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ABSTRACT 

COMPUTATIONALLY GENERATED MUSIC USING REINFORCEMENT 

LEARNING 

Kristopher W. Reese 

February 21, 2011 

Computers and music have shared a rich history since the 1950s. Many 

languages and standards have been built around music. Yet even before the advent 

of the computer, music shared algorithmic ideas with mathematics which brought 

about many new styles over the centuries. Today's computers provide even more 

power, and with Intelligence algorithms, are able to create complex systems for 

generating art. Music is no exception, but very little has been done in generating 

music using such algorithms. 

Reinforcement Learning provides a means of learning good motions of chord 

progressions in music theory. Dmitri Tymoczko's Latent model for the underlying 

chord structure creates a mesh orbifoidal network capturing voice leading and 

surrounding chords. This presentation discusses experimentation in the latent 

model with a combination of the ideas taught in traditional Tonal Harmonic theory. 

Unlike David Cope's work in mimicking composer styles using machine learning, 

this approach attempts to tackle the problem head on through experimentation 

with Tymoczko's latent model for chords. 
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Reinforcement Learning provides a means for learning this network and 

reward states in order to reach a terminal goal (taught in music theory as cadencing 

chords). Using Reinforcement Learning we are then able to use the reinforced model 

to generate chord progressions which have a tonal center (a center of gravity pulling 

the chords towards a certain pitch class). Further, a discussion of the implemented 

algorithm is also given. 
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could formerly glimpse only as a distant dream. 
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CHAPTER I 

INTRODUCTION AND MOTIVATION 

A Problem Statement 

Since its inception, the computer has provided scientists in varying fields a tool 

for doing complex computations. However, today's computers have become a widely 

used instrument for media art, as well as in algorithmic composition. This notion of 

the computer being a tool for artistic expression dates as far back as Charles 

Babbage's concept for the Analytical Engine. It was Ada Lovelace that noted in her 

translation of Luigi Menabrea's Sketch of the Analytical Engine [1]: 

Supposing, for instance, that the fundamental relations of pitched sounds 
in the science of harmony and of musical composition were susceptible of 
such expression and adaptations, the engine might compose elaborate 
and scientific pieces of music of any degree of complexity or extent. 

The use of the computer in current algorithmic composition of music dates 

back to the late 1950s with Hiller's Illiac Suite composed by the University of 

Illinois' Illiac computer in 1957. Since then, various systems of music theory have 

been implemented into algorithmic compositions, including serial, stochastic, and 

chance music - each of these are described in chapter two. However, very little has 

been done in algorithmic composition to create music that we can define as "tonal". 

With the power of computing today and with algorithmic paradigms, such as 

dynamic programming or heuristic algorithms, it seems surprising that little work 
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has been done in the areas of algorithmic tonal compositions. For this reason, we 

will step back from current models of algorithmic composition and propose varying 

techniques that are based on the relatively new field of geometric music theory and 

provide algorithms that follow modern algorithmic paradigms to create an 

algorithmic approach to generating tonal compositions. 

In addition to the above mentioned, we hope to provide a new approach to 

algorithmic composition that would be beneficial in areas of psychoacoustics, 

neurosciences, and even in game development. Unlike many previous algorithmic 

music programs, which use a sort of dice-game to musical composition, or 

approaches composition from more atonal styles, our hope is that this new 

technique will provide computer music with algorithmic tonal music generation. 

B Defining Tonality 

In the previous section, the use of the word tonal is used very frequently as a 

problem that this thesis attempts to solve, but what is tonality? The word "tonal" 

is an oft-contested word. Some music theorists and musicologists use the word very 

restrictively, defining only music of the 18th and 19th centuries as "tonal". This 

restricts all music of the 20th century as "post-tonal", including the harmonies of 

jazz music with the sonic sounds of composers like Xenakis. It is hard to believe that 

both of these very different genres of music could be lumped into a single category. 

Other theorists use the word more expansively defining certain elements as 

essential for "tonality". In this use of the word, we can look to the Koftka et al. 

definition of tonal harmony. Kostka et al. [2] define tonal harmony as "refer[ring] to 

music with a tonal center, based on major and/or minor scales, and using tertian 

chords that are related to one another and to the tonal center in various ways." 
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In this definition of tonal music, we make use of a specific tonal center, a 

pitch-class that provides a heavy center of gravity in the music. From this tonal 

center, we can begin building chords from various pitch classes in a specific major or 

minor scale using tuples of intervals in the scale, for example a tertiary chord built 

on a tonal center of C could be built using the pitch classes of C-E-G as shown in 

figure 1. Through the use of this definition of tonality, we break this classification of 

music from the 20th century as being all post-tonal. We are then able to look to 

modern genres as inspiration for our algorithmic composition generator. 

C A Style to Imitate 

Much of the 20th century is filled with approaches that imitate previous 

generations of music including the neo-classical and neo-romantic classification of 

art music. We also find heavy usage of various atonal approaches that grew out of 

the post-war eras of the early 20th century. It was during these times of atonality 

that algorithmic composition using computers began to grow into existence. 

More recent composers have begun to move back towards tonal harmonies. One 

of the musical genres of the 20th century, which has been called the leading musical 

style of the late 20th century, has been the minimalist movement. This minimalist 

movement in the art of the 20th century grew out of the media art movement of the 

early 20th century. In this, artists reduced materials and form to basic 

Figure 1. A rendering of a C-major chord which is built on the pitch classes, from 
lowest to highest note, of C - E - G 
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fundamentals and never intended to express feelings or convey their state of mind. 

Despite the art movement, minimalist music grew to become one of the 20th 

century's most popular techniques, which was able to contain a wide range of 

expressive content. In this movement of art music, composers attempted to reduce 

materials in the composition to a minimum and simplified procedures in the music 

so that the musical content of the piece was immediately apparent [3]. 

Because of this style's simplification of musical content, it provides a unique 

testing ground for algorithmic tonal music. By reducing much of the content to its 

simplest form, we would more easily be able to classify the output from the 

algorithms as tonal or atonal. Because of this, much of this thesis will approach 

algorithmic music from a minimalist standpoint. 

D Synopsis 

This thesis addresses ideas that span many fields of study. It bridges the gap of 

the mathematical and computational with the more artistic field of music. Despite 

this overlap, this paper will focus primarily on the algorithms and mathematics 

behind the developed system. Any important musical terminology that occurs in 

the thesis will be explained. However, this paper assumes an understanding of the 

most basic music theory (such as how to read music) due to the length it would take 

to describe all of the topics in music theory. For those computer scientists or 

mathematicians who have little or no understanding of basic music theory and/or 

how to read music, the author has provided the reader a section, Appendix A of this 

document, for a short discussion on the assumptions of understanding of music that 

are held throughout this thesis. 

The rest of this document explores a brief history of electroacoustics and 
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algorithmic composition, including a handful of programming languages designed as 

a tool for generating sounds and music (Chapter II). A discussion of the role of 

mathematics in music theory will be presented, and we will examine the recent 

developments in Geometric Music Theory by Tymoczko et al. (Chapter III). We 

then present an explanation of the current practices of Reinforcement Learning 

techniques that are used throughout this document (Chapter IV). To follow this, 

this paper will present the modified models for generating tonal music (Chapter V). 

This will lead into the discussion on possible techniques that could be used for 

generating personalized and interactive real-time audio using the generated engine, 

with an emphasis on biometric personalization (Chapter VI). The conclusion 

presents the contributions and possible future work related to this project (Chapter 

VII). 
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CHAPTER II 

A HISTORY OF ALGORITHMIC MUSIC 

The history of music is full of examples in which mathematics has played an 

extremely important role in what is now known as Music Theory. The earliest 

examples show that even the Greek philosophers who worked in attempting to 

analyze music used mathematics as an explanation for harmonics, creating scales, 

and more. Pythagoras' work in harmonics is probably one of the best known 

examples of mathematics used to describe harmonics. 

Algorithmic music follows much of the same rich history as mathematics in 

music. Karlheinz Essl describes algorithmic music as, "A method of perceiving an 

abstract model behind the sensual surface, or in turn, of constructing such a model 

in order to create aesthetic works." [4] This definition and explanation of algorithmic 

music fits, and, using this definition, we find an extremely rich history of algorithmic 

music dating back long before the creation of the computer. However, today this 

style of music is generally associated with music in which computers generate. 

No matter how you look at algorithmic music, whether solely music generated 

by a computer, or music generated using some methodical " algorithm" , both styles 

share one common theme. Creators of this music have a desire to create a sound 

which is infinite, exceeding the finite limitations of human knowledge; a way for 

music to overcome barriers which are either inherent in our minds or created by 

generations of social stigma. [4] 
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A The Algorithm 

When discussing algorithmic music, the first word, algorithmic, becomes one of 

the most unfamiliar in the area of music. Boolos & Jeffrey [5] informally define the 

word algorithm as a means of giving" explicit instructions for determining the nth 

member of the set for an arbitrary finite n. [The] instructions are to be given quite 

explicitely, in a form in which they could be collowed by a computing machine, or 

by a human who is capable of carrying out only very elementary operations on 

symbols." In essence, an algorithm becomes a set of precise rules for a fast and 

efficient means of solving problems. 

The word algorithm is derived from the name of the Persian mathematician, 

Muhammad ibn Musa al-KhwarizmI, who introduced the use of Hindi-Arabic 

notation into what is now known as Algebra. The original definition of the latinized 

version of al-KhwarizmI, "algor ism" was used to refer to only this particular form of 

Algebra. Later translations of the latinization became what is now referred to by 

the word algorithm. The word algorithm is defined, informally, as a set of definite 

procedures for solving problems or performing various tasks. [6] 

Today, algorithms are more generally used in the field of computer science as a 

way to allow a computer to solve problems efficiently. Algorithms are used in 

computing for all sorts of tasks, including path planning, sorting numbers, 

scheduling, and many other areas. Generally algorithms have efficient solutions 

which compute problems in a polynomial time. However, there do exist problems in 

which finding a solution becomes difficult to find in a finite amount of time. A 

common example of this is the" Traveling Salesman Problem". The problem 

becomes intractable for extremely large numbers of cities. In this case, the 

computation that is needed to be done in order to solve this using standard 
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methods grows exponentially for each city added. This is a classic example of a 

NP-hard problem in combinatorial mathematics. 

The field of Artificial Intelligence grew out of an attempt to find solutions 

which can find a solution, or more often a "good enough" solution for these types of 

problems, quickly. However, much of the field of artificial intelligence uses forms of 

algorithms, such as the genetic algorithm and particle swarm algorithms, which may 

not be classified as "correct" algorithms, meaning they do not necessarily yield a 

correct result all the time. 

More advanced fields of " Artificial Intelligence" yield even more complex 

algorithms to compute certain aspects. Computer Perception is a more advanced 

field in this domain of " Artificial Intelligence" which includes Computer Vision and 

other Perceptive techniques. Even this field of computing uses combinations of 

algorithms to find information in digital information, which can be used to perceive 

aspects in which the computer is searching for, such as the location of a specific 

item in an image. 

The bulk of this thesis focuses on use of Machine Learning algorithms and 

other less intensive algorithms, for problems which can be computed relatively 

quickly, to generate new music. Machine Learning, and more specifically 

Reinforcement Learning, are simply a continuous algorithm which are used to 

observe specific information and use statistical inference to make complex decisions 

in the domain of the data. More about the specific algorithms used will be discussed 

in a later chapter in this thesis. 

The point to take out of this section is that almost all of computing is 

associated with algorithms in almost all domains. This is no different in music. 

However, music is full of a rich history of mathematics and algorithms that are 

generally lost due to the little use of the information. The rest of this chapter will 
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discuss the history of Algorithms and Mathematics in Music from the Ancient 

Greeks to modern computationally generated music. 

B Formal Processes in Music 

Since music's early recorded history, music has always closely been associated 

with mathematics and formal structures. It was the Greeks who first delved into 

attempting to understand music using mathematical processes. During the Baroque 

era, we see formal structure begin to help build the music of the era. These 

structures grew into what musicians now know as the various forms of the classical 

era; during the classical to the modern era, the idea of using randomness to build 

music was brought about using what is now known as the" dice-rolling game". It 

wasn't until the 20th century that determinisitc processes were brought about in 

music. 

1 Music, Mathematics, and the Ancient Greeks 

The Greeks philosophers were the first, in recorded history, that attempted to 

understand music in a mathematical way. It was Pythagoras who is best known for 

his work in music during the ancient era of music. Pythagoras recognized the ratios 

between the tones that are played in music. He was able to prove his work by using 

a simple stringed instrument and folding the string to produce tones. He found, for 

example, that what is now know as an octave (12 tones up or down) was a ratio of 

1:2. By folding in various ways, we can produce different tones that can be used. 

This was the first written example of music being combined with mathematics. 

Pythagoras was not the only philosopher of the greeks who associated music 

with mathematics. Aristoxenus was one of the first greek philosophers who had the 
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idea of geometrization of musical space around 320 BeE. His ideas were radically 

different from Pythagoras in that rather than using discrete ratios, Aristoxenus used 

continuously variable quantities. [7] Aristoxenus was the first arithmetician who 

proposed why a slight mistuning of notes are still perceived as categorically 

invariant. This led him to believe that the principal of consonance of the scale had a 

narrow, but acceptable range of variation. Aristoxenus' work was important in that 

it later influenced the theory of Greek Orthodox, Hellenized Persian, and Arab 

music which gives the appearance of direct descent to the arithmetician's work. [7] 

Ptolemy is mostly associated with mathematics, astronomy and geography. 

However, Ptolemy wrote an influential work on music theory entitled "Harmonics". 

Ptolemy spent much of this work criticizing his predecessor and arguing for a basis 

of musical intervals based on mathematical ratios. This was in complete contrast to 

Aristoxenus and his followers, following more closely with that of Pythagoras. The 

difference between Ptolemy and Pythagorus was that Ptolemy based his work on 

empirical observations. Ptolemy believed that a musical not could be translated into 

mathematical equations and vice versa. [8] 

Ptolemy's work later bled into what is known as "Music a universalis". This is 

an ancient philosophical concepts that regards the ratios and proportions of the 

movements of celestial bodies as forms of "musica". The term "music a" is not 

usually thought of as audible music in this philosophy, but as a harmonic, 

mathematical, and/or religious concept. 

Though there are only a handful of Greek philosophers presented here that 

discuss music, there remain many which are not mentioned; these three are the most 

prominent philosophers of music during their time in ancient Greece, and helped to 

shape modern music theory. Later composers would return to these philosophers for 

ideas in composition during the 20th century. From just this brief sample of 
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philosophies, we see that since early recorded history, mathematics has played a 

major role in the understanding music. 

2 Chance Music from the Classical Era to the Modern Era 

Much of the Renaissance and Baroque era began to step further away from 

using mathematics as a way to understand music and is where we begin to see a 

theory solely dedicated to music take shape. However, even during this period we 

see formal structures take shape in the understanding of making music sound 

developmental. This is minor to the subject discussed in this thesis, and mention of 

it is a nod to it as a part of the era which can be viewed as remotely mathematical 

or algorithmic. 

This lack of interest in mathematical formulations of music continued into the 

classical and romantic eras, where little was done relating to music and 

mathematics. The major contribution during these two eras exist in chance music 

better known as Musikalisches Wiirfelspiel, which can be literally translated as 

"Musical Dice Game". These games were popular throughout Western Europe 

during the 18th century. It provided a system for using dice to randomly compose 

music long before the computer system was invented. 

The most well-known dice game was published in 1792 by Nikolaus Simrock in 

Berlin. Because Nikolaus Simrock was Mozart's publisher, the game is often 

attributed to Wolgang Amadeus Mozart, however this attribution has yet to be 

authenticated by any musicologist. [9] In this game, the dice is rolled which 

randomly selects a small section of music. Each section that is rolled is then 

patched together with the previous ones to create a musical piece. 

Despite the lack of authentication of for the published game, Mozart did seem 

interested in the game. An autographed genuine musical game by Mozart can be 
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found in the Bibliothetique Nationale in Paris and designated K 516f, written in 

1787. [10] This musical piece contains no instructions and no evidence that dice 

were involved in the composition of the piece, leaving the creation process of the 

piece up for debate between musicologists. 

This dice game was perhaps the earliest known example of some form of chance 

being used in music. During the 19th century, very little was done again with music 

and mathematics. It wasn't until the 20th century that we begin seeing 

compositions being created using elements of chance. During this time, John Cage 

created numerous algorithmic systems to employ chance in creating music which 

was based on the 'I Ching', star atlases, or other such means. 

John Cage employed these methods in order to overcome the habitual methods 

of composers themselves. Cage felt that by using methods of chance instead of 

representing order systems or expressing subjective sentiments, the sound of the 

music is freed from any prior meaning or historical connotations, free to 'come into 

their own'. [11] 

It was during this time that composer John Cage began developing ideas for 

graphical representations of music, which left much of the music to chance and 

choice by the musician themselves. By providing these graphical representations, 

Cage was able to lay a groundwork which leaves the song nearly open ended, and all 

of the parameters of the music free. This allows all parameters of the music to 

change from each performance by changing the times for note, such as starting and 

stopping of notes, as well as the frequency, amplitude, use of filters and distribution 

of sounds in the musical space. [11] 
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C Deterministic and Stochastic Processes 

In the previous section, the methods of mathematics were discussed as they 

were applied to music during a period of relative order in music. This section 

continues by discussing methods which employed sets of random operations within 

the context of an overlying algorithmic model to gain control over the direction of 

the music. In this sense music falling into this category is both deterministic and 

stochastic processes were used to create a sort of aleatoric classification of music 

during the early 20th century. 

1 Serialism 

The elements of World War II left not only many of the cities of Europe in 

ruin, but nearly eradicated the music of that century. Soon after the eradication of 

the Nazi's in europe, younger composers gathered together to create a new musical 

grammar, free of the traditional practices of music in the years prior to the war. 

Serialism was the result of this gathering of composers. This form of music is 

primarily attributed to the composer Schoenberg, who was the first to employ its 

techniques with relative success. 

In this form of music, Schoenberg's dodecaphonic technique created music 

whose pitches are predetermined in all serial music. This technique was later 

extended to other "parameters" of music such as pitch duration, dynamics, and 

timbre. The dodecaphonic series of the music becomes the unifying principal of the 

music which allows to music to sound less like a random selection of a subset of the 

12 pitch classes, and more like an organized form of music. 

This series that makes up the unifying principal is, more simply, a random set 

of values from the set of twelve tones in western music. Variations of this series can 
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Figure 2. The 12-tone serial row series used by Schoenberg in Suite, Op. 25. 

be created by applying various transformations, such as transpositions, inversion, 

retrograde, and permutations. These mathematical operations can be obtained by 

transforming the symbolic representation of the row into a numeric representation. 

When observing or creating serial music, it is often beneficial to have all 48 

possible forms of the tone series. To create this, it can be represented by a 12x12 

matrix. If for example we choose the tone series shown in figure 2, we can build this 

12x12 matrix by transforming the row series into prime series (denoted using P) 

and inversional series (denoted by 1). 

Calculating the Inversion of the prime theme is relatively simple when thought 

about in geometric terms. If we take a circle which connects each of the notes to 

their next neighboring notes on two sides, we can draw a line between the primary 

themes starting note, E in the case of the primary theme shown in figure 2, and the 

notes tritone interval, or a jump of 6 notes- the starting notes tritone. From this, all 

intervals between notes can be thought of as a line segment between the starting 

note and the second note. Figure 3 shows this technique. In this figure, we see line 

segments between E and G on the top. If we take this line segment and draw the 

same line segment on the bottom, we can determine the inversion of a note. In this 

example, the inversion of G is a C~. 

If we then take our primary theme, Po, we can find the first inversion series by 

following this technique. Doing this results in the first inversion 10 as shown in table 

1. With the information found in this table, we can begin building a matrix to give 
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Figure 3. A geometric representation of Serial Inversion, The line segment between 
E and A~ is the inversion line while the other lines represent the inversion between 
G and C~. 

all 48 possible forms. 

To begin the matrix, we must first convert the Prime series into a set of 

numerical representations. For the purpose of this example, we use E as the ° note 

and continue by determining the number of jumps up it would take to reach the 

next note. Therefore our prime series becomes the numerical series: 0, 1, 3, 9, 2, 11, 

4, 10, 7, 8, 5, and 6. By doing this, the subscripted version of the prime, inverted, 

and retrograde version of the series are represented using this number sequence. 

Now we can begin building the matrix of sequences that can be used in a piece 

created using this technique. The prime series is written as the first row of the 

matrix and the Inversion is written as the first column. From here we can calculate 

all of the rows by adding the total number jumps to the notes in the first prime 

sequence. Therefore, if we are calculating the prime 1 row, Pi, we simply move the 
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1 2 3 4 5 6 7 8 9 10 11 12 

Po E F G C~ F~ D~ G~ D B C A B~ Ro 
10 E D~ C~ G D F C F~ A G~ B B~ RIo 

TABLE 1 

Primary, Inversion and Retrogrades of the theme found in Figure 2 

notes in the Po row up by 1 note. Therefore our Pi row becomes: F, F~, A, D, G, E, 

A, D~, C, C~, B~, B. 

By continuing this for all tone rows, we generate an entire matrix which can be 

used to represent all possible forms of the music. The Columns from top to bottom 

represent inversions of the Prime, The rows from left to right represent the primes 

themselves. By reading the primes backwards, we can represent the Retrogrades of 

the primes (Rx) and by reading the columns from bottom to top, we can represent 

the Retrograde inversions (RIx). The matrix for the theme found in figure 2 is 

shown in table 2. 

During the composition process, composers will start their composition with 

the Po line, however, after using the Po line in the composition, the composer would 

choose any of the forms that result in the matrix to create their composition. The 

decisions for the composition itself however was generally left up to the composer. 

The same technique used in choosing forms of the notes was later applied to other 

parameters of music, in what is more formally called "Total Serialism." In "Total 

Serialism", the composer was left with fewer attributes in the music to decide upon, 

however the general direction of the piece and selection of the series forms were still 

left solely to the composer. 

By composing a piece with strictly predetermined material, we see the first 

move towards a more algorithmic style of composition. Karlheinz Essl views 
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10 II 13 Ig 12 In 14 110 17 Is 15 16 
Po E F G C~ F~ D~ G~ D B C A ED Ro 
Pll D~ E F~ C F D G C~ ED B G~ A Rll 
Pg C~ D E ED D~ C F B G~ A F~ G Rg 
P3 G G~ ED E A F~ B F D D~ C C~ R3 
PlO D D~ F B E C~ F~ C A ED G G~ RIO 
g F F~ G~ D G E A D~ C C~ ED B RI 
Ps C C~ D~ A D B E ED G G~ F F~ Rs 
P2 F~ G A D~ G~ F ED E C~ D B C R2 
P5 A ED C F~ B G~ C~ G E F D D~ R5 
P4 G~ A B F ED G C F~ D~ E C~ D R4 
P7 B C D G~ C~ ED D~ A F~ G E F R7 
P6 ED B C~ G C A D G~ F F~ D~ E R6 

RIo RII RI3 RIg RI2 RIll RI4 RIlO RI7 RIs RI5 Rh 

TABLE 2 

Matrix of the possible forms of the prime theme found in figure 2. 

serialism as " highly ordered by predetermination" , with the results appearing as a 

statistical collection of points in both space and time. [4] Serialism, though created 

prior to the advent of the computer, was the basis for many of the first computer 

programs to generate musical structures. 

2 Stochastic Composition 

Despite the changes in the approach to composition of music, there were 

extreme critics of the serial style of music. One such composer who criticized the 

strict pre-determinism of serial music, was Iannis Xenakis. Xenakis wrote in his 

paper, "The Crisis of Serial Music," about the complexity of this style of music 

which shaped the music as "auditive and ideological non-sense." [12] 

It was Xenakis who suggested replacing the determinism that was brought 

about with serial music with a general concept of probabilistic logic. Through this 

means, Xenakis could contain the entirety of the serial music as a strict particular 
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case. Even the definition of "stochastic music" comes from Xenakis. Xenakis defines 

stochastic music as based on random operations within time-variable constraints. 

His stochastic music was used to generate music using the statistical representations 

of the structures that can be found all over nature. Xenakis states that stochastic 

music is built in an attempt to model "natural events[,] such as the collision of hail 

or rain with hard surfaces, or the song of cicadas in a summer field." [13,14] 

This area of stochastic composition really breaks down into two separate 

categories. The first school of thought in stochastic music was Xenakis' ideology for 

stochastic music. In this, Xenakis implemented stochastic methods like the 

Gaussian distributions or Markov Chains. This gives the music much more 

deterministic qualities while still employing levels of chance to music as well. The 

second school of thought revolves around Gottfried Michael Koenig's ideology for 

composition. Koenig replaced the serial permutation mechanism with a 

non-deterministic, yet promising strategy of using aleatoric principles. The term, 

aleatoric, is used to describe a process who's outline is predetermined and fixed, but 

the details of which are left to chance. 

Koenig's work is perhaps some of the most important work in combining 

computers with music. In 1963, Koenig began work on a composition that was 

based on an algorithmic model and was implemented as a computer program called 

Projekt 1 (PR1). Koenig assembled lists of parameter values, and used 

psuedorandom operations in order to select a value for the each of the 

parameters. [15] 

PR1 in its original form was unable to convert any of the resulting parameters 

into actual music. Instead the composer was forced to interpret the results in order 

to produce music which was playable. Later versions of the program get rid of a lot 

of the limitations of the program itself, due to further development of the program 

18 



and by other composers who used the application. Yet even in its final version, 

determining the input data is limited, requiring only a handful of parameters from 

the composer. [15] 

D Music and Computers 

Many of the above topics discussed the influence of mathematics on music, and 

the use of Algorithmic techniques for creating music. We see many of the techniques 

coming to fruition in the early part of the 20th century. In later parts we start 

seeing the use of computers alongside the compositional process of composers to 

simplify the algorithmic techniques which were used. But it wasn't until the latter 

half of the 20th century that music was able to take full advantage of the computer, 

allowing it to not only compose music based on algorithms but also to play the 

music which was created or output musical scores which were able to be read by a 

performer without the need of human intervention. 

1 Generative Music 

Many of the topics discussed above were first created in an attempt to free 

music from the societally created structures that limited music to something which 

seemed to go against the structures of soundscapes created in nature. It was pop 

artist Brian Eno who first became interested in ripping the bonds of time 

limitations in music. He saw that the natural soundscapes created in the world had 

no beginning and no end, yet music always seemed to start and stop. 

In 1978, Brian Eno created a non computer based system for generating an 

unending, evolving sound environment for the LaGuardia Airport, which he called 

"Music for Airports". For this, Brian Eno used the phasing of tape loops with 
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different lengths to create different instrumental tracks, allowing the music to at 

some point clump all of the sounds together and at other points spread the 

instruments through the music. By using this simple looping technique, Brian Eno 

was able to create an infinite number of soundscapes which were based on only a 

handful of elements. 

Brian Eno's work later inspired work to be taken to software engineers Pete 

and Tim Cole to create a computer program using the same techniques. This was 

one of the first steps in which computers were used to generate music for certain 

situations. Brian Eno's idea of using Ambient Music began a surge of computer 

related media on the Internet. 

In 1997, Maurice Methot and Hector LaPlante began to contemplate what 

type of medium could best be utilized to listen to music such as Eno's composition. 

Because the music no longer consisted of a beginning or end, Compact Disks were 

highly inappropriate for the music. Because of this, Maurice and Hector began 'The 

Algorithmic Stream', one of the earliest audio streaming systems on the internet 

which provided non-repeating computer generated music. Though this later died 

down, many project still exist which revolve around this idea. 

Though Eno's work is of little importance to computer music, it is of extreme 

importance as it helped to influence streaming media on the internet during the era. 

Because of this, it deserves special mention in this thesis for both the simple looping 

algorithm and streaming audio. 

2 Programming Music 

The first era of true computer programming language dedicated to sound 

synthesis was called MUSIC, appearing in 1957. It was developed by Max Mathews 

at AT&T Bell Laboratories. This language was build in order to provide a model 
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for specifying sound synthesis modules, connections, and time-varying controls. 

During the development of MUSIC, the language was compiled on a series of 

punchcards and implemented as a low level assembly language. Several further 

developments of the MUSIC programming language were released in further 

iterations of the language, MUSIC I-IV. 

It wasn't until 1968 that a programming language dedicated to music 

composition was able to break its previous limitations and be implemented within 

another programming language. MUSIC V was released as an implementation of 

FORTRAN. Unlike previous MUSIC languages, this meant that MUSIC V was able 

to be used on any computer system capable of running FORTRAN instead of being 

limited to specific hardware. MUSIC V also provided a model for later music 

programming languages an environments making mention of this language 

important. [16] 

Around the time of the advent of the modern operating system, we see several 

other languages and extensions of languages begin to appear. In 1972, development 

of the CARL System was developed as a series of open source, interconnect able 

programs for Signal Processing and Signal Analysis. We also see during this time a 

library for the C Programming Language which was modeled after the MUSIC-N 

languages mentioned above. The most widely used descendant of the MUSIC-N 

languages today is CSound which was developed in the late 1980s by Barry Vercoe 

and his colleagues at MIT Media Labs. This further developed the compositional 

and audio playback that we now use on modern computers today. [16] 

During the 1980s we see yet another type of music playback system developed. 

The MIDI (Musical Instrument Digital Interface) specifications were published in 

August 1983 with the purpose of bringing different digital instrument makers 

together under a single standard. [17] This was primarily built out of the synthesizer 
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needs of progressive rock bands. By using a MIDI based synthesizer, a performer 

was able to play multiple sounds from a single keyboard, rather than the many 

keyboards that are often seen from the early progressive rock concerts. 

After the ratification of the MIDI standards, we begin seeing MIDI 

implemented in many of the Operating Systems of the era. This development in the 

Operating Systems allowed for powerful and inexpensive tools for computer based 

MIDI sequencers. Though during its early development, the quality of the hardware 

and the unsophisticated methods for the synthesis methods used for audio playback 

resulted in giving MIDI a poor reputation with some critics. Yet today, MIDI sound 

synthesis results in often higher quality sound which is driven by MIDI data proves 

that MIDI is an overlooked method of sound generation. 

E Decisions for this Thesis 

This thesis extends many of the techniques used by previous composers in an 

attempt to both better understand the aesthetic benefits of Stochastic composition. 

This thesis also maintains a level of scientific value in both the abilities of the 

computers and the viability of the model developed by Tymoczko in the realm of 

Computers. We see through the history of the computer itself that it has become a 

compositional tool that have been used by many to help aid in their compositional 

process. 

Today's computers have the ability to do much more than just act as a random 

number generator for the composer. We see during the last decade of the 20th 

century the development of Intelligent systems dedicated to writing in the 

compositional style of the composer by David Cope in his works entitled 

"Experiments in Musical Intelligence". [9] Unlike David Cope's work, this thesis is 
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an attempt to create a general model that computers can use to create music. Yet 

even still, the models used by David Cope for machine learning and music and the 

models presented here, which use Reinforcement learning, are not contrary to one 

another. More about this will be discussed in the Conclusion. 

This thesis focuses primarily on the development of a tonal harmonic 

progression algorithm using Tymoczko's underlying structure of chords, presented in 

Chapter III. This model is implemented using Java with a Reinforcement Learning 

technique known as Q-Learning. This technique provides a way of learning about 

and traversing the environment in the model. It is a stochastic decision making 

algorithm which allows us to use stochastic techniques first used by composers such 

as Xenakis, but also allows for complex decision making that composers such as 

Mozart or Beethoven might have take advantage of naturally. 

For this thesis, all of the generated music also uses the MIDI Specification. 

This provides the most robust and simplest way of generating music using the JAVA 

programming language. There is no reason a library such as CSound could not be 

used to develop this thesis. It was simply a due to the ease of the JAVA MIDI API 

that pushed the decision towards using the MIDI Specification. Subsequent chapters 

of this thesis discuss the development of the thesis further. 
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CHAPTER III 

A SCIENTIFIC APPROACH TO MUSIC THEORY 

The previous section discusses how mathematics has played a major role in the 

development over the millennia, staring with the ancient greeks and working 

towards the stochastic processes we understand today. It seems relatively reasonable 

that music would follow some stochastic decision making process, which is discussed 

later in this thesis; however, in order to use stochastic decision making, we must 

have some underlying, latent model which music can follow. 

Much of music theory is riddled with more of the discussion of the language of 

music and what will sound good to their listeners even when incorporating 

chromaticism into the language. In this sense, Tonal Music theory has become more 

like an english grammar class than a science. Despite this, there are proponents of 

music theory as a science. A recent development in understanding tonal harmonies 

was provided in 2006 by Dmitri Tymozcko. This article [18] was the first article on 

Music to be published in a scientific journal. 

Dmitri Tymoczko provides an understanding of tonal harmonic movement 

through a latent model which can be used to model any n-dimensional chord in an 

n-dimensional model using geometry. The rest of this chapter focuses on the works 

of Dmitri Tymoczko as this model is the model which makes up the program that is 

developed in this thesis. This model combined with the stochastic decision making 

algorithms provide a means for allowing computers to generate harmonies which are 
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Figure 4. The Circular Pitch class space described by Dmitri Tymoczko. 

centered around a tonal center. 

A One-dimensional Space 

Dmitri Tymoczko explains in his original article and his book [18-20] any 

n-dimensional chord space. The first space that is discussed by Tymoczko is the one 

dimensional chord space. However, he simply calls this the "Circular pitch-class 

space" [20]. This name is best suited for musicians who find it hard to represent a 

one-dimensional chord space is, by all means, simply a representation of the pitch 

classes in music that were described in appendix A. 

Tymoczko says that, geometrically, this one-dimensional space can best be 

thought of as a line. [18,20] Though the pitch class represents only a single 

dimension, the reason it is best represented as a circle is caused by the shared pitch 

classes repeat after completion of the notes. For example, if we start at the pitch of 

a C and move up one semitone every step, we eventually reach the pitch class of B. 

Because of the nature of the circle, returning to the pitch class of C is like returning 
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Figure 5. A simple intervalic passage. 

to the C that we had started on. 

U sing this pitch-class space helps in representing particular ways of moving 

from one pitch class to another. [21] Using this geometric language, we can capture 

the movement from one pitch to another by modeling the intervalic movement 

between the two pitches. If we view the movements shown in figure 5, we can 

represent the figure using common language. 

The first intervalic jump can be represented in this language as, "E moves 

down 12 semitones (or an octave)." More formally we could write this as E ~ E. 

This simply means that from the E we are moving -12 semitones to get to the 

interval E. A negative movement is a counterclockwise movement on the circle 

shown in figure 4. From here we see E +7) B, which is a clockwise movement by 7 

semitones to the B; and lastly B +3) D, a clockwise movement by 3 semitones. 

This understanding of the one dimensional space is important not only for 

being able to create a language in which melodic lines might be described, but also 

for understanding higher dimensional spaces and how they work relative to the one 

dimensional space. 

B Two-dimensional Space 

Much of the emphasis by Dmitri Tymoczko is put into understanding the two 

dimensional musical space. This is likely because understanding this is much simpler 

than attempting to describe musical space in 3 or 4 dimensions. By understanding 
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Figure 6. The Two dimensional orbifold described by Dmitri Tymoczko. 

the two dimensional space, you begin understanding the higher dimensions as well. 

Figure 6 represents the two dimensional interval space between two note 

passages. This model is built from an understanding of the combination of the one 

dimensional spaces of each singular note. In this case, the first note and the second 

note represent the way in which interval movement can be plotted on a cartesian 

graph. In this mesh of notes, the movement of singular notes is moved to a 45 degree 

angle. Therefore in order to move a single note, we move along the diagonal of the 

Dmitri Tymoczko also describes his model with regards to the contrary and 

parallel motion of intervalic movement. Contrary movement in music is described as 

movement of the interval in different directions. This can be described by vertical 

movement from one interval to another where movement upwards represents the 

notes moving towards one another and moving downward represents moving away 

from one another. Parallel motion is different in that both notes move in the same 

direction, which is represented as movement to the right or left. Moving to the right 
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Parallel 

Figure 7. Movements possible in the two dimensional interval space. 

results in parallel movement upwards and moving to the left is parallel movement 

downwards. [18,20] The possible movements in this two dimensional space is 

summed up in figure 7. 

Now that we understand the movement, an understanding about what happens 

when we reach the end of the graph. Tymoczko describes this two dimensional 

space as repeating on the right and left in the same wayan mob ius strip works. The 

right an left sides of this plot are brought back around and twisted so that the 

[F~,F~] pairs match up and the [C,C] pairs match up. [18,20] 

U sing the same formal language that we had mentioned in the one dimensional 

section, we can understand movements in this space as well. The musical passage in 

figure 8 contains a two voice intervalic passage. We can represent the movement of 

the two voices on the graph. We notice that the first movement to the second is in 

parallel motion but they do not move the same distance. Therefore we move in the 

direction of parallel until we reach one of the voice's notes and then move the other 

voice's note to the proper note along the diagonal. The 2nd to third interval is in 

contrary motion so we move vertically and then fix the note movement. The next 
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Figure 8. A simple two voice passage containing various intervalic jumps. 
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Figure 9. Movements representation on the two dimensional space and representing 
the movements of figure 8. The Blue lines are the first to second interval; Green is 
second to third; Red is third to fourth; Black is fourth to fifth. 

interval is parallel with some voice fixing, and lastly the 4th to 5th interval are a 

simple movement of the top voice. These movements along the diagram are shown 

in figure 9. 

+2,+3 We can also formally defined these movements as (C, E) ----+ (D, G) for the 

first to second; (D,G) -1,+2) (Cij,A) for the second to third; and so on. In this 

instance, we can extend the formal language to simply include two notes and two 

values for change. This is further extended for any n-dimensional chord space 

discussed by Tymoczko in [20]. 
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Figure 10. The Three dimensional orbifold described by Dmitri Tymoczko. 

C N-dimensional Space 

Up to this point, the models have dealt with one dimensional chords, or pitch 

classes, and two dimensional chords, or intervals. It isn't until we get to the 3rd and 

4th dimensional spaces that we begin seeing what is traditionally understood in 

music to be a chord. However, understanding these previous dimensional spaces 

helps us in understanding the movements in the 3rd or 4th dimensional spaces. It is 

often hard for humans to visualize shapes in dimensional spaces beyond the third 

dimension. 

The third dimensional space is shown in figure 10. This space is very similar to 

the two dimensional space described in the previous section except containing a 

third note in the model. Because of this, Tymoczko concludes that the shape of the 

model is that of a triangular prism. This model contains two folds that are used to 

connect the edges of the prism together. In figure 10, the (C, C, C) pairs match up 

as well as the (E,E,E) pairs and (G~,G~,G~) pairs. [20] 

Moving along the same horizontal slice of the model is movement of the middle 
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Figure 11. A visual representation of the shape of the four dimensional orbifold 
described by Dmitri Tymoczko. 

or last notes in the plane We can also contain movement of the last two notes. Each 

movement to a vertical plane is then movement of the first note where diagonals 

from that contain contrary and parallel motion of the voices in the chord. 

It is interesting to note that Tymoczko has said that many composers choose a 

smaller subset of chords from this model and use them throughout their 

compositional career. This subset of chords rarely changes over the life of their 

career. [18,20] Therefore, choosing a smaller subset of chords in the model might be 

a viable option for the computer if the model can be used for generating chord 

progressions. 

Describing higher dimensional chord progressions goes beyond the limits of 

what the experiments in this thesis will need. However, it is good to note that 

higher dimensional chord spaces would be extremely useful in music outside of art 

music. The fourth dimensional space is shown in figure 11 and other higher 
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dimensional chords would exist in music such as Jazz. These spaces are harder to 

visualize, and this thesis will not attempt to explain these spaces. If you are curious, 

Dmitri Tymoczko's book, [20], does an excellent job of explaining these spaces. 

D Applications in Stochastic processes 

From the previous three sections, we began understanding the principles of 

movement in the model created by Tymoczko. We can see very mathematical 

principles to the movements of the chords and begin structuring the model to work 

in the stochastic processes described in the following chapter. 

For the rest of this thesis we will work with the third dimensional space and 

with a smaller subset of possible actions limiting motion to the same distance 

between the movement of notes. This will allow the experiment to work solely with 

the "pure" actions, movement of single notes, contrary movement of two or three 

notes, and parallel movement of two or three notes. Later experiments and 

extensions to the algorithm may be needed to work with combined actions of 

movement to chords. Now that we have limited the experiment to a smaller subset, 

we can begin looking at the possibility of using Tymoczko's model for generating 

tonal harmonic chord progressions on the computer. 
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CHAPTER IV 

CONCEPTS IN MACHINE LEARNING 

Machine Learning has become a major field in computers, allowing the 

computer to learn about data and make inferences based on the data. The primary 

development of this project relied heavily on Reinforcement Learning, a subfield of 

Machine Learning. In this, we allow the algorithm to learn what "sounds" good, or 

rather works in this case, as sounding good varies greatly on the audience. 

This chapter will discuss many of the concepts that are needed to understand 

how the engine is able to generate harmonic progressions based on Tymoczko's 

latent model for Chords. This chapter focuses on two topics in particular: Markov 

Decision Processes and Q Learning. Markov Decision Processes make up the 

understanding of the world and is necessary in this instance to help us better 

understand how the Q Learning algorithm works for these models. 

A Markov Decision Processes 

A Markov Decision Process is a dynamic programming algorithm first 

presented by Richard Bellman in 1957 [22,23]. The Markov Decision Process 

(MDP) is a mathematical process for modeling complex decisions. This model was 

later brought to the computer in order to solve complex, sequential, and stochastic 

processes. Unlike its path planning predecessors, such as Dijkstra's algorithm, this 

algorithm is specifically designed for taking probabilistic actions into account in 
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order to find the most suitable path for the traversing agent to take in the world. 

A MDP consists of a 4-tuple of inputs into the algorithm. It consists of a set of 

States in the world, a set of Actions that can be take from a state, a transition 

model, and a reward function. More formally it can be written as a 4-tuple in 

mathematics: 

(S, A(s), P(s, a, s'), R(s)) (1) 

where S is the set of all states in the world, A( s) is the actions possible at state s, 

P(s, a, s') is the transition model which represents the probability of moving from 

one state s to the next state s' given a specific action a, and R( s) represents the 

Rewards at state s. [24,25] Russel and Norvig prove that the definition of the 

Rewards system as being dependent on the action and outcome, or more formally, 

R(s, a, s'), is unnecessary as it does not change the problem in any fundamental 

way. This thesis will use the notation presented by Russell and Norvig. [24] 

The solution to the problem is unlike other path planning algorithms in that a 

fixed action solution will not offer the flexibility in the world that is needed to take 

stochastic problems into account. The solution to this problem then becomes an 

policy in which the traveling agent could use at any state in the world. Therefore, we 

need to take all states into consideration and determine how to best move from one 

state to the next with the possibility that we might move out of the "optimal path" 

as we would call it in a path planning algorithm. We generally denote the optimal 

policy as 1f and the recommended action as 1f(s), the policy, 1f, for the state s. 

Let us look at an example of a world in which we might use a Markov Decision 

Process to determine the best path to take in the world. Figure 12 shows a 4 x 4 

world with a single obstacle and two terminal states, or states which end the 

traversal. With this information, we can begin using an algorithm knowns as Value 
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Iteration to determine the optimal policy for the agent moving in the world. 

The Value Iteration algorithm is used for calculating an optimal policy. In this 

algorithm, we want to calculate the utility of a state and then use the utilities to 

determine the best policy. Richard Bellman's equation described in [22,23] can be 

used for calculating the utility. The Bellman Equation, as it is known, calculates the 

utility by taking the immediate rewards for the current state and adds the 

discounted utility of the next state. Using this definition we can see that finding the 

utility for the current state depends on all of the future states until you reach a 

terminal point. The Bellman equation can be written more formally as shown in 

equation 9. 

U(s) = R(s) +,max LP(s'ls,a)U(s') 
aEA(s) 

s' 

(2) 

In equation 9: U (s) represents the Utility at a current state; R( s) represents 

the reward of the current state; , represents the discount factor of the model; a is 

an action of the set of Actions, A(s); P(s' - s,a) is the transition matrix; and U(s') 

is the utility of the next state, s'. Using this equation, we can calculate the utility of 

the state by using simple dynamic programming. This algorithm essentially works 

from the terminal states backwards and iterates through this algorithm until the 

world converges on their utilities. Bellman [22,23] provides mathematical proofs as 

to why this will always converge. 

Since we now know this simple mathematical equation can be used to solve the 

equation, we can write an algorithm which takes advantage of this by adding an 

acceptable error rate and continuing to iterate until completed. This algorithm can 

be written as shown in Listing IV.1 
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0.8 

Start 

(a) (b) 

Figure 12. (a) A 4 x 4 world that would be presented to an agent to traverse through 
the safest possible route in order to maximize the final Reward of the system. The 
grey area represents an unpassable obstacle in the world. (b) The transition model 
of the world. Traveling forward results in an 80% likelihood of moving to the next 
state and 10% likelihood of moving to the right or left of the forward direction. This 
does not represent any particular direction in the world, but rather forward could be 
a move to the left of their current square and simply put means the probability of 
travelling to the desired state. 
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ALGORITHM IV.1. The MDP Value iteration Algorithm which uses the Bellman 
Equation to determine the Utilities of each state 

1 function :MDP( S, A(s), P(s' Is, a), R(s) ) 
2 do 
3 U = U'; 
4 delta = 0; 
5 for each (s in S) do 
6 U'[s] = R[s] + gam * maxAction(summation(P(s' I s, a)*U[s '])); 
7 if (abs(U'[s] - U[s]) > delta) 
8 delta = abs(U'[s] - U[s]); 
9 end 

10 end 
11 while ( delta < epsilon (1 - gam)/gam ); 
12 return U; 
13 end 

By running this algorithm, we are able to solve the Utilities for each state. 

Figure 13 shows the utilities of the world first presented in figure 12. Initially, all 

nonterminal states have a Utility of 0, and therefore only terminal states contain 

non-zero initial values. This algorithm iterates until the change in values is 

extremely small, or a user defined value for epsilon in the algorithm. 

With the values that are returned from the Value Iteration algorithm show in 

figure 13, we can then determine the best policy from the results. In order to 

determine the policy, we simply move to the highest possible number on the board. 

Where ties result, such as in in square (3,3), with the utility 0.9000, and square 

(1,2), with the utility 0.6312, the agent is allowed to move to either of the tied 

squares. Therefore in square (3,3) it is allowed to move to either (3,4) or (4,3). 

The best policy for this world is shown in figure 14. Notice as mentioned that 

squares (3,3) and (1,2) contain two possible directions to travel. Since we now have 

an optimal policy using the parameters which we passed the algorithm, we can look 

at the original world and determine how an agent would attempt to solve the world. 

If we look back to figure 12, we see the starting location of the agent is at (1,2). 

We can look at our policy and we know that we can move in one of two 
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2 3 4 

4 0.8382 0.8944 0.9444 +1 

3 0,7882 0,9000 0,9444 

2 0.7312 0.6757 0.6494 -1 

0 .8 

0.6757 0,6312 0.5888 0.3678 0.1 "'--9'---+-l",O.l 

= .: •. e:"" •..... , 

Figure 13. The utilities of every state in the world which was presented in figure 12. 
This algorithm was run using a I = 1 and R(s) = -0.04 for nonterminal states in 
the world. 
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Figure 14. The resulting policy of the world shown in figure 12 and using the Utilities 
calculated in figure 13. The arrows represent the way in which the agent in the world 
should travel for an optimal solution. 
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directions, up or left. Following the arrows and assuming we are always successful, 

we can say that the optimal policy for the agent to travel is [up, left, up, up, right, 

right, right} or [left, up, up, up, right, right, right}. As mentioned previous in this 

section, this is not a shortest path algorithm. In a shortest path algorithm we could 

make a series of 5 moves, [up, right, up, up, right}, to reach the goal. However, this 

does not account for the -1 terminal point which would minimize the rewards in the 

system if travelled to accidentally. The MDP problem takes this into consideration 

and does not risk the possibility of hitting the negative reward terminal square. 

We see now that this algorithm can be used to take into consideration the 

possibility of moving from one state to another given a stochastic world. This is 

ideal in Tymoczkos model where we want certain terminal states and how the agent 

in that world gets there is left up to randomness. In music, there are general rules 

which say that certain things should be avoided, such as jumps of tritones. Using a 

negative reward system, we can have the algorithm avoid these jumps entirely by 

negating the reward if it does jump a tritone in any way. 

Since we now understand the basic concepts of the Markov Decision Process, 

we can look at algorithms which allow for much quicker determination of a policy. 

The MDP Value Iteration algorithm is well suited for smaller worlds but can be 

slow when presented with a much larger world. There is however an algorithm 

known as Q-Learning which is an extension of the MDP model used for 

Reinforcement learning. 

B Q Learning 

Q-Learning is a reinforcement learning technique first discussed by Christopher 

Watkins in his doctoral thesis in 1989. [26] It wasn't proven that his algorithm 
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would converge on an answer until a few years later when Watkins and Dayan 

proved the convergence. [27] Q Learning works by learning an action-value function 

that gives the expected utility of taking a given action in a given state. The 

algorithm is different from the MDP in that unlike an MDP which gives a nearly 

exact utility, the Q Learning algorithm is an approximation of the MDP. 

The Q Learning algorithm uses the Bellman update equation as a part of the 

algorithm itself. However, unlike the MDP which uses the Transition times the 

Utility, the Q Learning algorithm implicitly defines this as a part of the Q matrix. 

This is beneficial in many respects where a model of the transitions might not be 

known. Therefore, the bellman equation portion of the Q Learning algorithm can be 

written as shown in equation 3. [26] 

Q(s, a) f- R(s) + ,,/maxQ(s', a) (3) 
a 

Later developments in the algorithm extended this model to include a learning 

rate. This variation of the Q Learning algorithm is called delayed-Q Learning and 

has substantial improvements over the traditional Q Learning. This brings a 

technique called "Probably approximately correct (PAC) learning" to the bounds of 

MDP. [28] The extension to this Q learning algorithm can be written formally as 

equation 4. 

Q(s, a) f- Q(s, a) + a(s, a) [R(s) + "/m:;xQ(s', a) - Q(s, a)] (4) 

This equation can be simplified as equation 5. [29] 

Q(s, a) f- Q(s, a)(1 - a(s, a)) + a(s, a) [R(s) + ,,/m:;xQ(s', a)] (5) 
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This mathematical foundation gives us oversight in understanding how Q 

Learning is related to the Markovian Decision Process. Similar to the MDP, we are 

again left with a highly mathematical algorithm. The Q Learning algorithm can be 

seen in Listing IV.2. 

In this algorithm, we define any number of episodes to iterate and build the Q 

Matrix. The Q matrix is initialized to zero on all nonterminal states and set to the 

reward for the terminal states. We iterate through all episodes choosing starting 

states and actions at random and calculating the likelihood of the state action pair 

using equation 5. The selection of random actions for the current continues until a 

terminal state is reached. Once the episode has finished, the next episode continues 

and we start with a new random state location. 

ALGORITHM IV.2. The Q Learning iteration algorithm for building the Q Matrix 
1 function QLearning (S, A( s ), R( s ) ) 
2 Q = zeros ( ) ; 
3 for each episode 
4 s = random(S); 
5 while (s != goal) 
6 a = random (A( s )) ; 
7 Q(s, a) = Q(s ,a)*(1 alpha) + 
8 alpha * (R( s) + gam * maxAction (Q( s ' ,a) ) ) ; 
9 s = s '; 

10 end 
11 end 
12 return Q; 
13 end 

After completing all episodes in this fashion, we are left with a Q matrix 

containing the estimated utilities for each state-action pair. Using this state action 

pair, we can traverse the world through the estimated utilities by simply choosing 

the action which maximizes the estimated utility for that state. This is by far the 

simpler of the algorithms presented here, as shown in Listing IV.3. 
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ALGORITHM IV.3. An algorithm to use the generated Q matrix 
1 s = initial; 
2 while (s != goal) 
3 a = maximumQValue ( s ) ; 
4 s = nextstate (s, a); 

If we use the Q Learning algorithm on the world shown in Figure 12, we can 

determine the approximate utilities with the algorithm in Listing IV.2. Since this is 

a relatively small world, it normally converges on an answer quickly. Once the Q 

matrix is built, we can begin choosing the direction in which the agent in the world 

will move. Table 3 shows the Q Matrix built using the Q Learning algorithm with 

45 episodes. 

If we, for instance, start in the location shown in Figure 12, coordinate (1,2), 

we would look at the Q matrix and determine the best direction we can travel. For 

this, the highest number is 0.6312 on the Left Action. This means that from (1,2) 

we would move to (1,1). From here we again choose the highest number, 0.6757 on 

action up, and move in that direction to (2,1). We continue this until we reach the 

goal. If during the movement, a movement fails and we move to another square 

which was not our intended state, the Q matrix is still able to get us to the goal by 

creating what is, essentially, an optimal policy. 

Figure 15 shows the estimated policy for the world. If we compare this q 

learning policy to the policy of the value iteration algorithm for the MDP, we see 

very few changes to the overall path. We do see that the Q Learning algorithm is 

slightly more conservative in that it takes no risks at (2,3) since it moves to the left 

in the Q Learning algorithm instead of up as in the Value Iteration algorithm. We 

also see that in (1,2) and (3,3) we are left with a single direction in the Q Learning 

algorithm, but the direction in the Q Learning algorithm is one of the directions 

shown for the value iteration policy as well. Therefore, only a single major 
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State ACTION_UP ACTION_RIGHT ACTION_DOWN ACTION_LEFT 
(1,1) 0.6757 0.6057 0.6312 0.6412 
(1,2) 0.6270 0.5617 0.5914 0.6312 
(1,3) 0.5794 0.3780 0.5309 0.5888 
(1,4) -0.7443 0.1910 0.3499 0.3678 
(2,1) 0.7312 0.6469 0.6412 0.6914 
(2,2) 0.6386 0.6102 0.6031 0.6757 
(2,3) 0.6476 -0.6911 0.3986 0.6494 
(2,4) -1.0000 -1.0000 -1.0000 -1.0000 
(3,1) 0.7882 0.7475 0.7026 0.7475 
(3,2) 0.8444 0.8370 0.6694 0.7476 
(3,3) 0.9000 0.8749 0.6640 0.8394 
(3,4) 0.9444 0.7156 -0.6556 0.6800 
(4,1) 0.8038 0.8382 0.7638 0.7932 
(4,2) 0.8538 0.8944 0.8538 0.8094 
(4,3) 0.9050 0.9444 0.8694 0.8600 
(4,4) 1.0000 1.0000 1.0000 1.0000 

TABLE 3 

The Q matrix built using the algorithm in Listing IV.2 on the world shown in Figure 
12 using 45 episodes 
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directional change occurs using the Q Matrix. 

If we apply the Q Learning algorithm to the latent model for chord 

progressions using what is known about tonal harmonies, we should be able to use 

this Q Learning algorithm on Tymoczko's model by using the starting point of tonal 

harmonies a I chord and several positive terminal states, such as the IV chord, the 

V chord, and the viiO chord. Using this information and rewarding major, minor, 

and diatonic chords, we should be able to use the traversal of the world to produce 

tonal harmonic progressions quickly and using techniques that are likely applied by 

composers without any thought to the compositional process. Chapter V discusses 

how the Q Learning algorithm has been altered to work in a way in which 

harmonies can be generated. 

2 3 4 

4 .. .. .. +1 

3 1 1 1 
2 1 4 4 -

0.8 

1 4 ... 4 

Figure 15. The resulting policy of the world shown in figure 12 and using the Q 
Matrix shown in Table 3. We see only minor changes in the overall policy between 
the Q Learning algorithm and the Value Iteration algorithm. 
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CHAPTER V 

AN ALGORITHMIC TONAL MUSIC GENERATOR 

U sing the theoretical music concepts discovered by Dr. Dmitri Tymoczko and 

the computer science algorithms discussed in Chapters III and IV respectively, we 

can further develop these ideas to approach algorithmic composition with a new set 

of algorithms. Using these new set of algorithms for music composition, we leave the 

stochastic genre which was made prominent by Iannis Xenakis for more intelligent, 

decision making algorithms. 

This chapter will discuss the algorithms and approaches that were taken for 

generating the music in the software created for this document. The chapter is laid 

out to discuss each of the parameters that have been included in this software. You 

will notice that a majority of the chapter focuses on the Chord Progression 

algorithm. This algorithm is the driving force behind the software. However, 

parameters such as scales and rhythms will be discussed as well. 

A The MuseGEN engine 

The MuseGEN engine (short for Music Generation Engine) is the engine that 

contains all of the primary functionality for generating music. In this iteration of 

the MuseGEN engine, three primary components exist. The Music Database, which 

consists of the database of possible scales in the program; the Rhythm Generator 

which generates all musical rhythms; and the Tonal Harmonic Progression 
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Stylistic Preprocessot 

MIDI Processor 

MuseGEN 

Figure 16. A flowchart of the MuseGEN engine during its iteration at the writing of 
this document. 

generator, which is the set of classes for generating musical harmonies. 

The engine was designed from the ground up to be modular. Each component 

of the engine is broken into separate modules which can be used by the stylistic 

preprocessor to generate music. Currently, only a single stylistic pre-processor class 

exists within the MuseGEN engine, used to generate music of the Minimalist style. 

This stylistic pre-processor then transfers MIDI information for the generated tones 

to the MIDI processor. The MIDI processor is a dumb component, meaning that it 

has no source of error checking within the processor. The MIDI processor simply 

takes the MIDI information and adds the information to the track that is being 

generated. A visual representation of the layout of the engine, during the current 

iteration of this writing, can be found in figure 16. 

Subsequent sections break down each of the components written for this 

document and the algorithms and techniques that were used to create the various 

components. The next section discusses the fundamental algorithm used for 
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generating musical rhythms in this generator. This is followed by a discussion on 

the approach for storing scales and other musical parameters which are not easily 

created using algorithmic techniques in a form of Database using XML. The next 

section is a discussion on the algorithms and the mathematics that make up the 

generation of Tonal Harmonic Progressions in the music. Since MIDI programming 

is relatively obscure, the next section discusses both the Stylistic Preprocessor and 

the MIDI processor portions of the MuseGEN engine. The chapter ends with a 

discussion on the possible future directions for the MuseGEN engine and the 

modules that make up the engine. 

B Generating Musical Rhythms 

Musical Rhythms are, more simply, nothing but mathematics patterns of 

accents and unaccented beats in music. Because musical rhythms have only two 

states, they can be represented on the computer as boolean, or binary, states, zeroes 

and ones or true and false. Though we know that storage can be done using boolean 

states, this does not account for the evenness of the mathematical pattern that 

makes up musical rhythms around the world. 

Godfried Toussaint [30] first proposed the use of the Bjorklund algorithm for 

generating musical rhythms which create an evenness between the accented and 

unaccented beats of the rhythm. The Bjorklund algorithm is an extension of the 

Euclidean algorithm which is designed to distribute bits of Is and Os evenly. 

The Euclidean Algorithm is one of the oldest and most well known algorithms. 

Euclid described this algorithm in "Elements" in Proposition 2 of Book VII. The 

algorithm is a recursive algorithm used to calculate the Greatest Common Divisor of 

two integers. [31] The algorithm works by repeatedly replacing the larger number of 
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the two numbers by their difference. 

Consider as an example that we want to determine the greatest common 

divisor for the numbers 11 and 8. First, we subtract 8 from 11, which equals 3; then 

8 minus 3 equals 5; 5 minus 3 equals 2; 3 minus 2 equals 1; and finally 2 minus 1 

equals 1. Therefore, using Euclids description, we know that the greatest common 

divisor between 11 and 8 is 1. Listing V.1 shows the euclidean algorithm as written 

using a recursive technique. 

ALGORITHM V.l. The Euclidean Algorithm as written using recursion 
1 function euclid (m, k) 
2 ifk=O 
3 then return m 
4 else return euclid (m, k % m) 

The Euclidean algorithm itself is not enough to generate rhythms. The 

Bjorklund Algorithm extends this concept that was laid out in the Euclidean 

Algorithm. The Bjorklund Algorithm was originally designed to be used to even out 

the repetition rates evenly for Spatial Neutron Source (SNS) timing. In Bjorklund's 

papers, [32J and [33J, the author lays out a detailed algorithm for generating 

symmetry between pattern width and repetition rate for SNS timing. 

In this algorithm the author defines "Ugliness" in a pattern as any pattern 

which is not symmetrically separated. In [32J, the author uses a pattern with a 

width of 8 and a repetition rate of 2. In this case, a symmetrical distribution of the 

repetitions would be [1000100J where 1 is a repetition. Bjorklund goes on in the 

same paper to say that since these cycles continually repeat, any rotation of the 

pattern is also optimal. Toussaint's [30J contends the same occurs naturally in music 

as well. Rotations of an optimal pattern gives various rhythms from around the 

world, which the author lists during the majority of the latter portion of the paper. 

Bjorklund's Algorithm is relatively simply to understand and to implement 
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using Boolean or Byte Arrays. Bjorklund [33] and Toussaint [30] describe the 

algorithm using a series of bits. In order to begin the algorithm, we need to know 

the maximum width of the set as well as the repetition rate. If for example the 

algorithm is given a width of 9 and a repetition rate of 5, the algorithm will 

compute the number of Is needed in the sequence as 5 and fills the rest of the 

sequence with Os. Therefore the algorithm builds a sequence which looks as such: 

111110000 

From this, we begin by, in a sense, moving the Os underneath of the Is. 

11111 

0000 

Since this algorithm has no more Os, no more steps need to be done. We can 

simply merge the columns into a single sequence from left to right, top to bottom. 

We therefore are left with a sequence which looks like: 

101010101 

If we choose a sequence which has more Os than 1 (where pattern width minus 

repetition rate is less than the repetition rate), we simply continue the second step. 

So for example if we have a pattern width of 12 and a repetition rate of 5, we would 

have a sequence as such: 

111110000000 

From here we move 5 of the Os under the Is: 

1111100 

00000 

we repeat this step again: 

11111 

00000 

00 
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Since three of the columns have less rows than the other two, we then move 2 more 

of the columns under the first two columns: 

111 

000 

00 

11 

00 

Now that only 1 column has less rows, we stop here. We then combine the columns 

so that the symmetrical sequence is: 

100101001010 

Knowing this, we can easily create an algorithm that suits the needs of the 

algorithm. Listing V.2 is the code found in MuseGEN that is used for generating 

Musical Rhythms using the Bjorklund algorithm. This algorithm is written using 

the Java programming language and uses a Boolean Array to represent the accented 

(truths) and unaccented (false) beats. 
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ALGORITHM V.2. The Bjorklund Algorithm 
1 private int Bjorklund (int m, int k) 
2 { 
3 if(k = 0) 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

return m; 
else if(k = 1) 

return this. Bjorklund (k, 
else { 

m % k); 

} 

int location 
int searcher 

0; 
(m- k < k) ? m - k: k; 

for (int i = 0; i < searcher; i++) { 

} 

int newColSize = this. colSizes. get (i) 
+ this. colSizes . get (this. colSizes . size () - 1); 

int oldLastSize = this. col Sizes . get ( 
this. colSizes . size () - 1); 

location += newColSize; 
this. colSizes . remove( i); 
this. colSizes. remove(this. colSizes. size () -1); 
this. coISizes.add(newCoISize , i); 

for(int j=O; j < oldLastSize; j++) { 

} 

this. rhythm. add (location - oldLastSize, 
this. rhythm. get (this. rhythm. size () - 1)); 
this. rhythm. remove (this. rhythm. size () - 1); 

return this. Bjorklund (k, m % k); 

29 } 

C A database of scales 

Unlike the other sections of the engine, scales posed a slightly different 

obstacles. Unlike the Rhythm generation or the tonal harmonic progression 

generation, generating world scales could not be represented using a single 

mathematical formula. For this reason, a different approach had to be taken in 

order to generate suitable musical scales. 

To meet the requirements, a semistructured database was created using XML. 

The flexibility of XML allows future scales to be added to the list while keeping the 
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data organized in a way where information might not be consistent between each 

scale. The primary object of the created database is the scale itself. Each scale then 

contains a set of fields that must be filled in. This is accomplished using XML 

Schema to validate the insertion of new information and that the file has been 

created properly. 

Currently the only information that is stored in the XML database for each 

object are the fields of Title, Alternative Names of the scale, and the notes that can 

be used to build the scale. The Title field represents the primary name for that 

scale. The Alternative Name is used when a scale is referred to by any other name. 

For example, a Double Harmonic Major scale (which is it's primary name) is often 

called the Arabic scale as well. The Notes that can be used to build the scale are 

exactly the same between the two scales. The notes field itself comprises of any 

number of notes that MuseGEN then uses to build the scales. 

The title field and the Notes field are single occurrences for a scale. This is 

done because the primary name for the scale is only a single name. The Alternative 

Names however is slightly different. Since a scale could theoretically have any 

number of names, the alternative names of the scales is let unbounded. This means 

that a user can insert any number of names to the database for this scale. 

The notes that make up the scale is slight more complicated. Unlike what one 

may expect, the scale itself does not contain MIDI integers as representations of the 

scale. Instead, the database is created using an additive model. In this case, we can 

build the scale on any MIDI note based on the additive information that is retrieved 

from the database. Therefore each number in the database is a sum of the previous 

note in the scale. Therefore is we saw the Notes to be added as [0, 2, 3, 2] we would 

take any midi note we would like to build the scale on and add those numbers to the 

previous note in the scale. If we choose 46 as the starting note, we would add 0, 
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then add 2 which would give us 48. We then add 3 to 48 which gives us 51, and 

then we add 2 to the 51 to get the note. This is a simplified example of how this 

information is used. 

ALGORITHM V.3. XML Schema for created the Musical Scale Databse 
1 <?xml version=" 1.0" encoding="UTF-8"?> 
2 <schema xmlns:xs=" http://www. w3. org /2001/XMLSchema" 
3 targetNamespace=" scales" 
4 xmlns:tns=" scales" 
5 elementFormDefault=" qualified"> 
6 
7 < !-- Simple Elements -> 
8 <xs: element name=" tit 1 e" type=" xs: st ring" /> 
9 <xs:element name="alt" type="xs:string"/> 

10 <xs:element name="note" type="xs:int"/> 
11 
12 < !-- Complex Elements -> 
13 <xs:element name=" notes"> 
14 <xs:complexType> 
15 <xs:sequence> 
16 <xs:element ref=" note" maxOccurs=" unbounded" /> 
17 </xs:sequence> 
18 </xs:complexType> 
19 </xs:element> 
20 
21 <xs:element name=" scale"> 
22 <xs:complexType> 
23 
24 
25 
26 

<xs: sequence> 
<xs:element 
<xs : element 

27 <xs: elemen t 
28 </xs:sequence> 
29 </xs:complexType> 
30 </ xs: elemen t> 
31 

ref=" title" maxOccurs="I" /> 
ref="alt" minOccurs="O" 
maxOccurs=" unbounded" /> 

ref=" notes" maxOccurs=" I" /> 

32 <xs: elemen t name=" root"> 
33 <xs:complexType> 
34 <xs:sequence> 
35 <xs:element ref=" scale" maxOccurs="unbounded" /> 
36 </ xs: seq uence> 
37 </xs:complexType> 
38 </ xs: elemen t> 
39 </ schema> 
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The XML schema for the created database can be found in Listing V.3. Using 

this schema, we create a database of scales by simply adding scales to an XML file 

which uses the schema as validation. After this file is created, MuseGEN reads the 

XML file using Java's built in XPath API to interpret the information in the 

database. These scales are then built using the above mentioned additive method 

and the MID I notes are stored in an array. This array is then Mapped to the scale 

names using a Java Map data structure, using the scales name (and alternative 

names) to map to an integer MIDI note array. 

Understanding how these scales are built and stored is important for the next 

section which uses the scale in multiple ways. First, the scale can be used to 

determine the root note of the scale from which the chords generated can be 

changed to reflect this information. The scale is also used to determine if a chord is 

a diatonic chord or not. Diatonic chords are simply chords that are based on the 

notes within the scale that has been selected. More information on how the scales 

are used will be described in one of the next section. 

D Tonal Harmonies 

Tonal Harmonic Progressions represent the major focus of this thesis and will 

be broken down and explained in detail. Many of the concepts that are explained 

here are extensions of the concepts of Geometric Music Theory, Markov Decision 

Processes, and Reinforcement Learning laid out in chapter III and chapter IV. 

Therefore it is expected that you have read these chapters before delving into the 

understanding of the tonal harmonic generation algorithm. 
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1 Minimizing Space Complexity 

The latent model that is laid out in Dmitri Tymoczko's idea of geometric 

music theory has the ability to model all possible chords in western music based on 

the twelve pitch classes that musicians are extremely familiar. The downside to this 

model is that, though it captures all possible permutations within any 

n-dimensional torus, the number of permutations grow exponentially. Therefore the 

space complexity requirements for storing the number of chords that are defined in 

Tymoczko's model is equivalent to the notation in equation 6, where n is the 

number of notes in the chord. 

(6) 

However, Tymoczko's model also captures the the voice leading aspect of the 

chordal progression as well. For this reason, the space complexity for storing the 

number of chords is expanded greatly. This is neither a good nor bad thing. It is 

simply a portion of the model which causes the need for excess storage of chords. 

However, in a subsequent paper, Tymoczko [21J defined a way to model various 

transpositions of chords using a dynamic programming technique. 

Since chords in music theory are defined as a series of pitch classes played 

together, chords which share the same inversion of pitch classes can be combined 

into a single category of chords. Therefore a chord which is defined as [0, 4, 7J, or 

[A, Crt, E], would be equivalent to [4, 7, OJ; [7, 0, 4]; or [7, 4, 0], as well as all other 

permutations of the 3 numbers. To simplify the space complexity, we can therefore 

simplify the space complexity using combinatorics. 

In this example, we can therefore simplify the permutations into a 

combinations of pitch classes. However, we must also take into consider repetitions 

of pitch classes since Music theory defines [l,l,lJ as a chord as well as [1,1,2J. 
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Therefore we notice that there are repetitions of notes that make up chords as well 

as independent pitch classes. In combinatorics, we know that combinations with 

repetitions can be solved using an extension of the binomial coefficient. This 

combination is defined in equation 7. 

(7) 

In equation 7, n would represent the number of notes in the chord and k is 

defined as the number of possible pitch classes. In western music, k is statically 

defined as 12 pitch classes. Therefore, we can define the minimized space complexity 

using the modified binomial coefficient by replacing the variable k with 12. This 

space complexity is shown in equation 8. Also note that the top portion of the 

binomial coefficient is simplified by subtracting 1 from k immediately. 

(8) 

Since Dimitri Tymoczko's model changes based on the number of notes in the 

chord, this simplification shrinks the world space significantly as the world space 

grows exponentially. In the case of 3 note chords, using Tymoczko's model, we 

would have a world of 1728 chords. Using the minimized world, we have a total of 

364 chords in the world using 3 note chords. This is approximately 89% savings in 

the size of the world. This savings grows exponentially as the number of notes in 

the chords grow. If we build a map of 4 note chords, we have a map of 20,736 

chords using Tymoczko's model and 1,365 chords using the modified combination 

process, a 93.4% savings in space. 
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Figure 17. A plot showing the space requirements for the Tymoczko permutation 
world and the combination with repetition world. Plot generated in MATLAB. 

If we continue to plot this out , we see that the savings become extremely 

significant as the number of notes , n, in the chord grows. Figure 17 shows the 

differences in growth between the two maps. there is a large significance in the 

growth until about 4 note chords where the Tymoczko world begins to grow 

significantly while the combination process remains relatively small at the higher 

orders. 

Minimizing this space complexity does force the need for several additional 

computations in MuseGEN engine. The most significant of which is the addition of 

a Voice Leading algorithm which works to smooth the voicing between the playing 

of chords in the MIDI sequence. We also need to add additional connections 

between chords in order to capture the same information that might have been 

captured in Tymoczko's model. The latter of these is relatively simple to do, and is 

done while generating the world by looking at possible edges in the world from that 
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chord and determining if a new edge is needed for a chord which has already been 

added. The Voice Leading algorithm is slightly more complex and is described in 

detail in a subsequent section of this chapter. 

2 Altering the Markov Decision Process 

Having discussed how the world that the algorithms will be using is built, we 

can begin to understand how the Markov Decision Process and Q-Learning discussed 

in chapter IV can be used to generate tonal harmonies. Despite this, neither 

Markov Decision Processes nor Q-Learning algorithms themselves offer a solution to 

the complete problem without some minor alterations to the discussed algorithms. 

Recall from the previous chapter that a Markov Decision Process (MDP) is a 

4-tuple graph algorithm containing the tuples of (8, A, R(s), P(s'ls, a)). In this 

tuple, 8 represents a finite set of states, A represents a finite set of actions, R( s ) 

represents the immediate rewards received for transitioning to a give state, s, and 

P(s'ls, a) represents a transition matrix using the probabilities of moving to a state 

given the current state and the action that was taken. The primary goal of the 

Markov Decision Process is to find a policy of transitioning to reach a goal state. 

Also recall, that the oft used method for solving a Markov Decision Process 

was defined by Bellman [22] . Richard Bellman defines what is most commonly 

referred to as the Value Iteration approach to find an optimal policy as equation 9. 

In this equation the actions from any state make up a large portion of the resulting 

Utility vector for finding an optimal policy. In most cases, these actions are 

predefined for all states and never change. The actions for the chord progression 

algorithm is slightly different from the actions that would make up a vector as 
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defined in the Bellman equation, where "I is the discount factor. 

U(s) = R(s) + "I max L P(s'ls, a)U(s') 
aEA(s) 

Sf 

(9) 

In the chord progression algorithm, we have a large number of possible actions. 

For the purpose of this experiment, only a smaller subset of actions were chosen. 

However, calling the movement an action is slightly incorrect as the actions for this 

world are are themselves a tuple. Therefore, it may be better to call the action for 

the chord progression algorithm a velocity vector. It should be noted that in a 

MDP, P(s'ls, a) can be simplified. Since it can be recognize that we are trying to 

find the probability of moving to state prime, s', and that it is known that s and a 

are independent variables, we know that solving the probability becomes the 

probability of being in the current state, s, times the probability of choosing an 

action (as shown in equation 10). 

P(s'ls, a) = P(s)P(a) (10) 

However, it should also be noted that since this is a fully observable MDP, the 

probability of being in an incorrect state would be 0, and therefore P(s) would 

always equal 1. Therefore, the probability of transitioning to a new state simple 

becomes the probability of the action, as shown in equation 11. 

P(s'ls, a) = P(a) (11) 

Since we have defined the action for chord progression as a velocity vector, vx , 
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we can rewrite this equation replacing all action as the velocity vector (equation 12): 

(12) 

The value of x in this equation for the velocity vector is dependent on the 

number of notes in the chord. If for example we have 4 notes in the chord, we would 

need to make 4 separate velocity vectors. Since it is easier to think about using 3 

note chords, the following examples will use 3 note chords. Assuming we are using 3 

note chords we might rewrite this equation as equation 13. 

(13) 

It is easier to think about the equation by writing this Probability as equation 14. 

(14) 

At this point, we can use the chain rule to expand this probability and simplify 

finding the probability. It is also important to note that Vi is independent of '0 is 

independent of Vk. However, Vj is dependent on Vi; Vk is also dependent on Vj and 

Vi. Therefore we can expand this probability using the chain rule, equation 15, and 

then simply by removing variables which are not dependent on another in that 

chain, equation 16. 

(15) 

(16) 

It should now be noted that the tuple of Vx contain the direction of the action 
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and magnitude of the speed. In this, ax represents the probability of moving in a 

direction towards the goal while speedx represents the probability of a direct hit on 

the state. The latter portion relates to undershooting or overshooting a note in the 

chord. This was added to the chord progression MDP to encourage stochastic 

exploration of the world. We also know that each of the probabilities for the tuples 

are independent of one another, and therefore can simply the equation further. 

Since the probability of Vx contains independent tuples, we can redefine the 

Probability as shown in equation 17. 

(17) 

Knowing this information we can continue where we had left off in equation 16. 

All of the velocity vector probabilities can be replaced with the tuples, as in equaton 

18. Then simplifying the equation becomes simple. Since the Speed are always 

independent of one another, and only actions make up the dependency in the 

velocity vector dependency, we can simplify the transition to its simplest form in 

equation 19. 

3 Q Learning 

With this equation, we can begin to solve the Bellman Equation for the MDP. 

This extends into the Q Learning algorithm which uses an extension of the Bellman 

equation to solve the MDP. In the Q Learning Algorithm, the Q update function is 
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defined as equation 20. Where the Q function Q(s, a) is the Q matrix, the Q 

function, Q(s, a) is the learning rate, and'"Y is the discount rate. 

Q (s, a) t- Q (s, a) + Q(s, a) [R(s) + '"Y m:;xQ(s', a) - Q(s, a)] (20) 

This is equivalent to the equation in equation 21. 

Q (s, a) t- Q (s, a) (1 - Q(s, a)) + Q(s, a) [R(s) + '"Y m:;xQ(s', a)] (21) 

In the case of Q learning, we can extend this function by simply replacing the 

actions, a, with the velocity vectors. The Q function must always return a value 

between [0, 1]. For the purpose of this algorithm, all chords contain the same 

learning rate. Therefore this function can be more simply represented as a static 

number. For this reason, the Altered Q update function becomes the equation 

shown in equation 22. 

We can continue to keep the Q matrix as a 2-dimensional matrix by writing a 

function to us the combination of velocity vectors to identify each uniquely and 

using that id in place of the velocity vector. Using this, we can modify the Q 

learning algorithm described in chapter IV. This modified algorithm is shown in 

listing V.4. This algorithm is modified from the original algorithm described by 

Watkins and Dayan [26,27]. 
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ALGORITHM V.4. The modified Q Reinforcement Learning Algorithm 
1 set gamma; 
2 set R(S); 
3 Q(:,:) = 0; 
4 
5 while (episodes) 
6 s = Rand ( S ) ; 
7 while(s != goal) 
8 v = Rand (V) ; 
9 Q(s ,v) = Q(s ,v)(1-learning_rate)+learning_rate* 

10 [R( s)+gamma*max-action (Q( nexLstate , v)) 1; 

12 end 
13 end 

One important aspect to the Q Learning function, and especially to the Q 

update portion of the function, is the rewards vector for various states in the music. 

Dmitri Tymoczko gives the basis for the rewards scheme in his book " A Geometry 

of Music" [20] states that all of the central chords in the model are the major, 

minor, augmented and diminished chords. These chords are defined by Tymoczko as 

dividing the octave nearly evenly. These central chords are the primary chords that 

are used by composers to create music. So when generating music, these chords are 

the chords that are most desirable. 

For this reason, each element of the world can be weighted using several 

classifications of chords. For the purpose of this experiment, these classifications 

were broken down into: major chords, minor chords, augmented chords, diminished 

chords, diatonic chords, and other chords. A major chord is any chord who has two 

intervals which consists of an interval of a major third (a jump of 4 tones) and 

followed by a minor third (jump of 3 tones). A minor chord is any chord which 

consists of two intervals of a minor third (jump of 3 tones) followed by a major third 

(jump of 4 tones). An augmented chord is any chord which consists of two intervals 

of a major third (jump of 4 tones) followed by a major third (jump of 4 tones). A 

diminished chord is any chord which consists of two intervals of a minor third (jump 
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of 3 tones) followed by a minor third (jump of 3 tones). Other chords are defined as 

chords which do not fall into any of the other categories above. 

Diatonic scales are slightly more difficult to define in the scope of this project. 

In traditional tonal harmony, diatonic chords are chords which consist of notes that 

exist within the major and/or minor scales that are being used and is generally used 

to define the four types of chords explained above. Since the definition of a chord 

and the word tonal that Tymoczko defines in his book [20] are slightly altered from 

their traditional usage, it then comes to question whether the word diatonic can be 

used to escape the traditional meaning of the word. 

For the purpose of this experiment, it was decided that the word diatonic 

should be altered very slightly to fit in with the larger scope of the tonal progression 

algorithm. In the scope of this experiment, the word diatonic has been used to 

explain any chord who contains pitch classes from within any defined scale. This 

therefore means that any chord, whether it is a traditional major, minor, 

augmented, or diminished, or whether it is simply a chord which contains notes 

from within the scale, becomes a diatonic chord. This allows the chords that are 

generated to contain a much larger gamut of sounds without modulation than 

limiting the word diatonic to its traditional usage. 

The rewards scheme that was used for this experiment can be found in listing 

V.5. These numbers cannot be altered from within the application and must be 

altered from within the code if they are to be altered. These numbers presented 

were chosen arbitrarily. This scheme was chosen since Major chords represent the 

largest portion of chords that we wanted the algorithm to use. Minor chords follow 

that, but to avoid making the music sound too dark, this is significantly less than 

major chords. Augmented and diminished chords are extremely rare in music so 

these numbers, though still positive, have a much lower number than the other. 
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1 
2 
3 
4 
5 
6 

Since we primarily want to remain in the same key, an additional 1000 are added to 

all diatonic chords. All other chords get a negative reward in order to avoid ever 

playing those chords unless it occurs by random chance. 

ALGORITHM V.5. The rewards system used by the Q Learning Algorithm 
private static double MAJOR 1500; 
private static double MINOR 150; 
private static double AUGMENTED 8· , 
private static double DIMINISHED 8· , 
private static double DIATONIC 1000; 
private static double OIHER -50; 

The goals for the music were also given an addition score, at a significantly 

higher rate than any of the other chords listed. These goals are defined in music 

theory as the chords which result in cadences. These chords are better known as the 

major IV chord, the major V chord, and the diminished VII chord. These are 

simply stop points in the algorithm which allow the movement of the chords to 

continue on a chord which is used in cadences, primarily the tonic chord, the initial 

starting chord of the algorithm. 

With this information, the Q Matrix can be generated using the Q Learning 

algorithm found in Listing V.4. This Q matrix can then be used to begin generating 

tonal harmonic progressions. The way in which the Q Matrix is used is defined in 

the next section. 

4 U sing the Q Matrix 

Using the Q matrix is relatively simple. If you recall algorithm IV.3 in chapter 

IV, no significant changes need to be made to this algorithm in order to properly 

use the matrix. However, this algorithm itself does not provide a method for 

exploration around the world. For this reason, the algorithm is modified slightly to 

allow for some stochastic exploration of the world. 
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In this case, a velocity vector, vx, is used to allow for the stochastic 

exploration. Since the velocity vector consists of both the direction and the 

magnitude of speed, we can allow one of these to follow a distribution to allow for 

some slight randomness to allow for exploration. In this experiment, the speed was 

given an empirical distribution that closely resembles a normal distribution. This 

empirical distribution is given as the values [0.05, 0.15, 0.6, 0.15, 0.05]. Each of 

these resembles a final offset for each note in the chord. The offsets are additive to 

the final velocity vector that is calculated. These offsets represent undershooting, 

overshooting, or hitting the desired target. The offset order is: undershooting by 2, 

undershooting by 1, hitting the target, overshooting by 1, overshooting by 2. In an 

additive manner this is [-2, -1, 0, 1, 2]. 

By using this empirical distribution on all of the notes in the chord we add 

some stochastic exploration to the entire world. This does however remain a MDP 

problem, as opposed to a Partially Observable Markov Decision Process (POMDP). 

This remains an MDP simply because adding this offset does not change the fact 

that the process understands that it undershot or overshot a specific chord. A 

POMDP would require that the model has no way to determine if it has reached the 

next state. 
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ALGORITHM V.6. A modified algorithm to use the generated Q matrix using prob
abilitic offsets 

1 p[ ] = {0.05 => -2, 
2 0.20 => -1, 
3 0.80 => 0, 
4 0.95 => 1, 
5 1.00 => 2} 
6 s = initial; 
7 while (s != goal) 
8 v = maximumQValue ( s ) ; 
9 for each (v element as n) 

10 r = U [0 ,1]; 
11 v [n] = add offset where r < p [i] 
12 end; 
13 s = n ext s tat e (s, v); 
14 end; 

Using this empirical distribution is done by generating a Uniform Random 

Variate between a and 1 (U[O,l]). The number that is generated is compared to the 

Cumulative Distribution Function, or in this case, adding the probabilities up until 

the generated random number is less than the summed probabilities. 

Therefore, we can rewrite the algorithm that uses the Q Matrix to reflect this 

simple change in the algorithm. This algorithm can be found in Listing V.6. To 

allow the program to generate MIDI tracks based on the generate stated, an 

iteration of this loop is done when the Chord is requested by the program. This 

allows the program to generate a good voice leading for the music and to add the 

chord to the MIDI tracks without needing to generate excess amounts of chords 

before this is done. In that sense, the Java class that was created for this works 

more as a service to the rest of the program. 

5 Solving Voice Leading 

N ow that we are able to generate chord progressions based on the Q Learning 

algorithm to solve the Markov Decision Process, we are left with one more musical 

issue in the program. If you recall from the "Minimizing Space Complexity" section 
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in this chapter, the topic of voice leading was left open at the end of the chapter. In 

order to generate music which is good to a listener, the topic of voice leading must 

now be explored for multiple reasons. Firstly, voice leading plays an important part 

in make music sound smooth during transitions of chords. Secondly, Voice Spacing 

which are extremely far apart can lead to sounds which are awkward to most 

listeners. 

Solving Voice leading can be solved simply by generating a matrix of the 

distances between the current note and the next note. We take a single note from 

the current chord and calculate the distance in both directions to each of the notes 

in the next chord. We continue this for all of the notes in the current chord. 

Therefore if we want to move from the [A, eu, E] chord to the leu, F, GU] chord, we 

can build a matrix as shown in table 4. To calculate the distance, we simply count 

the number of notes between the current note and the note we are calculating to in 

a direction, whether that direction is up or down. You will notice that both Up and 

Down are listed in the matrix. Calculating the opposite is done by subtracting the 

number that is opposite from 12. 

Generating this matrix is relatively simple in comparison to using the matrix. 

There are two approaches that can be taken to use this matrix: Greedy and Brute 

Force. The MuseGEN engine has implement both types of approaches for users to 

eu (Up) 
A 4 
eu 0 
E 9 

F (Up) 
8 
4 
1 

GU (Up) 
11 
7 
4 

eu (Down) 
8 

12 (0) 
3 

TABLE 4 

F (Down) 
4 
8 

11 

GU (Down) 
1 
5 
8 

The Voice Leading Matrix for generating smooth voice leadings. This is generating by 
calculating the number of notes between one note given the direction that is desired. 
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use. 

The Greedy Approach is quicker for larger matrices, but in most cases, the 

matrices are going to be relatively quick to brute force as well. The Greedy 

approach is more likely to find a suboptimal solution to the problem as well. In 

music, an optimal equation is not necessary in most cases, however it might be 

beneficial to have an optimal solution to prevent the voices from leaving becoming 

distant from one another over time. 

The Greedy approach looks at the first note, in this case, we could assume the 

note A would be the first note. If we choose this note as the first note, we would 

choose the item in the matrix that contains the lowest number. Therefore we would 

choose G~ as the note that the A would move to. The algorithm then prevents the 

other notes from being able to choose G~. C~ would then choose C~ since the 

movement is a value of o. E would then be left with F. In this voice leading, the 

Greedy approach does return the optimal solution, but again, this is not always the 

case. If for example, we use the chord [C,C,Dj and move to [A,B,Dj choosing the 

voice leading for the Cs first, we get the suboptimal solution of [D,B,Aj where an 

optimal solution would return [B,A,Dj. The greedy algorithm is shown in Listing 

V.7. 

ALGORITHM V.7. The Greedy Algorithm used to generate smoother voice leadings 
1 set VLMatrix; 
2 for each (voice) 
3 choose lowest element from VLMatrix [voice 1 ; 
4 remove element chosen from VLMatrix 
5 end; 

Since it was decided that this experiment would only work with 3 note chords, 

The optimal algorithm uses an iterative approach, using a series of three loops to 

choose the most optimal approach. Essentially, every voice receives its own loop to 
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help choose the optimal solution. Because of this, it becomes unusable as the 

number of notes in the chord raises. The algorithm has a running time shown in 

equation 23. 

(23) 

However, the running time is insignificant for low order chords. Because of 

this, using the optimal algorithm for chord progression is possible. As mentioned, 

the algorithm in MuseGEN uses a series of 3 loops which loop over each of the 

voices and chooses the most optimal solution. This optimal solution is found by 

summing the voicing distances and choosing the voice leading which offers the 

lowest voicing distance. This algorithm for finding the solution for a three note 

chord is shown in Listing V.S. 

ALGORITHM V.S. The Optimal Algorithm used to generate smoother voice leadings 
1 set VLMatrix; 
2 for (int i =0; i < VLMatrix [voice]. length; i++) 
3 for (int j =0; j < VLMatrix [voice]. length; j++) 
4 for (int k=O; k < VLMatrix [voice]. length; k++) 
5 if (i=j II j k II i k) 
6 continue; 
7 
8 if (sum( voiceLeading) < sum (minimumVL )) 
9 minimumVL = voiceLeading; 

10 end 
11 end 
12 end 
13 
14 return minimumVL; 

No matter which method was used, the main purpose of this algorithm is to 

reintroduce the voice leading back into the latent model that was minimized during 

the generation of the chords in an earlier section from this chapter. This is also used 

to keep the chords from moving in a direction that spreads the voice far away from 

other voices in the chord. Using all of the algorithms and modifications to 
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algorithms discussed in this section of the chapter, we can generate harmonic 

progression which seem to have some order and tonal center to the human ear. 

Despite this order, there are still many parameters that can be added to help give 

direction and more order to the tonal progressions. The future work that can be 

done with this project is discussed a little later in this chapter. 

E Programming MIDI tracks 

Up to this point in the chapter, most of the discussion has been on the three 

modules that have been created for this experiment. This section focuses on the two 

core components that are in charge of developing the MIDI files that are created in 

this experiment. The first of these classes is the stylistic preprocessor. This 

discusses the way in which the current stylistic preprocessor works. The final 

portion of this section of the chapter discusses the MIDI processor itself. This 

section will discuss how all of the modules that were discussed earlier are used to 

create sound, and how Java's MIDI API works to create MIDI sequences. 

1 Stylistic Preprocessor 

The stylistic preprocessor is perhaps the most important class in the MuseGEN 

engine. The original intention for this program was to make the program easy to 

switch between preprocessors. Since the preprocessor is the portion of the engine 

that is used to generate various styles of music, the preprocessor would ideally be 

able to replace one another. However, for the purpose of this experiment, the 

stylistic preprocessor is a static class that lacks any ability to be switched. 

The current stylistic preprocessor was designed to be very minimalistic so that 

each of the generated chords could be heard clearly without the disruption of other 
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sounds in the sequence. For this reason, the preprocessor only requires the three 

modules that were discussed in this chapter: the music database for scales, the 

rhythm generator, and the tonal progression generator. 

The implemented stylistic preprocessor takes in a set number of measures and 

generates that many number of measures worth of chord progressions. The program 

therefore loops through all of the measures, continuing to prepare the MIDI 

information to be processed. In this stylistic preprocessor, a measure is defined as 

the length of the generated rhythm. Therefore, for each of the measures, the 

stylistic preprocessor loops through the length of the measure array. When a true 

value is hit in the rhythm a new chord is produced and stored for processing. 

The Chord storage is produced as a multidimensional matrix containing every 

beat. Therefore the length of the preprocessed MIDI sequence becomes the number 

of voices by the number of measures times the length of the rhythm. When a false is 

present in the rhythm matrix, a -1 is stored in the preprocessed MIDI sequence. 

When a chord is generated, the information is translated from pitch class 

representations (zero to 11) to a MIDI integer which represents a pitch played at a 

certain octave. The initial octave of the MIDI integer is statically defined in the 

implemented preprocessor. 

Generating the MIDI integer is relatively simple when the initial octave is 

statically defined. First, the base pitch must be calculated. To do this, we can take 

the base pitch representation (0-11), add one to the value and multiply the octave. 

This should give the initial base pitch for a voice. To play the first chord, we need 

to add the pitch which represents the chord's pitches for each of the voices. This 

becomes the first chord that is heard by the listener. From here, we take the 

returned chord and the path with which to reach the new chord for each of the 

VOIces. We take the the shortest distance to the new note and add or subtract the 
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distance, depending on whether the note is moving up or down respectively. Once 

all information has been generated for that preprocessed MIDI sequence, the 

sequence is returned to the calling class so that the information can be passed to the 

MIDI processor. 

2 MID I Processor 

The MIDI processor is much simpler in comparison to the Stylistic 

Preprocessor. The MIDI processor uses Java's MIDI API to generate a MIDI 

sequence which can be played back by the MIDI player class built for MuseGEN. 

The MIDI processor is a very simple class designed to process the information that 

is received from the Stylistic Preprocessor. 

Since the information received from the Stylistic Preprocessor is a 2 

dimensional array, the MIDI processor simply loops through the multidimensional 

array to add information to the MIDI sequence. The preprocessed MIDI 

information is a dual array containing an Y axis which contains the voices that are 

being played and a X axis that contains the time ticks for each note being played. 

If you recall that the preprocessed information contains MIDI notes and a stop 

code (-1) where no changes are being made in the voice. Currently, this is the only 

stop code available in the MIDI processor. The MIDI processor interprets this code 

by simply skipping over the code and allowing the voice to continue playing through 

the new chord. The only changes that are made to the MIDI sequence occur when a 

new MIDI note is played in a voice. 

MIDI sequences in Java are simple to create and adding notes to the MIDI 

sequence are fairly simple as well. For the current iteration of MuseGEN, all 

velocities on the note remain constant. These velocities represent the loudness and 

softness at which the note is play. The MIDI information then takes information 

74 



-- --------------------------------

about the length of the Y axis of the multidimensional array. The Processor then 

translates that by creating an n-dimensional ArrayList that contains all of the 

voices as an individual track built on the same sequence. 

In order to first create a MIDI sequence to be played back, we must create a 

new Sequence object. Since our tempi may be user defined in the Stylistic 

preprocessor, we need to create an sequence object which relies on Ticks rather than 

a frame rate. This is done using the Sequence object constructor and the 

Sequence.PPQ division type in Java. From this created sequence, we can create a 

number of tracks which are dedicated to playing the notes of the music for each of 

the voices for the generated song. 

For all of our experiments, we create 4 tracks, meaning the generated music 

has four separate voices in the music. This was modeled after the quartet musical 

groups where four players perform on different instruments; however, the sound that 

is heard in the MIDI is non-reflective of the voices. Each track uses a piano sound, 

which gives the illusion that each note that is heard is a single instrument. 

After creating the tracks, we simply loop through the entire generated MIDI 

song from the stylistic preprocessor and tell each voice to turn the note on or the 

current note it is playing off. This is done by creating a Note Event using the Java 

createNoteEvent function and using either the ShortM essage.NOT E_ON or 

ShortM essage.NOT E_OF F to turn a note on or off respectively. The below code, 

in listing V.g, is used to generate a MIDI sequence which can then be returned and 

played back or saved to a MIDI file for later playback. 
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ALGORITHM V.g. The MIDI Processor class used in Java to convert the multidi
mensional array created in the Stylistic preprocessor to a MIDI sequence for playback. 

1 import javax. sound. midi. *; 
2 
3 public class processor 
4 { 
5 private int [] [] song; 
6 private Sequence sequence; 
7 private Track [] tracks; 
8 
9 public processor (int [] [] midipre) 

10 { 
11 try { 
12 this. song = midipre; 
13 this. tracks = new Track [this. song [0]. length]; 
14 this. sequence = new Sequence (Sequence .PPQ, 1, this. song. length); 
15 
16 for(int i=O;i<this.tracks.length;i++) 
17 { 
18 this. tracks [ i] = this. sequence. createTrack (); 
19 } 
20 } 
21 catch ( Except ion e) 
22 { 
23 System. out. print (e. getMessage ()); 
24 System.exit(I); 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

} 
} 

public void process () 
{ 

int violinlcurr 
int violin2curr 
int violacurr 
int cellocurr 

this. song [0] [3]; 
this. song [0] [2]; 
this. song [0] [1] ; 
this. song [0] [0]; 

int 
int 
int 
int 

violinl 
violin2 
viola 
cello 

57 + this. song [0] [3]; 
57 + this. song [0] [2]; 
57 + this.song[O][I]; 
45 + this. song [0] [0]; 

this. tracks [0]. add( createNoteOnEvent (violinl, 0)); 
this. tracks [1].add(createNoteOnEvent(violin2, 0)); 
this. tracks [2].add(createNoteOnEvent(viola, 0)); 
this.tracks [3].add(createNoteOnEvent(cello, 0)); 

for (int i =1; i<this. song. length; i++) 
{ 

if(this.song[i][O] = -1) 
continue; 

if(this.song[i][3] != violinlcurr) 
{ 

} 

this. tracks [0]. add( createNoteOffEvent (violinl, i)); 
this. tracks [0] . add (createNoteOnEvent (violi n 1 + 

this. shortestDistance (this. song [i] [3], violinlcurr), i)); 

if(this.song[i][2] != violin2curr) 
{ 

this. tracks [1]. add (createN oteOffEvent (violin2, i)); 
this. tracks [1] . add (createN oteOnEvent ( violin 2 + 
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62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 

} 
} 

this.shortestDistance(this.song[i][2] , violin1curr), i»; 
} 

if(this.song[i][l] != violacurr) 
{ 

} 

this. tracks [2]. add (createN oteOffEvent (viola, i»; 
this. tracks [2] . add (createN oteOnEvent ( viol a + 

this. shortestDistance (this. song [i] [1], violin1curr), i»; 

if(this.song[i][O] != cellocurr) 
{ 

this. tracks [3]. add (createN oteOffEvent (cello, i»; 
this. tracks [3] . add (createN oteOnEvent ( cell 0 + 

this.shortestDistance(this.song[i][O], violin1curr), i»; 
} 

violin1curr 
violin2curr 
violacurr 
cellocurr 

this. song [ i ] [3] ; 
this. song [ i ] [2] ; 
this. song [ i ] [1] ; 
this. song [ i ] [0] ; 

private static MidiEvent createNoteOnEvent (int nKey, long ITick) 
{ 

} 

return createNoteEvent (ShortMessage .NOTE..ON, 
nKey, 
VELOCITY, 
ITick) ; 

private static MidiEvent createNoteOffEvent(int nKey, long ITick) 
{ 

} 

return createN oteEvent (ShortMessage . NOTE_OFF, 
nKey, 
0, 
ITick) ; 

private static MidiEvent create Note Event (int nCommand, 
int nKey, int nVelocity, long ITick) 

{ 

} 

ShortMessage message = new Short Message (); 
try { 

message.setMessage(nCommand, 0, nKey, nVelocity); 
} 
catch (InvalidMidiDataException e) 
{ 

} 

System. out. print (e. get Message (»; 
System.exit(l); 

MidiEvent event = new MidiEvent (message, ITick); 
return event; 

120 private int shortestDistance(int note, int newNote) 
121 { 
122 int t = 0; 
123 if(newNote < note) 
124 newNote += 12; 
125 
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126 
127 
128 
129 
130 
131 
132 
133 
134 
135 

t = new Note - note; 
if((12 - (newNote - note)) < t) 

t = -1 *( 12 - (newNote - note) ); 

return t; 
} 

public Sequence getMIDISequence () 
{ 

return this. sequence; 
136 
137 
138 
139 } 

} 

private static final int VELOCITY = 64; 

F The future of MuseGEN 

A lot of improvements still remain to be made in MuseGEN. Firstly, there are 

still many parameters of music that have not been added to this iteration of the 

program. One module that would be an excellent addition to the next iteration 

would be a dynamics module. This module would be used to change the loudness 

and softness of the notes to make the music feel more musical. This is an important 

aspect of all music as music is rarely found to remain at a constant level of 

dynamics. 

A lot of improvements still remain to be made in the Chord Progression 

algorithm as well. This shows a great step towards a model which allows the 

computer to mimic the deterministic process that composers might use to generate 

creative new works. This is of course done by learning which chords lead well into 

new chords while still progressing the music towards a musical goal in a sentence. 

While this model does well in learning which chords lead well into other chords, it 

currently lacks the ability to create a progression towards a goal. 

The first thing that would be added to MuseGEN Harmonic progression 

algorithm would be the ability to consider the stochasticism of the model. For this 

iteration, calculating the probabilities of the move was left out. However, this is an 
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incorrect way of finding the best way to a goal. For this reason, adding the 

stochasticism would allow the computer to choose paths which more closely model 

the compositional determinism. This could be done by adding one simple line to the 

Q Learning algorithm, as shown in equation 24. 

Q (s, a) t- Q (s, a) (1 - a) + a [R(s) + 'Y m~xP(s'ls, a)Q(s', a)] (24) 

The second thing that would need to be changed would be the need for adding 

a temporal aspect to the compositional process. This would of course modify the Q 

Learning problem significantly which may cause issues when attempting to learn 

about rewards and goals. Using a temporal aspect in the chord progressions, we 

could have a changing rewards system allowing us to give more direction towards a 

specific goal. To do this, we might modify the Q Learning equation to appear as 

shown in equation 25, where r is the symbol for the added temporal aspect. 

Q (s, a, r) t- Q (s, a, r) (1 - a) + a [R(s, r) + 'Y m~xP(s'ls, a)Q(s', a, r')] (25) 

And lastly, we would want to allow the learning algorithm to explore more of 

the world. We could do this by allowing the progression to modulate to a new key. 

This modulation would simply change the stop points. By changing the stop points 

we need to change the reward system as well. This is slightly hard as changing the 

rewards system would require the computer to learn more information. However, it 

may be possible to change the already learned information to fit into the modulated 

rewards system. 

In addition to these changes, it would be beneficial to add new Stylistic 

Preprocessors into the code and modify the Stylistic Preprocessor to work 
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independently of the program. This would simply require an overhaul of the current 

method for building Stylistic Preprocessors, which is not difficult, but rather time 

consuming. 

Overall, MuseGEN was built as an experiment to show the possibilities of using 

Reinforcement Learning algorithms in the scope of computer generative music. The 

results show a fantastic start towards allowing computers to begin choosing Chord 

Progressions in a larger scope for generating new music. However, there still remains 

a lot of research that needs to be done before a computer could use this model 

effectively to generate new works that would sound extremely pleasing to a listener. 

80 



CHAPTER VI 

PERSONALIZING THE MUSIC GENERATION SYSTEM 

The overall idea of this project was to create a music generation system that 

would use a level of personalization to help create the music. This personalization 

would capture certain aspects of the music to help determine the parameters to use. 

One of the ultimate goals would be to tie this personalization into a random number 

generator to help guide the music in a personalized direction. However, for the 

purpose of this project, little was done in this area. The primary contribution to the 

engine through these personalization methods was through the creation of a 

specified file type which can be interpreted to help set various parameters. 

A The .MGX file type 

The M G X filetype was created for the purpose of this experiment to set the 

various parameters in the music for the MuseGEN. The MGX file extension was 

chosen due to it being a rare file type used mostly for save games in an older game 

and for Micrographx Picture Publisher Clipart files. The MGX extension is an easy 

to remember acronym for "Music Generation XML" . 

This file is based off of XML using a schema created for this file type 

specifically. The schema is found online at the author's personal website. In order 

to create the .MGX file, you simply give an XML file the .MGX extension and add 

the schema to the root element of the XML file. For this file type, the 

81 



noNamespaceSchemaLocation should be used on this element. Therefore to initially 

create the .MGX file, you should include the XML tag and the root element 

"musegen". The code should then begin by looking like the code in Listing VI.I. 

ALGORITHM VI.1. Start of the .MGX file type 
1 <?xml version=" 1.0" encoding="UTF-8"?> 
2 <musegen xmlns :xsi=" http://www . w3. org /2001/XMLSchema-instance" 
3 xsi: noN amespaceSchemaLocation= 
4 " http://kreese . net /2010/MGXSchema. xsd"> 
5 
6 
7 </musegen> 

The current location for the .MGX file types can be found in the listing, 

Listing VI.I, as well. This location is ''http://kreese.net/201O/MGXSchema.xml'' . 

A web location for this file schema was chosen so that any future changes to the file 

type can be reflected in the MGX file. This allows validations to be done without 

the need of software designed to work with each type of MGX schema. This Web 

Location allows any XML validator, which uses XML schema, to check the validity 

of any .MGX files. 

Much of the rest of the .MGX files were created with the future of MuseGEN 

in mind. Five major elements currently exist with only 3 of them being used to 

their fullest at this iteration of MuseGEN. The five elements are "root", "timesig", 

"scales", "modulations", and "data". The first four are representative of their 

musical counterparts. The "root" element contains 2 elements information about 

the root pitch of the scales that are being used, "note" and "octave". The "timesig" 

element contains a 3-tuple of integer elements which can be used to build the time 

signature in the music as well as the rhythm for the music. The "Scales" contains 

any number of "scale" elements which are either strings or integers representing one 

of the scales built into MuseGEN. 
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These three are the elements that are currently used by MuseGEN. In the 

future, modulations will be added to MuseGEN which will then take into 

consideration the fourth element in the .MGX file. The "modulations" element 

contains any number of "root" elements. This "modulations" element would be 

used to change the root pitch of the music and force the key of the scales that are 

being used to change. This would allow more exploration of the latent model that 

was discovered by Tymoczko. 

The final element can be used to store information that the creator of the 

.MGX file deems important. This might be important facial feature locations or IP 

addresses of people hitting a server. The limits of this data are nearly limitless; 

however, the information must be stored as integers. This was put into place so that 

older .MGX files could be forwards compatible with future iterations of MuseGEN. 

In those iterations, if an element is missing, the engine would use all of the data 

elements to generate the missing information. 

We therefore can see the final schema as is shown in Listing VI.2. Making an 

MGX file by hand is not a problem so long as it correctly follows the Schema below. 

An example MGX file can be found in Appendix C. The sample file is a complete 

sample that was built by hand with the exception of the "data" tags which were 

built using a random number generator using a normal distribution. 
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ALGORITHM V1.2. The XML schema for the .MGX file type. 
1 <?xml version=" 1.0" encoding="UIF-8"?> 
2 <xs:schema xmlns:xs=" http://www. w3. org/2001/XMLSchema"> 
3 
4 <!- Simple Elements -> 
5 <xs:element name="octave" type="xs:integer"/> 
6 <xs:element name=" beat" type=" xs:integer" /> 
7 <xs:element name="bpm" type=" xs:integer" /> 
8 <xs:element name="accentedbpm" type="xs:integer"/> 
9 <xs: elemen t name=" var" type=" xs: decimal" /> 

10 <xs: elemen t name=" note" type=" x s: s t r i n g" /> 
11 <xs:element name=" scale" type=" xs:integer" /> 
12 
13 <xs:element name=" root"> 
14 <xs:complexType> 
15 <xs:all> 
16 <xs:element ref="note" minOccurs="O" 
17 maxOccurs=" 1" /> 
18 <xs:element ref=" octave" maxOccurs=" I" /> 
19 </xs:all> 
20 </xs:complexType> 
21 </xs:element> 
22 
23 <xs: elemen t name=" timesig"> 
24 <xs:complexType> 
25 <xs: all> 
26 <xs:element ref="bpm" maxOccurs=" I" /> 
27 <xs:element ref=" beat" maxOccurs=" I" /> 
28 <xs :element ref=" accentedbpm" maxOccurs=" 1" /> 
29 </ xs: all> 
30 </xs:complexType> 
31 </xs:element> 
32 
33 < x s : e 1 e men t name=" sea 1 e s "> 
34 <xs:complexType> 
35 <xs:choice> 
36 <xs:element ref=" scale" maxOccurs="unbounded" /> 
37 </ xs: choice> 
38 </xs:complexType> 
39 </ xs :elemen t> 
40 
41 <xs:element name="modulations"> 
42 <xs:complexType> 
43 <xs: seq uence> 
44 <xs :element ref=" root" maxOccurs=" unbounded" /> 
45 </ xs: seq uence> 
46 </xs:complexType> 
47 </xs:element> 
48 
49 <xs:element name=" data"> 

84 



50 <xs: complex Type> 
51 <xs:sequence> 
52 <xs :element ref=" var" maxOccurs=" unbounded" /> 
53 </xs:sequence> 
54 </xs:complexType> 
55 </ xs: elemen t> 
56 
57 <xs:element name="musegen"> 
58 <xs:complexType> 
59 <xs: all> 
60 <xs:element ref=" root" maxOccurs=" I" /> 
61 <xs:element ref=" timesig" maxOccurs=" I" /> 
62 <xs:element ref=" scales" maxOccurs="I" /> 
63 <xs:element ref=" modulations" maxOccurs=" I" /> 
64 <xs:element ref=" data" maxOccurs=" I" /> 
65 </ xs: all> 
66 </xs:complexType> 
67 </xs:element> 
68 </xs:schema> 

B Biometric Personalization 

One proposed way of generating personalized music using the technique in this 

document is through the use of Biometric Techniques. Perhaps the simplest to take 

from is using facial recognition. Since more and more laptops are beginning to 

include cameras built into the system, it is becoming more probable that a user of 

the system will have a web camera that could be used for such programs. 

Facial Recognition is not the only biometric technique that personalization 

could be limited to. There is no reason that other biometric techniques could not be 

used just as effectively as Facial Recognition. For example, fingerprint scanners on 

laptops could offer yet another solution to biometric personalization in the system. 

There is also a possibility of using behavioral biometrics to personalize the output 

musIc. 

All three of the techniques above offer viable solutions on modern computer 

systems. Unfortunately due to time constraints and running into unforeseeable 
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issues in the coding of MuseGEN, no biometric personalization was implemented in 

the system. Biometric personalization is of interest in this system, and the original 

intention was to include such personalization. It is therefore one of the first things 

to do within the next iteration of the system. 

C Massive Online Personalization 

Another topic of interest has been the idea of using this system in an online 

type community. Much of radio is now turning to the internet. There are radio 

channels on the internet which provide listeners a personalized station for their 

favorite music, such as Pandora. And even so, little has been done in the area of 

online personalized generative music. 

This section provides a brief discussion of the approach used for an independent 

study that will be conducted during the Fall semester of 2010. In it, we will begin 

generating music to be played on the internet that can be influenced by the 

listenership directly. For this, we must first set up a station that can be used to play 

the music. This can easily be done using Shoutcast or Icecast, daemons that run on 

the system allowing you to stream music to any number of listeners on the internet. 

After setting this up, we can begin using IP addresses to determine the country 

in which the most listeners are coming from and using these IP addresses to 

influence the probabilities of moving from one chord to another. In this respect, the 

model becomes more of a Naive Bayesian model than a reinforcement learning 

model. However, the reinforcement learning model that is generated from Q 

Learning is still of use in determine how the changes should affect each chord. 

In this example, we normalize the Q Learning Matrix so that each number 

represents a number between zero and one. We can then use these probabilities with 
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some basic mathematics to change the numbers in the matrix dynamically during 

the generation process. We could then normalize again and use a uniform random 

number generator to process information to determine the next chord. 

Since MuseGEN generates MIDI files, a little more needs to be done in order 

to play the music through shoutcast. However, there are applications on Linux 

which convert MIDI to WAY or MP3 files. Timidity++ is the most commonly used 

program for such tasks. With it, you pass the MIDI information into the program 

which then converts the program into a WAY file. Though this cannot be done in 

real time, we can generate portions of the song for every so many minutes and then 

convert and add the song to the Icecast buffer so that the generated music sounds 

continuous. 

This personalization is a completely different view on the way in which music 

is generated than those proposed in this thesis. The intention of the personalization 

is the same though. More experiments will need to be run to validate whether this 

personalization offers the same type of result as those performed for this thesis. 

This personalization technique has little to do with the end results of the thesis, and 

is more of an interest in the possibilities of generative music than scientific results. 

87 



CHAPTER VII 

CONCLUSION 

The previous sections of this thesis discussed the possibilities for using the 

computer to emulate the compositional process that many composers use to create 

new music. None of the research was truly new in regards to the mathematics or 

theoretical aspects, but rather provides a unique implementation of the Q Learning 

algorithm in the context of musical composition. The research pushes towards the 

viability of using Tymoczko's latent model, discussed in Chatper III, to 

computationally generate harmonic progressions. 

Though using stochastic processes is not a new task in music, no research I had 

run across had attempted to generate tonal harmonic progressions in such music. 

Using Markov Decision Processes to create such progressions does not seem to be a 

highly researched area. It does however seem to be possible to create tonal 

harmonic progressions using Q Learning. The Outcomes section below discusses 

some of the resulting music and compares it to a short passage written by composer 

Jennie Huntoon. The Future Work section is a culmination of all of the possible 

future work that exists and was discussed in several other sections, as well as other 

work that might be possible for the future of MuseGEN. 
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A Outcomes 

The results of the experiment show some promising results. The fact that the 

music was able to built chords that center around the tonic of the scale proves that 

this might be a viable option for generating harmonic progressions. Figure 19 shows 

a generated passage from MuseGEN. The first chord is built on a < C, D, G > chord 

and resolves to the chord at the end of the passage. 

Throughout the passage in figure 19, we see the tonic appear as well. Starting 

in measure six of this passage, we see the alto voice holding the C pitch through the 

rest of the passage. We also see this appear in the bass voice in measures 11 - 14. 

The fact that these notes appear throughout the piece is indicative of the music 

being focused around the pitch class of C. 

Figure 18 shows a similar passage written by composer Jennie Huntoon and 

used to compare the generated piece with a true piece composed by a human. This 

passage is in the key of e minor which means the central focus of the piece should be 

on the E pitch class. We notice that the < E, G, B > chord is present in the 

beginning of the piece and is returned to later in the end of the passage. Though in 

the human composed piece, there are no measures where the pitch of E is held for 

mutliple measures, we do see the piece return to chords containing the E pitch 

frequently. 

Because of the central focus of the pitch class C and E in figures 19 and 18 

respectively, we can consider both passages to be tonal in harmony. However, there 

are still many things that make the generated passage no where near the depth of a 

human generated passage. One very obvious visibility is that the computer 

generated passage seems to repeat chords throughout the passage and sometimes for 

measure at a time. The human generated piece is much more flowing and free 
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Figure 18. A passage written by composer Jennifer Huntoon using a four voice block 
chord style. The chord progression shows tonal harmonic progressions throughout the 
piece with some minor chromaticism as well. Music copyright of Jennifer Huntoon, 
used with permission from composer. 

moving between chords. 

This may be caused by a lack of temporal rewarding in the piece. Humans 

likely have the ability to comprehend the distance between the beginning and the 

end of the piece and base their entire selection of chords on this temporal reward 

system. The current implementation of MuseGEN does not take this into 

consideration, meaning the rewards system is purely static and does not change over 

time. As mentioned in the next section, this is something that should be looked into 

during the next iteration of this project. 

Despite these issues, there is evidence that Tymoczko's model captures tonality 

and that by introducing stochastic decision making processes we can have a 

computer generate tonal progressions. The next section discusses where this project 

needs to go next in order to generate music which might be something that users 

would enjoy listening to. After introducing some of these additions to the 
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Figure 19. A passage generated by the MuseGEN engine. The passage uses 4 part 
voice block chords. It shows a tonal center around the pitch class c. 

experiment, it would be worthwhile to have musicians analyze the music for 

potential errors and run a statistical analysis between the computer generated and 

human composed music in order to further validate tonality in the passages. There 

was not enough time or analyzers to do this in this thesis. 

B Future Work 

The Music Generation Engine created for this thesis still leaves a lot to be 

desired. It will not be writing music in the style of Mozart, Beethoven or other great 

composers any time in the near future. However, this was not the intention of this 
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experiment. With the evidence provided in this thesis, MuseGEN has made a step 

forward in a self sufficient agent for generating possible chord progressions. Yet even 

with this evidence there still remains a lot of work. 

The next step for this project would be to give the progression some form of 

direction. Currently the music seems to wander around its environment aimlessly. 

This provides an interesting sound for the music, but without direction, the music is 

not something so captivating that an audience might enjoy listening to for extended 

periods of time. 

There are several ways in which it has been contemplated for giving the music 

a direction. The first would be through a combination of other Machine Learning 

algorithms to create a dynamic rewards system that changes with new training 

data. This would be relatively simple, and might rid the music of the dark sounds 

that are commonly heard in the music generated in this audio. Yet this still does 

not ensure that the music is given proper direction. 

Related to the above possible future work of this engine is adding a temporal 

element to the Q Learning algorithm. Time is an important parameter that was 

omitted in this experiment because it posed many problems in the coding that 

would have been difficult. By adding these elements of time, we create the need for 

a major overhaul to the Q Learning algorithm where the Q Matrix exists as a 

multidimensional matrix containing not only state-action pairs but state-action 

pairs through a period of time. We also need to add the temporal element to the 

Rewards matrix. Because of this temporal element here, it might be better to use 

some training data from other composers to build the Rewards matrix. These topics 

are contemplated at the end of Chapter V. 

Another possible derivative experiment with this project might be the 

understanding and learning of composer's preferred chordal movements. In very 
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much the same way that David Cope's work with Musical Intelligence learns various 

aspects of the composer, we could observe chord progressions made by composers 

using a Bayesian network in order to allow the application to generate chord 

progressions in the style of Bach or Mozart. 

These additions are perhaps the most important to the overall goal of this 

project. These are not, however, the limiting future work for the engine in general. 

There are still many parameters of music that are not taken into account by the 

engine. Firstly, though the element of Musical Rhythms are touched upon during 

this iteration, the musical rhythms are static and do not allow for the robust 

rhythms that are heard in music. Perhaps some combination of the mention 

Bjorklund algorithm and some form of genetic algorithm would suit the musical 

rhythm generation well. 

The engine is also missing a melody generator. Melodies make up the flowing 

lines that exist in music, and without these flowing melodies, music is often looked 

at as boring. It is hard to take the melody into account until further developments 

are made on the chord progression algorithm. Once a chord is generated, choosing a 

melody is simpler. Yet even still, the development of the melody into actual music is 

something that would need to be observed as well. 

Dynamics are yet another parameter of music unobserved by this engine 

currently. It would be a start to generate dynamics for the music in much the same 

way that stochastic music might generate chord progressions. However instead of 

jumping around, we might use a random number generator to choose whether to 

move the dynamic up, down, or remain the same so as to create smooth and flowing 

dynamics in the music. At some point, the dynamics might want to be guided 

probabilistically using a smaller version of the MDP through the movement of the 

melodic lines. 
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As one can see from this list of items which are possible for the engine, there 

remains a lot of work before music can be generated which might be pleasing to a 

typical listener. As mentioned several times in this thesis, these early experiments 

were used to prove the possibility of generating tonal harmonic progressions using 

Markovian Decision Processes. It would be the hope of this project to create a 

system which could generate music that any audience member could listen to and 

enjoy. However, from a purely scientific point of view in music, this experiment far 

exceeded the expectations that one might hope for generating tonal progressions. It 

may be possible with further development to create an intriguing progression of 

harmonies in future iterations of this engine. 
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APPENDIX A 

Musical Foundations for Non-Musicians 

Much of this document makes assumptions that the reader has at least a basic 

understanding of how to read music. I recognize that a majority of the readers of 

this document will be computer scientists and mathematicians who may not have 

the level of knowledge in Music Theory that this thesis skips over for the purposes 

of flow. This Appendix is meant to be a reference guide for those non-musicians 

who are interested in this topic but might be overwhelmed by the music terminology 

and musical renderings in the document. 

A The Physics of Pitch 

Pitch is one of the most basic foundations of general music theory. Kostka and 

Dorothy [2] define pitch as a reference to the highness or lowness of the sound 

produced. From a physical sciences standpoint, pitch is simply a musical word for 

the frequency of notes. The higher the frequency of a tone, the higher the tone 

sounds to the human ear. 

The human ear has the ability to hear sounds between the spectrum of 20 Hz 

to 20 KHz (or 20,000 Hz). Because of this, there is an extremely large range of 

possibilities of pitches that the human ear can hear. Distinguishing between small 

differences in tone, especially at the higher range of human hearing, becomes 

difficult. Because of this, music theory defines a set of pitch classes, which separate 
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frequencies into easily distinguishable sets of frequencies that are closely related to 

other pitches in the class. 

The pitch classes in music theory are described using the first seven letters of 

the alphabet: A, B, C, D, E, F, and G. Further pitch classes are represented by 

lowering or raising each pitch by half a step. Since, for example, lowering a Band 

raising an A result in the same sound, and since raising a B is equal to a C (and and 

a lowered C sounds like a B) and E and F work the same way, we have a total of 12 

possible pitch classes. Each pitch class is representative of a large set of possible 

notes which have a frequency ratio of 2:1 to its neighboring octaves. In simpler 

terminology, a pitch class of A contains tones with a frequency of 440Hz, 880Hz, or 

220Hz (and all other tones which are ~ or 2 times any tone frequency in that set). 

Each tone in the pitch class represents an octave of that pitch class. 

Using this idea of pitch classes containing octaves, you can further represent 

the example given in the previous paragraph using various octaves numbers. The 

440 Hz pitch can be represented using the characters A5 (an A in the 5th octave), 

whereas a 220Hz is represented as A4 (an A in the 4th octave) and 880 is 

represented as A6 (an A in the 6th octave). For the purpose of this thesis, our 

octave designation system is a version of the MIDI Octave Designation System. In 

this system, the lowest note available to Midi, Midi note 1 (8.176 Hz), is defined as 

octave zero and the tone itself is represented as CO, and the highest available tone, 

Midi Note 128 (12,543.854 Hz), is Octave 10 and represented as GI0. 

Understanding this concept of pitch class lays the groundwork for further 

elements of reading and understand pitches in music. The next subsection discusses 

how these pitches are represented in musical renderings, including alterations of the 

pitch class and enharmonic tones. 
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B Reading Pitches in Music 

Each of the pitch classes that were discussed in the previous section can be 

represented in musical staves which can be viewed as a 2 dimensional plot where 

there Y axis is representative of the pitch and the X axis is the duration of the 

notes. However, instead of using traditional mathematical plots, musicians use a 

series of 5 lines with a total of 4 spaces separating each of the lines, as shown in 

figure 20. When a note is placed on any line or space within the staff, various 

pitches and note lengths in music can be represented. 

In order to determine which pitch is being represented, musicians use clefs to 

indicate certain pitches on the range. Musician use three different clefs: the Treble 

clef or the G-clef, the Bass clef or the F-clef, and the Alto/Tenor/etc. clefs or the 

C-clef. In this document, all figures use either the Treble or Bass clefs. For this 

reason, the rest of this section will discuss pitches on the Treble and Bass clefs. 

Figure 33 is an engraving of both the Treble (21(a)) and Bass (21(b)) clefs. 

These clefs have points on them which represent the note for which they are named 

which make it easy to remember, and to determine the pitch representations on and 

off of the staff. In the case of the Treble clef, the pitch of G is represented by ending 

the swirl portion of the clef on the line representing the pitch of G. The Bass clef 

works in a similar way by representing the pitch of F on the staff. In this case, the 

top curvature portion of the clef ends on the line representing the pitch of F. Using 

Figure 20. Rendering of a completely empty staff 
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(b) Bass Clef 

Figure 21. An engraving of the (a) Treble and (b) Bass clefs on the staff. 

these two clefs, you would now be able to derive any pitch representation on the 

staff by incrementing - or decrementing - from this pitch representation until the 

pitch you are attempting to find is reached. 

One simpler way to remember the notes on the staff is using mnemonic 

phrases. We can remember all of the notes represented on the lines of the Treble clef 

staff using the mnemonic phrase" Every Good Boy Does Fine" where the first letter 

represents the pitch representation from the bottom line to the top line from right 

to left (E, G, B, D, F) in the mnemonic phrase. The spaces on the staff can be 

easily remember by using the mnemonic word FACE, where again, the letters of the 

word represent the spaces from the bottom up. The Bass clef mnemonic phrases 

work in the same way as the mnemonic phrase for the lines in the treble clef. The 

Bass clef mnemonic phrases for lines and spaces are, "Good Boys Do Fine Always" 

and" All Cows Eat Grass" respectively. 

Since we now have two methods to determine and remember the pitches on the 

Figure 22. A C major scale which shows all pitch classes within one octave. 
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staff, we should be able to understand and read a simple scalar passage. Figure 22 

shows a C major scale which shows all of the pitch classes on Treble clef staff. You 

can ignore the numbers written after the Treble Clef, these will be discussed in a 

later section in this appendix. D sing the first method discussed, the pitch of G can 

be determined, which in this case is the fifth note in the figure. From here, all of the 

other pitches can be determined as well. By moving upwards on the staff, we 

increment the G by one. Since G is the end of our pitch class list, we return to the 

beginning of the list; therefore the note following the G is the pitch of A. 

Subsequent notes in that direction are Band C respectively. Moving downwards, we 

work backwards on the list. The note just prior to G is the pitch of F and we can 

continue this to determine all of the notes in the scale. 

D sing the second method allows us to figure out 6 of the notes in the scale 

without counting. Since our mnemonic phrase for lines is II Every Good Boy Does 

Fine" from bottom up, and our spaces have a mnemonic word, FACE, from the 

bottom up, we know that the third note in the scale in figure 22 is an E since this is 

the first line; the fourth note in the scale is on the first space which we know is F. 

We can continue this up to the 8th note in the scale, or C. However, since our 

mnemonic phrases only tell us between the first and fifth line, the mnemonic phrase 

does not help us in determining the first two pitches in the scale. To do this, we can 

go back to the first method and decrement the first line, E, to determine that the 

first and second notes are C and D respectively. Notes will occasionally go off the 

staff and, to the best of the authors knowledge, there is no easy way to determine 

the pitches of those notes without using the first method described. 
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Figure 23. A visualization of a single octave on a keyboard from C to B. (Image 
Courtesy of "Jonathan Diet" and Public-Domain-Photos.com, Licensed under the 
Creative Commons) 

C Altering Pitch Representations in Music 

In the previous section, it was shown how musicians represent seven of the 

pitch classes that have been discussed. If you remember, there are a total of 12 

possible pitch classes. In order to achieve the other possible pitch classes, we must 

alter notes by raising or lowering pitches. To better understand this, it would help 

to visualize an octave on a keyboard (See figure 23). The seven pitch classes that 

were discussed in the previous section are the white keys shows in figure 23. The 

rest of this section will discuss when the black keys are shown on the musical staff. 

Musicians use two symbols to alter pitches in music. The sharp symbol (~) is is 

used to raise the note by have a step. Conversely, the flat symbol (~) is used to 

lower the pitch by half a step. In modern music, both flats and sharps coexist as 

enharmonic equivalents. For example, raising a C and lowering a D result in the 

same pitch sounding. Generally the decision of which note to use is left up to the 

composer of the music. 

If you refer to the keyboard image again, figure 23, you will notice the first two 

white keys - which are C and D respectively - are only seperated by one black key. 
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This is a C~ or Db depending on which note the composer has decided to write in 

the music. However, both notes sound the same since they are both played on a 

single key. 

1 Altering Pitches Directly 

When a note in music needs to be raised or lowered half a step, the sharp and 

flat symbols can be used directly on the staff. When placing the note on the staff, 

the symbol is placed to the left of the note which needs to be raised. Figure 24 

shows the C~ major scale, in which all notes in the scale are raised by half a step 

from the C major scale. 

Figure 24. A C major scale which shows all pitch classes within one octave. 

There is a special case, which should be discussed here. If you remember the 

visualization of the keyboard (figure 23), you may recall that there is not a black 

note separating the E and the F keys (third and fourth white keys respectively). In 

this case, raising an E by half a step will result in an enharmonic sound of an F 

while lowering an F by half a step will result in an enharmonic sound of an E. This 

same special case happens between the B and the C keys. These cases are caused by 

the tuning system used by music which splits the octave into 12 tones, where 

pythagorean theory determines various triads which make up the white keys on the 

keyboard. 

Similar to the C sharp major scale, we have the C flat major scale which is 

constructed by lowering all of the notes by half a step. This scale is shown in figure 
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Figure 25. A C~ major scale which shows all pitch classes within one octave. 

25. Both figures 24 and 25 are shown by altering the notes in the C major scale 

directly. 

Another rule that should be remembered is that when an accidental - an 

altering of the pitch directly - is used, the alteration affects the note throughout the 

measure it is written. In order to bring the accidental back to a white note, we use 

the natural symbol (q). However, if instead of bringing the note back to a natural in 

the measure that contains the alteration, the alteration ends in the next measure, 

unless the alteration is written again and the natural symbol is not needed. The 

concept of a measure is further explored in section E. 

In figure 26, the passage shows the first portion of Beethovens "FurElise" 

written in a slightly different time signature to show the effects of accidentals on a 

measure of music. Notice that in this measure of music, the first D is raised by half 

a step and that the second D has no accidental next to it. In this instance, the 

performer is expected to play the second D as a D~. However, the third D has a 

natural sign written next to the note. Therefore, the first two Ds are to be played as 

a D~, while the final D is meant to be played as a D (or Dq). 

Figure 26. The opening passage of Beethovens "Fur Elise" written in 5/8 time to 
show the effects of accidentals on a measure. 
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If we were to rewrite Beethoven's passage again, as a two measure system and 

ignoring Beethoven's originally written pickup measure, we can see how accidentals 

would affect the appearance across a two measure system. Figure 27 is an engraving 

of exactly this; a bar separates measures. None of the nones were changed, therefore 

the first and second Ds are raised half a step despite the second D not having an 

accidental placed in front of it. Notice now in the second measure that the D has no 

natural sign written next to it. Since this D is now a part of a new measure, it is 

assumed by the performer or analyst that the D is a D natural and no symbol is 

needed. 

2 Key Signatures 

In much of music, altering all the necessary pitches can become a daunting 

task which leaves music nearly unreadable by the performers or analysts. Generally 

using a scale which is built on a specific note makes use of various flats or sharps to 

make a specific type of scale. For example, the C major scale shown in figure 22 is 

built on the pitch class of C. If we were to alter this scale so that the scale begins on 

D, the scale would no longer be a major scale. This is because scales are a static 

musical device; if you remember the visualization of the keyboard once more, using 

the C major scale we can determine the jumps of pitch classes required to create a 

major scale. 

Figure 27. The opening passage of Beethovens "Fur Elise" written in 3/8 time and 
ignoring the pickup measure originally written by Beethoven to show the effects of 
accidentals across two measures. 
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If we tie each of the notes in the C major scale to the piano, we can see that 

the jump from C to D is of two pitch classes (in other words skip over one pitch 

class and play the second). The same happens between D and E. From E however, 

we now have a jump of only one pitch class, E to F. We can continue this to 

determine that a scale is built using the following jumps: 2-2-1-2-2-2-1. Now that 

we know this, all scales of the same general type (major, minor, etc.) must be built 

using these number of jumps. 

If we return to the major scale which begins on D, we find that we no longer 

have just white keys in the scale. Building the scale using the jumps, we now see an 

F~ and C~ in the scale. If we were to write music based on this scale, we would 

required to write each note's sharps and flats into the sheet music. There is however 

an easy way to tell the analyst or performer that specific notes in the music should 

be sharp or flat. 

In order to do this, we simply place the sharps or flats at the beginning of the 

music, next to the possible staffs. This lets the performer or analyst know that every 

note in the music will be sharp or flat. If we return to our C~ major scale shown in 

figure 24, we can rewrite this so that the scale becomes easier for a performer or 

analyst to read. Figure 28 shows how this would be done. Notice that the engraving 

now looks very similar to the C major scale; however, since there are sharps written 

to the right of the staff, we know that every note in that system will be sharp. 

We can do the same for the C~ major scale shown in figure 25. This same 

Figure 28. A C major scale which shows all pitch classes within one octave. 
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concept for the key signature would be used. Figure 28 shows how this key signature 

would appear in the music. Again, you will notice that the scale once again looks 

similar to the C major scale. The key signature does, however, make every note in 

that scale flat. The C~ and CD scales were used as examples to show the extremes of 

altering pitches as these scales contain all of the sharps and flats in western music. 

Every scale built on various pitches has a key signature which makes building 

the scales easy to remember. To remember the number of flats and sharps in the 

scales, musicians have created what is known as the Circle of Fifths. This tool starts 

with the C major scale at the top and works by jumping by seven pitch classes 

when moving to the right, or by five pitch classes when moving to the left. Each 

jump adds a sharp when moving to the right and adds a flat when moving to the 

left. To better visualize the circle of fifths, you can refer to figure 30, which also 

shows the associated key signature(s) for each of the jumps. 

You may notice that in the Circle of Fifths image, the bottom elements of the 

circle contain more than one key signature associated with the element. These key 

signature are enharmonically equivalent, which simply means that when the scales 

for each of the key signatures are played, they are indistinguishable to the ear. 

These element's key signatures are use nearly interchangeably, depending on the 

enharmonic tone used to generate the scale. For example, DD and C~ are 

enharmonically the same (as discussed in a previous section). If the scale is built 

using the C~ as the primary note in the scale, we would use the seven sharp key 

Figure 29. A CD major scale which shows all pitch classes within one octave. 
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Figure 30. The Circle of Fifths which is used to show how closely related scales are 
and their respective key signatures. (Image Courtesy of user "Just Plain Bill" on 
Wikimedia Commons, Licensed under the Creative Commons) 

signature. However, if we chose to use D~ instead, we would use the five flat key 

signature. 

As a note, key signatures can be changed in the middle of a piece. None of the 

examples used in this thesis will contain changes in key signatures. However, it is 

good to note such things as a possibility in other documents, related or unrelated to 

this thesis, containing musical examples. The way in which this is done is by either 

simply writing the new key signature, if you are adding sharps or flats, or by writing 

the natural symbol in the key signature to emphasize to the user that those 

particular tones are now flat. If you are changing from sharps to flats (or vice 

versa), you would first write the entire flat or sharp key signature as naturals to tell 
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Figure 31. Moving between key signatures. This example shows 2 sharps (D major) 
moving to 3 flats (ED major) and then adding 2 more flats (DD major) and then 
moving back to 3 flats (ED major) 

the user that key signature is no longer valid to this portion of the music, then write 

the new flat or sharp key signature in its entirety. Figure 31 shows how a composer 

might move from one key signature to another. 

D Time Value of Notes 

Prior sections in this appendix focused on one aspect of music, pitch. The rest 

of the appendix will focus on the second aspect of music, time. Musicians use a 

series of symbols in music notation which allow the performer or analyst to 

understand the timing of the start and end of notes at a specific point in the music. 

Table 5 shows the various symbols that will be discussed as well as a reference to 

the names which will be used in the discussion. 

The table shows the note values from the Whole Note to the Thirty Second 

note. You may notice that as the notes get higher, they are generally some addition 

to the previous note to change the note value. For example, the half note is simply 

the addition of a bar connected to the whole note symbol and the quarter note is 

simply changing the half note so that the head, the portion that looks similar to the 

whole note, is colored in. From the quarter note, the addition of flags on the bar are 

used to cut the note values. 

Generally, these notes are what you will find in almost all music. However, 

occasionally other shorter notes may be seen in western music. These notes are 
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TABLE 5 

The Engraving of note lengths and the name of the symbol; table displays Whole 
note to thirty-second note. 

Music Notation Note Name 

Whole note 

Half note 

Quarter note 

Eighth note 

Sixteenth note 

Thirty-Second note 

112 



similar to the 32nd notes but contain more flags. By adding an additional flag to 

the 32nd note, we get a 64th note. Computer Scientists may notice that these notes 

fall in the typical binary system as all values of notes are multiplications to the 

power of 2. This makes understanding the values of the notes slightly easier to 

remember as Computer Scientists are used to working in the twos power domain. 

These note values are generally not the only portion that represents time in the 

music. In fact, the note values discussed represent fractions of higher order notes. 

These symbols are simply used to make understanding the music as a performer or 

analyst possible. Any of the notes discussed can be potential beat values in the 

music. This portion of time is discussed in the next section on Time Signatures. 

The important portion of this section is to understand that each of the higher order 

notes can be broken into smaller segments using smaller order notes. 

For example, a whole note can be broken down into half notes by including 2 

half notes. A whole note could be further broken down into quarter notes by 

including 4 quarter notes. In comparison, a half note can be broken into 2 quarter 

notes and 4 eighth notes. To think about this in mathematical terms, which may 

generally be easier for mathematicians and computer scientists, we can use simple 

mathematics to determine how many of a smaller order note make up a larger order 

note. This equation can be found in equation 26. 

(26) 

In equation 26, nlow and nhigh are the order of the note, or in otherwords the 

exponent portion of the power of 2s that were discussed earlier. For example, a half 

note is 21 , therefore nhigh would be 1, while an eighth note is 23 , therefore nlow 

would be 3. Using this equation, we can find the number of eighth notes the half 
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note can be broken into: 

Therefore, we know that we can break a half note into 4 eighth notes. 

On occasion, these note values are not enough and we need to extend the notes 

being used to add length. This is done by adding a dot to the right of the note. 

This dot adds a half of the notes original value. So if the dot is added next to the 

half note, our note becomes the length of 3 quarter notes. This works for any note 

where we want to add length. Figure 32 shows the notation for adding length to a 

note. The example shows a dotted half note, but the dot can be applied to any note 

length discussed in this section. 

E Time Signatures 

The final element that this appendix will discuss is the concept of time 

signatures and speed of music. The time signature is an important aspect of music, 

as the time signature is used to determine how the music is to be broken down. The 

time signature itself is a symbol which appears as a numerical fraction near the 

beginning of the staff. The time signature is used to allow the musician or analyst 

Figure 32. The Musical Notation for adding length to notes, this example shows a 
dotted half note. 
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to better understand how the composer wants the "meter" of the music to feel. In 

rare cases, the time signature is left out and the music is unmetered. This gives the 

music a specific effect which is commonly found in ancient or medieval music, such 

as chant music. 

It is not necessary to understand numerical fractions in order to interpret time 

signatures. A time signature is comprised of 2 numbers which are placed on the 

staff one above the other. The numerator of the time signature is the portion that 

tells the analyst or performer how many beats there will be in a measure. The 

denominator is the portion that represents the type of note which gets the beat. 

If you return to table 5 in the previous section, each of these notes can be used 

in the denominator of the time signature. The time signature is written as the twos 

power interpretation of the note. For example, a half note would be written as 21 or 

2, and an eighth note would be written as 23 or 8. The numerator of the time 

signature can be written as any mathematically natural number. 

Understanding both the numerator and the denominator give you an 

understanding of how the music is broken into measures. Each measure is separated 

by a bar on the staff. Before a bar can be placed, the sum of the value of all of the 

notes in the measure must be equal to the number of beats given in the time 

signature. If the time signature is written as ~, we must have 3 eighth notes, an 

equivalent number of smaller order notes, or some combination thereof. 

There are two special symbols used in place of time signatures that should be 

understood, as they may be frequently used in this thesis. The first symbol can be 

found in figure 33(a). This symbol is known as the Common Time symbol, and 

looks like a C. The symbol is generally used in place of a ~ fractional time signature, 

as the common time symbol is equivalent to ~. The second symbol can be found in 

figure 33(b). This symbol is known as the Cut Time symbol. 
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(a) 

(b) 

Figure 33. An engraving ofthe (a) Common Time and (b) Cut Time symbols used in 
place of a fractional time signature. These are equivalent to ~ and ~ fractional time 
signatures. 

In mathematics, ~ and ~ would both be equal to one another. In music, this 

holds true for the number of beats within the measure as well. Though it is generally 

accepted in music that ~ is twice as fast as ~, given the number of beats total in the 

measure. However, they can both sound the same with changes in tempo as well. 

Tempo is another important aspect of timing in music which is closely 

associated with time signatures. You may have noticed that time signatures had 

nothing to do with the speed of the music. The tempo is written at the start of the 

piece, either as a word representing the approximate speed or as a natural number 

representing the number of Beats per Minute (BPM). With the BPM, the music can 

be played as fast or slow as needed by playing the number of beats per minute as 

accurately as possible. The beat which is played is closely associated with the 

denominator of the time signature. For the purpose of this thesis, most of the 

examples will not have a tempo associate with the music engraving. This is for 

simplicity as the tempo has no effect on the purpose of the examples. 
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F Final Words 

With an understanding of each of these sections, a non-musician should be able 

to understand and observe the various musical factors in this thesis. Though most 

of this thesis focuses on the mathematical properties of music and using various 

algorithmic approaches to take advantage of the mathematical properties, there are 

still musical concepts which cannot be avoided in this thesis. 

To review what was discussed, we briefly went over the acoustical properties of 

music. This section has very little to do with the thesis itself, however having an 

understanding of the acoustical properties allows us to discuss pitch in a scientific 

manner rather than in a purely artistic way. These acoustical properties might be 

used for such things as signal processing which is a potential future project for this 

music generation engine. 

The next two sections went over the twelve pitch classes found in music and 

how these are written so that musicians and analysts can understand what the 

composer wanted with respect to pitch. We discussed the Staff and various clefs 

used, while putting more emphasis on the two clefs which are frequent in this thesis 

(the bass and treble clefs). These clefs allow the analysts or musician to determine 

which pitch each note on the staff symbolize. Without these clefs, music would be 

unreliable. We also discussed the sharp symbol (~) and the flat symbol (b) which are 

used to alter pitch classes. The natural symbol (q) was discussed as well for 

canceling an alteration in the middle of a measure. 

The next two sections focused on the other important aspect of music, time. 

We discussed the symbology of various notes used in music as well as how to alter 

each of the pitches to included larger time values. The time signature was discussed 

to give the reader a concept of beats per measure. The concept of beats per minute 
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were also introduced in this section to discuss the difference between time signatures 

and tempo, or speed of the music. 

With an understanding of these topics, a non-musician reading this thesis 

should be able to understand each of the examples used throughout the thesis, as 

well as the majority of the concepts used in the software application built for this 

thesis. As such, only the important parts used for understanding this thesis were 

presented. Any further musical inquiries should be directed to a more thorough 

source, such as a book focused on music theory. 
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APPENDIX B 

List of Scales used in the Program 

The below table lists the scales which have been included in the program for 

the software to help guide the generation of music in the program. All musical 

engravings use C as the root pitch of the scale. 

TABLE 6: List of Scales included in the MuseGEN package 

Scale Name Pitch Class Jumps 

Major 0-2-2-1-2-2-2-1 

Natural Minor 0-2-1-2-2-1-2-2 

Melodic Minor 0-2-1-2-2-2-2-1 

Harmonic Minor 0-2-1-2-2-1-3-1 

Whole Tone 0-2-2-2-2-2 

Major Pentatonic 0-2-3-2-2-3 
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TABLE 6 - Continued 

Scale Name Pitch Class Jumps 

Minor Pentatonic 0-3-2-2-3-2 

Blues 0-3-2-1-1-3-2 

Algerian 0-2-1-3-1-3-1-2-1-2 

Harmonic Major 0-2-2-1-2-1-3-1 

Double Harmonic Major 
0-1-3-1-2-1-3-1 

Arabic 

Double Harmonic Minor 
0-2-1-3-1-1-3-1 

Hungarian Gypsy 

Hungarian Folk 0-1-3-2-2-1-3 

Phrygian Dominant 
0-1-3-1-2-1-2-2 

Jewish 

Egyptian 0-2-1-3-1-1-3-1 

Eskimo Tetratonic 0-2-2-3-5 

Eskimo Hexatonic 0-2-2-2-2-1-3 
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Scale Name 

Scottish Hexatonic 

Oriental 

Oriental Pentacluster 

Chinese 

Balinese 

Raga Vutari 

Raga Madhuri 

Raga Viyogavarali 

Shostakovich 

Blues Octatonic 

Pyramid Hexatonic 

TABLE 6 - Continued 

Pitch Class Jumps 

0-2-2-1-2-2-3 

0-2-3-4-1-2 

0-1-1-3-1-6 

0-4-2-1-4-1 

0-1-2-4-1-4 

0-4-2-1-2-1-2 

0-4-1-2-2-1-1-1 

0-1-2-2-3-3-1 

0-1-2-1-2-1-2-2-1 

0-2-1-2-1-2-2-1-2 

0-2-1-2-2-3-3 
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TABLE 6 - Continued 

Scale Name Pitch Class Jumps 

Romanian 0-4-1-3-3-1 

Gnossiennes 0-2-1-2-2-1-3-1 

Prometheus 0-2-2-2-3-1-2 

Adonai Malakh 0-1-1-1-2-2-2-1-2 

Houzam 0-3-1-1-2-2-2-1 

Rock 'n' Roll 0-3-1-2-2-2-1-1 
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APPENDIX C 

MGX File Sample 

The below MGX file was generated as a sample for experimenting with making the 

MGX file work properly in MuseGEN. It was generated mostly by hand for the primary 

parts: the "root" tag, the "timesig" tag, the "scales" tag, and the "modulations" tag. The 

data var tags were generated using a normal distribution variate using a I-l = 45 and 

a = 12. 

ALGORITHM C.1. A sample .MGX file provided in the MuseGEN engine. 

1 <?xml version=" 1.0" encoding="UTF-8"?> 
2 <musegen xmlns :xsi=" http://www. w3. org /2001/XMLSchema-instance" 
3 xsi:noN amespaceSchemaLocation= 
4 " http://kreese . net /20 1 O/MGXSchema. xsd"> 
5 
6 <root> 
7 <note>Eh</ note> 
8 <octave>5</octave> 
9 </ root> 

10 
11 <t imesig> 
12 <bpm>9</bpm> 
13 <beat>4</beat> 
14 <accentedbpm>6</ accentedbpm> 
15 </ timesig> 
16 
17 <scales> 
18 <scale>2</ scale> 
19 <s c ale>4</ scale> 
20 <scale>9</ scale> 
21 <scale>6</ scale> 
22 </ scales> 
23 
24 <modulations> 
25 <root> 
26 <note>Bh</ note> 
27 <octave>6</octave> 
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28 </root> 
29 
30 <root> 
31 <note>F</ note> 
32 <octave>5</octave> 
33 </root> 
34 
35 <root> 
36 <note>O</ note> 
37 <octave>5</octave> 
38 </root> 
39 </ modulations> 
40 
41 <!- e.g. normal dist- mu:45 sigma:12 -> 
42 <data> 
43 <var>55.346080</var> 
44 <var>48.825183</var> 
45 <var>29 .307740</ var> 
46 <var>39.796896</var> 
47 <var>49.111494</var> 
48 <var>87.940763</var> 
49 <var>78. 233244</ var> 
50 <var>28.801357</var> 
51 <var>81.419082</var> 
52 <var>53.704851</var> 
53 <var>44. 243342</ var> 
54 <var>53. 576915</ var> 
55 <var>42.540407</var> 
56 <var>43.510268</var> 
57 <var>62. 876371</var> 
58 <var>61.908414</var> 
59 <var>62 .006309</ var> 
60 <var>53.057966</var> 
61 <var>30.510157</var> 
62 <var>53. 606864</ var> 
63 <var>64. 562823</ var> 
64 <var>50.866725</ var> 
65 <var>57.416316</var> 
66 <var>53.722622</var> 
67 <var>41.358709</ var> 
68 <var>48. 526458</ var> 
69 <var>35.552606</var> 
70 <var>55. 6607 48</var> 
71 <var>31.235159</var> 
72 <var>32.173555</var> 
73 <var>35.286016</var> 
74 <var>9 .668590</ var> 
75 <var>62.260564</var> 
76 <var>48. 902286</ var> 
77 <var>35.940860</var> 
78 <var>61.443582</var> 
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79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 

<var>24.461803</var> 
<var>43. 773091</ var> 
<var>42.102636</var> 
<var>48.830481</var> 
<var>48.754303</var> 
<var>34.621441</var> 
<var>44.639384</var> 
<var>43.021452</ var> 
<var>52. 53248 7</var> 
<var>58.119188</var> 
<var>58 .311280</ var> 
<var>34.636166</ var> 
<var>45.928309</var> 
<var>30 .430595</ var> 
<var>31.637991</var> 
<var> ... </ var> 

</data> 

97 </musegen> 
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COLOPHON 

The original source for this thesis was created in TeXShop, processed using the LaTeX 

engine, and output as a PDF. The musical figures in the thesis were created using an 

extension to TeXShop which allows for the Lilypond Music Notation language to be 

included and processed from within the LaTeX engine. These TeXShop engines were 

provided by Nicola Vitacolonna. 

Any figures or images not created using Lilypond or original to this document exist as 

public domain, licensed under the creative commons, and are attributed within the 

caption for these figures. Such figures and images are copyright of their respective owners. 

Original images were created by the author and for the sole purpose of this text. Images 

which are not music engravings were created using various software tools, such as 

Omnigraffie, GIMP, and Dia. These images have no attributions and are copyright of the 

author. 

Proofreaders: Jennie Huntoon, Kendra and Rick Reese (parents) 

Committee Members: Adel Elmaghraby, Roman Yampolskiy, Charles (Tim) Hardin 
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