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ABSTRACT 
 
 

FABRICATION AND CHARACTERIZATION OF A MICRO/NANOFLUIDIC 
PLATFORM FOR ELECTROPORATION 

 
Hanwen Yuan 

 
 

April 25, 2017 
 

For traditional electroporation devices, there are a number of problems associated 

with these devices such as insufficient understanding of its theoretical mechanism, low cell 

viability, inadequate electroporation efficiency, excess voltage applied to generate required 

electric field due to the large size of these devices and sample contamination. Although 

newly developed microfluidic electroporation devices have solved most of the above 

existing problems in traditional bulk electroporation devices, they appear to lack the ability 

to control the precise dose of biomolecules or genes transfecting into cells and, from a 

manufacturing perspective, the fabrication methods do not enable repeatable production of 

such devices on the large scale. Here, we introduce a new, repeatable method for 

fabricating 3-D Micro/Nanofluidic electroporation platforms and characterize these 

platforms to demonstrate their ability to electroporate live cells.  

Some of the new methods developed in this work include a direct-write fiber 

technique via three-axis robotic dispensing system, dry film resist photolithography, film-

to-film bonding and replica molding to create the desired electroporation platform. A 

robotic dispensing system was utilized to control the fiber diameter, which was determined 
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by the: 1) prescribed dispense time; 2) pressure of the dispensing system valve; 3) rate at 

which the stage traversed; 4) diameter of the dispensing tip; 5) polymer solution viscosity 

and surface tension; and, 6) programmed drawing length.  Thin dry film photoresist was 

utilized to replace liquid photoresist in order to achieve high-quality film-to-film bonding 

after drawing nanofibers onto one substrate containing the thin-film structure. 

Polydimethylsiloxane (PDMS) was employed as the bulk material to fabricate the target 

micro/nano electroporation substrate using replica molding and micro/nanofibers etching.   

Characterization of the direct-write fiber technique via robotic dispensing system 

to acquire suspended and complex fibers of the required dimension repeatedly under 

prescribed conditions were completed. Combining this fiber direct-write method and 

traditional clean room techniques, a total of 18 micro- to nano-scale electroporation devices 

(6 for each group of 1 µm, 500 nm, and 300 nm diameter) were successfully developed and 

mass produced in two weeks with relatively high repeatability (within 20% of the design). 

Finally, metrology and characterization studies were performed on the electroporation 

platforms to validate the micro/nanochannel’s existence and its connectivity to two micro-

chambers. Furthermore, biomolecules and other fluorescent particles were successfully 

transported through the micro/nanochannel and transferred (via electroporation) into the 

cells. Preliminary results of electroporation experiment performed on this micro/nano-

electroporation platform illustrated that the duration of the entire electroporation process 

was significantly shorter than times reported previously by other investigator’s nano-

electroporation platforms. 
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CHAPTER 1 INTRODUCTION 

1.1 Purpose 

Electroporation is a molecular biology technique that encompasses applying an 

electrical field to cells to create a pore on the cell membrane in order to transfect 

biomolecules, drugs, DNA, and genes into the cells. Cell electroporation has attracted 

many researchers’ attention due to its broad application such as cell analysis and 

transfection or pasteurization. Specifically, these applications can be defined as two main 

groups. The first group mainly investigates how to release intracellular nucleic acids, 

proteins, and other metabolites in order to study the effects on the cell. The second group 

is trying to deliver exogenous reagents including drugs, genes, and biomolecules into cells 

for therapeutic applications. In order to fulfill the promising application of cell 

electroporation, numerous researchers have developed different types of electroporation 

platforms for their specific purposes. Cell electroporation requires a significant electric 

field gradient, which “stresses” the cell.  When applied over the entire cell or a large area 

of the cell, the electric field will generate a plethora of pores in the cell membrane; thereby, 

allowing a mass uptake of not only the targeted molecules, but non-desired compounds, 

chemicals and other biomolecules as well.  Thus, it is desired to minimize not only the 

number of pores opened on the membrane, but the pore size as well. Most electroporation 

devices are limited due to low cell viability rate, low transfection efficiency, higher sample 

contamination, and larger Joule heating effect [1]. Although recently developed 

microfluidic electroporation platforms overcome most of the existing problems, they lack 
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the ability to precisely control the dose of biomolecules transfecting into cells, or enable 

repeatable production of such devices on the large scale. Based on the current issues in this 

field, our main task is to design a 3-D micro/nanofluidic electroporation platform and 

develop a process to mass fabricate these devices on a large scale.  These platforms will be 

utilized in nanoscale cellular applications to precisely control the dose of biomolecules 

delivered to the cells. 

1.2 Objective Statement 

The objective of this study is to design and develop a micro/nano scale fluidic 

device that will ultimately be applied to create a nanopore in a cell’s membrane in order to 

transfer biomolecules into cells. Creation of this micro/nanoscale fluidic device requires 

the use and characterization of a robotic dispensing system to produce a specific range of 

fiber diameters and dispense them onto precise locations on the platform and to mass 

produce different fiber dimensions to create micro/sub-micro/nano-electroporation devices 

for cellular electroporation.  

1.3 Hypotheses 

The hypotheses of this work are: 

1. A newly developed direct-write process using a commercially-available 3-D axis 

robotic system improves process efficiency (fast with high yield), structure 

complexity (suspended fibers with high spatial control) and fiber dimension 

(precise control of fiber dimensions) compared to the previously developed method 

using an ultra-high precision micro-milling machine.   
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2.  The direct-write process will repeatedly draw PMMA fibers within 20% of the 

design fiber diameter (~ 300 nm, ~ 500 nm, ~ 1000 nm). 

3. Electroporation platforms will be repeatedly manufactured with micro-/sub-micro-

/nano-channel diameters and micro-chamber gap distances and depth within 20% 

of the design values.  

4. At least 80% of the cells will be viable after electroporation and the electroporation 

process will be achieved in a much shorter time frame than previously reported 

results within micro-/sub-micro-/nano-electroporation devices.  

1.4 Specific Aims 

Specific Aim 1:  Characterize the direct-write capabilities of the 3-D axis robotic system 

and compare its performance to previously published results from an ultra-high-precision 

micro-milling machine. 

Specific Aim 2:  Characterize the robotic dispensing system to prioritize the key parameters 

of the direct write process responsible for fiber formation via statistically adjusting the 

experimental parameters and mathematically model the direct-write process to identify the 

corresponding controlling parameters. Correlate the key parameters of the direct-write 

process to the physical properties for controlling fiber diameter including fiber length, feed 

rates, needle tip size, polymer solutions weight concentration, and valve dispensing time.  

Specific Aim 3:  Design and develop electroporation platforms using traditional 

microfabrication processes in conjunction with the 3-D axis robotic system. 

Specific Aim 4: Transfer PI dye into HL60 cells located in the micro-/sub-micro-/nano-

electroporation devices under a high electric field.  
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CHAPTER 2 BACKGROUND 

 
Cells are the basic structural, functional, and biological building blocks of all 

known living things. Their main function is to take in nutrients and convert them into 

energy to support daily activities. The cell is wrapped by a cell plasma membrane, which 

is composed of a double layer of lipids in order to separate and protect the cell from the 

surrounding environment. Inside this plasma membrane, there are a lot of different types 

of proteins acting as channels or pumps to create a pathway to transport simple molecules, 

while for other types of biomolecules, this plasma membrane acts as an impenetrable 

barrier. Cell transport can be divided into two categories: 1) passive transport; and, 2) 

active transport. Passive transport requires no energy from the cell to move chemicals and 

other molecules across the cell membrane such as the diffusion of oxygen, carbon dioxide, 

and osmosis water, diffusion of water across a semi-permeable cell membrane is called 

osmosis.  Meanwhile, active transport needs energy to transport large molecules and, such 

as sodium, potassium, glucose and amino acids.  While these transport mechanisms are 

effective in moving ions and molecules naturally across cell membranes, it is difficult to 

take advantage of these natural processes to controllably transfect desired molecules across 

the cell membrane.  Thus, investigators discovered a means by which to apply an electric 

field across a cell membrane to create pores in the cell membrane [2].  This chapter will 

explore the field of electroporation, define the use and application of this technique and 

describe current methods for fabricating electroporation platforms. 
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2.1 Electroporation 
 

Electroporation is a molecular biology technique that encompasses applying an 

electrical field to cells to create a pore on the cell membrane in order to transfect 

biomolecules, drugs, DNA, and genes into and out of the cells. Cell membrane 

electroporation technique has been developed for the purpose of being a valuable tool for 

cell analysis, transfection, and pasteurization. Applying high electric field strengths by 

placing electrodes in the vicinity of cells can create pores in cell membranes. 

Electroporation is a dynamic process since it depends on both the magnitude and duration 

of the applied electrical field at each point on the cell membrane. It is generally accepted 

that a transmembrane voltage threshold ranges from 0.2 V to 1 V, where a transmembrane 

potential is defined as the electric potential difference across the two sides of the cell 

membrane. If the membrane potential is located in this threshold range, a reversible 

(temporary) pore will be created. Meanwhile, strengthening the electric pulse increases the 

size and number of the created pores [3]. But, if the membrane voltage is greater than 1 V, 

electroporation at these voltages adversely affect cell viability by creating a permanent 

(irreversible) pore.  

2.1.1 Fundamentals of Electroporation 
 

Theoretical study of electroporation can be categorized into three groups [3]. The 

first group focuses on different parameters such as pulse strength and duration, ionic 

concentration, and field strength impact cell permeabilization [4-6]. The second group pays 

attention to optimizing and controlling the electric pulse and duration during cell 
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electroporation [7, 8]. The third group mainly studies the transfection of biomolecules into 

cells during electroporation [9-11].  

The cell membrane plays a significant role in explaining the relationship between 

the external electric field and the transmembrane potential (TMP, Figure 2. 1). A simple 

equation was given by [12] as: 

                                                      𝛥𝛷 = 1.5 𝑟𝐸 cos 𝜃                                               (2-1) 

where 𝛥𝛷 is the TMP,  𝑟 is the cell radius, E is the external electric field, 𝜃 is the angle 

between the site on the cell membrane and the direction of E, where 𝛥𝛷 is measured and 

the direction of E. Electroporation is achieved when 𝛥𝛷  imposed on the resting 

transmembrane is greater than threshold potential. 

 

Figure 2. 1 Scheme of induction of transmembrane potential [13] 
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A rearrangement of the molecular structure of the cell membrane takes place when 

the applied TMP arrives at the range of 0.2 V to 1 V, and the rearrangement will lead to 

pore formation on the cell membrane. The created pores can be categorized into two 

different types: hydrophilic pores and hydrophobic pores. Hydrophilic pores have their 

wall lined with the water-attracting heads of lipid molecules (Figure 2. 2), while 

hydrophobic pores are gaps in the lipid bilayer of the membrane that are formed by thermal 

fluctuation (Figure 2. 3) [3]. The dynamic process of pore formation for a cell membrane 

can be depicted as three steps: pore formation, pore expansion, and pore resealing. A pore 

is created gradually. A pore will expand if an external constant electric field is applied on 

the cells. Once the external electric field closes, the pores start to reseal and ultimately 

disappear completely [13].  However, if the TMP far exceeds threshold, the cell membrane 

will breakdown since the cell membrane structure will be disturbed significantly , which 

results in a significant increase in the electrical conductivity and pore formation in the cell 

membrane permeability to biomolecules, ions or even macromolecules [3].  

 

Figure 2. 2 Hydrophilic pore [14] 
 

 

Figure 2. 3 Hydrophobic pore [14] 
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2.1.2 Traditional Electroporation 
 

Electroporation has been widely applied in the delivery of drugs, DNA, and genes 

into cells and tissues. In the 1960s and 1970s, numerical and experimental studies were 

performed on bilayer membranes by Neumann et al. [2, 15], which lead to the first 

electrophoresis device, using a short-circuiting approach, for transferring genes into murine 

cells in the 1980s After that, researchers developed more advanced electroporation 

platforms to improve cell transfection efficiency and lower cell mortality rate. However, 

the cell transfection efficiency and cell viability rate are still insufficient to meet the 

increasing demand for developing new drugs, curing diseases, and re-growing organs using 

the electroporation technique.  

with a constant distance on the two opposing sides of a large number of cells. In 

order to effectively electroporate a large number of cells, a short and high-voltage pulse 

was required to induce a sufficient transmembrane potential (TMP) to create pores in the 

cell membranes to pass molecules in the surrounding medium [16]. The proper pulse 

strength range for reversible electroporation of common mammalian cells varied between 

50 V/cm to 1000 V/cm, which depended on the medium, electroporation system, electrical 

properties, and sizes of the cells [17].  On the one hand, an increase in pulse magnitude and 

duration time was found to be beneficial for uptake of a large quantity of biomolecules. On 

the other hand, it resulted in low cell viability caused by Joule heating and irreversible cell 

membrane recovery after pore creation [18-20]. Furthermore, multiple pores were created 

on the cell membrane due to the applied electric field (Figure 2. 4), which probably lead 

to the loss of some significant plasmids in the cells when external biomolecules were 

transferred into the cells through these pores. As a result, the increase in the number of 
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pores led to undesired stress on the cells due to the mass influx of additional external 

biomolecules, which lower the cell viability as well as transfection efficiency. 

 

Figure 2. 4 Bulk electroporation [21] 
 

2.1.3 Single Cell Electroporation 
 

Compared to bulk electroporation systems, a single cell electroporation system has 

the advantage of acquiring sufficiently high TMP generated by low applied electric fields, 

manipulating cells easily, and monitoring the transfection process in real-time. Single cell 

electroporation has demonstrated promise as a technique for further study of cellular 

biology and disease processes at the cellular level. However, most past and current research 

has been based on a cell’s size, shape, and orientation, which also affect its electroporation 

and transfection [22]. The importance of determining the real relationship between the 

intrinsic and extrinsic properties of cells and electroporation has been recognized, but not 

fully realized. Most single cell electroporation platforms separated the cell and the 

biomolecules to be transferred into the cells into two chambers, which greatly reduced the 

cell’s stress by generating fewer pores in the cell membrane. In addition, reducing the 

single cell’s stress improves cell transfection efficiency and cell viability rate significantly 
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due to lowering the applied electrical field, shortening the pulse applied on the cell in single 

cell electroporation platforms.  

2.2 Overview of Existing Electroporation Platforms 
 

 In the beginning, square function pulse generators had been applied to construct 

electroporation systems in order to modify the amplitude and pulse length independently 

[23]. In the early stages, artificial planar bilayer membranes had been used to 

experimentally study the breakdown of bilayer membranes and biomolecules uptake in 

cells [14, 24-31]. Subsequently, bulk electroporation systems were developed, but these 

systems yielded low cell viability and transfection efficiency due to slow membrane 

recovery, excessive swelling, or Joule heating because of the application of high pulse 

amplitudes and long duration times [17, 32-34]. Later, more advanced systems, including 

electrolyte-filled capillaries, micropipettes, microelectrodes surrounding cells, and 

micro/nanofabricated devices had been utilized in cell electroporation [22]. In particular, 

Lundqvist [35] designed one of the first single-cell electroporation macro-scale devices to 

study single cell electroporation by using two carbon fiber microelectrodes. Using two 

carbon fiber electrodes and demonstrated that a single cell can be electroporated with only 

1 volt-millisecond square wave pulses by shortening the distance between electrodes with 

a tiny 2-5 microns and cell surface. In the following, some different types of electroporation 

devices will be introduced in detail. 

2.2.1 Application in Bulk or Micro/Nano Pipette Platforms 
 

In bulk electroporation platforms, a large amount of cells is placed between two 

large parallel electrodes to receive homogenous electric field (Figure 2. 5) [16]. Figure 2-
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5 a) shows the electrode distance varying from top to bottom in the cuvette, which leads to 

different electric fields applying onto the cells at different locations, while in Figure 2-5 b), 

cells in the cuvette obtain the same level of electric field strength due to the same electrode 

distance shown in the right side. 

 

Figure 2. 5 Schematic eesign of bulk electroporation platforms [16].   
 

In order to compare bulk electroporation results with micro- or nanofabricated 

platform advantages, a single cell bulk electroporation platform was fabricated using a 

sheet of poly (methyl methacrylate) (PMMA) (Figure 2. 6) [36]. This platform consists of 

a sheet of PMMA machined by a micromilling machine, an adhesive backed copper film 

soldered to electrical leads connecting to the power supply, and a glass cover slip sealed to 

the PMMA.  
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Figure 2. 6 Schematic design of single cell bulk electroporation platform [36]. 
 

As we discussed before, to overcome existing issues caused by bulk electroporation 

platforms, researchers had been developing single cell electroporation (SCEP) platforms 

including micropipette electroporation devices to apply much smaller electric fields onto a 

single cell. In these micropipette electroporation platforms, the electric field was applied 

with a micropipette filled with solute, which was made of filament fused glass coated with 

a layer of electrode (Figure 2. 7) [37]. The micropipette tip diameter approached the size 

of a single cell (~0.5-2 µm) as close as possible to acquire an adequate transmembrane 

potential using a low electric field to create a pore on rupture the cell membrane. In this 

setup, transfection efficiency of 50~80% was achieved and demonstrated by real-time 

visualization using two-photon microscopy during the electroporation process. 
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Figure 2. 7 Pipette electroporation platform setup [37] 
 

2.2.2 Micro-fabricated Electroporation Platform  

For bulk electroporation devices, some drawbacks, such as low cell viability rate, 

high stress on the cell, low transfection efficiency, and high sample contamination, have 

always hindered them to further development or practical application in the medical field. 

For micro/nano-pipette electroporation platforms, even a 50~80% transfection efficiency 

is a big progress compared to bulk electroporation devices. They still cannot meet the 

gradually growing and demanding requirement (such as high transfection efficiency, high 

cell viability rate, low contamination, precise dose of transferring biomolecules into cells) 

in electroporation application including medicine development, disease curing, and organ 

regrowth. In the following, several representative micro-fabricated electroporation 

platforms will be briefly introduced with a schematic design of their main function. In these 

devices, a single cell is isolated from other huge amounts of cells to obtain an 

inhomogeneous electric field, which was applied on a specific area of the single cell.  
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Figure 2. 8a is an electroporation device made of PMMA including a channel 200 

µm high and 5 mm wide. This channel was coated with gold on the top and bottom. Due to 

the short distance between two electrodes, a relatively small voltage was applied for 

electroporation. A multiple patch clamp array platform was developed by Khine [38] 

(Figure 2. 8b), in which the constriction was utilized to block the cell moving. By applying 

an under pressure, the cell was trapped at the entrance of constriction due to smaller width 

than the diameter of the cells. In this example, less than 1 V was applied to create enough 

electroporation threshold potential. Figure 2. 8c is an electroporation analysis device with 

a micro-hole in the silicon nitride designed and fabricated by Huang and Rubinsky [39]. 

The cell was captured in the micro-hole, located in the center of the middle insulator plate 

(silicon nitride) by pressure difference between the upper and lower fluid chamber. Two 

electrodes were placed 100 µm apart from the middle plate for applying a small electrical 

field pulse to puncture a nanopore on the cell membrane. They hypothesized that a micro-

sized pore would reduce stress on the cell and improve cell viability [23], while another 

group designed a different functional device for a single cell electroporation in Figure 2. 

8d. This device consists of a glass wafer coated with an electrode on its surface. It then was 

sealed with PDMS in order to form a cavity for loading cells. Other than the cathode 

electrode on the glass wafer, an extra anode electrode was added above the glass wafer to 

induce DNA moving towards cells once opening a pore on the cell membrane. 
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Figure 2. 8 Schematic design of different microfluidic electroporation platforms [38-43] 

 
One representative example of cell trapping-based electroporation platforms was 

suggested by Khine [44]. This simple PDMS microchip used multiple narrow lateral 

channels to trap the cell between the Ag/AgCl electrodes. From Figure 2. 9, the cell was 

trapped by negative pressure applied by an external syringe. The center circular structure 

was radially connected to outer surrounding micro-channels utilized as trapping sections. 

The width of these trapping channels is much smaller than the diameter of the cells in order 

to trap them. Due to this dimension limitation, the cells deform, which directly affected the 

efficiency of electroporation.  
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Figure 2. 9 Images and schematics of an array of narrow lateral channels for cell trapping and 

localized single-cell electroporation [44] 

 
An effective design of membrane sandwich-based electroporation platform was 

introduced by Fei [45]. In this platform, cells were trapped on a poly (ethylene terephthalate) 

(PTE) membrane. The advantage of this membrane is that it has a porous surface, leading 

to immobilize an individual cell and apply low electrical field pulse for electroporation. 
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From Figure 2. 10, we can see that it consists of two membranes: one is on the top, the 

other one is on the bottom for supporting an individual cell. The distance between two 

membranes is 10 µm. First, a low pulse was applied to transfer DNA moving towards the 

center of the system. Then, a high pulse was applied to generate enough electrical field for 

final electroporation.  

 
 

Figure 2. 10 Schematic diagram of the membrane sandwich electroporation technique  (a) 

platform (b) schematic of DNA migration path [45] 

 
To better understand single cell electroporation analysis, researchers had designed 

and developed localized single cell membrane electroporation platforms (Figure 2. 11) 

[16]. In this localized SCEP platform, single cells were placed on the top of two close 

electrodes with few micrometers distance, which can intensify the electric filed applied on 

the cells. During electroporation, pores were created between two electrodes to transfer 

biomolecules from the lower chamber into cells. Afterwards, those pores on the cell 

membrane resealed again once some biomolecules entered the cells through the pores. 
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Figure 2. 11 Schematic diagram of localized SCEP platform [46]   
 

In their study, genes/biomolecules/DNA/drugs were successfully transfected into 

the cells with relatively high efficiency increasing cell viability rate, reducing cellular stress, 

and lowering sample contamination when compared to conventional bulk or micro-pipette 

electroporation devices [23]. Nonetheless, these micro-fabricated electroporation 

platforms were plagued with Joule heating effects, an inability to precisely control the dose 

of transfected biomolecules and the overall cell viability was still significantly lower than 

normal cultured cells, which was the desired goal of these electroporation platforms [23]. 

2.2.3 Nano-fabricated Electroporation Platform 

To avoid some shortcomings, such as larger Joule heating effect and lack of 

precisely controlling the dose of the transfecting biomolecules caused by micro-fabricated 

electroporation platforms, Boukany et al. [23, 36] fabricated electroporation devices with 

nanoscale channels using a DNA combing and imprinting method to investigate whether a 

nano-electroporation platform would enable achievement of the desired cell viability and 

precise control of the transfected biomolecules. These nano-electroporation platforms 

successfully transfected biomolecules into the cell in a controllable fashion and 
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significantly improved cell viability to levels comparable to normal cell culturing 

techniques. In Figure 2. 12, this nanochannel electroporation device was fabricated by 

DNA combing and imprinting method. First, DNA was combed onto an array of micro-

ridges in order to fabricate a mold. Then gold was sputter-coated onto this mold. Then the 

mold was imprinted into pre-polymer resin. After curing it, the mold was peeled off, and 

DNA with coated gold was etched out by gold etchant. Eventually, the nanochannel as 

small as around 90 nm in diameter buried inside the bulk device was created. A theoretical 

electric circuit model shown in Figure 2. 13 was given by James Lee [36] from his 

nanofluidic electroporation system. Based on finite element simulation results in the 

nanofluidic electroporation system, the buffer solution in the nanochannel is equivalent as 

a resister. The microchannel adjacent to the nanochannel is modeled as a conductive wire 

with relatively low resistance. The cell membrane is separated into two parts: one close to 

the anode is modeled as a parallel circuit with a resistor and a capacitor, the other side 

membrane close to the cathode is modeled as a different value of resistor and capacitor. 

The cell interior is regarded as an equipotential surface. The TMP of the membrane 1 can 

be calculated via this equivalent electric circuit when applied voltage is given. Although 

their fabrication technique successfully created the desired nanochannels, several issues 

occurred with repeatability in fabricating the nanoscale channels, precision in controlling 

the nanochannel location within the device, device yield and inability to automate the 

process for large-scale or mass production [23].  Thus, the purpose of this study is to 

explore the development of a method that can repeatedly and precisely produce sub-micron 

scale to nanoscale channels within a PDMS-based fluidic platform, which can be utilized 

to perform electroporation in cells.   
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Figure 2. 12 Apparatus and operation of the NEP device. 
a, Top: SEM image of a DNA nanostrand (arrow) ‘combed’ across two PDMS ‘microridges’. Bottom: 

schematic showing the fabrication of the NEP chip by DCI. b, Left: schematic of an NEP chip covered by a 
PDMS lid with electrodes placed in reservoirs. Middle: optical micrograph of a Jurkat cell in the left 

microchannel and positioned at the tip of the nanochannel using optical tweezers. The right 
microchannel contains gene or drugs. Right: SEM image of side view cut of a nanochannel. The 

nanochannel is ~90 nm in diameter and ~3 µm long [36]. 
 

 
 

Figure 2. 13 Theoretical analysis of nanofluidic electroporation system [36] 
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2.2.4 Biomolecules Transport Mechanism in Micro/Nano-fabricated Devices 

When an electric field was applied to a fluid in the Micro- or Nano-fabricated 

electroporation devices, the conductivity of the fluid will increase due to ohmic heating 

caused by elevated temperature of the fluid with electric field [47]. Biomolecules needed 

to be transfected into cells in the channels of microfluidic devices will be charged by the 

applied electric field in the conductive fluid. Unlike conventional electroporation devices, 

the driven force needed to move cells was from electrokinetic transportation rather than 

external applied pressure, which was the motion of a charged cell in an electric field since 

the cells themselves were charged due to their composition of the cell membrane. This 

motion was composed of two phenomena: electroosmotic flow and electrophoretic 

transport [48]. 

Electroosmotic flow is defined by a bulk liquid motion induced by an externally 

applied electric field across the fluid conduit, which takes place inside the fluidic channels. 

For a conventional capillary, the tube was filled with electrolyte fluid with pH value greater 

than 2. The capillary with negative charges ionized from conventional tube walls was 

distributed around the surface of walls. Due to attraction, the ions with positive charges 

from the fluid are attached to the wall surface, which is composed of a rigid layer. Because 

the chemical equilibrium between a solid surface and an electrolyte solution typically leads 

to the interface acquiring a net fixed electrical charge, a layer of mobile ions, which is an 

electrical double layer or Debye layer, forms in the region near the interface [49]. When an 

electric field is applied at the two ends of the tube, the net charge in the Debye layer is 

induced to migrate towards the cathode electrode by Coulomb force, which is the 
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phenomenon of electroosmotic flow. The velocity of electroosmotic flow is defined by the 

Smoluchowski equation: 

                                                𝑉𝐸𝑂 =
𝜀𝜁𝐸

4𝜋𝜂
                                                           (2-2) 

where 𝑉𝐸𝑂  is electroosmotic flow velocity, 𝜀 is the permittivity of fluid, 𝜁  is the zeta 

potential, 𝐸  is the electric field strength, and 𝜂 is the viscosity of fluid [50]. The zeta 

potential is the potential difference across the diffusion layer, which is defined as a layer 

starting from just past the rigid layer until the middle of capillary where positive and 

negative ions are nearly equal in concentration. The zeta potential varied with location, 

which means that the location near the rigid layer has greater zeta potential than that of 

other places. According to Equation (2-5), the ions close to the wall have the greatest 

velocity. Its value relates to what tube wall materials are, the fluid’s pH value, the fluid’s 

temperature, and the ionic concentration of fluids. 

Dispersed particles or biomolecules within surrounding fluids with charges move 

towards their counter-electrode under the electric field force. This motion is called 

electrophoresis, which is relative to fluid electroosmotic flow. The electric field force 

applying on the particle is expressed as: 

                                                           𝐹 = 𝑞𝐸                                                            (2-3) 

 where 𝑞 is the particle’s charge [51]. By Stokes’ law, this force is equal to frictional force, 

which is defined as [52]: 

                                                       𝑞𝐸 = 6𝜋𝜂𝑟𝑉𝐸𝑃                                                    (2-4) 
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where 𝑟 is the radius of particle, 𝑉𝐸𝑃 is the particle’s relative velocity to the flowing fluid. 

Solved above equation, we get: 

                                                       𝑉𝐸𝑃 =
𝑞𝐸

6𝜋𝜂𝑟
                                                           (2-5) 

where 𝑉𝐸𝑃 = 𝜇𝐸, 𝜇 is the electrophoretic mobility [53]. 

The absolute velocity of a charged biomolecule in the bulk fluid is the superposition 

of electroosmotic and electrophoretic velocities if we assume that fluid is neutrally charged 

and a small Debye layer relative to channel size [48]. This absolute velocity of 

biomolecules becomes very significant to the study of the duration time of cell transfection 

in the case that the length of channel, electric field strength, fluid properties, and physical 

properties of the channel are known since we can determine the final travel time of charged 

biomolecules through the channel with above equations and physical parameters.  

2.3 Electroporation Devices Fabrication Techniques 
 

2.3.1 BioMEMS 
 

Due to Micro-Electro-Mechanical Systems (MEMS) technology providing 

possibility of creating two dimensional or three dimensional complicated structures with 

high precision, MEMS technology and its incorporation into different materials such as 

polymers, dielectric materials, and metals for bioengineering applications have developed 

a new promising field, “BioMEMS” [54-57]. By combining many characteristics, 

including being capable of controlling their chemical, electrical, mechanical, and physical 

characteristics on a nanoscale level, there is a growing interest in integrating living cells or 

biomolecules with micro-fabricated devices and using microfabrication technology for 

micro total analysis systems (µTAS) [58], biosensors [59], stents [60], drug delivery [61], 
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microneedles [62], and injectable biomolecules [63]. In a word, MEMS creates a 

miniaturized and specific scaffold on which researchers could utilize this unique 

microenvironment to do biological and biomedical analysis. In addition, BioMEMS have 

the advantages of micro/nanoscale size, being capable of operating on micro/nanoscale 

time, and comprehensive characteristics over other types of biological devices for some 

certain application, such as electroporation platforms. 

2.3.2 Micro/Nanofabricated Electroporation Platform Fabrication 
 

A number of different methods for creating microfluidic devices have been 

previously developed including direct fabrication techniques (photolithography (including 

X-ray), laser photoablation, laser micromachining), and prototyping techniques such as 

injection molding, hot embossing, and soft lithography [64, 65]. Among these techniques, 

silicon, polymer, and glass were utilized to meet different specific requirements for certain 

types of biological and biomedical applications. In the following, some representative 

microfluidic device fabrication techniques will be introduced. 

Due to high accuracy, high resolution, ultrashort timescale and ultrahigh laser 

intensity coupled to the electronic system, the laser micromachining technique has been 

widely incorporated into the fabrication of microfluidic devices [66]. According to [67], 

micromachining was using a micro-scale size drilling and tuning tool and miniature milling 

to fabricate microfluidic devices (Figure 2. 14). A stereo microscope was used to monitor 

milling process. Even though the advantages introduced above for micromachining are 

over many other traditional methods, it is limited in high cost, centralized labor, optical 

opacity, and difficulty in component incorporation into silicon or glass, and requiring 

highly specialized expertise and equipment [68]. 
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Figure 2. 14 Micromilling machine setup [69] 
 

Compared to the micromachining method of fabricating microfluidic devices, 

injection molding based on laboratory methods had the advantage of low cost, ease of 

operation, and flexibility (Figure 2. 15). First, the mold was fabricated by common 

methods, such as hot embossing and photolithography [70]. Then liquid polymer or molten 

plastic was injected into the cavity with mold inside. After that, a vacuum pump was 

utilized to eliminate the air bubbles of liquid polymer or molten plastic. Last, after baking 

and cool down, the specified microfluidic devices were fabricated, followed by peeling off 

polymer from the mold. The disadvantages of this method lie in low resolution and poor 

choices of materials for injection when considering compatibility with future application, 
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while for the industry method of mold injection, it has the advantages of high throughput, 

fast fabrication, and large-volume production. 

 

Figure 2. 15 Injection molding schematic design [71] 
 

Using soft photolithography, simple micro-channels can be generated on a substrate 

layer via micro-patterns produced on an elastomeric surface [72]. The advantages of soft 

lithography include easy to learn, straightforward to apply, and low-cost [73, 74]. Like 

micromachining, the mold masters of this technique were fabricated by traditional 

photolithography. Typically, polydimethylsiloxane (PDMS) is an appropriate original 

master. Usually, contact printing and capillary molding are the two most common soft 

photolithography methods (Figure 2. 16) [75-78]. Contact printing is a direct patterning 

method involving applying an elastomeric stamp and is able to generate a non-structured, 

chemically modified surface [75, 76], while capillary molding uses an elastomeric mold 

which is placed on a substrate covering a layer of polymer, which fabricates 

topographically modified physical microfluidic devices [77, 78]. Actually, capillary 

molding is an advanced soft lithography method since higher resolution and much more 
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complicated microstructures have been created. But the disadvantages of soft 

photolithography are complexity in fabricating multilayer structures due to alignment, 

limited to amorphous materials, and lack of temperature range control [73, 74]. 

In sum, although the techniques introduced above for fabricating different types of 

electroporation platforms are viable, there are issues with repeatability and larger scale 

production. Thus, a new technique such as nanofiber drawing by the direct-write method 

combined with thin dry film photolithography, film-to-film bonding, and replica molding 

needs to be explored to fabricate an ideal 3-D nanofluidic platform for nanoscale cellular 

electroporation study.  

 

 

Figure 2. 16 Schematic representation of microfluidic channel fabrication using soft lithography 
[72] 
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2.4 Polymer Fibers Fabrication Techniques  

2.4.1 Wet Spinning, Dry Spinning and Electrospinning 
 

Over the past several decades, a variety of polymer fiber fabrication techniques, 

such as wet spinning, dry spinning, melt spinning, and electrospinning, have been 

employed to create novel polymer fiber structures with diverse and robust biological, 

chemical, electrical, and mechanical properties [79-90].  Wet spinning involves using 

polymer, which needs to be dissolved in a solvent to make the polymer solution first. Then, 

the spinneret was submerged in a tank loading with a specific chemical bath that makes the 

polymer solution to precipitate, then solidify. A different drying method was utilized in the 

dry spinning technique to solidify the polymer solution. Usually, a stream of air or inert 

gas acted as a drying agent to evaporate the solvent in the polymer solution.  

For melt spinning, different types of polymers or polymer components were utilized, 

which can be melt to create polymer fibers after cooling down and being extruded from an 

orifice plate [48, 91-95]. And very fine polymer fibers can be drawn using electrospinning 

(Figure 2. 17), which used an electrical charge to propel polymer solution from a syringe 

needle to a copper plate, which is a polymer fiber collector. Eventually, fibers ranging from 

tens of nanometers to several microns randomly distributed onto the collector substrate via 

characterizing the experimental parameters including amplitude of electric filed applied, 

polymer solution viscosity, surface tension, electrical conductivity and so on. Although 

some strides had been taken to align these micro/nanoscale fibers by using patterned 

electrodes, conductive substrates, and disc collectors [96-100], this technique still lacks the 

ability to generate individual and suspended micro/nanoscale fibers. 
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Figure 2. 17 Schematic of a typical electrospinning apparatus [96] 
 

Although these spinning techniques were capable of generating micro/nanoscale 

fibers, they were limited in their ability to precisely create individual, suspended, and 

oriented fibers in three dimensions (Figure 2. 18).  In addition, these techniques were 

restricted in their dimensional range for fiber fabrication; specifically, fibers produced via 

wet and dry spinning varied in diameter from tens to hundreds of microns, while 

electrospinning yielded fibers with diameter ranging from tens of nanometers to a single 

micron depending on the presetting parameters [101].  
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Figure 2. 18 Drawn fibers resting on the collector [102] 
 

2.4.2 AFM Tip and Hand-brush Based Fiber Fabrication Methods 
 

To overcome the above drawbacks, a new category of fiber fabrication techniques 

was developed by drawing or manually brushing liquid fibers onto a predetermined 

position of the substrate. Harfenist et al. used nano-manipulating instruments like AFM tip 

to create suspended fiber bridges with diameters ranging from 50 nm to 20 μm onto the 

micro-fabricated array of tips on a prefabricated substrate (Figure 2. 19) [90]. The novelty 

of this new direct fiber drawing method is to form and pattern fibers into three dimensional 

suspended geometries compared to planar lithography, and dry, wet, and electrospinning 

techniques. In addition, this method is fast with only one step and is easy to operate without 

using spinneret, chemical bath, or electrical charge. 
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Figure 2. 19 AFM tip drawing suspended fiber structures [90] 
 

Pabba manually hand-brushed the polymer solutions across the micro-structured 

surfaces using a simple edge faced applicator that had been coated with polymer solutions 

to fabricate parallel and suspended arrays of micro/nanoscale fibers (Figure 2. 20) [103]. 

This manually hand-brushed method extends above direct drawing by utilizing different 

materials, such as biocompatible, biodegradable, nanocomposite, and amphiphilic 

copolymers [103]. In addition, low concentrations polymer solution was applied in drawing 

fiber structures on prefabricated micro-pillars using this manually hand-brushed method.  
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Figure 2. 20 Direct drawing suspended fiber structures [90] 
 

Although these two techniques precisely generate the fibers at predefined locations, 

they are incapable of creating fibers with repeatable and controllable dimensions with 

predefined combinations of controlling factors.  The geometries are also limited by the 

prefabricated micro-pillar pattern of the substrate. Even though these two methods have 

the advantages of ease to operate and fast to fabricate fibers, the cost of creating oriented 

and suspended fiber structures is relatively high due to using AFM tips or an array of 

prefabricated tips because of the written substrate to control the fiber orientation in three  
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Figure 2. 21 SEM image of suspended and oriented fiber structures [90] 
 

 

Figure 2. 22 Fibers drawn between a sharp tip Array and a layers of polymer [90] 
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dimensions. Individual fibers’ diameter is different (Figure 2. 21, Figure 2. 22), which are 

coming from the same experimental parameters. It is difficult to repeatedly draw the same 

or close dimension fibers with the same experimental parameters using above fiber creation 

methods. 

2.4.3 Principle of Polymer Solution Capillary Thinning and Breakup 
 
Elasticity, viscosity and inertial stress are significant in resisting the tendency of 

polymer solution capillarity and controlling its ‘necking’ or thinning process when an 

initially stable polymer solution column  or thread broke-up into a smaller droplet [104]. 

The inertial stress, inertia, and viscosity are mainly coming from the extensional 

deformation of the polymer solution’s internal microstructure within the column or thread. 

Experimental and theoretical analysis has been studied in the field of capillary-driven 

thinning and break-up in order to quantitatively and quantificationally measure the thinning 

and break-up process [105-107]. Capillary pressures can be explained in thinning of liquid 

filament and break-up processes which arise from surface tension and the curvature of the 

interface [108]. The viscosity of polymer solutions would increase during the thinning or 

break-up process. The key point is to maintain the polymer solutions’ viscosity as low as 

possible to slow down and even stop capillary thinning from proceeding to break up into 

two individual filaments from a single column or thread [103]. Physical and mechanical 

properties of polymer solutions can be depicted by surface tension, viscosity, and 

evaporation rate which play an important role in thinning polymer filaments.  

Surface tension is an important factor in describing liquid capillarity. Surface 

tension is the elastic tendency of liquids which makes them acquire the least surface area 

possible [109]. For example, at liquid-air interfaces, water molecules have greater 
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attraction to each other due to surface tension than the air molecules have. For polymer 

liquids, surface tension is responsible for the shape of droplets because the droplets of 

liquid tend to be pulled into a spherical shape by the imbalance in cohesive forces of the 

surface layer. Each molecule in the bulk of polymer liquid is pulled equally in each 

direction by neighboring liquid molecules which results in a total net force of zero, while 

the molecules of polymer liquid at the surface do not have the same molecules like the bulk 

at each direction of them and therefore are pulled inwards to form spherical shape droplet. 

Wilhelmy technique was exploited to measure the surface tensions of polymer solutions by 

dipping a glass rod into test polymer solutions [110]. The micromilling machine was 

mounted to the glass rod and it precisely controlled the XYZ coordinates to touch the 

surface of the test solutions in order to make the contact angle of fluid on the rod 

approaching zero. A high resolution balance was used to measure the force change due to 

surface tension of test fluid on the tip of the rod. 

For polymer solution liquid, viscosity is a measure of its resistance to gradual 

deformation, which corresponds to “thickness,” by shear stress or tensile stress [111]. 

Viscosity arises from collisions between neighboring particles in the polymer solutions that 

are moving at different velocities. Viscosity of a polymer solution is dependent on 

molecular weight of the dissolved polymer [112]. Usually, a polymer solution with high 

viscosity has large molecular weight when dissolved [113, 114]. As a result, 

polymerization of mono-polymer or lower molecular weight polymer can be utilized to 

increase viscosity during the process of capillarity and break-up of polymer column and 

thread [103]. Polymer solution viscosities were measured by LVDV-II+ and RVDV-II+ 

viscometer (Brookfield, Middleboro, MA) interfaced with a cone-and-plate (CP-52). Low 
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viscosity fluids were measured by the LVDV-II+ viscometer since it has limited 

measurement range, while high viscosity fluids were measured by the RVDV-II+ 

viscometer. The principle of the viscometer lies in measuring the resistance exerted by the 

test fluid in rotation in a cone-and-plate in contact with fluid. With the predefined 

parameters, the viscometer would directly show current fluid viscosity by converting the 

resistance torque into current viscosity.    

The evaporation rate of the polymer solution’s solvent plays a significant role in 

polymer capillary thinning or break-up [115]，  because over time, it can affect the 

viscosity of the polymer solution. Low volatility solvent would be a good choice to dissolve 

polymer in order to decrease the evaporation rate and maintain the viscosity as much as 

possible. Mass transfer coefficients of the polymer solutions were measured by the 

thermogravimetric analysis (TGA, TA Instruments TGA 2950, New Castle, DE), which 

could be utilized to record high-precision weight measurements at different temperatures 

[110]. Compressed air and cooling gas were vented through the chamber in case of 

accumulating solvent vapors and acquiring high temperature after shutting down the device.   

2.4.4 Dimensionless Parameters of Polymer Solution Filament Formation 
 

In order to create polymer filaments with repeatable and controllable dimensions 

with our robotic dispensing system, it is important to understand the physics of polymer 

solution during the capillary process. As discussed above, elasticity, viscosity, and inertial 

pressure from the polymer solution’s internal microstructure will stop or retard its 

capillarity. Kolte and Szabo [116] and McKinley and Tripathi [117] summarized the early 

models explaining that the surface tension of the new fibers will thin until capillary break-
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up when drawing filaments from the polymer solutions [48]. The mathematical model 

indicating that break-up time has direct relationship with the viscosity and the surface 

tension of the polymer solution is given as follows: 

                                               𝐷(𝑡) = 𝐷1 −
(2𝑋−1)

3

𝜎

𝜂
𝑡                                            (2-6) 

where D(t) is the diameter of polymer solution fiber as a function of time 𝑡, 𝐷1 is the initial 

diameter of the fiber, X is a constant equal to 0.7127,  𝜎 is the surface tension of the 

polymer solution, and 𝜂 is the Newtonian viscosity. Although this mathematical equation 

illustrated some relationship between filament break-up time and the polymer solutions’ 

viscosity and surface tension, it is limited to just a linear relationship description among 

those factors, and does not provide the final filament diameter with precision, but zero, 

when the filament ultimately breaks up. 

A more persuasive model with the evaporation rate was presented by Tripathi [118] 

in order to overcome above shortcomings. In this model, the evaporation rate of the 

polymer solvent was introduced to illustrate the complicated relationship among viscosity, 

surface tension, and volatility of solvent affecting the final diameter of filament. An 

equilibrium diameter 𝐷∞ after solidification and thinning without any breaking is shown 

as follows: 

                                                 𝐷∞ = 𝐷1𝑒−0.035 𝑃⁄                                                   (2-7) 

where P is a dimensionless processability parameter and 𝑃 =
𝜂𝜒

𝜎
 , 𝜒 is the evaporation rate 

(solvent mass transfer coefficient). This equation suggests that filament diameter will 

minimize to a steady-state, non-zero value for a constant-length filament of the Newtonian 

polymer solution [119]. 
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When the filament drawing rate is substantially higher than the capillary thinning 

rate and the solidification rate, the above processability parameter model is not applicable 

[48]. In order to solve this problem, some additional dimensionless parameters were added 

to account for the thinning of the fibers and the solidification mechanics. In sum, the 

function of polymer droplet thinning is expressed by five variables: surface tension, 

viscosity, fiber length, drawing rate, and mass transfer coefficients of polymer solvent. In 

addition to the processability parameter, two additional dimensionless parameters were 

regarded as important factors affecting the filament thinning process and the final 

equilibrium diameter, which are capillary number (𝐶𝑎 ) and aspect ratio (Λ) [48]. Ca 

explains the non-instantaneous nature of the direct-write method via the robotic dispensing 

system, in which creation of a single fiber can only take from less than one second to 

several seconds [119]. Ca is expressed as: 

                                                        𝐶𝑎 =
𝜂𝑈

𝜎
                                                               (2-8)      

where U is the drawing rate. Ca indicates the ratio of the drawing rate to the surface tension-

driven thinning rate. With a high capillary number, the majority of the surface tension-

driven thinning occurs after extension is complete due to the fast drawing speed, while 

some fiber thinning occurs during extension which probably results in break-up for low 

capillary number. Aspect ratio is defined as follows: 

                                                        𝛬 =
𝐿

𝐷0
                                                                  (2-9)      

where L is the fiber length after drawing, 𝐷0 is the initial diameter of the polymer solution 

before beginning to draw. For our case, 𝐷0 is equal to the inner diameter of the dispensing 

needle tip. 
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2.4.5 Direct Write Fibers via Micromilling Machine 
 

To provide control of fiber orientation and dimensionality more precisely in the 3-

D space, our group had developed a self-assembled or “direct-write” fiber fabrication 

process that directly ejects a polymeric material out of a hollow capillary and then draws 

the individual filaments which thin and solidify into predictable fiber diameters by 

exploiting surface tension-driven fluid mechanics (Figure 2. 23) [119]. Our initial direct-

write system for increasing the level of control of fiber position and diameter consisted of 

a custom fabricated spring loaded syringe dispensing system attached to the head of a 

custom made Ultra-High Precision Micromilling Machine (Dover Instruments, 

Boxborough, MA) (Figure 2. 24) [110].  The UHPMM had a stage positional resolution 

of 1.25 nm in the X and Y directions and 20 nm in the Z direction that was 

programmatically controlled to create micron and sub-micron scale wires and structures.  

First, polymer solution was expelled from syringe needle by gravity of the wrench weight 

applied on the top of the syringe, then the syringe was lowered to just the initiating point 

of contact with the substrate. Subsequently, syringe was translated to the terminating point 

to draw polymer filament. During this process, surface tension of the polymer solution 

drives the polymer filament to neck down. In the meantime, solvent will evaporate until 

the fiber solidifies during the fiber elongation process. Eventually, expelled polymer 

solution was contacting the terminating point to form a suspended and individual fiber. 
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Figure 2. 23 Schematic illustrating the direct-write drawing of fibers [119] 
 

 

 

Figure 2. 24 Micro-Milling Machine and its constituent parts [110] 
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One limitation of this particular direct-write system was that it lacks flow control 

of the polymer solution through the needle tip.  Although the spring-loaded dispensing 

system successfully generated constant flow through the tip, a continuously expanding 

spherical bead of polymer solution was created at the outlet of the syringe tip, which varied 

in size and volume depending on environmental conditions. Furthermore, fibers’ diameter 

was not small enough to meet the requirement of fabricating micro/nanofluidic 

electroporation platform. 

2.4.6 Direct Write Fibers via Robotic Dispensing System 
 

The inconsistency of this source bead impacted the ability of the micromilling 

machine system to repeatedly fabricate fibers of a prescribed diameter.  Albeit, structures 

were successfully generated using this direct-write process, enhancement of the process by 

increasing control of polymer solution flow would allow for more precise, prescribed fiber 

diameters through regulation of the bead size at the syringe tip.  Characterization and 

optimization of this direct-writing fiber process, using a new three-axis robotic dispensing 

system, would allow us to write much smaller, more repeatable and controllable 

micro/submicron/nanoscale complicated fiber structures in three dimensions. Compared to 

micromilling machine, programming the trajectory of complicated fiber structures is much 

easier to achieve in the three-axis robotic system. Thus, this dissertation will focus on 

implementation of a 3-axis automated dispensing system with pneumatically actuated 

dispenser valve to precisely control the polymer solution flow rate and tip bead size to 

create prescribed, complex three-dimensional structures in order to fabricate an ideal 

nanofluidic electroporation platform.  
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CHAPTER 3 METHODS AND MATERIALS 

 
In this project, a new micro/nanofluidic platform was designed, fabricated and 

evaluated to demonstrate proof-of-concept for performing electroporation in cells.  The 

fabrication procedure consisted of implementing new methodologies and a 3-axis robotic 

dispensing system for creating micro/nanochannels within a micro/nanofluidic platform.  

The 3-axis robotic dispensing system was characterized and optimized to repeatedly 

generate prescribed micro/nano fibers.  Upon completion of the fabrication process, the 

micro/nanofluidic platform was evaluated to demonstrate feasibility in electroporating 

cells via the transport of a fluorescent dye into the cell.  A detailed description of the 

methods, processes and techniques utilized in this study have been provided below. 

3.1 Micro/Nanofluidic Platform Design 

A design similar to Boukany’s nano-electroporation device [36] was chosen to take 

advantage of the superior attributes of their device over bulk or micro-electroporation 

platforms. The design for this cell electroporation device consisted of two, tapered micro-

chambers in juxtaposition to one another with a gap (or “dam”) having a separation 

distance of 10 microns (Figure 3. 1). Micro/nanofluidic channels were created within the 

dam of the PDMS devices with either a microchannel (channel design diameter = 1 µm), 

sub-microchannel (channel design diameter = 500 nm), or nanochannel (channel design 

diameter = 300 nm) separating the two micro-chambers. Each micro-chamber was designed 

with a taper that reduced the width of the chamber from 10 mm down to a width of 240 µm  
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to direct the movement of the cell to the micro/nanochannel. Moreover, the micro-

chambers had a depth of 30 µm and a length of 17 mm to maintain a large enough media 

volume during the cell electroporation procedure. In addition, an inlet port (D = 1 mm) was 

included to enable the transfer of cell solutions or solutions of biomolecules into the two 

micro-chambers, respectively, and to provide electrode access to the micro-chambers 

during the electroporation procedure. The distance between the two inlet ports was set to 5 

mm to allow sufficient working space while also minimizing the distance, thereby reducing 

the resistance, between the two electrodes when the high electric field gradient was applied 

during electroporation. The overall outer dimensions of the PDMS substrate was designed 

to be 40 mm long, 20 mm wide, and 3 mm high. 

 

 

Figure 3. 1 Schematic diagram of the design of the Micro/Nanofluidic electroporation device 
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3.2 Direct-write Micro/Nano PMMA Fibers 

In order to create the micro/nanochannels within the micro/nanofluidic platform, a 

previously developed direct-write method [120] was implemented using a 3-axis robotic 

dispensing system. The 3-axis robotic dispensing system was characterized and optimized 

to enable the fabrication of prescribed Polymethylmethacrylate (PMMA) micro/nanofibers. 

The robotic dispensing system, together with the characterization process, have been 

described below. 

3.2.1 3-Axis Robotic Dispensing System 
 

The prescribed micro/nanofibers were drawn on the micro-patterned substrate 

using a 3-axis robotic dispensing system (model JR 2203N, Nordson, Westlake, Ohio). The 

robotic dispensing system (Nordson Corporation, Westlake, Ohio) included a dispensing 

valve, valve controller (Valvemate 7100 Dispense Valve Controller, Nordson Corporation, 

Westlake, Ohio), 3-axis positioning system (JR2000N Desktop Robot, Janome Sewing 

Machine Co., Tokyo, Japan), USB-microscope, feedback controlled heater, and a sealed 

enclosure (Figure 3. 2). The dispensing valve and 3-axis positioning system with spatial 

resolution of 5 microns in the X, Y, and Z directions were controlled by JR C-Points 

software. The JR C-Points software controlled the positioning of the fibers’ initiation and 

termination location (Figure 3. 3), syringe needle travel velocity (referred to as feed rates) 

(Figure 3. 4), vertical distance of the syringe needle from the substrate, and dispense time 

(Figure 3. 5).  The dispense time referred to the time that the PMMA solution was 

pressurized in the needle before fiber drawing began. A valve controller was utilized to 

purge the needle tip and push the polymer solutions from the barrel until the PMMA was 
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discharged from syringe needle tip (Figure 3. 6). The USB- microscope enabled 

visualization and recording of the entire direct-write process. This helped monitor the 

process by identifying when droplet accumulation occurred on the needle tip during the 

fiber drawing process and determined when fiber break-up ensued. The direct write system 

operated in a polycarbonate enclosure to prevent environmental air flow/circulation over 

the workspace, which caused undesired fiber breakage during the writing process. A 

feedback-controlled heater was located in the plastic sealed enclosure to maintain a 

constant temperature and ensure a uniform evaporation rate of the polymer solvent. 

 

 

Figure 3. 2  Images of the 3-axis robotic dispensing system and its constituent parts: Left image is 
of the entire system housed in the plastic enclosure; and, Right image is an enlarged image of the 

dispensing mechanism and imaging system. 
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Figure 3. 3 Image of the display panel in the JR-C Points software for defining the fiber length  
 

 
 

 

 
Figure 3. 4 Image of the display panel in the JR-C Points software for defining the point-to-point 

travel velocity, i.e. the feed rate. 
 
 
 

 
 

Figure 3. 5 Control panel display on the 3-axis robotic system with the dispense time for the valve 
controller displayed digitally in the upper right side of the image. 
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Figure 3. 6 Image of a typical syringe needle tip (25 Gauge needle shown here).  
 
 

3.2.2 Overview of the 3-axis Robotic Dispensing System Direct-write Process 
 

Prior to performing the direct-write process, PMMA solutions were prepared by 

dispersing PMMA powder (Sigma-Aldrich, MW = 996g/mol) into chlorobenzene solvent 

at weight concentrations varying from 19% to 27% in 1% increments. First, the weight of 

the solvents and PMMA powder were calculated according to the desired specific weight 

percentage. Then, the desired amount of polymer powder or resin was placed in a glass vial 

using a Pasteur pipet. Next, the chlorobenzene solvent was transferred into the glass vial 

using a pipette. Subsequently, the vial was mixed for 1 minute using a vortex shaker and 

ultrasonically processed for five hours to completely dissolve the polymer powder/resin. 

Two techniques were utilized to identify whether the PMMA was completely dissolved: 1) 

the solutions were allowed to set for several days after ultrasonication and their 

transparency was observed; and, 2) the loading vial was placed upside down to watch the 

solution flow with a constant speed until total exposure of the bottom vial was observed 
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without any remnant resin present. The PMMA polymer solution was then loaded into the 

syringe. 

PMMA sample loading into the 3-axis dispensing system consisted of five detailed 

steps. First, 3 mL of polymer solutions were loaded into a syringe barrel, and a piston was 

placed into that syringe barrel to eliminate inconsistent pneumatic pressure distribution. 

Subsequently, an inlet line adapter was twisted onto the syringe barrel in order to connect 

the syringe to the line source for air. Then, the desired gauge size for the precision needle 

tip was selected and mounted to the dispensing valve to perform the experiment. The 

“mode” switch on the dispense controller panel (Figure 3. 5) was pressed to the purge state 

and “cycle” button was pushed to fill the dispense valve with the polymer solution until 

exposure of the PMMA solution was observed at the needle tip. Finally, the residual 

polymer solution was wiped from the tip prior to the programmed fiber writing procedure 

since the extra polymer solutions adversely affected the final fiber diameter. 

The direct-write process consisted of four main steps as illustrated in Figure 3. 7. 

The syringe needle was first positioned to a predefined spot on the substrate and lifted up 

1mm from this initial touching point. The syringe needle was then laterally translated with 

a constant travelling velocity to the termination location on the other side of the substrate. 

During this step, the PMMA solution droplet thinned and elongated by surface tension-

driven necking. Finally, the single fiber direct-write process was completed by lowering 

the syringe needle down 1mm onto the terminating position of the substrate. The rate at 

which the thinning filament solidified was dependent on the solvent’s evaporation rate and 

environmental temperature. If the filament solidified too fast, it would break prior to 

completion of the elongation process.   
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Figure 3. 7 Schematic of the direct-write process via the Robotic Dispensing System. 
 

Once the direct-write process was completed, it was necessary to perform a 

cleaning process for the whole dispensing system to prepare for the next experiment with 

a different polymer solution or polymer concentration. To begin cleaning the system, the 

needle valve was disassembled according to manufacturer’s protocol. Subsequently, all the 

metal parts were immersed in a beaker of acetone and subjected to an ultrasonic bath for 

30 minutes to remove all polymer residues. Last, all parts were rinsed under flowing DI 

water and dried with compressed air.   
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3.2.3 Direct-write Procedure for Complex Suspended Fiber Structures 
 

Complex, suspended micro/nanoscale polymer fiber structures were generated with 

precise control, using the 3-axis dispensing system described above, via a custom 

automated direct-writing procedure. Specifically, prior to performing the direct-write 

procedure, three different complex fiber web structures: 1) a “quad” structure (Figure 3. 

8a); 2) a “symmetric” structure (Figure 3. 9a); and, 3) a “dual chevron” structure (Figure 

3. 10a), were designed in SolidWorks to define the precise spatial locations for the robot. 

These robot spatial instructions (Figure 3. 8b - Figure 3. 10b, respectively) were 

programmed into the JR-C controlling software [121]. Next, the completed fiber structure 

design program was compiled and transferred from the computer to the robot. Just prior to 

loading the polymer sample into the syringe, the robot stage offset was determined by 

repositioning the tip of the dispensing needle (25 gauge) from the default home position to 

the initiation point of the prescribed micro/sub-micron fiber structure to be drawn. A 

polymer solution sample of known concentration (24% by weight) was then loaded into 

the syringe barrel and flowed to the purging valve and needle. Subsequently, all the 

dispensing parameters for the valve controller and robot controlling software were set to 

the desired algorithm (Figure 3. 11).  The prefabricated substrate was placed onto the robot 

stage platen located inside the plastic enclosure (Figure 3. 12).  A USB microscope, 

mounted to the Z-axis and focused on the dispenser tip, was used to assist in precisely 

positioning the valve tip to the desired location on the prefabricated substrate or device. 

Upon completion of the direct-write process, all fibers’ diameters created on the substrate 

were measured via a scanning electron microscope. 
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.  

Figure 3. 8 a.) Example of the design for the “Quad” web structure created in SolidWorks and, b) 
Sequential point-to-point spatial instructions inputted into the JR-C Point software. 
 

 

 

 
Figure 3. 9 a)  Example of the design for the “Symmetric” web structure created in SolidWorks  

and, b) Sequential point-to-point spatial instructions inputted into the JR-C Point software 
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Figure 3. 10 a) Example of the design of the “Dual Chevron” web structure created in 
SolidWorks and, b) Sequential point-to-point spatial instructions inputted into the JR-C Point 

software 
 

 

Figure 3. 11 Illustration of how the actual coordinates were determined for programming 
dispensing system: Left: Table of coordinates; Right: Graphical representation of coordinates on 
targeted substrate schematic 
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Figure 3. 12 Image of the robot stage platen with the substrate 

 

3.2.4 Characterization of Direct-write Process 
 

The purpose of the characterization process was to develop the methodology by 

which fibers of predefined diameter were repeatedly drawn through precise control of 

specific operating parameters and/or a combination thereof. Based on our previous work 

[119], PMMA solutions of 19% - 27% (in 1% increments) by weight and other operating 

parameters, needle tip sizes, feed rates, dispense time and fiber drawing lengths were 

initially selected to characterize the experimental process (Table 3. 1). Practical limitations 

of the dispensing system restricted the dispensing times; that is, when the dispensing time 

was shorter than 0.02 s, the polymer solutions would not discharge from the needle tip, and 

1 s was the longest dispensing time this system was capable of achieving. Here, a design 

of experiment (DOE) was utilized to assist in studying the system response output (fiber 

diameters) via purposely changing the input variables such as the feed rate, needle gauge, 
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dispense time, fiber length, temperature, and polymer solution concentration. A total of 

56,700 trials would have been needed for conducting a full factorial DOE; however, this 

was unrealistic since it would require a significant amount of time (on the order of years) 

to complete all of the experiments and fiber metrology measurements. Therefore, in this 

characterization procedure, only partial trials of all combinations of the operating 

parameters were executed to identify the critical factors that most greatly affect fiber 

diameter. A  general linearized analysis of variance (ANOVA) model was performed in 

commercially-available statistical software (Minitab)  to analyze the partial data [122]. As 

a result of these experiments, four factors including fiber length, needle size, polymer 

concentration, and dispense time were found to be the significant factors (p < 0.05) 

influencing fiber diameter (Table 3. 2).  

Table 3. 1 Direct-write process operating parameters used in the characterization experiments 
 

Controlling Parameters Types Controlling Parameters Value 

Needle Tip Size (Gauge) 25, 27, 30, 32 

Feed Rates (mm/s) 10, 15, 300- 500 (50 mm/s 

increments) 

Dispense Time (s) 0.02, 0.05, 0.1, 0.5, 1 

Polymer Solution Concentration (by Weight) 19%-27% (1% increments) 
 

Fiber Length (mm) 5-40 (5 mm increments) 
22-40 (2 mm increments) 
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Table 3. 2 Critical direct-write process parameters identified in the characterization process 
 

Controlling Parameters Types P Value 

Fiber Length (L) 0.000 

Needle Size (Ngauge) 0.000 

Polymer Concentration (C) 0.000 

Dispense Time (TD) 0.001 

 

Using the output data, a preliminary prediction equation for determining the 

average fiber diameter based on the critical direct-write process parameters was generated 

as shown in equation 3-1:   

  Davg
0.2240 = 0.4815-0.0063* L - 0.0205 * Ngauge+8.2413*C+0.4451*TD         (3-1) 

where Davg was the predicted average diameter and L, Ngauge, C and TD are defined above 

in Table 3.2. While this model cannot predict the final fiber diameter with a high level of 

accuracy, a trend was capable of being extracted from the model, which guided additional 

process characterization in order to refine the model further. For example, additional 

experiments were performed to investigate the effect of environmental temperature on fiber 

yield. Specifically, to avoid fibers from breaking up at low polymer solution concentrations, 

the environmental temperature was controlled at 70 °F, 80 °F, 90 °F, and 100 °F, in order 

to increase the evaporation rate as well as viscosity to resist the drawing force during the 

writing process. As a result of all of these characterization experiments, it was determined 

that a needle gauge of 25, feed rate of 15 mm/s, a dispense time of 0.02 s and an 
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environmental temperature of 70 F were the best operating parameters to repeatedly and 

controllably fabricate sub-microscale 3-D oriented fibers. 

Besides performing statistical analysis on the controlling experimental parameters, 

another model was implemented to investigate the effect of changing the physical 

properties of the polymer solutions on the fibers’ diameter and “processability” of the fibers. 

Specifically, for each different concentration, three physical properties, including viscosity, 

surface tension, and solvent evaporation rate, were measured. Viscosity of all of these 

PMMA solutions were measured via cone-and-plate viscometer (e.g. LVDV-II+ and 

RVDV-II+, Brookfield Engineering Laboratories, Inc, Middleboro, MA) [123]. The fluid 

viscosity was calculated using the relationship between the measured torque, spindle 

multiplier constant and the speed of spindle: 

 

                                         ηs = 𝑇𝐾×𝑆𝑀𝐶×
10000

𝑅𝑃𝑀
                                            (3-2) 

 
where ηs was the viscosity, RPM was the speed of the spindle affixed to the cone, TK was 

the torque (0.09373 for LVDV-II+, 1 for RVDV-II+), and SMC was the spindle multiplier 

constant (9.83 for CP-52 – the Brookfield cone used in these studies). Additionally, the 

surface tension of the PMMA solutions were measured using the Wilhelmy technique, 

which involved placing the test solutions in a glass vial located on a high resolution balance 

(scale resolution = 0.001 g). A glass rod of known diameter was lowered towards the test 

solutions, where the position of the rod was controlled via a servo or stepper controlled 

linear actuator, until the rod just touched the surface and then partially immersed. In the 

meantime, a change in mass measurement was monitored and recorded on the balance 

when removing the rod from the solution’s surface. Finally, surface tension was calculated 
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using the force change in the actuator, perimeter of the rod, and contact angle of the fluid 

on the rod using the following formula: 

                                             σ =
𝐹

𝑙 𝑐𝑜𝑠𝜃
                                                             (3-3) 

where l was the wetted perimeter of rod (l = 10.05 mm with a diameter = 3.2 mm), θ was   

the contact angle of the fluid on the rod, F was the change in force due to the surface tension 

() of the test fluid on the tip of the rod. 

Lastly, the mass transfer coefficient of the polymer solutions were determined using 

thermogravimetric analysis (e.g. TGA 2950, TA Instruments, New Castle, DE) [123]. The 

general measurement process involved loading a 30 µL sample of the polymer solution 

onto a platinum plate, prior to taring the balance for the sample. Subsequently, the TGA 

was programmed to run at the desired operating temperature (70 °F, 80 °F, 90 °F, 100 °F) 

for 2 hours and the mass of target solution was monitored following venting of the chamber. 

Finally, the mass transfer coefficient (χ) was calculated using the measured changes in the 

solution’s mass, area of solution/air interface and density: 

                                        χ =
−𝑚(𝑡)̇ 𝑚(𝑡)

𝐴(𝑚(𝑡)−𝑚𝑃𝑂𝐿𝑌𝑀𝐸𝑅)𝜌
                                              (3-4) 

 
where m(t) was the mass of PMMA solutions, A was the area of the solution/air interface 

(equals 78.5 mm2 for standard plate), 𝑚𝑃𝑂𝐿𝑌𝑀𝐸𝑅 was the polymer mass in the solution and 

ρ was the density of the solution. 

With the physical and mechanical properties of polymer solutions determined, an 

empirical prediction equation was generated utilizing the previously collected 

characterization data together with performing a correlation analysis between the 

experimental parameters, initial conditions and the final fiber diameter. Our previous work 
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indicated that PMMA behaved as a Newtonian fluid since  𝜎

𝜂
  was linear; thus, the following 

empirical model was used and consisted of multiple parameters: 

                                                            𝐷∞ = 𝑓(𝑃, 𝐶𝑎, 𝛬)                                            (3-5) 

where P was the dimensionless processability parameter (𝑃 =
𝜂𝜒

𝜎
 , 𝜒 was evaporation rate),  

𝐶𝑎 was the capillary number (𝐶𝑎 =
𝜂𝑈

𝜎
, U was feed rate), and Λ was the aspect ratio (Λ=

𝐿

𝐷0
). While 𝐶𝑎 indicates the ratio of the drawing rate to the surface tension-driven thinning 

rate, the final diameter of the PMMA fibers was expressed as a function of three 

dimensionless parameters that relate to polymer droplet thinning mechanics (P – the 

processability parameter), experiment control parameters (Ca – the capillary number), and 

polymer fiber dimensionality (the aspect ratio). For the robotic dispensing system, the 

direct-write process was more controllable than the previous direct-write process 

developed by our group [119] due to the addition of two parameters, 1) pressurized 

dispensing flow; and, 2) dispense time. The dispense time was defined as the period the 

airflow was compressed onto the polymer solutions at the beginning of each fiber drawing 

procedure. Thus, in order to appropriately describe the direct-write process for the 3-axis 

robotic dispensing system, it was necessary to develop a new multi-parameter model 

(referred as to empirical prediction model) that included the previous dimensionless 

parameters together with the dispense time (TD): 

                                                         𝐷∞ = 𝑓(𝑃, 𝐶𝑎, 𝛬, 𝑇𝐷)                                        (3-6) 

A direct relationship existed between the controlling parameters and dimensionless 

parameters, which provided the variables of the empirical prediction equation. For instance, 

the capillary number was a function of viscosity, feed rate, and surface tension. One 
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specific weight concentration of the PMMA polymer solution corresponded to only one 

specific value of viscosity and surface tension. The processability parameter was expressed 

as a function of viscosity, solvent mass transfer coefficient, and surface tension where the 

solvent mass transfer coefficient was constant due to only one solvent being used in this 

study. The aspect ratio was defined by fiber length and the initial diameter, which was 

defined by the inner diameter of the syringe needle tip.  

Exploiting the polymer solutions’ intrinsic and physical properties together with 

the robotic system’s operating parameters, an empirical predictive equation was obtained 

in Matlab using a generic algorithm to find the minimum fiber diameter that can be 

fabricated based on the corresponding variables (or parameters) of the equation.  This 

enabled the determination of the optimal combination of all controlling factors to produce 

specific, prescribed fiber diameters. Subsequently, experiments were conducted to validate 

this algorithm and statistical analysis using ANOVA was performed to determine the error 

of the equation’s predictive value. 

3.2.5 Measurement of PMMA Fiber Diameters 
 

 Upon completion of the direct-write process, the fibers were sputter coated with 

gold-palladium alloy for 2 to 3 minutes to deposit a 10 nm thick metal layer to avoid 

charging during the SEM (Zeiss Supra 35VP, Thornwood, NY; high voltage set at ~ 2.00-

5.00 KV) imaging process [124]. Each fiber was imaged three times at points 200 µm away 

from the initiating and terminating position plus the middle location to ensure fiber 

diameter uniformity.  
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3.3 Micro/Nanofluidic Platform Fabrication 

3.3.1 Overview of the Fabrication Process 
 

In general, the overall process flow for fabricating the micro/nanofluidic platform 

consisted of nine key processing steps (Figure 3. 13). First, a mold with two 

microchambers on glass substrate was created using dry film photolithography and a 

prescribed micro/nanoscale fiber was drawn across the micro-chamber mold with the 

robotic dispensing system. Another mold with the same structure as the first one was 

fabricated on a flexible Delrin substrate using a similar method. Next, the glass mold was 

placed on the hotplate, then flipped and placed over the flexible substrate mold, followed 

by alignment of these two structures under a high precision stereomicroscope and bonding. 

The flexible substrate was not peeled off from the assembly on the top of the glass substrate 

until the two structures were firmly bonded and adhered together on a hotplate at an 

elevated temperature (100 C). PDMS was poured on the mold containing the two layer 

microstructures sandwiching a nanofiber or microfiber and then transferred to an oven at 

60 ºC overnight to assist in the solidification of the PDMS casting.  The PDMS was peeled 

from the glass substrate. As the last step in the PDMS preparation process, the buried 

PMMA fiber was solvated by placing the PDMS substrate in a beaker filled with acetone 

and sonicating the beaker for 30 minutes.   
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Figure 3. 13 Schematic of the process flow for fabricating the electroporation devices 

3.3.2 Dry Film Photolithography 
 

A photomask consisting of the three juxtaposed, tip-to-tip micro chamber convex 

structures were designed in L-Edit and fabricated via a Heidelberg DWL 66fs Laser Writer 

(Heidelberg Instruments Mikrotechnik GmbH, Germany) in combination with traditional 
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photolithography techniques (including direct writing, development, and chrome etching). 

The glass substrates were first prepared using organic solvents to clean the surface of the 

substrates. Subsequently, the negative contrast dry film resists (DFRs, t = 15 µm, Ordyl SY 

320, ElgaEurope, Milan, Italy, a solvent type permanent dry film for special MEMS 

applications) was cut to match the size of the substrate. The DFRs were selected over 

traditional liquid resists due to superior planarity and excellent adhesion to different 

substrates including, but not limited to, glass, Si, and Delrin as previously described by 

others [125-127]. The easy-to-remove protection layer of the dry film resist was removed 

with a razor blade and the resist was transferred onto the substrate using a dry film 

laminator. The standard operating procedure on how to use the dry film laminator was 

presented in detail in Appendix A. The resist and substrate were placed on an 85°C hotplate 

and allowed to bake for 2 minutes. Once the substrate cooled down, it was transferred to a 

custom collimated UV exposure system, consisting of a 10W 365 nm LED (Figure 3. 14).  

The photomask was placed on the top of the resist-coated substrate and exposed to the 365 

nm UV light source for 4 minutes. After the exposure was complete, the substrate was 

treated with a post-exposure-bake for 2 minutes at 85°C on a hotplate. Once the substrate 

cooled down to room temperature, the top protection layer of the resist film was peeled 

from the substrate for development. The substrate was developed in a 10:1 volume ratio of 

Xylene to IPA for 1 minute to solvate away the unexposed structures.  

 Characterizing the dry film resist photolithography process included: 1) optimizing 

exposure time, post-exposure-bake time and temperature, and development time; 2) 

developing the dry film resist transferring process to minimize bubble formation during 

adhesion to the substrates; and, 3) identifying the most appropriate development solutions 
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for completely removing the resist’s residue after development. Optimization of these 

experimental parameters (Table 3. 3, Table 3. 4) enabled an easier fabrication process to 

be employed, better vertically thick structures (as thick as 15 µm) to be created, a low cost 

process to be implemented, and excellent adhesion to a variety substrates compared to the 

liquid resists. 

Table 3. 3 Optimized parameters for the DFRs photolithography processes on a glass substrate 
 

 
Dry Film Laminator  

 
Speed 5 at 200 °F 

 
Soft bake time 

 
1 min 

 
Exposure time 

 
4 mins 

 
Post exposure bake time 

 
2 mins 

 
Post bake temperature 

 
85°C 

 
Development solutions 

Xylene and IPA (10:1 
volume ratio) 

 
Development times 

 
1 min 

 
 

A number of different soft substrate materials (paper, white delrin, acrylic, rubber, 

plastic, etc.) were utilized to characterize the adhesion process in order to align and bond 

the soft substrates with the rigid glass substrate. Black Delrin demonstrated to be the best 

soft substrate material with superior adhesion to the DFRs and better tolerance of the 

development solutions compared to the other soft substrate materials tested. The 

fabrication process for the Delrin substrate varied slightly from the glass or silicon wafer 

substrate processing during the thin-film coating process. Before transferring the thin-film 
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layer onto the Delrin substrate, the Delrin substrate required a flame plasma treatment step 

to increase the adhesion of the resist. 

Table 3. 4 Optimized parameters for the DFRs photolithography processes on a Delrin substrate 
 

 
Plasma treatment time  

 
1 min 

 
Dry Film Laminator  

 
Speed 5 at 200 °F 

 
Soft bake time 

 
1 min 

 
Exposure time 

 
5 mins 

 
Post exposure bake time 

 
2 mins 

 
Post bake temperature 

 
85°C 

 
Development solutions 

Xylene and IPA (10:1 
volume ratio) 

 
Development times 

 
1 min 
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Figure 3. 14 Image of the custom collimated UV exposure system 

3.3.3 Drawing Fibers onto Dry Film Structure 
 

A prescribed PMMA microfiber or nanofiber was drawn via the robotic dispensing 

system described above.  The initiation position for the fibers was located across the center 

tips of the two micro-chambers. Prior to the direct-writing step, the desired polymer 

solutions were loaded into the pressurized barrel of the 3-axis robotic dispensing system, 

as described in section 3.2.1.  The fibers were written onto the glass substrate coated with 

a single layer of DFRs using the following procedures: 1) designed the desired fiber 

structure pattern using a CAD software package (SolidWorks) and inputted the 

corresponding spatial coordinates (x, y, z) into the robot JR-C controlling software for all 

initiation and termination points; 2) transferred the completed fiber structure design 

program from the computer to the robot by clicking “Send C&T Data” under the Robot 
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menu within the JR-C software; 3) determined the robot stage offset to reposition the tip 

of the dispensing needle from the default “home” position to the initiation point of the 

prescribed fiber structure to be drawn on the DFR patterned glass substrate. A USB 

microscope (magnification = 200X) mounted to the dispensing system valve bracket in 

order to translate along the Z-axis was manually focused on the dispenser tip to assist in 

precisely positioning the valve tip to the desired location; 4) loaded 3 ml of the PMMA 

solution sample of known concentration into the syringe barrel, purged the valve and 

needle, and set all the dispensing parameters for the valve controller and robot controlling 

software; 5) placed the prefabricated substrate with two micro chamber structures onto the 

robot stage platen, closed the thermal enclosure doors and wrote the fibers onto the 

substrate by clicking the robot menu from JR-C software and selecting “test running”; 6) 

DC sputter coated a conductive gold/platinum/alloy metal layer for 2 min until a 2 nm thick 

layer of gold was deposited around the drawn fibers to allow visualization of the fibers in 

the scanning electron microscope; 7) measured the diameter and structure of the fibers via 

scanning electron microscope (SEM). SEM parameters: High voltage level - 2.00 kV; 

Objective - InLens; Working Distance - 9.0 mm. The last process consisted of cleaning all 

the dispensing system parts (as described in the last paragraph of section 3.2.1) after 

disassembling the system in order to perform next experiment.  

3.3.4 Film-to-Film Alignment and Bonding 
 

A custom-made alignment and bonding system was fabricated consisting of a 

stereoscope and a 3-axis stage (Figure 3. 15). The high magnification stereoscope provided 

the magnification required to align the two microscale film structures, while the 3-axis 

stage was utilized to move one substrate directly overtop of the other substrate to the exact 
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desired position for aligning the two microchamber tips. In addition, the resistance heater 

located underneath the heater plate heated the two substrates to the ideal bonding 

temperature after proper alignment was achieved. The Delrin substrate was placed on the 

aligner loading chuck, which was movable in the X, Y, and Z directions and also rotated 

along Z axis. A thin, square aluminum plate, which contained a hole for applying vacuum 

to the substrate to hold it in place, was used as the heater plate to complete the bonding 

system (Figure 3. 16). A silicone rubber gasket was laser-cut with two slots to enable the 

two rectangular resistance heaters to be slid under the aluminum plate. The silicone rubber 

was slightly thicker than the resistance heater to reduce the amount of pressure experienced 

by the two heaters when a load was applied to the two stages during the bonding process. 

For the upper loading plate (Figure 3. 17), a well was machined in the aluminum for 

placement of the glass substrate. Additionally, two holes were drilled in the metal plate: 1) 

the big hole was utilized to observe small features on the glass and Delrin substrates using 

the stereomicroscope; and, 2) the small hole connected to the vacuum line to apply a 

vacuum onto the glass substrate. Then, a small rectangular trench was machined in the 

bottom of the well to distribute the vacuum load over a larger surface area. Four holes were 

tapped into the upper loading plate to affix the plate onto the 3-axis immovable stage with 

four screws and washers.  

General alignment and bonding consisted of eight main steps. First, a Delrin mold 

was placed on the aligner loading chuck just covering the vacuum hole. Then, a glass mold 

was placed on the upper loading plate. Subsequently, the vacuum was turned on to draw 

these two molds onto the upper and bottom loading chucks, respectively. The upper loading 

plate with the glass substrate was screwed tightly to the 3-axis stage and the heater was  
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Figure 3. 15 Image of the custom-made film-to-film alignment and bonding system 
 
turned on to let the thin film resists accumulate enough heat and to bond. Next, two small 

features on two molds were aligned using the stereomicroscope. In this step, it was 

necessary to align them with low magnification first and then gradually increase the 

magnification to achieve a much higher precision during the alignment process.  This step 

was critical, so much care was taken since this was an irreversible alignment process and  
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Figure 3. 16 Image of the aligner loading chuck of the custom-made film-to-film alignment and 
bonding system 

 
 

 

Figure 3. 17 Image of the upper loading plate of the custom-made film-to-film alignment and 
bonding system 
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the micro/nanoscale fiber lying between the two molds broke or relocated with any minor 

mistake. After the two small features overlapped, the aligner loading chuck was lifted up 

to apply sufficient pressure onto the two films to bond them together at an elevated 

temperature (100 ̊ C). Compared to other alignment and bonding systems, this equipment 

had several advantages including: 1) higher yield (~ 95%); 2) higher precision alignment 

(within ~2 µm tolerance); 3) feasible for any flexible or rigid substrate; and, 4) ease to 

operate. 

3.3.5  Replica Molding 
 

Once the alignment and boding process was completed, the mold was placed in a 

petri dish for replica molding. First, polydimethylsiloxane (PDMS) and its curing agent 

(1:10 weight ratio of the curing agent to PDMS) were mixed with a stirring bar for 2-3 

minutes. Subsequently, the PDMS mixture was poured slowly into the petri dish to cover 

the substrate mold, taking great care to avoid breaking the suspended micro/nanoscale 

polymer fibers (Figure 3. 18). Then, the petri dish containing the mold and PDMS mixture 

was placed in a vacuum chamber for 30 minutes to remove air bubbles trapped in the PDMS 

mixture solution. Next, this petri dish was transferred to an oven and cured at 60°C 

overnight.  
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Figure 3. 18 Images of the substrate mold covered with PDMS (right) in the vacuum chamber 
(left) 

 

3.3.6  Nano/Micro Polymer Fibers Removal 
 

After curing overnight, the PDMS was peeled off from the glass substrate and the 

embedded polymer fibers were removed by placing the PDMS substrate in an ultrasonic 

acetone bath for 30 minutes (Figure 3. 19). Due to the considerably high swelling rate of 

the PDMS in acetone, the sonication time was carefully controlled to minimize the amount 

of swelling in order to maintain the integrity of the nanochannel. Afterwards, the PDMS 

replica mold was exposed to oxygen plasma to make the two micro-chambers’ and 

micro/nanochannel’s surfaces hydrophilic and enhance adhesion of the PDMS to the glass 

substrate. Subsequently, two inlet holes with a 5 mm center-to-center distance were  
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Figure 3. 19 PDMS Substrate in an Ultrasonic Acetone Bath 
 
punched through the PDMS using a hole puncher. For storage, the samples were submerged 

in methanol solutions or DI water to maintain their hydrophilic properties until the start of 

the application experiments. 

3.4  Testing and Characterization 

In this study, each platform was characterized to determine the appropriate 

parameters for loading and transporting molecules through the micro/nanochannels. After 

each platform was tested for molecule transport, HL-60 cells (Human promyelocytic 

leukemia cells) were loaded into the platforms, translated to the micro/nanochannel via 
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laser trapping and electroporation experiments performed.  Finally, the images were 

analyzed to determine the time course for the cell electroporation process. 

3.4.1 Platform for Transportation of Molecules 
 

Before the cell electroporation experiments, the fabricated electroporation 

platforms were evaluated to confirm the existence of a micro/nanochannel and its 

connectivity to the two micro-chambers. Since the micro/nanochannel was buried inside 

the bulk device, it was difficult to acquire high quality images via SEM or high precision 

optical microscopy due to the distance from the channel to the top surface of the PDMS 

device. This distance resulted in low quality images due to the inability to accurately focus 

onto the micro/nanochannel and lack of contrast between the air filled channel and the 

PDMS material itself. Thus, two methods were used to determine channel patency: 1) 

electrical resistance measurements; and, 2) fluorescent dye method. 

For the electrical resistance measurements, phosphate buffer solutions (PBS) with 

known conductivity were injected into each of the two micro-chambers through the two 5 

mm inlets using a 1 mL syringe. Next, the resistance of the micro/nanochannels filled with 

PBS was determined by inserting a platinum electrode (d = 0.5 mm) in each inlet, applying 

a voltage (3 V to 12 V) to the micro-chambers and measuring the current between the two 

micro-chambers with a power source meter. Finally, the experimental resistance value of 

each specific micro/nanochannel was compared to the theoretical value (based on the 

dimension of the micro/nanochannel and conductivity of the PBS) to confirm the 

micro/nanochannel’s patency and its ability to connect the two micro-chambers.  

The second technique performed to demonstrate patency of the channel involved 

imaging fluorescent particles (Propidium Iodide, Exitation/Emission 533 nm/ 567 nm, 
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Thermo Fisher Scientific, Waltham, MA) using a confocal microscope (Nikon Eclipse Ti, 

Nikon, Minato, Tokyo, Japan).  For these experiments, one micro-chamber was filled with 

regular PBS and the other micro-chamber was filled with the fluorescent nanoparticles 

suspended in PBS (100 µg/mL). Once again, the platinum electrodes were inserted into the 

two inlets of the PDMS substrate. The electrode located in the micro-chamber with the PI 

dye was connected to the cathode of the power source meter and the electrode located in 

the pure PBS loaded micro-chamber was connected to the anode.  When the voltage (6 V 

to 12 V) was applied across the two micro-chambers, the fluorescent nanoparticles migrated 

from the PI dye filled micro-chamber across the micro/nanochannel to the PBS filled 

chamber. Under the confocal microscope, the fluorescent nanoparticles were observed and 

their trajectory was captured and imaged using the software packages associated with the 

confocal imaging or video capture mode system.  If the channels were occluded, only 

dark/black images were obtained; however, when the channels were patent, red particles 

were observed traversing the two micro-chambers through the micro/nanochannels. 

3.4.2 Platform for Electroporation in Cells 
 

Once each electroporation platform was verified as being functional, cells were 

loaded into one micro-chamber and one cell was trapped at the interface of the 

micro/nanochannel and the micro-chamber tip using an optical laser. Next, biomolecules 

were loaded into the other micro-chamber, and a voltage, of appropriate amplitude and 

duration pulse, was applied across the two sides of the micro-chambers to transfer the 

biomolecules into the living cell. By carefully controlling the dimension of the nanochannel 

together with the amplitude and duration of the applied electrical field pulse, a precise 

https://www.google.com/search?sa=X&biw=1280&bih=547&q=Minato,+Tokyo&stick=H4sIAAAAAAAAAOPgE-LUz9U3MC7ITStXAjONTJIKs7S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQAzB5wnRAAAAA&ved=0ahUKEwjfzrqH597UAhUY0IMKHfjrDhwQmxMImgEoATAU
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amount of biomolecules were allowed to enter the living cell with low cell mortality. 

Further details on each of these steps have been described below. 

3.4.2.1 Cell Culture 
 

HL-60 (Human promyelocytic leukemia) cells were obtained from Cascade 

Biologics and cultured in RPMI (Roswell Park Memorial Institute) 1640 medium with 10% 

FBS (Fetal Bovine Serum) and 1% PS (Penicillin Streptomycin). These cells were 

incubated at 37 °C, under humidified atmosphere at 5% CO2. The basic process for 

culturing the HL- 60 cells consisted of the following steps: 1) removed half the amount of 

media from the flask/plate; 2) rinsed the flask with half the amount of fresh media; 3) spun 

down the suspension (around 5 mL) at 2000 rpm for five minutes; 4) removed the 

supernatant of the pellet; 5) re-suspended the pellet in a volume that was easily aliquoted 

equally to the flasks/plates; 6) topped off with fresh media to a normal level (~10 mL) in 

the flasks; and, 7) placed the flasks/plates back in the incubator. The cells were then stored 

in liquid nitrogen for future usage by: 1) preparing a final solution containing the complete 

media with 10% volume-to-volume serum and 10% volume-to-volume Dimethyl 

Sulfoxide (DMSO); 2) repeating steps 1-7 above, then transferred 0.8 mL into a labeled 

vial; 3) adding 0.1 mL serum solution and 0.1 mL DMSO into the vial; 4) placing the vial 

into a cryogenic box that was placed into a -80 °C freezer for at least 24 hours; and, 5) 

transferring the box to liquid nitrogen.  

Prior to running the cell electroporation experiments, the HL-60 cells were removed 

from the liquid nitrogen using the following steps: 1) thawed the vial by gentle agitation in 

a 37 °C water bath, keeping the O-ring and cap out of the water to reduce the possibility of 

contamination; 2) removed the vial from the water bath after ~ 2 minutes making sure the 
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ice contents were completely thawed, then dipped or sprayed the vial with 70% ethanol to 

avoid contamination; 3) transferred cell solutions to a centrifuge tube containing 4 mL of 

fresh culture media and spun for 5 minutes at 2000 rpm; 4)  re-suspended the pellet in a 

volume that was easily aliquoted equally to the flasks/plates; 5) topped off with fresh media 

to normal level (~10 mL) in flasks; and, 6) placed the flasks/plates back in the incubator. 

3.4.2.2 Optical Laser Trap Cells 
 

The HL-60 cells were trapped and manipulated using a laser trapping technique 

where a laser beam was focused with high precision to create a momentum force that was 

transferred to the cells when the cells were illuminated by the laser beam [128]. Movement 

of the laser beam and/or changing the beam focus enabled translation of the cells in all 

three spatial directions (x, y, and z). It has been reported that particles ranging in diameter 

from a few Angstroms up to 10 µm can be trapped with forces within a few hundred pN 

[128]. To minimize the risk of damaging the cells, the optical trapping performed in this 

study used near-IR lasers in the range of 800~1100 nm [129].  The trapping time was 

carefully controlled to ensure that the laser energy was not absorbed by the PBS, which 

could result in heating of the nanoscale volumes [128]. Heating had to be avoided in order 

to prevent damage to the cells, especially if the handling time of the cells was long. To 

laser trap the cells to the desired location in a 3-D micro/nanoscale fluidic device, a Ti 

series inverted microscope (Figure 3. 20) with laser excitation sources (Nikon Eclipse TI-

FL) and an objective lens (Nikon 60× A/1.20 WI, WD 0.31-0.28, Figure 3. 21) was used 

to image and capture the cell during the trapping process. This system consisted of TI-FL 

Epi-fl illuminator main body, a laser source (980 nm), a USB 2.0 digital camera (Thorlabs), 

a laser diode controller (Thorlabs LDC 220 C, Figure 3. 22), and a temperature controller 
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(Thorlabs TED 200). The USB 2.0 digital camera was used to image or capture the cells 

during the trapping process. The laser diode controller enabled careful regulation of the 

power of the laser to trap and translate cells without damaging the cells. If the laser intensity 

was too high and exceeded the limit of the threshold temperature, the laser temperature 

controller set off an alarm. 

 

Figure 3. 20 Image of the Ti series inverted microscope 
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Figure 3. 21 Image of the Nikon 60× objective lens used in the laser trapping experiments 
 

 
 

Figure 3. 22 Image of the laser diode and temperature controllers for the laser trapping 
system 
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Initial attempts at cell trapping resulted in a very low yield (<10%) for translating 

cells to the desired locations. The most common reason of failure was the use of culture 

media with serum, which promoted cell attachment to the glass cover slip. To address this 

issue, Bovine Serum Albumin (BSA) was added to the micro-chambers prior to loading 

the cells in the device since BSA prevented cell adhesion to the glass and PDMS substrates. 

The BSA coating process consisted of the following steps: 1) an appropriate solution of 

BSA (10 µg/mL) in PBS was prepared; 2) 10 µL of the coating solution was pipetted into 

the micro-chamber from the inlet; 3) the platform was swirled around to ensure even 

coating of the micro-chamber with the BSA solutions; 4) the excess solutions were 

removed by pipetting; 5) the platform was placed in a petri dish that was then placed into 

a cell culture incubator for 2 hours; and, 6) the petri dish was transferred to a vacuum 

chamber and the excess solutions were aspirated before the cells were transferred into the 

platforms. 

After coating the platforms with a layer of BSA, the passaged cells were re-

suspended in PBS or serum free media and transferred to the platforms using a 1 mL syringe. 

In this step, a cell concentration of 107 cells /mL was used to load the micro-chamber. A 

relatively low concentration of cells were used to prevent premature apoptosis of the cells 

or cell death while in the confined micro-chamber space. 

In the cell trapping experiment, the laser current was controlled to operate in the 

range of 0~300 mA to prevent cell damage. The general procedure for laser trapping cells 

included the following steps: 1) the cells were transferred from the flask to the 3-D 

nano/microfluidic device using a l mL syringe; 2) the shutter for the epi-fl illuminator was 

closed; 3) the filter block rotation control was rotated to make sure that the opening was 
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placed into the optical path, 4) the power supply and diascopic illumination lamp were 

turned on; 5) the platform was placed onto the microscope stage; 6) the laser temperature 

controller was turned on; 7) the specimen was centered and focused; 8) the laser was turned 

on and laser current intensity was gradually increased to around 280 mA; 9) the microscope 

was adjusted to find the focus spot around specimen; 10) the laser was used to select and 

trap the cells, 11) the camera was turned on and set to the video recording mode; and, 12) 

the X and Y axes of the stage were moved to translate the cells to the desired location. 

3.4.2.3 Power Supply Instrumentation 
 

A custom-made instrument was constructed and used to supply a specific pulse 

width and electric field amplitude to the platform during the electroporation and 

biomolecule transport experiments. The custom-made power supply instrument included a 

reed relay and supporting sub-circuits, data acquisition (DAQ) system, power source meter, 

wave function generator, and software for controlling the pulse amplitude and duration 

(LabVIEW).  The reed relay was used to control one or more reed switches via an 

electromagnet [130]. The contacts were made of magnetic material, which were sealed in 

a long and narrow glass tube to avoid corrosion. In this work, a reed relay (5 V DC, 500 Ω, 

1 A, Aleph America, SD1A05DWJ) was used to make the supporting sub-circuits. There 

were four pins in this type of reed relay with the two inner pins connected to the wave 

function generator to provide 5 ms, 10 ms, 15 ms, and 20 ms durations of the applied pulse 

and the outer two pins were connected to the testing platform and a high voltage power 

supply (maximum 1000 V). Once the inner circuit power supply was on, the switch 

automatically turned on the outer circuit. As a result, the duration of the outer circuit was 

controlled by the inner circuit AC power supply’s frequency.  
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The full power supply circuit schematic and printed circuit board layout were 

designed in Multisim (Figure 3. 23 and Figure 3. 24, respectively.) A switch and a coil 

together were regarded as the reed relay in the circuit design schematic. The diode in the 

controlling circuit was used to dampen the coil, while the capacitor in the loading circuit 

maintained the voltage at a high level. To avoid causing damage to the DAQ USB card, a 

voltage divider was used to divide the total output voltage into two parts in the loading 

circuit. The small part, which was 1% of the total voltage applied to the platform, was less 

than 10 V because the maximum input voltage applied to the DAQ was 10 V.  

 

 

Figure 3. 23 Circuit diagram of the custom-made power supply 
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Figure 3. 24 Circuit board layout of the custom-made power supply 
 

Table 3. 5 Electrical connections for the printed board and DAQ channels 
 

Printed Board Pin Number USB-6009 Channel Connection 

1 AI0 Pulse on Device 

2 AI2 Controlling Pulse 

3 PFI0 Function Generator 

 

The data acquisition card was connected to a custom-made circuit board to provide 

the physical connections between the inner controlling circuit and the outer loading circuit. 
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Two physical channels were used to monitor the real-time pulse applied to the inner 

controlling circuit and the altered real-time pulse applied to the testing platform (Table 3. 

5). An additional physical channel was connected to the sync output of the wave function 

generator in order to trigger the applied pulse starting at a lower level to acquire a more 

complete signal in LabVIEW. The full schematic of the physical pin connections for this 

DAQ USB card was given in Figure 3. 25. 

 

 

Figure 3. 25 Full schematic of the USB-6009[131] 
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The pulse power supply was designed and developed based on a fundamental 

analysis of the basic electronic components available including the reed relay (ALEPH, 

SD1A05DWJ,  refer to Appendix B), DC power supply source meter (KEITHLEY, 2410 

Source Meter, 1100 V), waveform function generator (RIGOL, DG1022), and USB-6009 

card. As mentioned previously, the main functionality of the custom-made pulse power 

supply was to provide variable width pulses with controllable amplitudes ranging from 50 

V to 1000 V. Fortunately, the LabVIEW software (National Instruments, Austin, TX) was 

chosen as the development platform to acquire the real-time signal from both the 

controlling circuit and the loading circuit, since the visual environment in this software not 

only provided controllability of the data acquisition from a hardware perspective, but also 

offered user friendly interfaces to easily program the algorithms. Due to the internal 

resistance of the waveform function generator, USB-6009, and the source meter, the 

original measured output of the loading circuit (coming from voltage divider) was not 

proportional to the overall output. An additional, simple algorithm was used in this system 

to calibrate the final measurement output to ensure that this value was one thousand times 

less than that of the overall output applied to the platform during electroporation (Figure 

3. 26). In addition, a moving average filter program was developed to reduce random noise 

while retaining a step response since a number of electrical wires were used to connect the 

instruments and testing platform together (Figure 3. 27).  
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Figure 3. 26 Block diagram of the monitoring the real-time pulse algorithm 
 

 

Figure 3. 27 Block diagram of the moving average filter algorithm 
 

3.4.2.4 Biomolecules 
 

In this study, one type of biomolecule was used throughout the experiments, 

Propidium Iodide (PI) dye (Thermo Fisher Scientific) since the PI dye consisted of 

negatively charged particles that were easily transported from the cathode side of the 

micro-chambers through the micro/nanochannel to the anode micro-chamber once a high 

amplitude pulse was applied. The PI dye was diluted in PBS at 100 µg/mL using 1.0 mg/mL 

PI dye and 100 µg/mL PBS. PBS was used instead of DI water to increase the conductivity 

of the PI dye solution for the electroporation experiments to enhance the creation of a 
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nanopore on the cell membrane. As discussed before, the traveling velocity of these 

biomolecules was the superposition of the PBS or HBSS fluids’ electroosmotic velocity 

and the biomolecules’ electrophoretic velocity. 

3.4.2.5 Confocal Microscope 
 

Single cell electroporation in the micro/nanofluidic platform was monitored and 

captured using a Confocal Microscope (Nikon Eclipse Ti) (Figure 3. 28). Compared to  

 

 

Figure 3. 28 Image of the confocal microscope and scan head (Nikon Eclipse Ti) 
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Figure 3. 29 Image of the LED light source for the confocal microscope (Nikon Eclipse 
Ti) 

 
 
conventional fluorescent microscopes, the confocal microscope possessed several distinct 

advantages, including the ability to control the depth of field, reduce or eliminate the 

background noise from the focus area of the specimen, and improved resolution [132]. The 
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key advantage was the pinhole diaphragm, which filtered out the overlapping emission 

spectra reflected from the specimen. The confocal microscope consisted of an inverted 

microscope, scan head, confocal detectors, lasers, controllers, LED source, stage controller, 

Joystick, and PC workstation (Figure 3. 29). 

 

 

Figure 3. 30 Image of the display panel in the confocal microscope software (Ti Pad) 
[133] 
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Figure 3. 31 Image of the display panel for the confocal microscope software (LUTs) 
[133] 

 
The Ti microscope pad (controlling software) displayed all the motorized 

components on the confocal microscope that could be adjusted in the software (Figure 3. 

30) [133]. As shown in Figure 3.30, the focal distance, magnification of the objectives, 

and condenser were selected using this software. To adjust specimen brightness or contrast, 

the LUTs menu in the controlling software was utilized (Figure 3. 31). It was also used to 

indicate and adjust the saturation level of the captured image to acquire a much higher 

quality image. The electroporation experiments were run based on the amount of time it 

took to migrate the PI dye into the cell. Using Neutral Density (ND) acquisition (Figure 3. 

32) in the controlling software monitored the real-time experimental process by presetting 
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the interval time (how long it will take per frame) and the duration (total monitoring time 

for the whole experiment). 

 

Figure 3. 32 Image of the display panel for the confocal microscope software (ND 
acquisition) [133] 

 
The general procedures for the acquisition of the confocal images or videos 

included the following steps: 1) the PC workstation, LED light, confocal microscope, lasers, 
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controller, and confocal detectors were turned on; 2) the specimen on the glass slide was 

previewed through the eyepieces and focused on the area of interest; 3) four channels + TD 

mode were chosen; 4) optical configuration was chosen and the interlock was removed; 5) 

the “Galvano” feature for low FPS (frame per second) and the “Resonant” feature for high 

FPS were selected; 6) the appropriate laser lines for the specific specimen was selected (we 

chose TXRED for our electroporation experiments since PI dye were both red); 7) a scan 

size of 512 × 512 at 1 frame per second was chosen; 8) the “Ch series” and “Normal” 

features were selected for more than one laser lines; 9) the Pinhole feature was set at 1.0 

AU; and, 10) the “capture” feature was clicked for taking images of the specimen, or the 

ND acquisition feature was used to record videos of the whole experiment. 

 

3.4.2.6 Cell Viability Assay 
 

Cell viability experiments were performed after the electroporation of the cells with 

PI dye using the live or dead assay (Calcein Blue AM for live cells, SYTOX green for dead 

cells). Aliquots of “working” concentrations of the dyes, 1 µM for SYTOX green (Thermo 

Fisher, LOT 1816950) and 10 µM for Calcein Blue AM (Thermo Fisher, LOT: 1832331), 

were made and frozen for future use. When needed, an aliquot was pulled from frozen 

storage. A dye solution of 1.1 mL was made in HBSS with the correct working 

concentrations. Using a syringe with needle, the dye solution was injected only in the 

reservoir that holds the cells and into the top wall of the chip right behind the reservoir hole. 

The dye solution was not injected through the pre-existing reservoir hole, to prevent 

movement of the cells due to an increased pressure inside the micro-chamber. By injecting 

the dye into the top wall, this allowed for the dye to flush through the chip and come out 
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of the reservoir hole, pushing out any excess PBS. The flushed out solution was vacuumed 

up and removed. The total dye solution volume of 300 µL (0.3 cc) was added.  The chip 

was then incubated at 37 ºC for 30 minutes. After incubation, the chip was imaged to 

identify the cells viability.  Images were typically acquired with the 4x, 10x, and 40x 

objectives depending on the region of the image. When images were taken, an area of 

interest was identified and put in focus under a bright field filter. Once this image was 

taken, the blue filter was used to show the green fluorescence in the area of interest and an 

image was taken. Then, the violet filter was used to show blue fluorescence in the area of 

interest and an image was taken. The filters were specifically used in this sequential order 

since the green dye was more readily taken up by the dead cells compared to the blue dye 

taken up by the live cells. Great care was taken to ensure that the sample was kept in the 

dark to reduce and prevent photobleaching.  
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CHAPTER 4 RESULTS AND DISCUSSION 

 
In this project, a new system was characterized and optimized to directly-write 

PMMA fibers on the micron to nanoscale on a variety of substrates. The micro/nanoscale 

fibers were employed in the manufacturing of a new micro/nanofluidic platform capable 

of electroporating human cells.  A total of 18 micro/nanofluidic electroporation platforms 

were fabricated and tested.  The new micro/nanofluidic platform demonstrated its ability 

to successfully electroporate live cells as evidenced by confocal microscopy in conjunction 

with video recording.  The research findings of these experiments have been provided 

below. 

4.1 Implementation of a 3-axis Robotic System to Direct-write 3-D Micron/Sub-

micron Fiber Structures  

Prior to characterization of the 3-axis robotic system, the fiber drawing capability 

of the system was compared to previous work by our group using an Ultra-High Precision 

Micromilling Machine [119, 120] . Compared to previous data [48], the yield for drawing 

around 60 fibers varying in length from 2.5 to 14 mm was 100% for our new process, which 

was significantly 45.5% higher than the yield (~54.5% for 66 fibers) obtained with the ultra 

high-precision micromilling machine at the same polymer solution concentration, fiber 

lengths, and very similar feed rates. The fiber diameters were also within ±%22.5 of the 

diameters obtained previously.  
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As can be seen in the resulting images (Figures 4.1 – 4.3), three-dimensional, freely 

suspended fibers have been successfully “written” onto the substrates by precisely 

manipulating the dispenser tip to predetermined spatial locations including the 

initiating/terminating points as well as points of intersection. The insets of these figures 

magnified at the intersection points of suspended fibers demonstrated the system’s ability 

to precisely control fiber orientation (Figures 4.1b – 4.3b) in 3-D space.  This new system 

provided considerably more flexibility in creating more complex structures compared to 

structures created previously by our group (Figure 4.4][119]. 

 

 
 

Figure 4. 1 3D suspended structures fabricated from a 24% PMMA polymer solution: a.) Optical 
image of “Quad” suspended web structure having 2 support fibers (Diagonals) and 12 bifurcated 

branched fibers, and b.) SEM image of a single bifurcated fiber (2.0 KV EHT). 
 

b. 

a. 

b. 
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Figure 4. 2 3D suspended structures fabricated from a 24% PMMA polymer solution: a.) Optical 
image of “Symmetric” suspended web structure having a single support fiber (Horizontal) and 11 

bifurcated branched fibers, and b.) SEM image of a single bifurcated fiber (2.0 KV EHT).  
 

  
Figure 4. 3 3D suspended structures fabricated from a 24% PMMA polymer solution: a.) Optical 
image of “Dual Chevron” suspended web structure having a single support fiber (Horizontal) and 

22 bifurcated branched fibers, and b.) SEM image of a single bifurcated fiber. (2.0 KV EHT) 
 

a. 

a. 

b. 

b. 
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The sequential point-to-point order of fiber fabrication at which the 3-axis robot 

and dispensing system generated the freely suspended web-like structures have been shown 

in Figure 4.5. The arrows represented the robot trajectory during the dispensing process. 

Micron and submicron polymer fibers drawn on top of one another demonstrated the direct-

write system’s ability to fabricate wires of varying sizes on a predetermined Figure 4.6.   

 

 

Figure 4. 4 SEM images of suspended, branched fiber structures [119] 
 

 

Before running each trial, it was critical that the viscosity, mass transfer coefficients 

and surface tension of the polymer solutions be accurately measured in order to determine 

whether the robot and dispensing system was capable of processing the polymer to generate 

the desired fibers. As described previously by our group [48], the polymer solutions must 

have retained adequate: 1) surface tension to enable the formation of liquid filaments into 
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Figure 4. 5 SEM image illustrating the sequential point-to-point order of fabrication of micron 
and submicron polymer fibers (2.0 KV EHT). 

 
 
 

 
 

 

2 um

 
 
 

Figure 4. 6 SEM image of micron (6.5 um) and submicron (555 nm) drawn fibers comprised of 
20% polymer concentration (2.0 KV EHT). 
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micron/sub-micron structures; 2) viscosity to withstand capillary break up; and, 3) 

evaporation rate to enhance fiber formation. The synergy between these parameters was 

key to successfully produce fibers over a specified range of diameters. At the same time, 

instability in any of these parameters prevented the proper formation of the micron/sub-

micron scale fibers. To maintain the synergy between these parameters during fiber 

fabrication, it was important to ensure that the needle and needle valve were thoroughly 

cleaned after a direct-write session to prevent: 1) contamination of the solution; 2) 

reduction in the polymer solution flow rate through the needle; and, 3) excessive growth in 

the polymer bead at the tip of the needle. In addition, the temperature-controller on the 

heater was set to the desired temperature to maintain a desired constant evaporation rate of 

the polymer solution. 

For these series of experiments, the bifurcated branch fibers were found to 59%, 

41% and 24% larger in diameter than that of the support structures in Figures 4.1 – 4.3, 

respectively, using the 24% PMMA solution. This was primarily due to the distance at 

which the fibers were drawn. Specifically, the support structures were drawn across the 

entire width of the substrate (10.0 mm in X and Y directions; 14.4 mm diagonally). As a 

result, the support structures were the longest fibers of the overall suspended structures and 

the bifurcated branch structures were shorter, ranging from 7 mm maximum length down 

to 2.5 mm. This shorter fiber drawing length did not effectively induce the fiber strain 

required during the fiber thinning process to produce the small diameter fibers. On the other 

hand, larger diameter fibers were required to serve as the support structures in order to 

effectively sustain the tugging and deformation induced during the bifurcated branch 

drawing process. As the bifurcation branches were drawn across the support fibers, a 
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remodeling of the support fiber geometry occurred due to the drawing forces as well as a 

localized dissolution of the PMMA polymer at the interface between the support and 

branched fibers from the solvent present in the polymer solution. Thus, in some instances, 

the support fibers needed to be fabricated from a polymer solution consisting of a higher 

concentration of polymer to produce larger diameter and mechanically stronger 

fibers.There were primarily three effective methods for modifying the existing protocol to 

generate a wider range of support and branched fiber diameters: 1) initially dispense the 

polymer from a larger needle tip (e.g., 25 gauge; ID = 254 μm) to generate the support 

fibers and then exchange for a smaller needle tip (e.g., 32 gauge; ID = 101.6 μm) to 

fabricate the smaller branched fibers; 2) as noted above, use multiple polymer 

concentrations; and/or, 3) adjust the feed rate, i.e., the speed at which the stage traverses, 

where the increasing feed rate produces smaller diameter fibers and decreasing feed rates 

create larger diameter fibers.  

One limitation of the automated direct-write process was that only one 

concentration of polymer solution was dispensed at a time. This restricted the level of 

complexity of the suspended structures to be developed without having to: 1) add a second 

dispensing valve to the robot; or, 2) remove the existing valve and perform the cleaning 

protocol before dispensing the second polymer solution, which takes additional time. A 

second limitation was the feed rate (or print speed), where the maximum feed rate that the 

system was capable of achieving is 500 mm/s. However, there was a tradeoff between feed 

rate and fiber formation. Specifically, if the inertial forces (forces due to the feed rate) were 

greater than the surface tension forces and evaporation rate of the polymer solution, fiber 

formation did not occur. On the other hand, if the feed rate was too low, fibers would 
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fracture due to excessive evaporation before and during the elongation process. Thirdly, 

the fiber and structure dimensions were limited to the operating range of the stage of the 

robot in the x, y and z directions at 200 mm, 200 mm and 25 mm, respectively, with a 5 μm 

positional accuracy. Nonetheless, this process did enable the formation of high aspect ratio 

(fiber length: diameter) fibers. Strategically varying the dispensing tip-size and the polymer 

solution concentration allowed for a broader fiber diameter range, creating the ability to 

generate freely suspended structures with a high level of complexity. 

4.2 Characterization of Direct-write Sub-micron Fibers 

 
A novel direct-write method via an advanced 3-axis robotic dispensing system has 

been introduced that produced repeatable and controllable sub-micron/nano scale fibers by 

controlling several key process variables. Some factors, including the initiation and 

termination positions, feed rates, and length of fibers were precisely manipulated using the 

3-D robot software, while other factors such as dispense time, needle size, and dispensing 

chamber pressure – which pushes the fiber solution out from the needle tip – were adjusted 

by the dispensing system. 

4.2.1 PMMA Solution’s Physical Properties 
 

In order to understand the underlying mechanism behind the thinning dynamics of 

polymer fluids, the effect of surface tension, viscosity, dispense time, air pressure, and 

mass transfer coefficient of the polymer solutions were investigated via characterizing the 

fiber drawing process by varying each of these parameters and analyzing the significance 

of each of these variables using ANOVA algorithms in Minitab and regression equation 

http://www.jove.com/science-education/5056/pcr-the-polymerase-chain-reaction
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analysis in Matlab. The empirical prediction equation was generated from ample 

experimental data illustrating the general trend of fiber diameter at the specific controlling 

parameters. As described in the Methods section, PMMA solution viscosities at different 

weight concentrations were measured using LVDV-II+ and RVDV-II+ viscometers 

interfaced with a cone-and-plate. Low viscosity fluids were measured with the LVDV-II+ 

viscometer since it has limited measurement range, while high viscosity fluids were 

measured with the RVDV-II+ viscometer. Mass transfer coefficients of the PMMA 

solutions were measured using thermogravimetric analysis, to record high-precision weight 

measurements at different temperatures. The surface tension of PMMA solutions were 

measured by dipping a glass rod into test sample PMMA solutions as described by the  

 
Table 4. 1 Physical properties of PMMA solutions at different weight concentration. 
 
    Concentration Viscosity  𝜼 

 (Pa*s) 

Mass 

transfer 

coefficients 𝝌 (m/s) 

 

Surface  

tension  𝝈 (mN/m) 

    
19%   2.94±0.22 (9.07 ± 0.62)×10−8      87.50±10.70 

20%   7.49±0.46 (9.07 ± 0.62)×10−8     106.69±23.91 

21%   8.29±0.10 (9.07 ± 0.62)×10−8     106.85±12.20 

22%   13.39±0.47 (9.07 ± 0.62)×10−8     105.39±24.40 

23%   32.16±0.70 (9.07 ± 0.62)×10−8     152.23±53.82 

24%   37.34±4.65 (9.07 ± 0.62)×10−8     262.01±42.44 

25%   45.22±1.17 (9.07 ± 0.62)×10−8     234.20±12.69 

26% 
 

27% 

  64.41±1.08 
 
  94.16±1.55 

(9.07 ± 0.62)×10−8 

(9.07 ± 0.62)×10−8 

    366.2±10.25 
 

    500.60±69.28 
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Wilhelmy technique. All three physical property parameters for the PMMA polymer 

solutions at different weight concentrations ranging from 19% ~ 27% have been shown in 

Table 4.1. Generally, viscosity and surface tension increase as the PMMA polymer 

solution’s concentration increases. For 22% concentration, the surface tension is a little 

lower than 21% concentration’s since PMMA powder at this concentration was not 

completely dissolved in solvent when they were testing. Mass transfer coefficients for each 

concentration stay at the same value due to using the same solvent for all the testing 

solutions. 

4.2.2 Statistical Analysis Results 
 

Four groups of comparison experiments were executed to characterize the direct-

write process by changing four factors: 1) needle size; 2) dispense time; 3) concentration 

of PMMA; and, 4) feed rates. In group one experiments, weight concentration, dispense 

time, and feed rates were maintained at a specific value, and needle size and fiber length 

were varied in order to determine how needle size and fiber length affected the final 

performance of the written PMMA fibers. In a similar way, dispense time, concentration, 

and feed rates, as well as fiber length, were changed to figure out how each one of them 

influenced the final fiber diameter. 

The data presented in the above four graphs showed that fiber diameters generally 

became smaller as the fiber lengths increased under any experimental conditions (Figures 

4.7 – 4.10). With a 32 gauge needle, the fiber diameters were all smaller for different 

lengths than that of the other three different gauge needles from Figure 4.7 because few 

amounts of polymer solutions were discharged from smaller gauge needle. For the case of 

the dispense time (Figure 4.8), a shorter dispensing time usually led to smaller diameters 
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Figure 4. 7 Graph demonstrating the effect of the fiber length on the drawn fiber diameter for 
varying needle gauge sizes of 25, 27, 30, 32 using 23% weight concentration, 0.02 s dispensing 

time and 500 mm/s feed rates. 
 

 

 
 

Figure 4. 8 Graph demonstrating the effect of fiber length on drawn fiber diameter for dispense 
times of 0.02, 0.05, 0.1, 0.5, 1 using 23% weight concentration, 32 gauge needle and 500 mm/s 

feed rates. 
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Figure 4. 9 Graph demonstrating the effect of fiber length on drawn fiber diameter for 
concentrations of 23%, 24%, 25%, 26%, 27% using 0.02 s dispensing time, 32 gauge needle and 

500 mm/s feed rates. 
 
 

 
 

Figure 4. 10 Graph demonstrating the effect of fiber length on drawn fiber diameter for feed rates 
of 300, 350, 400, 40, 500 using 0.02 s dispensing time, 32 gauge needle and 23% weight 

concentration. 
 

since a short dispensing time resulted in less PMMA solution being expelled from the 

needle; thereby, a smaller diameter bead extruded out of the needle tip. Figure 4.9 
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illustrated that a lower concentration of PMMA solutions produced smaller diameter fibers 

compared to high concentrations of PMMA solutions such as 26% and 27% because the 

ratio of surface tension changing rates to viscosity changing rates increased as the 

concentration became higher from Table 4.1(lower ratio results in larger diameter in 

Equation 2.6). A group of experiments covering a range of feed rates, Figure 4.10 indicated 

that smaller diameter fibers corresponded with higher feed rates since bigger force was 

applied for higher speed (feed rates) on the polymer fiber during elongation. 

Analysis of variance (ANOVA) was used to determine the most significant factors 

from the five different factors mentioned above to further optimize the experimental 

process. The dispense time, fiber length, concentration and needle size were found to be 

the most important factors via ANOVA analysis, while feed rate was not determined to be 

a key factor in the determination of the fiber diameter. Based on these analysis results, 

additional experiments were performed to further elucidate the effect of feed rate and fiber 

length on the process in order to optimize the experiment in the next characterization 

process. Although high feed rates corresponded to smaller diameter fibers, the feed rates 

still needed to be decreased in future experiments for two reasons: 1) high feed rates 

resulted in low yield since the filaments/fibers would break in most cases during writing 

process; and, 2) low feed rates enabled longer evaporation time, which provided the 

filament with enough time to form and thin during the writing process. On the other hand, 

the fiber drawing length was varied from 22 mm to 40 mm in 2 mm increments with two 

fibers being drawn for each length (Figure 4.10). With these new experiments, an ANOVA 

was again performed and the length (p=0.000), needle size (p=0.000), concentration 

(p=0.000) and dispense time (p=0.001) were found to be significant factors. Subsequently, 
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a prediction equation (Equation 3-1) was also yielded from the ANOVA analysis, which 

demonstrated the relative impact of each parameter on the fiber diameter. 

 

 
 

Figure 4. 11 An optical image of PMMA fibers drawn on glass substrate with different 
dimensions  

 
 

After completing the above characterization process, a series of experiments were 

performed under specific conditions to try to produce uniform and repeatable fiber 

filaments as small as ~300 nm (Table 4.2 & Figure 4.11). As mentioned before, the leading 

diameter of each fiber was at a location of 200 µm away from the initiation drawing point 

and the terminating diameter was located 200 µm away from the termination drawing point. 

The middle measurement location was at the center length of each fiber. In general, the  
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Table 4. 2 Diameters of PMMA fibers at predetermined conditions (weight concentration 19%, 
dispensing time 0.02 s, needle Size 32 gauge, feed rates 15 mm/s). 
 
Fiber # Length 

(mm) 

Leading 

Diameter 

(μm) 

Middle 

Diameter 

(μm) 

Terminating 

Diameter 

(μm) 

Average 

Diameter 

(μm) 

Standard 

Deviation 

(μm) 

1 22 0.870 0.384 0.760 0.671 0.208 
2 22 0.612 0.301 0.365 0.426 0.134 
3 24 0.416 0.431 0.806 0.551 0.180 
4 24 0.487 0.378 0.904 0.590 0.227 
5 26 0.339 0.256 0.872 0.489 0.273 
6 26 0.328 0.332 0.281 0.314 0.023 
7 28 0.453 0.461 0.353 0.422 0.049 
8 
9 
10 

28 
30 
30 

0.284 
0.335 
0.285 

0.316 
0.405 
0.295 

0.450 
0.409 
0.279 

0.350 
0.383 
0.286 

0.072 
0.034 
0.006 

 

 
 

 
 

Figure 4. 12 PMMA fibers drawn on the hollow substrate with different lengths  
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Figure 4. 13 Optical (upper left) and SEM (the three insets) images of PMMA fibers with specific 

dimensions on the hollow acrylic substrate  
 

 
Table 4. 3 Optimized diameters of suspended PMMA fibers onto hollow Substrate at predetermined 
condition (weight concentration 20%, dispensing time 0.02 s, needle size 32 gauge, feed rates 15 
mm/s). 
 
Fiber # Length 

(mm) 

Leading 

Diameter 

(μm) 

Middle 

Diameter 

(μm) 

Terminating 

Diameter 

(μm) 

Average 

Diameter 

(μm) 

Standard 

Deviation 

(μm) 

1 2.5 1.59 1.331 1.373 1.431 0.113 
2 2.5 1.272 1.483 1.434 1.396 0.090 
3 5 0.953 0.876 0.944 0.924 0.034 
4 5 0.975 1.012 0.907 0.965 0.043 
5 10 0.790 0.895 0.920 0.868 0.056 
6 10 0.935 0.923 0.863 0.907 0.032 
7 15 0.759 0.653 0.701 0.704 0.043 
8 
9 
10 
11 
12 

15 
20 
20 
25 
25 

0.617 
0.664 
0.574 
0.463 
0.471 

0.681 
0.623 
0.543 
0.377 
0.407 

0.747 
0.683 
0.591 
0.404 
0.317 

0.682 
0.657 
0.570 
0.415 
0.398 

0.053 
0.025 
0.020 
0.036 
0.063 
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goal of fabricating fibers with diameters as small as 300 nm was achieved.  Furthermore, 

the average diameter of the fibers became smaller when its length became larger. Similarly, 

the repeatability of the process and uniformity of the fibers appeared to increase with fiber 

length as evidenced by the tendency for the standard deviations to decrease with fiber 

length. In order to show the repeatability and controllability of this new system, another 

round of experiments with the same experimental parameter except concentration at 20%  

were performed using hollow substrates to draw completely suspended, parallel oriented 

fibers. With the optimized controlling factors identified, sub-micron scale fibers were 

obtained as small as ~400 nm (Table 4.3 &Figures 4.12 – 4.13) on a hollow substrate 

without any fiber resting on the main body except two ending droplets. 

Usually, it was difficult to control the experimental process to obtain the desired 

fiber dimensions due to the trade-off between volatility and viscosity of the PMMA 

solutions. At low volatility and high viscosity, the final fibers became large in diameter; 

while, the fibers were very fragile and broke easily when the volatility was high and the 

viscosity was low. For this system, volatility was related to the dispense time, feed rates, 

needle tip size, and fiber length, while the viscosity and surface tension were dependent on 

the weight concentration of the PMMA solutions. Fibers from ~300 nm to 100 µm diameter 

were successfully drawn individually during the optimization process for different 

combined conditions. It was easy to draw the desired fiber diameters by combining the 

information attained from the optimization method and empirical prediction equation with 

the experimental controlling parameters of these additional studies. 

In the following group SEM images (), different range diameter fibers were attained 

for different controlling factors. For example, large diameter fibers were repeatedly drawn  
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 Figure 4. 14 SEM images of PMMA fibers with specific diameter at predetermined 
conditions (2.0 KV EHT) 

 

 
 

(Figure 4.14a & b) for experiment factors at 24% concentration, 0.5 s dispense time, 32 

needle gauge and fiber length ranging from 5 mm to 40 mm with the distance of these fibers 

controlled at around 100 µm and 50 µm (Figure 4.14a), respectively. By adjusting some 

significant factors including concentration, feed rate, and dispense time, fibers’ diameter 

can be controlled within 500 nm (Figure 4.14c). Fiber diameters as small as 280 nm were 

drawn via the 3-axis roboti c dispensing system using the optimized controlling factors of 

a) b) 

c) d) 
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weight concentration 20%, dispensing time 0.02 s, needle size 32 gauge, feed rates 15 mm/s 

(Figure 4.14d). 

4.2.3 Empirical Prediction Equation Generation 
 

The data from our previous characterization work was used to generate an empirical 

prediction equation. First, the dimensionless parameters were calculated using the 

corresponding controlling parameters and the relationships described above. Then, a linear 

regression function generated via Matlab [134] was utilized to find the coefficients for each 

term of variables, which was approximated by a third-order polynomial using the capillary 

number (Ca), processability parameter (P), aspect ratio (), and dispense time (Dt) 

variables to determine fiber diameter (D): 

𝐷∞ = 516.201 − 1.021×104Dt + 3.3437×104Dt2 − 2.448𝐷𝑡3 + 1.613×106𝑃 +
13.623𝐶𝑎 − 2.575×10−1𝐶𝑎2 + 1.226×10−3𝐶𝑎3 − 8.344Λ + 3.742×10−2Λ2 −

                                      4.613×10−5Λ3                                                                         (4-1) 
 

From the above equation, the high order terms of 𝑃 were excluded due to the negligible 

effect of these terms on the final diameter of the fiber. 

4.2.4 Minimum Diameter of PMMA Fibers 
 

To find the minimum diameter of PMMA fibers that could be fabricated, we 

combined our previous characterization work with theoretical analysis. A genetic 

algorithm (GA) from Matlab was utilized to solve both constrained and unconstrained 

optimization problems based on a natural selection process that mimicked biological 

evolution [135]. This function generated a population of different solutions at each iteration 
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and, eventually identified the best solution that optimized Eq. (4-1). In this work, the 

genetic algorithm was used with the following structure [20]: 

• Chromosome: Each chromosome has 50 bits divided into five sets, and each set 

consists of 10 bits to present one variable to be optimized.  

• Fitness: Since GA was a Global optimization approach looking for the global 

maximum point, we defined the fitness of an individual Chromosome (one solution) 

as the inverse empirical prediction equation as:  

      Fitness = 1/𝐷∞ = 1/(516.201 − 1.021×104Dt + 3.344×104Dt2 − 2.448𝐷𝑡3 +
1.613×106𝑃 + 13.623𝐶𝑎 − 2.575×10−1𝐶𝑎2 + 1.226×10−3𝐶𝑎3 − 8.344Λ +

                         3.742×10−2Λ2 − 4.613×10−5Λ3)                                                         (4-2) 
 

 
Table 4. 4 Optimal controlling parameters 
 

Controlling Parameters Types Optimal Controlling Parameters Value 

Needle Tip Size (Gauge) 30 

Feed Rates (mm/s) 300 

Dispense Time (s) 0.02 

Polymer Solution Concentration 

(by Weight) 

20% 

Fiber Length (mm) 35 

 

By using this inverse empirical prediction equation, the maximum value of the 

function was determined in a two thousand times loop that included all the iteration steps 

of the genetic algorithm. After running the code, the minimum diameter of fiber that could 

be fabricated with our system using the parameters identified was found to be 183 nm. The 



113 

 

algorithm outputted the corresponding controlling parameters required to achieve this fiber 

diameter (Table 4.4), which have been displayed in red font. 

4.2.5 Validation of Empirical Equation 
 

With the optimal combinations of controlling parameters provided by the genetic 

algorithm, it was necessary to perform experiments with the robotic dispensing system in 

order to validate the prediction equation and the algorithm code. To provide statistically 

viable data, 20 trials were performed at the same presetting of the controlling parameters. 

It turned out that only two of the 20 runs (refer to red fond in Table 4.4) yielded diameters  

Table 4. 5 Performance data of fibers at optimal condition with 15 psi pressure 

 
Fiber # Length 

(mm) 

Average 

Diameter 

(μm) 

Standard 

Deviation 

(μm) 

Initiating 

Droplet 

Diameter 

(μm) 

Prediction 

Error 

 

1 35 4.565 0.181 946.1 2391.41%  
2 35 1.624 0.078 972.3 786.07%  
3 35 1.540 0.022 909 740.23%  
4 35 1.500 0.040 909.4 718.77%  
5 35 1.418 0.024 905.4 673.65%  
6 35 1.350 0.044 907.7 636.91%  
7 35 1.333 0.036 901 627.63%  
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 

1.270 
1.160 
0.961 
0.940 
0.921 
0.860 
0.578 
0.563 
0.343 
0.319 
0.198 
0.161 
0.122 

0.048 
0.039 
0.013 
0.021 
0.022 
0.026 
0.017 
0.018 
0.012 
0.024 
0.007 
0.006 
0.009 

904.8 
899.1 
879.8 
895.7 
893.1 
881.7 
858.3 
849.9 
837.2 
830.4 
807.2 
772.6 
760.9 

592.89% 
533.04% 
424.19% 
413.18% 
402.54% 
369.07% 
215.48% 
207.42% 
87.31% 
73.83% 
8.29% 
12.05% 
33.46% 
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in the approximate predicted range of 183 nm. The range was quantified here by calculating 

the prediction errors and comparing to the experimental value: 

 

              𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =
|𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
                       (4-3) 

When the corresponding prediction error was less than 15%, the experimental value was 

considered to be located in the prediction range.  

 
 

 
 

Figure 4. 15 Effect of pressure on droplet size  
 

Until now, only one controlling parameter of this new system was not utilized to 

characterize the direct-write process, the flow of air pressure applied onto the polymer 

solutions, which could range from 0 to 15 psi. In all of the previous experiments, the 

maximum value, 15 psi, was used to expel polymer solutions at the beginning of each 

drawing. It was found in fact (Table 4.5) that the initiating droplet size has a direct affect 

on the final diameter of the fibers. Since the initiating droplet was dependent on the air 
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flow pressure, additional experiments were performed to measure the droplet size as the 

polymer droplet was discharged from the tip of the syringe needle for varying pressure 

levels using a USB- microscope and image processing software (Image J) (Table 4.6). It 

was revealed that droplet size was directly proportional to the size of the air pressure 

(Figure 4.15) with an optimal air pressure of 3 psi since the largest number of fibers were 

successfully fabricated within the predicted range at this pressure (Figure 4.16). 

Table 4. 5 Performance data of fibers at optimum condition at 3 psi pressure 
 

Fiber # Length 

(mm) 

Leading 

Diameter 

(μm) 

Middle 

Diameter 

(μm) 

Terminating 

Diameter 

(μm) 

Average 

Diameter 

(μm) 

Standard 

Deviation 

(μm) 

Prediction 

Error    

 

 

1 35 0.6589 0.6332 0.6008 0.631 0.024 244.33%  
2 35 0.375 0.3873 0.3915 0.385 0.007 109.89%  
3 35 0.3522 0.3366 0.3353 0.341 0.008 86.29%  
4 35 0.3383 0.306 0.3185 0.321 0.013 75.14%  
5 35 0.2755 0.2758 0.2696 0.274 0.003 49.33%  
6 35 0.2514 0.2686 0.2734 0.264 0.009 44.33%  
7 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 

   0.2797 
0.2652 
0.259 

0.2283 
0.2109 
0.1996 
0.2096 
0.219 
0.212 

0.2112 
0.2049 

0.18 
0.1932 

0.2549 
0.2301 
0.2321 
0.2236 
0.2079 
0.1921 
0.1908 
0.1824 
0.1904 
0.178 

0.1753 
0.1904 
0.1754 

     0.2523 
0.2731 
0.2291 
0.2247 
0.1893 
0.2099 
0.1903 
0.1876 
0.183 

0.1713 
0.1795 
0.178 

0.1696 

0.262 
0.256 
0.240 
0.226 
0.203 
0.201 
0.197 
0.196 
0.195 
0.187 
0.187 
0.183 
0.179 

0.012 
0.019 
0.013 
0.002 
0.010 
0.007 
0.009 
0.016 
0.012 
0.017 
0.013 
0.005 
0.010 

43.14% 
39.78% 
31.01% 
23.08% 
10.62% 
9.44% 
7.45% 
7.14% 
6.49% 
1.96% 
1.81% 
0.24% 
2.10% 

 

 
 

The key component of the genetic function was the outer iteration loop applied to 

determine the minimum value by comparing all of the different initial characterization 

results over two thousand times. Based on the above algorithm, the minimum predicted 

fiber diameter was determined to be 183 nm. Using the predicted process parameters, the  
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Figure 4. 16 Number of prediction errors less than 15% at different pressure 
 
robotic dispensing system was utilized to verify the theoretical analysis data by running 

the experiment 20 times at prescribed conditions. Comparing the initiating droplets at 

different fiber diameter, it is good to know that the air flow pressure is another important 

controlling factor affecting the performance of fiber formation. The diameters of the 

polymer droplet discharged from the syringe needle tip are listed in Figure 4.15 at different 

air flow pressure. The polymer dropet discharge diameter is determined by measuring the 

actual size of images taken from a USB-microscope. Therefore, in the last step of 

optimization, experiments were run 20 times over a range of air flow pressures, from 3 Psi 

to 15 Psi in 3 Psi increments.  

 

4.3 Fabrication of 3-D Micro/Nano Fluidic Electroporation Devices 

 
A total of 18 micro/nanofluidic PDMS devices were batch fabricated with a gap 

distance and chamber depth of 10.7 ± 0.51 µm and 30.5 ± 1.42 µm, respectively, (Table 4. 
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6).  Although the original thickness of the dry film resists (DFRs) was 20 µm, the actual 

depth of the micro-chambers (with two layers of DFRs) was found to be 30.5 µm due to 

thinning of the DFR material during the post exposure bake and development processes, 

together with the merging of the 2 layers during the film-to-film bonding step at elevated 

temperatures.  Overall, for the 18 micro/nanofluidic devices fabricated, the physical 

dimensions of the micro-chambers were controlled within 7% of the design value (Table 

4.8). For the actual dimensions of the channels, the accuracy of the channels’ diameters for 

the 6 fluidic devices fabricated for each desired channel dimension (1000 ± 9 nm, 500 ± 23 

nm and 300 ± 17 nm) were within 6% of the design for the final PDMS devices (Table 

4.8). It has been proven that all the trial data (total 18 fibers) based on characterization 

results at different scales ranging from 1 µm to 500 nm, and 300 nm located within 20% 

of design value for each scale (Table 4.8). In detail, the experimental data of 1 µm fiber 

case were controlled within 12% of design value; the experimental data of 500 nm fiber 

case were controlled within 20% of design value; the experimental data of 300 nm fiber 

case were controlled within 8% of design value. Therefore, it is possible to draw repeatable 

and controllable micro/submicron/nanofibers at prescribed experimental conditions via this 

3-axis robotic dispensing system. 

It was noted that the dimension of the channel imbedded in PDMS was slightly 

smaller than the original fiber diameter. This reduction in the channel dimension may have 

been due to the acetone removal process since it has been reported that PDMS swells 

isotropically in an acetone bath [19]. Because of this behavior, it was anticipated that the 

isotropic swelling of the PDMS would push against the solvating PMMA fibers, thereby 

expelling the PMMA out of the channel.  Subsequently, when the acetone was removed, 
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the PDMS may not have returned to its original dimension due to the presence of residual 

acetone or induction of internal stresses in the PDMS, which led to smaller channel 

diameters. As a result, the final PDMS channels were determined to decrease by 10.1%, 

13.1% and 1.9% compared to the original fiber diameter for the 1000 nm, 500 nm and 300 

nm designed channels, respectively (Table 4.8). The diameter change for the 300 nm from 

fiber to PDMS channel was not as significant as the 1000 nm and 500 nm because 

sonication time for 300 nm substrate (much thinner PMMA fiber embedded in this 

substrate) was shorter than other two substrates. 

Table 4. 6 Comparison between the design and actual dimensions achieved for the PDMS micro-
chambers for all 18 micro/nanofluidic PDMS devices. 
 

  
Design Spec. (µm) 

Actual Dimension in PDMS  
Mean ± std dev  (µm) 

% Diff. 
(PDMS – Design) 

Gap Distance 10 10.7±0.51 7% 

Depth of the Micro 
Chambers 

30 30.5± 1.42 2% 

    

 
Table 4. 7  Comparison of fiber diameters to actual channel diameters for a total of 18 devices with 
6 devices per size group. 
 

 
Design Dimension of 

Channel (nm) 

FIBER DIAMETER  
Mean ± std dev  (nm) 

PDMS  
Mean ± std dev  (nm) 

% Diff. 
(PDMS – Design) 

1000  1122 ± 13 1009 ± 33 <1% 

500  602 ± 24 523 ± 7  <5% 

300  323 ± 9 317 ± 6 <6% 

 

As mentioned in the Methods section, micro/nanofibers were directly drawn on the 

DFR molds for the microchambers. The operating parameters for writing the 1000 nm, 500 
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nm and 300 nm fibers have been presented in Table 4.9 below. Please note that for each 

distinct fiber diameter, a range of values were identified since multiple operating 

parameters could be modified simultaneously or individually to control the fiber diameter. 

This was anticipated since it is logical that a solution of 21% polymer concentration 

required a different feed rate, dispense time, needle tip and syringe pressure than a 19% or 

20% polymer concentration.   

To illustrate the capability of the system to precisely control fiber location on the 

DFR substrates, two microfibers were drawn on the DFR molded micro-chambers (Figure 

4.17). As mentioned previously, individual, highly-oriented, predetermined fibers of 1000 

nm, 500 nm and 300 nm were drawn on the DFR molded micro-chambers, respectively  

 
Table 4. 8 Direct-Write Process Optimized Parameters for Three Different Dimensions’ Fibers 
 

Diameter of Design Fibers Direct Write Process Parameters 

 
 

1000 nm Fibers 

Feed Rate (10 - 15 mm/s) 

Polymer Solutions Concentration (20-21%) 

Dispensing Time (0.02 -0.1 s) 

Syringe Pressure (10-15 psi) 

Needle Tip Size (25-32 gauge) 

 
 

500 nm Fibers 

Feed Rate (10 - 15 mm/s) 

Polymer Solutions Concentration (19-20%) 

Dispensing Time (0.02 -0.1 s) 

Syringe Pressure (8-12 psi) 

Needle Tip Size (30-32 gauge) 

 
 

250 nm Fibers 

Feed Rate (10 - 15 mm/s) 

Polymer Solutions Concentration (19 %) 

Dispensing Time (0.02 s) 

Syringe Pressure (5-8 psi) 

Needle Tip Size (30-32 gauge) 
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Figure 4. 17 SEM image of the DFRs mold on a glass substrate with PMMA microscale fibers 
 (Top fiber: d1 = 1.96 μm & Bottom fiber: d2 = 1.74 μm). 

(Figures 4.18-20).  After the fibers were drawn on the DFR, the top and bottom substrates 

containing a layer of DFR were aligned with high precision (within ≤ 2 µm tolerance) and 

bonded to achieve film-to-film bonding and produce the reverse mold of the 

micro/nanofluidic electroporation PDMS device (Figure 4.21). The micro/nanofibers were 

sandwiched between these two DFRs, which later acted as the sacrificial structure for the 

creation of the micro/nanochannel of the PDMS device. 

As mentioned in the Methods section, PDMS was poured over the sacrificial DFR 

microchamber and PMMA fiber molds to produce the PDMS microfluidic platforms 

(Figure 4. 22a - Figure 4. 24a) for each channel dimension (~1000 nm, ~500 nm, ~300 

nm,), respectively.  In viewing the images in Figures 4.18-4.20 to Figures 4.22-4.24, the 

fiber seen in the middle of the DFR was only viewed in the middle “dam” regions after 
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bonding since the PMMA fiber in the other regions on the DFR become engulfed/ covered 

by the second layer DFR.   

 

 

Figure 4. 18 SEM image of the dry film resist mold on a glass substrate with a microscale PMMA 
fiber at ~ 1 μm 

 
Some issues including misalignment, thin fiber written on the right location of the 

substrate, and the PDMS substrate bonding with glass had been alleviated during PDMS 

microfluidic platforms fabrication. For drawing thinner fibers on the substrate, it was 

difficult to repeat the result within 20% of design value at around 300 nm since solvent 

evaporation changed the polymer solutions concentration over time. One solution was to 

purge the old solution out of the syringe needle before drawing a new fiber. Another 

misalignment issue occurred when two substrates were bonding together. As mentioned 
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before, a new film-to-film bonding and alignment equipment was built to address the issue. 

Vacuum was used to fix the positions of two substrate before alignment because it was an 

irreversible process once the fiber was sandwiched by the two substrates. And long 

working distance was achieved by the stereoscope. High precision alignment (less than 2 

µm gap) was guaranteed by using a 3-axis stage and the 63 X stereoscope. Initial PDMS 

substrate bonding with glass failed several times due to some reasons: 1) the glass or PDMS 

substrate was not clean enough with organic solvents, 2) long time oxygen plasma 

treatment, 3) without heat or light force treatment after plasma. As describe in the last 

 

 

Figure 4. 19 SEM image of the dry film resist mold on a glass substrate with a sub-microscale 
PMMA fiber at ~ 500 nm 
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Figure 4. 20 SEM image of the dry film resist mold on a glass substrate with a nanoscale PMMA 
fiber at ~ 300 nm 

 

 

 

Figure 4. 21 SEM image of two layer dry film resist mold on a glass substrate sandwiching a 
microscale PMMA fiber 
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Figure 4. 22 a) Optical image of the micron channel (~973 nm) embedded within the PDMS 
“Dam”, b) enlarged view of middle channel 

 

 

Figure 4. 23 a) Optical image of the Sub-Micron channel (~468 nm) embedded within the PDMS 
“Dam”, b) enlarged view of middle channel 
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Figure 4. 24 a) Optical image of the Nanochannel (~292 nm) embedded within the PDMS 
“Dam”. 

 
chapter, organic solvents were used to clean the surface of both substrates and to increase 

the adhesion before oxygen plasma. And oxygen plasma was treated on the both substrates 

for only one minute to increase the surface adhesion. Then, both substrates were 

immediately transferred to the 90 °C hotplate with light force applied on the top substrate. 

 

4.4 Transportation of Biomolecules 

Validation experiment were completed to prove the existence of the middle channel 

before further cellular electroporation experiments were performed. Here, PI dye was 

utilized to validate the middle micro/nanochannel and its connectivity to each side of the 

micro-chambers. Prior to performing these experiments, each microchamber was filled 

with PBS and the micro/nanochannel was allowed to fill. As previously explained, an 

external voltage (6 V) was applied across the channel with a negative potential applied to 
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one microchamber and a positive potential applied to the other microchamber. 

Subsequently, the PI dye was loaded into the negative potential micro-chamber so the dye 

would travel through the middle channel into the positive potential micro-chamber (Figure 

4.25). The migration of the PI dye across the micro/nanochannels was accomplished via 

electroosmotic and electrophoretic flow. 

  

 
 

Figure 4. 25 Confocal microscope image of PI dye transporting through embedded microchannel 
(3 µm). 
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Figure 4. 26 Confocal microscope image of PI dye transporting through embedded micron 
channel (1112 nm). 

 

 
 

Figure 4. 27 Confocal microscope image of PI dye transporting through embedded Sub-micron 
channel (518 nm). 
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Figure 4. 28 Confocal microscope snapshot image of PI dye travelling through embedded 
nanochannel (292 nm). 

 
Prior to performing the cellular transportation studies, each of the PDMS platforms, 

with the three different channel dimensions, were evaluated to validate that all channels 

were patent by viewing the nanochannel located in the middle “dam” under the confocal 

microscope. Both images and videos were recorded for each device with example for each 

channel dimension shown in Figures 4.26-4.28. 100% of the 18 devices demonstrated flow 

through the micro/nanochannel. As a result, these devices were ready to perform the 
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proposed cellular electroporation experiments. At the beginning, cells mortality was high 

when they were transferred to the nano/microfluidic devices and they were adhered to the 

bottom of the PDMS substrate. A standard sterilization process was executed before 

transferring any cells into the two chamber to avoid cell contamination and improve cell 

viability including autoclaving, baking, filtration, rinsing with ethanol and sterilized water, 

radiation with UV light. Coating a layer of BSA greatly reduced the adhesion of cells 

towards the bottom of PDMS substrate. 

 
4.5 Micro/Nano Electroporation 

4.5.1 Optical Laser Trapping cells 
 

Prior to performing the electroporation studies, HL60 cells were loaded through the 

microchamber inlet port into the positive potential microchamber at a concentration of 

1×107 cells/mL. However, the cells were located upstream of the channel and needed to 

be moved to the outlet of the electroporation device. Due to the fluid resistance presented 

by the micro/nanochannels, the platforms were unable to move the cells via bulk fluid flow.  

Therefore, the cells were transported approximately 2.5 mm from the PDMS microchamber 

inlet port to the outlet of the electroporation device via optical laser trapping. By carefully 

controlling the laser intensity, cells, on at a time, were successfully and easily trapped and 

then translated via moving the stage of the microscope without damaging the cell (Figures 

4.29 & 4.30). More detailed time sequence images were also prepared (Figure 4.31) to 

illustrate the translation process of the stage to move the cell from its original location to 

the target area.  The entire laser trapping process took approximately 12 s to complete. 
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Figure 4. 29 Optical image of single cell trapped (wavelength is 980 nm) at the entrance of the 
microchannel (dimension 3.27 µm) 

 

 

Figure 4. 30 Optical image of four cells laser trapped (wavelength is 980 nm) at the entrance of 
the microchannel (dimension 3.12 µm) 
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Figure 4. 31 Optical images of single cell trapping process (wavelength is 980 nm). 
 

4.5.2 Micro/Nano Electroporation Preliminary Results 
 

Preliminary electroporation studies were performed to demonstrate proof-of-

concept and effectiveness of the platform to function as a nano-electroporation device. 

After the laser trapping procedure was completed, the platform was immediately 

transferred to the confocal microscope stage to perform the electroporation procedure. As 

depicted in the previous chapter, the power supply and two platinum electrodes were set in 

place prior to the electroporation procedure. Just prior to electroporation, an image of the 

micro/nanofluidic platform loaded with PI dye in micro-chamber and PBS together with 

cells in the other micro-chamber was taken to compare to the electroporation results 

(Figure 4.32). Subsequently, a 220 V with 10 ms pulse was applied on the two chambers 

to induce electroporation (here, a high voltage was used to generate high electric field to 

create a nanopore on the cell membrane; while only 6 V voltage provided enough force to 

migrate the PI dye ions from one chamber to the other one for biomolecules transportation). 

Within 20 ms, this single trapped cell, positioned at the entrance of the nanochannel, was 

electroporated with the PI dye located in the other micro-chamber being transported 

through the nanochannel and transferred into the cell (Figures 4.32-4.35). Tens of 

electroporation experiments were performed with our platforms. The same amplitude and  
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Figure 4. 32 Optical image of the platform before electroporation 
 

 

Figure 4. 33 Optical image of the platform (dimension 476 nm) After Electroporation 
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Figure 4. 34 Sequential images of single cell electroporation process for a 476 nm channel 
 

 

Figure 4. 35 Optical image of the platform (dimension 1.41) before and after electroporation 
 

duration power was supplied to the device with the similar dimensions of successful 

platforms during the electroporation. High efficient cell transfection results were not 

observed in these devices because of some possible reasons: 1) cells were dead before 
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performing the electroporation experiment; 2) middle channels were not completely 

connected to the two side’s chambers. Much more careful sterilization process will need to 

be taken to avoid cell contamination in the future experiment. And some comparison 

experiments should be performed to determine whether cells are still alive or not before 

electroporation experiment. In addition, testing experiment on determining the 

connectivity of device to two side’s microchambers should be performed including 

measuring resistance of middle channel filled with PBS solution and optical confirmation 

under microscope.  

Compared to previous reported nano-electroporation results [36], the complete 

electroporation process in our platform only took around 20 ms to complete, which was 

100 times shorter than the best reported result (~ 2.3 s) of Boukany et al. for a nanoscale 

electroporation device. As mentioned before, the micro/nanochannel in our studies laid at 

the middle level of the microchamber, which enabled the middle-level of the cell to lean 

against the entrance of the channel. On the one hand, the cell in our platform could have 

experienced a much larger electric field and transmembrane potential to create the nano-

pore, which accelerated the transport of the PI dye across the membrane. On the other hand, 

the biomolecules could have been more directly transported through the channel and 

transferred into the cell since the cell was in direct contact with the channel outlet. A 44 

V/mm electric field applied to our platform was much smaller than 110 V/mm applied to 

Boukany’s nanofluidic device. As discussed in the background chapter, the smaller electric 

field applied to the cell improved the cell viability as well as cell transfection efficiency. 

As the diameter of our platform’s channel becomes smaller, the complete cell transfection 
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time will become shorter and the dose of transferring biomolecules into cell can be more 

feasibly and precisely to control. 

The conductivity of the PBS solution used for the electroporation was 2.1 S/m. The 

resistances of the micro/submicron/nanochannel were 1.5 MΩ, 6.1 MΩ, and 16.8 MΩ 

respectively, which were calculated based on the following equation: 

                                              𝑅𝑐ℎ = (
𝐴 𝜎𝑃𝐵𝑆  

𝑙
)

−1

                                              (4-4) 

where 𝑅𝑐ℎ  was the resistance of micro/submicron/nanochannel, 𝐴 was the cross section 

area of these channels, 𝜎𝑃𝐵𝑆  was the conductivity of the PBS solution, and 𝑙  was the 

channel’s length. The theoretical voltage applied on the cell was calculated based on the 

simulation model shown in Figure 2.1, where the total applied voltage was equal to the 

total voltage across channel and the cell membrane: 

                                         𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑐ℎ + 𝑉𝑇𝑀1 + 𝑉𝑇𝑀2                                 (4-5) 

where 𝑉𝑡𝑜𝑡𝑎𝑙  (220 V for this work’s application) was the total voltage applied for the 

electroporation experiment, 𝑉𝑐ℎ was the voltage across the channel, 𝑉𝑇𝑀1 was the voltage 

across the half circle of the cell membrane close to the channel, and 𝑉𝑇𝑀2 was the voltage 

across the other half circle of the cell membrane. The equation for the transmembrane 

potential was derived from this simulation model and found to be: 

                             𝑉𝑇𝑀1 = 𝑉𝑡𝑜𝑡𝑎𝑙
𝑅1

𝑅1+𝑅𝑐ℎ
(1 − 𝑒−𝑡 (𝑅𝑐ℎ∙𝐶1)⁄ )                            (4-6) 

where 𝑅1  was the resistance of the first half circle of the cell membrane, 𝐶1  was the 

capacitance of the first half circle of the cell membrane (which was close to the channel), 

𝑡 was the pulse period (10 ms for this work’s application). A similar equation was used for 

the other half circle of the cell membrane to calculate 𝑉𝑇𝑀2 . By combining the above 
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equations and experimental parameters, the current flowing across the cell membrane 

(including first half circle and the other half circle) and energy passivation on the cell (Joule 

heat) were calculated (Table 4. 10).  From this data, the current flow of the first half circle 

was found to be the same while the current flow for the second half circle was found to 

decrease as the channel dimension decreased.  Similarly, the energy passivation was also 

found to decrease with smaller channel. These results indicated that smaller device 

produced much less energy, which means that the cell in the smaller device received less 

heat. To avoid damage towards to the cell in the large device including microfluidic device 

or bulk electroporation device, it was better to reduce the laser scanning time before 

electroporation experiment. The resistance (1.6 MM Ω) of the first circle was much larger 

that the resistance of middle channel and the second circle, which leads to the same current 

flow through it at different dimensions’ devices.  

Table 4. 9 Current flow and energy passivation across cell membrane for different device. 
 

 
Design Dimension of 

Channel (nm) 

Current Flow 1st Circle  
(µA) 

Current Flow 2nd 
Circle  (µA) 

Energy Passivation  
(J) 

1000  1.38×10-4 14.19 2.82×10-3 

500  1.38×10-4 10.95 1.67×10-3 

300  1.38×10-4 7.14 7.14×10-4 
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CHAPTER 5 CONCLUSION 

5.1 Work Completed  

A 3-axis robotic dispensing system was utilized to control the initiating and 

terminating positions of polymer fibers as well as fiber trajectory. The advantages of this 

robotic dispensing system were the system’s ability to: 1) generate fibers with 

predetermined, desired diameters; 2) be programmed to dispense at precise locations; 3) be 

programmed for automated process control; and, 4) create complex micron/sub-micron 

fiber web structures. This new 3-axis robotic dispensing system generated significantly (P 

= 0.001) better yields than previously reported systems using an ultra high-precision 

micromilling machine [48], 100% verses 54.5%, respectively, with the same polymer 

solution concentration, the fiber length range, and approximate feed rates. Therefore, 

hypothesis 1 has been proven based on the above comparisons between the two different 

systems. 

Next, the study focused on characterizing the system to determine the key operating 

parameters of the system together with the material properties of the polymeric solutions 

to repeatedly create the desired sub-micron/nano scale PMMA fibers. An empirical 

prediction equation and optimization algorithm were developed and evaluated to verify 

their ability to accurately control fiber position, diameter and length. These models were 

utilized to determine the minimum theoretical fiber diameter the system was capable of 

producing and its corresponding experimental parameters. It was demonstrated that fibers 

fabricated from 1 µm to 500 nm, and 300 nm were within 20% of the design value (Table 
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4. 10). Comparing the theoretical results with the experimental data showed that fibers 

fabricated at the minimum theoretical diameters (183 nm diameter) were repeatedly written 

with a 45% of the fibers having prediction error ≤15%. Therefore, hypothesis 2 has been 

proven. 

The PMMA fibers were successfully used as a sacrificial material, in conjunction 

with dry film photolithography, film-to-film alignment and bonding, and replica molding, 

to create micro and/or nano electroporation platforms. The fabrication techniques described 

herein present a new capability for creating micro/nano scale fluidic platforms with high 

accuracy. Compared to other traditional fabrication methods, the major advantages of this 

fabrication process included the ease of fabrication, low cost, and high potential for 

automation when using a nanofiber as a sacrificial structure for creating the nanochannel. 

In particular, contrasting our technique to soft photolithography, the method presented here 

simplified the manufacturing process by: 1) avoiding multilayer photolithography; 2) only 

needing two photomasks instead of multiple photomasks of different dimensions; 3) 

fabricating a mold that was used repeatedly; and, 4) producing fibers with a high yield 

(~95%). The method presented in this paper repeatedly created micron to nanoscale 

channels embedded in PDMS within 6% of the channel design values, which has proven 

hypothesis 3. Having the ability to readily and easily change the mold structures and 

micro/nano fibers’ position and sizes aided in the production of customizable 

micro/nanofluidic platforms and directly addressed specific requirements and needs for 

particular biological applications. 

The micro/nanofluidic electroporation platforms developed were used to 

successfully demonstrate their ability to perform biomolecule transport and nano 
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electroporation in cells. First, the application of a low electric field (44 V/mm) between the 

two micro-chambers induced PI dye transportion through the micro/nanochannel from one 

microchamber to the other for all 18 devices. The preliminary studies with HL60 cells 

indicated successful transportation (via electroporation) of the PI dye through the 

micro/nano-channel and into the cells.  The total time for the entire electroporation process 

occurred within 20 ms with our platform compared to 2.3 s in Boukany et al.’s platform 

[36]; thus, hypothesis 4 has been proven. 

5.2 Future Plan 

In the future, more controlled electroporation experiments need to be implemented 

to prove the efficacy of these new designed electroporation platforms at microscale, sub-

microscale, and nanoscale. In addition, bulk electroporation of single cells also need to be 

performed in order to compare cell viability and electroporation times to the results 

obtained with the micro/sub-micro/nanoscale electroporation platforms. For future designs 

of this platform, some modifications may need to be made including increasing the height 

of two micro-chambers, replacing one access port with multiple access ports for the cell 

loading into the micro-chambers. Larger micro-chamber volume will lead to higher cell 

viability and success in cell transport during the laser trapping cell process. Multiple access 

ports in the new design platforms would allow simultaneous electroporation of 

biomolecules into many single cells. 
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APPENDIX A 
 

Dry Film Lamination SOP [136] 
 

Procedure: 

1. Turn on the power of Dry Film Laminator. 

2. Hit the “Preheat” button to ensure the red “preheat” is on after set the preheating 

temperature at around 230 ºF and running speed at 5. 

3. Wait about 5 mins to let the Dry Film Laminator reach to the presetting temperature at 

around 230 ºF. 

4. Place the substrate at the entry tray of the laminator which is coated with one end of 

the dry film resists (one protection layer towards the substrate was removed before). 

5. Hit the “Run” button and lift up the other end of the dry film resists during running 

process. 

6. Use a pair of scissors or a razor blade to trim dry film resists away from the substrate. 

7. Turn off the Dry Film Laminator. 
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APPENDIX B 
 

Coil ratings of the reed relay [130] 

 

 

Contact ratings of the reed relay [130] 

 

 
 
 
 
 
 



151 

 

 
 

Dimensional drawing of the reed relay [130] 
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APPENDIX C 
 

PMMA Fiber Characterization Data 
 

The following data is the fibers’ diameter measured using SEM. In these tables, 

each fiber was measured three times: two were around 200 µm away from the initiating 

and terminating droplet, one was at the middle location of the fiber to make sure the fiber 

was uniform. The experimental controlling factors including polymer solutions 

concentration, dispense time, feed rates, and need gauge were given before each data set. 

In the data set, zero means the fiber was broken. And yields were calculated at the end of 

each data set. 
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Concentration 23%      

Feed rate 750 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.5s/0.015s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 0 0 0 0.00 0.00 

2 10 7.617 6.421 37.09 17.04 14.18 

3 15 10.31 7.388 21.24 12.98 5.96 

4 15 8.985 6.512 39.28 18.26 14.90 

5 20 3.395 5.194 46.17 18.25 19.75 

6 20 7.933 5.337 12.83 8.70 3.11 

7 30 18.68 5.217 9.991 11.30 5.57 

8 30 0 0 0 0.00 0.00 

9 35 7.34 5.249 17.55 10.05 5.37 

10 35 1.204 3.804 11.63 5.55 4.43 

11 40 5.67 2.911 13.07 7.22 4.29 

12 40 0 0 0 0.00 0.00 

Yield 75%      

 

Concentration 23%      

Feed rate 750 mm/s      

Needle Gauge 30      

Robot /Valve 
Dispense time 

0.5s/0.015s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 83.91 30.73 46.48 53.71 22.30 

2 10 27.53 9.786 39 25.44 12.02 

3 15 13.59 7.169 40.84 20.53 14.60 

4 15 8.763 8.456 40.71 19.31 15.13 

5 20 11.68 5.234 25.28 14.06 8.36 

6 20 34.36 7.143 7.772 16.43 12.68 

7 30 10.14 5.886 27.38 14.47 9.29 

8 30 36.26 6.904 9.548 17.57 13.26 

9 35 20.3 6.283 7.852 11.48 6.27 

10 35 25.48 5.688 1.261 10.81 10.53 

11 40 16.03 5.347 42.79 21.39 15.75 

12 40 14.16 4.478 23.37 14.00 7.71 

Yield 100%      
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Concentration 23%      

Feed rate 750 mm/s      

Needle Gauge 27      

Robot /Valve 
Dispense time 

0.5s/0.015s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 27.15 17.62 35.51 26.76 7.31 

2 10 29.38 11.35 40.18 26.97 11.89 

3 15 10.36 13.41 15.76 13.18 2.21 

4 15 35.6 11.9 35.27 27.59 11.10 

5 20 11.63 9.356 12.82 11.27 1.44 

6 20 15.94 8.084 20.2 14.74 5.02 

7 30 5.963 5.349 23.25 11.52 8.30 

8 30 10.53 5.282 28.87 14.89 10.11 

9 35 7.444 3.08 17.18 9.23 5.89 

10 35 42.31 6.589 26.03 24.98 14.60 

11 40 23.22 6.568 12.33 14.04 6.90 

12 40 7.066 4.472 27.73 13.09 10.41 

Yield 100%      

 

Concentration 23%      

Feed rate 750 mm/s      

Needle Gauge 25      

Robot /Valve 
Dispense time 

0.5s/0.015s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 74.52 62.77 120.6 85.96 24.96 

2 10 2.627 7.066 14.53 8.07 4.91 

3 15 51.11 24.95 58.09 44.72 14.26 

4 15 0.1676 8.948 21.04 10.05 8.56 

5 20 14.21 11.36 40.3 21.96 13.02 

6 20 26.18 8.718 7.968 14.29 8.41 

7 30 12.42 7.397 32.07 17.30 10.65 

8 30 2.825 6.508 18.18 9.17 6.55 

9 35 8.467 6.347 22.74 12.52 7.28 

10 35 12.11 7.961 29.52 16.53 9.34 

11 40 12.19 6.724 6.047 8.32 2.75 

12 40 10.14 7.518 42.32 19.99 15.82 

Yield 100%      
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Concentration 23%      

Feed rate 450 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.5s/0.015s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 0 0 0 0.00 0.00 

2 10 26.76 9.576 27.7 21.35 8.33 

3 15 23.51 6.443 20.68 16.88 7.47 

4 15 6.233 8.677 18.48 11.13 5.29 

5 20 6.507 5.857 25.5 12.62 9.11 

6 20 2.852 6.828 32.02 13.90 12.92 

7 30 4.305 3.805 18.3 8.80 6.72 

8 30 0 0 0 0.00 0.00 

9 35 10.77 5.276 24.08 13.38 7.89 

10 35 0 0 0 0.00 0.00 

11 40 0 0 0 0.00 0.00 

12 40 0 0 0 0.00 0.00 

Yield 58.33%      

 

Concentration 23%      

Feed rate 525 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.5s/0.015s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 0 0 0 0.00 0.00 

2 10 10.68 5.754 22.85 13.09 7.19 

3 15 40.07 7.183 42.42 29.89 16.09 

4 15 17.52 11.35 41.9 23.59 13.19 

5 20 10.05 5.974 23.41 13.14 7.45 

6 20 4.186 5.491 25.85 11.84 9.92 

7 30 12.15 5.022 7.825 8.33 2.93 

8 30 0 0 0 0.00 0.00 

9 35 14.39 6.003 13.59 11.33 3.78 

10 35 8.396 9.213 14.67 10.76 2.79 

11 40 12.78 4.295 17.86 11.65 5.60 

12 40 0 0 0 0.00 0.00 

Yield 75%      

Concentration 23%      
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Feed rate 600 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.5s/0.015s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 23.43 11.84 12.21 15.83 5.38 

2 10 15.87 8.797 21.6 15.42 5.24 

3 15 23.3 8.549 7.67 13.17 7.17 

4 15 10.14 5.73 16.36 10.74 4.36 

5 20 76.62 3.44 25.61 35.22 30.64 

6 20 22.24 9.621 15.53 15.80 5.16 

7 30 8.769 3.791 31.51 14.69 12.07 

8 30 0 0 0 0.00 0.00 

9 35 6.324 5.235 12.5 8.02 3.20 

10 35 13.34 5.308 21.72 13.46 6.70 

11 40 15.9 5.831 31.69 17.81 10.64 

12 40 0 0 0 0.00 0.00 

Yield 83.3%      

 

Concentration 23%      

Feed rate 675 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.5s/0.015s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 0 0 0 0.00 0.00 

2 10 0 0 0 0.00 0.00 

3 15 8.602 4.59 6.136 6.44 1.65 

4 15 7.045 6.062 22.92 12.01 7.73 

5 20 24.13 4.21 6.19 11.51 8.96 

6 20 28.26 7.472 10.52 15.42 9.17 

7 30 28.58 7.595 3.673 13.28 10.93 

8 30 24.68 4.834 2.481 10.67 9.96 

9 35 30.94 3.266 2.997 12.40 13.11 

10 35 20.74 4.155 1.564 8.82 8.50 

11 40 8.73 4.358 37.26 16.78 14.59 

12 40 0 0 0 0.00 0.00 

Yield 75%      
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Concentration 23%      

Feed rate 750 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.5s/0.015s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 0 0 0 0.00 0.00 

2 10 7.617 6.421 37.09 17.04 14.18 

3 15 10.31 7.388 21.24 12.98 5.96 

4 15 8.985 6.512 39.28 18.26 14.90 

5 20 3.395 5.194 46.17 18.25 19.75 

6 20 7.933 5.337 12.83 8.70 3.11 

7 30 18.68 5.217 9.991 11.30 5.57 

8 30 0 0 0 0.00 0.00 

9 35 7.34 5.249 17.55 10.05 5.37 

10 35 1.204 3.804 11.63 5.55 4.43 

11 40 5.67 2.911 13.07 7.22 4.29 

12 40 0 0 0 0.00 0.00 

Yield 75%      

 

Concentration 23%      

Feed rate 750 
mm/s 

     

Needle Gauge 32      

Robot /Valve 
Dispense time 

1s/1s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 2.809 1.601 1.173 1.86 0.69 

2 10 4.497 6.028 17.69 9.41 5.89 

3 15 3.415 6.18 26.25 11.95 10.18 

4 15 0.5017 4.704 15.5 6.90 6.32 

5 20 0.8315 8.355 10.41 6.53 4.12 

6 20 3.032 4.037 22.02 9.70 8.72 

7 30 3.426 3.771 19.93 9.04 7.70 

8 30 2.484 3.911 7.778 4.72 2.24 

9 35 9.269 3.944 5.404 6.21 2.25 

10 35 5.932 3.039 14.95 7.97 5.07 

11 40 6.787 3.246 15.03 8.35 4.94 

12 40 11.04 5.283 2.18 6.17 3.67 

Yield 100%      



158 

 

Concentration 23%      

Feed rate 750 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.05s/0.05s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 0 0 0 0.00 0.00 

2 10 39.17 16.59 39.49 31.75 10.72 

3 15 12.16 6.93 15.87 11.65 3.67 

4 15 0.3088 3.094 3.261 2.22 1.35 

5 20 0.5744 3.442 6.313 3.44 2.34 

6 20 0.1848 4.107 9.712 4.67 3.91 

7 30 2.022 2.624 4.259 2.97 0.95 

8 30 1.013 3.68 5.866 3.52 1.98 

9 35 3.554 3.836 8.261 5.22 2.16 

10 35 3.427 3.047 5.688 4.05 1.17 

11 40 3.386 3.471 6.972 4.61 1.67 

12 40 1.785 1.313 6.452 3.18 2.32 

Yield 91.7%      

 

 

Concentration 23%      

Feed rate 750 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.02s/0.02s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminatin
g Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 9.031 8.631 42.52 20.06 15.88 

2 10 18.41 6.378 22.62 15.80 6.88 

3 15 24.94 7.031 24.33 18.77 8.30 

4 15 6.87 3.827 13.67 8.12 4.11 

5 20 27.26 7.25 18.49 17.67 8.19 

6 20 7.09 5.73 24.09 12.30 8.35 

7 30 0 0 0 0.00 0.00 

8 30 13.71 2.442 27.13 14.43 10.09 

9 35 31.42 4.967 26.95 21.11 11.56 

10 35 0 0 0 0.00 0.00 

11 40 10.21 2.985 19.56 10.92 6.79 

12 40 0 0 0 0.00 0.00 

Yield 75%      
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Concentration 23%      

Feed rate 750 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.02s/0.02s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 9.031 8.631 42.52 20.06 15.88 

2 10 18.41 6.378 22.62 15.80 6.88 

3 15 24.94 7.031 24.33 18.77 8.30 

4 15 6.87 3.827 13.67 8.12 4.11 

5 20 27.26 7.25 18.49 17.67 8.19 

6 20 7.09 5.73 24.09 12.30 8.35 

7 30 0 0 0 0.00 0.00 

8 30 13.71 2.442 27.13 14.43 10.09 

9 35 31.42 4.967 26.95 21.11 11.56 

10 35 0 0 0 0.00 0.00 

11 40 10.21 2.985 19.56 10.92 6.79 

12 40 0 0 0 0.00 0.00 

Yield 75%      

 

Concentration 24%      

Feed rate 750 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.02s/0.02
s 

     

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 0 0 0 0.00 0.00 

2 10 11.56 5.978 17.01 11.52 4.50 

3 15 1.866 2.887 1.948 2.23 0.46 

4 15 0.6228 2.871 7.062 3.52 2.67 

5 20 1.55 2.53 4.727 2.94 1.33 

6 20 1.947 3.557 5.873 3.79 1.61 

7 30 2.022 1.841 3.047 2.30 0.53 

8 30 2.624 1.882 3.138 2.55 0.52 

9 35 4.997 0.5707 3.913 3.16 1.88 

10 35 0 0 0 0.00 0.00 

11 40 0.4153 1.426 2.297 1.38 0.77 

12 40 4.409 4.098 2.869 3.79 0.66 

Yield 91.7%      

Concentration 25%      
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Feed rate 750 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.02s/0.02
s 

     

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 0 0 0 0.00 0.00 

2 10 19.02 4.842 12.54 12.13 5.80 

3 15 2.227 4.226 18.55 8.33 7.27 

4 15 1.757 4.98 12.09 6.28 4.32 

5 20 13.04 0.6798 0.8023 4.84 5.80 

6 20 3.271 0.7274 0.8225 1.61 1.18 

7 30 2.377 1.114 4.104 2.53 1.23 

8 30 14.33 3.415 3.571 7.11 5.11 

9 35 18.31 1.74 5.744 8.60 7.06 

10 35 0 0 0 0.00 0.00 

11 40 3.248 5.271 21.17 9.90 8.01 

12 40 1.951 5.694 9.122 5.59 2.93 

Yield 83.3%      

 

Concentration 26%      

Feed rate 750 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.02s/0.02s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 0 0 0 0.00 0.00 

2 10 32.57 10.43 14.67 19.22 9.59 

3 15 30.96 4.634 16.39 17.33 10.77 

4 15 14.2 2.998 32.21 16.47 12.03 

5 20 12.84 7.984 15.99 12.27 3.29 

6 20 38.58 10.29 23.77 24.21 11.55 

7 30 0 0 0 0.00 0.00 

8 30 27.93 8.531 52.6 29.69 18.03 

9 35 0 0 0 0.00 0.00 

10 35 37.17 9.48 21.24 22.63 11.35 

11 40 28.93 15.42 18.51 20.95 5.78 

12 40 40.99 12.45 22.02 25.15 11.86 

Yield 75%      
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Concentration 27%      

Feed rate 750 mm/s      

Needle Gauge 32      

Robot /Valve 
Dispense time 

0.02s/0.02s      

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 5 0 0 0 0.00 0.00 

2 10 18.23 7.299 9.278 11.60 4.76 

3 15 14.91 6.343 28.32 16.52 9.04 

4 15 45.58 7.786 41.16 31.51 16.87 

5 20 38.93 6.357 21.57 22.29 13.31 

6 20 33.94 7.901 23.19 21.68 10.68 

7 30 22.26 4.317 7.125 11.23 7.88 

8 30 43.75 3.838 27.15 24.91 16.37 

9 35 46.76 6.951 52.73 35.48 20.32 

10 35 4.911 3.521 27.46 11.96 10.97 

11 40 29.75 5.892 31.32 22.32 11.63 

12 40 40.93 5.157 48.99 31.69 19.05 

Yield 91.7%      
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Concentration 23%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 0 0 0 0.00 0.00 

3 24 0.4381 0.3969 0.491 0.44 0.04 

4 24 1.828 0.4734 0.3661 0.89 0.67 

5 26 1.056 0.3459 0.3897 0.60 0.32 

6 26 0.3744 0.3722 0.3027 0.35 0.03 

7 28 0.2992 0.388 0.3947 0.36 0.04 

8 28 0 0 0 0.00 0.00 

9 30 0.2791 0.4561 0.6034 0.45 0.13 

10 30 0.9771 0.4253 1.115 0.84 0.30 

11 32 0.5418 0.4986 1.604 0.88 0.51 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 40%      
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Concentration 23%      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0.6598 0.3298 0.9383 0.64 0.25 

2 22 0.3441 0.2975 0.9542 0.53 0.30 

3 24 0.3663 0.56 1.183 0.70 0.35 

4 24 0.2135 0.3592 1.076 0.55 0.38 

5 26 0.3723 0.2835 1.185 0.61 0.41 

6 26 0 0 0 0.00 0.00 

7 28 0 0 0 0.00 0.00 

8 28 0 0 0 0.00 0.00 

9 30 0 0 0 0.00 0.00 

10 30 0 0 0 0.00 0.00 

11 32 0 0 0 0.00 0.00 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 25%      
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Concentration 23%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 4.4 1.517 2.357 2.76 1.21 

2 22 0 0 0 0.00 0.00 

3 24 0 0 0 0.00 0.00 

4 24 0 0 0 0.00 0.00 

5 26 1.818 0.6097 0.6234 1.02 0.57 

6 26 1.524 0.5558 0.6295 0.90 0.44 

7 28 0.3563 0.7021 0.8213 0.63 0.20 

8 28 0.1948 0.1844 1.301 0.56 0.52 

9 30 0.4745 1.536 0.9328 0.98 0.43 

10 30 1.301 0.4925 0.740 0.84 0.34 

11 32 0 0 0 0.00 0.00 

12 32 2.388 0.7582 1.538 1.56 0.67 

13 34 0 0 0 0.00 0.00 

14 34 0.7081 0.1891 1.673 0.86 0.61 

15 36 0 0 0 0.00 0.00 

16 36 1.2 0.8052 0.5117 0.84 0.28 

17 38 2.926 0.8488 1.475 1.75 0.87 

18 38 2.533 1.191 2.428 2.05 0.61 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 60%      
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Concentration 23%      

Feed rate 15 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 1.449 1.070 1.308 1.28 0.16 

2 22 0.8419 0.7611 1.66 1.09 0.41 

3 24 0.8411 0.9628 0.758 0.85 0.08 

4 24 0.7707 0.6254 1.328 0.91 0.30 

5 26 1.443 0.7575 0.9569 1.05 0.29 

6 26 0.2671 1.667 0.7055 0.88 0.58 

7 28 0.5961 0.5199 0.9348 0.68 0.18 

8 28 1.847 1.180 1.492 1.51 0.27 

9 30 0.9494 0.951 1.195 1.03 0.12 

10 30 1.497 1.170 1.250 1.31 0.14 

11 32 1.665 1.004 1.236 1.30 0.27 

12 32 3.536 1.237 2.730 2.50 0.95 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 2.431 0.9452 2.115 1.83 0.64 

17 38 2.506 2.1 1.114 1.91 0.58 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 1.474 1.342 2.476 1.76 0.51 

       

Yield 75%      
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Concentration 23%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 30      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 1.055 2.891 2.834 2.26 0.85 

3 24 0 0 0 0.00 0.00 

4 24 1.943 2.651 2.193 2.26 0.29 

5 26 1.929 1.996 0.7749 1.57 0.56 

6 26 0 0 0 0.00 0.00 

7 28 0.9949 1.543 2.313 1.62 0.54 

8 28 0 0 0 0.00 0.00 

9 30 1.379 0.962 3.066 1.80 0.91 

10 30 0 0 0 0.00 0.00 

11 32 1.681 2.342 2.811 2.28 0.46 

12 32 1.764 2.222 4.146 2.71 1.03 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 35%      
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Concentration 23%      

Feed rate 15 
mm/s 

     

Needle Gauge 30      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 2.811 2.495 2.828 2.71 0.15 

3 24 2.934 3.101 2.287 2.77 0.35 

4 24 3.041 2.707 3.514 3.09 0.33 

5 26 3.275 2.534 3.336 3.05 0.36 

6 26 3.740 2.167 3.062 2.99 0.64 

7 28 3.227 2.785 2.912 2.97 0.19 

8 28 3.373 1.749 2.996 2.71 0.69 

9 30 2.787 2.574 2.557 2.64 0.10 

10 30 0 0 0 0.00 0.00 

11 32 0 0 0 0.00 0.00 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 45%      
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Concentration 23%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 32      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 0 0 0 0.00 0.00 

3 24 0 0 0 0.00 0.00 

4 24 0 0 0 0.00 0.00 

5 26 2.395 1.248 1.578 1.74 0.48 

6 26 0 0 0 0.00 0.00 

7 28 0 0 0 0.00 0.00 

8 28 0 0 0 0.00 0.00 

9 30 1.079 1.377 1.769 1.41 0.28 

10 30 0 0 0 0.00 0.00 

11 32 0 0 0 0.00 0.00 

12 32 0.599 1.518 1.653 1.26 0.47 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 2.205 1.671 1.696 1.86 0.25 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 20%      
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Concentration 23%      

Feed rate 15 
mm/s 

     

Needle Gauge 32      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 3.162 2.544 3.473 3.06 0.39 

3 24 3.822 1.606 2.439 2.62 0.91 

4 24 0 0 0 0.00 0.00 

5 26 0 0 0 0.00 0.00 

6 26 0 0 0 0.00 0.00 

7 28 0 0 0 0.00 0.00 

8 28 0 0 0 0.00 0.00 

9 30 0 0 0 0.00 0.00 

10 30 0 0 0 0.00 0.00 

11 32 0 0 0 0.00 0.00 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 10%      
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Concentration 22%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 2.321 1.655 3.445 2.47 0.74 

3 24 1.074 1.261 3.631 1.99 1.16 

4 24 0.4472 2.149 2.474 1.69 0.89 

5 26 0.6364 1.979 0.3086 0.97 0.72 

6 26 1.757 1.893 3.543 2.40 0.81 

7 28 0.5184 2.648 3.424 2.20 1.23 

8 28 1.590 2.088 3.703 2.46 0.90 

9 30 0.7996 0.6476 1.058 0.84 0.17 

10 30 0.8081 0.6086 0.8354 0.75 0.10 

11 32 0.4479 0.5684 1.083 0.70 0.28 

12 32 0.9318 0.3641 0.9729 0.76 0.28 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 55%      
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Concentration 22%      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 0.6379 1.494 1.719 1.28 0.47 

3 24 0.6726 0.6925 0.9669 0.78 0.13 

4 24 1.271 1.718 1.951 1.65 0.28 

5 26 1.690 1.071 1.787 1.52 0.32 

6 26 1.115 1.730 1.428 1.42 0.25 

7 28 2.225 2.601 2.142 2.32 0.20 

8 28 0.389 1.122 2.349 1.29 0.81 

9 30 0 0 0 0.00 0.00 

10 30 0 0 0 0.00 0.00 

11 32 0 0 0 0.00 0.00 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 1.353 1.9 1.137 1.46 0.32 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 40%      
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Concentration 22%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 0.988 2.317 1.196 1.50 0.58 

3 24 0.9235 1.698 2.125 1.58 0.50 

4 24 1.087 1.791 1.881 1.59 0.35 

5 26 0.9255 3.856 1.434 2.07 1.28 

6 26 0.7756 1.440 1.471 1.23 0.32 

7 28 1.120 1.428 1.033 1.19 0.17 

8 28 1.149 3.621 0.8619 1.88 1.24 

9 30 1.882 4.617 1.267 2.59 1.46 

10 30 1.247 3.858 0.931 2.01 1.31 

11 32 1.512 1.316 0.8848 1.24 0.26 

12 32 1.155 3.635 0.9239 1.90 1.23 

13 34 0.9646 1.555 1.349 1.29 0.24 

14 34 0.9649 1.461 1.570 1.33 0.26 

15 36 0.8571 1.152 1.243 1.08 0.16 

16 36 0.8767 3.873 0.6741 1.81 1.46 

17 38 0.7946 1.452 1.228 1.16 0.27 

18 38 1.183 1.313 2.164 1.55 0.44 

19 40 1.676 2.393 0.9895 1.69 0.57 

20 40 0 0 0 0.00 0.00 

       

Yield 90%      
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Concentration 22%      

Feed rate 15 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 1.197 4.823 1.989 2.67 1.56 

3 24 3.295 1.355 0.5373 1.73 1.16 

4 24 0 0 0 0.00 0.00 

5 26 0 0 0 0.00 0.00 

6 26 0.5227 1.017 3.7 1.75 1.40 

7 28 0.5582 0.5543 2.792 1.30 1.05 

8 28 1.301 1.098 0.5457 0.98 0.32 

9 30 0 0 0 0.00 0.00 

10 30 0 0 0 0.00 0.00 

11 32 0 0 0 0.00 0.00 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 25%      
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Concentration 22%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 30      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 4.529 0.9043 8.916 4.78 3.28 

3 24 5.168 5.054 8.563 6.26 1.63 

4 24 8.894 7.774 4.627 7.10 1.81 

5 26 4.040 7.251 5.229 5.51 1.33 

6 26 5.474 4.897 8.323 6.23 1.50 

7 28 3.240 3.112 2.501 2.95 0.32 

8 28 1.649 3.520 4.531 3.23 1.19 

9 30 2.724 2.442 2.345 2.50 0.16 

10 30 0 0 0 0.00 0.00 

11 32 0 0 0 0.00 0.00 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 3.642 2.783 3.388 3.27 0.36 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 3.701 4.396 4.423 4.17 0.33 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 50%      
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Concentration 22%      

Feed rate 15 
mm/s 

     

Needle Gauge 30      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 4.763 8.021 7.611 6.80 1.45 

3 24 0 0 0 0.00 0.00 

4 24 0 0 0 0.00 0.00 

5 26 0 0 0 0.00 0.00 

6 26 0 0 0 0.00 0.00 

7 28 8.016 5.772 10.46 8.08 1.91 

8 28 0 0 0 0.00 0.00 

9 30 0 0 0 0.00 0.00 

10 30 0 0 0 0.00 0.00 

11 32 0 0 0 0.00 0.00 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 10%      
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Concentration 22%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 32      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0   

2 22 0 0 0   

3 24 0 0 0   

4 24 0 0 0   

5 26 0 0 0   

6 26 0 0 0   

7 28 0 0 0   

8 28 0 0 0   

9 30 0 0 0   

10 30 0 0 0   

11 32 0 0 0   

12 32 0 0 0   

13 34 0 0 0   

14 34 0 0 0   

15 36 0 0 0   

16 36 0 0 0   

17 38 0 0 0   

18 38 0 0 0   

19 40 0 0 0   

20 40 0 0 0   

       

Yield 0%      
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Concentration 22%      

Feed rate 15 
mm/s 

     

Needle Gauge 32      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0   

2 22 0 0 0   

3 24 0 0 0   

4 24 0 0 0   

5 26 0 0 0   

6 26 0 0 0   

7 28 0 0 0   

8 28 0 0 0   

9 30 0 0 0   

10 30 0 0 0   

11 32 0 0 0   

12 32 0 0 0   

13 34 0 0 0   

14 34 0 0 0   

15 36 0 0 0   

16 36 0 0 0   

17 38 0 0 0   

18 38 0 0 0   

19 40 0 0 0   

20 40 0 0 0   

       

Yield 0%      
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Concentration 21%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0   

2 22 0 0 0   

3 24 0 0 0   

4 24 0 0 0   

5 26 0 0 0   

6 26 0 0 0   

7 28 0 0 0   

8 28 0 0 0   

9 30 0 0 0   

10 30 0 0 0   

11 32 0 0 0   

12 32 0 0 0   

13 34 0 0 0   

14 34 0 0 0   

15 36 0 0 0   

16 36 0 0 0   

17 38 0 0 0   

18 38 0 0 0   

19 40 0 0 0   

20 40 0 0 0   

       

Yield 0%      
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Concentration 21%      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0   

2 22 0 0 0   

3 24 0 0 0   

4 24 0 0 0   

5 26 0 0 0   

6 26 0 0 0   

7 28 0 0 0   

8 28 0 0 0   

9 30 0 0 0   

10 30 0 0 0   

11 32 0 0 0   

12 32 0 0 0   

13 34 0 0 0   

14 34 0 0 0   

15 36 0 0 0   

16 36 0 0 0   

17 38 0 0 0   

18 38 0 0 0   

19 40 0 0 0   

20 40 0 0 0   

       

Yield 0%      
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Concentration 21%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0   

2 22 0 0 0   

3 24 0 0 0   

4 24 0 0 0   

5 26 0 0 0   

6 26 0 0 0   

7 28 0 0 0   

8 28 0 0 0   

9 30 0 0 0   

10 30 0 0 0   

11 32 0 0 0   

12 32 0 0 0   

13 34 0 0 0   

14 34 0 0 0   

15 36 0 0 0   

16 36 0 0 0   

17 38 0 0 0   

18 38 0 0 0   

19 40 0 0 0   

20 40 0 0 0   

       

Yield 0%      
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Concentration 21%      

Feed rate 15 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0   

2 22 0 0 0   

3 24 0 0 0   

4 24 0 0 0   

5 26 0 0 0   

6 26 0 0 0   

7 28 0 0 0   

8 28 0 0 0   

9 30 0 0 0   

10 30 0 0 0   

11 32 0 0 0   

12 32 0 0 0   

13 34 0 0 0   

14 34 0 0 0   

15 36 0 0 0   

16 36 0 0 0   

17 38 0 0 0   

18 38 0 0 0   

19 40 0 0 0   

20 40 0 0 0   

       

Yield 0%      
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Concentration 21%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 30      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0   

2 22 0 0 0   

3 24 0 0 0   

4 24 0 0 0   

5 26 0 0 0   

6 26 0 0 0   

7 28 0 0 0   

8 28 0 0 0   

9 30 0 0 0   

10 30 0 0 0   

11 32 0 0 0   

12 32 0 0 0   

13 34 0 0 0   

14 34 0 0 0   

15 36 0 0 0   

16 36 0 0 0   

17 38 0 0 0   

18 38 0 0 0   

19 40 0 0 0   

20 40 0 0 0   

       

Yield 0%      
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Concentration 21%      

Feed rate 15 
mm/s 

     

Needle Gauge 30      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0   

2 22 0 0 0   

3 24 0 0 0   

4 24 0 0 0   

5 26 0 0 0   

6 26 0 0 0   

7 28 0 0 0   

8 28 0 0 0   

9 30 0 0 0   

10 30 0 0 0   

11 32 0 0 0   

12 32 0 0 0   

13 34 0 0 0   

14 34 0 0 0   

15 36 0 0 0   

16 36 0 0 0   

17 38 0 0 0   

18 38 0 0 0   

19 40 0 0 0   

20 40 0 0 0   

       

Yield 0%      
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Concentration 21%      

Feed rate 22.5 
mm/s 

     

Needle Gauge 32      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0   

2 22 0 0 0   

3 24 0 0 0   

4 24 0 0 0   

5 26 0 0 0   

6 26 0 0 0   

7 28 0 0 0   

8 28 0 0 0   

9 30 0 0 0   

10 30 0 0 0   

11 32 0 0 0   

12 32 0 0 0   

13 34 0 0 0   

14 34 0 0 0   

15 36 0 0 0   

16 36 0 0 0   

17 38 0 0 0   

18 38 0 0 0   

19 40 0 0 0   

20 40 0 0 0   

       

Yield 0%      
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Concentration 21%      

Feed rate 15 
mm/s 

     

Needle Gauge 32      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0   

2 22 0 0 0   

3 24 0 0 0   

4 24 0 0 0   

5 26 0 0 0   

6 26 0 0 0   

7 28 0 0 0   

8 28 0 0 0   

9 30 0 0 0   

10 30 0 0 0   

11 32 0 0 0   

12 32 0 0 0   

13 34 0 0 0   

14 34 0 0 0   

15 36 0 0 0   

16 36 0 0 0   

17 38 0 0 0   

18 38 0 0 0   

19 40 0 0 0   

20 40 0 0 0   

       

Yield 0%      
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APPENDIX D 
 

PMMA Fiber Characterization Data 
 

The following data is the fibers’ diameter measured using SEM at different 

surrounding temperature ranging from 70 ºF to 100 ºF. In these tables, each fiber was 

measured three times: two were around 200 µm away from the initiating and terminating 

droplet, one was at the middle location of the fiber to make sure the fiber was uniform. The 

experimental controlling factors including temperature, polymer solutions concentration, 

dispense time, feed rates, and need gauge were given before each data set. In the data set, 

zero means the fiber was broken. And yields were calculated at the end of each data set. 
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Concentration 23%      

Temperature 70°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 0 0 0 0.00 0.00 

3 24 0.4381 0.3969 0.491 0.44 0.04 

4 24 1.828 0.4734 0.3661 0.89 0.67 

5 26 1.056 0.3459 0.3897 0.60 0.32 

6 26 0.3744 0.3722 0.3027 0.35 0.03 

7 28 0.2992 0.388 0.3947 0.36 0.04 

8 28 0 0 0 0.00 0.00 

9 30 0.2791 0.4561 0.6034 0.45 0.13 

10 30 0.9771 0.4253 1.115 0.84 0.30 

11 32 0.5418 0.4986 1.604 0.88 0.51 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 40%      
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Concentration 23%      

Temperature 70°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0.6598 0.3298 0.9383 0.64 0.25 

2 22 0.3441 0.2975 0.9542 0.53 0.30 

3 24 0.3663 0.56 1.183 0.70 0.35 

4 24 0.2135 0.3592 1.076 0.55 0.38 

5 26 0.3723 0.2835 1.185 0.61 0.41 

6 26 0 0 0 0.00 0.00 

7 28 0 0 0 0.00 0.00 

8 28 0 0 0 0.00 0.00 

9 30 0 0 0 0.00 0.00 

10 30 0 0 0 0.00 0.00 

11 32 0 0 0 0.00 0.00 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 25%      
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Concentration 23%      

Temperature 70°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 4.4 1.517 2.357 2.76 1.21 

2 22 0 0 0 0.00 0.00 

3 24 0 0 0 0.00 0.00 

4 24 0 0 0 0.00 0.00 

5 26 1.818 0.6097 0.6234 1.02 0.57 

6 26 1.524 0.5558 0.6295 0.90 0.44 

7 28 0.3563 0.7021 0.8213 0.63 0.20 

8 28 0.1948 0.1844 1.301 0.56 0.52 

9 30 0.4745 1.536 0.9328 0.98 0.43 

10 30 1.301 0.4925 0.740 0.84 0.34 

11 32 0 0 0 0.00 0.00 

12 32 2.388 0.7582 1.538 1.56 0.67 

13 34 0 0 0 0.00 0.00 

14 34 0.7081 0.1891 1.673 0.86 0.61 

15 36 0 0 0 0.00 0.00 

16 36 1.2 0.8052 0.5117 0.84 0.28 

17 38 2.926 0.8488 1.475 1.75 0.87 

18 38 2.533 1.191 2.428 2.05 0.61 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 60%      
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Concentration 23%      

Temperature 70°F      

Feed rate 15 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 1.449 1.070 1.308 1.28 0.16 

2 22 0.8419 0.7611 1.66 1.09 0.41 

3 24 0.8411 0.9628 0.758 0.85 0.08 

4 24 0.7707 0.6254 1.328 0.91 0.30 

5 26 1.443 0.7575 0.9569 1.05 0.29 

6 26 0.2671 1.667 0.7055 0.88 0.58 

7 28 0.5961 0.5199 0.9348 0.68 0.18 

8 28 1.847 1.180 1.492 1.51 0.27 

9 30 0.9494 0.951 1.195 1.03 0.12 

10 30 1.497 1.170 1.250 1.31 0.14 

11 32 1.665 1.004 1.236 1.30 0.27 

12 32 3.536 1.237 2.730 2.50 0.95 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 2.431 0.9452 2.115 1.83 0.64 

17 38 2.506 2.1 1.114 1.91 0.58 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 1.474 1.342 2.476 1.76 0.51 

       

Yield 75%      
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Concentration 23%      

Temperature 80°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 2.45 4.765 9.26 5.49 2.83 

3 24 3.227 2.842 5.169 3.75 1.02 

4 24 2.447 5.408 12.62 6.83 4.27 

5 26 2.557 3.732 21.37 9.22 8.60 

6 26 2.619 3.371 4.124 3.37 0.61 

7 28 3.102 3.751 9.957 5.60 3.09 

8 28 2.073 5.416 1.807 3.10 1.64 

9 30 1.985 6.125 5.175 4.43 1.77 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 4.504 2.121 19.31 8.65 7.60 

13 34 3.786 2.809 18.71 8.44 7.28 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 50%      

 

 

 

 

 

 

 

 



192 

 

Concentration 23%      

Temperature 80°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 9.917 6.905 2.955 6.59 2.85 

4 24 10.05 13.86 6.818 10.24 2.88 

5 26 0 0 0 0 0 

6 26 0 0 0 0 0 

7 28 1.839 2.421 7.327 3.86 2.46 

8 28 0 0 0 0 0 

9 30 7.899 6.998 8.275 7.72 0.54 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 20%      

 

 

 

 

 

 

 

 



193 

 

Concentration 23%      

Temperature 80°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 0 0 0 0 0 

4 24 2.866 6.920 13.53 7.77 4.40 

5 26 9.105 8.15 14.1 10.45 2.61 

6 26 3.045 8.151 3.027 4.74 2.41 

7 28 8.837 6.635 3.190 6.22 2.32 

8 28 6.565 5.563 5.765 5.96 0.43 

9 30 4.120 5.195 10.68 6.67 2.87 

10 30 7.609 16.75 5.528 9.96 4.87 

11 32 4.695 13.13 6.777 8.20 3.59 

12 32 4.442 5.105 5.289 4.95 0.36 

13 34 12.66 7.982 15.71 12.12 3.18 

14 34 6.023 9.438 7.491 7.65 1.40 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 6.906 6.986 5.008 6.30 0.91 

20 40 0 0 0 0 0 

       

Yield 60%      
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Concentration 23%      

Temperature 80°F      

Feed rate 15 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 6.789 13.24 2.287 7.44 4.50 

3 24 9.725 21.18 26.08 19.00 6.85 

4 24 9.846 9.333 13.19 10.79 1.71 

5 26 12.55 10.67 9.694 10.97 1.19 

6 26 6.032 15.69 6.795 9.51 4.38 

7 28 10.02 10.24 14.27 11.51 1.95 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 30%      
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Concentration 23%      

Temperature 90°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 9.248 4.469 5.980 6.57 1.99 

3 24 2.419 2.848 13.24 6.17 5.00 

4 24 3.335 7.574 7.132 6.01 1.90 

5 26 6.165 10.56 4.983 7.24 2.40 

6 26 1.918 3.886 5.190 3.66 1.34 

7 28 4.205 6.750 2.756 4.57 1.65 

8 28 1.847 4.493 5.199 3.85 1.44 

9 30 6.829 10.60 4.5 7.31 2.51 

10 30 7.150 6.094 6.355 6.53 0.45 

11 32 2.892 2.898 6.562 4.12 1.73 

12 32 9.211 5.804 5.050 6.69 1.81 

13 34 16.67 12.61 15.7 14.99 1.73 

14 34 3.583 4.239 12.35 6.72 3.99 

15 36 8.066 5.615 6.760 6.81 1.00 

16 36 8.424 3.783 3.248 5.15 2.32 

17 38 0 0 0 0 0 

18 38 3.557 2.271 2.792 2.87 0.53 

19 40 1.985 3.101 5.742 3.61 1.58 

20 40 3.822 3.127 7.808 4.92 2.06 

       

Yield 90%      
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Concentration 23%      

Temperature 90°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 6.328 14.13 8.892 9.78 3.25 

4 24 4.613 20.67 15.24 13.51 6.67 

5 26 4.869 3.309 7.964 5.38 1.93 

6 26 2.859 3.647 6.844 4.45 1.72 

7 28 2.207 2.171 3.005 2.46 0.38 

8 28 2.166 5.124 7.489 4.93 2.18 

9 30 1.525 2.367 3.442 2.44 0.78 

10 30 2.867 1.707 11.07 5.21 4.17 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 8.895 4.377 5.508 6.26 1.92 

17 38 6.710 5.929 3.477 5.37 1.38 

18 38 4.402 2.214 1.576 2.73 1.21 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 55%      
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Concentration 23%      

Temperature 90°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 16.27 10.55 6.826 11.22 3.88 

4 24 0 0 0 0 0 

5 26 0 0 0 0 0 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 10.13 26.30 20.29 18.91 6.67 

15 36 14.24 11.21 9.059 11.50 2.13 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 15%      

 

 

 

 

 

 

 

 



198 

 

Concentration 23%      

Temperature 90°F      

Feed rate 15 
mm/s 

     

Needle Gauge 27      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 0 0 0 0 0 

4 24 12.76 21.35 13.10 15.74 3.97 

5 26 11.26 13.83 8.859 11.32 2.03 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 11.01 6.179 6.712 7.97 2.16 

17 38 12.43 14.87 9.307 12.20 2.28 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 15.03 19.60 7.651 14.09 4.92 

       

Yield 25%      

 

 

 

 

 

 

 

 



199 

 

Concentration 23%      

Temperature 100°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 3.094 1.942 2.055 2.36 0.52 

4 24 9.776 9.879 14.78 11.48 2.34 

5 26 3.265 4.977 2.318 3.52 1.10 

6 26 6.493 3.613 4.482 4.86 1.21 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 3.595 1.506 1.786 2.30 0.93 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 4.304 5.718 4.478 4.83 0.63 

14 34 8.592 2.247 5.120 5.32 2.59 

15 36 3.242 6.880 5.112 5.08 1.49 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 2.030 3.295 5.639 3.65 1.50 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 45%      

 

 

 

 

 

 

 

 



200 

 

Concentration 23%      

Temperature 100°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 4.272 5.287 10.03 6.53 2.51 

4 24 6.417 8.828 10.27 8.51 1.59 

5 26 2.425 7.031 4.256 4.57 1.89 

6 26 5.400 4.418 10.06 6.63 2.46 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 20%      

 

 

 

 

 

 

 

 



201 

 

Concentration 22%      

Temperature 70°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 2.321 1.655 3.445 2.47 0.74 

3 24 1.074 1.261 3.631 1.99 1.16 

4 24 0.4472 2.149 2.474 1.69 0.89 

5 26 0.6364 1.979 0.3086 0.97 0.72 

6 26 1.757 1.893 3.543 2.40 0.81 

7 28 0.5184 2.648 3.424 2.20 1.23 

8 28 1.590 2.088 3.703 2.46 0.90 

9 30 0.7996 0.6476 1.058 0.84 0.17 

10 30 0.8081 0.6086 0.8354 0.75 0.10 

11 32 0.4479 0.5684 1.083 0.70 0.28 

12 32 0.9318 0.3641 0.9729 0.76 0.28 

13 34 0 0 0 0.00 0.00 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 55%      

 

 

 

 

 

 

 

 



202 

 

Concentration 22%      

Temperature 70°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0.00 0.00 

2 22 0.6379 1.494 1.719 1.28 0.47 

3 24 0.6726 0.6925 0.9669 0.78 0.13 

4 24 1.271 1.718 1.951 1.65 0.28 

5 26 1.690 1.071 1.787 1.52 0.32 

6 26 1.115 1.730 1.428 1.42 0.25 

7 28 2.225 2.601 2.142 2.32 0.20 

8 28 0.389 1.122 2.349 1.29 0.81 

9 30 0 0 0 0.00 0.00 

10 30 0 0 0 0.00 0.00 

11 32 0 0 0 0.00 0.00 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 1.353 1.9 1.137 1.46 0.32 

15 36 0 0 0 0.00 0.00 

16 36 0 0 0 0.00 0.00 

17 38 0 0 0 0.00 0.00 

18 38 0 0 0 0.00 0.00 

19 40 0 0 0 0.00 0.00 

20 40 0 0 0 0.00 0.00 

       

Yield 40%      

 

 

 

 

 

 

 

 



203 

 

Concentration 22%      

Temperature 90°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 5.912 8.910 6.185 7.00 1.35 

3 24 2.970 6.226 11.49 6.90 3.51 

4 24 10.03 16.75 6.406 11.06 4.29 

5 26 3.669 4.333 6.893 4.97 1.39 

6 26 5.190 7.021 6.854 6.36 0.83 

7 28 6.504 5.038 5.360 5.63 0.63 

8 28 2.199 12.64 4.067 6.30 4.55 

9 30 2.992 7.479 3.943 4.80 1.93 

10 30 3.616 2.937 3.505 3.35 0.30 

11 32 9.059 2.950 3.078 5.03 2.85 

12 32 9.829 5.953 5.905 7.23 1.84 

13 34 6.540 3.540 3.547 4.54 1.41 

14 34 0 0 0 0.00 0.00 

15 36 0 0 0 0.00 0.00 

16 36 8.508 6.493 6.958 7.32 0.86 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 65%      

 

 

 

 

 

 

 

 



204 

 

Concentration 22%      

Temperature 90°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 5.773 2.428 4.795 4.33 1.40 

3 24 0 0 0 0 0 

4 24 4.014 4.944 3.087 4.02 0.76 

5 26 2.892 7.265 6.877 5.68 1.98 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 2.350 7.723 6.872 5.65 2.36 

20 40 8.655 8.440 7.847 8.31 0.34 

       

Yield 25%      

 

 

 

 

 

 

 

 



205 

 

Concentration 22%      

Temperature 100°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 68.3 24.52 40.77 44.53 18.07 

3 24 6.009 2.895 14.94 7.95 5.10 

4 24 2.727 8.275 7.151 6.05 2.39 

5 26 3.516 4.669 4.280 4.16 0.48 

6 26 5.313 3.999 4.123 4.48 0.59 

7 28 0 0 0 0.00 0.00 

8 28 7.452 11.44 10.18 9.69 1.66 

9 30 9.975 9.034 10.01 9.67 0.45 

10 30 12.59 2.988 3.115 6.23 4.50 

11 32 8.401 11.73 13.85 11.33 2.24 

12 32 0 0 0 0.00 0.00 

13 34 0 0 0 0.00 0.00 

14 34 10.63 3.591 9.153 7.79 3.03 

15 36 5.115 8.095 32.07 15.09 12.07 

16 36 11.06 8.850 18.66 12.86 4.20 

17 38 0 0 0 0.00 0.00 

18 38 6.611 9.936 4.261 6.94 2.33 

19 40 0 0 0 0.00 0.00 

20 40 13.89 7.612 13.89 11.80 2.96 

       

Yield 70%      

 

 

 

 

 

 

 

 



206 

 

Concentration 22%      

Temperature 100°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 0 0 0 0 0 

4 24 7.541 12.10 21.50 13.71 5.81 

5 26 6.394 6.631 12.92 8.65 3.02 

6 26 8.817 17.78 13.98 13.53 3.67 

7 28 0 0 0 0 0 

8 28 9.328 11.52 24.68 15.18 6.78 

9 30 6.832 10.16 15.24 10.74 3.46 

10 30 5.985 11.01 14.49 10.50 3.49 

11 32 9.587 7.759 11.96 9.77 1.72 

12 32 0 0 0   

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 35%      

 

 

 

 

 

 

 

 



207 

 

Concentration 22%      

Temperature 80°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 21.34 10.84 17.38 16.52 4.33 

3 24 18.51 9.221 5.778 11.17 5.38 

4 24 10.84 13.11 9.355 11.10 1.54 

5 26 0 0 0 0 0 

6 26 10.39 6.821 8.127 8.45 1.47 

7 28 7.566 12.52 10.30 10.13 2.03 

8 28 20.60 14.92 7.405 14.31 5.40 

9 30 6.817 7.662 9.465 7.98 1.10 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 41.91 27.09 16.56 28.52 10.40 

15 36 6.703 5.169 11.99 7.95 2.92 

16 36 4.233 8.596 11.27 8.03 2.90 

17 38 12.70 12.26 9.477 11.48 1.43 

18 38 7.990 5.347 3.963 5.77 1.67 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 60%      

 

 

 

 

 

 

 

 



208 

 

Concentration 22%      

Temperature 80°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 6.528 7.590 15.67 9.93 4.08 

3 24 0 0 0 0 0 

4 24 9.696 17.58 8.717 12.00 3.97 

5 26 5.737 12.10 12.39 10.08 3.07 

6 26 6.840 5.512 7.483 6.61 0.82 

7 28 6.834 4.565 3.863 5.09 1.27 

8 28 0 0 0 0 0 

9 30 7.577 10.72 5.222 7.84 2.25 

10 30 0 0 0 0 0 

11 32 5.634 2.420 9.248 5.77 2.79 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 35%      

 

 

 

 

 

 

 

 



209 

 

Concentration 21%      

Temperature 100°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 2.469 2.666 2.897 2.68 0.17 

3 24 2.851 6.176 4.282 4.44 1.36 

4 24 2.312 2.437 3.317 2.69 0.45 

5 26 0 0 0 0 0 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 15%      

 

 

 

 

 

 

 

 



210 

 

Concentration 21%      

Temperature 100°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 0 0 0 0 0 

4 24 0 0 0 0 0 

5 26 0 0 0 0 0 

6 26 5.503 5.066 0.9633 3.84 2.04 

7 28 6.274 1.097 2.540 3.30 2.18 

8 28 1.720 3.928 0.9895 2.21 1.25 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 15%      

 

 

 

 

 

 

 

 



211 

 

Concentration 21%      

Temperature 90°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 1.214 2.526 3.041 2.26 0.77 

3 24 2.948 5.769 2.735 3.82 1.38 

4 24 0 0 0 0.00 0.00 

5 26 3.732 7.453 5.418 5.53 1.52 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 1.293 5.434 7.408 4.71 2.55 

9 30 5.066 2.381 5.442 4.30 1.36 

10 30 2.244 6.657 7.366 5.42 2.27 

11 32 1.078 4.264 3.650 3.00 1.38 

12 32 0 0 0 0 0 

13 34 0.8269 5.087 6.008 3.97 2.26 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 1.569 2.751 7.266 3.86 2.45 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 45%      

 

 

 

 

 

 

 

 



212 

 

Concentration 21%      

Temperature 90°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 1.589 0.8731 2.130 1.53 0.51 

4 24 2.328 3.989 1.831 2.72 0.92 

5 26 6.574 2.142 5.216 4.64 1.85 

6 26 2.318 5.077 6.878 4.76 1.88 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 20%      

 

 

 

 

 

 

 

 



213 

 

Concentration 21%      

Temperature 80°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 0 0 0 0 0 

4 24 1.472 11.31 3.113 5.30 4.30 

5 26 0 0 0 0 0 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 5%      

 

 

 

 

 

 

 

 



214 

 

Concentration 21%      

Temperature 80°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 0 0 0 0 0 

4 24 4.770 8.681 10.87 8.11 2.52 

5 26 0 0 0 0 0 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 5%      

 

 

 

 

 

 

 

 



215 

 

Concentration 20%      

Temperature 100°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 1.080 0.9951 6.918 3.00 2.77 

2 22 0 0 0 0 0 

3 24 0 0 0 0 0 

4 24 0 0 0 0 0 

5 26 0 0 0 0 0 

6 26 2.059 3.346 6.779 4.06 1.99 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 1.072 3.092 8.894 4.35 3.32 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 15%      

 

 

 

 

 

 

 

 



216 

 

Concentration 20%      

Temperature 100°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 13.2 2.893 4.635 6.91 4.50 

3 24 0 0 0 0 0 

4 24 0 0 0 0 0 

5 26 0 0 0 0 0 

6 26 11.12 15.77 5.432 10.77 4.23 

7 28 7.734 5.610 7.279 6.87 0.91 

8 28 2.862 6.345 4.229 4.48 1.43 

9 30 7.799 8.126 6.738 7.55 0.59 

10 30 0 0 0 0 0 

11 32 7.902 9.140 5.213 7.42 1.64 

12 32 2.415 4.219 1.041 2.56 1.30 

13 34 2.109 3.359 4.627 3.37 1.03 

14 34 2.072 3.862 3.327 3.09 0.75 

15 36 1.939 2.639 4.025 2.87 0.87 

16 36 2.440 4.081 4.551 3.69 0.90 

17 38 1.779 9.713 0.9229 4.14 3.96 

18 38 3.535 0.8758 4.605 3.01 1.57 

19 40 2.068 3.048 4.853 3.32 1.15 

20 40 0 0 0 0 0 

       

Yield 70%      
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Concentration 20%      

Temperature 90°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 1.705 1.218 1.214 1.38 0.23 

3 24 1.411 1.283 1.104 1.27 0.13 

4 24 1.013 1.838 2.623 1.82 0.66 

5 26 0 0 0 0 0 

6 26 2.248 3.088 0.4799 1.94 1.09 

7 28 1.040 3.480 3.082 2.53 1.07 

8 28 0.6788 0.9814 3.872 1.84 1.44 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 30%      
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Concentration 20%      

Temperature 90°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 5.284 3.150 4.004 4.15 0.88 

2 22 0 0 0 0 0 

3 24 0 0 0 0 0 

4 24 0 0 0 0 0 

5 26 0 0 0 0 0 

6 26 1.975 1.499 4.563 2.68 1.35 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 1.960 4.854 1.343 2.72 1.53 

16 36 0 0 0 0 0 

17 38 1.680 4.328 3.476 3.16 1.10 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 20%      
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Concentration 20%      

Temperature 80°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 0 0 0 0 0 

4 24 0 0 0 0 0 

5 26 0 0 0 0 0 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 2.924 4.458 6.372 4.58 1.41 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 5%      
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Concentration 20%      

Temperature 80°F      

Feed rate 15 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 5.108 7.445 10.06 7.54 2.02 

2 22 0 0 0 0 0 

3 24 0 0 0 0 0 

4 24 0 0 0 0 0 

5 26 0 0 0 0 0 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 5%      

 

 

 

 

 

 

 



221 

 

Concentration 19%      

Temperature 100°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 4.886 5.025 5.186 5.03 0.12 

3 24 0 0 0 0 0 

4 24 0 0 0 0 0 

5 26 0 0 0 0 0 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0.6745 0.6870 5.848 2.40 2.44 

10 30 0.565 1.680 2.886 1.71 0.95 

11 32 0.5978 3.046 5.473 3.04 1.99 

12 32 0 0 0 0 0 

13 34 2.684 1.313 7.024 3.67 2.43 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0.8534 1.675 4.624 2.38 1.62 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 30%      
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Concentration 19%      

Temperature 100°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0.4684 0.3812 1.327 0.73 0.43 

2 22 1.025 2.471 1.447 1.65 0.61 

3 24 0.829 0.969 1.5 1.10 0.29 

4 24 0 0 0 0 0 

5 26 0 0 0 0 0 

6 26 0 0 0 0 0 

7 28 0.9804 1.712 0.957 1.22 0.35 

8 28 0 0 0 0 0 

9 30 0.7105 0.2094 1.646 0.86 0.60 

10 30 0 0 0 0 0 

11 32 0.5746 0.2701 1.057 0.63 0.32 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 30%      
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Concentration 19%      

Temperature 90°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 1.156 3.335 5.345 3.28 1.71 

3 24 1.312 0.8637 1.438 1.20 0.25 

4 24 0.5857 4.032 4.147 2.92 1.65 

5 26 0.9973 2.876 2.417 2.10 0.80 

6 26 0.4719 2.219 3.001 1.90 1.06 

7 28 0.5296 0.5039 2.633 1.22 1.00 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 30%      
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Concentration 19%      

Temperature 90°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0 0 0 0 0 

2 22 0 0 0 0 0 

3 24 2.338 5.561 3.328 3.74 1.35 

4 24 2.413 3.486 4.428 3.44 0.82 

5 26 0 0 0 0 0 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 10%      
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Concentration 19%      

Temperature 80°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 4.607 3.939 1.310 3.29 1.42 

2 22 0.6925 1.132 2.281 1.37 0.67 

3 24 1.695 0.7924 0.6715 1.05 0.46 

4 24 0.645 1.618 1.432 1.23 0.42 

5 26 0.7468 3.571 3.812 2.71 1.39 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 1.826 2.838 3.968 2.88 0.87 

11 32 0 0 0 0 0 

12 32 1.018 1.047 2.710 1.59 0.79 

13 34 0.9646 2.264 2.670 1.97 0.73 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 40%      

 

 

 

 

 

 

 

 



226 

 

Concentration 19%      

Temperature 80°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 1.264 1.813 1.097 1.39 0.31 

2 22 2.019 1.169 1.463 1.55 0.35 

3 24 0.9796 0.6638 0.5786 0.74 0.17 

4 24 0.747 1.875 3.122 1.91 0.97 

5 26 0.7588 2.102 5.427 2.76 1.96 

6 26 0 0 0 0 0 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0.7512 0.5069 0.7982 0.69 0.13 

16 36 2.415 2.669 0.6248 1.90 0.91 

17 38 0 0 0 0 0 

18 38 0.473 1.523 2.949 1.65 1.01 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 40%      
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Concentration 19%      

Temperature 70°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 0.4671 0.3418 0.2913 0.37 0.07 

2 22 0.2732 0.1421 0.4814 0.30 0.14 

3 24 0.3817 0.2823 0.1398 0.27 0.10 

4 24 0.6898 0.3646 0.4316 0.50 0.14 

5 26 0.7328 0.3395 0.4495 0.51 0.17 

6 26 0.4627 0.3774 0.4035 0.41 0.04 

7 28 0.1533 0.5539 0.6408 0.45 0.21 

8 28 0.2064 0.4978 0.5045 0.40 0.14 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 40%      
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Concentration 19%      

Temperature 70°F      

Feed rate 22.5 
mm/s 

     

Needle Gauge 25      

Dispense Time 0.02s      

Short to Long       

       

Fiber # Length 
(mm) 

Leading 
Diameter 

(μm) 

Middle 
Diameter 

(μm) 

Terminating 
Diameter 

(μm) 

Average 
Diameter 

(μm) 

Standard 
Deviation 

(μm) 

1 22 1.909 0.3343 0.3405 0.86 0.74 

2 22 0.3886 0.2448 0.1786 0.27 0.09 

3 24 0.3601 0.2466 0.144 0.25 0.09 

4 24 0.4614 0.2175 0.2694 0.32 0.10 

5 26 0.4709 0.407 0.317 0.40 0.06 

6 26 0.6705 0.446 0.3338 0.48 0.14 

7 28 0 0 0 0 0 

8 28 0 0 0 0 0 

9 30 0 0 0 0 0 

10 30 0 0 0 0 0 

11 32 0 0 0 0 0 

12 32 0 0 0 0 0 

13 34 0 0 0 0 0 

14 34 0 0 0 0 0 

15 36 0 0 0 0 0 

16 36 0 0 0 0 0 

17 38 0 0 0 0 0 

18 38 0 0 0 0 0 

19 40 0 0 0 0 0 

20 40 0 0 0 0 0 

       

Yield 30%      
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                hanwen.yuan@louisville.edu 

 
 

  OBJECTIVE To obtain a micro/nano fabrication process engineer position that 
utilizes my research and development, design, communication and 
project management skills.  
 

  SUMMARY  Ph.D. degree in mechanical engineering and master degree in control 
theory and engineering with experience in research and design 
concentrating in: 

● 5 years of Micro/Nano fabrication (photolithography, 
wet/dry/metal etching, replica molding, alignment and 
bonding, mask design) 

● 2 years of Equipment maintenance, parameter monitoring 
(March RIE, SYS DRIE, 3-axis Robotic system, Viscometer, 
Micro-Milling Machine) 

● 2 years of thin film solar cell design and fab (RCA, oxidation, 
BOE etching, sputtering, annealing) 

● 5 years of Micro/Nano fibers creation (DOE, Minitab) 
● 3 years of process simulation (SolidWorks, Matlab, LabVIEW, 

Multisim) 
● 7 years of statistical data analysis (SQL server, Java, Python) 
● 5 years of metrology and process analysis tools (SEM, AFM, 

Raman, Confocal Microscope, Zygo Optical Interferometer, 
Surface Profilometer, XPS, TGA, Viscometer) 

● 2 years of Management software development to improve 
functionality of time scheduling, client data collection, 
equipment usage (Java, Python, SSIS, SSRS) 
 

EXPERIENCE The University of Louisville (UofL), KY 2011 to 2017 
Graduate Fellowship 

 
● Designed & Fabricated drug delivery micro scale spray 

nozzles 
● Designed & Fabricated high efficient, cheap thin film silicon 

solar cells 
● Created complex and suspended 3-D micro fiber structures 
● Characterized and optimized the fiber writing process 

parameters to create repeatable, controllable, oriented, and 
suspended sub-micro/nano scale fibers 
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● Designed & Developed nanoscale fluidic devices to create 
multiple channels of varying sizes embedded in a single fluidic 
platform 

● Machined parts to build high precision alignment and bonding 
device 

● Designed electric circuit to generate high voltage pulse using 
relay, source meter, waveform function generator and 
oscilloscope 

● Laser trapped cells to desired locations in micro/nano scale 3-
D devices, and captured PI dyes travelling through nano-
channels 

● Designed & assembled LabVIEW data acquisition system 
based on NI USB-6009 to analyze multichannel signals 

● Designed the layout of devices or parts using SolidWorks  
 

Shenzhen Onetouch Technology Co., Ltd., China, 2009 to 2011 
Software Developer & Data Analysist 

 
● Designed & Developed GSM Network Optimization 

application website and analysis tools with SQL, Java, and 
Python  

● Maintained mobile system database, effectively communicated 
with clients to improve their work efficiency including 
equipment scheduling, work flow, equipment usage, 
maintenance log 

● Developed software requirements to improve the 
communication efficiency between clients and team leaders of 
database design and code design to accelerate the development 
progress 

● Analyzed clients’ data and generated professional summary 
reports to assist clients in optimizing their work flow   
 

The South China University of Technology (SCUT), China  
                                                                                             2006 to 2009 
Graduate Research Assistantship 

 
● Designed & Simulated an adaptive neural network algorithm 

to control autonomous underwater vehicles’ (AUVs) diving 
motion under complex environment by approximating their 
dynamics 

● Designed & Simulated an adaptive neural network algorithm 
to resolve the inherent tradeoffs among ride quality, handling 
performance, and suspension travel of the active car 
suspension systems 

● Applied deterministic learning and rapid dynamical pattern 
recognition method to determine the occasion of malfunctions 
of rotating stall and surge for aeroengine, then to restrain and 
delay further bad effect 

 
EDUCATION The University of Louisville, KY.   G.P.A.: 3.97                    2011-2017 

Ph.D. in Mechanical Engineering  
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The South China University of Technology, China. G.P.A.: 3.25    
                                                                                               2006 – 2009                                           
M.S. in Control Theory and Engineering 

 

Jianghan University (JU), China.     Major Ranking: Top 20%        
                                                                                              2002 – 2006  
B.S. in Measurement and Control Technology and Instrumentation                                                                             
 

COMPUTER 

SKILLS 

● Modeling/Simulation: Multisim, Labview 
● Design: L-edit, Silvaco Athena, SolidWorks, Photoshop, MS 

office 
● Data Analysis: Matlab, MathCAD, Maple, Igor, Minitab, 

Image J  
● Language: C, JAVA, Python, SQL 

 
HONORS ● Graduate Fellowship, UofL                                    2013 – 2017  

● University Graduate Fellowship, UofL                  2011 – 2013 
● First Class Scholarship for Outstanding Students, SCUT   

                                                                                2007 – 2008 
● Hua Wei Scholarship, SCUT                                 2007 – 2008 
● Third Class Scholarship, JU                                   2004 – 2005 
● Merit student (good in study, attitude and health), JU   

                                                                                2004 – 2005 
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"Prescribed 3-D Direct Writing of Suspended Micron/Sub-
micron Scale Fiber Structures via a Robotic Dispensing 
System," Journal of Visualized Experiments, p. 52834, 2015. 
 

● Hanwen Yuan, Scott Cambron, Mark Crain, and Robert 
Keynton, "Fabrication of a Micro/Nanofluidic Platform via 3-
Axis Robotic Dispensing System," Proceedings of the ASME 
2016 International Manufacturing Science and Engineering 
Conference, July, 2016. 
 

● Hanwen Yuan, Scott Cambron, Mark Crain, and Robert 
Keynton, "Fabrication of a Micro/Nanofluidic Platform via 3-
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Axis Robotic Dispensing System," Journal of Micro and Nano-
Manufacturing, 4(4), 041005, 2016. 
 

● Hanwen Yuan, Scott Cambron, and Robert Keynton, 
"Precisely drawing repeatable and controllable sub-micron 
scale PMMA fibers via robotic dispensing system," to be 
submitted, 2017. 
 

● Hanwen Yuan, Scott Cambron, and Robert Keynton, 
"Optimization of PMMA fibers fabrication via robotic 
dispensing system," to be submitted, 2017. 
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