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ABSTRACT

NUMERICAL STUDY OF LEADING EDGE VORTEX CIRCULATION

DEVELOPMENT ON FINITE ASPECT RATIO PERCHING WINGS

Kyle Hord

July 31st, 2014

The perching maneuver of natural fliers is a complex motion involving fast

change of angle of attack, complicated wing kinematics, large wing deformation and

agile body motion control, but the prominent aerodynamic features can be revealed

using a simple pitch-up wing motion coupled with a stream wise deceleration. In this

dissertation the aerodynamic forces, the leading edge vorterx (LEV) development,

and LEV circulation of pitch-up and perching wings are extensively studied at low

Reynolds number conditions. 2D and 3D wings of different aspect ratios were linearly

pitched up from 0◦ to 90◦ at three reduced pitch rates. The numerical investigation

was conducted at a Reynolds number of 500 and the flow field was described using

the unsteady three-dimensional incompressible Navier-Stokes equations on a set of

composite overlapping grids. The Q-criterion was used to identify and isolate the

LEV structure from shear layer vorticity. Results have shown that the LEV circulation

depends primarily on the wing aspect ratio: increasing wing aspect ratio increased the

rate of LEV circulation generation during the pitch-up motion. The reduced pitch

rate for the pitch-up motion was found to delay the LEV circulation development

when the aspect ratio was greater than two. For perching, pitch rate only altered the

LEV propagation away from the wing, and not the magnitude of the circulation.
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CHAPTER I

INTRODUCTION

A. Lift Generation of Unsteady Wings

Interest in understanding the perching maneuver used in bird and insect flight

stems from the growing interest in Micro-Air-Vehicles (MAVs) research. MAVs are

small aerial vehicles with a typical wing span of less than 15 cm and have a mass

less than 90 grams. Their flight speed usually ranges from 2 m/s to 10 m/s. The

development of MAVs is of great interest to both military and civilian applications

due to their versatile nature in various scenarios such as reconnaissance, surveillance,

targeting, search and rescue, and biochemical sensing in confined or otherwise haz-

ardous conditions. Their applications are similar to their larger cousin, the unmanned

aerial vehicle (UAV), but MAVs have much smaller sizes and much lower cost. As

an example, the General Atomics Aeronautical Systems Predator1 UAV has a cruise

speed about 35 m/s, a wing span of 14.8 m, and cost upwards of approximately $10

million. The goal of MAV design is to fit the capabilities of a UAV into a far smaller

aircraft.

While there is large potential for the use of MAVs, there are several problems

that must be overcome due to their small size and low flight speed. The low Reynolds

number presents new aerodynamic challenges in efficient lift generation. Due to MAVs

slow flight speed, the chord Reynolds number across the wing can be low, O(102 -

104), where the flow across the wing remains laminar. Current MAV designs rely

on conventional streamlined airfoils for lift generation; while conventional airfoils are

1www.ga-asi.com
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Figure 1: Gliding ratio as a function of chord Reynolds number [2]

designed to operate at much higher Reynolds numbers greater than O(105). The

performance of smooth airfoils deteriorates once the Reynolds number drops below

O(105). Figure 1 is a reproduction of a plot from McMasters and Henderson [2]

where the maximum lift-to-drag ratios of airfoils are plotted as a function of Reynolds

number. The lift-to-drag ratio is a measurement of the effectiveness of an airfoil which

is proportional to the gliding ratio and climbing ability of the airfoil [9]. For large

aircraft the boundary layer usually transitions to turbulent flow before separation.

This is due to turbulent flow being able to stay attached through adverse pressure

gradients as compared to laminar flow. Since laminar flow cannot resist adverse

pressure gradients along the wing’s surface, flow can separate leading to premature

stall. This results in a significant decrease in the lift, and increase in the drag [9].

Thus static airfoils are only able to operate at very low angles of attack to avoid

stall. In order to improve upon a MAVs stability and maneuverability, low Reynolds

number flow separation must be controlled or mitigated.

The nature progression of MAV development has seen the phasing out of

fixed wing MAVs in favor of flapping wings. Flapping wings have the potential
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to provide superior lift generation, excellent maneuverability, and robust gust re-

sistance for MAVs (micro-air-vehicle) operating at low Reynolds numbers (O(103 −
104)).[10, 11, 12, 13, 14] The enhanced lift generation of a flapping wing is in part

due to the creation of a leading-edge-vortex (LEV) over the surface of the wing. The

initial proximity of the LEV to the wing generates high lift as the vortex convects

in the chord-wise direction.[15, 16, 17] This high lift generation mechanism is similar

to dynamic stall, which refers to the unsteady process of lift generation when the

lift on a rapidly pitched wing continues to increase even after the angle of attack

passes the static stall angle. Dynamic stall is frequently encountered in helicopters,

turbo-machinery, wind turbines, and nature fliers. [18]

Carr [19] originally presented the prominent flow features within a full dynamic

stall cycle oscillation which are illustrated in figure 2. The dynamic stall cycle can

be broken into a set of discrete steps: 1) the airfoil begins to pitch and a leading

edge vortex forms, 2) the vortex convects along the chord of the airfoil, 3) the vortex

separates leading to the onset of stall, 4) flow becomes separated and airfoil pitches

downward, and 5) flow reattaches and lift is recovered. During steps (1) and (2), large

lift forces are experienced due to the presence of the vortex. At the onset of stall,

the vortex sheds from the airfoil, resulting in a decrease in lift and flow separation.

Finally, flow remains detached until the angle of attack decreases enough to allow

for flow reattachment. The lift benefits of a vortex generated by this motion are not

limited to cyclic motions.

Shih et al. [20] found a similar set of flow features during a single pitch-up

sequence. Steps 1) through 3) remained largely the same, but since the airfoil does not

pitch back down the flow never reattaches. Thus at 4) flow separation or bluff body

shedding begins. Between the two dynamic stall motion sets, one can conclude the lift

forces experienced, are largely determined by the presence of the generated vortex.

It has been widely concluded [18, 16, 21, 22, 23, 20, 8, 24, 25] that increasing pitch

rate, and peak angle of attack increases the strength of the vortex, thus increasing lift
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(I) (II)

(III) (IV)

Figure 2: Illustration of the key features in a dynamic stall phenomenon. (Left)
Comparison of lift curves between static stall and dynamic stall; (Right) Evolution
of dynamic stall vortex. (I) Start of the leading edge separation. (II) Vortex roll-
up; (III) Stall onset and formation of a trailing edge vortex; (IV) Detachment of the
dynamic stall vortex, and the sudden lift loss.

for both motion sets. Both motions have been thoroughly tested by the referenced

authors at moderate rates and angle amplitudes. Regardless of the pitching motion,

the dynamic stall process is largely the same.

Because of its scientific merits and practical significance, dynamic stall related

problems have been studied both numerically and experimentally. [26, 27, 28, 29,

30, 12] Most numerical studies have investigated the phenomena as a prominently

2D problem due to the immense computational resources required for a 3D study

[31, 19, 18, 13]. Numerical studies with complicated flapping kinematics have been

conducted at low Reynolds numbers; however, the focus was on force and moment

development instead of dynamic stall phenomenon. [29, 32] For a dynamic stall

problem, high Reynolds number (Re > 106) 3D experiments have been conducted

by Piziali [33] and Tang & Dowell [34] for helicopter applications, but low Reynolds

number (Re ≈ 103−104) 3D experiments and simulations are sparse. [35, 36, 37, 8, 30,

38] Since MAVs employ low aspect ratio wings, in order for the dynamic stall research

to be applicable to MAVs, dynamic stall must be investigated as a 3D problem at low

Reynolds numbers. This in essences summarizes the issues faced in current MAV-wing
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research undergoing a dynamic stall related motion. The few studies have examined

the Reynolds number regime of MAVs have found that changes in Reynolds number,

rate of change of angle of attack and aspect ratio can all alter the forces and flow

field around a wing.

Experimental and numerical studies examining a 2D pitch-up wing have shown

that the Reynolds number plays an important role in determining the lift, drag,

moment, and the resulting LEV. Eldredge[39], Garmann & Visbal[40], and Ol et al.

[41] observed increases in lift and drag of a pitching wing as the Reynolds number

increased from 10,000 to 20,000. Inspections of the flow field revealed the LEV became

compact and interior vorticity increased. They concluded the change in the LEV was

responsible for the increase in aerodynamic forces.

The study of finite aspect ratio wings at low Reynolds numbers is an area that

has not been well explored, even more so with the dynamic stall phenomena. Recent

studies on static wings at low Reynolds numbers (O(104)) have concluded that the

aspect ratio significantly affects the performance of the wing.[42, 43, 44] For flapping

wings, aspect ratio has been found to influence the flow field. Granlund et al. [30]

experimentally found that a finite aspect ratio pitch-up wing had a less defined LEV

structure when compared to a 2D case with the same operating conditions. Yilmaz

& Rockwell[38] experimentally studied a 3D pitch-up wing and found a spanwise

velocity induced by tip vortices altered the LEV development. This phenomenon was

also seen in Coton & Galbraith [36] and Spentzos et al.[37].

The pitch rate of the dynamic stall motion has been known to influence the

maximum achievable lift and stall angle. [31, 16, 19]. Granlund et al. [8] experi-

mentally surveyed several pitching rates of a nominally 2D airfoil undergoing a single

pitch-up maneuver at a Reynolds number of 20,000. They found that even at a low

pitch rate, lift would be higher than its corresponding static stall value. Interestingly,

the slope of the lift curve changed little with the pitch rate except when the reduced

pitch rate was greater than 0.2. Later, Granlund et al. [30] surveyed reduced pitch
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rates for a 3D wing and found that increased pitch rates caused tip vortices to develop

at higher angles than LEVs.

1. Perching Wings

There exists a small subset of MAV pitch-up wing research investigating the

role of the perching maneuver commonly seen in nature fliers. The perching maneuver

is a simplified set of kinematics that mimic motions birds or insects undergo to land at

a point in space. This motion consists of a high angle of attack pitch-up motion, with a

simultaneous deceleration of the wing to a zero velocity state. Normally the maneuver

is complex and it involves elastic deformation of the wing, fast variation of the angle

of attack, complicated wing kinematics, and real time adjustment of trajectory of

the body; however, the prominent aerodynamic features are very similar to those

observed in a classical pitch-up wing problem. Though the real perching motion and

the pitch-up problem are different because the former includes deceleration in the

direction of motion and experiences zero velocity at the end of the maneuver, they

both have common unsteady flow phenomena such as massive flow separation, deep

stall, and the formation and shedding of leading edge and trailing edge vortices all

seen in low Reynolds number flow regimes. The challenges in studying the perching

maneuver can be further exacerbated by the low aspect ratio wings and low Reynolds

number MAVs operate at similar to the study of a pitch-up motion.

Granlund et al. [8] experimentally studied the aerodynamics of a perching wing

mounted wall-to-wall in a water tunnel at a Reynolds number of 20,000. The wing

had a rectangular planform and with a cross section is a flat plate with round leading

and trailing edges. Their experiment was intended to approximate a two-dimensional

(2D) model. A survey of the pitching rate and pivot point was conducted as the wing

was linearly pitched up from 0◦ to 90◦. They found that even at a very low reduced

pitching rate (K=0.0025) lift would overshot beyond static stall, similar to dynamic

stall. The slope of the lift curve changed little with the reduced pitching rate except
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at a high reduced pitching rates of 0.2. They observed that wing deceleration had

significant impact on the force history when the pivot point was fore of the mid-chord

but the impact is negligible when the pivot point was aft of mid-chord.

Later Granlund et al. [24] extended their early experimental study to include

the aspect ratio effect. A rectangular wing with a flat plate cross sectional profile and

an aspect ratio of 2 was used. They studied the effects of pitch rate and pivot point

and compared with their previously studied wall-to-wall model. Comparing to the

wall-to-wall case, the finite aspect ratio wing had a less coherent leading edge vortex

structure. Tip vortices were seen to develop slower than the leading edge vortex. The

tip vortices would remain attached to the wing longer than the leading edge vortex,

suggesting tip vortices attenuate aerodynamic forces on low aspect ratio wings. Peaks

in the lift coefficient were found to increase asymptotically with pitch rate; however,

the occurrence of peak lift is delayed with the increase of pitch rate. They found the

lift forces due to the pitching of the wing were linearly additive to the measured lift.

While the depth of research that exists for the examination of wings undergoing

the perching motion is limited, one can draw several parallels to the pitch-up motion.

Due to the perching motion being a compounded set of kinematics that incorporate

the pitch-up motion, many insights can be drawn by simulating various wing aspect

ratios undergoing pitch-up and be extended to the perching maneuver. Thus this

brings us to primary purpose of this dissertation. In this dissertation, a parametric

study on pitching and perching wings was conducted to fill in the gaps of knowledge

that exist in the low Reynolds number regime of MAV flight.

B. Objectives and Organization

The objective of this dissertation is to numerically investigate the flow phenom-

ena of flat plate wings with various aspect ratios undergoing a pitch-up and perching

motion at a Reynolds number of 500. In this dissertation, both motions will be in-

vestigated numerically using 2D and 3D numerical methods analyzing the simulated
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aerodynamic forces, and the development of the LEV. Special attention will be paid to

the development of circulation in the LEV to attempt to better quantify the changes

in kinematics and geometry have of the development of the LEV. This will be done

by directly calculating the circulation in the flow.

Before examining the circulation of the LEV directly, an understanding of

several factors must be taken into account: 1) Reynolds number, 2) the kinematic

motion, and 3) aspect ratio effects. This will be done by first examining the lift and

drag forces produced by the 2D and 3D wings.

For the 2D study, reduced pitch rates of 0.05, 0.1, and 0.2 will be examined

at four Reynolds numbers between 500 and 20,000. The three selected reduced pitch

rates stem from published experimental data, and have been tested by other authors.

The lower Reynolds number value is of interest for being in the lower range of MAV

flight.

The 3D study will use three finite aspect ratio wings of 1, 2 and 4 pitching

at 0.1 and 0.2. These aspect ratios are approximately the equivalent size of small to

large insect wings. For both 2D and 3D cases, the wing will pitch from 0◦ to 90◦ for

the pitching and perching simulations. Due to the similarities in flow structure and

force coefficients, the pitch-up motion is primarily analyzed for the majoring of the

dissertation. The investigation is broken into several sections to address the following

topics:

Reynolds number effects on 2D pitching wings - Due to experimental studies

being conducted at higher Reynolds numbers, the effect of Reynolds number

must first be quantified to justify numerical results at a lower Reynolds number.

A pitch-up motion was tested at several Reynolds numbers and compared to

experimental data.

Kinematic effects on pitching and perching wings - Three reduced pitch rates

were selected in order to investigate the effect of kinematics on the pitching and

perching maneuvers on the resultant lift and drag.
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Aspect ratio effects on pitching and perching - To investigate three dimensional

effects on the pitching and perching motions, three aspect ratios were selected

and compared. In combination with aspect ratio, two reduced pitching rates

were used to quantify the resultant forces, and force distribution across each

wing.

Circulatory and noncirculatory analysis of a pitching wings - Forces gener-

ated by a pitching wing are not entirely due to lift and drag. Using the

Theodorsen model, forces on a 2D wing were separated into lift produced by the

LEV (circulatory forces) and due to the wing motion (noncirculatory forces).

In conjunction with this investigation, the radius of the LEV was computed to

understand how circulation and LEV radius are related.

Circulation development of a 3D LEV - The 2D circulation study was contin-

ued with the finite aspect ratio wings; however only the circulation of the LEV

was analyzed. The resulting analysis gave a view into the distribution of circu-

lation across a wing undergoing both the pitch-up and perching motions. While

the motions are similar, circulation distribution differs between the two.

Feature based adaptation of dynamic stall - Work interrelated to the simula-

tion of dynamic stall was also conduced with NASA Langley. Inadequate grid

resolution can alter the resulting flow field in the wake of a dynamic stall air-

foil. Feature based methods were investigated for their effectiveness in reducing

spatial error due to user generated meshes.
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CHAPTER II

PERCHING MANEUVER KINEMATICS

A. Perching Simplification

Data from bird flights provide insightful information on the kinematic motions

of zero length landing (also known as perching). Berg and Biewener [3] studied the

flight behaviors of a Columba Livia, pigeon, during takeoff, standard mid-flight, and

perch landing. The pigeon’s wing was broken into three regions (arm wing, proximal

hand wing, and distal hand wing), and the average angle from the horizontal plane

of each section was measured at selected wing beats. Figure 3 plots the measured

averaged angles of the wing during various flight modes. The mid-flight angle was

not plotted, but was noted to be approximately 15◦ from the horizontal axis.

From this plot, ignoring the flapping motion, it is possible to break down how

the wings pitch-up during perch landing. The wings are initially at an averaged

cruising angle of 15◦. During the first wing beat, location -3, the wings are pitched

up to approximately 30◦, during the second wing beat, the wings are pitched up to

Figure 3: Angle from the horizontal plane at three different locations along a pigeon
(Columba Livia) wing during three different flight modes. [3]
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about 50◦ at -2, during the third wing beat, 60◦ at -1, and during the last beat, 80◦ at

0. These measurements provide some basis to justify simplifying a complex perching

motion into a simple pitch-up problem. It should noted here that in real perching the

wing experiences multiple flapping beats and in the simplified pitch-up problem the

wing will monotonically pitch up.

B. Pitching Motion

To avoid sudden start and stop of the pitch-up motion, which can cause high

acceleration related forces and noise in the simulation, smoothing transitions are

applied at the beginning and ending of the pitching motion. A hyperbolic-cosine

function developed by Eldredge et al. [45] was originally for a pitch-up, hold, and

pitch-down kinematic study. The function smooths the higher derivatives of the

motion to minimize acceleration effects. The smoothing function G(t) was defined as

:

G (t) = ln

[
cosh (aU1 (t− t1) /c) cosh (aU1 (t− t4) /c)

cosh (aU1 (t− t2) /c) cosh (aU1 (t− t3) /c)

]
(2.1)

α (t) = αmax
G (t)

max (G (t))
(2.2)

where a is a user defined value that controls the sharpness of the function, which must

be greater than 1, c is the chord, α is the angle of attack for the wing with respect

to time, U is the free stream velocity, and αmax is the maximum angle of attack. The

time constants t1 through t4 are characteristic times chosen by the user to fit the

prescribed motion. t1 is the beginning of the pitch-up motion , t2 is the time at the

end of the pitch-up, and the beginning of the hold, t3 began the pitch down, and t4

is the end of the motion.

To apply Eqn. 2.1 to the perching kinematics, an adjustment must be made.

Since t3 and t4 periods will never be reached, due to the wing pitching up only, the

values can be dropped from the equation, and the new function becomes:
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G (t) = ln

[
cosh (aU1 (t− t1) /c)

cosh (aU1 (t− t2) /c)

]
+
aU1 (t2 − t1)

c
(2.3)

The values of t1 and t2 can be determined from the desired reduced pitching

rate, K, which follows below. In this study, K is equal to either 0.05, 0.1, or 0.2.

K =
cα̇

2U
=

c

2U

α2 − α1

t2 − t1
(2.4)

Where c is the chord length, α̇ is the pitch rate, and U is the free stream

velocity. This definition is consistent with the definition used by Granlund et al

[8, 24] which differs from Visbal and Shang [22].

An example of the pitch-up kinematics is plotted in figure 4 where t1 and t2

were calculated from K = 0.1 and K = 0.2 and a varies from 1 to 5. As a increases,

the pitching kinematics transitions from having smooth start and finish motions to a

sharp ramp function. It is important to control a as the duration of the acceleration

of the pitch is directly affected. This allows for effects due to rotational acceleration

to be minimized such as an impulsively started rotation. This can cause issues in both

experimental and numerical studies. Additionally, the start of the motion influences

the lift coefficient. The importance of this will be discussed later in Chapter VII.

For this dissertation a is always equal to 5, and the wing pitches about the

quarter-chord location (x/c = 0.25). This pivot point was chosen to coincide with

existing published research at the higher Reynolds number. Granlund et al.[8] offers

a summary of the effects of moving the pivot point. Moving the pivot point aft of

mid-chord reduces the lift generated by the pitching motion.

C. Deceleration

As stated previously, the perching motion is simplified into a pitch-up motion

coupled with a simultaneous deceleration of the wing. Here the deceleration of the

wing is in the horizontal direction and is handled similarly to the pitch-up motion.
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Figure 4: Impact of the smoothing parameter and K on the pitch-up kinematics.
(Left) Change in angle of attack, (middle) angular velocity, and (right) acceleration
of the wing.

The hyperbolic-cosine function defined for the pitching motion, is again used, and

modified slightly by switching the locations of t1 and t2 to handle the initial non-zero

velocity.

R (t) = ln

[
cosh (aU1 (t− t1) /c)

cosh (aU1 (t− t2) /c)

]
+
aU1 (t2 − t1)

c
(2.5)

V (t) = Vmax
R (t)

max (R (t))
(2.6)

where Vmax is the initial velocity of the wing. Much like the pitching motion, the

deceleration profile can be controlled through the user defined a variable as shown in

figure 5. Again, for this dissertation, a is held equal to that of the pitching motion of

5. It is currently unclear as to how different deceleration profiles affect the simulated

results. There has been no study on this to the date.
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CHAPTER III

NUMERICAL METHOD

A. Navier-Stokes System of Equations

In this chapter, the governing equations of the physics involved in the numerical

simulation will be introduced. First the governing equations of fluid dynamics will

be shown and then how they can be derived and adapted for incompressible viscous

flow. The equations governing fluid flow can be derived from the equations of the

conservation of mass, momentum, and energy [46]. These equations can be written

in differential form as

∂ρ

∂t
+∇ · (ρ−→u ) = 0

∂ (ρ−→u )

∂t
+∇ · (ρ−→u−→u ) = −∇p+∇ · τ (3.7)

∂ (ρet)

∂t
+∇ · (ρet−→u ) = −k∇ · ∇T −∇ρ · −→u + (∇ · τ) · −→u

Where ρ is the density, t is the time, is the flow field velocity vector, et is the

total internal energy, k is the thermal conductivity, T is the temperature, and τ is the

shear stress. The first of the three equations corresponds to the continuity equation of

the conservation of mass law applied to a fluid passing through an infinitesimal fixed

volume. The momentum equation is the second row, which is Newtons Second law

applied to a fluid passing through an infinitesimal, fixed volume. Finally the third

row, describes the Energy Equation in terms of the First Law of Thermodynamics.
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For low speed flows, it can be assumed that the fluids density is constant. The

constant density can usually be assumed in almost all fluids, because their compress-

ibility is neglected. For gasses with a Mach number lower than 0.3, the flow is usually

considered to be incompressible. If the fluid is assumed to be incompressible and has

constant viscosity, then the governing equations can be further simplified in to the

following reduced set of equations where ν is the kinematic viscosity. [46, 6]

∇ · −→u = 0

−→u
∂t

+−→u · ∇−→u =
−∇p
ρ

+ υ∇2−→u (3.8)

Further simplification can be made by nondimensionalizing the equations. Do-

ing so will provide the conditions upon which dynamic similarity may be achieved for

geometrically similar situations. Nondimensionalizing the equations also normalizes

values so that they fall between zero and one which also reduces error by making

the solution independent of any system of units [6]. This form of the Navier-Stokes

equations can easily be rewritten in the form

∇ · −→u = 0

−→u
∂t

+−→u · ∇−→u = −∇p+
1

ReL
∇2−→u (3.9)

where viscosity is replaced by the Reynolds number, ReL , which is the nondimen-

sionalization of the free stream density ρ, velocity U∞, viscosity µ, and the reference

length L. The equation for the Reynolds number is as follows

ReL =
ρ∞U∞L

µ∞
(3.10)

Equation (3.8) can be further altered and expanded into Cartesian coordinates
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∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

1

ReL

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

∂v

∂t
+ v

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂x
+

1

ReL

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
(3.11)

∂w

∂t
+ w

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂x
+

1

ReL

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
This form provides the simplest discretization and is widely used in numerical

models for solving the incompressible Navier-Stokes equations [46]. For incompress-

ible fluids flow with constant viscosity the Navier-Stokes equations can be decouple

the energy and density equations. It is now possible to rewrite equation (3.7) into a

compact vector form in Cartesian coordinates.

∂Q

∂t
+
∂Ei

∂x
+
∂Fi

∂y
+
∂Gi

∂z
=
∂Ev

∂x
+
∂Fv

∂y
+
∂Gv

∂z
(3.12)

where Q is the original vector of spatial variables independent of energy and density

Q =


0

u

v

w

 (3.13)

Ei, Fi, and Gi are the vectors containing the inviscid fluxes in the x, y, and z

directions and are given as
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Ei =


u

u2 + p

uv

uw

 , Fi =


u

vu

v2 + p

vw

 , Gi =


u

wu

wv

w2 + p

 (3.14)

Ev, Fv, and Gv, contain the viscous fluxes in the x, y, and z directions and

they are given as

Ev =


0

τxx

τxy

τxz

 , Fv =


0

τyx

τyy

τyz

 , Gv =


0

τzx

τzy

τzz

 (3.15)

The viscous stress terms τxx, τyy, τzz, τxy, τyx, τxz, τzx, τyz, and τzy are also

affected by the incompressible assumption. These are defined by the following rela-

tionships

τxx = 2µ

(
∂u

∂x

)

τyy = 2µ

(
∂v

∂y

)

τzz = 2µ

(
∂w

∂z

)
(3.16)

τyx = τxy = µ

(
∂u

∂y
+
∂v

∂x

)

τzx = τxz = µ

(
∂u

∂z
+
∂w

∂x

)

τzy = τyz = µ

(
∂v

∂z
+
∂w

∂y

)
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The Navier-Stokes equations have been presented in terms of a Cartesian coor-

dinate system. However, many applications require the equations to be expressed in

a curvilinear coordinate system that allows the system of equations to be applied to a

distorted region of physical space. This process will is not covered in this dissertation.

B. Solving the Incompressible Navier Stokes Equations

This section will give a brief discussion of the numerical method used to solve

the governing equations outlined in the previous sections. The method was developed

by Henshaw [47], and Henshaw, Kreiss, and Reyna [48] for solving the formulation

of the incompressible Navier-Stokes equations on structured overlapping grids. The

governing equations will be expressed in Cartesian coordinates for simplicity. In

order to transform the governing equations from physical space to computational

space, the Cartesian derivatives in the governing equations need to be replaced by

their transformed equivalent in computational space. Recalling equation (3.9), the

initial-boundary-value problem (IBVP) for the Navier-Stokes equation is

−→u
∂t

+−→u · ∇−→u =
−∇p
ρ

+ υ∇2−→u for x ∈ D, t > 0 (3.17)

∇ · −→u = 0 for x ∈ D, t > 0 (3.18)

with the initial conditions and boundary conditions

−→u (−→x , t) = −→u0 (−→x ) for x ∈ D, t0 = 0 (3.19)

B (−→u , p) = g for x ∈ ∂D, t ≥ 0 (3.20)

In this IBVP, the vector contains the Cartesian coordinates (x,y,z) in physical

space P , and D is a bounded domain in (where N=1,2,3,), is the boundary of the

domain D, t is the physical time, vector contains the Cartesian velocities in physical
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space, p is the pressure, ρ is the fluid density, ν is the fluid kinematic viscosity,

B is a boundary operator, g is the boundary data, and is the initial data. This

system of equations is called the velocity-divergence formulation of the Navier-Stokes

equations. Applying the divergence operator to the Navier-Stokes equations and

taking consideration of the continuity equation, a governing equation for the pressure

field can be derived. Consequently, the following alternative system of equations

called the velocity-pressure formulation can be created [46, 6]

−→u
∂t

+−→u · ∇−→u =
−∇p
ρ

+ υ∇2−→u for x ∈ D, t > 0 (3.21)

∇2p

ρ
+∇u · −→ux +∇v · −→uy +∇w · −→uz = 0 for x ∈ D, t > 0 (3.22)

The corresponding boundary and initial conditions became

∇ · −→u = 0 for x ∈ ∂D, t > 0 (3.23)

B (−→u , p) = g for x ∈ ∂D, t > 0 (3.24)

−→u (x, t0) = −→u0 (x) for x ∈ ∂D, t = 0 (3.25)

Using equations (3.21) and (3.22), an approximate numerical solution is usu-

ally sought after in a given domain D with the prescribed boundary and initial con-

ditions, equations (3.23)-(3.25). Equation (3.22) implies that the pressure can be

calculated provided the velocity field is known, this is called the Poisson-pressure

equation (PPE). The PPE is derived by taking the divergence of the momentum

equation (3.17) and using the divergence-free constraint of Eqn. 3.23. The constraint

is replaced by the elliptic equation for the pressure. In order for this set of equations

to be well defined, an extra boundary condition is required. The extra condition of
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∇ · −→u = 0 for x ∈ ∂D is added. This ensures the system of equations are equiva-

lent to the original formulation (equations (3.17)-(3.20)) [48]. However, the lack of

a proper explicit boundary condition for the PPE causes trouble when implementing

the numerical model based on the velocity-pressure formulation. To compensate, the

use of the normal component,(3.21),of the momentum equation (3.21), allows us to

obtain

∂p

∂n̂
= n̂ ·

(
−−→ut − (−→u · ∇)−→u + ν∇2−→u

)
ρ for x ∈ ∂D, t = 0 (3.26)

A divergence term is added in the form of αdc∇ · −→u to the PPE to suppress

the spurious divergence, so that equation (3.22) becomes

∇2p

ρ
+∇u · −→ux +∇v · −→uy +∇w · −→uz − αdc∇ · −→u = 0 for x ∈ ∂D, t > 0 (3.27)

This extra divergence term can be interpreted as a divergence sink or an artifi-

cial damping term, helping to keep the divergence small. The divergence is primarily

caused by truncation errors and calculation errors between the interpolation of in-

formation between computational domains. The αdc coefficient is usually selected by

the user and is discussed in Henshaw [48], Henshaw, Kreiss, and Reyna [48]. If αdc

is properly chosen, it will prevent spurious divergence, and have minimum impact on

the calculation accuracy. If αdc it is too small, the system may become unstable, if

too large; the system may be over dampened.

Equation (3.21) is discretized into computational space using second-order cen-

tered finite-difference approximations. The resulting system of equations can be ex-

pressed in a system of ordinary differential equations of the form

d−→u
dt

= F (−→u , p, t) (3.28)

The velocity field can be solved with a given pressure field which is either by

solving equation (3.27) or from an initial guess. In order to keep the pressure equation
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Figure 6: Process diagram of split-step scheme of the Navier-Stokes equation

decoupled from the solution of the velocity components, a time stepping scheme must

be chosen for the velocity components that involves the pressure from the previous

time step. This is called a split-step scheme. Then the equations are solved using

a semi-implicit multistep method that uses a Crank-Nicolson scheme for the viscous

terms and second-order Adams-Bashforth predictor-corrector for the convective terms

and pressure. [6]

The entire process is illustrated in figure 6, where an initial condition of U0

and p0 are inputted at time zero. U∗, an intermediate velocity value, is solved using

equation (3.28), which then is inputted into the PPE, equation (3.27). An interme-

diate pressure, p∗, is solved, and U∗ and p∗ checked for convergence, if not, both are

inputted back into equation (3.27). Once converged, p∗ and U∗ become the solution
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to the pressure and velocity at that time step, and then are used to initialize the next

time step.

C. Boundary Conditions

Other boundary conditions can be imposed on the incompressible Navier-

Stokes equations than previously discussed. Using the appropriate conditions is

paramount in solving any governing equations. The types of boundary conditions

are dependent on the type of flow, and geometry for a selected problem. Once these

two criteria have been determined, it is possible to numerically solve the velocity-

pressure equation using the Overture framework coupled with the PETSc1 library.

Inside the Overture package, Cgins is used to solve the velocity-pressure equation

discretized across an overlapping grid. Cgins offers easy implementation of boundary

conditions, and offers the following types [48].

1http://www.mcs.anl.gov/petsc/
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D. Rigid Body Motion

For moving overlapping grids, the governing equations are reformulated in the

reference frame of the moving grid. Equations 3.21 and 3.17 are expressed in the

moving reference grid of the component grid as follows:

−→u
∂t

+
[(−→u − Ġ) · ∇]−→u =

−∇p
ρ

+ υ∇2−→u for x ∈ D, t > 0 (3.29)

∂p

∂n̂
= n̂ ·

(
−−→ut − (−→u · ∇)−→u + ν∇2−→u

)
ρ for x ∈ ∂D, t > 0 (3.30)

where Ġ is the rate of change of the position of the given set of grid points xg℘ in

the physical space ℘. For the component grids that are moving, the steady boundary

conditions no longer are valid, and must must be expressed in the moving reference

frame. For a moving body with a corresponding moving no-slip wall, the new con-

straint corresponds to the velocity of the wall where

−→u
(
xg℘ |wall, t

)
= Ġ

(
xg℘ |wall, t

)
, where xg℘ |wall∈ ∂Dwall (t) (3.31)

On a moving no-slip wall the boundary condition for the pressure equation is

obtained by dotting the normal n̂ into the momentum equation.

∂p

∂n̂
|∂Dwall

= n̂ |∂Dwall
·
(
−G̈+ ν∇2−→u

)
p (3.32)

E. Q-criterion

To properly conduct this study, a numerical method to identify vortices must

be implemented in order to decipher actual vortices from shear vorticity. If no de-

tection scheme is used, definition of a vortex from streamlines or vorticity plots is

ambiguous at best. Over a dozen individual detection schemes exist today for vortex

identification. For this study the Q-criterion, originally developed by Hunt et al. [49],

was selected. The Q-criterion is a Galilean-invariant vortex criterion that is based off
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the velocity gradient tensor, 5u , of the flow field where u is the velocity vector. The

Q-criterion is a straight forward calculation shown in Eqn. 3.33 where Ω and S are

the anti-symmetric and symmetric portion of 5u respectively. The anti-symmetric

term Ω is also known as the vorticity tensor, thus the symmetric S is known as the

strain rate tensor.

Q =
1

2

(
|Ω|2 − |S|2

)
> 0 (3.33)

Ω =
1

2

[
∇u− (∇u)T

]

S =
1

2

[
∇u+ (∇u)T

]
A vortex is positively identified when Q is greater than zero. This occurs when

the vorticity tensor, |Ω|, is greater than the strain rate tensor, |S|. In addition to the

Q > 0 requirement, the pressure at the center of the vortex must be less than ambient

pressure. The Q-Criterion was implemented into the Overture framework, to later

provide a method to filter vortex related vorticity from shear vorticity. An example

of the Q-criterion is shown in figure 7. While the vortex in the example shown is

easy to identify, the Q-criterion gives an analytical definition of the boundary of the

vortex.

F. Overlapping Grids

1. Types of Grid Generation

In the last section, the governing equations for low speed incompressible flows

were discussed. Developing the equations is only part of the solution for solving

flow fields in complex domains. A grid or mesh must be generated to allow for the

governing PDEs to be spatially discretized. Grid generation can be described as
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Figure 7: LEV vorticity contour at mid-span with the Q-criterion (black line) defining
the boundaries of identified vortices at 45◦.

breaking a continuous domain into smaller domains. There are three main types of

grids: body-fitting structured grids, unstructured grids, and Cartesian grids [50].

Body-fitting structured grids are constructed of repeating rectangular blocks,

thus where it derives its name. In structured grids, the domain is rectangular in shape

where the interior grid points are distributed along the grid lines. This allows for easy

identification of each grid point in reference to the grid lines. Figure 8 illustrates a

simple structured grid fitted to an annulus inside a square domain. Structured grids

also provide a major advantage over other types of grid generation. They allow for a

high degree of user control. The user has total control how the mesh is generated and

positioned. This enables the user to place control schemes that concentrate points in

regions of complex flow interactions, such as boundary layers. Because the grid is user

controlled, this allows for the grid to be developed in a fashion that maximizes the

computational efficiency of the grid, allowing for faster, and more accurate computed

PDE solutions.

The main disadvantage to structured grids occurs when a multi-block method

has to be employed. When complex geometries need to be blocked to non-trivial

boundaries, the user can break the domain into several sections. Each section has
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Figure 8: A structured grid meshed between an annulus and square.

independently generated structured grids inside of them, and then a grid is generated

between the sections to connect them. Figure 9 shows the same annulus and square

domain as in figure 8 but created with multiple structured grids. One grid generated

around the annulus, to allow for a more uniform grid around it, while four other

structured grids are meshed to fit the square. While this gives the user more control

in generating grids for complex geometries, connecting the grids can be difficult and

tedious. Because of this problem, structured grid generation sometimes requires a

high level of skill from the user, and sometimes takes weeks to create an optimized

grid.

Unstructured grids resolve the some of the problems associated to structured

grids. Instead of using rectangular elements, unstructured grids use triangular ele-

ments. A generated unstructured grid has no recognizable pattern as a structured grid

has, and this is why it is called unstructured. One advantage to unstructured grids

is that elements are much easier to position to fit the requirements of the domain.

Another is the process of grid generation can be automated to a fairly large degree,

requiring very little user input. The user does not have to worry about laying out
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Figure 9: A multiblocked structured grid.

properly generated structured sections, and then connecting them. This allows inex-

perienced users to quickly generate grids in a matter of minutes or hours as opposed

to days or weeks. Figure 10 shows an example of the annulus and square meshed

with an unstructured grid.

The major disadvantage to unstructured grids is the lack of controllability.

Usually the user has very limited control in how the grid is generated and positioned.

Also the triangular elements do not stretch well, the grids usually appear uniform.

Unlike structured grids, unstructured grids cannot be locally refined to meet the

needs of the user. Thus often times, regionally grid densities have to be increased

as opposed to local increases. The last drawback is that unstructured grids take

significantly more time and memory to solve. This is because unstructured grids do

not have an easy grid point reference system like the structured grids. Both methods

can be referred to as body-fitted grid generation. This means the blocks near the

geometries surface must conform to that surface. As a result the surface mesh can

conflict with itself, and the requirements of the user and the flow field. To resolve this

issue, a resurgence of interest in Cartesian grids has come about in the last decade.
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Figure 10: Unstructured annulus and square mesh [4]

The Cartesian method abandons the use of body-fitted grids all together. In-

stead it uses a Cartesian background grid. The geometry is cut out of the grid leaving

a set of irregularly shaped cells on the boundary of the geometry. Cartesian grids use a

second method called adaptive mesh refinement (AMR) [51]. Without this automatic

refinement, the Cartesian grids would lack the ability to efficiently resolve fluid and

geometry features. This works by actively adding more uniform grid points in areas

of where the flow field is not converging until the flow field is resolve to a satisfactory

degree. This is a major advantage to Cartesian grid generation, because the grid

generation is fully automated. Since there are no body-fitted grids, the grid quality

and refinement can be fully automatically. Although because of the geometry is not

smooth but, almost stair case like ([6]), this puts a greater burden on the flow solver.

Figure 11 illustrates how the annulus and square example would look. The annulus

loses its smooth edge, however a finer Cartesian grid could reduce the staircase effect.

However, highly efficient and accurate flow solvers can be implemented easier using

this technique resulting in better solutions. The single drawback of Cartesian grids

is that their use is currently restricted to inviscid or low Reynolds number flows [51].
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Figure 11: Cartesian grid of annulus and square.

These three approaches discussed are the most basic forms of grid generation.

The next section, a newer form of grid generation methodology based on structured

grids that resolve many of its inheriting problems will be described.

G. Overlapping Structured Grids

Overlapping structured grids, also known as composite grids or Chimera grids,

provide a more flexible method of grid generation, yet still provide efficient spatial dis-

cretization for numerically solving the governing PDEs. The overlapping grid method

consists of generating a set of body-fitted structured grids that completely cover the

physical domain that is being modeled and overlap where they meet. Like previous

figures,figure 11 illustrates how overlapping grids usually function. A structured grid

is body-fitted around the annulus, and then overlaid onto of a uniform background

grid. The governing PDEs are solved separately on each grid and then connected to

each other through interpolation in the overlapping areas. With the ability to define

each of the components individually, the grids around them can also be generated

individually also.
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Figure 12: Example of Overlapping Structured Grid system [5, 6]

Normally body-fitted grids are used near the geometry of the model, while

one or more Cartesian grids are used in the background to handle the rest of the

domain. Overlapping grids were originally developed to address complex geometry,

multiple body motion, and to resolve fine-scale flow features through the use of AMR.

The generated grids can be easily altered and reproduced nearly instantaneously.

This allows for multiple iterations of the same grid to be simulated with different

parameters with ease [52]. This is done by only modifying the grid of interest and

reoverlapping the grids, as opposed to modifying the entire domain grid structure.

Through the use of structured grids coupled with Cartesian grids, a method has been

developed that is optimized the spatial discretizations has led to a highly efficient

method in computer time and memory expense. [52] While the overlapping grids

method has been in use for some time now, it hasn’tt been of much interest until

recently. It was originally described by Volvov in 1966 [53]. The method was further

developed and promoted by Starius in 1977 [54]. Even the method is fairly old; it

was not in introduced to the CFD community until the early 1990s. Steger et al. [55]

and Benek et al. [56]; and it has been further developed by Meakin and Suhs [57],

Chesshire and Henshaw [58] and Noack et al. [59]. This approach is now recognized

as an attractive method for solving problems with complex geometries and moving

bodies. [6] As with all methods, overlapping grids have a few disadvantages. The
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algorithms to generate the overlapping grids can be far more complex. Mistakes can be

easily made in setting grid boundary conditions or overlapping priorities. This makes

grid generation an iterative process. If proper planning in the generation process is

not done, the overlapping grids can lead to poor interpolation results between grids,

leading to increased computational time and poor solution convergence. However, if

good generation practices are established, many problems can be avoided all together,

and grids can be generated fairly quickly. In addition to added complexity, the flow

solvers used must be able to handle interpolation across multiple overlapping grids.

The data structures required to connect overlapping grids can cause problems if the

flow solver adequately programmed correctly. However, even though the process can

be more complex compared to purely structured, or unstructured grid domains, the

gain in computational efficiency and the ease of altering established grids makes the

method worthwhile. In the next section, it will be discussed how Ogen [7], a tool

in the Overture2 package, determines how different grids will interpolate with each

other, by eliminating grid points in regions of excess overlap.

H. Overlapping Grid Assembly

In this section, it will be discussed how Ogen, the grid generation tool inside of

Overture, assembles overlapping grids. The assembly of overlapping grids consists of

three major parts. The first step is the definition of the geometer and grid component

generation by the user. The second step consists of grid generation tool detecting all

grid points to be removed. The final step, is locating all grid points to be used

for interpolation on the edge of the removed points. Only a brief discussion will

be given on how the algorithm works, for a more detailed discussion, the process is

well documented in Henshaws paper [7]. To properly describe the major steps and

its corresponding sub steps, first a set of component grids and boundary conditions

must be defined. Figure 13 illustrates the two component grids that will be used in

2http://www.overtureframework.org/
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Figure 13: Component grids a Cartesian grid, G1, and a body-fitted structured grid
around an annulus, G2. [6, 7]

this example. The annulus, G2, is an annulus with a structured body-fitted grid, and

G1, is a Cartesian background grid.

The next stop begins with the software marking the hole boundaries and remov-

ing exterior grid points. This process itself has two-substeps. Firstly, each physical

boundary, points are found that lay inside, or outside of other physical boundaries.

Therefore, the algorithm will see grid points from G1 are laying inside of G2, and

marked as unused points. After this substep, the unused points will be bounded by

a boundary of interpolation points as illustrated in figure 14. Once this is down, all

unused points will be removed. This completes the second step, and the algorithm

has created what is known as a Chimera hole [7].

The final step finds and classifies all valid interpolation points. Here, the points

on the physical boundaries and interpolation boundaries are collected into a list of

interpolation points. Then points are labeled using improper interpolation. A point

is said to be improper if it lies inside of another grid. Since all points lie within the

domain, they all must interpolate from some other grid. From these improper points,

proper points must be then classified. Proper points are points that lie along the lines

of the two grids being overlapped. These lines will be used for implicit or explicit

interpolation for the flow solvers [7]. Once this done, an overlapping grid system has

been created. Figure 15 shows what the newly formed system looks like.
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Figure 14: Identifying unused, and interpolation points [6, 7]

Figure 15: Completed overlapping grid system [6, 7]
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Figure 16: Trimmed overlapping grid [6, 7]

An additional set can be performed at this stage called trimming. Basically, it

reduces the amount of overlapped between the two grids. This is done by removing any

interpolation point deemed not needed. The amount of overlapped removed is usually

specified by the user or a minimum overlap requirement preset in the algorithm. The

final trimmed overlapping grid can be seen in figure 16.

This completes the major three steps in constructing an overlapping grid. A

forth step is also usually completed which checks the consistency of the system to see

if it satisfies all requirements. If not, all points that fail to satisfy the requirements

will be marked, and outputted as a graphic for troubleshooting.
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CHAPTER IV

CODE VALIDATION

Before beginning the numerical study, the Overture solver was first validated

against several low Reynolds number cases. First a shedding cylinder case was ex-

amined to investigate the solver’s accuracy in predicting bluff body shedding flows.

Next, the solver’s ability to handle moving bodies was also examined by reproducing

a numerically studied pure plunging wing case. Finally, the a single pitch-up wing

case was compared against experimental results.

For the three tested cases, lift and drag coefficients are compared with pub-

lished data. Both lift and drag coefficients are calculated as follows:

CL =
FL

2ρA V 2
(4.34)

CD =
FD

2ρA V 2
(4.35)

Where F is the lift or drag force, A is the area (assumed to be one for 2D) and

V is the free stream velocity.

A. Shedding Cylinder

2D shedding cylinder cases are widely used to validate time-accurate solvers,

and thus a plethora of data exists for comparison. Here a cylinder case was reproduced

that exists extensively in the literature [60, 61, 6, 62, 63, 64, 65] with the following

domain schematic in figure 17. This particular case has been conducted at a variety
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Figure 17: Overlapping grid layout used for code validation

of Reynolds numbers due to the fact that 2D cylinders do not begin to shed until the

Reynolds number is above 50.

For this validation case, the Reynolds number was based on the diameter of the

cylinder, the kinematic viscosity and the inflow velocity. By varying the kinematic

viscosity, the flow solver was tested at Reynolds numbers of 20, 40, 100, and 200.

Table 1 lists the numerical results of the coefficient of drag compared to published

data. At Reynolds numbers greater than 50, the flow becomes unsteady and the

± denotes the amplitude of the drag oscillations. It was found that the flow solver

produced results within the published range confirming the validity of the flow solver.

B. 2D Pure Plunge

To test Overture’s capability in handling moving body simulations, a case

reported by Visbal[66] was studied. Visbal studied the aerodynamics of a SD7003

airfoil subjected to a pure sinusoidal plunge motion at a Reynolds number of 1000.

His numerical simulations were performed using a 6th order Navier-Stokes solver,

FDL3DI[67], and a 3D domain with periodic spanwise boundary conditions. This

case was selected due to the large LEV that sheds from the airfoil during the plunge
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CD for Reynolds Number

Reference 20 40 100 200

Calhoun and Wang [60] 2.19 1.62 1.35±0.014 1.17±0.058

Choi et al. [61] — — 1.34±0.011 1.36±0.048

Guerroro [6] 2.2013 1.6208 1.39±0.012 1.41±0.098

Kim and Choi [62] — 1.501 1.336 —

Posdziech and Grundmann [63] 2.07 1.54 1.35 1.35

Russel and Wang [64] 2.13 1.6 1.38±0.007 1.29±0.022

Tritton [65] 2.22 1.48 — —

Numerical Results 2.23 1.59 1.42±0.007 1.37±0.030

TABLE 1

Comparison of CD with published results at varying Reynolds numbers

motion, similar to a dynamic stall process. To compare Overture’s capability, a 2D

overlapping mesh to check the solver’s ability to predict the lift force. The SD7003

was defined by a structured body-fitted mesh with 180 points in the circumferential

direction. The distance of the first grid point to the airfoil is 3.36 × 10−3. The

surrounding domain was 10 chords away from all sides of the airfoil and was found to

be large enough to have no effect on lift and drag calculations. Figure 18 compares

our simulated lift coefficient and Visbal’s[66]. (Drag was not reported in his paper).

There is little deviation between the two simulations, and demonstrates that the

code is able to predict the lift force in this Reynolds number regime due to shedding

vortices.
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Figure 18: Comparison of lift coefficients of a SD7003 airfoil undergoing a sinusoidal

plunge motion.

C. 2D Single Pitch

Finally, the solver was validated against a higher Reynolds number case of

20,000 where a wing was pitched up about the leading edge. This case has been

experimentally studied by Granlund et al.[8] and will be referenced later in the text.

The experiment was conducted at a Reynolds number of 20,000 using wall-to-wall flat

plate wing. The wing’s thickness was equal to 5% of its cord length. The pitching

kinematics follows Eqn. (2.3), and pitches about the leading edge. Our simulation

used a 2D structured body-fitted mesh which had 350 points on the airfoil with an

initial cell height of 1.1 × 10−3. The domain was 10 chords away from all sides of

the airfoil. Figure 19 compares the simulated and measured lift and drag coefficients.

The simulated drag coefficient is slightly lower than the measured one but overall the

agreement is good.
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Figure 19: 2D lift and drag coefficients of a flat plate pitching up around the leading

edge at K=0.2 and Re=20,000.
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CHAPTER V

COMPUTATIONAL SETUP

A. Summary

Due to computational limitations of the solver, only serial processing is avail-

able. A grid sensitivity analysis was conducted to maximize the accuracy of the

simulated results and to minimize the computational cost. Both 2D and 3D grids

had their grid densities varied to understand the impact of the spatial resolution on

the lift and drag forces. In this section, the validation of the 3D grid is the primary

focus as the 2D grids have been validated in another study using the same solver[68].

Due to the limitations of Overture, all cases were ran in serial on a 2.2 gigahertz

processor. The largest case (AR = 4, K = 0.1) required approximately 680 hours of

computation time and 2 gigabytes of RAM. Output data sizes varied with output

frequency, but was approximately 15 megabytes per file. Each simulation on average

required 1200 megabytes of harddrive space.

B. Grid Generation

In both the 2D and 3D studies, the wing profile tested was a 5% thick flat plate

with rounded leading and trailing edges shown in figure 20. For the 3D study, the

wing chord was held constant as the span of the wing was varied to achieve different

aspect ratios (AR = 1, 2, 4) defined by Eqn. 5.36. The corners of the wings were

rounded with 10% fillets shown in figure 21.

AR =
z

c
(5.36)
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Figure 20: Flat plate profile with a chord (c) of one, and 5% chord thickness (t)
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Figure 21: Planform of the test wing gemoetries where z is the span length.

The flat plate wing was represented by a single body fitted grid in the 2D cases,

and by three separated body fitted structured grids (wing body grid, and two wing

tip grids) overlapped together for the 3D case. This can be seen in figure 22.

This composite wing grid was then placed inside a uniform Cartesian back-

ground grid. Typically the background grid is usually much coarser than the wing

grid. When the grid size ratio in the overlapping region is large, a large error due to

interpolation occurs. To minimize the interpolation error, one or multiple intermedi-

ate grids can be added to link the background grid and the wing grid. In our study,

two such grids are added and are marked with blue, green, and red in figure 23.
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Figure 22: (Left) 2D body fitted grid. (Right) 3D composite grid.

Figure 23: (Left) 2D and (right) 3D grid domains.
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C. Domain Size

Before testing each perching maneuver, the background grid must be properly

sized first. In an experimental study by Granlund et al. [8], showed the effects of

small domains sizes have on coefficient of lift in water channels. They found the

coefficient of lift increased by a factor of two when the domain was halved in size by

doubling the chord length of the airfoil. This effect however was not prominent until

high angles of attack. The problem primarily stemmed from no-slip wall effects inside

of water tunnel. This showed that if a domain was not of sufficient size, the velocity of

the fluid at the center of the channel would be sufficiently higher than at the entrance

thus increasing lift. Also at high angle of attack, the airfoil can create blockage

effects which further exacerbate the problem. In numerical simulation it is possible

to mitigate this effect by setting the top and bottom walls to inflow boundaries. In

a previous study by Hord and Lian[68], the boundary size was also studied using the

Overture framework looking at static wings, and the results are detailed here. They

looked at a corrugated airfoil at 20◦ and tested three domain sizes, 5c, 10c, and 20c.

From their study, it was found that if the domain walls were at least 10 chords away

from the surface of the wing, and boundaries were set as outlet conditions, then there

were no blockage effects.

D. Grid Sensitivity

In this section, only the the results of the flat plate wing with an aspect ratio

(AR) of 2, and the reduced pitch rate (K) of 0.2 are discussed here. The simulation

was conducted at a Reynolds number of 500, and the flow was assumed to be laminar.

Three grid densities, referred to Coarse, Medium, and Fine, were tested. The grid

density increased by 20% in each direction from Coarse to Medium and then from

Medium to Fine, resulting in a grid size of 922k, 1.7M, and 2.8M for the Coarse,

Medium and Fine grid system, respectively. Table 2 lists the three test cases with
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the number of points used to define the airfoil and span cross-sections, the initial

cell height, the total grid points in the domain, and the total time to compute the

simulation.

TABLE 2

Three grids used in the grid sensitivity analysis

Grid Quality Airfoil Span Initial Cell Total Grid Time
Height Points (Hours)

Coarse 72 80 6.65× 10−3 922,535 42

Medium 90 100 5.54× 10−3 1,705,272 155

Fine 108 120 4.46× 10−3 2,834,216 460

Figure 24 shows the computed lift and drag histories for each case. Lift and

drag from the Medium grid shows little variance from the Fine grid, while the Coarse

grid shows significant under prediction. The wake velocities were also examined to

verify convergence. The sampling of the wake velocities were taken at two locations:

(1) at the mid-span a quarter-chord behind the wing in the vertical direction and (2)

along the span direction of the wing, a quarter-chord behind the wing. Both sets of

wake velocities are reported in figure 25. Little difference was found in the velocity

distributions, suggesting that the velocity field is adequately resolved by the Medium

grid.

The computational time required to solve each case is important to take in

consideration. Minor changes in grid density of 20% in each direction resulted in a

near doubling of global node count. This increased computational time by a factor of

four. Thus the Medium grid was selected as it provides a resolved velocity field and

little degradation to the aerodynamic forces compared to the Fine case. Additionally,

the Fine case requires three times the computation time compared to the Medium

grid.

Reduction in computational cost could be achieved by simulating half the wing

with a symmertric boundary condition at the half span. Based on the sensitivity
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results, this may reduce the time required by a factor of three to four times. However,

issues were found with the overlapping of each refinement grid sharing the same face.

Thus simulating only the half span was not pursued.
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Figure 24: Aerodynamic forces for the grid sensitivity analysis of a pitching wing of
AR=2, K=0.2, and Re=500.

46



-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

u/U0

Coarse
Medium
Fine

-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0

y

v/U
0

(a) Vertical velocity distribution in the y-direction

0.8

0.85

0.9

0.95

1

1.05

1.1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

u
/
U
0

z

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

v
/
U
0

z

(b) Spanwise velocity distribution in the z-direction

Figure 25: U and V velocity distributions quarter chord behind the airfoil at 45◦.
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CHAPTER VI

AERODYNAMIC ANALYSIS

A. Introduction

As stated previously, the purpose of this work is to investigate the effect of

aspect ratio and reduced pitch rate on the development of the LEV during the pitch-

up and perching process. Here the calculated aerodynamic forces of both 2D and 3D

wings with aspect ratios of 1,2, and 4 are compared to illustrate their respective effects.

Three reduced pitching rates (0.05, 0.1, 0.2) were also tested for the 2D cases, and

the latter two for the 3D. In the following sections, the Reynolds number sensitivity,

kinematic and geometry effects on aerodynamic forces, and vortical flow structures

about the wing will be examined. It is worth repeating that unless otherwise specified,

the simulations conducted here are at a Reynolds number of 500, and always assumed

to be laminar.

Depending on the discussion of either the pitch-up or perching motions, the

aerodynamic coefficients of lift and drag are normallized by differently. For the pitch-

up cases, the lift and drag coefficients are calculated with the previous stated equa-

tions 4.34 and 4.35. The perching data is normallized instead by instantaneous ve-

locity of the motion:

CL =
FL

2ρAV 2
inst

(6.37)

CD =
FD

2ρAV 2
inst

(6.38)
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B. 2D Analysis

Where Vinst is the velocity at that angle of attack (figure 5). Normallizing be

the instantaneous velocity results in dividing by a near zero and zero quantity at the

end of the motion. This creates artifacts in the coefficient data that appear as the

trend expodentially growing near the end of the motion.

1. Effect of Reynolds Number

To fully investigate the Reynolds number effect on the pitch-up motion, several

Reynolds numbers simulations were performed. In this analysis, four Reynolds num-

bers: 500, 5000, 10,000, and 20,000 were examined using a 2D flat plate at K = 0.2

but pitching around the quarter cord location.

Figure 26 compares the simulated lift and drag coefficients at the four differ-

ent Reynolds numbers. It is clear that the forces vary with the Reynolds number.

All tested cases have similar force profiles but the magnitude of the force coefficients

varies with the Reynolds number. From figure 26 it can be seen that the lift slope

and peak lift and drag coefficient increase with the Reynolds number but the stall

angle decreases. Granlund et al. [8] experimentally studied the same pitch-up kine-

matics based on a wall-to-wall mounted flat plate but at a higher Reynolds number

of 20,000. Their lift coefficients agree well with our results at Re=20,000 but their

drag coefficients are higher. (This was also seen previously when the pivot point was

at the leading edge in figure 19).

The initial spike at the beginning motion is the result of noncirculatory forces,

predominately the rotational acceleration. Examining the lift spike at the beginning

of the motion, the amplitude of the spike did not change with the Reynolds number.

This suggests that at this stage, flow is dominated by noncirculatory forces due to the

initial pitching acceleration at the start of the motion. The remaining discrepancy

between the magnitudes of the force coefficients can be contributed to circulatory

forces (aerodynamic forces) that depend on the Reynolds number. This conclusion is
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later verified in Chapter VII.
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Figure 26: Reynolds number sensitivity of the 2D K=0.2 pitch-up case tested

at Reynolds numbers of 500, 5000, 10,000, and 20,000 compared to Granlund et

al.(Re=20,000)[8]

Figure 27 compares the vorticity contours at different Reynolds numbers at

an angle of attack of 50◦. This chosen angle is close to the stall angle for each case.

At the lowest Reynolds number of 500, the formed LEV is dissipated compared to

the higher Reynolds numbers. As the Reynolds number increases, the LEV becomes

visually defined with stronger interior vorticity due to reduced dissipation effect of

viscosity. Another feature shown in figure 27 is that as the Reynolds number increases
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small vortex structures appear and they are not damped out quickly due to viscous

effects.

Reynolds Number

500 5000 10,000 20,000

Figure 27: Change in vorticity due to Reynolds number sensitivity of the 2D K=0.2

pitch-up case tested at Reynolds numbers of 500, 5000, 10,000, and 20,000.

2. 2D Pitch-up

Continuing the pitch-up analysis, pitch rates of K = 0.05, 0.1, and 0.2 were

tested at a Reynolds number of 500 with a pivot point at x/c=0.25. The instantaneous

lift and drag coefficients are plotted in figure 28. It is clear that the coefficient of lift

and drag, as with the stall angle all increased with pitch rate, which agrees with the

experimental observations [8]. This increase in force coefficients can be attributed

to the dynamic stall affect. Even though each motion is pitching through the saem

angles of attack, the higher reduced pitch rates retain the LEV at higher angles of

attach increasing lift duration.
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Figure 28: Coefficient of lift (solid) and drag (dotted) for the pitch-up cases at their

respective instantaneous angles of attack.

Figure 29 illustrates this effect of pitch rate on the behavior of LEV. At the

slowest pitch rate of 0.05, the LEV forms fairly early on during the pitch-up motion

and sheds quickly. As the pitch rate increases, the timing of the roll up of the LEV

is delayed. This delayed development of LEVs extends the influence of LEVs over

a wide range of angles. The LEV can remain tightly curled on the wings surface

at higher angles with increasing pitch rate. Eventually the LEV does shed from the

wing, resulting in stall and a decrease in lift.
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Figure 29: Vorticity contours at differing pitch rates and angles at pitch-up with a

Reynolds number of 500.

3. 2D Perching Wing

To understand the impact of streamwise deceleration on the pitching wing

(perching), the 2D aerodynamics are studied here. Similar cases were reported by

Granlund et al. [8]. As a departure from their work, the coefficients are normalized

by both the initial streamwise flow velocity and the instantaneous flow velocity as

shown in figure 30. In the work of Granlund et al, the coefficients were only normal-
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ized by the instantaneous velocity. Both cases of normalization are shown to illustrate

the differences between using instantaneous velocity and maximum velocity and dif-

ferent conclusions on perching can be drawn. When the coefficients were normalized

by instantaneous velocity, the trends observed follow the experimental results [8].

Exceedingly large lift and drag values near the end of the perching motion are due

to dividing by a near zero velocity value as shown previously in the kinematic plots

(figure 5).
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Figure 30: (Top) Coefficient of lift and (Bottom) coefficient of drag for perching cases

normalized by initial instantaneous velocity (solid) and initial flow velocity (dotted)

at their respective instantaneous angles of attack.

When normalized by instantaneous velocity Granlund et al.[8] concluded that

comparing to the corresponding pitch-up case the streamwise deceleration (perching)

54



increases stall angle and peak lift coefficient, which is consistent with the results

normalized by the same instantaneous velocity. However, when normalized by the

initial velocity the numerical results show that increasing pitch rate will still increases

the lift coefficient, but will only decrease the stall angle when compared to its pitch-

up counterpart. Interestingly, the stall angle initially increases with pitch rate (from

K = 0.05 to 0.1), but then decreases with the pitch rate (from K = 0.1 to 0.2).

These results can be summarized into two separate groups of thought:

• When normalizing by instantaneous velocity:

1. Pitch rate increases stall angle and maximum lift and drag.

2. Maximum lift coefficient exceeds the pitch-up case lift.

• When the results are normalized by maximum free stream velocity:

1. Pitch rate increases maximum lift and drag coefficients.

2. Stall angle initially increases then decreases with increasing pitch rate.

3. Overall magnitudes are lower compared to pitch-up cases.

4. Stall angles are lower compared to pitch-up cases.

The perching motion cannot be solely investigated through the examination of

the force histories. As illustrated in the lift and drag plots for the pitch-up and perch-

ing motions, there exists a fundamental flow field difference betwen the two motions.

Thus future investigations (Chapter VII) must examine the vortex structures around

the perching wing to identify the changes in the flow when compared to a pitch-up

case.
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C. 3D Analysis

1. Pitch-up and Perching Forces

The aspect ratio effect was investigating by testing three flat plates with aspect

ratio of 1, 2 and 4. Due to the high computational cost associated with the low

frequency pitch rate case (K=0.05), only two pitch rates, K=0.1 and 0.2, are studied

with a Reynolds number of 500. First the instantaneous lift coefficients are presented

in figure 31 for the pitch-up cases. The 2D numerical results are also presented for

comparison purpose. The following conclusions can be drawn from the graphs.

1. Before stall, a higher aspect ratio wing produces higher lift and drag coefficient

than a lower aspect ratio wing.

2. The stall angle decreases with the increase of aspect ratio.

3. Similar to the 2D results, increasing pitch rate increases the stall angle.

4. As the aspect ratio increases, the lift curve approaches the 2D curves.
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Figure 31: Comparison of lift and drag coefficients at different aspect ratios. (Pitch-

up, Re=500).

The results of perching cases are presented in figure 32. Here, the results were

normalized my instantaneous free stream velocity. Many of the same trends are seen

as before with the pitch-up results. The following conclusions are drawn:

1. The stall angle decreases with the aspect ratio.

2. Stall angle decreases with the pitch rate while perching.

3. The force history profiles approach the 2D ones as the aspect ratio increases.

If the results were normalized by instantaneous velocity, the trends would be

very similar to that of the 2D perching cases with the augmentation of magnitudes

of each aspect ratio.
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Figure 32: Comparison of lift and drag coefficients at different aspect ratios. (Perching

, Re=500).

2. Aspect Ratio

As seen in figure 31 and figure 32, the lift slope was highly dependent on aspect

ratio. As the aspect ratio increased, the lift slope followed. Figure 33 compares the

LEV structure at the middle-span of different plates at an angle of attack of 45◦ and

K=0.2. It is clear that as the aspect ratio increases, the LEV structure becomes more

coherent, and gradually approaches the 2D case, which was true for all pitch rates

tested.
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AR=1 AR=2 AR=4 2D

Figure 33: Vorticity contours at the mid-span of pitching plates with varying aspect

ratios (pitching case, K=0.2, AoA= 45◦)

The effects of aspect ratio on the LEV has been observed before. Cosyn and

Vierendeels [69] also saw weak LEVs in computational results of static flat plate wings

at various aspect ratios of 0.5 to 2. They found that the strength of the LEV on the

wings with an aspect ratio of less than 1.5 was damped by tip vortices; however

as aspect ratio increased the influence of tip vortices decreased and LEV became

stronger. Torres and Mueller[42] studied static wings with varying aspect ratios and

planforms. They found that as the aspect ratio increased, the lift slope approached

the theoretical thin airfoil prediction. Torres [70] commented that tip vortices played

an important role in force production for static low aspect ratio wings. Shyy et al.

[71] numerically conducted an analysis on a hovering flat plate at a Reynolds number

of 100, and saw that tip vortices also play an important role in lift production and

could enhance lift produced depending on the kinematics of the flapping motion.

From figure 31 and figure 32, it can be seen that regardless of pitch rate or

perching, the lift slope increases as the aspect ratio increases. As the aspect ratio

changes, the lift slope approaches the 2D result. It is also possible to see that the

lift slope is insensitive to the pitch rate which is consistent with the conclusion of
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Granlund et al. [24] that pitch rate effects are linearly additive to the circulatory

forces. Thus it is plausible that the changing lift slope is due to LEV and tip vortex

interactions. At low aspect ratios, tip vortices dampen the strength of the LEV more

than at higher aspect ratios.

It is clear that increasing the aspect ratio has several impacts on the force

histories. Encompassing all the changes observed, all peak force coefficients and asso-

ciated slopes before stall were seen to increase with aspect ratio slowly approaching

their 2D counterparts. Stall angle was the only quantity observed to be inversely

proportional to the change in aspect ratio. Table 3 summarizes some of these changes

for easier comparison.

Figure 34 shows the vorticity contours at the mid-span of the three tested

wings at both K values. Due to the diffusive nature of low Reynolds number flows,

it is difficult to distinguish the boundaries of the vortices produced. The Q-criterion

has been overlaid on the vorticity to define the edges of the vortices identified. At

the same pitch rate, an increased vorticity magnitude extends further downstream

above the surface of the wing as the aspect ratio increases. With the assistance of

the Q-criterion, it can be inferred that the LEV is growing in both size and strength

with aspect ratio. This however raises the question of the mechanism inducing the

differences in vorticity structure observed in the plots. Discussed in a later section, it

was found that tip vortices interact with the spanwise vorticity impeding LEV growth

on the lower aspect ratio wings.
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K=0.1

Aspect Ratio Stall Angle↓ Peak CL ↑ Lift Slope↑

1 42.40 1.27 0.029

2 38.96 1.58 0.038

4 38.97 1.82 0.048

2D 34.37 2.40 0.064

K=0.2

Aspect Ratio Stall Angle↓ Peak CL ↑ Lift Slope↑

1 43.55 1.58 0.031

2 41.26 1.98 0.039

4 38.97 2.38 0.046

2D 41.26 2.93 0.062

TABLE 3

Effect of aspect ratio and K on the pitch-up motion.

3. Pitch Rate

Increasing the reduced pitch rate K has the following effects: (1) it increases

the stall angle, (2) it reduces the peak drag angle, and (3) it increases the force and

moment coefficient magnitudes. Figure 35 compares the vorticity contours at different

angles between the two reduced frequencies for the AR = 4 wing. At the same angles

of attack, the LEV is smaller at K = 0.2 than at K = 0.1. The LEV stays closer

to the wing attenuating both lift and drag at higher angles of attack. This does well

to illustrate the influence of K on peak lift and drag; however this does not provide

an explanation into the developmental changes of the LEV. The vorticity strength

of the LEV is seen to increase with the pitch rate, but that does not mean the LEV

generates more lift producing circulation. To properly judge the influence of K on
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Figure 34: Comparison of the LEV vorticity contours at mid-span with the Q-criterion
defining the boundaries of identified vortices. Snapshots were taken at 45◦.

the LEV, the circulation is calculate and compared in Chapter VII.

4. Perching

Not explicitly addressed in the previous sections, has been the influence of the

perching motion on the flow field and aerodynamic forces. All the previous conclusions

of effects of aspect ratio and pitch rate can be applied to the perching motion. A key

difference in the flow field is the resulting LEV formed and its propagation. Figure

36 plots the mid-span vorticity of the AR = 4 wing for both values of K. Again the

Q-Criterion is used to outline the areas of identified vortices.

The plotted vorticity remains on the same scale as figure 35, however the

vorticity magnitudes are two to three times lower. The resultant identified vortices

are also smaller in comparison. Both these effects are the result of the flow deceleration

62



K 30◦ 45◦ 60◦ 75◦
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Figure 35: Comparison of LEV vorticity during the pitch-up motion of the AR = 4
wing for K = 0.1 and 0.2 with the Q-criterion defining the boundaries of identified
vortices.

of the perching maneuver. With reduced velocity, less flow passes across the wing,

resulting in the reduction of vortex development seen. Yet, due to the reduced flow

velocity, the vortex remains closer to the wing even at higher angles of attack.

Previously in the pitching case (figure 35), the vortex had completely shed from

the plate at α = 75◦ for the K = 0.1 case, and was approximately three-quarters chord

away from the wing with K = 0.2. In the perching case, the vortex has moved little

for K = 0.2, and has began to move away from the plate for K = 0.1. Perching is

able to retain the proximity of the vortex leading to the possibility of continued lift

and drag at higher angles of attack.
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Figure 36: Comparison of LEV vorticity during the perching motion of the AR = 4
wing for K = 0.1 and 0.2 with the Q-criterion defining the boundaries of identified
vortices.

D. Spanwise Force Distribution

The aspect ratio plays an important role in determining the resulting force

distribution across the span of the plate. Figure 37 through 44 show various spanwise

distributions of the normal force per unit span and vorticity iso-surfaces on wings of

different aspect ratios. The normal force was chosen, as opposed to a force coefficient

to avoid the bias influence of velocity normalization between the pitch-up and perching

cases. It is important to note: the normal force is the resultant force of both lift and

drag. Thus a higher normal force does not necessarily mean higher lift. The normal

force along the span was calculated by integrating the pressure contour only around

the chord at discrete span locations.
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K=0.2 Pitch-up

In figure 37 it is clear that the distribution of the normal force is dependent

on the aspect ratio of the wing. In fact, the force distribution across the span is not

uniform, indicating flow is no longer 2D even on the higher aspect ratio wings. The

non-uniformity across the span caused in the force distributions is mainly due to the

presence of tip vortices.

At the angle of attack of 15◦, the distribution of the force is fairly similar to

one another among the tested three aspect ratios. A smooth arch along the span of

all aspect ratios can be seen. At this angle, the force generated is primarily due to

the LEV which is evident by the bulbous increase in lift at the center span and can

be seen in the iso-surface contours in figure 38. The force drops to near zero near the

tips due to the present of tip vortices. At this low angle, the strength and size of the

tip vortices is small, but they still influence the force distribution.

As the angle increases to 30◦, the force distribution changes, the LEV and the

tip vortices become stronger. Corners have now appeared on the left and right sides of

the span, showing the presents of the tip vortex. The amount the tip vortices affects

the force over the span depends on the aspect ratio of the plate. The vortices across

the aspect ratio 1 plate cover much of the surface on the suction side of the plate

shown in figure 38. In comparison, tip vortices influence relatively smaller region on

the AR=2, and 4 plates. It can also be seen in figure 38 that the LEV has grown and

changed shape significantly from the angle of attack of 15◦. The tip vortices push

parts of the LEV inward.

Increasing the angle further to 40◦, the plate reaches the point where it begins

to stall with the 0.2 pitch rate. Here the LEV has continued to grow in size and

strength as with the tip vortices. The tip vortices have become more pronounced as

horns on the distribution profile and now contribute greatly to the force generation,

which is reflected by the spikes in the force near the tip regions shown in 37. From

figure 38 the tip vortices cover more of the wing surface on the lower aspect ratio wing
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than on the higher aspect ratio wings. On the lower aspect ratio plate, tip vortices

contribute largely to the force due to the suction side of the plate is being mainly

dominated by the tip vortices. This is less true for the higher aspect ratio plates,

where the sizes of the tip vortices are far smaller than the LEV.

Finally at 50◦, the plate has passed its stall angle. The LEVs of on all the

plates start to separate from the plates. For the aspect ratio 4 plate, the LEV sheds

slower than the lower aspect ratio plates. This is indicated by the mound at the

center span in 37. The aspect ratio 2 plate lacks this distinct feature, and aspect

ratio of 1 plates LEV has been mainly pushed off by the tip vortices.
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Figure 37: The normal force coefficient distribution plotted across the span of varying

aspect ratios and angles of attack for the K=0.2 pitch-up.
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Pitch-up K=0.2
α AR=1 AR=2 AR=4

15◦

30◦

45◦

60◦

75◦

90◦

Figure 38: Iso-surfaces of the Q-criterion (Q = 5) at discrete angles of attack of each
aspect ratio at K = 0.2. Views are in the upstream direction looking at the trailing
edge of the wing.
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K=0.1 Pitch-up

The spanwise distribution is further studied at the second pitch rate of K=0.1,

plotted in figure 39. The key differences between the K=0.2 case and the K=0.1

case are (1) the tip vortices are more pronounced and affect a larger portion of the

span earlier on in the pitching process, which is because at lower pitch rate the tip

vortices have more time to evolve into the inner span (2) stall occurs at a lower angle

of attack, and (3) the LEV is weaker and sheds earlier.

Breaking down each individual angle, there is surprising similarity between the

force distributions across the span at the angles of 15◦ and 30◦ when compared to the

K=0.2 pitch-up case. The shapes of the distributions are the same, but one has to

remember actual forces are lower due to the reduced pitch rate.

At the higher angles, the horns created by the tip vortices are much broader

and smoother. This is indicative to much larger and mature tip vortices as it can be

seen in the iso-surfaces (figure 40). Finally, due to the earlier shedding of the LEV,

there force distribution is much lower at the center span when compared to K=0.2

pitch-up case.
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Figure 39: The normal force coefficient distribution plotted across the span of varying

aspect ratios and angles of attack for the K=0.1 pitch-up.

K=0.1 and K=0.2 Perching

Much like the force distribution plots for the pitch-up cases, the same plots

have been produced for the perching cases in figure 43 and figure 44. Images of the

3D Q-Criterion are also shown in figure 46 and 46. The Q-Criterion is set to a lower

value of 1, due to the lower vorticity magnitudes seen in figure 36.

It can be an ambitious task to compare all plots and visualizations together at

once detailing the differences in force distributions and flow field. Thus a second set

of plots were devised. The 3D pitch-up and perching results were plotted together
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Pitch-up K=0.1
α AR=1 AR=2 AR=4

15◦

30◦

45◦

60◦

75◦

90◦

Figure 40: Iso-surfaces of the Q-criterion (Q = 5) at discrete angles of attack of each
aspect ratio at K = 0.1. Views are in the upstream direction looking at the trailing
edge of the wing.
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at their respective angles and pitch rates. The normal force values were normalized

by their maximum value that occurs along the span for each respective case. This

effectively scales each plot to fit between an arbitrary scale of 0 and 1, yet allows for

easier illustration of the difference in force distribution shapes between each of the

individual cases. These new plots are reported in figure 41 (K = 0.2) and figure 42

(K = 0.1). (The true CN values are reported in figures 43 and 44) The pitch-up values

are represented by solid lines and the perching by dashed. One must remember these

are normalized values, and are not representative of the true magnitudes of the actual

measured force. These plots best represent the distribution of forces contributed by

the LEV and/or tip vortices.
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Figure 41: Normalized normal force distributions along the span of various aspect

ratios for the pitch-up (solid) and perching (dashed) cases at K=0.2.
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Figure 42: Normalized normal force distributions along the span of various aspect

ratios for the pitch-up (solid) and perching (dashed) cases at K=0.1.

For both tested K values, little difference was seen in the shape of the force

distribution when compared to their respective pitch-up case at angles 15◦ and 30◦.

The primary difference was the reduction in magnitude of the forces seen in figure 43

and figure 44. At these angles, the free stream velocity has reduced approximately

16% and 33% respectively. Resulting in the similar flow distribution at the beginning

of the motion.

Differences in the span appear at 40◦. For the perching case of K = 0.2, the

LEV force contribution is lower, suggesting either a weaker vortex or earlier shedding

for the lower aspect ratios, but is unaffected at the higher aspect ratio. The lower
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pitch rate of K = 0.1, shows a similar trend; however tip vortices on the higher aspect

ratio have moved inward as much compared to the pitch-up case.

At 50◦, well passed stall, there is a lower center span force contribution. The

weakened LEV, due to decreased velocity, has shed on the lower aspect ratio cases,

while the higher aspect ratio remains close to the surface of the plate. For K = 0.2,

tip vortices again have not moved as far inward as before, but are evident on the

aspect ratios of 2 and 4 plates. This is also true for the K = 0.1 cases.
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Figure 43: The normal force coefficient distribution plotted across the span of varying

aspect ratios and angles of attack for the K=0.2 perching.
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Figure 44: The normal force coefficient distribution plotted across the span of varying

aspect ratios and angles of attack for the K=0.1 perching.

From these force distributions, it was seen that the differences due arise in force

generation between the pitch-up and perching motions and the pitch rates of K = 0.1

and 0.2. The higher pitch rate developed a stronger LEV that lead to stronger forces

acting on along the mid span. At the lower pitch rate, tip vortices were allowed to

form, interfering with the LEV. Aspect ratio played a significant role also. The higher

aspect ratio wings developed stronger mid span forces, while the lower aspect ratio

wing had pronounced forces at the tips due to the tip vortices. The junction between

the LEV and tip vortices saw a reduction in force production. Thus by limiting the

growth of tip vortices, LEV force related production spans further across the wing.
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The 3D perching cases largely followed the same trends as the pitch-up cases.

Higher aspect ratio plates developed stronger LEVs compared to those of lower aspect

ratio. Tip vortex development was hampered by the pitching motion, and seem not

able to move inward as easily when compared to the pitch-up cases. The addition of

the flow deceleration (perching) only seemed to affect force magnitudes of the LEV

and tip vortices. This inherently means both the LEV and tip vortices were less

developed compared to their pitch-up counterparts.

E. Pitching and Perching Conclusion

The complexity of perch landing has led to a simplification of the kinematics

involved into a pitch-up coupled with a deceleration in the streamwise direction. A

parametric study has been conducted, varying the pitch, and deceleration rates of a

varying aspect ratio flat plate at a Reynolds number of 500 to observe the how the

aerodynamic forces vary on the plate in different cases.

The pitching maneuver was found to be Reynolds number sensitive which di-

rectly disagrees with the conclusions of Eldredge and Wang [45]. Peak lift was found

to decrease with Reynolds number, while the noncirculatory forces added by the

rotational acceleration at the beginning of the perching motion were found to be

insensitive to Reynolds number.

Pitch-up numerical 2D, and 3D simulations produced similar trends when com-

pared. The numerical 2D produced lower amplitude forces at a Reynolds number of

500, but had the same trends as observed as the experimental [8]. The 2D results were

found to predict higher forces when compared to the 3D numerical predictions. This

was contributed to effects of aspect ratio. As aspect ratio increased, it approached

the 2D results and agreed with the 2D trend. Both showed if pitch rate was increased,

there was a broadening and increase in the lift and drag coefficients.

Aspect ratio was also found to play a significant role in force production. As

aspect ratio increased, maximum force generation was found to occur at lower angles
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Perching K=0.1
α AR=1 AR=2 AR=4

15◦

30◦

45◦

60◦

75◦

90◦

Figure 45: Iso-surfaces of the Q-criterion (Q = 1) at discrete angles of attack of each
aspect ratio at K = 0.1. Views are in the upstream direction looking at the trailing
edge of the wing.
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Perching K=0.2
α AR=1 AR=2 AR=4

15◦

30◦

45◦

60◦

75◦

90◦

Figure 46: Iso-surfaces of the Q-criterion (Q = 1) at discrete angles of attack of each
aspect ratio at K = 0.2. Views are in the upstream direction looking at the trailing
edge of the wing.
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of attack. This is believed to be due to the changing flow structure on the suction of

the plate as aspect ratio changes. The mid-span LEV vorticity was seen to increase

as aspect ratio increased. Normal force distributions also showed that tip vortices

affected less of the suction side of the plate as aspect ratio increased.

Changes in pitch rate resulted in similar effects as increased aspect ratio. As

pitch rate increased, force generation also increased. Tip vortices were seen to affect

the LEV produced force less, by having less time to develop due to increased pitch

rate.

Finally, the perching motion shared the same conclusions of aspect ratio and

pitching rate. The addition of flow deceleration resulted in reduced vortex size, and

interior vorticity. However, the LEV remained closer to the wing at higher angles of

attack, extending its influence on lift and drag.
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CHAPTER VII

VORTEX CIRCULATION AND LIFT

A. Introduction

Discussion thus far has shown that the LEV is affected by the Reynolds num-

ber, wing aspect ratio, and motion kinematics. To better our understanding of the

complexity of the LEV, it is important to make quantitative analysis of the size and

strength of the LEV. This in itself can be difficult, as the LEV cannot be measured

directly like lift or drag forces.

Much work has gone into predicting the effects of the dynamic stall LEV via

adaptations of panel code [72], potential flow models[17], and even empirically based

models [73]. Ekaterinaris and Platzer offer an in-depth review of various computation

dynamic stall prediction [18]. All these methods require a precise understanding of the

flow around the airfoil, especially trajectories and strength of the LEV. However few

to no studies have looked into understanding the LEV development across the suction

side of the airfoil during the pitch motion. As pitch rate increases, the strength of

the LEV increases, while the size decreases. However, the size of the LEV is also a

function of viscosity. As viscosity increases (or a reduction in Reynolds number), the

LEV becomes larger and more diffuse[25] as it was also seen in figure 27. While it is

easy to understand why viscosity diffuses the LEV through examination the vorticity

equation, little research exists attempting to understand how the LEV grows in size

with pitch rate.

In recent years, several experimental studies have targeted the calculation of

the LEV circulation strength by measuring and filtering the flow field about rotating,
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flapping, or pitching wings.[17, 74, 75, 76, 77, 78] Since the LEV circulation is related

to the lift produced, calculating the LEV circulation can provide a uniquely defined

value to understand how wing kinematics and geometry affect circulation. Recently,

Baik et al. [76] experimentally studied the effect of reduced frequency on the develop-

ment of the LEV circulation and LEV size of a nominally 2D pitch and plunge wing.

They found that increasing the frequency could increase the LEV circulation strength

but decrease the growth rate of the LEV which aligns with previous conclusions.

It is important to understand how the LEV develops across an airfoil. As

an example, Granlund et al.[8] examined a perching wing, a variation of a dynamic

stall for possible implications for landing maneuvers for MAVs, to better understand

the flow phenomena involved. He found, as with several others, the LEV dominates

the suction side of the airfoil for the majority of the motion. As previously stated,

the presence of the large scale LEV, induces a large lift force on the airfoil [19].

Thus by understanding the LEV development, it is plausible that better control can

be achieved for landing MAVs using the dynamic stall process to decelerate and

maneuver itself.

The objective of this chapter is to numerically investigate the formation of the

LEV and the change in LEV circulation during a pitch-up motion. In this study, the

effects of pitch rate on the LEV circulation will be studied by eliciting a dynamic

stall process with a single pitch-up motion. The LEV will be isolated using vortex

identification techniques, and the circulation of the LEV will then be calculated. The

circulation across the wing will be tracked throughout the entire pitching motion.

Thus the goals of this chapter are as follows: (1) To better understand how

LEV forms with angle of attack at different pitch rates, (2) to draw a connection

between LEV circulation strength and pitch rate, and finally (3) to quantify the lift

contributed by the LEV to the pitching motion. The study will be conducted on a two

dimensional computational grid at a Reynolds number of 500 along with various pitch

rates at a reduced pitching motion of 0◦ to 45◦. These kinematics differ to decrease
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the computational cost of the simulation as a higher resolution grid was used for the

analysis.

B. Noncirculatory Force Contribution

To be able to separate lift and drag due to circulation, the noncirculatory

(NC) component of the lift coefficient, denoted as CL,NC , must be separated from

the total lift coefficient (CL,M) of the dynamic stall motion. Noncirculatory forces

refer to the resultant pressure caused by the acceleration of fluid around the wing

due to the wing’s motion. [41] This can also be considered as the resistive force of

the fluid pushing back on the wing as it moves. The noncirculatory force is known to

be proportional to the pitch rate[8] and can contribute large portions to lift[77]. To

effectively seperate the noncirculatory lift from the total lift, Theodorsen’s model for

flutting wings was used.

Theodorsens theory [79] is an analytical method for predicting the lift gener-

ated by fluttering wings with small pitch and plunge amplitudes. The theory is a

summation of both circulatory and noncirculatory components of lift; however the

circulatory component of the theory is only valid for low amplitudes of pitching and

plunging wings. Ramesh et al. [80] found that the theoretical method for predicting

the forces experienced by a pitching wing match remarkably well before the LEV

separates from the wing. Examining Theodorsens equation, Eqn. 7.39, the coefficient

of lift generated by a fluttering wing is equal to the noncirculatory lift generated by

the movement of the wing, the first set of terms, and the circulatory component due

to the flow around the wing, the second set.

CL = πb

(
− ḧ

U2
∞

+
α̇

U∞
− ba α̈

U2
∞

)
+ 2πC(k)

[
− ḣ

U∞
+ α + b

(
1

2
− a
)

α̇

U∞

]
(7.39)

b =
c

2
(7.40)
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a = b
(
xp −

c

2

)
(7.41)

Where ḧ is the plunge acceleration, xp is the pivot location (0.25c), α̇ and

α̈ are the rotational velocity and acceleration respectively, and C(k) is known as

Theodorsens function which is a complex number that brings in consideration the

wake vorticity. Due to our interest only in the noncirculatory component, the entire

second term on the right side of Eqn. 7.39 is dropped. A second simplification can be

made by dropping the ḧ terms since there is no plunge motion in the studied pitch-

up kinematics. This further reduces the Theodorsen model for the noncirculatory

lift (CL,NC) to a simple function that only relies on free stream velocity, and pitch

kinematics.

CL,NC = πb

(
α̇

U∞
− ba α̈

U2
∞

)
(7.42)

A final adjustment must be made since the original Theodorsen model was

derived for small changes in angle of attack. The wing in this study pitches to a

maximum of 45 degrees where small angle assumptions no longer apply. Thus Eqn.

7.42 would actual refer to the magnitude of the normal force coefficient, CF,NC , acting

on the wing. For the large angle of attack, the real CL,NC can be found by multiplying

CF,NC by the cosine of the instantaneous angle of attack.

CF,NC = πb

(
α̇

U∞
− ba α̈

U2
∞

)
(7.43)

CL,NC = CF,NC cos (α) (7.44)

From these sets of equations, it is now possible to separate the lift due to circu-

lation (CL,C) from the total lift coefficient (CL,M) by continuing with the assumption

that noncirculatory and circulatory lift are linearly additive with the following equa-

tion:
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CL,C = CL,M − CL,NC (7.45)

C. Circulatory Lift Contribution

Previously, the noncirculatory lift was found using Theodorsen’s equation, to

find the circulatory lift component of total lift. The circulatory component of the

Theodorsen equation was dropped due to interest only in the noncirculatory compo-

nent. Since C(k) is also an unknown in the equation and cannot be easily calculated

for this simulation, the circulatory lift is calculated by examining the LEV circulation

strength.

The circulatory lift (CL,C) contribution is handled by equating it to be pro-

portional to the circulation strength of the LEV (ΓLEV ). The circulation of the LEV

was found by integrating the clockwise vorticity (ωz,CW ) that was identified to be

inside of a vortex via the Q-Criterion (Q > 0) hence Eqn. 7.46. This allows for the

contribution of lift by the LEV (CΓ,C), Eqn. 7.47, to be calculated. Note the addition

of a cosine in Eqn. 7.47 is to correct for small angle assumptions.

ΓLEV =

∫∫
Q>0

ωz,CWdA (7.46)

CL,Γ =
2ΓLEV

U∞c
cos (α) (7.47)

The z-axis vorticit (ωz) is prefered in this chapter (and future) as the LEV

rotates predominately around the z-axis. Vorticity for 3D wings that does not rotate

about the z-axis can be difficult to track as their orientation can change. Thus only

the z-axis vorticity is analysized.

Due to the noncirculatory effects of the pitching motion, CL,LEV will not ac-

curately depict the lift induced by the LEV. The pitching motion itself will induce

circulation around the airfoil. Thus the noncirculatory portion of the lift must be
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separated again from the newly calculated LEV lift circulation. This yields a second

equation that describes the circulatory lift of the pitching airfoil due to the presence

of a LEV.

CL,C = CL,Γ − CL,NC (7.48)

If Eqn. 7.45 were substituted in Eqn. 7.48, it would yield that CL,Γ is either

equal or approximately equal to CL,M . Equations 7.45 and 7.48 should both predict

the same circulatory lift contribution due to the LEV; however Eqn. 7.47 is only valid

until stall where the LEV sheds from the airfoil.

D. Circulatory and Noncirculatory Forces

Figure 4 compared the variation of angle of attack with time using different

values of the smoothing parameter a for K = 0.1, and K = 0.2 for comparison. As

a increases, the pitch-up motion transits from a smoothed ramp to a sharp ramp

function. The effect of a appears benign on the angle of attack profile; however

the effects are apparent with angular velocities and accelerations. With the increase

in a, angular velocity and acceleration magnitudes increase at the beginning of the

motions. This would in turn leads to higher noncirculatory forces during the non-zero

acceleration phase as described in Eqn. 7.42. Granlund et al. [81] found that a does

not change the aerodynamic forces during the constant angular velocity portion of

the motion.

Noncirculatory forces can influence the magnitude of the forces measured de-

pending on the pitch-up profiled used. Figure 4 illustrated how the smoothing variable

a, and K impacted the angular velocity and acceleration. Noncirculatory forces are a

function of these two quantities. As K increases, noncirculatory forces also increase.

This was also seen in Granlund et al.[24]. The effect is most visible in the CL plots

between 0◦ and 5◦ where the rotational acceleration is nonzero shown later in figures

28.
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1. Noncirculatory Component

First looking at the noncirculatory component of lift (CL,NC), figure 47(a) plots

the calculated coefficient of lift (CL,M), and noncirculatory lift coefficient calculated

from Eqn. 7.42. It can be seen that the noncirculatory component does make up a

significant portion of the sum lift generated for all pitch rates: 16.8%, 21.8%, and

23.5% of the lift for the respective cases of 0.05, 0.1 and 0.2. As the pitch rate

increases, so does the amount of noncirculatory contribution. As it can be seen, the

noncirculatory lift is only a function of the kinematic motion. Thus changing pitch

rate only increases or decreases the magnitude.

By subtracting out the noncirculatory component, Eqn. 7.48, the resulting lift

profiles, 47(b), for the tested pitch rates collapse onto one another eliminating their

offset from one another. This further confirms that the noncirculatory component is

linearly additive to the circulatory component of the generated lift as was shown in

the Theodorsen model, Eqn. 7.39. The resulting lift can be assumed to the resultant

circulatory component from the LEV.
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Figure 47: (a) Lift (solid) and noncirculatory (dotted) versus angle of attack of three

pitch rates. (b) Resultant lift coefficient with noncirculatory component removed.
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2. Circulatory Component

The circulation induced by the presence of the LEV was measured using the

previously discussed filtering and vorticity integration techniques and is reported in

486(a) The circulation lift, CL,Γ ,is adjusted for the direction of lift using Eqn. 7.47

and compared directly to the measured lift coefficient.

For the K=0.2 case, Eqn. 7.47 predicts the lift coefficient well up to the point

of stall at 30 degrees, past this the two begin to diverge. The same trend is not

seen for the two slower pitch rates where the circulation diverges from the actual

lift coefficient at approximately a third of their stall angle. This may be due to the

LEV growing in size and convecting away from the surface of the plate, resulting in

a reduced lift coefficient. Without taking in account the position of the LEV to the

plates surface, it may be difficult to predict the actual lift by solely calculating the

circulation strength of the LEV.

Much like the previous section, the noncirculatory component can be separated

out of the circulation lift (Eqn. 7.45 and 7.48), also shown in figure 48(b) Again, the

circulation for each pitch rate collapses onto a collective trend. This again confirms

the linearly additive nature of noncirculatory and circulatory forces; however, without

a proper description of how the LEV convects away from the plate to correlate the lift

force, results using the circulation are only valid to approximate lift at low angles of

attack. Figure 48(b) does not display any inherently obvious relationships of growth

in circulation to pitch rate. It was found if the circulation calculated from Eqn. 7.48

was normalized by pitch rate; the trends would collectively collapse on one another.

Figure 49 shows that the lift due to circulation can be correlated to pitch rate and

the nondimensionalized flow sweeps across the plate. Each pitch rate follows the

same trend until stall occurs, which then they quickly plateau and then diminish.

This helps clarify how lift due to circulation changes with pitch rate, it is directly

proportional to pitch rate. Where circulation develops along a prescribed path that

is a function of the pitch rate.
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Understanding how pitch rate affects circulation is a crucial element if one

wishes to predict or understand how a pitching wing will produce lift. Figure 49

shows that the circulation produced is only depended on the time and the pitch rate.

This effectively gives a relationship as to how specific circulation forces (lift) can be

achieved at what pitch rate, and how long it will take.
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Figure 48: (a) Actual lift (solid) and circulatory (dotted) coefficients versus angle of

attack of three pitch rates. (b) Actual and circulation lift coefficients with noncircu-

latory component removed.
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mensionalized time since the start of the pitch-up motion.
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E. 2D Vortex Size

A first pass approximation was used when measuring the radius of the vortex.

Using the vorticity filtering technique previously described, the area occupied by the

LEV was measured. Simply put, any area that was positively identified as a vortex

was assigned with a value of 1, and areas that were not, 0. The domain was integrated

again to find the area occupied by the vortex. It was simply assumed that the LEV

was a perfect circle, and the radius of the LEV could be back calculated from the

measured area as shown in figure 50. Any other clockwise vorticity that made it

through the filter was assumed to be part of the LEV.

Figure 50: The area occupied by the vortex is assumed to be a perfect circle

The vortex size was calculated throughout the entire pitch- up duration of each

pitch rate and is shown in figure 51(a). All three pitch rates have similar early vortex

growth rates; however, all three at the same angle attack quickly diverge from one

another. This is due to the LEV beginning to roll up at a specific angle of attack

between angles of 15-20 degrees. Passed this angle it was seen that the lowest pitch

rate had a higher LEV growth rate, than the higher pitch rate. For all pitch rates,

the LEV growth is constant passed the angle of 15 until stall. The lowest pitch rate

shows a deep plunge in vortex size at an angle of 30 degrees. This is due to the shed

LEV quickly dissipating downstream.

Examining the difference in slope of each pitch rate it is important to re-

member, that the pitch rate of K=0.05 has twice the time to develop a LEV when

compared to K=0.1, and four times when compared to K=0.2, thus the lower pitch
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rate will have a larger vortex radius at higher angles. This suggests that the LEV

growth rate is not a function of angle, but a function of time. To illustrate this, three

separate snapshots were taken of the pitching plates when the LEV radius was equal

to 0.2. Figure 52 shows how even at separate pitch rates, the LEV is of comparable

size and shape. The primary differences seen between the three cases are the location

and strength of the LEV. For the slower pitch rate of K=0.05, the LEV has had more

time to propagate downstream, and diffuse resulting in a weaker contour. The lowest

pitch rate achieves the vortex radius at a lower angle than the higher pitch rates.

This is due to the vortex growing at a specific rate that is time dependent. Thus the

plate is simply rotating under the vortex while it grows at its own pace. Thus the

LEV forms at later angles of attack at higher pitch rates simply due to the fact it

takes a prescribed amount of time for them to form.

Interestingly, by plotting the individual pitch rates of the calculated circulation

lift coefficient, Eqn. 7.47, and vortex radius, this is shown (Figure 51(b)), it can be

seen that with increasing pitch rate, the line slope increases. At a given circulation

coefficient, it can be seen with higher pitch rates produce a smaller vortex. While

this has always been observed in previous works [18, 16, 21, 22, 20, 8], it is rarely

quantified. This also shows how the circulation strength of the LEV is less of a

function of radius, but more dependent on pitch rate.
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Figure 51: (a) Radius of LEV versus angle of attack of three pitch rates. (b) Radius

of LEV versus circulation lift coefficient.
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Figure 52: Snapshots of the Q-Criterion (1<Q<25) when rLEV = 0.2 at three different

pitch rates.

F. Circulation and Lift Conclusion

The examination of the lift contribution of the LEV has been conducted. Mod-

eled after the Theodorsen method, the lift coefficient produced by a pitching plate

was investigated by examining the noncirculatory and circulatory forces. It was found
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that the noncirculatory component of the measured lift force could be separated out,

leaving only the force produced by any circulatory effects. Results have shown that

noncirculatory forces only contribute 10-20% of the lifting force and the remaining is

due to the LEV.

The lift produced by the LEV was also found to match well at low angles of

attack; however as angle of attack increased, the lift produced by the LEV quickly

diverged from the calculated lift coefficient. Thus any experiment measuring lift via

vorticity in the domain, must take in account how the LEV propagates away from

the airfoil to correlate correct lift coefficient. Otherwise, the lift found would greatly

overestimate the actual lift on the wing.

By comparing vortex size and circulatory lift together, a tangible trend was

produced that shows how pitch rate effects circulation strength and vortex size. While

observed in other works, but never quantified, it was shown that higher pitch rates

produce smaller LEVs with higher circulation strength. The vortices are primarily

smaller due to a time constant of vortex formation. Higher pitch rates pitch faster

than the vortex can form; however only increases the vortex circulation strength and

not the radius. The increase in vortex radius is from the diffusion of the vortex

through viscous effects. Thus higher pitch rates produces a smaller yet stronger LEV

by pitching faster than it can grow. This effectively means that the strength of the

LEV is a function of pitch rate (or time), not angle of attack.
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CHAPTER VIII

GEOMETRY AND KINEMATIC EFFECTS

ON CIRCULATION

A. Introduction

In the previous chapter, the effects of pitch rate on a 2D LEV was investigated

on a lower angle of attack pitching wing. The previous chapter will be re-evaluated

for the pitching and perching kinematics for the 3D wings; however the separation of

noncirculatory forces will not be performed. The previous theory presented is only

valid for a 2D analysis, and not a 3D. Therefore in this chapter, the vortex circulation

will be investigated as the summation of both types of circulation.

For the 3D analysis, the circulation will be investigated in three ways: mid-

span, total, and span distribution. Similar to the 2D analysis, the circulation due to

the LEV will be calculated at a center cross-section of each tested plate, this is then

expanded to include the entire span circulation. Spanwise circulation is presented

by calculating the LEV circulation at individual slices around the wing span. This

provides a detailed contour map of how the circulation changes with angle and pitch

rate across the wing.

B. Mid and Quarter Span Circulation

1. Pitching

Before examining the LEV circulation variation across the wing span, the cir-

culation due to LEV and shear layer vortices is evaluated. The LEV circulation was
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calculated using Eqn. 7.46 with Q > 0 while the circulation from shear layer vor-

tices was calculated with Q < 0. The total circulation was calculated by removing

the Q-criterion filter. The approach is similar to that of the 2D pitching analysis,

with the exception of evaluating Eqn. 7.46 at finite locations across the span. This

approach provides a simplistic view of the development of the total, LEV, and shear

layer circulation with angle of attack. Figure 53 and 54 plots the three calculated

circulation values (ΓCW ) at the quarter and mid-span locations of the three aspect

ratios at K = 0.1 and K = 0.2.
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Figure 53: Total, LEV, and shear quarter and mid-span circulation for each aspect

ratio for K = 0.1. Dotted and solid lines represent z/b = 0.25 and z/b = 0.5

respectively.

As a general trend for both values of K, as the aspect ratio increases, so does

the LEV circulation, and shear circulation remains stagnant. The AR = 4 plate

has a near uniform circulation distribution throughout the entire pitching cycle when

comparing mid and quarter span. AR = 2 has a less uniform distribution, but

circulation at the two locations follow the same trend. For the lowest tested AR, the

shear and LEV circulation are inversely proportional to one another. Mid pitch, shear

switches to LEV related circulation. Again this is seen for both pitch rates. Due to

the small aspect ratio, tip-vortices effect the flow development over the wing. As the

wing pitches up, tip vortices grow in size, and damp LEV development, resulting in
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Figure 54: Total, LEV, and shear quarter and mid-span circulation for each aspect
ratio for K = 0.2. Dotted and solid lines represent z/b = 0.25 and z/b = 0.5
respectively.

rapidly changing vorticity alignment.

An examination of the vorticity transport equation (Eqn. 8.49), the first two

term on the right hand side describes that vorticity can be stretched or tilted. Thus

any LEV or ωz vorticity can be titled into other planes from interaction with tip

vortices. This also explains the inversely proportional nature of the LEV and shear

circulation seen in figure 54(AR = 1) at 50◦. ωz vorticity is being modified (tilted) by

tip vortices in and out of the z plane used to identify vortices. Because of this complex

LEV and tip vortex interaction, lift producing vorticity may exist in several planes

that is not bound to the strength of the LEV. Thus this attenuates aerodynamic

forces on the AR = 1 wing since with lift producing vorticity does not occur in the

ωz form which would shed with the LEV at stall.

D~ω

Dt
= (ω · 5~u)− ω (5 · ~u) + υ52 ~ω (8.49)

By integrating the circulation across the span, the total generated circulation

can be compared. This accounts for changes in flow structure due to aspect ratio.

This was done by integrating Eqn. 7.46 along the span of the wing, and the results

are shown in figure 55. AR = 2, 4 show a diverging LEV and total circulation with an

increase in K. Initially, ΓCW for both K values trend together up to approximately
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25◦. The K = 0.2 lines remain stagnant until 35◦, which then increase at a similar

rate as K = 0.1. This suggests that the timing of circulation development across the

wing is a function of K.
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Figure 55: Total, LEV, and shear circulation across the entire span for each aspect

ratio and K. Solid and dotted lines represent K = 0.1 and 0.2 respectively.

The effect of K on the AR = 1 wing is less clear than the larger AR wings. The

LEV, shear layer, and total circulation show little variation with the reduce frequency

K. As previously shown in figure 35, the mid-span LEV vorticity is smaller resulting

in lower calculated ΓCW . Again the tip vortices that from on the AR = 1 wing occupy

a significant portion of the suction side surface. (This is shown later in figure 59.)

This would result in circulation that is not captured by the ωz component.

2. Perching

For the perching cases, the mid and quarter span circulation calculations are

plotted in figure 56 and 57 for the K = 0.1 and 0.2 rates respectively, and the total

span circulation is in figure 57. For each aspect ratio, the same increase in circula-

tion is seen as the aspect ratio increases. Differences in the mid and quarter span

circulation plots are also seen to reduce as aspect ratio increases. Unlike the pitching

motion, circulation either decays with the progression of the perching maneuver, or

varies little with angle.
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Figure 56: Total, LEV, and shear quarter and mid-span circulation for each aspect

ratio for K = 0.1. Dotted and solid lines represent z/b = 0.25 and z/b = 0.5

respectively.
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Figure 57: Total, LEV, and shear quarter and mid-span circulation for each aspect

ratio for K = 0.2. Dotted and solid lines represent z/b = 0.25 and z/b = 0.5

respectively.

The first is seen with the AR = 1 wing. The circulation established at the

start of the motion decays as the wing pitches and decelerates. Again as discussed in

the pitching section, the mid-span LEV vorticity is lower resulting in a lower ΓCW .

This weakened LEV is further dissipated by the flow deceleration.

The AR = 4 wing illustrates the effects of the captured LEV that was seen in

figure 36. The larger aspect ratio allowed the establishment of a LEV even with flow
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deceleration. As the motion continues, less flow is available to maintain or feed the

vortex resulting in a decelerated decay rate of the LEV.

Examining the total circulation across the span, pitch rate has a benign effect

on the circulation history. Primarily, increased pitch rate increases the peak LEV

circulation. For both pitch rates, this occurs approximately at 40◦.
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Figure 58: Total, LEV, and shear circulation across the entire span for each aspect

ratio and K. Solid and dotted lines represent K = 0.1 and 0.2 respectively.

C. Spanwise LEV Circulation

1. Pitching

Figures 59, 60, and 61 plot the resultant ΓLEV contours from all tested cases.

It is important to stress that these contours are not ΓLEV distributions across the

entire surface of the wing at a single angle of attack, but rather they are the variation

in ΓLEV across the normalized span (z/b) through the entire pitching motion. Due

to wing symmetry only half wing is shown. Each contour plot shows K value of 0.1

and 0.2 along side iso-surface plots of Q = 5 at three angles of attack are shown for

both K values.
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Figure 59: (Left) Contour of spanwise ΓLEV through entire pitching motion for the

AR = 1 wing at both tested K values. (Right) Iso-surface contours where the Q = 5

for both K values at 30◦, 45◦, and 60◦

Beginning with figure 59, the AR = 1 wing, the Q iso-surfaces of both K cases

show similar vortex structures. The starting vortex is still visible in the K = 0.2

case, while it has already convected away from the plate in the K = 0.1 case. When

wings are pitched to the same angle of attack, twice the amount of time has elapsed

for the K = 0.1 case compared to the K = 0.2 case. The lower pitch rate wing

allows the LEV to have more time to develop and also allows tip vortices to grow

larger and interfere with the LEV. This phenomenon was also seen in the experiment

of Ol et al. [30]. However, it is difficult to identify from the ΓLEV contour any

spanwise LEV circulation for either K value even though a LEV-like structure appears

above the wing. Several authors have commented on how tip vortices can affect LEV

development. Jones and Babinsky [74], and Coton and Galbraith [36] found that

the tip vortices impeded LEV development on low aspect ratio wings (AR < 2). At
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low aspect ratios, tip vortices occupy a large portion of the wing, which disrupts the

development of spanwise ωz related circulation. The lack of LEV circulation would

suggest a lack of or significant decrease in lift production; however as previously

mentioned, the lift inducing circulation may not be tracked by ωz.

Examining figure 60 for the AR = 2 wing reveals the difference in circulation

development with an increase in aspect ratio. It shows that the reduced pitch rate has

an effect on the development of circulation, which was not apparent for the AR = 1

wing. Examining the K = 0.2 contours shows circulation development (ΓLEV > 1.5)

at a higher angle of attack when compared to K = 0.1. This delay in development

was also seen in figure 55. Increasing K was also seen to delay the formation of tip

vortices. This is evident in the contour plots. Towards the tips, circulation quickly

drops in the lower K case. By delaying the tip vortex formation, the LEV circulation

occupied more of the span. This lead to a larger area of LEV circulation covering the

span.
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Figure 60: (Left) Contour of spanwise ΓLEV through entire pitching motion for the

AR = 2 wing at both tested K values. (Right) Iso-surface contours where the Q = 5

for both K values at 30◦, 45◦, and 60◦

The AR = 4 plots (figure 61) share many similarities with the AR = 2 plots:

later circulation development and a reduction in LEV and tip vortex interaction with

increased K. Examining the contour plots shows that the circulation develops later

in the pitching motion and it is more uniform across the span compared to the lower

AR wings. Again the circulation is seen to drop towards the edge of the spans. In

the K = 0.1 case, tip vortices push the circulation inward by approximately 5% and

even less for K = 0.2. The AR = 2, K = 0.1 case showed deeper inward push of 10%

of circulation by tip vortices. Geometric scaling (increased span) of the plate would

explain the decrease of inward of the circulation by the tip vortices.
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Figure 61: (Left) Contour of spanwise ΓLEV through entire pitching motion for the

AR = 4 wing at both tested K values. (Right) Iso-surface contours where the Q = 5

for both K values at 30◦, 45◦, and 60◦

This section helps to establish the link between the aspect ratio, LEV circu-

lation, and lift and drag slops. The lower lift slope on the AR = 1 wing is mainly

due to the weakened LEV by the tip vortices. As seen in figure 34 and 59, the LEV

showed weaker mid-span vorticity, and lower span circulation. Through the pitching

motion, the circulation never developed to levels seen at higher aspect ratios. As the

aspect ratio increased, the LEV structure developed with less impedance from tip

vortices and achieved higher circulation values across the span. This in turn allowed

for the ωz circulation to develop, resulting in a higher lift slope.

2. Perching

Previously with the pitching circulation plots, there were few discernible fea-

tures shared between each aspect ratio. This was due to the effects of the tip vortices
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interacting with the LEV creating varying flow fields above each wing. With the in-

troduction of the flow field deceleration (perching), each aspect ratio plot now shares

similarities with one another. Primarily, as aspect ratio increases, the observed fea-

tures increase in magnitude, and move proportionally to the span of the wing.

The AR = 1 is comparatively different from its pitching counterpart. For

the pitching case, ΓCW reached its peak at the end of the pitching motion. Due to

the flow deceleration, ΓCW now peaks early in the perching motion, approximately

40◦ as also seen in figure 58 for both pitch rates. The lower K shows an additional

circulation peak near the edge of the span between 30 − 50◦. This secondary peak

will also evident in the higher aspect ratios.
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Figure 62: (Left) Contour of spanwise ΓLEV through entire perching motion for the

AR = 1 wing at both tested K values. (Right) Iso-surface contours where the Q = 1

for both K values at 30◦, 45◦, and 60◦

The AR = 2 primarily has increased contour magnitudes. The secondary peak

in the K = 0.1 has reappeared towards the edge of the span, while the center span
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magnitude has increased. The K = 0.2 case also shows the increased span contours,

with now the development of increased edge circulation. This edge circulation was

not present in the AR = 1 wing.
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Figure 63: (Left) Contour of spanwise ΓLEV through entire perching motion for the

AR = 2 wing at both tested K values. (Right) Iso-surface contours where the Q = 1

for both K values at 30◦, 45◦, and 60◦

Finally the AR = 4 wing again shows increased circulation magnitudes, with

the geometrically proportioned features that were evident with the AR = 2 wing. A

new noticeable difference between the two pitch rates is the extended duration of the

K = 0.1 mid-span circulation when compared to the 0.2. This increased mid-span

circulation does not mean the 0.1 rate produced higher lift. Due to the slower pitch

rate, the LEV had an increased ΓCW , but propagated away further from the plate

at the end of the motion. This can be seen in figure 36. This increased distance

decreases the effectiveness of the vortex’s ability to induce lift on the wing. The

K = 0.2 was seen to be smaller, and closer to the plate, resulting in a weaker vortex
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that maintained its ability to induce lift.
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Figure 64: (Left) Contour of spanwise ΓLEV through entire perching motion for the

AR = 4 wing at both tested K values. (Right) Iso-surface contours where the Q = 1

for both K values at 30◦, 45◦, and 60◦

D. Circulation Conclusion

In this chapter, the effect of the wing aspect ratio, reduced pitch rate, and

pitching kinematics on the LEV circulation were examined.

Overall, the pitch-up spanwise circulation was shown to be dependent on the

wing aspect ratio. The lowest aspect ratio wing (AR = 1) showed little to no coherent

circulation in the contour, while the iso-surface plots showed a small LEV pushed off

the surface by the tip vortices. For the AR = 2 wing, spanwise circulation developed,

but was not uniform. The effect of the tip vortices was evident by the inward pushing

of the circulation. Finally, the circulation on the AR = 4 was affected little by tip

vortices. For the AR = 2 case, the higher K value caused a delay in circulation

development. Tip vortex interaction was also shown affect less of the plate surface
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with an increase in K. This was most evident on the AR = 2 and 4 wings, circulation

would extend further across the span when compared to the lower K.

K played an important role in the distribution and timing of development

of spanwise circulation for the pitching motion. With an increase in K, spanwise

circulation was extended further along the span, whereas the circulation with the

lower K dropped to lower magnitudes due to the presence of developed tip vortices.

When the aspect ratio was equal to or greater than 2, the higher K value led to a delay

in spanwise circulation development for the pitch-up motion. This delay in circulation

development resulted in a visibly smaller and less diffuse LEV that remained close to

the wing’s surface at higher angles of attack. Once the circulation started to develop,

it increased at the similar rates between the two tested K values. This suggested

that the slope of circulation development depends on the aspect ratio, while the K

determines the timing of the circulation development.

Spanwise circulation for the perching plates followed a similar trend as the

pitch up. As aspect ratio increased, circulation distribution become more uniform,

with decreased influence from tip vortices. Evidence of vortex retention became

evident on the lower K cases by the prolongation of mid-span circulation acting for

large intervals of perching motion. This retention of the vortex may play an acting

part in the lift and drag production of the perching wing.

In summary, it was shown that the development of the LEV circulation for a

wing undergoing a pitch-up motion depends on the aspect ratio of the wing. It was

also shown that K determines the timing of the development of the LEV: increasing

K results in a smaller LEV at higher angles of attack which remains close to the

surface of the wing and contributes to higher lift.
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CHAPTER IX

FEATURE-BASED ADAPTATION

A. Summary

In this chapter, the dynamic stall phenomenon of a pitching NACA0015 airfoil

is studied using a feature based grid adaption technique. The fluid solver is based

on FUN3D which solves the three-dimensional, compressible, unsteady Reynolds-

Averaged Naiver-Stokes equations. The one equation Spalart-Allmaras is used a the

turbulence closure. The governing equations are discretized spatially using second-

order finite volume methods and temporally using an optimized second order back-

ward difference scheme. The grid adaption is based the anisotropic tetrahedral adap-

tation approach in which grid is adapted to match a desired quality via an anisotropic

metric calculated throughout the simulation. Particularly vorticity is tracked vorticity

throughout the pitching cycle and adapt the grid in areas where vorticity is damped.

Comparisons are also made with results using uniformly refined grids. Results suggest

feature-based adaptation has potential in refining the mesh in the wake of the airfoil,

allowing vorticity to be carried out several chords behind the airfoil without excessive

dissipation. Our study also shows that great care must be placed in allowing the grid

to be adapted in the vicinity of the airfoil as grid resolution can be lost.

B. Importance of Wake Grid Resolution

Research has shown that grid quality can dramatically affect simulation results.

Kravchenko[82] showed that incorrect flow features were produced in the wake of a

cylinder due to large grid spacing. As a result, the separated flow region was shorter
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and the recirculation region immediately behind the cylinder became smaller, result-

ing in incorrect flow features and poor force prediction. Similarly, in a review paper

by Komerath [83], it was noted that the wake grid resolution behind helicopter blades

can impact the accuracy of the flow simulation. In the study of dynamic stall, the grid

quality also plays a critical role. Dynamic stall is a complex fluid mechanics problem

plagued with vortex formation and shedding. To accurately predict the force coeffi-

cients, it is critical to capture the vortex formation and its propagation in the flow.

However, without a priori knowledge of the vortex structures and their trajectories,

creating a computationally efficient grid to capture these features is challenging.

Feature-based grid adaption is a promising technique to automatically adapt

grid at regions of interests. It can reduce the manual interaction with the CFD tools

and the required expertise of the user to obtain accurate solutions[84]. It can also

significantly alleviate the need for spatial convergence verification of computational

results by balancing the modeling accuracy and computational efficiency for engi-

neering analysis. Kang et al. [85] and Park et al. [86] have successively implemented

feature-based grid adaptation schemes to resolve vortex flow structures produced by

a rotor-craft in hovering flight. Their studies showed that feature-based adaptation

methods are able to improve the prediction of lift and drag coefficients by refining

grid where vortices propagated through and interacted with vehicle structures. By

improving spatial accuracy of the vortex structures, they showed that feature-based

grid adaption can better model vortex interactions which are critical in hovering flight.

To fulfill the potential of feature-based grid adaption method, it is critical to

calibrate the initial grid in order to simulate flow features correctly [87, 88]. Without

proper evaluation of the initial grid, the adapt mesh can capture incorrect features

far from their true locations. Further adaption can “force” features into a refined

area and hence steadily enhance an erroneous solution with each grid adaption. It

was hypothesized that this erroneous behavior was the result of an insufficient grid

resolution of the initial uniform mesh on which the feature-based grid adaption was
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based. [87, 84]

If properly addressed, such issues should not inhibit the application of mesh

adaptation to problems in flow fields.[89] In order to confirm the effectiveness and

viability of feature-based adaptation for dynamic stall flows, a study will be conducted

on the flow over a 2D pitching NACA0015 airfoil. In particular, the study will compare

the results of an uniformly refined grid to that of a feature adapted grid. To learn from

previous studies, an initial spatial convergence study will be conducted to evaluate

the effectiveness of uniformly refining a grid. This will be determined by investigating

the change in coefficients of lift and drag. Next, one uniformly refined grid will be

used as the initial grid for the adaptation study. The primary goal is to investigate if

the mesh can be improved to better capture the wake structure of the pitching airfoil.

C. Numerical Methods

FUN3D1 is an unstructured finite-volume solver that has been developed and

supported by the NASA Langley Research Center. [1, 90]. FUN3D solves the three-

dimensional, unsteady, compressible Reynolds-Averaged Naiver-Stokes (RANS) equa-

tions in integral form:

∂

∂t

∫
V

qdV +

∫
∂V

(F ∗ − FV ) · n̂dS = 0 (9.50)

where V is the control volume which is bounded by δV . F ∗ and Fv are the inviscid

and viscous fluxes of conservative variables. q represents the conserved variable vector

q =



ρ

ρu

ρv

ρw

E


(9.51)

1http://fun3d.larc.nasa.gov/
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For the case of a moving control volume, the convective fluxes must take in account

the relative velocity of the control volume. The inviscid flux is adjusted for the control

volume face speed |W | such that:

F ∗ = F − qW (9.52)

where F is a stationary control volume flex vector. The volume average (Q) of q must

be also taken to account for the moving volume:

Q =

∫
V
qdV

V
(9.53)

and the conservation equations become:

∂ (QV )

∂t
+

∮
∂V

(F ∗ − Fv) · n̂dS = 0 (9.54)

The convective inviscid and viscous fluxes are then defined as follows where F ∗

now accounts for the relative motion of the control volume.

F ∗ =



ρ (u−Wx)

ρu (u−Wx) + p

ρv (u−Wx)

ρw (u−Wx)

(E + p) (u−Wx) +Wxp


î+



ρ (v −Wy)

ρu (v −Wy) + p

ρv (v −Wy)

ρw (v −Wy)

(E + p) (v −Wy) +Wyp


ĵ

+



ρ (w −Wz)

ρu (w −Wz) + p

ρv (w −Wz)

ρw (w −Wz)

(E + p) (w −Wz) +Wyp


k̂

(9.55)
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Fv =



0

τxx

τyx

τzx

uτxx + vτxy + wτxz − qx


î+



0

τxy

τyy

τzy

uτyx + vτyy + wτyz − qy


ĵ

+



0

τxz

τyz

τzz

uτzx + vτzy + wτzz − qz


k̂

(9.56)

Within FUN3D, the RANS equations are discretized using flux splitting scheme

where the inviscid and viscous fluxes are handled separately. For second order ac-

curacy, the values at the cell interfaces are calculated using gradients at the mesh

nodes and computed using a least-squares technique. Currently, feature-based grid

adaptation is only implemented on fully tetrahedral based computational domains.

For tetrahedral meshes, the full viscous fluxes are discretized using a finite-volume

formulation in which the required velocity gradients at the cell faces are computing

using the Green-Guass theorem, which is equivalent to a Galerkin approximation.

1. Temporal Discretization

Time-accuracy is achieved through an optimized second order backward dif-

ference scheme (BDF2OPT). It is used to construct a higher order temporal scheme

by extending the difference stencil in time[91]. The details of BDF2OPT and the

temporal error control schemes are well documented by Biedron[1] and will be briefly

discussed here. To begin the derivation of the equations used for time stepping, it

is assumed that the control volume is invariant in time (the grid is rigid) which is

written as
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V
∂Q

∂t
= R (9.57)

Expanding on Eqn. (9.57) to evaluate the next time level of n+1, and writing

the time derived as a series of backward difference levels gives

V

∆t

(
φn+1Q

n+1 + φnQ
n + φn−1Q

n−1 + φn−2Q
n−2 + . . .

)
= Rn+1 (9.58)

The series of φn governs the accuracy of the backwards difference of the temporal

discretization. The respective values of φn varies depending the order of accuracy of

the scheme, but must satisfy the requirement of
∑
φn = 0. As stated before, FUN3D

uses an optimized backwards difference scheme, which is a linear combination of

second and third order coefficients. With an order of accuracy that is in between

second and third order, the temporal equations are stable with any time-step. The

coefficients for BDF2OPT are listed in Table 4.

order φn+1 φn φn−1 φn−2

2nd 3/2 -2 1/2 0

3rd 11/16 -3 3/2 -1/3

BDF2opt 3/2− φn−2 −2 + 3φn−2 1/2− 3φn−2 -0.58/3

TABLE 4

Coefficients for backwards difference schemes [1]

A pseudo-time term (τ) is introduced into Eqn. (9.58), as in Ref. [92], to

minimize the error due to the linearization about the time level of n + 1. If δQ is

linearized about τ and assumed to be equal to δQm = Qm+1 − Qm, where m is the

current pseudo-time level, then the final form of the temporal equation can be written

as
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[(
V

∆τ
+
V φn+1

∆t

)
I − ∂Rm

∂Q

]
∆Qm = Rm−

V

∆t

(
φn+1 (Qm −Qn) + φn−1

(
Qn−1 −Qn

)
+ φn−2

(
Qn−2 −Qn

)
+ . . .

)
(9.59)

At each sub-iteration of m, the linear system in Eqn. (9.59)is iteratively solved

using a user-specified number of point Jacobi or Gauss-Seidel sweeps. When between

time-steps, the equations are advanced in pseudo time with local time stepping to ac-

celerate the solution to a steady state pseudo time. In order to accelerate convergence

in pseudo time, the CFL number can be ramped during the sub-iterations.

A temporal error control method[1] has been used to reduce the number of sub-

iterative loops by exiting the dual time stepping process when a specified criteria has

been met. This helps address the issue of the choice of the number of sub-iterations

to use when solving the flow equations. The temporal error is calculated by exam-

ining the difference in residual contribution of two different levels of time derivative

approximations. The sub-iteration loop will be terminated when the residuals drop

below a specific fraction of the temporal error norm.

2. Feature-Based Adaptation

FUN3D’s feature-based adaptation is a node based approach that uses anisotropic

tetrahedral adaptation. The mesh resolution is modified to match a desired quality via

a anisotropic metric calculated throughout the simulation.[84, 93, 94] The approach

in this paper focuses on using the vorticity magnitude at each node to determine the

local and global adaptation metric. First, the vorticity magnitude is used to form

an adaptation key, Kl,ω. This key is the vorticity magnitude delta across an edge

connecting two adjacent nodes n1 and n2, which is then scaled by the edge length, le.

Scaling Kl,ω by the edge length acts as a filter, emphasizing large changes in vorticity

across long edges, while reducing the change across smaller edges. This assists in the

adaptation of large cells first.
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Kl,ω = le
|ωn1| − |ωn2|

2
(9.60)

The local error adaptation intensity, Î, is then computed a for each node in the

domain. This is done by finding the maximum scaled key at each node where the

adaptation key is normalized by a user specified tolerance,Kt, thus:

Î = max

(
Kl,ω

Kt

)
edge

(9.61)

The selected Î is the edge with the greatest scaled vorticity delta connected to the

node Next, the new isotropic mesh size, h1, is calculated using an estimate of the

spacing from the original mesh, h0, and a coarsening factor C. In this study C = 1.1.

h1 = h0 min

(
C,

(
1

Î

)0.2
)

(9.62)

Finally, the anisotropic adaptation metric is derived using the scalar isotropic

mesh size (Eqn. (9.62)) and a vorticity-magnitude Hessian not discussed here. The

derivation of the anisotropic metric is detailed thoroughly in references [95, 96]. Dur-

ing the computation of the pitching motion, the metric is intersected in time to track

the areas that require adaptation. This allows areas vorticity propagates through to

be marked for adaptation. The metric is then passed to adaptation modules cur-

rently implemented in FUN3D to modify the mesh. The adaptation process provides

node insertion and deletion, edge swapping, and node movement to achieve the the

desired mesh density and quality necessary to match the derived metrics. The mesh

adaptation process has been described in several papers.[84, 96, 97]

The adaptation modules implemented in FUN3D haven been shown to work

well for both static inviscid[84] and viscous flows [98]; however, viscous adaptation

lacks the capability to modify the the surface geometry. The mesh can only be mod-

ified outside of the cells that define the boundary layer across the surface geometry.

Thus it is up to the user to ensure the surface geometry is adequately defined to
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capture the near wall boundary layer of the geometry. The practitioner can control

how much of the boundary layer mesh is adapted by freezing the mesh a specified

distance away from the surface. This capability has also been used in Ref.[98], and

will be used in this study.

D. Richardson Extrapolation

Preforming sensitivity studies on the spatial schemes of a numerical simula-

tion can sometimes be prohibitively computational expensive to conduct. Numerical

data is normally compared to experimental data to validate the computed solution.

However, experimental data is not always available, thus alternate routes must be

pursed to ensure that the simulations are converging onto a single answer. One pos-

sible method is to use Richardson Extrapolation [99] to estimate the fully converged

answer across two or three successively refined grids by a constant factor. The ex-

trapolation technique is used to estimate the order of the solution, and project out a

fully converged solution. This can help the practitioner estimate the error associated

with the simulation and determine whether further grid refinement is required.

The method to estimate the converge solution is straight forward and can be

done two different ways. The first, if the discretization order of solution is known,

only two grids with some refinement ratio r (for this study: 1.5) is required. The

converged solution can be found with

fh≈0
∼= f1 +

(f1 − f2)

(rp − 1)
(9.63)

Where fh≈0 is the exact solution for an infinitely refined grid or time step, p is the

formal order of accuracy of the spatial discretization, and f1 and f2 are the flow

variables of interest on the fine and coarse grid respectively. In the event that p is not

known, it can be estimated with a three refined grids that are refined at a constant

refinement ratio (r) value. To estimate p
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p =
ln
(

f3−f2
f2−f1

)
ln(r)

(9.64)

where f1 to f3 are the flow variables of interest on the finest to coarsest grid. Once p

is known, Eqn. 9.63 can be used. To estimate the error associated with the fine grid,

Eqn. 9.63 can be rewritten as

Efine =
(f1 − f2)

(rp − 1)
(9.65)

And the error for a coarse grid(s) can be found with:

Ecoarse =
rp(f1 − f2)

(rp − 1)
(9.66)

E. Grid Generation

The NACA0015 geometry was selected for this study as it was used in the

referenced experimental work. [33] A family of grids were generated using AFLR3[100]

for the spatial convergence study. AFLR3 (Advancing-Front/Local-Reconnection) is a

unstructured tetrahedral element grid generation code. An initial grid was uniformly

refined by a constant factor of 1.5. Thus each newly created grid had the number

of nodes defining the airfoil surface, and outer boundary spacing was increased by

a r factor of 1.5: ie if the outer boundary had 32 nodes, the new boundary would

have 48. Each grid was generated only with tetrahedral elements due to limitations

in the feature-based adaptation in FUN3D. With these settings, the family of grids

generated are presented in Table 5.
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Trailing Outer Initial Cell

h Airfoil Edge Boundary Height (10−5) gr Nodes

1 128 2 32 5.693 1.4000 5626

2 192 3 48 3.795 1.2515 16878

3 288 5 72 2.530 1.1613 36546

4 432 8 108 1.687 1.1048 82284

5 648 12 162 1.124 1.0687 185292

6 972 18 243 0.749 1.0453 419258

TABLE 5

Geometric settings for NACA0015 spatial study

Where gr is the geometric ratio of the boundary layer, and h is the current

grid number. An example of the family of grids created is shown in figure 65.
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(a) Initial Grid (h1) (b) Initial Domain (h1)

(c) Refined Grid (h5) (d) Refined Domain (h5)

Figure 65: Uniform Grid Refinement Around Airfoil

1. Flow Conditions and Kinematics

The flow conditions, as with the pitching kinematics are listed in Table 6 have

been taken from Piziali[33]. The airfoil is pitched about the quarter-chord location

following a the sinusoidal kinematic described as
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α = αm + α0sin

(
2πkM∞t

c

)
(9.67)

where α is the instantaneous angle of attack, αm is the mean angle of attack, α0 is

the pitch amplitude, k is the reduced pitching frequency, M∞ is the free stream Mach

number, t is the simulation time, and c is the airfoil chord length.

αm α0 k M∞ Re (106)

13.07 4.27 0.134 0.289 1.947

TABLE 6

Flow conditions and kinematics used for pitching airfoil

For the temporal sensitivity analysis, the time step was also varied. If the

time step is too large flow features may be improperly resolved, if too small, then

computational resources could be wasted. Like the grid generation, the time step was

consecutively refined, but by a factor of 2. Five levels of refinement were chosen to

test along side the spatial study, and are listed in Table 7. As i increases, so does the

number of steps taken per pitching cycle. The time step ∆t varied from 0.05 to 0.8,

which corresponds to the flow translating 1% to 23% of the airfoil’s chord (c).

i 1 2 3 4 5

steps 100 200 400 800 1600

∆t 0.8 0.4 0.2 0.1 0.05

∆x/c 0.23 0.12 0.06 0.03 0.01

TABLE 7

Tested time steps (∆t) used for temporal analysis, and the estimated flow convection

distance per time step (∆x/c).
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F. Uniform Grid Refinement

Before beginning the study on the pitching motion, the solver was benchmarked

to ensure spatial convergence would be seen with a static airfoil. The flow conditions

matched the conditions specified in Table 6 and the selected turbulence solver was the

one equation Spalart Allmaras. Figure 66 reports the steady state force coefficients

at α = 13.04o against (N−1)
1
2 , where N is the number of nodes in the mesh, reported

in Table 5. This assumes the characteristic edge length of the mesh, h, varies with

the inverse of the square root, h ≈ N−1/2, for a 2D grid. The spatial discretization

is also assumed to be second order, p = 2, thus flow variables of interest should vary

with h2.[84]

In figure 66, the bottom axis can be read from left to right moving from the

finest grid to the coarsest (h6 ← h1). The two plots show as the grid is refined, lift and

drag coefficients begin to converge. For comparison, the Richardson Extrapolation

is shown for a h = 0 grid. This simply verifies that as the grid is refined, the flow

solution begins to converge onto a single answer.
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Figure 66: Static lift, drag, and moment coefficients at an angle of 13.04o.

Figure 67 illustrates how the flow changes with uniform refinement. It can be
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seen that a large separation region is prevalent about the airfoil in figure 67a and is

greatly reduced in figure 67d. This helps illustrate the importance of grid resolution.

The flow features can dramatic change with the grid used.

(a) h1 (b) h3

(c) h5 (d) h6

Figure 67: Changes in vorticity with grid resolution of a steady state angle of attack

at 13.04o

1. 13 ± 4o Pitching Convergence

In this section, the spatial and temporal convergence of a pitching airfoil will

be focused on. Each grid specified in Table 5 was tested at each time-step listed in

Table 7, resulting in 36 unique combinations of grid density and time step sizing. It

is important to note: results from grid combinations h1, h2, 4t = 0.4, 0.8 will not be

discussed in the future sections.

Figures 68 and 69 show the averaged coefficient of lift and drag when the
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spatial and temporal resolutions are varied respectively. Figure 68 plots the effects

of grid density on the averaged lift and drag coefficients. Lift, and drag show a

strong dependence on the number of nodes used. As the spatial resolution of the

grid is increased, the magnitude of the averaged forces begin to approach to the

extrapolated value.

Temporal resolution, figure 69, has little effect on the averaged force coeffi-

cients. At each grid resolution, reducing the time step modifies the averaged force

coefficients little. Examining the instantaneous force coefficients,figure 70, through-

out the pitching cycle reveals a very different story. It can be seen that as the spatial

resolution is increased, the magnitude of the forces is modified but the temporal reso-

lution has control over the shape of the force profile through the cycle. As the spatial

resolution is increased, the flow features are better resolved due to increased grid

density, but can be damped due to a coarse temporal resolution . Thus the flow field

can be adequately resolved spatially, but not properly tracked through time. As time

is refined, the flow feature is better projected altering the shape of the force profile

through time.
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Figure 68: Lift, and drag coefficient variation due to selected spatial resolution of a

pitching airfoil between 13± 4o.
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Figure 69: Lift, and drag coefficient variation due to selected temporal resolution of

a pitching airfoil between 13± 4o.

2. Convergence Error

In order to conclude which grid and time step combination would give a satis-

factory result, the error associated with each spatial and temporal combination must

be compared. The error for averaged lift and drag coefficients were calculated us-

ing Eqn. 9.65 and 9.66 are reported in figure 71. The spatial error of the lift and

drag coefficients (figure 71a) is seen to plateau as the grid density approaches h6.

As discussed in the last section, the temporal resolution has a greater impact on the

instantaneous force coefficients rather than the averaged. Examining the temporal

error (figure 71b), the decrease in error becomes linear as the grid is refined and the

time step is reduced. However, the magnitude of error associated the averaged coeffi-

cients due to the temporal resolution is nearly two magnitudes lower than the spatial

related error. Thus the time step should be chosen from examining the instantaneous

force history and not the averaged error.
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Figure 70: Lift, and drag coefficient of a pitching airfoil between 13 ± 4o at ∆t =
0.05, 0.1, and 0.2.
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(a) Lift and drag coefficient error due to grid density.
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(b) Lift and drag coefficient error due to time step.

Figure 71: Computed lift and drag coefficient errors due to selected spatial and

temporal resolutions.

G. Feature-Based Adaptation

In order to investigate whether feature adaption can accelerate the reduction

of spatial error using less nodes, a grid outside of the asymptotic convergence of
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lift and drag was selected. To prevent erroneous solutions from being developed

from an under-refined grid, h4 was selected due to being outside of the lift and drag

convergence seen in figure 70 and 71a. Selecting h4 for refinement will demonstrate

whether feature-based adaptation is able to bring a grid (h4) to a similar solution

predicted by (h6) without input by the user. A time step of ∆t = 0.1 was used, and

all flow conditions remained equal to those specified in Table 6.

Before discussing the settings used, the process used to determine the adapta-

tion metric must be introduced. Figure 72 illustrates the iterative process used. An

initial grid, h4, is supplied to the flow solver. After each time step, the adaptation

metric is computed with the current flow solution, and then intersected with the pre-

vious calculated metric. The flow solution is advanced in time, and the grid moved.

This process repeats until four pitching cycles were completed. The adaptation met-

ric is then passed to the grid adaptation modules implemented in FUN3D. The grid

is then iterated until the adaptation metric is satisfied. The grid is then saved, and

passed back to the flow solver and the flow entire process repeats.

Flow Solver Grid Adaptation

Metric
Satisfied?

Iterate
Adaptation

Initial Grid

Save
Adapted Grid

Compute 
Adaptation Metric

Four pitching 
cycles

complete?

Advance Time, 
and Move Grid No

Yes

Yes

No

Figure 72: Feature-based adaptation process

Each flow solver and adaptation iteration possessed the same flow settings
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as previously stated, and was allowed to iterate 6 times. During each iteration, the

adaptation was allowed to increase, or decrease cell volume by moving, adding and/or

removing nodes, or swapping edges. The maximum desired node count was set to

an equivalent node count of h6 (≈ 400, 000 nodes) after 6 iterations. Each iteration

allowed the grid to increase the global node count in increments of 18%. This did

not mean the adapted grid reached this maximum node count. At each adaptation

iteration, the grid was only allowed to grow at a specified rate to ensure needless grid

growth was avoided. The boundary layer was frozen at a y+ distance of 100 to keep

the boundary layer from being modified.

1. Adapted Mesh

Before discussing the results, the adapted mesh produced by the feature adap-

tation will be examined. Not all meshes will be shown, as it would be superfluous.

Figure 73 shows three meshes from a selection of iteration steps 0 (initial),4, and 6.

Comparing the initial and the 4th iteration of the mesh, it is easily seen there has

been significantly modification. Adaptation has mainly occurred in the wake and

around the airfoil, with little adaptation occurring elsewhere. Comparing steps 4,

and 6, it is difficult to distinguish any change in the mesh. It was confirmed through

the examination of the global node count that the node density was increased, and

can be seen in figure 74. To better observe how the grid was adapted, the change in

cell volume was examined.
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(a) Initial Grid (b) 4th Adaptation (c) 6th Adaptation

Figure 73: The initial, 4th, and 6th mesh adaptation of the selected h4 grid.
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Figure 74: Node increase with adaptation at each iteration
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By observing the change in cell volume from each iteration step, how and where

the mesh was adapted is easily distinguished. By calculating the cell volume in each

mesh, and dividing them, a ratio of the change in cell volume could be observed such

that:

Rcv =
Vn−1

Vn
(9.68)

Where Rcv is the ratio of change in cell volume, V is the cell volume, and n is the

iteration number. If Rcv > 1 the cell volume between the two iterations was reduced

(refinement), if Rcv < 1 cell volume was decreased (coarsening), finally if Rcv ≈ 1

there was little to no change in the cell. This gives a straight forward visualization

of where and how the mesh was adapted. Results of the change in cell volume are

shown in figure 75 for iterations 0 through 6, and the cumulative change.

Looking at the overall change in Rcv in figure 75 the largest change in cell

volume occur in the first 4 iterations in the wake of the airfoil, similar to Ref.[84] for

a hypersonic case. As the iteration count increases towards 6, there is less change

observed in the domain. Figure 75f illustrates the overall change in cell volume be-

tween iterations 0 and 6 which shows some changes that were not previously observed.

Coarsening has appeared around the airfoil itself which did not show in the single con-

secutive cell ratio plots. This coarsening did however have an affect on the resulting

flow field, and will be discussed in the next section.

2. Adapted Flow Field

Immediate improvements to the airfoil wake can be seen from the grid adapta-

tion. Figure 76 plots the cycle averaged vorticity magnitude produced by the pitching

airfoil using the initial, 2nd, 4th, and 6th adapted meshes. The cycle average was cal-

culated by averaging the vorticity magnitude at each node during two pitching cycles.

Unlike the change in cell volume, where the greatest change was observed in the first

few iteration, the vorticity continues to become better resolved as the adaptation
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(a) Iteration 0 to 1 (b) Iteration 1 to 2

(c) Iteration 2 to 3 (d) Iteration 3 to 4

(e) Iteration 4 to 5 (f) Overall Change (0 to 6)

Figure 75: Change in cell volume ratio (Rcv) between consecutive adaptation iteration
steps. (Red) Rcv > 1, (Green) Rcv ≈ 1, (Blue) Rcv < 1
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continues. After the second adaptation, the wake of the airfoil is carried out twice

the distance compared to the initial grid. As the adaptation continues, the average

vorticity magnitude increases further downstream, and the wake becomes less diffuse.
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(a) Initial Grid

(b) 2th Adaptation

(c) 4th Adaptation

(d) 6th Adaptation

Figure 76: Cycle averaged vorticity magnitude of the initial, 2nd, 4th, and 6th adapted

meshes.

As discussed previously, figure 75f revealed coarsening occurring around the
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airfoil during consecutive adaptation. Snapshots were taken at the mean angle of

attack to illustrate the effects of adapted coarsening had on the flow field. The initial

mesh (figure 77a) shows vorticity along the upper surface of the airfoil detaching at

approximately at x/c = 0.75. At the second iteration (figure 77b), coarsening of

the mesh can be seen near the surface of the airfoil and vorticity detaches sooner

(approximately x/c = 0.25). Vorticity begins to be reattached as the adaptation and

coarsening continues (figure 77c) but the vorticity magnitude is weaker compared to

the initial grid. This is the result of inadequate grid resolution near the surface of

the airfoil, which results in the reduction of force coefficients (shown in figure 78).

(a) Initial Mesh (b) Iteration 2 (c) Iteration 6

Figure 77: Coarsening of mesh and changes in vorticity close to the airfoil surface

due to mesh adaptation.
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3. Adapted Forces and Error

Figures 78 plots the instantaneous lift and drag coefficients for four selected

adaptation iterations: the initial, 2nd, 4th, and 6th adapted meshes listed as I0, I2, I4,

and I6 respectively. Like the grid adaptation, the force coefficients show their largest

change in the first few adaptations. This change is due to the effect of slow coarsening

around the airfoil that occurs throughout the adaptation history observed in figure

75. However, as the grid continues to adapt, the instantaneous forces first diverge

away from I0 and then begin to converge back towards I0.
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Figure 78: Instantaneous lift, drag, and moment coefficients of the initial, 2nd, 4th,

and 6th adapted meshes.

Examining the force averages, and errors (figure 79) show similar results. The

two force coefficients were seen to diverge quickly away from the expected trend

of approaching the uniform refinement values. The first adaptation results in an

approximate 50% reduction in the lift coefficient, with tripling of the average drag.

Due forces changing quickest in the first set of adaptations, the spatial error associated

with the adapted grids resulted in a “noisy” error plot. However, adaptations 3

through 6 show a rate of error reduction greater than the uniform refinement. While
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coarsening affected the flow field, the adaptation did continue to reduce the spatial

error from the grid.

In summary, the grid adaptation was seen to have its largest effects in the first

few iterations. Slow coarsening of the mesh around the airfoil resulted in altered lift

and drag coefficients. However, refinement of the wake of the airfoil allowed vorticity

to be carried out significantly further than the initial mesh. Thus feature-based

adaptation can be an effective means of wake refinement for dynamic stall when the

practitioner has no prior knowledge of the wake characteristics.
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Figure 79: Average and error of lift, drag, and moment coefficients of adapted grids

H. Conclusion

A dynamic stall motion was selected from a previous experimental study that

replicates sinusoidal pitching motion. A family of uniformly refined grids was gener-

ated and evaluated to find the reduction in spatial and temporal error associated with

each grid. It was found as the grids were uniformly refined, the average spatial error
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for each grid was reduced. The selected time step was found to impact the average

forces little, but had a large effect on the instantaneous force profile; primarily the

down-stroke of the motion.

For the feature-based adaptation, a single grid and time stepping combination

was selected from the uniformly refined grid family, and tested as to whether feature

adaption would improve the rate of convergence as the grid resolution was increased.

Coarsening occurred around the airfoil altering the vorticity being generated by the

wing. This reduced the strength of vorticity on the surface of the airfoil, and initially

reduced the instantaneous force coefficients. However, as the adaptation continues,

instantaneous forces were seen to converge near their original values. In the examina-

tion of the spatial errors, the rate of error reduction was seen to be greater than that

of the uniform refinement after the second adaptation. Significant wake refinement

was also observed allowing vorticity to be carried well behind the airfoil.
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CHAPTER X

CONCLUSIONS

The objective of this dissertation was to numerically investigate the dynamic

stall flow phenomena of a flat plate wing with various aspect ratios undergoing a pitch-

up and perching motion at a Reynolds number of 500. The motions were investigated

using 2D and 3D numerical techniques analyzing the simulated aerodynamic forces as

well as the circulation developed by the LEV. Special attention was paid the dynamics

of the LEV circulation across the span of each wing. The dissertation was broken

into several key chapters that examined specific components of the effects of aspect

ratio, reduced pitch rate, and motion kinematics.

Reynolds number effects on 2D pitching wings - The pitching motion was found

to be Reynolds number sensitive. Peak lift was found to increase with Reynolds

number, while the noncirculatory forces added by the rotational acceleration at

the beginning of the perching motion were found to be insensitive to Reynolds

number. Vortices generated by the motion were also found to be Reynolds

number dependent. As Reynolds number increased, the vortices increased in

interior vorticity magnitude and became more compact. It was later concluded

to be due to the lessening effect of viscosity damping of the the vorticity.

Kinematic effects on pitching and perching wings - Three reduced pitch rates

were selected in order to investigate the effect of kinematics on the pitching and

perching maneuvers on the resultant lift and drag. As pitch rate increased,

lift, drag, and stall angle also increased. The LEV was seen to become smaller

with increasing pitch rate with increased vorticity magnitudes. The addition of
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deceleration (perching) resulted in increased lift and drag coefficients, as well as

stall angle. The LEV was seen to be smaller in size, and weaker. Additionally

the LEV propagated away slowly, and remained attached even at 90◦ with the

higher pitch rate.

Aspect ratio effects on pitching and perching - Three aspect ratios were tested

at the two higher K values. Aspect ratio was seen to increase lift and drag,

however it also decreased stall angle. The results were converging to the 2D

results with increasing aspect ratio, meaning the flow field and forces were be-

coming prominently 2D. This was due to the lessening interaction of the tip

vortices on the LEV development. At the low aspect ratio, tip vortices weak-

ened the generated LEV. Reduced pitch rate was found to suppress the effects

of tip vortices, due to the tip vortices forming slower than the LEV.

Circulatory and noncirculatory analysis of a pitching wings - Forces gener-

ated by a pitching wing were seperated into two component forces: circulatory

and noncirculatory. Using the Theodorsen model, forces on a 2D wing were

separated into lift produced by the LEV (circulatory forces) and apparent mass

(noncirculatory forces). Noncirculatory forces were only found to account for

10-20% of the total forces. The circulation of the LEV was found to match well

with the actual lift forces when the LEV was attached to the wing, meaning

the LEV is a good indicator of lift produced. This however broke down as the

LEV moved away from the wing.

The size of the LEV was found to be independent of the pitching kinematics,

and dependent on time. Viscosity diffuses the LEV, resulting in a larger vortex

with weaker vorticity.

Circulation development of a 3D LEV - The 2D circulation study was contin-

ued with the finite aspect ratio wings; however only the circulation of the LEV

was analyzed. Spanwise circulation was seen to increase and become more uni-
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form with aspect ratio. The reduced pitch rate decreased the influence of tip

vortices, allowing for LEV circulation to extend to the further along the plate.

For the perching wings, the change in pitch rate illustrated the effects of the

retention of the LEV after stall. Due to the zero free stream velocity, the LEV

stayed attached to the wing extending its influence over a larger angle of attack.

Feature based adaptation of dynamic stall - Work interrelated to the simula-

tion of dynamic stall was also conduced with NASA Langley. Inadequate grid

resolution can alter the resulting flow field in the wake of a dynamic stall airfoil.

Feature based methods were investigated for their effectiveness in reducing spa-

tial error due to user generated meshes. Feature based adaptation was found

to be effective at retaining vortex structures propagating away form the airfoil;

however was also found to coarsen mesh in key locations. The adaptation pro-

cess did recover close to the original forces; however did not improve on overall

results.

In summary, the development of the LEV was found to be an important feature

in the production of forces by a pitching or perching wing. For MAV development to

continue, research must investigate processes to take advantage of the propagation of

the LEV. Wing aspect ratio promotes the increases in uniformity of LEV development,

while reduced pitch rate determines the timing of the LEV and tip vortex formation.

A. Future Work

To build upon the work conducted in this dissertation, there are several areas

that should be investigated to better our understanding of the LEV development for

perching wings.

Vortex Tracking - Understanding how the LEV moves across the wing in both 2D

and 3D can better improve our understanding of the rates at which lift and

drag are produced and lost with vortex location. With the addition of vortex
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location, it may be possible to directly calculate the vortex circulation or wing

lift from one another.

Improved Vortex Identification - The Q-Criterion is vulnerable to misidentifying

vortices in areas of high rotational shear. This commonly occurs in areas where

flow is wrapped around a corner (ie: leading edge). Several other methods exist

in literature. A recommended scheme is the λ2 method which uses the velocity

orbiting a point to find vortices.

Geometry Effects - Different shaped planforms may reveal different circulation

patterns. Specifically insect shaped wings may show improved LEV develop-

ment and retention, or the lessening effects of tip vortices during perching.

Broader Range of K - In this dissertation, only three reduced rates were tested

due to the computational costs involved with the 3D motions.
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APPENDIX

Nomenclature

AR Aspect ratio

a Smoothing parameter

A Area

α Angle of attack

α̇ Rotational velocity

α̈ Rotational acceleration

b Span length

c Chord

CD Drag coefficient

CL Lift coefficient

CL,C Circulatory lift coefficient

CL,M A lift coefficient

CL,NC Noncirculatory lift coefficient

CN Normal force

CW Clockwise

Γ Circulation

K Reduced pitching rate

LEV Leading edge vortex

ωz Vorticity about the z-axis

Q Q-Criterion

r Radius

Re Reynolds number

t Time

U Free stream velocity

V Wing velocity

V̇ Wing deceleration

z Span location
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