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Abstract 

 

 Lung cancer is the deadliest type of known cancer in the United States, claiming 

hundreds of thousands of lives each year.  However, despite the high mortality rate, the 5-

year survival rate after resection of Stage 1A non–small cell lung cancer is currently in 

the range of 62%– 82% and in recent studies even 90%.  Patient survival is highly 

correlated with early detection.  Computed Tomography (CT) technology services the 

early detection of lung cancer tremendously by offering a minimally invasive medical 

diagnostic tool.  Some early types of lung cancer begin with a small mass of tissue within 

the lung, less than 3 cm in diameter, called a nodule.  Most nodules found in a lung are 

benign, but a small population of them becomes malignant over time.  Expert analysis of 

CT scans is the first step in determining whether a nodule presents a possibility for 

malignancy but, due to such low spatial support, many potentially harmful nodules go 

undetected until other symptoms motivate a more thorough search. 

 Computer Vision and Pattern Recognition techniques can play a significant role in 

aiding the process of detecting and diagnosing lung nodules.  This thesis outlines the 

development of a CAD system which, given an input CT scan, provides a functional and 

fast, second-opinion diagnosis to physicians.  The entire process of lung nodule screening 

has been cast as a system, which can be enhanced by modern computing technology, with 

the hopes of providing a feasible diagnostic tool for clinical use.  It should be noted that 

the proposed CAD system is presented as a tool for experts—not a replacement for them.  

The primary motivation of this thesis is the design of a system that could act as a catalyst 

for reducing the mortality rate associated with lung cancer.        
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Introduction 

  

 In 2010, the United States had an estimated 157,300 deaths due to lung cancer and 

a further estimated 222,520 newly diagnosed cases [7].  While these statistics present a 

high mortality rate, it should be further noted that the 5-year survival rate after resection 

of Stage 1A non–small cell lung cancer has been shown to be 62%– 82% and in recent 

studies even 90% [2].  Stage 1A non-small cell lung cancer is defined as a malignant 

tumor, 3 cm or less in diameter, which has not yet spread to lymph nodes or surrounding 

tissues, [3].  By definition, this is categorized as a lung nodule; a mass of tissue in the 

lung with a diameter of 3 cm or less.    The detection and treatment of Stage 1A non-

small cell lung cancer is highly correlated with patient survival and further, as a cancer 

advances to Stages 1B (tumors > 3 cm) and beyond (spreading to surrounding 

anatomies), patient survival rates dramatically drop.  Resection in these stages may 

become less effective and the cancer may become less responsive to alternative treatment 

techniques such chemotherapy or radiation therapy.  While high survival rates for early 

lung cancer detection appear encouraging, approximately 0.2 % of Computed 

Tomography (CT) scans (1 in 500) conducted in the U.S. reveal tumors at or less than 3 

cm in diameter [2] and often, such tumors are found accidentally during screening for 

other abnormalities.  This statistic is strikingly low and presents a paradoxical situation 

for approaching the problem of lung cancer detection.  Do we introduce patients with a 

history of behaviors positively correlated with lung cancer, such as smoking, to more 

frequent CT scanning in a preventative fashion?  This practice would, in turn, more 

frequently expose the patient to radiation used in the scanning process (which has been 
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shown to increase the risk of cancer) with the hope of detecting possible nodules that are 

even difficult for a trained eye to identify.  If a lung nodule is detected with a diameter 

between 5-10 mm, the recommended follow-up is 3, 6, 12, and 24-month serial CT 

scanning.  This process becomes invasive for the patient, especially when the likelihood 

of malignancy is still highly uncertain.   

 On the clinical side, while many such nodules are benign, some may indicate a 

metastasizing cancer and thus, the timely identification and classification of all nodules 

within the lung tissue is essential to the survival of the patient.  A principal limitation to 

identifying nodules is their limited spatial support—particularly when the motivation is 

early detection and the nodule may be closer to 1 cm in diameter.  From an engineering 

standpoint, the introduction of a Computer Aided-Diagnostic (CAD) framework for 

addressing the detection and classification of lung nodules could be greatly beneficial to 

assisting radiologists for this problem.  Harnessing the state-of-the-art, computational 

power of current Pattern Recognition, Machine Learning and Image Processing 

techniques could provide clinicians with an automatic, second-opinion detection and 

diagnosis schema.  An immense disadvantage of employing such a CAD system is 

clinical validation, however the ability to computationally search CT scans for lung 

nodules using a process that is both extremely thorough and immune to human error is 

too valuable to not be exhaustively pursued.  However, the CAD system proposed should 

be viewed as a diagnostic tool, not as a replacement for a trained radiologist. 

 A data-driven framework [8] has been proposed for the autonomous detection and 

classification of lung nodules from low-dose CT scans.  This approach has been 

successful in categorizing lung nodules into four primary geometries (shapes), defined by 
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[4], using Shape and Appearance Modeling approaches with high accuracy:  Well-

Circumscribed, Juxta-Pleural, Pleural-Tail, and Vascularized.  This detection and 

categorization has been achieved via the prior training of four mean nodule shapes from a 

selection of diverse, clinically extracted nodules [8].  From a global perspective, the 

proposed system can be illustrated as a simple pipeline and that pipeline has four main 

stages: Tissue Segmentation, Nodule Detection, Nodule Segmentation and Nodule 

Classification (as shown in Figure 1).   

 

 

Figure 1: General CAD System pipeline shown to outline the overall process. 

 

Starting from an input CT scan, the system first isolates the lung tissue from the 

extraneous CT information through the segmentation process.  This is carried out to 

reduce the computational complexity of detecting the nodule in the second step by 

narrowing the region of interest to only the lung cavities.  In the detection phase, a raster-

style search is conducted to detect nodules using a template matching approach.  The 

nodule models used in the template matching stage are generated offline using 

appearance and shape models that are constructed with a database of previously detected 

and annotated lung nodules.  The crux of this process is the use of real lung nodule data 

to generate the models used in template matching.  This data-driven approach is non-
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parametric and has been shown to outmatch parametric approaches for the application of 

lung nodule detection [5].  In order to accurately detect nodules, a sound mathematical 

definition must be formulated for both nodule shape and appearance.  The non-parametric 

approach aims at extracting shape and appearance information from a real dataset of 

nodules, hoping to capture real-world variations in shape and texture for the process of 

modeling a search template.  Firstly, the proposed framework follows the classification 

scheme of Kostis et al. [4], in which nodules are grouped into four main categories:  

 

 

Figure 2:  Four lung nodule types used in the proposed system.  A visual sample of each type 

is provided below the definitions. 

 

As shown above in Figure 2, this classification method is predominantly driven by shape.  

If one were to develop phantoms of each nodule type, distinguishing would be relatively 
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straight-forward as shown in Figure 3.  It should be noted that the nodule itself is distinct 

from surrounding anatomies such as vasculature or the pleural wall, however including 

extraneous anatomies in this classification scheme adds a significant amount of 

robustness to the template matching approach, as shown in later chapters.   By inspection 

of the shape variations of each nodule type, one can see a distinct shape signature emerge 

for each nodule type. 

 

 

Figure 3:  Phantom examples of the four nodule types according to the Kostis’ classification 

framework.  (A) Well-Circumscribed.  (B) Pleural-Tail.  (C) Vascularized.  (D) Juxta-Pleural. 

 

For completeness, Figure 4 illustrates examples of the four nodule types taken from two 

different datasets, the Early Lung Cancer Action Program (ELCAP) [6] and the Lung 

Image Database Consortium (LIDC) [10], thus showing a general uniformity of  these 

nodule types across several sources.   Understanding nodule shape and texture 
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information via these four categories enhances the detection methodology by teaching the 

search algorithm locations in the lung cavity in which nodule likelihood is high and 

further, allows for a more exhaustive search for all possible nodule-like anatomies.     

    

 

Figure 4:  Further illustration of the Kostis’ framework for lung nodule classification.  Two 

examples of each type have been pulled from two independent datasets to emphasize how location 

and shape help define the four nodule categories. 

 

The nodule detection phase passes potential nodule candidates to a second segmentation 

process in order to extract only those pixels belonging to the candidate nodule in 

question, removing all other anatomies surrounding (and possibly attached) to the 

candidate nodule.  Obtaining a tight region that isolates the nodule in question provides 
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input for the last stage of the pipeline: nodule classification.  This stage attempts to 

classify the candidate in question into the categories of nodule or non-nodule.   

    

 

 

Figure 5:  A more detailed outline of the CAD System.  Tissue Segmentation is included in the 

Detection block of this diagram.  Note that the modeling phase of this system is done offline and 

requires expert annotation of training nodules in order to drive the latter part of the system. 

 

If the candidate is classified as nodule, further categorization is carried for the 

convenience of the user.  The classification stage is multi-faceted in that a.) it acts as a 

false positive reducer, b.) it provides the user with a sample diagnosis based on 

previously classified lung nodules.   
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The projected goal of the classification phase is to produce a malignancy metric 

with some confidence level given a detected nodule with the primary purpose of reducing 

the need for invasive biopsy/resection.  A more detailed pipeline is shown in Figure 5.  

The system below has been designed to mimic the process of lung nodule detection as 

clinically performed by radiologists.  Further, the pipeline is meant to enhance this 

process by introducing a fine, computational element—attempting to assist in cases 

where the trained, human-eye may question or even fail.      

  The specific goals of the CAD system are listed below: 

1. Design a statistically significant database of nodules and a methodology to 

simulate possible uncertainties in lung nodules, in terms of size, location, shape 

and texture; 

2. Design a feature detection approach, using topological object descriptors, in order 

to extract the features needed for categorization;  

3. Implement a fast approach for matching using state-of-the-art machine learning 

algorithms, boosted by parallel implementation and a high-level language such as 

C# 

4. Lung nodule segmentation/cropping for enhanced shape modeling and growth-

rate measurement. 

5. Validate the nodule categorization approach with respect to human experts.  

 

  The expected outcome is a computerized approach to detect and categorize 

nodules from CT scans (preferably low-dose) that will be beneficial for day-to-day 

readings of radiological scans, and for use in large scale studies aiming at early detection 
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of lung cancer. The approach will also follow-up nodule growth and will assist in 

deciphering the tissue pathology, eventually reducing the need for biopsy.  The CAD 

system will aim at overcoming several challenges, including:  

 

–  Resolution:  Scale that corresponds pixel size w.r.t. to physical tissue 

dimension 

– Contrast:  Scale that measures the distinction between image components 

and appearance differences between classes of objects 

– Sensitivity:  Ability of the imaging protocol to enhance the contrast 

between anatomical features and non-anatomical features 

– Specificity:  Ability to distinguish pathologies from image information 

– Noise:  Corruption in image acquisition process realized as random 

fluctuations in image intensity 

– Artifacts:  Inaccuracies in visualization due to digitization/compression or 

acquisition process  

– Occlusion/Distortion:  Changes in shape, size, position, and other 

geometric characteristics (Nodules and anatomical structures are highly 

intermixed, thus false positives are inevitable) 

– Spatial Support:  Nodules are extremely subtle in some cases, providing 

little image information 
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Figure 6:  Example of a single slice taken from a noisy CT scan.  The above slice illustrates 

problems with noise, artifacts, spatial support and resolution. 

 

 

  The objective of this thesis is to consolidate and enhance the existing tools 

relevant to the system pipeline above and answer the simple question:  Can lung nodule 

detection truly be aided by an automated CAD system in real-world practice?  While, for 

this thesis, the data-driven methodology and proposed system are aimed at lung nodules, 

this process may also be applied for any anatomy or abnormality studied in medical 

imaging and may prove to be an invaluable medical tool if engineered correctly.   
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Chapter I: Data Acquisition 

 

1.1 Currently Available Lung Nodule Data 

 

  As to be expected, a data-driven approach to modeling is entirely dependent on 

data acquisition.  In order to generate robust and accurate nodule models with this 

approach, the core philosophy is simply ―the more data, the more robust the model‖.  The 

modeling phase in the proposed system needs to draw from a large population of nodules 

that effectively spans as much variation in nodule shape and texture (as has been 

clinically identified), thus enhancing the overall robustness of the models that follow.  

The two modeling approaches addressed in this project can be generalized as parametric 

and non-parametric.  The parametric approach aims at synthesizing object models based 

on simple, known shapes and textures whereas the non-parametric approach is data-

driven and generates object models using a collection of prior object realizations (real-

world samples). The primary fallacy of the parametric modeling approach has been 

previously shown to be the incomplete definition of a lung nodule [20].  Simplifying 

computational nodule models to basic shapes and synthetic textures significantly 

degrades the overall detection and classification outcomes in subsequent steps of the 

proposed system.  Therefore, if the goal of developing this system is enhancing the 

clinical reach of LDCT and providing an assisted diagnosis, the non-parametric approach 

should be adopted.  Computationally learning nodule shape and texture via monitoring 

and mimicking expert clinicians is the most effective route for achieving this goal.       
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  Previous work in this area has been dependent on publicly available lung nodule 

databases.  The most notable datasets that have been employed by the CVIP Lab are the 

ELCAP and the LIDC.  Further, the CVIP Lab has begun collecting data from 

collaborating physicians in both Louisville, Kentucky (Jewish) and Mansoura, Egypt 

صورة) ن م      .A brief overview of these datasets is provided in Table 1   .(ال

 

Database  ELCAP Jewish 

Hospital 

صورة ن م  LIDC ال

# Nodules  397 112 50 2669 

# Patients  50 10 6 1010 

Size Range 

(mm) 
 3 to 5 3 to 21 3 to >40 3 to 27 

Expert Nodule  

Segmentation 
 No No No Yes 

# Clinicians  N/A 1 1 12 

Multiple Slices 

Per Nodule 
 No No No Yes 

Classification 

Offered 
 No Yes Yes Yes 

Retrospective 

Study 
 No No No Accidentally 

 (No Biopsy) 

 
Multiple Scans 

Per Patient 
 No Yes No No 

Scans With 

Radiocontrast 

Agent 

 

 Yes Yes Yes Yes 

Slice Thickness 

(mm) 
 1.25 1.5 to 2.5 1.5 to 2.5 0.6 to 5.0 

Table 1: Overview of the lung nodule databases used in previous work leading up to the design of 

the proposed system.  Both ELCAP and LIDC are publicly available, while the other two have 

been started as part of an effort by the CVIP Lab to build a larger, more dynamic public dataset 

of lung nodules. 
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Table 1 outlines some features of the nodule datasets currently used in the data-driven 

modeling process.  There are roughly 3200 nodules in total in combining the datasets.   

As shown, the publication of the LIDC dataset has provided a significant portion of the 

currently used working nodule population for this system.  Prior to the LIDC, the 

modeling phase of the proposed system was dependent on a population of well under 

1000 nodules.  From a machine-learning standpoint, this is highly inadequate for the 

purposes of capturing accurate, real-world, lung nodule statistics.   The LIDC is also the 

only dataset to provide ground truth, expert outlines of enrolled nodules.  Further, each 

enrolled nodule is annotated and outlined in multiple slices allowing for the extension 

into 3-D.  The LIDC also trumps the other datasets in an increased number of nodules, 

from an increased number of patients with up to 4 expert opinions per nodule.  In pursuit 

of accurate nodule shape, expert outlines are priceless for the purposes of modeling as 

well as validation of automatic nodule segmentation techniques.  Acquiring such an 

extensive dataset involves overcoming several hurdles in the temporal, financial, and 

scientific domains.  The primary constraint in the process of building a lung nodule 

database is attaining a clinical consensus on those nodules that are enrolled.  Figure 7 

shows the discrepancy in expert outlines provided by the LIDC for each of the four 

nodule types.  The outlines provided are all for nodules that are >10 mm in diameter and 

they illustrate a rough consensus on nodule boundary.  However, from a machine-

learning point of view, these contours vary significantly and for smaller nodules in the 

LIDC, the variability in nodule contour greatly increases.   

  While the LIDC may be labeled as the current gold standard in lung nodule 

databases it has many short-comings.  The system designed in this thesis aims allowing 
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collaborating radiologists to continuously add to a dynamic nodule database, which can 

be used for both the construction of a larger, more robust publicly available database as 

well as personal use by radiologists to assist their diagnosis.   

 

 

Figure 7: Sample of expert outlines provided by 4 radiologists to illustrate discrepancy in nodule 

contour for each of the four nodule types.  While the contours appear very similar, from a machine-

learning standpoint they greatly vary given the low spatial support of lung nodules.  Each expert has 

outlined the same nodules.   

 

  One goal of the CAD system is to generate dynamic, data-driven models via 

radiologist(s) annotation for the successive detection and classification of future lung 
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nodules, i.e. personalized machine learning of a radiologist‘s nodule detection technique.  

Further, obtaining a sub-population of nodules in a retrospective fashion will allow for 

the extension of the data-driven approach into modeling nodule malignancy.  It should be 

noted that none of the datasets provide biopsy information for the purposes of tracking 

malignant specimens.  In tracking nodule history in revisiting patients, the modeling 

schema can be extended to model both malignancy and benignity for the future 

classification of nodules with an uncertain level of malignancy. 

 

 

1.2 Data Acquisition in CAD System 

 

  The CAD system designed in this thesis aims at providing a functional and 

efficient data acquisition scheme for operating physicians.  To accomplish this, the 

following classification protocol has been established for enrolling newly annotated 

nodules into the working database: 

 

Feature Description Options 

 

Location 

X, Y coordinates of 

annotated nodule 

 

(Obtained from initial 

annotation) 

 

Slice Number 

Slice number containing the 

annotated nodule according 

to the sorted scan 

 

(Obtained from initial 

annotation) 

 

Anatomical 

Location 

Anatomical region of the 

lung in which the annotated 

nodule was detected 

1. Central 

2. Peripheral 

3. Subpleural 

4. Other 
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Morphology 

Information regarding the 

contour of the annotated 

nodule 

1. Smooth/Round 

2. Lobulated 

3. Spiculated 

4. Aytpical 

 

 

Subcategory 

Category in which the 

annotated nodule belongs 

according to the Kostis‘ 

classification standard 

1. Well-Circumscribed 

2. Juxta-Pleural 

3. Pleural-Tail 

4. Vascularized 

5. None 

 

 

Calcification 

Pattern in which calcium 

deposits appear within the 

annotated nodule 

1. Popcorn 

2. Laminated (Concentric) 

3. Diffuse 

4. Central 

5. Completely Calcified 

6. Partially Calcified 

7. Non-Calcified 

8. Fat 

9. Other 

 

 

Attenuation 

Pattern in which radiation is 

absorbed by annotated 

nodule 

 

1. Solid 

2. Mixed-Solid 

3. Ground Glass 

4. Other 

 

 

Estimated 

Malignancy  

Estimation from user 

regarding the possibility of 

malignancy in the annotated 

nodule 

Percentage ranging from 0 to 

100% with incremental steps of 

1% 

Table 2:  Data acquisition scheme for enrolling newly annotated nodules into the working 

database.  Each option presented is explicit, meaning only one may be chosen by the user. 

 

  These acquisition criteria have been selected based on CVIP collaboration with 

expert physicians/radiologists and outline a robust signature for each newly enrolled 

nodule that has been manually annotated by a physician using the CAD system.  The first 

two features, Location and Slice Number are obtained from an initial point and click by 

the reading physician where the nodule has been found and are stored for later 

referencing.  Anatomical Location describes the region of lung in which the annotated 
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nodule was found.  Centrally located nodules exist within the lung parenchyma (bulk of 

the organ), peripheral nodules exist on the edge of the parenchyma and subpleural 

nodules exist between the pleura and parenchyma.  Morphology addresses the geometric 

features of the annotated nodule‘s outermost contour.  The options available for 

morphologic classification are listed in ascending order of suspicion.  Nodules contours 

that exhibit low change in curvature and appear smooth have a lower likelihood of 

malignancy.  Likewise, nodules with contours that have corona radiata appearance or 

appear as a sunburst pattern (high changes in curvature) are generally more likely to be 

malignant.  The medical definition of corona radiata is an encircling structure that 

resembles a crown.  See Figure 8  below: 

 

 

Figure 8:  Synthetic examples of contours corresponding to nodule morphology.  (Left) 

Smooth/Round, (Middle) Lobulated, and (Right) Spiculated. 

 

    

  The Subcategory refers to the Kostis‘ classification scheme discussed above:  

Well, Juxta, Tail and Vascular.  The user can opt to categorize the annotated nodule as 

Other for this feature if ambiguity or uncertainty exists.  Calcification is generally a 

more reliable indicator of benignity [21].  Here, the user is polled to provide information 

regarding the pattern with which calcium deposits occur in the annotated nodule, which is 

determined by inspecting the spatial distribution of the Hounsfield Units (HU).  Nodule 
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calcification generally appears in distinct patterns, some of which are associated with 

benignity.  See Figure 9  below.  Popcorn calcification is usually an indication of 

hamartomas, which are benign and grow at the same rate as the lung tissue.  Likewise, 

laminated, central and diffuse calcification patterns can be indications of granulomas, 

which are inflammations caused by the body‘s attempt to isolate a growth that is 

identified as foreign. Granulomas are also benign in nature.  The remaining options for 

this feature allow the user to assign a calcification pattern to an annotated nodule that has 

a likelihood of malignancy, including Non-Calcified.   

 

 

Figure 9:  Synthetic examples of benign calcification patterns.  (Left) Diffuse, (Second) Central, 

(Third) Laminated, and (Right) Popcorn. 

 

 

  Attenuation addresses the opacity of annotated nodule and is related to the 

density of the lesion, providing a metric of radiation absorption.  In terms of imaging, this 

is visually realized as the uniformity and opaqueness of a nodule‘s intensity.  Solid 

attenuation appears as more uniform, opaque intensity whereas Ground Glass refers to a 

more inhomogeneous and translucent intensity.  Ground Glass nodules are generally 

higher indicators of malignancy.  The final feature assessed by the user is Estimated 

Malignancy.  This allows the physician to estimate malignancy percentage on a scale of 

0-100% in discrete, 1% increments.  This value is strictly an estimate unless the nodule 
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has a history of biopsy, but allows the system to analyze correlations between estimated 

malignancy and the features described above.     

     Chapter 6 outlines how the system has been designed in order to obtain these 

annotated metrics from operating physicians, including real-time user interaction as well 

as the scheme for organizing and storing nodule data. 
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Chapter 2:  Tissue Segmentation 

 

2.1 Overview and Motivations 

 

Segmentation is a well-investigated problem in image processing and yet, given 

the number of expansive and diverse approaches available, it still remains unsolved.  The 

ambiguity of segmentation lies in its definition, which for a large number of cases, is 

application-based.  The literature on this issue is thorough and extensive, providing a 

wide variety of segmentation solutions for an even wider array of scenarios.   

Segmentation is defined as the following:  

Segmentation - The process of partitioning a signal into individual regions—

each with varying levels of interest depending on the application.  

 For this component of the system, our region of interest is that bounded by the tissue 

contour.  

 

Figure 10:  Visual illustration of the segmentation of lung tissue from raw CT.  (Left) Raw Chest 

CT.  (Middle) Red region highlights segmented lung tissue.  (Right) Lung tissue boundary obtained 

from segmentation process outlined in red.  Image taken from [9].  

 

The goal of tissue segmentation is to reduce the search domain for detecting lung 

nodules.  Removing various anatomies such as the heart, ribs, and fluids, reduces the 
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search domain to only the lung tissue, known to contain lung nodules.  This pre-

processing procedure greatly aids the overall computational efficiency of the system and 

only needs to be conducted once per scan, provided the results are desirable to the user.  

Saving and retrieving segmentation results of a previous scan is simple task and a 

functional background component of the overall system. 

Although there are countless available options for this task, we have employed a 

selection of simple methods with the motivation of keeping computation time to an 

absolute minimum.  For the proposed CAD system, the tissue segmentation approaches 

have been empirically chosen to be the 3D Level Set method and the Expectation 

Maximization method—both of which minimize the need for user interaction and yield 

results less sensitive to variations in CT scanning protocol. 

 

2.2 Expectation Maximization Algorithm 

 

  The Expectation Maximization (EM) algorithm is an iterative procedure for 

finding maximum likelihood estimates of parameters of statistical processes in cases 

where the process depends on hidden, random variables. The EM algorithm iteratively 

alternates between an expectation step and a maximization step.   The expectation step 

finds the expectation of the log-likelihood current parameter estimates while the 

maximization step maximizes the expected log-likelihood produced in the expectation 

step.  This process leapfrogs back and forth until converging to stable parameter 

estimates, which describe the statistical process.   

http://en.wikipedia.org/wiki/Maximum_likelihood
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Likelihood_function#Log-likelihood
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  Assume a set of observed random variables, X, and a set of hidden random 

variables, Z.  These variables have a likelihood        ⁄ , where   represents an 

unknown vector of parameters needed to describe      The maximum likelihood estimate 

(MLE) of   is given by: 

 

        ∑        ⁄      (1) 

 

The MLE can be numerically computed using the EM algorithm.  The first step is the 

expectation step, which computes the expected value of the log likelihood function with 

respect to the current estimated parameter vector,   .   

 

           ⁄⁄ [           ⁄  ]    (2) 

 

The maximization step of this algorithm, finds the parameter vector    such that   max: 

 

          [      ⁄ ]     (3) 

 

If the form of   is assumed to be a Gaussian Mixture Model (GMM) [ref GMM],   

(mean and covariance) based on the empirical analysis of chest CT histograms, the EM 

algorithm can be adequately applied to isolating the intensity bandwidth that belongs to 

the lung tissue.  For a more in depth derivation, see [42]. 
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2.3 Level Sets 

 

A level set function           can be cast as the minimum distance 

between any pixel     and the boundary pixels of a given object.  This information can 

be captured with a Signed-Distance Map (SDM), shown in Figure 11.  Using image 

intensity, an initial contour evolves in an attempt to fit to the true object contour.   

 

 

Figure 11:  Sample signed-distance maps of the four nodule categories.  These maps are used to 

build the prior shape model and during the process of nodule segmentation to drive the 

propagating front.  This figure pertains to nodule segmentation, however it illustrates the meaning 

of the Signed-Distance Map. 

 

Given an image I:         the tissue segmentation process aims to partition 

the given CT slice into two regions: tissue, (denoted as t) and background (denoted as b).   

A contour will be obtained, which bounds all pixels   t.  An error metric is employed to 
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drive the process, which counts the number of correctly classified pixels as compared to 

the total number of pixels in the image. 

This error metric is given by: 

      ∫   (    )
  

     ∫   (    )
  

     (4) 

   and    represent the probability of intensity for both tissue and background, 

respectively.     and    represent the prior probabilities of tissue and background, 

respectively.  It should be noted that the intensity distributions of both tissue and 

background are assumed to be Gaussian based on the evident histogram modes present in 

Chest CT.  Contour evolution is based on minimizing the following energy functional: 

        ∫        
  

     ∫         
  

    (5) 

 where H is the Heaviside step function and       represents the narrow band region 

around the current zero-level,  .  For the purposes of smooth evolution, the contour arc-

length, L is also considered for minimization: 

        ∫        
  

     ∫         
  

       (6) 

 

where   represents a smoothing factor.  Minimization of this term is carried out using the 

Euler-Lagrange formulation with the gradient descent optimization: 

  

  
                       (7) 

where   is the derivative of the Heaviside function and   is the curvature.  Iteratively 

solving         , obtains the current evolving contour. 
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  For the application of lung tissue segmentation, the level-set method above is 

computationally expensive.  The recursive computation of the signed-distance function is 

a computationally strenuous process—especially when the object of interest accounts for 

a large part of the image domain, such as with the lung tissue.  Due to the appearance of 

lung tissue in CT, this process can be abridged to the following algorithm: 

 

1.) Initialize the object of interest: ΦInit  with known seed points: 

a.) Generate an inital object mask such that:  Pixels   Initial Object = 1 (pixels 

bounded by ΦInit), and Pixels   Initial Object = 0 (pixels outside ΦInit) 

 

 

Figure 12:  Initial object contour obtained from known seed points within the region of interest.  

These seed points come from contextual cues, pre-processing or manual interaction.  Illustrated in 2-

D but may easily be extended to 3-D. 

 

2.) Let Object = Initial Object, and Φ = ΦInit .  Iterate: 

3.) Obtain the 3-D edge map of Φ: 
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Figure 13:  Binary edge map of the initial object region.  Pixels on the contour have a grayscale 

intensity of 255 and all remaining pixels have a grayscale intensity of 0. 

 

 

4.) Narrow Band the 3-D edge map: 

a.) Grow the edge map a distance of 1 pixel in all directions and store as Narrow 

Band 

 

Figure 14:  The narrow band consists of all pixels neighboring the contour in the edge map.  The 

narrow band region houses all candidate pixels which may be accepted as belonging to the object of 

interest or rejected and classified as background pixels. 
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5.) Update Φ→ Φ+: 

a.) Calculate the mean intensity of pixels belonging to Φ and the mean intensity 

of the remaining background pixels,         and             

b.) For each pixel x   Narrow Band with intensity I(x), Calculate:     

|            | and     |                |. 

If       :  Φ(   = 1,  else:  Φ(   = 0 

 

 

Figure 15:  Illustration of Φ converging to the true object contour.  Evolution is terminated by 

pre-determining the number of iterations Φ may undergo or by monitoring a lack of significant 

change between consecutive iterations.  

 

 

6.) (Optional)  Smooth Φ using 3-D median filter 

7.)  If  Iteration # > Termination #, return Φ 

Else  Jump to 3.) 
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Applying the above algorithm to an input image will output a final object mask, in which 

pixels belonging to the object of interest are labeled as 1 (White) and pixels belonging to 

the background are labeled as 0 (Black).   

 

 

Figure 16:  Output of statistical level sets algorithm.  The resulting binary mask consists of two 

classes, Object and Background.  This mask is used to isolate true object pixels in the original image. 

 

 

Some sample results of the algorithm applied on Chest CT images are shown 

below in Figure 17.  The abridged algorithm is sufficient for segmenting the tissue from 

the Chest CT—primarily due to strong, well-defined edges along the pleural wall and the 

distinct modes apparent in the histogram of a Chest CT slice.  The lung tissue is 

statistically separable from other anatomies in the image and thus, the algorithm performs 

well.  However, there is one major downfall to this approach: initialization.  The level-set 

segmentation process is extremely dependent on initialization.  For implementing this 

approach in the overall system, this leaves two options:  1.) rely on manual seeding of the 

lung tissue by the user or 2.) use an automatic approach to obtain seed pixels which are 



39 
 

known to belong to the lung tissue.  Both options are made available to the user in the 

proposed system.  The EM algorithm, as described above, is used as the automatic 

seeding solution.  The EM segmentation process is applied to the median slice within a 

scan, providing an initial 2-D mask.  Using the same labeling scheme as described above, 

the centroids of both the left and right lung can be estimated.  The two centroids and a 

narrow-band region around each are treated as seed points within the tissue in order to 

generate ΦInit. 

 

 

Figure 17:  Sample, 2-D projections obtained from 3-D Statistical Level-Sets algorithm.  (Top row) 

Binary object masks isolating lung tissue.  (Bottom Row) Original CT images with final contour 

shown in red. 
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Chapter 3: Nodule Detection 

 

3.1 Overview, Motivations and Challenges 

 

  The goal of CAD system development for lung nodules is assisted diagnosis—

namely, early detection.  There are several challenges to overcome when addressing early 

nodule detection.  As previously discussed, nodule spatial support is a significant 

limitation when applying pattern recognition methodologies.  Noise, high slice thickness, 

low image resolution, small nodule diameter, high variation in nodule shape and 

appearance, high variation in nodule intensity distribution and occlusion all greatly affect 

the process of accurately modeling and automatically detecting lung nodules.   

   

 

Figure 18:  Sample of lung nodules at 10 mm or less in diameter, provided by the LIDC.  This 

figure is meant to illustrate the large variation in nodule shape and appearance that is evident even in 

small populations. 
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Figure 18 illustrates these factors with an ensemble of small lung nodules taken from the 

LIDC dataset. 

 

3.2 Nodule Modeling and Detection 

 

  The goal of the data-driven approach is to capture texture and shape information 

from real-world nodules.  This framework is based on the application of Active 

Appearance Modeling (AAM) and Active Shape Modeling (ASM).  For application in 

image processing, each of these modeling approaches requires an annotated ensemble of 

images representing variations in the appearance and shape of the object which is to be 

modeled.  Thus, as described before, the larger the population of nodules to pull from; the 

more accurate the resulting models.  As proposed in [20], once a database of nodules has 

been acquired, a sub-database consisting of a minimum of 24 nodules per type are used to 

generate mean data-driven nodule templates (i.e. representations or models) to be used 

for candidate nodule detection.  The sub-database of nodules are annotated to highlight 

the basic geometric and structural features of the nodules. Then a Procrustes based AAM 

approach is used to co-register the nodules and obtain a mean representation per type that 

captures the major features in terms of both shape and texture information.  The data-

driven (non-parametric) approach to nodule modeling is discussed in detail in [8], and the 

framework presented is adopted in this thesis.   
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Figure 19:  AAM models produced from an ensemble of 24 nodules taken from the ELCAP 

database.  (Top Left) Well-Circumscribed, (Top Right) Vascularized, (Bottom Left) Juxta-Pleural, 

and (Bottom Right) Pleural-Tail. 

 

Using nodule templates (models) from AAM and ASM, candidate nodules can be 

detected in CT scans using a template matching scheme.  With the use of all four nodule 

templates, the system can detect nodules located at or close to the pleural surface, nodules 

embedded in vasculature and solitary nodules isolated in the lung tissue.   Each template 

is independently swept across the lung tissue regions (obtained from lung tissue 

segmentation) in a raster fashion.  At each new location, a region of interest is extracted 

from the original image, and a distance measure is computed between the current 

template and this region.  By inspection of the nodule models in Figure 19, this method 

will return poor results due to nodule orientation.  Thus, the proposed scheme iteratively 

rotates the nodule templates prior to the subsequent search.  The system allows the user to 

specify how many rotations to account for due to timing constraints.  Algorithmically, the 

search scheme is as follows: 
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 For each  Nodule Template, TN :  N=1,2,3,4  (Well, Juxta, Tail, and Vascular) 

  For each  Rotation, RN : 0→360° 

1.) Rotate TN   by  RN  to obtain TN’ 

2.) Raster across region containing lung tissue, I(i,j).  For each 

i,j : 

a. Crop a region of original image, IC, the same size as 

TN  

b. Calculate some distance measure, δ, between TN’ and 

IC 

c. If δ > threshold (set by user), Label  I(i,j) as a 

detected nodule 

  End 

 End 

Table 3:  General overview of the nodule detection algorithm used in the proposed system. 

     

The detection scheme above returns an array of distance measures for each template at 

each rotation and the system handles up to (optional) 36 discrete rotations—0 →360° in 

10° increments.  Thus, at a maximum, the process of sweeping a nodule template across 

the lung tissue in one slice occurs 36 times per template, totaling 144 passes per slice as 

shown in Figure 20.  Assuming image resolution to be 512x512 and slices per scan to be 

approximately 250-350, the process of detection can quickly become cumbersome.  Thus, 

this detection procedure is sensitive to computation time and choice of distance measure.   
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Figure 20:  Illustration of the nodule detection scheme carried out on one slice, using each of the 

four templates at 36 rotations a piece.  The process results in a stack of images corresponding to 

varying levels of similarity to one of the following templates at a given rotation. 

 

Chapter 6 discusses optimizing computation time in detail using parallel programming 

techniques.  The following section overviews distance measures historically used in this 

work as well as those which have been chosen to be viable for the CAD system. 

 

 

3.3 Distance Measures 

 

By definition, distance is a metric to describe how far apart two entities are.  With 

respect to pattern recognition, distance may be cast as a similarity measure between two 
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signals, i.e. images.   A robust distance measure is needed to efficiently measure the 

similarity between a nodule template and a given region of lung tissue.  In the previous 

work in [8] the following distance measures were tested for the application of nodule 

detection: 

 

 

Normalized Cross 
Correlation (NCC) 
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√∑   
       ∑   
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Sum of Hamming 
Distances (SHD) 

    ∑                                

       

 

Table 4: Distance measures considered in previous data-driven detection scheme.          

represents the template,         is the image slice or input image,   is the region of interest on which 

the similarity measure is evaluated,   ̅    is the mean of the template image, and   ̅    Is the mean of 

the input image slice. 

 

  These distance measures have been exhaustively tested in [49] however no 

individual metric has proved superior.  [8] found the LSSD to be inadequate for nodule 

detection.  This narrows the criteria of selecting a metric for the CAD system down to 

one factor:  computation time.  In the spirit of engineering, the EMGU library (extension 

of OpenCV to C#) provides extremely fast implementations of the following distance 

measures:  Cross-Correlation (CC), Normalized Cross-Correlation (NCC), Sum of 

Squared Distance (SD), Normalized Sum of Squared Distance (NSD), Correlation 

Coefficient (CF), and Normalized Correlation-Coefficient (NCF).  A comparison of 

computation time for each of these distance measures is provided in Chapter 6. 

 

 

3.4 False Positive Reduction 

 

  In medical diagnostics, two measures of a detection scheme are typically 

calculated to profile the effectiveness of a given procedure:  sensitivity and specificity.  

To understand these metrics, we must first understand the basics of Type I and Type II 

errors in statistics.  As an example, assume a new test has been created to diagnose 

patients with Cancer and two patients undergo such a test.  Further assume that Patient A 
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truly does have Cancer while Patient B does not.  The performance of the new test can be 

determined by monitoring the following measures: 

 

1.) If the test determines that Patient A, does in fact have Cancer, this is classified 

as a true positive (TP).   

2.) If the test determines that Patient B has Cancer, this is classified as a False 

Positive (FP).  This is a Type I Error. 

3.) If the test determines that Patient A does not have Cancer, this is classified as 

a False Negative (FN).  This is a Type II Error. 

4.) If the test determines that Patient B does not have Cancer, this is classified as 

a True Negative (TN). 

With these measures we can define sensitivity and specificity: 

 

            
   

       
     (8) 

           
   

       
     (9) 

 

Sensitivity provides insight into the new test‘s capability of detecting positive results, i.e. 

identifying those patients with Cancer.  Specificity provides insight into the new test‘s 

capability to detect negative results, i.e. healthy patients. 

  In the case of automatic lung nodule detection—especially early detection—the 

probability of Type I error is relatively high, given low spatial support, small nodule 

diameter, nodule resemblance to other anatomies, noise etc.  In medical imaging 

applications, one would clearly prefer a high false positive rate versus a high false 
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negative rate.  However, the effectiveness of a CAD detection scheme will be miniscule 

if the operating physician is forced to sift through a sea of false positive nodules.  The 

clinical value of such a system is low.  Further, even if a false positive exemplifies a 

healthy patient, it is still an error in detection and could lead to unnecessary and invasive 

biopsy. 

  In [8], the highest reported sensitivity is 86.94% using AAM templates created 

from the ELCAP database.  Further, the average sensitivity for all non-parametric 

experiments with these AAM templates is only 81.17%.  This work employs both the 

Scale-Invariant Feature Transform (SIFT) and the Local Binary Pattern (LBP) for False 

Positive Reduction (FPR), however neither of these methods yield feasible computation 

time for use in a clinical CAD system—with runtimes exceeding two days for only one 

scan in MATLAB.  The proposed CAD system handles FPR in a much more interactive 

fashion—allowing the physician to calibrate the system to his/her preferred intensity of 

FPR.  

  The detection phase of the system yields a stack of correlation arrays 

corresponding to multiple rotations of multiple templates as shown in Figure 20.  Each 

element of this stack represents correlation results from the same input slice.  Each 

element is summed and normalized to generate one total correlation array.  The FPR in 

this system can now be broken into two components, as provided by the system:  1.) 

Coarse and 2.) Fine.  Both represent thresholds which truncate the detection results. The 

Coarse Threshold immediately disregards all pixels below its value.  The Fine Threshold 

allows the user to window a certain percentage of those pixels that remain after applying 

the Coarse Threshold.  See Figure 21 below: 
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Figure 21:  Illustration of False Positive Reduction for the case of the Normalized Cross-

Correlation distance measure where correlations range between 0 and 1.  The Coarse Threshold 

rigidly truncates pixels and the Fine Threshold isolates the highest x percent, depending on its value. 

 

The implementation and usability of this FPR scheme is outlined in more detail in 

Chapter 6. 

 

 

3.5 Tensor Modeling for Malignancy Classification 

 

  As an aside, some extraneous work has been done in this thesis to mimic the 

tensor approach proposed by [17].  A tensor is an N-D array that describes relationships 

between its elements.  A rank n tensor in m-dimensional space is a mathematical object 

that has n indices, m
n
 components and obeys certain transformation rules.  Thus a matrix 

is a 2
nd

-order tensor, a vector is a 1
st
-order tensor and a scalar is a 0

th
-order tensor.  [17] 

proposed an N-D tensor framework as an extension to the Eigenface approach for the 

application of facial recognition.  This work constructs a 6
th

-order face tensor using 

images of faces with the following dimensions:  Illumination, Pose, Expression, Subject, 

Row Pixels, Column Pixels.  In facial recognition literature, these dimensions are claimed 

http://mathworld.wolfram.com/TensorRank.html


50 
 

to capture all variation in facial imaging.  In this way, [17] enhances the EigenFace 

approach for recognition by adding dimensions.   

  The crux of this approach is building an N-D tensor.  For the application of facial 

recognition above, a dataset had to be constructed consisting of 28 subjects, 5 poses each 

with 3 illuminations and 3 expressions—a total of 1260 images required to fill the tensor.  

To extend the AAM and ASM lung nodule models designed in [8] for the tensor 

approach requires an expansive dataset of nodules to choose from.  Further, each element 

in the tensor must be filled, thus making the choice of dimensions a tradeoff between 

capturing significant variation and availability.  Some preliminary work has been done 

with the LIDC dataset to adopt this approach for lung nodule modeling. 

 

3.5.1 Building a Data Tensor with Lung Nodules 

 

To build an adequate tensor, each nodule in the LIDC dataset was further 

classified based on the Kostis classification framework, as well whether the scan 

containing each nodule had been exposed to a contrasting agent.  4 dimensions were 

defined to maximize variability in the training population: 

Dimension 1: Nodule Morphology (based on Kostis et. al framework) 

1 - Well-circumscribed  

2 - Juxta-Pleural  

3 - Pleural Tail 

4 - Vascular 

Dimension 2: Illumination (Use of contrasting agent) 

1 – No Contrasting Agent 



51 
 

2 – Contrasting Agent present 

Dimension 3: Nodule Margin - The radiologist's assessment of the sharpness of the 

nodule's margin (Provided by LIDC radiologists)    

1 – Poor  →  5 - Sharp 

Dimension 4: Nodule Sphericity - The radiologist's assessment of the roundness of the 

nodule. 

1 - Linear 

2   

3  - Ovoid 

4   

5 – Round 

  

Each tensor element is a cropped DICOM image of a nodule which meets all intersecting 

criteria for the tensor seat.  The size of the tensor (with the above dimensions) becomes 4 

x 2 x 5 x 5 x m x n = 200 elts. of nodule images,       (50 per nodule type). 

 

3.5.2 Solving for the Core Tensor, Z 

 

Given an image of a nodule,     where D represents the data tensor, we need to 

align and resize such that      are of size m x n.  To do this, we deploy an alignment 

method in MATLAB taken from the AIT skin detection tutorial, [51].  Firstly, width, 

height, orientation and centroid of the binary region under consideration must be 

computed.  For the LIDC, we define a binary nodule region as the area obtained by filling 

the contours provided by expert radiologists.  Next we define a template nodule for each 

of the 4 classes: W-C, J-P, P-T and V.  These template nodules can be the average nodule 

for each class.  Then, each image is resized, rotated and its centroid placed on the 



52 
 

centroid of the region in original grayscale image with only one region in it.  We force a 

ground-truth size of m x n for all four mean nodules that are generated.  Given the 

governing equation: 

 

                                                                 (10) 

Were xn represents the mode-n product 

1. For n = 1,…,N, compute matrix     by computing the SVD of the 
flattened matrix      and setting    to be the left matrix of the 

SVD 
 

2. Solve for the core tensor, Z, as follows: 
 

             
              

            
                 

           
 
 (11) 

 

 

  A dataset of nodules to build a data tensor cannot be collected in same way as a 

dataset for faces.  There is no controlled protocol for data collection of lung nodules—

they come as they come.  Thus, the success in building a data tensor using the LIDC was 

an unexpected surprise.  Using MATLAB code provided by [17], a sample of tensor re-

projections taken from the Nodule Tensor are shown below in Figure 22:    

 

 

Figure 22:  Sample of tensor re-projections obtained using the Tensor Toolbox provided by [17]. 
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Chapter 4: Nodule Segmentation 

 

4.1 Overview, Motivations and Challenges 

 

Segmentation is a process that is defined in Chapter 2.  As applied in medical 

imaging, segmentation is plagued by several challenges such as inhomogeneous 

anatomies, ambiguous boundaries, resolution, occlusion, noise, and low spatial support.  

In the case of lung nodule detection and diagnosis, these challenges are difficult for both 

CAD systems and radiologists themselves to overcome—especially low spatial support 

when the task is early detection (nodules roughly less than 3-5mm in effective diameter). 

These difficulties allow for continuing research in lung nodule segmentation.    

The significance of segmenting lung nodules is validated by the notion that shape 

and growth can be good indicators of malignancy. The precise segmentation of lung 

nodules thus serves the purpose of computationally determining the exact size of the 

nodule as well as retrieving some shape metric, which may be used as predictors of 

malignancy.  Shape is directly related to the morphology of a lung nodule, which is used 

in radiological practice as an indicator of malignancy—along with features such as size 

and morphology.  A spiculated nodule has irregular shape, contrasting that of a smooth, 

round nodule, which appears more elliptical and without points of high curvature along 

the contour.  Smooth, round nodules are more likely to be benign whereas spiculated 

nodules have a much higher likelihood of malignancy.  This correlation between 

morphology and malignancy presents a need for the accurate extraction of exact nodule 

boundaries in current CAD systems aimed at lung nodule detection. The solution of this 
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segmentation problem is motivated by providing some shape metric, such as mean 

curvature, as quantification of nodule morphology—thus, a more exact indicator of 

malignancy.  Further, the accurate extraction of a tight nodule contour allows for a more 

accurate size metric for growth tracking as well as an extension into 3-D nodule 

visualization.  Some challenges regarding nodule segmentation include: Small nodule 

size, varying occurrence w.r.t. anatomical location with lung cavity, nodule merging with 

other anatomies such as vasculature and pleural surface, noise and in-homogeneities 

generated from the imaging process, and a lack of strong edges exhibited by some lung 

nodules. 

 

4.2 Preprocessing 

 

In this stage of the pipeline, we wish to accurately extract the nodule from the CT 

slice.  With a precise contour around the nodule, we can quantify shape and texture 

information strictly from the nodule itself—ignoring the surrounding tissue.  From our 

detection step, we are assuming with high confidence that we have a pixel belonging to 

the domain of pixels that we classify as ‗nodule‘.   The initial step in nodule extraction is 

auto-cropping.  The goal is to obtain a rough, but tight, crop box around the nodule to 

narrow the effort of a segmentation routine, which will perform extraction.  To handle 

this, we employ a very simple and effective region-growing algorithm.  From the 

detected seed point, four lines (centered about the seed point of considerable length) are 

swept in a raster fashion in each cardinal direction away from the seep point.  Each 

growing line propagates or terminates based on the frequency information of the pixels 
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lying on it.  Given an empirically determined threshold, we terminate growth based on 

the weighted sum of the mean intensity and the mean intensity gradient of each line, 

independently: 

if       
        

    ,   grow 

else,   terminate 

where       empirically determined weights  

  
 :  the mean intensity along the n

th 
line 

   
 :  the mean intensity gradient along the n

th 
line 

T: empirically determined threshold 

 

Once each propagating front has terminated, we obtain a crop box by default using their 

intersection.  In this fashion, we may narrow the domain with which our segmentation 

routine must operate and with some accepted crop box surrounding the nodule, we can 

more effectively deploy a segmentation routine to extract the exact boundary of the 

nodule.   

 

4.3 Level Sets with Shape Priors 

 

  In the method proposed by Abdelmunim et al. [32] the Level-Set Segmentation 

framework described in Chapter 2 is augmented by embedding a prior shape model into 

the energy functional.  This recasts the process of segmentation as a procedure closer to 

registration, in which prior shape models generated from the four categories proposed by 

Kostis‘ et al. are registered with candidate nodule contours.  This framework does not 
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lend itself to implementation within the CAD system because it requires prior knowledge 

of which of the four nodule categories the candidate nodule belongs in order to initialize 

the correct shape model.  In this stage of the pipeline, this is not feasible.  Regardless, for 

the sake of completeness, some sample results of this procedure are shown below in 

Figure 23 and Figure 24.   

 

 

Figure 23:  Illustration of the level set algorithm as applied to nodule segmentation.  (Left 

Column) Initial nodule crop-box.  (Left Middle Column) (Right Middle) Initial contour.  (Right) 

Final nodule contour.  
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Figure 24:  Sample results from the level set method driven with shape priors.  This method is 

relatively successful but requires prior knowledge of the nodule type (according to 1 of the 4 

categories outlined in this thesis). 

 

 

4.4 Expectation Maximization for Nodule Segmentation 

 

 

The method here is the same as in Chapter 2.  As such, this strictly intensity-

based segmentation scheme is not as sensitive to weak edges, low spatial support, noise 

etc.  However, the resulting nodule segmentation will have to undergo morphological 

post-processing in order to obtain homogeneous, segmented regions.    

 

4.5 Variational Ellipse 

 

  The use of variational segmentation methods (such as Level-Sets) has been 

discussed in Chapter 2 and is implemented above in Section 4.2.  However, these 

methods aim at extracting a contour based on intensity and gradient information.  For 
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solitary nodules (Well-Circumscribed), these methods will succeed but for Vascularized, 

Pleural-Tail and Juxta-Pleural, these methods will generally include extraneous 

anatomies such as the pleural wall or vasculature due to homogeneity and strong edges.  

It should be noted that the definition of a nodule does not include surrounding anatomies.  

When a physician measures nodule characteristics, such as size, they only account for the 

―head‖ of the nodule.  Thus, a new variational solution was proposed in [32], which 

simplifies the variational approach to accommodate only the nodule head.  The solution 

forces an elliptical contour to deform until convergence, in an attempt to isolate the 

region of the nodule candidate that best resembles the elliptical appearance of a nodule 

head.  

This process aims to compute a transformation that warps a candidate shape ( ) to 

a target shape (     The source and target shapes are represented by Signed-Distance 

Maps   and   .   We further assume scale, rotation and translation elements:   

    (     ),   (associated with a general rotation matrix R) and   [     ]
    The 

signed distance map can be expressed in terms of its projections in x and y directions as: 

  [     ]
   at any point in either shape.  Applying a global transformation, A on    

results in         .  Thus, the magnitude is defined as:     ‖   ‖ and the 

constraint        (     )  arises.  The difference between the warped shape and 

target shape can be formulated as: 

     ‖       ‖           (12)   

Which yields: 

    ∫   
         

 
       (13)  
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 where     reduces the complexity of the problem and   is the size of the narrow band 

around the contour. The given measure   satisfies                 where   

   (     )  Thus, if      , the following energy function results; 

  ∫   
 (     ) (            )

 

 
       (14)  

The parameters                 are required to minimize the energy functional     A 

more in-depth derivation can be found in [32]. 

The following algorithm results from the above formulation: 

1. Construct the initial prior shape ellipse and its shape model representation   . 

2. Compute the intensity segmentation region representation    using Level Set 

evolution. Iterate until the function converges.  

3. Initialize the transformation parameters to            and    . Assuming that 

the nodule center is known which initializes the translation parameters    and     

4. Solve the gradient descent approach to minimize the energy. Parameters converge to 

their steady state values and hence the final boundaries of the ellipse are computed. 

5. (Optional) Threshold the region inside the ellipse to accurately mark the nodule 

pixels. The resulting region may under-go a median filter smoothing step to remove 

noisy pixels. 

Table 5:  Variational Ellipse algorithm used for nodule segmentation.  This method uses the Level-

Set evolution of a forced elliptical boundary in order to isolate the nodule head from the surrounding 

anatomies as in the cases of Vascularized, Juxta-Pleural and Pleural-Tail nodules. 

 

The advantages of this approach are: 1.) no required, prior model 2.) independent of 

initialization 3.) independent of nodule size 4.) independent of nodule location and 5.) 

independent of nodule category. 
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4.6 HEAT 

 

This algorithm was developed by the author and is as follows.  Given a 2-D 

signal,    , where x is some node, suppose we have n classes within     .  For our 

purposes, let      be the crop box around the nodule.  Given     , we can easily extract 

the histogram     , which upon inspection, generally possesses few ―natural thresholds‖, 

which we are defining as zero-crossings in     .   

 

Figure 25:  (Left) Solitary nodule detected from a low-dose CT scan.  (Right) Histogram of 

detected nodule. 

   

In reference to the histogram above in Figure 25, many techniques, such as Expectation-

Maximization, rely on the inference of optimum thresholding based on information 

directly exhibited by the signal itself, i.e. gradient information, or a-priori information to 

isolate individual classes and thus segment the nodule.  Further, some thresholding 

techniques require prior knowledge about the number of classes in the signal or even a 

prior probability density function to which the current histogram can be fitted to.  The 

Heat algorithm pursues an ideal weighting function,     , such that upon the process of 

generating a new signal:               , we promote ―natural thresholds‖ in the 

updated histogram i.e. obtaining the appropriate number of isolated regions in the 

histogram of     , where isolated regions are defined as bandwidths with non-zero area 
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in the histogram with natural boundaries defined by occurrences of zero frequency. The 

goal is to find      such that       is min, where n is the true number of classes in 

     and r is the number of isolated regions in hist(    ).  The proposed solution to this 

problem is to let          , where      is the histogram of     , and assumed to be 

the probability density function of the image 

The results from employing this solution for an image of a lung nodule appear as follows: 

 

 

Figure 26:  (Left) Original histogram of I(x), the nodule in Figure 1.  (Right) The normalized 

histogram of J(x), the resulting in the multiplication of I(x) with its own probability density. 

 

By inspection of the updated histogram in Figure 26, one can immediately see the large 

number of natural thresholds generated by weighting the original image in such a fashion.  

It should be noted that the histogram of the updated image has been normalized back 

from 0-255.  In this way, we are performing a very simple compression and in doing so, 

we are binning infrequent pixels to a single class of pixels in the updated image.  This 

class represents pixels of little interest in the image, i.e. noisy pixels. 
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Figure 27: The initial step of the HEAT algorithm.  The updated image J(x) becomes the image to 

be segmented. 

 

Using a simple image labeling procedure, the input image is partitioned into classes based 

on the natural thresholds computed.  The output of applying the Heat algorithm is shown 

in the labeled image in Figure 28.   

 

 

Figure 28: Results from inputting a crop box of a lung nodule into the HEAT algorithm.  

Individual classes are shown in different colors on the right. 
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To obtain the final nodule segmentation, the Heat algorithm needs a single seed point 

belonging to isolate the class of interest from the labeled image.  In this framework, this 

seed will come from pixels corresponding to a high correlation in the detection phase of 

the system.   

  For the purposes of lung nodule segmentation, this algorithm is sufficient and 

extremely fast.  It requires no prior knowledge of nodule classification, shape, or 

appearance.  The disadvantage of this method is the inclusion of anatomies attached to 

the nodule, such as vasculature or the pleural wall.  The Heat generally classifies 

connected components together unless their intensity greatly differs. 

 

 

Figure 29:  3D nodule reconstruction obtained from segmenting a nodule appearing in four slices 

using the HEAT algorithm.  It should also be noted that the HEAT algorithm was used to obtain the 

segmented tissue allowing for the lung cavity reconstruction shown on the left. 
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4.7 Preliminary Results  

 

  To evaluate performance, this thesis makes use of the Lung Image Database 

Consortium (LIDC) [10] nodule database, which provides expert segmentations (defined 

as ‗regions of interest‘) in the database for each nodule in the database, carried out 

independently by at least four radiologists.  These expert segmentations allow for a direct 

comparison between the proposed algorithm and up to four professional opinions on the 

exact nodule boundary.   Segmentation results are visualized for several methods below. 

 

 

Figure 30: Comparison of LIDC nodule segmentation using the described methods.  The scan 

from which the nodule was extracted had been exposed to a contrasting agent (Shown above).  The 

cropped nodule region used for segmentation was taken from the manual outlines provided by the 

LIDC, thus the listing for multiple radiologists.  This also contests to algorithmic consistency.   
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66 
 

 

 

Figure 31:  Comparison on five more LIDC nodules.  Nodules from scans with (Post) and without 

(Pre) contrasting agents are considered. 
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  To further evaluate the performance of the following, some sample Receiver 

Operating Characteristic (ROC) curves were calculated.  ROC curves are created by 

plotting the change in true positive rate versus the change in false positive rate while any 

given system parameter is varied.  The true positive rate is synonymous with the 

Sensitivity and the false positive rate is equivalent to 1-Specificity.  For the purposes of 

segmentation, we can define the measures of TP, FP, TN, and FN as follows: 

 

 

Figure 32:  Is refers to the segmentation results, IG refers to the ground truth segmentation.  TP 

refers to the true positive region, FP refers to the false positive region, TN refers to the true negative 

region and FN refers to the false negative region. 

 

Let    be the nodule segmentation results for a given method and let    be the ground 

truth nodule segmentation obtained from an expert.  Thus: 

 

                      (15) 

                   
        (16) 
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        (17) 

                 
      (18) 

 

Using these measures, a scatter plot of ordered pairs, corresponding to individual nodule 

segmentations can be obtained, and thus averaging over all instances will yield ROC 

curves such as those shown in Figure 33 and Figure 34.  These figures illustrate 

performance for the standalone EM algorithm as well as the Variational Ellipse 

augmented by the EM algorithm.  In [8], it has been determined that the Variational 

Ellipse combined with the EM algorithm provides the best nodule segmentation 

performance.  This trend is also apparent in the following figures. 

 

 

Figure 33: Receiver operating characteristic curve for segmentation of LIDC nodules using the 

Expectation Maximization algorithm.  The EM algorithm is strictly intensity based.   
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Figure 34: Receiver operating characteristic curve for segmentation of LIDC nodules using the 

Variational Ellipse followed by the Expectation Maximization algorithm.  This combinatorial 

algorithm is more robust than the previous approaches as shown by the quicker saturation of the 

ROC curve. 

 

The curves here do differ from traditional ROC curves, in that they do not saturate as 

smoothly.  This jagged saturation pattern is a result of averaging the TP Rate for each FP 

rate.  Further, segmentation results were obtained whether one or all of the participating 

radiologists provided an expert nodule contour, thus introducing error. 

  The results of accurately segmenting nodules allow for the accurate tracking of 

growth for reoccurring patients.  Figure 35 shows the 3-D growth of a nodule taken from 

a patient belonging to the Jewish Hospital database.  Using the Variational Ellipse 

combined with the EM algorithm, an accurate volume metric was obtained for the nodule 

appearing in scans conducted over a 2.5 year period.   
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Figure 35: Radiologists correlate nodule size (volume) with malignancy;  moreover, nodule growth 

rate and doubling rate.  If our system can temporally track nodule growth rate then we can 

effectively mimic/aid radiologists in diagnosis.  Further, our growth analysis is in 3-D with 

supplementary visualization.   

 

The option of growth tracking is a very significant contribution made by the Nodule 

Segmentation branch of the overall pipeline.  It allows the physician a more precise 

understanding of the shape, texture, and metric features of detected lung nodules. 

 

 

 

 

 

 



71 
 

 

Chapter 5: Nodule Classification 

 

5.1 Overview, Motivations and Challenges  

 

From an engineering perspective, the task of classifying detected lung nodules is 

an exceptionally well-suited problem for the exhaustive employment of machine learning 

techniques—both in the arenas of feature extraction/representation and classification.  

This part of the pipeline is expansive and variable in the current literature.  The purpose 

of the classification step in this framework is to categorize nodules into four primary 

categories:  Well-Circumscribed, Juxta-Pleural, Pleural-Tail, and Vascularized as 

discussed above.  First, this chapter will overview and evaluate some current nodule 

classification techniques.   

In [13], type-2 Fuzzy Logic Systems (FLS) are applied for the binary 

classification of lung nodules into two categories: Nodule and Non-Nodule.  The purpose 

of this classification is to introduce a false-positive reduction step, which follows the 

groups prior work in nodule detection.  The contribution of [13] is an automatic approach 

for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) for 

application to multi-dimensional pattern classification problems.  FLS require the 

estimation of parameters to model a footprint of uncertainty of a Gaussian interval type-2 

fuzzy set.  Genetic algorithms are used to estimate the parameters of the footprint of 

uncertainty.   
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This method outperforms this group‘s prior classification accuracy by 30% 

achieving a peak accuracy of 95% however, nodules are significantly larger than those in 

this thesis and the dataset used has only 81 nodules.  This greatly compromises the 

universality of this classification scheme.  Regardless, the feature descriptors used for 

profiling nodules are as follows: 

 

No.  Feature  Definition 

1  Volume  The size of the nodule 

 

2  Diameter  The effective nodule diameter 

 

3  Sphericity  The degree of being spherical 

 

4  Mean HU-

Spherical 

 The mean HU of the spherical part of the 

nodule 

 

5  Elongation  The degree of elongation of the nodule 

 

6  Mean HU-

Elongated 

 The mean HU of the elongated part of the 

nodule 

 

7  Distance  The distance from the nodule to the thoracic 

wall 

 

Table 6:  Features used in [reference Hosseini et. al] for the classification of candidate nodules into 

two categories: Nodule or Non-Nodule for the purposes of reducing false positives from a prior 

detection scheme. 

 

 In order to employ a FL Classifier, this paper outlines classification rules than 

were developed based on mimicking clinical practice.  The rules listed outline criteria 

that indicate a high probability of the candidate belonging to the class of Nodule.  These 

rules are listed below: 
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1.) If Volume is high and Sphericity is high  

2.) If Volume is high and Distance is mid  

3.) If Volume is high and Diameter is high  

4.) If Sphericity is high and Volume is mid  

5.) If Sphericity is high, Volume is high and Distance is high  

6.) If Sphericity is high and Elongation is not low  

7.) If Sphericity is high and MeanHU_Spherical is high 

8.) If Elongation is not low  

9.) If Sphericity is not low 

10.) If Distance is high and Diameter is high 

11.) If Elongation is high, Sphericity is high and Diameter is mid 

12.) If Elongation is high and Diameter is not mid 

13.) If Distance is high 

14.) If MeanHU_Elongated is not high and MeanHU_Spherical is not low  

 

Using the above rules, a given nodule candidate is thus classified as Nodule or Non-

Nodule.  The primary contribution by this work is the use of FLS to emulate the process 

of nodule classification by an expert using a simple schematic of rules. 

  In an alternative approach a CAD system is designed and evaluated for detecting 

lung nodules, [11].  The contribution of [11] is the addition and validation of features for 

lung nodule detection/classification and determining the optimum performance between 

the following classifiers: Fisher Linear Discriminant, Gaussian Bayes Linear Classifier 

and Quadratic Classifier.  This work was tested on an unnamed, publicly available dataset 
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consisting of 154 nodules; 100 malignant and 54 benign, and trained on 181 nodules from 

a different database.   

The feature descriptors used are extensive in this work.  The features used are 

categorized as follows: 9 geometric, 18 intensity-based, 17 gradient-based.  It is 

important to note that not all features are used for each classifier.  The classifiers used are 

empirically selected based on optimizing the classifier performance.  The Fisher Linear 

Discriminant uses 46 features, the Gaussian Bayes Linear Classifier uses 42 features, the 

Quadratic Classifier uses 15 features.  The numbers of features used by each classifier are 

chosen to maximize a sequential forward selection objective function.  Testing is done 

using 10-fold cross-validation technique.  Further experiments are carried based different 

stratifications of the data.  The data is stratified by:  

1.) Size: <10mm = Small, 10 mm< x <20mm = Medium and >20mm = Large 

2.) Pathology: Malignant or Benign 

3.) Subtlety:  Radiologists have annotated nodules as one of the following:  

extremely subtle, very subtle, subtle, relatively obvious and obvious. 

FROCs are generated by thresholding classifier posterior probabilities and scoring the 

results.  The optimum classifier in these experiments has shown to be Fisher Linear 

Discriminant and further the highest performance w.r.t size was exhibited by large 

nodules (>20mm in effective diameter).    

In [12], a previously developed CAD system is enhanced by using a classification 

scheme as a technique for false-positive reduction.  This work uses the Asymmetric 

Adaboost as a classifier and it is theoretically compared with symmetric Adaboost.  The 
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Symmetric Adaboost classifier penalizes all errors equally.  For example, the cost for a 

False Negative is equal with the cost for a False Positive, with respect the Loss Function 

below: 

      {
            

             
    (19) 

 

Where       is the class designated to some data,    is the true class of the data.  

The goal of Adaboost is to minimize the error function:  

 

   ∑         (20) 

 

On the other hand, the Asymmetric Adaboost allows for weighted penalization of False 

Positives and False Negatives separately. For a CAD system, the symmetric penalization 

of errors is not ideal.  For a medical application, we wish to penalize False Negatives far 

more than False Positives.  Consider the new Loss Function: 

 

      {

√                 
 

√ 
⁄                

              

    (21) 

Where    
  

  
 , Nn = # Non-Nodules, NP = # Nodules,  A: asymmetry parameter 

(scalar) 
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In this way, the Asymmetric Adaboost penalizes False Negatives more and thus corrects 

the boosting procedure. 

  The feature descriptors used belong to four different categories: Shape-based, 

Intensity-based, Covariance-Matrix-based and Hessian Matrix-based.  The shape, 

intensity and covariance based features rely on the segmented nodule candidate while the 

Hessian features depend on a 10mm-cube neighborhood around the estimated candidate 

centroid. This framework was tested on database of 357 nodules with an overall system 

sensitivity of 74.3%, with an average of 2.6 False Positives per slice.  Experiments are 

carried out on scans with slice thicknesses of 1mm and image resolutions of 

0.416mm/pix.  Further, this work carries out detection and classification separately for 

two independent classes: Parenchymal (non-pleural) and Juxta-pleural.  As compared to 

the Kostis‘ categorization, the Parenchymal class handles Well-Circumscribed and 

Vascularized nodules while the Juxta-pleural class handles Juxta-Pleural and Pleural-Tail 

nodules.   

The number of Adaboost steps are empirically determined somewhere between 

50-100 steps.  The classifier learning takes 7 hours in MATLAB and the overall system 

sensitivity is 74.3% with an average of 2.6 False Positives/Slice.    

 

5.2 Preliminary Feature Descriptors and Classifiers 

 

Previous work in this area proposes two classic dimensionality reduction 

schemes, Princimpal Component Analysis (PCA) and Linear Discriminant Analysis 
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(LDA).  These techniques are used to extract the most relevant information from the 

eigen-images of the nodules.  Beyond PCA and LDA, this framework has made use of 

two more modern feature extraction techniques: SIFT and LBP.  The LBP in the 

Computer Vision Literature is a texture based feature descriptor that is invariant to 

monotonic changes in gray-scale and illumination resistant.  Previously, this approach 

has used the extended LBP operator within a (P,R) neighborhood with only uniform 

patterns and is noted as      
  .  The obtained LBP results are depicted from using both 

the original and gradient images, where Sobel filters (   and   ) where used to generate 

the gradient magnitude image.   

 

 

Figure 36: Block Diagram of generating the LBP for a juxta-pleural nodule. The equation for the 

above picture is:  

      
          

         
          

    where the first two terms represent the original image and the 

last two terms represent the gradient image. 
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  The second feature descriptor that has been previously considered is the SIFT. 

SIFT consists of four main steps: (1) Scale-space peak selection; (2) Key-point 

localization; (3) Orientation assignment; and (4) Key-point descriptor.  More on SIFT for 

this application can be found in [8].  The features discussed here exhibit many desirable 

properties such as scale and rotation invariance but they can be computationally 

expensive for the exhaustive application to every detected nodule in the system.  The lack 

of nodule spatial support will also limit these descriptor‘s ability to extract feasible 

features—especially the SIFT, which fails on small images and requires resizing to 

perform.   Previous work in this area also includes the use of simple classifiers such as 

the k-Nearest Neighbors (k-NN) approach to classify nodules with the above features.  

These methods may be included in the final CAD system for completeness, however for 

the sake of computation time and simplicity, the primary classification machinery in this 

system is based on the same principles used in the detection phase of the pipeline. 

 

5.3 Classification in the CAD system 

 

  The proposed detection framework in Chapter 3 relies on data-driven modeling 

approaches proposed in [20].  Using multiple rotations, templates based on the four 

nodule categories discussed above are swept through a scan and correlations are obtained, 

which quantify candidate similarity to the current template.  As such, the obvious 

extension for classifying nodules directly follows as a result of tabulating which template 

provided the highest correlation for any pixel deemed as a nodule!   The classification 

scheme is as follows: 
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Initialize h = 0; 

Iterate:  

For each  Nodule Template, TN :  N=1,2,3,4  (Well, Juxta, Tail, and Vascular) 

  For each  Rotation, RN : 0→360° 

1.) Rotate TN   by  RN  to obtain TN’ 

2.) Crop a region around detected nodule, IC, the same size as 

TN  

a. Calculate some distance measure, δ, between TN’ and 

IC 

b. Store all δ values in d 

  End 

            If max( d ) > h  : h = max( d )  &  Nodule Class = Nodule Template 

 End 

Return Nodule Class 

Table 7:  Classification scheme implemented in the CAD system.  This approach is a direct 

extension of the detection approach and acts to immediately classify a detected nodule using the same 

distance measures that detected the nodule from the raw scan.   

 

  The above approach can be deployed at the time of detection or during the later 

review of detection results.  The advantage of this approach is the lack of need for 

cumbersome feature extraction, which after consuming computation time, may result in 

poor classification results due to low spatial support.  This method is extremely fast and 

effective as illustrated in Chapter 6. 
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Chapter 6: A Functional User Interface 

6.1 Overview  

 

  The goal of this chapter is to outline the designed CAD system.  The pipeline 

components described above theoretically validate the approaches implemented in the 

CAD system shown below.  The system has been developed in the language of C# and 

aims at collecting manually annotated nodule data from radiologists in a fashion that 

closely resembles clinical reading for the purpose of building a large dataset of lung 

nodules, while providing the user with the a second-opinion diagnosis based on the 

pipeline described above.  As stated earlier in this thesis, this CAD system is meant to be 

a diagnostic tool, not a replacement for an expert.    

  The motif in developing this system has been keeping each phase modular.  The 

system has been engineered such that new approaches can be easily deployed in parallel 

with those that currently exist in the CAD system.  This holds for each stage of the 

pipeline, Tissue Segmentation, Nodule Detection, and Nodule Classification.  As such, 

any future enhancement to the pipeline is very straightforward to add, remove or update.  

The interface layout has been designed to mimic standard software for reading medical 

images such as OsirisX [52].  Most of the interface real-estate is reserved for viewing the 

slice of interest while toolboxes have been fixed on either side for quick use during 

reading.  A screenshot of the interface is shown in Figure 37. 
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Figure 37:  Screenshot of the designed interface.  The interface is meant to be simple, fast and 

functional.  Most of the interface consists of the slice view (Axial slice shown above), while the regions 

surrounding the slice view hold toolboxes which assist the user in annotating nodules.  Note: the 

annotation shown in the right-hand pane of the interface is just for demonstration purposes and does 

not pertain to a real nodule. 

    

A detailed schematic of the interface is provided in Appendix A. 

 

6.2 Data Acquisition 

 

6.2.1 Manual Annotation 

 

As discussed in Chapter 1, one of the primary goals of the designed CAD system 

is collecting large of amounts of lung nodules, annotated by physicians, to build a 

database which will be used to enhance the nodule models discussed briefly in Chapter 

3.  The data collection scheme in this interface is as follows:   

1.) Prompt the user to load a CT scan using a Load button.  (Shown in Figure 38) 
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Figure 38:  Screenshot of the interface prompting the user to load a CT scan for reading.  This 

procedure is called by the Load button in the top, left-hand corner of the interface. 

 

2.) Display the scan slice by slice in the Slice View panel, shown in Figure 39. 

Scrolling through slices has been designed for input from the mouse-wheel.  

Scrolling the mouse-wheel upwards/backwards displays slices of the scan 

respectively.  Further, the Brightness and Contrast controls have been linked 

to the Slice View panel.  Thus at any time during reading, the user may adjust 

or reset the image brightness and contrast using the horizontal and vertical 

sliders located below and to the right of the Slice View panel, respectively.  

This can also be seen in Figure 39.  Once set, the brightness and contrast 

settings will be applied to each subsequent slice.  This allows the physician to 

render the image to his/her liking and proceed with reading without having to 

constantly re-adjust the current slice.  The brightness and contrast controls in 
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the interface have been manually implemented as histogram thresholding and 

windowing.  An example an adjusted image is displayed in Figure 40. 

 

Figure 39:  Screenshot of the Slice View panel.  This panel occupies most of the interfaces working 

area.  This design has been adopted to mimic currently used medical image reading software such as 

OsiriX, [ref OsiriX].  

 

3.)  If the user detects a nodule during reading, allow for nodule annotation using 

the Annotate button.  When pressed, the Annotate button is highlighted in red, 

warning the user that they are currently annotating a nodule.  This is shown in 

Figure 42.  While in annotation mode, the first click in the Slice View panel 

will be stored as the x,y location of the manually detected nodule.  A red point 

is displayed in the Slice View panel to indicate the exact nodule location as 

clicked by the user.  Furthermore, the current slice number is automatically 

stored and a cropped region around the manually detected nodule is displayed 

in the Crop View panel on the right side of the interface as shown in Figure 42.  
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The user is then prompted to annotate the features described in Table 2 in a 

serial fashion using pop-up menus, like the one shown in Figure 41.  Once the 

annotation is complete, a Nodule Info panel (top right panel of the interface) is 

filled with text outlining the characteristics annotated by user.  This is shown 

throughout the later figures in this chapter.   

 

 

Figure 40:  An image that has been adjusted using the Brightness and Contrast sliders located 

below and to the right of the interface.  It should be noted that, once toggled, these settings are 

applied to each subsequent scan during reading.  This allows the physician to adjust the image to 

his/her liking once and then proceed with reading, undisturbed. 

 

4.) As the user continues to read through the scan, any previously annotated 

nodule will be displayed with a red point like the one shown in Figure 39.  This 

is to remind the user if a nodule has already been annotated on the current 

slice.  Further, if the user right-clicks the red point, a cropped region around 
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the previously annotated nodule is displayed in the Crop View panel and the 

previously annotated nodule characteristics are displayed in the Nodule Info 

panel.  This is shown in the following figures throughout this chapter. 

 

 

Figure 41:  Pop-up menu which prompts the user to designate which Calcification pattern a 

manually detected nodule belongs to.  Pop-up menus are used to grab all features outlined in Table 2 

and are retrieved in a serial fashion—forcing the user to tag the nodule according to the profile 

described in Chapter 1. 

 

All of these features outlined in Chapter 1 are stored in a structure designed for this 

system, called Nodule.  This structure holds all relevant information regarding the 

manually annotated nodule.  Once the scan is read in its entirety, all manually annotated 

nodules are saved as Nodule structures.  Using the Save button, the user can store manual 

annotation data for the current scan.  The annotations are stored as a List of Nodule 

structures and serialized to XML format for later retrieval.  A sample XML file is given 

in Appendix A. 
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Figure 42:  Screenshot of a user annotating the Estimated Malignancy of a manually detected 

nodule.  Notice the Annotate button in the top right-hand toolbox is highlighted in red, indicating to 

the user that the interface is currently in annotation mode.  Also notice the cropped region around 

the nodule is automatically displayed in the Crop View panel on the right-hand side of the interface. 

 

6.2.2 Enrolling a Nodule in Modeling Dataset 

 

  When a nodule is detected in the CAD system, whether it be manually or 

automatically (described below), the option to enroll such nodule into a modeling dataset 

is then presented to the user.  The modeling dataset is a subset of annotated nodules 

which may be later used to generate new models for detection as discussed in Chapter 3.  

Both the AAM and ASM approaches used in [Amal ref] require further control point 

annotation of members that are to be considered in the modeling process.  The Model 

button appears once a nodule has been annotated by the user or selected by the user with 

a right-click.  This is shown in Figure 37.  The goal of this feature is to allow the user to 
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generate their own nodule templates (models) which can then be used for automatic 

detection in the reading of later scans.  The default templates used by the detection 

process have been generated using the ELCAP database in [ref Amal modeling]. 

  If the user chooses to enroll the currently selected nodule into a modeling dataset, 

they may simply click the Model button, which triggers the appearance of a second 

window.  This window prompts the user to identify which of the four Kostis categories 

the current nodule should be treated as.  This is shown in Figure 44.   Once a category is 

selected, the user is prompted to annotate ten control points needed for AAM and ASM.  

The control points for each category are shown below in Figure 43.   

 

 

Figure 43:  Templates showing control points needed for AAM and ASM which need to be 

manually annotated by an expert.  The control points are shown for Well (top-left), Tail (top-right), 

Juxta (bottom-left) and Vascularized (bottom-left). 

 

It should be noted that for this thesis, the nodule models only pertain to these four 

categories, however the framework could be extended to handle the modeling of various 

nodule characteristics.   
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Figure 44:  Modeling window that is triggered by clicking the Model button.  This button appears 

once a nodule has been selected by the user and allows for the enrollment of the current nodule into a 

sub-database of nodules that will be later used for generating new models. 

 

Selecting the appropriate nodule category displays a cropped region around the current 

nodule in a viewing panel with an example control-point diagram displayed directly to its 

right.  This diagram is meant to guide the user through control-point annotation.  The 

Annotate button in this new window beings the process of collecting the ten control-

points from the user via left-clicking.  Once annotation is complete, the user confirms 

enrollment into the modeling dataset using the Enroll button.  This is all shown in Figure 

45.   
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Figure 45:  Window used for obtaining manually annotated control-points from the user to feed 

the AAM and ASM process in later stages of modeling.  The current nodule is displayed in the left 

viewing panel and an example diagram of control points for the appropriate nodule category is 

displayed in the right viewing panel. 

 

6.3 Tissue Segmentation   

 

Segmenting the lung tissue is a very straightforward process in this interface.  

Once a scan is loaded, as in Section 6.2, the user has the option to segment out the tissue 

from the raw CT using the Segment button, located in the Automatic Toolbox, located on 

the left-side of the interface.  A drop down menu has been placed underneath the Segment 

button to allow the user choice of segmentation method.  The choices are listed as 

described in Chapter 2 but, as a result of the modular design of this system, adding new 

segmentation methodologies to the interface in the future is extremely feasible.   
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Clicking the Segment button triggers the interface to begin segmenting the entire 

scan.  The segmentation progress is displayed in a progress bar located at the bottom of 

the interface, below the Slice View panel.  The most important feature of the tissue 

segmentation implemented in this interface is that it is carried out as a background 

process, using a separate thread from the main interface.  This is made possible with the 

use of a feature called BackgroundWorker in Visual C# [ref BackgroundWorker].  Thus, 

the user can continue reading the scan while tissue segmentation occurs in the 

background.  Further, tissue segmentation results are stored upon completion.  In this 

way, the user only has to segment a scan once unless the tissue segmentation results are 

undesirable.  For the EM-based segmentation process, slices are segmented in parallel as 

segmentation results from one slice do not affect the next.  This greatly enhances the 

speed of EM-based tissue segmentation in the interface.  Sample runtimes for three 

different scans are shown below in Table 8.   

 

Method Scan 1 (474 slices) 

 

Scan 2 (174 slices) Scan 3 (113 slices) 

EM Algorithm 5.01 min 

 

1.94  min 1.56  min 

3-D Level Sets 25.44  min  

 

10.97 min 6.96 min 

Table 8:  Tissue Segmentation runtimes for 3 individual scans with 474, 174, and 113 slices 

respectively.  Runtimes are tabulated for the segmentation of the entire scan. 

 

 

Once tissue segmentation has been carried out, a check box option becomes available in 

the Automatic Toolbox labeled Show Segmented.  Enabling this checkbox display only 

the isolated lung tissue in the Slice View panel.  This is shown in Figure 46 and Figure 47. 
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Figure 46:  Viewing a raw CT slice in a scan that has previously undergone tissue segmentation.  

Notice the Show Segmented check box in the Automatic Toolbox.  Enabling this check box isolates 

the lung tissue in the Slice View Panel. 

 

It should be noted that the brightness and contrast features are still available when 

viewing the isolated lung tissue.  As the user toggles the mouse-wheel, only lung tissue is 

displayed provided that the Show Segmented check box is enabled. 
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Figure 47:  The same slice from Figure 46 with the Show Segmented check box enabled.  This 

feature only displays the lung tissue from the current slice in the Slice View panel. 

 

 

6.4 Nodule Detection 

 

The automatic nodule detection scheme in outlined in Chapter 3 is made 

available to the user in the Automatic Toolbox.  The toolbox offers options to toggle 

coarse and fine false positive reduction as discussed in Chapter 3 and tune the number of 

rotations considered for the template matching procedure.  A drop down menu is 

provided in the toolbox which allows the user to select the distance measure to be used in 

the automatic detection process.  The toolbox is shown in Figure 48. 
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Figure 48:  (Left) Detailed view of the Automatic Toolbox on the left-side of the interface.  (Right) 

Illustration of the drop down menu which allows the user to select the distance measure used in 

template matching during automatic detection. 

 

The most notable detection feature in the Automatic Toolbox is the ability to adjust the 

sensitivity of false positive reduction.  Figure 21 outlines this procedure.  Toggling both 

the coarse and fine sensitivity (discussed in Chapter 3) is done using two sliders, located 

under the labeled region of the toolbox, FPR.   An illustration of the interfaces handling 

of false positives via these sliders is illustrated in the figures below.  Detection is first 

carried out on a single slice using the NCC, with a Coarse FPR threshold of 0.11 and a 

Fine FPR percentage set to 67%.  This all correlations at or below 0.11 are truncated and 
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omitted and further, only the remaining top 67% of the candidate nodules are retained.  

The initial detection is shown in Figure 49.  Detection is triggered with the Detect button 

located in the Automatic Toolbox and the resulting, detected nodules are displayed as 

green points in the Slice View panel overtop the current slice.   

 

 

Figure 49:  Nodule detection carried out using the NCC with a Coarse FPR sensitivity set to 0.11 

and a Fine FPR sensitivity set to 67%.  The results are riddled with false positives.  Green points in 

the Slice View panel represent detected nodules.    

 

Upon inspection of the initial detection results, these FPR settings are not stringent 

enough to provide any assistance to the operating physician as there are far too many 

false positives.  Using the available FPR adjustments in the CAD system, these false 

positives can be greatly reduced.  Figure 51 illustrates the functionality of the Fine FPR 
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sensitivity.  Here, the NCC is used, the Coarse FPR sensitivity is set to 0.12 and the Fine 

FPR sensitivity is reduced to 5%.   

 

 

Figure 50:  The interface seeks confirmation from the user if they intend on repeatedly carrying 

out detection on the same slice.   

 

An additional feature is displayed in Figure 50 which seeks user confirmation to overwrite 

detection results in a slice that has already undergone automatic detection.  Detection 

results are stored in a similar fashion as with the manual annotation data and loaded with 

scans that have already had detection carried out on them.  Thus, a user can be warned 

before they overwrite their previous annotation results.   
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Figure 51:  Updated detection results for the same slice operated on in Figure 49.  The NCC is still 

used, however the Fine FPR sensitivity has been reduced to only display the top 5% of detected 

nodules.  The resulting, detected nodules are shown in green. 

 

This reduction greatly enhances the detection results by omitting false positives.  The 

results in Figure 51 are far more desirable than those in Figure 49, however the number of 

false positives is likely still too high to provide a physician with any real assistance.  To 

further remove false positives the Coarse FPR sensitivity can be employed.  Setting the 

Coarse FPR sensitivity to 0.6 removes all false positives and leaves only detected points 

around a true nodule.  The Well-Circumscribed nodule exists in the right lung and is 

detected by the system as shown in Figure 52. 
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Figure 52:  Updated detection results using the NCC with a Coarse FPR sensitivity of 0.6 and a 

Fine FPR sensitivity of 12%.  The detection results yield a cluster of detected points surrounding a 

true, Calcified, Well-Circumscribed nodule.  No false positives remain. 

 

More detection results are shown in Appendix A.  Table 9 gives a listing of detection 

runtimes for all distance measures with varying numbers of rotations considered.   

 

# Rot. (°) NCC 

 

CC CF NCF SD NSD 

5 4.296 s 

 

4.516 s 3.724 s 3.575 s 6.906 s 4.481 s 

10 6.267 s 

 

8.227 s 7.318 s 6.777 s 10.34 s 8.741 s 

15 9.341 s 

 

12.949 s 11.028 s 9.963 s 15.071 s 13.027 s 

20 12.327 s 

 

16.793 s 14.958 s 13.361 s 21.295 s 17.932 s 

25 15.499 s 20.482 s 18.515 s 16.829 s 25.915 s 21.601 s 
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30 18.419 s 

 

24.954 s 21.497 s 19.545 s 31.513 s 26.05 s 

35 21.316 s 

 

29.67 s 26.051 s 31.016 s 48.609 s 37.99 s 

Table 9:  Average runtimes per slice for nodule detection using each distance measure in the CAD 

system.  The runtimes were averaged from individual runtimes taken from 20 slices at random from 

the same scan.   

 

 

6.5 Nodule Segmentation and Classification 

 

The nodule segmentation and classification tools appear on the right-side of the 

interface once a user has selected an annotated/detected nodule.  The two buttons 

Segment and Classify allow the user to call these procedures.  A drop down menu is 

available for the selection of nodule segmentation methods.  The method choices are 

those listed in Chapter 4.  Nodule segmentation is carried out on the cropped region 

displayed in the Crop View panel and subsequent results are also displayed here.  

Classification results are displayed as text next to the Classify button.  This is all shown 

in Figure 53.        
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Figure 53:  Right-hand side of the interface which handles the segmentation and classification of a 

nodule after it has been detected or annotated.  The segmentation results are directly displayed in the 

Crop View panel and classification results are shown as text next to the Classify button. 

 

Table 10 shows nodule segmentation runtimes for ten different nodules.  Runtimes are 

displayed in seconds. 

 

Nodule 1 2 3 4 5 6 7 8 9 10 

 

Ellipse 1.146  

 

1.073 3.063 1.06 1.057 4.964 1.049 1.091 2.482 1.971 

EM 

 

0.062 0.006 0.006 .007 0.061 0.006 0.006 0.006 0.01 0.007 

Ellipse 

+ EM 

1.103 1.088 3.074 1.054 1.07 4.931 1.055 1.11 2.497 1.999 

Level 

Sets 

0.086 0.052 0.122 0.055 0.034 0.038 0.085 0.052 0.051 0.046 

Table 10:  Nodule Segmentation runtimes in seconds for 10 different candidate nodules 

automatically detected by the CAD system.  Candidate nodules were taken from the same scan.  

Runtimes are displayed in seconds. 
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Table 11 shows nodule classification runtimes for ten different nodules.  Runtimes are 

displayed in milliseconds. 

 

Nodule 1 2 3 4 5 6 7 8 9 10 

 

Time 

(ms) 

60 49 50 49 49 50 53 50 49 48 

Table 11:  Classification runtimes in milliseconds for 10 different candidate nodules automatically 

detected by the CAD system.  Candidate nodules were taken from the same scan and runtimes are 

displayed in milliseconds. 
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Conclusion 

 

 The components needed to design a functional CAD system using CT for lung 

nodule analysis have been presented.  Multiple solutions have been provided for each 

stage of the pipeline:  Tissue Segmentation, Nodule Detection and Nodule Classification.  

The system has been designed to handle these solutions in a modular fashion, allowing 

the operating physician the freedom to select the method of choice for each task.  The 

goal of this thesis was to consolidate the tools needed for each of these stages in the 

pipeline into a functional and usable user interface.  This CAD system has been designed 

and outlined in detail in Chapter 6.  Each component of the CAD system is functional 

and provides the user with options and safeguards.  The system has been designed to 

handle scans that have already been read using the system, giving the physician the 

option to review prior annotations, as well as new scans.  Runtimes for each component 

have been tabulated and shown to be clinically viable.   

 In short, the system prototyped in this thesis lays the foundation for a lung nodule 

analysis tool which provides physicians with a second-opinion detection and diagnosis 

scheme using state-of-the-art Computer Vision, Pattern Recognition, and programming 

techniques.  The system is functional, modular and fast. 
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Appendix A: 

 

A sample XML file written to store manually annotated nodules for a given scan: 

 

<?xml version="1.0" encoding="utf-8"?> 

<ArrayOfNodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <Nodule> 

    <Calcification> 

      <string>Partially Calcified</string> 

    </Calcification> 

    <Attenuation> 

      <string>Mixed-Solid</string> 

    </Attenuation> 

    <Morphology> 

      <string>Lobulated</string> 

    </Morphology> 

    <AnatomicalLocation> 

      <string>Sub-Pleural</string> 

    </AnatomicalLocation> 

    <Subcategory> 

      <string>Pleural-Tail</string> 

    </Subcategory> 

    <Malignancy> 

      <double>0</double> 

    </Malignancy> 

    <Location> 

      <Point> 



1 
 

        <X>126</X> 

        <Y>301</Y> 

      </Point> 

    </Location> 

    <SliceNumber>5</SliceNumber> 

  </Nodule> 

  <Nodule> 

    <Calcification> 

      <string>Popcorn</string> 

    </Calcification> 

    <Attenuation> 

      <string>Mixed-Solid</string> 

    </Attenuation> 

    <Morphology> 

      <string>Lobulated</string> 

    </Morphology> 

    <AnatomicalLocation> 

      <string>Sub-Pleural</string> 

    </AnatomicalLocation> 

    <Subcategory> 

      <string>Pleural-Tail</string> 

    </Subcategory> 

    <Malignancy> 

      <double>0</double> 

    </Malignancy> 

    <Location> 

      <Point> 

        <X>361</X> 

        <Y>316</Y> 



2 
 

      </Point> 

    </Location> 

    <SliceNumber>7</SliceNumber> 

  </Nodule> 

</ArrayOfNodule> 
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A.1 Extra Figures 

 

 

Figure 54: Nodule detection carried out using the NCF with a Coarse FPR sensitivity set to 0.6 and 

a Fine FPR sensitivity set to 5%.   

 

Figure 55:  Nodule detection carried out using the SD with a Coarse FPR sensitivity set to 0.6 and 

a Fine FPR sensitivity set to 5%.   
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Figure 56 Nodule detection carried out using the SD with a Coarse FPR sensitivity set to 0.86 and 

a Fine FPR sensitivity set to 1%.   
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