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Extending Topological Properties to Fuzzy Topological Spaces 

By 

Ruba Mohammad Abdul-Fattah Adarbeh 

Supervised by 

Dr. Fawwaz Abudiak 

Abstract 

In this thesis the topological properties of fuzzy topological spaces 

were investigated and have been associated with their duals in classical 

topological spaces. 

Fuzzy sets, fuzzy functions and fuzzy relations were presented along 

with their properties. Different types of fuzzy topological spaces (FTS) 

were introduced in Chang‟s and Lowen‟s sense as well as intuitionistic 

(FTS). Many topological properties were proved to be extensions to those 

in non fuzzy setting, while examples were presented for those non 

extension properties. For instance, the closure of the product is not equal to 

the product of the closures. 

Also different approaches of separation axioms were investigated 

using  Q-neighborhoods and fuzzy points, it turns out that most of them are 

not extension of classical separation axioms. 

Fuzzy topological properties are considered, for instance, we studied 

fuzzy connectedness and fuzzy compactness. It is found that the product of 

an infinite number of fuzzy compact spaces may not be compact. 

Finally, fuzzy continuity, fuzzy almost continuity and fuzzy 𝜹-

continuity were introduced with a theorem proved the way they are related. 
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Introduction 

The concept of fuzzy sets was first introduced by Lotfi Zadeh  

in1965 [38], then later on; Chang in [6] introduced the concept of fuzzy 

topological space as an extension to classical topological space. After that, 

many authors studied the topological properties under fuzzy settings.They 

suggested different definitions for the same property which lead to different 

approaches. In this thesis we study and investigate many of those 

topological properties. We found that there were a lot of agreement 

between properties in fuzzy and nonfuzzy setting, but also there were a lot 

of differences. 

In chapter one we concentrate on the concept of fuzzy sets and their 

behaviors through set operations, which act in similar manner with regular 

sets. Also, we went through some special types of fuzzy sets called fuzzy 

points and fuzzy singletons, and explore the different relations which relate 

them to fuzzy sets.We also extend any function f between any two regular 

sets; f:X → Y; to a fuzzy function   ̅between two families of fuzzy subsets; 

 :̅F(X) → F(Y). Finally we show that; among other properties; quasi 

coincident relations are preserved under fuzzy functions and show the 

relationship between the product of fuzzy functions and the fuzzy function 

of the product space. 

In chapter two, we started with the definition of a fuzzy topological 

space as an extension to classical topological space in both Chang‟s view 

[6] and Lowen‟s view [17]. We present the notion of fuzzy interior and 
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fuzzy closure with their properties. After that we classify different types of 

membership between fuzzy points and fuzzy sets which affects some 

properties of “belonging”. Followed by definitions of fuzzy neighborhood  

and Q-neighborhood systems, also fuzzy bases and fuzzy subbases were 

presented. Then, the product fuzzy topology is introduced as well as its 

properties concerns the fuzzy closure and fuzzy interior. Finally, we 

present a generalization of fuzzy sets, namely, intuitionistic fuzzy sets and 

the fuzzy topology they generalize, namely intuitionistic fuzzy topological 

spaces which have been greatly studied by many authors. 

In chapter three we study the extension of the separation axioms to a 

fuzzy setting. We started with fuzzy Hausdorffness presenting three 

different approaches. The first one is using fuzzy points and fuzzy 

neighborhoods, while the second uses fuzzy points and Q-neighborhoods, 

and the third approach uses crisp points of the set X. We then show that 

these three different approaches are equivalent.  

Another type of fuzzy Hausdorffness is using the α-level(α-

Hausdorffness) and then it is concluded that the space is Hausdorff if and 

only if it is α-Hausdorff for each α ∊ [0,1]. After that we went through 

other separation axioms defining T0, T1, T2 and T 
  

 

 

 using fuzzy points and 

fuzzy neighborhoods,under those definitions it is proved that a fuzzy 

topological space is T1 if and only if every crisp singleton is closed, which 

is not the exact property of T1 spaces in the nonfuzzy setting. This 

suggested a stronger definition of T1 space (Ts space) where the statement 
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“every fuzzy singleton is closed” is valid. After that fuzzy regular and 

normal spaces are defined, and some of their properties were presented. 

Finally; separation axioms in intuitionistic fuzzy topological spaces were 

defined and called IFT1 and IFT2,… etc. 

Chapter four deals with the concept of fuzzy connectedness and 

fuzzy compactness. We have chosen a definition of fuzzy connectedness 

(where  ̅,  ̅ are the only fuzzy clopen subsets of X), other equivalent 

definitions of fuzzy connectedness were presented. Concerning the 

extension of the connectedness property from nonfuzzy setting to fuzzy 

setting, it is found that in fuzzy setting the product of fuzzy connected 

spaces may not be fuzzy connected,contrary to the property in nonfuzzy 

setting. Some other characterizations of fuzzy connectedness were 

presented and proved. Then fuzzy compactness is defined using fuzzy open 

cover and the finite intersection property parallel to compactness in regular 

space. Some properties were extended. For instance, it is shown that “every 

fuzzy closed subset of a fuzzy compact space is fuzzy compact”, “ the 

fuzzy continuous image of a fuzzy compact space is fuzzy compact” and “ 

the finite product of fuzzy compact spaces is fuzzy compact”. This 

complies with the classical topological spaces. But, the product of an 

infinite number of fuzzy compact spaces may not be fuzzy compact 

contrary to the nonfuzzy setting. 

In chapter five we studied fuzzy continuous functions and explore 

both local and global properties and prove that they are equivalent. After 
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that new types of fuzzy continuity were presented namely “ almost 

continuity, 𝜹-continuity “ where new types of fuzzy open sets called “fuzzy 

regular open sets” were used. Also “ fuzzy precontinuity “ using fuzzy 

preopen sets. Finally “Generalized fuzzy continuity” using generalized 

fuzzy sets. 
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Chapter One 

Fuzzy Sets and Fuzzy Functions 
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Chapter One 

Fuzzy Sets and Fuzzy Functions 

Introduction 

Fuzzy sets, in Mathematics, are sets having elements with a 

membership degree.This concept of sets was first generalized by Professor 

Lotfi A. Zadeh in 1965 in his famous paper [38] where the concept of fuzzy 

sets was introduced, it was specifically designed for representing 

uncertainty in mathematics and for dealing with vagueness in many real life 

problems, it is suitable for approximating reasoning mathematical Models 

that are hard to derive or giving a decision with incomplete information. In 

classical set theory, an element either belongs or doesn‟t belong to the set,it 

is not the case in fuzzy setting, here, it has a membership degree between 

zero and one,which describes the new definition of the characteristic 

function. In this chapter we will first give definitions of fuzzy sets,then we 

show some operations on them and properties involving these operations. 

Also we will introduce the concept of fuzzy points as a special case of 

fuzzy subsets, then we define fuzzy functions as an extension of functions 

between pairs of sets and explore the properties of fuzzy operations of 

fuzzy sets and fuzzy points on fuzzy functions. 

1.1 Fuzzy Sets and Fuzzy Operations 

In set theory a subset A of a set X can be identified with the 

Characteristic function  A that maps X to {0,1} in a way where all 

elements of A go to 1, while X-A elements go to 0. 

i.e   A(x) = { 
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and therefore, there is a natural 1-1 correspondence between the family of 

all subsets of X and the family of the characteristic functions on X. 

Zadeh in [38] extended the definition of the characteristic functions 

by replacing the set {0,1} by the closed interval [0,1] which is the bases to 

the new definition of fuzzy sets. 

Definition 1.1.1: 

Let X be a regular set, a fuzzy subset of X is a function μA that maps 

X to the closed interval [0,1]. In other words, μA: X → [0,1] and μA(x) is 

called the grade of membership of the element x. 

 In the case of the characteristic function  A:X → {0,1} if  A(x) =0 

then; the grade of membership is 0; and this means that x doesn‟t belong to 

A, if the characteristic function  A(x) =1,then the grade of membership is 

1;and this means that x belongs to A. But, in the case of fuzzy sets: μA (x) 

could be any other number from 0 to 1. 

Example 1.1.2: 

μA(x) = 0.9 may mean that x is more likely to be in μA,or if μA (x)=0.5 then 

x may be half way between belonging to μA and not belonging to μA. It is 

clear that regular subsets of X are a special case of fuzzy sets called crisp 

fuzzy sets where μA(x)∊ {0,1} ≤ [0,1]. 

We use different ways to represent a fuzzy subset of X.In the 

following example we describe some of those ways: 
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Example 1.1.3: 

Consider the regular set X where X={a,b,c,d,e} and let μA be the 

fuzzy subset of X that maps X to [0,1] by mapping: 

a→0.1, b→0.8, c→0.5,d→0, and e→0.4.  

We may represent μA as the set of ordered pairs: 

μA = {(a, 0.1),(b, 0.8),(c,0.5), (d,0),(e, 0.4)} using regular set notation, or 

we may write it as μA = {a0.1,b0.8,c0.5, d0, e0.4 }.This last form will be mostly 

used in this manuscript. 

Another example that explains the concept of the grade of     

membership is the following: 

Example 1.1.4: 

Take X to be a set of people, a fuzzy subset OLD may be defined to 

be the answer of the question “to what degree a person x is old ? “the 

answer could come in a membership function based on a person‟s age 

OLD(x) = {

                 
            

  
            

                 

 

Graphically we have: 
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We may say that the percentage of belonging for any person with age 

> 30 to being OLD is 100%, while a person with age 29 years  old has a 

percentage of 90% and we write:  

OLD(29) = 0.9 or 90% and OLD(25)=0.5 or 50% 

This grade of membership function is linear. But we may have the 

nonlinear function that reflects the importance of the age needed. For 

example: 

OLD(x) =  {

                        
 

   
                            

                        

 

And graphically it is: 
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Now,OLD(29) =.81 or 81%,OLD (25)= 0.25 or 25% which is less 

than 50% (in the linear case) so being less than and away from 30 looses 

more importance than in the linear case. 

On the other hand we may have the function 

OLD(x) ={

                             

  
 

   
                            

                            

 

Which has the graph: 

 

In this case:OLD(29) =.99 or 99% and OLD (25)= 0.75 or 75% 

which is more than 50%(linear case). This membership grade function 

reflects that being close to,but less that 30 gains more importance than in 

the linear case. 

There are other types of fuzzy subsets, the fuzzy constant subset of X 

is one which is the function that takes all elements of X to a constant c, 

where c ϵ [0,1], and it is denoted by  ̅. 

Special fuzzy constant subsets are  ̅ and  ̅, where,  

 ̅  is the fuzzy subset of X that takes all the elements of X to 1 
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and  ̅ is the fuzzy subset of X that takes all the elements of X to 0. 

1.2 Operations on Fuzzy Sets 

After these new concepts of fuzzy sets were defined, suitable 

operations on them should be performed that extend the usual operations on 

sets including the union, intersection and complementation as follows:  

Definition 1.2.1 [35 ]:   

Let μA and μB be two fuzzy subsets of X, μAɅ μB, μAV μB, μA
 c

 are fuzzy 

subsets of X defined as follows: 

(μA Ʌ μB)(x) = min{ μA (x), μB (x)}. 

(μA V μB)(x) = max{ μA (x), μB (x)}. 

μA
 c
(x) = 1- μA (x). 

These definitions are generalized to any number of fuzzy subsets of 

 X,so; for any family { μA α: α ϵ ∆} of fuzzy subsets of X, where ∆ is an  

indexing set, we define: 

(Vα μAα)(x) = sup { μAα(x) α ϵ ∆} 

(Ʌα μAα)(x) = inf { μAα (x): α ϵ ∆} 

We illustrate the previous definitions by the following examples. 
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Example 1.2.2: 

(1)  Take the fuzzy subsets  

      μA = {a0.3, b0.8, c0, d0.98} and μB = {a0.8, b0.1, c0.1, d0.3} 

     then: μA Ʌ μB = {a0.3, b0.1, c0, d0.3} 

     μA V μB = {a0.8, b0.8, c0.1, d0.98} and μA
 c 

= {a0.7, b0.2, c1, d0.02} 

(2) Take an infinite number of fuzzy subsets. 

      Let X={a,b}, 

      μA1={ a0.49, b.21 }  

      μA2={ a0.499, b.201 } 

      μA3={ a0.4999, b.2001 } 

          

Then ⋁    

 
    ={ a0.5, b.21 } and ⋀    

 
    ={ a0.49, b.2 } 

(3) For the continuous graph case: 

Take X=[0,4], μA and μB are as follows: 
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Then μA Ʌ μB, and μA
 c
 are as follows: 

 

To show that this definition extends the union, intersection and 

complementation applied on regular subsets of X, we have: 

(μAVB)(x) = max{ μA (x), μB (x)}. 

In case, x ϵA or x ϵB then μA(x)=1 or μB (x)=1 which implies that  max { 

μA (x), μB (x) } = 1 so (μAVB)(x)=1 i.e. x ϵAUB 

But, if x∉A and x∉B then μA (x)=0 and μB (x)=0 Which implies that max { 

μA (x), μB (x) } =0 and (μAVB)(x)=0 

so x ∉ AUB, which complies with the regular definition of “union”. 

In similar manner, we may show the same for intersection and 

complementation 

We will see in the next theorem that we can extend Demorgan‟s    

Laws from regular (crisp) sets to fuzzy subsets: 

Theorem: 1.2.3 [ 35] 

Let μA and μB be two fuzzy subsets of X, we have: 

1. (μA Ʌ μB)
c
 (x)= (μA

 c
 V μB 

c
) (x). 
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2. (μA V μB)
c
 (x)= (μA

 c
 Ʌ μB 

c
) (x). 

Proof: 

1) (μA Ʌ μB)
 c
 (x) = 1-min { μA (x), μB (x)} 

            ={
                            

                           
 

             ={
                              

                             
 

             =max {1- μA (x), 1- μB (x)} 

             =max { μA
c
(x), μB

c
(x)} 

             = (μA
 c
 V μB 

c
)(x) 

2) (μA V μB)
 c
 (x) = 1-max { μA (x), μB (x)} 

            = {
                            

                          
 

            ={
                                
                             

 

             =min {1- μA (x), 1- μB (x)} 

             =min { μA
 c
(x), μB 

c
 (x)} 

            = (μA
 c
 Ʌ μB 

c
) (x) 

This theorem can be generalized to any family of fuzzy subsets of  

X. specifically: 

  ⋁     
  

  
c
 =  ⋀    

   
  

) and  ⋀   
 
  

  
c
 = ⋁    
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Now we compare two fuzzy subsets of a set X as one of them 

containing the other as follows: 

Definition 1.2.4 [35]: 

Let μA, μB be two fuzzy subsets of X, we say μA ≤ μB to mean       μA (x) ≤ 

μB (x)  for all xϵ X. 

For example: 

Consider X = {a, b, c, d }, and let μB = {a0.4,b0.8,c0.1, d0 } and  

μA = {a0.1, b0.8, c0, d0}, then clearly μA ≤ μB 

one of the basic notions of fuzzy sets is the notion of α-level  

Definition:1.2.5 [ 35]: 

The α-level of μA denoted by μA
α
 is a subset of X, where the grade of 

membership of its elements ≥ α. That is, μA
α
 = {x ϵX: μA (x)≥ α }, where α 

> 0  

We define the 0-level in case of X is the real line by 

 μA
 0
 =the closure of({xϵX: μA (x)>0}) in R. 

 The support of μA is defined as the set of all elements of X with nonzero 

membership and is denoted by supp of μA that is,  

supp (μA) = {xϵX: μA (x)>0}. 
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The following example displays some α-levels of some fuzzy 

subsets: 

let μA = {a0.4, b0.7, c0.3, d0.2} be a fuzzy subset of X = {a,b, c,d } Then the 

0.3-level = μA
 0.3

= {a,b,c}, the 0.1 level = μA
 0.1

={a,b,c,d}. And the support 

(μA) = X = {a, b, c, d } 

We say that a fuzzy set μA in X, where X is infinite, is countable 

whenever supp(μA) is countable. 

The following example computes some α-levels: 

Example: 1.2.6 

The following represents the graph of a fuzzy subset of R=(- , ) 

with its function representation. 

 

where μA (x) = 

{
 
 

 
              

               
   

 
             

               

 

the 0.4 level of this fuzzy set is, μA
 0.4

 = {x ϵ X: μA (x) ≥ 0.4} 
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0.4 ≤ x-2 
 

⇒ x ≥ 2.4 

0.4 ≥ 
   

 
 

 
⇒ x ≤ 6.8,so μA

 0.4
= [2.4, 6.8] 

In general,the α-level can be found as follows: 

μA
 α
 = [  

 ,   
 ] 

Now, α =  
  – 2, and this implies that   

 =α+2 

And α=
    

 

 
 which means   

 = 8-3α 

So μA
 α
 = [α+2, 8-3α] 

For α= 0.4, μA
 0.4

= [2.4, 6.8] 

 

1.3 Fuzzy Points and Fuzzy Singletons 

As a special case of fuzzy subsets of X are the fuzzy points. They 

were defined by Wong [34], and later on, other definitions were presented 

by Srivastava [32] and Ming and Liu [22]  
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Definition 1.3.1:[34]: 

Let X be a regular set, a fuzzy point p is a fuzzy subset of X  that 

takes an element   to a number λ such that λ ϵ (0,1) and takes the 

remaining elements to zero, and it will be denoted by p = aλ. 

Support (p) = {a}, p (a)= λ, and p(X-{a})=0. 

We define a fuzzy singleton xr in X as a fuzzy subset in X which 

takes an element x to r where rϵ(0,1], and takes everything else to zero for 

example: if X={a, b, c, d}, then a fuzzy point a0.3 is the fuzzy subset {a0.3, 

b0, c0, d0} 

Remark: 

From now on we will use A instead of μA as a notation for fuzzy 

subset, and we use F(X) to be the family of all fuzzy subsets of X. 

Definition 1.3.2 [34]: 

Let p be the fuzzy point aλ, and A be a fuzzy subset of X, since aλ  is 

a fuzzy subset of X,we may define p ϵ A if and only if λ ≤ A(a) 

That is aλ ϵ A if and only if λ ≤ A(a) 

For example:let X= {a, b, c, d} and A={a0.4, b0.5, c0.3,d0.9} then: b0.1 ϵA  

but c0.9 ∉A. 
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Definition:1.3.3 [22] 

A fuzzy singleton xr in X is said to  be quasi-coincident (in short Q-

coincident) with a fuzzy set A in X if and only if  r + A(x) ˃1 and this is 

denoted by xr Q A 

Remark: it is clear that aλ Q A 
 

⇔ aλ ∉ A
c
 

Definition 1.3.4 [22]: 

A fuzzy subset A in X is called Q-coincident with a fuzzy subset B 

in X (denoted by A Q B) if and only if A(x) + B(x) ˃ 1 for some x in X 

1.4 Fuzzy Functions 

Now, we introduce the fuzzy function concept between two families 

of fuzzy subsets corresponding to a function between two crisp sets 

Definition 1.4.1 [35]: 

Let X and Y be two regular sets, and let f: X →Y be any function. 

For any fuzzy subset A of X; we define: 

 :̅ F(X) → F(Y), by  (̅A) to be the fuzzy subset of Y defined by: 

 (̅A)(y) = {
    {        ϵ       }                

                                    
 

and we define the fuzzy function (  ̅-1
 as (  ̅-1

 (B) for any fuzzy subset B of 

Y by: 

(  ̅)-1
 (B) (x) = B (f(x)). 
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Now, we consider examples that clarify the above definition 

Example 1.4.2 (1): 

Take X= {a, b, c, d}, Y= {u, v, w}  

and f: X → Y by: a → u,b → v, c → v and d → v. Let A be the fuzzy  

subset of X such that A={a0.2,b0.5,c0.6,d0 }, then  (̅A) is the fuzzy subset  

of Y defined as: 

  ̅(A): Y → [0,1]:  

u → 0.2, v → max{0.5, 0.6,0} = 0.6,and w → 0 

Example 1.4.2 (2) 

Let X = {a, b, c, d}, Y= {u, v, w} and f: X → Y be the function that 

maps a to u and  b, c and d to v, and let B: Y → [0,1] to be the fuzzy subset 

of Y that maps u to 0.3, v to 0.5, and w to 0.8. 

Then (f)
-1

 (B): X → [0,1] 

         a → 0.3, b → 0.5,c → 0.5 and d → 0.5  

The following definition concerns the product of two fuzzy sets 

Definition [35]: 

Let A be a fuzzy subset of X and B be a fuzzy subset of Y. Then we 

consider AxB to be the fuzzy subset of XxY defined by: 

(AxB) (x,y)= min{ A(x),B(y) } for (x,y)∊XxY 
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Following this definition we have the following remark: 

Remark 1.4.3: 

 For any fuzzy subset A of X and fuzzy subset B of Y, we have: (AxB)
c
 = 

(A
c
 x   

̅̅ ̅) V (  
̅̅ ̅ x B

c
) where   

̅̅ ̅ is the fuzzy set that maps all element of X 

to 1 while    
̅̅ ̅̅  is the fuzzy set that maps all elements of Y to 1. 

Proof: 

(1 – AxB)(x,y)  = max {1-A(x), 1-B(y) } 

                          = max { (A
c
 x1)(x,y), (1x B

c
)(x,y) } 

                          = [(A
c
 x   

̅̅ ̅   V (  
̅̅ ̅x B

c
)](x,y) for every (x,y)∊XxY 

Also we can define the product of two fuzzy functions as follows: 

Definition 1.4.4 [37]: 

let f1: X1→Y1,   ̅:F(X1) → F(Y1) and f2: X2→Y2,   ̅:F(X2) → F(Y2)  

Then: f1 x f2: X1 x X2→Y1 x Y2 is defined by: 

(f1 x f2)(x1,x2) = (f1(x1), f2(x2)) for every (x1,x2)∊ X1 x X2. 

And therefore for any fuzzy subsets A1,A2 of X1 and X2 respectively  

         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(A1 x A2)(y1,y2) = 

{
   {                              
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and: (      ̅̅ ̅̅ ̅̅ ̅̅ ̅)
-1

 (B1x B2)(x1,x2)= (B1xB2)((f1xf2) (x1,x2)), for any fuzzy 

subsets B1 and B2 of Y1 and Y2 respectively. 

Theorem: 1.4.5 [37] 

Under the assumption of the previous definition, we have 

 (      ̅̅ ̅̅ ̅̅ ̅̅ ̅)
-1

 (B1x B2)=     ̅̅ ̅̅ -1 
(B1) x     ̅̅ ̅̅ -1 

(B2) 

Proof: 

for every (x1,x2)∊ X1 x X2 we have: 

 (      ̅̅ ̅̅ ̅̅ ̅̅ ̅)
-1

 (B1x B2) (x1, x2) = (B1x B2)(f1(x1), f2(x2))  

So (      ̅̅ ̅̅ ̅̅ ̅̅ ̅)
-1

 (B1x B2) (x1, x2)  = min (B1(f1(x1), B2(f2(x2))  

                                                 = min (f1
-1

(B1)(x1), f2
-1

(B2)(x2)) 

                                                 = (    ̅̅ ̅̅  -1 
(B1) x     ̅̅ ̅̅ -1 

(B2)) (x1, x2) 

We cosider the fuzzy graph of a fuzzy function. 

 In regular setting, for any function f: X→Y we define the graph of f, Gf, 

to be the function g: X →XxY defined by: g(x) = (x, f(x)) for every  

x∊X. So Gf = { (x, f(x)): x∊X } 

Definition: 1.4.6 

Let f: X→Y be any function and   ̅:F(X) → F(Y) be the 

corresponding fuzzy function. The fuzzy graph of   ̅ is the fuzzy function   ̅ 

where,   ̅: F(X) → F(X) x F(Y)  
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defined by:for a fny fuzzy subset A of X,   ̅(A) = AxB, for any fuzzy 

subset B of Y 

Remark 1.4.7 [37]  

Under fuzzy setting we have (  ̅)-1
(AxB) = A ʌ    ̅̅ ̅̅ )

-1
(B)  

proof: 

(  ̅)-1
(AxB)(x) = A x B(g(x)) 

                       = A x B(x,f(x)) 

                      = min { A(x), B(f(x)) } 

                      = A ʌ    ̅̅ ̅-1
 (B)(x) 

 The following theorem shows that the image of a fuzzy point 

in Xis a fuzzy point in Y, but the inverse image of a fuzzy point in Y may 

not be a fuzzy point in X 

Theorem 1.4.8 [35]: 

(1) If p = aλ is a fuzzy point in X,with support a, and with  

value =λ, then   ̅(p) is a fuzzy point in Y, call it q,where 

   ̅(p) = f(a)λ = q such that f(a) is the support of q and λ is the  

value of q 

Proof: 

If f
-1

(y) = ø,q(y) =0  
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If f
-1

(y) ≠ ø,q(y) =sup { p(x): xϵ f
-1

(y) } here, there are two cases: 

case one: if a ϵ f
-1

(y) 

q(y) = sup { p(x): xϵ f
-1

(f(a)) } = { λ, 0, 0, … } = λ 

case two a ∉ f
-1

(y) 

q(y) = sup { 0, 0, …} = 0 

(2) If q = br fuzzy point in Y then f
-1

(q) may not be fuzzy 

point in X 

The following examples explain this result. 

Example (1): 

Suppose f
-1

(b) is not a singleton,say f
-1

(b) = { α, β }  

then f
-1

(q) = { αr, βr, 0, 0, … } which is not a fuzzy point 

Example (2): 

If f
-1

(b) = ø, then f
-1

(q) = ø which in not a fuzzy point. According to the 

previous two examples if f
-1

(b); where q = br; is a singleton then if  f
-1

(q) is 

a fuzzy point in X. 

The following theorem shows the effect of fuzzy functions on the 

quasi-coincident relation between a fuzzy point and a fuzzy set,  
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Theorem 1.4.9[37]: 

Let f:X→Y be a function, then for any fuzzy point p= aλ and for any 

fuzzy subset A of X, we have:if p Q A then f(p) Q f(A) 

proof:  

Let p = aλ and f(p) = f(a)λ 

since p Q A then:  λ + A(a) ˃ 1 

Consider   λ +f(A)(f(a))  

λ +f(A)(f(a)) = λ + sup { A(x): x ϵ f
-1

((f(a)) } 

                     ≥ λ + A(a)  ˃1 

Theorem 1.4.10 [37]: 

If q=bλ and f
-1

(b) is a singleton (f
-1

(b) ={a}) then f
-1

(q) is the fuzzy 

point =aλ and in this case: if q Q B then f
-1

(q) Q f
-1

(B)  

proof: 

We have qQB which means λ+ B(b) ˃ 1 

Now  

λ+  ̅ -1(B)(a) = λ + B(f(a))  

                   = λ + B(b) 

                      ˃ 1 

That is,f
-1

(q)Qf
-1

(B) 
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Chapter Two 

Fuzzy Topological Spaces 

Introduction 

General topology was one of the first branches of pure mathematics 

that have been applied to the fuzzy settings. After three years of the 

introduction of fuzzy sets by Zadeh in 1965,Chang, in [6] in 1968,gave the 

concept of “fuzzy topology”. He did the fuzzification of topology by 

replacing (subsets) in the definition of topology by (fuzzy sets) and 

introduced what we call Chang‟s fuzzy topological space. After that in 

1976, Lowen [17 ] gave a modified definition of fuzzy topology by adding 

one simple condition, and made what we call Lowen‟s fuzzy topological 

space. 

In this chapter we will introduce the basics of fuzzy topology,and 

then with some development starting with Chang‟s and Lowen‟s definitions 

and ending with another type of topological spaces called  the intuitionistic 

fuzzy topological space [8]. Also in this chapter we will consider the 

openness and Closedness of fuzzy sets, besides, closure,interior, 

neighborhoods and those concepts over the product fuzzy topological 

spaces.  

2.1 Definitions of Fuzzy Topological Spaces 

Definition 2.1.1 (Chang):[6]: 

Let   denote the unit interval [0, 1],and let X be a non-empty set,the 

set I
X
 of all fuzzy functions from X to I are the fuzzy subsets of X denoted 



28 

by F(X). A fuzzy topology on a set X is a family   ≤ F(x) satisfying the 

following conditions: 

(i)  ̅, ̅ ϵ   

(ii) if A,B ϵ   then A Ʌ B ϵ   

(iii) if { Aα: α ϵ index set Δ } is a family of fuzzy sets in   then  

VAα ϵ  , where α ϵΔ. 

The pair (X,  ) is called a C-fuzzy topological space and the 

members of   are called the C-open fuzzy sets and their complements are 

called  the C-closed fuzzy sets. 

Later on, Lowen[17] defined the fuzzy topology on X as Chang 

did,but replaced the first condition (namely  ̅, ̅ ϵ  ) by all constant Fuzzy 

subsets  ̅ where  ̅(x) = c for all c∊[0,1]. Which is finer than Chang‟s 

topology.  

Definition 2.1.2 (Lowen) [17] 

Let   denote the unit interval [0,1],and let X be a non-empty set,the 

set I
X
 of all fuzzy functions from X to I are the fuzzy subsets of X denoted 

by F(X). A fuzzy topology on a set X is a family   of fuzzy subsets of X 

satisfying the following conditions: 

 (i) all constant functions  ̅ from X to [0,1] ∊  . 

 (ii) if A,B ϵ   then A Ʌ B ϵ  . 
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 (iii) if { Aα: α ϵ index set Δ } is a family of fuzzy sets in   then  

VAα ϵ  ; where α ϵΔ. 

Then the pair (X,  ) is called an L-fuzzy topological space and the 

members of   are called the L-open fuzzy sets and their complements are 

called the L-closed fuzzy sets. 

In the coming material we will use Chang‟s definition of fuzzy 

topology and call it the fuzzy topology, and if we use Lowen‟s definition 

we will use the notation L-fuzzy topology.  

Examples of fuzzy topological spaces are parallel to those in the 

regular topological spaces: 

for example,the indiscrete fuzzy topology { ̅, ̅} on X, 

the discrete fuzzy topology on X, which consists of all fuzzy sets in X, 

and the se of all crisp fuzzy sets in X is also a fuzzy topology. 

Section (2): 

2.2 Interior and Closure of Fuzzy Subsets 

Definition:2.2.1:[6] 

Let (X,  )be a fuzzy topological space and let A be any fuzzy subset 

of X then: 
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(i) The closure of A denoted by Ā or Cl(A) is defined by: 

Cl(A)= Ʌ { F: F
c
 ϵ  :

 A ≤ F } 

(ii)  The interior of A denoted by A
o
 or int(A) is defined by: 

A
o
 = V { U: U ϵ  : U ≤ A} 

We will consider some examples to compute the closure and the 

interior of some fuzzy sets in a fuzzy topological space: 

Example 2.2.2: 

Given the following fuzzy sets A,B,C and D (fuzzy subsets of 

X=[0,1]) 

 

 

Where   = { ̅,  ̅, A, B, D } 

To find Cl(C) and C
o 
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First of all we find the fuzzy closed sets which are the  

complements of the members of  . 

The closed sets are: 

 

The fuzzy closed sets containing C are  
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And therefore Cl(C)= ̅ Ʌ B
c 
= B

c
. 

For the interior consider the fuzzy open sets contained in C:  

 

And therefore C
o
 = A V  ̅ = A 

Example 2.2.3: 

Let   be the topology generated by A,B and C such that: 

A= { a0.7, b0, c1 },B= { a0.7, b0.5, c0.3 } and C= { a0.5, b0.5, c0.5 }  

To find Cl(A) and B
o
,
 

Now,   = {  ̅,  ̅, A, B, C, { a0.7, b0.5, c1 }, { a0.7, b0.5, c0.5 },  

{ a0.7, b0, c0.3 },{ a0.5, b0, c0.5 }, { a0.5, b0.5, c0.3 }, { a0.5, b0, c0.3 } } 

The fuzzy closed sets are: 
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{ a0.3, b1, c0 }, { a0.3, b0.5, c0.7 }, { a0.5, b0.5, c0.5 }, { a0.3, b0.5, c0 } 

{ a0.3, b0.5, c0.5 }, { a0.3, b1, c0.7 },{ a0.5, b1, c0.5 }, { a0.5, b0.5, c0.7 } 

{ a0.5, b1, c0.7 },  ̅,  ̅. 

Hence, Cl(A)=  ̅,and B
o
 = B 

Lemma 2.2.4: [37] 

let   be a fuzzy topology on X, then for any A,B fuzzy subsets of X 

the following are true: 

1)       =   V   

2) (A V B)
o
 ≥ A

o
 V B

o
 

3) (A
o
)

c
 =    

4) ( )
c
 = (A

c
)

o
 

Proof: 

1)       = ⋀   
         
      

 

   But   V   = (⋀           
    

) V (⋀           
    

) 

             = ⋀            
    

         
         

 

             = ⋀          
         

  =        
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2) A ≤ A V B implies that A
o
 ≤ A V B And B ≤ A V B implies that B

o
 

≤ A V B   So,  A
o
 V B

o
 ≤ A V B, but A

o
 V B

o
 is open. Hence A

o
 V 

B
o
 ≤ (A V B)

 o
. 

3) 1- (A
o
) = 1- V {B: B ∊ , B ≤ A } 

       = ʌ {1-B: B ∊  , B ≤ A} 

        = ʌ {1-B: B ∊  , 1-B ≥ 1-A } 

        = ʌ {F:F
c
 ∊  , F ≥ 1-A } =   . 

4) 1 - ( ) = 1- ʌ {D: 1-D ∊  , D ≥ A } 

         = V { 1-D: 1-D ∊  , D ≥ A } 

            = V { E: E ∊T, E ≤ 1-A }  = (1 – A)
o 
= (A

c
)

o
 

Lemma 2.2.5 [37] 

let { Aα } be the family of fuzzy subsets of a fuzzy space X then: 

(i) V   
̅̅̅̅  ≤     

̅̅ ̅̅ ̅̅  

(ii) V   
̅̅̅̅  =     

̅̅ ̅̅ ̅̅  where α ∊ finite indexing set 

(iii) V (Aα)
o
 ≤ (V Aα)

o
 

Proof: 

(i) Vα   
̅̅ ̅̅  = V { ⋀    

 
 :    

 ≥   ,    

  ∊   } 

      = ⋀   
 { ⋁    

 
 : ⋁    

 
 ≥ V      

  ∊   } 
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      ≤ ⋀   
 { ⋁    

 
 : ⋁    ≥ V  ,(V   c

 ∊   } 

      =       ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(ii) In case of α ∊ {1, 2, 3,…, n }, then for (i) (     

 )
c
 ∊   and 

equality holds. 

(iii) To show V (Aα)
o
 ≤ (V Aα)

o
 

V (Aα)
o
 = Vα { ⋁   

 
 :    ≤   ,    ∊   } 

      = Vα { ⋁   
 
 : V     ≤ ⋁     ,V      ∊   } 

    ≤ Vα { ⋁   
 : ⋁   

 ≤ ⋁     , ⋁   
 ∊   } = (V Aα)

o
 

Theorem 2.2.6: 

Let (X,  ) be any fuzzy topological space, a fuzzy subset A of X is 

fuzzy closed if and only if   =  ̅  

Proof: 

Assume that   =  ̅ . Since  ̅ = ⋀    
        

 
 

⇒  ̅ is fuzzy closed, and 

therefore A is fuzzy closed. 

Conversely, Assume A is fuzzy closed. 

 ̅ (x) = inf { F(x): F is fuzzy closed and A(x) ≤ F (x) },  

that is  ̅ (x) ≤ F(x),consequently  ̅ (x) ≤ A(x) for every x in X. 
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Now, since  ̅ = ∧ { F: F is fuzzy closed and F ≥ A} then A(x) ≤ F(x) 

for every F ≥ A, therefore A(x) is a lower bound for the set { F(x): F ≥ A } 

and A(x) ≤ inf { F(x): F ≥ A }, therefore A(x) ≤  ̅ (x) for every x in X. 

Hence  ̅ (x) = A(x) for every x in X, which means  ̅ =  . 

Definition 2.2.7: 

Let (X, ) be a fuzzy topological space, and let A be a fuzzy subset of 

X, we say a fuzzy point p is a fuzzy cluster point of A if for every nbd U of 

p, U ʌ A ≠  . 

We show in the following example, the property that “ if every 

neighborhood of a point intersects a set A implies that the point is in the 

closure of A” is not valid in fuzzy setting. The following example explains 

that: 

Example 2.2.8: 

let X =[0,1] and let U,V and W be defined as follows: 

 

 now, take   = {  ̅  ̅,U, V, W }. 

Therefore the complements of the fuzzy open sets are 
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Let p be the fuzzy point 
 

  
 

 

 and let A be a fuzzy subset of X, as 

follows: 

 

Then   ̅= V
c
, and the only neighborhoods of p are U,  ̅x  

It is clear that U ʌ A ≠   and  ̅x ʌ A ≠   but still p ∉  ̅ 

Other types of fuzzy open and fuzzy closed sets were studied 

through research. Among them, 

Definition 2.2.9 [37]: 

a fuzzy set A in X is fuzzy regularly open if A= int (Cl(A)) 

a fuzzy set B in X is fuzzy regularly closed if B= Cl (int(B)) 

In the following we will define what is called a Q-neighborhood of a 

fuzzy point, which is used very often to deal with fuzzy topological 

concepts. 
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Definition 2.2.10 [37]: 

A is a Q-neighborhood of a fuzzy point p if there exists B ∊   such 

that p Q B and B ≤ A. 

We also define a fuzzy open (closed) mapping as an extension of non 

fuzzy setting as follows: 

Definition: 2.2.11: [34] 

Let  :̅(X,  )→ (Y, ) be a mapping between fuzzy topologies. Then   ̅

is called: 

(i) fuzzy open if and only if  (̅u) ϵ   for each u ϵ  . 

(ii) fuzzy closed if and only if   (̅u))
c
 ϵ   

 for each u
c
 ϵ   

 

Finally, we define a semiopen (semiclosed) fuzzy sets parallel to non 

fuzzy setting as follows: 

Definition 2.2.12:[37] 

Let (X,  ) be a fuzzy topological space. For any fuzzy subset A of X, 

we say A is fuzzy semiopen if there exist U ϵ   such that: U ≤ A ≤    

And for any fuzzy subset B of X we say B is fuzzy semiclosed if 

there exist F fuzzy closed such that: F
o
 ≤ B ≤F  

It is obvious that if A is fuzzy open then it is also a fuzzy semiopen 

set. 
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2.3 Fuzzy Membership and Neighborhood System 

In studying the fuzzy open subsets of X we deal with the so called 

neighborhood system of fuzzy points. Also in studying separation axioms 

we deal with fuzzy points and fuzzy neighborhood systems; where „ the 

belonging „ between fuzzy points and fuzzy sets is greatly used. In 1974, 

C.K Wong [34] started the „‟belonging of fuzzy point to a fuzzy set „‟ 

concept. later on, different definitions of the same concept were added by 

Piu and Liu [22] M. Sarkar [27], Srivastava [32 ] and Wong [36]. These 

definitions were given independently. At the first look the definitions seem 

to be the same, but, after investigation they are found  to be different in 

many aspects. 

For the notation of fuzzy points we may use p=xλ, or p= (x,λ).  

Using the notation p=at = { (x,t):where t=0 
 

⇔ x ≠ a} it is clear that:  

A= V { (x, λ): 0 < λ ≤ A(x): x∊ supp(A) } 

Also, we may write A= V p: p ≤ A 

That is A can be written as the union of its fuzzy points. 

In the coming definition we classify the different definitions of the 

relation „ϵ‟. 

Definition 2.3.1: 

Let A be a fuzzy subset of X, and let x λ be a fuzzy point of X, we 

define the membership between x λ and A as follows: 
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(i) x λ ϵ1 A if and only if λ< A(x) 

(ii) x λ ϵ2 A if and only if λ≤ A(x) 

(iii) x λ ϵ3 A if and only if λ= A(x)  

These definitions are essentially distinct.The following remarks show 

why: 

Remark (1) 2.3.2: 

x λ ϵ AVB if and only if x λ ϵA or x λ ϵB, 

which is true for all the definitions of “the belonging” 

For ϵ1: x λ ϵ1 AVB means λ < max { A(x), B(x) } 

So λ<A(x) or λ<B(x) 
     
⇔  x λ ϵ1A or x λ ϵ1B 

The same will be true if we replace ϵ1 by ϵ2 and ϵ3. 

Remark (2) 2.3.3: 

x λ ϵ A Ʌ B if and only if x λ ϵA and x λ ϵB. 

This is true for all the definitions of the belonging (ϵ1, ϵ2 and ϵ3) 

The proof is similar to the that in remark (1). 

Remark (1) and Remark (2) can be extended to any finite number of 

fuzzy sets A1, A2, A3,…, An. 
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In the case of arbitrary families of fuzzy sets { Aα, α∊Δ}, we have 

the following Lemma: 

Lemma: 2.3.4: 

Let { Aα: α∊Δ} be a family of fuzzy subsets then 

(1)  if x λ ϵ1 ʌ Aα, then x λ ϵ1 Aα for all α∊Δ 

(2) x λ ϵ1 V Aα if and only if x λ ϵ1 Aα for some α∊Δ 

proof: 

(1)  if x λ ϵ1 ʌ Aα then λ < inf { Aα (x): α α∊Δ 

so λ < Aα(x) for all α∊Δ 

hence x λ ϵ1 Aα for all α∊Δ 

(2)  

Let x λ ϵ1 Aα for some α∊Δ then λ< Aα (x) for some α∊Δ 

so λ < sup { Aα (x): α∊Δ },then λ <(V Aα)(x) for α∊Δ 

hence, x λ ϵ1 V Aα   

conversely; let x λ ϵ1 V Aα  

then λ < sup { Aα (x): α∊Δ },call this sup, S. so λ<S 

take є = 
     

 
,as S is the sup, there exist one Aα (x) say Am(x) 
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such that: λ < Am(x) < S, hence x λ ϵ1 Am(x). 

the converse of (1) in lemma 2.3.4 may not be true, as the following 

example shows: 

Example 2.3.5: 

Let X= {a, b, c}  

Ai = {               ,             ,c.2 } 

i.e: A1 = {       ,     ,c.2} 

A2 = {        ,      , c.2} 

A3 = {         ,       , c.2} 

          

So ʌ Ai,over i, is equal to {      ,    , c.2} 

Hence,     ∊1 Ai for all i,but     ∉1 ʌ Ai 

Replacing, ϵ by ϵ2, we have the following Lemma: 

Lemma 2.3.6: 

(1)  x λ ϵ2 ʌ Aα 
 

⇔ x λ ϵ2 Aα for all α. 

(2)  if x λ ϵ2 Aα,for some α then x λ ϵ2 V Aα 
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proof: straight forward. 

The converse of (2) may not be true,we may have x λ ϵ2 V Ai but    x λ 

∉2 Ai,for all i, as the following two examples show: 

Example (1):  

Let X = {a}, Ai = {   

    

 }, i = 1,2,3,… Then V Ai = { a1 },We notice 

that a1 ϵ2 V Ai but a1 ∉2 Ai,for all i. 

Example(2): 

Let X= {a, b}  

      A1 = { a0.49,b0.3 }  

A2 = { a0.499,b0.3 }  

A3 = { a0.4999,b0.3 } 

        

V Ai = { a0.5,b0.3 } 

Now, a0.5 ϵ2 VAi  but a0.5 ∉2 Ai for every i. 

Remark 2.3.7: 

When replacing ϵ by ϵ3, then neither of these two statements are true: 

(1) x λ ϵ3 ∧ Aα 
 

⇒ x λ ϵ3 Aα for all α. 

(2)  x λ ϵ3 Aα,for some α 
 

⇔ x λ ϵ3 V Aα  
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the following counter examples explain: 

(i) Let X= {a}, take the fuzzy subsets  

A1 = {a0.51 }, A2 = {a0.501 }, A3 = {a0.5001 }, … 

∧i Ai = {a0.5 } 

Clearly a0.5 ∊3 ∧i Ai but a0.5 ∉3 Ai for all i. 

(ii) Let X = {b}, take the fuzzy subsets 

B1 = {b0.39 }, B2 = {b0.399 }, B3 = {b0.3999 }, … 

∨i Bi = { b0.4 } 

Clearly, b0.4 ∊3 ∨i Bi but b0.4 ∉3 Bi for any i 

Also, b0.39 ∊3 B1 but b0.39 ∉3 ∨i Bi 

In the case of crisp fuzzy subsets we could not use ϵ1 because1 could 

not be smaller than A(x) for any x ϵ X.But we may use ϵ2 and ϵ3 

We may look at a fuzzy point xλ as a fuzzy subset B,therefore xλ∊ A 

is equivalent to B ≤ A, and ∊ = ∊2 satisfies this situation, so; it is 

appropriate to use ∊2 for ∊. 

Definition 2.3.8 [22]: 

let (X, ) be a fuzzy topological space, we say that a fuzzy set G is a 

neighborhood (nbd in short) of a fuzzy point xλ 
 

⇔ there exist a fuzzy open 

set U such that xλ ≤ U ≤ G. 
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The family of all neighborhoods of a fuzzy point xλ is the 

neighborhood system of xλ. 

Theorem 2.3.9:[23] 

let A be a fuzzy set in a fuzzy topological space (X, ) then: 

A is fuzzy open 
 

⇔ for each fuzzy point p= xλ   A, A is a nbd of p. 

Proof: 

  
 

⇒ Trivial 

 
 

⇐ For each xλ   A, there exists U fuzzy open such that xλ ≤ U≤ A.  

Therefore, V xλ ≤ V U ≤ A. But, A = V { xλ:xλ   A }, therefore,       

A = V{U: U is fuzzy open}. Hence, A is fuzzy open. 

The characterization of the fuzzy open sets using the neighborhoods 

of its fuzzy points, generates a topology. 

Now, we consider a new neighborhood system, called the      Q-

neighborhood system. 

Definition 2.3.10 [22]:  

Let (X, ) be a fuzzy topological space, let p= xλ be a fuzzy point in 

X, We say that the fuzzy set A is a Q-neighborhood of p if there exists     B 

ϵ   such that p Q B and B ≤ A. 
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The family of all Q-neighborhoods of xλ is called the system of Q-

neighborhoods of xλ. 

Remark 2.3.11: 

(1)  The fuzzy set A is a Q-neighborhood of xλ;doesn‟t mean that    xλ ∊ A  

 In 1916 Fr ́chet studied the neighborhood structure of neighborhoods 

(in non fuzzy settings) that doesn‟t contain the point itself, and it seems 

that the Q-neighborhood is an extension of that concept. In Fr ́chet 

work, dealing with regular sets A and A
c
, we have A ʌ A

c
 =   which is 

not the case in the fuzzy setting. However, in fuzzy settings A and A
c
 

are not quasi coincident to each other. 

The following theorem characterizes the properties of Q-

neighborhood system: 

Theorem 2.3.12: [22] 

Let N(p) be the family of all Q-nbds of a fuzzy point p = xλ  

That is, N(p) = { U Q-nbd of p: p U }, we have the following: 

i) if U   N(p), then p Q U. 

ii) If U1, U2  N(p) then U1 ʌ U2  N(p). 

iii) U N(p),if U ≤ V then V N(p)  

iv) If U   N(p), then there exists V N(p) such that V ≤ U and for  

every q Q V, V N(q). 
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Definition 2.3.13: 

If {Aα } is a family of fuzzy sets in X, we say xλ Q VAα if and only if there 

exist   
 such that xλ Q    

 

Fuzzy base and fuzzy subbase: 

Definition 2.3.14: 

A subfamily β of   is called a fuzzy base or a fuzzy basis for (X,  ) if and 

only if  each member of   can be written as a union of members of β.  

That is, for every A   , A= V b: for some b  β. 

Definition 2.3.15: 

a subfamily S of   is called a subbase for   if the collection of all finite 

intersections of members of S is a base for  . That is, { ⋀   
   : s∊S } forms 

a fuzzy base for  . 

2.4 Fuzzy Product Topology 

We define the fuzzy product topology on X xY using the fuzzy 

topologies on X and Y; as follows: 

Definition 2.4.1: [cf 9, 1 ] 

Let   X and   Y be two fuzzy topologies on X and Y respectively, the 

fuzzy product space is the cartesian product XxY with the fuzzy topology   

XxY generated by the subbasis 

 { p1
-1

(Aα) ʌ p2
-1

(Bβ): Aα ∊ X, Bβ ∊   y} where: 
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 p1
:
 is the projection function of XxY onto X, and 

 p2: is the projection function of XxY onto Y. 

Since p1
-1

(Aα)= Aα x  ̅y and p2
-1

(Bβ)=  ̅x x Bβ, then the intersection  

p1
-1

(Aα) ʌ p2
-1

(Bβ) = (Aα x  ̅y) ʌ ( ̅x x Bβ)= Aα x Bβ. 

Therefore, B= { Aα x Bβ: Aα ∊   X, Bβ∊   Y } forms a basis for  XxY. 

The above definition of the fuzzy product topology on XxY can be 

extended to a finite family of fuzzy topological spaces X1,X2,…,Xn 

Let X= ∏   
  
    be the fuzzy product space and Pi be the projection from X 

onto Xi, for each i=1,2,…,n. 

If Bi ϵ i then    
  (Bi) is a fuzzy set in X and {ʌ    

  (Bi): Bi ϵ i } is  

a subbasis that is used to generate a topology on X 

This topology is called the fuzzy product topology for X 

In the following, we will show the relationship between the product 

of  the closure of fuzzy sets and the closure of the product. 

First of all we will show that if A is a fuzzy closed set in X and B is 

a fuzzy closed in Y, then A x B is a fuzzy closed in X x Y 

Theorem 2.4.2 [37]: 

Let A and B be fuzzy closed subsets of X and Y respectively then    

A x B is a fuzzy closed subset of the fuzzy product space X xY 
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Proof: 

If A is fuzzy closed in  x then A
c
 is fuzzy open in  x so(A

c
 x Y) is 

fuzzy open in XxY also since B is fuzzy closed in  y then B
c
 is fuzzy open 

in  y and (X x B
c
) is fuzzy open in XxY.But, (AxB)

c
 = 1- AxB 

 (1- AxB)(x,y) = 1 – min { A(x), B(y) }  

             = max { 1- A(x), 1- B(y) }  

             = max { A
c
(x), B

c
(y) }  

             = max { min { A
c
(x),1}, min {1, B

c
(y) } } 

             = max { (A
c
 x Y)(x,y), (X x B

c
)(x,y)} 

             = (A
c
 x Y) V (X x B

c
) 

This is a union of two fuzzy open subsets in XxY so it is fuzzy open 

in XxY. 

Since 1- AxB is fuzzy open in XxY, then AxB is fuzzy closed in 

XxY 

Recall that in the usual set topology, it is true that the closure of the 

product is equal to the product of the closures, but,this is not the case in 

fuzzy setting. 

The following example explains that:  ̅ x  ̅ ≠       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
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Example: 2.4.3 

Let A and B be as follows: 

 

With 

 x= { ̅,  ̅, A
c
 } and  y= { ̅,  ̅, B

c
 } 

Now  

  ̅=1 and  ̅=1 so  ̅ x  ̅ = 1 

Now for      ̅̅ ̅̅ ̅̅ ̅̅ ̅; 

 1 – A x B = (A
c
 x 1) V (1 x B

c
) 

Which is a union of two fuzzy open subsets of X x Y so it is fuzzy 

open in X x Y implying that Ax B is fuzzy closed in Xx Y, which then 

implies that      ̅̅ ̅̅ ̅̅ ̅̅ ̅ = A x B ≠  ̅XxY  

but  ̅ x  ̅ = 1,hence      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠  ̅ x  ̅ 

In general the fuzzy closure of the products is a subset of the product 

of fuzzy closures, also, the product of the fuzzy interiors is a subset of the 

fuzzy interior of the products,the following theorem assures that: 
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Theorem 2.4.4 [37]: 

let A be a fuzzy subset of X, and B be a fuzzy subset of Y then: 

(i)  ̅ x  ̅ ≥       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(ii) A
o
 x B

o
 ≤ (AxB)

o
 

Proof: 

(i)  ̅ is fuzzy closed and  ̅ is fuzzy closed,so  ̅ x  ̅ is fuzzy closed, also 

 ̅ ≥ A and  ̅ ≥ B,so  ̅ x  ̅ ≥ A x B 

But  ̅ x   ̅ is fuzzy closed,hence  ̅ x   ̅≥       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Similarly 

(ii) int(A) is fuzzy open and Int(B) is fuzzy open, so      int(A) x int(B) is 

fuzzy open,also Int(A) ≤ A and Int(B) ≤ B, 

so, int(A) x int(B) ≤ A x B 

but, int(A) x int(B) is fuzzy open, 

hence, int(A) x int(B) ≤ int(A x B) 

S. Saha [26 ] modified the definition of the product to be “product 

related to” in such a way that makes: the product of the fuzzy closures 

equals the fuzzy closure of the products, and as well the product of the 

fuzzy interiors equals the fuzzy interior of the products. 
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Definition 2.4.5: [ 26] 

let X and Y be two fuzzy spaces, X is said to be “product related” to 

Y if for any C fuzzy subset of X, D fuzzy subset of Ysuch that: 

if U
c
<C and V

c
<D 

    
⇒ (U

c
 x1) V (1x V

c
) ≥ Cx D: U∊ x,V∊ y 

Then there exist U1∊  x and V1 ∊  y such that: 

U1
c 
≥ C or V1

c 
≥ D and (U1

c
 x1) V (1x V1

c
) = (U

c
 x1) V (1x V

c
)  

Finally, Saha proved the following theorem 

Theorem 2.4.6:[26 ] 

Let X and Y be two fuzzy spaces, A be a fuzzy subset of X and B be a  

fuzzy subset of Y, if X is product related to Y,then: 

(i)  ̅ x  ̅ =       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 

(ii) A
o
 x B

o
 = (AxB)

o
 

2.5 The Intuitionistic Fuzzy Topological Space 

The definition of the intuitionistic fuzzy subset was given for the 

first time by K. T. Atanassov [4], it generalizes Zadeh‟s concept of fuzzy 

subsets, then as an extension of the chang‟s definition of the fuzzy 

topological spaces,D. Ҫoker in [8] gave the definition of intuitionistic fuzzy 

topological spaces using the intuitionistic fuzzy sets. 
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It was followed by Mondal and Samanta [24] who introduced in 

2002 the concept of intuitionistic gradation of openness also as an 

extension of gradation of openness given by Chattopadyay [7 ]. Min and 

Park in [20, 21] studied an equivalent form of the intuitionistic fuzzy 

topological space, where they defined the value of the components of the 

intuitionistic fuzzy sets by defining two functions from the fuzzy subsets on 

X to the unit interval [0,1]. 

Definition 2.5.1:[4] 

Let X be a non empty set, an intuitionistic fuzzy set A (IFS) is 

defined to be the ordered pair A = < A1, A2> where A1:X→[0,1] and 

A2:X→[0,1] such that: 0 ≤ A1(x) + A2(x) ≤ 1  for every x in X. 

A1(x) denotes the degree of Membership of each element x ∊X, 

and A2(x) denotes the degree of nonmembership for each x ∊X. 

The intuitionistic fuzzy set  ̃=< ̅,  ̅,> is the empty intuitionistic 

fuzzy set, and  ̃=< ̅,  ̅,> is the whole intuitionistic fuzzy set. 

The ordinary fuzzy set A can be written as <A,A
c
> as an IFS. 

Let A = < A1,A2 >, B = < B1,B2 > be two intuitionistic fuzzy sets 

we say A⊆ B to mean A1 ≤ B1 and A2 ≥ B2 for each x ∊X.  

We define the complement of A (i.e A
c
) to be A

c
 = < A2,A1 >. 
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The intersection and the union of A and B is defined by: 

A∩B = < A1 ʌ B1, A2 V B2 >, and A∪B = < A1 V B1, A2 ʌ B2 >. 

Of course; the intersection and the union could be extended 

to any family of intuitionistic fuzzy sets 

i.e. if Ai = <    ,     > then ∩i Ai= < ʌ    ,V   > and 

 ∪i Ai= < V   ,ʌ    >. 

We say A= <A1,A2> and B = <B1,B2 > are intuitionistic Q-coincident  

(IQ-coincident) if and only if there exists x ∊ X such that: A1(x) > B2(x) or 

A2(x) < B1(x). 

Definition 2.5.2: 

Let F(X) be the family of fuzzy subset of a non empty set X then 

IF(X) is the family of intuitionistic fuzzy subset of X. 

Consider f: X→Y and  :̅ F(X) → F(Y) then: 

  
 : IF(X) → IF(Y) is the intuitionistic fuzzy function 

defined by   (<A1,A2>) = <  (̅A1),    ̅(  
 ))

c
 > 

and    )
-1

(<B1,B2>) = <   ̅̅̅)
-1

(B1),   ̅̅̅)
-1

(B2) > 

Coker in 1997 in [8] proved the following properties of images and 

preimages between intuitionistic fuzzy functions and intuitionistic fuzzy 

sets. 
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Theorem 2.5.3 [8]: 

Let f: X → Y be a function, and  :̅ F(X) → F(Y) be a fuzzy function, and 

  
 : IF(X) → IF(Y) is the intuitionistic fuzzy function 

Then for any A,B ∊ IF(X), C,D ∊ IF(Y), we have: 

1) A ≤ B 
 

⇒   (A) ⊆   (B), and C ≤ D 
 

⇒    )
-1

(C) ⊆     -1
(D)  

2)    
 )

-1
(  ̃) =   ̃,    

 )
-1

(  ̃) =   ̃ 

3)   (AVB) =   (A) ∪   (B),and   (A ʌ B) =   (A) ∩   (B) 

4)      -1
(CVD) = (  )

 -1
(C) ∪      -1

(D), 

and,      -1
(C ʌ D) = (  )

-1
 (C) ∩ (  )

-1
 (D). 

Now, we come to the definition of the intuitionistic fuzzy topological 

spaces, as an extension of Chang‟s fuzzy topological spaces. 

Definition 2.5.4 [8]: 

Let   be a family of intuitionistic fuzzy sets on X satisfying the 

following properties: 

1)  ̃x ∊  ,  ̃x ∊   

2) If A,B ∊   then A ∩ B ∊   

3) Let { Aα: α∊∆ } be a family of intuitionistic fuzzy sets then     ∪α 

(Aα) ∊  . 
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Then (X,  ) is called an intuitionistic fuzzy topological space denoted  

by IFTS. 

Any member of   is called an intuitionistic fuzzy open set, and its 

complement is called an intuitionistic fuzzy closed set. 

Also for any intuitionistic fuzzy set A we define: 

Iint(A) = A
o
 = ∪ { U: U is intuitionistic fuzzy open set: U⊆A } 

and Icl(A) =   ̅ = ∩ { F: F is intuitionistic fuzzy closed set: F⊇A } 

Coker also defined the fuzzy intuitionistic point as follows 

Definition 2.5.5 [8]: 

Let a ∊ X be a fixed element and α∊(0,1] and β∊[0,1), where α+β ≤ 1,then 

a(α,β) = < aα,     
  > is called an intuitionistic fuzzy point. 

For any intuitionistic fuzzy set A = < A1, A2 > define  

a(α,β) ∊ A iff α ≤ A1(a) and β ≥ A2(a). 

Also we define a vanishing intuitionistic fuzzy point a(β)= < ̅,     
 >  and 

a(β) ∊ A iff 0 ≤ A1(a) and β ≥ A2(a). 

Any topological space can be considered as an intuitionistic fuzzy 

topological space. Because if (X, ) is a topological space,  

let   = { < A, A
c
 >: A∊   },then   is an IFTS. 

To show that   is a topology: 
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   ∊   
 

⇒ < ,  c 
> = <  , X > = <  ̅x,  ̅x > =  ̃x,and X ∊   implies that 

<X, X
c 
> = < X,   > = <  ̅x,  ̅x > =  ̃x, 

so  ̃x and  ̃x ∊ . 

 If A,B ∊   then <A, A
c 
> ∩ <B, B

c 
> = < AʌB, A

c
 V B

c
 > 

 So <A, A
c 
> ∩ <B, B

c 
> = < AʌB, (A ʌ B)

c
 > ∊  , since AʌB ∊  . 

 { Aα:α∊∆} a family of intuitionistic fuzzy sets ∊    

Uα < Aα,   
 > = < Uα Aα,∩α  

 > = < Uα Aα, (Uα Aα)
c
 > ∊  , 

Since Uα Aα ∊  . 
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Chapter Three 

Extending Separation Axioms for The Fuzzy Topology 

3.1 Fuzzy Hausdorff Spaces  

Introduction 

Fuzzy separation axioms including fuzzy Hausdorffness are basic 

concepts that have been studied by several authors and in different 

approaches: cf [21, 28, 30, 2, 31, 5, 3]Lowen [17] approach was by using 

his fuzzy convergence theory, while Pu and Liu [22] approach used Q-

relation concept, and Srivastava [32] approach used fuzzy points. Those 

different approaches of Hausdorffness mainly look completely different but 

they turn out to be equivalent. 

The following definition of fuzzy Hausdorff is the one used fuzzy 

points, which is parallel to the definition of Hausdorffness in regular setting 

of topological spaces. 

Definition 3.1.1 [32]: 

A fuzzy topological space (X, ) is said to be Hausdorff if and only if 

for every distinct fuzzy points xλ and yr,there exist U,V    such that      xλ 

 U, yr  V and UʌV =Φ. 

The following two lemmas will be used to present the relationship 

between Quasi-coincident and membership for a fuzzy point  and a fuzzy 

set 
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Lemma 3.1.2: 

 x 1-r   A 
 

⇔ x r Q A 

Proof: 

 xr Q A  
 

⇔ r + A(x) >1 
 

⇔ A(x) >1-r 

       
 

⇔ 1-r < A(x) 
 

⇔ x 1-r   A . 

Lemma 3.1.3:[31] 

If for any two distinct fuzzy points xr, ys in X, there exists U,V     

such that xr  U, ys  V and UʌV =Φ,then for every x,y   X with x ≠y, there 

exists U,V     such that U(x)>0,V(y)>0 and UʌV =Φ. 

Proof:  

For any x, y ∊X with x ≠y, take any r ∊ (0,1), s= 1- r then by 

assumption there exist U,V ∊   such that: xr  U, y1-r  V,UʌV= Φ.    Now, 

xr  U implies that U(x) > r > 0 and y1-r  V implies that      V(y)> 1-r >0. 

There is an equivalent definition of Hausdorff fuzzy topological 

spaces using the concept of Q-neighborhoods.  

Theorem 3.1.4 [31]: 

Let (X, ) be a fuzzy topological space, then the following are equivalent: 

(i) (X,  ) is hausdorff 

(ii) for any distinct fuzzy singletons xr, ys in X, there exist U Q-nbd   of 

xr, V Q-nbd of ys,such that UʌV= Φ 
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Proof: 

(i) 
    
⇒ (ii) Let xr, ys be fuzzy singletons in X, with x ≠y. So, there exist U,V 

    such that xr  U, ys  V and UʌV =Φ    

 Then we have one of the following four cases 

Case (1): r<1 and s<1 

This implies that x1-r, y1-s are fuzzy points since 1-r ≠0, 1-s ≠0. 

Then by the assumption, for x1-r and y1-s,there exists U,V∊   such that:x1-

r U, y1-s V and UʌV =Φ.  

Therefore, 1-r < U(x) and 1-s < V(y) which implies that U(x) + r > 1 and   

V(y) + s > 1. Therefore by lemma(3.1.2), we get that xr Q U and ys Q V  

and UʌV =Φ. 

Case (2):   r=1, s<1 

For any fixed k   (0,1), consider the fuzzy points xk, y1-s, 

By assumption there exist U,V  T such that xk  U, y1-s V, and    UʌV 

=Φ,but then 0<k<U(x) and 1-s<V(y), this implies U(x)>1-r where r =1 and 

V(y)+s >1 Which means, xr Q U  and, ys Q V  

case (3): r<1, s=1. The prove is similar to that of case 2.  

case (4): r = s = 1 
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using lemma(3.1.3), there exists U,V  T with U(x)>0 and V(y)>0 that is 

U(x) > 1-r,where r=1 and V(y) > 1-s,where s =1, or U(x) + r > 1 and V(y) + 

s > 1 which means xr Q U and ys Q V. 

 (ii)
    
⇒ (i) given any pair of distinct fuzzy points xr and ys in X, take the 

fuzzy singletons x1-r, y1-s in X then by the condition, there exist U,V    , 

UʌV =Φ, such that x1-r Q U and y1-s Q V which implies xr  U,ys  V and 

UʌV =Φ. 

As long as we deal with fuzzy topological spaces on a fuzzy set X, 

which has α-levels, it is natural to define Hausdorffness using the α-levels, 

and it is called α-Hausdorff. 

Definition 3.1.5 [31]: 

A fuzzy topological space (X,  ) is said to be α-Hausdorff for 

α [0,1) if and only if for each x,y   X with x ≠y, there are U,V     such 

that: U(x)>α, V(y)>α and UʌV =Φ. 

In the following theorem we introduce the relationship between 

Hausdorffness and α- Hausdorffness. 

Theorem 3.1.6:[31] 

A fuzzy topological space (X, ) is Hausdorff if and only if it is        

α-hausdorff for every α [0,1) 
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proof: 

case(1): α (0,1)  

take x≠y, so xα and yα are distinct fuzzy points then there exist U,V 

  ,such that xα  U and yα  V,with UʌV= Φ, which means there exist   U,V 

   , such that U(x)>α, V(y)>α. Hence, X is α-Hausdorff. 

case(2): α=0 

 Take x≠y. 

Fix r,s   (0,1) and consider the fuzzy points xr and ys., there exist U,V 

    such that xr U and ys V,with UʌV= Φ. That is, 0<r<U(x), 0<s<V(y), 

and so U(x)>α, V(y)>α and UʌV= Φ. 

conversely, 

Assume that (X, ) is α-Hausdorff for every α [0,1). Let xr and ys be 

fuzzy points with x≠y. If r ≤ s then since X is s-Hausdorff, 

there exist U,V     such that U(x)>s, V(y)>s and UʌV= Φ. 

So U(x)> s ≥ r, V(y) > s, and UʌV= Φ. Hence, xr U and ys V,and UʌV= 

Φ. 

A similar argument can be used if r>s. 

 Thus(X,   is Hausdorff. 

Now,we summarize the different definitions involving Hausdorffness in the 

following main theorem: 
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Theorem 3.1.7: 

Let (X, ) be a fuzzy topological space then the following definitions    

of Hausdorffness are equivalent: 

(i) For every distinct fuzzy points xλ and yr,there exist U,V      

such that xλ  U,yr  V and UʌV =Φ. 

(ii) For every distinct fuzzy singletons xλ and yr,there exist    U,V     such 

that xλ Q U and yr Q V and UʌV =Φ. 

(iii) For every x,y ∊ X, with x ≠y and for every α∊[0,1) there exist U,V     

such that U(x) >α and V(y) >α and UʌV =Φ . 

3.2 Other Fuzzy Separation Axioms 

Definition 3.2.1[13]: 

A fuzzy topological space is said to be fuzzy-T0 if and only if for any 

xλ, ys, two fuzzy singletons with x≠y, there exists a fuzzy open set U, such 

that xλ ≤ U ≤ ys
c  

 or  ys ≤ U ≤ xλ
c
. 

Definition 3.2.2[13]: 

A fuzzy topological space is said to be fuzzy-T1 if and only if for xλ, 

ys, two fuzzy singletons with x≠y, there exist two fuzzy open sets U, V 

such that xλ ≤ U ≤ ys
c  

 and ys ≤ V ≤ xλ
c
. 

It is obvious that (X, ) is fuzzy T1 
    
⇒ (X,  ) is fuzzy T0. 



65 

The following example shows a T0 space may not be T1. 

Let X ={a,b },   = {  ̅,  ̅, {a0.9,b0.2 }, {a0.99,b0.2 },{a0.999,b0.2 },… }. 

For any  λ,  r, there exist U: neighborhood of  λ such that  

 λ ∊ U ≤   
  = {  1,  0.8 }. Therefore,   is T0.  

But it is not T1 by taking  λ, b0.3. There is no V∊  such that 

b0.3 ∊ V ≤   
 = { a1-λ, b1}. 

In standard topological spaces the T1 space was identified by the 

property that every singleton is closed. In fuzzy setting this property is not 

extended but a weaker condition could be used as the following theorem 

states. 

Theorem 3.2.3 [13]: 

A fuzzy topological space (X,  ) is T1 if and only if every crisp 

singleton is closed (i.e. x1 is closed for every x ∊X) 

proof: 

For the first direction let X be a non empty set and a ∊X,take a1 to be 

any crisp singleton, now for any yr:where y ∊X,y ≠a, r∊(0,1],consider the 

fuzzy singletons a1 and yr, since X is T1 

There exist two fuzzy open sets U,V in   such that:a1 ∊ U ≤   
   and     yr ∊ 

V ≤   
 . 
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And since it is true for any r ∊ (0,1],then V(y) = sup { r: r∊(0,1] } =1  

for y ≠a. 

Also since V ≤   
  then V(a) =  

 (a) = 1-1 = 0 

that is V(x) = { 
       
       

 which means V=  
  

but V is open, hence   
  is closed. 

For the other direction let xλ, yr with x ≠y be two distinct singletons, 

since every crisp singleton is closed then x1, y1 are closed sets. 

Let U=   
  and V=  

 , then U and V are open, xλ ∊ U ≤   
  and       yr ∊ V ≤ 

  
 .Hence X is T1. 

We will modify the definition of T1 space (namely strong T1 space) 

to insure the validity of the property that every fuzzy singleton is closed  as 

an extension of standard topological spaces. 

Definition 3.2.4 [13]: 

A fuzzy topological space is said to be fuzzy strong-T1 (in short Ts) if and 

only if every fuzzy singleton is a closed fuzzy set. 

An example of a Ts space: 

Let X ={ a, b }  

and   = {  ̅,  ̅, { aλ, b1 }, { a1, br }, { aλ, br}: for every λ,r ∊ (0,1) } 

then every fuzzy singleton is closed. 
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 It is clear that if (X,  ) is fuzzy Ts then (X,  ) is fuzzy T1. 

Following the previous definitions of T0 and T1 spaces, a fuzzy T2 

space is defined as follows: 

Definition 3.2.5 [13]: 

A fuzzy topological space is said to be fuzzy-T2 if and only if for any 

two fuzzy singletons xλ, ys with x≠y, there exist two fuzzy open sets U, V 

such that xλ ≤ U ≤ ys
c  

and ys ≤ V ≤ xλ
c
 and U ≤ V

c
. 

An example of a T2 space is the following: 

Example 3.2.6: 

 let X= {x,y } 

and   = { ̅,  ̅, { xλ, y0}, { x0, ys}, { xλ, ys}: λ ≥ 
 

 
, s ≥ 

 

 
 } 

for any two distinct singletons xt and yr 

case (1): t < 
 

 
, r <

 

 
 

Take U = { x1-t, y0} and V= { x0, y1-r} 

Now, t < 
 

 
 → 1-t >

 

 
 so t < 1-t which implies that t < U(x) 

hence xt ∊ U,and,   
 = {x1,y1-r },so U≤  

 . 

Similarly, r < 
 

 
 → 1-r > 

 

 
, which means r<1-r that is yr ∊ V, 

since   
  = {x1-t,y1 } so V ≤   

  and U= { x1-t,y0 } ≤ { x1,y1-r} = V
c
. 
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case(2): xt and yr where t ≥ 
 

 
, r ≥

 

 
 

Take U={ xt, y0} and V={ x0, yr}, then xt ∊ U and U≤{ x1, y1-r } =   
  

also, yr ∊V and V≤ { x1-t, y1 } =  
  and U={ xt, y0} ≤ { x1, y1-r } = V

c
 

case(3): xt and yr where t < 
 

 
, r ≥

 

 
  

Take U = { x1-t, y0} and V= { x0, yr}. 

Since t<1-t, then xt ∊U and U ≤   
  = { x1, y1-r} 

also yr ∊ V and V ≤{ x1-t, y1} =   
  and U = { x1-t, y0} ≤ { x1, yr } = V

c
 

and therefore, this topological space is fuzzy T2  

Definition 3.2.7 [13]: 

A fuzzy topological space (X,  ) is said to be fuzzy Urysohn (fuzzy -

 
 

 

 

) if and only if for every, two fuzzy singletons xλ, ys with x≠ y,there 

exist two fuzzy open sets U,V such that: xλ ≤ U ≤ ys
c 

, ys ≤ V ≤ xλ
c
 and 

cl(U)≤ (cl(V))
c
. 

It is easy to show that if (X,  ) is fuzzy  
 

 

 

 topological space then 

(X,  ) is fuzzy T2 [13].  

Definition 3.2.8 [13]: 

A fuzzy topological space (X,  ) is called fuzzy regular space if and  

only if for every fuzzy singleton p=xλ and fuzzy closed subset F of     X 

such that p ∊F
c
, there exist U,V ∊   such that p ∊U, F ≤V and U ≤ V

c 
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There is also an other equivalent definition for (X,  ) to be a regular  

space if and only if for every fuzzy singleton p=xλ and fuzzy open subset U 

of X with xλ ∊U, there exist V ∊   such that:p ∊ V ≤  ̅ ≤ U. 

Theorem 3.2.9 [13]: 

Let (X,  ) be a fuzzy regular topological space, then for a fuzzy 

closed subset F of X and a fuzzy singleton p= xλ where xλ ∊ F
c
 there exist    

U, V ∊   such that xλ ∊U, F≤ V and  ̅≤    ̅̅ ̅c
. 

proof: 

F is a fuzzy closed subset of X so F
c
 is open where p= xλ∊ F

c
. Then 

by the definition of the fuzzy regular space, there exist V∊   such that        

p ∊ V ≤  ̅ ≤ U = F
c
. 

Take V = (  ̅̅ ̅)
c
 then  ̅ ≤    ̅̅̅̅ c

 where U= F
c
. 

Now, we define a T3 space. 

Definition 3.2.10: 

A fuzzy regular Ts topological space is called T3 space. 

Back to the classical topological spaces, if we have a T0 space (X,  ) 

which is also regular, then (X,  ) is a T3 space, but it is not the case of the 

fuzzy topological spaces, as shown in the next theorem: 

Theorem 3.2.11[13]: 

If (X,  ) is a T0 and a regular space then it is a fuzzy Urysohn‟s space 
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Proof: 

Let (X, ) be a regular T0 space and let p=xλ and q=yr be two fuzzy 

singletons with x ≠y, since (X,  ) is T0 then there exist U,V ∊   s.t     xλ ∊ U 

≤   
 . Take F =U

c
, that is U =F

c
 is open and xλ ∊ F

c
. 

But by theorem [3.2.9] since F is closed subset of a regular space, 

there exist V,W∊   such that xλ ∊ V, F≤ W and  ̅ ≤   ̅)
c
 but yr ∊ U

c
 = F ≤ 

W.  Hence xλ ∊ V, yr ∊W and  ̅ ≤   ̅)
c
,so (X,  ) is  

 
 

 

 space (Urysohn). 

Definition 3.2.12: 

A fuzzy topological space (X,  ) is called normal space, if and only 

if for every fuzzy closed subsets F1,F2 of X such that F1 ≤ (F2)
c
 there exist 

U,V ∊   such that F1≤U, F2≤V and U ≤ V
c
. 

Definition 3.2.13: 

A fuzzy normal Ts space (X,  ) is called T4 space. 

Theorem 3.2.14 [13]: 

A closed subset of a normal space is normal. 

Proof: 

Let (X,   x) be a fuzzy normal topological space and let A be a closed 

subset of X,then (A,   A) is a subspace. 
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Take F1, F2 any two fuzzy closed subsets of A with F1 ≤ A- F2, since 

A is fuzzy closed subset of X 
 

⇒ F1 ≤ X – F2, and since (X,   x) is normal 

then there exist U, V ∊   x such that F1≤ U, F2 ≤ V and U≤ V
c
. 

Now, A ʌ U and A ʌ V are two fuzzy open subsets of   A such that    

F1≤ A ʌ U, F2 ≤ A ʌ V and A ʌ U≤ A ʌ V
c 
= (A ʌ V)

c
. 

3.3 Intuitionistic Fuzzy Separation Axioms 

Recall that, if α ∊ (0,1] and β ∊ [0,1) such that α +β ≤ 1 then for any 

a in X, a(α,β) is an intuitionistic fuzzy point defined by: 

a(α,β) = < aα,    
  >. 

This means that aα takes a to α and all other elements of X to 0 and  

     
  takes a to β and all other elements of X to 1. 

 Also, recall the intuitionistic vanishing fuzzy point a(β) where 

 a(β) =<  ̅,     
  >. 

we will now define the intuitionistic fuzzy T1 space (IF T1 space in short) 

as follows: 

Definition 3.3.1 [27]: 

Let (X,  ) be an intuitionistic fuzzy topological space, then we say   

is IF T1 space if and only if for any x, y two distinct elements in X, there 

exists U,V ∊   such that U(x) =V(y) =   = <1,0>, and  
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U(y) =V(x) =   = <0,1>. 

Another form of the IF T1 space using intuitionistic fuzzy points and 

vanishing intuitionistic fuzzy points comes in the following theorem: 

Theorem 3.3.2 [27]: 

For an intuitionistic fuzzy topological space (X,  ), the following  

are equivalent: 

(1)  (X,  ) is IF T1 

(2)  (i) for any two distinct intuitionistic fuzzy points a (α,β), b(λ,r) in X 

there exists U,V ∊   such that a(α,β) ⊆U ⊆       
  and          b(λ,r)⊆ V ⊆ 

      
  

(ii) for any two distinct vanishing intuitionistic fuzzy points  

a (β), b(r) in X there exists U,V ∊   such that a (β) ⊆U ⊆     
   

and b(r)⊆ V ⊆     
 . 

proof: 

(1) 
     
⇒ (2) suppose that (X, ) is a IF T1 space, 

For (i): let a (α,β), b(λ,r) be two distinct intuitionistic fuzzy points  

Since a ≠b, then by (1) there exists U,V ∊   such that 

U(a) =V(b) =   = <1,0>, and U(b) =V(a) =   = <0,1>. 

That is, U1(a) = U2(b) = V1(b) = V2(a) = 1 and  U2(a) = U1(b) = V2(b) = 

V1(a) = 0 
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Since U1(a)=1 then α ≤ U1(a) and since U2(a)=0 then β ≥ U2(a) 

Therefore a (α,β) ⊆ U. 

Also since U2(b)=1 then α ≤ U2(b) and since U1(b)=0 then r ≥ U1(b)  

Therefore, b(λ,r) ⊆ < U2, U1 > = U
c
, that is to say U ⊆      

 , therefore  

a (α,β) ⊆U ⊆       
 . 

 Similarly, we prove b(λ,r)⊆ V ⊆       
 . 

For (ii), let let a (β), b(r) be two distinct vanishing intuitionistic fuzzy  

points,since a ≠b, then by (1) there exists U,V ∊   such that 

 U(a) =V(b) =   = <1,0>, and U(b) =V(a) =   = <0,1>. 

That is, U1(a) = U2(b) = V1(b) = V2(a) = 1 and U2(a) = U1(b) = V2(b) =  

V1(a) = 0 

Since for t=a; (    
 )(t) = β ≥ U2(a) = 0, and for t≠ a; 

 (    
 )(t) = β ≥ U2(a) = 1 ≥ U2(t). 

Hence,for all t in X, (    
 )(t) ≥ U2(t).But also, 0≤U1(t) for all t in X 

Therefore, a(β) ⊆ U. 

Now, since for t=b; (    
 )(t) = r ≥ U1(b) = 0, and  

for t ≠ b; (    
 )(t) = 1 ≥ U1(t), so for all t in X, (  

 )(t) ≥ U1(t). 
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But also, 0 ≤ U2(t) for all t in X therefore U ⊆   
  hence, 

 a(β)⊆ U ⊆   
 , similarly b(r) ⊆ V ⊆   

 , 

 (2)
     
⇒ (1) Suppose (i) and (ii) hold, 

Let x and y be any two distinct elements in X,consider a(1,0),b(1,0). 

By(2) there exist U,V ∊   such that a(1,0)⊆ U ⊆       
  and 

 b(1,0)⊆ V ⊆       
 . 

Now, a(1,0) ⊆ U = <U1,U2 > implies that U1(a) ≥ 1 i.e. U1(a) = 1 

also, 0 ≥ U2(a) which means U2(a) = 0, therefore U(a)= 1. 

Similarly b (1,0) ⊆ V implies that V(b) = 1. 

Now, U ⊆       
  

 
⇒       

  ⊆ U
c
 = < U2,U1 >. 

1 ≤ U2(b) 
 

⇒ U2(b)=1 and 0 ≥ U1(b) 
 

⇒ U1(b)=0 and hence, U(b) = 0. 

Similarly V ⊆       
  

 
⇒ V(a) = 0, this completes the proof of the theorem. 

The definition of intuitionistic fuzzy T2 space (IF T2 in short) is by 

adding a new condition to the IF T1 definition, namely U ⊆ V
c
 as in the 

following definition: 

Definition 3.3.3 [27]: 

Let (X, ) be an intuitionistic fuzzy topological space, we say the 

topology   is IF T2 space if and only if for any two distinct elements x,y in 

X there exists U,V ∊   such that U(x) =V(y) =   = <1,0>,  
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U(y) =V(x) =   = <0,1> and U ⊆ V
c
.
 

Theorem 3.3.4[27]: 

Let (X,  ) be an intuitionistic fuzzy topological space. If the topology 

is IF T2 then the topology is IF T1 

Proof: obvious. 

The following theorem is parallel to theorem [3.3.2]  

Theorem 3.3.5[27]: 

For an intuitionistic fuzzy topological space (X,  ), the following are 

equivalent: 

(1)  (X, ) is IF T2 

(2)  (i) for any two distinct intuitionistic fuzzy points a(α,β), b(λ,r) 

 in X there exists U,V ∊   such that a (α,β) ⊆U ⊆       
 ,   

 b(λ,r)⊆ V ⊆       
  and U ⊆ Vc. 

 (ii) for any two distinct vanishing intuitionistic fuzzy points  

a (β), b(r) in X there exists U,V ∊   such that a (β) ⊆U ⊆     
 , 

b(r)⊆ V ⊆     
  and U ⊆ V

c
. 

proof: similar to the proof of theorem 3.3.2  
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Chapter Four 

Fuzzy Connectedness and Fuzzy Compactness 

4.1 Fuzzy Connected Spaces 

Looking back to different equivalent definitions of connectedness in 

classical topological spaces, one of them was chosen by most of researches 

to be the extended definition of connectedness in the fuzzy setting. 

Definition 4.1.1: 

(X,  ) is fuzzy connected if it has no proper fuzzy clopen subset, that  

is there exist no A fuzzy subset of X such that A ≠ X, A ≠ Φ, and A is both 

open and closed 

The following are two examples of two fuzzy topological spaces on 

a set X where one of them is connected, while the other one is not. 

Example 4.1.2: 

consider X= {a, b, c},  

let  1 ={  ̅, ̅, {a0.3,b0.8, c0.1}}. 

and let  2 ={  ̅, ̅, {a0.4,b0.3, c0.6}, {a0.6,b0.7, c0.4}, {a0.6,b0.7, c0.6},  

{a0.4, b0.3, c0.4} }. 

Then it is clear that  1 is connected, but  2 is not connected. 

Concerning the other definition of connectedness in regular 

topological spaces which defines a space X to be connected if it can not be 
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written as a union of two non-empty disjoint open sets, the extended 

definition in fuzzy setting will not be equivalent to the one we adopted,this 

is explained in the following: 

Lemma 4.1.3[11]: 

Let A, B be two proper fuzzy subsets of X such that A V B =  ̅ and    

A ʌ B =  ̅, then A and B are crisp subsets of X, A=B
c
 and B=A

c
.
 

Proof: 

For every x ∊ X, Since A V B =  ̅ then max { A(x), B(x) } = 1 also, 

since A ʌ B =  ̅ then min { A(x), B(x) } = 0. Therefore, either A(x) = 0 or 1 

, and B(x) = 0 or 1 which means A and B are crisp subsets of X, Moreover, 

if A(x)=1 then B(x) must be 0 and if A(x)=0 then B(x) must be 1,therefore 

A=B
c
 and B=A

c
. 

Theorem 4.1.4[11]: 

Let (X, ) be a fuzzy topological space, if X is connected then X can 

not be written as a union of two non-empty disjoint fuzzy open subsets of 

X. 

proof: 

Assume X is connected. By a contradiction; assume X can be written 

as a  ̅ =AVB where A and B are non-empty disjoint fuzzy open subsets of 

X. Since A VB = ̅ and A ʌ B =  ̅ then (by lemma 4.1.3) A= B
c
. Now, since 

B is open, A is closed. But A is fuzzy open,therefore, A is a non-empty 
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fuzzy clopen proper subset of X which means X is not connected (a 

contradiction), this completes the proof. 

For the other way around, the last theorem is not true. 

That is, if X cannot be written as a union of two non-empty disjoint 

fuzzy open subsets of X with union equal to  ̅,doesn‟t imply that X is 

connected, as the following example shows: 

Example 4.1.5: 

let X= {a, b} and   = { ̅  ̅, { a0.2,b0.3 }, {a0.8,b0.7 } }. 

Here, X could not be written as AVB, where A and B are non-empty 

disjoint fuzzy open subsets of X,but,still X is disconnected since 

A ={ a0.2,b0.3 } is both open and closed in  . 

In [11] Fatteh and Bassan, modified the condition of connectedness   

as in the following theorem: 

Theorem 4.1.6 [11]: 

X is fuzzy connected if and only if there doesn‟t exist non-empty fuzzy 

open subsets A and B of X such that: A(x) + B(x) = 1 for every x in X. 

proof: 

Assume X is fuzzy connected. By contradiction, let A, B be two non-

empty fuzzy open subsets of X such that: A(x) + B(x) =1 for every x in X, 
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then A(x) = 1 – B(x) = B
c
(x) therefore, A = B

c
, but B is fuzzy open then A 

is fuzzy closed, but A is also fuzzy open which means A is fuzzy clopen 

non-empty subset of X.Hence, X in disconnected (which is a 

contradiction). 

Conversely, by contradiction, assume X is not fuzzy connected then  

there exist A non empty fuzzy subset of X which is both fuzzy open and 

fuzzy closed. Take B = A
c
 then B is fuzzy open and A(x) + B(x) = A(x)+ 

A
c
 (x) = A(x) + (1 – A(x)) = 1 (which contradicts the assumption).  

One of the important differences between connectedness in the 

regular and fuzzy topological spaces is the property involving product 

spaces.  In the regular topological space, the product of connected spaces is 

connected,but it is not the case in the fuzzy topological spaces. The 

following example explains that: 

Example 4.1.7: 

Let X,Y be connected fuzzy topological spaces,then their product 

may not be fuzzy connected. 

Let X = Y = { a,b,c }, 

 A={a0.3,b0.9, c0.8}, B={a0.7,b0.1, c0.2}. 

Let   x = {0,1,A },   y={0,1,B}, then   =   x x   y is not connected 

Since (Ax1)
c 
=1 x A

c
, and Ax1 is a proper clopen subset of  . 
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Remark: 

Let X be a fuzzy topological space, a subset A of X is a fuzzy 

connected subset if it is fuzzy connected as a fuzzy subspace of X. The 

same for  

A<Y<X, that is, A is a subset of a subspace Y of X, 

A is a fuzzy connected subset of X if it is fuzzy connected subset of  the 

fuzzy subspace Y. 

Definition 4.1.8 [11]: 

Let (X, ) be a fuzzy topological space,and let A,B be two fuzzy sets, then 

A,B are said to be separated if and only if Cl(A) V B ≤1 and      A V Cl(B) 

≤ 1. 

The following theorem characterizes connectedness using a 

condition that is not an extension to any condition in non fuzzy settings: 

Theorem 4.1.9 [11]: 

Let (X, ) be a fuzzy topological space. X is connected if and only if 

there are no non-empty fuzzy subsets A, B of X such that for every x   in X:  

            

 ̅           

       ̅     

} (1) 

Proof: 

Assume X is connected. By contradiction, let A and B be non-empty 

fuzzy subsets of X satisfying (1) then: 
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B(x) = 1 – A(x) = A
c
(x) 

 
⇒ B = A

c
 

B(x) = 1 –  ̅(x)=   ̅c(x) 
 

⇒ B =   ̅c 

 ̅ (x) = 1 – A(x) 
 

⇒  ̅ = A
c
 

Since B =   ̅c then B is open, and since A
c
 =  ̅ then A

c
 is closed, but   

B = A
c
,therefore B is closed. Hence B is clopen in X (which is a 

contradiction). 

Conversely, by contradiction; assume X is not connected so there 

exist  a non-empty fuzzy clopen proper subset of X, call it D.  

Let C = D
c
, and hence C is clopen. 

Now, D(x) + C(x) = D(x) + (1 – D(x)) = 1 

 ̅(x) + C(x) = D(x) + C(x) =1 and D(x) +  ̅(x) = D(x) + C(x) =1 

Which is a contradiction. 

4.2 Fuzzy Compact Spaces 

The concept of compactness is one of the most important concepts in 

general topology, the notion of fuzzy compactness was first introduced by 

Chang in terms of open cover.But unfortunately this definition failed to 

conclude that the product of fuzzy compact sets is fuzzy compact. Many 

authors were motivated to define new forms of compactness. [see 12, 16, 

18].  
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Definition 4.2.1: 

A cover for a fuzzy topological space (X,  ) is a family of members   

{Bα:α ∊ʌ} such that: VBα =  ̅x,that is, Sup { Bα (x):x ∊X } = 1, and for any 

fuzzy subset A of X, {Bα:α ∊ʌ} is a cover means: VBα ≥ A. 

A cover is called a fuzzy open cover if each member is a fuzzy open 

set. A is a subcover of {Bα: α∊ʌ} is a subfamily of {Bα:α ∊ʌ}  which is also 

a cover of A. 

Now, we define fuzzy compactness parallel to the definition we use 

in non-fuzzy topological spaces. 

Definition 4.2.2:[6] 

Let (X, ) be a fuzzy topological space and let A be a fuzzy subset of 

X, we say A is a fuzzy compact set if every fuzzy open cover of A has a 

finite subcover. 

Under this definition: 

The indiscrete fuzzy topological space is fuzzy compact. Because the 

only cover for X is {  ̅,  ̅} which is itself a finite subcover. 

Also, in the case of the fuzzy topology  , where   is finite, the 

topological space (X,  ) is compact. 

Compactness can be identified using the finite intersection property 

of fuzzy closed sets as follows: 



84 

A family of fuzzy subsets of X { Fα:α∊ʌ } has the finite intersection 

property; as Chang defined,if the intersection of any finite subfamily is not 

empty. 

Theorem 4.2.3 [6]: 

A fuzzy topological space (X,  ) is a fuzzy compact if and only if for 

every collection {Ai: i∊ I } of fuzzy closed sets of X having the finite 

intersection property, Ʌ Ai ≠0. 

Proof: 

Let { Ai: i∊I } be a collection of fuzzy closed sets of X with the finite 

intersection property,suppose that ∧ Ai = 0 then V Ai 
c
 = 1. 

Since X is fuzzy compact, then there exists i1, i2, …, in such that     V 

Aij
c
 =1, then Ʌ Aij = 0,which gives a contradiction, therefore ∧ Aij ≠ 0 

Conversely; 

Let {Ai: i ∊I } be a fuzzy open cover of X. Suppose that for every 

finite  i1, i2, …, in, we have V    ≠ 1 then ∧     
c
 ≠ 0. 

Hence { Aj 
c
 ≠ 0 } satisfies the finite intersection property then from 

the hypothesis we have Ʌ    
c
 ≠ 0.which implies ∧    

c
 ≠ 1. 

But this contradicts that { Ai: i ∊ I} is a fuzzy open cover of X. Thus 

X is a fuzzy compact. 
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We know in non-fuzzy topological spaces that any closed subset of 

compact space is compact. This property is also valid throughout the fuzzy 

topological spaces. The following theorem shows that: 

Theorem 4.2.4 [6]: 

A fuzzy closed subset of a fuzzy compact space is fuzzy compact. 

Proof: 

Let A be a fuzzy closed subset of a fuzzy compact space X, and let   

{ Bi, i ∊ I} be any family of fuzzy closed in A with finite intersection 

property, since A is fuzzy closed in X, then Bi are also fuzzy closed in X, 

Since X is fuzzy compact, then by previous theorem ɅBi ≠0. 

Therefore, A is fuzzy compact. 

The fuzzy continuous image of a fuzzy compact set is fuzzy 

compact, as the following theorem shows: 

Theorem 4.2.5[6]: 

Let (X, 1) and (Y, 2) be two fuzzy topological spaces, and let  

f:X→Y be an onto fuzzy continuous function. Then  

X is fuzzy compact 
     
⇒ Y is fuzzy compact. 

Proof: 

Let { Bα } be a family of open sets in Y that covers Y, i.e. Vα Bα =  ̅ .   
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For each x ∊ X, Vα f
-1

(Bα)(x) = Vα Bα (f(x))= 1,therefore { f
-1

(Bα) } forms an 

open cover for X. 

But, since X is fuzzy compact, X has a finite sub-cover  

 f 
-1

(   
),f 

-1
(   

),…, f
 -1

(   
) for X i.e.     

  (f
 -1

(   
)(x)) = 1. 

Now, since f is onto, f (f
 -1

(   
)) =    

and for every y ∊ Y,        (    
    

)(y) 

=     
  f (f

 -1
(   

)) (y) so 

 (    
     

)(y) = f (    
  (f

 -1
(   

)) (y) = f (1) = 1. 

Therefore, Y is fuzzy compact. 

Alexander subbase theorem characterized fuzzy compactness using 

subbases as in the following: 

For any fuzzy topological space (X,  ) and for any subbase S of  ,      

X is fuzzy compact if and only if every cover of X by members of S has a 

finite subcover. 

We will now prove the Tychonoff property, called Goguen theorem 

which states that the product of a finite number of fuzzy compact 

topological spaces is fuzzy compact. 

Goguen theorem 4.2.6 [14]: 

Let (Xi, i) be a family of fuzzy compact topological spaces 

 where i = 1, 2, …, n, then (∏   
 
   , ∏   

 
   ) is fuzzy compact, 
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where ∏   
 
    is the topology generated by the subbase S, where 

S = {   
  (Bi): Bi ∊   , i= 1, 2, …, n } and Pi is the projection  

from ∏   
 
    to Xi. 

proof: 

let X = ∏   
 
    and   = ∏   

 
     

 Let S = {   
   (Bi): Bi ∊   , i= 1, 2, …, n } be a subbase for   and 

let 𝒞 be a family of members of S, 

Let 𝒞i = {Bi ∊   : such that   
   (Bi)∊ 𝒞 }. Then 𝒞i is a family of open 

fuzzy sets in    that is a cover. But,    is compact, then there exists a finite 

subcover Bi,1, Bi,2, …, Bi,k such that: ⋁     
 
    =    

 and therefore; 

⋁  ⋁   
         

 
   

 
     = ⋁    

   ⋁        
 
   

 
      = ⋁    

      
  

    

Hence ⋁  ⋁   
         

 
   

 
     = ⋁     

  
    =   . 

In the following example, we will show that the infinite product of 

fuzzy compact topological spaces may not be compact. 

Example 4.2.7: 

let Xi = N = { 1, 2, 3, … }, for each i = 1, 2, 3, … we define the  

fuzzy topological space as follows: 

 1 = {  ̅,  ̅ } 
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 2 = {  ̅,  ̅, 
 

 

̅
  {    

 

}, {    

 

,    

 

 }, {    

 

,    

 

,    

 

 }, … } 

 n = {  ̅,  ̅, 
   

 

̅̅ ̅̅
  {     

 

}, {     

 

,     

 

 }, {      

 

,      

 

,      

 

 }, … } 

Then each  n, n = 1, 2, 3,... is compact, because for any open cover 

for  n should contain   ̅ and therefore has a finite subcover;  ̅ itself. 

To show: (∏   
 
 , ∏   

 
 ) is not compact, 

call Bi,n =   
   ({      

 

,      

 

,…,      

 

 }), { Bi,n } is open in ∏   
 
  

we show V Bi,n (x) = 1. 

Bi,n(x) = {
   

 
       

        
 

therefore, for any є > 0, there exists m ∊N such that 1- є < 
   

 
 

If n ≥    then Bi,n(xi) > 1- є which means Sup { Bi,n(xi) } = 1, that is 

⋁          (x) = 1,hence { Bi,n }  
   
   

 
 is an open cover for X. 

For any finite subfamily       
,       

, …,       
; we can find k such 

that: for    > k,     
(x) = 0 where x= (k, k, …, k) and therefore V    

< 1, 

hence, any finite subfamily is not a cover, and X is not compact 
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Chapter Five 

Fuzzy Continuous Functions 

5.1 Fuzzy Functions 

In chapter one we have defined a fuzzy function   ̅ from F(X) to 

F(Y) as an extension to a function f from a set X to a set Y. The following 

theorem explores the properties of the fuzzy functions over fuzzy subsets of 

X and Y 

Theorem 5.1.1 [35]: 

let f:X → Y be a function and   ̅:F(X) → F(Y) be the corresponding 

fuzzy function, then for any fuzzy subsets A and B of X and any fuzzy 

subsets L and M of Y, we have the following: 

1)   ̅(A V B) =   ̅(A) V   ̅ (B) 

2)   ̅ (A Ʌ B) ≤   ̅ (A) Ʌ   ̅ (B) 

3)  (  ̅)-1
 (L V M) = (  ̅)-1

(L) V (  ̅)-1
 (M)  

4) (  ̅)-1
(L Ʌ M) = (  ̅)-1

 (L) Ʌ (  ̅)-1
(M)  

proof:  

1) Let K = A V B then 

 (̅K) (y) = {
   {         ϵ      }                 

                                      
 

now; 
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if f
-1

(y) = ø then   ̅ (A)(y) = 0 and   ̅ (B)(y) = 0 and therefore, 

( (̅A)V (̅B))(y) =0, also   ̅(K)(y) = 0 hence ( (̅A)V (̅B))(y)=  ̅(K)(y) 

and, if f
-1

(y) ≠ ø 

  ̅(K)(y) = sup { (K)(x): xϵ f
-1

(y) } 

       = sup { max { A(x),B(x): xϵ f
-1

(y) } 

       = max{ sup { A(x) }, sup { B(x)}: xϵ f
-1

(y) } 

       = max {   ̅(A)(y),   ̅(B)(y) } = (  ̅(A) V   ̅(B))(y) 

 hence   ̅(A V B) = (  ̅(A)V (̅B)) 

2) if f
-1

(y)= ø (easy) 

     if f
-1

(y) ≠ ø then: 

       ̅(A Ʌ B)(y) = sup { (A Ʌ B)(x): xϵ f
-1

(y) } 

               = sup { min { A(x), B(x) }: xϵ f
-1

(y) } 

               ≤ min { sup { A(x) }, sup {B(x) } }  

               = (  ̅(A) Ʌ   ̅(B))(y) 

   hence   ̅(A ʌ B) ≤ (  ̅(A) ʌ  (̅B)) 

3)  (  ̅)-1
(L V M) (x) = L V M (f(x))  

             = max { L(f(x)), M(f(x)) } 

             = max { (  ̅)-1
(L)(x), (  ̅)-1

(M)(x) } 
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                = ((  ̅)-1
(L) V (  ̅)-1

(M))(x) 

 Hence, (  ̅)-1
(L V M) = ((  ̅)-1

(L) V (  ̅)-1
(M)) 

4)  ((  ̅)-1
(L Ʌ M)(x) = L Ʌ M (f(x)) 

              = min { L(f(x)), M(f(x)) } 

              = min { (  ̅)-1
(L)(x), (  ̅)-1

(M)(x) } 

                = ((  ̅)-1
(L) Ʌ (  ̅)-1

(M))(x). 

   Therefore, (  ̅)-1
(L ʌ M) = ((  ̅)-1

(L) ʌ (  ̅)-1
(M)) 

And in general let {Bα} be a family of fuzzy subsets of Y, then: 

(i) (  ̅)-1
(V Bα) = V (  ̅)-1

(Bα), and 

(ii)  (  ̅)-1
 (ʌ Bα) = ʌ (  ̅)-1

(Bα) 

5.2 Fuzzy Continuity 

In the following, we will define the continuous fuzzy functions 

between two fuzzy topological spaces. Also, we will study their properties 

in both weaker and stronger forms of fuzzy continuity. 

Definition 5.2.1:[6] 

f: (X,  X) 
 
→ (Y,  Y) is said to be fuzzy continuous if and only if the inverse 

image of any fuzzy open set in Y is a fuzzy open set in X, where  X is a 

fuzzy topology on X and  Y is a fuzzy topology on Y. 
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Considering a fuzzy continuity as a local property, we have the 

following definition: 

Definition 5.2.2: 

f: (X,  x) 
 
→ (Y,  Y) is fuzzy continuous at any fuzzy point p =xλ if and only 

if for every nbd V of  (̅p)=f(x) λ, there exist U ∊  X such that    p ∊ U and 

f(U) ≤ V. 

The above two definitions are related as the following theorem 

states. 

Theorem 5.2.3 [37]: 

  ̅: (X,  x) 
 
→ (Y,  Y) is fuzzy continuous if and only if   ̅is fuzzy 

continuous at each fuzzy point p in X. 

proof:   

let   ̅: (X,  x) 
 
→ (Y,  y) be fuzzy continuous, p= xλ a fuzzy point 

in X,V be a fuzzy nbd of  (̅p)=f(x)λ in Y. 

There exist V1 in  y such that:  (̅p)   V1 ≤ V. 

Since f is fuzzy continuous, U = ( )̅ 
-1

(V1) is fuzzy open and contains xλ  

So  (̅U) =   ̅(  ̅
-1

(V1)) ≤ V1 < V. 

Conversely,  

let B   y, p= xλ a fuzzy point in f
-1

(B), f(p)=f(x)λ=yλ 
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Then f(p)   f (f   (B)) ≤ B. 

Now,  (̅p)(yλ) = sup B(a): a    ̅  (yλ) =  (̅B)(yλ). 

So there exist a fuzzy nbd U of p such that  (̅U) ≤ B. 

So p  U ≤   ̅  (B), and there exist U1 in  x such that p  U1 ≤ U 

i.e. p  U1 ≤   ̅  (B)  

taking the union of all p implies that 

  ̅  (B) = V{p: p is a fuzzy point in   ̅  (B) } ≤ V{U1} ≤   ̅  (B) 

so   ̅  (B) = V { U1} ∊  x. That is,   ̅  (B) is a fuzzy open set in X. 

Hence,   ̅is fuzzy continuous. 

Remark 5.2.4: 

We know that in regular topological spaces, any constant function is 

a continuous function, whatever the topologies defined on X and Y. But, 

this is not the case in fuzzy functions on fuzzy topological spaces as shown 

in the following example. 

Example: 

Let X= { a, b} with  x={ ̅  ̅x, { a0.2, b0.5} } 

And let Y= { c, d} with  y={ ̅  ̅y, { c0.4, d0.5} } 

Let f: X→ Y be the constant fuzzy function f(X)={ c }. 
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Looking at   ̅:F(X) → F(Y), take V = { c0.4, d0.5} then: 

(  ̅)-1
(V) = (  ̅)-1 

{ c0.4, d0.5} ={ a0.4, b0.4} which is not open in X. 

Therefore, this constant function is not continuous. Probably, that 

was the reason Lowen has suggested another definition for fuzzy 

topological spaces where he replaced the first condition of Chang‟s 

definition (namely  ̅,  ̅ ∊  ) by  ̅ ∊   for r ∊[0,1] where  ̅ ={ xr: for every x 

in X } and named this fuzzy topology by L-fuzzy topology corresponding 

to  C-fuzzy topology of Chang. And therefore, in L-fuzzy topology, any 

constant function is continuous. 

Theorem 5.2.5: 

In L-fuzzy topology, every constant function is a fuzzy continuous 

function  

proof: 

Let f: X→ Y be a constant function (i.e. f(x)=c for all x in X), 

and let V be any fuzzy open set in Y. 

if V(c) = 0 then (  ̅)-1 
=  ̅ which is a fuzzy open in X, 

and if V(c) = r ≠ 0 then (  ̅)-1
(V) =   ̅which is again a fuzzy open in X. 

Therefore,   ̅is fuzzy continuous. 

Theorem 5.2.6 [37]: 

  ̅ is a fuzzy continuous function if and only if the inverse image of  
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any fuzzy closed set in Y is a fuzzy closed in X. 

proof: 

let F be any fuzzy closed set in Y then F
c
 is fuzzy open set in X 

but   ̅ is fuzzy continuous so (  ̅ -1
(F

c
) =     ̅ -1

 (F))
c
 is fuzzy open  

set in X i.e.    ̅ -1
 (F) is fuzzy closed in X. 

conversely, let V be fuzzy open in X then V
c
 is fuzzy closed in Y 

so (  ̅ -1
(V

c
) =     ̅ -1

 (V))
c
 is fuzzy closed in X, (i.e.    ̅ -1

 (V) is  

fuzzy open in X. 

Therefore,   ̅is fuzzy continuous function. 

5.3 Other Types of Fuzzy Continuity 

In standard topological spaces, the concepts of regular open sets, 

regular closed sets and almost continuous functions were defined and 

studied. In fuzzy setting, parallel definitions are presented as follows: 

Fuzzy almost continuity 

Definition 5.3.1 [cf 26]: 

Let A be a fuzzy subset of X, we say A is fuzzy regular open set if   int(Cl 

(A)) = A, 

and A is fuzzy regular closed set if cl(int (A)) = A. 
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Definition 5.3.2: 

Let f:X → Y be a function, we say   ̅ F(X) → F(Y) is fuzzy almost 

continuous if for every V is fuzzy regular open in Y;  -̅1
(V) is fuzzy open  

in X. 

Concerning the above definition, we have some properties presented 

in the following remark: 

remark 5.3.3: 

(1)  if A is fuzzy regular open then A is fuzzy open in X. Because A is 

fuzzy regular open, so A = int (cl (A)) which is the interior of some 

fuzzy set, hence it is open. 

(2) Similarly, if A is a fuzzy regular closed in X then A is fuzzy Closed 

set in X. 

(3) A is regular fuzzy open if and only if A
c
 is regular fuzzy closed 

Proof: 

 A is regular fuzzy open means A = int (Cl(A)). 

So, A
c
 = (int (Cl(A)))

c
 = 1 – int (Cl(A)) = Cl (1 – Cl(A)), 

hence, A
c
 = Cl(int (1- A) = Cl(int (A

c
)) 

Therefore, A
c
 is a regular fuzzy closed. 
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(4) Every fuzzy continuous is almost fuzzy continuous. Because for any 

V fuzzy regular open in Y, V is fuzzy open in Y. But   ̅ is fuzzy 

continuous then ( )̅
-1

(V) is fuzzy open in X which concludes that   ̅is 

almost fuzzy continuous. 

Theorem 5.3.4 [26]: 

Let   ̅ (X, x) → (Y,  x) be a fuzzy function then the following are 

equivalent: 

1)   ̅ is a fuzzy almost continuous function 

2)  for every B regular fuzzy closed in Y;  -̅1
(V) is fuzzy closed in X. 

proof:  

using the facts: (  ̅-1)(Bc
) = ((  ̅-1)(B))

c
 for any B:fuzzy subset of X, 

and that the complement of a regular fuzzy open is fuzzy regular closed, 

the two statements are equivalent. 

Example 5.3.5:(fuzzy almost continuity doesn‟t imply fuzzy continuity)  

Consider X = Y = [0,1], 

let  x= {  ̅   ̅, A, A
c
, A V A

c
, A ʌ A

c
 } 

and  Y = {  ̅   ̅, A, A
c
, A V A

c
, A ʌ A

c
, B } where 
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We have, A,, A
c
, A V A

c
, A ʌ A

c
 are both fuzzy open and fuzzy 

closed in both  x and  Y, and therefore, they are both regular fuzzy open 

and regular fuzzy closed in both  x and  Y. But, B is fuzzy open in Y but it 

is not regular fuzzy open. 

Let f: X→ Y, be the identity function f(x) = x for all x ∊ X It is clear 

that   ̅ is a fuzzy almost continuous function but it is not fuzzy continuous 

function because    ̅̅ ̅̅ -1
)(B)=B which is not fuzzy open in X. 

Many authors defined different types of fuzzy open and fuzzy closed 

sets and used them to define and study new types of fuzzy continuous 

functions. Let us look at some of those types. 

Fuzzy 𝜹-continuous 

Another type of continuity is called a fuzzy 𝜹-continuity defined as 

follows: 
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Definition 5.3.6: 

Let   ̅:be a fuzzy function between the topological spaces (X, x) and 

(Y, y) then we say   ̅is fuzzy 𝜹-continuous if and only if for each fuzzy 

point p in X, and each fuzzy regular open set B containing  (̅p), there exist 

a fuzzy regular open set A containing p such that:  (̅A) ≤ B. 

The following is an example of a fuzzy function that is fuzzy 

continuous but not fuzzy 𝜹-continuous: 

Example 5.3.7: 

Let X = Y = [0,1] and let  x and  y be two fuzzy topological spaces 

on X and Y respectively where: 

  X = { ̅   ̅, A
c
} and  y= { ̅   ̅,A, B,AVB} where the members of these 

topologies are shown in the following graphs:  

 

Now, define the function f:X→Y by: f(x) = 
 

 
 for all x in X 
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We can see that ( )̅
-1

( ̅Y) =  ̅X and ( )̅
-1

( ̅Y) =  ̅X 

( )̅
-1

 (A) =  ̅X, ( )̅
-1

(B) = A
c
 and ( )̅

-1
(A V B) = A

c
. 

Therefore,   ̅is fuzzy continuous. 

Now, let p be a fuzzy point in X such that f(p)∊A or f(p)∊B. 

There is no fuzzy regular open U in X containing p such that 

 (̅U) ≤ A or  (̅U) ≤ B. 

Hence, f is not 𝜹-continuous 

Fuzzy Precontinuous: 

another type of continuity(fuzzy pre-continuous)  

Definition 5.3.8: 

Let (X, ) be a fuzzy topological space, we say a fuzzy subset A of X 

is fuzzy preopen if A ≤ int(cl (A))  

We say a fuzzy set B is fuzzy preclosed if and only of B
c 
is fuzzy preopen. 

Using preopen fuzzy sets we define the following; 

Definition 5.3.9 [33]: 

A function   ̅: (X, x) → (X, Y) is called fuzzy precontinuous if and only if 

for each B fuzzy open in Y, (  ̅ -1
(B) is fuzzy preopen in X. 
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Definition 5.3.10 [33]: 

A function   ̅: (X, x) → (X, Y) is called a fuzzy slightly 

precontinuous function if and only if for every B fuzzy clopen set in Y, 

(  ̅ -1
(B) is fuzzy preopen in X 

Ekici in his paper [10] proved a relationship between fuzzy  

slightly precontinuity and fuzzy precontinuous: 

Theorem 5.3.11 [10]: 

Let Y have a base consisting of fuzzy clopen sets. If   ̅: F(X) → 

F(Y) is fuzzy slightly precontinuous, then   ̅ is fuzzy precontinuous. 

Generalized Fuzzy Continuity: 

Definition 5.3.12:[25] 

A fuzzy set A is a generalized fuzzy closed (GFC) if for A ≤ U then 

cl(A) ≤ U for any U fuzzy open and we say a set B is a generalized fuzzy 

open (GFO) if 1 – B is GFC. 

Definition 5.3.13 [25] 

Also,   ̅is a generalized fuzzy continuous if the inverse image of a 

fuzzy open set in Y is GFO in X. 

Also Ramish [19] defined a new class of open and closed fuzzy sets 

on intuitionistic fuzzy topological spaces as follows: 
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Definition 5.3.14 [19]: 

An intuitionistic fuzzy set A is intuitionistic fuzzy regular weakly 

generalized closed set (IFRWGCS): if A ≤ U then Cl (int (A)) ≤ U for 

every U an intuitionistic open fuzzy set. 

Definition 5.3.15 [19]: 

An intuitionistic fuzzy function   ̅: IF(X) → IF(Y) is intuitionistic  

almost fuzzy continuous if the inverse image of an intuitionistic open fuzzy 

subset of Y is IFRWGCS in X.  
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Discussion and conclusion 

Through this study it was found that many properties of topological 

spaces in non fuzzy setting were extended to topological spaces in fuzzy 

settings. However, some other properties were not extended, which 

motivated the researchers to put down new definitions to conclude parallel 

theorems.  

Since there have been different definitions for the same property, this 

causes researches and studies to be scattered, there have to be a unification 

of definitions of different properties that will orient the research by all 

interested people to be in one direction, and all efforts would be 

strengthened. 
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 جامعة النجاح الوطنية
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توسعة الخصائص التبولوجية لمفراغات 
 التبولوجية الضبابية

 
 
 
 إعداد

 ربا محمد عبد الفتاح عداربو 
 
 
 

 إشراف 
 د. فواز أبو دياك 

 

 
قدمت ىذه الأطروحةة اسةتكما ل لمتطمبةات الحصةوى عمةة درجةة الماجسةتير فةي الرياضةيات 

 بكمية الدراسات العميا في جامعة النجاح الوطنية في نابمس، فمسطين. 
 م4102



 ب 

 توسعة الخصائص التبولوجية لمفراغات التبولوجية الضبابية  
 إعداد

 ربا محمد عبد الفتاح عداربو 
 إشراف 
 دياك د. فواز أبو 
 الممخص

فرري ىررنه الرسرررالة قمنررا نرررالتحري  ررن ال ةرررار  التنولو لررة لهلراارررات التنولو لررو ال رررنانلة 
 .ورنطيا نتهك ال ةار  لهلرااات التنولو لة ال لاسل لة

أل ررا  تررم  رررم الم مو ررات و ا قترانررات و العلاقررات ال ررنانلة مرر   ةارةرريا.  ررم تررم 
التنولو لة ال نانلة حسب مليوم تعانغ و لون  و نلك اللراارات تقدلم أنواع م تهلة من الل ا ات 

التنولو لرة ال رنانلة الحدسررلة. لقرد تررم ا نرات ان العدلررد مرن ال ةررار  التنولو لرة ىرري توسرعة لتهررك 
ال ةررار  فرري النلرررة الالررر  ررنانلة  نلنمررا تررم  رررم أم هررة له ةررار  الترري تتوافرر  نررلن النلرتررلن 

 ل ماه  حاةل ال رب   لساوي حاةل  رب الماه .ال نانلة و الر ال نانلة م 

و  رنلك  Qو نلك تم التحري  ن المسارات الم تهلة للر لات ا نلةال ناست دام ال روار 
 النقاط ال نانلة. وقد تنلن ان معظم ىنه ال ةار  للست التوسعة الطنلعلة.

ال رررب لعرردد وأل ررا  تررم دراسررة الترررانط ال ررناني و الترررا  ال ررناني  وظيررر أن  اةررلة 
  نياري من اللرااات ال نانلة المتراةة للست نال رورة متراةة.

وأ لررررا ترررم تقررردلم ملررراىلم ا تةرررال ال رررناني و عرررنو المتةرررل ال رررناني وأنرررواع أ ررررى مرررن 
  .ا تةا ت ال نانلة وا ناتات لهعلاقات الرانطة نلنيا




