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ABSTRACT 

 

ANALYZING THE PHENOLOGIC DYNAMICS OF 

KUDZU (PUERARIA MONTANA) INFESTATIONS USING REMOTE SENSING AND  

THE NORMALIZED DIFFERENCE VEGETATION INDEX 

 

Faye E. Peters 

 

April 18, 2016 

 

Non-native invasive species are one of the major threats to worldwide ecosystems.  

Kudzu (Pueraria montana) is a fast-growing vine native to Asia that has invaded regions 

in the United States making management of this species an important issue.  Estimated 

normalized difference vegetation index (NDVI) values for the years 2000 to 2015 were 

calculated using data collected by Landsat and MODIS platforms for three infestation 

sites in Kentucky.  The STARFM image-fusing algorithm was used to combine Landsat- 

and MODIS-derived NDVI into time series with a 30 m spatial resolution and 16 day 

temporal resolution.  The fused time series was decomposed using the Breaks for 

Additive Season and Trend (BFAST) algorithm.  Results showed that fused NDVI could 

be estimated for the three sites but could not detect changes over time.  Combining this 

method with field data collection and other types of analyses may be useful for kudzu 

monitoring and management. 
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CHAPTER 1: INTRODUCTION 

 

Invasion of non-native plant species has had negative impacts on the environment and 

cost the United States upwards of $120 billion to eradicate and control (Callen and Miller 

2015; Hawthorne et al. 2015).  Kudzu (Pueraria montana) is a woody, deciduous vine 

that has become one of the most invasive non-native species in the United States.  It was 

introduced from Asia in 1876 at Philadelphia’s Centennial Exposition in the form of 

seeds and marketed as a way to help with soil erosion in the southeastern region of the 

United States (Blaustein 2001). 

Kudzu exhibits a diverse array of physiological traits that have adapted it to a wide 

range of climates.  None the less, it does prefer certain conditions over others.  Its 

bioclimatic requirements include at least 100 cm of precipitation per year and 

temperatures between 25C and 30C for maximum photosynthesis (Forseth et al. 2004; 

Lindgren et al. 2013).  During peak periods of growth, this species has been known to 

elongate up to 1 foot per day (Smith 2010).  It also has an extensive root system designed 

for optimal moisture and nutrient extraction. These growth habits often result in kudzu 

outcompeting other vegetation as it blankets any surface that it encounters.  Growth can 

be stunted when exposed to low temperatures and decreased rainfall (Lindgren et al. 

2013).  

Many of the 32 states listed as containing kudzu infestations by the Early Detection 

and Distribution Mapping System (EDDMapS) (EDDMapS 2016) have dedicated 
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managers monitoring the infestations, and in Kentucky this is overseen by The Kentucky 

Nature Preserves and Natural Areas (J. Bender, personal communication, 18 September 

2015).  This organization utilizes EDDMapS to track new and established kudzu 

infestations.  With the help of public citizens, government agencies, and private 

companies, infestation data is uploaded to this site as point locations along with 

associated metadata.  Because these data are volunteered it may be biased towards 

accessible and well frequented areas.  

The Illinois Department of Natural Resources, uses airborne imagery after the first 

frost to analyze the extent of infestations throughout the state (J. Shimp, personal 

communication, 30 September 2015).  This is an efficient method because kudzu foliage 

senesces after the first freeze, thus distinguishing it from other vegetation as seen in 

Figure 1.  

Figure 1. Approximate boundary of a kudzu infestation in 

Illinois after the first freeze.  Courtesy of Jody Shimp IDNR-

Division of Natural Heritage 
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Research Objectives and Hypotheses 

The positive correlation of fluctuations in kudzu biomass with the rate of 

photosynthesis via vegetation indices (Zhitao et al. 2014) builds the foundation of the 

research question conceived for this thesis project: “Can the analysis of vegetation 

indices from remotely sensed data be used to detect the spread and intensity of kudzu 

infestations?”.  The objective and associated hypotheses related to this broad question are 

as follows. 

1. Assess if the density of kudzu’s planophile leaf structure inhibits using NDVI for 

studying its phenology since NDVI has been known to saturate in high LAI areas. 

Hypothesis 1: Despite the high leaf area index values of kudzu, NDVI will not 

saturate at peak productivity, making NDVI a useful index for studying kudzu 

phenology.    

2. Examine the robustness of fusing Landsat and MODIS imagery to create a time 

series of NDVI better suited to studying kudzu phenology. Hypothesis 2: Spatial 

extents and phenological dynamics of kudzu are better captured by 30 m, 

Landsat-scale pixels, and higher temporal resolution of MODIS data, making 

STARFM Landsat-MODIS fused data better than either Landsat or MODIS data 

on their own for studying kudzu.  

3. Assess the ability of vegetation indices as a reliable method to detect vegetation 

changes associated with kudzu infestation.  Hypothesis 3: As kudzu infestations 

expand and intensify measurable vegetation phenology changes. These changes 

can be detected and measured using BFAST decomposition of NDVI time series. 
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Remote Sensing  

Remote sensing is the collection of data from a distance and an array of options are 

available when attempting to map attributes of non-native invasive species (Jensen 2016).  

Different sensors encompass varying spatial, spectral and temporal resolutions, which 

require consideration as to which is the most appropriate for mapping non-native invasive 

species (Cheng, Tom, and Ustin 2007; Hunt, Hamilton, and Everitt n.d.).  

Commonly, aerial missions are employed to track infestations because of the 

availability of high spatial and spectral resolution data collected from airborne platforms.  

Aircraft are often outfitted with sensors like the hyperspectral Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS).  It is able to detect spectral signatures in 10nm band 

increments between 380- 2570nm (Asner et al. 2008; Huang and Asner 2009).  

Collecting continuous data across the electromagnetic spectrum in hundreds of bands 

provides the opportunity to assign unique spectral signatures to individual species.  When 

combined with the sensor’s moderate to fine resolution, 1 m to 20 m, an accurate 

representation of vegetation cover might be made.  This approach has been used to detect 

kudzu with an 83.02% accuracy when validated with field data.  The authors found that 

kudzu reflects the highest in the spectrum around 1100nm (Cheng, Tom and Ustin 2007).  

Drawbacks to using this type of data is that it has a low temporal resolution due to the 

availability only when a flight path has been tasked and the high cost of operation (Huang 

and Asner 2009).  

Spaceborne multispectral platforms, such as MODIS and Landsat (Buheaosier et al. 

2003; Huang & Asner 2009) have been in use for decades monitoring vegetation.  

Multispectral sensors differ from hyperspectral in that they have considerably fewer 
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bands across the electromagnetic spectrum over which data is collected.  This prevents 

moderate resolution sensors from spectrally detecting individual plant species due to the 

spatial and spectral limitations. 

The Landsat program began on July 23, 1972 (Jenson 2016) with the launch of 

Landsat 1 Multispectral Scanner (MSS) to monitor global agricultural practices.  Since 

the maiden launch, sequentially named Landsat satellites have been put into service with 

the latest being Landsat 8 with the Operational Land Imager (OLI).  Landsat 6 was 

launched in 1993 but did not achieve orbit.  Aside from some sensor-to-sensor variation 

in spectral characteristics, developers have upheld the fundamental goal of the Landsat 

program which is to retain compatibility across sensors.  Changes have included the 

addition of new bands, such as the coastal/aerosol band to Landsat 8, or band narrowing 

to assist in spectral differentiation (Jensen 2016).  Landsat data was made free and 

publically available in 2008 through the United States Geological Survey (Wulder et al. 

2012).   

Landsat has a moderate spatial resolution of 30 m for all bands besides the 

panchromatic and thermal.  The swath width is 185 km which provides ample 

representation of infestations on the surface (Jensen 2016).  The temporal resolution of 

Landsat data is relatively coarse with a 16 day return time which is often extended due to 

cloud cover.  In this study, climate in eastern Kentucky is prone to rain and snow showers 

in the spring and winter months (Hill and Mogil 2012) which add to the number of 

cloudy days.  Consequently, a fast growing plant like kudzu would not be sufficiently 

monitored at a 32-day, or more, temporal resolution making Landsat inferior for detection 

purposes. 



6 

 The Moderate Resolution Imaging Spectroradiometer (MODIS), like the Landsat 

sensors, has been used extensively in the mapping of land surface phenology but is often 

constrained to the global scale due to the sensor specifications (Muchoney et al. 2000; 

Zhang et al. 2004; Chuvieco et al. 2013). It has been operational on the NASA based 

Terra and Aqua satellites since 2/24/2000. This is a sun-synchronous satellite with a 

swath width of 2330km and is sinusoidally projected.  The fine temporal resolution of 

one day makes it an ideal candidate for tracking vegetation changes.  It is limited by the 

250-500 m resolutions available on the bands related to land surface cover.  If used on a 

localized scale there is almost certainly going to be the inclusion of mixed pixels in 

heterogeneous landscapes.   

Huang and Asner (2009) suggest that to successfully use Landsat or MODIS sensors 

for invasive species detection an infestation site should be expansive and exhibit a 

phenology different than its surroundings.  Privet (Ligustrum spp.) and honeysuckle 

(Lonicera spp.) are both non-native shrubs that have been successfully mapped using 

Landsat and MODIS (Salajanu and Jacobs 2009).  These species have the phenological 

trait of dropping their leaves after most native deciduous trees which aids in 

distinguishing them from surrounding vegetation.  In contrast, when non-native invasive 

species are obstructed by native vegetation Landsat and MODIS sensors are not as 

reliable (Huang and Asner 2009).  One potential solution to studying localized and/or 

heterogeneous vegetation cover, which exhibits variation on a spatial scale too fine for 

MODIS but too rapidly for Landsat detection, is to use both datasets with the use of a 

data fusion method. 
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Vegetation Indices 

Kudzu is prone to overtake forest canopies, fields and any other surface it comes in 

contact with, which provides opportunities to be remotely detected.  Vegetation indices 

(VIs) are utilized in the detection process (Blaustein 2001) because they provide a better 

representation of phenological changes verses basic spectral signatures, i.e. the green 

spectral signature.  Slope based VIs, (Silleos et al. 2006), are commonly used for the 

detection of phenologic changes to vegetation and originate from the spectral “simple 

ratio” (SR), which is defined by the inverse relationship between the reflectance (ρ) of the 

visible red and near infrared (NIR) portions of the electromagnetic spectrum (Birth and 

McVey 1968; Huete et al. 1997; Turner et al. 1999; Jensen 2016) . 

𝑆𝑅 =
 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅
 

(1) 

 

Healthier plants exhibit higher photosynthetic rates which results in a higher 

absorption in the visible red portion of the spectrum and higher reflectance in the NIR 

portion.  This relational difference decreases in unhealthy or senescent plants.  VIs are 

positively correlated with vegetation characteristics such as above ground biomass 

(Silleos et al. 2006), net primary productivity (NPP) (Rafique et al. 2016) and the level of 

leaf area index (LAI) (Jin and Eklundh 2014). 

Invasive species are most easily detected via remote sensing when they possess a trait 

that exhibits reflectance properties that are different than their surroundings.  Attributes 

may include earlier green-up time, leaf shape, or flowers (Hunt, Hamilton, and Everitt, 

n.d.).  Kudzu has a noticeably higher LAI value and above ground biomass 10-15 times 

greater than deciduous forests and other planophile species (Forseth and Innis 2004; 
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Lindgren et al. 2013).  The planophile orientation of kudzu leaves allows it to reflect 

more in the NIR spectrum and absorb more in the red spectrum when compared to leaves 

that have an erectophile orientation (Turner et al., 1999).  Since VIs are correlated with 

LAI and above ground biomass they provide a possible means of delineating kudzu from 

its surroundings. 

Examples of VIs are the enhanced vegetation index (EVI) and the normalized 

difference vegetation index (NDVI).  EVI is tailored to mask out atmospheric and soil 

noise which helps to reduce saturation of vegetation with high LAI values (Huete et al. 

1997) .  NDVI was first developed by Rouse et al. (1974) and has proven to be a reliable 

method for extracting phenologic trends across a wide variety of vegetation types.  NDVI 

as a phenology indicator has been used to monitor vineyard growth (Johnson et al. 2003), 

Mediterranean forest monitoring (Maselli 2004) and the extent of Lonicera mackii 

growth in Cherokee Park, Louisville, KY (Shouse, Liang, and Fei 2013).   

Like the SR, NDVI relies on the relative difference in reflectance of the visible red 

and NIR portions of the spectrum, Equation 2.  It differs from the SR in that it normalizes 

the output value range to -1 to 1, eliminating the effects of having a zero in the 

denominator. 

𝑁𝐷𝑉𝐼 =
𝜌(𝑛𝑖𝑟) −  𝜌(𝑟𝑒𝑑)

𝜌(𝑛𝑖𝑟) +  𝜌(𝑟𝑒𝑑
 

(2) 

 

Normalization works by calculating the difference between the visible red and NIR bands 

which is then divided by the sum of the two values.   Reducing the value range decreases 

the overall effect that the “Soil Line” has on NDVI values as a whole (Silleos et al. 

2006).  Compiling long term NDVI values into a time series has been found to be a useful 
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method for detecting abrupt and gradual changes in vegetation over a long time period 

caused by many types of land cover disturbances. 

 

Google Earth Engine 

In 2008, after the USGS release of Landsat imagery, Google launched the cloud-

based IDE (Integrated Development Environment) Google Earth Engine (GEE) to run the 

Earth Engine API (Application Program Interface), also commonly referred to as the 

Playground.  JavaScript is the language of choice within this API.  This does require the 

user have a background in JavaScript as this is not a GUI platform.  GEE imagery 

includes the entire Landsat and MODIS catalogs as well as additional datasets (Padarian, 

Minasny, and McBratney 2015).  All processing and computations are done on the fly 

(Hansen et al. 2013) which allows the computer to reproject and process data in close to 

real time.  This process automatically does this for any available dataset on the global 

scale.  Geospatial data can be converted to a fusion table, Google’s method of geospatial 

data management, and then loaded into GEE to interact with other vector or raster data.  

Outputs from GEE analyses are able to be downloaded as georeferenced raster data.   

Datasets with highly dimensional spatial and/or temporal resolutions are cumbersome 

and time consuming for desktop computers to acquire, process and export.  GEE’s 

thousands of computers wired in parallel and large collection of data make analyzing big 

data 40 – 100 times faster than a desktop computer (Padarian, Minasny, and McBratney 

2015).   

Although the provided data collection is large there are many dataset not available 

which has been noted as one of the platform’s drawbacks.  Hyperspectral data is among 
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the unavailable datasets which limits studies requiring precise spectral classification such 

as those related to population (Patela et al. 2015), geology (Padarian, Minasny, and 

McBratney 2015) and forest (Hansen et al. 2013).   Personal datasets can be upload to the 

Playground to offset this limitation but are limited by the 10gb available storage 

(Padarian, Minasny, and McBratney 2015).   

Despite limitations, GEE has been used extensively and proven that a cloud-based 

remote sensing platform is necessary for research based on highly dimensional datasets.  

Patel et al. (2015) were able to classify urban extent on the global scale using the 

normalized difference spectral vector.  Maize and soybean crop simulations from the 

United States were applied to Landsat data acquired via GEE to predict yields (Lobell et 

al. 2015).  A break through global forest map was created by Hansen et al. (2013) that 

now used by Google to highlight the capabilities of GEE.    

  

Data Fusion Modelling  

The spatial and temporal adaptive reflectance fusion model (STARFM), (Gao et al. 

2006), generates synthetic imagery by fusing Landsat data with MODIS data.  By 

combining both datasets into one synthetic version so that both high temporal resolution 

and fine/moderate spatial resolution may be preserved (Gao et al. 2006; Zheng and 

Moskal 2009).  The combination of both resolutions produces an environment that is 

robust enough to track phenologic productivity changes in vegetation cover while 

working with a spatial resolution fine enough for smaller, patchy invasive contexts (Gao 

et al. 2006; Walker et al. 2012; Wang, Gao, and Masek 2014; Schmidt et al. 2015).   
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Landsat and MODIS data work well for data fusion because they have overlapping 

spectral bandwidths (Table 1) and similar flyover times which were developed to be 

comparable (Walker et al. 2012).  This method has accurately tracked changes in 

vegetation dynamics on west Texas ranches (Yang et al. 2015) and after forest/grassland 

disturbances (Hilker et al. 2009; Schmidt et al. 2015). 

TM 
Bands 

TM 
Bandwidths 

(nm) 

ETM+ 
Bands 

ETM+ 
Bandwidths 

(nm) 

OLI 
Bands 

OLI 
Bandwidths 

(nm) 

MODIS 
Bands 

MODIS 
Bandwidths 

(nm) 

1 450-520 1 450-515 2 450-515 3 459-479 

2 520-600 2 525-605 3 525-600 4 545-565 

3 630-690 3 630-690 4 630-680 1 620-670 

4 760-900 4 750-900 5 548-885 2 841-876 

5 1550-1750 5 1550-1750 6 1560-1660 6 1628-1652 

7 2080-2350 7 2080-2350 7 2100-2300 7 2105-2155 

 

This fusion technique works by identifying two base pairs of Landsat and MODIS 

imagery across a time series that have the same or close to the same acquisition date to 

create a synthetic image of missing or bad Landsat data within a scene.  A significant 

amount of overlapping, valid data realistically should be shared between image pairs in 

order to establish a relationship that can be used to generate synthetic imagery (Gao et al. 

2006; Wang, Gao, and Masek 2014).  Acceptable base pairs are chosen from a sliding 

window that temporally moves through the times series from iteration to iteration until 

two sound pairs are chosen.   After establishing image pairs, a statistical model is utilized 

in the prediction of Landsat reflectance or Landsat-scale product derived from MODIS 

inputs.  Predictions produced by the statistical model are used to match unpaired MODIS 

image dates with Landsat-scale images.   

 

Table 1. Comparison of Landsat and MODIS spectral bandwidths 
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 Data introduced into the STARFM algorithm must be corrected and assume some 

basic principles (Gao et al. 2006).  Atmospheric correction and resampling are required 

before input into the algorithm.  First, surface reflectance is estimated prior to fusion 

processing requiring all MODIS and Landsat imagery to be atmospherically corrected 

using the same basic principles.  Most commonly Landsat Ecosystem Disturbance 

Adaptive Surface Reflectance (LEDAPS) (Maiersperger et al. 2013; USGS 2016) is used 

for Landsat images because it is very similar to the correction algorithm applied in the 

Collection 6s approach for MODIS data (Gao et al. 2006; Maiersperger et al. 2013).  

Second, both datasets must have the same spatial resolution which requires all MODIS 

imagery to be resampled to 30 m to match that of Landsat.   

 An ideal study area to run through STARFM would provide the user with pure pixels, 

unchanging vegetation extent and uniform spectral reflectance (Gao et al. 2006).  In the 

real world this does not exist and is accounted for in the STARFM algorithm by 

weighting pixels that neighbor a central pixel.  Three factors are considered: spectral 

difference, temporal difference and location difference.  The product of these weights 

make up the combined weight assigned to a pixel (Equation 4). 

𝐶𝑖𝑗𝑘 =  𝑆𝑖𝑗𝑘 ∗ 𝑇𝑖𝑗𝑘 ∗ 𝐷𝑖𝑗𝑘 

(4) 

  

Where C  is the combined weight, S is the spectral difference, T is the temporal 

difference and D  is the location difference (Gao et al. 2006).  i, j, k refers to the x/y 

coordinates and acquisition date of a pixel, respectively.  All three exhibit an inverse 

relationship between what is measured and how heavily the pixel is weighted.  The lower 
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the measurement of the three variables, the higher the weight assigned to a pixel (Gao et 

al. 2006). 

 To increase the efficiency of this product, additional weights can be assigned to pixels 

based on the level of homogeneity in the study area.  Spectral classification of pixels 

must be examined to ensure that correct weighting is assigned.  Classification options 

include an unsupervised method or utilizing a threshold indicator built into the STARFM 

algorithm.  The difference between the two is that the unsupervised method applies the 

rules over the entire study area while the second method only applies to the pixels that are 

of concern.  Beyond this step bad pixels can be masked as they can create bias within the 

statistical predictions used to form the synthetic image. 

 

Temporal Decomposition 

NDVI estimates can be combined at the pixel level into time series which can then be 

decomposed in order to analyze underlying trends associated with phenologic change.  

Such are required to be relatively long periods, which in remote sensing terms translates 

to the numbers of images acquired for a distinct subset of land.  Time series are classified 

as having high or low dimensionality depending on the amount of observations.  

Dimensionality refers to the length and number of temporal observations within a dataset.  

For example, a dataset consisting of all available Landsat TM images would have high 

dimensionality versus a low dimensionality dataset consisting of only two Landsat TM 

images.   

Low dimensional time series often use methods such as Principal Component 

Analysis or Fourier analysis (Verbesselt et al. 2010b).  Both are transformation methods 
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that aim to reduce the dimensionality of a dataset down to the components with the 

highest variance (Lhermitte et al. 2011).  Most often such methods are used to assess 

change by partitioning variation into various subcomponents including large shifts.  

Transformation methods reduce underlying trends but typically mask them because they 

do not contribute a high amount to the total variance.   

Datasets with high dimensionality benefit when seasonal and other trends are retained 

as the data is reduced.  Breaks for Additive Seasonal and Trend (BFAST) (Verbesselt et 

al. 2010a; Forkel et al. 2013) does this by decomposing a time series into seasonal, linear 

and error components as illustrated in Figure 2.  This means that all the decomposed parts 

when summed reconstruct the observations through time (Equation 3). 

𝑌𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑒𝑡 
(3) 

 

Where Yt is the observed trend, St is the seasonal trend component, Tt is the linear trend 

component and et is the error component. 

Figure 2. Example BFAST Plot 
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A harmonic analysis is applied to decompose the observed seasonal trend from other 

more predictable parts of the series.  This type of analysis is more robust than the 

“dummy” model method because it uses a continuous baseline for decomposition rather 

than discrete points (Verbesselt et al. 2010b; Hutchinson et al. 2015).  Discrete points 

chosen for the dummy model express phenologically important dates such as green up or 

leaf drop thus obscuring what occurs between these chosen points.  The combination of 

multiple sinusoidal waves comprise a harmonic analysis which varies based on changes 

to the amplitude and phase of the wave (Jakubauskas, Legates, and Kastens 2001).   

Abrupt or gradual changes in vegetation can be detected after decomposition by 

applying breaks to the linear trend to better fit detected errors.  This is accomplished by 

analyzing any remaining trends leftover from the initial decomposition process 

(Hutchinson et al. 2015; Verbesselt et al. 2010a) by specifying the acceptable number of 

breaks that can be added to the linear trend.  A set number of iterations is chosen for the 

BFAST algorithm to complete before selecting the best fit for breaks along the linear 

trend.  The linear trends connecting breaks are useful in characterizing duration of 

disturbances, as well as the nature of vegetation dynamics pre- and post- break.  A level 

of uncertainty bounds the breaks meaning that the true date of disturbance may lie before 

or after the break date. These break dates correspond to remote sensing acquisition dates 

which will vary based on the temporal resolution of the sensor being used.  
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CHAPTER 2: SIGNIFICANCE 

The objective of this project is to produce a method incorporating satellite imagery 

that management officials can use to assess kudzu (Pueraria montana) infestations.  The 

study sites were chosen in Kentucky because of the location along the northern edge of 

the North American kudzu extent and the presence of smaller, localized infestations. 

Monitoring and management methods should display that that they are effective at 

assessing the kudzu phenologic dynamics in a variety of infestation site sizes and be 

economical to implement.  

The Kentucky Transportation Cabinet (KYTC) District 10 is currently working with 

the University of Kentucky to test chemical and mechanical methods to control kudzu.  

The current method being used to monitor the effectiveness of these applications is 

ground-based field collection.  This method is labor intensive and may not provide the 

coverage and scale needed to accurately monitor the efficacy of eradication methods.  A 

method like the one proposed in this study would reduce the labor time and cost as well 

as compliment the ongoing field-based monitoring system that is currently in place.  

The proposed method could also be applied to a broader spectrum of kudzu 

infestations outside of Kentucky as well as other non-native vine species inside and 

outside of the state.  Vines such as porcelain berry, Ampelopsis glandulosa, exhibit 

characteristic similar to that of kudzu that both threaten ecosystems and are difficult to 

eradicate and or control.   
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CHAPTER 3: METHODS AND DATA 

 

 Landsat and MODIS imagery was incorporated into the STARFM data fusion 

algorithm to produce the most accurate series of images to apply the BFAST temporal 

decomposition model to.  This process aimed to produce a dataset with sufficient 

temporal and spatial resolution to assess productivity change using decomposed NDVI 

time series of kudzu infestations in three study sites.  Similarities between both datasets 

and their accessibility through open source data archives made Landsat and MODIS an 

ideal choice for this project.   Google Earth Engine (GEE) was employed to acquire, 

process and export both sets of imagery because of its immense on the fly processing 

power of individual Landsat and MODIS scenes.  The RStudio interface provided a 

platform to run both the STARFM and BFAST algorithms which fused and temporally 

decomposed the imagery, respectively.     

 

Study Area 

Infestation sites were chosen based on a set list of criteria.  According to the United 

States Department of Agriculture (USDA) the smallest infestation site should be least 4 

times as large as the image pixel (Hunt, Hamilton, and Everitt n.d.).  The 30 m Landsat 

resolution determines that the smallest infestation should be larger than 3,600 m2.  
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Study areas were supplied by the KYTC District 10 (D. R. Gumm, personal 

communication, 29 October 2015) and are clustered in the eastern portion of Kentucky in 

Breathitt and Perry counties (Table 2 and Figure 3).  All sites were delineated using 

Google EarthProTM on 6/13/2014 and saved as a .kml file which was later converted to a 

.shp file using ArcMap 10.3.1. 

  

Table 2. Specific Location of the three study sites. 

Site Latitude Longitude Area (m2) Elevation 

(m) 

Site 

Location 

#1 37°32'8.26"N 83°32'36.25"W 52,936  

(13 acres) 

281.94 KY 2469 

Athol, KY 

#2 37°13'13.83"N 83°10'37.72"W 34,459  

(8.51acres) 

369.72 KY1096 

Hazard, 

KY 

 #3 37°12'11.84"N 83°11'33.10"W 28,777 

(7.11acres) 

541.02 KY1096 

Hazard, 

KY 



 

 

 

1
9
 

Figure 3. Location of kudzu infestation study sites in eastern Kentucky. 
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 The study areas are located in the Cumberland Plateau region of eastern Kentucky.  

Forested, rolling hills intertwined with rivers and creeks cover this landscape.  The actual 

sites sit at lower elevations (Figure 4) than the surrounding landscape and do not exhibit 

one slope aspect over another. 

Figure 4. Slope and aspect of the three study areas. 
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Disturbed edges are prime environments for kudzu to thrive due to greater sunlight 

for photosynthesis and other factors (Blaustein 2001; Smith 2010; Lindgren et al. 2013).  

Disturbance sources include, the eastern Kentucky coal fields, which can be clearly seen 

in images from Perry County.  Images acquired from Google Street View display the 

robust and aggressive nature of  this vine (Figure 5 and Figure 6). 

 

Figure 5. Site #2 kudzu infestation KY 1096 looking southeast.  

Image: Google EarthProTM (4/10/2016) 

Figure 6. Site #3 kudzu infestation KY 1096 looking north. 

Image: Google EarthProTM (4/10/2016) 
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Centroid pixels were used to compare productivity trends between the three sites to 

determine whether a NDVI time series “signature” exists for kudzu infestations like those 

commonly encountered in Kentucky.  Centroids were calculated in ArcMap 10.3.1 using 

the Feature to Point tool in the Data Management Toolbox.  The centroid for Site #3 was 

shifted south to ensure that the pixel was completely contained within the site.  NDVI 

values from the pixel containing the centroid from the MODIS and synthetic data were 

used to generate the time series and subsequent BFAST temporal decompositions. 

A series of random points were created in each study area to determine if the trends 

detected near the centroids were representative of the entire area or if it was an isolated 

occurrence.  These extra points were generated randomly using the Create Random 

Points tool within the ArcMap Data Management toolbox as illustrated in Figure 7.  Five 

points were selected with a minimum allowable distance of 30 m.  Before running the 

BFAST on any of these points it was made sure that none were located within the same 

30 m pixel or in a pixel not completely contained within the study area.   
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Datasets 

Both Landsat and MODIS datasets were acquired and processed using the GEE, 

cloud-based API. The JavaScript-based GEE interface script that subset, resampled and 

exported all MODIS and Landsat data used in the study is included in Appendix A.  All 

Landsat images were acquired from the GEE archive where surface reflectance estimates 

were calculated on the fly via the LEDAPS algorithm for dates ranging from 2/18/2000 to 

12/31/2015 along Path 19 Row 34 (Table 3).   This time frame was chosen to coincide 

with all possible MODIS imagery through the end of 2015.  

Figure 7. Placements of centroids and random points in each of the study sites. 
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SENSOR ACQUISITION DATES 

Landsat 5-TM 3/12/2000 to 11/6/2011 

Landsat 7-ETM+ 
10/1/2007 to 12/31/2007 

4/1/2011 to 6/30/2013 

Landsat 8-OLI 4/11/2013 to 12/31/2015 

 

Table 3. Landsat Image Acquisition Dates 

 

Landsat 7 ETM+ experienced a scan line corrector (SLC) failure on May 31st, 2003 

(Gu and Wylie 2015) resulting in images with strips of data missing due the sensor not 

being able to compensate for movement during data acquisition.  Considerations were 

made to remove these data but would have resulted in a time gap measuring a few months 

between the SLC off date and the launch of Landsat 8 (Goward et al. 2006) as well as a 

period in 2007 when TM went offline.  Due to the rapid phenological changes of kudzu 

and the need for continuous data for BFAST to work most efficiently, it was decided to 

include all ETM+ images for possible matches with MODIS/Landsat image pairs.  

The spectral resolutions between Landsat sensors varies slightly, so all Landsat 

products were resampled to the standard 30 m during the GEE export process (Appendix 

A) (Irons, Dwyer, and Barsi 2012). The visible red and NIR bands were used to calculate 

the NDVI for the study areas (Table 4)) at each image date which were then processed 

into a single multiband image (Appendix A).  Cubic convolution resampling was used 

during image resampling and data was projected to UTM Zone 17N (WGS84) in GEE 

(Appendix A). 
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 Red Band NIR Band Spatial Resolution 

Landsat 5 TM 630 – 690nm 760 – 900nm 30m 

Landsat 7 ETM+ 630 – 690nm 780 – 900nm 30m 

Landsat 8-OLI 640 – 670nm 850 – 880nm 30m 

 

Table 4. Landsat Red and NIR Band Resolutions 

 

 The MODIS MOD13Q1 Vegetation Indices 16-Day Global 250 m product was used 

to construct an NDVI time series.  This dataset was collected from the MODIS sensor 

aboard the Terra platform.  These data were acquired and processed via GEE for the time 

period of 2/24/2000 to 12/31/2015 for all three study sites using tile h11v05.  These data 

provide EVI, NDVI and surface reflectance from which NDVI was estimated.  Quality 

assurance mask bands were used for the exclusion of bad pixels below the lowest level of 

decreasing quality as specified in the MOD13Q1 data description (Appendix A) (LP 

DAAC 2014).  Dates assigned to this image collection correspond to the first day of each 

16 day period.   

Beginning in 2015 the 6th version of the processing algorithm for the MOD13Q1 

dataset was released, which needs to be used for all analyzed data (Gao et al. 2006).  This 

algorithm estimates surface reflectance via atmospheric correction using bi-directional 

reflectance, and is similar to the Landsat LEDAPS method of atmospheric correction 

which adds to the comparability between Landsat and MODIS datasets (Walker et al. 

2012; Wang, Gao, and Masek 2014) 
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Google Earth Engine Data Processing 

TM, ETM+ and OLI image collections were filtered for only those available within 

the date range of MODIS images.  To reduce the file size of final time series, data from 

each of the three study areas was acquired and assembled into separate multiband image 

stacks.  A 5000 m buffer was included so that all pixels overlaying the study sites were 

extracted for both MODIS and Landsat datasets and to provide potential areas to be used 

in a land cover comparison.  

The STARFM algorithm is most efficient when then percentage of bad pixels is kept 

to a minimum (Gao et al. 2006).  For this reason everything besides clear and water 

pixels were masked from each Landsat image and if that accounted for more than 5% of 

the total number of pixels then the image was not included in the fusion process.  From 

this point forward the term “bad” in reference to the quality of images used in this study 

will be defined as those with >5% bad pixels. 

As explained in the methods and GEE code (Appendix A), NDVI was calculated for 

each image collection.  Separate lines of code were constructed for the TM/ETM+ and 

OLI image collections as the band numbering is different between these sensors.  After 

the filtering process was complete, all Landsat images were merged into one Landsat 

multiband image.  Each band contained either good and/or masked pixels.   

The merged Landsat collection was matched against the merged MODIS imagery by 

image date.  MODIS NDVI values are stored in GEE as integers which does not 

correspond with Landsat’s floating point estimates of NDVI.  Thus, Landsat NDVI 

values were multiplied by 10,000 to convert them to integer values.  At which point, two 

complete and comparable multiband images were saved for all three study sites for every 
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MODIS 16-day composite date between February 2000 and December 2015.  In addition, 

summary tables recording the composite dates and percentage of bad pixels for each site 

were exported and saved. 

 

STARFM Data Fusion 

The STARFM data fusion algorithm was used for this study to synthesize the high 

temporal resolution of MODIS 16-day composites with the higher spatial resolution of 

Landsat data (30m) (Gao et al. 2006).  The STARFM v.1.2.1 algorithm was run from 

command line tools downloaded from the USDA Agricultural Research Service website 

(United States Department of Agriculture 2016) but executed using the R statistical 

environment (R Core Team 2016).  The series of STARFM commands used in the study 

is documented and provided in Appendix B. 

 Before the implementation of data fusion, a threshold of 5% bad pixels was set to 

define which MODIS and Landsat pairs would be used in the process.  Any pixel within 

the buffered area or the border surrounding it containing clouds, snow or shadow were 

masked and considered “bad.”  Any masked pixel within the 5000 m buffered area was 

counted and the percentage of the total area these pixel comprised was calculated.  If the 

number of “bad” pixels inside the border region exceeded 5% of the total the image was 

defined as “bad” and it was not used to create “good” MODIS/Landsat pairs.  The total 

number of images used in the fusion process are shown in (Table 5 

Table 5) and graphically in (Figure 8).  
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Landsat (TM, ETM+, & OLI) Image Contribution 

Site Good Images 

 (≤5% Bad Pixels) 

Bad Images 

 (>5% Bad Pixels) 

Missing Images 

(All  Bad Pixels) 

Total 

Images 

#1 76 162 127 365 

#2 52 75 238 365 

#3 55 79 231 365 

 

Table 5. Breakdown of Landsat Imagery used in the STARFM fusion process. 

 

 

 

Figure 8. Graphical representation of Landsat images above and below the 5% bad 

pixel threshold.  No percentage correlates to no image.  MODIS images along the 

1.0 lines representing all good imagery from that collection. Site #1 (a), Site #2 (b), 

Site #3 (c) 
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 For each MODIS 16-day image date STARFM used a moving window to locate the 

first Landsat/MODIS image pair containing at least 95% good pixels directly before and 

after it.  The purpose of these image pairs was to simulate a Landsat spatial scale estimate 

of NDVI at the MODIS image date between the identified paired images.  The outcome 

of this process was a synthetic time series of Landsat-scale data for each MODIS image 

date.  Upon completion of the fusion process, any masked Landsat pixel was replaced 

with the Landsat-scale synthetic data produced at the corresponding MODIS image date.  

This method retained the most original Landsat data by compiling a Landsat-scale image 

stack comprised of original, filled and completely synthetic estimated NDVI images of 

which was used in the BFAST analysis. This process is featured in Figure9. 
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Figure 9. STARFM image comparison from Site #1.  From left to right: MODIS, 

Landsat, Synthetic, Filled.  Image sequence (a) time step six which contains Landsat 

image with no missing data, (b) date twelve contains masked pixels that are filled with 

synthetic data, (c) date fifteen, which contains no valid Landsat pixels and which is 

replaced with a complete, synthetic or simulated set of pixels images. 

 

BFAST Temporal Decomposition 

 Following the fusion process, all non-missing Landsat data was filled in with 

synthetic, STARFM data to produce a complete time series at a 30 m spatial resolution.  

The BFAST package for R (Verbesselt et al. 2010a; Verbesselt et al. 2010b) was used to 

process and decompose the time series for each infestation site, Appendix C.  A total of 
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six pixels were evaluated by compiling their NDVI values into a time series.  These 

included the pixel corresponding to the centroid and five additional pixels for each site.  

The resulting series of decompositions shows phenological variance and change 

measured by NDVI (Appendix E).  
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CHAPTER 4: RESULTS 

 

 The fused Landsat time series assembled from Landsat-derived and STARFM 

synthetic data proved to be a better scale to evaluate the productivity of kudzu in all three 

study sites compared with one composed strictly of MODIS data.  All final Landsat-scale 

images were combined into an estimated NDVI time series.  It was important to derive a 

complete time series for the time range of this study to avoid any temporal gaps but 

consequently cloud, shadow, snow, SLC-off errors and other contaminates were included.  

Figure 0 - Figure 2 highlight the range of gaps in the Landsat data, red line, and how 

those gaps were replaced with filled and synthetic imagery. 

Evaluation of the differences between MODIS and Landsat-scale pixel resolution was 

made by comparing the results of BFAST plots from MODIS only data and fused time 

series.  From all kudzu study area centroids and points, time series were extracted and 

decomposed with the BFAST algorithm (Appendices D and E).   
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Figure 10. Site #1 times series for MODIS, Landsat, STARFM, and Fused datasets.  The red line represent available 

good Landsat data and the prevalence of gaps in that image collection. 
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Figure 11. Site #2 times series for MODIS, Landsat, STARFM, and Fused datasets.  The red line represents 

available good Landsat data and the prevalence of gaps in that image collection. 
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Figure 12. Site #3 times series for MODIS, Landsat, STARFM, and Fused datasets.  The red line represent available 

good Landsat data and the prevalence of gaps in that image collection. 
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 Entropy values for both the yearly and seasonal trends expose the complexity of 

seasonal trends in the data.  The lower the entropy value the more order present in the 

trend line. Comparisons of BFAST results across sites show minimal difference between 

locations and sensors.  These differences are listed in Table 6. 

  Yearly Entropy Seasonal Entropy 

  Site #1 Site #2 Site #3 Site #1 Site #2 Site #3 

(a)MODIS 

Centroid 0.4521 0.3346 0.3638 0.2290 0.2554 0.2511 

(b) Landsat 

Centroid 0.4042 0.4040 0.4714 0.2451 0.2412 0.2392 

0 0.4662 0.3996 0.4140 0.2474 0.2419 0.2434 

1 0.4179 0.4147 0.4440 0.2394 0.2424 0.2430 

2 0.3595 0.3787 0.4111 0.2438 0.2422 0.2380 

3 0.3880 0.4200 0.4153 0.2512 0.2385 0.2446 

4 0.5430 0.4454 0.3795 0.2384 0.2429 0.2464 

Average 0.4298 0.4104 0.4226 0.2442 0.2415 0.2424 

 

Table 6. Yearly and seasonal trend line entropy values for 

(a) MODIS and (b) Landsat-scale, Fused Data time series. 

 

 The fused data did exhibit breaks in the seasonal trend (St) at Site #1 which was not 

observed in the coarser MODIS data.  This was observed at time step 97 which correlates 

with the date 4/22/2004.  Unlike the other two sites where the estimated seasonal trend 

was consistent across time, and similar between MODIS and fused imagery, the 

identification of this difference could be a signal of disturbance or shift in established 

vegetation at Site #1.  Comparisons between the similar seasonal trends (St) are 

illustrated in BFAST analyses for each site provided in Figure 13 - 15.   
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Figure 13. Comparison of the BFAST plots for the MODIS (left) and filled image collection 

(right) pixels that contain the centroid of Site #1. 
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Figure 14. Comparison of the BFAST plots for the MODIS (left) and filled image collection 

(right) pixels that contain the centroid of Site #2 
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Figure 15. Comparison of the BFAST plots for the MODIS (left) and filled image 

collection (right) pixels  

that contain the centroid of Site #3. 
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From the BFAST plots generated at each of the 6 points there are trends within each 

study area, Appendix E.  With the exception of one point, Site #1 exhibited no breaks and 

a positive linear trend over time.  Sites #2 and #3 produced BFAST plots similar to the 

one produced for each centroid.  Three breaks in the long term, linear trend (Tt) are 

estimated at Sites #2 and #3 with the BFAST algorithm. These sites are located close to 

one another along Kentucky State Road 1096.  Site #2, point 1 exhibited two breaks 

compared to three for the rest of the points, Table 7.  The date of the second break better 

coincides with the timing of the third break.  For this reason this break was moved to the 

Break 3 column.  

With a slight margin of error at the beginning and ending date of each break can be 

estimated by using the image band located at the break as a reference point.  It is 

approximated because the date that it is referring to is also the date for which each 

MODIS MOD13Q1 16-day composite is labelled. The break is also approximate with 

regards to the disturbance or change in phenology that generates it since the effect 

measured in vegetation index may lag the cause of that change.  The first break shows the 

most consistency between the two sites and was detected at 10/16/2005 as the 

approximate date highest frequency of same date breaks in NDVI (Table 7).  The second 

and third breaks show a lower amount of overlap that also falls in the later months of the 

year. 
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Site #2 

Point Break 1 

MODIS 

Date 

Break 

2 

MODIS 

Date 

Break 

3 MODIS Date 

Centroid 131 10/16/2005 178 11/1/2007 282 5/8/2012 

0 131 10/16/2005 178 11/1/2007 283 5/24/2012 

1 154 10/16/2006 N/A N/A 318 12/3/2013 

2 47 2/18/2002 154 10/16/2006 283 5/24/2012 

3 131 10/16/2005 178 11/1/2007 316 10/16/2013 

4 154 10/16/2006 237 5/25/2010 283 11/1/2013 

       (a) 

Site #3 

Point Break 1 

MODIS 

Date 

Break 

2 

MODIS 

Date Break 3 

MODIS 

Date 

Centroid 47 2/18/2002 151 8/29/2006 234 4/7/2010 

0 131 10/16/2005 178 11/1/2007 270 11/1/2011 

1 47 2/18/2002 131 10/16/2005 197 8/28/2008 

2 131 10/16/2005 197 8/28/2008 287 7/11/2012 

3 131 10/16/2005 197 8/28/2008 258 4/23/2011 

4 57 7/28/2002 151 8/29/2006 318 12/3/2013 

       (b) 

 

  

 

 

 

  

 

 

Table 7. Break location by band and the corresponding break start date based 

on the MODIS MOD13Q1 16-day composite dates for Sites #2 (a) and #3 (b) 

(b). 
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Comparison with Vegetation Outside the Study Area 

 Beyond the study area are forest stands and fields.  To compare any similarities and 

contrasts that may exist between kudzu and another vegetation cover a simple spectral 

profile was created using NDVI values for three types of vegetation: kudzu, forest and 

grass.  Site #2 was used for this portion of analysis as results are assumed to be similar 

for the same types of vegetation near the other two infestation sites.  The spectral profile 

reveals that overall grass shows lower and smaller ranges in NDVI values compared to 

the other vegetation covers most likely caused by its erectophile leaf structure (Turner et 

al. 1999).  Forest and kudzu have similar entropy patterns with forest cover peaking with 

slightly higher NDVI values at both peaks and troughs.  These variations are illustrated in 

Figure 16.     

  

Figure 16. Spectral profile representing kudzu, grass and forest 

cover in and around Site #2. 
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CHAPTER 5: DISCUSSION 

Results from this study show that original and decomposed time series indicate that 

estimated NDVI values for kudzu do not oversaturate and can be used as a resource to 

analyze the phenology dynamics of this plant. Analysis of the results also show that 

combining imagery into a fused image collection, filling temporal gaps in Landsat-scale 

NDVI with MODIS-derived, and synthetic data increase the applicability of this type of 

data to detect long-term trends and changes.  Being a fast-growing and high biomass 

species (Forseth and Innis 2004; Lindgren et al. 2013) we assumed that this method 

would have successfully detected expansion and intensity of kudzu infestations from the 

surrounding vegetation.  However, the scales used in this study were not fine enough to 

positively distinguish growth patterns within the three study sites. 

 

STARFM Data Fusion 

The STARFM data fusion algorithm excelled at creating a complete Landsat 

resolution time series at the MODIS temporal scale.  These time series also showcase that 

NDVI did not oversaturate due to the LAI range at these study sites.  If saturation had 

been present, clipping would have existed in some or all of the peaks within the trend 

line.  Clipping refers the flattening of wave peaks caused by values that exceed the 

intended range.  Such results show that NDVI is an acceptable vegetation index to use 

when monitoring and measuring kudzu phenology changes.  
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Due to the potentially high LAI values of kudzu, 3.7 – 7.8 (Forseth and Innis 2004), the 

validity of NDVI as a sufficient method of kudzu monitoring should be compared with 

other VIs such as EVI.  Like NDVI, EVI is based on the simple ratio with adjustments 

expressed in Equation 4. 

𝐸𝑉𝐼 = 𝐺
𝜌(𝑛𝑖𝑟) − 𝜌(𝑟𝑒𝑑)

𝜌(𝑛𝑖𝑟) + 𝐶1𝜌(𝑟𝑒𝑑) − 𝐶2𝜌(𝑏𝑙𝑢𝑒) + 𝐿
 

                                                                                                                                   (4) 

 

This is a more robust VI compared to NDVI because of the inclusion of the constants 𝐶1 

and 𝐶2 along with the soil coefficient L (Jensen 2016). The two constants adjust for 

atmospheric scattering and absorption in the red and blue bands respectively.  L is 

derived based on the type of soil underlying the vegetation and accounts for many of its 

reflection.  These coefficients adjust for any background canopy noise associated with 

leaf litter, snow, etc (Huete et al. 2002).  

Kudzu expands in a blanketing nature which partially or completely replaces any type 

of canopy that it consumes.  The increased presence of chlorophyll increases the 

sensitivity of NDVI thus potentially producing over estimation of kudzu productivity 

(Huete et al. 2002).  By comparing the NDVI time series produced in this study with that 

of EVI a conclusion can be made if these value are indeed accurate or have been inflated 

due to the phenologic and physiologic attributes of kudzu. 

Combining “good” and unmasked Landsat-derived NDVI with filled and synthetic 

imagery aided in preserving the most Landsat data possible as seen in  (Schmidt et al. 

2015).  All three image series represent the progression of the fusion process with (1) 

MODIS image, (2) Landsat image with mask applied, (3) synthetic Landsat-scale image 
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derived from the fusion process and (4) the final Landsat-scale image classified as either 

original, filled or synthetic.   

The BFAST algorithm works best when presented with a complete set of data.  This 

is because it is an additive decomposition model which functions by using the sum of the 

seasonal, linear and error components to express the observed trend (Verbesselt et al.  

2010b; Schmidt et al. 2015).  If there is a portion of the observed trend missing, and later 

inputted, then the additive trends will be skewed due to the lack of data.     

     Reliance on Landsat data alone would have produced a time series that exhibits 

numerous points of missing data caused by its unreliable 16-day temporal resolution as 

displayed in Figures 10 – 12.  Interpolation between good pixels and images to produce a 

complete time series could have potentially been misleading based on the number of 

missing pixels.  Incorporating MODIS data with the STARFM algorithm provided good 

pixels correlating with missing Landsat pixels to produce synthetic imagery.   

With this brings uncertainty due to the spatial resolution of the MODIS pixels in 

relation to the area of each study site.  As none of the sites were large enough to contain a 

complete MODIS pixel, the synthetic Landsat-scale pixels within the study sites were 

derived from mixed MODIS pixels containing spectral signatures from surrounding 

vegetation.  Gao et al. (2006) does mention that the accuracy of detecting phenology 

changes using STARFM is dependent on the size of the study area.  Locating pure coarse 

resolution pixels representing the land cover in question increases the accuracy of the 

synthetic data for similar but smaller areas.  Without a land cover classification it is not 

clear if a pure kudzu pixel was used in the STARFM algorithm.  Future studies could 
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incorporate a land cover classification to clarify this questions and if the absence of a 

pure kudzu MODIS scale pixel effects the results of this study. 

 

BFAST Analysis 

 Results from the BFAST analyses substantiate the use of the STARFM fusion 

algorithm to produce a much more robust image collection compared to one that is 

composed only of Landsat or MODIS data.  Analysis of these plots show a distinct 

difference in the phenologic dynamics observed at 250 m compared to those made at 30 

m spatial resolutions.  The increase in the number of breaks produced from the 30 m 

filled dataset shows that finer resolution is better at detecting phenologic change at the 

local level.  Each break calculated by the BFAST algorithm was matched with the 

corresponding image, or band, in the filled image collection.  This was possible because 

each image correlates to a MOD13Q1 composite. 

Site #1 did not present as many breaks as was recorded for Sites #2 and #3.  A 

number of approaches were made to determine the cause of these breaks but a concrete 

answer was not reached.  Perry and Breathitt counties are both host to numerous wildfires 

every year which range in size from 10 acres to over 500 acres according to the Kentucky 

State Department of Forestry (M. Harp and R. Boggs, personal communication, 21 March 

2016).  A firsthand account offered by the KYTC District 10 (D. R. Gumm, personal 

communication, 16 March 2016) was that at least one fire in early 2014 disturbed part of 

the Kudzu infestation at Site #1.  At this same time the KYTC, in collaboration with a 

team from the University of Kentucky, began studying the western section of this site by 
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sectioning it off into 30 ft. x 30 ft. plots to test chemical and mechanical methods of 

kudzu eradication.   

The 2014 fire hampered their project because it allowed a patch of ragweed to take 

hold.  Unfortunately these disturbances were not able to be detected as a statistically 

significant break most likely due to its position near the end of the time series not 

allowing enough data to accurately predict breaks.  Our inability to confirm when kudzu 

was established also prohibits the detections of a kudzu signal.  A finer spatial resolution 

image collection could also be used to better match that of the study plots to reduce the 

presence of mixed pixels especially for experimental control methods. 

According to the Kentucky Wildland Forest Management fall fire season ranges from 

October to December correlating with deciduous species dropping their leaves.  This also 

happens to the be the time in which both Sites #2 and #3 exhibited overlapping breaks in 

2005 and 2007.  The distance separating the two sites along KY Highway 1096 is 

approximately 1.5 miles making it possible that both could have been impacted by the 

same fire events.  Site #1 is 30 miles northwest, possibly isolating it from these fire 

events and explain the lack of breaks during this period.  A lack of consistent recording 

of each fire and of burn scar extent made this data too inconsistent to definitively know if 

a fire consumed any portion of these two sites.    

Fires in eastern Kentucky are most often caused by arsonists and human carelessness 

and is exacerbated by periods of sustained, reduced rainfall and high temperatures 

(Maingi and Henry 2007).  Changes in the weather can also affect how efficiently kudzu 

grows.  As mention earlier this plant prefers temperatures ranging from 25C and 30C 

and precipitation of at least 100 cm per year (Forseth and Innis 2004; Lindgren et al. 
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2013).  Future studies could potentially correlate temperature and precipitation 

fluctuations with trends and breaks detected using the BFAST analysis.  For example, 

years with early freeze dates or sustained drought may provide reasoning as to why a low 

estimated NDVI value for kudzu was observed.  Including burn scar maps using the 

methods described by Maingi (2005) using Landsat ETM+ data in this area of the state 

may also prove to be useful by providing spatial and temporal clues as to the cause of 

vegetation disturbance observed by breaks in the linear trend. 

 

Limitations 

A number of limitations were considered when attempting to explain why the 

methods used in this study did not adequately detect changes to the extent and intensity 

of kudzu infestations. Landsat and MODIS are both multispectral sensors that are 

calibrated to detect fewer than 20 bands within the electromagnetic spectrum.  

Hyperspectral sensors collect 100s of bands that are narrower and have the ability to 

accurately assign specific spectral signatures to individual plant species, (He et al. 2011).  

The approach taken in this study is limited by assessing only the visible red and NIR 

bands of the electromagnetic spectrum via the NDVI which was assumed to present a 

unique spectral signature for kudzu compared to surrounding vegetation.  The results do 

not provide concrete evidence that this is a sound method and that finer spectral 

resolution combined with a fine temporal resolution may be necessary for detection. 

A previous study that was successful in detecting kudzu utilized the hyperspectral 

airborne AVIRIS sensor, (Cheng, Tom, and Ustin 2007), with a spatial resolution of 4 m.  

The combination of higher dimensionality within the visible red and NIR bands, along 
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with the spatial resolution, could produce a more sensitive NDVI-like estimate better 

tailored to kudzu.  This method could be employed in conjunction with the Illinois 

Department of Resources (J. Shimp, personal communication, 30 September 2015) 

technique of monitoring kudzu after the first freeze when is browns.  This approach has 

the potential to be problematic because the sensor collects data only when specified and 

at a significant cost, and not on a continual basis.  Long term time series could not be 

assembled using this data because of the lack of temporal continuity.   Attaching a sensor 

to a UAV could potentially reduce these limitations but would require someone trained in 

using the machinery and software.    

 This study is also limited by the absence of field-collected reference data and 

collection of in situ data related to site specific kudzu growth, presence, absence, and 

disturbances.  This reduces the ability to explain the results from the time series and 

BFAST analyses.  Similar approaches involving other vegetation types include the 

measurement of cheatgrass extent detected with the use a combination of land cover 

classification in the Great Basin and field observations made at over 600 locations in the 

study area (Bradley and Mustard 2005).  This method models a more in depth approach 

to monitoring this invasive species because it creates a detailed land cover classification 

to validate remotely sensed spectral signatures of vegetation types. 

Creating a land cover classification for the area within the 5000 m buffered area could 

also be beneficial as suggested by the results from the simple spectral.  This is because of 

the presences of slight overall variations in individual spectral profiles present between 

vegetation types. These results combined with those from the BFAST analysis do show 

that NDVI is a valid indicator of vegetation phenology change overtime due to the slight 
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variations between vegetation and kudzu.  Referring back to Figure 12, kudzu and forest 

exhibit similar patterns in estimated annual NDVI values but forest cover tends to show 

more extreme values at both peaks and troughs.  This signals suggests that this variation 

is a characteristics that could be used to distinguish the two species and verified with a 

land cover classification map. 
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CHAPTER 6: CONCLUSION 

 This research was conducted to explore the efficacy of synthetic imagery as a method 

for measuring and monitoring kudzu infestations in eastern Kentucky.  The position of 

Kentucky along the northern edge of the North American kudzu extent makes this a study 

area ripe for understanding the phenological characteristics that allow kudzu to propagate 

so aggressively.  With the use of data acquisition scripts written for GEE this research 

was able to acquire and process high dimensional Landsat and MODIS image collections.  

By fusing these two image collections together via STARFM a multiband image was 

produced containing the Landsat 30 m spatial resolution and MODIS 16-day temporal 

resolution.  

Results showed that the finer spatial resolution of the synthetic data was better at 

detecting within site disturbances in the vegetation dynamics compared to using MODIS 

data alone.  Sites #2 and #3 both exhibited 2-3 breaks for each of the six pixels examined 

from within each site.  At the scale of these kudzu infestations MODIS data is too 

spatially coarse which potentially hides kudzu vegetation dynamics within spectral 

signatures from neighboring vegetation.  MODIS pixels may not show similar breaks 

because of mixing in the coarser resolution pixels. 

Adding a field component may have significantly increased the chance of firmly 

addressing the phenologic trend of these kudzu infestations.  The outcome did produce a 

set of script that could be reused in future studies to handle big data for processing time 
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series decomposition of kudzu and other vegetation.  As time goes on and the temporal 

dimensionality extends for Landsat and MODIS which will further increase the need for a 

robust time series decomposition method as presented here. 

In situ data collection would aid in the validation of the STARFM and BFAST 

results, especially as it relates to invasive species monitoring. In order to collect the most 

effective data the collection process might follow the guidelines posed by EDDMapS 

which provides collectors with required data fields that must be completed before 

submitting any observation to their open source site.  These standards are taken from the 

North American Weed Management Association’s (NAWMA) Invasive Plant Mapping 

Standards   Following these standards during the data collection process will ensure the 

comparison to existing data on other kudzu infestations.  Table 8 

Table 8 lists NAWMA’s standards that are required when collecting data. 

Data Collection Standards 

Reporter Canopy Closure Datum 

Date Entered Latitude Ownership 

Pest Longitude Location Description 

Observation Date 
Infested Area Size 

(sq.m) 
Images 

State and County   

 

Table 8. EDDMapS and NAWMA Data Collection Standards 

 

Refinement of this study with the addition of field work, more refined approach to 

BFAST pixel selection within the buffered areas and possibly different image collections 

results might aid land managers when detecting and formulating kudzu management 

plans.  The process developed in this study showcases the importance of big data 
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processing, such as Google Earth Engine, for acquiring and processing large amounts of 

raster-based and remotely sensed data.  It highlights the efficiency of allowing massive 

computer networks to carry out these steps on the fly at a global scale using highly 

dimensional datasets.   

This study also illustrates how the STARFM algorithm is used to create a derived 

continuous Landsat-scale time series of estimated NDVI for the use in monitoring kudzu 

and other types of vegetation phenology dynamics.  Although this technique combined 

with the BFAST analysis is highly technical it would be improved upon with the addition 

of field-based research.  Remote sensing and other geospatial techniques do make 

research of local and global phenomenon accessible away from the source but there is 

still a need to validate such results with field data.  By combining both data collecting 

techniques a more complete picture of kudzu phenologic dynamics can be made which 

will make monitoring and eradication for efficient. Understanding how to use and 

interpret remotely sensed data requires substantial training which does limit its use and 

would require collaboration on mitigation efforts if needed.  Kudzu will continue to 

threaten landscapes, economies and communities and this is another step towards a 

solution to the problem. 

 

 



 

54 

REFERENCES 

Asner, G. P., D. E. Knapp, T. Kennedy-Bowdoin, M. O. Jones, R. E. Martin, J. 

Boardman, and R. F. Hughes. 2008. Invasive species detection in Hawaiian 

rainforests using airborne imaging spectroscopy and LiDAR. Remote Sensing of 

Environment 112 (5):1942–1955. 

Bender, J. personal communication. 18 Spetember 2015. 

Blaustein, R. J. 2001. Kudzu’s invasion into Southern United States life and culture. The 

Great Reshuffling: Human Dimensions of Invasive Species. 55–62. 

Birth, G. S., and G. R. McVey. 1968.  Measuring the color of growing turf with a 

reflectance spectrophotometer. Agronomy Journal. 60 (6): 640-643. 

Bradley, B. A., and J. F. Mustard. 2005. Identifying land cover variability distinct from 

land cover change: Cheatgrass in the Great Basin. Remote Sensing of 

Environment. 94 (2):204–213. 

Buheaosier, K., Tsuchiya, M. K. and S. J. S. 2003. Comparison of Image Data Acquired 

with AVHRR, MODIS, ETM+ and ASTER over Hokkaido, Japan. Advances in 

Space Research. 32 (11):2211–2216. 

Callen, S. T., and A. J. Miller. 2015. Signatures of niche conservatism and niche shift in 

the North American kudzu ( Pueraria montana ) invasion. Diversity and 

Distributions. 21 (8):853–863. 

Cheng, Y. B., E. Tom, and S. L. Ustin. 2007. Mapping an invasive species, kudzu 

(Pueraria montana), using hyperspectral imagery in western Georgia. Journal of 

Applied Remote Sensing. 1 (1):013514. 

Chuvieco, E., S. Opazo, W. Sione, H. Valle, J. Anaya, D. Bella, I. Cruz, L. Manzo, G. 

López, N. Mari, F. González-alonso, F. Morelli, A. Setzer, I. Csiszar, J. A. 

Kanpandegi, A. Bastarrika, R. Libonati, S. E. Applications, and N. Jan. 2013. 

Global Burned-Land Estimation in Latin America Using Modis Composite Data. 

Ecological Applications. 18 (1):64–79. 

EDDMapS. 2016. Early Detection & Distribution Mapping System. The University of 

Georgia - Center for Invasive Species and Ecosystem Health. Available online at 

http://www.eddmaps.org/; (last accessed 20 March 2016). 

ESRI. 2014. ArcGIS Desktop v10.3.1. Redlands, CA.: Environmental Systems Research 

Institute. 



 

55 

Forkel, M., N. Carvalhais, J. Verbesselt, M. D. Mahecha, C. S. R. Neigh, and M. 

Reichstein. 2013. Trend Change detection in NDVI time series: Effects of inter-

annual variability and methodology. Remote Sensing. 5 (5):2113–2144. 

Forseth, I. N., and A. F. Innis. 2004. Kudzu (Pueraria montana): History, Physiology, 

and Ecology Combine to Make a Major Ecosystem Threat. Critical Reviews in 

Plant Sciences. 23 (5):401–413. 

Gao, F., J. Masek, M. Schwaller, and F. Hall. 2006. On the blending of the landsat and 

MODIS surface reflectance: Predicting daily landsat surface reflectance. IEEE 

Transactions on Geoscience and Remote Sensing. 44 (8):2207–2218 

Google EarthPro. Google 

Goward, S., T. Arvldson, D. Williams, J. Faundeen, J. Irons, and S. Franks. 2006. 

Historical record of landsat global coverage : Mission operations, NSLRSDA, and 

international cooperator stations. Photogrammetric engineering and remote 

sensing 72 (10):1155–1169. 

Gu, Y., and B.K. Wylie. Develeoping a 30-m grassland productivity estimation map for 

central Nebraska using 250-m MODIS and 30-m Landsat-8 observations. Remote 

Sensing of Environment. 171:291-298. 

Gumm, D. R., personal communication. 29 October 2015. 

Gumm, D. R., personal communication. 16 March 2016. 

Hansen, M. C., P. V Potapov, R. Moore, M. Hancher, S. A. Turubanova, and A. 

Tyukavina. 2013. High-Resolution Global Maps of 21st Century Forest Cover 

Change. Science. 342 (6160):850–853. 

Harp, M. and R. Boggs. personal communication. 21 March 2016. 

Hawthorne, T. L., V. Elmore, A. Strong, P. Bennett-Martin, J. Finnie, J. Parkman, T. 

Harris, J. Singh, L. Edwards, and J. Reed. 2015. Mapping non-native invasive 

species and accessibility in an urban forest: A case study of participatory mapping 

and citizen science in Atlanta, Georgia. Applied Geography. 56:187–198. 

He, K. S., D. Rocchini, M. Neteler, and H. Nagendra. 2011. Benefits of hyperspectral 

remote sensing for tracking plant invasions. Diversity and Distributions. 17 

(3):381–392. 

Hilker, T., M. A. Wulder, N. C. Coops, J. Linke, G. McDermid, J. G. Masek, F. Gao, and 

J. C. White. 2009. A new data fusion model for high spatial- and temporal-

resolution mapping of forest disturbance based on Landsat and MODIS. Remote 

Sensing of Environment. 113 (8):1613–1627. 

Hill, J and H. M. Mogil., 2012. The Weather and Climate of Kentucky. Weatherwise. 65 

(5):26–32. 



56 

Huang, C., and G. P. Asner. 2009. Applications of Remote Sensing to Alien Invasive 

Plant Studies. Sensors. 9 (6):4869–4889. 

Huete,  A. R., H. Q. Liu, K. Batchily, and W. Van Leeuwen. 1997. A comparison of 

vegetation indices over a global set of TM images for EOS-MODIS. Remote 

Sensing of Environment. 59 (3):440–451. 

Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. 2002. 

Overview of the radiometric and biophysical performance of the MODIS 

vegetation indices. Remote Sensing of Environment. 83 (1-2):195–213. 

Hunt, R., R. Hamilton, and J. Everitt. n.d. What Weeds Can Be Remotely Sensed?. 

United States Department of Agriculture: United States Forest Service. 1 – 5. 

Hutchinson, J. M. S., A. Jacquin, S. L. Hutchinson, and J. Verbesselt. 2015. Monitoring 

vegetation change and dynamics on U.S. Army training lands using satellite 

image time series analysis. Journal of Environmental Management. 150:355–366. 

Irons, J. R., J. L. Dwyer, and J. A. Barsi. 2012. The next Landsat satellite: The Landsat 

Data Continuity Mission. Remote Sensing of Environment. 122:11–21. 

Jakubauskas, M. E., D. R. Legates, and J. H. Kastens. 2001. Harmonic analysis of time - 

series AVHRR NDVI data. Photogrammetric Engineering and Remote Sensing. 

67 (4):461 – 470. 

Jensen, J. R. 2016. Introductory Digital Image Processing: A Remote Sensing 

Perspective. Pearson Education Inc. 

Jin, H., and L. Eklundh. 2014. A physically based vegetation index for improved 

monitoring of plant phenology. Remote Sensing of Environment. 152:512–525. 

Johnson, L. F., D. E. Roczen, S. K. Youkhana, R. R. Nemani, and D. F. Bosch. 2003. 

Mapping vineyard leaf area with multispectral satellite imagery. Computers and 

Electronics in Agriculture. 38 (1):33–44. 

Lhermitte, S., J. Verbesselt, W. W. Verstraeten, and P. Coppin. 2011. A comparison of 

time series similarity measures for classification and change detection of 

ecosystem dynamics. Remote Sensing of Environment. 115 (12):3129–3152. 

Lindgren, C. J., K. L. Castro, H. A. Coiner, R. E. Nurse, and S. J. Darbyshire. 2013. The 

Biology of Invasive Alien Plants in Canada. Pueraria montana var. lobata 

(Willd.). Canadian Journal of Plant Science. 93 (1):71–95. 

Lobell, D.B., D, Thau, C. Seifert, E. Engle, and B. Little. A scalable satellite-based crop 

yield mapper. Remote Sensing of Environment. 164: 324-333. 

LP DAAC. 2014. Vegetation Indices 16-Day L3 Global 250m. 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1. 

(last accessed 5 April 2016). 



57 

Maiersperger, T. K., P. L. Scaramuzza, L. Leigh, S. Shrestha, K. P. Gallo, C. B. 

Jenkerson, and J. L. Dwyer. 2013. Characterizing LEDAPS surface reflectance 

products by comparisons with AERONET, field spectrometer, and MODIS data. 

Remote Sensing of Environment. 136:1–13. 

Maingi, J. K. 2005. Mapping Fire Scars in a Mixed‐Oak Forest in Eastern Kentucky, 

USA, Using Landsat ETM+ Data. Geocarto International 20 (3):51–63. 

Maingi, J. K., and M. C. Henry. 2007. Factors influencing wildfire occurrence and 

distribution in eastern Kentucky, USA. International Journal of Wildland Fire. 16 

(1):23–33. 

Maselli, F. 2004. Monitoring forest conditions in a protected Mediterranean coastal area 

by the analysis of multiyear NDVI data. Remote Sensing of Environment. 89 

(4):423–433. 

Muchoney, D., J. Borak, H. Chi, M. Friedl, S. Gopal, J. Hodges, N. Morrow, and  A. 

Strahler. 2000. Application of the MODIS global supervised classification model 

to vegetation and land cover mapping of Central America. International Journal 

of Remote Sensing. 21 (6-7):1115–1138. 

Padarian, J., B. Minasny, and A. B. McBratney. 2015. Using Google’s cloud-based 

platform for digital soil mapping. Computers & Geosciences. 83:80–88. 

Patel, N. N., E. Angiuli, P. Gamba, A. Gaughan, G. Lisnini, F. R. Stevens, A. J. Tatem, 

and G. Trianni. 2014. Multitemporal settlement and population mapping from 

Landsat using Google Earth Engine. International Journal of Applied Earth 

Observation and Geoinformation. 35: 199-208. 

R Core Team. 2016. R: A Language and Environment for Statistical Computing. 

http://www.r-project.org/ (last accessed 4 April 2016). 

Rafique, R., F. Zhao, R. de Jong, N. Zeng, and G. Asrar. 2016. Global and Regional 

Variability and Change in Terrestrial Ecosystems Net Primary Production and 

NDVI: A Model-Data Comparison. Remote Sensing 8 (3):177. 

Rouse Jr, J.W., R. H. Haas, J. A. Schell, and D. W. Deering. Monitoring vegetation 

systems in the Great Plains with ERTS. NASA special publication. 351 (1974): 

309. 

Salajanu, D., and D. M. Jacobs. 2009. Using Forest Inventory Plot Data and Satellite 

Imagery From Modis and Landsat-Tm To Model Spatial Distribution Patterns of 

Honeysuckle and Privet. In USDA Forest Service. 

Schmidt, M., R. Lucas, P. Bunting, J. Verbesselt, and J. Armston. 2015. Multi-resolution 

time series imagery for forest disturbance and regrowth monitoring in 

Queensland, Australia. Remote Sensing of Environment. 158:156–168. 

Shimp, J. personal communication. 30 September 2015. 



58 

Shouse, M., L. Liang, and S. Fei. 2013. Identification of understory invasive exotic plants 

with remote sensing in urban forests. International Journal of Applied Earth 

Observation and Geoinformation 21:525–534. 

Silleos, N. G., T. K. Alexandridis, I. Z. Gitas, and K. Perakis. 2006. Vegetation Indices: 

Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 

Years. Geocarto International. 21 (4):21–28. 

Smith, C. 2010. Invasive Exotic Plants of North Carolina: Pueraria montana (Kudzu). 

N.C. Department of Transportation. Raleigh, NC. (08):1–2. 

Turner, D. P., W. B. Cohen, R. E. Kennedy, K. S. Fassnacht, and J. M. Briggs. 1999. 

Relationships between leaf area index and Landsat TM spectral vegetation indices 

across three temperate zone sites. Remote Sensing of Environment. 70 (1):52–68. 

United States Department of Agriculture. 2016. STARFM. Software Download. 

http://www.ars.usda.gov/services/software/download.htm?softwareid=432. (last 

accessed 5 April 2016). 

USGS. 2016. PRODUCT GUIDE LANDSAT 4-7 CLIMATE DATA RECORD (CDR) 

SURFACE REFLECTANCE. Version 6.3 (March). 

http://landsat.usgs.gov/documents/ledaps_release_notes.pdf (last accessed 4 April 

2016). 

Verbesselt, J., R. Hyndman, G. Newnham, and D. Culvenor. 2010a. Detecting trend and 

seasonal changes in satellite images time series. Remote Sensing of Environment 

(114):106–115. 

Verbesselt, J., R. Hyndman, A. Zeileis, and D. Culvenor. 2010b. Phenological change 

detection while accounting for abrupt and gradual trends in satellite image time 

series. Remote Sensing of Environment 114 (12):2970–2980. 

Walker, J. J., K. M. De Beurs, R. H. Wynne, and F. Gao. 2012. Evaluation of Landsat 

and MODIS data fusion products for analysis of dryland forest phenology. 

Remote Sensing of Environment. 117:381–393. 

Wang, P., F. Gao, and J. G. Masek. 2014. Operational data fusion framework for building 

frequent landsat-like imagery. IEEE Transactions on Geoscience and Remote 

Sensing. 52 (11):7353–7365. 

Wulder, M. A., J. G. Masek, W. B. Cohen, T. R. Loveland, and C. E. Woodcock. 2012. 

Opening the archive: How free data has enabled the science and monitoring 

promise of Landsat. Remote Sensing of Environment 122:2–10. 

Yang, D. 2012. MODIS-Landsat Data Fusion for Estimating Vegetation Dynamics–A 

Case Study for Two Ranches in West Texas. 10th Annual TAMUS Pathways 

Student Research Symposium.  

 



59 

Zhang, X., M. A. Friedl, C. B. Schaaf, and A. H. Strahler. 2004. Climate controls on 

vegetation phenological patterns in northern mid- and high latitudes inferred from 

MODIS data. Global Change Biology. 10 (7):1133–1145. 

Zheng, G. and L.M. Moskal. 2009. Retrieving Leaf Area Index (LAI) Using Remote 

Sensing: Theories, Methods and Sensors. Sensors. 9(4):2719-2745. 

Zhitao, Z., Y. Lan, W. Pute, and H. Wenting. 2014. Model of soybean NDVI change 

based on time series. International Journal of Agriculture and Biological 

Engineering. 7 (5):64–70. 

 



 

60 

APPENDIX A: GOOGLE EARTH CODE 

var geometry = /* color: 98ff00 */ee.Geometry.Point([-1 
83.54278564453125, 37.53477698849114]); 2 
var modis = ee.ImageCollection("MODIS/MOD13Q1"); 3 
var subset_feature = 4 
ee.FeatureCollection("ft:1FxoaelgbPUVzVl4rOcrZCnvN3ZE18ZlWtv1IaLZ5 
p").aside(print); 6 
 7 
////  Landsat 32 day NDVI composites for Landsat TM, ETM+ and 8 
OLI: 9 
var landsat5 = ee.ImageCollection('LANDSAT/LT5_SR'); // Jan 1, 10 
1984 - May 5, 2012 11 
var landsat7 = ee.ImageCollection('LANDSAT/LE7_SR'); // Jan 1, 12 
1999 - Feb 14, 2016 13 
var landsat8 = ee.ImageCollection('LANDSAT/LC8_SR'); // Apr 11, 14 
2013 - Nov 1, 2015 15 
 16 
////  MODIS 16-day VI composites (start in March so we have a 17 
month  18 
////    to composite with before hand for Landsat): 19 
var filtered_modis = modis.filterDate('2000-02-01', '2015-12-20 
31'); 21 
 22 
////  Both image collections are filtered_ls for the dates that 23 
are  24 
////    in question (a supplemental period in 2007 is required) 25 
////    from Landsat 7 to fill a gap in Landsat 5 data), see 26 
below: 27 
var filtered_ls5 = landsat5.filterDate('1999-12-01', '2015-12-28 
31');  29 
var filtered_ls7 = landsat7.filterDate('1999-12-01', '2015-12-30 
31');  31 
var filtered_ls8 = landsat8.filterDate('1999-12-01', '2015-12-32 
31'); 33 
 34 
 35 
////  Extract feature collection bounds for clipping and region 36 
exporting: 37 
////    This sets the correct correct coordinte system and 38 
spatial  39 
////        resolution... 40 
var subset_bounds = 41 
subset_feature.geometry().transform('EPSG:4326', 42 
30).bounds().getInfo(); 43 
 44 
 45 
////  Function to remove LEDAPS snowy and cloudy pixels based on 46 
QA band, but retain 47 
////    system time:48 
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 49 
var removeBadObservations = function(image){ 50 
  var valid_data_mask = ee.Image(image).select('cfmask').lte(1); 51 
   52 
  var numberBandsHaveData = 53 
image.mask().reduce(ee.Reducer.sum()); 54 
  var allOrNoBandsHaveData = 55 
numberBandsHaveData.eq(0).or(numberBandsHaveData.gte(9)); 56 
  var allBandsHaveData = allOrNoBandsHaveData; 57 
   58 
  //Make sure no band is just under zero 59 
  var allBandsGT = image.reduce(ee.Reducer.min()).gt(-0.001)   60 
  var result = 61 
ee.Image(image).mask(image.mask().and(valid_data_mask).and(allBan62 
dsHaveData).and(allBandsGT)); 63 
  return 64 
result.copyProperties(ee.Image(image),['system:time_start']); 65 
}; 66 
 67 
////  Functions to calculate NDVI for different sensors: 68 
var getNDVI_tm = function(image){ 69 
    var ndvi = ee.Image(image).normalizedDifference(['B4','B3']); 70 
    return 71 
ndvi.copyProperties(ee.Image(image),['system:time_start']); 72 
}; 73 
var getNDVI_oli = function(image){ 74 
    var ndvi = ee.Image(image).normalizedDifference(['B5','B4']); 75 
    return 76 
ndvi.copyProperties(ee.Image(image),['system:time_start']); 77 
}; 78 
 79 
 80 
////  Filter the filtered_ls collecitons by the bound, remove bad 81 
pixels, 82 
////    and calculate NDVI for all remaining images: 83 
filtered_ls5 = 84 
filtered_ls5.filterBounds(subset_bounds).aside(print).map(removeB85 
adObservations).map(getNDVI_tm); 86 
filtered_ls7 = 87 
filtered_ls7.filterBounds(subset_bounds).aside(print).map(removeB88 
adObservations).map(getNDVI_tm); 89 
filtered_ls8 = 90 
filtered_ls8.filterBounds(subset_bounds).aside(print).map(removeB91 
adObservations).map(getNDVI_oli); 92 
 93 
////  Combine image collections across sensors: 94 
var filtered_ls_ndvi = filtered_ls5; 95 
////  Add only select ranges of ETM+ data: 96 
filtered_ls_ndvi = 97 
filtered_ls_ndvi.merge(filtered_ls7.filterDate('2007-10-01', 98 
'2007-12-31')); 99 
filtered_ls_ndvi = 100 
filtered_ls_ndvi.merge(filtered_ls7.filterDate('2011-04-01', 101 
'2013-06-30')); 102 
filtered_ls_ndvi = filtered_ls_ndvi.merge(filtered_ls8); 103 
 104 
 105 
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////  Convert polygon boundaries to raster by using the paint() 106 
////    function on a non-existent property, and then add 1: 107 
var subset_mask = ee.Image().byte().paint(subset_feature, 108 
"id").add(1); 109 
 110 
 111 
////  Process MODIS data to time series: 112 
filtered_modis = 113 
filtered_modis.filterBounds(subset_bounds).aside(print); 114 
 115 
var extract_modis_date = function(row) { 116 
  ////  Pull out the date: 117 
  var d = ee.Date(row.get('system:time_start')); 118 
  var d2 = ee.Date.fromYMD(d.get('year'), d.get('month'), 119 
d.get('day')); 120 
  var result = ee.Feature(null, {'date': d2}); 121 
  result = result.set({'date': d2}); 122 
  return result; 123 
}; 124 
 125 
/* 126 
 * A function that returns an image containing just the specified 127 
QA bits. 128 
 * 129 
 * Args: 130 
 *   image - The QA Image to get bits from. 131 
 *   start - The first bit position, 0-based. 132 
 *   end   - The last bit position, inclusive. 133 
 *   name  - A name for the output image. 134 
 */ 135 
var getQABits = function(image, start, end, newName) { 136 
  ////  Compute the bits we need to extract. 137 
  var pattern = 0; 138 
  for (var i = start; i <= end; i++) { 139 
     pattern += Math.pow(2, i); 140 
  } 141 
  ////  Return a single band image of the extracted QA bits, 142 
giving the band 143 
  ////    a new name. 144 
  return image.select([0], [newName]) 145 
              .bitwiseAnd(pattern) 146 
              .rightShift(start); 147 
}; 148 
 149 
////  Process MODIS data, first subsetting and masking: 150 
filtered_modis = filtered_modis.map(function(image){ 151 
  ////  Check to see if the detailed QA bits 4-5 are both 11, 152 
indicating 153 
  ////    bottom level of "Decreasing quality..." and set it to 1 154 
if not 155 
  ////    and zero if so to use in masking MODIS data: 156 
  ////  157 
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_ta158 
ble/mod13q1 159 
  var quality = getQABits(image.select(2), 4, 5, 'QAMask'); 160 
  quality = quality.eq(3).not(); 161 
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  return 162 
image.clip(subset_bounds).mask(image.mask().multiply(subset_mask)163 
.multiply(quality)); 164 
}); 165 
 166 
////  We also have to select our Day of Year and NDVI: 167 
var filtered_modis_day = filtered_modis.select(10); 168 
filtered_modis = filtered_modis.select(0); 169 
 170 
 171 
////  Construct a multiband image from the image collection: 172 
var modis_multiband = filtered_modis.filterDate('2000-03-01', 173 
'2015-12-31').iterate( function(x, modis_multiband) { 174 
  return ee.Image(modis_multiband).addBands(ee.Image(x)); 175 
}, filtered_modis.first()); 176 
var modis_day_multiband = filtered_modis_day.filterDate('2000-03-177 
01', '2015-12-31').iterate( function(x, modis_day_multiband) { 178 
  return ee.Image(modis_day_multiband).addBands(ee.Image(x)); 179 
}, filtered_modis_day.first()); 180 
 181 
 182 
////  Construct date set from our MODIS image collection: 183 
var dates_modis = filtered_modis.map(extract_modis_date); 184 
print(dates_modis.getInfo()); 185 
////  Not needed to export because we export MODIS/Landsat 186 
together 187 
////    below: 188 
//Export.table(dates_modis, 'Subset_MODIS_NDVI_16day_Dates'); 189 
 190 
 191 
////  Process Landsat across MODIS dates: 192 
 193 
////  Apply a subset and mask: 194 
filtered_ls_ndvi = filtered_ls_ndvi.map(function(image) { 195 
  return ee.Image(image) 196 
    .clip(subset_bounds) 197 
    .mask( 198 
      ee.Image(image) 199 
      .mask() 200 
      .multiply(subset_mask)); 201 
}); 202 
 203 
 204 
////  Reduce the collection to a new collection by dates, 205 
averaging all  206 
////    observations across three Landsat observations (the first 207 
will only  208 
////    two months): 209 
 210 
////  Construct a potential composite of +/- X days. Choose 15 if 211 
////    you only want the possibility of one Landsat scene per 212 
////    MODIS image date: 213 
var day_expand = 16; 214 
 215 
var reduceLandsatNDVI = function(MODISdate) { 216 
  MODISdate = ee.Date(MODISdate.get('date')); 217 
   218 
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  ////  The MODIS time_start represents the beginning of the 219 
MODIS composite 220 
  ////    window.  Therefore, to extract a Landsat scene that was 221 
captured 222 
  ////    within the same composite period, we will not look 223 
before and after 224 
  ////    that date: 225 
  //var ndvi_subset = 226 
ee.ImageCollection(filtered_ls_ndvi).filterDate( 227 
MODISdate.advance(-1*day_expand, 'day'), 228 
MODISdate.advance(day_expand, 'day') ); 229 
  ////  But instead look only after that date the width of the 230 
day_expand 231 
  ////    which represents the composite window: 232 
  var ndvi_subset = 233 
ee.ImageCollection(filtered_ls_ndvi).filterDate( MODISdate, 234 
MODISdate.advance(day_expand, 'day') ); 235 
   236 
  ////  Calculate absolute value difference from target date, 237 
  ////    this will find the Landsat image nearest the MODIS 238 
date: 239 
  ndvi_subset = ndvi_subset.map(function (image) { 240 
    var diff = 241 
MODISdate.difference(ee.Date(ee.Image(image).get('system:time_sta242 
rt')), 'day').abs(); 243 
    return ee.Image(image).set('diff', diff); 244 
  }); 245 
 246 
  ndvi_subset = ndvi_subset.sort('diff'); 247 
  var ndvi_first = ndvi_subset.reduce('first'); 248 
  var ndvi_mean = ndvi_subset.reduce('mean'); 249 
   250 
  ////  Anywhere this is zero, calculate the mean across the 251 
collection 252 
  ////    as an alternative for the missing/bad data.  Note the 253 
use 254 
  ////    of the mask() to undo the calculation masking for areas  255 
  ////    previously excluded due to clouds, etc.: 256 
  return ee.Algorithms.If( 257 
    ndvi_first.bandNames(),  258 
    ndvi_first.eq(0).multiply(ndvi_mean).add(ndvi_first), 259 
     260 
    // Workaround reduceRegion() failing on images 261 
    // with no bands. 262 
    ee.Image(0) 263 
  ); 264 
}; 265 
 266 
var extract_landsat_date = function(MODISdate) { 267 
  MODISdate = ee.Date(MODISdate.get('date')); 268 
   269 
  ////  See note above about the composite window and looking 270 
forward 271 
  ////    from the MODIS time_start: 272 
  //var ndvi_subset = 273 
ee.ImageCollection(filtered_ls_ndvi).filterDate( 274 
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MODISdate.advance(-1*day_expand, 'day'), 275 
MODISdate.advance(day_expand, 'day') ); 276 
  var ndvi_subset = 277 
ee.ImageCollection(filtered_ls_ndvi).filterDate( MODISdate, 278 
MODISdate.advance(day_expand, 'day') ); 279 
 280 
  ////  Calculate absolute value difference from target date, 281 
  ////    this will find the Landsat image nearest the MODIS 282 
date: 283 
  ndvi_subset = ndvi_subset.map(function (image) { 284 
    var diff = 285 
MODISdate.difference(ee.Date(ee.Image(image).get('system:time_sta286 
rt')), 'day').abs(); 287 
    return ee.Image(image).set('diff', diff); 288 
  }); 289 
 290 
  ndvi_subset = ndvi_subset.sort('diff'); 291 
  var d = ndvi_subset.aggregate_first('system:time_start'); 292 
  var count = ndvi_subset.aggregate_count('system:time_start'); 293 
   294 
  ////  Pull out the date: 295 
  d = ee.Algorithms.If( 296 
    ee.Number(count).gt(0), 297 
    ee.Date(d), 298 
    ee.Date('1971-01-01') 299 
  ); 300 
  d = ee.Date(d); 301 
   302 
  var d2 = ee.Date.fromYMD(d.get('year'), d.get('month'), 303 
d.get('day')); 304 
   305 
  var result = ee.Feature(null, {'LSdate': d2, 'MODISdate': 306 
MODISdate, 'CountLSScenes': count}); 307 
  result = result.set({'LSdate': d2, 'MODISdate': MODISdate,  308 
'CountLSScenes': count}); 309 
  return result; 310 
}; 311 
 312 
var ls_collection = dates_modis.map(reduceLandsatNDVI); 313 
 314 
////  Construct date set from our MODIS image collection: 315 
var dates_landsat = dates_modis.map(extract_landsat_date); 316 
//print(dates_landsat.getInfo()); 317 
Export.table(dates_landsat, 318 
'South_3_Subset_Matching_NDVI_16day_Dates'); 319 
 320 
 321 
////  Construct a multi-band image from the image collection,  322 
////    stripping the first item from the collection so we don't 323 
////    duplicate it: 324 
var ls_multiband = ls_collection.filterMetadata('system:index', 325 
'not_equals', 'MOD13Q1_005_2000_03_05').iterate( function(x, 326 
ls_multiband) { 327 
  return ee.Image(ls_multiband).addBands(ee.Image(x)); 328 
}, ls_collection.first()); 329 
 330 
////  Scale the -1 to 1 values by 10000 and convert to integer  331 
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////    to match MODIS, then convert zeroes to missing (by-332 
product 333 
////    of ND calculation and missing reducer values): 334 
ls_multiband = ee.Image(ls_multiband).multiply(10000).int16(); 335 
ls_multiband = 336 
ls_multiband.mask(ls_multiband.mask().multiply(ls_multiband.neq(0337 
))); 338 
 339 
 340 
////  The multiband stack should now contain layers for each 341 
month 342 
////    including the supplemental ones pulled from each sensor 343 
stack: 344 
print(modis_multiband); 345 
print(ls_multiband); 346 
 347 
 348 
////  NOTE: I'm exporting the MODIS at 30m as well to match the 349 
Landsat 350 
////    stack: 351 
Export.image(modis_multiband, 'South_3_Subset_MODIS_NDVI_16day', 352 
{ 353 
  crs:'EPSG:32617',  354 
  region:subset_bounds,  355 
  scale:30 356 
}); 357 
Export.image(modis_day_multiband, 358 
'South_3_Subset_MODIS_DoY_16day', { 359 
  crs:'EPSG:32617',  360 
  region:subset_bounds,  361 
  scale:30 362 
}); 363 
////  Exporting the image as a raster data set that can be opened 364 
in ENVI 365 
Export.image(ls_multiband, 'South_3_Subset_Landsat_NDVI_16day', { 366 
  crs:'EPSG:32617',  367 
  region:subset_bounds,  368 
  scale:30 369 
}); 370 
 371 
 372 
Map.addLayer(subset_feature, {color: 'FF0000'}, 'Subset'); 373 
//var coords = 374 
ee.Feature(subset.first()).centroid().geometry().coordinates(); 375 
//print(ee.Number(coords.get(1))); 376 
Map.centerObject(subset_feature.first(), 12); 377 
//Map.setCenter(-83.54, 37.53, 12);  378 
 379 
Map.addLayer(ee.Image(modis_multiband), {}, 'MODIS NDVI 380 
Composites'); 381 
Map.addLayer(ee.Image(modis_day_multiband), {}, 'MODIS Day of 382 
Year Composites'); 383 
Map.addLayer(ee.Image(ls_multiband), {}, 'Landsat NDVI 384 
Composites');385 
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APPENDIX B: R PROGRAMMING CODE FOR STARFM 

## 1 
folder <- "C:/tmp" 2 
 3 
setwd(folder) 4 
 5 
#install.packages("rgdal") 6 
#install.packages("raster") 7 
library(raster) 8 
 9 
#install.packages("bfast") 10 
library(bfast) 11 
 12 
#install.packages("rgdal") 13 
library(rgdal) 14 
 15 
#install.packages("animation") 16 
library(animation) 17 
 18 
#install.packages("ggplot2") 19 
library(ggplot2) 20 
 21 
 22 
modis <- brick("./data/South_Site_3_Subset_MODIS_NDVI_16day.tif") 23 
landsat <- 24 
brick("./data/South_Site_3_Subset_Landsat_NDVI_16day.tif") 25 
study_area <- readOGR("./data", "South_Site_3") 26 
poi <- readOGR("./data", "South_Site_3_Point_Merge") 27 
 28 
 29 
##  Read imagery dates and matching data: 30 
image_dates <- 31 
read.csv("./data/South_Site_3_Subset_Matching_NDVI_16day_Dates.cs32 
v", stringsAsFactors=F) 33 
 34 
 35 
##  Plotting defaults: 36 
 37 
##  Generate color ramp to use: 38 
z.lim = c(-2500,10500) 39 
r.brks <- seq(z.lim[1], z.lim[2], by=(z.lim[2]-z.lim[1])/254) 40 
#color_vec <- colorRampPalette(c("navyblue", "steelblue", 41 
"limegreen", "yellow", "#FEFEFE"))(255) 42 
color_vec <- colorRampPalette(c("AntiqueWhite1", 43 
"darkgreen"))(255) 44 
 45 
## Placeholder raster for legend creation: 46 
r.leg <- raster(nrow=10,ncol=10) 47 
r.leg[] <- 048 



 

68 

 49 
##  If data has already been processed, load the results: 50 
modis <- brick("./output/Subset_MODIS_NDVI_16day_masked.envi") 51 
landsat <- 52 
brick("./output/Subset_Landsat_NDVI_16day_masked.envi") 53 
 54 
landsat_sim <- 55 
brick("./output/Subset_Landsat_NDVI_16day_sim.envi") 56 
landsat_filled <- 57 
brick("./output/Subset_Landsat_NDVI_16day_filled.envi") 58 
 59 
############################################# 60 
 61 
 62 
##  Set StarFM_config.txt to have dimensions that match. Note 63 
##      that all other settings are considered fixed and would  64 
##      need to be modified by hand (if data type or NA values 65 
##      vary, for example): 66 
config <- readLines("./src/StarFM_config.txt") 67 
config <- gsub("(.*NROWS = ).*$", paste0("\\1", nrow(landsat)), 68 
config ) 69 
config <- gsub("(.*NCOLS = ).*$", paste0("\\1", ncol(landsat)), 70 
config ) 71 
cat(config, file="./src/StarFM_config.txt", sep="\n") 72 
 73 
 74 
##  Simulate one intermediate data period to test the StarFM 75 
operation: 76 
#modis_t1 <- modis[[1]] 77 
#modis_t2 <- modis[[2]] 78 
#modis_t3 <- modis[[3]] 79 
#landsat_t1 <- landsat[[1]] 80 
#landsat_t3 <- landsat[[2]] 81 
# 82 
#writeRaster(modis_t1, filename="./tmp/modis_t1.envi", 83 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 84 
#writeRaster(modis_t2, filename="./tmp/modis_t2.envi", 85 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 86 
#writeRaster(modis_t3, filename="./tmp/modis_t3.envi", 87 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 88 
#writeRaster(landsat_t1, filename="./tmp/landsat_t1.envi", 89 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 90 
#writeRaster(landsat_t3, filename="./tmp/landsat_t3.envi", 91 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 92 
# 93 
#system2(command="./lib/StarFM/source/StarFM.exe", 94 
args="./src/StarFM_config.txt", wait=TRUE) 95 
 96 
 97 
##  Threshold for "good" non-missing data that represents a 98 
##    "matchable" Landsat scene (should be set to ~10% of non- 99 
##      masked pixels.  These non-masked pixels : 100 
##  To calculate, something like the following after finding a 101 
layer with  102 
##      all good data: 103 
 104 
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##  Fix any missing data that enters as zeroes to our NA value.  105 
We have 106 
##      to do this by layer as operating on the entire stack may 107 
run into  108 
##      memory issues on larger subsets: 109 
for (i in 1:nlayers(modis)) { 110 
    ##  Use the raster Which() function for speed: 111 
    masked <- Which(modis[[i]] == 0, cells=TRUE) 112 
    modis[[ i ]][ masked ] <- -32768 113 
    masked <- Which(landsat[[i]] == 0, cells=TRUE) 114 
    landsat[[ i ]][ masked ] <- -32768 115 
} 116 
writeRaster(modis, 117 
filename="./output/Subset_MODIS_NDVI_16day_masked.envi", 118 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 119 
writeRaster(landsat, 120 
filename="./output/Subset_Landsat_NDVI_16day_masked.envi", 121 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 122 
##  Or load them if already compiled: 123 
modis <- brick("./output/Subset_MODIS_NDVI_16day_masked.envi") 124 
landsat <- 125 
brick("./output/Subset_Landsat_NDVI_16day_masked.envi") 126 
 127 
 128 
##  Find a good layer where missing data is almost zero except 129 
for 130 
##      edge/projection/export issues coming out of Google Earth 131 
Engine: 132 
good_layer <- 6 133 
plot(landsat[[good_layer]]) 134 
min_bad <- 0.05 135 
masked <- sum(is.na(landsat[[good_layer]][])) 136 
pct_good_unmasked <- (min_bad*( ncell(landsat) - masked) + 137 
masked) / ncell(landsat) 138 
 139 
 140 
##  Construct good/missing data vector: 141 
stats <- image_dates 142 
stats[["LSdate"]] <- as.Date( substr(image_dates$LSdate, 1, 10) ) 143 
stats[["MODISdate"]] <- as.Date( substr(image_dates$MODISdate, 1, 144 
10) ) 145 
##  Strip Null geometry field: 146 
stats <- stats[,-5] 147 
 148 
for (i in 1:nlayers(landsat)) { 149 
    num_ls_bad <- sum(Which(is.na(landsat[[i]]))[]) 150 
    num_modis_bad <- sum(Which(is.na(modis[[i]]))[]) 151 
    stats[i, "LSbad"] <- num_ls_bad >= 152 
pct_good_unmasked*ncell(landsat) 153 
    stats[i, "MODISbad"] <- num_modis_bad >= 154 
pct_good_unmasked*ncell(modis) 155 
    stats[i, "LSbad_pct"] <- (num_ls_bad - masked) / 156 
(ncell(landsat) - masked) 157 
    stats[i, "MODISbad_pct"] <- (num_modis_bad - masked) / 158 
(ncell(modis) - masked) 159 
} 160 
landsat_bad <- stats[["LSbad"]] 161 
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modis_bad <- stats[["MODISbad"]] 162 
 163 
 164 
##  Save off compiled dates and stats for future use: 165 
write.csv(stats, file="./output/Image_Date_Statistics.csv") 166 
 167 
 168 
##  Construct time series out of LS and MODIS dates for plotting: 169 
ls_plot <- stats[ stats$LSdate > as.Date("2000-01-01"), ] 170 
 171 
##  Quick and dirty way to plot MODIS irregularity: 172 
#plot(xts(stats_plot, 173 
order.by=stats_plot$MODISdate)$MODISbad_pct, type="o") 174 
 175 
##  Create a PDF plot of image dates from compiled MODIS and 176 
Landsat scenes: 177 
pdf(file="./output/image_dates.pdf", width=10, height=3) 178 
plot(ls_plot$LSdate, 1 - ls_plot$LSbad_pct, main="MODIS and 179 
Landsat Image Dates", col=ifelse(!ls_plot$LSbad, "#00990066", 180 
"#99000066"), type="h", ylim=c(0,1.5), ylab="Good Pixel 181 
Proportion", xlab="Acquisition Date") 182 
points(ls_plot$LSdate, (1- ls_plot$LSbad_pct), 183 
col=ifelse(!ls_plot$LSbad, "#00990066", "#99000066"), pch=20, 184 
cex=(1-as.numeric(ls_plot$LSbad_pct))) 185 
points(stats$MODISdate, (1 - stats$MODISbad_pct), 186 
col="#00004466", pch=3, cex=0.8) 187 
legend( 188 
    "topright",            189 
    horiz=T, 190 
    legend=c("Landsat Above 95%", "Landsat Below 95%", "MODIS 191 
Scenes"),  192 
    col=c("#00990066", "#99000066", "#00440066"), 193 
    lty=c(1,1,0),               194 
    pch=c(20, 20, 3),  195 
    pt.cex=c(1, 1, 0.8), 196 
    bg="white", 197 
    cex=0.6 198 
) 199 
dev.off() 200 
 201 
 202 
 203 
##  If the above all works, then we run the following to loop 204 
over the  205 
##      MODIS time steps, filling in Landsat output as we go: 206 
landsat_sim <- stack(modis) 207 
landsat_sim[] <- NA 208 
landsat_filled <- stack(modis) 209 
landsat_filled[] <- NA 210 
##  Or load it if we already ran it: 211 
#landsat_sim <- 212 
brick("./output/Subset_Landsat_NDVI_16day_sim.envi") 213 
 214 
 215 
##  Iterate and run StarFM for each MODIS date, choosing the  216 
##      nearest pair of good MODIS/Landsat dates, one before and 217 
##      one after the date being simulated where possible: 218 
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pb <- pbCreate((nlayers(landsat_sim)), "window", style=3, 219 
label='Time Step Progress') 220 
for (i in 1:nlayers(landsat_sim)) { 221 
    ##  Determine next good Landsat scene in time series to 222 
estimate from: 223 
    ##      NOTE: The special case for estimating the first and 224 
last scenes 225 
    ##          of the series are handled: 226 
    if (i == 1) { 227 
        back <- -1 228 
    } else { 229 
        back <- 1 230 
    } 231 
    ls_t1 <- i - back 232 
    while (landsat_bad[ls_t1] | modis_bad[ls_t1]) { 233 
        ##  Reverse directions if we hit the beginning: 234 
        if (ls_t1 == 1) { 235 
            back <- -1 236 
        } 237 
 238 
        ls_t1 <- ls_t1 - back 239 
        if (ls_t1 == i) ls_t1 <- i - back 240 
    } 241 
    m_t1 <- ls_t1 242 
 243 
    ##  Determine next good Landsat scene in time series to 244 
estimate from: 245 
    ##      NOTE: The special case for estimating the first and 246 
last scenes 247 
    ##          of the series are handled: 248 
    if (i == nlayers(landsat_sim)) { 249 
        forward <- -1 250 
    } else { 251 
        forward <- 1 252 
    } 253 
    ls_t3 <- i + forward 254 
    if (ls_t3 <= ls_t1) ls_t3 <- ls_t1 + forward 255 
    while (landsat_bad[ls_t3] | modis_bad[ls_t3]) { 256 
        ##  Reverse directions if we hit the end: 257 
        if (ls_t3 == nlayers(landsat_sim)) { 258 
            forward <- -1 259 
        } 260 
 261 
        ls_t3 <- ls_t3 + forward 262 
        if (ls_t3 == ls_t1 | ls_t3 == i) ls_t3 <- ls_t1 + forward 263 
    } 264 
    m_t3 <- ls_t3 265 
 266 
    modis_t1 <- modis[[m_t1]] 267 
    modis_t2 <- modis[[i]] 268 
    modis_t3 <- modis[[m_t3]] 269 
    landsat_t1 <- landsat[[ls_t1]] 270 
    landsat_t3 <- landsat[[ls_t3]] 271 
 272 
 273 
    writeRaster(modis_t1, filename="./tmp/modis_t1.envi", 274 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 275 
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    writeRaster(modis_t2, filename="./tmp/modis_t2.envi", 276 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 277 
    writeRaster(modis_t3, filename="./tmp/modis_t3.envi", 278 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 279 
    writeRaster(landsat_t1, filename="./tmp/landsat_t1.envi", 280 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 281 
    writeRaster(landsat_t3, filename="./tmp/landsat_t3.envi", 282 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 283 
 284 
    system2(command="./lib/StarFM/source/StarFM.exe", 285 
args="./src/StarFM_config.txt", wait=TRUE) 286 
 287 
    landsat_t2_sim <- raster("./tmp/landsat_t2_sim.envi") 288 
 289 
 290 
    ##  Set any -32768 to NA values before writing: 291 
    landsat_t2_sim[ landsat_t2_sim == -32768 ] <- NA 292 
    landsat_sim[[i]] <- landsat_t2_sim[] 293 
 294 
    ##  In our filled data set, set any missing Landsat pixels to 295 
those 296 
    ##      simulated via StarFM: 297 
    landsat_filled[[i]] <- landsat[[i]] 298 
    masked <- Which(is.na(landsat_filled[[i]]), cells=TRUE) 299 
    landsat_filled[[i]][ masked ] <- landsat_sim[[i]][ masked ] 300 
 301 
 302 
    png(file=paste0("./output/simulations/sim_", i, ".png"), 303 
width=800, height=800) 304 
        plot(landsat_sim[[i]], col=color_vec, zlim=z.lim, 305 
frame.plot=TRUE, main=paste("Simulation at Step", i, "From 306 
Steps", ls_t1, "and", ls_t3), xlab="Projected Map Coordinates", 307 
legend=FALSE) 308 
        plot(r.leg, col=color_vec, zlim=z.lim, frame.plot=FALSE, 309 
add=TRUE) 310 
        plot(study_area, border=rgb(0,0,0,0.5), add=T) 311 
    dev.off() 312 
 313 
 314 
    plot(landsat_sim[[i]], col=color_vec, zlim=z.lim, 315 
frame.plot=TRUE, main=paste("Simulation at Step", i, "From 316 
Steps", ls_t1, "and", ls_t3), xlab="Projected Map Coordinates", 317 
legend=FALSE) 318 
    plot(r.leg, col=color_vec, zlim=z.lim, frame.plot=FALSE, 319 
add=TRUE) 320 
    plot(study_area, border=rgb(0,0,0,0.5), add=T) 321 
 322 
    pbStep(pb, step=NULL, label='Processed Layer') 323 
} 324 
pbClose(pb, timer=T) 325 
 326 
 327 
writeRaster(landsat_sim, 328 
filename="./output/Subset_Landsat_NDVI_16day_sim.envi", 329 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 330 
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writeRaster(landsat_filled, 331 
filename="./output/Subset_Landsat_NDVI_16day_filled.envi", 332 
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE) 333 
##  Or load them if already compiled: 334 
landsat_sim <- 335 
brick("./output/Subset_Landsat_NDVI_16day_sim.envi") 336 
landsat_filled <- 337 
brick("./output/Subset_Landsat_NDVI_16day_filled.envi") 338 
 339 
 340 
 341 
######################################################## 342 
 343 
##  Optional, create animation of series over time: 344 
old_wd <- getwd() 345 
setwd("./output/animation") 346 
saveHTML({ 347 
    par(mfrow=c(1,4)) 348 
    for (i in 1:nlayers(landsat_sim)) { 349 
        plot(modis[[i]], col=color_vec, zlim=z.lim, 350 
frame.plot=TRUE, main="\nMODIS 13Q1 NDVI", xlab="Projected Map 351 
Coordinates", legend=FALSE) 352 
        plot(r.leg, col=color_vec, zlim=z.lim, frame.plot=FALSE, 353 
add=TRUE) 354 
        plot(study_area, border=rgb(0,0,0,0.5), add=T) 355 
         356 
        plot(landsat[[i]], col=color_vec, zlim=z.lim, 357 
frame.plot=TRUE, main=paste("Timestep", i, "\nLandsat TM/ETM+/OLI 358 
NDVI"), xlab="Projected Map Coordinates", legend=FALSE) 359 
        plot(r.leg, col=color_vec, zlim=z.lim, frame.plot=FALSE, 360 
add=TRUE) 361 
        plot(study_area, border=rgb(0,0,0,0.5), add=T) 362 
         363 
        plot(landsat_sim[[i]], col=color_vec, zlim=z.lim, 364 
frame.plot=TRUE, main="\nSimulated StarFM NDVI", xlab="Projected 365 
Map Coordinates", legend=FALSE) 366 
        plot(r.leg, col=color_vec, zlim=z.lim, frame.plot=FALSE, 367 
add=TRUE) 368 
        plot(study_area, border=rgb(0,0,0,0.5), add=T) 369 
         370 
        plot(landsat_filled[[i]], col=color_vec, zlim=z.lim, 371 
frame.plot=TRUE, main="\nFused Landsat/StarFM NDVI", 372 
xlab="Projected Map Coordinates", legend=FALSE) 373 
        plot(r.leg, col=color_vec, zlim=z.lim, frame.plot=FALSE, 374 
add=TRUE) 375 
        plot(study_area, border=rgb(0,0,0,0.5), add=T) 376 
         377 
        ani.pause() 378 
    }}, 379 
    img.name="ndvi", 380 
    imgdir="./images", 381 
    htmlfile = "./index.html",  382 
  autobrowse = FALSE,  383 
    title = "Fused Landsat and MODIS NDVI Timeseries, February 384 
2000 - December 2015",  385 
    description = "These data were extracted from Google Earth 386 
Engine, and processed according to the script linked here.", 387 
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    ani.width=1024, ani.height=320 388 
) 389 
setwd(old_wd) 390 
 391 
 392 
##  Plot overlapping series, based on a "clicked" point  393 
##      in the plot window: 394 
plot(landsat[[6]]) 395 
plot(study_area, border=rgb(0,0,0,0.5), add=T) 396 
plot(poi, add=T) 397 
zoom(landsat[[6]], new=F) 398 
plot(study_area, add=T) 399 
plot(poi, add=T) 400 
i <- raster::click(landsat[[6]], n=1, id=T, xy=F) 401 
pdf(file="./output/South_Site_3_Time_Series.pdf", width=10, 402 
height=5) 403 
plot(as.numeric(modis[i][]), col="grey", type="l", 404 
ylim=c(0,15000), xlab="Timestep", ylab="NDVI (Scaled)", 405 
main="MODIS, Landsat, StarFM, and Fused Time Series") 406 
lines(as.numeric(landsat_sim[i][]), col="black", type="l") 407 
lines(as.numeric(landsat_filled[i][]), col="blue", type="l") 408 
lines(as.numeric(landsat[i][]), col="red", type="l") 409 
legend("topleft",            410 
    legend=c("MODIS","Landsat", "StarFM", "Fused"),  411 
    col=c("grey", "red", "black", "blue"), 412 
    lty=c(1,1,1,1),               413 
    bg="white" 414 
) 415 
dev.off() 416 
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APPENDIX C: R PROGRAMMING CODE FOR BFAST 

#install.packages("bfast", repos="http://R-Forge.R-project.org", 417 
type = "source") 418 
#update.packages(checkBuilt=TRUE) 419 
require(bfast) 420 
 421 
##  Install the development version of raster: 422 
#install.packages("raster", repos="http://R-Forge.R-project.org") 423 
#install.packages("raster", repos="http://R-Forge.R-project.org", 424 
type="source") 425 
require(raster) 426 
 427 
require(TSA) 428 
require(zoo) 429 
#require(snow) 430 
#install.packages("dplR") 431 
#require(dplR) 432 
#require(tcltk)     ##  For the progress bar 433 
#require(xts) 434 
require(rgdal) 435 
 436 
 437 
#setwd("D:/Documents/Graduate 438 
School/Research/Wallowa/Analysis/MODIS BFAST Analysis/") 439 
#setwd("D:/Research/MODIS BFAST Analysis, Interactive, 440 
Animation/") 441 
setwd("C:/tmp/") 442 
 443 
##  Load data: 444 
#setwd("D:/Documents/Graduate 445 
School/Research/Wallowa/Data/MODIS/R Work/output") 446 
setwd("./output") 447 
 448 
##  Load the Whitaker filtered output: 449 
#vi_raster <- "EVI_YearlyLambda500_fullPeriod.tif" 450 
#vi_raster <- "mod13q1_2000-2015_ndvi_pre_whittaker.gri" 451 
##vi_raster <- "Subset_Landsat_NDVI_16day_filled.envi" 452 
vi_raster <- "../data/South_Site_2_Subset_MODIS_NDVI_16day.tif" 453 
##  Load the simple QC threshold, linear interpolated output: 454 
##vi_raster_simple <- "mod13q1_2000-2015_ndvi_fixed.gri" 455 
##vi_raster_simple <- "Subset_Landsat_NDVI_16day_filled.envi" 456 
vi_raster_simple <- 457 
"../data/South_Site_2_Subset_MODIS_NDVI_16day.tif" 458 
 459 
##  Brick is very very much faster: 460 
#raster_data <- stack(vi_raster) 461 
raster_data <- brick(vi_raster) 462 
raster_data_simple <- brick(vi_raster_simple) 463 
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 464 
##  Write out a layer from the raster_data converted to cell 465 
indices for 466 
##      comparing things by han#raster_indices <- 467 
raster(vi_raster, band=1) 468 
#raster_indices[] <- 1:length(raster_indices[]) 469 
#raster_indices <- writeRaster(raster_indices, 470 
filename="mod13q1_raster_indices.gri", format="raster", 471 
bandorder="BSQ", datatype="INT4U", overwrite=TRUE)  472 
#raster_indices <- raster(vi_raster_simple) 473 
 474 
 475 
 476 
##  Load date names: 477 
#dates <- read.table("EVI_YearlyLambda500fullPeriod", 478 
stringsAsFactors=FALSE) 479 
 480 
##  Load Wallowa county boundary: 481 
boundary <- readOGR("../data", "South_Site_2") 482 
poi <- readOGR("../data", "South_Site_2_Point_Merge") 483 
 484 
 485 
##  Set our layer names and write our break information stack  486 
##      out to disk: 487 
num_features <- 10 488 
breaks <- 3 489 
num_features_seasonal <- 10 490 
 491 
layer_names <- character(length=(2 + num_features*breaks + 5 + 2 492 
+ num_features_seasonal*breaks + 5)) 493 
layer_names[] <- "" 494 
layer_names[1] <- "detected_breaks" 495 
layer_names[2] <- "entropy" 496 
for (i in 1:breaks) { 497 
    layer_names[(i-1)*num_features+3] <- 498 
paste("b",i,"_beg",sep="") 499 
    layer_names[(i-1)*num_features+4] <- 500 
paste("b",i,"_end",sep="") 501 
    layer_names[(i-1)*num_features+5] <- 502 
paste("b",i,"_len",sep="") 503 
    layer_names[(i-1)*num_features+6] <- 504 
paste("b",i,"_mean",sep="") 505 
    layer_names[(i-1)*num_features+7] <- 506 
paste("b",i,"_slope",sep="") 507 
    layer_names[(i-1)*num_features+8] <- 508 
paste("b",i,"_mean_diff",sep="") 509 
    layer_names[(i-1)*num_features+9] <- 510 
paste("b",i,"_break_diff",sep="") 511 
    layer_names[(i-1)*num_features+10] <- 512 
paste("b",i,"_25pct_ci",sep="") 513 
    layer_names[(i-1)*num_features+11] <- 514 
paste("b",i,"_break",sep="") 515 
    layer_names[(i-1)*num_features+12] <- 516 
paste("b",i,"_75pct_ci",sep="") 517 
} 518 
layer_names[(i)*num_features+3] <- paste("b",i+1,"_beg",sep="") 519 
layer_names[(i)*num_features+4] <- paste("b",i+1,"_end",sep="") 520 
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layer_names[(i)*num_features+5] <- paste("b",i+1,"_len",sep="") 521 
layer_names[(i)*num_features+6] <- paste("b",i+1,"_mean",sep="") 522 
layer_names[(i)*num_features+7] <- paste("b",i+1,"_slope",sep="") 523 
 524 
##  Write out layer names for seasonal break detections: 525 
j = (i)*num_features+7 526 
layer_names[j + 1] <- "detected_breaks_seasonal" 527 
layer_names[j + 2] <- "entropy_seasonal" 528 
for (i in 1:breaks) { 529 
    layer_names[j+(i-1)*num_features_seasonal+3] <- 530 
paste("sb",i,"_beg",sep="") 531 
    layer_names[j+(i-1)*num_features_seasonal+4] <- 532 
paste("sb",i,"_end",sep="") 533 
    layer_names[j+(i-1)*num_features_seasonal+5] <- 534 
paste("sb",i,"_len",sep="") 535 
    layer_names[j+(i-1)*num_features_seasonal+6] <- 536 
paste("sb",i,"_range",sep="") 537 
    layer_names[j+(i-1)*num_features_seasonal+7] <- 538 
paste("sb",i,"_entropy",sep="") 539 
    layer_names[j+(i-1)*num_features_seasonal+8] <- 540 
paste("sb",i,"_range_diff",sep="") 541 
    layer_names[j+(i-1)*num_features_seasonal+9] <- 542 
paste("sb",i,"_entropy_diff",sep="") 543 
    layer_names[j+(i-1)*num_features_seasonal+10] <- 544 
paste("sb",i,"_25pct_ci",sep="") 545 
    layer_names[j+(i-1)*num_features_seasonal+11] <- 546 
paste("sb",i,"_break",sep="") 547 
    layer_names[j+(i-1)*num_features_seasonal+12] <- 548 
paste("sb",i,"_75pct_ci",sep="") 549 
} 550 
layer_names[j+(i)*num_features_seasonal+3] <- 551 
paste("sb",i+1,"_beg",sep="") 552 
layer_names[j+(i)*num_features_seasonal+4] <- 553 
paste("sb",i+1,"_end",sep="") 554 
layer_names[j+(i)*num_features_seasonal+5] <- 555 
paste("sb",i+1,"_len",sep="") 556 
layer_names[j+(i)*num_features_seasonal+6] <- 557 
paste("sb",i+1,"_range",sep="") 558 
layer_names[j+(i)*num_features_seasonal+7] <- 559 
paste("sb",i+1,"_entropy",sep="") 560 
 561 
 562 
###### 563 
##  Define a function to calculate the normalized spectral 564 
entropy for a  565 
##      time series (as defined from the values extracted for 566 
each 567 
##      pixel: 568 
 569 
##  As adapted from Zaccarelli (2013), variable names relate to 570 
terms 571 
##      in the described Appendix and model: 572 
 573 
ts_entropy <- function(x) { 574 
    ##      x is assumed to already be a timeseries object: 575 
    Ps <- spec(x, log="no", plot=FALSE) 576 
    Ps_spec <- Ps$spec 577 
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    Pk <- Ps_spec / sum(Ps_spec) 578 
    Hsn_x <- -1 * sum(Pk * log(Pk)) / log(length(Pk)) 579 
 580 
    ##  The following would be the start to performing the 581 
bootstrap for  582 
    ##      confidence interval generation, but for now we'll 583 
just return the 584 
    ##      normalized spectral entropy (Hsn) from the series and 585 
call it good. 586 
 587 
    ### Now randomly resample the timeseries to create a 588 
null/noise model: 589 
    #x_null <- sample(x) 590 
    # 591 
    #Ps <- spec(x_null, log="no", plot=FALSE) 592 
    #Ps_spec <- Ps$spec 593 
    #Pk <- Ps_spec / sum(Ps_spec) 594 
    #Hsn_null <- -1 * sum(Pk * log(Pk)) / log(length(Pk)) 595 
 596 
    return(Hsn_x) 597 
} 598 
###### 599 
 600 
 601 
###### 602 
##  Define a function to select and display BFAST calculation for 603 
a particular pixel: 604 
 605 
##  Define a function for calculating the significance vector 606 
from a vector to create a series: 607 
 608 
##  This could be sped up quite a bit by doing the COI creation 609 
once beforehand and feeding it to the function as an argument: 610 
 611 
plot_bfast_pixel <- function(view_raster=raster_data, 612 
cell_id=NULL, extract_raster=raster_data, qc_raster=NULL, 613 
classed=FALSE, rdist=NULL, season="harmonic", max.iter=1, 614 
breaks=3, write_label=NULL) { 615 
    #require(bfast) 616 
         617 
    if (!is.null(write_label)) { 618 
        sink(file=paste("./printed_", write_label, ".txt", 619 
sep=""), append=TRUE, split=TRUE) 620 
    } 621 
     622 
    if (is.null(cell_id)) { 623 
     624 
        if (extent(view_raster) != extent(extract_raster)) { 625 
            quit("ERROR: Extents of view and extract rasters must 626 
be equal!") 627 
        } 628 
        require(colorspace) 629 
 630 
        print("Zoom to area:") 631 
        flush.console() 632 
 633 
 634 
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        if (classed) { 635 
            plot(view_raster[[1]], col=c(0,rainbow_hcl(7, c = 60, 636 
l = 75)), breaks=0:8, zlim=c(0, 8)) 637 
          plot(boundary, add=T) 638 
          plot(poi, add=T) 639 
          zoom(view_raster[[1]], col=rainbow_hcl(7, c = 60, l = 640 
75), breaks=1:8, zlim=c(1, 8)) 641 
          plot(boundary, add=T) 642 
          plot(poi, add=T) 643 
           644 
        } else { 645 
            plot(view_raster[[1]]) 646 
          plot(boundary, add=T) 647 
          plot(poi, add=T) 648 
          zoom(view_raster[[1]]) 649 
            plot(boundary, add=T) 650 
            plot(poi, add=T) 651 
             652 
        } 653 
     654 
        print("Choose pixel to calculate:") 655 
        flush.console() 656 
 657 
 658 
        pixel <- click(view_raster[[1]], n=1, id=TRUE, xy=TRUE, 659 
cell=TRUE) 660 
         661 
        cell_id <- pixel[[3]] 662 
    } 663 
     664 
    print(paste("Pixel", cell_id, "selected, calculating 665 
BFAST...", sep=" ")) 666 
    flush.console() 667 
 668 
 669 
    x <- extract(extract_raster, cell_id) 670 
     671 
     672 
    ##  Check to see if we have a provided qc dataset and if so 673 
replace 674 
    ##      any bad values with NAs: 675 
    ##  NOTE:  This is handled outside the bfast_pixel() function 676 
in the full 677 
    ##      raster processing... 678 
    if (!is.null(qc_raster)) { 679 
        qc <- extract(qc_raster, cell_id) 680 
        x <- as.numeric(x) 681 
        series <- ts(x, start=c(2000,2,18), deltat=16/365) 682 
     683 
        ##  We want to replace any data in the original series 684 
with an NA if the 685 
        ##      converted QC data is 1 or NA: 686 
        qc <- as.numeric(qc) 687 
        qc[is.na(qc)] <- 1 688 
        series_qc <- ts(qc, start=c(2000,2,18), deltat=16/365) 689 
         690 
        ##  Do the replacement: 691 
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        x[qc == 1] <- NA 692 
 693 
        series_fix = ts(x, start=c(2000,2,18), deltat=16/365) 694 
         695 
        ##  If we're set to write output to disk then create a 696 
PDF of our output: 697 
        if (!is.null(write_label)) { 698 
            pdf(file=paste("./plotted_qc_", write_label, ".pdf", 699 
sep="")) 700 
            plot(cbind(zoo(series), zoo(series_qc), 701 
zoo(series_fix)), col=c("red", "blue", "green")) 702 
            dev.off() 703 
        } 704 
        plot(cbind(zoo(series), zoo(series_qc), zoo(series_fix)), 705 
col=c("red", "blue", "green")) 706 
    } 707 
     708 
     709 
    series <- ts(as.numeric(x), start=c(2000,2,18), 710 
deltat=16/365, frequency=23) 711 
    series[series == -32768] <- NA 712 
 713 
 714 
    ##  Create an output data.frame() to hold info from the 715 
analysis.  This  716 
    ##      should be one value for the number of trend 717 
breakpoints detected,  718 
    ##      plus ten values for each break point plus five for 719 
the segment 720 
    ##      after the last break point estimated where no 721 
differences/CI can 722 
    ##      be estimated: 723 
    num_features <- 10 724 
    num_features_seasonal <- 10 725 
 726 
    output <- numeric(length=(2 + num_features*breaks + 5 + 2 + 727 
num_features_seasonal*breaks + 5)) 728 
    output[] <- NA 729 
 730 
    ##  Make sure we have more than one endpoint and then go: 731 
    if (sum(!is.na(series)) > 1) { 732 
        ##  Interpoloate any missing values: 733 
        series <- na.approx(series) 734 
 735 
        ##  This is to set the minimum (in proportion of the 736 
length of the total 737 
        ##      series) amount of time between detected features.  738 
Verbesselt  739 
        ##      (in press) suggests at least an annual cycle 740 
between detected  741 
        ##      breaks: 742 
        if (is.null(rdist)) { 743 
            #rdist <- 10/length(series) 744 
 745 
            ##  One year minimum distance: 746 
            #rdist <- 1 / (length(series) / 23) 747 
             748 
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            ##  Two year minimum distance: 749 
            rdist <- 2 / (length(series) / 23) 750 
        } 751 
         752 
        ##  Run bfast on our pixel time series: 753 
        start_time = proc.time()[3] 754 
        fit <- bfast(series, h=rdist, season=season, 755 
max.iter=max.iter, breaks=breaks) 756 
 757 
        ##  If we're set to write output to disk then create a 758 
PDF of our output: 759 
        if (!is.null(write_label)) { 760 
            pdf(file=paste("./plotted_bfast_", write_label, 761 
".pdf", sep="")) 762 
            plot(fit) 763 
            dev.off() 764 
        } 765 
        #plot(fit) 766 
        bfast:::plot.bfast(fit) 767 
        #bfast:::plot.bfast(fit, ANOVA=TRUE) 768 
        #bfast:::plot.bfast(fit, type="seasonal") 769 
        #bfast:::plot.bfast(fit, type="trend") 770 
        #bfast:::plot.bfast(fit, type="all") 771 
         772 
        print(paste("BFAST fit elapsed time:", proc.time()[3] - 773 
start_time, "seconds")) 774 
        flush.console() 775 
 776 
         777 
        ##  Extract the first iteration values: 778 
        iter <- 1 779 
        out <- fit$output[[iter]] 780 
     781 
 782 
        ##  Check trend component for breaks: 783 
        detected_breaks <- out$Vt.bp 784 
 785 
        ##  Check to see if any breakpoints were detected in the 786 
trend component: 787 
        if (detected_breaks[1] > 0) { 788 
            output[1] <- length(detected_breaks) 789 
 790 
            ##  To hand extract pieces of the trend based on 791 
breakpoint locations: 792 
            info <- out$ci.Vt 793 
            times <- c(0, info$confint[,2], length(out$Tt)) 794 
        } else { 795 
            output[1] <- 0 796 
            times <- c(0, length(out$Tt)) 797 
        } 798 
             799 
 800 
        ##  Store our entropy for the series: 801 
        output[2] <- ts_entropy(series) 802 
        print(paste("Norm. Spectral Entropy:",output[2])) 803 
             804 
        for (i in 1:(length(times)-1)) { 805 
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            begTime <- times[i] + 1 806 
            endTime <- times[i+1] 807 
 808 
            output[(i-1)*num_features + 3] <- begTime 809 
            print(paste("Begin Time:",begTime)) 810 
             811 
            output[(i-1)*num_features + 4] <- endTime 812 
            print(paste("End Time:",endTime)) 813 
             814 
            output[(i-1)*num_features + 5] <- endTime - begTime 815 
            print(paste("Length:",endTime-begTime)) 816 
 817 
            output[(i-1)*num_features + 6] <- 818 
mean(out$Tt[begTime:endTime]) 819 
            print(paste("Means:",mean(out$Tt[begTime:endTime]))) 820 
 821 
            output[(i-1)*num_features + 7] <- (out$Tt[endTime] - 822 
out$Tt[begTime])/(endTime - begTime) 823 
            print(paste("Slope:",(out$Tt[endTime] - 824 
out$Tt[begTime])/(endTime - begTime))) 825 
 826 
            if (i != (length(times)-1)) { 827 
                output[(i-1)*num_features + 8] <- 828 
mean(out$Tt[((endTime + 1):times[i+2])]) - 829 
mean(out$Tt[begTime:endTime]) 830 
                print(paste("Means Diff.:",mean(out$Tt[((endTime 831 
+ 1):times[i+2])]) - mean(out$Tt[begTime:endTime]))) 832 
 833 
                output[(i-1)*num_features + 9] <- out$Tt[endTime 834 
+ 1] - out$Tt[endTime] 835 
                print(paste("Diff. at Break:",out$Tt[endTime + 1] 836 
- out$Tt[endTime])) 837 
 838 
                output[(i-1)*num_features + 10] <- 839 
info$confint[i,1] 840 
                print(paste("25% CI:", info$confint[i,1])) 841 
 842 
                output[(i-1)*num_features + 11] <- 843 
info$confint[i,2] 844 
                print(paste("Breakpoint:", info$confint[i,2])) 845 
 846 
                output[(i-1)*num_features + 12] <- 847 
info$confint[i,3] 848 
                print(paste("75% CI:", info$confint[i,3])) 849 
            } 850 
            flush.console() 851 
        } 852 
         853 
     854 
        ##  Write out layer names for seasonal break detections: 855 
        j = (breaks)*num_features+7 856 
 857 
        ##  Check seasonal component for breaks: 858 
        detected_breaks <- out$Wt.bp 859 
         860 
         861 
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        ##  Check to see if any breakpoints were detected in the 862 
seasonal trend  863 
        ##      component: 864 
        if (detected_breaks[1] > 0) { 865 
            output[j + 1] <- length(detected_breaks) 866 
 867 
            ##  To hand extract pieces of the trend based on 868 
breakpoint locations: 869 
            info <- out$ci.Wt 870 
            times <- c(0, info$confint[,2], length(out$Tt)) 871 
        } else { 872 
            output[j + 1] <- 0 873 
            times <- c(0, length(out$Tt)) 874 
        } 875 
             876 
        ##  Store our entropy for the smoothed, seasonal series: 877 
        output[j + 2] <- ts_entropy(out$St) 878 
        print(paste("Norm. Spectral Entropy of Seasonal Trend 879 
Series:",output[j+2])) 880 
        for (i in 1:(length(times)-1)) { 881 
            begTime <- times[i] + 1 882 
            endTime <- times[i+1] 883 
 884 
            output[j+(i-1)*num_features_seasonal+3] <- begTime 885 
            print(paste("Begin Time:",begTime)) 886 
             887 
            output[j+(i-1)*num_features_seasonal+4] <- endTime 888 
            print(paste("End Time:",endTime)) 889 
             890 
            output[j+(i-1)*num_features_seasonal+5] <- endTime - 891 
begTime 892 
            print(paste("Length:",endTime-begTime)) 893 
 894 
            output[j+(i-1)*num_features_seasonal+6] <- ( 895 
max(out$St[begTime:endTime]) - min(out$St[begTime:endTime])) 896 
            print(paste("Range (peak to trough):", output[j+(i-897 
1)*num_features_seasonal+6])) 898 
 899 
            output[j+(i-1)*num_features_seasonal+7] <- 900 
ts_entropy(out$St[begTime:endTime]) 901 
            print(paste("Seasonal Trend Piece 902 
Entropy:",output[j+(i-1)*num_features_seasonal+7])) 903 
 904 
            if (i != (length(times)-1)) { 905 
                output[j+(i-1)*num_features_seasonal+8] <- 906 
(max(out$St[(endTime + 1):times[i+2]]) - min(out$St[(endTime + 907 
1):times[i+2]])) - (max(out$St[begTime:endTime]) - 908 
min(out$St[begTime:endTime])) 909 
                print(paste("Range Diff.:",output[j+(i-910 
1)*num_features_seasonal+8])) 911 
 912 
                output[j+(i-1)*num_features_seasonal+9] <- 913 
ts_entropy(out$St[(endTime + 1):times[i+2]]) - output[j+(i-914 
1)*num_features_seasonal+7] 915 
                print(paste("Entropy Diff. at 916 
Break:",output[j+(i-1)*num_features_seasonal+9])) 917 
 918 
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                output[j+(i-1)*num_features_seasonal+10] <- 919 
info$confint[i,1] 920 
                print(paste("25% CI:", info$confint[i,1])) 921 
 922 
                output[j+(i-1)*num_features_seasonal+11] <- 923 
info$confint[i,2] 924 
                print(paste("Breakpoint:", info$confint[i,2])) 925 
 926 
                output[j+(i-1)*num_features_seasonal+12] <- 927 
info$confint[i,3] 928 
                print(paste("75% CI:", info$confint[i,3])) 929 
            } 930 
            flush.console() 931 
        } 932 
    } 933 
 934 
    if (!is.null(write_label)) { 935 
        sink() 936 
    } 937 
     938 
    return(output) 939 
} 940 
 941 
 942 
 943 
##  Examples: 944 
 945 
##  Basic usage: 946 
#system.time(output <- 947 
plot_bfast_pixel(view_raster=raster_data[[12]], 948 
extract_raster=raster_data, qc_raster=qc_data)) 949 
##  Because data are already corrected we have no qc_data: 950 
#system.time(output <- 951 
plot_bfast_pixel(view_raster=raster_data[[12]], 952 
extract_raster=raster_data)) 953 
 954 
##  Calculate for a specified pixel for both the smoothed and 955 
less-smoothed 956 
##      data: 957 
#system.time(output <- plot_bfast_pixel(cell_id=70217, 958 
extract_raster=raster_data_simple)) 959 
#system.time(output <- plot_bfast_pixel(cell_id=28822, 960 
extract_raster=raster_data_simple)) 961 
#system.time(output <- plot_bfast_pixel(cell_id=70217, 962 
extract_raster=raster_data)) 963 
 964 
##  Basic usage with selection from raster and output images and 965 
text to a 966 
##      file: 967 
#output <- plot_bfast_pixel(view_raster=raster_data[[12]], 968 
extract_raster=raster_data, qc_raster=qc_data, 969 
write_label="land_1") 970 
##  Because data are already corrected we have no qc_data: 971 
#output <- plot_bfast_pixel(view_raster=raster_data[[12]], 972 
extract_raster=raster_data, write_label="land_1") 973 
write_label <- "South_Site_2_MODIS_BFAST" 974 
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output <- plot_bfast_pixel(view_raster=raster_data_simple[[6]], 975 
extract_raster=raster_data_simple, write_label=write_label) 976 
output_df <- data.frame(t(as.matrix(output))) 977 
names(output_df) <- layer_names 978 
write.csv(output_df, file=paste0(write_label, "_output.csv"))979 
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APPENDIX D: MODIS BFAST PLOTS 

Figure D.1. BFAST plots for all MODIS pixels containing Site #1. 
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Figure D.2. BFAST plots for all MODIS pixels containing Site #2. 
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Figure D.3. BFAST plots for all MODIS pixels containing Site #3. 
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APPENDIX E: BFAST PLOTS USING FUSED IMAGERY FOR ALL POINTS  

Figure E.1. Site #1 BFAST plots using fused Landsat-scale data for centroid (a) and random 

points 0-4 (b-f). 
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Figure E.2. Site #2 BFAST plots using fused Landsat-scale data for centroid (a) and 

random points 0-4 (b-f). 
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Figure E.3. Site #3 BFAST plots using fused Landsat-scale data for centroid (a) and 

random points 0-4 (b-f). 
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