
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

11-2007

A voice operated musical instrument.
Travis R. Gault
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted
for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository.
This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

Recommended Citation
Gault, Travis R., "A voice operated musical instrument." (2007). Electronic Theses and Dissertations. Paper 482.
https://doi.org/10.18297/etd/482

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/482
mailto:thinkir@louisville.edu

A Voice Operated Musical Instrument

By

Travis R. Gault
B.S. ECE, University of Louisville, 2004 (magna cum laude)

B.S. CECS, University of Louisville, 2006 (magna cum laude)

A Thesis
Submitted to the Faculty of the

University of Louisville
Speed School of Engineering

in Partial Fulfillment of the Requirements
for the Professional Degree of

MASTER OF ENGINEERING

Department of Electrical and Computer Engineering
University of Louisville

Louisville, Kentucky

November 28, 2007

i

ii

A Voice Operated Musical Instrument

By

Travis R. Gault
B.S. ECE, University of Louisville, 2004

B.S. CECS, University of Louisville, 2006

A Thesis Approved on

November 28, 2007

By the following Thesis Committee:

__
Dr. Thomas Cleaver, Thesis Director

__

Dr. Barry Horowitz

__
Dr. Ahmed Desoky

iii

DEDICATION

To my friends, both students and faculty, whose support has been tremendous throughout

my college career, especially to my parents who have supported me since day zero, and

who have been wholly committed to the belief that I may actually finish school someday

and “get a J-O-B”.

iv

ACKNOWLEDGEMENTS

I would like to thank all the mentors that have given so much over most of the past

decade, namely the faculty and staff at Speed School. I would also like to extend a

special gratitude toward my Thesis Director (Dr. Cleaver) and Thesis Committee (Drs.

Horowitz and Desoky) and Tom Carroll in the Electronics Shop for taking extra time

from their days to assist and guide me on this challenging path. Thank you.

v

ABSTRACT

Many mathematical formulas and algorithms exist to identify pitches formed by

human voices, and this has continued to be popular in the fields of music and signal pro-

cessing. Other systems and research perform real time pitch identification implemented

by using PCs with system clocks faster than 400MHz. This thesis explores developing an

embedded RPTI system using the average magnitude difference function (AMDF), which

will also use MIDI commands to control a synthesizer to track the pitch in near real time.

The AMDF algorithm was simulated and its performance analyzed in MATLAB

with pre-recorded sound files from a PC. Errors inherent to the AMDF and the hardware

constraints led to noticeable pitch errors. The MATLAB code was optimized and its

performance verified for the Motorola 68000 assembly language. This stage of

development led to realization that the original design would have to change for the

processing time required for the AMDF implementation. Hardware was constructed to

support an 8MHz Motorola 68000, analog input, and MIDI communications. The

various modules were constructed using Vectorbord© prototyping board with soldered

tracks, wires and sockets. Modules were tested individually and as a whole unit. A

design flaw was noticed with the final design, which caused the unit to fail during

program execution while operating in a stand-alone mode.

This design is a proof of concept for a product that can be improved upon with

newer components, more advanced algorithms and hardware construction, and a more

aesthetically pleasing package. Ultimately, hardware limitations imposed by the

available equipment in addition to a hidden design flaw contributed to the failure of this

stand-alone prototype.

vi

TABLE OF CONTENTS

DEDICATION... iv
ACKNOWLEDGEMENTS.. v
ABSTRACT... vi
TABLE OF CONTENTS.. vii
LIST OF TABLES.. x
LIST OF FIGURES ... xi
CHAPTER I – INTRODUCTION.. 1
CHAPTER II – LITERATURE REVIEW ... 4

2.1 What is pitch? ... 4
2.2 The human vocal range and the ideal choice of sampling rate 5
2.3 Frequency Identification (Pitch-Tracking) Techniques .. 6

2.3.1 Problems Associated with Pitch Detection of Vocal Signals 7
2.3.2 Counting Zero-Crossings ... 9
2.3.3 Frequency Domain Analysis using the Discrete Fourier Transform (DFT) 10
2.3.4 Auto-Correlation Function... 12
2.3.5 Average Magnitude-Difference Function (AMDF)... 13
2.3.6 Some Other Techniques Worth Mentioning .. 14
2.3.7 Anticipated Problems with the AMDF .. 17

2.4 The MIDI Protocol.. 19
2.4.1 Message Format ... 19
2.4.2 Electrical Specifications... 20
2.4.3 Timing Considerations... 21

CHAPTER III – SYSTEM DESIGN.. 23
3.1 Description of the Hardware... 23

3.1.1 M68000 Connections ... 24
3.1.2 The Memory Management Unit (MMU)... 25
3.1.3 Memory.. 28
3.1.4 Data Transmission Acknowledge (DTACK’) Signal 29
3.1.5 Valid Peripheral Address (VPA’) Signal... 30
3.1.6 Bar Graph LED Package and Output Data Register (74LS273)...................... 31
3.1.7 Serial Communications Interface (SCI) for Terminal Communications 32
3.1.8 MIDI Interface ... 35
3.1.9 Microphone Input Amplification and Filtering.. 36
3.1.10 A/D Converter (ADC0809) and Sampling Frequency Generator.................. 39
3.1.11 A/D Interrupt Acknowledgement (IACK’) and MMU Reset (MRST’) 42
3.1.12 Power-On Reset Circuit ... 44

3.2 Software Description .. 47
3.2.1 AMDF Proof of Concept ... 48
3.2.2 Implementing the Algorithm for the 68000... 49

CHAPTER IV – SYSTEM IMPLEMENTATION... 53
4.1 Hardware... 53
4.2 Software .. 57

4.2.1 Initializations.. 57
4.2.2 Sampling and performing the AMDF (ADCIRQ) ... 58

vii

4.2.3 Finding the periods between minima (FINDINDICES) 60
4.2.4 Calculating the difference between indices (FDIFF)....................................... 62
4.2.5 Finding the fundamental frequency (FAVG)... 63
4.2.6 Converting frequency to MIDI (FREQ2MIDI) ... 64
4.2.7 Sending a Note to the Synthesizer (SENDMIDI) .. 67

CHAPTER V – RESULTS ... 70
5.1 MATLAB AMDF Proof of Concept Simulations .. 70
5.2 Easy68K Simulations.. 77
5.3 Hardware Debugging with the Deneb Emulator... 78

5.3.1 Checking Physical Connections... 79
5.3.2 Memory.. 79
5.3.3 Bar graph LEDs ... 80
5.3.4 A/D converter... 81
5.3.5 Power-on reset circuitry, serial communications interface (SCI), and sampling
frequency generator interrupt circuitry ... 82
5.3.6 MIDI interface ... 82
5.3.7 Proven code.. 83
5.3.8 Butterworth Filter... 84

5.4 Stand-alone Problems ... 89
5.4.1 68000 Controls and Inputs ... 89
5.4.2 Other Tests ... 90
5.4.3 MMU Connections... 91
5.4.4 Checking the Memory Space ... 92
5.4.5 Testing Conclusions... 93

CHAPTER VI – CONCLUSIONS AND FUTURE WORK.. 95
REFERENCES ... 97
APPENDIX I – HARDWARE DESIGN.. 100

Schematic Page 1 .. 100
Schematic Page 2 .. 101
Board Layout – Top View of All Components... 102
Board Layout – Top View of Top Components ... 103
Board Layout – Bottom View of Bottom Components .. 104

APPENDIX II – SIMULATION SOURCE CODE.. 105
Butterworth Filter Spice Simulation File for Ideal Component Values (BWLPF.spc)
... 105
Butterworth Filter Spice Simulation File for Actual Component Values (BWLPF-
Actual Values.spc) .. 105
Butterworth Filter Spice Simulation File for Actual Component Values with Updated
Inductance and Resistance Values (BWLPF-Actual Values with LR.spc) 105
Butterworth Filter Spice Simulation File for Actual Component Values with New
Inductance and Resistance Values (BWLPF-Actual Values with new LR.spc)......... 106
AMDF MATLAB Simulation File (amdfTests.m)... 107

APPENDIX III – MODULE TEST CODE .. 108
LEDTest.x68... 108
MIDItest.x68... 109
IRQtest.x68 ... 111

viii

The Proven Code for the Game of Snake (nibblesB.x68) .. 114
APPENDIX IV – DESIGN SOURCE CODE .. 126

AMDF.x68 .. 126

ix

LIST OF TABLES

Table 2.1: Computational considerations for the seven pitch detectors on the Nova 800

minicomputer. Taken from [Rabiner 1976]. .. 16
Table 2.2: Number of gross pitch errors – unsmoothed. Taken from [Rabiner 1976]. .. 17
Table 2.3: Performance scores based on sum of gross pitch errors – unsmoothed. Taken

from [Rabiner 1976]. .. 17
Table 2.4: MIDI commands... 20
Table 3.1: Exception vector assignments. Taken from [Motorola 1993]. 43
Table 4.1: Board layout color-coding conventions.. 56
Table 4.2: Pitches corresponding to actual fundamental frequencies, valid integer

representations from the AMDF, linked list memory offsets, and MIDI note
numbers... 66

Table 5.1: AMDF simulation results from MATLAB for F3.. 74
Table 5.2: AMDF simulation results from MATLAB for A3. .. 75
Table 5.3: AMDF simulation results from MATLAB for C4. FFT errors are shown in

italicized red.. 76

x

LIST OF FIGURES

Figure 1.1: Possible device user interface.. 3
Figure 2.1: Vocal ranges for singers. Taken from [Yale 2005]. 6
Figure 2.2: Two waveform measurements which can be used to define pitch markers.

Taken from [Rabiner 1976]. ... 8
Figure 2.3: Perfect sinusoid (a) and vocal sample (b) at the same frequency. 9
Figure 2.4: Power spectrum of the vocal sample from Figure 2.3b................................. 11
Figure 2.5: Computer Sound Card Game Port to Standard MIDI Connector [MMA

1985]. .. 21
Figure 3.1: Memory management unit... 26
Figure 3.2: (a) Even NVRAM and (b) Odd NVRAM and connections. 28
Figure 3.3: Data transfer acknowledge/valid peripheral address circuitry. 29
Figure 3.4: LEDs and registers. ... 32
Figure 3.5: SCI asynchronous communications interface adapter................................... 33
Figure 3.6: Bit-rate generator... 34
Figure 3.7: Voltage level shifter. ... 34
Figure 3.8: MIDI asynchronous communications interface adapter................................ 35
Figure 3.9: MIDI clock divider.. 36
Figure 3.10: (a) Raspy vocal sample and (b) smooth vocal sample captured on a

Tektronix TDS 2024 Oscilloscope.. 37
Figure 3.11: Amplification and filtering stages. .. 38
Figure 3.12: A/D converter and connections. .. 39
Figure 3.13: Divide-by 16 for sampling frequency generator. .. 41
Figure 3.14: Adjustable sampling frequency generator. .. 41
Figure 3.15: Interrupt acknowledge and MMU reset circuitry. 44
Figure 3.16: Power-on reset circuit.. 45
Figure 4.1: Topside view of the empty prototyping board. ... 55
Figure 4.2: Topside view of loosely place parts on the prototyping board...................... 56
Figure 4.3: Flow diagram for interrupt service routine (ADCIRQ)................................. 58
Figure 4.4: Sample AMDF results (blue) and regions where the data fall below the

detection threshold (green). .. 60
Figure 4.5: Flow diagram for finding indices. ... 61
Figure 4.6: Flow diagram for finding index differences.. 63
Figure 4.7: Flow diagram for sending MIDI commands. .. 68
Figure 5.1: AMDF simulation results for A3, fs = 4.0 kHz. .. 72
Figure 5.2: AMDF simulation results for A3, fs = 2.0 kHz. .. 72
Figure 5.3: AMDF simulation results for A3, fs = 1.60 kHz. .. 73
Figure 5.4: AMDF simulation results for A3, fs = 1.0 kHz. .. 73
Figure 5.5: A/D converter test circuit. ... 81
Figure 5.6: Fifth order Butterworth low pass filter design. ... 84
Figure 5.7: Butterworth filter frequency responses for ideal (red, gently sloped) and

actual (blue, steeply sloped) component values.. 85

xi

Figure 5.8: Actual Butterworth filter frequency response with 100Hz/division
horizontally and 200 mV/division vertically. The intersecting green and blue lines
represent the 3.01dB point. ... 86

Figure 5.9: Simulated Butterworth frequency response (blue) with updated L-values
accounting for resistances. The (red) curve with the overall higher magnitude is the
response with the ideal values... 87

Figure 5.10: Simulated Butterworth frequency response with new L-values (blue). The
(red) curve with the overall higher magnitude is the response with the ideal values.
... 88

Figure 5.11: Actual Butterworth frequency response using the new L-values with
100Hz/division horizontally and 200 mV/division vertically. The intersecting green
and blue lines represent the 3.01dB point. .. 89

xii

CHAPTER I – INTRODUCTION

 For anyone who has watched the first few episodes of each season of “American

Idol” on the Fox television channel, it should be obvious that there are a number of

Americans with singing difficulties. This results from the would-be singers lacking the

ability or training to distinguish between small variations in pitch (frequency), and

correct their vocal output accordingly. The vernacular calls this condition tone-deafness.

However this term is actually incorrect, because tone-deafness by definition implies that

one cannot hear tones, when in fact the difficulty lies in hearing the difference between

tones. “Research has shown that some people, termed ‘amusic’, can neither produce nor

perceive music.” [Stewart, 2006] This condition called amusia is analogous to color

blindness.

 The original goal of this research was “to develop a device that will use the

human voice to operate an electronic musical instrument” [Cleaver, 2000]. However, it

was determined through calculation and experimentation that the original requirements of

the design prototype would have to change due to hardware limitations (see Section

3.2.2). However, the original design will be presented in this section. Modifications will

be presented and justified in subsequent sections where relevant.

The human voice will be sampled via a microphone and an analog to digital

converter, which will be connected to a microprocessor that shall be programmed to

operate as a digital signal processor. “The principal frequency1 of the input will be

extracted, corrected for pitch and then used to operate the musical instrument. The

implementation for the musical instrument will use the principal frequency data to

1 The words “principal frequency” will herein be referred to as “fundamental frequency”.

1

provide keying commands to a commercial synthesizer keyboard” [Cleaver, 2000].

 To use this product, the user must have access to a synthesizer capable of

accepting and interpreting the MIDI protocol. The user must be able to make an audible

tone from his/her vocal chords to activate the device. The device will be easy to operate

in that there are only three setup requirements including: connecting the MIDI cable to

the device and synthesizer, placing the microphone in an area close to the user’s mouth,

and supplying power to the synthesizer and device. Once these criteria are met, the user

need only sing to operate the device.

 The device must be able to identify vocal inputs in near real time so as not to be

audibly noticeable. The device must be able to extract and output the fundamental

frequency of the singing voice. The device shall be able to accommodate male and

female singers. The device must be able to acquire the vocal signal without ambient

noise, including the output of the synthesizer. The device shall be powered via an

external power supply. The device must be able to communicate to a synthesizer via the

MIDI protocol through a standard MIDI cable. The device must be able to communicate

to a computer running a dummy terminal for development purposes. The device must be

as small as reasonably possible. The device developed will be a functional prototype

only and not a device suitable for manufacture, because the parts to be used to construct

the prototype are no longer manufactured. However, the concepts that will be used to

create the prototype can be expanded through further research to implement this device

on modern technology.

 The user interface for this device will consist of some knobs, switches, and

indicators. The user shall use this interface to adjust the amplification settings of the

2

microphone and operate the device. A possible user interface is show below in Figure

1.1, representing a possible view from the top of the device.

Figure 1.1: Possible device user interface.

The different items of interest are: the device power switch, the reset switch, the signal

strength indicator, and the input amplification knob. The device power switch will be

used to set the on or off state of the device. The (pushbutton) reset switch will primarily

be used in development and emulation, but will be left for the user as alternate means to

reinitialize the device. The signal strength indicator will indicate the amplitude of the

amplified input signal from the microphone after the amplification and filtering stages.

The input amplification control will consist of a knob that the user will adjust in

conjunction with reading the signal strength indicator to optimize the input amplification

of the microphone.

3

CHAPTER II – LITERATURE REVIEW

The tasks involved in completing this project involve two main components:

identifying the fundamental frequency and using the MIDI protocol to communicate

appropriately to the synthesizer. In this chapter, the necessary background information is

presented to complete these tasks. In Section 2.1, the elements of pitch and its perception

are discussed. This is followed by a discussion of the impact of the human vocal range

on this design in Section 2.2. Sections 2.3 and 2.4 discuss the techniques directly

involved in identifying the pitch and communicating with the synthesizer, respectively.

2.1 What is pitch?

According to the ANSI standard for acoustical terminology, pitch, in a general

sense can be defined as:

“…that attribute of auditory sensation in terms of which sounds may be ordered
on a scale from low to high. Pitch depends mainly on the frequency content of
the sound stimulus, but it also depends on the sound pressure and the waveform of
the stimulus.” [ANSI 1994]

The key words for this thesis are actually in the second sentence. Particularly, the

dependence on the frequency content is of interest. However, the awareness that the

stimulus and sound pressure can influence the pitch is also of interest, because this

generally vague definition supports that the overall task of extracting the physical

representation of the pitch (called the fundamental frequency) is subject to errors. The

effects of some of these additional influences are discussed in Section 2.3.1.

In music, the dominant fields of study pertaining to this research are

psychoacoustics and music psychology. According to Merriam-Webster’s Medical

Dictionary, the former is “a branch of science dealing with hearing, the sensations

4

produced by sounds, and the problems of communication” while the latter is the study of

how humans perceive musical elements and the feelings evoked by musical stimuli

[Scheirer 2000].

“The fundamental frequency of a periodic signal is the inverse of its period, which
may be defined as the smallest positive member of the infinite set of time shifts
that leave the signal invariant. This definition applies strictly only to a perfectly
periodic signal, an uninteresting object because it cannot be switched on or off or
modulated in any way without losing its perfect periodicity.” [Scheirer 2000]

Usually, the subjective recognition of a pitch associated with a sound depends on

the fundamental frequency. However, there are exceptions to this generalization because

some sounds may be periodic but have no pitch, while other sounds may not be periodic

yet have a pitch [de Cheveigné 2003]. The classic example of the latter is that of a bell,

which has a pitch, but no fundamental frequency [Gerhard 2003]. However, the

relationship between the existence of pitch and a fundamental frequency is usually one-

to-one insofar as the words “pitch” and “fundamental frequency” (f0) are used

interchangeably in the field and in this document. A similar relationship exists between

the terms “f0 estimation methods” and “pitch detection algorithms” [de Cheveigné 2003].

2.2 The human vocal range and the ideal choice of sampling rate

The sampling rate is a crucial element in this design. According to the Shannon

Sampling Theorem, the sampling rate must greater than or equal to twice the maximum

frequency to be sampled. This minimum sampling rate is referred to as the Nyquist rate

[Weeks 2007]. According the library of music at Yale University, the standard human

vocal range is from E2 (bass singing at 82.407Hz) to A5 (soprano singing at 880.000Hz)

5

[Yale 2005] and is illustrated in Figure 2.1. If this design is to accommodate the full

spectrum of the human voice, the ideal sampling rate must then be fs = 880 ⋅ 2 = 1760Hz .

Figure 2.1: Vocal ranges for singers. Taken from [Yale 2005].

If the minimum sampling rate must be 1760Hz, a sampling rate of 2000Hz would

be chosen for this design for two reasons. First this is an easy number to implement in

hardware via clock dividers, and this number is a convenient figure to use for

multiplication. However, this sampling rate will be too high for this embedded software

implementation to handle because of the system clock speed. These difficulties are

discussed in greater detail in Section 3.1.

2.3 Frequency Identification (Pitch-Tracking) Techniques

There is a broad range of literature regarding extracting pitch information using a

variety of different techniques as well as some research on real time vocal analysis and

synthesis on a MIDI capable synthesizer (see [Ryynänen 2004, Saul 2002, and

Shimamura 2001]). However, these algorithms and designs are designed to run on a

personal computer (PC) and use sampling rates of 11.025 kHz or higher. This device is

unique in that it runs on an embedded system running at a much slower clock rate than a

PC or its equivalent. The processor chosen for this project is the Motorola 68000 because

6

of its availability in the lab. This processor can accept a clock in the neighborhood of 4-

16MHz; therefore, it is crucial that the algorithm be speed-efficient and fairly accurate.

There are a large variety of methods available to identify a frequency from a

sample dataset. However, the hardware limitations govern the choice between the

methods considered. This particular processor model does not support floating-point

operations or complex mathematical functions such as: the exponential function,

logarithms, sine, and cosine. Therefore, methods and algorithms requiring the use of

such functions were dismissed. Many other methods other than those presented were

reviewed but rejected for consideration because of these hardware limitations. Some of

these methods are listed in Section 2.3.6, while other methods that warranted serious

consideration are discussed in this section. The methods presented in this literature

review are the primary methods investigated for this design following a brief discussion

of some of the difficulties inherent to pitch tracking.

2.3.1 Problems Associated with Pitch Detection of Vocal Signals

In general, finding the frequency or period of a perfectly periodic waveform is

relatively simple. However, measuring the pitch, or fundamental frequency, from a

voiced signal is considered a difficult task mainly because when the glottis2 produces a

waveform, the waveform is not a perfect composition of periodic pulses. It is also

difficult to measure the interaction between the vocal tract and the glottal excitation

2 The glottis is the space between one of the true vocal cords and the arytenoid cartilage
on one side of the larynx and those of the other side [Merriam-Webster’s Medical
Dictionary].

7

because the vocal tract formants3 can sometimes alter the glottal waveform structure.

These interactions cause the most difficulty when the articulators change rapidly and also

when the vocal formants themselves change rapidly [Rabiner 1976].

It is also difficult to determine the beginning and end of each pitch period in a

voiced segment. This generally leads to the arbitrary choice of the pitch period beginning

and ending times. An example of this arbitrary choice is shown in Figure 2.2. In this

Figure 2.2: Two waveform measurements which can be used to define pitch markers.
Taken from [Rabiner 1976].

figure, the two candidates for defining the period beginning/end are the maximum value

and the zero-crossings prior to the maximum during each period. The only requirement

with these measurements is that the locations be consistent from period-to-period, else

spurious pitch estimates may result. In Figure 2.2, the period associated with the peak

measurement will result in a higher frequency than the zero-crossing measurement.

Discrepancies of this nature occur often because the speech waveform is quasi-periodic

and because peak measurements are sensitive to formants, noise, and any DC level in the

waveform. Another related difficulty arises from sorting between unvoiced speech and

weakly voiced speech. This is problematic because the transitions between these two

signal types are difficult to identify [Rabiner 1976].

3 A formant is any of several frequency regions of relatively great intensity in a sound
spectrum, which together determine the characteristic quality of a vowel sound [The
American Heritage® Dictionary].

8

2.3.2 Counting Zero-Crossings

One of the simplest methods to measure frequency in the time domain is to

measure the time between zero-crossings of the periodic signal. The reciprocal of the

period corresponds to the frequency of interest. This is by far the easiest method to

implement in hardware or software. However, this method is very susceptible to noise on

the channel and any DC offset generated by the amplification or filtering stages in

hardware, as well as the quantization error in the analog-to-digital (A/D) converter. This

method is ideal for simple sinusoids, but a poor choice for complex waveforms with

harmonics or distortions, such as vocal signals. To illustrate this point, look at Figure 2.3

below. On the left is a perfect sinusoid with frequency equal to 166.1Hz. On the right is

a vocal sample at approximately the same frequency.

(a) (b)

Figure 2.3: Perfect sinusoid (a) and vocal sample (b) at the same frequency.

If counting the number of zero crossings were used for the second figure, the frequency

would be approximately twice the original frequency, because of the additional

harmonics in the human voice. This method has been discarded from consideration;

9

however, research is still performed today on finding better ways to use the zero-crossing

method for pitch identification [Gerhard 2003].

2.3.3 Frequency Domain Analysis using the Discrete Fourier Transform (DFT)

Perhaps the more intuitive approach to identifying a fundamental frequency is to

use the frequency domain for the analysis. The DFT “plays an important role in the

analysis, design and implementation of discrete-time signal-processing algorithms and

systems” [Oppenheim 1999]. The advantage of using the DFT is that the DFT spectrum

is identical to samples of the continuous case of the Fourier transform with N spectra

samples occurring at uniformly spaced frequencies, where the input signal is truly band-

limited. Many digital applications use the more efficient version of the DFT called the

Fast Fourier Transform (FFT).

Frequency domain analysis is used frequently in conjunction with tools such as a

spectrum analyzer or an oscilloscope with an FFT implementation, which typically have

some form of a fast digital signal processing IC to perform the calculations. Other

systems similar to this research may use variations of the FFT, such at decimation in

time, decimation in frequency, or other special implementations such as Cooley-Tukey’s,

the Prime-factor, Bruun's, Rader’s, or Bluestein’s FFT algorithms to find spectral results

[FFT, 2007].

In theory, the implementation of this algorithm would find the maxima of the

power spectra to identify the frequency once the data are transformed into the frequency

domain. Figure 2.4 represents the vocal data from Figure 2.3b in the frequency domain.

In this figure, it is clearly obvious that the three harmonics have sufficient power to be

10

identified as the fundamental frequency. In fact, the middle spike has the highest power,

but it does not correlate with the pitch produced by the test subject.

Figure 2.4: Power spectrum of the vocal sample from Figure 2.3b.

 The problem with this method is that the number of sample points, N, would have

to be a 512 or 1024 point DFT/FFT to get a 1-2Hz resolution on the frequency axis,

which would take too long to compute in real time. The Motorola website had an FFT

code example that was written by Ron Williams from Ohio University, but based on code

appearing in Byte Magazine in 1979. As of November 27, 2007, the code is currently

available at <http://www.embeddedrelated.com/groups/m68hc11/show/2125.php>. This

code is designed to run on the Motorola 68HC11 (2MHz system clock) and computes a

256 point 8-bit integer FFT. The reported execution time of this code is 350ms.

Performance estimation for the 68000 based on this code is possible with the proper

considerations. First, the execution time can be divided by four since the 68000’s system

clock is 8MHz. However, the time must be rescaled to accommodate for the larger FFT.

The computational complexity of the FFT is O(N log N). So if 87.5 = N log N , then N =

11

26.653 and 2N = 53.306. Thus 53.306 ⋅ log(53.306) = 211.949ms, which is too long to

execute a 512 point FFT for real time applications.

2.3.4 Auto-Correlation Function

Shimamura and Kobayashi have done research in the area of extracting pitches

from noisy speech signals by using the auto-correlation function (ACF) and the average

magnitude-difference function (AMDF) [Shimamura 2001]. The ACF is based in the

time domain and is defined by Equation 2.1:

φ(τ) =

1
N

x(n)x(n + τ)
n= 0

N−1

∑
 (2.1)

where:
x(n) = vocal signal sample;
τ = the lag number, or time shift;
n = the time for a discrete signal

Sliding a small window of the sampled signal with the whole of the sampled data,

in essence, forms the ACF results. As periodic segments overlap the similar segments of

the sampled data, φ(τ) assumes a large value at integer multiples of the signal’s

fundamental period (T0). The fundamental period is calculated from the differences in τ

corresponding to the peaks of φ(τ); dividing the sampling rate by the period yields the

fundamental frequency (f0).

The advantages of the ACF are obvious in that the ACF does not require the use

of exponentials, logarithms or sinusoidal functions to perform the calculation. The math

is straightforward and simple. Shimamura and Kobayashi prove for a large N, that if a

noisy speech signal x(n) is composed of a clean speech signal, s(n) and additive white

12

Gaussian noise, w(n), s(n) will not correlate with w(n). Therefore, an added advantage of

the ACF is that it performs well in noisy environments.

The problem with the ACF is that sometimes the peak located at the second

multiple of T0 is much larger than the first peak. This can lead to a half-pitch error in

frequency identification. In instances where the first peak occurs at a time of τ < T0, a

double-pitch error in frequency identification may occur [Shimamura 2001].

2.3.5 Average Magnitude-Difference Function (AMDF)

The AMDF is similar to the ACF in that the results are obtained by sliding a small

window of the sampled signal with the whole of the sampled data. Equation 2.2

represents the AMDF:

 ψ(τ) =
1
N

x(n) − x(n + τ)
n= 0

N−1

∑ (2.2)

where x(n), τ and n correspond to their counterparts in the definition of the ACF in

Equation 2.1.

The primary difference between the two formulas is that as periodic segments

overlap the similar segments of the sampled data, ψ(τ) assumes small values at integer

multiples of the signal’s fundamental period (T0). The fundamental period is calculated

from the differences in τ corresponding to the notches of ψ(τ); dividing the sampling rate

by the period once again yields the fundamental frequency (f0).

Shimamura and Kobayashi also prove for a large N, that if a noisy speech signal

x(n) is composed of a clean speech signal and additive white Gaussian, the signal and

noise are independent. Thus, the AMDF also performs well in noisy environments. The

AMDF shares the advantages of the ACF as described above [Shimamura 2001].

13

However, the AMDF is advantageous over the ACF for this design because the

main operation is subtraction and the absolute value function, whereas the main operation

in the ACF is multiplication. On the 68000, and most processors, multiplication requires

more clock cycles to execute than subtraction. This processor’s execution time varies for

mathematical functions depending on values of the input arguments. The worst-case

scenario for implementing the subtraction and absolute value functions (20 clock cycles)

is less than the best-case scenario (multiplying zero by zero) for unsigned multiplication

(38 clock cycles) [Motorola 1993]. This means that the ACF, at its best will require 90%

more time to execute. Additionally, the AMDF has a sharper pitch resolution when

compared to the results of the ACF [Kim 1998].

 AMDF(n) = s(k) − s(k + n)
k= 0

N−1

∑ (2.3)

Therefore, the ADMF will be implemented for pitch detection in this design, with

the exception that it will not be normalized with respect to the total number of samples

(N) and is defined in Equation 2.3. The reason the normalization step is excluded is that

dividing by N wastes clock cycles, but more importantly, the 68000 does not handle

floating-point numbers as easily as 16-bit integers. Since scaling the data essentially has

no added effect for this application, its removal is justified. Although this change would

more effectively lend the algorithm to be called the Sum of Magnitudes Difference

Function, it will still be referred to as the Average Magnitude Difference Function to be

consistent with the literature available.

14

2.3.6 Some Other Techniques Worth Mentioning

In 1976, Lawrence Rabiner et al. authored a paper for the IEEE that

comparatively studied several pitch detection algorithms. Their studies included both

performance in terms of accuracy of the detection as well as computation time. Each

algorithm was implemented on the same data sets consisting of a low-pitched male (LM),

two male speakers (M1 and M2), two female speakers (F1 and F2), a child (C1) and a

diplophonic4 speaker (D1). All filtering, signal conditioning and signal processing was

handled digitally on a Nova 800 minicomputer. The algorithms they studied were the

ACF using clipping (AUTOC), the cepstrom method (CEP), the simplified inverse

filtering technique (SIFT), the data reduction method (DARD), the parallel processing

method (PPROC), the spectral equalization LPC method using Newton’s transformation

(LPC) and the previously discussed AMDF.

Table 2.1 shows the computational performance results for the different

algorithms studied by Rabiner et al. For each algorithm, the speed was computed from

processing a one second sample set. In these results, the AMDF had the third best

performance. However, Tables 2.2 and 2.3 show that the AMDF significantly

outperforms the faster two algorithms in terms of accuracy. The remaining algorithms,

although more accurate, require significantly more time to compute the results, these

algorithms were not considered for implementation.

4 diplophonia is a condition in which the voice simultaneously produces two sounds of a
different pitch [Dictionary.com]

15

Table 2.1: Computational considerations for the seven pitch detectors on the Nova 800

minicomputer. Taken from [Rabiner 1976].

16

Table 2.2: Number of gross pitch errors – unsmoothed. Taken from [Rabiner 1976].

Table 2.3: Performance scores based on sum of gross pitch errors – unsmoothed. Taken
from [Rabiner 1976].

2.3.7 Anticipated Problems with the AMDF

Based on the literature review, the AMDF is susceptible to three main problems

with this application. The first is the sampling rate. Although the results by Rabiner et

al. show the AMDF is fairly accurate, they also used pre-recorded data and a sampling

17

frequency of 11.025 kHz to perform their study. Even though the AMDF can be down-

sampled successfully [Rabiner 1976], the sampling frequency implemented in this design

is extremely small compared to that used in other research in the field. Thus it is

anticipated that errors will occur as a result of this reduced sampling rate.

The second concern is that the AMDF is known to produce octave, or pitch-

doubling errors when a fixed threshold for period detection is used. This is also a

problem with other algorithms and can easily been seen again by recalling Figure 2.4. In

[Kim 1998], they demonstrate that an adaptive threshold can be used to determine when

periods occur. By using a weighting factor and comparing other suitable pitches by

doubling, tripling, quadrupling, etc… the proposed fundamental frequency, they see if

each multiple of the original pitch falls under the proposed threshold. If so, a new pitch

is identified [Kim 1998]. Although ideal, implementing an adaptive threshold will not

be possible in this design because it requires too much time to execute.

Regarding octave errors, the real time processing can be advantageous because

this concern can be mitigated by the fact that this design is to be used by amateur singers

who are less likely to jump more than an octave unintentionally. Tracking the numerical

difference between MIDI note numbers will easily reveal if a singer tries to jump more

than an octave at a time, which will help in preventing octave errors. However, if the

initial pitch detection is too high, the user will not be able to jump to a lower octave.

The last known problem is identifying a pitch when the user changes between

notes. It is difficult to know when one note ends, and if the sampling routines acquire a

sample set during a transition, the reported pitch will be inaccurate.

18

2.4 The MIDI Protocol

 Composers and musicians have used the Musical Instrument Digital Interface

(MIDI) protocol since its development in 1983. The protocol was originally designed so

musicians could connect synthesizers together. Today, the protocol is used to supplement

audio in gaming and multimedia applications due to the extremely small file size required

to create a MIDI file versus a sampled audio file [MMA 2001]. The size of the files is

roughly analogous to comparing a vector drawn image versus a bitmap image of the same

object.

The MIDI protocol makes it available not only for communication between

synthesizers, but also between other sound modules, wind controllers, guitars and the

modern personal computer [MMA 2007]. This design will make use of the small packet

size to control a synthesizer, and will use unidirectional communication between the

prototype and the synthesizer.

2.4.1 Message Format

The MIDI message format is quite simple. The beginning of a new message

contains a status nibble, followed by a channel number nibble (where 0-15dec corresponds

to channels 1-16dec). The remaining size of the transmitted data depends on the command

used. The MIDI protocol specifies that any other transmitted data must only utilize the

lower seven bits of a byte. Placing this restriction ensures that the MIDI device can

always detect a new command, ‘s’ (see below), which always utilizes the most

significant bit of the upper nibble. Only three of the commands are used in this design.

They are Note On, Note Off, and Program Change.

The packet format for turning a note on or off is as follows:

19

sc nn vv

 s = Status Nibble (Command)
 8 = Note Off
 9 = Note On
 c = Channel Number (0-15dec)
nn = MIDI Note Number (0-127dec)
vv = Note Velocity

Example MIDI Packet (hex numbers):
 90 45 7F - Play pitch A4 (440Hz) on channel 1 with velocity 127

80 3C 00 - Stop pitch C4 on channel 1, velocity number irrelevant

The packet format for changing the MIDI instrument is as follows:

sc pp

s = Status Nibble (Command)
12dec = program change

 c = Channel Number (0-15dec)
pp = New instrument number (0-127dec)

Example MIDI Packet (hex numbers):
 C0 00 - Change current instrument on channel 1 to Acoustic Grand Piano

There are seven total MIDI commands that are represented in hexadecimal per the

table below. The last hexadecimal value, F, is reserved for future development and will

be ignored by the MIDI device if transmitted [MMA 1995],[MMA 1995]. Table 2.4

contains the relevant commands for this design.

Hex Command

8 Note off
9 Note on
A After touch (key pressure)
B Control change
C Program (instrument) change
D Channel pressure
E Pitch wheel

Table 2.4: MIDI commands

2.4.2 Electrical Specifications

20

The MIDI data transmission protocol uses the RS-232 standard. The bit-rate is

31250 bps, and the voltages range from 0-5V representing a logic 0-1, respectively

[MMA 2001]. The MIDI cable itself requires a shielded cable and cannot exceed a

length of 50ft (15m) [MMA 1985] and consists of two different connectors (MIDI In and

MIDI Out), and sometimes a third (MIDI Thru) [MMA 2001]. Cables designed to

interface with a PC sound card using a DB15 connection, and contain an adapter with

components similar to the Figure 2.5.

Figure 2.5: Computer Sound Card Game Port to Standard MIDI Connector [MMA

1985].

This design makes use of the DB15 connector cable above, as it requires the least amount

of external components to implement.

21

2.4.3 Timing Considerations

MIDI was designed to convey musical performance data and therefore preserves

rhythmic integrity of the music by using accurate timing. A standard RS232 packet

consists of ten bits to transmit one byte of data (consisting of one start bit, eight data bits,

one stop bit, and no parity) for this application. Sending a simple three-byte message for

a Note On or Note Off command will only take 0.96 ms to transmit. Even with larger

packets, the delay between sending the packet and hearing the sound (latency) is usually

3 ms or less, depending on the size of a packet. Research has shown that 20-30 ms

latency is usually imperceptible, so long as the variation in latency (the jitter) is small

[Lago 2004]. Usually, the jitter associated with the MIDI protocol is less than 1 ms.

However, it is important in this design to consider the time it takes to transmit the

MIDI data. In this application, only one musical part is produced at once with small data

packets, therefore the MIDI protocol timing should be quick enough and should be

rhythmically accurate [MMA 2001].

22

CHAPTER III – SYSTEM DESIGN

3.1 Description of the Hardware

The hardware for this design can be broken down into four basic modules

consisting of the hardware responsible for sampling, serial communications, MIDI

communications, and memory management. Each of these large modules consists of

smaller, supporting modules, and each of the larger modules is connected with the 68000.

Each of the major modules is briefly described here and the detailed description will

follow.

The first module is the sampling module. It consists of the microphone,

amplification stage, filtering stage, the A/D converter, and the clock providing the

conversion rate for the A/D converter. Another clocking mechanism is directly

interfaced with the 68000 to trigger the sampling routine.

 The second module is the serial communications interface (SCI) module. This

module was originally designed for a developer. As implementation problems

developed, the concept of adding a developer software interface was abandoned, but the

fully functional hardware was left on the final prototype; this is the only unused interface

in this design. This module consists of an asynchronous communications interface

adapter (ACIA), a bit-rate generator, and a voltage level shifter.

 The third module is the MIDI communications module, which is used to interface

to the synthesizer directly. This module also consists of an ACIA and uses a simple

clock divider (counter) connected to the system clock to act as a bit-rate generator. The

serial output of the MIDI ACIA is connected to the MIDI OUT input to the synthesizer.

23

The final module is the memory management unit (MMU). It is responsible for

enabling the various devices for read and/or write access as well as indicating to the

68000 when a data transmission is acknowledged (DTACK’) and when valid peripherals

request use of the address bus (VPA’).

3.1.1 M68000 Connections

 The Motorola M68000 is the microprocessor used in this design. There are two

practical choices for a processor for this design based on hardware and test equipment

that are readily available at the engineering school. These two choices are the Motorola

M68HC11 microcontroller and the Motorola M68000. The latter was chosen over the

Motorola M68HC11 because of speed, memory capacity, and that the M68000 easily

facilitates connecting a large number of external devices.

 The address and data line connections are described in detail in the memory

management unit and memory sections in sections 3.1.2 and 3.1.3, respectively, as well

as other sections where appropriate. However, address lines A17-A23 are left

disconnected, as they are not used.

 The address strobe (AS)’ is an output that indicates the address bus is ready for

use. It is connected to the memory management unit (MMU) and interrupt acknowledge

(IACK’) circuitry to enable communications with memory and to identify interrupt

requests, respectively. The data transmission acknowledge (DTACK’) input is connected

to DTACK’ from the MMU (Section 3.1.4), and the valid peripheral address (VPA’)

input is connected to the VPA’ circuitry (Section 3.1.5) to indicate when memory and

peripherals are ready to transmit/receive data. The upper and lower data strobes

(UDS’/LDS’) and the read/write (R/W’) line are connected to the MMU to indicate

24

whether an even or odd address is being accessed and whether a read or write cycle is

engaged. The EN clock, which divides the system clock by ten, is connected as ECLK to

the two M6800 series peripheral devices (M6850s) and the A/D converter clock. Finally,

the valid memory address (VMA’) output is negated and is used to signal to the two

peripheral addresses that the 68000 has recognized a valid peripheral address (VPA’)

created by selecting one of those M6800 series peripherals (Sections 3.1.7 and 3.1.8).

The system clock (CLK) input comes directly from an 8MHz TTL oscillator. The

function code pins (FC0-FC2) are connected to the interrupt acknowledge (IACK’)

circuitry to indicate an interrupt cycle on the 68000 (Section 3.1.11). These three pins are

all asserted when an interrupt request is acknowledged. IPL0’ is connected to the

sampling frequency (FS’) clock to trigger a level one interrupt request (Section 3.1.10).

The HALT’ and RST’ lines are connected to the main reset signal (RESET’) generated

by the power-on reset circuitry (Section 1.1.12). The IPL1’, IPL2’, BERR’, BGACK’

and BR’ lines are unused and are tied high to VCC via a 4.7kΩ resistor. The bus grant

(BG’) output is left disconnected.

3.1.2 The Memory Management Unit (MMU)

The MMU, shown in Figure 3.1, is responsible for selecting between two

NVRAMs, one latch, one A/D converter, and two ACIAs for read and/or write

operations. The MMU consists of two 74LS138 decoders and a Schmitt triggered

inverter (74LS14) to perform device selection and some AND gates to create the

DTACK’ signal (Section 3.1.4).

25

Figure 3.1: Memory management unit.

Address lines A14-A16 are connected from the 68000 to the select inputs A-C,

respectively, on each decoder. When the decoders are enabled, these lines are

responsible for selecting between the six devices previously mentioned. The active-high

enable (G1), of each decoder is connected to the active-low IACK’/MRST’ signal. This

signal serves to disable the MMU during reset and to prevent erroneous data from being

written to the NVRAMs during power-on. This signal also disables the MMU during the

68000’s interrupt acknowledge sequence and is discussed in Section 3.1.11. Address

strobe (AS’) from the 68000 is connected to G2B’ of each decoder. Finally, the upper

26

data strobe (UDS’) and lower data strobe (LDS’) signals are connected to G2A’ of the

even and odd decoders, respectively. Thus, when AS’ and UDS’/LDS’ are asserted and

IACK’/MRST’ is negated, the MMU selects between devices for I/O operations.

 On the even decoder (top of Figure 3.1), the active-low outputs Y0’, Y1’ and Y2’

become the control signals SERAM’, SLATCH’, and SSCI’, respectively. These control

signals respectively select between the even RAMs, the latch used for operating the LEDs

and the serial communications interface. On the odd decoder (below the even decoder in

Figure 3.1), the active-low outputs Y0’, Y1’ and Y2’ become the control signals

SORAM’, SADC’, and SMIDI’, respectively. These control signals respectively select

between the odd RAMs, the A/D converter, and the MIDI ACIA. All other outputs (Y3’-

Y7’) on both decoders are left disconnected.

 The R/W’ signal from the 68000 is inverted to create the active-low output enable

signal (OE’) for use on the NVRAMs. The Schmitt inverter package is used for the

power-on reset, and is used here to save board space since the functionality is essentially

the same for standard logic levels and operations. The active-low write enable signal

(WE’) is directly connected to the R/W’ signal on the 68000.

 All the signals output from the decoders are active-low. However, the A/D

converter requires active-high control signals and some special handling since there is no

chip enable input on the A/D converter. Therefore, OE’ and SADC’ from the MMU are

NORed and form the A/D output enable (ADCOE) signal. Similarly, WE’ and SADC’

from the MMU are NORed and for the A/D start conversion (ADCSTART) signal. With

this configuration, the A/D converter will begin a conversion when any byte of its

27

address space is written. The results can be accessed when any bytes of its address space

is read.

3.1.3 Memory

Two Dallas Semiconductor DS1225AD-85 NVRAMs are used to act as both the

program space and temporary memory space in this design. This is advantageous over

using a pair of ROMs and a pair of static RAMs in that the NVRAMs can be

programmed using the 68000 emulator and that the board space required for the larger

NVRAMs is smaller. These NVRAMs also have an 85ns read and write time, which is

optimal for the 8MHz system clock (125ns period) driving the 68000, because no

additional timing circuitry is required to delay the 68000 read/write cycles.

Figure 3.2: (a) Even NVRAM and (b) Odd NVRAM and connections.

Address lines A1-A13 on the 68000 (now referred to as AB1-AB13) are

connected to A0-A12 on each of the NVRAMs. Data lines D0-D15 on the 68000 (now

referred to as DB0-DB15) are connected to D0-D7 on the memories depending on the

address space for each memory. The memory occupying odd addresses is connected to

the lower byte of the data bus (DB0-DB7) while the memory occupying even addresses is

connected to the upper data bus (DB8-DB15). The data lines are connected in this

fashion because the memory is interleaved to make use of the data strobes (UDS’ and

28

LDS’) on the 68000, thereby allowing 16-bit executing from 8-bit devices. The control

signals OE’ and WE’ are respectively connected to the corresponding NVRAM pins 22

and 27. SERAM’ and SORAM’ from the MMU are respectively connected to the even

and odd NVRAM chip enables (CE’) at pin 20.

3.1.4 Data Transmission Acknowledge (DTACK’) Signal

An external device asserts DTACK’ to signal the 68000 that data has been placed

on the data bus by the device during a read cycle or that data has been read by the device

from the data bus during a write cycle. Generally, the 68000 takes four clock cycles to

perform a byte- or word-length read or write operation. In the event that the memory or

another external device requires more time, DTACK’ is used to delay 68000 instruction

execution until the devices’ timing requirements are met. Hence, the logic used to

implement DTACK’ is often referred to as a timer. DTACK’ is also used to identify a

fully-vectored interrupt request during an interrupt acknowledgment; however, fully-

vectored interrupts are not implemented in this design.

Figure 3.3: Data transfer acknowledge/valid peripheral address circuitry.

In this design, DTACK’ is created by ANDing the active low chip select lines

connected to the NVRAMs (SERAM’ and SORAM’), A/D converter (SADC’) and

29

register (SLATCH’). Each chip select on each device is active-low, therefore, ANDing

all the chip select inputs will cause a logic low to be produced whenever any of the

previous four devices is selected. As previously mentioned, some designs require that a

timer be implemented to operate DTACK’, especially when interfacing to a slow

memory, such as an EEPROM without a DTACK’ output. Such a timer is not required

here because the NVRAMs are rated for an 85ns read/write cycle which is faster than the

period of one 8MHz clock cycle (125ns).

3.1.5 Valid Peripheral Address (VPA’) Signal

The VPA’ signal is used by the 68000 to interface to the older 6800 series

peripherals, such as the Motorola 6850 universal asynchronous receiver/transmitter

(UART). VPA’ is also used to signal the 68000 that an auto-vectored interrupt is

occurring. Both VPA’ functions are utilized in this design. However, there are two

devices that can generate the VPA’ signal for normal operation and a third device

indicating the auto-vectored interrupt.

 The two devices using the normal functionality of VPA’ are the two Motorola

M6850s (ACIAs). One of these is used for communication to the synthesizer and the

other for terminal communications. The third device is the 8-bit binary down counter,

which indirectly asserts VPA’ when an interrupt is acknowledged (Section 3.1.11)

through the IACK’/MRST’ signal. The chip-selects for the two UARTS (SSCI’ and

SMIDI’) and IACK’/MRST’ are ANDed to create VPA’.

30

3.1.6 Bar Graph LED Package and Output Data Register (74LS273)

The 74LS273 8-bit register with clear is used to illuminate the bar graph LEDs.

The register is placed on the lower data bus (DB0-DB7) and occupies all odd addresses in

the range of $4000-7FFF, inclusive. Data lines DB0-DB7 are connected to register data

inputs D1-D8, respectively. This particular register does not have an output or chip

enable, so a rudimentary chip enable is constructed by NORing the SLATCH’ and

(8MHz) CLK signals. When SLATCH’ is asserted, the inverted CLK signal is allowed to

propagate through the NOR gate and serve as a clock to the register on pin 11. When the

clock pulses, the data on pins D1-D8 is latched and output on Q1-Q8. The RESET’

signal is connected to CLR’ on pin 1.

 The output pins, Q1-Q8 are connected in series via a current limiting resistor to

the cathode of the bar graph LEDs, which are configured in a common anode

configuration. The anodes of the LEDs are connected to VCC (5V). This configuration is

used because the register can sink more current on an output low than it can source on an

output high. An LED will be illuminated when one of the output pins are driven low.

The bar-graph LED package actually contains ten LEDs. Since only eight LEDs

are used with the register, the remaining two LEDs are used to indicate the device is

powered.

31

Figure 3.4: LEDs and registers.

3.1.7 Serial Communications Interface (SCI) for Terminal Communications

The device responsible for serial communications is the Motorola 68B50

Asynchronous Communications Interface Adapter (ACIA). This ACIA is connected to

the MMU and is configured to operate when even memory locations in the range of

$8000-BFFF are accessed for read and write operations. The ACIAs have two register

pairs and AB1 on the 68000 is used as the ACIA register select (RS) signal, selecting

between the transmit/receive data and status/control registers. Since this ACIA operates

on even addresses, the data lines on this ACIA are connected to the upper byte in the data

bus on the 68000. Other signals, such as the SSCI’ signal from the MMU and the

negated VMA’ signal (VMA) from the 68000 are respectively connected to CS2’ and

CS1 on this ACIA; VMA is also connected to CS0. The read/write (R/W’) line on the

68000 is connected directly to the read/write line on the ACIA. This allows the 68000 to

32

select between the status/receive and control/transmit registers. The E-clock (EN) from

the 68000 is connected to E on the ACIA to synchronize operations with the 68000. The

clear to send (CTS’) and data carrier detect (DCD’) inputs are unused and tied to ground.

The interrupt request (IRQ’) and request to send (RTS’) outputs are unused are

disconnected.

Figure 3.5: SCI asynchronous communications interface adapter.

The ACIA also requires a bit-rate generator to act as a clocking mechanism for

shifting data in and out serially. The bit-rate generator (MC14411) takes a standard

crystal oscillator wired in parallel with a 15MΩ resistor across the inputs X1 and X2.

Different frequency divisions are output on F1-F16. The different frequencies are

generated with various divide-by ratios (prescalers). The primary prescaler is set by

asserting or negating RSA and/or RSB; both are tied high via a 4.7kΩ resistor in this

design. The input frequency from the crystal oscillator to the bit rate generator is 1.8432

MHz and the final output is 614.4 kHz on the F1 output. This output is connected to this

ACIA’s RXCLK and TXCLK inputs. 614.4 kHz is used because the ACIA is set to

divide the input clock frequency by 16 to prevent framing errors; this sets the

transmit/receive bandwidth to 38400 bits/second. The bit-rate generator is disabled

33

during the 68000 reset cycle which is realized by connecting RST’ to the main reset

signal (RESET’). All other outputs (F2-F16) are not connected.

Figure 3.6: Bit-rate generator.

This ACIA also requires a voltage level shifter (MAX232) to shift the incoming

RS232 voltages to standard TTL voltage levels, and vice versa for outgoing TTL signals.

This device is connected per the revised specifications and diagrams provided by Maxim

and can be seen in Figure 3.7. The external capacitors are used to drive a charge pump

responsible for the voltage level conversion. The RS232 cable transmit (TxD) and

receive (RxD) lines are connected to R1IN and T1OUT’ respectively on the MAX232.

The ACIA’s TTL transmit (SCITxD) and receive (SCIRxD) lines are connected to T1IN

and R1OUT’ on the MAX232. The remaining inputs/outputs are left disconnected.

Figure 3.7: Voltage level shifter.

34

3.1.8 MIDI Interface

The MIDI protocol uses the RS232 protocol at a bandwidth 31250 bps for

communications. Therefore an extra ACIA is used for MIDI communications. The

MIDI ACIA is connected to the lower data bus and occupies odd addresses in the range

of $8000-BFFF. AB1, CS0, CS1, RTS’, IRQ’, DCD’, CTS’ and E are connected in the

same manner as the SCI ACIA. CS2’ is connected to SMIDI’ from the MMU. RxD is

connected to MIDI in and TxD is connected to MIDI out on the MIDI cable.

Figure 3.8: MIDI asynchronous communications interface adapter.

The TxCLK and RxCLK inputs receive a square wave at 500 kHz, as this ACIA

is also configured to divide the incoming clock frequency by 16. A 74LS393 dual 4-bit

counter, shown in Figure 3.9, is used to generate the 500 kHz signal by connecting the

QD to MCLK. QD is also connected to QA of the second counter in case the extra

frequency divisions are necessary. This would be true if the system clock were increased

from 8 MHz to 16 MHz. The active high clear signals on both counters are connected to

ground so that the counters will operate continuously. All other outputs are left

disconnected.

35

Figure 3.9: MIDI clock divider.

3.1.9 Microphone Input Amplification and Filtering

The microphone for this design is a Sony cardioid microphone. Although it

outputs a strong signal when connected to an oscilloscope (see Figure 3.10), the output of

the microphone will have to be amplified so the A/D converter can use the smaller

amplitude signal. Figure 3.10 shows two separate live vocal samples taken from the

microphone used in this design, which were obtained by directly connecting the

microphone to the oscilloscope probe. The two samples were acquired from the same

subject, but the figure on the left represents a raspy tone, whereas the figure on the right

represents more of a pure tone.

36

(a) (b)

Figure 3.10: (a) Raspy vocal sample and (b) smooth vocal sample captured on a
Tektronix TDS 2024 Oscilloscope.

 The amplifier chosen for this design is the LM386 audio amplifier, with operation

frequency range from 20Hz-10kHz. This was chosen primarily because it is designed for

audio applications and that the power supply voltage runs at +5V. A simple

amplification arrangement is made by connecting the amplifier output to the non-

inverting terminal through a 15 kΩ potentiometer (R2), which is the connected to the

input from the microphone through a 1 kΩ resistor (R1). This arrangement amplifies the

input signal by 1+ R2
R 1

, and allows the user to adjust the amplification settings. The non-

inverting terminal is connected to ground, and the other pins are left disconnected.

37

Figure 3.11: Amplification and filtering stages.

One of the problems associated with pitch identification is removing the

additional harmonics associated with the fundamental frequency. Figure 2.4 illustrates

this well. Therefore, filtering will be implemented on the hardware to remove some of

the additional harmonics above a certain frequency. A low-pass or band-pass filter could

be used for this application, however, the low-pass filter will be used because the lower-

end of the spectrum is close to 0Hz, and less hardware will be required for

implementation.

The Butterworth low-pass (maximally flat) approximation is used because it

yields the best fit to an ideal low-pass filter at the lower end of the pass-band. However,

the tradeoff is that the difference between the approximation and the ideal filter increases

greatly toward the high end of the pass-band [Budak 1991]. The cutoff frequency for this

design is set at 500Hz to accommodate the hardware limitations imposed by the 68000

(see Section 3.2.2).

The output of the amplifier is also connected to a 5th order Butterworth filter,

which is also connected to a ½ wave rectifier to remove noise above 500Hz and also to

38

protect the A/D converter. The filter design was taken from the online design utility at

http://www-users.cs.york.ac.uk/~fisher/lcfilter/. However, the filter with the suggested

components was simulated using Spice (see Section 5.3.8 for more details) before

continuing with the design. The simulations proved successful and the design was

accepted. The final output of this filter is referred to as MICAMP on the schematic and is

the input to the A/D converter.

3.1.10 A/D Converter (ADC0809) and Sampling Frequency Generator

The A/D converter is the device responsible for sampling the amplified vocal

signal and converting the sample to an 8-bit number and resides in even memory

addresses in the range $4000-7FFF. The sampling occurs when the 68000 engages a

write cycle to the A/D converter, which asserts the STARTADC signal. The sampling

rate is determined by a 74HC40103 8-bit binary down counter and the interrupt routine

on the 68000.

Figure 3.12: A/D converter and connections.

The A/D converter is capable of sampling eight different signals. Only one

channel (IN0) is used to sample the amplified and filtered microphone signal (MICAMP);

the other channels (IN1-IN7) are left disconnected. The lowest bit of the address bus

39

(AB1) is connected to A0 of the A/D converter. The other two lines (A1-A2) of the A/D

converter are grounded to save wiring space since only one A/D channel is used. The

data lines are connected to the upper data bus (DB8-15) on the 68000, so the device

occupies even addresses in memory. The A/D converter lacks a chip enable signal, so the

ADCOE signal from the MMU is used to indicate a read cycle from the data bus. The

ADCSTART signal from the MMU is used during a write cycle, and signals the A/D

converter to take a sample. The A/D converter reference voltages REF+ and REF- are

respectively connected to VCC (5V) and ground.

The A/D converter conversion rate is determined by the ECLK signal (800 kHz)

and is not to be confused with the sampling frequency used by this design. This

frequency happened to be in the middle of the acceptable frequency range and requires no

additional conditioning.

 The next device of interest is the adjustable sampling frequency generator as seen

in Figure 3.14. This generator is created using a 74HC40103 8-bit down-counter. The

counter uses the ICLK signal, which is the ECLK divided by 16 (see figure 3.13), to

count down from 49dec-0dec (50 cycles) when $31 is input on the preload inputs. The

preload inputs are tied to ground via eight 4.7kΩ resistors. The divide-by number can be

set by entering the new number in binary via an 8-bit DIP switch. When the switches are

left open, the logic low value is input on the preload inputs, else they connect 5V to the

preload inputs. Once the counter counts down to 0dec, TC’ is toggled low for one ICLK

period.

40

Figure 3.13: Divide-by 16 for sampling frequency generator.

Figure 3.14: Adjustable sampling frequency generator.

 TC’ is renamed to FS’, which is connected to IPL0’ on the 68000, and PE’

(synchronous preload) on the counter. This causes the sampling interrupt routine to be

executed, and the value on the DIP switches to be loaded into the counter again. The

asynchronous preload (PL’) is connected to RESET’. Master reset (MR’) on the counter

is unused because the assertion of this signal causes the counter to star counting from

255dec, thus it is tied high via a 4.7kΩ resistor. The remaining control input, TE’ is used

to enable counting, and is connected to ground because sampling will be controlled in

software.

41

3.1.11 A/D Interrupt Acknowledgement (IACK’) and MMU Reset (MRST’)

When the 68000 receives an interrupt request on the IPLx’ lines, it acknowledges

the interrupt request by asserting each of FC0-FC2 simultaneously. Then, the inverted

values appearing on inputs IPL0’-IPL2’ are placed on AB1-AB3 to indicate the priority

level of the interrupt request. The 68000 asserts address strobe (AS’) and waits for the

assertion of DTACK’ or VPA’ by the interrupting device, respectively indicating a fully-

or auto-vectored interrupt request.

The primary difference between a fully- and an auto-vectored interrupt is that the

auto-vectored interrupts only use the interrupt priority level in conjunction with a

predetermined vector table to determine where the interrupt service routine is located.

With auto-vectored interrupts, there is only one vector table entry associated with each

priority level. Conversely, fully-vectored interrupts require the interrupting device to

supply the vector table address (divided by four) on the lower data bus. The 68000 will

take this address, multiply it by four internally and then searches for the interrupt service

routine address in this vector table location. This design utilizes auto-vectored interrupts

because there is only one interrupting device and the resulting hardware implementation

is much simpler. Table 3.1 shows the addressing scheme for the various types of

interrupts (or exceptions).

42

Table 3.1: Exception vector assignments. Taken from [Motorola 1993].

In this design, IPL0’ is the only signal permitted to change, indicating a level

interrupt request. This interrupt is auto-vectored and it is not necessary to distinguish it

as such to the interrupting hardware, which greatly simplifies the circuitry needed to

create the interrupt acknowledge signal (IACK’).

Based on the interrupt acknowledge sequence described above, IACK’ is formed

by NANDing FC0-FC2 and the negated AS’ (AS). IACK’ is then ANDed with RESET’

to form IACK’/MRST’. RESET’ is included here to provide a means to disable the

43

MMU during reset, because all other MMU control inputs are used. IACK’/MRST’ is

connected to the VPA’ circuitry, to indicate an auto-vectored interrupt has occurred after

the A/D converter finishes its conversion.

Figure 3.15: Interrupt acknowledge and MMU reset circuitry.

Originally FC0-FC2, AB1, and the end of conversion (EOC) flag from the A/D

converter were to be ANDed to form IACK’. This would have also worked because EOC

would normally be asserted until the A/D converter starts the conversion, at which time

EOC would be negated. By the time the 68000 would start the interrupt acknowledge

cycle, EOC would still be negated. Then when EOC was would be reasserted, IACK’

would be asserted. This design was rejected because the 68000 would have to wait

~75µs each time for the conversion to complete, leaving only ~50µs until the next

sample, and only 400, 8MHz clock cycles to perform the ADMF calculations.

3.1.12 Power-On Reset Circuit

This hardware design has the added feature of a power-on reset circuit. This

feature has been added so that when power is applied to the board, the user will not have

to press a reset switch to initialize the 68000. The power-on reset circuit is a simple

circuit constructed using a simple RC filter with a diode connected in parallel to the

44

resistor, with the cathode connected to Vin, and the anode connected to Vout. Vout is also

connected to two Schmitt inverters to convert the slow rise time of the RC circuit to an

oscillation-free step signal. The analysis and calculations for determining the resistance

and capacitance are shown below.

Figure 3.16: Power-on reset circuit.

The Laplace transform and the s-domain are used in this calculation since Vin(t) is linear,

time invariant, causal, and memory-less.

 H(s) =
Vout (s)
Vin (s)

=
1

s ⋅ C ⋅ R +
1

s ⋅ C
⎛
⎝
⎜

⎞
⎠
⎟

=
1

s ⋅ R ⋅ C +1
=

1

R ⋅ C ⋅ s +
1

R ⋅ C
⎛
⎝
⎜

⎞
⎠
⎟

 (3.1)

The inverse Laplace transform is applied to the transfer function H(s) to find the impulse

response of the system h(t).

h(t) =
e− t / R ⋅C()

R ⋅ C
 The input to the system is a step function with amplitude equal to the final desired

voltage (VF) across the capacitor. Therefore, convolution can be used to find the voltage

across the capacitor as a function of time.

 Vout (t) = h(t) ∗Vin (t) =
e− t / R ⋅C()

R ⋅ C
∗VF ⋅ u(t) =

VF

R ⋅ C
e− λ / R ⋅C()dλ

0

t∫ = −VF ⋅ e−λ / R ⋅C()
λ= 0

t
= VF ⋅ 1 − e− t / R ⋅C()() (3.2)

45

According to the Schmitt triggered inverter specifications for the 74LS14

provided by Texas Instruments, the minimum input voltage for the trigger to turn to the

on state is 1.5V. Setting VF equal to 5V, the capacitance (C) can be solved for in terms of

resistance (R) and time (t). Equations 3.3-3.6 illustrate these steps.

 Vout = 1.5 = VF ⋅ 1− e− t / R ⋅C()() (3.3)

 1−
1.5
VF

=
7

10
= e−t / R ⋅C() (3.4)

 t
R ⋅ C

= −ln(7
10

) (3.5)

 C = −
t

R ⋅ ln(0.7)
 (3.6)

The hold time for the 68000 to go into reset is 100ms. A time of 250ms is chosen

to allow enough time for the 68000 to go into and remain in reset, and to allow for part

tolerances and adjusting part values to match the industrial standards. A resistance of

15kΩ is chosen so that the capacitor will have a smaller value. The values for R and t are

substituted into Equation 3.6; solving for C in Equation 3.7 yields 46.73µF.

 C = −
0.25

15000 ⋅ ln(0.7)
= 46.728µF (3.7)

Since 46.73 micro Farads is not an industrial standard for capacitance, the

capacitance is adjusted to 47 micro Farads. Solving Equation 3.7 for time (t), and

substituting in R = 15kΩ and C = 47µF yields a reset time of at least 251.5ms before the

Schmitt Triggers will toggle the signal back to a logic high.

46

 t = −R ⋅ C ⋅ ln(0.7) = − 15000() 47 ⋅10−6()ln(0.7) = 251.456ms (3.8)

Figure 3.17 shows a screen capture of this implementation with VCC (green),

RESET’/HALT’ (yellow), and the voltage across the capacitor (blue). The delay between

the time VCC reaches 5V and the time RESET’ is negates is approximately 170ms, which

satisfies the 100ms requirement imposed by the 68000. The difference between the

calculated time and the actual time is explained by the fact that the calculations assumed

a unit step input, when in reality, this doesn’t happen for a power supply with large

capacitance. The calculations also neglect the fact that the Schmitt triggered inverter

must also power up during the charging of the power supply’s capacitors. This explains

the “blip” on the yellow line in Figure 3.17. However, this “blip” and the error

associated with the charging power supply are insufficient to cause the malfunction of the

power-on reset circuit.

Figure 3.17: Power-on reset results.

3.2 Software Description

47

The software development for this project was completed in two stages once the

general pitch detection algorithm was chosen. The first step involved developing a proof

of concept in MATLAB. A variety of sound samples were input into the proof of

concept and the results observed. Then the code segments were transformed into the

Motorola 68000 assembly language for more simulation and eventual implementation.

Section 3.2.1 describes the development of the proof of concept and the results, where as

Section 3.2.2 describes the design constraints inherent to implementing the software due

to the hardware design. The assembly level implementation of the supporting functions

is discussed thoroughly in Section 4.2.

3.2.1 AMDF Proof of Concept

It felt necessary to use a high-level language to verify that the AMDF would work

as expected before implementing the AMDF in assembly. MATLAB was used because

of the relative ease to manipulate and plot data arrays. The MATLAB simulation code is

attached in Appendix II and a variety of plots denoting the success of the AMDF

algorithm are included in Section 5.1 along with a more detailed discussion of the

simulations. However, the most important segment of code is included below, as this is

what is used to implement the AMDF in MATLAB. In this code segment, the array of

samples is s(), and the results of each iteration is stored as d(n).

for n=1:NMAX
 x=0;
 for k=1:KMAX
 x=x+abs(s(k)-s(k+n-1));
 end
 d(n)=x;
end

In this code segment, KMAX and NMAX are to be chosen by the developer, where

NMAX represents the total number of samples to be taken and KMAX represents the size of

48

the window used to identify the samples; KMAX must be less than NMAX. Varying these

values alters the detected fundamental frequency slightly and larger values require more

computation time. Experimentation revealed that setting NMAX in the region of 100-200

and KMAX in the region of ¼ to ½ the value of NMAX yielded good results.

3.2.2 Implementing the Algorithm for the 68000

After the AMDF functionality was verified using MATLAB, the next step was to

implement the ADMF in assembly. A few revisions were written, mainly to reduce the

number of clock cycles. However, the functionality of the final revision was tested and

verified using a fixed data array with the same values in s() from the MATLAB

simulation. The routines were simulated using the EASy68K editor, assembler, and

simulator and the results can be found in Section 5.2.

Originally, the hardware design revolved around an 8MHz system clock. It will

be shown later that this clock will be insufficient unless changes to the design are made.

However, the preliminary discussion of the software will include timings for an 8MHz

system clock.

The primary algorithm for the AMDF consists of a pair of nested for-loops that

creates a computational complexity of O(KMAX*NMAX). If KMAX = 96 and NMAX =192,

this means that there will be a total of 18432 iterations through the array before

considering any calculations made with the data. In reality, the loops take approximately

1.1M clock cycles according to the Easy68K simulator, which, at an 8.0MHz system

clock equates to approximately 0.1375 seconds. This value includes all the steps

necessary to perform the AMDF, but not to find the fundamental frequency or output the

necessary commands to the synthesizer.

49

With these considerations in mind, there are two approaches for an interrupt-

driven sampling routine. The first approach involves storing all the data from the analog-

to-digital converter in an array first, then performing all the calculations after a certain

number of measurements have been saved. The second approach involves storing the

first M-number samples, then performing the inner loop of the MATLAB code after each

consecutive reading until the number of readings is equivalent to the sum of M and N.

The two different approaches have different advantages and disadvantages. With

the first approach, there is an abundant amount of time remaining between samples.

Therefore, the processor can run at a slower clock frequency and sample at a higher

frequency. The disadvantage to the first approach is that the bulk of the calculations are

performed at the end of a sampling cycle, and the number of calculations required to

perform the AMDF and identify the fundamental frequency requires approximately 1.2M

clock-cycles which equates to approximately 0.15 (8 MHz clock) seconds before adding

the overhead to send the MIDI information to the synthesizer. The goal, however, is to

reduce the delay at less than 20-30ms so as not to be audibly noticeable by the user [Lago

2004].

The second approach performs most of the calculations for the AMDF between

each sampling interrupt routine. The advantage of this approach is that the remaining

calculations to process the AMDF results require approximately 22000 clock cycles,

which equates to approximately 2.75ms (8 MHz clock) before adding the overhead to

send the MIDI information to the synthesizer. The disadvantage with this approach,

however, is that the inner-loop requires approximately 5600 clock cycles, and if the

50

sampling rate is 3520Hz (), this leaves 2 ×1760Hz 8MHz
3520Hz = 2461 clock cycles to perform

the calculations, meaning that the routine is over budget by 3139 clock cycles.

Regardless of which approach is chosen, it is now obvious that the clock

frequency must increase to accommodate the real-time calculations, or the sampling rate

must significantly decrease. If the second approach is chosen, then the sampling

frequency must decrease, regardless.

Later versions of the 68000 are capable of running at 12MHz and 16MHz. If a

16MHz clock is chosen and the maximum allowed vocal frequency is reduced from

1760Hz to 1250Hz (sampling rate of 2500Hz), which corresponds to a difference of six

chromatic steps or ½ octave, the new sampling rate would leave 6400 clock cycles

between samples to perform the inner-loop calculations. The extra clock cycles will be

used to ensure the 68000 has enough time to finish all calculations during the interrupt

routine and to allow for further additions to the interrupt routine for the development

interface and options. Furthermore, the sampling rate of 2500Hz would be easily

generated by the hardware and represents a convenient integer number for division later

in the routine.

The other choice is to significantly reduce the sampling frequency to 1000Hz and

leave the clock at 8MHz. This leaves 8000 clock cycles between interrupt service

requests to perform the calculations described above. However, this would reduce the

maximum allowed frequency to 500Hz, which corresponds to a high note of B4, (see

Table 4.2). This results in a difference of eleven chromatic steps, which is almost an

entire octave below the original sampling frequency. The advantage to this choice is that

the lab equipment can be used to perform real-time simulations with the hardware design

51

in its entirety. Therefore, the 8MHz clock will used in conjunction with a lowered

sampling frequency.

52

CHAPTER IV – SYSTEM IMPLEMENTATION

This chapter explores the two necessary components of this design, namely the

implementation of the hardware and software for the prototype. The hardware section

focuses on the techniques used for construction; a detailed discussion of the design can be

found in Section 3.1. The software section focuses on the implementation of the AMDF

in assembly. Each functional component required to implement this algorithm in

assembly will be discussed in detail.

4.1 Hardware

There are three methods available for assembling this hardware, each with a

varying level of permanence and usability. The first method that may come to mind is

bread-boarding. This method was immediately rejected because, in the lab, students

typically have to reduce the typical 8MHz clock frequency to 4MHz to reduce the noise

on the breadboard tracks. The next method involves laying copper tracks and sending the

design to be fabricated. Once the design is received, the components would be soldered

to the board. However, the final product is rather permanent and difficult to modify

should there be an error in the hardware design. Therefore, the hardware for this design

will be assembled using VectorBord prototyping board. The model used is double-sided

and contains individual solder pads spaced 0.050 inches apart on both sides with non-

plated-through holes. This method combines the advantages of both the previous

methods, in that designs are somewhat permanent, but lend themselves to rework more

easily than a fabricated design. The prototyping board consists of 2960 pads arranged in

40 rows by 74 columns on either side of the board, leaving a total of 5920 pads for

potential use when considering using both sides of the board.

53

The first necessary step to implementing the hardware design is to create a board

layout. This is always done for fabricated design and sometimes done for prototyping. It

is easier to solder tracks, parts, and wires when the layout has been visualized and

developed on paper. In industry, there exists software for board layout; however, that

software is expensive and doesn’t necessarily lend itself to prototyping layout as well as

track layout. Therefore, Adobe Acrobat CS is used to draw the board layout. This might

not be the best tool, but Photoshop files support various image layers, which has its

advantages.

To start, the prototyping board was rendered to scale by creating a series of

gridlines and can be seen in Figure 4.1. The gridline for every tenth pad was made

thicker for a quick visual reference. No through-holes were rendered because they clutter

the display. A large blue track representing the ground track was placed around the

gridlines. Finally, two yellow segments were placed at the bottom of the board to

represent the area on the board where the ground track is removed. This is done so that

the bottom segment of the topside ground track can be used to carry the system clock

across the board without as much fear of noise permeating the neighboring lines.

54

Figure 4.1: Topside view of the empty prototyping board.

Even before placing digital parts on the board, it was necessary to conceptualize

the size of the parts in relation to the size of the board. The parts were loosely arranged

based on their pinouts and size. Once the loose arrangement was loosely finalized, the

parts’ digital equivalents were placed on the digital grid as shown in Figure 4.2. The

parts were created using copies of the pinouts taken from the various part specifications,

primarily so the pin names would be included on the board layout and could be used for

debugging and quick reference when looking at the physical creation.

55

Figure 4.2: Topside view of loosely place parts on the prototyping board.

The next step was to create a convention for placing tracks, wires, and discrete

components. One may also notice the additional colorings on the pinouts above. These

were added to certain pins for quick reference while creating the board layout. Table 4.1

describes all conventions used in the board layout. The choices for color were mostly

arbitrary.

 Item Color
VCC Red

Tied High Red
VSS/GND Black Pi

ns

Not Connected Yellow
Topside Track Blue
Topside Wire Orange

Backside Track Green
Backside Wire Purple Li

ne
s

Resistors/Caps
Either Side Red

Table 4.1: Board layout color-coding conventions.

56

Once the conventions and the loose layout were finalized, the board layout began.

For this design, a combination of solder tracks and wires were used to create the layout.

For reference, connecting two or more pads on the prototyping board together by

dragging the solder across the thin break between the pads creates a solder track.

Conversely, soldering a wire involves soldering the wire to two separate pads on the

board. There is a mixture of solder tracks and wires in this design to reduce the clutter of

additional wires. The final board layout for the top and bottom sides of the board can be

found in Appendix I.

4.2 Software

Now that the clock frequency and sampling rate have been finalized and the

hardware design and layout have been completed, it is appropriate to discuss the methods

to identify a frequency. After the 68000 initializes and all preliminary initializations in

code are complete, the general approach is to sample the data, perform the AMDF

calculations, find the locations of the minima, calculate the periods between the minima,

calculate the average frequency, and send the data to the synthesizer.

4.2.1 Initializations

Upon coming out of reset, the 68000 code clears the data and address registers

used for the counters and resets the address registers used for the sampled data array and

the AMDF results array. The two ACIAs are also reset by sending $03 to their control

registers. Then the ACIAs are configured to divide their clocks by 16dec, to set the parity

equal to none, to set the data for 8 data bits, and one stop bit for general communications.

This results in a bit rate of 38400bps for the SCI ACIA and 31250bps for the MIDI

57

ACIA. Next, interrupt requests are enabled on the 68000 by ANDing the status register

(SR) with $F8FF. At this point, the software loops by repeatedly calling the SENDMIDI

routine and waits for an interrupt.

4.2.2 Sampling and performing the AMDF (ADCIRQ)

The sampling generator is the only device in this design that generates an (auto-

vectored) interrupt. The sampling occurs every sampling period as adjusted by the

adjustable sampling frequency generator (see Section 3.1.10), and this routine executes at

that time. This interrupt service routine is perhaps the most important routine in this

design because it is the top level. Figure 4.5 contains a flow diagram representing this

routine. Please note that this figure represents one routine iteration. Additional iterations

are performed on subsequent interrupt requests.

Figure 4.3: Flow diagram for interrupt service routine (ADCIRQ)

When this interrupt service routine begins execution, the data sample from the

A/D converter is read and stored. Then a value is written to the A/D converter to start the

58

next conversion. This command is placed as close to the beginning as possible because

the remaining assemble commands used to calculate the AMDF array do not guarantee a

fixed number of clock cycles between each execution of the routine. Therefore, placing

the next write instruction immediately after the read instruction guarantees the next

conversion will be complete before the next sampling period and this eliminates any

sampling period discrepancy due to software timing, except the very first sample.

This service routine is also responsible for calculating the AMDF array values by

executing the nested for-loops as discussed in the proof of concept section (see Section

3.2). A total of KMAX+NMAX samples must be taken to complete the AMDF. However,

at least KMAX (number of samples in the sliding window) must be taken before the inner-

loop calculations may occur. Thus, each time a sample is taken, the number of

measurements is compared to KMAX. If the number of measurements is less than KMAX,

the routine exits and the 68000 waits for the next sampling interrupt request to occur, else

the AMDF calculations begin.

After at least KMAX samples are taken, one (inner-loop) iteration of the AMDF is

calculated, and the 16-bit result is stored in a new array in memory named DD, which is

equivalent to the d-array in the simulations and literature. However, this will herein be

referred to as the AMDF array to avoid confusion. The data stored during each inner

loop calculation is)()(nksksxx +−+= , where n and k are indices and s is the sampled

data array. After KMAX elements of the single iteration through the inner loop have been

processed, the interrupt routine exits. This process continues until KMAX+NMAX samples

are taken, at which time interrupt requests to the 68000 are disabled in software, and the

remaining functions to find the fundamental frequency are called.

59

4.2.3 Finding the periods between minima (FINDINDICES)

This routine searches through the ADMF results stored in the DD array and finds

the corresponding AMDF array indices correlating to the local minima that fall below a

defined threshold. Figure 4.6 illustrates a typical set of results from using the AMDF, the

threshold value, and the identified local minima falling below the threshold. Once these

array indices are identified they will be used to identify the fundamental frequency.

Figure 4.4: Sample AMDF results (blue) and regions where the data fall below the

detection threshold (green).

The general approach to identifying the useful minima in the AMDF results array

is to save all indices of minima where the AMDF samples fall below 25% of the

maximum value in the AMDF array. Since there are two sets of minima each period, it is

necessary to define a cutoff point for which to define a minimum. The range of the data

60

will vary depending on the number of samples considered, thus it is necessary to redefine

the threshold value each time the AMDF finishes (before this function executes). The

threshold value is set to 25% of the maximum value in the AMDF array because setting

the threshold to 25-30% resulted in better performance during the MATLAB simulations

when performing a search. However, multiplying by 25% is equivalent to dividing by

four, which is a simpler operation in assembly, thus requiring fewer precious clock

cycles. Once the threshold has been identified, a sequential search for the local minima

begins as described in the following paragraphs and graphically in Figure 4.7.

Figure 4.5: Flow diagram for finding indices.

The first step in finding the minima is to identify the maximum value in the

AMDF array. A variable called MAXOFDD is initialized to zero and a sequential search

through the array is executed and each value is compared to MAXOFDD. If the current

value is greater than MAXOFDD, MAXOFDD assumes the current AMDF value. Once

61

the search is complete, MAXOFDD is stored in a data register and divided by four to set

the threshold for the next set of searches.

Then this routine loads the initial AMDF array index into an address register and

iterates through the array until a value that is less than or equal to the threshold is

identified. If the current value is less than the threshold, the routine branches to a smaller

loop and finds the local minimum value in the data that fall below the threshold, while

continuing to iterate through the AMDF array. Once the sequentially values rise above

the threshold, the array index pointing to the minimum value in the aforementioned data

segment is stored to the FINDEX array. The smaller loop exits and the other loop resumes

checking for values falling below the threshold. This process repeats until all values in

the AMDF results array have been examined.

4.2.4 Calculating the difference between indices (FDIFF)

Once the FINDEX array has been populated, the periods can be identified in units of

address offsets. Subtracting the array indices will result in the number of sample periods

between each minimum. This is represented by the formula: FINDEX(n) = FINDEX(n+1) –

FINDEX(n). The FINDEX array is re-used to save memory and because the data in its present

form is not used later in the code. Figure 4.6 shows a flow diagram for this function.

62

Figure 4.6: Flow diagram for finding index differences

The periods are calculated by loading the initial address of FINDEX into two

address registers. One address register is incremented by two to point to the next index in

the array, thereby accessing FINDEX(n+1). The other address register is used to access

FINDEX(n). As the array is examined, FINDEX(n+1) is compared to the end-of-array flag. If

equal, the routine exits, else the subtraction is stored in FINDEX(n). An end-of-array flag is

used instead of counting the number of entries in the array because the number of entries

varies and can make debugging in a hex-dump more difficult, whereas an end-of-array

flag is easy to spot at a glance. Before the routine exits, the last entry of the original

FINDEX array is replaced with a different end-of-array flag as the last entry in FINDEX is no

longer valid. This new end-of-array flag will be used by FAVG (see Section 4.2.5).

4.2.5 Finding the fundamental frequency (FAVG)

This routine sums all entries in FINDEX after FDIFF has been executed and

calculates the average frequency for the array of samples. Recall in Figure 4.6 that the

AMDF produces a series of minima. Technically the difference between any two close

minima will yield the fundamental period (T0). The results, however, produce more than

one of these minima, which will cause the associated period to vary. Hence, the average

63

is used to create one fundamental period, which is converted to the equivalent

fundamental frequency (f0).

The number of entries in FINDEX is multiplied by the sampling rate after the sum of

the periods (stored in FINDEX) is calculated. This result is divided by the sum of elements

in FINDEX from FDIFF. The quotient is an integer and is stored as the fundamental

frequency (f0). Equation 4.1 mathematically represents this process.

 f0 =
fs ⋅ N

FINDEX i
i=1

N

∑
 (4.1)

The remainder is used to determine whether to round the result up. If the

remainder is greater than or equal to half of the divisor (i.e. the sum of elements in

FINDEX), then f0 should be rounded up. This check is accomplished by dividing the

previously calculated sum of all FINDEX entries by two and by comparing the remainder

from the division to this value. If the remainder is greater than or equal to the half the

sum, f0 is incremented by 1.

4.2.6 Converting frequency to MIDI (FREQ2MIDI)

This routine is actually the simplest of all the routines regarding conversion of

data. The binary search is one of the first methods that come to mind to convert the

frequency to a MIDI note number since the numbers can be expressed as ordered lists.

This method has a computational complexity proportional to O(log N) and is memory

efficient. However, execution time efficiency and consistency are of greater interest in

this design. Instead of using the binary search to find the frequency in a table,

interpolating between numbers, and assigning a value for the MIDI note number, the

64

frequency (f0) itself is used as an index offset for a very long linked list, since f0 is an

integer. This linked list contains each MIDI note number (36-84dec) corresponding to

frequencies from 63-1078Hz and Table 4.2 shows correlating integer frequencies to

pitches and MIDI note numbers.

65

Pitch

Actual
Freq. (Hz)

Valid
Freqs. (Hz)

Address
Offsets

MIDI Note
Number

C2 65.406 63-67 0-4 36
C#2 69.296 68-71 5-8 37
D2 73.416 72-75 9-12 38

D#2 77.782 76-80 13-17 39
E2 82.407 81-84 18-21 40
F2 87.307 85-89 22-26 41

F#2 92.499 90-95 27-32 42
G2 97.999 96-100 33-37 43

G#2 103.826 101-106 38-43 44
A2 110 107-113 44-50 45

A#2 116.541 114-120 51-57 46
B2 123.471 121-127 58-64 47
C3 130.813 128-134 65-71 48

C#3 138.591 135-142 72-79 49
D3 146.832 143-151 80-88 50

D#3 155.564 152-160 89-97 51
E3 164.814 161-169 98-106 52
F3 174.614 170-179 107-116 53

F#3 184.997 180-190 117-127 54
G3 195.998 191-201 128-138 55

G#3 207.652 202-213 139-150 56
A3 220 214-226 151-163 57

A#3 233.082 227-240 164-177 58
B3 246.942 241-254 178-191 59
C4 261.626 255-269 192-206 60

C#4 277.183 270-285 207-222 61
D4 293.665 286-302 223-239 62

D#4 311.127 303-320 240-257 63
E4 329.628 321-339 258-276 64
F4 349.228 340-359 277-296 65

F#4 369.994 360-380 297-317 66
G4 391.995 381-403 318-340 67

G#4 415.305 404-427 341-364 68
A4 440 438-453 365-390 69

A#4 466.164 454-480 391-417 70
B4 493.883 481-508 418-445 71
C5 523.251 509-538 446-475 72

C#4 554.365 539-570 476-507 73
D5 587.33 571-604 508-541 74

D#4 622.254 605-640 542-577 75
E5 659.255 641-678 578-615 76
F5 698.457 679-719 616-656 77

F#5 739.989 720-761 657-698 78
G5 783.991 762-807 699-744 79

G#4 830.609 808-855 745-792 80
A5 880 856-906 793-843 81

A#5 932.328 907-960 844-897 82
B5 987.767 961-1017 898-954 83
C6 1046.502 1018-1078 955-1015 84

Table 4.2: Pitches corresponding to actual fundamental frequencies, valid integer
representations from the AMDF, linked list memory offsets, and MIDI note numbers.
All numbers are in base 10. Red shaded areas represent pitches outside the normal

human vocal range. The blue shaded area is middle C on the piano.

66

This conversion method is inefficient regarding memory use because the linked

list required 1016dec entries, but there is plenty of memory available. However, the

method is extremely efficient regarding speed because the computational complexity for

finding the appropriate MIDI note number is O(1). This works because there is only one

MIDI note number for each frequency, whereas there may be multiple frequencies for

each MIDI note number.

4.2.7 Sending a Note to the Synthesizer (SENDMIDI)

This routine is very unique in that it is the only routine that is continually

executed outside the interrupt service routine (ADCIRQ). The reason for this is simply

because the ACIA itself forms a bottleneck in this design. One may recall from Section

2.4.4 that the minimum time required to send a MIDI message of three bytes length is

0.96 ms. This poses a problem because the sampling routine triggers every 1.000 ms.

Therefore, this routine must be placed outside the sampling routine and called

continuously in a never-ending while-loop. A simple flag set in the FAVG routine

(Section 4.2.5) will be used to determine whether a note is to be sent to the synthesizer,

the current note is to be turned off, and if a new note is to be sent to the synthesizer.

Figure 3.9 illustrates the functionality of one routine via a flow diagram.

67

Figure 4.7: Flow diagram for sending MIDI commands.

Aside from the timing considerations, this routine analyzes a variable called

MIDIFLAG to determine what packets are to be sent. The first check determines if any

packets are to be sent at all. If not, then the routine exits. The second check determines

if the previous note is to be disabled without sending a new note to the synthesizer. This

is useful if the user quits singing. The next check determines if the previous note needs

to be disabled with the intentions of sending a new note (on command) to the synthesizer.

 If a note is to be enabled or disabled, the routine takes the note number specified

in the MIDINOTE variable and formats a MIDI protocol packet. This packet is sent to

the synthesizer using the MIDI ACIA. Recall that the packet format for turning a note on

or off is as follows:

68

sc nn vv

 s = Status Nibble (Command)
 8 = Note Off
 9 = Note On
 c = Channel Number (0-15dec)
nn = MIDI Note Number (0-127dec)
vv = Note Velocity

Each time this routine is called with the intentions of sending a new note, the note

off MIDI command is sent with the previously activated note (PREVNOTE) if the

previous note differs from the current note. Then the value of the current note, stored in

MIDINOTE, is loaded into a data register. The current note is sent with the note on

MIDI command, and the current value of MIDINOTE is saved in the variable

PREVNOTE, so that it may be turned off during the next instance of SENDMIDI.

Before the routine exits, the flags are reset so no additional data is accidentally

transmitted when unnecessary.

69

CHAPTER V – RESULTS

5.1 MATLAB AMDF Proof of Concept Simulations

The AMDF algorithm was simulated using MATLAB v7.0 and pre-recorded

Windows audio (wav) files set to record 8-bit samples on a single channel at the

minimum frequency the software allowed (8.000 kHz). This data was down-sampled to

4.0, 2.0, 1.6 and 1.0 kHz to by removing every second, fourth, fifth and eight sample,

respectively, to better approximate the sampling rate to be used for the final design. To

simulate the hardware design, the sample data was then half-wave rectified by setting all

data with negative amplitude equal to zero. Although the half-wave rectification is non-

linear and introduces additional harmonics, the AMDF performed similarly to the non-

rectified case in the preliminary simulations. MATLAB returns wav file values in the

range of minus one to positive one and so the data were scaled by 255 to simulate the

output from the A/D converter. Finally, all floating-point numbers were rounded down to

simulate unsigned bytes from the A/D converter.

The AMDF code obviously outputs the reported fundamental frequency for a

selected data segment of length KMAX+NMAX. However, it is necessary to compare this

output to another frequency measure of the same data. This is accomplished by

computing the power spectrum of the same data segment by using a 1024 point FFT.

Once computed, maxima that appear above a certain threshold were calculated and their

frequencies recorded. These recorded frequencies were compared to the output of the

AMDF. This process is repeated for 12 data segments for each file. Each new segment

uses the last KMAX entries of the previous data segment to better represent how the

assembly code will function. Additionally, the same 12 data segments for each file were

70

analyzed for sampling frequencies of 4.0, 2.0, 1.6 and 1.0 kHz. Finally, three files were

analyzed with a male signer singing tones approximating F3 (174.614 Hz), A3 (220 Hz)

and C4 (261.626). This set of simulations is by no means an exhaustive set of tests, but

gives an idea of the success or failure of the algorithm. The code responsible for this can

be seen in Appendix II and the results can be seen in Figures 5.1-5.4 and Tables 5.1-5.3.

The initial simulation results (not shown) were very disappointing. However,

varying KMAX and NMAX varied performance of the AMDF. In the results presented in

Tables 5.1-5.3, the values of KMAX and NMAX had to be reduced for the lower sampling

frequencies, else the reported results had an extremely high error. Ultimately, using an

adaptive window and adaptive cutoff threshold would increase the AMDF performance

[Kim 1998]. Figures 5.1-5.4 graphically show simulation results for one iteration of the

“A3.wav” file sampled at each of the four sampling frequencies. In each figure, there are

three subfigures. The top subfigures show the half-wave rectified input signal, where the

sample number is represented on the horizontal axis and signal amplitude is represented

on the vertical axis. The middle subfigures show the results of the AMDF as applied to

the data in the top subfigures. In the middle subfigures, the horizontal axis represents the

sample number, the vertical axis represents the AMDF results, and the green line

represents the threshold for identifying minima relevant to the frequency identification.

The bottom subfigures show the power spectra for the data from the top subfigures,

where the horizontal axis represents the frequency in Hz, and the vertical axis is the

magnitude of the power spectra.

71

Figure 5.1: AMDF simulation results for A3, fs = 4.0 kHz.

Figure 5.2: AMDF simulation results for A3, fs = 2.0 kHz.

72

Figure 5.3: AMDF simulation results for A3, fs = 1.60 kHz.

Figure 5.4: AMDF simulation results for A3, fs = 1.0 kHz.

73

 'f.wav' - Sampling Frequency (Hz)
 Iteration 4000 2000 1600 1000

1 606.061 193.182 213.333 166.667
2 602.41 237.288 256 166.667
3 598.802 269.663 210.526 148.936
4 550.898 239.521 231.579 150.943
5 550.898 309.524 231.579 144.578
6 571.429 285.714 190.476 144.578
7 571.429 272.189 213.333 144.578
8 571.428 331.361 207.059 144.578
9 520.71 261.905 188.235 132.53

10 544.379 214.286 169.412 120.482
11 520.71 273.81 169.412 166.667

A
M

D
F

12 497.041 292.994 169.412 83.333
1 171.88 169.92 171.88 169.92
2 171.88 169.92 170.31 169.92
3 167.97 167.97 170.31 168.95
4 167.97 167.97 170.31 168.95
5 167.97 167.97 168.75 168.95
6 167.97 167.97 168.75 167.97
7 167.97 167.97 168.75 167.97
8 167.97 166.02 168.75 167.97
9 167.97 166.02 168.75 167.97

10 167.97 166.02 168.75 167.97
11 167.97 166.02 168.75 166.99

FF
T

12 164.06 166.02 168.75 166.99
1 434.181 23.262 41.453 3.253
2 430.53 67.368 85.69 3.253
3 430.832 101.693 40.216 20.014
4 382.928 71.551 61.269 18.007
5 382.928 141.554 62.829 24.372
6 403.459 117.744 21.726 23.392
7 403.459 104.219 44.583 23.392
8 403.458 165.341 38.309 23.392
9 352.74 95.885 19.485 35.44

10 376.409 48.266 0.662 47.488
11 352.74 107.79 0.662 0.323

| E
rr

or
 (H

z)
 |

12 332.981 126.974 0.662 83.657

 * NMAX =192, KMAX = 96 for fs = 4000 and 2000 Hz.
 ** NMAX =96, KMAX = 48 for fs = 1600 and 1000 Hz.

Table 5.1: AMDF simulation results from MATLAB for F3.

74

 'a.wav' - Sampling Frequency (Hz)
 Iteration 4000 2000 1600 1000

1 493.827 200 200 189.873
2 621.118 237.288 200 188.406
3 600 285.714 222.785 180.723
4 607.595 241.379 202.532 186.441
5 611.465 238.095 203.175 166.667
6 589.744 277.457 205.128 158.73
7 554.913 263.736 205.128 181.818
8 551.724 243.94 225.641 137.931
9 574.713 287.293 205.128 137.931

10 528.736 287.293 228.571 168.831
11 574.713 266.667 225.571 151.163

A
M

D
F

12 574.713 266.667 207.792 139.535
1 199.22 203.13 198.44 203.13
2 199.22 205.08 198.44 199.22
3 199.22 205.08 198.44 204.1
4 199.22 207.03 198.44 204.1
5 199.22 207.03 198.44 205.08
6 199.22 207.03 198.44 205.08
7 207.03 208.98 198.44 206.05
8 207.03 208.98 204.69 206.05
9 207.03 208.98 204.69 206.05

10 207.03 210.94 206.25 207.03
11 207.03 210.94 206.25 208.01

FF
T

12 210.94 210.94 206.25 208.01
1 294.607 3.13 1.56 13.257
2 421.898 32.208 1.56 10.814
3 400.78 80.634 24.345 23.377
4 408.375 34.349 4.092 17.659
5 412.245 31.065 4.735 38.413
6 390.524 70.427 6.688 46.35
7 347.883 54.756 6.688 24.232
8 344.694 34.96 20.951 68.119
9 367.683 78.313 0.438 68.119

10 321.706 76.353 22.321 38.199
11 367.683 55.727 19.321 56.847

| E
rr

or
 (H

z)
 |

12 363.773 55.727 1.542 68.475

 * NMAX =192, KMAX = 96 for fs = 4000 and 2000 Hz.
 ** NMAX =96, KMAX = 48 for fs = 1600 and 1000 Hz.

Table 5.2: AMDF simulation results from MATLAB for A3.

75

 'c.wav' - Sampling Frequency (Hz)
 Iteration 4000 2000 1600 1000

1 906.077 254.237 290.909 250
2 491.228 285.714 256.79 142.857
3 564.706 285.714 217.284 131.579
4 840.909 268.657 237.037 117.647
5 666.667 292.683 217.284 160
6 613.333 352.941 216.216 172.414
7 640 57.143 220 108.108
8 601.77 205.714 240 250
9 571.429 262.857 241.509 250

10 666.667 148.571 241.509 81.633
11 617.143 170.455 272.34 122.449

A
M

D
F

12 545.455 181.818 240 58.824
1 468.75 472.66 470.31 241.21
2 468.75 251.95 470.31 241.21
3 472.66 253.91 470.31 241.21
4 242.19 248.05 471.88 241.21
5 242.19 250 473.44 290.04
6 246.09 250 240.63 239.26
7 250 251.95 240.63 254.88
8 250 251.95 242.19 254.88
9 253.91 251.95 243.75 253.91

10 253.91 250 245.31 253.91
11 253.91 250 246.88 253.91

FF
T

12 250 250 248.44 252.93
1 437.327 218.423 179.401 8.79
2 22.478 33.764 213.52 98.353
3 92.046 31.804 253.026 109.631
4 598.719 20.607 234.843 123.563
5 424.477 42.683 256.156 130.04
6 367.243 102.941 24.414 66.846
7 390 194.807 20.63 146.772
8 351.77 46.236 2.19 4.88
9 317.519 10.907 2.241 3.91

10 412.757 101.429 3.801 172.277
11 363.233 79.545 25.46 131.461

| E
rr

or
 (H

z)
 |

12 295.455 68.182 8.44 194.106

 * NMAX =192, KMAX = 96 for fs = 4000 and 2000 Hz.
 ** NMAX =96, KMAX = 48 for fs = 1600 and 1000 Hz.

Table 5.3: AMDF simulation results from MATLAB for C4.

FFT errors are shown in italicized red.

76

These results indicate that the real-time implementation of this device will have

errors that will likely be perceptible to the user. The better performances of the AMDF

are at best +/- a musical half step from the intended frequency, while other errors are up

to two octaves off. Ideally, a faster processor would yield better results because

additional techniques could be implemented to correct the errors.

5.2 Easy68K Simulations

The next logical step is to simulate the assembly level implementation before

using the constructed hardware. There are two ultimate goals for these simulations. The

first goal is to ensure that the assembly code results match the MATLAB simulation

results for the same data set, aside from rounding. The second goal is to ensure that the

code execution time is short enough to operate between sampling periods.

The assembly implementation must be modified slightly to accommodate the fact

that the data are not sampled in real time with a microphone. This was accomplished by

saving the source data used in the MATLAB simulations to an assembly file (s.x68). The

data was added to the bottom of the program space in the code. Then the interrupt

routine was modified so that the data was copied from each subsequent entry in the s()

array instead of from the ADC location.

Once these modifications were complete, breakpoints were set in the code and

were executed to view intermediate results. Ultimately, this helped in the code

debugging process, as there were a few logical problems that needed to be resolved.

Once the coding errors were corrected, the results could be observed. Initial results

proved promising, in that the observed frequency matched the frequency identified in

77

MATLAB in all cases, excepting the rounding error in the final step. All the cases

described in Section 5.1 were tested and the results matched in each case.

The Easy68K also has a tool that measures the number of clock cycles between

instructions. This tool is used to determine if the timing is correct between interrupt

requests. Ultimately, the goal is to ensure that the number of clock cycles is less than

8000 if a 1.0 kHz sampling frequency is used or 5000 if a 1.6 kHz sampling frequency is

used. Initially, these tests proved that the code would not run in the time allotted because

the average number of clock cycles between samplings was around 9000 +/- 10% clock

cycles. Upon further investigation, the code appeared to be inefficient, so it was

rewritten with more efficient uses of commands than before. This accounted for a

reduction of clock cycles to 6000 +/- 10% with the same settings for KMAX and NMAX, a

50% increase in efficiency.

Ultimately, this simulation tool saved countless hours of debugging in the lab.

Code revisions could be implemented and simulated quickly, without the need for using

the emulator or hardware. This simulator also saved time in the sense that the code was

simulated while the hardware prototype was still being constructed.

5.3 Hardware Debugging with the Deneb Emulator

After constructing the physical hardware as described in Section 4.1, it was

necessary to test the hardware in two stages to ensure the prototype matched the

schematics and board layout before moving on to the final design implementation. The

first stage involved checking all the connections formed by tracks and wires. The second

stage involved checking the various modules with the memory dump feature of the

Deneb Emulator software and with software segments written in assembly.

78

5.3.1 Checking Physical Connections

In general, soldered connections can have a few types of failures. The first is lack

of continuity (open circuit), the second is a short between neighboring pads/wires/pins,

and the third is internal quasi-open circuits formed by capacitance, which can be formed

by “cold” solder joints5. Although checks of suspicious connection were made during

construction, there are inevitably additional errors for a large design.

 The first and most tedious task is checking all the connections between devices to

ensure all part are connected according to the schematic. Performing a continuity check

with a digital multi-meter (DMM) with all the parts removed from their respective

sockets checks for open circuits well. Checking for short circuits is a little more difficult

because each pin of one device must be checked against every other pin on every other

device to check each connection. Instead of checking every combination of pins, only

neighboring pins were checked for shorts because most shorts come from wires and

solder crossing pads. The final test involved measuring the capacitance between

connections. The lines most susceptible to error because of too much capacitance are the

data and address lines; hence these were the only lines check for cold solder joints

outside of a purely visual inspection of all connections.

5.3.2 Memory

Memory is perhaps the easiest component to test outside of the manual tests

described above because all one has to do is connect the emulator, then read and write to

the memory dump window. Once the power was applied to the board and the emulator

5 “cold” solder joints are formed when insufficient heat is applied to the physical
components soldered.

79

configured, the memory did not work as expected. The dump window read the values

corresponding to floating values on the data lines for both the even and odd address

space. This meant that either the memory was bad or the MMU was not operating

properly, the latter being the most likely cause. The memory select lines (SERAM’ and

SORAM’) were not asserting when the corresponding addresses were accessed in the

dump window. Further investigation revealed that address strobe (AS’) was connected to

VCC (5V), thereby constantly disabling both decoders. Once the connection was restored,

read/write functionality was possible.

This design relies on the non-volatility of the RAM, as there is no other way to

program the prototype without adding additional hardware or purchasing additional

components. The only tests of interest are to (1) see if the RAM will hold values with the

noise present on the board and to (2) see if the NVRAM holds its values once power is

cycled. Both tests had positive results.

5.3.3 Bar graph LEDs

Upon powering the board, the LEDs light up if values are present on the data

lines. Testing the LEDs is a simple as testing the memory, with the exception that the

data written to the register driving the LEDs will not appear in the dump window because

the hardware design would be needlessly more complicated. The other difference is that

all bits written must be inverted to light the appropriate LEDs. When this test was

performed, one observed inconvenience was that after the data was written, the values on

the LEDs changed from the input value, mainly because the emulator attempts to read

many values to update the window.

80

It was necessary to write a small segment of code to test the LEDs. This code is

attached in Appendix III. The test simply lit a single LED, and performed a one-bit

logical shift after a short delay, and repeated indefinitely. This test revealed that the first

and third LEDs were shorted, a test not revealed by checking neighbors for shorts. The

short was fixed and the LEDs functioned properly thereafter.

5.3.4 A/D converter

The A/D converter testing required the addition of extra hardware as seen in

Figure 5.1. The hardware consisted of a simple 10k potentiometer with the end terminals

connected to VCC (5V) and ground. The wiper terminal was connected to IN0 on the

ADC0809. By varying the position of the wiper, the voltage between the wiper terminal

and ground should vary linearly between 0 and 5V. Similarly, the reading from the A/D

converter readings should respectively vary between 0 and 255dec.

Figure 5.5: A/D converter test circuit.

This module is similar to the LEDs in that the value read from the memory dump

window will not be the same as the one written. To initiate the A/D conversion, any

value may be written to the device. When the emulator immediately reads the device

after the write operation, the previous conversion results are displayed in the window. To

perform the test, the wiper on the potentiometer is varied a number of times, the resulting

81

voltages are measured with a DMM, and the equivalent decimal values are calculated for

comparison. The A/D converter functions as expected with the potentiometer. After this

test was completed, the additional hardware was removed.

5.3.5 Power-on reset circuitry, serial communications interface (SCI),
and sampling frequency generator interrupt circuitry

By this point, the timing associated with the power-on reset circuit has been tested

and the results are discussed in more detail in Section 3.1.12 and shown in Figure 3.16.

However, it is necessary to test whether the reset switch and the power-on reset

functionality cause the 68000 to reset as predicted. Any simple program should begin

immediate execution once power is applied or when the reset pushbutton is depressed, so

this test is coupled with some others.

An easy way to verify the interrupt and SCI circuitry is working properly is to

send a small message via the SCI. This message must be small so as not to cause a

backlog of interrupt service requests. It takes 10 bits to send a single byte to the terminal.

At 38400 bps, a total of 3.84 bytes may be sent between interrupt requests if the

interrupts occur every 1 ms. Once the 68000 comes out of reset, a message to clear the

terminal screen is sent via the SCI. Then, the interrupts are enabled and a test message

with the string “TST” should be sent to the terminal with each interrupt request. As

expected, when power is supplied, the terminal screen is cleared and begins to fill with

“TST”. The same is true if the reset pushbutton is depressed at any time.

5.3.6 MIDI interface

 The last major module to check is the MIDI interface. The easiest way to do this

is to send properly formatted packets through the MIDI SCI. The messages selected are a

82

program change to set the instrument to Grand Piano and a series of messages to play the

C-major scale followed by a C-major I chord then a command to stop the notes. This

routine is set to execute once and the code is attached in Appendix III.

Overall, this interface was the most difficult to debug in hardware because the

MIDI OUT line is not connected to the MIDI IN line of the other device, but rather the

lines are connected to their respective names on the opposite devices. This is different

from connecting the SCI communicating with a PC terminal. Nonetheless, the MIDI

interface functionality was successfully verified.

5.3.7 Proven code

The last test, outside of testing the code that was developed and simulated, was to

test the hardware with a large segment of proven assembly code. Loading and executing

the Game of Snake performed this test. This particular game was written in 2004 as part

of the Microcomputer Design course (ECE516) taught at the University of Louisville and

its functionality has long since been proven to run on a similar hardware design. The

code for this game was modified to run in a different addressing scheme and to update the

LEDs to reflect the player’s score in binary, which is also displayed on the terminal

screen. After completing the modifications, the code ran perfectly on the emulator,

which suggested that the prototype was ready to be tested in stand-alone mode, as

discussed in the next section.

83

5.3.8 Butterworth Filter

Figure 5.6: Fifth order Butterworth low pass filter design.

The fifth-order Butterworth low pass filter shown in Figure 5.6 is checked

graphically measuring by the filter’s amplitude response in a simulation and physically in

the lab using a function generator with linear sweep and an oscilloscope with XY

interpretation. The red curve in Figure 5.7 shows the results of a WinSpice simulation

with the ideal values input from the website. This is not normalized, therefore the 3.01

dB point occurs at 2 /4 instead of the traditional 2 /2. From this waveform, it is easy

to see that the filter reaches the appropriate amplitude at the desired cutoff frequency

(500 Hz), and remains relatively flat until 350Hz. The source code to generate the plots

can be found in Appendix II.

84

Figure 5.7: Butterworth filter frequency responses for ideal (red, gently sloped) and
actual (blue, steeply sloped) component values.

The next step to test the Butterworth filter is to physically assemble the circuit and

to measure the frequency response. The exact component values were not all available in

the lab, so the closest approximations were used. The actual component values are R =

51.6Ω, L1 = 11.29mH, C1 = 11.45µF, L2 = 31.39mH, C2 = 11.45µF, and L3 = 11.35mH.

These values were simulated again using WinSpice and the anticipated results are shown

in blue in Figure 5.7. From the results, it is anticipated that the cutoff frequency will be

about 475Hz instead of 500Hz.

The filter is then constructed on the prototyping board and is tested with a

function generator capable of a linear frequency sweep. The sweep is varied from 1 to

1000Hz and the results viewed in XY mode on the oscilloscope, which is shown in

85

Figure 5.8. In this figure, the frequency drops to the 3.01dB point at about 360 Hz, which

is not consistent with the simulations.

Figure 5.8: Actual Butterworth filter frequency response with 100Hz/division

horizontally and 200 mV/division vertically. The intersecting green and blue lines
represent the 3.01dB point.

The component values were measured again on the board itself and they matched

the values reported above, except that the inductor values seem to vary by +/- 50% while

connected to the bridge (Stanford Research Systems Model SR720 LCR Meter). A

different bridge (GenRad 1657 RLC DIGIMETER) was used and the component values

all matched except the 30mH inductor, which consistently read as 15mH when measured

at 1.0 kHz. Also, an inductor can be modeled as an inductor in series with a resistor,

these resistances were measured along with the inductances on the latter bridge. The

resistance associated with L1 is 6.72Ω and the resistance associated with L2 is 94.5Ω.

Another simulation was constructed which included the updated values for the resistances

from the inductors to verify the simulation matched the results. Figure 5.9 shows the

results of another WinSpice simulation with superimposed plots depicting the ideal

values and the set with the measured inductances and resistances across the inductors.

86

The incorrect inductance on L2 with the addition of the large resistance to L2 caused the

filter to perform badly.

Figure 5.9: Simulated Butterworth frequency response (blue) with updated L-values
accounting for resistances. The (red) curve with the overall higher magnitude is the

response with the ideal values.

To correct this error, the 30mH inductor was replaced with three of the 10mH

inductors connected in series, due to the low resistance of the 10mH inductors and

availability of the components in the lab. This reduced the overall resistance to

approximately 20Ω. Another simulation and frequency sweep was performed to compare

the actual performance of the filter to the simulation. The results of the simulation

(Figure 5.10) show that that filter’s performance is reduced in both amplitude and cutoff

frequency (360Hz).

87

Figure 5.10: Simulated Butterworth frequency response with new L-values (blue). The
(red) curve with the overall higher magnitude is the response with the ideal values.

 The circuit was tested on the prototyping board with the function

generator set to for a linear sweep as in the previous test. The results of this test are

displayed in Figure 5.11. The results of this test are similar to the simulation, in that the

cutoff frequency is the same as the results from the simulation, although it is less than the

desired cutoff frequency.

88

Figure 5.11: Actual Butterworth frequency response using the new L-values

with 100Hz/division horizontally and 200 mV/division vertically. The
intersecting green and blue lines represent the 3.01dB point.

5.4 Stand-alone Problems

The ultimate goal of this project is to develop a stand-alone prototype that can run

independently of an emulator. From the tests and results in Section 5.3, it is clearly

obvious that all the connections and hardware elements work properly with the emulator.

The next logical step is to replace the emulator probe on the prototype with the actual

microprocessor and monitor the results. Unfortunately, the prototype does not function

as expected in stand-alone mode. Therefore, there has to be some hidden flaw in the

hardware design or construction that is preventing the 68000 from executing code when it

is placed in a socket and set to run independently. This section describes the efforts to

resolve this problem.

5.4.1 68000 Controls and Inputs

Usually when the emulator is working and the actual processor is not, the problem

is that one or more of the unused input lines to the processor are floating. Each of these

89

lines (BR’, BERR’, BGACK’, IPL1’ and IPL2’) was checked with and without the

hardware running to see if the lines were floating or connected improperly.

Unfortunately, the problem could not be found in these connections. The connections to

VCC, ground (VSS), HALT’, RESET’, and the system clock were also verified to be

working.

5.4.2 Other Tests

Testing the load of the various devices was next in the line of logical reasoning.

If a device is sourcing or sinking too much current, the device can malfunction in

unpredictable ways. The easiest way to test for this on the prototype was to

systematically remove parts and attempt to run test code on the emulator first, then on the

stand-alone system. However, the MMU and one external interface had to remain in

order to know if the system was executing the code. The best interface to leave in place

was the MIDI interface because it requires the fewest components to operate. With that

in mind, the A/D converter, amplifier, LEDs, data register, SCI ACIA, voltage level

shifter, bit rate generator, and sampling frequency generators were removed from the

system. Then the MIDI interface test code described was executed to test the

functionality. The code ran fine with the emulator connected to the prototype but did not

execute with the 68000. The MIDI interface was removed and the LEDs and data

register were replaced to attempt another test. This test used the LED test code as

described in Section 5.3.3. The results did not change. Finally, the LEDs and data

register were removed and the SCI ACIA, voltage level shifter and bit rate generator

were replaced. A simple “Hello World” program was executed and the results were the

same as before.

90

5.4.3 MMU Connections

The next test was to check the various modules for functionality. The first line

checked was DTACK’ because DTACK’ is formed by ANDing the memory select lines.

Each time an address is accessed, DTACK’ should be asserted. Testing revealed that this

was not the case. However, it was proven that the MMU and DTACK’ circuitry

functioned properly in the previous tests, therefore the problem had to be with the MMU

enable lines (AS’, UDS’, LDS’, IACK’/MRST’) or data input lines (AB14 - AB16).

To check these lines, DTACK’ was forced low so as not to have the 68000 delay

instruction execution while waiting for the assertion of DTACK’. For simple memory

accesses, asserting DTACK’ should pose no problem because the memory operates faster

than the 68000. Probing AS’, UDS’ and LDS’ revealed something interesting, in that

each of these signals on the oscilloscope appeared to be functioning as a clock signal, or

pulse train. Normally, the variety of commands associated with sending/receiving data

cause delays in the assertion/negation of these lines, which never cause these lines to

appear as a pulse train. However, it was easy to verify that these signals were reaching

the MMU by probing the base of the MMU and the top of the MMU.

This meant that the address lines had to be causing the problem. Probing the tops

of the pins on the 68000 revealed that the address lines were working properly, but the

signals were not reaching the MMU. This was puzzling because the emulator worked

fine and the continuity of the connections was verified earlier. On a hunch, the base of

the sockets housing the 68000 was probed. This revealed that MMU data input lines

were floating, meaning there had to be a mechanical connection problem. This is not too

surprising because the 68000’s pin diameters are smaller than the pin diameters on the

91

emulator pod probe. When inserted into the zero insertion force (ZIF) socket, the

emulator connections are more secure. The ZIF socket itself sits in a machined socket, so

it is no problem to remove the ZIF socket and insert the 68000 into the machined socket

when ready to execute the code stand-alone. Additionally, all other mechanical

connections were examined for inconsistencies, but no others were identified.

Once this problem was identified, the proven code (The Game of Snake) was

loaded and executed again. This time the code executed up to a certain point with the

68000 in place, but the 68000 locked up. This problem occurred at the same place in the

code every time, and the error was independent of the duration of code execution before

the error occurred. This suggested there was a problem in the memory space, although

that would be unlikely because the memory works fine with the emulator. The next step

was to repeat the tests from Section 5.4.2 before proceeding.

5.4.4 Checking the Memory Space

The results from performing the tests in Section 5.4.2 again were different from

the first time around. In this instance, there were mixed results for the smaller code

segments. In some segments, such as the LED test, the code executed correctly. In other

tests, such as the interrupt request test and the MIDI interface test, the code would not

execute correctly. When the proven Game of Snake code was executed, the problems

were the same as before.

Essentially, these results made no sense. First, the failures seemed to be

independent of memory location, which would suggest a problem with the address line or

the memory itself. Second, the failures seemed to be independent of the device operated.

For example, in the smaller test segments, the SCI ACIA would not output a “Hello

92

world” message to the PC terminal, but the ACIA handled I/O correctly for the Game of

Snake, which makes extensive use of the ACIA.

As stated in the previous section, the proven code always locked up in the same

location in the game, although the address present on the 68000 was neither in the

program nor the data space for this design. However, a test was performed to see if the

error would follow the code or stay fixed to the address region where the error was

occurring. Without knowing the exact location of the address, the test was performed by

a number of no-op (NOP) statements at the beginning of the code. This essentially had

the effect of pushing the remaining code down by two bytes for each NOP statement. Up

to 20 consecutive NOP statements were added to perform this test, but the error followed

the code each time. This once again made no sense because the code has been proven to

work on a previous design as well as with the emulator connected to the prototype. Aside

from these difficulties, this consistently reproducible error ceased to be consistent, and

the code executed intermittently.

5.4.5 Testing Conclusions

These problems were analyzed, researched, and tested for months with no

measurable success. The inability to consistently reproduce the errors has made

debugging impossible without the ability to use the emulator. Ideally, a 32-bit logic

analyzer could help in determining where the 68000 fails to execute code, but since the

errors are independent of memory addresses and device, this expensive tool would prove

useless. The problem itself likely comes from a problem with the soldering, noise

imposed by the 8 MHz clock, and/or from a slightly excessive current draw. All of these

potential problems have been tested as described in the previous sections, but no

93

conclusive results have been obtained. Therefore, the final design will have to run on the

emulator as the cost associated with trying to fix this error far outweighs any benefit for

this project.

94

CHAPTER VI – CONCLUSIONS AND FUTURE WORK

The AMDF time-domain analysis technique was chosen to aid in real-time pitch-

tracking for a voice operated musical instrument operated by the MIDI protocol. The

AMDF algorithm was implemented in assembly to run on an embedded system utilizing

the 68000, which was constructed on a soldered prototype board. This design consisted

of four main hardware modules responsible for controlling sampling, serial

communications, MIDI communications and memory management. Although the

modules worked correctly individually and together with an emulator, they failed to

function on a stand-alone prototype due to an unidentifiable hardware flaw.

However, the simulations and physical implementation clearly revealed that the

AMDF by without additional refinements itself is insufficient to function accurately as a

real-time pitch-tracking device with such a small sampling rate. Additional software

refinements have been proven to enhance the functionality of the AMDF for this

application, but were not implemented due to limitations imposed by the system clock.

Thus, equipment limitations leading to hardware design constraints were a factor for

reduced performance of this device, as well as a limiting factor for incorporating

additional refinements to support the AMDF, as implemented by [Shimamura 2001 and

Kim 1998].

Further work should be done to find a suitable minimum acceptable system clock

capable of supporting a modified AMDF or another successful pitch detection algorithm

running on an embedded system. A study similar to [Rabiner 1976] updated to include

more frequency and time domain techniques including a variety of the updated FFT

algorithms and zero-crossing techniques would be extremely beneficial in this field,

95

especially if the study were a comparison of real-time performance on modern embedded

hardware.

This prototype was designed to perform all signal calculations itself. Another

obvious area of future work would be to implement this design using an external DSP

device or an external programmable logic device using VHDL or ABEL. These design

practices are implemented in industry especially when dealing with RF systems, where

generic or specially designed ICs are used to modulate, demodulate, or process these

high-frequency signals. Either of these concepts would alleviate computational-related

performance problems on the main processor. However, these devices would likely

require a system clock faster than the 8 MHz clock in this design. Either implementation

would lead to a significantly more successful design of an embedded real-time voice

operated musical instrument.

Ultimately, the success of a device of this nature rests with a faster system clock

and a faster processor or microcontroller. In conjunction with a faster system, using an

external device to handle the signal processing aspect of this application would lead to a

more successful prototype and marketable product.

96

REFERENCES

ANSI (1997). ANSI S1.1-1994: American national standard acoustical terminology.

Acoustical Society of America, New York, 1994.

Budak, A. (1991). Passive and Active Network Analysis and Synthesis. Prospect

Heights, Illinois: Waveland Press, Inc. Copyright 1974. Republished 1991.

Cleaver, T.G. (2000). Voice Operated Musical Instrument. MEng/MS Thesis

Opportunity. January 10, 2000.

Cleaver, T.G. (2004). Needs Assessment. 2004. Accessed 27 Nov. 2007.

<http://raise.spd.uofl.edu/systom/ece599/NeedsAssessment.pps>

de Cheveigné, A. and Kawahara, H. (1998). Multiple period estimation and pitch

perception model. Speech Communications Vol. 27, pp. 175-185. Elsevier
Science B.V. July 8, 1998.

de Cheveigné, A. and Kawahara, H. (2002). YIN, a fundamental frequency estimator for

speech and music. Journal of the Acoustical Society of America, Vol. 111, No. 4,
pp. 1917-1930, April 2002.

de la Cuadra, P., Master, A., Sapp, C. (2001). Efficient Pitch Detection Techniques for

Interactive Music. Proceedings of the 2001 International Computer Music
Conference, La Habana, Cuba, September 2001.

“diplophonic.” Dictionary.com Unabridged (v 1.1). Random House, Inc. Accessed 25

Jul. 2007. <Dictionary.com http://dictionary.reference.com/browse/diplophonic>.

“Fast Fourier Transform.” [FFT]. Wikipedia. 2007. Wikimedia Foundation, Inc.

Accessed 14 July 2007. <http://en.wikipedia.org/wiki/Fast_Fourier_transform>.

“formant.” The American Heritage® Dictionary of the English Language, Fourth Edition.

Houghton Mifflin Company, 2004. Accessed 27 Nov. 2007. <Dictionary.com
http://dictionary.reference.com/browse/formant>.

“glottis.” Merriam-Webster’s Medical Dictionary. Merriam-Webster, Inc. 25 Jul. 2007.

<Dictionary.com http://dictionary.reference.com/browse/glottis>.

Lago, N.P and Kon, F. (2004). The Quest for Low Latency. Proceedings of the
 International Computer Music Conference, 2004. pp. 33-36.

Middleton, G. Pitch Detection Algorithms. 17 Dec. 2003. Rice University. 27 January

2006. <http://cnx.rice.edu/content/m11714/latest/>.

97

MIDI Manufacturers Association (MMA). Making Music with MIDI. Copyright 1985-
2007. Accessed 10 Jan. 2007. <http://www.midi.org/about-
midi/aboutmidi3.shtml>.

MIDI Manufacturers Association (MMA). MIDI Electrical Specification Diagram &

Proper Design of Joystick/MIDI Adapters. Copyright 1985. Accessed 9 July
2007. <http://www.midi.org/about-midi/electrical.shtml>.

MIDI Manufacturers Association (MMA). Table 1 of 3 – Summary of MIDI Messages.

Updated 1995. Accessed 9 July 2007. <http://www.midi.org/about-
midi/table1.shtml>.

MIDI Manufacturers Association (MMA). Table 2 of 3 – Expanded Messages List

(Status Bytes). Updated 1995. Accessed 9 July 2007.
<http://www.midi.org/about-midi/table2.shtml>.

MIDI Manufacturers Association (MMA). Tutorial on MIDI and Music Synthesis.

Revised 2001. Accessed 9 July 2007. <http://www.midi.org/about-
midi/tutorial/tutor.shtml>.

Motorola Inc. (1993). M68000 8-/16-/32-Bit Microprocessors User’s Manual. Ninth

Edition. Copyright 1993.

Oppenheim, A.V. and Schafer, R.W. (1999). Discrete-Time Signal Processing. Saddle

River, New Jersey: Prentice-Hall Inc. Copyright 1999.

“psychoacoustics.” Merriam-Webster's Medical Dictionary. Merriam-Webster, Inc.

Accessed 25 Jul. 2007. <Dictionary.com
http://dictionary.reference.com/browse/psychoacoustics>.

Rabiner, L.A., Cheng, M.J., Rosenberg, A.E., & McGonegal, C.A. (1976). A

Comparative Performance Study of SeveralPitch Detection Algorithms. IEEE
Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-24, No. 5,
October 1976, pp. 399-418.

Ryynänen, M. (2004). “Probabilistic Modeling of Note Events in the Transcription of

Monophonic Melodies”. MS thesis. Tampere University of Technology,
Department of Information technology, February 11, 2004.

Saul, L.K., Lee D. D., Isbell. C.L., & LeCun, Y. (2002). Real time voice processing

with audiovisual feedback: toward autonomous agents with perfect pitch.
Advances in Neural Information Processing Systems 15 (NIPS) Conference
Paper, December 9, 2002, pp 1205-1212.

Semenov, O. PC-MIDI interface adapter (MIDI Cable) schematic and pinout. 25 June

2005. Accessed 5 July 2007. <http://www.pinouts.ru>.

98

Shimamura, T. & Kobayashi, H. (2001). Weighted Autocorrelation for Pitch Extraction

of Noisy Speech. IEEE Transactions on Speech and Audio Processing, Vol. 9,
No. 7, October 2001, pp. 727-730.

Stewart, L. “Listening Displeasure”. BBC News Magazine. 30 Jan. 2006. Accessed 3

July 2007. <http://news.bbc.co.uk/1/hi/magazine/4655352.stm>.

Yale University Music Library. Vocal Ranges. March 21, 2005. Accessed 15 Oct. 2006.

<http://www.library.yale.edu/cataloging/music/vocalrg.htm>.

Weeks, M. (2007). Digital Signal Processing Using MATLAB and Wavelets. Hingham,

Massachusetts: Infinity Science Press. Copyright 2007.

99

APPENDIX I – HARDWARE DESIGN
Schematic Page 1

100

101

Schematic Page 2

Board Layout – Top View of All Components

102

Board Layout – Top View of Top Components

103

104

Board Layout – Bottom View of Bottom Components

APPENDIX II – SIMULATION SOURCE CODE

Butterworth Filter Spice Simulation File for Ideal Component Values
(BWLPF.spc)

Butterworth Filter Simulation by Travis R. Gault

.control ; start control statements
destroy all ; WinSpice erases all previously stored data and starts fresh.
op ; perform an operating point analysis
tran 1e-6 2E-3 0 1E-6 ; perform a transient (time-domain) analysis
AC LIN 1000 1 1K ; perform an ac (small-signal) frequency analysis
.endc ; start control statements

R1 1 2 50
L1 2 3 9.83578m
C1 3 0 10.3005u
L2 3 4 31.831m
C2 4 0 10.3005u
L3 4 5 9.83578m
R2 5 0 50

Vin 1 0 SIN(0 5 1K) AC 1 DC 0

.TRAN 1u 2m

.END

Butterworth Filter Spice Simulation File for Actual Component Values
(BWLPF-Actual Values.spc)

Butterworth Filter Simulation by Travis R. Gault

.control ; start control statements
destroy all ; WinSpice erases all previously stored data and starts fresh.
op ; perform an operating point analysis
tran 1e-6 2E-3 0 1E-6 ; perform a transient (time-domain) analysis
AC LIN 1000 1 1K ; perform an ac (small-signal) frequency analysis
.endc ; start control statements

R1 1 2 51.7
L1 2 3 11.29m
C1 3 0 8.75u
L2 3 4 30.9m
C2 4 0 8.75u
L3 4 5 11.35m
R2 5 0 51.5

Vin 1 0 SIN(0 5 1K) AC 1 DC 0

.TRAN 1u 2m

.END

Butterworth Filter Spice Simulation File for Actual Component Values

with Updated Inductance and Resistance Values
(BWLPF-Actual Values with LR.spc)

Butterworth Filter Simulation by Travis R. Gault
.control ; start control statements

105

destroy all ; WinSpice erases all previously stored data and starts fresh.
op ; perform an operating point analysis
tran 1e-6 2E-3 0 1E-6 ; perform a transient (time-domain) analysis
AC LIN 1000 1 1K ; perform an ac (small-signal) frequency analysis
.endc ; start control statements

R1 1 2 51.7
L1 2 3 11.29m
R2 3 4 6.71
C1 4 0 11.45u
L2 4 5 15.3m
R3 5 6 95.46
C2 6 0 11.45u
L3 6 7 11.35m
R4 7 8 6.74
R5 8 0 51.5

Vin 1 0 SIN(0 5 1K) AC 1 DC 0

.TRAN 1u 2m
.END

Butterworth Filter Spice Simulation File for Actual Component Values

with New Inductance and Resistance Values
(BWLPF-Actual Values with new LR.spc)

Butterworth Filter Simulation by Travis R. Gault
.control ; start control statements
destroy all ; WinSpice erases all previously stored data and starts fresh.
op ; perform an operating point analysis
tran 1e-6 2E-3 0 1E-6 ; perform a transient (time-domain) analysis
AC LIN 1000 1 1K ; perform an ac (small-signal) frequency analysis
.endc ; start control statements

R1 1 2 51.7
L1 2 3 11.29m
R2 3 4 6.71
C1 4 0 11.45u
L2 4 5 39.3m
R3 5 6 21.78
C2 6 0 11.45u
L3 6 7 11.35m
R4 7 8 6.74
R5 8 0 51.5

Vin 1 0 SIN(0 5 1K) AC 1 DC 0

.TRAN 1u 2m
.END

106

AMDF MATLAB Simulation File (amdfTests.m)

%%
% AMDF simulation
% By: Travis R. Gault
% University of Louisville
%%
cd h:
clear all
close
clc

% Load wav file and downsample to 1000Hz
zNote='f.wav'
downRate = 5;
[wavSample fs nbits]=wavread(zNote);
fs=fs/downRate;

NMAX=96
KMAX=48
s=wavSample(KMAX*2:downRate:end);

% 1/2 wave rectification
s=floor(255*(s.*(s>0)));

% Perform the AMDF calculation
for n=1:NMAX
 x=0;
 for k=1:KMAX
 x=x+abs(s(k)-s(k+n));
 end
 d(n)=x;
end
dd=d;

% Find all entries below the 25% threshold
threshold=max(dd)/2;
d1=dd<floor(threshold);
ff=find(d1);

% Calculate the differences between low points
% and find the average frequency
fdiff=ff(2:end)-ff(1:end-1);
fdiff=fdiff(2:end)
fmean=fs/mean(fdiff)

d1=d1.*max(dd);

zTitle=['Sampling ',zNote,' at ',sprintf('%g Hz, results: T=%g samples, F=%g
Hz',fs,mean(fdiff),fmean)];

subplot(2,1,1), plot(s(1:NMAX)), axis tight, title('1/2 Wave Rectification')
subplot(2,1,2)
 plot(1:length(dd),dd,'b',1:length(d1),linspace(threshold,threshold,length(d1)),'g')
 axis tight, title(zTitle);

107

APPENDIX III – MODULE TEST CODE

LEDTest.x68

**
; DESCRIPTION: This test code is designed to test the LED bar ;
; graph display on the board. A single LED is lit ;
; and is shifted after a short delay to the LED in ;
; the next highest bit position, continuing forever. ;
**
LATCH EQU $4001

 ORG 0
 DC.L $4000,$400

 ORG $400
START MOVE.B #$FF,LATCH ;Turn all LEDs off then wait
 BSR DELAY

 MOVE.B #$FE,D0 ;Turn on the lsb of the LEDs, wait
 MOVE.B D0,LATCH ;D0 is used to shift the LEDs
 BSR DELAY ; rightward

SHIFTGO LSL.B #1,D0 ;Shift the LED and wait
 MOVE.B D0,LATCH
 BSR DELAY
 BRA SHIFTGO ;Continue forever

**
DELAY MOVE.L #15000,D5
**
SUBD5 SUBQ.L #1,D5
 BNE SUBD5
 RTS
**

 END $4000

108

MIDItest.x68

**
; DESCRIPTION: This test code is designed to test the MIDI interface by ;
; sending MIDI packets to play the C major scale and chord. ;
**

**
;------------------------------ Memory Map --------------------------------;
**
STATUS EQU $1000
NOTENBR EQU $1001
NOTEVEL EQU $1002

PROGNUM EQU $1001

MSGEND EQU $1003
MIDIINST EQU $1001
PCEND EQU $1002
PREVMIDI EQU $1006
MIDINOTE EQU $1007

ENDRAM EQU $4000

MIDISC EQU $8001
MIDITXD EQU $8003
MIDIRXD EQU $8003

**

**
;-------------------------------- Flags -----------------------------------;
**
RDRF EQU 0 ;Receive data register full (ACIA)
TDRE EQU 1 ;Transmit data register empty (ACIA)

**
;---------------------------- Defined Values ------------------------------;
**
SCICFG EQU $15 ;SCI set-up: 38400,8,N,1
MIDICFG EQU $15 ;MIDI setup; 31.25kHz,8,N,1

GRANDPIANO EQU 0
CHURCHORGAN EQU 19
ORCHSTRINGS EQU 46

SPECCHAR EQU 171
NOTEERR EQU $FF

NOTEON EQU $90 ;Note on channel 0
NOTEOFF EQU $80 ;Note off channel 0
PROGCHANGE EQU $C0 ;Program change on channel 0
VELOCITY EQU $7F ;Max note velocity
**

 ORG $00
 DC.L ENDRAM,START

 ORG $400
START MOVE.B #1,PREVMIDI

 MOVE.B #CHURCHORGAN,MIDIINST ;Select instrument

 BSR MIDICONFIG ;Configure MIDI ACIA

 MOVEA.W #SCALE,A5 ;This hex string is the C Major scale

THERE BSR DELAY ;Wait a short time before sending
 MOVE.B (A5)+,MIDINOTE ; another note.
 BEQ SNDCHORD ;If the end of string flag (00) is seen

109

 BSR SENDMIDI ; then send the I chord
 BRA THERE ;Else, send the next note in the scale

SNDCHORD MOVEA.W #CHORD,A5 ;This hex string is the C major chord
 MOVE.B #NOTEON,STATUS
 MOVE.W #STATUS,MIDISTR
CNOTES MOVE.B (A5)+,NOTENBR ;Send each not in the chord, no delay
 BEQ CHORDHOLD ;Wait a while after all note are send

 BSR MIDISend

 BRA CNOTES

CHORDHOLD BSR DELAY ;Play the chord fora while
 BSR DELAY

SILENCE MOVEA.W #CHORD,A5 ;Silence the notes
 MOVE.B #NOTEOFF,STATUS
 MOVE.W #STATUS,MIDISTR

NOTESOFF MOVE.B (A5)+,NOTENBR
 BEQ START

 BSR MIDISend
 BSR MINIDELAY

 BRA NOTESOFF

DONE STOP #0 ;Stop execution
 BRA DONE

**
DELAY MOVE.L #150000,D5
**
SUBD5 SUBQ.L #1,D5
 BNE SUBD5
 RTS
**

MINIDELAY MOVE.W #150,D5
SUBD SUBQ.W #1,D5
 BNE SUBD
 RTS

**
SENDMIDI MOVE.B PREVMIDI,D0
**
 MOVE.B MIDINOTE,D1 ;If the previous note and current note
 CMP.B D0,D1 ; are the same, there is no need to send
 BEQ DONESNDMIDI ; other MIDI packets, so exit

 MOVE.B #NOTEOFF,STATUS ;Else, silence the previous note
 MOVE.B PREVMIDI,NOTENBR
 MOVE.B #VELOCITY,NOTEVEL
 MOVE.B #0,MSGEND
 MOVE.W #STATUS,MIDISTR
 BSR MIDISend

 CMPI.B #NOTEERR,D1 ;If there was an error identifying f0, or
 BEQ DONESNDMIDI ; the output needs to be silent, exit

 MOVE.B #NOTEON,STATUS ;Else send the new note and exit
 MOVE.B MIDINOTE,NOTENBR

 MOVE.B D1,PREVMIDI ;Now the current note is the old one

 BSR MIDISend

DONESNDMIDI RTS
**

110

**
*; MIDI AND SCI INITIALIZATION ROUTINES
**
MIDICONFIG MOVE.B #$3,MIDISC
 MOVE.B #MIDICFG,MIDISC
 MOVE.B #PROGCHANGE,STATUS
 MOVE.B #0,PCEND
 MOVE.W #STATUS,MIDISTR
 BSR MIDISend
 RTS
**

**
MIDISend MOVEA.W MIDISTR,A6
**
; DESCRIPTION: Sends a character to out the MII Port to the synthesizer. ;
; ;
; PARAMETERS: A6 - Starting address of the data to send. Data is sent ;
; until the NULL character ($00) is found. NULL is not sent ;
; to the terminal. ;
**
POLLTDR BTST.B #TDRE,MIDISC ;Waiting for the previous char to go
 BEQ POLLTDR
 MOVE.B (A6)+,D6
 BEQ ENDMSND ;If NULL is detected, then exit
 MOVE.B D6,MIDITXD ;Else send the new char
 BRA POLLTDR
ENDMSND RTS

;------------------------- MIDISend Variables -----------------------------;
MIDISTR DC.W $0
**

SCALE DC.B 60,60,62,64,65,67,69,71,72,72,71
 DC.B 69,67,65,64,62,60,60,$FF,0
CHORD DC.B 36,43,48,60,64,67,72,0

 END START

IRQtest.x68

**
; DESCRIPTION: This test code is designed to test the terminal interface ;
; and auto-vectored interrupt requests by sending a test ;
; message to the PC terminal every time the interrupt is ;
; triggered. ;
**

**
;------------------------------ Memory Map --------------------------------;
**
AVIRQ1 EQU $64 ;Auto-Vector Interrupt Level 1

ENDRAM EQU $4000

SCISC EQU $8000
SCITXD EQU $8002
SCIRXD EQU $8002
**

**
;-------------------------------- Flags -----------------------------------;
**
RDRF EQU 0 ;Receive data register full (ACIA)
TDRE EQU 1 ;Transmit data register empty (ACIA)
**

**
;---------------------------- Defined Values ------------------------------;
**

111

SCICFG EQU $15 ;SCI set-up: 38400,8,N,1
**

 ORG $00
 DC.L ENDRAM,START

 ORG AVIRQ1 ;Set the location of the auto-vectored
 DC.L IRQTEST ; interrup routine

 ORG $400
START BSR SCICONFIG
 BSR ENABLEIRQ

HERE STOP #0
 BRA HERE

**
IRQTEST MOVE.W #ZIRQ,SCISTR
**
 BSR SCISend
 RTE
**

**
*; ENABLING AND DISABLING INTERRUPTS
**
ENABLEIRQ ANDI.W #$FEFF,SR
 RTS

DISABLEIRQ ORI.W #$0700,SR
 RTS
**

**
*; SCI INITIALIZATION ROUTINE
**
SCICONFIG MOVE.B #$3,SCISC
 MOVE.B #SCICFG,SCISC
 RTS
**

**
SCISend MOVEA.W SCISTR,A6
**
; DESCRIPTION: Sends a character to out the SCI Port to the terminal. ;
; ;
; PARAMETERS: A6 - Starting address of the data to send. Data is sent ;
; until the NULL character ($00) is found. NULL is not sent ;
; to the terminal. ;
**
POLLTDRE BTST.B #TDRE,SCISC ;Waiting for the previous char to go
 BEQ POLLTDRE
 MOVE.B (A6)+,D6
 BEQ ENDSSND ;If NULL is detected, then exit
 MOVE.B D6,SCITXD ;Else send the new char
 BRA POLLTDRE
ENDSSND RTS

;-------------------------- SCISend Variables -----------------------------;
SCISTR DC.W $0
**

ZIRQ DC.B 'TST',0

 END START

112

113

The Proven Code for the Game of Snake (nibblesB.x68)

**
; ECE 516 - Project 1 - The Game of Snake ;
; Group #3 ;
; C. Ray Dermon ;
; John D. Gant ;
; Travis R. Gault ;
**

**
;------------------------- Friendly Masks -------------------------;
**
BIT0 EQU $01
BIT8 EQU $100

**
;-------------------------- Memory Map ----------------------------;
**
XYCOORD EQU $1000 ;2-byte coordinate X/Y coord
X_LOC EQU $1000 ; from bove: the x-coord
Y_LOC EQU $1001 ; and the y-coord
SCICHAR EQU $1002 ;Character read from the terminal

SNAKELN EQU $1003 ;Number of yellow snake chars on screen
HEADLOC EQU $1004 ;X/Y-coords of the head (x_byte,y_byte)
*INUSE EQU $1005
TAILLOC EQU $1006 ;X/Y/-coords of the tail (x_byte,y_byte)
*INUSE EQU $1007
DIRN EQU $1008 ;Direction of the snake
GAMEOVR EQU $1009 ;Game over flag ($FF=game over)

ZSTRING EQU $1010 ;Four Byte String
*INUSE EQU $1011
*INUSE EQU $1012
*INUSE EQU $1013
NIBXY EQU $1014 ;Current position of the nibble
*INUSE EQU $1015 ; on screen (x_byte,y_byte)
ZSCORE EQU $1016 ;Four bytes used to display the
*INUSE EQU $1017 ; ASCII verion of the score on
*INUSE EQU $1018 ; the screen
*INUSE EQU $1019
DELAY EQU $101A ;Delay in loops between snake
*INUSE EQU $101B ; movements
RANDCTR EQU $101C ;Timeout counter for the random
* ; number generator

HEADPTR EQU $1020 ;Points to the memory location that
*INUSE EQU $1021 ; contains the x/y-coords of the head
TAILPTR EQU $1022 ;Same as the head pointer, but for
*INUSE EQU $1023 ; the tail

POSPTR EQU $1100 ;The start of our queue

ACIASC EQU $8000
ACIATX EQU $8002
ACIARX EQU $8002

STACK EQU $2000
**

**
;---------------------------- Flags -------------------------------;
**
RDRF EQU 0 ;Receive data register full (ACIA)
TDRE EQU 1 ;Transmit data register empty (ACIA)
**

**
;------------------------ Defined Values --------------------------;

114

**
SCICFG EQU $15 ;$09 ;SCI set-up: 9600,7,E,1
X_LOW EQU $2 ;Lower and upper bounds
X_HIGH EQU $13 ; used to check if the snake has
Y_LOW EQU $2 ; run into a wall.
Y_HIGH EQU $13

XBIT EQU BIT8 ;Where to inc/dec the x/y coordinates
YBIT EQU BIT0 ; in memory
NULL EQU $0 ;String termination character

UP EQU $35 ;ASCII chars coordinating with the
DOWN EQU $32 ; directions for the snake to move.
LEFT EQU $31 ; 5=UP, 2=DOWN, 1=LEFT, 3=RIGHT
RIGHT EQU $33

DLYDEC EQU 500 ;The amt of time to speed up the game
INITDLY EQU 25005 ;The initial delay between snake moves
MINDLY EQU 5 ;The fastest game speed
STRTLEN EQU 2 ;Starting length of the snake
STOPPT EQU $0B16 ;Cursor Stopping point
MAXTRYS EQU 11 ;Max tries to generate a random number
**

**
 ORG $00
 DC.L STACK,START
**
 ORG $400
START MOVE.B #$FF,$8001
 MOVE.B #03,ACIASC ;Reset the ACIA and configure
 MOVE.B #SCICFG,ACIASC ; the serial communications

 MOVE.B #STRTLEN,SNAKELN ;Set the initial length of the
 MOVE.W #POSPTR,HEADPTR ; snake, and initialize pointers
 MOVE.W #POSPTR,TAILPTR ; to the head and tail of the snake

 MOVE.W #INITDLY,DELAY ;Set the initial delay between moves

 MOVE.W #$0909,HEADLOC ;Set the position of the head and
 MOVE.W #$0909,TAILLOC ; tail to (x,y)=(9,9)

 MOVEA.W #POSPTR,A0 ;Initialize the first 256 memory
NINEO MOVE.L #$09090909,(A0)+ ;locations in the queue to the
 CMPA.W #$1200,A0 ; starting position of the snake
 BNE NINEO

 MOVE.W #$0404,NIBXY ;Set the initial food position

 MOVE.B #UP,DIRN ;Set the initial direction of the
 MOVE.B #UP,SCICHAR ; snake.

 CLR.B GAMEOVR ;Clear the game over flag

 JSR STARTGAME ;Show the splash screen

 JSR DRAWBRD ;Draw the game board

 MOVE.W #$0404,XYCOORD ;Draw the first nibble (food)
 JSR COORDS ; on the screen
 MOVEA.W #NIBBLE,A0
 JSR SCISEND

 MOVE.W #$0909,XYCOORD ;Draw the head of the snake at
 JSR COORDS ; (x,y)=(9,9)
 MOVEA.W #SNAKE,A0
 JSR SCISend

 JSR SCORE ;Update the score

115

**
;----------------- This is the main delay loop below --------------;
**
LOOPS MOVE.W DELAY,D2 ;Load the current delay time which
LOOP SUB.W #1,D2 ; changes as the snake grows, then
 BNE LOOP ; execute the delay

 JSR SCIRead ;See if the user changed directions

 JSR CHKCHAR ;See if the direction is valid

 JSR MOVEALG ;Move the snake
 CMPI.B #$FF,GAMEOVR ;If it didn't hit a wall or itself,
 BNE LOOPS ; then continue playing

 JSR YOULOST ;Else, display the GAME OVER screen

 BRA START ;Let the user play again
**

**
NIBPOS CLR.B RANDCTR
**
;DESCRIPTION: This function generates a random number for X and Y ;
; ranging in value from 0-17dec for each coordinate. ;
; After a potential random number is generated, the ;
; value is checked against the value. ;
; ;
; ;
; PARAMETERS: D0 - Used as a temporary register ;
; D1 - Used as a temporary register ;
; D2 - Used as a temporary register ;
; NIBXY - Previous nibble x/y-coordinates ;
; ;
; RETURNS: NIBXY - The new x/y-coordinates of the nibble ;
; ;
**
NPAGAIN ADD.B #1,RANDCTR ;Check the timeout counter for too
 CMP.B #MAXTRYS,RANDCTR ;many levels of recursion
 BNE CALCAGN

 MOVE.W TAILLOC,D0 ;If too many levels, set the new food
 BRA ENDCHK ; position at the previous tail pos.

CALCAGN CLR.L D0 ;Clear all temporary registers
 CLR.L D1
 CLR.L D2
 MOVE.W #18,D1 ;USED FOR THE MODULO OPERATION XMOD18
 MOVE.W NIBXY,D0 ;NEED 32 BITS TO GET REMAINDER
 DIVU.W #18,D0 ;DIVIDING QUOTIENT BY 18
 ADD.B #1,D0 ;ADD 1 TO THE QUOTIENT
 MOVE.W D0,D2 ;PUT QUOTIENT IN D2 FOR USE LATER

 SWAP D0 ;SWAP QUOTIENT AND REMAINDER IN DATA
REGISTER

 MOVE.W D0,D1 ;COPY REMAINDER INTO D1
 ADD.W D1,D2 ;ADDING REMAINDER(D1) TO QUOTIENT(D2)
 MULU.W TAILLOC,D2 ;MULTIPLYING D2 BY CURRENT TAIL XY COORDINATES
 CLR.L D0 ;CLEARING D0
 CLR.L D1 ;CLEARING D1

 MOVE.B D2,D0 ;MOVING QUOTIENT INTO Y POSITION
 MOVE.W D2,D1 ;MOVING REMAINDER INTO X POSITION
 LSR.W #8,D1 ;RIGHT SHIFTING THE REAMINDER (D1) BY
EIGHT
 DIVU.W #16,D0 ;DIVIDING THE QUOTIENT BY 16
 DIVU.W #16,D1 ;DIVIDING THE REAMINDER BY 16

 SWAP D1 ;SWAPPING THE REMAINDER AND QUOTIENT OF

116

THE PREVIOUS DIVISON
 SWAP D0 ;SWAPPING THE REMIANDER AND QUOTIENT OF
THE PREVIOUS DIVISON

 LSL.W #8,D1 ;LEFT SHIFTING D1 AS THE X CORDINATE
 ADD.W D1,D0 ;PUTTING THE X COORDINATE IN D0
 ADD.W #$202,D0

********D0 NOW HAS NEW NIBBLE POSITION*************

* CHECKING NEW NIBBLE AGAINST OLD NIBBLE POS*

 CMP.W NIBXY,D0
 BEQ NPAGAIN

 MOVE.W D0,XYCOORD
 ADD.W D0,NIBXY

* NOW GO THROUGH THE STACK*

 CLR D2
 CLR D1
 MOVE.W XYCOORD,D0
 MOVE.B SNAKELN,D2
 ADDI.B #1,D2 ;FOR THE TAIL
 MOVEA.W HEADPTR,A0
MOVEAG MOVE.W (A0)+,D1 ;USE D1 not D0!!!!
 CMP.W #0,D2 ;ARE WE AT THE END OF THE STACK?
 BEQ ENDCK ;IF SO YOU ARE DONE CHECKING AND IT IS AN
OK POSITION
 CMP.W D1,D0 ;ELSE COMPARE STACK VALUE VERSUS INPUTTED
VALUE
 BEQ NPAGAIN ;IF EQUAL SET RECALC NIB POSITION
 SUB.B #1,D2 ;ELSE SUBTRACT FROM D2
 BRA MOVEAG

ENDCK MOVE.W D0,NIBXY ;MOVE NEW POSITION INTO RANDM

 RTS
**

**
MOVEALG NOP
**
; DESCRIPTION: Governs the mathematical calculations in main- ;
; taining the head and tail positions of the snake ;
; ;
; PARAMETERS: D0 - Used as a temporary variable ;
; A0 - Used to send the various parts of the snake ;
; DIRN - Direction used to calculate the snake mvmt ;
; HEADLOC - x/y-coordinates of the snake head ;
; TAILLOC - Previous location of the tail on screen ;
; DELAY - The time between snake moves ;
; NIBXY - The position of the food ;
; SNAKELN - Snake length (# of yellow chars on screen;
; ;
; RETURNS: HEADLOC - New x/y-coordinates of the head ;
; SNAKELN - New snake length ;
; DELAY - New delay time between moves ;
**
CHKLEFT CMPI.B #LEFT,DIRN ;Checking Directions:
 BNE CHKDOWN ; If the snake is moving left, then
 SUB.W #XBIT,HEADLOC ; decrement the x-coordinate
 BRA HEADREF

CHKDOWN CMPI.B #DOWN,DIRN ; If the snake is moving down, then
 BNE CHKRGHT ; increment the y-coordinate,

117

 ADD.W #YBIT,HEADLOC ; because the screen is backward for
 BRA HEADREF ; the vertical axis

CHKRGHT CMPI.B #RIGHT,DIRN ; If the snake is moving right, then
 BNE CHKUP ; increment the x-coordinate
 ADD.W #XBIT,HEADLOC
 BRA HEADREF

CHKUP CMPI.B #UP,DIRN ; If the snake is moving up, then
 BNE HEADREF ; decrement the y-coordinate
 SUB.W #YBIT,HEADLOC

HEADREF MOVE.W HEADLOC,XYCOORD ;Jump to the new head coordinates
 JSR COORDS ; on the screen and print the head
 MOVEA.W #SNAKE,A0 ; character
 JSR SCISend

 MOVE.W HEADLOC,XYCOORD ;Check to see if the snake ran into
 JSR CHKBNDS ; a wall or itself

 MOVE.W NIBXY,D0 ;Check to see if the snake ate a
 CMP.W HEADLOC,D0 ; nibble
 BNE MOVIN

 ADDQ.B #1,SNAKELN ;If the snake ate a nibble, then
 CMPI.W #MINDLY,DELAY ; increase the snake length, and
 BEQ DLYSAME ; decrease the delay between moves
 SUB.W #DLYDEC,DELAY

DLYSAME JSR SCORE ;Update the score

 JSR NIBPOS ;Get the coordinates of the new nibble
 MOVE.W NIBXY,D0 ; and place it on the screen
 MOVE.W D0,XYCOORD
 JSR COORDS
 MOVEA.W #NIBBLE,A0
 JSR SCISEND

MOVIN JSR PSHSTK ;Update the queue with the new head

TAILREF MOVE.W TAILLOC,XYCOORD ;Update the tail on screen
 JSR COORDS
 MOVEA.W #TAIL,A0 ;Print the tail char
 JSR SCISend

 MOVE.W TAILLOC,D0 ;If the recursion timed out in the
 CMP.W NIBXY,D0 ; random number generator, and the
 BNE ENDMOVE ; new nibble position = the old tail

 MOVE.W NIBXY,D0 ; position, then draw the nibble on
 MOVE.W D0,XYCOORD ; screen again, because it was
 JSR COORDS ; overwritten when the tail was
 MOVEA.W #NIBBLE,A0 ; updated on screen
 JSR SCISEND

ENDMOVE RTS
**

**
SendStr MOVE.L ZSTRING,D0
**
; DESCRIPTION: Sends a character to out the SCI Port to the ;
; terminal. Upper byte is sent first, and lower byte ;
; is sent last. The whole string is loaded into a ;
; register, rotated left by a byte, sent, then done ;
; again until all bytes are sent. ;
; ;
; PARAMETERS: zString - String (4-byte) to send. ;

118

; D0 - Data buffer for sending data. ;
**
POLTD BTST.B #TDRE,ACIASC ;Waiting for the previous char to go
 BEQ POLTD
 ROL.L #8,D0 ;Rotate, Send, Clear, do it again
 CMPI.B #NULL,D0
 BEQ ENDSSTR
 MOVE.B D0,ACIATX
 CLR.B D0
 BRA POLTD
ENDSSTR RTS
**

**
Coords MOVE.L #$1B5B3030,D3 ;'ESC[yy'
**
; DECSRIPTION: Changes the X,Y coordinates in the terminal. ;
; Manipulates the ANSI code ('ESC[yy;xxH') in 2 parts.;
; The first part handles the y-Coords and the 2nd ;
; part handles the x-Coords. See comments. ;
; ;
; PARAMETERS: XYCoord - A 2-byte hex number. Upper = X, Lower = Y ;
; D3 - Register for data to be sent to the terminal ;
; D4 - Data for mathematical calculations ;
; ;
; RETURNS: (none) - but the cursor is place on screen ;
**
 MOVE.W XYCOORD,D4 ;D4 = XY Coordinates
 CMPI.B #10,D4 ;If the Y coordinate is greater than 10
 BLT NOADDY ; then the first number is 1 else 0
 ADD.W #BIT8,D3
 SUB.B #10,D4 ;Now remove the 10 and add the rest

NOADDY ADD.B D4,D3 ;D4 = Y, D3=first half of ESC[#;#h
 MOVE.L D3,ZSTRING ; Send the first half to to the terminal
 JSR SendStr

 MOVE.L #$3B303048,D3 ; ';xxH'
 MOVE.W XYCOORD,D4 ;D4=XY
 LSR.W #8,D4 ;D4=X
 CMPI.B #10,D4 ;If D4>10 then add 1 to upper 0
 BLT NOADDX ; else, don't add
 ADD.L #$00010000,D3
 SUB.W #10,D4 ;Subtract the 10 from D4

NOADDX LSL.W #8,D4 ;Shift left by 8 to put the rest
 ADD.W D4,D3 ; of X into the formatted string

 MOVE.L D3,ZSTRING ;Send the string to the terminal
 JSR SendStr

 RTS ;Outta Here!
**

**
SCORE MOVE.L #$30303000,D0
**
; DESCRIPTION: Prints the score at the bottom of the playing area.;
; ;
; PARAMETERS: D0,D1 - Temporary variables ;
; SNAKELN - Current length of the snake ;
; SRTRLEN - The initial length of the snake ;
; ZSCORE - Local ASCII version of the score digits ;
; ;
; RETURNS: "SCORE: xxx" on the screen ;
**
 CLR.L D1
 MOVE.B SNAKELN,D1
 SUB.B #STRTLEN,D1

119

ADDAGN ADDQ.B #1,D1
 NEG.B D1
 MOVE.B D1,$4001
 NEG.B D1
 SUBQ #1,D1
 CMPI.B #100,D1
 BLT NOAD100
 ADD.L #01000000,D0
 SUB.B #100,D1,

NOAD100 CMPI.B #10,D1
 BLT NOADD10
 ADD.L #$00010000,D0
 SUB.B #10,D1
 BRA ADDAGN

NOADD10 LSL.L #8,D1
 ADD.L D1,D0
 MOVE.L D0,ZSCORE

 MOVE.W #$0016,XYCOORD
 JSR COORDS

 MOVEA.W #SCRTXT,A0
 JSR SCISEND

 MOVE.L ZSCORE,D0
 MOVE.L D0,ZSTRING
 JSR SENDSTR

 RTS
**

**
SCISend NOP
**
; DESCRIPTION: Sends a character to out the SCI Port to the ;
; terminal. ;
; ;
; PARAMETERS: A0 - Starting address of the data to send. Data is ;
; sent until the NULL character ($00) is found. NULL ;
; is not sent to the terminal. ;
**
POLTDRE BTST.B #TDRE,ACIASC ;Waiting for the previous char to go
 BEQ POLTDRE
 MOVE.B (A0)+,D0
 BEQ ENDSSND ;If NULL is detected, then exit
 MOVE.B D0,ACIATX ;Sending the new char
 BRA POLTDRE
ENDSSND RTS
**

**
SCIRead NOP
**
; DESCRIPTION: Gets a single char from the terminal. ;
; ;
; PARAMETERS: None ;
; ;
; RETURNS: Character sent from terminal, stored in D0. ;
**
POLRDRF BTST.B #RDRF,ACIASC ;Checking for a character
 BEQ ENDREAD
 MOVE.B ACIARX,SCICHAR ;Storing it in D0
ENDREAD RTS
**

**
DrawBRD NOP

120

**
; DESCRIPITION: Draws the game board, no snake, no nibble. ;
; ;
; PARAMETERS: D1 - Temporary variable ;
; A0 - Starting addresses of the various part of the ;
; board drawn on screen. ;
*;
;*
; RETURNS: The game board on screen ;
**

 JSR CLRSCREEN ;Clear the terminal screen

TOPWALL MOVEA.W #WALL,A0 ;Draw the top wall
 JSR SCISEND

 MOVE.B #18,D1

MIDDLE MOVEA.W #BACKGND,A0 ;Draw the 18 strips of playing area
 JSR SCISEND
 SUBQ.B #$01,D1
 BNE MIDDLE

BTMWALL MOVEA.W #WALL,A0 ;Draw the bottom wall
 JSR SCISEND

 RTS
**

**
CHKCHAR NOP
**
; DESCRIPTION: Checks the incoming character to see if it is a ;
; valid character. A valid char is subdivided into ;
; (up, down) & (left, right). Current direction of ;
; snake is checked and compared to subdivided groups ;
; to define which group has a valid character. If ;
; direction is up or down then check input char to ;
; left and right, and if the direction is left or ;
; right the check input character to up and down. If ;
; input character is a valid character then update the;
; direction otherwise discard input character and keep;
; old direction. ;
; ;
; PARAMETERS: SCICHAR - The input character to be checked. ;
; DIRN - Contains current direction of snake. ;
; ;
; RETURNS: DIRN - Keeps the input character if it is valid, ;
; otherwise it returns the last valid direction;
**
 CMP.B #UP,DIRN ;Direction is compared to the four
 BEQ LRCHK ; valid orthogonal kepad directions.
 CMP.B #DOWN,DIRN ;Depending on which way the snake is
 BEQ LRCHK ; moving will determine which set of
 CMP.B #LEFT,DIRN ; of checks will be determined valid.
 BEQ UDCHK
 CMP.B #RIGHT,DIRN
 BEQ UDCHK

 BRA ENDCCHR ;Ignore erroneous data

UDCHK CMPI.B #UP,SCICHAR ;Check to determine if the new input
 BEQ SETUP ; character is a new valid direction
 CMPI.B #DOWN,SCICHAR
 BEQ SETDWN

 BRA ENDCCHR ;Discard invalid characters

LRCHK CMPI.B #LEFT,SCICHAR
 BEQ SETLFT

121

 CMPI.B #RIGHT,SCICHAR
 BEQ SETRGHT

 BRA ENDCCHR ;Discard invalid characters

SETLFT MOVE.B #LEFT,DIRN ;If a valid direction was entered,
 BRA ENDCCHR ; update the direction accordingly
SETRGHT MOVE.B #RIGHT,DIRN
 BRA ENDCCHR
SETUP MOVE.B #UP,DIRN
 BRA ENDCCHR
SETDWN MOVE.B #DOWN,DIRN

ENDCCHR RTS
**

**
PSHSTK NOP
**
; DESCRIPTION: A queue managment routine that keeps record of all ;
; the XY positions of the snake in memory location ;
; $1100 - snake length times two plus one word, which ;
; is used for a blank space trailing the snake. There ;
; are two bytes of data(a word) stored per snake ;
; length due to one byte for X position and 1 byte for;
; Y position. When the snake moves it pushes a value ;
; of head location onto the queue and logically shifts;
; right word length snake value until the end of the ;
; queue. Words shifted outside the queue are pushed ;
; and lost. A terminating word of 'BEEF' is placed at ;
; the end of the queue for debugging purposes. ;
; ;
; PARAMETERS: HEADPTR - set to $1100, start of queue ;
; TAILPTR - updated to end of queue and moves towards ;
; headptr during each word shift until it ;
; reaches the headptr value. ;
; SNAKELN - length of snake is used to calculate end ;
; of queue (queue is variable length, based ;
; SNAKELN) ;
; HEADLOC - word value that contains the XY coord- ;
; inates of the Head of the snake ;
; TAILLOC - word value that contains the XY coord- ;
; inates of the Tail of the snake ;
; POSPTR - contains the value $1100, start of stack ;
; ;
; RETURNS: HEADLOC - word value that contains the XY coord- ;
; inates of the Head of the snake ;
; TAILLOC - word value that contains the XY coord- ;
; inates of the Tail of the snake ;
**

 MOVE.W HEADPTR,D0 ;Reset the Tailptr to headptr so that
 MOVE.W D0,TAILPTR ; we can recalculate tailptr position

 CLR D0 ;Take the snake length and multiply
 MOVE.B SNAKELN,D0 ; by 2 to set a pointer to the end
 LSL.B #1,D0 ; of the queue. The addition of one
 ADD.W D0,TAILPTR ; more word is for the blank space at
 ADDQ.W #2,TAILPTR ; the end of the snake

PSHTAIL MOVEA.W TAILPTR,A0 ;A recursive loop is set to take the
 MOVEA.W A0,A1 ; tailptr and logically shift right
 MOVE.W -(A0),(A1) ; by a word length, the snake
 MOVE.W A0,TAILPTR ; positions in the queue until headptr
 CMPA.W HEADPTR,A0 ; is reached. Once headptr is reached,
 BEQ PSHHEAD ; then push the new head location
 BRA PSHTAIL ; onto the queue.

PSHHEAD MOVE.W HEADLOC,POSPTR

122

 ADD.W D0,TAILPTR ;This part of the routine puts a
 MOVEA.W TAILPTR,A0 ; terminating word at the end of
 ADDA.W #2,A0 ; queue. This is useful for debugging
 MOVE.W #$FEED,(A0) ; purposes to check the queue status.

 MOVE.W -(A0),TAILLOC ;Return the Tail location

ENDSTPS RTS
**

**
CHKBNDS NOP
**
; DESCRIPTION: Check the current x/y-coordinates of the snake head ;
; against the walls of the playing area, and against ;
; the other values of the snake. If a match or an ;
; intersection is found, then the Game Over flag is ;
; set, so that the main loop knows to terminate play. ;
; ;
; PARAMETERS: D0,D1,D2,A0 - Temporary variables ;
; SNAKELN - Current snake length ;
; HEADPTR - Starting location of the queue ;
**

* CHECKING BOUNDS ON BOARD*

 CLR D0
 MOVE.B X_LOC,D0
 CMP.B #X_LOW,D0 ;CHECKS CURRENT POSITION AGAINST X LOW
 BCS SETFG

 CMP.B #X_HIGH,D0 ;CHECKS CURRENT POSITION AGAINST X HIGH
 BHI SETFG

 MOVE.B Y_LOC,D0
 CMP.B #Y_LOW,D0 ;CHECKS CURRENT POSITION AGAINST Y LOW
 BCS SETFG

 CMP.B #Y_HIGH,D0 ;CHECKS CURRENT POSITION AGAINST Y HIGH
 BHI SETFG

* NOW GO THROUGH THE STACK*

 CLR D2
 MOVE.W XYCOORD,D0
 MOVE.B SNAKELN,D2
 MOVEA.W HEADPTR,A0
MOVEAGN MOVE.W (A0)+,D1 ;USE D1 not D0!!!!
 CMP.W #0,D2 ;ARE WE AT THE END OF THE STACK?
 BEQ ENDCHK ;IF SO YOU ARE DONE CHECKING
 CMP.W D1,D0 ;ELSE COMPARE STACK VALUE VERSUS INPUTTED
VALUE
 BEQ SETFG ;IF EQUAL SET GAMEOVER=$FF
 SUB.B #1,D2 ;ELSE SUBTRACT FROM D2
 BRA MOVEAGN

SETFG MOVE.B #$FF,GAMEOVR

ENDCHK RTS
**

**
CLRSCREEN NOP
**
 MOVEA.W #CLRSCRN,A0 ;Send the sequence to clear the screen
 JSR SCISEND ; and set the colors to white

 RTS
**

123

**
STARTGAME NOP
**
 JSR CLRSCREEN ;Clear the screen

 MOVEA.W #STARTMENU,A0 ;Display the splash screen
 JSR SCISEND

GETSTRT JSR SCIREAD ;Wait for a [space]
 CMPI.B #$20,SCICHAR
 BNE GETSTRT

 RTS
**

**
YOULOST NOP
**
 JSR CLRSCREEN ;Clear the screen

 MOVEA.W #GAMEOVER,A0 ;Display the GAME OVER message
 JSR SCISEND

GETKEY JSR SCIREAD ;Wait for a [space]
 CMPI.B #$20,SCICHAR
 BNE GETKEY

 CLR.B GAMEOVR ;Clear the game over flag

 RTS
**

**
;------------------------- Color Schemes --------------------------;
**
WALL DC.B $1B,'[1;0;41m '
 DC.B $1B,'[0;37;47m',10,13,0
BACKGND DC.B $1B,'[0;31;41m ',$1B,'[30;40m '
 DC.B $1B,'[0;31;41m ',$1B,'[0;37;47m',10,13,0
SNAKE DC.B $1B,'[0;33;43m ',$1B,'[0;30;40m',0
NIBBLE DC.B $1B,'[0;32;40m*',0
WHITE DC.B $1B,'[0;37;47m',10,13,0
TAIL DC.B $1B,'[0;30;40m ',$1B,'[0;37;47m',0
CLRSCRN DC.B $1B,'[0;37;47m',$1B,'[=3;7h',$1B,'[2J',$1B,'[0;0H',0
**

**
;------------------------ Building Blocks -------------------------;
**
SCRTXT DC.B $1B,'[0;34;47mSCORE: ',0
SPACE DC.B ' ',0
ENDSPC DC.B ' ',10,13,0
WALLH DC.B ' ',10,13,0
BG DC.B ' ',0
BLAH DC.B $1B,'[3;7H',0
**

**
;------------------------ Display Screens -------------------------;
**
STARTMENU DC.B $1B,'[0;32;47m',10,13,10,13
 DC.B ' .-=-. .--.',10,13
 DC.B ' __ .` `. / ")',10,13
 DC.B ' _ .` `. / .-. \ / .-`\',10,13
 DC.B '(\ / .-. \ / / \ \ / / ^',10,13
 DC.B ' \ `-` / \ `-` / \ `-` /',10,13

124

 DC.B ' `-.-` `.____.` `.____.`',10,13,10,13
 DC.B $1B,'[0;30;47m',' The Game of Snake',10,13
 DC.B ' by: Ray Dermon, John Gant, & Travis Gault',10,13,10,13
 DC.B ' Use the numpad to move: 5',10,13
 DC.B ' 123',10,13
 DC.B ' DIRECTIONS:',10,13,
 DC.B ' 5 = UP, 2 = DOWN, 1 = LEFT, 3 = RIGHT',10,13,10,13
 DC.B ' Don',$27,'t Run into walls or yourself.',10,13,10,13
 DC.B ' Eat the Grub to Grow',10,13,10,13
 DC.B 'Press the space key to start. ',0

GAMEOVER DC.B 10,13,10,13,$1B,'[0;31;47m'
 DC.B ' GGG A M M EEEEE',10,13
 DC.B 'G G A A MM MM E',10,13
 DC.B 'G A A M M M M EEE',10,13
 DC.B 'G GG AAAAA M M M E',10,13
 DC.B 'G G A A M M E',10,13
 DC.B ' GGG A A M M EEEEE',10,13,10,13
 DC.B ' OOO V V EEEEE RRRR',10,13
 DC.B ' O O V V E R R',10,13
 DC.B ' O O V V EEE R R',10,13
 DC.B ' O O V V E RRR',10,13
 DC.B ' O O V V E R R',10,13
 DC.B ' OOO V EEEEE R R',10,13,10,13
 DC.B $1B,'[0;30;47mPress the space key to start over. ',0
**

 END $2000

125

APPENDIX IV – DESIGN SOURCE CODE

AMDF.x68

**
;------------------------------ Memory Map --------------------------------;
**
AVIRQ1 EQU $64 ;Auto-Vector Interrupt Level 1

F0 EQU $1000 ;F0.W contains the fundamental frequency
*;IN USE EQU $1001
FDEC EQU $1002
*;IN USE EQU $1003

IRQENFLAG EQU $1004 ;Current status of interrupts
MIDIFLAGS EQU $1005 ;MIDI flags for sending notes

MIDIINST EQU $1006 ;Location containing Instrument Nbr.
ERRCOUNT EQU $1007 ;Number of times there are f0 errors

KNVAL EQU $14E0 ;Current value of k+n
*;IN USE EQU $1001
X EQU $14F0 ;Temporary summation variable
*;IN USE EQU $1001

NMAX EQU $14F4 ;Maximum allowable value of N
*;IN USE EQU $1005
KMAX EQU $14F6 ;Maximum allowable value of K
*;IN USE EQU $1007
KNMAX EQU $14F8 ;Maximum allowable value of K+N
*;IN USE EQU $1009
DDMAX EQU $14FA ;Maximum array index for AMDF results
*;IN USE EQU $100B
MAXOFDD EQU $14FC ;Max{AMDF_RESULTS}
*;IN USE EQU $100D
FMAX EQU $14FE ;Maximum array index for FINDEX
*;IN USE EQU $100F

STATUS EQU $10FA ;MIDI Command
NOTENBR EQU $10FB ;MIDI Note number
PROGNUM EQU $10FB ;MIDI Program number
NOTEVEL EQU $10FC ;MIDI Note Velocity
MSGEND EQU $100D ;End of Message

PREVMIDI EQU $10FE ;Previous MIDI note sent
MIDINOTE EQU $10FF ;Current MIDI note to send

S EQU $1100 ;Sampled data from ADC
DD EQU $1300 ;ADMF results (word lengths)
FINDEX EQU $1700 ;Array indices for dips in AMDF

ENDRAM EQU $4000 ;End of RAM memory location + 1

LATCH EQU $4001 ;Location of register for LEDs

ADC0 EQU $4000 ;A/D converter channel

MIDISC EQU $8001 ;MIDI ACIA status/control register
MIDITXD EQU $8003 ;MIDI ACIA transmit data register
MIDIRXD EQU $8003 ;MIDI ACIA receive data register

SCISC EQU $8000 ;MIDI ACIA status/control register
SCITXD EQU $8002 ;MIDI ACIA transmit data register
SCIRXD EQU $8002 ;MIDI ACIA receive data register
**

126

**
;-------------------------------- Flags -----------------------------------;
**
RDRF EQU 0 ;Receive data register full (ACIA)
TDRE EQU 1 ;Transmit data register empty (ACIA)

ENABLEF0 EQU $FF
NOTEERR EQU $EE ;Denotes an error finding f0
**

**
;---------------------------- Defined Values ------------------------------;
**
SCICFG EQU $15 ;SCI set-up: 38400,8,N,1
MIDICFG EQU $15 ;MIDI setup; 31.25kHz,8,N,1

FS EQU 1000

NMAXVAL EQU 192 ;Nbr of samples to take (outter loop)

STARTADC EQU $AD ;Dummy value to start A/D conversion

FINDEND EQU $FEED ;FINDEX end-of-array flag
WORDMAX EQU $FFFF ;Initial value for finding minimum vlaue

GRANDPIANO EQU 0 ;MIDI Instrument Nbr. for a piano
NOTEON EQU $90 ;Note on channel 0
NOTEOFF EQU $80 ;Note off channel 0
PROGCHNG EQU $C0 ;Program change on channel 0
VELOCITY EQU $7F ;Max note velocity
**

;--;
; These statements tell the 68000 where the start of the program space and ;
; stack space begins. Additionally, the auto-vectored interrupt service ;
; routine address location is defined. ;
;--;
 ORG $00
 DC.L ENDRAM,START

 ORG AVIRQ1
 DC.L ADCIRQ

;--;
; This is the start of the program, where all variables and hardware ;
; devices are initialized. ;
;--;
 ORG $400
START CLR.L D0
 MOVE.L D0,IRQENFLAG ;Clear IRQEN and MIDI flags

 MOVE.B #GRANDPIANO,MIDIINST

 MOVE.W #NMAXVAL,NMAX
 ADDI.W #NMAXVAL,NMAX ;Nmax = highest address in S-array
 ADDI.W #S,NMAX ;Nmax = highest address in S-array

 MOVE.W #NMAXVAL,D0
 ADDI.W #S,D0 ;Kmax = highest address accessed by k in s
 MOVE.W D0,KMAX

 MOVE.W #NMAXVAL,KNMAX
 ADDI.W #NMAXVAL,KNMAX
 ADD.W D0,KNMAX

 MOVE.W #NMAXVAL,D0
 LSL.W #1,D0 ; Twice as long as n-max b/c word length
 ADDI.W #DD,D0
 MOVE.W D0,DDMAX

127

 MOVE.W #NMAXVAL,D0
 LSL.W #1,D0 ; Twice as long as n-max b/c word length
 ADDI.W #FINDEX,D0
 MOVE.W D0,FMAX

 BSR INITFINDEX
 BSR CTRCLR
 BSR SCICONFIG
 BSR MIDICONFIG

 MOVEA.W #S,A0
 MOVE.W A0,KNVAL
 ADDQ.W #2,KNVAL

 MOVE.W #WORDMAX,MAXOFDD

 BSR ENABLEIRQ ;Enable Interrupts

HERE BSR SENDMIDI ;Infinite loop to check status of MIDI
 BRA HERE ; flags and perhaps send MIDI commands

BUTNOTHERE BRA START ;Should never reach this point
*; MOVEA.W #S2,A5 ;Used for testing

**
ADCIRQ CLR.W D0
**
; DESCRIPTION: This (auto-vectored) interrupt routine is responsible for ;
; sampling the A/D converter, illuminating the LEDs, ;
; performing the AMDF iterations and calling the necessary ;
; routines to find the fundamental frequency and output the ;
; data to the synthesizer. The for-loop below represents the ;
; general idea of the AMDF. ;
; ;
; for n=1:N ;
; x=0; ;
; for k=1:M ;
; x=x+abs(s(k)-s(k+n)); ;
; end ;
; d(n)=x; ;
; end ;
; ;
**

 MOVE.B ADC0,D0 ;Take the reading from the last sample
*; MOVE.B (A5)+,D0 ;Used for testing
 MOVE.W D0,(A0) ;Copy the value to the S array

;--;
; This code segment does a binary search if the signal amplitude is !=0 to ;
; light up the LEDs. The MSB and all lower bits of the LEDs are lit ;
; corresponding to the value read from the A/D converter. This makes log- ;
; scale amplitude representation, but can easilyt be modified for a linear ;
; scale. ;
;--;
 BNE BINBITCHK ;Do binary search if amplitude != 0
 MOVE.B #$FF,LATCH ; else turn all LEDs off and
 BRA CMPA02KMAX ; continue with routine

BINBITCHK CMPI.B #$0F,D0
 BLS BIT03

 CMPI.B #$3F,D0
 BLS BIT5

BIT7 CMPI.B #$80,D0
 BLO BIT6

128

 MOVE.B #$00,LATCH ;Light ALL the LEDs
 BRA CMPA02KMAX ; and continue with the routine

BIT6 MOVE.B #$80,LATCH ;Light the lower 7 LEDs
 BRA CMPA02KMAX ; and continue with the routine

BIT5 CMPI.B #$20,D0
 BLO BIT4
 MOVE.B #$C0,LATCH ;Light the lower 6 LEDs
 BRA CMPA02KMAX ; and continue with the routine

BIT4 MOVE.B #$E0,LATCH ;Light the lower 5 LEDs
 BRA CMPA02KMAX ; and continue with the routine

BIT03 CMPI.B #$03,D0
 BLS BIT1

BIT3 CMPI.B #$08,D0
 BLO BIT2
 MOVE.B #$F0,LATCH ;Light the lower 4 LEDs
 BRA CMPA02KMAX ; and continue with the routine

BIT2 MOVE.B #$F8,LATCH ;Light the lower 3 LEDs
 BRA CMPA02KMAX ; and continue with the the routine

BIT1 CMPI.B #$02,D0
 BLO BIT0
 MOVE.B #$FC,LATCH ;Light the lower 2 LEDs
 BRA CMPA02KMAX ; and contine with the routine

BIT0 MOVE.B #$FE,LATCH ;Light the lowest LED

;--;
*; A0 has the current address pointer for the s-array (n)
*; If A0 >= kmaxval + nmaxval + s, then run find freq
;--;
CMPA02KMAX CMPA.W KMAX,A0 ;If n (A0) < KMAX measurements, exit
 BLO NEXTCONV ; after initiating another measurement
;--;
*; X is as it appears in the MATLAB for-loop above
;--;
 CLR.W D5 ;Else do an ADMF cycle (x=0)
 MOVEA.W #S,A1 ;Initialize k(A1)=0, beginning of s-vals
 MOVEA.W KNVAL,A2 ;Initialize k+n = n, curr. location in s

* ;The upper byte of D1/D2 should always = 0
 CLR.W D1 ;Clear temp. vars as words b/c s-vals are
 CLR.W D2 ; byte length, but cals are word length

FORK12M MOVE.W (A1)+,D1 ;D1 = s(k), k++
 SUB.W (A2)+,D1 ;D1 = s(k)-s(k+n)
 BPL NEXTSTEP ;If result positive, go to the next step
 NEG.W D1 ; else negate D1 (like abs function)

NEXTSTEP ADD.W D1,D5 ;x = x + abs(s(k)-s(k+n))

 CMPA.W KMAX,A1 ;Re-iterate inner loop
ENDKLOOP BLO FORK12M

;--;
*; Now the inner loop is finished, and it is time to store the
*; result in the DD data array of word lengths
;--;
STORINGD MOVE.W D5,(A3)+ ;d(m)=x, m++ (~5600/loop)
 ADDQ #2,KNVAL ;Increment KNVAL

*; In this code, n really runs from 0 to M+N from above
MAXDDGTX CMPA.W KNMAX,A0 ;If n(A0)<(kmax+nmax) then start the
 BLO NEXTCONV ; next conversion & exit

129

 BSR DISABLEIRQ ;Disable Interrupts

NOCHAR BSR CTRCLR ;Else clear the counters

 BSR FINDINDICES ; and find the fundamental frequency
 BSR FDIFF
 BSR FAVG
 BSR INITFINDEX
 BSR ENABLEIRQ ;Enable Interrupts
 BRA DONEIRQ ;Do not increment A0
 BSR CTRCLR ;Clear the counters again

NEXTCONV ADDQ.W #2,A0 ;MOVE.B (A0)+,DUMMY ;n++
DONEIRQ MOVE.B #STARTADC,ADC0 ;Start next conversion
 RTE
*; BRA ADCIRQ ;Used for testing
;--------------------------- ADCIRQ Variables -----------------------------;
DUMMY DC.L $0
**

**
FINDINDICES MOVEA.W #DD,A0 ;D6 = max(DD)
**
; DESCRIPTION: This routine searches through the ADMF values stored in the ;
; DD array and looks for values that are less than or equal ;
; to 25% of maximum value in the array (already calculated). ;
; Once the threshold has been identified, the minimum value in;
; the data segment below the threshold is found. The first ;
; index that corresponds to the minimum value in the segment ;
; is recorded in the Findex array, and the processes repeat ;
; until all values in Findex are examined. Functionality has ;
; been tested and confirmed with the Easy68K simulator. ;
; ;
; PARAMETERS: DD.W - Word length array containing the ADMF results from ;
; the ADCIRQ interrrupt routine. ;
; MAXOFDD.W - The highest numerical value in the DD array. ;
; DDMAX.W - Maximum index allowed in the DD array. ;
; WORDMAX.W - $FFFF ;
; ;
; REGISTERS: A0 - Used to iterate through DD to look for min values. ;
; A1 - Used to iterate through FIndex to store results ;
; D1 - Holds dd(n) ;
; D3 - Stores the current minimum in the data segment that ;
; contains values falling below the threshold. Once ;
; values exceed the threshold, it is re-initialized to ;
; WORDMAX. ;
; D6 - Contains MAXOFDD/4, the threshold for min-value detec- ;
; tion. ;
; ;
; RETURNS: FINDEX.W - The array containing the indices of where the ;
; minpoints occur below the threshold (D6). ;
**
 CLR.W D6

FINDMAXDD MOVE.W (A0)+,D3 ;Can't compare 2 mem. addresses directly
 CMP.W D3,D6 ;Was X, If max(DD)>=X,
 BHS CHKDDMEM ; then next check (MAXDDGTX)
 MOVE.W D3,D6 ;Was X, else max(DD)=X
CHKDDMEM CMPA.W DDMAX,A0
 BLO FINDMAXDD

 LSR.W #2,D6 ;Divide by 4 for threshold detection

;--;
; We need to iterate.W thru DD and search for values below thresh ;
; then store the indices of those values in a new array ;
;--;

130

 MOVEA.W #FINDEX,A1 ;Initialize m=0 for new f array

 MOVEA.W #DD,A0
GTTHRESH CMPA.W DDMAX,A0 ;Make sure the array index is in range
 BHS DONEFIND

 MOVE.W (A0)+,D1
 CMP.W D6,D1 ;If dd(n)<Threshold(D6)
 BLO FINDMIN ; then find the data segment min-point
 BRA GTTHRESH ;Else go to the next data point

;--;
; Once the threshold is detected, only move the index of the min- ;
; value into FINDEX. This is done sequentially by examining ;
; each value and checking for a minimum value until the values ;
; exceed the threshold, at which time the loop exits. ;
;--;
FINDMIN MOVE.W #WORDMAX,D3 ;To find the min, start with the max
FMINLOOP CMPA.W DDMAX,A0 ;Make sure the array index is in range
 BHS DONEFIND

 CMP.W D1,D3 ;If CurrentMin(D3) > current value(D1)
 BHI CHANGEMIN ; then change min value index

 CMP.W D6,D1 ;ElseIf CurrValue > threshold, skip
 BHI SKIPFMIN ; the FindMin loop
 MOVE.W (A0)+,D1 ;Else, load the next value
 BRA FMINLOOP ; and repeat the loop

SKIPFMIN ADDQ.W #2,A1 ;Increment array index for FINDEX
 BRA GTTHRESH ; & wait to fall below threshold again

CHANGEMIN MOVE.W A0,(A1) ;Update Findex-array
 MOVE.W D1,D3 ;CurrentMin(D3) = Current DD-value
 MOVE.W (A0)+,D1 ;Get next value for comparison
 BRA FMINLOOP ;Still in the FindMin loop

DONEFIND RTS
**

**
FDIFF MOVEA.W #FINDEX,A0
**
; DESCRIPTION: Takes the indices stored by FINDINDICES() and calculates ;
; the differences between them. This provides a list of ;
; periods that should be similar in magnitude. The formula ;
; f(n)=f(n+1)-f(n) is used, where f(n) is the current value ;
; read in the Findex array. Functionality has been tested ;
; and confirmed with the Easy68K simulator. ;
; ;
; PARAMETERS: FINDEX - The array containing the indices of the low points ;
; generated by the ADMF function (ADCIRQ). ;
; FINDEND - F-INDex-END specifies the end location of Findex ;
; DUMMY - A dummy-variables used to help the address registers;
; increment/decrement without changing their contents.;
; ;
; REGISTERS: A0 - Represents n in f(n), and where to store the results ;
; in the Findex array. ;
; A1 - Represents n+1 in f(n+1) ;
; D0 - Contains a copy of f(n) used for subtraction. ;
; D1 - Contains a copy of f(n+1) used for subtraction. ;
; ;
; RETURNS: FINDEX - The array containing the sample periods from ADMF. ;
**

;--;
; Now that the indices are found in the FIndex array, it is time ;
; to calculate the periods by using the formula f(n)=f(n+1)-f(n).;
;--;
 MOVEA.W #FINDEX,A1

131

 MOVEA.W #FINDEX,A2
 ADDQ.W #4,A1 ;Skip the first few entry because it is
 ADDQ.W #2,A0 ; erroneous due the nature of the ADMF

 CMPI.W #FINDEND,(A0) ;If the 1st value of FIndex != the end
 BNE FDIFFCALC ; of array flag, then perform fdiff()

 BRA DONEFDIFF ;Else exit the routine

FDIFFCALC CMPI.W #FINDEND,(A1)
 BEQ DONEFDIFF

 MOVE.W (A1)+,D1 ;D1=f(n+1)
 MOVE.W (A0)+,D0 ;D0=f(n)

 SUB.W D0,D1 ;D1=f(n+1)-f(n)
 MOVE.W D1,(A2)+ ;f(n)=D1
 BRA FDIFFCALC

DONEFDIFF MOVE.W #FINDEND,(A0) ;Replace last 2 entries in the Findex
 MOVE.W #FINDEND,-(A0) ; array with the end-of-array flag
 RTS
**

**
FAVG CLR.W D0
**
; DESCRIPTION: This routine sums all entries in Findex after FDIFF has ;
; been run on Findex. The sampling frequency (Fs) is ;
; multiplied by the number of measurements that are recorded ;
; in Findex, then the result is divided by the sum of elements;
; from FDiff. This result is stored as the fundamental ;
; frequency (F0). Functionality has been tested and ;
; confirmed with the Easy68K simulator. ;
; ;
; PARAMETERS: FINDEX.W - The array containing the sample periods. ;
; FINDNEND - The maximum array index for the Findex array. ;
; FS - The sample frequency in Hz. ;
; ;
; REGISTERS: A0 - Used to iterate through the periods in FIndex ;
; D0 - Used to sum the entries in FDiff ;
; D1 - Holds the number of measurements ;
; D2 - Copy of Fs ;
; ;
; RETURNS: F0 - The approximate fundamental frequency. ;
**
 MOVEA.W #FINDEX,A0
TSUM CMPI.W #FINDEND,(A0)
 BEQ DONETSUM

 ADD.W (A0)+,D0
 BRA TSUM

DONETSUM MOVE.W A0,D1
 SUBI.W #FINDEX,D1 ;D1 = Number of measurements * 2
 BEQ DONEFAVG

;--;
*; F0 = Fs(D2) * NumMeasurements(D1) / SumPeriods(D0) ;*
;--;
 MOVE.W #FS,D2
 MULU.W D2,D1 ;D1=Fs*NumMeasurements
 DIVU.W D0,D1 ;D1=D1/Tsum => D1.w=freq

DONEFAVG SWAP D1 ;D1.W =remainder
 LSR.W #1,D0 ;Divide D0 by 2
 CMP.W D1,D0 ;If D0/2 < REM(f0)
 BHS SWAPF0 ; write the value as it

 SWAP D1 ;Else round up by one

132

 ADDQ.W #1,D1
 BRA STOREF0

SWAPF0 SWAP D1
STOREF0 MOVE.W D1,F0 ;Writes the value for F0

ENDFAVG RTS
**

**
FREQ2MIDI MOVEA.W F0,A0
**
; DESCRIPTION: This routine takes the frequency (F0) and uses it as an ;
; index offset for a very long linked list called MIDITABLE. ;
; This linked list contains each MIDI note number (36-84dec) ;
; corresponding to frequencies from 63-1078Hz. ;
; ;
; PARAMETERS: F0 - The fundamental frequency calculated in FAVG. ;
; A0 - Address register used to access the table. ;
; ;
; RETURNS: MIDINOTE - The MIDI note number later sent to the ;
; synthesizer. ;
**
 CMPA #63,A0 ;If 62<A0<=500, then store the note
 BLO BADNOTE ; Else store the bad not flag in MIDINOTE
 CMPA #500,A0
 BLS GOODNOTE

BADNOTE MOVE.B #NOTEERR,MIDINOTE
 ADDQ.B #1,ERRCOUNT ;If f0 out of range, record an error and
 CMPI.B #3,ERRCOUNT ; set the MIDI flags to Xmit a new note.
 BLO DONEF2M ; Silence output if 3 consecutive errors

 MOVE.B #NOTEOFF,MIDIFLAGS

GOODNOTE SUBA.W #63,A0
 ADDA.W #MIDILIST,A0
 MOVE.B (A0),MIDINOTE
 MOVE.B #ENABLEF0,MIDIFLAGS
 CLR.B ERRCOUNT

DONEF2M RTS
**

**
SENDMIDI MOVE.B MIDIFLAGS,D2
**
; DESCRIPTION: This routine examines the MIDI flags set in this software ;
; and takes action based on these flags. If the flags are ;
; clear, then the routine exits. If the NOTE OFF flag is ;
; detected, then the previous MIDI note is disabled. If any ;
; other value is detected, then a MIDI packet instructing the ;
; synthesizer to change notes is sent if the current note ;
; differs from the previous note. ;
; ;
; PARAMETERS: MIDIFLAGS - Determines what action to take. ;
; PREVMIDI - Previous MIDI note sent ;
; MIDINOTE - Current MIDI note to evaluate ;
; ;
; REGISTERS: D0 - Contains the previous MIDI note ;
; D1 - Contains the current MIDI note ;
; D2 - Contains the MIDI flags ;
; ;
; RETURNS: MIDIFLAGS - Cleared upon exit under any case. ;
**
 BEQ DONESNDMIDI ;If the flags are clear, then exit

 CMPI.B #NOTEOFF,D2 ;Are we to disable the previous note w/o
 BNE NEWNOTE ; sending another note? If not, send note

133

SILENCE MOVE.B #NOTEOFF,STATUS ;Else, silence the previous note
 MOVE.B PREVMIDI,NOTENBR
 MOVE.B #VELOCITY,NOTEVEL
 MOVE.B #0,MSGEND
 MOVE.W #STATUS,MIDISTR
 BSR MIDISend

 BRA DONESNDMIDI

NEWNOTE MOVE.B PREVMIDI,D0
 MOVE.B MIDINOTE,D1 ;If the previous note and current note
 CMP.B D0,D1 ; are the same, there is no need to send
 BEQ DONESNDMIDI ; other MIDI packets, so exit

 CMPI.B #NOTEERR,D1 ;Exit if an error identifying f0
 BEQ DONESNDMIDI

 MOVE.B #NOTEOFF,STATUS ;Else, silence the previous note
 MOVE.B PREVMIDI,NOTENBR
 MOVE.B #VELOCITY,NOTEVEL
 MOVE.B #0,MSGEND
 MOVE.W #STATUS,MIDISTR
 BSR MIDISend

 MOVE.B #NOTEON,STATUS ;And send the new note and exit
 MOVE.B MIDINOTE,NOTENBR
 BSR MIDISend

DONESNDMIDI CLR.B MIDIFLAGS

 RTS
**

**
MIDISend MOVEA.W MIDISTR,A6
**
; DESCRIPTION: Sends a character to out the MII Port to the synthesizer. ;
; ;
; PARAMETERS: A6 - Starting address of the data to send. Data is sent ;
; until the NULL character ($00) is found. NULL is not sent ;
; to the terminal. ;
**
POLLTDR BTST.B #TDRE,MIDISC ;Waiting for the previous char to go
 BEQ POLLTDR
 MOVE.B (A6)+,D0
 BEQ ENDMSND ;If NULL is detected, then exit
 MOVE.B D6,MIDITXD ;Else send the new char
 BRA POLLTDR
ENDMSND RTS

;------------------------- MIDISend Variables -----------------------------;
MIDISTR DC.W $0
**

**
CTRCLR MOVEA.W #S,A0 ;S array index (storing samples)
**
 MOVEA.W #0,A1 ;k (accessing S)
 MOVEA.W #0,A2 ;k+n (accessing S)
 MOVEA.W #DD,A3 ;DD array index (storing ADMF steps)
*; CLR.W MAXOFDD ;Used for max(DD);
 RTS
**

**
INITFINDEX MOVEA.W #FINDEX,A0
**

134

 MOVE.W FMAX,D0
FLOOP MOVE.W #FINDEND,(A0)+ ;Fill array w/ the end of array flag
 CMPA.W D0,A0
 BLS FLOOP
 RTS ;Exit
**

**
*; ENABLING AND DISABLING INTERRUPTS
**
ENABLEIRQ ANDI.W #$F8FF,SR
 MOVE.B #$FF,IRQENFLAG
 RTS

DISABLEIRQ ORI.W #$0700,SR
 MOVE.B #$00,IRQENFLAG
 RTS
**

**
*; MIDI AND SCI INITIALIZATION ROUTINES
**
SCICONFIG MOVE.B #$3,SCISC
 MOVE.B #SCICFG,SCISC
 RTS

MIDICONFIG MOVE.B #$3,MIDISC
 MOVE.B #MIDICFG,MIDISC
 RTS
**

 INCLUDE 'MIDIList.x68'

 END START

135

MIDIList.x68

ORG $2000
**
; Pitch | F0 | Valid F0s | Offsets | MIDI ;
;--;
; C2 | 65.406 | 63-67 | 0-4 | 36 ;
; C#2 | 69.296 | 68-71 | 5-8 | 37 ;
; D2 | 73.416 | 72-75 | 9-12 | 38 ;
; D#2 | 77.782 | 76-80 | 13-17 | 39 ;
; E2 | 82.407 | 81-84 | 18-21 | 40 ;
; F2 | 87.307 | 85-89 | 22-26 | 41 ;
; F#2 | 92.499 | 90-95 | 27-32 | 42 ;
; G2 | 97.999 | 96-100 | 33-37 | 43 ;
; G#2 | 103.826 | 101-106 | 38-43 | 44 ;
; A2 | 110 | 107-113 | 44-50 | 45 ;
; A#2 | 116.541 | 114-120 | 51-57 | 46 ;
; B2 | 123.471 | 121-127 | 58-64 | 47 ;
; C3 | 130.813 | 128-134 | 65-71 | 48 ;
; C#3 | 138.591 | 135-142 | 72-79 | 49 ;
; D3 | 146.832 | 143-151 | 80-88 | 50 ;
; D#3 | 155.564 | 152-160 | 89-97 | 51 ;
; E3 | 164.814 | 161-169 | 98-106 | 52 ;
; F3 | 174.614 | 170-179 | 107-116 | 53 ;
; F#3 | 184.997 | 180-190 | 117-127 | 54 ;
; G3 | 195.998 | 191-201 | 128-138 | 55 ;
; G#3 | 207.652 | 202-213 | 139-150 | 56 ;
; A3 | 220 | 214-226 | 151-163 | 57 ;
; A#3 | 233.082 | 227-240 | 164-177 | 58 ;
; B3 | 246.942 | 241-254 | 178-191 | 59 ;
; C4 | 261.626 | 255-269 | 192-206 | 60 ;
; C#4 | 277.183 | 270-285 | 207-222 | 61 ;
; D4 | 293.665 | 286-302 | 223-239 | 62 ;
; D#4 | 311.127 | 303-320 | 240-257 | 63 ;
; E4 | 329.628 | 321-339 | 258-276 | 64 ;
; F4 | 349.228 | 340-359 | 277-296 | 65 ;
; F#4 | 369.994 | 360-380 | 297-317 | 66 ;
; G4 | 391.995 | 381-403 | 318-340 | 67 ;
; G#4 | 415.305 | 404-427 | 341-364 | 68 ;
; A4 | 440 | 438-453 | 365-390 | 69 ;
; A#4 | 466.164 | 454-480 | 391-417 | 70 ;
; B4 | 493.883 | 481-508 | 418-445 | 71 ;
; C5 | 523.251 | 509-538 | 446-475 | 72 ;
; C#4 | 554.365 | 539-570 | 476-507 | 73 ;
; D5 | 587.33 | 571-604 | 508-541 | 74 ;
; D#4 | 622.254 | 605-640 | 542-577 | 75 ;
; E5 | 659.255 | 641-678 | 578-615 | 76 ;
; F5 | 698.457 | 679-719 | 616-656 | 77 ;
; F#5 | 739.989 | 720-761 | 657-698 | 78 ;
; G5 | 783.991 | 762-807 | 699-744 | 79 ;
; G#5 | 830.609 | 808-855 | 745-792 | 80 ;
; A5 | 880 | 856-906 | 793-843 | 81 ;
; A#5 | 932.328 | 907-960 | 844-897 | 82 ;
; B5 | 987.767 | 961-1017 | 898-954 | 83 ;
; C6 | 1046.502 | 1018-1078 | 955-1015 | 84 ;
**

MIDILIST DC.B 36,36,36,36,37,37,37,37,38,38,38,38,39,39,39,39
 DC.B 39,40,40,40,40,41,41,41,41,41,42,42,42,42,42,42
 DC.B 43,43,43,43,43,44,44,44,44,44,44,45,45,45,45,45
 DC.B 45,46,46,46,46,46,46,46,47,47,47,47,47,47,47,48
 DC.B 48,48,48,48,48,48,49,49,49,49,49,49,49,49,50,50
 DC.B 50,50,50,50,50,50,50,51,51,51,51,51,51,51,51,51
 DC.B 52,52,52,52,52,52,52,52,53,53,53,53,53,53,53,53
 DC.B 53,53,54,54,54,54,54,54,54,54,54,54,54,55,55,55
 DC.B 55,55,55,55,55,55,55,55,56,56,56,56,56,56,56,56
 DC.B 56,56,57,57,57,57,57,57,57,57,57,57,57,57,57,58
 DC.B 58,58,58,58,58,58,58,58,58,58,58,58,58,59,59,59
 DC.B 59,59,59,59,59,59,59,59,59,59,59,60,60,60,60,60

136

 DC.B 60,60,60,60,60,60,60,60,60,61,61,61,61,61,61,61
 DC.B 61,61,61,61,61,61,61,61,61,62,62,62,62,62,62,62
 DC.B 62,62,62,62,62,62,62,62,62,62,63,63,63,63,63,63
 DC.B 63,63,63,63,63,63,63,63,63,63,63,64,64,64,64,64

 DC.B 64,64,64,64,64,64,64,64,64,64,64,64,64,64,65,65
 DC.B 65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65
 DC.B 65,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66
 DC.B 66,66,66,66,66,66,67,67,67,67,67,67,67,67,67,67
 DC.B 67,67,67,67,67,67,67,67,67,67,67,67,67,68,68,68
 DC.B 68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68
 DC.B 68,68,68,68,69,69,69,69,69,69,69,69,69,69,69,69
 DC.B 69,69,69,69,69,69,69,69,69,69,69,69,69,69,70,70
 DC.B 70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70
 DC.B 70,70,70,70,70,70,70,70,71,71,71,71,71,71,71,71
 DC.B 71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71
 DC.B 71,71,71,72,72,72,72,72,72,72,72,72,72,72,72,72
 DC.B 72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72
 DC.B 72,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73
 DC.B 73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73
 DC.B 74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74

 DC.B 74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74
 DC.B 74,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75
 DC.B 75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75
 DC.B 75,75,75,75,75,76,76,76,76,76,76,76,76,76,76,76
 DC.B 76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76
 DC.B 76,76,76,76,76,76,76,76,76,76,77,77,77,77,77,77
 DC.B 77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77
 DC.B 77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77
 DC.B 77,77,78,78,78,78,78,78,78,78,78,78,78,78,78,78
 DC.B 78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78
 DC.B 78,78,78,78,78,78,78,78,78,78,78,79,79,79,79,79
 DC.B 79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79
 DC.B 79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79
 DC.B 79,79,79,79,79,79,79,79,80,80,80,80,80,80,80,80
 DC.B 80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80
 DC.B 80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80

 DC.B 80,80,80,80,80,80,80,81,81,81,81,81,81,81,81,81
 DC.B 81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81
 DC.B 81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81
 DC.B 81,81,81,81,81,81,81,81,81,82,82,82,82,82,82,82
 DC.B 82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82
 DC.B 82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82
 DC.B 82,82,82,82,82,82,82,82,82,82,82,82,82,82,83,83
 DC.B 83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83
 DC.B 83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83
 DC.B 83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83
 DC.B 83,83,83,83,83,83,84,84,84,84,84,84,84,84,84,84
 DC.B 84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84
 DC.B 84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84
 DC.B 84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84

 DC.B 84,84

137

	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	11-2007

	A voice operated musical instrument.
	Travis R. Gault
	Recommended Citation

	A Voice Operated Musical Instrument

