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ABSTRACT 

LEARNING UNDERSTANDABLE CLASSIFIER MODELS 

Jan Chorowski 

November 14, 2012 

The topic of this dissertation is the automation of the process of extracting 

understandable patterns and rules from data. An unprecedented amount of data is 

available to anyone with a computer connected to the Internet. The disciplines of 

Data Mining and Machine Learning have emerged over the last two decades to face 

this challenge. This has led to the development of many tools and methods. These 

tools often produce models that make very accurate predictions about previously 

unseen data. However, models built by the most accurate methods are usually hard 

to understand or interpret by humans. In consequence, they deliver only decisions, 

and are short of any explanations. Hence they do not directly lead to the acquisition 

of new knowledge. This dissertation contributes to bridging the gap between the 

accurate opaque models and those less accurate but more transparent for humans. 

This dissertation first defines the problem of learning from data. It surveys 

the state-of-the-art methods for supervised learning of both understandable and 

opaque models from data, as well as unsupervised methods that detect features 

present in the data. It describes popular methods of rule extraction from 

unintelligible models which rewrite them into an understandable form. Limitations of 

rule extraction are described. A novel definition of understandability which ties 

computational complexity and learning is provided to show that rule extraction is an 

NP-hard problem. Next, a discussion whether one can expect that even an accurate 
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classifier has learned new knowledge. The survey ends with a presentation of two 

approaches to building of understandable classifiers. On the one hand, 

understandable models must be able to accurately describe relations in the data. On 

the other hand, often a description of the output of a system in terms of its input 

requires the introduction of intermediate concepts, called features. Therefore it is 

crucial to develop methods that describe the data with understandable features and 

are able to use those features to present the relation that describes the data. 

Novel contributions of this thesis follow the survey. Two families of rule 

extraction algorithms are considered. First, a method that can work with any opaque 

classifier is introduced. Artificial training patterns are generated in a mathematically 

sound way and used to train more accurate understandable models. Subsequently, 

two novel algorithms that require that the opaque model is a Neural Network are 

presented. They rely on access to the network's weights and biases to induce rules 

encoded as Decision Diagrams. 

Finally, the topic of feature extraction is considered. The impact on imposing 

non-negativity constraints on the weights of a neural network is considered. It is 

proved that a three layer network with non-negative weights can shatter any given 

set of points and experiments are conducted to asses the accuracy and 

interpretability of such networks. Then, a novel path-following algorithm that finds 

robust sparse encodings of data is presented. 

In summary, this dissertation contributes to improved understandability of 

classifiers in several tangible and original ways. It introduces three distinct aspects of 

achieving this goal: infusion of additional patterns from the underlying pattern 

distribution into rule learners, the derivation of decision diagrams from neural 

networks, and achieving sparse coding with neural networks with non-negative 

weights. 
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CHAPTER I 

INTRODUCTION 

Automatic data acquisition, storage, and processing is easier and more 

ubiquitous nowadays than ever. An important emerging goal is to automatically 

learn new knowledge out of the vast and constantly growing amount of available 

data. The disciplines of Data Mining (DM) and Machine Learning (ML) provide 

necessary algorithms and tools to detect patterns of interest and relations present in 

the data. However, the comprehensive, if not the ultimate, goal of this query is not 

to just detect these relations, but to transform them into new knowledge expressed 

in a form possibly readily understandable and usable by humans. Ideally, the results 

produced by DM and ML methods should not only provide numerical predictions, 

but also enable humans to understand patterns and regularities present in the data 

whenever possible and applicable. 

The notion of understandability is inherently subjective. Moreover, it is 

variable even for a single individual. Usually, the understandability increases with 

the time spent on the analysis of a problem. This suggests that the derivation of 

knowledge from data is a continuous process rather than a one-time application of 

one or more generic methods. Successful approaches must allow for cooperation and 

synergy between the data analyst and the tools used. Ultimately, the analyst should 

be able to inject known facts and relations about the data into the learning process. 

This leads to an important problem of how to enhance or extend an existing 

body of knowledge. Most often, the problem-at-hand is not entirely unknown. The 

most common and generic way is to develop a proper problem description. The data 

mining process will be most successful if relevant features are used to represent the 

data. Moreover, a judicious choice of features may help circumvent known 
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deficiencies of selected methods. For instance, decision trees and production rules can 

partition the input space using only axis-parallel planes. However, some methods 

allow for the inclusion of more background information about a problem. Often 

information about problem constraints or invariants can be included in the 

classifier's design. This topic is continued in Chapter II, Section 3. 

There are many cases of successful application of machine learning methods to 

obtain new knowledge. A classical one is the derivation of rules predicting soybean 

diseases [1]. The rules produced by the AQll program outperformed those written 

by an expert. Other examples are poisonous mushroom detection [2] or protein 

secondary structure prediction [3]. 

Despite these examples, the problem of automatically eliciting knowledge from 

data is far from being solved. According to a recent study [4], the best supervised 

learning methods are Boosted [5] and Bagged [6] Decision Trees, Random Forests [7], 

Support Vector Machines [8], and Neural Networks [9]. Each of these methods 

produce results which are inherently hard to understand. Ensembles of decision trees 

are unintelligible because one has to analyze large amount of trees in entirety. 

Equally hard to understand are Neural Networks and Support Vector Machines 

because they express their models in the form of complicated mathematical formulas. 

As a result, the most accurate methods can only be used as black-boxes: even though 

they provide the best results, all the knowledge is hidden. This precludes the usage 

of such opaque classifiers in many application domains, which require both 

justifications of decisions and understandable conclusions from machines. For 

instance, the Equal Credit Opportunity Act requires that an explanation can be 

provided for credit refusal. Similarly, a medical diagnosis has to be preferably based 

on premises that the physician thoroughly understands. 

The following four chapters of this dissertation cover the state-of-the art in 

learning from data, describe methods of rewriting opaque models into rules, and 

discuss algorithms to find characteristic features of the data. Chapter II begins with 

a description of the theoretical foundations of learning from data. It surveys the 

state-of-the art methods that produce both opaque and understandable models. It 
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describes methods for unsupervised data description using features. It then surveys 

the most important rule extraction methods. It describes limitations of the rule 

extraction process and discusses whether one can expect that even an accurate 

classifier has learned new knowledge. Chapter II ends with the presentation of two 

approaches to building of understandable classifiers. First, the data needs to be 

described using meaningful concepts, called features. Then, those features can be 

used to describe the relations present in the data. 

Chapters III and IV concentrate on improving the accuracy of understandable 

models that use the original data description. Chapter III presents mathematically 

sound methods of generating additional training patterns on which interpretable 

models of increased accuracy can be induced. Chapter IV presents two novel 

methods of rewriting Neural Networks into Decision Diagrams, a data structure that 

is especially suitable for rule extraction. 

Chapter V discusses the problem of extracting meaningful features from data. 

A novel method of imposing non-negativity constraints on weights of Artificial 

Neural Networks to learn understandable and discriminative features is presented 

and discussed. The chapter is concluded with a discussion of the problem of robust 

sparse coding. A novel algorithm is presented that computes the changes of the 

encoding when sparsity level is varied. The proposed method has running times 

favorable to traditional linear programming approaches. 
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CHAPTER II 

LEARNING UNDERSTANDABLE MODELS 

This chapter begins with a description of the problem of learning classifiers 

from data. Then, it describes popular architectures that often learn accurate, but 

incomprehensible models. Next, it surveys the state-of-the art methods that directly 

learn human-readable models. Popular unsupervised feature detection methods are 

described using a common encoder-decoder framework. Then, rule extraction 

methods which induce an understandable model by using a given accurate, but 

incomprehensible one are presented. Subsequently, limitations of rule extraction are 

discussed. A definition of understandability is introduced to prove computational 

infeasibility of exact rule extraction. Finally, the question of how much information 

can be obtained from a given accurate black-box classifier is discussed. 

A Fundamentals of Learning From Data 

Supervised learning of understandable classifier models is a subfield of the 

more general problem of learning from data. The Statistical Learning Theory is the 

leading theory that defines and analyzes the problem of learning form limited 

amounts of data. In this section the main assumptions of the Statistical Learning 

Theory are presented. Finally, the Probably Approximately Correct theory is 

described because its formulation is more intuitive in a rule extraction context. 

The Statistical Learning Theory (SLT), also known as the 

Vapnik-Chervonenkis (VC) theory is considered to be the best currently available 

theory for flexible statistical estimation with finite samples [10]. It formally states 

the problem of learning from data and provides a methodology for learning. It 

provides bounds on the performance of the learning process when only a finite 
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Figure 1: The elements of a learning system. After Vapnik [11]. 

amount of samples is available. The SLT's model of learning from labeled examples 

contains three elements that are pictured in Figure 1 [11]: 

1. The generator of the data (examples), G. 

2. The target operator (also called supervisor's operator or supervisor), S. 

3. The learning machine, LM. 

The generator G samples the vectors x independently and identically 

distributed (i.i.d.) according to an unknown, but fixed probability distribution P(x). 

The supervisor processes the input vectors x into outputs y by sampling from a 

conditional distribution P(yl x) (this includes the case of a deterministic output 

function y = f (x) ). When the supervisor performs pattern recognition the vector x 

contains the attributes of a sample and the output y is a discrete class label. Again, 

the distribution P(ylx) is unknown, but fixed. The generator and supervisor thus 

generate a training set of pairs sampled independently and identically from 

P(y, x) = P(ylx)P(x). 

The learning machine LM is capable of implementing a set of functions 

f(x, a), a E A. It observes a finite amount of training samples (Yi, Xi), i = 1, ... ,N 

(the training set) composed of the system's outputs y and inputs x. It is then tasked 

with choosing a function from the given set that will best approximate the 

supervisor's output. 

The Statistical Learning Theory distinguishes between two goals for the 

learning machine [11]: 

• To imitate the supervisor's operator by constructing an operator that provides 

for a given generator G the best prediction to the supervisor's outputs . 

• To identify the supervisor's operator by constructing an operator which is close 
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to the supervisor's operator. 

Classical statistical methods first choose a family of probability distributions 

that match the problem. Then the parameters of the distribution are optimized to 

match the data by maximizing the likelihood. Thus they lean toward system 

identification. In contrast to classical parametric statistics, the SLT concentrates on 

the task of system imitation, which is easier than identification [11 J. 

The remaining question is which mechanism shall the learning machine use to 

best approximate the supervisor~s operation using but a limited number of training 

samples. First a suitable measure of discrepancy between supervisor's and learning 

machine's outputs must be specified. In SLT this discrepancy is measured with a loss 

function L(y, f(x, a)). For the pattern recognition problem the loss function may be 

an error indicator [11 J: 

L(y, f(x, a)) ~ { : if y = f(x, a) 
(1) 

otherwise. 

The learning machine should ideally minimize the expected value of the loss over the 

distribution of data. This quantity has been named in SLT the risk functional [12J: 

R(a) = J L (y,j(x, a)) dP(y, x). (2) 

The risk functional cannot be directly minimized because it depends on the unknown 

probability distribution P(y, x). However, an estimate of the loss may be computed 

using the training data. Define the empirical risk to be [12J: 

1 N 
Remp(u) = N L L (Yi, f(xi, a)) (3) 

i=l 

The SLT proposes to minimize the empirical risk and provides conditions under 

which the true risk will also be minimized. This is called the Empirical Risk 

Minimization (ERM) principle and consists of approximating the minimum of the 

true risk functional (2) by finding the minimum of the empirical risk (3). 

One of the main results of SLT is a bound of the true risk expressed as a 

function of the empirical risk, number of training samples, and the learning 
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machine's Vapnik-Chervonenkis (VC) dimension. The VC dimension h of a learning 

machine LM is defined to be the maximum number of vectors Xl, ... ,Xh which can 

be separated in all 2h possible ways (shattered) by the LM. Intuitively, the VC 

dimension grows with the amount of concepts or pattern that the LM can discern. 

The relation bounding the risk is as follows [12]. Assume that the loss functional is 

bounded: 

o :s: L(y, f(x, a)) :s: B, a E A. 

Then with probability at least 1 - ,/], the inequality 

BE ( R(a) :s: Remp(a) + 2 1 + 1 4Remp(a)) 
+ BE 

holds true simultaneously for all function of the set (4), where: 

h (In 2: + 1) - In '/] 
E = 4-'---'-'----'----

N ' 

where h is the VC dimension. In particular, this bound holds for the function 

f(x, aD) which minimizes the empirical risk [12]. 

(4) 

(5) 

(6) 

The bound (5) is too loose to be practically useful in predicting classifier 

performance. However, its main implication is that model complexity has to be 

chosen as a function of the number of available samples. This forms the basis of the 

Structural Risk Minimization principle. It also suggests, that the accuracy of a 

learning machine can be improved by using more training data, which needs to be 

sampled form the unknown probability distribution P(y, x). 

An illustration of this property is presented in Figure 2. A Random Forest, 

C4.5 decision tree and RIPPER production rules were trained using Weka [7,13-16] 

on the "Yeast" data from the VCI repository [17]. The figure shows an average of 10 

runs of lO-fold stratified cross-validation in which the algorithm is allowed to use only 

a fraction of the training data. It can be seen that for all three classifiers the accuracy 

improves with the addition of training data. This observation can form the basis of a 

simple, yet effective rule extraction scheme that is investigated in Chapter III. 

The Probably Approximately Correct (PAC) theory [18] of learning looks at 

the problem of learning from a different perspective. It allows the learning machine 
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Figure 2: Increasing lOxCV accuracy as more data is used for training. 

to consult an examples function that generates data and an oracle function that 

classifies the data. However, the learner must perform only a polynomial amount of 

steps. This definition ties the problem of learning from data to the computational 

complexity of algorithms. Similarly to the SLT, PAC provides bounds on the 

accuracy of a learner with respect to the number of examples queried and size of the 

hypothesis space. In fact, PAC learning can be unified with SLT [19]. 

Just like the SLT, the PAC model relies on the assumption that there is an 

unknown, but fixed probability distribution of the data P(y, x). The learning 

machine LM has access to two functions: examples{) which generates new i.i.d. 

samples from the distribution P(x) and oracle(x) that returns the class of the vector 

x. A concept class F is defined to be learnable if there exist an algorithm A that [18]: 

1. Runs in time polynomial in an adjustable parameter 1], in the various 

parameters that quantify the size of the classifier to be learned, and in the 

number of dimensions of x, n. 
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2. For all concepts f E F and all distributions P over data, the algorithm will 

deduce with probability at least (1 - 1]-1) a classifier 9 E F that makes errors 

with probability at most 1]-1. 

The rule extraction problem consists of finding an understandable 

representation of a given black-box classifier. If this black-box classifier is treated as 

the oracle, then the PAC learning model can provide both an inspiration for rule 

extraction methods and a better understanding of rule extraction methods. 

B Popular Black-box Models 

Many popular classifiers produce models that are difficult to understand. This 

section introduces the main classifiers that belong to this category: Feedforward 

Neural Networks, Support Vector Machines, and Ensemble Methods. Main 

assumptions that underlie their operation are discussed, along with reasons why their 

understandability is often very poor. 

The description of the black-box methods will rely on the following matrix 

notation. Without loss of generality, suppose the problem is described using k 

real-valued attributes and that the labels belong to a finite set C. The training set is 

composed of N pairs (Xi, Yi), i = 1, ... ,N of input attribute vectors Xi E ]Rk and 

discrete class labels Yi E C. 

1 Feedforward Neural Networks 

Feedforward Neural Networks implement a nonlinear function f : ]Rk -+ C that 

typically maps the input patterns X into the set C of class labels [9]. Let the labels 

be consecutive integers: C = {I, 2, ... , m}. The network's function f is parameterized 

by matrices of weights and biases. Often the output of the network is a real vector of 

size m = ICI that indicates for every class label the probability that the processed 

sample belongs to the given class. The network is trained by changing the weights 

and biases to minimize a loss function that measures the discrepancy between 

network predictions and the known class label. 
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The l-th layer of a Neural Network maps a din dimensional input vector to a 

dout dimensional output one. It is parameterized by a matrix of weights 

WI E JRdout Xdin and by a bias vector b1 E JRdout. For an input vector x E JRdin the 

vector of layer activation values al E JRdout is defined to be: 

(7) 

The layer's output vector 01 is formed by applying a transfer function to the vector 

of neuron activations al. 

Often the transfer function is a univariate nonlinear sigmoidal (shaped like the 

letter "8") one. Commonly used are the logistic sigmoid a( x) = l+ex~( -x) and the 

hyperbolic tangent a(x) = tanh(x) = ::~i:i~::~i=:i. The layers' output is formed by 

an element-wise application of the function a(·) to the vector of activations, which is 

denoted: 

(8) 

Another popular transfer function, used mostly for the last layer is the 

SoftMax function that transforms a vector of arbitrary real numbers into a vector of 

numbers from the range (0,1) that moreover sum to 1 and hence can be interpreted 

as probabilities. The j-th element of the output of the 80ftMax function is defined by: 

80ftMax(x)[j] = ;xp(x[j]) , 
Li=1 exp(x[i]) 

(9) 

where x[j] denotes the j-th element of x. Unlike the sigmoid functions that operate 

on single elements, the 80ftMax function transforms a whole vector of neuron 

activations into a vector of outputs. 

A multilayer Feedforward Neural Network is obtained by composing L 

individual layers: 

OI(X) = al (W IX + bl ) 

OI(X) = al(W101- 1 + bl) for l = 2, ... , L. 
(10) 

Loss functions are used to measure the discrepancy between 0 L (x), the output 

of the network for a sample x, and the desired class label y. A commonly chosen 
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measure is the sum-of-squares loss: 

LOSS(OL(X), y) = L (OL(X)[C]- .'I{y = C})2 , (11) 
cEC 

where .'I{.} denotes the indicator function, which takes the value 1 if the statement 

inside of the brackets is true and 0 otherwise. 

Alternatively, if the outputs of the network are interpreted as the conditional 

probability distribution of the class labels given the attributes, the loss may be 

formulated as the negative log-likelihood of observing a given sample (x, y): 

LOSS(OL(X), y) = Lc .'I{y = c} log (~~~~[~?) = -log (OL(X)[Y]) . (12) 
cE 

Network training consists of changing the weights and biases to minimize the 

sum of the loss function computed on all training samples and of penalties incurred 

by weights and biases. The penalties serve to regularize the network by e.g. preferring 

small values of the weights. The total target minimized during network training is: 

1 N L 

T = N L LOSS(OL(Xi), Yi) + L (Pw(W1) + Pb(b1)) , (13) 
1 1=1 

where Pw ad Pb denote the penalties imposed on weights and biases. Networks are 

often trained by minimizing the target T using a first order gradient minimization. 

The new weights W' and biases b' are computed from their old values (W, b) by 

performing a single step along the gradient: 

W; = WI - r/'VwIT for l = 1, ... , L 
(14) 

b; = b1 - rJ\1bIT, for l = 1, ... , L, 

where rJ is the learning rate that controls the length of the gradient step. The 

training is often accelerated by using only a small fraction of training samples is used 

to compute the target T in (13) and its gradient for the weights and biases update 

(14). In this way training consists of many small updates that use a noisy gradient 

estimate. For this reason this training regime is often called stochastic gradient 

descent [20]. 
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On the other hand, second order methods may be used to speed the 

convergence of training. The methods that employ them usually need to process the 

whole training set and are often referred to as batch methods. Especially popular are 

the Scaled Conjugate Gradient [21] and the Levenberg-Marquardt method [22]. 

Feedforward Neural Networks are difficult to understand because of the large 

number of weights and biases that define them, and because of the inherent 

nonlinearity exhibited by their operation. As such, they were the first classifiers for 

which special methods were devised to better understand their meaning [23]. On the 

one hand, pruning methods that are described next try to increase network 

understandability by simplifying its architecture. On the other hand, rule extraction 

methods, that are described in Section E, try to rewrite a given network into a set of 

comprehensible rules. 

Pruning methods were designed to simplify networks by removing spurious 

units and connections inside a network [24]. Such methods as OBD [25] and 

OBS [26J prune a trained network using second-order derivative information to 

estimate the impact of removing a connection. An algorithm that removes hidden 

nodes and adjusts remaining weights by solving a system of equations is presented 

in [27]. Other pruning methods augment the loss criterion minimized during network 

training by adding terms that promote the reduction of the number of connections or 

by adding terms that enforce other constraints that simplify the network. Weight 

decay is the mechanism traditionally used to reduce the magnitude of network 

weights by penalizing the sum of their squares. Enhanced sparsity of weights can be 

enforced by penalizing instead the sum of weights' absolute values [28]. This 

mechanism is similar to the elastic net feature selection technique used in linear 

regression [29J. Often particular values of network weights are required. Soft weight 

sharing [30] aims at clustering weight values. A polynomial penalty is used in [2] to 

constrain the weights to be zero or ±l. Hyperbolic tangent nonlinearity has been 

applied to weights for the same purpose in [31]. Use of those techniques also 

facilitates enhanced understanding of the network because the analysis of 

interactions between signals incoming to a neuron is greatly simplified if the weights 
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amplifying those signals are similar for all inputs. 

2 Support Vector Machines 

The Support Vector Machine uses two main ideas. First, kernel functions are 

used to transform the problem from the original input space into a highly 

dimensional one, called the feature space, where linear separation of training samples 

belonging to different classes is possible. Second, to find the best separating 

hyperplane, the concept of maximum margin is introduced. Finally, the optimization 

problem which defines the SVM is convex and quadratic, and therefore it can be 

solved efficiently [8,32-35]. 

The Support Vector Machine was originally proposed for problems with two 

classes only. For ease of notation the two class labels will be ± 1, i.e. C = {-I, I}. It 

will be assumed that the function ¢(.) : IRk -+ IRP is given. It maps a given sample 

x E IRk into a p-dimensional space, that will be called the feature space. The 

function ¢ is usually specified through the use of kernel functions, that are defined 

next. The SVM operates by finding a linear boundary that separates samples in the 

feature space. The margin of the separating hyperplane is defined to be the smallest 

distance from the hyperplane to a training sample. The wider the margin the smaller 

is the impact of small perturbations of the decision boundary to classifier 

performance. Therefore a wide-margin classifier will have less tendency to over-fit the 

data and will yield a better testing accuracy [35]. The SVM will now be formally 

defined. The linear decision boundary in the feature space corresponds to: 

(15) 

where w is a weight vector and b is a bias term (offset form the origin). It can be 

shown [35,36] that the margin is inversely proportional to wtw /2. Thus the 

separating hyperplane that maximizes the margin is found by solving: 

. wTw 
mlIl--
w,b 2 

subject to: (wT ¢(Xi) + b)Yi ~ 1 for i = 1, ... , N. 
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The constraints ensure that all training samples are correctly separated by the 

hyperplane, while the optimization target maximizes the margin. 

Sometimes it is necessary to let the classifier do a few errors on the training 

set. If training samples are allowed into the margin region, the margin can be larger. 

In this way better performance on the testing set is obtained, at the price of lowering 

the performance on the training set. The soft-margin SVM can be defined by the 

following optimization problem [8,33-35]: 

subject to: (wT ¢(Xi) + b)Yi ~ 1 - Ei for i = 1, ... , N 
(17) 

Ei ~ 0 for i = 1, ... , N, 

where Ei denotes the margin violation of the i-th training sample (which is 0 for 

samples outside of the margin region) and the constant C determines the trade-off 

between the margin width and the sum of margin violations. 

The problem (17) is an instance of the convex quadratic programming 

problem and it can be solved by finding points that satisfy the Karush-Kuhn-Tucker 

(KKT) optimality conditions [37]. Due to the inequality constraints the solution itself 

is a quadratic programming problem [8,33-35]: 

1 N N N 

m;x - "2 L LYiYjQiQj¢(xdT ¢(Xj) + L Qi 

i=l j=l i=l 

N 

subject to: L YiQi = 0 

i=l 

o ::; Qi ::; C for i = 1, ... , N, 

(18) 

where Cl'i are the Lagrange multipliers. This formulation of the SVM problem is 

notable for two reasons. First, the samples in the feature space are accessed only 

through their inner products, i.e. ¢(xif ¢(Xj). Second, the weights defining the 

decision boundary are not present and need to be recovered from the multipliers Qi 

as: 
N 

W = L Cl'i¢(Xi). (19) 
i=l 
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Moreover, most of the coefficients 0i are zero [8J. Only the samples with nonzero 

multipliers contribute to the decision boundary. For this reason they are called the 

Support Vectors. 

The SVM depends on inner products between samples only, which makes it 

possible to use kernel functions K that define the transformation ¢> implicitly. 

Formally, if a function K : IR.k x IR.k -t IR. operates on pairs of samples in the 

attribute domain and satisfies Mercer's condition, then there exists a space in which 

K defines an inner product operation: 

(20) 

Thus it is possible to use a kernel function that will transform the training samples 

into a highly (possibly infinitely) dimensional space in which a linear separating 

boundary can be found, without ever needing to compute the mapping of samples 

into the feature space. In practice, the Gaussian kernel, parameterized by the 

constant 'Y is frequently used for SVM training: 

(21) 

The SVM is usually trained by minimizing (18) using the Sequential Minimal 

Optimization (SMO) algorithm [38J. The SMO algorithm operates by repeatedly 

selecting two multipliers ° and maximizing the target of (18) with respect to those 

two multipliers only. This is a simple problem, because the two multipliers are tied 

through the equality constraint. Thus at every step, the SMO algorithm minimizes a 

univariate quadratic function, for which the analytical solution exists. 

New samples in a nonlinear SVM are classified using the relation: 

N N 

w T ¢>(x) + b = L Oi¢>(Xi)T ¢>(x) + b = L OiK(Xi, x) + b, (22) 
i=l i=l 

where the equation (19) was used to determine the weights based on multipliers o. 

The decision boundary of the SVM is difficult to understand because it involves a 

weighted contribution of many support vectors. Also, due to the nonlinear nature of 

kernel functions, the exact impact of a support vector on a given sample is often 

difficult to assess. 
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3 Ensemble Methods 

The ensemble methods aggregate many simple classifiers that are called base 

learners into a single one (the ensemble). The main motivation is that if the base 

learners make errors independently, then the errors cancel when aggregated, just like 

random noise variance diminishes when measurements are averaged. Breiman 

suggested that the ensemble's accuracy depends on two traits of base learners: their 

average strength and the mean correlation between them [7]: 

p(l - S2) 
GeneralizationError ~ 2 ' 

S 
(23) 

where p is the mean value of correlation between base learners and s is the strength 

defined to be the mean value of the margin of the base learners. The margin is 

defined to be the mean value of the difference between the probability assigned by 

the base learner to the correct class, and the highest probability that the base learner 

assigns to an incorrect class. The relation (23) suggests that an ensemble will be 

successful when the base learners are at the same time strong and not correlated. 

In practice, decision trees are often used as base learners because they are fast 

to train and often highly accurate. Moreover, decision trees are unstable, because 

they are sensitive to small changes in the learning conditions. Ensemble methods 

often vary the data on which individual trees are induced to amplify the instability 

of decision trees. In consequence, the correlations between trees are lowered. 

In the Bagging method [39], bootstrap samples are used to train the base 

learners. A bootstrap sample of the training data is formed by sampling from it 

uniformly and with replacement. A bootstrap sample of the same size as the original 

training set contains about 2/3 of its unique samples. Different base learners are thus 

trained on different training sets. Moreover, the samples that do not enter a given 

bootstrap sample may be used to assess the quality of each base learner. 

In the Bagging ensemble each base learner is assigned a single vote. To classify 

new data each base learner casts its vote according to its prediction. The ensemble 

then tallies individual votes to select its own prediction. The ratio of votes cast for 

different classes can be used to compute the probabilities assigned by the ensemble 
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to class labels. 

Another method of varying the training data consists of describing the 

training samples with a random selection of attributes [40]. It has been named the 

Random Subspace method, because each base learner is trained on a projection of the 

entire training data onto the space spanned by a few randomly selected attributes. 

The Bagging and Random Subspace approaches are combined in the Random 

Forest (RF) classifier [7]. The RF uses decision trees as the base learners. However, 

during tree induction node splits are selected by considering only a few randomly 

selected attributes. Moreover, each random tree is trained on a bootstrap sample of 

the dataset. The randomization introduced during tree induction slightly weakens 

individual trees. However, it also decorrelates them. Overall accuracy of the ensemble 

is increased. Moreover, individual tree induction in a Random Forest is fast because 

only a fraction of attributes is considered to choose each split. 

The Boosting ensemble building method follows a different path [5]. In 

contrast to Bagging and Random Forests, base learners must be trained sequentially. 

This is because the training set used to induce a new base learner depends on the 

accuracy of the base learners that have already been included into the ensemble. 

The AdaBoost boosting algorithm adds base learners to the ensemble 

one-by-one [5]. Each base learner is induced on a sample of the training set drawn 

according to training instance weights, w. After the base learner is constructed its 

accuracy is computed on the original, unweighted, training set and used to assign a 

coefficient l:Y to the base learner. The training set weights ware then modified to 

reflect the errors made by the base learner. Then a new set is drawn to train the next 

base learner. 

The Boosted ensemble classifies new data by computing a weighted average of 

the votes cast by base learners with weights corresponding to their coefficients, l:Y. In 

this way inaccurate base learners affect the decision less than the accurate ones. 

There are many explanations of the good accuracy of the boosting approach. 

Its inventors, Shapire, Freud, et al., demonstrate that boosting operates by 

increasing the margin of the ensemble [41]. In similar spirit, Rosset shows how 
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choosing the base learner coefficients Q corresponds to a coordinate descent 

optimization of a margin-maximizing function [42]. On the other hand, Breiman, the 

inventor of Random Forests, conjunctures that in its final stages AdaBoost 

essentially emulates a Random Forest [7]. 

Ensemble methods produce results that are difficult to understand because 

they are often composed of dozens or even hundreds of base learners. The answers of 

the base learners are averaged, which precludes their individual analysis. Instead, 

combinations of attributes that cause the majority of base learners to act in a 

specified way must be sought for, which reduces to analyzing the exponentially many 

different combinations of individual base learner outputs. 

C Popular White-box Models 

Methods that produce directly readable results are usually called white-boxes. 

They typically express their models in the form of decision trees or production rules, 

however, other formats such as decision tables [43] or decision diagrams with 

exceptions [44] have been also proposed. 

Production rules are expressions of the form "if conditions then 

classification::. Algorithms directly inducing them usually employ the "separate 

and conquer" approach in which rules are added one-by-one to an initially empty set. 

After a new rule is added to the rule set, training samples covered by it are put aside 

(or separated, justifying the name of the methodology) and a new rule maximizing 

some criterion on the remaining samples is sought for. A final pruning step can be 

used to further simplify and ameliorate the produced rule set. The search for a single 

rule can proceed in several different ways: 

General-to-specific search starts with an empty conjunction of tests (matching 

everything) to which new tests are added until the rule matches samples from 

one class only. This approach is used in the CN2 [45], RIPPER [14], PART [46] 

methods, and AQ family of methods (which, however, seeds the rules with a 

positive example) [1]. 

Specific-to-general search starts with a rule covering just one training sample. 
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Conditions are dropped (the rule is generalized) until it covers enough samples 

while still being pure. This strategy is used by the rule extraction method 

described in Chapter IV, Section B. 

Other search methods, such as training a perceptron with constrained weights and 

rewriting it as rules which is used in the MLP2LN [2] method. 

The process of sequential covering of the rule space can be analyzed and visualized 

using ROC diagrams [47]. 

Decision Tree learners, such as C4.5 [13] or CART [48], greedily build a tree 

whose nodes contain tests on attributes, directed edges point to test outcomes, and 

leaves represent the predicted class. Usually the tests depend on just one attribute, 

which is selected to maximize a measure of tree purity. Typically, the tree purity is 

measured by entropy of class distribution at a node or the GINI statistic. To increase 

their understandability, decision trees can be converted into production rules. In fact, 

every path from the root to a leaf forms one rule. However, for better 

understandability further simplification and processing steps which reduce the rule 

set are required [13]. Decision trees are very popular and many implementations 

exist, notably in the publicly available Weka [15] data mining suite. 

Most white-box supervised learning methods accept input in the usual tabular 

format of data in which every training instance is described using a fixed set of 

attributes. A notable exception is the FOIL program, which directly processes logical 

relations [49]. It should be noted that decision tree and production rule learners work 

by selecting the best test on data from a specified set. They can be extended to 

support other descriptions of data by specifying specialized tests. A further 

discussion of this topic is presented by Breiman et al. [48]. 

D Feature Detection Techniques 

It is estimated that 60% of the effort spent on the data mining process is 

devoted to preparation and understanding of the data [50]. Clearly, it is important to 

properly select and define the attributes that will be used to describe the data. The 

design of good attributes is also a natural place to introducing prior knowledge and 

19 



beliefs into the data mining process. The techniques of feature detection are designed 

to help in this task. They often produce descriptions of the data and distill the 

information present in the data to reduce the burden placed on subsequent analysis 

steps. 

The feature detection problem is described as follows. Let the training set 

contain pairs (Xi, Yi), i = 1, ... ,N of input attribute vectors Xi E IRk and class labels 

Yi. The features of the sample (Xi, Yi) are defined to be a vector Vi E IRP which can 

be computed using the input alone Vi = fe(xi). The features cannot depend on the 

class of a sample, because such dependency would preclude their computation on 

unlabeled test samples. Usually the features are detected in an unsupervised manner, 

i.e. without using the labels. Therefore features are often designed to preserve most 

of the information present in the original data, but in a simpler way. For instance 

feature vectors V often have a lower dimensionality than the attribute vectors x. 

Many unsupervised learning techniques can be described with a unified 

energy-based framework [51-53]. An energy function that assigns energy values to 

pairs of attributes Xi and features Vi is defined. Learning of energy-based models 

consists of finding configurations of method parameters, attributes, and features that 

have low energy values. Inference is executed as a minimization of the energy of a 

trained model over either the attributes, or the features. The following discussion of 

unsupervised learning algorithms is a simplification of the energy-based approach to 

their analysis. 

Feature detection methods often depend on linear algebra techniques. For a 

matrix M let M:i denote the i-th column of M and let M j : denote the j-th 

row.The matrix of data attributes X is formed by horizontal concatenation of 

attribute vectors. Every column of X contains the attributes of a data sample 

X:i = Xi' Likewise, let V denote the matrix of data features with V:i = Vi' 

Usability of a feature set mandates the existence of the encoder function, fe. 

The encoder induces a matching decoder function fd that reconstructs the attribute 

vector from the features. Decoding a vector of features is the task of finding an 
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attribute vector whose encoding will match the given vector of features: 

fd(V) = argmin Ilv - fe(x)ll, (24) 
u: 

where II . II denotes a suitable measure of discrepancy between v and fe (x). It is 

often the Euclidean norm, which results in a least squares minimization problem. 

Some feature extraction schemes begin with the definition of the decoder. The 

encoding of an input vector x is then specified implicitly in a manner similar to (24), 

as the vector of features that, when decoded, provides a good reconstruction of the 

input x: 

fe(x) = argmin Ilx - fd(v)ll· 
v 

1 Methods Using Linear Encoders 

Many popular feature detection and dimensionality reduction techniques 

define the features to be a linear projection of the input data: 

(25) 

(26) 

Using matrix notation the feature matrix is obtained by matrix multiplication of the 

attribute matrix: V = M EX. Since the encoder is explicitly specified, a matching 

decoder has to be found from (24). Methods with linear encoders often use the 

Euclidean norm in the decoder. Then (24) becomes a least squares problem, with 

closed-form solution given by the Moore-Penrose pseudo-inverse of ME [54]. 

Moreover, if the rows of .. l\tf E are orthonormal the pseudo-inverse is just M~: 

Mk = M~(MEM~)-l = MEI- 1 = M~. 

The Principal Components Analysis (PCA) is obtained when variance of the 

features is maximized [35]. It is computed by performing an eigendecomposition of 

the data covariance matrix [54]. If cov(X) = QAQT, then the encoding matrix is 

M = QT. Moreover, since Q is an unitary matrix the data can be reconstructed 

from features by X = QV. For dimensionality reduction only the p eigenvectors that 

correspond to the p largest eigenvalues are used to form the encoding matrix. 

The Independent Component Analysis (ICA) looks for an encoding matrix 

ME such that the features v are statistically independent for a given sample x. In 
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practice, the features are found by maximizing the non-Gaussianity of the projected 

data [55]. 

The Singular Value Decomposition (SVD) can be used to decompose the 

attribute matrix X into a product of two unitary matrices and a diagonal matrix of 

singular values: X = U:EVT [54]. Let Up, :Ep , V p be the submatrices of U, :E, and 

V, respectively, that correspond to the p largest singular values. Then 

X p = U p:Ep VJ is a rank p approximation of X with the lowest sum of squares 

residual error. Encoding matrix ME is computed as ME = :E;;lUp. 

2 Methods Using Linear Decoders 

Often the feature vectors v must have some special properties. For example 

they must be sparse or non-negative. In those cases it easier to specify how the 

attributes are reconstructed from the features. Subsequently, the encoder is defined 

with a constrained optimization problem (28). The downside is that most often there 

exist no closed-form solutions of (28) that can be used to compute the feature 

vectors for the data. 

In the most general form, the decoding operation is defined using a decoding 

matrix M D : 

(27) 

Moreover, the feature vectors must belong to the set C of feature vectors that satisfy 

the constraints of this particular method. 

Finding the encoding of an input vector Xi now requires to solve a constrained 

optimization problem: 

Vi = fe(Xi) = arg min Ilx - M Dvll 
v (28) 

subject to: vEe 

The matrix M D is often determined from the data in a process called feature 

detection. Usually the matrix is chosen to provide the lowest reconstruction error 

under a specified set of constraints. It results in a constrained matrix factorization 
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problem: 

minllX - MVII 
M,V 

subject to: V:i E C for all i = 1, ... ,N (29) 

M:j E V for all j = 1, ... ,p, 

where p is the number of features to be found and V represents the constraints put 

on individual features, for instance normalization, sparsity, or non-negativity. The 

optimization problem (29) is often difficult to be solved jointly over M and V. Many 

methods employ instead a form of coordinate descent which alternates between the 

minimization over M and over V. 

For example, the popular K-means method represents every data point by a 

cluster center [35]. Suppose the coordinates of centers form a matrix M in which 

every column contains the coordinates of a centroid. Assume that the sample Xi 

belongs to the cluster j. Let Vi be a vector whose only non-zero element is a 1 in the 

j-th position. Then: 

If Euclidean distances are used to measure the reconstruction error, the 

encoding step of K-means is: 

Vi = argmin Ilxi - MvI12 
v 

subject to: V has only one nonzero element with value 1 

(30) 

(31) 

Clearly, the encoding of a given vector Xi is performed by finding the column of M 

that is closest to Xi, that is finding the closest center. 

The cluster centers are usually found using the Lloyd's algorithm, which 

alternates between choosing cluster centers and assigning samples to clusters. It is 

thus a coordinate descent approach to solving problem (29). 

Another approach of this form, the Non-negative Matrix Factorization (NMF) 

finds an approximate factorization of the data matrix X into two lower-rank 
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matrices that have non-negative elements [56,57]: 

minllX - MVIIF 
M,V 

subject to: M ~ 0 (32) 

where II . IIF denotes the Frobenius matrix norm and ~ denotes an 

element-by-element comparison. Note that the problem defining NMF matches the 

general formulation (29). The key premise of NMF is that non-negativity of elements 

prevents complex cancellations between columns of M during reconstruction. 

Without cancellations only a few terms can enter the sum. Thus sparsity of M is 

enhanced which results in better understandability of the detected features. 

The Sparse Coding problem has similar goals to NMF [58]. It is based on the 

assumption that the data vectors Xi can be reconstructed using just a few base 

vectors from a possibly large set which is sometimes referred to as the dictionary. 

The decoder performs just a matrix multiplication (27). The sparsity assumption is 

captured by the constraints C. Ideally, feature vectors should be constrained to have 

few nonzero entries. However, this leads to a hard combinatorial problem. In practice 

the £1 norm of the feature vectors in constrained: C = {v : Ilvlll < T}. The features 

are found by solving the problem: 

minllX - MVI12 
AI,V 

subject to: IIV:ilh ::; T for all i = 1, ... , N (33) 

IIM:jI12 = 1 for all j = 1, ... ,po 

The norm constraint on the columns of M is introduced to prevent degenerate 

solutions. If large elements of M are allowed, then the elements of V may become 

arbitrarily small. This in turn makes the sparsity constraint ineffective [58]. 

The assumption and use of decompositional methods that result in sparse 

descriptions of signal, images, or patterns has led to many important results in vision 

research, signal processing, and machine learning. Other works have shown it to be 

also important in extracting biologically plausible representations of natural 
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images [58,59]. Furthermore, sparse coding has led to unsupervised induction of 

parts-based decompositions of data [60,61]. 

E Rule Extraction from Black-box Models 

Decision trees they are often reformulated into production rules to enhance 

their understandability [13]. Similarly, one can try to extract the knowledge stored in 

a black-box classifier. In a more general setting, another learning process is required 

in which the black-box model serves as an additional information source. This 

activity is referenced to as rule extraction and formally defined as [62]: 

Given an opaque predictive model and the data on which it was 

trained, produce a description of the predictive model's hypothesis that is 

understandable yet closely approximates the predictive model's behavior. 

Rule extraction has been extensively researched in the domain of neural 

networks [63]. A useful taxonomy of rule extraction methods is based on how many 

assumptions are made about the black-box classifier. One class of algorithms (called 

pedagogical in [23] and independent in [62]) uses the given classifier solely to make 

predictions on available and unseen data. This rule extraction scheme makes a direct 

connection to the PAC learning model defined in the previous section. The black-box 

classifier is used as the oracle function and a probability density estimate of the 

training data is formed to generate new samples. In the simplest rule extraction 

scheme new samples are generated and classified using the given black-box model. 

The additional samples are then used to extend the training set on which a decision 

tree or production rule learner is induced. An analysis of kernel density estimators, 

the mathematical state-of-the-art methods for density estimation, is presented in 

Chapter III. 

1 Black-box Independent Rule Extraction 

The independent methods do not assume any particular architecture of the 

black-box classifier. They usually operate by generating artificial samples on which 
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the black-box is queried. They differ in the way the additional samples are generated. 

Uniform sampling over the range spanned by attributes is conceptually the easiest 

model of data density. Some authors propose to use it uniquely [64], while others use 

it as a baseline in comparisons with more advanced methods [65,66]. Uniform 

sampling disregards dependencies between attributes. It is often used when samples 

must satisfy some constraints, as in the ITER [67] and Minerva methods [68]. 

It is often assumed that the attributes are independent and only the marginal 

probability distributions are estimated. Just like uniform sampling this approach 

disregards dependencies between attributes. It is also commonly used to sample 

under constraints, e.g. TREPAN [66] and DecText [69] both use a Kernel Density 

Estimator to model the marginal densities. Moreover the TREPAN method sets the 

kernel width to 1/ VN where N is the number of samples used for estimation and 

may build local models for samples that fall into a node of a decision tree. 

Many methods that work with discrete data explore Hamming distance balls 

centered over training samples. The OSRE method treats as important the attributes 

for which the black-box output changes when the attribute value is changed [70]. 

The LORE method presented in Chapter IV can be configured to consider samples 

lying in a Hamming ball around training points. Another rule extraction method 

based on genetic algorithms first selects a training point, then mutates it [71]. 

Similarly, the ALBA method first picks randomly and uniformly a support vector. It 

then adds to every dimension of this support vector a value sampled from a uniform 

distribution that depends on the mean distance between samples [65]. 

Rejection sampling is used by the ANN-DT method [72]. First a point is 

sampled uniformly from the attribute space. It is accepted if it is close enough to a 

sample in the training set. Hence ANN-DT samples uniformly from the space 

occupied by the training samples. This is in contrast to multivariate kernel density 

estimates which assign more probability to regions that are densely occupied by 

training samples. 

Often sampling is intertwined with the white-box learning through the 

introduction of constraints on generated samples. Many white-box learners operate 
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by dividing the training set into smaller subsets, until a desired purity level is 

achieved. A common problem with those approaches is that not enough data is 

available to choose good splitting points/rules as the algorithm progresses. It is thus 

sensible to generate new samples when such a decision has to be made. The 

TREPAN method builds a decision tree and generates new samples to decide 

whether to split a leaf and to possibly choose a split [66]. It uses constraints to only 

generate samples belonging to that leaf and may use a local density estimate of data 

at that leaf. DecTex is a similar method which adds new split selection criteria that 

use the black-box classifier [69J. Similarly the Iter [67J and Minerva [68J method 

extract non-overlapping rules and generate samples in vicinity of those covered by a 

rule to decide whether it is possible to generalize it. 

2 Black-box Dependent Rule Extraction 

In contrast to independent methods, the decompositional [23] or dependent [62J 

approaches make direct use of the inner structure of a given black-box classifier. 

Often this knowledge is used to generate new samples on which the white-box 

classifier is trained. Craven [73] proposes a sample generator which produces only 

samples from the positive class by randomly starting hill-climbing optimizers. 

Khrishnan [74J uses genetic algorithms to generate prototypes, i.e. samples that are 

assigned by the black-box to a given class with high confidence. He then estimates 

the distribution of all data samples using a kernel density estimator or a Probabilistic 

Neural Network [75] and retains only the prototypes that are highly probable given 

this estimate. On the other hand, many rule extraction methods generate new points 

close to the decision boundary of the black-box classifier. The Hypinv method finds 

points on the decision boundary of a Neural Network by a gradient search, however 

the authors suggest the use of genetic search for non-differentiable models [76]. 

Similarly, support vectors have been used as the description of an SVM's boundary. 

Barakat [77] proposes to train an understandable classifier using SV s only, while the 

aforementioned ALBA method samples points near the SVs [65]. In the case when 

the black-box classifier is an ensemble of decision trees Domingos proposes to sample 
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from the distribution given by the leaves of trees that form the ensemble [78]. 

A few techniques were designed to extract from a black-box classifier 

quantities that are relevant to a newly created white-box one. The structure of a 

trained neural network is used to select relevant attributes on which a decision tree is 

grown in [79]. Similarly, a neural network [80] and an ensemble of decision trees [81] 

are used to estimate information gain needed during the induction of a new decision 

tree. 

Some algorithms for rule extraction, called purely decompositional, analyze 

only the given black-box classifier and disregard the training set. For example, in the 

case of rule extractions from neural networks those algorithms analyze the network 

only by finding subsets of inputs causing each neuron to become active [82]. Most of 

these approaches try to attach an interpretation to hidden neurons of the network, 

which usually doesn't produce legible results. An exception is the Knowledge Based 

Artificial Neural Networks [83] in which the network is initialized with prior 

knowledge forcing an interpretation of all its neurons. This interpretation changes 

slightly during training and hidden neurons retain their original, meaningful 

interpretations. 

3 Validating Rule Extraction 

Criteria commonly used to assess the usefulness of rule extraction methods 

are: accuracy - it measures the ability of the rules to properly classify previously 

unseen data (generalization ability), fidelity - it reflects how well the rules mimic the 

network, consistency - it describes how the rules differ between different training 

sessions, comprehensibility - it states how easy to understand a set of rules is by 

measuring the number of rules and their antecedents, and finally computational 

complexity - which reflects the needs of the process of rule generation. 

So far no rule extraction method has gained wide use and acceptance. In fact, 

very few implementations of such methods are available (e.g. the large Weka [15] 

suite provides no such method). Likewise, to the best of our knowledge, no major 

textbook on Data Mining, Machine Learning, or Neural Networks treats the topic of 
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rule extraction. This may be due to some inherent limitations of the rule extraction 

process presented in the following section. 

F Limitations of Rule Extraction 

Rule extraction, or more generally the process of improving the accuracy of an 

understandable model by introducing an auxiliary black-box model during training 

usually requires that the black-box classifier consistently outperforms the white-box 

on the problem at hand. In other words, the model produced by the black-box 

method must be good enough to warrant the added cost of training it. While this 

requirement is fairly intuitive, it is often overlooked [65]. 

Furthermore, the understandability of the white-box classifier must not be 

sacrificed. Highly precise decision trees or production rules may be too complicated 

to be understandable. It is often necessary to find a compromise between the 

complexity of the white-box classifier and its fidelity to the black-box one [84]. 

Lastly, the rule extraction process must be tractable computationally. For 

example an algorithm that creates a large truth-table of a given black-box classifier 

by enumerating all points belonging to the domain is usually too inefficient to be 

usable [85]. Independent rule extraction algorithms that use the black-box only to 

provide classifications of new samples must therefore employ sampling of the 

problem space. It may seem that having access to the internals of the black-box 

classifier may guarantee lower running times. However, most classifier models are 

expressible enough to make the rule extraction problem at least as hard as known 

NP-complete problems. A proof that reduces a satisfiability problem to rule 

extraction is shown in the forthcoming section. 

29 



1 Computation Time Considerations 1 

Before reasoning about the complexity of deriving rules from a trained neural 

network it must be formally defined what it means to be understandable. The 

following definition is built on the intuition that when people try to understand a 

new concept they look for examples of this concept and concentrate on their key 

properties. 

Definition 1. A rule set is usable if it is possible to classify in polynomial time a 

previously unknown sample. Moreover, it is understandable if, for a given class, a 

sample belonging to that class can be show in polynomial time. If, in polynomial time, 

the smallest set of features a sample must have to belong to a class can be 

determined, it will be said that the rule set is very understandable. 

The usable rule sets are all those that can be practically used to classify new 

samples. This is the minimum requirement extracted rules (or any other classifier) 

must meet to be of any practical use. 

The understandable rule sets are those, for which examples belonging to a 

particular class can easily be shown. Decision trees surely meet this criterion - one 

just has to trace a path from an interesting leaf node to the top of the tree. However, 

the Disjunctive Normal Form (DNF) formulas are not understandable, because 

showing examples for the 0 (false) class is equivalent to showing the satisfiability of a 

Conjunctive Normal Form (CNF) formula (as the negation of a formula expressed in 

DNF is a formula expressed in CNF), which is a NP-hard problem. 

One can argue that the ability to extract examples from the rules is not 

important, because the data set contains many of them. The very understandable 

class of rules tries to capture the ability of showing the simplest example for a class 

(or equivalently the shortest clause of the D NF form of the rules). This definition was 

chosen to resemble some of the actions a person trying to understand an unknown 

IThis section is partially based on the appendix of [86], (J. Chorowski and J. M. Zurada, "Ex

tracting Rules from Neural Networks as Decision Diagrams," Neural Networks, IEEE Transactions 

on, vol. 22, no. 12, pp. 2435-46, Dec. 2011, © 2011 IEEE). 
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All inputs belong to {-I, +1} All inputs belong to {-I, +1} 

in 
+1 -(n - 1) 

(a) (b) 

Figure 3: Implementing the boolean functions ( a) and and (b) or with a neuron. 
© 2011 IEEE 

object would do, i.e. see how it reacts to a given input, find other inputs causing the 

same reaction and finally, try to find the simplest common factor such inputs may 

have. 

The next two theorems show that in the case of rule extraction from neural 

networks a purely decompositional approach, which restricts the analysis to the 

network, leads to a computationally forbidding problem. 

Theorem 1. Extraction of an understandable rule set exactly describing a given 

neural network is NP-hard. 

Proof. The NP-complete satisfiability of CNF formulas problem will be reduced to 

the problem of rule extraction from a neural network. The variables of the formula 

become the inputs. Every hidden layer's neuron implements the logical or function 

and represents a single clause. The output neuron implements the logical and 

function to provide the conjunction of clauses. In Figure 3 it is shown how to express 

both functions as a neuron. 

The described reduction has a polynomial time complexity. If the extracted 

rules can be used to find in polynomial time an example for which the class is "true", 

then the rule extraction has to be harder than the satisfiability problem. D 

Theorem 2. It is NP-hard to find a very understandable rule set exactly describing 

a given network, even if the network's function satisfiability is assumed. 

Proof. A reduction to the dominating-set problem will be demonstrated. As an 

example, in Figure 4 a neural network corresponding to a small graph is shown. For 
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All network inputs are +1 or -1. All drawn weights are +1. 
All neurons have the signum activation function. A 

A }------j 

Figure 4: Solving the NP-hard Dominating Set problem can be reduced to finding the 
smallest set of inputs causing the output neuron to fire. © 2011 IEEE 

every node of the given graph, a boolean input feature and a hidd n layer neuron is 

assigned. An input is connected to a hidden layer neuron if and only if there is an 

edge between the vertexes represented by this input and the hidden layer neuron or 

if they represent the same vertex. Thus every hidden layer neuron implements an or 

function. The output neuron is then set to implement an and function. 

Clearly, the function is satisfiable, as an input of all ones (meaning that all 

vertexes are selected as the dominating set) causes the output neuron to fire. 

However, finding the smallest set of inputs causing the output neuron to fire is 

equivalent to selecting the smallest dominating set of graph nodes. 

These proofs may seem to be too artificial to be practically applicable. 

o 

Usually one can enumerate many points that belong to a particular class just by 

looking at the training dataset. Furthermore, many classifiers can rank inputs by 

their significance e.g. [87,88] . The important observation is however, that the 

analysis needs to be concentrated on the data itself and points that lie "close" to it. 

Another aspect of rule extraction is how easy it is to operate on the data 

structure used to store the rules. Many algorithms transform and operate on the set 

of rules, for example the C4.5 Rule has a global rule optimization stage [13]. The 

expressiveness of the rule language, which is the topic of the next section influences 

the complexity of algorithmic manipulation of rules. It may be beneficial to select a 

rule format on which it is easy to operate. Reduced Ordered Decision Diagrams, 
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Y 

o 
o x 
if X-Y> 0 and X+Y<1 then white 

if X-Y<O and X+Y>1 then white 

else black 

(a) 

Using M-of-N approach: 1 

if more_than 3 ouLof 

(a, b, c, d, e, f) then . .. 

Without M-of-N: Y 

if a and band c then .. . 

if a and band d then .. . 

0~-----------------1 

1 0 X 10 

if d and e and f then . .. Using exceptions: 

(b) 

if X E (1,9) and Y E (1,9) then black 
unless X E (4,6) and Y E (4,6) 
else white 

(c) 

Figure 5: Expressive power of different types of expressions used in rules: (a) oblique 
rules involving linear inequalities (after [89]), (b) M-of-N tests, and (c) rules with 
exceptions (a description without exceptions would require at least 4 rules for the 
class black). 

presented in Chapter IV, Section A, are a data structure that allows to succinctly 

express many concepts while allowing their efficient algorithmic manipulation. 

2 Concept Representation Considerations 

Many black-box models are able to delineate concepts by highly irregular and 

complicated decision boundaries. Multilayer neural networks operate by dividing the 

space using hyperplanes smoothed out with sigmoidal functions. On the other hand, 

Support Vector Machines use kernel functions to project the samples into a highly 

dimensional space in which they look for a separating hyperplane. Likewise, 

ensembles can express concepts that are impossible to describe with their base 

learners. 

Rule extraction methods should, on the one hand, have similar abilities to 

concisely express complex concepts. On the other hand, the use of highly expressible 

constructs can hinder their understandability. For instance, linear inequalities, also 

called oblique rules (Figure 5a) have been found very difficult to understand [89] but 

at the same time they are not easily expressed using other concepts. 
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Popular approaches that extend the rule language to increase its succinctness 

and comprehensiveness, extend the allowed language to support M-of-N tests 

(Figure 5b) and exceptions (Figure 5c). The former adds the ability to express 

conditions which are true if more than M, less than M, or exactly M conditions are 

true out of N given. This is especially effective in the case of rule extraction from 

neural networks [83]. The later allows to enrich rules with exceptions to them, 

instead of trying to create non-overlapping rules. Attributional Calculus is a rule 

language that extends propositional calculus with attribute types, hierarchical 

attributes, exceptions, and M-of-N selectors [90]. 

There are two dangers related to the increase of the expressibility of the rule 

language. Firstly, increasing the expressibility of the rule language effectively 

increases its Vapnik-Chervonenkis dimension. Thus more training data is needed to 

select a good rule set. Secondly, even small sets of rules expressed in a powerful 

language may be hard to understand. For instance during rule extraction from a 

neural network one may introduce artificial variables that correspond to the state of 

hidden neurons. It is then easy to write down DNF rules for the state of hidden 

neurons in terms of the inputs and for the output of the network in terms of the 

hidden neurons. However, such a rule set may be difficult to comprehend when the 

hidden neurons do not represent meaningful concepts. 

To illustrate this problem a neural network with three hidden neurons was 

trained to recognize 3-bit parity. The hyperbolic tangent transfer function was used. 

Furthermore, the inputs and outputs were scaled to ±1. Network architecture and 

functions computed by the neurons after training are depicted in Figure 6a. 

The logical rules describing the neurons are shown in Figure 6b. They assume 

that the neurons' outputs are always ±1, which can be accomplished by replacing 

the hyperbolic tangent activation function with a hard threshold one. Investigation 

of individual neurons doesn't provide a good understanding of the network's 

operation. Moreover, despite symmetry of the problem, the input X2 is singled out 

and appears to be more important. 

The network is described by four rules containing in total 10 clauses. Even 
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Neuron Weights 
O.OXI + 3.2x2 + 0.OX3 - 1.9 
3.1xI - 2.3x2 + 3.1x3 - 0.3 

-2.8xI - 2.2x2 - 2.9x3 + 0.1 
No 

(a) Network architecture and functions implemented by neurons. 

Neuron Function (DNF) Function (M-of-N) 
NI X2 1 of {X2} 
N2 (Xl /\ -'X2) V (Xl /\ X3) V (-'X2 /\ X3) at least 2 of {Xl, -'X2, X3} 
N3 (XI/\ X2) V (XI/\ X3) V (X2/\ X3) at least 2 of {XI,X2,X3} 
No (NI /\ N2) V (NI /\ N3) V (N2 /\ N3) at least 2 of N I, N2, N3 

(b) Logical description of individual neurons. 

Figure 6: Incomprehensibility of a small Neural Network: (a) architecture of the 
network and functions implemented by neurons; (b) logical description of neurons 
under a threshold activation assumption. 

though the rule set is small, it is not fully understandable. The symbols introduced 

for the hidden neurons are not related to the concept of parity. The function of the 

network becomes meaningful only after the output is expressed directly in terms of 

the inputs: 

However, the substitution of the representations of the hidden neurons into the 

formula describing the output neuron may require a consideration of all 

combinations of hidden neuron states, which often is intractable computationally. 

Furthermore, when a smooth activation function is used the hidden neurons must 

not be treated as binary variables, further complicating the task. This shows that 

while describing a network by concentrating on single neurons may lead to a concise 

formulation, the understanding of the network requires a holistic approach that may 

be prohibitively time consuming. 

This example of opacity of rules extracted from neural networks relies on the 

expressiveness of hierarchical models coupled with their opaqueness when the 
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concepts used in the hierarchy are not easily interpretable. However, if interpretable 

features could be derived from data, then they should be used for the creation of 

understandable hierarchical models. An attempt at enhancing the understandability 

of hidden neurons through the introduction of non-negative weight constraints has 

been presented in Chapter V, Section A. 

3 Do Black-box Classifiers Learn Knowledge from Data? 

According to the Statistical Learning Theory, a learning machine is trained to 

approximate the outputs of the supervisor. The main goal is to imitate, not identify, 

the supervisor's behavior. Does it still imply that the learning machine gains 

knowledge about the supervisor's operation? Knowledge is not formally defined and 

just like the notion of understandability it is very subjective. For example, the 

nearest-neighbor classifiers assumes that the supervisor's output varies little between 

similar inputs. The predicted class is just the most popular class of a specified 

number of neighbors of a testing point. Does a nearest neighbor classifier learn new 

knowledge? Intuitively no, because any analysis of a nearest neighbor classifier is 

essentially an analysis of the raw training set. 

Neural Networks may seem closer to extracting useful relations out of the 

training data. A multilayer feedforward neural network implements a complicated 

function of the inputs and weights. It is trained by modifying the weights. Unlike a 

nearest neighbor classifier, the size of a neural network is usually fixed and doesn:t 

grow with an increase of the number of processed training samples. However, as 

demonstrated by the example in the previous section, those characteristics do not 

guarantee that the weights of a network are meaningful. In fact, an artificial neural 

network may work consistently well even when most of its weights are chosen at 

random. This is proposed by the Extreme Learning approach [91]. 

An Extreme Learning Machine (ELM) is a feedforward neural network with 

one hidden and one output layer. However, only the weights and biases in the output 

layer are optimized, while the weight and biases of the hidden layer are generated 

randomly and kept fixed during training [91]. Thus they bear no relation to the 
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problem and can not capture any knowledge. Neither they possess any meaningful 

interpretation. However, it has been verified that the accuracy of an ELM is often 

comparable to the state-of-the art classifiers, such as Support Vector Machines [92]. 

The examples of nearest neighbor classifiers, or of neural networks show that 

unless care is taken, even a very accurate classifier may be oblivious to much of the 

data structure. The task of learning an understandable classifier may then 

necessitate conscious engineering of the classifier to make it "knowledgeful." This can 

be accomplished by using known data properties or invariants explicit in the 

classifier design. 

The Knowledge-Based Artificial Neural Networks (KBANN) methodology was 

proposed to fulfill this goal [93]. It describes how to encode rules into a neural 

network, tune the network, and finally read the refined rules from the network. At 

the beginning each neuron encodes a single rule. Network tuning changes the 

neurons' weights slightly, causing the related rules to be refined, but not redefined. 

This means that after tuning individual neurons can be analyzed separately and 

meaningful rules can be extracted from the network. 

In many cases the knowledge of a problem is not limited to input-output pairs 

and additional properties are known. Often it is known that the classifier should be 

insensitive to some transformations of the data, that will be henceforth referred to as 

"invariants". For instance in a system designed for handwriting recognition small 

translations or rotations of characters do not change the text being recognized. Other 

kinds of information may be known too. The hypothetical handwriting recognizer 

might also know the language of the text. How can this additional information be 

incorporated into the data mining process? 

One way of using the information about a particular problem is a judicious 

selection of the training data. Proper description of a problem through a selection of 

relevant attributes is crucial. Often the learning itself is not applied to the raw data, 

but to a cleaned and hand-curated subset of it. In many domains specialized data 

transformations are routinely used. For instance audio processing usually begins with 

the computation of the cepstrum of the signal [94]. For computer vision tasks the 
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Figure 7: Signal propagation through a convolutional network to recognize handwritten 
digits. The network architecture is based on LeNet [97J. The images of network's 
operation are obtained using a multidimensional convolutional network implemented 
for comparison of methods for 3D action recognition [98J. 

SIFT features [95J or local binary patterns [96J provide descriptors that are invariant 

under many image transformations. Furthermore , the data set can be extended with 

artificial samples that are special transformations of the original set. This technique 

is often used in the domain of text recognition, where the training set is extended 

with geometrical distortions of existing samples [97J. 

Once the training data are selected, the learning machine itself can be 

designed to reflect some of the known data invariants. Arguably, the largest 

possibilities are offered by neural network based approaches, because at its core a 

neural network is a nonlinear function with many tunable parameters. Desired 

behavior can then be obtained through a reformulation of this function and through 

the addition of regularization terms that promote a particular behavior of the 

classifier. 

A case in point , Convolutional Neural Networks (CNNs) excel at character 

recognition [97J. They are based on the idea that weights used to recognize small 

features , from which individual characters are composed, are probably the same at 

any location of a larger input image. To exploit this observation, a CNN uses 

neurons that are filters to be convolved with the input. Such neurons do not produce 

a single activation value, but activation maps . The size of those maps is reduced with 
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pooling operators, that aggregate neighboring outputs into a single value. An 

architecture of a CNN for handwritten digit recognition is presented in Figure 7. It 

shows schematically the convolution and pooling operations, as well as snapshots of 

the signal propagated through the network. The CNN begins with a sequence of 

convolutional and pooling layers, which is followed by a classical multilayer 

percept ron network. In this way properties of text images are incorporated in the 

classifier architecture. Convolutions capture the property that detectors for basic 

features in an image do not vary with the location, while insensitivity to small 

translations of the input is achieved through pooling. 

The architecture of Convolutional Neural Networks was inspired by the 

discovery of the simple and complex cells in the visual cortex of a cat [99]. In 

particular the filters used for convolution correspond to simple cells that detect 

single patterns. On the other hand, the pooling operation aggregates filter responses 

over neighboring locations and is related to the complex cells. Other studies were 

directed at explaining which mechanisms lead the formation of receptive fields of 

simple cells in the visual cortex. It has been shown that optimizing sparsity of image 

representation produces oriented Gabor-like filters that agree with those found in the 

macaque visual cortex [58]. In turn the use of signal sparsity in a neural network 

based classifier led to state-of-the art accuracies [60] on handwritten digit recognition. 

The introduction of sparsity has important consequences for the 

understandability of the learned model. A signal representation is sparse when the 

signal is represented by only a few elements from a large set. Especially on vision 

tasks this often leads to a hierarchical decomposition of the input into meaningful 

parts. A decomposition of digits into pen strokes was presented in [100] and a 

decomposition of common objects into parts was demonstrated in [101]. Finding 

sparse encodings of signals in terms of a known dictionary is also an important topic. 

An efficient algorithm that finds robust and sparse encodings of data is described in 

Chapter V, Section B. 

Knowledge of other invariants can be included in the learning machine's 

design by forcing parts of its output or state to be constant under some data 
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Figure 8: Making the Learning Machine LM aware of an invariant about data. Xl 

and X2 are two inputs for which LM's output should be the same. The output of the 
LM is computed twice using the same parameters e. The difference between the two 
outputs is computed and e is adjusted to minimize it. 

transformations. Usually two steps are required, as depicted in Figure 8. First, pairs 

of inputs for which the output should be similar are generated. The learner is trained 

to minimize the difference between outputs produced from those pairs [102]. In this 

way the learner is forced to learn an invariance relation. This approach can also be 

used to learn a transformation that reduces the dimensionality of data. The learner's 

output maps the data into a space that preserves known invariants [103]. 

Sometimes constraining the representation used by the learner is enough to 

generate a meaningful representation. The Non-negative Matrix Factorization (NMF) 

algorithm postulates to represent an input as a non-negative combination of 

non-negative basis vectors [57]. This restriction suppresses cancellation between base 

vectors, thereby enhancing sparsity. In contexts in which non-negativity is 

meaningful, such as in analyzing counts of words in documents or pixel intensities in 

images a simple parts based representation can be found. Results of an application of 

the non-negativity principle to feed-forward neural networks are presented in 

Chapter V, Section A. 

Examples presented in this section demonstrate how a classifier can be 

designed to match known data characteristics. Those techniques may make the 

classifier more understandable, because its design will be in better agreement with 
• 

knowledge about the problem. However, this brings the task of learning 

understandable models further away from a universal approach that does not require 

extensive modeling and closer to the parametric statistical approach. Perhaps a fully 
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automatic method does not exist and the user must guide the learning process to 

obtain a model that will enhance his subjective understanding of the problem at 

hand. 

G Two Facets of Learning Rules 

Learning machines are trained to approximate an unknown function from a set 

of inputs into a set of discrete class labels. Sometimes, this relation can be expressed 

in a "shallow" way in which the outputs are simple combinations of the inputs. In 

fact, the majority of rule learners build a list of rules which are conjunctions of simple 

tests of inputs. The shallow models have obvious limitations on the complexity of 

concepts they can represent. On the other hand, they are often easy to interpret. 

The hierarchical, or "deep" models employ a sequence (hierarchy) of 

transformations of the data. Complex concepts are built out of simpler ones. 

However, when the intermediate concepts are not understandable, the whole 

hierarchy becomes opaque. Automatic induction of hierarchical models, that do not 

guarantee understandability, is easily achievable. One can for instance train a 

multilayer feedforward neural network and treat each layer &"l a level of the hierarchy. 

However, as the example given above demonstrates, understandability of such a 

model is usually very low. Moreover, since there is no definition of understandability 

it is not possible to directly optimize a model to be more understandable. A possible 

solution of this problem consists of building the hierarchy one level at a time. This 

introduces the problem of feature detection. It consists of finding a data 

transformation that transform raw input samples into a new form that contains 

useful and understandable features. 

The two facets of rule extraction are linked to those two different regimes of 

operation. On the one hand it is important to construct accurate shallow models. 

However, those models may refer to features extracted from the data, and not to the 

original attributes used for data description. This dissertation treats both topics. 

Chapters III and IV describe methods for efficient extraction of shallow models from 

data and black-box classifiers. Chapter V describes how understandable and useful 
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for classification features may be found. It also provides an efficient algorithm for 

finding sparse descriptions of the data. 
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CHAPTER III 

IMPROVING THE ACCURACY OF WHITE-BOX 

MODELS THROUGH ADDITIONAL SAMPLE 

GENERATION1 

This chapter evaluates a family of very intuitive rule extraction methods in 

which a white-box classifier is trained on artificial data sampled from an estimate of 

the probability density of the original data. As such the described method can be 

used with any black-box classifier and belongs to the family of independent or 

pedagogical rule extractors. 

The independent methods were originally introduced under the name of rule 

extraction as learning [73]. The generic algorithm is pictured in Algorithm 1. The 

important question is how to choose a proper method of generating additional 

samples in line 2 of the algorithm that would yield maximum increase in the 

white-box learner performance, without sacrificing too much of its understandability. 

A review of pedagogical rule extraction methods that generate additional samples 

was presented in Chapter II, Section E. Many of those methods use very simple, or 

ad-hoc methods of density estimation. This chapter describes results obtained when 

state-of-the-art mathematical techniques for density estimation are used instead. 

Artificial sample generation is often used to increase the accuracy of classifiers. 

Text recognizers are often trained on a data extended with geometric 

transformations of samples [97]. Similarly, the SMOTE method mutates existing 

samples to aid learning in the presence of class imbalance [105]. The rule extraction 

IThis chapter is based on [104J (J. Chorowski and J. M. Zurada, "Improving the accuracy of 

understandable classifiers through additional sample generation," Submitted to Knowledge and Data 

Engineering, IEEE Transactions on, 2012). 
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Algorithm 1: General schema of rule extraction as learning methods. 
1: BB +-- a black-box classifier trained on TrainData 
2: N ewData +-- Additional samples 
3: Classify NewData using BB 
4: W B +-- a white-box classifier trained on TrainData U N ewData 

as learning approach differs by the assumption that a reliable black-box classifier is 

available to label new data. Therefore, since the labels will be set using the 

black-box, data transformations used to generate new samples can generate samples 

belonging to other classes than their seed samples. 

Chapter II argues that classifier accuracy measured on unseen (test) data 

increases with an increase of the number of training samples. This motivates the rule 

extraction as learning approach whose main idea is to extend the training set with 

additional artificial samples. 

Another intuitive motivation comes from analysis of the operation of 

understandable classifiers. Decision trees are usually built by repeatedly splitting the 

training set. Similarly rule learners often employ the separate and conquer approach 

which repeatedly finds a rule covering some samples which are then removed 

(separated) from the training data. Tree splits and rules are often selected by 

maximizing a statistical measure of their performance. As algorithms progress, the 

data becomes scarce. Therefore some patterns may be missed by the learner and 

other patterns may be selected purely by chance. The generation of additional 

training data should therefore help the algorithms to learn a more complete theory 

that governs the data at hand. 

The remaining question is what distribution should the new data come from. 

If a global understanding of the black-box classifier is required, then the white-box 

should ideally replicate black-box's responses in the whole space spanned by data 

attributes. For small domains it was proposed to generate a full truth table and 

simplify it using e.g. Karnaugh maps [85]. For large domains this direct approach 

requires prohibitively many computations and uniform sampling may be necessary. 

However, trying to replicate the behavior of the black-box classifier over the whole 
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space has several disadvantages. 

When the end goal is to obtain better accuracy on unseen testing data, it 

makes little sense to model the behavior of the black-box in regions where data are 

scarce. Performance measures such as accuracy are defined on a testing set that is 

assumed to be drawn randomly and independently from the same distribution as the 

training set. Similarly, rule extraction methods are often characterized by their 

fidelity to the black-box classifier, which is defined as the percentage of the testing 

samples for which the black-box and the white-box gave the same answer [23]. 

Moreover, both SLT and PAC learning theories require that the training and testing 

data come from the same, albeit unknown, probability distribution. This suggests 

that new data should be drawn from the original data density. 

Furthermore, when new data comes from the distribution of the original data, 

the resulting white-box classifier may be simpler because it is not forced to 

approximate the decision surface of the black-box classifier in areas not populated by 

the data [66]. Moreover, fewer additional data samples may be needed to attain a 

certain level of accuracy. It becomes clear that it is beneficial to generate additional 

samples from the distribution of the original data itself. The remaining question is 

how to do it. 

Suppose that the training set contains N pairs (xn, Yn) formed by a vector of 

attribute values x E ]Rk and a class label y. Assume that the training samples are 

drawn Li.d. from a probability distribution PXy : 

x, Y f'V PXy . (34) 

The probability of observing a data sample (x, y) can be expressed as: 

P(Y = y,X = x) = P(Y = ylX = x)P(X = x). (35) 

This factorization directly corresponds to the data generator and supervisor assumed 

by the statistical learning theory and show in Figure 1 in Chapter II. Classifier 

training consists of imitating the supervisor and approximating the conditional 

probability P(Y = ylX = x). Rule extraction requires that the black-box classifier 
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has learned a good approximation of it. Experiments reported at the end of this 

chapter demonstrate that good accuracy of the black-box is required to achieve 

satisfactory results. The remaining issue is to estimate the distribution over the 

attributes P(X). This is the main topic of this chapter. 

The Algorithm (1) does not apply the formula (35) exactly because labels are 

deterministically set based on the black-box predictions, rather than sampled from 

the predicted class distribution. This is done for two reasons. First, it biases the 

white-box toward learning the decision boundary of the black-box. Second, many 

practically used classifiers do not compute class probabilities, only the decision. For 

instance the SVM must be extended in nonstandard ways to provide approximate 

probabilistic interpretations of its outputs [106,107]. 

A Review of Probability Density Estimation Methods 

The problem of nonparametric density estimation has been well 

researched [108,109]. One family of non-parametric density estimators is the kernel 

estimators also known as Parzen windows. It uses locally tuned radial basis functions 

(i.e. kernels) to interpolate the density function between observed samples. Another 

family of methods first finds several 1D projections of the data using projection 

pursuit or a similar technique. New samples are generated in this transformed 

feature space. The two families have been compared in [110]. 

1 Kernel Density Estimation 

Given a set of N k-dimensional training data {xn' n = 1, ... , N}, a 

multivariate fixed-width kernel density estimator (FKDE) with the kernel function K 

and a fixed (global) kernel width parameter h, gives the estimated density j(x) for a 

multivariate data x E IRk based on [110]: 

A 1 N (1 ) 
f(x) = Nhk ~K h(x - x n ) , (36) 

46 



where the kernel function K satisfies [110]: 

K(x) ~ 0, and ( K(x)dx = l. 
ilR.k 

A popular choice of K is the Gaussian kernel [110]: 

(37) 

(38) 

which is symmetric with its value smoothly decaying away from the kernel center. 

The width of the kernel h is an important parameter of FKDE. If it is too 

small, the estimated density will have spikes at data-points and wrongly estimate the 

density in the tails of the distributioll. For the width too large, the estimate will 

loose some of the structure of the original distribution. 

There are simple methods to choose an initial value of the kernel width. A 

popular method suitable for univariate data and Gaussian kernels assumes that the 

original distribution is normal, compensating for the case when the experimental 

inter-quartile range is too small. The kernel width is given by [108]: 

A = min(std. dev., inter-quart. range/l.34) 

h = l.06AN- 1
/

5
. 

(39) 

This method can be extended to the multivariate case by first sphering2 the data 

using [110]: 

z = S-1/2(X - E{x}), (40) 

where S is the observed data covariance matrix and E denotes the mathematical 

expectation operator: 

S = E {(x - E{x})(x - E{x}f} = unuT 

S-1/2 = U n-1/ 2uT 

The FKDE of sphered data is given by: 

2Sphering of data is also known as Zero Component Analysis. 
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After sphering E{z} = a and E{zzt} = I (the identity matrix). Under the 

assumption that the sphered data are normally distributed and that the kernel is 

multivariate normal the optimum width is [108,110]: 

1 ( 4 ) k~4 h = AN- k+4 where A = 
, 2k + 1 ' 

(44) 

and k is the number of dimensions. 

A product of univariate kernels K can also be used for multivariate FKDE. 

The FKDE with a product kernel is defined as [109]: 

(45) 

Furthermore when the kernel K is Gaussian, the widths can be set to [109]: 

1 

hj = (std. dev. in dimension j) . N- k+4 (46) 

More sophisticated methods for choosing and tuning the kernel width have 

been proposed [108,111,112]. Often the methods are iterative and optimize the 

kernel width by estimating the goodness of fit of the distribution using 

cross-validation. Their detailed description is omitted, because the proposed rule 

extraction algorithm only uses density estimation as a step toward obtaining a more 

understandable and accurate classifier. As such, the end-goal is not a perfect density 

estimate, but good accuracy of the white-box cla.'.;sifier. It may be more advantageous 

to use (39) as a starting point and fine-tune the width by cross-validating the 

white-box classifier accuracy. 

Extensions of Kernel Density Estimation 

The kernel width can be allowed to vary among samples, making it possible to 

adjust the smoothness of the kernel estimate to the amount of available data. The 

resulting technique is called Adaptive Kernel Density Estimation. It can be 

constructed in two steps, by first selecting a pilot estimate of the data, then using it 

to compute the individual kernel widths [108,110]. 
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If the data set is large fewer kernels may be used than there are data samples. 

It is also possible to relax the requirement that the kernels are placed on data 

samples only. In this way kernel density estimation essentially results in a Radial 

Basis Function network, or a Gaussian-Mixture Model [36,110]. 

Handling Discrete Data 

Estimation of univariate discrete data is easily accomplished by computing 

the observed frequencies of different values. In the case of multivariate k-dimensional 

discrete data a distance measure between samples has to be introduced. A suitable 

one is the Hamming distance [108]: 

k 

d(x,y) = LI{x(i) i- y(i)}, (47) 
i=l 

where I{·} is the indicator function and x( i) denotes the value of the i-th attribute 

of sample x. When all attributes are binary, for any A with 1/2 ::; A ::; 1 a kernel KB 

is defined as [108]: 

(48) 

The value kA can intuitively be interpreted as the average number of disagreements 

between samples. 

In practical scenarios attributes that take more than two values need to be 

considered. Furthermore, the original marginal probabilities of attributes should be 

preserved by the extended data set. Therefore this study proposes the kernel: 

k [( )I{X(i)=Y(i)} 
K(ylx, A) = g A + (1 - A)Pi(y(i)) . 

((1 - A)~(y(i)) )I{X(i);fY(i)}] , 
(49) 

where Pi(v) is the experimental marginal probability of the i-th attribute taking the 

value v and A is a parameter in the range [0,1] that controls the amount of 

smoothing. This kernel is more complicated than K B , however it has a simple 

interpretation and allows for a very intuitive sampling algorithm shown in Algorithm 
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2. The intuitive meaning is that for every attribute with probability ,,\ the value of 

this attribute is selected randomly from the respective marginal distribution. 

For both kernel choices the approximate density function is defined by [108]: 

1 N 
J(x) = N L K(xlxi,,,\) 

i=l 

There is no simple formula to choose an appropriate value for A, however 

cross-validation may be used to choose the ,,\* that maximizes the score [108]: 

N 

,,\* = argmax L log J-i(Xi), 
A i=l 

(50) 

(51) 

where J-i denotes the estimate obtained from all data points with the exception of 

point Xi. 

When the data contains both numerical and nominal attributes, an FKDE 

can be constructed with the kernel K defined to be the product of a kernel for the 

continuous attributes Kc and a kernel for the nominal ones Kn. This approach 

requires the specification of two parameters: h for the continuous kernel and ,,\ for 

the nominal one. 

Another possibility of handling discrete attributes is to transform them into 

numerical ones and use a standard FKDE estimator. The Weight of Evidence (WoE) 

transformation has been proposed for use in rule extraction in [65]. It is often a good 

choice because for problems with two classes it avoids the creation of artificial 

variables. In a problem with two classes Cl and C2 the WoE transformation of the 

value v of attribute A is defined as follows: 

WOE(A = v) = In P(C = cllA = v). 
P(C = c21A = v) 

(52) 

The WOE score is positive when there are more samples of class Cl having value v of 

attribute A than there are samples of class C2. In multi-class problems one can 

introduce WOE scores for every possible class value: 

(53) 
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Algorithm 2: Drawing a sample from a FKDE. 
1: Choose i uniformly with replacement from {I, ... , N} 
2: if data are continuous then 
3: Generate E to have probability density K 
4: return Xi + hE 

5: else {Sample Xn conditioned on Xi from probability density given 
by the kernel (49)} 

6: xn r Xi 

7: for all a E attributes do 
8: if A < U(O, 1) then 
9: Xn(a) r random value of attribute a generated according to 

its marginal distribution 
10: end if 
11: end for 
12: return xn 
13: end if 

When the conditional probabilities are estimated form the data it is possible 

that no data exists for a particular class and attribute value combination. Direct 

computation of the WoE score may thus result in a division by zero error. In 

experiments this condition was prevented through the use of Laplace smoothing 

(occurrence counts of attribute value and class combinations are increased by 1, thus 

ensuring that no count is 0). 

Generating Samples From a FKDE 

In this application the algorithm uses the density estimate to generate new 

data. When FKDE is used it is not needed to explicitly construct the estimate. 

Suppose a FKDE estimate j is obtained from samples Xl, ... ,XN. The classical 

algorithm designed for continuous attributes [108] is extended to also handle discrete 

data. Suppose that a kernel K of width h is used for continuous attributes and that 

the kernel (49) with smoothing parameter A is used for the discrete ones. An 

algorithm to sample from j is presented in Algorithm 2. The algorithm is easy to 

implement when Gaussian kernel is used for numeric attributes. Moreover it is not 

required to explicitly evaluate the density estimate. 
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2 Projection Pursuit-based Methods 

Projection pursuit looks for "interesting" low dimensional data projections. 

Usually, non-gaussianity of the projected data is optimized to find good projections. 

After a projection direction is found, the structure of the projection is removed form 

the data to make it "less interesting" and enable finding other projections. This 

process can be inverted to form a sampling scheme in which the data is sampled in 

the reduced space of the projections, then the structure is iteratively added [110]. 

Independent Component Analysis (leA) of the data, which also searches for 

projections that maximize non-gaussianity of the data [55,113] can also be used to 

find interesting projection directions. In the leA space independent univariate kernel 

estimators can be used to model the density of individual leA features. New samples 

are generated from those estimates. Finally, the inverse transformation is performed 

to back-project the generated samples into the original attribute space. 

B Experiments 

This section compares the accuracy and size of white-box classifiers induced 

on original and artificial data generated using various density estimation methods. 

There is little point in evaluating rule extraction approaches on data sets on which 

the white-box methods already excel [65]. Therefore the comparison was executed on 

a selection of six data sets from the uel repository [17] for which the white-box 

classifiers were consistently less accurate than the black-box ones. The properties of 

the selected data sets are given in Table 1. The "Vote" data set has been made more 

difficult by the removal of the attribute "physician fee freeze". Samples containing 

missing values were discarded because missing values are not handled by the 

LibSVM solver [114]. 

For reference the results of using two popular black-box classifiers to label the 

generated samples were compared: The "Fast Random Forest" Java 

implementation [16] of the Random Forest (RF) [7] and the LibSVM [114] 

implementation of the Support Vector Machine (SVM) [8]. Both classifiers were 

52 



TABLE 1 

Properties of data sets used in experiments. 

Data Set Number of 
Full Abbr. Inst. Nom. Num. Classes 

Name Name Attrs. Attrs. 
Balance Scale Bal 625 0 4 3 

German Credit Ger 1000 13 7 2 
Sonar Sonar 208 0 60 2 

Promoter Prom 106 57 0 2 
Vote Vote 232 15 0 2 
Wine Wine 178 0 13 3 

accessed from Matlab. The RF was configured to always build 100 trees with all 

other parameters set to their default values. The SVM was configured with a 

Gaussian kernel. Moreover the parameters 'Y (SVM kernel width) and C 

(regularization) were optimized to yield maximum cross-validation accuracy using 

grid search ("( : 2-15 ,2-13 , ... ,23 , C : 2-5,2-3 , ... ,215 ). 

For reference purposes, also two white-box learners, both implemented in the 

Weka data mining suite, were used for comparison: the .1Rip implementation of the 

RIPPER production rule learner [14] and the .148 implementation of the C4.5 

decision tree learner [13] . .1Rip was used with its default settings, while .148 was used 

with pruning performed either using the pessimistic confidence interval heuristic (the 

default) and using Reduced Error Pruning (REP) in which the tree is grown and 

pruned on different parts of the training set. Sometimes enabling REP resulted in 

the induction of much smaller trees. 

In all experiments 25 runs of 10-fold Cross-Validation (CV) were performed. 

That many runs are necessary because the white-box classifiers are unstable - small 

variations of the training data lead larger accuracy variations. The results obtained 

on the original data are gathered in Table 2 which shows the mean and standard 

deviation of CV accuracies obtained by all classifiers. Moreover, for white-box 

classifiers the accuracies when the original training labels were replaced with 

black-box predictions are also reported. It can be observed that replacing the labels 
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c.n 
~ 

TABLE 2: Cross-validation classifier accuracies on original data. 
Means and standard deviations (in parenthesis) of lOxCV accuracies from 25 experiment runs. The white-box accuracies are reported on 
the original data set, and on the training data with labels replaced with either of the black-box's predictions. The "+WoE" suffix in data 
set name indicates that nominal attributes were processed with the weight-of-evidence filter. 

Data SVM RF JRip Acc J48 Acc J48+REP Acc 
Name Acc Acc Orig SVM RF Orig SVM RF Orig SVM RF 

Bal 
99.9% 81.2% 80.8% 80.8% 80.8% 77.9% 77.9% 77.9% 78.2% 78.2% 78.2% 
(0.1) (0.6) (0.9) (0.9) (0.9) (0.9) (0.9) (0.9) (1.1 ) (1.1) (1.1 ) 

Ger+WoE 
76.2% 76.5% 73.1% 73.5% 73.2% 72.0% 74.3% 72.0% 72.2% 73.6% 72.2% 
(0.3) (0.7) (1.0) (0.8) (0.9) (0.9) (0.9) (0.9) (1.0) (1.0) (0.9) 

Ger 
75.9% 75.9% 72.2% 72.0% 72.2% 71.1% 73.1% 71.1% 72.0% 73.2% 72.0% 
(0.8) (0.7) (1.0) (0.9) (1.0) (0.7) (0.9) (0.7) (1.0) (1.0) (1.0) 

Prorn+WoE 
98.2% 93.8% 82.0% 82.1% 82.0% 77.0% 77.1% 77.0% 76.8% 76.7% 76.8% 
(0.8) (1. 7) (3.2) (3.2) (3.2) (2.4) (2.4) (2.4) (3.3) (3.2) (3.3) 

Prom 
92.3% 91.3% 80.7% 79.0% 80.7% 79.2% 80.6% 79.2% 75.9% 76.2% 75.9% 
(0.9) (1.6) (2.7) (3.1) (2.7) (3.0) (2.2) (3.0) (3.4) (3.6) (3.4) 

Sonar 
87.7% 84.2% 74.5% 74.5% 74.5% 73.0% 73.0% 73.0% 70.3% 70.3% 70.3% 
(1.2) (1.4) (2.7) (2.7) (2.7) (2.7) (2.7) (2.7) (2.5) (2.5) (2.5) 

Vote 
91.6% 88.8% 88.2% 87.2% 88.2% 89.1% 87.5% 89.1% 87.1% 87.1% 87.0% 
(0.8) (0.7) (1.1 ) (1.6) (1.1 ) (1.0) (1.5) (0.9) (1.2) (1.5) (1.2) 

Vote+WoE 
91.6% 88.8% 88.4% 87.3% 88.4% 89.0% 87.5% 89.0% 86.8% 87.0% 86.8% 
(0.8) (0.9) (1.4) (1.3) (1.4) (1.0) (1. 7) (1.0) (1.3) (1.3) (1.3) 

Wine 
98.9% 97.9% 92.3% 91.9% 92.3% 93.1% 92.7% 93.1% 90.0% 90.2% 90.0% 
(0.5) (0.4) (1.6) (1. 7) (1.6) (1.2) (1.0) (1.2) (2.4) (2.4) (2.4) 



with RF predictions has little effect, mainly because the RF often achieves 100% 

training accuracy. Replacing the labels with SVM predictions slightly affects 

white-box accuracies, however it does not always lead to improved performance. 

It was experimentally compared how the accuracy of the black-box learner 

varies when the data set is extended with additional samples generated using the 

following methods. The Olle letter abbreviation are used in tables and plot legends. 

1. Independent uniform sampling (abbrev. u) over the range of attributes. For 

discrete attributes all possible values are sampled with the same probability. 

2. Independent sampling of values for different attributes from univariate FKDEs. 

Results with no smoothing (kernel width h = 0) (abbrev. d) are compared with 

results with the Gaussian kernel of width determined using equation (39) 

(abbrev. k). Nominal attributes are sampled independently according to their 

empirical marginal distributions. 

3. Sampling from a multivariate FKDE. Numerical and nominal attributes are 

treated separately. For numerical ones the results when the data are sphered 

and the Gaussian kernel width is given by equation (44) (abbrev. f) are 

compared with results that use a product of Gaussian kernels of width 

determined using equation (46) (abbrev. m). For nominal attributes the kernel 

( 49) is used with ). set using equation (51). 

4. Sampling from Weka's "EM" clustering (abbrev. e). Numerical attributes are 

modeled as multivariate Gaussians, nominal ones are assumed to be 

conditionally independent given the cluster and are specified using their 

conditional marginal probabilities. 

5. Independent sampling of features in the ICA space (abbrev. i). Independent 

components are learned using the FastICA algorithm [113] and independent 

univariate FKDEs are used to estimate the density of the data in the 

feature-space. This method handles only numerical attributes. 
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6. Multivariate sampling of features in the PCA space (abbrev. p). The density of 

the data in the feature space is estimated using FKDE with a product kernel 

because PCA features are not correlated. This method handles only numerical 

attributes. 

7. Sampling using the ALBA method (abbrev. s) [65]. It corresponds to sampling 

from an independent univariate KDE of the density of support vectors of an 

SVM. This method handles only numerical attributes. 

For every data set, black-box, and white-box method combination the CV 

accuracy for increased quantities of artificially generated samples was recorded. The 

number of artificial samples was limited to 10000 and the size of the extended data is 

reported in multiples of the original data size. Thus relative size 1 means that only 

the original data is used. To reduce the variability of results all white-box classifiers 

were trained on exactly the same augmented data sets, and the same instances of 

black-box classifiers were used to label data generated with all evaluated methods. 

This implementation of the experiment allowed testing how samples generated by the 

SVM-dependent ALBA perform when the RF is used to obtain the labels. 

The most informative way to present the results is to graph the accuracy of 

white-box learners against the size of the extended training data sets. It is also 

informative to analyze how the accuracy varies with the size of the white-box 

classifiers. Such plots are shown for the data set "Balance Scale" in Figure 9. In all 

accuracy plots the solid horizontal line at the top presents the cross-validation 

accuracy of the SVM, while the dashed horizontal line near the bottom depicts the 

accuracy of the JRip rule learner on the original data. Accuracies of the rule learner 

obtained on extended datasets are plotted between those two reference levels in 

function of the relative data set size (the size of the extended dataset divided by the 

original size, 1 means that only the original samples were used). Due to the large 

number of possible combinations of white-box, black-box, and sampling method a 

few of the graphs were selected for further discussion in the text. To summarize the 

graphs the results were tabulated using the following measures. Maximums over all 
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Dataset: Balance Scale, White-Box: JRip, Black-Box: SVM Dataset: Balance Scale, White-Box: JRip, Black-Box: SVM 
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Figure 9: Results of experiments on the "Balance Scale" data with JRip rules learned 
from samples labeled using an SVM. lOxCV is plotted as a function of the increase 
of training data set (a) and as a function of the number of rules (b). Accuracy Gain 
divided by rule set Size AG IS as a function of the increase of training data (c). Areas 
of the marked regions are reported in Tables 4 and 5 as AG and AG/S. 
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training set sizes of the averaged CV accuracies are reported in Table 3. A useful 

figure of merit is the Accuracy Gain (AG) defined to be the difference between the 

accuracy of the white-box learner on the augmented and original data sets. For 

example, the AG when independent sampling from marginal distributions (d) was 

used to generate new data is indicated in Figure 9a. In addition, to analyze the 

trade-off between white-box accuracy and comprehensibility the accuracy gains were 

divided by the size of the white-box model (AG/S), which is the number of rules for 

JRip and number of leaves for J48. To capture the variability of AG and AG/S with 

the relative size of the data their integrals were computed over the relative data set 

sizes. Those are reported in Tables 4 and 5. They correspond to the areas of the 

shaded regions in Figure 9a and Figure 9c. Since the accuracy gain depends on the 

white-box original performance, the values in Tables 4 and 5 can be compared 

between sample generation methods and black-box architectures for a selected data 

set and white-box architecture combination. In general, good methods demonstrate 

both large AG and large AG/S integrals. 

The largest increase of the white-box accuracy is observed on the "Balance 

Scale" data set on which independent sampling from non-smoothed marginal 

distributions matches the accuracy of the SVM. It has already been shown in Figure 

9 how the accuracy of JRip varies with the amount of training data and with the 

number of rules. The results on "Balance Scale" must be, however, taken with a 

grain of salt because the data is fairly atypical: there are only four numerical 

attributes that take only five different values each, which limits the attribute space 

to just 625 points. Since the data space is small, the independent generator is able to 

enumerate all points. The graphs match the two summary values in Tables 4 and 5. 

The un-smoothed independent FKDE generator (d) has demonstrated the largest 

gain in accuracy and the best ratio of accuracy gain to the number of rules. Despite 

the atypical nature of the "Balance Scale," the results demonstrate an important 

property of the non-smoothing FKDE generator. It is robust to data peculiarities, 

such as numerical attributes that nevertheless take only a small number of values. 

All other density estimation methods lead to lower accuracies because they fail to 
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TABLE 3: Maximum of averages of 10xCV accuracies. For each data set indicated 
are in each column the values that are within 1% of the maximum . 

.TRip Ace J48 Ace .T48+REP Acc 
SVM RF SVM RF SVM RF 

u 87.3 82.9 87.8 81.0 87.0 80.7 
d 99.9 82.4 99.9 81.2 99.8 81.1 
k 87.3 83.4 87.4 81.0 86.9 80.8 
e 87.2 83.6 86.3 80.9 86.2 80.7 ..-

cO f 86.7 83.2 86.0 81.0 85.8 80.7 o:l 
m 86.7 83.5 86.1 81.0 85.9 80.6 
p 86.7 83.5 86.2 81.0 85.9 80.6 
i 87.3 83.4 87.2 80.9 86.8 80.8 
s 84.5 80.8 82.8 78.0 82.1 78.2 
u 74.5 74.4 74.3 72.6 74.0 74.1 
d 74.8 75.9 75.1 75.5 74.8 75.4 

~ 
k 74.8 75.8 74.6 75.0 74.5 75.3 

~ e 74.4 75.2 74.3 74.0 73.6 74.8 

+ f 74.5 75.1 74.6 74.0 74.1 74.8 
1-1 
Q.) m 74.6 75.3 74.5 74.0 74.1 74.4 0 

p 74.7 75.3 74.3 74.1 74.1 74.9 
1 74.6 75.0 74.4 73.9 74.1 74.8 
s 74.7 73.4 74.3 72.2 74.1 72.5 
u 72.0 72.9 73.3 72.9 73.2 72.4 

1-1 d 72.6 73.5 73.1 74.2 73.2 73.7 Q.) 

0 e 72.5 73.0 73.2 74.0 73.2 73.6 
f 73.1 73.7 73.6 74.6 73.6 74.4 
u 85.7 87.7 83.4 85.3 81.4 84.8 
d 89.1 90.9 84.8 89.7 87.8 90.9 

~ k 87.7 90.7 85.0 89.2 86.8 91.5 

~ e 86.3 87.4 86.0 87.4 83.5 85.9 
+ f 89.9 90.3 88.2 89.6 88.6 91.1 S 
0 m 87.4 88.9 84.9 87.6 85.4 88.0 1-1 

0.. 
89.5 91.2 88.5 90.5 89.5 90.8 p 

1 89.2 91.0 86.4 89.5 88.8 91.5 
s 83.9 83.8 84.2 84.1 83.7 83.6 
u 80.7 86.8 80.6 83.2 77.7 83.3 

S d 86.6 86.3 83.5 88.1 84.2 88.6 0 
1-1 -

0.. e 85.7 88.2 83.4 89.0 84.3 88.6 
f 87.0 86.6 83.8 88.4 85.3 88.8 

Continued on next page ... 
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TABLE 3 (continued): Maximum of averages of 10xCV accuracies. 

JRip Ace J48 Ace J48+REP Acc 
SVM RF SVM RF SVM RF 

u 75.3 74.5 73.8 75.0 70.8 71.7 
d 75.1 76.0 73.4 75.5 71.5 74.1 
k 74.5 75.9 74.8 75.2 71.3 74.3 

;..., 
<:\'l 

e 75.3 75.4 74.6 76.0 72.3 74.2 
.... 

f 82.3 79.8 80.1 78.6 80.5 77.8 .... 
0 

U) 

81.7 79.3 80.0 78.0 79.6 76.9 m 
p 82.1 79.7 80.5 78.2 79.6 77.0 
i 80.3 77.5 77.3 76.7 76.8 75.3 
s 77.1 78.1 74.1 74.3 72.3 72.3 
u 90.6 89.3 90.3 89.1 90.0 89.3 

(J) d 90.8 89.5 90.6 89.3 90.5 89.4 ...., 
~ e 90.9 89.3 90.5 89.2 90.5 89.2 

f 91.0 89.1 90.9 89.1 90.6 89.2 
u 89.7 89.4 88.8 89.0 88.7 89.2 
d 90.9 89.4 90.6 89.2 90.5 89.4 

~ 
k 89.9 89.6 90.2 89.0 89.9 89.2 

S ::;;: e 89.6 89.4 90.0 89.2 89.8 89.1 
+ f 89.8 88.9 89.8 89.0 89.5 88.4 
(J) ...., 

89.6 88.9 90.0 89.0 89.6 88.7 ~ m 
p 89.7 88.8 89.7 89.2 89.7 88.4 
1 89.6 89.3 90.2 89.0 89.7 89.2 
s 87.9 88.4 88.1 89.0 87.4 87.4 
u 94.6 96.8 94.1 96.6 92.9 96.4 
d 96.5 97.0 95.2 97.0 94.6 96.5 
k 96.1 97.1 95.3 96.8 94.5 96.5 

(J) e 95.9 96.2 94.9 95.9 94.4 95.2 
~ 

f 97.2 97.2 96.4 97.4 97.1 ...... 96.5 
~ 

m 96.8 97.1 96.3 97.1 95.9 96.9 
p 96.9 97.3 96.7 97.3 96.3 96.9 
1 96.8 97.1 96.1 97.4 96.1 96.9 
s 94.0 95.9 96.4 96.9 96.0 96.3 
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TABLE 4: Summary of experiments using JRip white-box. 
JAG is the integral of Accuracy Gain (the difference between the white-box's accuracy on 

expanded and original data) over relative set sizes. J AG/S is the integral of the Accuracy 

Gain divided by the Size of the classifier (number of rules or tree leaves). For each column 

and each dataset indicated are in bold the values that are within 5% of the maximum. 

JRip 
SVM RF 

JAG JAG/S JAG JAG/S 
u 79.3 2.595 26.0 0.949 
d 237.2 3.135 -0.4 0.032 

k 79.2 2.619 28.5 1.071 

e 71.6 2.369 32.8 1.209 ....... 
oj 

f 70.8 2.333 31.4 1.136 CO 
m 70.6 2.343 32.4 1.182 
p 69.7 2.310 31.3 1.134 

i 77.9 2.567 29.3 1.102 

s 46.0 1.390 -38.3 -1.248 
u 10.2 0.516 7.9 0.580 
d 13.4 0.744 21.8 1.433 

~ 
k 12.5 0.822 20.2 1.676 

,-0 e 8.4 0.541 13.1 1.061 
:$ 
+ f 10.9 0.629 13.6 0.948 
~ 
Q) m 11.1 0.642 13.9 0.973 0 

p 11.3 0.664 14.4 1.020 

1 10.9 0.622 12.8 0.942 

s 12.0 0.539 -8.5 -0.307 

u -16.7 -1.199 4.0 0.395 
~ d -0.0 -0.105 7.6 0.417 Q) 

0 e -0.1 -0.042 3.2 0.200 

f 3.8 0.245 7.9 0.530 
u 134.6 19.809 243.7 33.611 
d 237.5 10.178 354.4 21.818 

~ k 180.9 12.312 338.6 32.659 

~ e 166.8 18.682 228.1 26.669 
+ f 304.1 22.017 353.4 31.129 8 
0 m 205.1 14.184 267.9 20.840 ~ 

0... 
278.2 20.347 348.6 30.559 p 

i 267.7 18.855 358.4 31.198 

s -14.2 -2.436 -4.4 -0.647 

Contmued on next page ... 
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TABLE 4 (continued): Summary of experiments using JRip white-box. 

JRip 
SVM RF 

JAG JAGjS JAG JAGjS 
u -127.2 -8.836 188.8 12.913 

S d 162.1 6.508 168.5 8.457 0 ..... 
141.5 5.641 228.1 12.037 0.. e 

f 154.3 5.498 195.1 9.622 

u -90.4 -6.907 -99.7 -16.794 
d -19.2 -1.618 45.8 1.965 

k -73.3 -4.786 32.2 1.399 
..... e 
cC 

-3.8 -0.643 15.5 1.000 
""' f 298.8 13.314 177.3 8.733 >-< 
0 

r.fl 

255.3 10.976 180.3 8.635 m 
p 279.5 12.470 189.1 9.213 
1 207.8 9.328 93.6 4.549 
s 43.5 3.279 79.7 5.303 

u 34.9 1.556 12.4 0.812 
Q.) d 40.0 1.723 20.1 1.245 ...., 
~ e 41.3 2.996 13.5 0.844 

f 42.6 2.729 11.8 0.659 

u 15.3 1.203 11.3 1.334 

d 33.9 1.570 16.3 1.111 

~ 
k 21.7 1.413 15.9 1.751 

~ e 16.2 1.268 13.9 1.803 
+ 
Q.) 

f 15.1 0.975 -10.3 -0.963 
...., 

12.7 0.852 6.2 0.692 ~ m 
p 14.7 0.994 -4.4 -0.422 
1 17.6 1.291 11.1 1.435 

s -22.5 -2.065 -97.6 -7.314 

u 77.0 2.117 184.8 9.946 

d 156.6 4.185 196.3 8.445 

k 147.8 4.983 197.8 10.629 

Q.) e 121.3 8.742 152.9 12.995 
,::: 

f 204.9 9.788 204.6 12.907 ~ 
m 178.9 7.637 204.5 11.594 

p 190.7 8.650 207.6 12.666 

1 186.6 7.374 203.4 11.755 

s 63.8 6.296 152.2 14.193 
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TABLE 5: Summary of experiments using J48 white-box. 

JAG is the integral of Accuracy Gain (the difference between the white-box's accuracy on 

expanded and original data) over relative set sizes. J AG/S is the integral of the Accuracy 

Gain divided by the Size of the classifier (number of rules or tree leaves). For each column 

and each dataset indicated are in bold the values that are within 5% of the maximum. 

J48 J48+REP 
SVM RF SVM RF 

JAG JAG/S JAG JAG/S JAG JAG/S JAG JAG/S 
u 115.4 0.542 39.2 0.272 106.4 1.168 29.3 0.282 
d 304.4 1.997 47.6 0.348 266.1 1.928 38.9 0.315 
k 112.8 0.564 39.1 0.266 106.4 1.237 31.1 0.319 
e 101.1 0.503 39.1 0.265 96.8 1.105 30.4 0.293 

(;j 
f 99.0 0.504 36.8 0.251 92.1 1.073 27.8 0.275 o:l 

m 98.8 0.505 38.7 0.263 93.8 1.097 28.9 0.284 
p 98.9 0.509 38.2 0.260 94.4 1.094 29.1 0.283 
1 109.4 0.549 39.3 0.270 104.5 1.223 31.4 0.313 
s 69.5 0.198 -43.2 -0.503 53.2 0.348 -99.9 -1.689 
u 19.6 0.097 2.2 0.010 15.8 0.211 13.8 0.223 
d 25.2 0.167 28.6 0.155 20.4 0.273 26.5 0.321 

I=il 
k 21.8 0.147 19.7 0.102 19.7 0.321 21.7 0.336 

>0 e 18.7 0.118 13.9 0.078 12.5 0.222 18.3 0.368 
~ 
+ f 20.5 0.136 13.2 0.067 16.3 0.269 18.6 0.316 
..... 
(J) m 20.0 0.132 14.0 0.066 16.1 0.228 15.9 0.201 0 

p 19.3 0.125 12.2 0.064 14.8 0.243 19.5 0.338 

1 19.6 0.127 13.7 0.076 15.7 0.263 18.1 0.342 

s 18.1 0.135 -8.5 -0.028 15.3 0.216 -7.3 -0.044 

u 3.5 0.019 13.7 0.060 -11.0 -0.030 1.8 0.005 
..... d 11.6 0.043 26.8 0.125 0.9 0.009 14.0 0.082 (J) 

0 e 14.1 0.049 24.9 0.113 2.9 0.015 12.4 0.067 

f 22.0 0.072 29.5 0.116 11.7 0.046 16.8 0.077 

u 224.2 3.119 339.6 5.536 119.3 8.490 295.8 17.094 

d 283.0 1.508 540.1 4.386 419.1 7.845 623.1 17.610 

I=il k 317.3 2.487 538.2 5.230 360.7 8.399 619.7 22.510 

~ e 372.2 8.092 449.7 10.713 274.0 16.895 370.0 22.328 
+ f 482.4 6.928 556.6 9.687 496.7 18.416 572.6 24.534 S 
0 m 333.5 5.253 441.2 7.140 363.0 13.277 457.8 17.029 ..... 

0.... 
476.6 6.547 568.2 9.473 508.2 18.787 603.1 26.157 P 

1 410.6 5.309 539.4 8.332 483.9 16.965 620.0 26.966 

s 30l.8 29.456 308.3 31.810 279.6 30.755 287.1 31.844 
Contmued on next page ... 
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TABLE 5 (continued): Summary of experiments using J48 white-box. 

J48 J48+REP 
SVM RF SVM RF 

JAG JAG/S JAG JAG/S JAG JAG/S JAG JAG/S 
u -392.7 -8.801 126.7 1.042 -294.7 -8.792 260.0 5.009 

S d 97.4 0.025 328.6 1.394 270.0 2.297 496.6 5.491 0 
~ 

0.. e 68.1 -0.106 350.5 1.612 252.8 2.194 482.8 5.540 
f 110.6 0.149 322.9 1.463 298.3 2.594 509.1 5.777 
u -87.3 -0.353 -47.7 -0.525 -135.0 -2.682 -65.4 -4.775 
d -99.5 -0.304 78.4 0.306 -45.2 -0.399 139.8 2.547 
k -85.7 -0.205 65.1 0.283 -63.7 -0.636 152.5 2.707 

~ e -36.9 -0.038 108.0 0.670 43.8 0.886 141.0 3.101 
,.... 

f 290.6 1.466 222.9 1.631 409.3 5.714 280.7 5.830 ,... 
0 

r:f} 

271.8 1.184 200.7 1.123 350.0 4.529 248.6 4.225 m 
p 284.2 1.418 209.4 1.591 384.4 5.414 272.4 5.669 
i 167.3 0.890 141.5 1.088 267.8 4.095 199.4 4.346 
s -97.1 -2.010 -103.4 -1.512 -21.9 -0.275 -15.5 -0.084 
u 17.4 0.171 -5.2 -0.159 48.1 1.107 36.4 0.993 

iJ.) d 22.4 0.212 -2.0 -0.089 57.2 1.201 38.3 1.006 ~ 

~ e 20.8 0.504 -1.3 -0.123 58.0 2.581 34.9 1.268 
f 26.5 0.537 -3.3 -0.158 61.9 2.101 34.7 0.975 
u -11.1 -0.232 -9.3 -0.235 26.5 1.016 38.6 1.750 
d 24.8 0.250 2.3 -0.003 61.6 1.315 46.0 1.202 

~ 
k 13.5 0.106 -8.1 -0.201 54.4 1.768 38.0 1.559 

~ e 11.1 0.103 -13.3 -0.386 45.3 2.114 38.9 2.081 
+ f 4.1 -0.030 -24.2 -0.706 40.8 1.743 17.5 1.093 
iJ.) 
~ 

9.7 0.048 -20.0 -0.525 44.4 1.842 25.3 1.225 ~ m 
p 6.0 -0.033 -22.6 -0.674 41.2 1.702 24.6 1.378 
1 13.2 0.107 -12.5 -0.380 45.7 1.892 37.7 2.428 
s -32.2 -0.800 -125.8 -3.167 -2.4 -0.046 -102.1 -3.066 

u 20.5 0.007 154.0 1.389 110.3 1.508 286.9 6.947 

d 60.5 0.110 162.2 1.435 157.8 1.904 288.5 6.826 
k 61.1 0.083 159.5 1.400 158.6 1.811 282.4 6.745 

iJ.) e 45.4 0.415 81.9 1.651 159.4 6.605 194.0 9.063 
>=l 

f 133.7 172.8 9.472 ..... 1.329 2.501 268.8 6.705 293.8 ~ 
m 120.7 1.014 167.3 2.085 247.6 5.360 297.1 8.147 

p 132.9 1.094 170.0 2.330 265.0 6.115 294.8 9.303 

1 114.0 0.790 177.5 2.139 251.8 4.822 302.4 8.797 
s 135.4 6.044 155.9 5.532 279.2 17.630 292.1 17.020 
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preserve this characteristic of the data. 

The results obtained on the "Wine" data set are more typical and prevail in 

most other cases. Similarly to the "Balance Scale" data, Figure 10 presents the 

relationships between the accuracy of the J48 classifier and the number of generated 

samples and tree size. On this data set, when the SVM is used to provide labels, the 

ALBA method (s) generates samples that result in both the smallest and most 

accurate trees. Moreover the accuracy versus tree size plot reveals three groups of 

curves. Samples generated by the ALBA method quickly lead to concise and 

accurate trees. It was found that the ALBA method often leads to small classifiers, 

however they are seldom as accurate as in this case. In the second group are methods 

that model attribute correlations. Multivariate FKDE (f, m), ICA-based (i), and 

PCA-based (p) estimators yield a similarly high accuracy, but the trees are larger. 

Finally, the three methods that assume attribute independence - smoothed (k) and 

un-smoothed (d) FKDE and uniform sampling (u) lead to the least accurate and 

largest trees. 

Careful inspection of the results on the "Wine" data set reveals another 

important characteristic of the proposed rule extraction method. Even though, as 

seen from Table 2, the Random Forest is 1% less accurate than the SVM, decision 

trees on additional data labeled by the RF are more accurate. This is visible in 

Figure 11. Despite averaging 25 runs of experiments, the curves show a large degree 

of variability. Therefore it is better to refer to the accuracy gains from Tables 4 and 5 

instead of the top accuracies in Table 3, which has been brought for convenience and 

reference only. When the labels are produced with the SVM the best sample 

generator is ALBA (s), with the AG integral of 135.4. On the same samples, but 

relabeled using the RF, ALBA's AG integral raises to 155.9, without increasing 

considerably the tree size. However, it is surpassed by other methods: ICA-based (i) 

generator has the maximum AG of 177.5, followed by FKDE (f) generator with 

AG=172.8, and PCA-based generator (p) with AG=170. 

The "Promoter" data set to illustrates the impact of the two possibilities of 

65 



Dataset: Wine 

99!-___ ~==~~~~~--------------
-- SVM ----'V- f 

98 

>. 97 

~ 
1l 96 
:;l 
> c; 95 
o 

.... J48 ---8- m 
-B---- u ___ p 

--+- d -_ i 
-+t- k -----+-- S 

--+-- e 

5 10 15 20 25 30 35 40 45 50 
Relative size of the dataset 

(a) 

Dataset: Wino 
99~ ________________________________ __ 

98 

100 200 

SVM ----'V- f 
......... J48 ---8- m 
-B---- u ___ p 
--+- d ___ i 

-----*""-k --*-s 
--+-- e 

300 400 500 
Num RulesfTree Leaves 

(b) 

600 

Figure 10: Results on the "Wine" data set with .148 trees learned on samples labeled 
using an SVM. 10xCV is plotted as a function of the increase of training data set (a) 
and as a function of the number of leaves (b). 
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Figure 11: Results on the "Wine" data set with .148 trees learned on samples labeled 
using a RF. 10xCV is plotted as a function of the increase of training data set (a) and 
as a function of the number of leaves (b). 
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handling discrete attributes. First, the original data with nominal attributes is used. 

The density estimation methods that can be used are uniform sampling (u), 

independent sampling of marginal distributions (the smoothed estimator (k) and 

un-smoothed estimator (d) are equivalent), multivariate kernel density estimate (the 

sphering estimator (f) and the product kernel estimator (m) are equivalent), and a 

EM mixture model (e). The results of .148 with reduced error pruning on data 

labeled with a RF have been graphed in Figure 12. EM and the two kernel density 

estimators yield very comparable accuracy. Uniform sampling is clearly inferior. 

Alternatively, nominal attributes can be transformed into numerical ones 

using the Weight of Evidence method. It makes it possible to apply all density 

estimation techniques. The results are presented in Figure 13. The first observation 

is that after the WoE transformation both the black-box and the white-box learners 

demonstrate increased accuracies. It may be due to the fact that the task becomes 

easier because the WoE transform is applied before to the whole training data before 

it is split for cross-validation. Independent marginal density estimators (d, k) and 

multivariate estimators (f, p, i) result in similar high accuracy, which agrees with the 

results on the original, unprocessed data. However, see that the accuracy produced 

on samples generated from the Gaussian Mixture Model (e) has deteriorated. Also, 

the accuracy obtained using the multivariate FKDE with a product kernel (m) is 

significantly worse than when data sphering is used to select kernel width (f). 

C Recommendations 

The reported results demonstrate that the simple algorithm presented in 

Algorithm 1 consistently improves the accuracy of the understandable learners. 

However, the extent of improvement heavily depends on the choice of method used 

to estimate the probability density of new data. The experimental results allow to 

formulate the following conclusions. 

The study shows that efficiency of the rule extraction as learning approach 

depends on both the quality of the black-box and the density estimation method. As 

described in Chapter II, both SLT and PAC learning theories assume that the 
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Figure 12: Results on the "Promoter" data set with J48 with REP trees learned on 
samples labeled using a RF. lOxCV is plotted as a function of the increase of training 
data set (a) and as a function of the number of leaves (b). 
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Figure 13: Results on the "Promoter" data with nominal attributes replaced by their 
weight of evidence. J48 with REP trees are learned on samples labeled using a RF. 
lOxCV is plotted as a function of the increase of training data set (a) and as a function 
of the number of leaves (b). 
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training and testing data come from the same probability distribution. Artificial data 

is generated according to equation (35). Its consistency with the underlying but 

unknown data probability density depends on both the quality of the black-box and 

on the density estimator. 

The rule extraction process strongly depends on the accuracy of the black-box. 

The assumption that the black-box outperforms the white-box, or in other words 

that there is an accurate classifier available is crucial to the rule extraction process. 

Often, when the black-box generalization ability is worse than that of the white-box, 

the final accuracy deteriorates. This can be seen for the combination of J48 and 

Random Forest on the "Vote" data where the single decision tree outperforms the 

forest and the resulting accuracy gains are negative. 

To ensure optimal generalization capability and robustness of the black-box 

classifier different architectures should be evaluated. However, the best-performing 

black-box may not lead to the best white-box accuracies. The results indicate that 

white-boxes trained on data relabeled by Random Forests were smaller and more 

accurate than those trained on data relabeled by Support Vector Machines, even 

though SVMs had higher accuracy than Random Forests. A possible explanation is 

that it is beneficial to match the inductive biases of the white-box and black-box 

classifiers. 

The theoretical bounds on the generalization error also require that the 

attributes are generated from the real, underlying density. Under mild conditions, 

that are satisfied for the Gaussian kernel and the width selection rule (39), the 

FKDE estimate is asymptotically consistent with the unknown underlying 

probability distribution [108J. This means that when the number of available samples 

tends to infinity, the discrepancy between the actual and estimated probability 

distribution approaches zero. This fact motivates the use of kernel density estimators. 

The importance of matching; the distribution of the generated samples to the 

underlying data distribution can be justified by a comparison of two naive 

estimators: the uniform one and the univariate kernel density estimator. On the 

majority of the datasets used in the experiments, the kernel estimators (k,d) 
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outperform the uniform estimator (u). A possible explanation is that the uniform 

generator results in lower accuracy, because it does not preserve the changes in the 

density of the data, which may lead to class imbalances and over-expression of 

regions where the data were scarce. 

On the other hand, experiments also shown that even an approximate match 

of the estimate to the underlying data distribution can often result in good accuracy. 

Often the accuracy obtained under attribute independence assumption and without 

it are very similar. This may be justified by the fact, that if the artificial data covers 

regions where the original data are improbable, the testing set will not contain 

samples that belong to those regions. Thus the accuracy will not be affected. 

However, the white-box classifier must have terms that determine its decision 

boundary for those spurious regions of the attribute space, its understandability will 

thus deteriorate. This justifies the experimentally observed results, in which modeling 

of attribute inter-relations resulted mainly in smaller white-boxes that were similarly 

accurate to those built under the initial assumption of attribute independence. 

If attribute independence is assumed and the correlations are not taken into 

the account, then the univariate KDEs have proved to be a good choice. The 

un-smoothed estimator with zero-kernel width (d) often yields high accuracy and has 

the advantage of not generating artificial attribute values. This characteristic has 

been exemplified on the "Balance Scale" data set. The case of a numerical attribute 

that takes only discrete values is not uncommon. In fact, such attributes are created 

by the WoE transformation. On the other hand, the smoothed estimators (k) often 

yielded slightly smaller white-box classifiers. 

When a multivariate density estimation is required, then the multivariate 

FKDE of sphered data (f) is a good first choice. On all tested data it has resulted in 

accuracies comparable to other methods that model attribute inter-dependencies. 

Moreover the use of data sphering (d) instead of product kernels (m) has led to 

better accuracies on all data sets on which the multivariate estimates resulted in 

better accuracies that independent univariate estimates. 

The proposed kernel for nominal data (49) performs very well. It induces a 
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sampling algorithm that is very similar to the mutation operator commonly used in 

genetic optimization. It is very flexible and for A = 0, it is equivalent to the 

independent sampling from attributes' marginal distributions, while when A = 1 only 

copies of samples already belonging to the data set will be generated. Currently, the 

parameter A is set by maximizing the problem (51). However, the computation of the 

objective has a quadratic runtime complexity on the number of training samples. 

More efficient methods of estimation of the parameter A are needed. 

Biasing the data density estimate toward the black-box decision boundary, in 

the spirit of the ALBA method usually yields very concise white-box classifiers. 

However, it often yields smaller accuracy gains than the multivariate kernel density 

estimation methods. Moreover, in extreme cases it may cause the accuracy of the 

white-box classifier to deteriorate (e.g. on the "Sonar" data set with decision tree 

learners, or on the \VoE transformed sets "Promoter" and "Vote"). Further research 

is needed to verify whether this behavior is due to the attribute independence 

assumption made in the ALBA method, or to the closeness of generated samples to 

SVM's decision boundary. 

Finally, the study points out that it is important to choose a good white-box 

learner. The experiments suggest the use of RIPPER rule learner rather than the 

C4.5 decision tree algorithm, because the accuracies are often very similar and 

RIPPER rule sets tend to be much smaller. This behavior was attributed to the rule 

pruning strategy used by RIPPER, which grows and prunes rules on separate data 

and enforces a model description length limit for the whole rule set [14]. To evaluate 

how a similar pruning strategy affects decision trees, the J48 learner was trained 

with reduced error pruning (REP) enabled. 

J48 decision trees learned with REP enabled had smaller sizes without 

significant changes of their accuracies. This behavior can be motivated as follows. 

The original pessimistic confidence interval pruning heuristic was designed to use all 

available data to build the tree. As a consequence, the pruning decision is based on a 

single statistical test whose assumptions are not fully satisfied [13]. On the other 

hand, reduced error pruning divides the training data into a growing and pruning set, 
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which allows it to make more reliable decisions about node pruning. Artificial data 

can be generated, therefore it becomes more important to reliably prune the tree, 

rather than use all data to build the tree. 

D Conclusions 

Several methods of probability density estimation were described and 

evaluated in the context of improving the accuracy of understandable classifiers. The 

proposed method is applicable to any combination of black-box and white-box 

classifiers and can handle both numerical and nominal data, which is an important 

practical issue. Experimental results allow the formulation of recommendations . 

about applying the presented methods in practical situations. It is believed that 

similarly to commonly used data preprocessing and filtering techniques, the sample 

generation methods outlined and evaluated in this contribution may become essential 

building-blocks of bigger data-mining projects. 
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CHAPTER IV 

INDUCING RODDS FROM NEURAL NETWORKS 

In a practical setup, the rule extraction algorithm must internally encode the 

rules it finds into a data structure. On the one hand, this structure should allow easy 

manipulation of the rules. If the internal rule representation is not the one used for 

rule display and presentation to the user it should also be able to concisely express 

all the features of the presentation language. On the other hand, in the context of 

rule extraction the internal data structure should make it easy to encode concepts 

that are natural for the analyzed black-box classifier. The Reduced Ordered Binary 

Decision Diagrams (RO BD Ds) and their extensions presented in this chapter fulfill 

many of these requirements. 

ROBDDs were proposed by Bryant as an efficient data structure for the 

manipulation of boolean functions [115]. They have been extensively used in the 

design of digital integrated circuits. Many extensions have been proposed since, to 

enhance their capabilities [116-120], and they remain the subject of continuous 

research. The discovery and adoption of ROBDDs "have led to dramatic 

performance improvements and breakthrough in many CAD projects all over the 

world" [121]. They offer the means to represent and process boolean functions 

defined over thousands of variables, which open the door to verification, optimization 

and implementation of complicated integrated circuit structures. Reduced Ordered 

Decision Diagrams (RODDs) are a generalization of ROBDDs for functions taking 

attributes defined over finite domains. 
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A Main Properties of RODDs 

The RODDs demonstrate excellent algorithmic properties for function 

manipulation over finite domains: 

• They provide a canonical representation of functions i.e. every function has a 

unique representation. This leads to easy testing for equivalence, tautology, 

satisfiability, and falsifiability. 

• The complexity of performing any boolean operation on two functions given as 

RODDs is proportional to the product of their sizes (the number of nodes in 

the diagrams). 

• Counting the number of satisfying assignments for a function and finding the 

next such assignment has a complexity proportional to the size of the function 

representation. 

• Many practically used functions have small RODD representations, especially 

all symmetric functions (e.g. parity, M-of-N conditions, equality, and 

inequality). 

The downsides of RODDs are that some functions have representations that require 

an exponential number of nodes (most notably the function for the middle bits of 

multiplier circuits). FUrthermore, a sequence of operations on RODDs may run in an 

exponentially growing time, because at each operation the result may grow as the 

product of sizes of the operands. RODDs are also highly sensitive to the order of 

variables (see Section 2). 

Small size of RODD representation of processed functions is crucial, as the 

performance of operations depends on it. Therefore, a lot of research in VLSI design 

has been targeted to extend the RODD methodology to provide smaller 

representations for many classes of functions, at the cost of the increased complexity 

of some of listed operations. 
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1 RODDs in Machine Learning 

There exist multiple similarities between the goals encountered in ML and 

VLSI design [122]. A substantial effort has been made in ML to find classifiers of 

minimal complexity because, according to Occam's razor, a simple expression of a 

concept will be more general and will better classify unknown samples. Consequently, 

ML methods have been used for boolean function minimization [123]. On the other 

hand, minimal implementations are vital for efficient design of integrated circuits to 

save chip space. To this end minimizing ROBDDs of only partially specified functions 

(with don't cares) has been studied [124-127]. Note, that this corresponds to learning 

a classifier compatible with the data set, i.e. a function from the input space into 

class labels whose value is initially specified only on the data set. A fundamental 

difference between the VLSI and ML task is, however, that in VLSI design the 

function is undefined on a small part of the attribute space, whereas in a realistic ML 

setup it is undefined on most of the attribute space. Only a handful of attempts have 

been made to induce RODD structures directly from the data [128,129]. It has also 

been proposed to use RODDs for knowledge presentatioll to humans [130]. 

2 Basic Definitions 

This and the following sections are included for completeness of discourse, 

notation, and terminology. Many of the concepts that follow were introduced 

in [115,131]. The order of presentation follows [121,132]. 

Decision diagrams are data structures for manipulation of functions over finite 

domains. Assume that there is a set of attributes A in which each every attribute a 

takes a finite number of values belonging to a set Va. There is a finite set of classes 

(or conclusions) C representing the range of the diagrams. 

The terms "variable" and "attribute" will be used interchangeably because 

the ML community prefers to describe objects by their attributes, whereas the VLSI 

community follows the mathematical concept of functions depending on variables. A 

classifier is a function using attribute values of a given sample as values of variables 
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(c) 

(b) 

Figure 14: Decision diagrams for MONK's problems: (a) realizes vI = v2Vv5 = 1, (b) 
realizes exactly 2 of vI . .. v6 are 1, (c) realizes (v5 = 3/\ v4 = 1) V (v5 #4/\ v2 #3). 
Note that some nodes have been merged for better presentation, this affects only the 
display and does not change the internal representation of the diagrams [86]. © 2011 
IEEE 

in the function expressing it. 

Conceptually, a decision diagram is similar to a decision tree: it consists of 

nodes in which tests for attribute values are made and of directed connections 

between them. An ordering is defined on attributes and every path in the diagram 

must traverse the nodes in exactly this order. This facilitates the detection of 

common subgraphs which can be merged. Example RODDs presenting solutions for 

the MONKS [133] problems are shown in Figure 14. 

Definition 2. A Decision Diagram (DD) is a multi-rooted; directed acyclic graph 

with: 

• terminal nodes having out-degree 0 and belonging to a set of conclusions, 

• attribute nodes having the property that each attribute node u has an associated 

attribute att(u) and its out-degree is equal to the number of different values 

att(u) may take. 
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When all attributes and the class are binary the diagram will be called a Binary 

Decision Diagram {BDD}. The succo(u) and SUCCl(U) are then called respectively the 

low and high child of u. 

A DD is Ordered (ODD) if on all the paths through the graph attributes 

respect a given linear order al < a2 < ... < ak. 

An ODD is Reduced if: 

• (uniqueness) no two distinct nodes u,v are associated with the same attribute a 

and for each value of a have the same successor, i. e., 

• (non-redundant tests) no attribute node u has all of its successors equal, i.e., 

\i u3i,j SUCCi ( u) =1= SUCCj ( u) 

The RODDs are a canonical representation of functions, i.e. every function 

f : I -+ C has a unique (up to the variable ordering chosen) representation as a 

RODD. 

3 Efficient Manipulation of ROBDDs 

For simplicity, only the case of boolean functions is presented. However, most 

algorithms are easily transformed to support n-ary variables. For a boolean function 

F : lEn -+ lE the cofactors of F denoted Fx and Fx are the results of applying to F 

the substitutions [x\l] and [x\O], respectively. By definition a function depends on 

variable x when Fx =1= Fx. Assume that a total order on variables 7r is known. The 

topmost variable occurring in some expressions is the minimal, according to 7r, 

variable on which at least one of the given expressions depends. 

Each node of a ROBDD serves as the entry point to the function represented 

by it. Function evaluation consists of following the path determined by attribute 

values until a terminal node is reached. If it is assumed that all functions are kept in 

the same graph, a shared ROBDD is created. Some form of garbage collection is 

needed to keep track of referenced nodes. Usually, reference counting is used, but 

more advanced implementations use mark and sweep and generational collectors. 
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According to the Shannon function expansion, a boolean function can be 

expressed as an if-then-else (ite) expression, i.e. for any F : ffiln -t ffiI 

F = x· Fx + x· Fx = if x then Fx else Fx = ite(x, Fx, Fx) 

In ROBDDs the children of a node are the cofactors of the function represented by it. 

Consequently, attribute nodes are often called Shannon nodes. 

All boolean operations can be expressed in the form of a generalized 

if-then-else operator ite(F, T, E) = F . T + P . E, taking three nodes of the shared 

ROBDD. The ite computation can be expressed in terms of the cofactors of F, T, 

and E with regard to their topmost variable. This leads to an elegant and efficient 

recursive implementation. 

Two hash tables are used in algorithms manipulating ROBDDs. The first one, 

called the unique table, stores triples (variable, highbranch, lowbranch) for all nodes. 

It is queried to ensure the uniqueness property. A new node is created unless an 

equivalent one is already present in the unique table. This mechanism results in 0(1) 

node retrieval (or creation if it didn't exist) time. 

The second table caches results of executed operations: (op_code, operand, ... ). 

It guarantees that the ite operation running time is bounded by O(IFI . ITI' lEI) 
where INI denotes the number of nodes reachable from a node N. It is just the total 

number of different calls to ite that may result in a particular computation. 

4 Choosing and Changing the Variable Order 

The efficiency of operations on ROBDDs depends on the number of nodes in 

the operands. This is closely tied to the chosen order on the variables. Some 

functions (notably the class of symmetric functions) require a similar number of 

nodes for any variable order. Many functions require polynomially many nodes (with 

regard to the number of attributes) under some orderings, and exponentially many 

under different orderings. Some functions (notably those representing middle bits of 

a multiplication) always require exponentially many nodes. 

The practice of using ROBDDs in the VLSI domain shows that many 
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commonly found functions can be efficiently processed when a good variable order is 

chosen. Determining the best ordering is NP-hard [134]' but many good heuristic 

methods exist to approximate it. In the case of VLSI circuit design layout analysis 

techniques are used to provide an initial guess of the ordering. A heuristic designed 

for the case of learning from data is presented in the section B. Furthermore, the 

variable ordering used can be modified during program execution. The most popular 

methods are the sifting algorithm, which moves variables one-by-one through all 

possible positions, and the windowing algorithm which finds the best possible 

arrangement for small groups of adjacent variables (called windows) [135]. 

To enhance the reordering process, interactions between variables can be 

detected. A method for efficient grouping of neighboring variables is presented 

in [136]. A method for detecting when two variables do not interact and thus require 

no action to be swapped in the order is described in [137]. 

5 Extensions 

Classical ROBDDs need exponentially many nodes to represent multiplier 

circuits. This deficiency triggered the development of many extensions which could 

reduce the size of diagrams for several classes of functions. Investigated were different 

meanings of nodes, e.g. the Shannon if-then-else nodes were replaced by moment 

decomposition, I = Ix + x . (Ix - Ix) [119]. Other research focused on extending the 

range of the diagrams from single bits to words, integer or real values. In the simpler 

approach, each distinct value is assigned a terminal node leading to the "so-called" 

Algebraic DDs [138]. In the more elaborate approach, functions transforming return 

values are added to the edges. For example, complemented edges have a binary flag 

indicating that the result of the function represented by the node they point to is to 

be negated. A uniform treatment of diagrams containing edges annotated with such 

functions is presented in [118]. With additional constraints the diagrams with 

edge-functions remain a canonical function representation and can be used for 

efficient operation. The most popular approaches are: decision diagrams with 

complemented edges; EVDDs for integer functions [116]; Factored EVDDs [117]; 
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identical, but introduced independently Affine Algebraic Decision Diagrams [139] 

and Normalized Algebraic Diagrams [118]. 

The addition of edge-values enlarges the class of functions which can be 

expressed using polynomially sized decision diagrams. However, this may come at the 

cost of an increase in the computational complexity of operations (even 

exponentially), because the number of invocations of any algorithm may depend not 

only on the number of combinations of nodes, but also on the number of different 

edge-value compositions obtained while reaching those nodes. 

Attempts to relax the ordering restriction resulted in a concept of types which 

generalizes the linear ordering [140,141]. This variant is called Free Decision 

Diagrams (FDDs). Decision diagrams are often used in research on Petri Nets, model 

checking and constrained problems. A potentially useful for rule processing extension 

describes operations on linear constrains of the form x - y < const [142]. 

B Extracting Rules from Neural Networks as Decision Diagrams 1 

In this section a method that induces an RODD from a trained neural 

network is presented. The considerations of the computational complexity of the 

problem of rule extraction presented in Chapter II has shown that it is 

computationally infeasible to provide an exact replica of the network. To reduce the 

computational complexity, the method presented in this section limits the analysis to 

the parts of the data space close to the training set samples. The rule extraction 

problem has been restricted to prov'ide a description of the function realized by the 

neural network near the samples from the training set. The rationale for this 

restriction was that first, the ultimate goal is to learn from the data, not from the 

network. Second, the network itself finds some relations in the training set. The 

further away the data are, the more complicated the decision surface of the network 

might be and the more unnecessary it becomes to faithfully describe it. 

IThis material has been presented in [86], (J. Chorowski and J. M. Zurada, "Extracting Rules 

from Neural Networks as Decision Diagrams," Neural Networks, IEEE Transactions on, vol. 22, 

no. 12, pp. 2435-46, Dec. 2011, © 2011 IEEE). 
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Algorithm 3: Outline of the method 
1: G f- U {start with the empty rule} 
2: for all x E Training Set do 
3: {Create new partial rule describing just this sample} 
4: PR f- derivePR(net,x) 
5: G f- merge(G, PR) 
6: end for 
7: {now G correctly classifies all training samples and needs to be 

extended over whole feature space} 
8: G f- generalize( G) 
9: Pruned f- prune( G) {optionally further simplify} 

1 Detailed Description of the Proposed Method 

The outline of the algorithm is presented in Algorithm 3. It first captures 

network's actions for each training sample and expresses it in the form of a partial 

rule. It then proceeds to merge the partial rules into a single classifier using the 

RODD methodology. Finally, it applies generalization and pruning operations to 

reduce the resulting diagram size. 

To simplify the description of the proposed method this discussion is limited 

to the case of two classes (denoted by T and F) computed by a network having only 

discrete inputs and only one hidden layer. The algorithms are easily extended to 

handle multi-class problems, as well as more complicated network structures. 

However, no continuous attributes are supported. 

The notation is as follows: let the network have k input attributes and let A 

denote the i-th attribute, taking ni different values. When there is no confusion Ai 

will also be used to denote the set of values taken by the i-th attribute. The space of 

network inputs, or the attribute space, is thus I = Al X A2 X ... X Ak . For every 

attribute Ai, the network has ni inputs that use the l-of-N encoding. All network 

inputs take either the value 0 or 1.2 For an attribute A and a vector x, let XA denote 

the part of x associated to that attribute (the input values of encoded attributes A, 

the weights connecting such inputs, etc.). Let K = L7=l ni be the total number of 

2For training purposes more suitable values would be ±l. The weights can be linearly scaled to 

accommodate a different input encoding after training. 
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inputs. The network realizes a numerical function! : IRK ----+ IR. However, the only 

valid (meaningful) inputs are binary vectors of length K in which for every attribute 

there is exactly one input having value 1 and all the others have value O. 

Consequently, an input is by definition invalid when it is not valid (i.e. for at least 

one attribute all the inputs are zeroed, or more than one input is active). x is to 

denote a real vector which is a valid network input corresponding to an input sample 

x E I. For those valid vectors the logical function f : I ----+ {F, T} is defined in the 

usual way as: 

{

F if J(x) < 0, 
f(x) = 

T if J( x) 2: O. 
(54) 

During the execution of the algorithm partial rules are deduced. They are 

functions assigning to samples either the class label, or the special value U 

(unknown) denoting that the sample isn't classified by the rule. 

Definition 3. A partial rule P R is a function P R : I ----+ {F, T, U} from the 

attribute space into the set of classes augmented with the special value unknown, 

denoted as U . Moreover the domain of a partial rule is defined to be the the subspace 

of valid inputs for which the partial rule's value is known: 

Dom(PR) = {x E I I PR(x) =I U} 

Hence while a rule can be applied to all samples, only those belonging to that 

rule's domain will be classified. 

Two rules will be said to agree (denoted by ~) if they identically classify 

samples belonging to the intersection of their domains: 

Definition 4. Two partial rules Rl and R2 agree with each other if and only if: 

VXEIX E Dom(Rl) 1\ a; E Dom(R2) =} Rl(x) = R2(x) 

Two partial rules that agree can be merged into a new one whose value will be 

known on the union of their domains and agreeing with both of them. 
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Definition 5. A partial rule R is the result of merging two partial rules that agree, 

Rl and R2, if and only if: 

Rl ~ R2 

Dom( R) = Dom( Rl) U Dom( R2) 

R ~ Rl and R ~ R2 

Obviously, the network function f as given in (54) is a partial rule whose 

domain covers the entire attribute space. The constant function U(X) = U has an 

empty domain and is not useful for classification, but it agrees with every other 

partial rule. 

The algorithm presented in Algorithm 3 starts with a partial rule G = U. 

Then in a loop over each training sample the domain of G is extended to cover the 

processed sample and a part of its neighborhood. It can be proved that G agrees at 

every step with the network function and that its domain contains all the processed 

training samples. This means that whenever the value of G at x is not U, it is equal 

to the network function value, i.e. G(x) -=1= U ==} G(x) = f(x). However, if 

G(x) = U, then the rule G doesn't provide any information about the class of x. 

Upon the completion of the loop over the training set, G holds a partial rule 

which classifies every training sample and generalizes over some part of the input 

space in a similar way to the network. Next, to extend G's domain to the full input 

space, a generalization procedure can be applied. Please note that this step breaks 

compatibility with the network and the generalization G' of G does no longer agree 

with f, the network function (the rule set and network may disagree on previously 

unseen samples). Generalization can be followed by an optional simplification 

(pruning) step, which furthermore may break the agreement with the network on the 

training set. 

Estimating Minimal and Maximal Network Excitation. 

A partial rule is derived from each training sample s by determining a subset 

of attributes that are sufficient to classify this sample. These attributes are called the 
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important attributes of s. They are found through estimation of network's output 

when the value of some attributes is not set and greedy removal of attributes whose 

elimination does not change the network's classification. The new partial rule used to 

classify a previously unseen sample x derived from a training sample s is then: 

{

ClaSS(S) 
PRs(x) = 

U 

if \:j AElmportant(s)SA = XA 
(55) 

otherwise. 

Meaning that if a sample x and a known training sample s have exactly the same 

value of all important attributes of s, then x is classified in the same way as s. 

Otherwise, the class of x is unknown to the rule and U is returned. 

Before delving into the case of a whole network, a single neuron will be 

analyzed. Len N be a neuron having activation function: 

k 

N(x) = O"(x· W - b) = O"(LXA· WA - b) 
A=l 

(56) 

where 0"(.) is a sigmoidal transfer function, x E {O, l}K is a valid input vector, W is 

the weight vector and b is the bias, and XA denotes the part of x describing the 

attribute A. 

Let A be a selected attribute. Consider the neuron N' with weights W' and 

bias b' obtained from N by subtracting from weights associated with the attribute A 

and the bias the minimum weight for that attribute, i.e. 

for i = A 
(57a) 

for i =F A 

b' = b - min(WA). (57b) 

It will be shown that for all valid inputs (those having the property that for every 

attribute exactly one of its associated inputs is 1, while the others are 0) the 

excitation of N ' is equal to that of N, hence the two neurons are equivalent. 

However, N' can be used to calculate the minimum excitation of N if the value of a 

attribute A is not specified by calculating the neuron's excitation for an input vector 

x' with all inputs associated with the attribute A zeroed. 
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Theorem 3. For any valid inp'ut x, the neuron N' obtained from a neuron N using 

the transformation (57) has exactly the same activation value. Furthermore for an 

input vector x' obtained from x by zeroing inputs associated with the attribute A, i. e. 

x~ = 0, x~ = Xi for i =1= A the neuron N' returns the minimum activation of N for 

all possible values of A. 

Proof. Without loss of generality the attributes can be reordered, so that the 

attribute A is the first attribute. If the input vector x is valid, then exactly one 

input associated with the attribute is set to 1, while the others are zeroed, i.e. Xl has 

exactly one 1 on the J-th position. Thus exactly one of WI, weights associated with 

the first attribute, is included in the summation. Then 

nl k k 

X . W - b = L xl,j WI,j - b + LXi' Wi = WI,J - b + LXi' Wi = 
j=l i=2 i=2 

k 

= (WI,J - rnin(WI )) - (b - rnin(WI )) + LXi' Wi = 

k 

= LXi' w; - b' = X' . W - b' , 
i=l 

since the only nonzero element in Xl is XI,J = 1. 

To prove the second part observe that: 

i=2 

minN(x) = min a (Xl' WI + t Xi' Wi - b) 
Xl Xl 

i=2 

= a ( min(W, ) + t, Xi . Wi - b) = 

= a (t,x..vV; - (b - mill (WI))) = N'(x') 

(58) 

(59) 

o 

By repeatedly applying the transformation (57) to all attributes, a neuron 

returning equal excitation values for all valid inputs and the minimum excitation for 

an input vector with some attributes zeroed is obtained. To estimate the maximum 

excitation if some attributes are omitted the maximum is subtracted instead of the 
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minimum in equation (57). The resulting transformation of a neuron N with weights 

Wand bias b into neurons Nmin and Nmax estimating the minimum and maximum 

excitations, respectively is: 

W~in = \j AE1...k W~inA = WA - min(WA) 
k 

b'min = b - L min(WA). 
A=I 

W~ax = \j AE1...k W~axA = W A - max(WA) 

k 

b'max = b - L max(MfA). 
A=I 

(60a) 

(60b) 

Using the neuron transformations (60) it becomes easy to test if the neuron's 

output is independent of some attributes. It suffices to zero the inputs associated 

with the supposedly unimportant attributes, and check that the maximum and 

minimum neuron excitations have the same sign. 

To calculate the minimum excitation of a multilayer network having just one 

hidden layer the transformation (60) is first applied to all neurons in the hidden 

layer. The computation is then performed for the output neuron ON by calculating: 

• the minimum excitation of neurons that are connected to ON with positive 

weights, 

• the maximum excitation of neurons that are connected to ON with negative 

weights. 

In the case of a more complicated network architecture the above procedure can be 

repeated recursively. Please note that the transformation (60) gives an exact value 

for the minimum/maximum excitation of a single neuron. For a multilayer network it 

gives an upper bound for the minimum excitation and a lower bound for the 

maxImum. 

Deriving Partial Rules from Input Samples 

The procedure shown in Algorithm 4 is used to obtain a partial rule 

classifying a given sample. The main part of the algorithm searches for a small set of 

important attributes. First, an ordering of attributes has to be selected. Best results 
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Algorithm 4: Extract a partial rule for a given sample. 

1: fun derivePR(net, x) 
2: AttributeList ~ Ordered attributes 
3: I mportant ~ Empty 
4: X' ~ X 

5: for all A E AttributeList do 
6: x~ ~ 0 {zero the inputs associated with attribute} 
7: if max(net, x') . min(net, x') < 0 then 
8: {Network's output is unstable} 
9: add A to Important 

10: x~ = X A {restore the inputs for attribute A} 
11: end if 
12: end for 
13: if Exists A E Important such that class doesn't change for all values 

of A 
then 

14: remove A from Important 
15: end if 
16: P R ~ new partial rule given by equation (55) 
17: return P R 

have been obtained when the attributes were considered for removal starting with 

the bottom most attributes of the decision diagram ordering. Then, according to 

that ordering, the algorithm tries to greedily remove attributes from the rule's 

antecedents. It then tries to eliminate one last attribute by checking if the network 

assigns the same class for all its possible values. 

Choosing an Attribute Ordering 

Choosing a good attribute ordering is very important. First, the better the 

ordering, the smaller the resulting diagram will be. Second, the extracted diagram 

might generalize better, as partial rule derivation, pruning, and generalization 

procedures work bottom-up and rarely change connections near the top of the 

diagram. A heuristic procedure can be developed using two assumptions. First, 

attributes which often belong to the same rules should be close in the ordering. 

Second, the most important attributes should be placed near the top of the diagram. 

To determine the saliency of attributes, the following measures were analyzed: 
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Algorithm 5: The default attribute saliency estimation. 
1: fun saliency(net, x) 
2: Ret [] +- zeros (# of attributes) 
3: for all A E Attributes do 
4: for all v E values(A) do 
5: if v = XA then 
6: skip 
7: end if 
8: x' +- x; x~ +- v 
9: Ret [A] +- Inet(x) - net(x')1 

10: end for 
11: Ret[A] ~- Ret[A]/( # of values of A - 1) 
12: end for 
13: return Ret[] 

Algorithm 6: Heuristic to determine the variable ordering. 
1: fun attributeOrderingO 
2: Ordering +- 0 
3: local fun processCluster(c) 
Ii: if c has only one element then 
6: append c to Ordering 
7: else 
8: cs +- sub-cluster of c having Strongest ( c) 
9: co +- the other sub-cluster of c 

10: processCluster( cs) 
11: processCluster( co) 
12: end if 
13: end fun 
14: SumDist[] +- 0 
15: SumSaliency[] +- 0 
16: for all x E Training Set do 
17: Saliencies[] +- saliency( net, x) 
18: SumSaliency[] +- SumSaliency + Saliencies 
19: SumDist[] +- SumDist + distances(Saliencies) 
20: end for 
21: Clusters +- hierarchicalCluster(SumDist) 
22: for all c E Clusters do 
23: Strongest[c] +- most salient attribute in c 
24: end for 
25: processCluster(top-level cluster from Clusters) 
26: return Ordering 
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TABLE 6 

Truth table used for the merge operation. © 2011 IEEE 

A B merge(A, B) 
U X X 
X U X 
X X X 
X Y X~Y ===?- error 

the perturbation method [87], and the maximum, minimum and average difference 

between the neuron's output for all of an attribute possible values. The best option 

proved to be the average difference of network output for all values of a attribute (as 

shown in Algorithm 5) and that has been selected as default. 

The developed heuristic performs three main steps. First, for every sample 

belonging to the training set attribute saliencies are determined. Distances between 

these are calculated and added together. Next, a hierarchical clustering algorithm is 

run on the cumulative distances to find which attributes are often present together. 

In each cluster, the most salient attribute is determined. Finally, the ordering can be 

derived. The most salient attribute is chosen first. Then, if there are more attributes 

in its cluster, the most salient one is selected. Otherwise, the most salient attribute 

from the next cluster is taken. Details are shown in Algorithm 6. 

Merge Operation 

The merge operation has been implemented as a binary operation following 

the apply(.) function pseudo code taken from [132]. The truth table used is shown in 

Table 6. Note that the merge operation should only be run on agreeing diagrams, 

otherwise the result will be undefined (the merge of disagreeing partial rules results 

in an error). 

Generalization 

If enough training set samples are available and all partial rules have been 

merged the resulting diagram should cover the whole input space. However, often 
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Figure 15: An incomplete decision diagram for the first MONK's problem after pro
cessing a half of the training set . © 2011 IEEE 

Algorithm 7: Diagram generalization by rerouting paths leading to the U 
node 

1: fun generalize(Node) 
2: Chldn f-- children of Node 
3: FC f-- most frequently followed child =f. U 
4: for all c E Chld do 
5: if Chld[c] points to U then 
6: C hld[ c] f-- C hld[ FC] 
7: end if 
8: end for 
9: for all c E C hld do {recursively generalize children} 

10: Chld[c] f-- generalize(Chld[c]) 
11: end for 
12: return Mk(Var(Node), Chld) 

several nodes point to the U terminal node (compare Figure 14a with Figure 15), 

indicating that for some inputs we don 't know the answer. There can be several 

strategies to solve this problem. A solution is to perform some form of heuristic 

redirecting of paths leading to the U node. A suitable algorithm based on the 

simplify(.,.) procedure from [132] is presented in Algorithm 7. It assumes that path 

usage counts have been recorded on the training set prior to its execution. It then 

proceeds in a top-down manner starting from the root of the diagram. Whenever a 

child pointer leads to the U node, it is redirected to its most frequently used sibling. 

The mk(.) function, described in detail in [132] creates a new node ensuring that the 

diagram is reduced, i.e. it detects isomorphic subtrees and eliminates nodes whose all 

children are identical. For example, in Figure 15, the path 

v2 = 1 1\ vI = 1 1\ v5 =f. 1 -+ U would be changed to 
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TABLE 7 

Efficiency of the attribute ordering heuristic. Averaged results for 100 runs. © 2011 
IEEE 

Min Max A vg. Standard Heuristic 
SIze sIze sIze deviation size 
8.47 14.58 10.89 1.45 9.28 

v2 = 1/\ vI = 1/\ v5 = any ~ T, which in turn would be simplified by mk(.) to 

v2 = 1 /\ vI = 1 ~ T. In this case the heuristic would make the right choice. 

Pruning 

In many cases, the generated decision diagrams classify all samples, but they 

are overly complex. The pruning procedure is used to reduce the size of the diagram, 

while preserving its output on all training samples, or a majority of them. The main 

idea is simple: first, count how often a path was selected for all the elements in 

training set. Second, change the seldom (according to a selected threshold) or never 

used edges to point to the U node. Third, run the generalization procedure. In the 

current implementation, pruning is repeated as long as it reduces the size of the 

diagram. 

Various Enhancements 

Several simple heuristics have been applied during the development of the 

software to improve its performance. The most important one controls how much 

information is extracted from a single sample. By setting an option partial rules are 

also derived for all neighbors (in the Hamming distance sense) of the currently 

considered sample. 

2 Experimental Results 

The method was first tested on 100 randomly generated, simple logical 

formulas. Each formula had six attributes and was expressed in a DNF form having 8 

clauses, each containing on the average 3.5 literals. For each formula, the best 
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TABLE 8 

Results on the MONK's tests. © 2011 IEEE 

Test Network LORE rules unpruned LORE rules pruned 
ID errors time [sJ HL size errors size time [sJ errors size time [sJ 
1 0 3 4 0 7 0.4 0 7 0.6 
2 0 3.2 4 7.1% 39 0.44 18.5% 19 0.93 
23 0 3.2 4 0 16 0.4.5 0 16 0.67 
3 4.6% 1.4 1 4.6% 9 0.5 2.8% 4 0.9 
34 2.8% 0.74 1 2.8% 4 0.38 2.8% 4 0.6 

ordering had been found by testing all the possibilities and the smallest diagram size 

was compared to the one obtained with the heuristic for attribute ordering. Results 

have been shown in Table 7. On the average, the attribute ordering heuristic 

produced graphs having 9.28 nodes, while the average size of the diagrams for a 

random ordering is 10.58 with a standard deviation 1.45. Hence the attribute 

ordering selected by the heuristics produced on the average diagrams one standard 

deviation smaller than those using a random ordering. For 58 out of 100 cases, the 

heuristic procedure resulted in diagrams having the minimum size. Furthermore, it 

never led to a diagram having the maximum possible size. 

As a second test, the ubiquitous MONK's [133] problems have been used. The 

three tests use the same data, consisting of six categorical attributes, vI . .. v6, and 

only the relation used to classify samples is changed. In the first test it is 

vI = v2 V v5 = 1, in the second it is exactly 2 attributes are 1, and in the third 

(v5 = 3 1\ v4 = 1) V (v5 =1= 4 1\ v2 =1= 3). Moreover, in the third test five percent of 

training samples have incorrect labels. In all the tests neural networks were trained 

using weight decay. Also, the diagram was pruned by removing paths used less than 

three times. The results are shown in the Table 8. Good decision diagrams are shown 

in Figure 14. While there is enough training set samples to generate a diagram that 

covers the whole input space in the first and third tests, in the second test the 

diagram is incomplete - even though the network has learned without errors, the 

decision diagram has a high error-rate. In this case, adding information about the 

neighborhood of a sample solves the issue. Compare Figure 14b showing a good 
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(a) 

(c) (d) 

Figure 16: Decision diagrams for the Monk's [133] problems: (a) test 2 before diagram 
generalization, (b) erroneously pruned diagram for test 2 (proper diagram is shown in 
Figure 14b), (c) test 3 prior to pruning, and (d) test 3 after pruning (proper diagram 
is shown in Figure 14c). © 2011 IEEE 
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diagram with Figure 16a showing a diagram before generalization and Figure 16b 

depicting the results of pruning. In the third test, the training set is intentionally 

corrupted with noise. Note that prior to pruning, the diagram exactly mimics the 

network (the error rate is the same). The learned relation is more complicated than 

the expression used to generate the data. Retraining the network with a more 

aggressive weight decay or pruning the diagram both lead to a diagram which 

generalizes better, but only one clause out of two is properly detected. Compare 

Figure 16c showing an unpruned diagram with the pruned one in Figure 16d. Please 

note that the network and subsequently the diagram learns only half of the desired 

relation. The good diagram is shown in Figure 14c. 

The next four tests used data from the VCI repository [17]: the mushroom 

data set, the congressional voting records data set, the chess king-rook vs. king-pawn 

data set (further named krkpa7) and the molecular biology promoter gene sequence 

data set. Since the method doesn't support missing values, samples from the voting 

records data set containing missing values were rejected. In the mushroom set, the 

missing values were left as a new attribute value "?". For all the sets, unless noted 

otherwise, five runs of full five-fold cross validation were executed and the results 

have been averaged. Also, pruning has been set up to preserve 100% accuracy on the 

training set. To compare the effectiveness of rule extraction, the C4.5 algorithm was 

run using Weka's J48 implementation [15]. Its parameters were -U -Ml for runs 

without pruning and -CO.25 -M2 for runs with pruning. The results have been 

presented in Table 95 . Diagram and tree sizes were used to compare the 

understandability of extracted rules. 

The mushroom and voting sets were used as simple benchmark tests. On the 

mushroom data all classifiers obtain a 100% accuracy. The experiments on the voting 

data show the importance of good network training. When 10 hidden neurons are 

used the network overfits and yields a lower accuracy than the decision trees. In 

5The results presented in Table 9 differ from those presented in [86]. They were recomputed 

because the original results mistakenly reported the sum of training and testing errors. Moreover, 

error counts were converted to accuracy for easier comparison with other methods. 
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TABLE 9: Results on data from the UCl repository. 

Test Network LORE rules unpruned 
name ace [%] HL size time [s] ace [%] 

Mushroomsa 100.0 10 10.8 100.0 
Votinga 94.0 10 0.8 93.5 
Voting a 95.9 1 0.5 96.3 
Krkpa7b 99.5 35 82.7 96.1 

PromoterC 90.6 1 0.8 89.4 
Promotercd 90.8 1 1.0 87.5 
PromoterCe 94.3 1 2.6 97.5 
Promotercde 94.3 1 1.0 98.1 

aNetwork trained using standard backpropagation. 
bNetwork trained with weight decay, ratio=O.9 
CNetwork trained with weight decay, ratio=O.3 

size 
421.0 
75.0 
37.0 

3838.9 
332.3 
808.8 
405.7 
389.3 

dMerging in rules from training set samples neighborhood 
eTested using the leave-one-out methodology 

time [s] 
81.4 
0.5 
0.4 
18.0 
2.2 
2.5 
2.7 
2.7 

LORE rules pruned J48 unpruned 
ace [%] size time [s] ace [%] SIze 
100.0 11.9 81.9 100.0 28.5 
94.7 20.2 1.0 94.2 23.6 
96.8 7.0 0.9 95.3 24.2 
95.9 494.8 18.5 99.5 88.6 
81.1 15.0 2.8 74.3 35.9 
85.1 172.6 3.3 73.4 37.8 
90.6 209.1 3.3 77.4 44.5 
86.8 16.8 3.3 77.4 44.5 

J48 pruned avg. 
ace [%] size time [s] 
100.0 28.5 0.17 
96.6 4.5 0.01 
96.4 4.5 0.01 
99.3 51.7 0.09 
77.2 20.4 0.01 
77.4 20.8 0.01 
81.1 24.7 0.00 
81.1 24.7 0.00 



consequence the extracted diagrams are also not as accurate as the trees. Smaller 

networks (with only one hidden neuron) have better cross-validation accuracy and 

the diagrams have accuracies and sizes comparable to the trees. Pruning is necessary 

on both datasets and it significantly reduces the size of the diagrams while preserving 

or improving their accuracy. It is worth noting that in both cases rule extraction 

running times are comparable to that of network training. The decision tree, however, 

is induced an order of magnitude faster than network training and rule extraction. 

The results on the krkpa7 set are disappointing. The generated diagrams are 

not only big and hard to understand, but also their performance is worse than that 

of the network or of the decision trees. However, the issues may stem from some 

incompatibility between this data set and neural networks. The data set requires a 

network of a larger size (networks with few hidden neurons do not learn the relation 

well), with long training times (mainly due to the weight decay mechanism used), 

only to achieve a performance comparable to that of an unpruned decision tree. The 

results from this data set are included, however, to show that the method execution 

time is acceptable even for moderately large networks. 

The promoter data set was first introduced to test the effectiveness of the 

KBANN method. Results published in [143] for a leave-one-test state that the ID3 

method makes 19 errors in 106 runs, which corresponds to 82% accuracy, neural 

networks under standard hackpropagation makes 8 errors (92.4% accuracy) and the 

KBANN method achieves the lowest rate of 4 errors (96.2% accuracy). For the 

purpose of this comparison, the LORE method was tested under the same conditions. 

However, since a single neuron with weight decay performs better than the described 

network, it was chosen as the base for rule extraction. It can be observed that the 

proposed method under the default settings extracts diagrams that have slightly 

worse accuracy than the network (prior to pruning). However, when the information 

from neighhoring samples is included, the diagrams hefore pruning show the highest 

accuracy of 98.1 %. The unpruned diagrams are too big to be considered 

understandable. Pruned diagrams can be considered to be legible, they are however 

less accurate. The experiments demonstrate that the idea of using a network to 
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Extracted rules for class T: 

p - 36 = t 1\ P - 35 = t, c 1\ P - 34 = t 

P - 36 = 9 1\ P - 34 = 9 1\ P - 12 =I 9 

p - 36 = t 1\ P - 35 = a 1\ p - 34 = t 1\ P - 33 = a 

p - 36 = t 1\ P - 35 = t 1\ P - 34 = 9 1\ P - 12 =I 9 

p - 45 = a 1\ p - 36 = t 1\ P - 35 = t 1\ P - 34 = 9 

p - 36 = t 1\ P - 35 =I t 1\ P - 34 = 9 1\ P - 12 =I 9 

p - 36 = t 1\ P - 35 =I a 1\ p - 34 = c 1\ P - 12 =I t 

P - 36 = t 1\ P - 35 =I a 1\ p - 34 = c 1\ P - 33 = a 

p - 36 = t 1\ P - 35 = a 1\ p - 34 = c 1\ P - 12 =I c 

p - 36 = t 1\ P - 35 = a 1\ p - 34 = c 1\ P - 33 = a 

p - 36 = a, C 1\ P - 35 = t 1\ P - 34 = 9 1\ P - 12 =I 9 

Figure 17: A typical diagram and the rules in DNF form extracted for the promoter 
domain problem without the use of neighboring samples and with pruning enabled. 
© 2011 IEEE 
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discover rules in close proximity to training set samples is useful, however better 

pruning and diagram generalization algorithms are needed. A sample diagram and 

accompanying rules extracted during the leave-one-test without the use of 

neighboring samples and after pruning is shown in Figure 17. 

3 Conclusions 

The LORE method of rule extraction from neural networks uses many novel 

ideas. First, the proposed approach focuses on retaining high network fidelity on the 

training set, while allowing the rule set to diverge from the network in the remaining 

feature space, making it possible to reconcile the dilemma whether one seeks good 

network fidelity or accuracy. 

Another achievement is the adaptation of the reduced, ordered decision 

diagram data structure to support the merge and generalization algorithms. This, in 

its own merit, might prove to be a valuable tool in other rule induction schemes. 

A mathematically sound method of presenting the domain of a generated rule 

set has been introduced. Adaptations of this technique to other rule extraction 

methods might help to distinguish between errors in the rules (which result in false 

positive cla.'3sifications) and incompleteness of the rules (which result in false negative 

classifications). In the case of the LORE method, this technique was a key step in 

the design of algorithms that simplify the rule set without loss of training accuracy. 

Future work will first be directed towards the development of better pruning 

algorithms. The minimum description length principle (already investigated in the 

context of decision diagrams in [129]) might become a valuable tool for increasing 

the generalization abilities of decision diagrams, while at the same time reducing 

their size. 

Improved rule presentation is another important topic worth continued 

studying. The presented transformation of RODDs into DNF format rules shows that 

the ROD Ds might be used as intermediate representation purely for their 

algorithmic properties and the final rules presented to the user may be expressed in a 

more understandable form of decision trees, decision tables or rules. 
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C Top Down Induction of RODDs6 

The rule extraction method described in the previous section searched for 

rules in a general-to-specific manner, because each training sample seeded a rule 

from which tests were dropped. Moreover the best results were obtained when the 

tests were considered for dropping starting with attributes situated at the bottom of 

the chosen ordering. This procedure can be replaced by a general-to-specific building 

of the diagram in a top-down manner. Similarly to decision tree induction, the search 

space can be limited by the size of the dataset - empty nodes are marked with the U 

label and are not further divided. 

Under another interpretation, just as the TREPAN [73] method builds a 

decision tree using the given classifier for guidance, it is possible to build a RODD 

using a described elsewhere procedure [145], but also using the black-box classifier 

for stopping criteria and detection of similar regions in the search space. 

An important attribute of the method described in this chapter is the 

detection of similar regions of the attribute space and the merging of corresponding 

RODD nodes prior to their expansion. 

1 Description of the Algorithm 

To reduce noise in the training set, prior to algorithm execution training 

samples may be reclassified. The algorithm then induces a decision diagram in a 

top-down manner, as shown in Algorithm 8. In every iteration of the loop a layer of 

the diagram is built. First, the splitting attribute is determined based on information 

gain with gain ratio correction. An attribute is selected once for each layer in the 

diagram as described in [13,145]. Second, a new layer is created according to the 

split found. However, pure nodes are not splits. Third, nodes are merged based on 

similarity of input neurons activations. The algorithm then proceeds to build the 

next layer. 

6This section is based on [144], (J. Chorowski and J. Zurada, "Top-down induction of reduced 

ordered decision diagrams from neural networks," Lecture Notes 'in Computer' SC'ience, Art'ijicial 

Neural Networks and Machine Learning- JCANN 2011, vol. 6729, pp. 309-316, 2011). 
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Algorithm 8: Top down induction of RODDs 
Require: A dataset data with k attributes and N instances 
Ensure: A decision diagram classifying data 

1: currentLayer ~ {rootNode(data)} 
2: while some attributes remain untested and there are impure nodes 

do 
3: splitAttribute ~ best unused attribute 
4: new Layer ~ {} 
5: for all node E currentLayer do 
6: new Layer ~ new layer U {split(node, splitAttribute)} 
7: end for 
8: for all node E newlayer do 
9: check termination conditions for node, remove node if met 

10: end for 
11: for all n1, n2 E new Layer, n1 -# n2 do 
12: compute distance(n1,n2) 
13: end for 
14: while n1, n2 = argmin distance(n1, n2) and distance(n1, n2) < 

nl,n2 

maxdistance do 
15: merge n1 with n2, recompute distances 
16: end while 
17: currentLayer ~ new Layer 
18: end while 

Two stopping criteria are used. First, 100% pure node are not split. Nodes 

which do contain few (according to a set threshold7 ) or no training instances (which 

makes them trivially pure) are marked with an unknown class flag. Second, splitting 

is stopped when the network output is determined, i.e. upper and lower bounds of 

the network output computed using the values for already tested attributes have the 

same sign. The computation of the estimates follows Section B.l.l. 

Two nodes are treated as suitable for merging if the root mean square of the 

difference of input neurons' partial activation is below a set threshold. The 

justification of node clustering is as follows. Let the contribution of a fragment of a 

path through the decision diagram towards neuron activation be 

pathActivation(path) = (61) 
AEattributes tested on path 

7 All experiments used the value 2. 
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where WA are the weights used for attribute A. A partial activation of a neuron for a 

node is then 

partActivation(node) = pathActivation(diagram root -+ node). (62) 

Recall, that if values of all attributes are known a neuron's activation is 

activation( leaf node) = L XA . WeightA + bias = 
AEattributes 

V nodepathActivation( diagram root -+ node) (63) 

+pathActivation(node -+ leaf node) + bias. 

Grace to the ordering restriction, all nodes in a single layer have known values for 

the same set of attributes. Hence if two nodes n1 and n2 have a similar partial 

activation the subdiagrams sl, s2 rooted at n1 and n2, respectively should be 

isomorphic. Thus n1 can be merged with n2. The new node contains the union of 

training samples reaching both n1 and n2, which helps to reduce fragmentation of 

the training set. After a merge operation the partial activations of all the nodes in a 

cluster are averaged. 

During diagram construction, some leaf nodes may be marked with an 

unknown class label. Similarly to the method described in the previous chapter same 

diagram generalization and pruning procedures can be used. 

To estimate the required number of operations observe first that the maximum 

width of the diagram (the number of nodes at a single level) is limited by the number 

of training samples because empty nodes are not split. It is thus bounded by 

O(N 'l), where N is the number of training samples and 1 is the maximal number of 

values a attribute may take. Assume that 1 is small, then the width of the diagram 

becomes O(N). For every diagram level node clustering takes O(width2) time and 

selection of the next attribute to split takes O(k . N) time, where k is the number of 

attributes. The total complexity is thus O(k(k· N + N 2)) or O(k . N 2) if k « N. 

2 Experimental Results 

The proposed method has been tested on datasets from the UCI 

repository [17]. Used were the MONKS tests [133], the Voting, the German Credit, 
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Figure 18: Induced decision diagram for the mushroom dataset. 

the Mushroom dataset , and the Letter dataset. The proposed method currently 

supports only problems having nominal attributes. Therefore continuous attributes 

have been discretized using the Weka's [15] implementation of [146] with default 

parameters. Furthermore attributes taking more than 2 values were presented to the 

network using a l-of-N encoding. Since binary classes are currently assumed, in the 

letter dataset the two classes were created by merging letters 1-13 (A-M) and 14-26 

(N-Z). Low variance attributes were removed. Missing values are currently not 

supported. Consequently, the attribute 11 from the Mushroom dataset has been 

removed. Samples containing unknown attributes were removed form the Voting 

data. Moreover , to make the Voting problem harder highly informative attributes I , 

2, 4, 13, 16 were also removed (after [66]). Properties of the used datasets (after 

processing) are given in Table 10. 

An exemplary RODD for the Mushroom dataset is shown in Figure 18. 

Results are presented in Table 11 . The first columns show the number of neurons in 

the input layer and weight penalty ratio used during neural network training using 
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TABLE 10 

Properties of the used datasets. 

Dataset train test attributes values 
SIze SIze nom. & cont. total number 

Monkl 124 432 6 15 
Monk2 169 432 6 15 
Monk3 169 432 6 15 
Voting 324 10-CV 11 11 

German 1000 10-CV 15 56 
Mushroom 8124 10-CV 20 115 

Letter 20000 10-CV 15 165 

the Neural Network toolbox in Matlab. These parameters were tuned for a low 

cross-validation error. Next, results obtained using Weka's implementation of C4.5 

(nicknamed J48) are presented along with accuracies for RODD reported in [145]. 

The rule extraction algorithm was then run with three different values for the node 

merging threshold - 0.2, 0.4, and 0.6. The best distance threshold found is indicated 

along with the resulting RODD accuracy, size, and the count of node merges 

performed. Since the used implementation of top-down RODD induction is currently 

much simpler than the one described in [145], for comparison its accuracy is reported 

also when NN information is absent. 

The results show that especially for simple networks, node merging increases 

the accuracy of induced RODDs. However, for larger networks the gain in accuracy is 

small. Moreover, more aggressive node merging has been found to quickly worsen the 

accuracy. The diagrams are usually smaller than decision trees, however, their 

internal structure makes them harder to follow. 

3 Possible Enhancements to Research 

The presented approach is limited to the case of rule extraction form neural 

networks. Investigating other methods of detecting similar regions in the input space 

might enable its use to extract rules form other kinds of opaque classifiers. 
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TABLE 11: Results of experiments 

Network (NN) J48 RODD RODD from NN 
Dataset HL wght. acc. acc. size acc. dist. acc. size merge 

SIze pen. [145] thr. count 
Monkl 5 0.8 1.0 0.76 18 1.0 0.4 1.0 7 2 
Monk2 5 0.8 1.0 0.65 31 0.68 0.4 0.98 16 14 
Monk3 2 0.3 0.97 0.97 12 0.97 0.4 0.97 4 1 
Voting 1 0.8 0.93 0.89 13.6 - 0.4 0.9 18.6 6.5 
German 1 0.2 0.77 0.72 82.5 0.71 a 0.2 0.76 51.5 73.1 

Mushroom 5 0.8 1.0 1.0 30 1.0 0.2 1.0 8 0 
Letter 40 0.6 0.94 0.87 3660 - 0.4 0.88 956 628 

aresults reported on non-discretized data 

RODD 
without 
NN acc. 

0.81 
0.65 
0.97 
0.87 
0.72 
1.0 

0.87 



CHAPTER V 

BUILDING DESCRIPTIONS OF DATA - FEATURE 

DETECTION 

This chapter presents two methods related to feature detection and data 

encoding. In the first section the impact of non-negative weight constraints on the 

understandability of a neural network is considered. Then, a novel algorithm for 

finding robust sparse encodings of data is presented. 

A Learning Neural Networks with Non-negative Weight Constraints1 

Feature detection methods described in Chapter II found a transformation of 

the attributes into features that preserved the information content of the data. In the 

case of PCA the projection had to preserve as much as possible of variance of the 

samples, ICA concentrated on finding projections that retain interesting 

(non-gaussian) projections, and K-means, SVD, NMF, and sparse coding found 

constrained features that must provide an accurate reconstruction of the data. Thus 

all those methods work under an important assumption that useful features will 

describe the data and a direct relationship to class labels is not needed. It is a valid 

assumption when the original attributes used to describe the data are well chosen for 

the problem at hand. However, one may wish to develop other, new and special 

features that have good discriminative properties. The method presented in this 

section tries to accomplish just that. 

Several authors have extended unsupervised feature detection algorithms with 

1 This section is based on [147] (J. Chorowski and J. M. Zurada, "Learning understandable neural 

networks with non-negative weight constraints," Submitted to Neural Networks and Learning Systems, 

IEEE Transactions on, 2012). 
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discriminative terms. Columns from a predetermined dictionary are selected to 

maximize both the Fisher discrimination coefficient and reconstruction capability 

in [148]. Per-class dictionaries are learned in [149], with a soft-max like penalty used 

to restrict the dictionaries to provide good reconstructions for the related class only. 

New samples are classified by choosing the label associated with the dictionary that 

yields the lowest reconstruction error. This idea is extended in [150] where a common 

dictionary is learned for all classes, however, additional penalty terms are added to 

promote discriminative capabilities. Since no explicit encoder is specified, encoding is 

performed simultaneously with classification by selecting the class that results in the 

lowest joint reconstruction and classification penalty. 

Auto-encoding neural networks can be seen as feature detectors that are 

trained to minimize the reconstruction error and provide explicit formulas for both 

an encoder (that computes hidden neuron activations from the inputs) and a decoder 

(that computes the output from the hidden activations) [151]. Note that such 

definition of the encoder and decoder disagrees with the matching encoder or decoder 

specified using equations (24) or (25). Adding a traditional classification layer yields 

a semi-supervised neural network. A hierarchical model of text documents that 

greedily learns a stack of encoders is analyzed in [152]. The encoders assume that the 

data have a Poisson distribution and are a special case of auto-encoding neural 

networks. They are trained to minimize the sum of a reconstruction and 

classification error. 

The architecture presented in this Section differs in two ways from the 

aforementioned extensions of feature detection. It is an extension of a traditional 

neural network and is trained for discrimination only. Moreover, the emphasis is 

placed on the understandability of the network's structure through the adoption of 

non-negative constraints on weights of the network. 

Multilayer feed-forward neural networks naturally build hierarchical models of 

data [9]. The data samples are propagated through network layers and the neuron 

activations in each layer can be thought to form a layer of features. However, such 

features are usually difficult to interpret [23,43] (also see the discussion of 
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hierarchical models in Chapter II, Section F.2). On the other hand the 

non-negativity constraints have been shown to enhance the understandability of 

matrix factorizations [57]. Inspired by NMF, the network's weights are constrained to 

be non-negative. This eliminates cancellations of incoming neuron signals inside the 

network and allows for easier interpretation. Hidden (input) neurons are active when 

their inputs correlate strongly with their weights. The bias controls the threshold of 

this correlation. Classification (output) layer neurons combine the hidden layer 

activation values in direct proportion to their weights, and the neuron with the 

highest sum determines the class of the input. 

1 Proposed Network Architecture 

Neural networks designed for classification and trained in a discriminative 

manner are considered. Assume that the input data has non-negative values. This 

condition is often satisfied in practice. For example text documents in bag-of-words 

format or pixel intensities in images are naturally non-negative. Categorical data 

encoded using the 1-hot or thermometer-scale encoding is also non-negative and can 

be used. The desired output for each sample must be a unique class label. 

The networks will have two layers. Each layer is determined by a matrix of 

weights and a vector of bias values, denoted by WH and BH for the hidden layer and 

by We and Be for the classification (output) layer. For an input vector X the signal 

is propagated through the network according to the following relations. The hidden 

layer activations are LH(X) = O"(,\(WH· X + BH)), where O"(x) denotes an 

element-wise application of the logistic sigmoid, O"(x) = 1/(1 + exp( -x)) and.\ is a 

parameter denoting the neuron's gain. The classification layer activations are 

Le(x) = SoftMax(We · LH(X) + Bc), where the SoftMax(v) function transforms a 

vector v into a vector of values according to 

SoftMax( V)i = exp( Vi) / (~J=l exp( Vj)). The network assigns new data to the class 

represented by the output neuron with the highest activation value. 

The optimization criterion used to train the network contains the 

log-likelihood and regularization terms. The output Le of the softmax transfer 
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function sums to 1 and can be treated as the a-posteriori probabilities of class labels 

given the input. According to this interpretation the network is trained by 

minimizing the negative log-likelihood of observing the given data set. Furthermore, 

the weights are regularized by minimizing their absolute values eel norm) and their 

squares (£2 norm) [28,29]' which is a penalty-based weight pruning mechanism. The 

combined action of the £1 and £2 penalties both selects important connections and 

limits their magnitude. Sparse activations of the hidden layer can additionally be 

enforced by minimizing the sum of the hidden neuron activations. This further 

enhances readability - proper classification of a sample must depend on only a few 

hidden neurons becoming active. The complete optimization target is: 

1 N 

Loss = - N L log (Lc(x8)yJ 
8=1 

i,j j,k 

N 

+ ~ LLH(Xs)j 
8=1 

where N is the number of samples, (X8' yJ are individual data samples and PHl, PH2, 

PCl, PC2, Ps are regularization constants. The weight matrices WH and Wc are 

constrained to contain only non-negative elements. The bias values are unconstrained 

and often negative. 

Error backpropagation training with gradient descent of a network with the 

logistic sigmoid transfer function, that is used to keep all the signals non-negative, is 

numerically difficult [20]. Since the addition of weight constraints makes the 

optimization problem even harder, the L-BFGS-B second-order minimization 

algorithm [153] was chosen to train the network. When the training set was too large 

to be processed as a single batch, it has been divided into smaller subsets used for 

each epoch. The network was in those cases trained by executing a prescribed 

number of iterations during which the data were first randomly divided into batches 

of a few thousand samples, then a small number of steps of the L-BFGS-B algorithm 

was made on each batch to minimize (64). Stratified sampling was used to divide the 

data into batches to ensure that class label proportions are retained. 
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2 Expressive Power of Neural Networks with Non-negative Weights 

It may seem that constraining the sign of weights of a neural network renders 

it too limited to be of any practical use. For instance, a neuron with positive weights 

and a logistic sigmoid activation function cannot logically invert its input. This 

section demonstrates by construction that a three layer network that uses the logistic 

sigmoid activation for hidden layers with the softmax activation function used for the 

output layer can shatter any given set of points. 

The use of the softmax activation function is important for two reasons. First, 

it is the generalization of the cross-entropy error function to multiple classes and is 

more suited for a classification task. It can be derived from an assumption that the 

class labels are discrete and mutually exclusive. Then the outputs of the network 

using the softmax transfer function represent the a-posteriori class probabilities for a 

given sample. Second, the softmax function allows a degree of ambiguity for its 

inputs. A constant can be added to all inputs of a softmax function and the output 

will not be changed. This property is exploited in the proof that the networks with 

non-negative weights can learn any given labeling of data points. The key insight is 

that the network's decision is based on the maximally active output neuron. While it 

is not possible to lower the output of a neuron associated with a wrong class by 

setting its weight to be negative, it is possible instead increase the outputs of 

neurons for all other classes. Due to the ambiguity present in the softmax function, 

subtracting a number from a neuron's activation is mathematically equivalent to 

adding the same number to all other activations. 

This property is also important for the understandability of the network. The 

softmax function necessitates that to lower the probability of a class all other 

outputs must be increased. This potentially produces large weight values. However, 

weight regularization terms penalize large values of weights and counteract the 

increase induced by the softmax activation. These two counterbalancing processes 

cause the output layer to become sparse, while hidden neurons learn concepts which 

relate to parts of characteristics that define an output class. 
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It will be shown that a three layer network can shatter every combination of 

points. First, note that adding a constant to all output weights does not change the 

value of the softmax function. Let the output layer compute the function: 

Lc = SoftMax(W· LH + B), (65) 

where Lc is the vector of classification (output) layer activations, W is the weight 

matrix, LH is the vector of hidden layer activations, and B is the vector of bias 

values. Let 1 denote matrix whose all elements are 1 and let a be a constant. Then: 

SoftMax ((al + W)LH + B) = 

SoftMax(al . LH + W . LH + B). 
(66) 

For simplicity, substitute C = W· LH + B. The product 1· LH is a vector whose all 

elements are equal to the sum of L H . It follows that: 

exp (~LH) exp( C) 
SoftMax(alLH + C)i = ~n (~L) (C.) j=lexp H exp J (67) 

= SoftMax( C)i 

Hence it is possible to transform any network with negative weights in the output 

layer into one with only non-negative weights by adding a large enough constant. 

It is possible to construct a three layer (two hidden layers with sigmoid 

activation function followed by a classification layer with softmax activation) that 

will shatter a given set of N points described by their position in a k-dimensional 

space. Let X E jRkxN be the data matrix. A network that computes any labeling of 

those points will be constructed. :For simplicity assume that the gains in the logistic 

sigmoid transfer functions are infinite and the hidden neurons activations are always 

o or 1. 

There are O(kN) neurons in the first hidden layer. For every input dimension 

all data points are first projected onto this dimension. Then at most N threshold 

values between the projections are selected. Hidden neurons are added with a single 

nonzero weight equal to 1 corresponding to this dimension and bias equal to the 

threshold. Unless two columns of X are the same (i.e. two points are at exactly the 

same position), the activations HI of the first hidden layer are unique binary vectors. 
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N3 N4 
-7 Pi P2 P3 P4 PS 

Pi+ +P3 
N2 

Ni 1 0 1 0 1 

P3 N2 1 0 0 0 1 

+ Ni 
N3 0 0 1 1 1 

P2+ +P4 
N4 0 0 0 1 1 

Figure 19: Construction of a network with non-negative weights. 

There are N neurons in the second hidden layer, one for each point. Their 

weights are equal, the weight Wi,j connecting the j-th neuron in the first hidden 

layer to the i-th neuron in the second one equals to 2j. Thus if the first hidden layer 

activations are treated as binary numbers, the products W· HI are their decimal 

values. To every point corresponds one such number and the points can be ordered 

according to them. If the second hidden layer bias values are set to values in-between 

those numbers, the activations of the second hidden layer create a full-rank binary 

matrix (if the points are reordered, then for the n-th point the n first neurons are 

active, while the N - n remaining ones are zero. Hence the activation matrix is 

triangular.) Thus output weights can be computed for every possible labeling of data 

points. In the last step a constant is added to output weights to ensure that all are 

non-negative. 

3 Experimental Results 

The proposed approach needs the specification of five parameters, four of 

which control the regularization and the last parameter, A, sets the steepness of the 

sigmoid. The parameter A was in all cases gradually increased to force the hidden 

neurons to operate in saturation. To determine the value of other parameters, the 

network was first trained without regularization. A regularization parameters were 

then selected by evaluating a few values that gave a similar value of the 

log-likelihood and regularization terms in (64). The Table 12 gives the values used 
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TABLE 12 

Values of regularization parameters used in the experiments. 

I Red. MNIST I Full MNIST I Reuters 

No. hidden 10 10 150 150 15 15 
No. output 3 3 10 10 10 10 
Non-neg? F T F T F T 

A Annealed exponentially from 1.0 to 2.0 

PHI le-4 3e-4 0 le-5 le-4 le-4 

PH2 0 0 0 0 0 0 

PCl 0 0 0 le-4 3e-4 3e-4 

PC2 le-4 le-4 le-4 3e-6 3e-4 3e-4 

Ps 0 0 0 le-3 0 0 

for the experiments. 

In the first experiment networks constructed with and without non-negativity 

weight constraints were compared on a subset of the MNIST handwritten digit data 

limited to digits 1, 2, and 6. The full MNIST data set contains 60000 training and 

10000 testing grayscale images of handwritten digits which were scaled and centred 

inside a 28x28 pixel box. It can be obtained along with a summary of classifiers' 

accuracies from http://yann.lecun . com/ exdb/mnist/index. html. Figure 20 

presents a selection of test patterns and the weights of the two networks. An 

immediate consequence of the non-negativity constraints is sparsification of weights 

in the classification layer. Furthermore, the patterns learned by the hidden neurons 

allow easy interpretation. They are localized and tend to look like parts of digits (e.g. 

neurons 2-4 look like the rounded bottom of digit 6). In contrast, the hidden neurons 

of the unconstrained network are less localized. They contain both positive and 

negative weights covering most of the input image, which makes it harder to 

visualize to what patterns they respond. The bar charts indicate the activations of 

hidden neurons for the sample input patterns. It can be seen that neurons in both 

networks discriminate between digits and tend to work in the nonlinear parts of their 

activation functions, resembling threshold gates. The unconstrained network is more 

accurate and achieves 1% error rate, compared with 1.5% for the constrained one. In 

general, the trend was observed that more understandable networks show lower 
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accuracy. However, in certain situations a better insight into the data outweighs the 

benefits of an accurate but opaque classifier. 

In the next large-scale experiment, we used the full MNIST data to build a 

constrained and unconstrained neural network with 150 hidden neurons and 10 

outputs. We compare in Figure 23 the depictions of weights of 32 randomly selected 

hidden neurons with 32 features obtained with PCA and with 32 obtained with 

NMF. Full networks are shown in the Figure 21 and 22. The unconstrained network 

shows a much lower error rate of 2.4%, compared with 4.9% for the constrained one. 

To put those numbers into perspective, state-of-the-art 1998 error rate on the 

MNIST for a two layer neural network was 4.7%. Once again, the non-negativity 

constraints result in the emergence of sparser and more localized weight distributions 

of the hidden neurons, which often filter distinctive parts of digits. In contrast, the 

hidden neurons of the unconstrained network react to whole pictures, thus it is 

difficult to estimate intuitively their influence on the classifier's output. Similarly, the 

patterns learned by PCA are holistic, non-localized ones. But for the first few, it is 

hard to describe their contents. It is also difficult to see how they relate to the 

shapes of different digits. Further, the NMF has learned sparse, localized, and 

interpretable features. However, only a few patterns resemble parts of digits, like the 

vertical bar. Most of the features seem to down-sample input images on a 

non-uniform grid and do not provide cues for classification. This is caused by two 

factors. First, unlike the neural network with non-negative constraints on weights, 

the NMF model does not aim at class discrimination. Second, NMF imposes no 

limits on the number of features activated by a sample. Increasing the rank of 

factorization (the total number of features) only worsens the issue, as in the limit 

each NMF feature will be a single pixel and the NMF-transformed data will contain 

no new information. On the other hand, decreasing the rank leads the NMF features 

to look like blurred shapes of the simplest digits. The addition of a constraint on the 

number of coactive features, while allowing a large total number of features, has been 

shown to promote the learning of a parts-based decomposition [58,60,154]. This is 

because, in contrast to a limited-rank decomposition, a large dictionary of features is 
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Figure 20: (a) Exemplary digits from the MNIST dataset . The weights of a network 
trained (b) without constraints and (c) with non-llegative constraints. The weights of 
the classification (output) layer are plotted as a diagram with one row for each output 
neuron and one column for every hidden (input) neuron. The area of each square is 
proportional to the weight's magnitude; white indicates positive and black negative 
sign. Below each column of the diagram, the weights of hidden neurons are printed as 
an image. The intensity of each pixel is proportional to the magnitude of the weight 
connected to that pixel in the input image with, the value 0 corresponding to gray 
in (b) and to black in (c). The biases are not shown. The hidden neurons have been 
rearranged for better presentation. The bar charts at the bottom of the plots show 
the activation of hidden neurons for the digits presented in (a) . Each row depicts the 
activations of each hidden neuron for five color-coded examples of the same digit. 
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Figure 21: The weights of a network trained on the full MNIST dataset V{ithout weight 
constraints. The weights of the classification (output) layer are plotted as a diagram 
with one row for each output neuron and one column for every hidden (input) neuron. 
The area of each square is proportional to the weight's magnitude; white indicates 
positive and black negative sign. Below each column of the diagram, the weights of 
hidden neurons are printed as an image. The intensity of each pixel is proportional 
to the magnitude of the weight connected to that pixel in the input image with, the 
value 0 corresponding to gray. The biases are not shown. The hidden neurons have 
been rearranged for better presentation. 
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Figure 22: The weights of a network trained on the full MNIST dataset with non
negativity weight coristraints. The weights of the classification (output) layer are 
plotted as a diagram with one row for ' each output neuron and one column for ev
ery hidden (input) neuroll. The area of each square is proportional to the weight 's 
magnitude. Below each column of the diagram, the weights of hidden neurons are 
printed as an image. The intensity of each pixel is proportional to the magnitude of 
the weight connected to that pixel in the input image with, the value 0 corresponding 
to black. The biases are not shown. The hidden neurons have b een rearranged for 
better presentation. 
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(a) (b) (c) (d) 

Figure 23: Weights of randomly selected 32 out of 150 hidden neurons of unconstrained 
network (a) and network with weigth non-negativity constraints (b). 32 first principal 
components (c). 32 filters learned by NMF (d). 

created. The features, in turn, must be complex enough to provide adequate input 

reconstruction from just the few active ones. 

In the last experiment networks were compared on the Reuters-21578 text 

categorization collection. It is composed of documents that appeared in the Reuters 

newswire in 1987. The ModApte split limited to ten most frequent categories was 

used. The processed (stemming, stop-word removal) version in bag-of-words format 

obtained from http://people.kyb.tuebingen . mpg. de/pgehler /rap/ was used. 

This dataset is challenging because the borders between topics are fuzzy and 

documents may belong to many categories simultaneously. During training such 

documents were used with all possible labels. For testing a document was counted as 

correctly classified when the network assigned it to one of the classes to which it 

belonged. The networks had 15 hidden and 10 output neurons (one for each 

category) . The unconstrained network is slightly more accurate and achieves an error 

rate of 12.4%, compared with 12.8% for the constrained one. The weights of the two 

networks are portrayed in Figure 24. An interpretation of the hidden neurons is 

provided by listing words associated with the strongest weights. The word "blah" has 
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no meaning and is artificially added noise. The non-negative network has been 

observed to be more sensitive to it, as many hidden neurons react to it. The neurons 

in the unconstrained network seem to convey meaning by being both active and 

inactive, because the words associated with positive and negative weights fall into 

distinct categories. Furthermore, the matrix of output weights is dense and difficult 

to interpret. On the other hand, the output weights of the non-negative network are 

sparse and allow for an interpretation of relations between topics. The closeness of 

topics "corn", "grain", and "wheat" is detected as the weights for those categories 

form a cluster. The topic "trade" is linked to categories describing goods that can be 

traded. The words listed for hidden neurons corroborate those interpretations, e.g. 

the neuron reacting to words "trade", "rate", "fed", "dollar" is linked to topics 

"money-fx" (foreign exchange), "interest", and "trade". 

4 Conclusions 

It was demonstrated how constraining the weights of a neural network to be 

non-negative improves network understandability and leads to intuitively 

understandable hidden neurons. To the best of our knowledge, this is the first 

attempt at discriminative training of understandable neural networks on large, 

nontrivial datasets. 

Deriving understandable descriptions of observations is the hallmark of human 

intelligence. The presented approach is but a single step on the road towards pattern 

recognition tools that help not only to make predictions about data, but also 

empower their user with new insights and concepts derived from that data. 

B Robust Sparse Coding by Minimizing an LI-Ll Problem2 

The sparse coding problem consists of finding a vector of feature coefficients 

v E ffi.P that express an input vector x E ffi.k as a linear combination of basis vectors 

2This section is based on [155] (J. Chorowski and J. Zurada, "Obtaining full regularization 

paths for robust sparse coding with applications to face recognition." in Accepted to International 

Conference on Machine Learing and Applications - ICMLA, 2012). 
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-tonn, -wheat, +trade, -gra in, +dividend, +split, -com, +profit, -sell , -acquir 
+oil , -wheat, + compani, +share, +corp, -rate , -corn, -dollar, + stake, -fed 

-wheat, -trade, +share, +bank, +stake, -export, -crude, +acquisit, -oil, -grain 
+stake, -wheat, -oil, -ship, +acquisit , -crude, +merger, +acquir, -export, -tonn 

+ profit, +dollar, -wheat, +currenc, +oil, -tonn, -grain, +net, +dividend, +ct 
+profit, -wheat, +dividend, -tonn, +split, +ct, +net, +eam, -sh ip, -acquir 
+dividend, +split, +eam, +shr, -sell, +profit, -bui, -tonn, -wheat, -acquir 

+profit, +dividend, +earn, +split, +ct, -sell, +shr, -wheat, -tonn, -bui 
+profit, +net, -wheat, +ct, +Ioss, +shr, +eam, +dividend, -tonn, -trade 

-oil, +net, +ct, +dividend, +profit, +shr, +split, -wheat, +earn, -tonn 
+d ividend, +shr, +profit, +split, +net, + earn. +ct, -tonn, -oil, -wheat 

+profit, -wheat, -ship, -dollar, +share, -trade, -tonn, -currenc, +shr. +stake 
+profit, -wheat, +share, +net, -ship, -rate, -tonn, +shr, +ct, +Ioss 

+profit, -oil , -wheat, -sh ip, +net, -tonn, +shr, -crude, -rate, +Ioss 
-oil , +profit, -wheat, -ship, -crude, +net. -rate, -tonn , +shr, -trade 

(a) 

acquir, acquisit , merger, stake, undisclos, sell, t akeov, bui, blah , buyout 
merger, acqu ir, stake, bui , undisclos, disclos, freight, blah , termin, coastal 

tonn, wheat, corn, grain, ship, port, crop, vessel , maiz, rice 
wheat, oil, crude, sh ip, bbl, port, barrel, vessel, sea, blah 

wheat, monei, dollar, currenc, grain, blah, fed, dealer, corn, repurchas 
rate, monei, fed, blah, treasuri, dollar, bank, barrel , bundesbank, repurchas 

oil, dollar, crude, currenc, deficit, barrel, bbl, blah, minist, refineri 
dividend, qtr, split, trade, shr, profit, diY, blah, loss, net 

trade, rate, fed, dollar, deficit, blah, monei, prime, japan, currenc 
com, trade, grain, wheat, export, blah, deficit, surplu , ec, agricultur 

corn, maiz, blah, oil, deficit, crude, bushel, surplu, french, field 
ship, prime, port, vessel , blah, freight, cargo, london, tanker, gulf 

ct, dividend, oil, spl it, crude, shr, energi , blah., profit, barrel 
split, profit, dividend, net, earn, loss, shr, d iv, result, qtr 

share, ct, compani, profit, shr, corp, dividend, split, blah, earn 

(b) 

Figure 24: Networks t rained on the Reuters-21578 dat a: wit h unconstrained weights 
(a) and with non-negative weight constraints (b) . Input neurons are characterized by 
listing ten words connected to weights having large absolute value. The + and - signs 
indicat e the sign of the weight in (a). Each column of the diagram depicts weights of 
an output neuron, the size varies with weight value and black or white filling indicates 
sign as in Figure 20. The neurons have been rearranged for better presentation. 

that form a fixed dictionary D E IRkxP . The vector of reconstruction coefficients v is 

required to be sparse, i. e. to contain few non-zero elements. Since the minimization 

of the number of nonzero elements in v is a difficult combinatorial problem, practical 

implementations resolve to minimize the £1 norm of v instead: 

min Ilvl iI subject to: x = Dv. (68) 
v 
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However, a perfect reconstruction is often impossible to obtain and the problem is 

relaxed to allow approximations to x: 

minllvlll subject to: Ilx - Dvl12 ~ E. (69) 
v 

Alternatively, the following unconstrained problem may be solved with the parameter 

A balancing the reconstruction error and sparsity of coefficients v: 

minO.51lx - Dvll~ + Allvlh· (70) 
v 

This formulation of sparse coding is equivalent to LASSO regression [156]. Recently, 

the LARS algorithm has been proposed for efficient computation of the path traced 

by coefficients v when the regularization parameter A is varied [157,158]. The LARS 

algorithm has been extended to piecewise-quadratic error measures in [159]. The key 

aspect utilized by those methods is that the values of coefficients v are 

piecewise-linear with regard to the regularization constant A. Many other 

optimization problems that incorporate sparsity constraints can be solved by tracing 

the path of the reconstruction coefficients. An approximate algorithm that is 

applicable to training generalized linear models is presented in [160]. 

In the robust sparse coding problem the £1 norm is used both to measure the 

reconstruction error and to regularize the coefficients: 

min IIDv - xiiI subject to: Ilvlll ~ T (71) 
v 

The more frequently used £2 norm is sensitive to outliers because a large error in a 

single component dominates the norm. In contrast, the £1 norm is more robust 

because large errors are not magnified by taking their squares. Under a Bayesian 

view, the £2 norm assumes that errors are normally distributed, while the £1 norm 

assumes a doubly exponential (Laplace) distribution. It has heavier tails than the 

Gaussian, which lessens outliers influence on the location of the mean. Many 

practical applications, such as occluded face recognition, require the robustness to 

outliers and solve the problem (71) [161-163]. 

Robust sparse coding (71) can readily be solved for a fixed value of Tusing 

linear programming techniques. In this contribution an algorithm is developed that 
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efficiently computes the path traced by coefficients v( T) when the regularization 

constant T is varied. It has been shown in [164] that when £1 regularization is applied 

to weights of a Support Vector Machine, the path traced by the weights the weights 

is piecewise-linear with respect to the sum of weights! absolute values. Moreover, it 

has been stated in [159] that solutions of a more general class of loss functions, which 

includes the £1 norm, paired with the £1 coefficient regulari".;ation also yield 

piecewise-linear regularization paths. While the proposed algorithm is inspired by 

the L1-SVM method, the discussion of KKT optimality conditions is novel and 

provides important computation time savings. Furthermore, subgradient calculus is 

used to simplify the derivation. 

1 Obtaining Full Regularization Paths 

The problem of obtaining regularization paths for the general problems will be 

analyzed: 
k 

min L1(Rj) subject to: Ilvlll:::; T, 

j=l 

and to its equivalent formulation: 

k 

min L l(Rj ) + "llvlll, 
j=l 

(72) 

(73) 

where Rj = Dj:v - x is the j-th reconstruction residual and D j : indicates the j-th 

row of D. The problems (72) and (73) are equivalent because they share the same 

Lagrangian. Three cases of the penalty function l can be considered: the £2 norm 

based penalty l2(R) = 0.5R2, the £1 norm based penalty h(R) = IRI, and the 

modified Huber penalty lH(R) = R2/(26) for IRI :::; 6, (IRI- 6/2) otherwise. The 

Huber penalty can be interpreted as a differentiable approximation to hpenalty with 

the parameter 6 controlling the radius of the quadratic region around R = 0, the 

singularity of IRI. The 12 and lH penalties are presented based on [159] for the 

completeness of discourse. The in-depth analysis of the case of the h penalty is the 

main result of this contribution. 
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Subgradient Primer 

The problems analyzed in this contribution are non-differentiable. They can 

be essentially dealt with in two ways: by defining artificial constrained variables to 

transform the problems into smooth, but much larger ones or by using subgradient 

methods. The later solution greatly simplifies the analysis of the case of h penalty 

function and necessary theorems and definitions are introduced here after [165-167]. 

Let f be a convex function. A vector 9 is called a subgradient of f at point 

Xo E dom f if for any x E dom f it holds that: f(x) 2: f(xo) + gT . (x - xo). The set 

of all subgradients of f at xo, 8f(xo) is called the subdifferential of function f at 

point Xo. In example, for f(x) = lxi, the sub differential at x =1= 0 is sgn(x), and at 

x = 0 it is the whole segment [-1, 1]. There are two important theorems about 

subgradients that will allow reasoning about optimality of solutions: 

1. Unconstrained optimality condition: f(x*) = minxEdomff(x) if and only if 

o E 8f(x*) [165,167]. 

2. KKT constrained optimality conditions. Consider: 

min fo(x) subject to: fi(X) ::; 0, i = 1, ... ,m. (74) 

If for i = 0,1, ... ,m fi are convex and defined on ]Rn and the problem is 

strictly feasible, then x* is optimal if and only if: 0 E 8fo(x*) + L::l )";8fi(X*) , 

and for all i = 1, ... ,m fi(X*) ::; 0, )..; 2: 0, )..; fi(X*) = 0 [166,167]. 

Differentiable Penalty Functions 

Similarly to [159] the optimality conditions of (73) will be analyzed. 

Unlike [159] subgradients will be used to simplify the arguments. Let L = I.::=ll(Rj) 

be the total loss. At points where L is differentiable the following conditions hold: 

8L . 
0= -8 +)... sgn(Vi) If Vi =1= 0 

Vi 

8L o E -8 +)... [-1,1] if Vi = O. 
v· ~ 
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Let A be the set of indexes of nonzero coefficients v called the active set 

A = {i: Vi =I- O}. Note that for i E A it is necessary that I%~ 1= A. It follows that 

i tt A ==} I %~ I ::; A. When the loss L is twice differentiable and the penalty l is 

right differentiable one can differentiate (75a) to obtain [159]: 

(76) 

where \72 LA is the Hessian matrix of the loss with regard to the active coefficients 

and VA is the vector of active coefficients only. In the case of l2 and lH 8;t is 

piecewise constant [159]. The LARS algorithm uses this property and iterates over 

"events" : 

• variable Vi = 0 enters the active set when: 1%~(Vi(A))1 = A; 

• variable Vi =I- 0 leaves the active set when Vi(A) = 0; 

• a knot of l is crossed, for the Huber loss these occur when Rj(A) = ±8. 

In this way the whole solution path with regard to A is obtained. 

N on-differentiable Penalty Function 

In the case of the h penalty function the solution is not piecewise linear with 

regard to the lambda parameter, but with regard to T = IlvIII. Furthermore, a 

different strategy is needed to determining the gradient ~~. The solution is based on 

the L1-SVM algorithm [164]. Consider the minimization problem (71). Let 

Rj = Dj:v - Xj be the j-th residue and let L = IIRIII be the total loss. The 

Lagrangian is 

£(V, A) = L + A(I/VI/I - T) = I/Dv - xiiI + A(llvliI - T). (77) 
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Optimal points need to satisfy the conditions: 

0= A(llvlll - T) 

otherwise. 

(7Sa) 

(7Sb) 

(7Sc) 

(7Sd) 

where a~~~1 E [-1,1] and a~~:1 E [-1,1] are values of subdifferentials for which the 

optimality condition holds. 

It is now shown how to determine the gradient ~. Suppose that for a f 

known are the optimum coefficients v which yield residues k Define {3i = ~~i to be 

the right derivative of the coefficients v with regard to the regularization parameter 

T. The vector {3 must ensure that the point v = v + s{3 is the optimum for T = f + s. 
When the step s is sufficiently small, the nonzero residues and nonzero coefficients 

will not become zero or change sign. Hence {3 can be determined as the solution of 

another minimization problem: 

mjn IIDv - xiiI subject to: IlvliI :S T. (79) 

Substitute the known signs of nonzero residues and coefficients: 

subject to: (SO) 

The problem is simplified by subtracting constant terms from the objective 

function, subtracting f from the constraint and by dividing both the objective and 
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Algorithm 9: Obtaining full solution path of problem (71). 

1: Start with TO = 0, VO = 0, RO = -x. 

2: Solve (81) to get (30. 
3: while The target of (71) decreases do 
4: Make step 8m in direction (3m choosing the smallest step at which 

a coefficient Vi becomes 0, or a residue Rj becomes 0. 
5: Solve (81) to get {3m+l. 
6: end while 

constraint by 8 to obtain: 

mJn L sgn(Rj )Dj :{3 + L IDj :{31 
j:Rri'O j:Rj=O 

subject to: (81) 

Note that {3 are piecewise-constant with respect to T. Hence the coefficients V are 

piecewise-linear with respect to To The coefficients v are not unique for a value of A, 

which is piecewise constant with discontinuities at points where a coefficient or 

residue becomes zero or changes sign. 

It is now possible to formulate the Algorithm 9 that traces a full solution path 

of problem (71). The crucial question is how to solve (81) efficiently in line 5 of the 

algorithm loop. The KKT conditions for optimality will again be analyzed. To 

simplify the conditions first observe that R j = Rj + D j :{3 = D j :{3 if Rj = 0. From 

the KKT optimality conditions it is that: 

(82a) 

A ~ 0, (82e) 
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where ~~~I E [-1,1] and 8~il E [-1,1]. A is the Lagrange multiplier. 

Two comments are necessary. First, A was used to denote the Lagrange 

multiplier in (82d) because its value is the same as the value of the Lagrange 

multiplier of problem (71). It is so because the target and constrains were scaled by 

the same nonnegative factor, i.e. by s. Second, multiplying (82b) and (82c) by the 

respective elements of {3 and summing yields: 

~ ( ~ ~ 8IDj :{31 
A = - ~ sgn Rj )Dj :{3 + ~ 8D

j
:{3 D j :{3 

j:Rrlo j:Rj=O 
(83) 

= - L sgn(Rj )Dj :{3 + L IDj :{3I, 

which means that the optimal value of (81) is equal to -A. 

Denote the set of indexes of active coefficients at f by A = {i : Vi =1= O}, the 

set of indexes of satisfied residues S = {j : Rj = O}, and the set of not satisfied 

residues by N = SC When progress is possible, (82a) is active and A is nonzero. 

Furthermore, the active V yield a system of IAllinear equations with lSI + 1 

unknowns which are the dual variable A and the values of the sub differentials 8~~jl. If 
J 

it is assumed that the system has a unique solution, it can obtained either when the 

number of equations is increased or when the number of variables is decreased. The 

first corresponds to the inclusion of an inactive coefficient into the active set. The 

second corresponds to the assumption that a satisfied residual will become nonzero. 

Furthermore, it is possible to verify the optimality of any solution of (81) by 

asserting that A > 0, 8~~~1 E [-1,1]' and 8~il E [-1,1]. To obtain the values of {3 the 

equation (82a) is used along with equations Rj = 0 ~ Dj :{3 = 0 for residues that 

will stay satisfied. 

It is now possible to provide the full algorithm for solving (81) under the 

assumption that it has a unique solution: 

1. Try to solve (81) by removing a residual from the satisfied set. Check all cases 

by solving for all n E S: 

(84) 
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where 0lsl-1 is a vector of IAI - 1 zeros. The optimality of the solution can be 

verified by solving: 

= [DT sgn v ]. 8R(S\{n}) 
[

8 IR(S\{n})I] 

(S\{n})A A A . (85) 

Note that the two systems of equations are closely related because they are 

defined by the same matrix (up to transposition). 

2. Try to add a new variable to the active set by solving for all r ~ A: 

(86) 

where OA is a vector of IAI zeros. The optimality of the solution can be verified 

by solving: 

[-D~ASgn~N] = [D~ sgnvA]. [8~~~1]. 
-DNrsgnRN DSr sgnf3r A 

(87) 

Again the two systems of equations are defined by essentially the same matrix. 

3. The optimum solution can be selected either by verifying the optimality 

conditions for each considered case, or by computing target values and picking 

the point yielding the lowest target value. 

2 Runtime Complexity Considerations 

The running time of described algorithms depends on the product of two 

factors: how many events occur along the path and how expensive it is to process a 

single event. k will be used to denote the dimensionality of a single sample x and p 

to denote the number of basis (columns) in D. In other words, D is an k x p matrix. 

In the case of the l2 or the lH loss functions, during a single event the gradient 

~t needs to be computed in O(kp) operations. Choosing the step length also requires 

O(kp) operations. Then, the new direction ~~ must be computed using (76). It can 

be performed in O(IAI2) steps if for example a QR decomposition of the Hessian 
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matrix is maintained and updated at each step [159]. Since IAI ::; p and typically 

k ~ p, a single event commands O(kp) operations. 

In the case of the h loss function a single event commands the computation of 

the derivative ~~ which pessimistically requires the verification of all possibilities of 

systems (84) and (86). Again, if a QR decomposition of the matrix defining those 

systems of equations is updated at each stage, this requires O(pIAI2) operations. 

Next, the calculation of ~~ which is needed to compute the step size commands 

O(kp) operations, while the selection of the step size requires O(k + p) operations. In 

total, a single event requires O(kp + p3) operations because IAI ::; p. The majority of 

events processed are residues R crossing O. In consequence, verification of optimality 

conditions speeds up the algorithm, since usually a solution of (84) is the global 

optimum and there is no need to check (86). 

The coefficients v and residues R may cross zero multiple times making an 

exact derivation of the number of events processed over a path difficult. When the l2 

loss is used, the only events stem from changes of the active set. When lH is used one 

needs also to account for residues crossing knots of the loss function located at ±6. 

Finally, h requires the tracking of every zero-crossing of the residues. This makes it 

the slowest of the proposed loss functions. 

3 Robust Sparse Coding for Face Recognition 

To demonstrate the use of robust sparse coding for face recognition (FR) 

consider a training set of aligned, normalized, and labeled images of faces. Let D be 

a matrix in which every column D:i contains the pixels of a training face image. Let 

x be a vector containing the pixels of an unknown face. The recently proposed 

Sparse Representation-based Classification (SRC) [161] methods first represents x as 

a sparse linear combination of training faces by solving the problem 

v = argmin IlvliI subject to: Ilx - Dvlb ::; E. (88) 
v 
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Figure 25: Regularization paths for sparse coding coefficients: (a) h error function, 
(b) lh error function, (c) l2 error function. We can see that the Huber loss results are 
smoother and similar to the h results. The number of "events" processed in each case 
is indicated. It coincides with the theoretical analysis. 

Then per-person residuals ri of the approximation are computed for every person i in 

the training dat a: 

(89) 

where the function lSi (x) : ]RP ~ ]RP returns a vector whose only nonzero components 

are the entries of x associated with the person i. The unknown face x is recognized 

as the person whose residual was the lowest: identity( x) = arg mini ri (x). The 

authors of SRC have also proposed an extension for robust recognition [161]. The 
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dictionary of training faces D is extended with an identity matrix serving as a 

dictionary of noise patterns to form DE = [D, I] 3. Then the unknown face x is 

represented in terms of the training faces and noise jointly: 

x = [D,I] [ v ] 
VE 

where v E are the noise coefficients. Since this system of equations is always 

under-determined, it is necessary to solve equation (91) to recover the sparsest 

solution: 

V,VE 

subject to: Dv + IVE = x. 

The noise present in the test image x is captured in the coefficients v E. Hence 

(90) 

(91) 

Dv = x - I v E is the reconstructed denoised image. The residuals are redefined to 

reflect the reconstruction error of de noised images: 

The problem (91) is equivalent to minimizing the £1 norm of the 

approximation error with the parameter A equal to 1: 

min Ilx - Dvl11 + Allvlh· 

(92) 

(93) 

This can easily be seen by interpreting v E as reconstruction residuals. The 

parameter A is implicitly present in (91) as the ratio of magnitudes of elements of D 

and x. In fact the results presented in [161] require that only the training faces are 

normalized, while test faces are not. The inclusion of the regularization parameter A 

in (70) and (93), or the parameter E in (88) makes this dependence explicit. 

4 Experimental Results 

In all the experiments the Extended Yale B face recognition database was 

used [168]. Selected were the 719 face images taken with capture angle and elevation 

31f the noise is known to have a sparse structure with respect to another basis, [161] proposes to 

use this basis instead of the identity matrix. 
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lower than 25° as the training set and 373 face images with capture angle and 

elevation between 25° and 50° as the test set. Similarly to [161J the training faces 

were normalized to have unit length, while the test faces were unnormalized and 

corrupted by replacing 30% pixels with random values drawn uniformly from the 

range of pixel intensity values in the testing set. In all experiments the parameter £5 

of the Huber loss function was set to 1/10 of the standard deviation of intensity 

values of test images, which was 0.028. 

First compared are the coefficients obtained using the h, l2, and lh error 

measures for a single test image. The results are presented in Figure 25. The path 

obtained during minimization of the l2 error function has the smallest number of 

segments (the algorithm processed the fewest events), however it differs greatly from 

the paths obtained for hand lh error functions. The path obtained with lh is 

smoother than the one obtained for ll. 

Table 13 compares execution times required to solve the problem (71) using 

the proposed algorithm and Matlab's "linprog" function. All algorithms converged to 

approximately the same vector of optimal coefficients v which validates the 

correctness of the proposed algorithm. To assess the speedup due to early 

termination of search for possible solutions of (81) by checking optimality conditions 

the time required when optimality checks were disabled is also reported. The results 

indicate that for large values of A when the solutions are sparse, the proposed 

approach is competitive with directly solving (71) using linear programming because 

the experimental running times are comparable and the full regularization path is 

obtained instead of a single solution. However, as the solution becomes less sparse it 

is more beneficial to repeatedly use linear programming techniques for several values 

of the regularization parameter. The checks of optimality conditions result in a 

considerable speedup, however the relative gap becomes smaller for less sparse 

solutions because there are more satisfied (equal to zero) residuals which always Heed 

to be considered and less inactive (equal to zero) coefficients. 

Finally, the accuracy of face recognition was calculated for a range of 

regularization parameter values and plotted in Figure 26. For every testing image the 
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TABLE 13 

Running times of the proposed algorithm compared with running times of Matlab's 
"linprog" solver. 

A 
1.0 0.1 0.02 0.01 

linprog time [s] 89 126 170 266 
with opt. checks [s] 21 200 5050 14700 
without opt. checks [s] 370 2100 19400 -
processed events 3900 8000 14400 17600 

Relative differences between different algorithm's solutions were :::; 10-5 . 
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Figure 26: Accuracy of sparse-coding based face recognition on the Extended Yale 
B database with added noise. The two robust error measures give very close results, 
with h being slightly better than lh. 

values of Ilvlll were determined at which the proper label was beginning or ending to 

be selected and those values were added to compute how many faces are correctly 

recognized for every value of IlvliI. The error function l2 is affected by the added 

noisy pixels and yields the lowest accuracy. The Huber and l\-norm based error 

functions are more robust and yield nearly identical results, with the h loss function 

being slightly better. The obtained results are comparable with the ones reported 

in [161]. 
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5 Conclusions 

A novel algorithm for obtaining the full regularization path of the robust 

sparse coding problem was presented. Optimality conditions were derived through 

the use of subgradient calculus. The conditions were successfully incorporated into 

the algorithm obtaining yielding important running time savings. A reasoning similar 

to the one presented in this paper can also be used to speed up the L1-SVM [164J 

method. The proposed algorithm was benchmarked on real-life face recognition data 

demonstrating its validity and usefulness. It is concluded that when the solution of 

the robust sparse coding problem is assumed to be very sparse, the proposed 

approach is competitive with linear programming solvers. 
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CHAPTER VI 

CONCLUSIONS 

The task of learning understandable concepts and relations from data is a 

complex and multifaceted one. The notion of understandability is subjective and can 

only be measured indirectly, usually by the expressiveness and size of representations 

that describe concepts and patterns. Therefore, there is no unique way of enforcing 

the understandability of results of a given method. However, then main conclusions 

that arise from the body of research reported upon in this dissertation is that 

understandability requires both that the induced descriptions be interpretable and 

relevant to the problem at hand. 

The importance of concentrating on the relevant characteristics of the 

problem is demonstrated in Chapter III, in which it was observed that methods 

which generated additional data in the regions relevant to the problem have led to 

the smallest and most accurate sets of rules. This suggests that for rule extraction it 

is neither useful nor correct to attempt to describe all the details of the black-box's 

operation. Instead, only the patterns relevant to the problem should be analyzed. 

Two rule extraction methods proposed in Chapter IV are specialized 

algorithms that closely rely on properties of both the black-box classifier they 

attempt to understand - an Artificial Neural Network, and the properties of the 

understandable data structure they derive - a Reduced Ordered Decision Diagram. 

However, they incorporate the principle of extracting only the relevant patterns as 

they both limit the search space to the proximity of the training data. 

Finally, the neural network with non-negative weights proposed in Chapter V 

was designed to detect patterns that are both understandable and relevant to the 

classification task defined by the target labeling. This is in sharp contrast to 
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traditional feature detection methods that try to faithfully describe the data and 

disregard the ultimate task of classification. 

Methods described in this dissertation encompass several key stages of data 

analysis process: understandable feature discovery, efficient data encoding using 

known features, and finally induction of understandable models. It is hoped that the 

presented algorithms will extend the toolkit of data analysts and enable the 

extraction of useful knowledge out of data. The original contributions of the author 

of this dissertation include: 

• The introduction of a definition of understandability that can be used in formal 

proofs of the computational complexity of rule learning. 

• The extension of kernel density estimation methods to support nominal 

multivalued attributes which is needed in practical applications. 

• The introduction of two novel algorithms that use the ability to estimate the 

activation of a Neural Network in the presence of unknown inputs to induce 

Reduced Ordered Decision Diagrams. 

• The introduction of the non-negative weight constraints in Neural Networks to 

enhance their understandability and a proof of the ability of a sufficiently large 

network with non-negative weight constraints to shatter a given set of points. 

• The introduction of a novel path-following algorithm for the robust sparse 

coding problem. 
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