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Abstract 

Whether we are learning how to play a new instrument, song, or even learn a 

second language, the nervous system relies on various forms of sensory feedback to 

establish task-specific sensorimotor representations. Over time, the plasticity of the 

nervous system permits neural reorganization and the formation of an 'internal model'. 

It has been suggested that internal models represent neural maps of skilled movement 

that store the relationship between the motor commands, environment and sensory 

feedback responsible for their production. These internal representations are often 

investigated by altering a particular aspect of the sensory feedback associated with a 

given task. Arguably the most influential contribution to F0 control during speech 

production is from auditory feedback. For instance, using the frequency-altered 

feedback (FAF) paradigm (where the pitch of participants' voices is shifted in frequency) 

results show that participants will compensate by adjusting their vocal productions in the 

opposite direction of the perturbation. Moreover, aftereffects are often observed 

(subsequent responses err in the direction of compensation) when auditory feedback is 

unexpectedly returned to normal following a series of fixed pitch-shift manipulations. 

Thus, the evidence from studies on speech production suggests that an internal model 

represents voice fundamental frequency (F0). However, there is little evidence to 

suggest that this is also true for vocal control while singing. As a result, the purpose of 

this dissertation is to examine whether acoustic-motor representations (internal models) 

control voice FQ. 

Chapter 1 examined trained singers and untrained singers (nonsingers) 

sensitivity to subtle manipulations in auditory feedback. Participants produced the 

consonant-vowel /ta/ while receiving auditory feedback that was shifted up and down in 
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frequency. Results showed that singers and nonsingers compensated to a similar 

degree when presented with frequency-altered feedback (FAF), however, singers' F0 

values were consistently closer to the intended pitch target. Moreover, singers initiated 

their compensatory responses when auditory feedback was shifted up or down 6 cents 

or more, compared to nonsingers who began compensating when feedback was shifted 

up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of 

vocalization indicated that participants commenced subsequent vocal utterances, during 

FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 

productions below the pitch target and increased their F0 until they matched the note. 

We conclude that singers and nonsingers rely on an internal model to regulate voice F0, 

but singers' models appear to be more sensitive in response to subtle discrepancies in 

auditory feedback. 

Evidence from arm reaching studies suggests that the motor system can acquire 

multiple internal models, which has been argued to allow an individual to adapt to 

different perturbations in diverse contexts. In Chapter 2 we show that trained singers 

can rapidly acquire multiple internal models that accommodate different perturbations to 

ongoing auditory feedback. Participants heard three musical notes and reproduced 

them in succession. Adaptation was observed immediately following vocal onset when 

participants were gradually exposed to altered feedback. Aftereffects were target 

specific and did not influence vocal productions on subsequent trials. Interestingly, the 

target notes in Chapter 2 could have served as a contextual cue. Indeed, when the 

target notes could no longer serve as a contextual cue we observed evidence for trial-by 

trial adaptation. These findings indicate that the brain is exceptionally sensitive to 

deviations between auditory feedback and the predicted consequence of a motor 

in 



command during vocalization. Moreover, these results indicate that when contextually 

cued the vocal control system may maintain multiple internal models that are capable of 

independent modification during different tasks or environments. 

Auditory feedback has been shown to be influential in the maintenance and 

control of voice F0. The purpose of Chapter 3 was to address whether task instructions 

could influence the compensatory responding and sensorimotor adaptation that has 

been previously found when participants are presented with a series of FAF trials. 

Trained singers and nonsingers were informed that their auditory feedback would be 

manipulated in pitch while they sang the target vowel [/ah/] (as in 'pop'). Participants 

were instructed to either 'compensate' or 'ignore' the changes in auditory feedback. 

Auditory feedback manipulations persisted for the entire vocal production and were 

either gradually presented ('ramp') in -2 cent increments down to -100 cents (1 

semitone) or were suddenly ('constant') shifted down by 1 semitone. Results indicated 

. that singers and nonsingers could not suppress the compensatory responses to FAF, 

nor could they reduce the sensorimotor adaptation observed on both ramp and constant 

FAF trials. Compared to previous research these data suggest that musical training is 

effective in suppressing compensatory responses only when FAF occurs between 500-

2500 ms following vocal onset. Moreover, our data suggest that compensation and 

adaptation is automatic and is influenced little by conscious control. 

Indeed, regardless of whether we manipulate auditory feedback in small or large 

increments, for a single music note or multiple notes, or whether we modify the task 

instructions (ignore or compensate), we have shown and that the result is a change in 

the sensorimotor representations (internal models) underlying voice F0 control while 

singing. One goal has been to demonstrate the plasticity of the nervous system by 
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examining how changes in singers and nonsingers auditory feedback can alter target 

specific internal representations. Indeed, producing multiple target notes while singing 

was shown to require participants to employ unique motor commands for each target. 

Although the human voice has the potential to be initiated at unpredictable frequencies 

during vocal onset, we found that trained singers consistently produced vocal pitch at 

frequencies near the desired target, even in the presence of FAF. Overall, it appears 

that compensation and adaptation to FAF are automatic, influenced little by 'conscious' 

control, and are uniquely associated with the motor commands for specific musical 

targets. 
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Frequency-Altered Feedback 1 

General Introduction 

An Overview 

In general, I am interested in motor control, particularly how some 

individuals seem to possess a greater ability to control their behaviour than 

others. For instance, why are some individuals ('singers') capable of 'carrying a 

tune' whereas others seem to be 'tone-deaf? Is singing proficiency attributable to 

the fact that individuals were born with this ability, or was this something that was 

acquired through years of training? Moreover, what is the influence of sensory 

feedback (e.g., auditory, kinesthetic, vision) on motor control? How important is 

auditory feedback on singers and nonsingers ability to control the pitch of their 

voice while singing? Indeed, these are just a few of the questions that have 

driven my passion for research on the motor control of singing. The focus of this 

dissertation is to examine how sensory feedback is used by the nervous system 

in singers and nonsingers to establish and maintain internal representations 

('internal models') for motor control. 

Regardless of whether one is learning to speak a new language, sing a 

new song, or learning a new sport, various forms of sensory feedback assist with 

the formation of task-specific sensorimotor representations. In time, the plasticity 

of the nervous system allows for neural reorganization and the formation of an 

'internal model'. The majority of research supporting the internal model 

hypothesis originates from studies manipulating the sensory feedback associated 

with arm-reaching movements. Indeed, the prevailing hypothesis for the control 

of limb dynamics (Wolpert & Kawato, 1998), and the control of speech (Houde & 
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Jordan, 1998; Guenther & Perkell, 2004; Jones & Munhall, 2000, 2005) and 

singing (Jones & Keough, 2008) is that internal models regulate motor 

movements. Essentially, researchers are interested in observing the motor plans 

for newly acquired or well-established movements following various forms of 

feedback manipulations. Results have shown that participants compensate for 

changes in feedback by altering their movements in the opposite direction of the 

perturbation (e.g., Burnett, Freedland, Larson, & Hain, 1998; Burnett, Senner, & 

Larson, 1997; Burnett & Larson, 2002; Donath, Natke, & Kalveram, 2002; Elman, 

1981; Ghahramani & Wolpert 1997; Jones & Keough, 2008; Jones & Munhall, 

2000, 2005; Kalenscher, Kalveram, & Konczak, 2003; Larson, 1998; Larson, 

Burnett, Kiran, & Hain, 2000; Natke, Donath, & Kalveram, 2003; Sainburg, Ghez, 

& Kalakanis, 1999; Shadmehr & Moussavi, 2000; Shadmehr & Mussa-lvaldi, 

1994; Toyomura et al., 2007). Moreover, sensorimotor adaptation or aftereffects 

have been found when feedback suddenly returns to normal following a series of 

perturbation trials (Ghahramani & Wolpert, 1997; Jones & Keough, 2008; Jones 

& Munhall, 2000, 2005; Shadmehr & Moussavi, 2000; Shadmehr & Mussa-lvaldi, 

1994). That is, participants initiate movements as if they were expecting altered 

feedback. As a result, aftereffects are thought to represent the sensorimotor 

recalibration of internal models for motor control. 

The purpose of this dissertation is to further our understanding of the role 

of auditory feedback on the acoustic-motor representations (internal models) 

controlling voice fundamental frequency (F0). Indeed, increasing or decreasing 

the amplitude (loudness) of vocal productions (Bauer, Mittal, Larson, & Hain, 
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2006), changing formant frequencies (Houde & Jordan, 1998; Munhall, 

MacDonald, Byrne, & Johnsrude, 2009; Purcell & Munhall, 2006), delaying 

auditory feedback (Yates, 1963), and altering participants fundamental frequency 

(pitch) (e.g., Burnett etal., 1997, 1998; Burnett & Larson, 2002; Elman, 1981; 

Larson, Burnett, Bauer, Kiran, & Hain, 2001; Hain et al., 2000; Jones & Keough, 

2008; Jones & Munhall, 2000, 2002, 2005; Zarate & Zatorre, 2005, 2008) are 

some of the methods used to address this question. However, the primary focus 

of this dissertation will be how frequency-altered feedback (FAF) affects voice F0 

control while singing. For example, do singers and nonsingers compensate for 

frequency-altered feedback, and if so, to an equal degree? Are similar levels of 

sensorimotor adaptation found following FAF trials? Do aftereffects generalize to 

other notes that were not subjected to FAF, or are there multiple internal models 

that correspond to specific musical targets? Can singers and nonsingers ignore 

FAF when instructed to do so? These are the questions that my dissertation 

research has addressed. Chapter 1 examined singers and nonsingers vocal 

responses to sudden and persistent changes (-100 cents; 1 semitone) in auditory 

feedback. Chapter 2 examined singers and nonsingers sensitivity to subtle 

changes in auditory feedback manipulations (2 cent changes across trials to 100 

cents). Chapter 3 examined whether multiple internal models exist for vocal 

control and chapter 4 will discuss singers and nonsingers ability to follow 

instructions to compensate and ignore FAF manipulations. 
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Internal Models for Motor Control: A Brief Review 

Whether individuals are performing movements in novel contexts or are 

executing well rehearsed behaviours, the sensorimotor feedback associated with 

these tasks are thought to form or derive from an 'internal model' responsible for 

motor control (e.g., Wolpert & Kawato, 1998). Internal models are believed to 

represent neural maps of skilled movement that store the relationship between 

the motor commands, environment and sensory feedback responsible for their 

production (Desmurget & Grafton, 2000; Flanagan & Wing, 1993; Shadmehr & 

Mussa-lvaldi, 1994). Moreover, internal models are thought to represent the 

plasticity of the nervous system, which is believed to be the neural basis for 

adaptive behaviour (Kawato, Furukawa, & Suzuki, 1987). Adaptive behaviour is a 

basic function that is central to the successful performance of the most basic 

tasks necessary for survival (Gidley Larson, Bastian, Donchin, Shadmehr, & 

Mostofsky, 2008). For instance, it is particularly advantageous that individuals 

can alter their motor plans (e.g., walking while holding an object) to overcome 

various internal (e.g., fatigue) and external (e.g., holding a child) environmental 

demands. Indeed, Gidley Larson et al. (2008) argue that adaptation is so crucial 

for survival that adaptation in individuals with autism spectrum disorder appears 

to be preserved at the expense of other cerebellar functions. Although 

considerable evidence supports the notion that the cerebellar cortex can acquire 

internal models through motor learning (e.g., Gomi, et al., 1998; Imamizu et al., 

2000; Kawato & Gomi, 1992; Kitazawa, Kimura, & Yin, 1998; for a review see Ito, 
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2008), the intention of this section is to introduce the basic premise of what we 

mean by an 'internal model' and how it applies to motor control. 

An internal model encompasses the entire sequence of neural events that 

represent a motor movement; from premotor sequence selection, to the online 

monitoring of current productions, and ultimately the formation of a neural 

representation for the completed movement. Kawato, Furukawa and Suzuki 

(1987) provide a very specific account to describe how this is computed: (1) The 

cortex sends the desired motor plan to the motor cortex. (2) The motor command 

is then computed, which estimates the torque to be generated by the muscles. 

(3) The motor command is then sent to the muscles via the spinal motoneurons. 

(4) The musculoskeletal system interacts with the environment that realizes 

some type of motor pattern. (5) The actual plan (current state of the effector) and 

time derivative is measured by proprioceptors, which is then sent back to the 

motor cortex via a negative feedback loop. (6) Feedback control is now able to 

be computed using error. (7) Spinocerebellum magnocellular part of the red 

nucleus system receives information about the movement as afferent input from 

proprioceptors as well as from efference copy. (8) Within the cerebellum, an 

internal model is formed. (9) Once acquired through motor learning, the model 

can provide an estimate of the actual movement. 

In more simple terms, a motor command is computed ('forward model') 

based on the information available (e.g., vision, state of limb) prior to initiating a 

movement (e.g., grasping a cup). Forward models are believed to predict 

upcoming states of the system based on the current state and active motor 
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command. Thus, the initial phase of the movement (e.g., between 0-100 ms) 

occurs via open-loop control, or without relying on sensorimotor feedback. 

Essentially, the brain selects and implements a motor plan given the information 

available. During mid to late production, if errors are detected then the brain is 

able to initiate compensatory responses (e.g., between 150-250 ms), which occur 

via closed-loop control, such that participants can use feedback to alter their 

motor plans (e.g., within the same or across successive productions) and 

accomplish the task (e.g., pick up the cup). Over time and with repeated 

exposure, the brain establishes an optimal strategy, or internal model, for that 

particular movement. This optimal strategy refers to how the brain learns to 

produce motor commands that minimize costs and maximize rewards (Krakauer 

& Shadmehr, 2007). Overall, internal models are proposed to explain how 

feedforward controllers may account for the numerous motor commands 

produced during diverse motor contexts experienced by individuals on a daily 

basis (Wolpert and Kawato, 1998). 

The theory of internal models proposes that two types of controllers exist 

(forward and inverse models). Note that the inverse model is not a model of the 

external world, rather it is a model of information processing carried out in other 

brain regions (Kawato et al., 1987). Essentially, Kawato et al. describe an inverse 

model as the dynamic system whose input and output are inverted (e.g., 

trajectory is input and motor command is output). Typically, optimal performance 

requires both forward and inverse models. For example, during reaching tasks 

participants generally hold a robotic arm and attempt to move a cursor on a 
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computer screen to a target location, within a fixed period of time. If done 

correctly, the target will explode otherwise if the movement is too slow the 

participants are given a warning to make the movement more quickly. When the 

force is applied to the arm during the reaching movement, the best strategy is not 

a nearly straight trajectory to reach a target. The optimal cursor trajectory is 

slightly curved. That is, overcompensate early in the movement and under 

compensate near the end. The reason this is optimal, according to Krakauer and 

Shadmehr (2007), is that feedback allows one to correct errors occurring early in 

the movement but not errors occurring late. Therefore, it is easier to make the 

movement with the force, than to oppose it. It was also noted that the inverse 

model would not be formed/employed if catch trials were present (Krakauer & 

Shadmehr, 2007). Thus, it seems that the overcompensation strategy is only 

optimal in predictive instances, where one is certain that the force will be 

experienced. If the task is unpredictable, as is the case in a number of FAF 

studies examining the importance of auditory feedback on vocal motor control 

(e.g., Burnett et al., 1997, 1998; Donath et al., 2002; Hain et al., 2000; Larson, 

1998; Larson, Burnett, Kiran, & Hain, 2000; Liu and Larson, 2007), then the 

forward model will be employed. Given the presumption that feedback 

manipulations act on the forward model, and not the inverse model, the 

remainder of this dissertation will only focus on forward models of motor control. 

Therefore, forward model will be appear as 'internal model' throughout the 

remainder of the document. 
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Sensory Consequences of Action: The Efference Copy 

An important component of the theory of internal models is the sensory 

consequences of actions. It is hypothesized that forward models include an 

'efference' comparator, or a copy of the motor plan, which is sent to the sensory 

cortex to predict the sensory consequences of our actions (Nowak, Topka, 

Timmann, Boecker, & Hermsdorfer, 2007). The critical function of the efference 

copy of our motor plan is to assist with the differentiation between self-generated 

and externally-generated stimuli (Blakemore, Wolpert, & Frith, 2000). For 

instance, if the predicted outcome of a motor plan is congruent with the actual 

feedback received from the movement, no error is registered. Conversely, if the 

sensory feedback does not match the consequences of the predicted motor plan, 

then an error is detected, which results in the brain eliciting compensatory 

responses to reduce the error on subsequent trials. In the case of vocalization, 

the increased activation found when auditory feedback has been manipulated, 

relative to when it is unaltered, is thought to represent a violation in the expected 

sensory consequences of the motor plan and the actual results. Thus, the 

forward model's efference copy is important in not only helping individuals ' 

differentiate between self-generated movements from externally-generated 

movements, but it is also thought to be related to the compensatory responses 

that occur to manipulated feedback in humans. 

Evidence for Cortical Suppression During Vocalization 
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Studies using event-related potentials (ERP) and 

magnetoencephalography (MEG) have found suppression in cortical activity 

occurring approximately 100 ms (N100 & M100, respectively) following 

vocalization onset in humans (Heinks-Maldonado, Mathalon, Gray, & Ford, 2005; 

Heinks-Maldonado, Nagarajan, & Houde, 2006) and in marmoset monkeys 

(Eliades & Wang, 2008). For instance, Heinks-Maldonado and colleagues (2005, 

2006) investigated whether a forward model operates in the auditory system that 

causes a dampened sensory experience when you hear your own unaltered 

voice, your own pitch-shifted voice (200 cents, 2 semitones), or an alien 

unaltered or pitch-shifted voice. During speech production, it was found that the 

M100 (an early sensory detection component generated in the auditory cortex) 

was maximally suppressed to participant's own unaltered voice relative to the 

pitch-shifted and alien feedback conditions (Heinks-Maldonado et al., 2006). On 

the other hand, when participants were required to simply listen to speech, the 

various forms of feedback (own verses alien) did not yield M100 amplitude 

differences compared to when participants actively vocalized during the task. 

Moreover, similar results were obtained using ERPs, except the component of 

interest was the N100 (Heinks-Maldonado et al., 2005). It appears that the 

cortical suppression observed in the auditory cortex is potentially a consequence 

of a precise forward model mechanism. The following section will address the 

role of sensory feedback on motor control and how compensatory responses 

have demonstrated the recalibration of an internal model. 
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The Role of Sensory Feedback for Motor Control: Compensatory Responding 

There is little doubt that sensory feedback is essential for the acquisition 

and maintenance of precise motor control (e.g., Burnett etal., 1997, 1998; 

Elman, 1981; Ghahramani & Wolpert, 1997; Houde & Jordan, 1998; Kalenscher 

et al., 2003; Jones & Keough, 2008; Jones & Munhall, 2000, 2002, 2005; Larson 

et al., 2008; Munhall et al., 2009; Sainburg et al., 1999; Shadmehr & Moussavi, 

2000; Shadmehr & Mussa-lvaldi, 1994). Indeed, Finney and Palmer (2003) 

demonstrated that auditory feedback is important during the acquisition of a 

novel musical piece in trained pianists. Moreover, receiving auditory feedback 

has been shown to be crucial in learning to produce speech (Oiler & Eilers, 

1988), and for the maintenance of precise articulation across the lifespan (Cowie 

& Douglas-Cowie, 1992). In regards to vocal productions, previous research has 

found that delaying auditory feedback (Yates, 1963) disrupts the quality and 

fluency of vocal productions (e.g., stuttering). However, changing auditory 

feedback typically results in compensatory responses (in the opposite direction of 

the manipulation) in speakers' ongoing vocal productions. For instance, have you 

ever noticed that when you are trying to talk to someone in a crowded 

environment you suddenly and automatically raise your voice in an attempt to 

facilitate communication? In 1911, Etienne Lombard predicted that when 

speakers are exposed to loud noise they spontaneously increase the intensity of 

their voice, which is essentially stating that they were compensating for the noise 

(Lane & Tranel, 1971). In honour of this important finding, the effect was 

appropriated referred to as the 'Lombard' effect. 
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In regards to compensation and adaptation, an interesting observation 

was found in Held's (1965) classic study following the prolonged exposure to 

prism goggles. Held had participants wear prism goggles that horizontally 

displaced their visual field. Initially, errors were made in the direction that the 

prism goggles were altering their vision. Over time, participants compensated by 

making movements in the opposite direction of the displacement, such that 

accuracy and the duration required to complete the task was similar to baseline 

performance (without the goggles). When the goggles were removed, 

participants made movements that were in the direction of compensation 

(aftereffects). This suggests that participants were anticipating the visual 

displacement on trials following the removal of the prism goggles. Interestingly, 

Held failed to find adaptation when participants passively viewed a scene while 

wearing prism goggles (they were pushed around by the experimenter while 

standing on a platform). Thus, due to the fact that even though the eye received 

similar information during the active and passive viewing conditions, it appears 

that the crucial connection between sensory input and motor output was missing 

in the passive condition (Held, 1965). Thus, movement alone without the 

opportunity for error recognition does not suffice to produce adaptation, rather 

Held argues that the movement must be self-produced. 

Other examples demonstrating compensatory responses to auditory 

feedback manipulations include presenting participants with increasing masking 

noise or decreasing side-tone amplitude (Bauer et al., 2006; Lane & Tranel, 

1971), shifting formant frequencies (Houde & Jordan, 1998; Munhall et al., 2009; 
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Purcell & Munhall, 2006), or shifting participants' fundamental frequency (F0) 

(Burnett etal., 1997, 1998; Elman, 1981; Jones & Munhall, 2000, 2002, 2005; 

Jones & Keough, 2008; Zarate & Zatorre, 2008). Given that this dissertation will 

focus on the role of auditory feedback on voice F0 control while singing, the 

following section will introduce what the FAF paradigm is, how it is used, and the 

results obtained in previous studies (compensation and sensorimotor 

adaptation). 

Frequency-Altered Feedback: An Overview 

Elman (1981) was among the first to investigate the behavioural effects of 

manipulating the frequency (F0) of subjects auditory feedback using frequency-

altered feedback (FAF). The FAF paradigm typically involves participants 

producing a nonsense syllable (e.g., /ah/) or a sustained vowel (e.g., /u/) while 

receiving either normal or altered auditory feedback. In general, the unaltered 

feedback condition is used to establish a baseline value for which to compare 

participants' vocal productions while receiving FAF. When participants receive 

FAF, they are essentially presented with auditory feedback that is higher or lower 

in pitch than what they are actually producing. In response to this perturbation, 

the majority of participants will compensate for the discrepancy detected between 

perception and production by adjusting their F0 in the opposite direction of the 

manipulation (e.g., Bauer et al., 2006; Burnett & Larson, 2002; Burnett et al., 

1997, 1998; Jones & Munhall, 2000, 2002, 2005; Jones & Keough, 2008; Liu, 

Zhang, Xu, & Larson, 2007; Natke, Donath, & Kalveram 2003). For instance, 
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participants will increase their F0 in response to downward shifts (e.g., one 

semitone, 100 cents) in auditory feedback, and the same is true for shifts in the 

opposite direction. However, in rare cases participants will adjust their F0 in the 

same direction ('following') as the manipulation (e.g., Burnett et al., 1997, 1998; 

Burnett & Larson, 2002). On these trials participants will increase their F0 in 

response to upward shifts (e.g., 100 cents) in auditory feedback (e.g., pitch), and 

the same is true of manipulations in the opposite direction. Also, regardless of 

whether the pitch manipulations coincide with vocal onset (e.g., Heinks-

Maldonado et al., 2005; Jones & Keough, 2008, Jones & Munhall, 2000, 2002, 

2005) or are presented during mid utterance (e.g., Burnett et al., 1997, 1998; 

Hawco & Jones, 2009; Larson et al., 2001; Zarate & Zatorre, 2008), participants 

typically compensate for FAF. 

Frequency-Altered Feedback: Compensation using Relative Pitch Targets 

Given that numerous FAF studies have been carried out on speech 

(Burnett etal., 1998; Donath etal., 2002; Jones & Munhall, 2000; Larson, 1998; 

Larson et al., 2000), participants have only been required to produce a target at a 

'relative' frequency. In other words, their vocalizations were not intended to 

match a specific frequency, as in singing. Interestingly, participants have not 

exhibited complete levels of compensation during F0 manipulations during 

speech production (e.g., Burnett et al., 1997; Donath et al., 2002; Larson, 1998; 

Larson et al., 2000; Natke et al., 2003). The response magnitudes reported from 

prior research have ranged from approximately 15-65 cents with an average 
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response magnitude of around half a semitone, or 50 cents. Indeed, these results 

have been observed regardless of the direction of the manipulation (upward or 

downward) and for manipulations varying from 100 to 600 cents. Donath and 

colleagues (2001) point out that despite the fact that magnitudes of less than one 

semitone (100 cents) appear to be minute, the levels of compensation fall within 

natural prosodic variations. For instance, Bosshardt, Sappok, Knipschild, and 

Holscher (1997) found that voice F0 can increase about a semitone (100 cents) 

when participants end a question. Additionally, the mean response latency for 

compensatory responses has been found to be around 100-150 ms, whereas for 

following responses it has been found to be around 250-600 ms (Larson, 1998; 

however see Experiment 2 by Burnett et al., 1998). This implies that the 

audiovocal system typically detects the discrepancy between perception and 

production and acts to correct this error (compensate) within approximately 150 

ms. 

Frequency-Altered Feedback: Compensation using Absolute Pitch Targets 

However, unlike speech, singing offers researchers a unique window into 

the study of FQ control. Singing involves producing a succession of musical 

sounds at a particular (absolute) frequency (e.g., 440 Hz, A4), or the number of 

cycles per second that represents a specific target (a musical note). Thus, 

singers must maintain accurate vocal control over their F0 to hit the desired 

notes. For instance, it is not uncommon for singers to have to match the pitch of 

their voice to an external reference (that may or may not be producing the same 
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note) or, conversely, to match the pitch of their voice to a note in the absence of 

the external referent (when singing a cappella). Sundberg (1987, p. 177) pointed 

out that trained singers were capable of matching the target (A4, 440 Hz) with an 

accuracy of less than 1 Hz. Presently there are few studies that have directly 

examined the role of auditory feedback while singing (Burnett et al., 1997; Jones 

& Keough, 2008; Natke et al., 2003; Zarate & Zatorre, 2005). Indeed, the results 

obtained during singing studies using FAF suggest the results are similar to 

those obtained during speech production: participants compensate for upward or 

downward manipulations by adjusting their F0 in the opposite direction of the 

perturbation. 

However, one difference between previous work on speech and singing 

using FAF was the level of compensation observed. Burnett et al. (1997) 

reported exemplary data for one trained singer who exhibited near perfect levels 

of compensation to FAF while a singing musical scale. Moreover, Natke and 

colleagues (2003) found that participants, who were not trained singers, 

compensated more during the singing condition (66 cents) than during the 

speaking condition (47 cents). Additionally, they reported aftereffects, such that 

the compensatory responses participants made not only lasted longer during the 

singing task but also persisted into the next trial, such that their post-adaptation 

F0 values on initial test trials were higher than their average baseline F0 values. 

The fact that singing appears to be more tightly controlled than speaking 

suggests that it could potentially be the result of the task constraints of singing. 

For example, notes provide an external reference in which to match voice F0 and 
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the note has an absolute pitch value (Burnett et al., 1997; Natke et al., 2003). As 

a consequence, it appears that using an absolute reference during singing may 

result in greater levels of compensation to FAF. 

Compensation: Unpredictable verses Predictable Manipulations 

In regards to the previously mentioned differences in the level of 

compensatory responding to FAF during speech and singing, it should be noted 

that some of the studies examining speech were designed to assess 

compensation (e.g., Burnett et al., 1998; Hain, et al., 2000; Larson et al., 2001), 

whereas studies interested in singing (Jones & Keough, 2008) were designed to 

examine sensorimotor adaptation. This is particularly important because in a 

compensation study the perturbations are often randomly presented, they could 

occur during mid utterance, the duration of the manipulation may vary (e.g., 

between 100-500 ms), or multiple perturbations could occur within a single 

utterance. Conversely, when assessing sensorimotor adaptation the 

manipulations are typically held constant across several trials, or if the 

manipulations are progressively increasing or decreasing then the shift values 

across trials occur in a predictable fashion. 

The predictable nature of the task is what has been thought to permit the 

modification of internal models for motor control. Essentially, the brain anticipates 

the altered feedback on a particular trial and the motor commands associated 

with that movement are adjusted to compensate for the error. If the 

manipulations are not predictable then adaptation is not likely to occur, as the 
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'best' motor plan is the one that is considered the default (baseline) for the 

movement. Thus, movements will be initiated from this consistent value and 

altered when perturbed feedback is randomly encountered. 

Random Perturbation of Voice F0 Results in Two Compensatory Responses 

Interestingly, when auditory feedback manipulations are presented 

randomly following vocal onset during speech production two types of 

compensatory responses have been reported (Burnett et al., 1997, 1998). For 

instance, when Burnett et al. (1998) shifted F0 for intervals between 100 to 500 

ms they found that compensatory responses consisted of an early vocal 

response (VR1) and late vocal response (VR2). The early vocal response was 

found to have a latency of 100-150 ms post stimulus onset, whereas the late 

vocal response occurred with a latency of 250-600 ms. 

The speed of the vocal response is worth noting because it may identify 

whether it is 'reflexive' or 'voluntary'. However, using the terms 'reflexive' and 

voluntary' have created a long-standing debate as to whether they are useful 

scientific concepts, or whether they are prescientific terms that should be 

discarded. In any event, I will not present the arguments here, but see Prochazka 

et al. (2000) for a modern take on this debate. Indeed, Burnett and colleagues 

argue that the first response appears to be relatively automatic. Moreover, they 

suggest that this response is not strongly influenced by instructions to the 

participant (e.g., Hain et al., 2000). Hain et al. (2000) examined vocal responses 

while informing participants to ignore any changes in auditory feedback 

perceived over the headphones. The pattern of compensatory VR1 responses 
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observed was similar to those observed when participants were asked to 

compensate for any perceived changes in feedback. Overall, the first response 

appears to occur in the opposite direction of the manipulation (compensatory) for 

small amplitude shifts, and the amplitude of the response is between 25-50 

cents, which does not increase for shifts beyond 50 cents in a compensation 

paradigm (Larson, 1998). As a consequence, Larson's group posits that the VR1 

is an automatic feature in the audio-vocal system that is designed to monitor and 

correct for small errors in voice F0 feedback. They also posit that the VR2 is 

under volitional control, as the latency and amplitude of the response differed 

under various experimental conditions (Hain et al., 2000). Thus, the late 

response is thought to be a reflection of the voluntary mechanisms employed to 

modulate voice F0 while speaking or singing (Larson, 1998). 

An important aspect of Larson and colleagues research is that they argue 

the human voice is rather unresponsive to changes in other types of acoustical 

signals aside from a person's own voice F0 (Larson, 1998). If the audio-vocal 

system did not respond in this way then our vocal productions would be 

influenced by environmental sounds, resulting in a powerful effect on the control 

of one's voice F0. Moreover, if one's voice F0 was consistently influenced by 

other sounds in our environment, then it would stand to reason that we would not 

possess volitional control of our own voice. Given that this is not the case, the 

audio-vocal system, according to Larson (1998), appears to be largely designed 

to correct for small errors in vocal productions, while being capable of largely 

ignoring other environmental sounds. 
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Internal Models for Vocal Control: Closed-Loop and Open-Loop Control 

It has been proposed by Larson and colleagues (2000) that a closed-loop 

negative feedback system is operating to compensate for participants anticipated 

feedback with their actual feedback. In regards to the partial compensation 

typically found in previous FAF studies, Larson et al. (2000) suggested that a 

complete model with this negative closed-loop feedback system would include a 

filter with a limiting nonlinearity preventing responses to over 50 cents. Thus, 

participant's compensatory responses will not exceed approximately half a 

semitone during FAF studies, which has mostly been the case in the literature 

examining speech production (Burnett et al., 1997, 1998; Hain et al., 2000; Natke 

et al., 2003; Larson, 1998). Accordingly, when pitch deviations occur during mid-

utterance the pitch-shift reflex attempts to stabilize voice F0 rather than adjust the 

pitch to match a target. Interestingly, when the perturbation was presented at 

utterance onset the compensatory responses found by Hawco and Jones (2009) 

were larger than those obtained when the perturbation was presented at mid-

utterance. Thus, the mechanisms for vocal control responsible for compensatory 

responses appear to be modulated by the onset of the perturbation, whether it 

coincides with vocal production or occurs during the utterance. 

It has also been proposed that compensatory responses occur as a result 

of servomechanistic processes. For example, servomechanistic explanations put 

forward that a comparator actively seeks for discrepancies between the motor 

commands with the actual sensory feedback received during vocal production. 
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Essentially, this relates to an 'efference' copy, or the motor plan, being compared 

to the actual feedback to determine whether an error exists. If an error is 

detected, the system will attempt to compensate for the perceived mismatch by 

altering the voice F0 in the opposite direction of the perturbation. However, a 

conflict with this account exists, as average speech rates occur too quickly for 

auditory feedback to be reliably utilized in detecting and compensating for a 

perceived error prior to the next segment being produced (Bordon, 1979). As a 

consequence, a more likely explanation is that just before and immediately after 

vocalization, vocal fold stiffness and laryngeal structures appear to be 

responding in an open-loop fashion (Watts, Murphy, & Barnes-Burroughs, 2003). 

On the other hand, Jones and Munhall (2000) argue that vocal 

productions are governed by both closed and open-loop control. For instance, 

when learning to produce a target note participants may have a stronger reliance 

on auditory feedback during the initial acquisition stages. This would assist with 

the formation of sensorimotor representations that will guide future vocal 

productions. This idea is based on the premise that the feedback one receives 

while learning to perform a specific task creates an integrated sensorimotor 

representation that is directly related to the task (Proteau Marteniuk, Girouard & 

Dugas, 1987; Proteau, Marteniuk & Levesque, 1992). Thus, overtime, it is 

thought that an internal representation is formed, or 'internal model'. Internal 

models are thought to exist as neural maps of skilled movements that store the 

relationships between the motor commands, environment and sensory feedback 

for their production (Desmurget & Grafton, 2000; Flanagan & Wing, 1993; 
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Shadmehr & Mussa-lvaldi, 1994). In regards to speech and singing, it is thought 

that the reliance on auditory feedback over time may be reduced in favour of an 

increased reliance on the motor plan for vocalization. Thus, if there exists an 

internal model for singing one would assume that it would be more entrenched in 

singers, by virtue of their extensive training, than in nonsingers. 

Internal Models for Vocal Control: Musical Training 

Jones and Keough (2008) conducted a study to investigate whether 

trained singers, given their extensive training, would rely more on an internal 

representation than nonsingers while singing. Participants produced a musical 

target (392 Hz or 349 Hz, G4 or F4 respectively) while receiving unaltered 

auditory feedback (during a baseline and test phase) or FAF (during a training 

phase), where auditory feedback was shifted down 1 semitone (100 cents). It 

was hypothesized that participants' would compensate for the FAF by altering 

their voice F0 in the opposite direction of the perturbation. Moreover, both groups 

were predicted to recalibrate their internal models for F0 control during FAF trials. 

Once this internal model is recalibrated, it was hypothesized that when subjects 

received normal unaltered feedback, after a period of receiving manipulated 

feedback, that aftereffects would persist for both singers and nonsingers. Thus, it 

was thought that the F0 values obtained during testing would be significantly 

higher than participants baseline FQ values. However, if trained singers possess 

a stronger reliance on an internal model to guide F0 productions it was 

hypothesized that they should exhibit a smaller magnitude of compensation than 
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nonsingers when exposed to frequency-altered feedback. If singers relied more 

on an internal representation to regulate voice F0 then following FAF aftereffects 

should be more apparent and persistent throughout testing than the aftereffects 

observed for nonsingers. Additionally, aftereffects should generalize to a stronger 

degree in singers than nonsingers when required to emulate a different note (F4) 

than the one they received during training. 

In accord with the predictions made by Jones and Keough (2008), it was 

determined that when initially exposed to FAF that nonsingers compensated to a 

greater degree than singers. This difference persisted across nearly every block 

of the FAF trials during the experimental session. Of particular interest were the 

Fo values collected for singers and nonsingers during the test trials. Singers' F0 

values were higher than their baseline Fo values, whereas there were no 

differences observed for nonsingers' F0 values during the baseline and test trials. 

Thus, aftereffects were only present for singers and these effects were found 

even when singers were required to produce a different note than the one they 

sang during training. As a result, these data imply that singers rely more on an 

internal representation to regulate their F0 productions while singing. 

My Dissertation: An Overview 

The purpose of this dissertation is to further our understanding of the role 

of auditory feedback on internal representations controlling voice Fo while 

singing. Moreover, I am interested in examining whether formal music training 

results in any differences between singers and nonsingers ability to use auditory 
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feedback to control the pitch of their voice. As a consequence, Chapter 1 will 

examine the sensitivity of trained singers and nonsingers' internal 

representations to subtle changes in auditory feedback. Unlike the previous study 

in our laboratory (Jones & Keough, 2008) where participants were presented with 

large (1 semitone; 100 cents) pitch shift manipulations, Chapter 1 had 

participants produce musical targets while receiving auditory feedback that was 

manipulated in +/- 2 cent increments across trials up to +/-100 cents (1 

semitone). The purpose of this study was to address when (at what trial) 

participants began compensating for small changes in auditory feedback. It was 

thought that determining when participants, on average, compensated for FAF 

might elucidate their compensatory threshold to these subtle manipulations. 

Moreover, given the extensive training singers possess it was hypothesized that 

they should be more sensitive to subtle changes in their auditory feedback, 

resulting in compensatory responses occurring earlier than in nonsingers. 

Additionally, we were interested in determining whether sensorimotor 

adaptation was observable during FAF trials. That is, could we observe changes 

in F0 production over time when participants compensated for small pitch shift 

manipulations? In order to accomplish this we examined singers and nonsingers 

median F0 values within 50 ms of vocal onset. If participants exhibited 

sensorimotor adaptation, then their F0 values should progressively decrease or 

increase when feedback was gradually shifted upwards or downwards, 

respectively. Indeed, this should identify whether internal models are 

continuously updated and whether singers exhibit a stronger reliance on internal 



Frequency-Altered Feedback 24 

models to control voice F0. Moreover, it was hypothesized that modifications in 

singers' internal representations would result in aftereffects that would generalize 

to other notes that were not manipulated in pitch to a greater degree than in 

nonsingers. 

Chapter 2 was designed to investigate the sensitivity of trained singers' 

internal representations to altered auditory feedback and determine whether 

participants can develop and switch between multiple internal representations 

based on a contextual cue (musical notes). This experiment was largely based 

on the evidence presented in arm reaching studies, which suggests that the 

motor system can acquire multiple internal models when presented with a 

contextual cue (e.g., colour). The idea that multiple internal models may exist 

could potentially explain how an organism is capable of adapting to different 

perturbations in diverse contexts. Participants were presented with target notes 

(A4, G4, F4) on each trial prior to initiating vocal productions. Although 

participants were presented with target notes in a sequential order, they were 

only required to reproduce them one at a time when prompted by a cue (the 

target note). During FAF trials, auditory feedback for the first note in the 

sequence (A4 or F4) was gradually manipulated (over 25 trials) upward in pitch 

(in 4 cent increments to 100 cents; 100 cents = 1 semitone). Auditory feedback 

for the second target (G4) in the sequence remained unaltered during all trials. 

Thus, G4 was used as a control note to examine the sensory motor 

representation of an unaltered target while compensating for FAF. Auditory 
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feedback for the third note in the sequence (F4 or A4) was gradually manipulated 

(over 25 trials) downward in pitch (in -4 cent increments to -100 cents). 

We hypothesized that if participants can form multiple internal 

representations for F0 control, then they will exhibit a pattern of compensation 

that is unique to each target. Also, if trained singers initiated vocal productions at 

levels close to the target frequency then they should gradually adjust how they 

initiate voice F0 (within 50 ms). That is, participants should initiate their vocal 

pitch at progressively lower and higher frequencies when presented with upward 

and downward pitch shifts within an experimental session, respectively. 

Furthermore, we predicted that if participants rely on multiple internal models, 

then F0 values for the unaltered pitch target should remain unchanged even while 

recalibration has occurred for altered pitch targets. 

In regards to Chapter 2, a question was raised as to whether singers will 

constantly update an internal model that was unique to each target note or will 

they rely on the predictability of the sequence to regulate F0 control (each note 

corresponded to a specific manipulation)? In order to assess this, we decided to 

run additional trained singers using the same method, however we had 

participants emulate one target note (G4) while receiving the various FAF 

manipulations. It was predicted that if singers were relying on the predictability of 

the sequence then they should show a pattern of adaptation that is target 

specific. This would suggest that sensorimotor adaptation was due to the 

predictable nature of the task (anticipation of FAF) and not necessarily due to the 

detection of an error in the notes themselves. On the other hand, if singers are 
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constantly updating their internal models, and are not solely relying on the 

predictability of the sequence, they should not adapt during FAF trials in 

Experiment 2. Instead, producing the same note repeatedly with varying 

manipulations in auditory feedback should result in consistent F0 values during 

vocal initiation (within 50 ms) with compensatory responses occurring later in 

production. 

Chapter 3 had singers and nonsingers produce target notes at specific 

frequencies with different instructions while receiving subtle and large 

modifications in auditory feedback. Participants were informed that their auditory 

feedback was manipulated in pitch and they were instructed to either (1) 

'compensate' for these changes by altering their voice F0 in the opposite direction 

of the perturbation or (2) to 'ignore' their auditory feedback maintain their voice F0 

at frequencies similar to when their feedback was unaltered. The purpose is to 

investigate (i) whether task instructions influence compensatory responding (F0 

values within 1500 ms of vocal onset) and sensorimotor adaptation (F0 values 

within 50 ms of vocal onset) that is typically observed while singing with 

unaltered and frequency-altered feedback. Moreover, (ii) collecting data from 

singers and nonsingers will help identify whether musical training influences 

acoustic-motor control when instructed to compensate or ignore auditory 

feedback manipulations. Regardless of whether the pitch manipulations are small 

(-2 cent increments down to -100 cents, where 100 cents = 1 semitone) or large 

(-100 cents), if both singers and nonsingers can suppress or eliminate 

compensatory responses and sensorimotor adaptation then it will suggest that 
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these responses are, to a certain degree, under volitional control. Moreover, it 

would also imply that auditory feedback, as well as musical training, is not 

entirely responsible for the continued maintenance of the motor control of 

singing. Conversely, if similar patterns of compensatory responding and 

sensorimotor adaptation are observed, then it will suggest that these responses 

are automatic and that auditory feedback has an important role in vocal motor 

control while singing. 

It is hypothesized that both singers and nonsingers will be unable to 

ignore subtle shifts (-2 cent increments to -100 cents; 'ramp condition') in FAF. 

As a result, it is expected that participants will exhibit similar patterns of 

compensatory responding and sensorimotor adaptation during the ramp 

condition. When auditory feedback is suddenly shifted to -100 cents ('constant 

condition'), it is hypothesized that nonsingers will immediately compensate by 

increasing their voice F0 in the opposite direction of the manipulation. Over time, 

it is believed that nonsingers will exhibit sensorimotor adaptation while 

compensating for the FAF. On the other hand, trained singers may be able to 

ignore large changes in auditory feedback when instructed to do so, which would 

be congruent with the results of Zarate and Zatorre (2008). Indeed, if this occurs 

then vocal productions should be similar to those when auditory feedback was 

unaltered (baseline). However, it should be noted that participants in Zarate and 

Zatorre (2008) received FAF following vocal onset (the manipulations occurred 

between 1000-1500 ms into production), whereas FAF coincided with vocal 

onset in the current study. It is possible that the suppression of compensatory 
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responding exhibited by trained singers in Zarate and Zatorre resulted from their 

reliance on the auditory feedback they received prior to the presentation of the 

FAF. Thus, trained singers may not be able to suppress compensatory 

responding or sensorimotor adaptation when presented with large changes in 

auditory feedback that coincide with vocal onset. 
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Abstract 

Singing requires accurate control of the fundamental frequency (F0) of the voice. 

This study examined trained singers and untrained singers (nonsingers) 

sensitivity to subtle manipulations in auditory feedback, and the subsequent 

effect on the mapping between F0 feedback and vocal control. Participants 

produced the consonant-vowel /ta/ while receiving auditory feedback that was 

shifted up and down in frequency. Results showed that singers and nonsingers 

compensated to a similar degree when presented with frequency-altered 

feedback (FAF), however, singers' F0 values were consistently closer to the 

intended pitch target. Moreover, singers initiated their compensatory responses 

when auditory feedback was shifted up or down 6 cents or more, compared to 

nonsingers who began compensating when feedback was shifted up 26 cents 

and down 22 cents. Additionally, examination of the first 50 ms of vocalization 

indicated that participants commenced subsequent vocal utterances, during FAF, 

near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 

productions below the pitch target and increased their F0 until they matched the 

note. We conclude that singers and nonsingers rely on an internal model to 

regulate voice F0, but singers' models appear to be more sensitive in response to 

subtle discrepancies in auditory feedback. 

Keywords: frequency-altered feedback, auditory feedback, internal model, 
fundamental frequency, F0, pitch, singing, singer. 
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The Sensitivity of Auditory-Motor Representations to Subtle Changes in Auditory 

Feedback while Singing. 

The role of auditory feedback during vocalization has been a topic of much 

scientific inquiry. Both speech and singing are debatably the most complex motor 

actions humans are capable of producing. In order to produce a word, or to sing 

a musical note, one must possess strict control over respiratory muscles in 

addition to control over intrinsic and extrinsic laryngeal muscles. This control is 

achieved by an intricate network of cortical and brainstem areas dependent upon 

auditory (Sapir, McClean, & Larson, 1983; Larson, Altman, Liu, & Hain, 2008) 

and proprioceptive (Kirchner & Wyke, 1965; Wyke, 1974; Yoshida et al., 1989) 

reflex mechanisms. However, nonreflexive systems that utilize auditory feedback 

also contribute greatly to the development of speech in children (e.g., Oiler & , 

Eilers,1988). 

Postlingually, auditory feedback also appears to be monitored and used during 

ongoing speech. For instance, delaying auditory feedback results in disruptions 

in the quality of vocal productions (Yates, 1963). As well, altering auditory 

feedback typically elicits compensatory responses in speakers' ongoing vocal 

productions. Increases in masking noise and decreases in side-tone amplitude 

(Bauer, Mittal, Larson, & Hain, 2006; Lane & Tranel, 1971), shifts in formant 

frequencies (Houde & Jordan, 1998; Purcell & Munhall, 2006b), and the 

fundamental frequency (F0) (Burnett, Senner, & Larson, 1997; Elman, 1981; 

Jones & Munhall, 2000; Kawahara, 1998) all cause vocal responses that oppose 
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the respective manipulations. The purpose of the present study is to further our 

understanding of the role of auditory feedback for the control of F0. 

Frequency-altered feedback (FAF) is one paradigm that has been used to 

examine the importance of auditory feedback for the regulation of voice F0. In a 

typical FAF study, participants receive auditory feedback that has been 

manipulated in pitch to be higher or lower than their actual vocal productions. 

Responses to these perturbations generally result in decreases or increases in 

Fo to upward or downward pitch shifts, respectively. Elman (1981) was among 

the first to investigate the behavioural effects of manipulating speakers' auditory 

feedback regarding F0. Since that time, the majority of FAF studies (e.g., Bauer 

et al., 2006; Burnett et al., 1997; Burnett et al., 1998; Burnett & Larson, 2002; 

Elman, 1981; Houde & Jordan, 1998; Jones & Munhall, 2000, 2002, 2005; Natke 

et al., 2003; Toyomura et al., 2007) have required participants to produce a 

relative target and not to match a specific frequency, as in singing. In those 

studies, most participants compensated for the discrepancy detected between 

perception and production, however, not perfectly (e.g., Burnett et al., 1997; 

Donath etal., 2002; Larson, 1998; Larson, Burnett, Kiran, & Hain, 2000; Natke et 

al., 2003). The response magnitudes previously reported for manipulations 

varying from +/- 100 to 600 cents (cents: a logarithmic unit used to measure 

small intervals between different frequencies, where 100 cents is equal to 1 

semitone) ranged from approximately 15-65 cents with an average response 

magnitude of around 50 cents (regardless of the direction of manipulation). 
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Singing offers researchers a unique window into the study of F0 control. Singing 

involves producing a succession of musical sounds at a particular (absolute) 

frequency (e.g., 440 Hz, A4). Thus, singers must maintain accurate vocal control 

over their F0 to hit the desired notes. Sundberg (1987, p. 177) reported that if 

deviations occur from the intended target with the actual production, trained 

singers are able to compensate and match the tone (A4, 440 Hz) with an 

accuracy of less than 1 Hz. However, few studies have directly examined the role 

of auditory feedback while singing (Burnett et al., 1997; Jones & Keough, 2008; 

Natke, Donath, & Kalveram, 2003; Zarate & Zatorre, 2005, 2008). The results 

obtained during singing studies that have used FAF (e.g., Burnett et al., 1997; 

Natke, Donath, & Kalveram, 2003) indicate that the compensation is comparable 

to those obtained during speech production. The compensatory responses 

observed in trials of altered feedback indicate that voice production is regulated 

in a closed-loop fashion (Fairbanks, 1954; Larson et al., 2000; Lee, 1950). 

However, laryngeal structures and vocal fold stiffness are set in place prior to 

vocal onset (e.g., Watts, Murphy, & Barnes-Burroughs, 2003), suggesting a role 

for open-loop motor planning. 

In the case of singing, when learning to produce a target note, stronger reliance 

on auditory feedback during the initial acquisition stages may be required in order 

to establish sensorimotor representations that will guide future vocal productions. 

This idea is based on the premise that the feedback one receives while learning 
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to perform a specific task creates an integrated sensorimotor representation that 

is directly related to the task (Proteau Marteniuk, Girouard & Dugas, 1987; 

Proteau, Marteniuk & Levesque, 1992). For instance, Finny and Palmer (2003) 

demonstrated that the availability of auditory feedback while pianists learned a 

piece of music significantly improved their ability to play the piece from memory 

during later recall. However when pianists were asked to perform well rehearsed 

musical sequences from memory, the removal of auditory feedback did not affect 

musical performance (Finny & Palmer, 2003). Thus, over time, it is hypothesized 

that an internal representation is formed, or 'internal model' that stores the 

relationships between the motor commands, environment and sensory feedback 

for their production (Proteau et al., 1987; Proteau et al., 1992). As a result, 

pianists may be capable of performing a well rehearsed piece from memory 

without auditory feedback because they are relying on internal motor commands 

that correspond to the musical composition. The same reliance on an internal 

motor plan may also exist for singing a well-rehearsed piece. For instance, it is 

possible that vocal productions are initiated based on an increased reliance on 

the motor plan established for vocalization. 

Jones and Keough (2008) investigated whether trained singers, given their 

extensive training, rely more on a well-established internal representation than 

nonsingers while singing. Indeed, identifying differences in F0 control while 

speakers receive subtle manipulations in auditory feedback should elucidate the 

sensitivity of the underlying mechanisms regulating FQ control. After training 
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participants to emulate a musical target (392 Hz, G4) while receiving auditory 

feedback shifted down by one semitone (100 cents), the authors found that 

nonsingers initially compensated to a greater degree than singers when exposed 

to FAF (Jones & Keough, 2008). However, after this brief exposure to FAF, 

singers' F0 values were higher than their baseline F0 values when they heard 

their feedback returned to normal, whereas there were no differences between F0 

values during the baseline and test trials for nonsingers. These effects persisted 

when singers were required to produce a different note other than the one they 

sang during the altered feedback trials. These results imply that singers update 

their internal forward model based on sensory feedback whereas nonsingers rely 

more on auditory feedback to regulate their F0. 

The present study was designed to investigate the sensitivity of singers and 

nonsingers' internal representations to subthreshold (2 cent increments) 

manipulations in auditory feedback. The data obtained by Jones and Keough 

(2008) suggested that singers do not compensate for larger discrepancies 

between perception and production and instead rely on their internal models. 

Nonsingers fully compensated immediately after exposure to altered feedback of 

100 cents whereas singers required several trials to modify their F0 (Jones & 

Keough, 2008). Moreover, Zarate and Zatorre (2005, 2008) found that singers 

were able to successfully ignore altered auditory feedback (by presumably 

relying on an internal model) they received and continue to produce the targets at 

the desired frequency when instructed to do so. Conversely, nonsingers' vocal 
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productions suggested that they were unable to ignore the altered feedback and 

as a result they adjusted their F0 to compensate for the manipulation (Zarate & 

Zatorre, 2005, 2008). 

Jones and Keough (2008) found that singers initially responded less to large (100 

cent) shifts in auditory feedback than nonsingers, who exhibited near perfect 

levels of compensation almost immediately. However, it remains unknown 

whether similar Fo values for singers and nonsingers would be obtained using 

small (2 cent increments up to 1 semitone, 100 cents) manipulations in auditory 

feedback. Given the paucity of data, we hypothesized that singers and 

nonsingers would compensate to a similar degree to the altered-feedback, but 

that singers, due to their extensive training and experience, would compensate 

for the discrepancy in perception and production more efficiently than 

nonsingers. That is, the mechanisms that regulate F0 control in singers would be 

more sensitive to subtle changes in FAF. As a result, singers will reproduce the 

target notes more accurately than nonsingers while receiving FAF. Of particular 

interest was determining when singers and nonsingers initiate compensatory 

responses to small manipulations in auditory feedback. Determining when both 

groups initiate compensatory responses may also provide an index of how 

sensitive the underlying mechanisms of the internal representations are to 

perturbations. Recently, the just-noticeable difference of fundamental frequency 

to digitally synthetic stimuli has been shown to be between 4-98 cents (Pape & 

Mooshammer, 2006). Furthermore, Loui and colleagues (2008) found that 
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participants without speech or hearing disorders, and with no formal music 

training, had a perceptual and production threshold (approximately 2.0 & 2.5 Hz, 

respectively) that was significantly better than the threshold for amusic 

participants (approximately 36.2 & 12.3 Hz, respectively). We hypothesized that 

differences singers would initiate compensatory responses to altered feedback 

earlier than nonsingers due to their extensive vocal experience achieving pitch 

targets. 

Previous studies using the FAF paradigm have found evidence for sensorimotor 

adaptation by measuring the mean F0 after feedback was returned to normal 

(Jones & Munhall, 2000, 2002, 2005; Jones & Keough, 2008). These aftereffects 

can be observed following exposure to a single trial of FAF (Natke, Donath and 

Kalveram, 2003) in nonsingers. To track sensitivity to FAF in this experiment, we 

assessed sensorimotor adaptation by measuring F0 at vocal onset while 

exposing participants to FAF that increases or decreases in frequency by 2 cents 

on each successive trial. Using this measure, aftereffects will be evident when 

voice F0 values start at or near F0 values observed at the end of the previous 

utterance. If internal models are continuously updated, then onset of vocalization 

should progressively become flatter and sharper when participants receive FAF 

that is either increasing or decreasing, respectively. Thus, when participants 

receive unaltered auditory feedback at the end of the experiment, adaptation will 

be demonstrated if their F0 values begin near their F0 value during the final FAF 

trial. As a result, if singers rely more on an internal representation to control voice 

Fo then aftereffects should be more pronounced in singers than in nonsingers. 



Frequency-Altered Feedback 38 

Moreover, adaptation effects should generalize to a greater degree in singers 

than in nonsingers when asked to produce a different note (A4 & F4) with 

unaltered feedback after FAF trials. 

Methods 

Participants 

Twenty Wilfrid Laurier University students (all women) whose native tongue was 

North American English participated. Although there is no evidence to suggest 

that a gender difference exists in response to FAF, men were excluded so that all 

participants could adequately sing the same target notes. Of the twenty 

participants, 10 were trained singers (mean musical training was approximately 

12 years) recruited from the faculty of music at Wilfrid Laurier University. The 

remaining 10 participants were considered to be nonsingers, as none possessed 

any form of vocal training or ongoing participation in formal singing. All 

participants received financial compensation and gave informed consent. The 

Wilfrid Laurier University Research Ethics Committee approved the procedures. 

Apparatus 

Participant Recording Sessions. Participants were situated in a double-walled 

sound attenuated booth (Industrial Acoustic Company, Model 1601-01) and were 
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fitted with headphones (Sennheiser HD 280 Pro) and a condenser microphone 

(Countryman Isomax E6 Omnidirectional Microphone), which was approximately 

3 cm from their mouth. Multitalker babble noise (Auditec, St. Louis, MO) was 

presented at 80 dB SPL to limit natural acoustic feedback. The target notes 

consisted of a female voice singing the consonant-vowel /ta/, that was presented 

at either 349, 392 or 440 Hz, respectively. Microphone signals were sent to a 

signal processor (VoiceOne 2.0, TC Helicon) that manipulated auditory feedback. 

The altered feedback was then mixed (Mackie ONYX 1640) with the multi-talker 

babble and subsequently sent to the participant. Vocal productions were digitized 

at 44.1 kHz for future analysis. 

Target stimuli recording. The stimuli used were the same as in Jones and 

Keough (2008). A trained singer produced the respective targets, F4, G4, and 

A4, which were processed using the speech modification algorithm STRAIGHT 

(Speech Transformation and Representation using the Adaptive Interpolation of 

weighted spectrum; Kawahara, 1999) to ensure that each target was exactly 349, 

392 or 440 Hz. 

Procedure 

Participants emulated a musical target over 210 trials, which were divided into 3 

blocks of 70 trials. Each block consisted of 10 baseline, 50 shift and 10 test trials. 

On one block, participants reproduced the musical target G4 on all trials. Thus, 
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participants received unaltered auditory feedback during the 10 baseline trials, 

followed by 50 FAF trials (2 cent increments to 100 cents, 1 semitone) and then 

10 more unaltered feedback trials. In two other blocks, participants reproduced 

either F4 or A4 for the 10 baseline and 10 test trials while singing G4 during the 

FAF trials. Thus, participants only sang G4 during FAF trials. The other target 

notes, A4 and F4, were used to test whether participants exhibited a transfer of 

adaptation when emulating notes that were never manipulated. Thus, the three 

blocks participants experienced were AGA, FGF and GGG, where the first letter 

denotes the baseline target (trials 1-10), the middle letter denotes the shifted 

target (trials 11-60) and the final letter denotes the test value (trials 61-70). The 

three blocks of trials were counterbalanced across participants. 

On the first day of testing, participants produced the target on the 3 blocks (AGA, 

FGF and GGG) of 70 trials and received auditory feedback that was shifted either 

upward or downward in 2 cent increments up to 100 or -100 cents, respectively 

during the shift trials. Note that auditory feedback was shifted from the beginning 

of each utterance until the end of their vocal productions. On a subsequent day, 

participants produced the remaining 3 blocks of 70 trials while receiving altered 

feedback that was shifted in the opposite direction. Thus, participants were 

required to produce the target for a total of 6 blocks of 70 trials that were 

counterbalanced over two days. Individual trials commenced with the 

presentation of multitalker babble for 1000 ms followed by the target stimulus, 

which lasted 2000 ms in duration, and then the multitalker babble was presented 
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again for 4000 ms. The babble was presented prior to the target as a way to 

inform participants that the target note would be forthcoming. During the second 

presentation of the babble, participants were instructed to sing the target note as 

accurately as possible in pitch and duration. Trials were initiated and controlled 

by a computer and participants' vocal productions were recorded on a Macintosh 

G5 computer (Tracktion v1, Woodinville, WA). F0 values for each vocal 

production were calculated, during offline analyses, using an autocorrelation 

algorithm included in the Praat program (Boersma, 2001). F0 values were 

normalized to each target note (F4, G4 or A4) by calculating the appropriate cent 

values using the following formula: 

Cents = 100 (12 log2 F/B) 

Where F is the F0 value in Hertz and B is frequency of the target pitch 

participants were instructed to sing (349, 392 or 440 Hz). 

Results 

The mean F0 values for singers and nonsingers were calculated for each 

condition and are displayed in Figures 1a and 1b (grey lines), respectively. Data 

for one nonsinger was removed from the statistical analyses due to the fact that 

she exhibited poor F0 control during testing (mean F0 was 346 and 244 cents for 

the shifted up and down conditions, respectively). Only the first 1500 ms for each 

vocal production was analyzed because previous research has found 
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compensatory responding to FAF occurs between 130 to 500 ms after 

perturbation onset (Burnett et al., 1997; Burnett et al., 1998; Jones & Munhall, 

2002). The F0 values from the pitch shift up and down AGA, FGF and GGG 

blocks were analyzed together and were broken into five different blocks of trials 

within each condition: shift trials (11-20, 21-30, 31-40, 41-50, 51-60). 

Furthermore, the first five trials and the last five trials of each block were 

averaged and divided into early and late phases, respectively. Thus, a repeated-

measures ANOVA was carried out on the mean F0 values with 2 (experience: 

singer and nonsinger) x 2 (pitch shift: up and down) x 5 (block) x 2 (phase: early 

and late) as factors. Newman-Keuls' test was used for post-hoc tests with an 

alpha level of .05 used for all statistical tests. 

Also, we wanted to determine when singers' and nonsingers' mean F0 values 

during altered feedback trials were significantly different than baseline F0 values. 

This test would indicate when compensation occurred to the subtle manipulations 

in feedback. Furthermore, we examined the first test trial immediately after 

participants received altered feedback to determine if sensorimotor adaptation, in 

the form of aftereffects, occurred. In order to assess compensatory responses 

and aftereffects, multiple t-tests were performed on the mean F0 value for the last 

five baseline trials compared with the mean F0 values on altered feedback trials 

and the first test trial during shifted up and down conditions. 
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Additionally, the median F0 value for the first 50 ms (see Figures 1a & 1b - black 

lines) of each utterance during the AGA, FGF and GGG conditions was 

calculated for both singers and nonsingers across shifted trials. Determining 

whether differences occur between the initial 50 ms of initial shift trials and the 

later shifted trials identified whether sensorimotor adaptation occurred during 

successive FAF trials. Furthermore, these median values were subtracted from 

the mean F0 over the entire utterance to determine the difference between where 

participants initiated vocal pitch and where they maintained their F0 values while 

singing. This test identified whether singers and nonsingers initiated F0 

productions at the desired target frequency or whether they performed a 

searching strategy, increasing or decreasing their F0 to match the target. The 

median values for the first 50 ms and the median less the mean values were then 

categorized into five blocks of trials and further divided into two phases, in the 

same fashion as the mean F0 values. Thus, two separate ANOVAs were 

performed on each of the aforementioned values (median & median minus 

mean) during the shifted up and down AGA, FGF and GGG conditions with 2 

(experience: singer and nonsinger) x 2 (pitch shift: up and down) x 5 (block) x 2 

(phase: early and late) as factors. 

Finally, in order to elucidate when or if sensorimotor adaptation commences 

during FAF trials and whether aftereffects persist during test trials, multiple t-tests 

were conducted on the median F0 values for the first 50 ms during both the 

shifted up and down conditions. The average of the median F0 values for the last 
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five baseline trials were compared with the median F0 values of all shift trials and 

the first test trial following exposure to FAF. 

Results of the mean F0 values during the shifted up and down conditions 

revealed a main effect of experience and pitch shift, F(1, 55) = 12.59, p < .05 and 

F(1, 55) = 634.73, p < .05, respectively. Nonsingers' mean F0 values were found 

to be significantly flatter (lower than the pitch target of 392 Hz, G4) than the 

mean F0 values of singers (see Figure 1a and 1b). Also, the mean F0 values 

during the pitch shift up condition were found to be flatter than the F0 values 

during the pitch shift down condition. A significant two-way interaction was found 

between pitch shift and block, F(4, 220) = 423.40, p < .05. Post-hoc analysis 

revealed that the first block of mean Fo values during the pitch shift up condition 

and the pitch shift down condition were significantly different (progressively flatter 

and sharper during pitch shift up and down conditions, respectively) than all other 

blocks of pitch shift F0 values (p < .05) (see Figure 1a and 1b). This pattern 

demonstrates that participants were compensating more during later trials to 

increasing and decreasing shifts in auditory feedback. Interestingly, this suggests 

that both singers and nonsingers initiate compensatory responses quite early to 

subtle changes in auditory feedback. Furthermore, the mean F0 values obtained 

for each pitch shift block during the shift up condition were significantly flatter 

than the mean F0 values for each block in the shift down condition (p < .05). 
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A two-way interaction between pitch shift and phase was also found to be 

significant, F(1, 55) = 121.05, p < .05. Post-hoc analysis indicated that the mean 

Fo values during the first phase of the shift up condition and the shift down 

condition were significantly different than the mean F0 values during the second 

phase of the shift up and down conditions, respectively (p < .05) (see Figure 1a 

and 1b). This implies that as pitch shifts progressively increased or decreased on 

shifted trials participants adjusted their F0 to continue to produce the target notes, 

as late phase shift trials were larger than early phase shift trials. Also, the F0 

values during the first and second phase of the shift up condition were 

significantly different than the F0 values of the first and second phase of the shift 

down condition (p < .05). No other significant main effects or interactions were 

observed. 

Multiple t-tests (uncorrected) were carried out on the mean F0 during the shifted 

up and down conditions for singers and nonsingers. When three consecutive 

significant differences were found during the shifted trials the first significant 

response from baseline was used to indicate the initial compensatory response. 

During the shift up trials, when the mean of the last five baseline trials was 

compared with the mean of the shift trials it was found that singers initiated 

compensatory responses on the third (6 cents) shift trial, t (60) = -2.89, p < .05. 

The same initial response was also observed during the shift down condition, t 

(60) = 2.67, p < .05. Moreover, singers F0 values on shift up and down trials 

remained significantly different than their baseline F0 values. Thus, singers F0 
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values on shifted trials were significantly different than the average of the last five 

baseline trials on 48 of 50 trials during both shift up and down conditions. 

On the other hand, during the shift up condition nonsingers were found to initiate 

compensatory responses on shift trial 13 (26 cents), t (60) = -3.68, p < .05, with 

the remaining F0 values remaining significantly different than the baseline F0 

values. The only difference between the shift up and down condition for 

nonsingers was that they initiated compensatory responses two trials earlier 

during the down condition, at shift trial 11 (22 cents), t (60) = 3.12, p < .05. Thus, 

nonsingers' F0 values were different than baseline on 41/50 and 40/50, during 

the shift up and down conditions respectively. 

We were also interested in determining whether compensating for FAF would 

result in aftereffects (for the GGG condition) when auditory feedback was 

returned to normal and whether these aftereffects would generalize (for the AGA 

and FGF conditions) to a note other than the one participants received during 

testing. Thus, t-tests were carried out on the average of the mean F0 values of 

the last five baseline trials for the AGA, FGF and GGG conditions and the first 

test trial (when auditory feedback was returned to normal following FAF trials) of 

each respective condition (see Figure 2a and 2 b). Nonsingers' average baseline 

F0 values for the GGG trials were significantly different than the F0 values for the 

initial test trial for both shift down and up conditions, t (8) = -2.90, p < .05 and t 

(8) = 2.30, p < .05 respectively. Moreover, singers baseline mean F0 values for 
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both shift down and up conditions were also significantly different than their initial 

mean F0 values during testing, t (9) = -5.39, p < .05 and t (9) = 4.49, p < .05, 

respectively. Thus, both singers and nonsingers exhibited aftereffects following 

FAF trials. That is, their mean F0 values were above and below the target F0 

when auditory feedback was returned to normal following exposure to FAF. 

When participants sang a different note following FAF trials, nonsingers mean F0 

values were only significantly different than their average baseline F0 values for 

the shifted up AGA condition, t (8) = 2.58, p < .05. On the other hand, singers' 

mean baseline F0 values were significantly different than their mean test F0 value 

for both the AGA and FGF shifted down condition, t (9) = -2.35, p < .05 and -

3.72, p < .05, respectively, and the AGA shifted up condition, t (9) = 5.51, p < .05. 

Overall, both groups exhibited aftereffects that generalized to at least one note 

other than the one produced during FAF trials. However, when the alpha level 

was corrected for multiple t-tests, nonsingers' mean F0 baseline values failed to 

remain statistically significant when compared to the initial test trial for all 

conditions. Singers' aftereffects during GGG trials remained significantly different 

during both shifted down and up conditions, but the only generalization effect that 

remained significant was during the shifted up AGA condition. 

The median 50 ms F0 values obtained during testing revealed a significant main 

effect of experience and pitch shift condition, F(1, 55) = 15.11, p < .05 and F(1, 

55) = 57.72, p < .05, respectively. Nonsingers' median F0 values were 

determined to be significantly flatter than singers' median F0 values. The median 
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F0 values during the shift down condition were found to be significantly sharper 

than the median F0 values obtained during the shift up condition. A two-way 

interaction between pitch shift and block was significant, F(4, 220) = 45.58, p < 

.05. Post-hoc testing indicated that the median F0 values during the first block of 

shift trials on the shift up condition was significantly sharper than all remaining 

shift blocks (p < .05). Moreover, the median F0 values during the first block of 

shift trials during the shift down condition were significantly flatter than shift 

blocks 3, 4 and 5 (p < .05). Also, the median F0 values for all shift up blocks were 

significantly flatter than the median F0 values for all shift down blocks (p < .05). 

Additionally, there was a significant interaction between pitch shift and phase, 

F(1, 55) = 7.39, p < .05. Post-hoc testing revealed that there were no differences 

between the early and late phases of the shift up and down conditions, 

respectively (p > .05). However, the median F0 values of the early and late phase 

of the shift down condition were significantly sharper than the median F0 values 

of both the early and late phase of the shift up condition (p < .05). Finally, there 

was a significant 3-way interaction between experience, pitch shift and block, 

F(4, 220) = 3.01, p < .05. Post-hoc analysis revealed that nonsingers' first block 

of median F0 values during the initial block of the shift down condition were 

significantly flatter than the median F0 values during blocks 3, 4 and 5 (p < .05). 

Also, during the shift up condition nonsingers' median F0 values during the initial 

shift block were significantly sharper than the median F0 values on blocks 3, 4 

and 5 (p < .05). Singers initial shift block median F0 values for both the shift down 
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and up conditions were significantly sharper and flatter, respectively, than the 

median F0 values on shift blocks 3, 4 and 5 (p < .05). Moreover, singers' median 

F0 values on shift down trials were significantly sharper than all nonsinger 

median F0 values on shift down trials (p < .05). Singers' median F0 values on shift 

up trials were also found to be significantly sharper than all nonsinger median F0 

values on shift up trials (p < .05). No other significant main effects or interactions 

were observed. 

Multiple t-tests (uncorrected) were also performed on the median values of the 

first 50 ms of each utterance. Similarly to the multiple t-tests reported previously, 

three consecutive significant differences were required prior to establishing when 

adaptation occurred. The last five baseline median F0 values were averaged to 

establish a baseline for comparison. This value was then compared to all shifted 

and test trials. During the shifted up condition, singers median F0 values were 

found to be different than baseline at shift trial 17 (34 cents), t (60) = -2.59, p < 

.05. In total, singers' median F0 values were different than baseline on 33/50 

shifted up trials. During the shifted down condition, singers exhibited adaptation 

responses at shift trial 13 (26 cents), t (60) = 3.94, p < .05. During the shifted 

down condition singers, median F0 values were different than baseline on 35/50 

trials. Interestingly, nonsingers' median F0 values failed to significantly differ on 

three consecutive occasions during the shifted up or down conditions. However, 

nonsingers' median F0 values did differ on two consecutive trials during both the 

shifted up and down conditions (but only once during each). Nonsingers' F0 
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values differed at shift trial 38 (76 cents) and 39 (78 cents), t (60) = -2.73 and 

2.65, p < .05 during shifted up and down conditions, respectively. Furthermore, 

nonsingers' median F0 values only varied from baseline on 12/50 and 4/50 during 

the shifted up and down conditions, respectively. 

When the median F0 values for the first 50 ms of the shifted down and up 

conditions were subtracted from the mean F0 values for each respective 

condition, results indicated that there was a significant main effect of experience, 

F(1, 55) = 12.52, p < .05. Nonsingers' F0 values were found to be significantly 

flatter than the F0 values for singers. A main effect of pitch shift was also found to 

be significant, F(1, 55) = 6.90, p < .05. F0 values during the pitch shift down 

condition were found to be significantly sharper than the F0 values during the 

pitch shift up condition. Results identified a significant 2-way interaction between 

pitch shift and block, F(4, 220) = 6.86, p < .05. Post-hoc testing indicated that the 

only difference during the pitch shift down condition was that the initial block of F0 

values were significantly flatter than the last block of shift trials (p < .05). 

Moreover, the initial shift block F0 values during the shift down condition was 

significantly different than the F0 values of shift blocks 4 and 5 of the shift up 

condition (p < .05). The initial block of shift trials during the shift up condition 

were determined to be significantly sharper than shift blocks 4 and 5 (p < .05), as 

well as the last block of trials during the shift down condition (p < .05). Finally, 

there was a significant 3-way interaction between experience, pitch shift and 

block, F(4, 220) = 2.72, p < .05. Post-hoc testing revealed that nonsingers' first 
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block of F0 values during the shift down condition were significantly flatter than 

the F0 values during the last block of shift trials (p < .05). Nonsingers' F0 values 

during the initial block of shift up trials were significantly sharper than the F0 

values of blocks 4 and 5 (p < .05). Singers F0 values during the initial block of 

shift down trials were not significantly different than any other block of shift down 

trials (p > .05), nor were the F0 values of the initial block of shift up trials different 

than any other block of shift up trials (p > .05). Furthermore, nonsingers' F0 

values during the shifted up and down conditions were all significantly flatter than 

singers FQ values (p < .05). No other significant main effects or interactions were 

observed. 

Discussion 

The purpose of this study was to investigate the sensitivity of the mechanisms 

that modify internal representations in singers and nonsingers when presented 

with subtle changes in auditory feedback while singing. In accord with our 

predictions, singers and nonsingers use auditory feedback to compensate for 

subtle manipulations in auditory feedback while singing. That is, both singers and 

nonsingers compensated for the altered feedback by increasing or decreasing 

their F0 to upward and downward shifts in feedback. The main difference 

between the groups was that singers are immediately and consistently more 

accurate when they emulate the target notes. Nonsingers' F0 values are 

consistently flat, regardless of the direction of the manipulation. An important 
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observation was that singers initiated compensatory responding to altered 

feedback on the third shift (6 cents) trial during both upward and downward 

altered conditions. On the other hand, nonsingers initiated compensatory 

responding at shift trials 13 (26 cents) and 11 (22 cents) during upward and 

downward manipulations, respectively. 

Furthermore, we examined the first 50 ms of each vocal production in order to 

determine how participants initiate F0 responses while singing. If participants 

adapt to the altered feedback by altering an internal representation that regulates 

their initial F0 production, their initial F0 production should be close to the F0 

values produced while compensating during the previous trial. Results showed 

that singers, and to a lesser degree nonsingers, incorporate the discrepancy 

between perception and production by starting subsequent utterances, during 

shifted trials, where they ended on the previous production. On the other hand, 

nonsingers appeared to search for the target note by starting below the auditory 

target of 0 cents and increasing their F0 until they matched the note. Moreover, 

multiple t-tests failed to provide evidence to suggest that sensorimotor adaptation 

occurred in nonsingers during the altered feedback conditions. In the case of 

singers, multiple t-tests on the median 50 ms F0 data revealed that sensorimotor 

adaptation occurred at 34 cents and 26 cents during shifted up and down 

conditions, respectively. 



Frequency-Altered Feedback 53 

Previous research using the FAF paradigm has typically examined speech 

(Bauer et al., 2006; Burnett et al., 1997; Burnett et al., 1998; Burnett & Larson, 

2002; Elman, 1981; Houde & Jordan, 1998; Jones & Munhall, 2000, 2002, 2005; 

Natke et al., 2003; Toyomura et al., 2007), with an emphasis on compensatory 

responding. Not surprisingly, the results are consistent with the data collected on 

singing (Burnett et al., 1997; Jones & Keough, 2008; Natke, Donath, & Kalveram, 

2003, Zarate & Zatorre, 2005, 2008), in that participants compensate for 

manipulations in auditory feedback by increasing or decreasing their F0 in the 

opposite direction of the perturbation. The data obtained from the current 

experiment is in accord with this observation, as both singers and nonsingers 

altered their Fo to similar degrees while receiving altered feedback. 

It has been argued that the aftereffects observed after exposure to FAF are a 

result of modifying an acoustic-motor representation (Jones & Munhall, 2000, 

2002; Jones & Keough, 2008; Natke, Donath & Kalveram, 2003). However, 

sensorimotor adaptation has not been extensively examined in singers. When 

Jones and Keough (2008) returned trained singers auditory feedback to normal, 

following FAF trials, their F0 values never returned to baseline levels. Thus it 

appears that brief exposure to altered feedback resulted in a remapping of an 

internal representation (Jones & Keough, 2008). In the current study, we also 

found a global remapping to subtle changes in auditory feedback. Uncorrected 

multiple t-tests revealed that aftereffects existed for both singers and nonsingers. 

That is, when auditory feedback was suddenly returned to normal, following 
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exposure to FAF, singers and nonsingers mean test trial FQ values were 

significantly higher and lower (following shifted down and up feedback, 

respectively) than baseline. Also, these aftereffects generalized to a different 

note other than the one they produced during FAF trials. For instance, singers' 

mean F0 values for the target note A4 during shift up and down conditions and F4 

following shift down trials was significantly different than the average of the last 

five baseline trials. Nonsingers' test F0 values were only different than baseline 

for the target note A4 during the shift up feedback condition. Thus, participants 

modified an internal representation that regulates F0 control. As a consequence, 

the pattern of responding observed in the current study is similar to the pattern of 

responding that has been found in previous FAF studies (Jones & Munhall, 2000, 

2002; Jones & Keough, 2008). However, when the alpha level was corrected for 

the multiple t-tests, only the aftereffects observed for singers and the 

generalization for the target note A4 during the shifted up condition remained 

significant. 

Previous studies have identified aftereffects following FAF, but have only 

examined adaptation after a period of training, at the end of an experiment 

(Jones & Munhall, 2000, 2002; Jones & Keough, 2008). For this study, we 

tracked F0 values early in each utterance during the training period to determine 

whether singers and nonsingers continuously adjust their auditory-motor 

mapping in response to changes in feedback. Singers were found to emulate the 

target, on average, more accurately than nonsingers. That is, they initiated their 
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vocal productions near the F0 frequencies that were required to compensate for 

the FAF experienced in previous trials. This sensorimotor adaptation in singers 

occurred when the discrepancy between expected FO output and auditory 

feedback was approximately 30 cents. Thus, subtle discrepancies in feedback 

can be accounted for by the mechanisms that support singers auditory-motor 

mapping. On the other hand, nonsingers consistently started their productions 

below the target (flat). Their FO values began flat and were adjusted until they 

reached the note, as best as they could. This difference between singers and 

nonsingers is consistent with the data obtained in Jones and Keough (2008). 

One difference found in previous work investigating speech and singing using 

FAF was the level of compensation observed. Typically, it has been reported that 

during altered feedback compensatory responses do not exceed 65 cents for 

shifts up to 600 cents. As a consequence, Larson and colleagues (2000) have 

suggested these responses are a result of closed-loop control, and propose a 

model that includes a filter with a limiting nonlinearity that prevents responses 

greater than 50 cents. However the bulk of previous research has focused on 

speech. Jones and Keough (2008) reported that nonsingers fully compensated 

(100 cents) for altered feedback almost immediately and although singers initially 

showed partial compensation (approximately 65 cents) they eventually altered 

their F0 values to accommodate for the altered feedback. Data from the current 

study revealed that singers and nonsingers exhibited near perfect levels of 

compensation during the shifted up and down conditions. Thus, it appears that 



Frequency-Altered Feedback 56 

auditory feedback may be used in a task dependent manner such that when 

achieving a particular pitch target is important, as in singing, auditory feedback 

guides production. 

Although singers and nonsingers eventually compensated for the FAF to the 

same degree, when each group altered their productions based on the auditory 

feedback differed. Singers began compensating when they detect feedback 

errors as large as 6 cents (1.36 Hz) during both the shift up and down conditions. 

This value is consistent with Sundberg's (1987) finding that trained singers can 

correct for production errors with an accuracy of less than 1 Hz from an intended 

pitch target (A4, 440 Hz). On the other hand, nonsingers initiated compensatory 

responses at approximately 24 cents (5.47 Hz). Data from both groups fall within 

the just-noticeable difference range found by Pape and Mooshammer (2006) of 

F0 contours for digitally synthetic stimuli. Moreover, nonsingers' values are also 

very similar to the average threshold reported by Hafke (2008), who found that 

pitch shift changes were not reliably identified when they were below 26 cents. 

However, Loui and colleagues (2008) found that control participants 

psychophysical thresholds of perception and production were around 2.0 and 2.5 

Hz, respectively. Although we never examined the perceptual aspect directly, the 

data we obtained for singers and nonsingers is relatively consistent with the 

production threshold findings of Loui et al. (2008). 
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Based on the current findings, we believe that singers, due to their extensive 

training and experience, are more capable of compensating for subtle 

manipulations of auditory feedback earlier and more efficiently than nonsingers. 

Moreover, singers more readily alter their internal representations to prevent the 

occurrence of these errors in subsequent utterances. On the other hand, when 

singers detect large incongruities between perception and production they rely 

more on their internal model to produce the target (Jones & Keough, 2008). The 

F0 control system may deem certain feedback discrepancies to be too large to be 

internally generated. Zarate and Zatorre (2005, 2008) found similar results when 

singers and nonsingers were exposed to FAF. Zarate and Zatorre (2005, 2008) 

asked participants to ignore the feedback and continually reproduce the target as 

accurately as possible. The pattern of behavioural results suggests that singers 

could successfully ignore their altered (200 cents) feedback and continue to 

produce the target notes accurately. Interestingly, nonsingers were unable to 

ignore the feedback as their F0 responses indicated partial compensation. These 

findings suggest that singers' internal models are flexible in nature; the models 

can be adjusted for small errors (act on auditory feedback) and can ignore large 

errors by relying on the existing motor representation. 

Given that behavioral differences exist between singers and nonsingers during 

FAF, differences in neural activity between the two groups may be expected. 

Zarate and Zatorre (2005, 2008) found that despite differences in vocal 

production accuracy during normal feedback conditions, both singers and 
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nonsingers exhibited similar functional networks for singing. These areas 

included the bilateral auditory cortices, bilateral primary motor cortices, the 

supplementary motor area (SMA), the anterior cingulate cortex (ACC), thalamus, 

insula, and cerebellum. These results are consistent with a previous study 

carried out in the Zatorre laboratory (Perry et al., 1999) and by Toyomura and 

colleagues (2007). However, when exposed to FAF and asked to ignore the FAF, 

singers showed enhanced activation in the inferior parietal lobule (IPL), superior 

temporal gyrus (STG), superior temporal sulcus (STS), and right insula (Zarate & 

Zatorre, 2005). On the other hand, enhanced activation in the ACC, STS, insula, 

putamen, pre-SMA, and IPL was observed in singers when they were directly 

asked to compensate for the FAF (Zarate & Zatorre, 2005). The authors 

conclude that the additional activation of the STG and the STS in singers during 

FAF conditions are suggestive of an increased perceptual analysis of the 

incoming signal (Zarate & Zatorre, 2005). In addition, the authors point out that 

an increased activation in the putamen of singers during both ignore and 

compensate conditions suggests that singers are relying on well-defined internal 

representations to sing the targets while receiving FAF (Zarate & Zatorre, 2008). 
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Figure Caption 

Figure 1 a 
The mean and median 50 ms Fo values for singers' during frequency-altered 
feedback trials when required to emulate the musical target note G4 (392 Hz). 
The grey circles represent singers' mean F0 values and the black circles 
represent singers' median Fo values during the initial 50 ms of vocal onset when 
auditory feedback was shifted downward. The grey squares represent singers' 
mean F0 values and the black squares represent singers' median F0 values 
during the initial 50 ms of vocal onset when auditory feedback was shifted 
upward. 

Figure 1 b 
The mean and median 50 ms F0 values for nonsingers during frequency-altered 
feedback trials when required to emulate the musical target note G4 (392 Hz). 
The grey circles represent nonsingers' mean F0 values and the black circles 
represent nonsingers' median F0 values during the initial 50 ms of vocal onset 
when auditory feedback was shifted downward. The grey squares represent 
nonsingers' mean F0 values and the black squares represent nonsingers' median 
F0 values during the initial 50 ms of vocal onset when auditory feedback was 
shifted upward. 

Figure 2 a & b 

The mean F0 of utterances produced by (a) singers and (b) nonsingers, averaged 
over the last five base line trials prior to receiving FAF, and the mean F0 for the 
first test trial utterance following FAF. The triangles represent F0 values for the 
target note F4 349 Hz, the squares represent F0 values for the target note G4 
392 Hz, and the circles represent F0 values for the target note A4 440 Hz. Gray 
symbols represent F0 values obtained during the upward shift condition, and the 
black symbols represent F0 values obtained during the downward shift condition. 
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Abstract 

Research on the control of visually guided limb movements indicates that the 

brain learns and continuously updates an internal model that maps the 

relationship between motor commands and sensory feedback. A growing body of 

work suggests that vocal control is also supported by an internal model relating 

motor commands to auditory feedback. There is some evidence from arm 

reaching studies that the motor system can acquire multiple internal models, 

when provided with a contextual cue, allowing an organism to adapt to different 

perturbations in diverse contexts. Here we show that trained singers' can rapidly 

acquire multiple internal models regarding voice fundamental frequency (F0) that 

accommodate different perturbations to ongoing auditory feedback. Participants 

heard three musical notes and reproduced them in succession. Although 

participants were not explicitly instructed, the musical targets could serve as a 

contextual cue to indicate the direction feedback would be altered on each trial. 

Adaptation was observed immediately following vocal onset when participants 

were gradually exposed to altered feedback. Aftereffects were target specific and 

did not influence vocal productions on subsequent trials. When target notes were 

no longer a contextual cue, adaptation occurred during altered feedback trials 

and evidence for trial-by trial adaptation was found. These findings indicate that 

the brain is exceptionally sensitive to deviations between auditory feedback and 

the predicted consequence of a motor command during vocalization. Moreover, 

these results indicate that when contextually cued the vocal control system may 
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maintain multiple internal models that are capable of independent modification 

during different tasks or environments. 
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Introduction 

Whether we are using a new tool, learning to speak another language, or 

singing a new song, the nervous system relies on various forms of feedback to 

establish task-specific sensorimotor representations. Over time, the plasticity of 

the nervous system permits neural reorganization and the formation of an 

'internal model'. The prevailing hypothesis regarding the control of limb dynamics 

(Wolpert and Kawato 1998) and the control of speech (Guenther and Perkell 

2004; Houde and Jordan 1998; Jones and Munhall 2005) and singing (Jones and 

Keough 2008; Keough and Jones 2009) is that internal models regulate motor 

movements. These internal representations are often investigated by altering a 

particular aspect of the sensory feedback associated with a given task. Results 

show that participants compensate by adjusting their movement in the opposite 

direction of the perturbation (Jones and Munhall 2000, 2005; Kalenscher et al. 

2003; Sainburg et al. 1999; Shadmehr and Mussa-lvaldi 1994). In adaptation 

studies, where dynamic manipulations are held fixed for a series of trials, 

aftereffects are often observed when feedback is unexpectedly returned to 

normal; subsequent responses err in the direction of compensation (Ghahramani 

and Wolpert 1997; Jones and Keough 2008; Keough and Jones, 2009; 

Shadmehr and Moussavi 2000). Furthermore, aftereffects have been observed 

while participants' perform untrained movements following exposure to altered 

feedback (Jones and Keough 2008; Jones and Munhall 2005; Keough and Jones 

2009; Shadmehr and Moussavi 2000; Shadmehr and Mussa-lvaldi 1994). This 

suggests that sensorimotor recalibration generalizes to other novel motor 
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productions. However, the arm reaching literature notes that the degree of 

generalization is reduced as the untrained movement direction diverges from the 

trained movement direction (Sainburg et al. 1999). Given that the transfer of 

aftereffects deteriorates proportionately as the distance from the trained location 

increases, it has been argued that precise movements correspond to context-

specific neural mappings or multiple internal models (Kalenscher et al. 2003). 

Recent evidence supports the existence of multiple internal models for the 

motor control of arm reaching movements (Donchin et al. 2003; Kalenscher et al. 

2003; Osu et al. 2004; Wada et al. 2003; Wainscott et al. 2005; Wolpert and 

Kawato 1998). For example, individuals can acquire and appropriately switch 

between multiple internal representations for the same direction of movement 

when provided with a contextual cue (e.g., colour) (Osu et al. 2004; Wada et al. 

2003; Wainscott et al. 2005). Currently, it remains unknown whether the vocal 

control system maintains multiple internal representations. The purpose of the 

present study was to investigate the sensitivity of trained singers' internal 

representations to altered auditory feedback and determine whether participants 

can develop and switch between multiple internal representations based on a 

contextual cue (musical notes). To identify whether voice F0 is represented by 

multiple internal representations that are capable of independent recalibration 

and whether a contextual cue differentially affects the representations for F0 

control, trained singers (n = 30) produced three (Experiment 1, n = 15) different 

sequential target notes (A4, G4 and F4; 440, 392 and 349 Hz, respectively) or a 



Frequency-Altered Feedback 67 

single (Experiment 2, n = 15) target note (G4), while receiving unaltered and 

frequency-altered feedback (FAF). 

Materials and Methods 

Participants. Experiments 1 and 2 had 30 Wilfrid Laurier University 

students (all women) whose native tongue was North American English 

participate in this frequency-altered feedback study. All participants were trained 

singers (mean musical training was approximately 12 years) recruited from the 

Faculty of Music at Wilfrid Laurier University. Participants received financial 

compensation for their contribution to this research. Informed consent was 

collected from each participant and the Wilfrid Laurier University Research Ethics 

Committee approved the procedures. 

Apparatus. The experiment took place in a double-walled sound 

attenuated booth (Industrial Acoustic Company, Model 1601-01). Participants 

were fitted with a condenser microphone (Countryman Isomax E6 

Omnidirectional Microphone), maintained approximately 3 cm from their mouth, 

and headphones (Sennheiser HD 280 Pro). In order to reduce natural acoustic 

feedback and bone-conducted feedback, participants heard multitalker babble 

noise (Auditec, St. Louis, MO) at 80 dB SPL while vocalizing. The target notes 

were produced by a trained female singer who sang the consonant-vowel /ta/. 

The target notes were processed using the speech modification algorithm 

STRAIGHT (Kawahara et al., 1999) to ensure that each target was exactly 349 

(F4), 392 (G4) or 440 (A4) Hz. Microphone signals were directed to a signal 

processor (VoiceOne 2.0, TC Helicon) that manipulated auditory feedback. The 
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manipulated feedback was mixed (Mackie ONYX 1640) with the multitalker 

babble and presented to the participant. Vocal productions were digitized at 44.1 

kHz for future analysis. 

Procedure. Singers were instructed to emulate the musical target that was 

presented to them on each trial (total trials = 270). In Experiment 1 (n = 15) the 

first target was either A4 (440 Hz) or F4 (349 Hz), which was followed by the 

second target G4 (392 Hz) and then followed by the third target F4 or A4, 

respectively. Thus, the two conditions were A4-G4-F4 (135 trials) and F4-G4-A4 

(135 trials), which was counterbalanced across singers. Participants received 

unaltered auditory feedback during the first 10 trials (baseline) for each target 

note in order to acclimatize them to the task and establish a baseline 

representation. Note that participants were presented with target notes in a 

sequential order, but had to reproduce them one at a time when prompted by a 

cue (the target note). For example, on the first trial they would be presented with 

the target A4, which they would reproduce to the best of their ability. On the 

second trial they would be presented with G4, and then on the third trial they 

would receive F4. This sequence would then be repeated (A4, followed by G4, 

then F4) until they produced the targets on all trials (135) per condition. Following 

baseline (training phase), auditory feedback for the first target note in the 

sequence (A4 or F4) was gradually manipulated (over 25 trials) upward in pitch 

(in 4 cent increments to 100 cents; 100 cents = 1 semitone). Thus, on the first 

trial with FAF for the initial target in the sequence, auditory feedback would be 

manipulated upwards by 4 cents. During the second FAF trial for the same note, 
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auditory feedback would be altered by 8 cents, and this would continue until 

auditory feedback was shifted by 100 cents (the last FAF trial for that target 

note). Auditory feedback for the second target (G4) in the sequence remained 

unaltered during the 25 training trials. G4 was used as a control note to examine 

the sensory motor representation of an unaltered target while compensating for 

FAF. Lastly, participants' auditory feedback for the third note in the sequence (F4 

or A4) was gradually manipulated (over 25 trials) downward in pitch (in -4 cent 

increments to -100 cents). Thus, on the first trial with FAF for the third target in 

the sequence, auditory feedback would be manipulated downwards by -4 cents. 

During the second FAF trial for the same note, auditory feedback would be 

altered by -8 cents, and this would continue until auditory feedback was shifted 

by -100 cents (the last FAF trial for that target note). Although the targets were a 

contextual cue, participants were not informed of the relationship between the 

target note and the specific direction auditory feedback was manipulated during 

the training phase. During the final 10 trials (test phase) for each note 

participants received unaltered feedback that was used to examine F0 

productions following FAF. 

The procedure for Experiment 2 (n = 15) was exactly the same as 

described above, however trained singers were only required to produce a single 

target (G4, 392 Hz) on all trials (total trials = 135). In doing so, the target notes 

were no longer a contextual cue however the direction of pitch shift 

manipulations remained predictable across FAF trials. Thus, the condition for this 

group was G4-G4-G4, where the first note in the sequence would be unaltered 
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for the first 10 trials (baseline), then gradually shifted upward in pitch over the 25 

training trials (in 4 cent increments to 100 cents), followed by 10 trials (testing) 

with unaltered auditory feedback. The second note remained unaltered (across 

all baseline, training and test trials = 45), and the third note would be unaltered 

for the first 10 trials (baseline), then gradually shifted downward in pitch over the 

25 training trials (in 4 cent increments to -100 cents), followed by 10 trials 

(testing) with unaltered auditory feedback. 

An individual trial commenced with the presentation of a tone (1000 Hz) 

lasting 100 ms in duration, which warned participants that the trial was about to 

begin. Following the beep a 500 ms interstimulus interval preceded the target 

(A4, G4, or F4), which lasted 2000 millisecond. Only one target note was 

presented per trial and it occurred on all trials. Participants immediately received 

4000 ms of multitalker babble after the presentation of the target and were 

instructed to emulate the note as accurately as possible in pitch and duration 

during this time. Thus, participants had to hold their vocal productions constant 

for approximately 2000 ms while trying to match the pitch of their voice to that of 

the target presented per trial. Note that participants' auditory feedback was 

presented at approximately 85 dB SPL whereas the multitalker babble was 

presented at approximately 75 dB SPL. F0 values were calculated for each vocal 

production using an autocorrelation algorithm included in the Praat program 

(Boersma, 2001). F0 values were normalized to each target note (F4, G4 or A4) 

by calculating the appropriate cent values using the following formula: 

Cents = 100(12log2F/B) 
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Where F is the F0 value in Hertz and B is frequency of the target pitch 

participants were instructed to sing (349, 392 or 440 Hz). 

Statistical Analyses. Only the initial 1500 ms of each vocal utterance was 

analysed, as previous research has identified compensatory responding during 

FAF typically occurs between 130 to 500 ms post perturbation onset (Burnett et 

al., 1997; Jones and Keough, 2008). The data for the singers F0 values during 

the A4-G4-F4 and F4-G4-A4 sequences (Experiment 1) were analysed together 

and were broken down into blocks of five trials within each sequence: baseline 

trials (6-10), shift trials (1-5, 6-10, 11-15, 16-20, 21-25) and test trials (1-5, 6-10). 

An ANOVA was conducted on the mean F0 values with 2 (sequence: A4-G4-F4 

or F4-G4-A4) x 3 (pitch shift: upward, unaltered and downward) x 8 (block) as 

factors. The data for singers in the G4-G4-G4 condition (Experiment 2) were also 

broken down into blocks of five trials within each sequence: baseline trials (6-10), 

shift trials (1-5,6-10,11-15,16-20, 21-25) and test trials (1-5, 6-10). An ANOVA 

was conducted on the mean F0 values with 3 (pitch shift: upward, unaltered and 

downward) x 8 (block) as factors. Tukey's honestly significant difference (HSD) 

test was implemented for post-hoc analyses with an alpha level of .05 used for all 

statistical tests. 

Typically, during FAF studies, researchers have only examined 

aftereffects following a series of altered feedback trials. However, if participants 

are altering an internal representation that permits them to compensate for these 

perturbations while receiving FAF, then examining the median value within the 

initial 50 ms of vocal onset should identify whether sensorimotor adaptation 
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occurred. The median Fo values for each sequence were categorized into blocks 

of five trials in the same fashion as the mean F0 values. Therefore, an ANOVA 

was carried out on the median Fo values obtained in Experiment 1 during the 

initial 50 ms of vocalization with 2 (sequence: A4-G4-F4 or F4-G4-A4) x 3 (pitch 

shift: upward, unaltered and downward) x 8 (block) as factors. An ANOVA was 

also conducted on the median F0 values obtained in Experiment 2 during the 

initial 50 ms of vocalization with 3 (pitch shift: upward, unaltered and downward) 

x 8 (block) as factors. 

Results 

Experiment 1 Singers' mean F0 values were calculated for each condition 

and are depicted in Figure 1. The analysis of the mean F0 values during the A4-

G4-F4 and the F4-G4-A4 sequences resulted in a main effect of pitch shift (F(2,28) 

= 251.55, p < .05). The mean F0 values (A4 and F4) obtained during upward and 

downward pitch shift conditions were significantly lower and higher than the 

mean F0 values obtained during the unaltered (G4) condition, respectively (p < 

.05). A significant pitch shift by block interaction (F(i4] ig6) = 167.61, p < .05) 

revealed that singers' baseline F0 values were significantly higher than F0 values 

obtained during FAF blocks 2-5 during the upward shifted feedback trials (all p's 

< .05). Also, singers' baseline F0 values were significantly lower than the F0 

values observed during FAF blocks 2-5 of the downward shifted feedback trials 

(all p's < .05). 

Surprisingly, aftereffects were not found on trials following FAF for either 

upward or downward pitch shifted conditions (all p's > .05). When auditory 
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feedback suddenly returned to normal during test trials singers adjusted their F0 

to levels not different than those obtained during baseline. Furthermore, baseline 

F0 values for the unaltered target G4 were not significantly different than any 

other block of unaltered trials (p > .05), nor were they different than the baseline 

values of A4 and F4 during both the upward and downward pitch shift conditions 

(all p's > .05). However the baseline F0 values for G4 were significantly higher 

than FQ values for FAF blocks 2-5 during upward pitch shift trials (all p's < .05) 

and were significantly lower than downward pitch shift FAF blocks 2-5 (all p's < 

.05). 

Singers' median F0 values during the first 50 ms of each utterance was 

calculated for each sequence and is presented in Figure 2. The analysis of the 

median F0 values during the initial 50 ms of vocal onset during the A4-G4-F4 and 

F4-G4-A4 conditions produced a main effect of pitch shift, F(2,28) = 22.78, p < .05. 

The median F0 values during downward pitch shifts were significantly higher than 

the F0 values during the no shift and upward pitch shift conditions, respectively (p 

< .05). Moreover, there was a significant pitch shift by block interaction (F(i4, i96) = 

13.33, p < .05), which revealed that singers' baseline F0 values for the target 

notes A4 and F4 during the shift up condition were significantly higher than the F0 

values obtained during FAF blocks 5, 6 and both blocks of unaltered (test) trials 

following FAF (p < .05). In addition, singers' baseline F0 values obtained for the 

targets A4 and F4 during downward pitch shifts were significantly lower than F0 

values obtained during FAF blocks 5, 6 and the first block of test trials following 

FAF (p < .05). Thus, examining the initial 50 ms of vocal onset identified that 
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singers not only exhibited aftereffects when producing targets with upward and 

downward manipulations in auditory feedback, but that sensorimotor adaptation 

occurred online during blocks of FAF trials. Finally, generalization effects carried 

over to the F0 values for the unaltered target following FAF trials. Baseline F0 

values for the unaltered target (G4) were significantly different than the first block 

of F0 values following FAF (p < .05). 

Experiment 2 Singers' mean and median (within 50 ms of vocal onset) F0 

values were calculated for the G4-G4-G4 condition and are depicted in Figure 3. 

Participants' mean F0 values during the G4-G4-G4 condition yielded a main 

effect of pitch shift (F(2,28) = 414.95, p < .05). Similarly to the results obtained in 

Experiment 1, trained singers' mean F0 values collected during upward and 

downward pitch shift manipulations were significantly lower and higher than the 

mean F0 values found for the unaltered target, respectively (p < .05). Also, a 

significant pitch shift by block interaction was observed (F(14i i96) = 171.04, p < 

.05). Post-hoc testing revealed similar results as those in Experiment 1, that 

participants' baseline F0 values were significantly higher than F0 values obtained 

during all FAF blocks during the upward shifted feedback trials (all p's < .05). 

Moreover, singers' baseline F0 values were significantly lower than the F0 values 

obtained during all FAF blocks of the downward shifted feedback trials (all p's < 

.05). 

Aftereffects were not observed during test blocks of trials when producing 

the target following FAF that was shifted either upward or downward in frequency 

(all p's < .05). The mean F0 values obtained from singers producing the target 
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with unaltered auditory feedback were similar across all blocks of trials (p > .05). 

Thus, the results of the singers' mean F0 values are virtually identical to those 

obtained in Experiment 1. Participants compensated for FAF by altering their 

voice F0in the opposite direction of the manipulations, and producing a target(s) 

with FAF did not influence the F0 values for an unaltered pitch target. Thus, 

providing a contextual cue results in a similar pattern of compensation whether 

participants produce three different target notes or the same target note with 

FAF. 

Singers' median F0 values during the initial 50 ms of vocal onset revealed 

a main effect of pitch shift, F(2,28) = 12.58, p < .05. The median F0 values during 

upward pitch shifts was significantly higher than the F0 values obtained during 

the no shift and downward pitch shift conditions, respectively (p < .05). There 

were no differences found between the F0 values in the no shift and downward 

pitch shift conditions (p > .05). The difference found between the F0 values in the 

upward pitch shift condition compared to those in the unaltered and downward 

pitch conditions is opposite to that found in Experiment 1. It may be the case that 

producing the same target note with FAF and unaltered feedback resulted in trial-

by-trial adaptation. 

Indeed, post-hoc results of the significant pitch shift by block interaction 

(F(H, 196) = 13.33, p < .05) revealed that trial-by-trial adaptation occurred for the 

unaltered pitch target. The F0 values obtained during baseline were significantly 

different than the F0 values obtained during the last three blocks of FAF trials (p < 

.05). Also, there was a trend, albeit nonsignificant and in the opposite direction of 
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the data obtained in Experiment 1 (See Figure 3), in the F0 values during the 

blocks of FAF trials where auditory feedback was shifted downwards. Thus, it 

appears that the trial-by-trial adaptation observed on unaltered trials carried over 

to trials when auditory feedback was shifted downward, however the differences 

were not significant. Interestingly, the opposite pattern of aftereffects found for 

the main effect of pitch shift in Experiment 2 might be accounted for by trial-by-

trial adaptation, given that trials with upward pitch manipulations immediately 

followed the trials with downward pitch manipulations. Overall, removing the 

potential to use target notes as a contextual cue resulted in similar compensatory 

responses, however the pattern of aftereffects observed appears to be the result 

of trial-by-trial adaptation. 

Discussion 

The data in Experiment 1 represents the first demonstration that vocal 

control may be represented by multiple internal representations, and that 

participants' acoustic-motor mappings are capable of independent sensorimotor 

recalibration. Participants' initial F0 productions, within 50 ms of onset, were 

consistently influenced by the perturbed feedback experienced on previous FAF 

trials. For instance, in order to continually produce the target notes accurately 

while receiving FAF, trained singers had to progressively modify their vocal 

productions. Thus, as participants' auditory feedback was incrementally shifted 

(+/- 4 cents) trial-by-trial, we observed corresponding changes in open-loop 

control followed by rapid online correction for pitch deviations. That is, 

participants' adjusted their FQ in the opposite direction of the perturbation once 
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the new discrepancy was detected. Over time, participants' compensatory 

responses resulted in the gradual recalibration of multiple internal 

representations. Interestingly, the aftereffects observed during training (FAF 

trials) did not generalize to vocal productions immediately following altered 

feedback trials. Rather the aftereffects were unique to the frequency of the target 

that was presented every third trial. 

Even though the recalibration of internal representations was limited to the 

pitch-shifted targets during FAF trials, aftereffects were observed within 50 ms of 

vocal onset for the unaltered target following the training period (Figure 2). 

Transferred aftereffects (generalization) to an unaltered stimulus have been 

observed in previous FAF (Jones and Keough 2008; Jones and Munhall 2005) 

and arm reaching investigations (Ghahramani et al. 1996; Shadmehr and Mussa-

Ivaldi 1994). In the current study and in other work (Jones and Keough 2008; 

Jones and Munhall 2005) pitch-shift manipulations were gradually presented 

during FAF. When feedback returned to normal, participants heard their FQ for 

altered notes 1 semitone different than it was on the previous trial. Thus, the 

single-trial aftereffects observed in the median 50 ms F0 data during the test trials 

for the unaltered pitch target might have been the result of the sudden and large 

changes in auditory feedback following training. 

The results of Experiment 1 were analogous to some of the studies that 

investigated multiple internal models for the motor control of arm reaching 

movements. However, determining whether multiple internal models exist in the 

arm reaching literature has yielded inconsistent results. For instance, if the task 
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was dependent on colour cues (e.g., room light colour), if trials were presented 

randomly, if movements were both dynamic transformations or were dependent 

on the same state variable, or if the temporal interval between internal model 

acquisition was less than four hours, multiple internal models were not acquired 

(e.g., Brashers-Krug and Shadmehr 1996; Gandolfo et al. 1996; Karniel and 

Mussa-lvaldi 2002; Krakauer et al. 1999; Tong et al. 2002). Karniel and Mussa-

Ivaldi (2002) did not find evidence to suggest that participants could acquire and 

switch between internal models for two alternating viscous force fields, even after 

participants performed these movements in 4 sessions over 4 days. Rather they 

argued that a single internal model was formed and employed when presented 

with sequential perturbations. 

On the other hand, several studies have found that participants could 

acquire internal models when prompted by a contextual cue (Osu et al. 2004; 

Wada et al. 2003; Wainscott et al. 2005). For example, Wada et al. (2003) found 

that participants could learn and switch between two internal models for opposing 

viscous force fields presented randomly cued only by colour. Moreover, Osu et 

al. (2004) found that providing visual cues prior to movement initiation allowed 

participants to predictively switch between acquired motor programs. In both 

cases, it was argued that multiple internal models were formed under diverse 

conditions, including single-joint movements to 4 or 8 target locations while 

receiving assistive/resistive or rotational forces to the limb. Moreover, the results 

from both groups (Osu et al. 2004; Wada et al. 2003) support the MOSAIC model 

(Kawato and Wolpert 1998; Wolpert and Kawato 1998), which suggests that 
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many controllers are selected and acquired while gated by a responsibility signal. 

The responsibility signal is thought to be determined by the accuracy of 

prediction of the paired predictors (forward models) as well as from contextual 

information. Therefore, the responsibility signal in MOSAIC decides the switching 

in addition to the discriminative learning of multiple internal models (for a review 

see Wada et al. 2003). However, the goodness of prediction made by several 

forward models alone is not fast enough to be utilized during online switching and 

for the selective learning of multiple inverse models while performing reaching 

movements in adaptation studies (Wada et al. 2003). This results from the fact 

that feedback is only available following the initiation of arm reaching 

movements. Thus, in order to compute the responsibility signal in time, Wada et 

al. (2003) argue that contextual information plays an essential role. 

Our data supports the notion that contextual information is important in the 

acquisition and switching of multiple internal representations for vocal control 

while singing. We found that trained singers could rapidly acquire and 

independently modify multiple internal representations when cued by different 

target notes. However, unlike the aforementioned arm reaching studies, 

participants were not informed that the target notes could be used as a 

contextual cue. On the one hand, as long as the contextual information is clear 

and distinct (e.g., colour, target notes) then learning multiple environments can 

occur relatively easily (Wada et al. 2003). Indeed, the results of previous arm 

reaching studies (Osu et al. 2004; Wada et al. 2003) supporting multiple internal 

representations appear to be consistent with this interpretation. On the other 
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hand, if the contextual information is ambiguous or not present at all and if the 

multiple environments are difficult to discriminate (Brashers-Krug and Shadmehr 

1996; Gandolfo et al. 1996; Karniel and Mussa-lvaldi 2002; Krakauer et al. 1999; 

Tong et al. 2002), then acquiring or switching between multiple internal 

representations is difficult (Wada et al. 2003). Indeed, when the contextual cue 

was removed in Experiment 2, a completely different pattern of aftereffects was 

observed. 

When the target notes could no longer be used as a contextual cue, to 

indicate the direction of pitch shift manipulation on the current FAF trial, we found 

trial-by-trial adaptation and similar patterns of compensatory responding as those 

found in Experiment 1. However it should be noted that the trial-by-trial 

adaptation was limited to the Fo values corresponding to an unaltered pitch 

target. On trials following upward pitch shifted FAF, participants received natural 

acoustic feedback. Singers initiated vocal productions as if they were anticipating 

similar shifts in auditory feedback that were presented to them on the previous 

trial. When participants produced the same note in Experiment 1 with unaltered 

feedback no aftereffects were observed following FAF trials. Thus, it seems that 

the pattern of sensorimotor recalibration is dependent on the nature of the motor 

commands associated with the task. 

In the case of arm reaching studies, participants have been required to 

initiate movements from a fixed location (Imamizu and Kawato 2008; Krakauer et 

al. 1999; Osu et al. 2004; Wada et al. 2003). This has permitted the examination 

of feed-forward internal models within 250 ms of movement initiation (e.g., 
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Wainscott et al., 2005), which has been argued to be a period of time where 

motor commands (trajectories) are little influenced by closed-loop control or 

'online' feedback. A unique aspect of studying voice F0 while singing is that is not 

necessary (or actually possible) to require participants to initiate motor 

commands at a consistent starting point (a particular pitch). Moreover, previous 

data from our laboratory has also found that trained singers initiate vocal 

productions at or near the desired target frequencies while singing (Keough and 

Jones, 2009). Thus, we have been able to identify sensorimotor adaptation that 

occurs within 50 ms of vocal onset, and measure this adaptation over the course 

of training with dynamic perturbations cued by different target notes (see Figure 

2). 

Interestingly, previous FAF studies have relied exclusively on trials 

immediately following pitch-shifted feedback to examine sensorimotor adaptation 

(Jones and Keough 2008; Jones and Munhall 2000, 2005). Although our results 

confirmed that participants compensated for FAF, no aftereffects were observed 

in the mean F0 data when feedback was returned to normal (see Figure 1). 

Conversely, on the same trials participants' initial F0 values within 50 ms of vocal 

onset indicated that they expected the FAF, however, when no error was 

perceived they compensated by rapidly adjusting their F0 to produce the target 

notes at frequencies not significantly different from baseline. This explains why 

there were no significant differences between singers mean FQ values obtained 

during baseline and test trials. Thus, it may be the case that investigating the 
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effects as they occur online during altered feedback trials may provide a more 

sensitive measure of adaptation. 

The compensatory responses observed were consistent with those 

obtained in previous FAF studies examining speech (Donath et al. 2002; Houde 

and Jordan 1998; Jones and Munhall 2000, 2005) and singing (Burnett et al. 

1997; Jones and Keough 2008; Keough and Jones 2009; Natke et al. 2003; 

Toyomura et al. 2007; Zarate and Zatorre 2008). Regarding speech, previous 

studies have found that the speech motor system appears to be represented in a 

task-specific manner (Shaiman and Gracco 2002; Tremblay et al. 2008). For 

instance, Shaiman and Gracco (2002) found that applying unanticipated 

mechanical loads to the upper lip during speech production only influenced 

productions that required the upper lip (e.g., 'apa', 'p' requires both lips). 

Perturbing articulators uninvolved in the specific speech sounds being produced 

(e.g., 'afa', f requires the lower lip) elicited no differences in electromyographic 

(EMG) activation between control and load trials (Shaiman and Gracco 2002). 

Indeed, our data suggests that the motor system involved in the regulation 

of voice F0 while singing is also organized in a task-specific manner. Aftereffects 

did not carry over to influence notes on subsequent trials following FAF, rather 

the aftereffects in Experiment 1 were limited to the notes participants produced 

every third trial. Tremblay and colleagues (2008) also argued that speech 

learning is contextually sensitive and generalization was not observed even when 

utterances shared similar movements. Although there is some degree of overlap 

when singers produced the target stimuli in our study, our data suggests that the 
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pitch of musical notes is not influenced by altered feedback experienced on 

previous trials and that singing may be represented by multiple frequency-

specific internal representations. 

Our work complements previous findings in the arm reaching literature 

studying multiple internal models for motor control. These data suggest that 

producing multiple target notes while singing requires participants to employ 

unique motor commands for each target. Although the human voice has the 

potential to be initiated at unpredictable frequencies during onset, trained singers 

consistently produced vocal pitch near the desired target frequencies, even in the 

presence of FAF. Interestingly, when the target notes no longer served as a 

contextual cue we observed a very different pattern of adaptation. Overall, our 

data suggests that sensorimotor adaptation is automatic, it can be observed 

during training within 50 ms of vocal onset while singing, and is uniquely 

associated with the motor commands for specific musical targets. 
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Figure Legends 

Figure 1 

Average single trial voice fundamental frequency (F0) values across an entire 

utterance before, during and following frequency-altered feedback. Trials 

presented in red and blue represent the last baseline trial and the initial test trial 

following frequency-altered feedback (FAF) with unaltered auditory feedback, 

respectively. Trials presented in green represent the last FAF training trial with 

(a) auditory feedback manipulated upwards by 1 semitone (100 cents), (b) 

unaltered auditory feedback (control session), and (c) auditory feedback 

manipulated downwards by 1 semitone (-100 cents). The median F0 value 

between 0 and 50 ms (vertical dotted line) was used to track sensorimotor 

adaptation. The mean F0 values were calculated by averaging all data points 

across 1500 ms of vocal productions and were used to indicate compensatory 

responding in voice F0. 

Figure 2 

Average fundamental frequency (F0) values obtained in Experiment 1 during 

blocks of frequency-altered feedback (FAF) and test trials. F0 was calculated 

based on median value between 0 and 50 ms of vocal onset, or mean F0 across 

1500 ms of vocal productions. Data was normalized by subtracting the average 

of the last five baseline F0 values from the F0 values collected during FAF training 

and test trials. Vertical dotted line indicates the conclusion of FAF trials and the 

commencement of test trials (feedback returned to normal). Asterisks indicate 

significant post-hoc (Tukey's HSD) results for F0 values when different than 
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baseline, (a) Red and blue circles represent mean F0 values and red and blue 

squares represent median 50 ms F0 values when auditory feedback was 

unaltered, (b) Black circles represent mean Fo values and grey squares 

represent median 50 ms F0 values when auditory feedback was unaltered, (c) 

Standard error of the means presented in Figure 2a are presented, (d) Standard 

error of the means presented in Figure 2b are presented. 

Figure 3 

Average fundamental frequency (F0) values obtained in Experiment 2 during 

blocks of frequency-altered feedback (FAF) and test trials, (a) F0 was calculated 

based on mean F0 across 1500 ms of vocal productions or (b) median value 

between 0 and 50 ms of vocal onset. Data was normalized by subtracting the 

average of the last five baseline F0 values from the F0 values collected during 

FAF training and test trials. Vertical dotted line indicates the conclusion of FAF 

trials and the commencement of test trials (feedback returned to normal). 

Asterisks indicate significant post-hoc (Tukey's HSD) results for F0 values when 

different than baseline. Black circles represent mean F0 values and grey squares 

represent median 50 ms F0 values when auditory feedback was unaltered, (c) 

Standard error of the means presented in Figure 3a are presented, (d) Standard 

error of the means presented in Figure 3b are presented. 
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Abstract 

Auditory feedback has been shown to be influential in the maintenance and 

control of voice fundamental frequency (F0). The purpose of this study was to 

address whether task instructions could influence the compensatory responding 

and sensorimotor adaptation that has been previously found when participants 

are presented with a series of frequency-altered feedback (FAF) trials. Trained 

singers and musically untrained participants (nonsingers) were informed that 

their auditory feedback would be manipulated in pitch while they sang the target 

vowel [/ah/] (as in 'pop'). Participants were instructed to either 'compensate' or 

'ignore' the changes in auditory feedback. Whole utterance auditory feedback 

manipulations were either gradually presented ('ramp') in -2 cent increments 

down to -100 cents (1 semitone) or were suddenly ('constant') shifted down by 1 

semitone. Results indicated that singers and nonsingers could not suppress the 

compensatory responses to FAF, nor could they reduce the sensorimotor 

adaptation observed on both ramp and constant FAF trials. Compared to 

previous research these data suggest that musical training is effective in 

suppressing compensatory responses only when FAF occurs after vocal onset 

(500-2500 ms). Moreover, our data suggest that compensation and adaptation is 

automatic and is influenced little by conscious control. 

195 Words 

Keywords: compensate, ignore, internal model, frequency-altered feedback, 
auditory feedback, fundamental frequency, pitch, musical training, singing, voice, 
singer. 
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1. Introduction 

The goal of both speech and singing is the production of sound. With 

respect to the acoustical properties of both, the fundamental frequency (F0), or 

vocal pitch, may be one of the most salient features. For instance, violating the 

target pitch contour of the vocal production may affect the meaning of the 

utterance (Grell et al., 2009). Arguably the most influential contribution to F0 

control is from auditory feedback. Several studies have shown that auditory 

feedback is involved in the control of voice F0 (Burnett et al., 1997, 1998; Elman, 

1981; Houde & Jordan, 1998; Jones & Keough, 2008; Jones & Munhall, 2000, 

2002; Keough & Jones, 2009; Lane &Tranel, 1971; Munhall et al., 2009). For 

instance, modifying auditory feedback generally results in compensatory 

responses in participants' ongoing vocal productions. 

There is little doubt that sensory feedback is essential for the acquisition 

and maintenance of precise motor control (e.g., Burnett et al., 1997, 1998; 

Elman, 1981; Ghahramani & Wolpert, 1997; Houde & Jordan, 1998; Kalenscher 

et al., 2003; Keough & Jones, 2009; Jones & Keough, 2008; Jones & Munhall, 

2000, 2002; Larson et al., 2008; Munhall et al., 2009; Sainburg et al., 1999; 

Shadmehr & Moussavi, 2000; Shadmehr & Mussa-lvaldi, 1994). However, recent 

evidence (Finney & Palmer, 2003; Zarate & Zatorre, 2008) questions the 

influence of various forms of sensory feedback, specifically auditory feedback, on 

ongoing motor productions when participants possess extensive training with the 

task. For instance, Finney and Palmer (2003) demonstrated that presenting or 

removing auditory feedback did not differentially affect the quality of pianists' 
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performance when asked to execute a well-rehearsed piece from memory. 

Similarly, Zarate and Zatorre (2008) found that trained singers could almost 

completely ignore auditory feedback perturbations (+/- 200 cents, 2 semitones) 

and continually produce ('sing') the intended target similarly to when auditory 

feedback was unaltered. On the other hand, musically untrained participants 

were unable to suppress the compensatory responses to the frequency-altered 

feedback (FAF) and adjusted their vocal productions in the opposite direction of 

the perturbations. Likewise, masking auditory feedback with noise led to a 

greater number of errors singing pitch targets in nonsingers than in trained 

singers (Schultz-Coulton, 1978; Ward & Burns, 1978). Thus it seems that musical 

training may contribute to musicians' precise performance, even when auditory 

feedback is altered, masked, or eliminated altogether. One possibility is that the 

differences observed in the control of voice Fo were accomplished by an 

increased reliance on an 'internal model'. 

The feedback associated with particular movements are thought to be 

represented by an 'internal model'. Internal models are proposed to exist as 

neural maps of skilled movements that store the relationships between the motor 

commands, environment and sensory feedback for their production (Desmurget 

& Grafton, 2000; Flanagan & Wing, 1993; Shadmehr & Mussa-lvaldi, 1994). In 

fact, the prevailing hypothesis regarding the control of limb dynamics (Wolpert & 

Kawato, 1998) and the control of speech (Houde & Jordan, 1998; Guenther & 

Perkell, 2004; Jones & Munhall, 2005) and singing (Jones & Keough, 2008; 

Keough & Jones, 2009) is that internal models regulate motor movements. Given 
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the considerable training singers possess, it was thought that an internal model 

for vocal control would be more entrenched in singers than in untrained 

participants (nonsingers). Jones and Keough (2008) had trained singers and 

nonsingers reproduce a musical target (392 Hz or 349 Hz, G4 or F4 respectively) 

while receiving unaltered or FAF that was shifted down by one semitone (100 

cents). Although participants compensated for the FAF, aftereffects were only 

observed in singers' data. Singers' F0 values during testing were higher than their 

baseline F0 values, whereas nonsingers F0 values during testing were similar to 

those obtained during baseline (Jones & Keough, 2008). Singers' data also 

indicated that aftereffects generalized to other notes than the one they sang 

during training (FAF trials). Indeed, one possible explanation for the difference in 

voice Fo control is that singers internal models could recruit similar neural 

substrates as nonsingers but in varying degrees, or alternatively they are 

recruiting different neural substrates altogether. 

Recently, Zarate and Zatorre (2008) used functional magnetic resonance 

imaging (fMRI) to assess the neural processes associated with singing under 

different feedback conditions. When participants were presented with normal 

auditory feedback and were instructed to sing various target notes as accurately 

as possible, the behavioural results indicated that singers were more accurate 

and less variable in producing the musical targets than nonsingers (Zarate & 

Zatorre, 2008). Despite the differences in vocal production during the normal 

feedback condition, both singers and nonsingers exhibited similar functional 

networks for singing. These areas included the bilateral auditory cortices, 
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bilateral primary motor cortices, the supplementary motor area (SMA), the 

anterior cingulate cortex (ACC), thalamus, insula, and cerebellum (Zarate & 

Zatorre, 2008). Unlike the compensatory responses reported by Jones and 

Keough (2008), Zarate and Zatorre did not find behavioural differences when 

instructing participants to compensate for the FAF. It should be noted however 

that participants were not informed of the pitch shift modifications in Jones and 

Keough (2008), whereas participants in Zarate and Zatorre (2008) were informed 

that their auditory feedback would be altered in pitch. On the other hand, Zarate 

& Zatorre (2008) did find enhanced activation in the ACC, STS, insula, putamen, 

pre-SMA, and IPL in singers. Lastly, when Zarate and Zatorre exposed 

participants to FAF and instructed them to ignore their feedback (i.e., do not 

compensate for the manipulations), the fMRI results revealed that singers 

showed enhanced activation in the inferior parietal lobule (IPL), superior temporal 

gyrus (STG), superior temporal sulcus (STS), and right insula (Zarate & Zatorre, 

2008). Interestingly, the pattern of behavioural results obtained suggests that 

singers can suppress compensatory responses to FAF, providing the shifts occur 

between 1000-1500 ms following vocal onset. Essentially, singers' F0 values 

during the ignore condition were similar to those obtained when they received 

unaltered auditory feedback. On the other hand, nonsingers were unable to 

ignore the FAF and compensated by altering their F0 in the opposite direction of 

the perturbations. 

The results of Zarate and Zatorre (2008) raise an interesting question 

about the influence of musical training and the use of auditory feedback on voice 
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F0 control; is it possible that participants' compensatory responding is under 

conscious control? According to the results previously mentioned, it seems that 

as long as participants possess sufficient vocal training then they may have been 

able to consciously suppress compensatory responses to FAF by relying on 

alternative feedback mechanisms (e.g., muscle memory for pitch, proprioception) 

during these trials. However, when Munhall and colleagues (2009) presented 

participants with formant frequency manipulations that coincided with vocal 

onset, a robust compensation was observed in all conditions even when they 

instructed speakers to ignore changes in auditory feedback. Moreover, although 

a number of studies conducted by Larson and colleagues (Burnett et al., 1997, 

1998; Burnett & Larson, 2002; Larson et al., 2001; but see Hain et al., 2000) 

were not directly investigating whether participants could ignore FAF, their results 

suggest that participants compensate for pitch shift manipulations, even when 

told to keep their voice stable and to ignore any auditory feedback variations 

presented over the headphones. These data suggest that compensation to 

formant perturbations (Munhall et al., 2009) and FAF (Burnett et al., 1997, 1998; 

Burnett & Larson, 2002; Larson et al., 2001) is automatic and that compensatory 

responses do not appear to be modified by a conscious strategy. The only 

difference previously reported was that Fo response latencies were reduced 

when participants had immediate control over perturbation onset (Burnett, 

McCurdy, & Bright, 2008). No differences were observed to the direction, 

magnitude, or the peak time of voice F0 responses (Burnett et al., 2008). 



Frequency-Altered Feedback 97 

Indeed, how conscious awareness influences the perception and 

production of speech and singing is unknown. The results of Loui et al. (2008) 

suggest a distinction between pathways for vocal performance and conscious 

perception may exist. Thus, possessing knowledge of the forthcoming 

perturbations does not appear to alter the direction, magnitude, or peak time of 

F0 responses. This suggests that the pathway involved with the conscious 

detection of altered feedback may not be required for eliciting compensatory 

responses. Even though the majority of participants in previous studies were not 

musically trained, or the extent of their training was not well established, it could 

be that the extensive training singers receive may provide them with the ability to 

utilize alternative forms of feedback more efficiently to suppress compensatory 

responses to FAF. 

The current study will examine singers and nonsingers F0 responses to 

gradual (-2 cent increments to -100 cents, 1 semitone) or constant (-100 cents) 

changes in FAF. We will be particularly interested in whether participants can 

suppress compensatory responses to FAF manipulations when instructed to do 

so. That is, we will examine participants' vocal responses when instructed to 

compensate or maintain (ignore FAF) a steady voice F0 during FAF trials to 

determine if compensatory responses can be influenced by volitional control. 

Moreover, we will also investigate whether aftereffects (adaptation) can be 

suppressed during FAF trials. Aftereffects have been typically observed following 

a series of FAF trials (Jones & Keough, 2008; Jones & Munhall, 2000, 2002), 

where vocal productions err in the direction of compensation. However recent 
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evidence from our laboratory identified that sensorimotor adaptation can be 

observed within 50 ms of vocal onset (Hawco & Jones, 2009; Keough & Jones, 

2009). Surprisingly, during a recent adaptation study in our laboratory (Keough & 

Jones, 2009) we did not find aftereffects in singers' mean F0 values (across 1500 

ms of vocal production) following FAF, whereas we observed robust aftereffects 

in a previous study (Jones & Keough, 2008). As a result, we decided to examine 

participants F0 values within 50 ms of vocal onset. During trials following FAF, we 

observed adaptation followed by rapid compensation, such that singers initiated 

their F0 values as if they were anticipating the FAF and when it was determined 

that their auditory feedback had been returned to normal, they adjusted their 

mean Fo to values consistent with those obtained during baseline (prior to FAF). 

Therefore, singers in Zarate and Zatorre's (2008) study may have exhibited 

sensorimotor adaptation, but rapidly altered their Fo to suggest they could ignore 

the manipulations. As a consequence, the extent to which compensation and 

adaptation is under volitional control remains unknown. 

The current study had singers and nonsingers produce target notes at 

specific frequencies with different instructions while receiving subtle and large 

modifications in auditory feedback. Participants were informed that their auditory 

feedback was manipulated in pitch and they were instructed to either (1) 

'compensate' for these changes by altering their voice F0 in the opposite direction 

of the perturbation or (2) to 'ignore' their auditory feedback maintain their voice F0 

at frequencies similar to when their feedback was unaltered. The purpose is to 

investigate (i) whether task instructions influence compensatory responding (F0 
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values within 1500 ms of vocal onset) and sensorimotor adaptation (F0 values 

within 50 ms of vocal onset) that are typically observed during frequency-altered 

feedback studies (e.g., Burnett et al., 1997, 1998; Jones & Keough, 2008; Jones 

& Munhall, 2000, 2002; Keough & Jones, 2009). Moreover, (ii) collecting data 

from singers and nonsingers will help identify whether musical training influences 

acoustic-motor control when instructed to compensate or ignore auditory 

feedback manipulations. Regardless of whether the pitch manipulations are small 

(-2 cent increments down to -100 cents, where 100 cents = 1 semitone) or large 

(-100 cents), if both singers and nonsingers can suppress or eliminate 

compensatory responses and sensorimotor adaptation then it will suggest that 

these responses are, to a certain degree, under volitional control. Conversely, if 

similar patterns of compensatory responding and sensorimotor adaptation are 

observed, then it will suggest that these responses are automatic and that 

auditory feedback has an important role in vocal motor control while singing. 

It is hypothesized that both singers and nonsingers will be unable to 

ignore subtle shifts (-2 cent increments to -100 cents; 'ramp condition') in FAF. 

As a result, it is expected that participants will exhibit similar patterns of 

compensatory responding and sensorimotor adaptation during the ramp 

condition. When auditory feedback is suddenly shifted to -100 cents ('constant 

condition'), it is hypothesized that nonsingers will immediately compensate by 

increasing their voice Fo in the opposite direction of the manipulation. Over time, 

it is believed that nonsingers will exhibit sensorimotor adaptation while 

compensating for the FAF. On the other hand, trained singers may be able to 
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ignore large changes in auditory feedback when instructed to do so, which would 

be congruent with the results of Zarate and Zatorre (2008). Indeed, if singers can 

ignore FAF manipulations then their vocal productions should be similar to those 

obtained when auditory feedback is unaltered (baseline). However a key 

methodological difference is that the perturbations coincided with vocal onset in 

this study, whereas Zarate and Zatorre (2008) presented FAF between 1000-

1500 ms following vocal onset. This is particularly important because Hawco and 

Jones (2009) found that presenting FAF manipulations prior to vocalization 

elicited larger compensatory responses than those observed when FAF occurs 

shortly after vocal onset. It is possible that the suppression of compensatory 

responding exhibited by trained singers in Zarate and Zatorre (2008) resulted 

from their reliance on the auditory feedback they received prior to the 

presentation of the FAF. Thus, presenting participants with subtle and large 

changes in auditory feedback that coincides with vocal onset may indicate that 

compensatory responding and sensorimotor adaptation occurs automatically and 

is influenced little by volitional control. 

2. Methods 

2.1 Participants 

Thirty Wilfrid Laurier University students (all women) whose native tongue 

was North American English participated in this frequency-altered feedback 

study. Currently, no evidence suggests that a gender difference exists in relation 

to vocal control while receiving FAF. Men were not included so that all 
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participants could adequately sing the same target notes. Of the 30 participants, 

15 were trained singers recruited from the Faculty of Music (vocal majors) at 

Wilfrid Laurier University (mean music training was approximately 12 years). 

None of the trained singers reported having 'perfect' pitch. The remaining 15 

participants were nonsingers, such that none had any form of previous vocal 

training or were currently participating in formal singing. All participants received 

financial compensation for their time and informed consent was collected from 

each participant. The Wilfrid Laurier University Research Ethics Committee 

approved the procedures. 

2.2 Apparatus 

Participant Recording Sessions. Participants were situated in a double-

walled sound attenuated booth (Industrial Acoustic Company, Model 1601-01) 

and were fitted with headphones (Sennheiser HD 280 Pro) and a condenser 

microphone (Countryman Isomax E6 Omnidirectional Microphone), which was 

positioned approximately 3 cm from their mouth. Multitalker babble noise 

(Auditec, St. Louis, MO) was presented at 80 dB SPL (sound pressure level) to 

limit natural acoustic feedback. Note that the multitalker babble was unintelligible 

to the listener, as it consisted of 20 young adults simultaneously reading different 

passages. The target notes consisted of a female voice singing the vowel-

consonant [/ah/], that was presented at 220.00 (A3), 246.94 (B3), 293.66 (D4) or 

329.63 (E4) Hz, respectively. Microphone signals were sent to a signal processor 

(VoiceOne 2.0, TC Helicon) that manipulated auditory feedback. The altered 
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feedback was then mixed (Mackie ONYX 1640) with the multi-talker babble and 

subsequently sent to the participant. Vocal productions were digitally recorded 

(TASCAM HD-P2) at a sampling rate of 44.1 kHz for future analysis. 

Target stimuli recording. A trained singer produced the respective targets, 

A3, B3, D4, and E4, which were processed using the speech modification 

algorithm STRAIGHT (Speech Transformation and Representation using the 

Adaptive Interpolation of weighted spectrum; Kawahara et al., 1999) to ensure 

that each target was exactly 220.00, 246.94, 293.66, or 329.63 Hz. 

2.3 Procedure 

Participants were asked to match the pitch of their voice to a musical 

target during 4 conditions that consisted of 320 trials, which were divided into 4 

blocks of 80 trials. Each block consisted of 30 baseline and 50 FAF trials (see 

Figure 1 for an outline of the methods). For instance, on one block participants 

would reproduce the musical target A3 (220.00 Hz) on all trials. Thus, 

participants would receive natural acoustic (unaltered) feedback during the 30 

baseline trials, followed by 50 FAF trials. During the FAF trials, auditory feedback 

was either gradually shifted downward (ramp condition) in -2 cent increments per 

trial down to -100 cents, or it was simply shifted down (constant condition) 100 

cents for all 50 FAF trials. Note that auditory feedback was shifted from the 

beginning of each utterance until the end of vocal productions during FAF trials. 

Another block of trials had participants reproduce B3, D4 or E4 for 30 baseline 

and 50 FAF trials. Target notes were presented in the following order for all 
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participants, A3-B3-D4-E4. However whether participants received FAF that was 

ramped (incrementally by 2 cents) or constantly (-100 cents) manipulated was 

counterbalanced across participants. Moreover, whether participants received 

instructions to compensate or ignore the FAF was also counterbalanced across 

participants. 

Participants were instructed to either 'compensate' or 'ignore' any changes 

in auditory feedback that may occur during the study. During the 'compensate' 

condition, participants were informed that they would be presented with a musical 

target at the beginning of each trial. The goal for participants was to match the 

pitch of their voice as accurately as possible to the target presented. Participants 

were informed that they would initially receive normal, unaltered, auditory 

feedback. Such that what they produced would be exactly what they would hear 

in the headphones. Additionally, they were told that at some point the pitch of 

their voice presented via the headphones would be different than what they 

actually produced. Thus, they were instructed to continually monitor their auditory 

feedback and to try to match what they heard in the headphones to the target 

presented at the beginning of each trial. Essentially, participants were instructed 

to compensate for the FAF. 

During the 'ignore' condition, participants were informed that they would 

be presented with a musical target at the beginning of each trial. The goal for 

participants was to match the pitch of their voice to the target presented, but to 

ignore their auditory feedback. In other words, they were told that initially they 

would receive normal, unaltered, auditory feedback. However, they were 
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informed that at some point the pitch of their voice presented via the headphones 

would be different than what they actually produced. Participants were instructed 

to ignore the FAF (their auditory feedback) and to produce the target 

consistently, at the same pitch as when their feedback was unaltered. 

Essentially, we were asking participants to 'not compensate' for the pitch shift 

manipulations, so sounding 'off' would be acceptable during these trials. At no 

time during the study were the participants informed of the direction of the FAF 

manipulation, at what trial the perturbation occurred, or made aware of 

alternative strategies that could be used to assist with vocal control (e.g., vocal 

fold position). 

An individual trial commenced with the presentation of the target stimulus, 

which lasted for 1000 ms. Immediately following the termination of the target, 

multitalker babble was presented for 3500 ms. During the presentation of the 

multitalker babble, participants were instructed to reproduce the target as 

accurately as possible in pitch and duration. That is, hold the pitch of their voice 

constant for approximately 1000 ms. A 1000 Hz beep coincided with the last 500 

ms of the multitalker babble, which served to signify that the trial was about to 

conclude and participants should cease vocalization. An intertrial-interval (ITI) 

was presented for 3000 ms between trials. Trials were initiated and controlled by 

a computer and F0 values for each vocal production were calculated, during 

offline analyses, using an autocorrelation algorithm included in the Praat program 

(Boersma, 2001). F0 values were normalized to each target note (A3, B3, D4 or 

E4) by calculating the appropriate cent values using the following formula: 
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Cents = 100 (12 log2 F/B) 

Where F is the F0 value in Hertz and B is frequency of the target pitch 

participants were instructed to sing (220.00, 246.94, 293.66, or 329.63 Hz). 

2.4 Statistical Analyses 

The median value within the initial 1500 ms of each vocal utterance was 

analysed, as it has been previously shown that compensatory responses to FAF 

typically occurs between 130 to 500 ms post perturbation onset (Burnett et al., 

1997). Participants F0 values obtained during the 'ignore' and 'compensate' 

conditions were analysed together and were broken down into blocks of five 

trials: baseline trials (1-5, 6-10, 11-15, 16-20, 21-25, 26-30), and FAF trials (1-5, 

6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50). Thus, an ANOVA 

was conducted on the median F0 values with 2 (group: singers and nonsingers) x 

2 (instruction: ignore or compensate) x 2 (manipulation: ramp or constant) x 16 

(block) as factors. Tukey's honestly significant difference (HSD) test was used for 

post-hoc analyses with an alpha level of .05 for all statistical tests. 

Moreover, unlike previous adaptation studies (e.g., Jones & Keough, 

2008; Jones & Munhall, 2000, 2002, 2005) examining aftereffects following a 

series of FAF trials, we recently identified that sensorimotor adaptation can be 

observed within 50 ms of vocal onset (Hawco & Jones, 2009; Keough & Jones, 

2009). As a result, the median F0 values within 50 ms of vocal onset for each 

sequence were categorized into blocks of five trials in the same fashion as the 

median 1500 ms F0 values. Thus, an ANOVA was conducted on the median 50 
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ms F0 values with 2 (group: singers and nonsingers) x 2 (instruction: ignore or 

compensate) x 2 (manipulation: ramp or constant) x 16 (block) as factors. 

Singers and nonsingers 50 ms data was also subjected to a similar ANOVA 

however the group variable was no longer included in the analysis. Therefore, for 

both singers and nonsingers a 2 (instruction: ignore or compensate) x 2 

(manipulation: ramp or constant) x 16 (block) ANOVA was conducted to 

determine the degree of sensorimotor adaptation that occurred during FAF. 

3. Results 

The median 1500 ms F0 values for singers and nonsingers were 

calculated for each condition and are displayed in Figure 2. The ANOVA 

conducted on the median 1500 ms F0 values with 2 (group: singers and 

nonsingers) x 2 (instruction: ignore or compensate) x 2 (manipulation: ramp or 

constant) x 16 (block) as factors revealed a marginal effect of group, F(1, 28) = 

3.17, p =.086. On average, singers' median 1500 ms F0 values were lower, or 

more consistently near the desired target frequency, than nonsingers' median 

1500 ms F0 values. A significant main effect of manipulation and block was also 

observed, F(1, 28) = 28.08, p <.05 and F(15,420) = 210.64, p<.05, respectively. 

Overall, the F0 values obtained for all participants during the ramp manipulation 

were significantly lower than the F0 values obtained during the constant 

manipulation. Thus, participants compensated to a greater degree when 

presented with a constant manipulation (-100 cents) than when presented with 

gradual shifts in auditory feedback (-2 cent increments to -100 cents). With 
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respect to the main effect of block, post-hoc testing indicated that all baseline F0 

values collected during both ramp and constant manipulation conditions were not 

significantly different (all p's > .05). However, the average F0 values obtained 

during baseline trials for both ramp and constant manipulations were found to be 

significantly less than the average F0 values obtained during all FAF blocks of 

trials for both ramp and constant manipulation conditions, (all p's < .05). 

A significant two-way interaction between manipulation and block was also 

found, F(15,420) = 75.71, p <.05. Post hoc analysis revealed that the average 

baseline blocks (1-6) of F0 values obtained during the ramp manipulation 

condition were significantly different than the average F0 values obtained on FAF 

blocks 9-16. As the pitch shift manipulation became progressively lower, 

participants, on average, compensated by increasing the pitch of their voice in 

the opposite direction of the manipulations so that the F0 values were different 

than those during baseline. Also, as the pitch shift manipulations during the ramp 

condition progressively decreased, participants' F0 values gradually became 

significantly different than those observed on previous blocks of FAF trials (p < 

.05). For instance, the F0 values obtained on the last block (block 16) of FAF 

trials during the ramp manipulation condition were significantly higher than all F0 

values obtained on previous blocks of FAF trials (p < .05). With respect to the F0 

values obtained during the constant manipulation condition, post hoc testing 

indicated that the baseline values were significantly lower than the F0 values 

obtained during all FAF blocks (7-16) of trials (p < .05). Interestingly, the F0 

values observed during the initial block (7) FAF trials was not statistically different 
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than the F0 values observed on any other block (8-16) of FAF trials (p > .05). 

Therefore, singers and nonsingers, on average, compensated immediately and 

consistently to the sudden and constant change (-100 cents) in auditory feedback 

across all blocks of FAF trials. Although, the F0 values collected on the initial 

block (7) during the constant manipulation condition were significantly higher 

than those values collected on FAF blocks 7-14 of the ramp manipulation 

condition (all p's < .05), they were not significantly different than the F0 values 

obtained on blocks 15 and 16 of the ramp condition. Thus it appears that the 

level of compensation to FAF is similar when auditory feedback is manipulated 

downward between 80-100 cents. Lastly, no significant effect of instruction 

(ignore or compensate) was observed in the median 1500 ms F0 values, F(1, 

28)=.011, p<.05. Even when instructed to ignore the FAF, participants were 

unable to maintain their voice F0 at similar levels to those obtained during 

baseline. No other significant main effects or interactions were observed. 

The median 50 ms F0 values for singers and nonsingers were calculated 

for each condition and are displayed in Figure 3. The ANOVA conducted on the 

median 50 ms F0 values with 2 (group: singers and nonsingers) x 2 (instruction: 

ignore or compensate) x 2 (manipulation: ramp or constant) x 16 (block) as 

factors revealed a significant main effect of manipulation and block, F(1, 28) = 

8.80, p <.05 and F(15, 420) = 15.36, p <.05, respectively. On average, 

participants' median 50 ms F0 values during the ramp manipulation condition 

were significantly lower than the 50 ms FQ values during the constant 

manipulation condition. Post hoc results on the main effect of block revealed that 
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participants F0 values during baseline trials were not significantly different (p > 

.05). On the other hand, the F0 values obtained during baseline (blocks 1-6) were 

found to be significantly lower than the F0 values obtained during FAF blocks 12-

16 (all p's < .05). Moreover, some of the baseline F0 values (blocks 3, 4 & 6) 

were significantly lower than the F0 values observed on FAF blocks 8-16 (all p's < 

.05). Thus, sensorimotor adaptation was observed when participants were 

subjected to FAF, regardless of whether they were instructed to compensate or 

ignore the manipulated auditory feedback. 

A significant two-way interaction was also observed between manipulation 

and block, F(15, 420) = 3.62, p <.05. Participants' baseline F0 values during the 

ramp manipulation condition were not statistically different nor were they different 

than the baseline F0 values obtained during the constant manipulation condition 

(all p's > .05). However, the F0 values observed during baseline in the ramp 

condition were significantly lower than those values observed during FAF blocks 

13, 15 and 16 (p > .05). Thus, as participants' auditory feedback was gradually 

shifted downward, they progressively increased their voice F0 so that they 

initiated vocal productions at levels closer to the intended target frequency. 

Similar results were also observed in the median 50 ms F0 values during the 

constant manipulation condition. Baseline Fo values for blocks 2-6 were found to 

be significantly lower than the F0 values on FAF blocks 8-16 (all p's < .05). 

Interestingly, when auditory feedback is held fixed at a large pitch shift value (-

100 cents) sensorimotor adaptation occurs rapidly and voice Fo is maintained at 

consistent levels across FAF trials. Lastly, the main effect of instruction was not 
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significant, F(1, 28)=.03, p>.05. Participants' voice F0 values were similar across 

all blocks of trials, regardless of whether they were instructed to compensate or 

ignore the FAF. No other significant main effects or interactions were observed. 

In an attempt to further examine sensorimotor adaptation, independent 

ANOVA's were conducted on singers and nonsingers median 50 ms F0 values 

with 2 (instruction: ignore or compensate) x 2 (manipulation: ramp or constant) x 

16 (block) as factors. The analysis on nonsingers median 50 ms F0 values 

revealed a significant main effect of block, F(15, 210) = 4.42, p < 05. Post hoc 

tests indicated that baseline blocks 1,2,5, and 6 were not significantly different 

than the F0 values observed on FAF blocks 7-16 (all p's > .05). However, 

baseline F0 values on blocks 3 and 4 were significantly different that the F0 

values on FAF blocks 9, 12, 13, 15 and 16 (all p's < .05). It appears that, on 

average, while sensorimotor adaptation is evident in nonsingers, they tend to 

consistently initiate voice F0 values at a similar frequency. No other significant 

main effects or interactions were observed. 

Results of singers median 50 ms F0 values revealed a main effect of 

manipulation, F(1, 14) = 13.56, p < .05. The F0 values obtained during the ramp 

manipulation condition were significantly lower than the F0 values obtained 

during the constant manipulation condition. A significant main effect of block was 

also found, F(15, 210) = 22.09, p < .05. On average, pot hoc testing indicated 

that all baseline F0 values were significantly lower than the F0 values on FAF 

blocks 10-16 (all p's < .05). Unlike nonsingers, trained singers appear to 

consistently adjust their initial vocal productions in the presence of FAF, such 
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that their voice F0 is initiated more closely to the target frequency. Thus, 

sensorimotor adaptation could be observed, on average, across most blocks of 

FAF trials during the ramp and constant manipulation conditions. Interestingly, 

sensorimotor adaptation could be observed earlier on baseline blocks 2, 5 and 6, 

as they were found to be significantly different than FAF blocks 8-16. Also, a 

significant manipulation x block interaction was observed, F(15, 210) = 4.76, p < 

.05. Post hoc testing during the ramp manipulation condition revealed that 

singers' baseline median 50 ms F0 values for blocks 4-6 were significantly lower 

than the F0 values found on FAF blocks 13-16. Moreover, baseline F0 values for 

block 2 were significantly lower than FAF blocks 13, 15 and 16. Baseline blocks 1 

and 3 were only significantly lower than FAF block 15. Thus, evidence for 

sensorimotor adaptation exists, suggesting singers are particularly sensitive to 

subtle changes in auditory feedback and compensate by altering how they initiate 

subsequent vocal productions. On the other hand, post hoc results on the 

constant manipulation condition revealed that singers' baseline Fo values during 

all baseline blocks were significantly lower than the F0 values on FAF blocks 9-

16. Additionally, the level of sensorimotor adaptation observed within 50 ms of 

vocal onset during the last 2 FAF blocks of the ramp manipulation condition was 

not significantly different than any FAF block (7-16) during the constant 

manipulation condition. Thus, the degree of sensorimotor adaptation for F0 

values when auditory feedback was being gradually shifted between 80-100 

cents was similar to the sensorimotor adaptation observed during the constant 
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manipulation condition. No other significant main effects or interactions were 

found. 

4. Discussion 

The purpose of the present study was to determine whether instructing 

participants to 'compensate' or ignore' gradual (-2 cent increments per trial down 

to -100 cents) or constant changes (-100 cents) in auditory feedback could result 

in the voluntary suppression of compensatory responding and sensorimotor 

adaptation. Regardless of whether participants received the gradual or constant 

pitch manipulations, both singers and nonsingers could not intentionally suppress 

the compensatory motor commands during FAF trials (see Figure 3). The pattern 

of compensation observed when participants were instructed to 'ignore' the FAF 

was indistinguishable from the compensatory responses observed when they 

were instructed to 'compensate' for the FAF. Additionally, participants' median 50 

ms F0 values suggested that the level of sensorimotor adaptation that occurred 

during the ignore condition was similar to the adaptation observed during the 

compensation condition. Voice F0 values observed throughout FAF (gradual and 

constant) trials indicates that both singers and nonsingers updated their internal 

models by adjusting their F0 so that they initiated vocal productions at 

frequencies closer to the intended target. 

However, when participants' median 50 ms data was analysed separately, 

it was found that nonsingers were more likely to initiate voice FQ at consistent 

frequencies. That is, nonsingers FQ values during most blocks of FAF trials were 
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similar to those obtained when auditory feedback was unaltered. This does not 

suggest that nonsingers were able to suppress the sensorimotor adaptation 

typically observed during FAF trials. Rather this finding is consistent with 

previous data from our laboratory suggesting that nonsingers' internal models for 

vocal control while singing are not as well established as those observed in 

trained singers (Jones & Keough, 2008; Keough & Jones, 2009). For instance, in 

Keough and Jones (2009) it was found that nonsingers initiated voice F0 

approximately a semitone below the target frequency and rapidly corrected 

(increased) the pitch of their voice, during both unaltered and altered feedback 

trials. On the other hand, singers' F0 values suggested that they continually 

updated their internal models in the presence of FAF to initiate vocal pitch near 

the desired target frequency (within 50 ms of singing). Indeed, trained singers 

median 50 ms data in the current study is consistent with this finding. Thus, 

trained singers tend to adjust their internal models in the presence of FAF to 

allow them to sing the target note immediately (within 50 ms of vocal onset), 

whereas nonsingers tend to employ a searching strategy to match their voice to 

the target. Note that nonsingers also modify an internal model to accommodate 

their searching strategy, however the recalibration observed in nonsingers is not 

as apparent as it has been in singers F0 responses (Keough & Jones, 2009). 

Essentially, nonsingers modify their starting point while singing with FAF but 

continue to increase the pitch of their voice to similar degrees as when their 

auditory feedback was unaltered. 
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On the other hand, when participants were instructed to 'compensate' for 

the gradual presentation of FAF they correspondingly adjusted their F0 in the 

opposite direction of the manipulation. That is, within 1500 ms of vocal onset, 

both singers and nonsingers increased their voice F0 in order to maintain pitch 

accuracy with the intended target (see Figure 2). Although nonsingers F0 values 

were consistently higher than singers during baseline and in the presence of 

FAF, the differences were only marginally significant. Moreover, participants also 

exhibited sensorimotor adaptation while compensating for the gradual FAF 

manipulations. Participants' data within 50 ms of vocal onset indicates that as the 

pitch manipulations progressively decreased, they initiated vocal productions at 

increasingly higher frequencies. In other words, participants started subsequent 

utterances at F0 values similar to those obtained on previous FAF trials. This 

suggests that as singers and nonsingers were gradually compensating for the 

FAF, they were also continually updating their internal models to account for the 

consistently decreasing changes in auditory feedback. 

Similarly, when participants were instructed to compensate for the sudden 

and large change (constant condition) in auditory feedback, results indicated that 

participants appropriately increased their F0 in the opposite direction of the 

manipulation. Interestingly, the F0 values, on average, obtained during the first 

block of FAF trials were not statistically different than the F0 values obtained on 

any other block of FAF trials. Thus, participants compensated for the large shift in 

auditory feedback at consistent values from the initial presentation to the 

conclusion of the 50 FAF trials. Furthermore, participants' median 50 ms F0 data 
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identified that sensorimotor adaptation occurred. As singers and nonsingers 

rapidly compensated for the FAF, they also adjusted their internal models to 

initiate F0 values closer to the intended target. F0 values were determined to be 

significantly different than baseline from the second block (trials 6-10) of FAF 

trials onward. As a consequence, instructing participants to compensate for FAF 

results in similar responses to those observed previously in our laboratory 

(Keough & Jones, 2009) and by others using the FAF paradigm (Burnett et al., 

1997, 1998; Donath et al., 2002; Jones & Munhall, 2000; 2002; Natke et al., 

2003; Zarate & Zatorre, 2008). 

The finding that compensatory responding is not easily suppressed by 

instructions to ignore feedback is consistent with previous studies using FAF 

(Hain et al., 2000), formant frequency manipulations (Munhall et al., 2009), and 

masking noise (Pick et al., 1989). Indeed, a recent study by Munhall and 

colleagues (2009), found that participants rapidly compensated for formant 

frequency manipulations when they were instructed to ignore the modified 

feedback. Moreover, when the manipulations were removed participants 

exhibited aftereffects. As a consequence, Munhall and colleagues (2009) argue 

that their data do not necessarily provide "evidence of a fixed-response system 

that cannot be adjusted with practice or strategies" (pp. 389), but rather argue 

that compensatory responses to vowel modifications are not intentional strategic 

responses to the detection of auditory feedback manipulations. This is also 

congruent with the findings from the current study, however it is uncertain 

whether repeated exposure ('practice') to subtle (2 cents) manipulations in 
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auditory feedback would result in the overt suppression of compensatory 

responses to FAF. 

For instance, when similar pitch shift values were presented incrementally 

across trials in previous studies from our laboratory (+1-2 cents and +/- 4 cents) 

participants stated that they were unaware that their voice was manipulated in 

pitch. Munhall and colleagues also indicated that participants possessed no 

particular knowledge of the nature of the manipulation when formants were 

modified in small increments trial-by-trial (e.g., Percell & Munhall, 2006). Indeed, 

it has been reported that an early automatic response to unexpected changes in 

auditory feedback occurs between 100-150 ms post perturbation onset (Burnett 

et al., 1997, 1998; Hain et al., 2000). Thus, if this response assists with small, 

unexpected, perturbations then the presentation of gradual shifts in auditory 

feedback may fall within a certain automatic compensatory range that cannot be 

overtly suppressed, nor may it require the 'conscious' detection of the error for 

the compensatory response to occur. This is consistent with the results of Loui et 

al. (2008), who reported that amusic ('tone-deaf) participants were able to 

reproduce the pitch direction of two successive single tones, although they were 

at chance discriminating pitch direction. That is, although amusics have difficulty 

perceptually identifying pitch changes that are smaller than a semitone (Peretz & 

Hyde, 2003), they are capable of producing the correct pitch direction as 

accurate as controls (Loui et al., 2008). This supports Loui et al.'s (2008) notion 

that the auditory pathway responsible for vocal production may be distinct from 

the pathway responsible for conscious perception. Thus, compensating for 
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altered feedback may occur without participants' ability to consciously identify 

this behaviour. Alternatively, repeated exposure to large changes (e.g., 100, 200 

cents) in auditory feedback may allow compensatory responses to be overtly 

controlled (e.g., Hain et al., 2000; Zarate & Zatorre, 2008). Regardless, the data 

presented by Munhall et al. (2009) and the results of the current study suggest 

that motor preparation, initiation, and production of vocal utterances are heavily 

influenced by auditory feedback. Moreover, instructing participants to ignore 

changes in feedback does not appear to influence compensatory responding or 

alter the pattern of sensorimotor adaptation. 

Auditory feedback has been shown to be important for accurate F0 control, 

and it has also been shown to be influential during the acquisition of a novel 

musical piece. Finney and Palmer (2003) found that trained pianists performance 

was improved when auditory feedback was provided while learning a novel song. 

However, when the musicians were required to produce a well-rehearsed piece 

from memory, the removal of auditory feedback had no affect on performance 

(Finney & Palmer, 2003). Similar to the trained singers in Zarate and Zatorre 

(2008) who could suppress compensatory responses to +/-200 cents (2 

semitone) manipulations, it appears that musical training may contribute to 

musicians' ability to perform in the absence or modification of auditory feedback. 

In regards to singing, one possibility is that presenting the pitch manipulations so 

they occur later into vocal production (1000-1500 ms in Zarate & Zatorre, 2008) 

may result in the easier identification of FAF (e.g., efference copy violation), or it 

may allow for singers to rely on alternative components (e.g., muscle memory, 
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kinesthetic feedback) of their internal model to suppress compensatory 

responding. 

Conceptually, internal models are hypothesized to compare sensory 

feedback with motor acts by means of a comparator examining differences 

between perception and production. These differences are hypothesized to be 

computed based on a corollary discharge, such that the output of an internal 

model maps the motor commands (e.g., efference copy) with the expected 

sensory feedback from the actions. When a match exists between perception 

and production the result is a net cancellation of the sensory input, which in turn 

causes a dampened sensory experience (Heinks-Maldonado et al., 2005). 

Conversely, when there is a discrepancy between the perception and production 

of a motor act there is no corollary discharge to cancel the sensory feedback. As 

a consequence, there is an intensification of the sensory experience that 

potentially alerts us to environmental events (Heinks-Maldonado et al., 2005). 

For instance, in a series of event related potential (ERP) and 

magnetoencephalographic (MEG) studies using FAF, Heinks-Maldonado and 

colleagues (2005, 2006) found that an early sensory detection component (e.g., 

M100) generated in the auditory cortex was maximally suppressed to 

participant's own unaltered voice. When participants received pitch-shifted and 

alien feedback conditions the researchers observed an increase in cortical 

responding in the auditory cortex relative to when they received unaltered 

auditory feedback (Heinks-Maldonado et al., 2006). According to this theory, 

participants in the current study should have also exhibited similar cortical 
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responding when presented with FAF, as they initiated compensatory responses. 

However, presenting the pitch manipulations so they coincide with vocal onset 

may make compensatory responding more difficult to suppress than if the FAF 

was presented during mid utterance. For example, when FAF is delivered mid 

utterance (e.g., Hain et al., 2000; Zarate & Zatorre, 2008), the efference copy 

associated with the motor commands is not initially violated, as the participant 

first hears exactly what they are producing. When the FAF occurs, it is possible 

that the nervous system has already determined that the motor commands are 

appropriate for the target note produced and that the error perceived is due to 

something external (e.g., the experimenter). Given the extensive experience 

trained singers possess with vocal control, participants in Zarate and Zatorre's 

(2008) study may have altered their internal model to rely more on kinesthetic 

feedback (e.g., vocal-fold positioning) to maintain the pitch of their voice during 

FAF trials, whereas nonsingers, possibly due to their lack of formal music 

training, were unable to suppress compensatory responses. 

On the other hand, when the FAF coincides with vocal onset, the actual 

sensory feedback associated with the motor commands of participants' internal 

models does not match the expected sensory feedback, resulting in an 

intensified sensory experience (efference copy violation) (e.g., Heinks-

Maldonado et al., 2005, 2006). Regardless of whether participants were 

'consciously' aware of the FAF manipulations, compensatory responses were 

initiated to subtle and large changes in auditory feedback. This suggests that 

once the efference copy has been violated, participants' internal models are 
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automatically recalibrated and compensatory responses are initiated in an 

attempt to offset the auditory feedback manipulations. 

Indeed, nonreflexive components (e.g., kinesthetic feedback, auditory 

feedback) are influential in achieving precise vocal control. Murbe et al. (2004) 

and Larson et al. (2008) have also demonstrated that kinesthesia substantially 

contributes to singers pitch control, but very early in responses (< 100 ms). After 

100 ms auditory feedback participates in F0 control (Larson et al., 2008). 

However, Munhall andcolleagues (2009) recently found that instructing 

participants to rely on the kinesthetic properties for F0 control was insufficient to 

suppress compensatory responding to formant frequency manipulations. If the 

participants in Munhall et al. (2009) were not musically trained then it may be that 

they were unable to utilize the kinesthetic feedback as efficiently as trained 

singers to suppress compensatory responses. 

Indeed, our results and those of others (Hain et al., 2000; Jones & 

Keough, 2008; Keough & Jones, 2009; Munhall et al., 2009; Zarate & Zatorre, 

2008) suggest that the processes involved in comparing the actual sensory 

consequences with the expected sensory consequences during vocalization is 

mainly dependent on auditory feedback. Singers' ability to ignore FAF (e.g., 

Zarate & Zatorre, 2008) may result from relying less on auditory feedback and 

more on supplementary feedback properties (e.g., kinesthetic) once a musical 

piece has been memorized (Finney & Palmer, 2003). Alternatively, a more likely 

explanation is that participants may utilize the information they receive following 

vocal onset differently to maintain a stable voice F0 as opposed to the information 
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they receive mid utterance (Hawco & Jones, 2009). Overall, it appears that vocal 

training may only be effective in suppressing compensatory responses to FAF in 

instances when the perturbations are presented mid utterance. 

Conclusion 

Results from the present study suggest that neither musically trained 

singers, or nonsingers could overtly suppress compensatory responses to 

gradual or large FAF manipulations. Sensorimotor adaptation was also observed 

during both ignore and compensate conditions, however singers' data suggested 

an increased reliance on an internal model for vocal control. Formal music 

training appears to be useful in suppressing compensatory responses only when 

the FAF is presented following vocal onset (e.g., 500-2500 ms) (Hain et al., 2000; 

Zarate & Zatorre, 2008). Whether participants could suppress sensorimotor 

adaptation during mid utterance FAF manipulations remains unknown. In sum, it 

appears that compensation and adaptation to FAF are automatic and are 

influenced little by 'conscious' control, providing the FAF manipulations coincide 

with vocal onset. 
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Figure Caption 

Figure 1 

Auditory feedback shifts for two phases in the experimental conditions (gradual 

or constant frequency-altered feedback; FAF). During baseline (trials 1-30), 

auditory feedback was not manipulated in pitch. During perturbation (FAF) trials, 

presented in gray, auditory feedback was manipulated from trial 31 (solid vertical 

line) to trial 80 (all FAF trials represented by the dashed line), (a) Auditory 

feedback was gradually manipulated downwards, in -2 cent increments across 

trials until auditory feedback was shifted by -100 cents (1 semitone), (b) Auditory 

feedback was shifted by a constant value (-100 cents) for all FAF trials. 

Figure 2 

Average fundamental frequency (F0) values across blocks (5 trials per block) of 

unaltered (baseline) and frequency-altered feedback (FAF) trials when 

participants were instructed to 'compensate' or 'ignore' changes in auditory 

feedback. F0 was calculated based on median value across the initial 1500 ms of 

vocal productions. Vertical dotted line indicates the commencement of FAF trials, 

(a) Nonsingers median 1500 ms data across blocks of unaltered and FAF trials, 

where auditory feedback was gradually (-2 cent increments across trials to -100 

cents) shifted in pitch. Black squares represent nonsingers F0 values when 

instructed to 'compensate' for FAF. Gray diamonds represent nonsingers F0 

values when instructed to 'ignore' the FAF. Standard error of the means are 

presented, (b) Singers median 1500 ms data across blocks of unaltered and FAF 

trials, where auditory feedback was gradually (-2 cent increments across trials to 
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-100 cents) shifted in pitch. Red squares represent singers F0 values when 

instructed to 'compensate' for FAF. Blue diamonds represent singers FQ values 

when instructed to 'ignore' the FAF. Standard error of the means are presented, 

(c) Nonsingers median 1500 ms data across blocks of unaltered and FAF trials, 

where auditory feedback was constantly shifted down by -100 cents. Black 

squares represent nonsingers F0 values when instructed to 'compensate' for 

FAF. Gray diamonds represent nonsingers F0 values when instructed to 'ignore' 

the FAF. Standard error of the means are presented, (d) Singers median 1500 

ms data across blocks of unaltered and FAF trials, where auditory feedback was 

constantly shifted down by -100 cents. Red squares represent singers F0 values 

when instructed to 'compensate' for FAF. Blue diamonds represent singers F0 

values when instructed to 'ignore' the FAF. Standard error of the means are 

presented. 

Figure 3 

Average fundamental frequency (F0) values across blocks (5 trials per block) of 

unaltered (baseline) and frequency-altered feedback (FAF) trials when 

participants were instructed to 'compensate' or 'ignore' changes in auditory 

feedback. F0 was calculated based on median value across the initial 50 ms of 

vocal productions. Vertical dotted line indicates the commencement of FAF trials, 

(a) Nonsingers median 50 ms data across blocks of unaltered and FAF trials, 

where auditory feedback was gradually (-2 cent increments across trials to -100 

cents) shifted in pitch. Black squares represent nonsingers Fo values when 

instructed to 'compensate' for FAF. Gray diamonds represent nonsingers F0 



Frequency-Altered Feedback 124 

values when instructed to 'ignore' the FAF. Standard error of the means are 

presented, (b) Singers median 50 ms data across blocks of unaltered and FAF 

trials, where auditory feedback was gradually (-2 cent increments across trials to 

-100 cents) shifted in pitch. Red squares represent singers F0 values when 

instructed to 'compensate' for FAF. Blue diamonds represent singers F0 values 

when instructed to 'ignore' the FAF. Standard error of the means are presented, 

(c) Nonsingers median 50 ms data across blocks of unaltered and FAF trials, 

where auditory feedback was constantly shifted down by -100 cents. Black 

squares represent nonsingers F0 values when instructed to 'compensate' for 

FAF. Gray diamonds represent nonsingers F0 values when instructed to 'ignore' 

the FAF. Standard error of the means are presented, (d) Singers median 50 ms 

data across blocks of unaltered and FAF trials, where auditory feedback was 

constantly shifted down by -100 cents. Red squares represent singers F0 values 

when instructed to 'compensate' for FAF. Blue diamonds represent singers F0 

values when instructed to 'ignore' the FAF. Standard error of the means are 

presented. 
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General Discussion 

The goal of this dissertation was to determine whether auditory feedback 

is important for the control of voice fundamental frequency (F0) while singing. 

Moreover, this research also addressed whether sensorimotor representations 

(internal models) regulate voice FQ while singing. The answer to both these 

questions is undeniably yes. In order to adequately address the role of musical 

aptitude on the use of auditory feedback for vocal control, we had musically 

trained singers and nonsingers serve as participants. Using the frequency-altered 

feedback (FAF) paradigm we presented singers and nonsingers with 

manipulated auditory feedback and observed compensatory responses and 

sensorimotor adaptation on vocal productions. 

Initially, I was interested in establishing whether participants would exhibit 

a similar pattern of responding to those observed in previous FAF studies 

examining speech production (Burnett et al., 1997, 1998; Burnett & Larson, 2002; 

Elman, 1981; Larson etal., 2001; Hainetal., 2000; Jones & Keough, 2008; 

Jones & Munhall, 2000, 2002, 2005; Zarate & Zatorre, 2005, 2008). However one 

goal of this dissertation was to extend the results to vocal control while singing. 

That is, if auditory feedback is important for the development and maintenance of 

the accurate control of voice Fo while speaking, is it also the case that auditory 

feedback is crucial for the control of voice F0 while singing? 

Using Frequency-Altered Feedback to Examine F0 Control While Singing 
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The majority of previous altered feedback studies examining speech 

production have found that participants will compensate for FAF by adjusting 

their F0 in the opposite direction of the manipulation (Burnett & Larson, 2002; 

Burnett et al., 1997, 1998; Jones & Munhall, 2000, 2002, 2005; Liu et al., 2007; 

Natke et al., 2003). This is also true regardless of whether the pitch 

manipulations coincided with vocal onset (e.g., Heinks-Maldonado et al., 2005; 

Jones & Keough, 2008, Jones & Munhall, 2000, 2002, 2005) or were presented 

during mid utterance (e.g., Burnett et al., 1997, 1998; Hawco & Jones, 2009; 

Larson et al., 2001; Zarate & Zatorre, 2008). Our initial study (Jones & Keough, 

2008) confirmed that both singers and nonsingers, like participants in speech 

production studies, compensated for FAF (-100 cents, 1 semitone) by modifying 

the pitch of their voice in the opposite direction of the manipulation. However, of 

particular interest was the degree to which participants compensated for the FAF 

when presented with an absolute target (a musical note), compared to when they 

are presented with a relative target, which was the case for a majority of studies 

examining speech production. 

When singers and nonsingers were presented with a semitone (100 cents) 

decrease in auditory feedback we observed near perfect levels of compensation 

(Jones & Keough, 2008). This is congruent with the results obtained by Burnett et 

al. (1997), who reported exemplary data for one trained singer who exhibited 

near perfect levels of compensation to FAF while a singing musical scale. 

Moreover, Natke and colleagues (2003) found that participants, who were not 

trained singers, compensated more during the singing condition (66 cents) than 
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during the speaking condition (47 cents). Conversely, these data are in contrast 

to those observed during speech production, where participants have not 

exhibited complete levels of compensation during F0 manipulations (e.g., Burnett 

et al., 1997; Donath et al., 2002; Larson, 1998; Larson et al., 2000; Natke et al., 

2003). Rather, the response magnitudes reported have ranged from 

approximately 15-65 cents with an average response magnitude of around half a 

semitone, or 50 cents. It should be noted that a main methodological difference 

between studies of speech production and singing are that the former typically 

presented random perturbations (compensation study) to participants while they 

produced a target without reference to a specific frequency. The latter had 

participants receive a series of FAF trials (adaptation study) while trying to sing 

musical notes. Thus, having participants produce a series of targets that have a 

specific frequency may contribute to the more complete levels of compensation 

observed. 

Aside from the compensatory magnitude differences, the results found in 

Jones and Keough (2008) also indicated that sensorimotor adaptation occurred 

on trials immediately following the removal of altered auditory feedback. 

Sensorimotor adaptation (aftereffects) has generally been observed following a 

series of perturbation trials when feedback suddenly and unexpectedly returns to 

normal (Ghahramani &Wolpert, 1997; Jones & Keough, 2008; Jones & Munhall, 

2000, 2005; Shadmehr & Moussavi, 2000; Shadmehr & Mussa-lvaldi, 1994). 

Interestingly though, sensorimotor adaptation was only observed in the data 

obtained from trained singers. Singers' FQ values during testing (on trials 
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following FAF) were higher than their baseline F0 values, whereas there were no 

differences observed in nonsingers' baseline and test data (Jones & Keough, 

2008). Additionally, aftereffects generalized to another target note that singers 

did not produce during training (with FAF). Consistent with speech, these data 

were taken to assume that an internal model regulates voice F0 while singing, 

which appears to be more entrenched in singers than in nonsingers. 

The Sensitivity of Internal Models to Subtle Changes in Auditory Feedback 

The prevailing hypothesis for the control of limb dynamics (Wolpert & 

Kawato, 1998), and the control of speech (Houde & Jordan, 1998; Guenther & 

Perkell, 2004; Jones & Munhall, 2000, 2005) and singing (Jones & Keough, 

2008) is that internal models regulate motor movements. As mentioned in the 

general introduction, internal models are thought to exist as neural maps of 

skilled movement that store the relationship between the motor commands, 

environment and sensory feedback responsible for their production (Desmurget 

& Grafton, 2000; Flanagan &Wing, 1993; Shadmehr & Mussa-lvaldi, 1994). 

Given that the results of Jones and Keough (2008) suggested an internal model 

corresponds to vocal control while singing, Chapter 1 was designed to assess 

the sensitivity of the mechanisms that modify internal representations in singers 

and nonsingers when presented with subtle changes in auditory feedback. Thus, 

we were interested in whether small, incremental changes in auditory feedback 

would have an effect on the control of voice F0 control while singing. 
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The results presented in Chapter 1 demonstrate that singers and 

nonsingers compensated (mean 1500 ms data) to a similar degree when 

presented with subtle pitch shift manipulations. This is not surprising given that 

Watts and colleagues (2003) found that untrained singers were equally as 

accurate at producing pitch targets as trained singers. However, one difference 

between the groups in Chapter 1 was that singers are immediately and 

consistently more accurate when they reproduced the target notes. Nonsingers 

data suggested that they, on average, employed a 'searching' technique, by 

consistently initiating vocal productions below the target frequency ('flat') and 

rapidly increased the pitch of their voice to match the note as accurately as 

possible. This strategy was observed whether they were presented with auditory 

feedback that was manipulated upwards or downwards. 

With respect to when participants initiated compensatory responses to 

FAF, singers' Fo values suggested this occurred when feedback was 

manipulated by +/- 6 cents (1.36 Hz) during both the shift up and down 

conditions. This value is consistent with Sundberg's (1987) finding that trained 

singers can correct for production errors with an accuracy of less than 1 Hz from 

an intended pitch target (A4, 440 Hz). On the other hand, nonsingers initiated 

compensatory responses at approximately 24 cents (5.47 Hz) during shifted up 

and down conditions. These data are consistent with the just-noticeable 

difference range found by Pape and Mooshammer (2006) of Fo contours for 

digitally synthetic stimuli. Moreover, nonsingers' values were very similar to the 

average threshold reported by Hafke (2008), who found that pitch shift changes 
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were not reliably identified when they were below 26 cents. However, Loui and 

colleagues (2008) found that control participants psychophysical thresholds of 

perception and production were around 2.0 and 2.5 Hz, respectively. Overall, this 

suggests that trained singers internal models are more sensitive to subtle 

changes in auditory feedback and they are capable of initiating compensatory 

responses to overcome very small errors in vocal production. 

Sensorimotor Adaptation is Observable Within 50 ms of Vocal Onset 

As outlined in the general introduction and in the results of Jones and 

Keough (2008), sensorimotor adaptation has been typically observed following a 

series of FAF trials, where vocal productions err in the direction of compensation. 

However, the results of Chapter 1 did not indicate that aftereffects occurred in 

singers' mean F0 values (across 1500 ms of vocal production) following FAF. 

Indeed, the lack of aftereffects was quite unexpected. Essentially, we were 

uncertain whether adaptation had occurred at all during the study. For instance, it 

may have been the case that participants simply initiated vocal productions at 

similar frequencies and compensated online for the FAF. As a result, we decided 

to examine participants F0 values within 50 ms of vocal onset in order to 

determine how participants initiated F0 responses while singing with FAF. It was 

thought that music training may have resulted in an increased ability for singers 

to establish vocal fold position prior to producing sound than nonsingers (Watts 

et al., 2003). In fact, previous studies have found that trained singers are more 

accurate at prephonatory tuning, or positioning the laryngeal structures prior to 
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vocal onset, than nonsingers (Leonard & Ringel, 1979; Murry, 1990). Thus, 

trained singers should produce a steady and presumably a more accurate F0 

immediately from vocal onset than nonsingers. Moreover, if their internal models 

were recalibrated as the FAF gradually became higher or lower then we may 

correspondingly observe changes in successive vocal productions or, in other 

words, sensorimotor adaptation. Indeed, no study to date had found evidence to 

suggest the recalibration of an internal model that was observable within 50 ms 

of motor production. 

Indeed, results from Chapter 1 showed that singers incorporate the 

discrepancy between perception and production by starting subsequent 

utterances during FAF trials where they ended on the previous production. 

Therefore, singers continually adjusted their internal models as the FAF 

manipulations became larger and smaller across trials. Alternatively, nonsingers 

appeared to search for the target note by initiating vocal productions at 

frequencies below the auditory target (0 cents) and increased their F0 until they 

matched the note. Although nonsingers slightly adjusted their starting point, we 

did not find consistent evidence to suggest that sensorimotor adaptation occurred 

during FAF trials. 

Multiple Internal Models for Vocal Control 

Based on the findings presented in Chapter 1, it was believed that singers' 

internal models are more sensitive to subtle changes in auditory feedback, which 

was evident in their ability to compensate for subtle pitch shift manipulations. 
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This eventually led to the idea for Chapter 2 that multiple internal models may 

exist for vocal control. Recent evidence from the motor control of arm reaching 

supported this hypothesis (Donchin et al. 2003; Kalenscher et al. 2003; Osu et al. 

2004; Wada et al. 2003; Wainscott et al. 2005; Wolpert and Kawato 1998). When 

applied to singing it was thought that trained singers should be able to modify 

internal representations that are specific to a particular target note. In order to 

assess this we presented singers with a sequence of three target notes, but they 

were only required to reproduce them one at a time when prompted by a 

contextual cue (the target note). A contextual cue was previously shown to be 

crucial in participants ability to acquire and switch between multiple internal 

models for arm reaching movements (Osu et al. 2004; Wada et al. 2003; 

Wainscott et al. 2005). This was mainly because of the tremendous difficulty 

often associated with learning to produce specific movements while using a 

manipulandum (robotic arm). For example, Karniel and Mussa-lvaldi (2002) did 

not find evidence to suggest that participants could acquire and switch between 

internal models for two alternating viscous force fields, even after participants 

performed these movements in 4 sessions over 4 days. In the current study, the 

target notes served as a cue to inform what pitch to sing, similar to how colour 

was used to inform participants which manipulation they would experience on a 

given trial. 

The results presented in Chapter 2 demonstrated how vocal control 

appears to be represented by multiple internal models. Results also suggested 

that singers' acoustic-motor mappings are capable of independent sensorimotor 
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recalibration that was observable within 50 ms of vocal onset. Of particular 

interest was the fact that aftereffects were target specific and did not generalize 

to other notes during the presentation of FAF. On the other hand, during test 

trials, following the conclusion of FAF, when feedback was suddenly returned to 

normal aftereffects were observed (in the 50 ms data) for the unaltered target. 

Transferred aftereffects (generalization) to a target that was not subjected to 

modified feedback has been observed in previous FAF (Jones & Keough 2008; 

Jones & Munhall 2005) and arm reaching investigations (Ghahramani et al. 1996; 

Shadmehr & Mussa-lvaldi 1994). In Chapter 2 and other work (Jones & Keough 

2008; Jones & Munhall 2005) pitch-shift manipulations were gradually presented 

during FAF. When feedback returned to normal, participants heard their F01 

semitone different than it was on the previous trial. Thus, the single-trial 

aftereffects observed in the median 50 ms F0 data during the test trials for the 

unaltered pitch target may have been the result of the sudden and large changes 

in auditory feedback following training. 

A unique aspect of studying voice FQ while singing is that is not necessary 

(or actually possible) to require participants to initiate motor commands from a 

consistent starting point (a particular pitch). In the case of arm reaching studies, 

participants have been required to initiate movements from a fixed location 

(Imamizu & Kawato 2008; Krakauer et al. 1999; Osu et al. 2004; Wada et al. 

2003). This has permitted the examination of feed-forward internal models within 

250 ms of movement initiation (e.g., Wainscott et al., 2005), which has been 

argued to be a period of time where motor commands (trajectories) are little 
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influenced by closed-loop control or 'online' feedback. However, the data from 

Chapters 1 and 2 indicated that sensorimotor adaptation during a singing task 

could be observed within 50 ms of vocal onset. An advantage of this analysis 

was that it could account for the lack of aftereffects in participants' average 

productions (1500 ms data) during testing. We found that singers initiated vocal 

productions during test trials as if they were anticipating FAF and when they 

identified that their feedback was returned to normal they rapidly adjusted the 

pitch of their voice to levels indistinguishable from baseline. 

Previous research has demonstrated that if the contextual information is 

ambiguous or not present at all and if the multiple environments are difficult to 

discriminate (Brashers-Krug and Shadmehr 1996; Gandolfo et al. 1996; Karniel 

and Mussa-lvaldi 2002; Krakauer et al. 1999; Tong et al. 2002), then acquiring or 

switching between multiple internal representations is difficult (Wada et al. 2003). 

Following Experiment 1 in Chapter 2 we were uncertain whether singers were 

relying on the cue to modify their vocal productions or whether they were relying 

on the predictability of pitch shift sequences. Therefore, we removed the cue by 

having singers reproduce one target, which was present on each trial, while they 

received the same pitch shift manipulations as in Experiment 1. Eliminating the 

reliance on a contextual cue resulted in a similar pattern of compensatory 

responding as was observed in Experiment 1, however trial-by-trial adaptation 

was also found that was limited to the unaltered target note in the sequence. 

In sum, the pattern of sensorimotor recalibration found in Chapter 2 seems 

to suggest that producing multiple target notes while singing requires participants 
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to employ unique motor commands to maintain accurate pitch control. The data 

indicated that trained singers consistently produced vocal pitch near the desired 

target frequencies, even in the presence of FAF. Overall, sensorimotor 

adaptation appears to be automatic, it is observable within 50 ms of vocal onset 

during training, and is uniquely linked with the motor commands for specific 

musical targets. 

Ignoring Frequency-Altered Feedback: The Role of Task Instructions 

In Jones and Keough (2008), it was argued that when trained singers 

detect large incongruities between perception and production they rely more on 

their internal model to produce the target. This implies that they may be capable 

of ignoring the error detected in auditory feedback and can rely on alternative 

mechanisms of their internal models to maintain accurate F0 control. Indeed, this 

raises an interesting question about singers' internal models. For instance, were 

the early compensatory responses observed to subtle shifts in auditory feedback 

(Chapters 1 & 2) a result of singers attributing the perceived error to something 

internal (themselves), whereas the reduced compensation to large pitch 

manipulations (Jones & Keough, 2008) resulted from singers attributing the error 

to something external (experimenter)? Indeed, Kluzik and colleagues (2008) 

suggested that the brain may rely on the size of the error to determine how to 

assign 'blame' for the resulting discrepancy between the expected and actual 

sensory feedback. An alternative explanation may be that cognitive awareness of 

the altered feedback influenced singers' performance. 
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Related to these points are the results obtained by Zarate and Zatorre 

(2008). The authors had singers and nonsingers sing a musical scale while 

instructing them to either compensate or ignore the FAF. Zarate and Zatorre 

(2008) found that singers could almost completely ignore FAF, that is, not 

compensate when instructed to do so. On the other hand, nonsingers were 

unable to ignore the feedback as their F0 responses indicated partial 

compensation. These findings suggest that singers' internal models may be 

under volitional control, whereas compensation is automatic in musically 

untrained participants. These data were consistent with Finney and Palmer's 

(2003) study examining the role of auditory feedback of musical performance in 

trained pianists. They found that completely removing pianist's auditory feedback 

while reciting well-rehearsed pieces from memory did not influence the quality of 

their performance, relative to when feedback was provided (Finney & Palmer, 

2003). In regards to singing, the participants in Zarate and Zatorre (2008) 

received FAF between 1000-1500 ms following vocal onset. It is possible that 

similar mechanisms are used to monitor auditory feedback when perturbations 

occur at either mid utterance or at vocal onset and if this is the case then singers 

should be able to ignore FAF regardless of when it is presented. For example 

there is evidence to suggest that compensatory responses are similar regardless 

of whether vocal perturbations occur during mid utterance or are presented just 

prior to vocal onset (Larson et al., 2001). Larson and colleagues (2001) used 

pitch-shifted auditory feedback manipulations in two timing conditions to 

investigate whether the internal reference used to guide vocal is fixed or variable. 
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The pitch shift manipulation during the onset condition was unexpectedly turned 

on shortly following vocal onset and remained on throughout the remainder of the 

vocal production. The pitch shift manipulation during the OFF condition was 

present at vocal onset and was unexpectedly turned off and remained off during 

the vocalization. In both instances the manipulations occurred between 500-2500 

ms following vocal onset. Thus, participants either heard their voice randomly 

shifted by 25, 100, or 200 cents during this time frame or suddenly heard their 

voice return to normal from the aforementioned shift values. 

Larson and colleagues (2001) noted similar compensatory levels when 

participants initiated vocal productions with modified auditory feedback that was 

randomly removed during the vocal production or when they heard their feedback 

unexpectedly shifted during the utterance. The authors argued that in the 

absence of an absolute external reference that participants rely on an internal 

variable reference (Larson et al., 2001). Interestingly, when Hawco and Jones 

(2009) had participants produce an absolute target while auditory feedback was 

perturbed during mid utterance and they also observed similar compensatory 

responses, suggesting that producing a stable voice F0 is based on the current, 

pre-manipulated F0 value. Thus, it has been argued that in speech production the 

goal of the compensatory response is to overcome unintentional changes in 

voice F0 during vocal production (Hawco & Jones, 2009). Alternatively, 

presenting participants with an absolute reference on each trial while 

manipulating auditory feedback prior to vocal onset was shown to elicit larger 

compensatory responses than shifting voice F0 during mid utterance (Hawco & 
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Jones, 2009). This suggests that different mechanisms may be used to monitor 

auditory feedback at vocal onset than during mid utterance. 

The idea that different systems may monitor auditory feedback may 

account for trained singers ability to largely suppress compensatory responding 

when pitch manipulations occurred between 1000-1500 ms following vocal onset 

in Zarate and Zatorre (2008). One possibility is that singers' internal models 

detected a violation between the efference copy and the actual sensory 

feedback. Recall that internal models are hypothesized to compare sensory 

feedback with motor acts by means of a comparator examining differences 

between perception and production. These differences are believed to be 

computed based on a corollary discharge, such that the output of an internal 

model maps the motor commands (e.g., efference copy) with the expected 

sensory feedback from the actions. When a match exists between perception 

and production the result is a net cancellation of the sensory input, which in turn 

causes a dampened sensory experience. Conversely, when there is a 

discrepancy between the perception and production of a motor act there is no 

corollary discharge to cancel the sensory feedback. As a consequence, there is 

an intensification of the sensory experience that potentially alerts us to 

environmental events (Heinks-Maldonado et al., 2005). 

Unfortunately, explaining the results of Zarate and Zatorre (2008) in terms 

of an efference copy violation is not ideal, as the evidence suggests an efference 

copy violation is related to errors detected at vocal onset (Curio et al., 2000, 

Houde et al., 2002; Heinks-Maldonado et al., 2005, 2006). However, when mid 
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utterance perturbations were presented to participants in Hawco et al. (2009) a 

mismatch negativity (MMN) was found, rather than an N100. The differences in 

perturbation onset between Heinks-Maldonado et al. (2005) and Hawco and 

colleagues (2009) indicated that auditory feedback during both instances may be 

monitored by different underlying mechanisms. Indeed, a more likely explanation 

is that singers in Zarate and Zatorre (2008) attempted to maintain a stable F0 by 

relying on alternative components (e.g., muscle memory, kinesthetic feedback) of 

their internal model to suppress compensatory responding, whereas nonsingers 

continually use auditory feedback to maintain their voice F0. This is consistent 

with the idea that internal models for the control of voice F0 while singing are 

more entrenched in singers than nonsingers, which was previously addressed in 

Jones and Keough (2008) and in Chapters 1 and 2 of this dissertation. 

Chapter 3 was designed to investigate whether singers and nonsingers 

are capable of voluntarily suppressing compensatory responses and 

sensorimotor adaptation to FAF when presented with gradual (-2 cent increments 

down to -100 cents) and constant (-100 cents) manipulations coinciding with 

vocal onset. Results indicated that singers and nonsingers were unable to 

suppress compensatory responding when presented with gradual or constant 

pitch manipulations. That is, the pattern of compensatory responding obtained 

when participants were asked to 'compensate' for FAF was indistinguishable 

from that observed when they were asked to 'ignore' FAF. Additionally, 

participants' median 50 ms F0 values suggested that the level of sensorimotor 
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adaptation that occurred during the ignore condition was similar to the adaptation 

observed during the compensation condition. 

The finding that compensatory responding is not easily suppressed by 

instructions to ignore feedback is consistent with previous studies using FAF 

(Hain et al., 2000), formant frequency manipulations (Munhall et al., 2009), and 

masking noise (Pick et al., 1989). Indeed, a recent study by Munhall and 

colleagues (2009), found that participants rapidly compensated for formant 

frequency manipulations when they were instructed to ignore the modified 

feedback. They also observed aftereffects when the manipulations were 

removed. Munhall and colleagues (2009) argued that compensatory responses 

to vowel modifications are not intentional strategic responses to the detection of 

auditory feedback manipulations. This is also congruent with the findings from 

the data in Chapter 3; whether participants were given explicit knowledge of the 

modified feedback does not seem to influence the pattern of responding during 

altered feedback trials. Moreover, it is possible that compensatory responses to 

modified feedback coinciding with vocal onset are related to the violation of an 

efference copy. Thus, once the efference copy has been violated, or an error has 

been detected, participants' internal models are automatically recalibrated and 

compensatory responses are initiated in an attempt to offset the auditory 

feedback manipulations, regardless of whether they were 'consciously' aware of 

the FAF. Conversely, presenting the pitch manipulations so they occur later into 

vocal production (1000-1500 ms in Zarate & Zatorre, 2008) may result in the 
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singer's ability to use the pre-shifted F0 as a reference to guide the current 

production and suppress compensatory responding. 

Recap and Future Directions on the Role of Auditory Feedback for Vocal Control 

The primary goal of this dissertation was to address the importance of 

auditory feedback on the internal representations for F0 control while singing. The 

data presented in this dissertation demonstrated that both singers and 

nonsingers use auditory feedback in the development and maintenance of 

internal models for vocal control. It was also shown that participants' internal 

models, like those for speech production, were capable of being recalibrated in 

the presence of very small (2 cent incremental shifts) or large (100 cent) changes 

in auditory feedback. An interesting result in Chapters 1 and 2 was that 

generalization was not observed in participants mean vocal productions following 

FAF trials. Indeed, a hallmark of internal models is that learning can be 

generalized to additional movements other than the one acquired through 

training. Recall that in Jones and Keough (2008) we found aftereffects that 

generalized to another note that singers did not produce with altered feedback. 

Moreover, generalization persisted across all blocks of test trials following FAF in 

trained singers. The lack of aftereffects following training with FAF led us to 

examine productions early after vocal onset (within 50 ms). This alternative 

assessment of sensorimotor adaptation allowed us to not only determine that the 

recalibration of internal models could be observed online during FAF trials 

(Chapter 1), but that adaptation to multiple internal models could be observed 

(Chapter 2). 
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Lastly, Chapter 3 identified that sensorimotor adaptation and 

compensation is automatic and occurs even when participants are consciously 

aware of the manipulation. Chapter 3 also demonstrated that musical training 

does not seem to influence responding to FAF, providing the perturbations 

coincide with vocal onset. Alternatively, if the modified feedback occurs during 

mid utterance then musical training appears to assist trained singers in the ability 

to suppress compensatory responses (Zarate & Zatorre, 2008). It may be the 

case that training for some singers' focuses on the kinesthetic feedback 

associated with musical sounds. Indeed, this would be particularly useful in the 

event that auditory feedback becomes reduced, as in singing in a choir. It should 

be noted that nonreflexive components (e.g., kinesthetic feedback) aside from 

auditory feedback have been shown to be influential in achieving precise vocal 

control. Murbe et al. (2004) and Larson et al. (2008) have also demonstrated that 

kinesthesia substantially contributes to singers pitch control, but very early in 

responses (< 100 ms). After 100 ms auditory feedback participates in F0 control 

(Larson et al., 2008). On the other hand, an interesting result presented by 

Munhall and colleagues (2009) was that instructing participants to rely on the 

kinesthetic properties for F0 control was insufficient to suppress compensatory 

responding to formant frequency manipulations. However, if the participants in 

Munhall et al. (2009) were not musically trained then it may be that they were 

unable to utilize the kinesthetic feedback to suppress compensatory responses. 

Moreover, given that we have argued nonsingers rely heavily on auditory 

feedback and that Munhall et al. (2009) did not eliminate it during their study, it is 
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likely that when auditory feedback is present nonsingers will use it to regulate the 

pitch of their voice over other sources of feedback. 

Based on the research I have conducted thus far some questions come to 

mind that bare consideration for future research. For instance, at what point does 

the brain assign the error received during the gradual presentation of FAF to 

something external? It is thought that compensation to small pitch modifications 

could be attributable to oneself, however as the manipulations increase/decrease 

is there a point that participants' internal models assign the error to the 

experimenter? It is believed that a component of an internal model is dedicated 

for the detection of error and once it has been detected compensatory responses 

are elicited. Indeed, whether one is speaking or singing may also influence when 

compensatory responses are initiated. In English speech an individual's F0 is a 

relative pitch target. Thus, it would be expected that the internal reference in 

speech may be less sensitive to perturbations than internal representations for 

singing. This may account for Natke and colleagues (2003) result that singing 

elicited greater compensatory responding that speech. I believe addressing the 

similarities and differences between speech and singing will identify how the 

brain monitors auditory feedback during each task respectively. It seems that 

during speech the goal is to maintain a stable voice F0 around a relative 

frequency, whereas in singing the goal is to match a specific pitch target that may 

result in greater compensation. 

I am also interested in investigating the time course of internal model 

acquisition in typically developing children. To put this in context, recall that a 
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hallmark of internal models is that generalization can transfer to additional 

movements other than the one acquired through training. Moreover, it seems that 

musical training can have an influence on vocal control while singing (Zarate & 

Zatorre, 2008). Interestingly, formal music training has been shown to have 

positive effects ('transfer') on other aspects of children's development, such as 

intelligence quotient (1Q), mathematic, verbal, and spatial abilities (Forgeard, 

Winner, Norton, & Schlaug, 2008; Rauscheret al., 1997; Schellenberg, 2004; 

Vaughn, 2000, but see Hyde et al., 2009). More recently, formal music training 

has also been found to influence cortical plasticity at a young age during 

development (Hyde et al.; Moreno et al., 2009), with the benefits of training still 

evident in adulthood (Wong et al., 2007). Hyde et al. (2009) and Moreno et al. 

(2009) were the first to examine structural brain and behavioural changes during 

development following long-term music training. Both studies found no 

differences between children prior to the commencement of the experiment. 

Thus, it was argued that any performance increase found in musically trained 

children compared to controls was due to training. Although the contribution of a 

genetic predisposition cannot be ruled out completely, the findings do support the 

view that the brain differences and enhanced behavioural abilities (e.g., reading 

and pitch discrimination in speech) found in these studies and adults is due to 

intensive music training (Hyde et al.; Moreno et al.; Wong et al., 2007). 

Indeed, a question arising from these findings is the contribution of 

genetics (predisposition) and nurture on music ability and neural plasticity. 

Moreno et al. (2009) found that musical training led to an increase in reading and 
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pitch discrimination abilities in speech. However, what is surprising about the 

results of Moreno et al. (2009) was that participants only had 6 months of musical 

training. Moreover, genetic differences were ruled out because the authors did 

not find statistical differences between the musical and painting groups prior to 

training. Also, the parents of the children filled out questionnaires to confirm that 

none had formal music or painting training. It was argued that the enhanced ERP 

components corresponding to reading and pitch discrimination abilities in speech 

occurred as a result of music training. Thus, the developmental benefits from 

music training extend to reading, highlighting that a short period of training is 

sufficient to demonstrate neural plasticity on the functional organization of 

children's brains. 

On the other hand, it is important to note that no improvements were 

observed for performance IQ, for WISC indexes (POI & VCI), and for verbal 

memory in the Moreno et al. study (2009). It is possible though that general 

maturational and development effects in children could account for the lack of 

differences. Although transfer advantages with music training have been shown, 

not all studies have found congruous results. For example, Hyde et al. (2009) 

used functional magnetic resonance imaging (fMRI) to measure structural brain 

changes in the developing brain following long-term (15 months) music training. 

Following 15 months of music training children did not show increased 

performance in visual-spatial and verbal transfer domain outcomes over those 

children who did not receive formal lessons (Hyde et al., 2009). 
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Despite this result, Hyde and colleagues (2009) were the first group to 

examine brain and behavioural changes during development prior to and after 

long-term music training. Interestingly, at baseline there were no structural brain 

differences found between participants in the instrumental group and those in the 

control group. At the conclusion of training, structural changes were observed in 

motor and auditory areas associated with music training that was correlated with 

improvements on motor and auditory-musical tests (Hyde et al., 2009). The 

results of Hyde et al. (2009) and Moreno et al. (2009) cannot completely rule out 

whether those children in the music training condition had a genetic 

predisposition for musicality or not. However, their data suggests that structural 

brain differences following training were due to music training. The reason for the 

lack of transfer effects reported in Hyde et al. (2009) may be a result of the 

experience the children received during the control condition. Control participants 

were subjected to weekly 40 min group music classes at school, which consisted 

of singing and playing percussion and bells (Hyde et al., 2009). Arguably, this 

brief and consistent exposure to music may account for the lack of differences 

exhibited on 'other' non-musical tasks following the 15-month period. 

Alternatively, the children in Hyde et al. (2009) were between the ages of 5-7 

years whereas those in the Moreno et al. were 8 years of age. Thus, one cannot 

rule out age as a potential factor influencing transfer effects during development. 

This could be assessed in future studies examining long-term music training. 

Overall, the evidence seems to suggest that music training does indeed have 
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positive effects that generalize to positively influence other cognitive aspects 

during development. 

The importance of investigating internal representations during 

development in children may help to identify whether positive transfer effects 

occur within a window corresponding to internal model acquisition. For instance, 

no transfer was observed in children 5-7 years of age (Hyde et al., 2009), 

whereas children 8 years old did profit from music training (Moreno et al., 2009). 

Overall, determining when internal models are acquired and when transfer 

effects occur could be particularly relevant for developmental researchers; in that 

children having difficulty with reading and mathematics, for example, might 

benefit from music training. Indeed, music is ubiquitous across every known 

culture, regardless of technological sophistication. Given the strong enculturation 

of music (Hannon & Trainor, 2007), it seems reasonable to assume that children 

would enjoy learning to make music and if the positive transfer effects assist the 

majority of those in training then it could be of valuable assistance to programs 

designed to improve developmental deficits. 

Conclusion 

We have shown that whether we manipulate auditory feedback in large 

increments or gradually, whether it is for a single music note or multiple notes, or 

whether it is the instructions associated with the task (ignore or compensate), 

mthe result is a change in the sensorimotor representations (internal models) 

underlying voice F0 control while singing. One goal has been to demonstrate the 



Frequency-Altered Feedback 151 

plasticity of the nervous system by examining how changes in singers and 

nonsingers auditory feedback can alter target specific internal representations. 

Indeed, producing multiple target notes while singing was shown to require 

participants to employ unique motor commands for each target. We have also 

argued that although the human voice has the potential to be initiated at 

unpredictable frequencies during onset, trained singers consistently produced 

vocal pitch at frequencies near the desired target, even in the presence of FAF. 

Overall, it appears that compensation and adaptation to FAF are automatic and 

are influenced little by 'conscious' control, and are uniquely associated with the 

motor commands for specific musical targets. 
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