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ABSTRACT 
 

Many mathematical formulas and algorithms exist to identify pitches formed by 

human voices, and this has continued to be popular in the fields of music and signal pro-

cessing.  Other systems and research perform real time pitch identification implemented 

by using PCs with system clocks faster than 400MHz.  This thesis explores developing an 

embedded RPTI system using the average magnitude difference function (AMDF), which 

will also use MIDI commands to control a synthesizer to track the pitch in near real time. 

The AMDF algorithm was simulated and its performance analyzed in MATLAB 

with pre-recorded sound files from a PC.  Errors inherent to the AMDF and the hardware 

constraints led to noticeable pitch errors.  The MATLAB code was optimized and its 

performance verified for the Motorola 68000 assembly language.  This stage of 

development led to realization that the original design would have to change for the 

processing time required for the AMDF implementation.  Hardware was constructed to 

support an 8MHz Motorola 68000, analog input, and MIDI communications.  The 

various modules were constructed using Vectorbord© prototyping board with soldered 

tracks, wires and sockets.  Modules were tested individually and as a whole unit.  A 

design flaw was noticed with the final design, which caused the unit to fail during 

program execution while operating in a stand-alone mode. 

This design is a proof of concept for a product that can be improved upon with 

newer components, more advanced algorithms and hardware construction, and a more 

aesthetically pleasing package.  Ultimately, hardware limitations imposed by the 

available equipment in addition to a hidden design flaw contributed to the failure of this 

stand-alone prototype. 
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CHAPTER I – INTRODUCTION 
 

 For anyone who has watched the first few episodes of each season of “American 

Idol” on the Fox television channel, it should be obvious that there are a number of 

Americans with singing difficulties.   This results from the would-be singers lacking the 

ability or training to distinguish between small variations in pitch (frequency), and 

correct their vocal output accordingly.  The vernacular calls this condition tone-deafness.  

However this term is actually incorrect, because tone-deafness by definition implies that 

one cannot hear tones, when in fact the difficulty lies in hearing the difference between 

tones.  “Research has shown that some people, termed ‘amusic’, can neither produce nor 

perceive music.” [Stewart, 2006]   This condition called amusia is analogous to color 

blindness. 

 The original goal of this research was “to develop a device that will use the 

human voice to operate an electronic musical instrument” [Cleaver, 2000].  However, it 

was determined through calculation and experimentation that the original requirements of 

the design prototype would have to change due to hardware limitations (see Section 

3.2.2).  However, the original design will be presented in this section.  Modifications will 

be presented and justified in subsequent sections where relevant. 

The human voice will be sampled via a microphone and an analog to digital 

converter, which will be connected to a microprocessor that shall be programmed to 

operate as a digital signal processor.  “The principal frequency1 of the input will be 

extracted, corrected for pitch and then used to operate the musical instrument.  The 

implementation for the musical instrument will use the principal frequency data to 

                                                 
1 The words “principal frequency” will herein be referred to as “fundamental frequency”. 
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provide keying commands to a commercial synthesizer keyboard” [Cleaver, 2000]. 

 To use this product, the user must have access to a synthesizer capable of 

accepting and interpreting the MIDI protocol.  The user must be able to make an audible 

tone from his/her vocal chords to activate the device.  The device will be easy to operate 

in that there are only three setup requirements including:  connecting the MIDI cable to 

the device and synthesizer, placing the microphone in an area close to the user’s mouth, 

and supplying power to the synthesizer and device.  Once these criteria are met, the user 

need only sing to operate the device. 

 The device must be able to identify vocal inputs in near real time so as not to be 

audibly noticeable.  The device must be able to extract and output the fundamental 

frequency of the singing voice.  The device shall be able to accommodate male and 

female singers.  The device must be able to acquire the vocal signal without ambient 

noise, including the output of the synthesizer.  The device shall be powered via an 

external power supply.  The device must be able to communicate to a synthesizer via the 

MIDI protocol through a standard MIDI cable.  The device must be able to communicate 

to a computer running a dummy terminal for development purposes.   The device must be 

as small as reasonably possible.  The device developed will be a functional prototype 

only and not a device suitable for manufacture, because the parts to be used to construct 

the prototype are no longer manufactured.  However, the concepts that will be used to 

create the prototype can be expanded through further research to implement this device 

on modern technology. 

 The user interface for this device will consist of some knobs, switches, and 

indicators.  The user shall use this interface to adjust the amplification settings of the 
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microphone and operate the device.  A possible user interface is show below in Figure 

1.1, representing a possible view from the top of the device. 

 
Figure 1.1:  Possible device user interface. 

 
The different items of interest are:  the device power switch, the reset switch, the signal 

strength indicator, and the input amplification knob.  The device power switch will be 

used to set the on or off state of the device.  The (pushbutton) reset switch will primarily 

be used in development and emulation, but will be left for the user as alternate means to 

reinitialize the device.  The signal strength indicator will indicate the amplitude of the 

amplified input signal from the microphone after the amplification and filtering stages.  

The input amplification control will consist of a knob that the user will adjust in 

conjunction with reading the signal strength indicator to optimize the input amplification 

of the microphone. 
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CHAPTER II – LITERATURE REVIEW 
 

The tasks involved in completing this project involve two main components:  

identifying the fundamental frequency and using the MIDI protocol to communicate 

appropriately to the synthesizer.  In this chapter, the necessary background information is 

presented to complete these tasks.  In Section 2.1, the elements of pitch and its perception 

are discussed.  This is followed by a discussion of the impact of the human vocal range 

on this design in Section 2.2.  Sections 2.3 and 2.4 discuss the techniques directly 

involved in identifying the pitch and communicating with the synthesizer, respectively.  

 
2.1 What is pitch? 

 
According to the ANSI  standard for acoustical terminology, pitch, in a general 

sense can be defined as: 

“…that attribute of auditory sensation in terms of which sounds may be ordered 
on a scale from low to high.  Pitch depends mainly on the frequency content of 
the sound stimulus, but it also depends on the sound pressure and the waveform of 
the stimulus.”  [ANSI 1994] 
 

The key words for this thesis are actually in the second sentence.  Particularly, the 

dependence on the frequency content is of interest.  However, the awareness that the 

stimulus and sound pressure can influence the pitch is also of interest, because this 

generally vague definition supports that the overall task of extracting the physical 

representation of the pitch (called the fundamental frequency) is subject to errors.  The 

effects of some of these additional influences are discussed in Section 2.3.1. 

In music, the dominant fields of study pertaining to this research are 

psychoacoustics and music psychology.  According to Merriam-Webster’s Medical 

Dictionary, the former is “a branch of science dealing with hearing, the sensations 
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produced by sounds, and the problems of communication” while the latter is the study of 

how humans perceive musical elements and the feelings evoked by musical stimuli 

[Scheirer 2000].   

“The fundamental frequency of a periodic signal is the inverse of its period, which 
may be defined as the smallest positive member of the infinite set of time shifts 
that leave the signal invariant.  This definition applies strictly only to a perfectly 
periodic signal, an uninteresting object because it cannot be switched on or off or 
modulated in any way without losing its perfect periodicity.” [Scheirer 2000] 
 
Usually, the subjective recognition of a pitch associated with a sound depends on 

the fundamental frequency.  However, there are exceptions to this generalization because 

some sounds may be periodic but have no pitch, while other sounds may not be periodic 

yet have a pitch [de Cheveigné 2003].  The classic example of the latter is that of a bell, 

which has a pitch, but no fundamental frequency [Gerhard 2003].  However, the 

relationship between the existence of pitch and a fundamental frequency is usually one-

to-one insofar as the words “pitch” and “fundamental frequency” (f0) are used 

interchangeably in the field and in this document.  A similar relationship exists between 

the terms “f0 estimation methods” and “pitch detection algorithms” [de Cheveigné 2003].   

 
 
2.2 The human vocal range and the ideal choice of sampling rate 

 
The sampling rate is a crucial element in this design.  According to the Shannon 

Sampling Theorem, the sampling rate must greater than or equal to twice the maximum 

frequency to be sampled.  This minimum sampling rate is referred to as the Nyquist rate 

[Weeks 2007].   According the library of music at Yale University, the standard human 

vocal range is from E2 (bass singing at 82.407Hz) to A5 (soprano singing at 880.000Hz) 
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[Yale 2005] and is illustrated in Figure 2.1.  If this design is to accommodate the full 

spectrum of the human voice, the ideal sampling rate must then be fs = 880 ⋅ 2 = 1760Hz . 

 

Figure 2.1:  Vocal ranges for singers.  Taken from [Yale 2005]. 
 

If the minimum sampling rate must be 1760Hz, a sampling rate of 2000Hz would 

be chosen for this design for two reasons.  First this is an easy number to implement in 

hardware via clock dividers, and this number is a convenient figure to use for 

multiplication.  However, this sampling rate will be too high for this embedded software 

implementation to handle because of the system clock speed.  These difficulties are 

discussed in greater detail in Section 3.1. 

  

2.3 Frequency Identification (Pitch-Tracking) Techniques 
 

There is a broad range of literature regarding extracting pitch information using a 

variety of different techniques as well as some research on real time vocal analysis and 

synthesis on a MIDI capable synthesizer (see [Ryynänen 2004, Saul 2002, and 

Shimamura 2001]).  However, these algorithms and designs are designed to run on a 

personal computer (PC) and use sampling rates of 11.025 kHz or higher.  This device is 

unique in that it runs on an embedded system running at a much slower clock rate than a 

PC or its equivalent.  The processor chosen for this project is the Motorola 68000 because 
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of its availability in the lab.  This processor can accept a clock in the neighborhood of 4-

16MHz; therefore, it is crucial that the algorithm be speed-efficient and fairly accurate.   

There are a large variety of methods available to identify a frequency from a 

sample dataset.  However, the hardware limitations govern the choice between the 

methods considered.  This particular processor model does not support floating-point 

operations or complex mathematical functions such as: the exponential function, 

logarithms, sine, and cosine.  Therefore, methods and algorithms requiring the use of 

such functions were dismissed.  Many other methods other than those presented were 

reviewed but rejected for consideration because of these hardware limitations.  Some of 

these methods are listed in Section 2.3.6, while other methods that warranted serious 

consideration are discussed in this section.  The methods presented in this literature 

review are the primary methods investigated for this design following a brief discussion 

of some of the difficulties inherent to pitch tracking. 

2.3.1 Problems Associated with Pitch Detection of Vocal Signals 

In general, finding the frequency or period of a perfectly periodic waveform is 

relatively simple.  However, measuring the pitch, or fundamental frequency, from a 

voiced signal is considered a difficult task mainly because when the glottis2 produces a 

waveform, the waveform is not a perfect composition of periodic pulses.  It is also 

difficult to measure the interaction between the vocal tract and the glottal excitation 

                                                 
2 The glottis is the space between one of the true vocal cords and the arytenoid cartilage 
on one side of the larynx and those of the other side [Merriam-Webster’s Medical 
Dictionary]. 
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because the vocal tract formants3 can sometimes alter the glottal waveform structure.  

These interactions cause the most difficulty when the articulators change rapidly and also 

when the vocal formants themselves change rapidly [Rabiner 1976].    

It is also difficult to determine the beginning and end of each pitch period in a 

voiced segment.  This generally leads to the arbitrary choice of the pitch period beginning 

and ending times.  An example of this arbitrary choice is shown in Figure 2.2.  In this  

 
 

Figure 2.2:  Two waveform measurements which can be used to define pitch markers.  
Taken from [Rabiner 1976]. 

 
figure, the two candidates for defining the period beginning/end are the maximum value 

and the zero-crossings prior to the maximum during each period.   The only requirement 

with these measurements is that the locations be consistent from period-to-period, else 

spurious pitch estimates may result.  In Figure 2.2, the period associated with the peak 

measurement will result in a higher frequency than the zero-crossing measurement.  

Discrepancies of this nature occur often because the speech waveform is quasi-periodic 

and because peak measurements are sensitive to formants, noise, and any DC level in the 

waveform.  Another related difficulty arises from sorting between unvoiced speech and 

weakly voiced speech.  This is problematic because the transitions between these two 

signal types are difficult to identify [Rabiner 1976]. 

                                                 
3 A formant is any of several frequency regions of relatively great intensity in a sound 
spectrum, which together determine the characteristic quality of a vowel sound [The 
American Heritage® Dictionary]. 
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2.3.2 Counting Zero-Crossings 

One of the simplest methods to measure frequency in the time domain is to 

measure the time between zero-crossings of the periodic signal.  The reciprocal of the 

period corresponds to the frequency of interest.  This is by far the easiest method to 

implement in hardware or software.  However, this method is very susceptible to noise on 

the channel and any DC offset generated by the amplification or filtering stages in 

hardware, as well as the quantization error in the analog-to-digital (A/D) converter.  This 

method is ideal for simple sinusoids, but a poor choice for complex waveforms with 

harmonics or distortions, such as vocal signals.  To illustrate this point, look at Figure 2.3 

below.  On the left is a perfect sinusoid with frequency equal to 166.1Hz.  On the right is 

a vocal sample at approximately the same frequency.   

        
(a)                                                                  (b) 

Figure 2.3:  Perfect sinusoid (a) and vocal sample (b) at the same frequency. 
 

If counting the number of zero crossings were used for the second figure, the frequency 

would be approximately twice the original frequency, because of the additional 

harmonics in the human voice.  This method has been discarded from consideration; 
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however, research is still performed today on finding better ways to use the zero-crossing 

method for pitch identification [Gerhard 2003]. 

2.3.3 Frequency Domain Analysis using the Discrete Fourier Transform (DFT) 

Perhaps the more intuitive approach to identifying a fundamental frequency is to 

use the frequency domain for the analysis.  The DFT “plays an important role in the 

analysis, design and implementation of discrete-time signal-processing algorithms and 

systems” [Oppenheim 1999].  The advantage of using the DFT is that the DFT spectrum 

is identical to samples of the continuous case of the Fourier transform with N spectra 

samples occurring at uniformly spaced frequencies, where the input signal is truly band-

limited.  Many digital applications use the more efficient version of the DFT called the 

Fast Fourier Transform (FFT).   

Frequency domain analysis is used frequently in conjunction with tools such as a 

spectrum analyzer or an oscilloscope with an FFT implementation, which typically have 

some form of a fast digital signal processing IC to perform the calculations.  Other 

systems similar to this research may use variations of the FFT, such at decimation in 

time, decimation in frequency, or other special implementations such as Cooley-Tukey’s, 

the Prime-factor, Bruun's, Rader’s, or Bluestein’s FFT algorithms to find spectral results 

[FFT, 2007]. 

In theory, the implementation of this algorithm would find the maxima of the 

power spectra to identify the frequency once the data are transformed into the frequency 

domain.  Figure 2.4 represents the vocal data from Figure 2.3b in the frequency domain.  

In this figure, it is clearly obvious that the three harmonics have sufficient power to be 
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identified as the fundamental frequency.  In fact, the middle spike has the highest power, 

but it does not correlate with the pitch produced by the test subject. 

 

Figure 2.4:  Power spectrum of the vocal sample from Figure 2.3b. 
  

 The problem with this method is that the number of sample points, N, would have 

to be a 512 or 1024 point DFT/FFT to get a 1-2Hz resolution on the frequency axis, 

which would take too long to compute in real time.  The Motorola website had an FFT 

code example that was written by Ron Williams from Ohio University, but based on code 

appearing in Byte Magazine in 1979.  As of November 27, 2007, the code is currently 

available at <http://www.embeddedrelated.com/groups/m68hc11/show/2125.php>.  This 

code is designed to run on the Motorola 68HC11 (2MHz system clock) and computes a 

256 point 8-bit integer FFT.  The reported execution time of this code is 350ms.   

Performance estimation for the 68000 based on this code is possible with the proper 

considerations.  First, the execution time can be divided by four since the 68000’s system 

clock is 8MHz.  However, the time must be rescaled to accommodate for the larger FFT.  

The computational complexity of the FFT is O(N log N).  So if 87.5 = N log N , then N = 
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26.653 and 2N = 53.306.  Thus 53.306 ⋅ log(53.306) = 211.949ms, which is too long to 

execute a 512 point FFT for real time applications. 

2.3.4 Auto-Correlation Function 

Shimamura and Kobayashi have done research in the area of extracting pitches 

from noisy speech signals by using the auto-correlation function (ACF) and the average 

magnitude-difference function (AMDF) [Shimamura 2001].  The ACF is based in the 

time domain and is defined by Equation 2.1: 

 
φ(τ) =

1
N

x(n)x(n + τ )
n= 0

N−1

∑
 (2.1) 

where: 
x(n) = vocal signal sample; 
τ = the lag number, or time shift; 
n = the time for a discrete signal 

 

Sliding a small window of the sampled signal with the whole of the sampled data, 

in essence, forms the ACF results.  As periodic segments overlap the similar segments of 

the sampled data, φ(τ) assumes a large value at integer multiples of the signal’s 

fundamental period (T0). The fundamental period is calculated from the differences in τ 

corresponding to the peaks of φ(τ); dividing the sampling rate by the period yields the 

fundamental frequency (f0).   

The advantages of the ACF are obvious in that the ACF does not require the use 

of exponentials, logarithms or sinusoidal functions to perform the calculation.  The math 

is straightforward and simple.  Shimamura and Kobayashi prove for a large N, that if a 

noisy speech signal x(n) is composed of a clean speech signal, s(n) and additive white 
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Gaussian noise, w(n), s(n) will not correlate with w(n).  Therefore, an added advantage of 

the ACF is that it performs well in noisy environments.   

The problem with the ACF is that sometimes the peak located at the second 

multiple of T0 is much larger than the first peak.  This can lead to a half-pitch error in 

frequency identification.  In instances where the first peak occurs at a time of τ < T0, a 

double-pitch error in frequency identification may occur [Shimamura 2001]. 

2.3.5 Average Magnitude-Difference Function (AMDF) 

The AMDF is similar to the ACF in that the results are obtained by sliding a small 

window of the sampled signal with the whole of the sampled data.  Equation 2.2 

represents the AMDF: 

 ψ(τ) =
1
N

x(n) − x(n + τ )
n= 0

N−1

∑  (2.2) 

where x(n), τ and n correspond to their counterparts in the definition of the ACF in 

Equation 2.1. 

The primary difference between the two formulas is that as periodic segments 

overlap the similar segments of the sampled data, ψ(τ) assumes small values at integer 

multiples of the signal’s fundamental period (T0).  The fundamental period is calculated 

from the differences in τ corresponding to the notches of ψ(τ); dividing the sampling rate 

by the period once again yields the fundamental frequency (f0).   

Shimamura and Kobayashi also prove for a large N, that if a noisy speech signal 

x(n) is composed of a clean speech signal and additive white Gaussian, the signal and 

noise are independent.  Thus, the AMDF also performs well in noisy environments.  The 

AMDF shares the advantages of the ACF as described above [Shimamura 2001].   
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However, the AMDF is advantageous over the ACF for this design because the 

main operation is subtraction and the absolute value function, whereas the main operation 

in the ACF is multiplication.  On the 68000, and most processors, multiplication requires 

more clock cycles to execute than subtraction.  This processor’s execution time varies for 

mathematical functions depending on values of the input arguments.  The worst-case 

scenario for implementing the subtraction and absolute value functions (20 clock cycles) 

is less than the best-case scenario (multiplying zero by zero) for unsigned multiplication 

(38 clock cycles) [Motorola 1993].  This means that the ACF, at its best will require 90% 

more time to execute.  Additionally, the AMDF has a sharper pitch resolution when 

compared to the results of the ACF [Kim 1998]. 

 AMDF(n) = s(k) − s(k + n)
k= 0

N−1

∑  (2.3) 

Therefore, the ADMF will be implemented for pitch detection in this design, with 

the exception that it will not be normalized with respect to the total number of samples 

(N) and is defined in Equation 2.3.  The reason the normalization step is excluded is that 

dividing by N wastes clock cycles, but more importantly, the 68000 does not handle 

floating-point numbers as easily as 16-bit integers.  Since scaling the data essentially has 

no added effect for this application, its removal is justified.  Although this change would 

more effectively lend the algorithm to be called the Sum of Magnitudes Difference 

Function, it will still be referred to as the Average Magnitude Difference Function to be 

consistent with the literature available. 
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2.3.6 Some Other Techniques Worth Mentioning 

In 1976, Lawrence Rabiner et al. authored a paper for the IEEE that 

comparatively studied several pitch detection algorithms.  Their studies included both 

performance in terms of accuracy of the detection as well as computation time.  Each 

algorithm was implemented on the same data sets consisting of a low-pitched male (LM), 

two male speakers (M1 and M2), two female speakers (F1 and F2), a child (C1) and a 

diplophonic4 speaker (D1).  All filtering, signal conditioning and signal processing was 

handled digitally on a Nova 800 minicomputer.  The algorithms they studied were the 

ACF using clipping (AUTOC), the cepstrom method (CEP), the simplified inverse 

filtering technique (SIFT), the data reduction method (DARD), the parallel processing 

method (PPROC), the spectral equalization LPC method using Newton’s transformation 

(LPC) and the previously discussed AMDF.    

Table 2.1 shows the computational performance results for the different 

algorithms studied by Rabiner et al.  For each algorithm, the speed was computed from 

processing a one second sample set.  In these results, the AMDF had the third best 

performance.  However, Tables 2.2 and 2.3 show that the AMDF significantly 

outperforms the faster two algorithms in terms of accuracy.  The remaining algorithms, 

although more accurate, require significantly more time to compute the results, these 

algorithms were not considered for implementation. 

                                                 
4 diplophonia is a condition in which the voice simultaneously produces two sounds of a 
different pitch [Dictionary.com] 
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Table 2.1:  Computational considerations for the seven pitch detectors on the Nova 800 

minicomputer.  Taken from [Rabiner 1976]. 
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Table 2.2:  Number of gross pitch errors – unsmoothed.  Taken from [Rabiner 1976]. 
 
 

 

Table 2.3:  Performance scores based on sum of gross pitch errors – unsmoothed.  Taken 
from [Rabiner 1976]. 

 

2.3.7 Anticipated Problems with the AMDF 

Based on the literature review, the AMDF is susceptible to three main problems 

with this application.  The first is the sampling rate.  Although the results by Rabiner et 

al. show the AMDF is fairly accurate, they also used pre-recorded data and a sampling 
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frequency of 11.025 kHz to perform their study.  Even though the AMDF can be down-

sampled successfully [Rabiner 1976], the sampling frequency implemented in this design 

is extremely small compared to that used in other research in the field.  Thus it is 

anticipated that errors will occur as a result of this reduced sampling rate.   

The second concern is that the AMDF is known to produce octave, or pitch-

doubling errors when a fixed threshold for period detection is used.  This is also a 

problem with other algorithms and can easily been seen again by recalling Figure 2.4.  In 

[Kim 1998], they demonstrate that an adaptive threshold can be used to determine when 

periods occur.  By using a weighting factor and comparing other suitable pitches by 

doubling, tripling, quadrupling, etc… the proposed fundamental frequency, they see if 

each multiple of the original pitch falls under the proposed threshold.  If so, a new pitch 

is identified [Kim 1998].   Although ideal, implementing an adaptive threshold will not 

be possible in this design because it requires too much time to execute.   

Regarding octave errors, the real time processing can be advantageous because 

this concern can be mitigated by the fact that this design is to be used by amateur singers 

who are less likely to jump more than an octave unintentionally.  Tracking the numerical 

difference between MIDI note numbers will easily reveal if a singer tries to jump more 

than an octave at a time, which will help in preventing octave errors.  However, if the 

initial pitch detection is too high, the user will not be able to jump to a lower octave. 

The last known problem is identifying a pitch when the user changes between 

notes.  It is difficult to know when one note ends, and if the sampling routines acquire a 

sample set during a transition, the reported pitch will be inaccurate. 

 

18 



2.4 The MIDI Protocol 
 
 Composers and musicians have used the Musical Instrument Digital Interface 

(MIDI) protocol since its development in 1983.  The protocol was originally designed so 

musicians could connect synthesizers together.  Today, the protocol is used to supplement 

audio in gaming and multimedia applications due to the extremely small file size required 

to create a MIDI file versus a sampled audio file [MMA 2001].  The size of the files is 

roughly analogous to comparing a vector drawn image versus a bitmap image of the same 

object. 

The MIDI protocol makes it available not only for communication between 

synthesizers, but also between other sound modules, wind controllers, guitars and the 

modern personal computer [MMA 2007].  This design will make use of the small packet 

size to control a synthesizer, and will use unidirectional communication between the 

prototype and the synthesizer. 

2.4.1 Message Format 

The MIDI message format is quite simple.  The beginning of a new message 

contains a status nibble, followed by a channel number nibble (where 0-15dec corresponds 

to channels 1-16dec).  The remaining size of the transmitted data depends on the command 

used.  The MIDI protocol specifies that any other transmitted data must only utilize the 

lower seven bits of a byte.  Placing this restriction ensures that the MIDI device can 

always detect a new command, ‘s’ (see below), which always utilizes the most 

significant bit of the upper nibble.  Only three of the commands are used in this design.  

They are Note On, Note Off, and Program Change. 

The packet format for turning a note on or off is as follows: 
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sc nn vv 
 

 s = Status Nibble (Command) 
 8 = Note Off 
 9 = Note On 
 c = Channel Number (0-15dec) 
nn = MIDI Note Number (0-127dec) 
vv = Note Velocity 

 
Example MIDI Packet (hex numbers): 
 90 45 7F - Play pitch A4 (440Hz) on channel 1 with velocity 127 

80 3C 00 - Stop pitch C4 on channel 1, velocity number irrelevant 
 
The packet format for changing the MIDI instrument is as follows: 
 

sc pp 
 

s = Status Nibble (Command) 
12dec = program change 

 c = Channel Number (0-15dec) 
pp = New instrument number (0-127dec) 

 
Example MIDI Packet (hex numbers): 
 C0 00 - Change current instrument on channel 1 to Acoustic Grand Piano 
 
 

There are seven total MIDI commands that are represented in hexadecimal per the 

table below.  The last hexadecimal value, F, is reserved for future development and will 

be ignored by the MIDI device if transmitted [MMA 1995],[MMA 1995].  Table 2.4 

contains the relevant commands for this design. 

 
Hex Command 

8 Note off 
9 Note on 
A After touch (key pressure) 
B Control change 
C Program (instrument) change 
D Channel pressure 
E Pitch wheel 

Table 2.4:  MIDI commands 
 

2.4.2 Electrical Specifications 
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The MIDI data transmission protocol uses the RS-232 standard.  The bit-rate is 

31250 bps, and the voltages range from 0-5V representing a logic 0-1, respectively 

[MMA 2001].  The MIDI cable itself requires a shielded cable and cannot exceed a 

length of 50ft (15m) [MMA 1985] and consists of two different connectors (MIDI In and 

MIDI Out), and sometimes a third (MIDI Thru) [MMA 2001].  Cables designed to 

interface with a PC sound card using a DB15 connection, and contain an adapter with 

components similar to the Figure 2.5. 

 

 
Figure 2.5:  Computer Sound Card Game Port to Standard MIDI Connector [MMA 

1985]. 
 

 
This design makes use of the DB15 connector cable above, as it requires the least amount 

of external components to implement. 
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2.4.3 Timing Considerations 

MIDI was designed to convey musical performance data and therefore preserves 

rhythmic integrity of the music by using accurate timing.  A standard RS232 packet 

consists of ten bits to transmit one byte of data (consisting of one start bit, eight data bits, 

one stop bit, and no parity) for this application.  Sending a simple three-byte message for 

a Note On or Note Off command will only take 0.96 ms to transmit.  Even with larger 

packets, the delay between sending the packet and hearing the sound (latency) is usually 

3 ms or less, depending on the size of a packet.  Research has shown that 20-30 ms 

latency is usually imperceptible, so long as the variation in latency (the jitter) is small 

[Lago 2004].  Usually, the jitter associated with the MIDI protocol is less than 1 ms.   

However, it is important in this design to consider the time it takes to transmit the 

MIDI data.  In this application, only one musical part is produced at once with small data 

packets, therefore the MIDI protocol timing should be quick enough and should be 

rhythmically accurate [MMA 2001].   
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CHAPTER III – SYSTEM DESIGN 
 

3.1 Description of the Hardware 
 

The hardware for this design can be broken down into four basic modules 

consisting of the hardware responsible for sampling, serial communications, MIDI 

communications, and memory management.  Each of these large modules consists of 

smaller, supporting modules, and each of the larger modules is connected with the 68000.  

Each of the major modules is briefly described here and the detailed description will 

follow. 

The first module is the sampling module.  It consists of the microphone, 

amplification stage, filtering stage, the A/D converter, and the clock providing the 

conversion rate for the A/D converter.  Another clocking mechanism is directly 

interfaced with the 68000 to trigger the sampling routine. 

 The second module is the serial communications interface (SCI) module.  This 

module was originally designed for a developer.  As implementation problems 

developed, the concept of adding a developer software interface was abandoned, but the 

fully functional hardware was left on the final prototype; this is the only unused interface 

in this design.  This module consists of an asynchronous communications interface 

adapter (ACIA), a bit-rate generator, and a voltage level shifter. 

 The third module is the MIDI communications module, which is used to interface 

to the synthesizer directly.  This module also consists of an ACIA and uses a simple 

clock divider (counter) connected to the system clock to act as a bit-rate generator.  The 

serial output of the MIDI ACIA is connected to the MIDI OUT input to the synthesizer. 
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The final module is the memory management unit (MMU).  It is responsible for 

enabling the various devices for read and/or write access as well as indicating to the 

68000 when a data transmission is acknowledged (DTACK’) and when valid peripherals 

request use of the address bus (VPA’). 

3.1.1 M68000 Connections 

 The Motorola M68000 is the microprocessor used in this design.  There are two 

practical choices for a processor for this design based on hardware and test equipment 

that are readily available at the engineering school.  These two choices are the Motorola 

M68HC11 microcontroller and the Motorola M68000.  The latter was chosen over the 

Motorola M68HC11 because of speed, memory capacity, and that the M68000 easily 

facilitates connecting a large number of external devices.   

 The address and data line connections are described in detail in the memory 

management unit and memory sections in sections 3.1.2 and 3.1.3, respectively, as well 

as other sections where appropriate.  However, address lines A17-A23 are left 

disconnected, as they are not used. 

 The address strobe (AS)’ is an output that indicates the address bus is ready for 

use.  It is connected to the memory management unit (MMU) and interrupt acknowledge 

(IACK’) circuitry to enable communications with memory and to identify interrupt 

requests, respectively.  The data transmission acknowledge (DTACK’) input is connected 

to DTACK’ from the MMU (Section 3.1.4), and the valid peripheral address (VPA’) 

input is connected to the VPA’ circuitry (Section 3.1.5) to indicate when memory and 

peripherals are ready to transmit/receive data.  The upper and lower data strobes 

(UDS’/LDS’) and the read/write (R/W’) line are connected to the MMU to indicate 
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whether an even or odd address is being accessed and whether a read or write cycle is 

engaged.  The EN clock, which divides the system clock by ten, is connected as ECLK to 

the two M6800 series peripheral devices (M6850s) and the A/D converter clock.  Finally, 

the valid memory address (VMA’) output is negated and is used to signal to the two 

peripheral addresses that the 68000 has recognized a valid peripheral address (VPA’) 

created by selecting one of those M6800 series peripherals (Sections 3.1.7 and 3.1.8). 

The system clock (CLK) input comes directly from an 8MHz TTL oscillator.  The 

function code pins (FC0-FC2) are connected to the interrupt acknowledge (IACK’) 

circuitry to indicate an interrupt cycle on the 68000 (Section 3.1.11).  These three pins are 

all asserted when an interrupt request is acknowledged.  IPL0’ is connected to the 

sampling frequency (FS’) clock to trigger a level one interrupt request (Section 3.1.10).  

The HALT’ and RST’ lines are connected to the main reset signal (RESET’) generated 

by the power-on reset circuitry (Section 1.1.12).   The IPL1’, IPL2’, BERR’, BGACK’ 

and BR’ lines are unused and are tied high to VCC via a 4.7kΩ resistor.  The bus grant 

(BG’) output is left disconnected. 

3.1.2 The Memory Management Unit (MMU) 

The MMU, shown in Figure 3.1, is responsible for selecting between two 

NVRAMs, one latch, one A/D converter, and two ACIAs for read and/or write 

operations.  The MMU consists of two 74LS138 decoders and a Schmitt triggered 

inverter (74LS14) to perform device selection and some AND gates to create the 

DTACK’ signal (Section 3.1.4).  
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Figure 3.1:  Memory management unit. 

Address lines A14-A16 are connected from the 68000 to the select inputs A-C, 

respectively, on each decoder.  When the decoders are enabled, these lines are 

responsible for selecting between the six devices previously mentioned.  The active-high 

enable (G1), of each decoder is connected to the active-low IACK’/MRST’ signal.  This 

signal serves to disable the MMU during reset and to prevent erroneous data from being 

written to the NVRAMs during power-on.  This signal also disables the MMU during the 

68000’s interrupt acknowledge sequence and is discussed in Section 3.1.11.  Address 

strobe (AS’) from the 68000 is connected to G2B’ of each decoder.  Finally, the upper 
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data strobe (UDS’) and lower data strobe (LDS’) signals are connected to G2A’ of the 

even and odd decoders, respectively.  Thus, when AS’ and UDS’/LDS’ are asserted and 

IACK’/MRST’ is negated, the MMU selects between devices for I/O operations. 

 On the even decoder (top of Figure 3.1), the active-low outputs Y0’, Y1’ and Y2’ 

become the control signals SERAM’, SLATCH’, and SSCI’, respectively. These control 

signals respectively select between the even RAMs, the latch used for operating the LEDs 

and the serial communications interface.  On the odd decoder (below the even decoder in 

Figure 3.1), the active-low outputs Y0’, Y1’ and Y2’ become the control signals 

SORAM’, SADC’, and SMIDI’, respectively.  These control signals respectively select 

between the odd RAMs, the A/D converter, and the MIDI ACIA.  All other outputs (Y3’-

Y7’) on both decoders are left disconnected. 

 The R/W’ signal from the 68000 is inverted to create the active-low output enable 

signal (OE’) for use on the NVRAMs.  The Schmitt inverter package is used for the 

power-on reset, and is used here to save board space since the functionality is essentially 

the same for standard logic levels and operations.  The active-low write enable signal 

(WE’) is directly connected to the R/W’ signal on the 68000. 

 All the signals output from the decoders are active-low.  However, the A/D 

converter requires active-high control signals and some special handling since there is no 

chip enable input on the A/D converter.  Therefore, OE’ and SADC’ from the MMU are 

NORed and form the A/D output enable (ADCOE) signal.  Similarly, WE’ and SADC’ 

from the MMU are NORed and for the A/D start conversion (ADCSTART) signal.  With 

this configuration, the A/D converter will begin a conversion when any byte of its 
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address space is written.  The results can be accessed when any bytes of its address space 

is read. 

3.1.3 Memory 

Two Dallas Semiconductor DS1225AD-85 NVRAMs are used to act as both the 

program space and temporary memory space in this design.  This is advantageous over 

using a pair of ROMs and a pair of static RAMs in that the NVRAMs can be 

programmed using the 68000 emulator and that the board space required for the larger 

NVRAMs is smaller.  These NVRAMs also have an 85ns read and write time, which is 

optimal for the 8MHz system clock (125ns period) driving the 68000, because no 

additional timing circuitry is required to delay the 68000 read/write cycles. 

 
 

Figure 3.2:  (a) Even NVRAM and (b) Odd NVRAM and connections. 
 

Address lines A1-A13 on the 68000 (now referred to as AB1-AB13) are 

connected to A0-A12 on each of the NVRAMs.  Data lines D0-D15 on the 68000 (now 

referred to as DB0-DB15) are connected to D0-D7 on the memories depending on the 

address space for each memory.  The memory occupying odd addresses is connected to 

the lower byte of the data bus (DB0-DB7) while the memory occupying even addresses is 

connected to the upper data bus (DB8-DB15).  The data lines are connected in this 

fashion because the memory is interleaved to make use of the data strobes (UDS’ and 
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LDS’) on the 68000, thereby allowing 16-bit executing from 8-bit devices.  The control 

signals OE’ and WE’ are respectively connected to the corresponding NVRAM pins 22 

and 27.  SERAM’ and SORAM’ from the MMU are respectively connected to the even 

and odd NVRAM chip enables (CE’) at pin 20. 

3.1.4 Data Transmission Acknowledge (DTACK’) Signal 

An external device asserts DTACK’ to signal the 68000 that data has been placed 

on the data bus by the device during a read cycle or that data has been read by the device 

from the data bus during a write cycle.  Generally, the 68000 takes four clock cycles to 

perform a byte- or word-length read or write operation.  In the event that the memory or 

another external device requires more time, DTACK’ is used to delay 68000 instruction 

execution until the devices’ timing requirements are met.  Hence, the logic used to 

implement DTACK’ is often referred to as a timer.  DTACK’ is also used to identify a 

fully-vectored interrupt request during an interrupt acknowledgment; however, fully-

vectored interrupts are not implemented in this design.  

 
 

Figure 3.3:  Data transfer acknowledge/valid peripheral address circuitry. 
 

In this design, DTACK’ is created by ANDing the active low chip select lines 

connected to the NVRAMs (SERAM’ and SORAM’), A/D converter (SADC’) and 
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register (SLATCH’).  Each chip select on each device is active-low, therefore, ANDing 

all the chip select inputs will cause a logic low to be produced whenever any of the 

previous four devices is selected.  As previously mentioned, some designs require that a 

timer be implemented to operate DTACK’, especially when interfacing to a slow 

memory, such as an EEPROM without a DTACK’ output.  Such a timer is not required 

here because the NVRAMs are rated for an 85ns read/write cycle which is faster than the 

period of one 8MHz clock cycle (125ns).  

3.1.5 Valid Peripheral Address (VPA’) Signal 

The VPA’ signal is used by the 68000 to interface to the older 6800 series 

peripherals, such as the Motorola 6850 universal asynchronous receiver/transmitter 

(UART).  VPA’ is also used to signal the 68000 that an auto-vectored interrupt is 

occurring.  Both VPA’ functions are utilized in this design.  However, there are two 

devices that can generate the VPA’ signal for normal operation and a third device 

indicating the auto-vectored interrupt.   

 The two devices using the normal functionality of VPA’ are the two Motorola 

M6850s (ACIAs).  One of these is used for communication to the synthesizer and the 

other for terminal communications.  The third device is the 8-bit binary down counter, 

which indirectly asserts VPA’ when an interrupt is acknowledged (Section 3.1.11) 

through the IACK’/MRST’ signal.  The chip-selects for the two UARTS (SSCI’ and 

SMIDI’) and IACK’/MRST’ are ANDed to create VPA’. 
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3.1.6 Bar Graph LED Package and Output Data Register (74LS273) 

The 74LS273 8-bit register with clear is used to illuminate the bar graph LEDs.  

The register is placed on the lower data bus (DB0-DB7) and occupies all odd addresses in 

the range of $4000-7FFF, inclusive.  Data lines DB0-DB7 are connected to register data 

inputs D1-D8, respectively.  This particular register does not have an output or chip 

enable, so a rudimentary chip enable is constructed by NORing the SLATCH’ and 

(8MHz) CLK signals.  When SLATCH’ is asserted, the inverted CLK signal is allowed to 

propagate through the NOR gate and serve as a clock to the register on pin 11.  When the 

clock pulses, the data on pins D1-D8 is latched and output on Q1-Q8.  The RESET’ 

signal is connected to CLR’ on pin 1. 

 The output pins, Q1-Q8 are connected in series via a current limiting resistor to 

the cathode of the bar graph LEDs, which are configured in a common anode 

configuration.  The anodes of the LEDs are connected to VCC (5V).  This configuration is 

used because the register can sink more current on an output low than it can source on an 

output high.  An LED will be illuminated when one of the output pins are driven low.   

The bar-graph LED package actually contains ten LEDs.  Since only eight LEDs 

are used with the register, the remaining two LEDs are used to indicate the device is 

powered. 
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Figure 3.4:  LEDs and registers. 
 

3.1.7 Serial Communications Interface (SCI) for Terminal Communications 

The device responsible for serial communications is the Motorola 68B50 

Asynchronous Communications Interface Adapter (ACIA).  This ACIA is connected to 

the MMU and is configured to operate when even memory locations in the range of 

$8000-BFFF are accessed for read and write operations.  The ACIAs have two register 

pairs and AB1 on the 68000 is used as the ACIA register select (RS) signal, selecting 

between the transmit/receive data and status/control registers.  Since this ACIA operates 

on even addresses, the data lines on this ACIA are connected to the upper byte in the data 

bus on the 68000.  Other signals, such as the SSCI’ signal from the MMU and the 

negated VMA’ signal (VMA) from the 68000 are respectively connected to CS2’ and 

CS1 on this ACIA; VMA is also connected to CS0.  The read/write (R/W’) line on the 

68000 is connected directly to the read/write line on the ACIA.  This allows the 68000 to 
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select between the status/receive and control/transmit registers.  The E-clock (EN) from 

the 68000 is connected to E on the ACIA to synchronize operations with the 68000.  The 

clear to send (CTS’) and data carrier detect (DCD’) inputs are unused and tied to ground.  

The interrupt request (IRQ’) and request to send (RTS’) outputs are unused are 

disconnected.   

 
 

Figure 3.5:  SCI asynchronous communications interface adapter. 
 

The ACIA also requires a bit-rate generator to act as a clocking mechanism for 

shifting data in and out serially.  The bit-rate generator (MC14411) takes a standard 

crystal oscillator wired in parallel with a 15MΩ resistor across the inputs X1 and X2.  

Different frequency divisions are output on F1-F16.  The different frequencies are 

generated with various divide-by ratios (prescalers).  The primary prescaler is set by 

asserting or negating RSA and/or RSB; both are tied high via a 4.7kΩ resistor in this 

design.  The input frequency from the crystal oscillator to the bit rate generator is 1.8432 

MHz and the final output is 614.4 kHz on the F1 output.  This output is connected to this 

ACIA’s RXCLK and TXCLK inputs.  614.4 kHz is used because the ACIA is set to 

divide the input clock frequency by 16 to prevent framing errors; this sets the 

transmit/receive bandwidth to 38400 bits/second.  The bit-rate generator is disabled 
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during the 68000 reset cycle which is realized by connecting RST’ to the main reset 

signal (RESET’).  All other outputs (F2-F16) are not connected. 

 

 
Figure 3.6:  Bit-rate generator. 

 
This ACIA also requires a voltage level shifter (MAX232) to shift the incoming 

RS232 voltages to standard TTL voltage levels, and vice versa for outgoing TTL signals.    

This device is connected per the revised specifications and diagrams provided by Maxim 

and can be seen in Figure 3.7.  The external capacitors are used to drive a charge pump 

responsible for the voltage level conversion.  The RS232 cable transmit (TxD) and 

receive (RxD) lines are connected to R1IN and T1OUT’ respectively on the MAX232.  

The ACIA’s TTL transmit (SCITxD) and receive (SCIRxD) lines are connected to T1IN 

and R1OUT’ on the MAX232.  The remaining inputs/outputs are left disconnected. 

 

 
Figure 3.7:  Voltage level shifter. 
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3.1.8 MIDI Interface 

The MIDI protocol uses the RS232 protocol at a bandwidth 31250 bps for 

communications.  Therefore an extra ACIA is used for MIDI communications.  The 

MIDI ACIA is connected to the lower data bus and occupies odd addresses in the range 

of $8000-BFFF.  AB1, CS0, CS1, RTS’, IRQ’, DCD’, CTS’ and E are connected in the 

same manner as the SCI ACIA.  CS2’ is connected to SMIDI’ from the MMU.  RxD is 

connected to MIDI in and TxD is connected to MIDI out on the MIDI cable.  

 
 

Figure 3.8:  MIDI asynchronous communications interface adapter. 
 

The TxCLK and RxCLK inputs receive a square wave at 500 kHz, as this ACIA 

is also configured to divide the incoming clock frequency by 16.  A 74LS393 dual 4-bit 

counter, shown in Figure 3.9, is used to generate the 500 kHz signal by connecting the 

QD to MCLK.  QD is also connected to QA of the second counter in case the extra 

frequency divisions are necessary.  This would be true if the system clock were increased 

from 8 MHz to 16 MHz.  The active high clear signals on both counters are connected to 

ground so that the counters will operate continuously.  All other outputs are left 

disconnected.   
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Figure 3.9:  MIDI clock divider. 
 

3.1.9 Microphone Input Amplification and Filtering 

The microphone for this design is a Sony cardioid microphone.  Although it 

outputs a strong signal when connected to an oscilloscope (see Figure 3.10), the output of 

the microphone will have to be amplified so the A/D converter can use the smaller 

amplitude signal.  Figure 3.10 shows two separate live vocal samples taken from the 

microphone used in this design, which were obtained by directly connecting the 

microphone to the oscilloscope probe.  The two samples were acquired from the same 

subject, but the figure on the left represents a raspy tone, whereas the figure on the right 

represents more of a pure tone. 
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(a)                                                                  (b) 

Figure 3.10:  (a) Raspy vocal sample and (b) smooth vocal sample captured on a 
Tektronix TDS 2024 Oscilloscope. 

 
 The amplifier chosen for this design is the LM386 audio amplifier, with operation 

frequency range from 20Hz-10kHz.  This was chosen primarily because it is designed for 

audio applications and that the power supply voltage runs at +5V.  A simple 

amplification arrangement is made by connecting the amplifier output to the non-

inverting terminal through a 15 kΩ potentiometer (R2), which is the connected to the 

input from the microphone through a 1 kΩ resistor (R1).  This arrangement amplifies the 

input signal by 1+ R2
R 1

, and allows the user to adjust the amplification settings.  The non-

inverting terminal is connected to ground, and the other pins are left disconnected. 
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Figure 3.11:  Amplification and filtering stages. 
 

One of the problems associated with pitch identification is removing the 

additional harmonics associated with the fundamental frequency.  Figure 2.4 illustrates 

this well.  Therefore, filtering will be implemented on the hardware to remove some of 

the additional harmonics above a certain frequency.  A low-pass or band-pass filter could 

be used for this application, however, the low-pass filter will be used because the lower-

end of the spectrum is close to 0Hz, and less hardware will be required for 

implementation.   

The Butterworth low-pass (maximally flat) approximation is used because it 

yields the best fit to an ideal low-pass filter at the lower end of the pass-band.  However, 

the tradeoff is that the difference between the approximation and the ideal filter increases 

greatly toward the high end of the pass-band [Budak 1991].  The cutoff frequency for this 

design is set at 500Hz to accommodate the hardware limitations imposed by the 68000 

(see Section 3.2.2).  

The output of the amplifier is also connected to a 5th order Butterworth filter, 

which is also connected to a ½ wave rectifier to remove noise above 500Hz and also to 
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protect the A/D converter.  The filter design was taken from the online design utility at 

http://www-users.cs.york.ac.uk/~fisher/lcfilter/.  However, the filter with the suggested 

components was simulated using Spice (see Section 5.3.8 for more details) before 

continuing with the design.  The simulations proved successful and the design was 

accepted.  The final output of this filter is referred to as MICAMP on the schematic and is 

the input to the A/D converter. 

3.1.10 A/D Converter (ADC0809) and Sampling Frequency Generator 

The A/D converter is the device responsible for sampling the amplified vocal 

signal and converting the sample to an 8-bit number and resides in even memory 

addresses in the range $4000-7FFF.  The sampling occurs when the 68000 engages a 

write cycle to the A/D converter, which asserts the STARTADC signal.  The sampling 

rate is determined by a 74HC40103 8-bit binary down counter and the interrupt routine 

on the 68000. 

 
Figure 3.12:  A/D converter and connections. 

 
The A/D converter is capable of sampling eight different signals.  Only one 

channel (IN0) is used to sample the amplified and filtered microphone signal (MICAMP); 

the other channels (IN1-IN7) are left disconnected.  The lowest bit of the address bus 
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(AB1) is connected to A0 of the A/D converter.  The other two lines (A1-A2) of the A/D 

converter are grounded to save wiring space since only one A/D channel is used.  The 

data lines are connected to the upper data bus (DB8-15) on the 68000, so the device 

occupies even addresses in memory.  The A/D converter lacks a chip enable signal, so the 

ADCOE signal from the MMU is used to indicate a read cycle from the data bus.  The 

ADCSTART signal from the MMU is used during a write cycle, and signals the A/D 

converter to take a sample.  The A/D converter reference voltages REF+ and REF- are 

respectively connected to VCC (5V) and ground. 

The A/D converter conversion rate is determined by the ECLK signal (800 kHz) 

and is not to be confused with the sampling frequency used by this design.  This 

frequency happened to be in the middle of the acceptable frequency range and requires no 

additional conditioning. 

 The next device of interest is the adjustable sampling frequency generator as seen 

in Figure 3.14.  This generator is created using a 74HC40103 8-bit down-counter.  The 

counter uses the ICLK signal, which is the ECLK divided by 16 (see figure 3.13), to 

count down from 49dec-0dec (50 cycles) when $31 is input on the preload inputs.  The 

preload inputs are tied to ground via eight 4.7kΩ resistors.  The divide-by number can be 

set by entering the new number in binary via an 8-bit DIP switch.  When the switches are 

left open, the logic low value is input on the preload inputs, else they connect 5V to the 

preload inputs.  Once the counter counts down to 0dec, TC’ is toggled low for one ICLK 

period.   
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Figure 3.13:  Divide-by 16 for sampling frequency generator. 
 

 

Figure 3.14:  Adjustable sampling frequency generator. 
 

 TC’ is renamed to FS’, which is connected to IPL0’ on the 68000, and PE’ 

(synchronous preload) on the counter.  This causes the sampling interrupt routine to be 

executed, and the value on the DIP switches to be loaded into the counter again.  The 

asynchronous preload (PL’) is connected to RESET’.  Master reset (MR’) on the counter 

is unused because the assertion of this signal causes the counter to star counting from 

255dec, thus it is tied high via a 4.7kΩ resistor.  The remaining control input, TE’ is used 

to enable counting, and is connected to ground because sampling will be controlled in 

software. 
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3.1.11 A/D Interrupt Acknowledgement (IACK’) and MMU Reset (MRST’) 

When the 68000 receives an interrupt request on the IPLx’ lines, it acknowledges 

the interrupt request by asserting each of FC0-FC2 simultaneously.  Then, the inverted 

values appearing on inputs IPL0’-IPL2’ are placed on AB1-AB3 to indicate the priority 

level of the interrupt request.  The 68000 asserts address strobe (AS’) and waits for the 

assertion of DTACK’ or VPA’ by the interrupting device, respectively indicating a fully- 

or auto-vectored interrupt request.   

The primary difference between a fully- and an auto-vectored interrupt is that the 

auto-vectored interrupts only use the interrupt priority level in conjunction with a 

predetermined vector table to determine where the interrupt service routine is located.  

With auto-vectored interrupts, there is only one vector table entry associated with each 

priority level.  Conversely, fully-vectored interrupts require the interrupting device to 

supply the vector table address (divided by four) on the lower data bus.  The 68000 will 

take this address, multiply it by four internally and then searches for the interrupt service 

routine address in this vector table location.  This design utilizes auto-vectored interrupts 

because there is only one interrupting device and the resulting hardware implementation 

is much simpler.  Table 3.1 shows the addressing scheme for the various types of 

interrupts (or exceptions). 
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Table 3.1:  Exception vector assignments.  Taken from [Motorola 1993]. 
 

In this design, IPL0’ is the only signal permitted to change, indicating a level 

interrupt request.  This interrupt is auto-vectored and it is not necessary to distinguish it 

as such to the interrupting hardware, which greatly simplifies the circuitry needed to 

create the interrupt acknowledge signal (IACK’). 

Based on the interrupt acknowledge sequence described above, IACK’ is formed 

by NANDing FC0-FC2 and the negated AS’ (AS).  IACK’ is then ANDed with RESET’ 

to form IACK’/MRST’.  RESET’ is included here to provide a means to disable the 

43 



MMU during reset, because all other MMU control inputs are used.  IACK’/MRST’ is 

connected to the VPA’ circuitry, to indicate an auto-vectored interrupt has occurred after 

the A/D converter finishes its conversion. 

 

 
Figure 3.15:  Interrupt acknowledge and MMU reset circuitry. 

 
Originally FC0-FC2, AB1, and the end of conversion (EOC) flag from the A/D 

converter were to be ANDed to form IACK’.  This would have also worked because EOC 

would normally be asserted until the A/D converter starts the conversion, at which time 

EOC would be negated.  By the time the 68000 would start the interrupt acknowledge 

cycle, EOC would still be negated.  Then when EOC was would be reasserted, IACK’ 

would be asserted.  This design was rejected because the 68000 would have to wait 

~75µs each time for the conversion to complete, leaving only ~50µs until the next 

sample, and only 400, 8MHz clock cycles to perform the ADMF calculations. 

3.1.12 Power-On Reset Circuit 

This hardware design has the added feature of a power-on reset circuit.  This 

feature has been added so that when power is applied to the board, the user will not have 

to press a reset switch to initialize the 68000.  The power-on reset circuit is a simple 

circuit constructed using a simple RC filter with a diode connected in parallel to the 
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resistor, with the cathode connected to Vin, and the anode connected to Vout.  Vout is also 

connected to two Schmitt inverters to convert the slow rise time of the RC circuit to an 

oscillation-free step signal.  The analysis and calculations for determining the resistance 

and capacitance are shown below. 

 

 
Figure 3.16:  Power-on reset circuit. 

 
The Laplace transform and the s-domain are used in this calculation since Vin(t) is linear, 

time invariant, causal, and memory-less. 

 

 H(s) =
Vout (s)
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=
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⎠ 
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=
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 (3.1) 

 
The inverse Laplace transform is applied to the transfer function H(s) to find the impulse 

response of the system h(t). 

h(t) =
e− t / R ⋅C( )

R ⋅ C
 The input to the system is a step function with amplitude equal to the final desired 

voltage (VF) across the capacitor.  Therefore, convolution can be used to find the voltage 

across the capacitor as a function of time. 

 Vout (t) = h(t) ∗Vin (t) =
e− t / R ⋅C( )

R ⋅ C
∗VF ⋅ u(t) =

VF

R ⋅ C
e− λ / R ⋅C( )dλ

0

t∫ = −VF ⋅ e−λ / R ⋅C( )
λ= 0

t
= VF ⋅ 1 − e− t / R ⋅C( )( ) (3.2) 
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According to the Schmitt triggered inverter specifications for the 74LS14 

provided by Texas Instruments, the minimum input voltage for the trigger to turn to the 

on state is 1.5V.  Setting VF equal to 5V, the capacitance (C) can be solved for in terms of 

resistance (R) and time (t).  Equations 3.3-3.6 illustrate these steps. 

 
 Vout = 1.5 = VF ⋅ 1− e− t / R ⋅C( )( ) (3.3) 

 1−
1.5
VF

=
7

10
= e−t / R ⋅C( ) (3.4) 

 t
R ⋅ C

= −ln( 7
10

)  (3.5) 

 C = −
t

R ⋅ ln(0.7)
 (3.6) 

 
The hold time for the 68000 to go into reset is 100ms.  A time of 250ms is chosen 

to allow enough time for the 68000 to go into and remain in reset, and to allow for part 

tolerances and adjusting part values to match the industrial standards.  A resistance of 

15kΩ is chosen so that the capacitor will have a smaller value.  The values for R and t are 

substituted into Equation 3.6; solving for C in Equation 3.7 yields 46.73µF.  

 

 C = −
0.25

15000 ⋅ ln(0.7)
= 46.728µF  (3.7) 

Since 46.73 micro Farads is not an industrial standard for capacitance, the 

capacitance is adjusted to 47 micro Farads.  Solving Equation 3.7 for time (t), and 

substituting in R = 15kΩ and C = 47µF yields a reset time of at least 251.5ms before the 

Schmitt Triggers will toggle the signal back to a logic high. 
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 t = −R ⋅ C ⋅ ln(0.7) = − 15000( ) 47 ⋅10−6( )ln(0.7) = 251.456ms  (3.8) 

Figure 3.17 shows a screen capture of this implementation with VCC (green), 

RESET’/HALT’ (yellow), and the voltage across the capacitor (blue).  The delay between 

the time VCC reaches 5V and the time RESET’ is negates is approximately 170ms, which 

satisfies the 100ms requirement imposed by the 68000.  The difference between the 

calculated time and the actual time is explained by the fact that the calculations assumed 

a unit step input, when in reality, this doesn’t happen for a power supply with large 

capacitance.  The calculations also neglect the fact that the Schmitt triggered inverter 

must also power up during the charging of the power supply’s capacitors.  This explains 

the “blip” on the yellow line in Figure 3.17.  However, this “blip” and the error 

associated with the charging power supply are insufficient to cause the malfunction of the 

power-on reset circuit. 

 

Figure 3.17:  Power-on reset results. 
 

 
3.2 Software Description 
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The software development for this project was completed in two stages once the 

general pitch detection algorithm was chosen.  The first step involved developing a proof 

of concept in MATLAB.  A variety of sound samples were input into the proof of 

concept and the results observed.  Then the code segments were transformed into the 

Motorola 68000 assembly language for more simulation and eventual implementation.  

Section 3.2.1 describes the development of the proof of concept and the results, where as 

Section 3.2.2 describes the design constraints inherent to implementing the software due 

to the hardware design.  The assembly level implementation of the supporting functions 

is discussed thoroughly in Section 4.2. 

3.2.1 AMDF Proof of Concept 

It felt necessary to use a high-level language to verify that the AMDF would work 

as expected before implementing the AMDF in assembly.  MATLAB was used because 

of the relative ease to manipulate and plot data arrays.  The MATLAB simulation code is 

attached in Appendix II and a variety of plots denoting the success of the AMDF 

algorithm are included in Section 5.1 along with a more detailed discussion of the 

simulations.  However, the most important segment of code is included below, as this is 

what is used to implement the AMDF in MATLAB.  In this code segment, the array of 

samples is s(), and the results of each iteration is stored as d(n). 

for n=1:NMAX 
    x=0; 
    for k=1:KMAX 
        x=x+abs(s(k)-s(k+n-1)); 
    end 
    d(n)=x; 
end 

 
In this code segment, KMAX and NMAX are to be chosen by the developer, where 

NMAX represents the total number of samples to be taken and KMAX represents the size of 
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the window used to identify the samples; KMAX must be less than NMAX.  Varying these 

values alters the detected fundamental frequency slightly and larger values require more 

computation time.  Experimentation revealed that setting NMAX in the region of 100-200 

and KMAX in the region of ¼ to ½ the value of NMAX yielded good results.  

3.2.2 Implementing the Algorithm for the 68000 

After the AMDF functionality was verified using MATLAB, the next step was to 

implement the ADMF in assembly.  A few revisions were written, mainly to reduce the 

number of clock cycles.  However, the functionality of the final revision was tested and 

verified using a fixed data array with the same values in s() from the MATLAB 

simulation.  The routines were simulated using the EASy68K editor, assembler, and 

simulator and the results can be found in Section 5.2. 

Originally, the hardware design revolved around an 8MHz system clock.  It will 

be shown later that this clock will be insufficient unless changes to the design are made.  

However, the preliminary discussion of the software will include timings for an 8MHz 

system clock. 

The primary algorithm for the AMDF consists of a pair of nested for-loops that 

creates a computational complexity of O(KMAX*NMAX).  If KMAX = 96 and NMAX =192, 

this means that there will be a total of 18432 iterations through the array before 

considering any calculations made with the data.  In reality, the loops take approximately 

1.1M clock cycles according to the Easy68K simulator, which, at an 8.0MHz system 

clock equates to approximately 0.1375 seconds.  This value includes all the steps 

necessary to perform the AMDF, but not to find the fundamental frequency or output the 

necessary commands to the synthesizer. 
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With these considerations in mind, there are two approaches for an interrupt-

driven sampling routine.  The first approach involves storing all the data from the analog-

to-digital converter in an array first, then performing all the calculations after a certain 

number of measurements have been saved.  The second approach involves storing the 

first M-number samples, then performing the inner loop of the MATLAB code after each 

consecutive reading until the number of readings is equivalent to the sum of M and N. 

The two different approaches have different advantages and disadvantages.  With 

the first approach, there is an abundant amount of time remaining between samples.  

Therefore, the processor can run at a slower clock frequency and sample at a higher 

frequency.  The disadvantage to the first approach is that the bulk of the calculations are 

performed at the end of a sampling cycle, and the number of calculations required to 

perform the AMDF and identify the fundamental frequency requires approximately 1.2M 

clock-cycles which equates to approximately 0.15 (8 MHz clock) seconds before adding 

the overhead to send the MIDI information to the synthesizer.  The goal, however, is to 

reduce the delay at less than 20-30ms so as not to be audibly noticeable by the user [Lago 

2004]. 

The second approach performs most of the calculations for the AMDF between 

each sampling interrupt routine.  The advantage of this approach is that the remaining 

calculations to process the AMDF results require approximately 22000 clock cycles, 

which equates to approximately 2.75ms (8 MHz clock) before adding the overhead to 

send the MIDI information to the synthesizer.  The disadvantage with this approach, 

however, is that the inner-loop requires approximately 5600 clock cycles, and if the 
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sampling rate is 3520Hz ( ), this leaves 2 ×1760Hz 8MHz
3520Hz = 2461 clock cycles to perform 

the calculations, meaning that the routine is over budget by 3139 clock cycles.   

Regardless of which approach is chosen, it is now obvious that the clock 

frequency must increase to accommodate the real-time calculations, or the sampling rate 

must significantly decrease.  If the second approach is chosen, then the sampling 

frequency must decrease, regardless.   

Later versions of the 68000 are capable of running at 12MHz and 16MHz.  If a 

16MHz clock is chosen and the maximum allowed vocal frequency is reduced from 

1760Hz to 1250Hz (sampling rate of 2500Hz), which corresponds to a difference of six 

chromatic steps or ½ octave, the new sampling rate would leave 6400 clock cycles 

between samples to perform the inner-loop calculations.  The extra clock cycles will be 

used to ensure the 68000 has enough time to finish all calculations during the interrupt 

routine and to allow for further additions to the interrupt routine for the development 

interface and options.  Furthermore, the sampling rate of 2500Hz would be easily 

generated by the hardware and represents a convenient integer number for division later 

in the routine. 

The other choice is to significantly reduce the sampling frequency to 1000Hz and 

leave the clock at 8MHz.  This leaves 8000 clock cycles between interrupt service 

requests to perform the calculations described above.  However, this would reduce the 

maximum allowed frequency to 500Hz, which corresponds to a high note of B4, (see 

Table 4.2).   This results in a difference of eleven chromatic steps, which is almost an 

entire octave below the original sampling frequency.  The advantage to this choice is that 

the lab equipment can be used to perform real-time simulations with the hardware design 
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in its entirety.  Therefore, the 8MHz clock will used in conjunction with a lowered 

sampling frequency. 
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CHAPTER IV – SYSTEM IMPLEMENTATION 
 

This chapter explores the two necessary components of this design, namely the 

implementation of the hardware and software for the prototype.  The hardware section 

focuses on the techniques used for construction; a detailed discussion of the design can be 

found in Section 3.1.  The software section focuses on the implementation of the AMDF 

in assembly.  Each functional component required to implement this algorithm in 

assembly will be discussed in detail. 

 
4.1 Hardware 

 
There are three methods available for assembling this hardware, each with a 

varying level of permanence and usability.  The first method that may come to mind is 

bread-boarding.  This method was immediately rejected because, in the lab, students 

typically have to reduce the typical 8MHz clock frequency to 4MHz to reduce the noise 

on the breadboard tracks.  The next method involves laying copper tracks and sending the 

design to be fabricated.  Once the design is received, the components would be soldered 

to the board.  However, the final product is rather permanent and difficult to modify 

should there be an error in the hardware design.  Therefore, the hardware for this design 

will be assembled using VectorBord prototyping board.  The model used is double-sided 

and contains individual solder pads spaced 0.050 inches apart on both sides with non-

plated-through holes.  This method combines the advantages of both the previous 

methods, in that designs are somewhat permanent, but lend themselves to rework more 

easily than a fabricated design.  The prototyping board consists of 2960 pads arranged in 

40 rows by 74 columns on either side of the board, leaving a total of 5920 pads for 

potential use when considering using both sides of the board. 
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The first necessary step to implementing the hardware design is to create a board 

layout.  This is always done for fabricated design and sometimes done for prototyping.  It 

is easier to solder tracks, parts, and wires when the layout has been visualized and 

developed on paper.  In industry, there exists software for board layout; however, that 

software is expensive and doesn’t necessarily lend itself to prototyping layout as well as 

track layout.  Therefore, Adobe Acrobat CS is used to draw the board layout.  This might 

not be the best tool, but Photoshop files support various image layers, which has its 

advantages. 

To start, the prototyping board was rendered to scale by creating a series of 

gridlines and can be seen in Figure 4.1.  The gridline for every tenth pad was made 

thicker for a quick visual reference.  No through-holes were rendered because they clutter 

the display.  A large blue track representing the ground track was placed around the 

gridlines.  Finally, two yellow segments were placed at the bottom of the board to 

represent the area on the board where the ground track is removed.  This is done so that 

the bottom segment of the topside ground track can be used to carry the system clock 

across the board without as much fear of noise permeating the neighboring lines. 
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Figure 4.1:  Topside view of the empty prototyping board. 

 
Even before placing digital parts on the board, it was necessary to conceptualize 

the size of the parts in relation to the size of the board.  The parts were loosely arranged 

based on their pinouts and size.  Once the loose arrangement was loosely finalized, the 

parts’ digital equivalents were placed on the digital grid as shown in Figure 4.2.  The 

parts were created using copies of the pinouts taken from the various part specifications, 

primarily so the pin names would be included on the board layout and could be used for 

debugging and quick reference when looking at the physical creation. 

55 



 
Figure 4.2:  Topside view of loosely place parts on the prototyping board. 
 
The next step was to create a convention for placing tracks, wires, and discrete 

components.   One may also notice the additional colorings on the pinouts above.  These 

were added to certain pins for quick reference while creating the board layout.  Table 4.1 

describes all conventions used in the board layout.  The choices for color were mostly 

arbitrary. 

 Item Color 
VCC Red 

Tied High Red 
VSS/GND Black Pi

ns
 

Not Connected Yellow 
Topside Track Blue 
Topside Wire Orange 

Backside Track Green 
Backside Wire Purple Li

ne
s 

Resistors/Caps 
Either Side Red 

 
Table 4.1:  Board layout color-coding conventions. 
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Once the conventions and the loose layout were finalized, the board layout began.  

For this design, a combination of solder tracks and wires were used to create the layout.  

For reference, connecting two or more pads on the prototyping board together by 

dragging the solder across the thin break between the pads creates a solder track. 

Conversely, soldering a wire involves soldering the wire to two separate pads on the 

board.  There is a mixture of solder tracks and wires in this design to reduce the clutter of 

additional wires.  The final board layout for the top and bottom sides of the board can be 

found in Appendix I.   

 
4.2 Software 

 
Now that the clock frequency and sampling rate have been finalized and the 

hardware design and layout have been completed, it is appropriate to discuss the methods 

to identify a frequency.  After the 68000 initializes and all preliminary initializations in 

code are complete, the general approach is to sample the data, perform the AMDF 

calculations, find the locations of the minima, calculate the periods between the minima, 

calculate the average frequency, and send the data to the synthesizer. 

4.2.1 Initializations 

Upon coming out of reset, the 68000 code clears the data and address registers 

used for the counters and resets the address registers used for the sampled data array and 

the AMDF results array.  The two ACIAs are also reset by sending $03 to their control 

registers.  Then the ACIAs are configured to divide their clocks by 16dec, to set the parity 

equal to none, to set the data for 8 data bits, and one stop bit for general communications.  

This results in a bit rate of 38400bps for the SCI ACIA and 31250bps for the MIDI 
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ACIA.  Next, interrupt requests are enabled on the 68000 by ANDing the status register 

(SR) with $F8FF.  At this point, the software loops by repeatedly calling the SENDMIDI 

routine and waits for an interrupt.  

4.2.2 Sampling and performing the AMDF (ADCIRQ) 

The sampling generator is the only device in this design that generates an (auto-

vectored) interrupt.  The sampling occurs every sampling period as adjusted by the 

adjustable sampling frequency generator (see Section 3.1.10), and this routine executes at 

that time.  This interrupt service routine is perhaps the most important routine in this 

design because it is the top level.  Figure 4.5 contains a flow diagram representing this 

routine.  Please note that this figure represents one routine iteration.  Additional iterations 

are performed on subsequent interrupt requests. 

 

Figure 4.3:  Flow diagram for interrupt service routine (ADCIRQ) 
 

When this interrupt service routine begins execution, the data sample from the 

A/D converter is read and stored.  Then a value is written to the A/D converter to start the 
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next conversion.  This command is placed as close to the beginning as possible because 

the remaining assemble commands used to calculate the AMDF array do not guarantee a 

fixed number of clock cycles between each execution of the routine.  Therefore, placing 

the next write instruction immediately after the read instruction guarantees the next 

conversion will be complete before the next sampling period and this eliminates any 

sampling period discrepancy due to software timing, except the very first sample.  

This service routine is also responsible for calculating the AMDF array values by 

executing the nested for-loops as discussed in the proof of concept section (see Section 

3.2).  A total of KMAX+NMAX samples must be taken to complete the AMDF.  However, 

at least KMAX (number of samples in the sliding window) must be taken before the inner-

loop calculations may occur.  Thus, each time a sample is taken, the number of 

measurements is compared to KMAX.  If the number of measurements is less than KMAX, 

the routine exits and the 68000 waits for the next sampling interrupt request to occur, else 

the AMDF calculations begin. 

After at least KMAX samples are taken, one (inner-loop) iteration of the AMDF is 

calculated, and the 16-bit result is stored in a new array in memory named DD, which is 

equivalent to the d-array in the simulations and literature.  However, this will herein be 

referred to as the AMDF array to avoid confusion.  The data stored during each inner 

loop calculation is )()( nksksxx +−+= , where n and k are indices and s is the sampled 

data array.  After KMAX elements of the single iteration through the inner loop have been 

processed, the interrupt routine exits.  This process continues until KMAX+NMAX samples 

are taken, at which time interrupt requests to the 68000 are disabled in software, and the 

remaining functions to find the fundamental frequency are called. 
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4.2.3 Finding the periods between minima (FINDINDICES) 

This routine searches through the ADMF results stored in the DD array and finds 

the corresponding AMDF array indices correlating to the local minima that fall below a 

defined threshold.  Figure 4.6 illustrates a typical set of results from using the AMDF, the 

threshold value, and the identified local minima falling below the threshold.  Once these 

array indices are identified they will be used to identify the fundamental frequency. 

 
Figure 4.4:  Sample AMDF results (blue) and regions where the data fall below the 

detection threshold (green). 
 

The general approach to identifying the useful minima in the AMDF results array 

is to save all indices of minima where the AMDF samples fall below 25% of the 

maximum value in the AMDF array.  Since there are two sets of minima each period, it is 

necessary to define a cutoff point for which to define a minimum.  The range of the data 
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will vary depending on the number of samples considered, thus it is necessary to redefine 

the threshold value each time the AMDF finishes (before this function executes).  The 

threshold value is set to 25% of the maximum value in the AMDF array because setting 

the threshold to 25-30% resulted in better performance during the MATLAB simulations 

when performing a search.  However, multiplying by 25% is equivalent to dividing by 

four, which is a simpler operation in assembly, thus requiring fewer precious clock 

cycles.  Once the threshold has been identified, a sequential search for the local minima 

begins as described in the following paragraphs and graphically in Figure 4.7. 

 

Figure 4.5:  Flow diagram for finding indices. 
 

The first step in finding the minima is to identify the maximum value in the 

AMDF array.  A variable called MAXOFDD is initialized to zero and a sequential search 

through the array is executed and each value is compared to MAXOFDD.  If the current 

value is greater than MAXOFDD, MAXOFDD assumes the current AMDF value.  Once 
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the search is complete, MAXOFDD is stored in a data register and divided by four to set 

the threshold for the next set of searches. 

Then this routine loads the initial AMDF array index into an address register and 

iterates through the array until a value that is less than or equal to the threshold is 

identified.  If the current value is less than the threshold, the routine branches to a smaller 

loop and finds the local minimum value in the data that fall below the threshold, while 

continuing to iterate through the AMDF array.  Once the sequentially values rise above 

the threshold, the array index pointing to the minimum value in the aforementioned data 

segment is stored to the FINDEX array.  The smaller loop exits and the other loop resumes 

checking for values falling below the threshold.  This process repeats until all values in 

the AMDF results array have been examined. 

4.2.4 Calculating the difference between indices (FDIFF) 

Once the FINDEX array has been populated, the periods can be identified in units of 

address offsets.  Subtracting the array indices will result in the number of sample periods 

between each minimum.  This is represented by the formula: FINDEX(n) = FINDEX(n+1) – 

FINDEX(n).  The FINDEX array is re-used to save memory and because the data in its present 

form is not used later in the code.  Figure 4.6 shows a flow diagram for this function. 
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Figure 4.6:  Flow diagram for finding index differences 
 

The periods are calculated by loading the initial address of FINDEX into two 

address registers.  One address register is incremented by two to point to the next index in 

the array, thereby accessing FINDEX(n+1).  The other address register is used to access 

FINDEX(n).  As the array is examined, FINDEX(n+1) is compared to the end-of-array flag.  If 

equal, the routine exits, else the subtraction is stored in FINDEX(n). An end-of-array flag is 

used instead of counting the number of entries in the array because the number of entries 

varies and can make debugging in a hex-dump more difficult, whereas an end-of-array 

flag is easy to spot at a glance.  Before the routine exits, the last entry of the original 

FINDEX array is replaced with a different end-of-array flag as the last entry in FINDEX is no 

longer valid.  This new end-of-array flag will be used by FAVG (see Section 4.2.5). 

4.2.5 Finding the fundamental frequency (FAVG) 

This routine sums all entries in FINDEX after FDIFF has been executed and 

calculates the average frequency for the array of samples.  Recall in Figure 4.6 that the 

AMDF produces a series of minima.  Technically the difference between any two close 

minima will yield the fundamental period (T0).  The results, however, produce more than 

one of these minima, which will cause the associated period to vary.  Hence, the average 
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is used to create one fundamental period, which is converted to the equivalent 

fundamental frequency (f0).   

The number of entries in FINDEX is multiplied by the sampling rate after the sum of 

the periods (stored in FINDEX) is calculated. This result is divided by the sum of elements 

in FINDEX from FDIFF.  The quotient is an integer and is stored as the fundamental 

frequency (f0).  Equation 4.1 mathematically represents this process. 

 f0 =
fs ⋅ N

FINDEX i
i=1

N

∑
 (4.1) 

The remainder is used to determine whether to round the result up.  If the 

remainder is greater than or equal to half of the divisor (i.e. the sum of elements in 

FINDEX), then f0 should be rounded up.  This check is accomplished by dividing the 

previously calculated sum of all FINDEX entries by two and by comparing the remainder 

from the division to this value.  If the remainder is greater than or equal to the half the 

sum, f0 is incremented by 1.  

4.2.6 Converting frequency to MIDI (FREQ2MIDI) 

This routine is actually the simplest of all the routines regarding conversion of 

data.  The binary search is one of the first methods that come to mind to convert the 

frequency to a MIDI note number since the numbers can be expressed as ordered lists.  

This method has a computational complexity proportional to O(log N) and is memory 

efficient.  However, execution time efficiency and consistency are of greater interest in 

this design.  Instead of using the binary search to find the frequency in a table, 

interpolating between numbers, and assigning a value for the MIDI note number, the 
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frequency (f0) itself is used as an index offset for a very long linked list, since f0 is an 

integer. This linked list contains each MIDI note number (36-84dec) corresponding to 

frequencies from 63-1078Hz and Table 4.2 shows correlating integer frequencies to 

pitches and MIDI note numbers.  
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Pitch 

Actual  
Freq. (Hz) 

Valid  
Freqs. (Hz) 

Address 
Offsets 

MIDI Note  
Number 

C2 65.406 63-67 0-4 36 
C#2 69.296 68-71 5-8 37 
D2 73.416 72-75 9-12 38 

D#2 77.782 76-80 13-17 39 
E2 82.407 81-84 18-21 40 
F2 87.307 85-89 22-26 41 

F#2 92.499 90-95 27-32 42 
G2 97.999 96-100 33-37 43 

G#2  103.826 101-106 38-43 44 
A2  110 107-113 44-50 45 

A#2  116.541 114-120 51-57 46 
B2  123.471 121-127 58-64 47 
C3  130.813 128-134 65-71 48 

C#3  138.591 135-142 72-79 49 
D3  146.832 143-151 80-88 50 

D#3  155.564 152-160 89-97 51 
E3  164.814 161-169 98-106 52 
F3  174.614 170-179 107-116 53 

F#3  184.997 180-190 117-127 54 
G3  195.998 191-201 128-138 55 

G#3  207.652 202-213 139-150 56 
A3  220 214-226 151-163 57 

A#3  233.082 227-240 164-177 58 
B3  246.942 241-254 178-191 59 
C4  261.626 255-269 192-206 60 

C#4  277.183 270-285 207-222 61 
D4  293.665 286-302 223-239 62 

D#4  311.127 303-320 240-257 63 
E4  329.628 321-339 258-276 64 
F4  349.228 340-359 277-296 65 

F#4  369.994 360-380 297-317 66 
G4  391.995 381-403 318-340 67 

G#4  415.305 404-427 341-364 68 
A4  440 438-453 365-390 69 

A#4  466.164 454-480 391-417 70 
B4  493.883 481-508 418-445 71 
C5  523.251 509-538 446-475 72 

C#4  554.365 539-570 476-507 73 
D5  587.33 571-604 508-541 74 

D#4  622.254 605-640 542-577 75 
E5  659.255 641-678 578-615 76 
F5  698.457 679-719 616-656 77 

F#5  739.989 720-761 657-698 78 
G5  783.991 762-807 699-744 79 

G#4  830.609 808-855 745-792 80 
A5  880 856-906 793-843 81 

A#5  932.328 907-960 844-897 82 
B5  987.767 961-1017 898-954 83 
C6  1046.502 1018-1078 955-1015 84 

Table 4.2:  Pitches corresponding to actual fundamental frequencies, valid integer 
representations from the AMDF, linked list memory offsets, and MIDI note numbers.   
All numbers are in base 10.  Red shaded areas represent pitches outside the normal 

human vocal range.  The blue shaded area is middle C on the piano. 
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This conversion method is inefficient regarding memory use because the linked 

list required 1016dec entries, but there is plenty of memory available.  However, the 

method is extremely efficient regarding speed because the computational complexity for 

finding the appropriate MIDI note number is O(1).  This works because there is only one 

MIDI note number for each frequency, whereas there may be multiple frequencies for 

each MIDI note number. 

4.2.7 Sending a Note to the Synthesizer (SENDMIDI) 

This routine is very unique in that it is the only routine that is continually 

executed outside the interrupt service routine (ADCIRQ).  The reason for this is simply 

because the ACIA itself forms a bottleneck in this design.  One may recall from Section 

2.4.4 that the minimum time required to send a MIDI message of three bytes length is 

0.96 ms.  This poses a problem because the sampling routine triggers every 1.000 ms.  

Therefore, this routine must be placed outside the sampling routine and called 

continuously in a never-ending while-loop.  A simple flag set in the FAVG routine 

(Section 4.2.5) will be used to determine whether a note is to be sent to the synthesizer, 

the current note is to be turned off, and if a new note is to be sent to the synthesizer.  

Figure 3.9 illustrates the functionality of one routine via a flow diagram. 
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Figure 4.7:  Flow diagram for sending MIDI commands. 
 

Aside from the timing considerations, this routine analyzes a variable called 

MIDIFLAG to determine what packets are to be sent.  The first check determines if any 

packets are to be sent at all.  If not, then the routine exits.  The second check determines 

if the previous note is to be disabled without sending a new note to the synthesizer.  This 

is useful if the user quits singing.  The next check determines if the previous note needs 

to be disabled with the intentions of sending a new note (on command) to the synthesizer. 

 If a note is to be enabled or disabled, the routine takes the note number specified 

in the MIDINOTE variable and formats a MIDI protocol packet.  This packet is sent to 

the synthesizer using the MIDI ACIA.  Recall that the packet format for turning a note on 

or off is as follows: 
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sc nn vv 
 

 s = Status Nibble (Command) 
 8 = Note Off 
 9 = Note On 
 c = Channel Number (0-15dec) 
nn = MIDI Note Number (0-127dec) 
vv = Note Velocity 

 
Each time this routine is called with the intentions of sending a new note, the note 

off MIDI command is sent with the previously activated note (PREVNOTE) if the 

previous note differs from the current note.  Then the value of the current note, stored in 

MIDINOTE, is loaded into a data register.  The current note is sent with the note on 

MIDI command, and the current value of MIDINOTE is saved in the variable 

PREVNOTE, so that it may be turned off during the next instance of SENDMIDI.  

Before the routine exits, the flags are reset so no additional data is accidentally 

transmitted when unnecessary. 
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CHAPTER V – RESULTS 
 

5.1 MATLAB AMDF Proof of Concept Simulations 
 

The AMDF algorithm was simulated using MATLAB v7.0 and pre-recorded 

Windows audio (wav) files set to record 8-bit samples on a single channel at the 

minimum frequency the software allowed (8.000 kHz).  This data was down-sampled to 

4.0, 2.0, 1.6 and 1.0 kHz to by removing every second, fourth, fifth and eight sample, 

respectively, to better approximate the sampling rate to be used for the final design.  To 

simulate the hardware design, the sample data was then half-wave rectified by setting all 

data with negative amplitude equal to zero.  Although the half-wave rectification is non-

linear and introduces additional harmonics, the AMDF performed similarly to the non-

rectified case in the preliminary simulations.  MATLAB returns wav file values in the 

range of minus one to positive one and so the data were scaled by 255 to simulate the 

output from the A/D converter.  Finally, all floating-point numbers were rounded down to 

simulate unsigned bytes from the A/D converter. 

The AMDF code obviously outputs the reported fundamental frequency for a 

selected data segment of length KMAX+NMAX.  However, it is necessary to compare this 

output to another frequency measure of the same data.  This is accomplished by 

computing the power spectrum of the same data segment by using a 1024 point FFT.  

Once computed, maxima that appear above a certain threshold were calculated and their 

frequencies recorded.  These recorded frequencies were compared to the output of the 

AMDF.  This process is repeated for 12 data segments for each file.  Each new segment 

uses the last KMAX entries of the previous data segment to better represent how the 

assembly code will function.  Additionally, the same 12 data segments for each file were 
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analyzed for sampling frequencies of 4.0, 2.0, 1.6 and 1.0 kHz.  Finally, three files were 

analyzed with a male signer singing tones approximating F3 (174.614 Hz), A3 (220 Hz) 

and C4 (261.626).  This set of simulations is by no means an exhaustive set of tests, but 

gives an idea of the success or failure of the algorithm.  The code responsible for this can 

be seen in Appendix II and the results can be seen in Figures 5.1-5.4 and Tables 5.1-5.3. 

The initial simulation results (not shown) were very disappointing.  However, 

varying KMAX and NMAX varied performance of the AMDF.   In the results presented in 

Tables 5.1-5.3, the values of KMAX and NMAX had to be reduced for the lower sampling 

frequencies, else the reported results had an extremely high error.  Ultimately, using an 

adaptive window and adaptive cutoff threshold would increase the AMDF performance 

[Kim 1998].  Figures 5.1-5.4 graphically show simulation results for one iteration of the 

“A3.wav” file sampled at each of the four sampling frequencies.  In each figure, there are 

three subfigures.  The top subfigures show the half-wave rectified input signal, where the 

sample number is represented on the horizontal axis and signal amplitude is represented 

on the vertical axis.  The middle subfigures show the results of the AMDF as applied to 

the data in the top subfigures.  In the middle subfigures, the horizontal axis represents the 

sample number, the vertical axis represents the AMDF results, and the green line 

represents the threshold for identifying minima relevant to the frequency identification.  

The bottom subfigures show the power spectra for the data from the top subfigures, 

where the horizontal axis represents the frequency in Hz, and the vertical axis is the 

magnitude of the power spectra. 
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Figure 5.1:  AMDF simulation results for A3, fs = 4.0 kHz. 
 

 
Figure 5.2:  AMDF simulation results for A3, fs = 2.0 kHz. 

 

72 



 

Figure 5.3:  AMDF simulation results for A3, fs = 1.60 kHz. 
 

 
Figure 5.4:  AMDF simulation results for A3, fs = 1.0 kHz. 
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  'f.wav' - Sampling Frequency (Hz) 
 Iteration 4000 2000 1600 1000 

1 606.061 193.182 213.333 166.667 
2 602.41 237.288 256 166.667 
3 598.802 269.663 210.526 148.936 
4 550.898 239.521 231.579 150.943 
5 550.898 309.524 231.579 144.578 
6 571.429 285.714 190.476 144.578 
7 571.429 272.189 213.333 144.578 
8 571.428 331.361 207.059 144.578 
9 520.71 261.905 188.235 132.53 

10 544.379 214.286 169.412 120.482 
11 520.71 273.81 169.412 166.667 

A
M

D
F 

12 497.041 292.994 169.412 83.333 
1 171.88 169.92 171.88 169.92 
2 171.88 169.92 170.31 169.92 
3 167.97 167.97 170.31 168.95 
4 167.97 167.97 170.31 168.95 
5 167.97 167.97 168.75 168.95 
6 167.97 167.97 168.75 167.97 
7 167.97 167.97 168.75 167.97 
8 167.97 166.02 168.75 167.97 
9 167.97 166.02 168.75 167.97 

10 167.97 166.02 168.75 167.97 
11 167.97 166.02 168.75 166.99 

FF
T 

12 164.06 166.02 168.75 166.99 
1 434.181 23.262 41.453 3.253 
2 430.53 67.368 85.69 3.253 
3 430.832 101.693 40.216 20.014 
4 382.928 71.551 61.269 18.007 
5 382.928 141.554 62.829 24.372 
6 403.459 117.744 21.726 23.392 
7 403.459 104.219 44.583 23.392 
8 403.458 165.341 38.309 23.392 
9 352.74 95.885 19.485 35.44 

10 376.409 48.266 0.662 47.488 
11 352.74 107.79 0.662 0.323 

| E
rr

or
 (H

z)
 | 

12 332.981 126.974 0.662 83.657 
      
 * NMAX =192, KMAX = 96 for fs = 4000 and 2000 Hz. 
 ** NMAX =96, KMAX = 48 for fs = 1600 and 1000 Hz. 

 
Table 5.1:  AMDF simulation results from MATLAB for F3. 
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  'a.wav' - Sampling Frequency (Hz) 
 Iteration 4000 2000 1600 1000 

1 493.827 200 200 189.873 
2 621.118 237.288 200 188.406 
3 600 285.714 222.785 180.723 
4 607.595 241.379 202.532 186.441 
5 611.465 238.095 203.175 166.667 
6 589.744 277.457 205.128 158.73 
7 554.913 263.736 205.128 181.818 
8 551.724 243.94 225.641 137.931 
9 574.713 287.293 205.128 137.931 

10 528.736 287.293 228.571 168.831 
11 574.713 266.667 225.571 151.163 

A
M

D
F 

12 574.713 266.667 207.792 139.535 
1 199.22 203.13 198.44 203.13 
2 199.22 205.08 198.44 199.22 
3 199.22 205.08 198.44 204.1 
4 199.22 207.03 198.44 204.1 
5 199.22 207.03 198.44 205.08 
6 199.22 207.03 198.44 205.08 
7 207.03 208.98 198.44 206.05 
8 207.03 208.98 204.69 206.05 
9 207.03 208.98 204.69 206.05 

10 207.03 210.94 206.25 207.03 
11 207.03 210.94 206.25 208.01 

FF
T 

12 210.94 210.94 206.25 208.01 
1 294.607 3.13 1.56 13.257 
2 421.898 32.208 1.56 10.814 
3 400.78 80.634 24.345 23.377 
4 408.375 34.349 4.092 17.659 
5 412.245 31.065 4.735 38.413 
6 390.524 70.427 6.688 46.35 
7 347.883 54.756 6.688 24.232 
8 344.694 34.96 20.951 68.119 
9 367.683 78.313 0.438 68.119 

10 321.706 76.353 22.321 38.199 
11 367.683 55.727 19.321 56.847 

| E
rr

or
 (H

z)
 | 

12 363.773 55.727 1.542 68.475 
      
 * NMAX =192, KMAX = 96 for fs = 4000 and 2000 Hz. 
 ** NMAX =96, KMAX = 48 for fs = 1600 and 1000 Hz. 

 
Table 5.2:  AMDF simulation results from MATLAB for A3. 
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  'c.wav' - Sampling Frequency (Hz) 
 Iteration 4000 2000 1600 1000 

1 906.077 254.237 290.909 250 
2 491.228 285.714 256.79 142.857 
3 564.706 285.714 217.284 131.579 
4 840.909 268.657 237.037 117.647 
5 666.667 292.683 217.284 160 
6 613.333 352.941 216.216 172.414 
7 640 57.143 220 108.108 
8 601.77 205.714 240 250 
9 571.429 262.857 241.509 250 

10 666.667 148.571 241.509 81.633 
11 617.143 170.455 272.34 122.449 

A
M

D
F 

12 545.455 181.818 240 58.824 
1 468.75 472.66 470.31 241.21 
2 468.75 251.95 470.31 241.21 
3 472.66 253.91 470.31 241.21 
4 242.19 248.05 471.88 241.21 
5 242.19 250 473.44 290.04 
6 246.09 250 240.63 239.26 
7 250 251.95 240.63 254.88 
8 250 251.95 242.19 254.88 
9 253.91 251.95 243.75 253.91 

10 253.91 250 245.31 253.91 
11 253.91 250 246.88 253.91 

FF
T 

12 250 250 248.44 252.93 
1 437.327 218.423 179.401 8.79 
2 22.478 33.764 213.52 98.353 
3 92.046 31.804 253.026 109.631 
4 598.719 20.607 234.843 123.563 
5 424.477 42.683 256.156 130.04 
6 367.243 102.941 24.414 66.846 
7 390 194.807 20.63 146.772 
8 351.77 46.236 2.19 4.88 
9 317.519 10.907 2.241 3.91 

10 412.757 101.429 3.801 172.277 
11 363.233 79.545 25.46 131.461 

| E
rr

or
 (H

z)
 | 

12 295.455 68.182 8.44 194.106 
      
 * NMAX =192, KMAX = 96 for fs = 4000 and 2000 Hz. 
 ** NMAX =96, KMAX = 48 for fs = 1600 and 1000 Hz. 

 
Table 5.3:  AMDF simulation results from MATLAB for C4.   

FFT errors are shown in italicized red. 
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These results indicate that the real-time implementation of this device will have 

errors that will likely be perceptible to the user.  The better performances of the AMDF 

are at best +/- a musical half step from the intended frequency, while other errors are up 

to two octaves off.  Ideally, a faster processor would yield better results because 

additional techniques could be implemented to correct the errors. 

 
5.2 Easy68K Simulations 

 
The next logical step is to simulate the assembly level implementation before 

using the constructed hardware.  There are two ultimate goals for these simulations.  The 

first goal is to ensure that the assembly code results match the MATLAB simulation 

results for the same data set, aside from rounding.  The second goal is to ensure that the 

code execution time is short enough to operate between sampling periods. 

The assembly implementation must be modified slightly to accommodate the fact 

that the data are not sampled in real time with a microphone.  This was accomplished by 

saving the source data used in the MATLAB simulations to an assembly file (s.x68).  The 

data was added to the bottom of the program space in the code.  Then the interrupt 

routine was modified so that the data was copied from each subsequent entry in the s() 

array instead of from the ADC location. 

Once these modifications were complete, breakpoints were set in the code and 

were executed to view intermediate results.  Ultimately, this helped in the code 

debugging process, as there were a few logical problems that needed to be resolved.  

Once the coding errors were corrected, the results could be observed.   Initial results 

proved promising, in that the observed frequency matched the frequency identified in 
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MATLAB in all cases, excepting the rounding error in the final step.  All the cases 

described in Section 5.1 were tested and the results matched in each case. 

The Easy68K also has a tool that measures the number of clock cycles between 

instructions.  This tool is used to determine if the timing is correct between interrupt 

requests.  Ultimately, the goal is to ensure that the number of clock cycles is less than 

8000 if a 1.0 kHz sampling frequency is used or 5000 if a 1.6 kHz sampling frequency is 

used.  Initially, these tests proved that the code would not run in the time allotted because 

the average number of clock cycles between samplings was around 9000 +/- 10% clock 

cycles.  Upon further investigation, the code appeared to be inefficient, so it was 

rewritten with more efficient uses of commands than before.  This accounted for a 

reduction of clock cycles to 6000 +/- 10% with the same settings for KMAX and NMAX, a 

50% increase in efficiency.  

Ultimately, this simulation tool saved countless hours of debugging in the lab.  

Code revisions could be implemented and simulated quickly, without the need for using 

the emulator or hardware.  This simulator also saved time in the sense that the code was 

simulated while the hardware prototype was still being constructed. 

 
5.3 Hardware Debugging with the Deneb Emulator 

 
After constructing the physical hardware as described in Section 4.1, it was 

necessary to test the hardware in two stages to ensure the prototype matched the 

schematics and board layout before moving on to the final design implementation.  The 

first stage involved checking all the connections formed by tracks and wires.  The second 

stage involved checking the various modules with the memory dump feature of the 

Deneb Emulator software and with software segments written in assembly. 
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5.3.1 Checking Physical Connections 

In general, soldered connections can have a few types of failures.  The first is lack 

of continuity (open circuit), the second is a short between neighboring pads/wires/pins, 

and the third is internal quasi-open circuits formed by capacitance, which can be formed 

by “cold” solder joints5.  Although checks of suspicious connection were made during 

construction, there are inevitably additional errors for a large design. 

 The first and most tedious task is checking all the connections between devices to 

ensure all part are connected according to the schematic.  Performing a continuity check 

with a digital multi-meter (DMM) with all the parts removed from their respective 

sockets checks for open circuits well.  Checking for short circuits is a little more difficult 

because each pin of one device must be checked against every other pin on every other 

device to check each connection.  Instead of checking every combination of pins, only 

neighboring pins were checked for shorts because most shorts come from wires and 

solder crossing pads.  The final test involved measuring the capacitance between 

connections.  The lines most susceptible to error because of too much capacitance are the 

data and address lines; hence these were the only lines check for cold solder joints 

outside of a purely visual inspection of all connections. 

5.3.2 Memory 

Memory is perhaps the easiest component to test outside of the manual tests 

described above because all one has to do is connect the emulator, then read and write to 

the memory dump window.  Once the power was applied to the board and the emulator 

                                                 
5 “cold” solder joints are formed when insufficient heat is applied to the physical 
components soldered. 
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configured, the memory did not work as expected.  The dump window read the values 

corresponding to floating values on the data lines for both the even and odd address 

space.  This meant that either the memory was bad or the MMU was not operating 

properly, the latter being the most likely cause.  The memory select lines (SERAM’ and 

SORAM’) were not asserting when the corresponding addresses were accessed in the 

dump window.  Further investigation revealed that address strobe (AS’) was connected to 

VCC (5V), thereby constantly disabling both decoders.  Once the connection was restored, 

read/write functionality was possible. 

This design relies on the non-volatility of the RAM, as there is no other way to 

program the prototype without adding additional hardware or purchasing additional 

components.  The only tests of interest are to (1) see if the RAM will hold values with the 

noise present on the board and to (2) see if the NVRAM holds its values once power is 

cycled.  Both tests had positive results. 

5.3.3 Bar graph LEDs 

Upon powering the board, the LEDs light up if values are present on the data 

lines.  Testing the LEDs is a simple as testing the memory, with the exception that the 

data written to the register driving the LEDs will not appear in the dump window because 

the hardware design would be needlessly more complicated.  The other difference is that 

all bits written must be inverted to light the appropriate LEDs.  When this test was 

performed, one observed inconvenience was that after the data was written, the values on 

the LEDs changed from the input value, mainly because the emulator attempts to read 

many values to update the window. 
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It was necessary to write a small segment of code to test the LEDs.  This code is 

attached in Appendix III.  The test simply lit a single LED, and performed a one-bit 

logical shift after a short delay, and repeated indefinitely.  This test revealed that the first 

and third LEDs were shorted, a test not revealed by checking neighbors for shorts.  The 

short was fixed and the LEDs functioned properly thereafter.  

5.3.4 A/D converter 

The A/D converter testing required the addition of extra hardware as seen in 

Figure 5.1.  The hardware consisted of a simple 10k potentiometer with the end terminals 

connected to VCC (5V) and ground.  The wiper terminal was connected to IN0 on the 

ADC0809.  By varying the position of the wiper, the voltage between the wiper terminal 

and ground should vary linearly between 0 and 5V.  Similarly, the reading from the A/D 

converter readings should respectively vary between 0 and 255dec. 

 

Figure 5.5:  A/D converter test circuit. 
 

This module is similar to the LEDs in that the value read from the memory dump 

window will not be the same as the one written.  To initiate the A/D conversion, any 

value may be written to the device.  When the emulator immediately reads the device 

after the write operation, the previous conversion results are displayed in the window.  To 

perform the test, the wiper on the potentiometer is varied a number of times, the resulting 
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voltages are measured with a DMM, and the equivalent decimal values are calculated for 

comparison.  The A/D converter functions as expected with the potentiometer.  After this 

test was completed, the additional hardware was removed. 

5.3.5 Power-on reset circuitry, serial communications interface (SCI),  
and sampling frequency generator interrupt circuitry 

By this point, the timing associated with the power-on reset circuit has been tested 

and the results are discussed in more detail in Section 3.1.12 and shown in Figure 3.16.  

However, it is necessary to test whether the reset switch and the power-on reset 

functionality cause the 68000 to reset as predicted.  Any simple program should begin 

immediate execution once power is applied or when the reset pushbutton is depressed, so 

this test is coupled with some others.   

An easy way to verify the interrupt and SCI circuitry is working properly is to 

send a small message via the SCI.  This message must be small so as not to cause a 

backlog of interrupt service requests.  It takes 10 bits to send a single byte to the terminal.  

At 38400 bps, a total of 3.84 bytes may be sent between interrupt requests if the 

interrupts occur every 1 ms.  Once the 68000 comes out of reset, a message to clear the 

terminal screen is sent via the SCI.  Then, the interrupts are enabled and a test message 

with the string “TST” should be sent to the terminal with each interrupt request.  As 

expected, when power is supplied, the terminal screen is cleared and begins to fill with 

“TST”.  The same is true if the reset pushbutton is depressed at any time. 

5.3.6 MIDI interface 

 The last major module to check is the MIDI interface.  The easiest way to do this 

is to send properly formatted packets through the MIDI SCI.  The messages selected are a 
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program change to set the instrument to Grand Piano and a series of messages to play the 

C-major scale followed by a C-major I chord then a command to stop the notes.  This 

routine is set to execute once and the code is attached in Appendix III. 

Overall, this interface was the most difficult to debug in hardware because the 

MIDI OUT line is not connected to the MIDI IN line of the other device, but rather the 

lines are connected to their respective names on the opposite devices.  This is different 

from connecting the SCI communicating with a PC terminal.  Nonetheless, the MIDI 

interface functionality was successfully verified. 

5.3.7 Proven code 

The last test, outside of testing the code that was developed and simulated, was to 

test the hardware with a large segment of proven assembly code.   Loading and executing 

the Game of Snake performed this test.  This particular game was written in 2004 as part 

of the Microcomputer Design course (ECE516) taught at the University of Louisville and 

its functionality has long since been proven to run on a similar hardware design.  The 

code for this game was modified to run in a different addressing scheme and to update the 

LEDs to reflect the player’s score in binary, which is also displayed on the terminal 

screen.  After completing the modifications, the code ran perfectly on the emulator, 

which suggested that the prototype was ready to be tested in stand-alone mode, as 

discussed in the next section. 
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5.3.8 Butterworth Filter 

 
Figure 5.6:  Fifth order Butterworth low pass filter design. 

 
The fifth-order Butterworth low pass filter shown in Figure 5.6 is checked 

graphically measuring by the filter’s amplitude response in a simulation and physically in 

the lab using a function generator with linear sweep and an oscilloscope with XY 

interpretation.  The red curve in Figure 5.7 shows the results of a WinSpice simulation 

with the ideal values input from the website.  This is not normalized, therefore the 3.01 

dB point occurs at 2 /4 instead of the traditional 2 /2.  From this waveform, it is easy 

to see that the filter reaches the appropriate amplitude at the desired cutoff frequency 

(500 Hz), and remains relatively flat until 350Hz.  The source code to generate the plots 

can be found in Appendix II.   
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Figure 5.7:  Butterworth filter frequency responses for ideal (red, gently sloped) and 
actual (blue, steeply sloped) component values. 

 
The next step to test the Butterworth filter is to physically assemble the circuit and 

to measure the frequency response.  The exact component values were not all available in 

the lab, so the closest approximations were used.  The actual component values are R = 

51.6Ω, L1 = 11.29mH, C1 = 11.45µF, L2 = 31.39mH, C2 = 11.45µF, and L3 = 11.35mH. 

These values were simulated again using WinSpice and the anticipated results are shown 

in blue in Figure 5.7.  From the results, it is anticipated that the cutoff frequency will be 

about 475Hz instead of 500Hz. 

The filter is then constructed on the prototyping board and is tested with a 

function generator capable of a linear frequency sweep.  The sweep is varied from 1 to 

1000Hz and the results viewed in XY mode on the oscilloscope, which is shown in 
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Figure 5.8.  In this figure, the frequency drops to the 3.01dB point at about 360 Hz, which 

is not consistent with the simulations.   

 
Figure 5.8:  Actual Butterworth filter frequency response with 100Hz/division 

horizontally and 200 mV/division vertically.  The intersecting green and blue lines 
represent the 3.01dB point. 

 

The component values were measured again on the board itself and they matched 

the values reported above, except that the inductor values seem to vary by +/- 50% while 

connected to the bridge (Stanford Research Systems Model SR720 LCR Meter).  A 

different bridge (GenRad 1657 RLC DIGIMETER) was used and the component values 

all matched except the 30mH inductor, which consistently read as 15mH when measured 

at 1.0 kHz.  Also, an inductor can be modeled as an inductor in series with a resistor, 

these resistances were measured along with the inductances on the latter bridge.  The 

resistance associated with L1 is 6.72Ω and the resistance associated with L2 is 94.5Ω.  

Another simulation was constructed which included the updated values for the resistances 

from the inductors to verify the simulation matched the results.  Figure 5.9 shows the 

results of another WinSpice simulation with superimposed plots depicting the ideal 

values and the set with the measured inductances and resistances across the inductors.  
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The incorrect inductance on L2 with the addition of the large resistance to L2 caused the 

filter to perform badly.   

 

Figure 5.9:  Simulated Butterworth frequency response (blue) with updated L-values 
accounting for resistances.  The (red) curve with the overall higher magnitude is the 

response with the ideal values. 
 

To correct this error, the 30mH inductor was replaced with three of the 10mH 

inductors connected in series, due to the low resistance of the 10mH inductors and 

availability of the components in the lab.  This reduced the overall resistance to 

approximately 20Ω.  Another simulation and frequency sweep was performed to compare 

the actual performance of the filter to the simulation.  The results of the simulation 

(Figure 5.10) show that that filter’s performance is reduced in both amplitude and cutoff 

frequency (360Hz). 

87 



 

Figure 5.10:  Simulated Butterworth frequency response with new L-values (blue).  The 
(red) curve with the overall higher magnitude is the response with the ideal values.   

 
 The circuit was tested on the prototyping board with the function 

generator set to for a linear sweep as in the previous test.  The results of this test are 

displayed in Figure 5.11.  The results of this test are similar to the simulation, in that the 

cutoff frequency is the same as the results from the simulation, although it is less than the 

desired cutoff frequency. 
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Figure 5.11:  Actual Butterworth frequency response using the new L-values 

with 100Hz/division horizontally and 200 mV/division vertically.  The 
intersecting green and blue lines represent the 3.01dB point. 

 
5.4 Stand-alone Problems 

 
The ultimate goal of this project is to develop a stand-alone prototype that can run 

independently of an emulator.  From the tests and results in Section 5.3, it is clearly 

obvious that all the connections and hardware elements work properly with the emulator.  

The next logical step is to replace the emulator probe on the prototype with the actual 

microprocessor and monitor the results.  Unfortunately, the prototype does not function 

as expected in stand-alone mode.  Therefore, there has to be some hidden flaw in the 

hardware design or construction that is preventing the 68000 from executing code when it 

is placed in a socket and set to run independently.  This section describes the efforts to 

resolve this problem. 

5.4.1 68000 Controls and Inputs  

Usually when the emulator is working and the actual processor is not, the problem 

is that one or more of the unused input lines to the processor are floating.  Each of these 

89 



lines (BR’, BERR’, BGACK’, IPL1’ and IPL2’) was checked with and without the 

hardware running to see if the lines were floating or connected improperly.  

Unfortunately, the problem could not be found in these connections.  The connections to 

VCC, ground (VSS), HALT’, RESET’, and the system clock were also verified to be 

working. 

5.4.2 Other Tests 

Testing the load of the various devices was next in the line of logical reasoning.  

If a device is sourcing or sinking too much current, the device can malfunction in 

unpredictable ways.  The easiest way to test for this on the prototype was to 

systematically remove parts and attempt to run test code on the emulator first, then on the 

stand-alone system.  However, the MMU and one external interface had to remain in 

order to know if the system was executing the code.  The best interface to leave in place 

was the MIDI interface because it requires the fewest components to operate.  With that 

in mind, the A/D converter, amplifier, LEDs, data register, SCI ACIA, voltage level 

shifter, bit rate generator, and sampling frequency generators were removed from the 

system.  Then the MIDI interface test code described was executed to test the 

functionality.  The code ran fine with the emulator connected to the prototype but did not 

execute with the 68000.  The MIDI interface was removed and the LEDs and data 

register were replaced to attempt another test.  This test used the LED test code as 

described in Section 5.3.3.    The results did not change.  Finally, the LEDs and data 

register were removed and the SCI ACIA, voltage level shifter and bit rate generator 

were replaced.  A simple “Hello World” program was executed and the results were the 

same as before. 
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5.4.3 MMU Connections 

The next test was to check the various modules for functionality.  The first line 

checked was DTACK’ because DTACK’ is formed by ANDing the memory select lines.  

Each time an address is accessed, DTACK’ should be asserted.  Testing revealed that this 

was not the case.  However, it was proven that the MMU and DTACK’ circuitry 

functioned properly in the previous tests, therefore the problem had to be with the MMU 

enable lines (AS’, UDS’, LDS’, IACK’/MRST’) or data input lines (AB14 - AB16). 

To check these lines, DTACK’ was forced low so as not to have the 68000 delay 

instruction execution while waiting for the assertion of DTACK’.  For simple memory 

accesses, asserting DTACK’ should pose no problem because the memory operates faster 

than the 68000.  Probing AS’, UDS’ and LDS’ revealed something interesting, in that 

each of these signals on the oscilloscope appeared to be functioning as a clock signal, or 

pulse train.  Normally, the variety of commands associated with sending/receiving data 

cause delays in the assertion/negation of these lines, which never cause these lines to 

appear as a pulse train.  However, it was easy to verify that these signals were reaching 

the MMU by probing the base of the MMU and the top of the MMU.   

This meant that the address lines had to be causing the problem.  Probing the tops 

of the pins on the 68000 revealed that the address lines were working properly, but the 

signals were not reaching the MMU.  This was puzzling because the emulator worked 

fine and the continuity of the connections was verified earlier.  On a hunch, the base of 

the sockets housing the 68000 was probed.  This revealed that MMU data input lines 

were floating, meaning there had to be a mechanical connection problem.  This is not too 

surprising because the 68000’s pin diameters are smaller than the pin diameters on the 
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emulator pod probe.  When inserted into the zero insertion force (ZIF) socket, the 

emulator connections are more secure.  The ZIF socket itself sits in a machined socket, so 

it is no problem to remove the ZIF socket and insert the 68000 into the machined socket 

when ready to execute the code stand-alone.  Additionally, all other mechanical 

connections were examined for inconsistencies, but no others were identified. 

Once this problem was identified, the proven code (The Game of Snake) was 

loaded and executed again.  This time the code executed up to a certain point with the 

68000 in place, but the 68000 locked up.  This problem occurred at the same place in the 

code every time, and the error was independent of the duration of code execution before 

the error occurred.  This suggested there was a problem in the memory space, although 

that would be unlikely because the memory works fine with the emulator.  The next step 

was to repeat the tests from Section 5.4.2 before proceeding.  

5.4.4 Checking the Memory Space 

The results from performing the tests in Section 5.4.2 again were different from 

the first time around.  In this instance, there were mixed results for the smaller code 

segments.  In some segments, such as the LED test, the code executed correctly.  In other 

tests, such as the interrupt request test and the MIDI interface test, the code would not 

execute correctly.  When the proven Game of Snake code was executed, the problems 

were the same as before.   

Essentially, these results made no sense.  First, the failures seemed to be 

independent of memory location, which would suggest a problem with the address line or 

the memory itself.  Second, the failures seemed to be independent of the device operated.  

For example, in the smaller test segments, the SCI ACIA would not output a “Hello 
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world” message to the PC terminal, but the ACIA handled I/O correctly for the Game of 

Snake, which makes extensive use of the ACIA. 

As stated in the previous section, the proven code always locked up in the same 

location in the game, although the address present on the 68000 was neither in the 

program nor the data space for this design.  However, a test was performed to see if the 

error would follow the code or stay fixed to the address region where the error was 

occurring.  Without knowing the exact location of the address, the test was performed by 

a number of no-op (NOP) statements at the beginning of the code.  This essentially had 

the effect of pushing the remaining code down by two bytes for each NOP statement.  Up 

to 20 consecutive NOP statements were added to perform this test, but the error followed 

the code each time.  This once again made no sense because the code has been proven to 

work on a previous design as well as with the emulator connected to the prototype.  Aside 

from these difficulties, this consistently reproducible error ceased to be consistent, and 

the code executed intermittently. 

5.4.5 Testing Conclusions 

These problems were analyzed, researched, and tested for months with no 

measurable success.  The inability to consistently reproduce the errors has made 

debugging impossible without the ability to use the emulator.  Ideally, a 32-bit logic 

analyzer could help in determining where the 68000 fails to execute code, but since the 

errors are independent of memory addresses and device, this expensive tool would prove 

useless.  The problem itself likely comes from a problem with the soldering, noise 

imposed by the 8 MHz clock, and/or from a slightly excessive current draw.  All of these 

potential problems have been tested as described in the previous sections, but no 
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conclusive results have been obtained.  Therefore, the final design will have to run on the 

emulator as the cost associated with trying to fix this error far outweighs any benefit for 

this project. 
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CHAPTER VI – CONCLUSIONS AND FUTURE WORK 
 

The AMDF time-domain analysis technique was chosen to aid in real-time pitch-

tracking for a voice operated musical instrument operated by the MIDI protocol.  The 

AMDF algorithm was implemented in assembly to run on an embedded system utilizing 

the 68000, which was constructed on a soldered prototype board.  This design consisted 

of four main hardware modules responsible for controlling sampling, serial 

communications, MIDI communications and memory management.  Although the 

modules worked correctly individually and together with an emulator, they failed to 

function on a stand-alone prototype due to an unidentifiable hardware flaw. 

However, the simulations and physical implementation clearly revealed that the 

AMDF by without additional refinements itself is insufficient to function accurately as a 

real-time pitch-tracking device with such a small sampling rate.  Additional software 

refinements have been proven to enhance the functionality of the AMDF for this 

application, but were not implemented due to limitations imposed by the system clock.  

Thus, equipment limitations leading to hardware design constraints were a factor for 

reduced performance of this device, as well as a limiting factor for incorporating 

additional refinements to support the AMDF, as implemented by [Shimamura 2001 and 

Kim 1998].  

Further work should be done to find a suitable minimum acceptable system clock 

capable of supporting a modified AMDF or another successful pitch detection algorithm 

running on an embedded system.  A study similar to [Rabiner 1976] updated to include 

more frequency and time domain techniques including a variety of the updated FFT 

algorithms and zero-crossing techniques would be extremely beneficial in this field, 
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especially if the study were a comparison of real-time performance on modern embedded 

hardware. 

This prototype was designed to perform all signal calculations itself.  Another 

obvious area of future work would be to implement this design using an external DSP 

device or an external programmable logic device using VHDL or ABEL.  These design 

practices are implemented in industry especially when dealing with RF systems, where 

generic or specially designed ICs are used to modulate, demodulate, or process these 

high-frequency signals.  Either of these concepts would alleviate computational-related 

performance problems on the main processor.  However, these devices would likely 

require a system clock faster than the 8 MHz clock in this design.  Either implementation 

would lead to a significantly more successful design of an embedded real-time voice 

operated musical instrument. 

Ultimately, the success of a device of this nature rests with a faster system clock 

and a faster processor or microcontroller.  In conjunction with a faster system, using an 

external device to handle the signal processing aspect of this application would lead to a 

more successful prototype and marketable product. 
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APPENDIX I – HARDWARE DESIGN 
Schematic Page 1 
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Schematic Page 2 
 
 



Board Layout – Top View of All Components 
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Board Layout – Top View of Top Components 
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Board Layout – Bottom View of Bottom Components 
 



APPENDIX II – SIMULATION SOURCE CODE 
 

Butterworth Filter Spice Simulation File for Ideal Component Values 
(BWLPF.spc) 

 
Butterworth Filter Simulation by Travis R. Gault 
 
.control   ; start control statements  
destroy all   ; WinSpice erases all previously stored data and starts fresh.  
op    ; perform an operating point analysis  
tran 1e-6 2E-3 0 1E-6  ; perform a transient (time-domain) analysis  
AC LIN 1000 1 1K  ; perform an ac (small-signal) frequency analysis  
.endc    ; start control statements 
 
R1 1 2 50   
L1 2 3 9.83578m 
C1 3 0 10.3005u 
L2 3 4 31.831m 
C2 4 0 10.3005u 
L3 4 5 9.83578m 
R2 5 0 50 
 
Vin 1 0 SIN(0 5 1K) AC 1 DC 0 
 
.TRAN  1u 2m 
 
.END 

 
 

Butterworth Filter Spice Simulation File for Actual Component Values 
(BWLPF-Actual Values.spc) 

 
Butterworth Filter Simulation by Travis R. Gault 
 
.control   ; start control statements  
destroy all   ; WinSpice erases all previously stored data and starts fresh.  
op    ; perform an operating point analysis  
tran 1e-6 2E-3 0 1E-6  ; perform a transient (time-domain) analysis  
AC LIN 1000 1 1K  ; perform an ac (small-signal) frequency analysis  
.endc    ; start control statements 
 
R1 1 2 51.7   
L1 2 3 11.29m 
C1 3 0 8.75u 
L2 3 4 30.9m 
C2 4 0 8.75u 
L3 4 5 11.35m 
R2 5 0 51.5 
 
Vin 1 0 SIN(0 5 1K) AC 1 DC 0 
 
.TRAN  1u 2m 
 
.END 

 
Butterworth Filter Spice Simulation File for Actual Component Values  

with Updated Inductance and Resistance Values 
(BWLPF-Actual Values with LR.spc) 

 
Butterworth Filter Simulation by Travis R. Gault 
.control   ; start control statements  
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destroy all   ; WinSpice erases all previously stored data and starts fresh.  
op    ; perform an operating point analysis  
tran 1e-6 2E-3 0 1E-6  ; perform a transient (time-domain) analysis  
AC LIN 1000 1 1K  ; perform an ac (small-signal) frequency analysis  
.endc    ; start control statements 
 
R1 1 2 51.7   
L1 2 3 11.29m 
R2      3       4       6.71 
C1 4 0 11.45u 
L2 4 5 15.3m 
R3      5 6 95.46 
C2 6 0 11.45u 
L3 6 7 11.35m 
R4 7 8 6.74 
R5 8 0 51.5 
 
Vin 1 0 SIN(0 5 1K) AC 1 DC 0 
 
.TRAN  1u 2m 
.END 
 

 
Butterworth Filter Spice Simulation File for Actual Component Values  

with New Inductance and Resistance Values 
(BWLPF-Actual Values with new LR.spc) 

 
Butterworth Filter Simulation by Travis R. Gault 
.control   ; start control statements  
destroy all   ; WinSpice erases all previously stored data and starts fresh.  
op    ; perform an operating point analysis  
tran 1e-6 2E-3 0 1E-6  ; perform a transient (time-domain) analysis  
AC LIN 1000 1 1K  ; perform an ac (small-signal) frequency analysis  
.endc    ; start control statements 
 
R1 1 2 51.7   
L1 2 3 11.29m 
R2      3       4       6.71 
C1 4 0 11.45u 
L2 4 5 39.3m 
R3      5 6 21.78 
C2 6 0 11.45u 
L3 6 7 11.35m 
R4 7 8 6.74 
R5 8 0 51.5 
 
Vin 1 0 SIN(0 5 1K) AC 1 DC 0 
 
.TRAN  1u 2m 
.END 
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AMDF MATLAB Simulation File (amdfTests.m) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% AMDF simulation 
% By: Travis R. Gault 
% University of Louisville 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cd h: 
clear all 
close 
clc 
 
% Load wav file and downsample to 1000Hz 
zNote='f.wav' 
downRate = 5; 
[wavSample fs nbits]=wavread(zNote); 
fs=fs/downRate; 
 
NMAX=96 
KMAX=48 
s=wavSample(KMAX*2:downRate:end); 
 
% 1/2 wave rectification 
s=floor(255*(s.*(s>0))); 
 
% Perform the AMDF calculation 
for n=1:NMAX 
    x=0; 
    for k=1:KMAX 
        x=x+abs(s(k)-s(k+n)); 
    end 
    d(n)=x; 
end 
dd=d; 
 
% Find all entries below the 25% threshold 
threshold=max(dd)/2; 
d1=dd<floor(threshold); 
ff=find(d1); 
 
% Calculate the differences between low points 
%  and find the average frequency 
fdiff=ff(2:end)-ff(1:end-1); 
fdiff=fdiff(2:end) 
fmean=fs/mean(fdiff) 
 
d1=d1.*max(dd); 
 
zTitle=['Sampling ',zNote,' at ',sprintf('%g Hz, results: T=%g samples, F=%g 
Hz',fs,mean(fdiff),fmean)]; 
 
subplot(2,1,1), plot(s(1:NMAX)), axis tight, title('1/2 Wave Rectification') 
subplot(2,1,2)    
   plot(1:length(dd),dd,'b',1:length(d1),linspace(threshold,threshold,length(d1)),'g') 
   axis tight, title(zTitle); 
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APPENDIX III – MODULE TEST CODE 
 

LEDTest.x68 
 
********************************************************************** 
*; DESCRIPTION:  This test code is designed to test the LED bar     ;* 
*;               graph display on the board.  A single LED is lit   ;* 
*;               and is shifted after a short delay to the LED in   ;* 
*;               the next highest bit position, continuing forever. ;* 
********************************************************************** 
LATCH       EQU         $4001 
 
            ORG         0 
            DC.L        $4000,$400 
             
            ORG         $400 
START       MOVE.B      #$FF,LATCH  ;Turn all LEDs off then wait 
            BSR         DELAY        
             
            MOVE.B      #$FE,D0     ;Turn on the lsb of the LEDs, wait 
            MOVE.B      D0,LATCH    ;D0 is used to shift the LEDs  
            BSR         DELAY       ; rightward 
             
SHIFTGO     LSL.B       #1,D0       ;Shift the LED and wait 
            MOVE.B      D0,LATCH 
            BSR         DELAY 
            BRA         SHIFTGO     ;Continue forever 
             
                         
********************************************************************** 
DELAY       MOVE.L      #15000,D5 
********************************************************************** 
SUBD5       SUBQ.L      #1,D5 
            BNE         SUBD5 
            RTS 
********************************************************************** 
 
            END         $4000 
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MIDItest.x68 
 
****************************************************************************** 
*; DESCRIPTION:  This test code is designed to test the MIDI interface by   ;* 
*;               sending MIDI packets to play the C major scale and chord.  ;* 
****************************************************************************** 
 
****************************************************************************** 
*;------------------------------ Memory Map --------------------------------;* 
****************************************************************************** 
STATUS      EQU         $1000 
NOTENBR     EQU         $1001 
NOTEVEL     EQU         $1002 
 
PROGNUM     EQU         $1001 
 
MSGEND      EQU         $1003 
MIDIINST    EQU         $1001 
PCEND       EQU         $1002 
PREVMIDI    EQU         $1006 
MIDINOTE    EQU         $1007 
 
ENDRAM      EQU         $4000 
 
MIDISC      EQU         $8001 
MIDITXD     EQU         $8003   
MIDIRXD     EQU         $8003 
 
****************************************************************************** 
 
****************************************************************************** 
*;-------------------------------- Flags -----------------------------------;* 
****************************************************************************** 
RDRF        EQU         0           ;Receive data register full (ACIA) 
TDRE        EQU         1           ;Transmit data register empty (ACIA) 
 
****************************************************************************** 
*;---------------------------- Defined Values ------------------------------;* 
****************************************************************************** 
SCICFG      EQU         $15          ;SCI set-up: 38400,8,N,1 
MIDICFG     EQU         $15          ;MIDI setup; 31.25kHz,8,N,1 
 
GRANDPIANO  EQU         0 
CHURCHORGAN EQU         19 
ORCHSTRINGS EQU         46 
 
SPECCHAR    EQU         171 
NOTEERR     EQU         $FF 
 
NOTEON      EQU         $90         ;Note on channel 0 
NOTEOFF     EQU         $80         ;Note off channel 0 
PROGCHANGE  EQU         $C0         ;Program change on channel 0 
VELOCITY    EQU         $7F         ;Max note velocity 
****************************************************************************** 
 
            ORG         $00 
            DC.L        ENDRAM,START 
                         
            ORG         $400 
START       MOVE.B      #1,PREVMIDI                       
 
            MOVE.B      #CHURCHORGAN,MIDIINST ;Select instrument 
             
            BSR         MIDICONFIG  ;Configure MIDI ACIA 
             
            MOVEA.W     #SCALE,A5   ;This hex string is the C Major scale 
                         
THERE       BSR         DELAY          ;Wait a short time before sending  
            MOVE.B      (A5)+,MIDINOTE ; another note. 
            BEQ         SNDCHORD    ;If the end of string flag (00) is seen 
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            BSR         SENDMIDI    ; then send the I chord 
            BRA         THERE       ;Else, send the next note in the scale 
             
SNDCHORD    MOVEA.W     #CHORD,A5        ;This hex string is the C major chord 
            MOVE.B      #NOTEON,STATUS 
            MOVE.W      #STATUS,MIDISTR 
CNOTES      MOVE.B      (A5)+,NOTENBR    ;Send each not in the chord, no delay 
            BEQ         CHORDHOLD        ;Wait a while after all note are send 
             
            BSR         MIDISend                 
             
            BRA         CNOTES 
             
CHORDHOLD   BSR         DELAY       ;Play the chord fora while 
            BSR         DELAY 
             
SILENCE     MOVEA.W     #CHORD,A5   ;Silence the notes 
            MOVE.B      #NOTEOFF,STATUS 
            MOVE.W      #STATUS,MIDISTR 
             
NOTESOFF    MOVE.B      (A5)+,NOTENBR 
            BEQ         START 
             
            BSR         MIDISend     
            BSR         MINIDELAY 
             
            BRA         NOTESOFF 
             
DONE        STOP        #0          ;Stop execution 
            BRA         DONE 
             
****************************************************************************** 
DELAY       MOVE.L      #150000,D5 
****************************************************************************** 
SUBD5       SUBQ.L      #1,D5 
            BNE         SUBD5 
            RTS 
****************************************************************************** 
 
MINIDELAY   MOVE.W      #150,D5 
SUBD        SUBQ.W      #1,D5 
            BNE         SUBD 
            RTS 
 
****************************************************************************** 
SENDMIDI    MOVE.B      PREVMIDI,D0 
****************************************************************************** 
            MOVE.B      MIDINOTE,D1 ;If the previous note and current note  
            CMP.B       D0,D1       ; are the same, there is no need to send 
            BEQ         DONESNDMIDI ; other MIDI packets, so exit        
            
            MOVE.B      #NOTEOFF,STATUS   ;Else, silence the previous note 
            MOVE.B      PREVMIDI,NOTENBR 
            MOVE.B      #VELOCITY,NOTEVEL 
            MOVE.B      #0,MSGEND 
            MOVE.W      #STATUS,MIDISTR 
            BSR         MIDISend 
             
             
            CMPI.B      #NOTEERR,D1 ;If there was an error identifying f0, or 
            BEQ         DONESNDMIDI ; the output needs to be silent, exit 
             
            MOVE.B      #NOTEON,STATUS    ;Else send the new note and exit 
            MOVE.B      MIDINOTE,NOTENBR 
             
            MOVE.B      D1,PREVMIDI ;Now the current note is the old one 
             
            BSR         MIDISend 
                       
DONESNDMIDI RTS 
****************************************************************************** 
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****************************************************************************** 
*; MIDI AND SCI INITIALIZATION ROUTINES 
****************************************************************************** 
MIDICONFIG  MOVE.B      #$3,MIDISC 
            MOVE.B      #MIDICFG,MIDISC 
            MOVE.B      #PROGCHANGE,STATUS 
            MOVE.B      #0,PCEND 
            MOVE.W      #STATUS,MIDISTR 
            BSR         MIDISend 
            RTS 
****************************************************************************** 
 
****************************************************************************** 
MIDISend    MOVEA.W     MIDISTR,A6 
****************************************************************************** 
*; DESCRIPTION: Sends a character to out the MII Port to the synthesizer.   ;* 
*;                                                                          ;* 
*; PARAMETERS:  A6 - Starting address of the data to send.  Data is sent    ;* 
*;              until the NULL character ($00) is found.  NULL is not sent  ;* 
*;              to the terminal.                                            ;* 
****************************************************************************** 
POLLTDR     BTST.B      #TDRE,MIDISC    ;Waiting for the previous char to go 
            BEQ         POLLTDR 
            MOVE.B      (A6)+,D6 
            BEQ         ENDMSND         ;If NULL is detected, then exit  
            MOVE.B      D6,MIDITXD      ;Else send the new char 
            BRA         POLLTDR 
ENDMSND     RTS 
 
*;------------------------- MIDISend Variables -----------------------------;* 
MIDISTR     DC.W        $0 
****************************************************************************** 
 
SCALE       DC.B        60,60,62,64,65,67,69,71,72,72,71 
            DC.B        69,67,65,64,62,60,60,$FF,0 
CHORD       DC.B        36,43,48,60,64,67,72,0 
 
            END         START 

IRQtest.x68 
 

****************************************************************************** 
*; DESCRIPTION:  This test code is designed to test the terminal interface  ;* 
*;               and auto-vectored interrupt requests by sending a test     ;* 
*;               message to the PC terminal every time the interrupt is     ;* 
*;               triggered.                                                 ;* 
****************************************************************************** 
 
****************************************************************************** 
*;------------------------------ Memory Map --------------------------------;* 
****************************************************************************** 
AVIRQ1      EQU         $64          ;Auto-Vector Interrupt Level 1 
 
ENDRAM      EQU         $4000 
 
SCISC       EQU         $8000 
SCITXD      EQU         $8002 
SCIRXD      EQU         $8002 
****************************************************************************** 
 
****************************************************************************** 
*;-------------------------------- Flags -----------------------------------;* 
****************************************************************************** 
RDRF        EQU         0           ;Receive data register full (ACIA) 
TDRE        EQU         1           ;Transmit data register empty (ACIA) 
****************************************************************************** 
 
****************************************************************************** 
*;---------------------------- Defined Values ------------------------------;* 
****************************************************************************** 
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SCICFG      EQU         $15          ;SCI set-up: 38400,8,N,1 
****************************************************************************** 
 
 
            ORG         $00 
            DC.L        ENDRAM,START 
             
            ORG         AVIRQ1      ;Set the location of the auto-vectored 
            DC.L        IRQTEST     ; interrup routine 
             
            ORG         $400 
START       BSR         SCICONFIG                      
            BSR         ENABLEIRQ 
             
HERE        STOP        #0 
            BRA         HERE 
 
 
****************************************************************************** 
IRQTEST     MOVE.W      #ZIRQ,SCISTR 
****************************************************************************** 
            BSR         SCISend 
            RTE 
****************************************************************************** 
 
 
****************************************************************************** 
*; ENABLING AND DISABLING INTERRUPTS 
****************************************************************************** 
ENABLEIRQ   ANDI.W      #$FEFF,SR 
            RTS 
 
DISABLEIRQ  ORI.W       #$0700,SR 
            RTS 
****************************************************************************** 
 
 
****************************************************************************** 
*; SCI INITIALIZATION ROUTINE 
****************************************************************************** 
SCICONFIG   MOVE.B      #$3,SCISC 
            MOVE.B      #SCICFG,SCISC 
            RTS 
****************************************************************************** 
 
 
****************************************************************************** 
SCISend     MOVEA.W     SCISTR,A6 
****************************************************************************** 
*; DESCRIPTION: Sends a character to out the SCI Port to the terminal.      ;* 
*;                                                                          ;* 
*; PARAMETERS:  A6 - Starting address of the data to send.  Data is sent    ;* 
*;              until the NULL character ($00) is found.  NULL is not sent  ;* 
*;              to the terminal.                                            ;* 
****************************************************************************** 
POLLTDRE    BTST.B      #TDRE,SCISC    ;Waiting for the previous char to go 
            BEQ         POLLTDRE 
            MOVE.B      (A6)+,D6 
            BEQ         ENDSSND         ;If NULL is detected, then exit  
            MOVE.B      D6,SCITXD       ;Else send the new char 
            BRA         POLLTDRE 
ENDSSND     RTS 
 
*;-------------------------- SCISend Variables -----------------------------;* 
SCISTR      DC.W        $0 
****************************************************************************** 
 
ZIRQ        DC.B        'TST',0 
 
            END         START 
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The Proven Code for the Game of Snake (nibblesB.x68) 
 
********************************************************************** 
*;   ECE 516 - Project 1 - The Game of Snake                        ;* 
*;   Group #3                                                       ;* 
*;      C. Ray Dermon                                               ;* 
*;      John D. Gant                                                ;* 
*;      Travis R. Gault                                             ;* 
********************************************************************** 
 
********************************************************************** 
*;------------------------- Friendly Masks -------------------------;* 
********************************************************************** 
BIT0    EQU             $01 
BIT8        EQU         $100 
 
********************************************************************** 
*;-------------------------- Memory Map ----------------------------;* 
********************************************************************** 
XYCOORD     EQU         $1000       ;2-byte coordinate X/Y coord 
X_LOC       EQU         $1000       ; from bove: the x-coord 
Y_LOC       EQU         $1001       ; and the y-coord 
SCICHAR     EQU         $1002       ;Character read from the terminal 
 
SNAKELN     EQU         $1003       ;Number of yellow snake chars on screen 
HEADLOC     EQU         $1004       ;X/Y-coords of the head (x_byte,y_byte) 
*INUSE      EQU         $1005 
TAILLOC     EQU         $1006       ;X/Y/-coords of the tail (x_byte,y_byte) 
*INUSE      EQU         $1007 
DIRN        EQU         $1008       ;Direction of the snake 
GAMEOVR     EQU         $1009       ;Game over flag ($FF=game over) 
 
ZSTRING     EQU         $1010       ;Four Byte String 
*INUSE      EQU         $1011 
*INUSE      EQU         $1012 
*INUSE      EQU         $1013 
NIBXY       EQU         $1014       ;Current position of the nibble 
*INUSE      EQU         $1015       ; on screen (x_byte,y_byte) 
ZSCORE      EQU         $1016       ;Four bytes used to display the 
*INUSE      EQU         $1017       ; ASCII verion of the score on  
*INUSE      EQU         $1018       ; the screen 
*INUSE      EQU         $1019 
DELAY       EQU         $101A       ;Delay in loops between snake 
*INUSE      EQU         $101B       ; movements 
RANDCTR     EQU         $101C       ;Timeout counter for the random  
*                                   ; number generator 
 
HEADPTR     EQU         $1020       ;Points to the memory location that 
*INUSE      EQU         $1021       ; contains the x/y-coords of the head 
TAILPTR     EQU         $1022       ;Same as the head pointer, but for  
*INUSE      EQU         $1023       ; the tail 
 
POSPTR      EQU         $1100       ;The start of our queue 
 
ACIASC      EQU         $8000 
ACIATX      EQU         $8002 
ACIARX      EQU         $8002 
 
STACK       EQU         $2000 
********************************************************************** 
 
********************************************************************** 
*;---------------------------- Flags -------------------------------;* 
********************************************************************** 
RDRF        EQU         0           ;Receive data register full (ACIA) 
TDRE        EQU         1           ;Transmit data register empty (ACIA) 
********************************************************************** 
 
********************************************************************** 
*;------------------------ Defined Values --------------------------;* 

114 



********************************************************************** 
SCICFG      EQU         $15         ;$09        ;SCI set-up: 9600,7,E,1 
X_LOW       EQU         $2          ;Lower and upper bounds 
X_HIGH      EQU         $13         ; used to check if the snake has 
Y_LOW       EQU         $2          ; run into a wall. 
Y_HIGH      EQU         $13 
 
XBIT        EQU         BIT8        ;Where to inc/dec the x/y coordinates 
YBIT        EQU         BIT0        ; in memory 
NULL        EQU         $0          ;String termination character 
 
UP          EQU         $35         ;ASCII chars coordinating with the 
DOWN        EQU         $32         ; directions for the snake to move. 
LEFT        EQU         $31         ; 5=UP, 2=DOWN, 1=LEFT, 3=RIGHT 
RIGHT       EQU         $33 
 
DLYDEC      EQU         500         ;The amt of time to speed up the game 
INITDLY     EQU         25005       ;The initial delay between snake moves 
MINDLY      EQU         5           ;The fastest game speed 
STRTLEN     EQU         2           ;Starting length of the snake 
STOPPT      EQU         $0B16       ;Cursor Stopping point 
MAXTRYS     EQU         11          ;Max tries to generate a random number 
********************************************************************** 
 
 
********************************************************************** 
            ORG         $00 
            DC.L        STACK,START 
********************************************************************** 
            ORG         $400 
START       MOVE.B      #$FF,$8001 
            MOVE.B      #03,ACIASC  ;Reset the ACIA and configure  
            MOVE.B      #SCICFG,ACIASC          ; the serial communications 
 
            MOVE.B      #STRTLEN,SNAKELN ;Set the initial length of the 
            MOVE.W      #POSPTR,HEADPTR         ;  snake, and initialize pointers 
            MOVE.W      #POSPTR,TAILPTR         ;  to the head and tail of the snake 
             
            MOVE.W      #INITDLY,DELAY          ;Set the initial delay between moves 
 
            MOVE.W      #$0909,HEADLOC          ;Set the position of the head and 
            MOVE.W      #$0909,TAILLOC          ; tail to (x,y)=(9,9) 
 
            MOVEA.W     #POSPTR,A0  ;Initialize the first 256 memory 
NINEO       MOVE.L      #$09090909,(A0)+ ;locations in the queue to the 
            CMPA.W      #$1200,A0   ; starting position of the snake 
            BNE         NINEO 
 
            MOVE.W      #$0404,NIBXY            ;Set the initial food position 
 
            MOVE.B      #UP,DIRN    ;Set the initial direction of the 
            MOVE.B      #UP,SCICHAR ; snake. 
             
 
            CLR.B       GAMEOVR                 ;Clear the game over flag 
 
            JSR         STARTGAME   ;Show the splash screen 
 
            JSR         DRAWBRD                 ;Draw the game board 
             
            MOVE.W      #$0404,XYCOORD          ;Draw the first nibble (food) 
            JSR         COORDS                  ; on the screen 
            MOVEA.W     #NIBBLE,A0 
            JSR         SCISEND 
             
            MOVE.W      #$0909,XYCOORD          ;Draw the head of the snake at 
            JSR         COORDS                  ; (x,y)=(9,9) 
            MOVEA.W     #SNAKE,A0 
            JSR         SCISend 
             
            JSR         SCORE                   ;Update the score 
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********************************************************************** 
*;----------------- This is the main delay loop below --------------;* 
********************************************************************** 
LOOPS       MOVE.W      DELAY,D2    ;Load the current delay time which 
LOOP        SUB.W       #1,D2                   ; changes as the snake grows, then 
            BNE         LOOP                    ; execute the delay 
 
            JSR         SCIRead                 ;See if the user changed directions 
 
            JSR         CHKCHAR                 ;See if the direction is valid 
 
            JSR         MOVEALG                 ;Move the snake 
            CMPI.B      #$FF,GAMEOVR            ;If it didn't hit a wall or itself, 
            BNE         LOOPS                   ; then continue playing 
             
            JSR         YOULOST                 ;Else, display the GAME OVER screen 
 
            BRA         START                   ;Let the user play again 
********************************************************************** 
 
********************************************************************** 
NIBPOS      CLR.B       RANDCTR 
********************************************************************** 
*;DESCRIPTION:  This function generates a random number for X and Y ;* 
*;              ranging in value from 0-17dec for each coordinate.  ;* 
*;              After a potential random number is generated, the   ;* 
*;              value is checked against the value.                 ;* 
*;                                                                  ;* 
*;                                                                  ;* 
*; PARAMETERS:  D0 - Used as a temporary register                   ;* 
*;              D1 - Used as a temporary register                   ;* 
*;              D2 - Used as a temporary register                   ;* 
*;              NIBXY - Previous nibble x/y-coordinates             ;* 
*;                                                                  ;* 
*;    RETURNS:  NIBXY - The new x/y-coordinates of the nibble       ;* 
*;                                                                  ;* 
********************************************************************** 
NPAGAIN     ADD.B       #1,RANDCTR  ;Check the timeout counter for too 
            CMP.B       #MAXTRYS,RANDCTR ;many levels of recursion 
            BNE         CALCAGN 
 
            MOVE.W      TAILLOC,D0  ;If too many levels, set the new food 
            BRA         ENDCHK                  ; position at the previous tail pos. 
             
CALCAGN     CLR.L       D0                      ;Clear all temporary registers 
            CLR.L       D1                       
            CLR.L       D2                       
            MOVE.W      #18,D1                  ;USED FOR THE MODULO OPERATION XMOD18 
            MOVE.W      NIBXY,D0    ;NEED 32 BITS TO GET REMAINDER 
            DIVU.W      #18,D0                  ;DIVIDING QUOTIENT BY 18 
            ADD.B       #1,D0                   ;ADD 1 TO THE QUOTIENT 
            MOVE.W      D0,D2                   ;PUT QUOTIENT IN D2 FOR USE LATER 
             
            SWAP        D0                      ;SWAP QUOTIENT AND REMAINDER IN DATA 
REGISTER 
             
            MOVE.W      D0,D1                   ;COPY REMAINDER INTO D1 
            ADD.W       D1,D2                   ;ADDING REMAINDER(D1) TO QUOTIENT(D2) 
            MULU.W      TAILLOC,D2  ;MULTIPLYING D2 BY CURRENT TAIL XY COORDINATES 
            CLR.L       D0                      ;CLEARING D0 
            CLR.L       D1                      ;CLEARING D1 
 
            MOVE.B      D2,D0                   ;MOVING QUOTIENT INTO Y POSITION 
            MOVE.W      D2,D1                   ;MOVING REMAINDER INTO X POSITION 
            LSR.W       #8,D1                   ;RIGHT SHIFTING THE REAMINDER (D1) BY 
EIGHT 
            DIVU.W      #16,D0                  ;DIVIDING THE QUOTIENT BY 16 
            DIVU.W      #16,D1                  ;DIVIDING THE REAMINDER BY 16 
 
            SWAP        D1                      ;SWAPPING THE REMAINDER AND QUOTIENT OF 
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THE PREVIOUS DIVISON 
            SWAP        D0                      ;SWAPPING THE REMIANDER AND QUOTIENT OF 
THE PREVIOUS DIVISON 
 
            LSL.W       #8,D1                   ;LEFT SHIFTING D1 AS THE X CORDINATE 
            ADD.W       D1,D0                   ;PUTTING THE X COORDINATE IN D0 
            ADD.W       #$202,D0 
 
********D0 NOW HAS NEW NIBBLE POSITION************* 
 
*************************************************** 
*           CHECKING NEW NIBBLE AGAINST OLD NIBBLE POS* 
*************************************************** 
            CMP.W       NIBXY,D0 
            BEQ         NPAGAIN 
 
            MOVE.W      D0,XYCOORD 
            ADD.W       D0,NIBXY 
 
********************************* 
*           NOW GO THROUGH THE STACK* 
********************************* 
            CLR         D2 
            CLR         D1 
            MOVE.W      XYCOORD,D0 
            MOVE.B      SNAKELN,D2 
            ADDI.B      #1,D2                   ;FOR THE TAIL 
            MOVEA.W     HEADPTR,A0 
MOVEAG      MOVE.W      (A0)+,D1    ;USE D1 not D0!!!! 
            CMP.W       #0,D2                   ;ARE WE AT THE END OF THE STACK? 
            BEQ         ENDCK                   ;IF SO YOU ARE DONE CHECKING AND IT IS AN 
OK POSITION 
            CMP.W       D1,D0                   ;ELSE COMPARE STACK VALUE VERSUS INPUTTED 
VALUE 
            BEQ         NPAGAIN                 ;IF EQUAL SET RECALC NIB POSITION 
            SUB.B       #1,D2                   ;ELSE SUBTRACT FROM D2 
            BRA         MOVEAG 
 
ENDCK       MOVE.W      D0,NIBXY    ;MOVE NEW POSITION INTO RANDM 
 
 
            RTS 
********************************************************************** 
 
 
********************************************************************** 
MOVEALG     NOP 
********************************************************************** 
*; DESCRIPTION:  Governs the mathematical calculations in main-     ;* 
*;               taining the head and tail positions of the snake   ;* 
*;                                                                  ;* 
*;  PARAMETERS:  D0 - Used as a temporary variable                  ;* 
*;               A0 - Used to send the various parts of the snake   ;* 
*;               DIRN - Direction used to calculate the snake mvmt  ;* 
*;               HEADLOC - x/y-coordinates of the snake head        ;* 
*;               TAILLOC - Previous location of the tail on screen  ;* 
*;               DELAY - The time between snake moves               ;* 
*;               NIBXY - The position of the food                   ;* 
*;               SNAKELN - Snake length (# of yellow chars on screen;* 
*;                                                                  ;* 
*;     RETURNS:  HEADLOC - New x/y-coordinates of the head          ;* 
*;               SNAKELN - New snake length                         ;* 
*;               DELAY - New delay time between moves               ;* 
********************************************************************** 
CHKLEFT     CMPI.B      #LEFT,DIRN  ;Checking Directions: 
            BNE         CHKDOWN                 ; If the snake is moving left, then 
            SUB.W       #XBIT,HEADLOC           ;  decrement the x-coordinate 
            BRA         HEADREF 
 
CHKDOWN     CMPI.B      #DOWN,DIRN  ; If the snake is moving down, then 
            BNE         CHKRGHT                 ;  increment the y-coordinate,  
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            ADD.W       #YBIT,HEADLOC           ;  because the screen is backward for 
            BRA         HEADREF                 ;  the vertical axis 
 
CHKRGHT     CMPI.B      #RIGHT,DIRN ; If the snake is moving right, then 
            BNE         CHKUP                   ;  increment the x-coordinate 
            ADD.W       #XBIT,HEADLOC 
            BRA         HEADREF 
 
CHKUP       CMPI.B      #UP,DIRN    ; If the snake is moving up, then 
            BNE         HEADREF                 ;  decrement the y-coordinate 
            SUB.W       #YBIT,HEADLOC 
 
HEADREF     MOVE.W      HEADLOC,XYCOORD         ;Jump to the new head coordinates 
            JSR         COORDS                  ; on the screen and print the head 
            MOVEA.W     #SNAKE,A0   ; character 
            JSR         SCISend 
             
            MOVE.W      HEADLOC,XYCOORD         ;Check to see if the snake ran into 
            JSR         CHKBNDS                 ; a wall or itself 
             
            MOVE.W      NIBXY,D0    ;Check to see if the snake ate a 
            CMP.W       HEADLOC,D0  ; nibble 
            BNE         MOVIN 
             
            ADDQ.B      #1,SNAKELN  ;If the snake ate a nibble, then 
            CMPI.W      #MINDLY,DELAY           ; increase the snake length, and 
            BEQ         DLYSAME                 ; decrease the delay between moves 
            SUB.W       #DLYDEC,DELAY 
 
DLYSAME     JSR         SCORE                   ;Update the score 
             
            JSR         NIBPOS                  ;Get the coordinates of the new nibble 
            MOVE.W      NIBXY,D0    ; and place it on the screen 
            MOVE.W      D0,XYCOORD 
            JSR         COORDS 
            MOVEA.W     #NIBBLE,A0 
            JSR         SCISEND      
 
             
MOVIN       JSR         PSHSTK                  ;Update the queue with the new head 
             
 
TAILREF     MOVE.W      TAILLOC,XYCOORD         ;Update the tail on screen 
            JSR         COORDS 
            MOVEA.W     #TAIL,A0    ;Print the tail char 
            JSR         SCISend 
             
            MOVE.W      TAILLOC,D0  ;If the recursion timed out in the 
            CMP.W       NIBXY,D0    ; random number generator, and the 
            BNE         ENDMOVE                 ; new nibble position = the old tail 
             
            MOVE.W      NIBXY,D0    ; position, then draw the nibble on 
            MOVE.W      D0,XYCOORD  ; screen again, because it was  
            JSR         COORDS                  ; overwritten when the tail was  
            MOVEA.W     #NIBBLE,A0  ; updated on screen 
            JSR         SCISEND      
             
 
ENDMOVE RTS 
********************************************************************** 
 
********************************************************************** 
SendStr     MOVE.L      ZSTRING,D0 
********************************************************************** 
*; DESCRIPTION: Sends a character to out the SCI Port to the        ;* 
*;              terminal.  Upper byte is sent first, and lower byte ;* 
*;              is sent last.  The whole string is loaded into a    ;* 
*;              register, rotated left by a byte, sent, then done   ;* 
*;              again until all bytes are sent.                     ;* 
*;                                                                  ;* 
*; PARAMETERS:  zString - String (4-byte) to send.                  ;* 
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*;              D0 - Data buffer for sending data.                  ;* 
********************************************************************** 
POLTD       BTST.B      #TDRE,ACIASC            ;Waiting for the previous char to go 
            BEQ         POLTD                    
            ROL.L       #8,D0                   ;Rotate, Send, Clear, do it again 
            CMPI.B      #NULL,D0 
            BEQ         ENDSSTR 
            MOVE.B      D0,ACIATX 
            CLR.B       D0 
            BRA         POLTD 
ENDSSTR     RTS 
********************************************************************** 
 
 
********************************************************************** 
Coords      MOVE.L      #$1B5B3030,D3           ;'ESC[yy' 
********************************************************************** 
*; DECSRIPTION: Changes the X,Y coordinates in the terminal.        ;* 
*;              Manipulates the ANSI code ('ESC[yy;xxH') in 2 parts.;* 
*;              The first part handles the y-Coords and the 2nd     ;* 
*;              part handles the x-Coords. See comments.            ;* 
*;                                                                  ;* 
*;  PARAMETERS: XYCoord - A 2-byte hex number. Upper = X, Lower = Y ;* 
*;              D3 - Register for data to be sent to the terminal   ;* 
*;              D4 - Data for mathematical calculations             ;* 
*;                                                                  ;* 
*;     RETURNS: (none) - but the cursor is place on screen          ;* 
********************************************************************** 
            MOVE.W      XYCOORD,D4 ;D4 = XY Coordinates 
            CMPI.B      #10,D4         ;If the Y coordinate is greater than 10  
            BLT         NOADDY         ; then the first number is 1 else 0  
            ADD.W       #BIT8,D3 
            SUB.B       #10,D4         ;Now remove the 10 and add the rest 
 
NOADDY      ADD.B       D4,D3          ;D4 = Y, D3=first half of ESC[#;#h 
            MOVE.L      D3,ZSTRING ; Send the first half to  to the terminal 
            JSR         SendStr         
 
            MOVE.L      #$3B303048,D3           ; ';xxH' 
            MOVE.W      XYCOORD,D4  ;D4=XY 
            LSR.W       #8,D4                   ;D4=X 
            CMPI.B      #10,D4                  ;If D4>10 then add 1 to upper 0  
            BLT         NOADDX                  ; else, don't add 
            ADD.L       #$00010000,D3 
            SUB.W       #10,D4                  ;Subtract the 10 from D4 
 
NOADDX      LSL.W       #8,D4                   ;Shift left by 8 to put the rest 
            ADD.W       D4,D3                   ; of X into the formatted string 
 
            MOVE.L      D3,ZSTRING  ;Send the string to the terminal 
            JSR         SendStr 
 
            RTS                                 ;Outta Here! 
********************************************************************** 
 
********************************************************************** 
SCORE       MOVE.L      #$30303000,D0 
********************************************************************** 
*; DESCRIPTION:  Prints the score at the bottom of the playing area.;* 
*;                                                                  ;* 
*;  PARAMETERS:  D0,D1 - Temporary variables                        ;* 
*;               SNAKELN - Current length of the snake              ;* 
*;               SRTRLEN - The initial length of the snake          ;* 
*;               ZSCORE - Local ASCII version of the score digits   ;* 
*;                                                                  ;* 
*;     RETURNS:  "SCORE: xxx"  on the screen                        ;* 
********************************************************************** 
            CLR.L       D1 
            MOVE.B      SNAKELN,D1 
            SUB.B       #STRTLEN,D1 
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ADDAGN      ADDQ.B      #1,D1 
            NEG.B       D1 
            MOVE.B      D1,$4001 
            NEG.B       D1 
            SUBQ        #1,D1 
            CMPI.B      #100,D1 
            BLT         NOAD100 
            ADD.L       #01000000,D0 
            SUB.B       #100,D1, 
             
NOAD100     CMPI.B      #10,D1 
            BLT         NOADD10 
            ADD.L       #$00010000,D0 
            SUB.B       #10,D1 
            BRA         ADDAGN 
 
NOADD10     LSL.L       #8,D1 
            ADD.L       D1,D0 
            MOVE.L      D0,ZSCORE 
 
            MOVE.W      #$0016,XYCOORD 
            JSR         COORDS 
 
            MOVEA.W     #SCRTXT,A0 
            JSR         SCISEND 
             
            MOVE.L      ZSCORE,D0 
            MOVE.L      D0,ZSTRING 
            JSR         SENDSTR 
             
            RTS                      
********************************************************************** 
 
********************************************************************** 
SCISend NOP 
********************************************************************** 
*; DESCRIPTION: Sends a character to out the SCI Port to the        ;* 
*;              terminal.                                           ;* 
*;                                                                  ;* 
*; PARAMETERS:  A0 - Starting address of the data to send.  Data is ;* 
*;              sent until the NULL character ($00) is found.  NULL ;* 
*;              is not sent to the terminal.                        ;* 
********************************************************************** 
POLTDRE     BTST.B      #TDRE,ACIASC            ;Waiting for the previous char to go 
            BEQ         POLTDRE 
            MOVE.B      (A0)+,D0 
        BEQ ENDSSND         ;If NULL is detected, then exit  
            MOVE.B  D0,ACIATX       ;Sending the new char 
            BRA         POLTDRE 
ENDSSND     RTS 
********************************************************************** 
 
 
********************************************************************** 
SCIRead NOP 
********************************************************************** 
*; DESCRIPTION: Gets a single char from the terminal.               ;* 
*;                                                                  ;* 
*; PARAMETERS:  None                                                ;* 
*;                                                                  ;* 
*; RETURNS:     Character sent from terminal, stored in D0.         ;* 
********************************************************************** 
POLRDRF     BTST.B      #RDRF,ACIASC            ;Checking for a character 
            BEQ         ENDREAD 
            MOVE.B      ACIARX,SCICHAR          ;Storing it in D0 
ENDREAD     RTS 
********************************************************************** 
 
 
********************************************************************** 
DrawBRD     NOP 
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********************************************************************** 
*; DESCRIPITION: Draws the game board, no snake, no nibble.         ;* 
*;                                                                  ;* 
*;   PARAMETERS: D1 - Temporary variable                            ;* 
*;               A0 - Starting addresses of the various part of the ;* 
*;                    board drawn on screen.                        ;* 
*;                                                                                                  
;* 
*;      RETURNS: The game board on screen                           ;* 
********************************************************************** 
 
            JSR         CLRSCREEN   ;Clear the terminal screen 
 
TOPWALL     MOVEA.W     #WALL,A0    ;Draw the top wall 
            JSR         SCISEND 
 
            MOVE.B      #18,D1                   
 
MIDDLE      MOVEA.W     #BACKGND,A0 ;Draw the 18 strips of playing area 
            JSR         SCISEND 
            SUBQ.B      #$01,D1 
            BNE         MIDDLE 
 
BTMWALL     MOVEA.W     #WALL,A0    ;Draw the bottom wall 
            JSR         SCISEND 
 
            RTS 
********************************************************************** 
 
********************************************************************** 
CHKCHAR NOP 
********************************************************************** 
*; DESCRIPTION: Checks the incoming character to see if it is a     ;* 
*;              valid character. A valid char is subdivided into    ;* 
*;              (up, down) & (left, right). Current direction of    ;* 
*;              snake is checked and compared to subdivided groups  ;* 
*;                  to define which group has a valid character. If     ;* 
*;                  direction is up or down then check input char to    ;* 
*;                  left and right, and if the direction is left or     ;* 
*;                  right the check input character to up and down. If  ;* 
*;                  input character is a valid character then update the;* 
*;                  direction otherwise discard input character and keep;* 
*;                  old direction.                                      ;* 
*;                                                                  ;* 
*; PARAMETERS:  SCICHAR - The input character to be checked.        ;* 
*;              DIRN - Contains current direction of snake.         ;* 
*;                                                                  ;* 
*;    RETURNS:  DIRN - Keeps the input character if it is valid,    ;* 
*;                         otherwise it returns the last valid direction;* 
********************************************************************** 
            CMP.B       #UP,DIRN    ;Direction is compared to the four 
            BEQ         LRCHK                   ; valid orthogonal kepad directions. 
            CMP.B       #DOWN,DIRN  ;Depending on which way the snake is 
            BEQ         LRCHK                   ; moving will determine which set of 
            CMP.B       #LEFT,DIRN  ; of checks will be determined valid. 
            BEQ         UDCHK 
            CMP.B       #RIGHT,DIRN 
            BEQ         UDCHK 
 
            BRA         ENDCCHR                 ;Ignore erroneous data 
 
 
UDCHK       CMPI.B      #UP,SCICHAR ;Check to determine if the new input  
            BEQ         SETUP                   ; character is a new valid direction 
            CMPI.B      #DOWN,SCICHAR            
            BEQ         SETDWN 
 
            BRA         ENDCCHR                 ;Discard invalid characters 
 
LRCHK       CMPI.B      #LEFT,SCICHAR 
            BEQ         SETLFT 
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            CMPI.B      #RIGHT,SCICHAR 
            BEQ         SETRGHT 
 
            BRA         ENDCCHR                 ;Discard invalid characters 
 
SETLFT      MOVE.B      #LEFT,DIRN  ;If a valid direction was entered, 
            BRA         ENDCCHR                 ; update the direction accordingly 
SETRGHT     MOVE.B      #RIGHT,DIRN 
            BRA         ENDCCHR 
SETUP       MOVE.B      #UP,DIRN 
            BRA         ENDCCHR 
SETDWN      MOVE.B      #DOWN,DIRN 
 
ENDCCHR     RTS 
********************************************************************** 
 
 
********************************************************************** 
PSHSTK      NOP 
********************************************************************** 
*; DESCRIPTION: A queue managment routine that keeps record of all  ;* 
*;              the XY positions of the snake in memory location    ;* 
*;              $1100 - snake length times two plus one word, which ;* 
*;              is used for a blank space trailing the snake. There ;* 
*;              are two bytes of data(a word) stored per snake      ;* 
*;              length due to one byte for X position and 1 byte for;* 
*;              Y position. When the snake moves it pushes a value  ;* 
*;              of head location onto the queue and logically shifts;* 
*;              right word length snake value until the end of the  ;* 
*;              queue. Words shifted outside the queue are pushed   ;* 
*;              and lost. A terminating word of 'BEEF' is placed at ;* 
*;              the end of the queue for debugging purposes.        ;* 
*;                                                                  ;* 
*;  PARAMETERS: HEADPTR - set to $1100, start of queue              ;* 
*;              TAILPTR - updated to end of queue and moves towards ;* 
*;                        headptr during each word shift until it   ;* 
*;                        reaches the headptr value.                ;* 
*;              SNAKELN - length of snake is used to calculate end  ;* 
*;                        of queue (queue is variable length, based ;* 
*;                        SNAKELN)                                  ;* 
*;              HEADLOC - word value that contains the XY coord-    ;* 
*;                        inates of the Head of the snake           ;* 
*;              TAILLOC - word value that contains the XY coord-    ;* 
*;                        inates of the Tail of the snake           ;* 
*;              POSPTR - contains the value $1100, start of stack   ;* 
*;                                                                  ;* 
*;    RETURNS:  HEADLOC - word value that contains the XY coord-    ;* 
*;                        inates of the Head of the snake           ;* 
*;              TAILLOC - word value that contains the XY coord-    ;* 
*;                        inates of the Tail of the snake           ;* 
********************************************************************** 
 
            MOVE.W      HEADPTR,D0  ;Reset the Tailptr to headptr so that 
            MOVE.W      D0,TAILPTR  ; we can recalculate tailptr position 
 
            CLR         D0                      ;Take the snake length and multiply 
            MOVE.B      SNAKELN,D0  ; by 2 to set a pointer to the end 
            LSL.B       #1,D0                   ; of the queue. The addition of one  
            ADD.W       D0,TAILPTR  ; more word is for the blank space at  
            ADDQ.W      #2,TAILPTR  ; the end of the snake 
 
PSHTAIL     MOVEA.W     TAILPTR,A0  ;A recursive loop is set to take the  
            MOVEA.W     A0,A1                   ; tailptr and logically shift right  
            MOVE.W      -(A0),(A1)  ; by a word length, the snake  
            MOVE.W      A0,TAILPTR  ; positions in the queue until headptr  
            CMPA.W      HEADPTR,A0  ; is reached. Once headptr is reached, 
            BEQ         PSHHEAD                 ; then push the new head location  
            BRA         PSHTAIL         ; onto the queue. 
             
 
PSHHEAD     MOVE.W      HEADLOC,POSPTR 
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            ADD.W       D0,TAILPTR  ;This part of the routine puts a  
            MOVEA.W     TAILPTR,A0  ; terminating word at the end of  
            ADDA.W      #2,A0                   ; queue. This is useful for debugging 
            MOVE.W      #$FEED,(A0) ; purposes to check the queue status. 
 
            MOVE.W      -(A0),TAILLOC           ;Return the Tail location 
 
ENDSTPS     RTS 
********************************************************************** 
 
********************************************************************** 
CHKBNDS     NOP 
********************************************************************** 
*; DESCRIPTION: Check the current x/y-coordinates of the snake head ;* 
*;              against the walls of the playing area, and against  ;* 
*;              the other values of the snake.  If a match or an    ;* 
*;              intersection is found, then the Game Over flag is   ;* 
*;              set, so that the main loop knows to terminate play. ;* 
*;                                                                  ;* 
*;  PARAMETERS: D0,D1,D2,A0 - Temporary variables                   ;* 
*;              SNAKELN - Current snake length                      ;* 
*;              HEADPTR - Starting location of the queue            ;* 
********************************************************************** 
********************************* 
*           CHECKING BOUNDS ON BOARD* 
********************************* 
            CLR         D0 
            MOVE.B      X_LOC,D0     
            CMP.B       #X_LOW,D0   ;CHECKS CURRENT POSITION AGAINST X LOW 
            BCS         SETFG 
 
            CMP.B       #X_HIGH,D0  ;CHECKS CURRENT POSITION AGAINST X HIGH 
            BHI         SETFG 
 
            MOVE.B      Y_LOC,D0 
            CMP.B       #Y_LOW,D0   ;CHECKS CURRENT POSITION AGAINST Y LOW 
            BCS         SETFG 
 
            CMP.B       #Y_HIGH,D0  ;CHECKS CURRENT POSITION AGAINST Y HIGH 
            BHI         SETFG 
 
********************************* 
*           NOW GO THROUGH THE STACK* 
********************************* 
            CLR         D2 
            MOVE.W      XYCOORD,D0 
            MOVE.B      SNAKELN,D2 
            MOVEA.W     HEADPTR,A0 
MOVEAGN     MOVE.W      (A0)+,D1    ;USE D1 not D0!!!! 
            CMP.W       #0,D2                   ;ARE WE AT THE END OF THE STACK? 
            BEQ         ENDCHK                  ;IF SO YOU ARE DONE CHECKING 
            CMP.W       D1,D0                   ;ELSE COMPARE STACK VALUE VERSUS INPUTTED 
VALUE 
            BEQ         SETFG                   ;IF EQUAL SET GAMEOVER=$FF 
            SUB.B       #1,D2                   ;ELSE SUBTRACT FROM D2 
            BRA         MOVEAGN 
 
SETFG       MOVE.B      #$FF,GAMEOVR 
 
ENDCHK      RTS 
********************************************************************** 
 
********************************************************************** 
CLRSCREEN NOP 
********************************************************************** 
            MOVEA.W     #CLRSCRN,A0 ;Send the sequence to clear the screen 
            JSR         SCISEND                 ; and set the colors to white 
 
            RTS 
********************************************************************** 
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********************************************************************** 
STARTGAME NOP 
********************************************************************** 
            JSR         CLRSCREEN   ;Clear the screen 
 
            MOVEA.W     #STARTMENU,A0           ;Display the splash screen 
            JSR         SCISEND 
 
GETSTRT     JSR         SCIREAD                 ;Wait for a [space] 
            CMPI.B      #$20,SCICHAR 
            BNE         GETSTRT 
             
            RTS 
********************************************************************** 
 
********************************************************************** 
YOULOST     NOP 
********************************************************************** 
            JSR         CLRSCREEN   ;Clear the screen 
 
            MOVEA.W     #GAMEOVER,A0            ;Display the GAME OVER message 
            JSR         SCISEND 
 
GETKEY      JSR         SCIREAD                 ;Wait for a [space] 
            CMPI.B      #$20,SCICHAR 
            BNE         GETKEY 
             
            CLR.B       GAMEOVR                 ;Clear the game over flag 
 
 
            RTS 
********************************************************************** 
 
 
 
********************************************************************** 
*;------------------------- Color Schemes --------------------------;* 
********************************************************************** 
WALL        DC.B        $1B,'[1;0;41m                    ' 
            DC.B        $1B,'[0;37;47m',10,13,0 
BACKGND     DC.B        $1B,'[0;31;41m ',$1B,'[30;40m                  ' 
            DC.B        $1B,'[0;31;41m ',$1B,'[0;37;47m',10,13,0 
SNAKE       DC.B        $1B,'[0;33;43m ',$1B,'[0;30;40m',0 
NIBBLE      DC.B        $1B,'[0;32;40m*',0 
WHITE       DC.B        $1B,'[0;37;47m',10,13,0 
TAIL        DC.B        $1B,'[0;30;40m ',$1B,'[0;37;47m',0 
CLRSCRN     DC.B        $1B,'[0;37;47m',$1B,'[=3;7h',$1B,'[2J',$1B,'[0;0H',0 
********************************************************************** 
 
********************************************************************** 
*;------------------------ Building Blocks -------------------------;* 
********************************************************************** 
SCRTXT      DC.B        $1B,'[0;34;47mSCORE: ',0 
SPACE       DC.B        ' ',0 
ENDSPC      DC.B        ' ',10,13,0 
WALLH       DC.B        '                   ',10,13,0 
BG          DC.B        '                  ',0 
BLAH        DC.B        $1B,'[3;7H',0 
********************************************************************** 
 
 
********************************************************************** 
*;------------------------ Display Screens -------------------------;* 
********************************************************************** 
STARTMENU     DC.B      $1B,'[0;32;47m',10,13,10,13 
              DC.B      '                     .-=-.          .--.',10,13 
              DC.B      '         __        .`     `.       /  " )',10,13 
              DC.B      ' _     .`  `.     /   .-.   \     /  .-`\',10,13 
              DC.B      '( \   / .-.  \   /   /   \   \   /  /    ^',10,13 
              DC.B      ' \ `-` /   \  `-`   /     \   `-`  /',10,13 
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              DC.B      '  `-.-`     `.____.`       `.____.`',10,13,10,13 
              DC.B      $1B,'[0;30;47m','                The Game of Snake',10,13 
              DC.B      ' by: Ray Dermon, John Gant, & Travis Gault',10,13,10,13 
              DC.B      ' Use the numpad to move:   5',10,13 
              DC.B      '                          123',10,13 
              DC.B      ' DIRECTIONS:',10,13, 
              DC.B      '   5 = UP, 2 = DOWN, 1 = LEFT, 3 = RIGHT',10,13,10,13 
              DC.B      ' Don',$27,'t Run into walls or yourself.',10,13,10,13 
              DC.B      ' Eat the Grub to Grow',10,13,10,13 
              DC.B      'Press the space key to start. ',0 
 
GAMEOVER DC.B           10,13,10,13,$1B,'[0;31;47m' 
             DC.B       ' GGG     A    M     M  EEEEE',10,13 
             DC.B       'G   G   A A   MM   MM  E',10,13 
             DC.B       'G      A   A  M M M M  EEE',10,13 
             DC.B       'G  GG  AAAAA  M  M  M  E',10,13 
             DC.B       'G   G  A   A  M     M  E',10,13 
             DC.B       ' GGG   A   A  M     M  EEEEE',10,13,10,13 
             DC.B       '  OOO   V   V  EEEEE  RRRR',10,13 
             DC.B       ' O   O  V   V  E      R   R',10,13 
             DC.B       ' O   O  V   V  EEE    R  R',10,13 
             DC.B       ' O   O  V   V  E      RRR',10,13 
             DC.B       ' O   O   V V   E      R  R',10,13 
             DC.B       '  OOO     V    EEEEE  R   R',10,13,10,13 
             DC.B       $1B,'[0;30;47mPress the space key to start over. ',0 
********************************************************************** 
 
            END         $2000 
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APPENDIX IV – DESIGN SOURCE CODE 
 

AMDF.x68 
 

****************************************************************************** 
*;------------------------------ Memory Map --------------------------------;* 
****************************************************************************** 
AVIRQ1      EQU         $64         ;Auto-Vector Interrupt Level 1 
 
F0          EQU         $1000       ;F0.W contains the fundamental frequency 
*;IN USE    EQU         $1001 
FDEC        EQU         $1002 
*;IN USE    EQU         $1003 
 
IRQENFLAG   EQU         $1004       ;Current status of interrupts 
MIDIFLAGS   EQU         $1005       ;MIDI flags for sending notes 
 
MIDIINST    EQU         $1006       ;Location containing Instrument Nbr. 
ERRCOUNT    EQU         $1007       ;Number of times there are f0 errors 
 
KNVAL       EQU         $14E0       ;Current value of k+n 
*;IN USE    EQU         $1001 
X           EQU         $14F0       ;Temporary summation variable 
*;IN USE    EQU         $1001 
 
NMAX        EQU         $14F4       ;Maximum allowable value of N 
*;IN USE    EQU         $1005 
KMAX        EQU         $14F6       ;Maximum allowable value of K 
*;IN USE    EQU         $1007 
KNMAX       EQU         $14F8       ;Maximum allowable value of K+N 
*;IN USE    EQU         $1009 
DDMAX       EQU         $14FA       ;Maximum array index for AMDF results 
*;IN USE    EQU         $100B 
MAXOFDD     EQU         $14FC       ;Max{AMDF_RESULTS} 
*;IN USE    EQU         $100D 
FMAX        EQU         $14FE       ;Maximum array index for FINDEX 
*;IN USE    EQU         $100F 
 
STATUS      EQU         $10FA       ;MIDI Command 
NOTENBR     EQU         $10FB       ;MIDI Note number 
PROGNUM     EQU         $10FB       ;MIDI Program number 
NOTEVEL     EQU         $10FC       ;MIDI Note Velocity 
MSGEND      EQU         $100D       ;End of Message 
 
PREVMIDI    EQU         $10FE       ;Previous MIDI note sent 
MIDINOTE    EQU         $10FF       ;Current MIDI note to send 
 
 
S           EQU         $1100       ;Sampled data from ADC 
DD          EQU         $1300       ;ADMF results (word lengths) 
FINDEX      EQU         $1700       ;Array indices for dips in AMDF 
 
ENDRAM      EQU         $4000       ;End of RAM memory location + 1 
 
LATCH       EQU         $4001       ;Location of register for LEDs 
 
ADC0        EQU         $4000       ;A/D converter channel 
 
MIDISC      EQU         $8001       ;MIDI ACIA status/control register 
MIDITXD     EQU         $8003       ;MIDI ACIA transmit data register 
MIDIRXD     EQU         $8003       ;MIDI ACIA receive data register 
 
SCISC       EQU         $8000       ;MIDI ACIA status/control register 
SCITXD      EQU         $8002       ;MIDI ACIA transmit data register 
SCIRXD      EQU         $8002       ;MIDI ACIA receive data register 
****************************************************************************** 
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****************************************************************************** 
*;-------------------------------- Flags -----------------------------------;* 
****************************************************************************** 
RDRF        EQU         0           ;Receive data register full (ACIA) 
TDRE        EQU         1           ;Transmit data register empty (ACIA) 
 
ENABLEF0    EQU         $FF            
NOTEERR     EQU         $EE         ;Denotes an error finding f0 
****************************************************************************** 
 
 
****************************************************************************** 
*;---------------------------- Defined Values ------------------------------;* 
****************************************************************************** 
SCICFG      EQU         $15         ;SCI set-up: 38400,8,N,1 
MIDICFG     EQU         $15         ;MIDI setup; 31.25kHz,8,N,1 
 
FS          EQU         1000 
 
NMAXVAL     EQU         192         ;Nbr of samples to take (outter loop) 
 
STARTADC    EQU         $AD         ;Dummy value to start A/D conversion 
 
FINDEND     EQU         $FEED       ;FINDEX end-of-array flag 
WORDMAX     EQU         $FFFF       ;Initial value for finding minimum vlaue 
 
GRANDPIANO  EQU         0           ;MIDI Instrument Nbr. for a piano 
NOTEON      EQU         $90         ;Note on channel 0 
NOTEOFF     EQU         $80         ;Note off channel 0 
PROGCHNG    EQU         $C0         ;Program change on channel 0 
VELOCITY    EQU         $7F         ;Max note velocity 
****************************************************************************** 
 
 
*;--------------------------------------------------------------------------;* 
*; These statements tell the 68000 where the start of the program space and ;* 
*; stack space begins.  Additionally, the auto-vectored interrupt service   ;* 
*; routine address location is defined.                                     ;*  
*;--------------------------------------------------------------------------;* 
            ORG         $00 
            DC.L        ENDRAM,START 
             
            ORG         AVIRQ1 
            DC.L        ADCIRQ 
 
*;--------------------------------------------------------------------------;* 
*; This is the start of the program, where all variables and hardware       ;* 
*; devices are initialized.                                                 ;* 
*;--------------------------------------------------------------------------;* 
            ORG         $400 
START       CLR.L       D0 
            MOVE.L      D0,IRQENFLAG  ;Clear IRQEN and MIDI flags 
             
            MOVE.B      #GRANDPIANO,MIDIINST 
             
            MOVE.W      #NMAXVAL,NMAX 
            ADDI.W      #NMAXVAL,NMAX     ;Nmax = highest address in S-array 
            ADDI.W      #S,NMAX     ;Nmax = highest address in S-array 
 
            MOVE.W      #NMAXVAL,D0 
            ADDI.W      #S,D0     ;Kmax = highest address accessed by k in s 
            MOVE.W      D0,KMAX 
 
            MOVE.W      #NMAXVAL,KNMAX 
            ADDI.W      #NMAXVAL,KNMAX           
            ADD.W       D0,KNMAX 
 
            MOVE.W      #NMAXVAL,D0         
            LSL.W       #1,D0    ; Twice as long as n-max b/c word length                      
            ADDI.W      #DD,D0 
            MOVE.W      D0,DDMAX 
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            MOVE.W      #NMAXVAL,D0         
            LSL.W       #1,D0    ; Twice as long as n-max b/c word length                      
            ADDI.W      #FINDEX,D0 
            MOVE.W      D0,FMAX             
             
            BSR         INITFINDEX 
            BSR         CTRCLR 
            BSR         SCICONFIG            
            BSR         MIDICONFIG 
                        
            MOVEA.W     #S,A0 
            MOVE.W      A0,KNVAL 
            ADDQ.W      #2,KNVAL             
             
            MOVE.W      #WORDMAX,MAXOFDD 
             
            BSR         ENABLEIRQ   ;Enable Interrupts 
             
HERE        BSR         SENDMIDI    ;Infinite loop to check status of MIDI 
            BRA         HERE        ; flags and perhaps send MIDI commands 
             
BUTNOTHERE  BRA         START       ;Should never reach this point 
*;          MOVEA.W     #S2,A5      ;Used for testing 
 
 
 
****************************************************************************** 
ADCIRQ      CLR.W       D0 
****************************************************************************** 
*; DESCRIPTION: This (auto-vectored) interrupt routine is responsible for   ;* 
*;              sampling the A/D converter, illuminating the LEDs,          ;* 
*;              performing the AMDF iterations and calling the necessary    ;* 
*;              routines to find the fundamental frequency and output the   ;* 
*;              data to the synthesizer.  The for-loop below represents the ;* 
*;              general idea of the AMDF.                                   ;* 
*;                                                                          ;* 
*;                            for n=1:N                                     ;* 
*;                                x=0;                                      ;* 
*;                                for k=1:M                                 ;* 
*;                                    x=x+abs(s(k)-s(k+n));                 ;* 
*;                                end                                       ;* 
*;                                d(n)=x;                                   ;* 
*;                            end                                           ;* 
*;                                                                          ;* 
****************************************************************************** 
 
            MOVE.B      ADC0,D0     ;Take the reading from the last sample 
*;          MOVE.B      (A5)+,D0    ;Used for testing 
            MOVE.W      D0,(A0)     ;Copy the value to the S array 
 
             
*;--------------------------------------------------------------------------;* 
*; This code segment does a binary search if the signal amplitude is !=0 to ;* 
*; light up the LEDs.  The MSB and all lower bits of the LEDs are lit       ;* 
*; corresponding to the value read from the A/D converter.  This makes log- ;* 
*; scale amplitude representation, but can easilyt be modified for a linear ;* 
*; scale.                                                                   ;* 
*;--------------------------------------------------------------------------;* 
            BNE         BINBITCHK   ;Do binary search if amplitude != 0  
            MOVE.B      #$FF,LATCH  ; else turn all LEDs off and  
            BRA         CMPA02KMAX    ; continue with routine 
             
BINBITCHK   CMPI.B      #$0F,D0 
            BLS         BIT03 
                         
            CMPI.B      #$3F,D0 
            BLS         BIT5 
             
BIT7        CMPI.B      #$80,D0 
            BLO         BIT6 

128 



            MOVE.B      #$00,LATCH    ;Light ALL the LEDs 
            BRA         CMPA02KMAX    ; and continue with the routine 
             
BIT6        MOVE.B      #$80,LATCH  ;Light the lower 7 LEDs 
            BRA         CMPA02KMAX    ; and continue with the routine 
             
BIT5        CMPI.B      #$20,D0 
            BLO         BIT4 
            MOVE.B      #$C0,LATCH  ;Light the lower 6 LEDs 
            BRA         CMPA02KMAX    ; and continue with the routine 
             
BIT4        MOVE.B      #$E0,LATCH  ;Light the lower 5 LEDs 
            BRA         CMPA02KMAX    ; and continue with the routine 
                         
             
BIT03       CMPI.B      #$03,D0 
            BLS         BIT1 
             
BIT3        CMPI.B      #$08,D0 
            BLO         BIT2 
            MOVE.B      #$F0,LATCH  ;Light the lower 4 LEDs 
            BRA         CMPA02KMAX    ; and continue with the routine 
             
BIT2        MOVE.B      #$F8,LATCH  ;Light the lower 3 LEDs 
            BRA         CMPA02KMAX    ; and continue with the the routine 
 
BIT1        CMPI.B      #$02,D0 
            BLO         BIT0 
            MOVE.B      #$FC,LATCH  ;Light the lower 2 LEDs 
            BRA         CMPA02KMAX    ; and contine with the routine 
             
BIT0        MOVE.B      #$FE,LATCH  ;Light the lowest LED 
             
 
*;--------------------------------------------------------------------------;* 
*;          A0 has the current address pointer for the s-array (n) 
*;          If A0 >= kmaxval + nmaxval + s, then run find freq 
*;--------------------------------------------------------------------------;* 
CMPA02KMAX  CMPA.W      KMAX,A0     ;If n (A0) < KMAX measurements, exit 
            BLO         NEXTCONV    ;  after initiating another measurement  
*;--------------------------------------------------------------------------;* 
*;          X is as it appears in the MATLAB for-loop above       
*;--------------------------------------------------------------------------;* 
            CLR.W       D5          ;Else do an ADMF cycle (x=0) 
            MOVEA.W     #S,A1       ;Initialize k(A1)=0, beginning of s-vals 
            MOVEA.W     KNVAL,A2    ;Initialize k+n = n, curr. location in s 
 
*                                   ;The upper byte of D1/D2 should always = 0 
            CLR.W       D1          ;Clear temp. vars as words b/c s-vals are 
            CLR.W       D2          ; byte length, but cals are word length 
 
FORK12M     MOVE.W      (A1)+,D1    ;D1 = s(k), k++                         
            SUB.W       (A2)+,D1    ;D1 = s(k)-s(k+n) 
            BPL         NEXTSTEP    ;If result positive, go to the next step 
            NEG.W       D1          ;  else negate D1 (like abs function) 
 
NEXTSTEP    ADD.W       D1,D5       ;x = x + abs( s(k)-s(k+n) ) 
 
            CMPA.W      KMAX,A1     ;Re-iterate inner loop 
ENDKLOOP    BLO         FORK12M           
 
*;--------------------------------------------------------------------------;* 
*;          Now the inner loop is finished, and it is time to store the 
*;           result in the DD data array of word lengths 
*;--------------------------------------------------------------------------;* 
STORINGD    MOVE.W      D5,(A3)+    ;d(m)=x, m++ (~5600/loop) 
            ADDQ        #2,KNVAL    ;Increment KNVAL 
             
*;          In this code, n really runs from 0 to M+N from above 
MAXDDGTX    CMPA.W      KNMAX,A0    ;If n(A0)<(kmax+nmax) then start the   
            BLO         NEXTCONV    ; next conversion & exit 
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            BSR         DISABLEIRQ  ;Disable Interrupts            
 
NOCHAR      BSR         CTRCLR      ;Else clear the counters 
 
            BSR         FINDINDICES ; and find the fundamental frequency 
            BSR         FDIFF 
            BSR         FAVG  
            BSR         INITFINDEX 
            BSR         ENABLEIRQ   ;Enable Interrupts 
            BRA         DONEIRQ     ;Do not increment A0 
    BSR         CTRCLR      ;Clear the counters again 
 
                                     
NEXTCONV    ADDQ.W      #2,A0       ;MOVE.B     (A0)+,DUMMY   ;n++ 
DONEIRQ     MOVE.B      #STARTADC,ADC0   ;Start next conversion          
            RTE 
*;          BRA         ADCIRQ      ;Used for testing 
*;--------------------------- ADCIRQ Variables -----------------------------;*             
DUMMY       DC.L        $0           
****************************************************************************** 
 
 
****************************************************************************** 
FINDINDICES MOVEA.W      #DD,A0     ;D6 = max(DD) 
****************************************************************************** 
*; DESCRIPTION: This routine searches through the ADMF values stored in the ;* 
*;              DD array and looks for values that are less than or equal   ;* 
*;              to 25% of maximum value in the array (already calculated).  ;* 
*;              Once the threshold has been identified, the minimum value in;* 
*;              the data segment below the threshold is found.  The first   ;* 
*;              index that corresponds to the minimum value in the segment  ;* 
*;              is recorded in the Findex array, and the processes repeat   ;* 
*;              until all values in Findex are examined.  Functionality has ;* 
*;              been tested and confirmed with the Easy68K simulator.       ;* 
*;                                                                          ;* 
*; PARAMETERS:  DD.W - Word length array containing the ADMF results from   ;* 
*;                     the ADCIRQ interrrupt routine.                       ;* 
*;              MAXOFDD.W - The highest numerical value in the DD array.    ;* 
*;              DDMAX.W - Maximum index allowed in the DD array.            ;* 
*;              WORDMAX.W - $FFFF                                           ;* 
*;                                                                          ;* 
*;   REGISTERS: A0 - Used to iterate through DD to look for min values.     ;* 
*;              A1 - Used to iterate through FIndex to store results        ;* 
*;              D1 - Holds dd(n)                                            ;* 
*;              D3 - Stores the current minimum in the data segment that    ;* 
*;                   contains values falling below the threshold. Once      ;* 
*;                   values exceed the threshold, it is re-initialized to   ;* 
*;                   WORDMAX.                                               ;* 
*;              D6 - Contains MAXOFDD/4, the threshold for min-value detec- ;* 
*;                   tion.                                                  ;* 
*;                                                                          ;* 
*;     RETURNS: FINDEX.W - The array containing the indices of where the    ;* 
*;                         minpoints occur below the threshold (D6).        ;* 
****************************************************************************** 
            CLR.W       D6 
             
FINDMAXDD   MOVE.W      (A0)+,D3    ;Can't compare 2 mem. addresses directly 
            CMP.W       D3,D6       ;Was X, If max(DD)>=X, 
            BHS         CHKDDMEM    ; then next check (MAXDDGTX) 
            MOVE.W      D3,D6       ;Was X, else max(DD)=X 
CHKDDMEM    CMPA.W      DDMAX,A0 
            BLO         FINDMAXDD    
     
            LSR.W       #2,D6       ;Divide by 4 for threshold detection 
 
*;--------------------------------------------------------------------------;* 
*;          We need to iterate.W thru DD and search for values below thresh ;* 
*;           then store the indices of those values in a new array          ;*     
*;--------------------------------------------------------------------------;*             
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            MOVEA.W     #FINDEX,A1   ;Initialize m=0 for new f array 
                         
            MOVEA.W     #DD,A0 
GTTHRESH    CMPA.W      DDMAX,A0   ;Make sure the array index is in range 
            BHS         DONEFIND 
             
            MOVE.W      (A0)+,D1 
            CMP.W       D6,D1       ;If dd(n)<Threshold(D6)  
            BLO         FINDMIN     ; then find the data segment min-point 
            BRA         GTTHRESH    ;Else go to the next data point             
 
*;--------------------------------------------------------------------------;*             
*;          Once the threshold is detected, only move the index of the min- ;* 
*;           value into FINDEX.  This is done sequentially by examining     ;* 
*;           each value and checking for a minimum value until the values   ;* 
*;           exceed the threshold, at which time the loop exits.            ;* 
*;--------------------------------------------------------------------------;*             
FINDMIN     MOVE.W      #WORDMAX,D3 ;To find the min, start with the max 
FMINLOOP    CMPA.W      DDMAX,A0    ;Make sure the array index is in range 
            BHS         DONEFIND           
             
            CMP.W       D1,D3       ;If CurrentMin(D3) > current value(D1) 
            BHI         CHANGEMIN   ; then change min value index 
 
            CMP.W       D6,D1       ;ElseIf CurrValue > threshold, skip  
            BHI         SKIPFMIN    ; the FindMin loop 
            MOVE.W      (A0)+,D1    ;Else, load the next value 
            BRA         FMINLOOP    ; and repeat the loop 
             
SKIPFMIN    ADDQ.W      #2,A1       ;Increment array index for FINDEX 
            BRA         GTTHRESH    ; & wait to fall below threshold again 
             
CHANGEMIN   MOVE.W      A0,(A1)     ;Update Findex-array 
            MOVE.W      D1,D3       ;CurrentMin(D3) = Current DD-value 
            MOVE.W      (A0)+,D1    ;Get next value for comparison 
            BRA         FMINLOOP    ;Still in the FindMin loop 
             
DONEFIND    RTS 
****************************************************************************** 
 
 
****************************************************************************** 
FDIFF       MOVEA.W     #FINDEX,A0 
****************************************************************************** 
*; DESCRIPTION: Takes the indices stored by FINDINDICES() and calculates    ;* 
*;              the differences between them.  This provides a list of      ;* 
*;              periods that should be similar in magnitude.  The formula   ;* 
*;              f(n)=f(n+1)-f(n) is used, where f(n) is the current value   ;* 
*;              read in the Findex array.  Functionality has been tested    ;* 
*;              and confirmed with the Easy68K simulator.                   ;* 
*;                                                                          ;* 
*;  PARAMETERS: FINDEX - The array containing the indices of the low points ;* 
*;                       generated by the ADMF function (ADCIRQ).           ;* 
*;              FINDEND - F-INDex-END specifies the end location of Findex  ;* 
*;              DUMMY - A dummy-variables used to help the address registers;* 
*;                      increment/decrement without changing their contents.;* 
*;                                                                          ;* 
*;   REGISTERS: A0 - Represents n in f(n), and where to store the results   ;* 
*;                   in the Findex array.                                   ;* 
*;              A1 - Represents n+1 in f(n+1)                               ;* 
*;              D0 - Contains a copy of f(n) used for subtraction.          ;* 
*;              D1 - Contains a copy of f(n+1) used for subtraction.        ;* 
*;                                                                          ;* 
*;    RETURNS:  FINDEX - The array containing the sample periods from ADMF. ;* 
****************************************************************************** 
 
*;--------------------------------------------------------------------------;*             
*;          Now that the indices are found in the FIndex array, it is time  ;*  
*;           to calculate the periods by using the formula f(n)=f(n+1)-f(n).;* 
*;--------------------------------------------------------------------------;*             
            MOVEA.W     #FINDEX,A1   
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            MOVEA.W     #FINDEX,A2 
            ADDQ.W      #4,A1       ;Skip the first few entry because it is 
            ADDQ.W      #2,A0       ; erroneous due the nature of the ADMF 
                 
            CMPI.W      #FINDEND,(A0) ;If the 1st value of FIndex != the end 
            BNE         FDIFFCALC     ; of array flag, then perform fdiff() 
             
            BRA         DONEFDIFF     ;Else exit the routine 
             
FDIFFCALC   CMPI.W      #FINDEND,(A1) 
            BEQ         DONEFDIFF 
             
            MOVE.W     (A1)+,D1       ;D1=f(n+1) 
            MOVE.W     (A0)+,D0       ;D0=f(n) 
             
            SUB.W       D0,D1         ;D1=f(n+1)-f(n) 
            MOVE.W      D1,(A2)+      ;f(n)=D1 
            BRA         FDIFFCALC 
                        
DONEFDIFF   MOVE.W      #FINDEND,(A0)  ;Replace last 2 entries in the Findex  
            MOVE.W      #FINDEND,-(A0) ; array with the end-of-array flag 
            RTS                        
****************************************************************************** 
           
 
****************************************************************************** 
FAVG        CLR.W       D0 
****************************************************************************** 
*; DESCRIPTION: This routine sums all entries in Findex after FDIFF has     ;* 
*;              been run on Findex.  The sampling frequency (Fs) is         ;* 
*;              multiplied by the number of measurements that are recorded  ;* 
*;              in Findex, then the result is divided by the sum of elements;* 
*;              from FDiff.  This result is stored as the fundamental       ;* 
*;              frequency (F0).  Functionality has been tested and          ;* 
*;              confirmed with the Easy68K simulator.                       ;* 
*;                                                                          ;* 
*;  PARAMETERS: FINDEX.W - The array containing the sample periods.         ;* 
*;              FINDNEND - The maximum array index for the Findex array.    ;* 
*;              FS - The sample frequency in Hz.                            ;* 
*;                                                                          ;* 
*;   REGISTERS: A0 - Used to iterate through the periods in FIndex          ;* 
*;              D0 - Used to sum the entries in FDiff                       ;* 
*;              D1 - Holds the number of measurements                       ;* 
*;              D2 - Copy of Fs                                             ;* 
*;                                                                          ;* 
*;     RETURNS: F0 - The approximate fundamental frequency.                 ;* 
****************************************************************************** 
            MOVEA.W     #FINDEX,A0 
TSUM        CMPI.W      #FINDEND,(A0) 
            BEQ         DONETSUM 
             
            ADD.W       (A0)+,D0 
            BRA         TSUM 
             
DONETSUM    MOVE.W      A0,D1 
            SUBI.W      #FINDEX,D1  ;D1 = Number of measurements * 2 
            BEQ         DONEFAVG 
                         
*;--------------------------------------------------------------------------;* 
*;          F0 = Fs(D2) * NumMeasurements(D1) / SumPeriods(D0)              ;* 
*;--------------------------------------------------------------------------;* 
            MOVE.W      #FS,D2 
            MULU.W      D2,D1       ;D1=Fs*NumMeasurements 
            DIVU.W      D0,D1       ;D1=D1/Tsum => D1.w=freq 
 
DONEFAVG    SWAP        D1          ;D1.W =remainder 
            LSR.W       #1,D0       ;Divide D0 by 2 
            CMP.W       D1,D0       ;If D0/2 < REM(f0) 
            BHS         SWAPF0      ; write the value as it 
 
            SWAP        D1          ;Else round up by one 
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            ADDQ.W      #1,D1 
            BRA         STOREF0 
             
SWAPF0      SWAP        D1 
STOREF0     MOVE.W      D1,F0       ;Writes the value for F0 
 
ENDFAVG     RTS  
****************************************************************************** 
 
 
****************************************************************************** 
FREQ2MIDI   MOVEA.W     F0,A0 
****************************************************************************** 
*; DESCRIPTION: This routine takes the frequency (F0) and uses it as an     ;* 
*;              index offset for a very long linked list called MIDITABLE.  ;* 
*;              This linked list contains each MIDI note number (36-84dec)  ;* 
*;              corresponding to frequencies from 63-1078Hz.                ;* 
*;                                                                          ;* 
*;  PARAMETERS: F0 - The fundamental frequency calculated in FAVG.          ;* 
*;              A0 - Address register used to access the table.             ;* 
*;                                                                          ;* 
*;     RETURNS: MIDINOTE - The MIDI note number later sent to the           ;* 
*;                         synthesizer.                                     ;* 
****************************************************************************** 
            CMPA        #63,A0      ;If 62<A0<=500, then store the note 
            BLO         BADNOTE     ; Else store the bad not flag in MIDINOTE 
            CMPA        #500,A0 
            BLS         GOODNOTE 
 
BADNOTE     MOVE.B      #NOTEERR,MIDINOTE  
            ADDQ.B      #1,ERRCOUNT ;If f0 out of range, record an error and  
            CMPI.B      #3,ERRCOUNT ; set the MIDI flags to Xmit a new note. 
            BLO         DONEF2M     ; Silence output if 3 consecutive errors 
             
            MOVE.B      #NOTEOFF,MIDIFLAGS 
             
GOODNOTE    SUBA.W      #63,A0 
            ADDA.W      #MIDILIST,A0 
            MOVE.B      (A0),MIDINOTE 
            MOVE.B      #ENABLEF0,MIDIFLAGS 
            CLR.B       ERRCOUNT 
 
DONEF2M     RTS 
****************************************************************************** 
 
 
****************************************************************************** 
SENDMIDI    MOVE.B      MIDIFLAGS,D2 
****************************************************************************** 
*; DESCRIPTION: This routine examines the MIDI flags set in this software   ;* 
*;              and takes action based on these flags.  If the flags are    ;* 
*;              clear, then the routine exits.  If the NOTE OFF flag is     ;* 
*;              detected, then the previous MIDI note is disabled.  If any  ;* 
*;              other value is detected, then a MIDI packet instructing the ;* 
*;              synthesizer to change notes is sent if the current note     ;* 
*;              differs from the previous note.                             ;* 
*;                                                                          ;* 
*;  PARAMETERS: MIDIFLAGS - Determines what action to take.                 ;* 
*;              PREVMIDI - Previous MIDI note sent                          ;* 
*;              MIDINOTE - Current MIDI note to evaluate                    ;* 
*;                                                                          ;* 
*;   REGISTERS: D0 - Contains the previous MIDI note                        ;* 
*;              D1 - Contains the current MIDI note                         ;* 
*;              D2 - Contains the MIDI flags                                ;* 
*;                                                                          ;* 
*;     RETURNS: MIDIFLAGS - Cleared upon exit under any case.               ;* 
****************************************************************************** 
            BEQ         DONESNDMIDI ;If the flags are clear, then exit 
             
            CMPI.B      #NOTEOFF,D2 ;Are we to disable the previous note w/o 
            BNE         NEWNOTE     ; sending another note? If not, send note 
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SILENCE     MOVE.B      #NOTEOFF,STATUS   ;Else, silence the previous note 
            MOVE.B      PREVMIDI,NOTENBR 
            MOVE.B      #VELOCITY,NOTEVEL 
            MOVE.B      #0,MSGEND 
            MOVE.W      #STATUS,MIDISTR 
            BSR         MIDISend 
             
            BRA         DONESNDMIDI 
 
NEWNOTE     MOVE.B      PREVMIDI,D0 
            MOVE.B      MIDINOTE,D1 ;If the previous note and current note  
            CMP.B       D0,D1       ; are the same, there is no need to send 
            BEQ         DONESNDMIDI ; other MIDI packets, so exit                   
 
            CMPI.B      #NOTEERR,D1 ;Exit if an error identifying f0 
            BEQ         DONESNDMIDI 
             
            MOVE.B      #NOTEOFF,STATUS   ;Else, silence the previous note 
            MOVE.B      PREVMIDI,NOTENBR 
            MOVE.B      #VELOCITY,NOTEVEL 
            MOVE.B      #0,MSGEND 
            MOVE.W      #STATUS,MIDISTR 
            BSR         MIDISend 
             
            MOVE.B      #NOTEON,STATUS    ;And send the new note and exit 
            MOVE.B      MIDINOTE,NOTENBR 
            BSR         MIDISend 
 
DONESNDMIDI CLR.B       MIDIFLAGS 
                       
            RTS 
****************************************************************************** 
 
 
****************************************************************************** 
MIDISend    MOVEA.W     MIDISTR,A6 
****************************************************************************** 
*; DESCRIPTION: Sends a character to out the MII Port to the synthesizer.   ;* 
*;                                                                          ;* 
*; PARAMETERS:  A6 - Starting address of the data to send.  Data is sent    ;* 
*;              until the NULL character ($00) is found.  NULL is not sent  ;* 
*;              to the terminal.                                            ;* 
****************************************************************************** 
POLLTDR     BTST.B      #TDRE,MIDISC    ;Waiting for the previous char to go 
            BEQ         POLLTDR 
            MOVE.B      (A6)+,D0 
            BEQ         ENDMSND         ;If NULL is detected, then exit  
            MOVE.B      D6,MIDITXD      ;Else send the new char 
            BRA         POLLTDR 
ENDMSND     RTS 
 
*;------------------------- MIDISend Variables -----------------------------;* 
MIDISTR     DC.W        $0 
****************************************************************************** 
 
 
****************************************************************************** 
CTRCLR      MOVEA.W     #S,A0       ;S array index (storing samples) 
****************************************************************************** 
            MOVEA.W     #0,A1       ;k (accessing S) 
            MOVEA.W     #0,A2       ;k+n (accessing S) 
            MOVEA.W     #DD,A3      ;DD array index (storing ADMF steps) 
*; CLR.W       MAXOFDD     ;Used for max(DD); 
            RTS 
****************************************************************************** 
 
 
****************************************************************************** 
INITFINDEX  MOVEA.W     #FINDEX,A0   
****************************************************************************** 
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            MOVE.W      FMAX,D0 
FLOOP       MOVE.W      #FINDEND,(A0)+ ;Fill array w/ the end of array flag 
            CMPA.W      D0,A0 
            BLS         FLOOP 
            RTS                     ;Exit 
****************************************************************************** 
 
 
****************************************************************************** 
*; ENABLING AND DISABLING INTERRUPTS 
****************************************************************************** 
ENABLEIRQ   ANDI.W      #$F8FF,SR 
            MOVE.B      #$FF,IRQENFLAG 
            RTS 
 
DISABLEIRQ  ORI.W       #$0700,SR 
            MOVE.B      #$00,IRQENFLAG 
            RTS 
****************************************************************************** 
 
 
****************************************************************************** 
*; MIDI AND SCI INITIALIZATION ROUTINES 
****************************************************************************** 
SCICONFIG   MOVE.B      #$3,SCISC 
            MOVE.B      #SCICFG,SCISC 
            RTS 
             
MIDICONFIG  MOVE.B      #$3,MIDISC 
            MOVE.B      #MIDICFG,MIDISC 
            RTS 
****************************************************************************** 
 
            INCLUDE     'MIDIList.x68' 
 
            END         START
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MIDIList.x68 

 
ORG         $2000 
****************************************************** 
*; Pitch |  F0        | Valid F0s | Offsets  | MIDI ;* 
*;--------------------------------------------------;* 
*; C2    |  65.406    | 63-67     | 0-4      |  36  ;* 
*; C#2   |  69.296    | 68-71     | 5-8      |  37  ;* 
*; D2    |  73.416    | 72-75     | 9-12     |  38  ;* 
*; D#2   |  77.782    | 76-80     | 13-17    |  39  ;* 
*; E2    |  82.407    | 81-84     | 18-21    |  40  ;* 
*; F2    |  87.307    | 85-89     | 22-26    |  41  ;* 
*; F#2   |  92.499    | 90-95     | 27-32    |  42  ;* 
*; G2    |  97.999    | 96-100    | 33-37    |  43  ;* 
*; G#2   |  103.826   | 101-106   | 38-43    |  44  ;* 
*; A2    |  110       | 107-113   | 44-50    |  45  ;* 
*; A#2   |  116.541   | 114-120   | 51-57    |  46  ;* 
*; B2    |  123.471   | 121-127   | 58-64    |  47  ;* 
*; C3    |  130.813   | 128-134   | 65-71    |  48  ;* 
*; C#3   |  138.591   | 135-142   | 72-79    |  49  ;* 
*; D3    |  146.832   | 143-151   | 80-88    |  50  ;* 
*; D#3   |  155.564   | 152-160   | 89-97    |  51  ;* 
*; E3    |  164.814   | 161-169   | 98-106   |  52  ;* 
*; F3    |  174.614   | 170-179   | 107-116  |  53  ;* 
*; F#3   |  184.997   | 180-190   | 117-127  |  54  ;* 
*; G3    |  195.998   | 191-201   | 128-138  |  55  ;* 
*; G#3   |  207.652   | 202-213   | 139-150  |  56  ;* 
*; A3    |  220       | 214-226   | 151-163  |  57  ;* 
*; A#3   |  233.082   | 227-240   | 164-177  |  58  ;* 
*; B3    |  246.942   | 241-254   | 178-191  |  59  ;* 
*; C4    |  261.626   | 255-269   | 192-206  |  60  ;* 
*; C#4   |  277.183   | 270-285   | 207-222  |  61  ;* 
*; D4    |  293.665   | 286-302   | 223-239  |  62  ;* 
*; D#4   |  311.127   | 303-320   | 240-257  |  63  ;* 
*; E4    |  329.628   | 321-339   | 258-276  |  64  ;* 
*; F4    |  349.228   | 340-359   | 277-296  |  65  ;* 
*; F#4   |  369.994   | 360-380   | 297-317  |  66  ;* 
*; G4    |  391.995   | 381-403   | 318-340  |  67  ;* 
*; G#4   |  415.305   | 404-427   | 341-364  |  68  ;* 
*; A4    |  440       | 438-453   | 365-390  |  69  ;* 
*; A#4   |  466.164   | 454-480   | 391-417  |  70  ;* 
*; B4    |  493.883   | 481-508   | 418-445  |  71  ;* 
*; C5    |  523.251   | 509-538   | 446-475  |  72  ;* 
*; C#4   |  554.365   | 539-570   | 476-507  |  73  ;* 
*; D5    |  587.33    | 571-604   | 508-541  |  74  ;* 
*; D#4   |  622.254   | 605-640   | 542-577  |  75  ;* 
*; E5    |  659.255   | 641-678   | 578-615  |  76  ;* 
*; F5    |  698.457   | 679-719   | 616-656  |  77  ;* 
*; F#5   |  739.989   | 720-761   | 657-698  |  78  ;* 
*; G5    |  783.991   | 762-807   | 699-744  |  79  ;* 
*; G#5   |  830.609   | 808-855   | 745-792  |  80  ;* 
*; A5    |  880       | 856-906   | 793-843  |  81  ;* 
*; A#5   |  932.328   | 907-960   | 844-897  |  82  ;* 
*; B5    |  987.767   | 961-1017  | 898-954  |  83  ;* 
*; C6    |  1046.502  | 1018-1078 | 955-1015 |  84  ;* 
****************************************************** 
 
 
MIDILIST    DC.B        36,36,36,36,37,37,37,37,38,38,38,38,39,39,39,39 
            DC.B        39,40,40,40,40,41,41,41,41,41,42,42,42,42,42,42 
            DC.B        43,43,43,43,43,44,44,44,44,44,44,45,45,45,45,45 
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            DC.B        58,58,58,58,58,58,58,58,58,58,58,58,58,59,59,59 
            DC.B        59,59,59,59,59,59,59,59,59,59,59,60,60,60,60,60 
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            DC.B        61,61,61,61,61,61,61,61,61,62,62,62,62,62,62,62 
            DC.B        62,62,62,62,62,62,62,62,62,62,63,63,63,63,63,63 
            DC.B        63,63,63,63,63,63,63,63,63,63,63,64,64,64,64,64 
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            DC.B        76,76,76,76,76,76,76,76,76,76,77,77,77,77,77,77 
            DC.B        77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77 
            DC.B        77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77 
            DC.B        77,77,78,78,78,78,78,78,78,78,78,78,78,78,78,78 
            DC.B        78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78 
            DC.B        78,78,78,78,78,78,78,78,78,78,78,79,79,79,79,79 
            DC.B        79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79 
            DC.B        79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79 
            DC.B        79,79,79,79,79,79,79,79,80,80,80,80,80,80,80,80 
            DC.B        80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80 
            DC.B        80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80 
             
            DC.B        80,80,80,80,80,80,80,81,81,81,81,81,81,81,81,81 
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