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By 
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Abstract 

In this thesis, we studied two of the most important exogenous economic 

growth models; Solow and Ramsey models and their effects in 

microeconomics by using dynamic programming techniques. Dynamic 

programming (DP) is a general approach to solve economic growth 

problems. 

The main differences between Solow and Ramsey models are discussed in 

details. Bellman value function for the growth models is applied to the two 

models and an analytic formula are derived.  

Concerning the models under study, we then discussed the steady states for 

the model and derived a closed formula for the capital. This formula was 

checked by computer using Python codes where a new concave assumed 

value function is given; 0.252( ) 35w k  , to be compared with a value 

function given by other 5log( ) 25w k  . These two initial functions have 

the same properties of being monotone and concave up. 

The comparison shows the excellence and advantages of our assumption. 

We reached the true value function faster. 
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Chapter One 

Introduction 

1.1 Overview 

There is a wide literature on macroeconomics which studies the whole 

economy. Therefore, it is interested in a lot of questions in economics which 

need answers. Why are some countries richer than others? What are the 

reasons behind the high and/or low incomes of countries? Why people save? 

How much should he/she invest/save to keep a steady income?  

Macroeconomics may find some answers for these questions. Romer (1996) 

represents a text book of advanced macroeconomics [6]. He had discussed 

many economic models. An increase in the capacity of an economy to 

produce goods and services, compared from one period of time to another is 

known as an economic dynamic growth.  Many researchers developed many 

economic growth models such as Ramsey (1928), Harrod (1939), 

Domar(1946), and  Solow (1956). Harrod and Domar worked separately and 

developed an economic growth model named by Harrod-Domar model. It is 

used in economics development in order to clarify the rate of economic 

growth in terms of saving and productivity levels of capital. It argues that 

there no evidence for having a balanced growth of an economy. A drawback 

of this model is that it considers the development similar to the economic 

growth.  

Economists interested in the study of economic growth that has practiced 

markedly in the history of economics. John von Neumann's growth model and 

Roy Harrods's trial to generalize Keynesian's growth model. Interest in the 
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theory of economic growth calmed in 1970s and early 1980s, just few result 

were produced Following Solow (1956) and Kador (1961) papers from 1950s 

until the early of 1970s, growth theory became one of the central topics in 

economics. While in the middle of 1980s it seems to provide a new beginning 

for the economics of growth. Once again economic growth becomes a central 

topic in the theory of economics. The growth economics exploded after 

Solow's paper. Through 1960s the basic neoclassical growth model (Ramsey 

model) was extended in several directions by Hirofumi Uzawa, Kenneth 

Arrow, James Tobin, Peter Diamond and others.  There are two types of 

economic growth models, exogenous growth models, like Ramsey and Solow 

models and endogenous growth models like Romer model. 

The first idea of the exogenous growth model was introduced by Ramsey 

(1928) when he asked his famous questions (how much of its income should a 

native save?)[10]. As early as a new complex model of saving was 

determined by Ramsey. His contribution was theoretically and 

mathematically and did not have a response from economists until after thirty 

years. In the neoclassical growth theory, this model became important and the 

version of this model was finished by Cass (1965)[5] and Koopmans 

(1965)[24]. Therefore, this model is so called Ramsey-Cass-Koopmans 

model. It is one of the basic cornerstone models in macroeconomics. It 

consists of a finite number of completely alike agents with an infinite time 

horizon, i.e. it is a representative agent model
1
.  

                                                           
1
 - Agents: Households and firms 
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Robert Solow expand the idea of Ramsey and published two articles "a 

contribution to the theory of economic growth"(1956) and "technical change 

and the aggregate production function"(1957), so the growth economics and 

economic theory attracting the attention of a significant part of the economics 

profession. 

In 1956, Swan worked separately without knowing about Solow's work in the 

same field. So the model is named as Solow-Swan model. Solow and Swan 

turns to neoclassical production function with varying share of labor and 

capital input. This approach provides the first neoclassical model of long run 

economic growth and become the starting point for most studies on economic 

growth. 

The new growth theory worked on the steady-state rate as an endogenous rate, 

i.e. the steady-state rate is determined within the model. This work was 

referred to David Warsh and Romer. 

The main difference between exogenous and endogenous concepts in 

economy is that, exogenous model refers to some external factors that affect 

the production function such that A; the effectiveness of labor, also, these 

factors are given as constants. But endogenous models refer to internal factors 

that affected the production function such that capital and labor and these 

factors determined within the model and changed with time [4]. 

In our thesis, Ramsey and Solow are exogenous growth models, but we may 

sometimes use the concept (endogenous) if we are dealing with the internal 

factors that affected the model.  
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Dynamic programming is a general approach to solve economic growth 

problems. This method acts recursively like the routine of computer that calls 

itself, adding information to stack each time and stopped when it met specific 

conditions. Once stopped, it finds a solution by deleting information from the 

stack in the appropriate sequence. One of the important characteristics of 

dynamic programming is that the problem can be divided into stages. In order 

to find the next closest node to the origin, each stage contains a new problem 

to be solved. In some applications the stages are relevant to time and to get 

efficient solution of the problem we can solve the stages backwards in time, 

i.e. we go back from point in the future to point in the present, or we can solve 

it forwards.   

The basic attributes that characterize dynamic programming problems are 

summarized as follows: 

The problem divided into stages and there is a policy decision required at 

each stage. Moreover, each stage has a number of states associated with the 

beginning of that stage. These states are the possible conditions in which the 

system might be at that stage of the problem. In addition, the number of states 

may be either finite or infinite. The effect of the policy decision at each stage 

is to transform the current state to a state associated with the beginning of the 

next stage. The final step in the solution of the problem is to find an optimal 

policy for the whole problem [18]. 

There are two fields in dynamic programming, stochastic and deterministic 

dynamic programming. In deterministic dynamic programming, the state of 
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the next stage is completely determined by the state and policy decision of the 

current stage. 

The following figure summarizes the deterministic dynamic programming 

where: 

N: number of stages. 

n: label of current stage. 

ns : Current state of stage n. 

nx : Decision variable of stage n. 

  *

nx  :  Optimal value of nx . 

( , ) :n n nf s x Contribution of stages n, n+1,….N to objective function if the 

system starts in state ns at stage n. 

* *( ) ( , )n n n n nf s f s x  

The figure shows us the following: 

At stage n, the process will be in some state ns . If we make a policy decision

nx then the process will move to some state 1ns   at stage n+1. Therefore, the 

contribution to the objective function will be calculated to be *

1 1( )n nf s 
. Also, 

Figure (1.1): The structure of deterministic dynamic programming 
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the policy decision nx makes some contribution to the objective function. 

Lastly, the objective function may be used to minimize or maximize the sum 

of all individual states [29].   

The father of dynamic programming is Richard Bellman [27]. In the sense of 

naming dynamic programming, he said "try thinking some combination that 

will possibly give it a pejorative meaning. It's impossible. Thus, I thought 

dynamic programming was a good name. It was something not even a 

congressman could object to. So I used it as an umbrella for my activities". 

A Bellman equation which is also known as a dynamic programming equation 

is associated with the mathematical optimization methods. It writes the value 

of a decision problem at a certain point in time in terms of the reward from 

some initial choices and the value of the remaining decision problem that 

result from those initial choices. The mathematical style of  the Bellman 

equation in our thesis is: 

 
1

1
,

( ) max ( ) ( )
t t

t t t
c k

V k u c V k


   

Where ( )tV k , is called the value function. 

In this thesis we aim to review a detailed Solow and Ramsey growth models. 

Furthermore, we aim to use dynamic programming in order to find an 

appropriate solution for Solow and Ramsey optimization problems. 

Moreover, it contains some Python codes to solve infinite dynamic 

programming horizon numerically. Python software is a rapidly maturing into 

one of the major programming languages and it is favored for many high 

technology companies.  
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1.2. Preliminaries  

In this thesis we deal with many symbols, these symbols are used frequently. 

1. The discount factor   : it is a number that takes value between zero and 

one. The fact that  > 1 means that the household cares a little more 

about current consumption than it cares about future consumption. 
1

1 r
 


 where r is the discount rate. 

There is a calculated table that gives us the appropriate value of   that 

we shall use. See appendix II. 

2. The ratio  : it is a statistical measurement for calculating returns. It is a 

measure of an investment's performance compared to a benchmark and 

it is a mathematical estimate of the return, based on the growth of 

earnings per share. It is also take a value between zero and one. 

3. The multifactor productivity (A): it measures the change in output per 

unit of combined input. A is called technology and it has no unit. 

4. The capital amount (K): it is the one of the cornerstone of the 

production function besides the labor force. It corresponds to the 

quantity of machines (equipment and structures). 

5. The labor force (L): it is the total of employment. It can be measured in 

different ways; it corresponds to hours of employment or number of 

employees. 

6. The Output (Y): it is the total amount of production of final good. 

7. The saving rate (s): it is constant exogenous fraction which household 

save from their income.  
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8. Consumption (C): is the amount of goods that consumed, destroyed or 

used up by individuals, firms in a period of time. 

9. Investment (I): it is the purchase of goods or units that are not 

consumed in the present, but are used in the future to create wealth. Or 

the amount of goods that used to generate an income in the future.    

In good market, 

t t tY C I   
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Chapter Two 

Models of Economic Growth 

Economic growth and development are dynamic processes, focusing on how 

and why output, capital, consumption and population change over time. 

Therefore, the study of economic growth needs dynamical models. The most 

dynamical models which we are studying here are Solow and Ramsey models.  

2.1 The Solow Growth Model 

The Solow-Swan model named after Robert Solow and Trevor Swan, or 

simply the Solow model for the more famous of the two economists. Solow 

and Swan published two articles in the same year,1956, and they introduce the 

Solow model. After that, Solow developed many implications and 

applications of this model and awarded the Nobel prize in economics for his 

work (1987). This model shaped the way to approach the economic growth. 

So, The Solow growth model is the basic reference point for almost all 

analysis of growth. Before Solow model, the most common approach to 

economic growth was built on the model that developed by Harrod (1939) and 

Domar (1946). The Harrod-Domar model emphasized potential dysfunctional 

aspects of economic growth, as an example on this; how economic growth 

could go side by side with the increasing in unemployment. But this model in 

the opinion of Solow is not a good start in the economic growth. The basic 

difference between Solow model and Harrod-Domar model is that; the Solow 

model have the neoclassical production function. this function connectes 

Solow model with macroeconomics. Besides, Solow model is a simple and 

abstract representation of the economy. The basic assumptions of this model 



11 

in the economy, there is a single good produced and there is no international 

trade. That is, the economy is closed to foreign goods and factor flows. 

Moreover, there is no government and all factor of production (i.e. capital and 

labor) assumed to be fully employed in the production process.  It takes 

technological progress and investigates the effects of the division of output 

between consumption and investment on capital accumulation and growth.  

The principal conclusion of the Solow model is that the accumulation of 

physical capital cannot account for either the vast growth over time in output 

per person or the vast geographic differences in output per person. 

The Solow model has no optimization in it; it simply takes the saving rate as 

exogenous and constant. 

Relaxing the Solow model's assumption of a constant saving rate has three 

advantages. First, and most important for studying growth, it demonstrates 

that the Solow model's conclusion about the central questions of growth 

theory do not hinge on its assumption of a fixed saving rate. Second, it allows 

us to consider welfare issues. Third, infinite and finite horizon models are 

used to study many issues in economics other than economic growth, thus 

they are valuable tools [6]. 

The Solow model can be formulated either in discrete or continuous time. In 

discrete time the work is simpler than in continuous time and it is more 

common in macroeconomic applications. In order to distinguish between the 

two versions of time, we use the notation ( tx ) if we are dealing with discrete 

time and ( ( )x t ) in continuous time.   
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2.1.1 Assumption in the Solow model: 

a) Time:  

The Solow model is a dynamic model, so the economic variables are evolves 

through time. The time is partitioned into periods, first period, next 

period…… and it denoted by a subscript (t). take some variable  Yt , this 

means the value of Y at the time t, similarly Yt+1 means the value of Y at the 

period (t+1) and it’s the same for any variable which has t as a subscript. 

b) Variables and parameters 

There are five key variables in Solow model which are endogenous and 

dynamic, these variables are (defined related to time): 

Yt : output, income 

Kt :  capital  

Lt : labor 

tI  : investment 

Ct : consumption 

While the parameters in Solow model are exogenous and constant, these 

parameters are: 

s: Saving rate (always between 0 & 1) 

 : Depreciation rate (always between 0 & 1) 

In a good market we have the fact that:  

Yt = Ct + tI  

This means that the amount of income which produced in the economy and 

composed to people either consumed or invested. 
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We may write the investment and consumption in other way like,   

 tI = sYt  and Ct = (1-s)Yt . Consumption is something clear, households or 

firms use it and disappear, but what happened when we save something? 

Saving is invested into the capital stock, it is added to the capital Kt. 

Example: let's take the capital to be the corn. Corn can be used for 

consumption and as input, as seeds, for the production of more corn 

tomorrow. So, capital corresponds to the amount of corn used as seeds for 

future production [4].  

Let's ask a question, how the capital stock changes through time? The capital 

stock is different from one period to the next, when we want to know the 

capital stock for the next period we take the capital stock for the current 

period as exogenous and use it beside investment to find the capital for the 

next period using the equation 1t t t tK K K I    , this equation is known as 

the capital accumulation equation. 

Using the fact that tI = sYt , so we rewrite the equation as: 

 1t t t tK K K sY    ,  

1t t t tK K sY K                                                                                        (1) 

This equation shows how much capital changes from one period to the next, if 

1t tK K K    then t tK sY K    

c) Input and output in Solow model 

The Solow model focuses on four variables: output (Y), capital (K), labor (L) 

and the "effectiveness of labor" (A). At any time, the economy has some 
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amounts of capital, labor and   knowledge; these are combining to produce 

output. The production function takes the form: 

( , )t t t tY F K A L                                                                                                   (2) 

Where, t, denote the time. 

The effectiveness of labor, A; is a multifactor productivity which measures 

the output per unit of labor input. Also, it’s the amount of goods and services 

that a worker produces in a given amount of time.  

There are a lot of factors that affected the value of (A), like 

 Physical-organic, location and technological factors. 

 Levels of flexibility in internal labor market. 

 Individual rewards and payment system. 

 Economic and political-legal environment. 

Two features of the production function should be noted. First, time does not 

enter the production function directly, but only through K, L, and A. that is, 

output change over time if the inputs into production change. Second, A and 

L enter multiplicatively. 

The central assumption of the Solow model concerns the properties of the 

production function and the evolution of the three inputs into production 

(capital, labor and knowledge) over time. 

d) The factor A is free; it is publicly available as a non-excludable (a good is 

non-excludable if it's impossible to preclude the individual from using or 

consuming it) and a non-rival good (a good in non-rival if it's consumption by 

others does not prevent my consumption). Also, A, is freely available to all 
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potential firms in the economy and firms do not have to pay for using this 

factor.     

2.1.2 Assumptions concerning the production function 

The model's critical assumption concerning the production function is that it 

has constant returns to scale into its arguments, capital and effective labor. 

That is, doubling the quantities of the capital and effective labor doubles the 

amount produced. More generally, multiplying both arguments by any 

nonnegative constant c causes output to change by the same factor: 

( , ) ( , )F cK cAL cF K AL   for all  c   0                                                        (3) 

The assumption of constant returns can be thought of as combining two 

assumptions. The first is that the economy is big enough that the gains from 

specialization have been exhausted. The second assumption is that inputs 

other than capital, labor, and knowledge are relatively unimportant. In 

particular, the model neglects land and other natural resources. 

The assumption of constant returns allows us to work with the production 

function in intensive form. Setting c = 1/AL in equation (3) yields: 

1
,1 ( , )

K
F F K AL

AL AL

 
 

 
                                                                           (4) 

K/AL is the amount of capital per unit of effective labor 

F(K, AL)/AL is Y/AL , output per unit of effective labor 

Define k = K/AL, y = Y/AL and f(k) = F(k, 1). Then we can rewrite (2) as 

Y = f(k)                                                                                                  (5) 
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Let us consider the production function in terms of discrete time; 

1( , )t t t t tY F K L AK L                                                                              (6)     

Let t
t

t

K
k

L
 , t

t

t

Y
y

L
 , t

t

t

I
i

L
 , t

t

t

C
c

L
 , yields the following 

t
t

t

Y
y

L
  = 

( , )t t

t

F K L

L
 = ,t t

t t

K L
F

L L

 
 
 

= ( ,1)tF k = ( )tf k                                   (7) 

 But ( )y f k =  
Y

L
 = 

1

t t
t t

AK L
AK L

L

 
 


 t

t

AK K
A Ak

L L






 
   

 
           (8) 

That is, we can write output per unit of effective labor as a function of capital 

per unit of effective labor [6]. 

Inputs are essential:         

(0,0) ( ,0) (0, ) 0F F k F L                                                                        (9)   

The production function in Solow model tells us how economy works; we 

have capital, labor…, if we combine them together then we will get an 

economic growth. If we increase capital or labor, then the production function 

will increase (output increase) in a decreasing rate, so the shape of the 

production function is concave. If we have no capital or no labor, i.e if they 

destroyed from one period to another then the production is zero.  

Marginal productivities are positive and decreasing. 

,
F F

k L

 

 
 <  0                                                                                           (10)      

2 2

2 2
,

F F

k L

 

 
 > 0                                                                                         (11)   
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The production function F satisfies the Inada conditions 

1) 
0

lim ( , )k
k

F K AL


  and lim ( , ) 0k
k

F K AL


 for all 0L . This means that 

adding any other capital does not change the output. 

2) 
0

lim ( , )L
L

F K AL


  and lim ( , ) 0L
L

F K AL


 for all 0K . This means that 

adding any other workers do not change the output. 

Given the following example for a production function: 

 The Cobb-Douglas: 

1 1( , ) ( )F K AL K AL AK L       , 0 >   > 1                                            (12) 

To show that the Cobb-Douglas function has constant returns; multiplying 

both inputs by a constant c gives us  

1( , ) ( ) ( )F cK cAL cK cAL   

                 1 1( )c c K AL      

                 ( , )cF K AL                                                                             (13) 

F is linear homogenous since it is exhibits constant returns to scale in K and 

L, so F is concave.        

To see that marginal productivities are positive: 

1 1( )
F

k AL
k

   



  < 0                                                                       (14) 

1(1 )
F

k A L
L

    
 


  < 0                                                                    (15) 

It is natural that the level of capital and labor should be positive. So, 

multiplying positive items gives a positive result [28].  
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2.1.3 The evolution of the inputs into production 

The remaining assumptions of the model concern how the stocks of labor, 

knowledge, and capital change over time. The model is set in continuous 

time; that is, the variables of the model are defined at every point in time. 

The initial levels of capital, labor, and knowledge are taken as given. Labor 

and knowledge grow at constant rates: 

( ) ( )

( ) ( )

L t nL t

A t gA t









                                                                                            (16) 

Where n and g are exogenous parameters and where a dot over a variable 

denotes a derivative with respect to time. 

Output is divided between consumption and investment. The fraction of 

output devoted to investment, s, is exogenous and constant. One unit of output 

devoted to investment yields one unit of new capital. In addition, existing 

capital depreciates at rate  . Thus: 

( ) ( ) ( )k t sY t k t


                                                                                     (17)  

Although no restrictions are placed on n, g, and  individually, their sum;       

( n g   ) is assumed to be positive [6]. 

2.1.4 The low of motion for capital and labor: 

Let's begin the work by given the following symbols, 

C : consumption,  I : Investment , Y : output , L : labor 

First of all, we must always be sure that (at any time t), Ct  + It    Yt  while in 

a good market Yt must equal Ct  plus It . 
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If the population growth is n   0 per period, then the size of the labor force 

evolves over time as follows: 

1(1 ) (1 )t tL n L n L    , take 1L   

Suppose that existing capital depreciates over time at a fixed rate [0,1] . The 

capital stock in the beginning of next period is given by the non-depreciated 

part of current-period capital plus contemporaneous investment 

i.e  1 (1 )t t tK K I                                                                                  (18) 

2.1.5 The steady state level for capital 

A steady state for the economy is a value of capital per unit of labor,K
*
, such 

that, if the economy has K0 = K
*
, then Kt = K

*
  t  < 1. This means that in the 

steady state 0K    

Now : 

t tK sY K    , but 0K   

0 t tsY K   

But we show that 
tY AK   

0 tsAK K    

Since we are in the steady state, K = K
*
 

* *0 ( )sA K K   , solving for K
*
, we get that: 

1

1
* sA

K




 
  
 

                                                                                              (19) 

So, in the law of motion for capital , if *

tK K  then 0K  .[6] 
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2.2 The Ramsey-Cass-Koopmans Model 

A new complex model of saving was determined by Ramsey (1928). His 

contribution did not have a response from economists until thirty years. The 

Ramsey growth model is a neoclassical model of economic growth based on 

work of the economist and mathematician Frank P. He discussed the problem 

of optimum saving assuming that we have a closed economy. Ramsey (1928) 

set out the model as a central planner's problem of maximizing level of 

consumption over successive generation. Later Ramsey model is adopted by 

researchers as a description of a decentralized dynamic economy. Cass (1965) 

and Koopmans elaborate the problem addressed by Ramsey with significant 

extension which called by Ramsey-Cass-Koopmans growth model [30]. 

Ramsey-Cass-Koopmans growth model is resembled to Solow model. 

However, the dynamics of aggregate economics can be determined by 

decisions at the macroeconomic level, in particular they make the decision 

how much of their income to consume in the current period and how much to 

save later. This model continued to treat the growth rates of labor and 

knowledge as exogenous. But from the interactions of maximizing 

households and firms form in competitive markets, this model can derive the 

evolution of the capital stock. Competitive firms ret capital and hire labor in 

order to produce and sell output, and a fixed number of infinitely households 

supply labor, hold capital, consume and save. 
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2.2.1 Assumption of Ramsey model  

Firms  

i. There are a large number of identical firms. Each has access to the 

production function Y= F (k, AL), which satisfies the same 

assumptions as the Solow Model.  

ii. The firms hire workers and rent capital in competitive factor markets, 

and sell their output in a competitive output market.  

iii. Firms take A as given; as in Solow model. A grows exogenously as rate 

g.  

iv. The firms maximize profits. They are owned by the households, as any 

profits they earn accrue to the households. 

Households  

i. There are also a large number of identical households.  

ii. The size of each household grows at rate n.  

iii. Each member of the household supplies 1 unit of labor at every point in 

time.  

iv. In addition, the household rents whatever capital it owns to firms. It has 

initial capital holdings of K(0)/H, where K(0)is the initial amount of 

capital in the economy and H is the number of households.  

v.  We assume that there is no depreciation.  

vi. The household divides its income (from the labor and capital it supplies 

and, potentially, from the profits it receives from firms) at each point in 

time between consumption and saving so as to maximize its lifetime 

utility. 
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2.2.2 Utility function 

The household's utility function takes the form 

0

( )
( ( ))t

t

L t
U e u C t dt

H







  .                                                                           (20)      

( )C t is the consumption of each member of the household at time t. u(•) is the 

instantaneous utility function, which gives each member's utility at a given 

date. ( )L t is the total population of the economy; 
( )L t

H
 is therefore  the number 

of members of the household. Thus 
( )

( ( ))
L t

u C t
H

 is the household's total 

instantaneous utility at  t . Finally,  is the discount rate. 

The instantaneous utility function takes the form 

1( )
( ( ))

1

C t
u C t










,   < 0,  (1 )n g     < 0.                                              (21) 

This utility function is known as constant-relative-risk-aversion (or CRRA) 

utility. The reason for the name is that the coefficient of relative risk aversion 

(which is defined as "( ) / '( )Cu C u C ) for this utility function is  , and thus is 

independent of C . 

In other words, "( ) / '( )Cu C u C                                                                (22) 

To see this, 

 
1( )

( ( ))
1

C t
u C t










                                                                                        (23) 

 
1

'( )
( )

u C
C t 

                                                                                            (24)    

1
"

2

( )
( )

( )

C t
u C

C t





 
                                                                                        (25) 
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Now, 
" 1( ) ( )

'( ) ( )

u C C t

u C C t





 
 1( )

( )
C t

C t


  

                                                       (26)    

Multiply it by ( )C t  We get that: 

 "( ) / '( )Cu C u C   .                                                                                   (27)     

Three features of the instantaneous utility function are worth mentioning. 

First, 1C  is increasing in C if  <  1 but decreasing if   > 1; dividing 1C   by 

1   thus ensure that the marginal utility of consumption is positive regardless 

of the value of  . Second, in the special case of 1  , the instantaneous 

utility function simplifies to lnC ; this is often a useful case to consider. 

Third, the assumption that (1 )n g    < 0 ensures that lifetime utility does 

not diverge; if this condition does not hold, the household can attain infinite 

lifetime utility, and its maximization problem does not have a well-defined 

solution. 

2.2.3 The Behavior of Households and Firms 

Firms  

The behavior of firms is simple. At each point in time they employ the stocks 

of labor and capital, pay them their marginal product, and sell the resulting 

output. Firms earn zero profit; since the production function has constant 

returns and the economy is competitive. 

The marginal product of capital, '( , )
( )

dF K AL
f k

dK
 as in Solow model, where 

( )f   is the intensive form of the production function. But markets are 

competitive, capital earns its marginal product and there is no depreciation, so 
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the real rate of return on capital equals its earnings per unit of time. Thus the 

real interest rate at time t is:  

'( ) ( )tr t f k  

The marginal product of labor is, 
( , ) ( , )dF K AL AdF K AL

dL dAL
 . If we want to deal 

with it in terms of ( )f  , it is '[ ( ) ( )]A f k kf k . The real wage at time t is: 

'( ) ( ) ( ( )) ( ) ( ( ))W t A t f k t k t f k t                                                                    (28)  

The wage per unit of effective labor 
( )

( )
( )

dW t
w t

dA t

 
 

 
 is: 

'( ) ( ( )) ( ) ( ( ))w t f k t k t f k t                                                                           (29) 

Household's Budget Constraint (HBC) 

The HBC is: 

( ) ( )

0 0

( ) (0) ( )
( ) ( )R t R t

t t

L t K L t
e C t dt e W t dt

H H H

 
 

 
                                              (30) 

Where R(t) is defined as 
0

( )
t

r d


 
 . One unit of the output good invested at 

time 0 yields ( )R te units of the good at t. 

But this integral if difficult to be found, we express the budget constraint as: 

( ) ( ) ( ) ( )

0 0
( ) (0) ( )R t n g t R t n g t

t t
e c t e dt k e w t e dt

 
   

 
                                                (31) 

Household's maximization problem 

The representative household wants to maximize its lifetime utility subject to 

its budget constraint. As in Solow model, it is easier to work with variables 

normalized by the quantity of the effective labor. To do this, we need to 

express both the objective function and the budget constraint in terms of 

consumption and labor income per unit of effective labor. 
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Starting by the objective function, define c(t) to be the consumption per unit 

of effective labor. Thus C(t), consumption per worker, equals A(t)c(t). The 

household's instantaneous utility is therefore: 

 

            
1 1( ) [ ( ) ( )]

1 1

C t A t c t 

 

 


 

 

                     
1 1[ ( ) ] ( )

1

gtA o e c t 



 




 

                     =
1

1 (1 ) ( )
( )

1

gt c t
A o e


 




 


                                                             (32) 

Substitute this result and the fact that ( ) (0) ntL t L e into the household's 

objective function yields to: 

           
1

0

( ) ( )

1

t

t

C t L t
U e dt

H














  

              = 
1

1 (1 )

0

( ) ( )
( )

1

nt
t gt

t

c t L o e
e A o e dt

H


  






  



 
 

 
  

              = 
1

1 (1 )

0

( ) ( )
( )

1

t gt nt

t

L o c t
A o e e e dt

H


  






  

   

= 
1

0

( )

1

t

t

c t
B e dt











                                                                      (33) 

Where 1 ( )
( )

L o
B A o

H

  and (1 ) 0n g                                             (34)  

 

Household behavior 

We must know that household chooses the path c(t) to maximize lifetime 

utility by 
1

0

( )

1

t

t

c t
B e dt











  , in addition with the objective function and the 
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budget constraint ( ) ( ) ( ) ( )

0 0
( ) (0) ( )R t n g t R t n g t

t t
e c t e dt k e w t e dt

 
   

 
   , we can use 

them to set up the Lagrangian: 

1

0

( )

1

t

t

c t
L B e dt














 + ( ) ( ) ( ) ( )

0 0
(0) ( ) ( )R t n g t R t n g t

t t
k e e w t dt e e c t dt

 
   

 

  
         (35)     

The first-order condition for an individual c(t) is: 

( ) ( )( )t R t n g tBe c t e e                                                                                  (36) 

ln ln ( ) ln ( ) ( )B t c t R t n g t         

                          
0

ln ( ) ( )
t

r d n g t


  


     

Where we use 
0

( ) ( ) .
t

R t r d


 


                                                                   (37)   

( )
( ) ( )

( )

c t
r t n g

c t
 



       

          
( ) ( )

( )

c t r t n g

c t







  
  

                
( )r t g 



 
                                                                           (38)  

Where we use (1 ) .n g                                                                    (39)  

2.2.4 The key equation of Ramsey model 

There are two key equations of Ramsey model, 

1. The law of motion for capital accumulation 

( )k f k k C


                                                                                    (40) 

Where 

k :  capital per worker 
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k


: change in capital per worker over time 

C: consumption per worker 

 : depreciation rate of capital 

( )f k : output per worker 

The equation (40) states the investment or increase in capital per worker, 

also it seems that, from equation (40), investment is the same as saving. 

2. The second equation concerns the saving behavior of household. 

If households are maximizing their consumption, at each point in time 

they equate the marginal benefit of consumption today with that of 

consumption in the future. 

2.2.5 Derivation of the equation of motion of consumption 

We assume that our capital constraint is given by: 

( ( )) ( ( )) ( ).
d

k t f k t c k t
dt

                                                                        (41) 

This says that the rate of change of capital is given by the output ( ( ))f k t minus 

the consumption c minus capital depreciation. 

Assume that we get utility from consumption u(c). This means that our 

current value Hamiltonian is given by: 

( ) ( ( )H u c f k c k                                                                                (42) 

Also, we now note that: 

For the current value Hamiltonian, our first-order conditions are given by the 

expression below: 

i. . ( ) ( )
H d

p t t
k dt

 


 


                                                                     (43) 
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ii. 0
H

c





                                                                                      (44)           

iii. ( )
H d

k t
dt





                                                                               (45)          

Our first-order conditions are therefore given by 

. ( ) ( )
H d

p t t
k dt

 


 


 by (i) 

( ) . ( ) ( )
d d

f k p t t
dk dt

   
 

   
 

 

Solve for ( )t to get that 

( ) ( ) . ( )
d d

t f k p t
dt dk

   
 

    
 

 

Divide both sides by ( )t  

( )

( ) ( )
( )

d
t

d ddt f k p f k p
t dk dk


 



 
        

 
 

But by (ii) we have that 
H

o
c





, so we get the following 

( ) 0
d

u c
dc

  , so ( )
d

u c
dc

   

We see before that 
1

( )
1

c
u c










, for example if 3  , the graph of ( )u c will be 

as 
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Figure (2.1): example of utility function. 

The partial derivative of ( )u c with respect to c is therefore given by 

( )
d

u c c
dc

 , but ( )
d

u c
dc

   so, c   . Since ,c depends on time, 

( ) ( )t c t    

Take the logarithm for both sides  

ln ( ) ln ( )t c t    

ln ( ) ln ( )t c t    

Differentiate both sides with respect to t  

ln ( ) ( ln ( ))
d d

t c t
dt dt

    

( )
1

( )
( ) ( )

d
c t

d dtt
t dt c t





   

By (iii) we have that ( )
H d

k t
dt





, so ( ) ( )

d
f k c k k t

dt
   which is equal our 

initial capital constraint. 

We see from the previous work the following 
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( )

( )
( )

d
t

ddt f k p
t dk





     And 

( ) ( )

( ) ( )

d d
t c t

dt dt

t c t

 


   

So 
( )

( )
( )

d
c t

ddt f k p
c t dk


      

Multiply both sides by -1 

( )

( )
( )

d
c t

ddt f k p
c t dk


    

( )
1

( )
( )

d
c t

ddt f k p
c t dk




 
   

 
 

2.3 Differences between Solow model and Ramsey model: 

1. The Solow model has no optimization in it, it simply takes the saving 

rate as exogenous and constant while in Ramsey model the saving rate 

is endogenous and potentially time-varying. 

2. In Solow model, saving and consumption decisions are made by 

infinitely-lived household, while in Ramsey model, saving and 

consumption are made by household with finite horizon. 

3. In Ramsey model, capital stock is determined by optimization decision 

of household and firms. 

4. The Solow model introduce a plausible consumption function with 

some empirical support, while Ramsey strategy is to imagine the 

economy to be populated by a single immortal representative household 

that optimizes its consumption plans over infinite time in the sort of 

institutional environment that will translate its wishes into actual 

resources allocation at any point of time. 
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Chapter Three 

Dynamic programming 

Overview 

The good understanding of the mathematical concepts leads to effective 

algorithms for solving real world problems. Dynamic Programming is a 

powerful technique that can be used to solve many problems in time. 

Dynamic programming is a method for solving dynamic optimization 

problems. It becomes an important tool in macroeconomic literature, and has 

some appealing features in its solution strategies. It is especially suitable for 

solving problems under uncertainty, and because of its recursive nature 

computer simulation is easily done when open form solution is hardly to be 

obtained.  

The basic idea of dynamic programming is to collapse a multi-periods 

problem into a sequence of two period problems at any t using the recursive 

nature of the problem: 

          
1,

0

( ) max ( )
t t

i

t t i
c k

i

V k u k








                                                                     (1) 

                
1

1
,

0

max ( ) ( )
t t

i

t t i
c k

i

u c u c 




 



 
  

 
  

                 
1

1
,

max ( ) ( )
t t

t t
c k

u c V k


   

                     s.t.  1 ( , )t t tk f c k                                                                 (2) 

Equation  
1

1
,

( ) max ( ) ( )
t t

t t t
c k

V k u c V k


  is known as Bellman equation [31]. The 

value function ( )V  is only a function of state variable kt because the optimal 
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value of ct is just a function of kt. Then the original problem can be solved by 

the methods for two-period problems plus some tricks. 

The following is an example to see how we can use dynamic programming in 

our work. Let us take the deterministic optimal growth model of Cass-

Koopmans, which extended the famous Solow model to permit elastic saving 

rate. In this model, output is produced using capital only; the production 

technology is given by f(kt). The representative household or planner chooses 

sequences of consumption  
0

T

ttc


and capital  
01

T

ttk


to maximize lifetime 

utility 

0

( )
T

t

t

t

u c


                                                                                                    (3) 

Subject to the budget constraints  

1 ( )t t tc k f k                                                                                              (4) 

In the next steps, we will use two important ratios in economics; alpha ( ) 

and beta (  ). They are risk ratios used as statistical measurements for 

calculating returns; both are designed to help investors determine the risk-

reward profile _profits or losses_. There are differences between them, alpha 

is a measure of an investment's performance compared to a benchmark and 

it’s a mathematical estimate of the return, based on the growth of earnings per 

share. The value of alpha is between zero and one. 

In the other hand, beta is based on the volatility _extreme ups and downs in 

prices or trading_ of the stock.  is called here, the discount factor, and its 
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value is between zero and one. Discount factor  is made of two components, 

namely discount rate and time  

 

1

1
n

r
 


, where r: discount factor, n: time 

For simplicity, tables are calculated values of beta,(see appendix II) 

3.1 The value function V for finite planning horizon 

We will show that this approach has value by solving a series of problems 

with progressively longer horizon, showing that the solutions display simple 

patterns. Using these patterns we will rewrite our problem recursively; that is, 

we will write it in a way that only depends on the current state and only has a 

choice for the current control [32]. 

Now, we will proceed forward by solving this problem for T=0. Setting 

lifetime utility to zero after death, this problem becomes 

 
1

0 0 0 1( ) max ( ( ) )
k

v k u f k k                                                                              (5)    

We will impose the condition that 1 0k  ; that is, capital cannot be negative in 

the final period. This restriction is necessary for there to exist a solution if u is 

increasing. Moreover, we will specialize to the following functional forms 

because it makes the algebraic solution possible: 

( )

( ) log( )

f k Ak

u c c




                                                                                               (6)    

The solution to the above problem is obviously 

1

0 0

0k

c Ak 




                                                                                                    (7)      
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The solution is trivial; the planner tells the household to eat everything and 

then go off to die. The value function is therefore 

0 0 0 0( ) log( ) log( ) log( )v k Ak A k                                                                  (8) 

Lifetime utility depends on the existing stock of capital; endowing an 

economy with more capital will generate more utility for consumers in this 

static world. 

First, we want to examine the problem above for T=1. The problem is 

 
1 2

1 0 0 1 1 2
,

( ) max log( ) log( )
k k

v k Ak k Ak k                                                      (9) 

Here we assume that 2 0k  (but not necessarily on 1k . If we put 2 0k  then the 

first-order condition for 1k is: 

1

1

0
v

k





 

1

1

0 1 1

1
0

Ak

Ak k Ak



 

 
 


 

0 1 1

1

Ak k k





 

1 0 1k Ak k    

1 0( 1)k Ak     

1 0
1

k Ak 





                                                                                           (10)          

Substitute the value of 1k in (9)  

1 0 0 1 1( ) log( ) log( )v k Ak k Ak     
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             0 0 0log log
1 1

Ak Ak A Ak



   


 

    
             

 

             
2

0 0log log
1 1

k A A A A k



  


 

     
                

 

            
2

0 0log log log log
1 1

A
k A A k



 
 

 

    
              

 

           2

0 0log log log log
1 1

A
k A A k




  
 

    
              

                  (11) 

Notice that 1 0( )v k  is increasing on the initial capital stock 0k ; if we give 

people more capital they will be better off. Also, 

 2

1 0 0 0

1
( ) log( ) log( ) log log log

1 1
v k A k A A k




  
 

    
               

      (12) 

Using (8) to get that 

1 0( )v k  
2

0 0 0

1
( ) log log (1 ) log( ) log

1 1
v k A k


   

 

   
        

    
; that is, 

the value function for the two-period case is the value function for the static 

case plus some extra terms. That is, 

 
1

1 0 0 1 0 1( ) max log( ) ( )
k

v k Ak k v k                                                              (13) 

Now, if we want to examine the case that T=2; the problem is given by 

 
1 2 3

2

2 0 0 1 1 2 2 3
, ,

( ) max log( ) log( ) log( )
k k k

v k Ak k Ak k Ak k                            (14) 

Subject to 3 0k  . Let 3 0k  , the first-order conditions for 1k and 2k are given by 

1

1

0
v

k





 And 2

2

0
v

k





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First, 2

2

0
v

k





 

2 1

2

1 2 2

0
A k

Ak k Ak



 

  
 


 

2 1

2

1 2 2

A k

Ak k Ak



 

  




 

2

1 2 2Ak k k

  



 

2 2

1 2 2A k k k       

 2 2

2 1k A k        

 

2 2

1 1
2 2 (1 )

A k A k
k

    

   
 


                                                                             

So, 1
2

(1 )

A k
k







                                                                                       (15) 

 Second, 1

1

0
v

k





,this yields the following  

1

1

0 1 1 2

1
0

A k

Ak k Ak k



 

  
 

 
 

1

1

0 1 1 2

1 A k

Ak k Ak k



 

  


 

 But 
2 1

1
k Ak 





 

So, 
1

1

0 1
1 1

1

1

A k

Ak k
Ak Ak




 

 








  

 
 

=
1

1

1 1

1
1

1 1

A k

Ak k





  



 




   
   

    

 

2

0 1 1 1

1 (1 ) ( )

Ak k k k

    
 


putting all of these in terms of 1k  

2 2

1 0 0 1 1( ) ( )k A k Ak k k         
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   2 2

1 01 ( ) ( )k Ak         

 
 

2

1 02

( )

1 ( )
k Ak 

 

 




 
                                                                               (16) 

Finally, 

 
 

2

2 0 0 02

( )
( ) log

1 ( )
v k Ak Ak 

 

 

 
  
  
 

 +  

                       
 

 
 

 

2 2

0 02 2

( ) ( )
log

11 ( ) 1 ( )
A Ak A Ak

 

 
   


   

     
    
           

+ 

              
 

 

2

2

02

( )
log

1 1 ( )
A A Ak




 


  

               

                              (17)  

2

2 0 1 0 2 2

1 ( )
( ) ( ) log log

1 ( ) 1 ( )
v k v k

 


   

   
     

      
+ 

               
2

2 2 2 2 2 2

02

( )
log (1 ) log( ) log( )

1 ( )
A k

 
      

 

 
    

  
        (18) 

And it satisfies 

 
1

2 0 0 1 1 1( ) max log( ) ( )
k

v k Ak k v k                                                            (19)  

The general solution to a problem with horizon T is 

2

1 02

( ) ..... ( )

1 ( ) .....( )

T

T
k Ak   

  

  


  
                                                           (20)  

Here we have two finite geometric series, so we can use the sum of them from 

the formula
1 1

1

TT
t

t o

r
ar a

r









 , where 1r , to get that 
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1 01

1 ( )

1 ( )

T

T
k Ak 


 

 
  

 
                                                                      (21)           

For infinite planning horizon: if T  , we get that 
1 0k Ak      (22) 

Notes on the previous work: 

1) When we examine the decision rules from the problems with horizons 

of 2 and 3 periods, we see that the only thing that matters is the current 

capital stock tk . 

2) The decision rules depend on the number of periods before the end T – 

t; that is, a household makes the same decisions n periods from death 

no matter how long they have been alive, conditional on current capital. 

In the infinite horizon case, we may drop the time subscript as the customer 

will always be infinitely far from death: 

1t tk Ak    or *k Ak   where *k denote the capital for next period. 

3.2 Determination of the parameters of  ( )v k  

The value function in the infinite horizon case may converges to a function of 

the form  

( ) log( )v k a b k                                                                              (23)    

Solving the problem this way is not very fast when we know the form of the 

value function [32]. If we rewrite (23) as  

 
1

1 0 0 1( ) max log( ) ( )
k

v k c v k                                                              (24)  

Then, we can solve our problem by turning our utility into the sum of two 

parts, what we get today and what we get in the future, assuming we make the 
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proper choices tomorrow; we then only need to worry about making the 

proper choice today. With an infinite horizon we have 

 
1

1 1( ) max log( ) ( )
t

t t t t
k

v k Ak k v k 


                                                     (25) 

( )tv k is the lifetime utility from having tk units of capital. This equation which 

is called Bellman equation gives us a convenient method for solving the 

problem. If we could somehow know the form of the value function we could 

simply insert it into the above problem and maximize it. If this sounds too 

good to be true, well it almost is; knowing the form of the value function is 

generally impossible. For the above case, we could insert a guess of the form

( ) log( )v k a b k  into the Bellman equation and take derivatives, we get 

1 1

1

t t t

b

Ak k k



 




  Solving this, we get that 

 
1

1
t t

b
k Ak

b




 


                                                                            (26) 

The problem here is that we don't know b. But if we insert our solution into 

the Bellman equation we get 

1 1log( ) log( ) ( )t t t ta b k Ak k v k       

                         log log
1 1

t t t

b b
Ak Ak a b Ak

b b

   


 

    
       

     
  

                        
(1 )

log log
1 1

t t
t

Ak b bAk b
a b Ak

b b

 
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 
 

    
     

   
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1 1

t
t

Ak b
a b Ak

b b




 
 

   
     

   
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                       log log( ) log log( )
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 

   
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    
 

                      log log ( ) log( )
1 1

t

A b
a b A b k

b b


    

 

   
       

    
   (27)  

From the above equality, we get that 

b b     So 
1

b






                                                                  (28)     

log log
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A b
a a b A

b b


 

 

   
     
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log log
1 1

A b
a a b A

b b


 

 

   
     
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1
log log

1 1 1

A b
a b A

b b




  

    
     

      
                                               (29) 

 If we rewrite a without b, it becomes (see appendix I) 

1
log (1 )

(1 )(1 ) 1
a A





  

  
   

     

                                          (30)  

The value of b is absolutely greater than zero since the value of both alpha 

and beta is between zero and one, there multiplication is so. While the value 

of a  depends on the argument of the logarithmic function in (30) 

(1 )
1

A







 
  
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To ensure that log (1 ) 0
1

A







  
  
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(1 )
1

A







 
  

 
Must be greater than one……………….. (*)   
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In dynamic programming: if we given a known and positive quantity b which 

we wish to divided it into 2 parts in a way that the product of the 2 parts is to 

be maximum, we solve the following; 

Define 2 ( )g b which is a maximum value of subdividing b into 2 parts when 

one part is y and the remaining quantity is b - y. 

 2 1
0

( ) max ( )
y b

g b y g b y
 

     

         
0
max ( )

y b
y b y

 
  , 1( )g b y b y   since we have one part. 

To maximize ( )f y b y  , by simple calculus: 

2 0
df

b y
dy

   , so 
2

b
y   

2

2
2 0

d f

dy
   


2

b
y   is a maximum value of ( )f y b y   

2 2

b b
b y b      

The optimal policy is to subdivide b into two equal parts 

2

2 ( ) ( ) ( )
2 2 2 2 4

b b b b b
g b b     

Using the previous work with b=1 and y  we get that 

1
0

4
   

Now, 

1 1

4 41 1 1

11 4 1 3
1










 
      
      

        
 
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3
(3)

A
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Let (1 )
1

x
x

y x
x

 
   

 
where x   

The maximum value of x is the minimum value of y; to see this: 

 

 

Figure (3.1): the graph of Y. 
 

We have completely solved the consumer's problem; with the given solution 

for b optimal capital accumulation is given by 

                                     
1t tk Ak                                                   (31) 

To see what happened in (30), substitute the value of (b) in (26) 
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1
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1
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   
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      
    
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The only problem with this method is that there are a very small number of 

economic problems where we know the form of the value function; of these, 

some are impossible to solve for the coefficients analytically and others are 

simply not very interesting from an economic standpoint as they involve odd 

choices for parameters. 

In (30), the value of capital stock in the period t+1depends on the previous 

period t. suppose that we wish to rewrite it in terms of the period 0, 

1 0k Ak   

21

2 1 0 0( ) ( )k Ak A Ak A k            

2 2 31 1

3 2 0 0(( ) ) ( )k Ak A A k A k               

2 3 3 2 41 1

4 3 0 0(( ) ) ( )k Ak A A k A k                   

Going this way to get that 

 
1

01 0

n
i n

in nk Ak A k
  





   

Lemma: the capital stock in the steady state depends on the economic ratios

&  , the effectiveness of labor A and the capital stock in the first period and 

given by  

 
1

01 0

n
i n

in nk Ak A k
  





   
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3.3 What happened when the value function is unknown? 

If we don't know the value function or it simply does not exist in closed form, 

we will go back to the general Bellman equation 

 
1

1 1 1( ) max ( ( ) ) ( )
t

t t t t t t
k

v k u f k k v k


      

In our work above, the value function is constant over time but we don't know 

its form. We try to use the recursive nature of the value function. Suppose we 

guessed the value in period T+1 was zero, then the Bellman equation would 

imply that  

( ) ( ( ))T T Tv k u f k  

But we know that by the Bellman recursion  

 1 1 1( ) max ( ( ) ) ( )
T

T T T T T T
k

v k u f k k v k      

That is, we update our guess vT by replacing it with vT-1 after solving for kT as 

a function of kT-1. That is 

1 1 1 1 1( ) ( ( ) ( )) ( ( ))T T T T T T T Tv k u f k k k v k k        

Then, according to the Bellman equation we must have that 

 
1

2 2 2 1 1 1( ) max ( ( ) ) ( )
T

T T T T T T
k

v k u f k k v k


         

And so on. If we let T  , then we get the value function for infinite 

planning horizon as 

 
'

' '( ) max ( ( ) ) ( )
k

v k u f k k v k    
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3.4 The prove which confirms that the value function exist 

In this section we will prove that the previous algorithm will converges to the 

true value function, that is; the value function exists. 

The Bellman equation is given by 

 ' '( ) max ( , ) ( ) : ( ), ( , )
a

v x r x a v x a x x t x a     

The function v(x) is unknown of this equation. We know that inserting a 

function into the right-hand side for ( )v  and performing the maximization 

gives us a new function for the left-hand side; moreover, these functions are 

not necessarily the same. Let our guess is given by w so as not to confuse it 

with the true value function v, which may not exist and which we certainly do 

not know. We can view the Bellman equation as mapping functions into 

functions, a functional operator. Calling this thing L, we have the operator L 

takes a function :w X R and turns it into a function :Lw X R via the 

process 

 ' '( )( ) max ( , ) ( ) : ( ), ( , )
a

Lw x r x a w x a x x t x a     

Let D, for example, be the differentiation operator. Then Dx
2
 = 2x, a new 

function which is related to the old one via the operator D. the Bellman 

operator works exactly the same way. If the true value function exists, it 

satisfies equation (1). That is, if we feed the Bellman operator v we get v 

back; Lv(x) = v(x). in other words, the value function is a fixed point of the L 

operator in the space of functions. 
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For example, one fixed point for the differentiation operator is the zero 

function: 

0 0D   

Another one is ex : 

e ex xD   

If we somehow prove that the Bellman operator had a fixed point, we would 

definitely know that the value function existed. Also, if we could prove that it 

only had one fixed point, then we know that the value function was that fixed 

point. 

Finally, assuming that we have enough structure that solutions to the Bellman 

equation exist, there will be (at least) one action for each value of the state 

that is optimal. 

Definition 1: A mapping T from a metric space ( , ) into itself is a strict 

contraction map if (0,1)  such that ( , ) ( , ), ,Tf Tg f g f g    . 

Theorem 2: If : ( , ) ( , )T      is a strict contraction map then T is uniformly 

continuous. 

          Proof: if T is a contraction, then for some (0,1)  we have 

1
Tx Ty

x y






 

, .x y S  Let ;





 then for any 0, if x y   we have 

Tx Ty x y       

Thus, T is uniformly continuous. 

We now prove the key theorem in this section. 
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Definition: (Banach space) is a normed linear space that is complete metric 

space with respect to the metric derived from its norm.  

Theorem 3: (Contraction mapping theorem) A strict contraction map on a 

Banach space has a unique fixed point. Furthermore, the space 2, , ,...f Tf T f

converges to that unique fixed point [32]. 

               Proof. Let ( , ) be a complete metric space and : ( , ) ( , )T     be 

a strict contraction map. For any f  define n nf T f . Since T is a strict 

contraction map, there is 1 such that if n m we have 

( , ) ( , )n m m n mf f f f     

This result is obtained by using the contraction property m times. Using the 

triangle inequality for metrics we must have 

1 1( , ) ( , ) ... ( , )n m n m n mf f f f f f         

We also know that  

1 1 1( , ) ( , )n m n m n mf f f f        

And  

1 2 2 1( , ) ( , )n m n m n mf f f f         

And so on. Putting these together we get that 

1 1 2 1( , ) ( , ) ( , ) ... ( , )n m n m n m n m n mf f f f f f f f               

                1 1 2( , ) ( ... 1)n m n mf f             

We know that  
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1 2 1 1
... 1

1 1

n m
n m n m 

  
 


    

     
 

 

Combining all our inequalities yields to 

1( , ) ( , )
1

m
n mf f f f


 





 

The case m n is similar. Therefore, we must have 

( , ) 0n mf f   

or  nf is Cauchy. Since  is complete, this sequence has a limit point *f  . 

We simply need to show that *f is a fixed point of T. With strict contraction 

map being uniformly continuous, it follows that 

 * 1 *lim limn n

n n
f T f T T f Tf

 
    

Thus we have a fixed point. This fixed point must be unique, since if *g were 

another fixed point we must have 

* * * *( , ) ( , )f g Tf Tg   

                  
* *( , )f g  

So, with 1 we must have * *f g . 

The contraction mapping theorem proves that a sequence generated by a 

contraction map converges to a limit point independent of the initial condition 

for that sequence. 

3.5 Properties of the value function 

We show that the value function v(k) exists and continuous under the 

assumptions above. Let us assume that u(c) and f(k) are both increasing, 
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concave, and continuously differentiable. We want to show that the value 

function will inherit these properties. 

If :w X R is weakly increasing, then so is 

 
'

' '( )( ) ( ( ) ) ( )
k

Lw k mak u f k k w k    

Because if 'k is feasible from k it is feasible from any k k and the residual 

consumption cannot decrease the RHS because u and f are increasing. Thus, 

the Bellman operator maps weakly increasing functions into weakly 

increasing functions. Since we can initialize our iterations with a weakly 

increasing functions, the value function itself must be weakly increasing 

provided this property is preserved in the limit. Since weakly increasing 

functions are defined by a weak inequality, 

( ) ( )g x g y  

If x y , then the set of these functions is closed and therefore preserved in 

the limit. Thus, the value function is weakly increasing. This approach cannot 

guarantee that v is strictly increasing, since that set in not closed. 

Similarly, note that if :w X R is concave, then so is 

 
'

' '( )( ) ( ( ) ) ( )
k

Lw k mak u f k k w k    

To see this, take any , 0k k  and note that the set of feasible k is convex, 

given k. Then 

' '
' '( )( (1 ) ) ( ( (1 ) ) (1 ) ) ( (1 ) )Lw k k u f k k k k w k k                    

Using the fact that both u and w are concave, we have 
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' '
' '( ( (1 ) ) (1 ) ) ( (1 ) ) ( )( ) (1 )( )( )u f k k k k w k k Lw k Lw k                    

That is, we know that ( )( )Lw k is concave; evidently, the Bellman operator 

takes concave functions into concave functions. Since the limit of any 

sequence of functions is the value function, all we need to prove is that the 

limit of a sequence of concave functions must be concave because we can 

start our iterations with a concave function. but note that concave functions 

are defined by a weak inequality  

( (1 ) ) ( ) (1 ) ( )g x y g x g y         

If  0,1  . Thus, the set defining it must be closed, so the value function is 

concave. This proof will not establish that the value function is strictly 

concave since that is not a closed set. 

Lemma 4 (Benveniste-Scheinkman Lemma) let v be a real-valued, concave 

function defined on a convex set nD R . If 1w C is a concave function on a 

neighborhood N of 0x D such that 0 0( ) ( )w x v x and ( ) ( )w x v x  x N  then 

1v C at 0x . 

This lemma states that if we can find a function that is everywhere below v, 

agrees with v at *k , and is continuously-differentiable at *k , then v will be 

continuously-differentiable at *k as well. ( )w k is that function, so the value 

function is differentiable. 
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Chapter Four 

Infinite horizon dynamic programming 

In this section we will use python for solving simple infinite horizon dynamic 

programming. Also, we will focus on solving for consumption in an optimal 

model. 

4.1.The growth model 

The growth model or the neoclassical growth model is a macro model in which 

the long-run growth rate of output per workers is determined an exogenous 

rate of technological progress, like those following from Ramsey (1928), 

Solow (1956) and Swan (1956). R. Solow identifies its assumption of labor 

and capital as the cause of an equilibrium growth. In 1956, Solow and Swan 

turn to neoclassical production function with varying share of labor and 

capital input. This approach provides the first neoclassical model of long run 

economic growth and become the starting point for most studies on economic 

growth.   

Consider that at time t an agent owns capital stock 
tk R   and produces output

( )tf k R  . This output can be either consumed or saved as capital for the next 

period and denoted by 1tk  . So  

1 ( )t t tk f k c                                                   (1) 

If we take 0k as given, our assumption is that the agent wishes to maximize 

0

( )t

t

t

u c




  where u is a given utility function [31] and   is the discount factor. 

But  
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we should be aware that the agent selects a path 0 1 2, , ,....c c c  for consumption 

that is  

i. Nonnegative 

ii. Feasible in the sense that the capital path  tk determined by  tc is 

always nonnegative 

iii. Optimal and maximize 
0

( )t

t

t

u c




  

The standard theory of dynamic programming states that; any optimal 

consumption sequence  tc must be markov, which means that there exist a 

function  such that 

( )t tc k  For all t.                                          (2) 

So,                                          1 ( ) ( )t t tk f k k                                               (3) 

Markov chain specification 

 Given a set of states,  1 2, ,...., rS s s s . The process starts in one of these states 

and moves successively from one state to another. Each move is called a step. 

If the chain is currently in state is , then it moves to state 
js at the next step 

with a probability denoted by 
ijp , and this probability does not depend upon 

which state the chain was in before the current state. 

The probabilities 
ijp are called transition probabilities. The process can 

remain in the state it is in, and this occurs with probability iip . An initial 

probability distribution, defined on S, specifies the starting state. Usually this 

is done by specifying a particular state as the starting state.           

The policy function : R R   is a feasible consumption policy if 
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0 ( ) ( )k f k   k R                                                     (4) 

Moreover, if we denote the previous such policies by  , then the agent's 

decision problem may be rewritten as [23] 

0

max ( ( ))t

t

t

u k


 





 
 
 
                                         (5) 

We assume that the utility function u is a strictly increasing and concave 

function. 

4.2.Dynamic programming 

In this part, we try to use dynamic programming in order to find the optimal 

policy. 

First, the value function associated with this optimization problem defined as  

*

0

0

( ) sup ( ( ))t

t

t

v k u k


 


 

 
  

 
                                         (6) 

Where  tk  is given by (3). 

The value function gives the supremum amount of the utility which we 

obtained from the state 0k . 

Now, we try to build a recursive reformulation using the bellman equation 

which takes the form 

 * *

0
( ) max ( ) ( ( ) )

c k
v k u c v f k c

 
    for all k R                                       (7) 

We will optimize *( )v k  by choosing an appropriate c to trade off the current 

utility function for future utility which depends in the first place on our 

saving. 

 



53 

Definition: (greedy policy) 

A greedy algorithm makes a locally optimal choice at each step as strategy for 

approximating a global optimum. Correspondingly, given a continuous 

function w on R 
, we say a policy    is a w-greedy if ( )k  is a solution to  

 
0
max ( ) ( ( ) )

c k
u c w f k c

 
   for all k R                                   (8) 

To ensure that there is a solution to *( )v k , we will put some assumptions; we 

assume that f and u are continuous and u is bounded. Depending on these 

assumptions, we also get that *v is finite, bounded, continuous and satisfies the 

Bellman equation. 

Proposition: if the map :U R R  is bounded and continuous, the function 

f is measurable and maps R Z  into R  , then  the value function *v is 

continuous and is the unique function in ( )b S  that satisfies 

  * *

0
( ) max ( ) ( , ) ( )

c k
v k U k c v f c z dz 

 
     

This proposition guide us to the following result, a policy is optimal iff it is *v

-greedy. 

To find the optimal policy, we will follow the following steps: 

i. Compute *v . 

ii. Solve for *v -greedy policy. 

For any k, as soon as we get the second step, we are going to solve a one-

dimensional optimization problem on the right-hand side of the bellman 

equation. We will focus on the first step, which is how we obtain the value 

function since the second step become trivial once we get *v . 



54 

4.3.Value function iteration 

Here, we will start our work by a guess, some initial value function w and try 

to improve it in order to compute *v   by using an iterative technique. 

The bellman operator is the best choice for improving *v . 

The bellman operator maps a function w to a new function Tw, as follows, 

 
0

( ) max ( ) ( ( ) )
c k

Tw k u c w f k c
 

                                         (9) 

This operator, as we see, is like the bellman equation but in fact it is quite 

different. If we apply T from some starting function w, then we produce a 

sequence of functions , , ( ),....w Tw T Tw  which are continuous, bounded and 

converges uniformly to *v . To see this, 

Lemma: the value function *v  is a unique fixed point of T in ( )b S , moreover

* ( )v b S , where ( )b S is the set of all bounded measurable functions on S. 

Definition: (fixed point) 

Let :T S S ,where S is any set. x is called a fixed point of T on S if it's a 

solution of the equation Tx x . 

Fixed point and optimization problems are closely related, when we study 

dynamic programming, an optimization problem will be converted into a 

fixed point problem, i.e : if :T S S has a unique fixed point in a metric space 

( , )S  , then finding this point is the same as finding the minimize of

( ) ( , )f x Tx x  

Also, let  :T S S . An *x S is called a fixed point of T on S if * *Tx x . If S 

is a subset of R, then fixed points of T are those points in S where T meets the 

45 degree line as in the figure: 
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Figure (4.1): Fixed point in xy-plane 

All our work made on bounded utility function unless the economists often 

work with unbounded utility functions, the reason behind our assumption is 

that; for unbounded utility functions the situation is more complicated. 

Fitted value function: 

We would like to compute the value function by an iteration procedure using   

the bellman operator as following: 

i. Give an initial guess w. 

ii. Solving (9) and obtain the functionTw . 

iii. Unless some stopping condition is satisfied, set w Tw and go to step ii. 

However, there is a problem we must notice before we start this algorithm; 

Tw could not be calculated exactly but could be calculated approximately 

using the suggested algorithm, also, these values could not be stored in a 

computer completely because of the huge output of Tw on k . 

Unless w is known function, and Tw can be got by some iterates, the only way 

to store this function is to record the value of ( )Tw k for every k R  , which is 

impossible. 
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So, instead of that, we try to use what we call it the fitted value function 

iteration [23]. 

The procedure is to record the value of the function Tw at only finitely many 

points  1,......, Ik k R   which we call them grid points, and reconstruct it 

from these informations. 

For more specific details, the algorithm is 

i. Begin with an array of values  1,......, Iw w ,typically representing the 

values of some initial function w on the grid points  1,......, Ik k  

ii. Build a function *w on the space R  by interpolating the pointes 

 1,......, Iw w  

iii. By repeatedly solving (9), obtain and record the value *( )iTw k on each 

grid point ik  

iv. Unless some stopping condition is satisfied, set 

   * *

1 1,......, ( ),......, ( )I Iw w Tw k Tw k and go to step ii. 

The most important step for the last algorithm is step 2 which can be 

accomplished by many ways. 

We need a function approximation that produces a good approximation to Tw

and also combine well with the algorithm's iteration. Our choice will be a 

continuous piecewise linear interpolation. In other words, we need continuous 

piecewise linear interpolation to produce an approximation to Tw . 

 As an example, the next algorithm and figure illustrate piecewise linear 

interpolation on the function ( ) sin(2 )f x x on the grid points 0,0.2,0.4,...,1

using a code in python. 

The algorithm: 
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The figure: 

  

 

Figure (4.2): example for piecewise linear interpolation 

We specially choose the piecewise linear interpolation since it is preserves 

useful shape properties such as monotonicity and concavity. 

The following example gives an exact analytic solution as a special case of 

the considered problem: 

Let ( )f k k  with 0.65    

         ( ) lnu c c and 0.95   

k 

w 
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The exact solution will be 
 

  

Where 

1

1 ln( )
ln(1 )

(1 ) (1 )
c

 


 

 
   

  
 and 

2
1

c






      , note that ( ln loge ) 

We will replicate this solution numerically using the fitted value function 

iteration. 

 

Running the code produces the following figure 

*

1 2( ) lnv k c c k 
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                                                  Figure (4.3): the value function                                    

The next code is made by John Stachurski and Thomas J. Sargent in 

11\8\2013. In the code they take the initial condition as  

5log( ) 25w k   where k represents the grid points. 

They are trying to solve the optimal growth problem via the value function 

iteration. First, they put out the primitives such as , ,  exact solution and the 

grid points. Second, they use the bellman operator to approximate Tw  on the 

grid points. Note that the vector  w in the code represents the value of the 

input function on the grid points. Third, they apply linear interpolation to w, 

the initial condition. Finally, they plot the successive functions which 

produced by the fitted value function iteration. In the figure, the hotter colors 

represents higher iterates. The true value function *v is the thick, black line. 

The sequence of iterates converges toward *v . Increasing the number of 

iterations produces further improvement. 

k 

w 
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The code : 

  

 

 

If we run the code, the following figure will illustrate the work: 
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Figure (4.4): the graph of w (the initial guess) against the true value function when n= 35 

In the last code, n is the number of functions that generated by the value 

function iteration algorithm. If we increase n to 75 and run the code again we 

will see that 
  

 

Figure (4.5): the graph of w (the initial guess) against the true value function when n= 75 

Another example is to let 0.252( ) 35w k  , this example preserve the concave 

shape of the value function in the proceeding example 

k 

w 

w 

k 
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The figure is (n=35) 
  

 

Figure (4.6): another example for w against the true value function with n= 35 

 If we increase n to 60, the figure will be 

 

 

Figure (4.7): another example for w against the true value function with n= 35 

 

k 

w 

k 

w 
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Comments on the figures: 

1. The two initial functions 5log( ) 25w k  and 0.252( ) 35w k  have the 

same properties of being monotone and concave up. 

2. In the first figure we reached the exact value function after 75 iterations 

while in the next figure we reached it in 60 iterations. 

3. The main reasons that guides us to use python are 

i. Python is a general purpose programming language conceived in 

1989 by Guildo Van Rossum. It is now one of the most popular 

programming languages. 

ii. It's free and open source. All libraries of interest are completely 

free. The most advantages of open source libraries is that you can 

read them and also you can easily change them. 

iii. Graphs and figures in python are most popular nowadays. 

iv. Python and Matlab are both high quality tools and similar in many 

respects. But python has some important strengths that are driving 

its rapid uptake in scientific computing. 
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Conclusion: 

The performance of dynamic programming dealing with Solow and Ramsey 

models was distinguished among other procedures, but it still open to deduce 

a value function which makes the computations better and faster to converge. 

So, we recommended a simulation study to get such value function.  
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Appendix II 
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 جحليلية وديناميكية لنمورجي سولو و سامسي معالجة

 

 

 

 

 إعذاد

 أحمذ ياسش عامش رباينة

 

 

 إششاف

 د. محمذ نجيب أسعذ

 

 

 
 

في الشياضيات بكلية دسجة الماجسحيش الحصول على قذمث هزه الأطشوحة اسحكمالا لمحطلبات 

 الذساسات العليا في جامعة النجاح الوطنية في نابلس، فلسطين.

2014 



  ب

 جحليلية وديناميكية لنمورجي سولو و سامسي معالجة

 إعذاد

 أحمذ ياسش عامش رباينة

 إششاف

 د. محمذ نجيب أسعذ

 

 ملخصال

انًُٕ انخاسخٙ ًْٔا سٕنٕ نمذ لاو انثاحث فٙ ْزِ انذساسح تذساسح َٕػٍٛ يٍ اشٓش ًَارج َظشٚاخ 

ٔسايسٙ، ٔيذٖ ذأثٛشْى ػهٗ الالرصاد اندزئٙ ٔانكهٙ تاسرخذاو ذمُٛاخ انثشيدح انذُٚايٛكٛح انرٙ 

 ذؼرثش يٍ أْى انطشق انًرثؼح نحم يشكلاخ انًُٕ الالرصاد٘.

 اسرخذو انثاحث كًا ٔلاو انثاحث تًُالشح انفشٔلاخ تٍٛ انًُٕرخٍٛ تانرفصٛم. تالاضافح انٗ رنك،

ٚضا ذى اشرماق أالرشاٌ انمًٛح نهؼانى تٛهًاٌ فًٛا ٚرؼهك تانًُٕ ٔلاو ترطثٛمّ ػهٗ كلا انًُٕرخٍٛ. ٔ

 يؼادنرٍٛ دلانٛرٍٛ فًٛا ٚخص انًُارج تانذساسح خصٕصا ًَٕرج سٕنٕ.

فًٛا ٚخص انًُٕرخٍٛ فٙ ْزِ انذساسح، فمذ َالش انثاحث حانح انثثاخ فٙ سأس انًال، ٔلاو  تاشرماق 

، ٔيٍ ثى لاو انثاحث تفحص صحح ْزِ انصٛغح ػهٗ انحاسٕب تاسرخذاو تشَايح  صٛغح نٓا

 انثاٚثٌٕ. ار ػًم انثاحث ػهٗ اخرٛاس الرشاٌ لًٛح خذٚذ ْٕٔ:

0.252( ) 35w k  

 ٔلاسٌ انُرائح انرٙ حصم ػهٛٓا يغ َرائح تاحثٍٛ ساتمٍٛ لايٕا تاخرٛاس الرشاٌ انمًٛح ػهٗ صٕسج:

5log( ) 25w k  

 ٌ افرشاض انثاحث نلالرشاٌ كاٌ أفضم ٔأَسة يٍ ساتمّٛ.أٔخهصد انُرائح انٗ 

 

 الحوصيات:

ثُاء أداء انثشيدح انذُٚايٛكٛح فٙ انرؼايم يغ انًُٕرخٍٛ ذحد انذساسح كاٌ يًٛزا أٌ إ

انٕصٕل  انرحهٛم، ٔنكٍ انفشصح لا ذزال يراحح اياو انثاحثٍٛ لاخرٛاس الرشاٌ لًٛح خذٚذ اسشع فٙ

 انٗ الرشاٌ انمًٛح انحمٛمٙ. نزا ٕٚصٙ انثاحث تاخشاء دساساخ أخشٖ نهحصٕل ػهٗ الرشاٌ أفضم.




