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ABSTRACT 

GLOBAL POPULATION DISTRIBUTIONS AND THE ENVIRONMENT: 

DISCERNING OBSERVED GLOBAL AND REGIONAL PATTERNS 

Jeremiah J. Nieves 

April 15, 2016 

Between 1990 to 2015, numerous groups used ancillary data about the environment 

surrounding populations to more accurately map global populations from standard census 

data. No comprehensive study has been undertaken to characterize the observed 

relationships between population density and ancillary data. Better understanding these 

relationships may produce more accurate population maps, focus resources on new 

datasets with a high probability of modelling importance, and lead to expanded end-user 

applications. This study examined these relationships by extracting variable importances 

from 36 independently run, country-specific population models from the WorldPop 

project’s population data. Covariate data describing urban/suburban extents were found 

to be the most significant predictors of population. Little difference was found in the 

resolution of urban/suburban data regarding their modelling importance. Further 

examination of the effect of different definitions of built-/urban-area, methods of 

quantifying input data quality, and the probability of specific variable classes as 

significant predictors of population is required. 
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INTRODUCTION 

 

 

Between 2015 and 2050, the U.N. (2015) estimates that the global human 

population will grow by 2.4 billion, with 1.3 billion and 0.9 billion being added in Africa 

and Asia, respectively. Most of this projected change is anticipated to occur in the least 

developed countries and in urbanized areas (U.N. 2014a; U.N. 2015). In this same time 

period, Africa, Asia, Latin America, and the Caribbean are estimated to experience the 

highest rates of urbanization (U.N. 2014b). As a part of this “urban transition,” the 

majority of Africa and Asia and are experiencing large rates of internal migration, 

international migration, and changes in the spatial distribution of natural population 

growth (U.N. 2014b; U.N. 2015). And while Latin America and the Caribbean are 

predicted to experience decreasing urbanization rates, as was the trend through the 1990s 

and the early 2000s, the region is expected to have major demographic shifts. These 

include more than a doubling of the proportion of populations over the age of sixty years 

old, to 26 percent of the regional total, by 2050 (U.N. 2015). These rapidly changing 

magnitudes, composition, and distribution of human populations imply a continued if not 

increasing need for high-resolution spatially-explicit population maps which more 

accurately capture these changes. 

Large and rapid population changes are occurring with respect to total population 

counts as well as with respect to internally shifting demographics, as longevity increases, 
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high-volume international migrations continue, and high rates of urbanization proliferate 

(U.N. 2015, U.N. 2014b). In developing regions, such as the regions sampled for this 

study, these shifts in spatial population distribution and their magnitude continue to raise 

concerns of sustainability, infrastructure, health as related to infectious and chronic 

diseases, food security, and increasing energy demand at local, regional, and global scales 

(Cohen 2006; McGranahan et al. 2007; Stephenson, Newman and Mayhew 2010; 

Chongsuvivatwong et al. 2011; Madlener and Sunak 2011; Sverdlik 2011; Buhaug and 

Urdal 2013; Masters et al. 2013). These continued and heightened concerns regarding the 

implications of the rapid pace of shifting populations and demographic distributions in 

developing areas ensures a continued demand for high resolution gridded population 

maps in these regions of the world.  

By understanding and clarifying the observed importance of a variety of ancillary 

data sources in relation to corresponding population densities, continued and future 

global high-resolution population mapping efforts can progress with a more complete 

characterization of populations and their surrounding environment. Quantifying the 

relative importance of ancillary data allows for population mappers to concentrate their 

resources on finding or developing new ancillary datasets which have the highest 

probability of being important when placed in a modeling framework. Clarifying the 

variable importance, or more specifically the non-importance of certain covariates, can 

lead to the formulation of a reduced covariate set for population mapping. This reduced 

covariate set can expand the possible end-use applications of the population data by 

minimizing the number of covariates that could become “circularly regressed” in 

subsequent regression or other statistical analyses. Moreover, by further depicting the 
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knowledge of the relationships between the categorized ancillary datasets and population 

densities at global and regional scales the accuracy and precision of high resolution 

population mapping will be furthered. 
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LITERATURE REVIEW 

A Review of Global Population Mapping Efforts 

 

 

Since the 1990s, there have been several notable gridded population map 

producers which utilized a variety of statistical methods and input data to estimate 

population on a global or regional extent. Such efforts include the Global Rural Urban 

Mapping Project (GRUMP), Gridded Population of the World (GPW), LandScan, the 

United Nations Environment Programme (UNEP), and WorldPop (formerly known as 

AfriPop and AsiaPop) (Dobson et al. 2000; UNEP 2004; Balk and Yetman 2004; Balk et 

al. 2006; Bhaduri et al. 2007; Cheriyadat et al. 2007; Linard et al. 2010; CIESIN 2011). 

GRUMP version 1, GPW version 3, and the beta of GPW version 4 are freely available as 

are the UNEP gridded datasets for Africa, Asia, and Latin America (Balk and Yetman 

2004; UNEP 2004; CIESIN 2011; Doxsey-Whitfield et al. 2015). WorldPop currently 

hosts the datasets modeled by AfriPop and AsiaPop, many of which have been updated 

with new data or methods since those projects merged in 2013 into what is now 

WorldPop (Stevens et al. 2015; WorldPop 2015c). Alternatively, the LandScan project 

produces commercially available data and has the advantage of being updated on an 

annual basis (Dobson et al. 2000; Bhaduri et al. 2007).  Another notable difference is that 

LandScan maps the “ambient” population over a 24-hour period as opposed to the 
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traditional night-time residential population locations captured by a census (Dobson et al. 

2000; Bhaduri et al. 2007). These population maps span a variety of spatial and temporal 

resolutions all of which are detailed in Table 1 and are chronologically presented in 

Figure 1.  

 

Table 1. Contemporary population datasets and supplemental derived products 

 

Population 
Map 

Spatial 
Resolution 
(approx. at 
equator)  

Spatial 
Extent 

Temporal 
Resolution 

Temporal 
Extent 

Updating 
Period 

Supplemental Data 
Produced 

LandScan 30 arc sec 
(1km)  

Global Ambient 
Population  
(24 hour 
average) 

1998 - 2012 Annual --- 

GPW v3 2.5 arc min 
(5km) 

Global Single Time 
Point 

1990, 1995, 
2000 & 2015, 
2020 
projections 

Intermittent --- 

GRUMP v1 30 arc sec 
(1km) 

Global Single Time 
Point 

1990, 1995, 
2000 

Intermittent Urban-Rural 
Classification 

UNEP 1° (111km) Global Single Time 
Point 

1990 None --- 

2.5 arc min 
(5km) 

Africa Single Time 
Point 

1960, ’70, ’80, 
’90, 2000  

None --- 

2.5 arc min 
(5km) 

Asia Single Time 
Point 

1995 None --- 

2.5 arc min 
(5km) 

Latin 
America and 
Caribbean 

Single Time 
Point 

1960, ’70, ’80, 
’90, 2000  

None --- 

WorldPop 3 arc sec 
(100m) 

South and 
Central 
America, 
Parts of 
Africa and 
Asia 

Single Time 
Point 

Input census 
year & 2010, 
2015, 2020 
back/forward 
projections 

As data 
becomes 
available 

Small area 
demographic 
estimations and 
select small area 
characteristics 
related to specific 
health outcomes 
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Figure 1.  Timeline of global population mapping projects 

 

Global Population Mapping Methods 

 

GPW utilizes an areal weighting technique, in which population counts, obtained 

from census data, for a given areal census unit are broken into smaller, spatially 

coincident areas of population (Tobler et al. 1997). This is carried out by assuming 

uniform distribution of a population across the source area and deriving the population 

counts of the smaller target areas based upon the proportion of their area to the source 

unit area; the summed population of the target areas equals the population of the source 

area (Flowerdew, Green, & Kehris 1991). This technique was improved upon and greater 

spatial variance of populations within census units was introduced in GRUMP through 

the integration of urban-rural designations derived from lights-at-night satellite data, city 

point, and other geographic datasets (Balk and Yetman 2004; Balk et al. 2006; CIESIN 

2011). Further increases accuracy evolved within UNEP, LandScan, and WorldPop 

projects fusing dasymetric mapping with statistical techniques to estimate population 
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locations and densities (Dobson et al. 2000; UNEP 2004; Bhaduri et al. 2007; Stevens et 

al. 2015).  

Dasymetric mapping redistributes values from coarse spatial resolution to a finer 

spatial resolution within a given spatial unit using either uniform, areal, or non-uniform 

spatial weights. These non-uniform weights may be determined by statistical 

relationships with independent, ancillary datasets which provide correlational information 

about population density (Mennis and Hultgren 2006). The relationships between 

spatially coincident populations and ancillary data are typically determined a priori, 

through expert knowledge, or by the distributions of the covariates in relation to the 

output of interest as assessed through statistical methods or machine learning algorithms 

(Wright 1936; Eicher and Brewer 2001; Langford et al. 1991; Mennis and Hultgren 2006; 

Stevens 2015). Between 1991 and present day, the advancement of statistical techniques 

as applied to dasymetric methods, access to ancillary datasets, GIS and remote sensing, 

and the availability of processing power have paralleled an increase in accuracy of 

gridded population products. 

 

Global Population Mapping Covariates 

 

Some ancillary data sets chosen for disaggregating populations from census units 

represent phenomena known to be related to population. For instance, it has been known 

that humans tend to modify their environment, specifically land cover, in manners that 

differentiate it from the surrounding landscape (Meyer and Turner 1992). This is 

especially true for urbanized areas and areas of mono-agriculture although the exact 
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direction and magnitude of the relationship may vary with locale (Ramankutty, Foley and 

Olejniczak 2002; Pozzi and Small 2005) . Other examples include the increased 

probability of settlements occurring within a specific distance of rivers and coasts as well 

as the phenomena of populated settlements giving off light, from campfires, street lights, 

etc., that are visible from satellites at night (Elvidge et al. 2001; Small and Nicholls 2003; 

McGranahan, Balk and Anderson 2007). Other ancillary data included have less clear 

relationships such as transportation networks, elevation, impervious surface cover, points 

of interest, and environmental factors. Some of these relationships vary widely within a 

given country (e.g. impervious surface may be indicative of population in one area and 

non-populated industry in another area) and or between countries (e.g. distance to 

railways may be important in Myanmar and not in Thailand). Making the choice of 

covariates in model selection an important process.  

 

Research Question and Hypotheses 

 

Despite the variety of analytical approaches and ancillary data used in the creation 

of high-resolution gridded population maps, and the extensive application of these maps 

over the previous decade, there is a lack of comprehensive studies on the observed spatial 

relationships between population densities, the covariates they are associated with, and 

the ancillary datasets that represent the covariates. That is, there has been no meta-

analysis of the relative importance and effectiveness, of ancillary datasets in estimating 

the spatial distribution of populations at either country or regional levels. At most, basic 
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within-country analyses have been undertaken in the course of validation or accuracy 

assessment (Gaughan et al. 2013; Stevens et al. 2015).  

There are four primary questions that I attempt to address through this research: 

(1) What types of geospatial ancillary data are the most important for dasymetrically 

mapping populations at a global and regional scale? (2) What are the differences in the 

patterns of importance of covariate categories between and within regions? and (3) How 

important are built-area/urban extent data to population distribution modeling and is 

spatial resolution significant in determining this? Corresponding hypotheses and scale of 

analyses to investigate these questions are shown with expected results in Table 2. For 

the purposes of this study “Southeast Asia” refers to the proper Southeast Asia region 

with China and Nepal included. 
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Table 2.  Hypotheses, corresponding research question addressed, scale and unit of 

analysis, and expected results 

 

Hypothesis 
Research 
Question 

Scale [Unit] 
of Analysis 

Expected Results 

Certain classes of ancillary data will be 
significantly more important in explaining 
observed population density as measured 
by Percent Increase in MSE 

1 
Global 
[Covariate 
Classes] 

Urban/suburban covariate categories will be the 
most important followed by transportation and 
facilities/services covariates 

2 
Inter-Regional 
[Regions] 

Urban/suburban covariate categories will be the 
most important followed by transportation and 
facilities/services covariates. The magnitude of 
these importances will be sig. diff. between regions. 

2 
Intra-Regional 
[Covariate 
Classes] 

Urban/suburban covariate categories will be the 
most important followed by transportation and 
facilities/services covariates. There will be some 
countries within a given region that will be 
significantly different. 

Urban/suburban extent and 
urban/suburban extent proxies will 
significantly vary in importance inter- and 
intra- regionally largely due to their data 
source/resolution  

3 
Globally 
[Countries] 

Urban variable resolution will be significantly 
different in importance with the higher resolution or 
vector data sets being more important than the 
lower resolution variables. 

3 
Intra-Regional 
[Regions] 

Urban/suburban covariate categories will be more 
important in Central America and the Caribbean, 
South America, and Southeast Asia as compared to 
Africa primarily because of the 30m urban variables 
that are derived from their land cover datasets, 
whereas Africa has 300m. 

Certain classes of ancillary data will be 
significantly more important in explaining 
observed population density as measured 
by the within-country weighted rank of 
variable importance 

1 
Global 
[Countries] 

Urban/suburban covariate categories will be the 
most important followed by transportation and 
facilities/services covariates 

2 
Inter-Regional 
[Regions] 

Urban/suburban covariate categories will be the 
most important followed by transportation and 
facilities/services covariates. The magnitude of 
these importances will be sig. diff. between regions 
with it being most important in Southeast Asia. 

2 
Intra-Regional 
[Countries] 

Urban/suburban covariate categories will be the 
most important followed by transportation and 
facilities/services covariates. There will be some 
countries within a given region that will be sig. diff. 
from the category’s median rank in the region. 
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DATA AND METHODS  

 

 

The WorldPop Project’s methods and data sources are open source and 

transparent resulting in the utilization of the population maps by non-profit groups, 

governmental entities, non-governmental organizations, and academic researchers in a 

variety of applications (World Pop 2015a). Such applications include health prospect and 

risk assessment, guiding of vaccination and health intervention campaigns, natural 

disaster impact assessment and relief coordination in the 2015 Nepal earthquake and 

2015 Myanmar floods, and in response to the Ebola epidemic in West Africa (WorldPop 

2014; Tatem et al. 2014; W.H.O. 2014; UNFPA 2014; WorldPop 2015a; WorldPop 

2015b; WorldPop 2015c; Alegana et al. 2015; Bharti et al. 2015). The methods used are a 

two-step process involving the use of random forest regressions to determine appropriate 

models and covariates to estimate population density and then the application of 

intelligent dasymetric mapping, guided by predicted per-pixel population density 

produced by the random forest, to redistribute census population counts across space at 

the pixel level.
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Random Forests – An Ensemble Learning Method 

 

Random forests (RFs) are a non-parametric and non-linear statistical method 

which falls within a category of machine learning methods known as “ensemble 

methods.” Multiple decision trees, that on their own are considered “weak learners,” i.e. 

they are only slightly correlated with the training data, are combined in order to create a 

“strong learner.” Ensemble methods utilize a training data set to build a number of 

models (e.g. decision trees) by using an allocation function to determine how much of the 

training data each model receives. These multiple models are then combined through a 

combination function which determines how best to resolve disagreements amongst the 

models’ predictions (e.g. through voting, weighting, etc.). The output is a single ensemble 

model. Ensemble methods differ primarily in their allocation functions and their 

combination functions as well as the method used to create the multiple models 

(Dietterich 2000). The benefit of ensemble methods is that generalizability is increased, 

performance on extremely large or small datasets is improved, and the ability of the 

method to “understand” or model difficult learning tasks is more nuanced and effective. 

Additionally, the ensemble model produced is able to synthesize or predict data from 

very specific and distinct domains. A generalized layout of ensemble methods is shown 

in Figure 2. 

Figure 2.  General schematic of ensemble methods 
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RFs independently generates k number unpruned of decision trees using 

“bagging,” in which two-thirds of the training data set is boot-strap sampled with 

replacement (Breiman 1996; Breiman 2001). At each decision node in a given decision 

tree, the data is split into two subsets based upon a random selection of m attributes as the 

split decision criteria, with the two resulting subsets being as homogenous in their 

attributes as possible (Breiman 2001). Once a decision tree has been grown, the 

remaining one-third of the training data which the tree was not grown upon, known as the 

“Out-of-Bag” (OOB) data, has the decision tree applied to it and the accuracy of the 

decision tree in classifying or regressing that data, as measured by the mean squared error 

(MSE), is stored as the OOB error for that tree (Breiman 2001). The prediction error of 

the entire RF model can be estimated by averaging the OOB error of all the constituent 

trees (Breiman 2001). Additionally, the OOB error can be used for estimating covariate 

importance by replacing a given covariates OOB data with random noise and calculating 

the percent increase in the OOB error of the RF model (Breiman 2001). The overall 

variance explained by the model is equivalent to one minus the mean squared residuals as 

shown in Equation 1 where 𝑦̂𝑖
𝑂𝑂𝐵 is the average of the OOB predictions for the ith 

observation and 𝜎̂𝑦
2 is calculated with n as the divisor as opposed to n – 1 (Liaw and 

Wiener 2002).  

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =  1 − 𝑛−1 ∗ ∑(𝑦𝑖 − 𝑦̂𝑖
𝑂𝑂𝐵)2

𝑛

1

𝜎̂𝑦
2⁄  

 

(1) 
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The output of all trees can be consolidated by majority vote (i.e. the mode of the outputs) 

or by calculating the average of the outputs, for RFs used for classification or regression, 

respectively (Breiman 2001). A general schematic of the RF process is given in Figure 3. 

 

   Figure 3.  General process of building a random forest. 

 

Compared to other ensemble methods RFs are robust to noise, small sample sizes, 

and over-fitting, yet they need little in the way of parameter specifications (Feller 1968; 

Breiman 2001; Liaw and Wierner 2002; Briem et al. 2002; Pal and Mather 2003; Chan 
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and Paelickx 2008; Rodriguez-Galiano et al. 2012). There are three primary parameters in 

constructing a RF: (1) m number of covariates to be randomly selected at each node, (2) k 

number of trees in the forest, and, (3) the number of observations allowed in the terminal 

nodes of each decision tree (Liaw and Wiener 2002). The optimal number of covariates 

to be randomly selected and the number of observations allowed can be automatically 

selected, based upon minimizing the OOB Error, by using the tuneRF function in the R 

package randomForest (Liaw and Wiener 2002).   

 

WorldPop Random Forest-Based Dasymetric Population Mapping 

 

WorldPop uses a RF regression model and dasymetric mapping methods in a 

three step process to estimate a population layer from input census and covariate data. 

The steps are as follow: (1) Covariate selection for the RF model, (3) the fitting of the RF 

model and creation of a population density weighting layer from the created RF model, 

and, (3) the dasymetric redistribution of population counts from census-based 

administrative units to grid cells using the population density weighting layer (Stevens et 

al. 2015).  Data input to a RF model varies on a country-by-country basis with high-

resolution country specific datasets being used over coarser resolution default datasets 

when available. Typical ancillary datasets include land cover, elevation, transportation 

network, climatological, hydrological, and settlement data (Gaughan et al. 2013; Stevens 

et al. 2015; Sorichetta et al. 2015). All input data is projected, rasterized (if applicable) 

and resampled to 100m, using techniques appropriate for the given dataset (Stevens et al. 

2015). 
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The covariate selection occurs by fitting a model at the administrative unit level 

of the input census data using all available covariates with the log-transformed population 

density of each administrative unit as the outcome of interest (Stevens et al. 2015). An 

iterative covariate selection process then occurs based upon the observed covariate 

importance, as derived from the OOB error, with covariates exhibiting zero percent 

increase in the model’s MSE being removed prior to refitting the model (Stevens et al. 

2015). The final covariate selection is determined when only covariates with positive 

percent increase in MSE (Per.Inc.MSE) remain (Stevens et al 2015). 

The RF models are then fit by growing 500 trees, using the previously determined 

covariates, and setting the number of terminal node observations to one or the number of 

administrative units divided by 1000 and rounded to the nearest whole number, should 

there be greater than 1000 administrative units in the input data (Stevens et al 2015). 

Once grown, this RF model was used to predict the log population density, later back 

transformed, of every given grid cell in the model area with the average prediction of all 

trees being assigned to a given grid cell (Stevens et al. 2015). 

This population density weighting layer is back-transformed and used to 

dasymetrically redistribute the input census population count values for the year of the 

census data (Stevens et al. 2015). This redistributed population is then projected to 2010, 

2015, and 2020 using country-specific urban and rural population growth rates given by 

the 2014 UN projected growth estimates (U.N. 2014a; Stevens et al. 2015). The final 

100m x 100m gridded population maps are output in un-projected format as people per 

pixel and in projected format as people per hectare (Stevens et al. 2015). In a dasymetric 

mapping context, when the magnitude, direction, and structure of the covariate 
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relationships are quantified through the use of a statistical method on the distribution of 

the covariates in relation to the outcome (i.e. population density), the method chosen (e.g. 

multiple linear regression as opposed to a regression tree) can significantly determine the 

resulting variable importances and relationships observed between the covariates and 

between the covariates and the outcome.  

 

Sampled Countries and Data 

 

For this investigation, I sampled countries from four primary regions of the world 

where WorldPop has created population datasets: Africa (AFR), Central America and the 

Caribbean (CAC), South America (SAM), and Southeast Asia (SEA). The sampled 

countries within these regions, shown in Figure 4, were modeled based upon census data 

from varying years and the best available covariate data at the time of modelling, shown 

in Table 3. These regions were selected because of their continued and rapidly growing 

importance in relation to world population (U.N. 2014a, 2014b).  
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Figure 4. Sampled countries in AFR (purple), CAC (blue), SAM (orange),  

and SEA (green). 

 

It is not simply the magnitude of these population changes, but the rate at which they are 

changing. Medium-variant projection shows Africa having an annual rate of population 

change peaking around 2.5 percent and decreasing to approximately 1.8 percent in 2050 

(U.N. 2015). Similarly Asia and Latin America and the Caribbean peak at approximately 

1.2 and 1.3 percent in 2015 and both decrease to about 0.3 percent in 2050 (U.N. 2015). 

Census data is attributed to irregularly shaped polygons known as administrative 

units which have hierarchical classifications by “level,” which are a function of their 

nested subdivision and relative sizes to other levels within each country. Because these 

levels are not a function of their absolute size and spatial configuration, administrative 

units of the same level are not comparable across countries on the basis of the spatial 

resolution of the census data. To mitigate this, I adopted the average spatial resolution 

(ASR, in km2) measure by Tobler et al. (1997) which takes the square root of the average 
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area encompassed by a given country’s  administrative units, shown in Equation 2. The 

ASR can be thought of as a polygonal equivalent of the resolution of a pixel in a standard 

uniform grid, but is not directly comparable. The ASR of each country’s input census 

data is shown in Table 3. 

 

𝐴𝑆𝑅 =  √
∑(𝑎𝑑𝑚𝑖𝑛 𝑢𝑛𝑖𝑡′𝑠 𝑎𝑟𝑒𝑎)

𝑁 𝑎𝑑𝑚𝑖𝑛 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑟𝑦
 

 

Table 3.  Sampled countries and selected characteristics including the variance explained 

by the country specific random forest model 

 

Country ISO Region 
Census Year 

(adm. lvl.) 

N 
Admin 
Units 

ASR* 
(km2) 

Variance 
Explained 

Kenya KEN AFR 1999 (5) 6606 9 83% 
Morocco MAR AFR 2004 (4) 1497 16 80% 
Mali MLI AFR 2009 (4) 687 43 85% 
Malawi MWI AFR 2008 (2) 12557 22 79% 
Namibia NAM AFR 2011 (2) 5475 12.28 96% 
Nigeria NGA AFR 2006 (2) 774 34 88% 
Rwanda RWA AFR 2002 (4) 9183 1.68 69% 
Senegal SEN AFR 2009 (4) 331 24 91.68% 
Uganda UGA AFR 2002 (4) 5018 7 85% 
Antigua and 
Barbuda 

ATG CAC 2011 (1) 7 7.4 86% 

Belize BLZ CAC 2010 (1) 16 37.0 79% 
Bolivia BOL CAC 2012 (2) 112 97.7 65% 
Costa Rica CRI CAC 2011 (3) 469 10.4 92% 
Cuba CUB CAC 2012 (2) 168 25.6 82% 
Dominican 
Republic 

DOM CAC 
2010 (3) 155 17.6 86% 

Guatemala GTM CAC 2012 (2) 333 18.0 80% 
Haiti HTI CAC 2009 (4) 570 6.9 84% 
Jamaica JAM CAC 2011 (1) 14 28.0 86% 
Mexico MEX CAC 2010 (2) 2456 28.0 92% 
Nicaragua NIC CAC 2012 (3) 137 29.4 79% 
Panama PAN CAC 2010 (2) 74 31.04 74% 
Puerto Rico PRI CAC 2010 (1) 78 13.3 74% 
Trinidad and 
Tobago 

TTI CAC 2011 (1) 14 19.1 86% 

Argentina ARG SAM 2010 (2) 526 73.0 88% 
Brazil BRA SAM 2010 (4) 5565 5.1 84% 
Columbia COL SAM 2013 (4) 1115 32.0 84% 
Ecuador ECU SAM 2010 (4) 978 16.2 82% 
Peru PER SAM 2012 (2) 194 81.7 63% 

(2) 
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Country ISO Region 
Census Year 

(adm. lvl.) 

N 
Admin 
Units 

ASR* 
(km2) 

Variance 
Explained 

Uruguay URY SAM 2011 (1) 19 96.0 91% 
Venezuela VEN SAM 2011 (2) 339 51.6 71% 
Cambodia KHM SEA 2008 (3) 1621 10.51 92% 
China CHN SEA 2010 (4) 2922 57.28 95% 
Indonesia IND SEA 2010 (4) 79277 4.91 81% 
Myanmar MMR SEA 2014 (3) 326 45.29 94% 
Nepal NEP SEA 2011 (4) 3973 6.08 92% 
Thailand THA SEA 2010 (3) 7416 23.67 88% 
Vietnam VNM SEA 2010 (3) 688 21.85 93% 
 * ASR values for CAC and SAM countries obtained from Sorichetta et al. (2015) 

 

Rather than attempt to standardize the input covariates between countries, 

WorldPop has utilized the most contemporary and available datasets on a country-by-

country basis to produce the population maps at nominal 100m spatial resolutions. See 

Stevens et al. (2015) for a typical set of ancillary data included in a given model. In some 

cases, where there is a lack of strong input data, a country’s model can be parameterized 

partially on a neighboring country, however this further obfuscates the already unintuitive 

relationships between population density and the supporting covariates as determined by 

the RF model (Stevens et al. 2015). Accordingly, no countries that were parametrized on 

neighboring countries were included in the sample for this study. 

For every WorldPop model run, metadata files containing information about the 

Random Forest model settings, input covariates and their importance, metadata on the 

input covariate datasets themselves, and the general results of the Random Forest model 

are output to Random Forest summaries. Due to this variability of input datasets, I 

extracted a variety of information, detailed in Table 4, from those RData files and 

examined the input covariates for all sampled countries to create the general covariates 

classification groups shown in Figure 5. The primary purpose of this classification system 

was to create some level of standardization of the covariate to be able to perform 



21 

 

comparisons between the country models. Prior to analysis, all covariates were 

reclassified using the classification scheme in Figure 5.  

 

Table 4.  Information extracted from metadata files 

 

Information Covariate Name* 
Level of 
Measurement 

Description/Example 

Variable Name VAR.NAME Nominal urb_dst 

Variable Classification 
Group 

VAR.CLASS Nominal Aggregated variable class (See Figure 
2) 

Variable Percent Inc. 
MSE 

PER.INC.MSE Ratio Percent Increase in MSE when 
covariate is removed 

Variable Inc. Node 
Purity 

INC.NODE.PURITY Ratio Percent purity of the variable nodes 

Variable Type VAR.TYPE Nominal Raw values or derived (distance, 
proportion, etc.) 

Variable Format FORMAT Nominal Raster, polygon, point, etc. 

If Variable is Used By 
Default 

DEFAULT Logical Binary True/False 

Country Name ISO Nominal Rwanda 

Number of Nodes NRNODES Ratio Number of nodes used in random forest 
regression 

Variable Measure 
Type 

MSEAURE.TYPE Ordinal Ratio, Nominal, etc. 

Year of Census Data CENSUS.YEAR Ratio 1999, 2000, etc. 

Region of Modelled 
Country 

REGION Nominal AFR, CAC, SAM, SEA 

Total Variance 
Explained 

VAR.EXP Ratio Total variance explained by model 

* These are the naming conventions utilized in the coding scripts  

 

To incorporate a measure of variable class importance while accounting for the 

frequency with which those classes are not included in the final model selection, I created 

a “zero-inflated” variable importance dataset. This dataset included the importance of the 

final covariate selection, Per.Inc.MSE calculated by the random forest, and included 

those excluded variables by giving them a Per.Inc.MSE which I assigned a value of zero. 

Additionally, the Landcover No Data covariate class was used as a control to test all other 

covariate classes’ importance for significant difference from no data.  
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Figure 5.  Covariate reclassification scheme utilized in analyses; constituent covariates 

are solid polygons with no fill, classes utilized in the analyses are solid, filled 

polygons, and the dotted polygons are the larger conceptual aggregations that 

guided aggregation decisions. 

 

 

Analysis 

 

 

This research followed the general framework of a meta-analysis. However, in the 

literature there are no comparable meta-analyses where individual model runs take the 

place of individual manuscripts within the meta-analytical framework. From these 

independent model runs of countries, I synthesized more generalized knowledge on the 

relative importance of various covariates in dasymetrically predicting population 

densities at high resolution.  

All analysis, data extraction, and reclassification was performed in the R 

Statistical Environment, version 3.2.2, with α = 0.05 significance levels and appropriate 

corrections for multiple outcomes where indicated (R Core Team 2015). Data extraction 

and management utilized the “dplyr” and the “tidyr” packages in R (Wickham and 
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Francois 2015, Wickham 2015). All data visualizations were created using the “ggplot2” 

and the “RColorBrewer” packages R or the default functions in R (Wickham 2009; 

Neuwirth 2014). Kruskal-Wallis tests and post-hoc Dunn tests were performed using the 

PMCMR package (Pohlert 2016). All mapping was performed in ArcGIS 10.2 (ESRI 

2013). 

For all hypotheses, I calculated standard summary statistics of variable 

importance measures for each variable classification group. To assist in interpretation of 

results, I also calculated descriptive statistics for the number of administrative units by 

region, extracted the total variance explained by the model, and calculated the average 

spatial resolution across all countries (i.e. “globally”) as shown in Table 2. Lastly, I 

created tables of the proportion of final models that a covariate class was included in. 

To facilitate presentation of methods, results, and discussion of results, I used the 

following subheadings corresponding to the first, second, and third hypotheses presented 

in Table 2: Covariate Class Importance: Per.Inc.MSE; Importance of Urban Covariate 

Classes; and Covariate Class Importance: Weighted Rank. 

 

Variable Class Importance: Per.Inc.MSE 

 

To examine potential significant differences in covariate class importance as 

measured by Per.Inc.MSE, I utilized both analytical and graphical methods. I created 

boxplots of the distributions of variable class importances, both for the zero-inflated and 

non-zero-inflated importance datasets. I also created a line and dot plot showing the 

median Per.Inc.MSE values and interquartile range (IQR) of Per.IncMSE values for each 
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covariate class grouped by region in order to examine overall regional covariate class 

importance patterns. 

 Given the non-normal nature of the variable importance data, I used the non-

parametric form of Kruskal-Wallis tests to test for significant differences between 

covariate classes across all countries (Kruskal & Wallis 1952). The inter-regional 

analyses were of a hierarchical nature using data subsets of a given covariate category 

and using the region category as the grouping variables, but still using the Kruskal-Wallis 

test (Kruskal & Wallis 1952; Rosner 2011). The intra-regional analyses subset the data to 

a given region and a given variable class then used a Kruskal-Wallis test to determine if 

significant differences in importances for the given covariate class existed between 

countries of the same region (Kruskal & Wallis 1952). If any of the Kruskal-Wallis tests 

were significant they were followed up with post-hoc Dunn tests using Holm’s correction 

for multiple outcomes (Dunn 1964; Holm 1979). 

 

Importance of Urban Variable Classes 

 

To examine the potential role of data resolution on the observed importance of 

urban related covariate datasets in predicting population density, I subset the data to 

include observations that were classified as the variable classes “Urban/Suburban 

Extents” and “Built Env. & Urban/Suburban Proxies.” I extracted the corresponding 

spatial resolutions of each observation’s source dataset. Given the non-normal 

distribution of this importance data, as measured by the weighted importance rank, I used 

a Kruskal-Wallis test to determine if there were significant differences between the 
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different spatial resolutions across all countries (Kruskal & Wallis 1952). I also used a 

Kruskal-Wallis test to determine if there were significant differences between the 

different spatial resolutions for each given region (Kruskal & Wallis 1952). If any of the 

Kruskal-Wallis tests were significant they were followed up with post-hoc Dunn tests 

using Holm’s correction for multiple outcomes (Dunn 1964; Holm 1979). 

 

Variable Class Importance: Weighted Rank 

 

To account for the differing number of total covariates in each country’s model I 

calculated a weighted importance rank. Within each country, covariates were ranked 

according to descending Per.Inc.MSE and then weighted by the total number of 

covariates in the final model for a given country, as displayed in Equation 3.  

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑛𝑘 =
𝑊𝑖𝑡ℎ𝑖𝑛 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 𝑅𝑎𝑛𝑘𝑒𝑑 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 𝑖𝑛 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 𝑀𝑜𝑑𝑒𝑙
 

 

Statistical testing was identical to the procedures used to examine covariate class 

importance as measured by MSE, with the primary procedural difference being that the 

hypotheses were interrogated by examining the weighted rank importance of covariate 

classes. Additionally, using the weighted rank importance, graphical outputs were 

constructed similar to those created when examining covariate class importance as 

measured by Per.Inc.MSE. 

(3) 
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RESULTS 

 

 

I observed consistent patterns of strong importance of the Urban/Suburban 

Extents, Built Env. & Urban/Surburban Proxies, and Clim./Ecolog./Topo. variable 

classes at both the global and regional levels. Globally and within any regions, there was 

no significant difference in observed importance between the Urban/Suburban Extents 

and the Built Env. & Urban/Suburban Proxies variable classes. As expected (Table 2), 

there were notable variations and significant differences in variable class importance 

across regions, but not necessarily between all regions. For several variable classes, the 

distributions of variable importance showed similar distributions between AFR and SEA 

and similar distributions between CAC and SAM, but significant differences between 

those two similar regional groups (i.e. AFR or SEA vs. CAC or SAM). No consistent, 

significant intra-regional differences were found across any of the variable classes. 

Regarding the more general descriptive statistics, similar grouping of values for 

the number of administrative units can be seen, in Table 5, for AFR and SEA as well as 

for CAC and SAM. Also notable is the large difference in the average and median ASR 

for SAM as compared to other regions. 
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Table 5.  Descriptive statistics of admin units input to model and the ASR of those units, 

by region 

Region 
Average 

Number of 
Admin. Units 

Median 
Number of 

Admin. Units 

Std. Dev. of 
Admin Units 

Average 
ASR 

Median 
ASR 

Std. 
Dev. of 

ASR 

AFR 4680.88 5018 4286.97 18.77 16 13.38 
SEA 13746.14 2922 28996.19 24.22 21.85 29.20 
CAC 346.50 107.50 636.70 26.38 22.35 13.53 
SAM 1020.11 339 1944.90 50.80 51.60 14.78 

 

The rate of inclusion of variable classes in the final population models, across all 

countries, are in Table 6. The five covariate classes with the highest rates of inclusion, 

were: Clim./Ecolog./Topo. (87%), Built Env. & Urban/Suburban Proxies (53%), LC Cult 

& Managed (57%), Urban/Suburban Extents (53%), and LU Protected (51%). Variable 

classes with the lowest rates of inclusion, excluding LC No Data, include: 

Rivers/Waterbodies/Waterways (37%), Facilities & Services (38%), and LC Nat. & 

Semi. Nat. Veg. (40%).  

 

Table 6.  Rate of inclusion for each variable class across all countries’ final models.  

 

Covariate Class Rate of Inclusion 

Clim./Ecolog./Topo. 87.22% 

Built Env. & Urban/Suburban Proxies  58.64% 

LC Cult. & Managed 57.89% 

Urban/Suburban Extents 53.85% 

LU Protected 51.38% 

Transportation Network 44.52% 

Places & POI 44.09% 

LU Non-Residential 43.90% 

LU Gen. Class. Var. 43.48% 

Pop. Place & Small Poly. Data 42.86% 

LC Nat. Bare Surfaces 42.11% 

Class of Pop. Place 41.61% 

LU Residential 41.18% 

LC Nat. & Semi. Nat. Veg. 40.63% 

Facilities & Services 38.79% 

Rivers/Waterbodies/Waterways 37.73% 

LC No Data 0.00% 
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Variable Class Importance: Per.Inc.MSE 

 Zero Inflated Importances 

 

Globally, when including variables excluded from the final model of a given 

country as an “observed” value of zero Per.Inc.MSE, there are only a few variable classes 

that have median Per.Inc.MSE values that are above zero. The covariate classes that have 

median Per.Inc.MSE values above zero are most frequently considered important to 

explaining variation in population density within a country’s model. This approximately 

follows the line-up of the variable classes with the highest rates of inclusion shown in 

Table 6. The global “zero-inflated” importances are shown as variable-class-specific 

boxplots in Figure 6. Figure 6 presents the distribution of observed variable class 

importances “penalized” by the frequency a variable of a given class when it was not 

found to be a completely uncorrelated predictor of population density, and was therefore 

not included in the given country’s final population model. The five variable classes for 

predicting population density that have non-zero medians, from highest to lowest, are 

Clim./Ecolog./Topo. (9.93%), Built Env. & Urban/Suburban Proxies (3.37%), LC Cult. 

& Managed Lands (2.37%), Urban/Suburban Extents (1.96%), and LU 

Protected/WDA/Nat. (0.30%).  
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Figure 6.  “Zero Inflated” values of the percent increase in the mean squared error (MSE) 

of each covariate class. The mean is represented by a white diamond, the 

median is represented by the black bar, and the whiskers represent the max 

and min value within 1.5 * Interquartile Range (IQR). 

 

I investigated if a given variable class was significantly different from the LC No 

Data class. That is to say, I tested if the covariate classes were significantly different from 

no data at all. The results from comparing all covariate classes, globally, against LC No 

Data are shown in Table 7 and I found that all covariates were significantly different 

from LC No Data.  
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Table 7. Results of a Kruskal-Wallis Posthoc Dunn Test with Holm’s correction 

comparing variable class importance globally, as measured by Per.Inc.MSE, to 

the variable class Land Cover - No Data. 

 

 

 

 

 

 

 

 

 

 

 

Non-zero Inflated Importances 

 

Plotting the Per.Inc.MSE of only variables included in a given country’s final 

model, for all countries sampled, the distribution by variable class appears as presented in 

Figure 7. The variability of the mean and median importances of most categories can be 

seen to increase, relative to the zero-inflated data in Figure 6. Figure 7 presents the 

distribution of the observed importances of the variable classes only for variables that 

were included in the final model of a given country’s population density. The top five 

categories for predicting population density by median Per.Inc.MSE becomes 

Urban/Suburban Extents (10.99%), Clim./Ecolog./Topo. (10.60%), Built Env. & 

Urban/Suburban Proxies (9.75%), Places & POI (9.50%), and Pop. Places Point & Small 

Poly Data (6.52%).  

Variable Class vs. LC No Data p-value 

Built Env. & Urban/Suburban 
Proxy 

< 0.0000 

Class of Pop. Place < 0.0000 
Clim./Ecolog./Topo. < 0.0000 
Facilities & Services < 0.0000 
LC Cult. & Managed < 0.0000 
LC Nat. & Semi. Nat. Veg. < 0.0000 
LC Nat. Bare Surfaces < 0.0000 
LU Gen. Class. Var.    0.0003 
LU Non-Residential    0.0130 
LU Protected < 0.0000 
LU Residential    0.0031 
Places & POI < 0.0000 
Pop. Place & Small Poly. Data < 0.0000 
Rivers/Waterbodies/Waterways < 0.0000 
Transportation Network < 0.0000 
Urban/Suburban Extents < 0.0000 
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Figure 7.  Percent increase in the mean squared error of each covariate class, based upon 

covariates included in a given country’s final model. The mean is represented 

by a white diamond, the median is represented by the black bar, and the 

whiskers represent the max and min value within 1.5 * IQR. 

 

When plotting the Per.Inc.MSE for each variable class by region, with the 

interquartile range (IQR) given by brackets, as done in Figure 8, it can first be noted that 

many of the variable class IQRs overlap between regions. Further inspection reveals 

patterns of difference between regions that can be quite distinct. For instance, Facilities & 

Services variables are observably more important in AFR and SEA as compared to CAC 

and SAM. Additionally, the amount of variance in the importance of any given variable 

class, that is the width of the IQR, seems to vary regionally, with CAC and SAM having 

the least variance across all classes and AFR and SEA having the widest variance across 
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all classes, with few exceptions. More interestingly, it can be seen that all regions tend to 

exhibit less between region variation in the importance of Built Env. & Urban/Suburban 

variables and for Urban/Suburban Extent variables compared to all other variable classes. 

 
Figure 8.  Regional line and dot plot of variable class percent increase in mean squared 

error (MSE) with the median marked by the dot and the IQR demarcated by 

brackets. 

 

 

The importance and variation of importance for each variable class within a 

region are illustrated in Figure 9. Facilities & Services variables in AFR have the least 

variation in importance and are relatively strong predictors of population density. Places 

& POI variables exhibit similar behavior in the SEA region.  
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Figure 9.  Boxplots of the percent increase in mean squared error (MSE) of each variable 

category by region. The mean is represented by a white diamond, the median 

is represented by the black bar, and the whiskers represent the max and min 

value within 1.5 * IQR. 

 

The Facilities & Services variable class in SEA has such low variation because there 

were relatively few variables of that class in the country population models, i.e. small 

sample size (n = 2). CAC has, relative to other regions, little variation in importance 

across all variable categories, however its strongest predictive variable classes, as judged 
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by the median importance, tend to have greater variation than its weaker predictive 

variable classes. Note that not all regions contain variables of all classes. 

Inter-regional testing for significant differences between countries of a given 

region and a given variable class were carried out using the Per.Inc.MSE. Significant 

differences were found between countries in all regions for the variable classes of 

Clim./Ecolog./Topo., Facilities & Services, and LC Nat. & Semi. Nat. Veg., however, 

these significant differences either disappeared when correcting for multiple outcomes or 

were not found when taking into account the total number of covariates in a country’s 

final model by repeating the tests with the weighted importance rank. In fact, no 

significant differences were detected between countries of a given region and a given 

variable class when the tests were performed with the weighted importance rank and 

therefore the results are not shown.  

Similarly, within the intra-regional testing using Per.Inc.MSE, some significant 

differences did not persist when the intra-regional tests were repeated using the weighted 

importance rank. Given that the weighted importance rank is a more valid measure of 

covariate class importance when comparing across countries, see Random Forest 

Considerations in the Discussion, the results of the intra-regional tests using Per.Inc.MSE 

are not shown. 

 

Importance of Urban Variable Classes 

 

 Globally, I compared the resolution of the urban variables, i.e. variables within 

the classes Urban/Suburban Extents and Built Env. & Urban/Suburban Proxies, against 
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their corresponding Per.Inc.MSE. The results of the global scale test are shown in Table 

8. I found no significant differences for AFR (χ2 = 4.718, d.f. = 4, p = 0.3174) and CAC 

(χ2 = 8.10, d.f. = 5, p = 0.1507) regions therefore no post-hoc tests were performed. After 

accounting for multiple comparisons, the significant difference found for SEA (χ2 = 9.88, 

d.f. = 4, p = 0.0424) was not found in pair-wise comparisons and therefore no table was 

constructed for SEA. The post-hoc test results for SAM are presented in Table 9. 

 

Table 8.  Results of global pair-wise post-hoc Dunn test with Holm’s correction for 

multiple outcomes of the percent increase in mean squared error (MSE) of 

urban covariate data compared to their resolution. 

 

 Corrected Z-value (p-value) 

Resolution 15 arc sec 30m 300m 500m Other 

30m 3.00 (0.032) ---    
300m 3.55 (0.005) 0.50 (1.00) ---   
500m 4.23 (0.000) 0.68 (1.00) 0.11 (1.00) ---  
Other 1.56 (1.00) 0.94 (1.00) 1.38 (1.00) 1.61 (1.00) --- 
Vector 4.82 (0.000) 1.26 (1.00) 0.70 (1.00) 0.68 (1.00) 2.10 (0.391) 
Global K-W Test Result: d.f. = 5, Chi-square = 29.37, p < 0.0000 

 

 

 

Table 9.  Results of pair-wise post-hoc Dunn test with Holm’s correction for multiple 

outcomes of the percent increase in mean squared error (MSE) of urban 

covariate data compared to their resolution, for sample countries in the SAM 

region. 

 

 Corrected Z-value (p-value) 

Resolution 15 arc sec 30m 500m 

30m 0.97 (0.459) ---  
500m 2.15 (0.124) 1.20 (0.459) --- 
Vector 3.64 (0.002) 2.76 (0.028) 1.65 (0.295) 
SAM K-W Test Results: d.f. = 3, Chi-square = 15.50, p = 0.0014 

 

Globally, all resolutions of urban variables sampled were significantly different 

from the 15 arc sec resolution (p < 0.05), with the exception of the “Other” resolution 

which largely consisted of unique and hybrid datasets composed of country specific or 
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hybrid built land cover datasets. No other significant differences between urban variable 

resolution and Per.Inc.MSE was observed at the global scale of analysis. For the SAM 

region, the only significant differences observed were between urban variables of 

“Vector” resolution and 15 arc second (p = 0.0016) and Vector resolution and 30m (p = 

0.0282). 

 

Variable Class Importance: Weighted Rank 

 

Variable class importance, globally, as measured by the within-country weighted 

rank of Per.Inc.MSE, is presented in Figure 10. A weighted rank of zero is the highest 

importance and takes into account the total number of covariates in a given country’s 

final model. It can be seen that, relative to the plots of Figure 6 and Figure 7, by 

accounting for the total number of covariates in a given country’s model the relative 

importance of the covariate classes shifts. The five most important variable classes, in 

descending order, for predicting population density by median weighted rank are: 

Urban/Suburban Extents (0.28), Built Env. & Urban/Suburban Proxies (0.33), 

Clim./Ecolog./Topo. (0.37), Pop. Place Point & Small Poly. Data (0.42), and 

Transportation Networks (0.44). 
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Figure 10.  Variable class weighted rank of importance based upon covariates included 

in a given country’s final model. The mean is represented by a white diamond, 

the median is represented by the black bar, and the whiskers represent the max 

and min value within 1.5 * IQR. 

 

 

Accounting for the total number of covariates in a given country’s final 

population model, by converting the importance scores to weighted importance ranks, 

normalized the variances of each variable category, as shown in Figure 11. When taking 

the total number of covariates into account, Urban/Suburban Extents and Built Env. & 

Urban Suburban Proxies rise in importance, as based upon the median weighted rank, 

across all regions. These two variable classes would appear to be more important and 

consistently important predictors, based upon the median weighted rank and the variance 
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of their weighted ranks, in the CAC and SAM regions as compared to the AFR and SEA 

regions. 

Figure 11.  Boxplots of the weighted importance rank of variable classes by region. The 

mean is represented by a white diamond, the median is represented by the 

black bar, and the whiskers represent the max and min value within 1.5 * 

IQR. 

 

Investigating for significant differences between covariate classes globally and 

intra-regionally, I discovered that significant differences existed globally and within all 

regions except AFR. Selected comparisons of the top five important covariate classes are 
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presented in Tables 10, 11, and 12, corresponding to the global test, and the CAC and 

SAM intra-regional tests. The significant differences found in the Kruskal-Wallis test for 

SEA (χ2 = 24.42, d.f. = 12, p = 0.0178), were not found after accounting for multiple 

comparisons in the post-hoc tests and as such no pair-wise table for SEA is presented. 

None of the top five covariate classes were significantly different from each other. 

Additionally, globally as well as for every region, Urban/Suburban Extents and Built 

Env. & Urban/Suburban Proxies were not significantly different from each other. 

 

Table 10.  Selected results of pair-wise post-hoc Dunn test with Holm’s correction for 

multiple outcomes of global weighted importance rank of covariate classes. 

 

 Corrected Z-value (p-values) 

Variable Class 
Built Env. & 

Urban/Suburb 
Proxies 

Clim./ 
Ecolog./ 

Topo. 

Pop. 
Place & 
Small 
Poly 
Data 

Transportation 
Network 

Urban/Suburb 
Extents 

Class of Pop. Place 
5.38 (0.00) 

5.15 
(0.00) 

1.86 
(1.00) 

2.82 (0.43) 3.76 (0.01) 

Clim./Ecolog. 
/Topo. 

0.47 (1.00) --- 
1.80 

(1.00) 
2.31 (1.00) 0.04 (1.00) 

Facilities & Services 
2.01 (1.00) 

1.69 
(1.00) 

0.31 
(1.00) 

0.18 (1.00) 1.29 (1.00) 

LC Cult. & Managed 
3.43 (0.06) 

3.16 
(0.15) 

0.95 
(1.00) 

1.39 (1.00) 2.53 (0.97) 

LC Nat. & Semi. Nat. Veg. 
5.48 (0.00) 

5.27 
(0.00) 

1.55 
(1.00) 

2.56 (0.90) 3.57 (0.03) 

LC Nat. Bare Surfaces 
3.66 (0.02) 

3.42 
(0.06) 

1.35 
(1.00) 

1.82 (1.00) 2.84 (0.41) 

LU Gen. Class. Var. 
3.28 (0.10) 

3.05 
(0.21) 

1.27 
(1.00) 

1.64 (1.00) 2.62 (0.78) 

LU Non-Residential 
1.94 (1.00) 

1.73 
(1.00) 

0.46 
(1.00) 

0.63 (1.00) 1.55 (1.00) 

LU Protected 
6.05 (0.00) 

5.86 
(0.00) 

2.94 
(0.30) 

3.94 (0.00) 4.66 (0.00) 

LU Residential 
3.61 (0.03) 

3.42 
(0.06) 

1.85 
(1.00) 

2.22 (1.00) 3.05 (0.21) 

Places & POI 
2.25 (1.00) 

1.95 
(1.00) 

0.02 
(1.00) 

0.16 (1.00) 1.53 (1.00) 

Pop. Place & Small Poly. Data 
2.08 (1.00) 

1.80 
(1.00) 

--- 0.18 (1.00) 1.46 (1.00) 

Rivers/Waterbodies/Waterways 
5.78 (0.00) 

5.57 
(0.00) 

2.25 
(1.00) 

3.29 (0.09) 4.13 (0.00) 

Transportation Network 
2.65 (0.71) 

2.31 
(1.00) 

0.18 
(1.00) 

--- 1.62 (1.00) 

Urban/Suburban Extents 
0.38 (1.00) 

0.04 
(1.00) 

1.46 
(1.00) 

1.62 (1.00) --- 

Global K-W Results:  d.f. = 15, Chi-square = 106.88, p < 0.0000 
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Table 11. Selected results of pair-wise post-hoc Dunn test with Holm’s correction for 

multiple outcomes of the weighted importance rank of covariate classes for 

countries located in Central America and the Caribbean (CAC). 

 

 Corrected Z-values (p-values) 

Variable Class 
Built Env. & 

Urban/Suburb 
Proxies 

Clim./ 
Ecolog./ 

Topo. 

Pop. 
Place & 
Small 
Poly 
Data 

Transportation 
Network 

Urban/Suburb 
Extents 

Class of Pop. Place 
4.24 (0.00) 

5.16 
(1.00) 

0.63 
(1.00) 

2.17 (1.00) 3.03 (0.24) 

Clim./Ecolog. 
/Topo. 

3.72 (0.02) --- 
1.10 

(1.00) 
1.58 (1.00) 2.61 (0.83) 

Facilities & Services 
2.38 (1.00) 

0.80 
(1.00) 

1.62 
(1.00) 

0.51 (1.00) 1.76 (1.00) 

LC Cult. & Managed 
4.13 (0.00) 

1.55 
(1.00) 

0.39 
(1.00) 

2.64 (0.78) 3.37 (0.08) 

LC Nat. & Semi. Nat. Veg. 
5.30 (0.00) 

1.54 
(1.00) 

0.04 
(1.00) 

3.19 (0.14) 3.72 (0.02) 

LC Nat. Bare Surfaces 
3.02 (0.24) 

0.57 
(1.00) 

0.35 
(1.00) 

1.59 (1.00) 2.48 (1.00) 

LU Gen. Class. Var. 
1.99 (1.00) 

0.55 
(1.00) 

1.32 
(1.00) 

0.49 (1.00) 1.59 (1.00) 

LU Non-Residential 
0.61 (1.00) 

1.44 
(1.00) 

2.01 
(1.00) 

0.61 (1.00) 0.46 (1.00) 

LU Protected 
4.13 (0.00) 

1.48 
(1.00) 

0.30 
(1.00) 

2.60 (0.85) 3.34 (0.08) 

LU Residential 
1.96 (1.00) 

0.35 
(1.00) 

0.26 
(1.00) 

1.01 (1.00) 1.75 (1.00) 

Places & POI 
0.60 (1.00) 

2.05 
(1.00) 

2.57 
(0.92) 

0.97 (1.00) 0.40 (1.00) 

Pop. Place & Small Poly. Data 
3.76 (0.01) 

1.10 
(1.00) 

--- 2.22 (1.00) 3.03 (0.24) 

Rivers/Waterbodies/Waterways 
6.55 (0.00) 

3.36 
(0.08) 

1.50 
(1.00) 

4.77 (0.00) 4.96 (0.00) 

Transportation Network 
2.24 (1.00) 

1.58 
(1.00) 

2.22 
(1.00) 

--- 1.51 (1.00) 

Urban/Suburban Extents 
0.12 (1.00) 

2.61 
(0.83) 

3.03 
(0.24) 

1.51 (1.00) --- 

CAC K-W Test Results:  d.f. = 15, Chi-square = 81.28, p < 0.0000 
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Table 12. Selected results of pair-wise post-hoc Dunn test with Holm’s correction for 

multiple outcomes of the weighted importance rank of covariate classes for 

countries located in South America (SAM). 

 

 Corrected Z-value (p-values) 

Variable Class 
Built Env. & 

Urban/Suburb 
Proxies 

Clim./ 
Ecolog./ 

Topo. 

Pop. 
Place & 
Small 
Poly 
Data 

Transportation 
Network 

Urban/Suburb 
Extents 

Class of Pop. Place 4.84 (0.00) 
5.16 

(0.00) 
3.11 

(0.19) 
1.91 (1.00) 3.11 (0.19) 

Clim./Ecolog./Topo. 0.00 (1.00) --- 
0.07 

(1.00) 
3.07 (0.21) 0.23 (1.00) 

Facilities & Services 3.03 (0.24) 
3.17 

(0.15) 
2.15 

(1.00) 
0.40 (1.00) 2.04 (1.00) 

LC Cult. & Managed 1.83 (1.00) 
1.87 

(1.00) 
1.50 

(1.00) 
0.13 (1.00) 1.34 (1.00) 

LC Nat. & Semi. Nat. Veg. 3.52 (0.04) 
3.73 

(0.02) 
2.35 

(1.00) 
0.59 (1.00) 2.26 (1.00) 

LC Nat. Bare Surfaces 2.16 (1.00) 
2.20 

(1.00) 
1.80 

(1.00) 
0.33 (1.00) 1.66 (1.00) 

LU Gen. Class. Var. 3.26 (0.11) 
3.34 

(0.09) 
2.64 

(0.78) 
1.36 (1.00) 2.55 (1.00) 

LU Non-Residential 3.27 (0.00) 
3.34 

(0.09) 
2.70 

(0.65) 
1.49 (1.00) 2.61 (0.82) 

LU Protected 4.18 (1.00) 
4.28 

(0.00) 
3.36 

(0.08) 
2.32 (1.00) 3.32 (0.09) 

LU Residential 2.30 (0.28) 
2.34 

(1.00) 
2.02 

(1.00) 
0.79 (1.00) 1.90 (1.00) 

Places & POI 
2.98 (1.00) 3.07 

(0.21) 
2.31 

(1.00) 
0.83 (1.00) 2.21 (1.00) 

Pop. Place & Small Poly. Data 
0.07 (1.00) 0.07 

(1.00) 
--- 1.98 (1.00) 0.24 (1.00) 

Rivers/Waterbodies/Waterways 4.02 (0.00) 
4.17 

(0.00) 
2.96 

(0.29) 
4.77 (1.00) 4.96 (0.34) 

Transportation Network 2.90 (0.35) 
3.07 

(0.21) 
1.98 

(1.00) 
--- 1.51 (1.00) 

Urban/Suburban Extents 0.23 (1.00) 
0.23 

(1.00) 
0.24 

(1.00) 
1.51 (1.00) --- 

SAM K-W Test Results:  d.f. = 15, Chi-square = 69.10, p < 0.0000 
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DISCUSSION 

Variable Class Importance 

 

Given the more valid representation of variable class importance by the weighted 

importance rank, the discussion of the results from testing first and third hypotheses, 

from Table 2, will refer to the tests performed with the weighted importance ranks. 

However, some of the discussion does make reference to the graphical distributions of the 

Per.Inc.MSE values for the variable classes. These distributions can provide some insight 

into the underlying data used and how the covariates are interacting within the context of 

the random forest framework. 

As measured by both Per.Inc.MSE and the weighted importance rank, 

Urban/Suburban Extents, Built Env. & Urban/Suburban Proxies, and 

Clim./Ecolog./Topo. were consistently seen as the most important predictive variable 

classes for population density. This result was observed at both the global and intra-

regional scales of analysis. Additionally, these three variable classes constituted three of 

the five variable classes with the highest representation in final population models (Table 

6). Table 6 and Figure 10 show that while Urban/Suburban Extents are highly important, 

if not the most important when looking at the median weighted rank of Per.Inc.MSE, they 

are less likely to be included (0.5385) in a final population model than Built Env. & 

Urban/Suburban Proxies (0.5864) which are the second most important by weighted rank 

of Per.Inc.MSE. More generally, these results indicate that while some variable classes 
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are more likely to be included in a model, they are not necessarily highly important, or 

strong, predictors of population density in all cases. The opposite is true as well. For 

instance, Facilities & Services class variables were included in only 38.79 percent of the 

sampled countries’ final models, but in some specific instances they can be highly 

important predictors of population density. A specific instance is Kenya, where in the 

final model the distance-to-schools covariate had a Per.Inc.MSE of 34.90 percent and a 

weighted rank of Per.Inc.MSE of 0.091, ultimately being the second most important 

predictor of population density for the country. Some of the variance in variable class 

importances can be explained by the data completeness and quality of a given data set, 

with the Kenyan school data being an exceptionally complete and accurate dataset. Such 

data quality characteristics likely explains, in part, the variations seen in regional variable 

class importances (Figures 8, 9, and 11). 

My finding that Built Env. & Urban/Suburban Proxies and Urban/Suburban 

Extents variable classes were the most important in predicting population density aligns 

with expectations, especially given that it is estimated that 54 percent of the world’s 

population live in urban areas (U.N. 2014b). Additionally, there are numerous examples 

in the literature that population or population density and population growth covariates 

were important in predicting urban area extent (Foresman, Pickett, & Zipperer 1997; 

López et al. 2001; Chabaeva, Civco, & Prisloe 2004; Herold, Couclelis, & Clarke 2005; 

Jat, Garg, Khare 2008). This study shows that the relationship, while its exact structure 

remains unknown, goes in the other direction as well with urban area extent being 

important in predicting population density. Additionally, transportation and elevation 

related covariates were found to be of predictive importance for urban land cover, similar 
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to how I found that Transportation Network and Clim./Ecolog./Topo. variable classes 

were consistently important to predicting population density (Huang, Xie, & Tay 2010; 

Thapa & Murayama 2011; Linard, Tatem, & Gilbert 2013). 

An unexpected finding was how important the Clim./Ecolog./Topo. variable 

category was in predicting population density, second only to Urban/Suburban Extents 

and Built Env. & Urban/Suburban Proxies categories. While the category was not broken 

up for subsequent testing, from examining the covariate importance plots of individual 

countries, I believe that the majority of this importance is driven by elevation covariates. 

This also includes elevation derived covariates such as slope. 

Additionally, I also showed that the regional definitions used did not display any 

inter-regional significant differences in the importance of variable classes, which would 

imply that the definitions were optimal for intra-regional hypothesis testing. It would 

appear that, based upon regional breakdowns of variable class importance in population 

density prediction, the AFR and SEA regions and the CAC and SAM regions display 

similar variable class importances as related to population density (Figure 9). 

 

Importance of Urban Variable Classes 

 

There were few significant differences found between the differing resolutions of 

the urban variable classes with the primary difference at the global level being whether or 

not the data was or was not below 15 arc sec in resolution and at the regional level the 

only significant differences existed in the SAM region between vector resolution data and 

15 arc sec and 30m data. These differences may be a result of the original resolution of 
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the primary datasets for each of those classes: 500m MODIS derived urban extents for 

the Urban/Suburban Extents class and 15 arc sec (~ 463m at the equator) Suomi-VIIRS 

lights-at-night data for the Built Env. & Urban/Suburban Proxies class (Schneider, Friedl, 

& Potere 2010; Miller et al. 2012). Or it could be a result of the complex non-linear 

relationship of these two disproportionately represented datasets, which capture some 

portion of the variability of population density other variable classes do not.  

Alternatively, the observed differences may be a result of the operational 

definition of “urban” utilized in the construction of any one of the datasets in the 

Urban/Suburban Extents class. Future work might contribute to this by disentangling the 

derivation of built- and urban-area definitions as it relates to where people live. Further 

bias could have been introduced by the very fact that some datasets, such as Suomi-

VIIRS lights-at-night data, the 500m MODIS derived urban extents data, and the built 

land cover derived classifications, are included in every model. Also, the fact that prior to 

being input into the RF model all covariates are aggregated to the administrative unit 

resolution may indicate that any effect the original data resolution may have had on the 

importance is being obfuscated by the resolution of the census data (Stevens et al. 2015). 

The current urban datasets utilized lack internal heterogeneity within continuous 

urban areas which have varied land uses, building structures, and densities. The limited 

dimensionality of these variable classes will begin to be remedied with the coming 

release of high-resolution synthetic aperture radar data from sensors such as those aboard 

the European Space Agency’s Sentinel-1 satellite mission, building footprint data 

identified through the forthcoming Global Urban Footprint data, and growing land-use 

data repositories (e.g. Open Street Map, national, regional, local government data, etc.) 
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that could more appropriately capture the high internal heterogeneity of urban and 

suburban areas which are composed of varying building heights, varying land uses, and 

varying patch-like patterns of buildings (Esch et al. 2013). However, even if a 100 

percent accurate global building footprint dataset were available tomorrow, the 

incorporation of accurate ancillary datasets would still need to be included as all 

buildings are not used for habitation and not all habituated buildings have similar 

population densities. 

Ultimately, I believe that the results of the testing of the potential effect of data 

resolution on the importance of urban covariates are inconclusive due to the large number 

of factors that cannot be accounted for. 

 

Issues of Scale 

 

It is important to note that all of these findings are at a specific spatial resolution 

and modeling scale that may or may not maintain the same forms, structures and 

relationships at a finer scale as is typically the case with the Modifiable Areal Unit 

Problem (MAUP) (Openshaw 1984). This may especially hold true for the datasets that 

currently comprise the Built Env. & Urban/Suburban Proxies and Urban/Suburban Extent 

variable classes, which are either binary (e.g. urban or non-urban) or give an indication of 

urban “intensity” (e.g. more intense light measured at night) (Schneider, Friedl, & Potere 

2010; Miller et al 2012). However, all covariates are affected to some degree because 

they are all resampled to 100m prior to being input into the RF model (Stevens et al. 

2015). 
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An additional consideration is the fact that the RF model is determining the 

relationships between the covariates and population density at the administrative unit 

level, but is predicting at the smaller pixel (100m) level (Stevens et al. 2015). The 

relationships at the administrative level may not persist at the finer 100m scale. However, 

no information is currently available on that other than specific countries for which 

validation data, of a finer administrative unit scale than which the model was created on, 

was procured and used to validate the accuracy of the population density predictions.  

Referring back to the variance of importances within variable classes and the 

similar patterns of importance and importance variance between AFR and SEA as well as 

between SAM and CAC, shown in Figure 8, a partial explanation may lie within the 

typical number of administrative units used in the regions. Looking at Table 5, it can be 

seen that AFR and SEA have mean number of administrative units in a country modeled 

within those regions as 4680.88 and 13746.14 where as in CAC and SAM the mean 

number of administrative units in a country modeled within those regions as 346.50 and 

1020.11. The width of the variances of the importances of the variable categories 

visually, positively correlates with the increasing average number of administrative units 

used in modeling the countries of those regions.  

This makes sense due to the scale effect of the MAUP, which generally states that 

as you decrease the number of areal units there is a decrease in the variability of the 

observations corresponding to the areal units (Openshaw 1984). The potential of the ASR 

(Table 5) in having some effect on this variability is less clear, but likely has an effect 

relative to the concept of the MAUP zonation effect (Openshaw 1984). So in addition to 

accounting for data completeness and quality when trying to account for the variability of 
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covariate importances, the number of administrative units being used in the modeling 

process and the ASR of those units should be accounted for in some manner. Further 

explicit investigation into the effect the number of admin units used in modeling and the 

effect of the ASR should be conducted. 

 

Random Forest Considerations 

 

There are inferential limits to using the RF model to identify/approximate the 

structure and nature of variable class relationships to population density. As Breiman 

(2001, p20) stated, “A forest of trees is impenetrable as far as simple interpretations of its 

mechanism go.” Unlike multiple linear regressions or a singular classification and 

regression tree (CART) where coefficients and confidence intervals can be quantified or 

decision paths can be traced from input observation to CART predictions, the numerous 

(typically 500 or more) trees in a RF preclude the tracing of the regression of input to 

prediction (Breiman 2001). Furthermore, the strength of a RF to capture highly non-linear 

relationships of covariates and their complex interactions, which allows for more accurate 

predictions, does not lend itself to simple interpretations of the underlying mechanisms of 

the modeled phenomenon (Breiman 2001). Variable importance within a RF is similarly 

complex due to those same non-linear relationships and intricate interactions amongst 

covariates (Liaw and Wiener 2002). This results in the effect of a covariate’s importance 

in a RF model being highly conditional on all the other covariates present, with similar 

results not being guaranteed in other models, even for the same country.  
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The strengths of a RF in a population modeling context far outweigh its 

limitations if the priority is to accurately predict population density rather than ascertain 

in-depth understanding of the mechanisms between population density and the covariates 

used to predict it. Given the numerous potential variables used to model population, with 

many containing only a small amount of additional information, a RF provides improved 

accuracy where a single tree classifier would only provide accuracy slightly better than 

random (Breiman 2001). Through studies like this, where numerous random forests 

modeling population density, better ways of identifying and addressing inherent bias in 

predictions can be attained. In addition to being robust to noise and small datasets, RFs 

do not over fit the data due to the Law of Large Numbers (Breiman 2001). This is 

characteristic is particularly useful for countries where only coarse census data is 

available, i.e. relatively few administrative units with a large ASR. The strengths, and 

limits, of using an RF model in a population modeling context being stated, I can still 

come to global and regional conclusions regarding the general patterns of variable class 

importance for modeling population density at 100m resolution for countries even if I 

cannot come to conclusions pertaining to the underlying mechanisms and interactions 

driving these importances. 

 

 

 

 



50 

 

CONCLUSIONS 

 

 

This study has quantified what has often been taken as common knowledge: that 

urban areas are the best predictors of where to find high population densities. I have 

found that Built Env. & Urban/Suburban Proxies, Urban/Suburban Extents, and 

Clim./Ecolog./Topo. variable classes are the most important to predicting population 

density, both globally and regionally. There are some slight regional variations in the 

patterns of variable class importance amongst the variable classes found to be of 

middling or low predictive importance, but overall there is little significant interregional 

difference in these patterns. However, the exact mechanism and structure of the 

underlying relationship(s) between these variable classes and population density are not 

discernable within the RF method. Additionally, these patterns of variable class 

importance are for a specific spatial resolution and modeling scale which could or could 

not maintain their form and relationship at a finer scale. 

Next steps in further investigating these variables in relation to population density 

could involve utilizing a different modeling framework which would allow for more 

inferential power as to the structure and nature of the relationships between these 

variables and population density. Additionally, focusing study on specific variable 

classes, such as the urban/suburban related variable classes, by sourcing novel and 

forthcoming datasets that help illuminate the heterogeneity of these areas, both internally 
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and across different countries and regions, could increase the predictive ability of a 

population model regardless of the framework.  

Based upon the results of this study, priorities for improving the accuracy of 

population maps would be sourcing high resolution settlement datasets, encouraging 

development and release of more detailed census data, and investigate the availability or 

development of important predictor covariate datasets, on a country-by-country basis, 

that currently are not performing as well as the regional average. Overall, a more in-depth 

characterization of population density and predictive covariates are needed. Another 

investigation that is warranted is to determine if and what covariates of low predictive 

importance can be consistently dropped from current modeling in an effort to increase the 

end-user utility of these datasets. 
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