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ABSTRACT 

EXPERIMENTAL CHARACTERIZATION AND MODELING OF 
ISOTHERMAL AND NONISOTHERMAL PHYSICAL AGING IN 

GLASSY POLYMER FILMS 

Yunlong Guo 

May 13,2009 

Fiber-reinforced polymer matrix composites (PMCs) usmg high-temperature 

thermoplastics as the matrix material represent a lightweight design solution for 

applications above 250°F. This is often required for aircraft structures subjected to 

supersonic airflows. While thermoplastic matrix PMCs may be successfully designed for 

such temperatures, they generally exhibit a time-dependent material response which must 

be well understood for successful design. One important aspect of this response is 

physical aging, which causes the viscoelastic behavior of amorphous polymers below 

their glass transition temperature to change with time. While isothermal physical aging 

has been extensively studied, physical aging during a varying temperature history has 

received less scrutiny. 

This dissertation focuses on nonisothermal physical aging of polymers from both 

experimental and theoretical aspects. The study concentrates on pure polymers rather 

than fiber-reinforced composites; this step removes several complicating factors to 

vi 



simplify the study. It is anticipated that the findings of this work can then be applied to 

composite materials applications. 

The physical aging tests in this work are performed using a dynamic mechanical 

analyzer (DMA). The viscoelastic response of glassy polymers under various loading and 

thermal histories are observed as stress-strain data at a series of time points. The first 

stage of the experimental work involves the characterization of the isothermal physical 

aging behavior of two advanced thermoplastics. The second stage conducts tests on the 

same materials with varying thermal histories and with long-term test duration. This 

forms the basis to assess and modify a nonisothermal physical aging model (KAHR-ate 

model). Based on the experimental findings, the KAHR -ate model has been revised by 

new correlations between aging shift factors and volume response; this revised model 

performed well in predicting the nonisothermal physical aging behavior of glassy 

polymers. 

In the work on isothermal physical aging, short-term creep and stress relaxation 

tests were performed at several temperatures within 15-35 °C below the glass transition 

temperature (Tg) at various aging times, using the short-term test method established by 

Struik. Stress and strain levels were such that the materials remained in the linear 

viscoelastic regime. These curves were then shifted together to determine momentary 

master curves and shift rates. In order to validate the obtained isothermal physical aging 

behavior, the results of creep and stress relaxation testing were compared and shown to 

be consistent with one another using appropriate interconversion of the viscoelastic 

material functions. Time-temperature superposition of the master curves was also 

performed. The temperature shift factors and aging shift rates for both PEEK and PPS 
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were consistent for both creep and stress relaxation test results. 

Nonisothermal physical aging was monitored by sequential short-term creep tests 

after a series of temperature jumps; the resulting strain histories were analyzed to 

determine aging shift factors (ate) for each of the creep tests. The nonisothermal aging 

response was predicted using the KAHR-ate model, which combines the KAHR model of 

volume recovery with a suitable linear relationship between aging shift factors and 

specific volume. The KAHR-ate model can be utilized to both predict aging response and 

to determine necessary model parameters from a set of aging shift factor data. For the 

PEEK and PPS materials considered in the current study, predictions of mechanical 

response were demonstrated to be in good agreement with the experimental results for 

several complicated thermal histories. In addition to short-term nonisothermal aging, 

long-term creep tests under identical thermal conditions were also analyzed. Effective 

time theory was unitized to predict long-term response under both isothermal and 

nonisothermal temperature histories. The long-term compliance after a series of 

temperature changes was predicted by the KAHR-ate model, and the theoretical 

predictions and experimental data showed good agreement for various thermal histories. 

Lastly, physical aging behavior of PPS near the glass transition temperature was 

investigated, in order to observe the mechanical response in the process of the evolution 

of the material into equilibrium. At several temperatures near Tg , the time need to reach 

equilibrium were determined by the creep test results at various aging times. In addition 

to isothermal physical aging, mechanical shift factors in the period of approaching 

equilibrium at a common temperature after temperature up-jumps and down-jumps are 

monitored from creep tests; prior to these temperature jumps, the materials were aged to 
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reach equilibrium states. From these tests, asymmetry of approaching equilibrium 

phenomenon in ate was observed, which is first-time reported in the literature. This 

finding shows the similarity between the thermodynamic and mechanical properties 

during structural relaxation. This work will lead to improved understanding of the 

viscoelastic behavior of glassy polymers, which is important for better understanding and 

design of PMCs in elevated temperature applications. 

With the above findings, this dissertation deals with nonisothermal physical aging 

of glassy polymers, including both experimental characterization and constructing a 

framework for predictions of mechanical behavior of polymeric materials under 

complicated thermal conditions. 
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CHAPTER 1 

INTRODUCTION 

This chapter provides a brief introduction of polymeric materials and the 

background of physical aging of glassy polymers. It also includes the scope of this 

dissertation and the organization ofthe following chapters. 

1.1 Polymeric Materials 

Polymers are widely used in the world today because of their desirable properties. 

These include good strength and modulus to weight ratios, chemical resistance, toughness, 

low thermal and electrical conductivity, ease of manufacture and low cost. As such, 

various forms of polymeric materials are used in the automotive industry, aerospace 

industry, computer industry, sporting goods, building structures and many other 

applications such as coatings, packaging, furniture and furnishing, etc. (Brinson and 

Brinson, 2008). One interesting feature of polymers is the cost to produce polymers is 

sometimes less than the cost to produce metals for comparable use. Crawford (Crawford, 

1992) reported relative energy required to manufacture various sheet materials and the 

data indicates that several popular polymers (PVC, polycarbonate, polyethylene, etc.) can 

save more than 50% of the energy needed to manufacture similar steel sheets. 



This partially explains why some traditional materials are being replaced by polymeric 

materials. Currently, advanced polymer-based materials, including polymer matrix 

composites, self-healing polymers, polymers for biomedical applications, and nano

reinforced polymers, are attracting a great deal of attention from researchers and industry 

all over the world. 

Along with the development of many novel polymeric materials, theoretical 

analysis and experimental methodology in polymer physics, polymer chemistry and 

polymer viscoelasticity (Aklonis and MacKnight, 1983; Eisele, 1990; Hiemenz and 

Lodge, 2007) have been developed to aid in design and analysis of polymer-based 

materials. This dissertation focuses on the mechanical characterization of polymers, 

specifically in the area of viscoelastic behavior at elevated temperatures near the glass 

transition temperature of the polymer. 

1.2 Physical Aging of Polymers 

Understanding the mechanical behavior of polymer-based materials, especially 

fiber-reinforced polymeric matrix composites (PMCs) is a critical issue for many modem 

engineering structural applications (Ward, 1983). In such materials, strong/stiff fibers 

(graphite, glass, Kevlar, etc.) are held together using a softer polymer material called the 

matrix. In many circumstances, the polymeric matrix is the major constituent that 

contributes to degradation or changes in durability of PMCs subjected to long term 

exposure at elevated temperatures (Brinson and Gates, 1995; Sullivan, 1990; Sullivan et 

aI., 1993). One important aspect of these changes is physical aging, which causes the 
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viscoelastic behavior of the polymer to vary with time spent below its glass transition 

temperature (Tg). The design of polymer composites for elevated temperature 

applications thus requires an understanding of physical aging of polymers subjected to 

isothermal and nonisothermal conditions (Bradshaw, 1997). 

When an amorphous' polymer is cooled to a temperature below Tg , it enters a 

non-equilibrium glassy state. The material then proceeds towards equilibrium over a 

period of time; this phenomenon is known as structural relaxation. Structural relaxation 

manifests itself in several ways: volume recovery (shown in Figure 1); enthalpy 

relaxation, which underlies changes in thermodynamic properties, such as specific 

volume and enthalpy, structural relaxation is also observed in changes of mechanical 

properties such as compliance and modulus, in this context, structural relaxation is named 

physical aging by Struik (Struik, 1978). 

The temperature dependence upon cooling of the specific volume, as shown in 

Figure 1, is pioneered by Kovacs (1963). The Tg is actually determined as the intersection 

of the straight line portions of the curve above and below the glass transition temperature. 

In Figure 1, temperature T is below Tg, the polymer is in nonequilibrium state at this 

temperature right after a quench from a temperature above Tg. At the beginning of 

physical aging, the specific volume is given by V 11,=0 = v' + a g (T - Tg) , where v* is the 

1 The bulk state includes both amorphous (totally lacking positional order on the molecular scale) and 
crystalline polymers. While amorphous polymers do not contain any crystalline regions, crystalline 
polymers generally contains both crystalline and amorphous regions, so those are often called 
semicrystalline polymers. Crystalline polymers have true melting temperature (Tm) at which the ordered 
regions break up and become disordered (amorphous). In contrast, the amorphous regions soften over a 
relatively wide temperature range (always lower than Tm) known as the glass transition (Tg). Fully 
amorphous polymers do not exhibit Tm, of course, but all polymers exhibit Tg. Above these temperatures, 
polymers are liquids. See later sections for details. 
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specific volume at Tg, and ag is volumetric coefficient of thermal expansion in glassy 

state; during physical agmg, the specific volume can be expressed as 

where a, is volumetric coefficient of thermal expansion in liquid (equilibrium) state. 
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Figure 1. Volumetric response during constant rate cooling from above Tg; evolution 
leads to volume path shown if temperature is maintained constant. (Bradshaw, 1997) 

The behavior of a material with physical aging is governed by its aging state2
, 

which in tum depends upon the thermal history. In the case of isothermal aging, the 

material is quenched from T> Tg (i.e. equilibrium state) to a temperature below Tg and 

held at that temperature thereafter. The aging time of the material (te) is defined as the 

time that has passed since the completion of the quench. In the case of nonisothermal 

2 For brevity, the term "aging" will be taken in this document to be synonymous with "physical aging"; no 
other forms of aging are considered in this dissertation. 
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aging, the material undergoes a varying thermal history following the quench and the 

aging time is less clear. This condition is typical of many PMCs structures during their 

service life. Due to the complex material response under varying temperature conditions, 

however, nonisothermal physical aging has received much less attention than its 

isothermal counterpart. 

Although the chief interest for physical agmg is to understand the effect of 

elevated temperature upon polymer matrix composites, this phenomenon can be studied 

more easily using pure polymer films. One benefit of working with films is that a 

dynamic mechanical analyzer (DMA) can be used to characterize material response; this 

instrument is designed to accurately characterize polymer viscoelastic response using a 

wide variety of temperature and load histories. This research investigates physical aging 

of polymer films under constant and varying thermal histories using a DMA and develops 

techniques to predict that response. 

1.3 Scope of This Dissertation 

This dissertation focuses on physical agmg of polymers in their glassy state 

(below Tg) subjected to isothermal and nonisothermal conditions. The first stage involves 

the characterization of the isothermal physical aging behavior of two thermoplastics. The 

second stage consists of both experimental investigation and modeling of physical aging 

on the same materials with varying thermal histories. The third and final stage of this 

dissertation investigates physical aging near the glass transition temperature, which 

includes aging into equilibrium at constant temperatures and a study of the effect of the 
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path of approaching equilibrium via temperature up jumps and down jumps. Since aging 

shift factors have similar characteristics to the specific volume response observed by 

many researchers in last century, the physical aging behavior near Tg provides new 

database for future research into the relationship between the thermodynamic and 

mechanical properties during structural relaxation. 

There are seven chapters in the dissertation following this introduction. Briefly 

structured, the content ofthese chapters is as follows: 

• Chapter 2 represents background information on classification and 

viscoelastic behavior of polymers. 

• Chapter 3 describes the experimental methods and materials m this 

dissertation. The experimental equipment is also introduced. 

• Chapter 4 reports the experimental characterization of isothermal physical 

aging of PEEK and PPS films by creep and stress relaxation. In order to 

validate the obtained behavior, the results of creep and stress relaxation 

testing were compared and shown to be consistent with one another using 

appropriate interconversion of the viscoelastic material functions. Time

temperature superposition of the master curves was also performed. The 

temperature shift factors and aging shift rates for both PEEK and PPS 

were consistent for both creep and stress relaxation test results. 

• Chapter 5 represents the experimental details, results and data analysis of 

nonisothermal physical aging, including the single-step temperature up 
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jumps and complicated thennal histories. This chapter covers both the 

short-tenn and long-tenn creep responses for PEEK and PPS films. 

• Chapter 6 describes the work on modeling and prediction of mechanical 

aging shift factors during nonisothennal physical aging. The KAHR -ate 

model, which combines the KAHR model of volume recovery with a 

suitable linear relationship between aging shift factors and specific volume, 

is introduced and utilized to both predict aging response or to detennine 

necessary model parameters from a set of aging shift factor data. A 

procedure is demonstrated in this chapter to detennined optimal model 

parameters for data sets from various temperature histories. Long tenn 

creep predictions of nonisothennal physical aging using these parameters, 

based on effective time theory, is also included. 

• Chapter 7 investigates the physical aging near glass transition temperature 

of PPS. Both the isothermal and the nonisothennal aging into equilibrium 

testing and results are reported. The times of reaching equilibrium in 

isothennal physical aging were detennined at several temperatures, by 

fitting the change of aging shift rate with increasing aging time. In this 

chapter, mechanical shift factors following temperature up-jump and 

down-jump after reaching equilibrium to a common temperature were 

observed, the finding of asymmetry of ate for up-jump and down-jump can 

be used for future research on the relationship among various material 

properties during structural relaxation. 
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The work in chapters above is summarized in Chapter 8. Several conclusions are 

made at the end of this dissertation. 
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CHAPTER 2 

POLYMER VISCOELASTICITY 

This chapter covers several portions as a background of properties of polymers, 

which include classification of polymers; glass transition and characterization methods; 

and several general topics in linear polymer viscoelasticity such as creep and stress 

relaxation, Boltzmann Superposition Principle, viscoelastic models, etc. 

2.1 Classification of Polymers 

The word polymer literally means "many units". A polymer is the union of two or 

more structural units of a simple compound. There are many ways to classify polymers 

based on their molecular structure. However, most polymers can be broadly classified as 

either thermoplastics or thermosets according to bonding types. Polymers consist of 

atoms joined by a combination of van der Waals bonds and chemical covalent bonds. The 

intrachain bonds for thermoplastics and thermosets are chemical (covalent); but 

thermoplastics have only van der Waals bonds between chains, while thermosets have 

both chemical and van der Waals bonds between chains. As such, thermosets are often 

called crosslinked or network polymers. Effectively, the thermoset is one large molecule 

with no crystalline structure. 

The names thermoset and thermoplastic are not only associated with the 
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molecular structures of each but with their material properties as well. Thermoplastics 

can be cooled and reheated so therefore recycled where thermosets can only be heated 

once and are therefore not recyclable by melting. The reason for this is that 

thermoplastics have relatively weak forces of attraction between the chains, which are 

overcome when the material is heated. Alternately, thermosets, where the crosslinking of 

the molecules is by strong chemical bonds, cannot be melted. 

Compared with thermoplastics, thermosets are generally harder, more rigid and 

more brittle, and their mechanical properties are not as heat sensitive. Thermosets are 

also less soluble in organic solvents. Some examples of thermosetting polymers include: 

epoxies, polyamines, polyurethanes. For structural PMCs, thermosets are the most 

common matrix material. 

Thermoplastic polymers can be classified into amorphous and crystalline 

materials. Many polymers when cooled from the molten state form a disordered structure, 

which is termed the amorphous state. Amorphous polymers are usually considered to be a 

random tangle of molecules. Polystyrene (PS), poly (methyl methacrylate) (PMMA), 

polycarbonate (PC) and poly (vinyl Chloride) (PVC) are examples of amorphous 

thermoplastics (Brinson and Brinson, 2008). Many other polymers produce both 

molecular orientation and small regions of three-dimensional order, called crystallites, 

when they are cooled from the melt. Crystalline polymers show isotropic bulk 

mechanical properties in the macroscopic sense, but are not homogeneous in the 

microscopic sense. Crystalline polymers have often more density, hardness, corrosion 

resistance, and less time dependent behavior than amorphous polymers. The degree of 

crystallinity is rarely over 50%. Typical crystalline thermoplastics in engineering 
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application include: polypropylene (PP), polyamides (Nylon), poly (ether ether ketone) 

(PEEK), and poly (phenylene Sulfide) (PPS). 

According to the discussion above, one simple classification schematic of 

polymers is shown in Figure 2. It should be noted that physical aging is manifested in 

materials with an amorphous phase; this includes virtually all polymers of interest for 

structural applications. 

r---- Thermosets 

Polymers Amorphous 

'---- Thermoplastics 

Crystalline 

Figure 2. A simple classification of polymers 

2.2 Glass Transition of Polymers 

2.2.1 Phenomenology of the Glass Transition 

The glass transition temperature, Tg, is the temperature at which an amorphous 

solid, such as glass or a polymer, becomes brittle on cooling, or soft on heating. More 

specifically, it defines the glass transition, a phenomenon which not only affects the 

modulus of polymeric materials but also the specific volume, the specific heat, the 

enthalpy, the entropy, the dielectric constant, etc., of such materials. It is important to 
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note that the glass transition temperature is a kinetic parameter; as such, it parametrically 

depends on the melt cooling rate, where the slower the melt cooling rate, the lower the 

resulting Tg. In addition, Tg depends on the measurement conditions, which are not 

universally defined (Mazurin and Gankin, 2007). 

Below the glass transition temperature, polymeric materials are in a glassy state 

and maintain the disordered nature of the melt and lack molecular mobility. Due to low 

thermal energy and little available free volume (see next section for details), the 

molecular motion consist of the vibration of chain segments around fixed positions. 

When the temperature increases, the amplitude of the vibrations increases, transmitting a 

rise to intermolecular interactions, and a growing fraction of chain segments occur. 

Stronger modes of movement appear that involve the rotation and translation of chain 

terminals and chain segments or loops incorporating about ten bonds. The related 

temperature range of these movements is the glass transition temperature (Riande et aI., 

2000). Above Tg, joining bonds are broken by thermal fluctuations so that broken bonds 

begin to form clusters. These clusters become large facilitating the flow of material. In 

organic polymers, secondary, non-covalent bonds between the polymer chains become 

weak above Tg and polymers become soft and capable of plastic deformation without 

fracture. 

Polymers have five regions of behavior as a function of temperature as depicted in 

modulus (using 10 second data3
) properties in Figure 3 (Brinson and Brinson, 2008): 1) 

glassy region where the polymer is glassy and frequently brittle; 2) glass transition region 

3 In a stress relaxation test conducted at a constant temperature, the ratio of stress to strain at a given 
instant in time of 10 seconds, is defined as the 10 second modulus, E(lO sec). 
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where the polymer acts as leathery, and a few degrees of temperature change affects the 

stiffness of the leather; 3) rubbery plateau region where after the sharp drop that the 

modulus takes in the glass transition region, it becomes almost constant again in the 

rubbery plateau region; 4) Rubbery flow region; 5) liquid flow region (Sperling, 2005). 

All tests in this dissertation were performed within the first 3 regions. 
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Figure 3. Five regions of viscoelastic behavior of a thermoplastic polymer (Brinson and 
Brinson, 2008) 

The glass transition temperature can be determined experimentally by various 

methods. Figure 4 shows the variation of viscosity 17 with temperature for a polymer 

(Riande et aI., 2000). Due to the enormous change in 17 in passing through the glass 

transition, this behavior can be used to determine the Tg as the temperature of minimum 

value ofthe derivative (rate of change) with temperature oflog 17. 

In contrast to the viscosity, the coefficient of thermal expansion, heat capacity, 

and many other properties of polymers show a relatively sudden change at the glass 

transition temperature. This effect is used for measurement by dilatometry and 
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differential scanning calorimetry (DSC). Figure 5 shows three different points on the 

curve of temperature dependencies of specific heat that can be used to determine Tg 

(Mazurin and Gankin, 2007). Although some researchers use temperature corresponding 

to point B or C as the glass transition temperature, it appears that the most popular way of 

defining Tg by DSC curves is the intersection of two tangents at the start of the apparent 

change of the slope of the heat capacity (point A). 

5 
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Figure 4. Viscosity-temperature dependence for an amorphous polymer 
(Riande et aI., 2000) 
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Figure 5. Various points in temperature dependencies of heat capacity used to determine 
Tg (Mazurin and Gankin, 2007) 
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In addition to calorimetry, dilatometry has been extensively employed as a classic 

method for the experimental determination of the glass transition temperature. In this 

technique, the temperature dependence upon the volume or specific volume is measure, 

and the temperature at the change in slope is taken as Tg • Such a plot is represented in 

Figure 6 (Svoboda et aI., 2008). The Tg is determined at the intersection of the extension 

lines of volume curves below and above Tg . Note that the slope (the first derivative of 

volume) is the volumetric coefficient of thermal expansion, which is expressed as 
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Figure 6. Temperature dependence ofPVAc volume measured dilatometrically at cooling 
rate q =0.2 K Imin. Evaluation of Tg is indicated by the dashed lines (Svoboda et aI., 2008) 

It can be seen that at Tg there is a discontinuous change in the thermal expanSIOn 

coefficient. In Figure 6, the thermal expansion coefficient in the glassy state, ag , is 
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2.4 X 10-4 K-1 
, and for the liquid, at, is 6.66 xl 0-4 K-1

• The coefficient a exhibits a 

discontinuity at glass transition. 

Another method to determine the glass transition temperature is the dynamic 

mechanical analysis. Figure 7 illustrates that the dynamic properties (these properties 

will be discussed in next section) change with temperature. In this approach, Tg is 

commonly defined as either the maximum of the damping ratio, E "I E ' ( tan 5), the 

maximum of E" (Herzog et aI., 2005), or the onset of the change in the slope of the E' 

curve. Each of these is illustrated in Figure 7; it is clear that these methods can produce 

different values for the same set of data. 
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Figure 7. Tg determined by the onset of the storage modulus E' change, the maximum of 
loss modulus E" , and the maximum of phase factor tan 5 (Herzog et aI., 2005) 

Experimental results suggest that glass transition IS a second order 4 phase 

4 A second order transition is characterized by a discontinuity in the second partial derivatives of the free 
energy function with respect to the relevant state variables, but by continuity in both the free energy and 
its first partial derivations (McKenna, 1989). Also, a first order transition is one for which the free energy 
as a function of any given state variable (V, P, T) is continuous, but the first partial derivatives of the free 
energy with respect to the relevant state variables are discontinuous. 
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transition. However, the approaches to ascertain Tg often result in different Tg values 

(~1 O°C). This is due, in part, to the fact that Tg is a single temperature that represents a 

range over which the glass transition takes place (see Figure 3). It is also appropriate to 

note that the glass transition is a rate-dependent phenomenon, the cooling or heating rate 

need to be report when the measurement is conducted. 

2.2.2. Free Volume Theory on Glass Transition 

One of the most suitable approximations of analyzing the glass transition 

concerns free volume. The concept of free volume, vf ' and the idea that the mobility of 

molecules at any temperature is primarily controlled by the free volume, was brought 

forth by Doolittle (Doolittle, 1951; Mark et ai., 2004). The free volume is the space in a 

solid or liquid not occupied by molecules; in other words, it is the empty space existing 

between molecules. 

Figure 8 shows the schematic division of that total volume of the polymer into 

both occupied volume, va' and free volume v f . The occupied volume increases uniformly 

with temperature. The discontinuity in the expansion coefficient at Tg then corresponds to 

a sudden onset of expansion in the free volume. Below the glass transition temperature, 

the free volume remains constant because the molecular mobility is so drastically reduced 

that a non-equilibrium state would become frozen. The free volume at temperatures 

greater than Tg is given by 

~Vr 
vI' =Vg +(T-Tg)~-
-. ~T 

17 

(2) 



where vgis the free volume below Tg , Vj is the free volume (see Figure 8). Note that the 

total volume v is the sum of occupied volume and free volume given by 

(3) 

The fractional free volume is defined as!=(v-vo)/v=vj/v, and is found by dividing 

Equation (2) by v resulting in 

(4) 

where!g is the fractional free volume at the glass transition Tg and a j is the thermal 

expansion coefficient of the free volume. 

Temperature 

Figure 8. Free volume v j and its dependence on temperature for polymers 

Free volume theory is critical in understanding the glass transition. Because of the 

success of the empirical free volume relations in describing the behavior of viscoelastic 

materials (Turnbull and Cohen, 1961; Williams et aI., 1955), there have been many 
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attempts to quantify the concept and make "free volume physics" (McKenna, 1989) more 

than a convenient way to correlate data (Haward and Young, 1997; Kovacs, 1958; 

Scherer, 1986; Tant and Wilkes, 1981). Among these works, the two close to the topic of 

this dissertation are the Robertson-Simha-Curro (RSC) molecular theory, which 

characterizes the kinetics of structural relaxation of polymers (Robertson et aI., 1984), 

and the work by Knauss and Emri, in which they developed the nonlinear viscoelastic 

constitutive law of polymers based on free volume concepts to describe the time

dependent deformation of volume and pressure induced aging of polymers (Emri and 

Knauss, 1986; Knauss and Emri, 1981, 1987). These theories are discussed in later 

sections of this dissertation. 

2.3 Linear Polymer Viscoelasticity 

2.3.1 Creep and Stress Relaxation 

The mechanical behavior of a viscoelastic material such as polymer exhibits both 

dissipation (viscous liquid) and storage (elastic solid) of energy. In a viscoelastic 

material, the stress depends on the time history of deformation. The materials also exhibit 

"fading memory", meaning that after some finite time elapses, a polymer tends to forget 

the sequence of shapes that it had in the past. The basic viscoelastic effects are typically 

studied by creep and stress relaxation. In general, the linear viscoelastic behavior is 

introduced with the one-dimensional situation of creep under a uniaxial fixed load. In the 

test, a specimen is loaded with a constant stress for some time and the resulting strain, 

which increases with time, is observed in the entire test. Based on the strain and applied 
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stress, a quantity called (tensile) creep compliance is defined as: 

D(l) = Bet) 
0"0 

where 0"0 is the applied stress, £(t) is the strain response. The initial compliance is: 

£ 
D(l = 0) =_0 

0"0 

(5) 

(6) 

which is analogous to the behavior of an elastic solid. On the other hand, for a 

sufficiently long period of time the rate of change of strain becomes characteristic of a 

fluid. An equally important facet of a constant stress test is the recovery phenomena after 

the load is removed. In this condition, there is an initial elastic decrease followed by 

continuous recovery in strain. A classic creep and recovery test is shown in Figure 9. 
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Figure 9. Creep and recovery test of elastic, plastic and viscoelastic materials (Finley et 
aI., 1976) 

Another fundamental characterization test for viscoelastic materials is the stress 
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relaxation test. In a stress relaxation test, the sample is suddenly deformed to a new 

position and subjected to a constant uniaxial strain. The decay of stress is observed as the 

corresponding time-dependent viscoelastic behavior. The strain input and stress output of 

thermoplastics in stress relaxation is illustrated in Figure 10. The relaxation modulus of 

the polymer is given by 

(7) 

where O"(t) is the resulting stress, and eo is the applied strain. The initial modulus is 

equal to the reciprocal of initial creep compliance mathematically, Eo = 1/ Do ; but the 

modulus and compliance functions with time E(t) and D(t) for viscoelastic materials do 

not have this relationship. 

E~ 

ax{t) 

t 

o '--""'-----.;;:::a.._ 

Response ofa.bar 
whose length is 
suddenly mode to 
change: 

Figure 1 O. Relaxation test: strain (above) and corresponding qualitative stress (below) 
(Scherer, 1986) 
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2.3.2 Boltzmann Superposition Principle and Linearity 

The Boltzmann superposition principle is the first statement of linear viscoelastic 

behavior (Ferry, 1980) and is one of the simplest but most powerful principles ofpolyrner 

physics. Boltzmann proposed (1) that the creep in a polymer is a function of the entire 

loading history and (2) that each loading step makes an independent contribution to the 

final deformation and (3) that the final deformation can be obtained by the simple 

addition of each contribution (Aklonis and MacKnight, 1983). The creep compliance has 

been previously defined as relating the stress and strain in a creep test. 

e(t) = (jaD(t) (8) 

The stress is applied instantaneously at time equal to zero. For multiple stress 

portions, assume the stresses ~(j( 01), ~(j( O2 ) and ~(j( 03 ) are applied on the material at 

timesOI' O2 , and 03 , respectively. This stress history is shown schematically in Figure 11. 

The response is written as 

(9) 

For a more complicated experiment consisting of variously discrete stress increments, the 

relationship between the strain and stress is expressed in a generalized form as 

8,=1 

e(t)= I D(t-O,)~(j(O,) (10) 
8,=-'" 

22 



aft) 

t 

D(t) 

Figure 11. Schematic of the strain response of a viscoelastic material to the stresses 
applied sequentially 

This equation IS a general way of expressing the Boltzmann Superposition 

Principle, which indicates the effects of mechanical history are linearly additive. The 

summation of individual stress step represents the total applied stress at time t. Replacing 

the summation by integration and noting that the increment of applied stress is replaced 

by the derivative of continuous stress leads to 

&(t) = If acr(e) D(t - e)de 
ae 

-00 

(11 ) 

Note that the lower limit of the integral is taken as -co, since the complete stress history 

contributes to the current state of stress and strain. This equation is also referred as a 

hereditary integral. An analogous derivation of stress output for a variable strain input 

yields the stress and strain relationship during stress relaxation, in discrete and 

continuous fonn as 
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e, =1 

er(t) = I E(t-8J!J.&(8J 
(Ji=-OO 

er(t) = If 8&(8) E(t -8)d8 
88 

-00 

(12) 

(13) 

Linear viscoelasticity requires a linear relationship between stress and strain to be 

maintained. It is thus necessary for the responses to stresses applied at any time to be 

superposable and for responses to different stress levels to be proportional. To determine 

the linear regions under particular experimental conditions, isochronous (equal aging 

time) creep or stress relaxation tests can be performed; the results are then examined by 

the Boltzmann superposition principle to demonstrate that they satisfy both conditions 

(superposition and proportionality) of linearity. Typically, these limitations are violated 

once the stress level becomes too large. 

2.3.3 Dynamic Viscoelastic Functions 

An alternative experimental method to creep and stress relaxation testing is the 

dynamic mechanical test, which involves the application of an oscillatory strain to a 

specimen. The resulting sinusoidal stress is measured and correlated against the input 

strain, and the viscous and elastic properties of the sample are simultaneously measured. 

Thus, the strain input and stress output are given by 

&(t) = &0 sin mt (14) 

er(t) = ero sin(mt + 0) (15) 

where m is the angular frequency, and 0 is the phase lag. 
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Write e(t) = eo exp iwt and CT(t) = CTo exp i( wt + c5), then the complex modulus is 

defined as 

E*(w) = CT(t) = CTo ei8 =E'(w)+iE"(w) 
e(t) eo 

The dynamic components of complex relaxation modulus are given by 

CT 
E'(w) = _0 cosc5 

eo 

E"(w) = CTo sinc5 
eo 

E"(w) 
tan c5 = --'---'-

E'(w) 

(16) 

(17) 

where E'(w) and E"(w) are called storage modulus and loss modulus respectively, since 

they define the energy stored in the specimen and dissipation of energy due to the applied 

strain, and the ratio of the loss modulus to storage modulus is the tangent of the phase 

angle 6 between stress and strain; tan c5 is a measure of the damping property of the 

material. 

Dynamic creep compliance functions are obtained by an analogous procedure by 

applying a sinusoidal stress and measuring a sinusoidal strain. The dynamic compliance 

components are then given by 

e 
D'(w) =_0 cosc5 

CTo 

D"(w) = ~sinc5 (18) 
CTo 

D"(w) 
tan c5 = --'---'-

D'(w) 
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These expressions relate the components of the complex compliance of the 

amplitudes of both the perturbation and the response as well as the out-of-phase angle 0 . 

A vectorial schematic of the components of complex modulus and compliance is shown 

in Figure 12. 
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Re 

Figure 12. Dynamic relaxation modulus and creep compliance functions 

2.3.4 Interrelations among Viscoelastic Properties 

According to Borel's theorem, the result of Laplace transform of the hereditary 

integral is equal to the product of the Laplace transform of the two functions in hereditary 

integral (Kreyszig, 2005). Thus, the Laplace transforms of Equation (11) and (13) are, 

O'(s) = £(s) s£"(s) (19) 

26 



&"(s) = D(s) sO'(s) 

where the overbar indicates Laplace transform. These relations lead to 

- - 1 
E(s)D(s) =-2 

s 

which upon using the convolution theorem yields 

t 

fE(t-r)D(r)dr=t 
o 

(20) 

(21) 

(22) 

These equations permit the creep compliance to be obtained from the relaxation modulus 

and vice versa. 

Another relationship between static and dynamic properties is a direct 

consequence of the Boltzmann superposition principle. Recall Equations (13) and (14), 

and set a variable change as u = t - () ; the complex modulus E* (OJ) is determined as 

oc 

E* (OJ) = iOJ fE(u)e-iOJUdu 
o 

(23) 

Substitute Equation (16) into Equation (23) and separate the modulus into two 

components, E(t) = E", + E(t) where E", represents the equilibrium modulus at t = 00 , 

either of the two dynamic modulus functions may then be calculated from the relaxation 

modulus in time domain as 

'" 
E'(OJ) = E", +OJ fE(t)sinOJt dt 

o (24) 
'" 

E"(OJ) = OJ fE(t) cos OJt dt 
o 
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Equation (24) suggests that E '( OJ) and E "( OJ) are the sine and cosine Fourier transforms 

of the relaxation modulus, respectively. The pertinent relations are 

E'(OJ) - E", = P;[E(t) - Eoo] 
OJ 

E"(OJ) = .1; [E(t) - Eoo] 
(25) 

OJ 

where P; and .1; are the symbols for the sin and cosine Fourier transforms. 

The relaxation modulus E(t) can also be obtain from the inverse of the Fourier 

transform of Equation (25); the corresponding relationships to find E(t) from E'(OJ) and 

E"(OJ) are 

2 00 

E(t) = E", +- f[(E'(OJ)-Eoo )! OJ]sinOJt dOJ 
fro 

(26) 
2'" 

E(t) = - f(E"(OJ)! OJ)cosOJt dOJ 
fro 

In principle, these integrals can be performed numerically if the starting function is 

known over a sufficiently wide range of time or frequency. Equations (24) - (26) show 

the relationship of relaxation modulus in the time domain and frequency domain. 

Analogous relations connect the creep compliance with the components of the 

complex dynamic compliance. As formulated in (Riande et aI., 2000), the equations 

regarding creep compliance are shown in Equations (27) and (28). These relationships are 

important since in some particular experimental conditions, the desired material 

properties are difficult to determine directly, in these cases, the converting method 

between dynamic and static functions can be applied. 
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'" 
D'(OJ) = De -OJ f[De -D(t)]sinOJt dt 

o 

'" 
D"(OJ) = OJ f[De - D(t)] cos OJt dt 

o 

2 "'fD'(OJ) - D . 
D(t) = De +- e SlllOJt dOJ 

7r 0 OJ 

2 '" D"(OJ) 
D(t) = De -- f cOSOJt dOJ 

7ro OJ 

The creep compliance in these two equations is written as 

t 
D(t) = Dg + Dd 'P(t) +-

17 

(27) 

(28) 

(29) 

where Dg and Dd are, respectively, the glassy and maximum elastic entropic compliance. 

\fI(t) is a monotonous function with values between 0 (t = 0) and 1 (t = 00). 17 is the 

viscosity. The compliance function De in Equations (27) and (28) is given by 

(30) 

which represents the maximum elasticity that in a deformed polymeric material; De is 

often called equilibrium compliance for solids and steady-state compliance for 

viscoelastic liquids. 

2.4 Time and Temperature Behavior of Polymers 

2.4.1 Viscoelastic Models and Materials Response Functions 

In order to describe the viscoelastic behavior of a material over many decades of 
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logarithmic time, phenomenological mechanical models are developed in various forms. 

Among these, the most popular two are the Maxwell-Wiechert model and the Voigt-

Kelvin model with sufficient elements to span the broad region of relaxation or 

retardation times. The Maxwell-Wiechert model is the generalized Maxwell model, 

consisting of an arbitrary number of Maxwell elements connected in parallel as shown in 

Figure 13. 

Figure 13. Maxwell-Wiechert model (Mehta and Monteiro, 1993) 

Consider a Maxwell-Wiechert model with P elements subjected to a stress 

relaxation experiment. In all of the individual elements, the strain is the same and the 

total stress is the summation of the individual stresses experienced by each element. In 

each unit in the generalized Maxwell-Wiechert model in parallel, the stress and strain 

relationship is 

(31) 

where the proportionality constant, E p' is the Young's modulus of the spring component 

in the pth element; 17 p is the viscosity of the pth element. The total stress CI(t) is given by 
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p 

(T(t) = L (T p (t) (32) 
p=l 

Integration of Equation (31) gives the partial stresses (T p (t), which is substituted 

into Equation (32) to calculate the total stress. In the stress relaxation under constant 

strain t:o , the relaxation modulus results in 

(33) 

where (T(O) p is the stress on the pth element at t = 0 and T p is the relaxation time for the 

ih element, which becomes Tp = TJ p / Ep • Equation (33) shows that the response of 

viscoelastic materials depends on a distribution of relaxation times. The equation has 

been found useful in modeling complex viscoelastic materials (Mehta and Monteiro, 

1993). 

Similar to the generalized Maxwell model, the Voigt-Kelvin model is a 

generalization of the Kelvin model, by connecting the Kelvin elements in series, as 

shown in Figure 14. In this model, the compliance functions are easily calculated, while 

the modulus functions are rather complicated. Since in each unit the stress is given by 

(34) 

The total strain is the summarization of the strain in the individual elements, thus, the 

total strain in the Voigt-Kelvin model consisting of Q units is expressed as 

Q 

t:(t) = L t:q (t) (35) 
q=l 
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If constant total strain is applied, the creep compliance is 

D(t) = &(t) = f Dq [1- e -11'q ] 
(Jo q=1 

(36) 

where Dq = 1/ Eq and Tq ;;:; TJq / Eq is a characteristic time constant called the retardation 

time of the qth element. All these relationships are exactly analogous to the stress 

relaxation behavior in the generalized Maxwell model. 

E, 

Figure 14. Voigt-Kelvin model (Mehta and Monteiro, 1993) 

A general issue in working with polymeric materials is representing the measured 

material properties by an appropriate mathematical function (Brinson and Brinson, 2008). 

While viscoelastic properties can be represented by a number of forms, the exponential 

Prony series, as expressed in Equation (37), exactly meet the creep compliance in 

generalized Kelvin model and the relaxation modulus in the generalized Maxwell model. 
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N 

E(t) = E"" + I Eie-r
/

T
, 

i=1 

N 

D(t) = Do + I D
J 
(1- e -tiT, ) 

j=1 

(37) 

The benefit of material characterization using Prony series is that the coefficients 

can be related to the spring and damper elements in a mechanical model. Since the 

experimental data for a polymer often produce compliance or modulus functions as a 

function of time or frequency, Equation (37) can be applied to fit any material response in 

complex shapes by applying sufficient number of elements. Finally, the form of Prony 

series ensures that its derivatives and integration of terms can be obtained analytically; 

this is an attractive advantage in finding the solution of a mathematical formulation. The 

main disadvantage of Prony series is that it is somewhat more difficult to manage since 

many elements may be required for complicated material response. 

When the relaxation behavior is relatively simple, other material functions are 

often used. One of these is the Kohlrausch material function that is often used for 

modulus as (Kohlrausch, 1863) 

(38) 

and for compliance as (Struik, 1978) 

(39) 

where r is the characteristic relaxation time of the function and f3 is a parameter on the 

order of 0 and 1 that is referred to as the stretching parameter. The Kohlrausch function is 

often referred to as stretched exponential function or KWW (Kohlrausch-Williams-
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Watts)5 function by many other researchers. It is a frequently used empirical description 

of the relaxation rates of many physical properties of polymers. The Kohlrausch is very 

compact and is capable of fitting a wide variety of material function shapes by varying 

the parameter f3 , while using only a single time parameter r . The major drawback of this 

approach is that a single Kohlrausch function is not sufficient for correctly describing 

more than one relaxation processes; to use the Kohlrausch function to describe the 

dynamic, material response has to be considered over a specific region of time (Apitz et 

aI., 2004). For example, the Kohlrausch compliance function represents inadmissible 

viscoelastic behavior for the long term material response. 

Many other material response functions can be employed in the study of linear 

viscoelastic behavior. In this work, the Prony series and Kohlrausch forms are considered 

as material response functions. This choice is made because the Kohlrausch function is 

most common in the study of physical aging; as such, it will be used to represent short 

term creep compliance and stress relaxation. However, the Prony series is a powerful 

function, and provides ideal curve fitting for any material response; as such, it will be 

used in this dissertation to fit the aging shift factors obtained from nonisothermal creep 

tests near the glass transition temperature. 

The material properties from creep, stress relaxation and dynamic tests for the 

Maxwell-Wiechert model and the Voigt-Kelvin model are presented in Table 1. 

5 The function was introduced by F.W.G. Kohlrausch in 1863 to describe the discharge ofa capacitor. The 
stretched exponential was again used by G. Williams and D.C. Watts in 1970 to characterize the 
dielectric relaxation rates in polymers. 
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Table 1. Viscoelastic Functions of Maxwell-Wiechert and Voigt-Kelvin model 
(Aklonis and MacKnight, 1983) 

Experiment 

Creep 

Stress Relaxation 

Dynamic 

Maxwell-Wiechert 

p 

E(t) = I Epe-
t
/

rp 

p~l 

2.4.2 Time-Temperature Superposition Principle 

Voigt-Kelvin Model 
Q 

D(t) = IDq(l-e-
t
/

rq
) 

q=l 

Q D 
D'(m) = I q2 2 

q~11+mTq 

Q D mT 
D"(m) = I q 2 q2 

q~l 1 + m Tq 

Material response functions, relaxation modulus and creep compliance, are 

functions of time as well as temperature. This leads one to wonder about the feasibility of 

finding the equivalence of measuring the material response as a function of time at a 

constant temperature, and a function of temperature at a constant time. Based on the 

experimental results, the time-temperature superposition principle (TTSP) was suggested 

by Leaderman (Leaderman, 1943) in which the modulus (or compliance) data at one 

temperature can be superimposed upon data taken at different temperatures by simply 

shifting the modulus curve along the time axis (Tran, 1996). 

Figure 15 demonstrates the time temperature superposition principle produced for 

poly(isobutylene) data by Catsiff and Tobolsky (Catsiff and Tobolsky, 1955). On the left 

side of Figure 15, several individual modulus curves measured at different temperatures 

are illustrated. The superimposed continuous curve on the right side is the master curve at 

the reference temperature (25°C); this consists of the (horizontally) shifted data curves 
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from the left side. 
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Figure 15. Illustration of time temperature superposition principle with poly(isobutylene) 
data (Catsiff and Tobolsky, 1955) 

The master curve in Figure 15 covers more than 16 orders of magnitude. The time 

temperature correspondence states that this extension is identical to that which would be 

measured at particular temperatures on experimentally accessible time scales. This idea is 

expressed as 

(40) 

where the effect of changing temperature is identical to modify the timescale by a 

multiplicative factor aT ( i.e., an additive factor to the log time scale). 

The mathematical development of TTSP is available at some reference books (e.g. 

(Brinson and Brinson, 2008)). Although the time temperature superposition was proved 

to be successful to many polymers, Plazek (Plazek, 1965) has shown that it is not 
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quantitatively correct except in limited time temperature ranges. The TTSP method is 

only strictly valid above the Tg; while it is thought to be valid for temperatures below Tg, 

the exact lower limit is not well defined. 

2.4.3 Thermorheo/ogically Simple Materials 

A fundamental characteristic of the so-called thermorheologically simple 

materials is that consecutive isotherms have similar habits, so they overlie each other 

when they are shifted horizontally along the logarithmic time axis (i.e. as in Figure 15). 

This assumption has been found to hold for a number of polymer systems, and is 

analogous to stating that the retardation/relaxation times of the material functions above 

are the only parameters affected by a change of temperature. 

When dealing with experimental data, slight vertical shifting is often needed to 

build the master curve. Thus, a general relationship of the properties of polymeric 

materials at various temperatures is written as 

(41) 

where br is referred to as the vertical temperature shift factor. This expression no longer 

represents a thermorheologically simple relationship, but still constrains the behavior at 

varying temperatures to that of a single reference (master) curve. 

The materials in this work often need a minor amount (within ± 5% from the 

individual data curve to reference curve) vertical shift when applying the TTSP and the 
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time-aging time superposition (will be discussed later). This is also typically found by 

other researchers. Experience on an array of experimental data has shown that the lack of 

including of a vertical shift, even if small, can lead to substantial errors in the prediction 

of properties over a long time. The vertical shift may be necessary for reasons other than 

the temperatures/aging times for the collected data. For example, one issue leading to 

vertical shifting is slight specimen variation (Brinson and Brinson, 2008). Polymer film 

can be difficult to accurately measure the thickness and width. In the tests, compliance or 

modulus is often calculated by the nominal dimensions, so the variation of the specimen 

usually cause minor vertical shift in different data sets. 
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CHAPTER 3 

EXPERIMENTAL METHOD AND MATERIALS 

This chapter begins with an introduction of the RSA III dynamic mechanical 

analyzer, the test equipment used in this work. Following this part, test procedures for 

creep, stress relaxation, temperature sweep, etc. built by the software of the DMA are 

represented. Finally the materials used in this dissertation are described, several issues 

related to the experiments such as specimen dimension variation, temperature changes 

during quench, experimental thermal histories and linear viscoelastic regions at various 

temperatures are included as well. 

3.1 RSA III Dynamic Mechanical Analyzer 

3.1.1 Background 

All experiments to investigate the effects of physical aging of polymers in this 

dissertation were performed on an RSA III commercial dynamic mechanical analyzer 

(DMA) manufactured by TA Instruments. Dynamic mechanical analysis, as represented 

in last chapter, is a technique for observing the viscoelastic nature of polymers, by 

applying an oscillatory force/deformation on a specimen. Commercial DMA instruments 

39 



allow the load, strain, temperature, and frequency to be selected and scanned 

automatically through a range in the course of the experiments. For measuring the glass 

transition temperature, DMA is more sensitive and yields more easily interpreted data 

compared with DSC. DMA as a versatile thermal analysis method is becoming more and 

more commonly seen in the analytical laboratory. 

Early work attempting to measure the material properties by oscillatory 

deformation began from 1950's. The commercial success of DMA in the late 1970's 

started the modem period in the history of this instrument; several corporations were 

found but the instruments at that time were difficult to use, slow and limited in their 

ability to process data (Menard, 1999). This situation changed during the 1980's due to 

the improvement of technology and competition between vendors. The revolution in 

computer engineering changed the DMA to be more user-friendly as computers and 

control software evolved. Currently, there are many manufacturers, including TA 

Instruments, Perkin-Elmer, LINSEIS, SET ARAM, etc., that provide advanced 

commercial DMAs. 

3.1.2 RSA III DMA Components and Specifications 

The T A Instruments Rheometric Series RSA III tests the dynamic mechanical 

properties of solid materials by using a servo drive linear actuator to mechanically 

impose an oscillatory deformation, or strain, upon the material. The sample is coupled 

between the motor and a transducer, which measures the resultant force generated by the 

sample deformation (T A Instruments, 2003). 
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Figure 16 shows the RSA III test station, including the motor, a transducer, and an 

oven. The motor is configured as a position servo, which is drived by the motor controller 

using command signals from the host computer, applying deformation to the specimen. 

The transducer is also configured as a position servo but with an input of zero. When the 

specimen is under load, electric current responds the resulting force on the transducer 

shaft to keep the transducer at the zero position. The load (force value) applied on the 

specimen is then calculated via the yielded current. This instrument can subject the 

sample to a number of thermal environments. A forced air convection oven is used to 

enclose the sample. A simplified block diagram of the RSA III system is showed in 

Figure 17. 

Front 
.. Panel 

Figure 16. RSA3 Dynamic Mechanical Analyzer (Resapu, 2005) 
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Figure 17. Components and Subsystems ofRSA III DMA (TA Instruments, 2003) 

The specifications of this equipment are shown in Table 2. The DMA provides 

the capability to accurately control either stress or strain while monitoring the other. This 

permits characterization of physical aging by two separate means to validate the 

anticipated viscoelastic relationships. This IS also ideal for future polymer film 

characterization; since the DMA allows both creep and stress relaxation test methods, the 

ideal choice for a given situation can be chosen. 
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Table 2. Specifications ofTA Instruments RSA III DMA (TA Instruments, 2003) 

Parameters Specifications Parameters Specifications 

Maximum Force 3S N(3S00 g) Temperature Range 20 to 600°C 

Strain Resolution O.OS JIB Temperature Ramp Rate 0.1 to SO°C/min 

Response Time <S ms Temperature Stability O.S-oC 

Force Resolution 2 fJN (0.0002 g) Frequency Range 10-6 to 80 Hz 

3.2 Experimental Methodology by DMA 

3.2.1 Temperature Sweep 

The temperature sweep test is a dynamic test used to determine the glass 

transition temperatures of tested materials and to make the specimen reach 

thermodynamic equilibrium to "forget" the former stress and thermal histories. During 

dynamic mechanical testing, the control computer makes a digital cross-correlation of 

measured strain and force by comparing the amplitude and phase shift between the 

imposed motion (strain) and the force (stress). The dynamic sinusoidal strain and force 

are measured 2048 times regardless of the test frequency to calculate the average 

amplitude and phase shift of both. During the measurements, two reference sine waves 

(command) of fixed amplitude are compared with the data; the result is a strain and force 

phase relative to the reference as shown in Figure 18. Using fundamental geometric 

techniques, the phase angle between strain and force is determined using the force-strain 

vector relationship in the complex plane. The complex dynamic material properties, 

represented in Chapter II, are then obtained from Figure 18. According to Equation (16) 
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and (17), the complex modulus, E*, which indicates the total energy required to deform 

the material, is calculated by dividing the stress by the strain. Multiplying E* by the 

cosine of the phase angle gives the in-phase component of the stress, E', which is 

proportional to the energy stored elastically. Multiplying E* by the sine of the phase 

angle gives the out-of-phase component of the stress, E", which is proportional to the 

amount of energy lost to viscous dissipation. 
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Figure 18. Normalized dynamic waveforms and vectors (TA Instruments, 2003) 
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The DMA test module "Dynamic Temperature Ramp Test" is used to ascertain Tg . 

In this test, temperature is automatically increased and decreased at selected ramp rates 

(in units of DC/min) from the initial to temperature limits, at a selectable constant 

frequency. A unique set of test conditions can be entered in up to eight temperature 

ranges, or "zones". In each temperature zone, a selectable thermal "soak time after ramp", 

which is the period of time the DMA holds at the final temperature before going into the 

next zone, ensures temperature stability prior to beginning the next ramp. The strain level 

in a temperature zone can be set to any value within the range of the instrument (as 

shown in the boundary window) but should not exceed the linear viscoelastic region of 

the sample material. 

When setting up a temperature ramp test, enter a test frequency, an initial 

temperature, and each individual zone settings (i.e., final temperature, ramp rate, soak 

time, and strain). The total test duration is then calculated by the program. A typical set

up screen of the temperature sweep test in Orchestrator 7.1 for the RSA III DMA 

software package is shown in Figure 19. In order to rejuvenate the specimen and erase the 

effects of past aging, a dynamic temperature ramp test is performed on the specimen. The 

specimen is subjected to a sinusoidal strain of 0.035% (350 J.1&) at a frequency of 1 Hz 

as the temperature is swept to a final temperature approximately 5-10°C above Tg• The 

temperature rate is 6.0 °C/min and 3.5 °C/min for the regions below and above ~Tg -

25DC, respectively. The specimen is maintained at that temperature for 5 minutes for 

rejuvenation (rejuvenation is referred to as reestablishing thermodynamic equilibrium at 

temperature above Tg , see Figure 1). During this test, the storage modulus (E,), the loss 
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modulus (E") and the ratio of the two (tan 0= E"/E') are determined. In this dissertation, 

the temperature associated with the tan 0 peak is assumed to represent Tg• For PEEK 

films, the temperature ranges for the two zones are from room temperature to 120°C, and 

from 120°C to 148°C, respectively. For PPS films, the temperature ranges for zone 1 and 

2 are room temperature to 70°C, and 70°C to 97°C, respectively. The parameter set for 

the Tg tests of PEEK and PPS are shown in Table 3. 

Frequency ... ltO [HzI Max=79.577 Min=1.5ge·06 

Initial Temp. ~12~5.0~- rCI Max=600.0·C Min=20.0·C 

S train Limits [%1 .. . M ax=5. 898545 M in= 1.97 e·05 

Zone Number 

Final Temp ... ... ..... ... ............... [,CI 170.0 197.0 

2 

Ramp Rate ... ......... .. .. ..... [ ·C/min. I ~16-='.0-- 1~'3"'!:'5-' --

Computed Ramp Time ...... .. [h:m:sll7.3D 1743 

Soak Time After Ramp [s or h:m:sl ~13~0 -- 10 

Time Per Measure ... .... [s or h:m: sI12.5 125 

Strain ... ........ ................ ... ... .. .... [%1 /0.035 ""'j 0"""'. 03=5'--

..uJ 
Computed Test Duration ..... .... .... .. . j1 ')4'3 [h:m: sl 

3 

10.0 

10.0 

Ie; 

10 

10 

10.0 

4 

10.0 

. 10.0 

10 
10 

10 

100 

.!J 
------_._ .. __ .... _._ ........ _-_._ .. _-_ ........ _ .•. _._--_ ... -._ .... _ .... _._----_ ...• -

Options: Delay:Off AutoTens:On Analogln:On AutoStrn:On I 
__ ... _ .................................... _.' ................................ _... .... ... .......... ................................. .. _ ....... _._............ . ................. _ ............. _........ ...... . ...................... _ . .J 

Ok Options End of Test I Save As I Help Cancel I 
Figure 19. Dynamic temperature ramp test set-up screen 
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Table 3. Parameter set for the Tg tests 

Material PEEK PPS 

Initial Temperature (OC) 25 25 

Zone 1 120 70 
Final Temperature caC) 

Zone 2 148 97 

Zone 1 6 6 
Ramp Rate (OC/min) 

Zone 2 3.5 3.5 

Zone 1 60 60 
soak time after ramp (s) 

Zone 2 0 0 

Zone 1 2.5 2.5 
Time per measure (s) 

Zone 2 2.5 2.5 

Zone 1 0.035 0.035 
Strain (%) 

Zone 2 0.035 0.035 

In addition to rejuvenation, this test is also used to initially condition a new 

specimen. Specifically, three dynamic temperature ramp tests are performed in 

succession (with each followed by a cooling return to room temperature). The reason for 

this is that the specimen shrinks slightly during the first two Tg tests, presumably due to 

relaxation of residual stresses created during the film fabrication process. As a result, Tg 

changes of 0-2 °c are observed. Variation in specimen size and Tg ceases by the third test 

and the specimen is stable thereafter. 

In the tests measuring the Tg , the RSA III DMA feature "Auto Tension" is applied. 

The auto tension maintains a static force that is greater that the peak force level reached 

in the dynamic oscillation. This feature accommodates the change in length of the 

specimen due to change in temperature by varying the distance between the grips, using 
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the RSA III control computer to monitor and control the static tension during a test. By 

maintaining a static force greater than the dynamic force, the DMA ensures that the film 

never goes into compression. This can lead to specimen buckling, and the stress signal 

will become truncated, which will adversely affect the quality of the data (Wang, 2007). 

This is illustrated in Figure 20. 

~r (\\--/r_ ---]~" 
R Static F orca 
CD--~----~~~------~~~-L-

E \ 

" C{)mpression 

co--+---------------------~ 
E 

1 
Compte:ssion 

No 
Buckling 

Figure 20.Effects of protection of auto tension adjustment (TA Instruments, 2003) 

Auto tension parameters must be set in the Auto Tension Adjustment set-up 

screen in Orchestrator 7.1. Figure 21 shows the settings for auto tension adjustment for 

tested materials in this dissertation. The "Static Force Tracking Dynamic Force" mode 

seeks out a desired ratio of static force to the previous measured dynamic force based on 

supplied percentile to avoid buckling. The static force level is thereby controlled to be 

proportional to the measured dynamic force. This can be an advantage for tests run over a 

range of temperatures where the modulus of a material may change with varying 
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temperature (Instruments, 2003; TA Instruments, 2003). The initial static force is selected 

to 50 grams, which is approximately 50% greater than the maximum dynamic force 

during the temperature sweep tests for PEEK and PPS. 

Options r Delay Before Test 

r. + Auto Tension Adjustment 

r + Analog Data Input 

(' + AutoStrain Adjustment 

r Measurement Options 

P' Auto Tension Adjustment 

Mode .. ····· .. ····· · .. ···· .... ·· .. ········ .. ·1 Static Force Tracking Dynamic Force . :::J 
Auto Tension Direction .............. r. Tension r Compression 

Initial Static Force ······ ···· .. ·· .. ···· ·1500 [g] 

Static > Dynamic Force by ·· ···· .. 1400 [%] 

Minimum Static Force .. · ............ 15.0 [g] 

Auto Tension Sensitivity .... ... .. .. ·1 10. 0 [g] 

(This Auto Tension mode activates AutoStrain) 

Auto Tension Limits .. ... .. ............ r. D ef ault (. Adjustable 

Ok Help .1 Cancel .1 

Figure 21. The setting of auto tension adjustment 

"Minimum Static Force" represents the mInimUm pretension where the 

proportional force mode is to be used. This parameter prevents the static force levels 

from dropping below the sensitivity of the transducer or the stability of the sample; 

"Minimum static force" is set to 1 gram. "Auto Tension Sensitivity" is defined as the 

minimum change in static force that results in an adjustment to maintain the desired static 

force. If the applied static force is outside the sensitivity "window" (desired static force 

+/- sensitivity value), the applied static force is adjusted to try and match the desired 
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static force; otherwise no adjustment to the actual applied static force is made for that 

sample (TA Instruments, 2003). In the Tg experiments the auto tension sensitivity is set as 

0.1 gram. 

In the "End of Test" setting screen, as depicted in Figure 22, the oven holds the 

temperature at the final temperature (PEEK 148°C; PPS 97°C) of the Tg tests after each 

test. It is essential for keeping the specimen in the thermodynamic equilibrium state and 

erasing the residual stress in the material. 

All experiments in this study were performed from three temperature sweep tests 

In sequence as mentioned previously. The specimens were then treated in designed 

thermal histories (isothermal or nonisothermal) and mechanical tests (creep or stress 

relaxation) and were conducted at the final temperature in each thermal history. During 

the process of temperature changing, the DMA feature "Hold" is used to hold the force 

constant on the specimen for preserving the specimen; otherwise, there can be sudden 

changes in the load or temperature parameters (dependent on the material and test 

conditions) as the specimen shrinks/expands under temperature changes. This feature 

maintains the small load on the specimen by moving the upper stage of the DMA 

appropriately, to keep the film in tension throughout the experiment and to avoid 

significant specimen length change lead by the quench or high heating rate (T A 

Instruments, 2003). 
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~ __ • _______ ~~ __________ """'~N<M"'~v 

TestSetup 1!1J~ 

End Of Test Conditions 

Turn 0 FF Temp Controller (: No r Yes 

Set End of Test Temp .. .... r No (;"' Yes 

Set End of Test Temp to: 197 [.C] Max=600.0·C Min=20.0·C 

Turn OFF Motor ................ r. No r Yes 

T urn Hold ON ................. . r. No r Yes 

Ok Help Cancel 

Figure 22. End oftest settings of dynamic temperature sweep test 

3.2.2 Creep and Stress Relaxation Test Method- Physical Aging 

Struik (Struik, 1978) demonstrated that for thermorheologically simple materials 

undergoing isothermal physical aging, the momentary (short-term) response 6 (S) is 

related to a momentary reference (master) curve (SreJ) by 

(42) 

where tereJ is the isothermal aging time at which the reference curve was defined, te is the 

aging time at which the short-term test is taking place, T is the common isothermal 

temperature at which both the short-term test and the reference curve were obtained, and 

6 The difference between "long-term" and "short-term" is based on the ratio ofthe test duration (t) to the 

aging time at the beginning of the test (te). In general, the short-term test is defined typically where the 

test duration t is limited to a time corresponding to 0.1 te (Struik, 1978) or 0.3 teo The momentary 

curves are obtained from short-term tests (Tomlins, 1996; Tomlins and Read, 1998; Tomlins et aI., 

1994). 
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ate is the horizontal shift factor 7 due to physical aging. In isothennal aging tests, the 

momentary response curves (8) are obtained. The collection of curves leads to a suitable 

reference curve (Srej) and the associated shift factors (ate) for each momentary curve. The 

shift factors are assumed to fonn a straight line in log-log scale versus aging time 

according to 

t /1(1') 

a,/t.ll, ~ ( ~:f ) (43) 

where fJ is the shift rate at temperature T (Struik, 1978). 

The approach above scales the time domain in order to obtain the momentary 

response at any aging time and is referred to as time-aging time superposition. It is 

similar to another approach, time-temperature superposition principle (discussed 

previously), that is used to relate the behavior of polymers at various temperatures to the 

behavior at a reference temperature by a horizontal temperature shift factor (ar) (Ferry, 

1980; O'Connell and McKenna, 1997). This approach can be combined with physical 

aging shift factors to predict the momentary response at one temperature (1) using a 

reference curve defined at a reference temperature (Trej) as 

7 

(44) 

A small vertical shift is also sometimes needed in order to achieve ideal superposition (Sullivan et aI., 

1993). Such materials are not thermorheologically simple and require more complex methods of 

analysis. It should be noted that there is often no clear trend to the optimal vertical shift factors; in such 

cases, assuming thermorheological simplicity (i.e. no vertical shifting) is preferred (Bradshaw and 

Brinson, 1997a) 
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In order to construct a reference curve spanning several temperatures, reference 

curves are shifted together in log time to identify the appropriate temperature shift factors 

(ar). Each of these individual curves must be at the same aging time (terej) so the resulting 

master curve represents the behavior of the material at that age (Barbero and Julius, 

2004). These curves must also be momentary curves, otherwise the resulting master curve 

will not, in most cases, be useful to predict long-term data (Matsumoto, 1988). 

One approach to characterizing physical aging behavior for a material is to 

perform a series of load-unload tests whose duration is short enough that the aging state 

does not change appreciably during the load segments. In all cases, the material is 

rejuvenated above Tg and quenched. For isothermal physical aging, the final temperature 

is T < Tg, and the aging time te is the time elapsed since the quench. For nonisothermal 

physical aging, all temperatures after quench are T < Tg but can vary in time; the 

definition of aging time is less clear but in this dissertation is defined as the time elapsed 

since the last temperature jump. The load steps occur at particular moments of aging time 

to be characterized (teO, 2teo, 4teo, etc.) and have a duration of less than 10% of the aging 

time when they occur in order to keep the aging state approximately constant during the 

load step. The stress and strain levels during testing are also maintained in the linear 

viscoelastic range. 8 

Two types of testing will be used in this study to characterize the aging response. 

8 High levels of stress applied to the material can affect the aging state; for example, Struik (1978) found 

that a large stress spike after isothermal aging effectively rejuvenates the specimen somewhat (i.e. erases 

part of the physical aging effects). As the loads remain in the linear viscoelastic range, it is assumed in 

this dissertation that there is no coupling between stress and the aging state. 
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The first is a creep test, in which the stress is constant during each step ((Ycreep in load step, 

o in unload step). During both load and unload portions, the time-dependent strain 

response is monitored. The strain due to an individual load step is obtained as the 

measured value (s) minus the extrapolated strain from the previous unload step (Sun/oad); 

this is the strain that is presumed to occur had the current load not been applied. The 

momentary tensile compliance D(t) for each load step is calculated as 

S(t)-SunIOOd (t) D (t) = ----'---'--------.:::==--'--...!... (45) 
(Ycreep 

where tei is the aging time at the start of the ith load step and t is the time elapsed since the 

load was applied in the lh load step. In this study, the momentary compliance curves are 

described using the shifted three parameter Kohlrausch model of the form expressed in 

Equation (39). Schematics of a isothermal and nonisothermal creep test are shown in 

Figure 23 and Figure 24, respectively. 

T >T 
9 
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,---------------------------------------------
to=t"" t .. =2t,.o 1 .. = 4toO 1. =8toO 
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' (1 O· 1teO :: :, J. : - I 
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Figure 23. Short-term test method of isothermal creep testing (Bradshaw and Brinson, 
1997e) 
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T=T1<Tg 

~~~~----------

I 

- - - Temperature 
- Stress 

-- Strain 

Time Elapsed Since Quench 

Figure 24. Schematic of up-jump nonisotherrnal creep test (Guo et aI., 2009) 

The second approach used is a stress relaxation test. This approach is similar to 

the creep test except that the stress and strain reverse positions. Specifically, the strain in 

held constant in each "load" and "unload" step and the stress varies throughout, 

decreasing during load steps and increasing during unload steps. One key difference is 

that the strain is typically not zero during unload steps; this would place the specimen in a 

state of compression and can lead to buckling. The momentary modulus E(t) is obtained 

from stress relaxation testing as 

CY (I) - CYunload (t) _(~)fi 
E(/) = ~ E(t) = Eo e T (46) 

£sr 

where CY(/) and CY unload (I) are the stress during the load step and the previous unload step 

(extrapolated), respectively, Gsr is the portion of the strain responsible for CY(t)-CYunloaAI), 
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and Eo, r and f3 are the initial modulus, relaxation time and shape parameter, 

respectively, for the reference curve (Kohlrausch function). 

Once a series of momentary curves are obtained as described above, the reference 

curve and shift rate need to be obtained. One approach is to manually determine these 

values using visual means. It is preferable, however, to use an automated method that will 

lead to consistent, repeatable results across many experimental sets. This study uses the 

PHYAGE program to automatically determine the optimal reference curve and shift rate 

for a given sent of data (Bradshaw and Brinson, 1997a). This program is designed to be 

used with compliance data but can also be applied to modulus data by appropriate 

adjustment of the data.9 Theoretically, the shift factors obtained should be the same for a 

given material whether creep or stress relaxation testing is used (Vleeshouwers et aI., 

1989). 

3.2.3 Creep and Stress Relaxation Test - DMA settings 

The RSA III DMA offers the "Program Test Sequence" module to carry out 

sequential tests designed by the user. This is the approach used to complete physical 

aging creep or stress relaxation tests in this dissertation. The sequential creep and stress 

relaxation tests consist of a series of creep and stress relaxation processes at various aging 

times. The individual creep and stress relaxation are performed by the DMA test module 

9 The inverse of the modulus data is supplied to PHYAGE. The reference modulus is given by Equation 

(46) where Eo is simply the inverse ofthe "compliance" value of So obtained by PHYAGE and ,and f3 

are the PHY AGE obtained values. 
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"Multiple Extension Mode" and "Stress Relaxation Test" respectively; a setup screen 

showing such a test sequence is provided in Figure 25. A typical "Multiple Extension 

Mode" set up is shown in Figure 26, which includes a load and an unload process to 

complete the test for one of the aging time conditions. Here, the zone numbers 1, 2, 3 and 

4 represent the period of ramp to load, maintain load, ramp to unload and maintain 

unload, respectively. 

The loads for physical aging tests need to remain in the linear region; this needs to 

be detennined by experiments in order to choose a proper load level. Once chosen, the 

proper ram rate is also determined via experiment, or previous testing; the goal is for the 

load to approximately equal the desired applied load when the ramp concludes, with a 

minimum of overshoot or undershoot. The ramp rate is evaluated approximately by 

(Wang, 2007) 

(47) 

where F is force which is desired by DMA (g); E' is the storage modulus at the 

temperature considered from the Tg test, (dyne/cm2); La is the original length (m): Ho is 

original thickness of specimen (m); Wo is original width of specimen (m); and ~t is zone 

time for loading or unloading (s). Each sub-test contains one load and unload process, 

specifying the strains to be used in the sub-test (load or unload value). 
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Figure 25. Test sequence design in RSA III DMA 

Ternperature ... ls7,O ['CI Max=SOO,O'C Min=20,0'C 

Points Per Zone 1300""" [] M ax=350 M in=20 

---,------
Zone N urnber 2 3 

Zone Tirne .......... ... .. ........ [s or h:rn:sI15 155.25 15 1497.25 

4 

ExtensionValue [See Mode for Unitsl l""'0""",02:::-::2:-' ----1·15000 )1";·0::"::.0::::22::"'· ---- 1";1·5~.O:--~~--

Extension Mode .... ·· ...... · .... ·· .. · .......... ·I Rate [rnrnlsl 31Creep/Force [grnfl 3 IRate [rnrnlsl 3 ICreep/Force [grnfl 3 

Options: Dela~:Off RateGain:Off 

Ok Options Help Cancel 

Figure 26. Multiple extension mode test set up screen for single creep-recovery test 

I 

The mmus values of force in Figure 26 represent tension loading; Turn on 

window/graphic control m the standard (i.e. Struik) creep test protocol, as shown in 

Figure 26, the recovery period is 9 times longer than the load duration. The time elapsed 

in the load or unload ramp is 5 seconds for most creep and stress relaxation tests. 
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The stress relaxation tests are also organized by the "Program Test Sequence" in 

the control software for RSA III DMA. The difference of the sub stress relaxation with 

the individual creep-recovery test described above is that a single stress relaxation can 

only include the load or unload portion. Therefore, more sub stress relaxation tests are 

needed (Figure 25) to observe the physical aging behavior at the same aging times within 

the total time range. 

Figure 27 displays the setting screen for a stress relaxation test. The strain levels 

in the load and unload processes should be set in the linear regions, which could be 

determined by dynamic strain sweep test or by a series of stress relaxation tests with 

different strain levels under the experimental conditions. The durations of stress 

relaxation tests are same as those in creep tests described previously. During stress 

relaxation, the auto tension adjustment is applied; the settings are shown in Figure 28. 

This ensures that the specimen always remains in tension and buckling does not occur 

during the unload phase. 

,~~-~ .. ~ .. - .. - .. -~ - -,.."..,.,-.,.-"""-.,...,.,..,,,,.~~~~"- -- .. ~..,.,.,..,.. --. ...... - .. ~ .. ...,.- - -- -- >-

Stress Relaxation Test ~rr8J 

Strain ................. 152 [%1 Max=5.898545 Min=1 .97e-05 

T emperature .. .. . lno [.C] Max=600.0·C Min=20.0·C 

Sampling Mode . r Log (0 Linear 

Points Per Zone f300 [] Max=350 Min=20 

Zone Number 2 3 

Zone Time [s or h:m:sl I11 2 5 10 10 

Direction .. .... .. .... .. .. .. .... (0 Tension r Compression 

Options: Delay:Off Auto T ens: On 

Ok Options I . Help Cancel 

Figure 27. Stress relaxation test setting screen 
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Options r Delay Before Test 

r. + Auto Tension Adjustment 

("" Analog Data Input 

P Auto Tension Adjustment 

Mode . · ····· ·· .. ······· ·········1 Static Force Tracking Dynamic Force 

Auto Tension Direction ...... r. Tension 

Initial Static Force ...... . .. . . 150.0 

Static > Dynamic Force by . . .. 1r;'40~.0::---

Minimum Static Force . ••••••. 15.0 

Auto Tension Sensitivity • . ... ·1""1 0""".0""-
(This Auto Tension mode activates AutoStrain) 

Auto Tension Limits •. . •....... r. D ef ault 

[g] 

[%] 

[g] 

[g] 

Ok Help 

c· Compression 

("" Adjustable 

Cancel I 

I 

Figure 28 . Auto tension setting screen for tress relaxation test 

3.3 Materials in This Dissertation 

Poly( ether-ether-ketone) (PEEK) and poly(phenylene sulfide) (PPS) are high 

performance thermoplastics; these have each attracted considerable attention because of 

their outstanding properties, including excellent mechanical performance at high 

temperatures and resistance to chemicals (Farrow et aI., 1990; Hu et aI. , 2005; Kemmish 

and Hay, 1985; Yang et aI., 1996). PEEK and PPS, in filled and neat forms, are currently 

utilized in a variety of market segments, especially as matrix materials for composites in 

elevated temperature applications (Choy and Leung, 1990; D'Amore et aI., 1990; 
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D'Amore et aI., 1994; D'Amore et aI., 1991, 1993; Farrow et aI., 1990). Although quite a 

few studies have been published on the characterization of PEEKlPPS-based materials 

(D'Amore et aI., 1990; Krishnaswamy et aI., 2003; Ogale and McCullough, 1987; Yang 

et aI., 1996), the investigation of physical aging effects under varying thermal histories 

would lead to better understanding for application of these polymers. 

3.3.1 Specimen Configuration 

The materials used in this study are 0.0762 mm (3 mil) thick PEEK film 

(Victrex® PEEK ISG) and 0.127 mm (S mil) thick PPS film (SUPEC® PPS RESIN), 

both supplied by GE Advanced Materials. The reported glass transition temperatures of 

these two materials are 143°C and 92°C, respectively (Anonymous, 2001). Both PEEK 

and PPS specimens were obtained from 30S mm square sample sheets; these specimens 

were manually cut to be 2S.4 mm long (in the load direction) and 12.7 mm wide. In the 

temperature sweep (Tg) tests, it is found that the change of specimen length (for both 

PEEK and PPS) depends on the direction of cutting from the sample sheet. In one 

direction the specimen gets longer after heating up, while in the direction perpendicular 

to this, the specimen is shorten in temperature sweep test. In experiments, specimens are 

prepared in the same direction which makes the specimen longer in tension during Tg 

tests. Minor variation in the actual specimen width dimension required normalization of 

the data. The film cutter, shown in Figure 29, showed good repeatability in cutting PEEK 

and PPS films. When cutting the films, clearance between the cutter and the edge of film 

sheet is fixed by three mechanical parts in order to generate 12.7 mm (O.S inch) wide strip. 
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Experimental specimens were then cut by scissors from the strip to achieve 25.4 mm (1.0 

inch) length. 

Figure 29. Tools for preparing the sample 

Figure 30 shows a specimen mounted onto the film/fiber tension clamps. To 

install a specimen: 

1. Open the oven, zero the fixture by controlling the transducer to the 

position let the top and bottom clamps contact slightly, and the moving the 

transducer up to set the gap between clamps a desired value (25.4 mm), 

this is completed by the options "Zero fixture" and "Set Gap" in 

Orchestrator software. Place the specimen between two jaws at the 

top/bottom clamps and tighten the tools screws. 

2. Examine the sample to ensure that it exhibits neither wrinkles nor kinks. If 
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these are present the sample should be remounted. 

3. Using the stepper motor control buttons on the right side of the test station 

adjust the stage to provide a very slight tension (less than 5 grams) as 

indicated by the "NORMAL FORCE" meter indication on the front panel 

display of the control screen, or the gap control dialog tool. 

4. Enter the sample dimension in the Orchestrator "Test Geometry" screen 

(Figure 31). Note that if the tools were correctly zeroed the actual sample 

gap can either be read from the gap real-time parameter or measured 

automatically at the start of the test by selecting the "Read Test Fixture 

Gap" check box in the geometry screen. 

Sample Loading · , 
Bolts . 

Alignment Pin 
for pa ra lIel Or 
perpendicular alignment 

Fixture Mount 

(b) 

Figure 30. Specimen was mounted in the film/fiber tension clamps. (a) PPS specimen 
between top/bottom clamps; (b) Film and fiber tool component 
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Vy"'"'_ ......... _~_"".."..,..".""=".,,.,~ __ ~_~~_,,~ ~~«_ "'"'z ""z ~~ ____ '''-

film_pps [!1JCR1 
Length .............. Iiiik [mml 

Width .. .......... .... 112.7 [mml 

Thickness ....... .. 10.127 [mml 

J7 Read Test Fixture Gap 

Read gap at start of test 

Tool Serial N um 10000 

Ok Options . I S ave As 

Figure 31. Specimen geometry input 

In the "Options" menu in Figure 31, the tools constants can be entered by the user. 

For the film materials in this dissertation, the tool mass of the upper clamp is 92.6 gram. 

The "Tool Thermal Expansion Coefficient" and "Fixture Compliance" are negligible in 

the experimental temperature range; for completeness, settings are shown in Figure 32. 

Sample Gap tracking Tool Expansion 

r Change Gap to Match Tool Thermal Expansion 

Tool Thermal Expansion Coefficient 10.0 (I1mrC] 

Fixture Compliance .... .... ..... ....... ..... . 10.0 hIm/kg] 

o 

Tool Mass Calibration 

Please check that correct tool is mounted 

with no sample loaded. 

Tool Mass ....... .. 192.6 [g] 

<Help> for table of values 

Tooleal l H 

Figure 32. Tool constants input screen 
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3.3.2 Normalization of Experimental Results due to Dimension Variation 

Due to variations in cutting, the width dimension of each specimen differs slightly 

from the desired value. This affects the calculations for stress, compliance and modulus. 

In order to account for such variation, the average storage modulus (E~ve) value at 

specified temperature range measured during the Tg test for each specimen is used to 

normalize the creep/stress relaxation test results. A total of 25 tests were performed to 

establish the average value (E~ve) for each polymer. The stress for a given specimen is 

then multiplied by the ratio E~vj E;pec where E;pec is the specimen value obtained during 

the Tg test at the identical temperature. This step reflects the idea that all specimens 

should have an identical E~pec but do not due to specimen dimensional variation. For each 

PEEK and PPS specimen, the storage modulus value E~pec in a short temperature range 

was calculated as the reference for that specimen. The temperature ranges were 130-

134°C and 76-80°C for PEEK and PPS respectively. Temperature ranges rather than a 

particular temperature was used since the temperature points at which data was collected 

changed among tests. The E~ve observed for PEEK and PPS were 1.90 OPa and 2.14 OPa 

respectively. The data for determining E~ve are presented in Table 4. The standard 

deviations ofPPS and PEEK for the data are 0.12 OPa and 0.16 OPa, respectively. 

According to the definition of the storage modulus in Equation (17), the average 

storage modulus over a temperature range below Tg is given by 

(48) 
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where F'o is the amplitude of dynamic force oscillation, W avg is the actual average width 

of the specimen, H is the thickness of the specimen, the latter being quite uniform for all 

specimens. During a glass transition temperature experiment for an individual specimen, 

the storage modulus is given by 

(49) 

where WN is the nominal width (12.7mm) of the tested specimen. The compliance D(t) 

from creep recovery experiment is expressed by Equation (45); in this equation, the 

applied stress is calculated using the nominal width of the sample and given by 

(50) 

where P is the constant load on specimen. The actual specimen width is recovered using 

E~vg and expressed as 

(51) 

To account for dimensional variation, the actual width needs to adopted to obtain the 

creep compliance from experiments. This is achieved by applying Equations (48) and 

(49), with the normalized compliance for a specimen given by 

D(t) = s(t) - ~unload(t) X (E~:ec J 
Clcreep Eave 

(52) 

The experimental relaxation modulus can be normalized by an analogous 

procedure. The resulting modulus is given by 
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E(t) = aCt) - aunload(t) x ( ~~ve J 
&sr Espec 

(53) 

The test results are quite consistent after normalization is used in physical aging 

data analysis; this will be demonstrated in the next chapter. 

Table 4. Average storage modulus over a temperature range for normalization 

Material PEEK PPS 

1.83; 1.90; 1.83; 1.91; 1.96; 2.21; 2.22; 2.11; 1.81; 2.13; 

E'database 
1.72; 1.89; 2.00; 2.15; 1.83; 2.17; 2.02; 2.13; 2.01; 2.21; 

(GPa) 
1.71; 1.73; 1.89; 1.88; 1.94; 2.21; 2.28; 2.23; 2.20; 2.19; 
1.53; 1.58; 2.04; 2.08; 2.03; 1.93; 1.96; 2.27; 2.32; 2.16; 
1.93; 1.89; 2.04; 2.04; 2.10. 2.23; 2.14; 2.05; 2.29; 2.07. 

E~ve (GPa) 1.90 2.14 

3.4 Other Aspects Related Experiments 

3.4.1 Actual Temperature Ramp Rate 

The specimen is rejuvenated to erase past aging effects as described previously. 

The specimen is then quenched to the desired aging temperature (isothermal) or reaches 

final temperature after a multi-step thermal history (nonisothermal). The aging clock 

begins (te = 0) when the specimen first reaches the desired aging temperature (isothermal) 

or final temperature (nonisothermal). In general, the cooling/heating rate can reach up to 

50 0 C/min according to the RSA III documentation. In testing at University of Louisville, 

the specimen reaches temperature very quickly. Figure 33 shows the experimental data of 
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temperature in the period of quenching, compared with the ideal temperature step curve. 

In this test, the PPS film was quenched from 97 0 C to 57 0 C, starting from time = 0 

second, the temperature first reached 57 0 C about 50 second after the starting of quench, 

and was steady at 57 0 C within 30 seconds later. In this example, Ie = 0 at the 50 second 

point. This behavior is applicable to PEEK material as well. The manner of temperature 

up-jump is similar as this example. More generally, it is observed that in the first 3 

minutes after reaching a desired temperature value, the temperature changed 0.5-10 C and 

remained within ±0.1 0 C thereafter. 

100 

90 0 
0 Experimental Data 

- Ideal Quench 
0 0 'L-

~ 80 0 
::::s 
10 0 L-
0) 

0.. 70 0 E 
0) 

0 I-
0 

60 0 

50 

-50 0 50 100 150 200 

Time (second) 

Figure 33. Temperature change during quench ofPPS 

3.4.2 Test Temperatures 

For isothermal physical agmg in Chapter IV, all tests were performed at 
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temperatures are approximately 15°C - 35°C below Tg• These values are such that 

changes in physical aging can be measured within a lab time scale suitable for this study 

(each test lasting 24-48 hours). The test temperatures used in the isothermal aging are 

110°C, 120°C and 130°C for PEEK (Tg = 143.5°C, details see next chapter) and at 57°C, 

67 °C, 73°C and 77°C for PPS (Tg = 92.2°C). 

In nonisothermal physical aging tests, the temperatures range from room 

temperature to a temperature near below Tg . Chapter V demonstrates single step 

temperature up-Jump creep testing and experiments after more complicated thermal 

histories for both PEEK and PPS materials. The final temperatures of these 

nonisothermal aging are selected from the temperatures at which isothermal creep or 

stress relaxation were performed. The nonisothermal thermal histories of PPS include: 

97 °C (~5 °C above Tg) ~ 57°C (14 hr) ~ 73°C 

97 °C ~ 63°C (14 hr) ~ 73°C 

97 °C ~ 67°C (14 hr) ~ 73°C 

97 °C ~ 57°C (14 hr) ~ 67°C 

97 °C ~ 67°C (14 hr) ~ 77°C 

97 °C ~ 57°C (10 hr) ~ 67°C (4 hr) ~ 73°C 

97 °C ~ 67°C (4 hr) ~ 77°C (10 hr) ~ 73°C 

97 °C ~ 67°C (3 hr) ~ 77°C (7 hr) ~ 57°C (4 hr) ~ 73°C 

97 °C ~ 27°C (12 hr) ~ 73°C (1 hr) ~ 27°C (1hr) ~ 73°C 

97 °C ~ 57°C (4 hr) ~ 73°C (6 hr) ~ 67°C 

97 °C ~ 75°C (240 hr, equilibrium) ~ 83°C 

97 °C ~ 78°C (12 hr, equilibrium) ~ 83°C 

97 °C ~ 80°C (5 hr, equilibrium) ~ 83°C 

97 °C ~ 81°C (3 hr, equilibrium) ~ 83°C 

97 °C ~ 84°C (0.5 hr, equilibrium) ~ 83°C 
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97°C -+- 85°C (0.5 hr, equilibrium) -+- 83°C 

97 °C -+- 86°C (0.3 hr, equilibrium) -+- 83°C 

97 °C -+- 88°C (0.3 hr, equilibrium) -+- 83°C 

The nonisothermal thermal histories of PPS include: 

148 °C (~5 °C above Tg) -+- 110°C (14 hr) -+- 130°C 

148°C -+- 118°C (14 hr) -+- 130°C 

148 °C _ 120°C (14 hr) -+- 130°C 

148°C -+- 125°C (14 hr) -+- 130°C 

148°C -+- 110°C (14 hr) -+- 120°C 

148 °C -+- 120°C (4 hr) -+- 125°C (10 hr) -+- 130°C 

Chapter VII shows agmg behavior near glass transition temperature in PPS, 

including experiments on aging into equilibrium at various temperatures, for both 

isothermal and nonisothermal cases. The test temperatures in the isothermal aging are 

78°C, 80°C, 81 °C, 82°C, 83°C, 84°C and 85°C. All tests are performed within the linear 

viscoelastic range of the materials. 

3.4.3 Linear Regions 

As described in previous chapter, the stress/strain response of the material under a 

general load history was obtained by superposing the response of the material to a series 

of individual load steps via the Boltzmann superposition principle (Tschoegl, 1989). If 

the loads place the material outside of the linear viscoelastic range, the 

compliance/modulus will vary depending on stress/strain level, indicating that the 

material is in the nonlinear range (Gates et aI., 1996). 
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Before exploring the effects of physical agmg on the creep/stress relaxation 

properties, determination of the maximum stress level (for creep tests) or maximum strain 

level (for stress relaxation tests) in the linear viscoelastic range was established. Each 

specimen was repeatedly rejuvenated, quenched to the desired temperature and tested at 

an aging time of 5/16 hours at increasingly higher stress/strain levels. The transition from 

linear to nonlinear behavior is evident when the stress/strain level is such that significant 

changes in compliance/modulus are observed. In addition to compliance and modulus 

values, load and recovery data from several loadings at different stress levels also provide 

data for checking superposition (Gates and Feldman, 1995). It is straightforward to verify 

that Boltzman's superposition principle applies to the entire load/unload data set (another 

indication of linearity). Using the approach above, the linear viscoelastic range was 

determined at 110 °C, 120°C and 130°C for the PEEK films and at 57 °C, 67°C, 73 °C, 

77°C, and 85 °C for PPS films. All subsequent tests are performed at stress/strain levels 

known to be in the linear viscoelastic range. 

Linear viscoelastic ranges were established for PEEK and PPS films in both creep 

(maximum stress) and stress relaxation (maximum strain) by a series of tests at an aging 

time of 5/16 hours. A sample image for PEEK film at 130° C is shown in Figure 34; the 

compliance is similar for specimen loads of 1200 g and less but changes dramatically for 

a load of 1400 g. The resulting limits for linearity for each material and temperature are 

presented in Table 5. 
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Figure 34. Linearity tests for PEEK at 130°C (te = 5116 hours) 

120 

Table 5. Upper stress/strain limits oflinear viscoelastic range (te = 5116 hours) 

Experiment conditions Stress level (MPa) Strain level (%) 

Material Temperature caC) 

110 16.20 0.55 

PEEK 120 14.18 0.50 

130 12.15 0.40 

57 12.15 0.57 

67 9.72 0.55 

PPS 73 8.20 -

77 7.29 0.20 

85 1.22 -
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CHAPTER 4 

ISOTHERMAL PHYSICAL AGING OF PEEK AND PPS 

In this chapter, the isothermal physical aging behavior of two polymer films 

(PEEK, PPS) has been assessed under both creep and stress relaxation using a DMA. The 

test methods for the instrument as well as the approach to account for minor specimen 

dimensional variation were developed. The compliance and modulus results developed 

using the test methods were extremely consistent for specimens at a given temperature 

and aging time. Comparison between compliance and modulus, using linear 

viscoelasticity theory to perform the material function conversion, also indicated 

excellent agreement between the results; this was also true of the shift rates and 

temperature shift factors. This finding demonstrates that the test and analysis methods 

used in this study are adequate to capture the physical aging behavior. These methods and 

database of physical aging test results will provide a useful foundation for the 

characterization and modeling of physical aging response under a complicated 

temperature history. 

4.1 Background 

Isothermal physical aging has been widely studied experimentally by dilatometry 
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(volume relaxation), differential scanning calorimetry (DSC) (enthalpy relaxation), 

mechanical tests (creep and stress relaxation). The pioneering work of Tool (Tool, 1946) 

and Kovacs (Kovacs, 1963) effectively established the phenomenology of volume 

relaxation, in particular the existence of a distribution of relaxation times, and the non

linearity of the response. Later studies on isothermal volume contraction have confirmed 

this phenomenology and have been aimed at a quantitative evaluation of the kinetics of 

volume relaxation in different polymer systems (Duran and McKenna, 1990; McKenna, 

1994; McKenna, 1996; Robertson and Wilkes, 1998; Santore et aI., 1991; Struik, 1997). 

In some papers, volume relaxation for the viscoelastic response was investigated by DSC 

and dynamic mechanical tests (Drozdov and Dorfmann, 2003; Muzeau et aI., 1995; 

Robertson and Wilkes, 2000). Due to the lack of suitable commercial equipment, there 

are limited numbers of dilatometric studies. In contrast, DSC studies are extremely 

numerous. The technique of DSC is used to determine the enthalpy of a glassy polymer in 

order to characterize its structural state, and this is analogous to the volume determined 

by dilatometry. The DSC has been applied to determine the physical aging behavior of 

amorphous polymers and semicrystalline polymers (Cheng et aI., 1991; Hourston et aI., 

1996; Hu et aI., 2005). In recent years, several comparative studies of physical aging 

were reported by DSC and thermally stimulated current techniques (Canadas et aI., 1998; 

Dong et aI., 2004; Hernandez and Suarez, 2004). In the mechanical testing of physical 

aging, most researchers use creep experiments to observe the response of physical aging 

with differential aging time and temperature. Creep test measures the strain by holding 

the stress at a constant value. Since Struik (1978) developed the sequential test and data 

analysis method, many papers on the creep responses of polymers have been published 
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(Bradshaw and Brinson, 1999; Brinson and Gates, 1995; Miyano et aI., 2000; Read et aI., 

1992; Schwarzl and Kaschta, 1998; Spinu and McKenna, 1994; Spinu and McKenna, 

1997; Tomlins, 1996). Compared with Creep test, stress relaxation test received much 

less attention since it was difficult to control strain at a constant value precisely during 

the stress measurement. An earlier study on stress relaxation was reported by 

Cizmecioglu and co-workers (Cizmecioglu et aI., 1981), the experimental results were "in 

accordance with" observations made by Struik for creep curves. McKenna and co

workers reported the stress relaxation response of epoxy glasses subjected to different 

thermal treatment (Lee and McKenna, 1990b) and investigated the time-temperature and 

time-aging time superposition of the stress relaxation data of polycarbonate (O'Connell 

and McKenna, 1997). Vleeshouwers (Vleeshouwers et aI., 1989), McKenna (Lee and 

G.B., 1997) reported the effect of physical aging of epoxy by both the creep and stress 

relaxation test. 

PEEK and PPS are both thermoplastic polymers that are potential substitutes for 

epoxy thermoset resins in high-performance composite materials (D'Amore et aI., 1990). 

Characterizing the physical aging behavior of PEEK and PPS will provide important 

information in the development of high-performance PMCs; the methods developed to 

study this behavior can also be readily applied to other thermoplastic materials. 

Several studies have been published on the characterization of PEEK and PEEK

based materials. Kemmish and Hay (Kemmish and Hay, 1985) examined the heat 

capacity and activation energy of amorphous PEEK using DSC. Ogale and McCullough 

(Ogale and McCullough, 1987) observed the effect of physical aging of PEEK at three 

levels of crystallinites by creep testing and DSC; however, correlation of the DSC and 
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creep experiments was not achieved due to the absence of an enthalpy relaxation peak for 

aged semicrystalline PEEK. Carfagna and co-workers analyzed the physical aging of 

amorphous PEEK by DSC, X-ray diffraction, water sorption and infrared spectroscopy; 

their work emphasized the free volume reduction and on the related morphological 

modifications (Carfagna et aI., 1988). D' Amore and co-workers (D'Amore et aI., 1990; 

D'Amore et aI., 1991) investigated viscoelastic properties of PEEK and PEEK-based 

composite APC2 by creep and dynamic mechanical tests; shift rates and mechanical 

properties at 2-3 temperatures were presented for PEEK and APC2. 

There are fewer publications on the physical aging of PPS. Ma and co-workers 

(Ma et aI., 1992) studied the effect of physical aging on impact toughness of PPS-based 

composites. Krishnaswamy and others (Krishnaswamy et aI., 2003) reported the 

influence of semicrystalline morphology on the physical aging characteristics of PPS. 

The study in this chapter characterizes isothermal physical aging of PEEK and 

PPS using a DMA. PEEK was chosen since it is an ideal matrix material for PMCs; PPS 

was chosen since it has excellent temperature and chemical resistance, PPS-base 

composite may work well below 75°C. Typically, creep tests are used to characterize the 

aging mechanical response. This is a relatively straightforward test in which constant 

load (stress) is applied to the specimen (often by dead weight methods) and the specimen 

elongation (strain) is monitored. Another approach is to use stress relaxation testing, in 

which the specimen deformation (strain) is held constant and the change in specimen load 

(stress) is monitored. The chief reason that stress relaxation tests are not performed more 

often is that equipment providing precise strain control is required. In this study, both 

creep and stress relaxation testing is performed. The DMA provides adequate capability 
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to control either stress or strain while monitoring the other. This permits characterization 

of physical aging by two means to validate the anticipated viscoelastic relationships. 

Since the DMA allows both creep and stress relaxation test methods to be used, the ideal 

choice for a given situation can be chosen. 

4.2 Results of Glass Transition Temperature 

Typical glass transition test results are shown in Figure 35 for PEEK and PPS 

films. The figures present the storage modulus (E,), the loss modulus (E'') and the ratio of 

the two (tan 0). The peak of tan g is assumed to represent Tg; this value is indicated in 

each figure. The glass transition results demonstrated minor variations in the third Tg test, 

leading to values of 143.5±O.3 ° C and 92.2±0.5°C for the PEEK and PPS films, 

respectively. They are virtually identical with values provided by the manufacturer. Note 

that the glass transition temperatures depicted in Figure 35 are test results from a single 

specimen for each material; the temperatures matching along with the peak of tan g are 

not exactly the average values above, but still in the reasonable data scattering range. 
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Figure 35. Representative glass transition temperature (Tg) test results: 
(a) PEEK film; (b) PPS film 

4.3 Creep and Stress Relaxation Test Details 

10 

1 

0.1 

0.01 

0.001 

The isothermal aging tests were carried out in uniaxial extension following the 

procedure established by Struik (Struik, 1978) as described previously. All isothermal 

physical aging tests (both creep and stress relaxation) were short-term, with the ratio of 

loading time to aging time t/te ~ O. 1. Loading and displacement was 

controlled/monitored by the suitable test module using the motor and transducer of RSA3 

DMA. The convection oven is designed for rigorous temperature control; temperature 

stability was found to be within +0. loC. 

In the sequenced tests, the aging time (te) at each load point was 5/16, 5/8, 
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5/4, 5/2, 5, 10 and 20 hours with the load applied for 0.1 te followed by an unload for teo 

For creep testing, each load-unload pair was performed using the multiple extension 

mode of the DMA with 4 zones (ramp to load, maintain load, ramp to unload, maintain 

unload) to minimize overshoot. For an individual creep step, the load is a value selected 

within the linear region upon the test temperature. In all creep and stress relaxation tests 

in this and next chapter, the loading and unloading durations are 5 seconds, the 

corresponding loading and unloading deformation rate are then determined as described 

previously. For stress relaxation tests, each load-unload pair simply specifies the strain to 

be used (i.e. no ramp is required). It is imperative for these tests that the specimen 

remains in tension to avoid buckling; as such, a suitable unload tensile strain was used 

(0.002%) rather than the ideal value of 0 strain. 

4.4 Time-Aging Time Superposition and PHYAGE 

In the short-term sequenced creep and stress relaxation test represented in Chapter 

II, the specimen is loaded and unloaded according to a specific schedule. The response 

due to each short-term load is then determined by subtracting away the extrapolated 

relaxation (which would have occurred had the load not been applied); this results in a 

short-term compliance and stress modulus curve for each loading segment at a given 

aging time. By repeating this process at different aging times, a family of momentary 

curves can be obtained. This approach significantly reduces the time required to generate 

test data, since a number of tests at various aging times can be completed for each 

rejuvenation cycle. In this study, the raw data of each creep or stress relaxation test 
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including the test time (second), the specimen length (mm), load (gram) and strain (%) 

were exported from Orchestrator software; the data during loading and unload process 

were then removed manually, since these parts are not required for establishing the creep 

or relaxation phenomenon. The remaining data were then used to find the compliance or 

relaxation modulus of the material. 

MathCAD documents were developed and used to determine the compliance and 

relaxation modulus curve family of sequential tests. The resulting compliance and 

modulus were corrected by the normalization procedure represented in the previous 

section. It is appropriate to note that the strain in creep should be obtained by the 

instantaneous specimen length and the original length at the beginning of loading process 

in the first creep test. The strain values in the raw data sheet of Orchestrator are 

determined by refer to the initial specimen length in the current sub creep test, therefore, 

these strain output cannot be adopted directly in data analysis. 

Once families of compliance or modulus curves at various aging times are 

collected from a series of creep tests, the time-aging time superposition can be applied to 

determine the aging shift factors, aging rate, etc. This analysis is performed by PHY AGE, 

a program developed by Bradshaw and Brinson (Bradshaw and Brinson, 1997a), which 

includes fitting the experimental data curve with an appropriate material function 

(Kohlrausch and Prony series), and finding the optimal reference curve, shift rates, and 

the associated shift factor function. The final output of the program is the reference curve; 

the shift rate ,describes the shift factor function and aging shift factors for each curve at 

specific aging times. 
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PRY AGE first fits each set of data with an optimal Kohlrausch curve. These 

curves are called the momentary curves (MCs). These MCs can be superposed onto a 

single momentary master (reference) curve (MMC) at a reference aging time. This 

superposition can be performed by shifting all the MCs horizontally (in log time) onto the 

MMC (Bradshaw and Brinson, 1997a). One significant characteristic of PRY AGE is that 

it can create the "total reference curve" which gathers information of all material 

response curves by an iterative fashion. If the reference curve onto which all the rest of 

the momentary curves are shifted is one of the individual momentary curves, the results 

will be biased to that MMC obtained from a single test. In such a case, all the future 

predictions will have the shape of that chosen MC. To improve upon this, the concept of 

total reference curve is introduced. The total reference curve uses all the short term 

compliance curves to determine the reference curve parameters. For determining the total 

reference curve, one of the momentary curves is initially chosen as the reference curve 

and the rest of the momentary curves are superposed onto it. All the curves that were 

superposed on to the reference curve are fit with another Kohlrausch function (for creep 

test). This is considered as the new reference curve. All the momentary curves are again 

shifted onto the new reference curve and are again fit with a Kohlrausch curve. This 

process is repeated until convergence occurs; the final reference curve obtained after 

convergence is called the total reference curve. The shift factors ale, which best superpose 

each of the momentary curves onto the total reference curve, are calculated along with 

the shift rate, p, by PRYAGE. Using this shift rate and the total reference curve, the 

physical aging of the material can be predicted (Bradshaw and Brinson, 1997a; Guo and 

Bradshaw, 2007). 
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The PHY AGE program also provides three alternate solution methods for 

utilizing upon specific purpose. These methods consist of: (1) using the MC at terejaS the 

reference curve with horizontal shifting only; (2) using the MC at terej as the reference 

curve with both horizontal and vertical shifting; and (3) using the total reference curve 

with both horizontal and vertical shifting. 

In this chapter, the reference curves in isothermal aging data analysis are chosen 

as the total reference curve at the longest aging time, i.e., tere! = 20 hours. 

4.5 Creep and Stress Relaxation Results 

4.5.1 Isothermal Creep Test Results 

This section presents the results from aging experiments using sequential creep 

and stress relaxation tests. Selections of the creep measurements under aging at different 

temperatures are shown in Figure 36 - Figure 38 for PEEK and Figure 39 - Figure 42 for 

PPS. The tests were performed with a maximum stress values which are within the linear 

viscoelastic range (see Table 5). For each family of curves, creep compliances are plotted 

versus load time for various aging times at constant temperature. As aging increases, the 

creep curves shift towards longer times. Time-aging time superposition is used to form a 

single master curve for all of the data; the reference aging time is 20 hours. 
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Figure 36. Isothermal creep test results for PEEK at 110°C 
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Figure 37. Isothermal creep test results for PEEK at 120°C 
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Figure 39. Isothennal creep test results for PPS at 57°C 
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Figure 40. Isothermal creep test results for PPS at 67°C 
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4.5.2 Compliance Variation between Specimens 

For each condition, at least 3 replicate tests were performed (different specimens, 

identical test conditions). In most tests, the values for all of the compliances could be 

measured with an absolute accuracy of ±2% (bias from average values) to the average 

compliance for all specimens. 

Figure 43 shows the compliance variation between specimens of PEEK at 130DC, 

with aging time 5/16, 5/8 and 5/4 hours. The results at other experimental conditions have 

similar variations, except for PPS at 57°C, in which the variation of absolute accuracy is 

on the order of ±3%. 
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4.5.3 Creep Data Analysis 

The optimal compliance reference curve and shift rate fl were determined using 

PHY AGE for the PEEK and PPS compliance results presented above. The resulting 

reference curve and shift rate values are listed in Table 6; each of the values represents an 

average of results from three tests. The results for across specimens were extremely 

consistent once the data was normalized by the storage modulus value as previously 

described. The shift factors obtained for each momentary curve along with the line 

prescribed by the obtained shift rate are shown in Figure 44 and Figure 45 for PEEK and 

PPS, respectively. 
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Table 6. Reference curve parameters obtained during isothermal creep tests at 
indicated temperature (terej= 20 hours, average values for 3+ replicates in each case) 

Experiment conditions Do r f3 Shift Rate f.i 

Material Temp. (Oe) (1/ GPa) (x 103 s) (unitless) (unitless) 

PEEK 110 0.515 118 0.449 0.955 

120 0.506 92.4 0.460 1.035 

130 0.512 7.87 0.531 0.745 

PPS 57 0.452 1160 0.335 1.137 

67 0.461 90.9 0.441 0.958 

73 0.466 23.0 0.504 0.764 

77 0.474 3.61 0.429 0.450 
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Figure 44. Shift factors and associated shift rates obtained from the creep tests for 
PEEK films at the temperatures indicated 
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4.5.4 Isothermal Stress Relaxation Test Results 

The stress relaxation tests for PEEK and PPS were performed in the same aging 

conditions as the compliance testing. For each stress relaxation test, the maximum strain 

value was chosen to be in the linear range; the minimum strain during the recovery was 

5% percent of the maximum strain to maintain tension in the specimen. 

Selections of the stress relaxation measurements under agmg at different 

temperatures are shown in 

Figure 46 - Figure 48 for PEEK and Figure 49 - Figure 52 for PPS. Each of these 

results show similar behavior, with modulus curves shifting in the time direction as aging 
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time proceeds. For each condition, at least 2 replicate tests were performed (different 

specimens, identical test conditions). 
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4.5.5 Stress Relaxation Data Analysis 

The optimal modulus reference curve (Kohlrausch function) and shift rate f.l were 

determined using PHYAGE for the PEEK and PPS modulus results presented above. The 

resulting reference curve and shift rate values are listed in Table 7; each of the values 

represents an average of results from 2 - 3 tests. The results for across specimens were 

extremely consistent once the data was normalized by the storage modulus value as 

previously described. The shift factors obtained for each momentary curve along with the 

line prescribed by the obtained shift rate are shown in Figure 53 and Figure 54 for PEEK 

and PPS, respectively. 
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Table 7. Reference (master) curve parameters obtained during isothermal stress 
relaxation tests at indicated temperature (terej= 20 hours, average values for 2+ replicates in 
each case) 

Experiment conditions 

Material Temp. cae) 
PEEK 110 

120 

130 

PPS 57 

67 

73 

77 
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Figure 54. Shift factors and associated shift rates obtained from the stress relaxation tests 
for PPS films at the temperatures indicated 

4.6 Temperature Shift Factors 

Reference curves for creep and stress relaxation were previously presented for 

isothermal aging with a reference aging time of 20 hours. Time-temperature 

superposition should be possible for these reference curves; this allows a single master 

curve to be used to predict momentary response at any aging time and temperature (see 

Equation(40)). 

Time-temperature superposition was successful using horizontal shifting alone 

for the PPS creep reference curves at 57 °C, 67°C, 77 DC; the individual master curves 

shifted to the reference temperature of 77°C are shown in Figure 55. The PEEK creep 

master curves at 110°C, 120 °C and 130°C are shown superposed at the reference 
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temperature of 130 DC in Figure 56; minor vertical shifting on the order of 2-4% was 

required. Time-temperature superposition of the stress relaxation curves are shown for 

PPS and PEEK in Figure 57 and Figure 58, respectively. These curves required greater 

vertical shifting (on the order of 9-16%). The need for vertical shifting in this case is also 

evident in the variation in the elastic modulus values (Eo) for both materials at the 

various temperatures (see Table 8). In addition to the shifted reference curves, Figure 

55 - Figure 58 show the optimal reference curve resulting from each set of data; the 

coefficients for each of these curves are summarized in 

or (46) for compliance and modulus, respectively). 

Table 8 (refer to Equation (39) 

Other researchers have observed that slight vertical shifts are often necessary to 

obtain time-temperature superposition of master curves (Matsumoto, 1988; O'Connell 

and McKenna, 1997). For the creep tests, the amount of vertical shift is on the same order 

as the variation witnessed in the individual creep test replicates. In this case, it is 

reasonable to expect that horizontal shifting alone is sufficient for time-temperature 

superposition were the experimental variation to be eliminated. The reason for larger 

vertical shifts required for both PEEK and PPS stress relaxation results is not clear at 

present. Additional investigation and repeat testing is needed to try and identify possible 

experimental reasons for the vertical shift. 
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Table 8. Optimal reference (master) curve parameters for PEEK and PPS obtained 
from time-temperature superposition at indicated temperature and aging time terej= 20 
hours 

Experiment conditions Do T f3 
Material Ref. Temp. (OC) (lIGPa) (s) (unitless) 

PPS 77 0.4728 3614 0.4454 

PEEK 130 0.5116 7527 0.5241 

Experiment conditions Eo T f3 
Material Ref. Temp. (OC) (GPa) (s) (unitless) 

PPS 77 2.3308 1860 0.4903 

PEEK 130 2.0582 8730 0.5771 

4.7 Comparison of Creep and Stress Relaxation via Interconversion 

Once stress relaxation testing is complete at a given isothermal aging condition, 

the obtained reference modulus function E(t) can be converted to the compliance function 

D(t) in accordance with Equation (22) using the program INVERT1D (Bradshaw and 

Brinson, 1997d). This program first converts the Kohlrausch function for modulus to a 

Prony series over the time domain of interest. It then uses the convolution integral in 

Equation (22) along with this Prony series to obtain the optimal Prony series for the 

unknown compliance function D(t); this Prony series can then be converted back to a 

Kohlrausch function if desired. 

Using this approach, the modulus results can be converted to compliance and 

compared to the compliance results obtained directly from creep testing. The results of 

both cases should match and the shift factors should also be identical. Figure 59 and 
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Figure 60 present the companson of compliance obtained from creep and stress 

relaxation tests for PPS and PEEK, respectively. The similarity of the results validates 

both the use of linear viscoelasticity (source of Equation (22)) and the correctness of the 

test method used to perform the stress relaxation testing (source of E(t) which is then 

converted to D(t)). It should also be noted that the findings in this study are consistent 

with the requirement that D(t)E(t) ~ 1.0. Specifically, for the temperatures and aging 

times considered in this work, it is observed that 0.9 < D(tJE(t) < 1.0. This deviation from 

unity is very close to the predicted range 0.95 < D(t)E(tJ < 1.0 obtained from classical 

linear viscoelasticity theory (Vleeshouwers et aI., 1989). 
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Figure 59. Comparison of compliance obtained by creep testing and stress relaxation 

testing for PPS isothermally aged at 77°C 
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Figure 61 and Figure 62, respectively, illustrate the compliance curves and shift 

factors (shift rate) of PPS at 73 °e, at various aging times. The compliance curves 

obtained by creep tests and inverted from the stress relaxation tests using the convolution 

equation are compared in Figure 61. Since in this dissertation, the isothermal physical 

aging characterization provides the database and reference for the nonisothermal aging 

testing in next chapter, comparison of aging test results by two different methods 

validates that the experimental protocol built up for observe the physical aging effect by a 

DMA works well for these two materials. 

In addition to compatible modulus and compliance material functions, the 

physical aging tests performed using creep and stress relaxation should also lead to 

similar shift rates and temperature shift factors. Results for shift rates and temperature 

shift factors are shown in Figure 63 and Figure 64, respectively, for both PPS and PEEK. 
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The values in all cases indicate good agreement. It is also observed that the shift rates 

tend towards 0 as the temperature approaches Tg; this is expected from physical aging 

theory (Struik, 1978). 
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CHAPTERS 

NONISOTHERMAL PHYSICAL AGING OF PEEK AND PPS 

This chapter covers the testing details and results on nonisothennal physical aging 

of PEEK and PPS. The thennal histories include both one-step temperature up-jump and 

multi-step temperature changes following quenching. Short-tenn and long-tenn creep 

compliance and aging shift factors under such thennal conditions are summarized; these 

data fonn the database for modeling nonisothennal aging behavior in the next chapter. 

5.1 Background 

In the previous chapter, past and current research efforts studying isothennal 

physical aging in neat polymers and polymeric materials were discussed. Isothennal 

physical aging occurs when a polymeric material falls in an equilibrium state since a 

temperature jump away from a rubbery state into a glassy state. Generally, the 

equilibrium state is achieved by rejuvenating the material at T ~ Tg and annealing at that 

temperature for a period. Under isothennal conditions below Tg , many researchers have 

perfonned experimental and analytical investigations on the nature of the mechanical 

response in a number of polymeric materials by various techniques. This has led to a 
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standard test method (developed by Struik) via creep or stress relaxation and a concise 

ramework to analyze experimental results and predict mechanical response, which was 

discussed in the previous chapter. 

For aging materials used in an actual structure, understanding only the isothermal 

response characteristics is likely insufficient for design. However, while the isothermal 

physical aging has been extensively studied, nonisothermal physical aging has received 

less scrutiny. As such, relatively few studies have been performed in both collecting 

experimental data and creating models to predict physical aging effects during an 

arbitrary temperature history. Most structures undergo complicated thermal histories 

during their service life; if aging effects are deemed significant for such structures, an 

analysis of the aging response to a nonisothermal condition must be undertaken. In this 

chapter, an experimental investigation of nonisothermal physical aging in glassy 

polymers PEEK and PPS will be presented. This work provides a database of viscoelastic 

response in polymers as effects of nonisothermal physical aging; this forms the basis for 

modeling complex material behavior under complicated thermal conditions (will be 

discussed in Chapter VI). 

Compared to isothermal physical agmg, a relatively small number of studies 

considering the mechanical response during nonisothermal physical aging have been 

undertaken in literature. Struik (1978; 1988) considered the aging shift factor ale after 

temperature up-jump thermal histories after aging at lower temperatures since quenching 

(this experiment is referred as to single temperature up-jump test in this dissertation; see 

Figure 24). The test material was slowly heated up to a temperature above Tg and was 
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held at that temperature for 30 minutes to erase internal residual stress and to reach 

thermodynamic equilibrium state. The test specimen was then quenched from this 

temperature to a dwell temperature TI for a period (120 hours for most of the studies) and 

then jumped to the final temperature below Tg • On the final temperature, both the 

volumetric and mechanical response of the material (in creep) was monitored during this 

nonisothermal physical aging. Studies were undertaken on polystyrene (PS), poly(vinyl 

chloride) (PVC) and polycarbonate (PC). Each data set consisted of the results for a 

common final temperature Te with varying first temperature values TI; for each set, the 

dwell time (I spent at TI was the same in all cases. The shift factor ate was determined by 

the time-aging time superposition principle with an isothermal reference curve at the final 

temperature Te (at aging time 16/3 hours) to the nonisothermal creep data. This approach 

is identical to the isothermal method previously described in Equation (42); as such, a 

similar test method can be applied to characterize both isothermal and nonisothermal 

physical aging, with the only difference between these two kind of tests being 

temperature histories prior to testing. Struik found that, unlike isothermal physical aging, 

aging shift factors after the temperature up-jump treatments do not form a straight line in 

double logarithmic space. Instead, the aging shift factors initially increase (softer 

response) followed by a decrease (stiffer response). Typical compliance curves and aging 

shift factors are shown in Figure 65. With sufficient elapsed time since the temperature 

jump, the material "forgets" its past aging history and begins to act as though it was 

isothermally aged at the current temperature. 
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Figure 65. Compliance and shift factors for PVC after aging 120 hours at a lower 
temperature (30°C, 40°C) followed by jump to 50°C as performed by Struik(Bradshaw 

and Brinson, 1997c; Struik, 1988) 

Struik also investigated material response during simultaneous volume recovery 

process along with nonisothermal physical aging under identical thermal conditions. In 

this test, the specific volume v (reciprocal of density) was monitored with aging time; the 

test protocol is demonstrated in Figure 66. The results of log ate versus v of polycarbonate 

is depicted in Figure 67. Fairly good linear correlations were found at all test 

temperatures. This conclusion supports the argument that a common underlying 

phenomenon (free volume) drives both the volumetric and mechanical aging response of 

glassy solids. Struik's findings indicate that a relationship between the mechanical and 

thermodynamic properties exists during structural relaxation, though there is considerable 

scatter in his data of polystyrene for some temperature histories. 

108 



Tg --

erasing period 
0.5 hrs 

r----~-To 

• 
period t, of 120llrs 

measuring period, 48 hrs 
• • 

~-------------------~ 

, 
L-_______ r, - __ ~ 

6 

--_ .. time, te , elapsed at Te 

Figure 66. Single temperature up-jump test on volume recovery after aging at a lower 
temperature, studied by Struik for both volume and mechanical response (Struik, 1978) 

P(, 155'11 r, (120hrs)! Te 

100 

10 

'DO "0 '" ---1 r. .c +< 0 

/.' I 

"1 
I / ' 130 

135 I .." 
0'1. :/ ",,* II r ji 140 

i 1/ j I . .A 
j,+-" 

vt ( .,. 
./1 ~ ,.. 

to V+'" 3 , 'f 

L 
(OF. 

~ ; ! V;, J 
f t I y/. 0jI' D V 

0 ,. ~ cmJlg 

100. 

10 

0.1 0.1 

0.0 I I I Om 
0.850 0.852 0.856 D.85~ 

Figure 67. Correlation between ate and specific volume v for polycarbonate during 
temperature up-jump histories (above Tg, quench to TJ and hold 120 hr,jump to Te) 

(Struik, 1988) 

McKenna and coworkers have also considered nonisothermal mechanical 

response of glassy solids (McKenna et aI., 1993, 1995; Schultheisz et aI., 1995). These 

studies repeat the experiment described in Figure 24 and Figure 66 using an epoxy 

system and compare both the volumetric response 0 and mechanical shift factor ate, 
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where 0 is the normalized volumetric departure from equilibrium, defined as 

v(t,T)-veq(T) 
o(t, T) = -------'--'-

Veq (T) 
(54) 

and Veq is the specific volume at equilibrium state (often referred as to v'" in literature). 

Strictly speaking, these experiments are isothermal since they consider only a single 

temperature jump away from a sub-Tg equilibrium state. In other words, the material was 

held at the dwell temperature TJ long enough, that the material reached the equilibrium 

state and was then jumped to a new temperature To. In their tests, both temperature up-

jump and down-jump were considered; this is not possible for the standard physical aging 

studies (equilibrium state above Tg) since an up-jump enters equilibrium instantaneously. 

These researchers observed differences in the behavior of ate and 0, especially in the fact 

that the two properties appeared to reach equilibrium at different times (McKenna et ai., 

1995). Specifically, the mechanical response ale reached equilibrium after the volumetric 

response in the up-jump experiments, while the opposite result occurred in the down-

jump experiments. This point was used to argue that determination of the mechanical 

response ate from the volumetric response 0 is not appropriate, and that a different time 

scale governing the mechanical response process must be identified. It should be noted, 

however, this data also clearly showed reasonable linear relationships between ate and 0 

in log-log scale away from the equilibrium state, consistent with the findings of Struik. 

Before reaching equilibrium (i.e. during the process of physical aging), a direct 

connection between ate and 0 may be acceptable. 
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Besides the studies above, Bradshaw and Brinson did a significant amount of 

work on effects of nonisothermal physical aging upon the mechanical response of 

IM71K3B graphite reinforced thermoplastic polyimide composite (Bradshaw and Brinson, 

1997b, 1999) with a Tg of approximately 2400 C (Gates and Feldman, 1995). In their 

studies, nonisothermal aging tests were performed on the shear and transverse specimens 

by creep for single temperature up-jump and down-jump tests, using the protocol 

described previously in this dissertation. From a theoretical perspective, there are two 

notable contributions by these researchers. First, they developed a new continuous shift 

factor (CSF) method by using both the load and unload test data from an experimental 

data set (Bradshaw and Brinson, 1997b, 1999); this approach reduces the amount of tests 

that need to be run to characterize nonisothermal response as well as allowing more 

advanced analyses that are not possible with the standard method. A new parameter 

called the effective aging time was introduced to describe the state of aging throughout a 

nonisothermal history in a consistent and clear fashion. Figure 68 shows the calculated 

effective aging time of a temperature up-jump test, and the continuous shift factors 

obtained by CSF method as well as discrete shift factor points using the standard 

approach. It can be seen that the CSF method leads to reasonable predictions to 

recovering the mechanical shift factor function (ate) from a nonisothermal aging 

experiment. Compared the result from standard approach, the CSF method yields a 

continuous curve of ate rather than a series of discrete points, more data is obtained from 

each test. The second contribution of Bradshaw and Brinson in their investigation on 

nonisothermal aging is that they developed KAHR-ate model (Bradshaw, 1997), which 
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assumes a correlation between volume response and mechanical properties in structural 

relaxation. The KAHR-ate model extends the KAHR (Kovacs-Aklonis-Hutchinson-

Ramos) model (Kovacs et aI., 1979) to predict nonisothermal aging shift factors obtained 

from mechanical response testing. Since this chapter focuses on experimental 

characterization of nonisothermal aging, the details of the KAHR-ate method will be 

presented in next chapter. 

0.40 
-""". 

1000 

0.35 /''\ 6 

I \ 
5 m s 4 ~ t1l 

c 0.30 /0 \ 3 ~, g 
:1 l6 () 

c 0.25 ;C :::l 
U. ~ . ... 

100 
~ 0.20 

.I ::! 
3 u. - <Ire' CSF Method I 6 1.11 

!: 0.15 5 
...... 111 J:; 0 ato!. Standard Method /,,\0 4 f/) 

2' -----.- t .. ff CSF Method 0 3 ~ 0.10 " ' t / " ! / 0.05 
~._,._-,-,-~.~/ 0 10 

"--"""".,., 

o. 00 1--~~...j:I..I..J~-l--~I-W-l.u......."""""'-I-l-.w..u",,----...l--J,....!.-l-U=---'---1--IJ 

10' 10
2 

10
3 

10
4 

10
5 

Time Elapsed Since First Loading t -p (s) 
q 1 

Figure 68. Aging shift factor ate and effective aging time t:ff determined from the 
effective time for CSF method. Thermal history: aged 68 hours at 215°C, followed by up

jump to 225°C (Bradshaw, 1997) 

Besides the experimental characterizations above and the studies performed for 

this dissertation presented below, little additional work has been performed by other 

researchers in determining the nonisothermal mechanical response of glassy polymers 

undergoing physical aging. The above studies show that there is some connection 

between volumetric and mechanical response, but that difficulties may ensue as the 
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equilibrium state is approached. Since structures in practice are unlikely to age into 

equilibrium, it may be possible to set aside this latter concern in developing a mechanical 

response model. The KAHR model was extended to deal with aging shift factors by 

Bradshaw and Brinson and the limited results presented were quite encouraging, 

indicating that the KAHR-ate model is a promising basis to predict nonisothermal 

physical aging shift factors. Nonisothermal aging effects on various nonisothermal 

conditions of pure polymers are characterized; these results form the basis of 

nonisothermal modeling to take place in next chapter. 

5.2 Experimental Results on Single Temperature Up-jump Tests 

PEEK and PPS films have been tested in five different up-jump conditions as 

described in Chapter III. For each thermal history, at least three replicate tests are 

conducted. Compliance curves determined from one of these replicates for each thermal 

history will be presented in detail while discrete aging shift factors obtained by PHYAGE 

will be shown both as average and data limit bias for all replicates. 

Figure 69 - Figure 72 illustrate the compliance curves of four up-jump thermal 

histories ending at 130°C, with the dwell temperatures of 11 O°C, 118°C, 120°C and 

125°C, respectively. From these figures, as the dwell temperature decreases, the 

compliance response gets closer to isothermal response. For the same dwell period (14 

hours), when the holding temperature prior to up-jump is high enough (>118°C), with 

increasing aging time, the material after up-jump will become initially softer first, and 
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then become stiffer with further aging. This reflects that the compliance curves in several 

figures below shift leftwards, and then rightwards as found in earlier work; e.g. Figure 65. 
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The family of compliance curves shown above is obtained from the sequenced 

creep tests at several aging times from 5116 hour to 20 hour; note that the aging time of 

nonisothermal aging in this dissertation is defined as the time elapsed from last 

temperature jump. It is clear by inspection that tests in Figure 70 - Figure 72 are not 

isothermal aging tests as the curves are not evenly spaced and moving to the right with 

aging. The compliances of up-jump 110°C-130DC in Figure 69 visually reveal little 

difference from isothermal responses; the reason for this is that the material aged at 

relatively low temperature (1lO°C) such that the aging state had not changed much before 

jump to the test temperature (130°C). As such, the aging prior to up-jump did not affect 

much on the thermodynamic state of the specimen, with the result that the material 

response looks quite similar to the aging response at isothermal 130°C. To clarify this 

point, an inset plot is made in Figure 72 to show the shifting tendency of compliance 

response at 5/16, 5/8 and 5/4 hour since temperature jump from 125°C at short times. It is 

clear that these curves shift to the left along the logarithmic time axis. 

Besides the tests shown in Figure 69 - Figure 72, one more single temperature up

jump with thermal histories of 1l0DC-120DC are also considered in this study. For the 

sake of brevity, the compliance response is not presented here; associated aging shift 

factors will be exhibited in the next chapter. 

The temperature up-jump thermal histories for creep tests in PPS include 57°C-

73 DC, 63°C-73°C, 67°C-73DC, 57°C-63DC and 67DC-77DC. Figure 73 - Figure 75 depict 

the compliance curves for the three up-jump tests ending at 73°C; the compliance curves 

of the last two thermal histories will not be shown due to similar response, although the 
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aging shift factors of these two tests will be used in the modeling work presented later. 

These experimental results are similar to those observed in the PEEK material. It should 

be noted that these data sets appear to have the strain occurring in a series of steps. The 

reason for this is that when the RSA3 DMA is used in transient mode, the specimen 

elongation occurs in 1 J.Llll steps of the upper stage. For a specimen length of 25.4 mm, 

this corresponds to a strain step of 39 microstrain. This incremental nature of the applied 

strain is the reason for the "stair case" appearance of the compliance curve in Figure 73 

and Figure 74 (and to a lesser extent in compliance of PEEK shown previously). 
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The aging shift factor for each compliance curve is then identified using the 

PHY AGE program with horizontal shifting alone. The shift factors obtained are relative 

to the isothennal aging reference curve at 1300e at te = 20 hours for PEEK and to the 

isothennal aging reference curve at 73°e at te = 20 hours for PPS; the reference curve is 

vertically shifted prior to the analysis as needed (typically ~5%) to bring it in line 

vertically with the longest aging time compliance in the data set 10. The resulting shift 

factors for the data in Figure 70 are shown in Figure 76; these show the increase and 

decrease that is expected for an up-jump aging condition. For each experimental 

condition, at least three replicate tests were performed (different specimens, identical test 

conditions). In most tests, the compliance values were within ±5% of the average 

compliance for all specimens. The optimal horizontal shift factors were then obtained as 

described above. In Figure 76 , the shift factors observed for 3 tests using PEEK for a set 

of test results 118°e (14 h) - l300e are shown; the error bars indicates a 90% confidence 

interval (The confidence interval was calculated by the method (X ± (s / Fn )t a/2 (n ~ 1) ) , 

where X is the sample mean, S is the square root sample variation, n is the sample size, t 

is the student's t-distribution and (J.. is the confidence level). The experimental results 

from other test conditions are similar to these in tenns of data scatter. 

10 In detail, the vertical shift for the isothermal reference curve (te = 20 hr)was made in this way: fit the 
reference curve and the compliance at the longest aging time (te = 20 hr) using the Kohlrausch function, 
shift the initial compliance DOref to the initial compliance of the data with the vertical shift factor DOdata/ 

DOref• 
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Figure 76. Average aging shift factors from three PEEK tests after aging at 118°C for 14 
h followed by jump to 130°C; error bars indicate a 90% confidence level 

Figure 77 and Figure 78 summarize the aging shift factors for temperature up-

jump tests (with dwell temperature and test temperature pairs with 14 hour of aging prior 

to up-jump) for PEEK and PPS, respectively; the final temperatures are 130°C for PEEK 

and 73°C for PPS. For comparison, isothermal aging shift factors at these temperatures at 

similar aging times are also included. The nonisothermal aging shift factors in the single 

temperature up-jump cases manifest complex material behavior under such thermal 

conditions. The aging state of glassy polymers clearly depends on the thermal treatments. 

These curved nonisothermal aging shift factors need to be modeled, in order to describe 

mechanical behavior under such conditions. Once the aging shift factors can be predicted 

by a model, the compliance properties will be obtained by submitting the ate information 

and reference curve parameters into Equation (42). 
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5.3 Results for Complex Thermal Treatments 

Since practical structures go through complex temperature conditions in 

applications, it is indispensable to investigate the viscoelastic properties after more 

involved thermal histories than a single temperature jump after quenching. In this study, 

nonisothermal physical aging tests were performed after mUltiple temperature jumps in 

PPS; predictions of the mechanical responses for various thermal histories using the 

single up-jump data set and the KAHR-ate model will be provided in the next chapter. 

The thermal histories of PPS film considered in this dissertation include: 

97°C (5 °C above Tg) ~ 57°C (10 hr) ~67 °C (4hr) ~73 °C 

97 °C~ 67°C (4hr) ~77 °C (lOhr) ~73 °C 

97 °C~ 67°C (3hr) ~ 77°C (7hr) ~ 57°C (4hr) ~73 °C 

97 °C~ 27°C (l2hr) ~73 °C (1hr) ~27 °C (lhr) ~73 °C 

97°C -->,57 °C (4hr) -->,73 °C (lOhr) -->, 67°C. 

The creep test methodology is exactly the same as that in up-jump tests. At each loading 

point, the time elapsed from the last temperature jump was 5/16, 5/8, 5/4, 5/2, 5, 10, and 

20 hrs, the duration of each load was 1110 of these "aging times" from last temperature 

varying. The resulting aging shift factors of creep tests are demonstrated in Figure 79 and 

Figure 80. The aging shift factor data in these two figures are general curves which 

strongly depend on thermal histories. Unlike found in single temperature up-jump tests, 

the aging shift factors at 20 hr are not close to 1 for several thermal histories, it means the 

material at a long (20 hr) time after temperature jumps manifested quite different 

mechanical behavior compared with that in the isothermal case. 
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5.4 Long-term Nonisothermal Aging Response 

5.4.1 Background 

Long-tenn mechanical behavior of glassy polymers is a critical issue for many 

structural applications using polymer-based materials. During their service life, the 

viscoelastic properties of polymers can be strongly affected by physical aging, especially 

as temperatures approach the glass transition temperature Tg . Hence, the effects of 

physical aging on mechanical responses have received a great deal of attention in the past 

several decades. Struik (1978), McKenna (McKenna, 1995a), Tomlins (Tomlins, 1996; 

Tomlins et aI., 1994) and other researchers (Dean et aI., 1995; Kato, 1997; Veazie and 

Gates, 1997) have used creep tests of neat polymers and polymeric matrix composites 

(PMCs) to experimentally detennine the long tenn effects of physical aging. Effective 

time approaches, developed by Hopkins and Haugh (Haugh, 1959; Hopkins, 1958), can 

also be used to predict long-tenn behavior from short-tenn tests. For example, Struik 

(1978) has shown fairly good predictive capabilities for long-tenn creep response of PVC 

at constant temperatures. 

In recent years, investigators put forward several models in order to describe 

long-tenn data with good accuracy for specific materials or applications. Read and 

Tomlins (Read and Tomlins, 1997; Tomlins, 1996) used a stretched exponential 

Kohlrausch function, combined with an equation of the relaxation time over wide ranges 

of aging time and loading time to represent long-tenn compliance; their numerical results 

provided reasonable predictions of long-tenn data on polypropylene and PVC. Arnold 
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and White (Arnold and White, 1995) compared the () concept model and the so-called 

universal formula (Kohlrausch function) method to long-term creep data in PMMA; they 

reported that the universal formula method produced a satisfactory fit, with the effects of 

aging being taken into account through the use of an effective time, while the () concept 

model was not very successful. Skrypnyk and co-workers (Skrypnyk et aI., 2000) 

introduced a constitutive model for long-term behavior of thermoplastics that integrates 

effective time theory with a generalized Schapery model (Schapery, 1969); the modelled 

to good long-term predictions for multi-step stress loading and recovery tests for 

polypropylene. Another constitutive model derived from the effective time concept was 

proposed by Zheng and Meng (Zheng and Weng, 2002). The authors claimed that this 

model is identical with classical effective time theory when the aging time is sufficiently 

long; however, at short times, the former is more suitable for chrono-rheologically simple 

materials since it can account for the transition to the asymptotic state. This model was 

used to predict tests for a glass fiber/Derakane resin composite (30 vol.% glass fibers and 

Novolac vinyl ester resin (Dow Derakane 470-36)) and the results matched the 

experimental findings. 

Most investigations above have attempted to develop models based on classical 

effective time theory; these approaches have been largely focused on improving 

predictive abilities or calculating the long-term response for specific materials at constant 

or varying stress levels. It is a remarkable fact that all of research on long-term 

viscoelastic response of polymers in the literature is conducted at isothermal conditions; 

this means that the material is quenched from a temperature above the glass transition 
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temperature (Tg) to a temperature T < Tg and held at this temperature until the long-term 

test is complete. While isothermal long-term physical aging has been extensively studied, 

long-term mechanical properties with physical aging effects after a varying temperature 

history has received far less scrutiny. In this section, we address the nonisothermallong

term creep response of PPS films and provide a database for the further modeling work 

presented in next chapter. 

5.4.2 Long-term Creep Results During Nonisothermal Aging 

Long-term nonisothermal creep tests are performed for several thermal histories; 

these are identical to those considered in short-term testing and include both single 

temperature up-jump and multi-step temperature conditions. The thermal histories ofPPS 

film considered in this dissertation include: 

97°C (5 °C above Tg) -+ 57°C (14 hr) -+ 73°C 

97 °C -+ 63°C (14 hr) -+ 73°C 

97 °C -+ 67°C (14 hr) -+ 73°C 

97 °C -+ 73°C (isothermal aging) 

97 °C -+ 57°C (10 hr) -+ 67°C (4 hr) -+ 73°C 

97 °C -+ 67°C (4 hr) -+ 77°C (10 hr) -+ 73°C 

97 °C -+ 27°C (12 hr) -+ 73°C (1 hr) -+ 27°C (lhr) -+ 73°C 

97 °C -+ 57°C (4 hr) -+ 73°C (6 hr) -+ 67°C 
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At the final temperature in a thermal history, characterization of the aging state 

occurs using a long-term creep and recovery test. All creep tests begin 0.5 hours from the 

instant at which the specimen has first reached the final temperature (teO). Creep tests are 

performed in tension and generally last for at least 10 hours (tlteo ;::: 20). 

Long-term creep tests are conducted at the final temperature (73 °C or 67°C) in 

the thermal histories above. It should be emphasized that long-term in this context means 

that the load duration is such that the aging state changes appreciably during the loading 

history (i.e. the creep tests do not consist a series of short-term load steps during which 

the aging shift factor remains approximately constant). The stress level applied to the 

specimens (4.87 MPa) remains in the linear viscoelastic regions at 73°C and 67 °C; 

details on determining linear ranges are presented elsewhere (Guo et aI., 2009). 

The long-term creep data were collected in two successive time zones. The first 

time zone covers the time scale from the starting of loading (t = 0) to t = 180 seconds and 

the second time zone is the remainder of total loading time. The data collected in time 

zone 1 is considered as the short-term response of creep (tlte S 0.1); this data is utilized by 

the nonisothermal effective time theory for predicting the long-term response. The whole 

data set of compliance curve represents the long-term response of nonisothermal physical 

aging; it will be compared with numerical results to validate the effective time theory 

under complicated thermal histories in the nest chapter. 

Figure 81 - Figure 83 depict long term creep responses for six thermal histories. 

For each thermal history, test results from three replicates are plotted. The creep tests last 
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for at least 10 hours, while the aging time since last temperature jump is 0.5 hour. It is 

clear that the long-term creep compliance curves are consistent with each other under the 

same experimental condition; the maximum deviation of compliance values between any 

individual data set and the average was found less than 5%, while the average deviation is 

less than 2%. Note that the creep data are evenly distributed in real time; this is the reason 

that in Figure 81 -Figure 83, one sees more data points near the ends of both time zones 

(x axis is in logarithmic scale). 

Long-term creep results for the other two thermal histories are similar as those 

shown in Figure 81- Figure 83, compliance curves from different specimens are 

consistent each other, these results will be presented later comparing with the predictions 

from effective time theory. 
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Figure 81. Long-term creep compliance curves of two thermal histories: 

97°C -+ 57°C -+ 73°C and 97 °C -+ 63°C -+ 73°C 
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Figure 82. Long-tenn creep compliance curves of two thennal histories: 
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CHARTER 6 

MODELING NONISOTHERMAL PHYSICAL AGING 

6.1 Background 

Most prevIOUS work on nonisothennal behavior of glassy polymers has 

concentrated on volumetric response or enthalpy recovery, including several theories on 

specific volume (Kovacs et aI., 1979; Ramos et aI., 1984), free volume (Robertson, 1979; 

Robertson, 1992; Robertson et aI., 1984), fictive temperature (Moynihan et aI., 1991; 

Narayanaswamy, 1971; Tool, 1946), and relaxation time (Ngai, 2000; Ngai, 2003; 

Rendell and Ngai, 1987; Rendell et aI., 1987). The Kovacs-Aklonis-Hutchinson-Ramos 

(KAHR) model, the Tool-Narayanaswamy-Moynihan (TNM) model, Ngai-Rendell's 

coupling model and Robertson-Simha-Curro (RSC) theory, are able to capture many of 

the experimental observations associated with the glass transition and structural recovery. 

The volume and enthalpy responses of polymers are important from a practical view 

because the changing "thennodynamic state" of the non-equilibrium glass impacts the 

mechanical response of the polymer in physical aging (McKenna and Simon, 2000). 

Therefore, the structural recovery models above represent a good starting point for 

predicting nonisothennal mechanical properties; In particular, this disserattion focuses on 

extension of the KAHR model, which has successfully described the major features of 

structural recovery. 
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In the 1960's, Kovacs (Kovacs, 1963) developed a series of experimental 

techniques to illustrate the kinetics of glasses in structural (volume) recovery after 

temperature jumps. These techniques include: (1) the intrinsic isothermal experiment; (2) 

the asymmetry of approach experiment; and (3) the memory experiment (McKenna, 

1995a; McKenna, 2007; McKenna and Simon, 2000); these are discussed in greater detail 

in the next chapter for materials aged near Tg • The structural recovery phenomenon has 

been investigated by many researchers, and several reviews have been written 

(Hutchinson, 1995; McKenna, 1989). 

In recent years, McKenna and co-workers have studied structural recovery and 

physical aging responses of polymer glasses subsequent to plasticizer jumps, including 

the effects of relative humidity and carbon dioxide pressure (Alcoutlabi et aI., 2004; 

Alcoutlabi, 2002; McKenna, 2007, 1995b; Zheng and McKenna, 2003; Zheng et aI., 

2004). They reported the volume responses under these conditions have similar 

phenomenology to, but different kinetics from, those obtained by temperature jumps. 

Clearly, studies of structural (volume) recovery provide many valuable insights into the 

long-term behavior of polymer glasses. As stated in the previous chapter, researchers 

have found that there is some kind of correlation between volumetric response and 

simultaneous aging shift factors; the KAHR-ate model was developed based on this fact. 
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6.2 KAHR-a Model 
Ie 

6.2.1 The KAHR Model 

In the KAHR model, the volume recovery behavior can be expressed by the 

normalized departure from equilibrium b, which is defined as in Equation (54). 

The volume response (specific volume change during physical aging was demonstrated in 

the Chapter I) is determined as (Kovacs et aI., 1979 ): 

Z dT 
o(z)=-~a fR(z-~)-==-:-d~ 

o d~ 
(55) 

where L1a = at - ag is the difference in coefficient of thermal expansion between the liquid 

and glassy state, T is temperature, R(z) is a normalized retardation function that ranges 

between 1 at z = 0 and 0 at z = co, and z is the reduced time defined as: 

(56) 

where t is time, aT is the temperature shift factor, and ab is the structural shift factor. 

In this work, R(z) is chosen as a normalized sum of Kohlrausch modulus functions 

of the form: 

(57) 

where K is the number of elements of R(z) and Rk, Tk and fJk are the kth coefficient, 

relaxation time and exponential parameter, respectively. This expression is normalized 

such that R( 0) = 1 as required in the KAHR model (Kovacs et ai., 1979). 
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The shift factors aT and ao follow the exponential fonns suggested by KAHR 

(Kovacs et aI., 1979): 

(58) 

e -b = 1 _ x' r = (1- x )B 
'':> /)"a 

(59) 

where Tr is a reference temperature, x is a partition parameter (0 S x S 1), and B is a 

material constant; note that band ( are introduced to simplify the solution in the case 

of T = Tr (i.e., aT is fixed at unity and ao is related to a single parameter 0 (Bradshaw, 

1997). 

6.2.2 KAHR-ate Model of Aging Shift Factor 

The KAHR model can be extended to predict mechanical response shift factors ate 

if a relationship between ate and c5 (or v) could be ascertained. Based on the findings of 

Struik (Struik, 1988) (see Figure 67) and McKenna (1995), the logarithmic ate data 

appears to be well-represented by a straight line versus c5 (or v) for materials that do not 

reach thennodynamic equilibrium. Assuming this behavior, the relationship between ate 

and c5 can be expressed as: 

(60) 

where ro describes the equilibrium value of the shift factor ate and r I describes how ate 

changes with a departure from volume equilibrium (b;f 0). Recalling the expression for 

ao in Equation (58), this expression was written by Bradshaw (1997) as: 
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(61) 

The dependence of ro and r I on the temperature T can take on any number of 

forms. In this dissertation, they are assumed to take on the form below 

(62) 

where constants Co and Clare specific to the temperature at which the mechanical 

responses were measured. Generalization of this expression to a wider variety of 

temperatures (i.e. expressions for Co and C I for any temperature) is considered later. 

This equation indicates a temperature-dependent linear relationship between ate 

and a~ in log-log plot. At a given temperature, mechanical response (ate) can be evaluated 

if the thermal history is known. This relationship is assumed based on the experimental 

findings of Struik (Struik, 1978, 1988) and McKenna (McKenna, 1995b); as will be 

shown in a later section, the predictions obtained using this approach are validated by the 

nonisothermal physical aging test results presented here. 

6.2.3 KAHR-ate Model Solution Algorithm 

There are two basic problems of interest for the KAHR-ate model formation: (1) 

prediction of mechanical aging shift factor ate for a given set parameters; (2) 

determination of those parameters to fit a known mechanical response data set. This 

section focuses on the first problem. 
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An essential step for the first problem is to determine the reduced time z. This 

derivation follows that presented by Bradshaw (1997). Once the z is obtained, volume 

response and then aging shift factors can be found by using KAHR -ate model parameters. 

Differentiating Equation (56) we find: 

dz 1 

dt ar (z)a" (z) 
(63) 

Substituting 0 from Equation (55), ar and aJ from Equation (58) and ate from Eq. (62) 

leads to: 

(64) 

This represents an ordinary differential equation in z that can be solved using suitable 

numerical methods. 

If the temperature history is restricted to a series of temperature jumps since the 

material was at T = Tg (i.e. the last moment it was in equilibrium before quenching to 

T < Tg), Equation (64) can be further simplified. Specifically, a temperature history 

consisting of M temperature jumps can be expressed as a function of the time since the 

quench from Tg (ta) as: 

M~I 

T(ta)=~+ 'LH{ta-8m),1.Tm 
m=O 

{ 

T-T 
8 = 0 . ,1.T = 0 g 

o , m T-T 
m m-1 

m=O 

m>O 

(65) 

where I1Tm and 8m is the temperature change and time at the mth step, respectively, and 

H(t) is the Heaviside function. Substituting this into Equation (64) leads to the following 
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simplified differential equation for z: 

(66) 

where P E [0, M-l], Om = z(e,J and em = 00. 

The expression in Equation (66) is an ordinary differential equation. Since the 

initial condition at time fa = ° is known to be z(o) = 0, this represents an initial value 

problem that can be solved using a variety of approaches. In this work, the reduced time z 

is evaluated using a 5th order Runge-Kutta method with the Cash-Karp parameters as 

detailed in a reference (Press et aI., 1992); further details regarding the solution method 

are available elsewhere (Bradshaw, 1997). Once z is obtained, all quantities of interest (0, 

ao, ate, etc.) are obtained by algebraic evaluation. 

The code for the KAHR-ate model was written by C language. Most of the code 

used in this study was developed by Bradshaw (1997 )and the main body and a few 

functions were programmed by me. 

6.2.4 Optimal KAHR-ate Model Parameters 

The second problem seeks the parameters that lead to the best fit of the data using 

the KAHR-ate model. In this case, a data set (fi and atei) have been obtained from the 

testing, the problem here is that how to find proper KAHR-ate model parameters to get a 

best description for the given data. Model parameters were found by minimizing the t 
error between the desired fitting functions and the data expressed as: 
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N (. )2 X 2(F)= I f(tn,F)~gn 
n=l an 

(67) 

where gn is the value of the data point under consideration, fCtn; F) is the fitting function 

prediction at associated time tp using the current set of model parameters F, and an is the 

standard deviation of the nth data point. The minimization of I is performed using the 

Levenberg-Marquardt algorithm (Press et aI., 1992), in which the derivatives of the 

model function with respect to the fitting parameters are used to step iteratively towards 

the optimal parameter set. For the current work, the data always remains substantially 

larger than zero and we can safely set an = gn (the value of the associated data point); this 

then relates I to the root mean square (RMS) percent error as: 

RMS(F) = IOO~ x';:) (68) 

The RMS error will be used to compare the model predictions and experimental data in 

next section of this chapter. 

6.3 Application of KAHR-a Model to Nonisothermal Data 
Ie 

6.3.1 KAHR-ate Model Parameters 

The difference between the liquid and glass thermal expansion coefficients (Lla) is 

provided as material constant to the model. For PEEK, Lla is 4.5 X 10-4 K-1
, calculated 

from the data reported by Farrow et al. (Farrow et aI., 1990). However, a comparable 

source for the thermal expansion coefficients of PPS on both sides of Tg was not found in 
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the literature. The linear thermal expansion coefficient of PPS in the glassy state was 

reported by Plastics International Company (Anonymous, 2001); with the assumption of 

isotropy, the volumetric ag was determined to be 2.16X 10-4 K-1
• The corresponding value 

in the liquid state (al) is typically 2-3 times larger than ag (Ferry, 1980); thus, the value of 

L1a = a[- ag is expected to be in the range 2.16-4.32 X 10-4 K-1
. Based upon the reported 

L1a values of other polymers, this work assumes L1a = 4 X 10-4 K-1 for PPS in our 

application using the KAHR-ate model. 

Ideally the volumetric coefficients of thermal expansion (CTE) would be obtained 

directly for the materials studied, one possibility is to perform this test using a TMA in 

order to obtain the linear CTE (ad; the volume change rate with respect to temperature, 

av, is then calculated from the measurements of the length change of the sample (i.e., av 

= 3aL). This is based on the assumption that the length changes in all dimensions are 

isotropic for thin films. This was observed experimentally by Fleming and 

Koros(Fleming and Koros, 1986) and was used by others in the literature(Alcoutlabi et aI., 

2004; Alcoutlabi, 2002). Due to time constraints, this work has not been pursued; minor 

differences in L1a will likely change the KAHR-ate model parameters for a set of data but 

is anticipated to still lead to good fits shift factors ate. 

The normalized retardation function R(z) is described as a series of stretched 

exponential functions. In this study, only the case of a single element (K = 1) is 

considered; this fixes the coefficient RJ at unity, which leaves six parameters needed for 

the KAHR-ate model ((, b, co, CI, r, fJ). Cases using two elements (K= 2) have also been 

considered. The relaxation times were fixed to reasonable values for the data under 
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consideration (i.e. 1"1 = 500 s and 1"2 = 1000 s) to speed the solution. Little, if any, 

improvement was observed relative to the single element model; these results are not 

presented in the interest of brevity. 

In tests intended to identify the KAHR-ate model parameters, the thermal history 

consists of an up-jump test with two temperature steps (Tg ----j. To at fa = 0 and To ----j. T/ at 

fa = 14 hours = 50400 s. The reference temperature Tr is selected to be the final 

temperature after the up-jump (T/). Predictions using the obtained model parameters are 

also demonstrated for more complicated thermal histories involving both up-jumps and 

down-jumps. 

6.3.2 KAHR-ate Model Parameter Identification 

In order to obtain a sufficient number of aging shift factor data points to fit the 

KAHR-ate model, the experimental data were first fitted using polynomials with 

MA TLAB; the resulting functions were used to create a data set consisting of more aging 

shift factor points than the 7 values obtained for each test. Optimal parameters of 

KAHR-ate model for the each data set were then obtained by the Levenberg-Marquardt 

method; the parameters obtained from PEEK thermal histories of 118-130°C and 120-

130°C, and PPS thermal histories of 63-73°C and 67-73°C (PPS) are listed in Table 9. 

These parameter sets are used for model predictions that follow in the next section. 
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Table 9. Optimal parameters of KAHR-ate model from single temperature 
up-jump tests. 

Parameter Thennal Histories (PEEK) Thennal Histories (PPS) 

Obtained 118-l30DC 120-l30DC 63-73DC 67-73DC 

(; (unitless) 965.64 855.25 260.08 273.28 

b (unitless) 0.000536 0.001675 0.904045 0.746357 

Co (unitless) 0.567246 0.493083 0.662666 0.715915 

C1 (unitless) 3.0434 4.3365 10.7613 10.4957 

f (sec) 780.12 171.25 609.20 777.44 

j3 (unitless) 0.1738 0.1177 0.1110 0.1411 

6.3.3 Aging Shift Factor Predictions for Up-jump Tests 

The optimal parameters for PEEK from the tests from 118-130°C and 120-130°C 

are used to predict the aging shift factors for five different thennal histories; in each case, 

this means that four experimental conditions are predicted using parameters from a 

different test condition. These results are shown in Figures 84-85. In all of the cases, the 

predicted shift factors match the data sets quite well. 
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Figure 84. Prediction of mechanical shift factor for PEEK using KAHR-ate model 
parameters obtained from 118-130°C 
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Figure 85, Prediction of mechanical shift factor for PEEK using KAHR-ate model 
parameters obtained from 120-130°C 

141 



Similarly, the optimal parameters for PPS from the tests from 63-73°C and 67-

73°C are used to predict the aging shift factors for five different thermal histories; as 

before, this means that four experimental conditions are predicted using parameters from 

a different test condition. Figure 86 demonstrates the predictions obtained using the 

KAHR-ate parameters obtained from the 63-73°C tests; the predictions are quite good in 

most cases. Figure 87 demonstrates the same except using the parameters obtained from 

the 67-73°C tests; these results do not match the other data sets as well as the 63-73°C 

case. The chief reason for this difference appears to be the unusually low aging shift 

factor data point at aging time te = 2.5 hr in the 67-73°C tests; for example, the 63-73°C 

KAHR-ate parameters predict the 67-73°C data well except for this one. The optimal 

KAHR-ate parameters for the 67-73°C alter the shape of the prediction to pass through 

the point at te = 2.5 hr; in doing so, the resulting parameters perform worse for other 

conditions. To demonstrate this, the KAHR-ate model parameters were obtained for the 

67 -73 °C data set with the te = 2.5 hr point excluded; the resulting prediction of five 

temperature histories is shown in Figure 88; as expected, these predictions shows 

improved agreement with the data sets. 
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Figure 86. Prediction of mechanical shift factor for PPS using KAHR-ate model 
parameters obtained from the 63-73°C tests 
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Figure 87. Prediction of mechanical shift factor for PPS using KAHR-ate model 
parameters obtained from the curve fitting of the entire data points of 67-73°C tests 
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Figure 88. Prediction of mechanical shift factor for PPS using KAHR-ate model 
parameters obtained from the curve fitting of 67-73 °C tests except excluding the 

te = 2.5 hr point; KAHR-ate model parameters are (= 347.38, b = 0.567146, 
Co = 0.668579, CI = 8.4406, f = 262.79, and /J = 0.1185 

In order to quantify the degree of fit between the model and the data, the RMS 

percent errors between each prediction II and each experimental data set were calculated 

using Equation (68) (RMS error was calculated between the original aging shift factor 

data points and the model predictions at the same aging time); the resulting values are 

listed in Table 10. The RMS value corresponding to the case used to obtain KAHR-ate 

model parameters is highlighted; not surprisingly, these show the lowest RMS error for a 

given set in most cases. These results demonstrate that within the time and temperature 

scale of our experiments, the KAHR-ate model can be used to successfully predict the 

II The predictions use the parameters in Table 9 except that the 67 -73°C case uses the parameters obtained 
from removing the odd point at te = 2.5 hr; these parameters are described in Figure 88. 
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agmg shift factors of different thennal histories, including both nonisothennal and 

isothennal cases. The fact that good agreement is obtained for a family of temperature 

history results (average RMS error 6-10%) based on model parameters from a single test 

condition indicates that the model is capable of capturing the phenomena that occur 

during the nonisothennal aging and volume recovery experiments. 

Table 10. RMS error between data and prediction ofKAHR-ate model, K = 1 

PEEK 

Pred. from 

RMS Error 
(%) 

lI8-130D C 1-------+--------1 
125-130DC 7.86 

Pred. from 
120-130DC 

Iso 130DC 
Error 
1I0-130DC 
1I8-130DC 
120-130°C 
125-130°C 
Iso 130°C 
Error 

16.47 
10.16 
8.92 
7.37 
2.23 
11.99 
6.56 
7.41 

PPS 

Pred. from 
63-73°C 

Pred. from 
67-73°C 

Iso 73°C 

RMS Error 
(%) 

10.62 
8.81 
4.67 
3.82 

Although good agreement is demonstrated in Table 10, it is clear that the results 

preferentially fit those data sets used to obtain the parameters at the expense of the fit 

quality for the other data sets. Ideally, the KAHR-ate model parameters could be obtained 

that optimally fit an arbitrarily large collection of data sets at the same time; such an 

optimization procedure will be presented in next section. 

As the model parameters are detennined, the response of structural relaxation b or 

ao can be evaluated by Equation (54) - (59). The compliance tests also provide the aging 

shift factors ate. As such, the relationship between ate and ao (or b) in Equation (62) can 
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be examined. According to Equation (58) and Equation (62), the KAHR-ate model 

assumes linear relationship between log ate and t5. Figure 89 and 90 give examples for 

PEEK and PPS, respectively. In these figures, the t5 values were calculated using the 

model parameters obtained from 120-130 DC and 67-73 DC for several different thermal 

histories. The correlation (curve fit) between aging shift factors and t5 in these thermal 

histories was plotted as a linear function of log ate vs. t5; it should be emphasized that t5 (a 

normalized measure of specific volume) has not been directly determined by experiment 

in this study. In these plots, linear relationships between aging shift factors and 

volumetric response are demonstrated. Note that these results are consistent with the 

findings of Stroik as shown in Figure 67. 
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Figure 89 Correlation between log ate and t5 of PEEK for several thermal histories; t5 is 
calculated by model parameters from 120-130DC 
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6.3.4 Aging Shift Factor Predictions for Complex Thermal Histories 

The KAHR-ate model with optimal parameters from single up-jump temperature 

history has been applied to predict aging shift factors on more complex thermal 

conditions for PPS material. Figure 91 shows the model prediction and experimental data 

(average of three replicates) of thermal history 97°C - 57 °C (10 hr) - 67°C (4hr) -

73°C. This thermal history includes up-jumps only except the quenching from 97°C to 

57 DC. Figure 91 demonstrates that the model prediction accords with experimental 

results throughout the testing duration. 
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Figure 91. Aging shift factor of creep tests on PPS for thermal history 97°C ----)- 57°C (4hr) 
----)- 67°C (lOhr) ----)- 73°C; KAHR-ate model parameters obtained from the single up-jump 

63-73°e, as listed in Table 9 

Besides the case above, two more complex thermal histories are presented below. 

Figures 92 and 93 compare the aging shift factors obtained from KAHR-ate model 

prediction and experiments on the temperature histories 97°C ----)- 67°C (3hr) ----)- 77°C 

(7hr) ----)- 57°C (4hr) ----)-73 °e and 97°C ----)- 27°C (12hr) ----)- 73°C (lhr) ----)- 27°C (lhr) ----)-

73°C, respectively. Figures 92 and 93 indicate that the aging shift factors after these 

temperature jumps can be predicted effectively by the model. The thermal histories in 

these two figures include a series of up-jumps and down-jumps as would likely occur in 

actual structures, in order to examine the predicting capacity of the model. Figure 92 

represents the temperature changing within a range of 16 - 40°C below Tg while Figure 

93 covers the temperature range from room temperature to Tg - 20°C. The predictions for 

ate after 3-step and 4-step temperature jumps were obtained using parameters obtained 
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from the single up-jump test; the fact that fairly good agreement between the model and 

data were obtained demonstrate the potential for predicting mechanical response for 

complicated thermal histories based on model parameters identified from tests involving 

relatively simple thermal histories. Note that while the results in this dissertation show 

good agreement between the data and the KAHR-ate model with suitable parameters, this 

should not be interpreted that aging shift factors can be predicted for any arbitrary 

thermal history. Comparison between the model results and experiments on temperature 

ranges consisting of the regions of interest should be pursued to assess the applicability of 

the model before applying to general cases of interest. 
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Figure 92. Aging shift factor of creep tests on PPS, thermal history 97°C -+ 67°C (3hr) 
~ 77°C (7hr) ~ 57°C (4hr) -+73 °C; KAHR-ate model parameters obtained from the 

single up-jump 63-73°C, as listed in Table 9 
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6.4 Optimization of KAHR-a Model Parameters 
Ie 

In previous section, the KAHR-ate model of nonisothermal physical aging shift 

factors in glassy polymers was introduced and experimentally validated. The objective in 

the current section is to present a method for finding the optimal parameters of the 

KAHR-ate model which provide best description of multiple data sets from various 

thermal histories. The optimization is performed in an iterative approach, in which the 

model parameters are determined in three steps, with this procedure repeated until the 

whole parameter set converges. At that point, it is assumed that the optimal parameters 

for the entire set are determined. This optimization method is applied to the data of 

nonisothermal physical aging for poly( ether ether ketone) (PEEK) and polyphenylene 
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sulfide (PPS) films below, the prediction results using the identified parameters are 

presented along with comparison to the results from the last section. 

6.4.1 Optimization Procedure 

As described in the previous section, the KAHR-ate model can seek values of 

any/all of the model parameters from a single nonisothermal condition. Of course these 

parameters can be used to predict mechanical response for some other thermal histories; 

however, the RMS error levels of predictions for other experimental conditions are much 

higher than that for the thermal history used for parameter identification (Table 10). This 

indicates that parameters from a single temperature history have a best description only 

for the mechanical response on the identical thermal treatment, and they can also give 

reasonable predictions for other conditions. In order to find a optimal parameter set 

based on several experimental findings, a optimization procedure was developed in this 

dissertation. The optimization procedure finds the optimal parameters in three steps: 

(1) Determine starting value of Co and Cl:. 

Run the numerical program for KAHR-ate model to obtain the optimal parameters 

t;, b, Co, c}, r, and fJ for each nonisothermally experimental condition. Note that the log ate 

and b have the following linear relationship: 

c 
Ioga'e :::::: -I-(lnco + So):::: p+ mo 

IniO 
(69) 

This equation provides optimal description for the data of individual nonisothermal 
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temperature history under the current KAHR-ate model. Based on the identified 

parameter frame, the volume recovery responses J can be evaluated for other 

nonisothermal experiments. Plot the J responses versus their associated aging shift 

factors (ate) together; a linear regression is then performed as described below .. 

If the number of nonisothermal temperature histories used for identifying the 

optimal parameters is N, there will be N linear regression equations. The assumed 

relationship is shown in Equation (69). Therefore, the slope and intercept of the lh line 

are mi and Pi, they have the following form: 

1 
P· =--Cl In Co . 

1 In10 ,I ,I 

(70) 

(71) 

We use the average value of m, p, and (to evaluate the initial guess of Co and CI for the 

optimization procedure: 

N N 

Lmi 1 LSi 
m=m =~=--C ... ~ 

avg N In 10 I,mlllal N (72) 

N 

LPi 1 
1=1 I P = Pavg = N = In 1 0 c1,initial n cO,initial 

(73) 

The initial values of Co and C 1 can be calculated by these equations. 

(2) Determine initial values of f and jj!. 

In this step, the values Co and Clare fixed to the initial values obtained above. Now the 
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procedure seeks the optimal retardation functions Rj(z) , G and hi (i = 1,2,3, ... ,N) for 

each nonisothermal case. This optimization method uses the average value of Rj(z) from 

various thermal histories as the initial value of retardation function. The parameters f 

and jj are acquired from Ravg (z) ; note since R(z) is a stretched exponential function, it is 

not sufficient/proper to simply average f and jj . 

Assuming a single Kohlrausch term for R(z), this expression can be reformulated 

algebraically as: 

R(z) = exp( -(; n -+In( -lnR(z)) = P(lnz-ln f) (74) 

Equation (74) appears as a straight line in the scale In z; with slope jj and intercept 

- jJ In f . Data from all N cases are then plotted; parameters f and jJ can be determined 

by linear regression. 

(3) Determine the material parameters (and h. 

At this point, values Co, Cj, f , and jJ have been determined. The remaining 

parameters for each thermal history (G and hi) can be found using the KAHR-ate model. 

These values can then be averaged as ~ and h. 

(4) Convergence check. 

If G and hi converge at some fixed values, then stop the optimization, the average 

value of G and hi are defined as the optimal parameters in this procedure. The following 

convergence criterion was used: The average percent error of G and hi less than 10% and 
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the maximum percent error less than 15%, these coefficients are convergent; otherwise, 

they are non-convergent at here, in this situation, go back to the first step, and increase 

the initial Co and c I by a step size of 10%. 

The structure of optimization procedure above is represented in Figure 94. This 

procedure works well to determine optimal parameters from several nonisothermal aging 

conditions for both PEEK and PPS. The t; and b directly converge at constant values in 

the calculation, so the convergence check loop was not be used for PEEK and PPS. 
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6.4.2 Optimal Parameter Determination 

In this section, the results of optimization for PPS and PEEK are reported step by 

step using the procedure described above. In the interest of brevity, the results of PPS are 

represented in detail while the results of PEEK are summarized at the end of this section. 

(1) Determine Co and c} 

The optimal parameters of the KAHR-ate model with one-element retardation 

function are listed in Table 11. Using these parameter sets, the aging shift factor and 

simultaneous volume response are calculated for 57-73°C, 63-73°C, and 67-73°C, PPS; 

the log ate versus t5 are plotted in Figure 95 - Figure 97. In these figures, the correlation 

lines are calculated via Equations (70) and (71) utilizing linear regression. Moreover, 

according Equations (72) and (73), we get the initial values of Co and c} at 0.633 and 

12.423, respectively. 

Table 11. Parameters ofKAHR-ate model, one-element retardation function 

Parameter PEEK PPS 

118-130°C 125-130°C 120-130°C 63-73°C 67-73°C 57-73°C 

( 965.6 1361.3 855.2 260.1 347.4 171.4 

b 5.360x I 0-4 5.308xl0-J 1.675xlO-j 0.904 0.567 1.413 

Co 0.567 0.319 0.493 0.663 0.669 0.631 

c] 3.043 1.717 4.337 10.761 8.441 19.839 

f 780.1 495.9 171.2 609.2 262.8 3319.3 

f3 0.174 0.123 0.118 0.111 0.119 0.067 
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Lm, 
C1,inilial = T-In 1 0 = 12.422 (75) 

L(, 
i=1 

3 

LP; 
Co, initial = exp ;=1 InlO =0.633 

3c1,initial 

(76) 
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Figure 95. Correlation oflog ate and 6 for PPS, based the parameter frame of 57-73°C 
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Fix Co and Cj with these numbers, other four parameters, shown in Table 12, are found by 

the curve fitting program 
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(2) Detennine f and /3 

The KHAR-ate program is then run using Co and c] fixed to the values detennined 

above. The resulting model parameters are shown in Table 12. Applying the parameters 

in Table 12, the stretched exponential functions R(z) of 57-73°C, 63-73°C, 67-73°C and 

their average (Ravg (z» are depicted in Figure 98. The reduced time z is evaluated by 

resolving the ordinary differential equation Equation (66) for each experimental condition. 

Numerically, calculate the In z and corresponding In (- In Ravg (z), then plot them in 

Figure 99. The linear regression of the data indicates a fonnulation of the straight line. 

Using Equation (74), the initial f and /3 are found from the regression function in 

Figure 99. 

,B = 0.0916 (77) 

(
0.565 J 

f = e Pinrfial = 477.289 (78) 

Table 12. Parameters ofKAHR-ate model, PPS; with Co = 0.633, c] = 12.422 

Parameter 
Thennal History 

63-73°C 67-73°C 57-73°C 

( 297.5 362.2 176.5 

b 0.757 0.437 1.416 

f 106.7 57.8 9913.1 

,B 0.0855 0.0903 0.105 
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(3) Determine (and b 

At this point, parameters Co, C], f and jJ are known for this optimization cycle. 

Next, G and bi are finally determined by the curve fitting program for KARH-ate model 

using the fixed values of Co, c], f and jJ; the results are shown in Table 13. The average 

and maximum percent error are less than the limit of convergence criterion; this indicates 

the parameters are converged. As such, the optimization procedure is complete and the 

average G and bi in Table 13 become (and b for the optimal values. 

Table 13. KAHR-ate model values (and b, PPS; with Co = 0.633, c] = 12.422, f = 
477.289, and jj = 0.0916 

Fits Error (%) 

Parameter 57-73°C 63-73 °C 67-73°C Average Avg. Max. 

t; 251.358 252.703 257.390 253.817 0.939 1.408 

b 0.976 0.924 0.858 0.919 4.461 6.638 

By the same method, the optimal parameters for PEEK can be identified using 

nonisothermal temperature histories 118-130°C, 120-130°C, and 125-130°C. The 

resulting values Co, c], f and jJ from the first two steps for PEEK are 0.568, 4.447, 

986.831, and 0.155, respectively. In the third step, the KAHR-ate model finds the (and b 

for each thermal history; these are listed in Table 14. According the convergence criterion, 

the average values of t; and b in Table 14 are considered as the optimal parameters and 

the procedure is stopped. 
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Table 14. KAHR-ate model values I; and b, PEEK; with Co = 0.568, C1 = 4.447, f 
= 986.831, and jJ = 0.155 

Fit Error (%) 

Parameter 118-130 DC 120-130 DC 125-130 DC Average Avg. Max. 

I; 647.356 630.852 705.102 661.103 4.427 6.625 

b 0.226 0.258 0.211 0.232 7.615 11.207 

6.4.3 Aging Shift Factor Prediction 

The parameters identified by the optimization method are applied to predict aging 

shift factors under both isothermal and nonisothermal conditions. The results of PEEK 

and PPS are shown in Figure 100 and Figure 101; the fits obtained between the data and 

predictions are excellent for all cases. This can be quantified using the RMS percent error 

between the prediction and fitting curve of experimental data; these are listed in Table 15. 
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Figure 101. Prediction of aging shift factor for PPS using optimal KAHR -ate model 
parameters 

Table 15. RMS error between data and prediction ofKAHR-ate model 

PEEK 
RMS 

PPS 
RMS 

Error (%) Error (%) 
110-I30°C 7.53 57-73°C 5.69 

Prediction of II8-130°C 3.50 Prediction of 63-73°C 2.55 

Optimization 120-130°C 8.30 Optimization 67-73°C 6.26 

Method I25-130°C 9.15 Method Iso 73°C 6.21 

Iso 130°C 4.80 

Average Error 6.66 Average Error 5.18 

The average RMS errors in Table 15 are smaller than all of errors obtained from 

the predictions using parameters fitted single thermal history as reported in Table 10. The 

prediction curves can capture all of the experimental findings very well. These validate 
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that the optimization method can seek a single parameter set which provides a better 

description of the data over various thermal histories versus those from any single test set. 

For completeness, the optimal model parameters for PPS and PEEK are listed in 

Table 16. Comparison of model predictions and testing results for other temperature 

scenarios for PPS is shown in Figure 102. It is clear that the optimal parameter set of 

KAHR-ate model successfully characterizes nonisothermal physical aging after several 

temperature jumps. Since the model coefficients were determined from a series of single 

temperature jump histories, this work demonstrates that the KAHR-ate model has the 

capacity of predicting material response for more complicated thermal conditions. 

Table 16. Optimal KAHR-ate model parameters for PPS and PEEK obtained from 
three up-jump data sets by an optimization procedure 

( b e Co C] f jJ 
Material 

(KI) (unitless) (unitless) (unitless) (unitless) (second) (unitless) 

PPS 253.8 0.919 0.255 0.633 12.422 477.3 0.092 

PEEK 661.1 0.232 0.375 0.568 4.447 986.8 0.155 
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Figure 102. Prediction of mechanical aging shift factor by KAHR-ate model for various 
complex thermal histories in PPS 

6.4.4 Prediction of Compliance after Temperature Jumps 

According to the shift factors output from the KAHR -ate model, compliance 

curves can be predicted for each thermal condition. Figure 103 illustrates creep responses 

for 110-130 °C and 120-130 °C of PEEK, maximal %2 and %5 vertical shifts are applied 

for these two thermal histories, respectively. The predicted compliance can demonstrate 

the data very well except for the first curve of the whole family. The reason for that is 

that the compliance value close to the change of temperature is affected by the dwell 

temperature, at which the specimen aged for a period. 
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Since the compliance predictions for PPS material have similar results as shown 

above for PEEK, the results for PPS will not be presented for the purpose of brevity. 

6.5 Prediction of Aging Shift Factors at Various Temperatures 

The creep properties of nonisothermal aging discussed so far were examined at a 

single temperature (130 °C and 73 °C for PEEK and PPS, respectively) after multiple 

temperature steps. This means that the KAHR-ate model parameters were developed from 

tests at a single temperature following various thermal histories. Although the model 

parameters were determined by single step temperature up jumps with the identical final 

temperature, it is possible to extend the predictive ability of KAHR-ate model to other 

final temperatures. 

In order to accomplish this, a temperature shift factor aT,o must be introduced to 

allow parameters Co and c I to relate the predicted ao with the aging shift factors ate at 

another temperature. The reason for aT,o is that the reference curve of ate is currently 

defined on the non-equilibrium state of polymers at a particular aging time (terej) and a 

particular temperature (Tref, 130 ° C and 73 ° C for PEEK and PPS in previous examples, 

respectively). In other words, the reference curves for ate depend on thermal histories 

while the temperature shift factor aT and structural shift factor ao in the KAHR model are 

defined to link the retardation time at a reference temperature Tr in equilibrium (c5 = 0) to 

the retardation time at temperature T and 0 *0. This significant difference requires a 

shift factor, aT,a. which scales ao at the reference aging time from the temperature under 
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consideration to the reference temperature; this permits the use of the model parameters 

obtained from the reference temperature to predict material response at different 

temperatures. 

As described above, aT, 8 is defined as: 

(79) 

where the at5,iso(Tr,tere!) is the isothermal structural shift factor at the reference aging 

time tere! at temperature Tr at which the KAHR-ate model parameters were identified. 

Similarly, at5 ,iso(T,tere!) is the isothermal structural shift factor at the reference aging time 

at temperature T using those same parameters. Thus, the correlation of ate and a6 is: 

(80) 

The KAHR -ate model maps structural shift factor a6 to aging shift factor ate by parameters 

Co and c] at the reference temperature. The aging temperature factor au couples predicted 

a6 and ate for the reference curves at other temperatures and therefore enables the model 

to predict aging shift factors in wider temperature ranges. 

As proposed in Equation (80), the KAHR-ate model assumes parallel linear 

relationships between a6 and ate in log-log space for different final temperatures below Tg, 

with parameter c] being the slope of these straight lines and Co / aT,o representing the 

intercept. Equations (79) and (80) are applied to predict viscoelastic response at 67 0 C 

for PPS. Figure 104 shows the experimental data and prediction of ate on thermal history 
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97 0 C ~ 57 0 C ~ 73 0 C ~ 67 0 C, model parameters are listed in Table 16. The 

structural shift factor at reference aging time on 67 0 C, ao(6TC, te = 72000 sec) is equal 

to 0.5673; similarly, the reference structural shift factor on reference temperature 

ao(73°C,72000sec) = 0.6300. Therefore, aT,o = 0.5673/0.6300 = 0.9005. As shown in 

Figure 104, the model involving the aT,o term results in excellent prediction. Hence, this 

approach is validated by experiment on the specific thermal history whose final 

temperature is different (but not far away) from the temperature at which model 

parameters were identified. 
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Figure 104. Prediction of mechanical aging shift factor ofPPS by KAHR-ate model for 
thermal history: 970 C ~ 5r C (4hr) ~ 730 C (6hr) ~ 670 C. Reference curve is the 

isothermal compliance response at 67°C with aging time = 20 hours 

Two additional examples for predictions of nonisothermal mechanical shift 

factors at different temperatures are shown in Figure 105 and Figure 106. The predictions 

also match experimental data quite well. These encouraging results indicate that this 
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"parallel line" assumption (Equation (80)) is valid within our experimental range. The 

retardation function R(z) utilized this study considered a single Kohlrausch (stretched 

exponential) function; induding additional terms as either a Kohlrausch or Prony series 

might better describe the viscoelastic response after complex thermal treatments. These 

considerations will be examined in future work. 
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Figure 105. Prediction of mechanical aging shift factor ofPPS by KAHR-ate model for 
thermal history: 97° C ---+ 57° C (l4hr) ---+ 67° C; reference curve is the isothermal 
compliance response at 67°C with aging time = 20 hours and KAHR model uses 

parameters from Table 16 
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Figure 106. Prediction of mechanical aging shift factor of PEEK by KAHR-ate model for 
thermal history: 1480 C ~ 1100 C (l4hr) ~ 1200 C; reference curve is the isothermal 

compliance response at 120°C with aging time = 20 hours and KAHR model uses 
parameters from Table 16 

6.6 Prediction of Long-Term Response of PPS in Nonisothermal Aging 

Long-term mechanical behavior of glassy polymers is a critical issue for many 

structural applications using polymer based materials. During their service life, the 

viscoelastic properties of polymers can be strongly affected by physical aging, especially 

as temperatures approach the glass transition temperature Tg. Hence, the effects of 

physical aging on mechanical responses have received a great deal of attention in the past 

several decades. While isothermal long-term physical aging has been extensively studied, 

long-term mechanical properties with physical aging effects after a varying temperature 

history has received far less scrutiny. This section represents the study on long-term 

response of PPS in nonisothermal physical aging, experimental results and predictive 

method will be reported below. 
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6.6.1 Effective Time Theory 

Consider an isothermal aging creep test with an initial aging time of t~ . At a later 

moment in the test, the aging time will be t~ + t , where t is the time elapsed from load 

initiation (stress or strain, corresponding to creep or stress relaxation, respectively). When 

the testing time t approaches and exceeds the value of the initial aging time t~ , one would 

expect deviation of the long-term creep/stress relaxation response from the momentary 

(i.e. short-term) response due to the change in the material aging state. Taking the initial 

aging time t~ to be the reference aging time (terej = t~) of the reference (momentary 

master) curve, the shift factor at any instant in time can be defined based on the shift rate 

,u (Stroik, 1978): 

(81) 

To account for the cumulative effects of aging, the effective time increment dA 

corresponding to a real time increment dt is then defined: 

dA = a~(t)dt (82) 

By integration, the total test time can be related to the effective time, A(t): 

t 

A(t) = fa~(~)d~ (83) 
o 

Using the effective time in place of real time in the Kohlrausch function 

(84) 
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results in a prediction of long-term creep response, where Do is initial compliance, r is the 

relaxation time, and fJ is the stretch parameter of the MMC at t~ = ter~f . 

In isothermal physical aging, the shift rate is defined as f.1 = - d log ale I d log te ; 

this reflects the fact that the shift factors ate versus te form a straight line in log-log space. 

However, in nonisothermal cases, the plot of log ate with log te is no longer a line, thus 

the shift rate is not constant but a function of time. Bradshaw and Brinson (1997d) 

introduced the concept of "effective aging time" to account for the nonlinear aging 

effects following a temperature jump. In their work, continuous aging shift factor 

information under single temperature up-jump or down-jump condition was exacted 

using effective time theory. This method might be used to predict long-term response for 

nonisothermal aging. 

In current work, an alternate approach is considered. During nonisothermal 

physical aging, aging shift rate is denoted as f1 * (~), the effective time 2 * (t) is given by: 

(85) 

Note that f1 * (~) should approach the isothermal shift rate f.1 of the final temperature if time 

is long enough since the last temperature jump. 

6.6.2 Determination of Il* and A* 

In order to create long-term predictions, the effective time 2* (t) must first be 
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obtained from a given shift factor data set obtained from either a nonisothermal physical 

aging test or from KAHR model predictions. One approach to determine A * would be to 

evaluate the integral in Equation (83) directly, using either ate data points (approximated 

by a suitable, integrable function) or KAHR-ate predictions of ate. Alternately, the 

nonisothermal aging shift rate J/ could first be evaluated based upon the ate data / 

prediction and then utilized in Equation (85). Both approaches lead to similar results; 

findings utilizing the aging shift rate p * are considered to below to highlight one aspect 

of the long-term test results. 

The aging shift rate can be written by: 

* dloga 0 
/I (t ) = - Ie • t = t + t 
red log t

e
' e e 

(86) 

where te is the nonisothermal agmg time, defined as the time elapsed since last 

temperature jump, t~ is initial aging time when a long-term creep test starts, t is the 

loading time of the creep test. Note that the shift rate p* after multiple temperature jumps 

is a function of the test time t in long-term experiments. If the test time t is long enough, 

p* at a distant time after the changes of temperature should approach the isothermal shift 

rate Pi.w of the test temperature; this is equivalent to the "fading memory" concept, in 

which the material held at a single temperature long after various temperature steps 

begins to act as though it were only subjected to isothermal physical aging. Consequently, 

p* can be separated into two parts as p*(t)=Piso+ft(t), where ft(t) represents the 

difference of aging shift rate in isothermal and nonisothermal conditions. 
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The shift rate function ,./ (te) can be obtained from the predicted aging shift 

factors or experimental data. In this study, KAHR-ate predictions are used to determine 

shift rates after various temperature histories. Once the numerical values of shift rate are 

attained by Equation (86), suitable curves are chosen to fit the shift rate values over the 

loading time of creep tests for most thermal history cases. Figure 107 demonstrates aging 

shift rates for several nonisothermal cases right after the material reaching the final 

temperature (73 DC). 
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Figure 107. Nonisothermal aging shift rate J./ for complex thermal histories, values of 
p* are calculated using the predicted ate from KAHR -ate model 

Once suitable functions for p* are obtained, the effective time was found using a 

MATLAB program. Once the effective time has been evaluated, the long-term creep 

response subjected complicated thermal history can be predicted by Equation (84). Figure 

108 shows calculated effective time over our long-term creep durations for several 
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thermal histories. 
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Figure 108. Calculated effective time for several isothermal and nonisothermal conditions 

6.6.3 Predictions Long-term Response for Various Thermal Histories 

Once the effective time ,,1,* has been calculated, it can be used to predict long-term 

response of a polymer during nonisothermal physical aging. From the short-term creep 

test results demonstrated above (compliance in time zone 1), Kohlrausch function 

parameters Do, rand fJ were identified. Using these parameters and effective time ,,1,* in 

Equation (84), the long-term compliance prediction is obtained. Figure 109 and Figure 

110 illustrate compliance predictions for long-term creep by using Kohlrausch function 

(Equation (84)). Parameters Do, rand fJ from the short-term data are listed in Table 17. 

For the purpose of comparison, Kohlrausch functions in the effective time and real time 
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domain are shown in these two figures. It is clear that the model predictions based 

effective time theory lead to good agreement with the experimental findings in this 

dissertation in all of the thermal histories considered. The results from original 

Kohlrausch equation, which capture short time response very well, depart from the 

experimental data when the loading time is long enough. (i.e. t~ + t » t~ ) 

In order to predict the long-term creep behavior after a nonisothermal temperature 

history, one needs to first perform a short-term test under the identical thermal condition 

and then obtain Kohlrausch function parameters of the short-term compliance curve. The 

aging shift factors ate in the duration of long-term test are predicted by the KAHR-ate 

model using parameters in Table 16. These ate are with Equation (85) - (86) to calculate 

effective time J". The long-term compliance is finally predicted by Equation (84) by 

inserting J" and Kohlrausch function parameters Do, rand f3 from the short-term test. 

Table 17. Parameters of Kohlrausch function to fit short-term creep response 

Thermal History Do (l/GPa) r (second) f3 (unitless) 

97°C~57°C~73°C 0.453 1603 0.478 

97°C~63°C~73°C 0.461 3287 0.523 

97°C~57°C~67°C~73°C 0.528 3176 0.469 

97°C~67°C~77°C~73°C 0.523 6463 0.437 
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Figure 109. Long-tenn creep predictions by effective time theory and original Kohlrausch 
function from short-tenn response; thennal Histories: 97°C ---+ 57°C ---+ 73°C and 
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Figure 110. Long-tenn creep predictions by effective time theory and original Kohlrausch 
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Figure 111 depicts the prediction and data for a more complicated thermal 

treatment: 97°C ----+ 27°C (12 hr) ----+ 73°C (1 hr) ----+ 27°C (1 hr) ----+ 73°C. In this test, the 

specimen experienced temperature changes in a wide range; and the creep duration was 

100 hours. The aim for this investigation is to examine the capacities of nonisothermal 

effective time theory when the creep process is rather long, subjected to elevated varying 

thermal circumstances. As in Figure 109 and Figure 110, the predictions made using the 

unaged Kohlrausch function and with nonisothermal effective time theory using the 

KAHR-ate model ,are plotted in Figure 111; good agreement is obtained between the data 

and the KAHR-ate model prediction. In order to demonstrate the importance of properly 

assessing the aging state, Figure 111 also contains a prediction using effective time 

theory under isothermal conditions (i.e. Equation (81) and (83) using the isothermal shift 

rate). In a previous publication (Guo and Bradshaw, 2007), we identified the (isothermal) 

shift rate J1 = 0.811 via isothermal creep tests at 73°C. As Figure 111 clearly 

demonstrates, the predictions using isothermal effective time theory overestimates the 

creep compliance after 1300 seconds since loading and is in significant disagreement 

with test data by the end of the test (more than 100% error). This indicates that isothermal 

physical aging approaches cannot be used to predict nonisothermal physical aging test 

data without significant modification. On the other hand, the numerical result utilizing the 

KAHR-ate model matches the experimental finding fairly well, with errors at 10 and 100 

hours since loading being 5.1 % and 12.9%, respectively. Consider that the prediction is 

made by using the information from the first 180 seconds of this creep test and aging shift 

factors from KAHR-ate calculation, this example shows good predictive abilities of 

nonisothermal effective time theory. 
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Figure Ill, Long-term creep predictions by isothermal and nonisothermal effective time 
theory and original Kohlrausch function from short-term response; thermal histories: 

97°C -+ 27°C -+ 73°C -+ 27°C -+ 73°C. Kohlrausch function parameters: 
Do = 0.460 GPa'!, T = 1593 second, and j3 = 0.417 

Nonisothermal effective time based on predicted aging shift factors in Figure 104 

for this thermal treatment was calculated for the long-term creep starting from 0.5 hour 

after reaching the final temperature (67° C). The long-term creep data sets and prediction 

by effective time theory are illustrated in Figure 112 with the associated Kohlrausch 

short-term fit parameters listed in the caption. The resulting long-term predictions are 

compared with the material responses found in two experiments using different samples. 

Due to the data scatter among individual tests revealed in previous section, the second 

data set in Figure 112 was shifted vertically by the amount of 4.5% prior to comparison 

to bring the short-term behavior in line for both data sets. 
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Figure 112. Long-term creep predictions by nonisothermal effective time theory and 
original Kohlrausch function from short-term response; the thermal history is: 

97°C ---+ 57°C ---+ 73°C ---+ 67°C. Kohlrausch function parameters: 
Do = 0.432 GPa- l

, r= 48929 second, andfJ = 0.410 

These results demonstrate good agreement between nonisothermal effective time 

theory and long-term creep response data after multiple-step temperature histories. Note 

that the KAHR-ate model plays a key role in modeling long-term viscoelastic properties, 

since it describes isothermal and nonisothermal aging shift factors, which are the basis for 

the calculation of effective time. 

Although the prediction on the thermal history 97°C ---+ 57°C ---+ 73°C ---+ 67°C 

match the experimental findings quite well, this should not be interpreted as meaning that 

the model can provide reliable results to arbitrary thermal histories ending at any 

temperature. The example shown in Figure 112 indicates the theory is applicable when 

the final temperature is not far from the reference temperature at which the model 
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parameters are identified; moreover, Equation (79) and (80) need to be examined in a 

wider temperature range in future work to better understand the limitations of this 

approach. 
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CHAPTER 7 

PHYSICAL AGING NEAR GLASS TRANSITION TEMPERATURE 

Physical aging near the glass transition temperature of PPS will be presented in 

this chapter. The test temperature close to Tg allows the specimen reach equilibrium after 

isothermal or nonisothermal temperature jumps, as such, the classic phenomenology of 

structural relaxation mentioned previously can be pursued by mechanical testing 

(physical aging) in a temperature range near Tg• 

7.1 Aging into Equilibrium under Isothermal Conditions 

This section focuses upon investigation of physical agmg behavior of 

thermoplastics PPS near Tg, in order to provide kinematic observation of mechanical 

properties of polymers when they approach to the structural equilibrium states at various 

temperatures. The phenomenon of aging into equilibrium at several constant temperatures 

will be examined by the current work. 
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7.1.1 Background 

Most of past investigations on physical aging were conducted at temperature at 

least 15°C below Tg; in this case, the material is in nonequilibrium state throughout the 

experiments and aging into equilibrium phenomenon could not likely be observed in the 

lab time scale. Therefore, there relatively are few data sets which demonstrate that the 

time required to reach structural equilibrium in physical aging and the temperature 

dependence of aging shift rate near glass transition. Lee and McKenna reported the aging 

shift factors at several aging times from small-strain stress relaxation tests of 

polypropylene oxidelDGEBA networks, at temperatures from 30°C to 5°C below Tg (Lee 

and McKenna, 1988). They observed aging into equilibrium near Tg (10°C and 5°C 

below) according to the change of aging shift rate, and the time of reaching equilibrium 

t' was obtained. Interestingly, their experimental results of aging shift factors after t' are 

slightly time-dependent and can be fitted by a straight line with a much lower slope than 

/1; in this context t* is defined as the point of intersection of the lines in the aging and 

slight aging regions (Lee and McKenna, 1988). Similar feature of aging shift factors from 

creep tests was also presented in another article by Lee and McKenna (Lee and McKenna, 

1990a). Theoretically, aging shift factors should remain constant value when the material 

reaches the equilibrium state; however, their findings are relatively consistent with the 

finding of slight time-dependence. The reason for time dependence of ate after t' might be 

that material is still in the process of approaching final equilibrium at a slower rate as 

equilibrium is approached. 
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7.1.2 Test Method 

This test method is similar to Struik's test method but with a significant 

modification. One common problem in the creep tests at temperature near Tg is that a 

small stress level applied to the specimen caused a very large strain if maintained for 

tellO (standard Struik protocol). This is true even if the stress is known to be in the linear 

range. This leads to a very large calculated compliance value that may be inaccurate, 

especially if the large strain values cause the material to enter the nonlinear regime. 

In order to correct this difficulty, the compliance limit method was developed to 

improve the physical aging tests performed near Tg (Wang, 2007). The difference 

between Struik's standard method and the compliance limitation method is in the loading 

time. The standard method uses 10% of the aging time at load application as loading time. 

In the compliance limitation method, however, a suitable compliance limit value is 

chosen based on creep test results. In this approach, the goal is to limit the amount of 

specimen deformation that occurs to ensure that the behavior remains in the linear regime. 

In order to accomplish this, the corresponding loading time for each aging creep test is 

specified appropriately. These loading times can be obtained by a full sequence test using 

the standard method or by limited testing. 

The compliance limitation method is demonstrated based on compliance data in 

Figure 113 from Wang (2007). In this case, seven creep tests were performed using 

standard method, leading to the seven compliance curves shown. The initial and final 

compliances are about 0.7 and 1.8 GPa-t, respectively; each of these can be converted to 

strain by multiplying by the applied stress (fa. A compliance limit value of 1.1 GPa-1 is 
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chosen; this limits the strain that will be achieved in every creep test by removing the 

load before the compliance value reaches 1.1 GPa- l
. The corresponding loading time is 

found for every test as 32 s, 50 s, 92 s, 165 s, 292 s, 523 s, and 1129 s compared to 112.5 

s, 225s, 450 s, 900 s, 1800 s, 3600 s, and 7200 s for Struik's method at aging times 5/16, 

5/8, 5/4, 5/2, 5, 10 and 20 hours, respectively. Clearly, the new loading times are much 

shorter than the standard ones and ensure that the observed compliances (or strains) are 

approximately within the limit of 1.1 GPa-1 initially specified. It should also be noted that 

this example is largely chosen for ease of illustration; in many cases close to Tg , the 

compliances obtained using the standard method are 1-2 orders of magnitude greater than 

the initial compliance and are likely well beyond the limitations of linear viscoelasticity 

(Wang, 2007). 
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Figure 113. Compliance limitation physical aging test (Wang, 2007) 

In this work, isothermal aging is characterized at 81°C, 82°C, 83°C, 84°C, and 

85°C. At each temperature, aging times of the sequential creep tests start with 0.039 

hours and end at aging times between 1.25 hours and 20 hours depending on the time 
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required to reach equilibrium. The compliance limit method was applied to determine the 

loading time after reaching equilibrium. Before equilibrium, loading times of creep were 

set as 0.1 Ie according to Struik standard method, since in these cases the loading time is 

short enough that no significant deformation occurs during momentary creep tests. Stress 

levels applied in creep tests keep within linear viscoelastic regions at the test 

temperatures. For each temperature, at least three separate tests were performed using 

different specimens to validate that the experiments are reproducible. Further 

experimental details will be presented in next section. 

7.1.3 Results and Discussion 

Sequential creep tests lead to compliance curves at various aging times, as 

described by Equation (45). Figure 114 depicts the compliance curves of a specimen at 

82°C, with aging times varying from 0.039 hours to 5 hours. It is readily apparent that at 

first several aging times the compliance curves shift to right with increasing aging time; 

after 1.25 hour of aging the creep curves no longer shift to longer aging time, this 

indicates that the material attains the equilibrium state. The Tg of this material was 

determined by the peak of tan 0 and is 92.2°C. The applied stress is 1.22 MPa. 

187 



1.6 

<J<J P. 
0 O.039hr <> 

1.4 
0 0078hr <J<J ~ 

J0-b. 0.1 56hr <J 8 
\7 0.313 hr 

7 <J D~ m 1.2 <J 0.625 hr 0... ';; <J 
CJ [> 1.25 hr '? <J t ---~ 2.5 hr ~ ..:I 6. r'?<J d Q) 

1.0 6. \1' ~ 0 <> 5 hr c 

dfb.6.~:'i~ 1p .~ 
c.. 
E ') ' <J ~ 0 0.8 u o:8'2q,~, ~ ~ > 

O~ ,. <> ~ 
l"r"l <j ..:I 

0.6 C' '1' '-' '7 . 

('; 
~, or _4. " ~ 

~ 
0.4 

2 J 4 5 S 2 3 4 5 S 2 3 45 
1 10 100 

Load Time (second) 

Figure 114. Compliance curves ofPPS at 82°C for aging times from 0.039 hr to 5 hr 

The associated aging shift factors of the compliance curves in Figure 114 were 

obtained by the time-aging time superposition principle. Reference aging time tere! was 

selected as the longest aging time in the experiment, which is 5 hours in the case above. 

The corresponding aging shift factors versus aging time are plotted in double-logarithmic 

space, as shown in Figure 115. It can be seen that there is a sharp transition where the 

shift rate p(j..L=-loga,e/1ogte) changes from a constant value (0.401) to virtually zero 

(0.0312). The time required to reach equilibrium t * is 1.036 hour, determined by the 

intersection of line fits. 
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Figure 115. Log ale versus log te for PPS aged at 82°C. The transition from aging to 
approximate non-aging behavior is illustrated by the abrupt change of shift rate. 

Sequential creep tests are also performed at other temperatures mentioned above. 

At each temperature, t* is determined, and the shift rate before and after t * are also 

obtained. Another example of creep curves and associated aging shift factors at 84°C are 

demonstrated by Figure 116 and Figure 117. From these results, one can see the time 

required for attaining equilibrium t * and aging shift rate f-l prior to reaching equilibrium 

decreases when test temperature increases. The t* and f-l at 84°C are 0.147 hours and 

0.308, respectively. The Tg of this material was determined by the peak of tan 8 and is 

92.2°C. The applied stress is 1.22 MPa. 
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Figure 117. Log ale versus log te for PPS aged at 84°C; the transition from aging to 
approximate non-aging behavior is illustrated by the abrupt change of shift rate 

Besides these examples at 82°C and 84°C, isothermal aging behavior of PPS is 
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also characterized at 81 °e, 83°e, and 85°e. Figure 118 summarizes the transition of 

aging shift factors (aging into equilibrium) at each temperature; the curves represent the 

linear equilibrium and non-equilibrium fits of the data sets (e.g. see correlation curves in 

Figure 117) over the aging times from 0.01 hours to 20 hours. The aging shift rates as 

wells as the t" are listed in Table 18. It is clear that the aging shift rate and time needed 

to reach equilibrium deceases with increasing temperatures. When test temperature is 

85°C, 7°e below Tg, the material will reach non-aging state at the time after 5.1 min from 

quenching; while the temperature 11 °e below Tg , PPS needs more than 2 hours to reach 

equilibrium. 
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Figure 118. Linear fit of aging shift factors in aging and non-aging regions of PPS, at 
temperatures 81 °e, 82°e, 83°e, 84°e and 85°e 
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Table 18. Time required to reaching equilibrium t* and shift rates changing before 
* and after t for PPS 

( (hr) Shift Rate before t * Shift Rate after t * Ratio Temperature (OC) 

81 2.185 0.426 0.0192 22.2 

82 1.036 0.401 0.0312 12.8 

83 0.285 0.378 0.0527 7.17 

84 0.147 0.308 0.00248 124 

85 0.0856 0.273 0.00489 55.8 

To describe and predict equilibrium time t* from quench below the glass 

transition temperature, one needs to find the relationship between t* and the test 

temperature. One method to obtain this relationship is to plot t* in logarithmic scale 

versus the temperature difference T-Tg, as presented in Figure 119. In this figure, the 

logt* versus T-Tg of PPS can apparently be expressed by a linear fit with high R-square 

value. From Figure 119, an equation to describe t* ofPPS material can be found as: 

t" = 0.5878x10-o.3662(T-Tg) 
(87) 

This line might be used to evaluate the time to equilibrium time at temperatures 

farther below Tg than the current data set. Experimental work is ongoing to examine how 

well this method can predict t* at such temperatures. Note that the glass transition 

temperature Tg varies if different characterization methods are applied, in this equation, 

Tg is the temperature corresponding the peak of tan8 at 1 Hz. 
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Figure 119. Temperature dependence of the time necessary for attainment of equilibrium 
t * of PPS, in isothermal physical aging 

7.2 Asymmetry of Approaching Equilibrium 

After determining the times need to reach equilibrium at temperatures near Tg, 

several kinds of nonisothermal aging tests were performed. One of these is a mechanical 

tests similar to the famous "asymmetry of approaching" found by Kovacs (1963) in 

1960's for specific volume. The relationship between mechanical and thermodynamic 

properties might be found in these proposed experiments. For example, Kovacs data for 

specific volume is represented in Figure 120. In this figure, the material (Poly(vinyl 

acetate) (PVAc)) was allowed to reach equilibrium at the two temperatures labeled To. 

Subsequently, the material was subjected to a temperature change to 35°C. Note that 

although the magnitude of the temperature jump in both cases is 5°C, the volume 

recovers much more rapidly towards equilibrium in the down-jump experiment than it 
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does in the up-jump experiment. This result shows the inherent nonlinearity of the 

structural recovery process and has been widely interpreted to imply that the material 

response (relaxation time) depends upon the instantaneous state or structure of the glass. 

An example of asymmetry of approaching is shown in Figure 121 via creep tests of PPS. 

The films were aged to equilibrium at 80, 81 or 85°C, then jumped to 83°C; the aging 

shift factors were then determined. Figure 121 illustrates ate data sets of several thermal 

histories and their Prony series fits over aging time from 200 seconds from temperature 

jump to reaching equilibrium at the final temperature (83 DC). These plots show 

similarities of the thermodynamic and mechanical properties as the response of structural 

relaxation. This provides the new evidence for the validity of predicting mechanical 

behavior of polymers using the existing models developed via the thermodynamic 

methods. 
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Figure 120. Normalized volumetric response ofPVAc after single temperature jump 
(Kovacs, 1963) 
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Figure 121. Asymmetry of approaching equilibrium of aging shift factors of PPS 

7.3 Effective Relaxation Time Paradox 

Kovacs analyzed a series of data sets from asymmetry of approach experiments, 

including the data shown in Figure 120, using a parameter that he referred to as effective 

relaxation time (Tefl), which was defined in terms of time derivative of 0 as: 

_lido 
T - ---

efJ - 0 dt (88) 

As a material approaches equilibrium state at a temperature, Kovacs et al. (1979) have 

shown that Tefl·should approach a common constant in either an up-jump or down-jump 

history using their multiple retardation time KAHR model. However, this was not 

supported by experiments. In plots of negative log Tefl versus 0, Kovacs observed an 

apparent paradox: while the values of Tefl converge nicely as oapproaches to zero (i.e. 

equilibrium) for the down-jump cases, they tend to different values (expansion gap) in the 
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up-jump cases. The -logreff data close to equilibrium at several temperatures are 

demonstrated in Figure 122. The value labeled on the each curve is the temperature at 

equilibrium before the jump (To in Figure 120), and the value T is the temperature after 

the jump. 
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Figure 122. Original i-effective plot from Kovacs for poly(vinyl acetate). Unlabeled 
values are equilibrium temperature before the jump, values T are temperatures after the 
jump, and both lines and circles are experimental data. Left part presents the results for 

up-jump tests; while the right part shows the results of down-jump experiments (Kovacs, 
1963) 

McKenna and co-workers examined the Kovacs's data published in 1963 and 

some unpublished data from the same era, as well as some more recent data from the 
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Institut Charles Sadron (McKenna et aI., 1999). They analyzed these data by several 

different statistical methods and concluded that an expansion gap did exist for the up

jumps. Simon et al. (Kolla and Simon, 2005) studied volumetric response of up-jump and 

down-jump experiments in an epoxy material at two different final temperatures, after 

reaching equilibrium on a couple of other temperatures. The results are consistent with 

those of Kovacs; the Teff paradox was found at the highest aging temperature but it does 

not exist at the lowest aging temperature. 

The expansion gap and Teff paradox are important because the phenomenon is not 

predicted by the most widely used empirical models of structural recovery, the KAHR 

model and the Tool-Narayanaswamy-Moynihan (TNM) model. These two multiple 

retardation time models are thermorheologically simple, hence the relaxation time should 

tend towards a common value at equilibrium. On the other hand, the coupling model 

developed by Ngai and co-workers was able to predict the expansion gap (Rendell et aI., 

1987). This model is alternatively derived from a coupled rate equation approach, and 

such modification causes the model to be thermorheologically complex and allows for 

successful prediction of the Teff paradox; however, further work applying the model to 

structural recovery has not been performed. 

As presented in the previous section, the aging shift factors in this dissertation 

also manifest the characteristics of asymmetry of approaching equilibrium (see Figure 

121). After a thorough literature search, the author believes this is the first report on the 

investigation of aging shift factors on up-jump and down-jump tests after reaching 

equilibrium. Since this phenomenon is similar to the findings on volume response, it is 
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reasonable to wonder if an equivalent ref! paradox can be derived from the aging shift 

factor data shown in Figure 121 from mechanical testing. Recall the definition of ref! in 

Equation (88), the effective relaxation time in mechanical aging shift factors can be given 

as: 

r-1 = 1 dlogate 
ejJ,O'e I d I ogate ogle 

(89) 

According to this equation, effective relaxation time based of aging shift factors are 

calculated using the Prony series fit of ate and log le shown in Figure 121, the results are 

demonstrated in Figure 123. The left part of this figure clearly shows so-called expansion 

gap of the up-jump tests as the aging effective relaxation time does not converge when 

the material is approaching equilibrium (log ate ~ 0-; see Figure 121). The results of 

down-jump tests shows that the rejJ,Q,e tends to reach a fixed value when the material 

reaches equilibrium (log ate ~ 0+), but the curves cross over a little bit before reaching 

equilibrium. Note that the curves are obtained from curve fitting of discrete aging shift 

factors. Because limited data points of ate are available from sequential mechanical 

testing, the changing of ate with increasing aging time could not be precisely described 

based on the data in Figure 121. Specifically, aging shift factors of thermal histories 88°C 

equilibrium - 83°C and 91°C equilibrium - 83°C are very close at the same aging time; 

as such the ate fit for both cases are quite similar. 
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Figure 123. Logarithmic effective relaxation time at 83°C for PPS, the results are 
obtained from mechanical test results for up-jump and down-jump from equilibrium at 

various temperatures. 

The expansion gap of aging from mechanical tests in Figure 123 is consistent with 

the findings by Simon and co-workers on an epoxy, as depicted in Figure 124. In this 

figure, the values of the initial temperatures (To) from which each jump was made are 

indicated. An expansion gap is observed for the largest up-jumps. 
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Figure 124. r-effective plot for an epoxy aging at 77°C. The values of Teff were 
determined from (db/dt) and average ovalue obtained from time t to 1.05t (i.e. over a 

logarithmic time interval of 0.02) for the volume recovery curves (Kolla and Simon, 2005) 
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7.4 Comparison of Mechanical and Volumetric Phenomenology 

Note that the kinetics of volume recovery in glassy polymers exhibits a richness 

of behaviors that offers a severe test of any model (McKenna, 1989; McKenna, 2007; 

McKenna and Simon, 2002). In order to model these material behaviors, there are three 

types of physical phenomenology in glassy polymers which must be understood: (1) 

structural recovery kinetics in the intrinsic isotherm; (2) the nonlinearity of structural 

recovery in the asymmetry of approach experiment; and (3) the relaxation process in the 

memory experiment. These three aspects are recognized by researchers from the 

investigation of volume recovery. Asymmetry of approaching equilibrium in volume 

response has been shown in Figure 120. 

Figure 125 and Figure 126 illustrate the thermal history and volume response of 

other two classes of experiments. Figure 125 depicts the volume departure from 

equilibrium on the ordinate and the logarithm of the time after the beginning of the 

quench on the abscissa, This result was reported by Simon and co-workers (Simon et aI., 

2001), the test material is polystyrene. Lines in this figure are fits to the TNM model of 

structural recovery. This result shows that volume response approaching equilibrium 

under isothermal conditions has similar behavior as the results in Figure 118 from 

mechanical testing of physical aging. 
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Figure 125. Volume recovery in a polystyrene during isothermal physical aging at 
various indicated temperatures (Simon et aI., 2001) 

Figure 126 shows volume response of PV Ac following isothermal and several 

non-equilibrium temperature up-jump tests. For case 2 - 4, material was aged at a lower 

temperature for a period {dwell and the jumped to the test temperature 30°C. The value {dwell 

is such that the volume immediately after the jump to 30°C is approximately equal to the 

equilibrium volume at 30°C (hence, 0 is close to 0 at short times for curves 2 - 4). As 

shown in Figure 126, the 0 data go from (or through) a zero value and continue to evolve 

(cross over), finally merge into the isothermal response. These experimental results are 

evidence for the existence of a nonwexponential relaxation or recovery process. 
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Figure 126. The "memory effect" for volumetric response Jin a poly(vinyl acetate) on 
several thermal histories. (1): quench from 40°C to 30°C (isothermal aging); (2): quench 

from 40°C to lOoC for 160 h followed by up-jump to 30°C; (3): quench from 40°C to 
15°C for 140 h followed by up-jump to 30°C and (4): quench from 40°C to 25°C for 90 h 
followed by up-jump to 30°C. t - ti is the time elapsed since the jump to 30°C (Kovacs, 

1963) 

The experiments of physical aging near glass transition temperature indicate that 

the similarity between mechanical and volume properties for the three classes of volume 

recover experiments above. Comparing the data in Figure 126 with the single temperature 

up-jump test results in previous chapter, one can find that the non-equilibrium up-jump 

lead to "memory effect" on aging shift factors, the behavior of nonisothermal aging shift 

factors has similar response to the volume response. Moreover, Figure 118 and Figure 

125 exhibit the same kind results on ate and 0 during isothermal aging into equilibrium. 

As stated before, the asymmetry of approaching equilibrium also exists in mechanical 

tests (Figure 121 ). 

Studies on physical aging of glassy polymers have shown the similarity between 
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the volume response and mechanical agmg shift factors in all of the three classes 

experiments found by Kovacs, which constitute the most physical phenomenology for 

this material. The aging shift factors in both experiments near the glass transition and 

experiments after non-equilibrium temperature up-jump provide further validation of this 

idea. These results offer another valuable approach to investigate the relationship 

between the mechanical response and thermodynamic properties (volume, enthalpy, etc.) 

during structural relaxation of glassy materials. 
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CHAPTERS 

SUMMARY AND CONCLUSIONS 

In this dissertation, nonisothennal physical aging behavior of glassy polymers 

has been systemically investigated over a temperature range from Tg-35°C to Tg-7°C. A 

sequential creep test method using a DMA was developed and utilized to characterize the 

effect of physical aging on various thennal histories. The KAHR-ate model was modified 

by adopting a serious of equations describing correlation between mechanical properties 

and volume response and successfully predicted material behavior under complicated 

thermal conditions. In addition, all of classic physical phenomenology during structural 

recovery (intrinsic isotherm, asymmetry of approaching equilibrium and memory effect) 

on mechanical response was systemically reported in this dissertation, the famous 

expansion gap was first found from mechanical response. The findings in this dissertation 

provide methodology to model and predict the time-dependent mechanical behavior of 

polymeric materials under varying temperature conditions, this will helpful to design and 

use neat polymers and polymer matrix composites under complicated thermal 

environments. 

The first portion of this dissertation (Chapter I - III) introduced the background of 

physical aging in polymers and investigated techniques to characterize mechanical 

response of polymer materials such as compliance and modulus by using a DMA. A 

series of test method were developed to determine: glass transition temperature of a 
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thermoplastics; linear viscoelastic regime at constant temperature; compliance and 

modulus properties from creep and stress relaxation testing. In this section, various test 

protocols used in this study were demonstrated in details, basic polymer viscoelasticity 

was also presented in the second chapter as background knowledge of this dissertation. 

In the second portion of this dissertation (Chapter IV), the physical agmg 

behavior of two polymer films (PEEK, PPS) has been assessed under both creep and 

stress relaxation. This required the development of approaches to account for minor 

specimen dimensional variation. It is demonstrated that compliance and modulus results 

developed using the test methods were extremely consistent for specimens at a given 

temperature and aging time. Comparison between compliance and modulus, using linear 

viscoelasticity theory to perform the material function conversion, also indicated 

excellent agreement between the results; this was also true of the shift rates and 

temperature shift factors. This finding demonstrates that the test and analysis methods 

used in this study are adequate to capture the physical aging behavior. These methods and 

database of physical aging test results will provide a useful foundation for the 

characterization and modeling of physical aging response under an arbitrary temperature 

history. 

The third portion of the dissertation (Chapter V and VI) considered the 

mechanical responses of nonisothermal physical aging of polymer films (PEEK and PPS) 

by experiments and the KAHR-ate model. The short-termed creep tests after single 

temperature up-jump and more complicated temperature histories were performed at 35-

15°C below Tg for PEEK and PPS, in the linear viscoelastic region. Besides the 

experimental findings, KAHR-ate model was introduced to predict the mechanical 
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behavior of glassy polymers. The KAHR-ate model is based upon the idea that a 

correlation exists between volume recovery and physical aging, an assumption which has 

been verified away from equilibrium by some experimental results. By assuming a form 

for the correlation, the KAHR model for volume recovery can be extended to predict 

mechanical response. 

The KAHR-ate can be used to predict aging shift factors in multiple nonisothermal 

conditions in our testing temperature scale, the results of prediction fit the experimental 

data very well for all of the thermal histories studied in this dissertation. Besides 

short-term response, long-term creep tests of PPS are performed after complex thermal 

histories. Effective time theory along with the KAHR-ate model using parameters 

obtained in up-jump tests were applied to predict long-term creep response after multi

step temperature jumps. The results show clearly that the nonisothermal effective time 

theory successfully characterizes long-term mechanical behavior during physical aging. 

As such, it is anticipated that this approach can be used to successfully model the 

long-term physical aging response of PMCs under nonisothermal service temperature 

histories. 

Prediction of the mechanical behavior of nonisothermal physical aging m 

polymers is one of the great unsolved problems in the plastics industry and the KAHR-ate 

model provides a method to predict aging shift factors of polymeric materials subject to 

complex temperature histories. 

The last portion of this work (Chapter VII) describes effect of physical aging near 

the glass transition temperature. Since aging occurs at elevated temperatures, aging into 
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equilibrium can be realized at these temperatures. In this dissertation, both isothermal 

physical aging and nonisothermal physical aging are studied for PPS. 

Isothermal physical aging of PPS near the glass transition temperature has been 

characterized by creep tests by the compliance limit test method. Compliance curves and 

resulting aging shift factors are analyzed at 81°C, 82°C, 83°C, 84°C, and 85°C, from 

11.2°C to 7.2°C below Tg. At each test temperature, the transition of aging shift factor 

was detected; this suggests that the material has been aged into equilibrium. The time 

required to reach equilibrium t* is obtained by the abrupt change of aging shift rate. The 

temperature dependence of t* can be expressed by an equation, from the line fit of the 

data log t* verse T-Tg. This equation might be used to predict the equilibrium time of PPS 

polymer at temperature below Tg. 

On nonisothermal physical agmg, after reaching equilibrium at various 

temperatures near Tg, up-jump and down-jump were conducted to a common temperature 

and then creep tests were performed at the final temperature. Like the results reported in 

volume recovery, asymmetry of approaching equilibrium of mechanical shift factors was 

found in up-jump and down-jump tests. Based on this finding, effective relaxation time 

paradox in mechanical behavior was first presented in this dissertation. The study in this 

section provides experimental evidence on the similarity of phenomenology on 

mechanical behavior and thermodynamic properties, during the process of structural 

relaxation. Further research on correlation between these material functions will be useful 

to predict the material response in many particular forms (volume, enthalpy, creep, 

relaxation, etc.) 
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With the above findings, this dissertation has constructed a framework from 

which predictions of the mechanical response of glassy polymers undergoing 

nonisothermal physical aging can be obtained. In addition, this dissertation first provided 

database on mechanical response in all of the three aspects (intrinsic isotherm; 

asymmetry of approach; and memory effect) of basic physical phenomenology of glassy 

materials. 
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