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Abstract 

In this thesis we focus on the analytical and numerical aspects of the 

Volterra integral equation of the second kind. This equation has wide range 

of applications in physics and engineering such as potential theory, 

Dirichlet problems, electrostatics, the particle transport problems of 

astrophysics, reactor theory, contact problems, diffusion problems and heat 

transfer problems. 

After introducing the types of integral equations, we will investigate 

some analytical and numerical methods for solving the Volterra integral 

equation of the second kind. These analytical methods include: the 

Adomian decomposition method, the modified decomposition method, the 

method of successive approximations, the series solution method and the 

conversion to initial value problem. 

For the numerical treatment of the Volterra integral equation we will 

implement the following numerical methods: Quadrature methods 

(Trapezoidal rule, Runge-Kutta method of order two, the fourth order 

Runge-Kutta method), Projection methods including collocation method 

and Galerkin method and the Block method. 

The mathematical framework of these numerical methods together with 

their convergence properties will be presented. These numerical methods 



XI 

will be illustrated by some numerical examples. Comparisons between 

these methods will be drawn. Numerical results show that the Trapezoidal 

rule has proved to be the most efficient method in comparison to the other 

numerical methods. 
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Introduction 

  In recent years integral equations have attracted the attention of 

many scientists and researchers due to their wide range of applications in 

science and technology. 

Many physical problems are modeled in the form of integral 

equations. These include potential theory, Dirichlet problems, 

electrostatics, contact problems, astrophysics problems and radiative heat 

transfer problems. (For more details see [3, 16]). 

Some valid numerical methods, for solving Volterra integral equation have 

been developed by many researchers. Very recently, Mirzaee [25] studied a 

Simpson’s quadrature method for solving linear Volterra integral equation 

of the second kind. Mustafa [27] and Campbell [11] used block methods to 

approximate the solution of Volterra integral equation with delay. Rahman, 

Hakim and Hasan [30] used Galerkin method with the Chebyshev 

polynomials for the numerical solution of Volterra integral equation of the 

second kind. Hermite polynomials were used by Rahman [29] and Shafiqul 

[36]. In [35] Saberi-Nadja and Heidari applied modified trapezoidal 

formula to solve linear integral equations of the second kind, and in [2] 

Aigo used repeated Simpson's and Trapezoidal quadrature rule to solve the 

linear Volterra integral equation of the second kind. Ahmad [1] has applied 

least-square technique to approximate the solution of Volterra-Fredholm 

integral equation of the second kind. Brunner, Hairer and Njersett [8] have 

used Runge-Kutta Theory for Volterra integral equation. Rahman and 

Islam in [31] solved Volterra integral equation of the first and the second 
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kind numerically by Galerkin method with Legendre polynomials. Marek 

and Arvet in [23] discussed the numerical solution of linear Volterra 

integral equation of the second kind with singularities by using collocation 

method. Bernstein’s approximation were used in [22] by Maleknejad to 

find out the numerical solution of Volterra integral equation. In [37] 

Tahmasbi solved linear Volterra integral equation of the second kind based 

on the power series method. Maleknejad and Aghazadeh in [21] obtained a 

numerical solution of these equations with convolution kernel by using 

Taylor-series expansion method. 

However many approaches for solving the linear and nonlinear kind 

of these equations may be found in [5], [10], [15], [32], [33] and [38]. 

In this work, some analytical methods have been used to solve the 

Volterra integral equation of the second kind. These methods are the 

Adomian decomposition method, the modified decomposition method, the 

series solutions, the method of successive approximations and the 

conversion to initial value problem.  

For the numerical treatment of the Volterra integral equation of the 

second kind, we have implemented the following methods: Quadrature 

methods (Trapezoidal rule, Runge-Kutta method of order two, the fourth 

order Runge-Kutta method), Projection methods including collocation 

method and Galerkin method and the Block method.  

This thesis is organized as follows: In chapter one, we introduce 

some basic concepts of integral equations. In chapter two, we investigate 

some analytical methods used to solve the Volterra integral equation. These 
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include: The Adomian decomposition method, the modified decomposition 

method, the method of successive approximations, the series solutions 

method and the conversion of the Volterra integral equation to ordinary 

differential equation. In chapter three, we implement some numerical 

methods for solving the Volterra integral equation. These are the 

Quadrature methods, Trapezoidal rule, Runge-Kutta methods, Blocks 

methods, the collocation method and the Galerkin method. Numerical 

examples and results are presented in chapter four and conclusions have 

been drawn. 
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Chapter One 

Mathematical Preliminaries 

An integral equation is an equation in which the unknown function 

appears under an integral sign. The most standard type of integral equation 

is given as 

                          ∫             
    

    
                                      (1.1) 

Here,       is the unknown function,        and      are known 

functions,   is known constant parameter, and      and      are the limits 

of integration that may be both variables, constants, or mixed, and they 

may be in one dimension or more. The function        is known as the 

kernel of integral equation [39]. 

1.1 Classification of integral equations   

1.1.1 Types of integral equations  

1) Fredholm integral equations 

The most standard form of a Fredholm integral equation is given by 

                   ∫                            
 

 
 ,                (1.2) 

There are three kinds of Fredholm integral equations: 

    Fredholm integral equation of the second kind: when the function 

      , then (1.2) becomes  

              ∫                                 
 

 
,                      (1.3) 

2. Fredholm integral equation of the first kind: when the function     

      , then (1.2) becomes  

         ∫                             
 

 
,                                 (1.4) 
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3. Fredholm integral equation of the third kind: when      is neither 0 nor 

1. 

2) Volterra integral equations 

The most standard form of Volterra integral equation is given as 

                            ∫             
 

 
,                                   (1.5) 

where the upper limit of integration is variable and the unknown function 

appears linearly or nonlinearly under the integral sign.  

There are three kinds of Volterra integral equations: 

1. Volterra integral equation of the second kind: when the function 

      , then (1.5) becomes  

                              ∫             
 

 
 ,                                    (1.6) 

2. Volterra integral equation of the first kind: when the function       , 

then (1.5) becomes  

                         ∫               
 

 
 ,                                          (1.7) 

3. Volterra integral equation of the third kind: when      is neither 0 nor 1. 

(see [39],[40] and [9]). 

3) Singular integral equations 

A singular integral equation is an equation in which one or both limits of 

integration are infinite or when the kernel becomes infinite at one or more 

points within the range of integration. For example, the integral equation, 

                        ∫       
 

  
                                                (1.8) 

is a singular integral equation of the second kind.  

1. Weakly singular integral equation: The kernel is of the form 

       
      

|   | 
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or                                            |   | 

where        is bounded (that is, several times continuously differentiable) 

       and        with          and   is a constant such that 

      . For example, the equation of the form: 

 

                           ∫
 

      
      

 

 
,                                     (1.9)  

is called generalized Abel’s integral equation. The equation of the second 

kind: 

                                ∫
 

      
      

 

 
,                (1.10)          

is called weakly singular integral equation. 

2. Strongly singular integral equations: if the kernel        is of the form  

       
      

      
 

and         is a differentiable function of       with         . 

4) Integro-differential equations  

In this type of equations, the unknown function  appears as a combination 

of an ordinary derivative and under the integral sign,  

For example:    

Volterra-integro-differential equation 

                ∫               
 

 
                      (1.11) 

 where           
   

   
           

 Fredholm-integro-differential equation 

               ∫               
 

 
                      (1.12) 

where           
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1.1.2 Linearity of integral equations 

Definition (1.1): An integral equation is said to be linear if the unknown 

function      in the integral equation appears in a linear fashion (i.e. the 

exponent of the unknown function      inside the integral sign is one). 

Otherwise it called nonlinear, that is the exponent of the unknown function 

other than one, or if the equation contains nonlinear functions of     .  

For examples 

                
 

 
  

 

 
 ∫             

 

 
                                           (1.13) 

is linear integral equation. 

                  ∫                  
 

 
                                      (1.14) 

is nonlinear integral equation. 

1.1.3 Homogeneity of integral equations 

Definition (1.2): If the function      in the second kind of Volterra or 

Fredholm integral equations is identically zero, the equation is called 

homogeneous, otherwise it is called nonhomogeneous.  

1.2 Kinds of kernels 

1. Separable kernel      

 A kernel        is said to be separable or (degenerate) if it can be 

expressed in the form 

                   ∑           
 
     ,                                                      (1.15)                                              

where the functions       and the functions       are linearly independent. 

(see [17]). 

2. Symmetric (or Hermitian) kernel 

A complex-valued function        is called symmetric (or Hermitian) if 
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where the asterisk denotes the complex conjugate. For a real kernel, we 

have  

                                                                                                

1.3 The existence and uniqueness theorem 

Some integral equations have a solution and some others have no solution 

or have an infinite number of solutions. The following theorems state the 

existence and uniqueness of the solution for the Voterra integral equation 

of the second kind. 

Theorem (1.1) (Volterra’s Theorem) 

Assume that the kernel        of the linear Volterra integral equation 

                ∫             
 

 
,       [   ]                         (1.16) 

is continuous on   {             }  Then for any function      

that is continuous on   ( that is,      ), the Volterra integral equation 

possesses a unique solution       . This solution can be written in the 

form 

                      ∫             
 

 
,                                        (1.17) 

for some       . The function          is called the resolvent kernel 

of the given kernel       [ ]. 

Theorem (1.2) 

 If we define the integral operator             by 

                ∫              
 

 
,                                                 (1.18) 

then the Volterra integral equation in operator form is given 

               ,              or          , 
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(where   denotes the identity operator, and the classical Volterra integral 

operator                  is defined by           

              ∫                     
 

 
 with         ), then we have 

the following relationship: 

                                           . 

By Theorem 1.1 this implies that the inverse operator        always 

exists, and hence (by uniqueness of       ) 

                                          , see ([6]). 
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Chapter Two 

Analytical methods for solving Volterra integral equation of 

the second kind 

There are many analytical methods available for solving Volterra integral 

equation of the second kind.  In this chapter we will focus on the following 

methods: the Adomian decomposition method, the modified decomposition 

method, the method of successive approximations, the series solution 

method, converting Volterra integral equation to initial value problem. 

2.1 The Adomian Decomposition Method 

The Adomian decomposition method (ADM) was introduced and 

developed by George Adomian [39]. It consists of decomposing the 

unknown function      of any equation into a sum of an infinite number of 

components defined by the decomposition series 

                                          ∑      
 
                                               (2.1) 

or equivalently 

                                                                              (2.2) 

The decomposition method is concerned with finding the components 

           individually. To establish the recurrence relation, we substitute 

(2.1) into equation (1.6) to get 

                   ∑             
    ∫        ∑      

 
      

 

 
             (2.3) 

or equivalently 

                          

                                ∫       
 

 
[                   ]             (2.4) 
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The components            of the unknown function      are 

completely determined by setting the recurrence relation: 

                           

                     ∫       
 

 
                                                   (2.5) 

or equivalently 

                                       

                                   ∫       
 

 
          

                                    ∫       
 

 
                                            (2.6) 

                                   ∫       
 

 
         

and so on for other components. As a result the components         

                 are completely determined, then the solution      of the 

Volterra integral equation (1.6) is readily obtained in a series form by using 

the series assumption in (2.1).  

 The decomposition method converts the integral equation into an 

elegant determination of computable components. If an exact solution 

exists for the problem, then the obtained series converges very rapidly to 

that exact solution. However, for concrete problems, where a closed form 

solution is not obtainable, a truncated number of terms is usually used for 

numerical purposes. The more components we use the higher accuracy we 

obtain [39]. 

Example 2.1 

Consider the following Volterra integral equation of the second kind 

                               ∫         
 

 
                                           (2.7) 
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We notice that                             Recall that the 

solution      is assumed to have a series form given in (2.1). Substituting 

the decomposition series (2.1) into both sides of (2.7) gives 

        ∑               
   ∫ ∑      

 
     

 

 
,                        

or equivalently 

                           ∫ [           
 

 
  

                                                 ]                         

We identify the zeroth component by all terms that are not included under 

the integral sign. Therefore, we obtain the following recurrence relation: 

                

                                         ∫      
 

 
                                         

so that 

                                

                         ∫      
 

 
   ∫                 

 
   

                         ∫         
 

 
∫               

  

 
 

 

 
         

                         ∫      
 

 
   ∫     

  

 
 

 

 
   

  

 
 

  

  
    

                         ∫      
 

 
   ∫  

  

 
 

  

  

 

 
    

  

  
 

  

   
        

The solution in a series form is given by 

                      
  

 
 

  

 
 

  

  
 

  

  
 

  

   
   

We can easily notice the appearance of identical terms with opposite signs. 

This phenomenon of such terms is called noise terms phenomenon. 

Canceling the identical terms with opposite terms gives the exact solution 

                                    . 
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2.2 The Modified Decomposition Method 

As shown before, the Adomian decomposition method provides the 

solution in an infinite series of components. The components        are 

easily computed if the inhomogeneous term      in the Volterra integral 

equation: 

                              ∫             
 

 
 ,                                    (2.8) 

consists of a polynomial. However, if the function      consists of a 

combination of  two or more of polynomials, trigonometric functions, 

hyperbolic functions, and others, the evaluation of the components 

        require more work. A reliable modification of the Adomian 

decomposition method was developed by Wazwaz [39]. The modified 

decomposition method will facilitate the computational process and further 

accelerate the convergence of the series solution. This will be applied 

whenever it is appropriate to all integral equations and differential 

equations of any order. It is important to note that the modified 

decomposition method relies mainly on splitting the function      into two 

parts; therefore it can not be used if the function      consists of only one 

term. To explain this technique, we recall that the standard Adomian 

decomposition method admits the use of the recurrence relation:            

            

                        ∫       
 

 
                                                (2.9) 

where the solution      is expressed by an infinite sum of components 

defined by 

                                 ∑      
 
                                                      (2.10) 



16 

In virtue of (2.9), the components        can easily be evaluated. The 

modified decomposition method introduces a slight variation to the 

recurrence relation (2.9) that will lead to the determination of the 

components of      in an easier and faster manner. For many cases, the 

function      can be set as the sum of two partial functions, namely       

and       . In other words, we can set  

                                                                                            (2.11) 

In virtue of (2.11), we introduce a qualitative change in the formation of the 

recurrence relation (2.9). To reduce the calculations, we will introduce of 

the modified decomposition method into recurrence relation:                         

                                      

                                   ∫       
 

 
             

                              ∫       
 

 
                                      (2.12) 

This shows that the formation of the first two components       and       

is only the difference between the standard recurrence relation (2.9) and the 

modified recurrence relation (2.12). The other components         

remain the same in the two recurrence relations. This variation in the 

formation of       and       is important to accelerate the convergence of 

the solution and in minimizing the size of computational work [39]. 

Example 2.2 

Consider the Volterra integral equation of the second kind 

                      ∫         
 

 
    

Using the modified decomposition method, we first split       
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into two parts, namely 

                                    

                                                                      

Next, use the modified recurrence formula (2.12) to obtain 

                                        

                                  ∫            
 

 
 

                            ∫                           
 

 
             

It is obvious that each component of          is zero. This in turn gives 

the exact solution by 

                                                                     

2.3 The method of successive approximations 

The successive approximations method provides a scheme that can be used 

for solving initial value problems or integral equations. This method solves 

any problem by finding successive approximations to the solution by 

starting with an initial guess as       , called the zeroth approximation 

which can be any real-valued function         that will be used in a 

recurrence relation to determine the other approximations.  There are two 

methods of successive approximations: 

   The Picard's method: In this method the     approximation for solving 

the Volterra integral equation (1.6) can be put in a recursive scheme 

defined by 

                         ∫                            
 

 
          (2.13) 

where the most commonly selected functions for       are          . 
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Accordingly, the first and the second approximation of the solution 

of      can be obtained as 

                          ∫              
 

 
                                      (2.14) 

                          ∫              
 

 
                                      (2.15) 

It is obvious that       is continuous if              and       are 

continuous. Notice that with the selection of          , the first 

approximation            . The final solution      is obtained by 

                                                                                           (2.16) 

so that the resulting solution      is independent of the choice of      . 

Example 2.3 

Consider the Volterra integral equation of the second kind  

                       ∫             
 

 
             

Using the successive approximations method, we can select for the zeroth 

approximation       

                                                                                                     (2.17) 

The method of successive approximations admits the use of the iteration 

formula 

                       ∫                         
 

 
                         (2.18)         

Substituting (2.17) into (2.18) we obtain 

           ∫                        
 

 
  

           ∫                
 

  
            

 

 
  

           ∫                
 

  
   

 

  
          

 

 
  

           ∫                
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Consequently, we obtain  

                               ∑
     

       
   

                             

The solution      of (1.62) is 

                                          .                         

(see [12] and [39]). 

    The Neumann series method 

 This method uses 

                                      . 

Then we obtain the successive approximations: 

                  ∫             
 

 
, 

                  ∫              
 

 
, 

    

                  ∫                 
 

 
  

                 ∫                
 

 
.                                         (2.19) 

Consider 

                ∫        [      ∫             ]
 

 
  

 

 
     

                                        ∫             
 

 
 

                               ∫       ∫             
 

 
  

 

 
 

                                                                                                     (2.20) 

where 

                      ∫       ∫             
 

 
  

 

 
                               (2.21) 

Thus, it can easily be observed from equation (2.21) that 

                                 ∑         
                                              (2.22) 

If             and further that 
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                               ∫                 
 

 
                                   (2.23) 

where             and hence       ∫               
 

 
 

The repeated integrals in equation (2.21) may be considered as a double 

integral over the triangular region; thus interchanging the order of 

integration, we obtain 

                         ∫       ∫             
 

 
  

 

 
 

                             ∫              
 

 
 

   where         ∫             
 

 
  . Similarly, we find in general 

                       ∫              
 

 
                                    (2.24) 

where the iterative kernels                                   are 

defined by the recurrence formula 

               ∫              
 

 
                                        (2.25) 

Thus, the solution for       can be written as 

                               ∑         
                                         (2.26) 

Upon using equation (2.24) we obtain 

                         ∑   ∫              
 

 
 
      

                             ∫ {∑           
   }

 

 
                             (2.27) 

Hence it is also clear that the solution of linear Volterra integral equation of 

the second kind will be given by  

                          

                             ∫ {∑           
   }

 

 
        

                              ∫     
 

 
                                              (2.28) 

where 

                        ∑           
                                                  (2.29) 
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is known as the resolvent kernel. (see [18],[19] and [28]) . 

Example 2.4 

Consider the Neumann series for the solution of the integral equation  

                            ∫             
 

 
                       

From the formula (2.25), we have 

                                  

        ∫    
 

 

          
      

  
   

        ∫
           

  

 

 

   
      

  
   

and so on .Thus, 

           
   

           

                    ∫ {∑           
   }

 

 
                           

                        ∫      
 

 
          ∫        

 

 
          

                          ∫        
 

 
               

                (
  

  
 

  

  
)    (

  

  
 

  

  
)                      

for              .  

2.4 The series solution method 

The series method is useful method that stems mainly from the Taylor 

series for analytic functions for solving integral equations. 

Definition (2.1) A real function      is said to be analytic if it has 

derivatives of all orders such that the Taylor series at any point   in its 

domain 

                           ∑
       

  
       

                                              (2.30) 

converges to      in a neighborhood of  . 
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 For simplicity, the generic form of Taylor series at       can be written 

as 

                               ∑    
   

                                                        (2.31) 

we will assume that the solution      of the Volterra integral equation 

(1.6) is analytic, and therefore possesses a Taylor series of the form given 

in (2.31), where the coefficients    will be determined recurrently.  

Substituting (2.31) into both sides of (1.6) gives 

      ∑    
   (    )   ∫        ∑    

  
        

 

 
 
                    (2.32) 

or  

       
     

      (    )   

                                ∫              
     

        
 

 
              (2.33)  

where          is the Taylor series for       the integral equation (2.32) 

will be converted to a traditional integral in (2.33) where instead of 

integrating the unknown function       the terms of the form        will 

be integrated. Notice that because we are seeking series solution, then if 

     includes elementary functions such as trigonometric functions, 

exponential functions, etc., then Taylor expansions for functions involved 

in      should be used. We will illustrate the series solution method by this 

example. (see [24], [28] and [39]. 

Example 2.5  

Consider the solution of the Volterra integral equation of the second kind 

                                  ∫        
 

 
,  

using the series method. We assume the solution in the series form 

    ∑    
  

    . Hence substituting the series into the equation and the 

Taylor’s series of        we have 

     ∑    
     ∑       

   
 
   

     

       
 ∫ ∑    
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                       ∑       
   

     

       
 ∑    

    

     
 
    

Comparing the coefficients of the same power of   gives the following set 

of values: 

                        

                             

                     
   

 
  

 

 
 , 

                    
 

  
 

  

 
  

 

  
   

                    
  

 
 

 

  
 , 

and so on. Hence the solution is given by 

     (  
  

  
 

  

  
  )  (  

  

  
 

  

  
  )               

2.5 Converting Volterra integral equation to ordinary differential 

equation 

In this section we will present the technique that converts Volterra integral 

equations of the second kind to an equivalent differential equation. This 

may easily be achieved by applying the important Leibnitz Rule for 

differentiating an integral. It seems reasonable to review the basic outline 

of the rule. 

To differentiate the integral 

                             ∫         
    

    
.                                                 (2.35) 

with respect to   , we usually apply the useful Leibnitz rule given by : 

               
  

  
  (      )

     

  
  (      )

     

  
  

                             ∫
       

  
   

    

    
                                                        (2.36) 

where        and 
       

  
 are continuous functions in the domain D in the 

  -plane that contains the rectangular region  ,                 
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and the limits of integration      and      are defined functions having 

continuous derivatives for         

Thus the Leibnitz rule converts the Volterra integral equation or the 

Volterra integro-differential equations into an equivalent initial value 

problem. The initial conditions can be obtained by substituting       into 

     and its derivatives. The resulting initial value problem can be solved 

easily by using ODEs methods. The conversion process will be illustrated 

by the following example. 

Example 2.6 

We find the initial value problem equivalent to the Volterra integral 

equation of the second kind 

                            ∫              
 

 
                         (2.37)     

Differentiating both sides of (2.37) and using Leibnitz rule three times to 

get rid of the integral sign, we find 

                              ∫             
 

 
                                   (2.38) 

                               ∫        
 

 
                                             (2.39)                              

                                       

To determine the initial conditions, we substitute       into both sides of 

(2.37), (2.38) and (2.39) to find         ,         and          . 

This in turn gives the initial value problem 

                                   

                                                              

This resulting ODE is a third order inhomogeneous equation.  
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Chapter Three 

Numerical Techniques for Solving Volterra Integral 

Equation of the Second Kind 

There are many numerical techniques available for solving Volterra 

integral equation of the second kind. These techniques are based on the 

following methods: Quadrature methods (Trapezoidal rule, Runge-Kutta 

method of order two, the fourth order Runge-Kutta method), Blocks 

methods, the collocation method and the Galerkin method. 

3.1 Quadrature methods for Volterra equation of the second  kind 

We consider the numerical solution of the Volterra integral equation of the 

second kind  

          ∫  (        )                          
 

 
                      (3.1) 

 We assume that the solution is required over a finite interval [   ], that 

     is continuous in [   ],   is continuous in           and 

satisfies a uniform Lipschitz conditions in  . These conditions will ensure 

that a unique continuous solution to the problem (3.1) exists. If the kernel is 

linear in its third argument, that is, there exists a function   such that 

        (        )                                                                 (3.2)   

for all           then equation (3.1) is said to be linear and reduces 

to 

              ̅̅ ̅̅ ̅̅  ∫                                       
 

 
                    (3.3) 

where  

                  ̅̅ ̅̅ ̅̅       ∫                                   
 

 
                          (3.4) 
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   We shall take (3.3) as the canonical form for a linear Volterra equation 

and we will not distinguish notationally between      and      ̅̅ ̅̅ ̅̅  .  

3.1.1 Quadrature methods for linear equations 

An obvious numerical procedure is to approximate the integral term in 

(3.3) via a quadrature rule which integrates over the variable   for a fixed 

value of  . It is natural to choose a regular mesh in    and     thus setting 

                 where              is the fixed step length. We  

approximate in an obvious notation the integral term in the linear equation 

(3.3) by 

                ∫                ∑     (     ) (  )
 
   

  

 
  

                                                            ∑        (  )
 
                                 (3.5) 

where    =                    This quadrature rule leads to the following 

set of equations: 

                         ) , 

                            [                         ] 

                                (           )               

                             ∑        (  )
 
    

                                (           )                                           (3.6) 

where     (           ) represents the error term in the quadrature rule. If 

the      are assumed negligible and               for any   we can 

clearly solve this set of equations for                 where    is an 

approximation to       , by direct forward substitution. 

This procedure is obviously numerically very straightforward; however, 

there remains the problem of choosing suitable weights    . We note that, 
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for each    the set {                }  represents the weights for an 

       point quadrature rule of Newton-Cotes type (equally spaced 

points) for the interval [    ]  For large   there are many possible choices 

of rule, for small          the choice is rather limited, yet there seems 

(and is) little point in choosing an accurate rule for large   if we cannot 

choose an equally accurate rule for small    Let us start by considering the 

simplest possible rule, the repeated (Trapezoid rule). (see [4] and [13]). 

 3.1.2 Trapezoidal rule 

Let      . We divide the interval       into subintervals with equal 

length   
   

 
 . We denote               ,        , then  the 

Trapezoidal method reads : 

                  ∫         [
         

 
 ∑      

   
   ]

 

 
                              (3.7) 

Using the Trapezoidal approximation to solve the Volterra integral 

equation:  

                         ∫                  
 

 
                                      (3.8) 

We substitute (3.7) into (3.8) with     , we get 

       [
                             

 
 ∑  (      ) (   )

   
   ]           (3.9) 

                             

  
        

 
      ∑  (      ) (   )

   
    (   

          

 
)               

For            the Volterra integral equation (3.8) is reduced to 

                            

For    , we get 

        
        

 
      (   

          

 
)               

For    , we obtain 
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                       (   

          

 
)                 

To this end, we obtain the linear system  

  ̅    

where the matrix       ), 1         with: 

{
 
 
 

 
 
 

                                                  

       (       )             

      
 

 
                                            

                                                                

     
 

 
                           

 

                     

[
 
 
 
 

                                    
                                   
                                
                                            

                           ]
 
 
 
 

 

  [                               ] , 

  ̅  [                    ]
  . 

 (See [2], [3],[20],[25] and [26]). 

3.1.3 Runge-Kutta methods 

Runge-Kutta methods for the solution of (3.1) are self-starting methods 

which determine approximations to the solution at the points                           

                     by generating approximations at some 

intermediate points in [       ]             

                                   

where  

                                                                              (3.10) 

We recall the general  -stage Runge-Kutta method for the initial value 

Problem                                    (      )  
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                                                                                                     (3.11)  

given by  

                                 ∑      
    

                                               (3.12)  

where  

     
              

  
   (              ∑      

    
   )                     (3.13) 

                  ∑     {
                
                            

}   
                                    (3.14) 

with    is an approximation to the solution at          . The 

second argument of   
 
 may be regarded as an approximation to 

              and we rewrite equation (3.12) as 

                      ∑     (            
) 

   
                            (3.15) 

The parameters    ,    are chosen in practice to yield a final approximation 

of specified order; that is, with a local truncation error of         for some 

chosen q which is the order of the method. This requirement yields a set of 

nonlinear equations for the unknown parameters. 

Example 3.1  

Suppose we choose     in (3.15) .Then it follows that 

                             (                      )            

We use Taylor's theorem for a function of two variables to obtain 

                                                    

where we have introduced the notations 

                           
          

  
  ,     

          

  
.                   

Now if we compare this expression term by term with 

           
 

 
                                             



31 

then we have the following set of three equations 

                                     , 

                                      
 

 
   

                                       
 

 
    

Clearly there exist an infinite number of solutions of these equations 

corresponding to an infinite number of two-stage Runge-Kutta method of 

order two. We consider two particular solutions which are popular in 

practice: 

(i) When          
 

 
    the resulting method is  

        
 

 
  [          (                 )] .      (3.16) 

or 

        
 

 
  [                 ̂    ] .                        (3.17) 

where  

               ̂                                                                            (3.18) 

This is the improved Euler method. 

(ii) when                the resulting method is the modified 

Euler method given by 

           (   
 

 
     

 

 
         )                    (3.19) 

when          , we obtain in a similar way the classical fourth order 

Runge Kutta method given by the following choice of parameters: 

                        
 

 
             

            
 

 
                   

 

 
 , 

                                  

                
 

 
                

 

 
   



32 

The method defined in equation (3.15) can be extended to give a class of 

Runge-Kutta method for the solution of 

              ∫  (        )                         
 

 
                 (3.20) 

Setting      in (3.20) we have  

             ∫  (           )                            
    

 
 

              ∑ ∫  (           )              
        

    
   
        (3.21) 

and we can determine an approximation    to       from the following 

equation  

             ∑ ∑                     
   
   

   
        

        (3.22) 

Now for             we may write equation (3.20) in the following form 

          ∑ ∫  (        )   ∫
         

 (        )   
 

  
  

    

  

   
          (3.23) 

Then setting                          , and approximating the 

final integral term in (3.23) by 

 ∫
         

 (              )    
       

  
  

                                        ∑                      
   
        

   

we see that the Runge-Kutta method for (3.20) may be expressed as 

       
            ∑ ∑                    

   
   

   
        

  

             ∑                      
   
        

   

                                                                             (3.24) 

where           and the parameters                        

             , define the particular method. (see [13]). 

3.2 The Block Methods 

A Block method is essentially an extrapolation procedure which has 

advantage of being self-starting and produces a block of values at a time.  
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They give up any attempt to solve the problem by marching one step at a 

time and instead introduce a rule over a small region which uses points 

over a larger region. Consider the solution of (3.3) in the range 

        with          ; that is, we divide the interval [   ] into   

equal intervals, each of which is then divided into   subintervals of length 

   Now assume that approximate solution values have been calculated for 

the first         blocks; then a typical block method produces at the 

    stage the following set of approximations: 

                            

For                           we may rewrite (3.3) in the 

form  

                   ∫       
         

 
            

                    ∫       
    

         
                                              (3.25) 

Using the following quadrature rules to approximate the integral 

terms in (3.25) 

∫       
         

 
            

                   ∑    
      
                                            (3.26) 

                                                                                     

∫       
    

         
              

                ∑  ̅  
  
                                                 (3.27) 

we obtain the set of approximating equations 

                    

                       ∑    
      
                        

                     ∑  ̅  
  
                                     (3.28) 
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 where                            and              

Linze [20], described two block methods and uses these methods to solve 

Volterra integral equation of the second kind. In this work this method has 

been used to solve Volterra integral equations of the second kind, in which 

a block of two and three values are produced at each stage and the values of 

the involved integrals are obtained using the quadrature formula. 

3.2.1 Method of two Blocks: 

Applying equation (3.3) with                      

and                      where        to get: 

             ∫        
   

  
          

            ∫        
     

   
                                                                (3.29)           

                                                                                

             ∫        
   

  
                                                                                                 

             ∫        
     

   
                                                                (3.30) 

This technique depends on the use of a quadrature formula. This is 

Simpson’s 1/3 rule [20] 

     ∫        
 

 
[          ]

  

  
                                                    (3.31) 

with       and          where     .therefore we obtain: 

                   
 

 
∑ [  

  
    (        ) (  )]  

                    
 

  
[                                                                                                                        

                                                           ]                                 (3.32) 

                 
 

 
∑ [ ̅ 

    
    (        ) (  )]                           (3.33) 

Where                         ,          

and   ̅   ̅       ̅         ,          
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Thus we have a pair of equations to solve for        and       .                                                        

3.2.2 Method of Three Blocks: 

Applying equation (3.3) with                      

                                           

 Where        to get: 

             ∫        
   

  
          

            ∫        
     

   
                                                                (3.34)                                                           

             ∫        
   

  
                                                                                                 

             ∫        
     

   
                                                               (3.35) 

             ∫        
   

  
                                                                                                 

             ∫        
     

   
                                                               (3.36) 

This technique depends on the use of three quadrature formulas. These are 

Simpson’s 3/8 rule  and Simpson’s 1/3 rule. Therefore: 

                   
  

 
∑ [  

  
    (        ) (  )]             

                           
 

  
[                                                                                                                        

                                               ]                                            (3.37) 

                 
  

 
∑ [ ̅ 

  
    (        ) (  )] 

                
 

 
[                                                                                                                       

                                            ]                                              (3.38) 

               
  

 
∑ [ ̿ 

    
    (        ) (  )]                           (3.39) 

where  

                     {
       

 

 
        

                 
 

     ̅   ̅         ̅  {
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and 

    ̅̅   ̿           ̅̅  {
       

 

 
        

                 
 

Thus, we have a system of three equations to solve for       ,       and 

      . (see[11], [13] and [27]). 

3.3 The Collocation method  

3.3.1 Meshes and piecewise polynomial spaces: 

We wish to solve the Volterra integral equation (3.3) on the interval 

   [   ]    Let 

     {                     } be a mesh, and define                                                                                    

      ,     ],                          and  

          {            }       ( mesh diameter ). 

Remark: Different types of meshes on    [   ] 

                {                     }        

 Quasi-uniform mesh    : there exists a constant     (independent 

of N) so that 

                   
        

         
            for all          (        

 Graded mesh      

               (
 

 
)
 
                    with grading exponent       . 

       If       then the mesh    is a uniform mesh. 

 Geometric mesh    : 

                               

Where           

Definition 3.3.1: For a given mesh    the piecewise polynomial space 

  
         with                  is given by  
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        {         |                }                    (3.40) 

Here,    denotes the space of (real) polynomials of degree not exceeding r. 

It is readily verified that   
        is a (real) linear vector space whose 

dimension is given by 

            
                  . 

If         with     and     , then the piecewise polynomial 

space is     
        and the dimension of this linear space is given by 

                            
              . 

For Volterra integral equation of the second kind we choose     ,  

hence,  the natural collocation space will be     
        . Its dimension is 

given by       

                              
           .                                                      (3.41) 

To find: ‘good’ approximation       to the solution      of (3.3) so that  

       is definded for all       

        can be easily computed on non-uniform meshes   ; 

 The approximation error satisfies 

    { |          |      }       

where   (the order of the numerical method) is as large as possible. We will 

use piecewise polynomial collocation methods in     
        . 

3.3.2 Piecewise polynomial collocation methods in     
         

Let the linear Volterra integral operator             be given by 

                     ∫                        [   ] 
 

 
                     (3.42) 

where             {             }  , and let        be a 

given function. The solution of the Volterra integral equation 
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                                                                                    (3.43) 

will be approximated by collocation in the piecewise polynomial space  

              
         {   |                  }                     (3.44) 

where                 is the set of (real) polynomials on 

       ,     ], of degree      

    
         is called the space of piecewise polynomials of degree less than 

or equal to       

 If     then   
         is piecewise constant functions. 

(such a function contains   unknown coefficients). 

 If     then   
         is piecewise linear functions. 

(such a function contains    unknown coefficients). 

In general: By (3.41) an element            
          contains    

unknown coefficients. We choose    distinct points in the interval [   ] 

to determine these coefficients at which the approximate solution        

must satisfy the given Volterra integral equation. These points are called 

the collocation points. 

3.3.3 Collocation points and collocation equation 

Let                      be given numbers (collocation parameters). 

The set 

              {                               } 

is called the set of collocation points. In each subinterval    ,     ],  there 

are   such points, and so we have |  |       

Consider            
         so that it satisfies the given Volterra integral 

equation at the points    : 



39 

                         ∫                                
 

 
  .              (3.45) 

This function        is called the collocation solution for the Volterra 

integral equation (3.3). 

(see[7], [33] and [34]). 

3.4 The Galerkin Method 

Definition (3.1)   -space: 

The set of   - functions (where    ) generalizes    -space. Instead 

of square integrable, the measurable function   must be  -integrable, 

for   to be in    . 

On a measure space  , the    norm of a function   is 

                                ‖ ‖   (∫  |    | 
 

 
  )

 

  

The   -functions are the functions for which this integral converges. 

For    , the space of   -functions is a Hilbert space. For    , the 

space of   -functions is a Banach space. 

In the case where    , we have       defined as 

{f : measurable in   and ‖ ‖   }, 

where 

‖ ‖     {   {|    |    }     } 

with Lebesgue measure of the set   equals zero. 

 Let         or some other Hilbert function space, and let 〈   〉 denote 

the inner product for  . Require the residual    to satisfy 

                   〈     〉                                                               (3.46) 

The left side is the Fourier coefficient of    associated with   .If 

{         } consists of the leading members of an orthonormal family 
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  {         } which spans  , then (3.46) requires the leading terms 

to be zero in the Fourier expansion of     with respect to  . 

To find   , apply (3.46) to (3.3) written as            

This yields the linear system 

     ∑   {〈     〉   〈      〉}
  
    〈    〉                               (3.47) 

This is Galerkin’s method for obtaining an approximate solution to (3.3). 

Note that the above formulation contains double integrals 〈      〉. These 

must often be computed numerically. 

As a part of writing (3.47) in a more abstract form, we introduce a 

projection operator   that maps   onto     For general        define     

to be the solution of the following minimization problem: 

                      ‖     ‖         
‖   ‖                                        (3.48) 

Since    is finite dimensional, it can be shown that this problem has a 

solution; and by    being an inner product space, the solution can be 

shown to be unique. To obtain a better understanding of   , we give an 

explicit formula for    . 

Introduce a new basis {       } for    by using the Gram-Schmidt 

process to create an orthonormal basis from {       } . The element    is 

a linear combination of {       } , and moreover 

〈     〉                         

With this new basis, it is straightforward to show that 

                                      ∑ 〈    〉
  
                                                (3.49) 

This shows immediately that     is a linear operator. 

With this formula, we can show the following results. 

                      ‖ ‖  ‖    ‖
  ‖      ‖

                                       (3.50) 
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                      ‖    ‖
  ∑ |〈    〉|

   
                  

                 〈      〉  〈      〉                                                       (3.51) 

               〈〈     〉      〉                                                         (3.52) 

Because of the latter,       is called the orthogonal projection of   onto    . 

The operator     is called an orthogonal projection operator. The result 

(3.50) leads to 

                                        ‖   ‖                                                          (3.53) 

Using (3.52), we can show 

    ‖   ‖  ‖      ‖
  ‖      ‖                                       (3.54) 

This shows     is the unique solution to (3.48). 

We note that 

              if and only if 〈    〉                                           (3.55)     

Using the orthogonal projection    , we can write as 

                                         

or equivalently, 

                                                                                    (3.56) 

However, in this work, we provide a numerical approach for the Volterra 

integral equation based on Chebyshev piecewise polynomials basis by the 

technique of Galerkin. Firstly, we give an introduction of Chebyshev 

piecewise polynomials. Then, we drive a matrix formulation for general 

linear problems by the technique of Galerkin method. (See [7]). 

3.4.1 Chebyshev polynomials 

The Chebyshev polynomials, named after Pafnuty Chebyshev, are a 

sequence of orthogonal polynomials which are related to de Moivre's 

formula and which can be defined recursively. The general form of the 

Chebyshev polynomials of     degree is defined by 
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        ∑      
  

            

[   ]
                                         (3.57) 

where, [   ]  {  

 

 
                        

   

 
                      

 

The first few Chebyshev polynomials are given as: 

                  

            , 

             , 

                 

                   ,                        

3.4.2 Formulation of Integral Equation in Matrix Form 

We consider the Volterra integral equation of the second kind given by 

                  ∫                  
 

 
                               (3.58) 

Now we use the technique of Galerkin method [3], to find an approximate 

solution      of (3.58). For this, we assume that 

                               ̅    ∑        
 
                                                  (3.59) 

where       are Chebyshev polynomials of degree   defined in equation 

(3.57) and    are unknown parameters, to be determined. Substituting 

(3.59) into (3.58), we get 

    ∑   [       ∫              
 

 
] 

                              (3.60) 

Then the Galerkin equations are obtained by multiplying both sides of 

(3.60) by       and then integrating with respect to   from       . We 

obtain 

        ∑   ∫ [       ∫              
 

 
]       

 

 
 
    

                      ∫            
 

 
                                               (3.61) 
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The inner integrand of the left side is a function of  , and  , and is 

integrated with respect to   from       . As a result the outer integrand 

becomes a function of   only and integration with respect to   from        

yields a constant.  

Thus for each             we have a linear equation with     

unknowns   ,            . Finally (3.61) represents the system of      

linear equations in     unknowns, a given by 

           ∑       
 
                                                                   (3.62) 

where 

     ∫ [       ∫              
 

 
]       

 

 
                   

   ∫            
 

 
                                                          

Now the unknown parameters    are determined by solving the system of 

equations (3.62) and substituting these values of parameters in (3.59).  We 

get the approximate solution   ̅    of the integral equation (3.3). 

The maximum absolute error for this formulation is defined by 

         Maximum absolute error      |       ̅   |. 

(see [14], [29], [30], [36] and [41]). 
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Chapter Four 

Numerical Examples and Results 

To test the efficiency of the numerical methods represented in chapter three 

we will consider the following numerical examples. 

Example 4.1  

Consider the Volterra integral equation of the second kind  

                              ∫            
 

 
.                             (4.1) 

Equation (4.1) has the exact solution 

        . 

We will find an approximate solution to equation (4.1) by the following 

numerical methods: 

4.1 The numerical realization of equation (4.1) using Trapezoidal rule 

The following algorithm implements the Trapezoidal rule using 

the Matlab software. 

Algorithm 4.1 

1.  Input     : The number of subdivisions of [   ] 

    : [   ] is the interval for the solution function 

       : The handle of the driver function      

and        : The handle of the kernel function        

2.            This is much more than is usually needed. 

3. Calculate           

4. Calculate                       

5. Calculate                  
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6.  Set                        

7.  Set                     

8.           

                                  , The initial estimate for the iteration. 

                                                       

                       

        Applying trapezoid rule  

                                              

                                  

                                                      

         

     

9. Set            

10. Output:  the numerical solution     ,  and the grid points   at which 

the solution      is approximated. 

Thus we can solve the Volterra integral equation of the second kind (4.1) 

by using algorithm 4.1. Table 4.1 shows the exact and numerical results 

when n=20, and showing the error resulting of using the numerical 

solution. 
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Table 4.1: The exact and numerical solutions for Algorithm 4.1  

  
Analytical solution 

         

Approximate solution 

      
Error |    | 

0 0                    0                    0 

0.05 0.052563555    0.052563554    0.02136      

0.1 0.110517092    0.110517091    0.04390      

0.15 0.174275136    0.174275136    0.06775      

0.2 0.244280552    0.244280551    0.09308      

0.25 0.321006354    0.321006354    0.12004      

0.3 0.404957642    0.404957642    0.14880      

0.35 0.496673642    0.496673642    0.17956      

0.4 0.596729879    0.596729879    0.212503      

0.45 0.705740483    0.705740483    0.247840      

0.5 0.824360635    0.824360635    0.285798      

0.55 0.95328916    0.953289159    0.326617      

0.6 1.09327128    1.093271280    0.370555      

0.65 1.245101539    1.245101538    0.417888      

0.7 1.409626895    1.409626895    0.468909      

0.75 1.587750012    1.587750012    0.523935      

0.8 1.780432743    1.780432742    0.583304      

0.85 1.988699824    1.988699824    0.647376      

0.9 2.2136428    2.213642800    0.716541      

0.95 2.456424176    2.456424176    0.791212      

1 2.718281828 2.7182818284    0.871835      

Figure 4.1 shows both the exact and the numerical solutions with        

 

Figure 4.1: The exact and numerical solution of applying Algorithm 4.1 for equation (4.1). 
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The CPU time is 0.018776 seconds. Figure 4.2 shows the absolute error 

resulting of applying algorithm 4.1 for equation (4.1). 

 

Figure 4.2: the error resulting of applying algorithm 4.1 on equation (4.1). 

4.2 The numerical realization of equation (4.1) using the Runge-Kutta 
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the Matlab software. 

Algorithm 4.2 

1. Input : 1)   - step-size  

2)     - endpoints of interval of integration 
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1. nodes- node values 

2.     - solution values at nodes  

3. Specifying weights 

      [    ]  

   [
         
         

] 

4. Nodes                

5. Number of intermediate points                      

6.   Vector of nodes and intermediate points 

7. Placing node values into   

                                  

                  (       )           

            

8. Placing intermediate points into   

                                      

                         

                                               

                  

           

9. Keeps track of which intermediate points are associated with which node 

         Vector of length of   

                                  

                                            

            

       (             )                
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10. Let      Vector of solution values has the same length of   

11. Set order of method     

12.                        

                       

                

                 

                

                  

                 

                   

               

            ||      

                        

                          

                                      

                                          

13. Applying Runge-Kutta formula 

                                    (      (          )) 
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14. Applying Runge-Kutta formula 

                                      (      (          ))

                        

             

          

     

15. Obtaining node values 

   Now let                               

                             

                              

        

Table 4.2 shows the exact and numerical results when step size      , 

and showing the error resulting of using the numerical solution. 

Table 4.2: The exact and numerical solutions of applying Algorithm 

4.2 for equation (4.1). 

  Analytical solution 

         

Approximate solution 

                    

Error |    | 

0 0 0 0 

0.1 0.110517092 0.110341836 0.000175256 

0.2 0.244280552 0.243908935 0.000371617 

0.3 0.404957642 0.404365783 0.00059186 

0.4 0.596729879 0.595889872 0.000840007 

0.5 0.824360635 0.823239117 0.001121518 

0.6 1.09327128 1.091827769 0.001443511 

0.7 1.409626895 1.407811873 0.001815022 

0.8 1.780432743 1.778185427 0.002247315 

0.9 2.2136428 2.210888564 0.002754236 

1 2.718281828 2.714929201 0.003352627 

These results show the accuracy of the Runge-Kutta method of order 2 to 

solve equation (4.1) since the                       
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Figure 4.3 compares the exact solution           with the approximate 

solution with step size      . 

 

Figure 4.3: The exact and numerical solutions of applying Algorithm 4.2 for equation (4.1). 

The CPU time is 0.027644 seconds. Figure 4.4 shows the absolute error 

resulting of applying algorithm 4.2 on equation (4.1). 

 

Figure 4.4: the error resulting of applying algorithm 4.2 on equation (4.1) 
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4.2.2 The fourth order Runge-Kutta method 

The following algorithm implements the fourth order Runge-Kutta method 

using the Matlab software. 

Algorithm 4.3 

1. Input   ,         , kernel,      

2. Outputs: 1) nodes- node values 

                   2)     - solution values at nodes  

3. Specifying weights 

         [              ]  

   

[
 
 
 
                    
                   
                    
 

 
     

 

 
     

 

 
      

 

 
  ]
 
 
 

 

4. Nodes                

5. Number of intermediate points                      

6.   Vector of nodes and intermediate points 

7   Placing node values into   

                                  

                  (         )           

            

8.  Placing intermediate points into   
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9. Keeps track of which intermediate points are associated with which node 

         Vector of length of   

                                  

                                                

            

       (             )                

10. Let      Vector of solution values has the same length of   

11. Set order of method     

12.                        
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            ||     ||    ||      

                        

                          

                                      

                                          

13. Applying Runge-Kutta formula 

                                    (      (          )) 

                

                 

             

             

             

                                          

                                         

                          

 14.   Applying Runge-Kutta formula 

                                      (      (          ))
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14. Obtaining node values 

   Now let                               

                             

                                

        

Table 4.3 shows the exact and numerical results when step size      , 

and showing the error resulting of using the numerical solution. 

Table 4.3: The exact and numerical solutions of applying Algorithm 

4.3 for equation (4.1). 

  Analytical solution 

         

Approximate solution 

               

Error |    | 

0 0 0 0      

0.1 0.11051709 0.110516977 0.011501376        

0.2 0.24428055 0.244280304 0.024723293      

0.3 0.40495764 0.404957241 0.040154546      

0.4 0.59672988 0.596729295 0.058363265      

0.5 0.82436064 0.824359835 0.080010692      

0.6 1.09327128 1.093270222 0.105866965      

0.7 1.4096269 1.409625527 0.136829191      

0.8 1.78043274 1.780431003 0.173942149      

0.9 2.2136428 2.213640616 0.218422001      

1 2.71828183 2.718279112 0.271683433      

These results show the accuracy of the fourth order Runge-Kutta method to 

solve equation (4.1) since the                             .        

Figure 4.5 compares the exact solution           with the approximate 

solution with step size      . 
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Figure 4.5: The exact and numerical solutions of applying Algorithm 4.3 for equation (4.1). 

The CPU time is 0.034696 seconds. Figure 4.6 shows the absolute error 

resulting of applying algorithm 4.3 on equation (4.1). 

 

  Figure 4.6: the error resulting of applying algorithm 4.3 on equation (4.1). 
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4.3 The numerical realization of equation (4.1) using the Block method 

The following algorithms (Block 2 and Block 3) for solving Volterra 

integral equation of the second kind (4.1) using the two Block method and 

three Block method respectively: 

Algorithm 4.4 (Block 2) 

Step (1): 

 Put                

 Set            

Step (2): 

                

Calculate              using equations (3.49), (3.50) which are shown in 

chapter three section two, and use Gauss elimination procedure to solve the 

resulting system. 

Algorithm 4.5 (Block 3) 

Step (1): 

 Put                

 Set            

Step (2): 

                

Calculate                  using equations (3.54), (3.55) and (3.56) 

which are shown in chapter three section two, and use Gauss elimination 

procedure to solve the resulting system. 

Table 4.4 shows the exact and numerical results when applying algorithm 

4.4 (Block 2), and showing the error resulting of using the numerical 

solution. 
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Table 4.4: The exact and numerical solutions of applying Algorithm 

4.4 for equation (4.1). 

  Analytical solution 
      

Approximate solution 
               

Error |    | 

0 0 0 0 

0.1 0.110517092 0.110517092 0.000175256 

0.2 0.244280552 0.244280552 0.001015278 

0.3 0.404957642 0.404957642 0.001283973 

0.4 0.596729879 0.596729879 0.0037413 

0.5 0.824360635 0.824360635 0.002932474 

0.6 1.09327128 1.09327128 0.007714405 

0.7 1.409626895 1.409626895 0.005368352 

0.8 1.780432743 1.780432743 0.013414801 

0.9 2.2136428 2.2136428 0.008924114 

1 2.718281828 2.718281828 0.007691095 

Figure 4.7 shows both the exact and the numerical solutions with      

 

Figure 4.7: The exact and numerical solutions of applying Algorithm 4.4 for equation (4.1). 

 

The CPU time is 0.024423seconds. Figure 4.8 shows the absolute error 

resulting of applying algorithm 4.4 on equation (4.1). 
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Figure 4.8: the error resulting of applying algorithm 4.4 on equation (4.1). 

Table 4.5 shows the exact and numerical results when applying algorithm 

4.5 (Block 3), and showing the error resulting of using the numerical 

solution. 

 Table 4.5: The exact and numerical solution of applying Algorithm 4.5 

for equation (4.1). 

  Analytical solution 
         

Approximate solution 
               

Error |    | 

0 0 0 0 
0.05 0.052563555 0.052542193 2.13621E-05 
0.1 0.110517092 0.110580628 6.35364E-05 
0.15 0.174275136 0.174337428 6.22911E-05 
0.2 0.244280552 0.244402305 0.000121753 
0.25 0.321006354 0.321270884 0.00026453 
0.3 0.404957642 0.405172042 0.0002144 
0.35 0.496673642 0.496972541 0.000298899 
0.4 0.596729879 0.597277609 0.00054773 
0.45 0.705740483 0.706174156 0.000433672 
0.5 0.824360635 0.824911163 0.000550527 
0.55 0.95328916 0.954225985 0.000936826 
0.6 1.09327128 1.094011611 0.000740331 
0.65 1.245101539 1.246000269 0.00089873 
0.7 1.409626895 1.411088363 0.001461467 
0.75 1.587750012 1.588909892 0.001159879 
0.8 1.780432743 1.781804061 0.001371318 
0.85 1.988699824 1.990858493 0.002158669 
0.9 2.2136428 2.215367152 0.001724352 
0.95 2.456424176 2.460025314 0.003601138 

1 2.718281828 2.718175056 0.000106772 
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Figure 4.9 shows the exact solution           with the approximate 

solution when      

 

Figure 4.9: The exact and numerical solutions of applying Algorithm 4.5 for equation (4.1). 

The CPU time is 0.021548 seconds. Figure 4.10 shows the absolute error 

resulting of applying algorithm 4.5 on equation (4.1). 

 

 

Figure 4.10: the error resulting of applying algorithm 4.5 on equation (4.1) 
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Example 4.2  

Consider the Volterra integral equation of the second kind 

                            ∫         
 

 
 .                               (4.2) 

Equation (4.2) has the exact solution 

                   . 

We will use all the numerical methods that we used in the example 4.1. 

4.4 The numerical realization of equation (4.2) using Trapezoidal rule 

Table 4.6 shows the exact and numerical results when n=20, and showing 

the error resulting of using the numerical solution. 

Table 4.6: shows the exact and numerical results when n=20, and 

showing the error resulting of using the numerical solution. 

  

Analytical solution 

                    

Approximate solution 

              Error |    | 
0 1 1 0 

0.05 1.04872943 1.0487495 0.02006      

0.1 1.094837582 1.0948761 0.03856      

0.15 1.13820921 1.1382647 0.05548      

0.2 1.178735909 1.1788067 0.07081      

0.25 1.216316381 1.2164009 0.08455      

0.3 1.250856696 1.2509534 0.09666      

0.35 1.28227052 1.2823776 0.10712      

0.4 1.310479336 1.3105952 0.1159      

0.45 1.335412636 1.3355356 0.12298      

0.5 1.3570081 1.3571364 0.1283      

0.55 1.375211751 1.3753436 0.13183      

0.6 1.389978088 1.3901116 0.13351      

0.65 1.401270204 1.4014035 0.1333      

0.7 1.409059875 1.409191 0.13112      

0.75 1.413327629 1.4134545 0.12691      

0.8 1.4140628 1.4141834 0.1206      

0.85 1.411263551 1.4113756 0.11208      

0.9 1.404936878 1.4050381 0.10127      

0.95 1.395098594 1.3951866 0.08804      

1 1.381773291 1.3818456 0.07229      
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Figure 4.11 shows both the exact and the numerical solutions with       

 

Figure 4.11: The exact and numerical solutions of applying Algorithm 4.1 for equation (4.2). 

The CPU time is 0.031057 seconds. Figure 4.12 shows the absolute error 

resulting of applying algorithm 4.1 on equation (4.2). 

 

Figure 4.12: the error resulting of applying algorithm 4.1 on equation (4.2). 
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4.5 The numerical realization of equation (4.2) using the Runge-Kutta 

method 

4.5.1 The Runge-Kutta method of order 2  

Table 4.7 shows the exact and numerical solutions when applying 

Algorithm 4.2 on equation (4.2). 

Table 4.7: The exact and numerical solution of applying Algorithm 4.2 

for equation (4.2). 

  Analytical solution 

                    
Approximate 

solution    

Error |    | 

0 1 1                    0 

0.1 1.0948375819   1.094964660237 0.0001270783 

0.2 1.1787359086   1.178829128432 0.0000932197 

0.3 1.2508566957   1.250650273503 0.00020642228 

0.4 1.3104793363   1.309609452533 0.00086988377 

0.5 1.3570081004   1.355023865136 0.00198423535 

0.6 1.3899780883   1.386357672182 0.00362041612 

0.7 1.4090598745   1.403232930278 0.00582694424 

0.8 1.4140628002   1.405440478563 0.00862232168 

0.9 1.4049368778   1.392951018872 0.01198585902 

1 1.3817732906   1.365926762361 0.01584652831 

Figure 4.13 shows both the exact and the numerical solutions when step 

size       . Figure 4.14 shows the absolute error resulting of applying 

algorithm 4.2 on equation (4.2). The CPU time is 0.030646 seconds. 
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Figure 4.13: The exact and numerical solutions of applying Algorithm 4.2 for equation (4.2).  

Figure 4.14: the error resulting of applying algorithm 4.2 on equation (4.2). 
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Table 4.8: The exact and numerical solutions of applying Algorithm 

4.3 for equation (4.2). 

  Analytical solution 

                    
Approximate 

solution       
Error |    | 

0 1  1 0 

0.1 1.0948375819    1.0948375136 0.068618      

0.2 1.1787359086 1.17873580473 0.103902      

0.3 1.2508566957    1.2508565934 0.102642      

0.4 1.3104793363 1.31047927197 0.064334      

0.5 1.3570081004 1.35700810922 0.008726      

0.6 1.3899780883 1.38997819988 0.111581      

0.7 1.4090598745 1.40906011150 0.236987      

0.8 1.4140628002 1.41406317628 0.3760414     

0.9 1.4049368778 1.40493739697 0.519081      

1 1.3817732906 1.38177394754 0.656871      

These results show the accuracy of the fourth order Runge-Kutta method 

 to solve equation (4.2) since the                        

Figure 4.15 compares the exact solution                      with the 

approximate solution with step size      . Figure 4.16 shows the 

absolute error resulting of applying algorithm 4.3 on equation (4.2). The 

CPU time is 0.042564 seconds. 
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Figure 4.15: The exact and numerical solutions of applying Algorithm 4.3 for equation (4.2). 

Figure 4.16: the error resulting of applying algorithm 4.3 on equation (4.2). 
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Table 4.9: The exact and numerical solutions of applying Algorithm 

4.4 for equation (4.2). 

Figure 4.17 shows both the exact and the numerical solutions with      

 

Figure 4.17: The exact and numerical solutions of applying Algorithm 4.4 for equation (4.2). 

The CPU time is 0.020419 seconds. Figure 4.18 shows the absolute error 

resulting of applying algorithm 4.4 on equation (4.2). 
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Approximation Solutions using block 2

Exact Solutions

  

                    
Analytical solution Approximate 

solution    

Error |    | 

0 1 1 0 

0.1 1.0948375819 1.089517075 0.005320507 

0.2 1.1787359086 1.176429855 0.002306053 

0.3 1.2508566957 1.246838511 0.004018184 

0.4 1.3104793363 1.292928321 0.017551016 

0.5 1.3570081004 1.344501575 0.012506525 

0.6 1.3899780883 1.353415132 0.036562956 

0.7 1.4090598745 1.385132889 0.023926985 

0.8 1.4140628002 1.355339508 0.058723292 

0.9 1.4049368778 1.366107278 0.0388296 

1 1.3817732906 1.322662336 0.059110954 
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Figure 4.18: the error resulting of applying algorithm 4.4 on equation (4.2) 

Table 4.10 shows the exact and numerical results when applying algorithm 

4.5 (Block 3) on equation (4.2), and showing the error resulting of using 

the numerical solution. 

 Table 4.10: The exact and numerical solutions of applying Algorithm 

4.5 for equation (4.2). 
  Analytical solution 

                    
Approximate 
solution     

Error |    | 

0 1 1 0 
0.05 1.0487294296 1.0474385545 0.0012908751 
0.1 1.0948375819 1.0964893490 0.0016517670 

0.15 1.1382092104 1.1399638933 0.0017546829 
0.2 1.1787359086 1.1831271015 0.0043911929 

0.25 1.2163163809 1.2239166512 0.0076002703 
0.3 1.2508566957 1.2565105379 0.0056538421 

0.35 1.2822705203 1.2921410205 0.0098705002 
0.4 1.3104793363 1.3253177493 0.0148384130 

0.45 1.3354126364 1.3459547179 0.0105420814 
0.5 1.3570081004 1.3734191281 0.0164110276 

0.55 1.3752117509 1.3984991021 0.0232873511 
0.6 1.3899780883 1.4064927889 0.0165147006 

0.65 1.4012702042 1.4253096225 0.0240394183 
0.7 1.4090598745 1.4419669659 0.0329070913 

0.75 1.4133276288 1.4370526147 0.0237249858 
0.8 1.4140628002 1.4469159900 0.0328531897 

0.85 1.4112635510 1.4549955444 0.0437319934 
0.9 1.4049368778 1.4373453783 0.0324085004 

0.95 1.3950985942 1.4275080107 0.0324094165 
1 1.3817732906 1.3669518409 0.0148214497 
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Figure 4.19 compares the exact solution                      with the 

approximate solution when     . 

 

Figure 4.19: The exact and numerical solutions of applying Algorithm 4.5 for equation (4.2). 

The CPU time is  0.028830 seconds. Figure 4.20 shows the absolute error 

resulting of applying algorithm 4.5 on equation (4.2).  

Figure 4.20: the error resulting of applying algorithm 4.5 on equation (4.2). 
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4.7 The numerical realization of equation (4.2) using the Collocation 

method. 

The approximate solution of Volterra integral equation of the second kind 

calculated at the     iteration     , the following algorithm implements 

the Collocation method using the Matlab software. 

Algorithm 4.6 

1.                           

2.           

3. Calculate           

4. Calculate                       

5. Let   
            

6. Compute the collocation solution       by the iterated collocation 

solution 

  
            ∫          

        
 

 

 

7.    Maximum absolute error     |          | 

8.                 

 

So we obtain the following results: 

Table 4.11shows the exact and numerical solutions when applying 

Algorithm 4.6 on equation (4.2), and showing the error resulting of using 

the numerical solution. 
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Table 4.11: The exact and numerical solutions of applying Algorithm 

4.6 for equation (4.2) 

These results show the accuracy of Collocation method to solve equation 

(4.2) since the                        

Figure 4.21 compares the exact solution                      with the 

approximate solution when     . 

 

Figure 4.21: The exact and numerical solutions of applying Algorithm 4.6 for equation (4.2). 
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Approximation Solutions

Exact Solutions

  
                    
Analytical solution Approximate 

solution    
Error |    | 

0 1 1 0 
0.1 1.0948375819 1.0948375820 0.000105      
0.2 1.1787359086 1.17873590870 0.000066      
0.3 1.2508566957 1.25085669581 0.000026      
0.4 1.3104793363 1.31047933606 0.000242      
0.5 1.3570081004 1.35700810048 0.000007      
0.6 1.3899780883 1.38997808832 0.000017      
0.7 1.4090598745 1.40905987401 0.000507      
0.8 1.4140628002 1.41406279732 0.002921      
0.9 1.4049368778 1.40493685659 0.021307      
1 1.3817732906 1.38177317148 0.119195      
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The CPU time is 0.379443 seconds. Figure 4.22 shows the absolute error 

resulting of applying algorithm 4.6 on equation (4.2).  

Figure 4.22: the error resulting of applying algorithm 4.6 on equation (4.2). 

Example 4.3  

The following Volterra integral equation of the second kind 

                             ∫       
 

 
 .                                    (4.3) 

Equation (4.3) has the exact solution 

         . 

4.8 The numerical realization of equation (4.3) using the Galerkin 

method with Chebyshev polynomial 

The following algorithm for solving Volterra integral equation of the 

second kind (4.3) using the Galerkin method with Chebyshev polynomial. 

Algorithm 4.7   

1) Let                 
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2) Calculate all entries of vector   such that 

   ∫                                       
 

 

 

3) Calculate all entries of matrix   such that 

 

     [∫ [       ∫            
 

 

  ]        
 

 

]                

4) Find the unknown vector   by solve this system      

5) Substituting the entries of vector A at the technique of Galerkin 

method [4], to find an approximate solution      of (4.2). For this, 

we assume that 

                              ̅    ∑        
 
    

6) Maximum absolute error      |      ̅   |  

 Table 4.12 for      shows the exact and numerical results when 

applying algorithm 4.7 on equation (4.3), and showing the error resulting of 

using the numerical solution.  

Table 4.12: The exact and numerical solutions of applying Algorithm 

4.7 for equation (4.3). 

  Analytical solution 

          

Approximate solution 

               
Error  |    | 

0 1 0.999798920 0.2010794      

0.1 1.2 1.199948050 0.051949      

0.2 1.4 1.400031461 0.031461      

0.3 1.6 1.600017341 0.017341      

0.4 1.8 1.799943469 0.056530      

0.5 2 2.000030734 0.030734      

0.6 2.2 2.200037998 0.037998      

0.7 2.4 2.399935471 0.064528      

0.8 2.6 2.6000252227 0.025222      

0.9 2.8 2.8000178425 0.017842      

1 3 3.0002797874 0.279787      
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These results show the accuracy of Galerkin method with Chebyshev 

polynomial to solve equation (4.3) since the                    

    

Figure 4.23 compares the exact solution            with the 

approximate solution when     . 

 

Figure 4.23 The exact and numerical solutions of applying Algorithm 4.7 for equation (4.3). 

The CPU time is 0.64554 seconds. Figure 4.24 shows the absolute error 

resulting of applying algorithm 4.7on equation (4.3). 
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Figure 4.24: the error resulting of applying algorithm 4.7 on equation (4.3). 

 

4.9 The numerical realization of equation (4.3) using the Collocation 

method 

Table 4.13 for      shows the exact and numerical results when 

applying algorithm 4.6 on equation (4.3), and showing the error resulting of 

using the numerical solution. 

Table 4.13: The exact and numerical solutions of applying Algorithm 
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0 1 1 0 
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These results show the accuracy of Collocation method to solve equation 

(4.3) since the                          

Figure 4.25 shows the exact solution            with the approximate 

solution when     . 

Figure 4.25 The exact and numerical solutions of applying Algorithm 4.6 for equation (4.3). 

The CPU time is 0.777991 seconds.  Figure 4.26 shows the absolute error 

resulting of applying algorithm 4.6 on equation (4.3). 

Figure 4.26: the error resulting of applying algorithm 4.7 on equation (4.3). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x-axis

u(
x)

 

 

Approximation Solutions

Exact Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-7

x-axis

Ab
so

lu
te

 E
rro

r



78 

We conclde from our numerical test cases in this example 4.3 that the 

Collocation method is more efficient than the Galerkin method with 

Chebyshev polynomial. 

4.01 The numerical realization of equation (4.3) using Trapezoidal rule 

Table 4.14 for      shows the exact and numerical results when 

applying algorithm 4.1 on equation (4.3), and showing the error resulting of 

using the numerical solution. 

Table 4.14: The exact and numerical solutions of applying Algorithm 

4.0 for equation (4.3). 

  Analytical solution 

          

Approximate solution 

               
Error  |    | 

0 1 1 0 

0.1 1.2 1.2 0.193179       

0.2 1.4 1.4 0.215383       

0.3 1.6 1.6 0.239808       

0.4 1.8 1.8 0.264233       

0.5 2 2 0.288658       

0.6 2.2 2.2 0.319744       

0.7 2.4 2.4 0.35083       

0.8 2.6 2.6 0.390799       

0.9 2.8 2.8 0.430767       

1 3 3 0.475175       

These results show the accuracy of Trapezoidal rule to solve equation (4.3) 

since the           0.475175       

Figure 4.27 shows the exact solution            with the approximate 

solution when     . 
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Figure 4.27: The exact and numerical solutions of applying Algorithm 4.1 for equation (4.3). 

The CPU time is 0.029789 seconds.  Figure 4.28 shows the absolute error 

resulting of applying algorithm 4.1 on equation (4.3).

Figure 4.28: the error resulting of applying algorithm 4.1 on equation (4.3).
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4.00 The numerical realization of equation (4.3) using the Runge-Kutta 

method 

4.00.1 The Runge-Kutta method of order 2  

Table 4.15 shows the exact and numerical solutions when applying 

Algorithm 4.2 on equation (4.3). 

Table 4.05: The exact and numerical solution of applying Algorithm 

4.2 for equation (4.3). 

  Analytical solution 

          

Approximate 

solution    

Error |    | 

0 1 1 0 

0.1 1.2 1.1945 0.0055 

0.2 1.4 1.38795 0.01205 

0.3 1.6 1.580245 0.019755 

0.4 1.8 1.7712695 0.0287305 

0.5 2 1.96089645 0.03910355 

0.6 2.2 2.148986095 0.051013905 

0.7 2.4 2.335384705 0.064615296 

0.8 2.6 2.519923175 0.080076825 

0.9 2.8 2.702415492 0.097584508 

1 3 2.882657042 0.117342958 

These results show the accuracy of the Runge-Kutta method of order 2 to 

solve equation (4.3) since the           0.117342958  

Figure 4.29 shows the exact solution            with the approximate 

solution when     . 
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Figure 4.29: The exact and numerical solutions of applying Algorithm 4.2 for equation (4.3). 

The CPU time is 0.032915 seconds.  Figure 4.30 shows the absolute error 

resulting of applying algorithm 4.2 on equation (4.3).

Figure 4.30: the error resulting of applying algorithm 4.2 on equation (4.3).
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Table 4.06: The exact and numerical solution of applying Algorithm 

4.3 for equation (4.3). 

  Analytical solution 

          

Approximate 

solution    

Error |    | 

0 1 1 0 

0.1 1.2 1.199999792 0.02083      

0.2 1.4 1.399999561 0.04385      

0.3 1.6 1.599999307 0.0693      

0.4 1.8 1.799999026 0.0974      

0.5 2 1.999998715 0.1285      

0.6 2.2 2.199998371 0.1628      

0.7 2.4 2.399997992 0.2008      

0.8 2.6 2.599997572 0.2427      

0.9 2.8 2.799997109 0.2891      

1 3 2.999996596 0.3403      

These results show the accuracy of the fourth order Runge-Kutta method to 

solve equation (4.3) since the           0.3403      

Figure 4.31 shows the exact solution            with the approximate 

solution when     . 

 

Figure 4.31: The exact and numerical solutions of applying Algorithm 4.3 for equation (4.3). 
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The CPU time is 0.03540 seconds.  Figure 4.32 shows the absolute error 

resulting of applying algorithm 4.3 on equation (4.3). 

Figure 4.32: the error resulting of applying algorithm 4.3 on equation (4.3).

4.02 The numerical realization of equation (4.3) using the Block 

method 

Table 4.17 shows the exact and numerical results when applying algorithm 

4.4 (Block 2) on equation (4.3), and showing the error resulting of using 

the numerical solutions. 
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These results show the accuracy of the method of two block to solve 

equation (4.3) since the           0.098720238  

Figure 4.33 shows the exact solution            with the approximate 

solution when     . 

 

Figure 4.33: The exact and numerical solutions of applying Algorithm 4.4 for equation (4.3). 

The CPU time is 0.022529 seconds.  Figure 4.34 shows the absolute error 

resulting of applying algorithm 4.4 on equation (4.3). 

Figure 4.34: the error resulting of applying algorithm 4.4 on equation (4.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x-axis

u(
x)

 

 

Approximation Solutions

Exact Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x-axis

A
bs

ol
ut

e 
E

rro
r



85 

Table 4.18 shows the exact and numerical results when applying algorithm 

4.5 (Block 3) on equation (4.3), and showing the error resulting of using 

the numerical solutions. 

Table 4.08: The exact and numerical solution of applying Algorithm 

4.5 for equation (4.3). 

  Analytical solution 

          

Approximate 

solution    

Error |    | 

0 1 1 0 

0.1 1.2 1.169166667 0.030833333 

0.2 1.4 1.385198779 0.014801221 

0.3 1.6 1.548159227 0.051840773 

0.4 1.8 1.770048273 0.029951727 

0.5 2 2.002123835 0.002123835 

0.6 2.2 2.15170046 0.04829954 

0.7 2.4 2.38525662 0.01474338 

0.8 2.6 2.631867325 0.031867325 

0.9 2.8 2.794195798 0.005804202 

1 3 3.067162265 0.067162265 

These results show the accuracy of the method of three block to solve 

equation (4.3) since the           0.067162265  

Figure 4.35 shows the exact solution            with the approximate 

solution when     . 

 

Figure 4.35: The exact and numerical solutions of applying Algorithm 4.5 for equation (4.3). 
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The CPU time is 0.027388 seconds.  Figure 4.36 shows the absolute error 

resulting of applying algorithm 4.5 on equation (4.3). 

Figure 4.36: the error resulting of applying algorithm 4.5 on equation (4.3).
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Conclusions 

The numerical results show the following conclusions: 

In example 4.3, we have applied the following algorithms: Trapezoidal 

rule, the second order and fourth order Runge-Kutta method, the two block 

and three block methods and the collocation and Galerkin methods. We 

have obtained the following results: 

From the above table we see clearly that Trapezoidal rule is the most 

efficient technique for solving the integral equation 4.3. 

 

 

 

 

 

Numerical method Maximum error The CPU time 

Trapezoidal rule 0.475175       0.029789 seconds 

The Improved Euler 0.117342958 0.032915 seconds 

The fourth order Runge-Kutta 0.3403      0.03540 seconds 

The method of two block 0.098720238 0.022529 seconds 

The method of three block 0.067162265 0.027388 seconds 

The collocation method               0.777991 seconds 

The Galerkin method              0.64554 seconds 
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Appendix 

Matlab Code for Trapezoidal rule:

tic 

clc 

clear 

format long 

%Composite trapezoid rule for volterra integral 

equations of the  

%second kind 

%Taken from Atkinson, K.E. "Numerical solution of 

ordinary differential 

%equations", Wiley (2009)  

% The problem is u(x)=2*exp(x)-2-x+int(0,x)(x-

t)u(t)dt 

tic 

clc 

clear 

format long 

loop = 30;% This is much more than is usually 

needed. 

b=1; 

n=20; 

h = b/n; 

x = linspace(0,b,n+1); 
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fcnf=@(x)(2*exp(x)-2-x); 

fvec = fcnf(x); 

uvec = zeros(1,n+1); 

uvec(1) = fvec(1); 

 for i=1:n; 

    uvec(i+1) = uvec(i);% The initial estimate for 

the iteration. 

    kvec = fcnk(x(i+1),x(1:i+1)).*uvec(1:i+1); 

    for j=1:loop   

        %applying trapezoid rule  

        uvec(i+1) = fvec(i+1) + h*(sum(kvec(2:i)       

+(kvec(1)+ kvec(i+1))/2); 

      kvec(i+1)= fcnk(x(i+1),x(i+1)).*uvec(i+1); 

    end 

 end 

u = uvec; 

x = linspace(0,b,n+1); 

ue=x.*exp(x); 

y=(abs(ue-u)); 

m=[x',u',ue',y'] 

plot(x,u,'*',x,ue,'r') 

grid on 

plot(x,y) 

grid on 
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toc 

Matlab Code for Runge-Kutta method of order 2 

tic 

clc 

clear 

% Runge_Kutta_Method_of_order 2 

% The problem is u(x)=2*exp(x)-2-x+int(0,x)(x-t)u(t)dt 

%specifyig weights 

theta=[0,1] ;  

A=[1, 0 ; 0.5, 0.5]; 

h=.1; 

nodes=0:.1:1;  

num_inter_pts=(length(nodes)-1)*1; %number of 

intermediate points 

  

x=zeros(1, num_inter_pts+length(nodes)); %vector 

of nodes and intermediate points 

  

for i=1:length(nodes) %placing node values into x 

    x(i+(i-1))=nodes(i);  

end 

  

for i=1:length(nodes)-1 % placing intermediate 

points into x 
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    for j=2:2 

        x(i+(i-1)+ j-1)=x(i+(i-1))+h*theta(j); 

    end 

end 

index=zeros(1,length(x)); % keeps track of which 

intermediate points are associated with which node 

for i=1:length(nodes)-1 

    index(i+(i-1):i+(i-1)+1)=i;  

end 

index(length(index))=length(nodes); 

u=zeros(1,length(x)); %vector of solution values 

p=2; % order of method 

f=@(x)(2*exp(x)-2-x); 

for i=1:length(u) 

    u(i)=f(x(i));  

    m=mod(i, 2);  

    k=index(i);  

    if m==0 

       v=1; 

    elseif m==1 

        v=0;  

    end   

    if i~=1||i~=2 

        for j=1:k-1 
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            for l=1:p 

                ind1= find(j==index); 

                ind1=ind1(1);  

             

                %applying RK formula 

                u(i)=u(i)+h*A(2,l)*fcnk(x(i), 

x(ind1+(l-1))).* u(ind1+(l-1));  

            end 

        end 

    end 

 if v~=0 

        for l=1:v %depends on mod 

            ind1= find(index(i)==index); 

            ind1=ind1(1);  

             

            %applying RK formula 

            u(i)=u(i)+h* A(v,l)*fcnk(x(i), 

x(ind1+(l-1))).*x(ind1+(l-1));  

         

        end 

    end  

end 

%obtaining node values 

u2=zeros(1,length(nodes));  
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for i=1:length(nodes) 

    u2(i)=u(i+(i-1));  

end 

ue=zeros(1,length(nodes)); 

for i=1:length(nodes) 

ue(i)=x(i+(i-1)).*exp(x(i+(i-1))); 

end 

y=ue-u2; 

m=[nodes',u2',ue',y']; 

plot(nodes,u2,'o',nodes,ue,'r') 

grid on 

plot(nodes,y) 

grid on 

toc 

 

Matlab Code for Runge-Kutta method of order 4 

tic 

clc 

clear 

format long 

%Calculates an approximation to a Volterra 

Integral Equation of the Second Kind using the 

fourth order Runge-Kutta Method 

% The problem is u(x) =2*exp(x)-2-x+int(0,x)(x-t)u(t)dt 
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%specifying weights:  

theta=[0,0.5,0.5,1] ;  

A=[0.5, 0, 0, 0; 0, 0.5, 0, 0; 0, 0, 1, 0; (1/6), 

(1/3), (1/3), (1/6)];  

a=0; 

b=1; 

h=.1; 

nodes=a:h:b ; 

num_inter_pts=(length(nodes)-1)*3; % number of 

intermediate points 

  

x=zeros(1, num_inter_pts+length(nodes)); %vector 

of nodes and intermediate points 

  

for i=1:length(nodes) % placing node values into x 

    x(i+3*(i-1))=nodes(i);  

end 

  

for i=1:length(nodes)-1 % placing intermediate 

points into x 

    for j=2:4 

        x(i+3*(i-1)+ j-1)=x(i+3*(i-1))+h*theta(j); 

    end 

end 
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index=zeros(1,length(x)); % keeps track of which 

intermediate points are % associated with which 

node 

for i=1:length(nodes)-1 

    index(i+3*(i-1):i+3*(i-1)+3)=i;  

end 

index(length(index))=length(nodes); 

u=zeros(1,length(x)); % vector of solution values 

p=4; % order of method 

 f=@(x)(2*exp(x)-2-x); 

for i=1:length(x) 

    u(i)=f(x(i));  

    m=mod(i, 4);  

    k=index(i);  

    if m==2 

       v=1; 

    elseif m==3 

        v=2; 

    elseif m==0 

        v=3; 

    elseif m==1 

        v=0;  

    end  
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    if i~=1||i~=2||i~=3||i~=4 

        for j=1:k-1 

            for l=1:p 

                ind1= find(j==index); 

                ind1=ind1(1);  

             

                %applying RK formula 

                u(i)=u(i)+h*A(4,l)*fcnk(x(i), 

x(ind1+(l-1))).*u(ind1+(l-1));  

            end 

        end 

    end 

    if v~=0 

        for l=1:v %depends on mod 

            ind1= find(index(i)==index); 

            ind1=ind1(1);  

         

            %applying RK formula 

            u(i)=u(i)+h* A(v,l)*fcnk(x(i), 

x(ind1+(l-1))).*u(ind1+(l-1));  

        end 

    end  

end 

%obtaining node values   
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u2=zeros(1,length(nodes));  

for i=1:length(nodes) 

    u2(i)=u(i+3*(i-1));  

end 

ue=zeros(1,length(nodes)); 

for i=1:length(nodes) 

ue(i)=x(i+3*(i-1)).*exp(x(i+3*(i-1))); 

end 

y=ue-u2; 

  

m=[nodes',u2',ue',y'] 

plot(nodes,u2,'bl*',nodes,ue,'r') 

grid on 

plot(nodes,y) 

grid on 

toc 

 

Matlab Code for Method of two Blocks 

tic 

clc 

clear 

format long 

% Method of two Blocks to solve Volterra integral 

equation of the second kind 
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% The problem is u(x)=2*exp(x)-2-x+int(0,x)(x-

t)u(t)dt 

b=1; 

n=10; 

p=2; 

h = b/n; 

x=linspace(0,1,n+1); 

u=zeros(1,n+1); 

fcnf=@(x)(2*exp(x)-2-x); 

fvec = fcnf(x); 

u(1) = fvec(1); 

w=zeros(1,n); 

w(1)=1; 

w(n)=1; 

for j=2:n-1 

    w(j)=3-(-1)^j; 

end 

wp=zeros(1,n+1); 

wp(1)=1; 

wp(n)=1; 

for j=2:n+1 

    wp(j)=3-(-1)^j; 

end 

for m=2:n 
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    u(m)=fcnf(x(m))+(h/3)*sum(w(1:m-2) 

.*fcnk(x(m),x(1:m-2)).*u(1:m-2)) 

+(h/12)*(5*fcnk(x(m),x(m-1)).*u(m-1) 

+8*fcnk(x(m),x(m)).*u(m)-fcnk(x(m),x(m+1)) 

.*u(m+1)); 

    u(m+1)=fcnf(x(m+1))+(h/3)*sum(wp(1:m+1) 

          .*fcnk(x(m+1),x(1:m+1)).*u(1:m+1)); 

end 

ue=zeros(1,n+1); 

for i=1:n+1 

ue(i)=x(i).*exp(x(i)); 

end 

y=abs(ue-u); 

m=[u',ue',y'] 

plot(x,u,'*',x,ue,'r') 

grid on 

plot(x,y,'r') 

grid on 

toc 

 

Matlab Code for Method of three Blocks 

tic 

clc 

clear 
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format long 

% Method of three Blocks to solve Volterra 

integral equation of the second kind 

% The problem is u(x)=2*exp(x)-2-x+int(0,x)(x-

t)u(t)dt 

b=1; 

n=20; 

p=2; 

h = b/n; 

x=linspace(0,1,n+1); 

u=zeros(1,n+1); 

fcnf=@(x)(2*exp(x)-2-x); 

fvec = fcnf(x); 

u(1) = fvec(1); 

w=zeros(1,n+1); 

w(1)=1; 

w(n-1)=1; 

for j=2:n 

    m=mod(j,3); 

    if m==0 

    w(j)=2; 

    else 

        w(j)=3; 

    end 
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end 

  

for m=2:n-1 

    u(m)=fcnf(x(m))+(3*h/8)*sum(w(1:m-1) 

.*fcnk(x(m),x(1:m-1)).*u(1:m-1)) 

+(h/12)*(5*fcnk(x(m),x(m-1)).*u(m-1) 

+8*fcnk(x(m),x(m)).*u(m)-fcnk(x(m),x(m+1)) 

.*u(m+1)); 

    u(m+1)=fcnf(x(m+1))+(3*h/8)*sum(w(1:m-1) 

.*fcnk(x(m+1),x(1:m-1)).*u(1:m-1)) 

+(h/3)*(fcnk(x(m+1),x(m-1)).*u(m-1) 

+4*fcnk(x(m+1),x(m)).*u(m)+fcnk(x(m+1),x(m+1)) 

.*u(m+1)); 

    u(m+2)=fcnf(x(m+2))+(3*h/8)*sum(w(1:m+2) 

.*fcnk(x(m+2),x(1:m+2)).*u(1:m+2)); 

end 

  

ue=zeros(1,n+1); 

for i=1:n+1 

ue(i)=x(i).*exp(x(i)); 

end 

y=abs(ue-u); 

m=[u',ue',y'] 

plot(x,u,'*',x,ue,'r') 
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grid on 

plot(x,y) 

grid on 

toc 

Matlab Code for Collocation method  

clc 

clear 

n=10; 

% u(x)=1+x-x^2+int(u(t),0,x) 

% collocation method with nine iterations 

syms x t 

u0=1+x-x^2; 

u1=u0+int(1+t-t^2,0,x); 

u2=u0+int(1+2*t-1/2*t^2-1/3*t^3,0,x); 

u3=u0+int(1+2*t-1/6*t^3-1/12*t^4,0,x); 

u4=u0+int(1+2*t-1/24*t^4-1/60*t^5,0,x); 

u5=u0+int(1+2*t-1/120*t^5-1/360*t^6,0,x); 

u6=u0+int(1+2*t-1/720*t^6-1/2520*t^7,0,x); 

u7=u0+int(1+2*t-1/5040*t^7-1/20160*t^8,0,x); 

u8=u0+int(1+2*t-1/40320*t^8-1/181440*t^9,0,x); 

u9=u0+int(1+2*t-1/362880*t^9-

1626697008263629/2951479051793528258560*t^10,0,x) 
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ua=@(x)(1+2*x-

1626697008263629/5902958103587056517120*x^10-

5205430426443613/103892062623132194701312*x^11) 

ue=@(x)(1+2*x); 

uaa=zeros(11,1); 

uee=zeros(11,1); 

xx=zeros(11,1); 

c=0; 

for i=1:11 

    uaa(i)=ua(c); 

    uee(i)=ue(c); 

    xx(i)=c; 

    c=c+.1; 

end 

y=(abs(uaa-uee)); 

[xx uee uaa y]; 

uee 

uaa 

y 

plot(xx,uaa,'o',xx,uee,'r') 

grid on 

plot(xx,y) 

grid on 

toc 
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Matlab Code for Galerkin method with Chebyshev polynomials 

tic 

clc 

clear 

format long 

% degree of polynomial is n 

n=10; 

F=zeros(n+1,1); 

a=zeros(n+1,1); 

k=zeros(n+1,n+1); 

syms x t 

F(1)=int((1+x-x^2),0,1); 

F(2)=int((1+x-x^2)*x,0,1); 

for i=3:n+1 

F(i)=int((1+x-x^2)*Tch(i-1),0,1); 

end 

F; 

k(1,1)=int(1-int(1,0,x),0,1); 

k(1,2)=int((1-int(1,0,x))*x,0,1); 

for j=3:n+1 

    k(1,j)=int((1-int(1,0,x))*Tch(i-1),0,1); 

end 

k(2,1)=int(x-int(t,0,x),0,1); 



111 

k(2,2)=int((x-int(t,0,x))*x,0,1); 

for j=3:n+1 

    k(2,j)=int(((x-int(t,0,x))*Tch(j-1)),0,1); 

end 

for i=3:n+1 

k(i,1)=int((Tch(i-1)-(int(Tcht(i-1),0,x))),0,1); 

k(i,2)=int((Tch(i-1)-(int(Tcht(i-1),0,x))*x),0,1); 

end 

for i=3:n+1 

    for j=3:n+1 

        k(i,j)=int(((Tch(i-1)-(int(Tcht(i-

1),0,x))).*Tch(j-1)),0,1); 

    end 

end 

k 

a=inv(k)*F 

u=sum(a(1)+a(2).*x+a(3).*Tch(2)+a(4).*Tch(3)+a(5).

*Tch(4)+a(6).*Tch(5)+a(7).*Tch(6)+a(8).*Tch(7)+a(9

).*Tch(8)+a(10).*Tch(9)+a(11).*Tch(10)) 

  

ua=@(x)(3378014733232755/1125899906842624-

33608425858860287091/18446744073709551616*x-

780646173785663/562949953421312*x^2+25641194402273

5/70368744177664*x*(2*x^2-1)-
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758816794818963/140737488355328*x*(2*x*(2*x^2-1)-

x)+385490043195975/70368744177664*x*(2*x*(2*x*(2*x

^2-1)-x)-2*x^2+1)-

576129132906897/140737488355328*x*(2*x*(2*x*(2*x*(

2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-

1)+x)+160094110262051/70368744177664*x*(2*x*(2*x*(

2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-1)+x)-

2*x*(2*x*(2*x^2-1)-x)+2*x^2-1)-

128373776867859/140737488355328*x*(2*x*(2*x*(2*x*(

2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-1)+x)-

2*x*(2*x*(2*x^2-1)-x)+2*x^2-1)-

2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)+2*x*(2*x^2-1)-

x)+16954400822283/70368744177664*x*(2*x*(2*x*(2*x*

(2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-

1)+x)-2*x*(2*x*(2*x^2-1)-x)+2*x^2-1)-

2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)+2*x*(2*x^2-1)-

x)-2*x*(2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-

2*x*(2*x^2-1)+x)+2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-

4550460827751/140737488355328*x*(2*x*(2*x*(2*x*(2*

x*(2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-

1)+x)-2*x*(2*x*(2*x^2-1)-x)+2*x^2-1)-

2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)+2*x*(2*x^2-1)-

x)-2*x*(2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-

2*x*(2*x^2-1)+x)+2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-
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2*x*(2*x*(2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-

2*x*(2*x^2-1)+x)-2*x*(2*x*(2*x^2-1)-x)+2*x^2-

1)+2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-

1)+x)); 

c=0;  

xx=zeros(n+1,1); 

uap=zeros(n+1,1); 

uex=zeros(n+1,1); 

for j=1:n+1 

    uap(j)=(ua(1-c)); 

    uex(j)=(1+2*(c)); 

    xx(j)=c; 

    c=c+.1; 

end 

y=(abs(uap-uex)); 

[xx uex uap y] 

uex 

uap 

y 

plot(xx,uap,'*',xx,uex,'r') 

grid on 

plot(xx,y) 

grid on 

toc
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