
An-Najah National University

Faculty of Graduate Studies

Error Analysis and Stability of Numerical Schemes

for Initial Value problems “IVP’s”

By

Imad Omar Faris Kayid

Supervised

Prof. Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Computational Mathematics, Faculty of

Graduate Studies, An-Najah National University, Nablus, Palestine.

2013

III

Dedication

 I would like to dedicate this thesis to my parents, to my wife Raifa, who

supported me each step of the way and to my children Yara, Kareem and

Noor.

IV

Acknowledgment

 First of all, I would thank my supervisor Prof. Dr. Naji Qatanani for his

efforts and important guidance for the completion of this thesis.

V

 الاقرار

 :أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان

Error Analysis and Stability of Numerical Schemes for Initial

Value problems “IVP’s”

 تحليل الأخطاء والثباتية للطرق العددية لحل مسائل القيم الابتدائية

أقر بأن ما اشتملت عليه هذه الرسالة إنما هي نتاج جهدي الخاص، باستثناء ما تمت الاشارة اليه حيثما

بل لنيل أية درة علمية أو بحث لدى أية ورد، وأن هذه الرسالة ككل، أو أي جزء منها لم يقدم من ق

 .مؤسسة تعليمية أو بحثية أخرى

Declaration

 The work provided in this thesis, unless otherwise references, is the

researcher’s own work, and has not been submitted elsewhere for any other

degree or Qualification.

Student’s name: …………………………………………… اسم الطالب:

Signature: …………………………………………… التــوقيـــــع:

Date: …………………………………………… التــاريـــــخ:

VI

 Table of Content

no Content Page

 Dedication III

 Acknowledgment IV

 Declaration V

 Table of Content VI

 Table of Tables IX

 Table of Figures XI

 Abstract XIV

 Introduction XV

Chapter One

Initial value problem
1

1.1 Preliminaries 1

1.2 Initial Value Problem (IVP) 2

1.3 Existence and uniqueness of the solution 3

1.4 Systems of First Order Initial Value Problems 9

1.5
Higher Order Initial Value Problem

10

Chapter Two

Numerical Methods for Initial Value Problem
13

2.1 Introduction 13

2.2 Single Step Methods 14

2.2.1 Euler’s Method 17

2.2.2 Runge−Kutta Methods 21

2.2.3 Taylor Methods 27

VII

2.3 Multistep Methods 30

2.3.1 Predictor Methods 31

2.3.2 Implicit Methods 40

2.3.3 Predictor-Corrector Methods 45

2.4 Stability and Stability Regions 45

Chapter Three

Higher Order Taylor Methods
55

3.1 Introduction 55

3.2 Higher Order Taylor Methods for Solving First Order IVP 55

3.2.1 Finding Higher Order Derivatives of First Order IVP’s 55

3.2.2 Constructing Taylor Expansion for First order IVP’s 61

3.2.3
Approximating the Solution of First Order IVP’s using

Higher Order Taylor Methods
62

3.3
Higher Order Taylor Methods for Systems of First Order

IVP’s
66

3.3.1
Finding Higher Order Derivatives of Systems of First Order

IVP’s
68

3.3.2
Constructing Taylor Expansion for a System of First Order

IVP’s
70

3.3.3
Higher Order Taylor Methods for Systems of First Order

IVP’s
72

3.4 Higher Order Taylor Methods for Higher Order IVP’s 78

VIII

Chapter Four

Error Analysis
85

4.1 Error Analysis for Numerical Methods 85

4.2 Error by Higher Order Taylor Methods 97

4.3 Conclusions 99

 References 102

 Appendices 104

 Appendix (A) My Matlab Programs 104

 ب الملخص

IX

Table of Tables

No Table Page

2.1 Results of Example (2.1) using Euler’s method with h=0.1 19

2.2 Results of Example (2.1) using Euler’s method with h=0.05 20

2.3 Results of Example (2.2) using RK4 method with h1=0.1 and h2=0.05 27

2.4 Results of Example (2.3) using Taylor’s methods 2 and 6 with h=0.2 29

2.5 Coefficients of Adams-Bashforth methods 33

2.6
Results of Example (2.4) using Adams-Bashforth 4-step method with

h=0.2 and h=0.1
36

2.7 Coefficients of 4-step Milne’s method 37

2.8 Results of Example (2.5) 39

2.9 Coefficients of Adams-Moulton methods 41

2.10 Results using the 3-step Adams-Moulton method for Example (2.6) 42

2.11 Results of Example (2.7) 44

2.12 Amplification functions G(z) for RK1,…,RK4 49

3.1
Results of Example (3.5) using Taylor methods of orders 4 and 10 with

step size h=0.1
65

3.2 Results of Example (3.8) using fourth order Taylor’s method using h=0.1 74

3.3 Results of Example (3.9), using Taylor method with n=9 and h=0.1 77

3.4
Result of Example (3.10) using Taylor method of order n=4 and step size

h=0.1
81

3.5
Results of Example (3.11), using Taylor of order n=15 and step size

h=0.1
83

4.1 Results of problem (4.1) using Taylor method 86

X

4.2 Results of problem (4.1) using Runge-Kutta method 87

4.3 Results of problem (4.1) using fourth order Adams-Bashforth method 88

4.4 Results of problem (4.1) using Milne’s method 89

4.5 Results of problem (4.1) using predictor-corrector method 90

4.6 Results of problem (4.1) using Adams-Moulton method 91

4.7 Errors generated by the six methods used to solve Example (4.1) 93

4.8 Error ratios for the methods under study 94

4.9 Global error generated in Example (4.2) 95

4.10 Error ratios of the methods under study for Example (4.2) 96

4.11 Comparing CPU time 97

4.12 Global error generated by Taylor (n=4,…,10) method for Example (4.2) 98

XI

Table of Figures

No Figure Page

1.1 (a) Convex Set S (b) Non-convex Set D 5

2.1
Comparison between the approximated solution and the exact solution

of Example (2.1) (a): using h=0.1 (b) using h=0.05.
21

2.2 Butcher tableau for explicit RK methods 22

2.3 Butcher tableaus for some RK explicit methods :

(a) One stage Euler’s forward method.

(b) Two stages midpoint method.

(c) Two stages Heun’s method.

(d) Three stages RK method

(e) Butcher tableau for classical explicit RK4 method

22

2.4
Comparison between the approximated solution and exact solution of

Example (2.2) using h1=0.1
27

2.5
Results of Example (2.3) with h=0.2

(a) Taylor 2 (b) Taylor 6
29

2.6 Comparing approximate and exact solutions in Example (2.4) 36

2.7 Comparing approximate and exact solutions of Example (2.5) 39

2.8 Comparing approximate and exact solutions of Example (2.6) 43

2.9
(a) Stability region for Euler’s Forward method

(b) Stability region for Euler’s Backward method
47

2.10 Relation between , h and stability of Euler’s method

 (a) t=200 h=0.001,

 (b)

 (c) t=200, h=0.5,

48

XII

2.11 Stability regions for RK1,…,RK4 49

2.12 Stability regions for Taylor1,…, Taylor6 methods 50

2.13
Stability behavior of fourth order Taylor method:

 (a) lambda=10+1*i; h=.1; b=5;

 (b) lambda=-2+1*i; h=.1; b=5;

 (c) lambda=-50+1*i;h=.1; b=5;

 (d) lambda=1*i; h=.1; b=30;

 (e) lambda=10*i; h=.1; b=100;

 (f) lambda=-40*i; h=.1; b=100;

 (g) lambda=-i; h=.1; b=100;

51

3.1
Comparing approximated solution w by fourth order Taylor method and

exact solution y of the IVP in Example (3.5) with h=0.1
66

3.2 Results of Example (3.8) 75

3.3 Results of Example (3.9) 78

3.4 Results of Example (3.10) 82

3.5
Comparison between the approximated solution and the exact

solution y in Example (3.11) with n=15, h=0.1
84

4.1
Approximate and exact solutions for problem (4.1) using fourth order

Taylor method
86

4.2
Approximate and exact solutions for problem (4.1) using fourth order

Runge-Kutta method
87

4.3
Approximate and exact solutions for problem (4.1) using fourth order

Adams-Bashforth method
88

4.4
Approximate and exact solutions for problem (4.1) using fourth order

Milne’s method
89

4.5
Approximate and exact solutions for problem (4.1) using fourth order

predictor-corrector method
90

XIII

4.6
Approximate and exact solutions for problem (4.1) using fourth order

Adams-Moulton method
92

4.7
(a) Propagation of GE by the six methods in study for Example (4.1)

(b) Closer look into the first 4 methods with least error
93

4.8
Error accumulated at the last step in the methods under study in

Example (4.1)
94

4.9
(a) Propagation of GE by the methods under study for Example (4.2)

(b) Closer look into the first 4 methods with least error

 (c) Closer look into the 2 methods with greatest error

96

4.10 (a) Error propagation for Taylor Methods n=4,…,6 for Example (4.2)

(b) Error propagation for Taylor Methods n=6,…,8 for Example (4.2)

(c) Error propagation for Taylor Methods n=8,…,10 for Example (4.2)

98

XIV

Error Analysis and Stability of Numerical Schemes

 for Initial Value problems “IVP’s”

By

Imad Omar Faris Kayid

Supervisor

Prof. Dr. Naji Qatanani

Abstract

 Most of initial value problems are natural phenomena written in the

language of mathematics. Solving these initial value problems is one of the

most challenging fields in mathematics, because of the mathematicians’

continuous desire of exactness.

 This work focuses mainly on developing algorithms and programs to

construct higher order Taylor’s methods for approximating the solution of first

order initial value problems, systems of first order initial value problems and

higher order initial value problems. Moreover, it concentrates on studying

error and stability of numerical methods for solving initial value problems. For

this purpose, we developed programs to find the error amplification functions

of Taylor’s and Runge-Kutta methods and to plot boundaries of stability

regions for these methods and other methods.

 We concluded that with the programs we developed, higher order Taylor’s

methods could be a good choice for approximating solutions of a wide range

XV

of initial value problems.

XVI

 Introduction

 Many problems in engineering and science can be formulated in terms of

differential equations. Many mathematicians have studied the nature of these

equations and many complicated systems can be described exactly with

compact mathematical expressions.

 The techniques for solving differential equations based on numerical

approximations were developed before programmable computers existed. The

problem of solving ordinary differential equations is classified into initial

value and boundary value problems, depending on the conditions specified at

the end points of the domain.

 There are numerous methods that produce numerical approximations to the

solution of initial value problems in ordinary differential equations such as

Euler’s method which was the oldest and simplest method originated by

Leonard Euler in 1768. He was the first who suggested the idea to propagate

the solution of an initial value problem by a sequence of small time-steps. In

each step, the rate of change of the solution is treated as constant and is found

from the formula for the derivative evaluated at the beginning of the step [5].

An improved Euler’s method and Runge-Kutta methods described by Carl

Runge and Martin Kutta in 1895 and 1905 respectively. The paper by Runge

is now recognized as the starting point for modern one-step methods [6].

XVII

The 1883 paper of Bashforth and Adams [1] and the 1926 paper of Moulton

[14] were the foundation blocks of developing multistep methods. Through

their work, the explicit Adams-Bashforth methods, the implicit Adams-

Moulton methods and the predictor-corrector methods were established. Milne

also contributed in this field by the methods called after him and by the so-

called Milne’s device, which estimates error in predictor-corrector methods

[13].

 Numerical methods form an important part of solving initial value problems

in ordinary differential equations most especially in cases where there is no

closed form solution.

 This thesis is organized as follows:

 Chapter one gives perspective study of differential equations in particular,

initial value problems, systems of first order initial value problems and higher

order initial value problems.

 In chapter two we introduce some numerical examples for solving initial

value problems. These include single step methods and multistep methods.

 Chapter three deals with higher order Taylor methods for solving first order

IVP’s, systems of first order IVP’s and higher order IVP’s.

 In chapter four some error analysis for the numerical methods: Taylor

method, Runge-Kutta method, Adams-Bashforth method, Adams-Moulton

method, predictor-corrector method and Milne’s method will be investigated

and presented through same numerical examples.

1

Chapter One

Initial Value Problem

1.1 Preliminaries

 A differential equation: is an equation relating some function to one or

more of its derivatives.

 The equation

 is a differential equation.

The order of a differential equation is the order of the highest derivative that

appears in the equation.

 The equation

is of order 2.

The degree of an ordinary differential equation: is the greatest number of

times the dependent variable appears in any single term. For example, the

degree of is 3, whereas the degree of

is 4.

An ordinary differential equation (ODE): is an equation with the derivatives of

a function of one variable.

 The general form of an explicit kth order ordinary differential equation is

given by

2

 where y, y′, . . . , y
(k−1)

 are functions of t.

 The general solution of this equation contains k arbitrary constants

 . These constants can be found by prescribing k conditions.

A partial differential equation (PDE) describes a relation between an unknown

function and its partial derivatives.

The heat equation

is a second order PDE.

Initial value problem (IVP): is a problem that specifies the initial conditions at

the same value of .

As an example

is an initial value problem since both conditions imposed on .

Boundary value problem: is a problem that specifies the boundary conditions

at different values of .

As an example

is a boundary value problem because the two conditions are specified at

different values of t.

1.2 Initial Value Problem (IVP)

3

 A first order initial value problem defined on the interval [a, b] can be written

 as

 Since any ordinary differential equation of order k

can always be transformed into a system of k first−order equations, we will

focus on solving first order initial value problems and systems of first order

initial value problems.

1.3 Existence and Uniqueness of the Solution

 Solving differential equations can be done by two major ways. The first way

is to find the exact solution analytically. The other way is to approximate the

solution by numerical methods at usually equally spaced points, then

interpolate the solution to the whole interval of interest. Since most

differential equations that represent real nature phenomena cannot be solved

analytically, we will focus on solving initial value problems using numerical

approximations.

 Before we discuss methods for approximating the solution to our basic

problem (1.2), we must consider some theory to ensure that our problem has a

unique solution and know how small errors on the initial condition can affect

the accuracy of the approximated solution.

Definition (1.1)

4

 A function is said to satisfy a Lipschitz condition in the variable y on a

set if a constant exists with

 ,

whenever and are in D. The constant L is called a Lipschitz

constant for [3].

Example (1.1) We can show that satisfies a Lipschitz

condition on the set .

For each pair of points and in D we have

 |t|| || |

Thus, satisfies a Lipschitz condition on in the variable y with a Lipschitz

constant .

Definition (1.2) [16]

A set is said to be convex if, whenever x and y belong to D, also

Thus, a set is convex if then the point

 .

Since a line segment between and is the set of all points

then a set in is called a convex set if the line segment joining any pair of

points of lies entirely in .

5

 The set S in Figure (1.1) (a) is convex because the line segment joining any

pair of points of S lies entirely in S, while the set D in Figure (1.1) (b) is non-

convex, since points a and b lie in D, but the line segment does not lie

entirely in D.

Figure(1.1): (a) Convex Set S. (b) Non-convex Set D.

Example (1.2)

 We can show that the set is

convex.

Let

 So,

For

These two inequalities give

It is obvious that

Therefore, D is a convex set.

Theorem (1.1) [3]

Suppose is defined on a convex set . If a constant exists

D

b

a

(b)

S

a b

(a)

6

with

then satisfies a Lipschitz condition on in the variable y with a Lipschitz

constant .

Proof: Holding constant and applying the Mean Value Theorem to the

function , when , a number in exists with

Thus, satisfies a Lipschitz condition on in the variable y with a Lipschitz

constant .

Example (1.3)

 For the set it easy to show,

that satisfies a Lipschitz condition in the variable .

 We have shown in Example (1.2) that D is convex. In addition

Thus satisfies a Lipschitz condition on in the variable y with a Lipschitz

constant 2.

Definition (1.3) [3]

The initial value problem

7

 is said to be a well-posed problem if:

 A unique solution, to the problem exists, and

 There exist constants ɛ0 > 0 and k > 0 such that for any , with 0 > > 0,

whenever is continuous with | (t) | < for all in [a, b], and when

 | 0| < the initial-value problem

 has a unique solution z(t) that satisfies

 .

 Point two in this definition says that small perturbations of the original

problem and small perturbations of the initial condition have only small error

effects on the approximated solution. To illustrate this we give the following

example.

Example (1.4)

 Using definition (1.3), we can show that the initial value problem

is well-posed.

Consider the perturbed problem with constant

 Suppose that . And if , then

8

for all t . Therefore, the problem is well-posed with and for all

.

 The next theorem tells us sufficient conditions that guarantee well posedness

of our basic problem.

Theorem (1.2) [3]

 Suppose that . If is

continuous and satisfies a Lipschitz condition in the variable on the set ,

then the initial value problem

is well-posed.

 We note, that this theorem ensures the uniqueness of the solution

for

Example (1.5)

 We can show that the IVP

is well-posed.

The function is continuous. We have shown in Example

(1.2) that the set is convex. In

addition, we have

9

Thus satisfies a Lipschitz condition on in the variable with Lipschitz

constant 4. Therefore, according to theorem (1.2) the IVP is well-posed.

Theorem (1.3) [4]

 Suppose that and , its first partial derivative with respect to y, are

continuous for t in [a, b] and for all y. Then the initial value problem

has a unique solution y(t) for , and the problem is well-posed.

 Proof: The set is convex. Since

 is continuous on [a, b], then is bounded. Therefore, there exists a real

number such that . Thus, satisfies a Lipschitz condition on D

in the variable . Also is continuous. It follows from theorem (1.2), that the

IVP is well-posed.

Example (1.6)

 The initial-value problem

 , for and

is a well-posed initial value problem, since the functions

 , and

are both continuous for and for all y.

1.4 Systems of First Order Initial Value Problems

 A kth-order system of first order initial value problems has the general form

10

for , with the initial conditions

 u1(a) =α1, u2(a) = α2, . . . , uk(a) = αk. (1.3)

 To solve this system we must find u1, u2,…,uk that satisfy all the differential

equations and the initial conditions.

Consider the following system of IVP’s

 (t)= u2(t)

 (t)= 2u1(t)+ u2(t)

together with the initial conditions

 u1(0) = 8 and u2(0) = 4.

We can show that

 u1(t) = 4e
2t
 + 4e

-t
,

u2(t) = 8e

2t
 + 4e

-t

is the solution of this system.

Solving this system numerically will be discussed in next chapter.

1.5 Higher Order Initial Value Problem

The first step to solve an IVP of order k

 y
(k)

 = f(t, y, y', y'',…,y
(k-1)

), a ≤ t ≤ b

 y(a) = α1, y' (a) = α2, y''(a) = α3,…, y
(k-1)

(a) = αk. (1.4)

is to transform it into a system of first order IVP as follows:

Let

 u1 = y,

11

 u2 = y',

 u3 = y'',

 uk = y
(k-1)

. (1.5)

Differentiating these equations, we get

 = y',

 = y'',

 = y''',

 = y
(k)

 = f (t, y, y', y'',…,y
(k-1)

) (1.6)

Substituting we get a system of first order IVP

 = u2

 = u3

 = uk

 = f (t, u1, u2, …, uk).

 u1(a) = y(a) = α1, u2(a) = y'(a) = α2 , …, uk(a) = y
(k-1)

(a) = αn. (1.7)

The second step is to solve this system for u1, …,uk satisfying (1.6). Finally,

the solution of u1 is assigned to y because y = u1.

To illustrate this method, consider the following example.

Example (1.7)

 We will show how to transform the following second order IVP into a

12

two-dimensional system of first order IVP’s:

 y'' - 2 y' + y = te
t
 – t , 0 ≤ t ≤ 1 ,

with initial conditions

 y(0) = 0, y'(0) = 0.

 First, we rewrite the DE as

 y'' = 2 y' - y + te
t
 – t.

Now let

 u1 = y,

 u2 = y'.

Differentiating both equations with respect to t, we get

 = y',

 = y''.

Substituting, we get a system of first order IVP’s

 = u2 ,

 = 2u2- u1 + te
t
 – t

with initial conditions

u1(0) = y(0) = 0 , u2(0) = y'(0) = 0.

Solving systems of IVP’s numerically will be discussed next chapter.

13

Chapter Two

Numerical Methods for Initial Value Problems

2.1 Introduction

 In this chapter, we shall study some numerical methods for solving IVP’s of

the form

that possess a unique solution on some specified interval, . In these

numerical methods, we will find approximations to the solution of the initial

value problem at N particular equally spaced points

 approximations to the numbers , rather than to the curve of

y(t).

 Methods for approximating the solution of initial value problems can be

classified mainly into two types. They are

 (i) Single step methods,

 (ii) Multistep methods.

 Both of these methods can be either implicit or explicit. If the approximate

solution wi+1 depends only on the previous , then the method is

explicit. However, if depends on too, then the method is implicit,

that is, we get an algebraic equation for the solution of .

14

2.2 Single Step methods

 In single step methods, the solution at any point is obtained by using the

solution at only the previous point . Thus, we can write a general implicit

single step method as

and a general explicit single step method as

where φ is a function of the arguments and depends on of

the given differential equation. The function is called the increment

function, see [10].

 Definition (2.1) (Local Truncation Error) [9]

The local truncation error of a method is defined to be the difference

between the exact and the numerical solution of the IVP at time :

under the localizing assumption that , i.e. that the current numerical

solution is exact. If , the method is said to be of

order p.

 If we calculate assuming , that is:

then the LTE, , at is defined by:

15

Definition (2.2)

The global truncation error: The difference

is referred to as the global error (GE) at t = .

Definition (2.3) [3]

 A one-step difference-equation method with local truncation error at

the ith step is said to be consistent with the differential equation it

approximates if

Definition (2.4) [9]

A numerical method is said to converge to the solution of a given IVP at

 if the GE satisfies

as . It converges at a -order rate if for some .

A numerical method is said to be consistent of order p if

with .

 Before we begin our discussion of the methods, we shall first derive the

Taylor series expansion of with remainder.

Theorem (2.1) (Taylor Theorem) [2]

Suppose has continuous derivatives on an open interval containing .

Then for each in the interval,

16

where the error term satisfies

for some c between a and x.

Now for our Problem (1.2), if is continuous and has continuous

derivatives on an interval about , then the Taylor series expansion of

 about is

Now, for , therefore (2.4) becomes

 When , we can replace by in the previous

equations for

 We note that the expression in the square brackets in (2.6) represents the

 Taylor expansion of .

 Finally, in (2.6) if we let

then (2.6) becomes

17

2.2.1 Euler’s Method

 Euler was the first who suggested the idea to propagate the solution of an

initial value problem forward by a sequence of small time-steps. In each step,

the rate of change of the solution is treated as constant and is found from the

formula for the derivative evaluated at the beginning of the step [5].

 One way to derive Euler’s method for approximating the solution of the first

order IVP (1.2) is achieved by approximating as follows:

 Solving for , we get

 Using this equation, we get Euler’s forward method

Now, if is differentiable on and is continuous on , then there

exists such that

 To find the LTE of Euler’s method, we have as defined in (2.2)

therefore

18

 Then, if a positive number M exists so that for all ,

then

 It follows from Definition (2.1) that Euler’s method is of order

 We introduce now Algorithm (2.1) for approximating the solution of the

problem (1.2) using Euler’s method and comparing the approximated solution

with the exact solution.

 Algorithm (2.1): Euler’s Method.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Example (2.1)

 Consider Euler’s method to approximate the solution of the following initial-

value problem:

19

This initial value problem has the exact solution

 Matlab Program (2.1)(See Appendix A) is an implementation of Algorithm

(2.1) in computer language. The results of running this program for our

Example (2.1) are represented in Table (2.1). In addition to the approximated

solution of , at each step the program calculates the absolute values of the

global error (column 4) and the local truncation error (column 6). It also

plots (Figure (2.1)) the approximated vector (column 3) and the exact vector

 (column 2) against the vector (column 1).

Table (2.1): Results of Example (2.1) using Euler’s method with h=0.1

1.0000000

1.1000000

1.2000000

1.3000000

1.4000000

1.5000000

1.6000000

1.7000000

1.8000000

1.9000000

2.0000000

1.0000000

1.0042817

1.0149523

1.0298137

1.0475339

1.0672624

1.0884327

1.1106551

1.1336536

1.1572284

1.1812322

1.0000000

1.0000000

1.0082645

1.0216895

1.0385147

1.0576682

1.0784611

1.1004322

1.1232621

1.1467236

1.1706516

0.0000000

0.0042817

0.0066879

0.0081242

0.0090192

0.0095942

0.0099716

0.0102229

0.0103915

0.0105048

0.0105806

1.0000000

1.0000000

1.0122262

1.0279950

1.0462776

1.0663717

1.0877888

1.1101830

1.1333041

1.1569686

1.1810389

0.0000000

0.0042817

0.0027261

0.0018187

0.0012562

0.0008907

0.0006439

0.0004721

0.0003494

0.0002599

0.0001934

 We notice that the results are consistent with the theoretical error estimates

for Euler’s method, since the global error is of and the local truncation

error is of .

 If we repeat solving Example (2.1), but using instead of ,

we get better results. Table (2.2) shows that the global error at the last step

20

using h = 0.05 is 0.0051070, while it was 0.0105806 (Table 2.1) when we

used

In addition, we notice that

which agrees with our theoretical analysis that Euler’s method is of .

 If we do the same for the local truncation error, we get

which agrees with our theoretical analysis that local truncation error for

Euler’s method is of .

 Table (2.2): Results of Example (2.1) using Euler’s method with h=0.05

1.0000000

1.0500000

1.1000000

1.1500000

1.2000000

1.2500000

1.3000000

1.3500000

1.4000000

1.4500000

1.5000000

1.5500000

1.6000000

1.6500000

1.7000000

1.7500000

1.8000000

1.8500000

1.9000000

1.9500000

2.0000000

1.0000000

1.0011536

1.0042818

1.0089827

1.0149523

1.0219569

1.0298136

1.0383780

1.0475339

1.0571876

1.0672624

1.0776949

1.0884327

1.0994318

1.1106551

1.1220713

1.1336535

1.1453792

1.1572285

1.1691843

1.1812322

1.0000000

1.0000000

1.0022676

1.0063152

1.0117819

1.0183942

1.0259420

1.0342605

1.0432196

1.0527145

1.0626605

1.0729880

1.0836401

1.0945687

1.1057341

1.1171026

1.1286457

1.1403389

1.1521615

1.1640954

1.1761253

0.0000000

0.0011536

0.0020142

0.0026674

0.0031704

0.0035627

0.0038717

0.0041175

0.0043144

0.0044732

0.0046019

0.0047068

0.0047926

0.0048630

0.0049209

0.0049686

0.0050078

0.0050402

0.0050669

0.0050889

0.0051070

1.0000000

1.0000000

1.0033714

1.0082539

1.0143620

1.0214736

1.0294145

1.0380456

1.0472554

1.0569528

1.0670633

1.0775256

1.0882881

1.0993078

1.1105486

1.1219796

1.1335746

1.1453110

1.1571697

1.1691337

1.1811885

0.0000000

0.0011536

0.0009104

0.0007287

0.0005903

0.0004833

0.0003992

0.0003323

0.0002785

0.0002348

0.0001990

0.0001693

0.0001446

0.0001239

0.0001065

0.0000916

0.0000790

0.0000681

0.0000588

0.0000507

0.0000437

21

 Figure (2.1) compares the approximated solutions with the exact solutions of

Example (2.1). It is clear that Euler’s method is not accurate for our choice of

the step size (Figure (2.1):(a)). To get better results, we have to make

h smaller, and that means more computation time, or to find another more

accurate method. Figure (2.1) (b) shows that the approximated solution gets

closer to the exact solution when we use smaller values of h.

(a)

(b)

Figure (2.1) Comparison between the approximated solution and the exact solution of

Example (2.1) (a): using h=0.1 (b) using h=0.05.

2.2.2 Runge−Kutta Methods

 Runge-Kutta methods are based on the 1895 paper of C. Runge [15] and the

1901 paper of W. Kutta [11]. The paper by Runge is now recognized as the

starting point for modern one-step methods [6].

 The family of explicit Runge–Kutta methods is given by

where

22

To specify a particular method, one needs to provide the integer s (the number

of stages), and the coefficients ,

and . The matrix is called the Runge–Kutta matrix,

while the and are known as the weights and the nodes. These data are

usually arranged in a mnemonic device, known as a Butcher tableau (after

John C. Butcher):

0

Figure (2.2):Butcher tableau for explicit RK

methods [7]

The Runge–Kutta method is consistent if (see [7])

 Figures (2.3) contains some Butcher tableaus for Runge-Kutta explicit

methods. We can use any of these tableaus in Algorithm (2.2) to generate the

desired Runge-Kutta method.

 0 0 0 0

23

 0 0 0 0 0 0 1/2 1/2 0 0

 0 0 1/2 1/2 0 1 1 0 1 -1 2 0

 1 0 1 1/2 1/2 1/6 2/3 1/6

 (a) (b) (c) (d)

Figure (2.3): Butcher tableaus for some RK explicit methods :

(a) One stage Euler’s forward method. (b) Two stages midpoint method.

(c) Two stages Heun’s method. (d) Three stages RK method [7]

 We will use Taylor expansion

to study two stages Runge-Kutta methods:

Substituting the values of and in (2.12), we get

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

 1/6 1/3 1/3 1/6

Figure (2.3) (e) Butcher tableau for classical

explicit RK4 method [7]

24

Comparing the coefficients of and , we get

Solving these equations, we get

Using these values, we get the two stages Runge-Kutta methods

 To find the local truncation error, we first substitute the values of , and

 in equation (2.13). So we get

Subtracting (2.14) from (2.11), we get

Therefore, we have local truncation error equals to and hence the

methods are of order two.

25

If we choose , then the first term in brackets in (2.15) vanishes and

we get a method with minimum local truncation error:

 We employed Algorithm (2.2) to approximate the solution of first order

IVPs using any RK explicit method. We enter the IVP, number of stages, s

and the desired RK method (Butcher tableau) that agrees with s. In the next

example, we will use the classical fourth order RK method (Figure (2.3) (e)).

Algorithm (2.2): Runge-Kutta explicit methods.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

Step 13:

Step 15:

Step 16:

 Input Butcher matrix in

 repeat steps 8-18

 repeat steps 10-15

 repeat step 12

26

Step 17:

Step 18:

Step 19:

Step 20:

Step 21

 We translated Algorithm (2.2) into a Matlab Program (2.2), which we will

use to approximate the solution of the IVP and compare the approximate

solution with the exact solution .

Example (2.2)

 We can approximate the solution to the initial value problem

using the fourth order classical Runge−Kutta method with and for

.

 This initial value problem has the exact solution

 We represented the results of running Program (2.2) for this problem in

Table (2.3) and Figure (2.4). We see that the results of this method are better

than the results of Euler’s method.

In addition, Table (2.3) shows that the global errors at are 6.0221055E-

07 and 4.0931106E-08 for h1=0.1 and h2=0.05 respectively.

27

 Straight forward computation of the ratio for these global errors we obtain

which agrees with Runge-Kutta of O(h
4
).

Figure (2.4) shows how close the approximate solution w and the exact

solution are.

Table (2.3): Results of Example (2.2) using RK4 method with h1=0.1

and h2=0.05

ti yi
wi

h1=0.1

errori

h1=0.1

wi

h2=0.05

errori

h2=0.05

0.0000000

0.1000000

0.2000000

0.3000000

0.4000000

0.5000000

0.6000000

0.7000000

0.8000000

0.9000000

1.0000000

1.0000000

0.9900990

0.9615384

0.9174312

0.8620690

0.8000000

0.7352941

0.6711410

0.6097561

0.5524862

0.5000000

1.0000000

0.9900990

0.9615381

0.9174306

0.8620682

0.7999992

0.7352935

0.6711406

0.6097561

0.5524865

0.5000006

0.0000000E+00

8.4950827E-08

3.1788036E-07

5.9514099E-07

7.8202896E-07

7.9098146E-07

6.1736802E-07

3.2007944E-07

2.1627292E-08

3.4201159E-07

6.0221055E-07

1.0000000

0.9900990

0.9615384

0.9174312

0.8620690

0.8000000

0.7352941

0.6711409

0.6097561

0.5524862

0.5000001

0.0000000E+00

5.1539253E-09

1.8421105E-08

3.3211020E-08

4.2046747E-08

4.0618882E-08

2.9229003E-08

1.1436653E-08

8.3141618E-09

2.6452970E-08

4.0931106E-08

28

Figure (2.4): Comparison between the approximated

solution and exact solution of Example (2.2) using h1=0.1

2.2.3 Taylor Methods

 To derive Taylor methods to solve the initial value problem (1.2), we

consider equations , These equations give us

Taylor methods of order n

 where

and local truncation error at

and, if for all t (a, b), then

 ,

that is

 and the method is .

Example (2.3)

29

 We can apply Taylor’s method of orders two and six to the next initial value

problem using step size .

This initial value problem has the exact solution

 Results of running Program (3.3) for this problem are represented in Table

(2.4) and Figure (2.5). The exact solution y is given in column 2, approximate

solution and global error using second order Taylor method in columns 3 and

4, and finally approximated solution and global error using sixth order Taylor

method in columns 5 and 6. It is clear we have better results using higher

order Taylor methods with the same step size.

In Figure (2.3), we have a closer look to see what happens at the last step.

Comparing Figures (2.5) (a) and (b), we see that w and y in (a) are not so

close as in (b). That means we have better results with higher order Taylor

methods.

Table (2.4): Results of Example (2.3) using Taylor’s methods 2 and 6 with

h=0.2

ti yi
n=2

wi
errori

n=6
wi

errori

0.0000000

0.2000000

0.4000000

0.6000000

0.8000000

1.0000000

1.2000000

1.4000000

1.6000000

1.8000000

0.5000000

0.8292986

1.2140877

1.6489406

2.1272295

2.6408591

3.1799415

3.7324000

4.2834838

4.8151763

0.5000000

0.8300000

1.2158000

1.6520760

2.1323327

2.6486459

3.1913480

3.7486446

4.3061464

4.8462986

0.0000000E+00

7.0137909E-04

1.7123488E-03

3.1354001E-03

5.1031844E-03

7.7868327E-03

1.1406482E-02

1.6244568E-02

2.2662606E-02

3.1122332E-02

0.5000000

0.8292986

1.2140877

1.6489406

2.1272295

2.6408591

3.1799416

3.7324000

4.2834838

4.8151763

0.0000000E+00

1.3023073E-09

3.1812835E-09

5.8284417E-09

9.4918331E-09

1.4491690E-08

2.1240226E-08

3.0266683E-08

4.2248928E-08

5.8053327E-08

30

2.0000000 5.3054720 5.3476843 4.2212341E-02 5.3054720 7.8784993E-08

Figure (2.5): Results of Example (2.3) with h=0.2 (a) Taylor 2 (b) Taylor 6

Table (2.4) shows that the global error at is 7.8784993E-08 for n=6 and

h=0.2. We solved the same problem with n=6 and h=0.05. We found that the

global error at is 1.3433343E-009

 We notice that

which agrees with the theoretical error estimate for sixth order Taylor method

which is equal

2.3 Multistep Methods

 The 1883 paper of Bashforth and Adams [1] and the 1926 paper of Moulton

[14] were the foundation blocks of developing multistep methods. Through

(a) (b)

31

their work, the explicit Adams-Bashforth methods, the implicit Adams-

Moulton methods and the predictor-corrector methods were established. Milne

also contributed in this field by the methods called after him and by the so-

called Milne’s device, which estimates error in predictor-corrector methods,

see [13].

 Multistep methods use the solution at a number of previous points to find

the solution at any point . If we use

at previous points to find the approximation to

 at , then we call the method as an m−step multistep method.

 For example, the method

is a three step method.

We can write a general explicit m−step method as [10]

where

 If the right hand side contains , then we have an implicit method.

 To construct multi-step methods, we first integrate the differential equation

 in the interval , getting

32

 We will use Newton’s backward difference interpolating polynomial to

approximate the integrand .

2.3.1 Predictor Methods

 An m-step predictor method is an m-step explicit method defined in (2.17).

If we use Newton’s backward difference interpolating polynomial of degree

 to approximate the integrand in the interval .

 For equally spaced points, , we get degree

Newton’s backward difference interpolating polynomial of , [3]

 (2.19)

 . (2.20)

Now, for we get

 .

 Therefore,

 . (2.21)

 Substituting (2.19), (2.20), (2.21) and in (2.18), we get

33

 .

This leads to the m-step explicit Adams−Bashforth methods,

 with local truncation error

Therefore, and the methods are

Now, we compute the coefficients .

 For ,

 For ,

 For , .

 For ,

 For ,

34

 For ,

 We used Matlab Program (2.3) to compute these integrals for

and represented the results in Table (2.5). Using these results, (2.22) becomes

For

Table (2.5): Coefficients of Adams-Bashforth methods

k

0

1

2

3

4

5

6

7

8

9

10

1

1/2

5/12

3/8

251/720

95/288

19087/60480

5257/17280

1070017/3628800

25713/89600

26842253/95800320

For

For

35

For , we find in the same way that

The method in (2.24) is the 4-step Adam-Bashforth method, for which we

wrote Algorithm (2.3) to approximate first order IVP (1.2). It uses RK4 to

approximate the solution at , where and .

Algorithm (2.3): Adams-Bashforth 4-step method using RK4 to find the

starting points

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

Step 13:

36

Step 15:

Step 16:

Step 17:

Step 18:

Step 19:

Step 20:

Step 21:

Step22:

Example (2.4)

 Using explicit Adams−Bashforth four−step method with step size ,

we can approximate the solution of the initial value problem,

and then refine the solution by using ,

 This initial value problem has the exact solution

 We represented the results for this problem in Table (2.6).

 At , the global error 5.7083601E-03 for and 5.0822471E-04 for

. We note that

37

which agrees with the theoretical error estimate for Adams−Bashforth which

is equal to .

Table (2.6): Results of Example (2.4) using Adams-Bashforth 4-step

method with h=0.2 and h=0.1

ti yi
wi

h=0.2

errori

h=0.2

wi

h=0.1

errori

h=0.1

1.0000000

1.2000000

1.4000000

1.6000000

1.8000000

2.0000000

2.2000000

2.4000001

2.5999999

2.8000000

3.0000000

2.6408591

3.1799417

3.7323999

4.2834840

4.8151765

5.3054719

5.7274933

6.0484118

6.2281308

6.2176766

5.9572315

2.6408591

3.1799386

3.7323945

4.2834759

4.8153915

5.3060632

5.7285838

6.0501885

6.2308531

6.2216763

5.9629397

0.0000000E+00

2.9179384E-06

5.6519293E-06

7.9774882E-06

2.1536958E-04

5.9144641E-04

1.0904461E-03

1.7766465E-03

2.7220398E-03

3.9999373E-03

5.7083601E-03

2.6408591

3.1799414

3.7324054

4.2835054

4.8152208

5.3055487

5.7276139

6.0485921

6.2283912

6.2180438

5.9577398

0.0000000E+00

1.8399729E-07

5.4625666E-06

2.1798965E-05

4.4641027E-05

7.6600882E-05

1.2052076E-04

1.8013343E-04

2.6023496E-04

3.6697558E-04

5.0822471E-04

 Figure (2.6) compares the curves of exact and approximate solutions of

Example (2.4).

Figure (2.6): Comparing approximate and exact solutions

in Example (2.4)

 To derive Milne’s methods, we let in (2.18), so we get

38

 If the Newton Backward-Difference interpolating polynomial is integrated

over using points;

, then we get polynomial and (2.19) becomes

 Again, we have . Therefore, we get .

When . In addition, when .

 From (2.25) and (2.26), we get

For we get

For ,

We used Program (2.5) to compute for and put

the results into Table (2.7) together with the coefficient 4 when .

Table (2.7): Coefficients of 4-step Milne’s method

K 0 1 2 3 4

 4 0

Using the data in Table (2.7), we get

 ,

 ,

39

which is the 4-step explicit Milne’s method. Since the coefficient vanishes for

, the local truncation error becomes

 Therefore, and the method is of O .

 The following Algorithm (2.4) approximates the solution to the IVP (1.2)

using RK4 to produce the starting points for Milne’s 4-step method.

Algorithm (2.4) Milne’s 4-step method

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

Step 13:

Step 15:

Step 16:

Step 17:

Step 18:

Step 19:

Step 20:

Step 21:

40

Step 22:

 We translated this algorithm into the Matlab Program (2.6).

Example (2.5)

 Consider Milne’s 4-step method to approximate the solution to the initial

value problem

using step size .

This initial value problem has the exact solution

 Table (2.8) contains the results of Example (2.5).

Table (2.8): Results of Example (2.5)

0.0000000

0.1000000

0.2000000

0.3000000

0.4000000

0.5000000

0.6000000

0.7000000

0.8000000

0.9000000

1.0000000

0.5000000

0.4950249

0.4803947

0.4569656

0.4260719

0.3894004

0.3488382

0.3063132

0.2636462

0.2224290

0.1839397

0.5000000

0.4950249

0.4803947

0.4569656

0.4261052

0.3894376

0.3488814

0.3063461

0.2637070

0.2224652

0.1839864

0.0000000E+00

2.0791741E-10

1.9583726E-09

5.6262963E-09

3.3334312E-05

3.7220070E-05

4.3255306E-05

3.2902120E-05

6.0803573E-05

3.6136491E-05

4.6702633E-05

41

Figure (2.7): Comparing approximate and exact solutions of Example (2.5)

 Figure (2.7) compares the curves of exact and approximate solutions of

Example (2.5).

2.3.2 Implicit Methods

 If we use the point together with the m points used

in Adams-Bashforth methods to interpolate in the integral

then we will get an interpolating polynomial of degree .

 Now, for , and = .

Therefore, becomes . In addition, for , and

for ,

 Applying this to (2.22) and (2.23), we get the implicit Adams−Moulton

methods

42

 Now for k=0,
0

ds= =1,

 for k=1,
1

ds= = ,

 for k=2,
2

ds= = ,

 for k=3,
3

ds= = ,

 for k=4,
4

ds= = .

Hence, we have

 Table (2.9) contains the coefficients for . We

computed these coefficients using Program (2.7).

Table (2.9): Coefficients of Adams-Moulton methods

k

0

1

2

3

4

5

6

7

8

9

10

 1

-1/2

 -1/12

 -1/24

 -19/720

 -3/160

 -863/60480

 -275/24192

 -33953/3628800

 -8183/1036800

 -3250433/479001600

43

Now, for , we get

which is the backward Euler’s method of order 2.

For m=1, we get the 1-step method of order 2

 .

For , we get the 2-step method of order 3

 .

For , we get the 3-step method of order 4 and

 . (2.28)

Example (2.6)

 We can approximate the solution to the initial value problem in Example

(2.4), using the 3-step fourth order Adams-Moulton method with step

size , and compare the results with the results we got in Example (2.4)

for the same step size.

 At first, we must solve (2.28) algebraically for , where

 Doing that, we get

 .

 Then we insert this explicit formula as a 3-step Adams-Moulton method in

Program (2.7), which gives the results illustrated in Table (2.10).

44

Table (2.10): Results using the 3-step Adams-Moulton method for

Example (2.6)

1.0000000

1.2000000

1.4000000

1.6000000

1.8000000

2.0000000

2.2000000

2.4000001

2.5999999

2.8000000

3.0000000

2.6408591

3.1799417

3.7323999

4.2834840

4.8151765

5.3054719

5.7274933

6.0484118

6.2281308

6.2176766

5.9572315

2.6408591

3.1799386

3.7323945

4.2834592

4.8151245

5.3053818

5.7273507

6.0481977

6.2278209

6.2172384

5.9566236

0.0000000E+00

2.9179384E-06

5.6519293E-06

2.4484483E-05

5.1853749E-05

9.0046029E-05

1.4260200E-04

2.1401687E-04

3.1006479E-04

4.3815278E-04

6.0776027E-04

 The global error at using Adams-Moulton method is 6.0776027E-04,

while it was 5.7083601E-03 in Example (3.1). This means that we have about

9.4 times less error in the 3-step Adams-Moulton method than the error

produced by the 4-step Adams-Bashforth method. Although implicit Adams-

Moulton methods give better results than the explicit Adams-Bashforth

methods of the same order, they have the weakness of that we have to convert

them algebraically to an explicit representation for

45

Figure (2.8): Comparing approximate and exact solutions of Example (2.6)

Figure (2.8) compares the approximate and exact solutions of Example (2.6).

2.3.3 Predictor-Corrector Methods

 Since implicit multistep methods must be solved algebraically for

before using them to approximate the solution, they are usually not used alone.

Rather, they are used with explicit methods to improve the results. Because

implicit methods need the value of at , explicit methods are used to

approximate for them. This technique of approximating by explicit

methods and improve approximations by implicit methods is called predictor-

corrector methods.

 As an example, we will use Adams-Bashforth 4th-order 4-step method

as a predictor method and Adams-Moulton 4th-order 3-step method

46

as a corrector method for solving an initial value problem. We first need to

calculate the starting values for the explicit Adams-Bashforth

4-Step method. To do this, we will use the 4th-order 1-step Runge-Kutta

method.

Example (2.7)

 Consider using the 4-step Adams-Bashforth method as a predictor and the 3-

step Adams-Moulton method as a corrector to approximate the solution to the

initial-value problem in Example (2.4) with . We consider using the

fourth order Runge-Kutta method to approximate the starting values.

Table (2.11): Results of Example (2.7)

1.0000000

1.2000000

1.4000000

1.6000000

1.8000000

2.0000000

2.2000000

2.4000001

2.5999999

2.8000000

3.0000000

2.6408591

3.1799417

3.7323999

4.2834840

4.8151765

5.3054719

5.7274933

6.0484118

6.2281308

6.2176766

5.9572315

2.6408591

3.1799386

3.7323945

4.2834759

4.8151636

5.3054528

5.7274652

6.0483723

6.2280760

6.2176013

5.9571295

0.0000000E+00

2.9179384E-06

5.6519293E-06

7.9774882E-06

1.2691397E-05

1.9202997E-05

2.7937787E-05

3.9602623E-05

5.5064698E-05

7.5431999E-05

1.0211881E-04

 For the predictor-corrector method the global error at is 1.0211881E-

04 which is about six times less than the error (6.0776027E-04) generated by

the implicit Adams-Moulton method and about 56 times less than the error

(5.7083601E-03) generated by Adams-Bashforth method. Both the Adams-

Bashforth and the predictor-corrector methods took advantage at by

47

the higher accuracy of Runge-Kutta, but this is not the case for Moulton’s

method.

2.4 Stability and Stability Regions [8, 12]

 In this section, we will study absolute stability of one-step numerical

schemes. Absolute stability considers the behavior of the numerical scheme

when the time step h is held fixed and .

 A numerical method is stable if and only if it is consistent and stable.

Moreover, if a numerical is stable and has equals

to then it has equals to

This means that if a method is consistent and stable then

as . In other words global error vanishes as .

 Our model for studying stability will be

 For , the numerical scheme is absolutely stable if

where

Definition (2.5) [8]

The locus S of points z ∈ C for which is called the (absolute)

stability region of the scheme.

 Since , the boundary of the region of absolute stability is the

roots of the equation

48

Now, for Euler’s forward method

 We wrote a Matlab Program (2.9) to find the roots of (2.30) at equally spaced

values in the interval and to plot these roots.

 To find the boundary of the region of absolute stability for Euler’s forward

method, we run Program (2.9) for .

Figure (2.9) (a) shows the stability region (shaded) for Euler’s forward

method. In addition, Figure (2.9) (b) shows the stability region (shaded) for

Euler’s backward method.

(a)

(b)

Figure (2.9): (a) Stability region for Euler’s Forward method

 (b) Stability region for Euler’s Backward method

49

 We find that the stability region is the inner of the disk (Figure (2.9) (a)) with

center and radius equals one. This means that must be inside this

disk. For complex , we

This means that for , there is no satisfies (2.31). Therefore, Euler’s

method is not stable when real and absolutely stable when

 and satisfies (2.31). To make this clearer, we take

and . For , there is no , meaning that for any choice of

 Euler’s method is unstable. For , we must choose so that the

method is stable.

We will use the three dimensional Cartesian coordinate system to plot the

complex numbers y and w as they vary with .

(a) (b) (c)

Figure (2.10): Relation between , h and stability of Euler’s method:

 (a) t=200 h=0.001, (b)

 (c) t=200, h=0.5,

50

Figure (2.10) (a) shows that Euler’s method is unstable for , even

though we chose Figure (2.10) (b) shows that Euler’s method is

stable for and But, Figure (2.10) (c) shows that

Euler’s method is unstable for and

To study stability of backward Euler’s method, we have

We used Program (2.10) to plot the boundary of the region of absolute

stability for . Figure (2.9) (b) shows the stability region for this

method is the outer side of the disk with centre (1,0) and radius 1.

 We can find the function G for other methods in the same way as we did for

Euler’s methods.

 We wrote Program (2.11) to find G(z) for explicit RK methods and to plot

the boundary of regions of stability. Table (2.12) contains G(z) for RK

methods 1,…,4, generated by Program (2.11). Figure (2.11) contains the

regions of stability of RK methods and 4, generated by Program (2.11).

Table (2.12): Amplification functions G(z) for RK1,…,RK4

Method G(z)

51

RK1 1+z

RK2 1+z+1/2*z^2

RK3 1+z+1/2*z^2+1/6*z^3

RK4 1+z+1/2*z^2+1/6*z^3+1/24*z^4

Figure (2.11): Stability regions for RK1,…,RK4

 Finally, we will derive the functions G(z) for Taylor methods. First, we note

that

 Therefore, Taylor’s method of order n will be

And hence,

RK1 ــــــــــ

RK2 ــــــــــ

RK3 ــــــــــ

RK4 ــــــــــ

52

 Program (2.12) is designed to plot the boundary of the regions of stability of

any range of Taylor’s methods. We used this program to plot these boundaries

for Taylor’s methods in Figure (2.12).

Figure (2.12): Stability regions for Taylor1,…, Taylor6 methods

Figure (2.13) demonstrates stability behavior of fourth order Taylor’s method

when applied to (2.29) with different values of h and lambda. The method

shows absolute stability in (b), (d) and (g). It shows instability in (a), (c) and

(f). In (e) the error remains bounded and the method is stable but not

absolutely stable.

Taylor1 ــــــ

Taylor2 ــــــ

Taylor3 ــــــ

Taylor4 ــــــ

Taylor5 ــــــ

Taylor6 ــــــ

53

Figure (2.13): Stability behavior of fourth order Taylor method:

 (a) lambda=10+1*i; h=.1; b=5

Figure (2.13) :(b) lambda=-2+1*i; h=.1; b=5

54

Figure (2.13): (c) lambda=-50+1*i; h=.1; b=5;

Figure (2.13) :(d) lambda=1*i; h=.1; b=30

55

Figure (2.13): (e) lambda=10*i; h=.1; b=100;

Figure (2.13): (f) lambda=-40*i; h=.1; b=100;

56

Figure (2.13) (g) lambda=-i; h=.1; b=100;

57

Chapter Three

Higher Order Taylor Methods

3.1 Introduction

 In this chapter, we will be focusing on solving first order initial value

problems, systems of first order initial value problems and higher order initial

value problems, using higher order Taylor methods. Here, a question arises,

since Taylor methods are well known, why we have chosen to investigate

Taylor methods. Taylor methods have the weakness of having to find higher

order derivatives needed to construct these methods. We thought, it is worth to

develop an algorithm and later a computer program to accomplish this task. In

this chapter and in the next chapter we will try to answer this question.

3.2 Higher Order Taylor Methods for Solving First Order IVP

 In this section, we will develop some numerical algorithms to find

 of our basic problem,

and construct nth order Taylor methods to solve this problem.

3.2.1 Finding Higher Order Derivatives of First Order IVP’s

Theorem (3.1) [17]

If w is a function of u1 , u2 ,…, uk and each is a function of one variable t , then

w is a function of t and

 = + + … + .

 Applying this theorem on

58

 (t) = f (t, y (t)),

where and represent and in the theorem respectively, we get

 = + .

That is

 = +

Now let

Applying theorem (3.1) on we get

 = + ,

 = + .

 Repeating this process until we get

 = + . (3.1)

 From (3.1), we get an iterative method to find higher order derivatives

 of first order IVP’s and that is:

 = + , (3.2)

 Algorithm (3.1) finds and store them together with in the

vector , where . We translated Algorithm (3.1) into a Matlab

Program (3.1), which we will use to find the derivatives.

59

Algorithm (3.1) Finds the first n derivatives of where

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step10:

Example (3.1)

 We can find the first 4 derivatives of where .

 Running Program (3.1) for and n = 4, produces the vector ,

where

 That is

 y' = exp(y), y'' = exp(2*y), y''' = 2*exp(3*y) and y
(4)

= 6*exp(4*y).

 Example (3.2)

 Consider running Program (3.1) for and .

60

 Doing that, we get where

yp1= y*exp(y)

yp2= exp(2*y)*(1+y)*y

yp3= exp(3*y)*(4*y+2*y^2+1)*y

yp4= exp(4*y)*(18*y^2+6*y^3+11*y+1)*y

yp5= exp(5*y)*(96*y^3+24*y^4+98*y^2+26*y+1)*y

yp6= exp(6*y)*(600*y^4+120*y^5+874*y^3+424*y^2+57*y+1)*y

yp7= exp(7*y)*(4320*y^5+720*y^6+8244*y^4+6040*y^3+1614*y^2

+120*y+1)*y

yp8= exp(8*y)*(35280*y^6+5040*y^7+83628*y^5+83500*y^4

+35458*y^3+5682*y^2+247*y+1)*y

yp9= exp(9*y)*(322560*y^7+40320*y^8+915984*y^6+1169768

*y^5+701164*y^4+187288*y^3+19022*y^2+502*y+1)*y

yp10= exp(10*y)*(1+61584*y^2+920350*y^3+5191412*y^4

+13329084*y^5+1013*y+16939800*y^6+10824336*y^7

+3265920*y^8+362880*y^9)*y

yp11= exp(11*y)*(1+194882*y^2+4297240*y^3+35160560*y^4

+131888624*y^5+2036*y+251869440*y^6+255992688*y^7

+137636640*y^8+36288000*y^9+3628800*y^10)*y

yp12= exp(12*y)*(1+607042*y^2+19332662*y^3+223072440*y^4

+1178097904*y^5+4083*y+3213860944*y^6+4818505344

*y^7+4054649328*y^8+1876883040*y^9+439084800*y^10

+39916800*y^11)*y

yp13= exp(13*y)*(1+1870122*y^2+84615152*y^3+1347354144

*y^4+9745456704*y^5+8178*y+479001600*y^12

61

+36634201456*y^6+77114374080*y^7+94313908080*y^8

+67424622336*y^9+27352529280*y^10+5748019200*y^11)*y

yp14= exp(14*y)*(1+5716680*y^2+362772194*y^3+7836767696*y^4

+75988344096*y^5+16369*y+80951270400*y^12

+383130347344*y^6+1093159611568*y^7+6227020800

*y^13+1851312035760*y^8+1900327028400*y^9

+1177397912448*y^10+424559111040*y^11)*y

yp15= exp(15*y)*(1+17379206*y^2+1531122296*y^3+44262649196

*y^4+565644812320*y^5+32752*y+6996194069760*y^12

+3745749248752*y^6+14109101755360*y^7+1220496076800

*y^13+31966042883792*y^8+87178291200*y^14

+44921638784640*y^9+39555955434528*y^10

+21578280106752*y^11)*y

yp16= exp(16*y)*(1+52628898*y^2+6385177274*y^3

+244280080420*y^4+4057808611860*y^5+65519*y

+414624724508160*y^12+34704916926064*y^6

+169059052774160*y^7+122029856121600*y^13

+499330912284528*y^8+19615115520000*y^14

+928707031103280*y^9+1307674368000*y^15

+1108940091549408*y^10+852278692798944*y^11)*y

yp17= exp(17*y)*(1+20922789888000*y^16+158934998*y^2

+26382771464*y^3+1323563238484*y^4+28255332957880

*y^5+131054*y+19026580503389184*y^12+307859356272208

*y^6+1907751093010304*y^7+8342413577832960*y^13

+7198923054947312*y^8+2246704430745600*y^14

+17276364907585248*y^9+334764638208000*y^15

62

+27057653504695968*y^10+27970385778377856*y^11)*y

yp18= exp(18*y)*(1+6046686277632000*y^16+479032912*y^2

+108232980822*y^3+7066323307308*y^4+192032572801508

*y^5+262125*y+722842104776482944*y^12

+2635356154189416*y^6+20495617800709968*y^7

+440245658647277568*y^13+97222076075700976*y^8

+175521597284344320*y^14+295145341009956784*y^9

+43550209534003200*y^15+591332391980604864*y^10

+795624738920365728*y^11+355687428096000*y^17)*y

yp19= exp(19*y)*(1+886697438331801600*y^16+1441816986*y^2

+441554515704*y^3+37279810191336*y^4

+1279389256340592*y^5+524268*y+23718192662660861376

*y^12+21904079389753056*y^6+211401353181089232

*y^7+19174597107038578944*y^13+1243919805094088208

*y^8+10557245814916161024*y^14+4701450779462185408

*y^9+3856192103662248960*y^15+11817272449965875616

*y^10+20191479922695276288*y^11+115242726703104000

*y^17+6402373705728000*y^18)*y

yp20= exp(20*y)*(1+88341506421223357440*y^16+4335412050*y^2

+1793612585550*y^3+194788586755056*y^4

+8384651931678936*y^5+1048555*y

+691974623145801447360*y^12+177636951598742640*y^6

+2107388333854021920*y^7+719090020089096471360*y^13

+15211903956287489280*y^8+522676032257475415296*y^14

+70648984091409530032*y^9+262286744142003042816*y^15

+219317561759406154528*y^10+466825935621694952160

63

*y^11+18921620408960102400*y^17+2311256907767808000

*y^18+121645100408832000*y^19)*y.

3.2.2 Constructing Taylor Expansion for First order IVP’s

 The next Algorithm (3.1) finds the first n derivatives of , where

 and constructs the nth order defined in

for the nth order Taylor method (2.16)

 We translated this algorithm into a Matlab Program (3.2), which we will use

to solve the following examples.

Algorithm (3.2) Finds the first n derivatives of where

and constructs

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

64

Step 9:

Step 10: Let

Step 11: Let

Step 12:

Step 13:

Step 14:

Example (3.3)

 Consider constructing for , where .

Entering and into Program (3.2), we get

 .

Example (3.4)

Consider running Program (3.2) for and .

Doing that, we get

t-y+1/2*h*(1-t+y)+1/6*h^2*(-1+t-y)+1/24*h^3*(1-t+y)+1/120*h^4

 *(-1+t-y)+1/720*h^5*(1-t+y)+1/5040*h^6*(-1+t-y)+1/40320*h^7*(1-t+y)

 +1/362880*h^8*(-1+t-y)+1/3628800*h^9*(1-t+y)+1/39916800*h^10

 *(-1+t-y)+1/479001600*h^11*(1-t+y)+1/6227020800*h^12*(-1+t-y)

 +1/87178291200*h^13*(1-t+y)+1/1307674368000*h^14*(-1+t-y).

 3.2.3 Approximating the Solution of First Order IVP’s using Higher

Order Taylor Methods

 Now, we are ready to introduce an algorithm to approximate the solution of

the first order initial value problem using higher order Taylor methods.

65

Algorithm (3.3) enables the user to approximate IVPs with different Taylor

orders and step sizes . It also, finds numerical approximations and

exact values of the solution of the problem at each and stores them in the

vectors and . In addition, it finds the accumulated global errors at each step

and stores them in the vector named ‘error’.

 We translated Algorithm (3.3) into Matlab Program (3.3) to find ,

generates nth Taylor’s higher order method and uses it to approximate the

solution of the first order IVP.

Algorithm (3.3) Solves first order IVPs using higher order Taylor

methods and compares with the exact solution

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

66

Step 13:

Step 14:

 Example (3.5)

 We can find numerical approximation of the solution of the next IVP, using

step size and Taylor methods of orders .

The exact solution of this problem is

The results of running Program (3.3) for h = 0.1 and n=4, 10 are represented

in Table (3.1) and Figure (3.1).

The generated Taylor iterative method for n=4 and h=0.1 is

 ; h is replaced by its value 0.1,

where

 = (2-2*t*y)/(t^2+1)+1/10*(3*y*t^2-y-4*t)/(t^2+1)^2

 -1/50*(2*t^3*y-2*t*y-3*t^2+1)/(t^2+1)^3+1/1000

 *(5*y*t^4-10*y*t^2+y-8*t^3+8*t)/(t^2+1)^4

The generated Taylor iterative method for and is

 ; h is replaced by its value 0.1,

where

 (t, y)=(2-2*t*y)/(t^2+1)+1/10*(3*y*t^2-y-4*t)/(t^2+1)^2

67

 -1/50*(2*t^3*y-2*t*y-3*t^2+1)/(t^2+1)^3+1/1000

 *(5*y*t^4-10*y*t^2+y-8*t^3+8*t)/(t^2+1)^4

 -59029581035870595/295147905179352825856

 *(3*t^5*y+3*t*y-5*t^4+10*t^2-1-10*t^3*y)/(t^2+1)^5

 +377789318629571835/37778931862957161709568

 *(7*y*t^6-35*y*t^4+21*y*t^2-y-12*t^5-12*t

 +40*t^3)/(t^2+1)^6

 -1208925819614629935/604462909807314587353088

 *(4*t^7*y-28*t^5*y+28*t^3*y-4*t*y-7*t^6+35

 *t^4-21*t^2+1)/(t^2+1)^7

 +1934281311383408085/19342813113834066795298816

 *(126*y*t^4-36*y*t^2+y+16*t-84*y*t^6-112*t^3

 +112*t^5+9*y*t^8-16*t^7)/(t^2+1)^8

 -24758800785707614605/1237940039285380274899124224

 *(-1+36*t^2+5*t*y+5*t^9*y-126*t^4-60*t^3*y+84*t^6

 +126*t^5*y-60*t^7*y-9*t^8)/(t^2+1)^9

 +79228162514264376375/79228162514264337593543950336

 *(-20*t^9-330*y*t^4+55*y*t^2+11*y*t^10-y-20*t+462

 *y*t^6+240*t^3-504*t^5-165*y*t^8+240*t^7)/(t^2+1)^10.

 Table (3.1) contains the results produced by Matlab Program (3.3) used to

approximate the solution of the IVP in Example (3.5). At , it is clear that

the global error with is highly reduced with the probation 1.06201E-

08 to the global error with .

68

Table (3.1): Results of Example (3.5) using Taylor methods of orders 4

and 10 with step size h=0.1

ti y (ti) wi (Taylor 4) errori (Taylor4) wi (Taylor 10) errori (Taylor 10)

0.0000000

0.1000000

0.2000000

0.3000000

0.4000000

0.5000000

0.6000000

0.7000000

0.8000000

0.9000000

1.0000000

1.0000000

1.1881188

1.3461539

1.4678899

1.5517242

1.6000000

1.6176471

1.6107383

1.5853659

1.5469613

1.5000000

1.0000000

1.1881000

1.3461270

1.4678676

1.5517144

1.6000041

1.6176616

1.6107583

1.5853873

1.5469815

1.5000175

0.0000000

0.0000188

0.0000268

0.0000223

0.0000098

0.0000041

0.0000145

0.0000201

0.0000215

0.0000201

0.0000175

1.0000000

1.1881188

1.3461538

1.4678899

1.5517241

1.6000000

1.6176471

1.6107383

1.5853659

1.5469613

1.5000000

0.0000000E-000

1.8811841E-011

1.4418022E-011

3.1070702E-012

1.0866197E-011

6.6371353E-012

5.7087668E-013

1.9819701E-012

1.7961188E-012

8.6997076E-013

1.8585133E-013

 Figure (3.1) compares the exact solution y and the approximated solution of

the IVP in Example (3.5) using fourth order Taylor method with step

size . It shows how close the approximated and exact solutions are.

Figure (3.1): Comparing approximated solution w by fourth order

Taylor method and exact solution y of the IVP in Example (3.5)

with h=0.1

3.3 Higher Order Taylor Methods for Systems of First Order IVP’s

69

 A system consisting of k equations of first order ordinary differential

equations can be written as

 (t) = f1 (t, u1, …, uk),

 (t) = f2 (t, u1, …, uk),

 (t) = fk (t, u1, …, uk),

where u1, …, uk are functions of t. (3.3)

 Reformulating (3.3), we get

 (t) = fj (t, u1, …, uk), j = 1, 2, … , k. (3.4)

 Now, applying theorem (3.1) to each equation in (3.4), where ,

we get

 (t) = + + + …+ . (3.5)

 Substituting fj by , (3.3) becomes

 (t) = + + …+ .

Now, letting

 (t) = (t) = + + …+

and applying Theorem (3.1) again to (t), then we get

 (t) = (t) = + + …+ .

Substituting by , we get

70

 (t) = + + + …+ .

Repeating this process n-1 times until we reach , then we get

 (t) = + + + …+ .

 We note that every depends only on and the given , where

 i = 2,…,n ; j = 1, 2, …, k. So, we can generalize that

 (t) = + + + …+ ,

where

 Putting (3.6) into summation form, we get

where

 In our programs, we will use matrices “up“ of dimensions kn to

enter (t) in up(j, i) where i=1,…,n , j = 1, 2, …, k. The notation up(j

,i) and up(p,1) refer to and , where i=1,…,n, j=1, …, k and p=1,

…,k. Now for i=1, u(j ,1) is . Thus, we can write (3.7) as follows:

 For

 up(j ,i)= , i=2,…,n. (3.8)

71

 In the following subsections, we will first implement (3.7) in algorithms to

find higher order derivatives of in each equation in the system of first order

IVP’s (3.4), and then use these derivatives to construct Taylor expansion of

each and finally solve the system of IVP using higher order

Taylor methods.

3.3.1 Finding Higher Order Derivatives of Systems of First Order IVP’s

 We put the iterative method (3.7) into Algorithm (3.4). In addition, we

translated it into a Matlab Program (3.4). This program uses the alternative

form (3.8) instead of (3.7) for finding the first n derivatives of

Algorithm (3.4) Finds higher order derivatives of in the system of

first order IVP’s:

 :

Step 1:

Step 2:

Step 7:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

72

Step 8:

Step 9:

Step 10:

Example (3.6)

For n = 3 and 6, we can find the first n-1 derivatives of each of the

following system with respect to t, where are functions of t and j = 1, 2 , 3.

= + t,

= 2,

= + e
-t
.

 Running Program (3.4), entering the system and three for n, gives the

following results:

[, ,] = [u2-u3+t, 1+3*t^2-u2-exp(-t), 6*t+exp(-t)-3*t^2]

[, ,]= [3*t^2, 6*t, 6]

[, ,] = [u2+exp(-t), -exp(-t)+3*t^2, 6*t+exp(-t)]

 Repeating running the program for the same system but for n=4, gives the

following results:

[, , ,] = [u2-u3+t, 1+3*t^2-u2-exp(-t),

 6*t+exp(-t)-3*t^2, 6-exp(-t)-6*t]

[, , ,] = [3*t^2, 6*t, 6, 0]

[, , ,] = [u2+exp(-t), -exp(-t)+3*t^2, 6*t+exp(-t), 6-exp(-t)]

3.3.2 Constructing Taylor Expansion for a System of First Order IVP’s

 Taylor expansion for of first order IVP as defined in (2.8)

73

 (t, y, h) = yʹ+ yʹʹ+ ... + y
(n)

.

 Now for the system (3.3), the nth Taylor expansion of will

be

 (t, u1, …, uk, h) = + + + ; j = 1, …, k. (3.9)

 Algorithm (3.5) constructs the array T, where refers to defined in the

system (3.3). It includes the steps used in Algorithm (3.4), in addition to the

steps needed to generate (3.9).

 We translated Algorithm (3.5) into Matlab Program (3.5). It constructs the

array , where refers to in equation (3.9).

Algorithm (3.5) Constructs Tj's as Taylor expansions of each (t) in the

system of first order IVPs:

 :

Step 1:

Step 2:

Step 3:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

74

Step 11:

Step 12:

Step 13:

Step 14:

Step 15:

Step 16:

Step 16:

Example (3.7)

Consider constructing T for the system in Example (3.6) using n= 2 and n = 4.

Running Program (3.4), entering the system and n, results:

For n=2

 T(1) = (u2-u3+t)+1/2*h*(1+3*t^2-u2-exp(-t)),

 T(2) = 3*t^2+3*h*t,

 T(3) = (u2+exp(-t))+1/2*h*(-exp(-t)+3*t^2).

For n=4

 T(1) = (u2-u3+t)+1/2*h*(1+3*t^2-u2-exp(-t))+1/6*h^2

 *(6*t+exp(-t)-3*t^2)+1/24*h^3*(6-exp(-t)-6*t),

 T(2) = 3*t^2+3*h*t+h^2,

 T(3) = (u2+exp(-t))+1/2*h*(-exp(-t)+3*t^2)+1/6*h^2

 *(6*t+exp(-t))+1/24*h^3*(6-exp(-t)).

75

3.3.3 Higher Order Taylor Methods for Systems of First Order IVP’s

 From previous discussions, we have the iterative method (2.16) for a single

equation IVP

 wi+1 = wi + hT(ti, wi, h), i = 1, 2, … , N

and Taylor expansion “equation (3.9)” for a system of IVP

 (t, u1,…, uk, h) = + + ... + ; j = 1, …, k.

 Combining these equations, we get the iterative method for approximating

the solution of a system of first order IVP.

 In Algorithm (3.6), we changed Taylor method we used in Algorithm (3.3),

by using equation (3.10), to deal with systems of equations instead of one

equation. Algorithm (3.6) approximates the solution (w)of a system of first

order IVP, finds the exact solution (uN) and global error (error), using

different orders n and different step sizes h. We put this algorithm into a

Matlab Program (3.6) that we will use in approximating the solution of

systems of first order ordinary differential equations initial value problems.

Algorithm (3.6): Solves the system

by higher order Taylor methods

Step 1:

Step 2:

76

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step10:

Step 11:

Step 12:

Step 13:

Step 14:

Step 15:

Step 16:

Step 17:

Example (3.8)

 We can find an approximate solution to the following system using h=0.1

 and Taylor order n=4:

 = −4u1 + 3u2 + 6,

 = −2.4u1 + 1.6u2 + 3.6,

 u1(0) = 0, u2(0) = 0, 0 < t < 1.

 Actual solution of the system

 u1(t) = −3.375e
−2t

 + 1.875e
−0.4t

 + 1.5,

 u2(t) = −2.25e
−2t

+ 2.25e
−0.4t

 .

77

 The generated Taylor method (h is replaced by its value 0.1)

 w1, i+1 = w1, i + hT1(ti, w1,i, w2,i) for approximation of u1, i = 1, …, N.

 w2, i+1 = w2, i + hT2(ti, w1,i, w2,i) for approximation of u2, i = 1, …, N

where

 T1(t, u1, u2) = -224273/62500*u1+41618/15625*u2+672819/125000,

 T2(t, u1, u2) = -166472/78125*u1+1297121/937500*u2+249708/78125.

 Table (3.2) contains exact values, approximated values and errors at each

for each u in the system of Example (3.8).

Table (3.2): Results of Example (3.8) using fourth order Taylor’s method

using h=0.1

ti u1,i w1,i error1,i u2,i w2,i error2,i
0.0000000

0.1000000

0.2000000

0.3000000

0.4000000

0.5000000

0.6000000

0.7000000

0.8000000

0.9000000

1.0000000

0.0000000

0.5382639

0.9685130

1.3107365

1.5812844

1.7935270

1.9583968

2.0848298

2.1801288

2.2502594

2.3000934

0.0000000

0.5382552

0.9684988

1.3107190

1.5812652

1.7935075

1.9583776

2.0848114

2.1801114

2.2502437

2.3000791

0.0000000

0.0000087

0.0000143

0.0000175

0.0000191

0.0000196

0.0000192

0.0000184

0.0000172

0.0000158

0.0000144

0.0000000

0.3196321

0.5687917

0.7607448

0.9063333

1.0144155

1.0922257

1.1456703

1.1795682

1.1978493

1.2037157

0.0000000

0.3196262

0.5687822

0.7607331

0.9063206

1.0144024

1.0922129

1.1456580

1.1795567

1.1978387

1.2037061

0.0000000

0.0000058

0.0000095

0.0000117

0.0000127

0.0000130

0.0000128

0.0000122

0.0000114

0.0000105

0.0000096

 Figure (3.2) contains plotted results of Example (3.8). It contains four curves;

u1 and u2 represent the exact solutions, while w1 and w2 represent the

approximated solutions of u1 and u2. We notice that the curves of w1 and w2

coincide with the curves of u1 and u2 respectively. That means that we have

good results.

78

Example (3.9)

 We can find an approximate solution of the following system of IVP.

 Take n=9 and h= 0.1.

 = u2 − u3 + t,

 = 3t
2
, 0 ≤ t ≤ 1

 = u2 + e
(− t)

 , h = 0.1;

with initial conditions

 u1(0) = 1, u2(0) = 1 and u3(0) = −1.

This system has the exact solution

 u1(t) = −0.05t
5
 + 0.25t

4
 + t + 2 − e

−t
 ,

 u2(t) = t
3
 + 1, and

 u3(t) =0.25t
4
 + t − e

−t
 .

 We ran Program (3.6) for this problem and it produced the following results:

 The generated Taylor method (h is replaced by its value 0.1)

 w1, i+1 = w1, i + hT1(ti, w1,i, w2,i, w3,i) for approximation of u1, i = 1, …, N,

Figure (3.2): Results of Example (3.8)

79

 w2, i+1 = w2, i + hT2(ti, w1,i, w2,i, w3,i) for approximation of u2, i = 1, …, N,

 w3, i+1 = w3, i + hT2(ti, w1,i, w2,i, w3,i) for approximation of u3, i = 1, …, N,

 where

 T1(t, u1, u2, u3) = 19/20*u2-u3+4039/4000*t+14829706495736582734389

 /295147905179352825856000+29/200*t^2

 -122643117536780316708704412413253

 /2535301200456458802993406410752000*exp(-t),

 T2(t, u1, u2, u3) = 3*t^2+3/10*t+1/100,

 T3(t, u1, u2, u3) =u2+2412658082919678486284701998338747

 /2535301200456458802993406410752000

 *exp(-t)+3/20*t^2+1/100*t+1/4000.

 Table (3.3) contains exact values, approximated values and errors at each

 for each u in the system of Example (3.9). We have very good results,

since the global errors at the final step is about 10
-15

, which is better than

the expected O(h
9
).

 Figure (3.3) contains plotted results of Example (3.9). It contains six

curves; u1, u2 and u3 represent the exact solutions, while w1, w2 and w3

represent the approximated solutions of u1, u3 and u3. We notice that the

curves of w1, w2 and w3 coincide with the curves of u1, u2 and u3

respectively. That means that we have good results.

Table (3.3): Results of Example (3.9), using Taylor method with n=9 and

h=0.1

ti u1,i w1,i error1,i u2,i w2,i error2,i

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0000000

1.1951871

1.3816532

1.5610853

1.7355680

1.9075318

2.0797004

2.2550362

2.4366870

2.6279308

2.8321206

1.0000000

1.1951871

1.3816532

1.5610853

1.7355680

1.9075318

2.0797004

2.2550362

2.4366870

2.6279308

2.8321206

0.0000000E+00

0.0000000E+00

4.4408921E-16

2.2204460E-16

2.2204460E-16

2.2204460E-16

4.4408921E-16

4.4408921E-16

4.4408921E-16

4.4408921E-16

8.8817842E-16

1.0000000

1.0010000

1.0080000

1.0270000

1.0640000

1.1250000

1.2160000

1.3430000

1.5120000

1.7290000

2.0000000

1.0000000

1.0010000

1.0080000

1.0270000

1.0640000

1.1250000

1.2160000

1.3430000

1.5120000

1.7290000

2.0000000

0.0000000E+00

0.0000000E+00

4.4408921E-16

4.4408921E-16

8.8817842E-16

8.8817842E-16

1.1102230E-15

1.1102230E-15

1.3322676E-15

1.1102230E-15

1.1102230E-15

u3,i w3,i error3,i

-1.0000000

-0.8048124

-0.6183308

-0.4387932

-0.2639200

-0.0909057

0.0835884

0.2634397

0.4530710

0.6574553

0.8821206

-1.0000000

-0.8048124

-0.6183308

-0.4387932

-0.2639200

-0.0909057

0.0835884

0.2634397

0.4530710

0.6574553

0.8821206

0.0000000E+00

1.1102230E-16

1.1102230E-16

1.6653345E-16

5.5511151E-17

0.0000000E+00

0.0000000E+00

1.1102230E-16

5.5511151E-17

1.1102230E-16

2.2204460E-16

Figure (3.3): Results of Example (3.9)

3.4 Higher Order Taylor Methods for Higher Order IVP’s

81

 In this section, we will develop an algorithm, which we will translate into a

Matlab program to approximate the solution of the IVP (1.4)

 y
(k)

 (t) = f (t, y, , , …,), a t b,

 y(a) = 1 , (a) = 2, (a) = 3, …, (a) = k.

 To approximate the solution of a higher order IVP, we first transform it into

a system (1.7) of first order IVP’s as discussed in chapter one. Then, we

approximate the solution of the system satisfying the initial conditions.

Finally, we treat the approximated of as the approximation of y.

 Algorithm (3.7) solves higher order ordinary differential equations initial

value problem

following the steps mentioned in the last paragraph.

Algorithm (3.7): Solves higher order IVP’s by higher order Taylor

methods

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

82

Step 7:

Step 8: 9-11

Step 9:

Step 10:

Step 11:

Step 12:

Step 13:

Step 14:

Step 15:

Step 16:

Step 17:

Step 18:

Step 19:

Step 20:

Step 21:

Step 22:

Step 23:

Step 24:

Step 25:

 We translated Algorithm (3.7) into the Matlab Program (3.7), which we will

use in solving the following examples.

Example (3.10)

We can transform the following IVP into a system of first order s, and then

approximate the solution of y(t) using n = 4 and h = 0.1.

 y
(10)

(t) =2y
(9)

+y
(8)

 (t) -3y
(7)

(t) +2y
(3)

 (t) +y’(t) +y(t) -(exp(-t)+t+1), ,

83

 with initial conditions

 y(0) = -1, (0) = 2, (0) = -1, (0) = 1, (0) = -1, (0) = 1,

 (0) = -1, (0) = 1, (0) = -1 and (0) = 1.

 Actual solution is

 y(t) = t-e
-t
.

 Running Program (3.7) for this problem gives the following results:

The generated System

u10(0)=1.

Table (3.4) contains t, exact solution y, approximating

 and “error”. The vector error is the absolute value of column

two minus column one. We are interested only on the vector , since it

approximates , which is equal to y. That means approximates y.

Table (3.4): Result of Example (3.10) using Taylor method of

order n=4 and step size h=0.1

ti yi w1,i w2,i w3,i w4,i w5,i

84

0.0000000

0.1000000

0.2000000

0.3000000

0.4000000

0.5000000

0.6000000

0.7000000

0.8000000

0.9000000

1.0000000

-1.0000000

-0.8048374

-0.6187308

-0.4408182

-0.2703200

-0.1065307

0.0511884

0.2034147

0.3506710

0.4934303

0.6321206

-1.0000000

-0.8048375

-0.6187309

-0.4408184

-0.2703203

-0.1065309

0.0511881

0.2034144

0.3506707

0.4934300

0.6321202

2.0000000

1.9048375

1.8187309

1.7408184

1.6703203

1.6065309

1.5488119

1.4965856

1.4493293

1.4065700

1.3678798

-1.0000000

-0.9048375

-0.8187309

-0.7408184

-0.6703203

-0.6065309

-0.5488119

-0.4965856

-0.4493293

-0.4065700

-0.3678798

1.0000000

0.9048375

0.8187309

0.7408184

0.6703203

0.6065309

0.5488119

0.4965856

0.4493293

0.4065700

0.3678798

-1.0000000

-0.9048375

-0.8187309

-0.7408184

-0.6703203

-0.6065309

-0.5488119

-0.4965856

-0.4493293

-0.4065700

-0.3678798

w6,i w7,i w8,i w9,i w10,i
errori=|yi-w1,i|

1.0000000

0.9048375

0.8187309

0.7408184

0.6703203

0.6065309

0.5488119

0.4965856

0.4493293

0.4065700

0.3678798

-1.0000000

-0.9048375

-0.8187309

-0.7408184

-0.6703203

-0.6065309

-0.5488119

-0.4965856

-0.4493293

-0.4065700

-0.3678798

1.0000000

0.9048375

0.8187309

0.7408184

0.6703203

0.6065309

0.5488119

0.4965856

0.4493293

0.4065700

0.3678798

-1.0000000

-0.9048375

-0.8187309

-0.7408184

-0.6703203

-0.6065309

-0.5488119

-0.4965856

-0.4493292

-0.4065699

-0.3678796

1.0000000

0.9048375

0.8187309

0.7408184

0.6703203

0.6065310

0.5488121

0.4965858

0.4493296

0.4065704

0.3678803

0.0000000E+00

8.1964040E-08

1.4832827E-07

2.0131946E-07

2.4288185E-07

2.7471075E-07

2.9828229E-07

3.1487982E-07

3.2561721E-07

3.3145947E-07

3.3324104E-07

 Figure (3.4) shows that the curve of w1 coincides with the curve of y.

This Figure shows only three of the nine remaining curves of

since and . In addition we used

circles in plotting all curves of w2,…,w10.

85

Figure (3.4): Results of Example (3.10)

Example (3.11)

 We can find an approximate solution to following IVP using step size h=0.1

and Taylor of order n=15:

 y
(20)

 (t) = y(t) , 0 t 2,

with initial conditions

 y
(i)

(0)=(-1)
i
 , i=0, …,19.

Exact solution for the IVP is

 y(t)= e
-t
.

 Running Program (3.7) for this problem gives the following results:

The generated System

86

 Table (3.5) contains the vectors and . Since we are interested only

on , we haven’t presented in Table (3.5). We still have good

results, but not as good as in the previous example, since we have used order

fifteen.

Table (3.5): Results of Example (3.11), using Taylor of order n=15 and

step size h=0.1

ti yi w1,i
error= |yi - w1,i

|
0.0000000

0.1000000

0.2000000

0.3000000

0.4000000

0.5000000

0.6000000

0.7000000

0.8000000

0.9000000

1.0000000

1.1000000

1.2000000

1.3000000

1.4000000

1.5000000

1.6000000

1.7000000

1.8000000

1.9000000

2.0000000

1.0000000

0.9048374

0.8187308

0.7408182

0.6703200

0.6065307

0.5488116

0.4965853

0.4493290

0.4065697

0.3678794

0.3328711

0.3011942

0.2725318

0.2465970

0.2231302

0.2018965

0.1826835

0.1652989

0.1495686

0.1353353

1.0000000

0.9048374

0.8187308

0.7408182

0.6703200

0.6065307

0.5488116

0.4965853

0.4493290

0.4065697

0.3678794

0.3328711

0.3011942

0.2725318

0.2465970

0.2231302

0.2018965

0.1826835

0.1652989

0.1495686

0.1353353

0.0000000E+00

0.0000000E+00

0.0000000E+00

1.1102230E-16

0.0000000E+00

0.0000000E+00

1.1102230E-16

5.5511151E-17

5.5511151E-17

5.5511151E-17

0.0000000E+00

5.5511151E-17

0.0000000E+00

0.0000000E+00

2.7755576E-17

2.7755576E-17

2.7755576E-17

5.5511151E-17

8.3266727E-17

5.5511151E-17

5.5511151E-17

87

Figure (3.5) shows that the curve of w1 coincides with the curve of y. As

earlier explained, we plotted only and .

Figure (3.5): Comparison between the approximated solution

and the exact solution y in Example (3.11) with n=15, h=0.1

88

Chapter Four

Error Analysis

4.1 Error Analysis for Numerical Methods

 In this section, we will study the global error (GE) generated by fourth

order numerical methods studied in chapter two. These are Taylor method,

Runge-Kutta method, Adams-Bashforth method, Adams-Moulton method,

predictor-corrector method and Milne’s method. Using step size , we

will apply all of these methods to the initial value problem in the next

example.

Example (4.1)

 Using step size , we can approximate the solution to the IVP

This initial value problem has the exact solution

 For and , we have and ,

. We will approximate the solution and compare it with the given

exact solution of (4.1) at these values of .

Table (4.1) contains the numerical results for fourth order Taylor method

generated for initial value problem (4.1).

89

Table (4.1): Results of problem (4.1) using Taylor method

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

4.2500000

3.1377778

2.5308163

2.2025001

2.0445678

2.0000000

2.0364463

2.1344445

2.2817159

2.4702041

2.6944444

4.2500000

3.1440001

2.5371852

2.2080023

2.0491660

2.0038359

2.0396702

2.1371815

2.2840633

2.4722369

2.6962206

0.0000000E+00

6.2222220E-03

6.3688587E-03

5.5023138E-03

4.5979898E-03

3.8358041E-03

3.2240110E-03

2.7370052E-03

2.3474416E-03

2.0328776E-03

1.7761366E-03

In Figure (4.1), we plotted the numerical results of the fourth order Taylor

method approximated solution and the exact solution y for the initial value

problem (4.1) against t.

t

Figure (4.1): Approximate and exact solutions for problem (4.1)

using fourth order Taylor method

Exact solution y
Approximated solution w

90

Table (4.2) contains the numerical results for fourth order Runge-Kutta method

generated for initial value problem (4.1).

Table (4.2): Results of problem (4.1) using Runge-Kutta method

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

4.2500000

3.1377778

2.5308163

2.2025001

2.0445678

2.0000000

2.0364463

2.1344445

2.2817159

2.4702041

2.6944444

4.2500000

3.1379659

2.5310133

2.2026730

2.0447142

2.0001233

2.0365508

2.1345336

2.2817929

2.4702711

2.6945033

0.0000000E+00

1.8824609E-04

1.9703139E-04

1.7295216E-04

1.4627952E-04

1.2321006E-04

1.0438789E-04

8.9226342E-05

7.6985394E-05

6.7025467E-05

5.8843481E-05

In Figure (4.2), we plotted the by fourth order Runge-Kutta method

approximated solution and the exact solution y for the initial value problem

(4.1) against t.

t

Figure (4.2): Approximate and exact solutions for problem (4.1)

using fourth order Runge-Kutta method

Exact solution y
Approximated solution w

91

Table (4.3) contains the numerical results for fourth order Adams-Bashforth

method generated for initial value problem (4.1).

Table (4.2): Results of problem (4.1) using fourth order Runge-Kutta

method

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

4.2500000

3.1377778

2.5308163

2.2025001

2.0445678

2.0000000

2.0364463

2.1344445

2.2817159

2.4702041

2.6944444

4.2500000

3.1379659

2.5310133

2.2026730

2.0833945

2.0335274

2.0818779

2.1669915

2.3164694

2.4965878

2.7205029

0.0000000E+00

1.8824609E-04

1.9703139E-04

1.7295216E-04

3.8826704E-02

3.3527330E-02

4.5431580E-02

3.2546941E-02

3.4753364E-02

2.6383726E-02

2.6058473E-02

In Figure (4.3), we plotted the by fourth order Adams-Bashforth method

approximated solution and the exact solution y for the initial value problem

(4.1) against t.

Figure (4.3): Approximate and exact solutions for problem (4.1) using

fourth order Adams-Bashforth method

Exact solution y
Approximated solution w

92

Table (4.4) contains the numerical results for fourth order Milne’s method

generated for initial value problem (4.1).

Table (4.4): Results of problem (4.1) using Milne’s method

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

4.2500000

3.1377778

2.5308163

2.2025001

2.0445678

2.0000000

2.0364463

2.1344445

2.2817159

2.4702041

2.6944444

4.2500000

3.1379659

2.5310133

2.2026730

2.0764439

1.9933140

2.0547066

2.1075168

2.3347795

2.4275715

2.7521725

0.0000000E+00

1.8824609E-04

1.9703139E-04

1.7295216E-04

3.1875897E-02

6.6860020E-03

1.8260250E-02

2.6927656E-02

5.3063568E-02

4.2632643E-02

5.7727974E-02

In Figure (4.4), we plotted the by fourth order Milne’s method approximated

solution and the exact solution y for the initial value problem (4.1) against t.

Figure (4.4): Approximate and exact solutions for problem (4.1) using fourth

order Milne’s method

Exact solution y
Approximated solution w

93

Table (4.5) contains the numerical results for fourth order predictor-corrector

method generated for initial value problem (4.1).

Table (4.5): Results of problem (4.1) using predictor-corrector method

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

4.2500000

3.1377778

2.5308163

2.2025001

2.0445678

2.0000000

2.0364463

2.1344445

2.2817159

2.4702041

2.6944444

4.2500000

3.1379659

2.5310133

2.2026730

2.0401838

1.9949298

2.0316632

2.1301129

2.2778773

2.4668176

2.6914520

0.0000000E+00

1.8824609E-04

1.9703139E-04

1.7295216E-04

4.3841591E-03

5.0701834E-03

4.7831568E-03

4.3315729E-03

3.8385985E-03

3.3863666E-03

2.9923916E-03

In Figure (4.5), we plotted the by fourth order predictor-corrector method

approximated solution and the exact solution y for the initial value problem

(4.1) against t.

Figure (4.5): Approximate and exact solutions for problem (4.1) using

fourth order predictor-corrector method

Exact solution y
Approximated solution w

94

 Since Adams-Moulton method is an implicit method, we had to solve

manually for . We found that

Table (4.6) contains the numerical results for fourth order Adams-Moulton

method generated for initial value problem (4.1).

Table (4.6): Results of problem (4.1) using Adams-Moulton method

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

4.2500000

3.1377778

2.5308163

2.2025001

2.0445678

2.0000000

2.0364463

2.1344445

2.2817159

2.4702041

2.6944444

4.2500000

3.1379659

2.5310133

2.1994088

2.0410907

1.9966804

2.0334775

2.1318364

2.2794333

2.4682019

2.6926804

0.0000000E+00

1.8824609E-04

1.9703139E-04

3.0913462E-03

3.4770828E-03

3.3195824E-03

2.9686904E-03

2.6081272E-03

2.2827196E-03

2.0022437E-03

1.7641560E-03

In Figure (4.6), we plotted the by fourth order Adams-Moulton method

approximated solution and the exact solution y for the initial value problem

(4.1) against t.

95

Figure (4.6): Approximate and exact solutions for problem (4.1) using

fourth order Adams-Moulton method

 Since we used the RK method to approximate the starting values for the

multistep methods, we thought that it would be not accurate to compare them

with other methods in such manner. Therefore, we modified the programs to

assign exact values to at the first four steps and let

the methods approximate the solution at the remaining points.

Table (4.7) contains global errors for these six methods. Since we assigned

 exact values, global errors at will be zero for all

methods.

Exact solution y
Approximated solution w

96

Table (4.7): Errors generated by the methods used to solve Example (4.1)

RK Taylor
Adams-

Moulton

Predictor-

Corrector

Adams-

Bashforth
Milne

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

9.6250E-06

1.2520E-05

1.2908E-05

1.2358E-05

1.1488E-05

1.0550E-05

9.6474E-06

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

2.4960E-04

3.1322E-04

3.1260E-04

2.9051E-04

2.6280E-04

2.3537E-04

2.1029E-04

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

1.1967E-03

1.4195E-03

1.4029E-03

1.2919E-03

1.1614E-03

1.0354E-03

9.2199E-04

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

4.5224E-03

5.1824E-03

4.8760E-03

4.4096E-03

3.9051E-03

3.4437E-03

3.0423E-03

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

3.8711E-02

3.3428E-02

4.5360E-02

3.2480E-02

3.4701E-02

2.6335E-02

2.6018E-02

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

3.2083E-02

6.9048E-03

1.8357E-02

2.7329E-02

5.3589E-02

4.3203E-02

5.8328E-02

Figure (4.7): (a) Propagation of GE by the six methods in study for Example (4. 1)

Figure (4.7): (b) Closer look into the first 4 methods with least error

Figure (4.7) (a) shows error propagation of the six methods under study. It is

clear that Milne’s method is the method with greatest error. To have a better

comparison for the methods, we excluded in Figure (4.7) (b) the curves of

97

Milne’s and Adams-Bashforth. Figure (4.7) (a) shows that RK method

generated the least error.

 To do more analysis to the data in Table (4.7), we took the absolute global

errors, accumulated by using each of these six methods, at the last

step , sorted them in ascending order and put them into Table (4.8)

column 2. We found that RK method has the smallest error, while Milne’s

method has the greatest error. In addition, Table (4.8) contains the error ratios

of these methods. For example, the ratio of the error generated by Adams-

Bashforth method to the error generated by Adams-Moulton method is about

28:1.

Table (4.8): Error ratios for the methods under study

order
error at

t=1.5
Method

Runge-
Kutta

Taylor
Adams-
Moulton

Predictor-
Corrector

Adams-
Bashforth

Milne

1 9.6474E-06
Runge-
Kutta

1

2 2.1029E-04 Taylor 21.798 1

3 9.2199E-04
Adams-
Moulton

95.569 4.384 1

4 3.0423E-03
Predictor-
Corrector

315.349 14.467 3.300 1

5 2.6018E-02
Adams-

Bashforth
2696.897 123.723 28.219 8.552 1

6 5.8328E-02 Milne 6045.966
277.36

4
63.263 19.172 2.242 1

Figure (4.8): Error accumulated at the last step in the methods under study in Example (4.1)

98

 Table (4.8) shows that the error ratio is for Adams-

Moulton, Predictor-Corrector and Adams-Bashforth methods respectively.

This means, using the implicit Adams-Moulton method as a corrector for the

explicit Adams-Bashforth method has reduced the error by 8.552 times.

Surprisingly, both Table (4.8) and Figure (4.8) shows that one-step methods

(RK and Taylor) are supreme to multistep methods of the same order.

 To confirm our results, we will solve another example, using exact values at

the first four steps as we done in the previous example.

Example (4.2)

Using step size , approximate the solution to the IVP

This initial value problem has the exact solution

 We represented global errors generated by the methods in Table (4.9), plotted

this data in Figure (4.9) and calculated error ratios in Table (4.10).

Table (4.9): Global error generated in Example (4.2)

Adams-
Bashforth

Milne
Predictor-
Corrector

Adams-
Moulton

Taylor RK

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

1.9204E-05

3.9721E-04

8.4929E-04

1.2234E-03

1.4192E-03

1.4510E-03

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

3.9552E-05

3.4727E-04

3.9845E-04

3.5059E-04

2.0552E-04

3.8881E-04

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

2.5176E-05

7.3954E-05

1.2262E-04

1.5530E-04

1.6775E-04

1.6374E-04

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

2.4057E-05

6.0292E-05

9.1653E-05

1.0972E-04

1.1415E-04

1.0876E-04

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

1.1170E-05

2.3500E-05

3.2397E-05

3.6408E-05

3.6282E-05

3.3558E-05

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

4.3123E-07

8.4084E-07

1.1590E-06

1.3584E-06

1.4462E-06

1.4472E-06

99

1.5 1.3660E-03 2.7794E-04 1.4979E-04 9.8060E-05 2.9654E-05 1.3900E-06

Figure (4.9): (a) Propagation of GE by the methods under study for Example

(4.2)

Figure (4.9): (b) Closer look into the first 4 methods with least error

Figure (4.9): (c) Closer look into the 2 methods with greatest error

Table (4.10): Error ratios of the methods under study for Example (4.2)

order
error at

t=1.5
method RK Taylor

Adams-
Moulton

Predictor-
Corrector

Milne
Adams-

Bashforth

1 1.39E-06 RK 1

2 2.97E-05 Taylor 21.334 1

3 9.81E-05
Adams-
Moulton

70.547 3.307 1

4 1.50E-04
Predictor-
Corrector

107.761 5.051 1.528 1

5 2.78E-04 Milne 199.956 9.373 2.834 1.856 1

6 1.37E-03
Adams-

Bashforth
982.730 46.064 13.930 9.120 4.915 1

 Table (4.10) and Figure (4.9) confirm the results we got in Example (4.1)

100

with one exception; Adams-Bashforth method has generated the greatest error

instead of Milne’s method.

 Finally, we will compare these methods according to CPU time. We

measured CPU time for these methods used in Example (4.2) with different

step sizes and represented the results in Table (4.11). We found that the CPU

time for the Taylor method is the highest, and that is due to the time cost of

constructing Taylor expansion of We noted also, that with

decreasing step size the CPU time differences between Taylor method and

other methods decreases in favor of Taylor method.

Table (4.11) Comparing CPU time

Step size
RK

CPU time/s
Taylor

CPU time/s

Adams-
Moulton

CPU time/s

Predictor-
Corrector

CPU time/s

Milne
CPU time/s

Adams-
Bashforth

CPU time/s

h=0.5 0.0017888 0.0481321 0.0017486 0.0020422 0.002092 0.0022194

h=0.2 0.0049428 0.049220 0.0041848 0.0079606 0.005129 0.0060896

h=0.1 0.0127556 0.052088 0.0103906 0.0215922 0.010619 0.0155052

h=0.05 0.0290058 0.057133 0.0228816 0.0477258 0.024353 0.0305398

4.2 Error by Higher Order Taylor Methods

 In this section, we will compare global error generated by different higher

order Taylor methods . We will see how error is

reduced by increasing Taylor’s order.

 Table (4.11) contains errors accumulated after each step using Taylor

methods . We plotted this data in Figure (4.10). Figure (4.10)

contains the methods (a) for , (b) for and (c) for

. We intentionally repeated the method in (b) and the

method in (c), to have better comparison.

101

Table (4.12): Global error generated by Taylor (n=4,…,10) methods

ti Taylor4 Taylor5 Taylor6 Taylor7 Taylor8 Taylor9 Taylor10

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0.000E+00

1.881E-05

2.682E-05

2.228E-05

9.768E-06

4.070E-06

1.454E-05

2.011E-05

2.147E-05

2.014E-05

1.751E-05

0.000E+00

1.188E-06

3.179E-06

4.810E-06

5.356E-06

4.882E-06

3.897E-06

2.885E-06

2.096E-06

1.574E-06

1.266E-06

0.000E+00

1.881E-07

2.273E-07

1.167E-07

3.884E-08

1.432E-07

1.708E-07

1.469E-07

1.056E-07

6.816E-08

4.195E-08

0.000E+00

1.188E-08

3.248E-08

4.421E-08

4.104E-08

2.994E-08

1.966E-08

1.380E-08

1.163E-08

1.124E-08

1.126E-08

0.000E+00

1.881E-09

1.854E-09

2.971E-10

1.056E-09

1.341E-09

9.182E-10

4.060E-10

9.640E-11

1.170E-11

1.164E-11

0.000E+00

1.188E-10

3.232E-10

3.790E-10

2.780E-10

1.628E-10

1.120E-10

1.098E-10

1.193E-10

1.221E-10

1.166E-10

0.000E+00

1.881E-11

1.442E-11

3.108E-12

1.087E-11

6.638E-12

5.711E-13

1.982E-12

1.796E-12

8.697E-13

1.859E-13

 Generally, the higher the Taylor’s order, the better results we get. Exceptions

are possible. We see that the results for are better than for .

Figure (4.10) (a) Error propagation for Taylor Methods n=4,…,6 for Example (4.2)

Figure (4.10): (b) Error propagation for Taylor Methods n=6,…,8 for Example (4.2)

Figure (4.10): (c) Error propagation for Taylor Methods n=8,…,10 for Example (4.2)

102

 Finally, we can say that Taylor methods are a good choice to approximate the

solution of initial value problem ordinary differential equations, since with

algorithms we developed, all we need is to enter a higher value of to get

more accurate solutions to a single first order IVP, a system of first order

IVP’s or a higher order IVP’s.

4.3 Conclusions

 The main aim of this thesis was to develop algorithms to get highly accurate

approximations to the solution of initial value problem

 and to study the concepts of stability and error propagation when a numerical

method is applied to an initial value problem. Through our work, we found

that higher order Taylor’s methods give highly accurate approximations.

However, the main obstacle was the tedious work of finding higher order

derivatives of the initial value problem. We managed to write algorithms to

find higher order derivatives of initial value problems and to construct

Taylor’s methods for solving these problems numerically. We also managed

to develop these algorithms to deal in the same way with systems of first order

initial value problems. In addition, we wrote an algorithm to convert higher

order initial value problems into systems of first order initial value problems

and to solve these systems. We translated all of these algorithms into Matlab

programs. For these programs, all we need is to enter the problem, choose the

desired order (n), and step size (h).

103

 We wrote also algorithms, which we translated into Matlab programs for the

fourth order Runge-Kutta, Adams-Bashforth, Adams-Moulton, Milne’s and

predictor-corrector (4-step fourth order Adams-Bashforth method as predictor

and 3-step fourth order Adams-Moulton method as corrector) methods. We

used these programs to compare errors generated by these methods and the

fourth order Taylor’s method. We found that single step methods (Runge-

Kutta and Taylor) generated the best results. Since we can increase accuracy

of Taylor’s methods only by selecting a higher value of n, we concluded that

with the programs we developed, higher order Taylor’s methods could be a

good choice for approximating the solution of initial value problems.

 We used the test initial value problem (2.29)

to study absolute stability of Taylor’s methods. For this purpose, we wrote a

Matlab program to find the error amplification functions and to plot the

boundaries of stability regions of any Taylor’s method.

 To compare stability of Taylor’s methods with other single step methods, we

also wrote the Matlab Program (2.11) to find the error amplification functions

and to plot the boundaries of stability regions of any explicit Runge-Kutta

method. In addition, we wrote the Matlab Program (2.9) to plot the boundaries

of stability regions of any explicit method given we have the error

amplification functions. Matlab Program (2.10) plots the boundaries of

104

stability regions of implicit methods (only of orders less than five) given we

have the error amplification functions.

 Using results of these programs, we found that Taylor’s methods, compared

with other explicit methods, have similar stability regions. The most part of

these stability regions lies at the imaginary axis and in the left part of the

complex plane. That means, with enough small step size h and with non

positive real part of , Taylor’ methods are stable.

 Finally, we conclude that we can get higher accuracy of a wide range of

initial value problems applying Taylor’s methods to them.

105

References

[1] F. Bashforth, J. Adams, An attempt to test the theories of capillary

action by comparing the theoretical and measured forms of drops of fluid,

with an explanation of the method of integration employed in

constructing the tables which give the theoretical forms of such drops,

Cambridge University Press, Cambridge, 1883.

[2] R. Buck, Advanced Calculus, McGraw-Hill, 1978.

[3] R. Burden and J. Faires, Numerical Analysis, Brooks/Cole, Cengage

Learning, 2011.

[4] R. Burden and J. Faires, Numerical Methods, Brooks Cole, 2002.

[5] J. Butcher, “A history of Runge-Kutta methods”, Applied Numerical

Mathematics, 20, 1996/ 247-260.

[6] J. Butcher, “Numerical methods for ordinary differential equations in

the 20th century”, Journal of Computational and Applied Mathematics,

125, 2000/ 1-29.

[7] J. Butcher, Numerical Methods for Ordinary Differential Equations,

John Wiley & Sons Ltd,2008.

[8] I. Danaila, P. Joly, S. Kaber and M. Postel, An Introduction to Scientific

Computing, Springer Science & Business Media, LLC, 2007.

[9] D. Griffiths and D. Higham, Numerical Methods for Ordinary

Differential Equations Initial Value Problems, Springer-Verlag London

Limited, 2010.

106

[10] S. Iyengar and R. Jain, Numerical Methods, New Age International (P)

Ltd., Publishers, 2009.

[11] W. Kutta, “Beitrag zur N herungsweisen Integration Totaler

Differentialgleichungen”, Z. Math. Phys. , 46, 1901/ 435-453.

[12] R. LeVeque, Finite Difference Methods for Ordinary and Partial

Differential Equations, Society for Industrial and Applied Mathematics,

2007.

[13] W. Milne, “A note on the numerical integration of differential

equations”, J. Res. Nat. Bur. Standards, 43, 1949/ 537-542.

[14] F. Moulton, New Methods in Exterior Ballistics, University of

Chicago, Chicago, 1926.

[15] C. Runge, “ ber die numerische Aufl sung von

Differentialgleichungen”, Math. Ann. , 46, 1895/ 167-178.

[16] E. Süli and D. Mayers, An Introduction to Numerical Analysis,

Cambridge University Press, 2003.

[17] E. Swokowski, Calculus with Analytic Geometry, Prindle, Weber &

Schmidt, 1979.

107

Appendices

Appendex (A)

My Matlab Programs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

function Euler_2_1
% ===
% Entering The IVP
%==
a=1;
b=2;
y(1)=1;
fyp=inline('y/t-(y/t)^2','t','y'); %y'=f(t,y)
fy=inline('t/(log(t)+1)','t'); %Exact Solution
h=.1;
%==
% Initializing For Euler
%==
N=(b-a)/h;
t(1)=a;
w(1)=y(1);
wHat(1)=y(1);
%===
% Euler Method
%===
for i=1:N;
w(i+1)=w(i)+h*fyp(t(i),w(i));% Approximated Solution
wHat(i+1)=y(i)+h*fyp(t(i),y(i));% w hat
t(i+1)=t(i)+h;
y(i+1)=fy(t(i+1));% Exact y
end
%===
% Finding Global And LTEs
%===
gEr=abs(y-w);% Absolute Value of Global Error
locEr=abs(y-wHat);% Absolute Value of LTE
%===
% Displaying And Plotting The Results
%===
format long
disp(single([t' y' w' gEr' wHat' locEr']))
plot(t,y,'k+-',t,w,'ks-')
legend('y','w')

Program (2.1) Euler’s Method

function ExplicitRK
%=============== IVP ==========================
f=inline('-2*t*y^2','t','y');% y'(t)
a=0; b=1;% end points
alpha=1; % initial condition
%===
yEx=inline('1/(1+t^2)','t');% Actual solution y(t)
h=.1;% Step size
%================ Butcher tableau ================
s=4
A=[0 0 0 ;
 1/2 0 0 ;
 0 1/2 0 ;
 0 0 1];
B=[1/6 1/3 1/3 1/6];

108

C=[0 1/2 1/2 1];
%===

w(1)=alpha;
y(1)=alpha;
t(1)=a;
N=(b-a)/h;
%================= RK method =====================
for n=1:N
 sum=0;
 for i=1:s;
 m=0;
 for j=1:i-1
 m=m+A(i,j)*k(j);
 end
 k(i)=h*f(t(n)+C(i)*h,w(n)+m);
 sum=sum+B(i)*k(i);
 end
 w(n+1)=w(n)+sum;
 t(n+1)=t(n)+h;
 y(n+1)=yEx(t(n+1));
end

error=abs(y-w);

 format long ;
 plot(t,y,'k+-',t,w,'ko-')
 legend('y','w')
 out=single([t' y' w' error'])
 xlswrite('test.xls',out,'sheet1','d2');
Program 2.2 Fourth order Runge-Kutta method

function CoeffAdam_Bashforth
syms s
k=10;
x=1;
y(1)=sym('1');
fac=1;
for i=1:1:k
 x=x*(s+i-1);
 fac=fac*i;
 y(i+1)=(int(x,0,1)/fac);
end
y'

Program (2.3) Coefficients of Adam-Bashforth methods

function Adams_Bashforth
f=inline('y-t^2+1','t','y');
yEx=inline('(t+1)^2-0.5*exp(t)','t');
a=1; b=3
alpha=4-0.5*exp(1);
h=.1

N=(b-a)/h
t(1)=a
w(1)=alpha;
y(1)=alpha;

for i=1:3
 k1=f(t(i),w(i))
 k2=f(t(i)+.5*h,w(i)+.5*h*k1)
 k3=f(t(i)+.5*h,w(i)+.5*h*k2)

109

 k4=f(t(i)+h,w(i)+h*k3)
 w(i+1)=w(i)+(h/6)*(k1+2*k2+2*k3+k4)
 t(i+1)=t(i)+h
 y(i+1)=yEx(t(i+1))
end

for i=4:N
 w(i+1)=w(i)+h/24*(55*f(t(i),w(i))-59*f(t(i-1),...
 w(i-1))+37*f(t(i-2),w(i-2))-9*f(t(i-3),w(i-3)))
 t(i+1)=t(i)+h
 y(i+1)=yEx(t(i+1))
end
 error=abs(y-w);

format long
out=single([t' y' w' error']);
disp(out)
plot(t,y,'k+-',t,w,'ks-')
legend('y','w')
xlswrite('test.xls',out,'sheet1','d2')

Program (2.4) Fourth order Adams-Bashforth method

function CoeffMilne
syms s x
k=4;
x=1;
y(1)=sym('4');
fac=1;
for i=1:1:k
 x=x*(s+i-1);
 fac=fac*i;
 y(i+1)=(int(x,-3,1)/fac);
end
y'
Program (2.5) Coefficients of the four step Milne’s method

function Milne
f=inline('y-t^2+1','t','y');
yEx=inline('(t+1)^2-0.5*exp(t)','t');
a=1; b=3
alpha=4-0.5*exp(1);
h=.1

N=(b-a)/h
t(1)=a
w(1)=alpha;
y(1)=alpha;

for i=1:3
 k1=f(t(i),w(i))
 k2=f(t(i)+.5*h,w(i)+.5*h*k1)
 k3=f(t(i)+.5*h,w(i)+.5*h*k2)
 k4=f(t(i)+h,w(i)+h*k3)
 w(i+1)=w(i)+(h/6)*(k1+2*k2+2*k3+k4)
 t(i+1)=t(i)+h
 y(i+1)=yEx(t(i+1))
end

for i=4:N
 w(i+1)=w(i-3)+4*h/3*(2*f(t(i),w(i))-f(t(i-1),w(i-1))...
 +2*f(t(i-2),w(i-2)))
 t(i+1)=t(i)+h
end

110

format long
out=single([t' y' w' error']);
disp(out)
plot(t,y,'k+-',t,w,'ks-')
legend('y','w')
xlswrite('test.xls',out,'sheet1','d2')

Program (2.6) Fourth order Milne’s method

function CoeffMoulton
syms s x
k=10;
x=1;
y(1)=sym('1');
fac=1;
for i=1:1:k
 x=x*(s+i-2);
 fac=fac*i;
 y(i+1)=(int(x,0,1)/fac);
end
y'

Program (2.7) Coefficients of .Adams-Moulton methods

function Moulton
f=inline('y-t^2+1','t','y');
yEx=inline('(t+1)^2-0.5*exp(t)','t');
a=1; b=3
alpha=4-0.5*exp(1);
h=.2
N=(b-a)/h
t(1)=a
w(1)=alpha;
y(1)=alpha;
for i=1:2
 k1=f(t(i),w(i))
 k2=f(t(i)+.5*h,w(i)+.5*h*k1)
 k3=f(t(i)+.5*h,w(i)+.5*h*k2)
 k4=f(t(i)+h,w(i)+h*k3)
 w(i+1)=w(i)+(h/6)*(k1+2*k2+2*k3+k4)
 t(i+1)=t(i)+h
 y(i+1)=yEx(t(i+1))
end
for i=3:N
 t(i+1)=t(i)+h
 w(i+1)=24/(24-9*h)*(w(i)+h/24*(9*(-(t(i+1))^2+1)…
 +19*f(t(i),w(i))-5*f(t(i-1),w(i-1))+f(t(i-2),w(i-2))))
 y(i+1)=yEx(t(i+1))
end
error=abs(y-w);
format long
out=single([t' y' w' error']);
disp(out)
plot(t,y,'k+-',t,w,'ks-')
legend('y','w')
xlswrite('test.xls',out,'sheet1','d2')
Program (2.8) 3-step Adams-Moulton method

111

function ImplicitStabilityRegions
syms z th
%===

Gz='z*(1/(z-1))';

%===

B=strcat(Gz,'-exp(i*th)=0');
s=0;
for th=0:.1:2*pi
 clear z
 z=solve(B,'z');
 for j=1:length(z)
 s=s+1;
 y(s)=eval(z(j));
 end
end
hand =plot(real(y),imag(y),'k.');
set(hand, 'MarkerSize', 5);
Program (2.10) Plots the boundary of stability regions for implicit methods

function ExplicitRK_StabilityRegions
syms sum m z th
%=============== IVP ==========================
f=inline('z*y','y','z');% y'(t)
s=3;
%================ Butcher tableaux ================

switch s
 case 1
B=[1];
case 2
A=[1/2];
B=[0 1];% midpoint method
case 3
A=[1/2 0 ;
 -1 2];
B=[1/6 2/3 1/6];

function OtherExplicitStabilityRegions
syms z th Gz
%===
Gz=1+z+z^2/2+z^3/6+z^4/24+z^5/120;

%===
 HHH=sym2poly(Gz);
 order=length(HHH)-1;
 HHH=sym(HHH);
 HHH(order+1)=HHH(order+1)-exp(i*th);

%================ Finding roots and plottig =========
count=0;
for th=0:.01:2*pi
 clear z
 z=roots(eval(HHH));
 for j=1:length(z)
 count=count+1;
 y(count)=(z(j));
 end
end
hand =plot(real(y),imag(y),'k.');
set(hand, 'MarkerSize', 5);
hold all
Program (2.9) Plots the boundary of stability regions of explicit methods

112

case 4
A=[1/2 0 0 ;
 0 1/2 0 ;
 0 0 1];
B=[1/6 1/3 1/3 1/6];
end
%===================== Find Gz ========================
format rat
 Gz=1;
 for p=1:s;
 m=0;
 for j=1:p-1
 m=m+A(p-1,j)*k(j);
 end
 k(p)=f(1+m,z);
 Gz=Gz+B(p)*k(p);
 end
char(simplify(Gz))

 HHH=sym2poly(Gz);
 HHH=sym(HHH);
 HHH(s+1)=HHH(s+1)-exp(i*th);

%================ Finding roots and plottig =========
count=0;
for th=0:.01:2*pi
 clear z
 z=roots(eval(HHH));
 for j=1:length(z)
 count=count+1;
 y(count)=(z(j));
 end
end
hand =plot(real(y),imag(y),'k.');
set(hand, 'MarkerSize', 5);
hold all
Program (2.11) Finds G(z) for RK1,…,RK4 and plots the boundary of the stability regions

function TaylorStabilityRegions

kk=5;
kkk=8;

%============ ==== Finding G(z) =============
for k=kk:kkk
n=k;
clear B
Gzz=sym('Gzz');
clear th
th=sym('th','real');
Gzz(n+2)=1-exp(i*th);
fact=1;
for j=1:n+1
 fact=fact*j;
 Gzz(n+2-j)=1/fact;
end
Gzz

%=============Finding the roots and plotting===========
s=0;
for th=0:.05:2*pi
 clear z
 z=roots(eval(Gzz));
 for j=1:length(z)
 s=s+1;
 y(k,s)=(z(j));
 end

113

end
end
colors = hsv(kkk);
for v=kk:kkk
hand =plot(real(y(v,:)),imag(y(v,:)),'.','color',colors(v,:));
legendmatrix{v-kk+1,1}=strcat('Taylor ',num2str(v));
hold on
end
set(hand, 'MarkerSize', 5);
legend(legendmatrix)
Program (2.12) Finds G(z) for any Taylor method and plots the boundary of stability regions

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

function Taylor_3_1
syms t y
%===
% This Program finds the first n derivatives
% of y, yp(i)refers to y prime(i)
%===
n=input('n=');
yp(1)=input('y''='); %ODE y'(t,y).
% To find the derivatives of y'
for i=2:n
 pt=diff(yp(i-1),t);
 py=diff(yp(i-1),y);
 yp(i)=simplify(pt+py*yp(1));
end
yp

Program (3.1) Finds the first n derivatives of y in

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

function Taylor_3_2
syms t y h
%===
%This Program finds the first n derivatives of y' yp(i)
%refers to y prime(i)and construct Taylor series of order n
%===
n=input('n=');
yp(1)=input('y''='); %ODE y'(t,y).
%===
%Finding the derivatives of y'and constructing Taylor expantion
%===
fac=1;
T=yp(1);
for i=2:n
 pt=diff(yp(i-1),t);
 py=diff(yp(i-1),y);
 yp(i)=simplify(pt+py*yp(1));
 fac=fac*i;
 T=T+h^(i-1)/fac*yp(i);
end
yp
T

Program (3.2) Finds the first n derivatives of y in and constructs

114

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

function Taylor_3_3
syms t y h
%===
%Entering the IVP and saving it with the ability to solve it with
%different order and step size of Taylor method
%===
Q=input('Do you want to enter a new problem y/n: ','s');
if Q=='y'|Q=='Y'
yp(1)=input('ODE y''(t)= ');% yp(i)is the i-th derivative of y
yExact=inline(input('exact solution of ODE y(t)=','s'));
a=input('start of interval a= ');
b=input('end of interval b= ');
yN(1)=input('initial condition y(a)= ');
 save data_mat yp yExact a b yN
else
 load data_mat yp yExact a b yN
end
n=input('Taylor order n=');
hN=input('step size h= ');
%===
% Constructing Taylor Expansion of f(t,y)
%===
fac=1; %factorial
T=yp(1);% Taylor series
for i=2:n
 pt=diff(yp(i-1),t);% partial derivative of y prime(i-1)
 % with respect to t
 py=diff(yp(i-1),y);% partial derivative of y prime(i-1)
 % with respect to y
 yp(i)=simplify(pt+py*yp(1));% construct y prime(i)
 fac=fac*i;
 T=T+h^(i-1)/fac*yp(i);% construct Taylor series
end
%===
%Taylor Method
%===
N=(b-a)/hN;
tN(1)=a;
w(1)=yN(1);
h=hN;
for i=1:N;
 t=tN(i);
 y=w(i);
 w(i+1)=w(i)+h*eval(T);
 tN(i+1)=tN(i)+h;
 yN(i+1)=yExact(tN(i+1));
end
error=abs(yN- w)
format long
plot(tN,yN,'k+-',tN,w,'ko-')
legend('y','w')
out=single([tN' yN' w' error'])
xlswrite('test.xls',out,'sheet1','d2')

 Program (3.3) Finds the first n derivatives of y in , constructs and solves the IVP

115

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

function SystTaylorConstr
syms t h
%==
%Entering the System of First Order ODEs and saving it for
%further use
%==
Q=input('Do you want to enter a new problem y/n: ','s');
if Q=='y'|Q=='Y'
 k=input('No. of Equations k=');
 for j=1:k
 u(j)=sym(strcat('u',num2str(j)),'real');
 end
 for j=1:k
 up(j,1)=input(strcat('ODE',num2str(j),' u',num2str(j),...
 'prime(t)='));% up(i)is the i-th derivative of
 end
 save data_mat up u k
else
 load data_mat up u k
end
%===
%Finding the derivatives of u(j)' and constructing Taylor expansion
%===
n=input('Taylor order n=');
for j=1:k
T(j)=up(j,1);% Taylor series
end
fac=1; %factorial
for i=2:n

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

function SystDerivFind
syms t
%===
%Entering the System of First Order ODEs and saving it for
%further use
%===
Q=input('Do you want to enter a new problem y/n: ','s');
if Q=='y'|Q=='Y'
 k=input('No. of Equations k=');
 for i=1:k
 u(i)=sym(strcat('u',num2str(i)),'real');
 end
 for z=1:k
 up(z,1)=input(strcat('ODE',num2str(z),' u',num2str(z),...
 'prime(t)='));
 end
 save data_mat up u k
else
 load data_mat up u k
end
%===
%Finding the derivatives of (uj)'
%===
n=input('Taylor order n=');
for i=2:n
 for j=1:k
 up(j,i)= diff(up(j,i-1),t);
 for p=1:k
 pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of
 %u prime(i-1) with respect to u
 up(j,i)= up(j,i)+pu(j,p)*up(p,1);% construct u prime(i)
 end
 end
end
disp(up)

Program (3.4) Finds the first n derivatives every in and constructs

116

30
31
32
33
34
35
36
37
38
39
40
41

 fac=fac*i;
 for j=1:k
 up(j,i)= diff(up(j,i-1),t);
 for p=1:k
 pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of
 % u prime(i-1) with respect to u
 up(j,i)= up(j,i)+pu(j,p)*up(p,1);% construct u prime(i)
 end
 T(j)=T(j)+h^(i-1)/fac*simplify(up(j,i));
 end
end
disp(T)

Program (3.5) Finds the first n derivatives every in and constructs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

function SystTaylorSolve
syms t h
%===
%Entering the IVP system and saving it with the ability to
%solve it with different Taylor order and step size
%===
Q=input('Do you want to enter a new problem y/n: ','s');
if Q=='y'|Q=='Y'
 k=input('No. of Equations k=');
 for i=1:k
 u(i)=sym(strcat('u',num2str(i)),'real');
 end
 for z=1:k
 up(z,1)=input(strcat('ODE',num2str(z),' u',num2str(z),...
 'prime(t)='));% up(i)is the i-th derivative of
 end
 for e=1:k
 uN(e,1)=input(strcat('initial condition u',num2str(e),'(a)= '));
 end
for i=1:k
 uExact(i)=input(strcat('exact solution of ODE u',num2str(i),'(t)='));
end
 a=input('start of interval a= ');
 b=input('end of interval b= ');
 save data_mat up a b u k uN uExact
else
 load data_mat up u a b k uN uExact
end
n=input('Taylor order n=');
hN=input('step size h =');
%===
%Finding the derivatives of u' and constructing Taylor expansion
%===
fac=1; %factorial
for i=1:k
T(i)=up(i,1);% Taylor series
end
for i=2:n
 fac=fac*i;
 for j=1:k
 pt(j)=diff(up(j,i-1),t);% partial derivative of u prime(i-1)
 up(j,i)=pt(j);
 for p=1:k
 pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of
 %u prime(i-1) with respect to u
 up(j,i)= up(j,i)+pu(j,p)*up(p,1);% construct u prime(i)
 end
 T(j)=T(j)+h^(i-1)/fac*simplify(up(j,i));% construct Taylor series
 end
end
D=cell(1,k);
for i=1:k

117

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

 D(i)=(T(i));
 for j=k:-1:1
 D{i}=strrep(D{i},strcat('u',num2str(j)),strcat('v(',num2str(j),')'));
 end
end
%===
%Taylor Method
%===
N=(b-a)/hN;
tN(1)=a;
w(1:k,1)=uN(1:k,1);
h=hN;
 t=tN(1);
for i=1:N;
 v(1:k)=w(1:k,i);
 for s=1:k
 w(s,i+1)=w(s,i)+h*eval(D{s});
 end
 tN(i+1)=tN(i)+h;
 t=tN(i+1);
 for s=1:k
 uN(s,i+1)=eval(uExact(s));
 (s,i+1)=abs(uN(s,i+1)-w(s,i+1));
 end
 error=abs(uN-w);
end
 out=[tN]';
 for i=1:k
 out=[out uN(i,:)' w(i,:)' error(i,:)'];
 end
format long e
 single(out)
plot(tN,uN(1,:),'ko-',tN,w(1,:),'k+-',tN,uN(2,:),'ks-',...
 tN,w(2,:),'kx-')
legend('u1','w1','u2','w2')
xlswrite('test.xls',out,'sheet1','d2')

Program (3.6) Finds the first n derivatives every in and constructs and solves the system of IVP

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

% ==
% THIS PROGRAM APPROXIMATES IVP ODE's OF ORDER k BY
% CONVERTING THE ODE INTO A SYSTEM OF FIRST ORDER ODE's
% ==
function TaylorForHighOrderODEs
syms t
%===
% Entering The IVP ODE
% Transforming It Into A System Of First Order ODEs
% Saving It With The Ability To Solve
% It with Different Order and step size of Taylor method
%===
Q=input('Do you want to enter a new problem y/n: ','s');

if Q=='y'|Q=='Y'
 k=input('order of ODE=');

 for j=1:k
 u(j)=sym(strcat('u',num2str(j)),'real');

118

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

 end

 y=u(1);
 for j=2:k
 yp(j-1)=u(j);
 end

 for j=1:k-1
 up(j,1)=u(j+1);
 end
 up(k,1)=input(strcat('ODE y prime',...
 num2str(k),'(t)='));

 uN(1)=input(strcat('initial condition y','(a)= '));
 for e=2:k
 uN(e)=input(strcat('initial condition y prime',...
 num2str(e-1),'(a)= '));
 end

 uExact=input(strcat('exact solution of ODE y(t)='));

 a=input('start of interval a= ');
 b=input('end of interval b= ');

 save data_mat u up a b k uN uExact
else
 load data_mat u up a b k uN uExact
end
% ===
% Displaying The Generated System
% ===
disp('The generated System')
for j=1:k
 sys=['u' num2str(j) '''=' char(up(j))];
 init=['; u' num2str(j) '(' num2str(a) ')=' num2str(uN(j))];

out1=strcat(sys,init);
disp(out1)
end
%===
% Constructing Taylor expansion
%===
n=input('Taylor order n=');
h=input('step size h= ');
fac=1; %factorial
for i=1:k
T(i)=up(i,1);% Taylor series
end
for i=2:n
 fac=fac*i;
 for j=1:k
 pt(j)=diff(up(j,i-1),t);% partial derivative of u prime(i-1)
 up(j,i)=pt(j);

 for p=1:k
 pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of
 %u prime(i-1) with respect to u
 up(j,i)= up(j,i)+pu(j,p)*up(p,1);% construct u prime(i)
 end
 T(j)=T(j)+h^(i-1)/fac*simplify(up(j,i));%construct Taylor
 end
end

D=cell(k,1);
for i=1:k
 D(i)=(T(i));
 for j=k:-1:1
 D{i}=strrep(D{i},strcat('u',num2str(j)),...
 strcat('v(',num2str(j),')'));

119

89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

 end
end
%===
% Taylor Method
%===
N=(b-a)/h;
tN(1)=a;
w(1:k,1)=uN(1:k);
t=tN(1);
yN(1)=uN(1);
for i=1:N;
 v(1:k)=w(1:k,i);
 for s=1:k
 w(s,i+1)=w(s,i)+h*eval(D{s});
 end
 tN(i+1)=tN(i)+h;
 t=tN(i+1);
 yN(i+1)=eval(uExact);
 error(i+1)=abs(yN(i+1)-w(1,i+1));
end
%==
% Results Output
%==
out=[tN' yN' w' error'];
format short
single(out)
plot(tN,yN,'ks-',tN,w(1,:),'kx-',tN,w(2:k,:),'ko-')
legend('y','w1', 'w>1')
xlswrite('test.xls',out,'sheet1','d2')

Program (3.7) Solves higher order IVP’s

 جامعة النجاح الوطنية

 كلية الدراسات العليا

 لحل مسائل تحليل الأخطاء والثباتية للطرق العددية

 القيم الابتدائية

 إعداد

 عماد عمر فارس كايد

 إشراف

 ناجي قطناني. د. أ

قدمت هذه الاطروحة استكمالا لمتطلبات الحصول على درجة الماجستير في الرياضيات المحوسبة

 .ية الدراسات العليا في جامعة النجاح الوطنية في نابلس، فلسطينبكل

1023

ب

 تحليل الأخطاء والثباتية للطرق العددية

 لحل مسائل القيم الابتدائية

 إعداد

 عماد عمر فارس كايد

 إشراف

 ناجي قطناني. د .أ

 الملخص

إن حل مسائل القيم . رياضياتهي ظواهر طبيعية كتبت بلغة ال هامعظم مسائل القيم الابتدائية في

 .علماء الرياضياتللدقة عند الابتدائية هو أحد اكثر حقول الرياضيات تحديا بسبب الرغبة المستمرة

يركز هذا العمل بشكل أساسي على تطوير خوارزميات وبرامج لتكوين طرق تيلر العليا لتقريب

ب حل انظمة مسائل القيم الابتدائية من الدرجة حل مسائل القيم الابتدائية من الدرجة الاولى ولتقري

بالاضافة إلى ذلك يركز هذا العمل على . الاولى ولتقريب حل مسائل القيم الابتدائية من الدرجات العليا

ولهذا الغرض قمنا بتطوير برامج . الأخطاء والثباتية للطرق العددية لحل مسائل القيم الابتدائيةدراسة

ولرسم حدود مناطق الثباتية كتا الصريحة-لايجاد اقترانات تكبير الاخطاء لطرق تيلر وطرق رنجي

 .لهذه الطرق وطرق أخرى

أن تكون طرق تيلر العليا خيارا جيدا لتقريب يمكن لقد استنتجنا انه وباستخدام البرامج التي طورناها

 .مجموعة واسعة من مسائل القيم الابتدائيةحلول

