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ABSTRACT

Bi-stable buckled MEMS (micro-electromechanical systems) diaphragms have a
myriad of uses in the MEMS field for their large out-of-plane deflections. Buckling is a
phenomenon brought upon by a compressive stress. Diaphragms are large aspect ratio,
circular structures similar to membranes, where the thickness of the diaphragm is much
smaller than its diameter. Diaphragms differ from membranes by the amount of bending
stiffness. Membranes have negligible bending stiffness and are a common structure
analyzed in mechanics of materials, whereas diaphragms have much larger stiffness.

Diaphragms were created in the cleanroom by thermally growing silicon dioxide
on a silicon wafer. A structural polyimide layer was added on top of the silicon dioxide.
The created diaphragms demonstrate bi-stability, meaning that they can be switched
either up or down using an applied pressure. After the pressure is removed the
diaphragms remain in their new respective states. The pressure required to switch the
membranes is known as the actuation or snap-through pressure, and is of primary interest.
The vertical displacement of the center of the diaphragms, known as the buckled height,
is also of interest. A finite element model of the diaphragm was created using ANSYSS.
This model was used to generate both actuation pressure and buckled height data. These
two data sources are compared extensively in an attempt to further understand the
behavior of the experimental system.

Buckled height data between experimental data and the finite element model were
found to match well. This information can be used in the production of micro-valves and
micro-actuators in the future. Actuation pressure found from the finite element model

follows the trend and closely models the values of experimental data for a range of



membranes. Other effects not accounted for in the finite element model probably

contribute to the difference between the two.
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I. INTRODUCTION

Micro-electro-mechanical systems (MEMS) are devices with dimensional length
scales on the order of a micron, or one-millionth of a meter. In many MEMS sensor
devices, electrical transducers are often used to relate minute, but measureable
deformations induced within MEMS structures by some external phenomena
(acceleration, force, pressure, etc.). These devices can be used for a multitude of
applications, including zero-power pressure sensors [1], large displacement actuators [2],
BIO-MEMS to measure pressures within a human body [3]. Remote pressure sensors that
can be read using light, such as a Bragg grating, allowing for many more applications in
harsher environments [4-6]. Diaphragms that operate in a large deflection regime,
involving the stability of buckled structures, offer many potential performance benefits,
but also present greater challenges in prediction of behavior. A fundamental
understanding of the mechanical behavior of the diaphragms, especially the influence of
fabrication parameters on the experimental repeatability, is critical for designing these
structures for practical MEMS applications.

The work presented herein, focuses on micro-scale diaphragms composed of a
combination of silicon dioxide (SiO,) and polyimide, supported and constrained by a
bulk silicon substrate. With this material system, compressive stresses naturally develop
in the oxide layer during the wafer oxidation procedure. If the magnitude of the residual
compressive stress is large enough, the diaphragm can enter a buckle mode upon release
from the substrate constraint (depending on the diaphragm dimensions). MEMS scale
diaphragms fabricated in the cleanroom are experimentally tested under pressurization,

and compared to ANSYS models simulating diaphragm behavior. The deviations in



mechanical behavior of the model and experimentally tested diaphragms are discussed

and correlated with experimental observations.
A. Background & Motivation

To facilitate pressure monitoring, many applications make use of a diaphragm that
separates a reference pressure from the applied pressure being measured. The pressure
differential across the diaphragm induces deformation of the structure, the magnitude of
which can then be related to the pressure loading given that the material properties are
known. Thus, accuracy in predicting the pressure-deflection relationship and a thorough
understanding of the mechanical behavior of diaphragm structures is critical for the
design of these systems. First, a brief review is presented of some simple diaphragm
geometries that have been analyzed previously by others. Part of the motivation of this
work is to help identify sources of deviations between diaphragm mechanical behavior
predicted by theory and simulations and the actual behavior found experimentally.

Timoshenko worked extensively with the theory of plates in shells in the early
20" century. His work is the basis for much of the current understanding of the behavior
of membranes and diaphragms. Theoretical modeling of a thin plate depends upon the
assumption of a shape function. The plate is assumed to be symmetric and clamped or
fixed at the wall. The plate is also assumed to be homogeneous. All further

mathematical modeling stems from these assumptions. The symmetric shape function is

r2\°
W =W, (1- ;) 1)



where w is the height out of plane; wy is the initial height of the center of the diaphragm

in a un-loaded, buckled state; r is the radial location from the center of the plate; and a is

the total radius of the plate [7]. These variables are shown graphically in Figure 1.

Figure 1. Assumed shape function from Timoshenko with variables noted.
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Figure 2. Deflection curves for 900um (a) and 300um (b) diameter diaphragms [8].



Equation (1) is then used to approximate the bending energy and the strain energy
of the diaphragm. Timoshenko showed that as wg increases the deflection is no longer
proportional to the load applied and the rigidity of the plate increases with deflection.
The vertical deflections of the 300um and 900um diaphragms shown in Figure 2 are
plotted against the theoretical shape function given by equation (1). The theoretical
model clearly matches well with the smaller diameter diaphragm. However, the larger
diameter does not match as well, except for the boundary and center of the membrane.
As pressure is applied to a larger membrane, a dimple can form, as in Figure 3. The
dimple forms prior to the actuation pressure being reached. This dimple affects the
potential energy stored within the membrane. The changes to the potential energy are not
modeled in theory. This irregular behavior is frequently modeled using finite element

analysis packages [7].
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Figure 3. Vertical deflection curve of 900um diameter membrane, comparison of theory,
pressurized and un-pressurized experimental data [8].



In addition to buckled height and shape, the pressure at which the membrane
switches from one buckled state to another, known as the actuation pressure, is derived
from the same energy equations and assumptions originally made by Timoshenko. The
actuation pressure of a diaphragm is a function of the deflection of the diaphragm and is
given by the Euler-Bernoulli equation

DV*w =p 2)

where D is the flexural rigidity, w is the out-of-plane of the center, and p is the applied
pressure. These two quantities, pressure and deflection, and how they compare to results
obtained from finite element modeling are the focus of this work [9].

Schomburg et al., [10], extended the theory into a more useable form. It has been
modified to include effective properties of a layered model. The out-of-plane

displacement of the middle of the diaphragm, w, is given by

1 112

wW,=+ = [-35 <3aeﬁ il R2+4d2> 3)
8 Eetr

where ot , verr ,and Ecss are the effective residual compressive stress, effective Poisson’s

ratio and effective Young’s modulus, respectively. R is the radius of the diaphragm and d

is its thickness. The height just before actuation, Wsnap, is given by

1 ? 1y 2 4
Wanap = £ 27 |-105 | 3R 0t > +4d 4)

When the argument of the radical becomes imaginary, buckling is theoretically not

possible at a ratio of radius to thickness



R 4 Ee
T 53 (5)
d 3 Ueff(l"’eff)
Finally, the actuation pressure, pact, to switch the membrane is given by
_ Wsnap d ﬂd_z Eeff I 6_4W§nap Eeff (6)
paCt R2 3 R2 l'ngf eff 105 R2 l'ngf

It is interesting to note that actuation pressure is independent of direction. Switching “up”
or “down” is denoted by the + in equations (3) and (4). The actuation similarly only
changes sign depending upon the switching mode [10,11].

Timoshenko [7] also considered the buckling of a square plate. The development
is similar to that of a circular plate. Ziebart, et al.[12], considered the mathematical
buckling of a micro-fabricated square diaphragm, supported by a rigid substrate
illustrated in Figure 4. They assumed in their model that the material of the diaphragm is

isotropic with a constant in-plane pre-stress, 6,, and is homogeneous.

Figure 4. Cross-section illustration of a square, buckled diaphragm [12].



The isotropic etching process of the diaphragm can be clearly seen as the
trapezoidal support structure under the diaphragm. The axes are defined on the neutral
plane in the center of the diaphragm. They utilized an energy minimization method to

calculate the shapes of the diaphragms. Figure 5 shows some of the experimentally

determined higher-order buckling shapes.

Figure 5. Buckled square diaphragms of different dimensions (side lengths: left
1425um, right 1980pum). 1.0pm thick silicon nitride compressed with a stress of 61MPa
[12].

The authors used a homogenous 1um thick silicon nitride with a compressive
stress of 61MPa and varied the length of the diaphragm to induce different buckling
shapes. The larger diaphragms behave with high-order buckling modes as seen in Figure
5. The diaphragms for the work presented here are not completely homogenous, since
polyimide is deposited onto silicon dioxide [12].

The authors then conducted a finite element analysis (FEA) of their diaphragms
using ANSYS with an element type of Shell 63. Similar to the process used in this work,

they simulated the pre-stress of the diaphragm using a thermal load [12]. Because other



thermal effects are not considered throughout the rest of the experiments, an actual
coefficient of thermal expansion is not required, and a temperature that results in the
measured pre-stress is sufficient. They loaded their FEA model similarly to the
procedure in this work as well to find the first buckling shape. A small pressure was
applied to the diaphragm; the thermal loads were then slowly applied; and finally the
pressure was slowly removed. This roundabout process bypasses numerical instability in
the FEA model [12]. The process in this work follows a similar path and is elaborated in
the procedure section. The authors did note that the discontinuous shape function
derivatives in the FEA model may lead to error. Figure 6 shows the finite element
solution of the buckled profile of the diaphragm plotted against the normalized side
length of the diaphragm. As the size of the diaphragm is increased, the degree or severity
of buckling increases resulting in a larger center deflection (vertical axis of the graph).
The smaller diaphragms show a uniform, parabolic buckled shape for a small value of w,
higher-order modes are seen as the diaphragms get larger [12].

They note that the boundary conditions of the fabricated devices may account for
the discrepancies in the profiles, which become more pronounced at the edges. Micro-
fabrication processes can result in undercutting of a feature. Fabrication variations result
in irregular boundary conditions. Similar to the work presented here, Ziebert et al. used
a compressive stress of about 61MPa to cause buckling in diaphragms of approximately

the same size used in this work [12].



Figure 6. Finite element simulation of the buckled profile along the diagonal, symmetry
about the middle. The horizontal axis is the normalized side length of the square
diaphragm. Each line represents a different size diaphragm. As the diaphragm size
increases, higher order buckling modes are seen [12].

In-plane strain piezoelectric properties of lead zirconate titanate (PZT) are of
interest for the actuation of membranes without the use of pressure. This was the case
studied by Ayela et al. [13]. They conducted a study on a circular diaphragm with a
protrusion in the middle of the diaphragm to determine these properties of PZT. Figure 7
is their finite element model of the diaphragm in CoventorWare, a micro-fabrication
process simulation and bundled FEA software package. Their goal was to determine the
piezoelectric properties of materials by causing the diaphragm to buckle, which occurs

when the radial compressive stress is greater than the critical radial force. The critical

radial force for buckling, Ncr, was determined with



D
N, = kR_§ (7)

where Kk is constant dependent upon the relationship of the two radii, D is the equivalent
stiffness, and R, is the outer radius of the diaphragm. Similar to the work done by
Ziebert, et al. [12], Ayela, et al., assumed that each layer is transversely isotropic and a
constant thickness, that the plate experiences only plane stress normal to z, and that the
material is linearly elastic. They observed close results between their analytical model
(which extended Timoshenko’s and Krieger’s work, Theory of Plates and Shells [7]), and
a finite element model. However, best results were observed when the radius of the

protrusion was less than or equal to 70% of the radius of the whole diaphragm [13].

ANALYTICAL

- Displacement Mag. (um) 0 051 1 15

Figure 7. Comparison between analytical and finite element model of Ayela et al [13].
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Ultimately they focused on having the radius of the protrusion fixed at 75um and
the outer radius of the diaphragm fixed at 200um. By adjusting the thickness of the
silicon diaphragm the amount of deflection calculated is shown in Figure 8. The study
focused on creating an analytical model of a multi-layer device, and was able to report
good agreement between their analytical and finite element models as shown in Figure 9
[13]. The x-axis of the figure is the ratio of R1/R2 or the relationship between the radius
of the protrusion and that of the diaphragm. The y-axis is the amount of deflection of the
diaphragm [13].

E‘ﬂs

%3 J
) /
, /

1.6 1.6 1.7 1.8 1.4
Sikcon thickness (um)

Figure 8. Silicon diaphragm thickness versus calculated deflection of the diaphragm out
of the plane [13].
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Figure 9: Comparison of analytical and finite element data [13].

Although the work presented by Ayela et al. is mostly concerned with the
deflection of the diaphragm and not as much with the actuation pressure, it does offer
some insights into the behavior of multi-layer diaphragm systems. Additionally the
presence of the protrusion complicates the model in comparison to the work done in this
paper. Therefore, high resolution measurements of diaphragm displacement can be
translated into accurate actuation pressure estimation.

Gowrishetty et al. [14], worked extensively at the University of Louisville in the
fabrication and testing of circular bi-stable buckled membranes. Silicon dioxide was
grown on a (100) silicon wafer using wet oxidation until a thickness of 400nm was
achieved. The diaphragm windows were etched from the backside, leaving only a thin
silicon dioxide diaphragm. Polyimide PI-2610 was then spun onto the top surface of the
diaphragms. Only 300um diaphragms were fabricated, an image of one is shown in

Figure 10. These parameters led to a bi-stable device that would buckle either up or

12



down. The authors observed a buckled height of about 7.6um for both up and down. The
authors assumed that the stress from the polyimide layer had a negligible effect on the
device. They confirmed this assumption by noticing that the diaphragms did not favor a
buckling state, but appeared to be random. Random buckling indicates the buckling
follows the traditional mechanics of materials buckling of a homogeneous beam. An
analytical model developed by Schomburg et al. [10] predicted an actuation pressure of
60kPa, where the authors only observed an actuation pressure of 41kPa. They concluded
that the discrepancies were most likely due to variations in the fabrication of the devices

[14].

Figure 10: 300um diameter diaphragm from Gowrishetty et al. [14].
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II. PROCEDURE
A. Fabrication

The micro-fabricated diaphragm devices were produced on substrates of <100>
oriented silicon wafers with an approximate thickness of 300um. The initial (bare) wafer
curvature was measured and recorded on a ToHo FLX-2320-S Film Stress Measurement
System. Silicon dioxide was then grown thermally to a thickness of 450nm by wet
oxidation in an oven at 1000°C for about one hour. The wafer curvature was re-measured
using the same system and by Stoney’s equation the residual compressive stress was

determined. Stoney’s equation is given by [15],

2
e R R) ©
where o is the residual stress; Es is the Young’s modulous, ts is the thickness, and vs is the
Poisson’s ratio of the substrate respectively; t; is the thickness of the of the film; R, is the
radius of curvature of the bare silicon wafer; and R is the radius of curvature of the wafer
with the film. This equation is valid for t; << t;. The thickness of the silicon dioxide is
0.4pum compared to the thickness of the silicon wafer of 300um; therefore this equation is
valid. From equation (8) and the measured change in curvature, the residual stress in the
SiO; film is 300MPa. PI-2611 polyimide from HD Microsystems was spun onto the
wafers and cured to a thickness of 3.8um after 7 hours in a Yield Engineering Systems
high temperature oven. Photoresist was spun onto the backside of the wafer and the

diaphragm design was patterned onto the back. Next, the wafer was placed in buffered

14



oxide etch (BOE) to remove the exposed SiO,. Finally, the wafer was placed in an STS
MESC Multiplex ICP to etch, by deep reactive ion etching (DRIE), through the silicon
substrate up to the diaphragm SiO; layer. The DRIE process is also used to separate each

die from the wafer [11].
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Figure 11. L-Edit mask layout for the 100mm diameter wafer.

The wafer layout that was used to create the diaphragms is in Figure 11. Each die
is represented by the small rectangles. The numbers within the die are the sizes of the

diaphragms on the die in microns. The large red circle is a representation of the wafer.
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The two dies with plus signs are used for alignment purposes. The large black cross in
the middle is a center mark and was not a part of the mask. The four arrays above the
center mark have a close spacing and will be referred to as “close arrays”, and correspond
to array 1 and array A and were tested extensively. These arrays mimic the dimensions
used by Porter et al [11]. Dies B, C, and D, which were also tested, were located further

from the center of the array.

B. Pressure Testing

The initial buckled heights of the diaphragms were measured in the clean room
using a Veeco Dektak 8M profilometer. The tip of the profilometer traveled the entire
diameter of each diaphragm while using the smallest possible force of 6.9uN. Actuation
pressure testing of array 1 using the old test fixture from Gowrishetty et al. can be seen

in Figure 12.

Tested Die

Old Test
Fixture [11]

Figure 12. Array mounted in old test fixture with pressure sensor connected. Test fixture
from [11].

16



Pressure is applied to the array using a barbed fitting and soft PVC tubing.

Kapton tape is used to seal the die to the test fixture. The use of tape can damage the die

if the tape is not removed carefully. Secondly, only the vacuum pressure switching mode

is feasible, since the vacuum pressure reinforces the seal of the tape. Positive pressure

applied to the fixture will cause the tape to release. A Honeywell 26PCCFH6G +15 psig

pressure transducer is mounted to the cavity below the array to measure the applied

pressure. The pressure sensor is connected in a full a National Instruments (SCC-SG24)

Wheatstone bridge module mounted in a National Instruments (NI SCC-68) module that

is connected to a National Instruments NI M-Series Multifunction DAQ (NI PXI1-6220)

data acquisition card in a National Instruments (NI PXI1-1033) PC module. Figure 13

illustrates the data acquisition system and test process schematic.

-6272 -
NI PX1-1033 NLPXI-6220 NI SCC-68 NI SCC-SG24 Honeywell
e ¢ PC Module [€ bl Module  [€ Wheatstone Bridge [€ ZERBOE LS
DAQ & Pressure Transducer
F 3
. Va ~,
4i R }47 Microscope &«—— Sample ) » Test Fixture
Camera . J
\ / AMVEX
\  Vacuum |
\op — Vacuum Pressure
\ fessure / Regulator
\ /

Figure 13. Test process schematic.

As the test process schematic shows, a sample is placed in the test fixture that has

regulated vacuum pressure applied and is monitored by a data acquisition system. The

microscope directly views the sample and the image is recorded via the microscope

17



camera. Figure 14 shows the Wheatstone bridge and NI SCC-68 module that were used.
Regulated vacuum pressure was applied to the bottom of the die in the fixture. An
AMVEX Corp. medical vacuum pressure regulator was used to modulate the applied
pressure. A LabView program was written to overlay the pressure data onto the image
from the microscope that can be seen in Figure 12. Images were continuously recorded
as the vacuum pressure was slowly increased. The images were captured with a
frequency of about 1.2Hz. Figure 15 shows two consecutive images captured during a
test. The bottom right diaphragm in Figure 15 is 700um in diameter. The image clearly
shows that the diaphragm switched from the “down” to the “up” state. Each switch was

experimentally determined using this two-image technique.

Figure 14. Wheatstone bridge and National Instruments module.
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Figure 15. Consecutive images showing 700um diameter diaphragm before switch (left)
and after (right) viewed from the bottom of the die.

A new test fixture was developed and was created in the rapid prototyping lab at
the University of Louisville. The solid model is shown in Figure 16. The green rectangle
in the middle of the test fixture is a representation of a die. O-rings are mounted in the
top and bottom portions of the fixture. The O-ring groove is illustrated in Figure 17. A
similar groove is also on the underside of the top portion of the test fixture. The die is
supported between two O-rings for a uniform seal on the die. Bolts are put through the
holes and nuts are hand-tightened down to apply pressure to the O-rings to create the seal
on the sealing surface. The hole on the side of the fixture is threaded for the Honeywell
pressure transducer. Finally, the barb on the front face of the test fixture is fitted to the
PVC pressure line used in testing. This barb opens onto the cavity under the die. By
utilizing the barbed fitting the test fixtures were interchangeable within the set-up. The

actual test fixture is shown in Figure 18.
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Figure 16. New test fixture solid model.

Figure 17. Bottom section of the new test fixture.

20



Honeywell
Pressure ——
Transducer

- - e

Tested Die

a) b)

Figure 18. New test fixture with component callouts: (a) bottom section, (b) assembled
fixture.

The bolts compress the two O-rings around the die and seal to the cavity under the
die. This cavity connects directly to the pressure transducer and the barbed fitting for the
pressure source. The design used here is suitable for both vacuum pressure and positive

pressure switching.
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C. ANSYS Simulation

ANSYS 14.0 was used as the finite element modeling software. An axisymmetric
model of shell 209 elements was used. A parameterized script file was generated to run
each diaphragm diameter the same. Figure 19 shows the element plot of the right end

with all degrees of freedom (DOF) fixed.

ELEMENTS
MAT NUM

Figure 19. Element plot showing boundary conditions at right end.

The purple material in Figure 19 is the polyimide and the blue material is the silicon
dioxide. The two triangles at the right indicate that both axial and vertical displacements
are zero. The orange symbol at the intersection of the triangles indicates that in-plane
rotations are also zero. The left end, located at the origin, is similarly constrained except
it can move vertically. The representative complete element plot is shown in Figure 20,

each diaphragm size was modeled using 100 elements and is constrained the same way.
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Figure 20. Element plot of axisymmetric shell model. Left keypoint constrained to not
move horizontally or rotate about z. Right keypoint constrained in all directions.

The left end is constrained to not move in the x-direction or rotate about the z-axis.
These boundary conditions equate to symmetry about the y-z plane. A quarter symmetry
expansion of the model is shown in Figure 21. The various colors on the contour of the
diaphragm represent displacements in the y-direction. Red is the largest positive
displacement and is at the center of the buckled up diaphragm in Figure 21 (a). For the

buckled down case, the largest positive displacement are at the wall, shown in (b).
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a) b)

Figure 21. Quarter symmetry expansion of Axisymmetric Shell209 model of 0.4pm
SiO; and 3.8um Polyimide layer, showing buckled up state (a) and buckled down (b).

The properties for the silicon dioxide and polyimide layers were determined from
the literature. Silicon dioxide was assumed to have a Young’s modulus of 73GPa and
Poisson’s ratio of 0.17. The polyimide was assumed to have a Young’s modulus of 8GPa
and Poisson’s ratio of 0.20 [16]. The thickness of the silicon dioxide was found to be
400nm with a compressive stress of 300MPa. The polyimide was spun on at a thickness
of 3.8um. Other thickness of polyimide were tested, 2.5um and 4.5um with a
compressive stress of 320MPa. These alternate designs were produced by Gowrishetty et
al. [8]. The stress in the polyimide layer was tested by changes in wafer curvature and
equation (8), and was consistently found to be negligible, since the fabricated diaphragms
were randomly buckled. The assumptions for the polyimide were confirmed by

Gowrishetty et al. [8,14].
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The compressive stress measured in the silicon dioxide layer is applied to the
model as a temperature load. This methodology is well established in literature and
mimics the compressive stress [12]. A section of silicon dioxide is modeled in ANSYS
with Planel83 elements, mapped meshing, and is fully constrained, and axisymmetric.
An element plot showing the boundary conditions of the thermal model is shown in
Figure 22. A coefficient of thermal expansion is assigned to the material, in this case
4x10° m/m°C. The temperature is then ramped over a large range and the stress in the
material is plotted using the Time History Post Processor in ANSY'S. Figure 23 shows the
graph of stress in the diaphragm section versus temperature. An applied temperature of
851°C results in a compressive stress of 300MPa.

Next, a complex series of load steps are applied. Figure 24 is a representative plot
of the applied pressure versus the center displacement of the diaphragm, for the buckling
down case. The first load step applies a small perturbation pressure to favor one buckled
state. Then a temperature is applied to simulate the compressive stress in the SiO, layer.
The third load step slowly removes the perturbation pressure and the first buckled state is
achieved with no pressure load applied. The diaphragm is in a stable buckled state with
the center of the membrane deflected up, or the initial buckled height, wp. This condition
represents the “as-released” state the diaphragms adopt following the completion of the
micro-machining process. The fourth load step then ramps the applied pressure up to just
before the diaphragm switches. The pressure is then increased very slowly over the
actuation point and a little beyond in the fifth load step. The actuation pressure is

obtained from looking at the resulting displacement graph such as Figure 24. Finally the
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pressure is completely removed slowly and the second buckled state is achieved with no

pressure load applied.

Figure 22. Element plot showing boundary conditions for thermal analysis of stress.
Single layer of dioxide 0.4um thick, 20pum long, axisymmetric.
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0 200 400 600 800 1000 1200 1400
Applied Temperature (°C)

Figure 23. Stress versus temperature plot of ANSYS Plane 183 simulation.
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Figure 24. Representative ANSY'S simulation loading plot, 600um diameter diaphragm,
buckling down.

The state of the diaphragm following the sixth load step is similar to its condition
after the third load step. The new buckled state translates to the physical state of being
buckled down, which is represented as a negative deflection in Figure 24. This same
condition is reached experimentally by applying vacuum pressure to a diaphragm that is
switched up, when the pressure is large enough to cause buckling, the diaphragm moves
or snaps into its new state. Buckling up is achieved in a very similar process, except the
perturbation pressure is positive, resulting in a negative displacement after load step

three. Following load step six, the displacement is positive for the buckled up case.

27



I1l.  RESULTS

A. Experimental Pressure Testing Results

Upon successful device fabrication, the majority of the produced diaphragms
were found to demonstrate bi-stable buckling, switching between stable states under
applied pressures as expected. Figure 25 is an image of the released dies after

manufacture.

Figure 25. Released dies after manufacture — array 1 highlighted.
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Array 1 (highlighted) clearly shows the successful production of a close patterned
array. Array 1 was tested using the test fixture from Gowrishetty et al. shown in Figure
12. All of the other dies were tested using a newly designed test fixture which can be
seen in Figure 16. The other dies are all present as well, although they are not yet
labeled. The image was taken shortly after fabrication and the subsequent test specimens
had not been identified specifically. Several of the manufactured dies were tested using
the test fixture and methodology described above. Table 1 lists the tested dies and their
descriptions. Dies B through D were fabricated to test the sensitivity of spacing
diaphragms closely. The arrays fabricated by Porter et al., [11], had been closely spaced.
Dies B through D were fabricated with similar diaphragm sizes, but with large spaces
between the diaphragms. Die E was fabricated to test how a larger aspect ratio affected
the buckling performance. Refer to Figure 11 for graphical representations of the dies
listed in Table 1. The diaphragms were switched up and down using vacuum pressure;

this is illustrated in Figure 26.

Table 1. Description of tested dies

Die Name Description
Array 1 Array of closely spaced diaphragms (20-900um diameters)
Array A Array of closely spaced diaphragms (20-900um diameters)
Die B Only 600um and 225um diaphragms
Die C Only 650um and 375um diaphragms
Die D Only 700um and 250um diaphragms
Die E Only 1750um and 1500um diaphragms
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Figure 26. Graphical representation of switching modes.

Switching from the “up” state to the “down” state is called switching or buckling
down and vice versa. The silicon beneath the smallest diameter diaphragms was not
completely etched all the way through, resulting in the smallest diaphragms being
unreleased. This effect can be seen in Figure 27. The highlighted diaphragms are much
darker than the larger ones indicating that little to no light is allowed through. This
indicates that the silicon was not completely etched. The topside of the array 1 is shown
in Figure 28, which confirms the incomplete etching of the diaphragms. The dotted red
circles show the region where the smallest diaphragms would appear if the etch had
completely removed the silicon. No diaphragms with a diameter smaller than 200pum
were ever etched successfully. Based upon the trends observed in the switching
performance of the successful dies, the diaphragms with a diameter smaller than 200um
would not have been bi-stable. Therefore the arrays were not re-manufactured in the

clean room.
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Figure 27. Backside of array 1 showing loss of smallest diaphragms (highlighted).

Approximate
location of 100um

Approximate
10cation of 80um

Figure 28. Topside of array 1, smallest diaphragms are not visible.
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The vacuum pressure testing results for array 1 are plotted in Figure 29. The
switching data trends downwards as the diaphragm size increases. This trend is mirrored
in Figure 30, the switching pressures of array A. Both arrays behaved similarly. The
switching pressure for the large diameter diaphragms was directionally independent as
theory predicts. However, as the diameter decreases in size the actuation pressure
becomes increasingly more dependent upon direction. The difference between array 1
and array A is the location on the wafer. The two share the dimensions and stress and
show repeatability in device fabrication. The theoretical model is completely
directionally independent and predicts the same actuation pressure regardless of
direction, equation (6). Theory also predicts from equation (5) that the smallest diameter
diaphragm that can switch from this configuration is 220um. Fabricated diaphragms with
a diameter 250um or smaller would switch down, but they did not demonstrate bi-
stability, they switched back up before all vacuum pressure was removed. The 200um
diaphragm on array A behaved this way, therefore only “down” data is available. This
shows that the transition point of bi-stability was reached with these arrays. The data
points represented here are averages across several runs of switching the diaphragms

either up or down. The standard deviation in kPa is given for each of these graphs.
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Figure 29. Array 1 experimental switching pressures. 300MPa compressive stress.
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Figure 30. Array A experimental switching pressures. 300MPa compressive stress.

Polyimide 3.8um / SiO0; 0.4um.

33



80 +Die B Up
WDie B Down
70 ¢ Die C Up
mDie C Down
60 ) Die D Up
— Die D Down
g 50
S
L 40 L
>
7
L 30
o
20
0 ..
1
¢ N L 2
0 .

0 100 200 300 400 500 600 700 800
Diaphragm diameter (um)

Figure 31. Experimental data from Dies B (600um & 225um), C (650pum & 375um) and
D (700um and 250um). 300MPa compressive stress. Polyimide 3.8um / SiO; 0.4pm.

Figure 31 is a graph of the pressure switching data for dies B, C and D. As with
the arrays, the dies with only two diaphragms behave in the same fashion; the smaller
diaphragms actuate at a larger vacuum pressure and the up mode does so at a lower value
than the down mode, see Figure 36 and Figure 37 for a direct comparison. Diaphragms
with a diameter of 250um or smaller were initially buckled up when they were
manufactured. However, these diaphragms were not bi-stable and buckled back up while
there was still vacuum pressure applied. Switching up data for these small diaphragms is
therefore not available. The standard deviation for these three dies is not plotted because
all values were near zero and overlapped, their values are given in Table 2 for

completeness.
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Each die and array were tested several times and the pressure data results were
averaged. Figure 32 shows the data points of the switching pressure of a 500um diameter
diaphragm from array 1. The run number corresponds to the number of the test. The
testing method captures a picture before and after actuation. The pressures from these
two pictures are reported here with the corresponding average. At least 3 tests or runs
were performed on each diaphragm for each die. Frequently more runs were performed,
this is reflected in Figure 32 with multiple run numbers. The runs are averaged together
and the result is plotted in the actuation pressure plots. Similar plots could be generated
for each diaphragm, but are only reported as averages, since the data is fairly consistent

between runs.
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Figure 32. Complete actuation data for a 500um diameter diaphragm from array 1
showing repeatability between successive runs. 300MPa compressive stress. Polyimide
3.8um / SiO, 0.4pm..
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Table 2. Standard deviation of dies b, ¢, and d used in experimental testing.

Diaphragm
Die size(um) Down Up

B 600 0.409 0.413
225 0.912 -

C 650 0.146 0.550
375 0.477 0.473

D 700 0.540 1.278
250 1.033 -

B. ANSYS Modeling Results

The ANSYS data was gathered from plotting the applied pressure versus the
displacement of the center of the diaphragm similar to Figure 24. The buckled heights of
the diaphragms and the actuation pressures were determined from the data that generated
the plots. The larger diaphragms were very unstable and would not always buckle
sharply, as the 600um diaphragm did in Figure 24. The inherent instability of a large
diaphragm, 1500um, is illustrated in Figure 33. The diaphragm center, shown in Figure
33, starts at the left most end of the blue line, near (0,0). A small perturbation pressure of
1000 psi is applied slowly for a displacement of about 10um. Compressive stress is then
simulated using a temperature which ramps until the compressive stress is reached. The
perturbation pressure is then removed, and the diaphragm reaches its stable buckled
height of about 35um. Finally, a positive pressure is applied and ANSY'S calculates the
new displacement using a modified Newton-Raphson technique. The pressure is ramped
to a preset value, in this case 3.3kPa. The pressure is then removed and ANSY'S uses the

same technique to find the displacement. Figure 33 clearly shows the instability inherent
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in such a large diaphragm. The diaphragm in this case did not snap-through or actuate.
A large pressure must be applied to achieve actuation. ANSYS is seeking the lowest
potential energy in the membrane and is using a modified Newton-Raphson technique to
find the lowest energy. Figure 33 is an illustration of this search for the lowest energy.
As more pressure is applied the solver finds the lowest energy by switching the

membrane into the down configuration, negative displacement.
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Figure 33. Buckling analysis illustrating inherent instability of a 1500um diameter
diaphragm. 300MPa compressive stress. Polyimide 3.8um / SiO; 0.4pum. (Vertical axis
is pressure in Pascals. Horizontal axis is the displacement of the center of the diaphragm

in meters.)
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Figure 34. Successful actuation of diaphragm, 400 diameter. 300MPa compressive
stress. Polyimide 3.8pum / SiO; 0.4pm.

The case is rerun in ANSYS until actuation does occur. This same process is
followed for each diaphragm size until the resulting graph resembles Figure 34, a
successful actuation. The point of actuation is clear in this case. If the applied pressure is
sufficient to cause actuation and does stop at the actuation point, all resulting graphs
show clear actuation. Some larger diameter diaphragms have a more pronounced slope
before actuation. This behavior is due to a dimple forming. Additionally, the smaller
diameter diaphragms are much more stable and behave more linearly, and as theory
predicts, refer to Figure 2. The steps as those used to generate Figure 33 were applied in
the generation of Figure 34 as well. From the data points used to create these graphs,
actuation pressure and buckled heights were gathered. Figure 35 presents the ANSYS

actuation pressure data with actuation pressure data from array A.
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Figure 35. ANSYS FEA data and Array A experimental data. 300MPa compressive
stress. Polyimide 3.8um / SiO; 0.4pum.

The ANSYS data follows the same trends as seen in the experimental data for the
larger diaphragms. However, the data do not agree for the smaller diaphragms. The
discrepancy is likely from un-modeled boundary conditions that become more
pronounced as the diaphragms get smaller. Figure 36 plots all of the switching down data

for the various dies except for die E and compares them to the ANSY'S data.
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Figure 36. Experimental and ANSY'S switching down data for tested dies and arrays.
300MPa compressive stress. Polyimide 3.8um / SiO; 0.4pum.

There is good agreement among all of the experimental data and variations are
likely due to manufacturing processes. The minor differences between arrays 1 and A
could come from the different fixtures used for testing. The largest variations are among
the smallest diameter diaphragms which are most susceptible to variations in the DRIE
process. Figure 37 is a similar plot to Figure 36, but for switching up data. Dies B and C
both show very low data points in Figure 37, this is likely due to delamination or another
directionally dependent effect. The ANSYS model consistently over-predicts the
actuation pressure to switch the diaphragms up. Die E contains two very large
diaphragms that were tested using the same processes; the switching data is presented in

Figure 38.
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Figure 37. ANSYS and experimental switching up data for tested dies and arrays.
300MPa compressive stress. Polyimide 3.8um / SiO; 0.4pm.
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Figure 38. Die E experimental and ANSYS switching data. 300MPa compressive stress.

Polyimide 3.8um / Si0; 0.4um.

41



The data in Figure 38 follow the same trends the other switching data do. The ANSYS
model over-predicts the switching pressure, and the experimental up and down data agree
for these very large diaphragms.

In addition to actuation or switching pressure, initially buckled heights were
measured and can be predicted using ANSYS. Figure 39 graphs the measured buckled

heights for the various dies and the ANSYS data.
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Figure 39. Buckled height comparison between ANSY'S and experimental data.
300MPa compressive stress. Polyimide 3.8um / SiO; 0.4pum.

The data in Figure 39 clearly shows excellent agreement between ANSY'S modeling and
experimental data. The slight variations are likely due to manufacturing processes.
Buckled height is also not as sensitive to boundary conditions as actuation pressures,
since the smallest diaphragms are also in good agreement. Table 3 presents the buckled

height data from die E in microns.
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Table 3. Buckled Heights of Die E

Diaphragm size (um) | 1500 | 1750
ANSYS 33.72 | 38.03
Experimental 37.76 | 45.28

The buckled heights for die E (1500um and 1750um) are also in good agreement as they
are in Figure 39. These values for die E were not plotted with others because the

diaphragm sizes are much larger and the graph loses some of its detail.
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IV. DISCUSSION
There are several possible reasons for the discrepancies between the ANSYS
simulations and the experimental results. Theoretical modeling suggests, and ANSYS
modeling confirms, that the actuation pressure should be independent of direction. One
possible explanation is that the silicon dioxide and polyimide layers are delaminating
from the silicon substrate. This is illustrated in Figure 40.

Vacuum
Pressure

(A Y O A O

Switching Up

tee

Vacuum
Pressure

Switching Down

Silicon Substrate Silicon Dioxide Polyimide

Figure 40. Delamination illustration for up and down switching modes.

The silicon substrate is able to support the diaphragm when the diaphragms are
switching down. If delamination is occurring, that would explain why the actuation
pressures in the downward direction are consistently lower, since it effectively makes the
diaphragm larger. For a larger diaphragm, a small increase in effective diameter will

only have a minor impact. However, the same amount of increase for a smaller
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diaphragm will significantly increase the effective diameter. This could explain in part
why the switching up pressure agrees with the switching down pressure for the larger
diaphragms and diverges as the diaphragms get smaller. Additionally, the delamination
might propagate with each successive switching. Many of these die were switched back
and forth numerous times, not just the handful used for data collection.

Alternatively the boundary condition at the wall of the diaphragm and silicon
substrate could be having an effect on the actuation pressure. Figure 41 is an image from

die B. The edge of the diaphragm appears jagged.

Figure 41. Image of diaphragm showing boundary conditions (highlighted).

The DRIE process leaves silicon “grass” or long micro-columns of silicon [17]. This
results in a wall that is not completely uniform, like theory and ANSYS assume. The
silicon *“grass” similar to what the sidewalls of these diaphragms look like is shown in

Figure 42.
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Figure 42. SEM image of a sidewall showing silicon "grass"” (highlighted).

This “grass” effect leaves an irregular wall. The larger the area to be etched using
DRIE the better the wall looks. Additionally these sidewall effects are less dominant in a
larger diameter diaphragm structure. An image from a sectioned diaphragm is shown in
Figure 43. The micro-columns shown in Figure 43 get larger as the depth increases. The
wall at the bottom of the wafer appears smooth. Conversely, the top is quite coarse. The

amount of coarseness and variations in the wall vary from diaphragm to diaphragm.
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Figure 43. Diaphragm section showing silicon micro-columns or "grass”. 300MPa
compressive stress. Polyimide 3.8um / SiO; 0.4um.

Another potential effect common to DRIE is undercutting, where the silicon at the
bottom of the trench cuts under the feature. This is illustrated in Figure 44. Undercutting
IS not necessarily uniform and in conjunction with the *“grass” effect could have a
significant impact on the boundary conditions. The theoretical and ANSYS models
assume a completely uniform, infinitely-stiff boundary. Some of these effects can be

seen in a diaphragm that was not fully opened with the DRIE shown in Figure 45.
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Figure 44. lllustration of undercutting and its effect on switching.

Figure 45. Cross-section of a diaphragm showing effects of DRIE (undercutting — red
arrow, “grass” — blue arrow). 300MPa compressive stress. Polyimide 3.8um / SiO;
0.4pm.
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The diaphragm shown in Figure 45 was not etched all the way through leaving silicon
“grass” on the surface of the diaphragm. Since this diaphragm was not completely
etched, the effects of the DRIE process are a little more pronounced. The silicon grass is
usually confined to the edges and is not as large.

The opposite of undercutting is a radius at the end of the trench. This effect is
shown in Figure 46 from Chen et al. who conducted extensive work on the variations in

DRIE [17].

Figure 46. DRIE trench radius, Chenetal. [17].

The effect of this radius has a significant impact on the boundary condition. The bending
moment in the diaphragm is no longer supported as a cantilever from theory, but is
distributed into the silicon a little more. All of these possibilities are difficult to verify

without sectioning each diaphragm with techniques such as focused ion beam milling.
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Another possible explanation for the discrepancies between experimental results
and model predictions is non-eigenvalue buckling. The two models assume eigenvalue
buckling or axisymmetric buckling. Figure 47 shows the progression of a dimple

forming on a diaphragm as it buckles down.
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Figure 47. Die E, 1500um diaphragm, non-eigenvalue buckling down. 300MPa
compressive stress. Polyimide 3.8um / SiO; 0.4um.
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The progressive images in Figure 47 clearly show a dimple forming on the diaphragm
and progressing across the diaphragm as a function of pressure. The diaphragm shown
here is from die E with a diameter of 1.5mm or 1500um. ANSYS predicted a larger
switching pressure for die E than was experimentally determined, Figure 38. Due to the
large size of the diaphragm and very large slenderness ratio, the dimple is more
pronounced than on smaller diaphragms. The same behavior was witnessed for some of
the diaphragms in the 900um to 800um range. However, due to the sampling rate of the
data acquisition system, this behavior could not be captured as clearly as that in Figure
47. The dimple may form due to imperfections in the polyimide or silicone dioxide
layers. The models assume completely uniform and homogenous layers. In practice,

though, this is rarely the case.

Actuation pressure goes down as the diameter of a diaphragm increases. This is
supported by both finite element modeling and experimental results. ANSYS
consistently over-predicts the actuation pressure for experimentally switching up, which
is likely due to boundary conditions created by DRIE or delamination. ANSYS models
the experimentally switching down data well for the larger diameter membranes, between
400pm and 900um. As the diaphragm diameter gets smaller, less than 300um, the
argument of the radical from equation (4) approaches zero. Current theoretical models do
not predict buckling as the diameters continue to get smaller. The ANSY'S data for these
small diaphragms begins to drop off. Experimentally, the diaphragms lose their bi-
stability behavior. There is not a significant difference in the actuation pressure data
between the dies with distant diaphragms and the arrays with closely spaced diaphragms.

Very large diameter diaphragms exhibit non-eigenvalue buckling and are poorly modeled
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by the current finite element model. Buckled height data between ANSYS and
experimental results agrees very closely, suggesting the boundary conditions do not

significantly impact the buckled height.
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V. CONCLUSIONS

Bi-stable buckled diaphragms were created in the clean room using information
from previous work [14]. These devices were tested in a newly fabricated test fixture that
utilized O-rings, a functional improvement over older test fixtures. A finite element
model using Shell209 elements was created to model the pressure switching behavior of
the diaphragms. The larger diaphragms, 350um - 900um diameter range, showed
relatively good agreement with the finite element model. The buckled heights for all of
the diaphragms matched very well with those predicted by the finite element model. The
discrepancies between experimental and modeled behavior are likely due to boundary
conditions or other micro-machining effects. Future work will involve the continued

development of a more sophisticated finite element model and 3D DIC.
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VI. FUTURE WORK

A different ANSYS model that better models the response of the smaller
diaphragms in the range of 200um - 350um could be developed. This model could use a
varying radius at the diaphragm-sidewall interface to better approximate the boundary
conditions. A preliminary model has already been developed using Planel83 elements
and Shell209 elements in an axisymmetric configuration about the y-axis, or left line.
Plane183 elements extend into 10% of the diaphragm. Shell elements are useful for their
limited number of degrees of freedom and are computationally less intensive. The more
linear portions of the diaphragm can be modeled with shell elements without much loss in
behavior. The element plot of model is shown in Figure 48; the teal elements are the
shells and cover the majority of the diaphragm. The purple elements are the planes. A
mapped mesh of the plane elements was used, with two elements and five elements
through the thickness of the silicon dioxide and polyimide layers respectively. There are
20 shell elements along the length and 10 elements along the length of the plane portion
of the diaphragm. Finally, there are 15 elements along the length of the wall plane
elements. The wall plane elements are constrained not move vertically, the far right line
is fixed in all degrees of freedom. An eigenvalue buckling analysis of this model has
already been done and is illustrated in Figure 49.The first mode of buckling is shown in
figure. The shell elements appear to be disconnected from the Planel83 elements, but

this is not the case, just an artifact of element shape expansion.
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Figure 48. Element plot in ANSYS of new model showing element type (shells - teal,
plane - purple) and boundary conditions.

1

Noncommercial use only

i
NODAL SOLUTION <].</‘AN SYS

Figure 49. Eigenvalue buckling analysis showing shell and plane elements.

Three dimensional DIC or direct image correlation could be done to calculate the
stresses in the diaphragm. This method would be very beneficial for the non-eigenvalue
buckling cases. 1750um and 1500um diaphragms from die E have already been speckled
for use in 3D DIC. An image from die E is shown in Figure 50. The black spots form a

unique pattern on the surface of the diaphragm. With the use of a stereoscope and
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independent optical paths, 3D DIC can be performed. The relative displacements of the
black spots are calculated from the pixel information in a computer program. This
displacement is directly related to the strain in the film using standard mechanics of

materials equations.

Figure 50. Speckled image from die E. 300MPa compressive stress. Polyimide 3.8um /
SiOz 0.4um.
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VIIl. APPENDIX |

ANSYS Simulation Buckling Down Input File

FINISH
/CLEAR,NOSTART

/PREP7

I Diaphragm Diameter in meters
Diameter=400e-6 IChange value for each diaphragm size

1 SiO2 Thicknesss (meters)
SiO2thk=.4e-6

! Polyimide Thickness (meters)
Polythk=3.8e-6

Subsets1=1000
AppPress1=28500
DeltaP=1000

Subsets2=2000
AppPress2=AppPress1+DeltaP

1Applied Temperature and CTE

1 T=822o0ld, T=851.2 New
AppTemp =851.2
CTE =4e-6

ET,1,SHELL209
KEYOPT,1,8,2
KEYOPT,1,9,0
IKEYOPT,1,10,1

IProperties and shell sections----------------
MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATAEX,1,,73e9

MPDATA PRXY,1,,.17

MPTEMP,,,,,,,,

MPTEMP,1,0

UIMP,1,REFT,,,

MPDATA ALPX,1,CTE

MPTEMP,,,,.,.,,

MPTEMP,1,0

MPDATAEX,2,,8e9
MPDATAPRXY,2,,.2

MPTEMP.,,,,,.,,

MPTEMP,1,0

UIMP,2,REFT,,,

MPDATA,ALPX,2,,0 13.3124e-6

sect,1,shell,,Membrane
secdata, SiO2thk,1,0.0,3
secdata, Polythk,2,0.0,3
secoffset,MID
seccontrol,,,, , , ,

ICreate keypoints and lings-----------------
KEYOPT,1,8,2
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KEYOPT,1,9,0
IKEYOPT,1,10,1

K, 0,0,
K, ,Diameter/2,0,,
LSTR, 1, 2

IMesh Line
FLST,5,1,4,0RDE,1
FITEM,5,1
CM,_Y,LINE
LSEL,,, ,P51X
CM,_Y1,LINE
CMSEL,,_ Y

LESIZE _VY1,, 100,,,,,1

CM,_Y,LINE
LSEL,,,, 1
CM,_Y1,LINE
CMSEL,S, Y

LMESH, 1

1Set up Load Steps 1 through 5----------------------

ILoad Step 1---------------=--------
FLST,2,1,3,0RDE,1
FITEM,2,2

DK,P51X,,0, ,0,ALL, ,,,,,
FLST,2,1,4,0RDE,1
FITEM,2,1

SFL,P51X,PRES,-1000,
FINISH

/SOL

ANTYPE,0
NLGEOM,1
NSUBST,10,10,10
OUTRES,ERASE
OUTRES,ALL,1
TIME,.001
LSWRITE1,

ILoad Step 2----------------
FLST,2,1,4,0RDE,1
FITEM,2,1

BFL,P51X, TEMP,AppTemp
NSUBST,100,100,100
TIME,.002

LSWRITE,2,

ILoad Step 3-------------=-=-=-—-
FLST,2,1,3,0RDE,1



FITEM,2,2

DK,P51X,,0, ,0,ALL, ,,,,,
FLST,2,1,4,0RDE,1
FITEM,2,1

SFL,P51X,PRES,0,

NSUBST,10,10,10
TIME,.003
LSWRITE,3,

ILoad Step 4--------------------
FLST,2,1,4,0RDE,1
FITEM,2,1

SFL,P51X,PRES,AppPressl,
NSUBST,Subsets1,Subsets1,Subsets1
TIME,abs(AppPressl)

LNSRCH,1

NEQIT,5000
STABILIZE,CONSTANT,ENERGY,.5e-4,NO
LSWRITE,4,

Load Step 5-----------=--------
FLST,2,1,4,0RDE,1
FITEM,2,1

SFL,P51X,PRES,AppPress2,
NSUBST,Subsets2,Subsets2,Subsets2
TIME,abs(AppPress2)

LNSRCH,1

NEQIT,5000
STABILIZE,CONSTANT,ENERGY,.5e-4,NO
LSWRITE,5,

ILoad Step 6---------------------
FLST,2,1,4,0RDE,1
FITEM,2,1

/GO

SFL,P51X,PRES,0,

NSUBST,40,40,40
TIME,abs(AppPress1)+1
LSWRITE,6,

[ o] 1Y/ S ——
LSSOLVE,1,6,1,

ITHPP
FINISH

/POST26
FILE,'Shell','rst',".!
/UL,COLL,1
NUMVAR,200
SOLU,191,NCMIT
STORE,MERGE




FILLDATA191,,,1,1
REALVAR,191,191

NSOL,2,1,U,Y, UY_2
STORE,MERGE
FORCE, TOTAL
SHELL,TOP

ESOL,3,1,1 ,SMISC,14,Pressure
STORE,MERGE

XVAR,2

PLVAR,3,

INUMVAR,200
FILLDATA191,,,1,1
REALVAR,191,191
PRVAR,2,3,
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IX. APPENDIX II

ANSYS Buckling Up Input File

FINISH
/CLEAR,NOSTART

/PREP7

IDiaphragm Diameter in meters
Diameter=600e-6 IChange for each diaphragm size

1 SiO2 Thicknesss (meters)
SiO2thk=.4e-6

I Polyimide Thickness (meters)
Polythk=3.8e-6

Subsets1=500
AppPress1=-2000
DeltaP=1000
Subsets2=Subsets1
AppPress2=AppPress1-DeltaP

1Applied Temperature and CTE

I T=2822o0ld, T=851.2 New
AppTemp =851.2
CTE =4e-6

ET,1,SHELL209

KEYOPT,1,8,2
KEYOPT,1,9,0
IKEYOPT,1,10,1

IProperties and shell sections----------------
1Si02

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATAEX,1,,73e9

MPDATA PRXY,1,,.17

MPTEMP,,,,,.,,

MPTEMP,1,0

UIMP,1,REFT,,,

MPDATA ALPX,1,CTE

IPolyimide

MPTEMP,,,,,.,,

MPTEMP,1,0

MPDATAEX,2,,8e9

MPDATA PRXY,2,,.2

MPTEMP,,,,,,,,

MPTEMP,1,0

UIMP,2,REFT,,,

MPDATA ALPX,2,,0 13.3124e-6

sect,1,shell,,Membrane
secdata, SiO2thk,1,0.0,3
secdata, Polythk,2,0.0,3
secoffset,MID
seccontrol,,,, , , ,
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ICreate keypoints and lines-----------------
KEYOPT,1,8,2

KEYOPT,1,9,0

IKEYOPT,1,10,1

K,,0,0,,
K, ,Diameter/2,0,,
LSTR, 1, 2

IMesh Line
FLST,5,1,4,0RDE,1
FITEM,5,1
CM,_Y,LINE
LSEL,,, ,P51X
CM,_Y1,LINE
CMSEL,, Y

LESIZE,_Y1,, 100,,,,,1

CM,_Y,LINE
LSEL,,,, 1
CM,_Y1,LINE
CMSEL,S, Y

LMESH, 1

1Set up Load Steps 1 through 5----------------------

ILoad Step 1----------------m-m-----
FLST,2,1,3,0RDE,1
FITEM,2,2

DKP51X,,0, ,0,ALL, ,,,,,
FLST,2,1,4,0RDE,1
FITEM,2,1

SFL,P51X,PRES,1000,
FINISH

/SOL

ANTYPE,0
NLGEOM,1
NSUBST,10,10,10
OUTRES,ERASE
OUTRES,ALL,1
TIME,.001
LSWRITE 1,

ILoad Step 2----------------
FLST,2,1,4,0RDE,1
FITEM,2,1

BFL,P51X, TEMP,AppTemp
NSUBST, 100,100,100
TIME,.002



LSWRITE,2,

ILoad Step 3-------------=-=-=-—-
FLST,2,1,3,0RDE,1
FITEM,2,2

DK,P51X, 0, 0,ALL,,,,,,
FLST,2,1,4,0RDE,1
FITEM,2,1

SFL,P51X,PRES,0,

NSUBST,10,10,10
TIME,.003
LSWRITE,3,

ILoad Step 4--------------------
FLST,2,1,4,0RDE,1
FITEM,2,1

SFL,P51X,PRES,AppPress1,
NSUBST,Subsets1,Subsets1,Subsets1
TIME,abs(AppPressl)

LNSRCH,1

NEQIT,5000
STABILIZE,CONSTANT,ENERGY,.5e-4,NO
LSWRITE,4,

Inew

ILoad Step 5--------------------
FLST,2,1,4,0RDE,1
FITEM,2,1

SFL,P51X,PRES,AppPress2,
NSUBST,Subsets2,Subsets2,Subsets2
TIME,abs(AppPress2)

LNSRCH,1

NEQIT,5000
STABILIZE,CONSTANT,ENERGY,.5e-4,NO
LSWRITE,5,

ILoad Step 6---------------------
FLST,2,1,4,0RDE,1
FITEM,2,1

SFL,P51X,PRES,0,

NSUBST,40,40,40
TIME,abs(AppPress1)+1
LSWRITE,6,

1o I/ S ——
LSSOLVE,1,6,1,

ITHPP
FINISH

/POST26

FILE, 'Shell','rst',".!
/UI,COLL,1
NUMVAR,200
SOLU,191,NCMIT
STORE,MERGE




FILLDATA191,,,1,1
REALVAR,191,191

NSOL,2,1,U,Y, UY_2
STORE,MERGE
FORCE, TOTAL
SHELL,TOP

ESOL,3,1,1 ,SMISC,14,Pressure
STORE,MERGE

XVAR,2

PLVAR,3,

INUMVAR,200
FILLDATA191,,,1,1
REALVAR,191,191
PRVAR,2,3,
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