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An analytical model is developed in this thesis to predict the reflection 

coefficient of an anechoic termination consisting of a catenoidal horn connected 

to a tube lined with absorbing material.  The theoretical predictions are compared 

to experimental measurements on a prototype.  Comparisons are made for a 

variety of arrangements, including, an open horn, and a horn connected to 

absorbing terminations of two different lengths.  The absorbing terminations are 

either open or closed to the environment and the analytical model can account for 

both these scenarios.  The results indicate that the new model can accurately 

predict the reflection coefficient for each case presented, especially at low 

frequencies and for long absorbing terminations.  A comparison with 

experimentally measured reflection coefficient is made between the analytical 

model presented in this thesis and the model of Bolton [1] in order to highlight the 

improvement over existing models. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1. Project Overview 

Anechoic terminations are assemblies that function to absorb all sound 

energy incident on the end of a duct opposite to a sound source.  Acoustic 

quantities such as sound power and transmission loss are commonly measured in 

an in-duct arrangement, which requires the use of an anechoic termination.  For 

example, the heating, ventilation and air conditioning (HVAC) industry uses an 

anechoic termination as part of their experimental setup to measure sound power 

emitted into a duct from fans or other air-moving devices.  The automotive 

industry implements an anechoic termination on test bench arrangements as part 

of a technique to measure the transmission loss of mufflers or other intake 

manifolds.  However, the acoustical measurements are subject to errors and other 

experimental difficulties when the duct end is too reflective.  To create a non-

reflective boundary condition, an anechoic termination is connected to the duct 

end opposite the sound source. 

The non-reflective condition is typically achieved with the use of long 

pipes lined with absorbing material, horns, or other expanding cross-sections 

terminating into absorbing tubes.  In practice, it is difficult to design a completely 

non-reflective termination, as some reflection will always exist over a broad 
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spectrum.  Redesigning the horn geometry, changing the length of the absorbing 

tube, or changing the type of absorbing material all affect the reflection 

characteristics of the anechoic termination.  It will then be of interest to the 

engineer to predict the effect these design changes will have on the reflection 

characteristics over a certain frequency range.  The goal of this thesis is to help 

develop a new analytical model to be used in order to predict the effect that 

changes in horn geometry, absorbing tube length, and absorbing material have on 

the reflection characteristics of anechoic terminations.  The validity of this 

analytical model is then proven through experimental measurements. 

1.2. Pressure Reflection Coefficient 

An anechoic termination describes a non-reflective boundary condition 

(e.g., at a duct end located opposite to the sound source).  The termination reflects 

no sound in principle, although this is very difficult to achieve in practice.  In 

Chapter 3, it will be shown that this is especially true for low frequencies.  The 

amount of reflection created by the anechoic termination can be quantified and is 

frequency dependent.  If the complex amplitude of the reflected and incident 

acoustic pressure 1  is 𝑝𝑟  and  𝑝𝑖  respectively, then the pressure reflection 

coefficient 𝜂 is defined as 

                                                 
1 Acoustic pressure, being a function of space and time, has both magnitude and phase.  It is 
commonly expressed as a complex quantity purely for mathematical convenience. 

𝜂 =
𝑝𝑟
𝑝𝑖

  (1.2.1) 
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The magnitude of Eq. (1.2.1) quantifies the amount of reflection at a particular 

plane.  The magnitude of this quantity, which varies from zero to one, is of 

primary interest in this thesis.  A reflection coefficient equal to zero indicates the 

incident wave is completely transmitted (i.e. everything is absorbed); a reflection 

coefficient equal to one indicates the incident wave is completely reflected (i.e. 

nothing is absorbed).  Throughout the remainder of this text, the pressure 

reflection coefficient will be simply stated as reflection coefficient. 2   The 

reflection coefficient of a particular termination is an important quantity that 

determines the effectiveness of the design. 

1.3. Anechoic Termination Model Description 

An anechoic termination could be constructed from a long tube filled with 

one or more different absorptive layers, a horn shaped pipe coupled with an 

absorptive tube, a wedge or panel of wedges, or multiple stepped circular cross 

sections lined with absorptive material.  The models treated in this thesis will 

consist of two parts: the first is a gradually expanding cross sectional area taking 

the shape of a catenoidal horn, and the second is a cylindrical tube lined with 

absorbing material around its inner circumference.  This tube connects to the end 

of the horn section.  Figure 1 shows a schematic of this concept, where the horn 

shape approximates a catenoid (Chapter 3 will define the catenoidal profile).  

                                                 
2 In general, it is important to distinguish between types of reflection coefficient (e.g., pressure, 
power, intensity).  However, since the latter two are not used in this thesis, reflection coefficient is 
understood to mean pressure reflection coefficient. 
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A sound source generates sound that travels through the test tube towards the 

anechoic termination.  The test tube is the location where the incident and 

reflected components of sound are separated (decomposed) in order to measure 

the reflection coefficient of the anechoic termination.  The end of the test tube 

opposite the sound source connects to the horn throat.  The horn mouth connects 

to the terminator body, shown in the figure with both its circumference and end 

cap lined with absorbing materials.  The end cap is removable so that the 

terminator body can open to the air (not shown).  The gradual flare of the horn 

diminishes reflected waves created by propagation through sections of different 

diameter.  The absorbing tube attenuates the sound waves coming from the horn 

by means of an absorptive material lining such as polyester fiber.  These concepts 

will be explained in detail in Chapter 3. 

 

Figure 1  Schematic of the modeled anechoic termination.  Horn throat and 
mouth are shown.  The horn shape approximates a catenoid 
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1.4. Thesis Organization 

Anechoic terminations are an important requirement to obtain accurate 

experimental measurements of fan noise or automotive intake/exhaust component 

transmission loss.  This will be shown in Section 2.2 of the pertinent literature 

review.  Sections 2.3-2.7 will demonstrate that the justification for particular 

anechoic termination designs have relied on extensive experimentation, numerical 

optimization, or simplified analytical models.  The remainder of Chapter 2 will 

discuss the motivation for this research.  Chapter 3 will show the steps taken to 

construct a new analytical model to predict the reflection coefficient of a 

catenoidal horn terminating into an absorbing pipe.  A variety of boundary 

conditions for the pipe end will be considered.  Chapter 3 will conclude with a 

procedural summary showing how to use the analytical model to calculate the 

reflection coefficient of the anechoic termination.  Chapter 4 will compare the 

predictions from the analytical model against experimental measurements 

conducted at Western Michigan University's Noise and Vibration Laboratory.  

Predictions of the reflection coefficient using the analytical model presented in 

this thesis are compared to an existing simplified model at the chapter end.  A 

study of various horn geometries will be carried out in Chapter 5 along with an 

example of an anechoic termination optimized for minimum reflection coefficient 

across a particular frequency range.  Finally, Chapter 6 will provide a summary of 

this thesis and recommendations for future work. 
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CHAPTER 2 
 
 

LITERATURE REVIEW AND RESEARCH MOTIVATION 
 
 

This chapter contains a literature survey of the different kinds of anechoic 

terminations that have been constructed and the theoretical motivation for these 

designs.  First, the need for anechoic terminations as part of an in-duct 

arrangement to measure acoustical quantities will be discussed.  Then, different 

ways of designing anechoic terminations are summarized in the latter sections.  

These will include anechoic terminations that use wedges, absorbing layers, 

stepped sections, horns, and active cancellation.  The chapter will conclude with a 

discussion of the motivation for the current research. 

2.1. ISO 5136 Standard 

Of particular importance in the documentation relevant to anechoic 

terminations is the ISO 5136 standard [2].  This standard describes a technique to 

measure the sound power of fans and other air moving devices using an in-duct 

method.  It gives recommendations for anechoic termination design and provides 

many examples of anechoic terminations that have been successfully 

implemented in the field.  Many of the designs present in the standard come from 

papers discussed in this chapter.  These designs can be useful if the dimensions 

suit the needs of the particular project, but significant scaling is discouraged to 
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obtain different size anechoic terminations.  An analytical model that would allow 

the designer to quantify changes in the geometry is not available. 

The standard also gives experimental techniques to measure reflection 

coefficient, and sets guidelines for the maximum reflection coefficient tolerated in 

an experimental arrangement.  Table 1 shows the maximum reflection coefficient 

permitted by the standard.  More reflection is tolerated at low frequencies since 

those frequencies are most difficult to absorb.  The motivation behind setting 

maximum reflection is to limit measurement error in sound power, as will be 

shown in the next section. 

Table 1 Maximum reflection coefficient as a function of frequency for 
measuring fan sound power in-duct [2] 

⅓ Octave Band 
Center Frequency (Hz) 

Maximum Pressure 
Reflection Coefficient 

50 0.40 
63 0.35 
80 0.30 
100 0.25 
125 0.15 

≥160 0.15 
 

2.2. Need for an Anechoic Termination 

The need for anechoic terminations arises from the measurement 

techniques used to quantify sound power level and transmission loss inside a duct.  

The following two sections will describe the reasons for implementing an 
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anechoic termination in an experimental setup that measures these acoustic 

quantities. 

2.2.1. Sound Power Measurement 

First, consider the heating, ventilation and air-conditioning (HVAC) 

example of calculating sound power radiated into a duct from a fan.  The sound 

power is the amount of energy the fan emits inside the duct per second.  In the 

absence of reflections inside the duct, the sound power 𝑃𝑊 for plane waves3 is [3] 

where 𝑝 is the root-mean-square (rms) amplitude of the acoustic pressure, 𝜌 and c 

are the density and speed of sound of the acoustic medium (air in this case), and 𝑆 

is the duct cross-sectional area.  Based on Eq. (2.2.1), sound power is independent 

of microphone measurement location since the root-mean-square of the acoustic 

pressure throughout the duct is constant.  In practice where reflections create 

standing waves within the duct, sound power becomes a function of the duct 

reflection coefficient and source location within the duct [4].  Through use of an 

anechoic termination, these reflections can be eliminated, and the sound power is 

calculated using Eq. (2.2.1) (see Ref. [2] for corrections involving microphone 

response, microphone shields, and airflow).  Therefore, the use of an anechoic 

termination as a boundary condition is preferred because it standardizes in-duct 
                                                 
3 Waves for which pressure and velocity have constant magnitude and phase on any plane 
perpendicular to the direction of wave propagation 

𝑃𝑊 =
𝑝2

𝜌𝑐
𝑆   , (2.2.1) 
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measurements of sound power between different laboratories.  The ISO 5136 [2] 

adopts the non-reflective boundary condition for this reason as a standard for 

measuring fan sound power in ducts. 

Expanding on this idea, consider an in-duct arrangement in the absence of 

an anechoic termination.  Reflections at the end of the duct will interfere with 

incoming sound waves, creating a standing wave.  This makes the acoustic 

pressure vary with location along the length of test section, implying that the 

sound power calculated using Eq. (2.2.1) would also vary depending on the axial 

location of the microphone.  Therefore, the pressure measured in the actual non-

anechoic duct is different from the desired pressure in an anechoic duct, leading to 

systematic errors in measurement of sound power level.  Differences in acoustic 

pressure between the two cases depend on the particular frequency and the 

particular measurement location of the microphone.  For a given frequency, the 

acoustic pressure measured at a specific location in the non-anechoic duct may 

equal the pressure in a duct with an anechoic termination.  Similar measurements 

conducted at other axial locations would yield a different value.  The maximum 

sound power error [3] in a non-anechoic duct relative to an anechoic duct is 

defined as a function of reflection coefficient magnitude 𝜂 as 

𝐸𝜂𝑚𝑎𝑥 = 20 log �
1 + 𝜂
1 − 𝜂

�      [𝑑𝐵].  (2.2.2) 
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Thus, the maximum error in sound power increases with reflection coefficient, i.e. 

as the duct termination becomes more reflective (see Table 2).  Clearly, a less 

reflective anechoic termination is desirable for measurement of sound power of a 

fan in HVAC applications. 

Table 2  Maximum error in sound power level as a 
function of reflection coefficient from Eq. (2.2.2) 

|𝜼| Maximum Error 
[dB] 

0.0 0.0 
0.1 1.7 
0.2 3.5 
0.3 5.4 
0.4 7.4 

 

2.2.2. Transmission Loss Measurement 

As a second example illustrating the need for an anechoic termination, 

consider transmission loss measurements of mufflers in the automotive industry.  

Equation (2.2.3) defines transmission loss (TL) as 

where 𝑃𝑊𝑖 and 𝑃𝑊𝑡, defined by Eq. (2.2.1), are the incident and transmitted sound 

power, respectively.  In-duct transmission loss measurements are commonly made 

using three microphones [5].  Figure 2 shows a schematic of this arrangement.  

Since a sound wave incident on the muffler partially reflects due to the expanding 

cross section, two microphones located upstream from the muffler must separate 

𝑇𝐿 = 10 log �
𝑃𝑊𝑖
𝑃𝑊𝑡

�      [𝑑𝐵],  (2.2.3) 
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the standing wave into its incident and reflected pressures.  This is necessary in 

order to determine the incident sound power using Eq. (2.2.1).  A third 

microphone downstream from the muffler measures the transmitted sound wave, 

assuming an anechoic termination.  The absence of reflections downstream allows 

the transmitted sound power to be calculated by Eq. (2.2.1) using a single 

microphone.  In the absence of a completely non-reflective anechoic termination, 

the transmitted sound power cannot be obtained using Eq. (2.2.1), creating 

inaccuracies in transmission loss [5].  However, anechoic terminations with better 

absorption characteristics can improve the measurement accuracy, as will be 

discussed in Section 2.4. 

 

Figure 2 A schematic of measuring muffler transmission loss using 
three microphones [5].  Microphones 1 and 2 are located upstream of 
the muffler and microphone 3 is downstream.4 
 

                                                 
4 Reprinted with permission from SAE Paper No.  2003-01-1653  © 2003* SAE International 
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2.3. Anechoic Terminations using Wedges 

Beranek, et al. [6] in 1946, extensively studied the use of wedges to 

absorb sound inside anechoic chambers.  The motivation for the study was to 

create a free field environment similar to the conditions high above the earth's 

surface for studying sound transmission problems.  Beranek studied different 

shaped absorbing structures, including linear wedges, sheet layers, pyramids, 

exponentially tapered pyramids, exponentially tapered wedges, and blanket 

layers.  Dozens of materials were studied which led to the selection of fiberglass 

for the final design.  Experiments indicated that the linear wedge shape was 

superior to all other structures in terms of absorption and cost.  For this reason, 

most anechoic chambers nowadays use the linear wedge shaped design.  From 

experiment, Beranek presented design curves to determine the geometry of the 

wedge as a function of cutoff frequency5.  The cutoff frequency for a particular 

anechoic chamber refers to the lowest frequency for which the acoustic field 

within the chamber is considered to be a free field (completely non-reflective).  

Watters [7] also designed a successful absorbing structure using columns arranged 

in steps as an approximation to Beranek’s linear wedge design.  The length of the 

column was selected to equal a quarter wavelength of the desired cutoff 

frequency.  Watters then measured the reflection coefficient of his design and 

compared the results to Beranek’s design. 
                                                 
5 The frequency at which the reflection coefficient rises to 0.1, i.e. frequencies less than the cutoff 
have a reflection coefficient greater than 0.1. 
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The findings indicate that Beranek’s linear wedge design produces slightly less 

reflection than the stepped wedge approximation, particularly at the frequency for 

which the wedge acts as a quarter-wavelength resonator. 

The work of the two authors mentioned above has motivated the use of 

wedges to construct anechoic terminations.  A properly designed wedge gives 

superior absorption above any cutoff frequency depending on the depth of the 

wedge.  Wedges can be oriented in an in-duct arrangement such that the incoming 

wave strikes the wedge at normal incidence to give maximum absorption.  In 

1952, Beranek et al. [8] used the linear wedge design described in his previous 

paper [6] to construct an anechoic termination in order to measure acoustic power 

and spectra of fans in-duct.  An exponential horn made the transition from the test 

duct to the absorbing termination.  Suspended in the center of the termination 

were three fiberglass wedges.  Fiberglass lined the outer walls of the absorbing 

termination.  The end of the termination consisted of two perforated plates, one of 

which could be turned to control airflow through the system by changing the open 

area through the perforations. 

Shenoda [9] studied designs similar to Beranek's along with several other 

variations.  One of the most complete treatments on the subject, this paper 

focused specifically on anechoic termination performance.  Many of the designs 

used conic transitions from test duct to wedge termination.  Shenoda predicted 
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reflection coefficients for anechoic terminations that used conic transitions, but 

the predictions did not include the role of the wedges.  Rather, it was assumed that 

the wedge section was completely absorptive, i.e. behaving as an infinite tube.  In 

another paper, Holgersson [10] constructed a single wedge termination made of 

mineral wool for HVAC applications.  He measured the reflection coefficient for 

different angle wedges and for wedges with multiple partitions of varying density.  

The experiments revealed that a single wedge could be effective at absorbing 

incident sound down to the cutoff frequency for small ducts.  An analytical basis 

was absent from the paper. 

To summarize the findings of this section, wedges create a non-reflective 

environment for frequencies at or above the cutoff.  Experiments indicate that the 

degree of reflection from these surfaces is dependent on wedge shape and 

construction material. 

2.4. Anechoic Terminations using Absorbing Layers 

A pipe stuffed with one layer (see Figure 3) or many different layers (see 

Figure 4) of absorbing material will partially reflect some incident sound energy 

at the air/material boundary and at boundaries between the different layers.  The 

amount of reflection depends on the change in acoustic impedance Z across the 

boundary.  The acoustic impedance Z at a boundary of area S is defined as [11] 

𝑍 =
𝑝
𝑈

   , (2.4.1) 
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where 𝑝 is the complex acoustic pressure and 𝑈 is the complex volume velocity.  

Acoustic impedance will be discussed in detail in Section 3.1, where knowledge 

of the impedance function will be necessary to compute the reflection coefficient 

of the anechoic termination.  When impedance changes from 𝑍0 to 𝑍1 across a 

boundary, the difference in impedance is used to calculate the reflection 

coefficient at that boundary.  The relationship between changes in impedance and 

reflection coefficient are given by [11], 

Thus, when the impedance is equal on both sides of the boundary, no reflection 

occurs.  Figure 3 shows a schematic of a pipe anechoic termination stuffed with a 

single layer of material.  An acoustic wave travelling to the right in the pipe 

suddenly meets the absorbing material at the air/material boundary.  The wave 

will tend to reflect due to the impedance mismatch across the air/material 

boundary.  A well-designed tube filled with absorbing material minimizes 

reflections at the boundary, while attenuating the transmitted acoustic pressure 

along the tube axis.  This could be achieved, for example, by using a long pipe 

with material that has impedance at its surface similar to that of air.  These types 

of anechoic terminations are ubiquitous in the automotive industry since mean 

airflow is absent in the duct when measuring transmission loss.  They are less 

common among HVAC applications where fans generate mean airflow through 

𝜂 =
𝑍1 − 𝑍0
𝑍1 + 𝑍0

   . (2.4.2) 
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the duct.  A pipe stuffed with absorption would impede airflow and generate 

noise. 

 

Figure 3 A pipe anechoic termination stuffed with absorbing 
material.  Sound traveling to the right in air meets the absorbing 
material at the boundary shown and partially reflects due to the 
change in impedance 
 

When using a single material, it can be difficult to reduce reflections at the 

air/material boundary, while at the same time providing sufficient acoustic 

pressure attenuation axially throughout the material.  An important factor in 

determining the impedance of a material is its flow resistivity.6  Materials with 

low packing density generally have a small flow resistivity (shown in Section 0).  

Using a pipe stuffed with material having small flow resistivity reduces 

reflections at the air/material boundary because the surface impedance  𝑍1  

approaches the impedance of the air 𝑍0.  However, a material with small flow 

resistivity will not provide sufficient acoustic pressure attenuation unless the 

absorbing section is very long.  Choosing a material with larger flow resistivity 

                                                 
6 A measure of airflow resistance per unit thickness of material.  Flow resistivity is related to the 
inverse of permeability (see p. 235 in reference [35]) 
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provides greater attenuation in a short distance along the pipe axis, but reflections 

at the air/material boundary increase due to the greater impedance mismatch.  A 

problem like this requires use of multiple materials.  The optimum solution 

minimizes reflection at the air/material boundary while at the same time, provides 

sufficient acoustic pressure attenuation within the absorbing material. 

Zheng and Kleinfeld [12] designed an anechoic termination for 

transmission loss measurements in the form of a long, straight tube stuffed with 

glass wool.  Their anechoic termination was limited to using only one material, so 

they selected the best variation of glass wool to minimize reflections.  The authors 

selected various combinations of fiber diameter and packing density for the glass 

wool to minimize reflection at the air/material boundary.  In addition, they 

considered a range of termination lengths as a third variable and found that longer 

terminations provided greater damping of the sound waves.  Numerical 

simulations used these three variables (fiber diameter, packing density, 

termination length) to optimize for the best combination of parameters to yield the 

best termination.  Of the seven cases considered, a 2-meter long termination 

packed with glass wool of density 25 grams/liter and 24-μm fiber diameter gave 

the most accurate transmission loss measurements up to 3000 Hz.  Huallpa, 

et al. [13] also used two different length anechoic terminations, both with a 

55 mm diameter tube, to determine which one gives most accurate transmission 

loss measurements.  Their first approach was to increase the occupied volume 
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with absorption material gradually along the 3-meter termination.  The material 

the authors used was unclear, but they stated it was a common absorption 

material.  Measurements indicated values no greater than 0.5 for the reflection 

coefficient for frequencies above 60 Hz.  Above 170 Hz, the reflection coefficient 

did not exceed 0.1.  In their second design, the authors used a shorter termination 

filled with foam.  This termination proved to be more reflective than the longer 

termination.  Around 170 Hz, the reflection coefficient was approximately 0.8.  

Consequently, experimentally measured values for the transmission loss of an 

expansion chamber showed better agreement with theoretical predictions when 

using the longer termination. 

Another approach to construct an anechoic termination is to use multiple 

materials arranged in layers that have different acoustic properties, as shown in 

Figure 4.  This approach is more effective over the single layer design because 

impedance Z at each boundary can be gradually increased from layer to layer, 

allowing sound to enter the material with minimal reflection and then be 

attenuated internally within the materials.  The use of multiple layers has become 

more widespread recently since numerical computation can readily optimize for 

specific configurations.  Dunn and Davern [14] were the first to explore the 

optimization of reflection coefficient using three layers having different acoustic 

properties and thicknesses lining a flat wall positioned normal to wave 

propagation direction.  Dunn, et al. calculated the reflection coefficient of the 
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multi-layered lining by successively applying the single-layer impedance equation 

[15] N times for N layers.  Optimization determined each layer thickness.  The 

authors selected materials a priori and used empirical relationships [16] to 

determine the characteristic impedance and propagation constant for each layer.  

The contribution of this paper was to eliminate the need for trial and error 

optimization procedures by establishing an analytical means to calculate 

reflection coefficient for multi-layered linings. 

 

Figure 4 Three material layers lining a flat wall in an impedance tube.  
Shown are incident and reflected components at each boundary with 
impedance Zi.  The three layers have different material characteristics. 
 

Bracciali and Cascini [17] also used a multi-layered approach but instead 

performed their optimization at discrete frequencies using material acoustic 

properties and layer thicknesses as design variables.  In contrast to Dunn and 

Davern, their calculation of reflection coefficient involved a transfer matrix 

between the first and last layer.  The results indicated reflection coefficients of 

0.45 at 125 Hz and 0.22 for frequencies higher than 210 Hz.  Xu et al. [18] 

designed a multi-layered anechoic lining with the genetic algorithm toolbox in 
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MATLAB®.  Using 16 different materials of fixed thickness, the algorithm 

constructed an optimum three layer lining by calculating the thicknesses of each 

layer in multiples of their fixed thicknesses.  Although this research was 

conducted in order to construct an anechoic chamber without using traditional 

wedges, it could easily be applied to design a long pipe anechoic termination. 

In summary, anechoic terminations can be built by inserting one or many 

different absorbing layers arranged in succession inside a pipe.  This type of 

termination is used most commonly in automotive applications.  By using 

numerical optimization, an anechoic termination can be designed to produce 

minimal reflection at the air/material boundary while providing sufficient acoustic 

pressure attenuation along the tube.  Zwicker and Kosten’s single layer impedance 

equation [15] can in general be applied to N layers, thus providing a firm 

analytical basis for numerical optimization. 

2.5. Anechoic Terminations using Stepped Cross-Sections 

A completely different approach to anechoic termination design than ones 

described previously is to use a pipe with step increases in cross-sectional area.  

Olson [19] describes acoustic wave propagation between step increases.  As 

shown in Figure 5, a sudden step increase in area will create a reflected and 

transmitted wave, the former being out of phase with the incident wave since the 

area downstream is larger (the phase reversal is apparent from Eq. (3.2.18) for 
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S2 > S1, disregarding the magnitude).  The abrupt change in impedance from the 

smaller pipe to the larger pipe causes an increase in reflection coefficient. 

 

Figure 5 An acoustic wave incident on the 
boundary between the two pipes will have 
reflected and transmitted pressure components 
 

If multiple steps are used, the length of the sections can be adjusted such 

that the reflected waves at each boundary interact with each other and cancel out.  

An anechoic termination design motivated by this concept first appears in the 

literature by Bolton et al. [1], shown in Figure 6.  Another example is found in the 

ISO 7235 [20], although the original source of the design is unknown.  Bolton 

derived the equation for reflection coefficient of the six-stepped termination by 

considering incident and reflected waves at each boundary.  Absorbing material 

lined the inner circumference of each step.  For simplicity sake however, the 

theory did not account for the effect of the material, and an infinitely long tube 

represented the termination end.  At certain frequencies, the measured reflection 

coefficient did not exceed values given by ISO 5136 in Table 1.  The primary 
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motivation for this new design was to reduce the amount of material needed to 

construct an anechoic termination.  The termination could also adapt to different 

diameter fans provided the steps were the same size as the fan and were 

removable. 

 

Figure 6 A six stepped anechoic termination [1].  The incident 
wave travels to the right towards the terminator body at the far 
right 

2.6. Anechoic Terminations using Horns and Cones 

Anechoic terminations also use gradual transitions in the shape of horns or 

cones to transition from a smaller diameter test duct to an absorbing duct of larger 

diameter as was shown in Figure 1.  A travelling sound wave that experiences an 

abrupt change in duct diameter will reflect at the discontinuity, as Figure 5 shows.  

This is understood in terms of a change in impedance between the two diameter 

pipes.  Transitioning the two sections with a horn or cone can substantially reduce 
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reflections (this will be shown in Section 3.2.3).  A proper horn flare and length 

will ensure that there is a gradual change in impedance from test duct to absorbing 

duct.  Thus, the role of a horn in general is to act as an acoustical transformer 

between two different impedances [19]. 

The horn type anechoic termination is used more often in HVAC 

applications where airflow must be controlled.  In 1972, Shenoda [9] conducted 

analytical and experimental research on horn type anechoic terminations.  Many 

designs used exponential and conic transitions terminating into ducts assumed to 

be infinitely long.  Theoretical predictions of reflection coefficient for these 

terminations were compared to experimental measurements.  In the following 

year, Wollherr [21] studied centrifugal fans and developed an expanding anechoic 

termination.  Neise [22] further developed this termination (see Figure 7).  Its 

unique features included mineral wool lining the expanding sections, and pockets 

of empty space within the mineral wool.  The absorbing material was arranged in 

the expansion such that a constant diameter cross section was formed for proper 

airflow. 
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Figure 7 Horn shaped anechoic termination developed by 
Wollherr and modified to its present form by Neise [22] 
 

Bolleter et al. [3] made an exponential type termination filled partially 

with fiberglass to measure in-duct sound power of fans.  The ISO 5136 standard 

[2] presented the details of this design.  Experimental measurements determined 

the degree of reflection, but a theoretical method was absent.  Myers [23] 

experimentally measured reflection coefficients for a variety of terminations that 

used conic and catenoidal transitions.  These terminations were developed for use 

in a fan test facility at Carrier Corporation.  The results showed that catenoidal 

horns lined with absorbing material near the mouth and connected to an absorbing 

tube yielded the smallest amount of reflection.  This design performed better than 

a bare catenoid open to the air, and a catenoid open to the air with some absorbing 

material near the mouth.  Overall, the work was experimental and lacked an 

analytical basis.  Bolton et al. [1] then attempted to predict the reflection 
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coefficient of a catenoidal horn using an analytical model for an exponential horn 

terminating into an infinitely long tube.  Although an analytical model for 

catenoidal horns existed in the literature [24], it appears to have been overlooked 

by Bolton.  Sufficient agreement between theory and experiment led Bolton to 

conclude that predicting reflection coefficient using horn theory justified its use as 

a design tool. 

To summarize the findings of Section 2.6, anechoic terminations using 

horns and absorbing pipes are well studied experimentally.  Bolton used a 

simplified analytical method to model a catenoidal horn terminating into an 

infinitely long pipe.  Simplified analytical models for horns proved effective at 

predicting the reflection coefficient of horn type anechoic terminations. 

2.7. Anechoic Terminations using Active Cancellation 

The category of active cancellation is reviewed briefly since HVAC and 

automotive industries give little attention to anechoic termination design using 

these methods.  The anechoic terminations discussed so far are the passive type 

used for applications in these industries.  These have the benefit of reduced 

complexity and cost, since they do not require additional microphones, data 

acquisition systems, etc.  One-dimensional active cancellation in ducts is 

thoroughly covered in Ch.5 of Nelson and Elliott [25].  A literature review on the 

topic can also be found in this source.  The general idea is to cancel the sound 
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waves emanating from a primary source at one end of the duct with a secondary 

sound source placed at the other duct end.  The incident wave signal from the 

primary source is measured with a microphone at the secondary source location 

where a data acquisition system processes the signal and generates a wave that is 

out of phase with the incident.  The two waves cancel, creating an absorbing 

termination at the location of the secondary source.  However, if both sources 

continuously generate sound, the sound field would cancel in the section where 

sound power and transmission loss are measured.  This would lead to erroneous 

measurements.  Any anechoic termination using this approach would have to 

avoid interfering with the desired measurements.  Whether or not this is possible 

is unknown to the author.  Perhaps for this reason, little attention is given to active 

anechoic terminations used in experimental arrangements measuring sound power 

and transmission loss. 

2.8. Research Motivation 

The effectiveness of predicting the reflection coefficient of horn type 

anechoic terminations with analytical horn models has been demonstrated 

previously.  However, these methods involved considerable simplifications to 

model the horn and the absorbing termination.  In the 1980’s, Bolton [1] used an 

exponential horn model to predict the reflection coefficient of a catenoidal 

anechoic termination.  Perhaps unknown to Bolton, an analytical model for 

catenoidal horns had been developed in 1950 by Thiessen [24].  To the best of the 
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author’s knowledge, no work thus far has used Thiessen’s model to predict the 

reflection coefficient of anechoic terminations that use a catenoid.  Further, 

although the effect of lined ducts on the attenuation of sound waves is well known 

[26], no analytical model has used these findings to account for the effects of the 

absorbing termination.  All analytical models so far have idealized the absorbing 

termination to act like an infinite duct, without accounting for the properties of the 

absorbing material.  Therefore, the purpose of this research is to account for the 

shape of the catenoidal horn and the material in the absorbing termination to 

predict the reflection coefficient of such an anechoic termination.  The broader 

goal is to provide engineers with a means of predicting the effectiveness of this 

type of anechoic termination design.  Such a model can then be used for 

optimization of the shape of a particular design in order to achieve the lowest 

reflection coefficient over a wide range of frequencies of interest.  Chapter 3 will 

describe the mathematics of catenoidal horns, along with wave propagation 

through pipes lined with absorbing material, in order to develop the analytical 

model. 
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CHAPTER 3 
 
 

ANALYTICAL MODEL DEVELOPMENT 
 
 

The steps taken to derive an analytical model used to predict the reflection 

coefficient of a catenoidal horn terminating into a pipe lined with absorbing 

material are presented in this chapter.  First, a derivation of the reflection 

coefficient will be given following a definition of acoustic impedance.  Then, the 

acoustic pressure field in the catenoidal horn will be found by solution of 

Webster’s one-dimensional horn equation [27].  This will be used to derive the 

impedance at the horn throat in terms of the impedance at the horn mouth (i.e. 

termination inlet).  Next, the acoustic pressure field inside the termination will be 

described so that expressions for the specific acoustic impedance at the 

termination boundaries can be derived.  The effect of the wall absorption is taken 

into account by imposing Morse’s local reacting boundary condition [26].  In 

order to determine the impedance properties of the absorbing material, an 

empirical model of the material is used.  This leads to the determination of the 

complex axial wavenumber through the absorbing tube.  The impedance at the 

termination inlet can then be expressed in terms of the impedance at the 

termination end (for the open or closed end conditions).  This chapter concludes 

with a procedural summary to compute the reflection coefficient of the anechoic 

termination. 
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3.1. Acoustic Impedance 

In Section 2.4, a brief discussion of impedance was presented in order to 

understand the cause of reflection at discontinuities.  A more detailed version is 

presented [11] in this section.  Acoustic impedance Z at a boundary of cross-

sectional area S is defined as 

where p is the complex acoustic pressure averaged over the surface, and U is the 

complex volume velocity through it.  The complex volume velocity is related to 

the particle velocity v by 

Equation (3.1.1) can be expressed as 

Multiplying both sides by S yields the specific acoustic impedance, 

where 𝑧 = 𝑍𝑆.  The specific acoustic impedance is complex in general, where the 

real part is the specific acoustic resistance and the imaginary part is the specific 

acoustic reactance.  The resistance term represents energy lost by the system 

whether by dissipative effects or energy flowing out.  If the resistance term is 

zero, the specific acoustic impedance is purely imaginary, and all energy stays 

contained within the system (e.g. in the form of standing waves).  An example of 

𝑍 =
𝑝
𝑈

   , (3.1.1) 

 𝑈 = 𝑣𝑆   .  (3.1.2) 

𝑍 =
𝑝
𝑣𝑆

   .  (3.1.3) 

𝑧 =
𝑝
𝑣

    , (3.1.4) 
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this is resonance in a closed pipe (neglecting viscous effects).  For a plane wave 

travelling in a frictionless, infinite medium, Eq. (3.1.4) reduces to a purely real 

constant, 

where 𝜌 is the equilibrium density of the medium, and c is the speed of sound in 

the medium (air in this case).  A positive sign indicates a wave traveling in the +x 

direction (rightward in this thesis), and a negative sign indicates a wave traveling 

in the –x direction (leftward).  Since both of these quantities are dependent on the 

medium, Eq. (3.1.5) is called the characteristic impedance because it is a unique 

property of the particular medium. 

Equations (3.1.4) and (3.1.5) are used in the derivation of the reflection 

coefficient of the anechoic termination as follows: consider a hypothetical 

boundary between two different impedances   𝑧0  and   𝑧1 , shown in Figure 8.  

Assuming the acoustic pressure varies harmonically with time t, an incident wave 

travelling rightward in the +x direction will have reflected and transmitted 

acoustic pressure components [11] at the boundary x = 0, 

 

 

𝑧0 = ±𝜌𝑐   , (3.1.5) 

𝑝𝑖 = 𝑃𝑖𝑒𝑗(𝜔𝑡−𝑘0𝑥)   , (3.1.6) 

𝑝𝑟 = 𝑃𝑟𝑒𝑗(𝜔𝑡+𝑘0𝑥)   ,  (3.1.7) 

𝑝𝑡 = 𝑃𝑡𝑒𝑗(𝜔𝑡−𝑘1𝑥)   ,  (3.1.8) 
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where 𝑝𝑖, 𝑝𝑟, and 𝑝𝑡 are the incident, reflected, and transmitted acoustic pressures, 

𝑃𝑖 , 𝑃𝑟, and 𝑃𝑡  are the respective complex acoustic pressure amplitudes, 𝜔 is the 

angular frequency, 𝑘1  and 𝑘2  are the wavenumbers in mediums 0 and 1, and 

𝑗 = √−1.  The wavenumber 𝑘 is defined as 

where f is frequency in Hertz. 

 

Figure 8 Incident, reflected, and transmitted acoustic pressures at a boundary 
 

At all times, the acoustic pressure and normal particle velocity must be 

continuous across the boundary since the medium itself must remain continuous.  

That is, at x = 0,  

 

𝑘 =
𝜔
𝑐

=
2𝜋𝑓
𝑐

   , (3.1.9) 

𝑝𝑖 + 𝑝𝑟 = 𝑝𝑡   ,  (3.1.10) 

𝑣𝑖 + 𝑣𝑟 = 𝑣𝑡   ,   (3.1.11) 



 

32 
 

Dividing Eq. (3.1.10) by Eq. (3.1.11) gives 

With use of Eq. (3.1.4) and the definition of reflection coefficient in Eq. (1.2.1), 

some algebraic manipulation yields the reflection coefficient at the boundary, 

If a plane wave traveling to the right in medium 0 is assumed, then the specific 

acoustic impedance is just +𝜌𝑐 , the characteristic impedance of Eq. (3.1.5).  

Therefore, the magnitude of Eq. (3.1.13) becomes 

It is apparent that as 𝑧1  approaches the characteristic impedance of the plane 

wave, the magnitude of the reflection coefficient goes to zero, i.e. the reflected 

wave by Eq. (3.1.7) vanishes.  Thus, for the case of an infinite tube (since there 

are no reflections), the reflection coefficient would be zero. 

The specific acoustic impedance at the horn throat, labeled 𝑧1 in Figure 9, 

must be determined to calculate the reflection coefficient of the anechoic 

termination using Eq. (3.1.14).  It is assumed that a plane wave travels to the right 

in the test tube from the sound source with characteristic impedance 𝑧0 =  𝜌𝑐.  

The wave meets the horn throat and encounters specific acoustic impedance 𝑧1.  

The impedance at this boundary is a function of the impedance 𝑧2 at the horn 

𝑝𝑖 + 𝑝𝑟
𝑣𝑖 + 𝑣𝑟

=
𝑝𝑡
𝑣𝑡

   .  (3.1.12) 

𝜂 =
𝑧1 − 𝑧0
𝑧1 + 𝑧0

   , (3.1.13) 

|𝜂| = �
𝑧1 − 𝜌𝑐
𝑧1 + 𝜌𝑐

�   .  (3.1.14) 
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mouth.  The specific acoustic impedance 𝑧2  at the horn mouth (or terminator 

inlet) is a function of the impedance 𝑧3  at the terminator end, and of  𝑧𝑤 , the 

impedance normal to the surface of the absorbing material.  Therefore, the throat 

impedance 𝑧1 must be expressed as a function of the mouth impedance 𝑧2, and 𝑧2 

expressed as a function of 𝑧3  and   𝑧𝑤 .  The expressions for the horn throat 

impedance and terminator inlet impedance are derived in Sections 3.2.2 and 3.3.6, 

respectively. 

 

Figure 9 A schematic of an anechoic termination with specific acoustic impedances shown at each 
boundary.  A plane wave travels to the right in the test tube 
 

3.2. The Catenoidal Horn 

In the mid 1940’s, Salmon studied the impedance characteristics of a 

family of infinitely long horns [28].  This family of horns was obtained by 

considering perturbations of the exponential profile.  The range of shapes was 
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bound between a hyperbolic cosine profile and a conical horn, the exact shape 

depending on the value of the “family parameter.”  The impedance characteristics 

of these horns were presented, and the hyperbolic cosine profile attracted attention 

for its potential applications in sound reproduction and amplification.  The horn 

contour described by the hyperbolic cosine in Salmon’s paper was later called a 

catenoid by Morse [29].  This is because a hyperbolic cosine describes a catenary 

curve7, and revolution of a catenary about a central axis produces a catenoidal 

surface.  Following Salmon’s paper, Thiessen [24] studied the impedance 

characteristics of a finite catenoid, and derived the relationship for the impedance 

at the horn throat as a function of the impedance at the mouth through solution of 

Webster’s one-dimensional horn equation [27].  In the next sections, Webster’s 

horn equation is discussed and the steps in Thiessen’s derivation for the 

impedance characteristics of a finite catenoid are shown. 

3.2.1. Webster’s Horn Equation 

A time harmonic wave travelling along axial direction x through a volume 

with cross-sectional area 𝑆 = 𝑆(𝑥) is described approximately8 by the 2nd order, 

linear, homogenous differential equation [27] 

                                                 
7 A chain hanging between two supports follows a catenary curve 
8 As long as the diameter at any cross section in the horn is small compared to the acoustical 
wavelength, then the wave is approximately one dimensional [30] 

𝑑2𝑝
𝑑𝑥2

+
𝑑
𝑑𝑥

(ln 𝑆)
𝑑𝑝
𝑑𝑥

+ 𝑘2𝑝 = 0   ,  (3.2.1) 
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where 𝑝 = 𝑝(𝑥) is the acoustic pressure and k is the angular wavenumber.  This is 

Webster’s horn equation.  The solution to Equation (3.2.1) is a one-parameter 

wave, which in this case, is a plane wave whose properties depend only on the 

parameter x.  A plane wave will have acoustic properties with constant amplitude 

and phase on plane surfaces perpendicular to the direction of wave propagation.  

Although this condition is not met inside a horn (the surfaces of constant phase 

are curved), it is approximately true for a horn whose contour does not flare out 

too rapidly [30].  Specifically, the rate of change of √𝑆 with x must be much 

smaller than one (i.e. 𝑑√𝑆 𝑑𝑥� ≪ 1). 

Some authors [30] choose to express Eq. (3.2.1) in terms of the velocity 

potential 𝜑 = 𝜑(𝑥, 𝑡), a scalar function associated with irrotational flow, 

The acoustic pressure and particle velocity along the x-axis are related to the 

velocity potential by [11] 

 

Notice that for constant cross-sectional area, Eq. (3.2.2) reduces to the well-

known one-dimensional wave equation. 

𝜕2𝜑
𝜕𝑡2

− 𝑐2
𝜕(ln 𝑆)
𝜕𝑥

𝜕𝜑
𝜕𝑥

− 𝑐2
𝜕2𝜑
𝜕𝑥2

= 0   . (3.2.2) 

𝑝 = −𝜌
𝜕𝜑
𝜕𝑡

  ,  (3.2.3) 

𝑣 =
𝜕𝜑
𝜕𝑥

   , (3.2.4) 
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3.2.2. Impedance at the Horn Mouth 

The solution to Eq. (3.2.2) is presented for a catenoidal horn of length 𝑙1 

subject to boundary conditions (refer to Figure 9) 

 

The cross sectional area as function of axial distance x for a catenoid is 

where 𝑆0 ≡ 𝑆(𝑥 = 0) is the area at the horn throat, and m is a flare constant 

determining the rate of flare of the horn contour.  A flare constant of zero 

describes a cylinder.  Inserting Eq. (3.2.7) into (3.2.2) yields 

The solution of Eq. (3.2.8) is given by Thiessen [24], 

where A and B are complex constants and b is defined as 

Equations (3.2.3) and (3.2.4) are used to calculate the acoustic pressure and 

velocity along the x-axis, yielding 

𝑝
𝑣

 �
𝑥=0

= 𝑧1   , (3.2.5) 

𝑝
𝑣

 �
𝑥=𝑙1

= 𝑧2   , (3.2.6) 

𝑆(𝑥) = 𝑆0 cosh2(𝑚𝑥)   , (3.2.7) 

𝜕2𝜑
𝜕𝑡2

− 2𝑚𝑐2tanh (𝑚𝑥)
𝜕𝜑
𝜕𝑥

− 𝑐2
𝜕2𝜑
𝜕𝑥2

= 0   .  (3.2.8) 

𝜑 =
𝑒𝑗𝜔𝑡

cosh (𝑚𝑥)
[𝐴 cos(𝑏𝑥) + 𝐵 sin(𝑏𝑥)] (3.2.9) 

𝑏 = �𝑘2 − 𝑚2    . (3.2.10) 

𝑝 =
−𝑗𝜔𝜌

cosh (𝑚𝑥)
[𝐴 cos(𝑏𝑥) + 𝐵 sin(𝑏𝑥)] 𝑒𝑗𝜔𝑡  , (3.2.11) 
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Using the two above expressions in Eq. (3.1.4), the specific acoustic impedance of 

the catenoidal horn is determined, 

More compactly [24], 

The boundary conditions defined in Eqns. (3.2.5) and (3.2.6) are applied to 

Eq. (3.2.14) yielding, 

 

The complex constants can be eliminated, and after some rearranging, the specific 

acoustic impedance 𝑧1 of the throat is 

The specific acoustic impedance at the horn throat depends on the specific 

acoustic impedance at the horn mouth, the geometry of the catenoidal horn, and 

on frequency (since b is frequency dependent).  Also, note that the complex 

𝑣 =
𝑒𝑗𝜔𝑡

cosh(𝑚𝑥) [−𝐴𝑏 sin(𝑏𝑥) + 𝐵𝑏 cos(𝑏𝑥) + ⋯

−𝑚 tanh(𝑚𝑥) (𝐴 cos(𝑏𝑥) + 𝐵 sin(𝑏𝑥))]. 
(3.2.12) 

𝑧(𝑥) = 𝜌𝑐𝑗𝑘 �
𝐴 cos(𝑏𝑥) + 𝐵 sin(𝑏𝑥)

𝐴𝑏 sin(𝑏𝑥) − 𝐵𝑏 cos(𝑏𝑥) + 𝑚 tanh(𝑚𝑥)(𝐴 cos(𝑏𝑥) + 𝐵 sin(𝑏𝑥))
�.  (3.2.13) 

1
𝑧(𝑥)

=
1
𝜌𝑐
�
𝑚 tanh(𝑚𝑥)

𝑗𝑘
+
𝑏
𝑗𝑘

 
𝐴 sin(𝑏𝑥) − 𝐵 cos(𝑏𝑥)
𝐴 cos(𝑏𝑥) + 𝐵 sin(𝑏𝑥)

�   .  (3.2.14) 

1
𝑧1

=
1
𝜌𝑐
�−

𝐵
𝐴

 
𝑏
𝑗𝑘
�   , (3.2.15) 

1
𝑧2

=
1
𝜌𝑐

 �
𝑚 tanh(𝑚𝑙1)

𝑗𝑘
+
𝑏
𝑗𝑘
𝐴 sin(𝑏𝑙1) − 𝐵 cos(𝑏𝑙1)
𝐴 cos(𝑏𝑙1) + 𝐵 sin(𝑏𝑙1)

�   . (3.2.16) 

𝑧1 = 𝜌𝑐
𝑗𝑘
𝑏
�
𝑗𝑘 𝜌𝑐𝑧2

tan(𝑏𝑙1) −𝑚 tanh(𝑚𝑙1) tan(𝑏𝑙1) + 𝑏

𝑗𝑘 𝜌𝑐𝑧2
− 𝑚 tanh(𝑚𝑙1) − 𝑏 tan(𝑏𝑙1)

�   . (3.2.17) 
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constants, A and B, did not need to be explicitly determined since the relationship 

between the boundary conditions (i.e. 𝑧1 and 𝑧2) was desired. 

To illustrate Eq. (3.2.17), assume a 1 in. throat diameter, 20 in. mouth 

diameter, and 64 in. horn length.  The flare constant m for this horn is calculated 

from Eq. (3.2.7) to be 0.0577 in-1.  For simplicity’s sake, assume that an infinitely 

long tube is connected to the mouth of the horn so that 𝑧2 = 𝜌𝑐.  A plot of the real 

and imaginary parts of the specific acoustic impedance ratio 𝑧1
𝜌𝑐

 (a dimensionless 

quantity) versus frequency is shown in Figure 10.  The resonances of the horn are 

identified at frequencies where the specific acoustic reactance ratio (imaginary 

part) goes to zero and the specific acoustic resistance ratio (real part) reaches a 

local minimum [11].  Anti-resonances, regions where acoustic energy is 

inefficiently transmitted through the horn, are indicated where the reactance ratio 

(imaginary part) goes to zero and the resistance ratio (real part) peaks.  The horn 

exhibits a strong anti-resonance around 150 Hz (the first peak) and the first 

resonance occurs at 171 Hz.  A plot of the magnitude of the specific acoustic 

impedance ratio in Figure 11 also indicates anti-resonances where the plot peaks 

and resonances where the plot reaches a local minimum.  As frequency increases, 

the impedance ratio approaches the real value of one, since the reactance ratio 

(imaginary part) approaches zero and the resistance ratio (real part) approaches 
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one.  This indicates high frequencies travel efficiently through the horn into the 

infinitely long pipe with minimal reflection. 

The assumption that the termination is infinitely long is an idealization 

and mathematically convenient since the specific acoustic impedance at the horn 

mouth is  𝑧2 = 𝜌𝑐.  In Section 3.3, an expression for  𝑧2 is derived that accounts 

for the termination length, wall absorption and boundary condition at the 

terminator end.  Discussed in the next section is the motivation for using a horn in 

an anechoic termination, and in particular, a catenoidal horn. 

 
Figure 10 Specific acoustic impedance ratio for a catenoidal horn of 
length 64 in. with throat and mouth diameters of 1 in. and 20 in.  
The horn terminates into an infinite tube 
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Figure 11 Magnitude of the specific acoustic impedance ratio for the 
example horn 
 

3.2.3. Motivation for Using a Catenoid 

It is well known that open pipes radiating sound into the environment do 

so very inefficiently, especially when the opening is small compared to the 

acoustic wavelength (see [11], p. 414).  A significant amount of sound energy is 

simply reflected back into the pipe as the sound wave meets the open end.  

Attaching a horn to the end of this pipe greatly increases the amount of energy 

radiated into the environment, thereby reducing reflections.  Historically, this 

technique was used before electronic amplifiers were available to amplify sound 

generated by phonographs.  In a similar manner, a horn is used in an anechoic 

termination to transmit sound efficiently from a small diameter test tube into the 
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environment where the wave will be absorbed (the environment in this case being 

an absorbing tube with a diameter equal to the horn mouth). 

To illustrate the effectiveness of a using a horn to transition from two 

different diameter tubes, a comparison of reflection coefficient is made for two 

arrangements with and without a horn transition, as shown in Figure 12.  Recall 

that in Section 2.5, it was stated that an abrupt change in diameter between two 

tubes causes reflection at the discontinuity, as Figure 5 showed.  If the left tube 

has area S1 and the right tube area S2, then the magnitude of the reflection 

coefficient when the pipes are connected (without a horn) is [19] 

where the reflection coefficient is independent of frequency because the pipes are 

assumed infinitely long.  The reflection coefficient for the arrangement with the 

horn is found by insertion of Eq. (3.2.17) into (3.1.14), again assuming the horn 

terminates into an infinitely long pipe.  A comparison of the reflection coefficient 

magnitude for the two arrangements shown in Figure 12 is shown in Figure 13.  

The area of the first tube, S1, is equal to the throat area of the example horn in 

Section 3.2.2.  The area of the second tube, S2, is equal to the mouth area.  For the 

two pipes connected to each other without a horn, 99.5% of the incident acoustic 

pressure at any frequency reflects back into the first pipe.  Transitioning the two 

pipes with a 64-inch long catenoid reduces the reflections over a broad frequency 

|𝜂| = �
𝑆1 − 𝑆2
𝑆1 + 𝑆2

�    , (3.2.18) 
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range, with the largest reduction at high frequencies.  This example shows that a 

horn should be used to transition from the test duct to an absorbing duct of larger 

diameter when designing an anechoic termination.   

 

Figure 12 On the left, two pipes of different area are connected to each other.  On the right, a horn 
is used to transition the same two pipes.  The wave travels from left to right 
 

 
Figure 13 Comparison of reflection coefficient between two pipes of 
different diameters with a horn transition and without 
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As an aside, if there existed an infinite amount of space to work with, an 

infinitely long straight tube would absorb every frequency without reflection since 

the acoustic wave would never meet a discontinuity in geometry.  This would be a 

“perfect” anechoic termination.  However, since space is limited in many practical 

cases, the horn design represents a practical solution to minimize reflections when 

given a finite amount of space. 

Although any gradual transition between different diameter pipes would 

likely reduce reflections, the catenoidal horn gives the best performance.  Section 

2.6 described the widespread use of catenoidal horns by engineers to construct 

anechoic terminations.  The focus on the catenoid in this thesis is motivated by 

the theoretical findings of Morse [29].  Morse demonstrated that for the same 

overall dimensions, infinitely long catenoidal horns have superior transmission 

characteristics over infinitely long exponential and conical horns.  The 

transmission coefficient is defined as the ratio of power radiated from the horn to 

a diaphragm radiating into an infinite tube9.  The diaphragm is equal in radius to 

the horn throat and moves at the same velocity as a diaphragm positioned at the 

horn throat.  The transmission characteristics for an infinitely long catenoid are 

excellent above its cutoff frequency (no wave motion occurs below the cutoff, 

although this is an approximation due to the approximate nature of Eq. (3.2.1)).  
                                                 
9 The transmission coefficient defined here is not an efficiency since it is a comparison to a 
standard case (a diaphragm radiating into an infinite tube), not an ideal case.  Therefore, the 
coefficient can exceed one. 
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The exponential horn is the next best choice and both are superior to the conical 

horn, which exhibits relatively poor transmission characteristics.  A comparison 

between catenoidal and exponential profiles shows that the catenoid transmits 

energy more efficiently at low frequencies, while at high frequencies the 

transmissions are indistinguishable.  This makes a catenoid favorable since it will 

be demonstrated that low frequencies have the highest reflection coefficients.  The 

catenoid also differs in shape near the throat from the exponential horn.  A 

catenoid has zero slope at the throat and can connect to a test tube smoothly 

without presenting a slope discontinuity at the connection point.  However, both 

exponential and conical horns have non-zero slope at their throats, creating 

reflections due to the sudden change in area.  The subsequent focus on the 

catenoid in this thesis is justified by the reasoning presented. 

3.3. The Absorbing Termination 

The goal of this section is to derive a relationship for the specific acoustic 

impedance at the horn mouth 𝑧2, in terms of the specific acoustic impedances of 

the absorbing wall and the termination end.  This relationship will ultimately be 

used in Eq. (3.2.17) to describe the impedance presented to the test tube by the 

entire anechoic termination.  This derivation will be presented in steps.  First, the 

acoustic pressure field inside a cylinder will be presented for use in boundary 
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conditions 10 .  Next, some simplifying assumptions will be gathered by 

considering the boundary condition for a rigid-wall cylinder.  Then, absorption 

properties will be accounted for with a modified boundary condition involving the 

impedance at the lining surface.  In Section 3.3.4, an empirical method for 

determining the specific acoustic impedance properties of the absorption is given.  

Finally, the expression for 𝑧2 is derived in Section 3.3.6. 

3.3.1. Acoustic Pressure Field in a Cylinder 

The acoustic wave equation is given by [11] 

and by separation of variables 11 , its time-harmonic solution in cylindrical 

coordinates yields the acoustic pressure field of normal modes inside a 

cylinder, [31] 

The radial and axial wavenumbers are related by 

Acoustic pressure dependent on radial direction r is described by 𝐽𝑞( 𝑘𝑟𝑟) , 

Bessel’s function of the first kind of integer order q.  The pressure variation 

                                                 
10  Horns are commonly designed with a circular cross-section meant to fit the cylindrical 
impedance tube at its throat, and the cylinder at its mouth.  Hence, only circular cross-sections are 
treated here. 
11 See Appendix B for a complete derivation of Eq. (3.3.2) 

∇2𝑝 =
1
𝑐2

 
𝜕2𝑝
𝜕𝑡2

    ,  (3.3.1) 

𝑝(𝑟,𝜃, 𝑥, 𝑡) = 𝐽𝑞( 𝑘𝑟𝑟) 𝑒𝑗𝑞𝜃�𝐴𝑒−𝑗𝑘𝑥 𝑥 + 𝐵𝑒𝑗𝑘𝑥 𝑥�𝑒𝑗𝜔𝑡   .  (3.3.2) 

𝑘2 = �
𝜔
𝑐
�
2

= 𝑘𝑟2 + 𝑘𝑥2   .  (3.3.3) 
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around the azimuthal angle 𝜃 is described by the term 𝑒𝑗𝑞𝜃.  The term in brackets 

of Eq. (3.3.2) represents a wave travelling left and right along the axis x. 

3.3.2. Rigid Wall Boundary Condition 

First, consider the case where the outer walls are rigid.  Although this is 

not the actual case (the walls have absorption), it will lead to two important 

conclusions.  If the outer walls of the cylinder are rigid, then Eq. (3.3.2) must 

satisfy 

since the particle velocity is zero at the cylinder radius 𝑎.  This implies 

where the prime denotes the derivative with respect to r.  The solutions to Eq. 

(3.3.5) are the nth roots of 𝐽𝑞′ ( 𝑘𝑟𝑎) so that 𝑛 = 1 represents the first root, 𝑛 = 2 

represents the second root, etc.  As an example, for (q, n) = (0, 1), the first root 

of   𝐽0′  occurs at 𝑘𝑟𝑎 = 0 ; for (q, n) = (0, 2), the second root of  𝐽0′  occurs at 

𝑘𝑟𝑎 =  3.83; for (q, n) = (1, 1), the first root of  𝐽1′  occurs at 𝑘𝑟𝑎 = 1.84; and for 

(q, n) = (1, 2), the second root of 𝐽1′  occurs at 𝑘𝑟𝑎 = 5.33.  A particular mode 

shape corresponds to each combination of (q, n).  Some of these shapes are shown 

in Figure 14.  In this figure, q is the number of radial nodal lines (places with zero 

acoustic pressure), and n is the number of nodal circles.  The signs indicate 

vibration out of phase with each other. 

𝜕𝑝
𝜕𝑟
�
𝑟=𝑎

= 0   , (3.3.4) 

𝐽𝑞′ ( 𝑘𝑟𝑎) = 0   , (3.3.5) 
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Figure 14 Normal mode shapes at a cross section of the 
cylindrical cavity 
 

The reason for considering the rigid-wall case is two-fold: 

1. For simplicity sake, only the (q, n) = (0, 1) plane mode will be considered 

when applying Morse’s boundary condition at the absorbing walls, and 

2. The range of frequencies for which plane waves occur in the duct can now 

be determined. 

The first point simplifies the analysis since higher order modes are neglected.  

Therefore, the acoustic pressure is described completely by the (q, n) = (0, 1) 

plane mode of Eq. (3.3.2).  This assumption is consistent with Morse [26] and is 

reasonable if very high frequencies are not of interest.  It is also mathematically 

necessary so that the impedance can be defined uniformly over a plane in the 
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horn.  The second point is that the plane wave region, i.e. 0 < 𝑘𝑎 < 1.84 gives 

the frequency range for a duct of radius a over which this assumption is valid, 

Focusing the analysis inside the range defined by Eq. (3.3.6) allows higher modes 

to be neglected since those modes will not form in this frequency range. 

Notice that if only plane waves are considered and absorption is not 

accounted for, 𝑘𝑟 = 0 and 𝑘𝑥 = 𝑘 since the first root of 𝐽0′( 𝑘𝑟𝑎) is zero.  Then 

Eq. (3.3.2) reduces to the solution of the one-dimensional wave equation, 

Equation (3.3.7) shows that acoustic pressure has no radial dependence since 

𝐽0( 𝑘𝑟𝑟) = 𝐽0(0) = 1 for all r in Eq. (3.3.2).  However, the presence of absorption 

in the tube modifies these findings.  In the next section, it will be shown that 

adding an absorption lining to the outer termination walls yields acoustic pressure 

dependence on the radial direction, even in the frequency range defined by Eq. 

(3.3.6).  The presence of the absorption creates complex radial and axial 

wavenumbers in the “plane wave” region. 

0 < 𝑓 <
1.84𝑐
2𝜋𝑎

   . (3.3.6) 

𝑝(𝑥, 𝑡) = �𝐴𝑒−𝑗𝑘𝑥 + 𝐵𝑒𝑗𝑘𝑥�𝑒𝑗𝜔𝑡   .  (3.3.7) 
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3.3.3. Absorbing Wall Boundary Condition 

For a termination that contains absorption lining the inner circumference, 

it is assumed here that the material is “local-reacting.”12  Morse’s local-reacting 

assumption [26] is a good approximation for densely packed materials and low 

frequencies.13  The boundary condition at the absorbing surface located at 𝑟0 (see 

Figure 15) is finite such that [31] 

where 𝑧𝑤 is the specific acoustic impedance normal to the wall surface and 𝑣𝑟 is 

the particle velocity normal to the surface (acting in the radial direction). 

 
Figure 15 Cross-section of the absorbing termination 
with absorbing material of thickness a - r0 around the wall 

                                                 
12 i.e. particle velocity at the lining surface depends only on the local acoustic pressure and 
acoustic impedance.  Further, axial wave propagation through the material is neglected. 
13 For other materials, the local reacting assumption may lead to erroneous predictions.  See 
reference [40] for a comparison between the local-reacting and “bulk-reacting” approach, which 
accounts for propagation through the lining. 

𝑝
𝑣𝑟

 �
𝑟=𝑟0

= 𝑧𝑤   , (3.3.8) 
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The radial velocity is calculated by assuming a time-harmonic dependence in 

Euler’s linear equation [11], 

The pressure in the absorbing duct, assuming axisymmetric modes (i.e. m = 0), 

must be of the form 

since the finite impedance at the absorbing wall implies 𝜕𝑝
𝜕𝑟

 is non-zero.  This 

gives rise to the acoustic pressure having radial dependence.  Using Eqns. (3.3.9) 

and (3.3.10), Eq. (3.3.8) becomes the characteristic equation [31] 

where the relationship 𝐽0′( 𝑘𝑟𝑟0) = −𝐽1( 𝑘𝑟𝑟0) was used.  The condition in Eq. 

(3.3.11) is a transcendental function whose roots are discrete values of 𝑘𝑟𝑟0 that 

satisfy the equation for each frequency dependent 𝑧𝑤.  It applies only to modes for 

which m = 0.  Since the specific acoustic impedance 𝑧𝑤 at the wall is complex, the 

roots will also be complex.  Therefore, both radial and axial wavenumbers are 

complex quantities.  This is to be expected since the imaginary part of the 

complex axial wavenumber is the attenuation constant of the duct. 

Determining the complex roots of Eq. (3.3.11) is not trivial.  This was first 

treated by Molloy et al. [32] with nomograms.  Using this method in the current 

𝑣𝑟 = −
1
𝑗𝜔𝜌

 
𝜕𝑝
𝜕𝑟

   . (3.3.9) 

𝑝(𝑟, 𝑥, 𝑡) = 𝐽0( 𝑘𝑟𝑟) �𝐴𝑒−𝑗𝑘𝑥 𝑥 + 𝐵𝑒𝑗𝑘𝑥 𝑥�𝑒𝑗𝜔𝑡   ,  (3.3.10) 

(𝑘𝑟𝑟0)𝐽1( 𝑘𝑟𝑟0)
𝐽0(𝑘𝑟𝑟0)  = 𝑗𝑘𝑟0

𝜌𝑐
𝑧𝑤

   , (3.3.11) 
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analysis is impractical since the nomogram would have to be used for every single 

frequency corresponding to its unique 𝑧𝑤.  Furthermore, since 𝑧𝑤 is dependent on 

the absorption material properties (discussed in the next section), the procedure 

would have to be repeated if a different material was used.  A practical approach 

to obtaining the roots over a particular frequency range is to implement an 

approximate formula 14 , since it is readily programmable into a computer.  

According to Mechel [33], the roots of Eq. (3.3.11) are approximately 

where 

The complex radial wavenumber 𝑘𝑟 is found by dividing the value of 𝑘𝑟𝑟0 

by 𝑟0.  Equation (3.3.12) gives two complex roots for 𝑘𝑟𝑟0 due to the two signs in 

front of the radical.  Next, each of these 𝑘𝑟 are inserted into 

                                                 
14 Alternatively, the roots could be found with a numerical routine.  Using the “fsolve” command 
in MATLAB® to call the function defined by Eq. (3.3.11), the roots can be numerically calculated 
for each impedance.  The results show that Eq. (3.3.12) is an excellent root approximation over the 
frequency range of interest (100 – 1000 Hz) in this thesis, and thus justifies its use. 

(𝑘𝑟𝑟0)2 ≈
96 + 36𝑗𝑄 ± �9216 + 2304𝑗𝑄 − 912𝑄2

12 + 𝑗𝑄
    , (3.3.12) 

𝑄 ≡ 𝑘𝑟0
𝜌𝑐
𝑧𝑤

    . (3.3.13) 

𝑘𝑥 = �𝑘2 − 𝑘𝑟
2    , (3.3.14) 
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yielding two 𝑘𝑥 values.  The axial wavenumber 𝑘𝑥 of interest in Eq. (3.3.14) 

corresponds to the one with the smallest absolute value of the imaginary part (i.e. 

the least attenuation). 

3.3.4. Normal Specific Acoustic Impedance, 𝑧𝑤 

The problem now is to determine the specific acoustic impedance  𝑧𝑤 

normal to the lining.  This is accomplished experimentally with an impedance 

tube using a sample of the material [34].  However, if measuring the impedance is 

not possible, the impedance characteristics can be estimated using empirical 

methods.  The latter method is described below because it is conveniently applied 

to a wide range of materials.  In this thesis, an empirical model for polyester fiber 

is given since this material was used in the anechoic termination prototype.  The 

experimental verification of the empirical estimates can be found in Appendix E. 

First, assume the walls of the cylinder are very rigid and that there is no air 

gap between the wall and the absorbing material. Then the specific acoustic 

impedance normal to the layer surface is given by [35] 

where 𝑧𝑐  is the characteristic impedance of the absorbing material, 𝑘𝑤  is the 

propagation constant of the absorbing material, and 𝑑  is the layer thickness.  

Equation (3.3.15) takes into account incident and reflected waves within the 

absorbing material.  If the material is very thick, cot𝑘𝑤𝑑 → 𝑗, and the impedance 

𝑧𝑤 = −𝑗𝑧𝑐 cot(𝑘𝑤𝑑)    , (3.3.15) 
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normal to the surface is the same as the characteristic impedance.  This is 

expected because a thick sample behaves as an “infinite” medium where 

reflections are absent. 

The material characteristic impedance and propagation constant are 

determined by empirical methods.  Delany and Bazley [16] were the first to do 

this for fibrous materials using regression analysis conducted on experimentally 

measured data.  Their empirical equations expressed as a function of a non-

dimensional parameter E are of the form [35] 

 

where the regression constants 𝑐𝑖 are dependent on the material (e.g. rock wool, 

glass wool, polyester fiber, etc.).  The non-dimensional parameter E is defined as 

The flow resistivity 𝑅 is also determined by empirical methods and has the form 

where D is the mean fiber diameter of the material, and 𝜌𝐴 is the bulk density of 

the material (found by dividing the mass of a sample by its total volume).  Thus, 

the bulk density determines the flow resistivity of a particular class of materials 

𝑧𝑐
𝜌𝑐

= (1 + 𝑐1𝐸𝑐2) − 𝑗𝑐3𝐸𝑐4    , (3.3.16) 

𝑘𝑤
𝑘

= (1 + 𝑐5𝐸𝑐6) − 𝑗𝑐7𝐸𝑐8    , (3.3.17) 

𝐸 =
𝑅
𝜌𝑓

  .    (3.3.18) 

𝑅 =
𝑐9𝜌𝐴𝑐10
𝐷2    , (3.3.19) 
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(assuming a uniform fiber diameter across each sample).  When the flow 

resistivity is known, the material properties are estimated using Eqns. (3.3.16) and 

(3.3.17).  Then, the material thickness is used in Eq. (3.3.15) to determine the 

specific acoustic impedance 𝑧𝑤 normal to the material surface.  In short, only two 

parameters, the bulk density 𝜌𝐴 and material thickness d, must be known a priori 

in order to estimate 𝑧𝑤. 

For polyester fiber, the characteristic impedance, propagation constant and 

flow resistivity is estimated using Garai and Pompoli’s [36] empirical 

relationships, 

 

 

 
where 𝐸 is defined as in Eq. (3.3.18).  The polyester fiber used in the anechoic 

termination prototype is manufactured by Technicon Acoustics [37] and has a 

bulk density and thickness of 24 kg/m3 and 44 mm (1.75 inches).  See Appendix 

C for a complete listing of material specifications.  Using these values, a plot of 

the real and imaginary parts of the characteristic impedance ratio (Eq. (3.3.20)) is 

shown in Figure 16.  A plot of the real and imaginary parts of the propagation 

𝑧𝑐
𝜌𝑐

= (1 + 0.078𝐸0.623) − 𝑗0.074𝐸0.660    , (3.3.20) 

𝑘𝑤
𝑘

= (1 + 0.121𝐸0.530) − 𝑗0.159𝐸0.571  , (3.3.21) 

𝑅 = 25.989𝜌𝐴1.404   , (3.3.22) 
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constant kw is shown in Figure 17.  Finally, the specific acoustic impedance 

normal to the absorbing surface is plotted in Figure 18. 

 
Figure 16 Characteristic impedance ratio of the polyester fiber 
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Figure 17 Propagation constant of the polyester fiber (absolute value of 
imaginary part) plotted with the wavenumber in air 

 

Figure 18 Specific acoustic impedance normal to the polyester fiber 
surface (normalized with the characteristic impedance of air) 
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As shown in Figure 16, the characteristic impedance of the material at high 

frequencies approaches the real value of the characteristic impedance of the air 

(since the imaginary part approaches zero).  For thick materials, this implies that 

high frequencies are absorbed with minimal reflection.  The imaginary part of the 

propagation constant in Figure 17 (representing the attenuation constant within 

the material, plotted as the absolute value of the imaginary part) increases, 

indicating that high frequencies have greater acoustic pressure attenuation within 

the absorbing material than low frequencies.  In Figure 18 the real and imaginary 

parts of the specific acoustic impedance of the polyester fiber (normalized with 

𝜌𝑐) is plotted by using Eq. (3.3.15).  The peaks and valleys in the real part at high 

frequencies indicate anti-resonances and resonances within the material sample. 

3.3.5. Complex Axial Wavenumber, 𝑘𝑥 

The complex radial wavenumber 𝑘𝑟  of the absorbing termination is 

determined by using the specific acoustic impedance normal to the lining 𝑧𝑤 in 

Eq. (3.3.12).  Then, the complex radial wavenumber is inserted into Eq. (3.3.14) 

to calculate the complex axial wavenumber, 𝑘𝑥. 

A plot of the real and imaginary parts of 𝑘𝑥 is shown in Figure 19.  Also 

shown is the wavenumber in air.  The imaginary part of the axial wavenumber is 

the attenuation constant of the absorbing duct.  The behavior of the attenuation 
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constant in Figure 19 is consistent with round silencers, where the attenuation of 

acoustic pressure increases with frequency (up to the formation of non-planar 

modes, where the attenuation begins to decrease) [35].  In the special case for 

termination walls with no absorption, the real part of the axial wavenumber and 

the wavenumber in air are identical since the attenuation constant is zero.  This 

was discussed at the end of Section 3.3.2. 

Figure 19 assumes the radius to the absorbing surface is 108 mm (4.25 

inches) since for the prototype, the absorbing duct radius is 6 inches and the 

material thickness is 1.75 inches.  Therefore, from Eq. (3.3.6), the first cross mode 

inside the duct should form around 1000 Hz (this is an approximation for lined 

ducts since the equation assumes rigid walls).  After 1000 Hz, the estimated 

wavenumber is no longer valid since Eq. (3.3.11) is valid only for planar modes. 
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Figure 19 Real and imaginary components of the axial wavenumber.  
Also shown is the wavenumber in air 
 

3.3.6. Impedance at Termination Inlet 

The relationship between the specific acoustic impedance at the horn 

mouth (terminator inlet) 𝑧2 and the specific acoustic impedance at the terminator 

end, 𝑧3 is derived in this section.  Referring to Figure 9, the boundary conditions 

are 
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𝑝
𝑣

 �
𝑥=𝑙1+𝑙2
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The boundary condition in Eq. (3.3.23) is identical to the horn mouth boundary 

condition in Eq. (3.2.6).  The acoustic pressure in the duct is given by Eq. 

(3.3.10).  The particle velocity along the x-axis is given by [11], 

Taking the ratio of pressure to particle velocity yields the specific acoustic 

impedance at any plane in the duct, 

where the constants A and B will be eliminated similar to Section 3.2.2.  Applying 

boundary conditions at the termination inlet and outlet yields, 

 

Using Euler’s identity, the expression for the specific acoustic impedance at the 

termination inlet is, 

It is seen from Eq. (3.3.29) that the impedance at the termination inlet is 

dependent on the impedance at the termination end, 𝑧3, the termination length, 𝑙2, 

and the axial wavenumber, 𝑘𝑥, itself a function of the material lining the duct.  

𝑣 = −
1
𝑗𝜔𝜌

 
𝜕𝑝
𝜕𝑥

    . (3.3.25) 

𝑧(𝑥) =
𝑘
𝑘𝑥
𝜌𝑐 �

𝐴𝑒−𝑗𝑘𝑥𝑥 + 𝐵𝑒𝑗𝑘𝑥𝑥

𝐴𝑒−𝑗𝑘𝑥𝑥 − 𝐵𝑒𝑗𝑘𝑥𝑥
�   , (3.3.26) 

𝑧2 =
𝑘
𝑘𝑥
𝜌𝑐 �

𝐴𝑒−𝑗𝑘𝑥𝑙1 + 𝐵𝑒𝑗𝑘𝑥𝑙1
𝐴𝑒−𝑗𝑘𝑥𝑙1 − 𝐵𝑒𝑗𝑘𝑥𝑙1

�   ,  (3.3.27) 

𝑧3 =
𝑘
𝑘𝑥
𝜌𝑐 �

𝐴𝑒−𝑗𝑘𝑥(𝑙1+𝑙2) + 𝐵𝑒𝑗𝑘𝑥(𝑙1+𝑙2)

𝐴𝑒−𝑗𝑘𝑥(𝑙1+𝑙2) − 𝐵𝑒𝑗𝑘𝑥(𝑙1+𝑙2)� (3.3.28) 

𝑧2 = 𝜌𝑐

𝑧3
𝜌𝑐 + 𝑗 𝑘𝑘𝑥

tan(𝑘𝑥𝑙2)

1 + 𝑗 𝑘𝑥𝑘
𝑧3
𝜌𝑐 tan(𝑘𝑥𝑙2)

    . (3.3.29) 
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Equation (3.3.29) is identical in form to the impedance presented to a piston 

vibrating inside a rigid walled pipe15, with the addition of the wavenumber ratio. 

This ratio approaches a value of one for a pipe with no absorption along its walls. 

3.4. Summary of Analytical Model 

All of the equations necessary to predict the reflection coefficient of the 

anechoic termination have been presented thus far.  The steps needed to carry out 

this procedure are summarized below. 

1. Express the specific acoustic impedance at the horn throat in terms of the 
impedance at the horn mouth using Eq. (3.2.17). 
 

𝑧1 = 𝜌𝑐
𝑗𝑘
𝑏
�
𝑗𝑘 𝜌𝑐𝑧2

tan 𝑏𝑙1 − 𝑚 tanh𝑚𝑙1 tan 𝑏𝑙1 + 𝑏

𝑗𝑘 𝜌𝑐𝑧2
− 𝑚 tanh𝑚𝑙1 − 𝑏 tan 𝑏𝑙1

� 

 
where, 

𝜌 is the density of air 
𝑐 is the speed of sound in air 
𝑘 = 2𝜋𝑓

𝑐� , the wavenumber in air, f is the frequency 
𝑏 = √𝑘2 − 𝑚2 , where m is the horn flare by Eq. (3.2.7) 
𝑧2 is the specific acoustic impedance at the horn mouth 
𝑙1 is the horn length 
 

2. The specific acoustic impedance at the horn mouth is given by Eq. 
(3.3.29) and substituted in step 1, 
 

                                                 
15 See pg. 273 in Reference [11] 
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𝑧2 = 𝜌𝑐

𝑧3
𝜌𝑐 + 𝑗 𝑘𝑘𝑥

tan 𝑘𝑥𝑙2

1 + 𝑗 𝑘𝑥𝑘
𝑧3
𝜌𝑐 tan 𝑘𝑥𝑙2

 

 
where, 

𝑧3 is the specific acoustic impedance at the termination end 
𝑘𝑥 is the axial wavenumber in the termination 
𝑙2 is the length of the termination 

 
Steps 3 – 6 estimate the axial wavenumber 𝑘𝑥 , and step 7 gives 
expressions for 𝑧3. 
 

3. Estimate the characteristic impedance and propagation constant of 
polyester fiber by Eq. (3.3.20) and (3.3.21), 

 
𝑧𝑐
𝜌𝑐

= (1 + 0.078𝐸0.623) − 𝑗0.074𝐸0.660  

 
𝑘𝑤
𝑘

= (1 + 0.121𝐸0.530) − 𝑗0.159𝐸0.571 

 
where, 

𝐸 = 𝑅
𝜌𝑓

, a non-dimensional parameter 

𝑅 = 25.989𝜌𝐴1.404, the flow resistivity of polyester fiber 
𝜌𝐴 is the bulk density of the material 
 

4. Calculate the specific acoustic impedance normal to the wall by Eq. 
(3.3.15), assuming material thickness 𝑑, 
 

𝑧𝑤 = −𝑗𝑧𝑐 cot(𝑘𝑤𝑑) 
 
 

5. Compute the radial wavenumber with Eq. (3.3.12), 
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(𝑘𝑟𝑟0)2 ≈
96 + 36𝑗𝑄 ± �9216 + 2304𝑗𝑄 − 912𝑄2

12 + 𝑗𝑄
   

 
where, 

𝑄 = 𝑘𝑟0
𝜌𝑐
𝑧𝑤

 

𝑟0 is the distance from the duct center to the absorbing surface 
 

6. With the radial wavenumber, the axial wavenumber is 
 

𝑘𝑥 = �𝑘2 − 𝑘𝑟
2 

 
The value of 𝑘𝑥 corresponds to the 𝑘𝑟 that gives least attenuation, i.e. the 
smallest imaginary part of 𝑘𝑥. 
 

7. Determine the specific acoustic impedance at the termination end 
depending on the following scenarios: 

 
a. Termination closed with a rigid cap, 

 
𝑧3 = ∞ 
 

b. Termination closed with a rigid cap lined with absorption, 
assuming the same layer thickness throughout the duct, 

𝑧3 = 𝑧𝑤 
 

c. Termination open to the air, assuming the radiation into the air is a 
baffled circular piston of radius a [11], 
 

where, 

𝑅1(2𝑘𝑎) = 1 − 2𝐽1(2𝑘𝑎)
2𝑘𝑎

 is the piston resistance function 
𝐽1(2𝑘𝑎) is a bessel function of the first kind, order 1 

𝑧3 = 𝜌𝑐[𝑅1(2𝑘𝑎) + 𝑗𝑋1(2𝑘𝑎)] 
  (3.4.1) 
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𝑋1(2𝑘𝑎) = 2𝐻1(2𝑘𝑎)
2𝑘𝑎

 is the piston reactance function 
𝐻1(2𝑘𝑎) is a first order Struve function16 
 

d. Reflections are neglected at the termination end, 
 
𝑧3 = 𝜌𝑐 
 

8. Calculate the reflection coefficient magnitude of the anechoic termination 
by Eq. (3.1.3) 
 

|𝜂| = �
𝑧1 − 𝜌𝑐
𝑧1 + 𝜌𝑐

� 

Alternatively, the power absorption coefficient can be calculated by [35], 

This represents the amount of incident sound energy absorbed by the 
anechoic termination. 

                                                 
16 See Aarts and Janssen [41] for a numerical approximation to the first order Struve function.  It is 
useful since the function is not available in MATLAB® 

𝛼 = 1 − |𝜂|2   . (3.4.2) 



 

65 
 

CHAPTER 4 
 
 

EXPERIMENTAL VALIDATION 
 
 

In this chapter, reflection coefficient predictions made using the analytical 

model presented in Ch. 3 are compared against experimentally measured 

reflection coefficient of an anechoic termination prototype.  All measurements 

were conducted at Western Michigan University’s Noise and Vibration 

Laboratory following the ASTM E1050 standard [38].  Comparisons are made 

against experiment for the variety of termination boundary conditions.  A 

comparison of the analytical model developed in Ch. 3 against existing analytical 

models will conclude the chapter. 

4.1. Description of the Prototype 

The anechoic termination consisting of the catenoidal horn (white) and 

absorbing termination (black) of length 0.914 m (36 in.) and diameter 0.305 m (12 

in.) is shown in Figure 20.  Experimental measurements were also conducted 

using a termination 3.28 m (129 in.) in length, pictured in Figure 21.  All horn and 

absorbing termination dimensions are given in Table 3.  The catenoid was 

constructed by gluing multiple parts fabricated by selective laser sintering (SLS).  

The horn prototype was drawn in AutoCAD in order to generate a 

stereolithograph (.stl) output file of the geometry for input into the 3D prototyping 

machine.  The absorbing termination is made of polyethylene pipe used for 
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outdoor drainage.  Its interior walls are smooth so the layer of polyester fiber 

lining the circumference fits tightly against the walls (see Figure 22). 

 
Figure 20 Anechoic termination prototype with catenoidal 
horn (white) and absorbing termination (black) of length 
0.91 m (36 in.) and diameter 0.305 m (12 in.) 

 

 

Figure 21 An absorbing termination 3.28 m (129 in.) in 
length and diameter 0.305 m (12 in.).  The mouth of the 
horn connects to the end shown on the left 
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Table 3 Dimensions of each component of the anechoic termination prototype 

Catenoid horn length 0.914 m (36 in.)  

Catenoid throat diameter 0.0191 m (0.75 in.)  

Catenoid mouth diameter 0.305 m (12 in.)  

Short absorbing termination length 0.914 m (36 in.)  

Long absorbing termination length 3.28 m (129 in.)  

Absorbing termination diameter (both) 0.305 m (12 in.)  

Polyester fiber layer thickness 0.0445 m (1.75 in.)  
 

Figure 22 shows the inlet of the absorbing termination with the horn unattached.  

A layer of polyester fiber of thickness 44 mm (1.75 in.) lines the termination 

around the circumference throughout the entire length (see Appendix C for 

material properties provided by the manufacturer.  Note the measured thickness is 

slightly less than specified).  With reference to Figure 15, this makes a 108 mm 

(4.25 in.) radius measured to the surface of the absorbing material.  Surrounding 

the termination inlet is medium density fiberboard (MDF) to facilitate a tight 

connection to the horn mouth.  As shown in Figure 23, the mouth of the horn is 

fastened to the absorbing termination by clamping the mouth lip to the MDF.  A 

smooth transition is made in the interior since the inner diameters of the horn 

mouth and termination are both 0.305 m (12 in.). 
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Figure 22 Inlet of the absorbing termination with the horn 
unattached to the medium density fiberboard.  A layer of 
polyester fiber lines the circumference throughout the termination 

 

 

Figure 23 Connection of the horn mouth to the absorbing 
termination inlet 
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The end of the absorbing termination opposite the horn mouth can be either open 

or closed with an end cap made of MDF.  Experiments were conducted with the 

termination end open (Figure 24), closed with a bare cap (Figure 25a) and closed 

with a lined cap (Figure 25b). 

 

Figure 24 Absorbing termination with open end.  Horn is 
partially visible on the far left 
 

  
(a) (b) 

Figure 25 A bare cap (a) and the same cap with a layer of polyester fiber (b) is used to close the 
termination end shown in Figure 24 
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Analytical predictions are made for each of these cases by considering the specific 

acoustic impedance created by the termination end (referred to as 𝑧3 in Ch. 3). 

4.2. Experimental Setup 

The entire experimental arrangement is pictured in Figure 26.  On the far 

right of the figure is the sound source enclosure.  Between the enclosure and the 

horn throat is the impedance tube, where the data acquisition system measures the 

reflection coefficient of the anechoic termination.  Connected to the impedance 

tube is the catenoid, and following the catenoid is the absorbing termination.  A 

schematic of the data acquisition system is shown in Figure 29. 

 

Figure 26 Experimental arrangement with sound source, impedance tube, catenoid, absorbing 
termination, and data acquisition system 
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4.2.1. Sound Source and Impedance Tube 

The sound source (RadioShack speaker of diameter 0.152 m (6 in.)) is 

housed in a 0.381 m x 0.381 m x 0.203 m (15 in. x 15 in. x 8 in.) MDF enclosure 

(Figure 27a) to prevent any flanking sound transmission to the microphones, as 

required by ASTM E1050 [38].  A 19 mm (0.75 in.) diameter opening is 

fabricated for connection to the same size impedance tube.  The sound source is 

mounted inside the enclosure on the front wall (Figure 27b).  The enclosure 

contains a layer of polyester fiber lining the interior walls in order to damp any 

resonances within the cavity. 

  

(a) (b) 
Figure 27 Enclosure for sound source (a) and front wall open (b) with speaker mounted 
 

Shown in Figure 28a is the impedance tube.  This connects to the sound 

enclosure at its opening.  Microphone position A is the closest microphone to the 

sound source.  The impedance tube is made of 19 mm (0.75 in.) diameter PVC 

pipe.  Acoustical measurements are made in the impedance tube with two 6.4 mm 
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(0.25 in.) microphones mounted such that their diaphragms are flush with the 

interior wall (Figure 28b).  The microphone diameter 𝑑𝑚 allows valid 

measurements to be made up to 11 kHz, found using [38] 

 

  

(a) (b) 

Figure 28 Impedance tube (left) and close-up of microphone mounts (right) 
 

The dimensions of the impedance tube and microphones are given in Table 4.  

The diameter of the impedance tube ensures that only plane waves will propagate 

through the tube up to 9800 Hz.  This upper limit is calculated using Eq. (3.3.6).  

The frequency range for which measurements are valid in this setup is limited by 

the microphone spacing, 𝑠 .  This range is approximately 235 – 9400 Hz, 

determined using [38], 

𝑓𝑢 <
0.2𝑐
𝑑𝑚

    . (4.2.1) 

0.01𝑐
𝑠

< 𝑓 <
0.8𝑐
2𝑠

   .  (4.2.2) 
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Table 4 Impedance tube specifications 

Inner Diameter 0.0191 m (0.75 in.)  

Length 0.464 m (18.25 in.)  

Center to center microphone spacing 0.0146 m (0.575 in.)  

Source to Mic A distance 0.298 m (11.75 in.)  

Mic B to horn throat distance 0.149 m (5.87 in.)  
 

The distance from the source to the first microphone (microphone A) is chosen to 

be larger than three tube diameters to avoid measuring non-planar waves in the 

near field of the source.  The distance between the second microphone 

(microphone B) and the horn throat is larger than two tube diameters.  This way, 

higher order modes created by reflections from the horn throat have a sufficient 

distance to decay before they reach the second microphone. 

4.2.2. Data Acquisition System 

A schematic of the data collection system is shown in Figure 29.  The 

signal generator generates white noise, which is amplified by the stereo amplifier.  

This signal is fed into the speaker.  The white noise, generated by the speaker, 

travels through the impedance tube in the direction towards the horn and then into 

the absorbing termination. 
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Figure 29 Schematic of the signal flow for data collection 

Two ACO Type 7016 ¼-inch phase-matched microphones mounted on the 

impedance tube (see Figure 28b) measure a transfer function so that the reflection 

coefficient of the anechoic termination can be calculated (described in the next 

section).  Each of the microphone signals are amplified by the ACO PS9200 

signal conditioner and collected by the NI-9234 data acquisition (DAQ) module.  

The DAQ module is connected via USB port to a computer running Smart Office 

software [39]. 

The data is collected with a sampling rate of 25.6 kHz, useful bandwidth 

of 10 kHz, and a spectral resolution equal to 3200 lines.  One-hundred blocks are 

used to compute the linear average, with a Hanning window applied to each 

block.  The total acquisition time is 32 seconds.  The level of the white noise 
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exceeds the background noise measured in the impedance tube by more than 

20 dB to ensure an adequate signal to noise ratio.  Measurements were made at 

different source levels and the results indicated that source level had no effect on 

the reflection coefficient. 

4.3. Experimental Measurement Procedure 

The procedure to measure the reflection coefficient of the anechoic 

termination follows the two-microphone technique outlined in ASTM E1050 [38].  

The procedure is valid only for plane waves within the impedance tube. 

4.3.1. Complex Reflection Coefficient 

This two-microphone technique involves measuring a frequency 

dependent transfer function defined as 

where 𝐺12 is the cross-power spectrum and 𝐺11 is the input auto-power spectrum 

(measured by the microphone at location A closest to the source).  This transfer 

function is measured for each experimental arrangement (e.g. open horn, horn 

with absorbing termination, etc.)  To correct for a phase mismatch between the 

two microphones, a correction factor is computed by 

𝐻� =
𝐺12
𝐺11

    , (4.3.1) 

𝐻�𝑐 = (𝐻�𝐼 × 𝐻�𝐼𝐼)1/2   , (4.3.2) 
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where 𝐻�𝐼  is the calibration transfer function measured when microphone 1 

occupies location A and microphone 2 occupies location B, and 𝐻�𝐼𝐼  is the 

calibration transfer function measured when microphone 1 occupies location B 

and microphone 2 occupies location A.  This correction factor needs to be 

computed only once.  The transfer function with the correction factor applied to it 

becomes 

Then, the complex reflection coefficient is  

where l is the distance from the horn throat to the nearest microphone (location B 

in this case), and s is the center to center spacing between the microphones (see 

Table 4).  The wavenumber 𝑘�  in Eq. (4.3.4) accounts for acoustic pressure 

attenuation in the impedance tube and is defined as 

where 𝑘  is the wavenumber defined as in Eq. (3.1.9) and 𝑘 ′  is the attenuation 

constant in the impedance tube of diameter 𝑑′ and is empirically estimated [38] as  

𝐻 =
𝐻�
𝐻�𝑐

    . (4.3.3) 

𝜂 =
𝐻 − 𝑒−𝑗𝑘�𝑠

𝑒𝑗𝑘�𝑠 − 𝐻
𝑒2𝑗𝑘� (𝑙+𝑠)    , (4.3.4) 

𝑘� = 𝑘 − 𝑗𝑘 ′    , (4.3.5) 

𝑘 ′ = 0.02203
�𝑓
𝑐𝑑′

   . (4.3.6) 
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4.3.2. Benchmark for Experimental Measurements 

To validate the experimental measurement procedure, a benchmark case is 

considered (Figure 30). 

 

Figure 30 Open impedance tube used as a benchmark 
arrangement to validate experimental procedure 

 
The reflection coefficient is measured for the open impedance tube and compared 

to the theoretical reflection coefficient for an open tube whose end condition can 

be assumed to act as a baffled piston [11].  A schematic showing a side and front 

view of this baffled piston arrangement is shown in Figure 31.  The specific 

acoustic impedance 𝑧𝐷 of the driven (by the loudspeaker) end of the impedance 

tube of length 𝑙 is given in terms of the specific acoustic impedance of the piston 

𝑧𝑃, 

𝑧𝐷 = 𝜌𝑐
𝑧𝑃 cos(𝑘𝑙) + 𝑗𝜌𝑐 sin(𝑘𝑙)
𝑗𝑧𝑃 sin(𝑘𝑙) + 𝜌𝑐 cos(𝑘𝑙)

   , (4.3.7) 
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The specific acoustic impedance of the baffled piston radiating into the 

environment is given by Eq. (3.4.1).  The reflection coefficient of the open tube is 

given by Eq. (3.1.14), after replacing 𝑧1 with 𝑧𝐷. 

 

 

Figure 31 Side and front view of a baffled piston representing the open end of a tube 

 
As illustrated in Figure 32, the agreement between theoretical and 

experimentally measured reflection coefficient is very good.  The abrupt decrease 

in the measured reflection coefficient at 5000 Hz is due to a poor sound source 

response at this frequency (observed experimentally), possibly caused by a 

resonance within the enclosure.  Around 9800 Hz, cross modes begin to form 

within the impedance tube.  As the figure indicates, the measurement accuracy 

decreases in this region because the measurement technique is limited to plane 

waves. 
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Figure 32 Experimental measurement of reflection coefficient for an 
open tube compared to theoretical predictions made using Eq. (4.3.7) 
 

4.4. Experimental Results vs. Analytical Predictions 

Shown in the following sections are comparisons of experimental results 

with predictions made by the analytical model described in the previous chapter 

for a variety of termination configurations.  The experimental measurements of 

reflection coefficient follow the procedure outlined in Section 4.3.1, and the 

corresponding analytical predictions follow the summary in Section 3.4.  The 

frequency range spans from 100 - 1000 Hz in the plots since the first cross mode 

forms in the absorbing termination around 1000 Hz.  The experimental data is 

plotted starting at approximately 235 Hz since the small microphone spacing in 

the experimental setup imposed this lower limit. 
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4.4.1. Open Horn, No Termination 

In the first test configuration, measurements are taken on the horn 

prototype only, so that the mouth of the horn is open to the air. 

 

Figure 33 Horn prototype open to the air 

 

Shown in Figure 34 is a plot of the reflection coefficient magnitude versus 

frequency.  The mouth of the open horn radiates sound into the air and is modeled 

as a piston in an infinite baffle.  The impedance of the baffled piston, given by Eq. 

(3.4.1), is used in place of the mouth specific acoustic impedance 𝑧2  in Eq. 

(3.2.17). 
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Figure 34 Measured and predicted reflection coefficient for open 
catenoid 
 

The experimental results show excellent agreement with the theoretical 

predictions.  The first local minimum around 260 Hz corresponds to the first 

resonant frequency of the catenoid.  At frequencies of about 460 Hz and greater, 

the reflection coefficient is smaller than 0.3 (i.e. 30 percent of the incident energy 

is reflected by the horn back into the impedance tube). 

Alternatively, the power absorption coefficient of the horn is plotted using 

Eq. (3.4.2).  In Figure 35, the power absorption coefficient, α, is compared 

between experiment and theory.  The figure indicates that if the horn alone were 

used as an anechoic termination, 90 percent of the incident sound energy would 

be absorbed for frequencies greater than about 460 Hz.  The figure also 
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underscores the fact that the lowest frequencies are most difficult for the horn to 

absorb (or transmit into open space). 

 
Figure 35 Plot of power absorption coefficient for the open catenoid 

 

4.4.2. Horn with Open Termination 

The plots in this section represent the case where each absorbing tube is 

connected to the mouth of the horn and the opposite end of the tube is open to the 

air.  Figure 36 shows this arrangement for the 36 in. length absorbing tube. 
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Figure 36 Horn (partially shown) and absorbing termination open to the air (picture, far left) 

 
The specific acoustic impedance at the open end of the absorbing tube is modeled 

as a piston in an infinite baffle, like the open horn in the previous section.  Shown 

in Figure 37 is the theoretical reflection coefficient magnitude for this case 

compared to experimentally measured values.  In Figure 38, the corresponding 

plot is made for the power absorption coefficient.  These measurements are made 

using the 0.914 m (36 in.) long absorbing termination. 
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Figure 37 Reflection coefficient magnitude for the horn and 
absorbing termination (length = 36 in.) open to the air 
 

The theoretical prediction captures the rapid decrease in experimentally measured 

reflection coefficient between 200 and 300 Hz very well.  After 300 Hz, the 

prediction tends to overestimate the reflection coefficient.  This error is less 

pronounced when viewing the absorption coefficient plot in Figure 38.  With the 

exception of the region around 350 Hz, the experimentally measured power 

absorption coefficient matches theoretical predictions to within 10 % error. 
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Figure 38 Power absorption coefficient for horn and absorbing 
termination (length = 36 in.) open to the air 
 

Similar plots for reflection coefficient magnitude and power absorption 

coefficient are presented in Figure 39 and Figure 40 for the longer 3.28 m (129 

in.) absorbing termination.  Notably, the analytical model using the longer 

termination predicts less reflection at the local maximum around 350 Hz, and the 

result is closer to the experimentally measured value. This is likely due to 

increased acoustic pressure attenuation since the wave travels through a longer 

absorbing duct.  A further analysis of the effect that the length of the absorbing 

termination has on reflection coefficient will be presented in Chapter 5. 
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Figure 39 Reflection coefficient magnitude for the horn and 
absorbing termination (length = 129 in.) open to the air 

 
Figure 40 Absorption coefficient for horn and absorbing termination 
(length = 129 in.) open to the air 
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4.4.3. Horn with Closed Termination (Rigid Cap) 

The plots in this section represent the case where the horn and absorbing 

tube are connected, with the absorbing tube closed to the environment using a 

rigid cap (see Figure 25a).  The rigid cap is attached to the end of the absorbing 

termination as shown on the left in Figure 41. 

 

Figure 41 Horn (partially shown) and absorbing termination with rigid cap attached (picture, far 
left) 

 
The reflection coefficient magnitude and power absorption coefficient 

(Figure 42 and Figure 43) is plotted for the 0.914 m (36 in.) absorbing termination 

and for the 3.28 m (129 in.) absorbing termination (Figure 44 and Figure 45). 
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Figure 42 Reflection coefficient magnitude for the horn and 
absorbing termination (length = 36 in.) closed with a rigid cap 
 

 
Figure 43 Absorption coefficient for horn and absorbing termination 
(length = 36 in.) closed with a rigid cap 
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With reference to Figure 42, the theoretical reflection coefficient for the 36 in. 

long absorbing termination shows large variation between successive local 

minima and maxima.  This is observed experimentally also.  This is likely due to 

the rigid cap creating resonances within the anechoic termination.  Conversely, 

this variation is less prevalent when using the 129 in. long termination (see Figure 

44).  This indicates the end boundary condition may have a negligible influence 

when longer absorbing terminations are used.  When the sound wave reaches the 

absorbing tube end, the acoustic pressure amplitude is attenuated more in the 

longer absorbing duct than the shorter.  Therefore, the influence of resonances on 

the reflection coefficient is diminished. 

 
Figure 44 Reflection coefficient magnitude for the horn and 
absorbing termination (length = 129 in.) closed with a rigid cap 
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Figure 45 Absorption coefficient for horn and absorbing termination 
(length = 129 in.) closed with a rigid cap 
 

4.4.4. Horn with Closed Termination (Layered Rigid Cap) 

Next, a 1.75 in. thick layer of polyester fiber is added to the rigid cap (see 

Figure 25b) and the absorbing termination is closed in a similar manner to the 

previous section (see Figure 41).  The findings are negligibly different from 

Figures 45 – 48, the case of the absorbing termination closed with a non-layered 

rigid cap.  Presumably, this means the addition of the polyester fiber to the rigid 

cap has a negligible influence on the reflection and power absorption coefficients.  

The next section will show an experimental comparison between the various 

experimental arrangements. 
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4.4.5. Comparison between Experimental Arrangements 

Figure 46 shows a relative comparison of reflection coefficient magnitude 

between the various anechoic termination arrangements.  In this figure, the plots 

are made for the open horn and for each of the end boundary conditions on the 36 

in. long absorbing termination.  Figure 47 shows the corresponding absorption 

coefficients.  Three observations can be made from these figures: 1) the addition 

of the absorbing termination increases the first natural frequency from the open 

horn case (see annotations), 2) the addition of the absorbing termination lowers 

the reflection coefficient at higher frequencies, and 3) the absorbing termination 

with rigid and layered cap are nearly indistinguishable at low frequencies. 

 
Figure 46 Experimentally measured reflection coefficient for each 
boundary condition (36 in. absorbing termination) 
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Figure 47 Experimentally measured power absorption coefficient for 
each boundary condition (36 in. absorbing termination) 
 

Further, it is difficult to make any conclusions from experiment as to which case 

(e.g. open termination vs. closed with rigid/layered cap) is “better” based on the 

objective of attaining a small reflection coefficient (or absorption coefficient near 

one) over a certain frequency range.  In Chapter 5, we present a cost function to 

evaluate how “good” these anechoic terminations are relative to each other with 

the goal of optimizing the design of the anechoic termination in order to achieve 

small reflection coefficient. 

In Figure 48, the experimentally measured reflection coefficient 
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conditions for the absorbing termination of length 3.28 m (129 in.).  Figure 49 

shows the corresponding power absorption coefficients. 

 
Figure 48 Experimentally measured reflection coefficient for each 
boundary condition (129 in. absorbing termination) 

 
These figures indicate that when using a longer absorbing termination, the 

reflection (and power absorption) coefficient is less sensitive to changes in the 

boundary condition at the termination end (e.g. open termination, closed with 

rigid and layered cap). 
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Figure 49 Experimentally measured power absorption coefficient for 
each boundary condition (129 in. absorbing termination) 
 

In Figure 50, the experimentally obtained reflection coefficient is 

compared between the two absorbing terminations of different length when their 

ends are open.  As the figure indicates, replacing the 0.914 m (36 in.) termination 

with the longer 3.28 m (129 in.) termination does not have a significant effect on 

the reflection coefficient magnitude.  The effect is even less pronounced in Figure 

51 when examining the power absorption coefficient.  This suggests there may be 

a limit to the influence a longer termination can have on the absorption (and 

reflection) coefficient of anechoic terminations. 
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Figure 50 A relative comparison of experimentally measured 
reflection coefficient between two different length absorbing 
terminations (when both are open) 

 
Figure 51 A relative comparison of experimentally measured 
absorption coefficient between two different length absorbing 
terminations (when both are open) 
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4.4.6. Analytical Model Compared to Bolton’s Model 

Effort has been applied to the analytical model outlined in this thesis to 

account for the shape of the catenoid and the effect of the absorbing termination.  

An analytical model developed by Bolton [1] did not account for the catenoid 

shape (he approximated it as an exponential horn) and modeled the absorbing tube 

as if it were infinitely long (no account for absorbing material). Does the 

analytical model presented in this thesis yield an improvement over Bolton’s 

model to predict the reflection coefficient of the anechoic termination prototype?  

To answer this, the experimentally measured reflection coefficient for the 

anechoic termination prototype (catenoid connected to 36 in. long absorbing 

termination, open at the end) is plotted and compared against predictions from the 

analytical model presented in Ch. 3.  To predict the reflection coefficient of a 

catenoidal horn connected to an absorbing termination, Bolton mathematically 

modeled the arrangement as an exponential horn connected to an infinitely long 

tube.  For an exponential horn, the area of a cross section as a function of axial 

distance x is [1] 

where 𝑆𝑜𝑒  is the area at the exponential horn throat and 𝑚𝑒  is the horn flare.  

Assuming the horn terminates into an infinitely long tube, the specific acoustic 

impedance at the throat of the exponential horn is 

𝑆𝑒(𝑥) = 𝑆𝑜𝑒 exp(𝑚𝑒𝑥) ,  (4.4.1) 
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where 𝑙𝑒 is the length of the exponential horn, and the parameters 𝑏𝑒 and 𝜃𝑒 are 

defined in terms of the wavenumber k in air as, 

 

Equation (4.4.2) is used in place of 𝑧1 in Eq. (3.1.14) to predict the reflection 

coefficient created by this arrangement.  Bolton’s analytical model is plotted in 

Figure 52 and compared against the reflection coefficient predictions of the 

analytical model presented in this thesis.  The predictions are compared against 

experimental measurements of the prototype consisting of the catenoidal horn and 

open absorbing termination of length 129 inches.  The power absorption 

coefficient is plotted in Figure 53. 

These figures show that the current model better estimates the reflection 

coefficient magnitude than Bolton’s model at lower frequencies.  This makes the 

analytical model particularly useful to HVAC applications.  Measurement error 

due to large reflections at lower frequencies is of particular interest when 

measuring sound power radiated by fans into ducts (refer to Table 2 in Ch. 1).  

Bolton’s model tends to underestimate the reflection coefficient (or power 

absorption coefficient) over the broad spectrum.  This implies measurement errors 

𝑧1𝑒 = 𝜌𝑐
cos(𝑏𝑒𝑙𝑒 + 𝜃𝑒) + 𝑗sin (𝑏𝑒𝑙𝑒)
cos(𝑏𝑒𝑙𝑒 − 𝜃𝑒) + 𝑗sin (𝑏𝑒𝑙𝑒)

   ,  (4.4.2) 

𝑏𝑒 = 0.5 �4𝑘2 − 𝑚𝑒
2   , (4.4.3) 

𝜃𝑒 = tan−1 �
𝑚𝑒

2𝑏𝑒
�   . (4.4.4) 
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would be understated.  Since the analytical model presented in this thesis tends to 

overestimate the reflection coefficient, a more conservative estimate of the 

measurement errors will be given. 

 
Figure 52 Bolton's model vs. the present analytical model (catenoid 
and 129” open absorbing termination) compared to experimentally 
measured reflection coefficient 
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Figure 53 Bolton's model vs. the present analytical model (catenoid 
and 129” open absorbing termination) compared to experimentally 
measured absorption coefficient 
 

In the next chapter, an analytical investigation will be conducted on the analytical 

model in order to understand how various changes in geometry affect the 

reflection coefficient.  Optimization examples will be given.  The goal is to design 

the best termination possible. 
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CHAPTER 5 
 
 

OPTIMUM DESIGN OF A TERMINATION 
 
 

In this chapter, the use of the analytical model presented in this thesis is 

studied to gain insight into the physics described by the equations.  In addition, 

particular emphasis is given on using the model to construct an optimum anechoic 

termination designed for minimum reflection coefficient over a prescribed 

frequency range.  Optimization can be applied to the horn geometry, the 

absorbing termination, or both.  An example of an optimized anechoic termination 

is presented. 

5.1. Parametric Study of Horn Geometry 

In contrast to other models, the analytical model presented in this thesis 

does not assume the absorbing termination to be an infinitely long tube but 

instead, accounts for its finite length.  It is for this reason that it is unique in its 

ability to optimize for minimum reflection coefficient.  As the next section will 

show through a parametric study of various horn flares, using the model of an 

infinitely long tube connected to a catenoid gives erroneous optimization results. 

5.1.1. An Infinitely Long Absorbing Termination 

An infinitely long tube attached to a catenoidal horn (or any horn in 

general) can be considered as a model but not fabricated in the real world.  
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Furthermore, such a model cannot be used to optimize the horn geometry for 

minimum reflection coefficient.  To illustrate, consider Eq. (3.2.17) with the 

specific acoustic impedance at the mouth 𝑧2 assumed as 𝜌𝑐 (this is the specific 

acoustic impedance of an infinitely long tube).  Equation (3.2.17) becomes 

For a catenoid horn of 1 meter in length, the reflection coefficient magnitude is 

plotted in Figure 54 for several flare values, m, where each curve represents a 

different flare.  As flare (shown next to each curve) decreases, the reflection 

coefficient gets smaller over the frequency range until it reaches zero for a flare of 

zero.  This corresponds to having a straight tube instead of a horn connecting the 

test tube to the termination section, which is also a straight, infinitely long tube.  

Any horn placed between two infinitely long tubes presents an area discontinuity.  

The discontinuity, no matter how small, will partially reflect the incident sound 

wave.  The “zero flare” solution effectively eliminates the discontinuity (i.e. the 

horn) and results in no reflections.  This leads to the erroneous conclusion that to 

minimize the reflection coefficient over a certain frequency range, no horn is 

necessary.  The conclusion follows from the oversimplified model that assumes 

the termination as infinitely long. 

𝑧1 = 𝜌𝑐
𝑗𝑘
𝑏
�
𝑗𝑘 tan(𝑏𝑙1) −𝑚 tanh(𝑚𝑙1) tan(𝑏𝑙1) + 𝑏

𝑗𝑘 −𝑚 tanh(𝑚𝑙1) − 𝑏 tan(𝑏𝑙1)
�   .  (5.1.1) 
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Figure 54 Reflection coefficient of a catenoid 1 meter in length 
connected to an infinitely long tube for several flare values 

 

5.1.2. An Open Catenoid  

In practice, the horn plays a significant role in reducing the reflection 

coefficient.  To see this, a realistic boundary condition at the horn mouth must be 

assumed.  In this section, the horn mouth is open to the environment and is 

modeled as a piston in an infinite baffle.  The mathematical modeling for the open 

catenoid is described by Eqns. (3.2.17) and (3.4.1).  Through a parametric study 

of various horn mouth diameters, it is shown that an optimum horn geometry 

exists. 
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Consider a catenoidal horn whose throat diameter is fixed at 6 inches and 

length is fixed at 36 inches.  The mouth diameter is allowed to change.  The 

reflection coefficient for various mouth diameters is plotted in Figure 55.  For 

comparison, an open tube of diameter 6 inches is also plotted.  The open tube has 

the highest reflection coefficient for any frequency.  Any horn represented by the 

curves in the plot shows smaller reflection coefficients than the straight tube.  

This motivates the need for a horn in order to reduce the reflection coefficient 

over a certain range of frequencies.  As the mouth diameter is increased, the 

reflection coefficient gets smaller over the frequency range until the diameter 

reaches 24 inches.  When the mouth diameter is changed from 24 to 48 inches, the 

reflection coefficient increases for the majority of frequencies 17.  This means 

there must be an optimum horn geometry that minimizes the reflection coefficient 

over the entire range.  To find this optimum, a cost function must be defined. 

                                                 
17 Physically speaking, when the mouth diameter becomes very large, the horn flares too rapidly, 
and the geometry suddenly changes, similar to Figure 12.  This creates a large reflection 
coefficient. 
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Figure 55 Comparison of reflection coefficient for an open catenoid (6 
in. throat diameter, 36 in. length) of various mouth diameters 

 
5.2. Optimization Cost Function 

Referring to Figure 55, an anechoic termination is better when the 

reflection coefficient measured at all frequencies for that termination is smaller 

than another termination.  In practice, a comparison between any two terminations 

may show one having smaller reflection coefficient in some frequency ranges, and 

higher in others.  The experimental results plotted in Figure 46 illustrated this 

behavior.  How can it be determined which termination is “better?”  A cost 

function Ω is proposed as 
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where 𝑓𝑙 and 𝑓𝑢 are the lower and upper frequencies in the range of optimization, 

and Δ𝑓 = 𝑓𝑢 − 𝑓𝑙  .  Equation (5.2.1) is the normalized area bounded by the 

reflection coefficient magnitude and the abscissa between the lower and upper 

frequencies 18 (see Figure 56).  As such, 0 < Ω < 1 , where zero indicates the 

reflection coefficient is zero for every frequency in the frequency range, and one 

indicates the reflection coefficient is one for every frequency in the frequency 

range.  The “best” anechoic termination for a given frequency range is one which 

has the smallest value of the cost function Ω. 

 

Figure 56 The cost function is the normalized area under the 
reflection coefficient magnitude bounded between lower and 
upper frequencies 
 

                                                 
18 The integral can be evaluated numerically using the “trapz” function in MATLAB® 
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5.3. Example of an Optimum Anechoic Termination 

An anechoic termination consisting of a catenoid and absorbing 

termination is optimized for minimum reflection coefficient.  The absorbing 

termination contains a layer of polyester fiber 1.75 inches thick around the inner 

circumference and the end opposite the horn mouth is open to the air.  The 

optimization problem is defined as follows: 

• Minimize Ω over the range 50 – 500 Hz subject to 

o Horn throat diameter = 0.75 inches 

o 1 inch < Horn mouth diameter < 24 inches 

o 1 inch < Horn length < 200 inches 

o Horn length + Absorbing termination length = 200 inches 

An exhaustive search method [40] is used to find the optimum design within the 

given constraints using step sizes of 1 inch for each variable.  The optimization 

program stops when the cost function is found to have a global minimum in the 

feasible design space (see Appendix A for program listing).  The horn throat 

diameter is fixed because in practice, it must fit to an existing impedance tube.  

The combined length of the horn and absorbing termination is also fixed because 

of hypothetical space constraints.  The results of the optimization are summarized 

below.  In this example, the optimized anechoic termination had the largest mouth 

diameter permitted.  The horn length is approximately five times the mouth 

diameter and the termination length is about three times the mouth diameter.  The 
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reflection coefficient for the optimized anechoic termination is plotted in 

Figure 57. 

Table 5 Optimized anechoic termination dimensions 

Optimum Design 

Throat Diameter (in.) 0.75 

Mouth Diameter (in.) 24 

Horn Length (in.) 125 

Termination Length (in.) 75 

Cost Function Ω 0.3216 

 

 
Figure 57 Reflection coefficient magnitude of optimized anechoic termination 
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The results of this optimization example should not be interpreted to mean that 

the maximum mouth diameter should always be selected.  Rules of thumb for 

designing an optimum anechoic termination are difficult to make and thus, 

optimization should be carried out on a case-by-case basis. 
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CHAPTER 6 
 
 

CONCLUSION AND RECOMMENDATIONS 
 
 

The goal of this thesis was to develop a new analytical model that could 

predict with accuracy the reflection coefficient of anechoic terminations that use 

catenoidal horns and tubes lined with absorbing material.  The findings in Ch. 4 

indicate that the predictions for reflection coefficient correlate well with 

experimental measurements, especially at low frequencies and for long absorbing 

terminations.  By considering the impedance characteristics of each component 

(i.e. horn, tube, and absorbing material), a model could be constructed in order to 

calculate the reflection (or absorption) coefficient of the entire anechoic 

termination.  The impedance characteristics of the catenoid were modeled using 

the theoretical developments of Thiessen [24].  To account for the effect of the 

finite length absorbing tube, the author provided a derivation (in Section 3.3.6) of 

the specific acoustic impedance at the inlet in terms of the axial wavenumber and 

impedance at the outlet.  The axial wavenumber was computed by assuming that 

the material was locally reacting, according to Morse’s model [26].  An empirical 

model was also used to determine the transmission characteristics of the 

absorbing material [36].  To the best of the author’s knowledge, this was the first 

time these developments were applied to design of an anechoic termination. 
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The analytical model was also used to optimize the geometry of the horn 

and absorbing tube.  The performance of the anechoic termination was quantified 

by introducing a cost function to assess the effect that each change in geometry 

had on the reflection coefficient.  The cost function was a measure of the area 

under the reflection coefficient curve, bounded between a lower and upper 

frequency.  An optimum design sought to minimize the cost function (i.e. the 

reflection coefficient across a certain frequency range). 

This work could prove useful for engineers who seek to design anechoic 

terminations for automotive and HVAC applications.  It is hoped that this work 

provides a general framework to assess the reflection characteristics of various 

types of anechoic terminations.  The method of using impedances to develop the 

analytical model is by no means limited to the type of catenoidal anechoic 

termination described in this thesis.  In general, this method can be used for any 

type of horn or cone whose impedance can be represented analytically.  This is 

accomplished by replacing the impedance of the catenoid horn throat (Eq. 

(3.2.17)) with the impedance at the throat of the desired horn or cone.  The 

analysis would then proceed as the summary in Section 3.4 outlined.  

Furthermore, by using any of the available empirical models for different types of 

absorbing materials, their effect on the transmission properties of the absorbing 

tube can be assessed.  Polyester fiber was chosen for use in the prototype because 

of its widespread availability. 
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Further research should address some of the limitations of the model, 

namely, the tendency to overestimate the reflection coefficient at higher 

frequencies when taking into account the absorbing termination.  The discrepancy 

between the predicted and experimentally measured reflection coefficient was 

largest for the shorter length absorbing termination.  Better agreement was 

observed when the absorbing termination length was increased.  In this case, the 

longer termination will provide increased acoustic attenuation of the sound wave.  

This suggests that the analytical model predicts the experimentally measured 

reflection coefficient more accurately when increased acoustic attenuation is 

accounted for.  It is plausible that the analytical model used in this thesis 

underestimates the effect the absorbing termination has on attenuating the 

acoustic pressure of the sound wave.  Lining the termination with absorbing 

material tends to compress the material, resulting in increased bulk density.  An 

increase in bulk density would tend to increase the acoustic pressure attenuation 

within the material.  This change in density is unknown, but if found to be large, 

this could significantly alter the predictions for reflection coefficient. 

Another reason for the discrepancy may be the assumption that the lining 

is locally reacting (i.e. wave propagation through the lining is neglected).  The 

theory developed by Scott [41] accounts for wave flow through the lining (i.e. 

bulk reacting model) and the results presented in the paper for duct attenuation 

were found in better agreement with experiment than the local reacting model, 
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especially when the absorbing material was “loosely packed.”  Polyester fiber 

may be a material for which the bulk reacting assumption should be applied.  If 

true, this may improve analytical predictions for reflection coefficient. 
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% This program calculates the reflection and power absorption 
coefficient for a catenoidal anechoic termination 
  
clear all 
clc 
close all 
% global c rho r_0 zw k index 
  
f     = 100:1:1000;         % frequency range [Hz\ 
Dt    = in2m(0.75);         % horn throat diameter [m] 
Dm    = in2m(12);           % horn mouth diameter [m] 
L1    = in2m(36);           % horn length [m] 
L2    = in2m(36);           % termination length [m] 
d     = in2m(1.75);         % thickness of layer [m]   
r_0   = Dm/2 - d;           % radius to absorbing surface (6"-2") 
rho_A = 24;                 % packing density [kg/m^3] 
c     = 343;                % speed of sound [m/s] 
k     = 2*pi*f./c;          % wavenumber in air [m^-1] 
rho   = 1.2041;             % air density [kg/m^3] 
R     = 25.989*rho_A^1.404; % flow resistivity of layer (Garai, Pompoli) 
E     = R./(rho*f);         % non-dimensional parameter 
  
% Garai/Pompoli model 
zc_GP = rho*c*((1+0.078*E.^0.623) - 1i*0.074*E.^0.660); 
kw_GP = k.*(   (1+0.121*E.^0.530) - 1i*0.159*E.^0.571); 
zw_GP = -1i*zc_GP.*cot(kw_GP*d); 
  
figure(1); 
semilogx(f,real(zw_GP)./(rho*c),'r',f,imag(zw_GP)./(rho*c),'--b',... 
         'LineWidth',2); grid on 
ylabel('z_w/(\rhoc)'); xlabel('{\itFrequency} [Hz]'); 
xlim([f(1) f(end)]) 
legend('Real','Imaginary',4) 
title('Empirical Model for Polyester Fiber (---) and JCI Data (+)') 
  
figure(11); 
semilogx(f,real(zc_GP)./(rho*c),'r',f,imag(zc_GP)./(rho*c),'--b',... 
         'LineWidth',2); grid on 
ylabel('z_c/(\rhoc)'); xlabel('{\itFrequency} [Hz]') 
xlim([f(1) f(end)]) 
legend('Real','Imaginary') 
  
figure(111) 
semilogx(f,real(kw_GP),'r',f,-imag(kw_GP),'--b',f,k,':k',... 
         'LineWidth',2); grid on 
ylabel('k_w'); xlabel('{\itFrequency} [Hz]') 
xlim([f(1) f(end)]) 
legend('Real','Imaginary','k = 2\pif/c') 
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figure(1111); hold on 
alpha_GP = 
4*real(zw_GP)*rho*c./(abs(zw_GP).^2+2*rho*c*real(zw_GP)+(rho*c)^2); 
plot(f,alpha_GP,'b','Linewidth',2) 
xlim([f(1) f(end)]);grid on 
xlabel('{\itFrequency} [Hz]');ylabel('Normal Absorption Coefficient, 
\alpha_n') 
title('Empirical Model for Polyester Fiber (---) and JCI Data (+)') 
  
% Activate this line to simulate a rigid-walled cylinder 
% zw_GP = 1e8*ones(1,length(f)); 
  
Q  = k*r_0*rho*c./zw_GP; 
[kx,kr] = besselroots(Q,r_0,k,f); 
  
% Check of root approximation using fsolve command 
  
% zw = zw_GP; 
% initial = [0.01;0.01]; 
% kr_times_r0 = zeros(length(f),1); 
% kr   = zeros(length(f),1); 
% kx   = zeros(length(f),1); 
% for index = 1:length(f) 
%     [z fval] = fsolve(@Morse,initial); 
%     kr_times_r0(index,1) = z(1)+1i*z(2); 
%     kr(index,1) = kr_times_r0(index)/r_0; 
%     kx(index,1) = sqrt(k(index).^2-kr(index).^2); 
%     initial  = [real(kr_times_r0(index));imag(kr_times_r0(index))]; 
% end 
% kx = kx.'; 
 
figure(22) 
plot(f,real(kx),'r',f,imag(kx),'--b',f,k,'-.k','LineWidth',2); grid on 
xlim([f(1) f(end)]) 
legend('Real','Imaginary','k = 2\pif/c',2) 
ylabel('k_x'); xlabel('{\itFrequency} [Hz]') 
  
% BC's for termination end 
  
% 1. Open end 
x   = 2*k*(Dm/2); 
rA  = 1-2*besselj(1,x)./x; 
xA  = 2*H1(x)./x; 
z3  = rho*c*(rA+1i*xA); 
  
% 2. Lined cap 
% z3 = zw_GP; 
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% 3. Hard cap 
% z3 = 1e9; 
  
% 4. Reflections are neglected at cap 
% z3 = rho*c; 
  
TOPz2 = z3./(rho*c) + 1i*k./kx .* tan(kx*L2); 
BOTz2 = 1 + 1i*kx./k .* z3./(rho*c) .* tan(kx*L2); 
z2    = rho*c*TOPz2./BOTz2; 
  
% Thiessen 
m     = flare_catenoid(L1,Dm,Dt); 
b     = sqrt(k.^2-m^2); 
TOPz1 = 1i*k*rho*c./z2.*tan(b*L1)+b-m*tanh(m*L1)*tan(b*L1); 
BOTz1 = 1i*k*rho*c./z2-b.*tan(b*L1)-m*tanh(m*L1); 
z1    = rho*c*1i*k./b .* TOPz1./BOTz1; 
  
eta   = (z1-rho*c)./(z1+rho*c); 
  
figure(50) 
plot(f,abs(eta),'b','LineWidth',2) 
xlabel('{\itFrequency} [Hz]');ylabel('|\eta|') 
axis([f(1) f(end) 0 1]);grid on 
  
figure(60) 
plot(f,1-abs(eta).^2,'--b','LineWidth',2) 
axis([f(1) f(end) 0 1]);grid on 
ylabel('\alpha') 
xlabel('{\itFrequency} [Hz]') 
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% This program optimizes the horn and absorbing termination geometry 
for minimum reflection coefficient over the specified frequency range 
  
clear all 
clc 
close all 
  
f     = 50:1:500; 
c     = 343;            % speed of sound [m/s] 
k     = 2*pi*f./c;      % wavenumber in air [m^-1] 
rho   = 1.2041;         % air density [kg/m^3] 
d     = in2m(1.75);     % thickness of layer [m] 
Dt    = in2m(0.75);     % horn throat diameter [m] 
  
rho_A = 24;                 % packing density [kg/m^3] 
R     = 25.989*rho_A^1.404; % flow resistivity of layer (Garai, 
Pompoli) 
E     = R./(rho*f);         % non-dimensional parameter 
  
% Garai/Pompoli model 
zc_GP = rho*c*((1+0.078*E.^0.623) - 1i*0.074*E.^0.660); 
kw_GP = k.*(   (1+0.121*E.^0.530) - 1i*0.159*E.^0.571); 
zw_GP = -1i*zc_GP.*cot(kw_GP*d); 
  
count = 1; 
for Dm = in2m(1:24); 
    for L1 = in2m(1:200); 
        for L2 = in2m(200)-L1; 
             
            r_0   = Dm/2 - d; % radius to absorbing surface 
  
            Q       = k*r_0*rho*c./zw_GP; 
            [kx,~]  = besselroots2(Q,r_0,k,f); 
  
            % Open end 
            x   = 2*k*(Dm/2); 
            rA  = 1-2*besselj(1,x)./x; 
            xA  = 2*H1(x)./x; 
            z3  = rho*c*(rA+1i*xA); 
  
            TOPz2 = z3./(rho*c) + 1i*k./kx .* tan(kx*L2); 
            BOTz2 = 1 + 1i*kx./k .* z3./(rho*c) .* tan(kx*L2); 
            z2    = rho*c*TOPz2./BOTz2; 
             
            % Thiessen 
            m     = flare_catenoid(L1,Dm,Dt); 
            b     = sqrt(k.^2-m^2); 
            TOPz1 = 1i*k*rho*c./z2.*tan(b*L1)+b-m*tanh(m*L1)*tan(b*L1); 
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            BOTz1 = 1i*k*rho*c./z2-b.*tan(b*L1)-m*tanh(m*L1); 
            z1    = rho*c*1i*k./b .* TOPz1./BOTz1; 
  
            eta   = (z1-rho*c)./(z1+rho*c); 
  
            I     = 1/(f(end)-f(1))*trapz(abs(eta)); 
                                     
            mat(count,1) = Dm; 
            mat(count,2) = L1; 
            mat(count,3) = L2; 
            mat(count,4) = I; 
             
            count = count + 1; 
        end 
    end 
end 
  
clearvars -except mat Dt 
  
[cost,loc] = min(mat(:,4)); 
  
Dm = mat(loc,1); 
L1 = mat(loc,2); 
L2 = mat(loc,3); 
I  = mat(loc,4) 
  
disp(['Dt_opt = ',num2str(Dt/0.0254)]) 
disp(['Dm_opt = ',num2str(Dm/0.0254)]) 
disp(['L_horn_opt = ',num2str(L1/0.0254)]) 
disp(['L_term_opt = ',num2str(L2/0.0254)]) 
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function F = Morse(X) 
  
    global c rho r_0 zw k index 
     
    % Create complex value from real and imaginary parts 
    x = X(1, :) + 1i*X(2, :); 
     
    % Evaluate complex function 
    constant = rho*c*k(index)*r_0; 
    fun = x*besselj(1,x)./besselj(0,x) - 1i*constant./zw(index); 
     
    % Separate real and imaginary parts 
    F = [real(fun); imag(fun)]; 
 
 
function [kx] = besselroots(Q,r_0,k,f) 
  
% 4th order polynomial to approximate the complex roots of the 
% characteristic equation.  See Mechel "Formulas of Acoustic" p.562-563 
  
for n = 1:length(f) 
    kr(n,:) = (1/r_0)*roots([-(12+1i*Q(n)) 0 24*(8+3*1i*Q(n)) 0 -
384*1i*Q(n)]); 
    kx1     = sqrt(k(n)^2 - kr(n,1)^2); 
    kx2     = sqrt(k(n)^2 - kr(n,2)^2); 
    kx3     = sqrt(k(n)^2 - kr(n,3)^2); 
    kx4     = sqrt(k(n)^2 - kr(n,4)^2); 
    kxmat   = [kx1 kx2 kx3 kx4]; 
    [~,I]   = max(imag(kxmat),[],2); 
    kx(n)   = kxmat(I); 
end 
 
function m = flare_catenoid(x,d2,d1) 
  
% FLARE_CATENOID computes the flare constant of a catenoid 
  
%   Inputs 
%   x  :  horn length 
%   d2 :  mouth diameter 
%   d1 :  throat diameter 
  
%   Output 
%   m  :  flare constant 
  
m = (1/x)*acosh(d2/d1); 
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function y = H1(x) 
 
% verified with Handbook of Mathematical Functions: Abramowitz, Stegun 
% defines 1st order Struve function 
% From Aarts, Janssen: Approximation of the Struve function H1  
% occurring in impedance calculations - JASA May 2003 
  
y = (2/pi)-besselj(0,x)+((16/pi)-5)*sin(x)./(x)... 
    +(12-(36/pi))*(1-cos(x))./(x.^2); 
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Appendix B 
 

Derivation of Acoustic Pressure in Cylindrical Coordinates
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The acoustic pressure 𝑝(𝑟,𝜃, 𝑥, 𝑡)  at any point and time in a cylinder, 

shown in Figure B.1 is described by the 3-dimensional wave equation [11], 

 where 𝑐 is the speed of sound in air.  The Laplace operator, ∇2, is defined in 

cylindrical coordinates as 

 

 
Figure B.1 Acoustic pressure at a point in a cylinder 
expressed in cylindrical coordinates 

 
Assume the time harmonic solution to Eq. (B.1) is of the form 

where Ρ(𝑟, 𝜃, 𝑥) is the acoustic pressure amplitude and 𝜔 = 2𝜋𝑓  is the angular 

frequency.  Equation (B.3) is assumed separable such that 

∇2𝑝 =
1
𝑐2

 
𝜕2𝑝
𝜕𝑡2

  (B.1) 

∇2=
1
𝑟
𝜕
𝜕𝑟
�𝑟

𝜕
𝜕𝑟
� +

1
𝑟2

𝜕2

𝜕𝜃2
+

𝜕2

𝜕𝑥2
   . (B.2) 

𝑝(𝑟,𝜃, 𝑥, 𝑡) = Ρ(𝑟,𝜃, 𝑥)𝑒𝑗𝜔𝑡  , (B.3) 

Ρ(𝑟,𝜃, 𝑥) = 𝑅(𝑟)Θ(𝜃)Χ(𝑥)   , (B.4) 
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where 𝑅, Θ, and Χ  represent the functions for acoustic pressure, dependent on 

their respective coordinates.  Inserting Eq. (B.3) with Eq. (B.4) into Eq. (B.1) and 

rearranging yields, 

 
where 𝑘 = 𝜔

𝑐
.  The left side is a function of 𝑟 and 𝑥, and the right side a function 

of 𝜃.  The right side is a constant since the equation must hold for all 𝑟,𝜃, and 𝑥.  

Therefore, let 

so that Eq. (B.5) becomes 

The radial and axial wavenumbers are related by 

The constant 𝑞  must be an integer, since the pressure function Θ(𝜃)  must be 

continuous after an azimuthal rotation of 2π.  Again, Eq. (B.7) must be true for 

all 𝑟 and 𝑥.  It follows that 

since the 4th term in Eq. (B.7) is dependent on both 𝑟 and 𝑥.  Furthermore, 

𝑟2

𝑅
𝜕2𝑅
𝜕𝑟2

+
𝑟
𝑅
𝜕𝑅
𝜕𝑟

+
𝑟2

Χ
𝜕2Χ
𝜕𝑥2

+ 𝑘2𝑟2 = −
1
Θ
𝜕2Θ
𝜕𝜃2

 (B.5) 

−
1
Θ
𝜕2Θ
𝜕𝜃2

= 𝑞2   ,  (B.6) 

𝑟2

𝑅
𝜕2𝑅
𝜕𝑟2

+
𝑟
𝑅
𝜕𝑅
𝜕𝑟

+ 𝑘𝑟2𝑟2 + 𝑟2 �
1
Χ

 
𝜕2Χ
𝜕𝑥2

+ 𝑘𝑥2� = 𝑞2   . (B.7) 

𝑘2 = 𝑘𝑟2 + 𝑘𝑥2   .  (B.8) 

1
Χ

 
𝜕2Χ
𝜕𝑥2

+ 𝑘𝑥2 = 0   , (B.9) 

𝑟2

𝑅
𝜕2𝑅
𝜕𝑟2

+
𝑟
𝑅
𝜕𝑅
𝜕𝑟

+ 𝑘𝑟2𝑟2 = 𝑞2  . (B.10) 
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Equation (B.10) rewritten as 

is recognized as Bessel’s equation of order 𝑞.  Equations (B.6), (B.9), and (B.11) 

are the separated equations implied by Eq. (B.4).  Their respective general 

solutions are 

 

 

where A, B, C, D, E, and F are complex constants.  In Eq. (B.12), let 𝐶 = 0 since 

only one term is needed to describe wave propagation around the azimuth.  Both 

terms are needed in Eq. (B.13) to describe incident and reflected waves axially 

through the termination.  In Eq. (B.14), 𝐽𝑞 and Υ𝑞 are Bessel functions of the first 

and second kind with order q and argument 𝑘𝑟𝑟.  For 𝑟 = 0, Υ𝑞( 𝑘𝑟𝑟) goes to 

negative infinity.  Therefore, 𝐹 = 0 since the acoustic pressure on the x-axis must 

be finite.  The acoustic pressure for a normal mode of the cylindrical cavity is 

therefore, 

where the complex constants D and E have been absorbed in A and B.

𝑟2
𝜕2𝑅
𝜕𝑟2

+ 𝑟
𝜕𝑅
𝜕𝑟

+ (𝑘𝑟2𝑟2 − 𝑞2)𝑅 = 0  (B.11) 

Θ(𝜃) = 𝐶𝑒−𝑗𝑞𝜃 + 𝐷𝑒𝑗𝑞𝜃   ,  (B.12) 

Χ(𝑥) = 𝐴𝑒−𝑗𝑘𝑥 𝑥 + 𝐵𝑒𝑗𝑘𝑥 𝑥    , (B.13) 

𝑅(𝑟) = 𝐸 𝐽𝑞( 𝑘𝑟𝑟) + 𝐹 Υ𝑞( 𝑘𝑟𝑟)   . (B.14) 

𝑝(𝑟,𝜃, 𝑥, 𝑡) = 𝐽𝑞( 𝑘𝑟𝑟) 𝑒𝑗𝑞𝜃�𝐴𝑒−𝑗𝑘𝑥 𝑥 + 𝐵𝑒𝑗𝑘𝑥 𝑥�𝑒𝑗𝜔𝑡   ,  (B.15) 
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Appendix C 

Polyester Fiber Specifications
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Appendix D 
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Appendix E 
 

Impedance Data for Polyester Fiber
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The normal specific acoustic impedance ratio of a sample of polyester 

fiber used in the prototype was experimentally measured and compared to the 

empirical predictions of Garai [36].  The measurements were conducted using a 

Bruel & Kjaer Type 4206 impedance tube and follow the method outlined in 

ASTM E1050-98 [38].  The impedance results are shown below. 

 
Figure 58 Normal specific acoustic impedance ratio.  Real component (---), 
imaginary component ( - - - ), and experimental data (+) 
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