
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

4-2018

Materials design with polylactic acid-polyethylene
glycol blends using 3D printing and for medical
applications.
Jeremiah R. Bauer
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Biology and Biomimetic Materials Commons, Biomaterials Commons,
Biomechanical Engineering Commons, Ceramic Materials Commons, and the Polymer and Organic
Materials Commons

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted
for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository.
This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

Recommended Citation
Bauer, Jeremiah R., "Materials design with polylactic acid-polyethylene glycol blends using 3D printing and for medical applications."
(2018). Electronic Theses and Dissertations. Paper 2886.
https://doi.org/10.18297/etd/2886

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/286?utm_source=ir.library.louisville.edu%2Fetd%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/233?utm_source=ir.library.louisville.edu%2Fetd%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/296?utm_source=ir.library.louisville.edu%2Fetd%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/287?utm_source=ir.library.louisville.edu%2Fetd%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/289?utm_source=ir.library.louisville.edu%2Fetd%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/289?utm_source=ir.library.louisville.edu%2Fetd%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2886
mailto:thinkir@louisville.edu


i 

 

MATERIALS DESIGN WITH POLYLACTIC ACID-POLYETHYLENE GLYCOL 

BLENDS USING 3D PRINTING AND FOR MEDICAL APPLICATIONS 

 

 

 

By 

Jeremiah R. Bauer 

B.S., University of Louisville, 2016 

 

 

A Thesis 

Submitted to the Faculty of the 

Speed School of Engineering of the University of Louisville 

in Partial Fulfillment of the Requirements 

for the Degree of 

 

 

Master of Engineering 

in Mechanical engineering 

 

 

Department of Mechanical Engineering 

University of Louisville  

Louisville, Kentucky 

 

 

 

April 2018



ii 

 

Copyright 2016 by Jeremiah R. Bauer 

All rights reserved



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

MATERIALS DESIGN WITH POLYLACTIC ACID-POLYETHYLENE GLYCOL 

BLENDS USING 3D PRINTING AND FOR MEDICAL APPLICATIONS 

 

By 

Jeremiah R. Bauer 

B.S., University of Louisville, 2016 

 

A Thesis Approved on 

 

 

April 24, 2018 

 

 

by the following thesis committee: 

 

 

 

Thesis Director 

Kunal Kate 

 

 

 

Sundar Atre 

 

 

 

Jagannadh Satyavolu 



v 

 

ACKOWLEDGMENTS 

 

I would like to thank Dr. Kunal Kate for his leadership and insight in the writing of this 

thesis. I would also like to thank Dr. Sundar Atre, who first introduced me to the world of 

3D-printing and materials science. I would like to thank the members of the MIG group, 

who have provided me with assistance and constructive criticism for both the research and 

in connected learning. I would like to thank my family for their encouragement and prayers 

during the writing process, especially my parents. Finally, I would like to give thanks to 

God for His guidance and blessings. Soli Deo Gloria!



vi 

 

ABSTRACT 

MATERIALS DESIGN WITH POLYLACTIC ACID-POLYETHYLENE GLYCOL 

BLENDS USING 3D PRINTING AND FOR MEDICAL APPLICATIONS 

Jeremiah R. Bauer 

April 24, 2018 

This thesis is an examination of two material systems derived from polylactic acid (PLA) 

and polyethylene glycol (PEG). PLA is a polymer commonly sourced from renewable 

sources such as starches and sugars. It is a relatively strong, biodegradable polymer, 

making it ideal for use in the body. Even though it has a relative high strength, PLA is also 

brittle leading to the use of plasticizers to increase flexibility. One such plasticizer is PEG, 

which is a material that can exist at room temperature as either a thin liquid, or a hard waxy 

solid depending on the molecular weight. The first chapter of this thesis introduces the 

goals of the second and third chapters by providing context to the two research projects 

that were done. The second chapter presents a study on the mechanical properties of 3D 

printed PLA-PEG blends, using two types of PLA and examining the effects of changing 

molecular weight of PEG and the concentration of PEG. The third chapter focuses on 

combining a modified PLA-PEG reaction blend with additional PLA and determining the 

dissolution profile, as this modified PLA-PEG blend shows some promise as a drug 

delivery material, due to how quickly it dissolves in water and phosphate buffered saline.
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CHAPTER I 

BACKGROUND AND GOALS 

 

The materials of the ages have defined them to a great degree, such as the stone 

age, bronze age, and iron ages, but we are no longer bound to using a singular material to 

define the spirit of our age. There are millions of potential materials that humanity can 

choose from to solve any design problem. We are not only making use of discovered 

materials from nature but developing new material systems ourselves. From a strong and 

tough metal alloys to a soft and springy elastomer, there is potentially a perfect fit for every 

possible design. Since the beginning of man-made materials, we have added thousands to 

the list of available materials and slowly started to fully understand how best to use them. 

The biggest design challenge in deciding on a material is a lack of properties, mechanical 

or otherwise. Compounding this lack of material information is the possibility of mixing 

multiple materials into composites that should give the best of both materials, analogous 

to alloying metals. The methods of predicting the properties of compounds are estimates at 

best and guesswork at worst. In this work, we aim to fill a small void in the body of material 

properties within a specific group of materials.  

The material system we consider is that of a biodegradable polymer polylactic acid 

(PLA), which is a plastic common to both the worlds of medicine and that of 3D printing, 

and polyethylene glycol (PEG) which is a material used as a plasticizer. PLA is strong 

compared to some polymers but lacks flexibility, a short list of some polymers is shown
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below in Table 1 for comparison. To increase the flexibility of PLA, PEG is mixed with it 

PLA. PLA and PEG can also be processed under heat and an inert atmosphere to create 

what are called copolymers, where sections of one material’s chain bond with a chain from 

the other.  

Table 1 Comparison table of common polymer properties 

 

Polymer 
% 

Elongation 

Tensile yield 

strength (MPa) 

Tensile 

Modulus 

(GPa) 

Biodegradable 

PLA [1] 47.6 44.1 2.76 Yes 

Polycaprolactone 

(PCL) [2] 
674 27.3 0.378 Yes 

Polyvinyl Chloride 

(PVC) [3] 
224 50.4 2.7 No 

Polypropylene (PP) 153 31.8 1.76 No 

  

Both types of these materials will be examined. In Chapter II, a range of PLA and PEG 

blends will be considered. These blends use two types of PLA with different material 

properties and three molecular weights of PEG over three concentrations to determine the 

effects on material properties from each. In Chapter III, a modified PLA and PEG reaction 

blended material blended with additional PLA in two different concentrations. These two 

blends are compared with the original materials, the PLA, PEG, and the reaction blended 

PLA-PEG material to determine the dissolution properties
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CHAPTER II 

EFFECTS OF PEG MOLECULAR WEIGHT AND CONCENTRATION ON THE 

MECHANICAL PROPERTIES OF 3D PRINTED PLA-PEG BLENDS 

 

2.1 Introduction 

Medical materials have been under intense research as investment and interest are poured 

into solving common medical issues. M. Tobío et al. [4] studied the delivery of proteins 

using PLA-PEG nanoparticles through nasal membrane. As PLA-PEG blends are bio-

absorbable, there is also some interest in using them to slowly deliver drugs over long 

periods of time. K. Kim et al. [5] studied the possibility of delivering antibiotics through a 

PLGA electrospun scaffold and used a PEG-b-PLA copolymer to better allow for long term 

release. T. Serra et al. [6]at the Institute for Bioengineering of Catalonia studied the 3D-

Printing of very fine structured scaffolds using PLA and PEG with calcium phosphate to 

improve cell adhesion.  R. Scaffaro et al. [7] at the University of Palermo, Italy studied the 

creation of scaffolds (pictured) containing micropores with PLA, PEG, and NaCl for

 

Figure 1. R. Scaffaro el al. PLA scaffolds. 
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tissue engineering through compression molding. Polymer-based composite systems can 

be made with extensive differences in properties and can be tuned with the addition of 

many more reinforcing materials, plasticizers, or medicines.  

The specific material system considered in this work is a range of Polylactide (PLA) and 

Polyethylene glycol (PEG) blends, commonly used in 3D-printed cell tissue scaffolds. 

Combined with 3D-printing or other shaping methods, these materials may allow for 

patient-customized replacement tissue scaffold that automatically dose out medicine as 

they are harmlessly absorbed into the patient’s body. Though this material system has been 

used in some research, material properties that consider the type of PLA and the type of 

PEG used, along with the effects of concentration, are not readily available.  

2.2 Materials and Methods 

Polylactide (PLA) is an opaque polymer commonly made from renewable feedstocks, such 

as corn starch. It is biodegradable, bio-absorbable, and FDA approved for use within the 

human body. Its material properties allow it to be used in some structural applications, as 

it has high strength, but it is limited primarily by a low flexibility. PLA is very capable of 

blending with many different additives to achieve improvements in the material properties. 

Depending on the molecular weight of the PLA, its melt flow index can be changed to 

better allow certain shaping methods to used. Two blends of PLA were obtained from 

NatureWorks, LLC, one with a low melt flow index, PLA-3001D, and one with a higher 

MFI, PLA-3251D. Some of their properties are shown in Table 2. 
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Table 2 Physical properties of PLA 

 

PLA blend 3001D 3251D 

Melting temperature (°C) 200 188-210 

Glass transition temperature (°C) 49.0 55-60 

Crystalline transition temperature (°C) 155-170 155-170 

Melt flow index @ 210°C (g/min) 1.1 8 

Tensile yield strength (MPa) 62 62 

 

Polyether glycol (PEG) is a material with various physical states depending on the 

molecular weight. Three molecular weights of PEG were obtained from Sigma-Aldrich, 

the physical state at room temperature shown in Table 3. 

Table 3 PEG molecular weights and physical states at room temperature 

 

PEG Molecular weight 600 1000 1500 

Physical state (20°C) Thick liquid Waxy solid 

 

The PLA and PEG were blended in several ratios, using either one of the PLA types and 

one of the PEG molecular weights in batches of 5, 10, and 15% mass concentrations of 

PEG. The planned blends are shown in Table 4.  

Table 4 Extruded blends of PLA and PEG 
 

Batch 
PLA 

Type 

PEG 

MW 

PEG 

m% 
Batch 

PLA 

Type 

PEG 

MW 

PEG 

m% 

1 3001D N/A N/A 11 3251D N/A N/A 

2 3001D 600 5% 12 3251D 600 5% 

3 3001D 600 10% 13 3251D 600 10% 

4 3001D 600 15% 14 3251D 600 15% 

5 3001D 1000 5% 15 3251D 1000 5% 

6 3001D 1000 10% 16 3251D 1000 10% 

7 3001D 1000 15% 17 3251D 1000 15% 

8 3001D 1500 5% 18 3251D 1500 5% 

9 3001D 1500 10% 19 3251D 1500 10% 

10 3001D 1500 15% 20 3251D 1500 15% 
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2.2.1 Extrusion 

Each of the batches were hand-mixed in a container with the use of a hot-water bath to 

evenly coat the PEG across the PLA and extruded using a Brabender Intell-Torque single 

screw extruder. The extruder was controlled using Brabender WinExt software, which 

allowed modification of running settings in real-time. The extruder had four electrical 

resistance heated zones and was cooled with air to allow fine control of temperature. 

Additional device properties and running settings are shown in Table 5. The extruded 

filament was hand-spooled to produce a filament with an average diameter of 1.7 mm ± 

0.3 mm.   

Table 5 Filament extrusion settings 

 

Length/Diameter ratio 25:1 

Diameter 0.75 in 

Die shape Circular 

Die diameter 3 mm 

Hopper heating zone temperature 160°C 

Second heating zone temperature 160°C 

Third heating zone temperature 155°C 

Die heating zone temperature 150°C 

Extrusion speed 24 rpm 
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2.2.2 3D Printing 

A MakerGear M2 3D printer was used to print tensile coupons.  The printer used featured 

a heated, glass bed and a 0.4mm extrusion nozzle. The standard filament size was 1.75 mm, 

but readily accepted the prepared filament. The tension samples were designed to the 

dimensions of ASTM D638 type IV, as the smaller dimensions allowed for more samples 

to be made with lower printing times. 3600 mm of filament would have been needed to 

make a type I sample versus only 2000 mm of filament for the type IV, and the type I would 

have required 45 minutes to print versus the 23 minutes needed for a type IV. The tension 

bars were modified to have an additional 15 mm at the ends to better fit the available testing 

equipment. The printer was run using settings shown in Table 6. Standard print speeds, 

usually 30 mm/s, were reduced by 10% to better allow bed adhesion. 

Table 6 3D Printer settings 
 

 

Infill pattern Rectilinear 

Infill percentage 100% 

Infill angle 45° 

Hot end temperature 200-220°C 

Bed temperature 50-65°C 

Layer thickness 0.2 mm 

Print speed 90% Program default 

 

 

Figure 2. 3D printer (left), dimensions (top right), and pattern example (bottom right). 
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Each tension specimen used a 45° print angle, causing the rectilinear pattern to 

rotate completely every eight layers, an example of the pattern is shown in Figure 2. The 

rotation of the print pattern allows better use of directional strengths and better 

approximates a uniaxially strong part.  

2.2.3 After-printed measurements 

The parts were measured with digital calipers and compared with the design 

dimensions. The ends were measured for their width and thickness. 

2.2.4 Tension testing 

A MTI-2K tensile testing machine, was used to test all samples, with Epsilon 

extensometers of a gauge length of one inch. The tension specimens were labeled, and then 

were tested in random order, using a testing speed of 0.05 in/min, and removing the 

extensometer if the strain exceeded 3%. The testing speed was set to 0.2 in/min for samples 

with a large expected deformation. 
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2.3 Results and discussion 

2.3.1 Extruder torque 

The average extrusion torques are shown in Figure 3. Overall, a decrease was seen 

with increasing PEG, except in the 10% mass PLA 3251D and PEG 1000 or PEG 600. As 

PEG molecular weight increased, the required torque increased. The lower molecular 

weight PLA required less torque to extrude than the higher molecular weight, at all mass 

percentages of the same molecular weight PEG.  

 

Figure 3. Extruder torque. 
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2.3.2 Printed tolerances 

The as-printed parts matched the target dimensions to within ±0.25mm. The most 

accurate parts within the weight percentages was the 10% for printed width and the 15% 

for printed thickness. Printing tolerances decreased with increasing PEG concentration. 

Between the two types of PLA, the 3251D was more accurate, most likely due to the 

increased viscosity inherent in the type of PLA. The lowest molecular weight PEG had the 

most accurate dimensions. The print tolerances increased with PEG molecular weight. 

 

Figure 4. Part tolerances. 
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2.3.3 Tensile strength  

The tensile strength of the blends all decreased from neat values with the addition 

of any molecular weight PEG, with higher mass fractions usually leading to reduced tensile 

strengths. Lower molecular weight PEG blends were more linear in their tensile strength 

reduction, whereas the higher molecular weight PEG blends did not follow a linear 

reduction, the 3251D and 1500 blend even showed a higher tensile strength at a 15% mass 

fraction. Tensile strength also decreased with the molecular weight of PEG, except for the 

15% mass blend, where the PEG 1500 had a higher tensile strength than the PEG 1000. 

Overall, the 3251D was more affected than the 3001D by either an increase in weight 

percent or by an increase in molecular weight. An equation with the form 

𝑃 = 𝑐 − 𝑎 ∗ 𝑥1 − 𝑏 ∗ 𝑥2 

was fit to the tensile strength data set using a regression model fit through Minitab, where 

𝑃 is the property being calculated, 𝑎, 𝑏, and 𝑐 are constants, and the 𝑥 terms are the 

 

Figure 5. Tensile strength by PEG concentration. 
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variables of interest, the PEG molecular weight and the weight percent. The constant 𝑐 was 

set to the neat tensile strength of the blend of PLA, 𝑇𝑆𝑛𝑒𝑎𝑡, and the fitting gave the equation 

for tensile strength, 𝑇𝑆, 

𝑇𝑆 = 𝑇𝑆𝑛𝑒𝑎𝑡 − 6.49 ∗ 10−3 ∗ 𝑀𝑊𝑃𝐸𝐺 − 73.5 ∗ 10−2 ∗ 𝑊𝑡%𝑃𝐸𝐺  

which is used to calculate the “Model estimate” points in Figure 5, where 𝑇𝑆 is  𝑀𝑊𝑃𝐸𝐺 is 

the molecular weight and 𝑊𝑡%𝑃𝐸𝐺  is the weight percent of PEG. The r-squared value for 

the model was 70.9%, additional statistics are included in Appendix B. 

Table 7 Percent decrease in tensile strength from neat values 

 

 % Decrease from neat tensile strength 

PEG Molecular weight PEG Weight % 

PLA 600 1000 1500 5% 10% 15% 

3001 19.3% 57.2% 39.9% 29.1% 33.4% 53.9% 

3251 36.6% 36.9% 49.3% 30.0% 43.9% 48.8% 

 

The drops in tensile strength for the 3251D were grouped more closely than the drops for 

the 3001D. The drops in tensile strength were not strictly increasing when considering the 

molecular weight of PEG but did increase with PEG weight percent. This is shown to a 

small degree by the correlation of the tensile strength to the PEG weight percent being 

slightly more negative than the molecular weight.  

Table 8 Tensile strength factor correlation 

 

Factor Correlation 

PLA Type +0.04 

PEG Molecular weight -0.68 

PEG Weight % -0.73 
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The negative correlations for both PEG molecular weight and PEG weight percent to the 

tensile strength also demonstrate that increasing the molecular weight or the weight percent 

will lower the tensile strength. The type of PLA was not well correlated with the tensile 

strength but was barely positive in the favor of 3251D having an overall higher tensile 

strength.  

2.3.4 Young’s modulus 

Young’s modulus decreased with increasing mass percent PEG for nearly all blends, except 

the PLA 3251D and PEG 1500 blend where the 15% mass blend had a higher value than 

the 10% mass blend.  

With increasing PEG molecular weight there was a decrease in Young’s modulus. The 

decreases in Young’s modulus scaled with the increasing weight percent of PEG, but not 

with the molecular weight of PEG. The data was used to fit a predictive model using 

Minitab, much the same as the model for the tensile strength. The model was determined 

 

Figure 6. Young's modulus by PEG concentration (above), molecular weight (below). 
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by setting the constant to the neat value of the modulus of the PLA, 𝐸𝑛𝑒𝑎𝑡, and was found 

to be 

𝐸 = 𝐸𝑛𝑒𝑎𝑡 − 3.53 ∗ 10−4 ∗ 𝑀𝑊𝑃𝐸𝐺 − 6.5 ∗ 10−2 ∗ 𝑊𝑡%𝑃𝐸𝐺 

with a coefficient of regression, R2,of 65.4%. 

 Table 9 Percent decrease in Young's modulus from neat values 

 

 % Decrease from neat Young's modulus 

PEG Molecular weight PEG Weight % 

PLA 600 1000 1500 5% 10% 15% 

3001 17.2% 67.8% 38.7% 23.8% 30.5% 69.5% 

3251 32.1% 33.7% 50.5% 23.1% 38.2% 55.1% 

 

The decreases in Young’s modulus were not increasing in order within the 3001D and did 

not show much difference between the 600 and 1000 molecular weights within the 3251D. 

The increases in the drops from neat values did increase more regularly with weight 

percent.  

Table 10 Young's modulus factor correlation 

 

Factor Correlation 

PLA Type +0.12 

PEG Molecular weight -0.57 

PEG Weight % -0.75 

 

The correlation to the type of PLA was higher, but this mostly due to the much higher 

difference between the neat materials. Within Figure 6 above, the results were split evenly 

overall, neither PLA had a majority one way or the other within a blend. The effect of PEG 

molecular weight was less important than the weight percent, though the correlations of 



15 

 

both were not close enough to perfectly predict, the PEG weight percent did more strongly 

affect the Young’s modulus. 

2.3.5 Scaffold printing test 

Several 9mm diameter scaffolds was printed with the 15% weight PEG, 1000 

molecular weight, 3001D mixture. Below is a photograph of the scaffolds, in increasing 

print accuracy from right to left, and three SEM image of the structure of the leftmost 

scaffold. A 0.1mm nozzle was used to print the scaffold as a 0.4mm nozzle was too large 

to capture the size of each individual line. The top right image shows the curvature of the 

scaffold and does not show any irregularities at the upper edge of the print. The bottom left 

image shows a regular and mostly evenly spaced grid. The final image on the bottom right 

shows slight pooling where the layers of the scaffold make contact, this demonstrating 

good interlayer bonding by showing clear contact between the layers. 

 

Figure 7. Printed scaffold picture and SEM images. 
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2.4 Conclusions 

Extrusion torque was lowered with increasing PEG weight percent and with PEG 

molecular weight. The printed tensile bars had good dimensional tolerances, falling within 

±0.25mm in both width and thickness. The tensile strength decreased with increasing PEG 

mass percent and with PEG molecular weight. It did not always follow the trend for higher 

molecular weight and high mass percent blends. PEG molecular weight and weight percent 

negatively correlated with tensile strength and Young’s modulus. PEG molecular weight 

was the weaker correlation in both circumstances, with the weight percent being the 

stronger, but not a perfect correlation.



17 

 

CHAPTER III 

INFLUENCE OF PLA CONCENTRATIONS ON THE DISSOLUTION OF PLA-

PEG BLENDS 

 

3.1 Introduction 

 Polylactide (PLA) and polyether glycol (PEG) blends have been studied by several 

research groups across the globe, and have found to be usable in tissue engineering, wound 

healing, and in drug administration. Y.K. Luu et al. [8] at Stony Brook University studied 

the delivery of customized DNA in gene therapy through electrospinning PLA-PEG 

copolymer scaffolds, which approximated material properties for skin and cartilage. T. 

Kaito et al. [9] at Osaka University studied the introduction of bone morphogenic proteins 

to encourage bone growth in damaged sites with a PLA-PEG block co-polymer and 

hydroxyapatite ceramic additives. S. Venkatraman et al. [10] at Nanyang Technological 

University studied the delivery of chemotherapy drugs through PLA-PEG-PLA triblock 

copolymer. These examples are a short set of the potential of these polymer systems we 

see slowly unfolding as research continues in multiple areas. 

 As a part of this global research, this section will deal specifically with a PLA-PEG 

copolymer blended within a PLA structure. A 50% PLA, 50% PEG copolymer was 

synthesized and was shown to be water-soluble. The water-soluble property of the PLA-

PEG copolymer is something that has not been explored within the context of a PLA blend. 

It is not understood how the dissolution is affected by the concentration of
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 the copolymer within the PLA, how the properties are affected, and how it can be tuned 

for a specific timed dissolution and chemical release. Current simple PLA and PEG 

mixtures do not have any significant surface or subsurface porosity, which is very 

important in the adhesion of cells to the polymer matrix. Using a mixture of PLA and the 

PLA/PEG copolymer system, we have created a material that can be shaped through similar 

processes as the base PLA (such as compression molding, injection molding, or 3D 

printing) and can then be placed in water, removing the copolymer and leaving behind a 

porous PLA lattice allowing for good cell adhesion while retaining the original strength of 

the PLA. Another possible use is in mixing drugs within both the copolymer and the PLA, 

allowing for two separate release schedules as the copolymer and the PLA follow a separate 

timetable for their dissolution.  

3.2 Methods and Materials 

3.2.1 Mixing and Molding 

 

Figure 8. PLA and PEG monomer diagrams. 
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  PLA (PLA-3001D) was acquired from NatureWorks, LLC. PEG of a molecular 

weight of 1000 was acquired from Sigma Aldrich. The chemical structures are shown 

above in Figure 8.  

3.2.2 Reaction blending of PLA-PEG in an inert atmosphere for three hours. 

A 1:1 blend of PLA and PEG was modified to create a copolymer system by melting and 

mixing the components and holding the mixture at 205°C under a nitrogen atmosphere for 

three hours, much like the process followed by J. Liu [11] to create a PLA-PET copolymer. 

The inert atmosphere was to prevent oxidative degradation of the PLA during the process. 

The copolymer, which we will refer to as Material A. 

3.2.3 Blending of Material A with PLA 

Material A was then mixed with additional PLA using a Brabender Intelli-Torque Plasti-

Corder Prep Mixer to create two additional mixtures of 1:1 and 3:1 PLA to Material A, 

referred to as Blend 1 and Blend 2, respectively. 

3.2.4 Molding of Material A and PLA blends 

 Using 15mm compression molding dies, each material system was cast into several 15mm 

diameter by 10mm high circular “pucks” to be used in testing. The molds were cleaned 

with soap and water, then rinsed with ethanol in between each molding. A light coat of 

mold release spray was used after cleaning to ensure even molding and easy removal.  

3.2.5 Density 

 The material density was determined using a Micromeritics AccuPyc II 1340 gas 

pycnometer using helium gas. Four samples per material system were measured and three 

densities per sample were found using 10 trials each. 
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3.2.6 Swelling 

The swelling ratio of the materials was found by measuring the initial mass before 

any fluid submersion. Individual beakers were filled with a Phosphate buffered solution 

and heated on a hot plate to body temperature (37°C). Four samples per material were 

submerged and the masses measured after 15, 30, and 60 minutes. The samples were dried 

on the outside with a paper towel before measuring the masses. The swelling was inferred 

from the increase in mass from the absorption of fluid. 

3.2.7 Dissolution Studies 

The short-term Dissolution profiles were found in both water and a phosphate-

buffered saline solution at both room and body temperature up to a time of 240 minutes. 

Four samples per material blend were removed at 30-minute intervals, dried, and weighed. 

The mass lost was normalized to the average mass of the samples. 

3.2.8 UV Characterization 

UV spectroscopy was run for the materials by placing 4 samples per material blend 

and time measurement in separate beakers within a phosphate-buffered saline solution. The 

individual samples were kept in a Cole-Palmer StableTemp water bath isotherm chamber 

at 37°C. Fluid was removed from each sample at a specific time as per Table 11. Samples 

created from Material A were significantly dissolved at 4 hours and were not tested through 

the rest of the time samples. The fluid samples were run through a UV spectroscopy system 

and the absorptivity as a function of wavelength measured. The measured range was from 

190 nm to 800 nm with a scan rate of 9600 nm/min, a data interval of 2 nm, and an 

averaging time of 0.0125 s. The machine was calibrated using DI water as a zero point and 

used a sample of the phosphate buffered solution as a baseline. Due to the number of 
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samples, plastic cuvettes were used that did introduce some noise underneath 300nm, and 

the data below this wavelength was discarded. Additional UV spectroscopy was done on 

PEG-1000 dissolved within PBS. 

Table 11 Planned UV characterization times 

 

Material blend 

Material A Blend 1 Blend 2 

2 hours 2 hours 2 hours 

4 hours 4 hours 4 hours 

N/A 6 hours 6 hours 

N/A 12 hours 12 hours 

N/A 1 day 1 day 

N/A 3 days 3 days 

N/A 7 days 7 days 

 

3.2.9 Fourier-transform infrared spectroscopy (FTIR) 

FTIR was done using a PerkinElmer Spectrum BX-FTIR for each of the material 

blends and the original materials. FTIR was done to give some evidence to show that 

Material A has some of the expected transesterification that would be seen in a copolymer. 

3.3 Results and Discussion 

3.3.1 Density 

 The expected densities of the mixtures, based on average densities of PLA 3001D 

and PEG-1000 were calculated using a weighted average of the total ratio of PLA to PEG 

to provide a limit for blends with an assumption of near-zero miscibility. As each blend 

was made using Material A, the measured densities were higher and reflected either a 

compaction expected by a copolymer, and/or more miscibility between the materials, as 

opposed to simple mixing with near-zero miscibility. The average densities are reported in 

Table 12 and are compared to the expected weighted average densities. 
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Table 12 PLA and copolymer blend densities 

 

Sample Measured density (g/cc) Expected density (g/cc) Difference 

Material A 1.234 1.167 + 5.58% 

Blend 1 1.249 1.203 + 3.75% 

Blend 2 1.251 1.225 + 2.10% 

 

As more PLA was blended with Material A, the difference between the measured and 

expected decreased. The percent difference was roughly halved with the halving of 

Material A in Blend 1, and again in half with the halving in Blend 2, giving an indication 

that Material A was successfully blended. 

3.3.2 FTIR 

The Fourier-transform infrared spectroscopy results are presented in Figure 13 and 

shows the effects of the original ingredients in both the copolymer and the blends. 

Additionally, the peak shifts from the Carbonyl ester response range (1700-1750) toward 

the Hydroxyl group range (2600-3000) indicate that Material A is in fact a copolymer, 

though additional confirmation will be required to confirm this. Both blends inherited 

peaks from both Material A and from the neat PLA, showing that the blending was 

successful. Suppression of the peaks from Material A increased as the amount of PLA in 

the blend increased. 
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Figure 9. FTIR results. 
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3.3.3 Short term dissolution  

The short-term dissolution for each sample is plotted in Figure 9. The Dissolution of 

Material A was significant in all mixtures and at all temperatures, showing the high water-

solubility of the material. The dissolution was more pronounced in deionized water, due to 

the lack of dissolved salts. The Material A sample was nearly completely dissolved within 

the 240 minutes in body temperature water versus in PBS which had lost 65% of its initial 

mass by the 240-minute mark. In the case of the PLA blends, the dissolution was much 

slower, and only showed mass loss within the DI water tests. Both blends showed swelling 

in the tests, discussed in 3.3.4. In the deionized water tests, Blend 2 did not lose any mass 

within the four hours. The PBS tests showed slight swell, but no dissolution of either blend. 

Figure 10. Short-term Dissolution results. 
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3.3.4 Swelling of Blends 

The swelling for Blends 1 and 2 are shown in Figure 10 in terms of the mass 

increase from the initial value within the degradation tests, from the degradation study in 

PBS at body temperature. Blend 1 absorbed more fluid than did Blend 2, but neither take 

in more than 1.5% of the original mass within the four hours.  

 

Figure 11. Swelling of Blends. 
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3.3.5 UV Spectroscopy 

The absorptivity of PLA is higher than that of PEG, the absorptivity of PEG is shown in 

the uppermost image in Figure 11. The absorptivity of PLA, as shown by M. Nanda et al. 

[12], trends upward at the lower wavelengths, versus the PEG that trends downward from 

a peak at 400nm. From these, we can infer that any increase in the absorptivity is due to 

the presence of non-soluble PLA. The UV absorptivity of Material A increases over time 

as the material is dissolved into an opaque, cloudy fluid. The absorptivity of Blend 1 

increases over time, especially obvious at 330nm. Blend 2 does not follow this pattern and 

the absorptivity does not increase over time. The relative absorptivity of the blends and the 

samples in chloroform at 330nm is shown in Table 13. 

 

 

 

Figure 12. UV Spectroscopy results. 
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Table 13 UV absorptivity at 330nm 

 

Relative 

absorptivity 
2 

Hours 

4 

Hours 

6 

Hours 

12 

Hours 

24 

Hours 

72 

Hours 

168 

Hours 
Sample 

Material A 0.1581 0.3032      

Blend 1 0.0509 0.0101 0.0132 0.0138 0.0236 0.0257 0.0339 

Blend 2 0.0629 0.0002 0.0223 0.0103 0.0242 0.0083 0.0174 

 

Material A has a doubling of the absorptivity between the two and four-hour tests. After 

an initial high absorptivity in Blend 1, there is a regular increase in absorptivity. In Blend 

2, the same initial high absorptivity gives way to a disorganized set of absorptivities over 

time.  

3.4 Conclusions 

Material A and the Blends had a higher density than what would be expected from a near-

zero miscibility blend of PLA and PEG, showing that it had blended the copolymer without 

drastically changing the original ratio. FTIR analysis showed some evidence of 

transesterification as would be expected in the formation of a copolymer, additionally, the 

FTIR showed both inherited peaks from Material A and suppressions from PLA that would 

be expected in the blended materials. Material A dissolved rapidly in body temperature 

deionized water and in PBS. The absorptivity of the Blend 1 followed a linear trend, while 

the Blend 2 followed no such trend.  
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CHAPTER IV  

OVERVIEW OF CONCLUSIONS 

 

4.1 Conclusions from Chapter II 

 In Chapter II, it was shown that the mechanical properties of the 3D printed PLA-

PEG blends were in fact affected by both the molecular weight of the PEG and the weight 

percent of PEG in each blend. The type of PLA (3001D or 3251D) also affected the 

mechanical properties, most to a lesser degree than in the case of the molecular weight or 

the concentration.  

The extrusion torque was lower using 3001D, as would be expected due to its lower 

melt flow index, but the torque was also decreased by higher molecular weights of PEG 

and their concentrations. The printed tolerances of all the parts were within 0.25mm of the 

original dimensions. Increasing the molecular weight of the PEG did somewhat lower 

printing tolerances but not consistently. The 3251D had tighter tolerances than the 3001D, 

due to a lower flowability. Increasing PEG molecular weight did have a deleterious effect 

on printing tolerances. Both tensile strength and Young’s modulus were affected in the 

same way, with 3251D having an overall advantage and increasing molecular weight or 

concentration lowered the property value. The materials were successfully printed into a 

high-detail small structure with observed interlayer bonding at the edges of each layer. 

4.2 Conclusions from Chapter III 

In Chapter III, a potentially new material was created by thermal reaction blending 

and had some evidence from FTIR that there may potentially be transesterification between 

PLA and PEG. There was observed increased density in Material A, from either 
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compaction in copolymerization or a higher miscibility. This material was successfully 

blended with PLA to create two blends, 1:1 and 3:1, of Material A with the PLA. Material 

A was highly water soluble and dissolved rapidly in water and quickly in PBS, up to 96% 

in DI water and 63% in PBS within four hours. Higher temperature fluid increased the 

solubility of the material in both water and PBS, though more significantly in water due to 

the absence of salts. The two blends did not dissolve within the four hours of the test, and 

did absorb fluid, up to about 1.5% of their original mass, more significantly in Blend 1. 

The UV absorptivity of the surrounding fluids went up over time for both Material A and 

Blend 1. The fluid from Material A was opaque and a cloudy white. Blend 2 did not have 

a regular increase over time, most likely due to a lower concentration of Material A. The 

FTIR of the two blends showed the adoption of the peaks of their constituents and the 

suppression of some peaks with increasing PLA. 
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CHAPTER V  

FUTURE WORK 

 

5.1 Potential from Chapter II 

There are several potential extensions of the work done in Chapter II. Work is still 

needed to improve the models for tensile strength and Young’s modulus for both higher 

molecular weights and concentrations, possibly through the addition of thermal analysis. 

An examination of more types of PLA would also help fill in the gap of how the PLA was 

contributing to the changes in mechanical properties, outside of initial values.  

Some work with the 3D printed scaffolds is currently being done at Alabama State 

to determine the effectiveness of the materials for culturing cells.  An extension of this in 

the future would be to examine the effects of PEG molecular weight and concentration on 

the cultured cells, to be used in patient-specific skin grafting or tissue engineering. 

5.2 Potential from Chapter III 

The most important future work will start by confirming Material A as a copolymer 

through a combination of NMR and DSC/TGA. Some work the University of Louisville is 

being done in an attempt to 3D print Material A, using a heated syringe to extrude the 

material, but this is still in development to determine process parameters for an accurate 

print. The printed Material A may potentially be used for short term drug delivery. 

Additionally, the blended materials can be extruded into filaments for 3D printing, though 

the same process to determine the printing parameters would need to take place. As the 

blends did not fully dissolve within the four hours, extended time tests could be done to 

determine the full timetable for dissolution. Furthermore, as these materials have potential 
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in medical applications, it will be necessary to determine the effects of the dissolved 

material on cell life, and to test the dissolution in vivo for both the materials and the blends.



32 

 

APPENDIX 

A. BIO-ABSORBABLE BONE REPAIR MATERIALS 

 

A.1 Background 

Bio-absorbable products have been the subject of much research, as current medical 

procedures can be vastly improved through their integration. As a short list, bio-absorbable 

polymers have been investigated  for long term drug delivery [13], facial fracture fixation 

plates [14], bone screws [15], and stents [16].  Titanium is currently used for many bone 

repairs because it is biologically inactive and extremely strong. These two factors represent 

significant drawbacks when seen from another angle. Bones increase and decrease in 

strength in response to external stresses imposed upon them. When a material with such 

high strength, like titanium, is used within bone, stresses are not experienced within the 

bone that otherwise would be felt as the high strength material absorbs a majority of the 

stress. This biological reaction is referred to as stress shielding and is the major drawback 

of using any high strength material compared to the natural strengths of bone [17].  

Titanium is also bioinert, a great positive when trying to avoid infection or inflammation 

due to biological Dissolution but presents a drawback in that it will never naturally leave 

the body. Screws, plates, and pins used temporarily to repair damage need a secondary 

surgery to remove and thus require another surgery and introduce another chance that 

something goes wrong. 
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Bio-absorbable materials can bypass the second surgery, as they naturally dissolve 

and are absorbed into the body and can be tuned to match the material properties of bone,

preventing stress shielding from occurring during the healing process. The materials 

chosen for this study are PLA, a bio-absorbable polymer currently used in many medical 

applications, and hydroxyapatite, a ceramic chemically similar to the naturally occurring 

apatite crystals in bone. The blending of these materials combines the high strength of the 

ceramic with the bio-absorbable property of the polymer matrix.  

A.1.2 Preliminary research 

A.1.2.1 Materials 

PLA 3001D was acquired from NatureWorks, LLC, along with a hydroxyapatite 

powder from a Chinese supplier. The hydroxyapatite was examined with a Sympatec R-

series laser diffraction system to determine the particle size, the results of this are shown 

Figure 13. Hydroxyapatite particle size distribution. 
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below in Figure 15 The x50 from the LDS was 78µm, showing that this was a small, but 

comparatively large powdered hydroxyapatite. SEM imaging was done on a sample of 

the powder to confirm the general shape and check the particle size results of the LDS 

and is shown above in Figure14. The SEM image shows that there are also a significant 

number of particles underneath the visible range of 10µm for the LDS system used. 

These nanoparticles are closer to the size used in other research and appear to be a 

significant percentage of the particles imaged. 

A.1.2.2 Material property estimation 

The material property goals for the composite material were found through a review 

of several studies that had previously measured the significant properties of bone, namely 

the elastic modulus, compressive modulus, tensile strength, compressive strength, and 

density. The material property ranges are presented in Table 14 below. 

 

Figure 14. Hydroxyapatite SEM image. 
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Table 14 Bone's mechanical properties 

Property [18], [19], [20] Measured range 

Ultimate tensile strength 125-175 MPa 

Ultimate compressive strength 130-220 MPa 

Tensile modulus 15-20 GPa 

Density (dry) 1.32-2.10 g/cc 

Density (wet) 1.61-1.99 g/cc 

 

The material properties of bone are vastly below those of Titanium, some of which are 

presented in Table 15 below. The strength of titanium vastly outclasses bone in every 

measure, it is much stronger, is less flexible, and is more than twice as heavy. 

Table 15 Titanium’s mechanical properties 

 

Property (Ti-6Al-4V) [21] Value Percent difference 

Ultimate tensile strength 950 MPa + 137.8% 

Tensile modulus 113.8 GPa + 140.2% 

Density 4.43 g/cc +71.4% 

 

A material that better approximates the properties of bone will avoid the problem of stress 

shielding without sacrificing the strength to support damaged bone while it is healing. 



36 

 

  The properties of the material blends of the polymer and ceramic composite were 

first estimated through the rule of mixtures, which is a bounded prediction of the possible 

range of material properties. The upper bound is found using 

𝑃𝐶 = 𝑋𝑓𝑃𝑓 + (1 − 𝑋𝑓)𝑃𝑚 

and the lower bound is found using 

𝑃𝐶 = (
𝑋𝑓

𝑃𝑓
+
1 − 𝑋𝑓

𝑃𝑚
)

−1

 

where the 𝑋𝑓 term refers to the volume fraction of the composite and the 𝑃𝑓 and 𝑃𝑚 terms 

refer to the properties of the filler and the polymer matrix, respectively. Using published 

values for all mechanical properties, the estimated properties of the blended composite 

were calculated and are shown in Table 16 where at what volume fraction of hydroxyapatite 

the material blend would theoretically match the material property of bone. 

Table 16 Estimated matching properties 

 

Property Matched volume fraction 

Ultimate tensile strength 40-80% 

Ultimate compressive strength 10-35% 

Tensile modulus 15-85% 

Density 20-40% 

 

While there is not a perfect match, a range of 20-40% captured at least three of four. At the 

upper ranges of hydroxyapatite volume fraction, the predicted strength was more than what 

was required, and at lower volume fractions, the composite was not predicted to have the 

strength to be close to the properties of bone.  
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A.1.2.3 Blending and max solids loading 

The materials to blend were as follows, 20%, 30%, and 40% hydroxyapatite by 

volume, PLA, and 0.5% by mass stearic acid as a surfactant to ensure equal and thorough 

blending. The mixtures were blended in a Brabender IntelliTorque Prep-Mixer with a twin-

screw Prep-Mixer attachment. The mixing torque was captured over time for each mixture. 

A sample pattern is shown in Figure 16 below where the initial spike in torque is the time 

at which the PLA first begins to melt, and the second spike is the introduction of the 

 

Figure 16. Mixing torque curve for 30% HA blend. 

Figure 15. Average final mixing torques. 
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hydroxyapatite powder to a molten PLA. The torque eventually settles to a stable number 

given enough time, average torques measured for each mixture are shown in Figure 17. As 

can be seen, there is a decreasing rise in average final mixing torque with the addition of 

filler, indicating that the maximum solids loading is being approached where the introduced 

powder will be unable to be absorbed into the matrix due to oversaturation. A simple 2nd 

degree function fit to the average mixing torque predicts that the maximum solids loading 

may occur at around 62.5% volume filler load, but this value may under-predict the actual 

maximum.  
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B. MINITAB PLA-PEG BLEND MECHANICAL PROPERTY MODEL 

 

B.1 Minitab output 

Regression Analysis: Avg. TS (Mpa) versus PEG, WT (%), 

PLA 
Method 

Categorical predictor coding (1, 0) 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 621.517 207.172 13.00 0.000 

  PEG 1 153.174 153.174 9.61 0.007 

  WT (%) 1 216.257 216.257 13.57 0.002 

  PLA 1 1.708 1.708 0.11 0.748 

Error 16 255.044 15.940       

Total 19 876.561          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

3.99252 70.90% 65.45% 54.68% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 44.83 2.40 18.67 0.000    

PEG -0.00649 0.00209 -3.10 0.007 1.20 

WT (%) -0.735 0.199 -3.68 0.002 1.20 

PLA                

  3251 0.58 1.79 0.33 0.748 1.00 

Regression Equation 

PLA    

3001 Avg. TS (Mpa) = 44.83 - 0.00649 PEG - 0.735 WT (%) 

            

3251 Avg. TS (Mpa) = 45.42 - 0.00649 PEG - 0.735 WT (%) 
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Fits and Diagnostics for Unusual Observations 

Obs 

Avg. TS 

(Mpa) Fit Resid Std Resid  

7 20.00 27.33 -7.33 -2.03 R 

R  Large residual 

 

Regression Analysis: Avg. YM (Gpa) versus PEG, WT (%), 

PLA 
Method 

Categorical predictor coding (1, 0) 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 3.49570 1.16523 10.10 0.001 

  PEG 1 0.45492 0.45492 3.94 0.064 

  WT (%) 1 1.69038 1.69038 14.65 0.001 

  PLA 1 0.07172 0.07172 0.62 0.442 

Error 16 1.84621 0.11539       

Total 19 5.34191          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

0.339688 65.44% 58.96% 46.17% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 2.889 0.204 14.14 0.000    

PEG -0.000353 0.000178 -1.99 0.064 1.20 

WT (%) -0.0650 0.0170 -3.83 0.001 1.20 

PLA                

  3251 0.120 0.152 0.79 0.442 1.00 

Regression Equation 

PLA    

3001 Avg. YM (Gpa) = 2.889 - 0.000353 PEG - 0.0650 WT (%) 

            

3251 Avg. YM (Gpa) = 3.009 - 0.000353 PEG - 0.0650 WT (%) 
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Fits and Diagnostics for Unusual Observations 

Obs 

Avg. YM 

(Gpa) Fit Resid Std Resid  

7 0.727 1.561 -0.834 -2.72 R 

R  Large residual 
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