
An-Najah National University

Faculty of Graduate Studies

Analytical and Numerical Solutions of

Volterra Integral Equation of the

Second Kind

By

Feda’ Abdel Aziz Mustafa Salameh

Supervisor

Prof. Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Computational Mathematics, Faculty of

Graduate Studies, An-Najah National University, Nablus, Palestine.

2014

III

Dedication

I dedicate this thesis to my beloved Palestine, my parents, my love my

husband Emad, my children Shahd,Qays and Karam, my brother Amjad,

who helped me, stood by me and encouraged me.

IV

Acknowledgement

First of all, I thank my God for all the blessing he bestowed on me and

continues to bestow on me.

I would sincerely like to thank and deeply grateful to my supervisor Prof.

Dr. Naji Qatanani who without his support, kind supervision, helpful

suggestions and valuable remarks, my work would have been more

difficult. My thanks also to my external examiner Dr. Iyad Suwan and to

my internal examiner Dr. Anwar Saleh for their useful and valuable

comments. Also, my great thanks are due to my family for their support,

encouragement and great efforts for me.

Finally I would also like to acknowledge to all my teachers in An-Najah

National University department of computational mathematics.

VI

Table of Contents
No. Contents page

 Dedication III

 Acknowledgement IV

 Declaration V

 Table of Contents VI

 List of Figures VIII

 List of Tables IX

 Abstract X

 Introduction 1

 Chapter One 5

 Mathematical Preliminaries 5

1.1 Classification of integral equations 5

1.2 Kinds of kernels 8

1.3 The existence and uniqueness theorem 9

 Chapter Two 12

Some Analytical Methods for Solving Volterra integral
Equations of the Second Kind

12

2.1 The Adomian Decomposition method 12

2.2 The Modified Decomposition method 15

2.3 The method of successive approximations 17

2.4 The series solution method 21

2.5 Converting Volterra equation to ODE 23

 Chapter Three 62

Numerical Methods for Solving Volterra Integral Equations
of the Second Kind

26

3.1 Quadrature methods for Volterra equations of the second kind 26

3.1.1 Quadrature methods for linear equations 27

3.1.2 Trapezoidal rule 28

3.1.3 Runge-Kutta methods 29

3.2 The Block methods 32

3.3 The Collocation method 36

3.4 The Galerkin method 39

 Chapter Four 45

 Numerical Examples and Results 45

4.1
The numerical realization of equation (4.1) using Trapezoidal
rule

45

4.2
The numerical realization of equation (4.1) using the Runge-
Kutta method

48

4.3
The numerical realization of equation (4.1) using the Block
method

58

4.4
The numerical realization of equation (4.2) using Trapezoidal
rule

62

4.5
The numerical realization of equation (4.2) using the Runge-
Kutta method

64

VII

4.6
The numerical realization of equation (4.2) using the Block
method

67

4.7
The numerical realization of equation (4.2) using the

Collocation method
71

4.8
The numerical realization of equation (4.3) using the Galerkin

method with chebyshev polynomials
73

4.9
The numerical realization of equation (4.3) using the

Collocation method
76

4.10
The numerical realization of equation (4.3) using Trapezoidal
rule

78

4.11
The numerical realization of equation (4.3) using the Runge-
Kutta method

80

4.12
The numerical realization of equation (4.3) using the Block
method

83

 Conclusions 87

 References 88

 Appendix 94

VIII

List of Figures
No. Title Pages

Figure: 4.1
The exact and numerical solutions of applying

Algorithm 4.1 for equation (4.1).
47

Figure: 4.3
The exact and numerical solutions of applying

Algorithm 4.2 for equation (4.1).
52

Figure: 4.5
The exact and numerical solutions of applying

Algorithm 4.3 for equation (4.1).
57

Figure: 4.7
The exact and numerical solutions of applying

Algorithm 4.4 for equation (4.1).
59

Figure: 4.9
The exact and numerical solutions of applying

Algorithm 4.5 for equation (4.1).
61

Figure: 4.11
The exact and numerical solutions of applying

Algorithm 4.1 for equation (4.2).
63

Figure: 4.13
The exact and numerical solutions of applying

Algorithm 4.2 for equation (4.2).
65

Figure: 4.15
The exact and numerical solutions of applying

Algorithm 4.3 for equation (4.2).
67

Figure: 4.17
The exact and numerical solutions of applying

Algorithm 4.4 for equation (4.2).
68

Figure: 4.19
The exact and numerical solutions of applying

Algorithm 4.5 for equation (4.2).
70

Figure: 4.21
The exact and numerical solutions of applying

Algorithm 4.6 for equation (4.2).
72

Figure: 4.23
The exact and numerical solutions of applying

Algorithm 4.7 for equation (4.3).
75

Figure: 4.25
The exact and numerical solutions of applying

Algorithm 4.6 for equation (4.3).
77

Figure: 4.27
The exact and numerical solutions of applying

Algorithm 4.1 for equation (4.3).
79

Figure: 4.29
The exact and numerical solutions of applying

Algorithm 4.2 for equation (4.3).
81

Figure: 4.31
The exact and numerical solutions of applying

Algorithm 4.3 for equation (4.3).
82

Figure: 4.33
The exact and numerical solutions of applying

Algorithm 4.4 for equation (4.3).
84

Figure: 4.35
The exact and numerical solutions of applying

Algorithm 4.5 for equation (4.3).
85

IX

List of Tables
No. Title Pages

Table: 4.1
The exact and numerical solutions of applying Algorithm

4.1 for equation (4.1).
47

Table: 4.2
The exact and numerical solutions of applying Algorithm

4.2 for equation (4.1).
51

Table: 4.3
The exact and numerical solutions of applying Algorithm

4.3 for equation (4.1).
56

Table: 4.4
The exact and numerical solutions of applying Algorithm

4.4 for equation (4.1).
59

Table: 4.5
The exact and numerical solutions of applying Algorithm

4.5 for equation (4.1).
60

Table: 4.6
The exact and numerical solutions of applying Algorithm

4.1 for equation (4.2).
62

Table: 4.7
The exact and numerical solutions of applying Algorithm

4.2 for equation (4.2).
64

Table: 4.8
The exact and numerical solutions of applying Algorithm

4.3 for equation (4.2).
66

Table: 4.9
The exact and numerical solutions of applying Algorithm

4.4 for equation (4.2).
68

Table: 4.10
The exact and numerical solutions of applying Algorithm

4.5 for equation (4.2).
69

Table: 4.11
The exact and numerical solutions of applying Algorithm

4.6 for equation (4.2).
72

Table: 4.12
The exact and numerical solutions of applying Algorithm

4.7 for equation (4.3).
74

Table: 4.13
The exact and numerical solutions of applying Algorithm

4.6 for equation (4.3).
76

Table: 4.14
The exact and numerical solutions of applying Algorithm

4.1 for equation (4.3).
77

Table: 4.15
The exact and numerical solutions of applying Algorithm

4.2 for equation (4.3).
80

Table: 4.16
The exact and numerical solutions of applying Algorithm

4.3 for equation (4.3).
82

Table: 4.17
The exact and numerical solutions of applying Algorithm

4.4 for equation (4.3).
83

Table: 4.18
The exact and numerical solutions of applying Algorithm

4.5 for equation (4.3).
85

X

Analytical and Numerical Solutions of Volterra Integral Equation of

the Second Kind

By

Feda’ Abdel Aziz Mustafa Salameh

Supervisor

Prof. Naji Qatanani

Abstract

In this thesis we focus on the analytical and numerical aspects of the

Volterra integral equation of the second kind. This equation has wide range

of applications in physics and engineering such as potential theory,

Dirichlet problems, electrostatics, the particle transport problems of

astrophysics, reactor theory, contact problems, diffusion problems and heat

transfer problems.

After introducing the types of integral equations, we will investigate

some analytical and numerical methods for solving the Volterra integral

equation of the second kind. These analytical methods include: the

Adomian decomposition method, the modified decomposition method, the

method of successive approximations, the series solution method and the

conversion to initial value problem.

For the numerical treatment of the Volterra integral equation we will

implement the following numerical methods: Quadrature methods

(Trapezoidal rule, Runge-Kutta method of order two, the fourth order

Runge-Kutta method), Projection methods including collocation method

and Galerkin method and the Block method.

The mathematical framework of these numerical methods together with

their convergence properties will be presented. These numerical methods

XI

will be illustrated by some numerical examples. Comparisons between

these methods will be drawn. Numerical results show that the Trapezoidal

rule has proved to be the most efficient method in comparison to the other

numerical methods.

1

Introduction

 In recent years integral equations have attracted the attention of

many scientists and researchers due to their wide range of applications in

science and technology.

Many physical problems are modeled in the form of integral

equations. These include potential theory, Dirichlet problems,

electrostatics, contact problems, astrophysics problems and radiative heat

transfer problems. (For more details see [3, 16]).

Some valid numerical methods, for solving Volterra integral equation have

been developed by many researchers. Very recently, Mirzaee [25] studied a

Simpson’s quadrature method for solving linear Volterra integral equation

of the second kind. Mustafa [27] and Campbell [11] used block methods to

approximate the solution of Volterra integral equation with delay. Rahman,

Hakim and Hasan [30] used Galerkin method with the Chebyshev

polynomials for the numerical solution of Volterra integral equation of the

second kind. Hermite polynomials were used by Rahman [29] and Shafiqul

[36]. In [35] Saberi-Nadja and Heidari applied modified trapezoidal

formula to solve linear integral equations of the second kind, and in [2]

Aigo used repeated Simpson's and Trapezoidal quadrature rule to solve the

linear Volterra integral equation of the second kind. Ahmad [1] has applied

least-square technique to approximate the solution of Volterra-Fredholm

integral equation of the second kind. Brunner, Hairer and Njersett [8] have

used Runge-Kutta Theory for Volterra integral equation. Rahman and

Islam in [31] solved Volterra integral equation of the first and the second

2

kind numerically by Galerkin method with Legendre polynomials. Marek

and Arvet in [23] discussed the numerical solution of linear Volterra

integral equation of the second kind with singularities by using collocation

method. Bernstein’s approximation were used in [22] by Maleknejad to

find out the numerical solution of Volterra integral equation. In [37]

Tahmasbi solved linear Volterra integral equation of the second kind based

on the power series method. Maleknejad and Aghazadeh in [21] obtained a

numerical solution of these equations with convolution kernel by using

Taylor-series expansion method.

However many approaches for solving the linear and nonlinear kind

of these equations may be found in [5], [10], [15], [32], [33] and [38].

In this work, some analytical methods have been used to solve the

Volterra integral equation of the second kind. These methods are the

Adomian decomposition method, the modified decomposition method, the

series solutions, the method of successive approximations and the

conversion to initial value problem.

For the numerical treatment of the Volterra integral equation of the

second kind, we have implemented the following methods: Quadrature

methods (Trapezoidal rule, Runge-Kutta method of order two, the fourth

order Runge-Kutta method), Projection methods including collocation

method and Galerkin method and the Block method.

This thesis is organized as follows: In chapter one, we introduce

some basic concepts of integral equations. In chapter two, we investigate

some analytical methods used to solve the Volterra integral equation. These

3

include: The Adomian decomposition method, the modified decomposition

method, the method of successive approximations, the series solutions

method and the conversion of the Volterra integral equation to ordinary

differential equation. In chapter three, we implement some numerical

methods for solving the Volterra integral equation. These are the

Quadrature methods, Trapezoidal rule, Runge-Kutta methods, Blocks

methods, the collocation method and the Galerkin method. Numerical

examples and results are presented in chapter four and conclusions have

been drawn.

4

Chapter One

Mathematical Preliminaries

5

Chapter One

Mathematical Preliminaries

An integral equation is an equation in which the unknown function

appears under an integral sign. The most standard type of integral equation

is given as

 ∫

 (1.1)

Here, is the unknown function, and are known

functions, is known constant parameter, and and are the limits

of integration that may be both variables, constants, or mixed, and they

may be in one dimension or more. The function is known as the

kernel of integral equation [39].

1.1 Classification of integral equations

1.1.1 Types of integral equations

1) Fredholm integral equations

The most standard form of a Fredholm integral equation is given by

 ∫

 , (1.2)

There are three kinds of Fredholm integral equations:

 Fredholm integral equation of the second kind: when the function

 , then (1.2) becomes

 ∫

, (1.3)

2. Fredholm integral equation of the first kind: when the function

 , then (1.2) becomes

 ∫

, (1.4)

6

3. Fredholm integral equation of the third kind: when is neither 0 nor

1.

2) Volterra integral equations

The most standard form of Volterra integral equation is given as

 ∫

, (1.5)

where the upper limit of integration is variable and the unknown function

appears linearly or nonlinearly under the integral sign.

There are three kinds of Volterra integral equations:

1. Volterra integral equation of the second kind: when the function

 , then (1.5) becomes

 ∫

 , (1.6)

2. Volterra integral equation of the first kind: when the function ,

then (1.5) becomes

 ∫

 , (1.7)

3. Volterra integral equation of the third kind: when is neither 0 nor 1.

(see [39],[40] and [9]).

3) Singular integral equations

A singular integral equation is an equation in which one or both limits of

integration are infinite or when the kernel becomes infinite at one or more

points within the range of integration. For example, the integral equation,

 ∫

 (1.8)

is a singular integral equation of the second kind.

1. Weakly singular integral equation: The kernel is of the form

| |

7

or | |

where is bounded (that is, several times continuously differentiable)

 and with and is a constant such that

 . For example, the equation of the form:

 ∫

, (1.9)

is called generalized Abel’s integral equation. The equation of the second

kind:

 ∫

, (1.10)

is called weakly singular integral equation.

2. Strongly singular integral equations: if the kernel is of the form

and is a differentiable function of with .

4) Integro-differential equations

In this type of equations, the unknown function appears as a combination

of an ordinary derivative and under the integral sign,

For example:

Volterra-integro-differential equation

 ∫

 (1.11)

 where

 Fredholm-integro-differential equation

 ∫

 (1.12)

where

8

1.1.2 Linearity of integral equations

Definition (1.1): An integral equation is said to be linear if the unknown

function in the integral equation appears in a linear fashion (i.e. the

exponent of the unknown function inside the integral sign is one).

Otherwise it called nonlinear, that is the exponent of the unknown function

other than one, or if the equation contains nonlinear functions of .

For examples

 ∫

 (1.13)

is linear integral equation.

 ∫

 (1.14)

is nonlinear integral equation.

1.1.3 Homogeneity of integral equations

Definition (1.2): If the function in the second kind of Volterra or

Fredholm integral equations is identically zero, the equation is called

homogeneous, otherwise it is called nonhomogeneous.

1.2 Kinds of kernels

1. Separable kernel

 A kernel is said to be separable or (degenerate) if it can be

expressed in the form

 ∑

 , (1.15)

where the functions and the functions are linearly independent.

(see [17]).

2. Symmetric (or Hermitian) kernel

A complex-valued function is called symmetric (or Hermitian) if

9

where the asterisk denotes the complex conjugate. For a real kernel, we

have

1.3 The existence and uniqueness theorem

Some integral equations have a solution and some others have no solution

or have an infinite number of solutions. The following theorems state the

existence and uniqueness of the solution for the Voterra integral equation

of the second kind.

Theorem (1.1) (Volterra’s Theorem)

Assume that the kernel of the linear Volterra integral equation

 ∫

, [] (1.16)

is continuous on { } Then for any function

that is continuous on (that is,), the Volterra integral equation

possesses a unique solution . This solution can be written in the

form

 ∫

, (1.17)

for some . The function is called the resolvent kernel

of the given kernel [].

Theorem (1.2)

 If we define the integral operator by

 ∫

, (1.18)

then the Volterra integral equation in operator form is given

 , or ,

10

(where denotes the identity operator, and the classical Volterra integral

operator is defined by

 ∫

 with), then we have

the following relationship:

 .

By Theorem 1.1 this implies that the inverse operator always

exists, and hence (by uniqueness of)

 , see ([6]).

11

Chapter Two

Analytical Methods for Solving Volterra Integral

Equation of the Second Kind

12

Chapter Two

Analytical methods for solving Volterra integral equation of

the second kind

There are many analytical methods available for solving Volterra integral

equation of the second kind. In this chapter we will focus on the following

methods: the Adomian decomposition method, the modified decomposition

method, the method of successive approximations, the series solution

method, converting Volterra integral equation to initial value problem.

2.1 The Adomian Decomposition Method

The Adomian decomposition method (ADM) was introduced and

developed by George Adomian [39]. It consists of decomposing the

unknown function of any equation into a sum of an infinite number of

components defined by the decomposition series

 ∑

 (2.1)

or equivalently

 (2.2)

The decomposition method is concerned with finding the components

 individually. To establish the recurrence relation, we substitute

(2.1) into equation (1.6) to get

 ∑
 ∫ ∑

 (2.3)

or equivalently

 ∫

[] (2.4)

13

The components of the unknown function are

completely determined by setting the recurrence relation:

 ∫

 (2.5)

or equivalently

 ∫

 ∫

 (2.6)

 ∫

and so on for other components. As a result the components

 are completely determined, then the solution of the

Volterra integral equation (1.6) is readily obtained in a series form by using

the series assumption in (2.1).

 The decomposition method converts the integral equation into an

elegant determination of computable components. If an exact solution

exists for the problem, then the obtained series converges very rapidly to

that exact solution. However, for concrete problems, where a closed form

solution is not obtainable, a truncated number of terms is usually used for

numerical purposes. The more components we use the higher accuracy we

obtain [39].

Example 2.1

Consider the following Volterra integral equation of the second kind

 ∫

 (2.7)

14

We notice that Recall that the

solution is assumed to have a series form given in (2.1). Substituting

the decomposition series (2.1) into both sides of (2.7) gives

 ∑
 ∫ ∑

,

or equivalently

 ∫ [

]

We identify the zeroth component by all terms that are not included under

the integral sign. Therefore, we obtain the following recurrence relation:

 ∫

so that

 ∫

 ∫

 ∫

∫

 ∫

 ∫

 ∫

 ∫

The solution in a series form is given by

We can easily notice the appearance of identical terms with opposite signs.

This phenomenon of such terms is called noise terms phenomenon.

Canceling the identical terms with opposite terms gives the exact solution

 .

15

2.2 The Modified Decomposition Method

As shown before, the Adomian decomposition method provides the

solution in an infinite series of components. The components are

easily computed if the inhomogeneous term in the Volterra integral

equation:

 ∫

 , (2.8)

consists of a polynomial. However, if the function consists of a

combination of two or more of polynomials, trigonometric functions,

hyperbolic functions, and others, the evaluation of the components

 require more work. A reliable modification of the Adomian

decomposition method was developed by Wazwaz [39]. The modified

decomposition method will facilitate the computational process and further

accelerate the convergence of the series solution. This will be applied

whenever it is appropriate to all integral equations and differential

equations of any order. It is important to note that the modified

decomposition method relies mainly on splitting the function into two

parts; therefore it can not be used if the function consists of only one

term. To explain this technique, we recall that the standard Adomian

decomposition method admits the use of the recurrence relation:

 ∫

 (2.9)

where the solution is expressed by an infinite sum of components

defined by

 ∑

 (2.10)

16

In virtue of (2.9), the components can easily be evaluated. The

modified decomposition method introduces a slight variation to the

recurrence relation (2.9) that will lead to the determination of the

components of in an easier and faster manner. For many cases, the

function can be set as the sum of two partial functions, namely

and . In other words, we can set

 (2.11)

In virtue of (2.11), we introduce a qualitative change in the formation of the

recurrence relation (2.9). To reduce the calculations, we will introduce of

the modified decomposition method into recurrence relation:

 ∫

 ∫

 (2.12)

This shows that the formation of the first two components and

is only the difference between the standard recurrence relation (2.9) and the

modified recurrence relation (2.12). The other components

remain the same in the two recurrence relations. This variation in the

formation of and is important to accelerate the convergence of

the solution and in minimizing the size of computational work [39].

Example 2.2

Consider the Volterra integral equation of the second kind

 ∫

Using the modified decomposition method, we first split

17

into two parts, namely

Next, use the modified recurrence formula (2.12) to obtain

 ∫

 ∫

It is obvious that each component of is zero. This in turn gives

the exact solution by

2.3 The method of successive approximations

The successive approximations method provides a scheme that can be used

for solving initial value problems or integral equations. This method solves

any problem by finding successive approximations to the solution by

starting with an initial guess as , called the zeroth approximation

which can be any real-valued function that will be used in a

recurrence relation to determine the other approximations. There are two

methods of successive approximations:

 The Picard's method: In this method the approximation for solving

the Volterra integral equation (1.6) can be put in a recursive scheme

defined by

 ∫

 (2.13)

where the most commonly selected functions for are .

18

Accordingly, the first and the second approximation of the solution

of can be obtained as

 ∫

 (2.14)

 ∫

 (2.15)

It is obvious that is continuous if and are

continuous. Notice that with the selection of , the first

approximation . The final solution is obtained by

 (2.16)

so that the resulting solution is independent of the choice of .

Example 2.3

Consider the Volterra integral equation of the second kind

 ∫

Using the successive approximations method, we can select for the zeroth

approximation

 (2.17)

The method of successive approximations admits the use of the iteration

formula

 ∫

 (2.18)

Substituting (2.17) into (2.18) we obtain

 ∫

 ∫

 ∫

 ∫

19

Consequently, we obtain

 ∑

The solution of (1.62) is

 .

(see [12] and [39]).

 The Neumann series method

 This method uses

 .

Then we obtain the successive approximations:

 ∫

,

 ∫

,

 ∫

 ∫

. (2.19)

Consider

 ∫ [∫]

 ∫

 ∫ ∫

 (2.20)

where

 ∫ ∫

 (2.21)

Thus, it can easily be observed from equation (2.21) that

 ∑
 (2.22)

If and further that

20

 ∫

 (2.23)

where and hence ∫

The repeated integrals in equation (2.21) may be considered as a double

integral over the triangular region; thus interchanging the order of

integration, we obtain

 ∫ ∫

 ∫

 where ∫

 . Similarly, we find in general

 ∫

 (2.24)

where the iterative kernels are

defined by the recurrence formula

 ∫

 (2.25)

Thus, the solution for can be written as

 ∑
 (2.26)

Upon using equation (2.24) we obtain

 ∑ ∫

 ∫ {∑
 }

 (2.27)

Hence it is also clear that the solution of linear Volterra integral equation of

the second kind will be given by

 ∫ {∑
 }

 ∫

 (2.28)

where

 ∑
 (2.29)

21

is known as the resolvent kernel. (see [18],[19] and [28]) .

Example 2.4

Consider the Neumann series for the solution of the integral equation

 ∫

From the formula (2.25), we have

 ∫

 ∫

and so on .Thus,

 ∫ {∑
 }

 ∫

 ∫

 ∫

 (

) (

)

for .

2.4 The series solution method

The series method is useful method that stems mainly from the Taylor

series for analytic functions for solving integral equations.

Definition (2.1) A real function is said to be analytic if it has

derivatives of all orders such that the Taylor series at any point in its

domain

 ∑

 (2.30)

converges to in a neighborhood of .

22

 For simplicity, the generic form of Taylor series at can be written

as

 ∑

 (2.31)

we will assume that the solution of the Volterra integral equation

(1.6) is analytic, and therefore possesses a Taylor series of the form given

in (2.31), where the coefficients will be determined recurrently.

Substituting (2.31) into both sides of (1.6) gives

 ∑
 () ∫ ∑

 (2.32)

or

 ()

 ∫

 (2.33)

where is the Taylor series for the integral equation (2.32)

will be converted to a traditional integral in (2.33) where instead of

integrating the unknown function the terms of the form will

be integrated. Notice that because we are seeking series solution, then if

 includes elementary functions such as trigonometric functions,

exponential functions, etc., then Taylor expansions for functions involved

in should be used. We will illustrate the series solution method by this

example. (see [24], [28] and [39].

Example 2.5

Consider the solution of the Volterra integral equation of the second kind

 ∫

,

using the series method. We assume the solution in the series form

 ∑

 . Hence substituting the series into the equation and the

Taylor’s series of we have

 ∑
 ∑

 ∫ ∑

23

 ∑

 ∑

Comparing the coefficients of the same power of gives the following set

of values:

 ,

 ,

and so on. Hence the solution is given by

 (

) (

)

2.5 Converting Volterra integral equation to ordinary differential

equation

In this section we will present the technique that converts Volterra integral

equations of the second kind to an equivalent differential equation. This

may easily be achieved by applying the important Leibnitz Rule for

differentiating an integral. It seems reasonable to review the basic outline

of the rule.

To differentiate the integral

 ∫

. (2.35)

with respect to , we usually apply the useful Leibnitz rule given by :

 ()

 ()

 ∫

 (2.36)

where and

 are continuous functions in the domain D in the

 -plane that contains the rectangular region ,

24

and the limits of integration and are defined functions having

continuous derivatives for

Thus the Leibnitz rule converts the Volterra integral equation or the

Volterra integro-differential equations into an equivalent initial value

problem. The initial conditions can be obtained by substituting into

 and its derivatives. The resulting initial value problem can be solved

easily by using ODEs methods. The conversion process will be illustrated

by the following example.

Example 2.6

We find the initial value problem equivalent to the Volterra integral

equation of the second kind

 ∫

 (2.37)

Differentiating both sides of (2.37) and using Leibnitz rule three times to

get rid of the integral sign, we find

 ∫

 (2.38)

 ∫

 (2.39)

To determine the initial conditions, we substitute into both sides of

(2.37), (2.38) and (2.39) to find , and .

This in turn gives the initial value problem

This resulting ODE is a third order inhomogeneous equation.

25

Chapter Three

Numerical Methods for Solving Volterra Integral

Equation of the Second Kind

26

Chapter Three

Numerical Techniques for Solving Volterra Integral

Equation of the Second Kind

There are many numerical techniques available for solving Volterra

integral equation of the second kind. These techniques are based on the

following methods: Quadrature methods (Trapezoidal rule, Runge-Kutta

method of order two, the fourth order Runge-Kutta method), Blocks

methods, the collocation method and the Galerkin method.

3.1 Quadrature methods for Volterra equation of the second kind

We consider the numerical solution of the Volterra integral equation of the

second kind

 ∫ ()

 (3.1)

 We assume that the solution is required over a finite interval [], that

 is continuous in [], is continuous in and

satisfies a uniform Lipschitz conditions in . These conditions will ensure

that a unique continuous solution to the problem (3.1) exists. If the kernel is

linear in its third argument, that is, there exists a function such that

 () (3.2)

for all then equation (3.1) is said to be linear and reduces

to

 ̅̅ ̅̅ ̅̅ ∫

 (3.3)

where

 ̅̅ ̅̅ ̅̅ ∫

 (3.4)

27

 We shall take (3.3) as the canonical form for a linear Volterra equation

and we will not distinguish notationally between and ̅̅ ̅̅ ̅̅ .

3.1.1 Quadrature methods for linear equations

An obvious numerical procedure is to approximate the integral term in

(3.3) via a quadrature rule which integrates over the variable for a fixed

value of . It is natural to choose a regular mesh in and thus setting

 where is the fixed step length. We

approximate in an obvious notation the integral term in the linear equation

(3.3) by

 ∫ ∑ () ()

 ∑ ()

 (3.5)

where = This quadrature rule leads to the following

set of equations:

) ,

 []

 ()

 ∑ ()

 () (3.6)

where () represents the error term in the quadrature rule. If

the are assumed negligible and for any we can

clearly solve this set of equations for where is an

approximation to , by direct forward substitution.

This procedure is obviously numerically very straightforward; however,

there remains the problem of choosing suitable weights . We note that,

28

for each the set { } represents the weights for an

 point quadrature rule of Newton-Cotes type (equally spaced

points) for the interval [] For large there are many possible choices

of rule, for small the choice is rather limited, yet there seems

(and is) little point in choosing an accurate rule for large if we cannot

choose an equally accurate rule for small Let us start by considering the

simplest possible rule, the repeated (Trapezoid rule). (see [4] and [13]).

 3.1.2 Trapezoidal rule

Let . We divide the interval into subintervals with equal

length

 . We denote , , then the

Trapezoidal method reads :

 ∫ [

 ∑

]

 (3.7)

Using the Trapezoidal approximation to solve the Volterra integral

equation:

 ∫

 (3.8)

We substitute (3.7) into (3.8) with , we get

 [

 ∑ () ()

] (3.9)

 ∑ () ()

 (

)

For the Volterra integral equation (3.8) is reduced to

For , we get

 (

)

For , we obtain

29

 (

)

To this end, we obtain the linear system

 ̅

where the matrix), 1 with:

{

 ()

[

]

 [] ,

 ̅ []
 .

 (See [2], [3],[20],[25] and [26]).

3.1.3 Runge-Kutta methods

Runge-Kutta methods for the solution of (3.1) are self-starting methods

which determine approximations to the solution at the points

 by generating approximations at some

intermediate points in []

where

 (3.10)

We recall the general -stage Runge-Kutta method for the initial value

Problem ()

30

 (3.11)

given by

 ∑

 (3.12)

where

 (∑

) (3.13)

 ∑ {

}
 (3.14)

with is an approximation to the solution at . The

second argument of

 may be regarded as an approximation to

 and we rewrite equation (3.12) as

 ∑ (
)

 (3.15)

The parameters , are chosen in practice to yield a final approximation

of specified order; that is, with a local truncation error of for some

chosen q which is the order of the method. This requirement yields a set of

nonlinear equations for the unknown parameters.

Example 3.1

Suppose we choose in (3.15) .Then it follows that

 ()

We use Taylor's theorem for a function of two variables to obtain

where we have introduced the notations

 ,

.

Now if we compare this expression term by term with

31

then we have the following set of three equations

 ,

Clearly there exist an infinite number of solutions of these equations

corresponding to an infinite number of two-stage Runge-Kutta method of

order two. We consider two particular solutions which are popular in

practice:

(i) When

 the resulting method is

 [()] . (3.16)

or

 [̂] . (3.17)

where

 ̂ (3.18)

This is the improved Euler method.

(ii) when the resulting method is the modified

Euler method given by

 (

) (3.19)

when , we obtain in a similar way the classical fourth order

Runge Kutta method given by the following choice of parameters:

 ,

32

The method defined in equation (3.15) can be extended to give a class of

Runge-Kutta method for the solution of

 ∫ ()

 (3.20)

Setting in (3.20) we have

 ∫ ()

 ∑ ∫ ()

 (3.21)

and we can determine an approximation to from the following

equation

 ∑ ∑

 (3.22)

Now for we may write equation (3.20) in the following form

 ∑ ∫ () ∫

 ()

 (3.23)

Then setting , and approximating the

final integral term in (3.23) by

 ∫

 ()

 ∑

we see that the Runge-Kutta method for (3.20) may be expressed as

 ∑ ∑

 ∑

 (3.24)

where and the parameters

 , define the particular method. (see [13]).

3.2 The Block Methods

A Block method is essentially an extrapolation procedure which has

advantage of being self-starting and produces a block of values at a time.

33

They give up any attempt to solve the problem by marching one step at a

time and instead introduce a rule over a small region which uses points

over a larger region. Consider the solution of (3.3) in the range

 with ; that is, we divide the interval [] into

equal intervals, each of which is then divided into subintervals of length

 Now assume that approximate solution values have been calculated for

the first blocks; then a typical block method produces at the

 stage the following set of approximations:

For we may rewrite (3.3) in the

form

 ∫

 ∫

 (3.25)

Using the following quadrature rules to approximate the integral

terms in (3.25)

∫

 ∑

 (3.26)

∫

 ∑ ̅

 (3.27)

we obtain the set of approximating equations

 ∑

 ∑ ̅

 (3.28)

34

 where and

Linze [20], described two block methods and uses these methods to solve

Volterra integral equation of the second kind. In this work this method has

been used to solve Volterra integral equations of the second kind, in which

a block of two and three values are produced at each stage and the values of

the involved integrals are obtained using the quadrature formula.

3.2.1 Method of two Blocks:

Applying equation (3.3) with

and where to get:

 ∫

 ∫

 (3.29)

 ∫

 ∫

 (3.30)

This technique depends on the use of a quadrature formula. This is

Simpson’s 1/3 rule [20]

 ∫

[]

 (3.31)

with and where .therefore we obtain:

∑ [

 () ()]

[

] (3.32)

∑ [̅

 () ()] (3.33)

Where ,

and ̅ ̅ ̅ ,

35

Thus we have a pair of equations to solve for and .

3.2.2 Method of Three Blocks:

Applying equation (3.3) with

 Where to get:

 ∫

 ∫

 (3.34)

 ∫

 ∫

 (3.35)

 ∫

 ∫

 (3.36)

This technique depends on the use of three quadrature formulas. These are

Simpson’s 3/8 rule and Simpson’s 1/3 rule. Therefore:

∑ [

 () ()]

[

] (3.37)

∑ [̅

 () ()]

[

] (3.38)

∑ [̿

 () ()] (3.39)

where

 {

 ̅ ̅ ̅ {

36

and

 ̅̅ ̿ ̅̅ {

Thus, we have a system of three equations to solve for , and

 . (see[11], [13] and [27]).

3.3 The Collocation method

3.3.1 Meshes and piecewise polynomial spaces:

We wish to solve the Volterra integral equation (3.3) on the interval

 [] Let

 { } be a mesh, and define

 ,], and

 { } (mesh diameter).

Remark: Different types of meshes on []

 { }

 Quasi-uniform mesh : there exists a constant (independent

of N) so that

 for all (

 Graded mesh

 (

)

 with grading exponent .

 If then the mesh is a uniform mesh.

 Geometric mesh :

Where

Definition 3.3.1: For a given mesh the piecewise polynomial space

 with is given by

37

 { | } (3.40)

Here, denotes the space of (real) polynomials of degree not exceeding r.

It is readily verified that
 is a (real) linear vector space whose

dimension is given by

 .

If with and , then the piecewise polynomial

space is
 and the dimension of this linear space is given by

 .

For Volterra integral equation of the second kind we choose ,

hence, the natural collocation space will be
 . Its dimension is

given by

 . (3.41)

To find: ‘good’ approximation to the solution of (3.3) so that

 is definded for all

 can be easily computed on non-uniform meshes ;

 The approximation error satisfies

 { | | }

where (the order of the numerical method) is as large as possible. We will

use piecewise polynomial collocation methods in
 .

3.3.2 Piecewise polynomial collocation methods in

Let the linear Volterra integral operator be given by

 ∫ []

 (3.42)

where { } , and let be a

given function. The solution of the Volterra integral equation

38

 (3.43)

will be approximated by collocation in the piecewise polynomial space

 { | } (3.44)

where is the set of (real) polynomials on

 ,], of degree

 is called the space of piecewise polynomials of degree less than

or equal to

 If then
 is piecewise constant functions.

(such a function contains unknown coefficients).

 If then
 is piecewise linear functions.

(such a function contains unknown coefficients).

In general: By (3.41) an element
 contains

unknown coefficients. We choose distinct points in the interval []

to determine these coefficients at which the approximate solution

must satisfy the given Volterra integral equation. These points are called

the collocation points.

3.3.3 Collocation points and collocation equation

Let be given numbers (collocation parameters).

The set

 { }

is called the set of collocation points. In each subinterval ,], there

are such points, and so we have | |

Consider
 so that it satisfies the given Volterra integral

equation at the points :

39

 ∫

 . (3.45)

This function is called the collocation solution for the Volterra

integral equation (3.3).

(see[7], [33] and [34]).

3.4 The Galerkin Method

Definition (3.1) -space:

The set of - functions (where) generalizes -space. Instead

of square integrable, the measurable function must be -integrable,

for to be in .

On a measure space , the norm of a function is

 ‖ ‖ (∫ | |

)

The -functions are the functions for which this integral converges.

For , the space of -functions is a Hilbert space. For , the

space of -functions is a Banach space.

In the case where , we have defined as

{f : measurable in and ‖ ‖ },

where

‖ ‖ { {| | } }

with Lebesgue measure of the set equals zero.

 Let or some other Hilbert function space, and let 〈 〉 denote

the inner product for . Require the residual to satisfy

 〈 〉 (3.46)

The left side is the Fourier coefficient of associated with .If

{ } consists of the leading members of an orthonormal family

40

 { } which spans , then (3.46) requires the leading terms

to be zero in the Fourier expansion of with respect to .

To find , apply (3.46) to (3.3) written as

This yields the linear system

 ∑ {〈 〉 〈 〉}

 〈 〉 (3.47)

This is Galerkin’s method for obtaining an approximate solution to (3.3).

Note that the above formulation contains double integrals 〈 〉. These

must often be computed numerically.

As a part of writing (3.47) in a more abstract form, we introduce a

projection operator that maps onto For general define

to be the solution of the following minimization problem:

 ‖ ‖
‖ ‖ (3.48)

Since is finite dimensional, it can be shown that this problem has a

solution; and by being an inner product space, the solution can be

shown to be unique. To obtain a better understanding of , we give an

explicit formula for .

Introduce a new basis { } for by using the Gram-Schmidt

process to create an orthonormal basis from { } . The element is

a linear combination of { } , and moreover

〈 〉

With this new basis, it is straightforward to show that

 ∑ 〈 〉

 (3.49)

This shows immediately that is a linear operator.

With this formula, we can show the following results.

 ‖ ‖ ‖ ‖
 ‖ ‖

 (3.50)

41

 ‖ ‖
 ∑ |〈 〉|

 〈 〉 〈 〉 (3.51)

 〈〈 〉 〉 (3.52)

Because of the latter, is called the orthogonal projection of onto .

The operator is called an orthogonal projection operator. The result

(3.50) leads to

 ‖ ‖ (3.53)

Using (3.52), we can show

 ‖ ‖ ‖ ‖
 ‖ ‖ (3.54)

This shows is the unique solution to (3.48).

We note that

 if and only if 〈 〉 (3.55)

Using the orthogonal projection , we can write as

or equivalently,

 (3.56)

However, in this work, we provide a numerical approach for the Volterra

integral equation based on Chebyshev piecewise polynomials basis by the

technique of Galerkin. Firstly, we give an introduction of Chebyshev

piecewise polynomials. Then, we drive a matrix formulation for general

linear problems by the technique of Galerkin method. (See [7]).

3.4.1 Chebyshev polynomials

The Chebyshev polynomials, named after Pafnuty Chebyshev, are a

sequence of orthogonal polynomials which are related to de Moivre's

formula and which can be defined recursively. The general form of the

Chebyshev polynomials of degree is defined by

42

 ∑

[]
 (3.57)

where, [] {

The first few Chebyshev polynomials are given as:

 ,

 ,

 ,

3.4.2 Formulation of Integral Equation in Matrix Form

We consider the Volterra integral equation of the second kind given by

 ∫

 (3.58)

Now we use the technique of Galerkin method [3], to find an approximate

solution of (3.58). For this, we assume that

 ̅ ∑

 (3.59)

where are Chebyshev polynomials of degree defined in equation

(3.57) and are unknown parameters, to be determined. Substituting

(3.59) into (3.58), we get

 ∑ [∫

]

 (3.60)

Then the Galerkin equations are obtained by multiplying both sides of

(3.60) by and then integrating with respect to from . We

obtain

 ∑ ∫ [∫

]

 ∫

 (3.61)

43

The inner integrand of the left side is a function of , and , and is

integrated with respect to from . As a result the outer integrand

becomes a function of only and integration with respect to from

yields a constant.

Thus for each we have a linear equation with

unknowns , . Finally (3.61) represents the system of

linear equations in unknowns, a given by

 ∑

 (3.62)

where

 ∫ [∫

]

 ∫

Now the unknown parameters are determined by solving the system of

equations (3.62) and substituting these values of parameters in (3.59). We

get the approximate solution ̅ of the integral equation (3.3).

The maximum absolute error for this formulation is defined by

 Maximum absolute error | ̅ |.

(see [14], [29], [30], [36] and [41]).

44

Chapter Four

Numerical Examples and Results

45

Chapter Four

Numerical Examples and Results

To test the efficiency of the numerical methods represented in chapter three

we will consider the following numerical examples.

Example 4.1

Consider the Volterra integral equation of the second kind

 ∫

. (4.1)

Equation (4.1) has the exact solution

 .

We will find an approximate solution to equation (4.1) by the following

numerical methods:

4.1 The numerical realization of equation (4.1) using Trapezoidal rule

The following algorithm implements the Trapezoidal rule using

the Matlab software.

Algorithm 4.1

1. Input : The number of subdivisions of []

 : [] is the interval for the solution function

 : The handle of the driver function

and : The handle of the kernel function

2. This is much more than is usually needed.

3. Calculate

4. Calculate

5. Calculate

46

6. Set

7. Set

8.

 , The initial estimate for the iteration.

 Applying trapezoid rule

9. Set

10. Output: the numerical solution , and the grid points at which

the solution is approximated.

Thus we can solve the Volterra integral equation of the second kind (4.1)

by using algorithm 4.1. Table 4.1 shows the exact and numerical results

when n=20, and showing the error resulting of using the numerical

solution.

47

Table 4.1: The exact and numerical solutions for Algorithm 4.1

Analytical solution

Approximate solution

Error | |

0 0 0 0

0.05 0.052563555 0.052563554 0.02136

0.1 0.110517092 0.110517091 0.04390

0.15 0.174275136 0.174275136 0.06775

0.2 0.244280552 0.244280551 0.09308

0.25 0.321006354 0.321006354 0.12004

0.3 0.404957642 0.404957642 0.14880

0.35 0.496673642 0.496673642 0.17956

0.4 0.596729879 0.596729879 0.212503

0.45 0.705740483 0.705740483 0.247840

0.5 0.824360635 0.824360635 0.285798

0.55 0.95328916 0.953289159 0.326617

0.6 1.09327128 1.093271280 0.370555

0.65 1.245101539 1.245101538 0.417888

0.7 1.409626895 1.409626895 0.468909

0.75 1.587750012 1.587750012 0.523935

0.8 1.780432743 1.780432742 0.583304

0.85 1.988699824 1.988699824 0.647376

0.9 2.2136428 2.213642800 0.716541

0.95 2.456424176 2.456424176 0.791212

1 2.718281828 2.7182818284 0.871835

Figure 4.1 shows both the exact and the numerical solutions with

Figure 4.1: The exact and numerical solution of applying Algorithm 4.1 for equation (4.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x-axis

u
(x

)

Approximation for n=20

Exact Solutions

48

The CPU time is 0.018776 seconds. Figure 4.2 shows the absolute error

resulting of applying algorithm 4.1 for equation (4.1).

Figure 4.2: the error resulting of applying algorithm 4.1 on equation (4.1).

4.2 The numerical realization of equation (4.1) using the Runge-Kutta

method

4.2.1 The Runge-Kutta method of order 2 or (the Improved Euler

Method)

The following algorithm implements the Improved Euler Method using

the Matlab software.

Algorithm 4.2

1. Input : 1) - step-size

2) - endpoints of interval of integration

 3) kernel- Matlab function of the kernel

 4) - Matlab function of

2. Outputs:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-3

x-axis

A
b
s
o
lu

te
 E

rr
o
r

49

1. nodes- node values

2. - solution values at nodes

3. Specifying weights

 []

 [

]

4. Nodes

5. Number of intermediate points

6. Vector of nodes and intermediate points

7. Placing node values into

 ()

8. Placing intermediate points into

9. Keeps track of which intermediate points are associated with which node

 Vector of length of

 ()

50

10. Let Vector of solution values has the same length of

11. Set order of method

12.

 ||

13. Applying Runge-Kutta formula

 (())

51

14. Applying Runge-Kutta formula

 (())

15. Obtaining node values

 Now let

Table 4.2 shows the exact and numerical results when step size ,

and showing the error resulting of using the numerical solution.

Table 4.2: The exact and numerical solutions of applying Algorithm

4.2 for equation (4.1).

 Analytical solution

Approximate solution

Error | |

0 0 0 0

0.1 0.110517092 0.110341836 0.000175256

0.2 0.244280552 0.243908935 0.000371617

0.3 0.404957642 0.404365783 0.00059186

0.4 0.596729879 0.595889872 0.000840007

0.5 0.824360635 0.823239117 0.001121518

0.6 1.09327128 1.091827769 0.001443511

0.7 1.409626895 1.407811873 0.001815022

0.8 1.780432743 1.778185427 0.002247315

0.9 2.2136428 2.210888564 0.002754236

1 2.718281828 2.714929201 0.003352627

These results show the accuracy of the Runge-Kutta method of order 2 to

solve equation (4.1) since the

52

Figure 4.3 compares the exact solution with the approximate

solution with step size .

Figure 4.3: The exact and numerical solutions of applying Algorithm 4.2 for equation (4.1).

The CPU time is 0.027644 seconds. Figure 4.4 shows the absolute error

resulting of applying algorithm 4.2 on equation (4.1).

Figure 4.4: the error resulting of applying algorithm 4.2 on equation (4.1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x-axis

u
(x

)

Approximation Solutions

Exact Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

Nodes

A
b
s
o
lu

te
 E

rr
o
r

53

4.2.2 The fourth order Runge-Kutta method

The following algorithm implements the fourth order Runge-Kutta method

using the Matlab software.

Algorithm 4.3

1. Input , , kernel,

2. Outputs: 1) nodes- node values

 2) - solution values at nodes

3. Specifying weights

 []

[

]

4. Nodes

5. Number of intermediate points

6. Vector of nodes and intermediate points

7 Placing node values into

 ()

8. Placing intermediate points into

54

9. Keeps track of which intermediate points are associated with which node

 Vector of length of

 ()

10. Let Vector of solution values has the same length of

11. Set order of method

12.

55

 || || ||

13. Applying Runge-Kutta formula

 (())

 14. Applying Runge-Kutta formula

 (())

56

14. Obtaining node values

 Now let

Table 4.3 shows the exact and numerical results when step size ,

and showing the error resulting of using the numerical solution.

Table 4.3: The exact and numerical solutions of applying Algorithm

4.3 for equation (4.1).

 Analytical solution

Approximate solution

Error | |

0 0 0 0

0.1 0.11051709 0.110516977 0.011501376

0.2 0.24428055 0.244280304 0.024723293

0.3 0.40495764 0.404957241 0.040154546

0.4 0.59672988 0.596729295 0.058363265

0.5 0.82436064 0.824359835 0.080010692

0.6 1.09327128 1.093270222 0.105866965

0.7 1.4096269 1.409625527 0.136829191

0.8 1.78043274 1.780431003 0.173942149

0.9 2.2136428 2.213640616 0.218422001

1 2.71828183 2.718279112 0.271683433

These results show the accuracy of the fourth order Runge-Kutta method to

solve equation (4.1) since the .

Figure 4.5 compares the exact solution with the approximate

solution with step size .

57

Figure 4.5: The exact and numerical solutions of applying Algorithm 4.3 for equation (4.1).

The CPU time is 0.034696 seconds. Figure 4.6 shows the absolute error

resulting of applying algorithm 4.3 on equation (4.1).

 Figure 4.6: the error resulting of applying algorithm 4.3 on equation (4.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Nodes

u
(x

)

Approximation Solutions

Exact Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
x 10

-6

Nodes

A
b
s
o
lu

te
 E

rr
o
r

58

4.3 The numerical realization of equation (4.1) using the Block method

The following algorithms (Block 2 and Block 3) for solving Volterra

integral equation of the second kind (4.1) using the two Block method and

three Block method respectively:

Algorithm 4.4 (Block 2)

Step (1):

 Put

 Set

Step (2):

Calculate using equations (3.49), (3.50) which are shown in

chapter three section two, and use Gauss elimination procedure to solve the

resulting system.

Algorithm 4.5 (Block 3)

Step (1):

 Put

 Set

Step (2):

Calculate using equations (3.54), (3.55) and (3.56)

which are shown in chapter three section two, and use Gauss elimination

procedure to solve the resulting system.

Table 4.4 shows the exact and numerical results when applying algorithm

4.4 (Block 2), and showing the error resulting of using the numerical

solution.

59

Table 4.4: The exact and numerical solutions of applying Algorithm

4.4 for equation (4.1).

 Analytical solution

Approximate solution

Error | |

0 0 0 0

0.1 0.110517092 0.110517092 0.000175256

0.2 0.244280552 0.244280552 0.001015278

0.3 0.404957642 0.404957642 0.001283973

0.4 0.596729879 0.596729879 0.0037413

0.5 0.824360635 0.824360635 0.002932474

0.6 1.09327128 1.09327128 0.007714405

0.7 1.409626895 1.409626895 0.005368352

0.8 1.780432743 1.780432743 0.013414801

0.9 2.2136428 2.2136428 0.008924114

1 2.718281828 2.718281828 0.007691095

Figure 4.7 shows both the exact and the numerical solutions with

Figure 4.7: The exact and numerical solutions of applying Algorithm 4.4 for equation (4.1).

The CPU time is 0.024423seconds. Figure 4.8 shows the absolute error

resulting of applying algorithm 4.4 on equation (4.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x-axis

u
(x

)

Approximation Solutions using Block 2

Exact Solutions

60

Figure 4.8: the error resulting of applying algorithm 4.4 on equation (4.1).

Table 4.5 shows the exact and numerical results when applying algorithm

4.5 (Block 3), and showing the error resulting of using the numerical

solution.

 Table 4.5: The exact and numerical solution of applying Algorithm 4.5

for equation (4.1).

 Analytical solution

Approximate solution

Error | |

0 0 0 0
0.05 0.052563555 0.052542193 2.13621E-05
0.1 0.110517092 0.110580628 6.35364E-05
0.15 0.174275136 0.174337428 6.22911E-05
0.2 0.244280552 0.244402305 0.000121753
0.25 0.321006354 0.321270884 0.00026453
0.3 0.404957642 0.405172042 0.0002144
0.35 0.496673642 0.496972541 0.000298899
0.4 0.596729879 0.597277609 0.00054773
0.45 0.705740483 0.706174156 0.000433672
0.5 0.824360635 0.824911163 0.000550527
0.55 0.95328916 0.954225985 0.000936826
0.6 1.09327128 1.094011611 0.000740331
0.65 1.245101539 1.246000269 0.00089873
0.7 1.409626895 1.411088363 0.001461467
0.75 1.587750012 1.588909892 0.001159879
0.8 1.780432743 1.781804061 0.001371318
0.85 1.988699824 1.990858493 0.002158669
0.9 2.2136428 2.215367152 0.001724352
0.95 2.456424176 2.460025314 0.003601138

1 2.718281828 2.718175056 0.000106772

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

x-axis

A
bs

ol
ut

e
E

rr
or

61

Figure 4.9 shows the exact solution with the approximate

solution when

Figure 4.9: The exact and numerical solutions of applying Algorithm 4.5 for equation (4.1).

The CPU time is 0.021548 seconds. Figure 4.10 shows the absolute error

resulting of applying algorithm 4.5 on equation (4.1).

Figure 4.10: the error resulting of applying algorithm 4.5 on equation (4.1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x-axis

u
(x

)

Approximation Solutions

Exact Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

x-axis

Ab
so

lu
te

 E
rro

r

62

Example 4.2

Consider the Volterra integral equation of the second kind

 ∫

 . (4.2)

Equation (4.2) has the exact solution

 .

We will use all the numerical methods that we used in the example 4.1.

4.4 The numerical realization of equation (4.2) using Trapezoidal rule

Table 4.6 shows the exact and numerical results when n=20, and showing

the error resulting of using the numerical solution.

Table 4.6: shows the exact and numerical results when n=20, and

showing the error resulting of using the numerical solution.

Analytical solution

Approximate solution

 Error | |
0 1 1 0

0.05 1.04872943 1.0487495 0.02006

0.1 1.094837582 1.0948761 0.03856

0.15 1.13820921 1.1382647 0.05548

0.2 1.178735909 1.1788067 0.07081

0.25 1.216316381 1.2164009 0.08455

0.3 1.250856696 1.2509534 0.09666

0.35 1.28227052 1.2823776 0.10712

0.4 1.310479336 1.3105952 0.1159

0.45 1.335412636 1.3355356 0.12298

0.5 1.3570081 1.3571364 0.1283

0.55 1.375211751 1.3753436 0.13183

0.6 1.389978088 1.3901116 0.13351

0.65 1.401270204 1.4014035 0.1333

0.7 1.409059875 1.409191 0.13112

0.75 1.413327629 1.4134545 0.12691

0.8 1.4140628 1.4141834 0.1206

0.85 1.411263551 1.4113756 0.11208

0.9 1.404936878 1.4050381 0.10127

0.95 1.395098594 1.3951866 0.08804

1 1.381773291 1.3818456 0.07229

63

Figure 4.11 shows both the exact and the numerical solutions with

Figure 4.11: The exact and numerical solutions of applying Algorithm 4.1 for equation (4.2).

The CPU time is 0.031057 seconds. Figure 4.12 shows the absolute error

resulting of applying algorithm 4.1 on equation (4.2).

Figure 4.12: the error resulting of applying algorithm 4.1 on equation (4.2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

x-axis

u
(x

)

Approximation for n=20

Exact solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-4

x-axis

A
bs

ol
ut

e
E

rro
r

64

4.5 The numerical realization of equation (4.2) using the Runge-Kutta

method

4.5.1 The Runge-Kutta method of order 2

Table 4.7 shows the exact and numerical solutions when applying

Algorithm 4.2 on equation (4.2).

Table 4.7: The exact and numerical solution of applying Algorithm 4.2

for equation (4.2).

 Analytical solution

Approximate

solution

Error | |

0 1 1 0

0.1 1.0948375819 1.094964660237 0.0001270783

0.2 1.1787359086 1.178829128432 0.0000932197

0.3 1.2508566957 1.250650273503 0.00020642228

0.4 1.3104793363 1.309609452533 0.00086988377

0.5 1.3570081004 1.355023865136 0.00198423535

0.6 1.3899780883 1.386357672182 0.00362041612

0.7 1.4090598745 1.403232930278 0.00582694424

0.8 1.4140628002 1.405440478563 0.00862232168

0.9 1.4049368778 1.392951018872 0.01198585902

1 1.3817732906 1.365926762361 0.01584652831

Figure 4.13 shows both the exact and the numerical solutions when step

size . Figure 4.14 shows the absolute error resulting of applying

algorithm 4.2 on equation (4.2). The CPU time is 0.030646 seconds.

65

Figure 4.13: The exact and numerical solutions of applying Algorithm 4.2 for equation (4.2).

Figure 4.14: the error resulting of applying algorithm 4.2 on equation (4.2).

4.5.2 The fourth order Runge-Kutta method

Table 4.8 shows the exact and numerical solutions when applying

Algorithm 4.3 on equation (4.2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

x-axis

u
(x

)

Approximation solutions

Exact solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

4

6

8

10

12

14

16
x 10

-3

Nodes

A
bs

ol
ut

e
E

rr
or

66

Table 4.8: The exact and numerical solutions of applying Algorithm

4.3 for equation (4.2).

 Analytical solution

Approximate

solution
Error | |

0 1 1 0

0.1 1.0948375819 1.0948375136 0.068618

0.2 1.1787359086 1.17873580473 0.103902

0.3 1.2508566957 1.2508565934 0.102642

0.4 1.3104793363 1.31047927197 0.064334

0.5 1.3570081004 1.35700810922 0.008726

0.6 1.3899780883 1.38997819988 0.111581

0.7 1.4090598745 1.40906011150 0.236987

0.8 1.4140628002 1.41406317628 0.3760414

0.9 1.4049368778 1.40493739697 0.519081

1 1.3817732906 1.38177394754 0.656871

These results show the accuracy of the fourth order Runge-Kutta method

 to solve equation (4.2) since the

Figure 4.15 compares the exact solution with the

approximate solution with step size . Figure 4.16 shows the

absolute error resulting of applying algorithm 4.3 on equation (4.2). The

CPU time is 0.042564 seconds.

67

Figure 4.15: The exact and numerical solutions of applying Algorithm 4.3 for equation (4.2).

Figure 4.16: the error resulting of applying algorithm 4.3 on equation (4.2).

4.6 The numerical realization of equation (4.2) using the Block method

Table 4.9 shows the exact and numerical results when applying algorithm

4.4 (Block 2) on equation (4.2), and showing the error resulting of using

the numerical solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

x-axis

u
(x

)

Approximation solutions

Exact solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-7

-6

-5

-4

-3

-2

-1

0

1

2
x 10

-7

Nodes

Ab
so

lu
te

 E
rro

r

68

Table 4.9: The exact and numerical solutions of applying Algorithm

4.4 for equation (4.2).

Figure 4.17 shows both the exact and the numerical solutions with

Figure 4.17: The exact and numerical solutions of applying Algorithm 4.4 for equation (4.2).

The CPU time is 0.020419 seconds. Figure 4.18 shows the absolute error

resulting of applying algorithm 4.4 on equation (4.2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

x-axis

u(
x)

Approximation Solutions using block 2

Exact Solutions

Analytical solution Approximate

solution

Error | |

0 1 1 0

0.1 1.0948375819 1.089517075 0.005320507

0.2 1.1787359086 1.176429855 0.002306053

0.3 1.2508566957 1.246838511 0.004018184

0.4 1.3104793363 1.292928321 0.017551016

0.5 1.3570081004 1.344501575 0.012506525

0.6 1.3899780883 1.353415132 0.036562956

0.7 1.4090598745 1.385132889 0.023926985

0.8 1.4140628002 1.355339508 0.058723292

0.9 1.4049368778 1.366107278 0.0388296

1 1.3817732906 1.322662336 0.059110954

69

Figure 4.18: the error resulting of applying algorithm 4.4 on equation (4.2)

Table 4.10 shows the exact and numerical results when applying algorithm

4.5 (Block 3) on equation (4.2), and showing the error resulting of using

the numerical solution.

 Table 4.10: The exact and numerical solutions of applying Algorithm

4.5 for equation (4.2).
 Analytical solution

Approximate
solution

Error | |

0 1 1 0
0.05 1.0487294296 1.0474385545 0.0012908751
0.1 1.0948375819 1.0964893490 0.0016517670

0.15 1.1382092104 1.1399638933 0.0017546829
0.2 1.1787359086 1.1831271015 0.0043911929

0.25 1.2163163809 1.2239166512 0.0076002703
0.3 1.2508566957 1.2565105379 0.0056538421

0.35 1.2822705203 1.2921410205 0.0098705002
0.4 1.3104793363 1.3253177493 0.0148384130

0.45 1.3354126364 1.3459547179 0.0105420814
0.5 1.3570081004 1.3734191281 0.0164110276

0.55 1.3752117509 1.3984991021 0.0232873511
0.6 1.3899780883 1.4064927889 0.0165147006

0.65 1.4012702042 1.4253096225 0.0240394183
0.7 1.4090598745 1.4419669659 0.0329070913

0.75 1.4133276288 1.4370526147 0.0237249858
0.8 1.4140628002 1.4469159900 0.0328531897

0.85 1.4112635510 1.4549955444 0.0437319934
0.9 1.4049368778 1.4373453783 0.0324085004

0.95 1.3950985942 1.4275080107 0.0324094165
1 1.3817732906 1.3669518409 0.0148214497

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

x-axis

A
bs

ol
ut

e
E

rro
r

70

Figure 4.19 compares the exact solution with the

approximate solution when .

Figure 4.19: The exact and numerical solutions of applying Algorithm 4.5 for equation (4.2).

The CPU time is 0.028830 seconds. Figure 4.20 shows the absolute error

resulting of applying algorithm 4.5 on equation (4.2).

Figure 4.20: the error resulting of applying algorithm 4.5 on equation (4.2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

x-axis

u
(x

)

Approxiation Solutions with n=20

Exact Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

x-axis

Ab
so

lu
te

 E
rro

r

71

4.7 The numerical realization of equation (4.2) using the Collocation

method.

The approximate solution of Volterra integral equation of the second kind

calculated at the iteration , the following algorithm implements

the Collocation method using the Matlab software.

Algorithm 4.6

1.

2.

3. Calculate

4. Calculate

5. Let

6. Compute the collocation solution by the iterated collocation

solution

 ∫

7. Maximum absolute error | |

8.

So we obtain the following results:

Table 4.11shows the exact and numerical solutions when applying

Algorithm 4.6 on equation (4.2), and showing the error resulting of using

the numerical solution.

72

Table 4.11: The exact and numerical solutions of applying Algorithm

4.6 for equation (4.2)

These results show the accuracy of Collocation method to solve equation

(4.2) since the

Figure 4.21 compares the exact solution with the

approximate solution when .

Figure 4.21: The exact and numerical solutions of applying Algorithm 4.6 for equation (4.2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

x-axis

u
(x

)

Approximation Solutions

Exact Solutions

Analytical solution Approximate

solution
Error | |

0 1 1 0
0.1 1.0948375819 1.0948375820 0.000105
0.2 1.1787359086 1.17873590870 0.000066
0.3 1.2508566957 1.25085669581 0.000026
0.4 1.3104793363 1.31047933606 0.000242
0.5 1.3570081004 1.35700810048 0.000007
0.6 1.3899780883 1.38997808832 0.000017
0.7 1.4090598745 1.40905987401 0.000507
0.8 1.4140628002 1.41406279732 0.002921
0.9 1.4049368778 1.40493685659 0.021307
1 1.3817732906 1.38177317148 0.119195

73

The CPU time is 0.379443 seconds. Figure 4.22 shows the absolute error

resulting of applying algorithm 4.6 on equation (4.2).

Figure 4.22: the error resulting of applying algorithm 4.6 on equation (4.2).

Example 4.3

The following Volterra integral equation of the second kind

 ∫

 . (4.3)

Equation (4.3) has the exact solution

 .

4.8 The numerical realization of equation (4.3) using the Galerkin

method with Chebyshev polynomial

The following algorithm for solving Volterra integral equation of the

second kind (4.3) using the Galerkin method with Chebyshev polynomial.

Algorithm 4.7

1) Let

 is Chebyshev polynomial of degree

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-7

x-axis

A
bs

ol
ut

eE
rro

r

74

2) Calculate all entries of vector such that

 ∫

3) Calculate all entries of matrix such that

 [∫ [∫

]

]

4) Find the unknown vector by solve this system

5) Substituting the entries of vector A at the technique of Galerkin

method [4], to find an approximate solution of (4.2). For this,

we assume that

 ̅ ∑

6) Maximum absolute error | ̅ |

 Table 4.12 for shows the exact and numerical results when

applying algorithm 4.7 on equation (4.3), and showing the error resulting of

using the numerical solution.

Table 4.12: The exact and numerical solutions of applying Algorithm

4.7 for equation (4.3).

 Analytical solution

Approximate solution

Error | |

0 1 0.999798920 0.2010794

0.1 1.2 1.199948050 0.051949

0.2 1.4 1.400031461 0.031461

0.3 1.6 1.600017341 0.017341

0.4 1.8 1.799943469 0.056530

0.5 2 2.000030734 0.030734

0.6 2.2 2.200037998 0.037998

0.7 2.4 2.399935471 0.064528

0.8 2.6 2.6000252227 0.025222

0.9 2.8 2.8000178425 0.017842

1 3 3.0002797874 0.279787

75

These results show the accuracy of Galerkin method with Chebyshev

polynomial to solve equation (4.3) since the

Figure 4.23 compares the exact solution with the

approximate solution when .

Figure 4.23 The exact and numerical solutions of applying Algorithm 4.7 for equation (4.3).

The CPU time is 0.64554 seconds. Figure 4.24 shows the absolute error

resulting of applying algorithm 4.7on equation (4.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

x-axis

u
(x

)

Approximation Solutions

Exact Solutions

76

Figure 4.24: the error resulting of applying algorithm 4.7 on equation (4.3).

4.9 The numerical realization of equation (4.3) using the Collocation

method

Table 4.13 for shows the exact and numerical results when

applying algorithm 4.6 on equation (4.3), and showing the error resulting of

using the numerical solution.

Table 4.13: The exact and numerical solutions of applying Algorithm

4.6 for equation (4.3).

 Analytical solution

Approximate solution

Error | |

0 1 1 0

0.1 1.2 1.2 0

0.2 1.4 1.399999999 0.00000002

0.3 1.6 1.599999999 0.0000017

0.4 1.8 1.799999999 0.0000309

0.5 2 1.999999999 0.0002935

0.6 2.2 2.199999998 0.0018480

0.7 2.4 2.399999991 0.0087749

0.8 2.6 2.599999966 0.0338933

0.9 2.8 2.799999888 0.1118096

1 3 2.999999674 0.32567740

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

x 10
-4

x-axis

A
bs

ol
ut

e
E

rr
or

77

These results show the accuracy of Collocation method to solve equation

(4.3) since the

Figure 4.25 shows the exact solution with the approximate

solution when .

Figure 4.25 The exact and numerical solutions of applying Algorithm 4.6 for equation (4.3).

The CPU time is 0.777991 seconds. Figure 4.26 shows the absolute error

resulting of applying algorithm 4.6 on equation (4.3).

Figure 4.26: the error resulting of applying algorithm 4.7 on equation (4.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x-axis

u(
x)

Approximation Solutions

Exact Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-7

x-axis

Ab
so

lu
te

 E
rro

r

78

We conclde from our numerical test cases in this example 4.3 that the

Collocation method is more efficient than the Galerkin method with

Chebyshev polynomial.

4.01 The numerical realization of equation (4.3) using Trapezoidal rule

Table 4.14 for shows the exact and numerical results when

applying algorithm 4.1 on equation (4.3), and showing the error resulting of

using the numerical solution.

Table 4.14: The exact and numerical solutions of applying Algorithm

4.0 for equation (4.3).

 Analytical solution

Approximate solution

Error | |

0 1 1 0

0.1 1.2 1.2 0.193179

0.2 1.4 1.4 0.215383

0.3 1.6 1.6 0.239808

0.4 1.8 1.8 0.264233

0.5 2 2 0.288658

0.6 2.2 2.2 0.319744

0.7 2.4 2.4 0.35083

0.8 2.6 2.6 0.390799

0.9 2.8 2.8 0.430767

1 3 3 0.475175

These results show the accuracy of Trapezoidal rule to solve equation (4.3)

since the 0.475175

Figure 4.27 shows the exact solution with the approximate

solution when .

79

Figure 4.27: The exact and numerical solutions of applying Algorithm 4.1 for equation (4.3).

The CPU time is 0.029789 seconds. Figure 4.28 shows the absolute error

resulting of applying algorithm 4.1 on equation (4.3).

Figure 4.28: the error resulting of applying algorithm 4.1 on equation (4.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x-axis

u(
x)

Approximation Solutions

Exact Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
-14

x-axis

A
bs

ol
ut

e
E

rro
r

80

4.00 The numerical realization of equation (4.3) using the Runge-Kutta

method

4.00.1 The Runge-Kutta method of order 2

Table 4.15 shows the exact and numerical solutions when applying

Algorithm 4.2 on equation (4.3).

Table 4.05: The exact and numerical solution of applying Algorithm

4.2 for equation (4.3).

 Analytical solution

Approximate

solution

Error | |

0 1 1 0

0.1 1.2 1.1945 0.0055

0.2 1.4 1.38795 0.01205

0.3 1.6 1.580245 0.019755

0.4 1.8 1.7712695 0.0287305

0.5 2 1.96089645 0.03910355

0.6 2.2 2.148986095 0.051013905

0.7 2.4 2.335384705 0.064615296

0.8 2.6 2.519923175 0.080076825

0.9 2.8 2.702415492 0.097584508

1 3 2.882657042 0.117342958

These results show the accuracy of the Runge-Kutta method of order 2 to

solve equation (4.3) since the 0.117342958

Figure 4.29 shows the exact solution with the approximate

solution when .

81

Figure 4.29: The exact and numerical solutions of applying Algorithm 4.2 for equation (4.3).

The CPU time is 0.032915 seconds. Figure 4.30 shows the absolute error

resulting of applying algorithm 4.2 on equation (4.3).

Figure 4.30: the error resulting of applying algorithm 4.2 on equation (4.3).

4.00.2 The fourth order Runge-Kutta method

Table 4.16 shows the exact and numerical solutions when applying

Algorithm 4.3 on equation (4.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x-axis

u(
x)

Approximation Solutions

Exact Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

x-axis

A
bs

ol
ut

e
E

rr
or

82

Table 4.06: The exact and numerical solution of applying Algorithm

4.3 for equation (4.3).

 Analytical solution

Approximate

solution

Error | |

0 1 1 0

0.1 1.2 1.199999792 0.02083

0.2 1.4 1.399999561 0.04385

0.3 1.6 1.599999307 0.0693

0.4 1.8 1.799999026 0.0974

0.5 2 1.999998715 0.1285

0.6 2.2 2.199998371 0.1628

0.7 2.4 2.399997992 0.2008

0.8 2.6 2.599997572 0.2427

0.9 2.8 2.799997109 0.2891

1 3 2.999996596 0.3403

These results show the accuracy of the fourth order Runge-Kutta method to

solve equation (4.3) since the 0.3403

Figure 4.31 shows the exact solution with the approximate

solution when .

Figure 4.31: The exact and numerical solutions of applying Algorithm 4.3 for equation (4.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x-axis

u(
x)

Approximation Solutions

Exact Solutions

83

The CPU time is 0.03540 seconds. Figure 4.32 shows the absolute error

resulting of applying algorithm 4.3 on equation (4.3).

Figure 4.32: the error resulting of applying algorithm 4.3 on equation (4.3).

4.02 The numerical realization of equation (4.3) using the Block

method

Table 4.17 shows the exact and numerical results when applying algorithm

4.4 (Block 2) on equation (4.3), and showing the error resulting of using

the numerical solutions.

Table 4.07: The exact and numerical solution of applying Algorithm

4.4 for equation (4.3).

 Analytical solution

Approximate

solution

Error | |

0 1 1 0

0.1 1.2 1.140666667 0.059333333

0.2 1.4 1.364689259 0.035310741

0.3 1.6 1.618577708 0.018577708

0.4 1.8 1.801723035 0.001723035

0.5 2 2.07477211 0.07477211

0.6 2.2 2.234306442 0.034306442

0.7 2.4 2.498720238 0.098720238

0.8 2.6 2.607302089 0.007302089

0.9 2.8 2.83177704 0.03177704

1 3 2.92246989 0.07753011

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-6

x-axis

Ab
so

lut
e

Er
ro

r

84

These results show the accuracy of the method of two block to solve

equation (4.3) since the 0.098720238

Figure 4.33 shows the exact solution with the approximate

solution when .

Figure 4.33: The exact and numerical solutions of applying Algorithm 4.4 for equation (4.3).

The CPU time is 0.022529 seconds. Figure 4.34 shows the absolute error

resulting of applying algorithm 4.4 on equation (4.3).

Figure 4.34: the error resulting of applying algorithm 4.4 on equation (4.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x-axis

u(
x)

Approximation Solutions

Exact Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x-axis

A
bs

ol
ut

e
E

rro
r

85

Table 4.18 shows the exact and numerical results when applying algorithm

4.5 (Block 3) on equation (4.3), and showing the error resulting of using

the numerical solutions.

Table 4.08: The exact and numerical solution of applying Algorithm

4.5 for equation (4.3).

 Analytical solution

Approximate

solution

Error | |

0 1 1 0

0.1 1.2 1.169166667 0.030833333

0.2 1.4 1.385198779 0.014801221

0.3 1.6 1.548159227 0.051840773

0.4 1.8 1.770048273 0.029951727

0.5 2 2.002123835 0.002123835

0.6 2.2 2.15170046 0.04829954

0.7 2.4 2.38525662 0.01474338

0.8 2.6 2.631867325 0.031867325

0.9 2.8 2.794195798 0.005804202

1 3 3.067162265 0.067162265

These results show the accuracy of the method of three block to solve

equation (4.3) since the 0.067162265

Figure 4.35 shows the exact solution with the approximate

solution when .

Figure 4.35: The exact and numerical solutions of applying Algorithm 4.5 for equation (4.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

x-axis

u(
x)

Approximation Solutions

Exact Solutions

86

The CPU time is 0.027388 seconds. Figure 4.36 shows the absolute error

resulting of applying algorithm 4.5 on equation (4.3).

Figure 4.36: the error resulting of applying algorithm 4.5 on equation (4.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x-axis

A
bs

ol
ut

e
E

rro
r

87

Conclusions

The numerical results show the following conclusions:

In example 4.3, we have applied the following algorithms: Trapezoidal

rule, the second order and fourth order Runge-Kutta method, the two block

and three block methods and the collocation and Galerkin methods. We

have obtained the following results:

From the above table we see clearly that Trapezoidal rule is the most

efficient technique for solving the integral equation 4.3.

Numerical method Maximum error The CPU time

Trapezoidal rule 0.475175 0.029789 seconds

The Improved Euler 0.117342958 0.032915 seconds

The fourth order Runge-Kutta 0.3403 0.03540 seconds

The method of two block 0.098720238 0.022529 seconds

The method of three block 0.067162265 0.027388 seconds

The collocation method 0.777991 seconds

The Galerkin method 0.64554 seconds

88

References

[1] S. S. Ahmed, Numerical solution for Volterra-Fredholm integral

equations of the second kind by using least-square technique, Iraqi

Journal of Science, Vol.52, No.4, 2011, PP.504-512.

[2] M. Aigo, On The Numerical Approximation of Volterra Integral

Equations of Second kind Using Quadrature Rules, International

Journal of Advanced Scientific and Technical Research Issue 3 Vol. 1,

(2013).

[3] K. Atkinson, The Numerical Solution of Integral Equations of the

Second Kind, The press Syndicate of the University of Cambridge,

United Kingdom, (1997).

[4] C. Baker, The Numerical Treatment of Integral Equations, Oxford

Univ. Press, (1977).

[5] J. Biazar and M. Pourabd, A Maple Program for Solving Systems of

Linear and Nonlinear Integral Equations by Adomian

Decomposition Method, Int. J. Contemp. Math. Sciences, Vol. 2,

2007, no. 29, 1425 – 1432.

[6] H. Brunner, Theory and numerical solution of Volterra functional

integral equations, Hong Kong Baptist University, (2010).

[7] H. Brunner, Collocation Methods for Volterra Integral and Related

Functional Differential Equations, Cambridge University Press,

New York,(2004) .

89

[8] H. Brunner, E. Hairer and S. P. Njersett, Runge-Kutta Theory for

Volterra Integral Equations of the Second Kind, Mathematics of

computation Vol. 39, No. 159 JULY 1982, 147-163.

[9] T.A. Burton, Volterra Integral and Differential Equations, 2nd

Edition, Elsevier, (2005).

[10] B. Cahlon and L. Nachman, Numerical Solutions of Volterra

Integral Equations with a Solution Dependent Delay, Journal of

mathematical analysis and application 112, 541-562 (1985).

[11] G. M. Campbell and J. T. Day, A block-by-block method for the

numerical solution of Volterra integral equations, BIT 11 (1971),

120-124.

[12] P. Collins, Differential and Integral Equations, Oxford University

Press Inc, New York, (2006).

[13] L. Delves and J. Mohammad, Computational Methods for Integral

Equations, Cambridge University press, (1988).

[14] W. Hackbusch, Integral Equations: Theory and Numerical

Treatment, Birkhäuser Verlag, Basel, (1995).

[15] A. Isaacson and M. Kirby, Numerical solution of linear Volterra

integral equations of the second kind with sharp gradients, Journal

of Computational and Applied Mathematics 235 (2011) 4283–4301.

[16] A. J. Jerri, Introduction to Integral Equations with Applications,

John Wiley and Sons, INC, (1999).

[17] R. Kanwal, Linear Integral Equations, Theory and Technique,

Academic press, INC, New York (1971).

90

[18] D. Keffer, Advanced Analytical Techniques for the Solution of

Single- and Multi-Dimensional Integral Equations, University of

Tennessee, August, 1999.

[19] R. Kress, Linear Integral Equations, 2nd Edition, Springer-Verlag,

(1999).

[20] P. Linz, Analytical and Numerical Methods for Volterra

Equations, Society for Industrial and Applied Mathematics,

Philadelphia, (1985).

 [21] Maleknejad K, Aghazadeh N, Numerical solution of Volterra

integral equations of the second kind with convolution kernel by

using Taylor-series expansion method, Appl Math Comput

2005;161(3):915–22.

[22] K. Maleknejad , E. Hashemizadeh and R. Ezzati, A new approach to

the numerical solution of Volterra integral equations by using

Bernstein’s approximation, Commun Nonlinear Sci Numer Simulat

16 (2011) 647–655.

[23] Marek and Arvet, Numerical solution of Volterra integral equations

with singularities, Front. Math. China 2013, 8(2): 239–259 DOI

10.1007/s11464-013-0292-z.

[24] Michael.A.Goldberg, Solution Methods for Integral Equations

Theory and Applications, Plenum Press, New York and

London,(1978).

[25] F. Mirzaee, A computational method for solving linear Volterra

integral equations , Appl. Math. Sci., Vol. 6, 2012, no. 17-20, 807-

814.

http://www.m-hikari.com/ams/ams-2012/ams-17-20-2012/mirzaeeAMS17-20-2012.pdf
http://www.m-hikari.com/ams/ams-2012/ams-17-20-2012/mirzaeeAMS17-20-2012.pdf

91

[26] F. Mirzaee, Numerical Solution for Volterra Integral Equations of

the First Kind via Quadrature Rule, Applied Mathematical

Sciences, Vol. 6, 2012, no. 20, 969 – 974.

[27] M. Mustafa, Numerical Solution of volterra Integral Equations

with Delay Using Block Methods, AL-Fatih Journal . No . 36,

October (2008).

[28] M. Rahman, Integral Equations and their Applications, WIT,

(2007).

 [29] M.M.Rahman, Numerical Solutions of Volterra Integral Equations

Using Galerkin method with Hermite Polynomials, Pure and Appl.

Mathe,(2013).

[30] M.M. Rahman, M.A. Hakim, and M. Kamrul, Numerical Solutions of

Volterra Integral Equations of Second kind with the help of

Chebyshev Polynomials, Pure and Appl. Mathe., Vol. 1,No. 2, 2012,

158-167.

[31] A.Rahman and Sh.Islam, Numerical Solutions of Volterra Integral

Equations Using Legendre polynomials, GANIT J.Bangladesh

Math.Soc.(ISSN 1606-3694) 32 (2012) 29-35.

[32] E. Rakotch, Numerical Solution of Volterra Integral Equations,

Springer-Verlag, Numer. Math. 20, 271-279, (1973).

[33] A. Ramm, A Collocation Method for Solving Integral Equations,

Int. J.Computing Science and Mathematics, Vol. 48, No. 10, (2008).

[34] J. Rashidinia, E. Najafi and A. Arzhang, An iterative scheme for

numerical solution of Volterra integral equations using collocation

92

method and Chebyshev polynomials, Rashidinia et al. Mathematical

Sciences 2012.

[35] J. Saberi-Nadja and M. Heidari, Solving linear integral equations of

the second kind with repeated modified trapezoid quadrature

method. Appl. Math. Comput., 189 (2007), 980- 985.

[36] M. Shafiqul, M. Rahman, Solutions of Linear and Nonlinear

Volterra Integral Equations Using Hermite and Chebyshev

Polynomials, ISSN 2277-3061.

[37] Tahmasbi A, A new approach to the numerical solution of linear

Volterra integral equations of the second kind, Int J Contemp Math

Sci 2008;3(32):1607–10.

[38] W. Wang, A mechanical algorithm for solving the Volterra

integral equation, Applied Mathematics and Computation 172 (2006)

1323–1341.

[39] A. Wazwaz, Linear and Nonlinear Integral Equations: Methods

and Applications, Springer Heidelberg, Dordrecht London, (2011).

[40] A. Wazwaz, A First Course in Integral Equations, World Scientific

Publishing Co. Pte. Ltd., (1997).

[41] S. Zhang, Y.Lin and M. Rao, Numerical solutions for second-kind

Volterra integral equations by Galerkin methods, Applications of

Mathematics, Vol. 45 (2000), No. 1, 19-39.

93

Appendix

94

Appendix

Matlab Code for Trapezoidal rule:

tic

clc

clear

format long

%Composite trapezoid rule for volterra integral

equations of the

%second kind

%Taken from Atkinson, K.E. "Numerical solution of

ordinary differential

%equations", Wiley (2009)

% The problem is u(x)=2*exp(x)-2-x+int(0,x)(x-

t)u(t)dt

tic

clc

clear

format long

loop = 30;% This is much more than is usually

needed.

b=1;

n=20;

h = b/n;

x = linspace(0,b,n+1);

95

fcnf=@(x)(2*exp(x)-2-x);

fvec = fcnf(x);

uvec = zeros(1,n+1);

uvec(1) = fvec(1);

 for i=1:n;

 uvec(i+1) = uvec(i);% The initial estimate for

the iteration.

 kvec = fcnk(x(i+1),x(1:i+1)).*uvec(1:i+1);

 for j=1:loop

 %applying trapezoid rule

 uvec(i+1) = fvec(i+1) + h*(sum(kvec(2:i)

+(kvec(1)+ kvec(i+1))/2);

 kvec(i+1)= fcnk(x(i+1),x(i+1)).*uvec(i+1);

 end

 end

u = uvec;

x = linspace(0,b,n+1);

ue=x.*exp(x);

y=(abs(ue-u));

m=[x',u',ue',y']

plot(x,u,'*',x,ue,'r')

grid on

plot(x,y)

grid on

96

toc

Matlab Code for Runge-Kutta method of order 2

tic

clc

clear

% Runge_Kutta_Method_of_order 2

% The problem is u(x)=2*exp(x)-2-x+int(0,x)(x-t)u(t)dt

%specifyig weights

theta=[0,1] ;

A=[1, 0 ; 0.5, 0.5];

h=.1;

nodes=0:.1:1;

num_inter_pts=(length(nodes)-1)*1; %number of

intermediate points

x=zeros(1, num_inter_pts+length(nodes)); %vector

of nodes and intermediate points

for i=1:length(nodes) %placing node values into x

 x(i+(i-1))=nodes(i);

end

for i=1:length(nodes)-1 % placing intermediate

points into x

97

 for j=2:2

 x(i+(i-1)+ j-1)=x(i+(i-1))+h*theta(j);

 end

end

index=zeros(1,length(x)); % keeps track of which

intermediate points are associated with which node

for i=1:length(nodes)-1

 index(i+(i-1):i+(i-1)+1)=i;

end

index(length(index))=length(nodes);

u=zeros(1,length(x)); %vector of solution values

p=2; % order of method

f=@(x)(2*exp(x)-2-x);

for i=1:length(u)

 u(i)=f(x(i));

 m=mod(i, 2);

 k=index(i);

 if m==0

 v=1;

 elseif m==1

 v=0;

 end

 if i~=1||i~=2

 for j=1:k-1

98

 for l=1:p

 ind1= find(j==index);

 ind1=ind1(1);

 %applying RK formula

 u(i)=u(i)+h*A(2,l)*fcnk(x(i),

x(ind1+(l-1))).* u(ind1+(l-1));

 end

 end

 end

 if v~=0

 for l=1:v %depends on mod

 ind1= find(index(i)==index);

 ind1=ind1(1);

 %applying RK formula

 u(i)=u(i)+h* A(v,l)*fcnk(x(i),

x(ind1+(l-1))).*x(ind1+(l-1));

 end

 end

end

%obtaining node values

u2=zeros(1,length(nodes));

99

for i=1:length(nodes)

 u2(i)=u(i+(i-1));

end

ue=zeros(1,length(nodes));

for i=1:length(nodes)

ue(i)=x(i+(i-1)).*exp(x(i+(i-1)));

end

y=ue-u2;

m=[nodes',u2',ue',y'];

plot(nodes,u2,'o',nodes,ue,'r')

grid on

plot(nodes,y)

grid on

toc

Matlab Code for Runge-Kutta method of order 4

tic

clc

clear

format long

%Calculates an approximation to a Volterra

Integral Equation of the Second Kind using the

fourth order Runge-Kutta Method

% The problem is u(x) =2*exp(x)-2-x+int(0,x)(x-t)u(t)dt

100

%specifying weights:

theta=[0,0.5,0.5,1] ;

A=[0.5, 0, 0, 0; 0, 0.5, 0, 0; 0, 0, 1, 0; (1/6),

(1/3), (1/3), (1/6)];

a=0;

b=1;

h=.1;

nodes=a:h:b ;

num_inter_pts=(length(nodes)-1)*3; % number of

intermediate points

x=zeros(1, num_inter_pts+length(nodes)); %vector

of nodes and intermediate points

for i=1:length(nodes) % placing node values into x

 x(i+3*(i-1))=nodes(i);

end

for i=1:length(nodes)-1 % placing intermediate

points into x

 for j=2:4

 x(i+3*(i-1)+ j-1)=x(i+3*(i-1))+h*theta(j);

 end

end

101

index=zeros(1,length(x)); % keeps track of which

intermediate points are % associated with which

node

for i=1:length(nodes)-1

 index(i+3*(i-1):i+3*(i-1)+3)=i;

end

index(length(index))=length(nodes);

u=zeros(1,length(x)); % vector of solution values

p=4; % order of method

 f=@(x)(2*exp(x)-2-x);

for i=1:length(x)

 u(i)=f(x(i));

 m=mod(i, 4);

 k=index(i);

 if m==2

 v=1;

 elseif m==3

 v=2;

 elseif m==0

 v=3;

 elseif m==1

 v=0;

 end

102

 if i~=1||i~=2||i~=3||i~=4

 for j=1:k-1

 for l=1:p

 ind1= find(j==index);

 ind1=ind1(1);

 %applying RK formula

 u(i)=u(i)+h*A(4,l)*fcnk(x(i),

x(ind1+(l-1))).*u(ind1+(l-1));

 end

 end

 end

 if v~=0

 for l=1:v %depends on mod

 ind1= find(index(i)==index);

 ind1=ind1(1);

 %applying RK formula

 u(i)=u(i)+h* A(v,l)*fcnk(x(i),

x(ind1+(l-1))).*u(ind1+(l-1));

 end

 end

end

%obtaining node values

103

u2=zeros(1,length(nodes));

for i=1:length(nodes)

 u2(i)=u(i+3*(i-1));

end

ue=zeros(1,length(nodes));

for i=1:length(nodes)

ue(i)=x(i+3*(i-1)).*exp(x(i+3*(i-1)));

end

y=ue-u2;

m=[nodes',u2',ue',y']

plot(nodes,u2,'bl*',nodes,ue,'r')

grid on

plot(nodes,y)

grid on

toc

Matlab Code for Method of two Blocks

tic

clc

clear

format long

% Method of two Blocks to solve Volterra integral

equation of the second kind

104

% The problem is u(x)=2*exp(x)-2-x+int(0,x)(x-

t)u(t)dt

b=1;

n=10;

p=2;

h = b/n;

x=linspace(0,1,n+1);

u=zeros(1,n+1);

fcnf=@(x)(2*exp(x)-2-x);

fvec = fcnf(x);

u(1) = fvec(1);

w=zeros(1,n);

w(1)=1;

w(n)=1;

for j=2:n-1

 w(j)=3-(-1)^j;

end

wp=zeros(1,n+1);

wp(1)=1;

wp(n)=1;

for j=2:n+1

 wp(j)=3-(-1)^j;

end

for m=2:n

105

 u(m)=fcnf(x(m))+(h/3)*sum(w(1:m-2)

.*fcnk(x(m),x(1:m-2)).*u(1:m-2))

+(h/12)*(5*fcnk(x(m),x(m-1)).*u(m-1)

+8*fcnk(x(m),x(m)).*u(m)-fcnk(x(m),x(m+1))

.*u(m+1));

 u(m+1)=fcnf(x(m+1))+(h/3)*sum(wp(1:m+1)

 .*fcnk(x(m+1),x(1:m+1)).*u(1:m+1));

end

ue=zeros(1,n+1);

for i=1:n+1

ue(i)=x(i).*exp(x(i));

end

y=abs(ue-u);

m=[u',ue',y']

plot(x,u,'*',x,ue,'r')

grid on

plot(x,y,'r')

grid on

toc

Matlab Code for Method of three Blocks

tic

clc

clear

106

format long

% Method of three Blocks to solve Volterra

integral equation of the second kind

% The problem is u(x)=2*exp(x)-2-x+int(0,x)(x-

t)u(t)dt

b=1;

n=20;

p=2;

h = b/n;

x=linspace(0,1,n+1);

u=zeros(1,n+1);

fcnf=@(x)(2*exp(x)-2-x);

fvec = fcnf(x);

u(1) = fvec(1);

w=zeros(1,n+1);

w(1)=1;

w(n-1)=1;

for j=2:n

 m=mod(j,3);

 if m==0

 w(j)=2;

 else

 w(j)=3;

 end

107

end

for m=2:n-1

 u(m)=fcnf(x(m))+(3*h/8)*sum(w(1:m-1)

.*fcnk(x(m),x(1:m-1)).*u(1:m-1))

+(h/12)*(5*fcnk(x(m),x(m-1)).*u(m-1)

+8*fcnk(x(m),x(m)).*u(m)-fcnk(x(m),x(m+1))

.*u(m+1));

 u(m+1)=fcnf(x(m+1))+(3*h/8)*sum(w(1:m-1)

.*fcnk(x(m+1),x(1:m-1)).*u(1:m-1))

+(h/3)*(fcnk(x(m+1),x(m-1)).*u(m-1)

+4*fcnk(x(m+1),x(m)).*u(m)+fcnk(x(m+1),x(m+1))

.*u(m+1));

 u(m+2)=fcnf(x(m+2))+(3*h/8)*sum(w(1:m+2)

.*fcnk(x(m+2),x(1:m+2)).*u(1:m+2));

end

ue=zeros(1,n+1);

for i=1:n+1

ue(i)=x(i).*exp(x(i));

end

y=abs(ue-u);

m=[u',ue',y']

plot(x,u,'*',x,ue,'r')

108

grid on

plot(x,y)

grid on

toc

Matlab Code for Collocation method

clc

clear

n=10;

% u(x)=1+x-x^2+int(u(t),0,x)

% collocation method with nine iterations

syms x t

u0=1+x-x^2;

u1=u0+int(1+t-t^2,0,x);

u2=u0+int(1+2*t-1/2*t^2-1/3*t^3,0,x);

u3=u0+int(1+2*t-1/6*t^3-1/12*t^4,0,x);

u4=u0+int(1+2*t-1/24*t^4-1/60*t^5,0,x);

u5=u0+int(1+2*t-1/120*t^5-1/360*t^6,0,x);

u6=u0+int(1+2*t-1/720*t^6-1/2520*t^7,0,x);

u7=u0+int(1+2*t-1/5040*t^7-1/20160*t^8,0,x);

u8=u0+int(1+2*t-1/40320*t^8-1/181440*t^9,0,x);

u9=u0+int(1+2*t-1/362880*t^9-

1626697008263629/2951479051793528258560*t^10,0,x)

109

ua=@(x)(1+2*x-

1626697008263629/5902958103587056517120*x^10-

5205430426443613/103892062623132194701312*x^11)

ue=@(x)(1+2*x);

uaa=zeros(11,1);

uee=zeros(11,1);

xx=zeros(11,1);

c=0;

for i=1:11

 uaa(i)=ua(c);

 uee(i)=ue(c);

 xx(i)=c;

 c=c+.1;

end

y=(abs(uaa-uee));

[xx uee uaa y];

uee

uaa

y

plot(xx,uaa,'o',xx,uee,'r')

grid on

plot(xx,y)

grid on

toc

110

Matlab Code for Galerkin method with Chebyshev polynomials

tic

clc

clear

format long

% degree of polynomial is n

n=10;

F=zeros(n+1,1);

a=zeros(n+1,1);

k=zeros(n+1,n+1);

syms x t

F(1)=int((1+x-x^2),0,1);

F(2)=int((1+x-x^2)*x,0,1);

for i=3:n+1

F(i)=int((1+x-x^2)*Tch(i-1),0,1);

end

F;

k(1,1)=int(1-int(1,0,x),0,1);

k(1,2)=int((1-int(1,0,x))*x,0,1);

for j=3:n+1

 k(1,j)=int((1-int(1,0,x))*Tch(i-1),0,1);

end

k(2,1)=int(x-int(t,0,x),0,1);

111

k(2,2)=int((x-int(t,0,x))*x,0,1);

for j=3:n+1

 k(2,j)=int(((x-int(t,0,x))*Tch(j-1)),0,1);

end

for i=3:n+1

k(i,1)=int((Tch(i-1)-(int(Tcht(i-1),0,x))),0,1);

k(i,2)=int((Tch(i-1)-(int(Tcht(i-1),0,x))*x),0,1);

end

for i=3:n+1

 for j=3:n+1

 k(i,j)=int(((Tch(i-1)-(int(Tcht(i-

1),0,x))).*Tch(j-1)),0,1);

 end

end

k

a=inv(k)*F

u=sum(a(1)+a(2).*x+a(3).*Tch(2)+a(4).*Tch(3)+a(5).

*Tch(4)+a(6).*Tch(5)+a(7).*Tch(6)+a(8).*Tch(7)+a(9

).*Tch(8)+a(10).*Tch(9)+a(11).*Tch(10))

ua=@(x)(3378014733232755/1125899906842624-

33608425858860287091/18446744073709551616*x-

780646173785663/562949953421312*x^2+25641194402273

5/70368744177664*x*(2*x^2-1)-

112

758816794818963/140737488355328*x*(2*x*(2*x^2-1)-

x)+385490043195975/70368744177664*x*(2*x*(2*x*(2*x

^2-1)-x)-2*x^2+1)-

576129132906897/140737488355328*x*(2*x*(2*x*(2*x*(

2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-

1)+x)+160094110262051/70368744177664*x*(2*x*(2*x*(

2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-1)+x)-

2*x*(2*x*(2*x^2-1)-x)+2*x^2-1)-

128373776867859/140737488355328*x*(2*x*(2*x*(2*x*(

2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-1)+x)-

2*x*(2*x*(2*x^2-1)-x)+2*x^2-1)-

2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)+2*x*(2*x^2-1)-

x)+16954400822283/70368744177664*x*(2*x*(2*x*(2*x*

(2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-

1)+x)-2*x*(2*x*(2*x^2-1)-x)+2*x^2-1)-

2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)+2*x*(2*x^2-1)-

x)-2*x*(2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-

2*x*(2*x^2-1)+x)+2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-

4550460827751/140737488355328*x*(2*x*(2*x*(2*x*(2*

x*(2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-

1)+x)-2*x*(2*x*(2*x^2-1)-x)+2*x^2-1)-

2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)+2*x*(2*x^2-1)-

x)-2*x*(2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-

2*x*(2*x^2-1)+x)+2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-

113

2*x*(2*x*(2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-

2*x*(2*x^2-1)+x)-2*x*(2*x*(2*x^2-1)-x)+2*x^2-

1)+2*x*(2*x*(2*x*(2*x^2-1)-x)-2*x^2+1)-2*x*(2*x^2-

1)+x));

c=0;

xx=zeros(n+1,1);

uap=zeros(n+1,1);

uex=zeros(n+1,1);

for j=1:n+1

 uap(j)=(ua(1-c));

 uex(j)=(1+2*(c));

 xx(j)=c;

 c=c+.1;

end

y=(abs(uap-uex));

[xx uex uap y]

uex

uap

y

plot(xx,uap,'*',xx,uex,'r')

grid on

plot(xx,y)

grid on

toc

استكمالا لمتطلبات الحصول على درجة الماجستير في الرياضيات الأطروحةقدمت هذه

 فلسطين. –المحوسبة بكلية الدراسات العليا في جامعة النجاح الوطنية، نابلس

2104

 ب

شبه المنحرف

وسمبسون

