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A Comparative Study in Cone Metric Spaces and Cone Normed Spaces 

By 

Dua’a Abdullah Mohammad Al-Afghani 

Supervisor 

Dr. Abdallah A.Hakawati 

Abstract 

Cone metric spaces are, not yet proven to be generalization of metric 

spaces. In many occasions the answer was proved, not to be affirmative. 

In this thesis we made a comparison between) Cone Metric Spaces and 

Cone Normed Spaces) and ( Ordinary Metric Spaces and Normed Spaces) 

as a way to find an answer for our main contribution. 

We choose the most important branches of mathematics to make a 

comparison as in: convergence, topology and best approximation theory. 

We also tried to transplant the idea of cone metric spaces in Orlicz’s 

spaces. 

We obtained new results while we investigate some properties which were 

proven to be incorrect in cone metric spaces but hold in ordinary case like 

as Sandwich Theorem, which gives us a sense of generality here.    
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Introduction 

Cone metric spaces were defined in [1] by substituting an ordered normed 

space for the real numbers, by the means of partial ordering “ ≤ “ on 

Banach space ( E, ǁ . ǁ ) via a cone P, The authors of this article and in [6], 

introduced the notion of cone normed spaces, where bounded linear 

operators between cone normed spaces were studied. It has been proven in 

[3] that every cone metric defined on a Banach space is really equivalent to 

a metric. 

Recently, in [8], the authors proved that cone metric spaces are also 

topological spaces. Moreover, compactness, boundedness, first 

countability were discussed there.  

This thesis is organized as follows: 

Chapter one contains definitions and some examples which shall be needed 

in the following chapters. The topics include cones, cone metric spaces and 

cone normed spaces. This chapter is absolutely fundamental. A reader who 

is familiar with these topics may skip this chapter and refer to it only when 

necessary. 

Chapter two has two purposes. First, we present some examples in cone 

metric and cone normed spaces and investigated them deeply to find out 

more properties of these spaces. Second, we introduce some properties of 

cone metric and cone normed spaces.  

In chapter three we made a comparison between cone metric spaces and 

cone normed spaces and metric spaces and normed spaces in three 

branches; namely: convergence, topology, and best approximation. 
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In chapter four we introduce finite dimensional cone normed spaces, and 

make a comparison between these spaces and finite dimensional normed 

spaces, where genuine match were found. Also we try to give a definition 

of Orlicz’s cone normed spaces by trying to insert the idea of cone metric 

in Orlicz spaces. 

The main results of this thesis are: 

1) We conclude that Sandwich Theorem holds in cone metric spaces if 

and only if the cone P is normal, and we provide a proof for this 

result. 

2) We introduce a proposition that the comparison test holds in cone 

normed spaces if and only if the cone P is normal, and prove it. 

3) We make a comparison between finite dimensional normed spaces 

and finite dimensional cone normed spaces, and find a noticable 

match in results under the condition that P is a normal cone.   
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Chapter One 

preliminaries 

This chapter contains some definitions and basic results about cones, cone 

metric spaces, normed spaces  and cone normed spaces which will be used 

in the subsequent chapters. 

1.Cones:  

Definition 1.1:[1] 

Let E be a real Banach space with norm ǁ . ǁ and let P be a subset of E. then 

P is called a cone if:  

1) P is closed, nonempty and P ≠ {0}. 

2) If a, b ≥  0 , and x, y ∈ P then ax + by ∈ P. 

3) If x ∈ P and –x ∈ P then x = 0.  

Definition 1.2: [1]  

Let P be a cone in E. we define a partial ordering ≤ with respect to P on E 

as: 

1) x ≤ y if and only if y – x ∈ P. 

2) x < y if x ≤ y but x ≠ y. 

3) x ≪ y if y – x ∈ P˚. (P˚ is the interior of P). 

Example1.1:[1] 

Let R2= E, and P= { (x, y): x≥ 0, y≥ 0 }. P is indeed a cone. 
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Definition 1.3: 

 There are many types of cones, here we mention some of the frequently 

used ones: 

1 ) normal cones: 

 P is called normal if ∃ k ≥ 0, such that: 

 If 0 ≤ x ≤ y, then ǁ x ǁ ≤ k ǁ y ǁ. The least such k is called the normal 

constant of P. 

2 ) regular cones : 

 P is called regular if every increasing sequence in E, which is bounded 

above, is convergent. Equivalently, the cone P is regular if and only if 

every decreasing sequence in E which is bounded from below is 

convergent in E. 

3 ) minihedral cones: 

P is called minihedral if sup {x, y} exists for every x, y ∈ E. 

4 ) strongly minihedral cones : 

P is called strongly minihedral if every set which is bounded above has a 

supremum. 

5 ) positive cone of E: 

Let (E, ≤ ) be an ordered vector space, then E+ = { x ∈ E: x≥ 0 } is called 

positive cone of E, members of E+ are called positive elements of E, the 

non-zero elements of E+ are called the strictly positive elements of E. 
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Definition 1.4: 

The norm ǁ . ǁ is called monotonic if Ɐ x, y ∈ E, 0 ≤ x ≤ y ⟹ ǁ x ǁ ≤ ǁ y ǁ . 

 and called semi-monotonic if Ɐ x, y ∈ E,  ∃ k ≥ 0, such that 

  0 ≤ x ≤ y ⟹ ǁ x ǁ ≤ k ǁ y ǁ  . 

Example 1.2:[11] 

Let E = 𝐶𝑅
1[0, 1], be the space of real valued functions on [0, 1] which have 

continuous derivatives, with the supremum norm  

ǁ . ǁ∞ = max
[0,1]

{𝑓 ∈ 𝐸 },  and P = {f ∈ E: f ≥ 0}. 

 Then P is a cone with normal constant of  K = 1. 

Example 1.3:[9] 

The cone [0, ∞) in (R, │.│), and the cone P={(x, y): x, y≥ 0} in R2 are 

normal cones with normal constant K = 1. 

Example1.4:[9] 

Let E be the real Banach space, R2, with the cone 

 P = { ( x, 0 ) : x ≥ 0 }. So P is a positive cone of E , P has an empty 

interior.  

Example1.5[12]: 

 Let E = 𝐶𝑅
2[0, 1], be the space of real valued functions on [0, 1] which 

have continuous second derivatives, with the norm 

 ǁ f ǁ = ǁ f ǁ∞ + ǁ f` ǁ∞ and the cone P = {f ∈ E: f (t) > 0}. 

this cone is not normal cone, and not minihedral. 

Example1.6:[12]  

 Let E = R2 and P ={(x, y): x, y ≥ 0}. The cone P is strongly minihedral in 

which each subset of P has an infimum. 
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Example1.7:[12] 

 let E = R2 and P ={(x, 0): x ≥ 0}. The cone P is strongly minihedral but 

not minihedral.  

Lemma1.1:[11] 

Every regular cone is normal.  

 Proof: 

On the contrary, let P be a regular cone which is not normal. 

 For each n ≥ 1, choose tn and sn∈ P such that tn-sn∈ P, 

but n2 ǁtn ǁ < ǁsn ǁ. 

For each n≥ 1, put xn = 
𝑆𝑛

ǁ𝑡𝑛ǁ
  and yn = 

𝑡𝑛

ǁ𝑡𝑛 ǁ
 , so xn, yn and yn- xn ∈ P. 

ǁynǁ= 1 and ǁxnǁ > n2,    for all n ≥1. 

The series ∑
1

𝑛2
∞
𝑛=1  ǁ 𝑦𝑛ǁ = ∑

1

𝑛2
∞
𝑛=1  is uniformly convergent, by Wierstrass-

M test, there is y ∈ P s.t ∑
1

𝑛2
∞
𝑛=1  𝑦𝑛 = y. 

We now see that : 

0 ≤ x1 ≤ x1 + 
1

22
 x2 ≤  x1 + 

1

22
 x2 + 

1

32
 x3 ≤ ….. ≤ y. 

Because P is regular, the series ∑
1

𝑛2
∞
𝑛=1  xn is convergent. Hence,  lim

𝑛→∞

ǁ𝑥𝑛ǁ

𝑛2
  

= 0, 

which is a contradiction. 

Now according to example1.2 consider the following sequence of elements 

of E which decreasing and bounded from below but is not convergent in E. 

y ≥ y2 ≥ y3 ≥ y4 ≥ ……. ≥ 0.   

therefore, the converse of lemma1.1 is not true. 
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Lemma 1.2:[11] 

There is no normal cone with normal constant K<1. 

Proof: 

Suppose on the contrary, that E is a Banach space, and P is a normal cone 

with normal constant K< 1. 

Take x ∈ P, x ≠ 0  and 0 < ε < 1, where  K< (1-ε). 

Then, (1-ε) x ≤  x 

 but (1-ε) ǁ x ǁ > K ǁ x ǁ, which is a contradiction. 

2. Cone metric spaces: 

Definition 2.1[1]: 

 A cone metric space is a pair ( X, d ) where X is any set and d:X˟ X → E 

is a map , with the following satisfied : 

1) d (x , y) ≥ 0 Ɐ x,  y  ∈ X and d (x , y) = 0 iff  x = y.  

2) d (x , y) = d (y, x) Ɐ x ,y ∈ X . 

3) d (x  , y) ≤ d (x , z) + d(z , y)   Ɐ x, y, z ∈ X . 

Example 2.1:[12] 

 let E=R2 and P={(x, y): x, y≥ 0}, X=R,  and d:X˟X→E such that 

 d(x, y)= (│x-y│, a│x-y│) where a > 0 is a constant, then (X, d) is a cone 

metric space. 

Example 2.2[12] 

Let E = Rn with 

P = {(x1, x2, x3,….., xn ) : 𝑥𝑖  ≥ 0, ∀i =1,2,….,n} 

X = R and d: X×X→E such that 
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d (x, y)= (|x-y|, a1| x -y|,….. ,an-1 | x- y|). where 𝑎𝑖≥ 0 for all 

 l ≤ i ≤ n-1, Then (X, d) is a cone metric space. 

Example2.3:[12] 

 Let E = 𝐶𝑅
1[0,1] with the supremum norm and 

P = {f ∈E: f ( t ) ≥ 0}. 

Then P is a normal cone with normal constant K = l. Define 

d: X×X→E by d(x, y)=|x−y| ϕ,   where X=R, and  

ϕ: [0,1]→R+ such that ϕ(t) = et. Then d is a cone metric on X. 

Definition 2.2[1]: 

Let (X ,d) be a cone metric space and {𝑥𝑛 }be a sequence in X , then: 

1) { x n}  is said to be convergent to x if Ɐ e >> 0, 

 ∃ n0 ∈ N such that n ≥ n0 ⟹ d(𝑥𝑛, 𝑥) << e. 

 in this case we write 𝑥𝑛→ x.  

2) {𝑥𝑛 } is called a Cauchy sequence in X whenever for every e >> 0 

there is n0  s.t for all m, n  ≥ n0 ,d(𝑥𝑛,𝑥𝑚) << e . 

3) (X , d) is called a complete cone metric space if every Cauchy 

sequence is convergent. 

Definition 3.2[8]:  

A subset A of a cone metric space (X, d) is called sequentially closed if 

for every sequence {𝑥𝑛} ⊆ A, with 𝑥𝑛→ x we have x ∈ A. 
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Definition 4.2[8]: 

A subset A of a cone metric space (X, d) is called sequentially compact , 

if for any sequence{ 𝑥𝑛} in A there is a subsequence{ 𝑥𝑛𝑘
 } of {𝑥𝑛 }such 

that{ 𝑥𝑛𝑘
} is convergent in A. 

 proposition 2.2[8]: 

let (X, d) be a cone metric space. Then every sequentially compact subset 

A ⊆ X  is compact.  

For the proof, we refer the reader to [8]. 

Definition 2.3:[6]  

 Let (X , d) be a cone metric space and A ⊆ X, Then: 

1 )  A is said to be bounded above if ∃e ∈ E , e >> 0 s.t  

d (x , y) << e   Ɐ x ,y ∈ A. 

2 ) A is called bounded if  δ (A) = sup { d(x , y) :x , y ∈ A} exists in E, 

thus if  P is strongly minihedral, then being bounded is the same as being 

bounded above. 

Proposition 2.2:[6] 

Every Cauchy sequence in a cone metric space over a strongly minihedral 

cone is bounded. 

3. Cone Normed Spaces: 

Definition 3.1:[10] 

Let X be a linear space over a field K, a norm on X is a function 
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 ǁ . ǁ : X → R such that Ɐ x, y ∈X and a ∈K , we have : 

1) ǁ x ǁ ≥ 0 and ǁ x ǁ = 0 iff x = 0 . 

2) ǁ x+ y ǁ ≤ ǁxǁ +ǁyǁ . 

3) ǁ ax ǁ =│a│ǁxǁ. 

A normed linear space (X, ǁ .ǁ ) is a linear space X with a norm on it . 

Proposition3.1:[10] 

1) Every normed space is a metric space with respect to the metric  

d (x , y) = ǁx – yǁ, and is called the metric induced by the norm. 

2) For any two elements x and y of a normed space we have, 

│ǁxǁ - ǁyǁ│ ≤ ǁx - yǁ  

3) A norm is a real valued continuous function. 

Definition 3.2[1] : 

 Let X be a real vector space and E be a real Banach space ordered by the 

strongly minihedral cone P, then a cone normed space is an ordered pair  

(X , ǁ . ǁc) where ǁ . ǁc :X→ E. such that : 

1) ǁ x ǁc ≥ 0 and ǁ x ǁc = 0 iff x=0 .  

2) ǁ ax ǁc = │a│ǁ x ǁc Ɐ a∈ R and all x ∈ X. 

3) ǁ x + y ǁc ≤ ǁ x ǁc +ǁ y ǁc . 

Definition 3.4:[1] 

In a cone normed space (X , ǁ.ǁc) over ( E , P, ǁ.ǁ ) the sequence {xn} is said 

to be: 

(1) convergent if ∃x ∈ X s.t Ɐe ∈ E with e >> 0, ∃ n0 ∈ N such that  
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 Ɐ n > n0, ǁ xn- x ǁc <<  e . 

(2) Cauchy if for each e >> 0 ∃ n0 ∈N s.t for m, n  ≥ n0 we have 

 ǁ xn - xm ǁc << e . 

Definition3.5[9]: 

A cone normed space (X , ǁ.ǁc) is called a cone Banach space if every 

Cauchy sequence in X is convergent in X. 

Definition3.6[16] : ( equivalent cone-norms ) 

Let X be a real vector space, P is a normal cone with normal constant k,  

ǁ . ǁ𝑐1
: X → E and ǁ . ǁ𝑐2

: X → E be two cone norms on X. ǁ . ǁ𝑐1
 is said to 

be equivalent to ǁ . ǁ𝑐2
 if there exist α, β > 0 such that: 

 α ǁ x ǁ𝑐1
≤ ǁ x ǁ𝑐2

≤ β ǁ x ǁ𝑐1
.               For each  x ∈ X 

Definition 3.7[ 9]: 

Let (X, ǁ . ǁc ) be a cone-normed space, a subset A of X is said to be 

bounded if  sup { ǁ x - y ǁc :x, y ∈ A } exists in E. 

Example 3.1[13 ]: 

 Let X = R2, P = {(x, y): x ≥ 0, y ≥ 0} ⊂ R2 and 

 ǁ (x, y) ǁc = (α|x|, β|y|), α > 0, β > 0. Then, (X , ǁ · ǁc) is a cone normed 

space over R2. 
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Chapter Two 

Examples and some properties 

This chapter presents some examples and some theorems on cone metric 

spaces and cone normed spaces.   

1.Examples: 

 One of our main contributions is to characterize a comparison satisfaction. 

Specifically, we show that the Sandwich theorem holds if and only if P is 

normal. 

Example 1.1 [12]: 

Let E = 𝐶𝑅
1[0, 1], be the space of real valued functions on [0, 1] which have 

continuous derivatives, P = { x ∈ E : x (t)  ≥ 0 }. Let  

ǁ x ǁ = ǁ x ǁ∞ +ǁ x` ǁ∞ , where ǁ x ǁ∞ =  max {x(t) : t∈ [0,1] } 

and ǁ x` ǁ∞ = max{x`(t) : t ∈ [0, 1]}.   

Let x (t) = t,   y (t) = t2k   where k ≥ 1. 

 Here 0 ≤ y ≤ x   Ɐ t ∈ [0, 1]  

ǁ x ǁ = max {t: t ∈ [0, 1] } + max { 1: t∈ [0,1] }  

      = 1 + 1 = 2.  

ǁ y ǁ = max {t2k : t∈ [0,1] } + max { 2k t2k-1 : t ∈ [0,1] } 

      = 1 + 2k. So,  

0 ≤ y ≤ x   but,  ǁ y ǁ > k ǁ x ǁ. 

Since k was arbitrary, P is not normal. 
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Example 1.2[3]: 

Let E = 𝐶𝑅
1 [0, 1], P = {f ∈ E: f (t) ≥ 0} and ǁ f ǁ = ǁ f ǁ∞ . 

Then P is a normal cone with normal constant 1. 

Proof : 

If f and g are bounded on a compact set, both are continuous. 

 Now if 0 ≤ f ≤ g then : ǁ f ǁ∞ ≤ ǁ g ǁ∞. 

We conclude that the normality of the cone depends on the norm  of E. 

Example 1.3 [12]: 

Let E = 𝐶𝑅
1[0,1], P = { x∈ E : x (t) > 0 } , and ǁ x ǁ = ǁ x ǁ∞+ǁ x` ǁ∞. 

Let xn(t) =  
𝑥2𝑛

𝑛
,  yn(t) = 

1

𝑛
   where  0 ≤ xn ≤ yn  . 

lim
𝑛→∞

𝑦𝑛 = 0, but 

  ǁ xn ǁ = max {
𝑡2𝑛

𝑛
: t ∈ [0,1] } + max { 2 t2n-1 :t∈ [0,1] } 

           = 
1

𝑛
 + 2.  

  Hence xn doesn’t converge to zero. 

It has been noticed in [12] that the sandwich theorem doesn’t hold in cone 

metric spaces, and this is another example. 

Example 1.4 [12]:  

 Let E = 𝐶𝑅
1[0,1], P = { x∈ E : x(t) ≥ 0 }, and ǁ x ǁ = ǁ x ǁ∞+ǁ x`ǁ∞. 

Let xn(t) = 
1−sinh(𝑛𝑡)

𝑛+2
 ,    and    yn (t) = 

1+sinh(𝑛𝑡)

𝑛+2
    

Clearly     0 ≤ xn ≤ xn+ yn . 

And ǁ 𝑥𝑛ǁ = ǁ 𝑦𝑛ǁ = 1,      Ɐ n. 

now,   xn + yn = 
2

2+𝑛
 → 0     

but  xn   doesn’t converge to zero. 
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we see from these examples that the Sandwich theorem doesn’t hold in 

non-normal cone metric spaces. This leads to the question:  

If cones are normal, would we still have the same result? 

The answer is negative. The proof will be given in proposition (1.1). 

Example 1. 5: 

Let E = 𝐶𝑅
1[0,1], P = { x∈ E : x (t) > 0 } ,  

and ǁ x ǁ = ǁ x ǁ∞.  ( our cone is normal ) 

Let xn(t) =  
𝑥2𝑛

𝑛
,  yn(t) = 

1

𝑛
   where  0 ≤ xn ≤ yn  . 

lim
𝑛→∞

𝑦𝑛 = 0, but 

  ǁ xn ǁ = max {
𝑡2𝑛

𝑛
: t ∈ [0,1] }  

           = 
1

𝑛
 . 

  ǁ xn ǁ → 0       as n → ∞ . 

  Hence xn converge to zero. 

Example 1.6: 

Let E = 𝐶𝑅
1[0,1], P = { x∈ E : x(t) ≥ 0 }, 

 and ǁ x ǁ = ǁ x ǁ∞.   ( our cone is normal ) 

Let xn(t) = 
1−sinh(𝑛𝑡)

𝑛+2
 ,    and    yn = 

1+sinh(𝑛𝑡)

𝑛+2
    

Clearly     0 ≤ xn ≤ xn+ yn . 

now,   xn + yn = 
2

2+𝑛
 → 0    as n → ∞.  

ǁ x ǁ = max{ xn(t) : t ∈ [0, 1]}. 

       = max { 
1−𝑠𝑖𝑛𝑠ℎ (𝑛𝑡)

𝑛+2
 : t ∈ [0, 1] } 

       =  
2

𝑛+2
  → 0          as n → ∞. 

thus  xn  converge to zero. 



17 

That is to say the Sandwich theorem holds here. 

Example 1.7: 

Let E = 𝐶𝑅
1[0,1], P = { x∈ E : x(t) > 0 }, and ǁ x ǁ = ǁ x ǁ∞+ǁ x` ǁ∞. 

 Ɐ n >1, let xn(t) = 
𝑠𝑖𝑛2 𝑛𝑡

𝑛 
 ,   ,  yn(t) = 

1

𝑛
   , where 0 ≤ xn ≤ yn .  

lim
𝑛→∞

𝑦𝑛 = 0, but 

  ǁ xn ǁ = max {
𝑠𝑖𝑛2 𝑛𝑡

𝑛
: t ∈ [0,1] } + max { 2 sin(nt) cos(nt)  :t∈ [0,1] } 

           = 
1

𝑛
 + c.    (c = max { 2 sin(nt) cos(nt)  :t∈ [0,1] } ) 

Hence xn doesn’t converge to zero. 

So in this case Sandwich theorem doesn’t hold. 

But, if ǁ x ǁ = ǁ x ǁ∞,   then ǁ x ǁ = max { 
𝑠𝑖𝑛2 𝑛𝑡

𝑛
 : t ∈ [0, 1] }. 

ǁ x ǁ = 
1

𝑛
 → 0      as n → ∞. 

So Sandwich theorem holds here. 

This gave us the motivation to introduce and prove the following theorem. 

Theorem1.2: 

In Cone-Normed Spaces, the Sandwich theorem holds if and only if the 

cone P is normal. 

Proof: 

⟹ suppose the Sandwich theorem holds and P is not normal. 

Ɐ n ≥ 1,  choose tn  and sn ∈ P such that  

Sn ≤ tn   but  n2 ǁ tn ǁ < ǁ sn ǁ. 

For each n ≥ 1, put   xn = 
𝑠𝑛

ǁ𝑠𝑛ǁ
  ,    yn = 

𝑡𝑛

ǁ𝑠𝑛ǁ
 ,  here   xn ≤ yn  . 

And ǁ xn ǁ = 1,   ǁ yn ǁ < 
1

𝑛2
   for all  n ≥ 1. 

So, ǁ yn ǁ → 0    as n → ∞ . 
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But  ǁ xn ǁ = 1  for all n. 

Which is a contradiction. 

⟸ Let P be normal. 

Thus for  0 ≤ xn ≤ yn there is k ≥ 1  s.t    ǁ xn ǁ ≤ k ǁ yn ǁ . 

Let yn  converge to zero.  

i.e  ǁ yn ǁ → 0 as n → ∞. 

since, 0 ≤ ǁ xn ǁ ≤ 0    as n →∞ 

thus ǁ xn ǁ → 0  as  n → ∞ , that is to say xn  converge to zero. 

Thus Sandwich theorem holds. 

Example 1.8[12]: 

Let E = 𝐶𝑅
1[0,1], P = { y ∈ E : y(t) ≥ 0 }, and ǁ y ǁ = ǁ y ǁ∞+ǁ y` ǁ∞. 

this is not a normal cone. 

For all n ≥ 1 and t ∈ [0, 1] put 

𝑥𝑛(t) = 
𝑡(𝑛−1)2

(𝑛−1)2+1
 - 

𝑡𝑛2

𝑛2+1
    and 𝑦𝑛(𝑡) =  

2

𝑛2
 . 

So,       0 ≤  𝑥𝑛 ≤ 𝑦𝑛  and 𝑠𝑛(t) = ∑ 𝑥𝑘
𝑛
𝑘=1 (𝑡) = 1- 

𝑡𝑛2

𝑛2+1
 

Therefore,  ǁ sn - sm ǁ = ǁ
𝑡𝑚2

𝑚2+1
 - 

𝑡𝑛2

𝑛2+1
 ǁ∞ + ǁ 

𝑚2𝑡𝑚2−1

𝑚2+1
 - 

𝑛2𝑡𝑛2−1

𝑛2+1
 ǁ∞  

                                  = 
1

𝑚2+1 
 + 

𝑚2

𝑚2+1 
 = 1. 

For all m, n so {sn} is not Cauchy sequence, namely  

∑ 𝑥𝑘
∞
𝑘=1 (𝑡) is divergent  

But, ∑ 𝑦𝑘
∞
𝑘=1 (𝑡) = ∑

2

𝑘2
∞
𝑘=1   is convergent. 

It has been noticed in [12] that comparison test doesn’t hold for series in  

some cone metric spaces. 

The question here is, what would the result be if we impose normality? 
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For the same example let ǁ x ǁ = ǁ x ǁ∞, which makes P normal. 

Thus, ǁ sn - sm ǁ = ǁ
𝑡𝑚2

𝑚2+1
 - 

𝑡𝑛2

𝑛2+1
 ǁ∞ . 

                         = 
1

𝑚2+1 
    → 0    as m, n → ∞. 

So the series∑ 𝑥𝑛
∞
𝑛=1  is convergent, so comparison test holds for this 

normal cone metric space. 

Example1.9: 

Let E = 𝐶𝑅
1[0,1], with the norm ǁ x ǁ = ǁ x ǁ∞+ǁ x` ǁ∞. 

and P = { x∈ E : x(t) ≥ 0 }. 

For all n ≥ 1 and t ∈ [0, 1] put, 

an(t) = 
𝑠𝑖𝑛2𝑛𝑡 

𝑛2
  ,    bn(t) = 

1

𝑛2 
 . 

so   0 ≤ an ≤  bn . 

ǁ an ǁ = ǁ 
𝑠𝑖𝑛2𝑛𝑡 

𝑛2
 ǁ∞ + ǁ 

2

𝑛
 sin (nt) cos (nt) ǁ∞ . 

         = 
1

𝑛2
  + 

2𝑐

𝑛 
   ( c = max { sin (nt) cos(nt) : t ∈ [0, 1]} ) 

 Thus ∑ 𝑎𝑛(𝑡)∞
𝑛=1  is divergent, 

 since ǁ an ǁ doesn’t converge to zero as  n → ∞, 

and ∑ 𝑏𝑛(𝑡)∞
𝑛=1  is convergent. Thus, the  comparison test fails here . 

For the same example let ǁ x ǁ = ǁ x ǁ∞ which makes P normal. 

Then, ǁ an ǁ = ǁ 
𝑠𝑖𝑛2𝑛𝑡 

𝑛2
 ǁ∞ . 

                   = 
1

𝑛2
  → 0   as n → ∞ . 

Thus ∑ 𝑎𝑛(𝑡)∞
𝑛=1  is convergent.   

Hence comparison test holds for this example when the cone is normal. 

Thus, again, we introduce the following proposition of ours. 
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Proposition1.3:  

In cone normed spaces comparison test holds if and only if the cone P is 

normal. 

Proof: 

Suppose comparison test holds but P is not normal. 

For each n ≥ 1 take 𝑎𝑛 , 𝑏𝑛∈ P such that 𝑎𝑛≤  𝑏𝑛 

But n2 ǁ  𝑏𝑛ǁ < ǁ 𝑎𝑛ǁ. 

For each n ≥ 1, put   xn = 
𝑎𝑛

ǁ𝑏𝑛ǁ
  ,    yn = 

𝑏𝑛

ǁ𝑏𝑛ǁ
 ,  here   xn ≤ yn  . 

here ǁ yn ǁ = 1,   ǁ xn ǁ > 𝑛2   for all  n ≥ 1.  __________ (1) 

The series ∑
1

𝑛2
∞
𝑛=1  ǁ yn ǁ = ∑

1

𝑛2
∞
𝑛=1  is uniformly convergent. Since P is 

closed, 

There is y ∈ P s.t ∑
1

𝑛2
∞
𝑛=1  𝑦𝑛 = y. 

We now see that : 

0 ≤ x1 ≤ x1 + 
1

22
 x2 ≤  x1 + 

1

22
 x2 + 

1

32
 x3 ≤ ….. ≤ y. 

Because the comparison test holds, the series ∑
1

𝑛2
∞
𝑛=1  xn is convergent.  

Hence,  lim
𝑛→∞

ǁ𝑥𝑛ǁ

𝑛2
  = 0, a contradiction to (1). 

Conversely, suppose comparison test doesn’t hold. 

For each n ≥ 1 choose 𝑎𝑛 , 𝑏𝑛∈ P such that 0 ≤ 𝑎𝑛 ≤  𝑏𝑛. 

Where ∑ 𝑏𝑛
∞
𝑛=1  is divergent but ∑ 𝑎𝑛

∞
𝑛=1  is convergent, 

That is to say  lim    
𝑛→∞

ǁ𝑏𝑛ǁ  = 0 and lim    
𝑛→∞

ǁ𝑎𝑛ǁ  ≠ 0. 

Thus Sandwich theorem doesn’t hold here, 

Therefore the cone P is not normal. 
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Example 1.10 [12,11]: 

 let E be the real vector space: 

  E = {ax+ b: a, b ∈ R; x∈ [.5,1] }, with the supremum norm 

ǁ . ǁ∞ = max{│ax+ b│: x∈[0.5, 1]} and P = {ax+ b: a ≤ 0, b ≥ 0}. 

So P is a normal cone in E with normal constant k ≥1, 

Now, define:  

f (x) = -4x + 20      and     g (x) = -12x + 22  

Then f ≤ g,    since    g (x) – f (x) = -8x + 2 ∈ P. 

 But, ǁ f ǁ= f (.5) = 18     and    ǁ g ǁ = g (0.5) = 16  

therefore f  ≤  g    but ǁ f ǁ > ǁ g ǁ. 

It has been noticed in [12] that we can find two elements of normal cone 

where f ≤ g    but     ǁ f ǁ > ǁ g ǁ.  

We see here that this doesn’t agree with the normality with k =1, thus we 

shall investigate this example analytically. 

 Is P normal? 

The answer has been found in [11] as follows: 

Let {𝑎𝑛x + 𝑏𝑛}n≥1 be an increasing sequence which is bounded above in E. 

then, there is an element cx + d ∈ E such that: 

𝑎1x +𝑏1 ≤𝑎2 x +𝑏2 ≤ 𝑎3x +𝑏3  ≤ …. ≤ 𝑎𝑛x+ 𝑏𝑛 ≤ cx+ d .    Ɐ x ∈ [0.5, 1]. 

Then : 

{an}n≥1  and   {bn}n≥1  are two sequences in R such that: 

b1 ≤ b2 ≤ b3 ≤ ….. ≤ d    and    a1 ≥ a2 ≥ a3 ≥ …. ≥ c. 

thus {an}n≥1  and   {bn}n≥1  are convergent by the monotone convergent 

theorem . 
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let 𝑎𝑛 → a    and 𝑏𝑛 → b  , but 

ax+ b ∈ P, thus P is regular, hence normal. 

But we are wondering, does ax + b necessarily belong to P? 

Here we introduce this example, which agrees with the proof , but the limit 

doesn’t belong to P. 

Let 𝑦𝑛 = 
𝑛+1

𝑛
 x +  

𝑛

𝑛+1 
 . 

Where {
𝑛+1

𝑛
 }n≥1 is a decreasing sequence of numbers which is bounded 

below, and 

{
𝑛

𝑛+1 
 } is an increasing sequence of numbers which is bounded above. 

Here, y2 – y1 = - 
1

2
 x + 

1

6
 ∈ P, thus 𝑦2 ≥ 𝑦1. 

But, lim
𝑛→∞

𝑦𝑛 = x + 1 ∉ P. 

 Although lim
𝑛→∞

𝑦𝑛 ∉ P, but by the definition of regularity the cone P is 

regular, thus is normal. 

We see here that in a normal cone with normal constant k ≠ 1, we find 

two elements in P where f ≤ g    but     ǁ f ǁ > ǁ g ǁ.    

Example 1.9[15] : (Cones may be non-minihedral ) 

Let E = 𝐶𝑅
1[0,1] ,  P = { g∈ E : g (t) ≥ 0 } , and ǁ g ǁ = ǁ g ǁ∞+ǁ g` ǁ∞. 

Let f (x) = sin x   and   g(x) = cos x . Both f and g in E. 

 but h = sup {f , g } doesn’t belong to E  

 Since h is not differentiable at 
𝜋

4
 . 

Example 1.10 [9] : 

Let E = 𝐶𝑅
2[0, 1] with the norm ǁ f ǁ = ǁ f ǁ∞+ǁ f` ǁ∞ and  

 P= { f ∈ E : f(t) ≥ 0}, 
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take 𝑥𝑛  (t) =  
1−sinh(𝑛𝑡)

𝑛+2
   so 𝑥𝑛 ∈ E Ɐn. 

And let d: E˟E → P   ( i.e X= E) be defined as : 

𝑑(𝑓, 𝑔) = {
𝑓 + 𝑔,    𝑓 ≠ 𝑔
0,           𝑓 = 𝑔

  

Clearly d is a cone metric on X, and ǁ 𝑥𝑛  ǁ = 1, so 𝑥𝑛  doesn’t converge to 

zero. 

Now, we will show that d (𝑥𝑛 , 0) → 0. 

Let c >> 0 be arbitrary. 

( so, c is an element in P˚ , i.e c (t) > 0   Ɐ t ∈ [0,1] ) 

The range of c is bounded below, 

Let δo = inf {c(t): t ∈ [0, 1] }. 

Choose no ∈ N such that   
1

2+𝑛
  < δo.  

Now Ɐ t∈ [0, 1] and n  ≥  no  ,  we have  

 c (t) – 𝑥𝑛 (t) = c(t) -  
1−sinh(𝑛𝑡)

2+𝑛
 

                  ≥ δo -  
1

2+𝑛
  -  

sinh(𝑛𝑡)

2+𝑛 
  

                  ≥ δo - 
1

2+𝑛
  > δo  -  

1

2+𝑛0 
 > 0 

Since t was arbitrary, we have: c >> 𝑥𝑛    Ɐ n ≥  no .  

So, d (𝑥𝑛, 0 ) → 0     thus  𝑥𝑛 → 0. 

We conclude from this example that if E = X and d is a cone metric on X 

then convergence in the norm is different from convergence in d. 
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2. Some properties of Cone Metric and Cone Normed Spaces: 

Proposition2.1 [1]: 

Every Cauchy sequence in a cone metric space over a strongly minihedral 

cone is bounded. 

Proof: 

Suppose {𝑥𝑛} is Cauchy. 

Fix e >> 0. 

Choose n0 ∈ N such that m, n ≥ n0 ⟹ d (𝑥𝑚 𝑥𝑛) << e. 

Let e` = sup {e, d (𝑥𝑚, 𝑥𝑛): m, n < n0}. 

e` exists since P is strongly minihedral . 

⟹ d (𝑥𝑚 𝑥𝑛) << e` for all m, n . 

So, {𝑥𝑛} is bounded. 

Theorem 2.1: (Translation invariance) 

A cone metric space (X, d) induced by a cone norm on a cone normed 

space (X, ǁ . ǁc) satisfies: 

1) d ( x+ a, y+ a ) = d (x, y) 

2) d (ax, ay ) = │a│ d(x, y)   Ɐ x, y ∈ X  and Ɐ scalar a . 

Proof: 

We have d(x+ a, y+ a) = ǁ (x+ a) – (y + a) ǁc = ǁ x -yǁc = d (x, y ) 

d (ax, ay) = ǁ ax- ay ǁc = ǁ a(x-y)ǁc =│a│ǁx-y ǁc  = │a│ d(x, y). 

we see in previous theorems that the translation invariance in cone 

normed spaces is just the same as in normed spaces. 
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Chapter Three 

Comparative remarks 

1. Convergence in cone metric spaces compared to convergence in 

metric spaces : 

In this section we compare some properties of convergence of sequences in 

cone metric spaces with metric spaces, where we have the same results. 

Theorem1.1 [1]: 

Let (X, d) be a cone metric space with a strongly minihedral normal cone 

P, then: 

1 ) a convergent sequence in X is bounded and its limit is unique. 

2 ) if xn 
𝑑
→  x and yn 

𝑑
→  y in X , then d (xn , yn ) → d (x , y ). 

Proof: 

 1 ) Fix e >> 0 . 

choose n0 ∈ N such that Ɐ n ≥ n0 ⟹ d (𝑥𝑛 , x ) << e . 

Let e`= sup {e, d (𝑥𝑛 , x ): n > n0 } 

e` exists since P is strongly minihedral cone. 

Then d (𝑥𝑛 , x) << e` for all n . 

 Thus 𝑥𝑛 is bounded. 

Assume that    𝑥𝑛  
𝑑
→ w   and  𝑥𝑛 

𝑑
→ z   then we get 

0 ≤  d (w, z) ≤ d (w, 𝑥𝑛) + d (𝑥𝑛, z) → 0      as n→ ∞ 

⟹d( w, z) = 0.( by normality of P since the Sandwich theorem holds)  

And the uniqueness w = z of the limit follows. 

2 ) let e >> 0 be given , let ∈ > 0 be arbitrary  
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Choose 𝑛1 and 𝑛2 ∈ N such that : 

n ≥ 𝑛1→  d( xn, x) << 
∈

2𝐾ǁ𝑒ǁ
 .e   and  

n ≥ 𝑛2 →  d( yn, y) << 
∈

2𝐾ǁ𝑒ǁ
 . e  

where k is the normal constant of the cone P. 

take  𝑛0 = max{𝑛1,  𝑛2}. 

for  n ≥ 𝑛0 , we have : 

d (𝑥𝑛, 𝑦𝑛) ≤ d (𝑥𝑛, x) + d( x, y) + d(𝑦𝑛, y) 

             << 
∈

2𝐾ǁ𝑒ǁ
 . e + 

∈

2𝐾ǁ𝑒ǁ 
 .e + d (x, y )  

⟹ d(𝑥𝑛, 𝑦𝑛) _  d (x, y ) << 
∈

𝐾ǁ𝑒ǁ
 .e      Ɐ n ≥ 𝑛0 . 

By the normality of  P we have: 

ǁ d(𝑥𝑛, 𝑦𝑛) _  d (x, y )ǁ ≤ 
∈

𝐾ǁ𝑒ǁ
 .ǁ e ǁ . K = ∈     Ɐ n ≥ 𝑛0. 

⟹ ǁ d (𝑥𝑛, 𝑦𝑛) _  d (x, y ) ǁ → 0. 

⟹ d (𝑥𝑛 𝑦𝑛) →  d (x, y ). 

This theorem has a classical copy in metric spaces.  

Here, we introduce this example which agrees with part two of the previous 

theorem. 

Example1.1 : 

Let E be the real Banach space R2, with the cone 

 P = {(x, y): x, y ≥ 0} 

And of course, here,we have, order (𝑥1, 𝑦1) ≤ (𝑥2, 𝑦2) if and only if 

 𝑥1 ≤ 𝑥2  and 𝑦1 ≤ 𝑦2.   

Let X = R2 and define d: X˟X → E, as: 

d ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = (α│𝑥1-𝑥2│ , β│𝑦1-𝑦2│ ) where α , β ≥ 0. 

This indeed makes (X, d) a cone metric space. 
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Suppose 𝑧𝑛  = (𝑥𝑛, 𝑦𝑛) is a sequence in X and z = (x, y) ∈ E 

Then 𝑧𝑛  → z if and only if 𝑥𝑛

𝑅
→ x   and   𝑦𝑛 

𝑅
→y. 

Proof : 

Suppose 𝑧𝑛  → z, and let ∈ > 0 be given. 

Choose   n0 ∈ N such that n ≥ n0 ⟹ d (zn, z) << (α∈, β∈) 

Now for n ≥ n0   (α│𝑥𝑛-x│, β│𝑦𝑛-y│) << (α∈, β∈). Now, 

α∈ - α│𝑥𝑛- x│> 0   and  

β∈ - β│𝑦𝑛- y│> 0    Ɐ n ≥ n0 . 

i.e   │𝑥𝑛  -x │< ∈   and   │yn – y│< ∈      Ɐ n ≥ n0 . 

thus   𝑥𝑛  
𝑅
→ x    and 𝑦𝑛 

𝑅
→ y. 

Conversely, suppose 𝑥𝑛 
𝑅
→ x   and 𝑦𝑛 

𝑅
→ y. 

let e = (e1 , e2 ) >> 0  in R2   

for    
𝑒1

𝛼
   and   

𝑒2

𝛽
  , there is n1  and n2 ∈ N  such that  

n  ≥ n1 ⟹ │𝑥𝑛  - x│<  
𝑒1

𝛼
   and   │𝑦𝑚  – y │ <  

𝑒2

𝛽
    Ɐ m ≥ n2  

let  n0 = max {n1 , n2 } 

for  n  ≥ n0 , we have  

│𝑧𝑛 – z │= (α│𝑥𝑛 – x │, β │𝑦𝑛  – y │) << (e1, e2 ) 

Since e1 – α │𝑥𝑛 –x │ >0   and e2 – β │𝑦𝑛 – y │ > 0 . 

d (𝑧𝑛 , z) << e  Ɐ n ≥ n 0 ,  

thus,  𝑧𝑛 
𝑑
→ z. 

of course, this pointwise convergence is similar to that in Rn. 
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Theorem 1.2 [1] : 

Every convergent sequence {𝑥𝑛} in a cone metric space is a Cauchy 

sequence. 

Proof: 

For any e ∈ E with e >> 0 , there is N such that Ɐ n, m > N 

d (𝑥𝑛, x) << 
𝑒

2
   ,      and   d (𝑥𝑚, x) << 

𝑒

2
 . 

hence, d (𝑥𝑛, 𝑥𝑚) ≤ d(𝑥𝑛, x) + d(𝑥𝑚, x) << e . 

therefore {𝑥𝑛} is a Cauchy sequence. 

Proposition 1.1[9] : 

Let {𝑦𝑛} be a Cauchy sequence in a cone metric space (X, d), 

 suppose { 𝑦𝑛} has a convergent subsequence 𝑦𝑛𝑘
→ y  

 then 𝑦𝑛 → y . 

Proof: 

Let e >> 0, e ∈ E. 

There is n0 ∈ N such that  Ɐ m, n ≥ n0 ⟹ d(𝑦𝑚, 𝑦𝑛) <<  
1

2
 e 

 We may choose n0 such that for n ≥ n0 we have d (𝑦𝑛𝑘
, y) <<  

1

2
 e. 

Now, for n ≥ n0 we have: 

d (𝑦𝑛, y) ≤ d (𝑦𝑛, 𝑦𝑛𝑘
 ) + d( 𝑦𝑛𝑘

, y ) = e 

So,    𝑦𝑛  → y    as    n → ∞ . 

We close this section by this lemma which gave us a match with the 

classical case, but under the condition of normality of the cone P. 
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Lemma1.1 [1]: 

let (X, d) be a cone metric space, P is a normal cone with normal constant 

k, and {𝑥𝑛 } be a sequence in X, then : 

1 ) { 𝑥𝑛} converges to x if and only if  lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = 0. 

2 ) { 𝑥𝑛} is a Cauchy sequence if and only if lim
𝑛,𝑚→∞

𝑑(𝑥𝑛, 𝑥𝑚) = 0. 

Proof: 

1 ) suppose{𝑥𝑛} converges to x . Ɐ ∈ > 0 choose e ∈ E where 

 0 << e  and K ǁeǁ < ∈ . 

There is N, such that for all n > N d(𝑥𝑛, x) << e . 

So that when n > N, ǁ d(𝑥𝑛, x) ǁ ≤ k ǁeǁ < ∈ .  

this means d (𝑥𝑛, x) → 0   when (n → ∞). 

Conversely, suppose d (𝑥𝑛, x) → 0   when (n → ∞).   

For e ∈ E with e >> 0, there is δ > 0  s.t 

  ǁxǁ < δ ⟹  e-x ∈ P˚. 

For this δ there is N, such that Ɐ n > N  ǁd (𝑥𝑛, x) ǁ < δ , 

So   e - d (𝑥𝑛, x) ∈ P˚ , so  d(𝑥𝑛, x) << e , 

 therefore {𝑥𝑛 } converges to x . 

2 ) suppose {𝑥𝑛} is a Cauchy sequence . Ɐ ∈ > 0 choose e ∈ E where: 

 e >> 0  and K ǁ e ǁ < ∈ . 

There is N∈ N, s.t for all n, m > N   d (𝑥𝑛, 𝑥𝑚) << e. 

So that when n, m > N,   ǁ d(𝑥𝑛, 𝑥𝑚) ǁ ≤ k ǁ e ǁ < ∈ .  

this means d(𝑥𝑛, 𝑥𝑚) → 0   when (n, m → ∞). 

Conversely, suppose   d (𝑥𝑛, 𝑥𝑚) → 0   when (n, m → ∞).   

For e ∈ E with e >> 0, there is δ > 0   such that: 
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  ǁxǁ < δ ⟹ e – x ∈  P˚. 

For this δ there is N, such that Ɐ n, m > N   ǁd (𝑥𝑛, 𝑥𝑚) ǁ < δ , 

So   e – d (𝑥𝑛, 𝑥𝑚) ∈ P˚, so d (𝑥𝑛, 𝑥𝑚) << e , therefore {𝑥𝑛 }is a Cauchy 

sequence . 

 We conclude from all this that convergence in cone-metric spaces agrees 

with the definition of convergence in metric spaces. 

2.Topologies on Cone Metric Spaces 

Just like any metric the cone metric d induces a topology. To do so we need 

to introduce the following two lemmas. 

Lemma 1.2 [8]: 

Let (X, d) be a cone metric space with cone P and a real Banach space E. 

then for each e ∈ E  with e >> 0 there is a real number ∈ > 0 such that for 

any x ∈ E with ǁ x ǁ < ∈, we have   x << e. 

Lemma 2.2 [8]: 

Let (X, d) be a cone metric space. Then for each e1>> 0 and  

e2 >> 0 , there is e >> 0 such that e << e1 and e << e2 .  

Theorem 1.2 [8] : 

Every cone metric space (X, d) is a topological space. 

Proof: 

Let (X, d) be a cone metric space. 

For x ∈ X and e >> 0, let B(x, e) = {y ∈ X : d(x, y) << e } 
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Let 𝔹= {B(x, e): x∈ X and e >> 0}, where  B(x, e) is the usual ball of 

center x and radius e. also, 𝔹 is the usual base for our “ cone metric” 

topology. 

Call G open if Ɐ x∈ G there is B∈𝔹 such that x ∈ B ⊆ G . 

This defines a topology on X, 

1 ) ф is vacuously open , also X is open , since for any c0∈ P˚ choose   

 x ∈ X , ( so c0 ≥ 0 ) ; B( x, c0 ) ⊆ X . 

2 ) let G1 and G2 be open, and x ∈ G1⋂G2 be arbitrary so there is e1 >> 0 

and e2 >> 0 such that x ∈ B(x, ei) ⊆ Gi , i = 1, 2 .  

By lemma (2.2) choose e >> 0 such that c1 >> e and c2 >> e  

Now, x∈ B (x, e) ⊆ B (x, c1) ⋂ B (x, c2) ⊆ G1⋂G2 . 

Thus G1⋂G2 is an open set. 

3 ) let 𝒢 = { Gα: α∈A } be a family of open sets ; and let x ∈ ⋃𝒢 be 

arbitrary. 

So there is α0∈ A such that x ∈ B(x, c) ⊆ 𝐺𝛼0
 

Pick e >> 0 such that x ∈ B(x, e) ⊆ 𝐺𝛼0
 ⊆ ⋃𝒢  

Thus ⋃ 𝐺𝛼𝛼∈𝐴  is open. 

Therefore 

 the collection Td = {G ⊆ X : G is open }Is indeed a topology on X. 

Furthermore, 

Any cone metric space (X, d) is Hausdorff, and first countable. 

3. Metrizability of cone metric spaces:  

Here we will show that every cone metric defined on a real Banach 

space is really equivalent to a metric.  
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Theorem 3.1[2]:  

 For every cone metric M : X × X → E there exists metric 

m : X × X → R+ which is sequentially equivalent to M on X. 

Proof: 

 Define m (x, y) = inf{ǁ u ǁ : M (x, y) ≤ u}. We shall prove that m 

is an equivalent metric to M. If m (x, y) = 0 then there exists {un} such that 

ǁ un ǁ → 0 and M(x, y) ≤ un  Ɐn . So un → 0 and consequently for all c >> 0 

there exists N ∈ N such that un << c for all n ≥ N.  

Thus for all c >> 0,   0 ≤ M (x, y) << c. that is to say  x = y. 

If x = y then M (x, y) = 0 which implies that m (x, y) ≤ ǁ u ǁ for all 0 ≤ u.  

Put  u = 0 it implies   m (x, y) ≤ ǁ 0 ǁ = 0,  

on the other hand       0 ≤ m (x, y), therefore   m(x, y) = 0. 

 It is clear that   m (x, y) = m (y, x).  

To prove the triangle inequality, 

for x, y, z ∈ X we have, 

Ɐ δ > 0    there is u1   s.t        ǁu1ǁ < m (x, z) + δ     , M (x, z) ≤ u1, and 

Ɐ δ > 0    there is u2  s.t     ǁu2ǁ < m (z, y) + δ     , M (z, y) ≤ u2. 

But M (x, y) ≤ M(x, z) + M(z, y) ≤ u1 + u2, therefore 

       m (x, y) ≤ ǁ u1 + u2ǁ ≤ ǁ u1ǁ + ǁ u2ǁ ≤ m (x, z) + m (z, y) + 2δ. 

Since δ > 0 was arbitrary so m (x, y) ≤ m (x, z) + m (z, y). 

Now we shall prove that, for all {xn} ⊆ X and x ∈ X,  

xn → x in (X, m) if and only if xn → x in (X,M).  

We have: 

Ɐ n, m ∈ N ∃ unm     such that   ǁ unm ǁ < m (xn, x) + 
1

𝑚 
,       M(xn, x) ≤ unm. 
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Put   vn = unn   then      ǁ vn ǁ < m (xn, x) + 
1

𝑛
  

and M (xn, x) ≤ vn. Now if xn → x in (X, m) then 

 m (xn, x) → 0 and so vn → 0, therefore, 

 for all c >> 0 there exists N ∈ N such that vn << c for all n ≥ N.  

This implies that M (xn, x) << c 

for all n ≥ N. Namely xn → x in (X,M). 

Conversely, for every real δ > 0, choose c ∈ E with c >> 0 and ǁ c ǁ < δ. 

Then there exists N ∈ N such that M (xn, x) << c for all n ≥ N. This mean 

that for all δ > 0 there exists N ∈ N such that 

 d(xn, x) ≤ ǁ c ǁ < δ. 

Since, by [2], mutual generations of metrics and cone metrics produce 

sequentially equivalent topologies, the fact that both topologies are first 

countable implies that they are the same topology. See [5]. 

4. Best Approximation in Cone Normed Spaces: 

Introduction: 

Let X = ( X,ǁ . ǁc) be a cone normed space, G a subset of  X, and x∈ X, 

An element g0 ∈ G is called a best approximant of x in G if  

ǁ x - g0 ǁc = dc(x, G) = inf { ǁ x- g ǁc : g ∈ G}. 

We see that for x ∈ X a best approximant g0 ∈ G is an element of minimal 

cone-distance from the given x. such a g0 may or may not exist. 

We shall denote the set of all elements of best approximants of x in G by 

pc(x, G)  i.e 𝑝𝑐(x, G) = { g ∈ G: ǁ x- g ǁc = dc(x, G) }. 
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Example1.4: 

Take X= 𝑅2 with the cone {(x, 0) : x ≥ 0}, with the usual metric on R 

d(x, y) =  √(𝑥1− 𝑦1) + (𝑥2 −  𝑦2)
2

. 

Take G = {(x, y) : x =y, 0 ≤ x < 1}, take x = (2,2), 

Then G has no best approximant for x. 

Take y = (
1

2 √2
2  , 0 ) , then 𝑝0= ( 

1

2
 , 

1

2
 ) is a best approximant of x. 

Definition1.4 [5]: 

Let (X, ǁ . ǁc ) be a cone-normed space , and let G be a non-empty set in X, 

and x∈ X, we say that g0 ∈ G is a cone-best approximation of x if  

ǁ x – g0 ǁc ≤ ǁ x – g ǁc Ɐ g ∈ G. we denote the set of best approximant of x in 

G by Pc(x, G).  

Definition 2.4 [5]: 

 Let (X, ǁ . ǁc ) be a cone-normed space , and let G be a non-empty set in X , 

for x ∈ X, we define the cone distance 

 dc (x, G)= inf { ǁ x – g ǁc : g ∈ G }. The definition makes sense because 

every subset of P has an infimum. 

{ - ǁ x – g ǁc : g ∈ G } has a supremum and this is the required infimum. 

The following theorem transforms word for word it’s dual from classical 

approximation theory. 

Theorem1. 4 [5]: 

Let (X, ǁ . ǁc) be a cone normed space with a minihedral cone P and G a 

subspace in X, then: 
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1 ) dc(y +g, G) = dc(x, G)    Ɐ y∈ X, g∈ G. 

2 ) dc(x +y, G) ≤ dc(x, G) + dc(y, G)     Ɐ x, y ∈ X. 

3 ) dc(αy, G) = │α │dc(y, G)   Ɐ α∈ R ,  y∈ X. 

4 ) ǁ dc(x, G) – dc(y, G) ǁc ≤ ǁ x – y ǁc. 

Proof: 

1 ) let y∈ X,  g∈ G  and a >> 0. 

Then by the definition of the infimum, there is g0 ∈ G such that 

ǁy – g0ǁc ≤  dc (y, G) + a.  so we have: 

dc (y+ g, G) ≤ ǁy+ g- (g+g0)ǁc = ǁy-g0ǁc ≤ dc (y, G) + a. 

since x, g were arbitrary and by the minihedrality of the cone P, we get 

that: 

dc (y+ g, G) ≤ dc(y, G)  Ɐ(y∈ X, g ∈ G)  …………(1) 

now, replacing y by y+ g and g by – g , we get: 

dc (y, G)  ≤  dc(y+ g, G)   Ɐ(y∈ X, g ∈ G)………….(2) 

combining (1) and (2) we get the equality. 

2 ) let x, y ∈ X, and e >> 0, so   
1

2
 e >> 0 . 

There is g1, g2 ∈ G such that: 

ǁx – g1ǁc < dc(x, G) + 
𝑒

2
  ,      and     ǁy – g2ǁc < dc (y, G) + 

𝑒

2
 . 

So, dc (x + y, G) ≤ ǁ (x+ y) – (g1 + g2)ǁc  

                           ≤ ǁx – g1ǁc + ǁy – g2ǁc 

                           ≤ dc (x, G) + 
𝑒

2
 + dc (y, G) + 

𝑒

2
 

                            = dc (x, G) + dc (y, G) + e. 

Since e were arbitrary, we get that : 

 dc(x+ y, G) ≤ dc(x, G) + dc(y, G) . 
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3 ) let y∈ X and B ≠ 0 be any scalar, and let e >> 0. 

Pick g0∈ G for which ǁy –g0ǁc ≤ dc(y, G) + 
𝑒

│𝐵│
 . 

So, dc (By, G) ≤ ǁBy – Bg0ǁc 

                      = │B│ ǁy –g0ǁc 

                       ≤ │B│ dc(x, G) + e . 

Since e was arbitrary,  dc (by, G) ≤ │B│ dc(y, G) …….(1)  

Now, applying this relation to bx  in place of x, and 
1

𝐵
  in place of B , we 

get that: 

dc (y, G) = dc (
1

𝑒
 . Bx, G) ≤ 

1

│𝐵│
 dc (Bx, G) , and hence: 

│B│ dc (x, G) ≤ dc (cx, G) …………(2) 

Combining (1) and (2) gives │B│ dc (x, G) = dc (Bx, G) . 

4 ) let x, y∈ X and let e >> 0. 

Take g0∈ G so that ǁy –g0 ǁc ≤ dc(y, G) + e    

So, dc (x, G) ≤ ǁ x –g0ǁc ≤ ǁx –y ǁc + ǁy –g0 ǁc  

                     ≤ ǁx –y ǁc + dc (y, G) + e  

Since e was arbitrary, dc (x, G) - dc (y, G) ≤ ǁx – y ǁc. 

Similarly, we get dc (y, G) - dc (x, G) ≤  ǁx – y ǁc . thus, 

ǁ dc (y, G) - dc (x, G)ǁc ≤  ǁx –y ǁc . 

Once more, the next result stands firm, and as a mimic of what occurs in 

the classical setting.  

Theorem 2. 4 [5]: 

Let (X, ǁ . ǁc) be a cone normed space with strongly minihedral cone P, and 

G is a subspace in X. then: 
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1 ) if z ∈ G then pc(z, G) = {z}. 

2 ) if G is not closed then pc(x, G) is empty. 

3 ) pc(x, G) is a convex set  

Proof: 

1 ) let z ∈ G, then the cone-distance between x and G must be zero. 

Thus, if g ∈ pc (z, G )  then dc(z, g) = 0 ⟹x=g. 

2) Suppose that G is not closed. 

Pick y ∈ �̅�\ G. thus, for each e >> 0, there is 𝑦𝑒∈ G s.t  

 ǁ y – 𝑦𝑒  ǁc ≤ e. 

Since P is strongly minihedral, then 

 ǁ y – 𝑦𝑒 ǁc = 0, so y = 𝑦𝑒,  

which implies that y ∈ G, a contradiction. 

3 )  let µ = dc(x, G). 

The statement holds if Pc(x, G) is empty or a singleton. 

Suppose that y, z ∈ Pc(x, G) and y ≠ z. 

For 0 ≤ α ≤ 1, let w = αy + (1 – α) z , then: 

ǁ x – w ǁc = ǁ x – (αy + (1 – α) z ) ǁc 

                 = ǁ x - αy – (1 – α) z + αx – αx ǁc  

                = ǁ α(x – y) + (1 – α)(x – z ) ǁc  

                 ≤ α ǁ x – y ǁ + ( 1 – α ) ǁ x – z ǁc  

                 = αµ + (1 – α) µ 

                  = µ. 

Since G is a subspace of  X, w ∈ G, which implies that 

 µ ≤ ǁ x – w ǁc . 
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Therefore, ǁ x – w ǁc = µ and so Pc(x, G) is convex.  

Theorem 3.4: 

Let G be a subspace of a cone normed space (X, ǁ . ǁc) , for x ∈ X: 

1) If z ∈ Pc(x, G) then az ∈ Pc(ax, G) for all scalar a. 

2) If z ∈ Pc(x, G) then z + g ∈ Pc(x +g , G) for all g ∈ G. 

Proof: 

for (1)  if g ∈ G and a is a scalar ≠ 0, we have: 

ǁ ax – g ǁc = │a │ ǁ x- 
1

𝑎
 g ǁc ≥ │a │ ǁ x – z ǁc 

                                                                      = ǁ ax – az ǁc. 

Thus az ∈ Pc(ax, G). 

For (2) if h ∈ G we have: 

ǁ x + g – h ǁc ≥ ǁ x – z ǁc = ǁ x + g – ( z+g) ǁc 

Hence z + g ∈ Pc( x+ g, G). 

We close this chapter with the following true copy of the classical theory in 

normed spaces. 

Theorem 4.4 [5]: 

Let (X, ǁ . ǁc ) be a cone normed space, and let G be a subspace of X, then 

for any x ∈ X, 

1 ) pc(x, G) is a bounded set. 

2 ) if G is closed then pc(x, G) is a closed set. 

Proof: 

1 ) Let a ∈ Pc(x, G). 

ǁ a ǁc = ǁ a – x + x ǁc 
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            ≤ ǁ a – x ǁc + ǁ x ǁc 

             ≤ ǁ 0 – x ǁc + ǁ x ǁc       ( since 0∈ G) 

               = 2 ǁ x ǁc ∈ E. 

So, pc(x, G) is bounded.  

2 ) suppose that µ = dc(x, G), and (an) be a sequence in Pc(x, G) which 

converges in (X, ǁ . ǁc ) to a . 

Since G is closed then, a ∈ G. 

Now for each n ∈ N, ǁ x – an ǁc = µ. 

But since the cone norm is continuous, then ǁ x – g ǁc = µ. 

Thus, pc(x, G) is closed. 

We see here that in the previous theorems on cone normed spaces  we  have 

the same results as in normed spaces, in the sense of best approximation.
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Chapter Four 

Finite dimensional cone normed spaces and 

compactness in cone normed spaces 
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Chapter Four 

1.Finite dimensional cone normed spaces: 

In this section we will consider the finite dimensional cone normed spaces,  

and again we see that results in cone metric space match results in metric 

spaces. 

Definition:  

Let (X, ǁ . ǁc ) be a cone normed space where the real vector space X is of 

finite dimension. Then we say that (X, ǁ . ǁc ) is a finite dimensional cone 

normed space. 

Lemma1.1 :( linear combinations) 

Let {x1, x2, x3, ……., xn} be a linearly independent set of vectors in a cone-

normed space X ( of any dimension  n) with a normal cone P. Then there is   

e ∈ E with e >> 0 such that for every choice of scalars α1, ……, αn we have 

 ǁ𝛼1𝑥1+ ……+𝛼𝑛𝑥𝑛ǁc  ≥ e (│α1│+…+│αn│)     e >> 0. 

Proof: 

Define S= (│α1│+…+│αn│) 

If S = 0 , then 𝑎𝑖 = 0 Ɐ i = 1, 2, ……., n. 

If S > 0, then ǁ𝛼1𝑥1+ ……+𝛼𝑛𝑥𝑛ǁc  ≥ c .S   is equivalent to  

ǁ𝛽1𝑥1+ ……+𝛽𝑛𝑥𝑛ǁc  ≥ c , where 𝛽𝑗 = 
𝑎𝑗

𝑆
  with ∑ │𝛽𝑗│𝑛

𝑗=1 = 1. 

Now, by the normality of the cone we have: 

k ǁǁ𝛽1𝑥1+ ……+𝛽𝑛𝑥𝑛ǁc ǁ ≥ ǁ c ǁ, where k is the normal constant of P. 

ǁǁ𝛽1𝑥1+ ……+𝛽𝑛𝑥𝑛ǁc ǁ ≥ 
 ǁ c ǁ

𝑘
 , where   

 ǁ c ǁ

𝑘
 >0 . 
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Suppose that the statement is false. 

Then there is 𝑦𝑚 ∈ X such that, 

 𝑦𝑚 = 𝛽1
𝑚𝑥1+ ……+𝛽𝑛

𝑚𝑥𝑛.      Where ∑ │𝛽𝑗
𝑚│𝑛

𝑗=1 = 1. 

ǁǁ𝑦𝑚ǁ𝑐ǁ → 0 as m → ∞. 

Since ∑ │𝛽𝑗
𝑚│𝑛

𝑗=1 = 1, then, │𝛽𝑗
𝑚│≤ 1. 

Fix j, 𝛽𝑗
𝑚 = ( 𝛽𝑗

1, 𝛽𝑗
2, …….,𝛽𝑗

𝑚 ) is bounded in R, 

 then by Bolzano-Weiestrass theorem, 𝛽𝑗
𝑚𝑟 → 𝛽𝑗   as r → ∞. 

After n steps we obtain a sequence 𝑦𝑛,𝑚 = ( 𝑦𝑛,1 , 𝑦𝑛,2 , …. ) of 𝑦𝑚 whose 

terms of the form 𝑦𝑛,𝑚= ∑ 𝛾𝑗
𝑚𝑛

𝑗=1 𝑥𝑗    where ∑ │𝛾𝑗
𝑚│𝑛

𝑗=1 = 1. 

With scalars 𝛾𝑗
𝑚 satisfying         𝛾𝑗

𝑚 → 𝛽𝑗         as        m → ∞. 

Hence as    m → ∞, 

𝑦𝑛,𝑚 → y = ∑ 𝛽𝑗
𝑛
𝑗=1 𝑥𝑗 

⟹ ǁ ǁ𝑦𝑛,𝑚ǁ𝑐ǁ → ǁ ǁ y ǁ𝑐ǁ by continuity of the norm. 

Since ǁǁ𝑦𝑚ǁ𝑐ǁ → 0 by assumption and 𝑦𝑛,𝑚 is a subsequence of 𝑦𝑚  we 

must have ǁ ǁ𝑦𝑛,𝑚ǁ𝑐ǁ → 0. 

  Hence ǁ ǁ y ǁ𝑐ǁ = 0 this contradicts y ≠ 0, and the lemma is proved. 

Under the assumption that the previous lemma and its proof are correct we 

introduce the following theorem.   

Theorem1.1:  

Every finite dimensional cone-normed space with a normal cone P, is 

complete. 

Proof: 

Let { xn} be arbitrary Cauchy sequence in X,  with dim X= n 
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And {𝑒1, 𝑒2, ……, 𝑒𝑛 } be a basis for X. 

Then  Ɐ  𝑥𝑚  ∈ X,  𝑥𝑚 = 𝛼1
𝑚𝑒1+….+𝛼𝑛

𝑚𝑒𝑛 . 

Since {𝑥𝑛} is a Cauchy, then for each δ ∈ E with δ >> 0∃ n0 ∈ N such 

that Ɐ r, m ≥  n0, we have ǁ 𝑥𝑟- 𝑥𝑚ǁc << δ. 

From previous lemma we have: 

δ >> ǁ 𝑥𝑟 – 𝑥𝑚 ǁc = ǁ ∑ (𝛼𝑖
𝑟 − 𝛼𝑖

𝑚)𝑒𝑖
𝑛
𝑖=1 ǁc ≥ c ∑ │𝛼𝑖

𝑟 − 𝛼𝑖
𝑚│𝑛

𝑖=1   , c >> 0  

    (m, r >N ) . 

δ ≥ c ∑ │𝛼𝑖
𝑟 − 𝛼𝑖

𝑚│𝑛
𝑖=1  

By the normality of the cone P we have 

ǁ δ ǁ k ≥ ǁ c ǁ ∑ │𝛼𝑖
𝑟 − 𝛼𝑖

𝑚│𝑛
𝑖=1 . 

Division by ǁ c ǁ > 0 gives 

 │𝛼𝑖
𝑚- 𝛼𝑖

𝑟│ ≤ ∑ │𝛼𝑖
𝑚 − 𝛼𝑖

𝑟𝑛
𝑖=1 │≤ 

ǁ δ ǁ k 

ǁ𝑐ǁ
  .          (m, r > N ) 

Thus, each of the n sequences ( 𝛼𝑖
𝑚) = (𝛼𝑖

1, 𝛼𝑖
2, …….)   i = 1, …… , n. 

is Cauchy in R, Hence is converget. 

Let x = 𝑎1 𝑒1+𝑎2 𝑒2+…….+𝑎𝑛𝑒𝑛.  where each 𝑎𝑖denotes the limit of 𝛼𝑖
𝑚. 

Clearly x ∈ X . furthermore, 

ǁ 𝑥𝑚  - x ǁ = ǁ∑ (𝑛
𝑖=1 𝛼𝑖

𝑚 − 𝛼𝑖) 𝑒𝑖ǁ ≤ ∑ │𝛼𝑖
𝑚𝑛

𝑖=1 − 𝛼𝑖│ǁ ei ǁ . 

On the right 𝛼𝑖
𝑚 → 𝛼𝑖  . 

 hence ǁ 𝑥𝑚– x ǁ → 0, that is 𝑥𝑚→ x. 

This shows that {𝑥𝑚 } is convergent in X, therefore X is complete. 

Thus we conclude that every finite dimensional cone-normed space with a 

normal cone P, is a cone-Banach space.   
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Theorem 1.2: 

Every finite dimensional subspace Y of a cone normed space X ordered 

with a normal cone P, is closed in X. 

Proof: 

Let Y be a finite dimensional cone normed space ordered with a normal 

cone P, then Y is complete. That is every Cauchy sequence in Y is 

convergent in Y ⟹ Y is closed. 

Theorem1.3: (its classical version occurs in [14,p75] ) 

On a finite dimensional cone normed space (X, ǁ . ǁc ) , with a normal cone 

P, any  cone norm ǁ . ǁ𝑐1
 is sequentially equivalent to any other cone norm 

 ǁ . ǁ𝑐2
. 

Proof: 

Let X be a finite dimensional real vector space, 

dim X = n,  and basis for X = { e1, …., en} 

then Ɐ x ∈ X, x = 𝑎1𝑒1 +…….+𝑎𝑛𝑒𝑛. 

so, there is a b ∈ E, b >> 0  such that  

ǁ xǁ𝑐1
 ≥ b (│α1│+…..+│αn│) . by the normality of the cone P. 

k ǁ ǁ xǁ𝑐1
ǁ ≥ ǁ b ǁ (│α1│+…..+│αn│), where k >0 is the normal constant. 

On the other hand, the triangular inequality gives: 

ǁ xǁ𝑐2
≤ ∑ │𝛼𝑗│ ǁ 𝑒𝑗  ǁ𝑐2

𝑛
𝑗=1  ≤ M ∑ │ 𝛼𝑗

𝑛
𝑗=1 │ ,   M = max

𝑗
ǁ 𝑒𝑗ǁ𝑐2

. 

Again, by normality of the cone. 

 ǁ ǁ xǁ𝑐2
ǁ ≤ ǁ M ǁ k ∑ │ 𝛼𝑗

𝑛
𝑗=1 │ 

Together, ǁ ǁ x ǁ𝑐2
ǁ ≤ Bǁ ǁ xǁ𝑐1

ǁ , where B = 
𝑘2ǁ 𝑀 ǁ 

ǁ 𝑏 ǁ
 > 0 . 
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By an interchange of the roles of ǁ . ǁ𝑐1
 and ǁ . ǁ𝑐2

we get the inequality  

αǁ ǁ x ǁ𝑐1
ǁ ≤ ǁ ǁ x ǁ𝑐2

ǁ ≤ βǁ ǁ x ǁ𝑐𝑐1
ǁ. 

This shows that the convergence of a sequence in finite dimensional cone 

normed space (with a normal cone P) doesn’t depend on the particular 

choice of the norm of the space. 

2. Compactness in cone normed spaces: 

Proposition 2.2: 

A subset M in a cone-normed space is bounded if and only if there is an   

  h >> 0 such that ǁ x ǁc ≤ h Ɐ x ∈ M. 

proof: 

Let M be bounded, and suppose that 

δ ( M ) = 𝑠𝑢𝑝𝑥,𝑦 ∈𝑀ǁ x – y ǁc exists in E . 

let δ ( M ) = b. 

fix x0 ∈ M  and set h= b +ǁ x0ǁc. 

ǁ x ǁc = ǁ x – x0 + x0 ǁc ≤ ǁ x – x0 ǁc + ǁ x0ǁc  

ǁ x ǁc ≤  = b +ǁ x0ǁc = h. 

Conversely, suppose that for some h >> 0. 

ǁ x ǁc ≤ h Ɐ x ∈ M . then, 

 ǁ x – y ǁc ≤ ǁ x ǁc + ǁ y ǁc = 2 h . 

ǁ x – y ǁc ≤ 2h , 

  and δ ( M ) < 2h where h ∈ E. 

Thus M is bounded. 
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Lemma 2.2: 

A compact subset M of a cone metric space (X, d) is closed and bounded. 

Proof: 

For every x ∈ �̅�. There is a sequence xn in M such that: 

xn 
𝑑
→ x. 

since M is compact, x∈ M. 

hence M is closed. 

If M is unbounded, it would contain an unbounded sequence (yn). 

Let m be any fixed element in M, 

We may assume that d (yn, m) > n. 

yn cannot have a convergent subsequence, since a convergent sequence 

must be bounded. 

So M is bounded. 

Theorem 2.1: 

In a finite dimensional cone normed space X with a normal cone P, any 

subset M⊆X is compact if and only if M is closed and bounded. 

Proof: 

Compactness implies closedness and boundedness. 

To prove the converse.  

Let M be a closed and bounded set in X. 

dim X = n,  and {e1, e2, ….., en}is a basis for X. 

consider xm in M, where, 

xm = 𝑎1
𝑚𝑒1+ 𝑎2

𝑚𝑒2+ ….. + 𝑎𝑛
𝑚𝑒𝑛. 
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Since M is bounded so {𝑥𝑚}. 

Let h >> 0 , h ≥ ǁ𝑥𝑚 ǁc = ǁ∑ 𝑎𝑗
𝑚𝑛

𝑗=1 𝑒𝑗ǁc ≥ e ∑ │𝑎𝑗
𝑚𝑛

𝑗=1 │   

 where e >> 0. 

h ≥ e ∑ │𝑎𝑗
𝑚𝑛

𝑗=1 │  , by the normality of the cone P 

ǁ h ǁ k  ≥ ǁ e ǁ  ∑ │𝑎𝑗
𝑚𝑛

𝑗=1 │  , where k is the normal constant of P. 

 Hence the sequence of numbers 𝑎𝑗
𝑚 is bounded, 

And by Bolzano-Weiestrass theorem, has a limit 𝑎𝑗 where 1≤ j ≤ n. 

We conclude that 𝑥𝑚has a subsequence 𝑧𝑚which converges to z 

Where z = ∑ 𝑎𝑗 𝑒𝑗 . 

Since M is closed then z ∈ M. 

The arbitrary sequence 𝑥𝑚 in M has a convergent subsequence in M. 

Hence M is compact. 

This shows that in any finite dimensional cone-normed space, with a 

normal cone the compact subsets are precisely those which are closed and 

bounded.  

3.Orlicz cone normed space 

Orlicz spaces are Banach spaces , and in order to study them,it is necessary 

to introduce the definition of  modulus function. 

Definition 3.1[7]:  

A function ф: [0 ,∞)→[0 , ∞) is called a modulus function if the following 

are satisfied : 

1 ) ф is continuous at 0 from the right and strictly increasing . 

2 ) ф(0) = 0 . 
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3 ) ф is a sub additive that is to say ф (x + y ) ≤ ф (x )+ ф (y),  

 Ɐ x, y ∈ [0, ∞ ) .  

Examples of such functions are  ф (x ) = xp , 0 < p ≤ 1. 

and ф (x ) = ln (1 +x ). 

Theorem 3.1[7]: 

Every modulus function is continuous on [0,∞ ) . 

Definition 3.2[7]: 

 Let X be a real Banach space, and (T, µ) be a finite measure space. For a 

given modulus function ф, we define the Orlicz space as: 

Lф (µ, X ) = { f:T→X : ∫ ф(ǁ𝑓(𝑡)ǁ)𝑑µ (𝑡) < ∞ } . 

The function d: Lф (µ, X) ˟ Lф (µ, X) → [0, ∞) given by: 

d(f, g) =  ∫ ф(ǁ𝑓(𝑡) − 𝑔(𝑡)ǁ)𝑑µ(𝑡) . 

 defines a metric on Lф (µ, X). 

 For f ∈ Lф (µ, X) we write   ǁ f ǁф  =  ∫ ф(ǁ𝑓(𝑡)ǁ)𝑑µ (𝑡) . 

Definition 3.3: 

Let ( Ω, Ƒ, µ) be a measure space, where  Ω  any set, Ƒ the measurable sets 

in Ω, and µ is a measure. And let E be a real Banach space, and P is a cone 

in E. let 1 be a non-zero fixed element of  P.  

Let the indicator function IA (w) = {
1    , 𝑤 ∈ 𝐴
0        𝑤 ∉ 𝐴

  . 

So IA (w) is a function: Ω → E. 

A simple functions on w is one which takes Ω → E, and takes the form  

s (w) = ∑ 𝛼𝑘𝐼𝐴𝑘
(𝑤)𝑛

𝑘=1   , where Ɐ k = 1, 2, ……, n. 𝛼𝑘 ∈ R, 𝐴𝑘 ∈ Ƒ. 
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For a non-negative simple function s (𝛼𝑘 ≥ 0, Ɐ k) 

∫ 𝑠 𝑑µ = ∑ 𝛼𝑘
𝑛
𝑘=1 µ(𝐴𝑘) . 

Suppose f ≥ 0 is a measurable function: Ω → E, let  Sf = {s: s is a simple 

measurable non-negative function Ω → E with s (w) ≤ f (w)  Ɐ w ∈ Ω }. 

∫ 𝑓 𝑑µ = sup { ∫ 𝑆 𝑑µ : s ∈ 𝑆𝑝 }. 

 To ensure the well definition of this integral, we assume P is strongly 

minihedral, f is bounded in Ω  (i.e there is  z ∈ P s.t  f(w) ≤ z Ɐ w ∈ Ω) and 

that µ is a finite measure. 

Now, for arbitrary function f, let 𝑓+(w) = sup { f(w), 0} 

                                                              𝑓−(w) = sup { -f(w), 0}. 

So that f (w) = f+(w) – 𝑓−(w), here we can define 

∫ 𝑓 𝑑µ = ∫ 𝑓+  𝑑µ - ∫ 𝑓− 𝑑µ . 

Definition 3.4 : 

A function фc: P →P is called a cone-modulus function if the following are 

satisfied : 

1) фc is continuous at 0 from the right and strictly increasing . 

2) фc(0) = 0 . 

3) фc is a sub additive that is to say фc (x + y ) ≤ фc (x )+ фc (y),  

 Ɐ x, y ∈ P. 

Definition 3.5: 

let E be a real Banach space ordered by a strongly minihedral positive cone 

P, and (T,µ ) be a finite measure space . for a given cone-modulus function 

фc, we define the Orlicz cone-normed space as: 
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𝑳𝒄
ф

 (µ,X) = { f : T→E : ∫ ф𝒄(ǁ 𝒇(𝒕)ǁ𝒄) 𝒅µ < ∞ } . 

Where ǁfфǁc = sup { ∫ ф𝑐(ǁ 𝑓(𝑡)ǁ𝑐) 𝑑µ }. 

                       = sup { ∫ 𝑠 𝑑µ : s is a simple measurable  non-negative 

function: T → E, with s(t) ≤ ф𝑐(ǁ f (t) ǁc) }. 
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 ب

 في فضاءات القياس المخروطية و فضاءات المعايير المخروطية دراسة مقارنة
 عدادإ

 فغانيدعاء عبدالله محمد الأ
 شرافإب

 د. عبدالله حكواتي

 الملخص
س هي تعميم لفضاءات القيالم يتم حتى الان تقديم اثبات قاطع بان فضاءات القياس المخروطية 

 العادية .
ءات فقد قمنا باجراء دراسة مقارنة بين فضافي محاولة منا لايجاد اجابة لهذا الموضوع الجدلي 

 معايير المخروطية  و فضاءات القياس و المعايير العادية .الالقياس و فضاءات ا
بناء قمنا باختيار عدة افرع مهمة لاجراء المقارنة فيها و هي : التقارب في هذه الفضاءات و ال

 التبولوجي لها و نظرية التقريب الامثل. كما حاولنا زرع فكرة فضاءات القياس المخروطي في
 . فضاءات اورليكس

توصلنا الى بعض النتائج الجديدة اثناء تقصي بعد الخصائص التي لا تكون صحيحة في 
ا هذ، و فضاءات القياس المخروطي و لكنها تتحقق في فضاءات القياس العادية مثل نظرية الشطيرة

   يعطينا انطباعا بوجود التعميم في هذا المجال .
 

 

 

 

 




