
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2014

Investigation of transmission loss through double
wall structures with varying small air gaps using
modal analysis.
Richard Michael Phillips 1988-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Mechanical Engineering Commons

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted
for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository.
This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

Recommended Citation
Phillips, Richard Michael 1988-, "Investigation of transmission loss through double wall structures with varying small air gaps using
modal analysis." (2014). Electronic Theses and Dissertations. Paper 1760.
https://doi.org/10.18297/etd/1760

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F1760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1760&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.library.louisville.edu%2Fetd%2F1760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1760
mailto:thinkir@louisville.edu


 
 

 

 

 

INVESTIGATION OF TRANSMISSION LOSS THROUGH DOUBLE WALL 

STRUCTURES WITH VARYING SMALL AIR GAPS USING MODAL ANALYSIS 

 

By 

Richard Michael Phillips 

B.S. in Mechanical Engineering, University of Maryland Baltimore County 2011 

 

A Thesis 

Submitted to the faculty of the 

University of Louisville 

J.B. Speed School of Engineering 

In Partial Fulfillment of the Requirements 

For the Degree 

 

Master of Science   

 

 

Department of Mechanical Engineering 

University of Louisville 

Louisville, Kentucky 

 

December 2014 



 
 

 

 

 

 

 

 

 

 

 

Copyright © by Student Richard Phillips 2014 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

 

 

 

 

INVESTIGATION OF TRANSMISSION LOSS THROUGH DOUBLE WALL 

STRUCTURES WITH VARYING SMALL AIR GAPS USING MODAL ANALYSIS 

 

Submitted by: Richard M. Phillips 

 

 

A Thesis Approved on  

 

November 24, 2014 

 

 

 

By the following Thesis Committee  

 

____________________________ 

Dr. Christopher Richards (Associate Professor and Advisor – Mechanical Engineering) 

 

_____________________________ 

Dr. Kevin Murphy (Chairman and Professor – Mechanical Engineering) 

 

_____________________________ 

Dr. Robert Cohn (Professor – Electrical and Computer Engineering) 

 



iii 
 

 

 

ACKNOWLEDGEMENTS 

I would like to dedicate this thesis to my family; to my wife, Stephanie, who has 

been forever supportive of my work and education despite the long hours, and to my 

mother, father and brother who have continuously encouraged me throughout my life.   

I would like to thank my University of Louisville advisor Dr. Chris Richards for 

helping me through the process of completing this thesis, and the thesis committee, Dr. 

Murphy and Dr. Cohn for their direction and consultation.  I would also like to extend my 

gratitude to Avi Patil for his tutelage and support.  Additionally, I would like to thank 

Tim O’Connell, Rob LaFleur, Sam DuPlessis, Mark Shah, Rajan Parbhoo and Rob 

Bollman for giving me the opportunity to complete graduate school while working full 

time.  Lastly, thank you John Quirk and Jason Gulczewski for helping me collect the 

acoustics data included in this thesis.  

 

 

 

 

 

 



iv 
 

 

 

 

ABSTRACT 

INVESTIGATION OF TRANSMISSION LOSS THROUGH DOUBLE WALL 

STRUCTURES WITH VARYING SMALL AIR GAPS USING MODAL ANALYSIS 

 

Richard M. Phillips 

November 24, 2014 

 

Noise reduction testing is completed for two single steel plate constructions with 

different thicknesses and for two double wall constructions with different air gap 

thicknesses that include the same two plates used in the single plate constructions.  

Results compare favorably with known theory and experimental results from previous 

literature.  These favorable comparisons include the direct relationship between mass per 

unit area and transmission loss for single plate constructions, the presence of a noise 

reduction valley near the mass-air-mass frequency, the dependency of the mass-air-mass 

frequency on the air gap thickness, and the existence of a bridge frequency.  Despite the 

similarities between theory and experimental results, there are discrepancies.  Both the 

mass-air-mass and bridge frequencies for the double wall constructions were over 

predicted by equations offered in the literature. Additionally, the theory over predicted 

the bridge frequency, and the bridge frequency did not shift with changing air gap 

thickness. To uncover if these discrepancies are a result of structural dynamics not 

accounted by theory, experimental modal analysis was conducted on the single and 

double plate constructions.  Investigation into the mode shape behavior reveals that the 
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double wall noise reduction minimum attributed to the mass-air-mass frequency occurs in 

a region containing mode shapes where the two plates display synchronous motion and 

an unexpected noise reduction peak occurs in a frequency region where the double wall 

construction mode shapes exhibit asynchronous motion.  Finally, acceleration plots of the 

constructions when excited by sound reveals that the bridge frequency occurs at a 

transition when the plate vibration reduces significantly. 
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I. INTRODUCTION 

The literature contains numerous theoretical predictions that can be made 

regarding the transmission loss (TL) performance for double wall constructions. 

Traditionally, acoustics textbooks simplify the discussion of double wall structures to 

yield generalizations that can be used to predict trends in performance [1-3].  To extend 

the theory, numerous papers have been published describing the effects of the different 

variables that drive the performance of the double wall structures [4-8].  These variables 

are experimentally studied in the literature and include but are not limited to the thickness 

of the individual walls, material of the wall, thickness of the gap between walls, 

composition of the gap, stud locations, stud material and screw spacing [4,8].  Typically, 

the research in the area of double wall transmission loss has been centered around the 

construction industry, focusing on relatively large wall areas and gap spacings [4,8-9].  

Additionally, there is a concentration in the literature on building materials such as wood, 

fiberboard, and gypsum boards [8-9].  There are studies that have investigated metal wall 

constructions including steel studs, and either steel or aluminum wall faces, but the focus 

on larger gap spacing has remained [4].  A few studies have been published regarding 

small gaps between double walls, concentrating on the performance of glass window 

applications [5-6,10].  

To perform sound transmission loss experiments, extensive laboratories that 

include large acoustic rooms, sound source equipment and microphones are required 
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[11].  Additionally, mounting of the test specimen must be closely monitored due to the 

major effect that mounting and flanking paths can have on transmission loss [12].   

Alternatively, experimental modal analysis is a tool that can be used to understand 

the structural dynamics of a system without extensive laboratories.  However, limited 

literature exists regarding correlation between modal analysis and transmission loss [13], 

or how structural dynamics may cause discrepancies between existing transmission loss 

theory and experimental results.   

In this study four steel plate configurations are considered: two single plate 

constructions that vary in thickness by double, and two double plate configurations, 

which use the two plates from the single plate constructions, with air gaps that vary by 

double.   Noise reduction testing and experimental modal analysis is conducted on all 

four constructions.  In addition, accelerometers are placed on the test specimen in each 

noise reduction test.  The noise reduction results are compared to transmission loss theory 

for both the single and double plate configurations.  The single plate noise reduction tests 

will be compared to the field incidence mass law.  For the double wall constructions, the 

mass-air-mass frequency and bridge frequency in the noise reduction experiments will be 

compared to the frequencies predicted from theory [1,4].    

The similarities and discrepancies between transmission loss theory and the noise 

reduction experimental results are discussed.  Modal analysis and plate acceleration data 

measured during the noise reduction tests are presented to explain these discrepancies.    
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II. BACKGROUND 

A. Sound Transmission – Terminology and Common Testing Techniques 

When sound impacts a barrier, it is referred to as incident sound [1]. There are 

three categories of sound incidence; diffuse incidence, normal incidence, and field 

incidence.  Diffuse incidence is the term used to describe when incident sound strikes the 

barrier at all angles from 0° to 90°.  Normal incidence is when incident sound strikes the 

barrier at a 0° angle only.  Field incidence is a common ground between diffuse and 

normal incidence.  Field incidence assumes sound is striking the barrier at angles between 

0° and 78°.  The omission of sound waves incident at angles between 78° and 90° allows 

for better correlation of theory to experimental results with finite sized rooms and barriers 

[1].   

After incident sound strikes a barrier, three mechanisms occur simultaneously. A 

portion of the incident sound is reflected back toward the source, a portion is absorbed by 

the barrier, and the remaining sound is transmitted to the space on the opposing side of 

the barrier.  Transmission loss is the term used to describe the performance of the barrier 

as sound insulation between the two spaces, with increasing transmission loss 

corresponding to increasing sound barrier performance.  It is given by 

TL = 10 log10
WI

WT
     (1) 
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where WI is the sound power (watts) incident on the wall, and WT is the sound power 

transmitted to the space on the opposing side of the barrier [1].  Sound power is defined 

as acoustic energy divided by time, and is independent of measurement location [1]. 

 

Figure 1. Typical sound transmission loss testing setup. 

 

Testing for measuring transmission loss is conducted following ASTM E90: 

Standard Method for Laboratory Measurement of Airborne Sound Transmission Loss of 

Building Partitions [11].  This method for determining transmission loss is generally 

conducted utilizing two adjacent and isolated reverberant rooms, with an opening in the 

walls between the two rooms (Figure 1).  The test specimen is placed in the opening 

between the two rooms.  One of the rooms contains a speaker that produces pink noise 

that typically ranges from 80 Hz to 10,000 Hz and has amplitude of 100 dB or higher.  

This room is appropriately called the source room.   
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Also located in the source room is a rotating microphone boom.  The microphone 

measures the sound pressure in the reverberant field of the source room, and data 

acquisition software converts the pressure into sound power for the specific room.  The 

adjacent room, named the receiving room, contains an additional rotating microphone.  

Similar to the source room, the rotating microphone measures the sound pressure in the 

receiving room and data acquisition software converts the sound pressure to sound power 

for the specific room.  The calculation for converting sound pressure to sound power is 

available in APPENDIX A. 

 It is typical to convert the narrow band measurements to third octave bands, 

resulting in sound power measurements in both rooms.  With these two measurements, 

Equation (1) can be used to calculate transmission loss in each third octave band.  After 

completing the testing and determining the transmission loss in each third octave band, it 

is typical to plot transmission loss vs frequency from center frequencies 100 Hz to 5000 

Hz.  The third octave band ranges and center frequencies from 100 Hz to 5000 Hz are 

offered in APPENDIX B. 

Another common practice is to synthesize the transmission plot into a single 

number rating.  The two most common ratings used to characterize transmission loss 

performance are Sound Transmission Class (STC) and Outdoor Indoor Transmission 

Class (OITC).  Methods for calculating STC and OITC are offered in APPENDIX C and 

APPENDIX D respectively. 
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B. Government Regulations and Customer Requirements 

Although single number classifications like STC and OITC can be misleading 

since they synthesize broadband performance into a single number, they are commonly 

used by governments and architects when determining sound transmission regulations 

and requirements.  Since the passing of the United States Noise Control Act of 1972, 

many local and state governments has passed additional ordinances and regulations 

related to noise pollution and control.  Additionally, the U.S. Green Building Council 

(USGBC) which is responsible for the qualification of Leadership in Energy and 

Environmental Design (LEED) buildings has created numerous noise requirements for 

workspaces and classrooms.  One example that is specifically relevant to this discussion 

is the requirement of classroom construction materials other than windows to have an 

STC of at least 35 [14].   

In addition to government regulation and special interest group qualifications, 

customers in many industries have STC and OITC requirements.  As expected, one of the 

most competitive industries with regards to STC and OITC is the building materials 

industry.  This includes companies that make drywall, insulation, roofing, doors and 

windows.  Typically, these products will have their ratings for STC published, as this is a 

major consideration for the potential customer.  Additionally, some other applications for 

the use of STC include office cubical dividers and drop ceiling tiles.  Architects of 

buildings will often specify the STC or OITC requirement for building exteriors, as well 

as interior walls, floors and ceilings.  
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C. Common Methods to Increase Sound Transmission Loss 

There are multiple methods that engineers and building designers use to increase 

transmission loss of building components and sound barriers.  An important factor in 

improving transmission loss is to ensure that there is no flanking path around the barrier, 

and that there are no holes, or cracks within the barrier to allow sound to pass through 

unobstructed [15].  Next, in the case of a common stud wall, decoupling the two sheets of 

drywall from the studs (using fewer screws) and utilizing double stud construction to 

decouple the two sheets of drywall from each other prove advantageous. Another 

common technique is to use insulation materials in the cavity between two walls.  Lastly, 

a simple, but highly effective technique is to increase the mass per unit area of the barrier.  

In the case of the standard stud wall, doubling the thickness of the drywall on each side of 

the wall has proven an effective method to increase transmission loss [15].   

Unfortunately in many applications, these methods are not practical or cost 

effective.  For instance, doubling the mass per unit area or the thickness of insulation 

materials of the barrier in cars or airplanes will negatively affect the fuel consumption 

and compete with space constraints.  Additionally, there are numerous products on the 

market that claim to increase transmission loss (foams, insulations, rubbers, etc), but 

these products are often not affective at dominant sound source frequencies and are not 

cost effective. 

D. Double Wall Constructions 

One technique that increases the transmission loss of a barrier but requires little 

space and minimal additional cost is to utilize double wall constructions with a small air 
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gap.  This technique is used heavily in the construction material industry, clearly evident 

in the construction of walls and of windows.  The theory states that two barriers with a 

small air gap will have improved transmission loss over a majority of frequencies when 

compared to that of a single barrier of mass per unit area equal to that of the two barriers 

[1]. This is due to the change in acoustic impedance as the sound travels through solid, 

then air, and then another solid. Each time the sound reaches a change in acoustic 

impedance, a percentage of the sound is reflected, thus reducing the amount of sound 

transmitted through the barrier. In addition to the sound that is reflected, a percentage of 

the sound energy is dissipated by the barrier in the form of heat.     

E. Literature Survey 

 Various papers have been published regarding transmission loss of flat panels, 

including numerous publications concerning double wall transmission loss [4-7,9-10,12-

13,16-17].  Included in these studies are experimental results of single, double and triple 

walls of steel, aluminum, glass, gypsum and plywood.  Experiments range from large 

walls with large gaps (simulating home wall constructions) to relatively small walls and 

small air gaps (window constructions).   

One study was completed by London [9] in 1950, in which theory and experiment 

are both presented regarding double wall transmission loss.  London is credited with the 

derivation of the equation for the mass-air-mass resonant frequency, in which he explains 

that there exists a frequency in which the mass reactance of the walls exactly equal to the 

stiffness reactance of the air space.  At this frequency the incident sound will be 

efficiently transmitted, resulting in a sharp reduction in transmission loss.  His 
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experiments with aluminum and plywood wall faces with air gaps ranging from 3/8” to 

12” displayed good agreement with the theory developed.  The experiments also showed 

that there exists a gap thickness at which the two walls become decoupled from one 

another, resulting in a transmission loss of double that of a single wall.  London also 

briefly discusses the effect of studs on the wall, showing that the addition of studs within 

the air gap reduces the transmission loss of the double wall.  

 Sewell developed formal solutions for both single wall [16] and double wall 

partitions [7].  These solutions are plotted numerically and are shown to agree somewhat 

with experimental data outlined in previous articles.  However, the agreement is limited 

to frequencies below the critical angular frequency, which is defined by Sewell as  

𝜔𝑐 = 𝑐2√𝑚
𝐷⁄      (2) 

where c is the speed of sound, m is the mass per unit area of the plate and D is the 

bending stiffness.  Sewell’s results are in best agreement for walls of relatively high mass 

per unit area and with the assumption that the walls are mounted in an infinitely rigid 

baffle.   

 Quirt followed with extensive experimental work comparing experiments with 

available theory and to determine the dependence of transmission loss on wall thickness 

and gap spacing [5].  Due to the study being concentrated on widow design, many of the 

experiments were conducted on double glass walls with small air gaps.  It is confirmed 

the mass-air-mass resonance plays a major role in the performance of the double wall 

constructions, with experimental data exhibiting sharp reductions in transmission loss 
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near the mass-air-mass resonance.  It was also explained that there is a reduction in 

transmission loss near the critical frequency of the single pane of glass.  Additionally, the 

limited effect of the air gap to transmission loss at frequencies below the mass-air-mass 

resonance is displayed.  The results develop general rules that mass law will over predict 

the transmission loss improvement with the doubling of the wall thickness, and that 

doubling the air gap will increase the transmission loss by approximately 3 dB.  Quirt 

also studied the effect of non-parallel double walls, showing no major difference between 

parallel double walls when compared to non-parallel walls with the same mean spacing.    

In later work by Quirt [6] it is presented that the theory of mass law correlates 

well with the transmission loss of double wall structures below half of the mass-air-mass 

resonance and that the valley at the mass-air-mass resonance a can be reduced in depth 

and sharpness by adding absorptive materials to the cavity perimeter.  Additionally, 

results within reference [6] show that the mass-air-mass resonance calculation developed 

by London [9] predicts the general frequency in which the reduction in transmission loss 

will occur, however the calculation is not perfect in predicting the location of the valley. 

Utley and Fletcher also completed transmission loss work regarding window 

construction, focusing on the effect of the edge conditions [10].  Two edge conditions 

were studied for single walls, putty and wood beading sealed, or neoprene gasket sealed.  

For single wall constructions the neoprene gasket exhibited significant transmission loss 

improvement at the critical frequency (5-10 dB), while only minimally improving 

performance at the frequencies below the critical frequency.  Similar tests were 

conducted with double pane windows, comparing sealing methods. The improvement the 

critical frequency was even larger for double windows (approximately 15 dB) and there 
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was noticeable improvement at frequencies below the critical frequency (3-5 dB).  The 

results clearly show that design of the interface between the glass and the frame can 

affect the transmission loss, however, the general shape (slopes and minima locations) 

remain the same regardless of mounting. 

 Extensive description of the transmission loss curve of double wall constructions 

was offered by Hongisto, et al [4].  A large experimental test matrix was compiled to 

create a broad parametric study that includes the major parameters that can be changed in 

design to effect transmission loss.   The paper offers a single source to use for predicting 

the frequencies in which the slope of the transmission loss curve for double walls will 

change, and also provides guidance as to what those slopes will be.  Included in these 

guidelines are the effect of point or line connections within the double wall structure vs 

uncoupled (no studs) double walls, the effects of rigid (wood) or flexible (steel) studs 

within the structure, and the effects of absorptive materials within the cavity.  It is 

concluded that the air gap and the insulation material are more critical in uncoupled 

double walls, and that the valley near the critical frequency is independent of gap 

spacing. 

 Recently, Xin and Lu [13] investigated the implications of boundary conditions 

(clamped vs simply supported) on double wall transmission loss.  The experiments were 

conducted using relatively small aluminum panels (0.3 m x 0.3 m square structure) 

without the use of supporting material (studs) in the interior of the double wall.  The 

typical 3,3 mode shape of square plates, with both simply supported and clamped 

boundary conditions were presented and discussed.   The 3,3 mode shape frequency 

corresponded well to valleys in the experimental narrow band transmission loss plot 
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offered, with the narrow band valleys occurring within approximately 50 Hz of the 

theoretical 3,3 mode shape.  Conclusions show that theoretically, the transmission loss of 

double walls will be equal for both mounting conditions if the wall is infinitely large.  For 

the finite sized plate studied, the clamped boundary condition yields higher resonant 

frequencies when compared to simply supported boundaries.   

 Nilsson and Kihlman [17] lists six factors that can influence transmission loss 

differences between laboratories. The work is further extended in reference [12], which 

examined the differences in transmission loss due to boundary condition, apertures, and 

baffles. Data from experiments conducted at 5 different laboratories is examined and it is 

concluded that the transmission loss of common specimen can differ greatly due to 

different laboratory conditions.  However, after review of the plots, it is evident that the 

trends (slopes and frequencies of slope change) exhibited at each laboratory show 

agreement.   
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III. DESIGN OF EXPERIMENT 

A. Design Considerations 

 The material choice was made due to the vast use of sheet steel in many industries 

including automotive, agricultural and HVAC ducting.  The following readily available, 

commonly used sheet steel gages where used: 0.6 mm (24 ga – 0.024 in) and 1.2 mm (18 

ga – 0.048 in).  Choosing plates that vary in thickness by approximately double will yield 

an appreciable difference in transmission loss between the two plates, with theory 

predicting approximately 6 dB increase in transmission loss [1].   This allows for the 

dependence of mass per unit area to be more easily observed than using two plates whose 

thicknesses do not vary drastically.  

 Due to the space constraints in many applications of sheet steel (automotive, 

aerospace, etc.) it was decided to use air gaps smaller than 4 mm.  The overall width and 

height of the double wall specimen used for these experiments was chosen based on the 

ease of installation in the laboratory used.  The filler wall used in the laboratory already 

contained an aperture measuring 406 mm by 1067 mm.  For this reason the overall size of 

the specimen (including the frame used for attaching the plates) will be this size.  

 Although difficult (if not impossible) to achieve, clamped edge conditions were 

chosen for this study due to the ease of maintaining consistently between individual 

experiments.  Additionally the fixture needed to achieve simply supported boundary 

conditions was more complicated than the fixture for creating a clamped boundary [13].  
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The frame was constructed out of sheet steel of considerably more thickness than the 

transmission loss specimen to ensure high stiffness.  To create the air gap, either one or 

two frames were placed between the two plates.  The readily available thickness for the 

frame sheet steel was 1.9 mm (14 ga - 0.075 in), allowing for an air gap of 1.9 mm and 

3.8 mm.  

Figure 2 and Figure 3 show the constructions, utilizing the aforementioned 

designs.  

 

Figure 2. Single plate configurations (specimen in gray and frame in blue). 
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Figure 3. Double wall configurations (specimen in gray, frame in blue). 

  

To create clamped boundary conditions, a bolt pattern around the perimeter of the 

specimen was used to hold the constructions together.  Bolts were placed through holes 

on the receiving side of the frame, traversing through the frame and test specimen, while 

nuts were tightened on the source side of the frame. Bolts were chosen, rather than 

welding or riveting, due to the availability, ease of assembly, and convenience of reusing 

the frame for each configuration. 
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B. Construction of Experiment 

 After the experiment was designed, the first step in construction was to order 

sheet steel of the appropriate thickness (0.6 mm and 1.2 mm for the test specimen and 1.9 

mm for the frame) and to buy all of the hardware.  For the test specimen, the overall 

geometry (406 mm x 1067 mm) and the bolt pattern consisting of 5 bolts along the 406 

mm sides and 10 bolts along the 1067 mm sides was modeled in SoildWorks® and cut 

from oversized sheet steel using a Flow Mach 2
TM

 water jet.  The same method was used 

to create the frame components for the assembly, creating the same overall geometry and 

hole pattern, while removing a 305 mm by 965 mm rectangle from the center of the 

frame blanks.  The drawings used to make the specimen and the frames using the water 

jet are available in APPENDIX E. 

 Next, the filler wall mount was attached to the filler wall using hex head fasteners. 

The fit of the filler wall mount was relatively tight, but extra care was taken to reduce 

flanking paths.  First, isolation rubber mats were cut to fill he small gaps around the 

perimeter of the mount, between the mount and the filler wall.  Next, on the source room 

side of the filler wall the joint between the mount and the filler wall (which had isolation 

rubber in between) was sealed using Parker Virginia Sealing Gum™ (also known as 

permagum).   

 Next, the frames and specimen were bolted together to create the test 

configurations.  As seen in Figure 4 below, the filler wall has four mounting points 

(circled in red), two on the right and two on the left of the aperture.   



17 
 

 

Figure 4. Mounting locations on the filler wall. 

The test configuration was mounted using nuts and bolts through these four 

mounting points.  To reduce flanking paths for sound, similar measures of sealing were 

taken on the receiving room side of the fixture.  Figure 5 and Figure 6 show the filler wall 

from the source room and the receiving room, displaying the permagum used to ensure 

minimal flanking sound.   
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Figure 5. View of the filler wall from the source room. 

 

Figure 6. View of the filler wall from the receiving room. 

It is important to note that the same test setup, mounting, and sealing treatments 

were used in both the modal analysis experiments and the transmission loss experiments.  

Therefore the correlations between the two sets of experiments can be observed without 

speculation of mounting or boundary condition differences.  
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C. Instrumentation and Procedure 

1. Modal Analysis  

Modal analysis was completed on four wall configurations; two single panel 

constructions of varying thickness and two double panel constructions of varying gap 

thickness.  To ensure that the modal analysis was conducted under the same boundary 

condition as the specimen would experience during sound transmission loss (TL) testing, 

the specimen was mounted to the same resilient test fixture (filler wall) for all modal and 

TL testing. The modal analysis was completed using LMS Test Lab 11 and 

accompanying accelerometer and impact hammer.  To begin, the specimen width and 

height must be discretized to develop a grid in which the mode shapes will be fit to.    For 

these experiments, each specimen is discretized to contain a grid of 7 divisions 

horizontally and 3 divisions vertically. Figure 7 shows the set-up of the grid, 

accelerometer, and impact locations. 
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Figure 7. Discretization of the specimen, accelerometer location (blue), impact locations 

(red), and associated point labels. 

 

There are two common approaches to conducting modal analysis with regards to 

accelerometer and impact hammer usage.  In this experiment it was decided to use the 

roving hammer method, keeping the accelerometer placed in the center of the receiving 

room side of the plate (location 23) while impacting the plate in all locations on the 

receiving room side of the plate.  The alternative would be to impact the same point on 

the specimen while roving the accelerometer.  This would theoretically yield the same 

results, but would require more time as the accelerometer would have to be re-adhered to 

the plate 45 times for the single plate configuration, and 90 times for the double plate 

configuration. In instances of double plate configurations, the accelerometer was placed 

on the receiving side of the receiving plate and the hammer was used to impact the 

receiving plate on the receiving side and impact the source plate on the source side. 
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2. Noise Reduction 

Due to laboratory constraints, the standardized method used to conduct 

transmission loss testing in which a specimen is placed between two reverberation rooms 

(Figure 1) could not be completed.  The laboratory that was readily available (Figure 8) 

included a reverberant room next to a hemi-anechoic room, with a removable filler wall 

that can be used to create an opening between the two rooms.  

 

Figure 8. Top view of configurations for noise reduction testing. 

 

The differences in test setup and available equipment require the redefinition of 

the sound transmission loss across the specimen.  Transmission loss compares the 

difference in sound power in the two rooms, as shown in the background section.  Since 

the testing conducted in this thesis resulted in sound pressure data in the source (hemi 

anechoic) and sound pressure data in the receiving room (reverberation), the terminology 
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used to describe the difference in sound pressure across the test specimen is Noise 

Reduction (NR).  It is given by  

𝑁𝑅 = 𝑆𝑃𝐿𝑆 − 𝑆𝑃𝐿𝑅       (3) 

where SPLS is the sound pressure level (dB) in the source room and SPLR is the sound 

pressure level (dB) in the receiving room.  Sound pressure is converted to sound pressure 

level using the relationship 

𝑆𝑃𝐿 = 10 log10
𝑝𝑟𝑚𝑠

2

𝑝𝑟𝑒𝑓
2          (4) 

where prms is the sound pressure (Pa) measured by the microphone and pref is the 

reference pressure (20 μPa). 

 Note that noise reduction is not equal to transmission loss, but is directly related if 

the two rooms (receiving and source) are both reverberant.  In the case of two reverberant 

rooms the transmission loss can be written as  

𝑇𝐿 = 𝑁𝑅 + log10
𝑆𝑤

𝑆𝑅𝛼𝑅
     (5) 

where Sw is the surface area of the specimen, SR is the area of all surfaces in the receiving 

room, and αR is the room average absorption for the receiving room [18]. Since the 

specimen surface area is significantly smaller than the surface area of the receiving room 

and the average absorption of reverberant rooms is a positive value, the resulting value 

within the logarithm is between 0 and 1.  Therefore, it is expected that the value of TL 

will be less than that of NR.  Since the difference between TL and NR is based on a 
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constant, it is acceptable to compare the slopes and peak/valley frequencies in TL theory 

with NR experimental results while disregarding the amplitude shift between TL and NR.   

 Sound pressure is measured in the reverberant room using a microphone on a 

rotating boom, while the sound pressure is measured in the hemi-anechoic room using a 

directional microphone mounted directly between the source and the specimen (0.5 m 

from the source, 0.5 m from the source plate).  The source microphone is mounted such 

that it is facing the source, in a position that is centered on the specimen. The source is a 

loudspeaker (B&K 4205) that produces a broadband sound (white noise) at 

approximately 100 dB, and is placed one meter from the specimen.  The filler wall is 

approximately 4 inches thick, and the specimen is mounted such that the frame is flush 

with the wall in the receiving room (same mounting as described in the modal analysis 

section).  Figure 9, Figure 10 and Figure 11 show views of the specimen mounted in the 

filler wall (receiving and source room views) and a view of the sound source and source 

microphone.  Each of the 4 configurations are tested using this test setup.   
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Figure 9. View of NR setup from receiving room. 

 

 

Figure 10. View of NR setup from the source room. 
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Figure 11. View of NR setup – sound source and source room microphone. 
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IV. TRANSMISSION LOSS THEORY AND EXPERIMENTAL RESULTS 

A. Single Wall Transmission Loss Theory 

The theoretical transmission loss in these experiments is developed using some 

assumptions that are necessary to simplify the theory [2].  The plates are assumed to be 

uniform, unbounded, non-flexible and are mounted on a viscously damped suspension.  

Additionally, the assumption is made that there are no flanking paths for sound to travel 

around the specimen from the source room to the receiving room.  The theoretical 

transmission loss plot for single wall constructions is shown in Figure 12.  

 



27 
 

 

Figure 12. Theoretical transmission loss plot for single plate constructions. 

 

The theoretical transmission loss curve of a flat plate has four main sections.  The 

first section is called the stiffness controlled section.  The stiffness controlled region is 

located at frequencies below that of the first resonant frequency (f0) of the panel.  Two 

methods are used to determine the theoretical natural frequencies of the individual 

clamped specimen.  The first method utilizes a table from a reference handbook [19] in 

which the natural frequencies of rectangular plates of various edge conditions are solved 

for using the Ritz method, and the second method utilized finite element modeling (FEM) 

carried out using ANSYS® Workbench
TM

.  The relevant section of the table from 

reference [19] is shown below for reference.  
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b/a 1.0 1.5 2.0 2.5 3.0 ∞ 

 

𝜔𝑛

√𝐷𝑔 𝜌ℎ𝑎4⁄⁄  

(6) 

 

35.98 27.00 24.57 23.77 23.19 22.37 

 

Table 1. Excerpt from shock and vibration handbook [19]. 

 

where n is the natural frequency (rad/sec), g is the acceleration due to gravity (m/s
2
), ρ 

is the density (N/m
3
), h is the thickness of the plate (m), a is the height of the plate (m) 

and D is the flexural rigidity given by 

𝐷 =
𝐸ℎ3

12(1−2)
                (7) 

where E is Young’s modulus (Pa), h is the thickness of the plate (m), and  is Poisson’s 

ratio (approximated as 0.29).  The values of the variables in Equations 6 and 7 are 

available in APPENDIX F.  

With the specimen dimensions measuring 305 mm x 965 mm, the aspect ratio of 

965/305 (3.167) is outside the range of the reference table.  For this reason, the 

calculation for natural frequency will be completed for both an aspect ratio of 3 and for 

an infinite aspect ratio.  The results of these calculations, shown in Table 2, show that the 
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use of an aspect ratio of 3 (rather than infinity) yields better correlation to the natural 

frequencies determined by finite element analysis (FEA).  

 

Method 

Specimen Thickness 

(mm) 

First Natural Frequency 

(Hz) 

Equation (6) (Aspect Ratio of 3) 1.2 mm 73.4 

Equations (6) (Aspect Ratio of ∞) 1.2 mm 70.8 

FEM 1.2 mm 73.3 

Equation (6) (Aspect Ratio of 3) 0.6 mm 37.0 

Equation (6) (Aspect Ratio of ∞) 0.6 mm 35.7 

FEM 0.6 mm 36.8 

 

Table 2. Theoretical and numerical results for the first natural frequency of the 

rectangular plates. 

 

Since f0 for these plates are below 100 Hz, outside the range of typical 

transmission loss ratings, there will be no further mention in this section regarding the 

theoretical transmission loss in the stiffness control region.    

 The second section of the theoretical transmission loss curve of a flat plate is 

called the resonance controlled section.  This section begins at the first resonance 

frequency and continues until approximately two times the first resonance frequency.  A 
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survey of the literature shows that it is common for this section of the transmission loss 

curve to be relatively flat, experiencing little or no increase in transmission loss as 

frequency increases.  Since this section is primarily below 100 Hz for the given specimen 

in these experiments, no further discussion of this section is offered here. 

The third section of the transmission loss curve is called the mass controlled 

region.  This region begins at a frequency slightly above 2f0 and continues until half the 

critical frequency.  The critical frequency (fc), which occurs when the speed of the 

bending wave propagation is equal to the speed of the acoustic wave in the air, can be 

calculated using 

𝑓𝑐 =
𝑐2

2𝜋
√

𝑚

𝐷
             (8) 

where c is the speed of sound (m/s), m is the mass per unit area of the panel (kg/m
2
), and 

D is the flexural rigidity (kg*m
2
/s

2
) [3].  The flexural rigidity is given by Equation (7).  

Using Equations (7) and (8), the critical frequency for the 1.2 mm and 0.6 mm thick 

plates are calculated as 19967 Hz and 10066 Hz respectively.   

The theoretical transmission loss curve in the region roughly between 2f0 and ½fc 

follows mass law.  There are multiple equations available to approximate mass law 

(varying based on the angle of incidence of the incident sound).  Due to the laboratory 

setup during the transmission loss experiments in this study, the normal incidence mass 

law is used to predict the transmission loss in this region.  The normal incidence mass 

law equation is  
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𝑇𝐿 = 20 log10(𝑓𝑚) − 42 𝑑𝐵         (9) 

where f is the frequency of the sound (Hz) and m is the mass per unit area of the flat plate 

(kg/m
2
) [1].  This equation suggests that the slope of the transmission loss curve in the 

mass controlled region will be approximately 6 dB per octave, and that the transmission 

loss is directly correlated to the mass per unit area of the plate.    

The fourth region of the transmission loss curve is called the coincidence 

controlled region. This region begins at approximately ½fc and is characterized by a sharp 

decrease in transmission loss that reaches a minimum at the critical frequency.  The 

section of the transmission loss curve above the critical frequency generally follows an 

increasing slope of 9 dB per octave [3].  Since the critical frequencies for the two plates 

used in these experiments are above the frequency range used for standard sound 

transmission ratings, there will be no further discussion regarding the region above the 

critical frequency in this thesis.   

B: Double Wall Transmission Loss Theory 

The theoretical transmission loss of a double plate wall with an air gap is more 

complicated than that of single plates.  The same assumptions used for single plate 

transmission loss (uniform, unbounded, non-flexible) are used to simplify the theory.  

Also, the fluid in the cavity (air) is assumed to be bounded within the double wall 

structure such that it cannot leak out due to compression when the walls vibrate.  The 

theoretical transmission loss plot for double wall structures is shown in Figure 13. 
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Figure 13. Theoretical transmission loss plot for double plate configurations. 

 

The theoretical transmission loss curve for double walls is characterized by four 

characteristics.  The first is a frequency range below the mass-air-mass resonance 

frequency (fmam).  In this range, the transmission loss performance follows a similar curve 

to that of a single plate of mass equal to that of sum of the mass of the two plates. The 

second characteristic of the theoretical transmission loss curve is the mass-air-mass 

resonant frequency.  At this frequency the transmission loss is reduced due to the 

coupling of the two plates by the stiffness of the air gap.  To derive the frequency at 

which this occurs, an analogous mass spring system is used, shown in Figure 14 [1]. 
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Figure 14. Mass spring system analogous to double wall mass-air-mass resonance. 

 

The mass-air-mass resonant frequency occurs when the two plates have equal 

resonant frequencies, shown in Equation (10). 

𝑓𝑚𝑎𝑚 =
√𝐾1

𝑚1
⁄

2𝜋
=

√𝐾2
𝑚2

⁄

2𝜋
           (10) 

      

where the spring rates per unit area K1 and K2 (N/m)/m
2
 are in series between the two 

plates and m1 and m2 are the mass per unit area of the two plates.  The spring rates per 

unit area are related by 

1

𝐾
=

1

𝐾1
+

1

𝐾2
     (11) 

Solving for K1 in Equation (11) and substituting into Equation (10) yields 
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𝑓𝑚𝑎𝑚 =
√(𝐾)

(𝑚1+𝑚2)

(𝑚1𝑚2)

2𝜋
    (12) 

where K is spring rate of the air gap, given by 

𝐾 =
𝜌𝑜𝑐2

𝑑
      (13) 

where ρ0 is the density of air, c is the speed of sound in air (343 m/s), d is the gap width 

(m) [2].  The theoretical mass-air-mass resonance frequency for the two experiment 

configurations in this thesis are offered in Table 3.   

 

 

Mass per unit area 

of Receiving Plate 

(kg/m
2
) 

Mass per unit area 

of Source Plate 

(kg/m
2
) 

Air Gap Distance 

(mm) 

Mass-Air-Mass 

Resonant Frequency 

4.70 9.32 1.9 775.7 Hz 

4.70 9.32 3.8 548.5 Hz 

 

Table 3. Mass-air-mass resonant frequencies of experimental configurations. 

  

The third characteristic of the transmission loss curve displays increasing 

transmission loss from the mass-air-mass resonance valley until half of the higher critical 

frequency of the individual plates [3].  The increase in this section is divided into two 

sections of differing slopes.  They are approximated as 18 dB per octave for an uncoupled 

wall at the lower frequencies within the section and 6 dB per octave in higher frequencies 

within the section.  The frequency at which the transition from 18 to 6 dB per octave 
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occurs is called the bridge frequency [4].  The bridge frequency calculation varies 

depending on the construction of the wall, with there being four commonly available 

equations for common construction types.  These include equations for walls containing 

rigid point connections, rigid line connections, flexible point connections and flexible 

line connections.  For this research where studs were not used, the calculation is 

completed for rigid point connections due to the lack of studs.  The equation is given as  

𝑓𝑏 = 𝑓𝑚𝑎𝑚 (
𝜋3𝑆

8𝜆𝑐
2𝑛

(
𝑚1

𝑚1+𝑚2
)

2

)
1/4

     (14) 

where S is the plate area (0.294 m
2
), λc is the wavelength at the critical frequency, and n 

is the number of point connections [4].  After completing the calculation for a critical 

frequency of 19967 Hz and for 28 point connections, the estimated bridge frequency 

should be at approximately 1533 Hz for the 1.9 mm gap and 2168 Hz for the 3.8 mm gap.   

The final characteristic of the theoretical transmission loss curve is the second 

valley that occurs at the highest critical frequency, fc, for the two plates in the assembly 

[2].  At this frequency the transmission loss amplitude is approximately that of a single 

plate with mass equal to that of the sum of the two plates. 

 

 

 

 

 



36 
 

C. Single Wall Experimental Noise Reduction  

Measured third octave band NR curves for the two single plates are shown in 

Figure 15 along with the curves predicted by theory (Equation (9))

 

Figure 15. Measured NR and predicted TL for the two single plates. 

 

From Figure 15, several observations can be made.  First, the theoretical normal 

incidence mass law TL curves are less than the measured NR curves for both plate 

thicknesses.  Due to the difference between TL and NR, which is discussed in the Design 

of Experiment section where TL and NR are correlated using Equation (5), this is 

expected.  Second, the slope of the NR curve for each configuration generally matches 

the slope of the normal mass law TL curve (approximately 6 dB per octave).  Third, the 
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higher NR for the plate with higher mass per unit area is consistent with that predicted by 

theory.  In addition, the normal incidence mass law TL theory predicts that doubling the 

mass per unit area (in this case doubling the thickness) should result in approximately a 6 

dB increase in TL.  However, results from this study show that the increase in NR is 

closer to 3 dB with the doubling of the thickness of these steel plates.  This agrees with 

reference [5], which shows a TL increase of approximately 3-4 dB after doubling the 

thickness of glass. 

 Next, observe that the first section of the measured NR curve for both plate 

thicknesses is relatively constant (below 200 Hz), rather than following the 6 dB/octave 

slope predicted from the TL mass law theory.  The constant NR curve in the low 

frequency region is similar to that found in references [5-6] and has been attributed to the 

difficulty in eliminating flanking paths for low frequency sound.   

As presented earlier, the first natural frequencies are approximately 35 Hz for the 

0.6 mm plate and 75 Hz for the 1.2 mm plate.  Additionally, the critical frequencies, fc, 

for the two plates are approximately 7 kHz and 10 kHz for the 0.6 mm and 1.2 mm plates 

respectively.  According to TL theory for single plate walls, it is expected that the NR 

curve between two times the first natural frequency and below the critical frequency 

would follow mass law.  However, experimental results shown in Figure 15  reveal an 

uncharacteristic peak in NR for both single plate configurations in the 315 Hz third 

octave band.  Investigation of this unexpected behavior is presented later in section E.   
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D: Double Wall Experimental Noise Reduction 

As explained previously, double wall configurations are typically characterized by 

four sections.  The first section (located below mass-air-mass resonance) typically 

displays behavior much like that of a single plate of mass equal to the mass of the two 

plates combined.  When the combined mass per unit area of the two plates are accounted 

for in the normal incidence mass law equation (Equation (9))), the result is approximately 

3.5 dB higher in transmission loss when compared to the result of the equation when the 

1.2 mm plate is considered alone.  This behavior is confirmed in these results (Figure 16), 

as the two double plate configurations displayed approximately 3-4 dB increase in NR 

when compared to the single plate configurations between 100 and 200 Hz.  This 

compares favorably to the results outlined by in the literature [6]. 
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Figure 16. NR curves for all 4 test configurations. 

 

As previously stated, the low frequency NR (below 200 Hz) is expected, with 

generally higher NR than the single plate NR, due to the increase in mass.  Another 

characteristic observed from experiment and predicted by theory is the NR valley due to 

the mass-air-mass resonance, which shifts to lower frequency with increase in gap 

thickness (Figure 17). 
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Figure 17. Double wall NR shows that an air gap increase corresponds to mass-air-mass 

resonant frequency decrease. 

 

Another expected behavior of the double wall NR plots is that the critical 

frequency is independent of the air gap, occurring in the 3150 Hz third octave band for 

both air gaps (Figure 18). 
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Figure 18. Double wall NR critical frequency is independent of the air gap. 

 

Lastly, the predicted 18 dB/octave slope between the mass-air-mass resonance 

frequency fmam and the bridge frequency fb, and the predicted 6 dB/octave slope between 

the bridge frequency and the critical frequency fc are confirmed by the results as 

illustrated in Figure 19. 
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Figure 19. Double wall NR and predicted slopes. 

 

E. Discrepancies Between Theory and Experiment Explained Through Structural 

Dynamics  

1. Mass-Air-Mass Resonant Frequency 

The NR results show that there is a discrepancy between the predicted mass-air-

mass resonance NR valley and the location of the valley in the NR experiment.  Figure 20 

shows the NR of the two double plate configurations and indicates the frequencies at 

which the theory (Equation (12)) predicts the mass-air-mass frequency to occur.   
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Figure 20. Mass-air-mass frequency predicted by Equation 12. 

 

The location of the NR valley is not predicted with high accuracy using Equation 

12, particularly for the 1.9 mm air gap.  The mass-air-mass resonant frequency prediction 

(Equation (12)) is based on the theory that there is reduction in TL when the two plates 

experience a natural frequency at the same frequency.  Contrary to the theory presented 

in which the two plates are rigid masses, in the experiment it is expected that the two 

flexible plates will display mode shapes.  To investigate the cause of the discrepancy 

between the calculated mass-air-mass resonance and the experimental NR valley, 

experimental modal analysis is conducted on both air gap constructions, specifically to 

investigate if the shapes of the plate motion, or the synchronicity of the plates, can be 

used to predict better the mass-air-mass resonance.  
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Despite the complicated mode shapes in the range of the mass-air-mass resonance 

(400-600 Hz), the modal analysis did prove to be of interest.  First, the 1.9 mm air gap 

configuration contained a mode shape at 434 Hz in which the two plates vibrate in phase 

with each other and the two plates display the same deformation shape (see Figure 21). 

 

Figure 21. Mode shape of double plate configuration with 1.9 mm air gap at 434 Hz. 

 

Notice that the peaks and valleys in the top plate (receiving plate) match the peaks 

and valleys of the bottom plate (source plate).  Figure 22 displays the 1.9 mm gap 

configuration NR curve with indicators for the calculated mass-air-mass resonant 

frequency and for the 434 Hz mode with synchronous plate motion.  Notice that the 

location of the NR valley occurs at a frequency closer to 434 Hz than to the predicted 

frequency determined by theory (Equation (12)). 
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Figure 22. Predicted mass-air-mass frequency and frequency of observed synchronous 

plate motion in modal analysis for the 1.9 mm air gap. 

 

For the 3.8 mm gap configuration, the first instance of a mode with a synchronous 

plate motion mode shape is at 402 Hz (Figure 23).  This is followed by a second instance 

at 449 Hz (Figure 24).   
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Figure 23. Mode shape of double plates with 3.8 mm air gap at 402 Hz. 

 

Figure 24. Mode shape of the double plates with 3.8 air gap at 449 Hz. 

 

Figure 25 shows the NR curve for the 3.8 mm gap configuration with an indicator 

for the theoretically predicted mass-air-mass resonant frequency and indicators showing 

the frequencies of the modes with synchronous mode shape motion.  As shown, the 
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modes more closely match the NR valley compared to the frequency predicted by theory 

(Equation (12)). 

 

Figure 25. Predicted mass-air-mass frequency and frequency of observed synchronous 

plate motion in modal analysis for 3.8 mm air gap. 

 

Since mode shape plate-to-plate synchronicity appears to have some relevance on 

the frequency of the NR valley, it is necessary to understand the synchronicity between 

the motion of the two plates for all the modes in the bandwidth of interest (100-1000 Hz).  

However, due to the presence of a large number of modes (30 and 33 for the 1.9 mm and 

3.8 mm air gap configurations, respectively), visual inspection of the all of these mode 

shapes is both tedious and potentially inaccurate.  This is especially true of the higher 

frequency modes with a large number of nodal lines.  Therefore, the Modal Assurance 
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Criterion (MAC) [20] is utilized to provide an objective tool to determine the modes that 

exhibit synchronous motion similar to those highlighted above. 

MAC is a normalized function that related the degree of consistency between two 

modal vectors, 

𝑀𝐴𝐶 =  
(𝛹𝑠)𝐻(𝛹𝑟)(𝛹𝑟)𝐻(𝛹𝑠)

(𝛹𝑠)𝐻(𝛹𝑠)(𝛹𝑟)𝐻(𝛹𝑟)
       (15) 

where Ψs and Ψr are the modal vectors for two different modes.  If these modal vectors 

are identical, MAC = 1; if no consistency exists between the two vectors, MAC = 0.  To 

utilize this tool for the purpose of determining the synchronicity between the source and 

receiving plates for a single mode, the modal vector for each mode is divided into two 

separate vectors, one containing the relative response of the source plate and another 

containing the response of the receiving plate. Since the MAC calculation must be 

completed for each mode shape, a MATLAB® program was written to complete the 

calculation for each mode shape and configuration.  The program code used to complete 

the MAC calculation is offered in APPENDIX H. 

MAC values of the mode shapes for the 1.9 mm air gap double plate 

configuration are shown in Figure 26 along with the NR curve for this double wall 

construction. 
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Figure 26. NR and MAC values for the 1.9 mm air gap double plate configuration. 

  

First, the MAC value for the predicted mass-air-mass resonance (776 Hz) is 

actually a local minimum, not a maximum as would be expected.  However, the MAC 

value corresponding to the mode shape at 434 Hz (circled in Figure 27), which displays 

plate synchronous motion, is 0.425.  This value is relatively large compared with MAC 

values below this frequency.  It is also in the frequency range near the mass-air-mass NR 

valley.  
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Figure 27. MAC value for observed mass-air-mass resonance in modal analysis, indicated 

by synchronous plate to plate vibration. 

  

The peak in MAC at 434 Hz is not the only peak in MAC between 100 and 1000 

Hz.  There also exists peaks in MAC at 528 Hz, 634 Hz, 834 Hz and 941 Hz. 

Observations of the mode shapes offer some insight regarding the high values of MAC.  

First, the mode shapes at 528 Hz, 634 Hz, and 941 Hz display behavior that includes 

similar plate deformation shapes between the source and the receiving plates, but the 

motions are out of phase.  The mode shape at 834 Hz is the second instance of 

synchronous in-phase plate motion.  Although none of the MAC peaks occur exactly at 

the NR valley, there is a concentration of mode shapes with higher MAC at frequencies 

near the mass-air-mass NR valley.   
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 To further investigate the usage of MAC in predicting the mass-air-mass 

resonance, the same study was completed for the 3.8 mm air gap configuration.  The 

results of MAC and NR plotted vs frequency are shown below. 

 

Figure 28. NR and MAC for the 3.8 mm air gap double plate configuration. 

 

Similar to the MAC for the 1.9 mm air gap previously analyzed, the MAC value 

for the predicted mass-air-mass resonance (529 Hz) is actually a local MAC minimum, 

not the maximum that would be expected.  Another similarity to the 1.9 mm air gap is 

that the MAC values are not as close to unity as would be expected for mass-air-mass 

resonance.  In fact, the maximum MAC values for the 3.8 mm air gap construction are 

even lower than for the 1.9 mm air gap. It is theorized that this can be attributed to the 
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reduction in coupling between the two plates due to the larger air gap.  However, there 

does exist a local maximum at one of the frequencies previously identified through 

observation as the mass-air-mass resonance, the mode shape of the 449 Hz mode.  It 

appears from the observation of the MAC values that the 449 Hz mode shape (indicated 

in Figure 29) included more synchronicity than that of the 402 Hz mode shape.  After 

visual inspection of the mode shapes, this is confirmed.   

 

Figure 29. MAC value for observed mass-air-mass resonance in modal analysis, indicated 

by synchronous plate to plate vibration. 

 

  

Unlike Figure 26 (1.9 mm air gap), there does not appear to be a high 

concentration of modes with high MAC value near the mass-air-mass NR valley.  
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Complete tables of the MAC values for the 1.9 mm and 3.8 mm air gap configurations 

are offered in APPENDIX I and APPENDIX J respectively.   

 

1. Bridge Frequency 

Another discrepancy between available TL theory and the experimental NR 

results is the location of the bridge frequency.  The predicted values for the bridge 

frequency (Equation (14)) are shown in Figure 30 below.  

 

Figure 30. Predicted bridge frequency for 1.9 mm and 3.8 mm air gap configurations. 
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The bridge frequency for both double plate configurations is over predicted by 

Equation (14).  To investigate this discrepancy, accelerometers were placed on the center 

each plate (location 23) during the NR experiments.  Below, the NR plot for the 1.9 mm 

air gap is shown in combination with the narrow band acceleration data plotted on a 

secondary axis.  Included are labels for the observed mass-air-mass resonance, observed 

bridge frequency, and calculated bridge frequency. 

 

Figure 31. NR and plate acceleration of double plates with 1.9 mm air gap. 

  

The plate vibration amplitude for both plates is amplified between the mass-air-

mass resonance and the bridge frequency.  This would indicate that a cause for the steep 

increase in NR (18 dB per octave slope) is the increase of mechanical work done by the 
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two plates.  There also exists a frequency range in which there is a change in which plate 

experiences more acceleration.  Specifically, the receiving plate acceleration decreases 

and the source plate acceleration increases.  The source plate becomes the plate with 

more acceleration very close to the experimental bridge frequency.  The slope change 

from 18 to 6 dB per octave (at the bridge frequency) occurs at a frequency in which the 

acceleration of both plates decreases and becomes relatively equal to one another in 

amplitude. 

 Next, the NR plot for the larger air gap (3.8 mm) is observed.  Again, the plot 

includes the narrow band acceleration due to sound excitation plots of both the receiving 

plate and the source plate, and indicators for the mass-air-mass resonance valley, 

observed bridge frequency, and the calculated bridge frequency. 
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Figure 32. NR and plate acceleration of double plates with 3.8 mm air gap. 

 

Figure 32 shows striking similarities to the graph for the 1.9 mm air gap (Figure 

31).  The bridge frequency occurs in both configurations when the acceleration of both 

plates reduces in amplitude and are of similar amplitude to one another.  Using theory for 

single wall TL, 6 dB per octave is indicative of mass law. To display the mass 

dependence displayed by the double plate configurations between the bridge frequency 

and the critical frequency Figure 33 is offered below.   
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Figure 33. Mass dependent NR between bridge frequency and critical frequency for the 

double plate configurations. 

 

Figure 33 shows that the two double wall configurations have similar NR plots in 

the region between the bridge frequency fb and the critical frequency fc.  This would 

indicate that the air gap is not a major contributor to NR in this region.  Solving the mass 

law equation for a plate of thickness equal to the sum of the two plates yields a TL 

increase of 3.5 dB compared to that of the 1.2 mm single plate.  This agrees relatively 

well with the experimental results shown in Figure 33 as the NR of both double wall 

configurations is 3-5 dB higher than the NR for the 1.2 mm plate for frequencies between 

1600 Hz and 2500 Hz.  However, at the lower frequencies within this region (1000 Hz to 
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1250 Hz), the difference between the double wall NR and the 1.2 mm single wall 

construction is not as large as expected.  

It should be noted that there some frequency bands in which the larger air gap is 

favorable for NR and other frequencies at which the smaller air gap is more favorable.  It 

is described in the literature [5] that the air gap thickness is not a major factor in TL 

below the mass-air-mass resonant frequency.  However, Quirt [5] does describe a trend of 

steady increase in TL with increase in air gap thickness at frequencies above the mass-

air-mas resonance.  This increase in TL due to air gap thickness increase was not 

observed in these results when the air gap was doubled.  Predictions developed by 

London [9] indicate an increase of 6 STC for the doubling of the gap spacing.  Less 

aggressive gains in TL were observed by Quirt [5], which show a trend of 3 STC increase 

for the doubling of the air gap. Quirt [5] attributes the difference between his results and 

London’s to the lack of absorptive materials in the air cavity in his testing of glass 

windows.  Unfortunately, due to the differences in gap thickness (testing in this thesis 

utilize smaller gaps) and material selection (steel vs. glass), there are no conclusions that 

can be drawn as to the cause of the lack of NR increase with the doubling of the air gap.     

    

2. Uncharacteristic NR Peak at 315 Hz 

 

As stated in the section C (Single Wall Experimental Noise Reduction), there is 

an unexpected peak in NR at 315 Hz for the single plates.  To investigate this 

discrepancy, acceleration data measured during the NR experiments for each plate and 

corresponding frame (measured slightly above location 41, in the top center of the frame) 
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is considered.  The plate and frame acceleration due to sound excitation is shown in 

Figure 34 for the 0.6 mm plate configuration in combination with the NR results for the 

same configuration.  

 

 

Figure 34. NR and acceleration of 0.6 mm single plate and frame. 

  

The plate experiences significantly more vibration amplitude than the frame, as 

expected since the frame is mounted to the filler wall.  The second observation is that 

there appears to be reduced plate acceleration in the region near the peak at 315 Hz, 

compared to the levels of acceleration in frequency bands below 200 Hz and above 500 

Hz.    
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 Similar observations are made after viewing the narrow band acceleration data for 

the frame and plate for the 1.2 mm single plate configurations (Figure 35). 

 

 

Figure 35. NR and acceleration of 1.2 mm single plate and frame. 

 

Note that similar to the 0.6 mm single plate, the acceleration of the frame is less 

than the acceleration of the plate and the plate acceleration is reduced in the region of the 

unexpected NR peak at 315 Hz.  Interestingly, there is also a peak in NR at 315 Hz in 

both double wall NR curves. From Figure 31 (1.9 mm air gap NR and plate vibration) 

and Figure 32 (3.8 mm air gap NR and plate vibration), similar reduced plate vibration is 

evident near the NR peak at 315 Hz.  Since the NR peak occurred in all four 
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configurations at 315 Hz, and the acceleration data showed a high concentration of 

increased plate excitation near that frequency, it can be assumed that the NR peak is due 

to the test setup that remained constant along all test.  Two such test conditions that 

remained consistent between all four tests are the use of the same filler wall and the same 

frame (dimensions, bolt pattern and mounting).     
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V.     CONCLUSION 

Noise reduction testing was completed for two steel plate constructions and for 

two constructions using the same two plates from the single plate tests with varying air 

gap thickness.  Results compared favorably with theory from previous literature.  The NR 

of the single plate constructions generally followed the normal incidence mass law slope 

in the mass law region, and confirmed that an increase in mass per unit area results in an 

increase in NR.  The double wall NR plots confirmed existing theory that the air gap 

thickness influences the frequency of the mass-air-mass resonance where a valley in NR 

curve exists.  Specifically, the NR valley decreased in frequency as the air gap thickness 

increased.  Also, the NR curves of the double wall constructions displayed a clear bridge 

frequency in which the slope of the NR curves changes from 18 dB per octave to 6 dB 

per octave, as discussed in the literature.  Despite the similarities between available 

theory and the experimental results, discrepancies were discovered.  The mass-air-mass 

resonant frequency was over predicted by the equation offered in the literature.  The 

better predictor for the NR valley near the mass-air-mass frequency was the frequency at 

which the two plates display synchronous plate vibration as revealed by experimental 

modal analysis.  Furthermore, Modal Assurance Criterion (MAC) was used to investigate 

the degree of synchronicity between the source and receiving plates and there is a 

concentration of high MAC values near the mass-air-mass NR valley for the 1.9 mm air 

gap.  An additional discrepancy between existing theory and the experimental results is 
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the over prediction of the bridge frequency for both air gap configurations.  The bridge 

frequency was over predicted for the 1.9 mm gap by approximately 1200 Hz and by 

approximately 500 Hz for the 3.8 mm gap.  The bridge frequency was better predicted by 

examining the acceleration plots of the two plates while excited by sound during NR 

experiments, where it was observed that the two plates display significantly reduced 

vibration amplitudes at frequencies above the observed bridge frequency.  Lastly, there 

was an unexpected NR peak at 315 Hz for all four constructions.  After investigation of 

the plate acceleration of the four constructions, it is apparent that there is increased 

excitation in the frequency region near the NR peak at 315 Hz for all four constructions.  

This leads to the conclusion that the test setup was responsible for the unexpected peak at 

315 Hz. 
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VI.     RECOMMENDATIONS 

Further study should be conducted understand the correlation between the mass-

air-mass resonant frequency NR valley and synchronous plate motion in experimental 

modal analysis.  Increased understanding may be accomplished by performing these 

experiments on construction type materials (plywood, gypsum and glass) and air gaps 

from 2mm to 100 mm.  This would allow the experimental modal analysis and 

accompanying NR to be more easily compared to existing theory.  Similar study could be 

conducted regarding the correlation between the bridge frequency and plate acceleration.   
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APPENDIX A: Calculation of Sound Power from Sound Pressure 

Laboratory configuration used for this testing utilized reference sound power 

source located on the floor of the reverberation (receiving) room.  The equations below 

reflect the conversion of sound pressure to sound power for this testing.  

w

wref
=

p2

pref
2

∗
2πr2

ρν
∗ 𝑆     (16) 

where: 

w = sound power (Watts) 

 wref  = reference sound power (1 x 10-12 Watts) 

 p = sound pressure (Pa) 

 pref = reference sound pressure (20 x 10-6 Pa)  

 r = radius of hemisphere radiating  

 S = acoustic impedance of air (400 𝑃𝑎 ∗ 𝑠
𝑚⁄ ) 
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APPENDIX B: One Third Octave Band Ranges and Center Frequencies 

Lower Band Limit (Hz) Center Frequency (Hz) Upper Band Limit (Hz) 

89.1 100 112 

112 125 141 

141 160 178 

178 200 224 

224 250 282 

282 315 355 

355 400 447 

447 500 562 

562 630 708 

708 800 891 

891 1000 1122 

1122 1250 1413 

1413 1600 1778 

1778 2000 2239 

2239 2500 2818 

2818 3150 3548 

3548 4000 4467 

4467 5000 5623 

 

Table 4. One third octave band ranges and center frequencies 
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APPENDIX C: Method of Calculating STC [1] 

 Sound transmission class (STC) is calculated by comparing transmission loss 

measured in the laboratory at each third octave band with the standard STC contour, 

following ASTM E413 (Classification for Rating Sound Insulation) [21].  The contour is 

composed of line segments of varying slope.  The first segment is from 125 Hz to 400 Hz 

and has a slope of 3 dB per one third octave. The second segment is from 400 Hz to 1250 

Hz and has a slope of 1 dB per one third octave.  The final segment is from 1250 Hz to 

4000 Hz and has a slope of 0 dB per one third octave.  The TL at 500 Hz is equal to the 

STC value of the standard STC contour.  A sample curve of STC 40 is shown below. 

 

Figure 36. STC 40 contour. 

 

The measured TL of the specimen is compared to the contour for a given STC, 

where any measured value that is below the contour is referred to as a deficiency.  The 

deficiency is quantified as the dB difference between the contour and the measured value.  
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For example, if the measure value at 500 Hz is 37 dB, then there are 3 deficiencies at 500 

Hz.  To determine if the specimen meets an STC, the deficiencies across the entire 

frequency range (125 Hz to 4000 Hz) are added and the sum cannot exceed 32 for the 

given STC.  Additionally, no single one third octave band can have a measured value 

more than 8 dB below the STC contour.  The STC for the specimen is the highest STC in 

which both requirements are met. 
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APPENDIX D: Method of Calculating OITC [22] 

The method for determining the OITC requires transmission loss data from 80 to 

4000 Hz and requires A-weighting.  Below is a table that is used to determine OITC. 

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

Band Center 

Frequency 

(Hz) 

Reference 

Sound 

Spectrum 

(dB) 

A-

weighting 

correction 

(dB) 

Column 2 + 

Column 3 

Transmission 

Loss (dB) 

Column 4 – 

Column 5 

80 103 -22.5 80.5   

100 102 -19.1 82.9   

125 101 -16.1 84.9   

160 98 -13.4 84.6   

200 97 -10.9 86.1   

250 95 -8.6 86.4   

315 94 -6.6 87.4   

400 93 -4.8 88.2   

500 93 -3.2 89.8   

630 91 -1.9 89.1   

900 90 -0.8 89.2   

1000 89 0 89.0   

1250 89 0.6 89.6   

1600 88 1.0 89.0   

2000 88 1.2 89.2   

2500 87 1.3 88.3   

3150 85 1.2 86.2   

4000 84 1.0 85.0   

 

Table 5. Table for calculating OITC 

 

After entering the transmission loss values in the table (column 5) and completing 

the calculation for each one third octave band in column 6, the following calculation are 

made. 
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𝑆𝑢𝑚 𝐶𝑜𝑙𝑢𝑚𝑛 4 (𝑑𝐵𝐴) = 10 log ∑ 10
(

𝐶𝑜𝑙𝑢𝑚𝑛 4𝑓
10

⁄ )
𝑓 = 100.13 𝑑𝐵 (17) 

 

𝑆𝑢𝑚 𝐶𝑜𝑙𝑢𝑚𝑛 6 (𝑑𝐵𝐴) = 10 log ∑ 10
(

𝐶𝑜𝑙𝑢𝑚𝑛 6𝑓
10

⁄ )
𝑓   (18) 

 

𝑂𝐼𝑇𝐶 𝑅𝑎𝑡𝑖𝑛𝑔 = 100.13 𝑑𝐵 − (𝑆𝑢𝑚 𝐶𝑜𝑙𝑢𝑚𝑛 6)  (19) 

 

The summation terms in Equation (17) and Equation (18) refer to f, the center 

frequency of each third octave band.  The final result is the solution to Equation (19), 

which is a single number that can be used to evaluate the sound barrier quality, with 

higher OITC corresponding to better sound barrier performance.  
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APPENDIX E: Drawings Used to Create the Test Specimen and Frame 

 

 

Figure 37. Drawing used to cut test specimen. 

 

Figure 38. Drawing used to cut frame. 

 Note that the 24 holes measuring 6.985 mm in diameter are used for the bolts to 

clamp the test specimen together.  The four 8.890 mm holes are used to mount the entire 

fixture to the filler wall. 



75 
 

APPENDIX F: Values of the Constants for Equations 6 and 7 

Constant Value Units 

E, Young’s Modulus [23] 200 GPa 

h, plate thickness 0.6 or 1.2 mm 

, Poisson’s Ratio 0.29 - 

g, acceleration due to 

gravity 

9.81 m/s
2
 

ρ, density [23] 76518 N/m
3
 

a, plate height 305 mm 

 

Table 6. Values of constants in Equations 6 and 7 
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APPENDIX G: FEM Mode Shapes (First 4 Mode Shapes of Single Plates) and 

Experimental Modal Analysis (First 4 Mode Shapes of all Configurations) 

 

Figure 39. FEM first mode shape for 0.6 mm plate (36.8 Hz). 

 

 

Figure 40. EMA first mode shape for 0.6 mm plate (34.2 Hz). 
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Figure 41. FEM second mode shape for 0.6 mm plate (40.5 Hz). 

 

 

Figure 42. EMA second mode shape for 0.6 mm plate (43.1 Hz). 
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Figure 43. FEM third mode shape for 0.6 mm plate (47.4 Hz). 

 

 

Figure 44. EMA third mode shape for 0.6 mm plate (60.2 Hz). 
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Figure 45. FEM fourth mode shape for 0.6 mm plate (57.7 Hz). 

 

 

Figure 46. EMA fourth mode shape for 0.6 mm plate (74.5 Hz). 
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Figure 47. FEM first mode shape for 1.2 mm plate (73.3 Hz). 

 

 

Figure 48. EMA first mode shape for 1.2 mm plate (41.4 Hz). 
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Figure 49. FEM second mode shape for 1.2 mm plate (80.7 Hz). 

 

 

Figure 50. EMA second mode shape for 1.2 mm plate (76.3 Hz). 
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Figure 51: FEM third mode shape for 1.2 mm plate (94.3 Hz). 

 

 

Figure 52. EMA third mode shape for 1.2 mm plate (130.2). 
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Figure 53. FEM fourth mode shape for 1.2 mm plate (114.9 Hz). 

 

 

Figure 54. EMA fourth mode shape for 1.2 mm plate (261.6 Hz). 
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Figure 55. EMA first mode shape 1.9 mm air gap (34.6 Hz). 

 

 

Figure 56. EMA first mode shape 3.8 mm air gap (40.0 Hz). 
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Figure 57. EMA second mode shape of 1.9 mm air gap (50.8 Hz). 

 

 

Figure 58. EMA second mode shape of 3.8 mm air gap (58.2 Hz). 
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Figure 59. EMA third mode shape of 1.9 mm air gap (72.0 Hz). 

 

 

Figure 60. EMA third mode shape of 3.8 mm air gap (79.0 Hz). 
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Figure 61. EMA fourth mode of 1.9 mm air gap (121.7 Hz). 

 

 

Figure 62. EMA fourth mode of 3.8 mm air gap (126.7 Hz). 
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APPENDIX H: MATLAB® Code for Completing MAC Calculation 

This code is the specific code used for determining the MAC values for the 1.9 

mm air gap mode shapes.  There were 31 mode shapes collected for this configuration. 

The 3.78 mm air gap configuration calculation included 33 mode shapes (thus there 

would be a different in the for loop increment).  The text files containing the mode shapes 

were saved as ‘source_1’, ‘source_2’, etc. for the source plate and similarly ‘receiver_1’, 

‘receiver_2’, etc. for the receiving plate.   

MAC = zeros(1,31); 

for cc = 1:31 

    src = load([ 'source_',   num2str(cc), '.txt' ]); 

    rec = load([ 'receiver_', num2str(cc), '.txt' ]); 

    spm = src(:,1) + src(:,2)*1i; 

    rpm = rec(:,1) + rec(:,2)*1i; 

 

MAC(cc) = ((spm')*rpm*(rpm')*spm)/((spm')*spm*(rpm')*rpm); 

End 
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APPENDIX I: MAC Values for 1.9 mm Air Gap Mode Shapes 

Mode Frequency MAC 

1 34.9 0.130135 

2 50.4 0.559692 

3 70.9 0.037685 

4 121.9 0.006188 

5 160.4 0.066869 

6 183 0.014479 

7 199.4 0.014312 

8 223.3 0.044189 

9 241 0.018668 

10 260.2 0.036377 

11 292.5 0.045412 

12 330.4 0.043812 

13 355 0.096765 

14 374.8 0.066102 

15 396.6 0.074109 

16 434.5 0.424747 

17 452.4 0.011353 

18 475.3 0.052662 

19 528.5 0.124723 

20 579.8 0.033437 

21 602.8 0.031801 

22 634.1 0.215352 

23 667.2 0.14775 

24 707.9 0.11217 

25 747.5 0.027762 

26 761.4 0.018978 

27 833.8 0.39126 

28 883.4 0.042123 

29 907.4 0.013979 

30 940.6 0.500996 

31 959.5 0.00523 

 

Table 7. MAC values for 1.9 mm air gap configurations mode shapes 
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APPENDIX J: MAC Values for 3.8 mm Air Gap Mode Shapes 

Mode Frequency MAC 

1 40 0.108232 

2 57.2 0.379552 

3 79 0.047198 

4 126.6 0.048706 

5 141.6 0.123899 

6 174.9 0.040108 

7 198 0.361067 

8 237 0.035675 

9 254.5 0.068191 

10 277.5 0.112004 

11 302.1 0.018815 

12 313.8 0.14298 

13 374.2 0.178124 

14 401.8 0.074545 

15 449 0.093125 

16 483 0.04569 

17 506.6 0.034456 

18 535.6 0.077946 

19 552 0.066124 

20 577.9 0.033341 

21 601.9 0.060627 

22 615.5 0.047291 

23 627.1 0.08381 

24 657.7 0.007086 

25 675.2 0.195668 

26 764.1 0.020185 

27 781.4 0.032177 

28 839.2 0.05758 

29 842.3 0.044259 

30 851.4 0.048165 

31 878.4 0.050414 

32 929.3 0.171378 

33 957.3 0.294099 

 

Table 8. MAC values for 3.8 mm air gap configuration mode shapes. 
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