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ABSTRACT

FINITE ELEMENT MODELING OF SOFT TISSUE DEFORMATION

Hongjian Shi

September 11, 2007

Computer-aided minimally invasive surgery (MIS) has progressed significantly in the last

decade and it has great potential in surgical planning and operations. To limit the damage

to nearby healthy tissue, accurate modeling is required of the mechanical behavior of a

target soft tissue subject to surgical manipulations. Therefore, the study of soft tissue de-

formations is important for computer-aided (MIS) in surgical planning and operation, or in

developing surgical simulation tools or systems. The image acquisition facilities are also

important for prediction accuracy.

This dissertation addresses partial differential and integral equations (PDIE) based

biomechanical modeling of soft tissue deformations incorporating the specific material

properties to characterize the soft tissue responses for certain human interface behaviors.

To achieve accurate simulation of real tissue deformations, several biomechanical finite el-

ement (FE) models are proposed to characterize liver tissue. The contribution of this work

is in theoretical and practical aspects of tissue modeling.

High resolution imaging techniques of Micro Computed Tomography (Micro-CT)

and Cone Beam Computed Tomography (CBCT) imaging are first proposed to study soft

tissue deformation in this dissertation. These high resolution imaging techniques can de-

tect the tissue deformation details in the contact region between the tissue and the probe

for small force loads which would be applied to a surgical probe used. Traditional imag-

ing techniques in clinics can only achieve low image resolutions. Very small force loads
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seenin these procedures can only yield tissue deformation on the few millimeters to sub-

millimeter scale. Small variations are hardly to detect. Furthermore, if a model is validated

using high resolution images, it implies that the model is true in using the same model for

low resolution imaging facilities. The reverse cannot be true since the small variations at

the sub-millimeter level cannot be detected. In this dissertation, liver tissue deformations,

surface morphological changes, and volume variations are explored and compared from

simulations and experiments. The contributions of the dissertation are as follows.

For liver tissue, for small force loads (5 grams to tens of grams), the linear elas-

tic model and the neo-Hooke’s hyperelastic model are applied and shown to yield some

discrepancies among them in simulations and discrepancies between simulations and ex-

periments. The proposed finite element models are verified for liver tissue.

A general FE modeling validation system is proposed to verify the applicability

of FE models to the soft tissue deformation study. The validation of some FE models

is performed visually and quantitatively in several ways in comparison with the actual

experimental results. Comparisons among these models are also performed to show their

advantages and disadvantages. The method or verification system can be applied for other

soft tissues for the finite element analysis of the soft tissue deformation. For brain tissue,

an elasticity based model was proposed previously employing local elasticity and Poisson’s

ratio. It is validated by intraoperative images to show more accurate prediction of brain

deformation than the linear elastic model. FE analysis of brain ventricle shape changes

was also performed to capture the dynamic variation of the ventricles in author’s other

works. There, for the safety reasons, the images for brain deformation modeling were from

Magnetic Resonance Imaging (MRI) scanning which have been used for brain scanning.

The measurement process of material properties involves the tissue desiccation, ma-

chine limits, human operation errors, and time factors. The acquired material parameters

from measurement devices may have some difference from the tissue used in real state of

experiments. Therefore, an experimental and simulation based method to inversely evaluate

the material parameters is proposed and compared with the material parameters measured

by devices.
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Asknown, the finite element method (FEM) is a comprehensive and accurate method

used to solve the PDIE characterizing the soft tissue deformation in the three dimensional

tissue domain, but the computational task is very large in implementation. To achieve near

real time simulation and still a close solution of soft tissue deformation, region-of-interest

(ROI) based sub-modeling is proposed and the accuracy of the simulated deformations are

explored over concentric regions of interest. Such a ROI based FE modeling is compared

to the FE modeling over the whole tissue and its efficiency is shown and as well as its

influence in practical applications such as endoscopic surgical simulation.
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CHAPTER I

INTRODUCTION

In medical image analysis, mathematical modeling of tissue deformation and visu-

alization of the surface and volume changes are challenging tasks. The modeling may be

employed in surgical planning and operations. For example, before one theory or technique

is used on real human patients, it is interesting to use alternatives to replace human patients

in a virtual environment to simulate real procedures such as a probe indenting the target tis-

sue, or a scalpel cutting the tissue. Currently, many surgical procedures on human patients

are not explored or not accurately modeled and simulated using some mathematical theory

and numerical techniques. The potential verified techniques are important for minimally

invasive surgeries to protect human health and to save human lives, particularly for surg-

eries with high accuracy requirements such as human brain surgery to ablate tumors with

critical structures nearby.

There are good geometrical models and physical models in research but few are

employed in real practice due to the complication of the real surgical procedures or the lack

of knowledge of tissue material properties. Accurate modeling is essential in characterizing

the tissue material responses. It is very important to verify the applicability of a model for

the target tissue. Therefore, it is challenging to verify how good a model is in comparison

with other models and what values of the tissue material parameters should be used in

the modeling. Obtaining the optimal material parameters is also challenging to achieve

accurate modeling of the tissue response if the material experiment is not accurate, or

the device induces some errors due to human operations, machine limits, timing factor,

or the tissue dehydration. Soft tissue modeling using the acquired images as a starting

point, provides a safe and noninvasive way to study the tissue behavior and to simulate the

procedures before real operations. The image resolution is also important to describe the
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behavior or procedure accurately in capturing small details. So, it is proposed to use high

resolution imaging facilities for image acquisition for this study.

In the study, some known models or their variants in applications to soils and flu-

ids are employed to verify their applicabilities to the modeling of soft tissues. The be-

havior of the soft tissues are between those of solids and fluids. High resolution Micro

Computed Tomography (Micro-CT) and medium resolution Cone Beam Computed To-

mography (CBCT) images are first employed by in the study of liver tissue deformation to

validate some known models potentially applied to the liver tissue. The higher resolution

CT images provide a competitive benefit to show surface and volume changes. As known,

Micro-CT images and CBCT images have been used traditionally for hard tissue imaging

such as the bone, joints, or the boundary regions of bones connected to their neighboring

soft tissues. The CBCT images are specially used for dental imaging, and are popular in

imaging diagnosis for their high resolution and high quality in describing teeth and jaw

related diagnosis and surgical treatment. Although the Micro-CT images and CBCT im-

ages can not be used to identify intensity changes inside soft tissues, for the liver tissue,

the intensity and structure of the liver are quite evenly distributed and so the outer sur-

face shape can be shown by reconstructing the three-dimensional liver volume. In this

study, a model validation standard is established to verify the applicability of a model to

some target tissue under small force loads. For small force loads, the surface change of

the liver may not be detected by traditional CT imaging. The applicability of a model to

the liver deformation verified by Micro-CT and CBCT imaging implies its applicability of

the model applied to traditional CT images. Further, Micro-CT and CBCT images provide

more accurate results. The estimation strategy of optimal values of material parameters

and region-of-interest finite element modeling for fast computation for practical applica-

tions are also proposed. Although this study focuses on the surface and volume changes,

the region of interest based finite element method can also be applied to study the object

with different soft materials if the segmentation of the soft materials is successful and their

material properties are known. For example, the brain tissue behaves mainly elastic under

a very small force load, and the material parameters are known of the brain components
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whitematter, grey matter, and cerebrospinal fluid ([1]).

A. MODELING OF SOFT TISSUES: AN OVERVIEW

1. Significance of Soft Tissue Modeling

Surgical planning and operations are critical procedures to protect human health

and life. The significant progress of computer-aided surgical simulation in the last decade

has helped and will be helping surgeons in two main aspects: training of new surgeons, and

surgical planning and operations.

The traditional training of a future surgeon is based on an apprenticeship model.

The apprentice learns by watching expert surgeons perform surgical operations, and by

participating and taking an active role in the operations to gain experience. After sufficient

experience, the apprentice may perform operations under the guidance of an expert surgeon

and gradually becomes an expert surgeon. Such an education is effective, but it has some

disadvantages: The apprentice may need a long time to gain experience which increases the

education cost; the apprentice inside an operation room may affect and delay the ongoing

surgery due to the space limit; the number of surgical procedures increases for surgeries

minimally invasive to neighboring healthy tissues; the accuracy is lower in perception than

computer predicts. Computer-assisted training may offer good solutions [2, 3] to comple-

ment these disadvantages. If an apprentice is initially trained on computer simulated phan-

toms, the apprentice may make incorrect procedures without any consequence and learn

quickly from them by correcting the errors from repeated practices. Animals and phantoms

may provide alternatives to patients in computer simulation. Virtual environments can be

made in experiments to gain operation skills of surgical procedures ([4–6]).

Before surgery, the surgeon always explains the operation and its possible com-

plications. As a part of this, the surgeon needs to know the position of the tumor, the

possible path for operation, and the possible tissue change in its neighboring region. The

imaging scans can always be obtained. Three dimensional object reconstruction from the
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scannedimages can help the surgeon to know the accurate position of the tumor. The tis-

sue deformation for certain operations due to a surgical tool (probe) can also be predicted

before surgery ([7, 8]). This can help the surgical planning be more organized and help

the surgery go more smoothly with no or less damage to the neighboring healthy tissue

around the probe. One example is the planning of image guided cryosurgical treatment

of liver cancer. The cryosurgery (also known as cryotherapy) destroys tumor cells using

cold temperatures. This is done by inserting a stainless steel probe (cryoprobe) into contact

with the tumor. A cryogenic agent (e.g., argon gas or nitrogen liquid) is circulated through

the end of the cryoprobe freezing the nearby cells. The frozen tissue thaws and is either

naturally absorbed by the body (internal tumor), or it dissolves and forms a scab (external

tumor) ([9]). During a cryosurgery, the doctor uses MR images or ultrasound images to

guide the cryoprobe and to monitor the freezing of the cells. Image-guided minimally inva-

sive surgery (MIS) is promising in predicting the tissue changes before and during surgical

operations and helps the surgeon to know the tissue changes and deformations due to sur-

gical tools and human factors such as pushing force with different human interfaces. The

technology involves both virtual and augmented reality tools to facilitate the surgeon’s task

in surgical planning and operations.

2. Mechanics of Soft Tissues

Human tissues are among the most interesting and complex materials that an en-

gineer may study. Though much is not known about the human body and its organs and

tissues, some things are known: every component in tissue, every architectural nuance in

its geometry, every quirk in its mechanical or electrical behavior, all integrated together to

provide a systemic response that is perfectly suited for the development of life. As engi-

neers, it is the treat to examine the body and its constituents, to learn about the system and

its parts and why they respond as they do. Using this knowledge, the medical professionals

can be assisted in diagnosis and optimization of surgical treatments for pathologies that

affect the human body.
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To mimic realistic tissue behavior, it is important to obtain mechanical properties of

the soft tissue. Soft tissues may be classified into two categories: (1) solid, which includes

brain, liver, spleen, and pancreas, and (2) hollow, which includes gall bladder, stomach,

and bowel (e.g., [10]). The liver tissue is a soft tissue and its density is approximately even

distributed. In these these studies, some of the works were focused on the spleen and liver,

because they consist of a dense connective tissue capsule surrounding the parenchyma, and

can be treated as approximately isotropic, homogeneous, and incompressible ([10], [11],

[12], and [13]). The mechanical properties of a given tissue can be measured eitherin

vivo [10, 14, 15] orex vivo[11]. It is more ideal to measure the tissue properties usingin

vivo tests than usingex vivotests. However, it is difficult to do so for several reasons such

as uncontrolled boundary conditions, noise, accessibility, and ethics. In literature such as

[15], the effects of different testing conditions were studied and an artificial environment

was created to mimic thein vivoenvironment.

In reality, soft biological tissues are inhomogeneous, anisotropic and are often sub-

jected to large deformations. One type of mathematical model usually cannot describe the

complex mechanical response of a soft tissue even under small force loads. For larger force

loads, the soft tissue deforms larger in a more nonlinear manner in geometry and material.

So, many attempts have been made to describe the nonlinear behavior ([14–17]). Different

biomechanical models have been developed for different types of soft tissues such as liver,

brain, muscle, and kidney (e.g., [10, 14]). These attempts recorded the ways to approach

the accurate prediction of the mechanical behavior of soft tissues.

3. Finite Element Methods (FEM)

The FEM originated from the need for a method to solve complex elasticity, and

structural analysis problems in both civil engineering and aeronautical engineering. How-

ever, it has since been used in many fields. One essential characteristic is the decomposition

of a continuous domain into a set of discrete sub-domains. Such a characteristic provides

a great advantage to employ local information comprehensively and to describe variation
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details,while much computation is needed.

The development of the FEM in continuum mechanics is often based on an energy

principle, e.g., the virtual work principle or the minimum total potential energy principle,

which provides a general, intuitive and physical basis that has a great appeal to engineers.

Mathematically, the finite element method is employed to find approximate solutions of

partial differential equations as well as solutions of integral equations or their combinations.

The solution approach is usually a numerically based simulation.

In the modeling of the mechanical response of a soft tissue, the finite element

method has been employed to solve the established constitutive equation which describes

the soft tissue behavior. The comprehensive employment of local information makes the

FEM efficient in describing the shape changes of the soft tissue. On the other hand, with

the increase of the computation power of computers, the finite element based modeling

becomes an efficient and accurate technique in many applications.

4. Existing Models and Their Applications

The FEM has been widely used in engineering for its discrete approximation to

complicated shape continuum solids. The FEM was employed earlier in the analysis of

human organ stresses [12, 18]. However, the applications were not image based modeling

and they were focused on the study of mechanical properties. Modeling of soft tissue de-

formations began in the middle of 1990s in order to reduce incident inaccuracy induced by

surgical tools during surgical processes [19]. Pure image-based models have been used for

the prediction of displacements assuming some image similarity and small displacements

between 2D images ([20–22]). However, without correct physical information of the soft

tissues, these models usually could not predict the real shape changes since two objects

with same shape but with different material characteristics may change their shapes quite

differently under an equal force load. To cope with this, some physical deformation models

utilizing the tissue characteristics have been proposed ([23–26]). These models used better

physical regularization constraints on the image similarity but did not incorporate specific
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materialproperties of the target tissues. The biomechanical models incorporating specific

material properties were used early in the modeling of heart tissue motion (e.g., [27]). In

that work, the linear elastic model was presented to estimate the force driven left ventricu-

lar deformation. Because of its simplicity, the linear elastic model was widely used in early

surgical simulation and is still used frequently ([28–30]).

With the increasing speed of computer processing, the prediction accuracy attracts

more attention. More complicated biomechanical models have been employed to predict

the deformations or registrations of brain, liver, skin and muscle tissues ([13, 30–32]).

These models were mainly used to study brain deformation ([33–36]). Some works on

the liver tissue modeling using the FEM were reviewed and reported in [37] where the low

resolution images were used in prediction. However, the validation of these models, or of

newer finite element models for the liver tissue is still challenging. The modeling of tissue

deformation and validation of the modeling are necessary steps in building a real surgical

simulator for clinical use.

The inaccuracy of brain surgery is mainly due to the brain deformation induced

by the surgical tool during surgery. A number of studies on finite element modeling of

the brain deformation in minimally invasive surgery appeared in the past five years (e.g.,

[17, 30, 33, 38]). Edwards et al. ([38]) used the minimum energy method and simple grids

in 2D for their modeling of surgical procedures.Škrinjar et al. ([30]) presented a homoge-

neous linear viscoelastic model. Miller and Chinzei [17] presented a nonlinear viscoelastic

model based on the strain energy function. Miga et al. [33] presented a biphasic model

composed of an isotropic linear elastic solid and a fluid component which is represented by

the interstitial pressure distribution. To improve the accuracy in the prediction of brain de-

formation, recent studies have used intraoperative imaging to update the prediction during

surgical procedures ([31, 32, 35, 36, 39–42]). The finite element models in [31, 32, 35, 39–

43] assumed the brain tissue as a single isotropic material. Miller et al. ([17, 34, 44, 45])

presented several finite element models for the brain tissue deformation. Soza [46] and

Kemper [47] proposed a method to search for optimal constant parameters for the isotropic

and anisotropic linear elastic models. In all these studies (with the exception of Miga [33])
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the entire brain was assumed to have the same parameters on elasticity or other proper-

ties. Hagemann et al. ([48, 49]) proposed and implemented a 2D finite element model by

incorporating a set of landmarks into their model. The model considers the heterogene-

ity of the bone and the brain. The model uses iterative segmentation to classify material

types and the cubic grid meshes for modeling. In the finite element model proposed by

Miga [33], the heterogeneity of the brain tissue was dealt with by classifying the brain tis-

sue into white matter and grey matter which were considered having different mechanical

properties. Castellano-Smith et al. ([50]) proposed a mesh warping technique to construct

patient-specific finite element models. These generated meshes are based on an atlas mesh

in which the inside features are preserved within the meshes. Also, the brain was classified

into three types of materials: cerebrospinal fluid, white matter, and grey matter. However,

details of meshing and modeling were not presented in that paper.

In [51], Hansen presented a region of interest based finite element modeling of brain

deformation. They applied a dynamic model in a region requiring high accuracy and a static

model elsewhere. The homogeneity is also assumed for the whole brain. In [1], a mixed

finite element model of the brain tissue was proposed and tested using the different material

properties of the different tissue components.

This finite element modeling of the soft tissues attempted to describe the tissue

responses provides attempts using biomechanical models from the simple linear elastic

model to complicated models. Validation of these models is still challenging before it can

be employed in clinical practice.

B. PROBLEM STATEMENTS

Several aspects of computer-aided simulation of surgical procedures have been in-

teresting in medical image analysis. One of the most important aspects is the study of soft

tissue modeling incorporating the mechanical properties of the soft tissue. In this study, the

following problems are considered and addressed:
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1. Modeling of Soft Tissues

Consider a 3D soft tissue volumeV and a surgical probe which contacts the tissue

surface as shown in Fig. 1. If a pushing force is applied through the probe, how is the soft

tissue deforming? Further, how is the tissue deformation described for different interfaces

such as the different force loads and different size surgical tools?

2. Validation of Soft Tissue Modeling

There are a number of geometrical models and mechanical models to characterize

the soft tissues. However, determining if a model is suitable to the target soft tissue in

comparison with other models is a challenging task. Therefore, the validation of the appli-

cability of a model to a target tissue is an important step before the practical use of such a

model in modeling the target tissue. Is there any criterion or standard for validation?

3. Determination of Optimal Material Parameters

As known, different soft tissues deform quite differently since their material prop-

erties are different. The material parameters measurement may be limited to the accuracy

of the machine, human operation factors, and the status of the tissue such as temperature

and tissue dehydration. Therefore, how are the most accurate material parameters to be

obtained for clinic simulation?

4. Region of Interest Modeling for Fast Computation

For the accuracy of deformation prediction, mechanical models are usually em-

ployed in consideration of tissue material properties. The computational analysis for a

model of soft tissue incorporating its material properties is considerably large if its mesh

is dense and has more than10000 nodes. For endoscopic surgical simulation, the affected

area is well specified. The problem is how to reduce the computation time of finite element

analysis. In this study, region of interest finite element modeling is investigated for fast
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FIGURE1 – A piece of lamb liver in contact with a probe - this 3D image is reconstructed
from 2D Micro-CT slices, and input into the finite element software with the designed
probe.
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computationand its accuracy is evaluated.

C. CONTRIBUTION OF THE DISSERTATION

The contribution of this dissertation are in four aspects:

• High resolution imaging facilities are first employed to predict the soft tissue defor-

mation. Such employment has been proved successfully to describe the soft tissue

surface and volume shape changes.

• A validation system is proposed to verify the applicability of soft tissue modeling

using different types of mathematical models. The linear elastic model and the neo-

Hooke’s hyperelastic model for the lamb liver was verified in details. The applica-

bility of a model validated using high resolution imaging implies the applicability of

the model for the target soft tissue using low images.

• A method to search optimal material parameters in practical environment is proposed

and the optimal material parameters for the lamb liver under small force loads are

obtained.

• Region of interest based finite element modeling is proposed and its performance is

tested over different concentric regions in comparison with the finite element analysis

over the entire soft tissue. To speed up the computer simulation, a proper small

restricted region can be found. This has potential applications in endoscopic surgical

simulation.

D. DISSERTATION ORGANIZATION

The organization of this dissertation is as follows:

In Chapter II, surgical simulation and the finite element method are introduced and

explained for their great benefits in surgical education, planning, and operations. The
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prospective and essential component of surgical simulation to describe soft tissue defor-

mation is introduced.

In Chapter III, two basic high resolution imaging techniques are introduced to cap-

ture even spaced cross sections for the whole tissue volumes for this study.

In Chapter IV, basic models traditionally employed to described continuum solids

are introduced for soft tissue modeling.

In Chapter V, preprocessing procedures including equipment setup, image acquisi-

tion, image segmentation are introduced of the soft tissues for finite element analysis.

In Chapter VI, finite element modeling of liver tissue using Micro-CT and CBCT

is performed. A validation system is proposed for the prediction accuracy of liver tissue

deformation using different models.

In Chapter VII, the volume expression, mesh generation, and the contact of the

indentor with volume mesh are introduced in details.

In Chapter VIII, various simulations using different material parameters are per-

formed and compared to those from real experiments to configure the material parameter

values.

In Chapter IX, region-of-interest finite element analysis of liver tissue deformation

using Neo-Hooke’s hyperelastic model is reported over different concentric regions of in-

terest.

In Chapter X, conclusions are made for soft tissue modeling and validation of the

modeling and future works are proposed.

E. SUMMARY

In this chapter, the recent developed geometric and physical models were reviewed

in their applications to the prediction of soft tissue deformation. The importance of soft

tissue modeling was stressed for the surgical planning and operations to prevent the poten-

tial damage to health tissues in surgical procedures. The usage of high resolution imaging

facilities was first proposed and the advantages of employing high resolution imaging fa-
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cilities were brieflyanalyzed. Research topics for this dissertation were stated and their

challenging aspects were introduced. In the last, the contributions and the organization of

the entire dissertation was stated as in the order to appear in content.
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CHAPTER II

PROSPECTIVE OF SOFT TISSUE STUDY IN SURGICAL SIMULATION

In the introduction chapter, the recent development of geometric and physical mod-

els in research and applications were reported. These models have potential applications

in assisting surgical planning and simulations. This chapter will address the prospective of

surgical simulations and the surgical simulation project conducted at the Computer Vision

and Image Processing (CVIP) Laboratory, University of Louisville.

A. PROSPECTIVES OF SURGICAL SIMULATION

The advances in medical imaging have been made frequently from the discovery

of X-rays for more than 100 years ago. Now the time comes to open new perspectives

for the improvement of the computer assisted surgical planning and surgical simulation

in operation rooms. Computer tomography and magnetic resonance imaging are widely-

used for diagnostic and visualization purposes and the 3D human anatomy provides the

information on the geometrical disposition. The main goal of computer surgical simulation

is to simulate physical interactions with the virtual body. Currently hundreds of schools in

the United States and around the world provide hands-on health care education to medical,

nursing, and allied health students. Virtual reality medical simulators used in combination

with traditional training methods can provide a comprehensive learning opportunity [52].

Currently, there are more than a dozen companies dedicating to make surgical simulators

(Immersion Medical, MD, USA; Verefi Technologies, PA, USA; Simbionix Technologies,

OH, USA; Rechin Technologies, Stockholm, Sweden). The main prospectives and benefits

of surgical simulation are as follows:

• For educational purposes, medical simulators are changing the practice of medicine.

Virtual reality medical simulators used in combination with traditional training meth-
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odscan provide a comprehensive learning opportunity. The use of surgical simulators

in training programs has been shown to improve performance and lead to shorter re-

sponse time and less deviation from practice standards than non-simulator training.

Using a surgical simulator can increase trainee confidence, competence, and improve

patient safety. Medical simulators allow the clinician to safely learn, practice, and

repeat the skill or procedure over and over until proficiency is achieved. Simulation

training fosters critical thinking, active learning, and confidence building.

• For safety purposes, using virtual reality simulation, medical students, residents, and

practicing physicians can learn treatment protocols and master basic and procedural

skills before touching a real patient. Physicians can review, repeat, and reassess their

performance and find areas for improvement without compromising patient safety.

• Accurate and robust simulations of surgical interventions on virtual patients, includ-

ing the realistic prediction of their postoperative appearance. The computer assisted

surgical planning has many advantages in comparison with conventional planning

systems. Once the virtual model of a patient is generated, various case scenarios of

the surgical impact and their outcomes can be extensively studied. Better preparation,

shorter operation time, lower costs are the immediate benefits.

• Future potential for simulated surgical instruments to operate on real patients to

achieve more accurate surgeries to release surgical doctors from possible human vi-

sion and physical limitation in performing operation procedures.

B. SURGICAL SIMULATION PROJECT AT CVIP LAB

This section addresses the surgical simulation project at the CVIP lab where this

dissertation is written on finite element modeling of tissue deformation.
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1. Introduction

This section addresses the CVIP lab and the initialization of the surgical simulation

project. The CVIP lab at the University of Louisville has been pushing research forward

in the Biomedical Imaging field for over twelve years: Autonomous Robotics for the past

three years, Remote Sensing for the past two years, and has entered the research field of

Biometrics the past year and a half. The CVIP Lab is fully staffed, and employees eighteen

graduate research students in the fields mentioned above. Virtual Endoscopic applications

of hollow organs [53]; Lung Cancer Early Detection [54]; and 3D Modeling the human

jaw, teeth, and gums [55].

The CVIP lab is very versatile and has successfully developed technology and new

algorithms across disciplines and subject matter. For example, the same vision technology

developed in the lab and applied to the virtual endoscope field for vision has been demon-

strated as applicable for robotic navigation as well. The same change detection algorithms

developed and enhanced at the CVIP lab for the early detection of Lung Cancer has been

applied successfully to the Remote Sensing Satellite. It is hoped to study these algorithms’

applications to the 3D modeling of the human brain project, as well as to use the finite

element method to identify and model the areas of change throughout a brain surgery.

The CVIP Lab has a wide net of multidisciplinary collaborations with over 30 re-

searchers in the mathematical, biomedical and computer sciences areas. The CVIP lab has

strong computing equipments to conduct various projects for army or industries related to

medical imaging and computer vision.

Researchers at the CVIP lab at the University of Louisville propose to conduct pre-

liminary work in order to develop real-time surgical modeling tools for intra-operative use

in delicate organs such as the brain and liver. The CVIP lab works with iMRI Department

(Norton Hospital, Louisville, KY) to assist MRI brain data acquisition as required. In the

following sections, the surgical simulation project will be introduced in steps.
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FIGURE2 – Procedure for the surgical simulation.

2. Segmentation

The first step after image acquisition is the segmentation of the target object such

as brain for surgical simulation. It is a very important step to accurately extract the target

object from the stack of 2D images. It relates to the accuracy of simulated results, and finite

element simulated results in the tissue deposition simulation projects.

a. Introduction The image segmentation is to extract an objects from an image

with complicated features except the object inside the image. The process of identifying

object boundaries in an image is a crucial step. It has been a persistent challenge from

the draw of the digital image processing in the late 1960s. There are a lot of papers on

image segmentation in yearly image processing, pattern recognition, and computer vision

conferences. Most of these segmentation techniques appearing frequently are application

oriented and geometrically based. Therefore, analytic segmentation approach is a desirable

goal for surgical simulation. One advantage is that the segmentation is one way straight for-

wards and fast implementation. Another advantage is the post smoothing procedure is not

necessary due to the smoothness of the related solutions. For segmentation, image noise,

inhomogeneities, occlusion, lack of strong edges, and sharing image intensities between

different objects are the main challenges. For the surgical simulation project, there were
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several analytic segmentation algorithms developed at the CVIP lab ([56–58]).

b. Basic level set methodOsher and Sethian in 1988 introduced the concept

of level set representation [59] which provides an analytic approach for surface evolution.

Objects in 2D images may be outlined by the intersection of a parametric 3D function and

the x-y plane (zero level). Different objects can be identified by controlling the evolution

of the 3D function. This level set method is flexible and provides a parametric object

description in 2D by energy minimization of curve evolution guided by intrinsic features in

an image ([60, 61]).

The basic level set functionsΦi(x, y, t) are represented based on the regions, i.e. it’s

positive inside the region, negative outside and zero on the interface boundary. The time

variablet is used to track the changes of the front evolution curve. Change of the level set

function with time results in different curves. The level set function is zero at the front:

Φ(x, y, t) = 0 (1)

Full differentiation of both sides of Equation 3 leads to the following equation.

∂Φ

∂t
dt +

∂Φ

∂x
dx +

∂Φ

∂y
dy = 0. (2)

Then,
∂Φ

∂t
+ ‖ 5 Φ‖F = 0 (3)

where

‖ 5 Φ‖ = (
∂Φ

∂x
,
∂Φ

∂y
) (4)

andF = 5Φ
‖5Φ‖ · (dx

dt
, dy

dt
) is the speed function leading the front propagates.

Osher and Sethian [59] handled the topology changes by embedding the contour

into a higher dimensional function. Evolving contours are represented implicitly by level

set functions. An object is outlined through an energy formulation involving the object’s

boundaries (external energy) and its evolution (internal energy). These energies aim to

minimize the arc-length and the area enclosed.

E(φ) = λ

∫

Ω

g(I)δ(φ)‖∇φ‖dΩ + ν

∫

Ω

g(I)H(φ)dΩ (5)
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whereH and δ are the univariate delta dirac function and the heaviside function. The

indicator functiong depends on the edge of the object as follows:

g(I) =
1

1 + ‖∇(Gσ ∗ I)‖ (6)

This function approaches zero approximately at the object edges where the contour

evolution stops. The arc-length term is used to smooth the contour with a positive weight

λ. The area terms speed up the evolution with a weightν which can be positive if the

object is inside the contour or negative if the object is outside the contour. A contour

is represented as the zero level of the function which contains a positive part inside the

contour and negative part outside the contour. By the variational calculus [62], the level

set function evolves according to the gradient descent optimization. The approach depends

largely on the the edge quality.

c. Segmentation using multilevel set functionsSurgical planning and naviga-

tion benefit from segmentation of anatomical structures from medical images. CT data

segmentation can be performed simply using an intensity threshold. However, in general,

segmentation requires sophisticated algorithms if the target tissue has complicated struc-

tures. The simple intensity based segmentation methods fail to identify the grey matter

and white matter components inside brain. The level set segmentation approach provides a

better way for accurate segmentation of the brain tissue. It is capable to preserve the topol-

ogy naturally and recovering the shapes quickly. Level Sets evolution combining global

smoothness with the flexibility of topology changes offers significant advantages over tra-

ditional statistical classification. As known, the brain tissue consists of grey matter, white

matter, and cerebrospinal fluid. So, the number of classes including the background region

is four and the class distributions for brain tissue components can be assumed to be Gaus-

sian with known mean and variance. The classes have no common areas and are assumed

to be phases separated by interface boundaries where each class has its corresponding level

set function. The level set method will be demonstrated from [56], a work developed at the

CVIP lab.
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Theselection of the speed functionF in the Equation 3, is very important to keep

the change of the front smooth so the format of the speed function is practically selected.

The speed functionF can be written ([59]):F = ±1−εk. The positive sign means that the

front is shrinking and the negative sign means that the front is expanding andε is selected to

be a small value for smoothness.κ is the mean curvature of the front computed as follows:

κ =
ΦxxΦ

2
y − 2ΦxΦyΦxy + ΦyyΦ

2
x

(Φ2
x + Φ2

y)
3/2

.

The first order and second order partial derivatives are computed same as their def-

initions in the symmetrical format as follows:

Φx = Φ(x+∆x,y,t)−Φ(x−∆x,y,t)
2∆x

,

Φy = Φ(x,y+∆y,t)−Φ(x,y−∆y,t)
2∆y

,

Φxx = Φ(x+2∆x,y,t)−2Φ(x,y,t)+Φ(x−2∆x,y,t)
(2∆x)2

,

Φyy = Φ(x,y+2∆y,t)−2Φ(x,y,t)+Φ(x,y−2∆y,t)
(2∆y)2

,

Φxy = Φ(x+2∆x,y+2∆y,t)−Φ(x−2∆x,y+2∆y,t)−Φ(x+2∆x,y−2∆y,t)+Φ(x−2∆x,y−2∆y,t)
4∆x∆y

.

(7)

Thesolution of the level set function is sensitive to the iterative time step. So, the

Courant-Friedrichs-Levy (CFL) restriction [56] is used in selected the time step.

∆t ≤
√

Φ2
x + Φ2

y

( |Φx|
∆x

+ |Φx|
∆x

)F
. (8)

Theaim is to find the surface iteratively at different time steps. Then at each time

step the front is obtained by intersecting the surface with the zero plane. It is needed to

track this front by getting the length of the front and its enclosed area. The enclosed area

contains all the points where the level set function is greater than zero and the points of

the front where the level set function is zero. The positive points are obtained by applying

the ideal heaviside step function and the zero points are obtained by applying the delta

function. The approximations of the ideal heaviside step and the delta functions are used

to deal with the solution smoothness problem as follows:

• The enclosed area:

A =

∫ ∫

D

H(Φ)dxdy, (9)
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• Interface length of the front:

L =

∫ ∫

D

δ(Φ)‖ 5 Φ‖dxdy, (10)

• Delta Dirac function:

δα(Φ) =
(1 + cos(πΦ/α))

2α
, |Φ| ≤ α, (11)

• Haviside step function:

Hα = 0.5(1 + Φ/α + 1
π

sin(πΦ/α), when|Φ| ≤ α,

Hα(Φ) = 1, when|Φ| > α.
(12)

Figure 3 shows the delta and step function and an example with a level set function.

The value of a is always taken1.5∆x to make the band equal to3∆x where∆x is the grid

mesh size which is always 1. Solving the PDE of the level set function requires numerical

processing at each point of the image domain, which is a time consuming process. A

acceleration process was proposed at the CVIP by only calculating the change of the level

set function for a narrow region of points around the front. Large positives or negative

values are assigned to the points outside this region. The stability requirement insures valid

results with this approach. The existence of the front means that the level set function has

positive and negative valued regions, with zero-valued points between them. The level set

function with this property is called a signed distance function. This property should be

maintained through the iterations to maintain the front.

The proposed algorithm level set method at the CVIP lab achieved successfully.

Figure 4 shows the original image (2D), its segmented correspondence, and the 3D image

of the segmented white matter inside the brain. This segmentation method is one of the

segmentation method developed.

3. Registration

Shape registration is the process of a transformation that maps a given shape to

one target according to some similarity measure ([63], [58]). It can also be said a motion
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FIGURE3 – The delta and step function and an example with a level set function.

FIGURE4 – The original image, the segmented image, and the 3D image of the segmented
white matter from top to bottom.
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FIGURE5 – The rigid, elastic, and freeform motion.

process to move the points in one source to another target. The motion can be global or

local (also called elastic). Global transformations can rotate, translate, and scale the source

instance. Elastic motion means that each point has its own local motion independent of the

entire object shape where the point belongs to. The objective of the shape registration is to

generate a point correspondences between two given shapes. Figure 5 shows three kinds

of motion from one shape to another.

Usually, implicit functions are used as a matching criteria. For example, an energy

function may be formulated to be the summation of squared differences between the source

and target shapes as one implicit function. The gradient descent is also a commonly used

optimization approach to solve the resulting PDEs in order to estimate the optimal trans-

formation that maps the source to its target. At the CVIP lab, several elastic registration

algorithm were developed ([58], [64] etc.).

For the surgical simulation project, the iterative closest point (ICP) registration al-

gorithm [65] was employed to register 2D images to the 3D object from segmentation for

tracking purpose at the beginning state. The implementation is straightforward ([66]. The

iterative closest point (ICP) algorithm is a widely applied method for the registration of two

data sets of points. For the ICP algorithm, the source point set is assumed to change or de-
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form according to a certain known form of transformation and the target will remain fixed.

Transformation parameters represent the way that the source data set moves to the target.

The basic steps to implement the ICP algorithm to align two shapes (sourceP , targetX)

are as follows:

• Initialize transformation parameters.

• For every point inP , determine its closest point inX.

• Compute the transformation parameters that minimize the sum of square differences

between the correspondences.

• Based on the new parameters, update the source pointsP to the new positions.

• If the change in the source points is less than a certain threshold, terminate, otherwise

go to step 2

At the CVIP lab, object motion tracking can be performed accurately and the object

is rendered on the computer screen to show the tracking process. The rigid registration was

used in 3D position tracking. For the elastic registration and position tracking, the finite

element modeling of the brain tissue made elastic registration and tracking possible at the

CVIP lab. In the following subsection will address the software interface of the surgical

simulation project.

4. Surgical simulator

The application of the FE method to predict brain deformation was performed ac-

cording to the following main steps. The brain is segmented from from the MRI images to

reconstruct an brain object. Then the brain object is meshed into finite elements (tetrahe-

dral or cubes). For the three components of the brain, their Young’s moduli are known. A

linear weighted Young modulus can be determined for each element based on the number

of voxels inside the element. This procedure appears to be a good approximation to the

traditional finite element linear elastic model assuming the Young’s modulus is constant
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throughoutthe whole volume domain. The details of this finite element modeling of the

brain tissue was expounded in the work [1] at the CVIP lab.

The CVIP lab has been developing medical project software after the research on

the projects is completed. The following is the software developed for motion tracking and

surgical simulation. Figure 6 is the main interface panel for several medical projects per-

formed at the CVIP lab including surgical simulation, lung, virtual endoscopy, and others.

Figure 7 is the interface panel for motion tracking and surgical simulation with no

existence of a probe inside the view. On the left of the panel, there are two columns, one

for the tracking pipeline and the other for finite element analysis. The procedures are per-

formed one after another from the top to the bottom by pressing the buttons. Computation

is performed in background and the result is shown on the screen. The first step is the

segmentation. There is the Segmentation button for several choices of segmentation algo-

rithms from the simple intensity thresholding, statistical modeling, to the level set method

as discussed in previous segmentation subsection. After segmentation, to save memory the

segmented data are saved to computer hard drive for use. Then, the data can be loaded by

pressing the Load button. The segmented 2D slices can be seen in the middle of the screen

as shown in Figure 7. After this step, by pressing Rendering button, the 3D object will be

displayed at the top left frame window in the middle region. The following two buttons

are for registration and tracking processes. Figure 8 shows the interface panel with a probe

away from the object in view. Figure 9 shows the instance of the probe on the brain.

The adjacent column is for finite element analysis commands from smoothing,

stereolithographical (STL) file generation, mesh generation, and finite element analysis.

When the Generate STL button is pressed, another single window will appear as in Fig-

ure 10. The lower portion is the place to show the volume, generated mesh, and the de-

formed volume. Here, the ABAQUS [67] is automatically called when the finite element

analysis button is pressed and the deformed volume is rendered when the analysis is fin-

ished. There are other buttons for coloring, smoothing, spacing, and others which can be

seen on the interface panel.
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FIGURE6 – The main menus of the software interface of medical projects at the CVIP.
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FIGURE7 – The interface for motion tracking and surgical simulation with no probe exis-
tence.
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FIGURE8 – The interface for motion tracking and surgical simulation with a probe away
from the object.
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FIGURE9 – The interface for motion tracking and surgical simulation on or in the object.
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FIGURE10 – The interface for the surgical simulation process.
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5. Finite element modeling: the dissertation topic

It is crucial important of the realistic surgical simulation of soft tissue deformations

under the impact of an external force. It is the task of the biomechanical modeling to assign

reliable physical properties to the target object in order to make it interact according to the

underlying physical laws. The nearer a physical model approaches the properties of the

tissue the more realistic the simulation results can be obtained. This predication is the

central paradigm of the physically based soft tissue modeling. As a start point, the liver

with the relatively simple structure is employed for the target tissue for this study. The

finite element biomechanical modeling of the liver tissue will be the main topic for the

following chapters. Such a study of the finite element biomechanical models is the key part

for the accurate surgical simulation on the soft tissues.

C. SUMMARY

This chapter addressed the surgical simulation project and its status. The whole

procedure to build a surgical simulation tool was expounded in steps. The simulation tool

were used to illustrate to some results for tracking path and surgical simulation. The phys-

ical model in surgical simulation is crucial for accurate tissue deformation prediction and

position monitoring for surgical planning and real operations. The liver tissue was first

considered to search a suitable biomechanical model.
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CHAPTER III

HIGH RESOLUTION IMAGING TECHNIQUES

In the past decade, Magnetic Resonance Imaging (MRI) has evolved into one of

the most powerful non-invasive techniques in diagnostic clinical medicine and biomedical

research. The technique is an application of nuclear magnetic resonance (NMR), a well

known analytical method of chemistry, physics and molecular structural biology. The MRI

imaging scanner is very expensive and is hard to access. It occupies a very large space

in clinical use. The Micro-CT scanners and CBCT scanners are relatively cheaper and

easy to access. The imaging technologies Micro Computed Tomography (Micro-CT) and

Cone Beam Computed Tomography (CBCT) are new imaging modalities used to comple-

ment MRI to provide high resolution images of the imaging targets. Such high resolution

computed tomographies are also noninvasive imaging modalities that have been used for

various purposes where high resolution images are needed, such as to quantify disease

progression in a rabbit model of experimentally induced osteoarthritis [68], and to diag-

nose the temporomandibular joint syndrome which requires sub-millimeter accuracy [69].

These imaging techniques are relatively cheaper with only20% to 10% cost compared to

MRI imaging technology. The shorter X-ray exposure time and low radiation dose to pa-

tients are better features compared to conventional medical CT.

The Micro-CT scanner or CBCT can obtain correct sectional images of the interior

of the study objects that are of high precision and density, without destroying or contact-

ing inspection objects. Such state-of-the-art imaging technology allows high-precision and

high-speed scanning, serving new applications in various fields. The principle is that the

image data sets of the study object in a glass or on a support can be obtained using an

X-ray image intensifier or a amorphous flat panel detector by gantry rotating around the

study object while irradiating object with X-rays. Some CBCT scanners such as NewTom
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3G (Quantitative Radiology, Verona, Italy), CB MercuRay (Hitachi Medical Corporation,

Tokyo, Japan) use image intensifiers [70]. Micro-CT and CBCT technologies are ideally

suited for bony structures and the transition regions from the bony structures to their neigh-

boring soft tissues. This study is focused on the surface and volume changes of the liver

tissue. Micro-CT and CBCT are suitable to capture these changes in high precision level.

This is because the density of the liver tissue is still quite different from the background

air in this experiment. The boundary of the soft tissue can be easily distinguished. In vivo,

CT is better at detecting bone against a soft tissue background than distinguishing between

different types of soft tissues of similar density.

Micro-CT has been widely used for anatomical structure analysis and Micro-CT

machines are made in different types for different purposes. CBCT imaging has been

proved successfully of its diagnosis functionalities in dentistry. There are a dozen CBCT

scanner manufactures worldwide that make high resolution scanning possible. Strong re-

search facilities at the University of Louisville provide these two imaging facilities for this

study. Here, the purpose to use these high resolution techniques is to capture the surface and

volume changes of liver tissue deformation under very small force loads to validate some

mechanical models for their potential applications in surgery planing or robust surgery. The

following section will briefly introduce basic specifications of these two imaging modali-

ties.

A. MICRO COMPUTED TOMOGRAPHY

High resolution Micro-CT imaging technology provides great benefits to clinical

engineering and practices since Micro-CT can provide much more detailed resolution than

the traditional CT scan. Figure 12 shows the inside of the Micro-CT machine, the target

liver, and the test chamber made for this imaging purpose. The outside of the Micro-CT

machine is closed for safety purpose of X-ray source exposure. The scanning time is 40

seconds. The reconstruction of 2D images took one to four minutes depending the setting

of resolution requirements. More information on Micro-CT technology can be found in
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[71]. The basic specifications of the Micro-CT machine used are listed as follows.

• Image resolution - 100 millimeters for image matrix 1024x 1024 pixels

• Calibration - calibration is automatically decided/calibrated by CT system and scan-

ning magnification is centered automatically during magnification change.

• Scan mode - Multiple continuous scanning of specified slices at specified pitch and

scanning for full scan or half scan.

• Inspection object - it can be large or small but should be with proper support or

container to hold the inspection object.

• Scanning method - rotation.

• Reconstruction time - 2 to 4 minutes depending the image resolution requirement.

• X-ray - Fan beam (see Figure 11) and Micro focusing with 50-70 KeV and 160µA.

• Imaging system - X-ray image intensifier.

• Image storage - hard disk.

• Software - standard region-of-interest (ROI) setting, statistical calculations, zooming,

multi-frame, profile, histogram etc.

B. CONE BEAM COMPUTED TOMOGRAPHY

Cone beam computed tomography (CBCT) scanners use a cone shaped x-ray beam

rather than a conventional linear fan beam to provide images of the bony structures of

the skull as shown in Figure 11 and Figure 13. Such scanners are used for a number of

applications such as Dental Radiology ([69, 72, 73]), Computed Tomography Angiography

[74–76], Interventional Radiology and Mammography [77–79]. However it is mostly used

in dental radiology. When compared with other methods of tomographic imaging, CBCT

is characterized by rapid volumetric image acquisition from a single low radiation dose
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FIGURE11 – Fan beam CT scanning.

FIGURE12 – Micro-CT machine and test chamber for liver imaging.
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FIGURE13 – Cone beam CT Scanning.

scan of the patient. Such a CBCT machine dedicated to dental and maxillofacial imaging,

particularly for surgical and/or prosthetics implant planning in the field of dentistry. The

compact size and relatively low radiation dosage of the CBCT scanner make it ideally

suited for imaging the craniofacial region, including dental structures. With the increasing

accessibility of CBCT imaging, this modality is emerging as the imaging ”standard of care”

for the number of diagnostic assessments of the bony components of the face.

Most CBCT scanners use flat panel image sensors instead of the image intensifiers

as Micro-CT scanners used. The scanning time CBCT is similar to that of Micro-CT. The

scanner is quite smaller than the Micro-CT scanner. Such scanner gives quite accurate

images in that the bony information estimation from the image matches well with the real

structures in human skull. CBCT scanners can also used to scan the liver tissue to show

the volume and surface changes. Figure 14 shows the CBCT scanner from Dental School,

University of Louisville. This scanner was used for liver scanning and good quality 2D

images were obtained with high contrast to show the inside structure of the liver tissue.

C. SUMMARY

Micro-CT and CBCT imaging techniques have been used for the bony structures
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FIGURE14 – CBCT scanner.

37



andthe transition regions from the bone structures to their neighboring soft tissues. How-

ever, they can be used to study the surface and volume shapes of soft tissues and they can

give more accurate results. In this chapter, the two imaging techniques were introduced for

the study of soft tissue deformation. The specifications and functionalities of the Micro-CT

and CBCT scanners were introduced respectively. The common advantages of these scan-

ners are high resolution image acquisition, short time scanning and reconstruction, low

dose X-ray, cheaper price, and small size.
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CHAPTER IV

FINITE ELEMENT METHOD AND BASIC BIOMECHANICAL MODELS

As stated in the introduction chapter, the purpose of this study is to find proper

mechanical models to describe the mechanical responses of the soft tissues. This chapter

will simply introduce the general framework of the linear elastic model (LEM) and the neo-

Hooke’s hyperelastic model (NHM). These two models are representative basic models to

describe the linear elastic and viscous properties.

A. BASIC CONCEPTS

Continuum mechanicsis the study of the response of continuous media to applied

force or loading. It deals with continuous matter, including both solids and fluids. Since

the matter is made of atoms and commonly has some sort of heterogeneous microstructure,

to simplify the approximation to physical quantities, the microstructure is usually ignored

and then differential equations can be employed to solve problems in continuum mechanics.

Some differential equations are specific to the study material such as constitutive equations,

while some capture fundamental physical laws such as conservation of mass. Continuum

mechanics may be classified to solid mechanics and fluid mechanics.

Soft biological tissueis in the state between solid and fluid, and so it has a combi-

national behavior of solid and fluid in response to an applied force load. The liver tissue

in this study mainly behaves elastically. However, there is great diversity of mechanical

properties in soft biological tissue and it is characterized by very complex mechanical be-

havior. Soft tissues often have layered fibrous or an even more complicated structure. A

most important component of soft tissues is elastin which provides elasticity to arteries,

veins and lung parenchyma and keeps skin smooth. Elastin is the component with the most

linear elastic properties of soft tissue. This study will test and use the elasticity to predict
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tissuesurface and volumetric changes under certain amounts of force loads.

Stressis the internal traction vector where force acting on a defined internal datum

plane:σ = F/Ao whereAo is undeformed cross sectional area.

Strain is the ratio of change in length to the original length.

TheYoung’s modulusor modulus of elasticityis used to express the ratio of stress

to strain. It is then a general property of the material, and is independent of the size or

shape of the specimen, and independent of time. The greater the modulus, the stiffer the

material.

Hooke’s law states the linear relation between stress and strain for linear elastic

objects.

Hyperelasticity refers to materials which can experience large elastic strain that is

recoverable. Hyperelastic materials have very small compressibility.

Usually a biological soft tissue such as liver tissue is expected to behave as a linear

elastic solid when the strain is very small. When the strain is larger, the liver may behave

nonlinearly viscoelastic, or hyperelastic. It is the desire of this research to verify different

biomedical models for liver tissue.

B. FINITE ELEMENT METHOD

The theory of the finite element method is rich in textbook and literature such as [80]

and [81], Mathematically, the FEM is used to find approximate solutions of partial differ-

ential equations (PDE) as well as approximate solutions of integral equations. The solution

approach is based either on eliminating the differential equation completely (steady state

problems), or rendering the PDE into an equivalent ordinary differential equation, which

is then solved using standard techniques such as finite differences, etc. In solving partial

differential equations, the primary challenge is to create an equation which approximates

the equation to be studied, but which is numerically stable, meaning that errors in the in-

put data and intermediate calculations do not accumulate and cause the resulting output

to be meaningless. The FEM is a good choice for solving partial differential equations
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over complex domains or when the desired precision varies over the entire domain. This

section introduces the basic procedure using FEM to solve Dirichlet boundary value prob-

lem (PDEs) [81] in two-dimensional space. However, the procedure and principle are the

same for higher dimensional spaces and different boundary value problems with different

equations.

Example

uxx + uyy = f in Ω

u = 0 on ∂Ω

whereΩ is a connected open region in the(x, y) plane whose boundary∂Ω is smooth, and

uxx anduyy denote the second derivatives with respect tox andy, respectively. This is the

steady state heat transfer equation. The following steps are used to solve the boundary value

problem: formulating the problem as in variational form, discretization of the continuous

domain, choosing a basis (shape functions), deriving the numerical matrix expression of the

equilibrium equations for all elements and assembling them into a global matrix equation,

and solving the derived matrix equation.

1. Variational formulation

Let a functionv be a function in the spaceH1
0 (Ω) consisting of functions which

are differentiable and have zero values on the boundary∂Ω as a subset of the domainΩ.

Such function space is called Soblev space and can be shown a Hilbert space. Multiplying

the functionv to both sides of the Direct equation and integrating by parts using Green’s

theorem, results in:.

∫

Ω

fvdxdy = −
∫

Ω

∇u · ∇vdxdy = −Φ(u, v) (13)

The left side is a linear functional of functions v in the spaceH1
0 (Ω). Based on

the famous Riesz representation theorem in functional analysis, a unique solution (in weak

form) u exists for Dirichlet boundary value problem [80].
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FIGURE15 – Piecewise linear solution functionu on subdivisions of a discretized domain.

2. Domain discretization

The basic idea is to replace the continuous form of Direct boundary value problem

with a discretized form to find the solution u in a spaceV of functions which are linear

on each subdivision as shown in Figure 15. The space consists of functions which are

linear on each triangle. The triangular grid can be finer and finer so that the solution of

the discrete problem can be more approximate to the real solution. However, for larger 3D

solids, computational demand being quite large so the triangle size must remain above a

minimum level.

Although different types of elements are allowed for one volume, normally one

single type of elements is used for all elements. However, the mesh generation will be

much complicated.
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3. Choice of basis

For two-dimensional domain, one basis function per vertex of the triangulation of

the planar regionΩ is chosen. The basis function is a unique function of V with value 1

at one vertex and zero at other vertices of a triangular element. The basis function is zero

on any other triangular regions. The inner product of any two different basis functions is

zero. So, these basis functions are linear independent in the function spaceH1
0 (Ω). Let

{uk}1≤k≤n be the basis functions. The solutionu and the functionf can be expressed as

follows:

u =
n∑

k=1

ukvk

and

f =
n∑

k=1

fkvk.

Therefore, the Direct boundary value problem can be written as:

−
n∑

k=1

ukΦ(vk, vj) =
n∑

k=1

fk

∫

Ω

vkvj for j = 1, · · · , n. (14)

Once the basis functions have been determined, all values within an element can be inter-

polated.

4. Assembling the element equations

To find the responses of the overall system modeled by the network of elements, all

the element equations must be assembled. The matrix equations expressing the behavior

of the elements are combined to form the global system matrix equation expressing the

behavior of the entire system. The basis for the assembly procedure stems from the fact

that at a node, where elements are interconnected, the value of the field variable is the same

for each element sharing that node. A unique feature of the finite element method is that

the system equations are generated by assembly of the individual element equations.

From the derived expression using the basis functions, the column vectorsut and

(f1, · · · , fn)t are denoted byu andf . Then the global stiffness matrix equation yields:

−Lu = Mf (15)
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whereL = (Lij) = (Φ(vi, vj)), andM = (Mij).

5. Imposing the boundary conditions

Before solving the global system equation, it is needed to impose the known bound-

ary conditions including imposing known nodal values or force loads on known nodes.

These conditions can be changed based on the real physical environment and the prior

known information.

6. Solving the global system equation

The matricesL andM in Equation 15 are called sparse matrices ([80] and [82]).

Most entries in these two matrices are zero. If these matrices are not large, it is easy to invert

the matrixL. If the number of elements is large and so the number of vertices (nodes) and

the number of basis functions are large. In three-dimensional space, a fine mesh of a solid

may have millions of vertices. So, efficient computing techniques are needed to find the

solution instead of inverting the matrixL. The conjugate gradient method as an iterative

technique is currently used in most FEM softwares. Such method solves large systems

faster compared to the direct method. Such method was also called conjugate condensation

technique in medical computing community.

7. FEM vs. finite difference method

Unlike the finite difference method which is easy to implement ([82]), the FEM can

handle complex geometries but is not easy to implement and is influenced by computation

largely. Also, the FEM provides more accurate solutions than the finite difference method.

The finite difference method envisions the solution region as an array of grid points, while

the FEM envisions the solution region as built up of many small, interconnected subregions

or elements. A finite element model of a problem gives a piecewise approximation to the

governing equations. The basic premise of the finite element method is that a solution
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region can be analytically modeled or approximated by replacing it with an assemblage of

discrete elements. Since these elements can be put together in a variety of ways, they can

be used to represent exceedingly complex shapes.

C. LINEAR ELASTIC MODEL

In this section, the linear elastic model is used as formulation to describe the linear

elastic responses of an object using the minimum total potential principle and the FEM. An

elastic solid is a volume consisting of allp = [x, y, z]T wherep ∈ V . The displacement

u of a particlep is defined asu(p) = [u, v, w]T so that the particlep is moved by the

deformation to the new locationp + u. The strain energy (also called internal potential

energy [80], referring [82] for derivation) of a linear elastic body is defined as:

Estrain =

∫

V

εT σdV/2 (16)

where the engineering strain vectorε = [εx, εy, εz, γxy, γxz, γyz]
T consists of:

εx =
δu

δx
, εy =

δu

δy
, εz =

δu

δz
, γxy =

δv

δx
+

δu

δy
, γxz =

δw

δx
+

δu

δz
, γyz =

δv

δz
+

δw

δy
(17)

This can be rewritten in matrix form asε = Bu where

B =




δ
δx

0 0

0 δ
δy

0

0 0 δ
δz

δ
δy

δ
δx

0

δ
δz

0 δ
δx

0 δ
δz

δ
δy




The stress vectorσ is related to the strain vector through Hooke’s law [80]:

σ = Mε (18)

whereM is the material matrix. For a homogenous and isotropic material this matrix is
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definedby the Lamé material constantλ and shear modulusµ:

M =




λ + 2µ 0 0 0 0 0

0 λ + 2µ 0 0 0 0

0 0 λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ




The Lamé’s material constant and shear modulus are directly related to the Young’s modu-

lusE and Poisson’s ratioν for isotropic materials as follows [12].

E =
µ(2µ + 3λ)

µ + λ
(19)

ν =
λ

2(µ + λ)
(20)

So,the material matrix can be rewritten for isotropic materials as:

M =
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 (1− 2ν)/2 0 0

0 0 0 0 (1− 2ν)/2 0

0 0 0 0 0 (1− 2ν)/2




whereE is the Young’s modulus andν is the Poisson’s ratio. The total potential energy is

the sum of the internal energy and the external energy. For a conservative system, to achieve

equilibrium state the loss in the external potential energy during the loading process must

be equal to the work done. So, the total potential energy can be written:

E(u) =
1

2

∫

V

(Bu)TM(Bu)dV −
∫

V

fTudV (21)

wheref is the external force.E is a functional of the displacement functionsu. The prin-

ciple of finite element modelling is to decompose the whole volume or domain into many
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FIGURE16 – Division of an object into elements and illustration of a tetrahedron.

finite elements, to establish equilibrium equations for each element, to combine all ele-

ments into a system equilibrium equation, and finally to solve the equation to find the dis-

placements. By assembling all element equations into one system equation, the boundary

conditions for the system equation can be used. For the global system to achieve equilib-

rium, the principle of the minimum total potential energy requires that the total potential

energy be minimal. The superior advantage of the finite element method is that it employs

comprehensively local information and can characterize detail variations during the defor-

mation process, while much computation is needed in consideration of variation details.

The general total potential energy was formulated previously. From now on, the

detailed derivation is focused on one particular element. In the derivation, constant strain

tetrahedra are assumed. Figure 16 shows the volume subdivided into finite elements, while

Figure 17 shows the real subdivision in implementation.

For a given elementV e, the total potential energy can be written as follows:

Ee(ue) =
1

2

∫

V e

(ue)TBTMBuedV e −
∫

V e

fTuedV e (22)

The nodes of each elementV e are denotedP e
i , wherei is the index of the four nodes of

the element (see Fig. 16).ue
i is used to denote the four nodal displacements of a tetra-

hedron. These displacements are used to compute the displacement at any given point

47



FIGURE17 – Division of volume liver for implementation.

p = [ x y z ]T inside the elementV e using linear interpolation:

u(p) =
4∑

i=1

N e
i (p)ue

i (23)

The shape functionsN e
i (p) are the natural coordinates of the tetrahedrons. They are related

to the global coordinatesx, y andz by the shape function as follows:




1

x

y

z




=




1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4







N e
1 (p)

N e
2 (p)

N e
3 (p)

N e
4 (p)




(24)

By inverting the matrix in the right side of the equation, the shape functions can be written

as:

N e
i (p) =

1

6V e
(ai + bix + ciy + diz), i = 1, 2, 3, 4 (25)
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Here,

V e =
1

6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

a1 =

∣∣∣∣∣∣∣∣∣∣

x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣

, b1 = −

∣∣∣∣∣∣∣∣∣∣

1 1 1

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣

,

c1 =

∣∣∣∣∣∣∣∣∣∣

1 1 1

x2 x3 x4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣

, d1 = −

∣∣∣∣∣∣∣∣∣∣

1 1 1

x2 x3 x4

y2 y3 y4

∣∣∣∣∣∣∣∣∣∣

,

a2 = −

∣∣∣∣∣∣∣∣∣∣

x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣

, b2 =

∣∣∣∣∣∣∣∣∣∣

1 1 1

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣

,

c2 = −

∣∣∣∣∣∣∣∣∣∣

1 1 1

x1 x3 x4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣

, d2 =

∣∣∣∣∣∣∣∣∣∣

1 1 1

x1 x3 x4

y1 y3 y4

∣∣∣∣∣∣∣∣∣∣

,

a3 =

∣∣∣∣∣∣∣∣∣∣

x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣

, b3 = −

∣∣∣∣∣∣∣∣∣∣

1 1 1

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣

,

c3 =

∣∣∣∣∣∣∣∣∣∣

1 1 1

x1 x2 x4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣

, d3 = −

∣∣∣∣∣∣∣∣∣∣

1 1 1

x1 x2 x4

y1 y2 y4

∣∣∣∣∣∣∣∣∣∣

,

a4 = −

∣∣∣∣∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣

, b4 =

∣∣∣∣∣∣∣∣∣∣

1 1 1

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣

,
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c4 = −

∣∣∣∣∣∣∣∣∣∣

1 1 1

x1 x2 x3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣

, d4 =

∣∣∣∣∣∣∣∣∣∣

1 1 1

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣∣
So, substituting the shape function (Eq. 23) into the total potential energy (Eq. 22), the

following expression of the total potential energy yields for each element:

Ee(ue) =
1

2

∫

V e

4∑
i=1

4∑
j=1

(ue
i )

TBTMBue
jdV e −

∫

V e

4∑
i=1

fTue
idV (26)

For the element to achieve equilibrium state, the principle of the minimum potential energy

requires that the total potential energy for the element to be minimal. That is, its variation

is zero:

δEe(ue) = 0 (27)

Note that

δEe(ue) =
4∑
1

∂Ee

∂ue1
i

δue1
i +

4∑
1

∂Ee

∂ue2
i

δue2
i +

4∑
1

∂Ee

∂ue3
i

δue3
i ,

whereue1
i ,ue2

i andue3
i arethe three coordinate components in the displacement space. The

element equilibrium equation is equivalent to the following equation:

∂Ee

∂ue1
i

=
∂Ee

∂ue2
i

=
∂Ee

∂ue3
i

= 0, i = 1, 2, 3, 4 (28)

The resulting equilibrium equation can be written as follows:

4∑
j=1

(

∫

V e

(N e
i )TBTMBN j

e dV e)ue
j −

∫

V e

fTue
idV e = 0, i = 1, 2, 3, 4 (29)

Here the partial derivatives of the displacement vectors were used:

∂ue

∂x
=

4∑
i=1

∂N e
i (x)

∂x
ue

i (30)

∂ue

∂y
=

4∑
i=1

∂N e
i (x)

∂y
ue

i (31)

∂ue

∂z
=

4∑
i=1

∂N e
i (x)

∂z
ue

i (32)
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Rewriting (Eq. 32) and stacking the four nodal vectors of a tetrahedron into one nodal

vector for the element, the following equilibrium equation yields:

KeUe = Fe (33)

whereKe is a 12 × 12 element stiffness matrix,Ue = [ue
1,u

e
2,u

e
3,u

e
4]

T is a 3 × 1 nodal

displacement vector for the elementV e, andFe is a12×1 force vector. Now the minimiza-

tion problem of the total potential energy is reduced into a linear equation but the boundary

conditions of the element nodal displacement vector remain unknown. It is needed to as-

semble all element equilibrium equations into a systematic equation as follows so that the

global boundary conditions can be employed:

KU = F (34)

The dimension of the global stiffness matrix is3m × 3m and the dimension of the global

force vector is3m, wherem is the number of total nodes.

D. NEO-HOOKE’S HYPERELASTIC MODEL

Live tissue is flexible and is closer to rubber in its properties. Hence, it may be

possible to adequately model the response of the liver tissue using the hyperelastic material

models developed for rubbers. ABAQUS software [67] has several hyperelastic models

designed for rubber materials. The general polynomial form of strain energy potential of a

hyperelastic model is

W =
N∑

i+j=1

Cij(Ī1 − 3)i(Ī2 − 3)3 +
N∑

i=1

1

Di

(Jel − 1)2i,

whereW is the strain energy potential per reference volume,N is the polynomial order,Cij

andDi are temperature-dependent material parameters,I1 andI2 are the first and second

deviatoric strain invariants, defined as

Ī1 = λ̄1
2
+ λ̄2

2
+ λ̄3

2
,

Ī1 = λ̄1
−2

+ λ̄2
−2

+ λ̄3
−2
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wherethe deviatoric stretches̄λi = J−1/3λi, λi are the principle stretches,J is the total

volume ratio andJel is the elastic volume ratio. TheDi parameters allow for the inclusion

of compressibility. Neo-Hooke’s Hyperelastic materials are described in terms of a strain

energy potential, which defines the strain energy stored in the material per unit of reference

volume (volume in the initial configuration) as a function of the strain at that point in the

material. The energy potential functionW is

W = C10(Ī1 − 3) +
1

D1

(Jel − 1)2,

Theinitial shear modulusµ0 and bulk modulusK0 = 2/D1 can be estimated from

the compression test. Therefore, the material parametersC10 andD1 can be computed as

follows.

C10 =
µ0

2
, D1 =

2

K0

.

Onecan refer to [67, 81] for more details about the neo-Hooke model and other hyperelastic

models.

E. SUMMARY

In this chapter, basic concepts in continuum mechanics were reviewed. The basic

application steps of the finite element method were described in solving partial differential

equations. The famous Dirichlet boundary problem was used in the derivation process

for illustration. The linear elastic model was formulated to describe the elastic response

of an object using the minimum total potential principle, the equilibrium equation was

established, and the detailed procedure of the finite element method to solve the equilibrium

was expounded in content. The neo-Hooke’s hyperelastic was also introduced briefly to

predict soft tissue deformation.
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CHAPTER V

PREPROCESSING OF SOFT TISSUES

To perform finite element analysis of soft tissue deformation, preprocessing

techniques are needed: image segmentation, mesh generation, and measurement of the

tissue mechanical properties. This chapter describes how each one of these pre-processing

techniques has been performed in the present study.

A. EQUIPMENT SETUP AND IMAGE ACQUISITION

In order to hold the liver tissue for image scanning, a general purpose device (“test-

ing chamber”) (Figure 18 for the chamber was developed and its detailed parts in Fig-

ure 19). Such chamber was used for both Micro-CT scanning and CBCT scanning. Inside

the chamber, the height of the support where the lamb liver was put can be adjusted for

optimal scanning position. At the top portion, there are counterbalance and lever func-

tions to impose force loads. It can be used to induce measurable deformations which can

be captured by high resolution Micro-CT and CBCT machines (Figure 12 and Figure 14).

Figure 20 shows the test chamber with Micro-CT machine. For the lamb liver scanning, the

source voltage used is 75 KeV, the current was 0.107mA, and the detector resolution was

0.1mm. The testing chamber is formed of a cylindrical plexiglass compartment. The tissue

is placed on the bottom of the compartment and an aluminium probe with half spherical

tip touches the upper surface of the tissue. The specification of the diameter of the half

spherical tip was5mm but the actual one from the mechanical shop was4.7mm.

For the finite element modeling and validation purpose, the following procedure

was performed to acquire the images under certain force loads. The Micro-CT and CBCT

machine have automatic reconstruction softwares to achieve high quality stacks of two-

dimensional axial slices to be used in this study.
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FIGURE18 – Test chamber to hold the lamb liver.
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FIGURE19 – Detailed parts description of the test chamber.
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• Scana piece of soft tissue using Micro-CT or Cone-Beam CT machine to collect a

stack of undeformed images.

• Apply the small force load. After five minutes and the tissue reaches equilibrium, the

deformed tissue was scanned.

• Segment the collected images of the undeformed tissue to reconstruct the liver and

generate its volume mesh.

• Select a finite element model to perform finite element analysis on the meshed object

with the same force loads and same boundary conditions as those for the object in

the experiment.

• Superimpose the deformed objects from simulation and the corresponding ones in

the experiment. Compute their volume difference as the model errors and measure

the vertical displacements of the probe tip in the experiment and the simulation for

comparison purpose.

B. IMAGE SEGMENTATION

The acquired CT-reconstructed images of the lamb liver are segmented to perform

finite element analysis. A typical Micro-CT liver image, as shown on the right of Figure 21,

consists of cylindrical plexiglass compartment view, liver, indentor, and the air between

liver tissue and the plexiglass compartment. For some images acquired at the beginning

or at the end of the imaging process, the liver tissue or indentor may not exist inside the

scanned images.

To separate the liver from the rest of the image, a robust variable thresholding tech-

nique was developed. The algorithm flow chart is described in Figure 22. Due to the

fixation of the plexiglass compartment during scanning and the consistency of scanning

orientation, the shape views of the plexiglass compartment in each slice are the same.

Therefore, the plexiglass compartment can be stripped off from all scans. In each data set,
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FIGURE20 – Test chamber with Micro-CT machine.
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FIGURE21 – Normal Micro-CT image.
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FIGURE22 – Segmentation Algorithm Flow Chart.

for the first several slices containing no liver, the image intensity is set to0. The intensity of

the indentor is obviously higher than those of the air and the liver tissue. Hence, the inden-

tor can be stripped off by automatically searching a threshold from the image histogram.

Finally, the liver object can be obtained by stripping off the air in the same way. Fig. 23

shows three 2D slices of automatically segmented liver (top row), and their corresponding

slices through manual segmentation. Figure 24 shows the superimposing of the algorithm

segmented 3D image (red) and manually segmented 3D image (green).

C. VOLUME MESH GENERATION

Volume mesh generation consists in decomposing the object volume into finite

union of geometrically simple and bounded elements. Mesh generation techniques have

been developed for different contexts and were aimed at different applications. A mesh is

called structured if it consists of quadrilateral elements in 2D or hexahedral elements in

3D. Otherwise, it is called unstructured. In the medical imaging field, tetrahedral elements

are by far the most commonly used forms of unstructured meshes. Such shape elements

fit well the complex topology of the anatomical structures. Unstructured mesh generation

techniques can be classified into three main categories: Octree, Delaunay, and Advancing

Front [83].
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FIGURE23 – Three automatically segmented 2D slices from liver scanning in the first row
and their corresponding 2D slices segmented by hand in the second row.

FIGURE24 – Superimposing of algorithm segmented object (red) and manually segmented
object (right).
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1. Octree

The Octree technique was originally developed by Mark Shephard et al. [84]. The

geometric model is surrounded by a set of cubes, which are recursively subdivided until the

desired resolution is reached. Irregular cells are created where cubes intersect the surface.

Tetrahedra are generated from both the irregular cells on the boundary and the internal

regular cells. Figure 25(a) shows the equivalent two-dimensional quadtree decomposition

of a model.

2. Delaunay

The most popular tetrahedral meshing techniques are those utilizing the Delaunay

criterion. The Delaunay criterion states that any object node must not be contained within

the circumference of any tetrahedra within a mesh. Figure 25(b) is a simple two dimen-

sional illustration of the validity of this criterion. A typical approach is to first mesh the

boundary of the geometry to provide an initial set of nodes. The boundary nodes are trian-

gulated, and new nodes are then inserted incrementally into the existing mesh, redefining

the triangles or tetrahedrons locally according to the Delaunay criterion. It is the method

chosen to define where to locate the interior nodes that distinguishes one Delaunay algo-

rithm from another. The main drawback of the Delaunay meshing techniques is that they

often require the object to be convex. This difficulty can be overcome, when an initial sur-

face discretization is specified, by splitting non convex objects into small convex objects,

and enforcing boundary conditions at seams between sub-objects.

3. Advancing Front

First, the surface boundary is triangulated and then tetrahedrons are built progres-

sively inward from the triangulated surface. An active front is maintained where new

tetrahedrons are formed ([85]). Figure 25(c) is a simple two-dimensional example of the

advancing front, where triangles have been formed at the boundary. As the algorithm pro-
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(a) (b) (c)

FIGURE 25 – Illustration of three methods of mesh generation: (a) Quadtree decomposi-
tion - the object is subdivided by cubes and recursively subdivided until the desired resolu-
tion is reached, (b) Delaunay decomposition - based on the criterion where any node must
not be contained within the circumference of any tetrahedra, (c) Advancing front decom-
position - the surface boundary is triangulated and then tetrahedrons are built progressively
inward from the triangulated surface.

gresses, the front will advance to fill the remainder of the area with triangles. In three-

dimensional space, for each triangular facet on the front, an ideal location for a new fourth

node is computed. The algorithm selects either the new fourth node or an existing node to

form a new tetrahedron. Intersection checks are required to ensure that the tetrahedrons do

not overlap as opposing fronts advance towards each other.

In medical imaging, some mesh generators are created for image registration and

tissue deformation ([86, 87]). This work is interested in generating high quality tetrahe-

dral meshes that conform to the input surface mesh. To achieve this goal, the images are

segmented first and then the segmented images are converted into a stereolithographic file

which is input into NETGEN ([88]) to generate a 3D mesh of the liver. The NETGEN

uses the advancing front technique combined with Delaunay tessellation. It is fast, robust

and can generate high quality meshes. The density of tetrahedrons can be set by the user

automatically. Figure 26 shows the procedure to generate volume meshes from a stack of

medical images.

D. MEASUREMENT OF MATERIAL PARAMETERS

Material parameters play an active role in biomechanical modeling. It is important

to obtain mechanical properties of the soft tissue. Based on the composite structures, soft
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FIGURE26 – Procedure from image acquisition, segmentation and stl conversion, to vol-
ume mesh generation.
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tissuesare generally in two classes, solid with tissue approximately even distributed, and

hollow with some portions of the inside are empty. For a solid soft tissue such as liver,

it consists of a dense connective tissue which can be assumed as isotropic, homogeneous,

and incompressible. The mechanical properties of a type of tissue can be measured in

both in vivo [10, 14, 15] andex vivo[11] state. It is more attractive to measure the tissue

properties usingin vivo tests than usingex vivotests. However, it is difficult to measure the

tissue properties inin vivostate due to the accessibility, uncontrolled boundary conditions,

noises, and motions.

In this study, two pieces of lamb liver were cut. One piece has a cylindrical shape

with height of0.5 in, and it is used for a compression test. A Dynamic Mechanical Analysis

(DMA) machine mode RSA3 (TA Instruments, Wilmington, DE) in Dr. Roger Bradshaw

lab was used for the compression test. The DMA measures the mechanical properties of

materials as a function of time, temperature, and frequency. The linear drive motor in

DMA provides precise stress control. It can be used for the compression test. Figure

27 shows the DMA machine with the piece of lamb liver for a compression test. From

the compression test, the stress-strain curve was obtained as shown in Figure 28 and the

stress-strain curve for the strain less than10.5% in Figure 29. The test took 58 seconds

to finish. The compression rate was 0.1 millimeters per second and the temperature was

basically kept at23.79oC during the compression process. For the linear elastic model, the

Young’s modulusE0 = 11055 Pa is the median of the eight pairs of stress-strain data in

Figure 29. The Poisson’s ratio of0.4 is used from literature [11, 15]. For the neo-Hooke’s

hyperelastic model, the initial shear modulusµ0 = 3948 Paand bulk modulusK0 = 18425

Pa are computed from Figure 29, the Young’s modulusE, and the above Poisson’s ratioν

as follows.

µ0 =
E0

2(1 + ν)
, K0 =

E

3(1− 2ν)
. (35)

E. SUMMARY

In this chapter, the preprocessing procedure was described in details from equip-
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FIGURE27 – The Dynamic Mechanical Analysis (DMA) machine with RSA3 mode (TA
Instruments, Wilmington, DE) from Dr. Roger Bradshaw lab, and the liver tissues for a
compression test.
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FIGURE28 – The stress vs. strain curve for the compression test in Figure 27.

FIGURE29 – The stress vs. strain curve for the compression test in Figure 27.
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mentsetup, image acquisition, image segmentation, and volume mesh generation to mate-

rial parameters measurement. A compact chamber for image acquisition was made to hold

the liver tissue for scanning and imposing force load on the indentor. One automatic algo-

rithm was developed to strip off the liver tissue from the compact chamber, indentor, and

the air. The volume mesh generation of the separated liver was introduced before finite el-

ement analysis is performed. In the last, a DMA machine was used for compression test to

obtain the material parameters for the linear elastic model and the neo-Hook’s hyperelastic

model. The material parameters obtained are slightly different but close to those recorded

in literature.
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CHAPTER VI

FINITE ELEMENT MODELING OF LIVER TISSUE

This chapter will use the linear elastic model and the neo-Hooke’s hyperelastic

model to describe the liver tissue responses under small force loads. The study uses the high

resolution images acquired using recent Micro-CT and CBCT imaging technologies which

can identify very small changes of the liver tissue in surface, and volume. Theoretically,

for very small force loads, the soft tissue essentially behaves as a linear elastic material.

However, such behavior does have some discrepancy between those observed and measured

from the real experiments.

A. PROPOSED FE MODEL VALIDATION SYSTEM

Before one geometric or physical model is employed in real surgical practice to

monitor or predict the soft tissue changes, validation should be performed to verify the

applicability of the model to the target soft tissue so that the prediction reflects the real

changes in operations. So, it is important to establish a solid validation system to test the

model to be employed in surgical simulation. This section presents a validation standard of

FE models to verify the LEM and the NHM ([89]). The image acquisition is an important

step for FE model validation and is integrated into the validation standard. The criterion of

validation is the maximum vertical deformation of the soft tissue and the difference of the

volumes between the undeformed liver and the deformed liver. The proposed soft tissue

validation system can be described as follows.

A piece of soft tissue is scanned using Micro-CT to collect a stack of images of the

undeformed tissue. Four force loads (5, 10, 20, and40 grams) are gradually applied to the

lever of the chamber, adding5 grams force load at a time interval of 5 minutes. For each

force load, the deformed tissue is scanned when the equilibrium is reached. The collected
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images,both for the undeformed tissue and the deformed tissues, are then segmented and

a volume mesh is generated. A FE model (LEM, or NHM) is selected to perform FE

analysis on the meshed undeformed object with the same force loads and same boundary

conditions as those for the object in the experiment (see Fig. 27:top-right for deformed

object). Finally, the deformed objects from simulation and the corresponding ones in the

experiment are superimposed, and their volume difference is computed. The measurements

are performed of the maximum vertical displacements of the liver tissues in the experiment

and the simulation for purpose of comparison. The simulation of finite element analysis

was performed as expounded in Chapter VII. The proposed soft tissue validation procedure

to quantify the modeling error can be summarized as follows.

• Scan a piece of soft tissue using Micro-CT or Cone-Beam CT machine to collect a

stack of undeformed images.

• Apply a small force load on the lever. After 5 minutes, the deformed tissue is

scanned.

• Repeat the last step following additional force loads to collect scans of the deformed

tissue at different force loads.

• Segment the collected images of the undeformed tissue to reconstruct the liver and

generate its volume mesh.

• Select a finite element material model (the LEM, or the NHM, one at a time) to

perform finite element analysis on the meshed object with the same force loads and

same boundary conditions as those for the object in the experiment.

• Superimpose the deformed objects from simulation and the corresponding ones in

the experiment. Compute their volume differences as the model errors and measure

the vertical displacements of the probe tip in the experiment and the simulation for

comparison purposes.
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The weights are put on the lever and the force loads are applied vertically down-

wards. The indentor contact with the liver surface, also the stereolithographical file, and

mesh generation are left in the next chapter for details.

B. RESULTS AND DISCUSSIONS

To compute the deformation volume difference between the deformed object from

simulation and the one from experiment, a cylinder with radius of20mm and height of

19.6mm is used to cover the deformed region. The cylinder is positioned vertically and

centered at the probe contact, and the top surface of the cylinder takes the shape of the

undeformed liver surface. The deformed volume is computed by the number of voxels be-

tween the deformed surface and the top surface of the cylinder. The vertical displacements

of the probe tip in real deformation and simulation are estimated from the acquired images

and from the simulated object. All the deformed volume using the LEM, and the NHM

and their differences with the real deformed volume are listed in Table 1. The vertical dis-

placements of the probe tip are listed in Table 1. The abbreviations RD, LED, and NHD

stand for the vertical displacement of the probe tip in real deformation, and the vertical dis-

placements of the probe tip in simulation using the LEM and the NHM, respectively. RDV,

LEDV, NHDV, LEVD, and NHVD stand for the real deformed volume, the deformed vol-

umes using the LEM, and the NHM and their volume differences from the real deformed

volume, respectively. Figure 5 shows the tip displacements listed in the real experiments,

and in the simulations for the LEM and NHM in Table 1. Figure 30, Figure 31, Figure 32,

and Figure 33 show the superimposing of the deformed liver from simulation and the real

deformed liver from experiments for the three models on the left and their corresponding

wire-zooms of the contact regions under the force loads of 5, 10, 20, and 40 grams re-

spectively. This can be seen from Figure 30, Figure 31, Figure 32, and Figure 33. For

the superimposing purpose, the volumes from the experiments needed to be smoothed to

generate the suitable meshes. The choice of the indentor tip with such small tip was to

reduce the functional friction of the lever and the entire chamber. From Table 1, Figure 30,
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Figure31, Figure 32, and Figure 33, it can be seen that for small force loads (< 40g), the

LEM is more applicable to the modeling of the lamb liver tissue. One can conclude that

the liver deformation using the LEM is less than the real deformation of the liver in depth,

but is gradually approaching it with the increasing force load from 5 grams to 20 grams

(Table 1). At the force load of 40 grams, the liver deformation using the LEM exceeds

the real deformation of the liver3.39mm in depth as shown in Table 1. One can conclude

also that the liver deformation using the LEM is gradually going deeper with the increasing

force load. At the force load of40 grams, the liver deformation using the LEM is greater

than the real deformation. The liver deformation using the NHM is gradually approaching

the real deformation with the increasing force load. The root mean square values of the

nodal displacements for each FE model are computed for different force loads (Table 2).

These results are consistent with the results in Table 1. The strain repartition plots from

ABAQUS for the two FE models and for the force loads up to40 grams, show that the max-

imal strains do not exceed10%. Figure 29 shows that the material behaves approximately

linear for the strain less than10%. This confirms that all simulations are carried out in the

small deformation regime. The observed difference in displacements for the LEM might

be attributed to the following cause: the elastic components in the two models generating

slight different elastic effects, and the existing geometric nonlinearity which was not con-

sidered in the experiment and the simulation in the LEM. As the larger force is applied to

the probe, it moves more deeply into the tissue and more tissues are pushed out. Conse-

quently, there is more surface area in contact with the probe to provide support. For the

NHM, the geometric nonlinearity is considered in simulation.

Finite element analysis was performed on the entire liver but found that the volume

difference of the deformed volume using modeling and the real deformed volume is quite

small, less than20% of the volume difference within the cylinder. Table 3 shows the entire

deformed volumes from real experiment and simulations. WRDV, WLEDV, WNHDV,

WLEVD, and WNHVD stand for the entire real deformed volume, the entire deformed

volumes using the LEM, and the NHM and their corresponding volume differences with

the real deformed volume, respectively. The small volume differences of the simulated
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FIGURE30 – Superimposing of the simulated livers and the real deformed ones under the
force load 5 grams and their corresponding wire-framed zooms around the contact regions
for the LEM and NHM respectively from top row to bottom row; The green indicates the
real deformation and the red indicates the deformation from simulation.
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FIGURE31 – Superimposing of the simulated livers and the real deformed ones under the
force load 10 grams and their corresponding wire-framed zooms around the contact regions
for the LEM and NHM respectively from top row to bottom row; The green indicates the
real deformation and the red indicates the deformation from simulation.
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FIGURE32 – Superimposing of the simulated livers and the real deformed ones under the
force load 20 grams and their corresponding wire-framed zooms around the contact regions
for the LEM and NHM respectively from top row to bottom row; The green indicates the
real deformation and the red indicates the deformation from simulation.
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FIGURE33 – Superimposing of the simulated livers and the real deformed ones under the
force load 40 grams and their corresponding wire-framed zooms around the contact regions
for the LEM and NHM respectively from top row to bottom row; The green indicates the
real deformation and the red indicates the deformation from simulation.
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TABLE 1
VERTICAL DISPLACEMENTS RD OF THE PROBE TIP, THE SIMULATED

DISPLACEMENTS LED AND NHD USING THE LEM, AND NHM RESPECTIVELY,
REAL DEFORMED VOLUMES RDV, DEFORMED VOLUMES LEDV, NHDV USING
THE LEM AND THE NHM RESPECTIVELY, AND THEIR VOLUME DIFFERENCES

LEVD, NHVD WITH THE REAL DEFORMED VOLUMES.

(unit) 5 g 10g 20g 40g

Tip Disp. RD mm 1.8 2.6 4.2 6.2

LED mm 0.77 1.54 4.39 9.59

NHD mm 0.68 1.32 2.57 5.04

Volume RDV mm3 956 1075 1241 1527

LEDV mm3 765 835 996 1228

NHDV mm3 736 773 882 1051

Volume Diff. LEVD mm3 191 240 245 299

NHVD mm3 220 302 359 476

TABLE 2
RMS VALUES (MM) FOR THE LEM AND NHM FOR DIFFERENT FORCE LOADS.

5 g 10g 20g 40g

LEM 0.0488 0.0976 0.1952 0.3944

NHM 0.0307 0.0611 0.1213 0.2397

TABLE 3
THE ENTIRE REAL DEFORMED VOLUMES WRDV, THE ENTIRE DEFORMED

VOLUMES WLEDV AND WNHDV USING THE LEM AND THE NHM
RESPECTIVELY, AND THEIR VOLUME DIFFERENCES WLEVD AND WNHVD

WITH THE ENTIRE REAL DEFORMED VOLUMES.

WRDV WLEDV WLEVD WNHDV WNHVD

mm3 mm3 mm3 mm3 mm3

5 g 16158 16190 42 16192 44

10g 16009 16182 173 16187 177

20g 15985 16169 184 16179 194

40g 15925 16143 218 16161 236
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FIGURE 34 – The indentor tip displacements for the real deformation and the simulated
deformation using the LEM and NHM under different force loads.
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volumes using three models and the real deformed volumes are due to the very small force

loads, mainly elastic property, non-linear geometry, and the interaction of liver boundaries

touching the test chamber for the real deformed volume. There will be detailed discussions

in a further report focusing on finite element modeling over different regions around the

contact.

The purpose for this study aimed for applications of computer aided surgery inside

an endoscopy. Finite element analysis was performed on the entire liver but found that the

volume difference of the deformed volume using modeling and the real deformed volume

outside the above mentioned cylinder is quite small, less than20% of the volume difference

within the cylinder. Study focusing on region-of-interest finite element modeling will be

reported in Chapter IX.

C. SUMMARY

This study presented FE modeling of soft tissues from Micro-CT images. This

type of images shows the volume and surface shape changes for small force loads. The

FE method is used to analyze the lamb liver deformations under certain force loads using

the LEM and the NHM. The deformations are measured from the models and compared

to the real deformations measured by the experiment setup. It is found that the LEM is

applicable to the lamb liver for the force load under20g. Also, the LEM is more applicable

to lamb liver than the NHM for small force loads (<40g) and that the NHM is closer to

reality than the NHM for the force loads greater than40g. The presented results show that

the range of the force loads where the three models perform well has large overlaps. The

comparability of the results presented herein to thein vivo tissue, which is valuable for

future surgery simulation design, is beyond the scope of this work and will be investigated

in future studies.
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CHAPTER VII

DEBRIEFING OF FE MODELING AND ANALYSIS

This chapter addresses the details of stereolithographical file (STL) generation, vol-

ume mesh generation, the contact of the indentor with the volume mesh surface for finite

element analysis. The stress and strain relation chart will be presented for some key nodes

and elements for the nonlinear neo-Hooke’s hyperelastic model.

A. STEREOLITHOGRAPHICAL FILE GENERATION

STL files describe the three-dimensional geometry of an object by a set of adjacent

triangular facets [90]. Each facet is defined by both a normal vector and an ordered list of

its three vertices. This order states which side of the facet contains the inside volume. The

STL file is generated from the segmented binary 2D images in this study. The main steps

are as follows:

• Generate triangular net.

• Classify the surface into plane segment, smooth segment, and rough segment.

• Delaunay triangulation.

• Generate STL file.

There are dedicated researches focused on each step such as [91], [92], [93] etc. In

this study, a program was developed in VTK-TCL programming language [94] to generate

STL file. The program used the existing libraries and functions in VTK [94]. The marching

contour filter was used to generate triangular surface. The smoothing and decimation filters

were also used to smooth the triangular surface and delete redundant triangles based on
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thesurface curvature. Figure 26 (bottom right) shows the generated STL and the surface

triangles. The main steps in the program are listed as follows:

• Get the interaction user interface source.

• Set the origin and data spacing ofx, y, z in 3D space.

• Set the 3D image size inx, y, z three directions.

• Create the render window if the STL is displayed on computer screen.

• Read the segmented binary 2D images automatically from the computer hard drive.

• Use the VTK marching contour filter to create surface triangles where Delaunay

criterion is maintained.

• Use the smoothing filter to smooth and correct errors.

• Use the decimation filter to delete redundant triangles.

• Set the background and object color.

• Use the VTK write and save functions to output triangles and save the resulted object

geometry.

B. VOLUME MESH GENERATION

Chapter V briefly introduced the volume mesh generation for finite element model-

ing. As mentioned, NETGEN [88] was used for volume mesh generation in this study. It is

open source for education purpose and can be downloaded at the NETGEN web site. This

section addresses the details of volume mesh generation using the NETGEN [88] software.

NETGEN is an automatic mesh generation tool with a graphical user interface. Its

C++ library can be linked into other applications such as its linked to the CVIP surgi-

cal project for direct mesh generation. NETGEN can generate triangular or quadrilateral

meshes in 2D, and tetrahedral meshes in 3D. The 3D volume input can be in the standard
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FIGURE35 – NETGEN interface panel showing the File menus to load the object.

STL file format, or constructive solid geometry format [88]. NETGEN is an advanced mesh

generation software which combines the Delaunay criterion and front advancing meshing

techniques. It contains modules for mesh optimization and hierarchical mesh refinement.

Figure 35 shows NETGEN interface panel and the File menu and its submenus to load the

STL geometry. The option Load Geometry can be selected to load the STL file from the

computer hard drive. Under the Geometry menus adjacent to the File menus, there are sev-

eral submenus can be selected for smoothing and deleting some inconsistent triangles on

the geometry surface. Figure 36 shows two options, one for the general submenus and the

other for editing geometry submenus under the Geometry. At this step, some inconsistent

surface triangles need to be removed by marking them on the geometry.

Figure 37 shows the Mesh menu and its submenus in the NETGEN interface panel.

81



FIGURE 36 – Submenus of the Geometry in NETGEN to use STL Doctor to smooth the
STL.

There is a submenu called Meshing Option which is used to select the mesh density and

ratio control of the maximum side length to the minimum side length. Figure 38 shows

two options to edit and control meshes. As known, the mesh generation is based on the

geometrical curvature. The definition and computation of the surface curvature has been

introduced in Chapter II. If the curvature at one location is higher, the geometry surface at

the location has sharper turning and the number of tetrahedra is larger in the neighborhood

of the higher curvature location. If the curvature at one location is lower, the geometry

surface at this location is quite flatter and the number of tetrahedra is smaller. The Meshing

option controls the ratio of the maximum side length to the minimum side length of the

tetrahedra. So, the number of tetrahedra around the higher curvature location can be con-

trolled and the number of tetrahedra at the lower curvature can be increased. However, if

the option choices are not consistent, a mesh generation may fail if the object surface is not

smooth enough or the different inconsistence of various option selections under the menus

on the NETGEN interface panel, though the mesh generation itself has a process to smooth
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FIGURE37 – NETGEN interface panel showing the Mesh menus and the meshed object.

the mesh. Besides the inconsistence of option selections, a common reason is that the De-

launay may not be maintained for very high curvature and the choice of large element size.

So, repetitive mesh generations may be needed for a desired high quality mesh.

After a mesh is generated, the generated mesh can be exported into a file by select-

ing a submenus under the File menus in the NETGEN interface panel. There are thirteen

file formats including the ABAQUS format available to export the volume mesh as shown

in Figure 39. Inside the exported file for the ABAQUS format, the nodes with the ordered

node number from the first node to the last and their coordinates are listed first. Then the

elements with their connected nodes are listed from the number one element to the last. The

exported volume mesh file has theinp extension which can be recognized by AQBAQUS

finite element software.
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FIGURE38 – Submenus of the Mesh in NETGEN to use the choice of options.
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FIGURE39 – NETGEN interface panel showing the submenus to export the volume mesh.
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C. INDENTOR CONTACT WITH MESH SURFACE

This section addresses the contact of the indentor with the surface of the volume

mesh. In this study, the indentor was made of aluminum with the flat tip and was considered

rigid. The liver was considered as deformable. The simulation was the surface contact

simulation between the rigid indentor and the deformable liver.

The options of the small sliding and frictionless between the indentor and liver

surface were selected for the actual simulations. The indentor shape is flat and its diameter

is 4.76 centimeters. The liver mesh surface is quite dense so that under the indentor there

are more than six nodes as required by ABAQUS manual. In actual simulation, more than

thirty surface triangles around the indentor were selected to form the local contact surface

so that the indentor cannot push through holes within one surface triangle. Figure 40 shows

the profile codes for the indentor which is a rigid body and contacted with the liver surface.

Figure 41 shows the portion of codes for the contact of the indentor with the mesh surface.

It can been that the elements in the setPickedSurf8formed the contact surface of the liver

with the rigid indentor for the neo-Hooke’s hyperelastic model. The first few lines are the

boundary nodes which are not related to the contact region. Figure 42 shows the indentor

contact with the mesh surface of the liver tissue after the volume mesh is exported into the

ABAQUS and the indentor is designed. The indentor is the cylinder with the flat tip. The

indentor just touch the liver without deforming the surface. There are more than six surface

triangles under the cylinder.

D. FINITE ELEMENT ANALYSIS USING ABAQUS

In the previous sections, the generation of stereolithographical file and mesh, and

the indentor contact with the mesh surface were expounded in details. In this section, finite

element analysis is performed using the ABAQUS software [67]. The use of the ABAQUS

step by step is illustrated. Two indentors are used, one with the half spherical tip and the

other with the flat tip. The results and procedures are performed for both indentors for

comparison. The deformed volumes from the linear elastic modeling and the neo-Hooke’s
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FIGURE40 – Profile for the rigid indentor
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FIGURE41 – Profile for liver surface contact elements and interaction.
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FIGURE42 – The indentor with the flat tip touches but not deforms the mesh surface of the
liver tissue.

hyperelastic modeling are presented and superimposed with the undeformed volume to

show the differences. The stresses and strains for some key element nodes from the neo-

Hooke’s hyperelastic modeling are charted and curved. Here, the indentor is a cylinder

with the flat tip.

1. Basic steps for the LEM and NHM before simulation

To perform the finite element analysis using ABAQUS, the basic steps before sim-

ulation are as follows:

• Import the volume data file into the ABAQUS. This data file was generated from

NETGEN export. The liver object can be displayed in the ABAQUS interface envi-

ronment as in Figure 43. The liver object is defined as Part-1.

• Design an indentor with the half spherical tip and set the reference point to the top

surface central of the cylinder opposite to the indentor tip.
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• Move it to touch the the liver mesh surface as shown in Figure 42. There are more

than a dozen of triangles under the indentor if viewed parallel to the cylinder bar.

• Impose the restriction and boundary conditions - there are two restriction and bound-

ary conditions: one is on the reference point to make the reference can move only

vertically (in z-direction), and other is fixation of the liver tissue bottom.

• Set the force load vertically onto the indentor. The force load is the concentrated

force acting on the reference point.

• The finite element simulation can be performed from the ABAQUS/CAE interface

panel, or export the inp file and run simulation under the command prompt line using

ABAQUS commands.

• After simulation is done, the deformed volume can be seen as in Figure 44 and the

real time deformation process can be seen in video form by selecting the video option

to play the deformation process.

The above steps (modules as called in ABAQUS) have specific name for finite ele-

ment analysis in ABAQUS. These steps are Part for part design, Property to set the property

of the part, Assembly to assembly parts together, Step for static or dynamic, Interaction for

the interaction between the parts, Load to impose the force load needed and the boundary

conditions on parts for simulation, Mesh to decompose the parts into tetrahedra or cubes

depending on need, Job to set the duty for simulation and perform simulation, Visualization

to see the simulated results, and Sketch to draw the required picture using ABAQUS. The

following are detailed procedures for simulation.

Part Design the parts for simulation. The liver volume mesh file from NETGEN

as part one, the rigid cylinder was designed as the indentor using the drawing tools listed

in the left of the ABAQUS interface panel as shown in Figure 45. In the indentor design,

the point was selected as a reference point. There is no need for the step Mesh for the liver

tissue since the liver mesh is imported from a volume mesh file.
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FIGURE43 – The meshed volume from NETGEN is imported into ABAQUS.
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FIGURE44 – The deformed volume after FE modeling simulation.
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FIGURE45 – Steps to perform finite element analysis in ABAQUS.
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Property The second step is to set the material properties of the two parts. Select

the Material module as listed in Figure 45. Then select the Material Manager under the

Material menus to set the material properties. An interface window appears for one to set

the properties under the four buttons General, Mechanical, Thermal, and Other. In this

study, the liver density was set from the measurement. Actually, the density was measured

by the weight and the volume. From the Mechanical menus, there are several models

to be selected. The first two are the linear elastic and the hyperelastic. For the linear

elastic model, the Young’s modulus and the Poisson’s ratio are needed to fill in. For the

linear elastic model, the Young’s elastic modulusE = 1105kPa was obtained from the

compression test as in Chapter V. The poisson’s ratio of the liver tissue was around 0.4

which was used for the simulation. For the hyperelastic materials, there are several options

to choose. For this study, the Neo Hooke item was selected. Also, there are several options

to set the material properties. The Coefficients option was selected for the input source in

this study. Then a window came up to ask the inputsC10 andD1 which were obtained

in Chapter V. The indentor property can be set in Part section. When the indentor is

designed or created using sketch, an option asked to set the part is an rigid or non-rigid

three-dimensional body.

AssemblyThis step is to assemble the parts together. In this study, the indentor

was moved to touch the liver mesh. Under the indentor, there were more than six surface

triangles so that the the indentor had support in simulation.

StepThe procedure is to set the static or dynamic types for simulation. In this study,

the General, Static was selected.

Interaction This step is to set how the parts are interacted each other. In this study,

it was to set how the indentor and the liver was interacted. Under the Interaction menus,

selected the property to choose the Contact for simulation. The Edit Contact Property sub-

menus was pressed and a window came up to select contact property. Tangential Behavior

and frictionless were selected. Under the Mechanical menus, the tangential behavior was

selected. Another interaction property was selected for the part indentor. The surface to

surface contact was selected in Create Manager menus. Then the master and slave were

94



selectedfor the indentor and the liver tissue for interaction.

LoadsThis step is to impose the force load on parts. In this study, a force load was

vertically imposed on the indentor at the top central (the reference point selected in the part

design section) as the concentrated force.

BCs This step is to impose the restrictions and boundary conditions on the parts.

A restriction was set on the reference point to allow the reference point moved only verti-

cally. The boundary condition on the liver was to fix the bottom. No displacements of the

nodes on the bottom surface was imposed by selecting the bottom nodes and setting their

displacements in all three directions to zeros.

Job This step is to set the job name and to perform finite element analysis. Usually

it took about 15 minutes to finish for this study each time. The ABAQUS interface panel

would notice when the simulation is finished. Also, the simulation can be watched by

selecting the monitor menus to see the simulation process.

Visualization This step is to see the results after simulation. In this module, choose

the item under the menus Result to see the result as needed from the formed object file.

There are many options and tools to make colors, superimposing, wire form, and drawing

graphs of the relations of various variables such as stress to strain, energy change during

process etc.

2. Supplemental results and discussions

In this subsection, the contours of the deformed objects were shown for both the

LEM in Figure 46 and NHM in Figure 47. ABAQUS software has the functionality to show

these. The stress contours were shown on the deformed liver with different colors based on

their strengths. The Mises stress is a scalar function of the deviatoric components of the

stress tensor that gives an appreciation of the overall magnitude of the shear components

of the tensor. The superimposing of the deformed volume and the undeformed volume is

illustrated for each force load (5g, 10g, 20g, or 40g). Figure 48 shows the superimposed

of deformed volumes using LEM with the undeformed volume for the force loads 5g, 10g,
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FIGURE 46 – The stress contours of the deformed livers using the LEM under the force
loads 5g, 10g, 20g, and 40g from left to right and from the top to bottom.

20g and 40g from top to bottom and from left to right respectively. Figure 49 shows the

superimposed of deformed volumes using NHM with the undeformed volume for the force

loads 5g, 10g, 20g and 40g from left to right and top to bottom and from left to right

respectively.

3. Stress vs. strain for key element nodes

For the LEM, the stress and strain keep proportional for all nodes. For the NHM,

since it is nonlinear, the stress and strain are no longer kept proportional from time to time.

Also the stress and strain also changing for different nodes. Two elements immediately

under the indentor were selected to check the stress and strain relation for each nodes
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FIGURE 47 – The stress contours of the deformed livers using the NHM under the force
loads 5g, 10g, 20g, and 40g from left to right and from the top to bottom.
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FIGURE48 – Superimposing of the deformed livers using the LEM with the undeformed
volume under the force loads 5g, 10g, 20g, and 40g from left to right and from the top to
bottom.
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FIGURE49 – Superimposing of the deformed livers using the NHM with the undeformed
volume under the force loads 5g, 10g, 20g, and 40g from left to right and from the top to
bottom.
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for these two elements. The menus Tool is very useful to find the element numbers and

node numbers. There is Query submenus under the menus Tool. From this submenus,

the element numbers and their associated nodes. Figure refnodesElements illustrated this

process.

Two of the elements immediately under the indentor were found. Their element

numbers are 56706 and 49012. The associated nodes to the element 56706 are nodes 5126,

5136, 5313, and 6386. The associated nodes to the element 49012 are 5201, 5126, 5313,

and 6386. It can be seen that the two elements have a common triangle with nodes 5126,

5313, and 6386. In the visualization module, the data sets of the strain with time, and the

stress with time can be extracted by using the submenus XY-Plot under the menus Tool.

Data sets were extracted from the generated output object (odb file). Each tetrahedron

has four nodes. The stress and stain are changing from time to time for the neo-Hooke’s

hyperelastic model. The following figures illustrate the stress change with respect to the

strain. ABAQUS combined the two data sets of stresses with time, and the strains with

time into a new data set of the stresses with strains. The curve of the stresses with respect

to the strain is displayed for each node of the two elements. The stress-strain curves for the

force loads of 5 grams, 10 grams, 20 grams, and 40 grams are listed for all nodes of the

two selected elements to show the curve changes for different force loads and the changes

of the stresses and strains for different nodes. Figures 51, 52, 53, and 54 illustrated

the stress vs. strain curves for all the nodes of the element 56706 which was immediately

under the indentor. Figure 55 shows the stress vs. strain curve for the node 5201 of the

element 49012 which shares a common triangle in its tetrahedron element formation. The

other three nodes of the element 49012 are the nodes 5126, 5313, and 6386 of the element

56706.

From the deformed object shape, for the indentor with the flat tip, the deformed

area with the indentor was not flat. This is due to the use of the tetrahedron element shape.

There were less than twelve element under the indentor and the sizes of the elements were

different, and the stress vs. strain curves for different nodes were quite different. These

may be two of the reasons that that the deformed area with the indentor from simulation
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FIGURE50 – Find the element numbers and their associated using ABAQUS.
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FIGURE51 – The stress vs. strain curves for all the nodes of the element 56076 under the
force load of 5 grams, the node numbers for the four nodes are 5126, 5136, 5313, and 6383
from left to right and top to bottom respectively.
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FIGURE52 – The stress vs. strain curves for all the nodes of the element 56076 under the
force load of 10 grams, the node numbers for the four nodes are 5126, 5136, 5313, and
6383 from left to right and top to bottom respectively.
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FIGURE53 – The stress vs. strain curves for all the nodes of the element 56076 under the
force load of 20 grams, the node numbers for the four nodes are 5126, 5136, 5313, and
6383 from left to right and top to bottom respectively.
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FIGURE54 – The stress vs. strain curves for all the nodes of the element 56076 under the
force load of 40 grams, the node numbers for the four nodes are 5126, 5136, 5313, and
6383 from left to right and top to bottom respectively.
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FIGURE 55 – The stress vs. strain curves for the node 5201 of the element 49012 under
the force load of 5, 10, 20, and 40 grams from left to right and top to bottom respectively.
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was not flat. The results shown in Chapter VI also had this phenomenon. The indentor used

there also had the flat tip.

E. SUMMARY

This chapter addressed the details of the stereolithographical file generation using

VTK-TCL language. The volume mesh generation using NETGEN was expounded in

detail. The mesh density control was discussed. The contact of the indentor with the

volume mesh surface in this study was explained for finite element analysis. The stress

and strain were charted for some key element nodes from the finite element analysis using

the neo-Hooke’s hyperelastic model. All the sections in this chapter constitute the whole

procedure for the finite element modeling of soft tissues except the different segmentation

methods and biomechanical models.
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CHAPTER VIII

MATERIAL PARAMETERS ESTIMATION OF LIVER TISSUE

A. INTRODUCTION

Accurate prediction of tissue deformation depends on the accuracy of tissue mate-

rial parameter values [12]. The simple biomechanical model for small force loads is the

linear elastic model (LEM) which has been used widely in applications such as the model-

ing of the force driven left ventricular deformation ([27]), the modeling of ultrasonic waves

([95]), and registration of intraoperative MR images of the brain ([30, 40]). It is important

to use accurate material parameters. The works such as [11, 15, 96–98] focused on mate-

rial parameter measurement from actual deformation of a prescribed shape tissue under a

force load in a single process. The errors may arise due to the limitations of measurement

devices.

Kaueret. al. in [99] determined the optimal material parameters of synthetic ma-

terial by an objective function which consists of the square differences between simulated

and experimental data globally using a nonlinear viscoelastic model. Sozaet. al. in [46]

used the normalized mutual information ([100]) as a criterion to determine the Young’s

modulus and the Poisson’s ratio in the linear elastic model of brain tissue. The criterion

related the gray value distributions between the image reconstructed from simulation and

the intraoperative brain data. Both methods were applied in the material parameter estima-

tion. However, their image resolutions were quite low and may affect the accuracy of the

material parameter determination. Also, in this case, an actual indentor was used to push

the liver and gradually capture high resolution images of the deformed liver as in practice.

This chapter aims to use high resolution images to estimate the material parameters

of the liver tissue under small force loads through comparison of the results using various
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materialparameters in the linear elastic model. From these deformation results, The suit-

able values of the material parameters can be determined and the influence of the tissue

dehydration and the limitations of the measurement devices can be found. The criterion to

find suitable material parameters using the linear elastic model for very small force loads is

the minimization of the absolute difference of the maximum deformation depth from sim-

ulation and the one from real experiment. Micro-CT can capture images of high resolution

of 0.1 × 0.1 × 0.1mm3. As a benefit, the shape of tissue surface in the contact region

between the tissue and the indentor can be captured under small force loads ranging from

several grams to tens of grams. For comparison, the tissue’s material parameters are also

acquired using a DMA.

B. DEFORMATIONS USING VARIOUS MATERIAL PARAMETERS

In the linear elastic model, the Young’s modulus for liver tissue is around 10 kPa

([37]) and the Poisson’s ratio is around 0.4 ([11, 15]). However, for theex vivoliver tissue,

due to the dehydration, the Young’s modulus and the Poisson’s ratio may change around

these values. In this section, the liver deformations in experiments are estimated and then

finite element analysis of the liver deformations is performed using the Young’s moduli

from 5 kPa to 14kPa and the Poisson’s ratios from 0.35 to 0.44. Then, suitable Young’s

modulus and Poisson’s ratio can be found for the linear elastic model to predict the defor-

mation close to the real deformation from experiments.

For a fixed force load, the tissue displacement from the real experiment is unique.

The maximum tissue displacement can be found automatically from the scanned Micro-

CT images of the deformed liver and the undeformed liver. To compute the deformation

volume difference between the deformed object from simulation and the one from exper-

iment, considering the smallness of the deformation range, a cylinder with radius of25

mm and height of50 mm is used to cover the deformed region. The cylinder is positioned

vertically and centered at the indentor contact. The deformed volume is computed by the

total number of voxels between the deformed surface and the bottom surface of the cylin-
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TABLE 4
MAXIMUM DISPLACEMENTS AND VOLUME CHANGES IN REAL

EXPERIMENTS FOR DIFFERENT FORCE LOADS

5g 10g 20g 40g 60g

Displacement(mm) 2.5 4.0 5.2 8.1 9.7

Volume change (mm3) 135.88 250.46 425.86 581.91 780.72

der. Table 4 lists the maximum displacements of the liver tissue, and the volume changes

from the undeformed liver to the deformed liver for five different force loads. Figure 56

shows the curves of maximum displacements and volume changes. From these curves, it

is seen that the liver deformation is approximately linear for the force loads less than 10

grams but it looks parabolic as the force load increases, and the linear elastic theory may be

applied to modeling of the liver deformation for small force loads. However, as the force

load increases, the deformation deviates from the linearity gradually. Figure 57 shows the

superimposing of the deformed liver from simulation and the deformed liver from experi-

ments under the force loads of5 grams (a),10 grams (b),20 grams (c), and40 grams (d),

respectively.

C. RESULTS AND DISCUSSIONS

Finite element analysis was performed repeatedly for various material parameters

under different small force loads using high resolution Micro-CT images. With the force

load changing, the better material parameters to match the real displacement varied slightly

for the linear elastic modeling. There are several reasons for this phenomenon. The first

one is the assumption of the linear and isotropic properties of the liver tissue. The second

reason is the dehydration of theex vivo liver cut from the lamb. Another reason is the

geometric nonlinearity of the liver structure and the indentor with the half spherical tip.

For the force load of 5 grams, the maximum displacement from simulation close to

the maximum displacement from experiment is at the Young’s modulus of 7 kPa and the
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(a) (b)

(c) (d)

FIGURE 57 – Superimposing of the deformed livers from simulation (red) and experiment
(green) under the force loads of 5, 10, 20 and 40 grams respectively (a, b, c, and d). The
pairs of Young’s modulus and Poisson’s ratio for 5, 10, 20, and 40 grams are (7 kPa, 0.4),
(7 kPa, 0.39), (12 kPa, 0.4) and (14 kPa, 0.43) respectively.
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Poisson’s ratio of 0.4. For the force load of 10 grams, the maximum displacement from

simulation close to the maximum displacement from experiment is at the Young’s modulus

of 7 kPa and the Poisson’s ratio of 0.39. For the force load of 20 grams, the maximum

displacement from simulation close to the maximum displacement from experiment is at

the Young’s modulus of 12 kPa and the Poisson’s ratio of 0.4. For the force load of 40

grams, the maximum displacement from simulation close to the maximum displacement

from experiment is at the Young’s modulus of 14 kPa and the Poisson’s ratio of 0.43.

Fig. 58 shows that for various material parameters, the tissue displacements change larger

with the Young’s modulus increasing than those with variance of the Poisson’s ratios.

From the simulation results above, it was found that the material parameters ob-

tained under the force load of 20 grams is quite matched with those in [11, 15]. The Young’s

modulus of 1200 kPa is also matched with that of 1105 kPa from the measurement using

the DMA machine. For the force loads of 5 and 10 grams, the Young’s modulus should be

close to 10 kPa. But, due to the geometric nonlinearity of the liver and the imperfect initial

contact under the low load, the resistance to the moving of the indentor makes the tissue

displacement less than that predicted. The material parameters were determined by min-

imizing the absolute differences between the displacements from real experiment and the

ones from simulation. The material parameter measurements were also performed using

the DMA for comparison with those obtained from simulation. A piece of lamb liver with

dimensions of12.7× 50.8× 3.81 mm3 was used for measurement. From the compression

test, a global stress-strain curve was obtained. The portion of the stress-strain curve for the

strain less than10% was used to compute the Young’s modulus yieldingE = 11055 Pa

which is comparable with that obtained under the force load of 20 grams.

D. SUMMARY

The high resolution Micro-CT images were employed to show the liver tissue de-

formations for different material parameters using the linear elastic model. The optimal

material parameters are determined by minimizing the absolute differences between the
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FIGURE 58 – Displacements from simulation and experiment under the force loads of 5
grams (a), 10 grams (b), 20 grams (c), and 40 grams (d) respectively.
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displacementsfrom real experiment and the displacements from simulation. For the force

load of 20 grams, the determined Young’s modulus and Poisson’s ratio are quite consistent

to those in literature and the measurements using DMA machine. It was also found that for

small force loads of 5 and 10 grams, the determined material parameters are not matched

well with those from literature and the measured ones using DMA machine. For the larger

force load of 40 grams, the material parameters determined from simulation deviated from

the measured ones. There is a future plan to investigate more complicated biomechanical

models using Micro-CT images.
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CHAPTER IX

REGION-OF-INTEREST FINITE ELEMENT MODELING

A. INTRODUCTION

In recent years, image guided minimally invasive surgical simulation has attracted

researchers and surgeons. In laparoscopic surgery, only a small hole is opened and the

endoscopic instrument is inserted to minimize the damage of the surrounding healthy tissue

caused by surgery on internal organs, such as liver and spleen, [101, 102]. The instrument

can be a camera, probe, or scissor. One main challenging problem is to determine the

region of interest (ROI) for diagnosis and surgical treatment so that the surgical tool can be

applied over a well specified region of the internal organ. On the other hand, the traditional

finite element analysis over large or entire organ is quite computationally expensive, and

may not be suitable for real-time analysis of the deformation induced during surgery, which

may lead to errors in localization of the tumors. To reduce the simulation time or realize

real-time performance, the finite element method which produces local mesh-based models

has been employed for different types of surgical simulations [51, 103–105]. In reality, the

affected area in the surgery is only a small region instead of the large or entire organ while

the affection of the rest region is very small or can be ignored in real practice. So, as

expected, finite element modelling over the ROI in real-time is promising in laparscopic

surgery if the ROI is well determined.

In Chapter VI, the linear elastic model and the neo-Hooke’s hyperelastic model

were employed to simulate the liver tissue responses to small force loads in the strain range

less than10%. For the probe with spherical tip, it was shown that the linear elastic model

performs better than the other two for the force loads less than or equal to 20 grams, while
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theneo-Hooke’s hyperelastic model performed better than the linear elastic model for the

force load larger than 20 grams. So, the neo-Hooke’s hyperelastic model is chosen for the

finite element analysis over regions of interest. This chapter, the neo-Hooke’s hyperelastic

model is used to test the liver deformation over different concentric regions of interest cen-

tered at the tip of surgical probe for very small force loads. An indentor with half spherical

tip is employed in this study. The tissue deformations over different ROIs centered at the

tip of the surgical tool are investigated. They are compared with those from finite element

modelling over the whole piece of liver, and further, the results are verified using those

from real experiments.

B. LIVER DEFORMATIONS OVER CONCENTRIC REGIONS

1. Experiments and Simulations

In the process of mesh generation, the coordinate system has been set up. The

position of the probe tip can be identified from the acquired deformed images easily. In

this study, the tip position is around the center of the liver tissue and the center of the 2D

image. The tip coordinates are(50.0512, 49.21) in the entire slice with dimension of102.4

mm× 102.4 mm. The gaps between two neighboring concentric regions are all equal to

3.2 mm for the purpose of finite element analysis over different regions. Figure 59 shows

the tip position and concentric regions. The maximum deformed depths over these regions

are recorded and compared with the ones from finite element analysis over the whole liver

domain. The applied force loads are 5, 10, 20, 40, and 60 grams at different times. There

are two boundary conditions in finite element analysis. One is that the reference point

on the probe has only vertical freedom in z-axis direction to go up or down. The other

boundary condition is the fixation of the liver bottom. Since the friction between the liver

and the chamber bottom (glass) is relatively larger compared to the force loads applied, it

is reasonable to assume the bottom of the liver is fixed. It is also observed from conducted

real experiments that the bottom of the liver has almost no movement.
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FIGURE59 – The concentric regions centered at the probe tip with equal spacing gap, and
z-axis pointing out from the plane.
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Again, the ABAQUS finite element software was used for these simulations. The

force loads in simulation are 5, 10, 20, 40, and 60 grams. For the force loads of 40 and

60 grams, the simulation results showed that the solutions were not converging and the

past simulations failed for many attempts to search for equilibrium establishment. One

reason could be due to the geometric nonlinearity in simulations. Another reason might be

the non-applicability of the neo-Hooke’s hyperelastic model to liver tissue response under

larger force loads for the probe with half spherical tip.

2. Quantitative Analysis

For quantitative comparison, three tasks of computation are performed as follows.

• Computing the maximum liver displacements on the z-axis direction over concentric

regions from finite element analysis over the entire liver.

• Computing the maximum liver displacements on the boundaries of different concen-

tric circles, and the maximum liver displacements outside these concentric regions

from finite element analysis over the entire liver.

• Computing the maximum liver displacement on the boundary of each concentric re-

gion of interest where finite element analysis is performed separately over the con-

centric region.

The goal of all is to compute the probe displacement in the z-axis direction. For all

three tasks, the boundary conditions are the fixation of the bottom, and the the reference

point on the probe has only vertical freedom in z-axis direction to go up or down. Since

the position change is mainly on the z-axis direction as the force is applied vertically,

the displacement is mainly the change on the z-axis direction. The results shows that the

displacements on the x-axis and y-axis direction are less than10% of the displacement on

the z-axis direction.

Table 5 lists the maximum liver displacements from finite analysis over different

concentric regions of interest centered at the tip(50.0512, 49.21) of the probe and the max-
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imum displacement from experiment on the test piece of liver. The displacements from

simulations are only for successful simulations under the force loads of 5, 10, and 20 grams.

The “Radii” denotes the radii of the regions of interest. The “Whole” denotes the whole

tested liver on which finite analysis is performed, and “E-Whole” also denotes the whole

tested liver but the results are from experiments. Compared with those results in Chapter 5

and [89] where the probe has the flat tip, the maximum displacement of the liver tissue is

larger for each same force load.

It is noted that the maximum displacements for the ROI with radii of 13.2mm, and

19.6mm respectively are less than those of their neighboring ROIs for all force loads of 5,

10 and 20 grams. This behavior appears at the two neighboring regions of interest with radii

of 26.0mm and 29.2mm, which means that these lower maximum displacements has larger

cycle than the previous one. The deformed surface behaves like a sinusoidal wave extension

after the force load applied. The finite element analysis is performed in a complete similar

manner and same condition except the the difference of concentric circle domains with

different radii. A reasonable thought is that when a stone is drop into water, the water

propagated in decayed sinusoidal wave outwards. Since the fresh liver is quite soft and

contains much water in its composites. However, this phenomenon has no theoretic proof

and integrated view.

Table 6 lists the maximum liver displacements on the boundaries of the concen-

tric regions of interest. In consideration of the positions of nodes on the boundaries, the

maximum displacements on the boundaries are computed by computing the maximum dis-

placements of nodes in the actual region extending 2mm inwards from the boundaries (cir-

cles). It is seen that the maximum displacements on the boundaries are quite small (less

than10%) compared to the maximum displacements for larger regions (radius larger than

19.6mm).

Table 7 lists the maximum liver displacements over the same regions as in Table 6

from finite element analysis over the whole liver domain. It can be seen that the maximum

displacements on the specified regions from finite element analysis over the whole domain

are comparably smaller than those from finite element analysis over the concentric regions

120



TABLE 5
MAXIMUM DISPLACEMENTS FROM FINITE ELEMENT ANALYSIS ON

DIFFERENT CONCENTRIC REGIONS OF INTEREST, THE WHOLE LIVER, AND
THE MAXIMUM DISPLACEMENT FROM REAL EXPERIMENTS (ALL THE DATA

ARE WITH UNITS OF MILLIMETERS).

Radii 5g 10g 20g

10mm 1.1664 1.8537 1.9066

13.2mm 0.8399 1.5746 1.5746

16.4mm 1.0153 1.9430 2.0689

19.6mm 0.9401 1.1508 1.1510

22.8mm 1.0228 2.0230 2.8405

26.0mm 0.8202 1.5746 1.6268

29.2mm 1.0123 1.5734 1.5758

32.4mm 0.8893 1.7163 2.4206

Whole 1.0042 1.8847 3.2772

E-Whole 2.2 2.6 4.8

TABLE 6
MAXIMUM DISPLACEMENTS ON THE BOUNDARIES OF CONCENTRIC

REGIONS OF INTEREST FROM SEPARATE FINITE ELEMENT ANALYSIS OVER
THESE CONCENTRIC REGIONS.

Radii 5g 10g 20g

10.0mm 0.3899 0.5684 0.7148

13.2mm 0.0938 0.2094 0.2100

16.4mm 0.0765 0.1328 0.1403

19.6mm 0.0515 0.0758 0.0771

22.8mm 0.0238 0.0573 0.0739

26.0mm 0.0064 0.0167 0.0203

29.2mm 0.0109 0.0289 0.0296

32.4mm 0.0087 0.0219 0.0426
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TABLE 7
MAXIMUM DISPLACEMENTS ON THE BOUNDARIES OF CONCENTRIC
REGIONS OF INTEREST FROM FINITE ELEMENT ANALYSIS OVER THE

WHOLE LIVER DOMAIN.

Radii 5g 10g 20g

10.0mm 0.0668 0.1251 0.2233

13.2mm 0.0297 0.0543 0.0990

16.4mm 0.0110 0.0198 0.0328

19.6mm 0.0030 0.0048 0.0099

22.8mm 0.0032 0.0066 0.0116

26.0mm 0.0033 0.0067 0.0105

29.2mm 0.0028 0.0055 0.0083

32.4mm 0.0018 0.0036 0.0056

TABLE 8
MAXIMUM DISPLACEMENTS OUTSIDE THE CONCENTRIC REGIONS OF
INTEREST FROM FINITE ELEMENT ANALYSIS OVER THE WHOLE LIVER

DOMAIN.

Radii 5g 10g 20g

10.0mm 0.0668 0.1251 0.2233

13.2mm 0.0297 0.0543 0.0990

16.4mm 0.0110 0.0198 0.0328

19.6mm 0.0071 0.0138 0.0191

22.8mm 0.0071 0.0138 0.0191

26.0mm 0.0071 0.0138 0.0191

29.2mm 0.0071 0.0138 0.0191

32.4mm 0.0071 0.0138 0.0191
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of interest. So, region of interest based finite element modelling of liver tissue must sacri-

fice some loss in the estimation of the liver deformation and reconstruction. However, the

loss is quite small for small force loads. As the force load increases, on a same region the

difference of the deformation from finite element analysis over a concentric region of in-

terest and the deformation from finite element analysis over the whole domain is increased.

Such a difference may be partially caused by the specific sharp anatomic structures of the

liver which may move relatively large due to even a very small load. However, it is largely

caused by the reduction of surrounding tissue enclosing the concentric regions of interest.

The surrounding tissue provides support to the central regions. It is difficult to describe

such support in boundary conditions for finite element analysis. In this finite element anal-

ysis, it is assumed that the side surface of the liver can freely move and rotate.

In the following, if the unit is not indicated, the unit is millimeters. Table 8 lists

the maximum liver displacements outside the concentric regions of interest from finite el-

ement analysis over the whole liver domain. The special sharp anatomical structures may

cause some relatively large displacement. This can be seen from comparison of Table 7 and

Table 8. In Table 8, the maximum liver displacements are the same outside concentric re-

gions of interest with radii equal or larger than 19.6mm. For better visualization, Figure 60,

Figure 61, Figure 62, and Figure 63 shows the curves corresponding to Table 5, Table 6,

Table 7 and Table 8, respectively.

From the quantities listed in the four tables, it can be seen that the finite element

analysis over the concentric regions of interest may generate different results. With the

expansion of the concentric region, the liver tissue deformation from the finite element

analysis over the concentric region approaches the liver tissue deformation from finite ele-

ment analysis over the whole liver domain.

3. Visualization

For visual comparison, the deformed liver tissue from the finite element analysis

over each concentric ROI is superimposed with that from finite element analysis over the
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FIGURE60 – Maximum displacements from finite element analysis on different concentric
regions of interest, corresponding to Table 5.
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FIGURE 61 – Maximum displacements on the boundaries of concentric regions of inter-
est from separate finite element analysis over these concentric regions, corresponding to
Table 6.

125



10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

Radii(mm)

M
ax

im
um

 D
is

pa
lc

em
en

t (
m

m
)

Maximum Liver Displacemnt over the Concentric ROIs

5g
10g
20g

FIGURE62 – Maximum displacements on the boundaries of concentric regions of interest
from finite element analysis over the whole liver domain, corresponding to Table 7.
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FIGURE63 – Maximum displacements outside the concentric regions of interest from fi-
nite element analysis over the whole liver domain, corresponding to Table 8.
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FIGURE64 – The superimposing of the deformed liver tissue from finite element analysis
over the whole domain with those from experiments for the force loads of 10 grams (top)
and 20 grams (bottom) respectively.

whole piece of liver, and also the deformed liver tissue from the finite element analysis

over the whole liver is superimposed with that from real experiments. Figure 64 shows the

superimposing of the deformed liver from simulation and the deformed liver from experi-

ments in the whole liver domain for the force load of 10 and 20 grams. These views are

consistent with the results listed in Tables 5, 6, 7, and 8. Figure 64 shows the superimpos-

ing of the deformed liver tissue from finite element analysis over the whole domain with

those from experiments.

C. SUMMARY

This chapter proposed to investigate region of interest finite element modelling of

liver tissue. The results show such modelling may generate different deformations from

those using the finite element analysis over the whole liver domain. Although the max-

imum liver displacement on the boundary of a region centered at the probe tip is quite
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small,the finite element model of liver over the region separately may yield different liver

tissue deformation than finite element analysis over the whole liver domain. As the region

of interest approaches the whole liver domain, the maximum liver displacement from the

finite element analysis over the region of interest approaches to the global maximum liver

displacement from the finite element analysis over the whole liver domain.
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CHAPTER X

CONCLUSIONS AND FUTURE WORKS

This dissertation presents the comprehensive study of tissue deformation under

small force loads using high resolution Micro-CT and CBCT imaging technologies. It

was first proposed to use these high resolution imaging technologies to study surface and

volume changes of the soft tissues.

In Chapter III, high resolution imaging technologies Micro-CT and CBCT were

introduced to study soft tissue deformation in stead of using traditional low resolution CT

images.

In Chapter IV, the principle of finite element method, and the linear elastic model,

and the neo-Hooke’s model were described as the basic mechanical models and tool for the

modeling of liver tissue responses under the small force loads.

In Chapter V, the procedure for preprocessing of the object was introduced in steps:

image acquisition, image segmentation, mesh generation and material parameter measure-

ments for finite element modeling. The process was proposed to acquire the images to study

the soft tissue deformation. One automatic variable segmentation method was developed

for liver tissue segmentation.

In Chapter VI, the linear elastic model and the neo-Hooke’s hyperelastic model

were applied to describe the mechanical responses of the liver tissue under small force

loads. A validation system was proposed to verify different finite element models for soft

tissue deformations. The FE method was used to analyze the lamb liver deformations under

certain force loads using the linear elastic model and the neo-Hooke’s hyperelastic model.

The deformations were measured from the models and compared each other and to the real

deformations measured by experiments. It was found that the linear elastic model is more

applicable to lamb liver than the neo-Hooke’s hyperelastic model for small force loads
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(< 40g) and that the neo-Hooke’s model is closer to reality when the force load is larger

than40g. It was verified that the high resolution imaging technologies can be used to study

the surface and volume changes of soft tissues. The comparability of the results presented

herein to thein vivo tissue, which is valuable for future surgery simulation design, is beyond

the scope of this work and will be investigated in future studies.

In Chapter VII, the stereolithograhphical volume file and volume mesh generation

are introduced in details for the preprocessing step. The contact of the indentor with the

volume mesh surface is explained.

In Chapter VIII, the high resolution Micro-CT and CBCT images were employed

to show the liver tissue deformations for different material parameters using the linear elas-

tic model. The optimal material parameters were determined by minimizing the absolute

differences between the displacements from real experiment and the displacements from

simulation. For the force load of 20 grams, the determined Young’s modulus and Poisson’s

ratio were quite consistent to those in literature and the measurements using the DMA. It

was found that for small force loads of 5 and 10 grams, the determined material parameters

were not matched well with those from literature and the ones measured using the DMA.

For the larger force load of 40 grams, the material parameters determined from simulation

deviated from the ones measured using the DMA.

In Chapter IX, it was proposed to investigate region of interest finite element mod-

elling of liver tissue. The results show that such modelling may generate different defor-

mations from those using the finite element analysis over the whole liver domain. The

maximum liver displacement on the boundary of a region centered at the probe tip is quite

small, the finite element model of liver over the region separately may yield slightly differ-

ent liver tissue deformation than finite element analysis over the whole liver domain. As

the region of interest approaches the whole liver domain, the maximum liver displacement

from the finite element analysis over the region of interest approaches to the global max-

imum liver displacement from the finite element analysis over the whole liver domain. In

the process of studying the maximum displacements, one specified region of interest may

be found over which finite element analysis can be performed. The results will be slightly
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different from the finite analysis over the entire region but such difference may be ignored

or allowed in practice. Such a study might provide potential validation of the usage of

surgeries using endoscopic instruments.

In future work, it is planned to investigate more complicated biomechanical models

using Micro-CT and CBCT, investigate the influence of the region-of-interest based finite

element analysis of other tissue deformations compared to the modeling of the entire tissue

on soft tissue deformations. Also, it is planned to propose a more complicated finite ele-

ment model of the deformation of brain tissue which is inhomogeneous with white matter,

grey matter, and Cerebral spinal fluid nested together.
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NOMENCLA TURE

The following convention is used throughout the dissertation.

Φ level set function

∂ partial differential

‖ · ‖ Euclidean norm of a vector

δ Delta Dirac function

κ mean curvature

L length

A area

H Haviside function

2D two-dimensional space

3D three-dimensional space

σ stress (the force per unit area)

ε strain

E Young’s modulus

ν Poisson’s ratio

λ Lam material constant

µ shear modulus

µ0 initial shear modulus

K0 initial bulk modulus

f external force

F the term induced by the external force in equilibrium equation

Ao cross sectional area

Ω a connected open region
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∂Ω theboundary of a connected open region

u displacement vector

U assembled global displacement vector

p a point in three-dimensional space

∆ gradient operator

H1
0 (Ω) Soblev function space

∫
integral symbol

E(u) total potential energy

M material matrix

B relation operator of strain to displacement

K global system stiffness matrix

N e
i shape function of tetrahedrons

V volume domain of an object

V e volume domain of an element

δEe(ue) variation of total potential energy of one element

W energy potential function

C10 one of material parameters in the neo-Hooke’s model

D1 one of material parameters in the neo-Hooke’s model

Ī1 first deviatoric strain invariant

λ̄i deviatoric stretch

Jel elastic volume ratio

in length unit inch

Pa unit of Young’s modulus Pascal
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