
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2011

A forward dynamics simulation study of increasing
load on the anterior cruciate ligament of the knee,
for young women performing recreational drop
jump activities.
Julia Kar
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Kar, Julia, "A forward dynamics simulation study of increasing load on the anterior cruciate ligament of the knee, for young women
performing recreational drop jump activities." (2011). Electronic Theses and Dissertations. Paper 724.
https://doi.org/10.18297/etd/724

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/724
mailto:thinkir@louisville.edu


A FORWARD DYNAMICS SIMULATION STUDY OF INCREASING LOAD ON 
THE ANTERIOR CRUCIATE LIGAMENT OF THE KNEE, FOR YOUNG 
WOMEN PERFORMING RECREATIONAL DROP JUMP ACTIVITIES 

By 

Julia Kar 
B.E. University of Auckland, 1996 
M.S. University of Louisville, 2008 

A Dissertation 
Submitted to the Faculty of the 

Speed School of Engineering, University of Louisville 
for the Degree of 

Doctor of Philosophy 

Department of Mechanical Engineering 
University of Louisville 

Louisville, Kentucky 

May 2011 



Copyright© 2011 by Julia Kar 

All Rights Reserved 





ii 
 

A FORWARD DYNAMICS SIMULATION STUDY OF INCREASING LOAD ON 
THE ANTERIOR CRUCIATE LIGAMENT OF THE KNEE, FOR YOUNG 
WOMEN PERFORMING RECREATIONAL DROP JUMP ACTIVITIES 

 
 
 
 

By 
 
 
 
 

Julia Kar 
B.E., University of Auckland, 1995 
M.S., University of Louisville, 2008 

 
 
 

A Dissertation Approved on 
 
 
 

April 12 2011 
 
 
 
 
 
 

by the following Dissertation Committee: 
 
 

       
Dissertation Director (Peter M. Quesada) 

 
 

       
 
 
 

       
 
 
 

       
 
 
 

       
 



DEDICATION 

This dissertation is dedicated to my family. 

III 



ACKNOWLEDGEMENT 

I acknowledge the help of my family, mentors, and advisors. 

IV 



ABSTRACT 

A FORWARD DYNAMICS SIMULATION STUDY OF INCREASING LOAD ON 
THE ANTERIOR CRUCIATE LIGAMENT OF THE KNEE, FOR YOUNG 
WOMEN PERFORMING RECREATIONAL DROP JUMP ACTIVITIES 

Julia Kar 

April 12,2011 

Anterior Cruciate Ligament (ACL) injuries are among the most common injuries incurred 

by both recreational and professional athletes. ACL injuries often occur during popular 

contact sports like basketball, football, volleyball and baseball, and non-contact activities 

like aerobics, jogging and running. Non-contact actions like jumping, sprinting and side-

cutting that involve sudden or rapid changes in motion may lead to ACL injuries. At the 

instance of an injury, the knee joint muscles and ligaments typically undergo extremely 

high loads. The ACL, which is an integral part of the knee joint undergo high strain rates 

and rapid energy absorption, and consequently get injured. As has been shown by others, 

ACL injury is related to a number of dynamic variables of the knee joint. 

An important observation made in recent years is that recreational (also professional) 

female athletes have higher incidences of noncontact ACL injuries than males 33, 35. The 

primary focus of this study was to determine effects of several dynamic variables, 

associated with both knee and ACL, during normal recreational drop-jump activities 

performed by young female athletes. Subjects recruited were eleven young adult female 

recreational athletes who felt comfortable participating in the drop-jump activities, from 
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heights of 30, 40 and 50 cm. Using a simulation environment to recreate the trials, 

changes in ACL load and strain were observed along with several dynamic variables 

related to ACL load and strain, among which the three most important were, 1. knee 

flexion, 2. knee valgus (abduction) which may be accompanied by increased internal 

rotation, and, 3. flexor to extensor muscle recruitment ratios, i.e., the co-contraction of 

flexor and extensor muscles. 

Observations from the above simulations formed the basis of the final step involving 

forward dynamic simulation, where the knee joint was subject to higher valgus by 

decreasing the distance between the knees (medial translation). Significant changes to 

ACL load and strain were seen in the added medial translation simulations compared to 

the simulations from the original jumps. Mean fiber strain for the additional valgus 

simulation increased from 8.82 ± 0.08 % to 11.82 ± 0.04 % for the right ACL and from 

8.18 ± 0.08 % to 11.34 ± 0.06 % for the left. Mean ACL tensile force increased from 

1058.19 ± 2.04 N to 1102.19 ± 1.86 N for the right ACL and from 1056.77 ± 12.36 N to 

1099.99 ± 2.02 N for the left. Average peak (from eleven subjects) ACL tensile force 

increased from 1165.36 ± 123.83 N to 1197.07 ± 129.11 N for the right ACL and from 

1160.64 ± 121.32 N to 1193.11 ± 130.16 N for the left. 
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CHAPTER I 

INTRODUCTION 

Today there is an increasing demand to understand human movement in daily activities 

like work, sports and recreation. Human movement science studies the bio-mechanical 

aspects of motion and often involves a combined study of muscle physiology and 

neurological synapses that are essential to human motion. Studying how the human body 

reacts (kinematics) to its surrounding environment and external stimuli also contribute to 

the science of human movement. 

Along with everyday motion, aspects of injuries, disabilities and diseases are essential 

parts of human movement science. Finding effective methods for prevention of injury 

and rehabilitation has now become important also. Research in this area is known as 

injury biomechanics. It generally focuses on studying excessive deformation or strain 

incurred by a particular segment of the human anatomy, for example, rupturing the knee 

ACL during intense lower extremity activities. 

More than 200,000 new ACL injuries occur in the United States each year, either from 

direct or indirect loading of the knee 35, 39, 42, 45, of which estimated 38,000 33 happen to 

adolescent and young adult women athletes, both professional and recreational 12,34,36, 79, 

80. Around 70% to 80% of ACL injuries happen due to indirect loads and are classified as 
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non-contact 35, 48. It is conceived that one common form of non-contact ACL injury 

happens when athletes land in a knock-knee position during drop-jumps. Other than the 

knock-knee non-contact condition, ACL injury may also happen when athletes stop 

suddenly or perform twisting or cutting actions 30.33.34. Often the athlete will hear or feel 

a "pop" at the time of injury and sometimes they may experience brief hyperextension of 

the knee joint. Victims are generally unable to continue activity right after injury and the 

injured knee swells considerably. 

Physical examination for ACL injury includes the Lachman Physical Examination and 

Anterior Drawer tests. Radiographic images and MRls are also used to confirm ACL 

injury diagnoses. Figure 1 (over the page) shows the MRI image of an intact ACL and 

also the Posterior Cruciate Ligament (PCL) that interacts with the ACL in balancing the 

knee. ACL injuries range from a partial tear to a complete tear to bone avulsion. 

Concurrent meniscal injuries are also common. 

Partial and complete ACL tears are repaired with sutures or reconstructed using a graft. 

In these situations, bone avulsions are likely to happen with tearing away of bony 

fragments. Both surgical and non-surgical treatments are available to patients. Non­

surgical treatment is generally an option for patients with little or no athletic participation 

and for patients unable to participate in post-surgery rehabilitation. However, if non­

operative treatment fails, the only option left is that of operative treatment. Estimated cost 

of surgery per injury is approximately $17,000 33. 
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Figure 1. Sagittal MRI image of the knee joint showing the Anterior Cruciate Ligament 
and Posterior Cruciate Ligament. 
Courtesy: Free media at www.wikipedia.org. 

While there are well developed diagnostic and rehabilitation techniques for ACL injury, 

prevention of ACL injury is still in its primitive stage. In order to understand ACL injury, 

a close investigation of the dynamic variables 62, 63, 64, 70, 73 that contribute toward or cause 

elevated loading of the ACL, was required. While everyday activities are studied in a 

human movement laboratory, one cannot expect to reproduce dangerous injuries within 

the laboratory. Therefore one must rely on the athlete's normal performance and leave the 

case of excessive loading to simulation studies. Accordingly for this study, athletes 
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performed drop-jumps under circumstances of reasonably safe conditions. As subjects 

performed the drop-jumps from different heights, the dynamic variables related to ACL 

and surrounding muscles were monitored. These variables were then used to reproduce 

the drop-jumps within a simulation environment. The ultimate goal was to determine the 

loading effect on ACL and surrounding muscles, by changing the related variables, inside 

the safe simulation environment. The simulation was accomplished using a forward 

dynamics tool from OpenSim 2.20 64 which has the capability to generate results through 

a highly optimized sparse solver. 
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CHAPTER II 

BACKGROUND AND THEORY 

Before the actual test setup and procedure are discussed, certain terms, concepts and 

current technologies utilized here will be introduced and discussed. The first part of this 

chapter explains the fundamental concepts involved in human movement study. An 

introduction to the ACL, its structure and its deformation behavior is made. Following 

that, a method of modeling the human body as a system of multiple rigid body segments 

is explained, as are methods of acquiring human movement data. Finally, methods of 

dynamic simulation with a complete musculoskeletal model, comprised of both rigid 

body segments and soft tissues (muscles, tendons, ligaments), are explained. 

2.1. Kinesiology 

Kinesiology is a science also known as Human Kinetics, and involves the analysis of 

human movement. It focuses on how the body functions and moves. The Kinesiologist 

assesses bodily movements and performance in the areas of sports, recreation, work 

environment and other daily activities. Prevention of injuries to ligaments like the ACL 

is a major challenge faced in modern day kinesiology. The important aspects III 

kinesiology, required to study the ACL are discussed in the following sections. 
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2.2. Anterior Cruciate Ligament (ACL) 

The anterior cruciate ligament is one of the four major ligaments of the knee as shown in 

Figure 2. It is an articulating ligament (a moveable ligament that aids joint motion) of the 

knee joint that connects the inter-condyloidic eminence of the tibia to the lateral condyle 

of the femur. The ACL's main function is preventing excessive twisting and forward 

translation of the tibia in relation to the femur. Second only to ligaments of the ankle 

(usually posterior ones like the anterior talo-fibular), the ACL bears some of the highest 

loads during activities involving lower extremities 42. While Figure 2 shows the location 

of the ACL in the knee, Figure 3 shows the musculature that surround and articulate the 

knee joint. 

Anter ior 
Cruciate 
Ligament 

Lateral 

Latera l 
Cruciate 
Ligamen t 

Posterior 
Cruciate 
Ligament 

""'"""_ Medial 
;:r-:::;~-=-.) Men iscu Ie 

Figure 2. Location of main ligaments and bones of the knee. Top surface of tibia 
showing where both anterior cruciate ligament (ACL) and posterior cruciate ligament 
(PCL) attach. 
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Sartorius -f.Hj~ 

Quadriceps--'~~~'lll1 

Vastus 
Lateralis --.... t~ 

Vastus --...... ~WJ/II 
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Figure 3. [a]: Front of knee with the quadriceps muscles. [b]: Back of knee with the 
gastrocnemius muscles and the hamstring muscle. 

2.3. ACL Structure and Mechanics 

Ligaments (like tendons) are generally composed of Type I collagen fibrils, a 

proteoglycan matrix and fibroblasts (cells) arranged in parallel rows. Ligaments generally 

consist of hierarchical arrangement of substructures as shown in Figure 4[a]. The 

structural characteristic at the fibril level plays the most significant role in the mechanics 

of ligaments. In a non-stretched ligament the fibrils are crimped, the crimp of the fibril 

unfolds as the ligament lengthens. This ability to crimp makes the ligament deform in a 

non-linear way when progressively loaded as Kastelic et aI., 1978, points out 40. The 
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non-linear behavior is shown in Figure 4[b]. In the beginning at the 'toe' region, the 

crimp of the collagen fibrils are stretching out and relatively low stiffness occurs in the 

first two regions . After most collagen fibrils straighten out, the collagen fibril backbone 

itself starts stretching, giving rise to higher material stiffness 9, 40. In the third stage 

individual fibrils within the ligament begin to fail contributing to accumulated damage, 

which finally ruptures the complete structure. 
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400 
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I 

300 REGION: 
I 

RUPTURE 
200 

I 

100 

0 Deformation 
0 2 4 6 8 10 

b 

Figure 4. [a]. Ligament hierarchical structure complete with fibrils and collagen showing 
the crimp in fascicles or fibril bundles. [b]. Load deformation curve showing the 
nonlinear behavior from an in-vitro rabbit ligament experiment. 
Source. http.//www.engin.umich.edu/class/bme456Iligtenlligten.htm 
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2.4. Characteristics of A CL Injury 

The ACL is most commonly damaged In noncontact sporting maneuvers such as 

sprinting, side-cutting and jumping (Section 1). For example when someone tries to 

rapidly change direction with the leading leg out, the ACL is either fully or partially 

extended 33, 47, 58 to counteract twisting of the knee. If the knee is locked, and the leg is 

firmly planted, the ACL is most likely to be strained to the point of yielding. 

The study primarily focuses on the three most common factors that influence ACL loads 

during the execution of a drop-jump, as mentioned in Chapter 1. These factors include 

decreased knee flexion, increased knee valgus and decreased knee flexor to extensor 

muscle recruitment and are: 

Low magnitude of knee flexion at high loads. This causes high moments and 

compressive forces in the knee. The combination results in higher energy being absorbed 

by the knee. 

Large angle of valgus of the knee. This causes outward motion of the lower leg away 

from the medial plane. With valgus, there generally is extreme abduction of the lower leg 

accompanied by extreme eversion of the foot where both lower leg and foot move away 

from the body's medial plane. As McLean et sl., 2005, pointed out only sagittal plane 

knee motion does not explain ACL injury 44. 
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Low knee flexor/extensor recruitment ratio. This implies that the activations of the 

knee flexor muscles are low compared to those of the extensor muscles. More often 

conditions such as neurological imbalances cause low activation in the flexor muscles. If 

at the same time the extensor muscles have normal function, an imbalance of torques 

happen at the knee joint affecting both ACL and PCL. 

2.5. Kinematics 

Kinematics is the study of motion of particle(s) and their time derivates, velocity and 

acceleration. In human movement, segments and joints are considered a system of 

particles that form a rigid body and undergo both translational and rotational motion 43.66, 

76, 77. The rule that all particles in a rigid body undergo the same rotational motion is an 

important feature of rigid body kinematics. Anatomical kinematic data is presented 

according to a right handed (RH) reference coordinate system called the global 

coordinate system as shown in Figure 5[a]. In the RH system the direction of positive 

rotation is anticlockwise around the positive axis normal to the plane of rotation. Figure 

5[b] shows the directions of rotation of individual segments at the joints mostly in the 

Sagittal plane, even though other directions are possible to some extent. 
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Figure 5. [a]: Orientation of the global reference coordinates system (GCS) with main 
directions of translation and main planes of rotation. [b]: Moments at the three main 
joints of the lower body. The moment directions depend on the direction of extension of 
the distal segment. 

2.6. Human Body Model 

To recreate ACL injury within a simulation environment, the first requirement was to 

develop an anatomical model of the human lower extremities. Modeling the lower 

extremities, the left and right legs, involve dividing each leg into three distinct segments. 

the thigh, the shank and the foot and its comprehensive details are given in Winter, 1990, 

also shown in Figure 6 76 . Description of the abbreviated labels used in Figure 6 is given 

in Appendix D. 
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) Hip (Upper body) 

Figure 6. Three main segments of the lower extremities. Forces and moments are named 
according to the joint and segment names where they act. FGRF implies ground reaction 
force acting on the foot when it is in contact with the ground. 
See Appendix D for a description of terms. 

The upper body model that includes the torso, shoulders, back, head and arms have been 

left out of this discussion. The three segments per leg are linked segments and are held 

together by the hip, knee and ankle joints. The joints function to cause relative motion 

between the segments and also constrain such motion mostly (but not always) to rotation 

in a single plane. Forces and moments acting at each joint are named according to the 

joints and segments where they act. For example, the force acting on the ankle joint 

attached to the foot is termed F AKiFT while the force acting on the ankle joint attached to 
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the shank is termed F AKiSH. The weight of each segment at its center of mass (COM) is 

defined by the segment name, such as WFT, W SH and WTH • The ground reaction force 

(FGRF) and moment (T GRF) act on the foot segment only when there is transmission of 

force and moment between the foot and the ground during ground contact activities such 

as walking, running, and jumping. 

Several important assumptions apply to the dynamic model of the lower 

.. 10 23 76 h' h extremItIes ' , w IC are, 

1. All segments are considered rigid bodies. 

2. Each segment consists of a group of muscles and bones of constant mass all 

attached to hinged joints at the two ends of the segment. 

3. The location of the COM for each segment, calculated from anthropometric data, 

remain fixed. 

4. The length of the segment, defined by its longest bone, remains unchanged in 

motion. During activation, muscle length changes do not cause changes in the 

segment length. 

5. The mass moment of inertia about the segment COM remains constant at all times 

during motion. 

2.7. Joint and Segment Kinematics 

The two segments connecting at a joint are called distal and proximal segments with the 

distal segment being closest to the ground. Joint motion is perceived as the motion of the 

distal segment relative to the proximal one. As the body moves, the relative positions 
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between the two rigid body segments attached at the common joint change. With such 

motion segments and joints both translate and rotate. 

One of the key features in joint kinematics is the orientation angles between the distal and 

the proximal segments. During motion, aside from translation, the change in orientation 

between the two segments or the orientation of a segment relative to its initial position is 

seen as a series of rotations referenced to a three dimensional co-ordinate system. The 

new orientation is quantified as the result of these sequential rotations about the three 

coordinate axes. Figure 7 shows the orientation of the unchanged reference frame and the 

three planes of rotations, and the final changed reference frame. 

Y' 

'\.---t---Y', yH ~-'--- Y" 

X,X' 
X" X" X' 

Figure 7. Transformation from the [x y z] system to the [x'" y'" z"'] system using the 
Cardan system of rotation. 

Out of several 3D sequences, the Cardan sequence of rotation is the most widely used in 

human movement analysis 66, 76, 77. In a common Cardan sequence the first rotation is in 

the y-z plane (flexion-extension). The second is in the x-z plane (abduction/adduction). 

The third and final rotation happens in the x-y plane (internal/external) rotation. Details 
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on deriving the rotation matrix are given in Winter et aI, 1990 32
. The Cardan sequence is 

most suitable for the purposes of this study since its planes of rotation are aligned with 

the usual human body planes (Figure 5a). The 3x3 rotation matrix using the three angles 

of rotation is given by 

[
Xl [e(e] )e(IfIj ) s(ep] )s(e] )e(IfI, )+e(epj )e(IfI]) -e(ep] )s(e] )e(IfI] )+s(ep] )s(IfI] )jx.·l 
Y = -e(e] )S(IfI]) -s(ep] )s(e] )S(IfI] )+e(epj )e(IfI,) e(ep] )s(ej )S(IfI, )+s(ep, )e(IfI,) Y 

Z see] ) -s(ep] )e(e, ) e(ep] )e(e] ) Z 

(1) 

where the proximal [x' y' z1 coordinate system is rotated into the distal [x'" y'" z"1 

coordinate system. 

2.8. Collection of three Dimensional Kinematic Data 

A common method of acquiring three dimensional kinematic data is by using a multi-

camera setup. Using two dimensional position data captured by each camera and a 

camera calibration matrix, the planar image data is reconstructed into three dimensional 

spatial data. Several reflective markers are placed at strategic points on the subject under 

study. When a marker is detected by a minimum of two cameras, the digitized positional 

data are sent to a data acquisition system, where they are then reconstructed into spatial 

coordinates. 

Shapiro et aI. in 1978 46, Dapena et aI. in 1982 14 and Hollister, et aI., 1993 38 are among 

the pioneers who developed the technique for three dimensional reconstruction from two 

dimensional cine images. A brief description of this reconstruction technique called 

Direct Linear Transformation (DLT) method is given in the following paragraph. 
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The purpose of DLT is to convert two dimensional image plane data (from the cameras) 

into three dimensional objects space data by the use of a three dimensional conversion 

matrix. The matrix, which contains eleven independent parameters, is constructed using a 

minimum set of six non co-linear points identified by the cameras. Naturally, all control 

points have pre-determined locations in three dimensions. When more than six points are 

used, the redundant points are incorporated into the DLT calculations by using a least 

squares method. Once DLT parameters are determined, positions of markers placed on 

subjects are ready to be converted into three dimensional data. In 1988 Hatze et al. 

proposed a high precision method of three dimensional object space reconstruction called 

the Modified DLT method 32. The motion acquisition application, Evart™ 5.0, made by 

Motion Analysis Corporation, Santa Rosa, CA, used for this study utilizes the modified 

DLT method. 

2.9. Kinetics 

Fundamental to the analysis of human dynamic systems are the computations of forces, 

moments, energy flows, stresses and strains. Katz et aI., 1939, followed by Spoor et aI., 

1980 and Winter et aI., 1990 were among the first to develop methods for computing 

rigid body dynamics for the human body 10,41,66,75,76,77. These kinetic data are generally 

computed at the segment COM and the joints. At a particular segment COM, the net 

force and moment are considered internal. In addition, external forces like ground 

reaction forces and segment weight as well as external moments are applied at the joints 

or some part of the segment. For the joints, the net force and moment are the summation 

of forces and moments applied by muscles, ligaments and tendons in the distal and 
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proximal segments as well as external forces such as gravitational and ground reaction 

forces. Following the computation of the net force, other kinetic data like moments, 

energy, power, stresses and strains may be computed 35,36. 

All kinetic data, including forces, are presented according to the GCS shown in Figure 

5[a]. Figure 5[b] shows the convention for moment direction at each joint. The direction 

of moment on a joint is defined by the direction of extensor moment acting on its distal 

segment. For example the clockwise moment direction of the ankle joint is according to 

the extensor moment acting on its distal segment, the feet. 

It is of vital importance to correctly process external and internal forces and moments 

acting on a rigid body. In order to estimate the net force acting on a segment COM, one 

must correctly estimate all external forces acting on the segment. External forces like 

weight are estimated using body measurements, weight of subject and anthropometric 

tables. Other external forces like the GRF is estimated with the help of transducers 

placed on the ground. The method of measuring GRF is detailed in the following section. 

2.10. Ground Reaction Force 

For a rigid body under non-contact motion like walking, running and jumping there are 

only two main sources of external forces. One is the body weight and the second is the 

ground reaction force in interaction with the ground which comes in contact with the 

foot 41,66,75,76,77. In the laboratory, GRF is normally measured by a force-plate device 

composed of two metallic plates coupled together with transducers as shown in Figure 8. 
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The figure shows a (strain gage based) force plate from Bertec Corporation, Columbus, 

Ohio, used in this study. It was considered that the force plate's local coordinate system 

(xr yr zr) did not coincide with the laboratory or global coordinate system (XL Y L Zd. 

Hence a transformation matrix was used to orient the forces and moments with the 

second global system. The transformation matrix was both rotational and translational. 

The rotational matrix consisted of a 3X3 matrix with components eij where i=1..3 and 

j=1..3. The translational vector r = {r, r2 r3} consisted of the components of displacement 

between the two coordinate systems. 

Plate 1 Plate 2 

Figure 8. Typical force plate showing the force plate's local coordinate system and the 
motion analysis global coordinate system. The ground reaction load is measured in the 
force plate's local coordinate system denoted by the subscript "f'. Then the components 
of the force and moment vectors are transferred to the laboratory coordinate system 
indicated by the subscript "L". 
Source. bertec.comlupl oads/pdfs/manualslForcePlateManual. pdf. 
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This force-plate has embedded strain gages between its two plates (not shown in Figure 

8) that reflect the force acting between the foot and the ground. The feedback from the 

gages gave the ground reaction force and moment at the center of pressure. If multiple 

force plates are used, the resultant ground reaction force and moment of force about the 

global origin at the combined center of pressure need to be obtained. 

2.11. Inverse Dynamics 

Inverse dynamics is the process by which kinematic data and external force data (e.g., 

force plate) are used for calculating kinetic variables at a given anatomical location such 

as a joint or segment COM. Inverse dynamics also requires anthropometric data matched 

to individual subjects so that center of mass (COM) and moment of inertia (MOl) are 

correctly determined for body segments. 

Using the orientation angles given in Section 2.5, all known kinematic and kinetic data 

are first converted to an appropriate fixed coordinate system called the anatomical 

reference system. The known quantities are segment center, moment of inertia, distal 

forces and moments. The only unknowns are the proximal forces and moments which are 

obtained from a set of equations combining the known and unknown data. A brief 

description of how the knee joint data is calculated using a chain of equations is given 

below. It begins with equations for Newton's laws of motion for a system of forces and 

moments given by 

(2) 
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---------------------------------~------------------------------------ ------ - --------

Where IF is net force acting on the system, 

rnii is mass times system acceleration, 

IM is the net moment acting on the system, and 

H is rate of change in angular momentum. 

The foot is the first segment for which the unknown kinetic quantities are solved. For the 

foot segment in Figure 6, the balance of forces and moments are given are given by 

(3) 

(4) 

Moving on to the shank segment, the balance of forces and moments are given by 

(5) 

(6) 

Descriptions of all terms used in equations 3-6, as well as in Figure 6 are given in 

Appendix D. Following equations (5) and (6), the joint force and joint moment at the 

knee are now to be calculated. Calculations of knee power and energy absorbed are also 

possible 75. Knee power is the dot product of knee torque and angular velocity given by 

PKN = TKN . OJKN = TX,KN . OJX,KN + Ty,KN . OJy,KN + TZ,KN • Wz,KN (7) 
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Again, a description of terms in the equations are given in Appendix D. Energy absorbed 

and generated by the knee is then calculated by knee power integrated over time. 

However all freshly calculated force and moment data are still in the anatomical local 

reference system and need to converted back into global reference system 66, 76. 

2.12. Electromyography 

Electromyography (EMG) is a method for detecting the activation of muscles when 

electrical potentials are sent from the peripheral neurons into the muscle cells 13, 14, 22. 

Muscle tissue at rest is normally electrically inactive, with the exception of the area of the 

synapse-muscle junction, which is generally electrically active. There are two kinds of 

EMG. The first type is non-invasive surface (skin) mounted and the second is an 

intramuscular (inserted) type. When a muscle is voluntarily contracted, action potential 

starts developing. As the action potential rises, the strength of the muscle contraction 

further increases. 

For the purposes of this study, surface electrodes were used. Further detail on electrode 

placement and EMG data acquisition, filtering and smoothing is given in Chapter 3. 

2.13. EMG Data Filtering 

Butterworth filters are some of the most commonly used digital filters in motion analysis, 

mainly because they can precisely control the frequency components of signals. Digital 

Butterworth filters vary between low-pass, high pass, and band-pass. The band-pass type 

of filter is especially useful since the random errors at very high and low frequencies, in 
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raw position data, are rejected. In addition, a notch Butterworth filter assures that all 

common building electrical noise between 60-62 Hz is rejected. 

The gain G( m) of an n-order Butterworth low pass filter, given in terms of the transfer 

function H(s), is given by 

2 . 2 aa 
G (w) = IH(Jw)1 = ()2n 

1+ ~ 
We (8) 

where n = order of filter, me = cutoff frequency. 

In general it is seen that as n approaches infinity, the gain characteristic becomes a 

rectangular function and in a low-pass filter, frequencies below cutoff will be passed with 

gain Go, the DC gain, while frequencies above will be suppressed. For smaller values of 

n, the cutoff will be less sharp as shown in Figure 9. The working of a high-pass filter is 

similar but opposite and a band-pass filters is a combination of the two. 

o 

Figure 9. Low pass Butterworth filter showing gain He at different poles of N=2,4,and 8. 
The cutoff frequency is given by ne. 
Source. Penheim, A.V., & Schafer, R.W .. Discrete time signal processing. Englewood 
Cliffs, NJ. Prentice Hall. 1989. 
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2.14. Joint and Segment Position from Inverse Kinematics 

Once experimental data is collected, inverse dynamics is applied to obtain both kinematic 

and kinetic data including forces, moments and energies. Most authors present their data 

in the GCS system, co-incidental with the force plate axis system, a convention first used 

by Winter et al in 1983.75
. 

The first step in Inverse Kinematics (lK) is calculating a set of joint angles and positions 

for the model that yields a motion trajectory from the experimental data. In each time step 

(frame) IK computes generalized coordinates and their derivatives which positions the 

model in a pose matching experimental (marker) position. These data, however, only 

describe joint kinematics. No details of connective tissue mechanics (muscle, ligaments 

and tendons) are available from IK. With IK the position, speed and acceleration for a 

knee joint at an instance in time are found but not the details of ACL mechanics. 

2.15. Musculoskeletal Model 

In order to analyze the ACL, a musculoskeletal model was required that included 

connective tissues like the ACL and other muscles surrounding the knee joint, subject to 

the same knee joint kinematics. A musculoskeletal model is used when the combined 

dynamics of bones, muscles and other bodily soft tissues, e.g., tendons and ligaments, 

produce optimal motion 5,7.11,15,16.17,19,21, 25,28,68,69,71,72,73,78. A musculoskeletal model 

composed of both rigid body segments (and joints) and soft tissue like ligaments, tendons 

and muscles was developed for this study. A complete body model was constructed, 

except for the arms, as shown in Figure 10. The model was developed in OpenSim 
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(where generic prototypes already exist) 49,50,51,52,53,54,55,56, 57,61. The musculoskeletal 

model was composed of 13 body segments, 12 joints, 54 muscles, 23 rotational 

constraints, three translational constraints (actuators) and importantly, the left and right 

ACL. Muscle dynamics were computed from the Hill-Huxley 37 model, consisting of both 

active and passive forces. The force-length-velocity relationship in muscle fibers is 

explained briefly in Appendix B 41. The right and left ACL was built from a Hill-Huxley 

model with non-existent active force. Figure 10 over the page also shows details of the 

lower extremity muscles and ACL. 

2.16. Static Scaling 

Scaling is performed based on the measured distances between marker locations and 

manually-specified scale factors. The marker locations are usually obtained from static 

trials. The non-scaled model has a set of virtual markers placed in the same anatomical 

locations as the experimental markers. The dimensions of each segment in the model are 

scaled so that the distances between the virtual markers match the distances between the 

experimental markers. Manual scale factors, which may come from other anthropometric 

analyses, can also used as an alternative to the measurement-based scaling for any type of 

body anatomy. 
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Figure 10, Musculoskeletal model showing main body segments (in bold) and muscles 
that contribute towards knee motion, 

2.17. Residual Reduction 

In some instances the overall force balance according to Newton 's law (equation 3) 

becomes non ideal. In such a case, a residual force appears due to the unbalanced 

equation of forces, This error was rectified by adding a weight equivalent to the residual 

force to the segment where it occurred 66, 76. Residual Reduction (RR) is an optimization 

process for altering the torso center of mass for a dynamic model. This prevents biased 
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leaning of the torso in the left-right and fore-aft directions. It also ensures the kinematics 

of the model to be more consistent with the ground reaction data. The equation for 

Residual Reduction is given by 

Fx + Fresidual = max 

Fresidual = gc·madditional and msegment. n = madditional + msegment, n-I (9) 

where Fx is the force and ax is the acceleration acting in direction x, 

msegment,n is the mass of segment n, madditional is the additional mass due to residual force. 

In Residual Reduction, there are no muscles to apply forces to the skeleton. Instead, the 

model has torque actuators at each joint to apply forces to the various segments. For the 

purposes of this study, a whole body simulation with 23 actuators (1 degree of freedom 

per actuator) for 10 rigid body segments and 6 ground reaction forces is proposed. This 

way, a dynamic skeletal model is made to follow a prescribed motion. 

2.18. Computed Muscle Control (CMC) 

The basic concept of Computed Muscle Control (CMC) applies to most modern day 

machinery (with multiple components) whose performance must be controlled with the 

help of an integrated feedback system 4,5. In human biomechanics, the purpose of CMC 

is to compute a set of muscle excitations (controls) that will drive a musculoskeletal 

model to perform a specific set of kinematics 1,2,3.4.16.72,73. The first step in CMC is to 

compute a set of accelerations, q, which drives the model coordinate toward the 

experimental coordinates, qexp' The desired accelerations are computed using a forwardly 
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computed 5th order Runge-Kutta-Feldberg 72 critically damped PD control law, whose 

equation is given by 

q( t + T ) q exp ( t) + k, ( ~ exp ( t ) - ~( t ) ) + k p ( q exp ( t ) - q( t ) ) (10) 

where q, q and ij are the model's position vectors and their derivatives, kv and kp are 

the velocity and positional gains chosen to make the motion critically damped. 

The next step in CMC is computation of the individual muscle controls, Xi, also known as 

"excitations". This is achieved through an optimization process called Sequential 

Optimization Programming, SQP 73. Using SQP, the load at every joint is distributed 

across Goint) muscles contracting in synergy. The optimization procedure is implemented 

once joint coordinates and their derivatives are computed (from equation 10). The 

equations for determining the joint forces and torques 15,16,17, 27, 29,73 are given by 

(11) 

- -
where M(ij) is the segment mass matrix, C is the combined Coriolis and Centrifugal 

- - - - -
velocities, G(ij) is the gravitational force and Rn,(ij)- 1m + Rgrj(ij)- I grj are the combined 

muscle forces (per unit muscle length) and GRF forces, and 

N 

I j = I RmJij; )- Jm; 

where 1m; is the muscle force, Rm; is the moment arm and I· is the joint torque . 
.I 

27 
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The method by which muscle forces contribute to the joint torque forms the core of the 

CMC optimization process. First the muscle forces are determined by excitation-

activation based neuromuscular modeling. This model, predicting the shortening 

dynamics of muscles, is known as the Hill-Huxley model, more details of which is given 

in Appendix C. The linear Hill-Huxley model used for estimating contribution from each 

muscle is given by 

1,,: = {a,;,' ft. ((., 1,: ) + ip""iIP ((, )} cos( a,;, ) 

where 

1,,: = Steady state muscle force after contraction equlibriates 

a,;, = Muscle activation when fiber velocity equals musculotendon velocity 

ftJ t,:" i.: ) = Muscle force from force -length - velocity surface curve 

ip",,,,Jz':, ) = Muscle passive force 

a,:, = Pennation angle 

The final force from each muscle is then calculated by minimizing a cost 

function 16,17,18,72,73 equation given by 

J 
nx 2 

= L\ 
i=1 

(13) 

(14) 

where J is a performance criterion and Xi are muscle excitations. Equation 14 in turn is 

constrained by: 

a= (x_a{~_(1-X)) 
t<ler td,'aN 

x~a 
(15) 

a= 
(x-a) 

x<a 
tdellil 
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where a and a are muscle activation and it's derivative directly representing muscle fiber 

calcium concentrations 16, 73, X is the excitation and tacI = 10 ms and tdeaCI = 40 ms are 

activation and deactivation times. 

To reduce the performance criteria J, two important constraints are applied, O<x<l and 

O<a<l. CMC formulation is also known as Static Optimization because the performance 

criterion is satisfied at a given instant in time during a simulation. A schematic of the 

CMC process is shown in Figure 11. 

l-orward l)ynamK:5 

Figure 11. Schematic of close looped Computed Muscle Control (CMC) process and 
Forward Dynamic (FWD) process. Source: Thelen and Delp et aI., 2003 . 

Sometimes due to inadequate forces supplied by the musculoskeletal models the entire 

joint torque is be supplied. To prevent the formulation from failing, a number of reserve 

actuators are added to a model that are able to make up for strength deficiencies in 

muscles. The reserve actuators have very low strength and therefore higher excitations 

are required to apply significant forces to the model. Since the optimization essentially 

reduces excitation, use of the (high excitation) reserve actuators is usually avoided. 
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2.19. Forward Dynamics Simulation (FWD) 

After muscle excitations are computed by CMC, Forward Dynamics (FWD) is used to 

drive a simulation where, for specific time intervals, detailed biomechanical data on 

muscle function are generated. The FWD uses the same model and actuator set used in 

CMC, along with the initial states and controls computed during the CMC step. The goal 

of using FWD is to reproduce the same motion tracked by CMC and develop details of 

muscle biomechanics in a non-closed loop way. Joint states are found using a 5th order 

Runge-Kutta-Feldberg integrator along with the application of recorded actuator controls 

from CMC with no feedback or correction mechanisms. However the lack of feedback 

may causes the forward dynamic simulation to diverge from expected trajectory. This 

generally happen during longer simulations, where small differences accumulated over 

extended periods results in widely divergent trajectories. 

The important benefit of FWD is that it allows the excitation of the ACL to be controlled. 

The ACL in this study is modeled as a fully passive tissue instead of the passive-active 

Hill 37, 41 tissues of the other muscles. Hence for the ACL, excitation is ineffectual and 

may be completely shut down. 

2.20. Statistical Analysis 

Statistical analysis in this study was mainly for the purposes of establishing a relationship 

between important dynamic variables such as force-displacement and moment-angle 

correlations. Importantly, correlations were calculated for validating Forward Dynamics 

results against kinematics data from Inverse Kinematics for knee flexion and valgus 
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angles. It was also used for generating the correlation between experimental EMG and 

muscle activation from simulation. Pearson product-moment correlation coefficient (r) 

was used to quantify the above correlations, where the general equation for Pearson 

correlation coefficient is given by 

n 

I(x;- x)(y;- y) (16) 
n n 

I(x;-xiI(y;- yi 
;=i ;=i 

where, Xi and Yi are the values for a series of n measurements of X and Y, i = 1, 2, ... , n is 

the series index. 

The sample correlation coefficient is then used to estimate the population Pearson 

correlation r between X and Y, rxy, as presented in Rodgers et al 60. The Coefficient of 

determination (r2) that measures the proportion of variability between data sets was also 

calculated by squaring the r-value, assuming linear relationship between the data sets. In 

addition, Pearson-p value, 95% confidence intervals were also calculated for the above 

dynamic variables. 
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CHAPTER III 

EXPERIMENTAL METHOD AND ANALYSIS 

The process of motion capture involves multiple steps that are co-dependent on each 

other. Hence planning and executing the steps in a chronologically coordinated order is of 

paramount importance. Tasks like obtaining the written consent of the subjects, preparing 

subjects for trials, and conducting static strength tests must happen before any dynamic 

data are collected. During dynamic data collection, three dimensional kinematic data 

were generated using a high-speed, multiple camera motions capture system coupled to a 

2-D to 3-D mapping process. Subjects performed drop-jumps from various heights 

ranging from 30-50 cm in steps of 10 cm. The changes in platform height served as 

variable for increasing task difficulty and possible loading on the ACL. After obtaining 

dynamic data, further post processing involving calculation of trajectories and data 

smoothing using Evart's built-in Butterworth filters was performed. Finally, simulation of 

individual musculoskeletal models was performed and ACL loading and strains were 

analyzed. A flow chart showing the sequence of events is given in Figure 12 over the 

page. 

Sections that follow outline the experimental setup and procedures for preparing the 

subjects for trial, data acquisition for static and dynamic strength tests, and finally details 

for post-processing and data analysis. 
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Figure 12. Flow chart of sequence of tasks for the project. 

3.1. Experimental Setup 

Drop jump trials were carried out on 13 subjects (2 without EMG). Motion analysis data 

were recorded using 8 Hawk high speed cameras at 100 Hz, sent through an eight channel 

hub into the real time Evart motion tracking system. Similarly, two six channel digital 

amplifiers sent force plate analog data to AID convertors, which were then sent to the 

running motion capture system. Data was collected for both left and right feet on landing. 
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The subjects, fitted with twenty reflective markers and eight EMG sensors each, 

conducted drop landings from three different elevations of 30 cm, 40 cm and 50 cm. 

Kinematic data were edited and smoothed using built-in Butterworth filters in Evart prior 

to musculoskeletal analysis. 

3.2. Preparing the Subject 

Subjects recruited were healthy adolescent and young adult women who were capable of 

participating in drop-jump activities from a height of 50 cm or more. In the beginning 

each subject signed a consent form stating their intention to participate in the trials. For 

each subject, a number of basic anatomical measurements were then acquired. These 

measurements were body mass, height and knee Uoint under study) width. The knee 

width was defined as the distance between the lateral and medial femoral condyles. The 

subjects were then fitted with twenty-four markers, as shown in Figure 13[a), in 

preparation for the static trial. Once the static trials were completed, the subjects were 

fitted with twenty markers, positions of which are in Figure 13[b). They were also fitted 

with eight EMG sensors each on their legs, placed approximately on the left and 

quadriceps, vastus femoris, hamstring and gastrocnemius muscles, as shown in Figure 14. 
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Figure 13. [a]. Marker placements on the whole body for static trials. The GCS 
coordinate axes is given by the triad of red, blue and green arrows at the left upper corner 
of the force plate. 
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Figure 13. [b]. Marker placement on the whole body for dynamic trials. The red arrow 
shows the ground reaction force acting on the foot in contact with the ground. The two 
force plates are shown in grey. Circles on force plate indicate ground reaction moments. 
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Figure 14. Placement of EMG sensors on muscles of the lower extremity. Front and 
back of the human leg muscular system showing the quadriceps femoris, vastus, bicep 
femoris and gastrocnemius muscles, used during this study. 

3.3. Isokinetic Strength Test 

In sports physiology and medical rehabilitation, isokinetic tests are performed for safe 

analysis of muscle strength 17. The procedure used was to have the subjects stand with 

knees slightly flexed and pull on a dyna-band attached to the ground whose un-stretched 

length was no more than knee height. As they pulled and exerted force on the muscles 

mentioned in previous Sections, the eight EMG sensors sent signals back to the data 
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acquisition and motion analysis systems. Details of EMG signals sent to the motion 

capture system are given in Section 3.6. With isokinetic testing, a baseline for maximum 

exertion of a particular muscle was established, which was then used for normalizing the 

muscle EMG data from the drop-jump tests. 

3.4. Acquisition of Static Reference Data 

Obtaining each subject's static global reference frame (Figure 5a) is the starting point of 

data acquisition. It is required to find the relative orientation of body segments to a 

common reference frame at any point in time. Local segment coordinate systems are 

embedded within the global reference frame. The combination of local segment 

coordinate systems provides a baseline anatomical frame for the subject 46, 75. This 

provides a reference for the segment and joint coordinate systems themselves and its 

change in orientation from the anatomical reference frame is easily established during 

kinematic analysis. During the static trial, subjects were fitted with markers as shown in 

Figure 13[a] and asked to stand with feet slightly apart at zero degrees of flexion and 

valgus. The duration of the static trial is generally limited to five seconds. This 

established the anatomical reference frame for the subject. 

3.5. Acquisition of Drop-jump Data 

The jumping activity for each subject consisted of drop-jumps heights of 30 cm, 40 cm 

and 50 cm. First, each trial subject was fitted with reflective markers and EMG sensors as 

described in previous sections and in figure 13 [b]. The difference in marker placement 

between static and drop-jump trials is that markers located at the medial knee and ankle 
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were removed. These markers are necessary at the static trial for constructing the 

anatomical reference frames; however during intense motion, there is possibility of 

interference with the detection of other knee and ankle markers. The remaining marker 

locations were unchanged. 

A total of eight EMG sensors were used to measure action potential of muscles directly 

connected to and spanning the knee as detailed earlier, and in Figure 14. The purpose of 

their placement is to obtain extensor to flexor muscle ratios, one of the important 

variables linked to ACL damage. These values are then compared to those obtained from 

musculoskeletal simulations. The particular muscle ratios of interest to this study were 

the hamstring quadriceps (HQ) and the gastrocnemius quadriceps (GQ) ratios. 

Starting with an elevation of 30 cm, subjects performed three consecutive drop-jumps 

landing with both feet. The platform elevation was then increased by 10 cm and the 

exercise repeated until the maximum elevation of 50 cm was reached. EMG data 

collected during the trials were normalized as percentage of peak EMG obtained during 

the isokinetic tests. 

3.6. EMG Data Collection 

A wireless EMG collection system, from Delsys Inc., Columbus, OH, was used for 

collecting EMG data from a total of eight muscle sites (Figure 14). Figure 15 shows the 

complete setup for obtaining EMG data using the Delsys Bagnoli EMG acquisition 

system. The individual electrodes strapped to muscle surfaces (above skin) send signals 
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to amplifier modules through very thin flexible cables connected to a monitoring unit 

strapped to the subject's body. The monitor, called 'Myomonitor', communicates 

wirelessly with the host PC via a Local Area Network (LAN) connection. The LAN 

signals are intercepted by a host module through specific ports in the above PC, amplified 

and finally sent to the running motion analysis software (also in the host PC) via a 

National Instruments Data Acquisition (DAQ) system. Signal delay time ranges between 

30 - 120 ms with a mean at 50 ms. 

Host computer 

/ 

Myomonitor 

/ 
Electrode 

.- / .-

AmPlifie/ 
--

Figure 15. EMG arrangement with electrodes, amplifiers, hooked-up cables and hand 
(hip) held monitor with wireless onnection to the host. 
Source. delsys.comlKnowledgeCenterlPracticum.htrnl 
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3.7. A brief description of electrode function 

The electrode (Figure 16) housing is constructed from a waterproof polycarbonate plastic 

case, which is internally shielded to reject ambient electrical noise. The electrode contacts 

are made from 99.9% pure silver bars measuring 10 mm in length, 1 mm in diameter and 

spaced 10 mm apart. 

Muscle site 

l'out = \1] -

1 mm 

Reference 

Figure 16. Delsys differential electrode placed on muscle tissue (pink). EMG signal is 
the result of the potential difference between the electrodes. 
Source. delsys.comlKnowledgeCenter/Practicum.htrnl 

When placed directly in contact with the skin above an active muscle, these electrodes 

detect the EMG potential as the differential signal between them. The EMG potentials are 

always measured with respect to the electric potential of a neutral inactive site located 

away from the EMG muscle source. The electric potential of this neutral site is 

commonly termed "reference" potential, and is usually placed at a bony location of the 

subject, such as the sternum. 
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3.8. Post-Processing of Acquired Data 

After generating preliminary motion analysis data, kinematic and kinetic factors that 

influence knee joint motion were calculated. This required application of inverse 

dynamics to positional variables of the knee and their time derivatives. Inverse kinematic 

and kinetic processing were carried out with OpenSim. The list of variables related to 

possible ACL damage, detailed results of which are given in a later Chapter, is outlined 

in Table 1. 

Motion Property Description 

Angleknee flexion 
Time rate of change in knee flexion angle from T.D. to 
recovery. 

Angleknee valgus 
Time rate of change in knee varus/valgus rotation angle 
from T.D. to recovery. 

ACL Force 
ACL fiber forces between TD and recovery. 

d(ACLstrain) ACL strain and time rate of change in ACL strain from 
AC~train ' 

dt 
T.D. to recovery. 

ActivatiolJtcxOf Flexor over extensor muscle activation ratio. 

Activation 
extensor 

Moment knee flexion' Moment knee valgus Knee flexion and valgus (internal rotation) moment from 
T.D. to recovery. 

Power
knee 

Maximum power absorbed by knee between T.D. and 
recovery. 

Table 1: Kinematic and kinetic factors of knee behavior closely associated with possible 
increase in ACL loading. The temporal changes in these factors were recorded while 
subjects perform the drop jump. Here T.D. refers to toe touch down. Recovery is when 
the ground reaction force is approximately equal to a person's weight. 
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3.9. Musculoskeletal Simulation 

Musculoskeletal models created for individual subjects were used for recreating the drop-

jump trials within the simulation environment. The first step of the simulation was to 

transfer dynamic marker data from the motion analysis domain (Section 4.6), through 

coordinate transformation, to the simulation domain of OpenSim. The description of the 

sequence of simulation steps, computation, optimization and others is given in section 

later in this Chapter. A summary of the steps within the simulation used for this study is 

shown in Figure 17. 

Musculo­
skeletal 
Model 

Static 
Scaling 

Inverse 
Kinematics 

Residual 
Reduction 

Computed 
Muscle 
Control 

Forward 
Dynamics 

Figure 17. Flow chart showing sequence of tasks for dynamic simulation of the 
musculoskeletal model. 

Figure 18 (over the page) shows the musculoskeletal model and the model's degrees of 

freedom that were used for this study. There were twenty-two rotational and three 

translational degrees of freedom. 
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Figure 18. Musculoskeletal model showing the 22 rotational degrees of freedom and 3 
translational degrees of freedom. 

Figure 19 illustrates various position of the model after impact during the drop-jump 

trajectory for the between times toes-down (TD) to full recovery. Here full recovery 

implies the position where GRF returns to the subject's body weight. 
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Figure 19. Force plate contact dynamics of a jump trajectory (30 cm jump height) using 
OpenSim 2.20 graphical interface showing ground reaction force (green) and various 
stances in chronological sequence, [a]: touch down, [b]: maximum crouch, [c]: 
recovering and [d]: recovered. Muscles are shown in red, body segments in grey, markers 
in blue and force plate in black. 

3.10. ACL Modeling 

The ACL insertion points are shown in Figure 20. The top part goes into the depths of the 

inter-condyloid part of the femur while the lower part is attached to the front meniscules 

of the tibia. 
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Figure 20. [a]: Frontal view of the ACL with insertion points into the inter-condyloidic 
eminence (femur) and the front meniscules (tibia). Muscles are shown in red and body 
segments in grey. [b]: Right sagittal view of the ACL. 

3.11. EMG Post-processing 

The simulated muscle activation data from OpenSim processing were pre-filtered with 

very high and low frequency noise etc. removed. However data collected from the Delsys 

system were raw. A filtering application written in LabVIEW™, 2010, from National 
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Instruments, and usmg LabVIEW filtering sub-routines (called sub VI) was used for 

processing the raw EMG data. The data were passed through a band-pass filter, allowing 

only a specified range of frequencies to pass. The bandwidth was set between 30-200 Hz. 

It mainly removed low end electrical noise associated with wire sway and biological 

artifacts and high end tissue noise at the electrode site. A notch filter then removed 59-61 

Hz electrical noise usually generated by base and other equipment and nearby electrical 

fixtures and appliances. Anti-aliasing was not used in the EMG filtering program since 

EMG modulating frequency was much higher at 1000 Hz than the frequency of interest 

(30-200 Hz). Figure 21 show the front panel of the LabVIEW filter module. The 

effectiveness of the bandpass and notch filters were verified by using spectral analysis 

which confirmed that post-filtered data was without any 60-62 Hz frequencies and were 

in the 30-200 Hz limit. 

EMG data was then rectified and normalized with Maximum voluntary contraction 

(MVC) values from the same subject. The method to collect MVC was discussed earlier 

in section 3.3. Each subject performed three MVC exercises. RMS calculations 

recommended by DeLuca et al. in 2002, were then calculated on the peak MVC values 

and the highest of the three trials was used for normalizing 22. Normalized EMG was 

obtained for left and right sides of each subject at each jump height and for the muscles 

shown in Figure 14. Finally Pearson correlation was used to establish the dependency 

between pairs of experimental and simulated activations. 
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Figure 21. The front panel of National Instruments Labview ™ VI for filtering data from 
experiments. The plot shows pre and post-filtered EMG for a single trial. 

3.12. Simulating increased knee valgus during landing 

The final step of this project was to study the effect of increasing knee valgus during 

landing, a convenient way to simulate the jumps with increased load on the ACL. The 

musculoskeletal models obtained for simulating the original jumps were used here as 

well. Valgus kinematics for the 50 cm jumps were changed by increasing the inward 

motion of the knee in the x-direction as shown in Figure 22. The distance between the 

knees was decreased by fifteen percent from the original value. This amounted to 

approximately 20-25mm of added knee displacement (inward) for both knees, for each 

(of the eleven) subject's 50 cm jump. 
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Figure 22. [a). Original 50 cm stance and [b) . Valgus Increase 50 cm stance by 
decreasing the horizontal distance between knees. 

3.13. Measurement of ACL Strain 

Studies published on ACL strains are generally varied in their techniques 26,3 1, 59, 62. For 

example in a study published by Guoan et al. in 2005, using open-MRI, ACL strain is 

expressed as percentage of its length at full knee extension; that is when the tibiofemoral 

alignment is parallel (Figure 23) 3 1. This study went on to show that at 90 degrees of 

flexion the ACL length decreased by 10% compared to its length at full extension. Butler 

et al. in 1986 showed ACL strain as percentage extension of shortest (slack) length. This 

in-vitro study showed that ACL rupture occurred around 13-14 % strain of ACL slack 

length 26. ACL strain calculations presented in the results are shown according to the later 

convention, where they are expressed as percentage extension of slack lengths. The 
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reference or slack length for measuring strain was calculated when the model's knees 

were in a fully flexed (90 degrees) position. 

600 900 

Figure 23. General positions of femur and tibia showing the direction in which knee is 
bent to determine changes in ACL length under tomography. ACL length is maximum at 
o degrees and minimum at 90 degrees. 
Source. Guon et aI., 2005 . 

3.14. Validation Testing 

The Forward Dynamics generated kinematics were validated by correlating the 

experimentally obtained knee joint angles (flexion and valgus) for two of the 

musculoskeletal models to those knee angles obtained from Forward Dynamics 

simulation. The experimentally obtained knee angles (i.e. the knee joint angles from the 

subject's actual drop-jump) were calculated using the Inverse Kinematic tool of 

OpenSim. Pearson correlation, coefficient of determination and Pearson's P-values were 

calculated to validate the relationship between motion data obtained from actual drop-

jump performances and from Forward Dynamics simulation. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

With the steps and processes discussed in earlier Chapters, experiments were performed 

as detailed. Experimental data and simulation results are now presented, along with their 

analysis. First, examples of data from a single individual are shown, followed by 

kinematic and kinetic results from the simulations, generally averaged among all the 

eleven subjects. Most of the results presented are for variables at or around the knee, the 

ACL being the center of interest, along with variables that possibly affect it as listed in 

Table 1. Model validation test results are presented next. Finally, simulation results for 

added medial translation (valgus) for the 50 cm jump, for all eleven subjects, are 

presented and inferences are drawn. 

It needs to be mentioned here at the outset that, in this Chapter, average peak values cited 

in text or tables are atemporal, averaged from the individual peaks of each of the eleven 

subjects, irrespective of their temporal position in the recovery period. Graphs (in 

Figures), on the other hand, are plotted with temporal averages among all eleven subjects, 

after positional scaling between TD and recovery (when the GRF returns to subject's 

body weight), and peaks in the graphs are just those, peaks of the temporal averages, 

rather than averages of the individual peaks. 
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4.1. Kinematic Analysis 

The Inverse Kinematics tool from OpenSim was used to obtain joint kinematics for the 

twenty-two rotational DOFs and three translational DOFs. Peak values for left and right 

knee flexion and abduction (valgus) angles (two DOFs for each knee) were obtained from 

all eleven subjects. An example of the temporal changes in knee flexion and valgus 

angles (of a single subject) during the trials is shown in Figures 24 and 25 respectively. 

The x-axis values are percentage time based on the interval between TD and recovery, 

i.e., the point in time where GRF returns to body weight. These figures show that both 

valgus and flexion angles were much higher for the 50 cm jump. 

An increasing trend with jump height was found for both, knee flexion and valgus angles, 

from peaks averaged among all eleven subjects, for each jump height. Average peak 

flexion angle for the 30 cm jump was 77.33 ± 9.310 for right knee and 76.63 ± 8.900 for 

left and it should be noted that all peak values in this Chapter are given with variance of 

one standard deviation. Average peak flexion angle for the 40 cmjump was 84.15 ± 8.440 

for right knee and 84.16 ± 8.180 for left. Average peak flexion angle for the 50 cmjump 

was 83.80 ± 7.350 for right knee and 84.93 ± 8.920 for left. Average peak valgus angle 

for the 30 cm jump was 8.81 ± 1.630 for right knee and 9.29 ± 1.460 for left. Average 

peak valgus angle for the 40 cm jump was 9.67 ± 1.070 for right knee and 9.72 ± 1.190 

for left. Average peak valgus angle for the 50 cm jump was 9.96 ± 1.480 for right knee 

and 10.21 ± 1.040 for left. Again, all these values were atemporal averages among eleven 

subjects. These values indicate that both average peak flexion and valgus angles 

generally increased with jump height. Close average peak values of the 40 and 50 cm 

52 

--------



flexion angles indicate that the knee flexion angle was reaching a threshold peak as the 

jump height increased. 
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Figure 24. Right and left knee flexion angles against percentage time obtained for one 
subject for jump heights of 30 cm, 40 cm and 50 cm. 
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Figure 25. Right and left knee valgus angles against percentage time obtained for one 
subject for jump heights of 30 cm, 40 cm and 50 cm. 

4.2. Ground Reaction Force 

Figure 26 shows temporal plots of the left and right vertical GRF (Fy) for a single 

subject. Temporal plots of GRF forces and ground reaction moments (GRM), averaged 

among all eleven subjects, for each of the three jump heights, are given in appendix E. 
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Figure 26. Right and left knee vertical (Fy) GRF forces against percentage time obtained 
for one subject for jump heights of 30 cm, 40 cm and 50 cm. 

Average peaks of GRF in the vertical (y-) direction and abduction (z-direction) GRM are 

given in Tables 2 and 3. The peaks were (atemporal) averages among all eleven subjects. 

It is seen that increases in average vertical GRF and abduction GRM were conservative. 

This observation is similar to the Burkhardt et al. 1990 study which showed that the 

increase in vertical GRF forces between 42 and 63 cm drop jump heights were small 
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despite the nearly 1.5 times increase in jump height 73. The figure from Burkhardt et al. is 

given in appendix F. 

Jump Height Average Peak Vertical GRF (N) 
(cm) Right Left 
30 657.30 ± 94.12 638.02 ± 86.71 

40 686.19 ± 94.97 661.24 ± 94.53 

50 712.70 ± 93.77 714.54 ± 94.42 

Table 2. Peak vertical ground reaction forces averaged among all eleven subjects. 

Jump Height Average Peak GR Moment Mz 
(cm) (Nm) 

Right Left 

30 30.51 ± 9.44 -24.89 ± 9.86 

40 24.86 ± 6.83 -21.75 ± 5.35 

50 38.96 ± 12.30 -35.48 ± 13.34 

Table 3: Peak ground reaction abduction moments averaged among all eleven subjects. 

4.3. Musculoskeletal Simulation 

Musculoskeletal motion simulation was composed mainly of the static optimization, 

residual reduction and CMC steps. During the residual reduction step, body segment 

masses were adjusted for all eleven models so that segmental static residual forces could 

be minimized. Average adjusted body segment masses are presented in Table 4. 
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Body Segment Average mass (kg) 

Torso with head 27.15 ± 1.19 

Pelvis 9.47 ± 0.55 

Thigh (right) 7.30 ± 0.28 

Thigh (left) 7.34 ± 0.30 

Shank (right) 2.98 ± 0.20 

Shank (left) 3.01 ± 0.22 

Foot (right and left) 1.20 ± 0.04 

Table 4. Average body segment masses from 11 subjects. 

4.4. EMG Data Processing 

Computing muscle activation (control) is the main funtion of CMC. This simulates flexor 

to extensor muscles ratios for HQ and GQ (Figure 14). To obtain the HQ ratios, 

normalized hamstring to quadriceps ratio for all subjects (from experiments and 

simulations) were calculated and temporal averages obtained. The same procedure was 

followed for obtaining GQ ratios. A general observation was that HQ ratios were higher 

and GQ ratios were lower in the simulation, compared to the experimental data, for all 

jump heights. 

Pearson's correlations were obtained to determine the relation between average 

experimental and simulated HQ and GQ ratios as given in Table 5. Most of the 

correlations obtained were high, except for left HQ and GQ ratios for the 30 cm jump and 

the right HQ ratio for the 50 cm jump. Normally, positive correlations imply that strong 

associations exist between compared sets of values. In the Table, correlations marked 

with '*' have accompanying probability value p < 0.05, indicating that significant 

57 



correlations exist between experiment and simulation for those jump height and ratio 

combinations. 

Muscle Jump height Correlation P-Value 
Ratio (cm) coefficient, r 

HO (right) 30 0.5268* 8.55E-03 

HO (left) 30 -0.0584 2.30E-01 

GO (right) 30 0.4312* 2.13E-02 

GO (left) 30 -0.0996 2.09E-09 

HO (right) 40 0.4299* 2.00E-03 

HO (left) 40 0.2657* 2.71 E-03 

GO (right) 40 0.3380* 2.89E-02 

GO (left) 40 0.3036* 3.62E-02 

HO (right) 50 0.0067 3.25E-02 

HO (left) 50 0.7026* 4.67E-04 

GO (right) 50 0.3323* 1.79E-02 

GO (left) 50 0.8118* 1.76E-06 

Table 5. Coefficients of correlation between experimental and simulated HQ and GQ 
ratios. * indicates significant positive correlations with p < 0.05. 

4.5. Forward Dynamics Simulation. 

Results of kinetic variables were obtained from the forward dynamic simulation of each 

drop-jump between T.D. and full recovery. ACL fiber lengths, strains and strain rates 

obtained from the forward simulation are shown in Figures 27-29. Reference ACL length 

for measuring strain was taken from each musculoskeletal model's ACL length at 90 

degrees of knee flexion, as mentioned in section 3.13. The average slack length from the 

eleven subjects was 27.5 cm. 
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Figure 27. A verage right and left ACL fiber lengths against percentage time obtained 
from eleven subjects participating in the drop-jump trials. The jump heights ranged from 
30-50 cm in increments of 10 cm. 
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Figure 28. A verage right and left ACL strains against percentage time obtained from 
eleven subjects participating in the drop-jump trials. The jump heights ranged from 30-50 
cm in increments of 10 cm. 
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Figure 29. Average right and left ACL strain rates against percentage time obtained 
from eleven subjects participating in the drop-jump trials. The jump heights ranged from 
30-50 cm in increments of 10 cm. 

From Figures 27 and 28, it can be seen that temporal average fiber length for the 50 cm 

trial was considerably higher than that at 30 and 40 cm. Similarly there was increase in 

peak strain as jump height increased from 30 to 50 cm, as shown in Table 6. This 

indicates that while the ACL is expected to decrease in length when the knee is flexed 
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with complete absence of valgus, it is not the case when valgus is present. Therefore risk 

of over-stretching the ACL exists if there is valgus. It should be noted that the peak fiber 

strains were averages of the peaks of eleven subjects, whereas graphs in Figure 28 show 

peaks of temporal average strains between TD and recovery for all subjects. The standard 

deviation provided in table 6 is indicative of the error limits for the entire trajectory (in 

Figure 28). Hence error indicators have not been provided for figures. This trend can be 

assumed for the remaining of this Chapter. 

Jump A verage Peak Percentage Fiber 
Height (cm) Strain (l/lo) 

Right Left 
30 9.34 ± 3.09 8.03 ± 2.80 

40 9.21±3.24 7.99 ± 3.02 

50 13.67 ± 1.12 13.38 ± 2.04 

Table 6. Average peak ACL fiber strain for 30, 40 and 50 cm jump heights obtained from 
eleven subjects. 

Figure 29 indicates that for 30 and 40 cm jump heights, the strain rates began as positive, 

became negative and went to positive again. The 50 cm jump strain rate ia different since 

it started as positive strain rate but ended as negative strain rate, and unlike the other two 

jump heights, did not go back to positive. 

Temporal averaged ACL forces obtained from the forward dynamic simulation of the 

trials are given in Figure 30. For the 50 cm jump, the forces that were expected to 
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decrease due to contraction of the ACL (and negligible valgus), have actually gone up 

due to the presence of valgus. 
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Figure 30. A verage right and left ACL forces against percentage time obtained from 
eleven subjects participating in the drop-jump trials. The jump heights ranged from 30-50 
cm in increments of 10 cm. 

Table 7 shows the atemporal average (among eleven subjects) peak fiber forces in the 

ACL for the three jump heights. An increase in peak average ACL forces is seen. Once 
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again, it should be noted that peak fiber forces were averaged from the peaks of eleven 

subjects whereas in Figure 30 the peak is from the temporal average forces between TD 

and recovery for all subjects. Table 8 shows that strong correlations were found between 

temporal average ACL fiber force and displacement, which is typically expected from 

natural passive tissues. 

Jump Ht Average Peak ACL Fiber Force (N) 
(cm) Right Left 
30 1056.09 ± 71.39 1043.09 ± 61.33 

40 1109.26 ± 113.84 1094.16 ± 128.36 

50 1165.36 ± 123.83 1160.64 ± 121.32 

Table 7. Average peak fiber force for 30, 40 and 50 cm jump obtained from eleven 
subjects. 

Jump Height Correlation Coefficient 
(cm) 

Right Left 

30 0.86* 0.96* 

40 0.56* 0.59* 

50 0.98* 0.98* 

Table 8. Correlation coefficient between average fiber force and displacement for 30, 40 
and 50 cm jump heights. * indicates significant correlations with p < 0.05. 

Presented in Figure 31 and 32 are the graphs of knee flexion and valgus moments, 

(temporal) average among the 11 subjects, for the 3 jump heights. 
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Figure 31. Average right and left knee flexion moments against percentage time 
obtained from eleven subjects participating in the drop-jump trials. The jump heights 
ranged from 30-50 cm in increments of 10 cm. 
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Figure 32. A verage right and left knee valgus moments against percentage time 
obtained from eleven subjects participating in the drop-jump trials. The jump heights 
ranged from 30-50 cm in increments of 10 cm. 

Temporal average flexion and valgus knee moments obtained from the forward dynamic 

simulations are given in Figures 31 and 32. Increasing jump height did not produce large 
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changes in valgus or flexion knee moments. A summary of average peak knee flexion 

and valgus moments for the three jump heights is given in Table 9. Like the average peak 

ACL forces and strains, the knee moments in Table 9 were atemporal averages from the 

peaks of eleven subjects. In contrast, the graphs in Figures 31 and 32 show peaks of 

temporal averages of moments between TD and recovery for all subjects. 

Jump Direction Average Peak Knee Moment (Nm) 
Ht (cm) Right Left 

30 flexion 91.04 ± 16.68 79.63 ± 8.61 

30 valgus 72.61 ± 19.21 67.81 ± 25.15 

40 flexion 106.09 ± 15.l7 96.28 ± 15.73 

40 valgus 61.17 ± 14.51 45.85 ± 9.89 

50 flexion 110.00 ± 17.96 92.11 ± 14.45 

50 valgus 72.52 ± 18.75 75.15 ± 28.3 

Table 9. Average peak knee moments for 30,40 and 50 cm jump heights obtained from 
eleven subjects. 

Table 10 shows the correlation coefficients between time average knee moments and 

knee angles for the three jump heights for both flexion and valgus. Significant 

correlations between knee moments and angles exist in each case. 
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Jump Height Direction Correlation Coefficient 

(cm) Left Right 

30 flexion 0.91* 0.89* 

30 valgus 0.92* 0.93* 

40 flexion 0.94* 0.87* 

40 valgus 0.94* 0.92* 

50 flexion 0.93* 0.81 * 

50 valgus 0.95* 0.92* 

Table 10. Correlation coefficients between knee moments and knee angles for 30, 40 and 
50 cm jump heights. * indicates significant correlations where p < 0.05. 

Figure 33 and 34 next show the temporal average power generated for the three jump 

heights. Both flexion and valgus powers were absorbed (negative) for the first 20 % of 

total time but generated during the remaining 80 % time. Both powers became zero 

towards the end of the recovery phase. This pattern was consistent in all jump heights. 

Average peak knee flexion power (absorbed) for the 30 cm jump was 320.11 ± 86.65 W 

and 266.22 ± 49.26 W for right and left sides respectively. Average peak knee flexion 

power (absorbed) for the 40 cm jump was 411.93 ± 57.45 Wand 360.36 ± 51.71 W for 

right and left sides respectively. Average peak knee flexion power (absorbed) for the 50 

cmjump was 424.925 ± 121.70 W for right side and 379.86 ± 97.45 W for left. Average 

peak knee valgus power (generated) for the 30 cmjump was 44.36 ± 14.14 Wand 29.90 

± 13.66 W for right and left sides respectively. Average peak knee valgus power 

(generated) for the 40 cm jump was 49.39 ± 5.70 W for right side and 29.15 ± 12.05 W 

for left. Average peak knee valgus power (generated) for the 50 cm jump was 61.45 ± 
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13.66 W for right side and 4l.36 ± 23.36 W for left. All these values, atemporal averages 

(among 11 subjects), indicate a small increase in peak power for both flexion and valgus. 
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Figure 33. Average right and left knee flexion power against percentage time obtained 
from eleven subjects participating in the drop-jump trials. The jump heights ranged from 
30-50 cm in increments of 10 cm. 
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Figure 34. Average right and left knee valgus power against percentage time obtained 
from eleven subjects participating in the drop-jump trials. The jump heights ranged from 
30-50 cm in increments of 10 cm. 

4.6. Validation of Simulation Results 

The Forward Dynamics simulation results were validated by comparing knee joint angles 

(flexion and valgus) from the experimental data, and those computed with Inverse 

Kinematics, with the joint angles from Forward Dynamics analysis. Pearson's correlation 

coefficient, correlation of determination and Pearson's P-values were calculated for two 
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subjects, for all jump height and both legs. Figures 35 and 36 show the flexion angles 

and Figure 37 shows the valgus angles at the 50 cm jump height, from both the subjects 

used for validation. It can be seen that subject A has higher and prolonged knee flexion 

and lower valgus than subject B and also that Forward Dynamics predicted knee 

kinematics from both subjects quite satisfactorily. 
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Figure 35. Right and left knee flexion vs time for subject A calculated with IK and 
Forward Dynamics analysis. 
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Figure 36. Right and left knee flexion vs time for subject B calculated with IK and 
Forward Dynamics analysis . 
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Figure 37. Right and left knee valgus vs time for subjects A and B calculated with IK 
and Forward Dynamics analysis. 
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Table 11 displays the Correlation Coefficient and Coefficient of Determination from the 

joint angles comparison between Inverse Kinematics and Forward Dynamics. 

Jump Direction Correlation Coeff. Coeff. Of Determination 
Ht (cm) r (right) r (left) r2 (right) r2 (left) 

30 flexion 0.9994 0.9830 0.9994 0.96626 

30 valgus 0.9722 0.9432 0.9451 0.8896 

40 flexion 0.9967 0.9946 0.9936 0.9893 

40 valgus 0.9178 0.9664 0.8424 0.9339 

50 flexion 0.9888 0.9900 0.9778 0.9803 

50 valgus 0.9330 0.9239 0.8706 0.8537 

[a]: Subject A 

Jump Direction Correlation Coeff. Coeff. Of Determination 
Ht (cm) r (right) r (left) r2 (right) r2 (left) 

30 flexion 0.9986 0.9973 0.9984 0.9968 

30 valgus 0.9731 0.9468 0.9844 0.9690 

40 flexion 0.9821 0.9646 0.9818 0.9639 

40 valgus 0.8902 0.7925 0.8684 0.7541 

50 flexion 0.9499 0.9022 0.9544 0.9110 

50 valgus 0.9244 0.8546 0.8944 0.7999 

[b]: Subject B 

Table 11. Pearson correlation coefficient and coefficient of determination for model 
validation by comparing flexion and valgus joint angles from Inverse Kinematics and 
Forward Dynamics. [a]: Results from subject A (anonymous) and [b]: Results from 
subject B (anonymous) executing a perceptively unstable jump with high valgus. 
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The table shows that values for rand r2 obtained were significantly high. P-values 

obtained for these correlations were P < lE-6 which signify that the validation was 

successful. These values support the fact that Forward Dynamics analysis used during 

this study had predicted the joint kinematics correctly. 

4.7. Results from simulations with increased knee valgus 

Simulating effects of added valgus was carried out using the method outlined in Section 

3.12. Comparison is made between the simulations, for the case of the 50 cm jump 

height, with and without added medial translation induced in the horizontal direction 

(Figure 19), which was approximately 20-25 cm depending on individual subjects. 

Inverse kinematics, computed muscle control, as well as forward dynamic simulations 

were carried out in OpenSim 2.20. Again, as stated in the beginning of this Chapter, 

average peaks in text or tables are atemporal averages of individual peaks among eleven 

subjects, whereas graphs show peaks of temporal averages among all eleven subjects, 

after positional scaling. 

Figures 38 and 39 show temporal average flexion and valgus angles versus percentage 

time, for the 50 cm jump simulation with valgus added. Also included in these figures are 

the simulation results of the original 50 cm jump for purposes of comparison. 
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Figure 38. A verage right and left knee flexion angles against percentage time obtained 
from simulations of the original 50 em jump and 50 em jump with added medial 
translation (valgus). 
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Figure 39. Average right and left knee valgus angles against percentage time obtained 
from simulations of the original 50 em jump and 50 em jump with added medial 
translation (valgus). 

76 



A verage peak flexion angles from the simulations with added medial translation were 

88.07 ± 4.71° and 85.69 ± 5.17° for right and left knees respectively. These were 

significantly higher from the average peak flexion angles of the original 50 cm jump 

simulations at 82.0 ± 6.94° for right knee and 79.93 ± 6.67° for left. Average peak valgus 

angles for the added medial translation simulations were 13.72 ± 2.06° and 14.29 ± 1.32° 

for right and left sides respectively, which were also higher from the average peak valgus 

angle for the original 50 cm jump simulations, at 9.92 ± 1.55° for right knee and 10.2 ± 

1.09° for the left. This observation is similar to that found by Hewett et al in their 2005 

study of vertical drop jumps where they saw increase in peak flexion and valgus angles 

for ACL injured versus non-injured participants 33. 

Figure 40 shows the temporal averages of HQ and GQ ratios obtained from the simulated 

50 cm jumps with and without added medial translation. The average peak HQ activation 

ratios for the added medial translation case were 0.84 ± 0.06 for right side and 0.85 ± 

0.05 for left, compared to 0.85 ± 0.07 for right and 0.81 ± 0.05 for left from simulations 

of the original 50cm jumps. The average peak GQ activation ratios for the added medial 

translation case were 0.63 ± 0.11 for right and 0.57 ± 0.06 for left compared to 0.61 ± 

0.10 for right and 0.57 ± 0.07 for left from simulations of the original 50cm jump. This 

implies that flexion-extension muscle activation ratios in the knee joint changed only 

slightly despite added medial translation. 
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Figure 40. Average simulated HQ and GQ ratio from simulations of the original 50 em 
jump and 50 em jump with added medial translation (valgus). 
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Figures 41-43 shows the effect of increased valgus on ACL fiber length, strain and strain 

rate. Temporal average ACL fiber lengths and strain increased with added medial 

translation as shown in Figures 41 and 42, in comparison to the strains obtained from the 

original 50 cm simulations. Average peak fiber strain for the added medial translation 

simulations were 16.27 ± 5.84 % for right ACL and 15.86 ± 6.23 % for left. These values 

were considerably higher from the average peak strains of the original 50 cm jump 

simulations which were 13.67 ± 1.12 % and 13.38 ± 2.04 % for right and left ACL 

respectively. Hence it may be concluded that ACL strain increases with valgus. Strain 

rates in Figure 43 indicate that they went from positive to negative for the added medial 

translation simulations and behaved similarly to the strain rates from the original 50 cm 

jump simulations. 
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Figure 41. Average right and left ACL fiber length from simulations of the original 50 
cm jump and 50 cm jump with added medial translation (valgus). 
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Figure 42. A verage right and left ACL fiber strain from simulations of the original 50 
em jump and 50 em jump with added medial translation (valgus). 
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Temporal average ACL forces from the simulations with and without added medial 

translation are shown in Figure 44. Average peak fiber force obtained for the added 

medial translation simulations were 1197.07 ± 129.11 N for right ACL and 1193.11 ± 

130.16 N for left. These values were higher than those from the original 50cm jump 

simulations, which were 1165.36 ± 123.83 N for right ACL and 1160.64 ± 121.32 N for 

left. It is seen that the average ACL forces for the increased valgus simulation were 

higher than those from the simulation of the original 50 cm jumps. 
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Figure 44. A verage right and left ACL fiber forces from simulations of the original 50 
cm jump and 50 cm jump with added medial translation (valgus). 
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Temporal average flexion and valgus knee moments from the 50 cm jump simulations 

with and without added medial translation are shown in Figures 45 and 46. These two 

figures show that the averaged flexion and valgus moments from the added medial 

translation simulations did not significantly differ from the averaged flexion and valgus 

moment from the original 50 cm jump. Averaged peak magnitude of flexion moments 

from the simulations with added medial translation were 109.99 ± 16.97 Nm and 92.11 ± 

14.45 Nm for right and left knees respectively. These were very close to the simulated 

averaged peak flexion moments at 50 cm jump height which were 110.00 ± 17.96 Nm for 

right knee and 92.11 ± 14.20 Nm for left. Average peak valgus moments from the 

simulations with added medial translation were 72.55 ± 22.42 Nm and 75.63 ± 20.0 Nm 

for right and left knees respectively. They did not differ significantly from the averaged 

peak valgus moments from the original 50 cm jump simulations which were 72.52 ± 

18.75 Nm and 75.15 ± 28.3 Nm for right and left knees respectively. 

In their drop jump study of ACL injured versus non-injured women, Hewett et aI., 2009, 

showed an increase in greater stance phase peak knee valgus moment at the knee for the 

earlier group, but that was accompanied by increase in GRF forces and moments. 

However in simulating the drop jumps with added medial translation, knee displacement 

was the only variable that was changed and no adjustments were made to GRF or GRM. 

Hence large differences in moments transmitted to the knees were not expected. 

Significant correlations were found between knee flexion moments and angles and 

between knee valgus moments and angles. Correlation coefficient for flexion moment­

angle pairs were r = 0.93 (p < 0.05) for right knee and 0.83 (p < 0.05) for left. The 
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correlation coefficient for valgus moment-angle pairs were 0.94 (p < 0.05) for right knee 

and 0.93 (p < 0.05) for left. 
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Figure 45. Average right and left flexion knee moments from simulations of the original 
50 cmjump and 50 cmjump with added medial translation (valgus). 
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Figure 46. Average right and left knee valgus moments from simulations of the original 
50 cmjump and 50 cmjump with added medial translation (valgus). 
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Figures 47 and 48 shows temporal averages of flexion and valgus knee powers for the 

added medial translation simulations in comparison to same powers obtained from the 

original 50 cm jump simulations. For the added medial translation, average flexion peak 

power (absorbed) was 436.32 ± 101.74 W for right knee and 354.83 ± 86.61 W for left. 

These were in comparison to the original 50 cm jump simulations where average peak 

flexion power (absorbed) was 411.93 ± 57.45 W and 360.36 ± 51.71 W for right and left 

knee respectively. For added medial translation, average peak valgus power (generated) 

was 47.15 ± 23.20 W for right knee and 50.40 ± 26.52 W for left. These were in 

comparison to the original 50 cm jump simulations where average peak valgus power 

(generated) was 61.45 ± 13.66 W for the right knee and 41.36 ± 23.36 W for the left. No 

significant trends in knee powers were found for both flexion and valgus due to the above 

conflicting left and right values. 
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Figure 47. Averaged right and left knee flexion power from simulations of the original 
50 cmjump and 50 cmjump with added medial translation (valgus). 
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Figure 48. A veraged right and left knee valgus power from simulations of the original 
50 cmjump and 50 cmjump with added medial translation (valgus). 

4.8. Extended Discussion 

Using available motion capture technologies, the first step of this study was to collect 

data on recreational female athletes performing drop-jumps from various heights. The 

research trials conducted within the laboratory gave data on fairly safe drop-jump 

activities, with low risks of ACL or other injuries. In contrast, real life sporting events 

involve much higher risks of ACL injury; problems such as severe valgus are not 

expected to happen during experimental trials, and for obvious reasons, injuries may not 

be replicated in the laboratory. However it was possible to begin an investigation on ACL 

injury dynamics by altering some of the variables such as valgus, within the simulation 

environment used as an investigative tool. 

The first research goal of this study was to simulate a complex jump movement 

consisting of the landing phase of a drop jump. The performance criteria were both 
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kinematic and musculoskeletal based. The kinematics controlled the segment and joints 

positions during motion while CMC computed the neuromuscular activations causing to 

attain those positions. Through the final step of forward dynamics, it was found how 

muscle groups controlled the biomechanical system to perform (the landing phase of) 

drop-jump movements. Trajectories of the HQ and GQ ratios obtained (Figures 27-29 

and 40) gave an optimized pattern of muscle recruitment for the jumps at minimum cost 

to the neurological system. 

Validation tests conducted (section 4.6) showed significant correlations between knee 

(flexion and valgus) angle values calculated from Inverse Kinematics and Forward 

Dynamics. Correlations and P-values given in Table 11 indicate that the use of Forward 

Dynamics for predicting knee joint (motion) angles was justified. Consistently high 

correlations from the validation tests also meant that if small changes in medial knee 

translation were introduced for the ensemble of participants, Forward Dynamics 

simulation would yield reliable results. 

The second research goal was to determine the effects of increasing valgus alignment of 

the knee on ACL loads and strains. Not surprisingly, substantial increases in ACL loads 

and strains were found (Section 4.7), a phenomenon long suspected by bio-mechanical 

research communities. No significant difference in muscle activation patterns, the HQ 

and GQ ratios (Figure 40), were seen in the additional valgus simulations. A strong 

argument for observing little changes in HQ and GQ ratios is that the hamstring, 

quadriceps and gastrocnemius are all flexor-extensor muscles, their control having little 
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to do with abduction movement. Therefore, etiological studies with different muscle 

groups (from the above) will need to be conducted to find the location of muscular 

control influencing excess valgus. 

Once the second research goal was reached, the results showed the effects of increased 

valgus on ACL strains and forces. The simulations showed that ACL strain increased 

from 13.67% to 16.27% for right ACL and 13.38% to 15.86% for left. This increase puts 

the ACL in danger of rupture according to Butler's study which claimed that no more 

than 13-14% strain for the ACL was safe 9. Along with strain, there was increase in the 

ACL force too for the added medial translation situation as seen in Section 4.7. This 

increase in strain of and force on the ACL with added medial translation (during 

simulation) is considered the most important finding of this study. This inference can be 

compared favorably to Solomonow's study 65,24. 

Various literatures on ACL injury demonstrate that many physical and psychological 

variables affect injury to the ACL. It is likely that some of the dynamic factors affecting 

ACL injury has not been discovered and evaluated. In the present study several factors 

contributing to knee motion, including other knee muscles and also knee ligaments like 

PCL, MCL and LCL, were left out. However, it may be concluded that excessive valgus 

of the knee is a major contributor to ACL injury. As more variables of risk are discovered 

it would be advantageous to establish some form of screening program that will help 

towards preconditioning athletes against ACL injury. Formulation of an effective 

screening program for testing risks of ACL injury is a challenging issue. As Barber-
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Westin et aI., 2010, points out, drop jump tests conducted within the laboratory are not 

good indicators of ACL injury risks 6. In the absence of other procedures, at present this 

is the only safe method available to research. Enhancing the analysis by using a more 

comprehensive musculoskeletal model (something as yet unprecedented) complete with 

lower extremity ligaments will more than likely move the understanding real time ACL 

mechanics further ahead. 

The most original part of this study was the inclusion of ACL in simulations. Ability to 

trace length and force changes in the ACL during impact was highly informative. Added 

to this was ability to visualize dynamic changes in the ACL through OpenSim visual 

interface. However there were some obvious limitations to the musculoskeletal model 

developed, which was rather simplified. The primary limitation was lack of muscle 

volume. Representation of muscles (and ACL) as line segments with constant cross 

section area was possibly the greatest factor contributing towards variation of simulation 

results from real life. A second limitation was obtaining muscle activation based on 

isometric force at an ideal muscle-tendon isometric condition. However in everyday 

activities, including jumping, chances of muscles reaching MVC are seldom. Hence at 

certain times during simulation, the musculoskeletal model underwent activations equal 

to one due to a muscle excited at peak isometric force. 

88 



CHAPTER V 

CONCLUSION 

The purpose of the present study was to investigate the dynamic variables of the knee and 

ACL during drop jump trials and to observe effects of increased valgus on the ACL. Both 

investigations have been carried out successfully with clear results presented while 

maintaining high standards of scientific enquiry. 

Drop-jump results from the three different heights showed distinct trends, such as, ACL 

strains and loads increased with increased jump height. Knee flexion angles, knee flexion 

moments and valgus angles increased with increased drop jump height. No definitive 

conclusions were drawn between knee valgus moment, and ACL and Knee Biomechanics 

with increased medial translations. 

Distinct trends were also observed from the simulations with increased medial 

translation, e.g., increase in ACL strain and load as well as valgus angle. There were 

negligible changes in knee moment, possibly due to unchanged GRF force and short ACL 

moment arm. 
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CHAPTER VI 

FUTURE DIRECTIONS 

Better understanding of ACL dynamics may be achieved through simulation with 

enhanced anatomical model of the knee and lower extremities. A better physiologically 

realistic representation of muscles including emphasis on underlying fibril-collagen 

microstructure is very important. Modeling of bone structures and functionalities may 

also be improved. For example there needs to be a provision for calculating bone-to-bone 

contact forces. A more comprehensive picture of the knee joint, complete with ACL, PCL 

and MCL ligaments, will provide further insight into real life ACL load and strain. 

ACL dynamics needs to be investigated for parameters, as yet unknown, contributing to 

risk of injury. Sophisticated EMG systems that capture the activation in hard-to-reach 

muscles in a non-invasive way need to be designed. Studies need to be done on athletes 

who are back into their athletic programs after rehabilitation from ACL injury or 

reconstruction. Effects of increased GRF on the increased valgus situation would provide 

insight into a more serious injury condition. Variations in local loads at the knee joint, 

especially increase in abduction (valgus) moment needs to be examined. Finally, as other 

risk factors are discovered and their patterns are understood, preventive measures may be 

formulated, on an individual basis, to minimize (may be even avoid) ACL injuries. 
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APPENDICES 

APPENDIX-A 

Human Movement Glossary 

Flexion - Bending movement that decreases the angle between two parts. Bending the 

elbow, clenching a hand into a fist and folding the knee when sitting are examples of 

flexion. Flexion of the hip or shoulder moves a limb forward, towards the anterior side of 

the body. 

Extension - It is the opposite of flexion, being a straightening movement that increases 

the angle between body parts. When standing up, the knees are extended. Extension of 

the hip or shoulder moves a limb back, towards the posterior side of the body. 

Abduction - A motion that pulls a structure or part away from the midline of the body. 

In the case of fingers and toes, abduction happens with spreading the digits apart away 

from the centerline of the hand or foot. 

Adduction - A motion that pulls a structure or part towards the midline of the body, or 

towards the midline of a limb. Dropping the arms to the sides and bringing the knees 

together are examples of adduction. In the case of the fingers or toes, adduction is closing 

the digits together. 
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Internal rotation - Also known as medial rotation of the shoulder or hip which would 

point the toes and knees or the flexed forearm inwards (towards the midline). 

External rotation - Also known as lateral rotation is the opposite of the above. It would 

turn the toes and knees or the flexed forearm outwards (away from the midline). 

Dorsiflexion - Flexion of the entire foot superiorly, like taking the foot off an 

automobile pedal. 

Plantarflexion - Flexion of the entire foot inferiorly, as if pressing an automobile pedal. 

Eversion - Movement of the sole of the foot away from the median plane. 

Inversion - Movement of the sole towards the median plane which IS the same as 

twisting an ankle. 
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APPENDIX-B 

Hill-Huxley force-length-velocity surface for finding active muscle forces 

Figure 49 shows the ideal force-length-velocity curve from Katz et al. 20. The 
investigation on force-length and force-velocity relationship in muscles was first started 
by Fenn and Marsh (1935), A.V. Hill (1938) and Katz (1939). Katz was one of the first 
to perform force-velocity experiments with both concentrically (positive velocity) and 
eccentrically (negative velocity) muscles. When eccentric contractions occur the fibers 
are essentially lengthening which implies negative velocity. Katz also noted that eccentric 
contractions occurred when a muscles was yielding to a force and vice versa for 
concentric contraction. 
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Figure 49. Force-length-velocity curve of an idealized muscle showing only the 
concentric phase of contraction. 
Source. Zatriosky et. al. 81 
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APPENDIX- C 

Hill-Huxley model of Muscle Tendon contraction in OpenSim 2.20 

A.V. Hill's paper presents a classical model of muscle contraction dynamics 37 . It consists 
of a contractile element (CE) coupled with a parallel elastic element (PEE) that represents 
the active and passive forces of a muscle and a series elastic element (SEE) representing 
tendon tension as shown in Fgure 50. Generally, once muscle contraction velocities are 
found from experimental data, active and passive forces for individual muscles as well as 
muscle and tendon lengths is found . 
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Figure 50. Hill-Huxley model of musclo-tendon contraction dynamics, as modified and 
used in OpenSim 2.20 64. 
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APPENDIX - D 

Definition of joint kinetic labels for Figure 6 

, .. - ... _--, 
". ; Hi p (Upper body) 

Thigh 

T KNfTH 

F KNfTH 

F AKIFT 

Figure 6 Repeated. Lower extremity segment and joint dynamics. Explanation of labels 

are given below. 
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Explanation of terms used in Figure 6 and equations 3-8 

Label Definition 

T GRF Ground reaction torque. 

FGRF Ground reaction force. 

T AKIFT External torque on foot segment applied at ankle. 

F AKIFT External force on foot segment applied at ankle. 

T AKISH External torque on shank segment applied at ankle. 

F AKISH External force on shank applied at ankle. 

T KNISH External torque on shank applied at knee. 

F KN/SH External force on shank applied at knee. 

T KN/TH External torque on thigh segment applied at knee. 

FKN/TH External force on thigh applied at knee. 

T HP/TH External torque on thigh applied at hip joint. 

FHP/TH External force on thigh applied at hip joint. 

H Ff Time rate of change in angular momentum about foot 
COM. 

HSH Time rate of change in angular momentum about 
shank COM. 

W FT,W SH,W TH Weights of individual segments. 

JNB Distance of joint A from segment B COM. 
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APPENDIX - E 

Given in Figures 51-56 are GRF Forces and free moments averaged from eleven subjects 
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Figure 51. Average right and left GRF forces vs time in the x direction. 
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Figure 52. Average right and left GRF forces vs time in the y direction. 
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Right GRF Fz vs time 
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Figure 53. Average right and left GRF forces vs time in the z direction! 
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Right GRF Mx vs time 
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Figure 54. Average right and left GRF moments vs time in the x direction. 
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Figure 55. Average right and left GRF moments vs time in the y direction. 
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Figure 56. Average right and left GRF moments vs time in the z direction. 
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APPENDIX-F 

Ground reaction force data from drop-jump study by Burkhardt et al., 1990. 

Bar plot showing small changes in ground reaction forces between 42 and 63 cm drop 

jumps performed by athletes recruited from CSU, Long Beach 8. 

PEAK PROPULSION GROUND REACTION FORCES 
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Figure 57. Peak propulsion GRF relative to body weight. 
Source: Burkhardt et al. 8 

Terminology 

BWT - body weight VJ - vertical jump PCL - power clean DJ - drop jump 

110 



APPENDIX - G 

Strain rate data from rabbit ligament presented by Solomonow et al., 2004. 

It shows how increased strain rates lead to higher tensions. 
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Figure 58. Length-tension relation of a (rabbit) ligament when stretched at different 
rates. Increasing rate of stretch increases tension. 
Source: Solomonow et al. 65 
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