An-Najah National University
Faculty of Graduate Studies

Analytical and Numerical Solutions of
Volterra Integral Equation of the
Second Kind

By
Feda’ Abdel Aziz Mustafa Salameh

Supervisor

Prof. Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Computational Mathematics, Faculty of

Graduate Studies, An-Najah National University, Nablus, Palestine.
2014

i

w

Analytical and Numerical Solutions of Volterra
Integral Equation of the Second Kind

By
Feda’ Abdel Aziz Mustafa Salameh

This thesis was defended successfully on 21/12/2014 and approved by:

Defense Committee Members Signature
— Prof. Naji Qatanani (Supervisor) \\5@0‘"“‘”‘“
— Dr. Iyad Suwan (External Examiner)L;_i...f."...J}../.

— Dr. Anwar Saleh (Internal Examiner) Eu L’LC‘«L e

1]
Dedication
| dedicate this thesis to my beloved Palestine, my parents, my love my
husband Emad, my children Shahd,Qays and Karam, my brother Amjad,

who helped me, stood by me and encouraged me.

\Y
Acknowledgement

First of all, I thank my God for all the blessing he bestowed on me and
continues to bestow on me.
| would sincerely like to thank and deeply grateful to my supervisor Prof.
Dr. Naji Qatanani who without his support, kind supervision, helpful
suggestions and valuable remarks, my work would have been more
difficult. My thanks also to my external examiner Dr. lyad Suwan and to
my internal examiner Dr. Anwar Saleh for their useful and valuable
comments. Also, my great thanks are due to my family for their support,
encouragement and great efforts for me.
Finally 1 would also like to acknowledge to all my teachers in An-Najah

National University department of computational mathematics.

.
LAY
(2 gl Jand 2 Al i ol A gl U

Analytical and Numerical Solutions of Volterra
Integral Equation of the Second Kind

Al 5LEY) s Lo eliiuly cpaldll gaga oo L) Aoyl oda 4dde calad) L oy il
o Gade A5 50 6l il i e iy o Lgda e 3a gl o (JSS ALl 03a o 5 62y Lds

(A Ay o daled Bue 4 gl iny

Declaration
The work provided in this thesis, unless otherwise referenced, is the
researcher's own work, and has not been submitted elsewhere for any other

degree or qualification.

Student's name: Lol EAES J__'/ﬁ“ 4 V49 J) a

Signature: Qﬂuﬁ

Date: 9\1/}2/}@;4 e

Vi
Table of Contents

No. Contents page
Dedication i
Acknowledgement v
Declaration \Y
Table of Contents VI
List of Figures VIlI
List of Tables IX
Abstract X
Introduction 1
Chapter One 5
Mathematical Preliminaries 5

1.1 [Classification of integral equations 5
1.2 |Kinds of kernels 8
1.3 [The existence and unigueness theorem 9
Chapter Two 12
Some Analytical Methods for Solving Volterra integral 12
Equations of the Second Kind
2.1 |The Adomian Decomposition method 12
2.2 |The Modified Decomposition method 15
2.3 |The method of successive approximations 17
2.4 |The series solution method 21
2.5 |Converting Volterra equation to ODE 23
Chapter Three 26
Numerical Methods for Solving Volterra Integral Equations 26
of the Second Kind
3.1 |Quadrature methods for Volterra equations of the second kind 26
3.1.1 |Quadrature methods for linear equations 27
3.1.2 (Trapezoidal rule 28
3.1.3 |Runge-Kutta methods 29
3.2 |The Block methods 32
3.3 |The Collocation method 36
3.4 [The Galerkin method 39
Chapter Four 45
Numerical Examples and Results 45
41 The numerical realization of equation (4.1) using Trapezoidal 45
' rule
42 The numerical realization of equation (4.1) using the Runge- 48
' Kutta method
The numerical realization of equation (4.1) using the Block
4.3 method 58
44 The numerical realization of equation (4.2) using Trapezoidal 62
' rule
45 The numerical realization of equation (4.2) using the Runge- 64

Kutta method

Wl

The numerical realization of equation (4.2) using the Block

4.6 method 67
The numerical realization of equation (4.2) using the
4.7 : 71
Collocation method
The numerical realization of equation (4.3) using the Galerkin
4.8 . . 73
method with chebyshev polynomials
49 The numerical realization of equation (4.3) using the 76
' Collocation method
The numerical realization of equation (4.3) using Trapezoidal
4.10 rule 78
411 The numerical realization of equation (4.3) using the Runge- 80
' Kutta method
412 The numerical realization of equation (4.3) using the Block 83
' method
Conclusions 87
References 88
Appendix 94

VI
List of Figures

No. . Title. . Pages
Fgue .1 et el soutorsof e |47
Fgue 43| St i nericl solutors of g |
Fgue 45| oot g umercal soons ot wiling 7
Fgue 47| act el solutons of e | g
Fgue 49| St solutors of g | oy
Fgue 411 St g umercal oot waling g
Fgue .13 DAt solutors of e | g
Fgue .15 SOt TR solutors of g | g7
Fgue .17 |0 St g umercal oo fwaling g
Fgue .19 eSSt el solutors o slina |7
Fgue 21|t SOt T solutorsof g |7
Fgue 23| St g umercal oot wplving
Fgue 25|k et el solutorsof e | 77
Fgue 477 |Joe SaCt el solutons of g |7
Fgue 429 |0e St g umercl soions f 9aling oy
Fgue 31|k St el solutons of e | g
Fgue 33|06 St Ul solutors of g | gy
Figure: 4.35 The exact and numerical solutions of applying 85

Algorithm 4.5 for equation (4.3).

IX

List of Tables

No. Title Pages

Table: 4.1 The exact angl numerical solutions of applying Algorithm 47
4.1 for equation (4.1).

Table: 4.2 The exact anq numerical solutions of applying Algorithm 51
4.2 for equation (4.1).

Table: 4.3 The exact anpl numerical solutions of applying Algorithm 56
4.3 for equation (4.1).

Table: 4.4 The exact anq numerical solutions of applying Algorithm 59
4.4 for equation (4.1).

Table: 4.5 The exact anq numerical solutions of applying Algorithm 60
4.5 for equation (4.1).

Table: 4.6 The exact anq numerical solutions of applying Algorithm 62
4.1 for equation (4.2).

Table: 4.7 The exact anq numerical solutions of applying Algorithm 64
4.2 for equation (4.2).

Table: 4.8 The exact anq numerical solutions of applying Algorithm 66
4.3 for equation (4.2).

Table: 4.9 The exact anq numerical solutions of applying Algorithm 68
4.4 for equation (4.2).

Table: 4.10 The exact anq numerical solutions of applying Algorithm 69
4.5 for equation (4.2).

Table: 4.11 The exact anq numerical solutions of applying Algorithm 79
4.6 for equation (4.2).

Table: 4.12 The exact anq numerical solutions of applying Algorithm 74
4.7 for equation (4.3).

Table: 4.13 The exact anq numerical solutions of applying Algorithm 76
4.6 for equation (4.3).

Table: 4.14 The exact anq numerical solutions of applying Algorithm 77
4.1 for equation (4.3).

Table: 4.15 The exact an_d numerical solutions of applying Algorithm 80
4.2 for equation (4.3).

Table: 4.16 The exact anq numerical solutions of applying Algorithm 82
4.3 for equation (4.3).

Table: 4.17 The exact anq numerical solutions of applying Algorithm 83
4.4 for equation (4.3).

Table: 4.18 The exact and numerical solutions of applying Algorithm 85

4.5 for equation (4.3).

X
Analytical and Numerical Solutions of Volterra Integral Equation of
the Second Kind
By
Feda’ Abdel Aziz Mustafa Salameh
Supervisor
Prof. Naji Qatanani

Abstract

In this thesis we focus on the analytical and numerical aspects of the
Volterra integral equation of the second kind. This equation has wide range
of applications in physics and engineering such as potential theory,
Dirichlet problems, electrostatics, the particle transport problems of
astrophysics, reactor theory, contact problems, diffusion problems and heat
transfer problems.

After introducing the types of integral equations, we will investigate
some analytical and numerical methods for solving the Volterra integral
equation of the second kind. These analytical methods include: the
Adomian decomposition method, the modified decomposition method, the
method of successive approximations, the series solution method and the
conversion to initial value problem.

For the numerical treatment of the Volterra integral equation we will
implement the following numerical methods: Quadrature methods
(Trapezoidal rule, Runge-Kutta method of order two, the fourth order
Runge-Kutta method), Projection methods including collocation method
and Galerkin method and the Block method.

The mathematical framework of these numerical methods together with

their convergence properties will be presented. These numerical methods

Xl
will be illustrated by some numerical examples. Comparisons between
these methods will be drawn. Numerical results show that the Trapezoidal

rule has proved to be the most efficient method in comparison to the other

numerical methods.

1
Introduction

In recent years integral equations have attracted the attention of
many scientists and researchers due to their wide range of applications in
science and technology.

Many physical problems are modeled in the form of integral
equations. These include potential theory, Dirichlet problems,
electrostatics, contact problems, astrophysics problems and radiative heat
transfer problems. (For more details see [3, 16]).

Some valid numerical methods, for solving Volterra integral equation have
been developed by many researchers. Very recently, Mirzaee [25] studied a
Simpson’s quadrature method for solving linear Volterra integral equation
of the second kind. Mustafa [27] and Campbell [11] used block methods to
approximate the solution of Volterra integral equation with delay. Rahman,
Hakim and Hasan [30] used Galerkin method with the Chebyshev
polynomials for the numerical solution of Volterra integral equation of the
second kind. Hermite polynomials were used by Rahman [29] and Shafiqul
[36]. In [35] Saberi-Nadja and Heidari applied modified trapezoidal
formula to solve linear integral equations of the second kind, and in [2]
Aigo used repeated Simpson's and Trapezoidal quadrature rule to solve the
linear Volterra integral equation of the second kind. Ahmad [1] has applied
least-square technique to approximate the solution of Volterra-Fredholm
integral equation of the second kind. Brunner, Hairer and Njersett [8] have
used Runge-Kutta Theory for Volterra integral equation. Rahman and

Islam in [31] solved Volterra integral equation of the first and the second

2

kind numerically by Galerkin method with Legendre polynomials. Marek
and Arvet in [23] discussed the numerical solution of linear Volterra
integral equation of the second kind with singularities by using collocation
method. Bernstein’s approximation were used in [22] by Maleknejad to
find out the numerical solution of Volterra integral equation. In [37]
Tahmasbi solved linear Volterra integral equation of the second kind based
on the power series method. Maleknejad and Aghazadeh in [21] obtained a
numerical solution of these equations with convolution kernel by using
Taylor-series expansion method.

However many approaches for solving the linear and nonlinear kind
of these equations may be found in [5], [10], [15], [32], [33] and [38].

In this work, some analytical methods have been used to solve the
Volterra integral equation of the second kind. These methods are the
Adomian decomposition method, the modified decomposition method, the
series solutions, the method of successive approximations and the
conversion to initial value problem.

For the numerical treatment of the Volterra integral equation of the
second kind, we have implemented the following methods: Quadrature
methods (Trapezoidal rule, Runge-Kutta method of order two, the fourth
order Runge-Kutta method), Projection methods including collocation
method and Galerkin method and the Block method.

This thesis is organized as follows: In chapter one, we introduce
some basic concepts of integral equations. In chapter two, we investigate

some analytical methods used to solve the Volterra integral equation. These

3
include: The Adomian decomposition method, the modified decomposition
method, the method of successive approximations, the series solutions
method and the conversion of the Volterra integral equation to ordinary
differential equation. In chapter three, we implement some numerical
methods for solving the Volterra integral equation. These are the
Quadrature methods, Trapezoidal rule, Runge-Kutta methods, Blocks
methods, the collocation method and the Galerkin method. Numerical
examples and results are presented in chapter four and conclusions have

been drawn.

Chapter One
Mathematical Preliminaries

5
Chapter One
Mathematical Preliminaries
An integral equation is an equation in which the unknown function
appears under an integral sign. The most standard type of integral equation
IS given as
u(@) = f(x)+ A fgh(%) k(x, Hu(t)dt (1.1)

Here, u(x) is the unknown function, k(x, t) and f(x) are known
functions, A is known constant parameter, and g(x) and h(x) are the limits
of integration that may be both variables, constants, or mixed, and they
may be in one dimension or more. The function k(x, t) is known as the
kernel of integral equation [39].
1.1 Classification of integral equations
1.1.1 Types of integral equations
1) Fredholm integral equations
The most standard form of a Fredholm integral equation is given by

POux) = () +A [k(x,Du(®)dt a<x,t<b, (1.2)

There are three kinds of Fredholm integral equations:

1. Fredholm integral equation of the second kind: when the function
@(x) = 1, then (1.2) becomes

u(x) =) + A L7 k(x, Ou(e)de a<x,t<b, (1.3)
2. Fredholm integral equation of the first kind: when the function

@(x) = 0, then (1.2) becomes
fO)+AL k(G Out)dt=0 a<x,t<b, (1.4)

6
3. Fredholm integral equation of the third kind: when ¢(x) is neither O nor
1.
2) Volterra integral equations
The most standard form of Volterra integral equation is given as
@(u(x) = f(x) + A [k(x, Du(t)dt, (1.5)
where the upper limit of integration is variable and the unknown function
appears linearly or nonlinearly under the integral sign.
There are three kinds of Volterra integral equations:
1. Volterra integral equation of the second kind: when the function
¢@(x) = 1, then (1.5) becomes

u(x) = f(x) + A [k(x, Du(t)de, (1.6)
2. Volterra integral equation of the first kind: when the function ¢(x) = 0,
then (1.5) becomes

fG) +A [k(x, Du(t)de =0, (1.7)
3. Volterra integral equation of the third kind: when ¢ (x) is neither O nor 1.
(see [39],[40] and [9]).
3) Singular integral equations
A singular integral equation is an equation in which one or both limits of
integration are infinite or when the kernel becomes infinite at one or more
points within the range of integration. For example, the integral equation,

u(x) = f(x) +A [u(t)dt (1.8)

Is a singular integral equation of the second kind.

1. Weakly singular integral equation: The kernel is of the form
k(x, o) = H(x,t)
E T e

.
or k(x,t) = H(x, t)In|x — t|

where H (x, t) is bounded (that is, several times continuously differentiable)
a<x<band a<t<bwith H(x,t) # 0 and «a is a constant such that

0 < a < 1.Forexample, the equation of the form:

1
(x-0)*

f)=Af, u(®)dt, 0 < a <1 (1.9)

is called generalized Abel’s integral equation. The equation of the second

kind:
1
(x—t)*

u(x) = f(x) +A [, u(t)dt, 0<a<1 (1.10)

is called weakly singular integral equation.

2. Strongly singular integral equations: if the kernel k(x, t) is of the form
k(x, 1) = H(x,t)
YT a2

and H(x,t) is a differentiable function of (x, t) with H(x, t) # 0.

4) Integro-differential equations

In this type of equations, the unknown function appears as a combination
of an ordinary derivative and under the integral sign,

For example:

Volterra-integro-differential equation
u® () = () + A [k(x, Hu(t)de, (1.11)

k
where u® (x) = %, k=12,..n

Fredholm-integro-differential equation

u®(x) = () + 4 [7 k(x, Dut)dt, (1.12)

k
where u® (x) = %, k=1.2,..,n

8
1.1.2 Linearity of integral equations
Definition (1.1): An integral equation is said to be linear if the unknown
function u(x) in the integral equation appears in a linear fashion (i.e. the
exponent of the unknown function u(x) inside the integral sign is one).
Otherwise it called nonlinear, that is the exponent of the unknown function
other than one, or if the equation contains nonlinear functions of u(x).
For examples
u(x) =2x — <+ f, (x — Hu)dt. (1.13)
is linear integral equation.
u(x) =1+ [(1+x— 0)(u@)*de. (1.14)
is nonlinear integral equation.
1.1.3 Homogeneity of integral equations
Definition (1.2): If the function f(x) in the second kind of Volterra or
Fredholm integral equations is identically zero, the equation is called
homogeneous, otherwise it is called nonhomogeneous.
1.2 Kinds of kernels
1. Separable kernel
A kernel k(x, t) is said to be separable or (degenerate) if it can be
expressed in the form
k(x,t) = iy a;(Obi(0) (1.15)
where the functions a; (x) and the functions b;(t) are linearly independent.
(see [17]).
2. Symmetric (or Hermitian) kernel

A complex-valued function k(x, t) is called symmetric (or Hermitian) if

k(x,t) = k*(x,t).
where the asterisk denotes the complex conjugate. For a real kernel, we
have
k(x,t) = k(t, x).
1.3 The existence and unigqueness theorem
Some integral equations have a solution and some others have no solution
or have an infinite number of solutions. The following theorems state the
existence and uniqueness of the solution for the VVoterra integral equation
of the second kind.
Theorem (1.1) (Volterra’s Theorem)
Assume that the kernel k(x, t) of the linear Volterra integral equation
u(x) = f(x) + [, k(x,Hu()dt, x€l:=1[0,T], (1.16)
is continuous on D := {(x,t): 0 < t < x < T}. Then for any function f(x)
that is continuous on I (that is,f € C (1)), the Volterra integral equation
possesses a unique solution u € C(1). This solution can be written in the
form
u(x) = f(x) + [, R(x,Of(Ddt, x €l (1.17)
for some R € C(D). The function R = R(x, t) is called the resolvent kernel
of the given kernel k(x, t)[6].
Theorem (1.2)
If we define the integral operator K: C(I) —» C(I) by
K@) = [, R,)f(Ddt, xE€I (1.18)
then the Volterra integral equation in operator form is given

u=f+"Vu, or I-Vu=f,

10

(where I denotes the identity operator, and the classical Volterra integral
operator V:C(I) —» C(I) is defined by

(Vw)(x) = [kCx, u(®dt, x € I, with k € C(D)), then we have
the following relationship:

UI-Vu=f = u=({U+K)f.

By Theorem 1.1 this implies that the inverse operator (I — V) talways
exists, and hence (by uniqueness of R(x, t))

(I-V) 1 =1+ K, see ([6]).

11

Chapter Two
Analytical Methods for Solving Volterra Integral
Equation of the Second Kind

12
Chapter Two
Analytical methods for solving Volterra integral equation of
the second kind
There are many analytical methods available for solving Volterra integral
equation of the second kind. In this chapter we will focus on the following
methods: the Adomian decomposition method, the modified decomposition
method, the method of successive approximations, the series solution
method, converting Volterra integral equation to initial value problem.
2.1 The Adomian Decomposition Method
The Adomian decomposition method (ADM) was introduced and
developed by George Adomian [39]. It consists of decomposing the
unknown function u(x) of any equation into a sum of an infinite number of
components defined by the decomposition series
u(x) = Xnzoun(x) , (2.1)
or equivalently
u(x) = ug(x) + uy(x) +uy(x) + -+, (2.2)
The decomposition method is concerned with finding the components
Uy, Uq, Uy, ... INdividually. To establish the recurrence relation, we substitute
(2.1) into equation (1.6) to get
Tieo un(X) = £ () + A [kCx,) (Tyzo un (1)) dt (2.3)
or equivalently
up(x) + uy (%) +up(x) + -+ = f(x) +
A Q) [uo(8) + ug (8) + uy(6) + -+ dt (2.4)

13

The components u;(x), j =1 of the unknown function u(x) are

completely determined by setting the recurrence relation:
uo(x) = f(x),

Upe1(X) = Afy k(x, D u,(Ddt, n=0, (2.5)

or equivalently

up(x) = f(x),

up (x) = AJy k(x,) uo(t)dt,

uy(x) = AJf; k(x,) uy (£)dt, (2.6)

uz(x) = AJ) k(x, D) uy(0)dt,
and so on for other components. As a result the components u,(x),
U, (x),uz(x), are completely determined, then the solution u(x) of the
Volterra integral equation (1.6) is readily obtained in a series form by using
the series assumption in (2.1).

The decomposition method converts the integral equation into an
elegant determination of computable components. If an exact solution
exists for the problem, then the obtained series converges very rapidly to
that exact solution. However, for concrete problems, where a closed form
solution is not obtainable, a truncated number of terms is usually used for
numerical purposes. The more components we use the higher accuracy we
obtain [39].

Example 2.1

Consider the following Volterra integral equation of the second kind
u(x) = 6x — 3x2% + f:u(t)dt, (2.7)

14
We notice that f(x) = 6x — 3x2?, A =1,k(x,t) = 1. Recall that the
solution u(x) is assumed to have a series form given in (2.1). Substituting
the decomposition series (2.1) into both sides of (2.7) gives
TrzoUn(x) = 6x = 3x% + [F X7 un (1) dt,
or equivalently
Uo (%) + uy (x) + uy(x) + -+ = 6x — 3x% + fox[uo(t) + u, (t)
+u,(t) + -+]dt
We identify the zeroth component by all terms that are not included under
the integral sign. Therefore, we obtain the following recurrence relation:
ug(x) = 6x — 3x2 ,
U1 (X) = fy up(B) dt, n=0,

so that

ug(x) = 6x — 3x2,

u; (x) = foxuo(t) dt = fox 6t — 3t%2dt = 3x% — x3,

() = [Fu(Odt = [FGBt2 - dt =x3 =L,

x>

4 4
uz(x) = f;uz(t) dt = fox(t3 —%) dt = %—5 ,

x x t* > x5 x®
u(x) = [y us(t)dt = [G =399t =55~ 55
The solution in a series form is given by
xt ox* x> x5 «x®
u(x) =6x—3x*+3x* -3+ ——+———+————+ -

4 4 20 20 120

We can easily notice the appearance of identical terms with opposite signs.
This phenomenon of such terms is called noise terms phenomenon.
Canceling the identical terms with opposite terms gives the exact solution

u(x) = 6x .

15
2.2 The Modified Decomposition Method
As shown before, the Adomian decomposition method provides the
solution in an infinite series of components. The components u;,j = 0 are
easily computed if the inhomogeneous term f(x) in the Volterra integral
equation:
u(x) = f(x) + A, k(x, Hu(®)de, (2.8)
consists of a polynomial. However, if the function f(x) consists of a
combination of two or more of polynomials, trigonometric functions,
hyperbolic functions, and others, the evaluation of the components
u;,j =0 require more work. A reliable modification of the Adomian
decomposition method was developed by Wazwaz [39]. The modified
decomposition method will facilitate the computational process and further
accelerate the convergence of the series solution. This will be applied
whenever it is appropriate to all integral equations and differential
equations of any order. It is important to note that the modified
decomposition method relies mainly on splitting the function f(x) into two
parts; therefore it can not be used if the function f(x) consists of only one
term. To explain this technique, we recall that the standard Adomian
decomposition method admits the use of the recurrence relation:
up(x) = f(x),

U1 () = A [k(x, D up(Ddt, n>0, (2.9)

where the solution u(x) is expressed by an infinite sum of components

defined by
u(x) = Ynzoun(x) , (2.10)

16
In virtue of (2.9), the components u,,,n = 0 can easily be evaluated. The
modified decomposition method introduces a slight variation to the
recurrence relation (2.9) that will lead to the determination of the
components of u(x) in an easier and faster manner. For many cases, the
function f(x) can be set as the sum of two partial functions, namely f; (x)
and £ (x) . In other words, we can set
fx) = fi(x) + f2(x) (2.11)

In virtue of (2.11), we introduce a qualitative change in the formation of the
recurrence relation (2.9). To reduce the calculations, we will introduce of
the modified decomposition method into recurrence relation:

uo(x) = f1(x),

u(x) = fo(x) + A [, k(D) uo(t)dt,

U1 () = A [kCr,) u,(Ddt ,n > 1 (2.12)
This shows that the formation of the first two components u,(x) and u, (x)
is only the difference between the standard recurrence relation (2.9) and the
modified recurrence relation (2.12). The other components u;, j > 2
remain the same in the two recurrence relations. This variation in the
formation of u,(x) and u, (x) is important to accelerate the convergence of
the solution and in minimizing the size of computational work [39].
Example 2.2
Consider the Volterra integral equation of the second kind

u(x) =e* +xe* —x — foxxu(t)dt.

Using the modified decomposition method, we first split f(x)

f(x) =e*+xe*—x

17
into two parts, namely
fi(x) = e*,
fo(x) = xe* — x.

Next, use the modified recurrence formula (2.12) to obtain

up(x) = fi(x) =e*,

u(x) = xe¥ —x — foxxuo(t)dt =0,

Unsr (X) = = [k(x, Dup(Dde =0, n=1.

It is obvious that each component of u;,j =1 is zero. This in turn gives
the exact solution by

u(x) = e*.
2.3 The method of successive approximations
The successive approximations method provides a scheme that can be used
for solving initial value problems or integral equations. This method solves
any problem by finding successive approximations to the solution by
starting with an initial guess as uy(x), called the zeroth approximation
which can be any real-valued function u,(x), that will be used in a
recurrence relation to determine the other approximations. There are two
methods of successive approximations:
i) The Picard's method: In this method the nt" approximation for solving
the Volterra integral equation (1.6) can be put in a recursive scheme
defined by

Uy (1) = f0) + A [, k(x, Dup_q(Ddt, n>1 (2.13)

where the most commonly selected functions for u,(x) are 0,1 or x.

18
Accordingly, the first and the second approximation of the solution
of u(x) can be obtained as
u; () = () + A [kCx, u(t)dt (2.14)
uy (%) = F(x) + A [k(Cx, Duy (B)dt (2.15)
It is obvious that u, (x) is continuous if f(x), k(x,t), and uy(x) are
continuous. Notice that with the selection of uy(x) = 0, the first
approximation u, (x) = f(x) . The final solution u(x) is obtained by
u(x) =limy,_ uy(x) (2.16)
so that the resulting solution u(x) is independent of the choice of u,(x).
Example 2.3
Consider the Volterra integral equation of the second kind
u(x) = x + [, (x — Hu(t)d.
Using the successive approximations method, we can select for the zeroth
approximation uy(x)
uy(x) = 0. (2.17)
The method of successive approximations admits the use of the iteration
formula
U (X)) = x + fox(x —tu,(t)dt, n=0 (2.18)
Substituting (2.17) into (2.18) we obtain
u;(x) = x + [(x — Duy(t)dt = x,
up(¥) = x+ f) (x = Dw (dt = x +—x3,
us(x) = x + fox(x — u,(t)dt = x + %x3 + éxf’,

U (x) =x+ fox(x — Huz(t)dt = x + %x3 + %xs t %x7,

19

Consequently, we obtain
x2k+1

Un () = Xk=0 Greryr -
The solution u(x) of (1.62) is
u(x) = lim,_, u,(x) =sinhx .
(see [12] and [39]).
ii) The Neumann series method
This method uses
up(x) = f(x).
Then we obtain the successive approximations:
uy(x) = f(0) + A f k(x, O)f (),
u, (%) = F(0) + A [k(x, Ouy (x)dt,
U1 (%) = £ + A [k(x, Duyp(x)dt,
U, (%) = f(x) + 2 f k(x, D)uy_q (x)dt. (2.19)
Consider
Uy (0) —uy () = A [k(x,£) [F(8) + A [k(t, D) f(D)dr] dt
—1Jy k(x,) f(Ddt
=22 [Tk(x,t) [k(t, D)f (D)dr dt

= 12, (x) (2.20)
where
P, (%) = [k(x,) [k(t,D)f (D)dr dt (2.21)
Thus, it can easily be observed from equation (2.21) that
Un (%) = Y=o A" P () (2.22)

If Y,(x) = f(x), and further that

20
P () = [k()P (D, (2.23)
where m = 1,2,3,.... and hence v, (x) = [k(x, t) f()dt .
The repeated integrals in equation (2.21) may be considered as a double
integral over the triangular region; thus interchanging the order of

integration, we obtain

P,(x) = [f@dr [T k(x, Ok(t,T) dt

= [ky(x, Df (D)dr
where k,(x, 1) = fo k(x,t)k(t,) dt. Similarly, we find in general
Y (X) = [k, Df(DdT, m=123,..... (2.24)

where the iterative kernels k; (x,t) = k(x,t), k,(x,t), k;(x,t),....are
defined by the recurrence formula
kmar (6, 8) = [Tk, Dk (n.) dr, m=123,.. (2.25)
Thus, the solution for u,, (x) can be written as
Un (%) = f(x) + =1 A" (%) (2.26)
Upon using equation (2.24) we obtain
() = () + Tpma A7 [ki (D (D)dT
= £ + Jy (a1 A (6, D} f (D), (2.27)
Hence it is also clear that the solution of linear Volterra integral equation of
the second kind will be given by
lim,_,q u,(x) = ulx)
= f(x) + [y (et Ak (x, D} f (DT,
=f)+A [, Hex, 1 D) f(D)de (2.28)
where

H(x,1; 1) = Y% Mk, (x,7) (2.29)

21
is known as the resolvent kernel. (see [18],[19] and [28]) .
Example 2.4
Consider the Neumann series for the solution of the integral equation
ux)=1+x)+A1 fox(x — tu(t)dt.
From the formula (2.25), we have
Ki(x,t) = (x - t),
x (x —t)3
Kz(x,t)=J (x—1)(t—t)dtr = TR
. !

X _ _ 3 _ 5
Kot — f (x T)g(f 0 @& S't) |

and so on .Thus,
lim 2, (x) = u(x)
= f(0) + [, (Zmei Mk (x, T} £ (DdT,
u(x) = f)+ [1k, Df(Ddr+ [y 22 ky(x, T)f(DdT +
Jy A2 ks (e, Df (Ddr + -
u(x) =1 +x+A(Z—T+§) + 22 (Z—T+J;—T) + -
for A=1, u(lx) = e~*.
2.4 The series solution method
The series method is useful method that stems mainly from the Taylor
series for analytic functions for solving integral equations.
Definition (2.1) A real function u(x) is said to be analytic if it has

derivatives of all orders such that the Taylor series at any point b in its

domain
ulk

w(x) = Yoo o (x — b, (2.30)

converges to u(x) in a neighborhood of b.

22
For simplicity, the generic form of Taylor series at x = 0 can be written
as
u(x) = Yo anx™. (2.31)
we will assume that the solution u(x) of the Volterra integral equation
(1.6) is analytic, and therefore possesses a Taylor series of the form given
in (2.31), where the coefficients a,, will be determined recurrently.

Substituting (2.31) into both sides of (1.6) gives

Yeo @nX™ = T(f(0)) + 4 [, k(x,) (T apt™dt, (2.32)
or
ap + a;xt + azx? + - = T(f(x)) +
AL k(x 0)(ag + agt + apt? + -)dt, (2.33)

where T (f(x)) is the Taylor series for f(x). the integral equation (2.32)

will be converted to a traditional integral in (2.33) where instead of

integrating the unknown function u(x), the terms of the form t™,n = 0 will

be integrated. Notice that because we are seeking series solution, then if

f (x) includes elementary functions such as trigonometric functions,

exponential functions, etc., then Taylor expansions for functions involved

in f(x) should be used. We will illustrate the series solution method by this

example. (see [24], [28] and [39].

Example 2.5

Consider the solution of the Volterra integral equation of the second kind
u(x) =1+ 2sinx — foxu(t)dt :

using the series method. We assume the solution in the series form

(x) = Xo—o a,x™ . Hence substituting the series into the equation and the

Taylor’s series of sin x, we have
Ym0 An X =14+ 237 (=)™

x2n+1

x 0]
(2n+1)! fo Yineo Anpthtdt

23

xn+1

2n+1)! ~ Zin=0 n v

—1+22n 0(_)n

Comparing the coefficients of the same power of x gives the following set
of values:

a0=1,

a, 1
ar, = ——— = — -
2 2 2’
2 a 1
BT T T
_ a3_1
Qe == T4

and so on. Hence the solution is given by
3

u(x) = (1 —Z—T+%—) + (x—x—.+——) = cosx + sinx.

2.5 Converting Volterra integral equation to ordinary differential
equation

In this section we will present the technique that converts Volterra integral
equations of the second kind to an equivalent differential equation. This
may easily be achieved by applying the important Leibnitz Rule for
differentiating an integral. It seems reasonable to review the basic outline
of the rule.

To differentiate the integral

F(x) = f;‘((’g) £(x, O)dt. (2.35)
with respect to x , we usually apply the useful Leibnitz rule given by :
F/() = 5 = (0 u(0) 52 - f(xv() 22
+ [y L de. (2.36)
where f(x,t) and ——— f(Y are continuous functions in the domain D in the

xt-plane that contains the rectangular region R, a<x <b,t, <t <ty,

24
and the limits of integration v(x) and u(x) are defined functions having
continuous derivatives for a < x < b.
Thus the Leibnitz rule converts the Volterra integral equation or the
Volterra integro-differential equations into an equivalent initial value
problem. The initial conditions can be obtained by substituting x = 0 into
u(x) and its derivatives. The resulting initial value problem can be solved
easily by using ODEs methods. The conversion process will be illustrated
by the following example.
Example 2.6
We find the initial value problem equivalent to the Volterra integral
equation of the second kind
u(x) =1 —cos(x) + 2 fox(x — t)u(t)dt. (2.37)

Differentiating both sides of (2.37) and using Leibnitz rule three times to
get rid of the integral sign, we find

W' (x) = sin(x) + 4 [, (x — Hu(t)dt. (2.38)

u'" (x) = cos(x) + 4f;cu(t)dt. (2.39)

u'"""(x) = —sin(x) + 4u(x)
To determine the initial conditions, we substitute x = 0 into both sides of
(2.37), (2.38) and (2.39) to find u(0) = 0,u'(0) =0andu'’(0) =1.
This in turn gives the initial value problem

u'""(x) — 4u(x) = —sin(x),
u(0) =0, u'(0)=0andu"(0)=1.

This resulting ODE is a third order inhomogeneous equation.

25

Chapter Three
Numerical Methods for Solving Volterra Integral
Equation of the Second Kind

26
Chapter Three
Numerical Techniques for Solving Volterra Integral
Equation of the Second Kind
There are many numerical techniques available for solving Volterra
integral equation of the second kind. These techniques are based on the
following methods: Quadrature methods (Trapezoidal rule, Runge-Kutta
method of order two, the fourth order Runge-Kutta method), Blocks
methods, the collocation method and the Galerkin method.
3.1 Quadrature methods for Volterra equation of the second kind
We consider the numerical solution of the Volterra integral equation of the
second kind
u(x) = f) + [k(x,t,u(®))dt, a<x<bh (3.1)
We assume that the solution is required over a finite interval [a, b], that
f(x) is continuous in [a,b], k is continuous in a<t <x <b and
satisfies a uniform Lipschitz conditions in u. These conditions will ensure
that a unique continuous solution to the problem (3.1) exists. If the kernel is
linear in its third argument, that is, there exists a function k such that
k(x, t,u(t)) = k(x, ut) + ko(x, t) (3.2)

forall a <t < x < b, then equation (3.1) is said to be linear and reduces
to

u(x) = f(x) + f;ck(x, tu(t)dt, a<x<bh (3.3)

where

FG) = f(x) + [ko(x, u(t)dt, (3.4)

27
We shall take (3.3) as the canonical form for a linear Volterra equation
and we will not distinguish notationally between f(x) and f(x) .
3.1.1 Quadrature methods for linear equations
An obvious numerical procedure is to approximate the integral term in
(3.3) via a quadrature rule which integrates over the variable t for a fixed
value of x. It is natural to choose a regular mesh in x and t ; thus setting
X = x; = a + ih, where h = (b — a)/N is the fixed step length. We
approximate in an obvious notation the integral term in the linear equation
(3.3) by
fjik(xl-, Hu(t)dt ~ hZ;'.:O Wl-]-k(xi, tj)u(tj)
= h Y\ _owijkiu(t;) (3.5)
where x; = t; ,i = 0,1,...,N. This quadrature rule leads to the following
set of equations:
u(xo) = f(xo) ,
u(xy) = f(x1) + h[wigkqou(to) + wigkqu(ty) |
+E; ¢ (k(xp t)u(t)),
u(x;) = fx) + h 5o wikiju(t;)
+E;(k(x;, Hu(®), i=12,..,N, (3.6)
where E; . (k(x;, ©)u(t)) represents the error term in the quadrature rule. If
the E;, are assumed negligible and (1 — hw;;k;;) # 0 for any i we can
clearly solve this set of equations for u;, i = 1,2,..., N, where u; is an
approximation to u(x;) , by direct forward substitution.

This procedure is obviously numerically very straightforward; however,

there remains the problem of choosing suitable weights w;;. We note that,

28

for each i, the set {w;;,j = ..,1} represents the weights for an
(i +1) point quadrature rule of Newton-Cotes type (equally spaced
points) for the interval [0, ih]. For large i there are many possible choices
of rule, for small i = [, 2, ..., the choice is rather limited, yet there seems
(and is) little point in choosing an accurate rule for large i if we cannot
choose an equally accurate rule for small i. Let us start by considering the
simplest possible rule, the repeated (Trapezoid rule). (see [4] and [13]).
3.1.2 Trapezoidal rule
Let a < b € R. We divide the interval (a, b) into subintervals with equal
length h = b%a .Wedenotex; = a +({i—1)h,1<i<N+1,then the
Trapezoidal method reads :

[7f@)dx = h[F2LO 4 0t £ ()| (37)
Using the Trapezoidal approximation to solve the Volterra integral
equation:

u(x) — 4, k(x, Hu(t)dt = f(x) (3.8)

We substitute (3.7) into (3.8) with = x; , we get
w(x) — h [k(xi DU@HG AU |5t k(Y)] = f(x,) (3.9)

2
1<l<N+1 x1=ax2,...,xN+1=b
k(xl ,a) k(xl Xi
—h 52 u(a) — RSy k(i x)u(x) + (1 — R u(x) = £(x)
Fori =1,x, = a, the Volterra integral equation (3.8) is reduced to
u(a) = f(a)
Fori = 2, we get

_h k(xz.xl)u(xl) n (1 . hk(xz X2)) uxz) = f(xz)

For i = 3, we obtain

29
—h _k(xzm‘) u(xy) — hk(xz , xz Julxy) + (1 B hW) uxs) = fxs)

To this end, we obtain the linear system
Au=B

where the matrix A = (a;;), 1< i,j < N + 1 with:
(a;; =0, Vji<i+1

al-j=—hK(xl-,xj), 2S]Sl§7’l+1

-

h
a; =1 _EK(xini)

a11 - 1
h .
kai1=—§K(xi,xl), 1<i<n+1
-1 0 0
a,; Gy, 0 .. 0
A=| a3; az, asz.. 0
LAN+1,1 AN+1,2 e o AN+1,N+14

B = [f(x)) = f(a), f(x), o, f Ctns1) = FD)IT,
u = [u(a),u(xy), ..., ulxys)" .
(See [2], [3],[20],[25] and [26]).
3.1.3 Runge-Kutta methods
Runge-Kutta methods for the solution of (3.1) are self-starting methods
which determine approximations to the solution at the points
x; =a+ih,i =1,2,..,N,bygenerating approximations at some
intermediate points in [x;, x;.4],i = 1,2,...,N :
x;+60,h,i=12,... N-1,r=12,..,p—1,
where
0=0y<6; < <6, ,<1. (3.10)
We recall the general p-stage Runge-Kutta method for the initial value

Problem u'(x) = g(x, ux)),

30
u(a) = uq, (3.11)
given by
Ui =uw +hY Apikii (3.12)
where
koi =g(a+ihu;)
k' =g(a+({+0)hu +hY - Auk!),r=12,..,p—1 (3.13)

_ 6,, r=12,..,p—1
r—1 . = T 1=))
SidAn={7 2 | (314)

with u,. is an approximation to the solution at x = x,, = a + rh. The
second argument of kri may be regarded as an approximation to
u(a + (i + 6,)h) and we rewrite equation (3.12) as

Uipr = U + h S0y Apig (% + 0:h, Ui,). (3.15)

The parameters A,;, 8; are chosen in practice to yield a final approximation

pi
of specified order; that is, with a local truncation error of 0(h9*1) for some
chosen g which is the order of the method. This requirement yields a set of
nonlinear equations for the unknown parameters.
Example 3.1
Suppose we choose p = 2 in (3.15) .Then it follows that
Uipr = Ui + hAzog (i, 1) + RAz g (x; + 01k, u; + hA;0g9(x;, uy)).
We use Taylor's theorem for a function of two variables to obtain
Uipr = U + h(Azo + Az1)g + h?A31(619x + A10994) + O(R®).
where we have introduced the notations
g=9xuu), gu =% » Gu =W
Now if we compare this expression term by term with

1
Uip1 = U + hg +Sh*(gx + 99.) + @(h®).

31

then we have the following set of three equations

Clearly there exist an infinite number of solutions of these equations
corresponding to an infinite number of two-stage Runge-Kutta method of
order two. We consider two particular solutions which are popular in
practice:

(i) WhenA,, =4, = % the resulting method is

1
Uipr = U T3 hlg(x;,u;) + g(xi+1rui + hg(xirui))] . (3.16)

or
Ui+1 = U4 +% hlg(xi,u;) + g(xivr, Tive)] - (3.17)
where
Wiy = + hg(x, wy). (3.18)

This is the improved Euler method.
(i) whenA4,, =0,A4,; =1 the resulting method is the modified
Euler method given by
Uiz, =U; + hg (xl- + ih, u; + %hg(xi,ui)) (3.19)
whenp = q = 4, we obtain in a similar way the classical fourth order

Runge Kutta method given by the following choice of parameters:

0020, 91:02:%, 93:1,

1 1
A10=5; Ay =0, Ay :5’

32
The method defined in equation (3.15) can be extended to give a class of

Runge-Kutta method for the solution of

u(x) = f(0) + [k(x,t,u(t))dt, a<x<h (3.20)
Setting x = x; in (3.20) we have
u(x) = £ee) + [T k(a + ih tu@®)dt, i=1,..,N,
i1 ra+(j+1h

= f() + Zj=0 Jor k(a+ih t,u(t))dt, i=1,..,N, (3.21)
and we can determine an approximation x; to u(x;) from the following
equation
u(x) = f(x) + REE S Apk(a+iha+ (4 0)h ujpe,) (3.22)
Now for xe(x;, x;,.,) we may write equation (3.20) in the following form
u@) = £() + T2 [k(e b u®)de + [k(x, u(0)de (3:23)
Thensettingx = x; + 6,h, v=1,2,..,p — 1, and approximating the
final integral term in (3.23) by
fxfiw”h k(x; + Bvﬁ, tu(t))dt ~

h 720 Apik(x; + 6,h, x; + 6;h,uipg)

we see that the Runge-Kutta method for (3.20) may be expressed as

Uirg, = f(x; + 6,h) + h T4)i Apik(x; + 0,0, x; + 0;h, ujpp,)

+h ¥V20 Ayik (x; + 0,h, x; + 0;h,U;4)),

i=01.,N-1, v=12..,p—-1, (3.24)
where u(a) = f(a) and the parameters 4, ;, 6;,7 = 1,2,...,p,
j=0,1,..,p— 1, define the particular method. (see [13]).
3.2 The Block Methods
A Block method is essentially an extrapolation procedure which has

advantage of being self-starting and produces a block of values at a time.

33
They give up any attempt to solve the problem by marching one step at a
time and instead introduce a rule over a small region which uses points
over a larger region. Consider the solution of (3.3) in the range
a <x < bwith b —a = Nph ; that is, we divide the interval [a, b] into n
equal intervals, each of which is then divided into p subintervals of length
h. Now assume that approximate solution values have been calculated for
the first (r — 1) blocks; then a typical block method produces at the
rt" stage the following set of approximations:
Upr-1)+1 Up(r—-1)+2» =+ Upr.
For p(r—1) <i<pr,r=12,..,N,we may rewrite (3.3) in the
form
u(a+ih) = f@+ih) + [P k(a + in, Hu(t)de
k(a + ih,t)u(t)dt (3.25)

a+ih
+ fa+p(r—1)h

Using the following quadrature rules to approximate the integral

terms in (3.25)
[EPEDR E @+ iR, Hu(t)dt

a

~ hZ?SO_l) w;j k(a +ih,a + jh)u(a + jh) (3.26)

fa+ih
a+p(r-1)h

~h Y2 o Wy k(a+ih,a+ jR)u(a + jh) (3.27)

k(a + ih,t)u(t)dt

we obtain the set of approximating equations

uy = f(a)

u; = f(a+ih) + hZ?g)_l) w;;j k(a +ih,a + jh)u(a + jh)

+h3P oy Wi k(a+iha+jhu(a+jh) (3.28)

34
wherei =p(r—1)+1,p(r—1)+2,...,pr,andr =12, ...,n
Linze [20], described two block methods and uses these methods to solve
Volterra integral equation of the second kind. In this work this method has
been used to solve Volterra integral equations of the second kind, in which
a block of two and three values are produced at each stage and the values of
the involved integrals are obtained using the quadrature formula.
3.2.1 Method of two Blocks:
Applying equation (3.3) with x = x5,,4.1 = X0 + 2n+ 1)h,
and x = x5,,42 = Xo + (2n+ 2)h, where x, = a, to get:
Uon+1 = foner T f;’zn k(Xzn41, Out)dt

+ [kQaner, Dut)dt (3.29)

Uon+z = fans2 T+ f;;zn k(xzn42, u(t)de
+ f;‘;"“ k(Xomsn, hu(t)dt (3.30)
This technique depends on the use of a quadrature formula. This is
Simpson’s 1/3 rule [20]
[fGoOdx =3 [5fo +8f, — fo] (331)
with x, = x,,and x; = x2n+1 where n > 0 .therefore we obtain:

Unt+1 = f2n+1 +] Dolw; k(x2n+1,x])u(x])

+ = 12 [5k(x2n+1; Xon)U(X20) + 8k(Xon41) X2+ 1)U(X2p41)
—k(x2n+1) X2n+2)U(X2n42)] (3.32)
Uan+2 = f2n+2 + 3 22n+2 W] k(x2n+2:x])u(x]) (3-33)

Where WO=W2n=1,Wj=3—(—1)j,1SjS2n—1

and Wy =W, =1,w;=3—-(-1)/,1<j<2n+1

35
Thus we have a pair of equations to solve for u,,,.; and u,,4-.
3.2.2 Method of Three Blocks:
Applying equation (3.3) with x = x3,,1 = xo + 3n + 1)h,
X = X3p4o =Xo+ (Bn+2)h and x = x3,453 = xo + B3n+ 3)h
Where x, = a, to get:
Usn+1 = fan+1 T f;:gn k (X341,)u(t)dt

+ f,:inﬂ k(x3n41, ut)de (3.34)
Uzn+z = fansz + f,fn k(X3p+42,)ut)de

+ [k(Xansz , ut)dt (3.35)
Uzn+3 = fansz + f,fn k(x3p+3,)ut)de

+ [k(snes, Out)dt (3.36)

This technique depends on the use of three quadrature formulas. These are
Simpson’s 3/8 rule and Simpson’s 1/3 rule. Therefore:
Usn+1 = fan+1 T % iZolw; k(xane1, x5)u(x;)]
+ % [5k(X3n4+1, X3n)U(X3p) + 8k (X341, X3n41)U(X3041)
—k(X3n4+1) X3n42)U(X3042)] (3.37)
Usn+2 = fonsz + % inolW; k(x3n+2,x])u(x])
+ g [k (X3n42) X30)U(X30) + 4k (X342, X3n41)U(X3041)
+k(x3n+2» X3n42)U(X3042)] (3.38)
Usn+3 = fon+s + 3n+3 [w; k(x3n+3,x])u(x]) (3.39)
where

J— .
,otherwise
T
_ _ _ 2 ,if = integer
W0=W3n=1,Wj={ ’f3 9
3 ,otherwise

36
and
2 ,if é integer

Wo = Wanss =1 Wi = {3 otherwise
)

Thus, we have a system of three equations to solve for us, 4 , U3,,4+, and
Usn43 - (S€€[11], [13] and [27]).
3.3 The Collocation method
3.3.1 Meshes and piecewise polynomial spaces:
We wish to solve the Volterra integral equation (3.3) on the interval
I:=[0,T]. Let
Ini={x,:0=xy <x; <x, <--xy =T} beamesh, and define
e, = (Xp, Xns1l, M =%p1 —x, (0<n <N -—1), and
h:=max{ h,:0<n<N-1} (mesh diameter).
Remark: Different types of meshes on I := [0, T]
Li={x;:0=xy<x; <x,<--xy=T}(N€EN).
e Quasi-uniform mesh I, : there exists a constant y < oo (independent

of N) so that
maxyhy

<y forallN >1. (= Nh<yT)

minmyhy
e Graded mesh I, :

T
Xy = (%) T (n=0,,2,..,N), with grading exponentr > 1.

If r = 1 then the mesh [, is a uniform mesh.
e Geometric mesh I:
x, =q" "T (n=0,12,..,N).
Where g € (0,1) .
Definition 3.3.1: For a given mesh I, the piecewise polynomial space

SO, withr >0 , —1<d < risgivenby

37
SO ={vect):vl, €p (0<n<N-1} (3.40)
Here, P. denotes the space of (real) polynomials of degree not exceeding r.
It is readily verified that Sr(d) (1) is a (real) linear vector space whose
dimension is given by
dimS®P1,)=N@r—d) +d + 1.

Ifr = m+dwithm > 1and d > —1, then the piecewise polynomial

space is Sr(,‘l?d(lh) and the dimension of this linear space is given by
dim S (I,) = Nm +d + 1.

For Volterra integral equation of the second kind we choose d = —1,

-1
m-—1

hence, the natural collocation space will be S 7 (1;,). Its dimension is
given by
dim S$1 (1) = Nm. (3.41)
To find: ‘good’ approximation u (x) to the solution u(x) of (3.3) so that
e u,(x)isdefinded forall x € I ;
e u,(x) can be easily computed on non-uniform meshes I,;
e The approximation error satisfies
max{ [u(x)—u,(x)|: x €1} < ChP
where p (the order of the numerical method) is as large as possible. We will
use piecewise polynomial collocation methods in S,(n'_li (13).
3.3.2 Piecewise polynomial collocation methods in S,(n'_li (Iy)
Let the linear Volterra integral operator V: C(I) — C(I) be given by
(Vw(x) = [k(x, Hu(®dt, xe€l:=][0,T], (3.42)
wherek € C(D) (D = {(x,t):0<t<x<T}),andletf € C(I) bea

given function. The solution of the Volterra integral equation

38
ulx)=f)+Vuw(x), xe€l, (3.43)
will be approximated by collocation in the piecewise polynomial space
S$OU) ={v:vl,, €Ppy (0<n<N-1)} (3.44)
where P,,_, = P,,_,(e,) Iis the set of (real) polynomials on
en = (Xp, Xp41], Of degree<m — 1

gD

'm—1p) is called the space of piecewise polynomials of degree less than

or equal tom — 1.

e Ifm =1then Sé_l) (1) is piecewise constant functions.

(such a function contains N unknown coefficients).

o |fm = 2then Sl(_l) (1) is piecewise linear functions.

(such a function contains 2N unknown coefficients).
In general: By (3.41) an element u,(x) € S,(n__li (1) contains Nm
unknown coefficients. We choose Nm distinct points in the interval [0, T]
to determine these coefficients at which the approximate solution wu;, (x)
must satisfy the given Volterra integral equation. These points are called
the collocation points.
3.3.3 Collocation points and collocation equation
Let0 < ¢; <-:-< ¢, <1 begiven numbers (collocation parameters).
The set

Xy ={x,+ch,:i=12,..mO0<n<N-1)}

is called the set of collocation points. In each subinterval (x,,, x,,1], there
are m such points, and so we have |X;| = Nm.

Consider u;(x) € S,(n__li (1) so that it satisfies the given Volterra integral

equation at the points X, :

39
up(x) = £ () + [k(x,) up(D)dt, x €Xp. (3.45)
This function uy, (x) is called the collocation solution for the Volterra
integral equation (3.3).
(see[7], [33] and [34]).
3.4 The Galerkin Method
Definition (3.1) LP-space:
The set of LP- functions (where > 1) generalizes L?-space. Instead
of square integrable, the measurable function f must be p-integrable,
for f tobein LP.
On a measure space X, the LP norm of a function f is
Il = (f, IFGOIP dx)?

The LP-functions are the functions for which this integral converges.
For p = 2, the space of LP-functions is a Hilbert space. For p + 2, the
space of LP-functions is a Banach space.
In the case where p = oo, we have L* (D) defined as

{f : measurable in D and ||f]|, < oo},
where

Ifllee = inf{sup{|f (x)|: xeS},S < D}
with Lebesgue measure of the set S equals zero.
Let X = L#(I) or some other Hilbert function space, and let (.,.) denote
the inner product for X. Require the residual r, to satisfy

(r,0;)=0, i=12,..,d, (3.46)

The left side is the Fourier coefficient of r,, associated with @;.If

{@,,...,D4, ... } consists of the leading members of an orthonormal family

40
? ={0,,...,D,4, ... } Which spans X, then (3.46) requires the leading terms
to be zero in the Fourier expansion of 7, with respect to @.
To find u,,, apply (3.46) to (3.3) writtenas (A1 — k)u = f.
This yields the linear system

Y (0,0 — MkD;, 0,0} = (£,0,), i=1,...d, (3.47)
This is Galerkin’s method for obtaining an approximate solution to (3.3).

Note that the above formulation contains double integrals (k@;, @;). These

must often be computed numerically.
As a part of writing (3.47) in a more abstract form, we introduce a
projection operator P,that maps X onto X,,. For general x € X, define P,x

to be the solution of the following minimization problem:
lIx = Pox|| = min,ex, |lx — z| (3.48)

Since X, is finite dimensional, it can be shown that this problem has a
solution; and by X,, being an inner product space, the solution can be
shown to be unique. To obtain a better understanding of B,, we give an
explicit formula for P, x.
Introduce a new basis {y4, ..., ¥4} for X,, by using the Gram-Schmidt
process to create an orthonormal basis from {@,, ..., @,} . The element y; is
a linear combination of {@,, ..., @4} , and moreover

W) =46, Lj=1..,dy
With this new basis, it is straightforward to show that

Pax = il i) P (3.49)
This shows immediately that P, is a linear operator.
With this formula, we can show the following results.

lx1? = 1| Poxll? + llx — Bpx||? (3.50)

41
I Puxll? = 22 1)2
(B, yy=(x,By), xy€X (3.51)
((1— B)x, B,y)=0, xy€EX (3.52)
Because of the latter, P,x is called the orthogonal projection of x onto X,,.
The operator P, is called an orthogonal projection operator. The result
(3.50) leads to
| Pl =1 (3.53)
Using (3.52), we can show
lx —zII> = |l x = Puxl|? + || Pox — zII%, z€ Xy (3.54)
This shows P, x is the unique solution to (3.48).
We note that
P,z=0 ifandonlyif(z,®;)=0, i=1,..d, (3.55)
Using the orthogonal projection B, , we can write as
P, =0
or equivalently,
P,(I —Ak)u, = B,f, u,€ X, (3.56)
However, in this work, we provide a numerical approach for the Volterra
integral equation based on Chebyshev piecewise polynomials basis by the
technique of Galerkin. Firstly, we give an introduction of Chebyshev
piecewise polynomials. Then, we drive a matrix formulation for general

linear problems by the technique of Galerkin method. (See [7]).

3.4.1 Chebyshev polynomials

The Chebyshev polynomials, named after Pafnuty Chebyshev, are a
sequence of orthogonal polynomials which are related to de Moivre's
formula and which can be defined recursively. The general form of the

Chebyshev polynomials of nth degree is defined by

42

2 ! _
Tn(.X') = Zg:io](—l)m m (1 — xz)mx" 2m (357)
% if niseven

where, [n/2] =
[n/2] ntl if nisodd

2
The first few Chebyshev polynomials are given as:
To(x) =1,T;(x) =x
T,(x) =2x% -1,
T3(x) = 4x3 — 3x,
T,(x) =8x*—8x%2+1
Ts(x) = 16x° — 20x3 + 5x, To(x) = 32x° — 48x* + 18x% — 1
3.4.2 Formulation of Integral Equation in Matrix Form
We consider the Volterra integral equation of the second kind given by
u@x) -2 [, K, Hu(t)dt=f(x), a<x<b (3.58)
Now we use the technique of Galerkin method [3], to find an approximate
solution u(x) of (3.58). For this, we assume that
U(x) = Yty a;N; (%) (3.59)
where N;(x) are Chebyshev polynomials of degree i defined in equation
(3.57) and a; are unknown parameters, to be determined. Substituting
(3.59) into (3.58), we get
Lo [N — A [k(x, ON;(t)dt] = f(x), a<x<bh (3.60)
Then the Galerkin equations are obtained by multiplying both sides of
(3.60) by N;(x) and then integrating with respect to x from a to b. We
obtain
moai f [N() = A f7 ke, ON; (D dt]N; () dx
= f;f(x)Nj(x)dx, j=012,..,n (3.61)

43
The inner integrand of the left side is a function of x, and t, and is
integrated with respect to ¢t from a to x. As a result the outer integrand
becomes a function of x only and integration with respect to x from a to b
yields a constant.
Thus for each, j = 0,1,2, ...,n we have a linear equation withn + 1
unknowns a;, i = 0,1,2, ..., n. Finally (3.61) represents the system of n 4+ 1
linear equations in n + 1 unknowns, a given by

o ak;,j =F, ij=012..,n (3.62)
where
kij = J; [N = 2 [T k(x, ON; (O dtN;()dx, i,j =0,12,...,n
F = f;f(x)Nj(x)dx, j=012,..,n
Now the unknown parameters a; are determined by solving the system of
equations (3.62) and substituting these values of parameters in (3.59). We
get the approximate solution w(x) of the integral equation (3.3).
The maximum absolute error for this formulation is defined by

Maximum absolute error = Max |[u(x) — u(x)|.

(see [14], [29], [30], [36] and [41]).

44

Chapter Four
Numerical Examples and Results

45
Chapter Four

Numerical Examples and Results
To test the efficiency of the numerical methods represented in chapter three
we will consider the following numerical examples.
Example 4.1
Consider the Volterra integral equation of the second kind
u(x) =2e* —x — 2+ [(x — u(t)d. (4.1)
Equation (4.1) has the exact solution
u(x) = xe”.

We will find an approximate solution to equation (4.1) by the following
numerical methods:
4.1 The numerical realization of equation (4.1) using Trapezoidal rule
The following algorithm implements the Trapezoidal rule using
the Matlab software.
Algorithm 4.1

1. Input n:The number of subdivisions of [a, b]

a, b : [a, b] is the interval for the solution function

fen_f - The handle of the driver function f(x)

and fcn_k : The handle of the kernel function k(x, t)

2. loop = 10 This is much more than is usually needed.

3. Calculate h = (b —a)/n

4. Calculate x = linspace(a,b,n+ 1)

5. Calculate f_vec = fen_f(x)

46
6. Setu_vec = zeros(size(x))
7. Setu_vec(l) = f_vec(1l)
8. fori=1.n
u_vec(i + 1) = u_vec(i), The initial estimate for the iteration.
kvec = fen k(x(i+1),x(1l:in+ 1)) *u_vec(l:i+ 1)
forj=1:loop
Applying trapezoid rule
uvec(i+1)=f_vec(i+1)+ h=* (sum(k_vec(2:i)) +
.+ (k_vec(1l) + k_vec(i+1))/2)
kvec(i+1) = fen k(x(i+1),x(i + 1)) *u_vec(i+1)
end
end
9. Set u = u vec
10. Output: the numerical solution u(x), and the grid points x at which
the solution u(x) is approximated.
Thus we can solve the Volterra integral equation of the second kind (4.1)
by using algorithm 4.1. Table 4.1 shows the exact and numerical results
when n=20, and showing the error resulting of using the numerical

solution.

47

Table 4.1: The exact and numerical solutions for Algorithm 4.1

N Analytical solution | Approximate solution |Error= |u — uy|
u(x) = xe* up (x)

0 0 0 0
0.05]0.052563555 0.052563554 0.02136x 1073
0.1 0.110517092 0.110517091 0.04390x 1073
0.15]0.174275136 0.174275136 0.06775%x 1073
0.2 0.244280552 0.244280551 0.09308x 1073
0.25 0.321006354 0.321006354 0.12004x 1073
0.3 0.404957642 0.404957642 0.14880x 1073
0.35 |0.496673642 0.496673642 0.17956x 1073
0.4 0.596729879 0.596729879 0.212503x 1073
0.45 |0.705740483 0.705740483 0.247840% 1073
0.5 0.824360635 0.824360635 0.285798x 1073
0.55 [0.95328916 0.953289159 0.326617x 1073
0.6 1.09327128 1.093271280 0.370555% 1073
0.65 [1.245101539 1.245101538 0.417888x 1073
0.7 1.409626895 1.409626895 0.468909% 1073
0.75 |1.587750012 1.587750012 0.523935%x 1073
0.8 1.780432743 1.780432742 0.583304x 1073
0.85 |1.988699824 1.988699824 0.647376x 1073
0.9 2.2136428 2.213642800 0.716541x 1073
0.95 |2.456424176 2.456424176 0.791212x 1073
1 2.718281828 2.7182818284 0.871835%x 1073

Figure 4.1 shows both the exact and the numerical solutions with n = 20.

Figure 4.1: The exact and numerical solution of applying Algorithm 4.1 for equation (4.1).

3

25

Exact Solutions

* Approximation for n=20

/

pd

o

0.5

0.2

0.3 0.4 0.5

X-axis

0.6

0.7

0.8

0.9 1

48
The CPU time is 0.018776 seconds. Figure 4.2 shows the absolute error

resulting of applying algorithm 4.1 for equation (4.1).

x 10°
1

0.9

0.8

0.7

0.6

0.5

Absolute Error

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis

Figure 4.2: the error resulting of applying algorithm 4.1 on equation (4.1).

4.2 The numerical realization of equation (4.1) using the Runge-Kutta
method
4.2.1 The Runge-Kutta method of order 2 or (the Improved Euler
Method)
The following algorithm implements the Improved Euler Method using
the Matlab software.
Algorithm 4.2
1. Input: 1) h - step-size

2) a, b - endpoints of interval of integration

3) kernel- Matlab function of the kernel

4) f- Matlab function of f(x)
2. Outputs:

49
1. nodes- node values
2. u(x)- solution values at nodes

3. Specifying weights

theta = [0 1]
1 0
A=los os)

4.Nodes=atob steph
5. Number of intermediate points = (length(nodes) — 1) * 1
6. x =Vector of nodes and intermediate points
7. Placing node values into x
fori=1tolength(nodes)
x(i + (i — 1)) = nodes(i)
end
8. Placing intermediate points into x
fori=1tolength(nodes) — 1
forj=2:2
x((+(—1+ j—1)=x(i+ ({—1))+ h=*theta(j);
end
end
9. Keeps track of which intermediate points are associated with which node
Index = Vector of length of x
fori=1tolength(nodes) — 1
index(i+(i—1Dtoi+({—1)+1)=1i
end

index(length(index)) = length(nodes)

50
10. Let u(x) =Vector of solution values has the same length of x
11. Set order of method p = 2
12. for i = 1to length of x
u(i) = f(x(®)
m = mod(i, 2)
k = index(i)
if m==
v=1
elseif m ==
v=20
end
if i~=1||i~=
forj=1tok—1
forl=1top
indl = find(j == index)
ind1l = ind1(1)
13. Applying Runge-Kutta formula
u(@) =u(@) + h*A2,0) = kernel (x(i),x(indl + (I - 1)))
*u(indl + (1 —1))
end
end
end
if v~=20
forl=1tov (dependsonmod)
indl = find(index(i) == index)
ind1l = ind1(1)

51
14. Applying Runge-Kutta formula
u(@) =u(i)+ h=* A(v,1) = kernel (x(i),x(indl + (I — 1)))
*u(indl+ (1 —1))
end
end
end
15. Obtaining node values
Now let u(x) = Vectorof length of nodes
for i =1tolength(nodes)
u(@ =u(i + (i— 1))
end
Table 4.2 shows the exact and numerical results when step size h = 0.1,
and showing the error resulting of using the numerical solution.
Table 4.2: The exact and numerical solutions of applying Algorithm

4.2 for equation (4.1).

x | Analytical solution | Approximate solution | Error= |u — uy|
u(x) = xe* up(x)

0 |0 0 0

0.1]0.110517092 0.110341836 0.000175256
0.2]0.244280552 0.243908935 0.000371617
0.3]0.404957642 0.404365783 0.00059186
0.4]0.596729879 0.595889872 0.000840007
0.5]0.824360635 0.823239117 0.001121518
0.6 |1.09327128 1.091827769 0.001443511
0.7 |1.409626895 1.407811873 0.001815022
0.8 |1.780432743 1.778185427 0.002247315
0.9]2.2136428 2.210888564 0.002754236
1 |2.718281828 2.714929201 0.003352627

These results show the accuracy of the Runge-Kutta method of order 2 to

solve equation (4.1) since the max error = 0.003352627.

52
Figure 4.3 compares the exact solution u(x) = xe* with the approximate

solution with step size h = 0.1.

3 T T T T T
O Approximation Solutions
Exact Solutions
25
2
¥ 15
]
1
0.5
0;?///,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis
Figure 4.3: The exact and numerical solutions of applying Algorithm 4.2 for equation (4.1).

The CPU time is 0.027644 seconds. Figure 4.4 shows the absolute error

resulting of applying algorithm 4.2 on equation (4.1).

x 10°

3.5

2.5

1.5

Absolute Error

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Nodes

Figure 4.4: the error resulting of applying algorithm 4.2 on equation (4.1)

53

4.2.2 The fourth order Runge-Kutta method
The following algorithm implements the fourth order Runge-Kutta method
using the Matlab software.
Algorithm 4.3
1. Inputh,a,b,A,kernel, f(x)
2. Outputs: 1) nodes- node values

2) u(x)- solution values at nodes
3. Specifying weights

theta =10,0.5,0.5,1]

05 0 0 0
0 05 0 0
A=10 0 1 0
1 1 1 1
6 3 3 6

4.Nodes=atob steph
5. Number of intermediate points = (length(nodes) — 1) * 3
6. x =Vector of nodes and intermediate points
7. Placing node values into x
fori=1tolength(nodes)
x(i + 3 (i — 1)) = nodes(i)

end
8. Placing intermediate points into x

fori=1tolength(nodes) — 1

forj=2:4

x(+3*x({(—1D+j—1)=x(i+3*({—1))+ h*theta(j);

54
end
end
9. Keeps track of which intermediate points are associated with which node
Index = Vector of length of x
fori=1tolength(nodes) — 1
index(i+3+x(i—1)toi+3*x(i—1)+3)=1i
end
index(length(index)) = length(nodes)
10. Let u(x) =Vector of solution values has the same length of x
11. Set order of method p = 4
12. for i = 1to length of x
u(i) = f(x(0)
m = mod(i, 4)
k = index(i)
if m==
v=1
elseif m ==
v=2
elseif m == 0
v=3
elseif m==1

v=20

55
end
if i~=1||i~=2||i~=3]|i~=
forj=1tok—1
forl=1top
indl = find(j == index)
ind1l = ind1(1)
13. Applying Runge-Kutta formula
u() = u@@) + h* A4, 1) * kernel (x(i),x(indl + (1 — 1)))
xu(indl + (I —1))
end
end
end
ifv~=0
forl=1tov (dependsonmod)
indl = find(index(i) == index)
ind1l = ind1(1)
14. Applying Runge-Kutta formula
u(@) =u@)+ h=* A(v, 1) *x kernel (x(i),x(indl + (I - 1)))
*u(indl + (I — 1))
end
end

end

14. Obtaining node values

56

Now let u(x) = Vectorof length of nodes

fori=1tolength(nodes)

end

u(@=u(@i+3=*({—-1))

Table 4.3 shows the exact and numerical results when step size h = 0.1,

and showing the error resulting of using the numerical solution.

Table 4.3: The exact and numerical solutions of applying Algorithm

4.3 for equation (4.1).

X Analytical solution | Approximate solution| Error= |u — u,|
u(x) = xe* up (%)

0 0 0 0x 107>

0.1 0.11051709 0.110516977 0.011501376 x 10°°
0.2 0.24428055 0.244280304 0.024723293x 10~°
0.3 0.40495764 0.404957241 0.040154546x 10~°
0.4 0.59672988 0.596729295 0.058363265x 107>
0.5 0.82436064 0.824359835 0.080010692x 10~°
0.6 1.09327128 1.093270222 0.105866965x 10>
0.7 1.4096269 1.409625527 0.136829191x 107>
0.8 1.78043274 1.780431003 0.173942149x 10~°
0.9 2.2136428 2.213640616 0.218422001x 10~°
1 2.71828183 2.718279112 0.271683433x 10~°

These results show the accuracy of the fourth order Runge-Kutta method to

solve equation (4.1) since the max error = 0.271683433 x 107> .

Figure 4.5 compares the exact solution u(x) = xe* with the approximate

solution with step size h = 0.1.

57

3 4 T 4 |3 4

+ Approximation Solutions L
Exact Solutions

/

=

0.5 —

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Nodes

Figure 4.5: The exact and numerical solutions of applying Algorithm 4.3 for equation (4.1).
The CPU time is 0.034696 seconds. Figure 4.6 shows the absolute error

resulting of applying algorithm 4.3 on equation (4.1).

xlO6

2.5

1.5

Absolute Error

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Nodes

Figure 4.6: the error resulting of applying algorithm 4.3 on equation (4.1).

58

4.3 The numerical realization of equation (4.1) using the Block method
The following algorithms (Block 2 and Block 3) for solving Volterra
integral equation of the second kind (4.1) using the two Block method and
three Block method respectively:
Algorithm 4.4 (Block 2)
Step (1):

I. Puth=(b—-a)/n;neN

2. Setuy = fy, = f(a)
Step (2):
form=1ton—1
Calculate u,, and u,,,, using equations (3.49), (3.50) which are shown in
chapter three section two, and use Gauss elimination procedure to solve the
resulting system.
Algorithm 4.5 (Block 3)
Step (1):

. Puth=(b—-a)/n;neN

2. Setuy = fy, = f(a)
Step (2):
form=1ton—2
Calculate u,, , u,,+,and u,, ,, using equations (3.54), (3.55) and (3.56)
which are shown in chapter three section two, and use Gauss elimination
procedure to solve the resulting system.
Table 4.4 shows the exact and numerical results when applying algorithm

4.4 (Block 2), and showing the error resulting of using the numerical

solution.

59

Table 4.4: The exact and numerical solutions of applying Algorithm

4.4 for equation (4.1).

x | Analytical solution | Approximate solution | Error= |u — uy|
u = xe* u,(x)

0 0 0 0
0.1 0.110517092 0.110517092 0.000175256
0.2 0.244280552 0.244280552 0.001015278
0.3 0.404957642 0.404957642 0.001283973
0.4 0.596729879 0.596729879 0.0037413
0.5 0.824360635 0.824360635 0.002932474
0.6 1.09327128 1.09327128 0.007714405
0.7 1.409626895 1.409626895 0.005368352
0.8 1.780432743 1.780432743 0.013414801
0.9 2.2136428 2.2136428 0.008924114

1 2.718281828 2.718281828 0.007691095

Figure 4.7 shows both the exact and the numerical solutions with n = 10

3r F F F F F F F
+ Approximation Solutions using Block 2 L
Exact Solutions /
2.5
<
2
¥ 15
=} /_-
1 / :
B P
0.5 -
A
e
ok s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.7: The exact and numerical solutions of applying Algorithm 4.4 for equation (4.1).

The CPU time is 0.024423seconds. Figure 4.8 shows the absolute error
resulting of applying algorithm 4.4 on equation (4.1).

60

0.014¢

0.012

0.01

0.008

Absolute Error

0.006

0.004

0.002

(0} 0.1 0.2 0.3

0.4 0.5 0.6 0.7
X-axis

0.9 1

Figure 4.8: the error resulting of applying algorithm 4.4 on equation (4.1).

Table 4.5 shows the exact and numerical results when applying algorithm

4.5 (Block 3), and showing the error resulting of using the numerical

solution.

Table 4.5: The exact and numerical solution of applying Algorithm 4.5

for equation (4.1).

X Analytical solution Approximate solution Error= [u — uy|
u(x) = xe* uy (x)

0 0 0
0.05 0.052563555 0.052542193 2.13621E-05
0.1 0.110517092 0.110580628 6.35364E-05
0.15 0.174275136 0.174337428 6.22911E-05
0.2 0.244280552 0.244402305 0.000121753
0.25 0.321006354 0.321270884 0.00026453
0.3 0.404957642 0.405172042 0.0002144
0.35 0.496673642 0.496972541 0.000298899
0.4 0.596729879 0.597277609 0.00054773
0.45 0.705740483 0.706174156 0.000433672
0.5 0.824360635 0.824911163 0.000550527
0.55 0.95328916 0.954225985 0.000936826
0.6 1.09327128 1.094011611 0.000740331
0.65 1.245101539 1.246000269 0.00089873
0.7 1.409626895 1.411088363 0.001461467
0.75 1.587750012 1.588909892 0.001159879
0.8 1.780432743 1.781804061 0.001371318
0.85 1.988699824 1.990858493 0.002158669
0.9 2.2136428 2.215367152 0.001724352
0.95 2.456424176 2.460025314 0.003601138

1 2.718281828 2.718175056 0.000106772

61
Figure 4.9 shows the exact solution u(x) = xe* with the approximate

solution when n = 20

3 4 4 : 4

* Approximation Solutions
Exact Solutions

2.5 f
2 f
Z 15 /
] /.
1
P
0.5 /xt/
o
/%?/‘4?
N " ¥ &
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.9: The exact and numerical solutions of applying Algorithm 4.5 for equation (4.1).
The CPU time is 0.021548 seconds. Figure 4.10 shows the absolute error

resulting of applying algorithm 4.5 on equation (4.1).

x 10

Absolute Error
N

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xX-axis

Figure 4.10: the error resulting of applying algorithm 4.5 on equation (4.1)

Example 4.2

62

Consider the Volterra integral equation of the second kind

u(x) =1 — xsin(x) + xcos(x) + fox tu(t)dt .

Equation (4.2) has the exact solution

u(x) = sin(x) + cos(x).

(4.2)

We will use all the numerical methods that we used in the example 4.1.

4.4 The numerical realization of equation (4.2) using Trapezoidal rule

Table 4.6 shows the exact and numerical results when n=20, and showing

the error resulting of using the numerical solution.

Table 4.6: shows the exact and numerical results when n=20, and

showing the error resulting of using the numerical solution.

Analytical solution Approximate solution
X u(x) = sin(x) + cos(x) up (x) Error= |u — u,]|

0 1 1 0

0.05 |1.04872943 1.0487495 0.02006x 1073
0.1]1.094837582 1.0948761 0.03856x 1073
0.15 |1.13820921 1.1382647 0.05548x 1073
0.2 |1.178735909 1.1788067 0.07081x 1073
0.25 |1.216316381 1.2164009 0.08455x 1073
0.3 |1.250856696 1.2509534 0.09666x 1073
0.35 |1.28227052 1.2823776 0.10712x 1073
0.4]1.310479336 1.3105952 0.1159x 1073
0.45 |1.335412636 1.3355356 0.12298x 1073
0.5 |1.3570081 1.3571364 0.1283x 1073
0.55 |1.375211751 1.3753436 0.13183x 1073
0.6]1.389978088 1.3901116 0.13351x 1073
0.65 |1.401270204 1.4014035 0.1333x 1073
0.7 |1.409059875 1.409191 0.13112x 1073
0.75 |1.413327629 1.4134545 0.12691x 1073
0.8 |1.4140628 1.4141834 0.1206x 1073
0.85 |1.411263551 1.4113756 0.11208x 1073
0.9]1.404936878 1.4050381 0.10127x 1073
0.95 |1.395098594 1.3951866 0.08804x 1073
1 1.381773291 1.3818456 0.07229x 1073

63

Figure 4.11 shows both the exact and the numerical solutions with n = 20.

1.45¢

1.4 /./ =t ot
1.35 /”
/1

13

1.25

1.2 /
1.15 /

1.1 /i/
1.05 /-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

® Approximation for n=20
Exact solution

u(x)

Figure 4.11: The exact and numerical solutions of applying Algorithm 4.1 for equation (4.2).

The CPU time is 0.031057 seconds. Figure 4.12 shows the absolute error

resulting of applying algorithm 4.1 on equation (4.2).

4

x 10
1.4¢ T T
/\
1.2
1
S
o 0.8
D
=
o
&K 0.6
<C
0.4
0.2
(o} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.12: the error resulting of applying algorithm 4.1 on equation (4.2).

64
4.5 The numerical realization of equation (4.2) using the Runge-Kutta
method
4.5.1 The Runge-Kutta method of order 2
Table 4.7 shows the exact and numerical solutions when applying
Algorithm 4.2 on equation (4.2).
Table 4.7: The exact and numerical solution of applying Algorithm 4.2

for equation (4.2).

x |Analytical solution Approximate Error= |u — uy|
u(x) = sin(x) + cos(x) |solution uy
0 |1 1 0
0.1/1.0948375819 1.094964660237 |0.0001270783
0.2 [1.1787359086 1.178829128432 |0.0000932197
0.3 [1.2508566957 1.250650273503 |0.00020642228
0.4 1.3104793363 1.309609452533 |0.00086988377
0.5]1.3570081004 1.355023865136 |0.00198423535
0.6 [1.3899780883 1.386357672182 |0.00362041612
0.7 [1.4090598745 1.403232930278 |0.00582694424
0.8 1.4140628002 1.405440478563 |0.00862232168
0.9 (1.4049368778 1.392951018872 |0.01198585902
1 |1.3817732906 1.365926762361 |0.01584652831

Figure 4.13 shows both the exact and the numerical solutions when step
size h = 0.1 . Figure 4.14 shows the absolute error resulting of applying

algorithm 4.2 on equation (4.2). The CPU time is 0.030646 seconds.

65

1.45¢

1.35

1.3
O Approximation solutions

Exact solutions

1.25

1.2

1.15

1.1

1.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.13: The exact and numerical solutions of applying Algorithm 4.2 for equation (4.2).

x 10"

16

14

12

10

Absolute Error

-2 r r r r r
0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nodes

Figure 4.14: the error resulting of applying algorithm 4.2 on equation (4.2).
4.5.2 The fourth order Runge-Kutta method
Table 4.8 shows the exact and numerical solutions when applying

Algorithm 4.3 on equation (4.2).

Table 4.8: The exact and numerical solutions of applying Algorithm

4.3 for equation (4.2).

66

x |Analytical solution Approximate Error= |u — uy|
u(x) = sin(x) + cos(x) |solution uy(x)

0 |1 1 0
0.1 |1.0948375819 1.0948375136 |0.068618% 10~°
0.2 |1.1787359086 1.17873580473 {0.103902x 10~°
0.3 |1.2508566957 1.2508565934 0.102642x 10~°
0.4 |1.3104793363 1.31047927197 |0.064334x 10°°
0.5 [1.3570081004 1.35700810922 |0.008726x 10~°
0.6 |1.3899780883 1.38997819988 |0.111581x 10°°
0.7 |1.4090598745 1.40906011150 |0.236987x 10°°
0.8 [1.4140628002 1.41406317628 |0.376041410°°
0.9 [1.4049368778 1.40493739697 |0.519081x 10°°
1 1.3817732906 1.38177394754 |0.656871x 10~°

These results show the accuracy of the fourth order Runge-Kutta method

to solve equation (4.2) since the max error = 0.656871 x 107°.

Figure 4.15 compares the exact solution u(x) = sin(x) + cos(x) with the
approximate solution with step size h = 0.1. Figure 4.16 shows the

absolute error resulting of applying algorithm 4.3 on equation (4.2). The

CPU time is 0.042564 seconds.

67

1.45¢

1.4 e

1.35 . . .
% Approximation solutions

Exact solutions

1.3

1.25

u(x)

1.2

1.15 /

11

1.05 /

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.15: The exact and numerical solutions of applying Algorithm 4.3 for equation (4.2).

x 1077

Absolute Error

(o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Nodes

Figure 4.16: the error resulting of applying algorithm 4.3 on equation (4.2).

4.6 The numerical realization of equation (4.2) using the Block method
Table 4.9 shows the exact and numerical results when applying algorithm
4.4 (Block 2) on equation (4.2), and showing the error resulting of using

the numerical solutions.

Table 4.9: The exact and numerical solutions of applying Algorithm

4.4 for equation (4.2).

x | Analytical solution Approximate Error= |u — uy|
u(x) = sin(x) + cos(x) |[solution uy

0 1 1 0
0.1]1.0948375819 1.089517075 0.005320507
0.2 [1.1787359086 1.176429855 0.002306053
0.3 [1.2508566957 1.246838511 0.004018184
0.4]1.3104793363 1.292928321 0.017551016
0.5]1.3570081004 1.344501575 0.012506525
0.6]1.3899780883 1.353415132 0.036562956
0.7]1.4090598745 1.385132889 0.023926985
0.8]1.4140628002 1.355339508 0.058723292
0.9]1.4049368778 1.366107278 0.0388296
1 1.3817732906 1.322662336 0.059110954

Figure 4.17 shows both the exact and the numerical solutions withn = 10

1.45

Approximation Solutions using block 2
t Solutions

0.4

0.6 0.7 0.8

0.9 1

Figure 4.17: The exact and numerical solutions of applying Algorithm 4.4 for equation (4.2).

The CPU time is 0.020419 seconds. Figure 4.18 shows the absolute error

resulting of applying algorithm 4.4 on equation (4.2).

69

0.05

0.03

Absolute Error

0.5 0.6 0.7 0.8 0.9 1
x-axis

0.3 0.4

Figure 4.18: the error resulting of applying algorithm 4.4 on equation (4.2)
Table 4.10 shows the exact and numerical results when applying algorithm
4.5 (Block 3) on equation (4.2), and showing the error resulting of using

the numerical solution.
Table 4.10: The exact and numerical solutions of applying Algorithm

4.5 for equation (4.2).

x | Analytical solution Approximate |Error= |u — u,|
u(x) = sin(x) + cos(x) |solution wu,

0 1 1 0
0.05 [1.0487294296 1.0474385545 [0.0012908751
0.1 |1.0948375819 1.0964893490 [0.0016517670
0.15 [1.1382092104 1.1399638933 |0.0017546829
0.2 |1.1787359086 1.1831271015 |0.0043911929
0.25 [1.2163163809 1.2239166512 [0.0076002703
0.3 [1.2508566957 1.2565105379 |0.0056538421
0.35 [1.2822705203 1.2921410205 |0.0098705002
0.4 [1.3104793363 1.3253177493 [0.0148384130
0.45 |1.3354126364 1.3459547179 10.0105420814
0.5 |1.3570081004 1.3734191281 |0.0164110276
0.55 |1.3752117509 1.3984991021 |0.0232873511
0.6 [1.3899780883 1.4064927889 [0.0165147006
0.65 [1.4012702042 1.4253096225 [0.0240394183
0.7]1.4090598745 1.4419669659 |0.0329070913
0.75 [1.4133276288 1.4370526147 |0.0237249858
0.8 [1.4140628002 1.4469159900 |0.0328531897
0.85 [1.4112635510 1.4549955444 [0.0437319934
0.9 [1.4049368778 1.4373453783 [0.0324085004
0.95 [1.3950985942 1.4275080107 |0.0324094165

1]1.3817732906 1.3669518409 |0.0148214497

70
Figure 4.19 compares the exact solution u(x) = sin(x) + cos(x) with the

approximate solution when n = 20.

15¢

1.45 v o

1.4 e

1.35
ﬁj

1.3

Approxiation Solutions with n=20
Exact Solutions

u(x)
3
\?K
"

1.2

1.15 /4
11

1.05 /at~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.19: The exact and numerical solutions of applying Algorithm 4.5 for equation (4.2).
The CPU time is 0.028830 seconds. Figure 4.20 shows the absolute error

resulting of applying algorithm 4.5 on equation (4.2).

0.045 ¢

0.04

0.035

0.03

0.025

0.02

Absolute Error

0.015

0.01

0.005

(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

Figure 4.20: the error resulting of applying algorithm 4.5 on equation (4.2).

71
4.7 The numerical realization of equation (4.2) using the Collocation
method.
The approximate solution of Volterra integral equation of the second kind
calculated at the 7" iteration n = 10, the following algorithm implements
the Collocation method using the Matlab software.

Algorithm 4.6

|

. Input a,b, A, f(x),k(x,t),n

2. xo=a,x, =b
3. Calculate h = (b —a)/n
4. Calculate x = linspace(a,b,n+ 1)
5. Letu,@(x) = f(x)
6. Compute the collocation solution uy, (x) by the iterated collocation
solution
w06 = £ + [ko0 D0
a
7. Maximum absolute error= Max|u(x) — u,(x)|
8. Plot (u(x),uy)

So we obtain the following results:
Table 4.11shows the exact and numerical solutions when applying
Algorithm 4.6 on equation (4.2), and showing the error resulting of using

the numerical solution.

72

Table 4.11: The exact and numerical solutions of applying Algorithm

4.6 for equation (4.2)

x |Analytical solution Approximate Error= |u — uy|
u(x) = sin(x) + cos(x) |solution u,,

0 1 0

0.1 1.0948375819 1.0948375820 0.000105x 10~°
0.2 1.1787359086 1.17873590870 | 0.000066x 10~°
0.3 1.2508566957 1.25085669581 | 0.000026x 10~°
0.4 1.3104793363 1.31047933606 | 0.000242x 10~°
0.5 1.3570081004 1.35700810048 | 0.000007x 10~°
0.6 1.3899780883 1.38997808832 | 0.000017x 10~°
0.7 1.4090598745 1.40905987401 | 0.000507x 10~°
0.8 1.4140628002 1.41406279732 | 0.002921x 107°
0.9 1.4049368778 1.40493685659 | 0.021307x 10~°
1 1.3817732906 1.38177317148 | 0.119195x 10~°

These results show the accuracy of Collocation method to solve equation
(4.2) since the max error = 0.119195 x 10°.

Figure 4.21 compares the exact solution u(x) = sin(x) + cos(x) with the

approximate solution when n = 10.

1.45

1.4 e

1.35

1.3

1.25

O Approximation Solutions

u(x)

1.2 Exact Solutions
//
1.15
/
/
/
1.1 -
/
1.05/
/
1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis

Figure 4.21: The exact and numerical solutions of applying Algorithm 4.6 for equation (4.2).

73
The CPU time is 0.379443 seconds. Figure 4.22 shows the absolute error

resulting of applying algorithm 4.6 on equation (4.2).

x 10"

1.4

1.2

1

0.8

0.6

AbsoluteError

0.4

0.2

ot L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xX-axis

Figure 4.22: the error resulting of applying algorithm 4.6 on equation (4.2).
Example 4.3
The following Volterra integral equation of the second kind
u(x) =1+x—x2+ [, u@®)dt . (4.3)
Equation (4.3) has the exact solution
u(x) =1+ 2x.
4.8 The numerical realization of equation (4.3) using the Galerkin
method with Chebyshev polynomial
The following algorithm for solving Volterra integral equation of the
second kind (4.3) using the Galerkin method with Chebyshev polynomial.
Algorithm 4.7
1) Let F = zeros(n+ 1,1)
A =zeros(n+1,1)
K = zeros(n+ 1,n+ 1)
T;(x) is Chebyshev polynomial of degree i

74

2) Calculate all entries of vector F such that

1
F;, = f f(x)T;(x)dx, i=012,..,n
0

3) Calculate all entries of matrix K such that

1
Ki,j B [f
0

4) Find the unknown vector A by solve this system AK = F

X
T;(x) + AJ K(x, t)T;(t) dt] Tj(x)dx] ,i,j =0,1,2,...,n
0

5) Substituting the entries of vector A at the technique of Galerkin
method [4], to find an approximate solution u(x) of (4.2). For this,
we assume that

u(x) = Yizo AiTi (%)

6) Maximum absolute error = Max|u(x) — u(x)|.

Table 4.12 for n = 10 shows the exact and numerical results when
applying algorithm 4.7 on equation (4.3), and showing the error resulting of
using the numerical solution.

Table 4.12: The exact and numerical solutions of applying Algorithm

4.7 for equation (4.3).

x | Analytical solution | Approximate solution | Error = |u — uy|
u(x) =1+ 2x u, (x)

0 |1 0.999798920 0.2010794x 1073
0.1 |12 1.199948050 0.051949x 1073
0.2 |14 1.400031461 0.031461x 1073
0.3 |1.6 1.600017341 0.017341x 1073
04 |18 1.799943469 0.056530x 1073
0.5 |2 2.000030734 0.030734x 1073
0.6 |2.2 2.200037998 0.037998x 1073
0.7 |2.4 2.399935471 0.064528x 1073
0.8 |2.6 2.6000252227 0.025222x 1073
0.9 |2.8 2.8000178425 0.017842x 1073

1 |3 3.0002797874 0.279787x 1073

75
These results show the accuracy of Galerkin method with Chebyshev
polynomial to solve equation (4.3) since the max error = 0.279787 X
1073.
Figure 4.23 compares the exact solution u(x) = 1 + 2x with the

approximate solution when n = 10.

35
3 /
+ Approximation Solutions =
A
Exact Solutions —
s
2.5 =
o
/
s
— ~
X 2 «
=1 /
A
/
e
1.5 =
A
/
e
/
1+
0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.23 The exact and numerical solutions of applying Algorithm 4.7 for equation (4.3).

The CPU time is 0.64554 seconds. Figure 4.24 shows the absolute error

resulting of applying algorithm 4.7on equation (4.3).

76

x 10

Absolute Error

I
 E—

[¢]
(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis

Figure 4.24: the error resulting of applying algorithm 4.7 on equation (4.3).

4.9 The numerical realization of equation (4.3) using the Collocation
method

Table 4.13 for n = 10 shows the exact and numerical results when
applying algorithm 4.6 on equation (4.3), and showing the error resulting of
using the numerical solution.

Table 4.13: The exact and numerical solutions of applying Algorithm

4.6 for equation (4.3).

x | Analytical solution | Approximate solution | Error = |u — uy|
u(x) =1+ 2x up (x)

0 1 1 0
0.1 |1.2 1.2 0
02 |14 1.399999999 0.00000002x 10~°
0.3 |1.6 1.599999999 0.0000017x 107°
04 |18 1.799999999 0.0000309x 10~°
05 |2 1.999999999 0.0002935x 10
06 |22 2.199999998 0.0018480x 107
0.7 |24 2.399999991 0.0087749x 107°
08 |2.6 2.599999966 0.0338933x 107
09 |28 2.799999888 0.1118096x 10
1 3 2.999999674 0.32567740x 107

77

These results show the accuracy of Collocation method to solve equation

(4.3) since the max error = 0.32567740 x 107°.

Figure 4.25 shows the exact solution u(x) = 1 + 2x with the approximate

solution when n = 10.

3

2.8

2.6 © Approximation Solutions
Exact Solutions

2.4

2.2

= 2

1.8

1.6

1.4

1.2

(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis

Figure 4.25 The exact and numerical solutions of applying Algorithm 4.6 for equation (4.3).

The CPU time is 0.777991 seconds. Figure 4.26 shows the absolute error

resulting of applying algorithm 4.6 on equation (4.3).

x 10
3.5¢

3

2.5

Absolute Error

(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

Figure 4.26: the error resulting of applying algorithm 4.7 on equation (4.3).

78
We conclde from our numerical test cases in this example 4.3 that the
Collocation method is more efficient than the Galerkin method with
Chebyshev polynomial.
4.10 The numerical realization of equation (4.3) using Trapezoidal rule
Table 4.14 for n = 10 shows the exact and numerical results when
applying algorithm 4.1 on equation (4.3), and showing the error resulting of
using the numerical solution.
Table 4.14: The exact and numerical solutions of applying Algorithm

4.1 for equation (4.3).

x | Analytical solution | Approximate solution | Error = |u — uy|
u(x) =1+ 2x up(x)

0 1 1 0
0.1 |1.2 1.2 0.193179x 10713
02 |14 1.4 0.215383x 10713
03 |16 1.6 0.239808x 10713
04 |18 1.8 0.264233x 10713
05 |2 2 0.288658x 10713
06 |22 2.2 0.319744x 10713
0.7 |24 2.4 0.35083x 10713
0.8 |26 2.6 0.390799x 10713
09 |28 2.8 0.430767x 10713
1 3 3 0.475175%x 10713

These results show the accuracy of Trapezoidal rule to solve equation (4.3)
since the max error =0.475175x 10713.

Figure 4.27 shows the exact solution u(x) = 1 + 2x with the approximate

solution when n = 10.

79

2.8
% Approximation Solutions

Exact Solutions

2.6

2.4

2.2

1.8

1.6

1.4

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.27: The exact and numerical solutions of applying Algorithm 4.1 for equation (4.3).

The CPU time is 0.029789 seconds. Figure 4.28 shows the absolute error

resulting of applying algorithm 4.1 on equation (4.3).

x 10 e

Absolute Error

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xX-axis

Figure 4.28: the error resulting of applying algorithm 4.1 on equation (4.3).

4.11 The numerical realization of equation (4.3) using the Runge-Kutta

method

80

4.11.1 The Runge-Kutta method of order 2

Table 4.15 shows the exact and numerical solutions when applying

Algorithm 4.2 on equation (4.3).

Table 4.15: The exact and numerical solution of applying Algorithm

4.2 for equation (4.3).

x |Analytical solution Approximate Error= |u — uy|
ulx) =1+ 2x solution uy,
0 |1 1 0
0.1(1.2 1.1945 0.0055
0214 1.38795 0.01205
0.3[1.6 1.580245 0.019755
0.4(1.8 1.7712695 0.0287305
052 1.96089645 0.03910355
0.6(2.2 2.148986095 0.051013905
0.7]2.4 2.335384705 0.064615296
0.8(2.6 2.519923175 0.080076825
0.9/(2.8 2.702415492 0.097584508
1 |3 2.882657042 0.117342958

These results show the accuracy of the Runge-Kutta method of order 2 to
solve equation (4.3) since the max error =0.117342958.

Figure 4.29 shows the exact solution u(x) = 1 + 2x with the approximate

solution when n = 10.

81

3r T 4 T T T r r —F

&) Approximation Solutions 7
2.6 Exact Solutions

1.8

1.6

1.4

1.2

(o} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

Figure 4.29: The exact and numerical solutions of applying Algorithm 4.2 for equation (4.3).

The CPU time is 0.032915 seconds. Figure 4.30 shows the absolute error

resulting of applying algorithm 4.2 on equation (4.3).

0.12¢

0.1

0.08

0.06

Absolute Error

0.04

0.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.30: the error resulting of applying algorithm 4.2 on equation (4.3).
4.11.2 The fourth order Runge-Kutta method
Table 4.16 shows the exact and numerical solutions when applying

Algorithm 4.3 on equation (4.3).

82

Table 4.16: The exact and numerical solution of applying Algorithm

4.3 for equation (4.3).

x |Analytical solution Approximate Error= |u — uy|
u(x) =1+ 2x solution uy,

0 |1 1 0

0.1(1.2 1.199999792 0.02083x 107>
0.2]1.4 1.399999561 0.04385%x 107>
0.3]1.6 1.599999307 0.0693x 107>
0.4(1.8 1.799999026 0.0974x 107>
052 1.999998715 0.1285x 107>
0.6 (2.2 2.199998371 0.1628x 107>
0.7]2.4 2.399997992 0.2008x 107>
0.8(2.6 2.599997572 0.2427x 107>
0.9(2.8 2.799997109 0.2891x 107>
1 |3 2.999996596 0.3403x 107>

These results show the accuracy of the fourth order Runge-Kutta method to
solve equation (4.3) since the max error =0.3403x 107°.

Figure 4.31 shows the exact solution u(x) = 1 + 2x with the approximate

solution when n = 10.

i F F F 5 F >
2.8 — — AT
* Approximation Solutions ,/'
>6 Exact Solutions - -
///
2.4
pd
e
2.2
2 —
1.8 4T
,/
1.6 A
1.4 =
1.2 =
S~
1% = L L : 5 3 £
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis

Figure 4.31: The exact and numerical solutions of applying Algorithm 4.3 for equation (4.3).

83
The CPU time is 0.03540 seconds. Figure 4.32 shows the absolute error

resulting of applying algorithm 4.3 on equation (4.3).

x 10°®

Absolute Error

o o.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xX-axis

Figure 4.32: the error resulting of applying algorithm 4.3 on equation (4.3).

412 The numerical realization of equation (4.3) using the Block
method

Table 4.17 shows the exact and numerical results when applying algorithm
4.4 (Block 2) on equation (4.3), and showing the error resulting of using
the numerical solutions.

Table 4.17: The exact and numerical solution of applying Algorithm

4.4 for equation (4.3).

x |Analytical solution Approximate Error= |u — uy|
ulx) =1+ 2x solution uy,
0 |1 1 0
0.1/1.2 1.140666667 0.059333333
0.2|1.4 1.364689259 0.035310741
0.3|1.6 1.618577708 0.018577708
0.4|1.8 1.801723035 0.001723035
05]2 2.07477211 0.07477211
0.6 2.2 2.234306442 0.034306442
0.7|2.4 2.498720238 0.098720238
0.8/2.6 2.607302089 0.007302089
0.9]2.8 2.83177704 0.03177704
1 1|3 2.92246989 0.07753011

84
These results show the accuracy of the method of two block to solve

equation (4.3) since the max error =0.098720238.

Figure 4.33 shows the exact solution u(x) = 1 + 2x with the approximate

solution when n = 10.

3

2.8
#* Approximation Solutions pd

2.6 Exact Solutions

2.4

2.2

= 2

1.8

1.4

1.2

1 3 3 a 5 3 ¢
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.33: The exact and numerical solutions of applying Algorithm 4.4 for equation (4.3).
The CPU time is 0.022529 seconds. Figure 4.34 shows the absolute error

resulting of applying algorithm 4.4 on equation (4.3).

Absolute Error

0.03 \

0.02 \

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.34: the error resulting of applying algorithm 4.4 on equation (4.3).

85

Table 4.18 shows the exact and numerical results when applying algorithm

4.5 (Block 3) on equation (4.3), and showing the error resulting of using

the numerical solutions.

Table 4.18: The exact and numerical solution of applying Algorithm

4.5 for equation (4.3).

x |Analytical solution Approximate Error= |u — uy|
ulx) =1+ 2x solution uy,
0 |1 1 0
0.1(1.2 1.169166667 0.030833333
0214 1.385198779 0.014801221
0.3]1.6 1.548159227 0.051840773
0418 1.770048273 0.029951727
05(2 2.002123835 0.002123835
0.6(2.2 2.15170046 0.04829954
0.7]2.4 2.38525662 0.01474338
0.8(2.6 2.631867325 0.031867325
0.9(2.8 2.794195798 0.005804202
1 |3 3.067162265 0.067162265

These results show the accuracy of the method of three block to solve
equation (4.3) since the max error =0.067162265.

Figure 4.35 shows the exact solution u(x) = 1 + 2x with the approximate

solution when n = 10.

— Exact Solutions

= Approximation Solutions

o 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8
xX-axis

0.9 1

Figure 4.35: The exact and numerical solutions of applying Algorithm 4.5 for equation (4.3).

86
The CPU time is 0.027388 seconds. Figure 4.36 shows the absolute error

resulting of applying algorithm 4.5 on equation (4.3).

0.07 ¢

0.06 /

Absolute Error
o
(@)
R
\

0.02 /

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xX-axis

Figure 4.36: the error resulting of applying algorithm 4.5 on equation (4.3).

87
Conclusions
The numerical results show the following conclusions:
In example 4.3, we have applied the following algorithms: Trapezoidal
rule, the second order and fourth order Runge-Kutta method, the two block
and three block methods and the collocation and Galerkin methods. We

have obtained the following results:

Numerical method Maximum error The CPU time
Trapezoidal rule 0.475175x% 10713 | 0.029789 seconds
The Improved Euler 0.117342958 0.032915 seconds
The fourth order Runge-Kutta | 0.3403x 1075 0.03540 seconds
The method of two block 0.098720238 0.022529 seconds
The method of three block 0.067162265 0.027388 seconds
The collocation method 0.325677 x 107° | 0.777991 seconds
The Galerkin method 0.279787 x 1073 | 0.64554 seconds

From the above table we see clearly that Trapezoidal rule is the most

efficient technique for solving the integral equation 4.3,

[1]

[2]

[3]

[4]

[5]

[6]

[7]

88

References
S. S. Ahmed, Numerical solution for Volterra-Fredholm integral
equations of the second kind by using least-square technique, Iraqi
Journal of Science, Vol.52, No.4, 2011, PP.504-512.
M. Aigo, On The Numerical Approximation of Volterra Integral
Equations of Second kind Using Quadrature Rules, International
Journal of Advanced Scientific and Technical Research Issue 3 Vol. 1,
(2013).
K. Atkinson, The Numerical Solution of Integral Equations of the
Second Kind, The press Syndicate of the University of Cambridge,
United Kingdom, (1997).
C. Baker, The Numerical Treatment of Integral Equations, Oxford
Univ. Press, (1977).
J. Biazar and M. Pourabd, A Maple Program for Solving Systems of
Linear and Nonlinear Integral Equations by Adomian
Decomposition Method, Int. J. Contemp. Math. Sciences, Vol. 2,
2007, no. 29, 1425 — 1432.
H. Brunner, Theory and numerical solution of Volterra functional
integral equations, Hong Kong Baptist University, (2010).
H. Brunner, Collocation Methods for Volterra Integral and Related
Functional Differential Equations, Cambridge University Press,

New York,(2004) .

89

[8] H. Brunner, E. Hairer and S. P. Njersett, Runge-Kutta Theory for
Volterra Integral Equations of the Second Kind, Mathematics of
computation Vol. 39, No. 159 JULY 1982, 147-163.

[9] T.A. Burton, Volterra Integral and Differential Equations, 2nd
Edition, Elsevier, (2005).

[10] B. Cahlon and L. Nachman, Numerical Solutions of Volterra
Integral Equations with a Solution Dependent Delay, Journal of
mathematical analysis and application 112, 541-562 (1985).

[11] G. M. Campbell and J. T. Day, A block-by-block method for the
numerical solution of Volterra integral equations, BIT 11 (1971),
120-124.

[12] P. Collins, Differential and Integral Equations, Oxford University
Press Inc, New York, (2006).

[13] L. Delves and J. Mohammad, Computational Methods for Integral
Equations, Cambridge University press, (1988).

[14] W. Hackbusch, Integral Equations: Theory and Numerical
Treatment, Birkh&user Verlag, Basel, (1995).

[15] A. Isaacson and M. Kirby, Numerical solution of linear Volterra
integral equations of the second kind with sharp gradients, Journal
of Computational and Applied Mathematics 235 (2011) 4283-4301.

[16] A. J. Jerri, Introduction to Integral Equations with Applications,
John Wiley and Sons, INC, (1999).

[17] R. Kanwal, Linear Integral Equations, Theory and Technique,
Academic press, INC, New York (1971).

90

[18] D. Keffer, Advanced Analytical Techniques for the Solution of
Single- and Multi-Dimensional Integral Equations, University of
Tennessee, August, 1999.

[19] R. Kress, Linear Integral Equations, 2nd Edition, Springer-Verlag,
(1999).

[20] P. Linz, Analytical and Numerical Methods for Volterra
Equations, Society for |Industrial and Applied Mathematics,
Philadelphia, (1985).

[21] Maleknejad K, Aghazadeh N, Numerical solution of Volterra
integral equations of the second kind with convolution kernel by
using Taylor-series expansion method, Appl Math Comput
2005;161(3):915-22.

[22] K. Maleknejad , E. Hashemizadeh and R. Ezzati, A new approach to
the numerical solution of Volterra integral equations by using
Bernstein’s approximation, Commun Nonlinear Sci Numer Simulat
16 (2011) 647-655.

[23] Marek and Arvet, Numerical solution of Volterra integral equations
with singularities, Front. Math. China 2013, 8(2): 239-259 DOI
10.1007/511464-013-0292-z.

[24] Michael.A.Goldberg, Solution Methods for Integral Equations
Theory and Applications, Plenum Press, New York and
London,(1978).

[25] F. Mirzaee, A computational method for solving linear Volterra
integral equations , Appl. Math. Sci., Vol. 6, 2012, no. 17-20, 807-
814.

http://www.m-hikari.com/ams/ams-2012/ams-17-20-2012/mirzaeeAMS17-20-2012.pdf
http://www.m-hikari.com/ams/ams-2012/ams-17-20-2012/mirzaeeAMS17-20-2012.pdf

91

[26] F. Mirzaee, Numerical Solution for Volterra Integral Equations of
the First Kind via Quadrature Rule, Applied Mathematical
Sciences, Vol. 6, 2012, no. 20, 969 — 974.

[27] M. Mustafa, Numerical Solution of volterra Integral Equations
with Delay Using Block Methods, AL-Fatih Journal . No . 36,
October (2008).

[28] M. Rahman, Integral Equations and their Applications, WIT,
(2007).

[29] M.M.Rahman, Numerical Solutions of Volterra Integral Equations
Using Galerkin method with Hermite Polynomials, Pure and Appl.
Mathe,(2013).

[30] M.M. Rahman, M.A. Hakim, and M. Kamrul, Numerical Solutions of
Volterra Integral Equations of Second kind with the help of
Chebyshev Polynomials, Pure and Appl. Mathe., Vol. 1,No. 2, 2012,
158-167.

[31] A.Rahman and Sh.Islam, Numerical Solutions of Volterra Integral
Equations Using Legendre polynomials, GANIT J.Bangladesh
Math.Soc.(ISSN 1606-3694) 32 (2012) 29-35.

[32] E. Rakotch, Numerical Solution of Volterra Integral Equations,
Springer-Verlag, Numer. Math. 20, 271-279, (1973).

[33] A. Ramm, A Collocation Method for Solving Integral Equations,
Int. J.Computing Science and Mathematics, Vol. 48, No. 10, (2008).

[34] J. Rashidinia, E. Najafi and A. Arzhang, An iterative scheme for

numerical solution of Volterra integral equations using collocation

92
method and Chebyshev polynomials, Rashidinia et al. Mathematical
Sciences 2012.

[35] J. Saberi-Nadja and M. Heidari, Solving linear integral equations of
the second kind with repeated modified trapezoid quadrature
method. Appl. Math. Comput., 189 (2007), 980- 985.

[36] M. Shafiqul, M. Rahman, Solutions of Linear and Nonlinear
Volterra Integral Equations Using Hermite and Chebyshev
Polynomials, ISSN 2277-3061.

[37] Tahmashi A, A new approach to the numerical solution of linear
Volterra integral equations of the second kind, Int J Contemp Math
Sci 2008;3(32):1607-10.

[38] W. Wang, A mechanical algorithm for solving the Volterra
integral equation, Applied Mathematics and Computation 172 (2006)
1323-1341.

[39] A. Wazwaz, Linear and Nonlinear Integral Equations: Methods
and Applications, Springer Heidelberg, Dordrecht London, (2011).

[40] A. Wazwaz, A First Course in Integral Equations, World Scientific
Publishing Co. Pte. Ltd., (1997).

[41] S. Zhang, Y.Lin and M. Rao, Numerical solutions for second-kind
Volterra integral equations by Galerkin methods, Applications of

Mathematics, VVol. 45 (2000), No. 1, 19-39.

93

Appendix

94

Appendix
Matlab Code for Trapezoidal rule:
tic
clc
clear

format long

sComposite trapezoid rule for volterra integral
equations of the

$second kind

$Taken from Atkinson, K.E. "Numerical solution of
ordinary differential

sequations", Wiley (2009)

% The problem is u(x)=2*exp(x)-2-x+int (0, x) (x-
t)u(t)dt

tic

clc

clear

format long

loop = 30;% This is much more than is usually
needed.

b=1;

n=20;

h = b/n;

x = linspace (0,b,n+1);

95

fecnf=Q (x) (2*exp (X) -2-x) ;

fvec = fconf (x);
uvec = zeros (l,n+1);
uvec (1) = fvec(l);

for i=1l:n;
uvec (1+1) = uvec(i);% The 1nitial estimate for
the iteration.
kvec = fenk(x(i+l),x(1l:i+1)) .*uvec(l:1+1);
for j=l:1loo0p
%applying trapezoid rule

uvec (1i+1) = fvec(i+l) + h* (sum(kvec(2:1)

+(kvec (1)+ kvec (i+1l))/2);

kvec (i+1l)= fcnk(x(i+1l),x(i+1)) .*uvec (i+1l);
end
end
u = uvec;
x = linspace (0,b,n+1);

ue=x.*exp (x);

y=(abs (ue-u));
m=[x',u',ue',y'l]
plot(x,u, '*',x,ue,'r'")
grid on

plot(x,V)

grid on

96
toc
Matlab Code for Runge-Kutta method of order 2
tic
clc
clear
% Runge Kutta Method of order 2
% The problem is u(x)=2*exp(x)-2-x+int (0, x) (x-t)u(t)dt
%specifyig weights

theta=[0,1] ;

h=.1;
nodes=0:.1:1;
num_ inter pts=(length(nodes)-1)*1; %number of

intermediate points

x=zeros (1, num_inter_pts+length(nodeS)); $vector

of nodes and intermediate points

for i=l:length (nodes) %placing node values into x
X (1i+(1-1))=nodes (1) ;

end

for i=l:length(nodes)-1 % placing intermediate

points into x

97
for j=2:2
x(i+(i-1)+ J-1)=x(i+(i-1))+h*theta(j);

end
end
index=zeros(l,length(x)); % keeps track of which
intermediate points are associated with which node
for i=1l:length (nodes)-1

index (i+(i-1) :i+(i-1)+1)=1;
end
index (length (index))=length (nodes) ;
u=zeros (1, length(x)); %vector of solution wvalues
p=2; % order of method
f=@(x) (2%*exp (x)-2-X) ;

for i=1l:length (u)

m=mod (i, 2);
k=index (1) ;
if m==0
v=1;
elseif m==
v=0;
end
if i~=1]||1i~=2

for j=1:k-1

98
for 1=1:p
indl= find(j==index) ;

indl=indl (1) ;

%applying RK formula
u(i)=u(i)+h*A(2,1)*fcnk(x(1i),
X (indl+(1-1))) .* u(indl+(1-1));
end
end
end
if v~=0
for 1=1:v %$depends on mod
indl= find(index (1i)==index) ;

indl=indl (1) ;

applying RK formula
u(i)=u(i)+h* A(v,1l)*fcnk(x (i),

x(indl+ (1-1))) .*x(indl+(1-1));

end
end
end
sobtaining node values

u2=zeros (1, length (nodes)) ;

99
for i=1l:length (nodes)
uz (i)=u(i+(i-1));
end
ue=zeros (1, length (nodes)) ;

for i=1l:length (nodes)

ue (1)=x(1i+(1i-1)) .*exp(x(1+(1-1)))
end
y=ue-u2;

m=[nodes',u2',ue',vy"'];

plot (nodes,u2, 'o',nodes,ue, 'r'")
grid on

plot (nodes, y)

grid on

toc

Matlab Code for Runge-Kutta method of order 4

tic

clc

clear

format long

%Calculates an approximation to a Volterra
Integral Equation of the Second Kind using the
fourth order Runge-Kutta Method

% The problem is u(x) =2*exp(x)-2-x+int (0,x) (x-t)u(t)dt

100
$specifying weights:
theta=[0,0.5,0.5,11 ;
A=[0.5, 0, O, O; O, 0.5, 0, 0O; O, O, 1, 0; (1/6),
(1/3), (1/3), (1/6)];
a=0;
b=1;
h=.1;
nodes=a:h:b ;

num inter pts=(length(nodes)-1)*3; % number of

intermediate points

x=zeros (l, num inter pts+length (nodes)); Svector
of nodes and intermediate points
for i=l:length (nodes) % placing node values into x
X (1+3*(1-1))=nodes (1) ;
end
for i=l:length(nodes)-1 % placing intermediate
points into x
for j=2:4
X (1i+3*(1i-1)+ j-1)=x(1i+3*(i-1))+h*theta(j);
end

end

101

index=zeros(l,length(x)); % keeps track of which
intermediate points are $ associated with which
node
for i=1l:length (nodes)-1

index (1i+3* (1-1) :i+3*(1-1)+3)=1;
end
index (length (index)) =length (nodes) ;

(o)

u=zeros (1l,length(x)); % vector of solution values
p=4; % order of method
f=@(x) (2%*exp (x)-2-X);

for i1=1l:length (x)

elseif m==
v=2;

elseif m==
v=3;

elseif m==

v=0;

102
if i~=1||1i~=2||1~=3||1i~=4
for j=1:k-1
for 1=1:p
indl= find(j==index) ;

indl=indl (1) ;

%applying RK formula
u(i)=u(i)+h*A(4,1)*fcnk(x (i),
X (indl+(1-1))) .*u(indl+(1-1));
end
end
end
if v~=0
for 1=1:v %depends on mod
indl= find(index (1)==index) ;

indl=indl (1) ;

%applying RK formula
u(i)=u(i)+h* A(v,1)*fcnk(x (i),
X (indl+ (1-1))) .*u(indl+(1-1))
end
end
end

%obtaining node values

103
u2=zeros (1, length (nodes)) ;
for i=1l:length (nodes)

u2 (i)=u(i+3*(i-1));
end
ue=zeros (1, length (nodes)) ;

for i=1l:length (nodes)

ue (1)=x(i+3*(1i-1)) .*exp(x (1+3* (1-1)));
end
y=ue-u2;

m=[nodes',u2',ue',y']

plot (nodes,u2, 'bl*',nodes,ue, 'r'")
grid on

plot (nodes, y)

grid on

toc

Matlab Code for Method of two Blocks
tic

clc

clear

format long

s Method of two Blocks to solve Volterra integral

equation of the second kind

104
% The problem is u(x)=2*exp(x)-2-x+int (0, x) (x-

t)u(t)dt

p=2;
h = b/n;
x=linspace(0,1,n+1);
u=zeros (1l,n+1);

fecnf=0 (x) (2%*exp (x) -2-X%) ;
fvec = fcnf (x);

u(l) = fvec(l);

w=zeros (1l,n);

end

wp=zeros (1,n+1);
wp (1)=1;

wp (n)=1;

for j=2:n+1

end

for m=2:n

105
u(m)=fcnf(x(m))+(h/3)*sum(w(l:m-2)
Ffenk(x(m),x(1l:m-2)) .*u(l:m-2))
+(h/12) * (5*fcnk (x (m) , x (m-1)) . *u(m-1)
+8*fcnk (x(m),x(m)) .*u(m)—-fcnk(x(m),x (m+1))
LFu(m+l));
u(m+l)=fcnf(x(m+1l))+(h/3) *sum(wp (l:m+1)
Gfenk(x(m+1l) ,x(1:m+l)) . *u(l:m+1));
end
ue=zeros (1l,n+l);
for i=1:n+l
ue (1)=x (1) .*exp(x (1))
end
y=abs (ue-u) ;
m=[u',ue',y']
plot(x,u, '*',x,ue,'r'")
grid on
plot(x,y,'r")
grid on

toc

Matlab Code for Method of three Blocks
tic
clc

clear

106
format long
% Method of three Blocks to solve Volterra
integral equation of the second kind
% The problem is u(x)=2*exp(x)-2-x+int (0, x) (x-

t)u(t)dt

p=2;
h = b/n;
x=linspace(0,1,n+1);
u=zeros (1l,n+1);

fenf=0 (x) (2*exp (x) —-2-X%) ;
fvec = fcnf (x);

u(l) = fvec(l);

w=zeros (1l,n+1);

w(l)=1;

if m==

w(J)=2;

else
w(J)=3;

107

end

for m=2:n-1
u(m)=fcnf (x(m))+(3*h/8) *sum(w(l:m-1)
Ffenk(x(m) ,x(1:m-1)).*u(l:m-1))
+(h/12) * (5*fcnk (x (m) ,x (m-1)) . *u(m-1)
+8*fcnk (x(m),x(m)) .*u(m)-fcnk(x(m) , x (m+1))
LFu(m+l));
u(m+l)=fcnf (x(m+1))+(3*h/8) *sum(w(l:m-1)
Ffenk(x(m+1l),x(l:m-1)) .*u(l:m-1))
+(h/3)* (fenk(x (m+1) ,x(m=1)) .*u(m-1)
+4*fcnk (x(m+1) ,x(m)) . *u(m) +fcnk (x (m+1) , x (m+1))
LFu(m+l));
u(m+2)=fcnf (x (m+2))+ (3*h/8) *sum(w(1l:m+2)
Sfenk(x(m+2) ,x(l:m+2)) . *u(l:m+2));

end

ue=zeros (l,n+l);

for i=1l:n+1

ue (i)=x (1) .*exp(x (1))
end

y=abs (ue-u) ;
m=[u',ue',y']

plot(x,u, '*',x,ue,'r'")

108
grid on
plot (x,y)
grid on
toc
Matlab Code for Collocation method
clc
clear
n=10;
% u(x)=l+x-x"2+int (u(t), 0, x)
% collocation method with nine iterations
syms x t
ul0=1+x-x"2;
ul=u0+int (1+t-t"2,0,x);
u2=ul0+int (1+2*t-1/2*t"*2-1/3*t"3,0, x) ;
u3=ul0+int (1+2*t-1/6*t"3-1/12*t"4,0,x) ;
ud=ul0+int (1+2*t-1/24*t"4-1/60*t"5,0, x) ;
ub=ul0+int (1+2*t-1/120*t"5-1/360*t"6,0,x) ;
u6=ul0+int (1+2*t-1/720*t"6-1/2520*t"~7,0, %) ;
u7=ul0+int (1+2*t-1/5040*t~7-1/20160*t"8,0,x) ;
u8=ul0+int (1+2*t-1/40320*t"8-1/181440*t"9,0,x) ;
u9=ul+int (1+2*t-1/362880*t"9-

1626697008263629/2951479051793528258560*t710,0, x)

109
ua=Q0Q(x) (1+2*x-
1626697008263629/5902958103587056517120*x710~
5205430426443613/103892062623132194701312*x"11)
ue=Q0(x) (1+2*x) ;
uaa=zeros (11,1);
uee=zeros (11,1);
xx=zeros (11,1);
c=0;
for 1=1:11
uaa (i)=ual(c);
uee (i) =ue(c) ;
XX (1) =c;
c=c+.1;

end

y=(abs (uaa-uee)) ;

[xx uee uaa Vy];

uee

uaa

y

plot (xx,uaa, 'o',xx,uee, 'r'")

grid on

plot (xx,V)

grid on

toc

110

Matlab Code for Galerkin method with Chebyshev polynomials

tic

clc

clear

format long

% degree of polynomial is n

n=10;

F=zeros (n+1,1);

a=zeros (n+1,1);

k=zeros (n+l,n+1) ;

syms x t

F(l)=int ((1+x-x"2),0,1);

F(2)=int ((1+x-x"2)*x,0,1);

for 1=3:n+1

F(i)=int ((1+x-x"2)*Tch(i-1),0,1);

end

E;

k(l1l,1)=int(1-int(1,0,x),0,1);

k(1,2)=int ((1-int(1,0,x))*x,0,1);

for j=3:n+1
k(l,3)=int((1-int(1,0,x))*Tch(i-1),0,1);

end

k(2,1)=int (x-int(t,0,x),0,1);

111

k(2,2)=int ((x-1int(t,0,x)) *x,0,1);
for j=3:n+1

k(2,j)=int (((x-int(t,0,x))*Tch(j-1)),0,1);
end
for i=3:n+l
k(1,1)=int ((Tch(i1-1)-(int (Tcht(1-1),0,x))),0,1);
k(i,2)=int ((Tch(i-1)-(int (Tcht(i-1),0,x))*x),0,1);
end
for i=3:n+l

for j=3:n+1

k(i,3)=int (((Tch(i-1)-(int (Tcht (i-

1),0,x))).*Tch(3-1)),0,1);

end
end
k
a=inv (k) *F
u=sum(a(l)+a(2) .*x+a(3) .*Tch(2)+a(4) .*Tch(3)+a(5) .
*Tch(4)+a (6) .*Tch(5)+a(7) .*Tch(6)+a(8) .*Tch(7)+a (9

) . *Tch(8)+a(10) .*Tch(9)+a(11) .*Tch (10))

ua=@ (x) (3378014733232755/1125899906842624-
33608425858860287091/18446744073709551616%*x~
780646173785663/562949953421312*x72+25641194402273

5/70368744177664*x* (2*x"2-1) -

112
758816794818963/140737488355328*x* (2*x* (2*x"2-1) -
x)+385490043195975/70368744177664*x* (2*x* (2*x* (2*x
r"2-1)-x)-2*x"2+1) -
576129132906897/140737488355328*x* (2*X* (2*X* (2*x* (
2*xN2=1)=X) =2*x"2+1) 2% x* (2*x"2~-
1)+x)+160094110262051/70368744177664*x* (2*x* (2*x* (
2XXF(2FR*F(2*%xMN2-1) =xX) =2*x"2+]1) 2% x* (2*x"2-1) +x) -
2XXF(2Fx*(2%x"2-1)-x)+2*x"2-1) -
128373776867859/140737488355328*x* (2*x* (2*x* (2*x* (
2XXF(2FR*F(2*%xMN2-1) =xX) =2*x"2+]1) =2*x* (2*x"2-1) +x) -
2XXF(2Fx*F(2*x"2-1) —x)+2*x"2-1) -
2XRXF(2FX*F (2% x* (2*%x"2-1) —X) =2*xX"2+]1) +2*x* (2*x"2-1) -
x)+16954400822283/70368744177664*x* (2*x* (2*x* (2*x*
(2F%* (2% x* (2% x* (2*x72-1) —=x) =2*x"2+1) =2 x* (2*%x"2~-
1) +x) —2*x* (2*%x* (2*x"2-1) -x)+2*x"2-1) -
2XXX(2FxXx* (2FX* (2% x"N2-1) =X) =2*xXx"2+41) +2*x* (2*x"2-1) -
X) =2F X% (2FX* (2% x* (2 x* (2*x"2-1) —x) =2*x"2+1) —
2XXF(2FXMN2-1) +x) +2Fx* (2*x* (2%x"2-1) —-x) —=2*x"2+1) -
4550460827751/140737488355328*x* (2*X* (2*X* (2*x* (2%
X*(2FX* (2%X* (2% x* (2*%x"2-1) —X) =2*xX"2+]1) =2* x* (2*xX"2—
1) +x) —2*x* (2*%x* (2*x"2-1) -x)+2*x"2-1) -
2XXF(2FXF(2FX* (2*%x"2-1) —X) —2*xX"2+]1) +2*x* (2*x"2-1) -
X) =2FXF (2Fx* (2*x* (2*x* (2*%x"2-1) —-x) -2*x"2+]1) -

2XXF(2FxMN2-1)+x) +2Fx* (2*x* (2%x"2-1) —-x) —=2*x"2+1) -

113
2FRF(2FXF (2FXF (2Fx* (2%x* (2%x"2-1) -x) =2*%x"2+1) -
2FRXF(2*XN2=1) +X) =2FX* (2*x* (2*x"2-1) =X) +2*x" 2~
1) 42*x* (2% x* (2%x* (2*%x"2-1) =x) —2*x"2+41) =2 x* (2*x"2~-
1)+x));
c=0;
xx=zeros (n+l,1);
uap=zeros(n+l,1);
uex=zeros (n+1l,1);
for j=l:n+1

uap (j)=(ua(l-c));

uex (3)=(1+2*(c)) ;

end

y=(abs (uap-uex)) ;

[xxX uex uap VY]

uex

uap

y

plot (xx,uap, '*',xx,uex, 'r'")
grid on

plot (xx,V)

grid on

toc

dgih gl ladl) daaly
Ll bl Al 405

e dalalsal) |, gh Aalaad dpaandl g LAy g glad)
S g ol

s

Al s 3l ae olad

il)

ga'h'ﬁ ga.l.'n |

clbabdl A phualdl 40 Jdo Jseall cldbiad Ylia) dagphl) ol Cudd
ol — il Aaila ol zladl) daaly A Llad) il yal) A0Sy A gaall
2014

D £ i) pa Alalel)) it gh Alabaal Apasall g Abdaty Jglal)
as)
Al Ahas 3l ae olad
il
(Aiad Al o

oadlal)

g5 e kel | 5l g8 Alalaad dpanall s Al Jlall o 3 55 gt Aag kY] oda B
el 3y JSlaadl s Aldaadl Aok Jhe Awaiglly oLl 8 el) laladd | das)
Jelid) 4y il o Al ol 5l Cpe lapuadl Jl) JSLEe 5 (Sl ¢y oS
ol 4oaedl s Aldatl 50l Gary elatiol L 40K c¥aled) s2a Ciyiial e
Aok s cAaldanl e ol A8l reled Abladl) 3ok o3 L (SE g gl e Alalal) |yl b
Jasad Ayphas Alulull da ARl cdalall iy @ 385k Al bl gl
cAaale bl Aales) Aalsall)yl 68 Alales

el Al Lo g (s 48 k) Ay A @)k o Ledslin N dasell 3k
Ak (oS lla Aiy ks aeadll A5k tlge s Ageall Ll A5k ¢ O guans
REAR
LS g gl e AdalSal |yl g8 Alabes Jad dgaaall 3okl s Aladiuly cads ABGY) (am
e Ly LBy sl A il il A i) ol p Abdasl) il G A5l Lal s

AR

