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ABSTRACT

USING OPTIMALITY THEORY AND REFERENCE POINTS TO IMPROVE THE
DIVERSITY AND CONVERGENCE OF A FUZZY-ADAPTIVE MULTI-OBJECTIVE

PARTICLE SWARM OPTIMIZER

Amit A. Kulkarni
Old Dominion University, 2017
Director : Dr. Miltiadis Kotinis

Particle Swarm Optimization (PSO) has received increasing attention from the evolutionary

optimization research community in the last twenty years. PSO is a metaheuristic approach based

on collective intelligence obtained by emulating the swarming behavior of bees. A number of

multi-objective variants of the original PSO algorithm that extend its applicability to optimiza-

tion problems with conflicting objectives have also been developed; these multi-objective PSO

(MOPSO) algorithms demonstrate comparable performance to other state-of-the-art metaheuris-

tics. The existence of multiple optimal solutions (Pareto-optimal set) in optimization problems with

conflicting objectives is not the only challenge posed to an optimizer, as the latter needs to be able

to identify and preserve a well-distributed set of solutions during the search of the decision vari-

able space. Recent attempts by evolutionary optimization researchers to incorporate mathematical

convergence conditions into genetic algorithm optimizers have led to the derivation of a point-wise

proximity measure, which is based on the solution of the achievement scalarizing function (ASF)

optimization problem with a complementary slackness condition that quantifies the violation of

the Karush-Kuhn-Tucker necessary conditions of optimality. In this work, the aforementioned

KKT proximity measure is incorporated into the original Adaptive CoevolutionaryMulti-Objective

Swarm Optimizer (ACMOPSO) in order to monitor the convergence of the sub-swarms towards the

Pareto-optimal front and provide feedback to Mamdani-type fuzzy logic controllers (FLCs) that are

utilized for online adaptation of the algorithmic parameters. The proposed Fuzzy-Adaptive Multi-

Objective Optimization Algorithm with the KKT proximity measure (FAMOPSOkkt) utilizes a set

of reference points to cluster the computed nondominated solutions. These clusters interact with



their corresponding sub-swarms to provide the swarm leaders and are also utilized to manage the

external archive of nondominated solutions. The performance of the proposed algorithm is evalu-

ated on benchmark problems chosen from the multi-objective optimization literature and compared

to the performance of state-of-the-art multi-objective optimization algorithms with similar features.
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1

CHAPTER 1

INTRODUCTION

"Owing to this struggle for life, any variation, however slight and from whatever cause proceed-

ing, if it be in any degree profitable to an individual of any species, in its infinitely complex relations

to other organic beings and to external nature, will tend to the preservation of that individual, and

will generally be inherited by its offspring" - Charles Darwin

1.1 Background

By definition, optimization is a process of making the best or most effective use of a situation or

resource [1]. Mathematically, it means finding the minimum or the maximum value of a function.

Most of our decisions in life are based on trade-offs between conflicting objectives. For example,

when booking a flight we look for things like minimum cost, shortest possible route with minimum

number of stops, enough transit time between airports, food quality etc. The ultimate choice

depends on what we treat as our objectives and what we treat as constraints, i.e. flight time might

be a constraint for one person, while cost might be for another. The bottom line is, everyone has

to deal with multiple conflicting objectives and, thus, needs to make decisions considering the

trade-offs that might arise in a particular situation.

Mathematical definitions of multi-objective thinking date back to the 18th century, when Francis

Y. Edgeworth (1845-1926) and Vilfredo Pareto (1848-1923) introduced the concepts of non-

inferiority and trade-offs in the context of economics [2]. It was Edgeworth who introduced the

concept of equilibrium by comparing two functions using the same axis, which were later brought

into more understandable form by Pareto, commonly known as Edgeworth box [3] . Once an

equilibrium is achieved, resource allocation is then performed by the efficiency criteria proposed
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by Pareto, now known as Pareto optimality. "The optimum allocation of the resources of a society is

not attained so long as it is possible to make at least one individual better off in his own estimation

while keeping others as well off as before in their own estimation" [4].

According to Pareto’s efficiency criteria, finding solutions to a multi-objective optimization

problem (MOOP) involves computing all the globally non-dominated solutions.

The task of finding the globally non-dominated solutions, the Pareto-optimal set (PS), poses

a number of challenges to an optimization algorithm. When the Pareto-optimal solutions cannot

be obtained analytically, a numerical optimization algorithm is utilized, which provides a set of

discrete non-dominated solutions when the stopping criteria have beenmet; typically, a prespecified

number of iterations. These solution vectors need to be located as near as possible to the global

Pareto-optimal front (PF), i.e., the representation of the PS in the objective function space, but also

be well-distributed, i.e., cover the entire front in a uniform manner. In this way, the decision maker

would be able to consider several design alternatives and select the solution that best matches

their preferences. Therefore, solution diversity is an equally important requirement as solution

optimality when evaluating the effectiveness of a multi-objective optimization algorithm.

Usually, a decision maker is involved in the process of selecting a solution among the available

set of solutions if any decision-making is required. For this purpose, several multi-objective

optimizationmethods are available and can be broadly classified into four categories, no-preference,

a priori, a posteriori, and interactive methods. As the name suggests, no-preference methods do

not call for the decision maker’s involvement. A priori methods require preference input from

the decision maker to adjust the search based on these preferences. In A posteriori methods, the

decision maker chooses from the given set of solutions. Lastly, in interactive methods, optimal

solutions are improved during each iteration based on the decision maker’s feedback.

1.2 Evolutionary Algorithms

Rosenberg’s work [5, 6] was seminal in identifying the potential of evolutionary algorithms to

solve multi-objective problems, while Schaffer introduced the first working multi-objective evolu-
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tionary algorithm [7], VEGA - ’Vector Evaluated Genetic Algorithm’. Since then, several methods

have been developed to solve multi-objective optimization problems. Evolutionary computation

techniques like Genetic Algorithms (GA) [5, 6, 7], Ant Colony Optimization (ACO) [8, 9], Evo-

lutionary Algorithms (EA) [10, 11, 12, 13], Differential Evolution (DE) [14, 15, 16], and Particle

Swarm Optimization(PSO) [17, 18] are the most prominent methods. Most of these are population

based methods which emulate natural processes, i.e., evolution and swarm intelligence.

Typically, an evolutionary algorithm starts with a randomly generated initial population, i.e., set

of solution vectors, whose fitness, i.e., the objective function is evaluated on each solution vector.

Subsequently, it is subjected to biological functions like reproduction and mutation, to generate

an evolved population with potentially increased fitness. The iterative process also incorporates a

selection mechanism based on Pareto optimality, which may be implemented at the end of each

generation (iteration) as a survival criterion, in addition to a means to maintain diversity among the

population members. Both of these methods ensure that the algorithm converges to a diverse set of

non-dominated solutions.

1.3 Reference Set Based Algorithms

The goal of any MOO algorithm is to to provide a diverse set of Pareto-optimal solutions to the

decision maker; the latter is going to utilize their preferences/criteria in order to select one optimal

solution. As mentioned in section 1.1, preference based or interactive certain solution methods

have been developed that involve a decision maker, a task that actually helps to ease the difficulty

in modeling a practical problem in a precise mathematical form [19]. These methods use a set

of reference solutions to measure the quality of solutions (convergence and diversity). There are

two main challenges in this approach. First, how to generate the reference set, and second, how to

evaluate the quality of the solutions obtained using the reference set. Ample literature is available

on preference-based multi-objective optimization algorithms that are capable of finding a preferred

set of solutions near the reference point supplied by the decisionmaker [20, 21, 22, 23, 24]. It should

be mentioned that there is no information available about the decision vectors of the reference set,
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as they are predefined and supplied.

Another application of reference sets is to guide the population members along specific direc-

tions and towards the Pareto-optimal front, without focusing on a specific region of the front based

on a decision maker’s preferences. In this way, the reference set can be utilized as a diversity

inducing, and preserving, mechanism of the multi-objective algorithm.

NSGA III [25, 26], one of the most recently developed evolutionary algorithms, replaces the

crowding distance diversity-preservation operator used in NSGA II by a reference-set-based niche

strategy. A predefined set of reference points is supplied and a scalarization function-achievement

scalarizing function [19] is used to find the perpendicular distance to the reference lines joining the

origin, i.e., the ideal point in a normalized objective function space, and the reference points. Each

population member is, thus, associated with a reference point. (and the ones with fewer population

members are preferred)

RVEA [24] is another recently proposed algorithm where the search is guided using predefined

reference vectors. Similar to NSGA III, this algorithm first decomposes the objective function

space and then implements a scalarizarion function known as angle penalized distance (APD), to

maintain balance between solution convergence and diversity.

1.4 Achievement Scalarizing Function (ASF)

Scalarizing functions are classified under a posteriori methods for generating Pareto-optimal

solutions. In this approach, a multi-objective problem is reformulated into a single objective

optimization problem by means of scalarizing parameters or through a non-scaling approach that

maintains the vector-valued objective function and uses other optimality concepts. A detailed

survey on these methods is available in [27]. Weighted sums method can generate a special class

of solutions, which appear at corner points of the set of available solutions [28]. Achievement

Scalarizing Functions on the other hand can generate any nondominated solution.
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1.5 Swarm Intelligence

Particle swarm optimization (PSO) algorithms emulate the social behavior of animals/insects:

a swarm of bees, an ant colony, a flock of birds, a school of fish. Similar to evolutionary algorithms,

they also maintain a population of solutions (particles) that perform a search of the decison

variable space by solving mathematical equations involving the position and velocity vectors of the

particles. The search is typically guided towards the optimal solution(s) using the personal best

position (solution) found by each particle up to the current iteration and by the global or local best

solution found by the entire swarm or subswarms, respectively. The original single objective PSO

algorithm is attributed to Kennedy, Eberhart and Shi [29, 30]. Since then several variants of the

PSO extending to multi-objective optimization have been developed [18, 31, 32, 33, 34, 35, 36, 37].

A recent comprehensive survey on PSO and its applications can be found in [38]. The additional

challenges faced by multi-objective PSO algorithms (MOPSOs) include the update of the personal

best and the global best solution, since there is no single optimal solution but a set of nondominated

solutions to choose from. The search direction is typically governed by the swarm leaders that guide

the particles towards the Pareto-optimal front. The selection of leaders affects both the convergence

and diversity of the solutions. Various methods that address the leader selection process are

available in the literature [39, 40, 35, 41, 42]. Furthermore, hybrid evolutionary/swarm intelligence

algorithms have also been proposed. These algorithms implement evolutionary operators, e.g. a

mutation operator can be utilized in order to compensate for premature convergence and maintain

solution diversity [43, 44].

In this dissertation, the Adaptive Coevolutionary Multi-objective Particle Swarm Optimizer

(ACMOPSO) [36] is utilized as the baseline algorithm and its performance with respect to solution

convergence and diversity is improved. Two main mechanisms are used to achieve those goals.

First, a set of reference points is used to cluster the non-dominated solutions and acts primarily as

a diversity-preserving operator. Each cluster provides leaders to the associated swarm and is also

utilized to evaluate the convergence of each members through appropriate metrics. The latter are
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used as input to fuzzy logic controllers (FLCs) that adapt the PSO algorithmic parameters. The

second mechanism corresponds to a Pareto-optimal-front proximity measure, which is utilized to

measure the convergence of the computed nondominated solutions to the Pareto-optimal front.

1.6 Dissertation Outline

A review of the concepts of multi-objective optimization is given in Chapter 2, Section 2.1,

followed by a literature review on multi-objective optimization algorithms in Section 2.2. A

description of the ACMOPSO algorithm is provided in Section 2.3. Chapter 3 describes the

computation of the Pareto optimal-front proximity measure based on the Karush-Kuhn-Tucker

optimality conditions, following its derivation for single and multi-objective optimization problems

[45, 46]. The performance of the ACMOPSO algorithm in terms of the aforementioned Pareto-

optimal front proximity measure is evaluated on a selection of problems from the multi-objective

literature and is presented in Chapter 4. A novel method enhancing the performance of the

ACMOPSO algorithm is proposed and evaluated in Chapter 5. In Chapter 6, a comparison between

the performance of the proposed algorithm and the performance of state-of-the-art multi-objective

optimization algorithms is presented. Conclusions and directions for future research are provided

in Chapter 7.
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CHAPTER 2

MULTI-OBJECTIVE OPTIMIZATION

2.1 Multi-Objective Optimization

In case of single objective optimization problems we are concerned with finding the optimal

decision variable(s) which minimize(or maximize) the objective function. In other words the

focus is on the decision variable space. This is not the case when dealing with multi-objective

optimization problems.We have to focus on the objective space, which is often of lower dimension

than the decision variable space [19]. As mentioned earlier, MOOP has a set of solutions instead

of one single solution due to the conflicting nature of the objectives. As proposed by Edgeworth

[3] and later developed by Vilfredo Pareto [4], in multi-objective scenarios we cannot improve one

objective without deteriorating the other at the same time. A formal definition of Edgeworth-Pareto

optimality is given below.

When the objectives in a vector optimization problem are conflicting with each other, the result-

ing multiple optimal solutions correspond to a trade-off between these objectives. A constrained

multi-objective optimization problem with M objectives, L inequality constraints, K equality con-

straints, I decision variables, and J parameters is formulated as (assuming minimization of all the

objective functions):

minimize
m

f (x)

subject to gl(x) ≤ 0, l = 1, . . . , M,

hk(x) = 0, k = 0, . . . ,K

(2.1)

The set of optimal solutions is called the globally Pareto-optimal set of solutions of the feasible

search space S. The members of this set correspond to solutions that are not dominated by any other
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solution inside S. The concept of dominance can be defined as follows [47]: Solution x1 dominates

solution x2 if solution x1 is not worse than solution x2 in all objectives and is strictly better than

solution x2 in at least one objective. When an optimization algorithm solves a constrained multi-

objective problem with M objectives and L+K constraints, it produces a set of non-dominated

solutions. In order a solution vector x to be globally Pareto-optimal, it is necessary that it satisfies

the Karush-Kuhn-Tucker conditions (KKT). If the feasible search space and the objective functions

are convex, then the KKT conditions are also sufficient for Pareto optimality [48].

2.1.1 Pareto dominance

Figure 2.1: Concept of Pareto Optimality.
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In unconstrained multi-objective optimization problems, a solution vector A dominates another

solution vector B, if and only if the following two conditions for Pareto dominance are satisfied:

• The objective vector that corresponds to solution A(xA) is no worse than the objective vector

that corresponds to solution B(xB) in all objectives

• Solution A is strictly better than solution B in at least one objective

If xA is not dominated by any other solution, it is called a Pareto-optimal solution. The corre-

sponding objective function vector belongs to the set of vectors that comprise the Pareto-optimal

front. In constrained problems, xA constraint-dominates xB if any of the following conditions are

satisfied [16]:

• Both xA and xB are feasible and xA dominates xB, based on the aforementioned conditions

for Pareto dominance.

• Both xA and xB are infeasible but xA has smaller constraint violation

• Solution xA is feasible and solution xB is not

All Pareto-optimal solutions are feasible, but not all feasible solutions are Pareto-optimal. It

should be mentioned that the above definition is of global Pareto optimality. Unless any specific

requirement is met, all obtained Pareto solutions are only locally optimal, i.e. if the objective

functions and constraints meet the convexity criteria, they are globally Pareto-optimal. This set of

solutions is called the Pareto-Optimal Set (PS). Figure 2.1 gives a graphical representation of these

concepts.

2.1.2 Ideal and nadir vectors

An ideal vector minimizes each of the objective functions simultaneously, whereas the upper

bounds of the PS form the nadir vector. It should be noted that the nadir vector might be feasible or

infeasible. The ideal vector is usually unattainable and depends on the nature of problem at hand

(convex or nonconvex).
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Figure 2.2: Objective Space. Figure 2.3: Ideal and Nadir Objective Vector.

Constrained or unconstrained, one can solve each objective function individually and then form

the ideal vector.

2.2 Multi-Objective Optimization Algorithms

Several algorithms based on Evolutionary Computation(EC) have been developed in the past

few decades. These algorithms mimic natural processes like evolution and collective intelligent

behavior.

2.2.1 Evolutionary algorithms

Evolutionary algorithms (EA), as the name suggests are nature-inspired algorithms based on

Darwinian principle of “Survival of the fittest”. Classified as a part of computational intelligence,

they are population based, derivative free approaches for global optimization. Since their inception

(late 1950’s), EA have been widely used in diverse disciplines to solve single objective and multi-

objective optimization problems. Although, easy to implement and configure, they are still critiqued

for the theoretical aspects of convergence or the optimality of obtained solution(s).



11

2.2.2 Differential evolution

A standard Differential Evolution algorithm (DE) maintains and evolves a population of in-

dividuals (solutions). A new solution can be generated by performing crossover, where some

components of an individual are replaced with a linear combination of three other members in the

population. Selection or acceptance criterion is imposed for overall improvement of the population,

where a current solution is replaced by a better or improved one. Although, DE algorithms have

been shown to converge onto a single point for strictly convex objective functions, the converged

point need not be a global minimizer. For more general functions, it might occur that the entire

population gets stuck in a local optima, which would prevent the further progress of the population

towards a global minimizer. Following is a pseudo-code for an standard DE.

Algorithm 1 The Classic Differential Evolution Algorithm.
Generate initial population of individuals
while termination criteria not met do

For each individual j in the population
Choose three random vectors r1,r2, and r3 such that, 1 ≤ r1, r2, r3 ≤ N with r1 , r2 , r3 , j
Generate a random integer krand ∈ (1, N)
for each parameter k do

if krand ≤ Cr or k = krand then
u j,i = v j,i = x j,r0 + F ∗ (x j,r1 − x j,r2)

else
u j,i = x j,i

end if
end for
Select the next generation by a tournament selection between parent and child

end while

F ∈ (0, 1+) is the scale factor and Cr ∈ [0, 1] is the control variable. The scale factor controls

the mutation step size and in turn the population’s convergence speed. The control variable is

the crossover probability which is determined by the average number of parameters that the trial

vector ui, j inherits from the mutant vector v j,i. It was found in that rotating the coordinate system

relocates some trial vectors, but the position of mutant trial vector is rotationally invariant, i.e.,

when Cr = 1, essentially there would be no crossover. Without crossover, the classic DE algorithm
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performs poorly in multimodal functions [49]. In our investigation, we implement a rotationally

invariant version of the DE, the DE/rand/1/either-or developed in [50] in order to compute the

KKT proximity measure following the procedure described in Chapter 3.

2.2.3 The DE/rand/1/either-or algorithm

In this DE version, trial vectors that are pure mutants occur with a probability pF and pure

recombinants occur with a probability 1−pF . The scheme for trial vector generation is given below.

Price et al. [49] suggest a value of K as K = 0.5(1 + F), for a given value of F.

Algorithm 2 The Either/Or Differential Evolution algorithm.
if randi(0, 1) ≤ PF then

ui = xr0 + F ∗ (xr1 − xr2)
else

ui = xr0 + K ∗ (xr1 + xr2 − 2 ∗ xr0)
end if

2.2.4 Swarm intelligence

Swarm Intelligence (SI) is the collective behavior of decentralized, self-organized systems,

natural or artificial [31]. SI algorithms derive inspiration from natural processes like the behavior

of bee swarms while searching for food source. The bees do not follow orders from any centralized

system, but rely on interaction between each other. Similar behaviors are observed in ant colonies,

flock of birds, school of fish and many other natural systems.

Boids [51] was the first program to mimic swarm behavior. The first published literature on

agent based global search and optimization technique mimicking swarm behavior was Stochastic

Diffusion Search (SDS) [52]. Ant Colony Optimization (ACO) was proposed by Dorigo [9] which

was a collection of optimization algorithms modeled on interactions within an ant colony. Particle

Swarm Optimization (PSO) algorithm, an global optimization method based on bird flocking was

proposed by Kennedy and Eberhart [53]. The latter two have gained much popularity in single

objective and multi-objective optimization. A multi-objective version of PSO based on Pareto
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dominance, MOPSO was proposed by [54]. A relaxed form of Pareto dominance relation was

implemented in [55] to increase pressure selection towards the true Pareto front. NSGA II was

combined with Control of Dominance Area of Solutions (CDAS), a modified Pareto dominance

relation was developed in [56]. Influence of CDAS was then investigated in [57] on two other

versions of MOPSO - the SMPSO [58] and SigmaMOPSO[59]. ACMOPSO proposed in [36] uses

co-evolution of multiple swarms along with mutation and elitism to efficiently explore and exploit

the search space using only the social components as guides. Another class of recently proposed

MOPSOs make use of reference set to guide the swarm towards the Pareto front with an effort to

preserve the diversity [60, 61].

The MaOPSO proposed in [60] is an archive based PSO which uses a set of dynamically

generated reference points to guide the search process to converge to the true Pareto front. Its

working is similar to the evolutionary algorithm [25, 26] which is the third version of NSGA III

using a clustering operator instead of the crowding distance operator as in NSGA II. The difference

in both algorithms being, NSGA III does not employ any explicit reproduction selection operation,

while MaOPSO employs a Pareto dominance and information about density and proximity to push

the particles towards the Pareto front. A detailed explanation about this algorithm is discussed as

both of them use reference points, some sort of scalarizing function, and preference information for

guiding solutions towards the true Pareto front. The proposedmethod in this study uses ACMOPSO

as a base algorithm since it has been investigated as an efficient algorithm for parallelization.

2.3 Description of the ACMOPSO Algorithm

Solutions of themultidisciplinary design problemwere obtained using theACMOPSOoptimizer

[50]. ACMOPSO, which is a co-evolutionary PSO algorithm, explores the design variable space

using the search mechanism of PSO combined with random mutation. In every iteration, the

swarm is divided into a number of sub-swarms; each sub-swarm focuses on a specific region of

the computed Pareto-optimal front, which consists of the non-dominated solutions stored in the

external archive. The latter of which, is divided into segments equal to the number of sub-swarms.
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Two members of the Pareto set within each segment are randomly selected to act as leaders of the

k th swarm particle for each design variable j:

vk j(t + 1) = w.vk j(t) + c1.(xndlr1, j(t) − xk j(t) + c1.rand j(0, 1).(xndlr2, j(t)) − xk j(t)) (2.2)

where vk j is the movement of particle k along position coordinate j ,and xndlr2, j(t) are the j th

position coordinates of the two randomly selected leaders, xk j(t) is the corresponding j th position

coordinate of the k th particle, w is the inertia weight, c1 is the social coefficient, and rand j(0, 1)

is a random number uniformly distributed in (0,1). The k th particle’s position is updated in every

iteration (t + 1) by adding the velocity vector over a single time increment to the current position

vector :

xk(t + 1) = xk(t) + vk(t + 1) (2.3)

This procedure is followed for 80% of the swarm particles. The remaining particles are

substituted with randomly selected non-dominated archived solutions, which are subsequently

mutated with a mutation rate pmut = 10%. The inclusion of a mutation operator, combined with

particle substitution, enhances the algorithm’s capability to solve problems with multiple local

Pareto-optimal fronts, and also counterbalances the high selective pressure due to the utilization

of a Pareto ranking procedure to manage the external archive. It needs to be mentioned that if

the number of non-dominated solutions exceeds the nominal capacity of the archive, a crowding

distance operator [16] is employed to maintain the solutions that reside in the least crowded areas.

The values of algorithmic parameters, w and c1, are adapted on-line for each sub-swarm using

the feedback provided by two metrics. The first metric takes into account the effectiveness of each

sub-swarm in producing new non-dominated solutions during the current iteration. Second metric

represents the ability of the entire swarm to produce solutions capable of entering the external

archive.

In the current research project, a parallelized version of ACMOPSO with five sub-swarms
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was utilized. The parallelization, which involved the computation of the objective functions and

constraints, was done through the OpenMP interface using a work-sharing paralleldo construct.

The results reported in [50] regarding an application of the parallelized version of ACMOPSO to

an engineering design optimization problem demonstrated near-linear speedup and high parallel

efficiency.
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Algorithm 3 The ACMOPSO algorithm.
1: Initialize positions and velocities of particles(use a random seed for each sub-swarm)
2: Initialize iteration counter ( j = 0) and external archive
3: do
4: for each sub-swarm do
5: Evaluate objective functions and constraints
6: end for
7: Combine the archived solutions with the new solutions generated by the sub-swarms
8: Rank the non-dominated solutions and update the external archive
9: Partition the Pareto-optimal front into a number of segments equal to the number of sub-swarms
10: if the number of archived solutions within a segment exceeds threshold value then
11: Compute the crowding distance of the archived solutions and use it as a leader selection

criterion
12: end if
13: Generate the set of leaders for each sub-swarm by selecting archived solutions from the

corresponding segment
14: for each sub-swarm do
15: for each particle in the sub-swarm do
16: if rand(0, 1) ≤ p f and more than one leaders are available then
17: Select two different leaders(randomly)
18: for each decision variable j do
19: Update the corresponding velocity component
20: Compute the new position coordinate
21: end for
22: else
23: Select one leader (randomly, if more than one are available)
24: Select a decision variable , jrand(randomly)
25: for each decision variable j ,if (rand)(0, 1) ≤ η or j = jrand do
26: Mutate the jth component of the leaders
27: end for
28: Replace particle with mutated leader
29: end if
30: end for
31: Update the values of the adaptation parameters
32: Adapt the inertia weight and social coefficient values
33: end for
34: t = t + 1
35: until stopping criterion is satisfied
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CHAPTER 3

KKT PROXIMITY MEASURE

3.1 Necessary Optimality Conditions

The convergence criteria for multi-objective optimization algorithms is based on Pareto dom-

inance, and their termination criteria is based on either the number of iterations or the quality

indicators like hypervolume (HV), generational distance (GD) or the inverted generational distance

(IGD). The hypervolume requires a pre-defined reference point for its computation, which cannot

be set for an unknown problem, which makes it difficult to use it as a termination criteria. IGD,

requires the knowledge of true Pareto-optimal solutions and their corresponding objective values,

and again cannot be used in case of an unknown problem. Along with achieving convergence, an

optimization algorithm should be able to maintain diversity among the obtained solutions.

The Karush-Kuhn-Tucker (KKT) conditions are able to check whether the obtained solution(s)

is truly an optimal solution or not. Any point that satisfies these conditions is called as an optimal

solution. It should be mentioned that any KKT point is an optimal point, but not every optimal

point is a KKT point. Violation of the KKT conditions does not give any information regarding

the solution’s proximity to the optimal solution. The KKT conditions are singluar conditions that

require the first-order derivatives of the objective functions and the constraints.

Dutta et al. proposed a KKT proximity measure for a single objective optimization problem

[62]. In their work they performedmeticulous calculations to prove the theoretical correctness of the

proposedmetric which calculates the proximity of the obtained solution to the optimal solution. Deb

et al. extended this work to multi-objective optimization combined with achievement scalarizing

functions and proposed a faster way of calculating KKT proximity measure [45, 46]. The KKT

proximitymeasure is capable to identify relative closeness of any point from the theoretical optimum
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point without actually knowing any information about the exact location of the optimum point. A

smaller value of KKT proximity measure for an iterate indicates its closeness to the optimal point,

a large value of KKT proximity measure indicates slow convergence in the region [63].

For nondominated solutions their closeness to the true Pareto front are likely to be different.

Not all nondominated solutons are closer to the Pareto front, and even if they are, they might not

be truly Pareto optimal. In another case, the solutions can be away from the true Pareto front and

still be nondominated to the rest of the solutions. This enables the use of KKTPM as a quantitive

measure for solutions on a nondominated front parallel to the true efficient front, therby providing

an equal metric value near Pareto-optimal solutions.

The theoretical optimality of the solutions obtained by evolutionary algorithms (EA) is an open

topic for criticism. It is required for every Pareto-optimal solution to satisfy the KKT conditions.

Dutta et al, defined an approximate KKT solution to compute a KKT proximity measure for any

iterate xk for a multi objective constrained optimization problem of the type (2.1) for which, the

Karush-Kuhn Tucker (KKT) optimality conditions are given as

M∑
k=1

λk∇ fk(xk) +

m∑
i=1

ui∇gi(x) = 0 (3.1)

gi(xk) ≤ 0, ∀i (3.2)

uigi(xk) = 0, ∀i (3.3)

ui ≥ 0, ∀i (3.4)

λk ≥ 0, ∀k, and λ , 0 (3.5)

where, ui is the Lagrange multiplier for the i-th constraint. Equation (3.1) is the equilibrium

condition or gradient condition, equation (3.2) ensures feasibility for x̄, equation (3.3) is the

complimentary slackness condition, and equation (3.4) tells that the Lagrange multipliers are

non-negative.

A Pareto-optimal solution must always be a KKT point, but a KKT point needs not to be a
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Pareto-optimal solution. A KKT point becomes a Pareto-optimal solution if it does not violate the

above convexity condition i.e. the feasible search space is convex and all objective functions are

convex.

Information about the proximity and direction of the optimum from a given point, and using

some metric derived from the KKT condition violations could be very helpful for devising a

theoretically motivated termination condition which could be used in the actual design of the

algorithms. Although, it is tempting to use the KKT conditions as a performance criterion for

the algorithms, the extent of violations of these conditions close to the KKT point is not smooth,

which makes it difficult to implement. To overcome this problem, Dutta et al proposed a new

KKT proximity measure, based on the KKT error which can be computed by solving the following

optimization problem for optimumul values of λ and µ. Doing so, enable equations (3.2), (3.3),

(3.4), and (3.5) to be satisfied and the equation (3.1) to be least violated. This new proximity

measure is defined by relaxing the complimentary slackness and equilibrium equations of KKT

conditions defining a modified ε-KKT point. Dutta et al , defined an approximate KKT solution to

compute a KKT proximity measure for any iterate xk

minimize ‖

M∑
k=1

λk∇ fk(xk) +

m∑
i=1

ui∇gi(x)‖

subject to gi(xk) ≤ 0, ∀i,

uigi(xk) = 0, ∀i,

ui ≥ 0, ∀i,

λk ≥ 0, ∀k, and λ , 0

(3.6)

The KKT error for a feasible iterate xk is then defined as

KKT Error (xk) = ‖

M∑
k=1

λk∇ fk(xk) +

m∑
i=1

ui∇gi(x)‖ (3.7)

where λ∗k and µ
∗
k are the optimal solution to the problem stated in the above equation.
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Drawbacks of this naive KKT proximitymeasure were highlighted in [45], proving that the KKT

error does not monotonically reduces as the iterate approaches the KKT point, and this method is

unreliable for estimating the convergence pattern to the Pareto-optimal solutions.

3.2 Scalarization Functions

Several methods are used to solve multi-objective optimization problems. There are a priori,

a posteriori, no preference, interactive and hybrid methods. Scalarizing falls under the a priori

method where a multi-objective problem is formulated as single-objective optimization problem

whose solutions are Pareto-optimal solutions to the multi-objective optimization problem. Scalar-

ization functions were introduced by Wierzbicki [64, 65, 66, 67, 68, 69, 70].

The weighted Tchebycheff metric shown in equation (3.8) minimizes the distance between an

ideal objective vector and a feasible objective vector, but has few limitations.First,an unknown

global ideal vector will result in failure of producing (weakly) Pareto-optimal solutions. Second,if

a reference point used in place of the ideal vector lies inside the feasible objective region, the

minimal distance between them might be zero and we will not be able to use it in generating

(weakly) Pareto-optimal solutions.

minimize max
M∑

i=1
wi |( fi(x) − zi)|

subject to x ∈ S

(3.8)

In general one can obtain weakly Pareto-optimal solutions by solving above problem, by not

including the absolute signs. Getting rid of the absolute sign helps to generate weakly Pareto-

optimal solutions that are independent of the feasibility or infeasibility of the reference point in

use. An achievement scalarizing function (ASF) is a function sz̄ : Z → R where z̄ ∈ Rk , is an

arbitrary reference point in the M dimensional objective space, which is fixed to the utopian point

zi = zideal
i − εi, and εi can be set as 0.001 or even 0 in the formulation. The idea of the ASF is to

minimize the distance between the ideal objective vector and the feasible objective region. For a
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reference point z, and a weight vector w, the ASF problem is given as

minimize ASF(x, z,w) = max
M∑

i=1
( fi(x) − zi)/wi

subject to g j(x) ≤ 0 ∀i

(3.9)

Here, w ∈ RM is an M dimensional weight vector, such that wi ≥ 0 and ‖w‖ = 1 and the weight

value for the i-th objective function is

wi =
( fi(x) − zi)√∑M
i=1( fk(x) − zk)

2
(3.10)

The biggest advantage of ASF over other weighted-metric methods is that it is independent of the

global ideal objective vector, and hence is more reliable. It has been proved in [19] that with above

conditions for w and z, solution to the equation (3.9) is always Pareto-optimal. By keeping the

reference point z fixed and by changing the weight vector w, different points on the efficient front

can be generated by the ASF procedure given by equation (3.1).



22

Figure 3.1: ASF Procedure

3.2.1 Notes on the ASF

• For a feasible reference point, the minimization of ASF must produce a solution that maxi-

mizes the distance to the Pareto-optimal set.

• For an infeasible reference point, the minimization of ASF must produce a solution that

minimizes the distance to the Pareto-optimal set.

• By moving the reference point only, one can obtain any arbitrary weakly Pareto-optimal or

Pareto optimal solution.
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3.3 Karush Kuhn Tucker Proximity Measure for Multi-Objective Optimization Problem

The ASF formulation makes the objective function non-differentiable, a smooth transition of

the ASF problem is required, which is made by introducing a slack variable xn+1 and reformulating

the original ASF problem as follows:

minimize F(x, xn+1) = xn+1

subject to fi(x) − zi

wk
i

− xn+1 ≤ 0 i = 1, 2 . . . M,

g j(x) ≤ 0 j = 1, 2 . . . J

(3.11)

Considering only the feasible solutions, the KKT proximity measure for above smooth single

objective problem for y = (x; xn+1) can be determined by solving the following problem [45]

minimize
εk, xn+1, u

εk +

J∑
j=1
(uM + g j(xk))2 (3.12a)

subject to ‖∇F(y) +
M+ j∑
j=1

u j∇G j(y)‖2 ≤ εk, , (3.12b)

M+ j∑
j=1

u j∇G j(y) ≥ −εk, (3.12c)

f j(x) − z j

wk
j

− xn+1 ≤ 0 j = 1 . . . M, (3.12d)

u j ≥ 0 j = 1 . . . (M + J) (3.12e)

The optimal value ε∗k to the above problem corresponds to the proposedKKTproximitymeasure.

For infeasible iterates, the KKT proximity measure is computed by measuring the constraint

violations.

KKT proximity measure for any iterate xk is calculated as



24

KKT proximity measure = ε∗k i f xk is f easible

= 1 +
J∑

j=1
< g j(xk) >2 otherwise

and,

ε k
k = 1 −

M∑
j=1

u∗j −
J∑

j=1
(u∗M + g j(xk)2) (3.13)

For a KKT point, xk = x∗, the complimentary slackness condition u∗M + g j(x∗) = 0 for all

constraints, and εk ≥ (1 −
∑M

j=1 u j)
2

THe KKT proximity measure has been shown to converge monotonically towards the Pareto-

optimal front [45].
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CHAPTER 4

APPLYING THE KKT PROXIMITY MEASURE TO A

MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZER

In this chapter, a parametric investigation is performed in order to access the capabilities of the

ACMOPSO algorithm using traditional quality indicators but also the KKT proximity measure on

a number of benchmark problems. Several test suites are available to test complex multi-objective

optimization algorithms. A detailed review of multi-objective test problems can be found in [71].

Seven unique benchmark problems are selected to test the performance of ACMOPSO. These

problems will also be utilized in the following chapter to evaluate the performance of the proposed

MOPSO algorithm.

4.1 Definitions

• Pareto-Optimal Set and Pareto-Optimal Front

As discussed in Chapter 2, a multi-objective optimization problem has a set of solutions,

which is called a Pareto-optimal front. APareto-optimal set (PS) is the collection of all Pareto

optimal decision variables and a Pareto Front (PF) is the collection of all Pareto optimal

objective vectors. PS gives the mapping in search space, while PF maps the objective space.

Pareto-optimality criteria defined earlier is used to obtain a nondominated PS and PF.

• Fitness landscape

It is the mapping between the search space and the objective space, i.e. between PS and PF.

They might share a One-to-One mapping or Many-to-One mapping. In One-to-One mapping

each decision variable vector corresponds to one objective vector, while in Many-to-One
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Table 4.1: Test Problem Properties.

Name O
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ZDT2 f1 U x x X concave − −

f2 U

ZDT6 f1 M x X X concave + −

f2 M

OSY f1 M X X X convex + +

f2 M X X X convex + +

TNK f1 M x x X concave + −

f2 M x x X concave + −

mTNK f1 M x x X concave + −

f2 M x x X concave + −

WBD f1 M X X X convex + +

f2 M X X X convex + +

Viennet
f1 M x X X concave + −

f2 M x X X concave + −

f3 M x X X concave + −

more than one decision variable vectors correspond to identical objective vector. In the

later case, difficulty arises while selecting between these two decision variable vectors using

non-dominance criteria.
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– Modality

A fitness landscape can be unimodal or multimodal. An objective function with single

optima has a unimodal landscape, while the one with multiple optima has a multimodal

landscape. Unimodal problems are easy to solve as there is no danger for the algorithm

to get stuck in any local optima, which is not the case for multimodal problems.

– Dissimilar parameter domain

An algorithm is forced to adjust its parameters for problems with design variables that

lie in different magnitude of domain. For example xa may lie in [0,1] , while xb might

lie in [10,100].

– Dissimilar trade-off range Similar to design variables, objective functions may have

a different range too. For example in one objective may define quality, while the

other might define price which have different scales of measurement. Both, dissimilar

parameter domain and trade-off range force an algorithm to adjust its parameters and

find well spread solutions that cover the entire search domain.

• Pareto Optimal Geometry

For MOOPs, the PF can have a wide variety of geometry. It can be convex, concave, linear,

degenerate, connected, and disconnected. By definition if the convex hull is covered by the

set,it is convex, and if the convex hull covers the set then it is concave. A problem having both

sets, convex and concave, is linear. A lower dimension PF in a higher dimension objective

vector space is a degenerate front. Disconnected and connected front refers to discontinuous

set and continuous set. It should be noted that a discontinuous set might not always map a

disconnected front.

4.2 Multi-Objective Optimization Test Problems

We select seven problems from the multi-objective optimization literature for investigating the

performance of ACMOPSO. All of the selected problems have objective functions and constraints
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that are differentiable. It has to bementioned that the KKT optimality analysis requires the gradients

of objective functions and constraints.

4.2.1 Test problem Zitler-Deb-Thiele - 2 (ZDT2)

ZDT2 is a high dimensional (30 design variable), bi-objective unconstrained problem having a

non-convex Pareto-optimal front. Below is the problem formulation.

Minimize



f1(x) = x1

g(x) = 1 + 9
n−1

∑n
i=2 xi

f2(x, y) = 1 − ( f1(x)/g(x))2

(4.1)

4.2.2 Test problem Zitler-Deb-Thiele - 6 (ZDT6)

ZDT6 is a 10-variable, unconstrained problem having a non-convex Pareto-optimal set. It has a

non-uniformly distributed PS with sparse density of solutions near the optimal front, which makes

it a difficult problem to solve.

Minimize



f1(x) = 1 − exp(−4x1) sin6(6πx1)

g(x) = 1 + 9((
∑n

i=2 xi)/9)0.25

f2(x) = 1 − ( f1(x)/g(x))2

(4.2)

4.2.3 Test problem Osyczka and Kundu (OSY)

The Osyczka and Kundu (OSY) problem is a constrained six variable test problem. The true

Pareto front of this problem consists of five disjoint Pareto-optimal regions, with atleast one active

constraint per region. The optimal solutions lie on the intersection of constraint boundaries and

hence it is important that an algorithm properly explores and exploits these regions.
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minimize
x

f1(x) = −[25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2]

minimize
x

f2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6

subject to g1(x) = x1 + x2 − 2 ≥ 0

g2(x) = 6 − x1 − x2 ≥ 0

g3(x) = 2 − x2 + x1 ≥ 0

g4(x) = 2 − x1 + 3x2 ≥ 0

g5(x) = 4 − (x3 − 3)2 − x4 ≥ 0

g6(x) = (x5 − 3)2 + x6 − 4 ≥ 0

0 ≤ x1, x2, x6 ≥ 10, 1 ≤ x3, x5 ≥ 5, 0 ≤ x4 ≥ 6,

(4.3)

4.2.4 Test problem Tanaka (TNK)

The original TNK problem is a two variable constrained test problem. It has a globally Pareto-

optimal front with three disconnected fronts alternating between feasible and infeasible regions of

the search space.

minimize
x

f1(x) = x1

minimize
x

f2(x) = x2

subject to g1(x) = x2
1 + x2

2 − 1 − 0.1 cos (16 arctan x1
x2
) ≥ 0

g2(x) = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

0 ≤ x1 ≥ π

0 ≤ x2 ≥ π

(4.4)
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4.2.5 Test problem modified Tanaka (mTNK)

The modified TNK is similar to the original TNK problem with a slight change in one of the

constraints. It has a globally Pareto-optimal front with eight disconnected smaller fronts.

minimize
x

f1(x) = x1

minimize
x

f2(x) = x2

subject to g1(x) = x2
1 + x2

2 − 1 − 0.1 cos (32 arctan x1
x2
) ≥ 0

g2(x) = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

0 ≤ x1 ≥ π

0 ≤ x2 ≥ π

(4.5)

4.2.6 Test problem welded beam design (WBD)

The welded beam design problem has four variables and four nonlinear constraints. The

objective function and the constraints are differentiable. The first objective function corresponds

to the cost of the weld assembly and the second objective function corresponds to the deflection of

the free end of the beam.
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minimize
x

f1(x) = 1.10471x2
1 x2 + 0.04811x3x4(14 + x2)

minimize
x

f2(x) =
4PL3

E x4x3
3

subject to g1(x) = x1 − x4 ≤ 0

g2(x) =
4PL3

E x4x3
3
− 0.25 ≤ 0

g3(x) =

√
t2
p +

tptdpx2

R
+ t2

dp − τmax ≤ 0

g4(x) =
6PL
(x4x2

3)
− σmax ≤ 0

g5(x) = P − Pc ≤ 0

tp =
P

(
√

2x1x2)

R =

√√√
x2

2
4 +

(
x1 + x3

2

)2

M = P

(
L +

x2
2

)
J = 2

((
x1x2
√

2

)
∗

(
x2

2
12 +

(
x1 + x3

2

)2))
tdp =

MR
J

Pc = 4.013
√

EG

(
x3x3

4/6
L2

) (
1 −

x3

√
E

4G

2L

)
P = 6, 000 lb f

L = 14 inches

E = 30, 000, 000 psi

τmax = 13, 600 psi

σmax = 30, 000 psi

G = 12, 000, 000 psi

(4.6)
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4.2.7 Test problem Viennet (VNT)

minimize
x

f1(x) = 0.5(x2
1 + x2

2) + sin(x2
1 + x2

2)

minimize
x

f2(x) = 15 + (3x1 − 2x2 + 4)2
8 +

(x1 − x2 + 1)2
27

minimize
x

f3(x) =
1

x2
1 + x2

2 + 1
− 1.1 exp(−x2

1 + x2
2)

subject to − 3 ≤ x1, x2 ≥ 3

(4.7)

4.3 Performance Evaluation of ACMOPSO

The ACMOPSO algorithm developed in [36] is used as the baseline algorithm for this pre-

liminary investigation. The algorithm was coded in Intel Fortran 2017, and its performance is

evaluated using selected benchmark problems for multi-objective optimization. ACMOPSO main-

tains an external archive to store the nondominated solutions found in all iterations. A swarm

particle keeps track of the optimal position that has found thus far and sends its new position to

the archive for evaluation if and only if it is not dominated by its personal best position. Leaders

are selected among the archived solutions based on the cone separation method. Inertia weight is

adjusted by adapting the social component of the velocity update equation. A mutation operator is

also employed in the algorithm as recommended in [33]. The KKT proximity measure as defined

in (3.12a) is calculated for the nondominated solutions found by ACMOPSO. The quality of the

obtained solutions is evaluated using the Generational Distance (GD) [72] and the Inverse Gen-

erational Distance (IGD). The KKT proximity measure is computed at each iteration during the

experiments. The Generational Distance quantifies the average distance of the computed solutions

from the true Pareto-optimal front, while the Inverted Generational Distance measures how well

the Pareto-optimal front is represented by the computed nondominated set of solutions. Similar to

GD, the KKT proximity measure quantifies the proximity of the obtained solutions from the true

Pareto-optimal front [45]. The GD and IGD indicators are calculated as follows:
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GD =

√∑I
i=1d2

i

|I |
(4.8)

IGD =

√∑J
j=1d2

j

|J |
(4.9)

where |I | is the cardinality of the computed Pareto-optimal set, |J | is the cardinality of the

globally Pareto-optimal set of solutions provided that a set of discrete Pareto-optimal solutions

is available, di is the Euclidean distance between the computed Pareto-optimal solution i and its

nearest available globally Pareto-optimal solution, and d j is the Euclidean distance between a

globally Pareto-optimal solution j and its nearest computed Pareto-optimal solution.

Table 4.2: Simulation Parameters.

Test problem MOO iterations SO iterations Processor threads
ZDT2 50 5000 1

ZDT6 50 5000 8

OSY 300 5000 4

TNK 100 3000 8

mTNK 100 3000 8

WBD 300 5000 8

Viennet 100 3000 8

A swarmwith 100 particles which is divided into five sub-swarms is utilized. These sub-swarms

explore the search space which is partitioned into equal segments using the information about the

ideal and the nadir points. Objective functions, constraints and their gradients are normalized

and used in the KKT proximity calculation. The procedure is repeated 31 times with randomly

generated initial swarm positions the mean, median and standard deviation of all of the quality
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Figure 4.1: GD and IGD Values for the Problem ZDT2.

indicators mentioned above are reported. The simulation parameters are listed in Table 4.2. The

MOO iterations correspond to the number of iterations performed by ACMOPSO, and in Chapter

5 by the proposed MOPSO. The SO iterations correspond to the number of iterations performed

by the single-objective DE/rand/1/either-or algorithm (see Section 2.2.3) in order to calculate the

KKT proximity measure for each nondominated solution vector generated by ACMOPSO.

4.3.1 Problem ZDT2

Figure 4.1 shows the convergence of the median value of GD and IGD for problem ZDT2

across 31 runs and Table 4.3 shows the mean, median and standard deviation values of the KKT

proximity measure after 50 iterations across 31 runs. ACMOPSO is able to find a good distribution

of solutions near the true Pareto-optimal front within approximately 45 iterations as demonstrated

by the convergence of GD and IGD. Figure 4.2 shows the true Pareto-optimal front as a solid line
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Table 4.3: ZDT2 KKT Proximity Measure.

Metric Mean Median Std. Dev

KKTPM 3.09E-04 4.69E-006 6.36E-004
GD 3.11E-04 2.18E-004 2.88E-004
IGD 3.42E-04 2.80E-004 1.51E-004

Figure 4.2: Pareto Front for the Problem ZDT2.

and the computed solutions represented as circles for the run that corresponds to the median value

of the KKT proximity measure. The observed values of the latter validate the fact that the obtained

nondominated solutions are Pareto optimal.

4.3.2 Problem ZDT6

ProblemZDT6 is a 10-variable problemwith a nonconvex Pareto-optimal set. The characteristic

feature of this problem is its non-uniform density of solutions across the Pareto-optimal region,

which cause convergence issues for many multi-objective optimization algorithms. Figures 4.3
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and 4.4 show that ACMOPSO requires on average approximately 30 iterations to converge to the

Pareto-optimal front based on the IGD value. The presence of one nondominated solution near

the upper left-hand corner of the Pareto-optimal front, as shown in Figure 4.5 at the final iteration

demonstrates the inability of the algorithm to focus the search on that region and bring the non-

dominated solutions closer to the Pareto-optimal front. That conclusion is corroborated by the high

GD value shown in Figure 4.3 and by the worst KKT proximity measure value being approximately

equal to one.
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Figure 4.3: GD and IGD Values for the Problem ZDT6.

Figure 4.4: KKT Proximity Measure for the Problem ZDT6.
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Figure 4.5: Pareto Front for the Problem ZDT6.

4.3.3 Problem OSY

It can be observed from Figure 4.8 that the first objective function does not vary significantly

in the regions AB, BC, and EF, which makes OSY a difficult problem to solve. Figure 4.6 shows

the quality indicators and Figure 4.7 shows the KKT proximity measure for the corresponding

Pareto-optimal front. At about 200 iterations with a swarm size of 100, ACMOPSO is able to

reach the vicinity of the true Pareto-optimal front. The GD, IGD, and the KKT proximity measure

corroborate this claim. It should be mentioned that the median value of the KKT proximity measure

decreases from 0.9885 to 0.1921 across the iterations for 31 runs. High KKT proximity measure

values at certain points indicate that the solution has not converged to the true Pareto-optimal front.

This is a scenario where it is demonstrated that the KKT proximity measure offers a means to detect

inability to converge to the true Pareto-optimal front. [63].
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Figure 4.6: GD and IGD Values for the Problem OSY.

Figure 4.7: KKT Proximity Measure for the Problem OSY.
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Figure 4.8: Pareto Front for the Problem OSY.

4.3.4 Problem TNK

Figure 4.11 shows the disconnected Pareto-optimal front for the original TNK problem. An

optimization algorithm has difficulty exploring the search space since all of the solutions lie on a

nonlinear constraint surface. Figures 4.9 and 4.10 show a steady convergence of ACMOPSO to the

true Pareto-optimal front. ACMOPSO is able to find a well-distributed set of solutions in about 50

iterations when the values of GD and IGD drop below 10−3.
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Figure 4.9: GD and IGD Values for the Problem TNK.

Figure 4.10: KKT Proximity Measure for the Problem TNK.
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Figure 4.11: Pareto Front for the Problem TNK.

4.3.5 Problem mTNK

The difference between the original and the modified version is just the value of a coefficient

in the first constraint, which results in a Pareto-optimal front with eight disconnected segments.

The performance of ACMOPSO on the modified TNK problem is similar to its performance on

the original TNK. Figures 4.12 and 4.13 show the same steady convergence of the algorithm to the

true Pareto-optimal front in about 60 iterations. The GD and IGD values remain steady with minor

fluctuations and the median value KKT proximity measure converges to 10−3.
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Figure 4.12: GD and IGD Values for the Problem mTNK.

Figure 4.13: KKT Proximity Measure for the Problem mTNK.
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Figure 4.14: Pareto Front for the Problem mTNK.

4.3.6 Problem WBD

The main challenge in this problem is to find the Pareto-optimal front near the minimum-cost

solution (first objective function) due to the number of active constraints present in that region. The

Pareto-optimal front near the minimum-deflection solution (second objective function) is easily

obtained as there is only one active constraint in that region [73]. GD and IGD manage to converge

to the order of 10−2 and 10−3 respectively indicating that ACMOPSO is able to find well-distributed

nondominated solutions which are near the global Pareto-optimal front, with the exception of

the minimum-cost region, where not all solutions are found. Figures 4.15 and 4.16 show the

convergence of ACMOPSO near the true Pareto-optimal front within approximately 150 iterations.
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Figure 4.15: GD and IGD Values for the Problem WBD.

Figure 4.16: KKT Proximity Measure for the Problem WBD.
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Figure 4.17: Pareto Front for the Problem WBD.

4.3.7 Problem VNT

The Viennet problem is a three-objective, constrained problem that also has a disconnected

set of Pareto-optimal fronts. Figures 4.18 and 4.19 show the capability of ACMOPSO to reach

the vicinity of the true Pareto-optimal front within 40 iterations, however, the lack of local search

operators prevent the algorithm from obtaining a well-distributed set of solutions that is even closer

to the true Pareto-optimal front. Furthermore, as shown in Figure 4.19, certain solutions remain far

from the front considering that their KKT proximity measure value is approximately equal to one.
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Figure 4.18: GD and IGD Values for the Problem VNT.

Figure 4.19: KKT Proximity Measure for the Problem VNT.
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Figure 4.20: Pareto Front for the Problem VNT.
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CHAPTER 5

DEVELOPMENT OF A FUZZY-ADAPTIVE MULTI-OBJECTIVE

PARTICLE SWARM OPTIMIZER

The proposed optimization framework uses the swarm intelligence operators andmulti-objective

optimization principles utilized in the ACMOPSO algorithm, which is described in Section 2.3.

The main new features consist of the calculation of the KKT proximity measure and the utilization

of a set of reference vectors in order to cluster the non-dominated solutions in the external archive

in a way that each sub-swarm utilizes its own set of leaders and it is, thus, able to focus on a more

localized search when the particles are in the vicinity of the Pareto-optimal front. Furthermore,

convergence statistics regarding the clustered non-dominated solutions are utilized in order to adapt

the PSO algorithmic parameters, i.e., inertia weight w and social coefficient c1. The adaptation

is performed via two fuzzy logic controllers (FLCs). A description of the proposed Fuzzy-

Adaptive Multi-Objective Particle Swarm Optimization (FAMOPSOkkt) algorithm is provided in

the following sections.

5.1 Using Reference Vectors for Swarm Guidance and Archive Management

The first modification in the ACMOPSO algorithm corresponds to the utilization of a set of

reference points to guide the swarms towards the Pareto-optimal front. The reference points are

generated as an evenly distributed set of points on a unit hyperplane that lies in the first quadrant.

This requires the normalization of the population members in every iteration, which is performed

by transforming each objective function value as follows: The corresponding ideal point coordinate

is subtracted from the objective function value and the outcome is divided by the difference of the

maximum objective function value among the solutions in the external archive and the ideal point
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coordinate,

f n
j (x) =

f j(x) − z j
i

z j
max − z j

i , j ∈ {1, ..., J} (5.1)

where z j is the ideal point coordinate in objective j, z j
max is the maximum value in objective

j among the solutions in the archive, and f n
j is the normalized objective function value. The

ideal point is obtained by utilizing the single-objective differential evolution DE/rand/1/either-or

optimizer (see Section 2.2.3).

Figure 5.1: Reference Set in 2-D.
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Figure 5.2: Reference Set in 3-D.

For a two-objective problem, the reference points lie on the line that connects points (0, 1) and

(1, 0). For a problem with three objectives, the hyperplane corresponds to a triangle with apex

at (1, 0, 0), (0, 1, 0), and (0, 0, 1). For the purposes of this work, a swarm with five equisized

sub-swarms is utilized, with two reference points associated with each sub-swarm in problems with

two objectives, as shown in Figure 5.1, and three reference points in problems with three objectives,

as shown in Figure 5.2.

The nondominated solutions in the current iteration, which are obtained after applying the

Pareto dominance criteria (see Section 2.1.1) to the solutions already stored in the external archive

and the solutions that were sent to the archive by the swarm, are clustered by determining their

association with each of the reference points. Specifically, for each normalized nondominated

solution vector f n
k , the cosine of the angle formed with each reference vector (see Figure 5.3) rl is

calculated as:
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cosθk,l =
f n
k · rl

| | f n
k | | | | rl | |

(5.2)

In this way, the nondominated solution vector is assigned to the reference vector that forms the

smallest angle with the solution vector. Once all the nondominated solutions have been assigned

to a reference vector, the solution density of the corrresponding cluster is determined by first

calculating the maximum angle formed by the solution vectors that belong to the particular cluster

and then dividing the angle by the cardinality of the cluster. The solution density metric quantifies

the crowdedness of the cluster and is utilized to assign the probability of selection of the cluster in

order to provide leaders to the sub-swarm. The selection probability is calculated as the ratio of

the solution density metric of the reference point over the sum of the density metric of the group of

reference points assigned to the corresponding sub-swarm.

If the number of nondominated solutions exceeds the capacity of the external archive, the

following approach is utilized in order to select solution vectors that occupy the least crowded

areas. First, the two extreme solutions in each cluster, i.e., the solutions that form the largest angle

with the reference vector are always kept in the archive. The remaining solutions in each cluster

are ranked based on their average distance from solution vectors that belong to the same cluster. A

threshold regarding the number of nondominated solutions is specified for each cluster; if all the

available slots are not filled, they become available to the other cluster(s) associated with the same

sub-swarm. In this way, the capacity of the external archive is not exceeded at the end of each

iteration.
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Figure 5.3: Calculating the Angle Between a Solution Vector and Each of the Reference Vectors.

5.2 Using the KKT Proximity Measure for the Selection of Swarm Leaders

The KKT proximity measure is computed for each of the nondominated solutions following

the methodology described in Section 3.3. The selection of a set of leaders is performed in the

following manner: If the number of leaders in each cluster does not exceed a prespecified threshold

value, all the nondominated solutions in the cluster are added to the set of leaders. Otherwise, the

nondominated solutions in each cluster are ordered based on their KKT proximity measure value.

The solution vectors with the lowest values, up to a number of solutions equal to the threshold

value, are selected and placed in the set of leaders of the sub-swarm.

The update of the velocity of each swarm particle is performed using Equation (2.2). The two

leaders are obtained by first selecting the cluster of the sub-swarm using the probability assigned

to each cluster (see Section 5.2) and, subsequently, by randomly choosing the leaders from the
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selected cluster.

The values of the inertia weight and the social coefficient in Equation (2.2) are adapted for

each reference point and corresponding cluster at the end of each iteration using feedback from

the computed KKT proximity measure values. Two metrics are utilized to quantify the feedback:

The first metric corresponds to the average value of the KKT proximity measure in the cluster,

which reflects the average convergence of the nondominated solutions associated with that cluster.

The second metric is the improvement of the average convergence relative to the previous iteration.

This feedback is utilized as the input to two FLCs as described in the following section.

5.3 Fuzzy Logic Controllers

Two Mamdani-type FLCs [74] are utilized in order to adapt the inertia weight w and the social

coefficient c1 dynamically throughout the optimization process. The adaptation is performed for

each cluster of nondominated solution vectors in the external archive, i.e., each cluster has its own

set of parameters, wk and c1,k . Two fuzzy variables are used as input to the FLCs:

• The first variable, f z(1,k), corresponds to the average value of the KKT proximity measure in

cluster k during iteration: f z(1,k) ∈ [0, 1] ∀k = 1, ...,K

• The second variable, f z(2,k), is the improvement of the average convergence of the cluster

solution vectors relative to the previous iteration. The computed value is normalized by the

maximum improvement in all the clusters during the current iteration, thus, f z(2,k) ∈ [0, 1].

The output variable, f z(3,k), of the first FLC is the inertia weight wk ∈ [0.05, 0.9] and the

output variable of the second FLC, f z(4,k), is the social coefficient c1,k ∈ [1.0, 3.0]. A fuzzy set

consisting of three linguistic subsets is constructed for each input and output variable: zs1 = low,

zs2 = medium, and zs3 = high. Therefore, the fuzzy set for f z(1,k) is {zs(1)1 , zs(1)2 , zs(1)3 }, for

f z(2,k) is {zs(2)1 , zs(2)2 , zs(2)3 }, for f z(3,k) is {zs(3)1 , zs(3)2 , zs(3)3 }, and for f z(4,k) is {zs(4)1 , zs(4)2 , zs(4)3 }.
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Table 5.1: Centers and Shapes of Membership Functions

i j
1 2 3 4

1 {0.10, 0.15} {0.10, 0.15} {0.10, 0.10} {1.10, 0.40}
2 {0.50, 0.20} {0.50, 0.20} {0.40, 0.15} {2.00, 0.40}
3 {0.90, 0.15} {0.90, 0.15} {0.85, 0.25} {2.90, 0.40}

The fuzzy subsets are represented by Gaussian membership functions and defined as:

µi( f z( j)) = e
−( f z(j)−αi, j )

2

2σ2
i, j , i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4}. (5.3)

where αi, j and σi, j are the center and the corresponding shape of the membership function of

fuzzy subset i within the fuzzy set of variable f z( j), respectively. The values of {αi, j , σi, j} are

listed in Table 5.1.

The membership functions for the average convergence, convergence improvement, inertia

weight, and social coefficent are plotted in Figures 5.4 through 5.7, respectively.
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Figure 5.4: Degree of Membership vs. Average Convergence.

Figure 5.5: Degree of Membership vs. Convergence Improvement.
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Figure 5.6: Degree of Membership vs. Inertia Weight.

Figure 5.7: Degree of Membership vs. Social Coefficient.
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Table 5.2: Fuzzy Rules

Rule Fuzzy subset
f z(1,k) f z(2,k) f z(3,k) f z(4,k)

1 L L L L
2 L M L L
3 L H M M
4 M L M M
5 M M M M
6 M H H H
7 H L M M
8 H M H H
9 H H H H

The next step is to establish a set of inference rules in order to implement the fuzzification

process. The fuzzy rules utilized in this work are based on Mamdani’s direct method [75]; These

rules, which correspond to IF − THEN statements between the input and output fuzzy sets, are

listed in Table 5.2. The antecedent sets (fuzzy input sets) and their respective membership functions

are combined via a fuzzy AND (intersection) operator. For instance, rule #1 in Table 5.2 specifies

that if f z(1,k) is zs(1)1 and f z(2) is zs(2)1 , then f z(3,k) is zs(3)1 . In this case, rule #1 is said to have

fired. The fuzzy logic is implemented by using the membership functions of the fuzzy variables:

µ3( f z(3,k))(r#1) = µ1( f z(1,k)) ∩ µ1( f z(2)) ⇒

⇒ µ3( f z(3,k))(r#1) = min {µ1( f z(1,k)), µ1( f z(2,k))} (5.4)

If the resulting membership function value is not zero, rule #1 is said to have been activated.

The final task performed by the FLCs is to defuzzify the membership function values to obtain

crisp values for wk and c1,k . For this purpose, the centroid − o f − area approach [76] is employed.

The centroid, f z( j)∗ , (with j ∈ {3, 4}), which corresponds to a crisp output variable value, is

calculated as:
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f z( j)∗ =

∫
µ( f z( j)) f z( j)∫
µ( f z( j))

(5.5)

5.4 Performance Evaluation of FAMOPSOkkt

The FAMOPSOkkt algorithm developed in Intel Fortran 2017 is tested in the benchmark

problems used for the evaluation of the ACMOPSO algorithm in Chapter 4. The quality indicators

that are utilized for the performance evaluation are the Generational Distance (GD), the Inverse

Generational Distance (IGD), and the KKT proximity measure.

A swarm consisting of 100 particles and divided into five sub-swarms is utilized. The capacity

of the external archive is limited to 100 for all problems and the threshold of the number of leaders

per cluster is set equal to ten. The procedure is repeated 31 with randomly generated initial

swarm positions. The median values of the quality indicators among the 31 runs for each of the

seven benchmark problems for ACMOPSO and FAMOPSOkkt are listed in Tables 5.3 and 5.4,

respectively.

Table 5.3: ACMOPSO Quality Indicators.

Test problem Generational Distance Inverse Generational Distance KKT proximity measure

ZDT2 2.18E-04 2.80E-04 4.69E-06

ZDT6 3.18E-02 2.11E-04 2.24E-13

TNK 5.44E-04 2.90E-04 2.30E-03

mTNK 4.25E-04 4.07E-04 2.50E-03

OSY 2.54E-04 3.03E-04 1.83E-01

WBD 4.72E-04 2.88E-03 9.31E-04

Viennet 3.15E-04 2.01E-04 9.66E-04



60

Algorithm 4 The FAMOPSOkkt Algorithm.
1: Initialize positions and velocities of particles (use a random seed for each sub-swarm)
2: Initialize iteration counter ( j = 0) and external archive
3: for each sub-swarm do
4: Evaluate objective functions and constraints
5: end for
6: for each particle do
7: if the particle’s current position is not dominated by its personal best position then
8: Calculate the KKT proximity measure and send to the external archive for evaluation
9: end if
10: end for
11: Combine the archived solutions with the new solutions generated by the sub-swarms
12: Use Pareto dominance criteria to find the nondominated solutions
13: Cluster the nondominated solutions using the set of reference points
14: Calculate the solution density of each cluster and the corresponding probability of selection
15: for each cluster do
16: if the number of nondominated solutions within a cluster exceeds a threshold value then
17: Select the solutions with the smallest KKT proximity values
18: else
19: Add all nondominated solutions within the cluster to the set of leaders
20: end if
21: Calculate the average convergence and the convergence improvement (input to the FLCs)
22: end for
23: if the number of nondominated solutions exceeds the capacity of the external archive then
24: Remove solutions that reside in crowded regions
25: end if
26: for each sub-swarm do
27: for each particle in the sub-swarm do
28: if at least one leader is available then
29: Select a leader from an associated cluster
30: if rand(0, 1) ≤ p f and more than one leaders are available then
31: Select a leader (randomly, but different than the first leader)
32: for each decision variable j do
33: Update the corresponding velocity component and compute the new position
34: end for
35: else
36: Select one leader(randomly) and a decision variable, jrand (also randomly)
37: for each decision variable j ,if (rand)(0, 1) ≤ η or j = jrand do
38: Mutate the jth component of the leader
39: end for
40: Replace particle with mutated leader
41: end if
42: end if
43: end for
44: end for
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45: Adapt the inertia weight and social coefficient of each cluster using the corresponding FLCs
46: t = t + 1
47: until stopping criterion is satisfied

Table 5.4: FAMOPSOkkt Quality Indicators.

Test problem Generational Distance Inverse Generational Distance KKT proximity measure

ZDT2 1.02E-04 2.70E-04 1.50E-05

ZDT6 7.20E-04 2.41E-04 9.06E-14

TNK 4.95E-04 3.49E-04 3.20E-03

mTNK 3.86E-04 3.16E-04 2.80E-03

OSY 2.21E-04 2.87E-04 1.74E-01

WBD 4.79E-04 8.16E-03 9.28E-04

Viennet 2.81E-04 2.71E-04 2.82E-05

5.4.1 Problem ZDT2

Figure 5.8 shows plots of the median GD and IGD values across the 31 runs for problem ZDT2

and Table 5.5 shows the mean, median, and standard deviation of the KKT proximity measure for

50 iterations across 31 runs. A comparison between the GD and IGD plots in Figures 4.1 and

5.8 for ACMOPSO and FAMOPSOkkt, respectively, reveals that FAMOPSOkkt is able to find a

well-distributed set of solutions near the true Pareto-optimal front within twenty iterations, on an

average basis, which is significantly faster than the ACMOPSO algorithm. Figure 5.9 shows the

true Pareto-optimal front as a solid line and the computed front as circles for the ZDT2 problem

plotted for the run that corresponds to the median value of the KKT proximity measure. It needs to

be emphasized that the median values for both GD and IGD are smaller for the FAMOPSOkkt, in

addition to a much smaller standard deviation.
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Figure 5.8: GD and IGD Values for the Problem ZDT2.

Table 5.5: ZDT2 KKT Proximity Measure.

Metric Mean Median Std. Dev

KKTPM 2.17E-04 1.50E-05 7.96E-04
GD 1.08E-04 1.02E-04 1.77E-05
IGD 2.69E-04 2.70E-04 1.71E-05
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Figure 5.9: Pareto Front for the Problem ZDT2.

5.4.2 Problem ZDT6

In contrast to the performance of the ACMOPSO algorithm, FAMOPSOkkt is able to perform a

local search and attract all the nondominated solutions near the Pareto-optimal front as is evident in

Figures 5.10 and 5.12.A similar conclusion can be drawn by observing the convergence of the KKT

proximity measure in 5.11, where the worst value drops to 10−10 after approximately 40 iterations.

FAMOPSOkkt requires approximately 15 iterations to reach IGD values in the order of 10−4, while

ACMOPSO requires approximately 30 iterations.
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Figure 5.10: GD and IGD Values for the Problem ZDT6.

Figure 5.11: KKT Proximity Measure for the Problem ZDT6.
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Figure 5.12: Pareto Front for the Problem ZDT6.

5.4.3 Problem OSY

The convergence of the GD and IGD quality indicators is demonstrated in Figures 5.13 and

5.14. A comparison with Figures 4.6 and 4.7 shows similar behavior for the two optimizers, but

the median value of the KKT proximity measure is smaller for the FAMOPSOkkt algorithm. The

computed Pareto-optimal front that corresponds to the run with the median value of the KKT

proximity measure is plotted in Figure 5.15.
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Figure 5.13: GD and IGD Values for the Problem OSY.

Figure 5.14: KKT Proximity Measure for the Problem OSY.
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Figure 5.15: Pareto Front for the Problem OSY.

5.4.4 Problem TNK

Figure 5.18 shows the disconnected Pareto front for the original TNK problem. The FAMOP-

SOkkt algorithm is capable of finding near Pareto-optimal solutions in all the disconnected segments

of the front in a similar manner to the ACMOPSO algorithm as is revealed through a comparison

between Figures 5.16 and 5.17 and Figures 4.9 and 4.10, respectively. The Pareto-optimal front

that corresponds to the run with the median value of the KKT proximity measure is shown in 5.18.
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Figure 5.16: GD and IGD Values for the Problem TNK.

Figure 5.17: KKT Proximity Measure for the Problem TNK.
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Figure 5.18: Pareto Front for the Problem TNK.

5.4.5 Problem mTNK

Figure 5.21 shows the eight disconnected segments of the Pareto-optimal front for the modified

TNK problem. The FAMOPSOkkt algorithm is capable of finding near Pareto-optimal solutions

in all the disconnected segments of the front in a similar manner to the ACMOPSO algorithm.

However, the median values of both the GD and IGD metrics are smaller for the FAMOPSOkkt

algorithm as revealed through a comparison between Figures 5.19 and 4.12 and by the values listed

in Tables 5.3 and 5.4. The Pareto-optimal front that corresponds to the run with the median value

of the KKT proximity measure is shown in 5.21.
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Figure 5.19: GD and IGD Values for the Problem mTNK.

Figure 5.20: KKT Proximity Measure for the Problem mTNK.
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Figure 5.21: Pareto Front for the Problem mTNK.

5.4.6 Problem WBD

The FAMOPSOkkt algorithm is capable of finding near Pareto-optimal solutions for this engi-

neering design problem in a similar manner to the ACMOPSO algorithm. However, the median

values of both the GD and IGD metrics are smaller for the FAMOPSOkkt algorithm as revealed

through a comparison between Figures 5.22 and 4.15 and by the values listed in Tables 5.3 and 5.4.

The Pareto-optimal front that corresponds to the run with the median value of the KKT proximity

measure is shown in 5.24.
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Figure 5.22: GD and IGD Values for the Problem WBD.

Figure 5.23: KKT Proximity Measure for the Problem WBD.
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Figure 5.24: Pareto Front for the Problem WBD.

5.4.7 Problem VNT

The performance of FAMOPSOkkt in the Viennet problem is demonstrated in Figures 5.25 and

5.26. The obtained GD and IGD values are similar to the values obtained by ACMOPSO. However,

FAMOPSOkkt is able to find solutions with lower KKT proximity measure values as shown in 5.26

compared to 4.19. The Pareto-optimal front that corresponds to the run with the median value of

the KKT proximity measure is shown in 5.27.
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Figure 5.25: GD and IGD Values for the Problem VNT.

Figure 5.26: KKT Proximity Measure for the Problem VNT.
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Figure 5.27: Pareto Front for the Problem VNT.
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CHAPTER 6

BENCHMARKING FAMOPSOkkt

In this section, we benchmark the FAMOPSOkkt algorithm against state-of-the-art multi-

objective optimization algorithms. FAMOPSOkkt is tested against GDE3 [77], SMPSO [58, 78],

MOCell [79, 80], and NSGA III’s [81] implementation in jMetal. For these experiments, a

redesigned version of jMetal [82, 83, 84] is employed. jMetal stands for Metaheuristic Algorithms

in Java, and it is an object-oriented Java-based framework for multi-objective optimization with

metaheuristics. A brief description of the chosen algorithms is given below for completeness.

6.1 GDE3

GDE3 is the third version of the Generalized Differential Evolution which uses the standard

version - DE/rand/1/bin version [77]. Pareto dominance is used to make comparisons between

target and trial vectors to select new population members. The population size is maintained using

Pareto ranking and crowding distance.

6.2 SMPSOhv

Speed-Constrained Multi-Objective Particle Swarm Optimizer (SMPSO) [58, 78] implements

a velocity constriction mechanism, polynomial mutation, and maintains an external archive to store

the non-dominated solutions found during the search process. Crowding distance is also calculated

and used as a density estimator and as a leader selection criterion. In this comparison, a specific

version, SMPSOhv, is utilized; SMPSOhv uses hypervolume as a density estimator and takes its

contribution into account while selecting leaders from the external archive using binary tournament

selection. The particles in the archive contributing themost to the hypervolume have higher chances
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to be chosen as a leader, while the particle in the archive contributing the least to the hypervolume

is removed.

6.3 MOCellhv

Multi-objective Cellular Genetic Algorithm (MOCell) is a family of cellular genetic algorithms

which uses an external archive to store non-dominated solutions and a feedback mechanism in

which solutions from this archive randomly replace existing individuals in the population after each

iteration [79, 80]. Like SMPSO, this algorithm implements polynomial mutation and a crowding

distance mechanism to maintain solution diversity in the archive.

6.4 NSGA-III

Non-dominated sorting genetic algorithm, the third version (NSGA -III) is a revision to NSGA-

II which uses a modified elitist selection mechanism and a set of pre-defined reference points. All

the objective vectors and the supplied reference points are normalized and every populationmember

is associated with a particular reference point based on a proximity measure. Niching of accepted

population members is done to ensure a diverse set of solutions. However, jMetal implements

an improved version of NSGA-III, called θ-NSGA-III. [81]. This implementation retains most of

the salient features of the original NSGA-III like adaptive normalization and diversity-preservation

aided bywell-spread reference points, while replacing the Pareto dominance by a new θ-dominance.

In θ-dominance the solutions are allocated into different clusters represented by the well-distributed

reference points. Solutions belonging to the same cluster are subjected to a competitive relationship

defining a fitness function similar to penalty-based boundary intersection function; and the ones

with the better fitness are selected and kept in the population.
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6.5 Results

Quality indicators like hypervolume, GD, and IGD are also available in the jMetal framework.

Two implementations of hypervolume (HV) calculation are available: PISA hypervolume [85] and

WFHhypervolume [86]. The hypervolume quality indicator is capable of assessing the convergence

of the computed Pareto-optimal front to the true Pareto-optimal front and alsowhether the computed

nondominated solutions correspond to a well-distributed set. All algorithms are run for 31 runs

and the values of the quality indicators, i.e., HV, IGD, and GD are reported in Tables 6.1, 6.2, and

6.3, respectively.

The statistical significance of the results is assessed on the hypervolume values using the Mann-

Whitney-Wilcoxon (MWM) nonparametric test developed in [87] and in [88]. The algorithm with

the highest HV median value in each problem is compared with the other four algorithms using a

one-tailed MWM test. The null hypothesis of equal median values is tested at the 5% significance

level. If the null hypothesis is rejected in all four comparisons, the corresponding median value is

highlighted using bold font style. The performance of the FAMOPSOkkt based on the HV results

is very satisfactory as it produces the highest median value in six out of seven problems; a result

that is statistically significant at the 5% level in all six problems.
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Table 6.1: Hypervolume (HV) Results for Problems.

Problem Algorithm Mean Median Std. Dev.

ZDT2

GDE3 0.17163 0.17135 0.01391
SMPSOHV 0.06446 0.00264 0.10116
MOCellHV 0.04421 0.00338 0.05750
NSGA-III 0.02134 0.00000 0.03269
FAMOPSOkkt 0.32745 0.32746 0.00029

ZDT6

GDE3 0.39160 0.39698 0.01369
SMPSOHV 0.38516 0.39549 0.03881
MOCellHV 0.03141 0.03552 0.01969
NSGA-III 0.00000 0.00000 0.00000
FAMOPSOkkt 0.40037 0.40037 0.00015

TNK

GDE3 0.30612 0.30608 0.00049
SMPSOHV 0.29844 0.29853 0.00168
MOCellHV 0.30578 0.30587 0.00075
NSGA-III 0.30500 0.30509 0.00103
FAMOPSOkkt 0.30646 0.30653 0.00061

mTNK

GDE3 0.30397 0.30406 0.00114
SMPSOHV 0.29294 0.29225 0.00328
MOCellHV 0.30332 0.30355 0.00123
NSGA-III 0.30336 0.30383 0.00143
FAMOPSOkkt 0.30565 0.30567 0.00085

OSY

GDE3 0.73013 0.73133 0.01611
SMPSOHV 0.64730 0.69893 0.10051
MOCellHV 0.65910 0.74553 0.12252
NSGA-III 0.66507 0.67258 0.15153
FAMOPSOkkt 0.75307 0.75308 0.00026

WBD

GDE3 0.91261 0.91478 0.01041
SMPSOHV 0.92228 0.92210 0.00294
MOCellHV 0.92449 0.92457 0.00551
NSGA-III 0.91109 0.91591 0.01759
FAMOPSOkkt 0.92670 0.92849 0.00427

Viennet

GDE3 0.83388 0.83389 0.00055
SMPSOHV 0.83592 0.83591 0.00029
MOCellHV 0.83590 0.83589 0.00018
NSGA-III 0.84118 0.84118 0.00001
FAMOPSOkkt 0.83389 0.83396 0.00045
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Table 6.2: Inverse Generational Distance (IGD) Results for Problems.

Problem Algorithm Mean Median Std. Dev.

ZDT2

GDE3 4.26E-003 4.20E-003 4.81E-004
SMPSOHV 1.74E-002 1.81E-002 1.07E-002
MOCellHV 1.63E-002 1.85E-002 6.69E-003
NSGA-III 2.31E-002 2.93E-002 9.53E-003
FAMOPSOkkt 2.69E-004 2.71E-004 1.71E-005

ZDT6

GDE3 5.04E-004 3.09E-004 3.09E-004
SMPSOHV 8.56E-004 4.10E-004 1.75E-003
MOCellHV 1.41E-002 1.35E-002 2.35E-003
NSGA-III 5.70E-002 5.71E-002 6.86E-003
FAMOPSOkkt 2.40E-004 2.41E-004 3.66E-005

TNK

GDE3 5.38E-004 5.27E-004 5.66E-005
SMPSOHV 1.01E-003 1.01E-003 1.44E-004
MOCellHV 6.19E-004 6.11E-004 7.16E-005
NSGA-III 7.43E-004 7.19E-004 1.39E-004
FAMOPSOkkt 3.50E-004 3.49E-004 4.46E-005

mTNK

GDE3 5.11E-004 4.86E-004 9.77E-005
SMPSOHV 1.18E-003 1.17E-003 2.28E-004
MOCellHV 4.32E-004 4.25E-004 5.33E-005
NSGA-III 5.15E-004 5.05E-004 7.17E-005
FAMOPSOkkt 3.29E-004 3.17E-004 7.45E-005

OSY

GDE3 4.20E-003 3.82E-003 3.30E-003
SMPSOHV 8.36E-003 9.06E-003 2.39E-003
MOCellHV 5.73E-003 2.93E-003 6.02E-003
NSGA-III 6.15E-003 6.04E-003 2.04E-003
FAMOPSOkkt 2.86E-004 2.87E-004 1.47E-005

WBD

GDE3 2.04E-003 1.49E-002 3.94E-003
SMPSOHV 9.05E-003 9.53E-003 2.65E-003
MOCellHV 6.92E-003 6.52E-003 4.14E-003
NSGA-III 1.24E-002 1.16E-002 4.96E-003
FAMOPSOkkt 7.26E-003 8.16E-003 2.56E-003

Viennet

GDE3 4.96E-003 1.60E-004 1.47E-005
SMPSOHV 8.72E-004 8.92E-004 6.46E-005
MOCellHV 8.77E-004 8.81E-004 4.02E-005
NSGA-III 3.04E-005 2.95E-005 3.28E-006
FAMOPSOkkt 2.79E-004 2.71E-004 9.51E-005
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Table 6.3: Generational Distance (GD) Results for Problems.

Problem Algorithm Mean Median Std . Dev

ZDT2

GDE3 2.57E-002 2.62E-002 3.64E-003
SMPSOHV 1.22E-001 6.33E-002 1.60E-001
MOCellHV 3.32E-002 2.89E-002 2.18E-002
NSGA-III 1.41E-001 1.49E-001 7.58E-002
FAMOPSOkkt 1.08E-004 1.021E-004 1.765E-005

ZDT6

GDE3 7.85E-003 4.45E-005 1.98E-002
SMPSOHV 6.27E-002 6.13E-002 3.88E-002
MOCellHV 1.04E-001 9.65E-002 3.18E-002
NSGA-III 6.03E-001 5.75E-001 1.32E-001
FAMOPSOkkt 7.20E-004 7.20E-004 3.48E-005

TNK

GDE3 6.83E-004 6.95E-004 7.95E-005
SMPSOHV 1.44E-003 1.42E-003 2.47E-004
MOCellHV 6.31E-004 6.12E-004 9.27E-005
NSGA-III 6.94E-004 6.71E-004 1.38E-004
FAMOPSOkkt 5.19E-004 4.95E-004 1.04E-004

mTNK

GDE3 5.44E-004 5.45E-004 1.21E-004
SMPSOHV 2.40E-003 2.36E-003 4.96E-004
MOCellHV 4.80E-004 4.13E-004 1.83E-004
NSGA-III 3.84E-004 3.74E-004 1.26E-004
FAMOPSOkkt 3.89E-004 3.86E-004 8.11E-005

OSY

GDE3 1.72E-003 1.57E-003 7.62E-004
SMPSOHV 8.47E-003 1.94E-003 1.04E-002
MOCellHV 5.86E-003 1.91E-003 7.98E-003
NSGA-III 8.13E-003 8.23E-003 1.54E-003
FAMOPSOkkt 2.33E-004 2.21E-004 6.91E-005

WBD

GDE3 3.50E-004 3.32E-004 6.08E-005
SMPSOHV 4.44E-004 4.02E-004 2.65E-004
MOCellHV 5.63E-003 1.17E-003 8.19E-003
NSGA-III 8.43E-004 5.61E-004 6.84E-004
FAMOPSOkkt 7.26E-004 4.79E-004 5.52E-004

Viennet

GDE3 2.42E-004 1.97E-004 1.23E-004
SMPSOHV 8.19E-005 5.80E-005 6.63E-005
MOCellHV 5.80E-005 5.65E-005 6.67E-006
NSGA-III 8.42E-006 8.41E-006 1.17E-007
FAMOPSOkkt 4.11E-004 2.81E-004 3.38E-004
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CHAPTER 7

CONCLUSIONS

The multifaceted goal of solving optimization problems with conflicting objectives is to gen-

erate a a well-distributed set of near-Pareto-optimal solutions. Stochastic algorithms based on

evolutionary principles or swarm intelligence attempt to solve multi-objective problems without

requiring knowledge of the derivatives of the problem objectives and constraints. That approach,

although successfull when applied to various problems, typically requires a trial-and-error process

in order to adjust the algorithmic parameters. The KKT proximity measure was derived by evo-

lutionary algorithm optimization researchers in order to quantify the proximity of the computed

nondominated solutions to the global Pareto-optimal front. It has also been shown to converge

monotonically towards the Pareto-optimal front.

In this work, a Fuzzy-Adaptive Multi-Objective Optimization Algorithm with the KKT prox-

imity measure (FAMOPSOkkt) is proposed with two main goals. The first goal is to develop an

algorithm capable of obtaining feedback from the search process performed by the swarm parti-

cles regarding the convergence towards the Pareto-optimal front and use that feedback to adapt its

algorithmic parameters in an interactive manner. The second goal is to enhance its local search

capability by utilizing a set of reference points to cluster the computed nondominated solutions.

These clusters interact with their corresponding sub-swarms to provide their leaders, which are

utilized as the attraction basin of the swarm particles. The reference points and their associated

clusters are further utilized to manage the external archive of nondominated solutions.

The proposed algorithm is evaluated in a number of benchmark problems that provide various

challenges to a multi-objective optimizer. A comparison of the performance of the proposed

multi-objective optimization algorithm in the benchmark problems with the performance of the

optimization algorithm that was used as the blueprint for the development of the proposed algorithm
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reveals that both targets hane been met, i.e., successful adaptation of the algorithmic parameters

and more effective local search in the vicinity of the Pareto-optimal front. Further benchmarking of

FAMOPSOkkt against state-of-the-art evolutionary optimization algorithms with similar features

is performed on seven benchmark problems using the hypervolume quality indicator. The statistical

significance of the results, with respect to the median values, is assessed using the Mann-Whitney-

Wilcoxon nonparametric test. The FAMOPSOkkt algorithm performs better than all the other

algorithms in six problems; the results are statistically significant at the 5% level in all six problems.

The performance of the FAMOPSOkkt algorithm in synthetic benchmark problems and a real-

world design problem is very promising. However, the performance of the algorithm in a problem

with three objectives was not as successful as in the two-objective problems. A direction for future

research is to investigate methods that would allow FAMOPSOkkt to scale its performance to

many-objective optimization problems without a significant increase in the computational cost.
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