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ABSTRACT 

METHODS AND SOFTWARE FOR NONPARAMETRIC ESTIMATION IN 

MULTISTATE MODELS 

Amanda Nicole Ferguson 

July 12, 2011 

Multistate models are a type of multi-variate survival data which provide a 

framework for describing a complex system where individuals transition through a 

series of distinct states. This research focuses on nonparametric inference for general 

multistate models with directed tree topology. 

In this dissertation, we developed an R package, msSurv, which calculates the 

marginal stage occupation probabilities and stage entry and exit time distributions 

for a general, possibly non-Markov, multistage system under left-truncation and 

right censoring. Dependent censoring is handled via modeling the censoring hazard 

through observable covariates. Pointwise confidence intervals for the above 

mentioned quantities are obtained and returned for independent censoring from 

closed-form variance estimators and for dependent censoring using the bootstrap. 

We also develop novel nonparametric estimators of state occupation 

probabilities, state entry time distributions and state exit time distributions for 

interval censored data using a combination of weighted isotonic regression and 

kernel smoothing with product limit estimation. Structural assumptions about the 

multistate system are avoided when possible. We evaluate the performance of our 
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estimators through simulation studies and real data analysis of a UNOS (United 

Network for Organ Sharing) data set. 
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CHAPTER I 

AN OVERVIEW OF NONPARAMETRIC ESTIMATION 

IN MULTISTATE MODELS 

A Introduction 

Multistate models are a type of multi-variate survival data which provide a 

framework for describing a complex system where individuals transition through a 

series of distinct states. This framework, which is often represented with a directed 

graph, illustrates the different states (or events) individuals may experience, as well 

as the possible transitions between states. Transitions between states may be 

reversible or irreversible while states can be either absorbing (meaning further 

transitions cannot occur) or transient. Multistate models have a range of 

applications including event history data, epidemiology, clinical trials where 

individuals progress through the different stages of a disease such as cancer and 

AIDS, and in systems engineering where a machine may experience various systems 

conditions with age. 

Standard survival analysis models measure the time span from some time 

origin (e.g., birth) until the occurrence of the event of interest (e.g., death). This 

corresponds to the simplest multistate model, the two-state model with one 

transient root state (alive) and one absorbing state (dead). This could be expanded 

to include several absorbing states corresponding to different causes of death and is 

called the competing risk or multiple decrement model. Another simple example of 

a multistate model, which allows for a branching event, is the so called illness-death 

model. In this model, individuals start in the well state. Some individuals 
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subsequently move to the illness state and the rest of the individuals eventually 

experience death without ever visiting the illness state. In the irreversible version of 

the model all such individuals eventually move to the "dead" state without any 

possible recovery from the illness while in the reversible version, an individual in the 

illness state may recover and thus makes a transition back to the well state. All 

these simple models are represented by directed graphs or ftowgraphs (Huzurbazar, 

2005) in Figure 1. Multistate models can offer various degrees of complexities where 

individuals can pass through multiple transient states before entering a number of 

possible absorbing states. 

There are several key questions which arise in studying multistate models. 

What is the probability that a subject is in a specific state j at a time t? What is 

the hazard (rate) at which a subject in a given state j at time t transitions to a 

future stage j'? What is the distribution of the time spent (waited) in a state j? 

More formally, these questions ask what are the state occupation probabilities, the 

state transition intensities (or transitional hazards), and the state waiting time 

distributions, respectively. Distribution functions for the state entry and exit times 

are also of interest. Estimators of these quantities have been proposed in the recent 

past under a variety of parametric and non parametric assumptions as well as 

structural assumptions on the system (such as, progressive, Markov, semi-Markov 

etc.). In this paper we restrict ourselves to the nonparametric methods. Moreover, 

we concern ourselves with the estimation questions in a marginal model and not a 

conditional (e.g .. regression) model. Thus, we do not discuss the semiparametric 

models in this paper. Generally speaking, results for the survival setup (e.g., a two 

state progressive model) are widely available in the literature and are not discussed 

in this dissertation. 

In the standard survival analysis setting, especially with right censored data, 

the nonparametric likelihood type methods have been the usual choice. As for 

example, the classical Kaplan-Meier estimator for the survival function can be 
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obtained as a nonparametric maximum likelihood estimator. It is possible to apply 

this technique to certain multistate models such as a Markov or a semi-Markov 

which simplifies the likelihood formulation (Aalen, 1978; Aalen and Johansen, 1978; 

Frydman, 1992; Satten and Sternberg, 1999, etc). However, in absence of such 

additional structural assumptions the likelihood of an event may depend on all past 

events (state occupation) and event times. Thus, a likelihood approach in general is 

not feasible. In addition, there are additional challenges brought on by inherent 

incompleteness in the observed data due to various form of censoring. As we shall 

see, a combination of non parametric functional estimation techniques, mostly 

various forms of averaging or smoothing are needed to form the estimators in 

multistate models. 

The following general notations will be used throughout the paper. A 

multistate process is a stochastic process S = {S(t) : t ~ O}, wheretdenotes time 

and S(t) denotes the state occupied at time t. We can think of 

S(t-) = lims-tt- S(s) as the state occupied just before time t. We assume a finite 

state space X = {O, 1, ... , M}. Under the marginal model, we will assume that the 

multistate processes for n individuals Si = {Si(t) : t ~ O}, 1 SiS n, are independent 

and identical (i.i.d., hereafter) realizations of S. 

For many applications, it is reasonable to assume that the system is 

progressive in which case the directed graph will have a tree structure and we will 

denote the root node by O. For a given state j, Pj(t) = Pr{S(t) = j} is the state 

occupation probability of state j as a function of time. In a multistate model 

representation of the standard survival analysis setup, we let state 0 = "alive" and 

state 1 = "dead". Then Po(t) is the survival function and Pl(t) is the distribution 

function of the failure time. For simplicity of exposition, throughout the paper, we 

will assume that the process has at most one jump in an infinitesimal time interval 

[t, t + dt) leading to (marginal) hazard rates of transitions from states j and 

j', Qjjl(t) = 1imdt--to Pr{S(s) = j', for some s E [t, t + dt) IS(t-) = j}, and integrated 
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Figure 1. Flowgraphs of multistate models; (a) survival, (b) competing risk, (c) 
illness-death. 

(or cumulative) hazard rates Ajj'(t) = J; Cijjl(s)ds. Similarly, the (marginal) rates of 

entry to and exit out of state j are given by a.j(t) = limdHo Pr{S(s) = j, for some 

s E it, t + dt) IS(t-) =F j} and aj.(t) = limdHO Pr{ S(s) =F j, for some 

oS E it, t + dt) IS(t-) = j}. For defining the state waiting times, we need to impose 

the restriction that a given state j can be entered at most once. For handling 

situations with repeated events, one would therefore add additional states to the 

system such as first entry, second entry and so on; this would mean that we can 

keep track of the occurrence of multiple entries to a given state. In this case, we can 

define the state entry, exit and waiting (sojourn) times by Uj =inf {t : S(t) = j} and 

Vj =sup{t: t> Uj , S(t) =F j}, wj = vj - Uj, when Uj < 00. Note that by 

convention, Uj = oc, if state j is never entered and Vj = 00, if either state j is 

never entered or j is an absorbing state (in which case it is never left). The 

(marginal) state entry, exit and waiting time distributions will be denoted by 

Fj(t) = Pr{Uj ~ tlUj < oo}, Gj(t) = Pr{Vj ~ tlVj < oo}and 

Hj(t) = Pr{Wj ~ tlVj < oo}, respectively. 

The rest of the paper is organized as follows. The next section of the paper 

introduces various estimation methodologies to handle right censored multistate 

data. Right censoring is perhaps the prevalent form of censoring in time to event 

studies. Section C considers more severe forms of censoring when individuals are not 

constantly monitored. The paper ends with a discussion section (Section D). 
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B Estimation Under Right Censoring 

There are a number of reasons why right censoring is often, if not always, 

present in time to event data including multistate models. Generally, studies have a 

finite duration and the event of interest may not take place during the study 

interval leading to right censoring of the event. More generally, in a multistate 

model framework, an individual may still be at a transient state at the end of the 

study or follow-up time which means there are potential future transitions whose 

exact times will be unknown. Mathematically speaking, a multistate process S that 

is right censored by a censoring variable G is given by the stochastic process, 

SC = {S(t 1\ G) : t ~ O}. Basically, it means that we observe all the transition times 

and the state occupation up to time G and nothing beyond that. Thus, the right 

censored data will be i.i.d. realizations of SC given by Sf, ... , S~ together with the 

censoring times GI , ... , Gn . The most common assumption on the censoring times 

is that they are i.i.d. and are independent of the original multistate processes 

Sl, ., . , Sn· This is the so called "random censoring" assumption and will be 

assumed for subsection 1 and 2. 

1 Nelson-Aalen Estimators 

The Nelson-Aalen estimators (Aalen, 1978; Andersen et at., 1993) are 

obtained on the basis of rate calculations. Using the independent censoring 

assumption, one can establish that the observed rates of transitions between states 

in a censored experiment is the same as that in an uncensored experiment. The 

former rate can be empirically estimated based on available data and it leads to the 

Nelson-Aalen estimators of integrated (marginal) transition hazards. More formally, 

let for states j and j', Njjl and Njjl be counting processes with jumps given by 

tJ.Njj'(t) = L~l I {Si(t-) = j, Si(t) = j'} and 

tJ.Njjl(t) = L~l I {Si(t-) = j, Si(t) = j', Gi ~ t}, respectively, recording the 

transition counts from states j to j'in the uncensored and censored experiments, 
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respectively. Also, let }j(t) = L:l I(Si(t-) = j) and 

Y/(t) = L7=1 I(Si(t-) = j, Ci ~ t) be the number of individuals at state j just 

before time t in the uncensored and censored experiments, respectively. Then as, 

7/. -+ 00, the two instantaneous rates dNjj,(t)/}j(t) and dNjj'(t)/Y/(t)converges (in 

probability) to ajj' (t )dt and ajj, (t )dt, respectively, where ajj' is defined earlier and 

aC,(t) = lim Pr{S(s) = j', for some s E it, t + dt), C ~ s} 
JJ dHO Pr{S(t-) = j, C ~ t} 

= lim Pr{S(s) = j', for some s E it, t + dt), C ~ t} 
dHO Pr{S(t-) = j, C ~ t} 

= lim Pr{S(s) =j', for some s E [t,t+dt)}Pr{C ~ t} 
dHO Pr{S(t-) = j}Pr{C ~ t} , 

using independence of Sand C. The last expression, however equals to ajj'(t). In 

other words, the two hazard rates ajj,(t) and ajj'(t) are equal at all time points 

t. Therefore the integrated hazard rate Ajj,(t) in the marginal model can be 

estimated by the integrated empirical hazard rate from the right censored multistate 

data leading to the Nelson-Aalen estimator 

~ _ t C dNjj,(s) 
Ajj,(t) - Jo I(~ (s) > 0) ~C(s) . (1) 

Since this estimator is a step function, in order to obtain a legitimate 

estimator of the hazard rate lrjj', one needs to apply kernel smoothing to it. To that 

end, let K be a symmetric kernel (e.g., a symmetric density function) and let 

o < h = h( n) ../.. 0 be a bandwidth sequence. Then a non-parametric estimator of the 

marginal hazard rate of transition from state j to j'is given by 

2 Aalen-J ohansen Estimators 

For a Markov multistate process, the transition probabilities 

Pjj'(s, t) = Pr{ S(t) = j'IS(s) = j} can be computed by product integration of the 
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marginal hazard function P(s, t) = IT (I + dA(u)), where P(s, t) is a matrix with 
(s,t] 

(j, j')th entry Pjjl(.s, t) and A is a matrix with (j,j')th entry Aji" if j' =I- j, and 

= - Lkh Ajk, if j' = j. This leads to the construction of Aalen-Johansen estimator 

(Aalen and Johansen 1978) of transition probabilities of a Markov multistate model 

obtained by substituting the Nelson-Aalen estimators of A into this formula 

P(s, t) = IT (1 + dA(u)). 
(s,t] 

(2) 

For multistate models with only one transient state, such as classical survival 

analysis and the competing risk model, the assumption of Markovity holds trivially 

and thus the Aalen-Johansen estimators are valid. In particular, for the survival 

setting it is just the Kaplan-Meier estimator. As mentioned earlier, the 

Aalen-Johansen estimator can also be obtained as a non-parametric maximum 

likelihood estimator under the Markov assumption. Valid estimators for the three 

state progressive non-Markov illness-death model are proposed by Meira-Machado 

et ai. (2006). Nonparametric estimators of transition probabilities for general 

multistate models without the Markovity assumption are not currently available. 

One can set the initial time s = 0 in the Aalen-Johansen estimator and 

combine it with the initial state occupation to obtain the following natural 

estimators of state occupation probabilitiespj(t) = Pr{S(t) = j}, 

M 

Pj(t) = n-1 LPkj(O,t)Yk(O+). (3) 

Interestingly, Datta and Satten (2001) noted that this estimator remains valid 

(e.g., consistent) even without the Markov assumption; also, see Glidden (2002) for 

a different proof of the same result. In other words, the Markov assumption which is 

often unverified but routinely assumed is not really needed if one is only interested 

in estimation of state occupation probabilities as a function of time. Unfortunately, 

this fact still remains relatively unknown amongst practitioners even till date. 
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3 Datta-Satten Estimators 

Datta and Satten (2002) extended the Nelson-Aalen and Aalen-Johansen 

estimators to situations where the censoring random variable is not necessarily 

independent of the multistate process but rather only conditionally independent 

given an observable time varying covariate Z = {Z(t) : t ~ O}. In their treatment, 

they estimate the two processes Njjl and Yj separately using the principle of inverse 

probability of censoring weights (Koul et ai., 1981; Robins and Rotnitzky, 1992; 

Robins, 1993; Satten et ai., 2001) rather than their ratio. The estimates are not 

equal to the censored data versions defined earlier; however, under the model of 

independent censoring these estimated processes are proportional to the respective 

censored data processes defined before and so the Datta-Satten estimators under the 

independent censoring hazard assumption reduce to Nelson-Aalen and 

Aalen-Johansen estimators. State occupation probability estimators in an 

illness-death model using a different reweighting scheme to handle a specific type of 

dependent censoring was considered in Datta et at. (2000b) but the present 

treatment is more general. 

In general, to construct these estimators, a model for the censoring hazard 

Ac(tIZ(t)) = limdHOPr{Ci E [t,t+dt)ICi ~ t,Z(s),O::; s::; t,S} = IimdHoPr{Ci E 

[t, t + dt) ICi ~ t, Z(s), 0 ::; s ::; t} given the time dependent covariates Z is needed to 

obtain an estimate K(t) =exp{ -Ac(tIZ(t)}. In particular, Datta and Satten 

advocated the use of Aalen's linear hazards model (Aalen, 1980) for this purpose. 

Using the reweighting principle (see Datta and Satten (2002), for a formal 

argument) one can construct the following estimators of the complete data counting 

and at risk processes 

(4) 

and 
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Y~.( ) __ y.( ) _ ~ I(Si(t-) = j, C i ~ t) 
Jt Jt -~ ~ . 

i=l Ki(t-) 
(5) 

Substituting these expressions (4-5) into the formula (1) in places of Njj' and 

Yjc, we obtain the Datta-Satten estimators of integrated (marginal) transition 

hazards. Using the Datta-Satten estimator of A and the at risk set ~ in formulas 

(2) and (3), we in turn get the Datta-Satten estimators of transition probabilities 

(for Markov systems) and state occupation probabilities (for possibly non-Markov 

systems) under dependent censoring. See Cook et at. (2009) for an application of 

the Datta-Satten estimator to bone cancer data. 

For some applications, state entry and exit time distribution functions are of 

interest. The estimators of state occupation probabilities constructed above can be 

used to estimate these distributions by state pooling as follows. For this purpose, we 

assume that the model can be expanded into a progressive tree-like structure with a 

root node 0 so that each state can be entered and exited at most once. For cyclic 

models (such as a reversible illness-death and recurrent events data), each entry of a 

given state needs to be interpreted as a new state. After the state occupation 

probabilities of these expanded system are calculated they can be pooled (e.g., 

summed) to obtain estimators in the original system. 

Let Sj denote the collection of all states j' i= j such that state j appears on 

the path connecting states 0 and j'. In other words, Si is the collection of all states 

which proceeds state j. Then estimators of entry and exit time distributions of 

state j are given by 

(6) 

We end this subsection with an introduction of the Satten and Datta (2002) 

estimators of state waiting time distributions that are valid without the Markovity 

assumption. Furthermore, these estimators use reweighting based on the censoring 
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hazard and thus available covariate information can be incorporated that might be 

related to the censoring mechanism. The form of the reweighting reflects the fact 

that waiting time distributions are measured since state entry and not in calendar 

times. Once again, assume that a transient state j can be entered at most once. 

Let R\(t) =exp{ -Ac(tIZi(t)} be as before. Then, the estimated counting 

processes for waiting times in a give state j is a jump process with jump size equal 

to 

b.Nt(t) = t I{WI :: t,;i 2: v:i} 
i=l Ki(V: -) 

which can be computed based on the available right censored data since if Ci 2: v:i 

then the state j waiting time W/ is available. The inverse weighting factor is 

essentially the estimated conditional probability of the event {Ci 2: v:i}, given 

{V:i , Wi}. Next, the size of the "at risk" set of state j waiting times is estimated by 

Y~.W( ) = ~ I{Wf 2: t,Ci 2: t + Un 
J t ~ ~ j 

i=l Ki((t+Ui )-) 

Note that, once again, this quantity can be computed based on the available 

data and in particular, even if the exit time is right censored. Finally, a 

non parametric estimator of state j waiting time distribution is obtained by a 

Kaplan-Meier type product limit formula using these two sets 

If1(t) = 1 - 1 _ ~J . 
~. II ( dNW(dS)) 

s<t YjW (8) 

These estimators are valid even when the censoring is not independent. Other 

versions of non parametric estimators of state waiting times for certain types of 

multistate models under independent censoring assumption were obtained in Wang 

and Wells (1998) and Wang (2003). 
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4 The Pepe Estimator and Its Extensions 

Pepe (1991) suggested using the difference of two Kaplan-Meier estimators to 

estimate the state occupation probability of a transient state in a four-state 

leukemia progression model. Another non parametric estimator of the state 

occupation probability was proposed by Datta et ai. (2000a) and involved using a 

"fractional size at risk set" and a reweighting approach in the three-state irreversible 

illness.,.death model. The fractional weights representing the probabilities of 

traversing a future path in a more general multistate model with a tree structure 

were considered by Datta and Satten (2000). These weights can be combined with 

right censored entry and exit times to calculate marginal estimators of state entry 

and exit time distributions. A Pepe type subtraction estimator can also be 

constructed using these in a general multistate model with a tree structure. 

Suppose we have a progressive model that can be expanded into a rooted 

directed tree with the root node O. Let N;j and NJ. be the counting processes of 

observed entry and exits to state j with jumps given by 

n 

boN~j (t) = L J(Si(t) = j, Si(t-) = j., Ci 2: t) 
i=l 

and 

n 

boN}. (t) = L I(Si(t) E Sj, Si(t-) = j, C i 2: t), 
i=l 

where j. is the state that precedes j in the path from 0 to j. The corresponding 

"numbers at risk" processes at time t in the censored experiment are given by 

n 

Y.j(t) = L J(Ci 2: t, Si(t-) E {j U sjV, Si(U) = j, for some U 2: 0) 
i=l 

and 

11 
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n 

Y/.(t) = I: I(Ci ~ t, Si(t-) E {sjV, Si('I1,) = j, for some u ~ 0), 
i=1 

However, these later two processes cannot be evaluated from the observed 

data if certain individuals are censored at a state, say S(G) from which eventual 

passage through state j is possible but not guaranteed, Such individuals should 

contribute a fractional count cPj to the "at risk sets" which represents their 

probability of passing through state j in the future had there been no censoring, 

This idea leads to the following "fractional at risk sets": 

n 

Y.j(t) = I:¢ij 1(G; ~ t, Si(t-) E {j USj}C) 
;=1 

and 

n 

Y/.(t) = I:¢';j1(Gi ~ t, S;(t-) E {Sjy) 
i=1 

that can be computed from the available data, Here ¢ij is an estimate of 

(9) 

(10) 

Pr{ Si( 11.) = j, for some u ~ 0 I Gi , Sn, These fractional weights are recursively 

calculated based on the distance of the state S( G;) from the root node 0 (Datta and 

Satten, 2000), 

For the time being, we drop the index i to keep the notation simple, First 

consider the case when S(C) = 0 and j can be reached from 0 in one step, Let N8. 
be the counting process of transitions out of state 0 defined as above, Then, ¢j can 

be calculated using the Aalen-Johansen transition probability estimates in a 

competing risk model 

~ = r { 
i(c,oo) 

(11 ) 

since one can view ¢j as an eventual occupation probability PU,j ( G, 00) of stage j in 

a collapsed network (where all future states beyond j are equated with j and so on), 
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Next, let S( C) = k (1= 0) and) can be reached from 0 in two steps with k as 

the intermediate step. Observe that 'Jk can be calculated by the above formula (11), 

so Yk.(t) is now well defined. Now, define ~ by the above formula (11) with O's 

replaced by k throughout. 

Finally, for the general case when) can be reached from 0 in m steps with 

S( C) = k on the path to j. Let k = )1 --+ j2 --+ ... --+ jm' =) be the path from k 

to) for some m' ~ m. Assume that by induction, we have calculated 'h whenever 
- ~ o and j are separated by less than rn stepS. Note that in this case 01.' for 

1 < m', are all well defined and hence are 

J; - 1. {II (1 - dN1te(U)) } dNJ:l+l (u) 
(- (C,oo) (C,u) Yj~.(u) YJl.(U) 

for 1 = 1, . . . , rn' - 1. Finally, let 'Jj = IT~; 1 :(${. 

The counting and fractional size at risk processes given by (7-10) can be used 

to compute alternative estimators of the state entry and exit time distributions 

using the product-limit formulas 

and 
( 

d;:'i.(S)) 
~ . ITsSt 1 - Y" (8) 
GJ(t) = je .. 

( 
d;:'J .(S)) 

ITs~o 1 - YI.(s) 

(12) 

Unlike (6), these estimators are guaranteed to be monotonic. These 

estimators, in turn, can be combined to obtain an estimator of the state occupation 

probabilities which are extensions of Pepe's (1991) estimators to more complex 

multistate models 

n 

Pj(t) = (n- 1 L ~j){ Fj(t) - Gj(t)}. (13) 
i=l 

However, since these are based on a subtraction formula, unlike the 

Aalen-Johansen (or the Datta-Satten) estimators (3), these estimators may 

sometimes assume negative values which is not desirable of probability estimates. 
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Martingale representations of all the estimators reviewed in this section are 

available even though these could be quite complex, especially, when dependent 

censoring is present. Bootstrap resampling is an attractive alternative to large 

sample calculations for these estimators leading to variance estimates and pointwise 

confidence intervals. 

C Estimation Under Current Status Data 

Marginal non parametric estimation for multistate current status data was 

undertaken in Datta and Sundaram (2006), Datta et at. (2009), and Lan and Datta 

(201Ob); the special case of competing risk models was investigated by Jewell et at. 

(2003) and Groeneboom et at. (2008). 

As before, for an individual i and a time t ~ 0, Si(t) denotes the state 

individual i is in at time t; Gi denotes the random time at which the individual i 

gets inspected. The censoring times and the state occupation processes 

{Gi , Si (t), t ~ O} for the individuals are assumed to be independent and identically 

distributed. For simplicity of development, we will make the assumption of random 

censoring, which means Gi is independent of Si = {Si(t) : t ~ O}. We further 

assume that all transition and censoring times are continuous and that the allowable 

transitions give rise to a rooted directed tree structure, in which every state j E S 

can be reached from an initial state 0 (the root node) by a unique path 

7r(j) : 0 = 81 -t 82'" -t 8j+l = j. The observed data consist of {Gi , Si(G;)} for 

'i = 1,'" ,n. 

1 Estimators of State Occupation Probabilities 

Consider two states j and j'. Let Ujj' denote the (unobserved) transition 

time of an individual from state j to j' (define it to be 00, if this transition is not 

made by the individual). Let Njjl (t) denote the usual counting process counting the 

number of j to j'transitions in [0, tj with the complete data. By the laws of large 
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numbers, 

Consider the indicator function I (Ujj' ~ C) of the event that the j to 

j' transition has taken place by time C. Then, for any t ~ 0, 

E(I (Uii' ~ C) IC = t) = Pr{Ujjl ~ t}. 

Therefore, n -1 Njjl ( .) can be obtained by a non parametric regression 

estimator of I (Ujj' ~ C) given C. Since Pr{Ujjl ~ t} is monotonic in t, n- 1 Njj'(-) 

can be constructed by an isotonic regression of I (Ujj' ~ C) on C, based on the 

pairs (Ci,!(UF' ~ Ci )). 

Next, note that Pj(t-) = Pr{S(t-) =j} is the (in probability) limit of 

n-1Yj(t), where Yj(t) denotes the size of the "at risk" set of transitions out of state 

j with the complete data. However, unlike the counting process of transition counts, 

the Yj process does not have to be monotonic for a transient state j. Therefore, one 

can use kernel smoothing rather than isotonic regression to estimate this 

process leading to 

where Kis a density kernel, h = h(n) is a bandwidth sequence, and 

K h (·) = h-1 K(·jh). 

With the above estimators in place, the class of state occupation probabilities 

will be computed as in Section B using the relationship (3),where 

P( 0, t) = I1(O,t] (I + dA (u)) . However, the integrated conditional transition hazards 

are now calculated using Nand Y defined in this subsection. 

15 



j = j', 

where Jj(u) = I(~(u) > 0). 

2 State Entry and Exit Time Distributions 

A similar approach as in Section 3 can be followed to obtain these. However, 

for current status data, the basic ingredients, namely, the counting processes of 

transition counts and the size of the at risk sets in and out of a given state j are 

computed using a different machinery. 

Since the indicators I (U/ ~ Ci ) and I(~j ~ Ci ) are calculable from the 

available current status information (along with the topological knowledge of the 

system) one could regress them (say, by isotonic regression) to obtain N.j (.) and 

Nj • (.). More precisely, n-INj • (.) is a step function for taking values n- I Nj.(C(i)) 

= ~,say, that minimizes the sum of squares L~=I{Ri - I(U~J ~ C(i))P subject to 

RI ~ .. , ~ Rn , where [i] denotes the index corresponding to the ith largest C; 

n- 1 N. j (.) is computed the same way with U's replaced by V's. These can be 

obtained using the well known pooled adjacent violator algorithm (Barlow et ai., 

1972). 

The "size at risk" sets will be computed by antitonic regression but with 

fractional weights representing the probability of ever making it to state j . Thus, 

n- I Y. j (.) is a step function taking values n- I Y. j ( C(i)) = Ri , say, that minimize the 

sum of squares L~=I {Ri - ¢[iJjI(U[i],j 2: C(i)) P subject to 

Rl 2: .. , 2: Rn; n-I~.(.) is computed the same way with U's replaced by V's. 

The fractional weights are successively (recursively) calculated from the root 

node to the distant states as before ¢j = III ;;;1, where 

16 



~ 

In the above formula, Njd!+! are calculated by isotonic regression of the pairs 

(Gi , I (Ul ~ Gi )), 1 ~ i ~ n. Estimators of Fj, Gj and the Pepe type alternative 

estimator of Pj can be formed using these processes by formulas ((12)) and ((13)) 
~ ~ 

where we use N.j and Nj • instead of N;j and NJ., respectively; similarly, Y.j and 

fj. are used in places of Y.j and Y/., respectively. 

3 State Waiting Time Distributions 

Calculation of state waiting time distributions with current status data poses 

additional difficulty since we cannot directly regress the indicators of events 

involving the waiting times because the state entry times are also unknown. Some 

progress can be made with additional structural assumptions. As for example, 

under the Markov assumption (Datta et aI, 2009), we could obtain the following 

identity 

II (1 - dAj.(s)) dFj(u), t ~ 0, 
u<s~u+t 

where Aj • is integrate transition hazard out of state j. Using this and the quantities 

defined earlier we obtain a non-parametric regression estimator of the state waiting 

time survival function 

1 - ~ dP 'lJ" t ~ O. II ( dNj.(S))} ~j() 
u<s~u+t }j(s) 

D Discussion 

Generally speaking, while parametric (and semiparametric) methods produce 

relatively precise inference for various model characteristics and the effects of 
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covariates under the correct model, their performance under incorrect model 

assumptions is questionable. This is one compelling reason why a fully 

nonparametric approach is preferable even though such a formulation is often 

difficult with time to event data. A large sample size may be necessary to derive the 

full utility of nonparametric methods; in addition, in dealing with time to event 

data, one faces additional difficulty and loss of information due to various forms of 

censoring. The situation with multi-state models that generalize the traditional 

survival setup is even more challenging. Nevertheless, only nonparametric answers 

represent truly empirical (or evidence based) calculations. They can at least serve as 

a guideline to the shape of the various marginal aspects of the system even if a 

semiparametric or parametric calculation is ultimately performed. Doksum and 

Yandell (1982) made similar points with compelling comparative illustrations of 

nonparametric calculations versus semi parametric calculations using the well known 

Stanford heart transplant data. We hope that this paper serves as an overview of 

non parametric approaches to study certain marginal temporal characteristics of a 

broad class of multi-state models. There is scope of future work in these areas 

including bivariate estimation such as that of transition probabilities without the 

Markov assumption and the joint distribution estimation of two waiting times. 

Estimation of related functionals such as measures of association are of interest too. 

Estimation of sojourn time distribution under current status and intervals censored 

data in non-Markov models remain an open problem as well. 
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CHAPTER II 

msSurv, AN R PACKAGE FOR NONPARAMETRIC 

ESTIMATION OF MULTISTATE MODELS 

A Introduction 

Multistate models are systems of multivariate survival data where individuals 

transition through a series of distinct states following certain paths of possible 

transitions. These systems are illustrated by a directed graph, where distinct states 

are treated as nodes and possible transitions are considered directed edges. 

Transitions between states may be reversible or irreversible while states can be 

either absorbing or transient. Multistate models have a wide range of application 

including epidemiology, dentistry, clinical trials, reliability studies in engineering, 

and medicine where individuals progress through the different states of a disease 

such as cancer and AIDS. Data in these applications are often subject to right 

censoring and possibly left truncation. 

Aalen (1978, see also Nelson, 1972) proposed an estimator for the integrated 

hazard under a broad class of counting process models. Aalen and Johansen (1978) 

obtained an estimator for the transition probability matrix and subsequently state 

occupation probabilities through product limit integration of the Nelson-Aalen 

estimator. Datta and Satten (2001) established that the resulting estimators of 

state occupation probabilities remained valid even when the process is 

non-Markovian. Datta and Satten (2002) also proposed an estimator for state 

occupation probabilities that can handle state dependent censoring and other 

flexible models through a weighting function based on the censoring scheme. 
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Estimation of state entry and exit distribution functions are also of interest (Pepe, 

1991; Datta and Ferguson, 2011), and can be calculated through normalized sums of 

state occupation probabilities. 

Several R packages are available on the Comprehensive R Archive Network 

(CRAN, http://www.r-project.org) for use with multistate models. Recently, The 

Journal of Statistical Software published a special volume on Competing Risks and 

Multistate Models featuring papers on the msm, mstate, etm, and 3state.msm 

packages (Jackson, 2011; de Wreede et al., 2011; Allignol et al., 2011; 

Meira-Machado and Roca-Pardinas, 2011). Other packages currently available 

include changeLOS and myna. The msm package provides functions for fitting 

multistate Markov models to panel count data and offers extensions to hidden 

Markov multistate models and possibly inhomogeneous Markov models (Jackson, 

2011). The mstate package can be applied to right censored and left truncated data 

in semi parametric or nonparamertric multistate models with or without covariates 

and it may also be applied to competing risk models. The package offers functions 

which calculate transition probabilities and standard errors. It also uses Cox 

regression models to estimate different types of covariate effects (de Wreede et al., 

2011). The packages changeLOS, myna, and etm all provide methods for 

non parametric estimation in multistate models. The most specialized package 

available is changeLOS, which is based on methods described in Schulgen and 

Schumacher (1996) and computes changes in length of hospital stay (Wrangler 

et al., 2006). It does offer a function to compute the Aalen-Johansen estimator, but 

it does not provide variance estimates and cannot be applied to left truncated data. 

The myna package computes the Nelson-Aalen estimator of the cumulative 

transition hazard for any multistate model with right censored, left truncated data, 

but does not compute transition probability matrices. The etm package calculates 

the transition probability matrices and corresponding variance estimates for any 

finite-state multistate model (Allignol et at., 2011) with data subject to right 

20 



censoring and left truncation. State occupation probabilities may be indirectly 

found using an initial time of 0 in the etm package. No packages currently available 

estimate state entry and exit time distributions, nor do they estimate desired 

quantities like transition probabilities for dependent censoring. These missing 

methods are addressed in the msSurv package available from CRAN which we 

introduce in this paper. msSurv calculates nonparametric estimates of marginal 

quantities for time to event multistate data subject to right censoring and possibly 

left truncation. We assume left truncation occurs with respect to the total time of 

an individual in the multistate system, so that individuals are not considered for the 

estimation of transitions prior to their left truncation time. The main function 

msSurv () calculates and returns the marginal state occupation probabilities and 

state entry and exit time distributions for a general, possibly non-Markov, 

multistate system, and provides additional features not currently found in other R 

packages. The function also calculates and returns the marginal integrated 

transition hazards and the hazard rate functions, and for a Markov model, the 

transition probability matrix between any two times. Users specify whether the 

censoring is independent or state dependent and then appropriate calculations of 

variance and confidence intervals are performed. Pointwise confidence intervals for 

the above mentioned quantities are obtained and returned for independent censoring 

from closed-form variance estimators and from bootstrapping for dependent 

censoring. The function returns an object of 54 class msSurv which includes state 

and transition information, event times, estimates, variance estimates, confidence 

intervals, and counting process information. The msSurv object can then be 

summarized or plotted using methods from the package. 

The rest of this chapter is organized as follows. Section B describes 

non parametric estimation methods which are used in the msSurv package. Section C 

describes the implementation of msSurv and illustrates available functions through 

examples. Possible future extensions of our software package are discussed in D. 
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B The estimators 

Consider a multistate model with a finite state space S = {L ... , M} and set 

of possible transitions between the states in S. The quantities of interest (like state 

occupation probabilities and state entry and exit distributions) can be calculated for 

complete data, when available, and also using estimators obtained from censored 

data when complete data is not known. It is useful to keep track of all the 

transitions an individual makes before ending in an absorbing state. Let ~k 

represent the time of the kth transition for individual i (= 00 if the ith individual 

enters the absorbing state before the kth transition is made), where Tto = O. Let C i 

be the right censoring time for the ith individual, Li be the left truncation time for 

the ith individual, and 8ik be the state occupied by the ith individual between times 

I:k-l and ~k' Let ~* = SUPk {Tik : Tik < oo} be the time for the last transition for 

individual i. The collection of all transition times and states occupied by individual 

i can be denoted as T: = (I:k : k 2 1) and s: = (Sik : k 2 1), respectively. Define an 

indicator of whether the ith individual was never censored, e.g., t5i = J(Cj > T;*), 

and let Ti = min(~*. C i ). 

The censoring hazard is independent of the multistate system when 

(Datta and Satten, 2001, 2002). There are times when censoring and hazards 

of future transitions are affected by time varying covariates Z = Z (t). In these 

cases, the covariate variables Z explain the dependence and thus future transitions 

and censoring events behave conditionally independent given the covariate process Z 

(Datta and Satten, 2002). Modeling of this censoring hazard using the covariate 

process is discussed in Section 3. 

1 Nelson-Aalen and Aalen-Johansen Estimators 

Andersen et at. (1993) presented formulas for the Nelson-Aalen estimator for 
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the integrated hazard matrix A and the Aalen-Johansen estimator of the state 

occupation probability matrix of a Markov system. The counting process and the 

number at risk for data subject to left truncation and right censoring are estimated 

as 

n 

Njjl (t) = L L I (~k ::; t, Ci ~ ~k' Li < t, Sik = j, Sik+l = j') (12) 
i=l k~l 

and 
n 

Yj (t) = L L I (Tik-1 < t ::; ~k' Ci ~ t, Li < t, 8ik = j) . (13) 
i=l k~l 

The Nelson-Aalen estimator of the cumulative hazard is given by 

~ { rt 1 (9;,(s»0) dJV- -I (s) -..../..-/ 
A -_ (t) - Jo Y(s) JJ J r J JJ' . - J ~ 

- Ljrfjl Ajjl (t) j = j', 

The Aalen-Johansen estimator of a transition probabilities matrix of a 

Markov multistate system is obtained by product integration of Ajjl (t), i.e., 

P ( s, t) = IT (I + dA (u)) , 
(s,t] 

(14) 

(15) 

where A = {Ajl'} which reduces to simple empirical proportions for the complete 

data. 

A recursive formula for computing the variance of transition probability can 

be found in Andersen et al_ (1993)(see formula 4.4.19 on p. 295 for details). The 

resulting estimator is of the Greenwood-type. 

2 State occupation probabilities 

The state occupation probability answers the marginal question: "What is 

the probability that an individual is in state j at time t?" Let Pj (t) = Pr {s (t) = j} 

denote the state occupation probabilities where S (t) is the state occupied by an 
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individual at time t. j E {I, ... , M}. For incomplete data, the state occupation 

probabilities are estimated as 

M 

Pj (t) = LPk (0) fikj (0, t) , 
k=l 

(16) 

where Pjk (0, t) is the kjth element of the matrix P (0, t) = O(O,t) (I + dA (u)) and 

Pk (0) is the initial state occupation proportions for state k. This estimator is in fact 

the Aalen-Johansen estimator of state occupation and holds its validity regardless of 

Markovian assumptions (Datta and Satten, 2001). Estimation of state occupation 

probabilities can be extended to dependent censoring and other flexible models by 

explicitly modeling the censoring process (Datta and Satten, 2000, 2002). 

3 Datta-Satten estimators 

Datta and Satten (2002) use the principle of inverse probability of censoring 

weights (Robins and Rotnitzky. 1992) to extend the Nelson-Aalen and 

Aalen-Johansen estimators to data subject to dependent censoring. The resulting 

Datta-Satten estimators use a weighting function, denoted by K, which is based on 

a fitted model of the censoring hazards using Aalen's linear hazards model with 

possibly time-dependent covariates Z (Aalen, 1980). 

Reweighted estimators for the counting process and the size of the at risk sets 

of complete data are defined as 

n 

Nj}' (t) = L L I (I:ic :::; t, Ci 2: I:k' Li < t, Sik = j, SikH = j') / Ki (I:k-) (17) 
i=l k~l 

and 

n 

Y; (t) = LLI (I:ic-l < t:::; I:ic, Ci 2: t, Li < t,Sik =j) /Kdt-) (18) 
i=l k~l 

where R (t) = exp {-Ac (tiZ (t))} with 
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>"c (tiZ (t)) = lim pr{c.€[t,dt),OiITi~:>Li,Z.(t),Ti'8i}, and Zi (t) = {Zi (s) : O:S s < t}. 
dt-tO 

See Datta and Satten (2002) for a formal argument. 

For state dependent right censoring (i.e., when Z(t) = s(t)), this is equivalent 

to estimating the censoring hazard by a state specific Nelson-Aalen estimator of 

censoring; see Datta and Satten (2002) for details. 

Substituting the formulas for the estimated counting process and the number 

at risk into equations 14, 15, and 16 yields the Datta-Satten estimators of integrated 

transition hazards, transition probabilities for Markov Systems and state occupation 

probabilities for non-Markov systems under dependent censoring. Variance 

estimates for the Datta-Satten estimators of transition probabilities are obtained 

using the bootstrap. 

4 State entry and exit distributions 

An important application of state occupation probabilities is computing the 

state entry and exit time distribution functions. We assume an acyclic system. 

Suppose Xj denotes the possibly unobserved indicator of an individual ever entering 

state j. Suppose Fj and Gj denote the state entry and exit time distribution 

functions, respectively, for the individuals who ever enter state j (i.e., Xj = 1). Let 

Sj denote the collection of all states which come after state j in the progressive 

model. The entry time distribution to state j is estimated by taking the normalized 

sum of the estimated state occupation probabilities of state j and all the other 

states that come after j in the system, i.e., 

where Pk (00) = limt-tooPk (t). 

The exit time distribution from a transient state j is estimated by taking the 

normalized sum of estimated state occupation probabilities of all states that come 

after state j in the progressive system, i.e., 
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G
j 

(t) = LkfSi!k (t) . 
LkeSi Pk (00) 

Variance for state entry and exit time distributions are obtained using the 

bootstrap. 

5 Confidence intervals 

Pointwise confidence intervals for estimators of transition probabilities and 

state occupation probabilities follow methods described in Andersen et al. (1993). 

Let P (s, t) be the transition probability between two states in the system (the 

subscripts are omitted to simply the notation) between times 8 and t and let a (8, t) 

be the corresponding variance estimate. Then the linear confidence interval for 

P (8, t) is defined as 

P (s, t) ± Co/2a (s, t), 

where C(o/2} is the upper CY./2 percentile of the standard normal distribution. It may 

be beneficial to consider transformations to improve estimation especially in the 

case of small sample sizes (Bie et ai., 1987; Thomas and Grunkemeier, 1975). 

Borgan and Liestol (1990) suggested a log transformation to improve small sample 

properties. The resulting formula for the confidence interval is 

P~ ( ) {±CO/2a (8, t)} s, t exp ~ , 
P (8, t) 

Other transformations to improve small sample properties include the log-log 

transformation, proposed by Kalbfleisch and Prentice (1980) and defined as 

and the complementary log-log transformation 
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Confidence intervals for state occupation probabilities are calculated using 

8 = 0 in the formulas above. 

Confidence intervals for state entry and exit time distributions for state i at 

time t are calculated using Fi(t) and Gi(t) instead of P (8, t), with corresponding 

variance estimate Ci(t) obtained using the bootstrap. 

C msSurv package implementation 

The msSurv package may be applied to any general multistate model with 

data subject to right censoring and possibly left truncation. msSurv is written 

entirely in the R programming language using S4 classes and methods, and is 

available for download from CRAN (http://www.r-project.org). It can be installed 

on all operating systems for which the R software is installed. Other package 

dependencies include the graph package (Gentleman et al., 2010) and the lattice 

package (Sarkar, 2008). 

The main function of the package, msSurv (), calculates the counting 

processes and risk sets according to both Andersen et al. (1993) and Datta and 

Satten (2001), as well as the state occupation probabilities and transition 

probabilities described in the previous section. The msSurv package contains a 

function to calculate the transition probabilities between two specific times (Pst), a 

function to display the state occupation probabilities at a specific time t (st. t), a 

function to display the state entry and exit time distributions at a specific time t 

(EntryExit), as well as print, plot,and summary methods for msSurv objects. 

We will illustrate the application of the msSurv package through 3 examples. 

The first example uses simulated data with independent right censoring, the second 

example uses a simulated data set with left truncation and independent right 

censoring, and the third example uses a bone marrow transplant data set from Klein 

and Moeschberger (1997) with state dependent right censoring. 
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Figure 2. A five state model for simulated multistate data. 

1 A 5 state example 

We consider a five-state progressive model with the tree structure illustrated 

in Figure 2. We simulated a data set of 1000 individuals subject to independent 

right censoring with 60% of individuals starting in state 1 at time 0 and 40% 

starting in state 2. Those in state 1 remain there until they transition to the 

transient state 2 or the terminal state 3. Individuals in state 2 remain there until 

they transition to either terminal state 4 or 5. 

A right censoring time is generated for each of the 1000 individuals using the 

log normal distribution with log mean -0.5 and log standard deviation 2. For 

individuals starting in state 1, two times are generated using the Weibull 

distribution using a sample size of 600 and shape parameter of 2 to reflect transition 

times between states 1 and 2 and states 1 and 3. Times are compared and the 

minimum time is kept as the event time and the corresponding state is recorded. 

Then, two additional times are generated to reflect transitions between states 2 and 

4 and states 2 and 5. These times are generated using the formula 

T2 = D-I (D (Td + R2 {1 - D (TI )}) where TI is the first transition time, R2 is a 

random number generated from U (0,1) independent of TI , D (.) denotes the 
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distribution function for the Wei bull distribution with shape parameter 2, D- 1 (.) 

denotes the corresponding quantile function. The minimum of these two times and 

the censoring times are compared and the minimum time is taken as the event time 

and the corresponding state is recorded. For individuals starting in state 2, two 

times are generated using the Weibull distribution with a sample size of 400 and 

shape parameter of 2 to reflect transitions between states 2 and 4 and states 2 and 

5. These times are then compared with the corresponding censoring times and the 

minimum time is taken as the event time and the state information is recorded. All 

times were rounded to the fourth decimal place for clarity of presentation. The 

simulated data is available as RCdata in the package. 

We begin by loading the package. 

R> 1 i brary ("msSurv" ) 

Now we load the data. 

R> data ("RCdata") 

Data should be in a data frame with column names "id", "stop", "st.stage", 

and "stage" where "id" is the individual's identification number, "stop" is the 

transition time from state j to j', "st.stage" is the state the individual is 

transitioningfrom (i.e., j), and "stage" is the state the individual is transitioning to 

(i.e., j') and equals 0 if right censored. 

R> RCdata[70:76,] 

id stop st.stage stage 

57 57 0.3086 

58 58 0.5322 

614 58 0.6333 

59 59 0.3330 

1 

1 

2 

1 

3 

2 

5 

2 
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615 59 0.5824 

60 60 0.7722 

61 61 0.4096 

2 

1 

1 

5 

o 

3 

Now we specify the tree structure for this multistate system. First, input the 

states in the multistate system as a list or character vector of the state names. Then, 

store the transition information as a list of possible states with allowed transitions 

being lists of edges. For terminal states. the lists of edges will be NULL. Nodes 

correspond to the states in the model and edges refer to the allowed transitions. 

R> Nodes <- c("1","2","3","4","5") 

R> Edges <- list("1"=list(edges=c("2","3")), 

+ 

+ 

+ 

+ 

"2"=list(edges=c("4", "5")), 

"3"=list(edges=NULL), 

"4"=list(edges=NULL) , 

"5"=list(edges=NULL)) 

The tree structure is then specified using the graph package (Gentleman 

et at., 2010) by creating a graphNEL object as below with nodes and edges defined 

above. 

R> treeobj <- new("graphNEL" ,nodes=Nodes, edgeL=Edges, 

+ edgemode="directed") 

Now we will call the msSurv function to perform nonparametric estimation 

for this simulated example. 

R> ex1 <- msSurv(RCdata,treeobj) 

Results of the analysis can be viewed using the print, plot, and summary 

methods, as well as the Pst, st. t and EntryExi t functions, available for the 
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msSurv object ex1. The print method will be discussed in this section while the 

summary and plot methods will be discussed in examples 2 and 3, respectively. 

The print method gives an overview of the model, specifying the number of 

transient and absorbing states and identifying the states and possible transitions in 

the system. It also provides the state occupation probabilities, state entry time 

distributions, state exit time distributions, and transition probability matrix P(O, t) 

for the largest event time in the data set. 

R> print(exl) 

The specified multistate model has 2 transient state(s) and 

3 absorbing state(s) 

Possible States in this Model: 

[1] "1" "2" "3" "4" "5" 

Possible Transitions for this Model: 

[1] "1 2" "1 3" "2 4" "2 5" 

State Occupation Information at time 1.7345: 

Estimates of State Occupation Probabilities 

P 1 P 2 P 3 P 4 P 5 

0.0000 0.0000 0.2802 0.3784 0.3414 

Estimates of State Entry Time Distribution 

F 1 F 2 F 3 F 4 F 5 

NA 1 1 1 1 

Estimates of State Exit Time Distribution 
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G 1 G 2 G 3 G 4 G 5 

1 1 NA NA NA 

Transition Probability Information: 

Estimate of P(0,1.7345) 

eols 

rows 1 2 3 4 5 

1 0 0 0.467 0.2935 0.2395 

2 0 0 0.000 0.5056 0.4944 

3 0 0 1.000 0.0000 0.0000 

400 0.000 1.0000 0.0000 

5 0 0 0.000 0.0000 1.0000 

Variance estimates are omitted by default, but users may specify covar=TRUE 

and variance estimates will be provided for each estimated quantity. For example, 

R> print(exl,covar=TRUE) 

The msSurv package contains 2 functions for the user to easily access 

estimators of transition and state occupation probabilities at specific time points. 

The package also contains a function for the user to access state entry and exit time 

distribution estimators at specific time points. 

The transition probabilities between any two times sand t are computed 

using the Pst function. The Pst function takes an msSurv object, a starting time s, 

and an ending time t and prints the transition probability matrix P (s, t). For 

example, to find the transition probability matrix P(1,3.1), we would enter 

R> Pst(exl,s=1,t=3.1) 
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Estimate of P(1,3.1) 

cols 

1 2 3 4 5 

1 0 0 0.4805 0.307 0.2124 

2 0 0 0.0000 0.586 0.4140 

3 0 0 1.0000 0.000 0.0000 

4 0 0 0.0000 1.000 0.0000 

5 0 0 0.0000 0.000 1.0000 

The corresponding covariance matrix for this transition probability is printed 

by adding the argument covar=TRUE, i.e.,: 

R> Pst(exl,s=1,t=3.1,covar=TRUE) 

State occupation probabilities at a specific time t are given using the st. t 

function. This function takes a msSurv object as well as time t as arguments. The 

default time t is the maximum event time in the data set. Individuals may start in 

any state in the system at time O. The function prints the state occupation 

probabilities for all states in the system at time t. For example, call the function 

st. t to find the state occupation probabilities at time t=O. 85. 

R> st.t(exl,t=O.85) 

The state occupation probabilities at time 0.85 are: 

State 1: 0.1415 

State 2: 0.2179 

State 3: 0.2127 

State 4: 0.2028 

State 5: 0.2252 

The corresponding variance estimates are provided using the argument 

covar=TRUE. Variance estimates are found by evaluating the formula in Andersen 
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et al. (1993) at P(O, t) for data where all the individuals start in the initial state at 

time O. The bootstrap is used to find variance estimates of state occupation for data 

where individuals start in different states of the system. 

R> st.t(ex1,t=O.85,covar=TRUE) 

The EntryExi t function in msSurv displays the state entry and exit time 

distributions at a specific time t. This function takes a msSurv object and time t as 

arguments and displays the state entry distributions for non-initial states and state 

exit distributions for non-terminal states. Estimates are rounded to four decimal 

places by default, but the user may specify a different number through the deci 

argument. For example, the state entry and exit distributions at time 1 are 

displayed by 

R> EntryExit(ex1,t=1) 

The state entry distributions at time 1 are: 

State 2: 0.9587 

State 3: 0.9018 

State 4: 0.7172 

State 5: 0.7794 

State entry distributions for state 1 is omitted 

since there are no transitions into that state. 

The state exit distributions at time 1 are: 

State 1: 0.9427 

State 2: 0.7467 

State exit distributions for state(s) 3 4 5 is (are) omitted 

since there are no transitions into that (those) state(s). 
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To display the bootstrap variance estimates for state entry and exit time 

distributions, the user would need to include the d. var=TRUE argument in the call of 

the msSurv function. Then, include the covar=TRUE argument in the call of the 

EntryExi t function. 

R> ex1a <- msSurv(data,treeobj,d.var=TRUE) 

R> EntryExit(ex1a,t=1,covar=TRUE) 

2 Left truncation and right censoring example 

We consider an irreversible three-state illness-death model with data subject 

to independent right censoring and left truncation (Andersen et at., 1993). We 

simulated a data set of 1000 individuals starting in state 1 at time O. Individuals 

remain in state 1 until they transition to the transient state 2 (ill) or the terminal 

state 3 (death). Individuals in state 2 remain there until they transition to the 

terminal state 3 (death). 

Two times are generated using the Wei bull distribution with a sample size of 

1000 and shape parameter of 2 to reflect transition times for either illness or death. 

Right censoring and left truncation times are generated using the log normal 

distribution with mean -0.5 and standard deviation 2 on the log scale. We assume 

20% of individuals have a left truncation time of O. Only individuals whose left 

truncation times were less than the terminal event times or censored event times 

were kept. The left truncation time was taken to be the time the individual entered 

the study. Individuals were not included in the at risk set before their left 

truncation time. Times for these individuals were compared and the minimum time 

was kept as the event time and the corresponding state was recorded. Then, another 

time was generated reflecting the transition between states 2 and 3 using the 

formula T2 = D-I (D (TI) + R2 {I - D (TI )}) where TI is the first transition time, 

R2 is a random number generated from U(O, 1) independent of T I , D (-) denotes the 

distribution function for the Weibull distribution with shape parameter 2, D-I (.) 
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denotes the corresponding quantile function. These "death" times are then 

compared to the censoring times and the minimum time is kept as the event time 

and the corresponding state information is recorded. All times were rounded to the 

fourth decimal place for clarity of presentation. The simulated data is available as 

LTRCdata in the package. 

Begin by loading the data 

R> data("LTRCdata") 

Data should be in a data frame with column names "id", "start", "stop", 

"st.stage", and "stage" where "id" is the individual's identification number, "start" is 

the start time for the period of observation after the individual enters state j (and is 

the left truncation time for the first observed transition), "stop" is the transition 

time from state j to j', "st.stage" is the state the individual is transitioning from 

(i.e., j), and "stage" is the state the individual is transitioning to (and equals 0 if 

right censored). 

R> LTRCdata[489:494,] 

id start stop st.stage stage 

468 468 0.0000 0.9229 1 3 

3 3 0.5851 0.9231 1 3 

65 65 0.5944 0.9237 1 3 

534 222 0.7367 0.9239 2 3 

547 262 0.0886 0.9305 2 0 

47 47 0.5488 0.9313 1 2 

Now we specify the tree structure. 

R> Nodes <- c("l", "2", "3") 

R> Edges <- list("1"=list(edges=c("2","3")), 
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+ 

+ 

"2"=list(edges=c("3")), 

"3"=list(edges=NULL)) 

R> treeobj2 <- new("graphNEL" ,nodes=Nodes, edgeL=Edges, 

+ edgemode="directed") 

The msSurv function is called to perform non parametric estimation for this 

simulated example. Since the data is subject to left truncation, we must add the 

argument LT=TRUE to the call of msSurv. 

R> ex2 <- msSurv(LTRCdata,treeobj2,LT=TRUE) 

We assume individuals subject to left truncation start in state 1 at time 0 

unless otherwise specified. The user may enter a vector of starting states for each 

individual in the data through the start. states argument. 

Results of the analysis will be illustrated through the summary method 

available for the msSurv object ex2. The summary method displays information for 

both state occupation probabilities and transition probabilities. Estimates of state 

occupation probability are displayed with corresponding variance estimates, 

confidence intervals (denoted "lower.ci" and "upper.ci" in the output), state entry 

time distributions ("entry.d") and state exit time distributions ("exit.d") are shown 

for each state in the system. The default settings give these estimates to three 

decimal places for key percentile event times (minimum, maximum, 25th percentile, 

median, and 75th percentile). The summary method also provides summary 

information for each allowed transition in the system. Estimates of the transition 

probabilities are given with estimates of variance, confidence intervals ("lower.ci and 

"upper.ci"), the risk sets calculated according to Andersen et al. (1993) ("n.risk") 

and Datta and Satten (2001) ("n.risk.K") at the key percentile event times 

mentioned above. For transitions from one state to a different state, both counting 

processes ("n.event" for Andersen et al. (1993) and "n.event.K" for Datta and Satten 

(2001)) are displayed. For transitions into the same state, the number remaining at 

risk are displayed ("n.event" and "n.event.K"). 
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R> summary(ex2,digits=2) 

State Occupation Information: 

State 1 

time estimate variance lower.ci upper.ci entry.d exit.d 

0.07 1.00 1.5e-05 0.99 1.00 NA 0.0038 

0.42 0.72 7.0e-04 0.67 0.77 NA 0.2811 

0.66 0.45 8.8e-04 0.39 0.51 NA 0.5479 

0.92 0.20 5.8e-04 0.15 0.24 NA 0.8048 

2.01 0.00 O.Oe+OO 0.00 0.00 NA 1.0000 

State 2 

time estimate variance lower.ci upper.ci entry.d exit.d 

0.07 0.0038 1.5e-05 0.000 0.011 0.0038 0.00 

0.42 0.1175 3.5e-04 0.081 0.154 0.2811 0.18 

0.66 0.1992 5.6e-04 0.153 0.245 0.5479 0.38 

0.92 0.2480 6.8e-04 0.197 0.299 0.8048 0.60 

2.01 0.0787 7.5e-04 0.025 0.132 1.0000 1.00 

State 3 

time estimate variance lower.ci upper.ci entry.d exit.d 

0.07 0.00 0.00000 0.00 0.00 0.00 NA 

0.42 0.16 0.00047 0.12 0.21 0.18 NA 

0.66 0.35 0.00079 0.29 0.40 0.38 NA 

0.92 0.56 0.00090 0.50 0.62 0.60 NA 

2.01 0.92 0.00076 0.87 0.98 1.00 NA 

Transition Probability Information: 
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Transition 1 -> 1 

time estimate variance lower.ci upper.ci n.risk n.remain n.risk.K n.remain.K 

0.07 1.00 1.5e-05 0.99 1.00 261 260 304 303 

0.42 0.72 7.0e-04 0.67 0.77 210 210 361 361 

0.66 0.45 8.8e-04 0.39 0.51 125 124 270 267 

0.92 0.20 5.8e-04 0.15 0.24 52 52 135 135 

2.01 0.00 O.Oe+OO 0.00 0.00 0 0 0 0 

Transition 1 -> 2 

time estimate variance lower.ci upper.ci n.risk n.event n.risk.K n.event.K 

0.07 0.0038 1.5e-05 0.000 0.011 261 1 304 1.2 

0.42 0.1175 3.5e-04 0.081 0.154 210 0 361 0.0 

0.66 0.1992 5.6e-04 0.153 0.245 125 0 270 0.0 

-0.92 0.2480 6.8e-04 0.197 0.299 52 0 135 0.0 

2.01 0.0787 7.5e-04 0.025 0.132 0 0 0 0.0 

Transition 1 -> 3 

time estimate variance lower.ci upper.ci n.risk n.event n.risk.K n.event.K 

0.07 0.00 0.00000 0.00 0.00 261 0 304 0.0 

0.42 0.16 0.00047 0.12 0.21 210 0 361 0.0 

0.66 0.35 0.00079 0.29 0.40 125 1 270 2.2 

0.92 0.56 0.00090 0.50 0.62 52 0 135 0.0 

2.01 0.92 0.00076 0.87 0.98 0 0 0 0.0 

Transition 2 -> 2 

time estimate variance lower.ci upper.ci n.risk n.remain n.risk.K n.remain.K 

0.07 1.000 0.0000 1.0000 1.00 o o o o 
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0.42 

0.66 

0.92 

2.01 

0.554 0.0279 0.2269 

0.412 0.0165 0.1601 

0.299 0.0091 0.1117 

0.068 0.0010 0.0058 

Transition 2 -> 3 

0.88 

0.66 

0.49 

0.13 

37 

58 

63 

5 

36 

58 

62 

4 

64 

125 

163 

70 

62 

125 

161 

56 

time estimate variance lower.ci upper.ci n.risk n.event n.risk.K n.event.K 

0.07 0.00 0.0000 0.00 0.00 0 0 0 

0.42 0.45 0.0279 0.12 0.77 37 1 64 

0.66 0.59 0.0165 0.34 0.84 58 0 125 

0.92 0.70 0.0091 0.51 0.89 63 1 163 

2.01 0.93 0.0010 0.87 0.99 5 1 70 

Confidence intervals provided by default are 95% linear confidence intervals, 

but the user may change the confidence level to either 90% or 99% by changing the 

ci . level argument or apply a transformation of "log", "cloglog" or "log-log" by 

changing the ci. trans argument. The user may change the number of significant 

digits through the digits argument. 

Summary information for all event times in the data set are displayed using 

the all=TRUE argument. 

R> summary(ex2,all=TRUE) 

The user also has the option to display information about only the state 

occupation probabilities (by inserting the argument trans. pr=FALSE) or 

information only about transition probabilities (stateocc=FALSE). 

3 An example of state dependent censoring 

State dependent censoring in msSurv will be illustrated using data on 136 

cancer patients who received bone marrow transplants found in Klein and 
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Figure 3. A five state model for cancer patients who received bone marrow transplants. 

Moeschberger (1997). Following Oatta and Satten (2002), we defined five states 

based on platelets returning to a normal level, presence of acute graft-versus-host 

disease (GYRO), and onset of chronic GYRO. 

State 2 is entered when acute GYRO develops before the patients platelet 

level returns to normal. State 3 is entered if the patient's platelet level returns to 

normal before acute GYRO develops. State 4 is for patients who have both normal 

platelet levels and acute GYRO while State 5 is for those patients who have chronic 

GYRO. Patients transition to either state 2 or state 3 and then either state 4 or 

state 5, as depicted in Figure 3. Oata from one patient was dropped for this analysis 

since his/her platelet levels never returned to normal and he/she did not develop 

acute GYRO. Patients do not necessarily progress to state 5 as they may remain in 

any state for any amount of time. Those patients who died or experienced relapse 

were considered censored for this example. 

Our analysis allows for the censoring hazards to vary by state, since relapse or 

death can be predicted by the different (immunologic) states defined in this system. 

The cumulative censoring hazard for each state is estimated as the Nelson-Aalen 

estimator for censoring at each state and used to weigh the counting processes. 

41 



We open the data set bmt from the KMsurv package and form a data frame 

with column names "id", "stop", "st.stage", and "stage". (Code is suppressed here 

but is available in the accompanying R file.) 

The first few lines of data are 

R> head(data.sdc) 

id stop st.stage stage 

20 1 13 1 3 

198 1 67 3 4 

272 1 121 4 5 

21 2 18 1 3 

217 2 139 3 5 

22 3 12 1 3 

Now we specify the tree structure. 

R> Nodes <- c("1","2","3","4","s") 

R> Edges <- list("1"=list(edges=c("2","3")),"2"=list(edges=c("4","5")), 

+ 

+ 

"3"=list (edges=c("4", "5")), "4"=list (edges=c("s")), 

"s"=list(edges=NULL)) 

R> deptree <- new ("graphNEL" , nodes=Nodes, edgeL=Edges, 

+ edgemode="directed") 

N ext we will call the msSurv function to perform nonparametric estimation 

on the data. Since the data is subject to state dependent censoring, we must add 

the argument cens. type="dep" to the call of msSurv. Bootstrapping is used to 

estimate the variance for transition probabilities for state dependent censored data 

and may be specified using the B argument. The default number of bootstraps is 

200 and that is used for this example. 

R> DepEx <- msSurv(data.sdc,deptree,cens.type="dep",d.var=TRUE) 
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Figure 4. Plot of state occupation probability estimates and corresponding confidence 
intervals for each state in the system for data subject to dependent censoring. 

The results are displayed graphically using the plot method. The plot 

method takes msSurv objects and produces plots of estimated quantities using 

functions available in the lattice package (Sarkar, 2008). The plots of the state 

occupation probabilities for every state in the system are produced by default with 

their corresponding 95% linear confidence intervals. For state dependent censoring, 

these confidence intervals are based on variances obtained through bootstrapping. 

Each state is plotted separately in a single panel. The results are given in Figure 4. 

R> plot (DepEx) 

Users may also specify specific states to be plotted using the states 
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argument. For example, to plot the state occupation probabilities for state 2, the 

user would type 

R> plot(DepEx,state="2") 

To plot the state occupation probabilities for states 2 and 3, use 

R> plot(DepEx,state=c("2","3")) 

Confidence intervals may be altered using the ci. level and ci. trans 

arguments which allow the user to specify a different confidence level ("90%" or 

"99%") or a different transformation ("log", "log-log", "cloglog" as described in the 

previous section). Confidence intervals are omitted from the plots using the 

CI=FALSE argument. 

The plot. type argument is used to change the plotted estimators. As 

previously mentioned, the default is "stateocc" for the state occupation probabilities, 

but the user may create plots for the transition probabilities ("transprob"), state 

entry distributions ("entry.d"), and state exit distributions ("exit.d"). The state 

entry time distribution plots entry time distributions for all states except the initial 

state by default, but users may specify specific states using the states argument. 

The state exit time distributions are plotted for all non-terminal states by default, 

but specific non-terminal states may be requested by the user. We included the 

argument d. var=TRUE in the call of msSurv so that confidence interval estimates of 

the state entry and exit distributions are calculated and then plotted when 

plot. type="entry. d" or plot. type="exit .d". 

For example, the user may plot the state entry time distributions for all the 

non-initial states in the model 

R> plot(DepEx,plot.type="entry.d",states="ALL") 

or they may choose to plot specific state entry distributions 
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R> plot(DepEx,plot.type="entry.d",states=c("2","3")) 

The resulting plot for all non-initial states is given in Figure 5. 
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Figure 5. Plot of state entry time distribution estimates and corresponding confidence 
intervals for the state dependent censoring example. 

The user may instead plot the state exit time distributions for all the 

non-terminal states in the model 

R> plot (DepEx,plot. type="exit. d") 

or instead plot specific state exit distributions 

R> plot(DepEx,plot.type="exit.d",states="l") 
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Figure 6. Plot of state exit time distribution estimates for all non-terminal states and 
corresponding confidence intervals for the state dependent censoring example. 

The resulting plot for all non-initial states is given in Figure 6. 

Default plots produced for transition probabilities plots estimates and 

confidence intervals for all possible transitions in the system. 

R> plot(DepEx,plot.type="transprob") 

The resulting plot is given in Figure 7. 

Users may specify specific transitions using the trans argument. For 

example, if the user wants to plot the transition probabilities for the transitions out 

of state 1, say the "12" and "13" transitions, they would type 

R> plot (DepEx,plot. type="transprob", trans=c(" 12", "13")) 
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Figure 7. Plot of transition probability estimates and their corresponding confidence 
intervals for the state dependent censoring example. 

To illustrate how to integrate the information in the various estimates, we 

describe a clinical interpretation of the data. Starting from state 1, nearly all of the 

patients transition to either state 2 (acute GVHD) or state 3 (normal platelets) by 

day 100. By 70 days post-transplant, roughly 75% of the patients have had their 

platelet levels return to normal before development of acute GVHD. The entry time 

distribution for state 3 reaches 1.0 by 100 days, indicating patients whose platelet 

levels return to normal prior to development of acute GVHD tend to do so within 

the first 100 days. About 40% of these patients never develop GVHD (remain in 

state 3), with a small percentage subsequently developing acute GHVD and 60% 

eventually going on to develop chronic GVHD. A much smaller percentage of 
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patients first develop acute GVHD, with about 40% of these eventually having their 

platelet levels returning to normal. All of the patients who develop acute GVHD 

first eventually go on to develop chronic GVHD. 

D Discussion 

We present a comprehensive R package for nonparametric estimation of 

general multistate models subject to independent right censoring and possibly left 

truncation. This package computes the marginal state occupation probabilities and 

state entry and exit time distributions for possibly non-Markov models. For a 

Markov model, the R package, msSurv, also calculates and returns the marginal 

integrated transition hazard and the hazard rate functions, as well as the transition 

probability matrix between any two states. Motivated by Datta and Satten (2001), 

msSurv also performs non parametric estimation for state dependent right censored 

and possibly left truncated data. Currently no other packages available on CRAN 

(http://www.r-project.org) calculate the state entry and exit time distributions for 

censored multistate data or calculate nonparametric estimates for data subject to 

state dependent censoring. Pointwise confid~nce intervals for state occupation 

probability and transition probability matrices are obtained and returned for 

independent censoring from closed-form variance estimators and for state dependent 

censoring using the bootstrap. Pointwise confidence intervals for state entry and 

exit time distributions are obtained using the bootstrap. The bootstrap is also used 

to find variance estimators for state occupation probabilities of data subject to state 

dependent censoring. The msSurv package provides functions to find the state 

occupation probabilities at a specific time t and to find the transition probabilities 

between any two times sand t (s ::; t). Package msSurv is written using S4 classes 

and methods. Methods are available to print, plot, and summarize the msSurv 

objects. 

The msSurv package has a number of limitations that will be improved upon 
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in future releases. Currently state dependent censoring is the only censoring scheme 

incorporated in msSurv, future expansion could include incorporating general 

covariates into the (dependent) censoring mechanism. The package could also be 

extended to include estimation for current status data and eventually interval 

censored data (Datta and Sundaram, 2006; Lan and Datta, 2010b). Other 

extensions include calculations of the state waiting time distributions (Satten and 

Datta, 2002) and allowing estimation for recurrent event models. 
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There are two types of interval censored data. In the context of multistate models, 

type I interval censored data, referred to as current status data henceforth, occurs 

when individuals are inspected at a single random time and the corresponding state 

information is recorded. This type of censoring is often found in reliability studies 

and cross-sectional studies. Nonparametric estimators of key marginal quantities for 

current status data were developed in Datta and Sundaram (2006), Datta et al. 

(2009), and Lan and Datta (2010b) for possibly non-Markov models with directed 

tree structures. Datta and Sundaram (2006) obtained product limit estimators 

(PLE) of state occupation probabilities for data in this setup. Lan and Datta 

(201Ob) extended the estimation to state entry and exit time distributions. 

Type II interval censored data, simply referred to as interval censored data 

henceforth, occurs when individuals are inspected at multiple random inspection 

times and their corresponding state information is recorded. Often only intervals 

where a state change has taken place are kept. The exact transition times are not 

observed but known to have taken place in an interval. This type of censoring often 

arises in clinical trials and longitudinal studies where individuals are subject to 

periodic follow-up and the event of interest is repeatedly observed. Inspection times 

for different individuals are typically assumed to be independent while the different 

inspection times for each individual are dependent. The efficient use of possibly 

non-independent information coming from the same individual causes an additional 

methodological challenge for us. A fully non parametric approach to this problem is 

not currently available in the literature unless one is considering specific models, e.g., 

competing risks (Hudgens et al., 2001) or Markov illness-death (Frydman, 1995). 

In this chapter, we construct fully nonparametric inference procedures to 

estimate the state occupation probabilities as well as state entry and exit time 

distributions for interval censored data from a multistate system with a directed 

tree structure. Structural assumptions about the model, such as Markovity, are 

avoided whenever possible. Motivated by Datta and Sundaram (2006) and Lan and 
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Datta (201Ob), we construct nonparametric estimators through weighted isotonic 

regression with possibly dependent indicator terms for the event of two transitions 

occurring by a specified time. We seek to improve efficiency through use of a weight 

matrix W taken as the identity matrix and the diagonal variance matrix estimated 

from the data. 

A simulation study in Section C illustrates the performance of the new 

estimators for both a tracking multistate model and a branching multistate model. 

We also illustrate the new method using a liver waiting list and transplantion 

dataset obtained from the UNOS (United Network for Organ Sharing) Standard 

Transplant Analysis and Research (STAR) files for liver registrations and 

transplants. Data analysis is performed and state occupation probabilities are 

calculated for states based on the MELD (Model for End-Stage Liver Disease) 

scores of the patients on the waiting list and whether the patient was eventually 

transplanted or removed from the waiting list. 

B Estimation 

Consider a finite state space S = {I, ... , M} for a multistate model with 

directed tree topology to model the interval censored data where every state j E S 

can be reached from the initial state 1 according to 

1f(j) = 1 = 81 -t 82 -t ... -t 8j = j. This model allows the possibility that not all 

individuals need to be at state 1 at time o. 
Individuals progressing through this multistate system are inspected at 

multiple inspection times and the corresponding state information is recorded. 

Exact transition times are not observed but known to have taken place in an 

interval. Data is represented as {Cik , Si( Cik )} for 1 ~ k ~ ni; 1 ~ i ~ n, where n 

denotes the total number of individuals, ni denotes the number of inspection times 

retained for the ith individual, Gik are the inspection times for the ith individual 

and the corresponding state information is denoted Si ( Gik). The data for each 
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individual is dependent while individuals are independent. We assume that all 

transition times and censoring variables are continuous. We further assume random 

censoring of the inspection times so that the inspection times are independent of the 

corresponding state information. Typically only intervals ending with inspection 

times where state changes have occurred are kept. 

1 State Occupation Probability 

Datta and Sundaram (2006) presented state occupation probability 

estimators for current status data based on the product limit formula for state 

occupation presented by Datta and Satten (2001). Let Ujjl denote the (unobserved) 

transition time of an individual i making a transition from state j to another state 

j' (= 00 if this transition is never made by the individual). For the counting 

process, the pooled adjacent violators (PAV) algorithm is applied to perform isotonic 

regression of I (Ujjl ::; C) on C based on the pairs of data {G\, I (Ujjl ,i ::; Ci ))} 

(Barlow et ai., 1972) and then kernel smoothing is applied to the resulting estimates 

from PAY to smooth the jumps while maintaining monotonicity. The at risk 

estimators are obtained through application of the Nadaraya-Watson estimator, 

with a PAY step added to only the estimation of the risk set out of the initial state. 

Interval censored data contains more information and also introduces 

dependency between inspection times for each individual, which makes computation 

more complicated. For this type of dependent data, one can ignore the dependency 

of inspection times for each individual, pool the data, and apply the same 

methodology used by Datta and Sundaram (2006) to obtain valid (e.g., consistent) 

but inefficient nonparametric estimators of various marginal quantities. To improve 

efficiency, we use weighted regression techniques involving a matrix W combined 

with a monotonicity constraint to develop estimators. We take W as the identity 

matrix and diagonal variance matrix for estimation in this dissertation research. 

Consider two states j and j' in a multistate system. It is necessary to keep 
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track of all transitions made by individuals progressing through such a system to 

calculate marginal estimators in a non-Markov system. Let Xj denote the 

(unobserved) indicator of the event that an individual would ever enter state j. Let 

N;jl(t) denote the usual counting process which counts the number of j to j' 

transitions [O,t] for the complete data. Note that this can be expressed as 

N;j'(t) = 2:~1 I(Ui,jj' ~ t). By the law of large numbers, 

Furthermore, for any t ~ 0, E (I (Ujjl ~ GklGk = t)) = P {Ujjl ~ t}. 

Therefore, n -1 Njjl (,) can be obtained by a nonparametric regression estimator of 

I (Ujj' ~ Gk) given Gk. Pr {Ujjl ~ t} is monotonic in t, however the indicator terms 

I (Ujjl,i ~ Gik ) of the event that the j to j' transition has taken place by time Ck for 

1 ~ k ~ ni are dependent with a non-diagonal variance-covariance matrix (k ~ k'), 

Thus, the counting process, n- 1 NO, is estimated through a weighted isotonic 

regression on the indicator terms using a weight matrix W. 

Initially the dependence between the data is ignored and all the data is 

pooled {Gib I(Ujj',i ~ Gik ), 1 ~ k ~ ni; 1 ~ i ~ n} and isotonic regression without 

weights is calculated and smoothed by kernel smoothing. The resulting state 

occupation probabilities are then used to compute an estimate of the variance. 

Then, a weighted isotonic regression is run to improve efficiency, e.g. 

minimize 2:7=1 LlTWiLli subject to P {Ujjl ~ C(i)} ~ ... ~ P {Ujjl ~ C(n)} where 

C(i) ~ ... ~ C(n) are the ordered inspection times in the pooled sample where 

Lli = (P {Ujjl ~ cid - I {Ujj' ~ cid , 1 ~ k ~ ni). Weighted isotonic regression of 

J (Ujjl ,i ~ Gik ) on Gik is then performed using the matrix W as weights. For this 

dissertation research we use two different selections of W for estimation - the 

identity matrix and the inverse of the diagonal variance matrix whose entries are 

estimated as P {Ujj' ~ Gid (1 - P {Ujjl ~ Gid) from the data. Note that the result 

of using the identity matrix is analogous with ignoring the dependence in the data 
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The resulting estimates, denoted N];,(-), are then smoothed to reduce fiat 

parts while maintaining monotonicity. We apply kernel smoothing using a 

log-concave density, K > 0, which leads to 

as the final estimate of N;j' (t). 

Further efficiency may be obtained through weighted regression using the the 

full variance-covariance matrix as W (see discussion in Section C of IV: Future 

Research). 

For the "at risk" set, let Yj* (t) denote the number of individuals "at risk" of 

transitioning out of state j by time t for the complete data. Note that this can be 

expressed as Yj*(t) = 2:~=1 I(Si(t-)) where (Si(t-)) is the state occupied just 

before time t. Analogous to the counting process arguments, 

Pj (t-) = Pr {S (t-) = j} is the limit of n-1Yj* (t) in probability, where Yj* (t) 

denotes the "at risk" set of transitions out of state j with the complete data. 

For this research the "at risk" set is estimated as Yj (t) = nj + N. j (t) - Nj (t), 

where nj denotes the number of individuals in state j by time 0, N-j(t) denotes the 

total number of transitions into state j at time t from the estimators above and 

Nj- (t) denotes the total number of transitions out of state j by time j in the 

counting process estimator defined above. 

The estimators of the marginal integrated transition hazard are defined as 

~ ~ 

where Y and N are estimators of the at risk sets and counting processes, 

respectively. 

Then, the class of state occupation probabilities are computed using the 

identity 
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M "'-
"'- '" Ydo+) (~ ) Pj(t) = ~ n P(O,t) k' 

k=l J 

where (P(O. t)) k/S the kjth element of P (0, t) = D(o,t] (I + dA (u)) and Yk(~+) is 
the relative proportion of individuals in various states at time O. 

2 State Entry and Exit Distributions 

State entry and exit distributions will be estimated through normalized sums 

of estimated state occupation probabilities for progressive systems. For state j, let 

Utj denote the time the ith person enters state j (= 00 if the ith person never enters 

state j) and let V;; denote the time the ith person leaves state j (= 00 if state j is 

never entered or if state j is never left). Let Xtj = I (Utj < 00) be the indicator 

function that takes the value 1 if the ith person ever enters state j and 0 otherwise. 

Let Pj denote the state entry distribution function for the individuals who 

ever enter state j (i.e., Xj = 1) defined as Pj (t) = P{Uj:S tlXj = 1}, where 

Po (t) = 1 for all t 2: O. Any state will be reached from the root node by a unique 

path. Let Sj denote the set of states £ such that state j is on the path from the 

root node to £. The entry time distribution to state j is estimated by taking the 

normalized sum of the estimated state occupation probabilities of state j and all the 

other states that come after j in the progressive system, i.e., 

where Pk (00) = limHOOPk (t). 

Similar to the description above, let Vj denote the departure time for state j 

of individuals who ever enter state j. Let Gj denote the state exit time distribution 

functions, Gj (t) = P {Vj :S tlXj = 1}, where Gj (t) = 0 for all t 2: 0 if j is a 

terminal node in the directed tree structure. When j is a transient state, 8j (t) is 

estimated by taking the normalized sum of estimated state occupation probabilities 
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of all states that come after state j in the progressive system, i.e., 

C A Simulation Study 

We performed a Monte Carlo simulation study to compare the performance 

of the state occupation probabilities, entry and exit time distributions described in 

the previous section to the empirical estimates obtained from the full data. We 

consider two common models: a 3 state tracking model (Figure 8) and a 5 state 

branching model (Figure 2). 

Simulated data was generated for both tree structures under the Markov 

setup and the semi-Markov setup. For the semi-Markov setup, times were generated 

for each state and then added progressively to generate transition times for the 

successive states. In the Markov setup, times were randomly generated for the 

initial state from the distributions and then successive state times were generated 

using the formula Tj = D-1 (D ('Fj-d + Rj {I - D ('Fj-d}) where Tj - 1 is the 

previous transition time, Rj is a random number generated from U (0,1) 

independent of Tj - 1 , D (.) denotes the distribution function of the sampling 

distribution used, and D-1 (.) denotes the corresponding quantile function. 

Transition times were generated from either a lognormal distribution or Weibull 

distribution. Under each data setup, censoring times were generated from either a 

uniform or Wei bull distribution. Thus, eight simulation settings were run for each of 

the two multistate models. Sample sizes of 100, 200, 500, and 1000 were considered. 

100 iterations were completed for the 1000 sample setups and 1000 iterations were 

completed for the other sample sizes. 

The gpava function in the isotone package in R was used to perform the 

weighted and non-weighted least squares regression for the counting process 

estimators (de Leeuw et al., 2009). Kernel smoothing of the estimators was 
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performed using the ksmooth function in the stats package. Bandwidths for the 

initial, non-weighted least squares fit were found using the function bw. SJ of the 

inspection times, but changed to 0.4 to balance variation in the simulated data. For 

the subsequent smoothing of the weighted least squares fit, the bandwidth was 

selected by the bw. SJ function using the inspection times. 

For complete data, estimates of the state occupation probability and state 

entry and exit time distributions were computed using the msSurv package. The L1 

distances were calculated to assess the performance of our estimators according to 

the formula 

~ ~ 

where e and eE denote the estimators of e based on the complete data and interval 

censored data, respectively, and dFn denotes the distribution function of the 

inspection times. The function e is taken as the state occupation probability, state 

entry time distribution, or the state exit time distribution. The L1 distances, 

denoted ~, were estimated by averaging the Monte Carlo estimates obtained by the 

process described above. 

The results of the L1 distance computations of both the weighted and 

non-weighted nonparametric estimates for the three-state tracking model are 

provided in Tables 1-8. The L1 results for the five-state branching model are shown 

in Tables 10-12. 

1 A 3 state example 

For the three-state tracking model, we simulated data sets with individuals 

starting in state 1 at time O. State exit times were generated for states 1 and 2. For 

the initial state 1 in both the Markov and semi-Markov setup, state exit times were 

generated from either the lognormal distribution with log mean -1.5 and log 

standard deviation 1 or the Weibull distribution with a shape parameter or 3 and a 

scale parameter of 1. The number of censoring times were randomly generated to be 
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Figure 8. A three state model for simulated multistate data subject to interval cen
soring. 

between 2 and 4 and the censoring times were generated from either the uniform 

distribution with minimum 0 and 2 median absolute deviations above the maximum 

time as the maximum or the Weibull distribution with shape parameter 2 and scale 

parameter 1.05. 

For the Markov setup, the exit times from state 2 were generated according 

to the formula T2 = D-1 (D (Td + R2 {l - D (Td}) where T1 is the first inspection 

time, R2 is a random number generated from U (0,1) independent of TI , D (.) 

denotes the distribution function for either the lognormal distribution with log mean 

-1.5 and log standard deviation 1 or the Weibull distribution with shape parameter 

3, and D-1 (-) denotes the corresponding quantile function. Tables displaying the L1 

results for the uniformly censored Weibull and log-normal simulations are given in 

TableS 1 and 2. The L1 results for Weibull censored log-normal and Wei bull 

simulations are provided in Tables 3 and 4. 

In the Markov setup, the L1 values decrease as the sample size increases for 

both the weighted and unweighted least squares fits in all four scenarios. The new 

weighted estimators offer lower L1 values for all estimated quantities (state 

occupation probabilities and state entry time distributions) for both simulations 

with lognormal waiting times. The L1 distances for the Wei bull waiting times with 

uniform censoring show that the weighted estimators offer only slightly lowered L1 

values while the L1 values for the new estimators are slightly higher than those of 

the unweighted estimators for the simulation with Weibull waiting and censoring 

times. 

59 



Results are the same for the semi-Markov setup where exit times from the 

transient state 2 are generated by adding the exit times from state 1 to times 

generated from either a lognormal distribution with mean log 0 and mean standard 

deviation of 0.1 or from the Weibull distribution with shape 3 and scale 1. The L1 

values decrease as sample size increases and 3 scenarios have smaller L1 values for 

the weighted estimators(lognormal waiting times with uniform censoring or Wei bull 

censoring and Weibull waiting times with uniform censoring), while the L1 values of 

the unweighted estimators are lower in the Weibull-Weibull simulation. The L1 

distance results are in Tables 5, 6, 7, and 8 

Plots of the log L1 values of state occupation probabilities by log sample size 

of the semi-Markov setup are provided in Figures 10 and 11. Similar plots for the 

state entry time distribution for the same setups are provided in Figures 12 and 13. 

These plots illustrate an approximate linear relationship between the logarithms of 

the mean L1 distances and the log of the sample size suggesting that the difference 

between the estimates will converge to zero as n approaches infinity. Further, the 

slopes of the lines provide an estimate of the rate of convergence. The plots for the 

weighted least squares estimates for the interval censored data appear to do as well 

if not better than those of the non-weighted estimates, suggesting that the weighting 

offers improved efficiency over the non-weighted estimators for interval censored 

data. Plots for the Markov setting are also provided in Figures 14, 15, and 16 and 

illustrate the same trends as those for the semi-Markov setting. 

2 A 5 state example 

For the five-state branching model (Figure 2), we assumed individuals started 

in state 1 at time O. Individuals had a 60% chance of transitioning to state 2 

(transient) or a 40% chance of transitioning to state 3 (terminal). State 1 waiting 

times were generated from either a lognormal distribution with log mean -1.5 and 

log standard deviation 1 or a Weibull distribution with shape parameter 3 and scale 
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parameter 1. State information was randomly assigned through a random Bernoulli 

variable that is independent of the waiting times. For individuals who transitioned 

to state 2, they had a 40% chance of transitioning to state 4 and a 60% chance of 

transitioning to state 5. For the semi-Markov setting, a second waiting time was 

generated from the corresponding lognormal or Weibull distribution for those 

individuals who transitioned to state 2 and the (total) waiting time for state 2 was 

taken as the sum of the two waiting times. In the Markov setting, the formula 

T2 = D- 1 (D (Td + R2 {I - D (T1)}) where Tl is the first transition time, R2 is a 

random number generated from U(O, 1) independent of T1 , D (.) denotes the 

distribution function for the Wei bull distribution with shape parameter 2, D-1 (.) 

denotes the corresponding quantile function. State information is controlled through 

a second Bernoulli random variable that is independent of the waiting times 

generated for state 2. Individuals were inspected a random number of times from 

inspection times generated from the uniform distribution or the Weibull distribution 

with shape parameter 2 and scale parameter 1.05. State information was assigned 

based on these inspection times. 

As before, the empirical estimates based on complete data were calculated 

using the msSurv package, and the Ll distances were calculated to assess the 

performance of our estimators. 

Tables displaying the Ll distance results for the uniformly censored 

log-normal and Weibull simulations in the Markov setting are given in Tables 9 and 

10. The Ll results for the Markov model with Weibull censored log-normal and 

Wei bull simulations are provided in Tables 11 and 12. Tables displaying the Ll 

distance results for the semi-Markov setup are in Tables 13, 14, IS, and 16. 

Plots of the log L1 values of state occupation probabilities by log sample size 

for the Markov setup are provided in Figures 19 and 20. Plots for the state entry 

time distributions are provided in Figures 21 and 22. 

These scatter plots illustrate an approximate linear relationship between the 
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logarithms of the mean L1 distances and the log of the sample size, suggesting that 

the difference between these estimates will converge to zero as N -+ 00. The plots 

comparing the weighted least squares estimates (using the diagonal variance as a 

weight) against the nonweighted least squares (using the identity matrix as a 

weight) show some mixed results. The weighted method offers improvement for the 

state 1 occupation probability and some improvement (especially for larger sample 

size) for state 2. The weighted estimators appear to have slightly larger L1 values 

for states 4 and 5 than the nonweighted estimates. This may be due to the 

cumulative effect of product limit estimation where the later states (in this case 4 

and 5) depend on estimates from earlier states (1 and 2) causing misestimation of 

the state occupation probabilities to compound through the model. For state entry 

time distributions, the weighted estimation offered improvements for states 1 and 2 

and performed as well as the nonweighted estimates for states 4 and 5 for 

simulations with lognormal waiting times and Weibull censoring times. For the 

simulation with Wei bull waiting times and censoring times, the weighted estimator 

offered improvement for the state 2 entry time distribution, comparable results for 

the state 3 entry distributions, and actually performed worse for the later states. 

D A Real Data Example 

We now present estimates of the state occupation probabilities, state entry 

time distributions, and state exit time distributions for liver registration and 

transplant data. The liver data is from the United Network for Organ Sharing 

(UNOS) Standard Transplant Analysis and Research (STAR) files for liver 

registrations and transplants. 

The number of patients waiting for a liver transplant has increased since liver 

transplantation has become a universally accepted treatment for end-stage liver 

disease. The UNOS data set contains information on all waiting list registrations 

and transplants of livers that have been listed or performed in the U.S. and reported 
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to the Organ Procurement and Transplantation Network (OPTN). 

The Model for End-Stage Liver Disease (MELD) score has become the 

standard allocation policy for liver transplants, as it has proven to be an effective 

predictor of pre-transplantation mortality and post-transplantation outcome 

(Martin et al., 2007). MELD scores are calculated based on a combination of 

bilirubin, international normalized ratio for prothrombin time (INR), and creatinine 

lab values, and determine the urgency with which a patient needs a liver transplant 

within the next three months. MELD scores range from 6 (less ill) to 40 (gravely ill). 

Patients are followed through-out the process and each follow-up event is 

recorded, leading to multiple records per patient on the waiting list and thus 

creating interval censored data. A change in MELD score is only known to occur 

between inspection times while transplant and removal times are known exactly. 

Inspection times for patient i are taken as the number of days since the patient was 

added to the waitlist. The corresponding state information Sk( Ck) is assigned based 

on their MELD scores and wait list status (either transplanted, still on the list, or 

removed from the list) at the inspection times. 

We define a multistate model illustrated in Figure 9 based on the MELD 

scores and wait list status. Patients with a MELD score of <15 are assigned to state 

1, MELD scores of 15-22 to state 2, 23-30 to state 3, and 31 or above are assigned to 

state 4. Patients who received transplants and were deleted from the list are 

assumed to be in state 5, while patients who are removed without transplant are in 

state 6. Individuals are added to the wait list with a variety of MELD scores and 

therefore individuals may not necessarily enter the system in state 1. 

Some patients receive MELD exceptions due to cases where MELD scores 

may not reflect the urgency of their need for a transplant (i.e., patients with 

hepatocellular carcinoma) and they are exempted from our analysis. We restrict our 

analysis to only adults 18 years old and older. We restricted our analysis to those 

who were added to the wait list between 2-27-2002 and 2-27-2003. 
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1: 
<15 

2: 

15-22 

5: Removal 

6: Transplant 

Figure 9. A six state model illustrating the states for liver transplants based on the 
UNOS data set. 

We took a random sample of 1000 individuals from the data set for our 

analysis. To handle the recurrence in the model, we expanded the model for our 

analysis to include additional states to handle the multiple occurrence of transitions 

so that, for example, the second "12" transition represents a transition into a state 

representing "second visit to state 2". Since actual event times are known for 

patients who are removed from the wait list or transplanted the random censoring 

assumption for interval censored data is violated for these event times. Hence,f the 

counting processes for transitions into those states will be estimated directly from 

their indicators without isotonic regression. These transitions were used in the 

ultimate computation of state occupation probabilities. 

The distribution of the inspection times is displayed in Figure 23. The 

estimated state occupation probabilites are show in Figure 24. State entry and exit 

distributions are not estimated for this example since the reoccurrence violates the 

assumption that individuals pass through a state only one time. 

Individuals enter the liver transplant waitlist with MELD scores between 6 

and 40. 55.8% of individuals enter the waitlist with a MELD score less than 15 
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(state 1), 32.2% have a MELD score between 15 and 22 (state 2), 7% have a MELD 

score between 23 and 30 (state 3), and 5% have a MELD score of 31 or greater 

(state 4). The state 1 occupation probability increases slightly between 0 and 176 

days on the waiting list before decreasing and eventually getting very close to 10% 

after 2,753 days on the waiting list. Not every patient on the waiting list will 

progress out of state 1 and some patients will be transplanted or removed from the 

waiting list with a MELD score less than 15. The state 2 occupation probability 

drops to almost 0 around 175 days after entry on the waitlist before increasing to 

45% 2,800 days on the waitlist. The state 3 occupation probability peaks at 10% 

around 55 days on the wait list before eventually reaching 0 at almost 2,900 days on 

the waitlist. Note that the drop in state 2 occupation probabilities corresponds to 

the increase of the state 1 and 3 occupation probabilities. The state 4 occupation 

probability drops to 0 after 905 days on the wait list before slightly increasing after 

2,667 days on the waitlist. About 6% of patients are removed from the waitlist 

(state 5) by 2,473 days after entry on the waitlist while 33.4% of patients receive a 

liver transplants at 2.734 days on the waitlist. 

E Discussion 

In this chapter we consider multistate models with directed tree structure 

subject to interval censored data. Structural assumptions are not required to obtain 

valid non parametric state occupation probability estimates. We introduced a novel 

fully non parametric estimation method for general multistate model subject to 

interval censoring where there were were no methods previously available. The 

methods presented produce reasonable estimates for a variety of complex settings. 

We compared the weighted and smoothed isotonic regression to a 

non-weighted version and found that the overall performance offered significant 

improvement in the three state tracking model and offered some improvement in the 

five-state branching model. Estimation seems very sensitive to bandwidth as we 
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used a fixed bandwidth for the three-state model and used a more generalized, time 

based bandwidth for the branching model. 

In this research we estimated the at risk set as Y}(t) = nj + Nj(t) 

since Njjl estimates the cumulative value of the counting processes and it seemed 

redundant to calculate the ljs through the regression and kernel smoothing process. 

However, one potential problem is that computations are cumulative and the 

cumulative effects may propagate as computation continues and cause errors later in 

estimation. Therefore, a more local computation of the number at risk set may help 

improve estimation. One approach we may try in the future is local smoothing since 

the ~* (t) process does not have to be monotonic for a transient state j. For 

progressive models the number at risk set for transition out of the initial step is 

monotonic, so a step may be added to account for monotonic constraints. Note that 

Y = N after monotonization. 

Estimation may also be improved through the use of the full 

variance-covariance matrix as weights in estimating the counting processes. We 

investigated this scenario but had problems with singularity and current available R 

packages for isotonic regression can only handle nonsingular matrices. Methods are 

currently under construction for this case and will be reported elsewhere. 

The resulting estimators of the counting process and number at risk may be 

used to calculate state waiting time distributions or perform hypothesis testing to 

compare two (or more) groups. A more in-depth discussion of future work can be 

found in Chapter IV. 
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Figure 10. The log mean L1 values of state occupation probabilities for the three
state tracking semi-Markov model with Weibull waiting times and uniform censoring 
times. 
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Figure 11. The log mean L1 values of state occupation probabilities for the three
state tracking semi-Markov model with lognormal waiting times and Weibull censoring 
times. 
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Figure 12. The log mean L1 values of state entry and exit time distributions for 
the three-state tracking semi-Markov model with Weibull waiting times and uniform 
censoring times. 
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Figure 13. The log mean L1 values of state entry and exit time distributions for 
the three-state tracking Markov model with lognormal waiting times and Weibull 
censoring times. 

70 



State 1 Occupation Probabilities 

o -

-
~ -

- &, ............... ..••.. . ...• 
~ G---~a~ ____ ~ __ __ 
I - a ~ 

-
'f -L..---r1---r-1-1r----.1-.....i 

5.0 5.5 6.0 6.5 

log(Sample Size) 

State 3 Occupation Probabilities 

'f -'--~-r-~--.-~ 
I I I I 

5.0 5.5 6.0 6.5 

log(Sample Size) 

:i 
~. 

State 2 Occupation Probabilities 

o -

-
~ -
-~ ..... .., - .............. 

8 ----e 
-

'f -~--._~_~_~~ 
I I I I 

5.0 5.5 6.0 6.5 

log(Sample Size) 

-- Weighted 
• Not Weighted 

Figure 14. The log mean L1 values of state occupation probabilities for the three-state 
tracking Markov model with lognormal waiting times and uniform censoring times. 
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Figure 15. The log mean L1 values of state occupation probabilities for the three-state 
tracking Markov model with Weibull waiting times and uniform censoring times. 
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Figure 16. The log mean L1 values of state occupation probabilities for the three-state 
tracking Markov model with lognormal waiting times and Weibull censoring times. 
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TABLE 1 

The L1 distances between estimators based on interval censored data and complete 
data in a three state tracking Markov model with Wei bull state waiting times and 
Uniform censoring times. The estimates are based on a Monte Carlo sample size of 
1000 for N = 100,200, and 500. A Monte Carlo sample size of 100 was used for N = 
1000. All standard errors were less than 0.0018. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.0467 0.0493 0.0335 0.0354 0.0218 0.0229 0.0163 0.0167 
P2 0.0327 0.0320 0.0247 0.0236 0.0188 0.0160 0.0159 0.0121 
P3 0.0359 0.0445 0.0255 0.0272 0.0188 0.0162 0.0162 0.0120 
F2 0.0248 0.0269 0.0183 0.0189 0.0128 0.0127 0.0101 0.0096 
F3 0.0275 0.0259 0.0212 0.0191 0.0170 0.0131 0.0152 0.0103 

TABLE 2 

The L1 distances between estimators based on interval censored data and complete 
data in a three state tracking Markov model with Lognormal state waiting times and 
Uniform censoring times. The estimates are based on a Monte Carlo sample size of 
1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N = 
1000. All standard errors were less than 0.004. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.0312 0.0466 0.0229 0.0417 0.0157 0.0390 0.0119 0.0365 
P2 0.0383 0.0405 0.0274 0.0347 0.0190 0.0306 0.0147 0.0292 
P3 0.0495 0.0832 0.0308 0.0629 0.0198 0.0519 0.0148 0.0479 
F2 0.0243 0.0378 0.0185 0.0358 0.0129 0.0351 0.0097 0.0334 
F3 0.0376 0.0489 0.0273 0.0462 0.0192 0.0444 0.0148 0.0422 
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TABLE 3 

The L1 distances between estimators based on interval censored data and complete 
data in a three state tracking Markov model with Lognormal state waiting times and 
Wei bull censoring time. The estimates are based on a Monte Carlo sample size of 
1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N = 
1000. All standard errors were less than 0.004. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.0360 0.0899 0.0269 0.0855 0.0177 0.0814 0.0132 0.0819 
P2 0.0418 0.0661 0.0328 0.0628 0.0242 0.0607 0.0195 0.0612 
P3 0.0509 0.1420 0.0358 0.1326 0.0258 0.1270 0.0202 0.1273 
F2 0.0304 0.0777 0.0235 0.0756 0.0159 0.0737 0.0119 0.0748 
F3 0.0460 0.1094 0.0357 0.1107 0.0265 0.1120 0.0210 0.1137 

TABLE 4 

The L1 distances between estimators based on interval censored data and complete 
data in a three state tracking Markov model with Wei bull state waiting times and 
Wei bull censoring time. The estimates are based on a Monte Carlo sample size of 
1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N = 
1000. All standard errors were less than 0.0026. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.0738 0.0617 0.0589 0.0465 0.0451 0.0342 0.0386 0.0293 
P2 0.0489 0.0374 0.0436 0.0293 0.0390 0.0234 0.0370 0.0208 
P3 0.0596 0.0374 0.0536 0.0294 0.0485 0.0239 0.0465 0.0224 
F2 0.0335 0.0320 0.0299 0.0256 0.0267 0.0228 0.0250 0.0222 
F3 0.0521 0.0282 0.0499 0.0236 0.0470 0.0213 0.0457 0.0210 
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TABLE 5 

The L1 distances between estimators based on interval censored data and complete 
data in a three state tracking Semi-Markov model with Lognormal state waiting times 
and Uniform censoring time. The estimates are based on a Monte Carlo sample size 
of 1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N 
= 1000. All standard errors were less than 0.0028. 

N=lOO N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.0339 0.0467 0.0244 0.0417 0.0157 0.0390 0.0119 0.0365 
P2 0.0284 0.0359 0.0196 0.0316 0.0190 0.0306 0.0147 0.0292 
P3 0.0690 0.1041 0.0382 0.0657 0.0198 0.0519 0.0148 0.0479 
G1 0.0250 0.0347 0.0190 0.0336 0.0129 0.0352 0.0097 0.0334 
G2 0.0278 0.0352 0.0199 0.0324 0.0193 0.0447 0.0148 0.0423 
F2 0.0249 0.0340 0.0189 0.0334 0.0129 0.0351 0.0097 0.0334 
F3 0.0270 0.0345 0.0195 0.0318 0.0192 0.0444 0.0148 0.0422 

TABLE 6 

The L1 distances between estimators based on interval censored data and complete 
data in a three state tracking Semi-Markov model with Weibull state waiting times 
and Uniform censoring time. The estimates are based on a Monte Carlo sample size 
of 1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N 
= 1000. All standard errors were less than 0.0018. 

N=100 N=200 N=500 N=lOOO 
W NW W NW W NW W NW 

PI 0.0434 0.0493 0.0312 0.0354 0.0204 0.0229 0.0153 0.0167 
P2 0.0395 0.0415 0.0297 0.0306 0.0223 0.0213 0.0185 0.0161 
P3 0.0324 0.0374 0.0236 0.0251 0.0177 0.0166 0.0149 0.0124 
G1 0.0230 0.0282 0.0170 0.0195 0.0120 0.0129 0.0095 0.0097 
G2 0.0297 0.0317 0.0221 0.0232 0.0169 0.0158 0.0144 0.0119 
F2 0.0227 0.0277 0.0169 0.0193 0.0119 0.0128 0.0095 0.0096 
F3 0.0291 0.0304 0.0218 0.0226 0.0168 0.0156 0.0143 0.0117 
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TABLE 7 

The L1 distances between estimators based on interval censored data and complete 
data in a three state tracking Semi-Markov model with Lognormal state waiting times 
and Weibull censoring time. The-estimates are based on a Monte Carlo sample size 
of 1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N 
= 1000. All standard errors were less than 0.0035. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.0368 0.0901 0.0260 0.0841 0.0178 0.0812 0.0133 0.0818 
P2 0.0501 0.1158 0.0366 0.1047 0.0256 0.0985 0.0192 0.0972 
P3 0.0261 0.0367 0.0194 0.0329 0.0144 0.0310 0.0114 0.0300 
G1 0.0315 0.0738 0.0225 0.0708 0.0159 0.0722 0.0119 0.0755 
G2 0.0259 0.0280 0.0207 0.0271 0.0153 0.0274 0.0119 0.0276 
F2 0.0309 0.0738 0.0225 0.0708 0.0159 0.0722 0.0118 0.0755 
F3 0.0253 0.0280 0.0203 0.0271 0.0152 0.0274 0.0119 0.0276 
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Figure 17. The log mean L1 values of state occupation probabilities for the five-state 
branching Markov model with lognormal waiting times and uniform censoring times. 
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Figure 18. The log mean L1 values of state occupation probabilities for the five-state 
branching Markov model with Wei bull waiting times and uniform censoring times. 
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Figure 19. The log mean L1 values of state occupation probabilities for the five-state 
branching Markov model with lognormal waiting times and Wei bull censoring times. 
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Figure 20. The log mean L1 values of state occupation probabilities for the five-state 
branching Markov model with Wei bull waiting times and Wei bull censoring times. 
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Figure 21. The log mean L1 values of state entry time distributions for the five-state 
branching Markov model with lognormal waiting times and Weibull censoring times. 
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Figure 22. The log mean L1 values of state entry time distributions for the five-state 
branching Markov model with Weibull waiting times and Weibull censoring times. 
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TABLE 8 

The L1 distances between estimators based on interval censored data and complete 
data in a three state tracking Semi-Markov model with Wei bull state waiting times 
and Wei bull censoring time. The estimates are based on a Monte Carlo sample size 
of 1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N 
= 1000. All standard errors were less than 0.0026. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.0701 0.0617 0.0556 0.0465 0.0422 0.0342 0.0359 0.0293 
P2 0.0571 0.0422 0.0505 0.0341 0.0465 0.0283 0.0439 0.0257 
P3 0.0419 0.0232 0.0367 0.0171 0.0344 0.0125 0.0328 0.0104 
G1 0.0318 0.0376 0.0282 0.0277 0.0251 0.0208 0.0236 0.0188 
G2 0.0359 0.0266 0.0329 0.0177 0.0327 0.0111 0.0320 0.0086 
F2 0.0316 0.0371 0.0281 0.0275 0.0251 0.0208 0.0235 0.0188 
F3 0.0352 0.0254 0.0326 0.0170 0.0326 0.0109 0.0320 0.0085 

TABLE 9 

The L1 distances between estimators based on interval censored data and complete 
data in a five state branching Markov model with lognormal state waiting times and 
uniform censoring time. The estimates are based on a Monte Carlo sample size of 
1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N = 
1000. All standard errors were less than 0.0036. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.0995 0.1490 0.0885 0.1343 0.0784 0.1228 0.0724 0.1164 
P2 0.0387 0.0380 0.0299 0.0312 0.0218 0.0259 0.0178 0.0224 
P3 0.0452 0.0446 0.0409 0.0421 0.0402 0.0422 0.0412 0.0437 
P4 0.0426 0.0308 0.0328 0.0250 0.0245 0.0203 0.0211 0.0177 
P5 0.0465 0.0343 0.0376 0.0281 0.0284 0.0231 0.0253 0.0207 
F2 0.0409 0.0568 0.0346 0.0477 0.0294 0.0410 0.0268 0.0383 
F3 0.0678 0.0942 0.0694 0.0994 0.0738 0.1112 0.0770 0.1202 
F4 0.0706 0.0756 0.0600 0.0653 0.0470 0.0548 0.0406 0.0471 
F5 0.0624 0.0652 0.0531 0.0558 0.0405 0.0469 0.0338 0.0412 
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TABLE 10 

The L1 distances between estimators based on interval censored data and complete 
data in a five state branching Markov model with Weibullstate waiting times and 
uniform censoring time. The estimates are based on a Monte Carlo sample size of 
1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N = 
1000. All standard errors were less than 0.004l. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.1003 0.1384 0.0808 0.1094 0.0627 0.0842 0.0534 0.0716 
P2 0.0414 0.0370 0.0324 0.0287 0.0234 0.0213 0.0176 0.0177 
P3 0.0481 0.0422 0.0448 0.0373 0.0420 0.0337 0.0427 0.0333 
P4 0.0388 0.0336 0.0309 0.0267 0.0237 0.0200 0.0217 0.0176 
P5 0.0600 0.0423 0.0497 0.0335 0.0389 0.0260 0.0334 0.0233 
F2 0.0422 0.0561 0.0364 0.0475 0.0306 0.0399 0.0296 0.0386 
F3 0.0570 0.0739 0.0530 0.0678 0.0478 0.0606 0.0458 0.0581 
F4 0.0669 0.0700 0.0561 0.0582 0.0466 0.0471 0.0399 0.0416 
F5 0.0571 0.0584 0.0484 0.0501 0.0402 0.0418 0.0359 0.0397 

TABLE 11 

The L1 distances between estimators based on interval censored data and complete 
data in a five state branching Markov model with lognormal state waiting times and 
Wei bull censoring time. The estimates are based on a Monte Carlo sample size of 
1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N = 
1000. All standard errors were less than 0.0042. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.0533 0.0855 0.0402 0.0639 0.0273 0.0428 0.0208 0.0324 
P2 0.0408 0.0346 0.0311 0.0276 0.0215 0.0198 0.0164 0.0155 
P3 0.0395 0.0400 0.0295 0.0294 0.0209 0.0203 0.0152 0.0152 
P4 0.0381 0.0250 0.0289 0.0191 0.0209 0.0136 0.0178 0.0109 
P5 0.0468 0.0296 0.0366 0.0232 0.0255 0.0166 0.0198 0.0131 
F2 0.0478 0.0682 0.0392 0.0560 0.0287 0.0412 0.0227 0.0316 
F3 0.0603 0.0872 0.0488 0.0697 0.0369 0.0521 0.0296 0.0413 
F4 0.1020 0.0945 0.0851 0.0770 0.0668 0.0592 0.0551 0.0504 ' 
F5 0.0896 0.0775 0.0741 0.0647 0.0567 0.0494 0.0478 0.0418 
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TABLE 12 

The L1 distances between estimators based on interval censored data and complete 
data in a five state branching Markov model with Wei bull state waiting times and 
Weibull censoring time. The estimates are based on a Monte Carlo sample size of 
1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N = 
1000. All standard errors were less than 0.0072. 

N=100 N=200 N=500 N=lOOO 
W NW W NW W NW W NW 

PI 0.0537 0.0648 0.0424 0.0471 0.0301 0.0321 0.0235 0.0245 
P2 0.0539 0.0356 0.0428 0.0277 0.0338 0.0208 0.0256 0.0161 
P3 0.0439 0.0334 0.0364 0.0265 0.0271 0.0193 0.0218 0.0149 
P4 0.0351 0.0148 0.0297 0.0116 0.0237 0.0086 0.0209 0.0067 
P5 0.0467 0.0187 0.0393 0.0146 0.0317 0.0107 0.0250 0.0084 
F2 0.0724 0.0996 0.0628 0.0822 0.0471 0.0604 0.0380 0.0473 
F3 0.0842 0.0915 0.0751 0.0774 0.0576 0.0588 0.0449 0.0456 
F4 0.1396 0.0826 0.1244 0.0667 0.0973 0.0484 0.0814 0.0358 
F5 0.1342 0.0728 0.1209 0.0612 0.0944 0.0452 0.0807 0.0354 
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TABLE 13 

The L1 distances between estimators based on interval censored data and complete 
data in a five state branching semi-Markov model with lognormal state waiting times 
and uniform censoring time. The estimates are based on a Monte Carlo sample size 
of 1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N 
= 1000. All standard errors were less than 0.003. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.0835 0.1243 0.0750 0.1118 0.0671 0.1021 0.0630 0.0974 
P2 0.0340 0.0447 0.0282 0.0390 0.0232 0.0341 0.0219 0.0325 
P3 0.0866 0.0759 0.0858 0.0749 0.0866 0.0758 0.0877 0.0770 
P4 0.0303 0.0278 0.0272 0.0267 0.0284 0.0273 0.0315 0.0280 
P5 0.0526 0.0352 0.0503 0.0365 0.0501 0.0385 0.0493 0.0388 
Gl 0.0326 0.0452 0.0308 0.0430 0.0290 0.0418 0.0751 0.1153 
G2 0.0304 0.0389 0.0252 0.0346 0.0231 0.0328 0.0225 0.0318 
F2 0.0469 0.0669 0.0442 0.0645 0.0403 0.0607 0.0394 0.0601 
F3 0.0943 0.1363 0.1022 0.1506 0.1063 0.1611 0.1078 0.1660 
F4 0.0507 0.0578 0.0402 0.0474 0.0323 0.0408 0.0287 0.0386 
F5 0.0388 0.0491 0.0317 0.0421 0.0261 0.0378 0.0230 0.0335 
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TABLE 14 

The L1 distances between estimators based on interval censored data and complete 
data in a five state branching semi-Markov model with Weibull state waiting times 
and uniform censoring time. The estimates are based on a Monte Carlo sample size 
of 1000 for N = 100,200, and 500. A Monte Carlo sample size of 100 was used for N 
= 1000. All standard errors were less than 0.0041. 

N=100 N=200 N=500 N=1000 
W NW W NW W NW W NW 

PI 0.1003 0.1384 0.0808 0.1094 0.0627 0.0842 0.0534 0.0716 
P2 0.0414 0.0370 0.0324 0.0287 0.0234 0.0213 0.0176 0.0177 
P3 0.0481 0.0422 0.0448 0.0373 0.0420 0.0337 0.0427 0.0333 
P4 0.0388 0.0336 0.0309 0.0267 0.0237 0.0200 0.0217 0.0176 
P5 0.0600 0.0423 0.0497 0.0335 0.0389 0.0260 0.0334 0.0233 
Gl 0.0355 0.0432 0.0312 0.0371 0.0614 0.0809 0.0239 0.0290 
G2 0.0474 0.0481 0.0399 0.0401 0.0337 0.0337 0.0314 0.0332 
F2 0.0422 0.0561 0.0364 0.0475 0.0306 0.0399 0.0296 0.0386 
F3 0.0570 0.0739 0.0530 0.0678 0.0478 0.0606 0.0458 0.0581 
F4 0.0669 0.0700 0.0561 0.0582 0.0466 0.0471 0.0399 0.0416 
F5 0.0571 0.0584 0.0484 0.0501 0.0402 0.0418 0.0359 0.0397 
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TABLE 15 

The L1 distances between estimators based on interval censored data and complete 
data in a five state branching semi-Markov model with lognormal state waiting times 
and Weibull censoring time. The estimates are based on a Monte Carlo sample size 
of 1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N 
= 1000. All standard errors were less than 0.0042. 

N=lOO N=200 N=500 N=lOOO 
W NW W NW W NW W NW 

PI 0.0533 0.0855 0.0402 0.0639 0.0273 0.0428 0.0208 0.0324 
P2 0.0408 0.0346 0.0311 0.0276 0.0215 0.0198 0.0164 0.0155 
P3 0.0395 0.0400 0.0295 0.0294 0.0209 0.0203 0.0152 0.0152 
P4 0.0381 0.0250 0.0289 0.0191 0.0209 0.0136 0.0178 0.0109 
P5 0.0468 0.0296 0.0366 0.0232 0.0255 0.0166 0.0198 0.0131 
G1 0.0340 0.0501 0.0261 0.0381 0.0176 0.0254 0.0687 0.1086 
G2 0.0579 0.0574 0.0451 0.0454 0.0337 0.0334 0.0273 0.0263 
F2 0.0478 0.0682 0.0392 0.0560 0.0287 0.0412 0.0227 0.0316 
F3 0.0603 0.0872 0.0488 0.0697 0.0369 0.0521 0.0296 0.0413 
F4 0.1020 0.0945 0.0851 0.0770 0.0668 0.0592 0.0551 0.0504 
F5 0.0896 0.0775 0.0741 0.0647 0.0567 0.0494 0.0478 0.0418 
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TABLE 16 

The L1 distances between estimators based on interval censored data and complete 
data in a five state branching semi-Markov model with Wei bull state waiting times 
and Weibull censoring time. The estimates are based on a Monte Carlo sample size 
of 1000 for N = 100, 200, and 500. A Monte Carlo sample size of 100 was used for N 
= 1000. All standard errors were less than NA. 

W NW W NW W NW W NW 
PI 0.0537 0.0648 0.0424 0.0471 0.0301 0.0322 0.0219 0.0242 
P2 0.0523 0.0352 0.0428 0.0277 0.0332 0.0206 0.0260 0.0161 
P3 0.0439 0.0334 0.0364 0.0265 0.0271 0.0193 0.0218 0.0150 
P4 0.0354 0.0149 0.0300 0.0117 0.0240 0.0086 0.0192 0.0068 
P5 0.0459 0.0186 0.0387 0.0144 0.0319 0.0107 0.0252 0.0084 
G1 0.0471 0.0633 0.0396 0.0499 0.0293 0.0364 0.0218 0.0279 
G2 0.0892 0.0551 0.0761 0.0427 0.0570 0.0304 0.0420 0.0241 
F2 0.0724 0.0996 0.0626 0.0804 0.0472 0.0604 0.0362 0.0471 
F3 0.0842 0.0915 0.0751 0.0774 0.0576 0.0587 0.0431 0.0456 
F4 0.0815 0.1231 0.0659 0.0960 0.0487 0.0716 0.0337 
F5 0.1348 0.0754 0.1171 0.0597 0.0922 0.0452 0.0745 0.0357 
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Figure 23. Distribution of inspection times for patients on the UNOS liver transplant 
waitlist. 
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Figure 24. State occupation probabilitiess for levels of MELD scores for patients on 
the UNOS liver transplant waiting list. 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

The primary focus of this dissertation has been on nonaparametric estimation 

of multistate data subject to right censoring and interval censoring. We created an R 

package, msSurv, to calculate and display key marginal estimators for data subject 

to independent or dependent censoring. For interval censored data, we developed 

non parametric estimators of state occupation probabilities, state entry time 

distributions, and state exit time distributions based on product limit estimation. 

Simulations and real data analysis were performed in both cases and showed that 

the methods proposed are reasonable and that they can be implemented. 

Our future research for the msSurv package includes incorporating waiting 

time distribution computations for right censored data, as well as modifying the 

current methods to accurately estimate state entry and exit time distributions for 

recurrent event data. We will also conduct research to extend msSurv to 

incorporate non parametric estimation for current status data. Implementation of 

estimation methods for current status data is considerably more complicated than 

that of the right censored data since actual transition times are not known. 

Future research for interval censored data includes developing estimators for 

state waiting time distributions and L1 testing methods using these proposed 

procudes and estimators, as well as investigating a more general weight matrix to 

further improve efficiency of the estimation. The computations using the general 

weighting matrix are more complicated than those for the diagonal variance matrix. 

Ultimately, we would like to also include the interval censored estimation in the 

msSurv package as well, which will require an investigation into an appropriate 
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general bandwidth. 

Future research plans for the msSurv package are presented in more detail in 

section A. We describe the future research plans for estimating the waiting time 

distribution for interval censored data in section B and performing £1 tests in 

section D. Then we discuss further generalization of the proposed procedures 

through a general weighting matrix in section C. 

A msSurv package expansion 

msSurv is a comprehensive R package for nonparametric estimation of a 

general multistate model subject to right censoring and possibly left truncation. 

The package computes the transition probabilities for a Markov model and offers 

estimates of state occupation probabilities and stat entry and exit time distributions 

which were previously unavailable in any R package. msSurv produces accurate 

estiamtes for both independent and state dependent censoring, the latter of which 

was previously unavailable in other packages. msSurv provides functions that print, 

summarize, and display plots of the estimates and corresponding estimates. 

Though the package is very thorough for right censored data, extension to 

include state waiting time distributions as described in Satten and Datta (2002) is 

desireable and currently unavailable. State waiting (sojourn) times can be defined 

as Wl = V/ - Ul, where UI and V/ represent the state entry and exit times 

respectively. Waiting times wI are calculated from right censored data when the 

censoring time is larger than the state exit time (Ci 2: "?). 
Sat ten and Datta (2002) estimate the counting processes for waiting times in 

state j as a jump process with jump size equal to 

6.NF'(t) = t [{WI:: t'~i 2: V:
j

} 

i=1 Ki(V:-) 
( 19) 

where K(t) = exp{ -Ac(tIZ(t)} is estimated as before. The estimated "at risk" set 
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for state j waiting times is defined by 

~W(t) = t I{Wl~~ t,Ci ~ t+ uj} 
i=l Ki((t + Ui )-) 

(20) 

Then, the state waiting time distribution, denoted as 

Hj(t) = Pr{Wj ~ tlVj < oo}, is estimated by 

iJi(t) = 1 - IT 1 _ tl~~ (ds) . ( ~W) 

8~t Yj (s) 

which is essentially a Kaplan-Meier type product limit formula using the estimators 

in 19 and 20. 

These estimators are valid without the Markovity assumption and may 

include state dependent censoring through the use of reweighting based on 

estimation of the censoring hazard. 

Waiting time distributions are more challenging than state entry or exit time 

distributions in that state waiting times are measured in time since state entry 

instead of calendar time, so we will need to incorporate functions to measure 

waiting times, compute the waiting time counting processes and "at risk" sets, as 

well as a function to compute the waiting time distribution for any model. 

Another useful extension to msSurv for right censored data is incorporating 

estimation for cyclic models where individuals pass through state j more than one 

time. For handling situations with repeated events, we will add code to internally 

expand the system to include additional states to track the different recurrent 

transitions into a given state j. We will need to incorporate a method for combining 

these expanded counting processes and "at risk" set to accurately calculate the state 

entry, exit, and waiting time distributions for any general recurrent model. This 

process will involve a lot of so called bookkeeping and properly indexing for general 

models. 

We will also conduct future research to extend msSurv to include 

nonparametric estimation of state occupation probabilities and state entry and exit 
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time distributions for current status data found in Datta and Sundaram (2006), 

Datta et at. (2009), and Lan and Datta (201Ob). Estimation for current status data 

is much more difficult than that for right censored data because actual transition 

( event) times are not known. Let Gi denote the random inspection time for 

individual i and Si denote the corresponding state information at time C i . Datta 

and Sundaram (2006) defined the counting process of j to j' transitions for current 

status data as 

~ 2:~=1 N:;, (Ci ) Kh (Ci - t) 
N

jj
, (t) = 2:7=1 KdGi - t) 

where N:;, ( C i ) denotes the smoothed PAY estimator of the counting process and 

K is a density kernel defined as K h (·) = h-1 K( -jh) with bandwidth h = h(n). Note 

that N:;,(Ci ) is obtained by performing isotonic regression on the pairs J(Ujj, ::; G) 

on C based on the pairs (Gi , I(Ujj',i ~ Gi )) using the PAY algorithm followed by 

kernel smoothing where Ujjl denotes the (unobserved) transition time of an 

individual from state j to j'. 

The "at risk" set of transitions out of state j does not have to be monotonic 

and therefore can be estimated using kernel smoothing through the function K 

previously described. Therefore, the "at risk" set is defined as 

where K is described above. 

State occupation probabilities will be computed using the special case 

]3(0, t) = I1(O,tj(J + dA(u)) of the Aalel1-Johansen estimator formula 

j = j', 

96 



where lj(u) = I(9j(u) > 0) and the integrated conditional transition hazards are 

now calculated using Nand Y defined by Datta and Sundaram (2006). 

We will update the msSurv package so that a user specifies the type of 

censoring, e.g., "current status data", and then the package with calculate the 

appropriate counting process. We will investigate using an available R packages to 

perform the isotonic regression (e.g., isotone) and kernel smoothing (e.g., 

KernSmooth) to estimate the counting process and "at risk" sets. One potential 

problem is finding an appropriate bandwidth for any general framework, as the 

estimate may be very sensitive to bandwidths. We will update the current 

framework of state occupation probability estimation in msSurv to use the 

appropriate counting process and "at risk" set estimators for the user specified 

censoring scheme. 

We would like to ultimately extend the package to include nonparametric 

estimation of interval censored data. In fact, we had this in mind as we coded for 

the interval censored estimation for this dissertation research. The initial 

non-weighted isotonic regression fit and subsequent smoothing are already 

generalized. We will face challenges in efficiently generalizing the inversion of the 

variance-covariance matrix for all the transitions in the system, as the computation 

can be extremely time consuming and require a lot of memory usage. 

B Interval censored data 

In this dissertation research we extended the methods of Datta and Sundaram 

(2006) and Lan and Datta (2010b) to interval censored data where inspection times 

for individuals may be dependent. We ignored the dependencies, pooled the times, 

and then performed isotonic regression followed by kernel smoothing to get initial 

estimates of the counting process. We then calculated the diagonal variance 

estimates using those initial state occupation probabilities to use as a weight for a 

weighted isotonic regression to improve efficiency of our estimates. We applied 
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kernel smoothing to the resulting estimates to obtain our counting process estimates. 

Future research will be conducted to find the state waiting time distributions 

for interval censored data. Estimation of these distributions are difficult since the 

exact entry and exit times of an individual are never observed. We plan to extend 

the work of Datta et at. (2009), who obtained estimates of state waiting time 

distributions for any acyclic Markov multistate model subject to current status data. 

For the sake of completeness we will present a brief description of their estimators. 

Let Ci denote the inspection time for individual 't and let Si denote the 

corresponding state information. Suppose Xj denotes the (possiby unobserved) 

indicator that individual 'l ever enters state j. Then, let Uj , Vj, and Wj = Vj - Uj 

denote the entry, exit, and waiting times, respectively, for individuals who ever enter 

state j. Then, denote the corresponding distribution functions as Pj , Gj , and pWj. 

Datta et at. (2009) define the state waiting time distribution function for a state j as 

pW] (t) = 1 - . exp _ ~J' . , ~ 100 

{ (l u
+

t 
dN (S))} 

o n Yj(8) 

fU dN.] (s) 
.-. l-exp -)0 Y.(s) -. -. -- .-

where Pj (u) = 00 dN(.,) • Note that Nj(t), Nj.(t), Yj(t), and Yj(t) denote 
l-exp - It ::.:,;.:J..:2 o Yj (.,) 

estimators based on current status data. 

Calculation of state waiting time distributions with current status data poses 

additional difficulty. since we cannot directly regress the indicators of events 

involving the waiting times because the state entry times are also unknown. Some 

progress can be made with additional structural assumptions. As for example, 

under the Markov assumption (Datta et ai .. 2009), we could obtain the following 

identity 

Hj(t) = 1 -100 IT (1 - dAj.(.s)) dPj(u), t 2: 0, 
o u<s::Su+t 

where Aj • is integrate transition hazard out of state j. Using this and the quantities 

defined earlier we obtain a non-parametric regression estimator of the state waiting 
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time survival function 

Hj(t) = 1 -1°O{ II (1 - d~j.(S)) } dFj(u), t ~ O. 
o u<s:::ou+t Yj(s) 

For interval censored data, we will assume a Markov model since an 

individual's entry and exit times are only known to fall within a certain interval. We 

will investigate counting and at risk processes in terms of both entry and exit times, 

specifically calculating Nj(t), Nj.(t), Yj(t), and Yj(t) based on the estimators 

proposed in this research. We will investigate how to effectively measure the waiting 

time distributions since they are typically measured in time since state entry and 

those entry times are not known. 

C General weighting matrix 

In this dissertation research we ran a weighted isotonic regression on 

indicators of whether an individual made a transition by some time C using the 

diagonal variance matrix as weights. In future research we would like to find a 

general weighted matrix, say W, to further improve efficiency, e.g. minimize 

2:~1 ~TWi~i subject to P {Ujjl ~ C(i)} ~ ... ~ P {Ujjl ~ C(n)} where 

C(i) ~ ... ~ c(n) are the ordered inspection times in the pooled sample where 

~i = (P{Ujjl ~ cid - I {Ujjl ~ cid, 1 ~ k ~ nj). 

One possible choice for W is ~-1 where ~ denotes the full 

variance-covariance matrix defined as 

jj' { P {Ujjl ~ Gid (1 - P {Ujjl ~ Gik }) k = k' 

(Ji,kk' = P {U 'I < G'k} - P {U", < C k} P {U", < Ckl} k...L k' JJ - l ]] - l ]] _ l T 

The inverse of the resulting W could then be an isotonic weighted regression 

performed using an R package such as isotone. Results of the regression would then 

be smoothed using a kernel smoother as before. In preliminary work, we were able 
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to successfully estimate the variance-covariance matrix, but had some problems with 

some fits of the regression becoming negative. Research will be done on adding 

constraints so that the resulting probabilities remain between 0 and 1. 

State occupation probabilities and state entry, exit, and waiting time 

distributions will then be computed using the new estimators and their performace 

will be evaluated through simulation studies and computation of L1 distances. 

D L1 tests 

Another future research area will be constructing L1 hypothesis testing 

procedures for comparing two (or more) groups using the non parametric estimators 

developed in this dissertation for interval censored data. These types of tests would 

be useful in practice as investigators seek to compare the state occupation, entry 

and exit times in two or more groups (e.g., comparing the state occupation 

probabilities between genders). 

Lan and Datta (2010a) obtained generalized testing procedures for current 

status data in multistate models with a Markovian framework using a 

distance-based bootstrap test. They assumed the multistate system had a directed 

tree structure so that every state j in the system is reached by a unique path. They 

assume that inspection times and state occupation status for are independently and 

identically distributed within each group and that censoring times are random in 

each group so that the the censoring time Ci is independent of the state occupied at 

that time Si( C i ) for individual ,t. For sake of completeness, we will provide a 

description of the testing process. 

Suppose two groups are independent and e = (}(t) are the marginal function 

quantities to estimate, e.g., e = Pj(t) for state occupation probabilities, () = Fj for 

state entry time distribution. etc. The null hypothesis for testing is of the form 
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where T( ~ (0) is a user specified limit and the superscript represents the groups 

being compared. Lan and Datta (2010a) defined a test statistic based on L1 

distance for comparing the marginal estimates OJ each group j = 1,2 as 

~ := 1 181 (x) - (j2 (x)1 dFn (x) 
[o .. ,.J 

where Fn is the empirical cumulative distribution function of the pooled collection 

of inspection times Ci and {jk is the non parametric estimator of Ok using samples 

from the kth group (k = 1,2). Let n1 and n2 denote the sample sizes for the 

samples from groups 1 and 2, respectively, then the test statistic becomes 

1 nl +n2 

~ = L 181 (Ci ) - (j2 (Ci)1 I (Ci ~ T) 
n1 + n2 1=1 

(21 ) 

Lan and Datta (201Oa) use bootstrap resampling to compute the p-value by 

assuming that the two multistate processes are identical and that the censoring 

mechanism in the two groups are idential. They pool inspection times Ci and then 

sample from the pool to get times Ct and their corresponding state information is 

taken as St. The bootstrap sample is then split in half with the first half taken as 

group 1 and those remaining are in group 2. The test statistic in Equation (21) is 

then computed for each bootstrap sample as 

nl+n2 

3.* = 1 '" l(fl* (C*) - (p* (c*)1 I (C* ~ T) n +n L...J t t t 
1 2 1=1 

(22) 

The p-value for B bootstrap replicated is then estimates as 

(23) 

Note that B is typically at least 500. The null hypothesis Ho is rejected when 

p ~ 0' where 0' is a nominal level of significance. 

We will apply these general hypothesis testing methods to interval censored 

data. We will use the estimators of state occupation probability, as well as state 
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entry and exit time distributions, as marginal estimates for comparison. Interval 

censored data consist of pairs of data {Cik , Si( Cik )} for 1 ~ k ~ ni; 1 ~ i ~ n, where 

n denotes the total number of individuals, ni denotes the number of inspection times 

retained for the 'ith individual, Cik are the inspection times for the 'ith individual 

and the corresponding state information is denoted Si ( Cik ). We will generate the 

bootstrap inspection times, say C;k, by taking a random sample of pooled inspection 

times Cik , initially ignoring the dependency for pooling. The bootstrap state 

information S;k will be taken as the Sik associated with C;k in the original data. 

The resulting bootstrap sample will then be split into two groups with the first nl 

pairs taken as group 1 and the next n2 individuals are taken as group 2. We will 

then estimate the test statistic found in 22 and compute the test statistic in 23. 
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A Functions in the msSurv package 

Key internal functions in the R package msSurv for non parametric estimation 

of right censored and possibly left truncated data. 

## Adding Start Times ## 

Add.start <- function(Data){ 

Data$start <- 0 

idx <- which(table(Data$id»l) 

for(i in idx){ 

ab <-Data[which(Data$id==i),J 

ab<-with(ab,ab[order(ab$stop),J) 

ab2<-which(Data$id==i) #row numbers in Data 

start2<-vector(length=length(ab2)) 

start2 [lJ <-0 

start2[2:length(ab2)J<-ab$stop[1:length(ab2)-lJ 

Data$start[ab2J<-start2 

} #end of for loop 

new.data <- data.frame(id=Data$id,start=Data$start,stop=Data$stop, 

st.stage=Data$st.stage,stage=Data$stage) 

res<-new.data 

} 

## Converting for Censoring ## 

Add.States <- function(tree){ 
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##Adding censoring state to Nodes & Edges 

Nodes <- c("O",nodes(tree)) 

Edges <- edgeL(tree) 

Edges[["O"]] <- list(edges=nwneric(O)) 

nt.states <- which(sapply(Edges, function(x) length(x$edges»O)) 

for(stage in nt.states) { 

Edges[[stage]]$edges <- c("O",Edges[[stage]]$edges) 

} 

##tree for censored data 

treeO <- new("graphNEL",nodes=Nodes,edgeL=Edges,edgemode="directed") 

## Adding "Left Truncated" State 

Nodes<- c("LT",nodes(treeO)) 

Edges[["LT"]] <- list (edges=nodes (tree) [nodes(tree)%in%names(nt.states)]) 

nt.states.LT <_ which (sapply (Edges , function(x) length(x$edges»O)) 

treeLT <-new("graphNEL",nodes=Nodes,edgeL=Edges,edgemode="directed") 

} 

list(treeO=treeO,nt.states=nt.states,nt.states.LT=nt.states.LT, 

treeLT=treeLT) 
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## Adding Dummy "LT" obs to Data set ## 

LT.Data <- function(Data){ 

} 

## NOTE: Below assumes all the variables in Data have the names 'id', 

## 'start', 'stop', etc., 

Data <- Data[order(Data$id), ] ## make sure id's line up below 

ids <- unique(Data$id) 

stop. time <- with(Data, tapply(start, id,min» 

enter.st<- with(Data, tapply(st.stage, id,min» 

dummy <- data.frame(id = ids, start = -1, stop stop.time, 

st.stage="LT", stage=enter.st) #dummy initial stage 

Data <- rbind(Data, dummy) 

Data <- with(Data, Data[order(id,stop), ]) 

return (Data=Data) 

## Counting Process & At Risk ## 

CP <- function(tree,treeO,Data,nt.states){ 

times <- sort(unique(Data$stop» 

lng <- sapply(edges(treeO) [nodes(treeO)%in%names(nt.states)] , 

length) 

ds <- paste("dN", rep(nodes(treeO) [nodes(treeO)%in%names(nt.states)], 

lng),unlist(edges(treeO) [nodes(treeO)%in%names(nt.states )]» 

ys <- paste("y",unlist(nodes(treeO») 

## index of obs in each stage/state/node 

indy <- vector(length=length(ys),mode="list") 

111 



names(indy) <- ys 

indO <- vector(length=length(ds),mode="list") 

# matrix of # of transitions, initialize to zeros 

dNs <- matrix(O, nrow=length(times) , ncol=length(ds» 

# matrix of total # of transitions from a state, initialize to zeros 

sum.dNs <- matrix(O, nrow=length(times) , ncol=length(nt.states» 

# matrix of at-risk sets for each stage at each time 

Ys <- matrix(NA, nrow=length(times) , ncol=length(ys» 

#names of rows/columns for vectors/matrices 

rownames(dNs) <- rownames(sum.dNs) <- rownames(Ys) <- times 

names (indO) <- colnames(dNs) <- ds 

colnames(Ys) <- ys 

colnames(sum.dNs) <- paste(ldN",names(nt.states) ,".") 

n.vec<-vector(length=length(nodes(treeO») 

for(i in nodes(treeO»{ #loop through nodes 

nam <- strsplit(names(indy) ," ") 

idx <- which(sapply(nam, function(x) x[2]==i» 

indy[[ys[idx]]] <- which(Data$stage==i) 

if (length(inEdges(treeO) [[i]])==O) next 
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ld <- length (inEdges (treeO) [[i]]) 

for(j in l:ld){ #Fill-in no. transitioning between stages at each time 

} 

nam2 <- paste("dN", inEdges(treeO) [[i]] [j], i) 

indD[[nam2]] <- indy[[idx]] [Data$st. stage [indy[[idx]]] 

==inEdges(treeO) [[i]] [j]] 

tmp.tab <- table(Data$stop[indD[[nam2]]]) 

dNs[names(tmp.tab),nam2] <- tmp.tab 

} #end of outer loop for dNs 

res <- by(Data, Data$id, function(x) x$st.stage[which.min(x$stop)]) 

res <- factor(res, levels=nodes(tree) , labels=nodes(tree)) 

start.probs <- table(res)/length(res) 

### starting at risk computations ### 

for(i in nodes(treeO)){ #loop through nodes to find Ys 

n <- length(which(res==i)) 

nam <- strsplit (names (indy) ," ") 

idx <- which(sapply(nam, function(x) x[2]==i)) 

if (length(inEdges(treeO)[[iJ]»O) 
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into.node <- paste ("dN" , inEdges(treeO) [[i]] , i) 

else into.node <- NULL 

if (length(edges(treeO)[[i]]»O) 

from.node <- paste ("dN", i, edges(treeO)[[i]]) 

else from.node <- NULL 

initial <- which(sapply(inEdges(treeO), function(x) !length(x»O)) 

transient <- which(sapply(edges(treeO),function(x) length(x»O) 

& sapply(inEdges(treeO),function(x) length(x»O)) 

if (i==names(initial)){ 

Ys[,idx] <- c(n, n + cumsum(rowSums(dNs[,into.node, drop=FALSE])) 

- cumsum(rowSums(dNs[,from.node, drop=FALSE]))) [-(nrow(Ys)+l)] 

} else if(i==names(transient) && !n==O){ 

Ys[,idx] <- c(n, n + cumsum(rowSums(dNs[,into.node, drop=FALSE])) 

- cumsum(rowSums(dNs[,from.node, drop=FALSE]))) [-(nrow(Ys)+l)] 

} else Ys[,idx] <- c(O, cumsum(rowSums(dNs[,into.node, drop=FALSE])) 

- cumsum(rowSums(dNs[,from.node, drop=FALSE]))) [-(nrow(Ys)+l)] 

} #end of loop for Ys 

## Counting transitions from different stages (ie: stage sums) 

sum.dNs <- matrix(nrow=nrow(dNs),ncol=length(nt.states)) 

rownames(sum.dNs) <- rownames(dNs) # 

colnames(sum.dNs) <- paste("dN",names(nt.states),".") 

a <- strsplit(colnames(sum.dNs), " ") 

a2 <- strsplit(colnames(dNs), " ") 

uni <- unique(sapply(a,function(x) x[2])) 

114 



for(i in uni){ #calculating the dNi.s 

b <- which(sapply(a,function(x) x[2]==i)) 

b2 <- which(sapply(a2,function(x) x[2]==i)) 

sum.dNs[,b] <- rowSums(dNs[,b2]) 

} #end of for loop for calculating dNi.s 

list(dNs=dNs,Ys=Ys,sum.dNs=sum.dNs,res=res,start.probs=start.probs) 

} #end of function 

## Datta-Satten Estimation ## 

DS <- function(LT="LT",nt.states,dNs,sum.dNs,Ys,Cens="O",cens.type){ 

## Calculating dNs, sum.dNs, and Y from D-S(2001) paper 

res <- strsplit(colnames(dNs), " ") #string splits names 

res2 <- strsplit(colnames(Ys)," ") #string split names of Ys 

res3 <- strsplit(colnames(sum.dNs)," ") #string splits names of dNs 

DS.col.idx <- which(sapply(res, function(x) x[3]==Cens)) 

DS2.col.idx <- which(sapply(res2, function(x) x[2]%in%names(nt.states))) 

DS3.col.idx <- which(sapply(res3, function(x) x[2]%in%names(nt.states))) 

if(cens.type=="ind"){ ## for INDEPENDENT censoring 

K <- vector(length=nrow(dNs)) 

dNO <- rowSums(dNs[,DS.col.idx]) 

YO <- rowSums(Ys[,DS2.col.idx]) #those at risk of being censored 
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N.Y <- ifelse(dNO/YO==INaN",O,dNO/YO) 

colnames(N.Y) <- NULL 

H.t <- cumsum(N.Y) #calculating the hazard 

k <- exp(-H.t) 

K <- c(l, k[-length(k)]) 

dNs.K <- dNs/K #D-S dNs 

Ys.K <- Ys/K #D-S Ys 

sum.dNs.K <- sum.dNs/K 

} #end of ind censoring if 

## Dependent censoring 

if (cens. type=="dep"){ 

dNO <- dNs[,DS.col.idx] 

YO <- Ys[,DS2.col.idx] #those at risk of being censored 

N.Y <- ifelse(dNO/YO==INaN",O,dNO/YO) 

colnames(N.Y) <- paste(colnames(dNO),I/",colnames(YO)) 

H.t <- apply(N.Y, 2, function(x) cumsum(x)) 

K <- exp(-H.t) 

## K <- apply(k, 2, function(x) c(l, x[-length(x)])) 

ab <- which(sapply(res,function(x) x[2]%in%nt.states)) 

ac <- which(sapply(res3,function(x) x[2]%in%nt.states)) 

dNs.K <-dNs; Ys.K <- Ys; sum.dNs.K <- sum.dNs 

for(i in names(nt.states)){ 

116 



K.idx <- which(sapply(strsplit(colnames(N.Y)," "),function(x) x[2]==i» 

dN.idx <- which(sapply(res,function(x) x[2]==i» 

sum.dNs.idx <- which(sapply(res3,function(x) x[2]==i» 

Ys.idx <- which(sapply(res2,function(x) x[2]==i» 

dNs.K[,dN.idx] <- dNs[,dN.idx]/K[,K.idx] 

sum.dNs.K[,sum.dNs.idx] <- sum.dNs[,sum.dNs.idx]/K[,K.idx] 

Ys.K[,Ys.idx] <- Ys[,Ys.idx]/K[,K.idx] 

} 

} #end of if dependent censoring 

res <- list(dNs.K=dNs.K,Ys.K=Ys.K,sum.dNs.K=sum.dNs.K) 

return(res) 

} ## end of D-S function 

## Reducing dNs & Ys to event times ## 

Red <- function(tree,dNs,Ys,sum.dNs,dNs.K,Ys.K,sum.dNs.K){ 

res <- strsplit(colnames(dNs), " II) #string splits names 

col.idx <- which(sapply(res, function(x) x[2]%in%nodes(tree) 

& x[3]%in%nodes(tree») 

row.idx <- which(apply(dNs[,col.idx], 1, function(x) any(x>O») 

dNs.et <- dNs[row.idx,col.idx] ## reduces dNs 

res2 <- strsplit(colnames(Ys)," ") #string split names of Ys 

nt.states.f <- which(sapply(edges(tree) , function(x) length(x»O» 

co12.idx <- which(sapply(res2,function(x) x[2]%in~~ames(nt.states.f») 

YS.et <- Ys[row.idx,co12.idx] ## reduces Ys 

co13.idx <- which(sapply(strsplit(colnames(sum.dNs)," II), 
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} 

function(x) x[2]%in%nodes(tree))) 

sum.dNs.et <- sum.dNs[row.idx,col3.idx] 

dNs.K.et <- dNs.K[row.idx,col.idx] 

Ys.K.et <- Ys.K[row.idx,col2.idx] 

sum.dNs.K.et <- sum.dNs.K[row.idx,col3.idx] 

ans <- list(dNs=dNs.et,Ys=Ys.et,sum.dNs=sum.dNs.et,dNs.K=dNs.K.et, 

Ys.K=Ys.K.et,sum.dNs.K=sum.dNs.K.et) 

return(ans) 

## State Occupation Probabilities ## 

stocc <- function(ns,tree,dNs.et,Ys.et,start.probs){ 

cum.tm <- diag(ns) 

colnames(cum.tm) <- rownames(cum.tm) <- nodes(tree) 

ps <- matrix(NA, nrow=nrow(dNs.et), ncol=length(nodes(tree))) 

rownames(ps) <- rownames(dNs.et); colnames(ps) <- paste("p",nodes(tree)) 

all.dA <- all.I_dA <- all.ajs <- array(dim=c(ns,ns,nrow(dNs.et)), 

dimnames=list(rows=nodes(tree),cols=nodes(tree),dim=rownames(dNs.et))) 

for(i in l:nrow(dNs.et)){ ##loop through times 

I_dA <- diag(ns) #creates trans matrix for current time 

dA <- matrix(O,nrow=ns,ncol=ns) 

colnames(I_dA) <- rownames(I_dA) <- colnames(dA) <- rownames(dA) <- nodes(tree) 

idx <- which(dNs.et[i,]>O) ## transition time i 

t.nam <- colnames(dNs.et) [idx] ## gets names of transitions (ie: dN##) 
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tmp <- strsplit(t.nam," ") ## splits title of dN## 

start <- sapply(tmp, function(x) x[2]) 

end <- sapply(tmp, function(x) x[3]) 

idxs <- matrix(as.numeric(c(start, end)), ncol=2) 

idxs2 <- matrix(as.numeric(c(start, start)), ncol=2) 

dA[idxs] <- dNs.et[i,idx]/Ys.et[i,paste("y",start)] 

if (length(idx)==l) 

dA[start,start] <- -dNs.et[i,idx]/Ys.et[i,paste("y",start)] 

else dA[idxs2] <- -rowSums (dA [start , ]) 

all.dA["i] <- dA #stores all dA matrices 

all.I_dA["i] <- I_dA 

cum.tm <- cum.tm %*% I_dA 

all.ajs["i] <- cum.tm 

ps[i,] <- start.probs%*%all.ajs["i] #just the state occupation probabilities 

} #end of loop 

list(ps=ps,all.ajs=all.ajs,all.I_dA=all.I_dA) 

} #end of function 

## State Entry/Exit Distributions ## 

Dist <- function(ps,ns,tree){ 
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initial <- which(sapply(inEdges(tree) , function(x) !length(x»O» 

terminal <- which(sapply(edges(tree) , function(x) !length(x»O) 

Fs <- matrix(O, nrow=nrow(ps), ncol=ns) #entry distn 

rownames(Fs) <- rownames(ps) 

colnames(Fs) <- paste("F",nodes(tree) 

Gs <- matrix(O, nrow=nrow(ps), ncol=ns) #exit distn 

rownames(Gs) <- rownames(ps) 

colnames(Gs) <- paste("G",nodes(tree)) 

for(i in l:ns){#looping through nodes 

node <- nodes(tree)[i] 

later.stages <- names(acc(tree, node) [[1]]) 

stages <- c (node , later. stages) 

f.numer <- rowSums(ps[,paste("p", stages),drop=FALSE]) 

FS[,i] <- f.numer/f.numer[length(f.numer)] 

if(length(stages)==l) next 

g.numer <- rowSums(ps [,paste("p", later. stages) ,drop=FALSE]) 

GS[,i] <- g.numer/g.numer[length(g.numer)] 

} #end of for loop 

Fr <- strsplit(colnames(Fs)," ") 

Fs.idx <- which(sapply(Fr,function(x) x[2]%in%names(initial») 
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Fs [, Fs. idx] <-NA 

Gr <- strsplit(colnames(Gs)," ") 

Gs.idx <- which(sapply(Gr,function(x) x[2]%in%names(terminal») 

Gs[,Gs.idx]<-NA 

list(Fs=Fs,Gs=Gs) 

} #end of function 

## Variance ## 

var.fn <- function(tree,ns,nt.states,dNs.et,Ys.et,sum.dNs, 

all.ajs,all.I_dA,ps){ 

#elements needed for computation 

varcov <- array (0 , dim = c(ns-2,ns-2,nrow(dNs.et)) 

colnames(varcov) <- rownames(varcov) <

paste(rep(nodes(tree) ,ns) ,sort(rep(nodes(tree) ,ns») 

bl.ld <- diag(1,(ns)-2) #Ident matrix for Kronecker product 

tm <- matrix(O,nrow=ns,ncol=ns) #tmp matrix to col var est 

res.array <- array(0,dim(tm)-2) 

colnames(res.array) <- rownames(res.array) <

paste(rep(nodes(tree) ,ns) ,sort(rep(nodes(tree) ,ns))) 

out <- array(O, dim=c(dim(all.I_dA) [c(l, 2)]-2,nrow(dNs.et)) 

colnames(out) <- rownames(out) <- paste(rep(nodes(tree),ns), 

sort(rep(nodes(tree),ns))) 

Id <- diagC1 ,ns) 

cov.p <- matrix(O,nrow=nrow(dNs.et),ncol=ns) 

colnames(cov.p) <- paste ("Var", "p",nodes(tree» 
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rownames(cov.p) <- rownames(ps) 

v.p <- matrix(O,ns,ns) 

for(i in l:nrow(dNs.et»{ ##loop through times 

#VARIANCE OF A-J (TRANS PROB MATRIX P(O,t» 

for(outer in 1:1ength(nt.states»{ #loop on the blocks (g) 

tm <- matrix(O,nrow=ns,ncol=ns) 

for(j in l:ns){ #loop in the blocks 

for(k in j:ns){ 

if(Ys.et[i,outer]==O){ ## if Y_g = ° the covariance ° 
tm[j ,k] <- ° 

next 

} #end of if 

if (j == outer & k == outer) { ## 3rd formula 

tm[j,k] <- (Ys.et[i,outer]-sum.dNs[i,outer])* 

sum.dNs[i.outer]/Ys.et[i,outer]~3 

} else if (j == outer & k != outer) { ## 2nd formula 

name <- paste ("dN". outer, k) 

if (!name%in%colnames(dNs.et» next 

tm[j,k] <- -(Ys.et[i,outer]-sum.dNs[i,outer]) 

*dNs.et[i,name]/Ys.et[i,outer]~3 

} else if (j != outer & k == outer) { 

name <- paste ("dN", outer, j) 
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if (!name%in%colnames(dNs.et» next 

tm[j,k] <- -(Ys.et[i,outer]-sum.dNs[i,outer])* 

dNs.et[i,name]/Ys.et[i,outer]~3 

} else { ## 1st formula 

namek <- paste("dN", outer, k) 

namej <- paste("dN", outer, j) 

if (!(namej%in%colnames(dNs.et) & namek%in%colnames(dNs.et») next 

tm[j,k] <- (ifelse(j==k, 1, O)*Ys.et[i,outer]-dNs.et[i,namej])* 

dNs.et[i,namek]/Ys.et[i,outer]~3 

} #end of if/else statements 

} ## end of k loop 

} ## end of j loop 

tm[lower.tri(tm)] <- t(tm) [lower.tri(tm)] 

res.array[(seq(l, ns*(ns-l)+l, by=ns)+outer-l), 

(seq(l, ns*(ns-l)+l, by=ns)+outer-l)] <- tm 

}#end of outer loop 

varcov["i] <- res.array 

if(i==l) out[, , i] <- bl.ld%*% varcov["i] %*% bl.ld 

else out[, , i] <- (t(all.I_dA[, , i]) %x% Id) 

%*% out[, i-l] %*%«all.I_dA[, , i]) %x% Id) + 

(Id %x% all.ajs[, , i-l]) %*% varcov["i] %*% 

(Id%x% t(all.ajs[, , i-l]» 

## calculating the variance of state occupation prob 
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for (j in nodes(tree)){ #loop through states 

st.nam <- paste("l" ,j) 

partl <- var.pkjOt <- out[st.nam,st.nam,i] 

res3 <- strsplit(colnames(ps)," ") 

col.idx3 <- which(sapply(res3, function(x) x[2]== j)) 

b.t <- all.ajs[,col.idx3,i] 

part2 <- t(b.t)%*%v.p%*%b.t #should be 0 when P(O,t) 

res.varp <- partl+part2 

cov.p[i,as.numeric(j)] <- res.varp 

} #closes states loop 

} ## end of time loop 

list(out=out,varcov=varcov,cov.p=cov.p) 

}#end of function 

## BS Variance for Oep Cens ## 

BS.var <- function(Oata,tree,ns,et,cens.type,B,LT,start.states){ 

n <- length(unique(Oata$id)) # sample size 

ids <- unique(Oata$id) 

bs.est <- array(dim=c(length(nodes(tree)),length(nodes(tree)), 

length(et),B), 
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dimnames=list(rows=nodes(tree),cols=nodes(tree),dim=et» 

bs.ps <_ array(dim=c(length(et),ns,B» 

rownames(bs.ps) <- et 

colnames(bs.ps) <- paste("p",nodes(tree» 

## For entry / exit distributions 

bS.Fs <- bs.ps; bs.Gs <- bs.ps #storage for BS Fs/Gs 

colnames(bs.Fs) <- paste("F",nodes(tree» 

colnames(bs.Gs) <- paste("G",nodes(tree» 

initial <- which(sapply(inEdges(tree), 

function(x) !length(x»O» #initial states, no Fs 

terminal <- which(sapply(edges(tree), 

function(x) !length(x»O» #terminal states, no Gs 

bs.cov.p <- matrix(O,nrow=length(et),ncol=ns) 

colnames(bs.cov.p) <- paste("Var", "p",nodes(tree» 

rownames(bs.cov.p) <- et 

res.array <- array(O,dim=c(ns-2,ns-2,length(et»,dimnames=list 

(rows=paste(rep(nodes(tree),ns),sort(rep(nodes(tree),ns»), 

cols=paste(rep(nodes(tree),ns),sort(rep(nodes(tree),ns»),dim=et» 

for(b in l:B){ #randomly selects the indices 

## Find the bootstrap sample 

bs=sample(ids, n, replace=TRUE) 

bs=factor(bs, levels=ids) 

bs.tab=data.frame(table(bs» ##table with the frequencies 
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Data. bs=merge (Data, bs.tab, by.X="id", by.y="bs") 

bs.id=unlist(apply(Data.bs[Data.bs$Freq>O,], 1, 

function(x) paste(x["id"], l:x["Freq"], sep="."))) 

idx=rep(l:nrow(Data.bs), Data.bs$Freq) 

Data.bs=Data.bs[idx,] 

Data.bs.originalID=Data.bs$id 

Data.bs$id=bs.id 

Data.bs=Data.bs[order(Data.bs$stop),] 

Cens <- Add.States(tree) 

if (LT) { 

Data.bs = LT.Data(Data.bs) 

cp <- CP(tree,Cens$treeLT,Data.bs,Cens$nt.states.LT) 

res <- factor(start.states, levels=nodes(tree), labels=nodes(tree)) 

start.probs <- table(res)/length(res) 

} 

if(!LT) { 

cp <- CP(tree,Cens$treeO,Data.bs,Cens$nt.states) 

start.probs <- cp$start.probs 

} 

ds.est<-DS(LT="LT",Cens$nt.states,cp$dNs,cp$sum.dNs, cp$Ys,Cens="O", 

cens. type) 

cp.red <- Red(tree,cp$dNs,cp$Ys,cp$sum.dNs,ds.est$dNs.K, 

ds.est$Ys.K,ds.est$sum.dNs.K) 

stateoccfn <- stocc(ns,tree,cp.red$dNs.K,cp.red$Ys.K,start.probs) 

idx <- which(dimnames(bs.est) [[3]] %in% dimnames(stateoccfn$all.I_dA) [[3]]) 
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idx2 <- which(!(dimnames(bs.est) [[3]] %in% dimnames(stateoccfn$all.I_dA) [[3]])) 

bs.IA <- bs.est 

bs.IA["idx,b] <- stateoccfn$all.I_dA 

bs.IA["idx2,b] <- diag(ns) 

bs.est["l,b] <- bs.IA["l,b] 

bs.ps[l"b] <- start.probs%*%bs.est["l,b] 

for(j in 2:length(et)){ 

bs.est["j,b] <- bs.est["j-l,b] %*% bs.IA["j,b] 

bs.ps[j"b] <- start.probs%*%bs.est["j,b] 

} ## end of j for loop 

## Entry / Exit variance as well 

for(i in l:ns){#looping through nodes 

node <- nodes(tree)[i] 

later.stages <- names(acc(tree, node)[[l]]) 

stages <- c (node , later.stages) 

bs.f.numer <- rowSums(bs.ps[,paste("p", stages),b,drop=FALSE]) 

if(sum(bs.f.numer)==O) bs.Fs[,i,b]<-O 

else bs.Fs[,i,b] <- bs.f.numer/bs.f.numer[length(bs.f.numer)] 

if(length(stages)==l) next 

bs.g.numer <- rowSums(bs.ps[,paste("p", later. stages) ,b,drop=FALSE]) 
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if(sum(bs.g.numer)==O) bs.Gs[,i,b]<-O 

else bs.Gs[,i,b] <- bs.g.numer/bs.g.numer[length(bs.g.numer)] 

} #end of for loop 

} ## end of bs loop 

Fs.var <- apply(bs.Fs,c(1,2),var) 

Fs.var[,initial]<-NA 

Gs.var <- apply(bs.Gs,c(1,2),var) 

Gs.var[,terminal] <- NA 

bs.var <- apply(bs.est, c(1,2,3), var) 

bs.cov.p <- apply(bs.ps,c(1,2),var) 

colnames(bs.cov.p) <- paste ("Var", "p",nodes(tree)) 

rownames(bs.cov.p) <- et 

bs.cov <- array(dim=c(ns-2,ns-2,length(et)),dimnames=list(rows= 

paste(rep(l:ns,ns), rep(l:ns, each=ns)),cols=paste(rep(l:ns,ns), 

rep(l:ns, each=ns)),dim=et)) 

for(i in l:length(et)){ 

bs.est2 <- matrix(bs.est["i,] ,nrow=B, ncol=ns-2, byrow=TRUE) 

bs.cov["i] <- cov(bs.est2) 

} ##this for loop creates a B x (# of states)-2 x (# of event times) 

list(out=bs.cov,cov.p=bs.cov.p, Fs.var=Fs.var,Gs.var=Gs.var) 

} ## end of function 
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## BS Variance for Entry/Exit Distn ## 

Dist.BS.var <- function(Data,tree,ns,et,dNs.K,cens.type,B,LT,start.probs){ 

n <- length(unique(Data$id)) # sample size 

ids <- unique(Data$id) 

initial <- which(sapply(inEdges(tree), function(x) llength(x»O)) 

terminal <- which(sapply(edges(tree), function(x) llength(x»O)) 

bs.est <- array(dim=c(length(nodes(tree)),length(nodes(tree)),length(et),B), 

dimnames=list(rows=nodes(tree),cols=nodes(tree),dim=rownames(dNs.K))) 

bs.ps <- array(dim=c(length(et),ns,B)) 

rownames(bs.ps) <- et 

colnames(bs.ps) <- paste("p",nodes(tree)) 

bs.Fs <- bs.ps; bs.Gs <- bs.ps #storage for BS Fs/Gs 

colnames(bs.Fs) <- paste("F",nodes(tree)) 

colnames(bs.Gs) <- paste("G",nodes(tree)) 

for(b in l:B){ #randomly selects the indices 

bs=sample(ids, n, replace=TRUE) 

bs=factor(bs, levels=ids) 

bs.tab=data.frame(table(bs)) 

Data. bs=merge (Data, bs.tab, by.X="id", by.y="bs") 

bs.id=unlist(apply(Data.bs[Data.bs$Freq>O,], 1, 

function(x) paste(x["id"], l:x["Freq"], sep="."))) 

idx=rep(l:nrow(Data.bs),Data.bs$Freq) 
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Data.bs=Data.bs[idx,] ##creating a bs dataset 

Data.bs.originalID=Data.bs$id 

Data.bs$id=bs.id 

Data.bs=Data.bs[order(Data.bs$stop),] #ordered bs dataset 

## Calling functions using bs dataset 

Cens <- Add.States(tree) 

if (LT) { 

Data.bs = LT.Data(Data.bs) 

cp <- CP(tree,Cens$treeLT,Data.bs,Cens$nt.states.LT) 

} 

if(!LT) cp <- CP(tree,Cens$treeO,Data.bs,Cens$nt.states) 

ds.est<-DS(LT="LT",Cens$nt.states,cp$dNs,cp$sum.dNs,cp$Ys, 

Cens="O",cens.type) 

cp.red <- Red(tree,cp$dNs,cp$Ys,cp$sum.dNs,ds.est$dNs.K, 

ds.est$Ys.K,ds.est$sum.dNs.K) 

stateoccfn <- stocc(ns,tree,cp.red$dNs.K,cp.red$Ys.K) 

idx <- which(dimnames(bs.est) [[3]] %in% dimnames(stateoccfn$all.I_dA) [[3]]) 

idx2 <- which(! (dimnames(bs.est) [[3]] %in% dimnames(stateoccfn$all.I_dA) [[3]])) 

bs.IA <- bs.est 

bs.IA["idx,b] <- stateoccfn$all.I_dA 

bs.IA["idx2,b] <- diag(ns) 

bs.est["l,b] <- bs.IA["l,b] 

bs.ps[l"b]<-start.probs%*%bs.est["l,b] 

for(j in 2:length(et)){ 

bs.est["j,b] <- bs.est["j-l,b] %*% bs.IA["j,b] 

bs.ps[j"b]<-start.probs%*%bs.est["j,b] 

} ## end of j for loop 
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for(i in l:ns){#looping through nodes 

node <- nodes(tree)[i] 

later.stages <- names(acc(tree, node) [[1]]) 

stages <- c(node, later.stages) 

bs.f.numer <- rowSums(bs.ps[,paste("p", stages),b,drop=FALSE]) 

if(sum(bs.f.numer)==O) bs.Fs[,i,b]<-O 

else bs.Fs[,i,b] <- bs.f.numer/bs.f.numer[length(bs.f.numer)] 

if(length(stages)==l) next 

bs.g.numer <- rowSums(bs.ps[,paste("p", later.stages),b,drop=FALSE]) 

if(sum(bs.g.numer)==O) bs.Gs[,i,b]<-O 

else bs.Gs[,i,b] <- bs.g.numer/bs.g.numer[length(bs.g.numer)] 

} #end of for loop 

} ## end of bs loop 

Fs.var <- apply(bs.Fs,c(1,2),var) 

Fs.var[,initial]<-NA #setting the initial state variances = NA 

Gs.var <- apply(bs.Gs,c(1,2),var) 

Gs.var[,terminal] <- NA 

list(Fs.var=Fs.var,Gs.var=Gs.var) 

} ## end of function 
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## CONFIDENCE INTERVALS for pet) & P(s,t) ## 

MSM.CIs <- function(x,ci.level=0.95,ci.trans="linear"H 

#default ci.level is 0.95, default CI type (ie: ci.trans) is linear 

if(ci.level < 0 II ci.level > 1) 

stop("confidence level must be between 0 and 1") 

z.alpha <- qnorm(ci.level + (1 - ci.level) I 2) 

ci.trans <- match.arg(ci.trans,c("linear","log","cloglog","log-log")) 

CI.p <- array(0,dim=c(nrow(x~dNs),3,length(nodes(x~tree))),dimnames=list(rows= 

for(i in l:nrow(x~dNs)){ ##loop through times 

for (j in as.numeric(nodes(x~tree))){ #loop through states 

res.ci <- strsplit(colnames(x~ps), " ") #string splits names 

col.idx <- which(sapply(res.ci, function(x) x[2]== j)) 

res.ci2 <- strsplit(colnames(x~cov.p), " ") 

col.idx2 <- which(sapply(res.ci2, function(x) x[3]== j)) 

CI.p[i,l,j]<- PE.p <- x~all.ajs[l,col.idx,i] 

var.p <- x~cov.p[i,col.idx2] 

switch(ci.trans[l], 

"linear" = { 

CI.p[i,2,j] <- PE.p - z.alpha * sqrt(var.p) 

CI.p[i,3,j] <- PE.p + z.alpha * sqrt(var.p)}, 

"log" { 

CI.p[i,2,j] <- exp(log(PE.p) - z.alpha * sqrt(var.p) I PE.p) 

CI.p[i,3,jJ <- exp(log(PE.p) + z.alpha * sqrt(var.p) I PE.p)}, 
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"cloglog" = { 

CI.p[i,2,j] <- 1 - (1 - PE.p)~(exp(z.alpha * (sqrt(var.p) / 

«1 - PE.p) * log(l - PE.p))))) 

CI.p[i,3,j] <- 1 - (1 - PE.p)~(exp(-z.alpha * (sqrt(var.p) / 

«1 - PE.p) * log(l - PE.p)))))}, 

"log-log" = { 

CI.p[i,2,j] <- PE.p~(exp(-z.alpha * (sqrt(var.p) / 

(PE.p * log(PE.p))))) 

CI.p[i,3,j] <- PE.p~(exp(z.alpha * (sqrt(var.p) / 

(PE.p * log(PE.p)))))}) 

CI.p[i,2,j] <- pmax(CI.p[i,2,j] ,0) 

CI.p[i,3,j] <- pmin(CI.p[i,3,j],1) 

} #end states loop 

} #end times loop for CI.p 

## CIs on transition probability matrices## 

CI.trans <- array(0,dim=c(nrow(x~dNs),4,length(x~pos.trans)), 

dimnames=list(rows=rownames(x~dNs),cols=c("est","lower limit", 

"upper limit","var.tp"),dim=paste(x~pos.trans,"transition"))) 

for(i in l:nrow(x~dNs)){ ##loop through times 

for(j in l:length(x~pos.trans)){ #loop through possible transitions 

idx <- as.numeric(unlist(strsplit(x~pos.trans[j], 1111))) 

CI.trans[i,l,j] <- PE <- x(Qall.ajs[idx[l], idx[2] ,i] 

CI.trans[i,4,jJ <- var <- x~out[x~pos.trans[jJ, x~pos.trans[jJ, iJ 
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switch(ci.trans[lJ, 

"linear" = { 

CI.trans[i,2,jJ <- PE - z.alpha * sqrt(var) 

CI.trans[i,3,jJ <- PE + z.alpha * sqrt(var)}, 

"log" { 

CI.trans[i,2,jJ <- exp(log(PE) - z.alpha * 
sqrt(var) / PE) 

CI.trans[i,3,jJ <- exp(log(PE) + z.alpha * 
sqrt(var) / PE)}, 

"cloglog" = { 

CI.trans[i,2,jJ <- 1 - (1 - PE)-(exp(z.alpha * (sqrt(var) / 

((1 - PE) * log(l - PE»») 

CI.trans[i,3,jJ <- 1 - (1 - PE)-(exp(-z.alpha * (sqrt(var) / 

((1 - PE) * log(l - PE»»)}, 

"log-log" = { 

CI.trans[i,2,jJ <- PE-(exp(-z.alpha * (sqrt(var) / 

(PE * log(PE»») 

CI.trans[i,3,jJ <- PE-(exp(z.alpha * (sqrt(var) / 

(PE * log(PE»»)}) 

CI.trans[i,2,jJ <- pmax(CI.trans[i,2,jJ,O) 

CI.trans[i,3,jJ <- pmin(CI.trans[i,3,jJ ,1) 

} #end j loop 

} #end times loop 
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list(CI.p=CI.p,CI.trans=CI.trans) 

} #end of function 

## CIS for distributions ## 

Dist.CIs <- function(x,ci.level=O.95,ci.trans="linear"){ 

z.alpha <- qnorm(ci.level + (1 - ci.level) / 2) 

ci.trans <- match.arg(ci.trans,c("linear" ,"log" ,"cloglog" ,"log-log" )) 

CI.Fs <- array(O,dim=c(nrow(x~Fs),3,length(nodes(x~tree))), 

dimnames=list(rows=rownames(x~Fs),cols=c("est","lower limit","upper limit"), 

dim=paste("F",nodes(x~tree)))) 

CI.Gs <- array(O,dim=c(nrow(x~Gs),3,length(nodes(x~tree))), 

dimnames=list(rows=rownames(x~Gs),cols=c("est","lower limit","upper limit"), 

dim=paste("G",nodes(x~tree)))) 

for(i in l:nrow(x~Fs)){ ##loop through times 

for (j in as.numeric(nodes(x~tree))){ #loop through states 

res.cLF <- strsplit(colnames(x~Fs), II ") 

col.idx.F <- which(sapply(res.ci.F, function(x) x[2]== j)) 

res.ci2.F <- strsplit(colnames(x~Fs.var), II ") 

col.idx2.F <- which(sapply(res.ci2.F, function(x) x[2]== j)) 

res.ci.G <- strsplit(colnames(x~Gs), II ") 

col.idx.G <- which(sapply(res.ci.G, function(x) x[2]== j)) 

res.ci2.G <- strsplit(colnames(x~Gs.var), II ") 

col.idx2.G <- which(sapply(res.ci2.G, function(x) x[2]== j)) 
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CI.Fs[i,l,j]<- PE.F <- x~Fs[i,col.idx.F] 

varestF <- x~Fs.var[i,col.idx2.F] 

CI.Gs[i,l,j]<- PE.G <- x~Gs[i,col.idx.G] 

varestG <- x~Gs.var[i,col.idx2.G] 

switch(ci.trans[l] , 

"linear" = { 

CI.Fs[i,2,j] <- PE.F - z.alpha * sqrt(varestF) 

CI.Fs[i,3,j] <- PE.F + z.alpha * sqrt(varestF) 

CI.Gs[i,2,j] <- PE.G - z.alpha * sqrt(varestG) 

CI.Gs[i,3,j] <- PE.G + z.alpha * sqrt(varestG)}, 

"log" { 

CI.Fs[i,2,j] <- exp(log(PE.F) - z.alpha * sqrt(varestF) / PE.F) 

CI.Fs[i,3,j] <- exp(log(PE.F) + z.alpha * sqrt(varestF) / PE.F) 

CI.Gs[i,2,j] <- exp(log(PE.G) - z.alpha * sqrt(varestG) / PE.G) 

CI.Gs[i,3,j] <- exp(log(PE.G) + z.alpha * sqrt(varestG) / PE.G)}, 

"cloglog" = { 

CI.Fs[i,2,j] <- 1 - (1 - PE.F)~(exp(z.alpha * (sqrt(varestF) / 

((1 - PE.F) * log(l - PE.F))))) 

CI.Fs[i,3,j] <- 1 - (1 - PE.F)~(exp(-z.alpha * (sqrt(varestF) / 

((1 - PE.F) * log(l - PE.F))))) 

CI.Gs[i,2,j] <- 1 - (1 - PE.G)~(exp(z.alpha * (sqrt(varestG) / 

((1 - PE.G) * log(l - PE.G))))) 

CI.Gs[i,3,j] <- 1 - (1 - PE.G)~(exp(-z.alpha * (sqrt(varestG) / 

((1 - PE.G) * log(l - PE.G)))))}, 

"log-log" = { 

CI.Fs[i,2,j] <- PE.F~(exp(-z.alpha * (sqrt(varestF) / 
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(PE.F * log(PE.F»») 

CI.Fs[i,3,jJ <- PE.F-(exp(z.alpha * (sqrt(varestF) / 

(PE.F * log(PE.F»») 

CI.Gs[i,2,jJ <- PE.G-(exp(-z.alpha * (sqrt(varestG) / 

(PE.G * log(PE.G»») 

CI.Gs[i,3,jJ <- PE.G-(exp(z.alpha * (sqrt(varestG) / 

(PE.G * log(PE.G»»)}) 

CI.Fs[i,2,jJ <- pmax(CI.Fs[i,2,jJ,O) 

CI.Fs[i,3,jJ <- pmin(CI.Fs[i,3,jJ ,1) 

CI.Gs[i,2,jJ <- pmax(CI.Gs[i,2,jJ,O) 

CI.Gs[i,3,jJ <- pmin(CI.Gs[i,3,jJ,1) 

} #end states loop 

} #end times loop for CI 

list(CI.Fs=CI.Fs,CI.Gs=CI.Gs) 

} #end of function 

## Main Function ## 

msSurv <- function(Data,tree,cens.type="ind",LT=FALSE, 

d.var=FALSE,B=200,start.states){ 

if (any(!(c("id", "stop", "st.stage", "stage")%in%colnames(Data»» 

stop ('" Incorrect column names f or 'Data'. 

Column names should be 'id','stop','st.stage', or 'stage'.") 
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if ( ! (" start II %in% colnames (Data» & LT==TRUE) 

stop(IIThe 'start' times must be specified for left truncated data. ") 

if (! (" start II %in% colnames (Data» & LT==FALSE) Data=Add. start (Data) 

if (missing(start.states) & LT == TRUE) { 

start.probs <- numeric(length(nodes(tree») 

names(start.probs) <- nodes(tree) 

start.probs[names(start.probs)== nodes (tree) [which(sapply(inEdges(tree), 

function(x) !length(x»O»]] <- which(sapply(inEdges(tree), 

function(x) !length(x»O» 

} 

warning("'start.states' not specified. Assuming all individuals 

start in the initial state at time 0.") 

if(!missing(start.states) & LT==TRUE){ 

start.probs <- numeric(length(nodes(tree») 

names(start.probs) <- nodes(tree) 

start.probs[names(start.probs)== names(table(start.states»] <

table(start.states)/length(start.states) 

} 

n <- length(unique(Data$id» ## number of individuals in sample 

ns <- length(nodes(tree» ## number of states 

Cens <- Add. States (tree) 

if (LT) { 
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Data = LT.Data(Data) 

cp <- CP(tree,Cens$treeLT,Data,Cens$nt.states.LT) 

} 

if(!LT) cp <- CP(tree,Cens$treeO,Data,Cens$nt.states) 

ds.est<-DS(LT="LT",Cens$nt.states,cp$dNs,cp$sum.dNs,cp$Ys, 

Cens="O",cens.type) 

cp.red <- Red(tree,cp$dNs,cp$Ys,cp$sum.dNs,ds.est$dNs.K, 

ds.est$Ys.K,ds.est$sum.dNs.K) 

if(missing(start.states)){ 

if(!LT) start.probs=cp$start.probs 

} 

et <- as.numeric(rownames(cp.red$dNs)) 

res.ci2 <- strsplit(colnames(cp.red$dNs), " ") 

a <- sapply(res.ci2, function(x) x[2]) 

b <- sapply(res.ci2, function(x) x[3]) 

pos.trans <- paste(a,b) 

stay <- paste(Cens$nt.states,Cens$nt.states) 

pos.trans <- sort(c(stay,pos.trans)) 

stateoccfn <- stocc(ns,tree,cp.red$dNs.K,cp.red$Ys.K,start.probs) 

ent.exit <- Dist(stateoccfn$ps,ns,tree) 

variances <- var.fn(tree,ns,Cens$nt.states,cp.red$dNs,cp.red$Ys, 
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cp.red$sum.dNs,stateoccfn$all.ajs, stateoccfn$all.I_dA,stateoccfn$ps) 

no.start.st <- length(which(start.probs>O)) 

if(cens.type=="ind" & no.start.st==l){ 

if (d. var==TRUE) { 

ee.vars <- BS.var(Data,tree,ns,et,cp.red$dNs,cens.type,B,LT,start.states) 

var.Fs <- ee.vars$Fs 

var.Gs <- ee.vars$Gs 

} else { 

} 

var.Fs=NULL 

var.Gs=NULL 

res <- new("msSurv", tree=tree,ns=ns,et=et,pos.trans=pos.trans, 

nt.states=Cens$nt.states,dNs=cp.red$dNs,Ys=cp.red$Ys, 

ps=stateoccfn$ps,all.ajs=stateoccfn$all.ajs,Fs=ent.exit$Fs, 

Gs=ent.exit$Gs,out=variances$out,cov.p=variances$cov.p, 

sum.dNs=cp.red$sum.dNs, dNs.K=cp.red$dNs.K,Ys.K=cp.red$Ys.K, 

sum.dNs.K=cp.red$sum.dNs.K,cov.dA=variances$varcov, 

all.I_dA=stateoccfn$all.I_dA, Fs.var=var.Fs,Gs.var=var.Gs) 

} 

if(cens.type=="ind" & no.start.st>l){ 

bsvar <- BS.var(Data,tree,ns,et,cens.type,B,LT,start.states) 

res <- new("msSurv", tree=tree,ns=ns,et=et,pos.trans=pos.trans, 

nt.states=Cens$nt.states,dNs=cp.red$dNs,Ys=cp.red$Ys, 

ps=stateoccfn$ps,all.ajs=stateoccfn$all.ajs,Fs=ent.exit$Fs, 
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Gs=ent.exit$Gs,out=bsvar$out,cov.p=bsvar$cov.p, 

sum.dNs=cp.red$sum.dNs, dNs.K=cp.red$dNs.K, Ys.K=cp.red$Ys.K, 

sum.dNs.K=cp.red$sum.dNs.K,cov.dA=variances$varcov, 

all. I_dA=stateoccfn$all. I_dA,Fs.var=bsvar$Fs.var, 

Gs.var=bsvar$Gs.var)} 

if (cens. type=="dep"){ 

bsvar <- BS.var(Data,tree,ns,et,cens.type,B,LT,start.states) 

res <- new(lmsSurv", tree=tree,ns=ns,et=et,pos.trans=pos.trans, 

nt.states=Cens$nt.states,dNs=cp.red$dNs, Ys=cp.red$Ys, 

ps=stateoccfn$ps,all.ajs=stateoccfn$all.ajs,Fs=ent.exit$Fs, 

Gs=ent.exit$Gs,out=bsvar$out,cov.p=bsvar$cov.p, 

sum.dNs=cp.red$sum.dNs, dNs.K=cp.red$dNs.K, 

Ys.K=cp.red$Ys.K,sum.dNs.K=cp.red$sum.dNs.K, 

cov.dA=variances$varcov,all.I_dA=stateoccfn$all.I_dA, 

Fs.var=bsvar$Fs.var,Gs.var=bsvar$Gs.var) 

} 

return(res) 

} 

B Display functions in the msSurv package 

Key functions in the R package msSurv for displaying nonparametric 

estimation of right censored and possibly left truncated data. 
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## Transition Probability P(s,t) ## 

Pst <- function(object,s=0,t="l ast",deci=4,covar=FALSEH 

if (!(O <= s & s < t)) 

stop("'S' and 't' must be positive, and s < til) 

if (t <= object~et[l] I s >= object~et[length(object~et)]) 

stop("Either 's' or 't' is an invalid time") 

if(t=="last") t <- object~et[length(object~et)] 

idx <- which(s<=object~et & object~et<=t) #location of those [s,t] 

l.idx <- length(idx) 

cum. prod <- diag(object~ns) 

rownames(cum.prod) <- nodes(object~tree) 

red.all.ajs <- array(dim=c(object~ns,object~ns,nrow(object~dNs)), 

dimnames=list(rows=nodes(object~tree),cols=nodes(object~tree), 

dim=rownames(object~dNs))) 

for(i in idxH 

cum.prod <- cum.prod %*% object~all.I_dA["i] 

red.all.ajs["i] <- cum.prod 

} 

if (covar TRUEH 

bl.ld <- diag(1,(object~ns)~2) #Ident matrix for Kronecker product 

var.Pst <- array(O, dim=c(dim(object~all.I_dA["idx])[c(l, 2)]~2, 

nrow(object~dNs))) 

142 



colnames(var.Pst) <- rownames(var.Pst) <- paste(rep(nodes(object~tree), 

object~ns), sort(rep(nodes(object~tree),object~ns))) 

Id <- diag(1,object~ns) 

for(i in idx){ 

if(i==idx[1]) var.Pst[, , i] <- bl.Id%*% object~cov.dA["i] %*% bl.Id 

else var.Pst[, , i] <- (t(object~all.I_dA[, , i]) %x% Id) %*% 

var.Pst[, , i-1] %*%((object~all.I_dA[, , i]) %x% Id) + 

(Id %x% red.all.ajs[, , i-1]) %*% object~cov.dA["i] %*% 

(Id%x% t(red.all.ajs[, , i-1])) 

} #end of for idx 

} #end of if var 

cat(paste("Estimate of P(",s,",",t,")\n", sep "")) 

print(round(cum.prod,digits=deci)) 

} 

cat ("\n") 

if (!is.null(object~out) & covar == TRUE) { 

cat(paste("Estimate of cov(P(",s,",",t,"))\n", sep '"')) 

print(round(var.Pst["max(idx)],digits=deci)) 

} 

## State Dcc for Specific Time t ## 

st.t<- function(object,t="last",deci=4,covar=FALSE){ 

if(t=="last") t <- object~et[length(object~et)J 
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t.loc<- length(object~et[object~et<= t]) 

cat (paste ("The state occupation probabilities at time ", t," are: 

\n", sep = ""» 

for(i in nodes(object~tree»{ 

} 

cat(paste("State ",i,": ",round(object~ps[t.loc,as.numeric(i)], 

deci) ,"\n",sep = ",,» 

cat("\n") 

} 

if (!is.null(object~out) & covar == TRUE) { 

cat(paste("Covariance Estimates for State 

Occupation Probability: \n", sep = ""» 

for(i in nodes(object~tree»{ 

} 

cat(paste("State ",i,": ",round(object~cov.p[t.loc,as.numeric(i)],deci), 

"\n",sep = ""» 

} 

## State Entry/Exit Time Distribution ## 

EntryExit <- function(object,t="last",deci=4,covar=FALSE){ 

if(covar==TRUE & is.null(object~Fs.var»{ 

stop(paste("msSurv object does not have variance estimates 

for entry/exit time distributions. 

Please re-run the msSurv object with the argument 
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'd.var=FALSE' and then try again. \n", sep=''''» 

} 

entry.st <- which(!(sapply(inEdges(object~tree), 

function(x) length(x) == 0») 

initial <- which(!(nodes(object~tree)%in%entry.st» 

exit.st <- which(sapply(edges(object~tree), 

function(x) length(x) > 0» 

terminal <- which(!(nodes(object~tree)%in%exit.st» 

if(t=="last") t <- object~et [length(object~et)] 

t.loc<- length(object~et[object~et<= t]) 

cat(paste("The state entry distributions at time" 

t," are:\n", sep = ""» 

for(i in entry.st){ 

} 

cat (paste ("State ", i,": II , round (obj ect~Fs [t .loc,] [[iJ] ,ded) , 

"\n",sep = ""» 

cat(paste("State entry distributions for state II 

as.character(initial),"is omitted 

since there are no transitions into that state. "» 

cat ("\n" , "\n") 

if (covar==TRUE) { 

cat(paste("Variance Estimates for State Entry 

Distributions: \n", sep = 1111» 
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for(i in entry.st){ 

cat (paste ("State ", i,": ", round (obj ect(QFs . var [t .loc ,] [[i]] ,deci) , 

"\n",sep = ""» 

} #end of entry.st loop 

cat("Variance estimates of state entry distributions for state" 

as.character(initial),"is omitted 

since there are no transitions into that state.") 

cat ("\n") 

} #end of if covar loop 

cat ( "\n" , "\n" ) 

cat(paste("The state exit distributions at time ",t, 

" are:\n", sep = ""» 
for(i in exit.st){ 

} 

cat (paste("State ", i,": ",round(object(QGs [t .loc ,] [[iJ] ,deci) , 

"\n",sep = ""» 

cat("State exit distributions for state(s) " ,as. character (terminal) , 

"is (are) omitted 

since there are no transitions into that (those) state(s).") 

cat ("\n" , "\n") 
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if (covar==TRUE) { 

cat(paste("Variance Estimates for State Exit Distributions: \n", 

sep = "")) 

for(i in exit.st){ 

cat(paste("State ",i,": ",round(objectOGs.var[t.loc,] [[iJ], 

deci) ,"\n",sep = "")) 

} #end of entry.st loop 

cat("Variance estimates of state exit distributions for state(s) " 

as.character(terminal),"is (are) omitted 

since there are no transitions into that (those) state(s).") 

cat ("\n") 

} #end of if covar loop 

} #end of loop 

setMethod("print", signature (x="msSurv"), 

function(x, covar = FALSE, ee.distn=TRUE, ... ) { 

transient <- as.character(which(sapply(edges(tree(x)), 

function(x) length(x) > 0))) 

absorb <- as.character(which(sapply(edges(tree(x)), 

function(x) length(x) == 0))) 

147 



trans <- strsplit(colnames(x«ldNs), '"') 

idxl <- sapply(trans, function(x) x[4]) 

idx2 <- sapply(trans, function(x) x[6]) 

trans <- paste(idxl,idx2) 

cat(paste("The specified multistate model has II , 

length(transient), 

"transient state(s) and \n",length(absorb), 

"absorbing state(s)\n\n", sep = " ")) 

cat("Possible States in this Model:\n") 

print(nodes(x«ltree)) 

cat ("\n") 

cat(IIPossible Transitions for this Model:\n") 

print (trans) 

cat ("\n") 

## start of state occupation prob info 

cat("State Occupation Information at time ", 

max(as.numeric(rownames(x(!)dNs))) ,": \n",sep="") 

cat ("\n") 

cat(paste("Estimates of State Occupation Probabilities", 

"\n", sep = 1111) 

print(round(x«lps[nrow(x«lps),],digits=4)) 

cat ("\n") 

148 



if C!is.nullCx~cov.p) & covar == TRUE) { 

catC"Estimates of Covariance of State Occupation 

Probabili ties" ,"\n") 

printCroundCx~cov.p[nrowCx~cov.p),],digits=4)) 

cat C"\n") 

} 

if Cee. distn) { 

} 

catC"Estimates of State Entry Time Distribution","\n") 

printCroundCx~Fs[nrowCx~Fs),],digits=4)) 

cat C"\n") 

catC"Estimates of State Exit Time Distribution","\n") 

printCroundCx~Gs[nrowCx~Gs),] ,digits=4)) 

cat ("\n") 

cat C"\n") 

## transition probability info 

cat(IITransition Probability Information: II , "\n", "\n") 

cat(pasteC"Estimate of PC",O,",", 

maxCas.numericCrownamesCx~dNs))),")\n", sep 1111)) 

## set up currently to do P(O,maxCx~et)) 

printCroundCx~all.ajs["dim(x~all.ajs)[3]] ,digits=4)) 

cat C"\n") 
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}) 

## 

if (!is.null(x~out) & covar == TRUE) { 

cat(paste("Estimate of cov(P(",O,",", 

max(as.numeric(rownames(x(QdNs))) ,"))\n", sep = "")) 

print(round(x~out[, , dim(x(Qout) [3]] ,digits=4)) 

} 

cat("\n") 

invisible () 

setMethod("show", "msSurv", 

function(object) { 

## nonterminal states 

transient <- as.character(which(sapply(edges(tree(object)), 

function(object) length(object) > 0))) 

## absorbing states 

absorb <- as.character(which(sapply(edges(tree(object)), 

function(object) length(object) == 0))) 

trans <- strsplit(colnames(object~dNs),"") 

idxl <- sapply(trans, function(x) x[4]) 

idx2 <- sapply(trans, function(x) x[6]) 

trans <- paste(idxl,idx2) 

cat(paste("The specified multistate model has", length(transient), 
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"transient state(s) and II length (absorb) , "absorbing state(s) 

\n\n", sep = II "» 

cat(IIPossible States in this Model:\n") 

print(nodes(object~tree» 

cat ("\n") 

cat(IIPossible Transitions for this Model:\n") 

print (trans) 

cat ("\n") 

## start of state occupation prob info 

cat("State Occupation Information: ", "\n", "\n") 

cat(paste("Estimates of State Occupation Probabilities","\n", 

sep = ''''» 

print(object~ps) 

cat ("\n") 

cat(IIEstimates of State Entry Time Distribution","\n") 

print(object~Fs) 

cat ("\n") 

cat("Estimates of State Exit Time Distribution","\n") 

print(object~Gs) 

cat ("\n") 
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cat ("\n") 

## transition probability info 

}) 

cat ("Transi tion Probability Information:", "\nll, "\nll) 

cat(paste("Estimate of P(",O,",", 

max(as. numeric(rownames (object(QdNs») , ") \n", sep = '"'» 

## set up currently to do P(O,max(object(Qet» 

print(object(Qall.ajs["dim(object(Qall.ajs)[3]]) 

cat("\n") 

cat("\n") 

invisible () 

setMethod("summary", "msSurv", 

function (obj ect, digi ts=3, all = FALSE, ci. fun = "linear", 

ci.level = 0.95, stateocc=TRUE, trans.pr=TRUE) { 

if (ci.level <= 0 I ci.level > 1) { 

stop ("confidence level must be between 0 and 1") 

} 

tmp <- MSM.CIs(object,ci.level=0.95) 

times <-object(Qet 

if (! all){ 

dt <- quantile(times, probs = cCO,0.25,O.5,O.75,1» 
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ind <- findInterval(dt,times) 

} 

## State Occupation Probability Section 

if (stateoccH 

cat("State Occupation Information: ", "\n", "\n") 

if (all){ 

for(i in seq(object~ns»{ 

cat(paste("State ", i, "\n"» 

sop.sum <- data.frame(time=times, 

estimate=object~ps[,i], 

variance=object~cov.p[,i] ,lower.ci=tmp$CI.p[,2,i], 

upper.ci=tmp$CI.p[,3,i],Fs=object~Fs[,i] , 

Gs=object~Gs[,i]) 

print(sop.sum,row.names=FALSE,digits=digits) 

cat("\n") 

} #end of for statement 

} #end of if (all 

else{ 

for(i in seq(object~ns»{ 

cat(paste("State ", i, "\n"» 

sop.sum <- data.frame(time=times[ind], 

estimate=object~ps[ind,i] , 
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variance=object~cov.p[ind,i],lower.ci=tmp$CI.p[ind,2,i], 

upper.ci=tmp$CI.p[ind,3,i] ,entry.d=object~Fs[ind,i], 

exit.d=object~Gs[ind,i]) 

print(sop.sum,row.names=FALSE,digits=digits) 

cat ("\n") 

} #end of for statement 

} #end of else 

} #end of if(stateocc) 

## Transition Probability Matrix Section 

if (trans. pr){ 

cat("Transition Probability Information:", "\n", "\n") 

It <- length(object~pos.trans) 

tts <- strsplit(object~os.trans, split "") 

if (all) { 

i=seq_along(object~pos.trans)[2] 

for (i in seq_along(object~pos.trans)) { 

cat(paste("Transition", tts[[i]][l], "->", tts[[i]] [2], "\n", 

sep = " ")) 
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## code to add number at risk and number transitions 

## print # events for transitions out of stage, else print # Ie 

dns.name <- ifelse(tts[[i]] [1] == tts[[i]] [2], 

paste(ldN", tts[[i]] [1], ".", sep=" "), paste(ldN", 

object<Opos.trans[i], sep=" ")) 

ifelse(dns.name %in% colnames(object<OdNs), 

n.event <- object<OdNs[, dns.name], 

n.event <- object<Osum.dNs[, dns.name]) 

ifelse(dns.name %in% colnames(object<OdNs.K), 

n.event.K <- object<OdNs.K[, dns.name], 

n.event.K <- object<Osum.dNs.K[, dns.name]) 

ys.name <- paste("y", tts[[iJ] [1], sep=" ") 

n.risk <- object<OYs[, ys.name] 

n.risk.K <- object<OYs.K[,ys.name] 

if (dns.name %in% colnames(object<OdNs)) { 

tp.sum <- data.frame(time=times,estimate=tmp$CI.trans[,l,i] 

variance=tmp$CI.trans[,4,i] ,lower.ci=tmp$CI.trans[,2,i], 

upper.ci=tmp$CI.trans[,3,i] ,n.risk = n.risk, n.event=n.even 

n.risk.K=n.risk.K,n.event.K=n.event.K) 

} else { 

tp.sum <- data.frame(time=times,estimate=tmp$CI.trans[,l,i] 

variance=tmp$CI.trans[,4,i],lower.ci=tmp$CI.trans[,2,i] , 

upper.ci=tmp$CI.trans[,3,i],n.risk = n.risk, 

n.remain=n.risk-n.event,n.risk.K=n.risk.K, 

n.remain.K=n.risk.K-n.event.K) 
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} 

print(tp.sum, row.names FALSE,digits=digits) 

cat("\n") 

} #end of for loop 

} #end of if(all) 

else{ 

for (i in seq_along(objectOpos.trans)) { 

cat(paste("Transition", tts[[i]][l], "->", tts[[i]] [2], "\n", s 

dns.name <- ifelse(tts[[i]] [1] == tts[[i]] [2], paste("dN", tts[ 

".", sep=" "),paste("dN", object~pos.trans[i], sep=" ")) 

ifelse(dns.name %in% colnames(object~dNs), 

n.event <- object~dNs[, dns.name], 

n.event <- object~sum.dNs[, dns.name]) 

ifelse(dns.name %in% colnames(object~dNs.K), 

n.event.K <- object~dNs.K[, dns.name], 

n.event.K <- object~sum.dNs.K[, dns.name]) 

ys.name <- paste("y", tts[[i]] [1], sep=" ") 

n.risk <- object~Ys[, ys.name] 

n.risk.K <- object~Ys.K[,ys.name] 

if (dns.name %in% colnames(object~dNs)) { 

tp.sum <- data.frame(time=times[ind], estimate=tmp$CI.trans 

variance=tmp$CI.trans[ind,4,i] ,lower.ci=tmp$CI.trans[ind,2, 

upper.ci=tmp$CI.trans[ind,3,i] ,n.risk = n.risk[ind], 

n. event=n.event [ind] ,n.risk.K = n.risk.K[ind], n.event.K=n. 
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} else { 

tp.sum <- data. frame (time=times [ind] ,estimate=tmp$CI.trans[ 

variance=tmp$CI.trans[ind,4,i] ,lower.ci=tmp$CI.trans[ind,2,i] 

upper.ci=tmp$CI.trans[ind,3,i] ,n.risk = n.risk[ind], 

n.remain=n.risk[ind]-n.event[ind],n.risk.K=n.risk.K[ind], 

n.remain.K=n.risk.K[ind]-n.event.K[ind]) 

} 

print(tp.sum, row.names 

cat("\n") 

} #end of for statement 

} #end of else 

} #end of if trans.pr 

} #end of summary function 

) #ends setMethod 

FALSE,digits=digits) 

setMethod("plot", signature(x="msSurv", y="missing"), 

function (x, states="ALL", trans="ALL", plot.type="stateocc", 

CI=TRUE, ci.level=O. 95, ci. trans="linear", ... ) { 

plot.type=match.arg(plot.type, c("stateocc", "transprob","entry.d","exit.d")) 

if (plot. type=="stateocc"){ 

tmp <- MSM.CIs(x,ci.level=O.95) #Calling CIs 

if(states[l]=="ALL") states<-nodes(x~tree) 

f.st <- factor(states) 

Is <- length(states) 

sl <- which(nodes(x~tree)%in%as.numeric(states)) 

if(CI==TRUE & !is.null(x~cov.p)){ 

rd <- tmp$CI.p 

dimnames(rd)$dim=gsub("p", "State", dimnames(rd)$dim) 
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Y <- as.vector(rd[,l,sl]) 

y2 <- as.vector(rd[,2,sl]) #lower limit 

y3 <- as.vector(rd[,3,sl]) #upper limit 

x <- rep(as.numeric(dimnames(rd) [[1]]) , length(states» 

f.st <- as.factor(rep(dimnames(rd)$dim[sl], each=dim(rd)[l]» 

## NOTE: add ' ... ' argument below 

st.plot <- xyplot(y + y2 + y3 - x I f.st, 

allow. multiple=TRUE, type="s" ,1 ty=c(l, 2,2) ,col=c (1,2,2) , ... ) 

st.plot <- update(st.plot,main="Plot of State Occupation Probabilites", 

xlab="Event Times",ylab="State Occupation Probabilities", 

key = list(lines=list(col=c(l, 2, 2), lty=c(l, 2, 2», 

text=list(c(IIEst", "Lower CI", "Upper CI"», 

columns=3» 

print(st.plot) 

} #end of CIs TRUE 

if (CI==FALSE) { 

rd <- tmp$CI.p 

dimnames(rd)$dim=gsub("p", "State", dimnames(rd)$dim) 

y <- as.vector(rd[,l,sl]) 

x <- rep(as.numeric(dimnames(rd)[[l]]), length(states» 

f.st <- as.factor(rep(dimnames(rd)$dim[sl], each=dim(rd) [1]» 

st.plot <- xyplot(y-xlf.st, type="s",col=O 

st.plot <- update(st.plot,main="Plot of State Occupation Probabilites", 

xlab="Event Times",ylab="State Occupation Probabilities", 

key = list(lines=list(col=c(l) , lty=c(l», text=list(c("Est"»» 

print(st.plot) 

} #end of no CIs 

} #end of state occ plot 
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if (plot. type=="transprob"){ 

tmp <- MSM.CIs(x,ci.level,ci.trans) #Calling CIs 

all. trans <- x~pos.trans 

cc <- strsplit(all.trans," ") 

cc2 <- sapply(cc,function(x) x[l]) 

cc3 <- sapply(cc,function(x) x[2]) 

all.trans <- paste(cc2,cc3,sep="") 

if(trans[l] =="ALL") trans <- all. trans 

rd <- tmp$CI.trans 

names (rd) <- paste(trans,"transition") 

tr <- which(all.trans%in%trans) 

if(CI==TRUE & !is.null(x~out»{ 

y <- as.vector(rd[,l,tr]) 

y2 <- as.vector(rd[,2,tr]) #lower limit 

y3 <- as.vector(rd[,3,tr]) #upper limit 

x <- rep(as.numeric(dimnames(rd) [[1]]), 

length(trans» 

f.tp <- as.factor(rep(dimnames(rd)$dim[tr], 

each=dim(rd) [1]» 

tr.plot <- xyplot(y + y2 + y3 - x I f.tp, 

allow.multiple=TRUE,type="s" ,lty=c(1,2,2) ,col=cCl,2,2), ... ) 

tr.plot <- update(tr.plot,main="Plot of Transition Probabilites", 

xlab="Event Times",ylab="Transition Probabilites", 

key = list(lines=list(col=c(l, 2, 2), Ity=c(l, 2, 2», 
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text=list(c("Est", "Lower CI", "Upper CI"», 

columns=3» 

print(tr.plot) 

} #end of CIs TRUE 

if (CI==FALSE) { 

rd <- tmp$CI.trans 

y <- as.vector(rd[,1,tr]) 

x <- rep(as.numeric(dimnames(rd) [[1]]), length(trans» 

f.tp <- as.factor(rep(dimnames(rd)$dim[tr], 

each=dim(rd) [1]» 

tr.plot <- xyplot(y-xlf.tp, allow.multiple=FALSE, 

type="s" ,col=1, ... ) 

tr.plot <- update(tr.plot,main="Plot of Transition Probabilites", 

xlab="Event Times",ylab="Transition Probabilities", 

key = list (lines=list(col=1, lty=1), text=list("Est"),columns=1» 

print(tr.plot) 

} #end of no CIs 

} #end of trans prob plot 

if(plot.type=="entry.d"){ 

enter <- as.character(which(!(sapply(inEdges(x~tree), 

function(x) length(x) == 0»» 

if (states [1] ==" ALL") states<-enter 

f.st <- factor(states) 
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Is <- length(states) 

sl <- which(nodes(x@tree)%in%as.numeric(states» 

if (CI==TRUE) { 

if(!is.null(x~Fs.var»{ 

tmp <- Dist.CIs(x,ci.level,ci.trans) #Calling CIs 

rd <- tmp$CI.Fs 

dimnames(rd)$dim=gsub("F", "State", dimnames(rd)$dim) 

y <- as.vector(rd[,l,sl]) 

y2 <- as.vector(rd[,2,sl]) #lower limit 

y3 <- as.vector(rd[,3,sl]) #upper limit 

x <- rep(as.numeric(dimnames(rd) [[1]]), length(states» 

f.st <- as.factor(rep(dimnames(rd)$dim[sl], each=dim(rd)[l]» 

ent.plot <- xyplot(y + y2 + y3 - x I f.st, allow. multiple=TRUE , 

type="s" ,lty=c(1,2,2) ,col=c(1,2,2» 

ent.plot <- update(ent.plot,main="Plot of State Entry Time Distributions", 

xlab="Event Times",ylab="State Entry Time Distributions", 

key = list(lines=list(col=c(l, 2, 2), Ity=c(l, 2, 2», 

text=list(c("Est", "Lower CI", "Upper CI"», 

columns=3» 

print(ent.plot) 

} 

else { 

rd <- x<!lFs 

dimnames(rd) [[2]]=gsub("F", "State", dimnames(rd) [[2]]) 

y <- as.vector(rd[,sl]) 
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X (- rep(as.numeric(dimnames(rd)[[lJJ), length(states)) 

f.st (- as.factor(rep(dimnames(rd) [[2JJ [slJ, each=dim(rd)[lJ)) 

ent.plot (- xyplot(y-xlf.st, type="s",col=l) 

ent.plot (- update(ent.plot,main="Plot of State Entry Time Distributions", 

xlab="Event Times",ylab="State Entry Time Distributions", 

key = list(lines=list(col=c(l) , lty=c(l)), text=list(c("Est")))) 

print(ent.plot) 

} 

} #end of CI False 

if (CI==FALSE) { 

rd (- xCDFs 

dimnames (rd) [ [2J J =gsub ("F", "State", dimnames (rd) [[2J J ) 

y (- as.vector(rd[,slJ) 

x (- rep(as.numeric(dimnames(rd) [[lJJ), length(states)) 

f.st (- as. factor (rep (dimnames (rd) [[2JJ [slJ, each=dim(rd) [lJ)) 

ent.plot <- xyplot(y-xlf.st, type="s",col=!) 

ent.plot (- update(ent.plot,main="Plot of State Entry Time Distributions", 

xlab="Event Times",ylab="State Entry Time Distributions", 

key = list (lines=list(col=c(!) , lty=c(l)), text=list(c("Est")))) 

print(ent.plot) 

} #end of CI False 

} #end of entry distribution plot 

if (plot. type=="exi t. d"){ 
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transient <- as.character(which(sapply(edges(x~tree), 

function(x) length(x) > 0») 

if (states [1J ==" ALL") states<-transient 

f.st <- factor(states) 

Is <- length(states) 

sl <- which(nodes(x~tree)%in%as.numeric(states» 

if (CI==TRUEH 

if(!is.null(x~Gs.var»{ 

tmp <- Dist.CIs(x,ci.level,ci.trans) #Calling CIs 

rd <- tmp$CI.Gs 

dimnames(rd)$dim=gsub("G", "State", dimnames(rd)$dim) 

y <- as.vector(rd[,1,slJ) 

y2 <- as.vector(rd[,2,slJ) #lower limit 

y3 <- as.vector(rd[,3,slJ) #upper limit 

x <- rep(as.numeric(dimnames(rd) [[1JJ), length(states» 

f.st <- as.factor(rep(dimnames(rd)$dim[slJ, each=dim(rd) [1J» 

ent.plot <- xyplot(y + y2 + y3 - x I f.st, allow.multiple=TRUE, 

type="s" ,lty=c(1,2,2) ,col=c(1,2,2), ... ) 

ent.plot <- update(ent.plot,main="Plot of State Exit Time Distributions", 

xlab="Event Times",ylab="State Exit Time Distributions", 

key = list(lines=list(col=c(1, 2, 2), Ity=c(1, 2, 2», 

text=list(c("Est", "Lower CI", "Upper CI"», 

columns=3» 

print(ent.plot) 

} 
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else{ 

rd <- x(UGs 

dimnames (rd) [[2]] =gsub("G", "State", dimnames (rd) [[2]]) 

y <- as.vector(rd[,slJ) 

x <- rep(as.numeric(dimnames(rd) [[lJJ), length(states)) 

f.st <- as.factor(rep(dimnames(rd) [[2]J [slJ, each=dim(rd)[lJ)) 

exit.plot <- xyplot(y-xlf.st, type="s",col=1) 

eXit.plot <- update(exit.plot,main="Plot of State Exit Time Distributions", 

xlab="Event Times",ylab="State Exit Time Distributions", 

key = list (lines=list (col=c(1) , Ity=c(l)), text=list(c("Est")))) 

print(exit.plot) 

} #end of null variance loop 

} #end of CI FALSE loop 

if (CI==FALSE) { 

rd <- x(UGs 

dimnames(rd) [[2JJ=gsub("G", "State", dimnames(rd) [[2]J) 

y <- as.vector(rd[,sl]) 

x <- rep(as.numeric(dimnames(rd) [[lJ]), length(states)) 

f.st <- as.factor(rep(dimnames(rd) [[2]] [sl], each=dim(rd)[l])) 

eXit.plot <- xyplot(y-xlf.st, type="s",col=l) 

eXit.plot <- update(exit.plot,main="Plot of State Exit Time Distributions", 

xlab="Event Times",ylab="State Exit Time Distributions", 

key = list(lines=list(col=c(1), Ity=c(1)), text=list(c("Est")))) 

print(exit.plot) 

} #end of CI FALSE loop 

} #end of entry distribution plot 
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}#end of function 

) 

C Interval Censored Code 

Key functions for non parametric estimation of interval censored data for the 

three state tracking model. 

### Function for reducing the interval censored dataset 

redICds <- function(int.cens,o.dat,smooth.fit.Ns){ 

IC.keep <- which(lint.cens$times%in%names(which(smooth.fit.Ns[,l]==1))) 

IC.keep.2 <- which(!int.cens$times%in%names(which(smooth.fit.Ns[,2]==1))) 

dat.keep <- which(smooth.fit.Ns[,l]<l) 

dat.keep.2 <- which(smooth.fit.Ns[,2]<1) 

## The reduced data sets 

red.IC.12 <- int.cens[IC.keep,]; red.IC.23 <- int.cens[IC.keep.2,] 

red.dat.12 <- o.dat[dat.keep,]; red.dat.23 <- o.dat[dat.keep.2,] 

## Number of individuals in each data set 

nind.12 <- length(unique(red.dat.12$id)) 

nind.23 <- length(unique(red.dat.23$id)) 

list(data.keep=dat.keep,dat.keep.2=dat.keep.2,IC.keep=IC.keep, 

IC.keep.2=IC.keep.2,nind.12=nind.12,nind.23=nind.23, 

red.IC.12=red.IC.12,red.IC.23=red.IC.23,red.dat.12=red.dat.12, 

red.dat.23=red.dat.23, dat.keep=dat.keep,dat.keep.2=dat.keep.2) 
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} 

Ieest (- function(Data,tree,full,data){ 

## data with sorted inspection times 

data (- with(Data, Data[order(Data$times),J) 

nind (- length(unique(Data$id)) 

## allowable transitions 

nt,states (- which(sapply(edgeL(tree), 

function(x) length(x$edges»O)) 

lng (- sapply(edges(tree)[nodes(tree)%in%names(nt,states)J, 

length) 

trans (- paste (rep(nodes(tree) [nodes(tree)%in%names(nt,states)J, 

lng), unlist(edges(tree) [nodes (tree)%in%names (nt ,states)]) ,sep="") 

## Indicators I(Ujj'(=cik) 

Is (- matrix(O, nrow=length(data$times), ncol=length(trans)) 

colnames(Is)=paste("I", trans,sep='''') 

rownames(Is)=data$times 

for(i in nodes(tree)){## generalized code for any tree, , , 

if (length(inEdges(tree) [[iJJ)==O) next 

ld (- inEdges(tree) [[iJJ #nodes from 

ex (- edges(tree) [[iJJ #nodes to 

later,stages (- names(acc(tree, i) [[lJJ) 

stages (- c(i, later,stages) 

b (- paste("I", inEdges(tree)[[iJ], i,sep="") 
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row.idx <- which(data$stage%in%stages) 

col.idx <- which(colnames(Is)%in%b) 

Is[row.idx,col.idx]<-l 

} #end of for loop through nodes 

## Initial Fit/Smooth using gpava 

bw <- bw.SJ(data$times) 

# bw <- 0.4 

#storage for initial estiamtes, row names are the inspection times 

fit.ls.Ns <- smooth.fit.Ns <- matrix(O, nrow=length(data$times), 

ncol=length(trans» 

colnames(fit.ls.Ns)=colnames(smooth.fit.Ns)=paste("I",trans,sep="") 

rownames(fit.ls.Ns)=rownames(smooth.fit.Ns)=data$times 

## Initial fit 

fit.ls.Ns[,colnames(Is)] <- apply(Is, 2, function(a) gpava(z=data$times, y=a)$x) 

smooth.fit.Ns[,colnames(Is)] <- apply(fit.ls.Ns, 2, 

function(x) ksmooth(sort(data$times), 

x, kernel="normal",bandwidth = bw, x.points sort (data$times»$y) 

## Counting process for initial fit 

nw.Ns <- apply(smooth.fit.Ns,2,function(x) x*nind) 

## reducing the data set 

red <- redICds(Data,data,smooth.fit.Ns) 
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## Constraints to perform isotonic regression 

Atot12 (- cbind(l:(length(red$red.dat.12$times)-1), 

2: (length(red$red.dat.12$times») 

Atot23 (- cbind(1:(length(red$red.dat.23$times)-1), 

2: (length(red$red.dat.23$times») 

## Variance computaions for the reduced data set 

ids.ts (- red$red.IC.12$id[order(red$red.IC.12$times)] ##for 12 

res.Ns <- tapply(smooth.fit.Ns[red$dat.keep,l], ids.ts, function(p) { 

mat <- outer(p, p, FUN = function(x,y) x-x*y) 

diag(mat) <- p*(l-p) 

mat[upper.tri(mat,diag=FALSE) ]<-0 

mat[lower.tri(mat,diag=FALSE) ]<-0 

return(mat)}) 

bigmat (- matrix(0,nrow=nrow(red$red.dat.12), ncol=nrow(red$red.dat.12» 

idx <- c(O, cumsum(table(red$red.dat.12$id») 

for (i in 1:red$nind.12) { 

bigmat[(idx[i]+1):idx[i+1], (idx[i]+1):idx[i+1]] <- res.Ns[[i]] 

} 

ordered.bigmat <- bigmat[order(red$red.IC.12$times), 

order(red$red.IC.12$times)] 

ids.ts <- red$red.IC.23$id[order(red$red.IC.23$times)] ## for 23 

res.Ns.23 <- tapply(smooth.fit.Ns[red$dat.keep.2,2], ids.ts, function(p) { 

mat <- outer(p, p, FUN = function(x,y) x-x*y) 

diag(mat) <- p*(l-p) 

mat[upper.tri(mat,diag=FALSE) ]<-0 

mat[lower.tri(mat,diag=FALSE) ]<-0 
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return(mat)}) 

bigmat <- matrix(O,nrow=nrow(red$red.dat.23), ncol=nrow(red$red.dat.23» 

idx <- c(O, cumsum(table(red$red.dat.23$id») 

for (i in 1:red$nind.23) { 

bigmat[(idx[i]+1):idx[i+1], (idx[i]+1):idx[i+1]] <- res.Ns.23[[i]] 

} 

ordered.bigmat.2 <- bigmat[order(red$red.IC.23$times), 

order(red$red.IC.23$times)] 

## Weighted GLS fit 

fit.gls.N12 <- activeSet(Atot12, "LS", y Is[red$dat.keep, 1] , 

weights=diag(ginv(ordered.bigmat»)$x 

fit.gls.N23 <- activeSet(Atot23, "LS", y Is[red$dat.keep.2,2], 

weights=diag(ginv(ordered.bigmat.2»)$x 

bw12 <- bW.SJ(red$red.dat.12$times) 

bw23 <- bW.SJ(red$red.dat.23$times) 

ifelse(max(red$red.dat.12$times»max(red$red.dat.23$times) 

maxt <- max(red$red.dat.12$times),maxt<-max(red$red.dat.23$times» 

Ngrid <- nrow(data)*2 

timegrid <- seq(from=O,to=maxt+2*bw,length.out=Ngrid-length(data$times» 

timegrid <- sort(c(timegrid,data$times» #adding inspection times 

it.idx <- which(timegrid%in%red$red.dat.12$times) 

it.idx2 <- which(timegrid%in%red$red.dat.23$times) 
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smooth.glsfit.Ns1 <- ksmooth(red$red.dat.12$times, fit.gls.N12, 

kernel="normal", bandwidth = bw12, x.points = timegrid)$y 

smooth.glsfit.Ns2 <- ksmooth(red$red.dat.23$times, fit.gls.N23, 

kernel=" normal", bandwidth = bw23, x.points = timegrid)$y 

## Filling in Nans and putting in matrix 

smooth.glsfit.Ns <- matrix(O, nrow=length(timegrid), ncol=length(trans» 

smooth.glsfit.Ns[,l] <- na.locf(smooth.glsfit.Ns1) 

smooth.glsfit.Ns[,2] <- na.locf(smooth.glsfit.Ns2) 

## Counting Process and Risk Set 

Ns <- matrix(O, nrow=length(timegrid), ncol=length(trans» 

colnames(Ns) <- trans; rownames(Ns) = timegrid 

Ns[,l] <- smooth.glsfit.Ns[,l]*red$nind.12 

Ns[,2] <- smooth.glsfit.Ns[,2]*red$nind.23 

##Risk set for initial state (ie: Y1) 

Y1 <- as.vector(rep(nind,length=nrow(Ns») 

Y1 <- Y1-Ns[,l] 

##Risk set for the transient state (ie: Y2) 

Y2 <- c(O,Ns[,l]-Ns[,2]) [-nrow(Ns)] 

Y2[Y2<=0] <- 0 

## ESTIMATION FOR IC DATA 

dNs <- apply(Ns,2,function(x)diff(x» 
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N12.Y1 <- dNs[,1]/Y1[-length(Y1)] 

N12.Yl[is.nan(N12.Yl)] <- 0 

N23.Y2 <- dNs[,2]/Y2[-length(Y2)] 

N23.Y2[is.nan(N23.Y2)] <- 0 

N23.Y2[is.infinite(N23.Y2)] <- 0 

## State Occupation Probabilities 

P1 <- exp(-cumsum(N12.Y1)) 

cs <- vector(length=(length(timegrid)-l)) 

P2 <- vector(length=length(timegrid)-1) 

term1 <- Pl*N12.Yl 

for(i in 1: (length(timegrid)-l)){ 

term2 <- numeric(i) 

for (j in 1:i) { 

term2[j] <- exp(-sum(N23.Y2[j:i])) 

} 

P2[i] <- sum(term2[1:i] * term1[1:i]) 

} 

P3 <- cumsum(P2*N23.Y2) 

P1 <- c(l,Pl); P2 <- c(O,P2); P3 <- c(O,P3) 

## State Entry/Exit Distributions 
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## Exit for state 1 & 2, Entry for state 2 & 3 

G1<-(P2+P3)/(P2[length(P2)]+P3[length(P3)]) 

G1[which(G1>1)] <-1 

G2<-P3/P3[length(P3)] 

F2<-(P2+P3)/(P2[length(P2)]+P3[length(P3)]) 

F2 [which(F2>1)] <-1 

F3<-P3/P3[length(P3)] 

list(nw.L1=nw.L1,w.L1=w.L1,Ns=Ns,fullfit=fullfit,ws.L1=ws.L1) 

} #end of function 

D Data generation function for interval censored data 

This is a function u::;ed to generate interval censored data for the 3 state 

Markov model with Weibull waiting times and uniform censoring times. 

wu.sim <- function(N,wshape=3,wscale=1){ 

id=l:N 

V1<-round(rweibull(N,shape=wshape,scale=wscale) ,4) 

V2<-round(qweibullCpweibull(V1,shape=wshape,scale=wscale) 

+runif(N,O,1)*(1-pweibull(V1,shape=wshape,scale=wscale)), 

shape=wshape,scale=wscale) ,4) 

#Generating states, for now assuming every makes these transitions 
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sl <-rbinom(N,l,l)+l; s2 <-rbinom(N,l,l)+2 

##creating data frame 

dl <- data.frame(id=id,times=Vl,stage=sl) 

d2 <- data.frame(id=id,times=V2,stage=s2) 

data <- rbind(dl,d2) 

data <- with(data,data[order(data$id),]) 

## FULL DATA 

full.data <- with(data,data[order(id,times),]) 

augment <- cbind(l:N, rep(O,N), rep(l, N» 

colnames(augment) <- names(full.data) 

full.data <- rbind(full.data, augment) 

full.data <- with(full.data, full.data[order(id,times),]) 

## INTERVAL CENSORED DATA 

ninspect <- sample(2:4, N, replace=TRUE) 

indmax.times <- tapply(full.data$times, full.data$id, 

function(x) max(x) + 2*mad(x» 

inspection. times <- unlist(mapply(function(x,y) 

runif(x,O,max(y», ninspect, indmax.times» 

id.inspect <- rep(l:N,ninspect) 

inspection. states <- by(full.data,full.data$id, 

function(x) sapply(inspection.times[id.inspect==x$id], 

function(y) x$stage[max(which(y>x$times»]» 

## warnings are ok ... 

int.cens <- data. frame(id=id. inspect,times=inspection.times, 
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stage=unlist(inspection.states» 

int.cens <- with(int.cens,int.cens[order(id,times),]) 

list(int.cens=int.cens,full.data=full.data) 

} 
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