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Decision Modeling and Empirical Analysis of Mobile Financial Services 

 

Jun Liu 

 

Abstract 

The past twenty years have been a time of many new technological developments, 

changing business practices, and interesting innovations in the financial information 

system (IS) and technology landscape. As the financial services industry has been un-

dergoing the digital transformation, the emergence of mobile financial services has 

been changing the way that customers pay for goods and services purchases and in-

teract with financial institutions. This dissertation seeks to understand the evolution of 

the mobile payments technology ecosystem and how firms make mobile payments 

investment decisions under uncertainty, as well as examines the influence of mobile 

banking on customer behavior and financial decision-making. 

Essay 1 examines recent changes in the payment sector by extending the research 

on technology ecosystems and paths of influence analysis for how mobile payments 

technology innovations arise and evolve. Three simple building blocks, technology 

components, technology-based services, and the technology-supported infrastructures, 

provide foundations for the related digital businesses. I focus on two key elements: (1) 

modeling the impacts of competition and cooperation on different forms of innova-

tions in the aforementioned building blocks; and (2) representing the role that regula-

tory forces play in driving or delaying innovation. I retrospectively analyze the past 



 
 

 
 

two decades of innovations in the mobile payments space, and identify the industry-

specific patterns of innovation that have occurred, suggesting how they have been 

affected by competition, cooperation and regulation.  

Innovations involving IT provide potentially valuable investment opportunities 

for industry and government organizations. Significant uncertainties are associated 

with decision-making for IT investment though. Essay 2 investigates a firm’s mobile 

payment technology investment decision-making when it faces significant technolog-

ical risks and market uncertainties. I propose a new option-based stochastic valuation 

modeling approach for mobile payment technology investment under uncertainty. I 

analyze a mobile payment system infrastructure investment on the part of a start-up, 

and report on several sensitivity analyses and the use of least-squares Monte Carlo 

valuation to demonstrate some useful management findings.  

Essay 3 examines the impact of the mobile channel on customer services demand 

across banking digital channels, and investigates how the use of the mobile channel 

influences customer financial decision-making. My findings suggest that the use of 

the mobile channel increases customer demand for digital services. The mobile phone 

channel serves as a complement to the PC channel, and the tablet channel substitutes 

for the PC channel, and the mobile phone channel and the tablet channel are comple-

mentary. In addition, my analysis indicates that customers acquire more information 

for financial decision-making following the use of the mobile channel. Compared to 

the PC-only users, mobile phone and tablet users are less likely to incur overdraft and 

credit card penalty fees. This study has implications for banks’ managers related to 

the design and management of service delivery channels. 
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1  Introduction 

The history of the financial services industry has witnessed several waves of in-

novations for products and services delivery that have changed the ways customers 

interact with financial institutions. Advances in information communication and tech-

nology (ICT) have played an important role in initiating, driving and shaping these 

innovations (Hatzakis et al. 2010). As smartphones and tablets have been widely 

adopted and mobile apps have come into ubiquitous use, mobile devices have increas-

ingly become new tools that consumers use for banking, payments, budgeting, and 

shopping. Mobile financial services include mobile banking that allows customers to 

obtain financial account information and conduct transactions with their financial in-

stitutions, and mobile payments (m-payments) that allow consumers to make pay-

ments, transfer money, or pay for goods and services. According to the survey con-

ducted by Federal Reserve Board (2015) in 2014 in the U.S., 33% of all mobile phone 

owners have used mobile banking, while 17% have made an m-payment.  

Since the 1950s and 1960s, the automation of banking products and processes by 

computers and through networks has led to improvements in the efficiency and effec-

tiveness of financial intermediation-related activities in the economy (Montgomery 

2012). Although the use of mobile financial services has increased rapidly in the past 

years, innovations in mobile payments are relatively invisible to consumers and in-

dustry practitioners. After 2011, companies and partnerships such as Square, Softcard, 

Google, PayPal, and Apple expanded their efforts to create and bring m-payments 

service innovations, built upon near-field communication (NFC) contactless chips, 

cloud servers and third party apps, to the marketplace.  
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Investments in m-payments technology innovations have offered high potential 

benefits (Etherington 2013), but significant uncertainties have also been associated 

with m-payments investment decisions (Liu et al. 2015b). The investments involve 

intensive network development that will take a long time to implement and achieve 

network effects. In addition, various cross-industry stakeholders with distinct organi-

zational backgrounds, operational models, IT capabilities, and business goals will 

employ different investment strategies. Furthermore, there is no clear regulatory di-

rection, ownership of the customer relationship, and technology standard for m-

payments yet, nor an effective revenue-sharing model (Kauffman et al. 2015b). These 

uncertainties make decision-making under uncertainty (Dixit and Pindyck 1994) a 

useful theoretical perspective for evaluating a firm’s flexibility to choose an appropri-

ate time to invest, as decision-relevant information arrives and uncertainties are re-

solved over time. 

Before the 1970s, customers experienced the branch network of a bank as a single 

touchpoint. But after the successful adoption and diffusion of automatic teller ma-

chines (ATM) and Internet banking in the 1990s and 2000s, customers became used 

to interacting with banks’ self-service channels at lower transaction costs for their 

everyday financial service needs. The adoption of self-service channels has reduced 

banks’ costs, reallocated demand for services across multiple channels, and increased 

customer profitability and loyalty (Xue et al. 2011). In the 2010s, major banks 

launched mobile banking channels, providing several kinds of competitive advantage, 

such as better security, easier access, various apps for smartphones and tablets, and 
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location-based services. Customers have started to take advantage of the multi-

channel approach but the multiple channels of the banks are acting independently. 

Financial institutions are attracted to the omni-channel strategy and are moving to 

embrace mobile channels for transaction migration, online interactivity, and payment 

solutions, so customers experience banking services as a unified whole with a com-

plete set of services, instead of a single channel with limited services capabilities 

within a bank (Broeders and Khanna 2015). Meanwhile, large banks are scaling back 

their physical channels by shrinking their branch and ATM networks and shifting to 

digital channels. For example, in the two years to 2015, Bank of America steadily 

closed about 10% of its branches and reduced about 2% of its non-bank-located 

ATMs (Egan 2015). Despite the advanced functionalities provided by mobile banking 

services, the customer’s most common use of the mobile channel has been to check 

their account balance and recent activities, and to transfer money between their own 

accounts (Federal Reserve Board 2015). One of main reasons people decided not to 

use a mobile channel was that their financial needs were largely met by existing self-

service channels (e.g., ATM and Internet banking) and full-service channels (e.g., 

branches and call centers). The limited size of most mobile phone screens has also 

restricted the usefulness of the mobile channel (Ghose et al. 2013, Kim et al. 2011). 

This dissertation contains three essays that examine the impact of mobile financial 

services innovations on firm’s technology investment decision-making and customer 

behavior in omni-channel banking services. 

Essay 1 examines recent changes in the payment sector in financial services, spe-

cifically related to m-payments that enable new channels for consumer payments for 
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goods and services purchases, and other forms of economic exchange. I extend the 

technology ecosystems and paths of influence analysis for how industry-centered 

technology innovations arise and evolve. I explore the extent to which the m-payment 

innovations can be understood through the lens of several simple building blocks, in-

cluding technology components, technology-based services, and the technology-

supported infrastructures that provide foundations for the related digital businesses. I 

focus on two key elements: (1) modeling the impacts of competition and cooperation 

on different forms of innovations in the aforementioned building blocks; and (2) rep-

resenting the role that regulatory forces play in driving or delaying innovation in the 

larger scope of my modeling approach. I retrospectively analyze the past two decades 

of innovations in the m-payments space. The results identify industry-specific pat-

terns of innovation that have occurred, and suggest how m-payments innovations 

have been affected by competition, cooperation and regulation. 

Essay 2 proposes a new option-based stochastic valuation modeling approach for 

m-payments technology investment under uncertainty that incorporates a mean rever-

sion process to capture cost and benefit flow variations over time. I analyzed the in-

frastructure investment of the Square mobile payment system on the part of a start-up. 

The analysis supported the evaluation of m-payments technology investment under 

uncertainty, and I was able to offer some illustrations about the kinds of managerial 

insights that can be obtained. I also report on several extensions that demonstrate how 

the creation of useful management findings can be supplemented with project value 

sensitivity analysis and simulation-based least-squares Monte Carlo valuation. The 

findings are useful to assess the investment timing of m-payments technology.  
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Essay 3 examines the relationship among the mobile phone, tablet and PC bank-

ing services channels, and assesses how the use of the mobile channel influences cus-

tomer financial decision-making. I acquired access to a large-scale dataset of custom-

er-level transactions from a financial institution in the U.S. for this study. My findings 

suggest that the use of the mobile channel increases customer demand for digital ser-

vices. The mobile phone channel serves as a complement to the PC channel, and the 

tablet channel substitutes for the PC channel, and the mobile phone channel and the 

tablet channel are complementary. So banks can understand the customer channel us-

age pattern, and target the customer segments that are more active and profitable. In 

addition, my results indicate that customers acquire more information for financial 

decision-making following the use of the mobile channel. Compared to the PC-only 

users, mobile phone and tablet users are less likely to incur overdraft and credit card 

penalty fees. This essay provides insights for bank managers related to the design and 

management of service delivery channels. 

The remainder of this dissertation is laid out as follows. Chapter 2 proposes the 

concept of a financial IS and technology ecosystem to examine recent changes in the 

payments sector. Chapter 3 develops a stochastic decision-making model of IT in-

vestment value under uncertainty, and presents my analysis of an m-payments sector 

case. Chapter 4 presents my empirical analysis of the impact of the mobile channel in 

omni-channel banking services. Chapter 5 concludes the dissertation and discusses 

limitations and future research. 
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2  Understanding the Evolution of the Mobile Payments Technology 

Ecosystem 

2.1  Introduction  

The past twenty years from 1994 to 2014 have been a period of high innovation in 

the development of payments technologies and solutions. The first big wave of inno-

vations emerged when Microsoft attempted to acquire Intuit to enter the Internet 

banking sector in 1994 (Fisher 1994). There was an intense period of experimentation 

that occurred in parallel with Microsoft’s and other firms’ investigation of electronic 

bill payment and presentment, and these things supported the growth of industry-wide 

interest in online payments. The subsequent rise of the online payment services pro-

vider, PayPal, and the emergence of online brokers further stimulated the growth of 

non-cash payments. The growth of money market funds and other investment vehi-

cles in the shadow banking system – non-bank financial intermediaries that do not 

operate subject to the regulations of depository institutions – along with other prob-

lems with asset-backed securities, derivatives and ineffective accounting practices 

contributed to the financial crash in 2008 and the subsequent global financial crisis. 

After the market downturn years of 2008–2011, companies such as Square, Softcard, 

Google, PayPal, and Apple Pay expanded their efforts to create and bring m-

payments technology and service innovations to the marketplace.  

A formal definition of an m-payment is any payment in which some kind of a mo-

bile device is used to initiate, authorize and confirm an exchange of financial value in 

return for goods and services (Karnouskos 2004). Conceptually, an m-payment is a 
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new form of value transfer, similar to other payment instruments that consumers can 

use, but that relies more on the advanced features of mobile devices and the tokeniza-

tion of a consumer’s financial credentials (Pandy and Crowe 2014).  

This study analyzes the evolution of mobile payments technology innovations in 

the past two decades with respect to technological changes, market competition and 

cooperation, and government regulation.1 Financial services professionals and ana-

lysts have had a difficult time to predict the arrival of new technological develop-

ments, estimate the extent of their impacts, and forecast their future status. Hence, 

there continues to be a strong need to understand how highly impactful technology-

based financial innovations were initiated and developed, and then evolved over time. 

I address two fundamental research questions. What are the major forces that drive 

the evolution of technology-based innovations, such as mobile payments, in financial 

services? What are the roles played by market competition, cooperation, and regula-

tion in shaping the observed paths of evolution and the changing pace of technologi-

cal transitions?  

To answer these questions, I propose a financial IS and technology ecosystem ap-

proach that extends Adomavicius et al.’s (2008a) technology ecosystem paths of in-

fluence model. I consider the issues that financial services decision-makers and ana-

lysts face, as they think through what will drive the major changes in the technology 

ecosystem in the financial IS and technology landscape. I categorize innovations in 

three levels: the technology component level, the technology-based service level, and 

                                                
1 Two earlier articles in the present research stream were published in Electronic Commerce Research 
and Applications (Liu et al. 2015b) and Technological Forecasting and Social Change (Kauffman et al. 
2015a). Earlier versions were presented at the 2013 Innovation for Financial Services Conference in 
Singapore and the 2014 Pacific Asia Conference on Information Systems in Chengdu, China.  
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the technology-supported business infrastructure level.2 The technology ecosystem 

perspective only considers technology supply-side forces for innovations though. In 

this research, I offer an extended view that incorporates market-side competition, co-

operation and regulation among a range of stakeholders in financial services as im-

portant forces that jointly shape the evolution of technology innovations.  

I incorporate the effects of competition, cooperation, and regulation as a means to 

explore technology evolution in the payments sector. This sector has a highly regulat-

ed yet competitive marketplace with extensive interactions among the innovators, 

adopters, and regulators. To understand the recent developments in services, the in-

fluence of related technology innovations, and the resulting structural changes in the 

payments industry, it is important to analyze the historical changes in the payments 

technology ecosystem.  

I will argue that market competition, cooperation, and regulation act as key accel-

erators or decelerators of industry changes, while new m-payments innovation has the 

potential to transform it. Some accelerators include the adoption of co-opetition strat-

egy by key stakeholders for business infrastructure innovation, new capabilities that 

arise from innovations in technology components, the outcome of differentiation 

strategies for new technology services innovations, and the emergence of new strate-

gic thinking from high-tech firms that become financial institutions themselves. On 

the other hand, the decelerators arise from the defensive behavior of existing firms in 

the market, the increased complexity and uncertainty when multiple firms offer dif-

                                                
2 Adomavicius et al. (2007, 2008a, 2008b) constructed three key building blocks, including compo-
nents, products and applications, and infrastructures, and focused on the general IT landscape rather 
than the financial services sector, as is done here. I adapt their approach to emphasize the services in-
novation perspective instead of the product innovation perspective.  
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ferent technology solutions in the absence of regulatory guidance and technology 

standards, and a lack of understanding by investors who fund new and potentially 

high-risk ventures as to how technologies will evolve. These are likely to lead to 

market entry deterrence to prevent innovators from participating, and damage due to 

fierce competition that can impair the health of the payments sector in the financial 

services industry.  

The ecosystem view recognizes multiple factors affecting the evolution of mobile 

payments technology innovations, and identifies several patterns behind the process 

by which one core technology for payment services seems to replace another over 

time. I connect technology evolution thinking to financial innovations, and propose a 

new perspective to master the complex relationship between them in the evolutionary 

process of technology-based financial innovation. The application of my extended 

analysis approach to m-payments technology evolution contributes to research in the 

domain of electronic and mobile payments. Unlike prior research, I focus on pay-

ments innovations from an evolutionary perspective, rather than a technical or a man-

agerial perspective (Karnouskos et al. 2008). I collected data on key events that have 

occurred during the past two decades in the payments industry. I coded them, ana-

lyzed the underlying forces that drove their occurrence, and identified their evolution-

ary patterns. The results validate the need to consider market forces, in addition to 

technology forces (Zmud 1984).  
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2.2  Theoretical Background 

This study draws upon several streams of research on technology innovation and 

financial services, technology ecosystems and paths of influence, and market compe-

tition, cooperation, and regulation.  

2.2.1  Technology Innovation and Financial Services  

There is a rich literature on technology innovation, including Kondratiev’s (1925) 

innovation waves, Schumpeter’s (1939) S-curve innovation cycles, Drucker’s (2007) 

seven sources of innovation, and Rogers’ (2010) diffusion of innovation. However, 

relatively little work has focused on categorizing different innovations and studying 

their interactions. Zmud (1982) first characterized the differences between new prod-

uct and service innovations and process innovations. Robey (1986) then differentiated 

among three types of organizational innovations: new product or service innovations, 

administrative innovations, and technical innovations. Swanson (1994) proposed a tri-

core model for IS innovations: innovations confined to the IS task; innovations sup-

porting administration of the business; and innovations embedded in the core tech-

nology of the business. Lyytinen and Rose (2003) further considered base IT innova-

tions, service innovations and system development innovations. Though these studies 

primarily offer an organizational instead of evolutionary view of innovations, they 

can be used as a basis for us to classify technology innovations at different levels.  

Innovation in financial services has been recognized as an engine of economic 

growth, generating market gains for the innovators and adopters (Tufano 1989), im-

proving welfare for society (Frame and White 2004), and leading to revolutionary 
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changes in the structure of the financial market and institutions (Merton 1995). On the 

other hand, financial services innovations can be a double-edged sword – they have a 

veiled relationship with catastrophic events and financial crisis (Diaz-Rainey and 

Ibikunle 2012, Thakor 2012). Most studies on technology-based financial innovations 

have focused on their diffusion paths, the characteristics of adopters, and the conse-

quences of innovations for firm profitability, social welfare and economic perfor-

mance (Kavesh et al. 1978, Merton 1992b, Miller 1986). The literature rarely has 

concentrated on understanding the origins of innovations and how they evolve though 

(Lerner and Tufano 2011). My work attempts to fill this research gap by analyzing 

past innovations and prospectively assessing future innovations, where there are op-

portunities for firms to take advantage of investment and market opportunities.  

2.2.2  Technology Ecosystem and Paths of Influence  

How technologies evolve is an important research topic. Prior work suggests that 

technology evolution is a process of continual improvement in the performance of a 

technology through novel recombination and synthesis of existing technologies (Hen-

derson and Clark 1990, Foster 1986). Sood et al. (2012) showed that technologies 

evolve along step functions with multiple crosses as the capabilities emerge, and there 

are huge spikes in performance after periods of long dormancy (Tellis 2008). I adopt 

path dependence (David 2007, Arthur 1994) and new growth (Romer 1994) thinking 

to understand the dynamic process of financial IS and technology evolution. The evo-

lution of technology innovations can take various paths within a technology ecosys-

tem, so understanding technological changes requires an integrated view of the con-

tinuous path that the change process traces over time (Boland et al. 2003).  
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Motivated by the lack of depth of insight available from Gartner’s hype cycle per-

spective (Fenn et al. 2000), Adomavicius et al. (2007) first proposed a technology 

ecosystem view to represent temporal development of innovations associated with dif-

ferent clusters of technologies. They defined an IT ecosystem as a subset of ITs in the 

technology landscape that are interrelated to one another in a specific context of use 

(Adomavicius et al. 2008b). An ecosystem represents three distinct groups of tech-

nologies with specific technology roles: components, products and applications, and 

infrastructures. Driven by technological changes, innovations happen in different 

technology roles, resulting in cross-level effects – paths of influence (Adomavicius et 

al. 2008a). Adomavicius et al. (2012) validated the existence of cross-level effects 

and identified several patterns of technology relationships in the context of data on 

wireless networking, using econometric forecasts of the technology changes.  

2.2.3  Firm Strategy and Market Regulation  

The impact of market competition on technology innovation remains controver-

sial among researchers (Sood et al. 2012). Does competition spur and speed up inno-

vation, or does it block and slow down its evolution? Some positive effects have been 

identified in the literature. Given that technological innovations are critical for the 

survival and success of firms (Anderson et al. 2006, Banker et al. 1993), and that a 

firm’s returns from innovation at the margin are significantly larger in an oligopolistic 

than a monopolistic market (Fellner 1961, Scherer 1967), large firms tend to devote a 

massive amount of time, equipment, money and personnel to technology innovation. 

Competitive pressure encourages new innovations and improvements in products and 

services. In addition, competitive necessity (Goh and Kauffman 2013) and compul-
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sive sequences involving known and observed patterns of problem-solving that lead, 

step-by-step, to innovations (Rosenberg 1969) encourage firms to fully realize the 

benefits from innovations and trigger further breakthroughs that enhance their value. 

Furthermore, the strategic entry of firms that aim to pre-empt the market and the co-

opetition strategy emphasizing cooperative alliances among rival firms will also spur 

the discovery of new opportunities and capabilities, as well as promote faster progress 

with technological change and service improvement (Brandenberger and Nalebuff 

1996, Teece 1992).  

Negative effects of competition have been documented too. Several competitive 

strategies will likely result in the deceleration of the development of technology inno-

vations, and increase uncertainty related to technology investments (Dixit and 

Pindyck 1994, Mason and Weeds 2010). Examples include: an incumbent’s defensive 

strategy in response to the innovations brought by new market entrants (Katz and 

Shapiro 1987); the emergence of multiple technology solutions and standards that in-

crease the market uncertainty (Kauffman and Li 2005); and cooperative defense and 

resistance when innovations generate new technical problems causing potential risks 

or change the market’s competitive status quo (Ferrier et al. 1999). In addition, the 

leading firms in the industry often possess a large amount of resources, which put 

them at an advantage for being successful with innovations. This often allows them to 

continue to grow and dominate the next generation of technology platforms, and has 

resulted in monopolistic market power that tends to deflect and de-power the efforts 

and incentives of other innovators (Arrow 1962). However, a lot of real-world exam-

ples demonstrate that wealthy firms are not always able to maintain leadership, and 
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sometimes they are even unable to survive the next generation of innovation (Tellis 

2008). For example, leadership in the mobile phone market moved from Motorola, 

Blackberry and Nokia to Google, Apple and Samsung.  

Regulation regarding competition policy, pricing, market entry, natural monopoly 

and public utilities also plays an important role in shaping technology and innovation 

evolution (Blind 2012, Stewart 2010). The impact of regulation on innovation and 

competitiveness in the market has attracted considerable research interest. Swann 

(2005) investigated a number of British companies and showed that regulation can 

either nourish or obstruct innovation activities. Prior studies also found a negative 

correlation between the intensity of product market regulations and the intensity of 

R&D expenditures in some countries (Bassanini and Ernst 2002). Stricter regulations 

seem to have had a negative influence on services innovation in certain industry 

(Prieger 2002). In the financial services sector, financial institutions are closely con-

nected to consumer welfare, so regulators are extremely cautious about how disrup-

tive technological innovations may change the market (Dewatripont and Tirole 1994). 

Silber (1983) analyzed financial innovations and showed that about 30% were in-

duced by regulation. Going forward though, regulators may find it more and more 

difficult to keep up with the pace of technological innovation and market changes. 

When they do get a handle on it, it is likely that they will have lagged effects to slow 

down the pace of technology evolution and innovation (Stigler 1971). In some key 

sectors, regulators often caution market participants that technology innovations 

might create hidden dangers, or send misleading signals about the health of the mar-

ket. Warren (2008) indicated that the inflexibility of financial regulations could hin-
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der truly beneficial innovations. On the other hand, when regulation supports a tech-

nology standard in some way, or provides a roadmap for a specific technology inno-

vation, market uncertainty will be diminished and its development will be accelerated. 

2.3  Financial IS and Technology Ecosystem  

I next introduce the technology ecosystem approach for analyzing the paths of in-

fluence for mobile payments technology evolution, and integrate it with the extended 

competition and regulatory analysis.  

2.3.1  Modeling Concepts  

Technology ecosystem. The technology ecosystem model proposed by Ado-

mavicius et al. (2008a) emphasizes the nature of technology change and evolution in 

the underlying technologies themselves, a supple-side perspective. An ecosystem con-

sists of a population of interrelated technologies with specific roles and overlapping 

hierarchies. These things represent a complex system of determinants for the evolu-

tionary outcomes that are commonly observed in technology product and service set-

tings. Rapid technology innovation and the uncertain outcomes associated with com-

petition contribute to the difficulty of predicting future technology evolution.  

Context of use. Following the concept of a technology ecosystem and consider-

ing the unique features of financial services, the idea of a financial IS and technology 

ecosystem ought to be considered. It includes a set of interdependent financial IS and 

technologies that work together in the operation and production of a specific financial 

service. To define such a financial IS and technology ecosystem requires the identifi-

cation of a relevant set of technologies within a specific context of use though. For 
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example, since I am interested in analyzing electronic payments solutions to deliver 

electronic funds transfer (EFT) services to customers, the related EFT technology 

ecosystem will then include technologies such as telecommunications, cyber security, 

credit cards, electronic banking kiosks, and so on.  

Financial IS and technology innovation at three levels. Technology innovation 

will happen at three levels within a financial IS and technology ecosystem: the com-

ponent level, the service level, and the business infrastructure level. Table 2.1 sum-

marizes the definitions, descriptions and examples for such innovations at each level.  

The difference between component and service innovations is that the former acts 

as a sub-unit or sub-system of the latter. Innovators recombine or integrate existing 

component innovations, or modules involving multiple components, into service in-

novations to address customers’ needs. For example, credit cards originally were an 

innovation at the service level for many EFT services vendors. Credit cards also con-

sist of a set of component innovations though, including: the magnetic stripe; Eu-

ropay, MasterCard and VISA (EMV) chips; and connectivity with an automated 

clearing house (ACH) for transactions. As such, identifying the context of use and 

defining the scope of the financial IS and technology ecosystem should be an im-

portant first step.  

The distinction between business infrastructure innovation and component inno-

vation is that business infrastructure innovation creates the basis but is not necessary 

for the provision of services to customers. For example, market-wide value-at-risk 

(VAR)-based risk management tracking systems, which enable firms and regulators 

to oversee trading activity risks effectively, are must-have infrastructure capabilities, 
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and one can hardly imagine any firm in the market operating without them today. 

Other examples of technology-supported business infrastructures in the EFT ecosys-

tem include short message services (SMS) and email capabilities. They are not opera-

tionally necessary for electronic bill payments (EBP) and card-holder-initiated trans-

actions, though they may be helpful for communication between customers and fi-

nancial services providers for mutual informedness and account security.   

Table 2.1. Three Levels of Financial IS and Technology Innovation  
INNOVATION 

LEVELS  DEFINITIONS DESCRIPTIONS EXAMPLES  

Component  

Technology innovations 
that create the most basic 
building blocks of finan-
cial services. 

Technology innovations at 
this level are necessary for 
financial services to be of-
fered and to perform their 
functions in ways that create a 
service focus and customer 
centricity. 

The Internet, ATMs, and credit 
cards innovations in the EFT 
context. The Square “dongle” 
that makes it possible to use a 
mobile phone for credit and debit 
card transactions. 

Service  

Technology innovations 
that directly interact with 
customers, and provide 
access to a spectrum of 
financial services. 

Technology innovations at 
this level include a focal 
technology innovation and 
competing technology innova-
tions that may directly com-
pete in the delivery of finan-
cial services. 

Focal innovation: electronic bill 
payments (EBP) in online bank-
ing. Competing innovations: wire 
transfers, cardholder-initiated 
transactions, third-party money 
transfers, and electronic checks. 

Business  
Infrastructure  

Technology innovations 
that add value to the 
functionality or perfor-
mance of financial ser-
vices, and create a prod-
uct or service delivery 
platform.  

Technology innovations at 
this level create a basis for 
services provision, extend 
functionalities and provide 
other value-added capabilities 
and services to customers. 

Short message services (SMS) 
and email capabilities for EFT. 
Electronic communication net-
works (ECNs) for electronic 
trading. Value-at-risk (VAR) 
metrics tracking systems for 
financial risk management.  

Note: Even if various technology innovations (e.g., a PIN, a security token, a computer chip, etc.) seem to be at 
the component level for online banking, only certain innovations may be necessary in the EFT context (the Inter-
net, ATMs, credit cards, etc.). 

Paths of influence. Paths of influence are used to represent the impact of tech-

nology-based financial innovations across different levels in a financial IS and tech-

nology ecosystem. Technology innovation that happens at any level can affect the 

subsequent innovations across the other levels. For example, the success of the global 

adoption of smartphones and mobile apps has helped to drive the development of 

mobile financial services innovations, such as mobile banking, mobile payments, and 
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peer-to-peer money transfers. This illustrates how a technology innovation at the 

component level – from feature phones to smartphones – can influence the develop-

ment of new services technology innovations at other levels.  

I will use C, S, and I to represent the present state of technology innovation at the 

component level, service level, and business infrastructure level. An asterisk (*) rep-

resents the future state of a technology innovation. In this way, I can analyze interde-

pendencies among technology innovations over time, address the complexity of their 

relationships, and identify trends with how technology innovations evolve.  

2.3.2  Impacts of Competition, Cooperation, and Regulation  

A financial services ecosystem is affected by multiple factors related to technolo-

gy, market, society, and institutions (Hekkert et al. 2007, Markard and Truffer 2008). 

As a result, modeling technology-driven paths of influence alone is insufficient to tell 

the full story. Including the impact of firm strategy and market regulation on technol-

ogy innovation, a set of new artifacts that affect the technological changes is defined: 

competitive forces that are spurring or stalling innovations, and regulatory forces that 

are driving or delaying innovations. These forces often result in changes in both ob-

servable and unobservable facets of value from innovations, including profit, social 

welfare, expenses, beneficial network effects, and goodwill (Au and Kauffman 2008).  

Innovation-spurring competition. Innovation-spurring competition influences 

the evolution of innovations in multiple ways. In an oligopolistic market, a number of 

competing firms invest in R&D, resulting in faster technology innovations and ser-

vice performance improvement. A leading firm’s efforts with innovation may create a 

basis for further breakthroughs in the related areas or facilitate faster and wider adop-
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tion of the innovation. Competition will encourage firms to pursue preemption or co-

opetition strategies, creating new opportunities and capabilities in some important 

aspects of financial services.  

Innovation-stalling competition. Innovation-stalling competition demonstrates 

the negative side of competition. To maintain market power and leadership, an estab-

lished incumbent firm may employ a defensive strategy to prevent others from adopt-

ing, accessing or making use of a specific technological innovation, slowing down or 

even blocking the evolution of the innovation. With a differentiation strategy, com-

peting firms tend to invest in different technology solutions, resulting in the appear-

ance of multiple similar innovations in the market at almost the same time. Though 

differentiation increases new product and service variety, the lack of a recognized 

standard creates uncertainty and limits mass adoption of a specific innovation. In ad-

dition, high competitive pressures sometimes give firms an incentive to push imma-

ture technologies into the market, increasing the possibility of innovation failure and 

market risks. These all will negatively affect the adoption and diffusion of a truly val-

uable innovation.  

Regulation-driven innovation. Regulation-driven innovation occurs when regu-

lators set rules to ensure that firms achieve minimum revenues, and reduce their risks 

and compliance costs. They may try to motivate firms to enhance their productivity, 

avoid imitation and achieve innovation. Regulators may also wish to liberalize and 

privatize markets that have been dominated by public organizations. Hence, they may 

make decisions that unintentionally support the adoption of a specific kind of tech-

nology innovation, which potentially will result in the emergence of a future technol-
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ogy standard and lead to technology evolution (Blind 2012). These are likely to be 

by-products of working with industry leaders, so new services in an area of technolo-

gy innovation become more valuable. Regulators are unlikely to consciously favor 

one technology over another, though it may be the case that they block some technol-

ogy innovations from diffusing because they are viewed as being potentially damag-

ing, or actually have damaged competitiveness, or amplified the risk associated with 

operating in a specific area of the market.  

Regulation-delayed innovation. Regulation-delayed innovation occurs when the 

actions of regulators restrict cooperation between companies for R&D, and thus dis-

courage innovation activities. Market entry regulations also put up barriers for inno-

vators to enter a specific market. In addition, regulators’ actions may change the con-

ditions in the marketplace, on purpose or unintentionally, so it becomes unattractive 

for firms to adopt or use specific technological innovations (Aghion et al. 2005, Blind 

2012). These post hoc regulatory restrictions lower the impetus for technological pro-

gress (Averch and Johnson 1962), limit innovation in financial services, and slow 

their implementation. Typically, the purpose of regulation is not to directly interfere 

with innovations and delay their development. Instead, it is to mitigate potential nega-

tive effects associated with disruptive technology innovation, and to ensure security, 

stability, efficiency, and fairness in the related marketplace.  

2.4  Paths of Influence for Mobile Payments Technology 

M-payments are widely viewed as the next revolution in payments to support 

store-based bricks-and-mortar selling. Huge potential benefits are associated with 

successful adoption for firms that are able to get the technology innovation right 
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(Etherington 2013). The investment and adoption decision-making for m-payments 

technologies involves significant uncertainties though. These consist of technological 

risks, changing consumer demand and expectations, competition in the marketplace, 

and ill-defined technology standards (Kauffman et al. 2013). Various technology so-

lutions will emerge when industrial standards are not provided, generating uncertainty 

for potential adopters. In addition, the m-payments technology ecosystem demon-

strates complexity in its structure, spanning multiple sectors, including banking, pay-

ments, telecoms and retailing. Its success thus also depends on the efficacy of collab-

oration among stakeholders in multiple related industries across the underlying inno-

vation network. Such collaboration is typically very hard. All these contribute to the 

difficulty of m-payments investment and adoption decision- making. As a result, it is 

critically important for senior managers to understand the patterns of technological 

changes and the paths of innovation development. It will help them estimate the sus-

tainability of certain innovations, and what is likely to be the future state of the m-

payments market, and eventually to make the right investment decisions. I will next 

analyze the paths of influence for the m-payments technology ecosystem.  

2.4.1  The M-Payments Technology Ecosystem 

I first offer an overview of current mobile payments services and define the m-

payments technology ecosystem. Figure 2.1 shows the generalized near field commu-

nication (NFC)-enabled m-payments technology platform that represents the most 

recent business model innovations, such as Softcard, Google Wallet, and Apple Pay 

(Contini et al. 2011).  
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Figure 2.1. The NFC-Enabled M-Payments Technology Platform 

 

In this business model, each sector takes on different responsibilities. Mobile 

network operators (MNOs) and mobile device manufacturers equip the smartphones 

with a Secure Element (SE) and an NFC chip for safe memory and execution opera-

tions. Banks control the payment terminals and issue specialized credit, debit or pre-

paid cards. Merchants install new NFC-enabled point-of-sale (POS) terminals. And 

trusted service managers (TSMs) and gateway services providers transmit, process, 

and secure the transactions and provide additional services to merchants and consum-

ers (de Reuver et al. 2015).  

M-payments satisfy customers’ cashless payment service demand, relying on the 

prevalence of mobile phones and the tokenization scheme. The tokenization of cus-

tomers’ payments credentials significantly reduces the risk of and impact from data 

breaches, so customers are better protected from fraud and other kinds of disruptions. 

There is a new regime for risk management that is possible with mobile payments, 

and an extension to the instantaneous credit provision capabilities of the standard 
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credit card for merchants and customers through new devices. The digitalization of 

m-payments process, reduced financial risks and lower transaction costs will also 

support peer-to-peer payments among individuals, as the sharing economy expands.  

Understanding the scope of the participants and the business process will help us 

to know what technology innovations are likely to influence the development of m-

payment services, and how they will fit into my extended paths of influence model. 

Following the four steps offered by Adomavicius et al. (2007), I identify the related 

technology innovations occurring at three levels in the m-payments technology eco-

system. Step 1 involves the identification of the focal innovation and context of use. 

Step 2 covers the identification of competing service innovations. Step 3 is for the 

identification of technology innovations at the component level. And finally Step 4 is 

for the identification of technology innovations at the business infrastructure level. 

Figure 2.2 illustrates the interrelationships among technology innovations at three 

levels – component, service, and business infrastructure – for m-payments. It serves 

as a basis for interpreting how the market has developed and how it will further 

evolve.  

2.4.2  Paths of Influence Analysis for the M-Payments Technology Ecosystem  

I next offer a first step toward an explanation of the technology evolution process 

in the m-payments ecosystem, by discussing my methods in greater detail. I collected 

information on when m-payments-related technology innovations occurred. My se-

cond step was to understand how competition and regulation add to our understanding 

of the evolutionary patterns, which I will explain shortly.  

  



 

24 
  

Figure 2.2. The Relationships among Mobile Payments Technology Innovations 

 

Qualitative analysis method. Since the first m-payment service emerged in the 

late 1990s, a number of significant technological changes have occurred in the m-

payments technology ecosystem. The development process has involved many differ-

ent related technology innovations that occurred at the component, service, and busi-

ness infrastructure levels. Hence, the ecosystem is an ideal setting to illustrate the na-

ture of the changes that have occurred in the related financial IS and technologies. 

Also, the payments marketplace with intense competition, cooperation, and regulation 

among stakeholders, is ideal for me to map the analysis to the new constructs.  

Given the complex structure of the m-payments ecosystem and limited sources of 

quantitative data, I adopted a qualitative analysis approach (Miles and Huberman 

1994, Sarker et al. 2013, Strauss and Corbin 1998), following guidelines described by 

Hevner et al. (2004). I collected data involving m-payments technology-related events 

over eighteen years between 1997 and 2014. I used news and industry announcements, 

government reports and surveys, publicly-available historical documents, Internet 
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search tools, and also interviews with industry practitioners. In total, I tracked innova-

tions on approximately twenty related technologies in the m-payments technology 

ecosystem. The changes in m-payment technology and the associated events are re-

ported in Appendix A, which are organized in chronological sequence. I applied the 

procedure for identifying an ecosystem, as described earlier, for different points in the 

timeline that my data cover. The coding and analysis procedure is similar to what is 

described in Kauffman et al. (2015a).  

Paths of influence and patterns of evolution. I coded the events occurring in the 

evolution of m-payments technology at the component, service, and business infra-

structure levels, and identified different patterns of technological change based on the 

paths of influence across different levels. I adopted a state transition diagram to visu-

alize the paths of influence over time and to depict patterns in the ecosystem’s devel-

opment trajectory. (See Figure 2.3) Technology evolution involves entrepreneurs and 

organizations that contribute to the path-dependent nature of the process, which 

makes it seem random.  

The arrows in Figure 2.3 represent the paths of influence that reflect changes in 

the three kinds of innovations across fourteen time periods. The collection of arrows 

in each period represents the various evolutionary patterns of m-payments technology. 

M-payments technology evolution started with the introduction of SMS-enabled m-

payments in 1997; and it exhibits five different patterns that are summarized in Table 

2.2. I noted the similarities to the patterns presented by Adomavicius et al. (2008a).  

Most of the recent innovations in the m-payments ecosystem have started with 

new components and services that allowed for more advanced performance and new
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Figure 2.3. M-Payments Technology State Transition Diagram, 1997-2014  
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functionality. For example, the vendors of various mobile wallets (Google Wallet, 

Apple Pay, and Softcard) now offer services that permit swiping a mobile phone to 

make a payment. They are also providing the ability to collect detailed data about 

where consumers are transacting and what they are buying – as well as more infor-

mation about where they are, and how they are moving. This information can be ana-

lyzed to understand and predict consumers’ purchase behavior. It also allows mer-

chants to send real-time targeted advertisements and perform location-based services 

(LBS), by taking advantage of existing components (the global positioning and accel-

erometer components of smartphones, cloud servers and storage, and high-speed mo-

bile networks) and business infrastructures (mobile banking, location-based systems) 

(Groenfeldt 2014, Liu et al. 2013).  

2.4.3  The Effects of Competition, Cooperation, and Regulation  

Some of the patterns that I have observed are a by-product of competition and co-

operation that have occurred among the different stakeholders in the m-payments 

ecosystem. I previously noted that, among the drivers of changes in the financial IS 

and technology ecosystem, innovation-spurring and innovation-stalling competitive 

forces played an important role in the observed developments.  

When the first two SMS payments-enabled Coca Cola vending machines were in-

stalled in Finland in 1997 (Montgomery 2012), few people were truly aware of the 

capabilities of mobile devices to initiate, authorize and confirm the exchange of fi-

nancial value in return for goods and services supplied. By 2001 though, the introduc-

tion of 3G mobile networks enhanced their connectivity and capability for data 

transmission among mobile phones, and the competition for the central roles in the 
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mobile marketplace had begun. The component-based innovations of the early 2000s 

were stimulated by competition among mobile market participants, and created a 

strong push-forward force for m-payments-related technology innovations. Since that 

time, the collaboration and cooperation strategies have come to characterize much of 

the additional development of the market, especially when firms such as Google, 

MasterCard, Citibank, First Data Corporation and Sprint from different industry sec-

tors worked together to create Google Wallet. Their cooperation accelerated the de-

velopment of NFC-enabled m-payments technology solutions, resulting in a service 

and infrastructure alignment pattern that I have observed in our sketch of m-payments 

technology evolution in its ecosystem (Aspan and Saba 2011).  

Table 2.2. Evolutionary Patterns for the M-Payments Technology Ecosystem  

NAME PATTERN DEFINITIONS AND COMMENTS EVENTS  

1. Services  
development  

 

All of the technology innovations observed 
are clustered at the component and service 
levels; technologies at component and 
service levels are refined and gain greater 
attention over time. 

Emergence of m-payments and 
mobile banking; continuous 
developments of new m-
payments services; the further 
adoption of smartphones. 

2. Service and 
infrastructure 
alignment 

 

The observed innovations occur at the 
levels of service and business infrastruc-
ture. 

Innovation-spurring competition 
by PayPal, Google Wallet and 
Apple; eBay’s acquisition of 
PayPal. 

3. Feed-forward 

 

Involves innovations so that new services 
become possible in the presence of a new 
component innovation, or a new infrastruc-
ture innovation that is desirable to have 
because of already-developed components 
and services 

Introduction of 3G networks, 
cloud computing and Square; 
the wide adoption of Internet 
and mobile banking 

4. Feed-back 

 

Involves new services motivated by the 
development of a new business infrastruc-
ture that enables it, or a new component 
that will be possible due to development of 
business infrastructure and services 

Introduction of NFC standards, 
smartphones, and smartphones 
that support NFC as new com-
ponents and business infrastruc-
tures 

5. Incremental 

 

New component innovations support sub-
sequent component innovations; new ser-
vices beget subsequent service innova-
tions; and for business infrastructures  

Development of 4G networks 
and the NFC platform; carrier-
backed m-payments emerged; 
launch of Apple Pay, and iPh-
one 6 and iPhone 6 Plus 
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Complementary and countervailing forces. I now shift gears to do a richer as-

sessment of how some of the other events that are present in the timeline of the evolu-

tion of m-payments technologies played out, when there is evidence of the concomi-

tant effects of regulation. Sometimes financial IS and technology providers benefit 

when they are able to anticipate regulatory actions to minimize the risks, so it is pos-

sible for them to harmonize their actions to push forward the adoption and diffusion 

of an innovation. Otherwise, they may encounter countervailing forces from the mar-

ket or the regulators. This represents a setting in which competition spurs innovation 

while regulation drives or delays it – in other words, in settings where there are com-

plementary or countervailing forces at work to some degree. I recognize that it may 

be difficult to identify the exact extent to which each force is at work, but it neverthe-

less is possible to identify the outcomes associated with their co-occurrence.  

When there are active vendors whose interests align with the regulators’ interest 

on new technology-based services, this will increase the likelihood of the success of 

technology innovation and help to push its evolution forward faster. Elements of this 

kind of behavior on the part of market participants can be observed with the success 

of M-Pesa in Kenya and other countries in East Africa, and the transformation of the 

consumer payments process there (Graebner 2014). A large segment of the population 

in these countries has long been unbanked, and generally under-served by financial 

services organizations, which have struggled to achieve profitability in markets with 

low-income consumers (Deloitte 2012). The success of M-Pesa since 2007 has been 

due to its close collaboration with the Central Bank of Kenya, which provided its ex-

pertise to help M-Pesa’s management to mitigate key systemic risks and offered it 
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room to innovate rather freely (Bishko and Chan 2013). Collaboration between the 

national central banks and mobile financial services entrepreneurs in that region also 

facilitated a valuable and direct dialogue (Nyaga 2014).  

More recently, the dialogue has emphasized the negative impacts of M-Pesa’s 

near-monopoly power though, such that the regulators are now interested in shaking 

up the financial network infrastructure of the economy, by permitting the entry of 

new mobile virtual network operators (MVNOs), such as Finserve Africa, Mobile 

Pay, and Zioncell Kenya (Heinrich 2014). This process aids in identifying the inap-

propriate aspects of the highly-concentrated network operational and financial risks 

related to financial technology innovations for payments (The Economist 2013).  

Digital convergence, competition and innovation. When large and powerful In-

ternet firms have turned their attention to the payments marketplace – the traditional 

territory of large financial institutions, the competition, risk, and market uncertainties 

have all been affected. Changes in competition driven by digital convergence (Yoffie 

1997) involve a somewhat different impetus for innovation. Instead of having existing 

market participants to develop new innovations, other players – start-ups, technology 

firms, telecoms and Internet giants – have entered the m-payments marketplace be-

cause the expected returns for successful firms there are so high (Ernst and Young 

2014).  

Examples of digital convergence are occurring all around us. Accenture (2012) 

has pointed to instances of digital convergence, such as Square and iZettle, which 

have been expanding the capability of mobile phones as POS checkout devices to 

support consumer purchases. Despite the new technologies, the payments scheme is 
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still similar in its underlying operations, since banks dominate the payment authoriza-

tion, clearing and settlement processes. However, there is now greater transparency in 

the payments process, new segments of payments services for under-banked and un-

banked customers are being served, and new ways to accomplish risk management 

now become possible. The digital convergence process exhibits that next generation 

technologies seem to be inheriting somewhat amplified characteristics that were ac-

quired during the prior generation.  

Fragmented markets and uncertain standards. In other settings where there is 

a more fragmented market, for example, characterized by the lack of an accepted 

technology standard, or conflicting strategic objectives across different business net-

works, there may be innovation-stalling competition, as well as regulation-driven ef-

fects. Regulations, in some cases, pave the way for the market to understand how the 

emergence of innovations may proceed.  

The history of m-payments, based on my empirical observations, suggests that 

almost all of the initiatives in the 2000s failed. After 2011, the m-payments standard 

competition between online independent payment service providers, such as PayPal 

and Alipay, and the new technology platforms, such as Google Wallet and Softcard 

(Arthur 2014), as well as more recent developments around Apple Pay (CardNot-

Present.com 2014), created uncertainties for stakeholders’ adoption decisions and 

network formation (Zalubowski 2014). This slowed down the pace of m-payments 

services innovations, as market leadership was still a major issue that needs to be 

sorted out. In 2012, a U.S. Senate (2012) hearing was convened to assess the devel-
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opment of a framework for mobile payments and identify the major roadblocks for m-

payments infrastructure and services development.  

Financial stability, risk management and government regulation. Government 

agencies that deal with the market for financial services also have considered the sta-

bility and risks of current banking and payment systems in light of competition 

around technological innovations (World Bank 2012). Some have noted that m-

payments innovations may be detrimental to the operation of well-functioning finan-

cial services in an economy (Khiaonarong 2014), and that they also may cause severe 

security issues (Dobos 2013, ISACA 2011). For the most part though, the purpose of 

regulation is not to interfere with innovation-spurring competition in the m-payments 

arena, but instead to facilitate a more successful payments regime, maintain financial 

stability, monitor the risks, and build an efficient payment process.  

In January 2010, the Federal Reserve Banks of Atlanta and Boston convened a set 

of key players in the U.S. mobile payments ecosystem to create the Mobile Payments 

Industry Workgroup (MPIW). The purpose was to identify the barriers, potential risks 

and opportunities for the development of a robust mobile payments environment. In 

addition to suggesting the fundamental elements for success, the MPIW has been try-

ing to understand the appropriate regulatory oversight model that will enhance safety 

and integrity in payments systems. New regulations regarding the risk management 

and instantaneous credit capabilities of m-payments have begun to address consumer 

protection issues also, such as identity management, consumer privacy, cyber security 

and how prepaid mobile phone accounts are handled (Contini et al. 2011).  
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A notable example of regulation-delayed effects related to m-payments technolo-

gy innovation occurred in China in March 2014. The People’s Bank of China (PBC), 

China’s central bank, promulgated innovation-stalling regulations that slowed down 

the initiatives of Tencent and Alibaba to roll out virtual credit cards (Zhao and Xie 

2014). The central bank was especially concerned about these companies’ use of 

quick-scan QR codes that support m-payments innovations. The problem was a per-

ceived lack of security with respect to the transaction verification process that uses 

QR code-based technology. It expressed concerns about the potential risks that new 

payment mechanisms may create, especially for the stability of the banking and credit 

card industries, although others have alleged that the pull-back on third-party m-

payments could be based on the concern that there would be lost revenues and fees 

for banks, and conflicts with NFC-based initiatives that UnionPay promoted (Her-

nandez 2014).  

Vendor competition, solution success, and the specter of regulatory interven-

tion. During the past five to ten years, large firms in financial services have competed 

intensely to produce innovations that will transform the traditional processes related 

to payments services. Such competition may decelerate the development of new ser-

vices since the related investments may involve greater uncertainty. This will affect 

the patterns of technology evolution, possibly causing a shift in the observed patterns 

going forward. In contrast, some firms have been able to push a technological innova-

tion forward by obtaining strong support, and by partnering and making alliances 

with other firms to gain advantage and accelerate the development of new services 

(Dai and Kauffman 2004).  
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I observed this in the timeline of m-payments ecosystem events most recently, 

when Apple announced its cooperation with VISA, MasterCard and American Ex-

press at the business infrastructure level, in the rollout of Apple Pay mobile payments 

via smartphones used at contactless POS outlets (Townsend 2014). Most merchants 

and banks supported Apply Pay shortly after its initial launch, which brought a new 

set of capabilities and installed base of consumers to the m-payments market. Accord-

ing to recent estimates, about 800 million people have access to iTunes (Arora 2014), 

although many fewer have an iPhone 6 or similar mobile handset. This nevertheless 

was an astonishing development in terms of the potential network effects that Apply 

Pay may eventually be able to project in the m-payments ecosystem. Some large U.S. 

retailers, however, including Wal-Mart, CVS, and Rite Aid, have refused to commit 

to Apple, since they have contracts with rival payments systems that will punish the 

stores for adopting Apple Pay (Wells 2014).  

Apple’s extraordinary success as a newly-entering m-payments services vendor, 

according to Webster (2014), is that “Apple Pay was the kick in the pants that every-

one in the ecosystem needed to get the mobile payments flywheel focused and mov-

ing in high gear.” The untested aspect of the Apple Pay launch is whether Apple will 

be able to build strong network effects with merchants, who will recognize that adopt-

ing Apple Pay is an essential part of doing business – again, a hook-up-lose-out value 

proposition, based on the long-standing argument of Clemons and McFarlan (1986). 

Adoption may ensue on multiple sides of the m-payments platform around Apple’s 

solution – current iPhone 6 and next-generation users, banks, as well as merchants 

and stores – because the functionality and convenience are high-value solutions. Anti-
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trust issues in the market may arise around such a powerful technology services ven-

dor, just as Microsoft, when it seemed like the dominant and unchallenged force in 

the Internet browser and office software suite market niches, was alleged to have in-

appropriately tied the distribution of Microsoft Windows to Internet Explorer and the 

Microsoft Office software suite (Liebowitz and Margolis 2001). Apple’s market capi-

talization of US$724 billion as of mid-March 2015 is now about 114% greater than 

Microsoft’s at US$338 billion, so there may be future issues with regulation that Ap-

ple will face (Watts 2014).  

2.5  Discussion and Implications 

Organization-level internal factors such as firm heterogeneity and competitive 

strategy, and industry-level external factors including government regulation and 

technology standards, jointly contribute to shaping the evolution of m-payments in-

novation. They have encouraged and supported, or stalled and delayed the adoption 

and diffusion of specific m-payment-related technologies. I next discuss m-payments 

technology evolution at the organization level, and provide some recommendations to 

firms about how to increase their firm-level returns on investment (ROI) after com-

mitting to m-payments.  

I claim that first-mover advantage and network effects are positively associated 

with the success of a firm’s investments in technology innovations. Gaining the first-

mover position and obtaining network effects will help to accelerate the pace of evo-

lution of a technology, especially when the investment decision can be made flexibly 

or delayed to manage its risks.  
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The development of the m-payments market supports this statement. The m-

payments services market has been highly fragmented since it emerged. Many com-

peting technology solutions have coexisted in the market; different stakeholders have 

invested in and shepherded their development. There have been no widely-accepted 

technology standards so far though. This has made firm-level m-payments adoption 

decisions difficult for many market participants. On the other hand, in spite of the 

market uncertainties that are present, there still are advantages and benefits associated 

with the early adoption of a truly valuable technology innovation that will become a 

standard later on (much like EMV chips in credit cards). David (1985) noted that 

first-to-market technology innovations can become entrenched, such as QWERTY 

keyboards or Microsoft Windows, and sometimes inferior standards can persist be-

cause of the installed base they have built up. This will give firms an incentive to 

preempt the rest of the market with their early adoption and full commitment (Dai and 

Kauffman 2006). When the uncertainties associated with technology innovations are 

substantial and the investment is at least partially irreversible, firms will value flexi-

bility. They can benefit, for example, through having the flexibility to defer adoption 

(Dixit and Pindyck 1994). This may affect the opportunities that firms have to lever-

age first-mover advantage though: deferring for too long a time may eliminate the 

flexibility for a firm to benefit from timing adoption to achieve high ROI (Mason and 

Weeds 2010). 

Another issue is network effects in financial services, which affect decision-

makers’ choices in two ways. First, strong network effects will induce them to make 

investment decisions at a little earlier rather than a later time (Kauffman et al. 2013, 
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2015b). Second, they will tend to make similar rather than different investment deci-

sions. An analogy is that stores have an incentive to geospatially cluster (Krugman 

1991). When there are enough stores to form a business hub, competitors located 

elsewhere will be at a disadvantage. As a result, they may eventually move to the hub, 

further increasing its relative attractiveness. This is precisely the story that I have seen 

play out with Apple Pay and the banks. Clearly, the strong network effects associated 

with Apple Pay will hasten the decisions of banks to adopt and speed up innovation, 

while consecrating the value of the first-movers’ choice to become involved.  

Firm differences are also important when I consider these issues. In practice, a 

firm’s willingness and ability to commit and participate in cross-industry collabora-

tions for payment-related technology innovation will vary. Some have the spare re-

sources; others do not. The lack of uniform willingness to commit may also be due to 

the individual views that firms have of the risks of future technological changes, mar-

ket uncertainties associated with consumer and merchant responses to new technolo-

gies, as well as other firm-specific factors, such as different market shares, nuanced 

and contrasting technology capabilities, and competing strategic objectives.  

It is unlikely that all firms will make unanimous adoption decisions and take ac-

tions all at once in most technology adoption settings, because senior managers must 

make the “right” decisions in the absence of perfect information or a full and sophis-

ticated decision-making capability (Au and Kauffman 2003). The firms are also dif-

ferent in terms of their ability to acquire and process information from the market, 

and even when they are able to acquire similar information, they still may process it 

differently. In previous research in different domains, Au and Kauffman (2005, elec-
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tronic bill presentment adoption), Li and Kauffman (2012, public transit systems pric-

ing mechanism adoption), Li et al. (2014, inefficient herd behavior in a world of ra-

tional decision-makers) and Ma and Kauffman (2014, software-as-a-service adoption) 

noted that firms go through a process of adaptive learning. They may eventually align 

their rational expectations about the business value of a technology they are evaluat-

ing, and whether and when to adopt – or they may not.  

The lack of harmonized firm actions in the market typically will result in an ob-

servable time-wise distribution of their adoption decisions, as opposed to clustered 

adoption that occurs more or less all at once (Au and Kauffman 2001, Au et al. 2009). 

I conclude, therefore, that one firm’s decision, including which m-payments technol-

ogy innovation to invest in, when to adopt, and how heavy the investment should be, 

will impose undesirable externalities on other firms. The firms which are early 

adopters of a specific technology innovation may impose competitive externalities on 

other non-adopters, for example. High competitive externalities can potentially delay 

adoption and slow down the pace of a specific technology innovation, because other 

rival firms may commit to competing technology innovations. These things will make 

it harder for firms to align their collective interests, to make mutually-beneficial 

adoption decisions based on their rational expectations of what is likely to come out 

in the market.  

Competitive externalities are external penalties that affect other competitors if one 

firm’s adoption of a specific technology innovation has the potential to affect and 

change market-wide profitability (Seidmann and Wang 1995). An early adopter typi-

cally can obtain higher profits from the new services and increased transactions that 
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become available with the new technology. Since one firm’s profitability from adopt-

ing a technology innovation critically depends on its transactions volume, relative 

market share, and the number of other competing adopters, the firm’s incentive for 

adoption will decrease as more and more rival firms adopt. When adoption becomes 

less and less attractive due to too many adopters, as Bakos and Brynjolfsson (1993) 

and Dai and Kauffman (2006) have shown for electronic procurement market partici-

pation, it eventually will drive latecomers to reconsider their strategies. If this occurs 

with respect to technology innovation, firms are more likely to turn to competitive 

differentiation strategies, since this will mitigate head-to-head market competition 

among them. An example in the m-payments domain is PayPal, which left NFC ca-

pabilities in its m-payments solution to achieve differentiation in comparison to 

Google Wallet and Softcard in 2011 (Pymnts.com 2012). Such strategic interactions 

among firms, thus, are likely to delay the diffusion of a specific type of innovation 

and decelerate its evolutionary pace. This is also true for their competitive interac-

tions when they are mostly influenced by the uncertainties in the market of a given 

technology solution or standard. I view this as another kind of competitive externality: 

an indecision externality. This term makes sense, because it is clear in such cases that 

the entire market bears the social costs of stalled adoption. Indeed, any movement in 

the market to the “next” equilibrium involving new technology will be beneficial, es-

pecially in terms of the value for firms to learn what is necessary to succeed for a giv-

en m-payments technology innovation.  

Competition itself in the financial services industry and the payment services 

segment also demonstrates unique features. Decades ago, banks and other financial 
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institutions bore the heavy financial weight of initial fixed costs in building the foun-

dations for today’s payments system. As a reward, they gained dominant positions in 

the industry and have enjoyed oligopolistic market power for years. With the high 

entry barriers in the financial services market, it has been difficult for new entrants to 

enter and succeed, unless some portion of the market becomes newly vulnerable: easy 

to enter, attractive to attack, and difficult to defend (Clemons 1997, Granados et al. 

2008). An example is the trading segment of the financial markets, which has experi-

enced great technological innovation (McGowan 2010, Menkveld 2013), and the 

emergence of issues that made new oversight and regulation a reality (Gould 2011).  

Things have changed with m-payments though, especially in terms of what Weber 

(1995) has called digital bypass. Many current financial services, inclusive of m-

payments, heavily rely on the success of underlying technology innovations, rather 

than any firm’s historical position in the marketplace. For example, some m-

payments solutions are able to digitally bypass the offline payments networks in 

banking with direct access to the ACHs and the card networks. This disintermediation 

capability created a technology-based vulnerability. It also provided opportunities for 

new entrants to be involved and compete with existing market players. Due to com-

petitive pressures, the latter have had to adjust their strategies. For example, they now 

are forced to invest to reduce customers’ transaction costs and improve service quali-

ty, with little hope for additional profitability. The investments they make will be 

more a matter of strategic necessity than strategic advantage (Goh and Kauffman 

2013). These, in turn, will result in a new wave of competition for payments services, 

eventually leading to gains in consumer welfare and economic efficiency (Laffont 
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and Tirole 1990, 2001), such as have been seen in the past with ATMs (Bernhardt and 

Massoud 2002, McAndrews 1998, Wright 2004).  

These analyses allow me to conclude that the payments sector is a newly vulnera-

ble market, in large part due to the rise of m-payments. So I expect that competition 

in this market will be much more intense than in other traditional markets – at least 

for a while. Since competition may impose two opposite effects on technology inno-

vation – an innovation-spurring or innovation-stalling effect, there are two questions 

that need to be asked. (1) Which effect will dominate and drive the outcome? (2) And 

what can be done so the more positive innovation-spurring effects will be fully ex-

pressed, while the more negative innovation-stalling effects are minimized?  

My answer is this: the level of uncertainty that exists in the market will play a key 

role in this process. Both technological and business-related uncertainties in the m-

payments market will impact the effects of competition. If such uncertainties can be 

mitigated, there is a higher likelihood that incentive-compatibility and value co-

creation among different stakeholders can be achieved without destabilizing the exist-

ing market structure. As a result, competition is more likely to accelerate technologi-

cal advances, spur the creation of valuable innovations, and benefit the m-payments 

ecosystem.  

Newly-vulnerable markets, such as has been occurring in the payments sector, 

tend to have relatively unstable institutional structures. Many new firms are likely to 

be entering and pursuing digital convergence strategies or alliance strategies, with 

some of them – including existing market participants – failing and exiting the market. 

This creates high business-related uncertainties for participants, so that decision-
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making related to m-payments adoption, in particular, is likely to be difficult. The de-

cision process is made even harder in light of the high switching costs and technology 

lock-in power that are present in a technology-intensive industry (Farrell and Shapiro 

1989), like the financial IS and technology ecosystem. In addition, the m-payment 

market is fragmented in terms of its underlying infrastructure technologies, and thus 

is viewed as having high technological uncertainty as well (AFP 2014, Kim 2012). 

No industry observers, consultants or university researchers have expressed an ability 

to foresee what is likely to happen in the future, though many have offered insightful 

predictions. Instead, firms mostly are experiencing a “learning-by- doing” process. 

The existence of various incompatible technology solutions indicates their lack of 

agreement with respect to expectations on what the relevant technology standard will 

be and which business models are likely to be suitable for m-payments (Hayashi and 

Bradford 2014).  

In the presence of significant uncertainties, it is likely that competition will harm 

the health of the m-payments market. Competition brings along a lot of new things, 

attracting new firms, producing new products, enabling new strategies, and introduc-

ing new technologies. The fact is that not all of them are able to offer true value 

though. Some new market entrants will be operating inefficiently and will not create 

real business value. Some technology innovation-based strategies will be myopic in 

maximizing short-term profitability, and will fail to achieve sustainable returns in the 

long-term. And some innovations are not mature enough to be implemented and cre-

ate much value. These are like noise in the market that will delay the adoption and 

evolution of more valuable innovations. They also represent a loss in social welfare 
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due to the inappropriate investments of some participating stakeholders. Market un-

certainties can be mitigated through standardization in the underlying payments tech-

nologies, in order to have competition result in the beneficial innovation-spurring ef-

fect though.  

Finally, it is important to note that m-payments technology solutions require a 

high level of consumer data-sharing. Thus, financial services firms are often reluctant 

to make commitments that may compromise their separate commitment to customer 

data privacy. I expect that, over time as the market gradually reaches a consensus on 

appropriate technology solutions and business infrastructures that are likely to be-

come the actual standards, firms will see that some m-payments technologies achieve 

critical mass across a large installed base of users. Once this happens, concerns in the 

marketplace will be diminished among consumers, banks, and the regulators about 

the technology adoption aspect, though they will continue to express concerns about 

data privacy, and identify theft and payment fraud.  

2.6  Concluding Remarks 

M-payments services have been under development for years, though few initia-

tives by individual or groups of stakeholders have reached critical mass and market-

wide adoption. Based on my competitive and regulatory analysis in the m-payments 

technology ecosystem, I suggest that establishing a clear understanding of the direc-

tion of industry competition and related regulatory policies can accelerate services 

development and facilitate successful adoption of technology components and busi-

ness infrastructures. Open dialogue and collaboration involving central banks, com-

mercial banks and m-payments services vendors related to the mitigation of risks and 
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uncertainties are crucial for fostering a new business model for m-payments without 

damaging the payments system, as it currently operates. New competition policies are 

needed to enable new entrants to compete with large existing players. The latter may 

have insufficient incentive to be innovative in reducing costs and improving service 

quality, as new entrants may have (Laffont and Tirole 2001).  

The convergence of e-commerce and m-commerce requires new payment meth-

ods to take advantage of mobile, Internet, social networks and data analytics capabili-

ties. M-payment technologies bring the capabilities of the traditional payments sys- 

tem to the online world, while supporting bricks-and-mortar businesses in the offline 

world. This has been featured as offline-to-online competition. It provides new oppor-

tunities for traditional businesses to compete with online businesses, and is enabled 

by the digital intermediation of third-party digital payers, such as PayPal and Alipay 

(Russell 2013). This competition will revolutionize how people make payments in the 

e-commerce and the bricks-and-mortar world, and touch all aspects of their everyday 

lives. It also has the potential to spur significant financial services innovations that 

will increase social welfare by transforming the brick-and-mortar store payment pro-

cess to match the new capabilities for m-commerce (Bishko and Chan 2013).  

Admittedly, even though IT-enabled financial innovations have been talked about 

for years, the pace of technology innovation in some important niches of financial 

services has been slow due to various reasons. Since technology providers such as 

Apple, Google, Alibaba and Facebook have entered the financial services world, reg-

ulators may consider refining the related policies to provide new room for innovation. 

Coordination of financial regulation and competition policy may benefit the future 
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marketplace for m-payments. It is important that the gains arising from technology 

innovations can be fully realized and passed to various stakeholders, which in turn 

will offer them incentives to further innovate. Finally, national infrastructural level 

and consumer demographic characteristics also play roles in the development process 

and outcomes of m-payment services in the cross-national technology ecosystem.  
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3  Technology Investment Decision-Making under Uncertainty 

3.1  Introduction 

Large-scale IS and IT investments are high-risk and potentially high-return com-

mitments that can offer strategic and competitive advantage for organizations that 

take calculated risks with them. The U.S. Department of Commerce’s Office of the 

CIO (2014) views major IT investments as those that require attention due to their 

“sensitivity, mission criticality, or risk potential, or that includes $25 million or more 

in development, modernization, and enhancement costs over the life of the project.” 

McKinsey and Co. defines large-scale IT projects as those that exceed $15 million 

(Bloch et al. 2012, p. 1). They note: “large IT projects often run 45% over budget and 

7% over time, while delivering 56% less value than predicted.”  

Many technology investment initiatives fail to deliver the promised benefits 

though, and some have caused dramatically large losses (Nash 2000, Widman 2008). 

Senior managers struggling with how to create IT-driven business value would like to 

control the risks associated with their investments. The practical problems that tech-

nology-related stakeholders grapple with require an effective risk management 

framework to hedge the risks and respond to market changes that affect technology 

investments (Benaroch et al. 2006a). A promising approach is to manage the timing 

of commitment to an IT solution by evaluating new information that is continuously 

arriving from the market, deferring investment decision-making, and only making a 

commitment when the critical uncertainties are resolved (Kauffman and Kumar 2008, 

Kauffman and Li 2005).  
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The common uncertainties with technology investments are due to factors that af-

fect the firm’s ability to successfully appropriate business value (Duliba et al. 2000, 

Teece 1986), including an organization’s internal technical capacity to complete a 

difficult IT project, and input cost uncertainties that arise due to external issues, such 

as changing costs of inputs and government regulations that affects costs and benefits 

in different ways (Pindyck 1993, Schwartz and Zozaya-Gorostiza 2003). The firm’s 

ability to fund a long-term capital-intensive investment, and the alignment of the tar-

geted application with stakeholders are additional risk factors for investments by an 

organization (Benaroch 2002). Others include: future customer demand for technolo-

gy products and services (Benaroch and Kauffman 2000); fast clock-speeds of differ-

ent industries that affect operational and technology investment practices (Mendelson 

and Pillai 1999) and recognition of the necessity of cooperation and alliances (Teece 

1992); product performance, project schedules and market requirements (Huchzemei-

er and Loch 2001); and updated information on competition among technology stand-

ards, and competitors’ preemptive moves (Kauffman and Li 2005).  

Real option methods to manage IT investment risks have drawn the attention of 

many IS and technology management researchers over the years, including Benaroch 

and Kauffman (1999), Dai et al. (2007), Dos Santos (1991), Fichman (2004), Tallon 

et al. (2001), Taudes (1998), Yang et al. (2012) and Zhang and Babovic (2011). Op-

tion-based risk management for IT projects, proposed by Benaroch (2002), helps de-

cision-makers distinguish between embedded implicit options (deferral and abandon-

ment) and explicit options (pilot and staging) in their decision-making process. Defer-

ral options permit technology investments to be postponed for different lengths of 
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time, as senior managers learn about the potential outcomes of their investments prior 

to committing to them.  

This study uses financial economics thinking for decision-making under uncer-

tainty and real option methods to model a firm’s technology investment decision-

making process for major and large-scale IT projects, considering uncertainty about 

the cost and benefit flows represented by a mean reversion process.3 I will address 

this research question: How can the timing of a firm’s commitment to a specific tech-

nology project be analyzed using an approach that considers the mean reversion prop-

erty of uncertain benefit and cost flows, as decision-relevant information being re-

vealed over time?  

The literature on real option methods has mostly focused on determining when re-

al options should be exercised, based on updated information acquired from complet-

ed projects. In this research, I adopt a different strategy though. I focus on option ex-

ercise that involves dynamic information updating, based on the observation of cur-

rent benefit flows and costs at any point in time. I also model uncertainty for costs 

and benefits that vary according to the mean reversion property for IT investments. 

This is something that researchers in some other fields have attempted to do – for ex-

ample, Jaimungal et al. (2011) used the mean reversion stochastic process to model 

the value of option-bearing projects – but IS researchers have not done it this way. 

This is because there are known problems with the tractability of various real option 
                                                
3 An earlier article in the present research stream was published in Information Technology and Man-
agement (Kauffman et al. 2015b). Earlier versions were presented at: the 2012 International Confer-
ence on Electronic Commerce in Singapore; the 2013 Hawaii International Conference on System Sci-
ences (Kauffman et al. 2013); the 2013 China Summer Workshop on Information Management in 
Tianjin, China; and the 2014 AIS-Journal Joint Author Workshop at the Pacific Asia Conference on 
Information Systems in Chengdu, China.  
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models, with the result that closed-form solutions cannot be computed. Most of them 

assume the uncertain cost and benefit flows follow a geometric Brownian motion pro-

cess, which ignores that both have a tendency to revert to equilibrium levels of spend-

ing and value (McDonald and Siegel 1986, Harmantzis and Tanguturi 2007, Singh et 

al. 2004). This research contributes the first approach for the IS literature that models 

costs and benefits in mean reversion terms for the context of IT investments. 

I will present an application for a mobile payment systems infrastructure project. 

The application shows how my method can yield actionable valuation and adoption 

timing knowledge for management of technology projects, investments, infrastructure 

and services. The application of my method to a case involving mobile payments sys-

tem infrastructure demonstrates the upside potential of financial IS and technologies 

with strong network effects, as well as the high uncertainty in the trigger phase of the 

technology hype cycle (Fenn et al. 2000). I will develop a dynamic decision rule 

based on newly-updated information; which enhances management’s capability for 

effective decision-making when there is lack of historical information and experience 

with new technologies. I will also illustrate how to use a simulation-based least-

squares Monte Carlo (LSMC) valuation approach in technology investment projects. 

The method overcomes the shortcomings of directly applying a financial option pric-

ing model for IT investments in a way that leads to overvaluation, which is caused by 

restrictive assumptions (Banker et al. 2010). 

3.2  Literature 

There are a number of different perspectives for assessing technology investments. 

I will review four that are relevant to the present research: financial economics and 



 

50 
  

decision-making under uncertainty; real option methods; technology investment tim-

ing; and finally numerical methods for analyzing specific technologies and contexts 

to obtain realistic valuation estimates.  

3.2.1  Decision-Making under Uncertainty 

The literature on decision-making under uncertainty (Dixit and Pindyck 1994) of-

fers a useful theoretical perspective based on financial economics for evaluating a 

firm’s flexibility to choose an optimal time to invest. Technology investment deci-

sions share three important characteristics with other types of investment decisions 

under uncertainty. First, they usually involve large-scale infrastructure development, 

personnel and training costs that are partially or completely irreversible. Second, 

there is uncertainty, including technological uncertainty and market uncertainty, over 

the future benefits and costs of the investment. Third, decision-makers have the flexi-

bility with investment commitment timing to diminish their uncertainty to an ac-

ceptable level as information arrives over time. My framework builds on the theoreti-

cal foundations for investment under uncertainty.  

The technology investment decision-making process is one that involves manag-

ing the balance among value, cost and risk. McDonald and Siegel (1986) argued that 

the benefits from an irreversible project investment follow a continuous-time stochas-

tic process. Schwartz and Zozaya-Gorostiza (2003) further contributed a cost-benefit 

diffusion methodology for different kinds of IT investment decision-making, when 

the investment costs and benefits are subject to stochastic changes over time. The sto-

chastic process most commonly used is geometric Brownian motion (Taudes 1998, 

Benaroch and Kauffman 1999, 2000). Applying this stochastic process involves mak-
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ing a trade-off between a desirable and tractable closed-form solution and the inap-

propriateness of its assumption of continuously increasing mean and variance of the 

cost and benefit flows over time against the reality of market competition and the 

product life cycle (Bollen 1999, Heinrich et al. 2013). Schwartz (1997) proposed the 

use of the mean reversion stochastic process, also known as an Ornstein-Uhlenbeck 

process, to reflect that investment costs and benefits tend to revert to their long-term 

equilibrium values. This process is appropriate for evaluating projects when the real 

option approach results in recommendations of investing too late when the costs are 

high. Sarkar (2003) showed that the assumption of mean reversion has an impact on 

investment decisions, and that using geometric Brownian motion to approximate a 

mean-reverting process may be problematic. Given the limitations of the geometric 

Brownian process, I will model uncertainty for costs and benefits using variants of 

mean reversion process in evaluating technology investment projects.  

3.2.2  Real Option Methods in IT Investment 

Fichman (2004) argued that, when uncertainty and irreversibility are high, real 

option analysis should be used to structure the evaluation and management of IT pro-

ject investment opportunities. IT investment risk can be evaluated using a family of 

financial risk management methods. Benaroch (2002) and others (Kim and Sanders 

2002, Alvarez and Stenbacka 2007) identified various IT investment options, includ-

ing deferral, staging, exploration, scale alternation, outsourcing, abandonment, leas-

ing, compound, and strategic growth options. Benaroch and Kauffman (1999, 2000) 

examined electronic banking network expansion, and demonstrated the development 

of realistic models for decision-making under uncertainty to enhance senior manage-
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ment’s capabilities to formulate effective strategies. They applied a variant of the 

Black-Scholes-Merton framework to evaluate the flexibility of deferring a bank’s 

ATM network infrastructure investment. Other applications to IT include 3G net-

works in the wireless industry (Harmantzis and Tanguturi 2007), application services 

providers in IT services (Singh et al. 2004, Techopitayakul and Johnson 2001), and 

data warehousing systems in the airline industry (Benaroch et al. 2007).     

The limitation of applying the Black-Scholes model to IT investments is the as-

sumption that the exercise price is known in advance, and that American options can 

be replaced with a portfolio of European-style options to represent the investment op-

portunities. Schwartz and Zozaya-Gorostiza (2003) applied a different investment op-

tion exercise strategy that addresses some shortcomings of the Black-Scholes model. 

They determined the investment exercise timing when a critical cash flow triggers the 

optimality rule, rather than specifying the exercise time based on updated information. 

This way, managers are able to make decisions by observing benefit and cost flows 

over time. Another criticism is the overvaluation problem associated with the use of 

financial option pricing approaches for IT investment evaluation. Benaroch et al. 

(2006b) and Banker et al. (2010) examined the capabilities of the Black-Scholes 

model for the valuation of IT projects, and showed that its restrictive assumptions on 

traded assets may result in overvaluation, in spite of the fact that the logic of the ap-

proach has been widely touted as being helpful in supporting strategic thinking. Here, 

I adopt a dynamic strategy for option exercise rather than determining the time for 

exercise in advance, so that the aforementioned shortcomings of applying the Black-

Scholes model in IT investment projects are addressed.  
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3.2.3  The Timing of New Technology Adoption 

Time plays an important role in investment decision-making. Prior studies have 

pointed out many factors that affect a firm’s adoption of a new technology at a given 

time: when information acquisition (Jensen 1988, McCardle 1985), information spill-

overs (Mariotti 1992), and strategic interactions occur (Reinganum 1981). Uncertain-

ties about the future benefits and development costs will cause them to be perceived 

by decision-makers as fluctuating over time – sometimes higher and sometimes lower. 

They depend on decision-makers’ expectations of what it will take to implement, and 

what level of demand such products and services will garner in the market once they 

have been deployed. IT investments often have high-upside potential, but also high 

uncertainty and indirect returns (Lucas 1999), which makes timing an important fac-

tor that must be taken into considerations in decision-making. An important thread in 

this literature has been using analytical models to study and support investment tim-

ing strategy for firms when they must decide whether to adopt one of two incompati-

ble technologies, in light of evolving expectations about future competition (Kauff-

man and Kumar 2008, Kauffman and Li 2005). This offers a basis for a decision 

model related to technology investments, where uncertainties about the investment 

will be resolved over time. My approach contributes by modeling the timing strategy 

for a firm’s decision-making for IT investment subject to uncertainty about the costs 

and benefits. 

3.2.4  Numerical Methods in Option Pricing 

In option pricing, finance researchers choose among different numerical methods 

to trade off between simplicity and generality in practice, based on their use of differ-
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ent formulas and approximations (Stein and Stein 1991, Fouque et al. 2000), lattice 

and finite difference methods (Parkinson 1977, Brennan and Schwartz 1977, 1978), 

Monte Carlo simulation (Boyle et al. 1997, Glasserman 2004), and other specialized 

methods (Andersen 2000, Longstaff and Schwartz 2001). Merton (1992a) showed 

that the price of an American option is given by a complex mixed differential equa-

tion that is difficult to solve. To overcome this problem, I will adopt Longstaff and 

Schwartz’s (2001) LSMC method for technology investment option valuation. It 

combines simulation and advanced regression methods to develop an approximation 

for a set of conditional expectation functions. Stentoft (2004) showed that various ap-

proximations of option prices using LSMC converge to a meaningful price under cer-

tain conditions. The numerical methods for option pricing offer a useful foundation 

for examining IT investments value and key elements related to the decision-making 

process that I wish to study.  

3.3  The Model 

I next present a real option framework that enables a firm’s decision-making pro-

cess for technology adoption under uncertainty. Various risks and uncertainties relat-

ed to technology investments are represented by multiple stochastic processes, for 

investment costs, future benefits, and other factors associated with the IT investment 

project that will affect its value over time.     

Suppose a firm is risk-neutral. A manager will have an option to wait until an ap-

propriate time to invest in order to maximize the firm’s returns and hedge the related 

risks. The manager can decide whether and when to invest I dollars, signing contracts 

with technology providers or setting up technology systems infrastructure, for exam-
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ple. (See Table 3.1 for my modeling notation.) The investment decision is irreversible; 

it will be hard for the firm to unwind payments to contractors or employees and the 

development of technology infrastructure.  

Table 3.1. Modeling Notation and Definitions 
MATH DEFINITION COMMENTS 
V, B Investment value, benefit flow at time t PV of future benefit flows B, that fluctuate over time 
I, ROV Firm's investment cost I, real option value For technology investment, for the deferral option 
𝐵, 𝐼 Long-term mean benefit, investment cost B, I tends to revert to the level of 𝐵, 𝐼 in the long term 
αB, αI Speed of mean reversion for benefits, costs Subject to the exponential mean reversion process 
σB, σI Standard deviation of B, I Affects volatility of benefit flows, investment costs 
g, d  Mean benefit growth rate, decay rate Subject to the mean benefit growth curve and decay rate 
ρBI Correlation between B and I  ρBI  = 0, equates with uncorrelated cost-benefit  
rf Risk-free discount rate Discounts future benefits and costs 
dz Wiener increment  Defines a standard mean reversion process 

t, T Time; maximum deferral time, or # periods 
in which cash flows occur 

dt is a small increment in time; bounds option's exercise 
time; cash flows can be benefits or costs for firms 

L Length of technology lifecycle Capture the length of period the technology is available 
.λ Mean # of jumps per unit of time In dt, probability that a jump will occur is λdt 
Bmax, 𝐵! Maximal mean benefits, mean benefit at L The expected maximal benefits, mean benefit level at L 
Y Δ value, random variable Measures after-shock change in value 
dq Shock-led value jump process  Changes in value of dq follow a Poisson process 

Technology innovation happens fast. Technology-based products and services are 

subject to a quick lifecycle with rapid development, market uptake, and early obso-

lescence. Ignoring the lifecycle often leads firms to make significant errors in the val-

uations of technology investment projects (Bollen 1999). In this research, I assume 

the investment opportunity lasts over time [0, T], when the cost and benefit flows 

from investing in the technology system occur. Thereafter, the investment opportunity 

related to it will expire. The firm can invest at any time up until T, the maximum time 

for deferral. The current cost of the investment is known, but future changes will be 

uncertain. The investment cost is modeled as 𝐼 = exp  (𝑥!), where 𝑥! follows a geo-

metric mean reversion process, with 𝑑𝑥! = 𝛼! 𝜃 − 𝑥! 𝑑𝑡 + 𝜎!𝑑𝑧. Here dz is a stand-

ard Wiener process, 𝛼! is the speed of reversion parameter, 𝜎! is the standard devia-

tion affecting the volatility, and 𝜃 is the long-run mean level to which 𝑥! tends to re-
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vert.4 I utilize the exponential value of 𝑥! to ensure a positive investment cost I. In 

other words, I assume the investment cost’s natural logarithm follows a geometric 

mean reversion process. Applying Itō’s Lemma with 𝐼 = exp  (𝑥!)  gives 𝑑𝐼 =

𝛼! 𝜃 − ln 𝐼 + !!!

!!!
𝐼𝑑𝑡 + 𝜎!𝐼𝑑𝑧 . Transforming it via 𝐼 = 𝜃 + !!!

!!!
 yields 𝑑𝐼 =

𝛼! 𝐼 − ln 𝐼 𝐼𝑑𝑡 + 𝜎!𝐼𝑑𝑧 (Changes in Investment Cost).  

The mean reversion process is strictly positive with a distribution skewed to the 

right, and is characterized by a fat tail for large positive values (Brigo et al. 2007). 

The conditional expected value of investment I at time t is 𝐸 𝐼! = exp[𝐼 +

ln 𝐼! − 𝐼 𝑒!!!!] (Expected Value of Investment Cost), where 𝐼! is the investment 

cost at time 0 with certainty. The conditional variance is 𝑉 𝐼! = 𝜎!! 2𝛼! (1−

𝑒!!!!!). As t becomes large, the expected value of 𝐼! converges to exp  (𝐼) and the 

variance converges to 𝜎!! 2𝛼!. This means that the investment cost will finally con-

verge to the equilibrium price of technology in the market as time goes by.  

After it has made an investment, the firm will receive benefits until time T. (See 

Figure 3.1.)  

Figure 3.1. Investment Timeline 

 

I assume that once the investment decision is made, the system will be installed 

and begin to function, and the costs of operation, marketing, and maintenance will 

                                                
4 I thank an anonymous reviewer of the related journal article for suggesting the mean reversion process, instead 
of the geometric Brownian motion process due to its lognormal distribution, with a time-dependent mean and 
variance, and for pointing out the relevance of the technology product lifecycle.  
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either be negligible, or will have been added to the initial investment cost. In practice, 

the decision-makers will always incorporate these costs occurring during the devel-

opment stage into the initial investment.	  Some technology projects may take an un-

certain amount of time for the investment until completion. And there is always a lag 

from when the investment began to the receipt of the first flow of benefits. There will 

be no effect on the valuation of costs and benefits that determine investment decision-

making though. Also the benefits received before the completion of investment are 

usually small. So I assume the investment is implemented at one point in time, with 

no lag between the completion of investment and receipt of the first flow of benefits. 

Let B denote the stochastic benefit flows arising from the investment, with 

𝑑𝐵 = 𝛼! 𝐵 − ln𝐵 𝐵𝑑𝑡 +𝜎!𝐵𝑑𝑧 (Stochastic Benefit Flows), which is modeled simi-

lar to the investment costs. Here, αB represents the speed of reversion parameter and 

σB is the constant standard deviation of the cash flow described by a standard Wiener 

process. The mean benefits, exp  (𝐵), can be time-varying according to a determinis-

tic model, which can take into account factors such as network effects, growth rate, 

customer learning curve, or decay in product value at the end of lifecycle. I further 

assume that no other competitors offer similar technology or systems, or enter the 

market in [0, T]. And there is no correlation between the stochastic changes in the in-

vestment cost and benefit flows, so ρBI = 0. 

The value of an investment at time t is the expected present value of the stream of 

future benefits, adjusted for the corresponding costs at time t. Present value can be 

assessed based on the discounted benefit flows from time t when the firm makes the 

investment decision to the latest deferral time, T, 
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with  𝑉 = 𝐸! exp  (𝐵 𝜏 𝑒!!! !!! )𝑑𝜏!
!       (Discounted Investment Value). Et is the 

expectation conditional on information available at time t, rf is a risk-free discount 

rate, and τ is the time period over which discounting occurs. The result of integrating 

Discounted Investment Value from t to T depends on the model for the mean benefits 

exp  (𝐵). 

The decision to invest at time 0 ≤ t ≤ T is equivalent to exercising a financial op-

tion before its expiration date T. Let F (B, I, t) denote the value of this investment op-

portunity at time t. Since B and I do not involve traded assets, but are the expected 

values of a pair of random variables, they will have risk premia associated with them. 

The net present value of this investment opportunity with an embedded deferral op-

tion is 𝑁𝑃𝑉   = 𝑚𝑎𝑥  [ 𝑉  –   𝐼 , 0]   +   𝑅𝑂𝑉   = 𝐹(𝐵, 𝐼, 𝑡) (Investment NPV with Defer-

ral). The related option value is 𝑅𝑂𝑉 = 𝑚𝑖𝑛  [𝐹 𝐵, 𝐼, 𝑡 − 𝑉 − 𝐼 , 𝐹 𝐵, 𝐼, 𝑡 ] (Real 

Option Value). Substituting the Discounted Investment Value and Expected Value of 

Investment Cost Equations for the risk-neutral measure into the Real Option Value 

Equation gives:  𝑅𝑂𝑉 = min 𝐹 𝐵, 𝐼, 𝑡 − 𝐸! exp  (𝐵 𝜏 𝑒!!! !!! )𝑑𝜏!
!      + exp[𝐼 +

ln 𝐼! − 𝐼 𝑒!!!!]  ,      𝐹 𝐵, 𝐼, 𝑡 . I then apply Itō’s Lemma to obtain the differential real 

option value for the investment: 

𝑑𝑅𝑂𝑉 = !"#$
!"

𝑑𝑡 + !"#$
!"

𝑑𝐵 + !"#$
!"

𝑑𝐼 + !
!
!!!"#
!!!

𝑑𝐵! + !
!
!!!"#
!!!

𝑑𝐼! + !
!
!!!"#
!"!#

𝑑𝐵𝑑𝐼    

Substitution of the Changes in Investment Cost and the Stochastic Benefit Flows 

Equations, along with the expression for 𝑑𝑅𝑂𝑉 into the Bellman Optimality Equation, 

𝑟!𝑅𝑂𝑉𝑑𝑡 = 𝐸(𝑑𝑅𝑂𝑉), with ρBI = 0, yields the following second-order differential 
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equation: !
!
𝜎!!𝐵!𝑅𝑂𝑉!! +

!
!
𝜎!!𝐼!𝑅𝑂𝑉!! + 𝛼! 𝐵 − ln𝐵 𝐵  𝑅𝑂𝑉! + 𝛼! 𝐼 −

ln 𝐼 𝐼  𝑅𝑂𝑉! + 𝑅𝑂𝑉! − 𝑟!𝑅𝑂𝑉 = 0. The solution to this equation must satisfy two 

boundary conditions. First, the value of the real option must be 0 at time T: ROV 

(B,I,T) = 0. This is because the decision to make the investment cannot be deferred 

any longer at time T. Second, at any other time, 0 ≤ t < T, the real option value of the 

investment opportunity will always be non-negative: ROV (B,I,t) ≥ 0 for all 0 ≤ t < T.    

I apply dynamic programming to find critical values for the benefit flow that will 

trigger the exercise of the investment option. The Bellman Optimality Equation states 

that the value of a state under the optimal policy − in this case, the value of the in-

vestment opportunity − must equal the expected return for an action associated with 

that state. At optimality, the real option value is zero, which means there is no incen-

tive to wait while the value of the investment opportunity remains positive. The bene-

fits that are available at that time are critical: our assessment of benefits is based on 

all of the information available in the market. The corresponding action is the exer-

cise of the real option. This will yield the optimal decision rule. When V – I > 0 and 

ROV (B, I, t) > 0, the best decision for the firm is to wait, as long as waiting is possi-

ble. When V – I < 0, and ROV (B, I, t) ≥ I – V > 0, the firm should also wait for the 

cost flows to decrease or for the expected value to increase. If waiting is not possible, 

the project should be abandoned. Only when ROV (B, I, t) = 0 and V – I > 0 will it be 

the optimal time to invest.  
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3.4  M-Payments Project Valuation Illustration 

I next will apply variations of the technology investment decision-making model 

to a real-world case. I illustrate the application of my approach to showcase how it 

enables decision-makers to consider benefit and cost uncertainty. I assessed a new IT 

investment project to demonstrate a prospective application of the method. Although 

I did not have access to all aspects of the data through direct project participation, 

there nevertheless is enough publicly-available information to instantiate my ap-

proach. As is the typical case in IT investment valuation work, it is necessary to make 

estimates when information on some of the key variables is not available, or when a 

modeling process differs from how managers think about how it works in practice. I 

will adapt the technology investment model to fit the specific setting of Square’s  

(squareup.com) m-payment system development project, and evaluate the decision-

making problem for a generic case of investment in representative m-payment sys-

tems in the market. 

3.4.1  Background 

After 2011, a number of companies and industry partnerships announced new m-

payment technology solutions built on NFC contactless chips, cloud servers and card 

readers that plug into mobile devices (Romann 2014). The launch of Google Wallet in 

the United States provided a “tap and go” NFC m-payment solution in 2011 (Gustin 

2011). Its primary competitor, now called Softcard (gosoftcard.com), developed by a 

consortium involving Verizon, AT&T and T-Mobile, launched an NFC application in 

2012 (Perez 2013b). Also in 2012, Apple was awarded a U.S. patent for its iWallet, 
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and at that time, its m-payments strategy mostly involved observing the market and 

waiting for things to develop further (Webster 2013). Other technology and process 

innovations were taking advantage of third-party apps on smartphone platforms, ena-

bling merchants to process card payments. 

3.4.2  The Square M-payment System 

Square, a company that offers an application on the iOS and Android platform, 

serves as a virtual terminal with a pluggable reader into smartphones for authorization 

and settlement of merchant and consumer card transactions. The company was found-

ed in 2009 with an initial investment of $10 million, and launched its first application 

and services in 2010 (Rusli 2011). Since 2011, Square’s innovation in m-payments 

has been drawing widespread attention in the market with its rapid growth. In August 

2012, Starbucks invested $25 million in Square, and its technology was used to pro-

cess all credit and debit transactions in 7,000 of Starbucks’ U.S. stores (Griffith 2014). 

However, the Starbuck deal led to large losses of more than $20 million in 2013, 

which reflected the risks and uncertainties that arise with IT investments and Internet 

start-ups (Barr et al. 2014). As of 2014, Square was processing about $30 billion in 

transactions annually, which puts its annualized gross profit at about $300 million and 

its market value in excess of $5 billion (Wilhelm 2014). 

3.4.3  Irreversible Investments, Uncertainty and Timing 

The commitment to mobile payments systems has three characteristics that distin-

guish it from other types of technology investments: irreversibility, uncertainty and 

timing. They also make the investment in mobile payments systems an option-like 

project (Dixit and Pindyck 1994). The investment in m-payments technology solu-



 

62 
  

tions involves intensive network development and will typically take a long time to 

implement and achieve network effects. To succeed, firms need to build new indus-

try-wide infrastructure, by making specific but partially-reversible IT capital com-

mitments on their own or through participating some cross-industry alliance (Hughes 

2014, Pymnts.com 2014). Substantive uncertainties are associated with these kinds of 

investment behavior, including both technological risks and uncertain market re-

sponses (Kauffman et al 2013). In addition, in the m-payments ecosystem, various 

cross-industry stakeholders with distinct organizational backgrounds, operational 

models, IT capabilities, and business goals will employ different investment strategies. 

Typically, industry “giants,” such as large banks, leading telecom operators, joint-

venture trusted-services managers or independent services providers are likely to be 

first-movers. Many other firms will stand back and wait until these leaders have 

demonstrated the desirability and operability of a certain m-payment system business 

model and technology solution, and then jump on the bandwagon. As a result, firms 

time their investments somewhat differently. They will prefer to have the flexibility 

of implementing and committing to an m-payment technology as free riders in a later 

stage, or purchasing the technology investment opportunity in advance as an active 

early-stage developer (Montgomery 2012).  

3.4.4  Model Specification and Estimation 

I assume the time-varying mean benefit of an m-payment technology investment 

exp 𝐵  changes according to 𝐵 = 𝐵!"#× 1− 𝑒!!"  (Mean Benefit Change). Here g 

is the mean benefit growth rate, which is derived from the growth of transaction vol-

ume over time, and exp 𝐵!"#  is the intrinsic maximum benefit from transactions. 
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The mean benefit growth curve reflects customer learning and network effects. The 

benefit flows were estimated using Square’s reported annual processing run-rates, and 

full-year figures for 2013 and 2014 for credit and debit card swiping, online sales and 

manually-entered payments.  

Since I assume a constant growth rate of the number of transactions processed, g 

can be computed using transaction volumes for any two consecutive years: 

ln!!
ln!!!!

= !!!!!"

!!!!!(!!!)
, so I get g = 0.61. The benefit per transaction, treated as a fixed 

value at 0.94%, can be derived from the transaction fees that Square charges users, 

excluding the interchange cost that banks charge and assessment costs from VISA, 

MasterCard and Discover.5 Table 3.2 shows investment costs, estimated transactions 

volumes and benefit flows of the investment project, from Techcrunch in 2014 (Wil-

helm 2014). Figure 3.2 compares the mean benefit growth curve and the value of 

benefit flows over time, when I assume that Bmax = $162,755,000.  

I estimated the volatility of expected benefit flows to be 50%, similar to what 

Benaroch and Kauffman (2000) used to compute the investment opportunity in their 

electronic banking research. Their decision was based on extensive senior manage-

ment interviewing. I considered an investment time horizon of 5 years. 

Figure 3.3 shows how the model in Section 3.3 can be adjusted to evaluate m-

payment system development projects like Square’s. The lag from initial investment 

to the initial flow of benefits is one year, reflecting the fact that Square took one year 

from November 2009 to November 2010 to start to develop its application and net-

                                                
5 Square priced at a flat rate of 2.75% per swipe, and 3.50% plus a $0.15 fee per manually entered transaction as of 
July 3, 2014 (squareup.com/pricing). I adopted a fixed rate of 0.94% after excluding other costs.  



 

64 
  

work before it received its first benefit flow. I will eliminate the lag τ in my invest-

ment analysis to adapt it for the real option framework.  

Figure 3.2. Mean Benefit Growth and Value Flows 

 

Note: Benefit flows labels are based on their natural logarithm values, representing their rapid growth over time. 

Table 3.2. Transactions, Investments and Benefits  

PERIOD DATE DOLLAR VALUE OF 
TRANSACTIONS  

BENEFIT 
RATE 

BENEFIT 
FLOWS 

NATURAL 
LOG  INVESTMENTS 

1 Nov 2009 - - - - $10,000,000 
2 May 2010 - - - - - 
3 Nov 2010 $150,000,000 0.94% $1,410,000 7.25 - 
4 May 2011 $801,000,000 0.94% $7,529,000 8.93 $27,500,000 
5 Nov 2011 $1,725,300,000 0.94% $16,218,000 9.69 $100,000,000 
6 May 2012 $4,028,910,000 0.94% $37,872,000 10.54 $3,000,000 
7 Nov 2012 $5,959,350,000 0.94% $56,018,000 10.93 $200,000,000 
8 May 2013 $8,278,200,000 0.94% $77,815,000 11.26 - 
9 Nov 2013 $10,488,480,000 0.94% $98,592,000 11.50 - 

10 May 2014 $12,944,250,000 0.94% $121,676,000 11.71 - 

Note: All dollar amounts are stated in U.S. dollars. The original Series A funding of Square was due to angel in-
vestors, including Khosla Ventures, Esther Dyson, Marissa Mayer of Yahoo!, Napster founder Shawn Fanning, 
Foursquare founder Dennis Crowley and others (Cutler 2010). The May 2011 Series B funding was due to Se-
quoia Capital and VISA. The Series C funding came from Kleiner Perkins Caufield & Byers in November 2011, 
and in May 2102 from Virgin Atlantic entrepreneur, Richard Branson. Series D funding involved investments 
from Citi Ventures at $50 million, Starbucks at $25 million, and Rizvi Traverse Mgmt. and CrunchFund for the 
remainder. I do not consider the April 2014 $100 million debt financing by J.P. Morgan Chase, Morgan Stanley, 
Goldman Sachs, Silicon Valley Bank, and Barclays Capital (Crunchbase 2014). 

Figure 3.3. The M-Payment System Development Project  
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The initial investment cost I0 is the sum of the discounted value of the capital in-

vestments raised from the Series A, B, C and D rounds of financing: I0 = 

$278,073,000. The initial investment to develop the network is stated inclusive of the 

relevant operational and marketing costs. I further assume that the long-run mean in-

vestment cost is based on the initial investment level. The volatility of the cost change 

is estimated to be 50%, and I use a risk-free annual discount rate of 7%. The mean 

reversion speed for the benefit and cost changes is assumed to be 0.1. Applying the 

Mean Benefit Change equation to Discounted Investment Value, the value of the sys-

tem is: 𝑉 = !!"#[!
!!!! !!!!!!!!!!" !!

!!!! !!!!!!!!!!" ]
!!(!!!!)

. Table 3.3 summarizes the 

parameter values for the base case in the m-payment infrastructure investment project.  

Table 3.3. Parameter Values for the M-Payment Investment Analysis 

 DESCRIPTION VALUE   DESCRIPTION VALUE 
I0 Initial investment cost $278,073,000  σB Benefit flow volatility 50% 
αI Cost reversion speed 0.10  σI Cost flow volatility 50% 
αB Benefit reversion speed 0.10  rf Risk-free discount rate 7% 

Bmax Maximum mean benefit  $162,755,000  f Transaction fee benefit      0.94% 
T Investment horizon 5 years  g Mean benefit growth rate  0.61 

Note: Dollar figures are stated in U.S. dollars. Transaction fee benefit and mean benefit growth rates are estimated 
with current data on Square’s transaction pricing and transaction growth (Crunchbase 2014). The cost and benefit 
flow volatilities are estimated based on Benaroch and Kauffman (2000). I computed the simulated results with 
thousands of dollars, and a natural logarithm value of 12 for maximum mean benefit, which is $162,755,000. The 
mean benefit growth parameter g was computed using Square transaction volumes for any two consecutive years 
based on 𝐥𝐧𝑩𝒕

𝐥𝐧𝑩𝒕!𝟏
= 𝟏!𝒆!𝒈𝒕

𝟏!𝒆!𝒈(𝒕!𝟏)
, which resulted in a value of 0.61. 

Table 3.4 shows the results of my evaluation of the m-payment system infrastruc-

ture project at the beginning of each period. These values were obtained by solving 

the corresponding partial differential equations. After eliminating the one-year lag, I 

only considered eight periods in the decision-making process. The values of the in-

vestment opportunity and the NPV were computed using the expected and realized 

values of benefit flows adjusted by the discounted investment cost. The NPV reached 
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its maximum value in November 2011, so it was optimal to invest in the project at 

that time. By evaluating this investment with my approach, I can deliver decision-

relevant insights on the firm’s commitment to this large-scale IT investment project. 

Table 3.4. Value of the Investment Opportunity, NPV, Cost and Benefit Flows 
PERIOD EXPECTED B EXPECTED I OPPORTUNITY V  B NPV 

Nov 2010 $1,000 $278,073,000 $80,824,000 $1,410,000 $70,085,000 
May 2011 $240,000 $268,670,000 $90,227,000 $7,529,000 $78,078,000 
Nov 2011 $4,709,000 $259,584,000 $99,081,000 $16,218,000 $79,889,000 
May 2012 $23,743,000 $250,806,000 $103,463,000 $37,872,000 $73,528,000 
Nov 2012 $57,186,000 $242,325,000 $90,529,000 $56,018,000 $47,851,000 
May 2013 $92,198,000 $234,130,000 $48,889,000 $77,815,000 $7,229,000 
Nov 2013 $119,517,000 $226,213,000 -$20,821,000 $98,592,000 -$50,372,000 
May 2014 $137,615,000 $218,563,000 -$110,398,000 $121,676,000 -$122,927,000 
Note: All dollar amounts are stated in U.S. dollars. Bold fonts indicate maximum values, and gray cell 
backgrounds indicate negative values for the respective variables. 

3.5  Model Extensions 

I next will evaluate the performance of my modeling approach with two extended 

analyses, and interpret the implications from them. I first will simulate a firm’s opti-

mal investment timing strategy and the best obtainable payoffs considering the effects 

of benefit and cost uncertainty from an IT project, and then perform an extensive sen-

sitivity analysis with respect to the key parameters of the model. Then I will employ 

the least-squares Monte Carlo (LSMC) valuation method to handle the scenarios in 

which an unexpected event may occur during the diffusion process. 

3.5.1  Simulation and Sensitivity Analysis 

I simulate a base case. One firm is considering adopting a technology, and in its 

decision-making, the firm knows the values of the key model parameters, as well as 

the extent of the uncertainty it must endure related to some of them. Appendix B pro-

vides the parameter values and simulation procedure.  
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Figure 3.4 shows the estimated NPV distribution and the optimal investment tim-

ing distribution for positive payoffs derived from this base case. The expected NPV is 

around $5,483,000 with a maximum of $24,222,000 and a minimum of -$1,872,000. 

The resulting value is sufficiently high for managers to appropriately make a “go” 

decision for this investment. It also indicates the high risk to realize the expected ben-

efits from the implementation. 

Figure 3.4. NPV and Optimal Investment Timing Distributions for the Base Case  

 

Discussion. I used a stochastic process to simulate cost and benefit changes over 

time. It allows the value of the investment opportunity to change continuously as new 

information arrives. In practice, the estimation of investment value raises the issue of 

rational expectations. The managers may not be able to assemble the information 

they need for decision-making all at once. There are costs and frictions associated 
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with sorting out what information is meaningful and action-relevant. Information pro-

cessing is difficult because managers will act based on interactions with other stake-

holders and uncertainties in the market. Their information processing is complicated, 

which may lead to inappropriate expectations and cause their action to be different 

from the model-recommended investment strategy. 

I offer the following: 

• Observation 1 (Deferring Technology Investments with Payoff-Relevant 
Information Revelation). A firm’s senior managers will benefit by being 
able to defer technology investment decisions based on appropriate expecta-
tions as information is revealed over time about future trends regarding 
technology standards and market conditions, as well as the volatility of in-
vestment costs and benefits.  

Another important managerial consideration is that a firm may wish to invest in 

technology at an early stage to gain first-mover advantage. Once a specific technolo-

gy solution has been successfully developed and adopted, it is likely to achieve strong 

network effects, as has been observed in the past couple years with Square’s add-on 

device to make payment card swiping possible via a mobile phone. The first-mover 

will be rewarded with high payoffs from developing the network. First-mover ad-

vantage will inevitably decrease though, and may even eliminate the flexibility that a 

firm may benefit from in dealing with uncertainty. Moreover, strong network effects 

tend to drive decision-makers toward making investment decisions earlier. Thus, the 

combination of first-mover advantage and strong network effects may hasten the de-

cision-making process of senior managers, and lead to pre-emptive investment strate-

gies that run the risk of an unexpected large value change occurring that may be dis-

advantageous (Clemons and McFarlan 1986, Kauffman and Kumar 2008, Mason and 

Weeds 2010). 
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To get to a deeper understanding of the insights that my modeling approach pro-

duces, I perturbed some key parameters and analyzed their impacts on the investment 

valuation and decision timing. (See Appendix C for a summary of the results of a 

comprehensive sensitivity analysis.) 

Effects of investment horizon T. To see if the investment horizon makes any dif-

ference on the best payoff and optimal timing distributions, I repeated the computa-

tions when the investment time horizon is shortened to 4 years or extended to 6 years 

from 5 years in the base case. (See Figures 3.5 and 3.6.) When T = 4 years, the ex-

pected best payoff is around $1,464,000, and the investment timing distribution tends 

toward an earlier optimal time compared to the base case. In contrast, if the invest-

ment opportunity expires in 6 years, the expected payoff will increase to around 

$8,933,000, and the investment timing will be more evenly distributed in the first 2 

years.  

When there is a longer decision-making period, the manager has more deferral 

time and flexibility to piece all the decision-relevant information together and process 

it for effective decision-making to achieve a higher payoff. In addition, it also extends 

the duration of perceiving benefit flows from the technology adoption and investment 

cost reversion to the long-term market level. My results suggest: 

• Observation 2 (Effects of Investment Horizon). When there is more flexi-
bility with the investment decision horizon, the firm is more likely to defer 
the technology investment decision for a longer period to create the poten-
tial to achieve a higher payoff. 

On the other hand, when the firm has to make decision with a shorter investment 

horizon, it reduces the benefits for dealing with the uncertainties and the flexibility 
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for the manager to make a value-maximizing decision. The pressure that arises due to 

the shorter decision horizon also hastens the firm’s time to adopt the technology.  

Figure 3.5. NPV and Optimal Investment Timing Distributions, T = 4 years 

 

Figure 3.6. NPV and Optimal Investment Timing Distributions, T = 6 years 

 

Effects of benefit volatility σB. The effects of benefit volatility on the payoff and 

timing distributions are illustrated in Figures 3.7 and 3.8 for two volatility levels, σB = 

25% and 75%, compared to 50% for the base case. When σB = 25%, the expected 

payoff is around $5,051,000 with a lower maximum and higher minimum compared 

to the benchmark. When σB = 75%, the payoff distribution exhibits a longer tail at 

the higher end, and the expected payoff will be around $6,233,000 with a higher max-

imum of $51,501,000 and more negative value of minimum of -$2,789,000. The tim-

ing distribution, however, is not affected by the volatility of benefit flows. The results 

suggest: 
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• Observation 3 (Effects of Benefits Volatility). When there are higher risk 
and volatility associated with future benefits from technology adoption, the 
firm will be able to achieve a higher return on investment, but there will be a 
greater likelihood of a large loss. 

High-risk technology projects can generate large benefits and returns for the in-

vesting firm due to improvement with decision analytics, process efficiency, and cus-

tomer engagement. On the other hand, large-scale IT commitments involve high 

monetary and personnel investments that cannot be reversed if the implementation 

fails to achieve expected performance and user acceptance in the market. This may 

result in large losses and a negative return on investment. 

Figure 3.7. NPV and Optimal Investment Timing Distributions, σB = 25% 

 

Figure 3.8. NPV and Optimal Investment Timing Distributions, σB = 75% 

 

Effects of speed of benefits reversion αB. I further examined the impact of the 

mean reversion property on valuation and investment timing by adjusting the speed of 
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benefit reversion. Figure 3.9 shows that when αB = 1.2, the expected payoff is around 

$2,416,000, which is less than half of that of the base case, and the distribution is 

more skewed to the positive side with a longer tail. When αB = 1.8 in Figure 3.10, the 

corresponding expected payoff will increase to around $7,770,000 with higher maxi-

mum and minimum. The resulting NPV distribution and the unchanged investment 

timing distribution motivate:  

• Observation 4 (Effects of Speed of Benefits Reversion). When the benefit 
flows revert to the equilibrium level at a faster speed, a higher return will be 
achieved from the investment. 

Figure 3.9. NPV and Optimal Investment Timing Distributions, αB = 1.2 

 

Figure 3.10. NPV and Optimal Investment Timing Distributions, αB = 1.8 

 

As a new technology infrastructure gains acceptance by market stakeholders and 

the installed base of users reaches critical mass, the firm will begin to see flows of 

various benefits from the technology investment. The faster the benefit flows reach 
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the equilibrium level, the higher will be the total returns on investment can be 

achieved within a certain time horizon. This is what has occurred for venture capital-

supported start-ups related to IT and companies that use initial public offerings of 

stocks for fast growth, such as Square’s exponential increase in transaction volume 

after multiple rounds of funding in the U.S. The sooner that firms acquire the needed 

capital and resources to build their customer base and market share, the greater re-

turns they will generate for their investors and shareholders. The mean reversion 

property of benefit flows from the technology investment thus appears to have a sig-

nificant impact on the investment returns.  

3.5.2  Least-Squares Monte Carlo (LSMC) Valuation 

The Black-Scholes-Merton framework assumes no external competitive or regu-

latory impacts on the benefit flows and future payoffs from the IT investment. Next, I 

will adopt Merton’s (1976) jump-diffusion thinking to extend my approach. This will 

allow me to incorporate a process that supports the inclusion of external impacts on 

future payoffs. A Poisson process is useful to represent the unexpected occurrence of 

rare events that will change the benefit flows drastically, causing the investment pay-

offs to jump. The benefit from the investment at time t + dt will be B(t + dt) = B(t) + 

(Y – 1) B(t)dq, given that a jump occurs between t and (t + dt), where (Y – 1) is a ran-

dom variable for the percentage change in investment value if the jump event occurs. 

The term dq will have the value of 0 with probability 1 - λdt, and the value of 1 with 

probability λdt, with λ as the mean number of jumps per unit of time: the value jump 

rate. 

The difficulty in applying the Black-Scholes model is that there is no obvious and 
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objective value for the underlying project, nor does the option value based on this 

model include a trend term in its solution. Also, the use of a twin security that mimics 

the discounted cash flow value of the underlying asset has been advocated to estimate 

the volatility of its value. To obtain a good proxy for the objective value of a project, 

it is appropriate to replicate the characteristics of a non-traded IT investment with 

something that is traded. An alternative way to do this is to construct a replicating 

portfolio of traded securities whose value and volatility also approximate those of the 

underlying asset.6  

The simulation-based LSMC method enables me to estimate the volatility of the 

project’s value, as well as to approximate the option value of the investment oppor-

tunity. This also allows me to estimate the optimal stopping rule for the investment 

option. If the value of the IT investment in the next period is greater than the value for 

the current period, then the firm should defer investing; otherwise, it should execute 

its technology investment project immediately. Similarly, LSMC also can be applied 

using a more complex jump-diffusion process. See Appendix D for the numerical so-

lution procedure. 

The results of my numerical valuation are around $3,202,000 for the case when 

there is no value jump λ = 0, and around $3,690,000 when a value jump occurs with 

                                                
6 This perspective has been best articulated by Robert Merton (1988, p. 326), in the 1998 American Economic 
Review article on the occasion of his December 1997 receipt of the Alfred Nobel Memorial Prize in Economic 
Sciences: “My principal contribution to the Black-Scholes option-pricing theory was to show that the dynamic 
trading strategy prescribed by Black and Scholes to offset the risk exposure of an option would provide a perfect 
hedge in the limit of continuous trading. That is, if one could trade continuously without cost, then following their 
dynamic trading strategy using the underlying traded asset and the riskless asset would exactly replicate the pay-
offs on the option. Thus, in a continuous-trading financial environment, the option price must satisfy the Black-
Scholes formula or else there would be an opportunity for arbitrage profits.” This is a useful perspective since it 
means that whether one uses a twin security or an equivalent portfolio of market-traded securities, the result will 
be the same: the characteristics of a non-securitized asset can be represented well enough and in a manner that is 
similar to what happens with real markets for assets that are thinly traded or lack liquidity (Amram and Kulatilaka 
2000). 
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the probability λ = 0.05. Thus the value of the investment opportunities is higher with 

a possibility of a value jump, holding fixed the expectation that the value jump mag-

nitude will be 0 across the different cases. This means that if a jump does not occur, 

the investment opportunity will be less likely to be deep in the money, and thus, the 

investment option will not be worthwhile to exercise when λ = 0. In the presence of 

the occurrence of a positive jump in value, the investment will be much more valua-

ble than it would have been otherwise. My results imply that a gain to the firm from 

dealing with uncertainty in the value of the investment still may not offset the overall 

effects of value jumps over time (Kauffman and Walden 2001). So a firm will have 

less incentive to keep the investment opportunity open and may wish to adopt a more 

aggressive posture with an early investment strategy. My simulation bears out this 

intuition.  
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4  Impact of the Mobile Channel in Omni-Channel Banking Services 

4.1  Introduction 

Given the rapid adoption of smartphones and tablets, and the widespread use of 

mobile banking apps, mobile devices have become the new tools of choice for cus-

tomers performing financial transactions. Mobile banking is a service that involves 

customers using a mobile device (e.g., smartphone, tablet, etc.) to obtain financial ac-

count information and conduct transactions with financial institutions. According to 

the Federal Reserve Board (2015), 87% of the U.S. adult population had a mobile 

phone and 71% of mobile phones were smartphones, while 39% of all mobile phone 

owners with a bank account made use of mobile banking in 2014. A survey by A.T. 

Kearney (2014) reported that 85% of banking executives viewed mobile banking as 

the cornerstone of their digital strategy going forward, and the mobile channel had 

become the customers’ first touchpoint for banking. Figure 4.1 indicates that 50% of 

financial institutions regulated by the Federal Deposit Insurance Corporation (FDIC) 

in the U.S. had adopted a mobile phone services channel, and 18% had launched a 

channel for tablet-based services as of the last quarter of 2015. 

The impact of the mobile channel on customer transactions in an omni-channel 

context for banking services remains an unexplored but important empirical setting. 

The omni-channel banking is a multi-channel approach that seeks to provide the cus-

tomer with seamless banking services whether the customer is banking from a PC or 

mobile device, by ATM, or in a branch. (See Figure 4.2 for an illustration of omni-

channel banking services). First, it is vital to understand how an omni-channel strate-

gy affects customer service demand. It is not only a strategic advantage but also a 
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competitive necessity for banks to understand customer cross-channel transaction be-

havior for providing a more robust customer experience and managing channels ef-

fectively. The complementarity and substitution patterns among the mobile phone, 

tablet and PC channels have not yet been documented in the context of financial ser-

vices (Bell et al. 2015, Xu et al. 2016). Second, the mobile channel provides custom-

ers with an additional touchpoint for acquiring financial account information, allow-

ing them to be the architects of what information they would like to receive and when 

they would like to receive it (Corbat and Kirkland 2015). As a result, customers ob-

tain more information about relevant service offerings and attributes, and exhibit dif-

ferent banking behaviors equipped with more information for financial decision-

making (Li et al. 2014).  

Figure 4.1. Mobile Banking Channel Adoption in the U.S. 

 

Source: Apple iTunes App Store and Federal Deposit Insurance Corporation (FDIC). Percentage was calculated 
based on 6,589 financial institutions that represent all the members of FDIC in the U.S. Data as of December 31, 
2015.  

I acquired access to a large-scale dataset of customer-level transactions from a fi-

nancial institution in the U.S.  My goal was twofold: (1) to document the impact of 
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the mobile channel on customer service demand across the digital channels, and (2) to 

assess the change in customer financial decision-making that arose from the use of 

the mobile channel.7 In particular, I utilized customer transaction records through the 

mobile phone, tablet and PC channels to examine the complementarity and substitu-

tion among different digital channels, and explore the relationship between the use of 

the mobile channel and financial charges related to customers’ demand deposit and 

credit card accounts. To reduce selection bias, I applied a propensity score matching 

approach to construct control and treatment groups of customers with a similar pro-

pensity to adopt a mobile device. 

Figure 4.2. Omni-Channel Banking Services 

 

Note: The classification of banking service channels is based on Xue et al. (2007). Mobile banking channels in-
clude both the mobile phone and tablet channels.  

I ascertained the effect of the use of the mobile channel on increasing customer 

demand for services through digital channels. Second, customers who lived in an area 

with a lower density of ATMs and a higher density of branches had higher services 

demand through all of the digital channels. Third, I found that the mobile phone 

                                                
7 An earlier version of this study was presented at the 2015 International Conference on Mobile Busi-
ness in Texas (Liu et al. 2015a). 
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channel complemented the PC channel, the tablet channel substituted for the PC 

channel, and the mobile phone channel and the tablet channel were complementary to 

one another. Such insights enable banks to understand customer channel usage pat-

terns, and target those customer segments that are more active and profitable. My re-

sults indicated that customers acquired more information for financial decision-

making following the use of the mobile channel and also that, compared to PC-only 

users, mobile phone and tablet users were less likely to incur overdraft and credit card 

penalty fees. 

This study contributes to the literature on banking services in two ways. First, I 

conducted this research in the omni-channel context of financial services, including 

all of the digital and physical channels (Hernando and Nieto 2007, Patrício et al. 

2003). The research on mobile banking has mostly been made up of survey-based 

studies on the factors that influence customer adoption and usage, such as customer 

intention to use, trust and risk perceptions, and service- and firm-specific attributes 

(Kim et al. 2009, Lee and Chung 2009, Luarn and Lin 2005, Luo et al 2010, Zhou et 

al. 2010). Without actual observations of customer transactions, survey-based data 

analysis may introduce measurement error and limit the results to what is perceptible 

to customers (Xue et al. 2011). This study overcomes the challenge of the lack of re-

liable and multi-channel transaction data to examine customer service demand and 

measure how the use of the mobile channel influences transaction migration across 

channels.  

Second, I explored how the mobile channel affected customer financial decision-

making. Overdraft and credit card penalty fees act as important sources of revenue in 
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retail banking. Customers paid fees of $32 billion on automatic overdraft loans in 

2012 in the U.S. (Oldshue 2013). Customers seem only to pay limited attention to 

their financial information due to the high cost of monitoring (Card et al. 2011), and 

their rational inattention to their account balances, payment due dates or credit lines 

may result in financial charges for overdraft on their accounts, paying fees late, or 

overspending on their credit card accounts (Sims 2003). Customers are utilizing mul-

tiple screens to monitor their account balances and activities, and making payments 

through multiple devices. Given that customers perform more inquiries following the 

adoption of the mobile channel, this ability to easily access and evaluate complete 

financial information will better inform their financial decision-making (Stango and 

Zinman 2014). By examining changes in overdraft and credit card penalty fees that 

customers incurred, I was able to investigate how the use of the mobile channel influ-

enced customer financial behavior.  

4.2  Prior Literature 

4.2.1  Channel Complementarity and Substitution 

A related stream of research in e-commerce and advertising has investigated the 

substitutive and complementary patterns between digital and physical retail channels 

(Ansari et al. 2008, Bell et al. 2016, Brynjolfsson et al. 2009, Forman et al. 2009, 

Kumar et al. 2014, Weltevreden 2007). When a bricks-and-mortar store opens near 

where customers live, and the new physical channel provides additional utility, cus-

tomers will substitute away from online purchasing. Forman et al. (2009) explained 

that the disutility costs of purchasing online are significant and that offline transporta-

tion costs matter. Goldfarb and Tucker (2011) also identified a substitutive pattern 
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between online and offline advertising. However, Kumar et al. (2014) argued that the 

opening of a physical store reduced customers’ store access costs and resulted in: a 

higher number of store purchases and returns; a higher number of, more diverse, and 

more expensive online purchases; and a higher number of net total purchases through 

all the channels combined. Bell et al. (2015) further showed that putting a showroom 

into a market induced customer migration and had a significant impact on channel 

sales and operational efficiency.  

Among the digital channels, there is either a complementary or substitutive rela-

tionship when customers are exposed to multiple sources of information (Xu et al. 

2016). Yang and Ghose (2010) examined the impact of search engine advertising on 

consumers’ responses in the presence of organic listings of the same firm, and sug-

gested that the click-throughs on organic listings had a positive effect on the click-

throughs on paid listings, and vice versa. Ghose et al. (2013) attributed the difference 

in browsing behavior between mobile phones and PCs to the higher search costs of 

using mobile phones. Ghose et al. (2015) argued that the complementarity between 

web and mobile advertisements simultaneously improved web click-through rates, 

mobile click-through rates and web conversion rates, but negatively influenced the 

mobile conversion rate.  

An emerging stream of literature has examined the impact of mobile channel in-

troduction on omni-channel retailing. Bang et al. (2013) argued that the performance 

impact of mobile channel introduction depended critically on product characteristics 

and the fit between channel and product. Xu et al. (2016) quantified the economic 

impact of tablet introduction on sales volumes and revenues, and the results suggest 
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that the tablet channel acted as a substitute for the PC channel and a complement to 

the smartphone channel. The literature on banking service channels primarily has fo-

cused on the complementarity and substitution between digital and physical channels 

(Campbell and Frei 2010, Hernando and Nieto 2007). I contribute by demonstrating 

the relationship among mobile phone, tablet, and PC channels in the omni-channel 

context of banking services, which will deliver significant implications for bank’s IT 

investment and channel management. 

4.2.2  Impact of Channel Adoption in Banking Services 

There is a rich literature on the impact of online banking adoption on customer’s 

service demand and channel usage. Hernando and Nieto (2007) argued that the online 

channel acted as a complement to, rather than a substitute for physical branches. 

Geng et al. (2015) provided evidence for customer channel migration. They found 

that branch closures increased customer transactions through online channels, but de-

creased customer transaction-making through other physical channels. Campbell and 

Frei (2010) argued that customer adoption of online banking was associated with: (1) 

substitution for more costly self-service channels (ATM and voice-response unit); (2) 

augmentation of service consumption through the full-service channels (branches and 

call center); (3) a substantial increase in total transaction volume; (4) an increase in 

service cost; and (5) a decrease in short-term customer profitability.  

Prior research has focused on the impact of self-service channel adoption on cus-

tomer profitability, loyalty, and cross-selling opportunities in retail banking (Camp-

bell and Frei 2010, Xue et al. 2011). Hitt and Frei (2002) explored the difference in 

characteristics or behavior between customers who used electronic service delivery 
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channels and those who used conventional channels, and argued that online banking 

users tended to use more products and were more profitable. Xue et al. (2007) further 

explored channel usage and suggested that higher customer efficiency in self-service 

channels was associated with greater profitability and had a complex relationship 

with customer retention and product utilization. Xue et al. (2011) studied the determi-

nants and outcomes of Internet banking adoption, and argued that customers who had 

greater service demand and higher efficiency, and lived in the areas with a greater 

density of online banking adopters, were faster to adopt Internet banking. In addition, 

customers increased their banking activities, acquired more products, and conducted 

more transactions in the post-adoption stage. I continue in the same vein of analyzing 

customer-level transaction data to measure the actual use of the mobile channel in 

retail banking.  

4.2.3  Customer Financial Decision-Making 

Information and communications technologies enable electronic service delivery 

channels for financial services and provide greater information availability (Clemons 

2008, Li et al. 2014). Following their adoption of the mobile channel, customers will 

obtain more information in the presence of lower search costs (Bakos 1997). Prior 

research suggests that limited attention would hinder individuals from acquiring and 

using the available information for financial decision-making (DellaVigna 2009, 

Hirshleifer et al. 2009, Hong and Stein 1999). In addition, decision-makers’ rational 

inattention makes them choose which information to attend to carefully, and which 

information to ignore (Lee et al. 2009, Sims 2003, Wiederholt 2010). Stango and 

Zinman (2014) showed that paying fees is affected by customer attentions that con-
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tained no information about recent behavior or the structure of fees for a particular 

customer type. Karlan et al. (2016) suggested that informative reminders might in-

crease savings in deposit accounts and be more effective if they increased the salience 

of a specific expenditure. It is essential to understand how greater information availa-

bility following mobile channel adoption affects customer behaviors towards paying 

fees.  

There is a dearth of empirical research explaining why customers overdraft on 

their accounts, make late credit card payments, and overspend their account limit, re-

sulting in penalty charges (Agarwal et al. 2008, Liu et al. 2015c). Stango and Zinman 

(2014) stated that decision-making without full information and limited attention 

could explain customer overdraft behavior. Liu et al. (2015c) suggested that mobile 

alerts might help customers to avoid balance perception errors and to prevent over-

draft fees incurred by making fewer low-balance debit transactions and cancelling 

automatic recurring withdrawals. Agarwal et al. (2008) studied credit card cash ad-

vance, late payment, and over-limit charges, and found that consumer learning 

through paying a fee was effective in avoiding the triggering of future fees. Stango 

and Zinman (2009) suggested that customers who used different cards at the point of 

sale and repaid credit card debt with the available checking balance could largely 

avoid over-limit and late payment charges.  

4.3  Development of Hypotheses  

I next develop hypotheses related to the impact of the mobile channel on custom-

er service demand and financial decision-making.  
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4.3.1  Service Demand 

The digital channels in banking services enable customers to access account in-

formation, transfer money between accounts, and make payments using PCs and mo-

bile devices. Transactions made through mobile phones, tablets, and PCs are all digi-

tal banking transactions. Some of the related literature used customer account, trans-

action, demographic, profitability, retention, and channel density information to in-

vestigate the drivers of Internet banking adoption (Campbell and Frei 2010, Xue et al. 

2011). The findings suggest that Internet banking adoption has a substantial augmen-

tation effect for the adopters. In e-commerce, Xu et al. (2016) showed that the intro-

duction of a new tablet channel enhanced Taobao’s sales volumes, and customers 

tended to transact more when a tablet was used with a PC, a smartphone, or both. 

Given that mobile devices have been widely adopted, and mobile networks have be-

come ubiquitous, customers can access their bank accounts using mobile phones or 

tablets anytime and anywhere, and thus I suggest:  

• Hypothesis 1 (Augmentation Effect of the Mobile Channel). The total 
number of transactions through all of the digital channels increases fol-
lowing the use of the mobile channel. 

4.3.2  Channel Complementarity and Substitution 

In the past several decades, banks bore heavy financial costs for developing their 

physical and electronic banking networks (Kauffman et al. 2015b). Prior research 

suggests that convenience was the main motivator for customer use of a new channel 

(Lichtenstein and Williamson 2006, Cheng et al. 2006), and the relative inconven-

ience of alternative channels may have promoted new channel usage (Ramsay and 
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Smith 1999). Previous studies found that greater branch density was associated with 

more online banking activities due to greater awareness and customer engagement, 

and greater product use following online banking adoption (Xue et al. 2007, Xue et 

al. 2011). Forman et al. (2009) argued that the offline density of physical locations 

affected customers’ online activities. When the cost of a customer travelling to a 

physical location is much higher than accessing the same service using a mobile 

phone, tablet, or PC, the availability of ATMs may influence customer use of digital 

banking channels (Kumar et al. 2014). 

The mobile phone channel offers ubiquitous network access, provides instantane-

ous banking account access, and facilitates immediate interactions (Xu et al. 2016, 

Jung et al. 2014, Venkatesh et al. 2003). Thus the mobile phones are often used for 

banking while customers are on the move. The two-factor authentication approach 

using short message services (SMS) also makes the mobile phone channel a comple-

ment to the PC channel for acquiring account information and conducting financial 

transactions. However, the typical small screen size of mobile phones limits naviga-

tion and input capability (Chae and Kim 2004). The larger screen size of most tablets 

compared to mobile phones and the higher portability compared to PCs may suggest 

that tablets may substitute for the PC channel. When a customer has access to both a 

PC and a tablet, they may regularly use the tablet channel for mobile banking ser-

vices. Thus, I propose the following: 

• Hypothesis 2A (Influence of Physical Channel Density). Customers 
who live in an area with a lower density of ATMs and a higher density of 
branches have higher service demand through all of the digital channels.  

• Hypothesis 2B (Channel Complementarity and Substitution). The mo-
bile phone channel complements the PC channel, and the tablet channel 
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acts as a substitute for the PC channel. 

4.3.3  Customer Inquiry 

Most banks have already launched mobile banking apps and mobile alerts to sup-

port increased information monitoring and active account management by their cus-

tomers (Campbell and Frei 2010). The mobile channel provides an additional touch-

point for customers, and increases information availability (Granados et al. 2012, Li 

et al. 2014). This facilitates more inquiries about account balances, monthly state-

ments, financial charges, payment due dates, and available credit. I measured how 

much customers knew about their financial status using the number of inquiry trans-

actions. I examine the following: 

• Hypothesis 3 (Mobile Channel and Customer Inquiry). The use of the 
mobile channel increases a customer’s inquires about their accounts.  

4.3.4  Customer Financial Decision-Making 

Overdraft and credit card penalty fees are important sources of revenue for banks. 

But lenders face the challenges of how to mitigate customer dissatisfaction and anger. 

In the U.S., an overdraft occurs when money is withdrawn from a bank account by 

check, by ATM, or by debit card at the point of sale, resulting in a negative account 

balance. The main reasons for customer overdrafts include the customer’s intentional 

decision to take a short-term loan at a higher price than might otherwise be available, 

and negligence with respect to check payments and other electronic funds transfers 

and automated payments. Liu et al. (2015c) argued that customers who were uncer-

tain about their current balance might accidentally overdraft on their accounts. So 

given the greater information availability from the mobile channel, I assert:  
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• Hypothesis 4 (Mobile Channel and Overdraft Frequency). Use of the 
mobile channel reduces a customer’s overdraft frequency.  

Easier access to information may affect customer financial decision-making fol-

lowing mobile banking adoption, so I expect that customers who use the mobile 

channel will be less likely to incur credit card penalty fees. An over-limit fee is 

charged when a customer’s monthly credit card balance exceeds its credit limit, and a 

late payment fee is charged to a cardholder who misses making the minimum pay-

ment by the payment deadline.8 Thus, I assert the following:  

• Hypothesis 5A (Mobile Channel and Over-Limit Charge). Customers 
who use the mobile channel are less likely to incur over-limit charges. 

• Hypothesis 5B (Mobile Channel and Late Payment Charge). Custom-
ers who use the mobile channel are less likely to incur late payment 
charges. 

The hypotheses are summarized in Figure 4.3. 

Figure 4.3. Conceptual Framework 

 

                                                
8 Definitions are available at CreditCards.com: http://www.creditcards.com/glossary/term-overlimit-
fee.php and http://www.creditcards.com/glossary/term-late-payment-fee.php.  
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4.4  Research Context, Data and Preliminary Evidence 

I next provide an overview of my research context and data, and preliminary evi-

dence of the impact of the mobile channel on customer multi-channel transactions. 

4.4.1  Research Context and Data  

I acquired access to a large-scale anonymized dataset of customer-level transac-

tions from a financial institution in the U.S. that serves customers throughout the 

country via branches, ATMs, and digital service delivery channels, such as telephone 

banking, Internet banking, and mobile banking. It provides a variety of banking prod-

ucts and services to meet customer financial needs, and is among the first financial 

institutions to have invested in Internet banking and mobile banking innovations. The 

institution launched mobile banking and personal financial management mobile apps 

to support its business, and made them available via the Apple and Android online 

app stores to assist customers who wanted to make more transactions and avoid un-

necessary fees.  

I collected data for more than 190,000 customers who made at least one banking 

transaction through digital channels from April to June 2013. On average, each cus-

tomer performed 73.9 digital transactions per month, including inquiry, service, ex-

ternal transfer, and maintenance transactions. In this sample, approximately 22.6% 

and 12.0% of customers conducted at least one transaction using a mobile phone and 

a tablet, respectively. In total, customers cumulatively performed more than 43 mil-

lion transactions in three months, of which only 3.4% were through mobile phones 

and 1.9% through tablets. 
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The anonymized data contained basic customer demographic information, such as 

on-file date, income level, residential zip code, etc. I operationally defined physical 

channel density as the number of bank branches and ATMs within each of nearly 

25,000 zip code areas. I obtained information on demand deposit and credit card ac-

counts for the monthly customer overdraft frequencies, and the charges of over-limit 

and late payment fees. In the sample, nearly 16.0% of customers incurred at least one 

overdraft penalty, while only 0.7% and 3.6% of credit card customers had an over-

limit charge or a late payment charge, respectively. Most customers only overdraft on 

their accounts less than three times per month. Other information included customer 

current and historical deposit account balances, credit card statement balances, lines 

of credit, minimum payment amounts, average number of transactions, etc. Table 4.1 

provides a detailed description of the main variables in my analyses.  

4.4.2  Propensity Score Matching and Preliminary Evidence 

I view the use of a mobile device as the treatment that the customer receives, and 

assume a customer’s decision to use a mobile phone or a tablet is based on the per-

son’s characteristics, such as demographics and income level, availability of alterna-

tive physical channels, and historical banking behavior. However, mobile banking 

users may be more tech-savvy and likely to use mobile devices for banking, and have 

higher digital service demands. Thus, when comparing the differences in customer 

behavior between users and non-users, self-selection to adopt a mobile device might 

result in biased estimates of the impact of the mobile channel. To control for the po-

tential selection bias, I applied a one-to-one static propensity score matching method 

to select a pair of treated and untreated customers with a similar probability of receiv-
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ing a treatment from the same state of the U.S., based on their individual characteris-

tics (Kumar et al. 2014, Mithas and Krishnan 2009, Rosenbaum and Rubin 1983, 

Smith and Telang 2009). (See Appendix E for the detailed matching procedure and 

results). 

Table 4.1. Variable Definition and Summary Statistics 
VARIABLE DEFINITION NO. OF 

OBS. 
MEAN STD. 

DEV. 
MIN MAX 

# Transactions Total number of monthly transactions through 
mobile phones, tablets and PCs 583,488 73.91 143.75 1 38,435 

Mobile 1 if a mobile phone is used in a month, 0 oth-
erwise  583,488 0.15 0.36 0 1 

Tablet  1 if a tablet is used in a month, 0 otherwise  583,488 0.08 0.27 0 1 
# Inquiries Number of monthly inquiry transactions 583,488 66.37 133.72 0 38,435 
# External  
Transfers 

Number of monthly external transfer transac-
tions 583,488 2.60 5.11 0 242 

# Services Number of monthly service transactions 583,488 4.92 16.30 0 927 
# Maintenance Number of monthly maintenance transactions 583,488 0.02 0.15 0 17 

# Mobile Number of monthly transactions through mo-
bile phones 583,488 2.48 11.66 0 917 

# Tablet Number of monthly transactions through tab-
lets 583,488 1.37 9.03 0 857 

# PC Number of monthly transactions through PCs 583,488 70.05 141.45 0 38,430 

Current Balance Balance on deposit account at the end of a 
month (in thousands) 583,488 14.64 64.77 -8.98 16,863.83 

Average Balance 
Average balance on deposit account in the 
previous 12 months (Apr 2012-Mar 2013) (in 
thousands) 

194,493 12.50 65.74 -2.22 26,948.76 

Average # of 
Transactions 

Average number of transactions through digital 
channels since the customer came on file 194,493 53.30 60.98 1 14,818.23 

Tenure Number of years since the customer came on 
file 194,493 12.51 10.87 0 113.42 

Low Income Identifier of low income customer 194,493 0.13 0.34 0 1 

Branch Density Number of branches in a zip code area (end of 
month) 583,488 1.26 1.14 0 6 

ATM Density Number of ATMs in a zip code area (end of 
month) 583,488 10.81 12.89 0 173 

Overdraft  
Frequency Number of overdraft transactions in a month 583,488 0.16 0.69 0 18 

Over-limit Charge 1 if a customer incurred an over-limit charge in 
a month, 0 otherwise 129,902 0.007 0.083 0 1 

Late Payment 
Charge 

1 if a customer incurred a late payment charge 
in a month, 0 otherwise 129,902 0.029 0.167 0 1 

Last Statement 
Balance 

Balance for the last credit card account state-
ment (in thousands)  129,902 2.51 4.03 -13.00 61.72 

Last Statement 
Min Payment 

Minimum payment for the last credit card 
account statement (in thousands) 129,902 0.22 1.16 0 37.91 

Credit Line Line of credit for a customer’s credit card 
account (in thousands) 129,902 12.83 11.28 0 254 

# Cards Number of credit cards a customer holds 129,902 1.33 0.51 1 11 
Average Statement 
Balance 

Average credit card statement balance in pre-
vious 12 months (in thousands) 129,902 2.61 3.69 -1.42 51.61 

I next provide preliminary evidence for the impact of the mobile channel on cus-

tomer service consumption through all of the digital channels. I compared the average 
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number of total and different types of transactions among three groups of customers 

that were matched by the propensity scores of using a mobile phone: (1) customers 

who transacted through the PC channel only, (2) customers who transacted through 

the PC and mobile phone channels, and (3) customers who transacted through the PC, 

mobile phone, and tablet channels (Xu et al. 2016). Figure 4.4 shows that the average 

number of total transactions increased by 7% from Group 2 over Group 1 when a 

mobile phone was used, and increased by 36% from Group 3 over Group 1 when a 

mobile phone and a tablet were used. The differences in the numbers of total and dif-

ferent types of transactions among the three groups were all statistically significant at 

a 95% confidence interval, except the difference in numbers of service transactions 

between Group 1 and Group 3. To protect the confidentiality of customer banking 

information, I masked the actual numbers of transactions by normalizing the numbers 

in Group 1 to 1. 

Figure 4.4. Monthly Average Transactions for Each Type 
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Figure 4.5 shows the hourly shares of transactions for each channel over the time 

span of a day (00:00 to 23:00 hours). I aggregated the number of transactions at each 

hour for each channel, and plotted the hourly shares of transactions through mobile 

phones, tablets, and PCs. The temporal difference in customer transaction-making 

using mobile devices suggested the ubiquity and portability features of the mobile 

channel compared to the PC channel. In Figure 4.5, the trend lines for the three chan-

nels moved in the same directions during working hours (8:00 to 16:00). During 

commuting hours (6:00 to 8:00 and 16:00 to 18:00), the share of mobile phone and 

tablet transactions steadily outweighed the share of PC transactions. When the cus-

tomers were at home (18:00 to 21:00), the share of tablet transactions started climbing 

while the share of mobile phone and PC transactions continued to drop sharply, sug-

gesting that customers tended to use tablets for banking while at home.   

Figure 4.5. Hourly Shares of Transactions for Each Channel 
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4.5  Research Methodology 

I use the matched samples generated by the procedure described in Appendix E to 

examine the impact of the mobile channel on customer service demand and overdraft 

frequency. Since not every customer had credit card accounts, I constructed a similar 

sample containing a subset of customers to test the Mobile Channel and Over-Limit 

Charge Hypothesis (H5A) and Mobile Channel and Late Payment Charge Hypothesis 

(H5B). The unit of analysis was customer-month. 

4.5.1  Service Demand and Customer Inquiry 

The basic approach to testing the Augmentation Effect of the Mobile Channel 

Hypothesis (H1), Influence of Physical Channel Density Hypothesis (H2A), Channel 

Complementarity and Substitution Hypothesis (H2B), and Mobile Channel and Cus-

tomer Inquiry Hypothesis (H3) was to measure the extent to which the service de-

mand and customer inquiry were influenced by the use of the mobile channel. I exam-

ined the impact of the use of a mobile device on the number of transactions through 

each channel and all three channels combined, as well as on the number of inquiry 

transactions through all of the digital channels. To examine the effect of physical 

channel density, I included in the regression models the counts of branches and 

ATMs within the same zip code of a customer’s primary residence.  

There are two key issues related to the econometric specification: (1) the number 

of transactions for a given customer was discrete and over-dispersed, with a variance 

larger than the mean; and (2) the unobservable heterogeneity across customers, such 

as different demographic characteristics and capabilities for accessing their banking 
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information and accounts with mobile technology, needed to be controlled for 

(Campbell and Frei 2010). The negative binomial regression model is often used to 

deal with over-dispersed count data (Hilbe 2011). I performed a Hausman specifica-

tion test for the null hypothesis that both of the fixed-effects and random-effects esti-

mators were consistent, and I failed to reject the hypothesis. So I used a random-

effects negative binominal model due to the high efficiency (Kauffman et al. 2012). I 

assumed individual customers differed randomly in a manner that was not fully ac-

counted for by observed covariates. I modeled the probability of observing yit transac-

tions for customer i in month t as: 

𝐸(𝑦!") = 𝑒𝑥𝑝(𝛽! + 𝛽!𝑀𝑜𝑏𝑖𝑙𝑒!" + 𝛽!𝑇𝑎𝑏𝑙𝑒𝑡!" + 𝛽!𝑀𝑜𝑏𝑖𝑙𝑒!"×𝑇𝑎𝑏𝑙𝑒𝑡!"

+ 𝛽!𝐴𝑇𝑀𝐷𝑒𝑛𝑠𝑖𝑡𝑦!" + 𝛽!𝐵𝑟𝑎𝑛𝑐ℎ𝐷𝑒𝑛𝑠𝑖𝑡𝑦!" + 𝜙𝑋!" + 𝛿!), 

where 𝛿! is the customer-specific random effect. Also, 𝑋!" is a vector of time-varying 

control variables, including the customer’s balance in the deposit account at the end 

of a month (Current Balance), the number of monthly transactions by type (# Exter-

nal Transfers, # Services, # Maintenance), binary variables indicating whether a cer-

tain type of transaction has been made within a month (External Transfer, Service, 

Maintenance), month dummies (Apr, May), etc. I added in the interaction term, Mo-

bile×Tablet, to test that the effect of using one mobile channel is different if the other 

mobile channel was used. The coefficients 𝛽! to 𝛽! captured the effects of using a 

mobile phone or a tablet on service demand in the digital channels, and 𝛽! and 𝛽! 

captured the how the ATM and branch channel density affected customer transaction-

making.  
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4.5.2  Overdraft and Credit Card Penalty Fees 

I tested the Mobile Channel and Overdraft Frequency Hypothesis (H4) using a 

similar approach. However, the dependent variable, Overdraft Frequency, displayed 

more zeros than would be expected under a negative binominal model. To deal with 

these issues, I applied a zero-inflated negative binominal model for the observations 

that were generated by two possible processes. For a given customer i, one process 

generated zeros with a probability of 𝜑!, while the other process generated data from 

a negative binominal model with probability 1− 𝜑!. The probability 𝜑! depended on 

the characteristics of customer i, which was a vector of time-invariant zero-inflated 

variables, 𝑧!, including Tenure, Low Income, Average # of Transactions, Average 

Balance, enrollment of overdraft protection (Overdraft Protection), etc. I tested H4 

using the following specifications for the process that generated data from a negative 

binominal model: 

𝐸(𝑂𝑣𝑒𝑟𝑑𝑟𝑎𝑓𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦!")

= 𝑒𝑥𝑝(𝛽! + 𝛽!𝑀𝑜𝑏𝑖𝑙𝑒!" + 𝛽!𝑇𝑎𝑏𝑙𝑒𝑡!" + 𝛽!𝑀𝑜𝑏𝑖𝑙𝑒!"×𝑇𝑎𝑏𝑙𝑒𝑡!"

+ 𝛽!𝐴𝑇𝑀𝐷𝑒𝑛𝑠𝑖𝑡𝑦!" + 𝛽!𝐵𝑟𝑎𝑛𝑐ℎ𝐷𝑒𝑛𝑠𝑖𝑡𝑦!" + 𝛽!𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒!"

+ 𝛽!#𝑇𝑟𝑎𝑛𝑠𝑐𝑡𝑖𝑜𝑛𝑠!")(1− 𝜑!) 

For the Over-Limit Charge and Late Payment Charge, I applied logistic regres-

sion for rare events to deal with binary dependent variables with dozens of times 

fewer ones than zeros (King and Zeng 2001). I tested H5A and H5B with: 
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𝑃𝑟(𝑂𝑣𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝐶ℎ𝑎𝑟𝑔𝑒!" = 1| ∙)

= 𝐹(𝛽! + 𝛽!𝑀𝑜𝑏𝑖𝑙𝑒!" + 𝛽!𝑇𝑎𝑏𝑙𝑒𝑡!" + 𝛽!𝑀𝑜𝑏𝑖𝑙𝑒!"×𝑇𝑎𝑏𝑙𝑒𝑡!"

+ 𝛽!𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒!" + 𝛽!
𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒!"

𝐶𝑟𝑒𝑑𝑖𝑡𝐿𝑖𝑛𝑒!"

+ 𝛽!#𝐶𝑎𝑟𝑑𝑠!" + 𝜙𝑍!); 

𝑃𝑟(𝐿𝑎𝑡𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝐶ℎ𝑎𝑟𝑔𝑒!" = 1| ∙)

= 𝐹(𝛽! + 𝛽!𝑀𝑜𝑏𝑖𝑙𝑒!" + 𝛽!𝑇𝑎𝑏𝑙𝑒𝑡!" + 𝛽!𝑀𝑜𝑏𝑖𝑙𝑒!"×𝑇𝑎𝑏𝑙𝑒𝑡!"

+ 𝛽!𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒!" + 𝛽!𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑃𝑎𝑦𝑚𝑒𝑛𝑡!"

+ 𝛽!
𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒!"

𝐶𝑟𝑒𝑑𝑖𝑡𝐿𝑖𝑛𝑒!"
+ 𝛽!#𝐶𝑎𝑟𝑑𝑠!" + 𝜙𝑍!), 

where the Last Statement Balance/Credit Line captures a customer’s monthly spend-

ing level, and Zi is a vector of time-invariant control variables, including Tenure, Low 

Income, average monthly spending level (Average Statement Balance/Credit Line), 

etc.  

4.6  Empirical Results  

I estimated the regression models using a maximum (penalized) likelihood esti-

mator.9 I summarize the main results for the impact of using mobile phones and tab-

lets in Table 4.2a and Table 4.2b. 

                                                
9 I used the TCOUNTREG and LOGISTIC procedures in SAS for the panel estimation of count and 
logistic regression models.  
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Table 4.2a. The Impact of the Mobile Phone Channel on Customer Behavior 

 (1) # TRANSAC-
TIONS 

(2) # INQUIRIES (3) # PC  (4) # TABLET  
 

(5) OVERDRAFT 
FREQUENCY  

(6) OVER-LIMIT 
CHARGE 

(7) LATE PAY-
MENT CHARGE 

Mobile 0.279*** (0.003) 0.308*** (0.004) 0.074*** (0.004) 0.149*** (0.015) 0.385*** (0.015) -0.230* (0.138) 0.371*** (0.082) 
Tablet  0.220***  (0.005) 0.283*** (0.006) -0.018*** (0.006)  -0.057* (0.030) -0.528** (0.263) 0.279** (0.141) 

Mobile×Tablet -0.061***  (0.008) -0.081*** (0.009) 0.068*** (0.009)  0.109*** (0.042) -0.342 (0.495) -0.275 (0.214) 
ATM Density -0.003*** (0.000) -0.002*** (0.000) -0.002*** (0.000) -0.010*** (0.001) -0.001*** (0.001)   

Branch Density 0.014*** (0.002) 0.010*** (0.003) 0.014*** (0.003) 0.085*** (0.011) -0.007 (0.011)   
External Transfer 0.401*** (0.003)  0.417*** (0.003) 0.284*** (0.015)    

Service 0.577*** (0.003)  0.634*** (0.003) 0.311*** (0.014)    
Maintenance 0.196*** (0.009)  0.204*** (0.009) 0.163** (0.046)    

# External Transfers  0.025*** (0.000)      
# Services  0.006*** (0.000)      

# Maintenance  0.160*** (0.006)      
log(Current Balance) 0.018*** (0.001) 0.039*** (0.001) 0.023*** (0.001) 0.104*** (0.004) -0.270*** (0.003)   
log(# Transactions)     0.169*** (0.006)   

log(Last Statement Balance)      0.788*** (0.082) -0.862*** (0.030) 
log(Last Statement Min Payment)       1.520*** (0.030) 

Last Statement Balance/Credit Line      14.628*** (0.533) 2.902*** (0.208) 
Tenure     0.120*** (0.011) 0.051 (0.118) 0.166*** (0.060) 

Low Income     -0.105*** (0.021) 0.404** (0.171) 0.246*** (0.104) 
log(Average # of Transactions)     -0.008*** (0.001)   

log(Average Balance)     0.040*** (0.000)   
Overdraft Protection     0.081*** (0.016)   

Average Statement Balance/Credit Line      1.702*** (0.106) -0.213*** (0.207) 
# Cards      -0.493*** (0.165) -0.473*** (0.094) 

Apr -0.096*** (0.003) -0.072*** (0.003) -0.100*** (0.003) -0.134*** (0.013) -0.118*** (0.014) 0.046 (0.156) -0.038 (0.092) 
May -0.300*** (0.003) -0.294*** (0.003) -0.314*** (0.003) -0.262*** (0.014) 0.216*** (0.014) -0.029 (0.157) -0.018 (0.091) 

Number of Observations 244,118 244,118 244,118 244,118 244,118 129,902 129,902 
Note: each column represents a separate regression, and the column header is the dependent variable. The dependent variables for regressions (1)-(5) are the count of customer monthly transac-
tions, and the dependent variables for regressions (6) and (7) are binary indicators for incurrence of a credit card penalty fee in a month. Robust standard errors are in parentheses. Significance 
level: * p<0.1; ** p<0.05; *** p<0.01. I marked the estimates of zero-inflation variables with cells that have a gray background. Last Statement Balance/Credit Line and Average Statement Bal-
ance/Credit Line are percentage values. The unit of analysis is at the customer-month level. 

` 
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Table 4.2b. The Impact of the Tablet Channel on Customer Behavior 

 (1) # TRANSAC-
TIONS 

(2) # INQUIRIES (3) # PC  (4) # MOBILE 
 

(5) OVERDRAFT 
FREQUENCY  

(6) OVER-LIMIT 
CHARGE 

(7) LATE PAY-
MENT CHARGE 

Mobile 0.340*** (0.006) 0.353*** (0.006) 0.148*** (0.006)  0.494*** (0.026) -0.157 (0.241) 0.478*** (0.127) 
Tablet  0.182***  (0.005) 0.228*** (0.005) -0.069*** (0.005) 0.089*** (0.013) -0.045* (0.027) -0.026 (0.228) 0.005 (0.135) 

Mobile×Tablet -0.079***  (0.009) -0.079*** (0.009) 0.042*** (0.010)  0.082** (0.042) -0.698 (0.522) -0.070 (0.224) 
ATM Density -0.002*** (0.000) -0.002*** (0.000) -0.002*** (0.000) -0.003*** (0.001) -0.004*** (0.001)   

Branch Density 0.015*** (0.003) 0.009*** (0.003) 0.013*** (0.003) -0.002*** (0.009) -0.013 (0.015)   
External Transfer 0.434*** (0.004)  0.449*** (0.004) 0.327*** (0.013)    

Service 0.608*** (0.004)  0.676*** (0.004) -0.045*** (0.013)    
Maintenance 0.174*** (0.013)  0.170*** (0.014) 0.113*** (0.043)    

# External Transfers  0.028*** (0.000)      
# Services  0.006*** (0.000)      

# Maintenance  0.157*** (0.010)      
log(Current Balance) 0.007*** (0.001) 0.027*** (0.001) 0.013*** (0.001) -0.162*** (0.003) -0.312*** (0.004)   
log(# Transactions)     0.200*** (0.009)   

log(Last Statement Balance)      0.556*** (0.113) -0.909*** (0.039) 
log(Last Statement Min Payment)       1.536*** (0.039) 

Last Statement Balance/Credit Line      14.525*** (0.820) 3.161*** (0.288) 
Tenure     0.048*** (0.012) 0.219 (0.153) 0.058 (0.075) 

Low Income     -0.098*** (0.032) 0.182 (0.259) 0.035 (0.155) 
log(Average # of Transactions)     -0.007*** (0.001)   

log(Average Balance)     0.045*** (0.000)   
Overdraft Protection     0.120*** (0.024)   

Average Statement Balance/Credit Line      1.753*** (0.237) -0.192 (0.278) 
# Cards      -0.748*** (0.239) -0.836*** (0.131) 

Apr -0.087*** (0.004) -0.065*** (0.004) -0.091*** (0.004) -0.208*** (0.013) -0.132*** (0.021) 0.061 (0.222) -0.100 (0.122) 
May -0.274*** (0.004) -0.266*** (0.004) -0.286*** (0.004) -0.331*** (0.013) 0.220*** (0.021) -0.060 (0.225) -0.045 (0.121) 

Number of Observations 140,138 140,138 140,138 140,138 140,138 35,535 35,535 
Note: each column represents a separate regression, and the column header is the dependent variable. The dependent variables for regressions (1)-(5) are the count of customer monthly transac-
tions, and the dependent variables for regressions (6) and (7) are binary indicators for incurrence of a credit card penalty fee in a month. Robust standard errors are in parentheses. Significance 
level: * p<0.1; ** p<0.05; *** p<0.01. I marked the estimates of zero-inflation variables with cells that have a gray background. Last Statement Balance/Credit Line and Average Statement Bal-
ance/Credit Line are percentage values. The unit of analysis is at the customer-month level.  
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4.6.1  Service Demand and Channel Complementarity and Substitution 

The results validate the augmentation effect of the mobile channel on customer 

service demand. Compared to PC-only users, mobile phone and tablet users had high-

er service consumption through all the digital channels combined (β1 = 0.279 in Col-

umn 1 of Table 4.2a and β2 = 0.182 in Column 1 of Table 4.2b for mobile phone and 

tablet; p < 0.01 for both). In particular, the use of a mobile phone increased digital 

banking transactions by 27.9%, and by 21.8% when a tablet was also used. The use of 

a tablet increased transactions by 18.2% or 10.3% whether a mobile phone was used 

for mobile banking. Thus, the results supported the Augmentation Effect of the Mo-

bile Channel Hypothesis (H1). The augmentation effect of the mobile channel was 

consistent with the results of PC banking adoption in Campbell and Frei (2010) and 

Xue et al. (2011). 

I found the evidence that the lower ATM density and higher branch density were 

associated with higher service consumption through all of the digital channels (β4 = -

0.003 and β5 = 0.014 in Column 1 of Table 4.2a, β4 = -0.002 and β5 = 0.015 in Col-

umn 1 of Table 4.2b; p < 0.01). The existence of more bank branches near the cus-

tomer were associated with a higher usage level of the digital channels due to greater 

customer awareness and engagement from the physical full-service channel (Bell et 

al. 2015, Xue et al. 2007). However, the availability of an ATM self-service channel 

inversely affects customer service demand through the digital channels: customers 

substituted transactions from traditional physical channels to digital channels through 

multiple devices when there were fewer ATMs around them. The results supported 

the Influence of Physical Channel Density Hypothesis (H2A). Prior research has not 
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formally tested the effect of physical channel density on digital channel usage in the 

post-adoption stage. 

I also found that the use of the mobile phone channel increased the number of 

transactions through the PC channel, while the use of the tablet channel negatively 

affected service demand through the PC channel. In particular, the use of a mobile 

phone increased transactions through the PC channel by 7.4% (β1 = 0.074 in Column 

3 of Table 4.2a, p < 0.01), and the use of a tablet decreased transactions through the 

PC channel by 6.9% (β2 = -0.069 in Column 3 of Table 4.2b, p < 0.01). The results 

provide support for the Channel Complementarity and Substitution Hypothesis (H2B) 

that the mobile phone channel serves as a complement to the PC channel, while the 

tablet channel served as a substitute for the PC channel. Furthermore, the mobile 

phone and tablet channels acted as complements for each other (See Column 4 in Ta-

ble 4.2a and Table 4.2b).  

4.6.2  Customer Inquiry and Banking Behavior 

Column 2 in Table 4.2a and Table 4.2b shows the results of the Customer Inquiry 

Hypothesis (H3). My panel analysis suggests that customers acquired more infor-

mation by performing inquiries through digital channels (β1 = 0.308, p < 0.01 for the 

effect of the mobile phone channel only; β2 = 0.228, p < 0.01 for the effect of the tab-

let channel only). When a PC, a mobile phone, and a tablet were all used, the use of 

the mobile phone and tablet channels increased by 22.7% (β1 + β3 = 0.227 in Column 

2 of Table 4.2a, p < 0.01) and by 14.9% (β2 + β3 = 0.149 in Column 2 of Table 4.2b, p 

< 0.01) of inquiries through the digital channels. Thus, the empirical evidence sup-
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ports H3, suggesting that the use of the mobile channel increased a customer’s inquir-

ies about their accounts. 

My zero-inflated count-data analysis for the Mobile Channel and Overdraft Fre-

quency Hypothesis (H4) indicates that the use of a tablet had a significant impact on 

reducing a customer’s overdraft frequency (i.e., β2 = -0.045, p < 0.1), as shown in 

Column 5 of Table 4.2b. However, the use of a mobile phone had a significant and 

positive association with a customer’s overdraft frequency: β1 = 0.385, p < 0.01 (see 

Column 5 of Table 4.2a). The results partially support H4 that the use of the mobile 

channel reduced a customer’s overdraft frequency. As expected, the binary zero-

inflated variable, Overdraft Protection, for linking a customers’ checking account to 

their demand deposit account and enabling automatic value transfer among different 

accounts was instrumental in decreasing the possibility of overdrawing the checking 

account.  

In addition, the use of the mobile phone channel was promising for reducing cus-

tomer credit card over-limit charges, partially supporting the Mobile Channel and 

Over-Limit Charge Hypothesis (H5A). Customers who used the mobile phone chan-

nel were less likely to incur over-limit charges, β1 = -0.230, p < 0.1, while there was 

no significant impact of the use of a tablet on over-limit charges (see Column 6 of 

Table 4.2a and Table 4.2b). On the other hand, the results do not support the Mobile 

Channel and Late Payment Charge Hypothesis (H5B) that the use of a mobile device 

can curb credit card late payment changes. The use of a mobile phone had a signifi-

cant positive association with incurrence of late payment charges (see Column 7 of 

Table 4.2a). 
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4.7  Robustness Checks and Additional Analysis 

I carried out a series of robustness checks and additional analysis for further vali-

dation of my results. 

4.7.1  Robustness Checks 

Given that the regressions for the number of transactions through different chan-

nels were conducted on the same sample of customer observations, it is unrealistic to 

expect that the separate regression errors are uncorrelated. The errors ought to be cor-

related across equations for a given customer, but uncorrelated across customers. In 

this case, to investigate the robustness of my main results, I applied a seemingly unre-

lated regression (SUR) to take the information structure of the error terms into ac-

count. A SUR system that contains a number of linear equations uses the correlations 

between the errors in different equations to improve the efficiency of estimation (Fie-

big 2001).  

I created a cross-sectional sample for matched mobile phone users, and took the 

average value for non-binary independent and dependent variables, and maximum 

value for binary independent variables. In Table 4.3, the coefficients for the variables 

of interest remain qualitatively the same in terms of the sign and statistical signifi-

cance, with the use of the logarithm value of the transaction number for each channel 

as dependent variables. Although the underlying assumptions and interpretation of the 

results differ for negative binominal regression models and ordinary least-square re-

gression models, I present the results for SUR to mitigate the concern that the cross-

equation correlations might have significantly affected my results.  
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Table 4.3. Results for Seemingly Unrelated Regression  
 ALL DIGITAL CHANNELS 

log(# Transactions) 
TABLET CHANNEL 

log(# Tablet) 
PC CHANNEL 

log(# PC) 
Mobile 0.254*** (0.008) 0.081*** (0.008) 0.033*** (0.008) 
Tablet 0.108*** (0.012)  -0.042*** (0.013) 

Mobile×Tablet -0.101*** (0.017)  -0.009 (0.018) 
ATM Density -0.001*** (0.000) -0.000 (0.001) -0.001* (0.000) 

Branch Density 0.015*** (0.005) 0.012** (0.006) 0.011** (0.005) 
External Transfer 0.402*** (0.008) 0.146*** (0.009) 0.436*** (0.008) 

Service 0.787*** (0.008) 0.142*** (0.009) 0.871*** (0.008) 
Maintenance 0.207*** (0.015) 0.049*** (0.019) 0.216*** (0.016) 

Tenure 0.072*** (0.004) 0.038*** (0.005) 0.080*** (0.005) 
Low Income 0.024** (0.009) -0.088*** (0.011) 0.014 (0.010) 

log(Current Balance) 0.020*** (0.002) 0.051*** (0.002) 0.029*** (0.002) 
Number of Observations 81,440 81,440 81,440 

Note: each column represents a separate regression, and the column header is the dependent variable. Robust 
standard errors are in parentheses. Significance level: * p<0.1; ** p<0.05; *** p<0.01. The dependent variables are 
the natural log of the average number of customer monthly transactions. The regressions are on the cross-sectional 
sample of users matched by mobile phone treatment. The unit of analysis is at the customer level. 

For a second robustness check, I examined whether the results were affected by 

the usage intensity of the mobile channel. I re-ran the regressions on two subsamples 

of treated customers who had low and high levels of transaction intensity through the 

mobile phone channel. In particular, I selected the customers at the lower and upper 

quartiles, who were considered inactive and active mobile phone users. Columns 1 

and 2 in Table 4.4 show that the active mobile users had much more total and inquiry 

transactions than the inactive ones, which consolidates the augmentation effect of the 

mobile channel. In addition, the complementary effects of the mobile phone channel 

on the PC and tablet channels were also much stronger for active users, and the inac-

tive users did not have a statistically significant estimate for the effect on PC channel.  

For further validation, I examined the robustness of the results using weekly ag-

gregated transaction records instead of monthly observations. The use of the mobile 

phone channel still had positive and significant effects for the total and inquiry trans-

actions through all three channels combined, as shown in Columns 1 and 2 of Table 

4.5. Nevertheless, the mobile phone channel acted as a substitute for rather than a 
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complement to the PC and tablet channels. I observed that customers were used to 

banking through a single device, and different devices exhibited a substitution pat-

tern. A distinctive characteristic of financial services is repeated service encounters 

and the long-term contractual relationship between customers and financial institu-

tions (Hatzakis et al. 2010). So to analyze transaction-making more effectively, it is 

appropriate to do so at the monthly level and over a longer period to understand the 

relationship between different channels.  

Table 4.4. Robustness Check for Usage Intensity of Mobile Channel 
 (1) # TRANSACTIONS (2) # INQUIRIES (3) # PC (4) # TABLET 
 Inactive Active Inactive Active Inactive Active Inactive Active 

Mobile 0.084*** 
(0.008) 

0.457*** 
(0.006) 

0.096*** 
(0.009) 

0.464*** 
(0.006) 

0.007 
(0.009) 

0.103*** 
(0.006) 

0.118*** 
(0.032) 

0.281*** 
(0.028) 

Tablet 0.243*** 
(0.010) 

0.183*** 
(0.013) 

0.268*** 
(0.011) 

0.233*** 
(0.013) 

-0.007 
(0.011) 

-0.059*** 
(0.014) 

  

Mobile×Tablet -0.017 
(0.021) 

-0.057*** 
(0.017) 

0.029 
(0.022) 

-0.047*** 
(0.018) 

0.050*** 
(0.023) 

0.120*** 
(0.019) 

  

ATM Density -0.002*** 
(0.000) 

-0.000 
(0.000) 

-0.002*** 
(0.000) 

-0.001 
(0.000) 

-0.001*** 
(0.000) 

0.000 
(0.000) 

-0.003* 
(0.002) 

0.003* 
(0.002) 

Branch Density 0.014*** 
(0.004) 

0.004 
(0.004) 

0.025*** 
(0.005) 

0.004 
(0.004) 

0.013*** 
(0.004) 

0.002 
(0.004) 

0.022 
(0.018) 

0.021 
(0.019) 

External Transfer 0.443*** 
(0.007) 

0.322*** 
(0.006) 

  0.455*** 
(0.007) 

0.334*** 
(0.006) 

0.297*** 
(0.027) 

0.302*** 
(0.029) 

Service 0.689*** 
(0.007) 

0.552*** 
(0.006) 

  0.715*** 
(0.007) 

0.640*** 
(0.006) 

0.336*** 
(0.027) 

0.439*** 
(0.028) 

Maintenance 0.228*** 
(0.021) 

0.133*** 
(0.018) 

  0.231*** 
(0.021) 

0.137*** 
(0.019) 

0.101 
(0.091) 

0.038 
(0.092) 

# External Trans-
fers 

  0.028*** 
(0.000) 

0.020*** 
(0.000) 

    

# Services   0.008*** 
(0.000) 

0.008*** 
(0.000) 

    

# Maintenance   0.164*** 
(0.011) 

0.123*** 
(0.013) 

    

log(Current Bal-
ance) 

0.020*** 
(0.001) 

0.021*** 
(0.001) 

0.049*** 
(0.000) 

0.037*** 
(0.001) 

0.022*** 
(0.001) 

0.030*** 
(0.001) 

0.130*** 
(0.007) 

0.115*** 
(0.007) 

Apr -0.089*** 
(0.006) 

-0.077*** 
(0.006) 

-0.083*** 
(0.007) 

-0.066*** 
(0.006) 

-0.090*** 
(0.007) 

-0.073*** 
(0.006) 

-0.078*** 
(0.028) 

-0.116*** 
(0.029) 

May -0.247*** 
(0.007) 

-0.301*** 
(0.006) 

-0.248*** 
(0.007) 

-0.291*** 
(0.006) 

-0.251*** 
(0.007) 

-0.308*** 
(0.006) 

-0.171*** 
(0.029) 

-0.209*** 
(0.030) 

Number of Obser-
vations 60,070 67,054 60,070 67,054 60,070 67,054 60,070 67,054 

Note: each column represents a separate regression, and the column header is the dependent variable. Robust standard errors are 
in parentheses. Significance level: * p<0.1; ** p<0.05; *** p<0.01. The lower quartile of usage intensity of mobile phone is con-
sidered to be inactive users, and the upper quartile of usage intensity of mobile phone is considered to be active users. The de-
pendent variables are the number of customer transactions each month. The unit of analysis is at the customer-month level. 
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Table 4.5. Robustness Check for Weekly Observations 
 (1) # TRANSACTIONS (2) # INQUIRIES (3) # PC (4) # TABLET 

Mobile 0.152*** (0.002) 0.143*** (0.002) -1.002*** (0.003) -0.230*** (0.011) 
Tablet 0.125*** (0.003) 0.138*** (0.003) -1.183*** (0.006)  

Mobile×Tablet 0.161*** (0.006) 0.166*** (0.006) 0.911*** (0.013)  
ATM Density -0.001*** (0.000) -0.000*** (0.000) -0.000 (0.000) -0.002*** (0.001) 

Branch Density 0.006*** (0.001) 0.003** (0.001) 0.007*** (0.002) 0.042*** (0.007) 
External Transfer 0.573*** (0.002)  0.610*** (0.002) 0.370*** (0.009) 

  Service 0.820*** (0.004)  0.878*** (0.005) -0.102*** (0.027) 
# External Transfers  0.130*** (0.000)   

# Services  0.038*** (0.000)   
log(Current Balance) 0.019*** (0.000) 0.025*** (0.000) 0.027*** (0.001) 0.077*** (0.000) 

Number of Obs. 819,182 819,182 819,182 819,182 
Note: each column represents a separate regression, and the column header is the dependent variable. Robust 
standard errors are in parentheses. Significance level: * p<0.1; ** p<0.05; *** p<0.01. The dependent variables are 
the number of customer transactions each week. The control variables for the maintenance transaction are exclud-
ed due to the sparseness of observations. The estimates for the week dummies are not reported due to lack of 
space. The unit of analysis is at the customer-week level. 

4.7.2  Additional Analysis 

To examine the impact of the use of the mobile channel across different types of 

transactions through digital channels, I used the number of external transfer transac-

tions (# External Transfers), service transactions (# Services), and maintenance trans-

actions (# Maintenance) in place of the number of inquiry transactions (# Inquiries) 

as the dependent variables (see Table 4.6). The results indicate that the use of the mo-

bile phone channel increased the number of external transfer transactions and de-

creased the number of service transactions through all of the channels, but the effect 

on the number of maintenance transactions was not visible. A plausible explanation is 

that mobile banking apps provide a simple and clear input interface to perform basic 

inquiries and money transfers. But service transactions, such as activating online 

statements and ordering checks and supplies, require more complex or multi-step op-

erations, which are more difficult on small-sized mobile phone screens. Maintenance 

actions, such as changing a password or updating personal particulars, are rare, so 

they are not likely to be affected by the use of the mobile channel.  
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Table 4.6. Impact of the Mobile Channel on Different Types of Transactions 
 # EXTERNAL TRANSFERS # SERVICES # MAINTENANCE 

Mobile 0.126*** (0.007) -0.192*** (0.008) 0.002 (0.020) 
Tablet 0.186*** (0.010) 0.145*** (0.011) 0.006 (0.033) 

Mobile×Tablet 0.041*** (0.016) 0.161*** (0.018) -0.004 (0.057) 
ATM Density 0.000 (0.000) -0.003*** (0.000) -0.001 (0.001) 

Branch Density 0.012*** (0.005) 0.017*** (0.005) -0.002 (0.012) 
# Inquiries 0.002*** (0.000) 0.002*** (0.000) -0.005*** (0.000) 

# External Transfers  0.014*** (0.000) 0.000 (0.002) 
# Services -0.007*** (0.000)  -0.001 (0.001) 

# Maintenance 0.126*** (0.012) 0.124*** (0.015)  
log(Current Balance) 0.125*** (0.002) 0.134*** (0.002) -0.002 (0.004) 

Apr -0.189*** (0.005) -0.107*** (0.006) -0.023 (0.020) 
May -0.347*** (0.006) -0.296*** (0.007) -0.025 (0.020) 

Number of Observations 244,118 244,118 244,118 
Note: each column represents a separate regression, and the column header is the dependent varia-
ble. The dependent variables are the number of customer transactions each month. Robust standard 
errors are in parentheses. Significance level: * p<0.1; ** p<0.05; *** p<0.01. The unit of analysis is 
at the customer-month level. 

4.8  Discussion and Implications 

4.8.1  Omni-Channel Banking Services  

Digitalization has been transforming every aspect of the traditional retail banking 

business model, and most banks tend to incorporate digital channels to gain a compet-

itive edge over traditional incumbents (Olanrewaju 2014). The customer mobile expe-

rience is a crucial aspect of digital banking strategy. First, my results show that the 

use of the mobile channel had a substantial effect on increasing customer service de-

mand. In addition, high-balance customers tended to conduct more activities through 

the digital channels. As major retail banks have been pursuing growth in interaction 

and revenues from their own customer segmentation (Corbat and Kirkland 2015), to 

engage high-income customers who are active through mobile channels and meet 

their growing financial needs is vital for banks to succeed. In addition to making 

basic financial transactions, the digital customers are also provided with cross-
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channel, targeted, just-in-time product or service information in an effective and 

seamless way through the mobile channels (van Bommel and Edelman 2015). 

The rapid shift toward digitalization might suggest that banks should be able to 

shrink their branch network to reduce costs. Nevertheless, my findings suggest that 

more branches located closed to where customers live augment digital service con-

sumption, and indicate that the lower access cost of a physical full-service channel 

results in higher and more diverse digital transactions. In the digital age, customers 

are utilizing omni-channel banking services, rather than turning solely to digital or 

branch services.  

Yet bank branches still play an important role in taking customers from physical 

to digital banking. Compliance with regulations, demand for personal advice, and 

concerns about digital banking security continue to drive the need for branch services 

(Barquin and Vinayak 2015). Nonetheless, there has been a reduction in physical 

branches in the banking industry and a transition toward automated banking branches 

(Egan 2015). When both short- and long-term interest rates are extremely low and it 

is difficult for banks to turn a profit on the difference between what they pay out for 

deposits and the amount earned on loans, they have little incentive to attract custom-

ers into branches to deposit their money, and operating the branches is costly.  

In contrast, customers who live in an area with a lower ATM density have greater 

digital transaction demand. This indicates that the higher access cost of physical 

ATM locations enhances the usage of digital channels. The mobile apps for check 

deposits and peer-to-peer money transfers also substitute transaction demand away 

from the ATM channel. There are significant costs associated with maintaining 
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ATMs, and revenues from the surcharges for non-customer usage have become in-

creasingly limited. In the near future, ATM will be another area where banks can cut 

costs, and banks have turned ATMs into a marketing vehicle for advertising, customi-

zation, cross-selling opportunities, customer data collection, and brand reinforcement.  

Recent research has found that among the digital channel the tablet channel 

serves as a substitute for the PC channel, and as a complement to the mobile phone 

channel for the purpose of online shopping. In banking services, I found that the mo-

bile phone channel complemented the PC channel, the tablet channel substituted for 

the PC channel, and the mobile phone channel and tablet channel were complemen-

tary. My results show similar relationships in the omni-channel context of banking 

services. The similarity between tablets and PCs in terms of screen size and function-

ality can explain the substitutive relationship. Tablets are not as portable as 

smartphones and mostly not equipped with 3G capabilities. PCs are bulkier and re-

stricted to certain locations, so customers tend to use tablets at home. Mobile phones 

have ubiquitous wireless network connections and are used while customers are on 

the move, indicating a complementary effect to the PC channel.  

4.8.2  Customer Banking Behavior  

A customer’s sense of well-being is closely intertwined with services (Hatzakis et 

al. 2010). How banks can leverage mobile technology to work differently for a better 

customer experience and operational efficiency is more important than simply adding 

a new service channel. My findings show that customers who connected with their 

banks via smartphones, tablets and PCs performed inquiries more often than PC-only 

customers. The increased inquiry activities indicated that the mobile channel en-
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hanced a customer’s connectivity with their bank and information about its products 

and services. Recent research has examined how the increased availability of online, 

social, and mobile information drives different individual choices and behavior 

(Ghose et al. 2015, Goh and Bockstedt 2013, Li and Kauffman 2012).  

An industry report showed that 68% of consumers would rather have a transac-

tion declined than forfeit an overdraft fee (Vasel 2015). Customers’ limited attention 

and high information acquisition cost for obtaining all available information account 

for a large proportion of overdraft transactions. My findings indicate that the mobile 

channel significantly reduced customer transaction costs and increased information 

availability, and informed customers can avoid spending more than what is available 

in their checking account and maintain the balance above zero. Financial institutions 

can generate additional revenue by offering liquidity-management services for over-

draft protection to inattentive customers.  

When cardholders attempt to make purchases that will put them over their limit, 

card issuers used to routinely decline the transaction. However, now issuers have au-

tomatically enrolled customers in programs that allow the transaction, and then 

charge over-limit fees. The Credit Card Account Responsibility and Disclosure Act of 

2009 requires that card issuers give account holders the option to opt in to over-limit 

fees (CFPB 2013). For consumers who consent to the over-limit transactions, their 

inattention in monitoring credit card accounts is one of the reasons for unnecessary 

financial charges. The reduction in over-limit fees through the use of the mobile 

channel suggests that implementation of mobile alerts and redesign of fee structures 

will effectively improve customer experience and satisfaction. The federal regulation 
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also prohibits a range of practices where the issuers artificially increase the frequency 

of late payment fees (CFPB 2013). Under the rules for reasonable and proportional 

penalty fees, the cause of a late payment fee is more endogenous, and customers’ opt-

ing in to late payments might affect my results when they know the billing cycle and 

due date exactly. As late payments may affect a customer’s good credit history, the 

implementation of mobile alerts will reduce complaints from the customer.  
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5  Conclusion, Limitations and Future Research 

Operations in financial services are characterized by extensive use of IT, which 

acts as an important driver of product, service and business innovations in the indus-

try. My dissertation was inspired by the business problems related to IT in the finan-

cial services sector, especially mobile financial services. I focused on senior manager 

decision-making and firm strategy related to IT-enabled financial innovations. I ex-

amined the impact of mobile payments and mobile banking innovations on firm’s 

technology investment decision-making and customer behavior in omni-channel 

banking services. 

Essay 1 extended the technology ecosystem paths of influence model to under-

stand how competition, cooperation, and regulation influence financial IS and tech-

nology innovation and evolution. The application to m-payments technology innova-

tion is among the first instances of research that looks at the development of m-

payments services from an evolutionary point of view. More importantly, I raised the 

point that competition, cooperation, and regulation jointly shape the development 

paths of financial IS and technology innovations in markets. My theoretical enrich-

ment of the original framework identified various patterns of innovation and technol-

ogy evolution in the m-payments ecosystem, and supports this competition-and-

regulation argument. It demonstrated how the evolution of technology ecosystems 

plays out, based on the analysis of paths of influence and the role of key events in an 

industry sector’s technology innovation timeline.  

The limitations of this study are worth mentioning though. One of the important 

characteristics of Adomavicius et al.’s (2008a) technology ecosystem evolution mod-
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el is that it only focuses on the internal influence paths of the ecosystem. The mutual 

effects of the m-payments ecosystem and the external environment are simplified as 

external facilitators or inhibitors. In addition, my extended approach is mainly for ret-

rospective explanation and interpretation of how m-payments have evolved, but it 

may not be accurate for forecasting future technology evolution. I demonstrated a test 

case and the possibility for further investigation though. 

The future direction of my research on financial IS and technology ecosystems 

will focus on validating the proposed new constructs on the demand-side, in addition 

to the supply-side dynamics. Both have influenced the evolution of technology-based 

financial innovations. I will adopt a historical data collection approach from prior re-

search on technology evolution in the IS and Marketing disciplines. I plan to create an 

advanced forecasting capability for the evolutionary patterns of industry-centered in-

novations and cross-level effects among different clusters of technologies: compo-

nents, services and business infrastructures. 

In Essay 2, my contributions are threefold. First, I proposed a new modeling per-

spective that considers the mean reversion property for the stochastic drift of invest-

ment cost and benefit flows, to enrich managerial knowledge on how real option theo-

ry can be used to support decision-making under uncertainty for IT investments. Se-

cond, I applied my modeling approach to a real-world m-payments technology in-

vestment case to illustrate its applicability and offer insights to decision-makers so 

they understand the value of deferral and establish an effective strategy for invest-

ment timing. Third, I demonstrated that the simulation-based option valuation, known 

as the Longstaff-Schwartz method, is useful when the market experiences shocks that 
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affect firm-level and market-level perceptions associated with technology invest-

ments, such as the investment in mobile payments technology. 

A number of limitations in Essay 2 deserve comment. The advantage of being a 

first-mover is not considered in the current model, nor did I consider the entry of any 

competing firm. Also, I assumed that the system will become available immediately 

once the investment decision is made. This made it possible for benefits to flow with-

out uncertainty about a lag in the accrual of business value.  

The reality is different, of course: a firm will need some additional period of time 

to develop the necessary infrastructure. So the business value from investment will be 

obtained only some time later. In the investment process, the time at which the benefit 

flows start to be received is also a random variable, and the benefit flows that will be 

obtained during the development process will be relatively small. If I assume an ap-

propriate amount of time for the installation of the infrastructure and the start-up of 

the benefit flows, my model can be adapted for application in a variety of settings. 

My assumptions, such as a risk-neutral firm, and uncorrelated cost and benefit flow 

changes, also simplified the analysis. Excluding these factors may result in a loss of 

contextual richness. By limiting the number of factors that I considered, I traded off 

complexity to gain some intuition about the results. Finally, it will be beneficial to 

validate my results by examining other settings involving successful IT investments 

and implementations that can be studied in greater depth.  

Most firms have been cautious investors in large-scale IT infrastructures, leaving 

the door open for a leader to emerge and gain significant strategic advantage. An in-

teresting direction for future research is to address the issue of investment timing in a 
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competitive setting. This will only be valuable if we can discover aspects of the IT 

investment process that are truly unique in certain industry settings, since so much 

research has already been done on investment timing with competition. For example, 

for new technologies, I often see firms that are able to leapfrog the competition and 

adopt previously unavailable systems, which will invalidate the assumptions of most 

standard game-theoretic approaches. In addition, blended models involving wait-and-

see interactions between competitors, along with information updates that occur over 

time to motivate evaluation, contextualized in a well-defined multi-stakeholder tech-

nology services marketplace, are worthwhile to explore for building additional theory. 

A key observation about technology-based innovations over the years is that co-

opetition (Brandenberger and Nalebuff 1996), rather than direct firm-to-firm competi-

tion, offers the best description of how firms actually have interacted in the industry. 

Market leaders become most successful when they create value by supporting the par-

ticipation of other potential competitors (Teece 1992). Such firms act as value-makers 

in the larger market – for themselves, customers and competitors; and they also may 

be able to become successful value-takers as a result (Kauffman and Walden 2001). 

This will require them to find ways to appropriate value from their innovations 

though (Teece 1986).  

In Essay 3, I examined the impact of the mobile channel on customer service de-

mand and banking behavior in omni-channel banking services. As customer behavior 

patterns move away from physical channels and towards more digital transactions, it 

becomes a competitive necessity for banks to launch the mobile channel to improve 

customer service and experience. First, this study contributes to the research on mo-
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bile banking by examining the complementary and substitutive patterns among the 

digital channels using a large-scale dataset of customer-level transactions, enabling 

banks to better understand customer channel usage patterns, and target more active 

and profitable customer segments. Second, I assessed how the use of the mobile 

channel influenced customer’s financial decision-making. My results indicate that 

customers acquire more information for financial decision-making following the use 

of the mobile channel. This study has implications for banks’ managers related to the 

design and management of service delivery channels. 

There are a number of limitations in Essay 3. First, my sample consisted of three 

months of observations of customer banking transactions through all of the digital 

channels, and I could not identify when the customers had adopted the mobile chan-

nel. This restricted my study to examining the long-term and lagged effect of the mo-

bile channel. Second, I did not incorporate the effect of consumer learning from pre-

vious overdraft and credit card penalty fees on the incurrence of subsequent fees. 

Third, I did not consider the specific amounts of credit card over-limit and late pay-

ment fees in my analyses. Finally, the propensity score method to control for the se-

lection bias might not be sufficient to solve the endogeneity issue of customers’ mo-

bile adoption. In the future, I will implement a set of falsification tests for further val-

idating the effects of the mobile channel.  

My future empirical research on mobile banking will include a firm-level analysis 

of the real-world timing of mobile banking adoption. I have crawled mobile banking 

app data from the Apple iTunes store and obtained bank financial and structural in-

formation from the U.S. Federal Deposit Insurance Corporation (FDIC). In addition, I 
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will study digital banking problems that span payment and card services, and examine 

the performance of banking digital channels for consumer purchases and payments by 

working with large banks. I plan to apply data analytics to examine the effectiveness 

of banks’ sponsored search marketing activities and explore the consumer’s entire 

search journey in the digital channels for credit card usage also.  
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Appendix A. The Evolution of M-Payments Technology 

Since the 1950s and 1960s, banks have grappled with significant problems created 

by fast economic growth that drove an increase of financial intermediation-related 

activities. This has generated high demand for processing payments and handling oth-

er financial instruments. In the 1960s and 1970s, the automation of banking products 

and processes by computers and networks was just beginning, and since then, elec-

tronic payments made through payment card networks and ACH systems have be-

come central to the industry’s operations. The automated processing of payments has 

driven several waves of innovations in the banking and payments sector, leading to 

improvements in the efficiency and effectiveness of payments systems. The emergen-

cy of m-payments has been stimulated by the integration of advances in contactless 

payments, online and mobile banking, mobile and smart phones, mobile phone-based 

applications, and the digital convergence of e-commerce and m-commerce (Mont-

gomery 2012). 

Since the first mobile commerce and banking initiative using SMS was launched 

in Finland in the late 1990s, new possibilities that allow banking customers to use 

their mobile phones to perform many new financial functions have been proposed. 

(See Figure A1 and Table A1.) Also around that time, entrepreneurs connected with 

Stanford University-founded Fieldlink, which supported the digital encryption of in-

formation on hand-held computing devices and the creation of Confinity (Fried 2002, 

Plotkin 1999). These start-up technology innovation firms sought to support money 

transfers on devices such as Palm Pilots, which led to the rise of PayPal and digital 

wallets (Lillington 1999, Reuters 2002). The acquisition of PayPal in 2002 further 
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enabled eBay to perfect its online auction platform by supporting the digital exchange 

of electronic payments (Kane 2002), inclusive of online merchants that were demon-

strating increasing interests to participate in eBay’s e-marketplace. Meanwhile, 

Alipay’s growth in China skyrocketed during these years, supporting consumers via 

Internet banking and e-commerce (Heggestuen 2014). 

The developments in electronic money and the first generation of Cybercash (e.g., 

electronic checks by Clifford Neuman’s NetCheque, smart cards by Gemplus and 

Mondex in Europe, digital coins by David Chaum’s DigiCash, and e-wallets by Cy-

berCash in U.S.) set the stage for contactless payments that are now widely used in 

public transportation fare collection systems (Neuman and Medvinsky 1995, Humbert 

et al. 1997, Levy 1994). The successful applications include the Octopus card system 

in Hong Kong, the EZ-Link card in Singapore, the Oyster electronic ticketing in Lon-

don, and other innovations in the rapidly-changing payment ecosystem in the Nether-

lands (BIS 2001). Most of them utilize the FeliCa contactless smart card from Sony in 

Japan, which set up the earliest de facto standard for electronic money and mobile 

payments. Later, MasterCard’s PayPass and Visa’s PayWave global innovations fur-

ther standardized contactless payments in point-of-sale (POS) networks (Business-

Wire 2007, Stevens 2014). These well-accepted contactless payments platforms have 

provided compatible infrastructures for mobile payments solutions using smartphones 

that have embedded RFID chips. The resulting convenience and benefits perceived by 

customers have increased the potential for user acceptance of m-payments.  

Nevertheless, most of the mobile financial services offerings of the early 2000s 

failed to meet consumer and market expectations due to their limited capability for 
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handling data via mobile networks (Montgomery 2012). Their adoption rate was low-

er than the prediction by many industry observers. By 2006 though, mobile phone 

manufacturers introduced smartphones, which offered enhanced Web browsing and 

data transfer capabilities. Smartphones differed from traditional featured phones in 

their better usability, improved information security, and also their connected devel-

oper and mobile app ecosystems. Their capabilities were further supplemented by the 

arrival of third-generation (3G) and fourth-generation (4G) telecom network technol-

ogies and the transaction-making capabilities of Internet banking. All these have been 

driving the market demand for more advanced m-payments services.  

In 2007, the M-Pesa phone-based money transfer service started rolling out in 

Kenya and African countries (Graebner 2014). After 2011, a number of new technol-

ogy solutions for m-payments emerged. At present, the infrastructure for safe and ef-

ficient m-payment systems is largely based on the NFC contactless technology (El-

drige 2014). This is now included in smartphones and merchant terminals, and has 

become available from the Softcard, Google Wallet, and Apple Pay initiatives (Kharif 

2011, Warren 2011, Turner 2014). Cloud-based m-payments represent another tech-

nology solution, with payment credentials stored on a secure cloud server. Solutions 

such as PayPal App and Alipay Mobile App are good at reducing customer security 

concerns, and taking advantage of the existing online payment platform to achieve 

network effects and interoperability (Jesdanun 2014). There are other innovative 

schemes that use third-party applications on various smart-phone platforms or quick 

response (QR)-codes to make the role that banks play in card payments more central 

(Lunden 2013). They enable small merchants who would otherwise be “unbanked” in 
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payments to process card payments. For example, Square, a payments application that 

supports merchant and consumer transactions, serves as a wallet filled with virtual 

credit cards for authorized merchants, offering payment connectivity for cards via 

mobile phones (Wilhelm 2014). 

Table A1. Events and Reference Sources for M-Payments Developments  
YEAR EVENT SOURCE 

1997 Vending machines with SMS payments introduced in Finland Montgomery 2012 Mobile phone-based banking services also rolled out in Finland 

2001 Widespread adoption of online banking began to occur Xue et al. 2011 
Commercial 3G networks launched in Japan Yamada 2001 

2002 eBay’s acquisition of PayPal occurred Kane 2002 

2004 NFC Forum founded, and MobileLime began to offer an NFC-based m-payments 
service 

Buckley 2006 

2005 NTT DoCoMo launched DCMX m-payments services in Japan Nita 2009 

2006 
Mobile WiMAX standard for 4G network commercialized in Korea Whitney 2010 
First commercial cloud computing service offered by Amazon Web Services 

(AWS) 
Raghupathi 2011 

2007 Apple introduced the original iPhone Honan 2007 
M-Pesa phone-based money transfer service spread out in Africa Graebner 2014 

2008 HTC introduced the first smartphone using Android  German 2011 
2009 Long Term Evolution (LTE) 4G standard first released in Europe Klasson 2010 

2010 Square application to read credit cards launched on iOS and Android smartphones  Wilhelm 2014 
Widespread adoption of mobile banking began to occur Kahn 2010 

2011 Google Wallet, an NFC-enabled m-payments solution, launched in the U.S. Warren 2011 
Handset vendors released more than 40 NFC-enabled smartphones Balaban 2011 

2012 
PayPal partnered with 15 retailers for in-store cloud-based payments  Perez 2013a 
Apple awarded a patent for its iWallet technology innovation Webster 2013 
Softcard brought NFC mobile payments to Austin and Salt Lake City in the U.S. Perez 2014 

2013 

Mobile apps enabling money transfer, NFC m-payments and card readers became 
pervasive  

Romann 2014 

AT&T, Vantiv partner for m-payments acceptance, and NFC platforms began 
rolling out 

Eddy 2014 

2014 

The People’s Bank called back virtual credit card and QR-code payments in China Zhao and Xie 2014 
Apple released iPhone 6 that supports NFC, and use Apple Pay for payments 

service 
Garside and Hern 

2014 
Apple Pay’s compliance with MasterCard, Visa and American Express NFC POS 

terminals 
Townsend 2014 
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Figure A1. A Visual Timeline of M-Payment Technology Evolution and the Re-
lated Technology Innovations 
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Appendix B. Simulation Parameters and Procedure 

The firm knows the current investment cost I0 = $10 million, the expected long-

run cost 𝐼 = $5 million to which I tends to revert, and the speed of cost reversion αI = 

0.1. In addition, the cost volatility is σI = 50%. The investment decision must be made 

prior to the end of the investment time horizon T. Assume that L = 3 years and T = 5 

years, which is a reasonable length of time for the technology to be available. Once 

the investment decision is made at time t, the benefit flows will be received up to time 

T. This benchmark case uses the same assumption as the data mart consolidation pro-

ject for the change in mean benefit flows (Kauffman et al. 2015b). The maximal ex-

pected benefit flow is $1,982,759. The estimated benefit growth rate g is 1.5, and its 

decay rate d is 1.37. The mean benefits flow reverting speed is αB = 1.5, and the vola-

tility σB of this benefit flow is 50%. In addition, I assume that the discount rate is 7%. 

I used Matlab to code the simulations and run the numerical analysis. Based on 

the parameters I selected, I first simulated 100,000 sample paths for the state varia-

bles I and B. I used a large number of sample paths to make sure that the distributions 

of timing and payoffs were close enough to the expected technology investment out-

come. Future profit at time t can be calculated by adding the discounted cash flows 

from t to T, and the value of m-payment investment project is the present value of fu-

ture profits minus the current investment cost at time t. The goal is to compare the 

discounted present value of the payoff at each time and then determine the optimal 

investment time based on the simulated values associated with all of the paths that 

occur. 
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Table B1. Simulation Parameters Used in the Base Case 

Appendix C. Sensitivity Analysis Results for Key Input Parameters 

Table C1. Sensitivity Analysis Results for Key Input Parameters 

Appendix D. Numerical Solution Procedure 

An important problem in option pricing theory is the valuation and optimal exer-

cise of derivatives with American-style exercise features. In the management of IT 

investment risk, these types of real options also can be found. When more than one 

factor affects the value of the option, valuation and optimal exercise of an American 

option is an especially challenging problem. The Longstaff-Schwartz (2001) provides 

PARA-
METER DESCRIPTION VALUE  PARA-

METER DESCRIPTION VALUE 

I0 Initial investment cost $10 million  Bmax Maximal log value of benefit $1,983,000 

𝐼 Long-run investment 
cost $5 million  T Maximal deferral time 5 years 

αI Speed of cost reversion 0.1  L Technology lifecycle 3 years 

αB Speed of benefit rever-
sion 1.50  𝐵! Mean benefit flow at time L $1,699,000 

σI 
Investment cost volatili-
ty 50%  rf 

Annual risk-free discount 
rate 7% 

σB Benefit flow volatility 50%  N Number of simulated paths 100,000 

g Mean benefit growth 
rate 1.50   d Mean benefit decay rate  1.37 

PARAMETER MAX PAYOFF MIN PAYOFF MEAN PAYOFF  AVERAGE TIMING (YEAR) 
Base case  $24,222,000 -$1,872,000 $5,483,000 0.68 
T = 4 years $18,985,000 -$4,087,000 $1,464,000 0.44 
T = 6 years $28,827,000 -$490,000 $8,933,000 0.90 
σB = 25% $14,857,000 -$910,000 $5,051,000 0.70 
σB = 75% $51,501,000 -$2,789,000 $6,233,000 0.68 
αB = 1.2 $20,808,000 -$3,404,000 $2,416,000 0.71 
αB = 1.8 $25,484,000 -$1,044,000 $7,770,000 0.68 
L = 2.5 years $25,711,000 -$1,608,000 $6,229,000 0.60 
L = 3.5 years $23,578,000 -$1,896,000 $5,847,000 0.76 
rf = 5% $24,445,000 -$1,907,000 $6,325,000 0.68 
rf = 9% $24,848,000 -$2,267,000 $4,724,000 0.70 
𝑰=10 million $25,420,000 -$2,471,000 $5,292,000 0.65 
𝑰=15 million $23,192,000 -$2,280,000 $5,167,000 0.62 
g = 1.2 $13,424,000 -$4,151,000 $1,312,000 0.80 
g = 1.8 $34,940,000 -$890,000 $8,958,000 0.63 
αI = 0.05 $23,803,000 -$2,042,000 $5,361,000 0.66 
αI = 0.15 $22,521,000 -$1,882,000 $5,569,000 0.71 
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a simple, yet powerful simulation approach to approximating the value of American 

options. The method is readily applied when the option value depends on multiple 

factors. Simulation also allows state variables to follow general stochastic processes, 

such as a jump diffusion process (Merton 1976).      

At the final exercise date, the optimal exercise strategy for an American-style op-

tion is to exercise it if it is in the money. Prior to the final date, however, the optimal 

strategy is to compare the immediate exercise value with the expected cash flows 

from continuing, and then exercise if immediate exercise is more valuable. Thus, the 

key to optimally exercising an American option is identifying the conditional ex-

pected value of continuation. A central part of the Longstaff-Schwartz method is the 

approximation of a set of conditional expectation functions, so it is appropriate to use 

the cross-sectional information in the simulated paths to identify the conditional ex-

pectation functions. 

I solved the model by applying a variant of the Longstaff-Schwartz method to ap-

proximate the value of all future benefit flows at each date, given the current value of 

the two governing state variables, I and B. This involved first simulating 100,000 

sample paths for the two state variables. I regressed the subsequent project benefits 

flows from continuation on a set of functions of the values of the relevant state varia-

bles. The fitted values of this regression are efficient unbiased estimates of the condi-

tional expectation function. The regression coefficients are used to approximate the 

expected value of continuation. I also used another procedure to compare the exercise 

value and continuation value at each date to determine the optimal stopping rule. The 

optimal stopping rule estimated by the conditional expectation regressions from one 
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set of paths should lead to out-of-sample values that closely approximate the in-

sample values for the investment option (Stentoft 2004). 

Then I compared the value of the technology investment project for the case 

where there is no possibility of a jump, λ = 0, and when a jump may occur with the 

probability of λ = 0.05. When λ increases, the conditional variance of the future bene-

fit flow increases. I adjusted the parameter values of the means and variances for the 

two cases to give a more meaningful comparison. Because of the martingale re-

striction implied by the risk-neutral framework, the means for the two cases will be 

the same. 

Appendix E. Propensity Score Matching Process and Results 

I used the SAS software to perform multivariate logistic regression to calculate 

propensity scores for the time-invariant explanatory variables (Tenure, Low Income, 

Mobile, Tablet, Average # of Transactions, Average Balance, ATM Density, Branch 

Density, etc.). I accounted for both customers’ demographics and banking status in 

the calculation of the propensity score. I applied a stepwise selection procedure to 

remove the effects that did not meet the 5% significance level for entry into the model.  

See Table E1 for the logistic estimation results. I estimated each customer’s pro-

pensity to adopt a mobile phone and a tablet, respectively, and matched the customers 

with similar propensity scores in both treatment and control groups while maintaining 

the global distributions over two groups. I applied a OneToManyMTCH macro to per-

form the one-to-one static propensity score matching, and selected an untreated cus-

tomer that was paired with the treated one within the same state of the U.S. (Parsons 

et al. 2004). After matching, I constructed an unbalanced panel data for the mobile 
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phone treatment that contained over 200,000 observations for more than 80,000 cus-

tomers during a period of three months, and another unbalanced panel data for the 

tablet treatment that contained over 140,000 observations for more than 40,000 cus-

tomers. See Table E2 for a comparison of characteristics between the treatment and 

control groups. 

Table E1. Logistic Estimation of Propensity Score 

MOBILE TREATMENT TABLET TREATMENT 
INDEPENDENT VARIABLE ESTIMATE 

(STANDARD ERROR) 
INDEPENDENT VARIABLE ESTIMATE 

(STANDARD ERROR) 
Low Income 0.168*** 

(0.017) 
Low Income -0.228*** 

(0.022) 
Tablet 0.804*** 

(0.016) 
Mobile 0.756*** 

(0.016) 
Tenure 0.018** 

(0.008) 
Tenure -0.048*** 

(0.009) 
log(Average Transaction 

Number) 
0.490*** 
(0.008) 

log(Average Transaction 
Number) 

0.340*** 
(0.009) 

log(Average Balance) -0.195*** 
(0.004) 

log(Average Balance) 0.089*** 
(0.004) 

ATM Density -0.004*** 
(0.001) 

Branch Density 0.034*** 

(0.006) 
Number of Observations 194, 493 Number of Observations 194, 493 

Note: Robust standard errors are in parentheses. Significance level: * p<0.1; ** p<0.05; *** p<0.01. 

Table E2. Comparison of Treatment and Control Groups 

VARIABLE TREATMENT: MOBILE = 1 
(N=40,720) 

CONTROL: MOBILE = 0 
(N=40,720) 

 MEAN STD. DEV. MEAN STD. DEV. 
Tenure 4.48   0.86 4.47   0.90 
ATM density 10.53 12.52 10.64 12.52 
Branch density 1.23 1.12 1.24   1.13 
log(Average Balance) 8.90 2.68 8.77 2.95 
log(Average Transaction Number) 4.13 0.99 4.16 1.11 
 N % N % 
Tablet  7908 19.42 7469 18.34 
Low income 6570 16.13 6420 15.77 

VARIABLE TREATMENT: TABLET = 1 
(N=23,374) 

CONTROL: TABLET = 0 
(N=23,374) 

 MEAN STD. DEV. MEAN STD. DEV. 
Tenure 4.58 1.07 4.57 1.02 
ATM density 11.11 12.48 11.09 12.92 
Branch density 1.30 1.13 1.29 1.14 
log(Average Balance) 7.70 2.51 7.76 2.34 
log(Average Transaction Number) 3.86 0.81 3.87 0.83 
 N % N % 
Mobile 8572 36.67 8539 36.53 
Low income 2631 11.26 2695 11.53 

 


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	8-2016

	Decision modeling and empirical analysis of mobile financial services
	Jun Liu
	Citation


	tmp.1495424980.pdf.wgl6S

