
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2011

Computationally generated music using
reinforcement learning.
Kristopher W. Reese
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted
for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository.
This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

Recommended Citation
Reese, Kristopher W., "Computationally generated music using reinforcement learning." (2011). Electronic Theses and Dissertations.
Paper 1195.
https://doi.org/10.18297/etd/1195

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1195
mailto:thinkir@louisville.edu

- -- ----- ------------------

COMPUTATIONALLY GENERATED MUSIC USING
REINFORCEMENT LEARNING

By

Kristopher W. Reese
B.S., Hood College, 2009
B.A., Hood College, 2009

A Thesis
Submitted to the Faculty of the

Graduate School of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

Department of Physics
University of Louisville

Louisville, Kentucky

May 2011

Copyright © 2011 Kristopher W. Reese

All Rights Reserved

--

COMPUTATIONALLY GENERATED MUSIC USING
REINFORCEMENT LEARNING

By

Kristopher Wayne Reese
B.S., Hood College, 2009
B.A., Hood College, 2009

A Thesis Approved on

February 21,2011

By the following Thesis Committee:

Adel Elma~esis Director

~ - - - -.. --Ro-m-an-y~at6'ii'7"-~r--·-y----

Charles Hardin

ii

ACKNOWLEDGEMENTS

I would like to first and foremost acknowledge, and thank, Dmitri Tymoczko

of Princeton University for allowing me to read the manuscript of his new book The

Geometry of Music before its release date in December of 2010. The concepts laid

out in his book make up the basis of this research thesis. Without his book, I would

have had a much more difficult time learning the concepts and likely building

unnecessary data structure.

Next, I would like to thank my advisor, Adel Elmaghraby, for his support

with this research project. It was his idea to do something a bit more artistic in the

computer field; I simply took his idea and molded it into what it is now. I would

also like to thank Roman Yampolskiy for his continued support in the development

of these ideas, and helping to develop the project into what it is now.

Finally, I must acknowledge the musicians who were gracious to spare me

their time in order to help me with various aspects of the thesis. These musicians

include: David Conway, Taylor DiClemente, Diana McLaughlin, and Jennifer

Huntoon. I cannot thank them enough for the time that they gave me to help me

with my thesis.

iii

ABSTRACT

COMPUTATIONALLY GENERATED MUSIC USING REINFORCEMENT

LEARNING

Kristopher W. Reese

February 21, 2011

Computers and music have shared a rich history since the 1950s. Many

languages and standards have been built around music. Yet even before the advent

of the computer, music shared algorithmic ideas with mathematics which brought

about many new styles over the centuries. Today's computers provide even more

power, and with Intelligence algorithms, are able to create complex systems for

generating art. Music is no exception, but very little has been done in generating

music using such algorithms.

Reinforcement Learning provides a means of learning good motions of chord

progressions in music theory. Dmitri Tymoczko's Latent model for the underlying

chord structure creates a mesh orbifoidal network capturing voice leading and

surrounding chords. This presentation discusses experimentation in the latent

model with a combination of the ideas taught in traditional Tonal Harmonic theory.

Unlike David Cope's work in mimicking composer styles using machine learning,

this approach attempts to tackle the problem head on through experimentation

with Tymoczko's latent model for chords.

IV

Reinforcement Learning provides a means for learning this network and

reward states in order to reach a terminal goal (taught in music theory as cadencing

chords). Using Reinforcement Learning we are then able to use the reinforced model

to generate chord progressions which have a tonal center (a center of gravity pulling

the chords towards a certain pitch class). Further, a discussion of the implemented

algorithm is also given.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT
LIST OF TABLES
LIST OF FIGURES
LIST OF ALGORITHMS

I INTRODUCTION AND MOTIVATION

A Problem Statement .

B Defining Tonality .

C A Style to Imitate

D Synopsis

II A HISTORY OF ALGORITHMIC MUSIC

A The Algorithm

B Formal Processes in Music .

1 Music, Mathematics, and the Ancient Greeks.

2 Chance Music from the Classical Era to the Modern Era

C Deterministic and Stochastic Processes

1

2

Serialism

Stochastic Composition .

D Music and Computers .

1

2

Generative Music

Programming Music .

vi

Page

111

iv
ix
x

xiii

1

1

2

3

4

6

7

9

9

11

13

13

17

19

19

20

E Decisions for this Thesis 22

III A SCIENTIFIC APPROACH TO MUSIC THEORY 24

A One-dimensional Space . 25

B Two-dimensional Space.

C N-dimensional Space ..

D Applications in Stochastic processes.

IV CONCEPTS IN MACHINE LEARNING

A Markov Decision Processes .

B Q Learning

26

30

32

33

33

40

V AN ALGORITHMIC TONAL MUSIC GENERATOR 46

A The M useG EN engine 46

B

C

D

E

F

Generating Musical Rhythms

A database of scales

Tonal Harmonies . .

1 Minimizing Space Complexity

2 Altering the Markov Decision Process

3 Q Learning.

4 U sing the Q Matrix

5 Solving Voice Leading.

Programming MIDI tracks .

1 Stylistic Preprocessor

2 MIDI Processor .

The future of MuseGEN

48

52

55

56

59

62

66

68

72

72

74

78

VI PERSONALIZING THE MUSIC GENERATION SYSTEM 81

Vll

A The .I\IGX file type

B Biometric Personali;;::ation

C 1\ lassi vc Online Personaliz('ttion

VII CONCL USION

A Outcomes ..

B Future Work

REFERENCES

A Musical Foundations for Non-Musicians

A The Physics of Pitch . . .

B Reading Pitches in Music

C Altering Pitch Representations in Music

Altering Pit.ches Directly

2 Key Signatures

D Time Value of Notes

E Time Signatures

F Filml Words . . .

B List of Scales used in the Program

C MGX File Sample

CURRICULUM VITAE

V III

81

85

86

88

89

91

94

99

99

101

104

105

107

111

114

117

119

123

127

1

2

3

LIST OF TABLES

Primary, Inversion and Retrogrades of the theme found in Figure 2 16

Matrix of the possible forms of the prime theme found in figure 2. 17

The Q matrix built using the algorithm in Listing IV.2 on the world

shown in Figure 12 using 45 episodes 44

4 The Voice Leading Matrix for generating smooth voice leadings. This is

generating by calculating the number of notes between one note given

the direction that is desired. .. 69

5 The Engraving of note lengths and the name of the symbol; table

displays Whole note to thirty-second note. 112

6 List of Scales included in the MuseGEN package. 119

ix

LIST OF FIGURES

1 A rendering of a C-major chord which is built on the pitch classes,

from lowest to highest note, of C - E - G 3

2 The 12-tone serial row series used by Schoenberg in Suite, Op. 25. 14

3 A geometric representation of Serial Inversion, The line segment be

tween E and A~ is the inversion line while the other lines represent the

inversion between G and C~. 15

4 The Circular Pitch class space described by Dmitri Tymoczko. 25

5 A simple intervalic passage. 26

6 The Two dimensional orbifold described by Dmitri Tymoczko. 27

7 Movements possible in the two dimensional interval space. .. 28

8 A simple two voice passage containing various intervalic jumps. 29

9 Movements representation on the two dimensional space and represent

ing the movements of figure 8. The Blue lines are the first to second

interval; Green is second to third; Red is third to fourth; Black is fourth

to fifth. 29

10 The Three dimensional orbifold described by Dmitri Tymoczko. 30

11 A visual representation of the shape of the four dimensional orbifold

described by Dmitri Tymoczko. .. 31

x

12 (a) A 4 x 4 world that would be presented to an agent to traverse

through the safest possible route in order to maximize the final Reward

of the system. The grey area represents an unpassable obstacle in the

world. (b) The transition model of the world. Traveling forward results

in an 80% likelihood of moving to the next state and 10% likelihood

of moving to the right or left of the forward direction. This does not

represent any particular direction in the world, but rather forward

could be a move to the left of their current square and simply put

means the probability of travelling to the desired state. 36

13 The utilities of every state in the world which was presented in figure

12. This algorithm was run using a '"Y = 1 and R(s) = -0.04 for

nonterminal states in the world. .. 38

14 The resulting policy of the world shown in figure 12 and using the

Utilities calculated in figure 13. The arrows represent the way in which

the agent in the world should travel for an optimal solution. 39

15 The resulting policy of the world shown in figure 12 and using the

Q Matrix shown in Table 3. We see only minor changes in the over

all policy between the Q Learning algorithm and the Value Iteration

algorithm. .. 45

16 A flowchart of the MuseGEN engine during its iteration at the writing

of this document. .. 47

17 A plot showing the space requirements for the Tymoczko permutation

world and the combination with repetition world. Plot generated in

MATLAB. .. 58

xi

18 A passage written by composer Jennifer Huntoon using a four voice

block chord style. The chord progression shows tonal harmonic pro

gressions throughout the piece with some minor chromaticism as well.

Music copyright of Jennifer Huntoon, used with permission from com-

poser. 90

19 A passage generated by the MuseGEN engine. The passage uses 4 part

voice block chords. It shows a tonal center around the pitch class c. 91

20 Rendering of a completely empty staff 101

21 An engraving of the (a) Treble and (b) Bass clefs on the staff. 102

22 A C major scale which shows all pitch classes within one octave. 102

23 A visualization of a single octave on a keyboard from C to B. (Im-

age Courtesy of "Jonathan Diet" and Public-Domain-Photos.com, Li-

censed under the Creative Commons) 104

24 A C major scale which shows all pitch classes within one octave. 105

25 A CD major scale which shows all pitch classes within one octave. 106

26 The opening passage of Beethovens "Fur Elise" written in 5/8 time to

show the effects of accidentals on a measure. 106

27 The opening passage of Beethovens "Fur Elise" written in 3/8 time

and ignoring the pickup measure originally written by Beethoven to

show the effects of accidentals across two measures. 107

28 A C major scale which shows all pitch classes within one octave. 108

29 A CD major scale which shows all pitch classes within one octave. 109

30 The Circle of Fifths which is used to show how closely related scales

are and their respective key signatures. (Image Courtesy of user "Just

Plain Bill" on Wikimedia Commons, Licensed under the Creative Com-

mons) 110

Xll

31 Moving between key signatures. This example shows 2 sharps (D ma

jor) moving to 3 fiats (Eb major) and then adding 2 more fiats (Db

major) and then moving back to 3 fiats (Eb major) 111

32 The Musical Notation for adding length to notes, this example shows

a dotted half note. 114

33 An engraving of the (a) Common Time and (b) Cut Time symbols

used in place of a fractional time signature. These are equivalent to ~

and ~ fractional time signatures. .. 116

xiii

LIST OF ALGORITHMS

IV.1 The MDP Value iteration Algorithm which uses the Bellman Equation

to determine the Utilities of each state

IV.2 The Q Learning iteration algorithm for building the Q Matrix

IV.3 An algorithm to use the generated Q matrix

V.1 The Euclidean Algorithm as written using recursion

V.2 The Bjorklund Algorithm

V.3 XML Schema for created the Musical Scale Databse .

V.4 The modified Q Reinforcement Learning Algorithm .

V.5 The rewards system used by the Q Learning Algorithm

V.6 A modified algorithm to use the generated Q matrix using probabilitic

37

42

43

49

52

54

64

66

offsets . 68

V.7 The Greedy Algorithm used to generate smoother voice leadings 70

V.8 The Optimal Algorithm used to generate smoother voice leadings 71

V.9 The MIDI Processor class used in Java to convert the multidimen-

sional array created in the Stylistic preprocessor to a MIDI sequence

for playback.. 76

VI.1 Start of the .MGX file type 82

VI.2 The XML schema for the .MGX file type. . 84

C.1 A sample .MGX file provided in the MuseGEN engine. 123

XIV

With the aid of electronic computers the composer becomes a sort of pilot: he

presses the buttons, introduces coordinates, and supervises the controls of a cosmic

vessel sailing in the space of sound, across sonic constellations and galaxies that he

could formerly glimpse only as a distant dream.

- Iannis Xenakis, 1965

xv

CHAPTER I

INTRODUCTION AND MOTIVATION

A Problem Statement

Since its inception, the computer has provided scientists in varying fields a tool

for doing complex computations. However, today's computers have become a widely

used instrument for media art, as well as in algorithmic composition. This notion of

the computer being a tool for artistic expression dates as far back as Charles

Babbage's concept for the Analytical Engine. It was Ada Lovelace that noted in her

translation of Luigi Menabrea's Sketch of the Analytical Engine [1]:

Supposing, for instance, that the fundamental relations of pitched sounds
in the science of harmony and of musical composition were susceptible of
such expression and adaptations, the engine might compose elaborate
and scientific pieces of music of any degree of complexity or extent.

The use of the computer in current algorithmic composition of music dates

back to the late 1950s with Hiller's Illiac Suite composed by the University of

Illinois' Illiac computer in 1957. Since then, various systems of music theory have

been implemented into algorithmic compositions, including serial, stochastic, and

chance music - each of these are described in chapter two. However, very little has

been done in algorithmic composition to create music that we can define as "tonal".

With the power of computing today and with algorithmic paradigms, such as

dynamic programming or heuristic algorithms, it seems surprising that little work

1

-~ --.---------~~--~

has been done in the areas of algorithmic tonal compositions. For this reason, we

will step back from current models of algorithmic composition and propose varying

techniques that are based on the relatively new field of geometric music theory and

provide algorithms that follow modern algorithmic paradigms to create an

algorithmic approach to generating tonal compositions.

In addition to the above mentioned, we hope to provide a new approach to

algorithmic composition that would be beneficial in areas of psychoacoustics,

neurosciences, and even in game development. Unlike many previous algorithmic

music programs, which use a sort of dice-game to musical composition, or

approaches composition from more atonal styles, our hope is that this new

technique will provide computer music with algorithmic tonal music generation.

B Defining Tonality

In the previous section, the use of the word tonal is used very frequently as a

problem that this thesis attempts to solve, but what is tonality? The word "tonal"

is an oft-contested word. Some music theorists and musicologists use the word very

restrictively, defining only music of the 18th and 19th centuries as "tonal". This

restricts all music of the 20th century as "post-tonal", including the harmonies of

jazz music with the sonic sounds of composers like Xenakis. It is hard to believe that

both of these very different genres of music could be lumped into a single category.

Other theorists use the word more expansively defining certain elements as

essential for "tonality". In this use of the word, we can look to the Koftka et al.

definition of tonal harmony. Kostka et al. [2] define tonal harmony as "refer[ring] to

music with a tonal center, based on major and/or minor scales, and using tertian

chords that are related to one another and to the tonal center in various ways."

2

In this definition of tonal music, we make use of a specific tonal center, a

pitch-class that provides a heavy center of gravity in the music. From this tonal

center, we can begin building chords from various pitch classes in a specific major or

minor scale using tuples of intervals in the scale, for example a tertiary chord built

on a tonal center of C could be built using the pitch classes of C-E-G as shown in

figure 1. Through the use of this definition of tonality, we break this classification of

music from the 20th century as being all post-tonal. We are then able to look to

modern genres as inspiration for our algorithmic composition generator.

C A Style to Imitate

Much of the 20th century is filled with approaches that imitate previous

generations of music including the neo-classical and neo-romantic classification of

art music. We also find heavy usage of various atonal approaches that grew out of

the post-war eras of the early 20th century. It was during these times of atonality

that algorithmic composition using computers began to grow into existence.

More recent composers have begun to move back towards tonal harmonies. One

of the musical genres of the 20th century, which has been called the leading musical

style of the late 20th century, has been the minimalist movement. This minimalist

movement in the art of the 20th century grew out of the media art movement of the

early 20th century. In this, artists reduced materials and form to basic

Figure 1. A rendering of a C-major chord which is built on the pitch classes, from
lowest to highest note, of C - E - G

3

fundamentals and never intended to express feelings or convey their state of mind.

Despite the art movement, minimalist music grew to become one of the 20th

century's most popular techniques, which was able to contain a wide range of

expressive content. In this movement of art music, composers attempted to reduce

materials in the composition to a minimum and simplified procedures in the music

so that the musical content of the piece was immediately apparent [3].

Because of this style's simplification of musical content, it provides a unique

testing ground for algorithmic tonal music. By reducing much of the content to its

simplest form, we would more easily be able to classify the output from the

algorithms as tonal or atonal. Because of this, much of this thesis will approach

algorithmic music from a minimalist standpoint.

D Synopsis

This thesis addresses ideas that span many fields of study. It bridges the gap of

the mathematical and computational with the more artistic field of music. Despite

this overlap, this paper will focus primarily on the algorithms and mathematics

behind the developed system. Any important musical terminology that occurs in

the thesis will be explained. However, this paper assumes an understanding of the

most basic music theory (such as how to read music) due to the length it would take

to describe all of the topics in music theory. For those computer scientists or

mathematicians who have little or no understanding of basic music theory and/or

how to read music, the author has provided the reader a section, Appendix A of this

document, for a short discussion on the assumptions of understanding of music that

are held throughout this thesis.

The rest of this document explores a brief history of electroacoustics and

4

algorithmic composition, including a handful of programming languages designed as

a tool for generating sounds and music (Chapter II). A discussion of the role of

mathematics in music theory will be presented, and we will examine the recent

developments in Geometric Music Theory by Tymoczko et al. (Chapter III). We

then present an explanation of the current practices of Reinforcement Learning

techniques that are used throughout this document (Chapter IV). To follow this,

this paper will present the modified models for generating tonal music (Chapter V).

This will lead into the discussion on possible techniques that could be used for

generating personalized and interactive real-time audio using the generated engine,

with an emphasis on biometric personalization (Chapter VI). The conclusion

presents the contributions and possible future work related to this project (Chapter

VII).

5

CHAPTER II

A HISTORY OF ALGORITHMIC MUSIC

The history of music is full of examples in which mathematics has played an

extremely important role in what is now known as Music Theory. The earliest

examples show that even the Greek philosophers who worked in attempting to

analyze music used mathematics as an explanation for harmonics, creating scales,

and more. Pythagoras' work in harmonics is probably one of the best known

examples of mathematics used to describe harmonics.

Algorithmic music follows much of the same rich history as mathematics in

music. Karlheinz Essl describes algorithmic music as, "A method of perceiving an

abstract model behind the sensual surface, or in turn, of constructing such a model

in order to create aesthetic works." [4] This definition and explanation of algorithmic

music fits, and, using this definition, we find an extremely rich history of algorithmic

music dating back long before the creation of the computer. However, today this

style of music is generally associated with music in which computers generate.

No matter how you look at algorithmic music, whether solely music generated

by a computer, or music generated using some methodical " algorithm" , both styles

share one common theme. Creators of this music have a desire to create a sound

which is infinite, exceeding the finite limitations of human knowledge; a way for

music to overcome barriers which are either inherent in our minds or created by

generations of social stigma. [4]

6

A The Algorithm

When discussing algorithmic music, the first word, algorithmic, becomes one of

the most unfamiliar in the area of music. Boolos & Jeffrey [5] informally define the

word algorithm as a means of giving" explicit instructions for determining the nth

member of the set for an arbitrary finite n. [The] instructions are to be given quite

explicitely, in a form in which they could be collowed by a computing machine, or

by a human who is capable of carrying out only very elementary operations on

symbols." In essence, an algorithm becomes a set of precise rules for a fast and

efficient means of solving problems.

The word algorithm is derived from the name of the Persian mathematician,

Muhammad ibn Musa al-KhwarizmI, who introduced the use of Hindi-Arabic

notation into what is now known as Algebra. The original definition of the latinized

version of al-KhwarizmI, "algor ism" was used to refer to only this particular form of

Algebra. Later translations of the latinization became what is now referred to by

the word algorithm. The word algorithm is defined, informally, as a set of definite

procedures for solving problems or performing various tasks. [6]

Today, algorithms are more generally used in the field of computer science as a

way to allow a computer to solve problems efficiently. Algorithms are used in

computing for all sorts of tasks, including path planning, sorting numbers,

scheduling, and many other areas. Generally algorithms have efficient solutions

which compute problems in a polynomial time. However, there do exist problems in

which finding a solution becomes difficult to find in a finite amount of time. A

common example of this is the" Traveling Salesman Problem". The problem

becomes intractable for extremely large numbers of cities. In this case, the

computation that is needed to be done in order to solve this using standard

7

methods grows exponentially for each city added. This is a classic example of a

NP-hard problem in combinatorial mathematics.

The field of Artificial Intelligence grew out of an attempt to find solutions

which can find a solution, or more often a "good enough" solution for these types of

problems, quickly. However, much of the field of artificial intelligence uses forms of

algorithms, such as the genetic algorithm and particle swarm algorithms, which may

not be classified as "correct" algorithms, meaning they do not necessarily yield a

correct result all the time.

More advanced fields of " Artificial Intelligence" yield even more complex

algorithms to compute certain aspects. Computer Perception is a more advanced

field in this domain of " Artificial Intelligence" which includes Computer Vision and

other Perceptive techniques. Even this field of computing uses combinations of

algorithms to find information in digital information, which can be used to perceive

aspects in which the computer is searching for, such as the location of a specific

item in an image.

The bulk of this thesis focuses on use of Machine Learning algorithms and

other less intensive algorithms, for problems which can be computed relatively

quickly, to generate new music. Machine Learning, and more specifically

Reinforcement Learning, are simply a continuous algorithm which are used to

observe specific information and use statistical inference to make complex decisions

in the domain of the data. More about the specific algorithms used will be discussed

in a later chapter in this thesis.

The point to take out of this section is that almost all of computing is

associated with algorithms in almost all domains. This is no different in music.

However, music is full of a rich history of mathematics and algorithms that are

generally lost due to the little use of the information. The rest of this chapter will

8

--------~-------------

discuss the history of Algorithms and Mathematics in Music from the Ancient

Greeks to modern computationally generated music.

B Formal Processes in Music

Since music's early recorded history, music has always closely been associated

with mathematics and formal structures. It was the Greeks who first delved into

attempting to understand music using mathematical processes. During the Baroque

era, we see formal structure begin to help build the music of the era. These

structures grew into what musicians now know as the various forms of the classical

era; during the classical to the modern era, the idea of using randomness to build

music was brought about using what is now known as the" dice-rolling game". It

wasn't until the 20th century that determinisitc processes were brought about in

music.

1 Music, Mathematics, and the Ancient Greeks

The Greeks philosophers were the first, in recorded history, that attempted to

understand music in a mathematical way. It was Pythagoras who is best known for

his work in music during the ancient era of music. Pythagoras recognized the ratios

between the tones that are played in music. He was able to prove his work by using

a simple stringed instrument and folding the string to produce tones. He found, for

example, that what is now know as an octave (12 tones up or down) was a ratio of

1:2. By folding in various ways, we can produce different tones that can be used.

This was the first written example of music being combined with mathematics.

Pythagoras was not the only philosopher of the greeks who associated music

with mathematics. Aristoxenus was one of the first greek philosophers who had the

9

idea of geometrization of musical space around 320 BeE. His ideas were radically

different from Pythagoras in that rather than using discrete ratios, Aristoxenus used

continuously variable quantities. [7] Aristoxenus was the first arithmetician who

proposed why a slight mistuning of notes are still perceived as categorically

invariant. This led him to believe that the principal of consonance of the scale had a

narrow, but acceptable range of variation. Aristoxenus' work was important in that

it later influenced the theory of Greek Orthodox, Hellenized Persian, and Arab

music which gives the appearance of direct descent to the arithmetician's work. [7]

Ptolemy is mostly associated with mathematics, astronomy and geography.

However, Ptolemy wrote an influential work on music theory entitled "Harmonics".

Ptolemy spent much of this work criticizing his predecessor and arguing for a basis

of musical intervals based on mathematical ratios. This was in complete contrast to

Aristoxenus and his followers, following more closely with that of Pythagoras. The

difference between Ptolemy and Pythagorus was that Ptolemy based his work on

empirical observations. Ptolemy believed that a musical not could be translated into

mathematical equations and vice versa. [8]

Ptolemy's work later bled into what is known as "Music a universalis". This is

an ancient philosophical concepts that regards the ratios and proportions of the

movements of celestial bodies as forms of "musica". The term "music a" is not

usually thought of as audible music in this philosophy, but as a harmonic,

mathematical, and/or religious concept.

Though there are only a handful of Greek philosophers presented here that

discuss music, there remain many which are not mentioned; these three are the most

prominent philosophers of music during their time in ancient Greece, and helped to

shape modern music theory. Later composers would return to these philosophers for

ideas in composition during the 20th century. From just this brief sample of

10

philosophies, we see that since early recorded history, mathematics has played a

major role in the understanding music.

2 Chance Music from the Classical Era to the Modern Era

Much of the Renaissance and Baroque era began to step further away from

using mathematics as a way to understand music and is where we begin to see a

theory solely dedicated to music take shape. However, even during this period we

see formal structures take shape in the understanding of making music sound

developmental. This is minor to the subject discussed in this thesis, and mention of

it is a nod to it as a part of the era which can be viewed as remotely mathematical

or algorithmic.

This lack of interest in mathematical formulations of music continued into the

classical and romantic eras, where little was done relating to music and

mathematics. The major contribution during these two eras exist in chance music

better known as Musikalisches Wiirfelspiel, which can be literally translated as

"Musical Dice Game". These games were popular throughout Western Europe

during the 18th century. It provided a system for using dice to randomly compose

music long before the computer system was invented.

The most well-known dice game was published in 1792 by Nikolaus Simrock in

Berlin. Because Nikolaus Simrock was Mozart's publisher, the game is often

attributed to Wolgang Amadeus Mozart, however this attribution has yet to be

authenticated by any musicologist. [9] In this game, the dice is rolled which

randomly selects a small section of music. Each section that is rolled is then

patched together with the previous ones to create a musical piece.

Despite the lack of authentication of for the published game, Mozart did seem

interested in the game. An autographed genuine musical game by Mozart can be

11

found in the Bibliothetique Nationale in Paris and designated K 516f, written in

1787. [10] This musical piece contains no instructions and no evidence that dice

were involved in the composition of the piece, leaving the creation process of the

piece up for debate between musicologists.

This dice game was perhaps the earliest known example of some form of chance

being used in music. During the 19th century, very little was done again with music

and mathematics. It wasn't until the 20th century that we begin seeing

compositions being created using elements of chance. During this time, John Cage

created numerous algorithmic systems to employ chance in creating music which

was based on the 'I Ching', star atlases, or other such means.

John Cage employed these methods in order to overcome the habitual methods

of composers themselves. Cage felt that by using methods of chance instead of

representing order systems or expressing subjective sentiments, the sound of the

music is freed from any prior meaning or historical connotations, free to 'come into

their own'. [11]

It was during this time that composer John Cage began developing ideas for

graphical representations of music, which left much of the music to chance and

choice by the musician themselves. By providing these graphical representations,

Cage was able to lay a groundwork which leaves the song nearly open ended, and all

of the parameters of the music free. This allows all parameters of the music to

change from each performance by changing the times for note, such as starting and

stopping of notes, as well as the frequency, amplitude, use of filters and distribution

of sounds in the musical space. [11]

12

C Deterministic and Stochastic Processes

In the previous section, the methods of mathematics were discussed as they

were applied to music during a period of relative order in music. This section

continues by discussing methods which employed sets of random operations within

the context of an overlying algorithmic model to gain control over the direction of

the music. In this sense music falling into this category is both deterministic and

stochastic processes were used to create a sort of aleatoric classification of music

during the early 20th century.

1 Serialism

The elements of World War II left not only many of the cities of Europe in

ruin, but nearly eradicated the music of that century. Soon after the eradication of

the Nazi's in europe, younger composers gathered together to create a new musical

grammar, free of the traditional practices of music in the years prior to the war.

Serialism was the result of this gathering of composers. This form of music is

primarily attributed to the composer Schoenberg, who was the first to employ its

techniques with relative success.

In this form of music, Schoenberg's dodecaphonic technique created music

whose pitches are predetermined in all serial music. This technique was later

extended to other "parameters" of music such as pitch duration, dynamics, and

timbre. The dodecaphonic series of the music becomes the unifying principal of the

music which allows to music to sound less like a random selection of a subset of the

12 pitch classes, and more like an organized form of music.

This series that makes up the unifying principal is, more simply, a random set

of values from the set of twelve tones in western music. Variations of this series can

13

«> «> n
11 «>

Figure 2. The 12-tone serial row series used by Schoenberg in Suite, Op. 25.

be created by applying various transformations, such as transpositions, inversion,

retrograde, and permutations. These mathematical operations can be obtained by

transforming the symbolic representation of the row into a numeric representation.

When observing or creating serial music, it is often beneficial to have all 48

possible forms of the tone series. To create this, it can be represented by a 12x12

matrix. If for example we choose the tone series shown in figure 2, we can build this

12x12 matrix by transforming the row series into prime series (denoted using P)

and inversional series (denoted by 1).

Calculating the Inversion of the prime theme is relatively simple when thought

about in geometric terms. If we take a circle which connects each of the notes to

their next neighboring notes on two sides, we can draw a line between the primary

themes starting note, E in the case of the primary theme shown in figure 2, and the

notes tritone interval, or a jump of 6 notes- the starting notes tritone. From this, all

intervals between notes can be thought of as a line segment between the starting

note and the second note. Figure 3 shows this technique. In this figure, we see line

segments between E and G on the top. If we take this line segment and draw the

same line segment on the bottom, we can determine the inversion of a note. In this

example, the inversion of G is a C~.

If we then take our primary theme, Po, we can find the first inversion series by

following this technique. Doing this results in the first inversion 10 as shown in table

1. With the information found in this table, we can begin building a matrix to give

14

Figure 3. A geometric representation of Serial Inversion, The line segment between
E and A~ is the inversion line while the other lines represent the inversion between
G and C~.

all 48 possible forms.

To begin the matrix, we must first convert the Prime series into a set of

numerical representations. For the purpose of this example, we use E as the ° note

and continue by determining the number of jumps up it would take to reach the

next note. Therefore our prime series becomes the numerical series: 0, 1, 3, 9, 2, 11,

4, 10, 7, 8, 5, and 6. By doing this, the subscripted version of the prime, inverted,

and retrograde version of the series are represented using this number sequence.

Now we can begin building the matrix of sequences that can be used in a piece

created using this technique. The prime series is written as the first row of the

matrix and the Inversion is written as the first column. From here we can calculate

all of the rows by adding the total number jumps to the notes in the first prime

sequence. Therefore, if we are calculating the prime 1 row, Pi, we simply move the

15

1 2 3 4 5 6 7 8 9 10 11 12

Po E F G C~ F~ D~ G~ D B C A B~ Ro
10 E D~ C~ G D F C F~ A G~ B B~ RIo

TABLE 1

Primary, Inversion and Retrogrades of the theme found in Figure 2

notes in the Po row up by 1 note. Therefore our Pi row becomes: F, F~, A, D, G, E,

A, D~, C, C~, B~, B.

By continuing this for all tone rows, we generate an entire matrix which can be

used to represent all possible forms of the music. The Columns from top to bottom

represent inversions of the Prime, The rows from left to right represent the primes

themselves. By reading the primes backwards, we can represent the Retrogrades of

the primes (Rx) and by reading the columns from bottom to top, we can represent

the Retrograde inversions (RIx). The matrix for the theme found in figure 2 is

shown in table 2.

During the composition process, composers will start their composition with

the Po line, however, after using the Po line in the composition, the composer would

choose any of the forms that result in the matrix to create their composition. The

decisions for the composition itself however was generally left up to the composer.

The same technique used in choosing forms of the notes was later applied to other

parameters of music, in what is more formally called "Total Serialism." In "Total

Serialism", the composer was left with fewer attributes in the music to decide upon,

however the general direction of the piece and selection of the series forms were still

left solely to the composer.

By composing a piece with strictly predetermined material, we see the first

move towards a more algorithmic style of composition. Karlheinz Essl views

16

10 II 13 Ig 12 In 14 110 17 Is 15 16
Po E F G C~ F~ D~ G~ D B C A ED Ro
Pll D~ E F~ C F D G C~ ED B G~ A Rll
Pg C~ D E ED D~ C F B G~ A F~ G Rg
P3 G G~ ED E A F~ B F D D~ C C~ R3
PlO D D~ F B E C~ F~ C A ED G G~ RIO
g F F~ G~ D G E A D~ C C~ ED B RI
Ps C C~ D~ A D B E ED G G~ F F~ Rs
P2 F~ G A D~ G~ F ED E C~ D B C R2
P5 A ED C F~ B G~ C~ G E F D D~ R5
P4 G~ A B F ED G C F~ D~ E C~ D R4
P7 B C D G~ C~ ED D~ A F~ G E F R7
P6 ED B C~ G C A D G~ F F~ D~ E R6

RIo RII RI3 RIg RI2 RIll RI4 RIlO RI7 RIs RI5 Rh

TABLE 2

Matrix of the possible forms of the prime theme found in figure 2.

serialism as " highly ordered by predetermination" , with the results appearing as a

statistical collection of points in both space and time. [4] Serialism, though created

prior to the advent of the computer, was the basis for many of the first computer

programs to generate musical structures.

2 Stochastic Composition

Despite the changes in the approach to composition of music, there were

extreme critics of the serial style of music. One such composer who criticized the

strict pre-determinism of serial music, was Iannis Xenakis. Xenakis wrote in his

paper, "The Crisis of Serial Music," about the complexity of this style of music

which shaped the music as "auditive and ideological non-sense." [12]

It was Xenakis who suggested replacing the determinism that was brought

about with serial music with a general concept of probabilistic logic. Through this

means, Xenakis could contain the entirety of the serial music as a strict particular

17

case. Even the definition of "stochastic music" comes from Xenakis. Xenakis defines

stochastic music as based on random operations within time-variable constraints.

His stochastic music was used to generate music using the statistical representations

of the structures that can be found all over nature. Xenakis states that stochastic

music is built in an attempt to model "natural events[,] such as the collision of hail

or rain with hard surfaces, or the song of cicadas in a summer field." [13,14]

This area of stochastic composition really breaks down into two separate

categories. The first school of thought in stochastic music was Xenakis' ideology for

stochastic music. In this, Xenakis implemented stochastic methods like the

Gaussian distributions or Markov Chains. This gives the music much more

deterministic qualities while still employing levels of chance to music as well. The

second school of thought revolves around Gottfried Michael Koenig's ideology for

composition. Koenig replaced the serial permutation mechanism with a

non-deterministic, yet promising strategy of using aleatoric principles. The term,

aleatoric, is used to describe a process who's outline is predetermined and fixed, but

the details of which are left to chance.

Koenig's work is perhaps some of the most important work in combining

computers with music. In 1963, Koenig began work on a composition that was

based on an algorithmic model and was implemented as a computer program called

Projekt 1 (PR1). Koenig assembled lists of parameter values, and used

psuedorandom operations in order to select a value for the each of the

parameters. [15]

PR1 in its original form was unable to convert any of the resulting parameters

into actual music. Instead the composer was forced to interpret the results in order

to produce music which was playable. Later versions of the program get rid of a lot

of the limitations of the program itself, due to further development of the program

18

and by other composers who used the application. Yet even in its final version,

determining the input data is limited, requiring only a handful of parameters from

the composer. [15]

D Music and Computers

Many of the above topics discussed the influence of mathematics on music, and

the use of Algorithmic techniques for creating music. We see many of the techniques

coming to fruition in the early part of the 20th century. In later parts we start

seeing the use of computers alongside the compositional process of composers to

simplify the algorithmic techniques which were used. But it wasn't until the latter

half of the 20th century that music was able to take full advantage of the computer,

allowing it to not only compose music based on algorithms but also to play the

music which was created or output musical scores which were able to be read by a

performer without the need of human intervention.

1 Generative Music

Many of the topics discussed above were first created in an attempt to free

music from the societally created structures that limited music to something which

seemed to go against the structures of soundscapes created in nature. It was pop

artist Brian Eno who first became interested in ripping the bonds of time

limitations in music. He saw that the natural soundscapes created in the world had

no beginning and no end, yet music always seemed to start and stop.

In 1978, Brian Eno created a non computer based system for generating an

unending, evolving sound environment for the LaGuardia Airport, which he called

"Music for Airports". For this, Brian Eno used the phasing of tape loops with

19

different lengths to create different instrumental tracks, allowing the music to at

some point clump all of the sounds together and at other points spread the

instruments through the music. By using this simple looping technique, Brian Eno

was able to create an infinite number of soundscapes which were based on only a

handful of elements.

Brian Eno's work later inspired work to be taken to software engineers Pete

and Tim Cole to create a computer program using the same techniques. This was

one of the first steps in which computers were used to generate music for certain

situations. Brian Eno's idea of using Ambient Music began a surge of computer

related media on the Internet.

In 1997, Maurice Methot and Hector LaPlante began to contemplate what

type of medium could best be utilized to listen to music such as Eno's composition.

Because the music no longer consisted of a beginning or end, Compact Disks were

highly inappropriate for the music. Because of this, Maurice and Hector began 'The

Algorithmic Stream', one of the earliest audio streaming systems on the internet

which provided non-repeating computer generated music. Though this later died

down, many project still exist which revolve around this idea.

Though Eno's work is of little importance to computer music, it is of extreme

importance as it helped to influence streaming media on the internet during the era.

Because of this, it deserves special mention in this thesis for both the simple looping

algorithm and streaming audio.

2 Programming Music

The first era of true computer programming language dedicated to sound

synthesis was called MUSIC, appearing in 1957. It was developed by Max Mathews

at AT&T Bell Laboratories. This language was build in order to provide a model

20

for specifying sound synthesis modules, connections, and time-varying controls.

During the development of MUSIC, the language was compiled on a series of

punchcards and implemented as a low level assembly language. Several further

developments of the MUSIC programming language were released in further

iterations of the language, MUSIC I-IV.

It wasn't until 1968 that a programming language dedicated to music

composition was able to break its previous limitations and be implemented within

another programming language. MUSIC V was released as an implementation of

FORTRAN. Unlike previous MUSIC languages, this meant that MUSIC V was able

to be used on any computer system capable of running FORTRAN instead of being

limited to specific hardware. MUSIC V also provided a model for later music

programming languages an environments making mention of this language

important. [16]

Around the time of the advent of the modern operating system, we see several

other languages and extensions of languages begin to appear. In 1972, development

of the CARL System was developed as a series of open source, interconnect able

programs for Signal Processing and Signal Analysis. We also see during this time a

library for the C Programming Language which was modeled after the MUSIC-N

languages mentioned above. The most widely used descendant of the MUSIC-N

languages today is CSound which was developed in the late 1980s by Barry Vercoe

and his colleagues at MIT Media Labs. This further developed the compositional

and audio playback that we now use on modern computers today. [16]

During the 1980s we see yet another type of music playback system developed.

The MIDI (Musical Instrument Digital Interface) specifications were published in

August 1983 with the purpose of bringing different digital instrument makers

together under a single standard. [17] This was primarily built out of the synthesizer

21

needs of progressive rock bands. By using a MIDI based synthesizer, a performer

was able to play multiple sounds from a single keyboard, rather than the many

keyboards that are often seen from the early progressive rock concerts.

After the ratification of the MIDI standards, we begin seeing MIDI

implemented in many of the Operating Systems of the era. This development in the

Operating Systems allowed for powerful and inexpensive tools for computer based

MIDI sequencers. Though during its early development, the quality of the hardware

and the unsophisticated methods for the synthesis methods used for audio playback

resulted in giving MIDI a poor reputation with some critics. Yet today, MIDI sound

synthesis results in often higher quality sound which is driven by MIDI data proves

that MIDI is an overlooked method of sound generation.

E Decisions for this Thesis

This thesis extends many of the techniques used by previous composers in an

attempt to both better understand the aesthetic benefits of Stochastic composition.

This thesis also maintains a level of scientific value in both the abilities of the

computers and the viability of the model developed by Tymoczko in the realm of

Computers. We see through the history of the computer itself that it has become a

compositional tool that have been used by many to help aid in their compositional

process.

Today's computers have the ability to do much more than just act as a random

number generator for the composer. We see during the last decade of the 20th

century the development of Intelligent systems dedicated to writing in the

compositional style of the composer by David Cope in his works entitled

"Experiments in Musical Intelligence". [9] Unlike David Cope's work, this thesis is

22

an attempt to create a general model that computers can use to create music. Yet

even still, the models used by David Cope for machine learning and music and the

models presented here, which use Reinforcement learning, are not contrary to one

another. More about this will be discussed in the Conclusion.

This thesis focuses primarily on the development of a tonal harmonic

progression algorithm using Tymoczko's underlying structure of chords, presented in

Chapter III. This model is implemented using Java with a Reinforcement Learning

technique known as Q-Learning. This technique provides a way of learning about

and traversing the environment in the model. It is a stochastic decision making

algorithm which allows us to use stochastic techniques first used by composers such

as Xenakis, but also allows for complex decision making that composers such as

Mozart or Beethoven might have take advantage of naturally.

For this thesis, all of the generated music also uses the MIDI Specification.

This provides the most robust and simplest way of generating music using the JAVA

programming language. There is no reason a library such as CSound could not be

used to develop this thesis. It was simply a due to the ease of the JAVA MIDI API

that pushed the decision towards using the MIDI Specification. Subsequent chapters

of this thesis discuss the development of the thesis further.

23

CHAPTER III

A SCIENTIFIC APPROACH TO MUSIC THEORY

The previous section discusses how mathematics has played a major role in the

development over the millennia, staring with the ancient greeks and working

towards the stochastic processes we understand today. It seems relatively reasonable

that music would follow some stochastic decision making process, which is discussed

later in this thesis; however, in order to use stochastic decision making, we must

have some underlying, latent model which music can follow.

Much of music theory is riddled with more of the discussion of the language of

music and what will sound good to their listeners even when incorporating

chromaticism into the language. In this sense, Tonal Music theory has become more

like an english grammar class than a science. Despite this, there are proponents of

music theory as a science. A recent development in understanding tonal harmonies

was provided in 2006 by Dmitri Tymozcko. This article [18] was the first article on

Music to be published in a scientific journal.

Dmitri Tymoczko provides an understanding of tonal harmonic movement

through a latent model which can be used to model any n-dimensional chord in an

n-dimensional model using geometry. The rest of this chapter focuses on the works

of Dmitri Tymoczko as this model is the model which makes up the program that is

developed in this thesis. This model combined with the stochastic decision making

algorithms provide a means for allowing computers to generate harmonies which are

24

Figure 4. The Circular Pitch class space described by Dmitri Tymoczko.

centered around a tonal center.

A One-dimensional Space

Dmitri Tymoczko explains in his original article and his book [18-20] any

n-dimensional chord space. The first space that is discussed by Tymoczko is the one

dimensional chord space. However, he simply calls this the "Circular pitch-class

space" [20]. This name is best suited for musicians who find it hard to represent a

one-dimensional chord space is, by all means, simply a representation of the pitch

classes in music that were described in appendix A.

Tymoczko says that, geometrically, this one-dimensional space can best be

thought of as a line. [18,20] Though the pitch class represents only a single

dimension, the reason it is best represented as a circle is caused by the shared pitch

classes repeat after completion of the notes. For example, if we start at the pitch of

a C and move up one semitone every step, we eventually reach the pitch class of B.

Because of the nature of the circle, returning to the pitch class of C is like returning

25

Figure 5. A simple intervalic passage.

to the C that we had started on.

U sing this pitch-class space helps in representing particular ways of moving

from one pitch class to another. [21] Using this geometric language, we can capture

the movement from one pitch to another by modeling the intervalic movement

between the two pitches. If we view the movements shown in figure 5, we can

represent the figure using common language.

The first intervalic jump can be represented in this language as, "E moves

down 12 semitones (or an octave)." More formally we could write this as E ~ E.

This simply means that from the E we are moving -12 semitones to get to the

interval E. A negative movement is a counterclockwise movement on the circle

shown in figure 4. From here we see E +7) B, which is a clockwise movement by 7

semitones to the B; and lastly B +3) D, a clockwise movement by 3 semitones.

This understanding of the one dimensional space is important not only for

being able to create a language in which melodic lines might be described, but also

for understanding higher dimensional spaces and how they work relative to the one

dimensional space.

B Two-dimensional Space

Much of the emphasis by Dmitri Tymoczko is put into understanding the two

dimensional musical space. This is likely because understanding this is much simpler

than attempting to describe musical space in 3 or 4 dimensions. By understanding

26

ClrC'- :J::;> Eb Eo E<: FF

cc 1 • • • • • I'm • • d'h • • • CDb C~ D DNE EF F Go

,~ I • clO# • E:F • r C:) DE E F.

• • • • • •
3D CEb elE DF Eo GO EC

8bD

1
• • • • • r' BD# CE Dof DH EoG

• - • • • -B!l Eb BE CF Db CO DC £OAb

AEo

I a:E - • • o\' ·r SF CH c~c

• • - • Db-At> AE BoF 8FJ CO DA

a;;E

I - - - c\' • r~ AF 80 Cb BG etA

- • • - - 0:90 ""oF fo, Fp BoG BOil' CA
OF

r
• !a - - • r CpS Ab Go SbAb SA eBb

• - • - • • GFt AoG AGP 8bA 3M C8
Hff • • - • • • • C C

GG AtlAo AI'. So So sa

Figure 6. The Two dimensional orbifold described by Dmitri Tymoczko.

the two dimensional space, you begin understanding the higher dimensions as well.

Figure 6 represents the two dimensional interval space between two note

passages. This model is built from an understanding of the combination of the one

dimensional spaces of each singular note. In this case, the first note and the second

note represent the way in which interval movement can be plotted on a cartesian

graph. In this mesh of notes, the movement of singular notes is moved to a 45 degree

angle. Therefore in order to move a single note, we move along the diagonal of the

Dmitri Tymoczko also describes his model with regards to the contrary and

parallel motion of intervalic movement. Contrary movement in music is described as

movement of the interval in different directions. This can be described by vertical

movement from one interval to another where movement upwards represents the

notes moving towards one another and moving downward represents moving away

from one another. Parallel motion is different in that both notes move in the same

direction, which is represented as movement to the right or left. Moving to the right

27

Parallel

Figure 7. Movements possible in the two dimensional interval space.

results in parallel movement upwards and moving to the left is parallel movement

downwards. [18,20] The possible movements in this two dimensional space is

summed up in figure 7.

Now that we understand the movement, an understanding about what happens

when we reach the end of the graph. Tymoczko describes this two dimensional

space as repeating on the right and left in the same wayan mob ius strip works. The

right an left sides of this plot are brought back around and twisted so that the

[F~,F~] pairs match up and the [C,C] pairs match up. [18,20]

U sing the same formal language that we had mentioned in the one dimensional

section, we can understand movements in this space as well. The musical passage in

figure 8 contains a two voice intervalic passage. We can represent the movement of

the two voices on the graph. We notice that the first movement to the second is in

parallel motion but they do not move the same distance. Therefore we move in the

direction of parallel until we reach one of the voice's notes and then move the other

voice's note to the proper note along the diagonal. The 2nd to third interval is in

contrary motion so we move vertically and then fix the note movement. The next

28

'i UaJJU I
Figure 8. A simple two voice passage containing various intervalic jumps.

CICI 00 EbEb EE FF'

CC I • • • • • ru

• efD D\t, • • • COb D#E EF FGb

a~ r • 0101 • rlF • r co DE EF'I

• • • • • • so CEb ClE OF EbGb EG
abO

r
Bt, c·~ • .~ • r~ DbF OF EbG

• • · 1 • BbEb BE C DbGb G EbAb
AEb

I rlE • C:G ot, r BF

• • • Dbe.- D·" AE 9bF 91'#
GlE

I • • B·G .. '. r~ AF abGb C CIA

• • • • • • ADF AFI abO sal CA Obllll

OF

r
• /0 • • • ra

AbGb BbAb BA CBb

• • • • • • GI'# .AbO AGI 9b" BM C9
FtFf! • • • • • • • CC

00 AbAb AA BbBb 89

Figure 9. Movements representation on the two dimensional space and representing
the movements of figure 8. The Blue lines are the first to second interval; Green is
second to third; Red is third to fourth; Black is fourth to fifth.

interval is parallel with some voice fixing, and lastly the 4th to 5th interval are a

simple movement of the top voice. These movements along the diagram are shown

in figure 9.

+2,+3 We can also formally defined these movements as (C, E) ----+ (D, G) for the

first to second; (D,G) -1,+2) (Cij,A) for the second to third; and so on. In this

instance, we can extend the formal language to simply include two notes and two

values for change. This is further extended for any n-dimensional chord space

discussed by Tymoczko in [20].

29

--------~-----

Figure 10. The Three dimensional orbifold described by Dmitri Tymoczko.

C N-dimensional Space

Up to this point, the models have dealt with one dimensional chords, or pitch

classes, and two dimensional chords, or intervals. It isn't until we get to the 3rd and

4th dimensional spaces that we begin seeing what is traditionally understood in

music to be a chord. However, understanding these previous dimensional spaces

helps us in understanding the movements in the 3rd or 4th dimensional spaces. It is

often hard for humans to visualize shapes in dimensional spaces beyond the third

dimension.

The third dimensional space is shown in figure 10. This space is very similar to

the two dimensional space described in the previous section except containing a

third note in the model. Because of this, Tymoczko concludes that the shape of the

model is that of a triangular prism. This model contains two folds that are used to

connect the edges of the prism together. In figure 10, the (C, C, C) pairs match up

as well as the (E,E,E) pairs and (G~,G~,G~) pairs. [20]

Moving along the same horizontal slice of the model is movement of the middle

30

Figure 11. A visual representation of the shape of the four dimensional orbifold
described by Dmitri Tymoczko.

or last notes in the plane We can also contain movement of the last two notes. Each

movement to a vertical plane is then movement of the first note where diagonals

from that contain contrary and parallel motion of the voices in the chord.

It is interesting to note that Tymoczko has said that many composers choose a

smaller subset of chords from this model and use them throughout their

compositional career. This subset of chords rarely changes over the life of their

career. [18,20] Therefore, choosing a smaller subset of chords in the model might be

a viable option for the computer if the model can be used for generating chord

progressions.

Describing higher dimensional chord progressions goes beyond the limits of

what the experiments in this thesis will need. However, it is good to note that

higher dimensional chord spaces would be extremely useful in music outside of art

music. The fourth dimensional space is shown in figure 11 and other higher

31

dimensional chords would exist in music such as Jazz. These spaces are harder to

visualize, and this thesis will not attempt to explain these spaces. If you are curious,

Dmitri Tymoczko's book, [20], does an excellent job of explaining these spaces.

D Applications in Stochastic processes

From the previous three sections, we began understanding the principles of

movement in the model created by Tymoczko. We can see very mathematical

principles to the movements of the chords and begin structuring the model to work

in the stochastic processes described in the following chapter.

For the rest of this thesis we will work with the third dimensional space and

with a smaller subset of possible actions limiting motion to the same distance

between the movement of notes. This will allow the experiment to work solely with

the "pure" actions, movement of single notes, contrary movement of two or three

notes, and parallel movement of two or three notes. Later experiments and

extensions to the algorithm may be needed to work with combined actions of

movement to chords. Now that we have limited the experiment to a smaller subset,

we can begin looking at the possibility of using Tymoczko's model for generating

tonal harmonic chord progressions on the computer.

32

CHAPTER IV

CONCEPTS IN MACHINE LEARNING

Machine Learning has become a major field in computers, allowing the

computer to learn about data and make inferences based on the data. The primary

development of this project relied heavily on Reinforcement Learning, a subfield of

Machine Learning. In this, we allow the algorithm to learn what "sounds" good, or

rather works in this case, as sounding good varies greatly on the audience.

This chapter will discuss many of the concepts that are needed to understand

how the engine is able to generate harmonic progressions based on Tymoczko's

latent model for Chords. This chapter focuses on two topics in particular: Markov

Decision Processes and Q Learning. Markov Decision Processes make up the

understanding of the world and is necessary in this instance to help us better

understand how the Q Learning algorithm works for these models.

A Markov Decision Processes

A Markov Decision Process is a dynamic programming algorithm first

presented by Richard Bellman in 1957 [22,23]. The Markov Decision Process

(MDP) is a mathematical process for modeling complex decisions. This model was

later brought to the computer in order to solve complex, sequential, and stochastic

processes. Unlike its path planning predecessors, such as Dijkstra's algorithm, this

algorithm is specifically designed for taking probabilistic actions into account in

33

order to find the most suitable path for the traversing agent to take in the world.

A MDP consists of a 4-tuple of inputs into the algorithm. It consists of a set of

States in the world, a set of Actions that can be take from a state, a transition

model, and a reward function. More formally it can be written as a 4-tuple in

mathematics:

(S, A(s), P(s, a, s'), R(s)) (1)

where S is the set of all states in the world, A(s) is the actions possible at state s,

P(s, a, s') is the transition model which represents the probability of moving from

one state s to the next state s' given a specific action a, and R(s) represents the

Rewards at state s. [24,25] Russel and Norvig prove that the definition of the

Rewards system as being dependent on the action and outcome, or more formally,

R(s, a, s'), is unnecessary as it does not change the problem in any fundamental

way. This thesis will use the notation presented by Russell and Norvig. [24]

The solution to the problem is unlike other path planning algorithms in that a

fixed action solution will not offer the flexibility in the world that is needed to take

stochastic problems into account. The solution to this problem then becomes an

policy in which the traveling agent could use at any state in the world. Therefore, we

need to take all states into consideration and determine how to best move from one

state to the next with the possibility that we might move out of the "optimal path"

as we would call it in a path planning algorithm. We generally denote the optimal

policy as 1f and the recommended action as 1f(s), the policy, 1f, for the state s.

Let us look at an example of a world in which we might use a Markov Decision

Process to determine the best path to take in the world. Figure 12 shows a 4 x 4

world with a single obstacle and two terminal states, or states which end the

traversal. With this information, we can begin using an algorithm knowns as Value

34

~-------------~------

Iteration to determine the optimal policy for the agent moving in the world.

The Value Iteration algorithm is used for calculating an optimal policy. In this

algorithm, we want to calculate the utility of a state and then use the utilities to

determine the best policy. Richard Bellman's equation described in [22,23] can be

used for calculating the utility. The Bellman Equation, as it is known, calculates the

utility by taking the immediate rewards for the current state and adds the

discounted utility of the next state. Using this definition we can see that finding the

utility for the current state depends on all of the future states until you reach a

terminal point. The Bellman equation can be written more formally as shown in

equation 9.

U(s) = R(s) +,max LP(s'ls,a)U(s')
aEA(s)

s'

(2)

In equation 9: U (s) represents the Utility at a current state; R(s) represents

the reward of the current state; , represents the discount factor of the model; a is

an action of the set of Actions, A(s); P(s' - s,a) is the transition matrix; and U(s')

is the utility of the next state, s'. Using this equation, we can calculate the utility of

the state by using simple dynamic programming. This algorithm essentially works

from the terminal states backwards and iterates through this algorithm until the

world converges on their utilities. Bellman [22,23] provides mathematical proofs as

to why this will always converge.

Since we now know this simple mathematical equation can be used to solve the

equation, we can write an algorithm which takes advantage of this by adding an

acceptable error rate and continuing to iterate until completed. This algorithm can

be written as shown in Listing IV.1

35

2 3 4

4 +1

3

0.8

Start

(a) (b)

Figure 12. (a) A 4 x 4 world that would be presented to an agent to traverse through
the safest possible route in order to maximize the final Reward of the system. The
grey area represents an unpassable obstacle in the world. (b) The transition model
of the world. Traveling forward results in an 80% likelihood of moving to the next
state and 10% likelihood of moving to the right or left of the forward direction. This
does not represent any particular direction in the world, but rather forward could be
a move to the left of their current square and simply put means the probability of
travelling to the desired state.

36

ALGORITHM IV.1. The MDP Value iteration Algorithm which uses the Bellman
Equation to determine the Utilities of each state

1 function :MDP(S, A(s), P(s' Is, a), R(s))
2 do
3 U = U';
4 delta = 0;
5 for each (s in S) do
6 U'[s] = R[s] + gam * maxAction(summation(P(s' I s, a)*U[s ']));
7 if (abs(U'[s] - U[s]) > delta)
8 delta = abs(U'[s] - U[s]);
9 end

10 end
11 while (delta < epsilon (1 - gam)/gam);
12 return U;
13 end

By running this algorithm, we are able to solve the Utilities for each state.

Figure 13 shows the utilities of the world first presented in figure 12. Initially, all

nonterminal states have a Utility of 0, and therefore only terminal states contain

non-zero initial values. This algorithm iterates until the change in values is

extremely small, or a user defined value for epsilon in the algorithm.

With the values that are returned from the Value Iteration algorithm show in

figure 13, we can then determine the best policy from the results. In order to

determine the policy, we simply move to the highest possible number on the board.

Where ties result, such as in in square (3,3), with the utility 0.9000, and square

(1,2), with the utility 0.6312, the agent is allowed to move to either of the tied

squares. Therefore in square (3,3) it is allowed to move to either (3,4) or (4,3).

The best policy for this world is shown in figure 14. Notice as mentioned that

squares (3,3) and (1,2) contain two possible directions to travel. Since we now have

an optimal policy using the parameters which we passed the algorithm, we can look

at the original world and determine how an agent would attempt to solve the world.

If we look back to figure 12, we see the starting location of the agent is at (1,2).

We can look at our policy and we know that we can move in one of two

37

2 3 4

4 0.8382 0.8944 0.9444 +1

3 0,7882 0,9000 0,9444

2 0.7312 0.6757 0.6494 -1

0 .8

0.6757 0,6312 0.5888 0.3678 0.1 "'--9'---+-l",O.l

= .: •. e:"" •..... ,

Figure 13. The utilities of every state in the world which was presented in figure 12.
This algorithm was run using a I = 1 and R(s) = -0.04 for nonterminal states in
the world.

38

2 3 4

4 +1

3 t L t
.2 1 .. 1 ·1

0.8

1 ~ 0 .1 -+!-....... i....--+ ... 0.1

~ ~

Figure 14. The resulting policy of the world shown in figure 12 and using the Utilities
calculated in figure 13. The arrows represent the way in which the agent in the world
should travel for an optimal solution.

39

directions, up or left. Following the arrows and assuming we are always successful,

we can say that the optimal policy for the agent to travel is [up, left, up, up, right,

right, right} or [left, up, up, up, right, right, right}. As mentioned previous in this

section, this is not a shortest path algorithm. In a shortest path algorithm we could

make a series of 5 moves, [up, right, up, up, right}, to reach the goal. However, this

does not account for the -1 terminal point which would minimize the rewards in the

system if travelled to accidentally. The MDP problem takes this into consideration

and does not risk the possibility of hitting the negative reward terminal square.

We see now that this algorithm can be used to take into consideration the

possibility of moving from one state to another given a stochastic world. This is

ideal in Tymoczkos model where we want certain terminal states and how the agent

in that world gets there is left up to randomness. In music, there are general rules

which say that certain things should be avoided, such as jumps of tritones. Using a

negative reward system, we can have the algorithm avoid these jumps entirely by

negating the reward if it does jump a tritone in any way.

Since we now understand the basic concepts of the Markov Decision Process,

we can look at algorithms which allow for much quicker determination of a policy.

The MDP Value Iteration algorithm is well suited for smaller worlds but can be

slow when presented with a much larger world. There is however an algorithm

known as Q-Learning which is an extension of the MDP model used for

Reinforcement learning.

B Q Learning

Q-Learning is a reinforcement learning technique first discussed by Christopher

Watkins in his doctoral thesis in 1989. [26] It wasn't proven that his algorithm

40

would converge on an answer until a few years later when Watkins and Dayan

proved the convergence. [27] Q Learning works by learning an action-value function

that gives the expected utility of taking a given action in a given state. The

algorithm is different from the MDP in that unlike an MDP which gives a nearly

exact utility, the Q Learning algorithm is an approximation of the MDP.

The Q Learning algorithm uses the Bellman update equation as a part of the

algorithm itself. However, unlike the MDP which uses the Transition times the

Utility, the Q Learning algorithm implicitly defines this as a part of the Q matrix.

This is beneficial in many respects where a model of the transitions might not be

known. Therefore, the bellman equation portion of the Q Learning algorithm can be

written as shown in equation 3. [26]

Q(s, a) f- R(s) + ,,/maxQ(s', a) (3)
a

Later developments in the algorithm extended this model to include a learning

rate. This variation of the Q Learning algorithm is called delayed-Q Learning and

has substantial improvements over the traditional Q Learning. This brings a

technique called "Probably approximately correct (PAC) learning" to the bounds of

MDP. [28] The extension to this Q learning algorithm can be written formally as

equation 4.

Q(s, a) f- Q(s, a) + a(s, a) [R(s) + "/m:;xQ(s', a) - Q(s, a)] (4)

This equation can be simplified as equation 5. [29]

Q(s, a) f- Q(s, a)(1 - a(s, a)) + a(s, a) [R(s) + ,,/m:;xQ(s', a)] (5)

41

This mathematical foundation gives us oversight in understanding how Q

Learning is related to the Markovian Decision Process. Similar to the MDP, we are

again left with a highly mathematical algorithm. The Q Learning algorithm can be

seen in Listing IV.2.

In this algorithm, we define any number of episodes to iterate and build the Q

Matrix. The Q matrix is initialized to zero on all nonterminal states and set to the

reward for the terminal states. We iterate through all episodes choosing starting

states and actions at random and calculating the likelihood of the state action pair

using equation 5. The selection of random actions for the current continues until a

terminal state is reached. Once the episode has finished, the next episode continues

and we start with a new random state location.

ALGORITHM IV.2. The Q Learning iteration algorithm for building the Q Matrix
1 function QLearning (S, A(s), R(s))
2 Q = zeros () ;
3 for each episode
4 s = random(S);
5 while (s != goal)
6 a = random (A(s)) ;
7 Q(s, a) = Q(s ,a)*(1 alpha) +
8 alpha * (R(s) + gam * maxAction (Q(s ' ,a))) ;
9 s = s ';

10 end
11 end
12 return Q;
13 end

After completing all episodes in this fashion, we are left with a Q matrix

containing the estimated utilities for each state-action pair. Using this state action

pair, we can traverse the world through the estimated utilities by simply choosing

the action which maximizes the estimated utility for that state. This is by far the

simpler of the algorithms presented here, as shown in Listing IV.3.

42

ALGORITHM IV.3. An algorithm to use the generated Q matrix
1 s = initial;
2 while (s != goal)
3 a = maximumQValue (s) ;
4 s = nextstate (s, a);

If we use the Q Learning algorithm on the world shown in Figure 12, we can

determine the approximate utilities with the algorithm in Listing IV.2. Since this is

a relatively small world, it normally converges on an answer quickly. Once the Q

matrix is built, we can begin choosing the direction in which the agent in the world

will move. Table 3 shows the Q Matrix built using the Q Learning algorithm with

45 episodes.

If we, for instance, start in the location shown in Figure 12, coordinate (1,2),

we would look at the Q matrix and determine the best direction we can travel. For

this, the highest number is 0.6312 on the Left Action. This means that from (1,2)

we would move to (1,1). From here we again choose the highest number, 0.6757 on

action up, and move in that direction to (2,1). We continue this until we reach the

goal. If during the movement, a movement fails and we move to another square

which was not our intended state, the Q matrix is still able to get us to the goal by

creating what is, essentially, an optimal policy.

Figure 15 shows the estimated policy for the world. If we compare this q

learning policy to the policy of the value iteration algorithm for the MDP, we see

very few changes to the overall path. We do see that the Q Learning algorithm is

slightly more conservative in that it takes no risks at (2,3) since it moves to the left

in the Q Learning algorithm instead of up as in the Value Iteration algorithm. We

also see that in (1,2) and (3,3) we are left with a single direction in the Q Learning

algorithm, but the direction in the Q Learning algorithm is one of the directions

shown for the value iteration policy as well. Therefore, only a single major

43

State ACTION_UP ACTION_RIGHT ACTION_DOWN ACTION_LEFT
(1,1) 0.6757 0.6057 0.6312 0.6412
(1,2) 0.6270 0.5617 0.5914 0.6312
(1,3) 0.5794 0.3780 0.5309 0.5888
(1,4) -0.7443 0.1910 0.3499 0.3678
(2,1) 0.7312 0.6469 0.6412 0.6914
(2,2) 0.6386 0.6102 0.6031 0.6757
(2,3) 0.6476 -0.6911 0.3986 0.6494
(2,4) -1.0000 -1.0000 -1.0000 -1.0000
(3,1) 0.7882 0.7475 0.7026 0.7475
(3,2) 0.8444 0.8370 0.6694 0.7476
(3,3) 0.9000 0.8749 0.6640 0.8394
(3,4) 0.9444 0.7156 -0.6556 0.6800
(4,1) 0.8038 0.8382 0.7638 0.7932
(4,2) 0.8538 0.8944 0.8538 0.8094
(4,3) 0.9050 0.9444 0.8694 0.8600
(4,4) 1.0000 1.0000 1.0000 1.0000

TABLE 3

The Q matrix built using the algorithm in Listing IV.2 on the world shown in Figure
12 using 45 episodes

44

directional change occurs using the Q Matrix.

If we apply the Q Learning algorithm to the latent model for chord

progressions using what is known about tonal harmonies, we should be able to use

this Q Learning algorithm on Tymoczko's model by using the starting point of tonal

harmonies a I chord and several positive terminal states, such as the IV chord, the

V chord, and the viiO chord. Using this information and rewarding major, minor,

and diatonic chords, we should be able to use the traversal of the world to produce

tonal harmonic progressions quickly and using techniques that are likely applied by

composers without any thought to the compositional process. Chapter V discusses

how the Q Learning algorithm has been altered to work in a way in which

harmonies can be generated.

2 3 4

4 +1

3 1 1 1
2 1 4 4 -

0.8

1 4 ... 4

Figure 15. The resulting policy of the world shown in figure 12 and using the Q
Matrix shown in Table 3. We see only minor changes in the overall policy between
the Q Learning algorithm and the Value Iteration algorithm.

45

CHAPTER V

AN ALGORITHMIC TONAL MUSIC GENERATOR

U sing the theoretical music concepts discovered by Dr. Dmitri Tymoczko and

the computer science algorithms discussed in Chapters III and IV respectively, we

can further develop these ideas to approach algorithmic composition with a new set

of algorithms. Using these new set of algorithms for music composition, we leave the

stochastic genre which was made prominent by Iannis Xenakis for more intelligent,

decision making algorithms.

This chapter will discuss the algorithms and approaches that were taken for

generating the music in the software created for this document. The chapter is laid

out to discuss each of the parameters that have been included in this software. You

will notice that a majority of the chapter focuses on the Chord Progression

algorithm. This algorithm is the driving force behind the software. However,

parameters such as scales and rhythms will be discussed as well.

A The MuseGEN engine

The MuseGEN engine (short for Music Generation Engine) is the engine that

contains all of the primary functionality for generating music. In this iteration of

the MuseGEN engine, three primary components exist. The Music Database, which

consists of the database of possible scales in the program; the Rhythm Generator

which generates all musical rhythms; and the Tonal Harmonic Progression

46

Music Database Chord Generator

Stylistic Preprocessot

MIDI Processor

MuseGEN

Figure 16. A flowchart of the MuseGEN engine during its iteration at the writing of
this document.

generator, which is the set of classes for generating musical harmonies.

The engine was designed from the ground up to be modular. Each component

of the engine is broken into separate modules which can be used by the stylistic

preprocessor to generate music. Currently, only a single stylistic pre-processor class

exists within the MuseGEN engine, used to generate music of the Minimalist style.

This stylistic pre-processor then transfers MIDI information for the generated tones

to the MIDI processor. The MIDI processor is a dumb component, meaning that it

has no source of error checking within the processor. The MIDI processor simply

takes the MIDI information and adds the information to the track that is being

generated. A visual representation of the layout of the engine, during the current

iteration of this writing, can be found in figure 16.

Subsequent sections break down each of the components written for this

document and the algorithms and techniques that were used to create the various

components. The next section discusses the fundamental algorithm used for

47

generating musical rhythms in this generator. This is followed by a discussion on

the approach for storing scales and other musical parameters which are not easily

created using algorithmic techniques in a form of Database using XML. The next

section is a discussion on the algorithms and the mathematics that make up the

generation of Tonal Harmonic Progressions in the music. Since MIDI programming

is relatively obscure, the next section discusses both the Stylistic Preprocessor and

the MIDI processor portions of the MuseGEN engine. The chapter ends with a

discussion on the possible future directions for the MuseGEN engine and the

modules that make up the engine.

B Generating Musical Rhythms

Musical Rhythms are, more simply, nothing but mathematics patterns of

accents and unaccented beats in music. Because musical rhythms have only two

states, they can be represented on the computer as boolean, or binary, states, zeroes

and ones or true and false. Though we know that storage can be done using boolean

states, this does not account for the evenness of the mathematical pattern that

makes up musical rhythms around the world.

Godfried Toussaint [30] first proposed the use of the Bjorklund algorithm for

generating musical rhythms which create an evenness between the accented and

unaccented beats of the rhythm. The Bjorklund algorithm is an extension of the

Euclidean algorithm which is designed to distribute bits of Is and Os evenly.

The Euclidean Algorithm is one of the oldest and most well known algorithms.

Euclid described this algorithm in "Elements" in Proposition 2 of Book VII. The

algorithm is a recursive algorithm used to calculate the Greatest Common Divisor of

two integers. [31] The algorithm works by repeatedly replacing the larger number of

48

the two numbers by their difference.

Consider as an example that we want to determine the greatest common

divisor for the numbers 11 and 8. First, we subtract 8 from 11, which equals 3; then

8 minus 3 equals 5; 5 minus 3 equals 2; 3 minus 2 equals 1; and finally 2 minus 1

equals 1. Therefore, using Euclids description, we know that the greatest common

divisor between 11 and 8 is 1. Listing V.1 shows the euclidean algorithm as written

using a recursive technique.

ALGORITHM V.l. The Euclidean Algorithm as written using recursion
1 function euclid (m, k)
2 ifk=O
3 then return m
4 else return euclid (m, k % m)

The Euclidean algorithm itself is not enough to generate rhythms. The

Bjorklund Algorithm extends this concept that was laid out in the Euclidean

Algorithm. The Bjorklund Algorithm was originally designed to be used to even out

the repetition rates evenly for Spatial Neutron Source (SNS) timing. In Bjorklund's

papers, [32J and [33J, the author lays out a detailed algorithm for generating

symmetry between pattern width and repetition rate for SNS timing.

In this algorithm the author defines "Ugliness" in a pattern as any pattern

which is not symmetrically separated. In [32J, the author uses a pattern with a

width of 8 and a repetition rate of 2. In this case, a symmetrical distribution of the

repetitions would be [1000100J where 1 is a repetition. Bjorklund goes on in the

same paper to say that since these cycles continually repeat, any rotation of the

pattern is also optimal. Toussaint's [30J contends the same occurs naturally in music

as well. Rotations of an optimal pattern gives various rhythms from around the

world, which the author lists during the majority of the latter portion of the paper.

Bjorklund's Algorithm is relatively simply to understand and to implement

49

using Boolean or Byte Arrays. Bjorklund [33] and Toussaint [30] describe the

algorithm using a series of bits. In order to begin the algorithm, we need to know

the maximum width of the set as well as the repetition rate. If for example the

algorithm is given a width of 9 and a repetition rate of 5, the algorithm will

compute the number of Is needed in the sequence as 5 and fills the rest of the

sequence with Os. Therefore the algorithm builds a sequence which looks as such:

111110000

From this, we begin by, in a sense, moving the Os underneath of the Is.

11111

0000

Since this algorithm has no more Os, no more steps need to be done. We can

simply merge the columns into a single sequence from left to right, top to bottom.

We therefore are left with a sequence which looks like:

101010101

If we choose a sequence which has more Os than 1 (where pattern width minus

repetition rate is less than the repetition rate), we simply continue the second step.

So for example if we have a pattern width of 12 and a repetition rate of 5, we would

have a sequence as such:

111110000000

From here we move 5 of the Os under the Is:

1111100

00000

we repeat this step again:

11111

00000

00

50

Since three of the columns have less rows than the other two, we then move 2 more

of the columns under the first two columns:

111

000

00

11

00

Now that only 1 column has less rows, we stop here. We then combine the columns

so that the symmetrical sequence is:

100101001010

Knowing this, we can easily create an algorithm that suits the needs of the

algorithm. Listing V.2 is the code found in MuseGEN that is used for generating

Musical Rhythms using the Bjorklund algorithm. This algorithm is written using

the Java programming language and uses a Boolean Array to represent the accented

(truths) and unaccented (false) beats.

51

ALGORITHM V.2. The Bjorklund Algorithm
1 private int Bjorklund (int m, int k)
2 {
3 if(k = 0)
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

return m;
else if(k = 1)

return this. Bjorklund (k,
else {

m % k);

}

int location
int searcher

0;
(m- k < k) ? m - k: k;

for (int i = 0; i < searcher; i++) {

}

int newColSize = this. colSizes. get (i)
+ this. colSizes . get (this. colSizes . size () - 1);

int oldLastSize = this. col Sizes . get (
this. colSizes . size () - 1);

location += newColSize;
this. colSizes . remove(i);
this. colSizes. remove(this. colSizes. size () -1);
this. coISizes.add(newCoISize , i);

for(int j=O; j < oldLastSize; j++) {

}

this. rhythm. add (location - oldLastSize,
this. rhythm. get (this. rhythm. size () - 1));
this. rhythm. remove (this. rhythm. size () - 1);

return this. Bjorklund (k, m % k);

29 }

C A database of scales

Unlike the other sections of the engine, scales posed a slightly different

obstacles. Unlike the Rhythm generation or the tonal harmonic progression

generation, generating world scales could not be represented using a single

mathematical formula. For this reason, a different approach had to be taken in

order to generate suitable musical scales.

To meet the requirements, a semistructured database was created using XML.

The flexibility of XML allows future scales to be added to the list while keeping the

52

data organized in a way where information might not be consistent between each

scale. The primary object of the created database is the scale itself. Each scale then

contains a set of fields that must be filled in. This is accomplished using XML

Schema to validate the insertion of new information and that the file has been

created properly.

Currently the only information that is stored in the XML database for each

object are the fields of Title, Alternative Names of the scale, and the notes that can

be used to build the scale. The Title field represents the primary name for that

scale. The Alternative Name is used when a scale is referred to by any other name.

For example, a Double Harmonic Major scale (which is it's primary name) is often

called the Arabic scale as well. The Notes that can be used to build the scale are

exactly the same between the two scales. The notes field itself comprises of any

number of notes that MuseGEN then uses to build the scales.

The title field and the Notes field are single occurrences for a scale. This is

done because the primary name for the scale is only a single name. The Alternative

Names however is slightly different. Since a scale could theoretically have any

number of names, the alternative names of the scales is let unbounded. This means

that a user can insert any number of names to the database for this scale.

The notes that make up the scale is slight more complicated. Unlike what one

may expect, the scale itself does not contain MIDI integers as representations of the

scale. Instead, the database is created using an additive model. In this case, we can

build the scale on any MIDI note based on the additive information that is retrieved

from the database. Therefore each number in the database is a sum of the previous

note in the scale. Therefore is we saw the Notes to be added as [0, 2, 3, 2] we would

take any midi note we would like to build the scale on and add those numbers to the

previous note in the scale. If we choose 46 as the starting note, we would add 0,

53

then add 2 which would give us 48. We then add 3 to 48 which gives us 51, and

then we add 2 to the 51 to get the note. This is a simplified example of how this

information is used.

ALGORITHM V.3. XML Schema for created the Musical Scale Databse
1 <?xml version=" 1.0" encoding="UTF-8"?>
2 <schema xmlns:xs=" http://www. w3. org /2001/XMLSchema"
3 targetNamespace=" scales"
4 xmlns:tns=" scales"
5 elementFormDefault=" qualified">
6
7 < !-- Simple Elements ->
8 <xs: element name=" tit 1 e" type=" xs: st ring" />
9 <xs:element name="alt" type="xs:string"/>

10 <xs:element name="note" type="xs:int"/>
11
12 < !-- Complex Elements ->
13 <xs:element name=" notes">
14 <xs:complexType>
15 <xs:sequence>
16 <xs:element ref=" note" maxOccurs=" unbounded" />
17 </xs:sequence>
18 </xs:complexType>
19 </xs:element>
20
21 <xs:element name=" scale">
22 <xs:complexType>
23
24
25
26

<xs: sequence>
<xs:element
<xs : element

27 <xs: elemen t
28 </xs:sequence>
29 </xs:complexType>
30 </ xs: elemen t>
31

ref=" title" maxOccurs="I" />
ref="alt" minOccurs="O"
maxOccurs=" unbounded" />

ref=" notes" maxOccurs=" I" />

32 <xs: elemen t name=" root">
33 <xs:complexType>
34 <xs:sequence>
35 <xs:element ref=" scale" maxOccurs="unbounded" />
36 </ xs: seq uence>
37 </xs:complexType>
38 </ xs: elemen t>
39 </ schema>

54

The XML schema for the created database can be found in Listing V.3. Using

this schema, we create a database of scales by simply adding scales to an XML file

which uses the schema as validation. After this file is created, MuseGEN reads the

XML file using Java's built in XPath API to interpret the information in the

database. These scales are then built using the above mentioned additive method

and the MID I notes are stored in an array. This array is then Mapped to the scale

names using a Java Map data structure, using the scales name (and alternative

names) to map to an integer MIDI note array.

Understanding how these scales are built and stored is important for the next

section which uses the scale in multiple ways. First, the scale can be used to

determine the root note of the scale from which the chords generated can be

changed to reflect this information. The scale is also used to determine if a chord is

a diatonic chord or not. Diatonic chords are simply chords that are based on the

notes within the scale that has been selected. More information on how the scales

are used will be described in one of the next section.

D Tonal Harmonies

Tonal Harmonic Progressions represent the major focus of this thesis and will

be broken down and explained in detail. Many of the concepts that are explained

here are extensions of the concepts of Geometric Music Theory, Markov Decision

Processes, and Reinforcement Learning laid out in chapter III and chapter IV.

Therefore it is expected that you have read these chapters before delving into the

understanding of the tonal harmonic generation algorithm.

55

1 Minimizing Space Complexity

The latent model that is laid out in Dmitri Tymoczko's idea of geometric

music theory has the ability to model all possible chords in western music based on

the twelve pitch classes that musicians are extremely familiar. The downside to this

model is that, though it captures all possible permutations within any

n-dimensional torus, the number of permutations grow exponentially. Therefore the

space complexity requirements for storing the number of chords that are defined in

Tymoczko's model is equivalent to the notation in equation 6, where n is the

number of notes in the chord.

(6)

However, Tymoczko's model also captures the the voice leading aspect of the

chordal progression as well. For this reason, the space complexity for storing the

number of chords is expanded greatly. This is neither a good nor bad thing. It is

simply a portion of the model which causes the need for excess storage of chords.

However, in a subsequent paper, Tymoczko [21J defined a way to model various

transpositions of chords using a dynamic programming technique.

Since chords in music theory are defined as a series of pitch classes played

together, chords which share the same inversion of pitch classes can be combined

into a single category of chords. Therefore a chord which is defined as [0, 4, 7J, or

[A, Crt, E], would be equivalent to [4, 7, OJ; [7, 0, 4]; or [7, 4, 0], as well as all other

permutations of the 3 numbers. To simplify the space complexity, we can therefore

simplify the space complexity using combinatorics.

In this example, we can therefore simplify the permutations into a

combinations of pitch classes. However, we must also take into consider repetitions

of pitch classes since Music theory defines [l,l,lJ as a chord as well as [1,1,2J.

56

-.-_ .. -._._._---_._---------------------------------------

Therefore we notice that there are repetitions of notes that make up chords as well

as independent pitch classes. In combinatorics, we know that combinations with

repetitions can be solved using an extension of the binomial coefficient. This

combination is defined in equation 7.

(7)

In equation 7, n would represent the number of notes in the chord and k is

defined as the number of possible pitch classes. In western music, k is statically

defined as 12 pitch classes. Therefore, we can define the minimized space complexity

using the modified binomial coefficient by replacing the variable k with 12. This

space complexity is shown in equation 8. Also note that the top portion of the

binomial coefficient is simplified by subtracting 1 from k immediately.

(8)

Since Dimitri Tymoczko's model changes based on the number of notes in the

chord, this simplification shrinks the world space significantly as the world space

grows exponentially. In the case of 3 note chords, using Tymoczko's model, we

would have a world of 1728 chords. Using the minimized world, we have a total of

364 chords in the world using 3 note chords. This is approximately 89% savings in

the size of the world. This savings grows exponentially as the number of notes in

the chords grow. If we build a map of 4 note chords, we have a map of 20,736

chords using Tymoczko's model and 1,365 chords using the modified combination

process, a 93.4% savings in space.

57

31:10'

2S

05

~o Perm..QtIOns I
CombInations wth Aepettion

·050.!------+-----~----+_---___+----+_---____!

NlJTt)erolno4:ttslnthtchord

Figure 17. A plot showing the space requirements for the Tymoczko permutation
world and the combination with repetition world. Plot generated in MATLAB.

If we continue to plot this out , we see that the savings become extremely

significant as the number of notes , n, in the chord grows. Figure 17 shows the

differences in growth between the two maps. there is a large significance in the

growth until about 4 note chords where the Tymoczko world begins to grow

significantly while the combination process remains relatively small at the higher

orders.

Minimizing this space complexity does force the need for several additional

computations in MuseGEN engine. The most significant of which is the addition of

a Voice Leading algorithm which works to smooth the voicing between the playing

of chords in the MIDI sequence. We also need to add additional connections

between chords in order to capture the same information that might have been

captured in Tymoczko's model. The latter of these is relatively simple to do, and is

done while generating the world by looking at possible edges in the world from that

58

chord and determining if a new edge is needed for a chord which has already been

added. The Voice Leading algorithm is slightly more complex and is described in

detail in a subsequent section of this chapter.

2 Altering the Markov Decision Process

Having discussed how the world that the algorithms will be using is built, we

can begin to understand how the Markov Decision Process and Q-Learning discussed

in chapter IV can be used to generate tonal harmonies. Despite this, neither

Markov Decision Processes nor Q-Learning algorithms themselves offer a solution to

the complete problem without some minor alterations to the discussed algorithms.

Recall from the previous chapter that a Markov Decision Process (MDP) is a

4-tuple graph algorithm containing the tuples of (8, A, R(s), P(s'ls, a)). In this

tuple, 8 represents a finite set of states, A represents a finite set of actions, R(s)

represents the immediate rewards received for transitioning to a give state, s, and

P(s'ls, a) represents a transition matrix using the probabilities of moving to a state

given the current state and the action that was taken. The primary goal of the

Markov Decision Process is to find a policy of transitioning to reach a goal state.

Also recall, that the oft used method for solving a Markov Decision Process

was defined by Bellman [22] . Richard Bellman defines what is most commonly

referred to as the Value Iteration approach to find an optimal policy as equation 9.

In this equation the actions from any state make up a large portion of the resulting

Utility vector for finding an optimal policy. In most cases, these actions are

predefined for all states and never change. The actions for the chord progression

algorithm is slightly different from the actions that would make up a vector as

59

defined in the Bellman equation, where "I is the discount factor.

U(s) = R(s) + "I max L P(s'ls, a)U(s')
aEA(s)

Sf

(9)

In the chord progression algorithm, we have a large number of possible actions.

For the purpose of this experiment, only a smaller subset of actions were chosen.

However, calling the movement an action is slightly incorrect as the actions for this

world are are themselves a tuple. Therefore, it may be better to call the action for

the chord progression algorithm a velocity vector. It should be noted that in a

MDP, P(s'ls, a) can be simplified. Since it can be recognize that we are trying to

find the probability of moving to state prime, s', and that it is known that s and a

are independent variables, we know that solving the probability becomes the

probability of being in the current state, s, times the probability of choosing an

action (as shown in equation 10).

P(s'ls, a) = P(s)P(a) (10)

However, it should also be noted that since this is a fully observable MDP, the

probability of being in an incorrect state would be 0, and therefore P(s) would

always equal 1. Therefore, the probability of transitioning to a new state simple

becomes the probability of the action, as shown in equation 11.

P(s'ls, a) = P(a) (11)

Since we have defined the action for chord progression as a velocity vector, vx ,

60

we can rewrite this equation replacing all action as the velocity vector (equation 12):

(12)

The value of x in this equation for the velocity vector is dependent on the

number of notes in the chord. If for example we have 4 notes in the chord, we would

need to make 4 separate velocity vectors. Since it is easier to think about using 3

note chords, the following examples will use 3 note chords. Assuming we are using 3

note chords we might rewrite this equation as equation 13.

(13)

It is easier to think about the equation by writing this Probability as equation 14.

(14)

At this point, we can use the chain rule to expand this probability and simplify

finding the probability. It is also important to note that Vi is independent of '0 is

independent of Vk. However, Vj is dependent on Vi; Vk is also dependent on Vj and

Vi. Therefore we can expand this probability using the chain rule, equation 15, and

then simply by removing variables which are not dependent on another in that

chain, equation 16.

(15)

(16)

It should now be noted that the tuple of Vx contain the direction of the action

61

and magnitude of the speed. In this, ax represents the probability of moving in a

direction towards the goal while speedx represents the probability of a direct hit on

the state. The latter portion relates to undershooting or overshooting a note in the

chord. This was added to the chord progression MDP to encourage stochastic

exploration of the world. We also know that each of the probabilities for the tuples

are independent of one another, and therefore can simply the equation further.

Since the probability of Vx contains independent tuples, we can redefine the

Probability as shown in equation 17.

(17)

Knowing this information we can continue where we had left off in equation 16.

All of the velocity vector probabilities can be replaced with the tuples, as in equaton

18. Then simplifying the equation becomes simple. Since the Speed are always

independent of one another, and only actions make up the dependency in the

velocity vector dependency, we can simplify the transition to its simplest form in

equation 19.

3 Q Learning

With this equation, we can begin to solve the Bellman Equation for the MDP.

This extends into the Q Learning algorithm which uses an extension of the Bellman

equation to solve the MDP. In the Q Learning Algorithm, the Q update function is

62

defined as equation 20. Where the Q function Q(s, a) is the Q matrix, the Q

function, Q(s, a) is the learning rate, and'"Y is the discount rate.

Q (s, a) t- Q (s, a) + Q(s, a) [R(s) + '"Y m:;xQ(s', a) - Q(s, a)] (20)

This is equivalent to the equation in equation 21.

Q (s, a) t- Q (s, a) (1 - Q(s, a)) + Q(s, a) [R(s) + '"Y m:;xQ(s', a)] (21)

In the case of Q learning, we can extend this function by simply replacing the

actions, a, with the velocity vectors. The Q function must always return a value

between [0, 1]. For the purpose of this algorithm, all chords contain the same

learning rate. Therefore this function can be more simply represented as a static

number. For this reason, the Altered Q update function becomes the equation

shown in equation 22.

We can continue to keep the Q matrix as a 2-dimensional matrix by writing a

function to us the combination of velocity vectors to identify each uniquely and

using that id in place of the velocity vector. Using this, we can modify the Q

learning algorithm described in chapter IV. This modified algorithm is shown in

listing V.4. This algorithm is modified from the original algorithm described by

Watkins and Dayan [26,27].

63

ALGORITHM V.4. The modified Q Reinforcement Learning Algorithm
1 set gamma;
2 set R(S);
3 Q(:,:) = 0;
4
5 while (episodes)
6 s = Rand (S) ;
7 while(s != goal)
8 v = Rand (V) ;
9 Q(s ,v) = Q(s ,v)(1-learning_rate)+learning_rate*

10 [R(s)+gamma*max-action (Q(nexLstate , v)) 1;

12 end
13 end

One important aspect to the Q Learning function, and especially to the Q

update portion of the function, is the rewards vector for various states in the music.

Dmitri Tymoczko gives the basis for the rewards scheme in his book " A Geometry

of Music" [20] states that all of the central chords in the model are the major,

minor, augmented and diminished chords. These chords are defined by Tymoczko as

dividing the octave nearly evenly. These central chords are the primary chords that

are used by composers to create music. So when generating music, these chords are

the chords that are most desirable.

For this reason, each element of the world can be weighted using several

classifications of chords. For the purpose of this experiment, these classifications

were broken down into: major chords, minor chords, augmented chords, diminished

chords, diatonic chords, and other chords. A major chord is any chord who has two

intervals which consists of an interval of a major third (a jump of 4 tones) and

followed by a minor third (jump of 3 tones). A minor chord is any chord which

consists of two intervals of a minor third (jump of 3 tones) followed by a major third

(jump of 4 tones). An augmented chord is any chord which consists of two intervals

of a major third (jump of 4 tones) followed by a major third (jump of 4 tones). A

diminished chord is any chord which consists of two intervals of a minor third (jump

64

of 3 tones) followed by a minor third (jump of 3 tones). Other chords are defined as

chords which do not fall into any of the other categories above.

Diatonic scales are slightly more difficult to define in the scope of this project.

In traditional tonal harmony, diatonic chords are chords which consist of notes that

exist within the major and/or minor scales that are being used and is generally used

to define the four types of chords explained above. Since the definition of a chord

and the word tonal that Tymoczko defines in his book [20] are slightly altered from

their traditional usage, it then comes to question whether the word diatonic can be

used to escape the traditional meaning of the word.

For the purpose of this experiment, it was decided that the word diatonic

should be altered very slightly to fit in with the larger scope of the tonal progression

algorithm. In the scope of this experiment, the word diatonic has been used to

explain any chord who contains pitch classes from within any defined scale. This

therefore means that any chord, whether it is a traditional major, minor,

augmented, or diminished, or whether it is simply a chord which contains notes

from within the scale, becomes a diatonic chord. This allows the chords that are

generated to contain a much larger gamut of sounds without modulation than

limiting the word diatonic to its traditional usage.

The rewards scheme that was used for this experiment can be found in listing

V.5. These numbers cannot be altered from within the application and must be

altered from within the code if they are to be altered. These numbers presented

were chosen arbitrarily. This scheme was chosen since Major chords represent the

largest portion of chords that we wanted the algorithm to use. Minor chords follow

that, but to avoid making the music sound too dark, this is significantly less than

major chords. Augmented and diminished chords are extremely rare in music so

these numbers, though still positive, have a much lower number than the other.

65

1
2
3
4
5
6

Since we primarily want to remain in the same key, an additional 1000 are added to

all diatonic chords. All other chords get a negative reward in order to avoid ever

playing those chords unless it occurs by random chance.

ALGORITHM V.5. The rewards system used by the Q Learning Algorithm
private static double MAJOR 1500;
private static double MINOR 150;
private static double AUGMENTED 8· ,
private static double DIMINISHED 8· ,
private static double DIATONIC 1000;
private static double OIHER -50;

The goals for the music were also given an addition score, at a significantly

higher rate than any of the other chords listed. These goals are defined in music

theory as the chords which result in cadences. These chords are better known as the

major IV chord, the major V chord, and the diminished VII chord. These are

simply stop points in the algorithm which allow the movement of the chords to

continue on a chord which is used in cadences, primarily the tonic chord, the initial

starting chord of the algorithm.

With this information, the Q Matrix can be generated using the Q Learning

algorithm found in Listing V.4. This Q matrix can then be used to begin generating

tonal harmonic progressions. The way in which the Q Matrix is used is defined in

the next section.

4 U sing the Q Matrix

Using the Q matrix is relatively simple. If you recall algorithm IV.3 in chapter

IV, no significant changes need to be made to this algorithm in order to properly

use the matrix. However, this algorithm itself does not provide a method for

exploration around the world. For this reason, the algorithm is modified slightly to

allow for some stochastic exploration of the world.

66

In this case, a velocity vector, vx, is used to allow for the stochastic

exploration. Since the velocity vector consists of both the direction and the

magnitude of speed, we can allow one of these to follow a distribution to allow for

some slight randomness to allow for exploration. In this experiment, the speed was

given an empirical distribution that closely resembles a normal distribution. This

empirical distribution is given as the values [0.05, 0.15, 0.6, 0.15, 0.05]. Each of

these resembles a final offset for each note in the chord. The offsets are additive to

the final velocity vector that is calculated. These offsets represent undershooting,

overshooting, or hitting the desired target. The offset order is: undershooting by 2,

undershooting by 1, hitting the target, overshooting by 1, overshooting by 2. In an

additive manner this is [-2, -1, 0, 1, 2].

By using this empirical distribution on all of the notes in the chord we add

some stochastic exploration to the entire world. This does however remain a MDP

problem, as opposed to a Partially Observable Markov Decision Process (POMDP).

This remains an MDP simply because adding this offset does not change the fact

that the process understands that it undershot or overshot a specific chord. A

POMDP would require that the model has no way to determine if it has reached the

next state.

67

ALGORITHM V.6. A modified algorithm to use the generated Q matrix using prob
abilitic offsets

1 p[] = {0.05 => -2,
2 0.20 => -1,
3 0.80 => 0,
4 0.95 => 1,
5 1.00 => 2}
6 s = initial;
7 while (s != goal)
8 v = maximumQValue (s) ;
9 for each (v element as n)

10 r = U [0 ,1];
11 v [n] = add offset where r < p [i]
12 end;
13 s = n ext s tat e (s, v);
14 end;

Using this empirical distribution is done by generating a Uniform Random

Variate between a and 1 (U[O,l]). The number that is generated is compared to the

Cumulative Distribution Function, or in this case, adding the probabilities up until

the generated random number is less than the summed probabilities.

Therefore, we can rewrite the algorithm that uses the Q Matrix to reflect this

simple change in the algorithm. This algorithm can be found in Listing V.6. To

allow the program to generate MIDI tracks based on the generate stated, an

iteration of this loop is done when the Chord is requested by the program. This

allows the program to generate a good voice leading for the music and to add the

chord to the MIDI tracks without needing to generate excess amounts of chords

before this is done. In that sense, the Java class that was created for this works

more as a service to the rest of the program.

5 Solving Voice Leading

N ow that we are able to generate chord progressions based on the Q Learning

algorithm to solve the Markov Decision Process, we are left with one more musical

issue in the program. If you recall from the "Minimizing Space Complexity" section

68

in this chapter, the topic of voice leading was left open at the end of the chapter. In

order to generate music which is good to a listener, the topic of voice leading must

now be explored for multiple reasons. Firstly, voice leading plays an important part

in make music sound smooth during transitions of chords. Secondly, Voice Spacing

which are extremely far apart can lead to sounds which are awkward to most

listeners.

Solving Voice leading can be solved simply by generating a matrix of the

distances between the current note and the next note. We take a single note from

the current chord and calculate the distance in both directions to each of the notes

in the next chord. We continue this for all of the notes in the current chord.

Therefore if we want to move from the [A, eu, E] chord to the leu, F, GU] chord, we

can build a matrix as shown in table 4. To calculate the distance, we simply count

the number of notes between the current note and the note we are calculating to in

a direction, whether that direction is up or down. You will notice that both Up and

Down are listed in the matrix. Calculating the opposite is done by subtracting the

number that is opposite from 12.

Generating this matrix is relatively simple in comparison to using the matrix.

There are two approaches that can be taken to use this matrix: Greedy and Brute

Force. The MuseGEN engine has implement both types of approaches for users to

eu (Up)
A 4
eu 0
E 9

F (Up)
8
4
1

GU (Up)
11
7
4

eu (Down)
8

12 (0)
3

TABLE 4

F (Down)
4
8

11

GU (Down)
1
5
8

The Voice Leading Matrix for generating smooth voice leadings. This is generating by
calculating the number of notes between one note given the direction that is desired.

69

use.

The Greedy Approach is quicker for larger matrices, but in most cases, the

matrices are going to be relatively quick to brute force as well. The Greedy

approach is more likely to find a suboptimal solution to the problem as well. In

music, an optimal equation is not necessary in most cases, however it might be

beneficial to have an optimal solution to prevent the voices from leaving becoming

distant from one another over time.

The Greedy approach looks at the first note, in this case, we could assume the

note A would be the first note. If we choose this note as the first note, we would

choose the item in the matrix that contains the lowest number. Therefore we would

choose G~ as the note that the A would move to. The algorithm then prevents the

other notes from being able to choose G~. C~ would then choose C~ since the

movement is a value of o. E would then be left with F. In this voice leading, the

Greedy approach does return the optimal solution, but again, this is not always the

case. If for example, we use the chord [C,C,Dj and move to [A,B,Dj choosing the

voice leading for the Cs first, we get the suboptimal solution of [D,B,Aj where an

optimal solution would return [B,A,Dj. The greedy algorithm is shown in Listing

V.7.

ALGORITHM V.7. The Greedy Algorithm used to generate smoother voice leadings
1 set VLMatrix;
2 for each (voice)
3 choose lowest element from VLMatrix [voice 1 ;
4 remove element chosen from VLMatrix
5 end;

Since it was decided that this experiment would only work with 3 note chords,

The optimal algorithm uses an iterative approach, using a series of three loops to

choose the most optimal approach. Essentially, every voice receives its own loop to

70

help choose the optimal solution. Because of this, it becomes unusable as the

number of notes in the chord raises. The algorithm has a running time shown in

equation 23.

(23)

However, the running time is insignificant for low order chords. Because of

this, using the optimal algorithm for chord progression is possible. As mentioned,

the algorithm in MuseGEN uses a series of 3 loops which loop over each of the

voices and chooses the most optimal solution. This optimal solution is found by

summing the voicing distances and choosing the voice leading which offers the

lowest voicing distance. This algorithm for finding the solution for a three note

chord is shown in Listing V.S.

ALGORITHM V.S. The Optimal Algorithm used to generate smoother voice leadings
1 set VLMatrix;
2 for (int i =0; i < VLMatrix [voice]. length; i++)
3 for (int j =0; j < VLMatrix [voice]. length; j++)
4 for (int k=O; k < VLMatrix [voice]. length; k++)
5 if (i=j II j k II i k)
6 continue;
7
8 if (sum(voiceLeading) < sum (minimumVL))
9 minimumVL = voiceLeading;

10 end
11 end
12 end
13
14 return minimumVL;

No matter which method was used, the main purpose of this algorithm is to

reintroduce the voice leading back into the latent model that was minimized during

the generation of the chords in an earlier section from this chapter. This is also used

to keep the chords from moving in a direction that spreads the voice far away from

other voices in the chord. Using all of the algorithms and modifications to

71

algorithms discussed in this section of the chapter, we can generate harmonic

progression which seem to have some order and tonal center to the human ear.

Despite this order, there are still many parameters that can be added to help give

direction and more order to the tonal progressions. The future work that can be

done with this project is discussed a little later in this chapter.

E Programming MIDI tracks

Up to this point in the chapter, most of the discussion has been on the three

modules that have been created for this experiment. This section focuses on the two

core components that are in charge of developing the MIDI files that are created in

this experiment. The first of these classes is the stylistic preprocessor. This

discusses the way in which the current stylistic preprocessor works. The final

portion of this section of the chapter discusses the MIDI processor itself. This

section will discuss how all of the modules that were discussed earlier are used to

create sound, and how Java's MIDI API works to create MIDI sequences.

1 Stylistic Preprocessor

The stylistic preprocessor is perhaps the most important class in the MuseGEN

engine. The original intention for this program was to make the program easy to

switch between preprocessors. Since the preprocessor is the portion of the engine

that is used to generate various styles of music, the preprocessor would ideally be

able to replace one another. However, for the purpose of this experiment, the

stylistic preprocessor is a static class that lacks any ability to be switched.

The current stylistic preprocessor was designed to be very minimalistic so that

each of the generated chords could be heard clearly without the disruption of other

72

sounds in the sequence. For this reason, the preprocessor only requires the three

modules that were discussed in this chapter: the music database for scales, the

rhythm generator, and the tonal progression generator.

The implemented stylistic preprocessor takes in a set number of measures and

generates that many number of measures worth of chord progressions. The program

therefore loops through all of the measures, continuing to prepare the MIDI

information to be processed. In this stylistic preprocessor, a measure is defined as

the length of the generated rhythm. Therefore, for each of the measures, the

stylistic preprocessor loops through the length of the measure array. When a true

value is hit in the rhythm a new chord is produced and stored for processing.

The Chord storage is produced as a multidimensional matrix containing every

beat. Therefore the length of the preprocessed MIDI sequence becomes the number

of voices by the number of measures times the length of the rhythm. When a false is

present in the rhythm matrix, a -1 is stored in the preprocessed MIDI sequence.

When a chord is generated, the information is translated from pitch class

representations (zero to 11) to a MIDI integer which represents a pitch played at a

certain octave. The initial octave of the MIDI integer is statically defined in the

implemented preprocessor.

Generating the MIDI integer is relatively simple when the initial octave is

statically defined. First, the base pitch must be calculated. To do this, we can take

the base pitch representation (0-11), add one to the value and multiply the octave.

This should give the initial base pitch for a voice. To play the first chord, we need

to add the pitch which represents the chord's pitches for each of the voices. This

becomes the first chord that is heard by the listener. From here, we take the

returned chord and the path with which to reach the new chord for each of the

VOIces. We take the the shortest distance to the new note and add or subtract the

73

distance, depending on whether the note is moving up or down respectively. Once

all information has been generated for that preprocessed MIDI sequence, the

sequence is returned to the calling class so that the information can be passed to the

MIDI processor.

2 MID I Processor

The MIDI processor is much simpler in comparison to the Stylistic

Preprocessor. The MIDI processor uses Java's MIDI API to generate a MIDI

sequence which can be played back by the MIDI player class built for MuseGEN.

The MIDI processor is a very simple class designed to process the information that

is received from the Stylistic Preprocessor.

Since the information received from the Stylistic Preprocessor is a 2

dimensional array, the MIDI processor simply loops through the multidimensional

array to add information to the MIDI sequence. The preprocessed MIDI

information is a dual array containing an Y axis which contains the voices that are

being played and a X axis that contains the time ticks for each note being played.

If you recall that the preprocessed information contains MIDI notes and a stop

code (-1) where no changes are being made in the voice. Currently, this is the only

stop code available in the MIDI processor. The MIDI processor interprets this code

by simply skipping over the code and allowing the voice to continue playing through

the new chord. The only changes that are made to the MIDI sequence occur when a

new MIDI note is played in a voice.

MIDI sequences in Java are simple to create and adding notes to the MIDI

sequence are fairly simple as well. For the current iteration of MuseGEN, all

velocities on the note remain constant. These velocities represent the loudness and

softness at which the note is play. The MIDI information then takes information

74

-- --------------------------------

about the length of the Y axis of the multidimensional array. The Processor then

translates that by creating an n-dimensional ArrayList that contains all of the

voices as an individual track built on the same sequence.

In order to first create a MIDI sequence to be played back, we must create a

new Sequence object. Since our tempi may be user defined in the Stylistic

preprocessor, we need to create an sequence object which relies on Ticks rather than

a frame rate. This is done using the Sequence object constructor and the

Sequence.PPQ division type in Java. From this created sequence, we can create a

number of tracks which are dedicated to playing the notes of the music for each of

the voices for the generated song.

For all of our experiments, we create 4 tracks, meaning the generated music

has four separate voices in the music. This was modeled after the quartet musical

groups where four players perform on different instruments; however, the sound that

is heard in the MIDI is non-reflective of the voices. Each track uses a piano sound,

which gives the illusion that each note that is heard is a single instrument.

After creating the tracks, we simply loop through the entire generated MIDI

song from the stylistic preprocessor and tell each voice to turn the note on or the

current note it is playing off. This is done by creating a Note Event using the Java

createNoteEvent function and using either the ShortM essage.NOT E_ON or

ShortM essage.NOT E_OF F to turn a note on or off respectively. The below code,

in listing V.g, is used to generate a MIDI sequence which can then be returned and

played back or saved to a MIDI file for later playback.

75

ALGORITHM V.g. The MIDI Processor class used in Java to convert the multidi
mensional array created in the Stylistic preprocessor to a MIDI sequence for playback.

1 import javax. sound. midi. *;
2
3 public class processor
4 {
5 private int [] [] song;
6 private Sequence sequence;
7 private Track [] tracks;
8
9 public processor (int [] [] midipre)

10 {
11 try {
12 this. song = midipre;
13 this. tracks = new Track [this. song [0]. length];
14 this. sequence = new Sequence (Sequence .PPQ, 1, this. song. length);
15
16 for(int i=O;i<this.tracks.length;i++)
17 {
18 this. tracks [i] = this. sequence. createTrack ();
19 }
20 }
21 catch (Except ion e)
22 {
23 System. out. print (e. getMessage ());
24 System.exit(I);
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

}
}

public void process ()
{

int violinlcurr
int violin2curr
int violacurr
int cellocurr

this. song [0] [3];
this. song [0] [2];
this. song [0] [1] ;
this. song [0] [0];

int
int
int
int

violinl
violin2
viola
cello

57 + this. song [0] [3];
57 + this. song [0] [2];
57 + this.song[O][I];
45 + this. song [0] [0];

this. tracks [0]. add(createNoteOnEvent (violinl, 0));
this. tracks [1].add(createNoteOnEvent(violin2, 0));
this. tracks [2].add(createNoteOnEvent(viola, 0));
this.tracks [3].add(createNoteOnEvent(cello, 0));

for (int i =1; i<this. song. length; i++)
{

if(this.song[i][O] = -1)
continue;

if(this.song[i][3] != violinlcurr)
{

}

this. tracks [0]. add(createNoteOffEvent (violinl, i));
this. tracks [0] . add (createNoteOnEvent (violi n 1 +

this. shortestDistance (this. song [i] [3], violinlcurr), i));

if(this.song[i][2] != violin2curr)
{

this. tracks [1]. add (createN oteOffEvent (violin2, i));
this. tracks [1] . add (createN oteOnEvent (violin 2 +

76

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

}
}

this.shortestDistance(this.song[i][2] , violin1curr), i»;
}

if(this.song[i][l] != violacurr)
{

}

this. tracks [2]. add (createN oteOffEvent (viola, i»;
this. tracks [2] . add (createN oteOnEvent (viol a +

this. shortestDistance (this. song [i] [1], violin1curr), i»;

if(this.song[i][O] != cellocurr)
{

this. tracks [3]. add (createN oteOffEvent (cello, i»;
this. tracks [3] . add (createN oteOnEvent (cell 0 +

this.shortestDistance(this.song[i][O], violin1curr), i»;
}

violin1curr
violin2curr
violacurr
cellocurr

this. song [i] [3] ;
this. song [i] [2] ;
this. song [i] [1] ;
this. song [i] [0] ;

private static MidiEvent createNoteOnEvent (int nKey, long ITick)
{

}

return createNoteEvent (ShortMessage .NOTE..ON,
nKey,
VELOCITY,
ITick) ;

private static MidiEvent createNoteOffEvent(int nKey, long ITick)
{

}

return createN oteEvent (ShortMessage . NOTE_OFF,
nKey,
0,
ITick) ;

private static MidiEvent create Note Event (int nCommand,
int nKey, int nVelocity, long ITick)

{

}

ShortMessage message = new Short Message ();
try {

message.setMessage(nCommand, 0, nKey, nVelocity);
}
catch (InvalidMidiDataException e)
{

}

System. out. print (e. get Message (»;
System.exit(l);

MidiEvent event = new MidiEvent (message, ITick);
return event;

120 private int shortestDistance(int note, int newNote)
121 {
122 int t = 0;
123 if(newNote < note)
124 newNote += 12;
125

77

126
127
128
129
130
131
132
133
134
135

t = new Note - note;
if((12 - (newNote - note)) < t)

t = -1 *(12 - (newNote - note));

return t;
}

public Sequence getMIDISequence ()
{

return this. sequence;
136
137
138
139 }

}

private static final int VELOCITY = 64;

F The future of MuseGEN

A lot of improvements still remain to be made in MuseGEN. Firstly, there are

still many parameters of music that have not been added to this iteration of the

program. One module that would be an excellent addition to the next iteration

would be a dynamics module. This module would be used to change the loudness

and softness of the notes to make the music feel more musical. This is an important

aspect of all music as music is rarely found to remain at a constant level of

dynamics.

A lot of improvements still remain to be made in the Chord Progression

algorithm as well. This shows a great step towards a model which allows the

computer to mimic the deterministic process that composers might use to generate

creative new works. This is of course done by learning which chords lead well into

new chords while still progressing the music towards a musical goal in a sentence.

While this model does well in learning which chords lead well into other chords, it

currently lacks the ability to create a progression towards a goal.

The first thing that would be added to MuseGEN Harmonic progression

algorithm would be the ability to consider the stochasticism of the model. For this

iteration, calculating the probabilities of the move was left out. However, this is an

78

incorrect way of finding the best way to a goal. For this reason, adding the

stochasticism would allow the computer to choose paths which more closely model

the compositional determinism. This could be done by adding one simple line to the

Q Learning algorithm, as shown in equation 24.

Q (s, a) t- Q (s, a) (1 - a) + a [R(s) + 'Y m~xP(s'ls, a)Q(s', a)] (24)

The second thing that would need to be changed would be the need for adding

a temporal aspect to the compositional process. This would of course modify the Q

Learning problem significantly which may cause issues when attempting to learn

about rewards and goals. Using a temporal aspect in the chord progressions, we

could have a changing rewards system allowing us to give more direction towards a

specific goal. To do this, we might modify the Q Learning equation to appear as

shown in equation 25, where r is the symbol for the added temporal aspect.

Q (s, a, r) t- Q (s, a, r) (1 - a) + a [R(s, r) + 'Y m~xP(s'ls, a)Q(s', a, r')] (25)

And lastly, we would want to allow the learning algorithm to explore more of

the world. We could do this by allowing the progression to modulate to a new key.

This modulation would simply change the stop points. By changing the stop points

we need to change the reward system as well. This is slightly hard as changing the

rewards system would require the computer to learn more information. However, it

may be possible to change the already learned information to fit into the modulated

rewards system.

In addition to these changes, it would be beneficial to add new Stylistic

Preprocessors into the code and modify the Stylistic Preprocessor to work

79

independently of the program. This would simply require an overhaul of the current

method for building Stylistic Preprocessors, which is not difficult, but rather time

consuming.

Overall, MuseGEN was built as an experiment to show the possibilities of using

Reinforcement Learning algorithms in the scope of computer generative music. The

results show a fantastic start towards allowing computers to begin choosing Chord

Progressions in a larger scope for generating new music. However, there still remains

a lot of research that needs to be done before a computer could use this model

effectively to generate new works that would sound extremely pleasing to a listener.

80

CHAPTER VI

PERSONALIZING THE MUSIC GENERATION SYSTEM

The overall idea of this project was to create a music generation system that

would use a level of personalization to help create the music. This personalization

would capture certain aspects of the music to help determine the parameters to use.

One of the ultimate goals would be to tie this personalization into a random number

generator to help guide the music in a personalized direction. However, for the

purpose of this project, little was done in this area. The primary contribution to the

engine through these personalization methods was through the creation of a

specified file type which can be interpreted to help set various parameters.

A The .MGX file type

The M G X filetype was created for the purpose of this experiment to set the

various parameters in the music for the MuseGEN. The MGX file extension was

chosen due to it being a rare file type used mostly for save games in an older game

and for Micrographx Picture Publisher Clipart files. The MGX extension is an easy

to remember acronym for "Music Generation XML" .

This file is based off of XML using a schema created for this file type

specifically. The schema is found online at the author's personal website. In order

to create the .MGX file, you simply give an XML file the .MGX extension and add

the schema to the root element of the XML file. For this file type, the

81

noNamespaceSchemaLocation should be used on this element. Therefore to initially

create the .MGX file, you should include the XML tag and the root element

"musegen". The code should then begin by looking like the code in Listing VI.I.

ALGORITHM VI.1. Start of the .MGX file type
1 <?xml version=" 1.0" encoding="UTF-8"?>
2 <musegen xmlns :xsi=" http://www . w3. org /2001/XMLSchema-instance"
3 xsi: noN amespaceSchemaLocation=
4 " http://kreese . net /2010/MGXSchema. xsd">
5
6
7 </musegen>

The current location for the .MGX file types can be found in the listing,

Listing VI.I, as well. This location is ''http://kreese.net/201O/MGXSchema.xml'' .

A web location for this file schema was chosen so that any future changes to the file

type can be reflected in the MGX file. This allows validations to be done without

the need of software designed to work with each type of MGX schema. This Web

Location allows any XML validator, which uses XML schema, to check the validity

of any .MGX files.

Much of the rest of the .MGX files were created with the future of MuseGEN

in mind. Five major elements currently exist with only 3 of them being used to

their fullest at this iteration of MuseGEN. The five elements are "root", "timesig",

"scales", "modulations", and "data". The first four are representative of their

musical counterparts. The "root" element contains 2 elements information about

the root pitch of the scales that are being used, "note" and "octave". The "timesig"

element contains a 3-tuple of integer elements which can be used to build the time

signature in the music as well as the rhythm for the music. The "Scales" contains

any number of "scale" elements which are either strings or integers representing one

of the scales built into MuseGEN.

82

These three are the elements that are currently used by MuseGEN. In the

future, modulations will be added to MuseGEN which will then take into

consideration the fourth element in the .MGX file. The "modulations" element

contains any number of "root" elements. This "modulations" element would be

used to change the root pitch of the music and force the key of the scales that are

being used to change. This would allow more exploration of the latent model that

was discovered by Tymoczko.

The final element can be used to store information that the creator of the

.MGX file deems important. This might be important facial feature locations or IP

addresses of people hitting a server. The limits of this data are nearly limitless;

however, the information must be stored as integers. This was put into place so that

older .MGX files could be forwards compatible with future iterations of MuseGEN.

In those iterations, if an element is missing, the engine would use all of the data

elements to generate the missing information.

We therefore can see the final schema as is shown in Listing VI.2. Making an

MGX file by hand is not a problem so long as it correctly follows the Schema below.

An example MGX file can be found in Appendix C. The sample file is a complete

sample that was built by hand with the exception of the "data" tags which were

built using a random number generator using a normal distribution.

83

ALGORITHM V1.2. The XML schema for the .MGX file type.
1 <?xml version=" 1.0" encoding="UIF-8"?>
2 <xs:schema xmlns:xs=" http://www. w3. org/2001/XMLSchema">
3
4 <!- Simple Elements ->
5 <xs:element name="octave" type="xs:integer"/>
6 <xs:element name=" beat" type=" xs:integer" />
7 <xs:element name="bpm" type=" xs:integer" />
8 <xs:element name="accentedbpm" type="xs:integer"/>
9 <xs: elemen t name=" var" type=" xs: decimal" />

10 <xs: elemen t name=" note" type=" x s: s t r i n g" />
11 <xs:element name=" scale" type=" xs:integer" />
12
13 <xs:element name=" root">
14 <xs:complexType>
15 <xs:all>
16 <xs:element ref="note" minOccurs="O"
17 maxOccurs=" 1" />
18 <xs:element ref=" octave" maxOccurs=" I" />
19 </xs:all>
20 </xs:complexType>
21 </xs:element>
22
23 <xs: elemen t name=" timesig">
24 <xs:complexType>
25 <xs: all>
26 <xs:element ref="bpm" maxOccurs=" I" />
27 <xs:element ref=" beat" maxOccurs=" I" />
28 <xs :element ref=" accentedbpm" maxOccurs=" 1" />
29 </ xs: all>
30 </xs:complexType>
31 </xs:element>
32
33 < x s : e 1 e men t name=" sea 1 e s ">
34 <xs:complexType>
35 <xs:choice>
36 <xs:element ref=" scale" maxOccurs="unbounded" />
37 </ xs: choice>
38 </xs:complexType>
39 </ xs :elemen t>
40
41 <xs:element name="modulations">
42 <xs:complexType>
43 <xs: seq uence>
44 <xs :element ref=" root" maxOccurs=" unbounded" />
45 </ xs: seq uence>
46 </xs:complexType>
47 </xs:element>
48
49 <xs:element name=" data">

84

50 <xs: complex Type>
51 <xs:sequence>
52 <xs :element ref=" var" maxOccurs=" unbounded" />
53 </xs:sequence>
54 </xs:complexType>
55 </ xs: elemen t>
56
57 <xs:element name="musegen">
58 <xs:complexType>
59 <xs: all>
60 <xs:element ref=" root" maxOccurs=" I" />
61 <xs:element ref=" timesig" maxOccurs=" I" />
62 <xs:element ref=" scales" maxOccurs="I" />
63 <xs:element ref=" modulations" maxOccurs=" I" />
64 <xs:element ref=" data" maxOccurs=" I" />
65 </ xs: all>
66 </xs:complexType>
67 </xs:element>
68 </xs:schema>

B Biometric Personalization

One proposed way of generating personalized music using the technique in this

document is through the use of Biometric Techniques. Perhaps the simplest to take

from is using facial recognition. Since more and more laptops are beginning to

include cameras built into the system, it is becoming more probable that a user of

the system will have a web camera that could be used for such programs.

Facial Recognition is not the only biometric technique that personalization

could be limited to. There is no reason that other biometric techniques could not be

used just as effectively as Facial Recognition. For example, fingerprint scanners on

laptops could offer yet another solution to biometric personalization in the system.

There is also a possibility of using behavioral biometrics to personalize the output

musIc.

All three of the techniques above offer viable solutions on modern computer

systems. Unfortunately due to time constraints and running into unforeseeable

85

issues in the coding of MuseGEN, no biometric personalization was implemented in

the system. Biometric personalization is of interest in this system, and the original

intention was to include such personalization. It is therefore one of the first things

to do within the next iteration of the system.

C Massive Online Personalization

Another topic of interest has been the idea of using this system in an online

type community. Much of radio is now turning to the internet. There are radio

channels on the internet which provide listeners a personalized station for their

favorite music, such as Pandora. And even so, little has been done in the area of

online personalized generative music.

This section provides a brief discussion of the approach used for an independent

study that will be conducted during the Fall semester of 2010. In it, we will begin

generating music to be played on the internet that can be influenced by the

listenership directly. For this, we must first set up a station that can be used to play

the music. This can easily be done using Shoutcast or Icecast, daemons that run on

the system allowing you to stream music to any number of listeners on the internet.

After setting this up, we can begin using IP addresses to determine the country

in which the most listeners are coming from and using these IP addresses to

influence the probabilities of moving from one chord to another. In this respect, the

model becomes more of a Naive Bayesian model than a reinforcement learning

model. However, the reinforcement learning model that is generated from Q

Learning is still of use in determine how the changes should affect each chord.

In this example, we normalize the Q Learning Matrix so that each number

represents a number between zero and one. We can then use these probabilities with

86

some basic mathematics to change the numbers in the matrix dynamically during

the generation process. We could then normalize again and use a uniform random

number generator to process information to determine the next chord.

Since MuseGEN generates MIDI files, a little more needs to be done in order

to play the music through shoutcast. However, there are applications on Linux

which convert MIDI to WAY or MP3 files. Timidity++ is the most commonly used

program for such tasks. With it, you pass the MIDI information into the program

which then converts the program into a WAY file. Though this cannot be done in

real time, we can generate portions of the song for every so many minutes and then

convert and add the song to the Icecast buffer so that the generated music sounds

continuous.

This personalization is a completely different view on the way in which music

is generated than those proposed in this thesis. The intention of the personalization

is the same though. More experiments will need to be run to validate whether this

personalization offers the same type of result as those performed for this thesis.

This personalization technique has little to do with the end results of the thesis, and

is more of an interest in the possibilities of generative music than scientific results.

87

CHAPTER VII

CONCLUSION

The previous sections of this thesis discussed the possibilities for using the

computer to emulate the compositional process that many composers use to create

new music. None of the research was truly new in regards to the mathematics or

theoretical aspects, but rather provides a unique implementation of the Q Learning

algorithm in the context of musical composition. The research pushes towards the

viability of using Tymoczko's latent model, discussed in Chatper III, to

computationally generate harmonic progressions.

Though using stochastic processes is not a new task in music, no research I had

run across had attempted to generate tonal harmonic progressions in such music.

Using Markov Decision Processes to create such progressions does not seem to be a

highly researched area. It does however seem to be possible to create tonal

harmonic progressions using Q Learning. The Outcomes section below discusses

some of the resulting music and compares it to a short passage written by composer

Jennie Huntoon. The Future Work section is a culmination of all of the possible

future work that exists and was discussed in several other sections, as well as other

work that might be possible for the future of MuseGEN.

88

A Outcomes

The results of the experiment show some promising results. The fact that the

music was able to built chords that center around the tonic of the scale proves that

this might be a viable option for generating harmonic progressions. Figure 19 shows

a generated passage from MuseGEN. The first chord is built on a < C, D, G > chord

and resolves to the chord at the end of the passage.

Throughout the passage in figure 19, we see the tonic appear as well. Starting

in measure six of this passage, we see the alto voice holding the C pitch through the

rest of the passage. We also see this appear in the bass voice in measures 11 - 14.

The fact that these notes appear throughout the piece is indicative of the music

being focused around the pitch class of C.

Figure 18 shows a similar passage written by composer Jennie Huntoon and

used to compare the generated piece with a true piece composed by a human. This

passage is in the key of e minor which means the central focus of the piece should be

on the E pitch class. We notice that the < E, G, B > chord is present in the

beginning of the piece and is returned to later in the end of the passage. Though in

the human composed piece, there are no measures where the pitch of E is held for

mutliple measures, we do see the piece return to chords containing the E pitch

frequently.

Because of the central focus of the pitch class C and E in figures 19 and 18

respectively, we can consider both passages to be tonal in harmony. However, there

are still many things that make the generated passage no where near the depth of a

human generated passage. One very obvious visibility is that the computer

generated passage seems to repeat chords throughout the passage and sometimes for

measure at a time. The human generated piece is much more flowing and free

89

Figure 18. A passage written by composer Jennifer Huntoon using a four voice block
chord style. The chord progression shows tonal harmonic progressions throughout the
piece with some minor chromaticism as well. Music copyright of Jennifer Huntoon,
used with permission from composer.

moving between chords.

This may be caused by a lack of temporal rewarding in the piece. Humans

likely have the ability to comprehend the distance between the beginning and the

end of the piece and base their entire selection of chords on this temporal reward

system. The current implementation of MuseGEN does not take this into

consideration, meaning the rewards system is purely static and does not change over

time. As mentioned in the next section, this is something that should be looked into

during the next iteration of this project.

Despite these issues, there is evidence that Tymoczko's model captures tonality

and that by introducing stochastic decision making processes we can have a

computer generate tonal progressions. The next section discusses where this project

needs to go next in order to generate music which might be something that users

would enjoy listening to. After introducing some of these additions to the

90

r

r #r r r r r #r r
7 " I I

rI ~-7~ --lfU---- --

r "I
u I I

I I I I j j j j I I I .
-~ _._,.r- ---,j._- ~.----- -.,.j-. -_.

f rr f #r rr f r r f f

f r r r #r f #r r
Figure 19. A passage generated by the MuseGEN engine. The passage uses 4 part
voice block chords. It shows a tonal center around the pitch class c.

experiment, it would be worthwhile to have musicians analyze the music for

potential errors and run a statistical analysis between the computer generated and

human composed music in order to further validate tonality in the passages. There

was not enough time or analyzers to do this in this thesis.

B Future Work

The Music Generation Engine created for this thesis still leaves a lot to be

desired. It will not be writing music in the style of Mozart, Beethoven or other great

composers any time in the near future. However, this was not the intention of this

91

experiment. With the evidence provided in this thesis, MuseGEN has made a step

forward in a self sufficient agent for generating possible chord progressions. Yet even

with this evidence there still remains a lot of work.

The next step for this project would be to give the progression some form of

direction. Currently the music seems to wander around its environment aimlessly.

This provides an interesting sound for the music, but without direction, the music is

not something so captivating that an audience might enjoy listening to for extended

periods of time.

There are several ways in which it has been contemplated for giving the music

a direction. The first would be through a combination of other Machine Learning

algorithms to create a dynamic rewards system that changes with new training

data. This would be relatively simple, and might rid the music of the dark sounds

that are commonly heard in the music generated in this audio. Yet this still does

not ensure that the music is given proper direction.

Related to the above possible future work of this engine is adding a temporal

element to the Q Learning algorithm. Time is an important parameter that was

omitted in this experiment because it posed many problems in the coding that

would have been difficult. By adding these elements of time, we create the need for

a major overhaul to the Q Learning algorithm where the Q Matrix exists as a

multidimensional matrix containing not only state-action pairs but state-action

pairs through a period of time. We also need to add the temporal element to the

Rewards matrix. Because of this temporal element here, it might be better to use

some training data from other composers to build the Rewards matrix. These topics

are contemplated at the end of Chapter V.

Another possible derivative experiment with this project might be the

understanding and learning of composer's preferred chordal movements. In very

92

much the same way that David Cope's work with Musical Intelligence learns various

aspects of the composer, we could observe chord progressions made by composers

using a Bayesian network in order to allow the application to generate chord

progressions in the style of Bach or Mozart.

These additions are perhaps the most important to the overall goal of this

project. These are not, however, the limiting future work for the engine in general.

There are still many parameters of music that are not taken into account by the

engine. Firstly, though the element of Musical Rhythms are touched upon during

this iteration, the musical rhythms are static and do not allow for the robust

rhythms that are heard in music. Perhaps some combination of the mention

Bjorklund algorithm and some form of genetic algorithm would suit the musical

rhythm generation well.

The engine is also missing a melody generator. Melodies make up the flowing

lines that exist in music, and without these flowing melodies, music is often looked

at as boring. It is hard to take the melody into account until further developments

are made on the chord progression algorithm. Once a chord is generated, choosing a

melody is simpler. Yet even still, the development of the melody into actual music is

something that would need to be observed as well.

Dynamics are yet another parameter of music unobserved by this engine

currently. It would be a start to generate dynamics for the music in much the same

way that stochastic music might generate chord progressions. However instead of

jumping around, we might use a random number generator to choose whether to

move the dynamic up, down, or remain the same so as to create smooth and flowing

dynamics in the music. At some point, the dynamics might want to be guided

probabilistically using a smaller version of the MDP through the movement of the

melodic lines.

93

,

As one can see from this list of items which are possible for the engine, there

remains a lot of work before music can be generated which might be pleasing to a

typical listener. As mentioned several times in this thesis, these early experiments

were used to prove the possibility of generating tonal harmonic progressions using

Markovian Decision Processes. It would be the hope of this project to create a

system which could generate music that any audience member could listen to and

enjoy. However, from a purely scientific point of view in music, this experiment far

exceeded the expectations that one might hope for generating tonal progressions. It

may be possible with further development to create an intriguing progression of

harmonies in future iterations of this engine.

94

REFERENCES

[1] L. Menabrea, "Sketch of the analytical engine," Bibliotheque Universelle de

Geneve. Translation and Notes by Ada Lovelace, no. 82, pp. 1-59, Sep 1842.

[2] S. Kostka and D. Payne, Tonal Harmony: with an introduction to

Twentieth-Century Music, 5th ed. McGraw-Hill, 2003.

[3] J. Burkholder, D. Grout, and C. Palisca, A History of Wester Music, 7th ed.

W.W. Norton, 2005.

[4] K. Essl, The Cambridge Companion to Electronic Music, 1st ed. Cambridge

Press, 2007, ch. Algorithmic Compositon, pp. 107-125.

[5] G. Boolos and R. Jeffrey, Computability and Logic, 4th ed. Cambridge Press,

1999.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,

2nd ed. McGraw-Hill, December 2003.

[7] J. H. Chalmers, Divisions of the Tetrachord. Frog Peak Music, 1993, ch. 3.

Aristoxenos and the geometrization of musical space, pp. 17-23.

[8] Ptolemy, Harmonics, J. Solomon, Ed. Brill, 2000.

[9] D. Cope, Experiments in Musical Intelligence. A-R Editions, Inc., 1996.

[10] H. Noguchi, "Mozart - musical game in c k. 516f," Mitteilungen de ISM,

vol. 38, pp. 89-101, 1990.

95

[11] J. Cage, Silence: Lectures and Writings. London: Marion Boyars Publishers,

1978.

[12] 1. Xenakis, "The origins of stochastic music," Tempo: New Series, no. 78, pp.

9-12, 1966.

[13] --, "La musique stochastique: elements sur les pro cedes probabilistes de

composititon musicale," Revue d'Esthetique, vol. 14, no. 4-5, pp. 294-318, 1961.

[14] --, Formalized Music: Thought and Mathematics in Music, rev. ed.

Pendragon Press, 1992.

[15] G. Koenig, "Composition processes," Computer Music Reports on an

Intenational Project, 1980.

[16] G. Wang, "The chuck audio programming language" a strongly-timed and

on-the-fiy eviron/mentality" ," Ph.D. dissertation, Princeton University, Aug

2008. [Online]. Available: https:/ /ccrma.stanford.edu/ ge/thesis.pdf

[17] G. Loy, "Musicians make a standard: The midi phenomenon," Computer Music

Journal, vol. 9, no. 4, pp. 8-26, 1985.

[18] D. Tymoczko, "The geometry of musical chords," Science, vol. 313, no. 72, pp.

72-74, Feb 2006.

[19] --, "The geometry of musical chords - supporting material," Science, vol.

313, no. 72, pp. 1-29, May 2006. [Online]. Available:

www.sciencemag.org/cgi/content/full/313/5783/72/DC1

[20] --, A Geometry of Music. Cambridge Press, Sep 2010.

96

[21] --, "Scale theory, serial theory and voice leading," Music Analysis, vol. 27,

no. 1, pp. 1-49, Mar 2008.

[22] R. Bellman, "A markovian decision process," Rand Corp, Tech. Rep.

AD0606367, April 1957.

[23] --, Dynamic Programming. Princeton: Princeton University Press, 1957.

[24] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.

Upper Saddle River: Prentice Hall, 2010.

[25] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley-Interscience, 2005.

[26] C. Watkins, "Learning from delayed rewards," Ph.D. dissertation, King's

College, 1989.

[27] C. Watkins and P. Dayan, "Q learning," University of Edinburgh, Tech. Rep.,

1992.

[28] A. Strehl, L. Li, E. Wiewiora, J. Langford, and M. Littman, "Pac model-free

reinforcement learning," Proceedings of the 23rd ICML, pp. 881-888, 2006.

[29] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Boston:

MIT Press, 1998.

[30] G. Toussaint, "The euclidean algorithm generates traditional musical

rhythms," Proceedings of BRIDGES: Mathematical Connections in Art, Music,

and Science, 2005.

[31] Euclid, Elements, T. Heath, Ed. Dover, 1956.

97

[32J E. Bjorklund, "A metric for measuring the evenness of timing system

rep-patterns," Los Alamos National Labs, Tech. Rep., 2003.

[33J --, "The theory of rep-rate pattern generation in the sns timing system," Los

Alamos National Labs, Tech. Rep., 2003.

98

APPENDIX A

Musical Foundations for Non-Musicians

Much of this document makes assumptions that the reader has at least a basic

understanding of how to read music. I recognize that a majority of the readers of

this document will be computer scientists and mathematicians who may not have

the level of knowledge in Music Theory that this thesis skips over for the purposes

of flow. This Appendix is meant to be a reference guide for those non-musicians

who are interested in this topic but might be overwhelmed by the music terminology

and musical renderings in the document.

A The Physics of Pitch

Pitch is one of the most basic foundations of general music theory. Kostka and

Dorothy [2] define pitch as a reference to the highness or lowness of the sound

produced. From a physical sciences standpoint, pitch is simply a musical word for

the frequency of notes. The higher the frequency of a tone, the higher the tone

sounds to the human ear.

The human ear has the ability to hear sounds between the spectrum of 20 Hz

to 20 KHz (or 20,000 Hz). Because of this, there is an extremely large range of

possibilities of pitches that the human ear can hear. Distinguishing between small

differences in tone, especially at the higher range of human hearing, becomes

difficult. Because of this, music theory defines a set of pitch classes, which separate

99

frequencies into easily distinguishable sets of frequencies that are closely related to

other pitches in the class.

The pitch classes in music theory are described using the first seven letters of

the alphabet: A, B, C, D, E, F, and G. Further pitch classes are represented by

lowering or raising each pitch by half a step. Since, for example, lowering a Band

raising an A result in the same sound, and since raising a B is equal to a C (and and

a lowered C sounds like a B) and E and F work the same way, we have a total of 12

possible pitch classes. Each pitch class is representative of a large set of possible

notes which have a frequency ratio of 2:1 to its neighboring octaves. In simpler

terminology, a pitch class of A contains tones with a frequency of 440Hz, 880Hz, or

220Hz (and all other tones which are ~ or 2 times any tone frequency in that set).

Each tone in the pitch class represents an octave of that pitch class.

Using this idea of pitch classes containing octaves, you can further represent

the example given in the previous paragraph using various octaves numbers. The

440 Hz pitch can be represented using the characters A5 (an A in the 5th octave),

whereas a 220Hz is represented as A4 (an A in the 4th octave) and 880 is

represented as A6 (an A in the 6th octave). For the purpose of this thesis, our

octave designation system is a version of the MIDI Octave Designation System. In

this system, the lowest note available to Midi, Midi note 1 (8.176 Hz), is defined as

octave zero and the tone itself is represented as CO, and the highest available tone,

Midi Note 128 (12,543.854 Hz), is Octave 10 and represented as GI0.

Understanding this concept of pitch class lays the groundwork for further

elements of reading and understand pitches in music. The next subsection discusses

how these pitches are represented in musical renderings, including alterations of the

pitch class and enharmonic tones.

100

B Reading Pitches in Music

Each of the pitch classes that were discussed in the previous section can be

represented in musical staves which can be viewed as a 2 dimensional plot where

there Y axis is representative of the pitch and the X axis is the duration of the

notes. However, instead of using traditional mathematical plots, musicians use a

series of 5 lines with a total of 4 spaces separating each of the lines, as shown in

figure 20. When a note is placed on any line or space within the staff, various

pitches and note lengths in music can be represented.

In order to determine which pitch is being represented, musicians use clefs to

indicate certain pitches on the range. Musician use three different clefs: the Treble

clef or the G-clef, the Bass clef or the F-clef, and the Alto/Tenor/etc. clefs or the

C-clef. In this document, all figures use either the Treble or Bass clefs. For this

reason, the rest of this section will discuss pitches on the Treble and Bass clefs.

Figure 33 is an engraving of both the Treble (21(a)) and Bass (21(b)) clefs.

These clefs have points on them which represent the note for which they are named

which make it easy to remember, and to determine the pitch representations on and

off of the staff. In the case of the Treble clef, the pitch of G is represented by ending

the swirl portion of the clef on the line representing the pitch of G. The Bass clef

works in a similar way by representing the pitch of F on the staff. In this case, the

top curvature portion of the clef ends on the line representing the pitch of F. Using

Figure 20. Rendering of a completely empty staff

101

•----'-'---
~~~, .. ~ ... -... 

-, =~,,~-.~~~ 

(a) Treble Clef 

(b) Bass Clef 

Figure 21. An engraving of the (a) Treble and (b) Bass clefs on the staff. 

these two clefs, you would now be able to derive any pitch representation on the 

staff by incrementing - or decrementing - from this pitch representation until the 

pitch you are attempting to find is reached. 

One simpler way to remember the notes on the staff is using mnemonic 

phrases. We can remember all of the notes represented on the lines of the Treble clef 

staff using the mnemonic phrase" Every Good Boy Does Fine" where the first letter 

represents the pitch representation from the bottom line to the top line from right 

to left (E, G, B, D, F) in the mnemonic phrase. The spaces on the staff can be 

easily remember by using the mnemonic word FACE, where again, the letters of the 

word represent the spaces from the bottom up. The Bass clef mnemonic phrases 

work in the same way as the mnemonic phrase for the lines in the treble clef. The 

Bass clef mnemonic phrases for lines and spaces are, "Good Boys Do Fine Always" 

and" All Cows Eat Grass" respectively. 

Since we now have two methods to determine and remember the pitches on the 

Figure 22. A C major scale which shows all pitch classes within one octave. 

102 



staff, we should be able to understand and read a simple scalar passage. Figure 22 

shows a C major scale which shows all of the pitch classes on Treble clef staff. You 

can ignore the numbers written after the Treble Clef, these will be discussed in a 

later section in this appendix. D sing the first method discussed, the pitch of G can 

be determined, which in this case is the fifth note in the figure. From here, all of the 

other pitches can be determined as well. By moving upwards on the staff, we 

increment the G by one. Since G is the end of our pitch class list, we return to the 

beginning of the list; therefore the note following the G is the pitch of A. 

Subsequent notes in that direction are Band C respectively. Moving downwards, we 

work backwards on the list. The note just prior to G is the pitch of F and we can 

continue this to determine all of the notes in the scale. 

D sing the second method allows us to figure out 6 of the notes in the scale 

without counting. Since our mnemonic phrase for lines is II Every Good Boy Does 

Fine" from bottom up, and our spaces have a mnemonic word, FACE, from the 

bottom up, we know that the third note in the scale in figure 22 is an E since this is 

the first line; the fourth note in the scale is on the first space which we know is F. 

We can continue this up to the 8th note in the scale, or C. However, since our 

mnemonic phrases only tell us between the first and fifth line, the mnemonic phrase 

does not help us in determining the first two pitches in the scale. To do this, we can 

go back to the first method and decrement the first line, E, to determine that the 

first and second notes are C and D respectively. Notes will occasionally go off the 

staff and, to the best of the authors knowledge, there is no easy way to determine 

the pitches of those notes without using the first method described. 

103 



Figure 23. A visualization of a single octave on a keyboard from C to B. (Image 
Courtesy of "Jonathan Diet" and Public-Domain-Photos.com, Licensed under the 
Creative Commons) 

C Altering Pitch Representations in Music 

In the previous section, it was shown how musicians represent seven of the 

pitch classes that have been discussed. If you remember, there are a total of 12 

possible pitch classes. In order to achieve the other possible pitch classes, we must 

alter notes by raising or lowering pitches. To better understand this, it would help 

to visualize an octave on a keyboard (See figure 23). The seven pitch classes that 

were discussed in the previous section are the white keys shows in figure 23. The 

rest of this section will discuss when the black keys are shown on the musical staff. 

Musicians use two symbols to alter pitches in music. The sharp symbol (~) is is 

used to raise the note by have a step. Conversely, the flat symbol (~) is used to 

lower the pitch by half a step. In modern music, both flats and sharps coexist as 

enharmonic equivalents. For example, raising a C and lowering a D result in the 

same pitch sounding. Generally the decision of which note to use is left up to the 

composer of the music. 

If you refer to the keyboard image again, figure 23, you will notice the first two 

white keys - which are C and D respectively - are only seperated by one black key. 

104 



This is a C~ or Db depending on which note the composer has decided to write in 

the music. However, both notes sound the same since they are both played on a 

single key. 

1 Altering Pitches Directly 

When a note in music needs to be raised or lowered half a step, the sharp and 

flat symbols can be used directly on the staff. When placing the note on the staff, 

the symbol is placed to the left of the note which needs to be raised. Figure 24 

shows the C~ major scale, in which all notes in the scale are raised by half a step 

from the C major scale. 

Figure 24. A C major scale which shows all pitch classes within one octave. 

There is a special case, which should be discussed here. If you remember the 

visualization of the keyboard (figure 23), you may recall that there is not a black 

note separating the E and the F keys (third and fourth white keys respectively). In 

this case, raising an E by half a step will result in an enharmonic sound of an F 

while lowering an F by half a step will result in an enharmonic sound of an E. This 

same special case happens between the B and the C keys. These cases are caused by 

the tuning system used by music which splits the octave into 12 tones, where 

pythagorean theory determines various triads which make up the white keys on the 

keyboard. 

Similar to the C sharp major scale, we have the C flat major scale which is 

constructed by lowering all of the notes by half a step. This scale is shown in figure 

105 



Figure 25. A C~ major scale which shows all pitch classes within one octave. 

25. Both figures 24 and 25 are shown by altering the notes in the C major scale 

directly. 

Another rule that should be remembered is that when an accidental - an 

altering of the pitch directly - is used, the alteration affects the note throughout the 

measure it is written. In order to bring the accidental back to a white note, we use 

the natural symbol (q). However, if instead of bringing the note back to a natural in 

the measure that contains the alteration, the alteration ends in the next measure, 

unless the alteration is written again and the natural symbol is not needed. The 

concept of a measure is further explored in section E. 

In figure 26, the passage shows the first portion of Beethovens "FurElise" 

written in a slightly different time signature to show the effects of accidentals on a 

measure of music. Notice that in this measure of music, the first D is raised by half 

a step and that the second D has no accidental next to it. In this instance, the 

performer is expected to play the second D as a D~. However, the third D has a 

natural sign written next to the note. Therefore, the first two Ds are to be played as 

a D~, while the final D is meant to be played as a D (or Dq). 

Figure 26. The opening passage of Beethovens "Fur Elise" written in 5/8 time to 
show the effects of accidentals on a measure. 

106 



._ .. __ ... _--------------------------------------------

If we were to rewrite Beethoven's passage again, as a two measure system and 

ignoring Beethoven's originally written pickup measure, we can see how accidentals 

would affect the appearance across a two measure system. Figure 27 is an engraving 

of exactly this; a bar separates measures. None of the nones were changed, therefore 

the first and second Ds are raised half a step despite the second D not having an 

accidental placed in front of it. Notice now in the second measure that the D has no 

natural sign written next to it. Since this D is now a part of a new measure, it is 

assumed by the performer or analyst that the D is a D natural and no symbol is 

needed. 

2 Key Signatures 

In much of music, altering all the necessary pitches can become a daunting 

task which leaves music nearly unreadable by the performers or analysts. Generally 

using a scale which is built on a specific note makes use of various flats or sharps to 

make a specific type of scale. For example, the C major scale shown in figure 22 is 

built on the pitch class of C. If we were to alter this scale so that the scale begins on 

D, the scale would no longer be a major scale. This is because scales are a static 

musical device; if you remember the visualization of the keyboard once more, using 

the C major scale we can determine the jumps of pitch classes required to create a 

major scale. 

Figure 27. The opening passage of Beethovens "Fur Elise" written in 3/8 time and 
ignoring the pickup measure originally written by Beethoven to show the effects of 
accidentals across two measures. 

107 



If we tie each of the notes in the C major scale to the piano, we can see that 

the jump from C to D is of two pitch classes (in other words skip over one pitch 

class and play the second). The same happens between D and E. From E however, 

we now have a jump of only one pitch class, E to F. We can continue this to 

determine that a scale is built using the following jumps: 2-2-1-2-2-2-1. Now that 

we know this, all scales of the same general type (major, minor, etc.) must be built 

using these number of jumps. 

If we return to the major scale which begins on D, we find that we no longer 

have just white keys in the scale. Building the scale using the jumps, we now see an 

F~ and C~ in the scale. If we were to write music based on this scale, we would 

required to write each note's sharps and flats into the sheet music. There is however 

an easy way to tell the analyst or performer that specific notes in the music should 

be sharp or flat. 

In order to do this, we simply place the sharps or flats at the beginning of the 

music, next to the possible staffs. This lets the performer or analyst know that every 

note in the music will be sharp or flat. If we return to our C~ major scale shown in 

figure 24, we can rewrite this so that the scale becomes easier for a performer or 

analyst to read. Figure 28 shows how this would be done. Notice that the engraving 

now looks very similar to the C major scale; however, since there are sharps written 

to the right of the staff, we know that every note in that system will be sharp. 

We can do the same for the C~ major scale shown in figure 25. This same 

Figure 28. A C major scale which shows all pitch classes within one octave. 

108 



concept for the key signature would be used. Figure 28 shows how this key signature 

would appear in the music. Again, you will notice that the scale once again looks 

similar to the C major scale. The key signature does, however, make every note in 

that scale flat. The C~ and CD scales were used as examples to show the extremes of 

altering pitches as these scales contain all of the sharps and flats in western music. 

Every scale built on various pitches has a key signature which makes building 

the scales easy to remember. To remember the number of flats and sharps in the 

scales, musicians have created what is known as the Circle of Fifths. This tool starts 

with the C major scale at the top and works by jumping by seven pitch classes 

when moving to the right, or by five pitch classes when moving to the left. Each 

jump adds a sharp when moving to the right and adds a flat when moving to the 

left. To better visualize the circle of fifths, you can refer to figure 30, which also 

shows the associated key signature(s) for each of the jumps. 

You may notice that in the Circle of Fifths image, the bottom elements of the 

circle contain more than one key signature associated with the element. These key 

signature are enharmonically equivalent, which simply means that when the scales 

for each of the key signatures are played, they are indistinguishable to the ear. 

These element's key signatures are use nearly interchangeably, depending on the 

enharmonic tone used to generate the scale. For example, DD and C~ are 

enharmonically the same (as discussed in a previous section). If the scale is built 

using the C~ as the primary note in the scale, we would use the seven sharp key 

Figure 29. A CD major scale which shows all pitch classes within one octave. 

109 



~ 

F 

~E~ 3~ c 

H 
d 

~lajor 

C 
q 
a 

Nlinor 

G 
1# ~ 

e 2#0 
b 

f# 3# A~ 

Figure 30. The Circle of Fifths which is used to show how closely related scales are 
and their respective key signatures. (Image Courtesy of user "Just Plain Bill" on 
Wikimedia Commons, Licensed under the Creative Commons) 

signature. However, if we chose to use D~ instead, we would use the five flat key 

signature. 

As a note, key signatures can be changed in the middle of a piece. None of the 

examples used in this thesis will contain changes in key signatures. However, it is 

good to note such things as a possibility in other documents, related or unrelated to 

this thesis, containing musical examples. The way in which this is done is by either 

simply writing the new key signature, if you are adding sharps or flats, or by writing 

the natural symbol in the key signature to emphasize to the user that those 

particular tones are now flat. If you are changing from sharps to flats (or vice 

versa), you would first write the entire flat or sharp key signature as naturals to tell 

110 



Figure 31. Moving between key signatures. This example shows 2 sharps (D major) 
moving to 3 flats (ED major) and then adding 2 more flats (DD major) and then 
moving back to 3 flats (ED major) 

the user that key signature is no longer valid to this portion of the music, then write 

the new flat or sharp key signature in its entirety. Figure 31 shows how a composer 

might move from one key signature to another. 

D Time Value of Notes 

Prior sections in this appendix focused on one aspect of music, pitch. The rest 

of the appendix will focus on the second aspect of music, time. Musicians use a 

series of symbols in music notation which allow the performer or analyst to 

understand the timing of the start and end of notes at a specific point in the music. 

Table 5 shows the various symbols that will be discussed as well as a reference to 

the names which will be used in the discussion. 

The table shows the note values from the Whole Note to the Thirty Second 

note. You may notice that as the notes get higher, they are generally some addition 

to the previous note to change the note value. For example, the half note is simply 

the addition of a bar connected to the whole note symbol and the quarter note is 

simply changing the half note so that the head, the portion that looks similar to the 

whole note, is colored in. From the quarter note, the addition of flags on the bar are 

used to cut the note values. 

Generally, these notes are what you will find in almost all music. However, 

occasionally other shorter notes may be seen in western music. These notes are 

111 



TABLE 5 

The Engraving of note lengths and the name of the symbol; table displays Whole 
note to thirty-second note. 

Music Notation Note Name 

Whole note 

Half note 

Quarter note 

Eighth note 

Sixteenth note 

Thirty-Second note 

112 



similar to the 32nd notes but contain more flags. By adding an additional flag to 

the 32nd note, we get a 64th note. Computer Scientists may notice that these notes 

fall in the typical binary system as all values of notes are multiplications to the 

power of 2. This makes understanding the values of the notes slightly easier to 

remember as Computer Scientists are used to working in the twos power domain. 

These note values are generally not the only portion that represents time in the 

music. In fact, the note values discussed represent fractions of higher order notes. 

These symbols are simply used to make understanding the music as a performer or 

analyst possible. Any of the notes discussed can be potential beat values in the 

music. This portion of time is discussed in the next section on Time Signatures. 

The important portion of this section is to understand that each of the higher order 

notes can be broken into smaller segments using smaller order notes. 

For example, a whole note can be broken down into half notes by including 2 

half notes. A whole note could be further broken down into quarter notes by 

including 4 quarter notes. In comparison, a half note can be broken into 2 quarter 

notes and 4 eighth notes. To think about this in mathematical terms, which may 

generally be easier for mathematicians and computer scientists, we can use simple 

mathematics to determine how many of a smaller order note make up a larger order 

note. This equation can be found in equation 26. 

(26) 

In equation 26, nlow and nhigh are the order of the note, or in otherwords the 

exponent portion of the power of 2s that were discussed earlier. For example, a half 

note is 21 , therefore nhigh would be 1, while an eighth note is 23 , therefore nlow 

would be 3. Using this equation, we can find the number of eighth notes the half 

113 



note can be broken into: 

Therefore, we know that we can break a half note into 4 eighth notes. 

On occasion, these note values are not enough and we need to extend the notes 

being used to add length. This is done by adding a dot to the right of the note. 

This dot adds a half of the notes original value. So if the dot is added next to the 

half note, our note becomes the length of 3 quarter notes. This works for any note 

where we want to add length. Figure 32 shows the notation for adding length to a 

note. The example shows a dotted half note, but the dot can be applied to any note 

length discussed in this section. 

E Time Signatures 

The final element that this appendix will discuss is the concept of time 

signatures and speed of music. The time signature is an important aspect of music, 

as the time signature is used to determine how the music is to be broken down. The 

time signature itself is a symbol which appears as a numerical fraction near the 

beginning of the staff. The time signature is used to allow the musician or analyst 

Figure 32. The Musical Notation for adding length to notes, this example shows a 
dotted half note. 

114 



to better understand how the composer wants the "meter" of the music to feel. In 

rare cases, the time signature is left out and the music is unmetered. This gives the 

music a specific effect which is commonly found in ancient or medieval music, such 

as chant music. 

It is not necessary to understand numerical fractions in order to interpret time 

signatures. A time signature is comprised of 2 numbers which are placed on the 

staff one above the other. The numerator of the time signature is the portion that 

tells the analyst or performer how many beats there will be in a measure. The 

denominator is the portion that represents the type of note which gets the beat. 

If you return to table 5 in the previous section, each of these notes can be used 

in the denominator of the time signature. The time signature is written as the twos 

power interpretation of the note. For example, a half note would be written as 21 or 

2, and an eighth note would be written as 23 or 8. The numerator of the time 

signature can be written as any mathematically natural number. 

Understanding both the numerator and the denominator give you an 

understanding of how the music is broken into measures. Each measure is separated 

by a bar on the staff. Before a bar can be placed, the sum of the value of all of the 

notes in the measure must be equal to the number of beats given in the time 

signature. If the time signature is written as ~, we must have 3 eighth notes, an 

equivalent number of smaller order notes, or some combination thereof. 

There are two special symbols used in place of time signatures that should be 

understood, as they may be frequently used in this thesis. The first symbol can be 

found in figure 33(a). This symbol is known as the Common Time symbol, and 

looks like a C. The symbol is generally used in place of a ~ fractional time signature, 

as the common time symbol is equivalent to ~. The second symbol can be found in 

figure 33(b). This symbol is known as the Cut Time symbol. 

115 



(a) 

(b) 

Figure 33. An engraving ofthe (a) Common Time and (b) Cut Time symbols used in 
place of a fractional time signature. These are equivalent to ~ and ~ fractional time 
signatures. 

In mathematics, ~ and ~ would both be equal to one another. In music, this 

holds true for the number of beats within the measure as well. Though it is generally 

accepted in music that ~ is twice as fast as ~, given the number of beats total in the 

measure. However, they can both sound the same with changes in tempo as well. 

Tempo is another important aspect of timing in music which is closely 

associated with time signatures. You may have noticed that time signatures had 

nothing to do with the speed of the music. The tempo is written at the start of the 

piece, either as a word representing the approximate speed or as a natural number 

representing the number of Beats per Minute (BPM). With the BPM, the music can 

be played as fast or slow as needed by playing the number of beats per minute as 

accurately as possible. The beat which is played is closely associated with the 

denominator of the time signature. For the purpose of this thesis, most of the 

examples will not have a tempo associate with the music engraving. This is for 

simplicity as the tempo has no effect on the purpose of the examples. 

116 



F Final Words 

With an understanding of each of these sections, a non-musician should be able 

to understand and observe the various musical factors in this thesis. Though most 

of this thesis focuses on the mathematical properties of music and using various 

algorithmic approaches to take advantage of the mathematical properties, there are 

still musical concepts which cannot be avoided in this thesis. 

To review what was discussed, we briefly went over the acoustical properties of 

music. This section has very little to do with the thesis itself, however having an 

understanding of the acoustical properties allows us to discuss pitch in a scientific 

manner rather than in a purely artistic way. These acoustical properties might be 

used for such things as signal processing which is a potential future project for this 

music generation engine. 

The next two sections went over the twelve pitch classes found in music and 

how these are written so that musicians and analysts can understand what the 

composer wanted with respect to pitch. We discussed the Staff and various clefs 

used, while putting more emphasis on the two clefs which are frequent in this thesis 

(the bass and treble clefs). These clefs allow the analysts or musician to determine 

which pitch each note on the staff symbolize. Without these clefs, music would be 

unreliable. We also discussed the sharp symbol (~) and the flat symbol (b) which are 

used to alter pitch classes. The natural symbol (q) was discussed as well for 

canceling an alteration in the middle of a measure. 

The next two sections focused on the other important aspect of music, time. 

We discussed the symbology of various notes used in music as well as how to alter 

each of the pitches to included larger time values. The time signature was discussed 

to give the reader a concept of beats per measure. The concept of beats per minute 

117 



were also introduced in this section to discuss the difference between time signatures 

and tempo, or speed of the music. 

With an understanding of these topics, a non-musician reading this thesis 

should be able to understand each of the examples used throughout the thesis, as 

well as the majority of the concepts used in the software application built for this 

thesis. As such, only the important parts used for understanding this thesis were 

presented. Any further musical inquiries should be directed to a more thorough 

source, such as a book focused on music theory. 

118 



APPENDIX B 

List of Scales used in the Program 

The below table lists the scales which have been included in the program for 

the software to help guide the generation of music in the program. All musical 

engravings use C as the root pitch of the scale. 

TABLE 6: List of Scales included in the MuseGEN package 

Scale Name Pitch Class Jumps 

Major 0-2-2-1-2-2-2-1 

Natural Minor 0-2-1-2-2-1-2-2 

Melodic Minor 0-2-1-2-2-2-2-1 

Harmonic Minor 0-2-1-2-2-1-3-1 

Whole Tone 0-2-2-2-2-2 

Major Pentatonic 0-2-3-2-2-3 

119 

Musical Notation 

'Ill J5HDPI 
j- -~ =mmtmmliJmJJzJ~w~~m 

'e~~ 
, III J Jb~ ~ J~J :Jill 
hmwmm1)jmifmJrl~itf!'J 
~"JlP*#Ll,m¥j 

~-fijITJ4 



TABLE 6 - Continued 

Scale Name Pitch Class Jumps 

Minor Pentatonic 0-3-2-2-3-2 

Blues 0-3-2-1-1-3-2 

Algerian 0-2-1-3-1-3-1-2-1-2 

Harmonic Major 0-2-2-1-2-1-3-1 

Double Harmonic Major 
0-1-3-1-2-1-3-1 

Arabic 

Double Harmonic Minor 
0-2-1-3-1-1-3-1 

Hungarian Gypsy 

Hungarian Folk 0-1-3-2-2-1-3 

Phrygian Dominant 
0-1-3-1-2-1-2-2 

Jewish 

Egyptian 0-2-1-3-1-1-3-1 

Eskimo Tetratonic 0-2-2-3-5 

Eskimo Hexatonic 0-2-2-2-2-1-3 

120 

Musical Notation 

'g-~ 
t= ~ JbJi~bJi_Jibp ~ I 
,-V--jl :lj-'~ 

~e JnilJL~13J 

kJD@#91 

~tl!! J Jb!l#~ J&~ ~~ I 

f*~ 
tEjJ~n-l 
&~~~jm)jl~~-I 



Scale Name 

Scottish Hexatonic 

Oriental 

Oriental Pentacluster 

Chinese 

Balinese 

Raga Vutari 

Raga Madhuri 

Raga Viyogavarali 

Shostakovich 

Blues Octatonic 

Pyramid Hexatonic 

TABLE 6 - Continued 

Pitch Class Jumps 

0-2-2-1-2-2-3 

0-2-3-4-1-2 

0-1-1-3-1-6 

0-4-2-1-4-1 

0-1-2-4-1-4 

0-4-2-1-2-1-2 

0-4-1-2-2-1-1-1 

0-1-2-2-3-3-1 

0-1-2-1-2-1-2-2-1 

0-2-1-2-1-2-2-1-2 

0-2-1-2-2-3-3 

121 

Musical Notation 

~IWJ;~ 
j-lf;fJt!11 

PijGWl 
We ;pjJffl1 

ttlJ~J~~J~ 

~1~jW;#4~1 
~~~fJll@\fI 

'*-~
WI ljdijJ:J.~ a fl

~ Ilj~J_J:J.~dr r I
~-~Jjt1T%1 _~~a~ ~...~........ ~~.

TABLE 6 - Continued

Scale Name Pitch Class Jumps

Romanian 0-4-1-3-3-1

Gnossiennes 0-2-1-2-2-1-3-1

Prometheus 0-2-2-2-3-1-2

Adonai Malakh 0-1-1-1-2-2-2-1-2

Houzam 0-3-1-1-2-2-2-1

Rock 'n' Roll 0-3-1-2-2-2-1-1

122

Musical Notation

j¥~] J

, e J J~J ~ j~J n I

jt#l#~
, g 3jJ JifJ :J di I

, eii~JjiWd
ft .;ij'"J ;@@ P1

APPENDIX C

MGX File Sample

The below MGX file was generated as a sample for experimenting with making the

MGX file work properly in MuseGEN. It was generated mostly by hand for the primary

parts: the "root" tag, the "timesig" tag, the "scales" tag, and the "modulations" tag. The

data var tags were generated using a normal distribution variate using a I-l = 45 and

a = 12.

ALGORITHM C.1. A sample .MGX file provided in the MuseGEN engine.

1 <?xml version=" 1.0" encoding="UTF-8"?>
2 <musegen xmlns :xsi=" http://www. w3. org /2001/XMLSchema-instance"
3 xsi:noN amespaceSchemaLocation=
4 " http://kreese . net /20 1 O/MGXSchema. xsd">
5
6 <root>
7 <note>Eh</ note>
8 <octave>5</octave>
9 </ root>

10
11 <t imesig>
12 <bpm>9</bpm>
13 <beat>4</beat>
14 <accentedbpm>6</ accentedbpm>
15 </ timesig>
16
17 <scales>
18 <scale>2</ scale>
19 <s c ale>4</ scale>
20 <scale>9</ scale>
21 <scale>6</ scale>
22 </ scales>
23
24 <modulations>
25 <root>
26 <note>Bh</ note>
27 <octave>6</octave>

123

28 </root>
29
30 <root>
31 <note>F</ note>
32 <octave>5</octave>
33 </root>
34
35 <root>
36 <note>O</ note>
37 <octave>5</octave>
38 </root>
39 </ modulations>
40
41 <!- e.g. normal dist- mu:45 sigma:12 ->
42 <data>
43 <var>55.346080</var>
44 <var>48.825183</var>
45 <var>29 .307740</ var>
46 <var>39.796896</var>
47 <var>49.111494</var>
48 <var>87.940763</var>
49 <var>78. 233244</ var>
50 <var>28.801357</var>
51 <var>81.419082</var>
52 <var>53.704851</var>
53 <var>44. 243342</ var>
54 <var>53. 576915</ var>
55 <var>42.540407</var>
56 <var>43.510268</var>
57 <var>62. 876371</var>
58 <var>61.908414</var>
59 <var>62 .006309</ var>
60 <var>53.057966</var>
61 <var>30.510157</var>
62 <var>53. 606864</ var>
63 <var>64. 562823</ var>
64 <var>50.866725</ var>
65 <var>57.416316</var>
66 <var>53.722622</var>
67 <var>41.358709</ var>
68 <var>48. 526458</ var>
69 <var>35.552606</var>
70 <var>55. 6607 48</var>
71 <var>31.235159</var>
72 <var>32.173555</var>
73 <var>35.286016</var>
74 <var>9 .668590</ var>
75 <var>62.260564</var>
76 <var>48. 902286</ var>
77 <var>35.940860</var>
78 <var>61.443582</var>

124

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

<var>24.461803</var>
<var>43. 773091</ var>
<var>42.102636</var>
<var>48.830481</var>
<var>48.754303</var>
<var>34.621441</var>
<var>44.639384</var>
<var>43.021452</ var>
<var>52. 53248 7</var>
<var>58.119188</var>
<var>58 .311280</ var>
<var>34.636166</ var>
<var>45.928309</var>
<var>30 .430595</ var>
<var>31.637991</var>
<var> ... </ var>

</data>

97 </musegen>

125

-- ._--_._---------_._-------------

COLOPHON

The original source for this thesis was created in TeXShop, processed using the LaTeX

engine, and output as a PDF. The musical figures in the thesis were created using an

extension to TeXShop which allows for the Lilypond Music Notation language to be

included and processed from within the LaTeX engine. These TeXShop engines were

provided by Nicola Vitacolonna.

Any figures or images not created using Lilypond or original to this document exist as

public domain, licensed under the creative commons, and are attributed within the

caption for these figures. Such figures and images are copyright of their respective owners.

Original images were created by the author and for the sole purpose of this text. Images

which are not music engravings were created using various software tools, such as

Omnigraffie, GIMP, and Dia. These images have no attributions and are copyright of the

author.

Proofreaders: Jennie Huntoon, Kendra and Rick Reese (parents)

Committee Members: Adel Elmaghraby, Roman Yampolskiy, Charles (Tim) Hardin

126

NAME:

ADDRESS:

EDUCATION:

CURRICULUM VITAE

Kristopher W. Reese

Computer Engineering and Computer Science

University of Louisville

Louisville, KY 40292

B.S. Computer Science

Hood College

2009

B.A. Music Performance

Hood College

2009

PUBLICATIONS: Reese, K., A. Salem, G. Dimitoglou. 2009. "Gaming Concepts

in Accessible HCI for Bare-Hand Computer Interaction." In

Proceedings of the 14th International Conference on Computer

Games: AI, Animation, Mobile, Interactive Multimedia,

Educational & Serious Games (CGAMES 'O~). pp. 40-46.

Louisville, KY. August 2009

Reese, K., A. Salem, G. Dimitoglou. 2008. "Using Standard

Deviation in Signal Strength Detection to Determine Jamming

in Wireless Networks." In Proceedings of the 21st International

127

PRESENTATIONS:

PROFESSIONAL

EXPERIENCE:

Conference on Computer Applications in Industry and

Engineering (CAINE '08). pp. 250-254. Honolulu, HI.

December 2008

Reese, K., A. Salem. 2009. "A Survey on Jamming

Avoidance in Wireless Ad-Hoc Sensory Networks."

Journal of Computing Sciences in Colleges (CCSCE '08).

Vol. 24. Iss. 3. pp. 93-98. Frederick, MD. January 2009

Reese, K, G. Dimitoglou. 2008. "A Survey of Path

Planning Algorithms for Autonomous Robotics." In

Proceedings of the Consortium for Computer Sciences

in Colleges, Eastern Conference 2008 (CCSCE '08).

Frederick, MD. October 2008

Doctoral Seminar, March 27, 2011. " Generative Chord

Progressions using Reinforcement Learning." University

of Louisville, Louisville, KY.

Yakabod, Inc., Frederick, MD (Feb. 2008 - Aug. 2009)

Web Programmer

- Worked on a Highly Secure application (The Yakabox),

which is used by over 20,000 users worldwide and by

government agencies such as the NSA.

- Researched and Developed Server- and Client-side

systems for Large-Scale Information Retrieval and

128

--

Enterprise Social Networking using various web-based

languages, frameworks, Web Services, and APls.

- Automated the updating process for the Yakabox.

Blazer Radio (Hood College), Frederick, MD

(Jun 2006 - Jun 2008)

Web Manager

- Managed the Blazer Radio website, maintaining updated

information such as organizational data, schedules, and

announcements.

- Developed web surveys using ColdFusion.

- Developed a program to store DJ play lists in a MySQL

database and XML using PHP.

Volvo Powertrain, Hagerstown, MD (Jun 2006 -

Aug 2007)

Summer Intern - Chief Project Management

- Helped to plan project within Volvo Powertrain

- Organized the Sharepoint portal to help resolve file-sharing

issues in the company

- Utilized tools such as Microsoft's Excel, Microsoft Project,

and Microsoft Access to show statistics, charts, and other

data for projects.

Mosaic Sales, Frederick, MD (Oct 2005 - May 2007)

Epson Sales Representative

- Communicated the benefits of Epson products while

129

TEACHING:

AWARDS:

ASSOCIATIONS:

assisting customers with identifying the product that

best fit their needs.

- Received training on products and took monthly

exams on Epson's product lines.

2009-2010, University of Louisville, Program Design in C - GTA

2010-Present, KCTCS Introduction to Computers - Instructor

2010, KCTCS Computer Maintenance Essentials - Instructor

2010, KCTCS Advanced Computer Maintenance - Instructor

2011, KCTCS Program Design & Development - Instructor

2011, KCTCS Introduction to Database Design - Instructor

2011, KCTCS Introduction to JavaScript - Instructor

Summer Research Institute, Hood College, Frederick, MD, June 2008

Association for Computing Machinery, since 2007

Institute for Electrical and Electronics Engineers, since 2008

American Mathematical Society, since 2010

130

	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	5-2011

	Computationally generated music using reinforcement learning.
	Kristopher W. Reese
	Recommended Citation

	tmp.1423685735.pdf.fOcih

