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Confidence – based Optimization for the Single Period Inventory 

Control Model 

By 

 Thana’a Hussam eddin Amin Abu Sa’a 

Supervisor 

 Dr. Mohammad Ass’ad 

 

Abstract 

In this thesis we introduce the issue of demand estimation. We study a 

problem of controlling the inventory of a single item over a single period 

with stochastic demand in which the distribution of the demand has an 

unknown parameter. 

We assume that the decision maker has a past demand sample and the 

demand distribution is known but some of its parameters are not known. 

We introduce some approaches to estimate the unknown parameter and 

depending on results from estimating the unknown parameter we identify a 

range of order quantities that-with 1   confidence coefficient – contains 

the optimal order quantity, and then we construct an interval for the 

estimated expected cost that the manager will pay if he orders any quantity 

from the range of candidate quantities.  

We consider three cases, the demand has a Binomial distribution with 

unknown parameter p   , and the demand has a Poisson distribution with 

unknown parameter , also we consider the case in which the demand has 

an Exponential distribution with unknown parameter . 
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We present numerical examples in order to clarify our strategy and to show 

how the confidence interval approach complements with the point 

estimation approach in order to give the best outlook to the manager to take 

a decision that achieve an optimal profit. 
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Chapter One 

Introduction 

‘Operations Research’ was developed during the World War II, but the 

scientific origin of the subject dates much further back.  

 Many definitions of Operations Research are available. The following are 

a few of them. In the words of T.L Saaty, “operations research is the art of 

giving bad answers to problem which otherwise have worse answers”. 

According to Fabrycky and Torgersen, “operations research is the 

application of scientific methods to problems arising from the operations 

involving integrated system by man, machine and materials. It normally 

utilizes the knowledge and skill of an interdisciplinary research team to 

provide the managers of such systems with optimum operating solutions”. 

Churchman, Ackoff and Arnoff observe, “operations research in the most 

general sense can be characterized as the application of scientific methods, 

techniques and tools to problems involving the operations of a system so as 

to provide those in control of the operations with optimum solutions to the 

problems”[10].In simple words, operations research is the discipline of 

applying advanced analytical methods to help make better decisions.   

Operations research comprises of various branches which include 

Inventory control, Queuing theory, Mathematical Programming, Game 

theory and Reliability methods. In all these branches many real life 

problems are conceptualized as mathematical and stochastic models.  

Operations research provides tools to (i) analyze the activity (ii) assist in 

decision making, (iii) enhancement of organizations and experiences all 
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around us. Application of operations research involves better scheduling of 

airline crews, the design of waiting lines at Disney theme parks, and global 

resource planning decisions to optimizing hundreds of local delivery 

routes. All benefit directly from operations research decision.  

Inventory control is one of the most developed fields of operations 

research. Many sophisticated methods of practical utility were developed in 

inventory management by using tools of mathematics, stochastic process 

and probability theory. [10] 

The study on inventory control deals with two types of problems such as 

single-item and multi-item problems. Concerning the process of demand 

for single-items, the mathematical inventory models are divided into two 

large categories deterministic and stochastic models  

The simplest periodic model is the single period model.  The decision 

problem reduces to only one period.  Such inventory problems occur if the 

products cannot be sold after the period.  

 Examples of these are fashion articles, travel offers, ticket sales for large 

presentations and daily newspapers. 

Consider a problem of controlling the inventory of a single item over a 

single period with stochastic demand, this problem is also known as a 

Newsvendor problem, or the newsboy problem, we need in this problem to 

find the order quantity which maximizes the expected profit in a single 

period probabilistic demand.  

Early  in the  morning, the  newsboy  buys  a stack  of newspapers  and 

tries  to  sell these during  the  course  of  the  day.  He can only return the 
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unsold papers at a loss.  If he carries only a small quantity of newspapers, 

he misses the profit.  Demand is uncertain but its distribution is known.  

His decision problem: "How many newspapers do I buy to maximize my 

profit expectations?" [2] 

And so the manager faces costs if he orders too much or if he orders too 

little. This problem therefore consists of deciding the size of a single order 

that must be placed before observing demand when there are overage and 

underage costs. And so the objective is to decide the optimal order quantity 

Q so that the expected total cost is minimized.  

Most of the research on single-period inventory models has focused on the 

case in which demand distribution parameters are known, but in this thesis 

we will consider the situation in which the parameter of such distribution is 

not known, it is clear that the applicability of these models directly depends 

on the reliability of demand parameters estimation. 

And so we will consider the situation in which the decision maker knows 

the type of the random demand distribution, but he does not know the 

actual values of some of the parameter of such a distribution. The decision 

maker is given a set of M past realizations of the demand. From these 

realizations he has to infer the optimal order quantity and, he has to 

estimate the cost associated with the optimal Q* he has selected.  

We will consider two approaches to estimate the parameter of the demand 

distribution, the first approach is the point estimation approach and the 

second approach is the confidence interval approach. 

In the first approach we will use the maximum likelihood estimator and the 

Bayes estimator. 
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In the Bayes estimator we will consider a “prior” distribution, which 

quantifies the uncertainty in the values of the unknown parameters before 

the data are observed [29], then update prior distribution with the data 

using Bayes' theorem to obtain a posterior distribution. The posterior 

distribution of the parameter is then used to construct, first, the posterior 

distribution of the demand, and then to derive the optimal order quantity 

[36] and the objective function, expected cost.  

On the other hand, in the maximum likelihood estimator a parametric 

demand distribution is empirically selected and point estimates for the 

unknown parameters are obtained according to the observed data [33]. 

So in our work we will introduce a strategy to address the issue of demand 

estimation in single-period inventory optimization problem. Consider a 

possibly very limited set of past demand observations. The strategy would 

analyze these data and provide a single most-promising order quantity and 

an estimated cost associated with it. Unfortunately, both the maximum 

likelihood estimator and the Bayes estimator ignore the uncertainty around 

the estimated order quantity and its associated expected total cost or profit.  

In the second approach, we will try to clarify an approach that employs 

exact confidence interval in order to identify a range of candidate order 

quantities that includes the real optimal order quantity for the underlying 

stochastic demand process with unknown parameters, with a certain 

confidence probability. In addition, for each candidate order quantity that is 

identified, this approach computes upper and lower bounds for the 
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associated cost. This range covers the actual cost, the decision maker will 

face if he selects that particular quantity. The approach we will consider 

does not simply provide point estimation; it provides instead complete 

information to the decision maker about the set of potentially optimal order 

quantities according to the available data and to the chosen confidence 

level and about the confidence interval for the expected cost associated 

with each of these quantities. 

In the situation where the demand has, for example, a binomial distribution 

we will consider the parameter p, a success probability in the binomial 

distribution, is unknown .The decision maker is given a set of M past of the 

realizations of the demand, we try to establish exact confidence interval for 

the binomial distribution. This method uses the binomial cumulative 

distribution function in order to build the interval from the data observed. 

We will try to compute upper and lower bounds for the optimal order 

quantity in our problem under partial information. First, we will construct 

the confidence interval for the unknown parameter p of the binomial 

demand, and then depending on the confidence interval for the unknown 

parameter p, we will try to consider a set that the optimal order quantity is a 

member of it. After that we will try to compute upper and lower bounds for 

the cost that a manager will pay, with confidence probability. 

Another case, we will consider the situation where the demand has a 

Poisson distribution, in which the parameter λ, rate of Poisson demand, is 

unknown. As the previous case, the decision maker is given a set of M past 
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of the realizations of the demand; we will estimate λ using the confidence 

interval that was proposed by Garwood [36]. We will take the similar 

fashion as in the binomial case for computing a set that contains the 

optimal quantity and the interval for the associated cost. 

Finally, Numerical examples are presented in which the researcher shows 

how the two approaches are complements with each other. Our aim is to 

establish a confidence ratio that the decision from discussed approaches is 

not worse. 

The strategy of our investigation in this thesis is as follows: 

We start from the basic concepts of single period inventory control model 

and some basic concepts from probability theory. 

In chapter three, we will clarify how we can estimate the unknown 

parameter using the point estimation and the confidence interval 

estimation. Then in chapter four, we will analytically combine parameter 

estimation analysis and inventory optimization. Finally, we will give 

numerical examples and the summary of our main results and conclusions. 

Objective: 

 In our research we will employ confidence interval approach to find a 

range of candidate order quantities that include the actual optimal order 

quantity for a single item with stochastic demand over a single period with 

unknown parameter and with certain confidence probability. Then apply 

this approach to three demand distribution: binomial, Poisson, and 

exponential. 



7 

Methodology: 

Clarifying how we can combine confidence interval analysis and inventory 

optimization. Implementing approaches for each distribution demand in 

order to compute intervals that involve the optimal order quantity- with 

confidence probability. Then we will present numerical examples in order 

to show how this approach complements with other approaches. 
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Chapter Two 

Inventory Control Model 

2.1General Inventory Control Model 

Inventory one of the most expensive assets of many companies, 

representing as much as 50% of total invested capital [32]. 

Inventory is a quantity or store of goods that is held for some purpose. Also 

it is the stock of any item or resource used in an organization and can 

include: raw materials, finished products, and component parts. In other 

words, inventory is the stock of resources that is used to satisfy the current 

or the future needs. Inventory control, is an attempt to balance inventory 

needs and requirements with the need to minimize costs resulting from 

obtaining and holding inventory [3]. 

An inventory system is the set of policies and controls that monitor the 

answers of the inventory decision questions “when and how much to 

order?” 

Inventory control systems aim to ensure that you have a sufficient supply 

of whatever the manager sells to meet expected demand, while at the same 

time avoiding ordering mistakes, resulting in costly understock and 

overstock situations. Inventory control faces special challenges for 

companies that operate on a "single-period" inventory model, in which the 

manager get only one chance to order in the stand at a time period. 

Periods and inventories: 
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To illustrate the idea of the different inventories, say the manager who own 

a coat store, and he has 20 coats of brown color in stock. If he doesn't sell 

them today, he can sell them tomorrow or the next day. Even if models are 

changing, he can probably discount the coats enough to get them sold. This 

is the typical inventory model. Now imagine a newspaper vendor. The 

newsboy orders a certain number of newspapers from the publisher, the 

publisher brings them in the morning , and the newsboy sell them during 

the day. But exceeds of them can't be rolled over to the next day. At day's 

end, those papers have no value. This is a single-period inventory model 

[6]. 

Similarly, other items such as fashions are sold at a loss simply because 

there is no storage space or it is uneconomical to keep them for the next 

year [9].   

 Some purposes of Inventory:  

1. To maintain independence of operations  

2. To meet variation in product demand 

3. To allow flexibility in production scheduling  

4. To provide a protection for variation in raw material delivery time  

5. To take advantage of economic purchase order size 

Inventory control serves several important functions and adds a great deal 

of flexibility to the operation of a firm. As discussed in [32] there are five 

main uses of inventory: 

1. The decoupling function: Inventory can act as a buffer to avoid the 

delays and inefficiencies. 
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2. Storing resources: Resources can be stored as work-in-process or as 

finished product. 

3. Irregular supply and demand: Inventory helps when there is irregular 

supply or demand. 

4. Quantity discounts: lower unit cost due some times to large 

purchased (produced quantities). 

5. Avoiding partially stock outs and shortages: If a company is 

repeatedly or some times out of stock, customers are likely to go 

elsewhere to satisfy their needs. Lost goods can be an expensive 

price to pay for not having the right item at the right time. 

The manager uses operations research to improve their inventory policy by 

using scientific inventory management comprising the following steps: 

1. Formulate a mathematical model describing the behavior of the 

inventory system. 

2. Seek mathematically an optimal inventory policy with respect to this 

model. 

3. Use a computerized information processing system to maintain a 

record of the current inventory levels. 

4. Using this record of current inventory levels, apply the optimal 

inventory policy to signal when and how much to replenish 

inventory [17]. 

Types of Inventory Systems Models (by the degree of certainty of data) 

 Deterministic model: has a complete certainty and all information 

needed are available with fixed and known values. Example: 
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Economic Order Quantity (EOQ), which the parameter demand is 

known. 

 Probabilistic (stochastic) Inventory model: the parameter (expected) 

demand is known and some of data is not known with certainty and 

take into account that information will be available after the decision 

is made. Examples: single-period order quantity, reorder-point 

quantity and periodic-review order quantity. 

The basis for solving inventory models is the minimization of the following 

inventory expected cost function: 

Total inventory expected cost = Purchasing cost+ setup cost+ expected 

holding cost+ expected shortage cost. 

Such that: 

1. Purchasing cost is the price per unit of an inventory item. At times 

the item is offered at a discount if the order size exceeds a certain 

amount, which is a factor in deciding how much to order. 

2. Setup cost represents the fixed charge incurred when an order is 

placed regardless of its size. Increasing the order quantity reduces the 

setup cost associated with a given demand, but will increase the 

average inventory level and hence the cost of tied capital. On the 

other hand, reducing the order size increases the frequency of 

ordering and the associated setup cost. An inventory cost model 

balances the two costs. 
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3. Holding cost represents the cost of maintaining inventory in stock. It 

includes the interest on capital and the cost of storage, maintenance, 

and handling. 

4. Shortage cost is the penalty incurred when we run out of stock. It 

includes potential loss of income and the more subjective cost of loss 

in customer's goodwill. When a customer seeks the product and finds 

the inventory empty, the demand can either go unfulfilled or be 

satisfied later when the product becomes available. The former case 

is called a lost sale, and the latter is called a backorder. 

An inventory system may be based on periodic review (e.g., ordering every 

week or every month), in which new orders are placed at the start of each 

period. Alternatively, the system may be based on continuous review, 

where a new order is placed when the inventory level drops to a certain 

level, called the reorder point. The EOQ is used as part of a continuous 

review inventory system in which the level of inventory is monitored at all 

times and a fixed quantity is ordered each time the inventory level reaches 

a specific reorder point.  

The EOQ provides a model for calculating the appropriate reorder point 

and the optimal reorder quantity to ensure the instantaneous replenishment 

of inventory with no shortages. It can be a valuable tool for small business 

owners who need to make decisions about how much inventory to keep on 

hand, how many items to order each time, and how often to reorder to incur 

the lowest possible costs. [22]  
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An example of periodic review can occur in a gas station where new 

deliveries arrive at the start of each week. 

Continuous review occurs in retail stores where items (such as cosmetics) 

are replenished only when their level on the shelf drops to a certain level 

[40]. 

2.2 Basic Concepts from Probability Theory 

This section is considered to clarify some basic concepts from probability 

theory and discussed a number of important distributions which have been 

found useful for our work.  

 Random Variable: A random variable, usually written as X, is a 

variable, whose value is subject to variations due to chance [38] and 

its possible values are numerical outcome of a random phenomenon. 

There are two types of random variables, discrete and continuous.  

The expected value or mean of X  is denoted by ( )E X and its variance 

by 
2 ( )X  where ( )X is the standard deviation of X  [18]. 

 Discrete random variable: A discrete random variable is one which 

may take on only a countable number of distinct values such as 0, 1, 2, 

3, 4,… Examples for discrete random variables include the number of 

children in a family, the number of patients in a doctor's clinic and the 

number of defective light bulbs in a box of ten. 

 Continuous random variable: A continuous random variable is one, 

which takes not countable number of possible values. Continuous 

random variables are usually measurements. Examples include height, 

weight, the amount of sugar in an orange and the time required to run 
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a mile. A continuous random variable is not defined at specific values. 

Instead, it is defined over an interval of values, and its probability 

represented by the area under a curve. The probability of observing 

any single value is equal to zero [10]. 

Some Probability Distributions 

we  will  discuss  a  number  of  important  distributions which have been 

found useful for our study . 

1. Poisson Distribution   

The probability distribution of a Poisson random variable X with parameter 

  which is representing the average number of successes occurring in a 

given time interval or a specified region of space is given by the formula 

[18]:  

( ) , 0,1,2,...
!

ke
P X k k

k

 

    

 For the Poisson distribution we have: 

2( ) ( )E X X  
 

2. Binomial Distribution 

The binomial distribution is a discrete distribution described by the 

following relationship [39]: 

 ( ) (1 ) , 0,1,2,...,k n kn
kP X k p p k n   

  

Where p  is the probability of success on each trail.  

For the Binomial distribution we have: 
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2( ) , ( ) (1 )E X np X np p  
 

3. Exponential Distribution   

We usually say that the random variable has an Exponential distribution if 

its probability density function is defined by [39]: 

0
0 0

( ) {
ke k

k
P X k

   


 
 

Where the parameter 0   

For the Exponential distribution we have: 

2

2

1 1
( ) , ( )E X X

 
 

 

2.3 Single period inventory control model  

Single item inventory models occur when an item is ordered only once to 

satisfy the demand for a specified period of time [40]. 

Consider a single-period order quantity model (sometimes called the 

newsboy problem or inventory system of perishable goods) this model 

deals with items of short life and the demand is probabilistic. 

 Single-period order quantity model means that inventory is not carried 

over to another period. Furthermore, any remaining products at the end of 

the period can be disposed of at a certain expense, or can be sold at a lower 

price than the market price. Initially, this type of modeling was applied to 

products with very high perishability, such as newspapers. Later, especially 

in the fashion industry, newsboy models were proven to be of use (Fisher 

and Raman (1996) who study the single period setting in the fashion 

industry), and following the decrease of product life cycles in high-tech, 
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such as personal computers and mobile phones. Newsboy models are now 

well-accepted to model ordering decisions in these environments [27]. 

This model also has wide applicability in service industries such as airlines 

and hotels where the key decision is capacity which cannot be stored and 

the product is generally perishable [11]. 

The problem of the classical single-period, single-item is to decide on the 

ordering quantity before market demand is known, so that at the time of 

ordering demand is uncertain. The objective is to maximize expected profit. 

If demand D were known at the time of ordering, it is easy to see the 

optimal decision for the newsvendor. However, since demand is not known 

at the time of ordering, the problem becomes more difficult. The demand D 

has to be understood as a random variable with a known demand 

distribution. In fact, since for real problems the exact demand distribution 

cannot be known either, it has to be well estimated based on collected 

random observations from the past. Demand can then be described by its 

corresponding cumulative distribution function (cdf) ( ) ( )F x p D x   and 

probability density function (pdf) ( )f x  .Since demand cannot be negative, 

clearly ( )F x  = 0 for any x < 0 [11]. 

The classical single-period problem researchers have followed two 

approaches to solving the SPP. In the first approach, the expected costs of 

overestimating and underestimating demand are minimized. In the second 

approach, the expected profit is maximized. Both approaches yield the 

same results [13]. We use the first approach in stating the single-period 

problem. 
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Now, we take a newsvendor as an example to explain the single period 

inventory model. 

The owner of the newspaper stand needs to order newspapers at the 

beginning of one day, and he has to make appropriate decision about his 

inventory level. Since if he buys too many papers, some papers will not be 

sold and have no value at the end of that day. In contrast, if he buys too few 

papers he has lost the opportunity of making a higher profit [25]. 

And so, the decision maker has to make decisions about inventory level 

over limited period to reduce both lost sales and excess inventory and then 

to optimize the expected profit. 

Notice that, period could be one day, one month or any limited period [21]. 

Assumptions of our model: 

 Demand occur instantaneously at the start of the period immediately 

after the order is received. 

 No setup cost is incurred [40].  

 Only one order in time period  

 Probabilistic distribution of demand (continuous or discrete). 

 Instantaneous replenishment.  

Now we will clarify the mathematical structure and the symbols used in the 

development of the model: 

D: random variable representing demand during the period. 

Q : order quantity purchased at the beginning of the period. 

C: unit cost. 

Pr: unit price.  
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S: the salvage value of each unit left over item. 

h: unit overage cost : the cost of buying one unit more than the demand, 

h=C-S. 

g :unit underage (shortage) cost: the cost of buying one unit less than 

the demand, g = Pr-C 

As discussed in [39], in order to find the optimal order quantity, assume 

that the demand is a random variable with probability function ( )f D  and 

cumulative distribution function ( )F D   . 

Let ( , )G Q D  be the cost function, the cost which the owner will pay when 

the demand is D and the Q -units are ordered at the start of the period. 

( ),
( , )

( ),

h Q D if D Q
G Q D

g D Q if D Q

  
  

              (2.1) 

Such that: 

Q D  : is a random variable has the same distribution as D , which is 

equal to the excess demand over the supply at the end of the period. 

D Q  : is a random variable has the same distribution as D, which is 

equal to the unsatisfied demand remaining at the end of the period[40]. 

In the presence of uncertainty, the objective is to minimize the expected 

cost or to maximize the expected profit. 

We will determine the expected value of ( , )G Q D  with respect to the 

probability function of the demand and then find the optimal value of Q  

that minimize the expected cost function   ,E G Q D . 

Since the demand is a random variable then we need to separate the single 

period inventory problem into a continuous and a discrete random demand. 
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Assume we know the demand density function ( )f D  and thus the 

cumulative distribution function ( )F D . 

We will present the optimal solution under continuous and discrete demand 

using the standard cost expression in the next two subsections. 

2.3.1 The demand is a continuous random variable  

Assume the demand is a continuous random variable with probability 

density function ( )f D . As in [30] the expected total cost function is given 

by: 

0

0

( ( , )) ( , ) ( )

( ) ( ) ( ) ( )

Q

Q

E G Q D G Q D f D d D

h Q D f D d D g D Q f D d D





 

     



 
 (2.2)   [16]      

Since this function is convex in Q , then we have a unique minimum for the 

expected cost. So to find the optimalQ , we use the fundamental theory of 

calculus, i.e. take the derivatives of the expected cost function with respect 

to Q  and equate it to zero. We find that a necessary condition for a relative 

maximum or relative minimum at *Q is:  

( *)
g

F Q
h g




         (2.3) 

Since 
  

 
2

2

,
( ) * 0

E G Q D
h g f Q

Q


  


  , we have a minimum at *Q . [30] 

Since
0

( ) ( ) ( )

Q

F Q p D Q f D dD    , then we can find *Q  by: 
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*

0

( )

Q
g

f D dD
h g


           (2.4) 

The value 
g

R
g h




 is called the “critical ratio” or “critical fractile” and is 

always between zero and one [16]. 

2.3.2 The demand is a discrete random variable  

When a demand is a discrete random variable in which the probability mass 

function ( )f D  is defined only at discrete points, then the associated 

expected total cost function is: 

0

0 1

( ( , )) ( , ) ( )

( ) ( ) ( ) ( )

D

Q

D D Q

E G Q D G Q D f D

h Q D f D g D Q f D







  

 

   



 
       (2.5)          

This function is convex in Q  [40], then we determine the optimal quantity 

by seeking Q  such that the expected total cost function is flat at *Q . 

As discussed in [16] we can find *Q such that ( ( *, ))E G Q D  is 

approximately equal to ( ( * 1, ))E G Q D  , therefore *Q is the smallest value 

ofQ ’s such that: 

( *)
g

F Q
g h




 

Since 

*

0

( *) ( )
Q

D

F Q f D


 then  

  

*

0

( )
Q

D

g
f D

g h




       (2.6) 
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Again the value 
g

R
g h




 is called the “critical ratio” or “critical fractile” 

and is always between zero and one. 

If we can write 

*

0

( )
Q

D

f D


  in closed form we can find an analytic formula 

for *Q  if not we can find the optimal quantity *Q with simple search 

procedure starting at       1Q  and increase  Q  until the relation (2.6) is 

satisfied. 

Also if we cannot write 

*

0

( )
Q

D

f D


  in closed form , the researcher try to find 

*Q by using the logistic distribution as an approximation to the discrete 

Binomial or Poisson distributions. 

So we will approximate an optimal order quantity using the logistic 

distribution. 

The probability density function of logistic distribution is 

( )

( )
2

( )

(1 )

m
D

m
D

m e
f D

e

















 

Such that 1.8
3

m


   

Using equation (2.4) to find an approximate order quantity: 

( )

( )
20 (1 )

m
DQ

m
D

m e g
dD

g h
e


















           (2.7) 

Let     

( )
( )

1
m m D

D m
u e du e




 



  
 

     
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Then 

( )

2

( )
2(1 )

m
D

m
D

m e
u du

e















 


    

So that 

( )

( ) ( )
20

0

1

(1 ) 1

Qm
DQ

m m
D D

m e
dD

e e




 
 




 
 



 
   

                                                                       
( ) ( )

1 1

1 1
m m

Q

e e
 

 




 

 

 

Substitute it into (2.4):  

( ) ( )

1 1

1 1

m m
Q

g

g h
e e

 
 




 


 

 

Solve the last equation for Q  we get: 

 

/

/
* ln ( )

2

m

m

he g
Q

m g e h

 

 





 

 
                                      (2.8) 

Example: Consider a Poisson distribution with 4 100, 1000h g    .  

Using excel program and look for Q  to find *Q  such that ( *)
g

F Q
h g




 

0

1000

! 100 1000

D
Q

D

e
D

 






  

And take the smallest Q that satisfies this condition. 

Figure 1 shows the Poisson probabilities ( )f D  and the cumulative Poisson 

probabilities ( )F D . 

The optimal (maximum expected profit) value of Q can be found by 

finding the smallest value of Q such that ( *) 0.9091F Q  .  
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The optimal value of Q for this problem, therefore, is Q* = 7.    

The cumulative Poisson distribution can be implemented in Excel with the 

function POISSON (Q, λ, TRUE) [16]. While Excel does not provide a 

function for the inverse of the cumulative Poisson, it is easy to find Q that 

satisfies equation (2.6) by using R-project and using the command “qpois 

(probability, lambda)” that returns the inverse of a Poisson-distribution 

function.   

Using equation (2.8) we find an approximation value for *Q  and it is equal 

to 7 and the expected cost associated with this *Q  can be computed using 

equation (2.5) and it is equal to 6.9395 $. 

 

 

Figure 1:  Poisson probabilities with mean λ = 4. 
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Chapter Three 

Parameter Estimation 

Estimation is the process of finding an estimate, or approximation, which is 

a value that is usable for some purposes even if input data may be 

incomplete, uncertain, or unstable. The value is nonetheless usable because 

it is derived from the best information available. Typically, estimation 

involves "using the value of a statistic derived from a sample to estimate 

the value of a corresponding population parameter. The sample provides 

information that can be projected, to determine a range most likely to 

describe the missing information. 

Note that an estimator is a function of the sample, while an estimate is the 

realized value of an estimator that is obtained when a sample is actually 

taken.  

The quantity that we hope to guess is called the estimates [31]. 

 Types of Estimates: 

 Point estimate: single number that can be regarded as the most 

possible value 

   of the parameter  

 Interval estimate: a range of numbers, called a confidence interval 

indicating, can be regarded as likely containing the true value of 

the parameter.  

In this chapter we will clarify the point estimate and two methods of 

finding this type. 
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3.1 Point Estimate 

The point estimation using particular functions of the data in order to 

estimate certain unknown of population parameter. 

The goal of point estimation is to make a reasonable guess of the unknown 

value of a specified population quantity, e.g., the population mean.  

Some Methods of finding point estimates: 

1. Method of Moments 

2. Maximum Likelihood 

3. Bayes Estimators [21] 

In the coming two sections we will clarify the last two methods of finding 

estimators. 

3.1.1 Likelihood Function: 

Let ( | )f Y   denote the probability density function (PDF) that specifies the 

probability of observing data vector Y  given the parameter . 

Given a set of parameter values, the corresponding PDF will show that 

some data are more probable than other data. 

In another case, we are faced with an inverse problem: Given the observed 

data and a model of interest, find the one PDF, among all the probability 

densities that the model prescribes, that is most likely to have produced the 

data.  

To solve this inverse problem, we define the likelihood function by 

reversing the roles of the data vector Y  and the parameter vector   in

( | )f Y   , i.e. ( | ) ( | )L Y f Y    
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Such that ( | )L Y  represents the likelihood of the parameter   given the 

observed dataY ; and as such is a function of   . [12] 

Example: 

Given a binomial distribution with arbitrary values of p and n , such that 

the probability of a success on any trial, represented by the parameter p , 

and the number of trails , represented by n . 

Suppose that the data y  represents the number of successes in a sequence 

of n  Bernoulli trials. So a general expression of the PDF of the binomial 

distribution is given by: 

!
( | , ) (1 ) , 0 1 ; 0,1....,

!( )!

y n yn
f y n p p p p y n

y n y

    


     [34] 

Which, as a function of y , specifies the probability of data y  for a given 

parameters n  and  p   

let 9, 0.2n p   , The PDF in this case is given by: 

99!
( | 9, 0.2) 0.7 (0.3) , 0,1....,9

!(9 )!

y yf y n p y
y y

   


 

The shape of this PDF is shown in Figure 1:  
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For the likelihood function for y =6  and n = 9 is given by : 

6 39!
( | 6, 9) (1 ) , 0 1

6!(3)!
L p y n p p p       

The shape of this likelihood function is shown in Figure 2. 
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There is an important difference between the PDF and the likelihood 

function, the two functions are defined on different axes, and therefore are 

not directly comparable to each other. Specifically, the PDF tells us the 

probability of a particular data value for a fixed parameter, whereas 

likelihood function tells us the likelihood of a particular parameter value 

for a fixed data set.  

Note that the likelihood function in this figure is a curve because there is 

only one parameter beside n; which is assumed to be known. If the model 

has two parameters, the likelihood function will be a surface sitting above 

the parameter space[12]. 

Maximum Likelihood Estimators (MLE) 

The principle of maximum likelihood estimation (MLE), originally 

developed by R.A. Fisher in the 1920s, states that the desired probability 

distribution is the one that makes the observed data ‘‘most likely,’’ which 

means that one must seek the value of the parameter vector that maximizes 

the likelihood function .The resulting parameter vector is called the MLE 

estimate.  

Consider an experiment in which 1 2( , ,..... )nx x x are independent and 

identically distributed (iid) random variables sample from a population 

with pdf or pmf 1 2( | , ...... )kf x    , the likelihood function is defined by : 

1 2 1 2 1 2

1

( | ) ( , ...... | , ,.... ) ( | , ...... )
n

k n i k

i

L X L x x x f x      


   . (3.1) 

[21] 
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Definition: 

For each sample x , let ˆ( )x be parameter value at which ( | )L x attains 

its maximum as a function of theta which x held fixed.  

A maximum likelihood estimator of the parameter   based on a sample 

X  is ˆ( )X [21]. 

The maximum likelihood estimator MLE, denoted by ˆ( )X , is the value of 

  that maximizes ( )L  . 

The maximum of log( ( ))L   occurs at the same place as the maximum of 

( )L   so maximizing the log-likelihood leads to the same answer as 

maximizing the likelihood function [23]. Often, it is easier to work with the 

log-likelihood.  

Remark  

If we multiply ( )L  by any positive constant (not depending on  ) then 

this will not change the MLE. Hence, we shall often be sloppy about 

dropping constants in the likelihood function [23]. 

Furthermore, if the sample is large, the method will typically yield an 

excellent estimator of . 

Now we want to find  such that log( ( ))L   is maximized, to do this we 

can use one of the following methods: 

1. Graphically. 

2. Optimization methodology. 

3. Numerically. 
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In our work we will use the second method i.e. take the derivative of 

log( ( ))L  and find out the points   where it's zero: (log( ( ))) 0L     

(log( ( )))L   is the slope at  . If its zero it means that you have found either a 

minimum, a maximum or a saddle point. We are not interested in saddle 

points so we want to check that the points where (log( ( )))L   is zero also 

have the (log( ( )))L   is non-zero. (log( ( )))L    gives a measure for the 

"curvature" of log( ( ))L   at that point. Saddle points are horizontal hence 

have (log( ( )))L    equal to zero.  

3.1.2 MLE for a Poisson distribution: 

Let ( 1 2, ,....., nx x x ) are the samples taken from Poisson distribution, and the 

probability mass function is given by: 

( , )
!

xe
f x

x






  ,    is unknown. 

So the likelihood function is given by: 

 

1 2

1 2

1 2

( ) ( , ) ( , ) ..... ( , )

.....
! ! !

n

n

xx x

n

L f x f x f x

e e e

x x x

  

   

    

  

    

     

1

1

( )

!

n

i

i

x

n

n

i

i

L e

x

 










  


 (3.2) 

Then we find the natural logarithm likelihood function: 



31 

1

1

1
ln ( ( ) ) ln ( ) ln ( ) ln ( )

!

n

i

i

x
n

n

i

i

L e

x

  




  


 

1 1

ln (ln )
n n

i i

i i

x n x 
 

      

In order to find the maximum  , take the derivatives of the last 

expression with respect to   and equate it to zero. 

1
ln ( ( ) )

n

i

i

x
L

n


 



  




 

10

n

i

i

x

n

 


 

                         
1

n

i

i

x

n




 

                    
1

1ˆ
n

i

i

x
n




        (3.3) 

I.e.  ̂  is equal to the mathematical mean of the sample ˆ x   

Thus the mean of the sample gives the maximum likelihood estimation of 

the parameter  . 

3.1.3 MLE for a Binomial distribution: 

Let X  be a random variable with parameter p   . Let ( 1 2, ,....., mx x x ) be the 

independent random samples of X . 
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Recall the probability mass function for the binomial distribution with 

parameter p is:  

   , (1 ) , 0,1,...,n x n x

xf x p p p x n      

Then the likelihood function of the sample is: 

1 2( ) ( , ) ( , ) ..... ( , )mL p f x p f x p f x p     

                 
1

(1 )i i

i

m
x n xn

x

i

p p




    (3.4) 

Taking the natural logarithm on both sides: 

    
1

ln ln( (1 ) )i i

i

m
x n xn

x

i

L p p p




     

                             
1

[ln ln ( ) ln (1 )]
i

m
n

x i i

i

x p n x p


        

                             
1 1 1

ln ( ) ln ( ) ln(1 )
i

m m m
n

x i i

i i i

x p m n x p
  

           

Since ln ( ( ))L p  is a continuous function of p  , then it has a maximum 

value. Now we will take the derivatives of the last expression with respect 

to p  and setting it equal to zero, so: 

1 1

ln ( ( )) 1 1
0 ( )

1

m m

i i

i i

L p
x m n x

p p p 


      

 
   

1 1

1 1
0 ( )

1

m m

i i

i i

x m n x
p p 

     


   
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1 1

0 (1 ) ( )
m m

i i

i i

p x p m n x
 

         

1

m

i

i

x p m n


    

1

1
ˆ

m

i

i

p x
m n 

  

  (3.5) 

3.1.4 MLE for an Exponential distribution: 

Let ( 1 2, ,....., nx x x ) be a random sample taken from exponential distribution, 

and the probability density function given by: 

( , ) xf x e       

The likelihood function of the sample is given by: 

1

( ) i

n
x

i

L e
   



   

 
1( )

n

i

i

x
nL e



  

 
           (3.6) 

Taking the natural logarithm on both sides: 

1

1

ln( ( )) ln ln

ln

n

i

i

x

n

i

i

L n e

n x



 

 



 




  

   
 

In order to find the maximum  , take the derivatives of the last 

expression with respect to   and equate it to zero. 
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1
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i

L
n x



  


  


  

         
1

1
0

n

i
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n x
 

    

                      
1

1 n

i

i

n x
 
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1

ˆ
n

i

i

n

x





 


    (3.7) 

Thus the maximum likelihood estimator of   is equal to the inverse of the 

mean of the sample. 

Example:  

The owner of the news stand pays 1 $ for a copy of the newspaper and sells 

it for 8$. Newspapers left at the end of the day are recycled for an income 

of 4$ a copy. Assume the newsvendor has a pool of 50 customers that come 

every day to the stand .Each customer may buy a newspaper with 

probability p. It is a well-known fact that any experiment comprising a 

sequence of n  ( n =50 in our example) Bernoulli trials, each having the 

same “yes” probability p  and the same “No” probability 1 − p , can be 

represented by a random variable ( , )bin n p  that follows a binomial 

distribution. Assume the probability of success p is not known, and the 

owner of the stand wants to determine the optimal number of newspapers 

that must to be stocked at the begging of the day. So in order to find the 
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optimal quantity we can use equation (2.6) but p  is not known, so we 

need to estimate it using MLE as discussed later. 

Assume we have a set of past demand sample {28, 28, 27, 24, 25, 26, 28, 

28, 23, 27} consider a newsvendor. So, as mentioned in subsection (3.1.3) 

we can find an estimation of p  by using equation (3.5) we have 

 
264

ˆ ˆ 0.528
10 50

p p  


 

 

Now, we can find the optimal quantity as clarified in subsection (2.3.2)  

from our example, unit overage cost =5-4=1$ and the unit underage cost = 

8-5=3$. Thus the optimal order quantity is equal to 29 and the expected 

total cost is equal to 4.4615 $. 
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3.1.5 Bayes estimators: 

The Bayesian approach to statistics is fundamentally different from the 

classical approach that we have been discussing.  

The main features of Bayesian approach is that parameters are random 

variables with probabilities, also we can make probability statements about 

parameters, even though they are fixed constants. 

We make inferences about a parameter, by producing a probability 

distribution for the parameter. Then we can infer the value of the parameter 

such as point estimates and interval estimates may then be extracted from 

this distribution [23]. 

We will discuss the Bayesian approach in statistics. 

A random sample 1,..., nX X  is drown from a population indexed by . 

 ,in Bayesian approach, is considered to be a quantity whose variation can 

be described by a probability distribution (called the prior distribution).This 

is a subjective distribution , based on the experimenter’s belief , and is 

formulated before the data are seen. A sample is then taken from a 

population indexed by   and the prior distribution is updated with this 

sample information. The updated prior is called the posterior distribution. 

This updating is done with the use of Bayes’ Rule [21]. 

Bayesian analysis can be outlined in the following steps. 

1. Formulate a probability model for the data. If the n data values to be 

observed are 1,..., nx x , and the unknown parameter is denoted  ,    

then, assuming that the observations are made independently, we are  

interested in choosing a probability function |( )if x  for the data. 
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2. Decide on a prior distribution, which quantifies the uncertainty in the 

values of the unknown model parameters before the data are 

observed. The prior distribution can be viewed as representing the 

current state of knowledge, or current description of uncertainty, 

about the model parameters prior to data being observed. 

3. Observe the data, and construct the likelihood function based on the 

data and the probability model formulated in step 1. The likelihood is 

then combined with the prior distribution from step 2 to determine 

the posterior distribution, which quantifies the uncertainty in the 

values of the unknown model parameters after the data are observed. 

4. Summarize important features of the posterior distribution, or 

calculate quantities of interest based on the posterior distribution. 

These quantities constitute statistical outputs, such as point estimates 

[29]. 

To obtain the posterior distribution, |( )f X , the probability distribution of 

the parameters once the data have been observed, we apply Bayes’ 

theorem: 

( | ) ( )
|

( | ) ( )
( )

f X f

f X f d
f X

 

  
 


                          (3.8) 

Since we have n  iid observation we replace ( | )f X   with 

1

( ) ( | )|
n

i

i

L f xX 


  then: 

( | ) ( )
|

( | ) ( )
( ) ( | ) ( )

L X f

L x f d
f X L X f

 

  
  


     (3.9)  
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In the right hand side of the last equation, we threw away the denominator 

( | ) ( )L x f d    which is a constant that does not depend on  ; this 

quantity call the normalizing constant. 

We can summarize all this by writing: 

‘Posterior is proportional to likelihood times prior’ [23]. 

To get actual posterior we will multiply the prior distribution by the 

likelihood, and then determine the normalizing constant that forces the 

expression to integrate to 1 to make sure it is a probability distribution. 

The posterior distribution summarizes our belief about the parameter after 

seeing the data. It takes into account our prior belief and the data 

(likelihood). A graph of the posterior shows us all we can know about the 

parameter. A distribution is hard to interpret. Often we want to find a few 

numbers that characterize it. These include measures of location that 

determine where most of the probability is on the number line, and 

measures of spread that determine how widely the probability is spread. [4] 

3.1.6 Binomial Bayes Estimation:  

Let 1 ,...., mx x be iid ( , )binom n p  and
1

m

i

i

xy


 , assume the prior 

distribution on p is ( )beta    

So the prior distribution is: 

( )
( ) (1 )

( ) ( )
f p p p  

 

  
 
 

     (3.10) 
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Let p be our prior mean for the proportion, and let   be our prior standard 

deviation for the proportion. The mean of ( )beta    is 


 
set this equal 

to what our prior belief about the mean , also the standard deviation of the 

( )beta   is 
2( ) ( )



     
 set this equal to what our prior belief 

about the standard deviation [4]and then we can find the two parameters    

and  . 

Also the likelihood function is given by  

 
1

( ) (1 )i i

i

m
x n xn

x

i

L p p p




     

So, the posterior distribution is proportional to the product of the Beta prior 

distribution and the likelihood function 

 
1

( )
( | ) ( | ) ( ) (1 ) (1 )

( ) ( )
i i

i

m
x n xn

x

i

f p X L p X f p p p p p  

 

  



 
     

 
   

(3.11) 

To get the actual posterior we need to divide the last expression by the 

normalizing constant: 

The normalizing constant  

 
1

10

( )
( (1 ) (1 ) )

( ) ( )
i i

i

m
x n xn

x
i

p p p p dp  

 
  



 
    

 
  

Then the posterior distribution is: 

( )
( | ) (1 )

( ) ( )

y n yn
f p X p p

y n y

  

 

      
 
    

     (3.12) 
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I.e. the posterior distribution is equal to the beta function with parameters 

y   and n y    

Example : 

In the previous example if we need to estimate the parameter p  using 

Bayesian approach. 

Then y = 264 and our prior distribution is ( )beta    .Set prior mean = 

0.528 and prior variance = 0.001216, then   = 107.6842 and  =96.2632.  

Then the posterior distribution is (107.6842 264 96.2632 500 264)beta      

And we can estimate the parameter p  by the mean of the posterior 

distribution: 

p̂ =0.528. 
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3.1.7 Poisson Bayes Estimation: 

Let 1 ,...., mx x be iid ( )Poisson   and
1

m

i

i

xy


 , assume the prior 

distribution on  is ( )Gamma    

So the prior distribution is: 

( )
( )

e
f

   




 




    (3.13) 

Let  be our prior mean, and let   be our prior standard deviation. The 

mean of ( )Gamma    is 



set this equal to what our prior belief about the 

mean , also the standard deviation of the ( )Gamma   is 2




 set this equal to 

what our prior belief about the standard deviation. And then we can find 

the two parameters    and  . 

Also the likelihood function is given by  

1

( )
!

ixm

i i

e
L

x

 







  

So, the posterior distribution is proportional to the product of the Gamma 

prior distribution and the likelihood function 

1

( | ) ( | ) ( )
! ( )

ixm

i i

e e
f X L X f

x

     
  



  




 


  (3.14) 

To get the actual posterior we need to divide the last expression by the 

normalizing constant: 

The normalizing constant 
10

( )
! ( )

ixm

i i

e e
d

x

     




   







  

Then the posterior distribution is: 
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1 ( )( )

( | )
( )

y y nn e
f X

y

    




    


 
  (3.15) 

I.e. the posterior distribution is equal to the Gamma function with 

parameters y   and n  . 

3.1.8 Exponential Bayes Estimation: 

Let 1 ,...., mx x be iid ( )Exp   and
1

m

i

i

xy


 , assume the prior distribution 

on  is ( )Gamma    

So the prior distribution is: 

( )
( )

e
f

   




 




      (3.16) 

Let  be our prior mean, and let   be our prior standard deviation. The 

mean of ( )Gamma    is 



set this equal to what to what our prior belief 

about the mean , also the standard deviation of the ( )Gamma   is 2




 set 

this equal to what our prior belief about the standard deviation. And then 

we can find the two parameters    and  . 

Also the likelihood function is given by  

1

( ) i

m
x

i

L e
  



  

So, the posterior distribution is proportional to the product of the Beta prior 

distribution and the likelihood function 

1

( | ) ( | ) ( )
( )

i

m
x

i

e
f X L X f e

  
  

   


 




  


  
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To get the actual posterior we need to divide the last expression by the 

normalizing constant: 

The normalizing constant 
10

( )
( )

i

m
x

i

e
e d

  
  

 


  




 


  

Then the posterior distribution is: 

1 ( )( )
( | )

( )

n n yy e
f X

n

    




    


 
    (3.17) 

I.e. the posterior distribution is equal to the Gamma function with 

parameters n   and y  . 

3.2 Confidence interval:  

When we wish to estimate an unknown parameter θ confidence intervals 

provide a method of adding more information to an estimator̂ . 

As we discussed in point estimation, when we need to estimate the value of 

an unknown parameter from a random sample, we have a single estimate, 

and we have no indication of just how good our best estimate is, also a 

single estimate has always, however, been realized that this single value is 

of little use unless associated with a measure of its reliability, but it was 

neither easy to give any precise definition of this measure of probability 

nor to assess the extent of error involved in estimating the value of the 

parameter from the sample [8], so that statisticians have cleverly developed 

another type of estimate. This new type estimate, called a confidence 

interval or interval estimate, consists of a range (or an interval) of values 

instead of just a single value. [28]  
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In other words a confidence interval for a population parameter consists of 

a range of values, restricted by a lower and an upper limit.  

The lower and upper bounds of a confidence interval are random (they may 

change from sample to sample). In a given sample, however, they are 

known numbers. 

A confidence level, (1-α)%, refers to the percentage of all possible samples 

that can be expected to include the true population parameter. For example, 

suppose all possible samples were selected from the same population, and a 

confidence interval were computed for each sample. A 95% confidence 

level implies that 95% of the confidence intervals would include the true 

population parameter.  

3.2.1. Confidence interval for the Binomial distribution 

Description: Let x be the number of successes in a random sample of size 

m. A success is observed if iy   has a specific characteristic; such that 

1 2{ , ,..., }i my y y y  and a failure is observed if iy  does not have that 

characteristic. The point estimation of the parameter p  is equal to 
x

n m
 (as 

discussed in section 3.1.3) 

There are several ways to construct a confidence interval for the parameter 

p for example: 

Wilson’s score interval (Wilson, 1927),  

The Wald interval (Wald & Walfowitz, 1939), 

 The adjusted Wald interval (Agresti & Coull, 1998),  

And the ‘exact’ Clopper-Pearson interval (Clopper & Pearson, 1934). [5] 
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In our work we will focus on the Wald interval Method and the Clopper 

Pearson Method. 

Clopper Pearson method 

Clopper-Pearson method is based on the exact binomial distribution, some 

authors refer to this as the “exact” procedure because of its derivation from 

the binomial distribution. If X x  is observed, then the Clopper–Pearson 

interval is defined by ( , )lb ubp p   

Where ,lb ubp p   are, respectively, the solution in p  to the equations: 

( ) / 2p X x     (3.18) 

And  ( ) / 2p X x       (3.19)  [1]  

As discussed in [11] the computation of ( , )lb ubp p is simplified by using 

quantiles from the beta distribution. Let ( , )f t    be the density function of 

a ( , )Beta    random variable. Then  

0

( ) ( , , 1)

p

p X x f t x n x dt        (3.20)         

When (3.20) is plugged into (3.18) and (3.19), the problem of finding 

( , )lb ubp p reduces to inverting the distribution functions of two beta 

distributions. So the lower endpoint is the / 2  quantile of a beta 

distribution, ( , 1)Beta x n x  , and the upper endpoint is the 1 / 2

quantile of a beta distribution, ( 1, )Beta x n x   

Consequently, the endpoints of the Clopper–Pearson interval are given by 

quantiles of beta distributions: 
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 ( , ) ( ( / 2, , 1), (1 / 2, 1, ))lb ubp p Beta x n x Beta x n x         

(3.21) 

When X is neither 0 nor n, closed-form expressions for the interval bounds 

are available.  

But when X = 0 the interval is
1/(0,1 ( ) )n    and when X = n it is

1/(( ) ,1)n   . For other values of X, (3.21) must be evaluated 

numerically.[11]  

Furthermore, this interval can also expressed using quantiles from the F 

distributions based on the relationship between the binomial distribution 

and the F distribution as follows: 

2( 1),2( ),

2( 1),2 , 2( 1),2( ),

1

1

1 1
1 1

x n x

n x x x n x

x
F

n xp
n x x

F F
x n x



 

  

     



 
  

 


             (3.22) 

Where 
1 2, ,v vF   is the upper 100 (1 )th  percentile from a F distribution with 

1v  and 2v  degrees of freedom [14]. 

Wald interval method  

The normal theory approximation of a confidence interval for a proportion 

is known as the Wald interval [5]. 

Normal approximation method is good and easy to compute estimate of the 

Binomial distribution. 

As discussed in [5] the formula used to derive the confidence interval using 

the normal approximation is  
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ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( (1 ) / , (1 ) / )lb ubp p p z p p n p z p p n            (3.23) 

Where z  is the   critical value from a standard normal distribution 

and p̂  is a point estimation of the parameter p  using MLE as discussed in 

section (3.1.3)  

The Wald interval suffers from particularly erratic coverage properties, and 

cannot be recommended for general use  

Normal approximation method works well when n is large, and p is neither 

very small nor very large. But for very small values of p it doesn’t provide 

accurate results. Due to the inaccuracy of the normal approximation 

method, many statisticians started using the exact Clopper-Pearson 

method.[14] 

The confidence interval may be used if: 

1. np, n(1 − p )are ≥ 5 (or 10); 

2. np (1 − p )≥ 5 (or 10) [24]. 

3.2.2 Confidence interval for the Poisson distribution 

Let 1 2, ,..., ny y y  be a random sample from ( )Poisson  . Let 

1

~ ( )
n

i

i

x y Poisson n


 , the classic method of constructing exact 

confidence intervals for parameter of Poisson distribution is to use the 

fiducial interval ( , )l u   such that l uand   are, respectively, the solutions 

in   to the equations:  

!

ln i

l

i x

e n

i

 


 




        (3.24)  
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0 !

un ix
u

i

e n

i

 


 




        (3.25) [20] 

The main problem with using this method is the difficulty in computing the 

cumulative Poisson probability expressions [15]. So that instead of 

evaluating Poisson cumulative probabilities in (3.24) and (3.25), as 

discussed in [19] one can use the relationship between the Poisson and the 

chi-squared distributions:  

2

2( 2 )
!

n i

x

i x

e n
p n

i

 
 

 




   

Then the confidence interval of the Poisson distribution can be expressed 

as: 

2 2

2 ,1 2( 1),

1 1
( , ) ,

2 2
l u x x

n n
       

 
  
 

 (3.26) 

Where 
1

n

i

i

x y


  and squared -quantile of the chi
thv denotes the  

2

,v   

distribution with degree of freedom =  and where we define 
2

0, 0  [20]. 

3.2.3 Confidence interval for the Exponential distribution 

We will use the exact confidence interval for the exponential distribution as 

discussed in [38]. 

Suppose 1 2, ,..., nX X X  are independent exponential random variables each 

having exponential distribution with parameter , let 
1

n

i

i

y X


  then y  has 

a gamma random variable with parameters n  and 
1


 [7]. 

 So a100(1 ) percent confidence interval for   is ( , )l u  such that

l uand   are, respectively, the solutions in   to the equations:  
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t e
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
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
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 
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1

0

1
( )

( ) 2

t
n n

y t e

dt
n








 
 
  

 
 
 

  

And it can be expressed using the quantiles from the chi-square 

distribution: 

( , )l u  

1 1

2 2
/2,2 1 /2,2

,

2 2
n n

i i

i i

n n

X X

  

 



 
 
 
 
 
 
 

(3.27)   [38] 

Such that: n  is the number of observations and quantile thv denotes the   
2

,v   

of the chi-squared distribution with degree of freedom  and where we 

define 
2

0, 0   
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Chapter Four 

Combine confidence interval analysis and inventory 

optimization 

Consider the single period inventory control problem with a single item, we 

will take the situation in which the manager knows the type of the random 

demand distribution, but he doesn’t know the value of some parameter of 

this distribution. Fortunately, the manager have a set of M past realizations 

of the demand. Under these partial realizations we will compute estimation 

of the unknown parameter and depending on this estimation we will find a 

range of order quantities, and this range will include-under confidence 

coefficient1  -the optimal order quantity, and then we will compute an 

interval for the expected total cost associated with the range of order 

quantities. 

4.1 Binomial demand 

In this section we will consider the situation where the demand has a 

Binomial distribution with two parameters n and p ,( ( , )binom n p ). In the 

first case all of its parameters are known, as in the previous discussion, we 

can directly find the optimal order quantity and the expected total cost that 

the manager will infer. 

But in the other case where the parameter p (probability of success) is not 

known, and we have a set of past demand samples, we need to use this set 

in order to estimate the parameter p . 
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As discussed in the previous chapters, in order to estimate any parameter 

we can use the point estimation or the interval estimation. 

Combine confidence interval analysis and inventory optimization Since we 

have a set of past demand sample, we will use it to estimate the parameter

p  by constructing a confidence interval. 

Let 1 ,.... my y  are the sample of a past demand for m -days, using this data to 

compute a lower and upper bounds of the confidence interval for the 

probability of success in the binomial demand. 

We will construct an exact confidence interval for the unknown parameter 

with a confidence coefficient (1  ): 

Since ~ ( , )iy binom n p  so  

1

~ ( , )
m

i

i

x y binom n m p


   

The bounds of the confidence interval for the probability of success  p  

( , )lb ubp p  are, respectively, the solution in p to the following two 

equations: 

  (1 )
n m

n m i n m i

i lb lb

i x

p p 


  



           (4.1) 

 
0

(1 )
x

n m i n m i

i u u

i

p p   



               (4.2) 

Again, we can express this interval using quantiles from the beta 

distribution as we discussed in section (3.2.1): 

 ( ( , 1), (1 1, ))beta x n m x beta x n m x                   (4.3) 
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After we construct an interval for the parameter p , we will now determine 

a set of quantities that contains the optimal order quantity with confidence 

coefficient   (1  ). 

Let 
*

lbQ  be an optimal order quantity of the single period inventory under 

binomial demand ( , )lbbinom n p with probability success lbp . 

And let 
*

ubQ  be an optimal order quantity of the single period inventory 

under binomial demand ( , )ubbinom n p with probability success ubp . 

And we can find the values of 
*

lbQ and 
*

ubQ  quantities as we clarify in section 

(2.3.2) 

So after computing the lower and upper optimal quantities we get, with 

confidence coefficient1  , a set that contains the optimal order quantity 

*Q i.e. 

* * * * *{ , 1,....., 1, }lb lb ub ubQ A Q Q Q Q    . 

At this point the manager has a set of quantities that he can choice on 

member of this set to order it at the beginning of the day. But he needs an 

information about the cost he will pay. 

In other words we need to compute an interval for the expected estimated 

cost associated with his choice and the expected estimated cost that the 

manager will face whatever the order quantity he chooses from the set. 

We will now construct a confidence interval, with confidence coefficient     

(1  ), of the expected total cost that the manager will pay if he order Q  

quantity that he choices from the set A . 
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Recall the expected total cost associated with the order quantity Q  under 

the binomial random demand, ( , )binom n p , as we discussed in section 

(2.3.2) is: 

   
0 1

( ( )) ( ) (1 ) ( ) (1 )
Q n

n D n D n D n D

D D

D D Q

E G Q h Q D p p g D Q p p 

  

        (4.4) 

 Such that h represents the unit overage cost and g represents the unit 

underage cost. 

Consider the function: 

    
0 1

( ) ( ) (1 ) ( ) (1 )
Q n

n D n D n D n D

D D

D D Q

G p h Q D p p g D Q p p 

  

          (4.5) 

In which the order quantityQ is fixed and the probability of success p  is a 

variable. 

Proposition:  ( )G p  is a convex in the continuous parameter p  

PROOF: 

Firstly, we can rewrite the function (4.5) as: 

( ) ( ) ( ) (1 ( ))
n

i Q

G p h Q np g h F i


                (4.6)    

In order to prove ( )G p  is a convex we need to show 
2

2

( )
0

G p

p





 which is 

equivalent to  

2

2
( (1 ( ))) 0

n

i Q

F i
p 


 


   in other words we need to show 

2

2
( ) 0

n

i Q

F i
p 





  

We can rewrite  
0

( ) ( , , ) (1 )
i

n k n k

k

k

F i F i n p p p 



    using the regularized 

incomplete beta function: 
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 
1

1

0

( , , ) ( ) (1 )

p

n n i i

iF i n p n i s s ds



     

We will compute the first derivative of ( , , )F i n p  using Leibniz’s rule: 

 1 1( , , ) (1 )

( , 1, )

( ( , 1, ) ( 1, 1, ) )

n n i i

iF i n p n p p
p

n f i n p

n F i n p F i n p

  
  



 

     

 

 
2

2
( , , ) ( ( , 1, ) ( 1, 1, ) )

[ ( 1)( ( , 2, ) ( 1, 2, )) ( 1)( ( 1, 2, ) ( 2, 2, ))]

( 1)[ ( , 2, ) ( 1, 2, )]

F i n p n F i n p F i n p
p pp

n n F i n p F i n p n F i n p F i n p

n n f i n p f i n p

  
     

 

              

     

 

2

2
( , , ) ( 1)[ ( , 2, ) ( 1, 2, ) ( 1, 2, ) ( 2, 2, ) .... ( , 2, ) ( 1, 2, )]

n

i Q

F i n p n n f Q n p f Q n p f Q n p f Q n p f n n p f n n p
p 


                 




All terms cancel out except ( 1, 2, )f Q n p    and ( , 2, ) 0f n n p   then: 

2

2
( , , ) ( 1) ( 1, 2, )

n

i Q

F i n p n n f Q n p
p 


    


  which is less than zero. 

So the cost function is a convex in the continuous parameter p . 

Assume that we choose a quantityQ from the set A  , we will try to find an 

upper and lower bound for the associated expected cost. 

To do this we need to find
*p  that minimize the cost function 

Since ( )G p is convex in p  then we can use unconstrained convex 

optimization approach in order to find 
Q

lp that minimizes ( )G p  also we can 

find 
Q

up  that maximizes ( )G p over an interval ( , )lb ubp p . 

We have now an interval ( ( ), ( ))Q Q

l uG p G p  that contains lower and upper 

bound for the expected cost that the manager will face if he ordersQ  

quantity. 
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We will repeat this step for each Q A , and then we have an upper and 

lower bound for expected for everyQ . 

We can find the interval ( , )lb ubc c , with confidence coefficient1  , for 

the estimated cost that the manager will infer whatever quantity he orders 

from the set A  by using the following formulas: 

The lower bound is: 

min ( )Q

lb l
Q A

c G p


      (4.7)    

The upper bound is: 

max ( )Q

ub u
Q A

c G p


        (4.8)    

4.2 Poisson demand 

In this section we will consider the situation where the demand has a 

discrete random variable that follows a Poisson distribution with parameter

 , ( )Poisson  . In the first case the parameter is known, as in the previous 

discussion, we can directly find the optimal order quantity and the expected 

total cost that the manager will infer. 

But in the other case where the parameter  (The mean number of 

successes that occur in a specified region) is not known, and we have a set 

of past demand samples, we need to use this set in order to estimate the 

parameter . 

As discussed in the previous chapters, in order to estimate any parameter 

we can use the point estimation or the interval estimation. 

Combine confidence interval analysis and inventory optimization 
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Since we have a set of past demand sample, we will use it to estimate the 

parameter by constructing a confidence interval. 

Let 1 ,.... my y  are the sample of a past demand for m days, using this data to 

compute a lower and upper bounds of the confidence interval for parameter

 . 

We will construct an exact confidence interval for the unknown parameter 

with a confidence coefficient(1  ): 

Since ~ ( )iy Poisson   so  

1

~ ( )
m

i

i

x y Poisson m


  

The bounds of the confidence interval for the parameter , ( , )lb ub   are, 

respectively, the solution in  to the following two equations: 

( )

!

i
m

i x

m
e

i

 



 




          (4.9)    

0

( )

!

ix
m

i

m
e

i

 
 




              (4.10) 

Again, we can express in the terms of the chi-square distribution as 

discussed in section (3.2.2): 

 
2 2

2 ,1 2( 1),

1 1
( , ) ,

2 2
l u x x

m m
       

 
  
 

       (4.11) 

After we construct interval for the parameter , we need to determine a 

set of quantities that contains the optimal order quantity with confidence 

coefficient 1   and an interval for the estimated cost that the manager 

will infer whatever quantity he orders from the set of candidate quantities. 
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We will carry out this in a similar fashion to the binomial case that 

discussed in the previous section. 

Let 
*

lbQ  be an optimal order quantity of the single period inventory under a 

Poisson demand ( )lbPoisson  . 

And let 
*

ubQ be an optimal order quantity of the single period inventory 

under a Poisson demand ( )ubPoisson  . 

Now, we get, with confidence coefficient1  , a set that contains the 

optimal order quantity 
*Q i.e. 

* * * * *{ , 1,....., 1, }lb lb ub ubQ A Q Q Q Q    . 

Consider the cost associated with the order quantity Q  under the Poisson 

demand ( )Poisson  . 

0 1

( ( )) ( ) ( )
! !

D DQ

D D Q

E G Q h Q D e g D Q e
D D

  
 

  

      (4.12) 

 Consider the function: 

 
0 1

( ) ( ) ( )
! !

D DQ

D D Q

G h Q D e g D Q e
D D

  



 

  

        (4.13) 

In which the order quantityQ is fixed and the parameter   is a variable. 

Proposition:  ( )G   is a convex in the continuous parameter   

PROOF: 

Firstly, we can rewrite the function (4.13) as: 

( ) ( ) ( ) (1 ( ))
i Q

G h Q g h F i 




                (4.14)    
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In order to prove ( )G   is a convex we need to show 
2

2

( )
0

G p

p





 which is 

equivalent to  

2

2
( (1 ( ))) 0

n

i Q

F i
p 


 


   in other words we need to show 

2

2
( ) 0

n

i Q

F i
p 





  

We can rewrite 
0

( ) ( , )
!

ki

k

F i F i e
k

  



    

Proof: 

1

0 0

( ) ( )
! ! !

k k ki i

i Q k i Q k

k
e e e

k k k

    



 
  

   


  


   

2 1

2
0 0

( ) ( ( ))
! ! !

k k ki i

i Q k i Q k

k
e e e

k k k

    



 
  

   

 
  


   

     

2 1 1

0

( 1)
( )

! ! ! !

k k k ki

i Q k

k k k k
e e e e

k k k k

        
   

 


     

     

2 1

0

( 1)
( 2 )

! ! !

k k ki

i Q k

k k k
e e e

k k k

     
  

 


    

      

2 1

0 0 0

( 1)
( 2 )

! ! !

k k ki i i

i Q k k k

k k k
e e e

k k k

     
  

   


       

       

2 1

2 1 0

( 2 )
( 2)! ( 1)! !

k k ki i i

i Q k k k

e e e
k k k

     
  

   

  
 

     

       
2 1

0 0 0

( 2 )
! ! !

k k ki i i

i Q k k k

e e e
k k k

      
  

   

       

       ( ( 2, ) 2 ( 1, ) ( , ))
i Q

F i F i F i  




      

( 2, ) 2 ( 1, ) ( , ) ( 1, ) 2 ( , )

( 1, ) ( , ) 2 ( 1, ) ( 2, ) ......

F Q F Q F Q F Q F Q

F Q F Q F Q F Q

    

   

        

      
 

                                        ( 2, ) ( 1, )F Q F Q      
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2 1

0 0! !

k kQ Q

k k

e e
k k

   
 

 

    

                                      

1

0
( 1)!

Q

e
Q

  
  


 

So the cost function is a convex in the continuous parameter . Therefore 

we will use the similar steps that discussed in the binomial demand to 

compute an interval that contains lower and upper bounds for the expected 

cost ( ( ), ( ))Q Q

l uG G  that the manager will face if he orders Q quantity by 

using unconstrained convex optimization approach. Also we can find the 

interval ( , )lb ubc c , with confidence coefficient1  , using the following 

formulas: 

The lower bound is: 

min ( )Q

lb l
Q A

c G 


     (4.15) 

The upper bound is: 

max ( )Q

ub u
Q A

c G 


     (4.16) 

We will clarify steps in order to compute, under the confidence coefficient

1  , a set of candidate order quantities and the cost that the manager will 

pay if he selects a quantity from this set. 

1. From a set of past demand sample, employ confidence interval of the 

Poisson distribution as mentioned in equations (3.26) to find a lower 

and upper bounds for the parameter  . 
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2. Determine the critical ratio R and then compute the bounds for the 

set A  of order quantities.  

3. For each element in A , compute an interval for the expected cost, 

and then compute a lower and upper bounds for the cost associated 

with these order quantities.  

4.3 Exponential demand 

Consider a continuous random demand that follows an Exponential 

distribution with parameter , ( )exponential  .In the first case the parameter 

  is known, as in the previous discussion, we can directly find the optimal 

order quantity by using equation (1.4) : 

*

0

( )

Q
g

f D dD
h g


            

*

0

Q

D g
e dD

h g

  
     (4.17) 

Such that h  represents the unit overage cost and g  represents the unit 

underage cost. 

Then the optimal order quantity is given by:  
* 1

ln( )
h g

Q
h


  (4.18) 

We can compute the expected total cost that associated with any order 

quantity by using equation (2.2): 

( ( , )) ( ( 1))Qh g h
E G Q D e Q

h g

 



  


  (4.19)    
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Also we can easily compute the expected total cost that associated with the 

optimal order quantity by substituting *Q in the last equation and then we 

have: 

*( ( , )) ln ( )
h h g

E G Q D
h


    (4.20) 

Now we will consider another case where the parameter   is not known, 

and we have a set of past demand samples, we will use this set in order to 

estimate the parameter . 

Combine confidence interval analysis and inventory optimization 

Since we have a set of past demand samples, we will use it to estimate the 

parameter  by constructing a confidence interval. 

Let 1 ,.... my y  are the sample of a past demand for m - days, using this data to 

compute a lower and upper bounds of the confidence interval for the 

parameter in the exponential demand. 

As discussed in section (3.2.3) we can construct an exact confidence 

interval for the unknown parameter with a confidence coefficient1  by 

using this interval:  

( , )l u    

1 1

2 2
/2,2 1 /2,2

,

2 2
m m

i i

i i

m m

y y

  

 



 
 
 
 
 
 
 

  (4.21) 

After constructing this interval, we will now determine an interval for 

quantities ( , )lb ubQ Q that contains the optimal order quantity with confidence 

coefficient1  .                                                   
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Let 
*

lbQ  is an optimal order quantity of the single period inventory under 

exponential demand ( )ubexponential  . 

And let 
*

ubQ  is an optimal order quantity of the single period inventory 

under exponential demand ( )lbexponential  .  

And we can find the values of 
*

lbQ and 
*

ubQ  quantities as we clarify by using 

equation (4.18). 

So after computing the lower and upper quantities we get, with confidence 

coefficient1  , an interval that includes the optimal order quantity 
*Q

i.e. 

* * *( , )lb ubQ A Q Q  . 

At this point the manager can choice any quantity of this interval to order it 

at the beginning of the day. But he needs an information about the cost he 

will pay. 

In other words we need to compute an interval for the expected estimated 

cost that the manager will face whatever the order quantity he chooses from 

the interval. 

We will now construct a confidence interval, with confidence coefficient

1  , of the expected total cost that the manager will pay whatever order 

quantity he orders from the interval A . 

Recall the expected total cost associated with the order quantity Q  is given 

by (4.19): 

 ( ) ( ( 1))Qh g h
G Q e Q

h g

 



  


. 
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Unfortunately, ( )G Q  is not convex in the continuous parameter  so as 

discussed in [35], we can compute an interval for the expected cost 

associated with any quantity that the manager chooses from A by using: 

The lower bound is: 

* *( , )lb lb ubc G Q               (4.22) 

And the upper bound is: 

* * *max{ ( , ), ( , )}ub lb lb ub ubc G Q G Q       (4.23) 
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Chapter Five 

Comparison between confidence approach and point 

estimation approach 

In this chapter we will present algorithms that facilitate dealing with each 

demand distribution that discussed in the previous chapters in order to 

identify a range of order quantities that, with confidence coefficient1  , 

includes the real optimal order quantity, and in order to produce an interval 

for the expected cost associated with the range of order quantities. 

5.1Binomial demand 

Consider the issue in single period single item inventory control problem, 

let h  be the unit overage cost, paid for each item left in stock after demand 

realized, and let g  be the unit underage cost, paid for each unit not 

achieved demand, and let the demand has a Binomial distribution with 

parameters n  and p , in which the parameter (probability of success) p is 

not known. In the first algorithm we will employ confidence interval, with 

confidence coefficient1  , in order to find a range of order quantities 

and interval for the associated cost, and in the second algorithm using point 

estimation instead of interval estimation. 

Recall: 

The confidence interval for the parameter p  is given by using quantiles 

from the beta distribution:  

( , )lb ubp p = ( ( , 1), (1 1, ))beta x n m x beta x n m x             
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The expected total cost associated with the order quantity Q  under the 

binomial random demand, ( , )binom n p is given by :  

   
0 1

( ) ( ) (1 ) ( ) (1 )
Q n

n D n D n D n D

D D

D D Q

G p h Q D p p g D Q p p 

  

        

The optimal order quantity of the single period inventory under binomial 

demand ( , )binom n p with probability success p is given by:  

( ( , ) , )Q InverseCDF binom n p R , where R is the critical fractile. 

Algorithm 1.1: Single period inventory model with Binomial demand 

(confidence approach). 

Input: confidence coefficient 1   

         the unit overage:  h  

                the unit underage: g  

                the number of customers per time: n  

         the number of past demand sample: m  

                a set of past demand sample 1{ ,......, }md d  

    Step 1 calculate the summation of past demand sample: 
1

m

i

i

d


  

    Step 2 find the solutions of the equations 4.1 and 4.2 to get the bounds of   

             the confidence interval ( , )lb ubp p  

    Step 3 determine the critical ratio 
g

R
g h




 

        Step 4 determine lbQ : ( ( ( , ) , )lb lbQ InverseCDF binom n p R )  

             determine ubQ : ( ( ( , ) , )ub ubQ InverseCDF binom n p R ) 

             { ,...., }lb ubA Q Q  

    Step 5 for each Q A repeat step 5.1-5.4 until end of the set  
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             Step 5.1 find 
Q

up  that maximize ( )G p in the interval ( , )lb ubp p  

              Step 5.2 find 
Q

lp  that minimize ( )G p in the interval ( , )lb ubp p  

             Step 5.3 find ( )Q

lG p    

            Step 5.4 find ( )Q

uG p    

Step 6 find the lower bound of the interval of the estimated expected total 

cost  

                   min ( )Q

lb l
Q A

c G p


     

Step 7 find the upper bound of the interval of the estimated expected total 

cost  

                   max ( )Q

ub u
Q A

c G p


      

Output: the set A  of candidate order quantities. 

          the interval of the estimated expected total cost. 

 

Algorithm 1.2: Single period inventory model with Binomial demand 

(point estimation approach). 

Input:  the unit overage:  h  

                the unit underage: g  

                the number of customers per time: n  

         the number of past demand sample: m  

                a set of past demand sample 1{ ,......, }md d  

   Step 1 calculate the summation of past demand sample: 
1

m

i

i

d


  
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    Step 2 find an approximation for the probability of success using any 

methods of the point estimation, e.g. using MLE we can find p̂  such that 

            
1

1
ˆ

m

i

i

p d
m n 

 

 . 

    Step 3 determine the critical ratio 
g

R
g h




 

       Step 4 determine Q̂ : ( ˆ ˆ( ( , ) , )Q InverseCDF binom n p R )  

     Step 5 find the estimated expected total cost for Q̂ : ˆ( )G p  

    Step 6 find Q̂

up  that maximize ( )G p . 

      Step 7 find Q̂

lp  that minimize ( )G p . 

     Step 8 find the interval of the estimated expected total cost for Q̂ : 

           Step 8.1 find 
ˆ

( )Q

lG p    

                   Step 8.2 find 
ˆ

( )Q

uG p    

Output: the candidate optimal order quantity Q̂ . 

          the estimated expected total cost for Q̂ .   

          the interval of the estimated expected total cost for Q̂ . 

5.2 Poisson demand:  

Consider the issue in a single period single item inventory control problem, 

let h  be the unit overage cost, paid for each item left in stock after demand 

realized, and let g  be the unit underage cost, paid for each unit not 

achieved demand, and let the demand has a Poisson distribution with 

unknown parameter . In the first algorithm we will employ confidence 

interval, with confidence coefficient1  , in order to find a range of order 

quantities and interval for the associated cost, and in the second algorithm 

using point estimation instead of interval estimation. 
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Recall: 

The confidence interval for the parameter   can give by using quantiles 

from the chi-square distribution: 

2 2

2 ,1 2( 1),

1 1
( , ) ,

2 2
l u x x

m m
       

 
  
 

 

The expected total cost associated with the order quantity Q  under the 

binomial random demand, ( )Poisson  is given by:  

0 1

( ) ( ) ( )
! !

D DQ

D D Q

G h Q D e g D Q e
D D

  



 

  

      

The optimal order quantity of the single period inventory under Poisson 

demand ( )Poisson   is given by:  

( ( ) , )Q InverseCDF Poisson R , where R is the critical fractile. 

Algorithm 2.1: Single period inventory model with Poisson demand 

(confidence approach). 

Input: confidence coefficient 1   

         the unit overage:  h  

                the unit underage: g  

         the number of past demand sample: m  

                a set of past demand sample 1{ ,......, }md d  

    Step 1 calculate the summation of past demand sample: 
1

m

i

i

d


  

    Step 2 find the solutions of the equations 4.9 and 4.10 to get the bounds 

of   

             the confidence interval ( , )lb ub   
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    Step 3 determine the critical ratio 
g

R
g h




 

       Step 4 determine lbQ : ( ( ( ) , )lb lbQ InverseCDF Poisson R )  

             determine ubQ : ( ( ( ) , )ub ubQ InverseCDF Poisson R ) 

             { ,...., }lb ubA Q Q  

Step 5 for each Q A repeat step 5.1-5.4 until end of the set  

             Step 5.1 find 
Q

u  that maximize ( )G  in the interval ( , )lb ub   

              Step 5.2 find 
Q

l  that minimize ( )G  in the interval ( , )lb ub   

             Step 5.3 find ( )Q

lG     

            Step 5.4 find ( )Q

uG     

Step 6 find the lower bound of the interval of the estimated expected total 

cost  

                   min ( )Q

lb l
Q A

c G 


     

Step 7 find the upper bound of the interval of the estimated expected total 

cost  

                   max ( )Q

ub u
Q A

c G 


  

Output: the set A  of candidate order quantities. 

          the interval of the estimated expected total cost. 

 

 Algorithm2.2: Single period inventory model with Poisson demand   

(Point estimation approach). 

Input:  the unit overage:  h  

                the unit underage: g  
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         the number of past demand sample: m  

                a set of past demand sample 1{ ,......, }md d  

   Step 1 calculate the summation of past demand sample: 
1

m

i

i

d


  

    Step 2 find an approximation for the parameter using any methods  

             of the point estimation, e.g. using MLE we can find ̂  such that 

            
1

1ˆ
m

i

i

d
m




  . 

    Step 3 determine the critical ratio 
g

R
g h




 

       Step 4 determine Q̂ : ( ˆ ˆ( ( ) , )Q InverseCDF Poisson R )  

     Step 5 find the estimated expected total cost for Q̂ : ˆ( )G   

    Step 6 find Q̂

u  that maximize ( )G  . 

      Step 7 find Q̂

l  that minimize ( )G  . 

     Step 8 find the interval of the estimated expected total cost for Q̂ : 

           Step 8.1 find 
ˆ

( )Q

lG     

                   Step 8.2 find 
ˆ

( )Q

uG    

Output: the candidate optimal order quantity Q̂ . 

          the estimated expected total cost for Q̂ .   

          the interval of the estimated expected total cost for Q̂ . 

5.3 Exponential demand:  

Consider the issue in single period single item inventory control problem, 

let h  be the unit overage cost, paid for each item left in stock after demand 

realized, and let g  be the unit underage cost, paid for each unit not 

achieved demand, and let the demand has an Exponential distribution with 

unknown parameter . In the first algorithm we will employ confidence 
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interval, with confidence coefficient1  , in order to find a range of order 

quantities and confidence interval for the associated cost, and in the second 

algorithm using point estimation instead of interval estimation. 

Recall 

* 1
ln( )

h g
Q

h


  

The expected total cost associated with the order quantity Q  is given by: 

( , ) ( ( 1))Qh g h
G Q e Q

h g

 



  

  

Algorithm 3.1: Single period inventory model with Exponential demand 

(confidence approach). 

Input: confidence coefficient 1   

         the unit overage:  h  

                the unit underage: g  

         the number of past demand sample: m  

                a set of past demand sample 1{ ,......, }md d  

          

Step 1 calculate the summation of past demand sample: 
1

m

i

i

d


  

Step 2 find the bounds of the unknown parameter ( , )lb ub  by using 

equation     (4.21) 

Step 3 determine the critical ratio 
g

R
g h




 

Step 4 determine lbQ : (
1

ln( )lb

ub

h g
Q

h


 ) 
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          determine ubQ : (
1

ln( )ub

lb

h g
Q

h


 ) 

         ( , )lb ubA Q Q  

Step 5 find the lower bound of the estimated expected total cost: 

         
* *( , )lb lb ubc G Q   

Step 6 find the upper bound of the estimated expected total cost:  

               
* * *max{ ( , ), ( , )}ub lb lb ub ubc G Q G Q   

Output: the interval A  of candidate order quantities. 

          the interval of the estimated expected total cost. 

 Algorithm3.2: Single period inventory model with Exponential demand   

(Point estimation approach). 

Input:  the unit overage:  h  

                the unit underage: g  

         the number of past demand sample: m  

                a set of past demand sample 1{ ,......, }md d  

Step 1 calculate the summation of past demand sample: 
1

m

i

i

d


  

Step 2 find an approximation for the parameter  using any methods  

             of the point estimation, e.g. using MLE we can find ̂  such that 

            

1

ˆ
n

i

i

n

x








. 

Step 3 determine the critical ratio 
g

R
g h




 

Step 4 determine Q̂ : (
1ˆ ln( )
ˆ

h g
Q

h


 )  

Step 5 find the estimated expected total cost for Q̂ :
* ˆ ˆ( , )c G Q   
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Output: the candidate optimal order quantity Q̂ . 

          the estimated expected total cost for Q̂ .   

5.4 Examples and discussion 

Example: Binomial demand 

Consider a newsvendor problem under a Binomial demand with 50n  and 

with unknown parameter p , assume 1h   and 3g   also the manager is 

given 10 samples of past demand. The samples are:

{28,27,25,23,29,26,28,28,22,28} , we will use this samples and after 

using the algorithms 1.1 and 1.2 we will determine the candidate optimal 

quantity and the associated estimated expected cost (Let confidence 

coefficient 1 0.9  ). 

 

Binomial 

demand 

Point estimation approach Confidence interval approach 

MLE Bayesian 

p̂  Q̂  ˆ( )G p  p̂  Q̂

 

ˆ( )G p                  ( , )lb ubp p  { ,...., }lb ubQ Q

 

( , )lb ubc c

 

0.528 29 4.46149 0.528 2

9 

4.4614

9 

(0.489,0.5657) {27,…,31} (4.4269

,7.2295

) 

Example: Poisson demand 

Consider a newsvendor problem under a Poisson demand with unknown 

parameter , assume 1h   and 3g   also the manager is given 10 

samples of past demand. The samples are:{51,55,49,45,52,41,51,54,50,39}  

we will use this samples and after using the algorithms 2.1 and 2.2 we will 

determine the candidate optimal quantity and the associated estimated 

expected cost (Let confidence coefficient1 0.9  ).  
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P
o
isso

n
 d

em
a
n

d
 

Point estimation approach Confidence interval approach 

MLE Bayesian 

̂  Q̂  ˆ( )G   ̂  Q̂  ˆ( )G                   ( , )lb ub   { ,...., }lb ubQ Q  ( , )lb ubc c  

48.7 53 9.23329 48.7 53 9.23329 (45.13,52.49) {50,…,57} (8.86,14.62) 

From these results we can build visualize about the decisions that the 

manager will choose in order to achieve to the optimal profit.   

In the confidence interval approach, we make an interval for the unknown 

parameter and this interval will cover the actual value according to the 

prescribed confidence probability. The size of the confidence interval is 

controlled by the manager through   changing the sample size or changing 

the confidence level. 

We can note that the confidence interval is being independent of a prior 

information about the unknown parameter whereas the Bayesian method is 

depend on a prior information.   

Depending on the interval of the unknown parameter we can immediately 

build a confidence interval for the order quantity and the associated cost. 

If the manager in a risk-taker, he has a better control of exceeding a certain 

cost and a perfect expectation about the range of order quantities. 

On the other hand, if the manager is not a risk-taker, he can select the order 

quantity Q̂  (from the point estimation approach) and find the interval of the 

expected estimated cost as discussed in the confidence interval approach ( 

i.e. in the binomial demand we will find the interval (
ˆ

( )Q

lG p ,
ˆ

( )Q

uG p  ). 
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Example: Exponential demand 

Consider the situation in the second example in section 3.1.1 except that 

demand has an Exponential distribution for which the parameter  is 

unknown, in which 1h  and 3g   the manager is given 10 samples from 

the past demand, and the samples are: 

{39.79,39.26,32.21,0.51,107.03,72.87,45.23,20.12,26.46,56.8} 

(Let confidence coefficient1 0.9  ). 

By using Algorithm 3.1 we compute the 1   confidence interval for the 

parameter , and confidence interval for the order quantities that -with 

1   confidence coefficient – contains the optimal order quantity, and also 

the confidence interval for the estimated expected total cost. 

By using Algorithm 3.2 we compute the estimator of the parameter , and 

depending on this value we compute the order quantity that, and also the 

associated expected total cost. Table 3 summarize the results from applying 

the two Algorithms.  

 

    

Exponential 

demand 

Point estimation approach 

MLE Bayesian 

̂  Q̂  ˆ ˆ( , )G Q   ̂  Q̂  ˆ ˆ( , )G Q   

0.0227 61.0358 61.0358 0.0283 47.0406 49.0406 

    

Exponential 

demand 

Confidence interval approach     

( , )lb ub   ( , )lb ubQ Q  ( , )lb ubc c  

(0.0123,0.0357) (38.87,112.49) (38.87,112.514) 

In the following Figure we provide outlook of the expected cost as a 

function of   and Q . 
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From this figure we note that  

* *( , )lb lb ubc G Q    

And that:      

* * * *max{ ( , ), ( , )} ( , )ub lb lb ub ub lb lbc G Q G Q G Q     

As we discussed in the discrete case, in the confidence interval approach, 

we make an interval for the unknown parameter and this interval will cover 

the actual value according to the prescribed confidence probability. We can 

note that the confidence interval is being independent of a prior information 

about the unknown parameter whereas the Bayesian method is depend on a 

prior information.   

Depending on the interval of the unknown parameter we can immediately 

build a confidence interval for the order quantity and the associated cost. 
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If the manager in a risk-taker, he has a better control of exceeding a certain 

cost and a perfect expectation about the confidence of order quantities. 

On the other hand, if the manager is not a risk-taker, he can select the order 

quantity Q̂  (from the point estimation approach) and find the interval of the 

expected estimated cost. 

Our analysis is limited to three distributions: in the Binomial distribution 

we know all of the information about the random demand that the Binomial 

distribution has a positive mean and takes a discrete values from zero to n  

, the same things about the Poisson distribution but takes a discrete values 

from zero to infinity.  

Also in the Exponential distribution we know all of the information about 

the random demand that the Exponential distribution has a positive mean 

and takes a continuous values from zero to infinity. 

And we limit our work on analysis the case in which a single parameter 

that must be estimated, and we use the exact confidence intervals and leave 

the analysis of using an approximate intervals. 

Conclusion 

In this thesis, we have studied the problem of controlling the inventory of a 

single item over a single period with stochastic demand in which the 

distribution of the demand has an unknown parameter. 

We introduced a method of estimating the unknown parameter using the 

confidence interval and depending on the results from estimating the 

unknown parameter we identify a range of order quantities that-with 1   

confidence coefficient – contains the optimal order quantity, and then we 
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build an interval for the estimated expected cost that the manager will pay 

if he orders any quantity from the range that we constructed in the previous 

step. 

Also, we introduced a method of estimating the unknown parameter using 

the point estimation, and depending on the results from estimating the 

unknown parameter we identify a candidate optimal order quantity under 

the estimated parameter, and then we find an estimated expected cost that 

the manager will pay if he orders this quantity. However this method does 

not provide any information on the reliability of the estimation.   

We considered three cases, the demand has a Binomial distribution with 

unknown parameter p   , and the demand has a Poisson distribution with 

unknown parameter , also we consider the case in which the demand has 

an Exponential distribution with unknown parameter .For each of these 

cases we use the exact confidence interval approach and the point 

estimation approach. 

We presented numerical examples in order to clarify our strategy and to 

show how the confidence interval approach complements with the point 

estimation approach in order to give the best outlook to the manager to take 

a decision that achieve an optimal profit -with 1   confidence coefficient- 

so, If the manager in a risk-taker, he has a better control of exceeding a 

certain cost and a perfect expectation about the range of order quantities. 

On the other hand, if the manager is not a risk-taker, he can select the order 

quantity Q̂  (from the point estimation approach) and find the interval of the 

expected estimated cost as discussed in the confidence interval approach. 
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The approach we considered does not simply provide point estimation; it 

provides instead complete information to the decision maker about the set 

of potentially optimal order quantities according to the available data and to 

the chosen confidence level and about the confidence interval for the 

expected cost associated with each of these quantities. 
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 الملخص

تكلفة هدفت هذه الدراسة الى معالجة مشكلة تقدير الطلب لتحديد كمية المخزون المثلى لتحقيق اقل 

و بأقصى ربح لنموذج تخزين نوع وحيد لفترة وحيدة مع فرضية ان توزيع الطلب معروف لكن 

 أحد معالمه غير معروفة.

أثناء معالجة هذه المشكلة فرضنا ان صاحب قرار تحديد كمية المخزون يملك عينة من الطلب من 

 ع غير معروفه.الايام الماضية وأيضا يعلم نوع توزيع الطلب لكن احد معالم التوزي

قدمنا طريقتين لتقدير المعلمة غير المعروفة ؛ الطريقة الأولى كانت تعتمد على ايجاد نقطة تقديرية 

للمعلمة المجهولة. فيما كانت الطريقة الثانية تعتمد على ايجاد فترات ثقة تحتوي المعلمة المجهولة 

 (  α- 1)  بمعامل ثقة 

نا بإيجاد مجموعة من الكميات تحتوي على الكمية المثلى التي بناءا على طريقة تقدير المعلمة ، قم

( ثم اوجدنا فترة ثقة للتكلفة المتوقع ان يدفعها صاحب القرار  α- 1)  تحقق اقل تكلفة بمعامل ثقة 

 ( . α- 1)  اذا طلب احدى الكميات السابقة بمعامل ثقة 

قدمنا امثلة عددية لتوضيح التكامل بين طبقّنا هاتين الطريقتين على ثلاث انواع من التوزيعات ثم 

 طريقتي تقدير المعلمة وايجاد فترات الثقة لإيجاد الكمية المثلى لتحقيق اقل تكلفة.  

 

 




