEM.  Images of the ZnO nanoparticles that were employed within the blended 

scaffolds were also recorded, shown in Figure 4.15.  A droplet (50 µL) of each aqueous 

ZnO solution (50 uL of 0.25 g/mL into 10 mL water) was dispensed onto a separate glass 

slide via a micropipettor and allowed to dry. The dried sample was then placed within the 

SEM for imaging.   

 

 
Figure 4.15.  SEM image of a.) 30nm ZnO nanoparticle, b.)  45nm ZnO nanoparticle, and 

c.) 200nm ZnO nanoparticle 

 

 

The scaffold cross-sectional morphology was imaged via scanning electron microscopy 

after crystallization, neutralization and a secondary lyophilization process to ensure the 

samples were dry for imaging.   Large β-sheets were observed in near parallel formation, 

for each blend of the pure SFCS (Figure 4.16, Figure 4.17, Figure 4.18).   The addition of 

ZnO nanoparticles did not affect the β-sheet formation in any of the blends for any of the 

ZnO WT% (Figure 4.19, Figure 4.20, Figure 4.21).  Also, as the WT% increased, the 

nanoparticles were clearly visualized on the β-sheets.  All other SEM images of SFCS-

ZnO blends displaying nanoparticles can be found in Appendix 3. 

a.) b.) c.) 
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Figure 4.16.  SEM images of pure 3070 SFCS tissue scaffold 

     
Figure 4.17.  SEM images of pure 5050 SFCS tissue scaffold 

     
Figure 4.18.  SEM images of pure 7030 SFCS tissue scaffold 
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Figure 4.19.  Low and high magnification SEM image of a cross section of 30:70 – 45nm 

– 2% SFCS-ZnO tissue scaffold. 

     
Figure 4.20.  Low and high magnification SEM image of a cross section of 30:70 – 45nm 

– 5% SFCS-ZnO tissue scaffold. 

     
Figure 4.21.  Low and high magnification SEM image of a cross section of 30:70 – 45nm 

– 10% SFCS-ZnO tissue scaffold. 
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 Porosity Measurement 

The resaturation technique was implemented to determine the porosity of each of 

the SFCS-ZnO blends and the blends were processed through the protocol stated in Section 

3.3.2.  The pure SFCS blends had an average porosity of 92% ± 1.3%, 93% ± 1.2%, and 

91% ± 4.4% for the 30:70, 50:50, and 70:30 SFCS blends, respectively, with no 

significance difference between blend ratios (Figure 4.22).  These highly porous blends 

corresponded well with the constructs produced by Zeng et. al [47] and She et. al [46], both 

reported an ~95% porosity for SFCS blends of similar ratios, employing the resaturation 

method and mercury intrusion porosimetry methods, respectively.  However, with the 

addition of the ZnO nanoparticles, the average porosity decreased significantly (p < 0.05) 

with respect to the pure SFCS blends (Figure 4.22).    Additionally, inconsistencies were 

noted in the porosities of the SFCS-ZnO blends, which ranged from 24%±3.8% up to 

78%±7.0%.   Thus, while the blends with ZnO nanoparticles showed a decrease in the 

porosity as the concentration of nanoparticles increased; however, these trends were not 

significantly different (p > 0.05).  The decrease in the porosity was most likely to the ZnO 

nanoparticles filling the voids in the SFCS scaffold matrices; thereby, decreasing the 

porous nature of the scaffold.   Although the resaturation technique produced effective 

porosities for each SFCS-ZnO blends, complete specimen saturation was difficult to 

achieve. As a result, the porosities obtained in this study were probably lower than those 

determined by other methods such as mercury intrusion porosimetry [59]. The latter 

porosity measurement technique was not pursued for this investigation due to the lack 

access to the equipment necessary to perform these measurements at or near the university. 
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Figure 4.22.  Bar chart exhibiting average porosity of all individual SFCS-ZnO blends 

 

 

 

 Mechanical Characterization of Biocompatible Piezo-Composites 

Mechanical and viscoelastic properties of the SFCS-ZnO blends were evaluated 

and analyzed.  Uniaxial tensile, stress relaxation and creep tests were performed on the 

SFCS-ZnO blends all at 37°C.  The ring shaped specimens were placed in the 37°C water 

bath and allowed to acclimate for 5 minutes before being mounted in the custom ring 

testing fixture shown in Figure 4.23 before commencing with the testing procedure.   A 

total of 3 rings per SFCS-ZnO blend group were tested.       
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Figure 4.23.  Image of SFCS-ZnO sample mounted in custom ring testing fixture 

 

    Uniaxial Tensile Testing 

The tensile properties of the SFCS-ZnO blended scaffolds were determined via 

uniaxial tensile testing while the samples were submersed in the water bath.  Prior to 

testing, each tensile sample was preconditioned, by completing 10 loading-unloading 

cycles at a constant strain rate of 50 mm/min, to minimize the viscoelastic effects of the 

material during the material characterization process and obtain consistent, repeatable 

stress-strain curves. Thereafter, uniaxial tensile testing was performed on the samples using 

a continuous sampling rate of 100 Hz for collecting the tensile force data and a crosshead 

position at the strain rate of 50 mm/min   Figure 29 shows a typical stress-strain plot of the 

preconditioning process for an SFCS-ZnO specimen (30:70 – 30 nm – 2%) during the 10 

applied loading cycles.  The hysteresis loop shifts during the cyclic loading and eventually 

converges to a deformed state with lower hysteresis.  Figure 4.24 displays the loading-

unloading hysteresis cycle in a stress-time plot that demonstrates that the measured stress 

converges within 10 preconditioning cycles.    
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Figure 4.24.  (Top) Stress – Strain and (Bottom) Stress – Time plot demonstrating sample 

preconditioning up to 50% strain in a typical SFCS-ZnO blend (30:70 – 30 nm – 2%) 

 

The data collected from the acquisition system of the Admet Microtester were used 

in conjunction with the cross sectional dimensions and individual porosity data to calculate 

the stress of each specimen.  These values were combined with the strain data and plotted 

to produce the stress-strain curves similar to those shown in Figure 4.25.   Figure 4.26, 

Figure 4.27, and Figure 4.28 display the stress – strain relationship for a single sample of 

each SFCS-ZnO blend.   
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Figure 4.25.  Stress versus strain plot for three 70:30 – 45 nm – 5% SFCS-ZnO samples. 

 

 

Figure 4.26.  Stress versus strain plot for one sample of each ZnO composition in 30:70 

blend. 
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Figure 4.27.  Stress versus strain plot for one sample of each ZnO composition in 50:50 

blend 

 

 

Figure 4.28.  Stress versus strain plot for one sample of each ZnO composition in 70:30 

blend 
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The ultimate tensile strength (σULT), modulus of elasticity (E), and percent 

elongation were determined from the acquired data.  Ultimate tensile strength was 

measured as the maximum stress that the specimen can endure while elongated prior to 

fracture.  Figure 4.29 represents the average ultimate tensile strength of each individual 

SFCS-ZnO blend, where the data shows a trend of a reduction in tensile strength with the 

increase in ZnO nanoparticle concentration.   Figure 4.30 demonstrates that the pure SFCS 

blends exhibited significantly higher tensile strength (p*,** < 0.05) in comparison to the 5% 

and 10 % SFCS-ZnO blends. The 2% and 5% SFCS-ZnO blends also displayed a 

significantly higher tensile strength (p+,- < 0.05) than that of the 10% blends as well.  This 

trend was probably due to the number of potential dislocation sites within the SFCS-ZnO 

scaffold sample increasing as the ZnO WT% increases.  Thus, the higher the number of 

inclusions generated by the addition of particles within the matrix gives a higher likelihood 

of premature failure, which is observed in Figure 4.29 and Figure 4.30. 
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Figure 4.29.  Bar chart exhibiting average ultimate tensile strength of all individual 

SFCS-ZnO blends 
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Figure 4.30.  Barchart illustrating differences in average ultimate strength among SFCS-

ZnO blends of known ZnO weight percent. 

 

 

During SFCS-ZnO scaffold preparations, microcracks and fractures may have formed 

within the ring structure due to the removal of the extremely fragile ring specimens after 

the lyophilization process.  Unfortunately, the freeze-dried specimens did not simply fall 

out of the mold upon removal, the mold required separation to ensure any damage to 

samples was minimized.  The inner mold cores required subtle removal steps to near 

surgical precision to separate them from the internal diameter of the ring specimen to 

ensure minimal damage.  Upon removal from the molds, the fragility of the freeze-dried 

samples noticeably increased with the higher concentrations of ZnO nanoparticles.  This 

would further strengthen the increased deviation of the average tensile strength values for 



140 

the pure SFCS blends, possibly increasing the number of microcracks and fractures 

introduced during demolding.  In a uniaxial tensile test where the specimen is stretched, 

the much weaker scaffold matrix experiences most the load while the particles separate 

away from one another.  However, if agglomeration occurs with an increase in ZnO particle 

concentration, this behavior will be even more prominent. 

Elastic modulus was calculated from the selected points of the linear region of the 

stress-strain plot and placed into Equation (18).  Figure 4.31 represents the average elastic 

modulus of each individual SFCS-ZnO blend, where the data shows a trend of a reduction 

in elasticity with the increase in ZnO nanoparticle concentration.   Figure 4.32 reveals that 

the pure SFCS blends exhibited significantly higher elasticity (p < 0.05) in comparison to 

the 5% and 10 % SFCS-ZnO blends. The 2% and 5% SFCS-ZnO blends also show a 

significantly higher elasticity (p+,- < 0.05) than that of the 10% blends as well. Gupta et al. 

[60] experienced a similar moduli reduction phenomenon with their SFCS scaffolds with 

dispersed emodin based nanoparticles ranging from 40 nm to 100 nm in size after 

sonication.   
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Figure 4.31.  Bar chart exhibiting average elastic modulus of all individual SFCS-ZnO 

blends 
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Figure 4.32. Barchart illustrating differences in average elasticity among SFCS-ZnO 

blends of known ZnO weight percent. 

 

 

Elongation at failure was calculated from the collected stress-strain data, 

representing the ratio between final length and initial length at failure of the SFCS-ZnO 

specimen.  Figure 4.33 represents the average elongation at failure of each individual 

SFCS-ZnO blend.  The individual data does not tend to show any trend in elongation with 

the increase in ZnO nanoparticle concentration.    
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Figure 4.33.  Bar chart exhibiting average % elongation of all individual SFCS-ZnO 

blends 

 

 

Figure 4.34 reveals that the pure SFCS blends exhibited significantly higher elongation (p 

< 0.05) in comparison to the 2%, 5% and 10 % SFCS-ZnO blends.  Elongation at break 

and ultimate tensile strength of the biocomposites demonstrated a reduction with an 

increase in the ZnO nanoparticle filler concentration. Again, this is due to the increase in 

defect sites with an increase in nanoparticle concentration.  The pure SFCS blends display 

a significantly higher elongation at break than the blends with ZnO nanoparticles.  

Specifically, blends within the 2% and 5% WT%, show a general trend of an increase in 

elongation at the 200-nm particle size and decreases with the 45 nm and 30 nm particles, 
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respectively.  A blend of 200 nm particles at a fixed WT% compared to 30 nm particles 

will have far less potential defect sites due to the nominal number of actual particles 

dispersed throughout the sample. 

 

 
Figure 4.34.  Barchart illustrating differences in average elongation among SFCS-ZnO 

blends of similar ZnO weight percent. 

 

 

 

 Viscoelastic Testing 

All materials exhibit some viscoelastic behavior.  Metals typically display purely 

elastic response at small deformations and plastically deform under large deformations, 

which is commonly independent of time.  By contrast, materials such as synthetic 
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polymers, wood, and human tissue and engineered biomaterials exhibit significant 

viscoelastic effects at small and large deformations [61].  The SFCS-ZnO composite blends 

demonstrated time dependent or viscoelastic response.  This time dependence is primarily 

due to the distinct molecular structure of the SF and CS biomaterials [50] [51] [52]. 

 

 Stress Relaxation 

A technique for characterizing the viscoelastic time dependent behavior of a 

material is the stress relaxation test, where a constant strain is applied to an SFCS-ZnO 

sample, at a rate 50 mm/min to constant strain values of 37.50%, 43.75%, 50.00%, 56.25%, 

and 62.50% and held statically for the prescribed times noted in Section 3.3.4 (Figure 4.35 

(Top)), with a typical resultant stress response is shown in Figure 4.35 (bottom).   It is 

noted that the induced stress of the SFCS-ZnO blended materials increases with an increase 

in applied strain, but relaxes over time while held at a constant strain.   
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Figure 4.35.  Representative plot of (Top) Strain – Time of the controlled cross head and 

(Bottom) a typical stress – time plot of a SFCS-ZnO blended sample (30:70 – 30 nm – 

2%).   

 

 

Figure 4.36 represents the data shown in Figure 4.35 (bottom) as a stacked plot with the 

maximum stress for each cycle at time zero.  There are three viscoelastic phenomena 

occurring within this plot that will be presented and discussed within the investigation; 1.)  

The initial stress in the specimen induced by the rapid increase in strain during the 

experiment, 2.) the rate at which the SFCS-ZnO blends relax while under a constant static 

strain and 3.) the equilibrium stress at which the specimen reaches while under that constant 

static strain.   
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Figure 4.36.  Plot of stress relaxation versus time of a 3070-30nm-2% blended sample. 

 

 

 Initial Stress 

The maximum stress experienced by the SFCS-ZnO blended specimen for each 

constant strain cycle is termed the initial stress.  Figure 4.37 represents the average initial 

stress for each blend consolidated into 3 bar charts, representing the initial stress of the 

SFCS-ZnO blends with respect to ZnO WT%, ZnO particle size, and SFCS blend, 

respectively.  ANOVA was performed on the initial modulus data demonstrating that ZnO 

WT% and ZnO particle size significantly affected the initial stress where pWT% = 0.05, 

0.044, 0.037, 0.033, and 0.028; psize = 0.01, 0.006, 0.005, 0.004, and 0.004 for each strain 

cycle, respectively.  SFCS blend demonstrated no significance with respect to initial 

modulus (p >> 0.05).  Similar to the mechanical testing, the nanoparticles WT% and size 

tend to have more of an affect on material performance.   
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Figure 4.37.  Consolidated plots of initial modulus versus applied strain with respect to 

(Top) ZnO WT%, (Middle) ZnO Size, and (Bottom) SFCS blend 
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 Relaxation Rate 

When the presented Stress – Time data is plotted on a log-log scale (Figure 4.38), 

the results demonstrate a linear trend, indicating that the relaxation curves can be 

approximated via the power law equation 

 

 𝑦 = 𝐴𝑡𝑛 (34) 

   

where the slopes of the relaxation data curves are indicated by the power (n) of the data.  

Thus, the magnitude of n indicates the rate of relaxation with respect to time and when the 

data is fitted to a power trend line, a strong correlation is achieved (R2 > 99%) for each 

applied strain case.   

 

 

Figure 4.38.  A log – log plot of stress relaxation versus time of 3070-30nm-2% blend. 

 

 

Figure 4.39 represents the average relaxation rate for each blend consolidated into 3 bar 

charts, Figure 4.39a, b and c represents the relaxation rate of the SFCS-ZnO blends with 
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respect to ZnO WT%, ZnO particle size, and SFCS blend, respectively.  ANOVA was 

performed on the relaxation rate data demonstrating that there was no significant difference 

in relaxation rate between ZnO WT% (p >> 0.05), ZnO particle size (p >> 0.05), and SFCS 

blends (p >> 0.05).  There was a significant difference in relaxation rate between the first 

constant strain cycle (37.50%) and the other test cycles (p < 0.001).  This difference is due 

to the lack of material preconditioning for this experiment due to the MQuattro Controller’s 

inability to programmatically handle the number lines of input for the multicycle relaxation 

test preceded by the preconditioning cycle.  By performing preconditioning on the test 

specimens, the difference in relaxation rate may have been mitigated.  This phenomenon 

was observed by all tested samples.  The relaxation rate stabilized for each subsequent 

strain cycle after the first at the lowest applied strain.  The relaxation rate essentially 

remains linear throughout the tested strain range of 37.5% up to 62.5%, this is well above 

the normal circumferential strain experienced by the pulmonary artery during distension in 

a healthy individual.  Thus, demonstrating viable functionality. 
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Figure 4.39.  Consolidated plots of relaxation rate versus applied strain with respect to 

(Top) ZnO WT%, (Middle) ZnO Size, and (Bottom) SFCS blend 

 

 

 

 Equilibrium Stress 

The relaxation or equilibrium stress experienced by the SFCS-ZnO blended 

specimen for each constant strain cycle is shown in Figure 4.40, which represents the 

average initial stress for each blend was also consolidated into is also presented in 3 bar 

charts.  The equilibrium stress of the SFCS-ZnO blends with respect to ZnO WT%, ZnO 
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particle size, and SFCS blend, respectively, are presented.  An ANOVA was performed on 

the equilibrium stress data demonstrating that ZnO WT% and ZnO particle size 

significantly affected the initial modulus where pWT% = 0.05, 0.044, 0.039, 0.031, and 

0.025; psize = 0.003, 0.003, 0.003, 0.002, and 0.002 for each strain cycle, respectively.  

SFCS blends demonstrated no significance with respect to initial modulus (p >> 0.05).  

Similar to the initial stress data, as the applied strain increased as did the stress.  Since the 

relaxation rate is essentially linear and equal across all recorded samples, the equilibrium 

stress also follows that trend of increasing with respect to applied strain cycle. 
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Figure 4.40.  Consolidated plots of equilibrium modulus versus applied strain with 

respect to (Top) ZnO WT%, (Middle) ZnO Size, and (Bottom) SFCS blend 
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 Creep Testing 

Other techniques for characterizing the viscoelastic time dependent behavior of the 

SFCS-ZnO blended materials are creep and creep recovery tests, where a constant force is 

applied to the SFCS-ZnO sample, at a rate 50 mm/min to constant force values of 5.0, 7.5 

and 10.0 grams and held statically for the prescribed times noted in Section 3.3.5 (Figure 

4.41 (Top)) with a typical strain response shown in Figure 4.42 (bottom).   The induced 

strain of the SFCS-ZnO blended materials increases as the applied stress increases over 

time while held at the constant force.     

 

 

 

 

Figure 4.43.  Representative plot of (Top) Stress – Time and (Bottom) a typical strain – 

time plot of a SFCS-ZnO blended sample (SFCS-3070-30NM-2%) 
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Figure 4.44 and Figure 4.45 present stacked plots of the creep and creep recovery 

data for the induced strain data shown in Figure 4.43 (bottom) with the initial induced strain 

for each cycle at time zero.  It is noted that there are four viscoelastic phenomena occurring 

within this plot; 1.)  The creep strain induced by the application of the constant force during 

the experiment for each cycle, 2.) The creep recovery strain induced by the removal of the 

applied constant force during the experiment, 3.) The rate of creep and rate of creep 

recovery the SFCS-ZnO blends creep while under said constant force and upon removal, 

4.) The residual strain within the SFCS-ZnO sample after the removal of the applied force.   

 

 

Figure 4.44.  Plot representing creep of a 3070-30NM-2% blended SFCS-ZnO sample 
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Figure 4.45.  Plot representing creep recovery of a 3070-30NM-2% blended SFCS-ZnO 

sample 

 

 Creep Strain 

The average creep experienced by the SFCS-ZnO blended specimens for each 

constant force cycle is represented in 3 bar charts (Figure 4.46), which representing the 

strain responses of the SFCS-ZnO blends with respect to ZnO WT%, ZnO particle size, 

and SFCS blend, respectively.  An ANOVA was performed on the creep strain data 

demonstrating that ZnO WT%, ZnO particle size, and SFCS blend demonstrated no 

significance with respect creep strain (p >> 0.05).  Similar to the stress relaxation tests, the 

first constant stress cycle resulted in a higher average strain value than that of the latter two 

cycles due to the lack of preconditioning experienced by the sample due to the MQuattro 

Controller’s inability to programmatically handle the number lines of input for the 
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multicycle creep test preceded by the preconditioning cycle.  This data shows that while 

under a constant load a sample regardless of SFCS-ZnO blend can handle a maximum 

induced strain of nearly 50%.  

Creep resistance can be defined as a material's ability to resist any kind of distortion 

when under a constant load over time. Ultimately, for optimum performance and maximum 

lifetime of the SFCS-ZnO sample should have a high creep resistance (i.e. low deformation 

under constant load).  As seen in Figure 4.46, all samples tend to show similar resistance 

to creep.  
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Figure 4.46.  Plot of creep strain with respect to (Top) ZnO WT%, (Middle) ZnO Size, 

and (Bottom) SFCS blend 
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 Creep Recovery 

The creep recovery strain experienced by the SFCS-ZnO blended specimens upon 

the removal of each constant force cycle is also represented in 3 bar charts (Figure 4.47) 

with the strain responses of the SFCS-ZnO blends presented as ZnO WT%, ZnO particle 

size, and SFCS blend, respectively.  An ANOVA was performed on the creep recovery 

strain data demonstrating that the SFCS blend significantly affected the specimen recovery 

where the p-values were pBLEND = 0.037, 0.035, and 0.010; for each force cycle.  ZnO WT% 

and ZnO particle size demonstrated no significance with respect creep recovery strain (p >> 

0.05).  This significance with respect to the SFCS blend is expected since the supporting 

matrix is the SFCS scaffold with a dispersion of ZnO nanoparticles that when under tension 

will typically separate.  The SFCS matrix will induce contraction of the ring upon reduction 

of the load allowing for recovery.  
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Figure 4.47.  Plot of creep recovery strain with respect to (Top) ZnO WT%, (Middle) 

ZnO Size, and (Bottom) SFCS blend 
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 Creep Rate and Creep Recovery Rate 

When the Strain – Time data from the creep experiments is plotted on a log Strain 

– log Time scale (Figure 4.48 and Figure 4.49), the curves are linear, similar to the stress 

relaxation data curves presented previously, indicating that the creep and recovery curves 

can also be approximated with the power law equation. Thus, the slopes of the creep and 

creep recovery data fitted to a power trend line show a strong correlation, with an R2 > 99% 

for each applied force case for creep and an R2 > 94% for each applied force case for creep 

recovery. 
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Figure 4.48.  A representative log – log plot of Strain – Time of a single creep strain data 

set of 3070-30nm-2% blend. 

 

 

 

Figure 4.49.  A representative log – log plot of Strain – Time of a single creep recovery 

strain data set of 3070-30nm-2% blend. 
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Figure 4.50 represents the average rate of creep for each blend in 3 bar charts, 

representing the rate of creep of the SFCS-ZnO blends with respect to ZnO WT% (Figure 

4.50 (Top)), ZnO particle size (Figure 4.50 (Middle)), and SFCS blend (Figure 4.50 

(Bottom)), respectively.  An ANOVA was performed on the creep rate data demonstrating 

that ZnO WT% significantly affected the specimen rate of creep where the p-values were 

pZnO-WT%= 0.016, 0.004, and 0.005 for each force cycle; while SFCS blend significantly 

affected the specimen for the 7.5 and 10 gram cycles (pblend = 0.020 and 0.022) respectively.  

The ZnO particle size demonstrated no significant difference with respect to creep recovery 

strain (psize = 0.480, 0.324, and 0.297).   
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Figure 4.50.  Plots of rate of creep with respect to (Top) ZnO WT%, (Middle) ZnO Size, 

and (Bottom) SFCS blend 
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Figure 4.51 presents the average rate of creep recovery for each blend in 3 bar 

charts, representing the rate of creep recovery of the SFCS-ZnO blends with respect to ZnO 

WT% (Figure 4.51 (Top)), ZnO particle size (Figure 4.51 (Middle)), and SFCS blend 

(Figure 4.51 (Bottom)), respectively.  An ANOVA was performed on the data 

demonstrating that ZnO WT% and SFCS blend significantly affected the rate of creep 

recovery where the p-values were pZnO-WT%= 0.031, 0.016, and 0.011 and pBLEND = 0.006, 

0.003 and 0.022 for each force cycle, respectively.  The ZnO particle size demonstrated no 

significance with respect creep recovery strain (psize = 0.763, 0.529, and 0.506).   

Both rate of creep and rate of creep recovery were significantly affected by SFCS 

blend and ZnO concentration.  The underlying support matrix is the blended SFCS with a 

dispersion of ZnO nanoparticles that when under tension will typically separate.  When 

stretched the SFCS matrix will induce contraction of the ring upon a reduction in the load 

allowing for recovery.   

When comparing the rate of creep to the rate of creep recovery, one observes that 

the rate of creep recovery is approximately 5 times greater than that of the rate of creep.  

This indicates that the sample returns to its initial unstressed state up to 5 times faster than 

when it is under a constant load.  This is an optimal situation for this device, when 

comparing the loading scenario to vessel distension.  The sample should recover from the 

vessel distension to rapidly accommodate change to the near unstressed state. 
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Figure 4.51.  Plots of rate of creep recovery with respect to (Top) ZnO WT%, (Middle) 

ZnO Size, and (Bottom) SFCS blend 
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 Residual Creep Strain 

The residual creep strain experienced by the SFCS-ZnO blended specimens upon 

the removal of each constant force cycle is also represented and consolidated into 3 bar 

charts (Figure 4.46) with the strain responses for the SFCS-ZnO blends presented as ZnO 

WT%, ZnO particle size, and SFCS blend, respectively.  An ANOVA was performed on 

the residual strain data demonstrating that the ZnO WT% and SFCS blend significantly 

affected the specimen recovery where the p-values were pZnO% = 0.011, 0.017, and 0.028 

and pBLEND = 0.000, 0.000, and 0.000; for each force cycle, respectively.  The ZnO particle 

size demonstrated no significance with respect creep recovery strain (pSIZE = 0.436, 0.344, 

0.297) for each force cycle.   
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Figure 4.52.  Plot of residual creep strain with respect to (Top) ZnO WT%, (Middle) ZnO 

Size, and (Bottom) SFCS blend 



169 

 Electrical characterization of biocompatible piezo-composites 

 Shear Testing 

Electrode displacement and SFCS-ZnO sample response was recorded for each test.  

Three samples were tested from each SFCS blend (27 blends in total, excluding 70:30 – 

10% ZnO, due to previously stated mixing issues).   The test samples were 20 mm round 

disks that were 2 mm in thickness.  Figure 4.53 demonstrates what a typical SFCS-ZnO 

Response – Displacement plot resembled.  This particular plot represents a 70:30 SFCS 

blend with 30 nm ZnO particles at 2% weight concentration.   

 

 

Figure 4.53.  Plot illustrating (Bottom) Electrode displacement (25% strain) and the (Top) 

Response of a SFCS-ZnO blend (70:30 with 30 nm at 2% ZnO) 
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All three frequency parameters were tested in sequence at a constant 25% strain, 

starting from 0.6 Hz (left side of plot) to 1.2 Hz (middle of plot) to 2.4 Hz (right of plot).  

Similar data was recorded and plotted for each strain permutation (5% and 10%) as well.  

The voltage vs. time plot above clearly displays an electrical response induced by a change 

in strain at each frequency.  Kwon et. al. [61], Chen et. al. [62], and Park et. al. [63] 

fabricated piezoelectric substrates consisting of PZT film, PZT nanorod and ZnO 

nanoparticle dispersion in PDMS (0-3), respectively, which yielded similar results. 

Specifically, Kwon et. al. exposed their developed thin film device to compression to 

generate the electrical response shown in Figure 4.54, experiencing a sharp peak upon 

application of the load and then release.  While Chen et. al. and Park et. al. exposed their 

developed nanorod device and 0-3 soft nanoparticle device, respectively, to bending for 

generating the electrical responses shown in Figure 4.55 and Figure 4.56, which also 

yielded a sharp peak upon application of the load and then release.  The response of the 

SFCS-ZnO blends have similarities to the aforementioned piezoelectric devices which 

demonstrates the efficacy of the soft bio-device. 
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Figure 4.54.   Piezoelectric response to of a flexible film device comprised of PZT [61] 

 

    
Figure 4.55.  Piezoelectric response to bending nanorod device comprised of PZT [62].  

 

 
Figure 4.56.  Piezoelectric response to bending a 0-3 nanoparticle composite based device 

comprised of ZnO dispersed within PDMS [63] 
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The Strain-Response data was compiled in a custom MatLab Peak Detection script 

(Appendix C.2) that would detect the average Peak-to-Peak value for each set of strain data 

at each individual frequency.  This average peak-to-peak data was then inputted into a 

Microsoft Excel script for further analysis and plotted for side-by-side comparison to the 

other blends.     

Plots shown in Figure 4.57 through Figure 4.65 display the actual electrical 

responses of the SFCS-ZnO blends with no gain used at all frequency and strain 

permutations.  For each SFCS-ZnO blend, an increase in the strain experienced by the 

blend generated an increase in specimen response.  Of the 27 total blends that were tested 

in this study, only 4 demonstrated a significantly higher response to the applied strain.  As 

shown in Figure 4.58 and Figure 4.61, the 5% weight concentrations for the 30:70 and 

50:50 blends comprised of 30 and 45 nm ZnO nanoparticles exhibited a higher response to 

the applied strain than any of the other SFCS-ZnO blends, including the control pure SFCS 

blends.  A goal of this specific experiment was to narrow down which blends have the 

highest response to strain in order to reduce the number of blends included in the distension 

tests.  
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Figure 4.57.  Barchart of 2%-30 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. 

 

 

Figure 4.58.  Barchart of 5%-30 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. 

 

 

Figure 4.59.  Barchart of 10%-30 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. 
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Figure 4.60.  Barchart of 2%-45 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. 

 

 

Figure 4.61.  Barchart of 5%-45 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. 

 

Figure 4.62.  Barchart of 10%-45 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. 
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Figure 4.63.  Barchart of 2%-200 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. 

 

 

Figure 4.64.  Barchart of 5%-200 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. 

 

 

Figure 4.65.  Barchart of 10%-200 nm SFCS-ZnO response to 5%, 10%, and 25% shear 

strain at 0.6, 1.2 and 2.4 Hz. 
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Figure 4.66 displays the actual electrical response of the pure SFCS blends at all 

frequency and strain permutations.  The maximum response for any of the pure blends did 

not exceed 750 µV.  Silk fibers and silk fibroin are naturally piezoelectrics, as are many 

other naturally occurring materials, such as quartz and bone.  Under well controlled testing 

conditions with high precision measurement equipment, natural silk fibers can generate a 

voltage difference of up to 20 millivolts when stressed [64].  The electrical response of the 

pure SFCS blends were lower than that of most SFCS-ZnO blends tested in this 

investigation, especially the 4 selected for the distension trials.   

 

  

 

Figure 4.66.  Barchart of pure SFCS sample response to 5%, 10%, and 25% shear strain 

at 0.6, 1.2 and 2.4 Hz. 

 

 Frequency Dependence 

There is a noticeable effect of the measured SFCS blend sample response with 

respect to the applied shaker frequency.  The output voltage amplitude is reduced when the 

applied frequency increases. This effect is due to the soft SFCS- blended samples’ inability 
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to respond at the same rate as the applied external mechanical strain, which dampens the 

overall magnitude of the external force.  Xu et al. [65] experiences this same phenomenon 

with PZT nanowire arrays within an epoxy matrix which they employed for energy 

scavenging at considerably low frequencies.  An additional possibility of this frequency 

dependent response may be due to the tested material experiencing mechanical 

preconditioning as the sample is being tested.  With each increase in frequency, the sample 

experiences an additional level of mechanical conditioning.  This phenomenon in alongside 

the structural latency of the scaffold matrix contribute to the reduction in output of the 

sample. 

 

 
Figure 4.67.  Plot representing frequency dependent reduction in electrical response [65] 

 

 

  

 Poling Study 

A study of poling of the SFCS-ZnO blended materials and its effectiveness was 

performed to assess whether the procedure would affect electrical response of the selected 

materials from the study performed in Section 4.3.1.  The poling electrodes were fabricated 
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and assembled with all components described in Section 3.2.3.  The gap between the 

electrodes was set to 2 mm.  The wet SFCS-ZnO samples were placed equidistant from 

one another in the poling assembly, loading no more than 3 samples per poling procedure, 

and allowing for a center-to-center spacing of approximately 30 mm between samples.  

Around 15 minutes into the poling procedure stated in Chapter 3, arcing across the 

electrodes would occur at driving voltages as low as 2 kilovolts.  Damage to the specimen, 

poling electrode assembly, and high voltage power supply occurred during the poling 

process.   Figure 4.68 demonstrates the damage that occurred on the electrode (upper inset) 

and the specimen (lower inset).   To prevent a total loss of the piece of equipment, testing 

was halted due to excessive damage to the high voltage power supply resulting in 

substantial repairs to the internal instrumentation by the investigator and resident experts.     

 

 



179 

 
Figure 4.68.  Image of damage resulted via applying a high voltage to the poling 

electrode assembly. 

 

 

 

 

 

 In Vitro Testing of SFCS-ZnO Blends in Mock Vessel Models 

 Compliance and Circumferential Strain Testing 

Mechanical characteristics such as compliance and circumferential strain were 

calculated from the recorded diameters of porcine aorta tissue and the engineered analog 

tubes constructed from an elastomeric polymer (DragonSkin®).  These values were critical 

in determining the relationship between the applied pressure via the Custom 

Electrodynamic Vessel Distension Simulation Apparatus to determine the required platen 
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stroke to achieve the desired pulse pressure ranges.  Table 4.6 and Table 4.7 present the 

calculated compliance and circumferential strains attained in response to simulated 

diastolic and systolic pressures.  Three different systolic pressures were applied to the 

elastomeric tubes and porcine aortas with the diastolic pressures held constant.  Varying 

the systolic pressure and leaving the diastolic pressure at a constant 70 mmHg for each test 

set was determined to be the simplest method since it was easier to increase the systolic 

pressure within the vessel by changing the stroke of the EDS, while maintaining the 

baseline diastolic pressure that was driven by the initial injection of saline into the VAS.  

The relationship between the applied pressure and the compliance and circumferential 

strain were critical in determining the required platen stroke for achieving the desired pulse 

pressure ranges of the EVDSA. 
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Table 4.6.  List of compliance and circumferential strain data calculated from measured 

vessel diameters from an engineered tube comprised of DragonSkin®. 

Applied Pressure 
Measured 

Diameter 
Compliance 

Circumferential 

Strain 

Psys Pdia Dsys Ddia C  εD 

(mmHg) (mmHg) (mm) (mm) (mmHg-1) (mm/mm) % 

140 70 13.30 11.2 0.0027 21% 

120 70 12.32 11.2 0.0020 11% 

100 70 11.74 11.2 0.0016 5% 

 

 

 

Table 4.7.  List of compliance and circumferential strain data calculated from measured 

vessel diameters from a 15 kg pig aorta. 

Applied Pressure 
Measured 

Diameter 
Compliance 

Circumferential 

Strain 

Psys Pdia Dsys Ddia C  εD 

(mmHg) (mmHg) (mm) (mm) (mmHg-1) (mm/mm) % 

140 70 14.02 11.45 0.0032 23% 

120 70 12.80 11.45 0.0024 12% 

100 70 12.30 11.45 0.0024 7% 

 

 

The changes in diameter due to vessel pressure were plotted for both the engineered 

Dragonskin® tube and the descending aorta of the 15 kg pig (Figure 4.69).   The applied 

pressure ranged from 70 to 140 mmHg that resulted in a change in diameter of 2.58 mm 
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and 2.10 mm for the porcine aorta and Dragonskin®, respectively.  The goal was to mimic 

the mechanical behavior of the aortic tissue during distension with the more accessible off 

the shelf Dragonskin® resin.  The distinct difference between the two vessels is the 

difference in diameters at each applied pressure value (Figure 4.69).  The engineered vessel 

was fabricated within a mold with a nominal diameter of 10 mm, which was the inner 

diameter of an off the shelf tube that was cheap and readily available for use.  This 

dimension could not be easily changed without the use of a custom manufactured mold.  

The aorta was on average 13.6±0.8% larger in diameter at each applied pressure, primarily 

because the aorta was larger in diameter.  Notice the undulations in the aorta curve versus 

the engineered tube.  This was due to the aorta not having homogenous material properties 

throughout its length or circumference, whereas, the elastomeric tube had a much higher 

level of homogeneity throughout, generating a smoother curve.   Also, the slope of each 

curve is quite similar as well, 0.030x and 0.035x for the Dragonskin and aorta, respectively, 

with both having an R2 = to 95.5%.   

 



183 

 

Figure 4.69. Diameter – Pressure plot of engineered Dragonskin vessel and a 15 kg 

porcine aorta. 

 

 

Figure 4.70 demonstrates the similarities in changes in circumferential strain due to vessel 

pressure between the engineered Dragonskin® tube and the descending aorta of the 15 kg 

pig.   The applied pressure ranged from 70 to 140 mmHg for the porcine aorta and 

Dragonskin®, respectively.  The curves have striking similarities with respect to 

circumferential strain and nearly overlap one another; indicating how well the engineered 

tube approximated the mechanical behavior of the porcine aorta.  Thus, the DragonSkin® 

vessels were used for initial testing of the ring samples in order to determine the optimum 

placement of the electrodes in the SFCS-ZnO ring samples before performing the porcine 

aorta tests. 
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Figure 4.70.  Circumferential Strain – Pressure plot of engineered Dragonskin vessel and 

a 15 kg porcine aorta. 

 

 

 

 Electrode Placement Investigation 

Upon completion of the shear testing and identification of the 4 top performing 

SFCS-ZnO blends, the ring-shaped samples were placed on the DragonSkin® vessels.  

Three samples of the 50:50 SFCS-ZnO blend with 45 nm particle at a 5% concentration 

were used to identify the optimum electrode placement by investigating 6 different 

electrode positions and configurations, as previously described in Section 3.3.3.3.  

Electrode placement and SFCS-ZnO sample response was recorded for each test.  The EDS 

platen stroke, internal vessel pressure induced by said change in platen stroke, and the 

measured voltage generated by the distended SFCS-ZnO sample were plotted (Figure 

4.71).  The programmed square wave input into the EDS controller-amplifier induced a 

square wave pressure response profile.  The initial impulse experienced by the pressure 
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sensor was a rapid increase that resulted in an overshoot in the pressure.  This overshoot 

was likely due to the small internal closed volume of the test apparatus and the pressure 

waves irradiating from the piston and traveling along the inner volume of the tube, induced 

by the rapid change in stroke. The change in SFCS-ZnO response corresponded to the 

change in pressure, whereas the vessel distended, and the ring sample experienced an 

increased state of tension.  The electrical response of the samples, while in the state of 

tension resulted in a negative peak due the local polarization of the SFCS-ZnO sample that 

was loaded.  ZnO was naturally polarized, therefore it did not require high voltage 

polarization to generate a piezoelectric output.  If the natural polarization negates the 

applied force then the resultant output will have a negative charge.  Alternatively, when 

the vessel returns to its diastolic state via rapid reduction in applied pressure, the ring 

experiences compression during the rapid return to its original state and a positive electrical 

output peak was observed.  The highly porous nature of the SFCS scaffold and the low 

stiffness made the 0-3 piezocomposite tend to have a higher affinity for compressive loads. 

As the scaffold was stretched via tensile forces the intricate matrix elongated; thus, it was 

difficult to apply a tensile force directly onto the nanoparticles themselves due to the weak 

to no binding between the SFCS matrix and the nanoparticles.  Whereas, when under a 

compressive load, the porous matrix collapses, the SFCS scaffold which then exuded a 

direct compressive load onto the nanoparticles as well as increased the particle-to-particle 

interaction of the ZnO.  This type of result was also experienced by [63] through the 

continual stretching and relaxing of 0-3 type piezoelectric materials.  As seen in the shear 

testing data from Section 4.3.1, a reduction in electrical response was observed as 

frequency increased.   
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Figure 4.71.  5050-45nm-2%, 180 degree axial position, with amplification.   

 

 
  

As mentioned previously, SFCS-ZnO ring sample response with respect to 

electrode position, pulse pressure range, and frequency were also investigated (Figure 

4.72).  The data demonstrated that the 180˚ axial electrode configuration had a higher 

response compared to the other two axial configurations (with angular positions 45˚ and 

90˚) and radially (at 180˚ position) configured electrodes.  The 180˚ position accounted for 

a nominal electrode distance of approximately 22.0 mm.  The change in the noted variables 

accounted for the reduction in electrical response.  The angular distance between the wire 

electrodes for the 180˚ axial position generated the highest due to the greater number of 

piezoelectric nanoparticles between the electrodes.  Whereas, the 45˚ and 90˚ 

configurations would, in theory, have had 25% and 50% less nanoparticles, respectively, 

due to the shorter distance between the electrodes.  Additionally, the orientation of the wire 
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while inserted into the SFCS-ZnO sample influenced the response of the sample as well.  

Specifically, the axial orientation effectively had double the contact surface area (12.56 

mm2) for the electrode within the SFCS-ZnO sample in comparison to the radial 

orientations (6.28 mm2).  This point was further supported by the output response results 

where the radial orientation displayed a lower response than the axial orientation, albeit 

not significant.    

 

 

 

 

Figure 4.72.  Bar chart demonstrating output of SFCS ring samples wire electrodes 

placed at 45˚, 90˚, and 180˚ oriented in both axial and radial configurations with respect 

to the vessel geometry. 

 

   Ex vivo testing of SFCS-ZnO samples on excised porcine aorta 

Upon completion of the electrode placement investigation, the 4 top performing 

SFCS-ZnO blends were then placed on excised descending aortas from 15 kg 

Yorkshire/Landrace pigs.  The electrode wires were oriented in the 180˚ axial position.  

Similar to the electrode placement studies, the EDS platen stroke, measured internal vessel 
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pressure, and the measured output voltage generated by the distended SFCS-ZnO blends 

data was recorded and plotted. Like the in vitro elastomer-based tubes, the change in SFCS-

ZnO response corresponded to the change in pressure (Figure 4.73).  In addition, the peak-

to-peak response data for the SFCS-ZnO ring samples with respect to electrode position, 

pulse pressure range, and frequency were plotted (Figure 4.74).  Of the 4 SFCS-ZnO blends 

tested, the observed data demonstrated that the 3070 SFCS blend with the 30 nm ZnO 

nanoparticles at a ZnO concentration of 5% by weight exhibited the highest response 

during distension.  The average Elastic Modulus of the 4 tested SFCS-ZnO candidates was 

also presented in Figure 4.74, shown as large black circles with the error bars denoting 

standard deviation.  This demonstrated a correlation between the mechanical stiffness of 

the SFCS-ZnO matrix and the electrical response of the material.  Thus, this final 

experiment proved that the SFCS tissue scaffolds with embedded ZnO nanoparticles do 

provide the capability to act as a piezoelectric pressure sensor under cardiovascular 

physiological conditions. 
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Figure 4.73.  Plot of shaker stroke (Top), vessel pressure (Middle), and SFCS response 

(Bottom) for a 3070-45nm -5% sample 

 

 

 

Figure 4.74.  Bar chart demonstrating output of SFCS ring samples when mounted to 

porcine aortic tissue and distended.   

 



190 

 

 

  

The goal of this project was to develop and create prototype biocompatible and 

bioresorbable electroactive perivascular bands comprised of several permutations of SFCS 

blends, ZnO nanoparticle size and ZnO nanoparticle concentrations.  Mechanical and 

electrical studies were performed to determine the optimal blend of scaffold with respect 

to ZnO nanoparticle concentration.  Demonstration and advancement of said prototypes 

would not have been possible without the development of: 

 Molds for production of all SFCS-ZnO test samples 

 A custom-designed differential amplification circuit with electronics chosen for 

easy gain adjustment and low-noise 

 Supporting data acquisition and analysis software to set the response offsets, 

control sampling, and record the experimental data 

 A custom dynamic material shearing unit  

 A custom dynamic distension unit 

Collectively, the aforementioned individual components provided experimental 

platforms to explore the mechanical and electrical performance of the SFCS-ZnO blends.  

Evaluation of the electronics indicated that the performance of the amplification circuit fell 

within specifications and functioned as designed. The data acquisition and analysis 

software developed was an essential component for both experimental control as well as 

clkerr01
Typewritten Text
CHAPTER 5:  CONCLUSIONS



191 

post experiment data processing methods.  The custom dynamic shearing and distension 

units proved vital in the determination of electrical response of the SFCS-ZnO samples 

when exposed to mechanical shear strains and circumferential strains induced via vessel 

distension.  This investigation established that a fully functional biocompatible material 

can be doped with a biocompatible piezoelectric nanoparticle and demonstrate a means of 

converting mechanical strain into a measurable electrical signal output without the need of 

power or external wiring of any kind.    

Based on the present investigation and current understanding of the functionality of the 

newly developed tissue engineered perivascular sensor, the following recommendations 

are made with respect to future work:   

1. Take a deeper look into the actual piezoelectric characteristics of the device.  

Potentially determining and gaining a greater understanding of the principles 

behind the scenes. 

2. Develop a perivascular band that goes beyond the proof of concept solid ring 

structure which currently cannot be surgically placed around a desired blood vessel.  

A method of securely wrapping a flat strap band design, similar to a wristwatch 

band, would be required for proper surgical installation of the device.  

3. Develop an implantable electrode that interfaces with the tissue engineered scaffold 

more effectively than the current simple electrode wire approach used in this study.   

4. Perform an acute in vivo animal experimentation to confirm device robustness to 

survive surgical implantation and short term efficacy of the device.  Determine 

whether the device functions while under normal physiological conditions in vivo. 
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Perform a chronic in vivo animal experimentation to determine long term efficacy of the 

device.  This study would 1.) determine the body’s response to the implanted device over 

time and 2.) discover whether the electrical response degrades or improves as the body 

incorporates the tissue scaffold into the vessel wall. 
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Appendix 1 – Mechanical Drawings and Bill of Materials 

Custom Electrodynamic Biaxial Testing Apparatus 

 A custom frame was designed and fabricated to be mounted directly to the EDS 

steel frame.   The lasercut acrylic sheets (6.34 mm thick) were designed to be bolted to the 

EDS u-channel support and isolation structure which is located under the shaker unit.  A 

rack and pinion mechanism is mounted to the top of the acrylic frame within a housing 

block allowing for 0.005 inches per degree of rotation of fine adjustment through the knob.       

           

Figure 0.1.  Biaxial testing apparatus 

 

 A biaxial testing apparatus was custom designed to effectively stretch test coupons 

equally in both the X and Y directions.  This device was intended to be directly mounted 

to the rack of the fine adjustment mechanism and the platen of the electrodynamic shaker 
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unit shown in Figure 0.1.  The maximum equibiaxial strain the apparatus is designed to 

transmit to the test sample is 40%.  The biaxial apparatus consists of 3 parallel sheets of 

lasercut 1.5 mm thick Delrin© sheet.  The two outermost sheets convert the uniaxial 

displacement delivered by the EDS into equibiaxial displacement.  The symmetric structure 

of the “cross” effectively performs this task.  There are eight shoulder bolts (Ø3 mm) that 

connect the equibiaxial cross structure to the innermost “snowflake” structure,5 mm long 

standoffs center the snowflake structure equally between the outer “cross” sheets.  The 

inner geometry of the snowflake converges to a 10 mm square with 16 electrodes with a 

span of 2.5 mm.    

 

 

Figure 0.2.  Custom built biaxial testing apparatus. 
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Figure 0.3.  Exploded view of custom built biaxial testing apparatus. 

 

In order to load a SFCS blended sample the user must physically press the puncture 

the scaffold via the electrode pins on the “snowflake” component of the biaxial unit.  This 

puncturing process initiated localized fracture sites at each electrode location with the 

sample.  Upon displacing the biaxial device with a loaded sample, the localized fracture 

sites within the SFCS sample would propagate along the dynamic path of each of the 

electrode locations.  This loss of mechanical integrity would compromise the electrical 

response of the SFCS sample.  An alternative approach to a controllable input displacement 

was required.    

Biaxial electrode mold 

The biaxial electrode mold (Figure 0.4) was manufactured to allow for precise 

injection of ecoflex:ZnO blends into the desired form to be mounted in the biaxial testing 

apparatus.  This mold is laser cut from 4 separate layers of acrylic and Delrin.  The base 
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layer (Figure 0.4b-(a)) is comprised of acrylic, is 0.250 inches thick and has threaded holes 

to allow for all other layers to be securely clamped together.  Layer (b) is comprised of 

1/16 inch Delrin and has hole arrays that correspond to the spans of the electrodes in the 

biaxial testing apparatus (BTA).  Layer (c) is comprised of 1 mm thick Delrin and accounts 

for the overall volume of the test sample coupon geometry, it also has internal channels to 

allow for the flow of uncured resin to fill multiple cavities within the mold.  Layer (d) is 

comprised of 1/8 inch thick acrylic and houses the array of mold pins (e) that again 

correspond to the BTA electrodes spans.  The mold pins create the holes in the sample that 

allow for easy sample mounting in the BTA and are pressed in for a secure and repeatable 

filling of material. 
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a

b

c

d

e

 

Figure 0.4.  a.) CAD rendering of biaxial electrode mold.  b.) CAD rendering of test 

sample 
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 Shear Apparatus 
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Distensio Apparatus 
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Appendix 2 - Electrical Drawings and Bill of Materials 

 

DIFFERENTIAL AMPLIFIER BOM 
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Appendix 3 - Program Algorithms and Code 

MATLAB PLOTTING SCRIPT 

%%  SELECTING MULTIPLE FILE DIRECTORY  

 

s = dir(*.txt'); 

%s = dir(*.txt');     

 

names = {s.name}; 

nr = 5;  % # of rows 

nc = 5;  % # of columns 

mat = zeros(nr,nc); 

 

for n = 1:numel(names) 

    data = dlmread([‘’\' names{n}]); 

    %data = dlmread(['' names{n}]);   %for lab PC 

     

%%  FILE INPUT 

 

%dataname = '15APR2015-2-ZNO%-200-NM-ECO--S1-R1-6.txt'; 

%data = dlmread(dataname); 

%timename = 'SAMPLE-RATE-100KP.txt'; 

%time = dlmread(timename); 

 

response = data(:,1); 
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input = data(:,2); 

 

%% STRING MANIPULATION FOR FILE SAVING 

 

path = '’; 

filename1 = strrep(names{n},'.txt',''); 

filename2 = '_PLOT1'; 

filename3 = '_PLOT2'; 

filename4 = '_PLOT3'; 

filename5 = '_PLOT4'; 

filename6 = '_PLOT5'; 

filename7 = '_PLOT6'; 

filename8 = '_PLOT7'; 

 

%%  TIME DATA 

 

numpoints = length(response); 

rate = 5000; 

time = (numpoints/rate)-(1/rate); 

t = transpose(0:1/rate:time); 

x = transpose(0:1:numpoints-1); 

xx = numpoints; 

 

%%  PLOT 1 
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f1 = figure; 

subplot(2,1,1); 

plot(x,response,'Color','r','LineWidth',1) 

ylabel 'Voltage (V)', xlabel 'Time (s)' 

title 'Signal Response',  

axis([0 xx -1.0 1.0]) 

subplot(2,1,2); 

plot(x,input,'Color','b','LineWidth',1) 

ylabel 'Displacement (in)', xlabel 'Time (s)' 

title 'Input Signal',  

axis([0 xx .28 0.37]) 

 

fig1 = strcat(filename1,filename2,'.fig'); 

jpg1 = strcat(filename1,filename2,'.jpg'); 

saveas(f1,fig1); 

saveas(f1,jpg1); 

 

close 

end 
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MATLAB PEAK TO PEAK DETECTION AND ANALYSIS 

 

%%  SELECTING MULTIPLE FILE DIRECTORY  

 

s = dir(*.txt'); 

names = {s.name}; 

 

all_data = []; 

for n = 1:numel(names) 

data=designfilt('highpassiir','FilterOrder',8,'PassbandFrequency',0.45,'PassbandRipple',0.2

,'SampleRate',2000); 

 

buttfilter = filtfilt(hpFilt,response); 

 

%%  PEAK 2 PEAK HEIGHT 

 

FQ1 = peak2peak(buttfilter(10000:30000));       %PEAK TO PEAK MEASUREMENT 

OF INNER 50% OF SINGLE AT 0.6 HZ 

FQ2 = peak2peak(buttfilter(37000:47000));       %PEAK TO PEAK MEASUREMENT 

OF INNER 50% OF SINGLE AT 1.2 HZ 

FQ3 = peak2peak(buttfilter(52000:59000));       %PEAK TO PEAK MEASUREMENT 

OF INNER 50% OF SINGLE AT 2.4 HZ 

 

F = [FQ1;FQ2;FQ3]; 

all_data(n).data = F; 

 

end 
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FF = struct2cell(all_data); 

FFF = cell2mat(FF); 

dlmwrite(','\t') 

 

DISTENSION DATA SCRIPT 

 

%%  SELECTING MULTIPLE FILE DIRECTORY  

s = dir(*.txt'); 

 

names = {s.name}; 

for n = 1:numel(names) 

    data = dlmread(['' names{n}]); 

     

%%  FILE INPUT 

 

%dataname = '15APR2015-2-ZNO%-200-NM-ECO--S1-R1-3.txt'; 

%data = dlmread(dataname); 

%timename = 'SAMPLE-RATE-100KP.txt'; 

%time = dlmread(timename); 

 

response = data(:,3); 

pressure = data(:,2); 

input = data(:,1); 

 

%% STRING MANIPULATION FOR FILE SAVING 
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filename1 = strrep(names{n},'.txt',''); 

 

%%  TIME DATA 

 

numpoints = length(response); 

rate = 2000; 

time = (numpoints/rate)-(1/rate); 

t = transpose(0:1/rate:time); 

x = transpose(0:1:numpoints-1); 

xx = numpoints - 1; 

 

%%  PLOT 1 

 

figure 

% subplot(2,1,1); 

% plot(x,response,'Color','r','LineWidth',2) 

% ylabel 'Voltage (V)', xlabel 'Time (s)' 

% title 'Signal Response',  

% axis([0 xx -5 0]) 

% subplot(2,1,2); 

% plot(x,input,'Color','b','LineWidth',2) 

% ylabel 'Displacement (in)', xlabel 'Time (s)' 

% title 'Input Signal',  

% axis([0 xx 0.06 0.1]) 
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% axis([0 xx -5.0 5.0]) 

 

%%  FILTERING 60 HZ NOISE 

 

hpFilt = designfilt('highpassiir','FilterOrder',8, ... 

         'PassbandFrequency',0.45,'PassbandRipple',0.2, ... 

         'SampleRate',2000); 

 

buttfilter = filtfilt(hpFilt,response); 

buttfilterP = filtfilt(hpFilt,pressure); 

 

% plot(buttfilterP,buttfilter,'Color','r','LineWidth',.5) 

% ylabel 'Voltage (V)', xlabel 'Time (s)' 

% title 'SFCS Response',  

 

% PLOT #2 

figure 

plot(x,response,x,buttfilter) 

ylabel 'Voltage (V)', xlabel 'Time (s)' 

title 'Unfiltered vs. Filtered', legend('Unfiltered','Filtered') 

% axis([0 xx -0.5 0.5]) 

 

figure 

plot(x,pressure,x,buttfilterP) 
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ylabel 'Voltage (V)', xlabel 'Time (s)' 

title 'Unfiltered vs. Filtered', legend('Unfiltered','Filtered') 

 

%PLOT #4 

% f1 = figure(1); 

%  

% subplot(5,1,1); 

% plot(x,input,'Color','b','LineWidth',.5) 

% ylabel 'Displacement (in)', xlabel 'Time (s)' 

% title 'Shaker Stroke',  

% axis([0 xx 0 0.5]) 

%  

% subplot(5,1,3); 

% plot(x,pressure,'Color','g','LineWidth',.5) 

% ylabel 'Pressure (mmHg)', xlabel 'Time (s)' 

% title 'Vessel Pressure',  

% axis([0 xx 0 180]) 

%  

% subplot(5,1,5); 

% plot(x,buttfilter,'Color','r','LineWidth',.5) 

% ylabel 'Voltage (V)', xlabel 'Time (s)' 

% title 'SFCS Response',  

% axis([0 xx -1.0 1.0]) 

%  

% suptitle(filename1); 
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%  

% fig1 = strcat(filename1,'.fig'); 

% jpg1 = strcat(filename1,'.jpg'); 

% saveas(f1,fig1); 

% saveas(f1,jpg1); 

 

%% 

% NFFT = 2^nextpow2(numpoints); % Next power of 2 from length of y 

% Y = fft(response,NFFT)/numpoints; 

% f = rate/2*linspace(0,1,NFFT/2+1); 

%  

% % Plot single-sided amplitude spectrum. 

% plot(f,2*abs(Y(1:NFFT/2+1)))  

% title('Single-Sided Amplitude Spectrum of y(t)') 

% xlabel('Frequency (Hz)') 

% ylabel('|Y(f)|') 

% axis([0 3.2 0 .2]) 

 

End 
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Appendix 4 – Experimental Data 
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SEM Imagery 
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Stress versus strain plot for a single sample of each SFCS-ZnO blend. 

 

Mechanical Testing of 15 kg porcine descending aortic tissue 
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Mechanical Testing of 15 kg porcine descending aortic tissue in tensile tester 
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Preconditioning cycle of 15 kg porcine descending aortic tissue 
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Mechanical Data from 15 kg porcine descending aorta tissue tensile tests. 

E 10.878 ± 0.3096 Mpa 

ETOE 0.391 ± 0.0344 Mpa 

σUT 4.916 ± 0.1328 Mpa 

%εBREAK 2.003 ± 0.0917 mm/mm 

σY 4.650 ± 0.2900 Mpa 
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