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ABSTRACT

A SEMI-EMPIRICAL HAMILTONIAN FOR BORON, PHOSPHORUS AND 

COMPOUNDS CONTAINING BORON, PHOSPHORUS AND SILICON 

Paul Tandy 

December 5, 2013 

 In this work, a 25 parameter semi-empirical Hamiltonian for boron and 

phosphorus is developed. The Hamiltonian contains both environment-

dependent terms and electron-correlation terms with the on-site charge 

calculated self-consistently. One of the goals of this work is to obtain the 

parameterized Hamiltonian for boron and phosphorus by fitting the properties of 

small boron and phosphorus clusters and the bulk phases, as obtained by our 

method, to ab-initio calculations. The general structure of this Hamiltonian and all 

phenomenological functions contained within have been successful in predicting 

the properties of intermediate silicon clusters as well as extended structures of 

silicon with great precision. Large nanostructures and phosphorus and boron 

doped silicon structures are explored. 
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INTRODUCTION

In 2006 the Condensed Matter Theory (CMT) group at the University of 

Louisville published a body of work detailing a powerful semi-empirical approach 

to electronic structure problems1. This approach was uniquely different than 

previous semi-empirical approaches in that it included self-consistency, 

environment dependence and multicenter interactions. This approach has been 

coined by the CMT group as The Self-Consistent Environment Dependent Linear 

Combination of Atomic Orbital Method (SCED-LCAO).  The difference between 

SCED-LCAO method and previous methods is that when one thinks of semi-

empirical methods you may think of the Hückel2, the extended Hückel3 methods 

or you may think of newer semi-empirical methods such as AM14 and other 

NDDO5 methods. These methods neglect large parts of the many-body 

Hamiltonian – sacrificing accuracy in both the older and newer approaches. The 

CMT’s approach accounts for all sections of the many-body Hamiltonian as is the 

case for ab-initio methods. The major difference between the SCED-LCAO 

method and most ab-initio methods is the complex and expensive integrals that 

arise in ab-initio methods are approximated with phenomenological functions 

cleverly modeled against a database of information. In this sense the SCED-

LCAO method of the CMT group trades a very difficult (basically intractable) 
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variational problem from density functional theory/coupled cluster theory for a 

database parameter optimization problem that is database and model driven.  

Systematic improvements of an electronic structure calculation may be 

possible with extremely costly methods such as configuration interaction (CI), but 

such methods are only able to model a few number of particles, currently less 

than 50 on a large computer. Density functional theory (DFT) has no systematic 

way of improving quality. One can only enlarge the basis set, trying different 

models for the exchange-correlation and hope for the best compared to a more 

accurate model. If modeling is possible, DFT may take days or longer to model 

100 atoms with a reasonably large sized parallel computer. When comparing any 

electronic structure calculation result to a more accurate model such as CI, you 

are limited in the size of the system that one can compare. For example, if 

comparing your DFT results to CI, you may only be able to test up to 

approximately 20 atoms before you cannot run the CI simulation anymore. In this 

sense we give up a lot by relying on DFT alone, and in the end are limited to less 

than 100 atom simulations. This is far less than is needed for the accurate 

simulation of small nanostructures and surface interactions, which require 

hundreds if not thousands or tens of thousands of atoms to simulate properly.  

Highly stripped down electronic structure methods could be used, but 

those methods sacrifice an unacceptable amount of accuracy creating unreliable 

results. Traditional tight binding methods could be used alternatively, however 

they generally only work for one single system and can fail completely for a 

slightly different system causing a need for recalibration to a database which is 
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highly time consuming and human effort intensive. Given this, the CMT group at 

University of Louisville has addressed all of these dilemmas with the SCED-

LCAO method. The SCED-LCAO method is far superior to older non-orthogonal 

tight binding methods, yet far less costly than DFT methods. Not just in terms of 

speed, but also in terms of memory usage, numerical stability and human effort. 

This makes the method quite attractive to researchers examining larger 

nanostructures and biological molecules. 

To demonstrate the effectiveness of the SCED-LCAO method, the method 

was applied to the difficult problem of binding energy versus relative atomic 

volume of different phases of bulk silicon, the stable structure of an intermediate-

size Si71 cluster, (iii) the reconstruction of Si(100) surface, and many other 

systems involving silicon and carbon1,6–9. The ability to model effectively such a 

large number of systems speaks to the core goal of the SCED-LCAO method; 

that it is transferable, reliable and has ease of calculation. In every case listed 

above, the same Hamiltonian construction methodology was used for silicon and 

carbon.  When comparing the SCED-LCAO method to older tight binding 

methods, there was a vast improvement with the SCED-LCAO method. The 

speed in which these calculations were performed is on the order of minutes, not 

days. One cannot help but be amazed at this feat considering that the 

Hamiltonian for silicon and carbon are functionally the same. This leads us to the 

question of: Can we model every S and P block element with this same general 

Hamiltonian? Carbon and silicon both occur in the same column on the periodic 

table. What if we go to the left and try to model boron? What if we go to the right 
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and try to model phosphorus? It will be demonstrated that the answer is an 

astounding yes with minor modifications for boron and phosphorus. 

It has long been assumed that one cannot model boron compounds with a 

semi-empirical method very effectively for several reasons10. It was thought that 

the complicated nature of the 3 center bond, with deficiency  of the un-occupied p 

orbitals11, and the ability of boron to bond in so many different energetically 

competitive ways12 (isomorphism), was too challenging for a semi-empirical 

method of any kind. Some of the first attempts to model boron with the extended 

Hückel method involved modeling boron hydrides13 and although that method 

has some limited accuracy, it is insufficient for any type of electronic structure 

calculation that would remotely compete with density functional theory.  DFT also 

has problems with modeling boron if the basis set is small and one does not use 

a hybrid functional14. The SCED-LCAO method is not only able model 

homogeneous boron clusters, sheets, and extended structures accurately; it can 

also model phosphorus structures. The key is careful construction of the 

Hamiltonian, the database, and a sound methodology for determination of quality 

of the SCED-LCAO parameters.  If constructed carefully the SCED-LCAO 

Hamiltonian utilized for boron and phosphorus is very competitive with DFT.  

The interest in boron nanostructures over the last 6 years has grown 

dramatically, the maximum size of these structures of interest are approximately 

100 atoms. The reason why is because approximately 100 atoms represents the 

computational limit DFT can model, given a reasonable amount of time, and 

computational resources with modern machines.  In the near future this will 
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increase, but not to the point where it will be possible to effectively model 

thousands of atoms with DFT reliably.  

 In contrast, it is very easy for the SCED-LCAO method to model boron on 

the order of 1,000 atoms with direct diagonalization techniques, and many 

thousands of atoms with an order N method. Details of the order N method and 

philosophy of the SCED-LCAO method with selected applications to silicon are 

explained in previous works by the CMT group at the University of 

Louisville1,15,16. This dissertation will explore the alteration of the Hamiltonian to 

improve the accuracy of the boron Hamiltonian along with the heterogeneous 

case of mixing multiple different elements together. I will outline in detail the 

beginning to end methodology of how the boron and phosphorus parameters 

were found, and used to simulate the behavior of (i) large boron clusters, sheets 

and extended structures (ii) intermediate sized phosphorus structures (iii) large 

silicon twin wires that have been doped with boron and phosphorus either 

individually or simultaneously. 
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CHAPTER I: DESIGN OF A MODEL HAMILTONIAN 

AND OVERLAP

1.1 GENERAL STRUCTURE OF THE HAMILTONIAN  

1.1.1 Hamiltonian matrix elements 

To review, the original Hamiltonian was published in 20061 and the 

general full many-body Hamiltonian can be stated as: 

  
ji ij

ji

ll ll

i

il

ll

l R

eZZ

r

e
Rrv

m
H

, 0

2

', '0

2

,

2
2

44
)(

2 


 

(1.1)  

It is critical that we start with the full many-body Hamiltonian, and thus 

demonstrate that no interaction is left unaccounted. The summation over      and 

    runs over all of the valence electrons and ions respectively, where 'llr  

represents the distance between a given electron l  and another electron 'l , and 

ijR the inter-ionic distance between an ion at iR  and another ion at
jR . The 

potential energy term acts between any electron at    and ion at    . The number 

of valence electrons associated with the ion at site at    is   . The full many-body 

formulation is intractable for even small systems. Ultimately the goal is to 

simulate hundreds if not thousands of atoms. Due to this, the one electron 

approximation is utilized. In this formulation the electron is seen as moving in an 
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external field Veff of all other electrons, all effective interactions are included in 

this potential: 

  
2

2ˆ
2

i

i

H v r R Veff
m

       (1.2)  

The Hamiltonian is partitioned into the “intra” and “inter” cases. “Intra” 

meaning interactions between a valence electron and an electron or ion 

associated with the same site, and “inter” meaning interactions between a 

valence electron and an electron or ion associated with a different site. From 

equation 1.2: 

 
     intra inter

intra interV V V

i k

i k

v r R v r R v r R

eff eff eff

    

 

 
 

(1.3)  

The Hamiltonian becomes: 

 

  

 

2
2

intra intra

inter inter

ˆ V
2

Vk

k

H v r R eff
m

v r R eff

     

 
   
 


 
(1.4)  

The Hamiltonian matrix elements are: 
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   

 
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2
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i j i j

i

k j

k

H H
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m
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   





 
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(1.5)  

Every term in the Hamilton is then divided into onsite and offsite pairs. Keep in 

mind that ,i j i jS      . The matrix elements are evaluated term by term. 

Starting with the kinetic energy plus the energy of interaction with its own ionic 

core: 
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   
 

 

 
     
 

    
   
 
 

   
   

      

 
(1.6)  

The energy of interaction of the onsite electron with other electrons associated 

with the same ionic site is: 

 

intra

intra intra intra intra

,

V

2 2

i j

i j i j

i j i j

eff

u u u u
S

 

   

   

 

 
 



       
 

 
(1.7)  

The energy of interaction of the onsite electron with other electrons associated 

with other ionic sites: 
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inter

inter inter inter inter

,

V

2 2

i j

i j i j

i j i j

eff

u u u u
S

 

   

   

 

 
 



       
 

 
(1.8)  

Lastly, the energy of interaction between the onsite electron and the ions at the 

other sites is: 

 

 

   

inter

inter inter

inter inter inter inter

,

1

2

2 2

i k j
k

i ik jk j
k k

i j i j

i j i j

v r R

v r R v r R

v v v v
S

 

 

   

   

 

 

 
 

 

     
  

       
  

 
(1.9)  

Collecting terms we obtain a final expression for our matrix element: 

 

0 0 intra intra

1

, ,2 inter inter inter inter

i j i j

i j i j

i j i j

u u
H S

u u v v

   

   

   

    
 
    

 
(1.10)  

When       we have the onsite elements of the Hamiltonian and 
,i jS  

 are 

equal to one, reducing the onsite expression to
,i iH  

, so our final Hamiltonian 

matrix elements are: 

 

0 intra inter inter

,

0 0 intra intra

1

, ,2 inter inter inter inter

:

:

i i i i i i

i j i j

i j i j

i j i j

onsite H u u v

u u
offsite H S

u u v v

     

   

   

   



 

   

   
 
    

 
(1.11)  

The only approximation made at this point is that we are working within a 

one electron Hamiltonian; these matrix elements reflect complex integrals that 

include all interactions of the full many-body Hamiltonian. The evaluation of these 
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integrals is a notoriously unwieldy and cannot be solved in general for larger 

systems. We circumvent all cumbersome integrations by representing each 

integral with a single, very simple yet appropriate function or set of functions. The 

function(s) are cleverly chosen based upon strong physical assumptions. This 

approach has several distinct advantages. All terms have physical significance 

with a small number of parameters. It was not by design, that the number of 

parameters in the Hamiltonian is small. It was found that increasing the number 

of parameters and functions in the Hamiltonian did not improve its quality, and 

the fitting time increased greatly and unnecessarily. The number of parameters 

that were used is not only optimal, but sufficient to represent the physics and 

computationally preferable. The accuracy of the Hamiltonian is quite remarkable 

and that will be demonstrated in the case of boron, an extremely difficult element 

to model. Parameterized functions were created for these matrix elements and 

reflect the physical behavior of the system. 

1.1.2 Interaction Terms and modeling 

To gain the most accuracy and retain as much flexibility as possible in the 

SCED-LCAO model, the physics of the system is exploited as opposed to simply 

increasing the number of parameters/functions or using arbitrary functions with 

no physical basis. This is the true strength of this method. Only through carefully 

modeling the individual interactions can a reliable Hamiltonian (that will work in 

many different scenarios) be obtained. This was a critical decision made early in 

the method development, and one that distinguishes this approach from older 

tight binding methods. This approach allows for very rapid and accurate 
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calculations based upon the need for minimal computation in a molecular 

modeling scheme. 

Standard tight binding techniques tend to be unreliable when applied to 

different systems across many different scenarios (unreliable, non-transferable), 

because they are not physically based models. The approach used in the SCED-

LCAO method increases transferability and thus reliability with the careful 

additions of multicenter interactions, self-consistency, and a delocalization 

function (this function was added for boron and phosphorus Hamiltonians), and a 

sound physically modeled framework. We have also extended the method 

beyond homogenous systems (i.e. systems that contain only one type of atom 

such as silicon). I will demonstrate that the Hamiltonian is so flexible, that 

heterogeneous systems that contain many different kinds of atoms can be 

modeled. 

1.1.2.1 Onsite electron and onsite ion interaction energy, plus the electron 
kinetic energy 
 

The approximation for the onsite electron and onsite ion interaction 

energy, plus the electron kinetic energy reflects three independent pieces of 

phenomena. We use a constant term  i  which may be construed as the energy 

of the   orbital of the isolated atom at i. See Figure 1. This term is pinned (fixed) 

to single atom values for the valence level17,18  and generally it is not allowed to 

vary much. iZ
 
represents the ionic charge for a given atomic species, and is also 

fixed. The term i iZ U is the product of the ionic charge where U is an effective 



 

12 

Hubbard19 like approximation to describe the intra-atomic electron interactions. 

Tables18 of atomic data are initially used for  i  and U , but  U is allowed to vary 

slightly according to our fitting process which will be described later. These tables 

are available in Walter Harrison’s book or the paper cited above. This is justified 

by the fact that U was originally calculated using the assumption of the isolated 

atomic case. It does not reflect the fact that the intra-atomic interaction will be 

altered by the correlation effects of the environment once we have a very large 

number atoms in our system, but, U is not allowed to vary drastically from the 

isolated atomic case, so we soft constrain this parameter in the code. 

 

Figure 1. Onsite model approximations 
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Onsite and offsite approximations for 0

i  are in equation 1.12: 

 
   

   

0

0 '

0 '

: ( )

:

:

i i i ik i i

i i i ik ij i

k i

j j j jk ij j

k j

onsite W R Z U

offsite W R K R ZU

offsite W R K R ZU

  

  

  

 

 

 





  

 
   
 

 
   
 





 

(1.12)  

For a P block system (e.g. boron) we will have two terms is  and 
ip . One could 

imagine if this technique was explored using a D-block system it would also 

include id . The parameter i  is fixed in the SCED-LCAO model for the onsite 

case. The offsite case roughly follows the  Wolfsberg-Helmholtz20 relation from 

extended Hückel theory21 with  ijK R being a function of separation distance (not 

a constant20) following Hoffman’s methodology21. To justify this, the realization 

that as the separation distance is decreased,  ijK R must asymptotically 

approach a constant value of 1 as 
ijR  get’s small, but 1 for the whole range of 

 ijK R would give very poor performance as evidenced by the work of Lipscomb 

and Hoffman where  ijK R was pinned (fixed) at 1 for boron hydrides13. Also note 

that the value of 1.75 used by Hoffman across the whole range of interaction 

performs poorly, but does provide a good initial guess. The model we 

incorporated for  ijK R is a weak exponential model (fairly flat over the range of 

interest), which appeared to work out well over the range of separation 

considered: 
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,( ) ij K ijR

ijK R e


  (1.13)  

The free parameter 
,ij 

is small accordingly, as would be expected.  

The free parameter i  is being used for the offsite case as opposed to 

i for the onsite case. Critical flexibility in the SCED-LCAO model is lost if these 

terms are allowed to be equivalent. The reason they must be different is due the 

shift in energy from the environment of the offsite case vs. the onsite cases. This 

effectively shifts the energy for the offsite case, this phenomenon is exacerbated 

as the system size increases to larger and larger molecules, the types discussed 

in this project. Also, if the ( )i ikW R  functions are allowed to be different in the 

onsite and offsite cases, a large number of free parameters are introduced into 

the model, and this can greatly increase computational time. i   is allowed to 

deviate away from i  
a bit, thus minimizing the number of free parameters to be 

optimized, we will not optimize both. 

The final phenomenological function included in the evaluation of 0

i  is 

the ( )i ikW R function; this represents a critical change to the earlier SCED-LCAO 

model1. When trying to create a set of parameters for hydrogen, it was noted by 

another doctoral student, Mr. Harrison Simrall, that although we can use -13.6 eV

for the value of is and 0 eV  for the value of 
ip it is far more effective to raise the 

energy up to -4.0 eV for is . This result was puzzling because it seemed 

unphysical. The explanation for this difference in energy is justified because our 
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parameters are fit to decent sized molecules of many atoms (and not to single 

atom systems). The single atom result for the valence levels has to be 

compensated (increased) to allow for the case when multiple atoms are brought 

near each other, as opposed to the single case. The addition of the ( )i ikW R

function compensates for the multiple atom dilemma concerning this energy shift. 

( )i ikW R  must have the property that at infinity or near the cutoff, the function 

must vanish, but at shorter distance the function must be finite and alter the 

single atom result for the valence level term i  accordingly. This will be 

demonstrated to greatly improve the quality of the boron Hamiltonian. In general 

the simplest function with the least number of parameters (that retains the above 

behavior) is a decaying exponential with two free parameters to be optimized 

during a fitting process as shown in equation 1.14. Although this function is not 

strong for boron, it greatly improved the ability for the Hamiltonian to model 

boron. It is expected that for an S block element like hydrogen, this function 

would be absolutely critical. 

 
,0( ) i W ijR

i ij iW R W e 

 


  (1.14)  

1.1.2.2 Onsite electron and onsite electron interaction energy  
 

The onsite electron and onsite electron interaction energy is very simply 

modeled with the product of the variable iN  and the Hubbard term. 
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intra

int

int

:

:

:

i i i

ra

i i i

ra

j j j

on u N U

off u N U

off u N U













 (1.15)  

This deceivingly simple product will be the first key to charge redistribution and 

self-consistency in this formulation. The value iN  will be allowed to vary until 

self-consistency is reached. 

1.1.2.3 Onsite electron and offsite ion interaction energy, plus, onsite 

electron and offsite electron interaction energy 

 
The onsite electron and offsite ion interaction energy, plus, onsite electron 

and offsite electron interaction energy is a complex formulation detailed in two 

previous works1,15. I refer the reader to these works. The formulation for this body 

of work from the previous models has not been changed. To review, this term 

includes environment-dependent multi-center (three-center explicitly and four-

center implicitly) interactions. By 3 centers implicitly we see that centers , ,i j k  

are involved explicitly. The involvement of 4 centers appears when we note that 

kN  is calculated from the eigenvalues of one set of centers then mixed with 

centers located at , ,i j k . 

 
2

,

, , , ( )

( )k k k l l k

l l k

N c c c S  

    
     

    
(1.16)  

Our onsite and offsite terms are thus: 
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     

    

int

int int

int int

: [ ( ) ( )]

:

:

er

i i k N ik k Z ik

k i

er er

i i k N ik k Z ik

k i

er er

j j k N jk k Z jk

k j

on u v N V R Z V R

off u v N V R Z V R

off u v N V R Z V R

 

 

 







  

  

  







 
(1.17)  

1.1.3 Assembling the Hamiltonian 

The full Hamiltonian may now be assembled into its final form. The onsite 

elements are: 

 

     
   

 

0 intra inter inter

,

,

:

( )

[ ( ) ( )]

( )

[ ( ) ( )]

i i i i i i

i i i i ik i i i i

k N ik k Z ik

k i

i i ik i i i

k N ik k Z ik

k i

on H u u v

H W R Z U N U

N V R Z V R

W R N Z U

N V R Z V R

     

   

 











   

    

 
 

 

    







 
(1.18)  

 

The offsite elements are: 

 

   

 

     

   

0 0 intra intra

1

, ,2 inter inter inter inter

1

2

:

( ( ) ( ))

( ( ) (

i j i j

i j i j

i j i j

i i ik j j jk ij

k i k j

i i i j j j

k N ik k Z ik

k i

k N jk k Z j

k j

u u
off H S

u u v v

W R W R K R

N Z U N Z U

N V R Z V R

N V R Z V R

   

   

   

   

 

 



 





   
 
   
 



 
    

 

   


  



 





,

))

i j

k

S  

 
 
 
 
 
 
 
 
  
 

 

(1.19)  



 

18 

The phenomenological functions are: 

 

,

,

0

0

0

( )

( )

( )

( ) {1 (1 ) }

[1 ]
( ) ( )

[1 ]

( ) ( ) ( )

i W ij

ij K ij

Z ik

N N

N N ik

R

ik i

R

ij ij

R

Z ik Z ik

ik

d

N ik N N ik d R

N ik Z ik N ik

W R W e

K R K e

E
V R B R e

R

e
V R A B R

e

V R V R V R



 















 





  


  



  

 
(1.20)  

Note that the parameters in the above expressions pertain to the 
thi

element and this formulation is in general a homogeneous, all atoms are the 

same element. In chapter 5 the heterogeneous formulation will be introduced for 

dissimilar elements. When using different elemental types, such as phosphorus 

and boron, there will be mixing parameters also when the function is not site 

specific. This is only required for heterogeneous systems.  

It is to be noted that if referencing 
,0( ) i W ijR

i ij iW R W e 

 


  for the 3i   and 

7k   case that 3 , 370

3 37 3( ) W R
W R W e 

 


  and the 

0

3W   and 3 ,W  parameters will be 

used for the element that belongs to the 3i   site, not the 7k  site. Those 

parameters would be the same for the homogeneous system, but different for the 

heterogeneous system. Note that the  in the subscript refers to s or p, for 

example 3 , 370

3 37 3( ) s W R

s sW R W e


 , whereas ,i W is the exponentially related 

parameter for ( )i ijW R
 . 
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1.1.4 Shape of the Hamiltonian 

The Hamiltonian is must be square and Hermitian. For every site there is 

an associated block, for example the 1, 6i j 
 has an associated block. There is 

not an explicit basis set; a phenomenological overlap will be used. But, we will be 

working within a minimal basis set formulation, so the block size for our 

Hamiltonian at any given site is dictated by the minimum number of basis 

functions required to represent all of the electrons on each atom.  

In the case of boron (in the P block) we will have a sp system 

 , , ,x y zs p p p  a 4x4 block for each element, or 16 sub-elements is used. If we 

had a D block element such as iron, we would have a much larger block (each 

block would be 9x9, or 81 sub-elements). So the Hamiltonian size is 

mn mn  where m is the size of the minimal basis set, and n is the 

number of atoms in the system. We will need to evaluate mn

 
onsite Hamiltonian 

elements and ( 1)mn mn  offsite Hamiltonian elements in general. Keep in mind 

this will be done during each self-consistency loop. If a system has a poor initial 

guess, it could take an extremely long time to reach self-consistency, or the 

algorithm could fail completely. Turning off self-consistency or relaxing the 

stopping criteria can also be a problem. Having a good initial set of parameters 

for your Hamiltonian is critical. A cutoff was implemented for the Hamiltonian 

where interactions beyond a certain distance were defined as zero. This 

introduces many zeros into our Hamiltonian making the solution of the 
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generalized eigenvalue problem much easier. The general Hamiltonian is as 

such: 

 ,

1,1 1,2 ... 1,

2,1 2,2 ... 2,

... ... ... ...

,1 , 2 ... ,

i j

n

n
H

n n n n

 

 
 
 

  
 
 
 

 
(1.21)  

With blocks as such: 

 

, ,

,

,

, ,

, , , ,

, , , ,

, , , ,

, , , ,

0 0

0 0 0
,

0 0 0

0 0

,

x y z

x x x x y x z

y y x y y y z

z z x z y z z

i i i i

ss sp

i i

pp

i i

pp

i i i i

ps pp

i j i j i j i j

ss sp sp sp

i j i j i j i j

p s p p p p p p

i j i j i j i j
i j p s p p p p p p

i j i j i j i j

p s p p p p p p

H H

H
i i

H

H H

H H H H

H H H H
i j

H H H H

H H H H

 





 







 
(1.22)  

1.2 GENERAL STRUCTURE OF THE OVERLAP AND 

ENERGY  

1.2.1 Limit Requirements of the Phenomenological functions 

We will be working with overlap functions instead of wave functions. The 

overlap function from an ab-initio calculation must be similar in shape to the 

phenomenological overlap function used in SCED-LCAO. The linear combination 

of atomic orbitals represents a localized representation of a generalized basis 
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set. We will be working in real space and we will never be working in k space for 

our molecular mechanics routines. This has some distinct advantages when 

analyzing clusters and small nanostructures as opposed to calculations involving 

large extended structures like an infinite slab, an infinite crystal, or an infinite 

surface. In this sense, the goal of this body of work is concerned with finite 

structures, but we do not exclude infinite extended structures on the contrary 

they are very well modeled. The database we generate will include plane wave 

information in order to fit electronic structure information, but we will not be using 

plane waves in the molecular mechanics routines.22–27 

All overlap functions must vanish as the separation distance nears infinity. 

As the separation distance nears zero all overlaps must near unity or zero, and 

must never exceed unity. This is ensured by using an exponential decay function 

modulated by a polynomial. One caveat that can occur, for certain values of 

parameters, is that the unity condition is not met in the numerical sense.  This 

means we can arrive at a set of parameters that can yield an overlap greater 

than unity. This turns out to be a bigger problem than one would expect because 

it is difficult to bound the overlap in a constraint. Whereas we can easily places 

constraints on parameter values; it is a bit more difficult to place upper and lower 

bounds on overlap functions. This requirement was manually checked during the 

parameter acquisition stage for boron to ensure that the unity requirement was 

met. The number of parameters per overlap is limited to 3 per function. 
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1.2.2 An energy statement 

Now that we have our Hamiltonian the energy can be evaluated in a 

straight forward manner, and follows from the previous work1 and presented 

below for reference. The band structure energy is: 
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Listed below, is the band structure energy statement. By adding the ( )i ijW R
term 

the shape of the energy statement is not altered. 
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Once we take into account the subtraction due to double counting and ion-ion 

repulsion we have the final total energy. Note that in this formulation subtraction 

of the double counting term is quite easy, unlike in the DFT case. 
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Where,  
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The first term is the band structure energy, the second and third terms represent 

energy shift due to charge fluctuations after self-consistency is reached. The 4th 

and 5th terms are short range functions and play a significant role, especially in 

the case of boron when we have potential energy surfaces with such shallow 

wells. 
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CHAPTER II: BORON PARAMETER ACQUISTION 

2.1 AN INITIAL PARAMETER GUESS 

In chapter one a semi-empirical Hamiltonian and overlap was constructed. 

From this, an energy statement was derived. If one supplies the type of element 

(e.g. boron), the initial coordinates and all parameters, the energy of the system 

can be rapidly calculated. Finding a parameter set that meets all requirements 

will be the focus of this chapter. There is no unique way to find these parameters, 

but I will present the systematic methodology used. The ultimate way of knowing 

if the parameters yield accurate energies for a given system configuration, 

involves extensive comparison to an experiment if available. Unfortunately, such 

experimental data is usually not available or is not in a convenient form for 

comparison. For example, there may be easy access to band gap data, but there 

may not be accurate crystalline structure for the material or thermodynamic data. 

For small clusters experimental data may not be available at all. For this reason, 

at least initially, we rely upon the rapid calibration of our semi-empirical 

parameters to databases constructed from ab-initio electronic structure methods 

of varying accuracy. In this sense the database drives the fitting process. But as 

you will see, the database does not 100% uniquely determine the final parameter 

set during this fitting process. 
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2.1.1 Initial Overlap Parameter Estimates and Constraints 

The nice thing about the SCED-LCAO formulation is that all 

phenomenological functions in the formulation have a physical basis. One could 

imagine that we could simply choose arbitrary special functions with free 

parameters, combine them into linear combinations, and start some sort of 

organized fitting process. This is a very poor approach resulting in extremely 

large numbers of free parameters and unpredictable physical and poor behavior 

outside of our fitting database. Plus, as we move around through our fitting space 

it could take an extremely long period of time for the database fitting process to 

converge to a better fit.  

The functional form we use for the overlap has 3 parameters, and 4 

functions for a sp basis, , ,ss sp pp   and pp  for a total of 12 adjustable fitting 

parameters for boron or any sp system. The whole model including the complete 

Hamiltonian and overlap contains only 25 parameters for a sp system, so the 

overlaps alone represent about half of the fitting parameters. This means we 

would like to get a rapid, somewhat accurate, initial guess with minimum effort. 

Our final overlap parameters after completing the fitting process should not look 

extremely different than the overlap curves we may encounter in a DFT 

simulation or from tight binding studies or any other electronic structure 

simulation. They will possibly have slightly different nodal minimums/peaks and 

decay rates may vary slightly, but the general shape will be similar. Keep in mind 

that we work upon the premise that small changes in any parameter will most 

likely impart huge changes in calculated quantities, for example the total energy. 
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For an initial guess simply getting close in shape will be sufficient. For this reason 

we could simply fit our phenomenological functions for our overlap to another 

method as an initial guess, and this is exactly what we do. The general overlap 

function we use is: 

  , ( )
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1 ij

d

ij ij d R

e
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(2.1)  

Where A is 1 for , ,ss pp pp    and 0 for sp  . This leaves 12 other 

adjustable parameters , ,B d   for , , ,ss sp pp pp     . We fit this functional 

form to overlap data extracted from density functional theory simulations of a 

boron dimer using a hybrid functional and minimal basis set (B3LYP/STO-3G) 

using the GAUSSIAN0328 program . Typical plotted output is shown in shown in 

figure 2. 

 

Figure 2. DFT overlap for boron dimer using a STO-3G basis set. 
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  We used the Levenberg-Marquardt algorithm29 to find the best fit 

parameters for our initial guess. It should be noted that depending upon the basis 

set used during a DFT simulation, widely varying dimer overlap curves are 

possible. For example the DFT results using the CEP-4G basis with a B3LYP 

functional have different nodal minimum and maximum locations as shown in 

figure 3. 

 

Figure 3. DFT overlap for boron dimer using a CEP-4G basis set. 

We also compare the general shapes of the overlap functions of both DFT 

cases above with a tight binding result of Widany30 for boron in this plot. We note 

that all three results vary quite a bit, but the general shapes of the overlap 

functions are consistent as shown in figure 4. All three would be good initial 

guess for our overlaps because we will optimize the system after the guess 



 

29 

parameters are inserted into our overlaps. The results indicated that the STO-3g 

dimer case was sufficient for an initial guess and was used initially for boron and 

phosphorus. It is highly recommended that this approach be used as an overlap 

guess for other elements that will be analyzed in the future. 

 

 

Figure 4.DFT dimer and tight binding overlaps 

The overlap has three constraints that must be met when adjusting the 

parameters. The magnitude of any overlap curve cannot exceed unity. The 

overlap curve must decay to nearly zero in a finite number of bond lengths (the 

cutoff), for example by the 6th or 7th nearest neighbor there should be no overlap 
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contribution. Note that the ,
0

lim 1ij
R

S 


  for , ,ss pp pp    , and ,
0

lim 0ij
R

S 


  for 

sp  . This was manually checked for every parameter set in question.  The 

ssB  parameter in the ss overlap curve was particularly troublesome; during 

optimization this parameter would routinely force a condition where 
, 1ij ssS    

which is non-physical. To solve this problem, the parameter was constrained to 

0.1 0.3ssB   . This resulted in huge computational time savings and should be 

noted for future reference.  

2.1.2 Initial Hamiltonian Parameter Estimates and Constraints 

The Hamiltonian contains 13 adjustable parameters (two fixed) in 

conjunction with the 12 SP block parameters for the overlap functions. These 

parameters require an initial guess also. The values of s and 
p  are pinned and 

not allowed to adjust at all, these are taken from the work of Mann17 to be -

13.46eV and -8.43eV respectively. The values of '

s and '

p are taken to be 1.5 

times their non-primed counterparts and are constrained during optimization

' 2    .   

The initial guesses for the function ( )i ikW R  are meant to mildly modify  , 

for that reason 0

sW  and 0

pW  are initially set to zero and allowed to vary plus or 

minus small amounts during the optimization phase. 1

sW  and 1

pW  are exponential 

coefficients and dictate the decay rate of the strength of ( )i ikW R , thus we expect 
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them to fall off on the order of an inverse bond length; a reasonable guess is 

about 1
1Å
in both cases. 

An initial guess for the U  Hubbard intra-atomic Coulomb repulsion is 

obtained from the work of Harrison18 (10.26eV). This is allowed to vary 

0.8 2i iU U U   in a soft manner, meaning that a weak penalty was enforced if the 

value neared the constraint. The Hückel exponential coefficient k is meant to be 

small so that the function itself does not grow rapidly; we then simply set it to 0.1

1Å
and do not constrain it. 

The initial guesses for the parameter ZB  in ( )Z ikV R and , , ,N N N NA B d  in 

( )N ikV R are a bit trickier. Since we are looking for a guess and great accuracy is 

not needed, we use the parameters found for silicon in a previous formulation16. 

This meets our initial guess requirement, the functional shape must be similar in 

the initial guess, but that is all that is required. We do not want to assume too 

much about our Hamiltonian or overlap in the beginning stages of fitting. Thus, 

the parameters for ( )Z ikV R  and ( )N ikV R  are not constrained in any way. But the 

general shape will be inspected as the code runs to make sure that these 

functions decay as they get large. These initial guesses should get the user into 

a reasonable part of the parameter space to start a more complete optimization. 

It can be very computationally time consuming to optimize a set of parameters in 

this 25 parameter space (especially with such a heavily nonlinear problem such 

as this). Small changes in parameters can impart very large changes in the 

bonding model as noted previously. Because of this, all significant digits must be 



 

32 

presented to the molecular dynamics code when testing and running various 

systems. Truncation of parameters can lead to incorrect results. All optimized 

parameters are reported to the 8th decimal place. This must stay consistent when 

sharing parameter information between the fitting code and the molecular 

dynamics code, and between users of both codes when sharing and comparing 

parameter sets. 

2.2 THE GENERAL APPROACH TO PARAMETER 

OPTIMIZATION 

 Once reasonable parameter starting guesses have been obtained, we can 

test the Hamiltonian with a molecular dynamics package of our choice and see 

how well our model performs. If it performs sufficiently we are done and can use 

this parameter set to run our simulations. This will most likely never be the case 

though, because our crude guesses will inevitably give poor results. We seek to 

improve our parameter set via a two stage methodology. First we will fit our 

parameters using a Levenberg-Marquardt routine from IMSL31 (D_UNLSF) 

imbedded in a very complex fitting code written by Dr. Christopher Leahy in the 

CMT Group at the University of Louisville15. We will then perform a secondary 

robustness check (defined later) manually using a secondary molecular 

mechanics program also written by the Condensed Matter Theory Group at the 

University of Louisville. In both cases we have a database standard comprised of 

GAUSSIAN0328 and VASP32 ab initio electronic structure results. We will 

compare our SCED-LCAO results to the results obtained with these programs.  
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When we chose to compare two electronic structure methods, and fit one 

to the other, we are faced immediately with a series of dilemmas. Notably we 

must decide upon trades offs that must be made for computational expediency. 

We cannot assume that it will be expedient to fit 25 parameters, accurate to 8 

decimal places, in a strongly nonlinear system. We suspect that small changes to 

the parameters will impart huge changes to the energy and general bonding 

nature of any system we attempt to model as stated before. Given that, we 

anticipate that every possible effort should be incorporated to reduce 

computational time and memory allocation. I will outline a few of the major time 

savers incorporated while seeking a solid set of boron parameters that will prove 

to be maximally transferable and reliable under the afore mentioned 

approximations in chapter 1.  

2.2.1 Convenient fit properties 

We are faced with the task of utilizing a Hamiltonian and overlap matrices 

with semi-empirical parameters inserted in the matrix elements. For a given set 

of parameters, one can describe a molecule with a set of spatial coordinates as 

input, and then calculate the total energy of molecule or the binding energy. This 

is one of the most fundamental calculations in electronic structure theory. We 

could also calculate the band structure of a periodic system given a set of 

coordinates, but at larger computational cost. We also run into the problem of 

where are we going to get band gap results to fit our method? For example, DFT 

is notoriously unreliable in predictions of the band gap for silicon.  
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The preferable fitting properties for our scheme will be the properties that 

are easiest to find, and easiest to calculate. This turns out to simply be the 

binding energy and structure coordinates of a given system. These properties are 

easiest to obtain from current ab-initio software, but are quite difficult to find 

experimentally for small clusters. In fact in many cases, they are not available at 

all. The band gap is usually easy to find experimentally but getting the exact 

thermodynamic properties such as pressure, temperature and crystal structure 

may be challenging. Due to these challenges, we will use the most accurate ab-

initio methods that can possibly be found within reason. There are limits to this 

approach, which will be discussed later in this chapter. We will extract energy 

and spatial structure from the ab-initio simulations (not experiments), and a given 

set of parameters and coordinates. Energies will be compared between our 

SCED-LCAO results and the ab-initio results. Other properties such as heats of 

formation, band structure, melting point, band gap, resistance, etc…will not be 

included as properties in our database fit due to the large computational effort to 

calculate such properties. To do so, we would have to alter geometries and move 

through our 25 dimensional parameter space during the fitting process and that 

would be too computationally costly. 

2.2.2 Available Commercial Software 

The commercial packages GAUSSIAN03 and VASP were used 

exclusively for different reasons to create a database. For extended structures 

with periodic boundary conditions the VASP plane wave based DFT code proved 
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to be the most cost effective tool for database generation. For small finite clusters 

of atoms, the Gaussian basis set based code GAUSSIAN03 was used.  

Both DFT and Coupled Cluster methods are included in the GAUSSIAN03 

code making it preferable for cluster generation purposes in the database. 

GAUSSIAN03 can treat periodic boundary conditions, but the usage of a 

Gaussian basis set proved to be computationally cumbersome for extended 

systems, and quite slow. VASP was clearly superior for extended systems with 

its plane wave basis set, making it fast and easy to construct bulk system 

databases. Using both packages, a cluster and bulk database of boron structures 

was created. The only caveat is that we now have a hybrid database of plane 

wave basis sets with one type of functional, mixed with a database comprised of 

a Gaussian function basis set with another type of model chemistry. The 

assumption is that both are accurate beyond our semi-empirical method and any 

inconsistency between the two is minimal in impact upon our fitting process. This 

may or may not be fully accurate and remains an open topic for future 

exploration. In the meantime we act upon this premise out of necessity and justify 

this assumption based upon similar results obtained for a few test cases in 

previous work16 in the Condensed Matter Theory Group at the University of 

Louisville. 

2.2.3 Current Literature: A starting point 

Ultimately we want to do three things initially during our parameter quest. 

We want to have good initial guesses for our fitting parameters. We want to 

rapidly and accurately build a cluster and extended phase database. And, we 
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want to build an enlarged database of far larger clusters to check our parameters 

at a later time. There are numerous articles33–38 based upon small cluster 

studies, and should be used judiciously to expedite the database creation. Most 

studies compare energies of various small clusters using different methods and 

basis sets to arrive at potential low energy candidates for the ground state of a 

given assembly of atoms. For example if we have 5 atoms of boron, using a 

particular method and basis set, we will arrive at a given energy and set of bond 

lengths and angles. It is to your advantage to use this literature as a starting 

point, but not a substitution for database creation. Any information like this found 

in any journal must be checked and rechecked for accuracy. There is only one 

way to do this, and that is by actually running the potential cluster or extended 

phase in your software and extracting spatial and energy information using your 

computer. Many of these clusters studies in the current literature represent 

extensive work and computational effort, but, it is noted that errors in literature do 

occur and simply copying the information out of the literature and placing it in a 

database (without testing) is unwise. The database used for boron for example 

contains no experimental data; all input is generated from computational models 

using either density functional theory or coupled cluster theory, thus it must be 

accurate. 

All suspected candidates for the database were re-run using commercial 

software, even if the literature lists energies, bond lengths, angles, etc., which in 

most cases it does not. All that is really needed is an image or well defined space 

group of a possible candidate cluster or unit cell to run the simulation.  The 
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person constructing the database can then create user input files that look similar 

to the candidate clusters or candidate unit cells. The boron database contains 

mostly, but not all, low energy clusters. It can be extremely difficult to simply 

guess at what a low energy configuration might look like for example 8 boron 

atoms. It is very likely that someone has already explored this, and has found (if 

not the lowest energy structures) some very low energy structures that would 

make excellent candidates for your database. 

Although we could build a database of all guess structures, high energy 

structures and fictitious structures, it is noted that in the case of boron when this 

was tried39, results were far less accurate in terms of total consistency with DFT 

than when a great sample of mildly high and lowest energy structures were 

included in the database. It is also noted that the inclusion of very high energy 

structures (more than about 0.1 eV per atom above the accepted ground state 

structure) may actually pollute the database with low accuracy information, 

making it more difficult to fit the parameters to the database. This assertion may 

be justified from the nature of density functional theory in general. It is a 

variational approach and thus should most accurately model (for a given number 

of atoms) the lowest energy isomer for a fixed number of atoms. Given that, we 

expect that the most accurate information for our database comes from the 

lowest energy isomers. Accordingly, the inclusion of very high energy clusters 

that are simply theorized proved to be problematic when they were included in 

the boron database.  After numerous attempts40 it was then determined that they 

were not the best candidates and removed from the database. Although it is also 
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important to include higher energy structures in the database, once the energies 

become significantly higher, fit quality was observed to reduce dramatically.  

2.2.4 A Standard vs. a Fit 

After fitting to a standard (in our case DFT and coupled cluster 

simulations), we note the fits are not perfect fits in all cases compared to the 

standard. The fit may be close on some, and not so close on others. Due to this 

fact we have to proceed carefully if we want to improve the quality of the fit. We 

have several choices in how to proceed. We can continue to run the fitting code 

in hopes of getting a better fit to all of the properties or we can steer the fit to 

sacrifice some fit quality for some properties in favor of a better fit for all 

properties. We can choose to define a quality to our fit, and stick rigidly to that or 

not. But, no matter what we fit to in our database, or how we define quality, we 

will fit to some properties better than others. It is not guaranteed that with 

increased computational time, it will be possible to arbitrarily fit our set of 

parameters to the ab-initio database assuming we compare the exact same 

energies given the same bond lengths and angles. This is because we are not 

guaranteed convergence to a perfect fit and still retain the appropriate shape of 

our phenomenological functions.  

In practice we have defined a quality factor which we want to continuously 

reduce, it is a residual that is defined as a factor that decreases as our fit quality 

increases. The parameter optimization is guided by minimizing this quality factor 

as the code runs. At some point one will notice that the residual is not reducing 

anymore, even though the code has been running for a very long time, maybe 
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months. At this point the phenomenological functions must be inspected for 

shape consistency (e.g. an overlap cannot exceed unity), and a secondary 

robustness database (a computationally demanding database) with much larger 

molecules will be utilized for a secondary fitting to inspect performance. 

We will also not be guaranteed uniqueness of our parameter set. It is very 

possible that one can come up with a set of parameters that leads to a fit of the 

database very well, and another person can come up with a completely different 

set of parameters that also fit the database very well. This is why the secondary 

robustness database is necessary. We will have many sets of parameters, all will 

fit the database fairly well, all will have a high quality fit, all will have a low 

residual, all will look appropriate, but some will perform far better than others 

when we test the parameter set on far larger molecules. It is in this robustness 

phase of the fitting that we realize that simply having a good low residual fit in our 

database will be insufficient in many cases. 

2.2.5 Reliability of the Proposed Metric 

Once the residue has been reduced in the fitting code through 

optimization, we are optimally fitting the best we can with the database that we 

are using. As explained above, there will not be a unique set of parameters after 

this fitting process. As stated earlier the Hamiltonian and overlap are sensitive to 

small changes in the parameters. This may not be apparent from simply looking 

at parameters generated from the initial database fitting. This necessitates going 

further into the fitting process outside of the database.   
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Once we try the Hamiltonian (based upon any post-fitted parameter set we 

determine) on any system not included in the fitting set, problems may be seen 

when comparing our results to ab-initio results for systems not included in the 

fitting set. In other words, our Hamiltonian and overlap may not be transferable 

nor are they reliable, even though we have a good fit for the database. This 

would be a problem but we note that the parameters sets are not unique from the 

database fit. This means a different parameter set may possibly be far more 

reliable and transferable. Because of this, we go to a secondary parameter check 

called a robustness check, basically it is a secondary fit, but is far more time 

consuming and computationally demanding. If the parameter set does not meet 

the requirement of a low residual during the fitting optimization (and other quality 

checks) we will not consider it for the robustness check. We arrive at multiple 

parameters sets by running the fitting code simultaneously on many (hundreds) 

of machines. We will thus have hundreds of parameters sets all of varying 

quality, all need to be inspected rapidly, and all must fall into one of 2 categories: 

worthy of the robustness check or not worthy. This can be challenging to the 

point that the problem becomes a large code management and data extraction 

dilemma.  We thus view the initial fitting code as a provider of three functions:  

1) It will provide us with a low residual set of parameters based upon a 

fitting database, and a single processor. 

2) It will provide this set of parameters in a fairly timely manner.  

3) It will provide many of these sets, if we have many processors.  
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But it will not necessarily provide the final best set in a timely manner, only good 

candidates, even if we have a lot of processors. 

The cluster fitting database for which all parameters will be fitted will 

contain small clusters. Our cluster robustness test may contain intermediate to 

very large clusters (i.e. clusters that greatly strain the possibility of use by ab- 

initio methods). The design of these databases is not arbitrary, and in practice it 

was demonstrated to require a great deal of time. 

2.2.6 Gaussian Type Orbital Basis Sets 

For clusters it is recommended that a database be created that uses 

orbital basis sets, in this case Gaussian basis sets as shown in figure 5.  

For extended phases it is recommended that one use a plane wave 

approach. Orbital basis sets are localized and make more sense for small 

structures; plane waves are delocalized and are more appropriate for extended 

crystals and surfaces.  

 

Figure 5. Gaussian type orbitals 
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2.2.7 Model Chemistries 

For extended structures the DFT method is recommended for database 

construction. Due to the computational facilities available at the University of 

Louisville at the time of this study, we were not able to use all coupled cluster, 

configuration interaction methods or some other very accurate post Hartree-Fock 

methods for all cluster calculations but were able to use them for smaller cluster 

calculations.  At that time the largest single point coupled cluster calculation I 

could do was a 12 atom boron calculation. If this was exceeded, all the memory 

on the shared SGI machine (i.e. Canary) was used and crashed. However, 12 

atoms is sufficient for the boron database. For extended phases the same 

machine was used to run DFT/GGA with no problems because the unit cell was 

sufficiently small and DFT is far less computationally demanding than most post 

Hartree-Fock methods.  

2.2.8 Specific Basis Sets and Cost 

The basis sets developed by Dunning and coworkers41 were utilized to 

generate the cluster database.  The basis sets were designed to converge 

systematically to the complete-basis-set (CBS) limit using empirical extrapolation 

techniques. For boron, the basis sets are cc-pVNZ where N=D, T, Q, 5, 6... 

(D=double, T=triples, etc.). The 'cc-p', stands for 'correlation-consistent polarized' 

and the 'V' means they are valence-only basis sets. Included are increasingly 

larger shells of polarization (correlating) functions (e.g. d, f, g) these sets are the 

current state of the art for correlated or post-Hartree-Fock calculations. In 

particular   the aug-cc-pVTZ triple zeta augmented version of the basis set with 
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added diffuse functions was used exclusively. This slows down the calculation, 

but, smaller basis sets are less accurate and for the boron database only highly 

accurate basis sets for small clusters. This ensures that inaccuracy cannot easily 

originate within the small cluster database. 

2.2.9 Fixing Symmetry for clusters 

During SCED-LCAO optimization, the lower the number of degrees of 

freedom, the faster the fitting occurs. Symmetry is fixed to the lowest number 

possible for an isomer.   

 

Figure 6. fixed symmetry during the geometry optimization 

For example in figure 6, the cluster has 2 spatial degrees of freedom, or 

two spatial properties A and B. A third property is the energy, so this cluster has 

three properties in total. During the fitting stage the geometry is optimized by 

fixing this symmetry. This greatly increases the speed of the optimization. If a 

molecular dynamics routine (MD) was used instead, and the cluster could wiggle 

around in all directions, parameter fittings would require a much greater 

computational time.  
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2.2.10 Initial extended database 

 

Figure 7. simple phases of silicon 

Due to the success of the silicon Hamiltonian1 based upon comparison of 

the simple phases of silicon with other semi-empirical electronic structure 

research groups42–45, it was initially decided to try the exact same phases for 

boron. The initial successful plots for silicon are shown above in figure 7. By 

comparison, we have an initial plot for boron, shown below in figure 8. This fit is 

exceedingly accurate, which gave us the confidence that we could successfully 

model boron. 
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Figure 8. binding energy vs. relative atomic volume for boron 

2.2.11 Convergence 

The time progression of the quality of our fitting parameters is loosely outlined 

below, in figure 9. 

 

Figure 9. Fit progress 
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A lot of progress is made quickly, but as the database is increased, and more 

and more tests are performed it gets increasingly difficult to lower the residual. 

The total time effort for boron was about a 5 year investment in parameter 

acquisition, while phosphorus was about a 6 months. If parameter acquisition 

was attempted for different element today, the investment would be around 4 

months. The 5 year time frame for boron has more to do with refining a testing 

methodology than it does with actual computational time. 

2.2.12 Self-consistency routines 

The fitting code and MD code are fully self-consistent. Charge redistribution is 

fully taken into account. The general outline of this is shown below in figure 10. 

 

Figure 10. Self-consistency methodology 
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2.3 PARAMETER FITTING 

2.3.1 Stage 1: A small cluster database 

 Initially when executing the fitting code one will encounter two serious 

problems. The first problem will be the inability to achieve self-consistency in the 

calculation. When this occurs the calculated residual is meaningless, so the code 

is halted and an attempt is made by some mechanism to alter the initial 

parameters until self-consistency is achieved. The second problem that will be 

encountered with the phenomenological version of the overlap calculation is the 

calculated overlap matrix may not be positive definite. This likewise will also halt 

the code. Note that this problem is solved in an alternative model that relies upon 

an orbital approach to calculate the overlap, which was not used for this project. 

But in either code, and in most electronic structure codes, achieving self-

consistency in a rapid manner is a difficult problem.  

To abet this dilemma the approach taken was to find out if either of these 

two problems is present initially in our parameter search methodology. If they 

are, then we need to rapidly change the parameters. There are five issues that 

will slow the fitting process, sometimes to a point that the code will not run at all. 

Issue 1 is the size of the largest cluster used in the fitting database. For example, 

is the largest cluster 6 atoms or 20 atoms? Issue 2 is the total number of clusters. 

If for example, the total number of clusters increases from 6 to 40 the fitting 

process will be far slower. Issue 3 is the total number of properties in the system. 

Properties for example, would be spatial properties such as bond length or 
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functions of bond length, fixed angles or energy of the cluster. Minimally we want 

the total number of properties to equal the total number of fit parameters in our 

system, although this is statistically insufficient. However, realistically, by the time 

we have fully filled the boron database, we will have approximately 5 times more 

properties than fit parameters in our Hamiltonian and overlap combined. Issue 4 

is the inclusion of bulk extended phases into the fitting process. The geometry 

optimization routine that was used in this body of work is significantly slower for 

the extended systems than it is for small clusters, this can greatly slow down the 

processing time especially if the unit cell of the extended phase is large (greater 

than approximately 15 atoms). Issue 5 pertains to how many processors we have 

at our disposal. If we run the same parameter fitting routine with differing initial 

random seeds on different processors we can move through the parameter 

space N times faster (N being the number of processors). In this sense a large 

distributed machine is ideal. The problem with doing this is that we can wander 

through the same part of the parameter space over and over again, wasting 

valuable computation time. But, in practice this problem is less of an issue 

because the probability of moving into exactly the same part of parameter space 

is low due to the large size.  

We should start with the best guess possible for our parameters. We 

should also place boundaries on these parameters to keep them from moving 

into a non-physical realm.  But, the self-consistency and positive definite issues 

need to be addressed first. The fastest approach is to initially minimize the fitting 

database to the bare minimum that is required for the code to run, we will expand 
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this later.  In terms of the 5 issues listed above, we will choose our initial fitting 

scenario as follows. (1) The largest size cluster fitted initially was 7 atoms in size. 

(2) The total number of clusters was 9. (3) The total number of properties was 35. 

(4) There was no extended bulk phases included in this initial phase. (5) The 

number of processors used was the maximum number available at the time, 

approximately 30. The database initially included only the following 7 clusters as 

shown in figure 11. 

 

Figure 11. Clusters initially used for fitting. 

Even though our initial guess for the boron parameters were carefully 

thought out, many of the processors failed to produce a fairly low residual, and 

many instances the code halted completely. But, out of the 30 plus processors 

that were running, at least 6 produced a residual15 lower than 130 (a residual of 



 

50 

scale in the mid-30s is the goal). Of these 6 sets of fitting parameters several 

characteristics of the overlap were inspected. One issue was the shape of the 

overlap, if it was not shaped appropriately that parameter set was discarded. The 

final boron parameter overlap curves are show below in figure 12. All P block 

element overlap curves should have these general shapes.  

 

Figure 12. Overlap functions of boron (optimized shown) 

The Hamiltonian curves should near zero around the cutoff point defined within 

the program. This must be manually checked.  This criterion supplies a quick 

spot check of the parameters themselves.  In figure 13 below the final optimized 

boron Hamiltonian curves are compared with the boron Hamiltonian curves from 

the work of Widany30. Note the curves are similar in shape.  
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Figure 13. General shape of the Hamiltonian 

If the parameters floated far out of their boundaries with high penalty, that 

parameter set was discarded. By the time all checks were made approximately 3 

parameters sets were retained as candidates for the next stage in the fitting. 

2.3.2 Stage 2: Addition of a fictitious sets of extended phases 

 From stage 1 approximately 3 parameter sets were retained. Copies of 

each parameter set are made and given different initial seeds. We will also 

expand our database to include phases of boron not found in nature; these are 

low probability or fictitious phases46, such as cubic boron. Generally only the two 

most common phases of boron are prepared in laboratories, alpha and beta 

boron. Simple phases of boron are not common and would be considered very 

high energy states. But for our initial version of our extended database of boron 

simple phases were included because of their small unit cell, see figure 14.  
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These extended phases of boron were calculated using DFT with plane wave 

basis set. The simple phases included: simple cubic, face centered cubic, body 

centered cubic and the diamond phases of boron.  

 

Figure 14. Fictitious phases of boron 

 The volume is increased homogenously by a multiplicative factor (i.e. a 

breathing mode). Once these phases of boron are included in the database, and 

all copies of the parameter sets are made with different seeds as stated above 

we proceed to the next stage of parameter fitting.  All simulations will now run for 

as for long as it takes until a significant number of sets of parameters are found 

that can reach the following criterion:  

 Achieve self-consistency; 

 Overcome the problem of the non-positive definite overlap; 
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 Have well shaped overlap functions;  

 Have an appropriate tail cut-off on the Hamiltonian;  

 Have reasonable values for the fit parameters; and  

 Achieve a low residual for the extended phases and the clusters.  

As parameters sets were found that achieved every one of these constraints, 26 

copies of this parameter set were made, all given different initial seeds, and re-

run on different processors. The lowest value residuals that still meet all the 

above constraints were retained. I call this process “parameter distillation” and 

this technique of expanding the database, copying the parameters, creating new 

random seeds, inspecting and retaining the best results is continued throughout 

this project until no improvement can be found within a reasonable amount of 

time (i.e. 1 to 2 months). At this point we are ready to move to the next stage of 

expanding our database with larger clusters.  

2.3.3 Stage 3: Addition of larger clusters 

 Once a candidate set of parameters has been obtained with a residual 

below 50, it is a good time to expand the database to include larger clusters. An 

argument can be made that the true nature of an element starts to become 

apparent at about 10 atoms47,48. One will notice when exploring small clusters of 

many different types of elements, that all elements will form similar small clusters 

under 5 atoms, but as the number of the atoms increases in the cluster. Special 

symmetries unique to each element start to appear that are unique only to that 

element, for example the carbon C-60 molecule is unique only to carbon. This is 

especially true for ground state isomers of boron, such as the boron 12 atom 
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ground state structure. Thus the inclusion of clusters with up to 12 atoms of 

boron into the database is now appropriate. The inclusion of larger clusters will 

slow the code, so without a good initial guess; large amounts of computational 

time would be wasted if the large clusters were introduced early in the parameter 

fitting process. The new cluster database is shown below in figure 15. 

 

Figure 15. The boron cluster database 

 At this point the code contains the complete cluster set and fictitious 

phases of boron. As in the previous case, copies are made and the parameter 

distillation process is continued. Once several parameters sets in the mid-40s 
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have been obtained, it is recommended to proceed to the next stage of inclusion 

of extended phases of boron that have been observed and created in a 

laboratory. 

2.3.4 Stage 4: Inclusion of laboratory synthesized bulk phases  

 We would like to have a Hamiltonian that reflects reality as much as 

possible.  Included in the extended phase database should be at least one 

extended phase of boron that can be found in nature or synthesized in a 

laboratory that is reasonable to work with. Most if not all forms of extended boron 

include small 12 atom icosahedral structures of boron. Isolated, these structures 

are unstable but, when they are connected to other boron icosahedral structures, 

they form strong covalent bonds. The individual icosahedron has a triangular 

face49, perfect for boron’s unique 3 atom electron deficient bonding nature. The 

alpha and beta phases of boron are the most common phases of crystalline 

boron synthesized. Note that it is extremely difficult to synthesize large crystals of 

boron and many lab samples are quite small. Boron is not found isolated in 

nature, but, is always found in combination with another element such as an 

oxide or borate.  
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Figure 16. The alpha phase of boron 

 Given this, the decision was made to include the simplest crystalline form 

of boron found50 into the database. This is the boron alpha phase as shown in 

figure 16. The boron alpha phase has 12 atoms per unit cell, and indeed that unit 

cell is the boron icosahedron structure as discussed previously. Once the boron 

alpha phase is included, the same distillation process is utilized as before. The 

unit cell of boron alpha, although composed of icosahedrals, is rhombohedral in 

nature as shown in experimental image51 in figure 17. The energy level of the 

alpha phase of boron is the lowest energy state in this study. The fictitious stages 

included are extremely high in energy. Because their energy is so high, and 

these phases do not represent realistic bonding scenarios found in natural boron, 

they are now to be excluded from the database.  We now move to the next stage 

of fitting without fictitious phases.  
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Figure 17. An image of boron alpha (rhombohedra) 

2.3.5 Stage 5: Removal of fictitious phases 

After completing stage 4, I ran a “robust check” (full detail in section 2.4. 

The robust check is a comparison of quality between our SCED-LCAO 

Hamiltonian for boron and the corresponding DFT result for various large boron 

systems using MD. These structures are too large to be included in the 

parameter fitting code, note the maximum size cluster used was 12 atoms. The 

robust check may include structures up to approximately one hundred atoms in 

size. This comparison is quite extensive, quite rigorous and slow, and is reserved 

as a last step in the fitting process. Once the parameter fitting codes ran for a 

long period time, it was noted that the fit quality progress, using the robust check 

comparison, was not proceeding in a rapid manner. After several months, and 

hundreds of attempts to gain an improvement in the quality of the boron 

parameters, it was concluded that by removing the very high energy (fictitious) 

phases of boron (i.e. sc, fcc, bcc, diamond) fitting might improve. This proved to 

be true during the months to come. The fictitious phases, although useful initially 
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for a rough guess, were removed from the database, and only the boron alpha 

bulk phase was retained to represent the extended database.  

Once removed, the standard method of parameter distillation proceeded, 

and the fit quality became more dependent upon the robust check to guide us, 

and less dependent upon the value of the residual in the parameter fitting code. 

At this point it was decided that the next stage of parameter improvement would 

come from increasing the quality of the ab-initio calculation used for the cluster 

database. This brings us to stage 6 in the fitting process. 

2.3.6 Stage 6: From density functional theory to coupled cluster theory 

 In the quest to improve the database, the quality of the database was 

questioned. Numerous boron studies have indicated that when precision is 

required, DFT may be inferior to post Hartree-Fock methods52.  It is always 

possible that the clusters or the bulk phases are poorly calculated with DFT, or 

they are inconsistently calculated. It is a well-known problem that even the most 

accurate ab-initio methods have trouble predicting the ground state structure and 

energies of some small clusters53. 

One standard method is to calculate the optimized atom geometries using 

DFT (in our case B3LYP/aug-cc-PVTZ41,54–56) then recalculate the energy of this 

system with nuclear coordinates fixed (i.e. a single point calculation) using the 

very computationally costly coupled cluster theory57 . This will give a more 

accurate energy calculation for the database. The system does not need to be 

geometry optimized because the database has no requirement for ground only 
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state clusters. The cluster geometry could be slightly moved spatially from the 

ground state optimal configuration and we will still be accurate. The important 

issue is to have accurate energies for a given configuration. That configuration 

does not have to be the geometrically optimized minimal energy ground state for 

that isomer.  

The CCSD(T)/aug-cc-PVTZ58 method/basis was used to calculate the 

energies of the boron clusters. The energy and spatial coordinates of the bulk 

phase of boron alpha, calculated with DFT GGA, was left unchanged. This 

alteration of the database resulted in a clear decrease in the residual and the 

robust check greatly improved. Although the fitting has greatly improved at this 

point, some cluster isomers still predict the wrong energy ordering compared to 

other isomers with the same number of atoms. This brings us to a technique 

developed to help mitigate this problem. We will sacrifice fit quality of some 

clusters to improve fit quality of other clusters. This brings us to stage 7. 

2.3.7 Stage 7: Heavy weighting on the boron 12 cluster 

 As previously mentioned, most elements start to form unique clusters 

around 10 atoms. No other element seems to form such shaped clusters. In the 

case of boron we have two interestingly shaped low lying isomers of boron 12. 

The isomers are the pseudo-planar 12 atom sheet and the 12 atom double ring; 

they are very similar in energy, but quite different in shape. See figure 18. 

The difference in energy between these two boron 12 atom isomers is 

very important. It was discovered that if the parameter set being tested does not 
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accurately predict the proper energy ordering and difference of these two 12 

atom boron isomers, the parameter set will fail to be accurate in the robust check 

when looking at larger cluster properties with molecular dynamics. In order to 

obtain the correct energy spacing and ordering, the quality of fit is judged heavily 

on the energy spacing and difference of these two isomers, i.e. they are heavily 

weighted in the fitting process. These two isomers are given extra preference in 

the residual calculation.  

 

Figure 18. Two important 12 atom boron isomers 

This was a crucial step in creation of the current successful boron 

parameter set, and is an advised trick for other semi-empirical methodologies 

involving other elements. Once increased weighting on these two isomers was 

implemented in the fitting process, the energy ordering and spacing was 

corrected with minimal impact to fit quality of the other clusters in the fitting set. 

The ability to predict the energy and spatial features of larger boron systems 

greatly improved. When calculating the energy ordering properties of large 
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sheets of boron, a similar problem was noted. Accordingly, a similar approach 

was used for large boron sheets as discussed next in stage 8. 

2.3.8 Stage 8: Addition of two dimensional extended phases 

 When performing the robust check on two dimensional sheets it was noted 

that although initial results are quite good, there were several inconsistencies  

with DFT. Calculations performed on 2D sheets of boron, not only by the CMT 

group (we also had DFT results that were different from the SCED-LCAO 

results), but also by other research groups59,60,60–65 were somewhat inconsistent 

with the SCED-LCAO results. To mitigate this problem, two different 2 

dimensional sheets were inserted into the database. One was the boron sheet 

made famous by the Yale group59 as shown in figure (21), which is quite low in 

energy when calculated using DFT, see figure (20). Note that the legends in 

figures (20) and (21) refer to this structure as the “removed” sheet because this 

structure is constructed by removing boron atoms from a sheet comprised of 

triangles. The other sheet inserted into the database was coined the “David” 

sheet, see figure (19), which is high in energy when calculated using DFT, see 

figure (20).   
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Figure 19. David sheet 

The “David” sheet was accidentally discovered during a reconstruction 

simulation of a hexagonal sheet, and it was named “David” because the unit cell 

resembles the Star of David66.  At first the sheet was thought to possess a low 

energy, but, after simulating the sheet in DFT it was determined there was an 

energy ordering problem with the boron parameters. The “David” sheet was 

stable in DFT and in SCED-LCAO when heated and cooled slightly. 
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Figure 20. DFT results of 2D boron sheets (Yu Ming) 

The ordering problem was solved by including the Yale (i.e. removed) sheet and 

the “David” sheet in the fitting code. After refitting, the parameter fit improved 

greatly and energy ordering for the sheets was corrected. The bulk (i.e. 

extended) database now includes the alpha boron phase (3D) and two sheets of 

boron (2D). The fit quality is as follows: 
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Figure 21. Fit quality of extended phases 

 It is worth noting that the fit for the Yale sheet and the fit for boron alpha 

are quite good. The shape of the fit for the David sheet is good but the energy 

prediction is off by approximately 0.01 eV/atoms, due to the David sheet being 

such a high energy sheet. In this case the shape and location of the minimum 

were more important. 

2.3.9 Conclusions about fitting 

 We have now concluded the 8 stage fitting process.  We now have a very 

good set of boron parameters, but they are not perfect and never will be. The 

very nature of semi-empirical methods is not to find a perfect set of parameters 
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for a given element, but to find a sufficient set of parameters in a finite period of 

time that can be used to rapidly calculate properties of the system: 

 

Figure 22. Final boron parameters 

There will always be some level of non-transferability, and there will 

always be some question of the accuracy of the calculation given any set of 

parameters. But, this is also true when changing different types of 

exchange/correlation functionals in DFT. DFT is far slower and far more memory 

intense than the SCED-LCAO semi-empirical method. The final optimized set of 

boron parameters found using the 8 stage process described above are shown in 

figure 22 

This set of parameters represents a very long evolution of work over many 

years. If these parameters are truncated, unreliable results may occur. This is 

because the system is extremely nonlinear and sensitive to small changes in the 
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parameters. Note that s  and 
p  are truncated, this is because they were fixed 

throughout the total fitting process.  

2.4 MOLECULAR DYNAMICS ROBUSTNESS CHECK 

2.4.1 Robust check #1: 6 clusters of interest 

A secondary database is utilized to perform a robustness check. This 

database is not included in the parameter fitting code because this would be far 

too computationally costly to include. The robust check database contains 

extremely large clusters, extended phases and utilizes a MD routine written by 

the University of Louisville Condensed Matter Theory Group16. Once many sets 

of parameters have been chosen as candidates from the fitting code they are 

tested in the MD code to find the best set of parameters.  This is the final step in 

the parameter decision making process. The approach starts with large clusters 

and extended phases calculated in DFT. The coordinates of those structures are 

input into the SCED-LCAO Hamiltonian in the MD code. In most cases if the 

structure changes drastically as the system is allowed to relax, that set of 

parameters is discarded and a different set is chosen. The only exception is 

when we would expect reconstruction to a different structure. The test cases for 

the robust check are shown in figure 23.  
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Figure 23. First of three robust checks 

The robust check includes structures that are not included in the fitting 

database, are generally larger structures, and have been previously been studied 

using DFT34,39,40,52,67–72. The energy ordering is checked and the spatial structure 

is checked. In figure 23 we see ground state structures of boron 10, 11, 12 

(icosahedral), 19, 20, 24 and we have the boron 80 quasi-fullerene structure. The 

plot shown in figure 23 shows a successful plot because every curve is flat. If we 

feed in the coordinates from the output of our DFT simulations we should get 

approximately the same structure back out from the MD code using the SCED-

LCAO Hamiltonian (i.e. the curve should be flat with no reconstruction of the 

structure). Also, energy ordering compared to DFT is correct. This would be 

considered a successful robustness check, and the parameter set would be 

considered a strong candidate for the next stage of robust checking.  
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2.4.2 Robust check #2: three isomers of the 13 atom boron 

 

Figure 24. Three isomers of 13 atom boron 

The second robust check tests the ability to correctly order and 

reconstruct 3 isomers of 13 atoms boron. The highest energy boron isomer is 

similar in energy to the next highest energy isomer as shown in figure 24. The 

highest energy isomer reconstructs into the second highest energy isomer within 

the MD code. Energy ordering before reconstruction is consistent with DFT 

results. This is a very promising result. The lowest energy isomer is much lower 

than the other two, and this is also consistent with DFT results. The above plot is 

very consistent with DFT, and would be considered a more stringent result than 

robust check #1. This plot would be considered a pass, and the parameter set 

would be moved on to robust check #3. 
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2.4.3 Robust check #3: two isomers of the 15 atom boron 

Robust check #3 is a comparison of energy ordering and structure stability 

of two 15 atom isomers of boron as shown in figure 25. 

 

Figure 25. Two isomers of 15 atom boron 

It is noted that achieving a successful set of parameters that meets all 

three robust checks was exceedingly difficult. This will end the robust check on 

larger clusters. We will now check sheet stability. 

2.4.4 Robust check #4: reconstruction of the triangular to buckled sheet 

Within the framework of DFT a triangular sheet of boron is a high energy 

structure.  This structure will spontaneously reconstruct to buckled sheet of 

triangles in perfect rows. The current robust check will test this reconstruction. If 

the reconstruction is not a perfect reconstruction from a flat triangular sheet to a 

perfectly buckled sheet with perfect rows, the set the set of parameters is 
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discarded. I stress perfectly because many parameters sets would buckle, but 

not all were perfectly buckled.  

 

Figure 26. Reconstruction of the triangular to buckled sheet 

In figure 26 three initial triangular sheets of boron with varying lattice constants 

are allowed to reconstruct in the MD code, using the SCED-LCAO method.  The 

final lowest energy structure is a perfectly buckled sheet of triangles in perfect 

rows. This is exactly the result that was sought.  If the parameter set could 

achieve this reconstruction it was considered a strong candidate for the next 

robust check. Note that if the structure is pre-stretched it may crumble when the 

system starts to relax, or it will not reconstruct perfectly. 
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2.4.5 Robust check #5: Energy ordering of all sheets and conclusions 

The absolute final robust check is energy ordering of the triangular, 

“David”, buckled, and Yale (i.e. removed) sheets. 

 

Figure 27. Energy ordering of all examined boron sheets 

If a parameter set could pass all stages of the fitting checks previously 

discussed and all stages of the robust checks mentioned above, only then is the 

boron parameter set that is being tested considered a high enough quality to 

have the ability to predict  the behavior of boron as compared to DFT methods. 

The above plot meets full consistency with DFT with one minor caveat. If you 

look closely at the Yale (i.e. removed) sheet, it reconstructs to a slightly lower 

energy structure. This structure is about 0.04 eV/atom lower than the initial 
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relaxed structure. Also, this structure had to run for 1000 MD steps before it 

reconstructed, a feature that many may miss if they did not run the simulation 

long enough. This may actually represent on some level the accuracy of the 

SCED-LCAO Hamiltonian for this given set of parameters as applied to boron 

sheets. It is somewhat amazing that this set of parameters met so many checks 

and balances, and yet slightly gets this one structure slightly wrong. In the quest 

to correct this minor flaw, after a month of work, I decided that I cannot meet all 

stage checks and robust checks and correct this in any finite period of time. 

Initially it was stated in this project that a semi-empirical method will never agree 

with any ab-initio method in every case for every system and element. But, after 

eight fitting stages and five robust checks, I have to assume my error is 0.04 

eV/atom for boron sheets.  This is the error of my parameter set used with this 

particular Hamiltonian. It may be assumed that for some structures it may not be 

possible to distinguish the difference in energy for energies smaller than 0.04 

eV/atom.  When I get to these small differences in energy levels, reliability may 

come into question. Alternatively, it is possible that there is something odd about 

the sheet.  But, is more likely that for this particular system predictive power is 

lower, but we cannot say this true for any other system not tested. In fact it is 

sufficiently predictive for most systems as evidenced by its success as shown 

above with all other systems tested. 

We are now in a position to use our Hamiltonian. The next chapter will 

outline several applications. 
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CHAPTER III: BORON SIMULATIONS 

In the previous chapter we developed a fitting methodology to fabricate an 

accurate semi-empirical Hamiltonian for boron. The boron Hamiltonian was 

thoroughly tested and found to be extremely accurate. We will now proceed with 

several applications of the boron Hamiltonian of interest.  

3.1 TWO DIMENSIONAL SHEETS 

Although two dimensional boron sheets were used in the fitting process, 

only certain properties of the sheet under test were used as criteria for the fitting. 

All other properties not considered in the fitting process are considered 

predictions. This is also true for every boron structure considered during the 

fitting process. For example, if the energy of a cluster was included in the fitting 

process, but not a bond angle in that cluster, then the energy is a fitting property 

and the bond angle is a prediction. The full results of the boron sheets simulation 

are summarized in the previous section (2.4.5, figure 27). The results are not 

only a robust check, but also a prediction.  

3.2 THE BORON 80 ATOM FULLERENE STRUCTURE 

A large amount of focus was spent on the boron 80 buckyball several 

years ago73. The initial result indicated the structure the structure is stable, but, I 

had found an 80 atom fullerene structure that was a bit lower than the B80 
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buckyball, and I noticed the structure was not actually an Ih structure; it was 

actually Th and maybe C2h symmetry39.  This result was found with an earlier set 

of boron parameters. Another 80 atom structure was found, it was amorphous in 

nature but was significantly lower in energy than the B80 buckyball.  

Since then several events have occurred:  

1. A lab in Leuven74 asserted that the structure is not Ih but is Th. 

2.  A correction paper by Boris I. Yakobson was released to Physical 

Review stating that indeed the symmetry was not Ih as originally 

thought75. 

3.  Another lab discovered a lower energy B80 state76 than the B80 

fullerene. 

4.  It was theorized that stuffed boron fullerenes have lower energy 

than unstuffed77 . 

5. I made my assertion in a poster presentation at an APS March 

meeting39 that the B80 cluster was not stable, was not Ih, and was 

not the lowest energy isomer for 80 atoms of boron. At that time I 

was still not confident about the current boron Hamiltonian. Since 

there are now confirmation my assertions, it must be concluded that 

the boron SCED-LCAO Hamiltonian has surprising predictive 

power.  

The lowest energy state found with the current SCED-LCAO Hamiltonian 

was a Ch symmetry state with some atoms pointing out and others pointing in. 
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The differences in energy of these structures are exceedingly small, 

0.004eV/atom. This is fairly consistent with small basis set calculations in DFT. 

The final relaxed structure originating from an Ih structure is shown below in 

figure 28. It is noted that central 20 atoms are quite unstable when the system is 

heated and starts oscillating. These central atoms eventually break the symmetry 

of the structure during the heating process and holes form in the structure. Once 

a hole is formed the structure will not heal according to every simulation 

attempted. If heated a bit more the whole fullerene collapses into an amorphous 

structure, when cooled it stays amorphous. 

 

Figure 28. The B80 boron Ih, Th, and C2h fullerene from left to 

right. 
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The final relaxed B80 structure is a semiconductor with a homo lumo gap 

of 0.92eV. This is not that different than silicon, but, this structure will most likely 

not be found in nature for numerous reasons, and has still not been found many 

years later. Density of states and homo lumo gap of the B80 cluster are shown in 

figure 29. 

 

Figure 29. Density of states plot and homo lumo gap 

3.3 RANDOM BORON CLUSTERS 

One early application, using an earlier (yet heavily tested) set of boron 

parameters, of the boron Hamiltonian was the comparison of random boron 

structures that are fully amorphous, with select icosahedral centered cuts (i.e. 

vertex centered, see section 3.4.5), in between icosahedral centered cuts (i.e. 

body centered, see section 3.4.5) and the B80 buckyball (see section 3.2). The 

random structures, see figure 31, were created using a random number 
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generator then power quenched78,79 (PQ)  using MD. Once power quenched, the 

clusters were heated to a moderate temperature, allowed to vibrate and move 

using simulated annealing (SA) then finally quenched again. The results are quite 

remarkable, see figure 30.  

 

Figure 30. Random clusters vs. cuts and B80 

The finding demonstrates that most amorphous clusters between 30 and 100 

atoms, that are fairly low in energy, are lower in energy per atom than the boron 

80 buckyball70,80,81.  
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Figure 31. Typical amorphous random boron cluster 

This does not mean that the boron 80 buckyball cannot exist.  But, it does 

imply that any laboratory fabrication technique, for boron cluster construction, 

that involves significant heat; the symmetric structures that could be produced 

will have to compete with boron’s natural tendency to enjoy being in an 

amorphous state.  

3.4 ALPHA BORON CUT CLUSTERS: RHOMBOHEDRAL 

SYMMETRY 

Most boron structures have either icosahedral37 structures within, or they 

are amorphous82 in structure. It is of interest to examine some of these 

structures, in particular the icosahedral based structures. Beta boron seems to 

be the current lowest energy83–85 phase of boron. Beta boron is also the hardest 

and highest temperature phase of boron and it coexists at room temperature with 

alpha boron. They are competitive in energy, with beta boron being only slightly 

lower in the ground state energy than alpha boron. The extended phase of alpha 
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boron, infinite in size, was found to have an energy corresponding to 

approximately -40.12eV using the SCED-LCAO Hamiltonian.  

 

Figure 32. A 4_4_4 slab of boron alpha 

Small pieces of alpha boron may make good candidates for small 

nanostructures. In the following sections the boron Hamiltonian is used to predict 

properties of small alpha boron cut clusters with rhombohedral symmetry. 

Every rhombohedral cut is tagged with a label such as 2_3_4 or 5_3_2, 

i.e., i_j_k where the indices designate how many icosahedra there are in the 

cluster. The total number of atoms in the cluster is 12*i*j*k. Figure 32 is 

designated 4_4_4, for example. A sheet of icosahedra would be designated i_j_1 

(or i_j), because it is one layer thick. A chain of i icosahedra would be designated 

i_1_1 (or i), because it is of unit thickness and width. 

3.4.1 1D Chains of Icosahedra 

One of the highest energy structures I have simulated is the chain of i 

(i_1_1) boron icosahedra as shown in figure 36. The finite chain, like all other 
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structures comprised of only boron icosahedra, has vanishing homo-lumo gap, 

and are metallic in nature. 

 

Figure 33. The icosahedral boron 1D chain 

The chain is considered to be a rhombohedral cut of boron. During the 

finite temperature simulations, winding of the chain was not observed. It was 

observed that the bonds break between the icosahedra and the chain breaks into 

pieces, and self-consistency cannot be achieved. An energy plot of chain length 

for up to 300 boron atoms is shown in figure 34. 

 

Figure 34. Energy plot of an icosahedral 1D chain as a function of 

length. 
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When the number of icosahedra gets to about 10, the energy per atom is 

approximately constant. These chains are very high energy structures and thus 

might be difficult to fabricate. 

3.4.2 2D sheets of icosahedra 

 

Figure 35. The icosahedra sheet 

If one can imagine a sheet that is completely made out of icosahedra as seen in 

figure 35, it would have a quasi-2D structure. If we view the icosahedra as single 

entities, one can imagine flat sheets of this nature. The sheet size would be 

designated as i_j. If we calculate the energy of many such sheets we see a 

smooth trend as shown in figure 36. The sheets with i=j have the lowest energy if 

the total number of atoms is fixed. For example a 5_20 sheet is higher in energy 

then a 10_10 sheet even though they have the same number of atoms. The 

icosahedral sheets have no homo-lumo gap, for example the homo-lumo gap of 

the 7_7 sheet is 0.0048 eV. Sheet energies/atom are also fairly high, especially if 

they are more strip in nature.  
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Figure 36. Energy plot of 2D icosahedral sheets 

3.4.3 3D structures of icosahedra 

Compact 3D rhombohedral cut structures are quite low in energy. A plot of 

various energies for select clusters is shown in figure 37. The index indicates the 

number of icosahedra. A chart of select homo-lumo gaps, all are metallic, is 

shown in figure 38. 3D structures keep decreasing in energy as they grow in 

volume as long as they grow homogeneously in all directions. Compact 

structures tend to level out in energy at the same value as bulk boron alpha as 

previously mentioned at sizes above 50,000 atoms. 
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Figure 37. Rhombohedra cuts of alpha boron 

 

Figure 38. HOMO-LUMO gaps for select 3D rhombohedral cuts of 

alpha boron 

One can see from figure 39 that as the structures get larger the energy tends to 

decrease finally reaching the limiting value of approximately -40.12eV. The 

energy converges slowly with size to that value, requiring what appears to be 

millions of atoms. For example, a 43_43_43 structure has 12*43*43*43 = 

954,084 ~ a million atoms, about a 23 nanometer structure. One also notes that 
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when the aspect ratio is skewed heavily the energy is much higher. For example 

from the plot, 2_2_7, which is a 7 ball length bar, is about the same energy as 

3_3_2 but has 336 atoms and 3_3_2 only has 216 atoms.  

This study demonstrates that for rhombohedral cuts of boron, ones that 

would probably be accessible today in a lab, compact structures, not high aspect 

ratio structures, tend to be lower in energy. This is expected, and now 

demonstrated. Combined with the simulated annealing result it is also noted that 

if you heated a 2_2_7 bar to over thousand degrees it will not reconstruct to a 

more compact icosahedral symmetry structure easily, it will most likely 

reconstruct to an amorphous structure instead. This is because the icosahedrals 

in the structure will collapse instead of float around and migrate.  

The implication of this may be that the construction of small boron clusters 

with rhombohedral low energy structures may be best achieved via mechanical 

means like ablation, and not high temperature means like deposition. 

3.4.4 3D structures of icosahedra with equal aspect ration 

In the previous case it was mentioned that if the aspect ratio is low, the 

energy of the structure in question is low. Boron favors compact structures as 

long as the unit is icosahedral. An energy plot of i_i_i is shown in figure 39 and 

compared to the limiting case of alpha boron.  
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Figure 39. Equi-cuts of boron alpha with rhombohedral symmetry 

This curve represents a limiting envelope for rhombohedral cut structures of all 

types. A rhombohedral cut of complete icosahedrons cannot be lower in energy 

than this for a given fixed number of atoms. This is not true for spherical cuts or 

structures that do not retain the rhombohedral symmetry. 

3.5 ALPHA BORON CUT CLUSTERS: SPHERICAL 

SYMMETRY 

3.5.1 Spherical cuts of alpha boron 

We next consider spherical cuts of alpha boron. These would be cuts 

made by picking an interior point in a bulk slab of alpha boron and sweeping out 

a sphere from that origin. The spherical styled slice would cut through many 

icosahedra leaving only the icosahedra in the deepest interior intact. Initially this 
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would create a scenario with lots of loose atoms on the surface. These loose 

atoms would reconstruct along the surface and fit into the interstitial locations in 

the new surface.  

During the simulations it was noted that if the cuts were large enough to 

encompass more than one connected icosahedra, those icosahedra and the 

connections between them were stable and never reconstructed within the 

interior of the structure. This was true even when heated significantly.  

It was instead observed that if heated beyond a critical temperature, the 

structure would become fully amorphous. In other words the icosahedra would 

collapse before they would disconnect from one another.  This is also was also 

true, as noted in the previous section, for rhombohedral cuts. Surface atoms 

would move dramatically and reconstruct under heat up to 1000K, but it was 

never observed that they would combine into icosahedra themselves. Select 

small and large spherical clusters are shown in figures 41.  

 

Figure 40. Red is centered on ball, Blue is centered between balls 
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There are two cases; one where the origin of the cut is centered on an 

icosahedral ball, the other case is where the origin of the cut is centered between 

an icosahedra. See figure 40.   

 

Figure 41. Examples of large/small spherical cuts before and after 

relaxation 

Figure 41 shows small and large pre and post relaxation spherical cut boron 

clusters. Every cluster centered upon an icosahedra has at least one ball in the 

very center. The largest images have several.  

As the radius of the cut gets larger, the number of icosahedra in the 

interior of the cluster increases. In the limit as the cut get extremely large, the 

number of surface atoms that are not part of a complete 12 atom icosahedra, 

become small compared to the number of atoms that belong to a complete 

icosahedra. This is true also for the case of cuts that are centered between the 

icosahedra. As the number of atoms shrinks, in the case of the spherical cut 

centered between icosahedra, there is not one complete 12 atom icosahedra 
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present in the cluster. These smaller clusters relax to very interesting shapes and 

some are quite symmetric while others seem to collapse to an amorphous state.  

If we look at the energy, as shown in figure 42 we see a trend. For a fixed 

number of atoms below 100 we see that the case of the spherical cut centered 

between icosahedra tends to be lower in energy. At approximately 100 atoms the 

spherical cut case centered on an icosahedra, starts to be lower in energy. As 

the number of atoms in either styled cut nears 400, both cases tend to trend to a 

similar energy. This makes sense because after we get to approximately 100 

atoms, the case centered on icosahedra starts to form a second internal layer of 

full icosahedra, dropping the energy. When we get to 400 atoms both cases have 

lots of complete icosahedra so they are competitive in energy.  This interesting 

result implies that very small, but over 100 atoms, boron structures will most 

likely contain complete icosahedra in the interior as opposed to a fullerene-like 

structure. 
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Figure 42. Energy plot of boron alpha spherical plots 

A table of the homo-lumo gaps for various spherical cuts of both type 

reveal that all spherical cuts are metallic, see figure 43. 
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Figure 43. Plot of all spherical cuts homo-lumo gaps 

3.5.2 Trimmed spherical cuts of alpha boron 

In the previous section loose surface atoms left over from the spherical cut 

which were not part a complete 12 atom icosahedra, were allowed to move 

around and reconstruct. If instead those atoms are removed from the cut cluster, 
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we would have a compact spherical shape of icosahedra with no partial 

icosahedral structures. This case was run for the example of 228 atoms or 19 

icosahedra see figure 44. In figure 44, the figure on the left is the initial structure 

and the figure on the right is relaxed structure-they are extremely similar. It is 

noted that this is a spherical cluster, not a rhombohedral structure, and is more 

compact. It does not look spherical because it is too small, but it is the most 

compact alpha cut tested. 

 

Figure 44. Trimmed spherical cut of alpha boron 

The outer corners do reconstruct slightly, but the general shape stays the 

same. This is the lowest energy cluster I have ever found for an alpha boron cut. 

It is compact, fully made of icosahedra, spherical and resistant to reconstruction 

up to about 1000K. Below in figure 45 we compare all structures including the 

boron 80 buckyball on one chart. 
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Figure 45. All alpha boron cuts, random clusters, bulk boron alpha, 

and the B80 buckyball. 

The B80 buckyball (B80 bucky) is competitive in energy with random structures 

(RANDOM boron). The equi-cut limiting envelope (X.X.X equal length) contains 

most clusters, with a few exceptions such as several small spherical cut boron 

clusters (BALL spherical) and the trimmed spherical cuts (trimmed spherical) 

mentioned above. These clusters must have some atoms on the surface that 

create a lowering of the energy scenario and are worth further exploration. Next 

we will analyze select clusters that are about 220 atoms in size. 
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3.6 LOCAL ANALYSIS OF BORON CLUSTERS OF 

SIMILAR SIZE 

It is informative to compare several different structures of similar size. 5 different 

types of clusters have been selected, all have around ~220 atoms: 

1. 252 atom spherical cut centered on an icosahedra (BALL) 

2. 216 atom spherical cut centered on an icosahedra (BALL) 

3. 228 atom trimmed spherical cut (trimmed) 

4. 228 atom random amorphous cluster (RANDOM) 

5. 210 atom spherical centered between icosahedra (EMPTY) 

A plot of the energy of each cluster is shown in figure 46. All are metallic, the 

homo-lumo gaps are less than 0.01 eV. Because of this a DOS states plot may 

not tell us much, but by looking at the pair/angle distribution function we will get 

some insight into the type of bonding we have.  

 

Figure 46. Energy/atom of select clusters of size ~220 atoms 
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The pair distribution function is shown in figure 47.  

 

Figure 47. Pair Distribution function for the 5 test clusters. 

It is immediately apparent that the trimmed spherical cluster (lowest in 

energy/atom) has the highest sharpest peaks, the random cluster (highest in 
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energy/atom) has the broadest lowest peaks. Alpha boron has very distinct sharp 

peaks that are obviously periodic (red). The 3rd peak (wide light blue) in the 

cluster set varies the most, this is also the sharpest peak of the first 5 peaks. The 

double peaks (green) in alpha boron are present as a broadened single peak in 

all of the clusters. The double-peak is the tell-tale signature of crystalline alpha 

boron; this double peak is not present in clusters, instead we see a broadened 

single peak in all of the clusters examined. The closest cluster to mimic alpha 

boron is the trimmed case. This makes physical sense, the first sharp peak 

designates the boron bond length of the icosahedra in boron alpha: 

1.7556,1.6875, 1.7358, and 1.691 angstroms. This length is also prevalent in the 

5 test clusters, but to a lesser degree due to reconstructions. It is most prevalent 

in the trimmed cluster because it is solely made of icosahedra, and least 

prevalent in the random structure due to the random smearing effect in that 

cluster. 

Next we look at the angular distribution function. First for the 5 clusters, 

see figure 48. 
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Figure 48.Angular distribution function for the 5 test clusters. 

 A similar situation is noted in the angular distribution function. Boron alpha 

is comprised of many 60 degree angles due to the numerous equilateral triangles 

in the icosahedra. Secondly, the triangles do not lay flat they are wrapped over a 
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ball, the angle they make as they bend is 106 degrees, the angle that is made 

between the icosahedra and connection line to the next icosahedra is about 115 

degrees. This accounts for the 3 major angles in boron alpha. We also see the 

same 60 degree bonding heavily in all of the boron clusters. This makes perfect 

sense, unlike silicon that is loaded with lots of tetrahedral bonding, we see the 

true nature of boron with heavy three center triangular bonding. 

This concludes chapter 3 and the discussion of purely homogenous boron 

structures. In conclusion it is noted that the lowest energy cluster observed was 

that of a compact spherically shaped boron cluster comprised solely of 12 atom 

icosahedra. All pure boron clusters exhibit similar bonding as evidenced by the 

local analysis. 
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CHAPTER IV: PHOSPHORUS PARAMETER 

ACQUISITION

4.1 PARAMETER FITTING OF PHOSPHORUS  

4.1.1 Cluster set used in the fitting of phosphorus 

Following in the same path as the boron work we will find a crude but very 

effective set of parameters for phosphorus. Improvement on this set is always 

possible given more time, but the point was to use phosphorus as a dopant in 

silicon. Given that, we will not spend a lot of time analyzing phosphorus since the 

bonding scenarios and large phosphorus structures are not as complicated. 

Likewise this section will not discuss in detail the fitting process because it 

mirrors the boron fitting process described in prior sections with fewer rigors.  

The fitting cluster set is shown in figure 49, and was not changed. The 

parameter fit to the phosphorus clusters was quite good and fairly easy to 

achieve especially compared to boron. There are many detailed articles about 

small phosphorus clusters86–90 that can be utilized as an initial guide.  Every 

cluster was first calculated using DFT with the hybrid B3LYP functional and the 

aug-cc-pvTZ basis set. After geometry optimization, the nuclear cores were fixed 

and coupled cluster calculations were performed using the CCSD(T) method with 
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the cc-pvDZ and cc-pvTZ when possible. This is a very computationally intensive 

calculation, thus extremely large basis sets cannot be used.   

 

Figure 49. Clusters used in the phosphorus fitting process  

Next we needed an extended phase to expand the fitting database. The 

easiest phase found in nature at room temperature is the black phosphorus 

phase. In the next section a fit to black phosphorus will be performed.  

4.1.2 Black phosphorus: An extended phosphorus phase 

 

Figure 50. The black phosphorus phase 
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The black phosphorus phase is a common phase in found in nature91. It is 

very well understood92. The parameter fit for this phase is exceedingly strong as 

evidenced in figure 50. The curve shown is actually two curves that lay so closely 

on each other that it appears to be one curve.  This is more than sufficient for our 

phosphorus Hamiltonian. This phase was calculated using DFT (VASP32) using 

GGA approach.  

4.1.3 Optimized phosphorus overlaps 

The final optimized phosphorus overlap curves are typically shaped, as 

shown in figure 51, with reasonable bond length cutoff.  

 

Figure 51. Overlap curves for phosphorus 
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4.1.4 Predictions 

A secondary database71 for the robust check was created consisting of 

intermediate sized clusters of phosphorus 10, 11, 12, 13, 14, 15 and 24 

atoms88,93, see figure 52. These clusters were used as a robust check. Once a 

parameter set was found, see figure 49, which met all requirements and passed 

this robust check it was deemed ready to use. Its main application would be a 

single dopant atom in a silicon wire, but, this phosphorus Hamiltonian could 

easily be applied to phosphorus structures of arbitrary size. 

 

Figure 52. Predicted clusters from the phosphorus parameter set 

4.1.5 Comparison with DFT 

The robust check yielded reasonable agreement with DFT as shown in 

figure 49. The shapes of the clusters are very consistent with DFT as shown in 

figure 53. 
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Figure 53. Comparison of binding energy with DFT and final 

parameter set 

4.1.6 Conclusions about the final parameters set 

The phosphorus parameter set was found very rapidly, would work well for 

intermediate sized clusters, and it will be shown that it works well for the case of 

a phosphorus dopant atom in silicon. Optimized phosphorus parameters are 

shown in figure 54 along with optimized boron parameters. 

 

Figure 54. Optimized Phosphorus parameters shown in comparison 

to boron parameters 
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Due to minimal testing, the phosphorus Hamiltonian may have difficulty in 

some scenarios where energy differences are very small. These parameters 

have not been verified and validated at the level that the boron parameter set. If 

a large phosphorus cluster study was to be performed, an expanded robust 

check would need to be employed, to capture small energy differences.  

In the next chapter the boron and phosphorus Hamiltonians will be used in 

conjunction with a previously developed silicon Hamiltonian8,94,95. In this 

application boron and phosphorus will be used as dopant atoms in a silicon multi-

twin nanowire.   
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CHAPTER V: DOPING THE SILICON WIRE WITH  

BORON AND PHOSPHORUS

5.1 THE HETEROGENEOUS HAMILTONIAN AND 

OVERLAP 

Until this point, all systems considered have been either comprised solely 

of boron or phosphorus. In chapter one, an assumption was made that all atoms 

in the system would be of the same elemental type. For the heterogeneous case 

where there is more than one type of element we must modify our Hamiltonian 

and overlap to reflect this.  

The goal of the SCED-LCAO methodology is to create an extremely 

flexible and reliable Hamiltonian and overlap, yet not increase the number of 

parameters in the system beyond what is absolutely necessary. Although one 

could create a heterogeneous database of pair interaction based parameters, 

such as boron/silicon parameters, this defeats the purpose of the SCED-LCAO. 

That approach will quickly escalate the problem to an intractable level 

unnecessarily. Our desire is to construct a SCED-LCAO Hamiltonian for binary 

systems that is based upon the SCED-LCAO formulation for homogeneous 

(single element) systems, see chapter 1. The Hamiltonian/overlap will be 
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comprised of functions that will mix homogeneous parameters in a prescribed 

manner. 

The first attempt made was by Dr. Yu Ming using a 50/50 mixing ratio with 

the assumption that carbon chemistry and silicon chemistry are somewhat similar 

based upon the location in the periodic table. I also tried a 50/50 with boron and 

silicon. It was soon realized that the model could be improved by noting that 

indeed charge transfer effects will play a significant role – and this may not be 

represented well for a 50/50 mixing scheme. If the electronegativity of the two 

elements is not equivalent, charge will have a preference to move from one atom 

to another. This has the effect of shifting the energy of a given atomic site, and 

thus the force. This phenomenon should be included in the Hamiltonian and is 

the motivation for introducing the mixing parameter 
ij . 

Parameters i , '

i and iU  are site specific. The function ( )i ijW R
 is also 

site specific. All other phenomenological functions are dependent upon binary 

pairs of sites. The way these binary site dependent functions are treated is the 

subject of current research in the CMT group.  

For this body of work, weighted averaging of homogenous parameters or 

functions has been chosen. The weighting factor, or mixing parameter
ij , is the 

same value in every function.  
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Figure 55. Electronegativity and differences between elements. 

The fact that we will use only one 
ij per pair of elements in the system is a 

key feature that reflects not only the need to minimize the number of free fitting 

parameters, but also the observation that charge transfer and a preference for 

charge buildup influences every interaction term. The electronegativity of the 

elements are shown in figure 55. From the chart above we suspect that 0.5BP   

and , 0.5BSi PSi   as a quality, but we do not rigidly make any assumption about 

the quality or quantity. Environmental effects can greatly influence this parameter 

beyond the very simple Pauli electronegativity. The system will be optimized to 

find the best fit 
ij . 

ij  is found by varying its value from 0 to 1 in conjunction with fixed 

homogenous parameters. The result is compared with density functional theory 

results to verify and validate the optimal value for 
ij  for a given binary pair. In our 

case the pairs are boron-phosphorus, boron-silicon, and phosphorus-silicon. For 

each pair there must exist a different 
ij . In cases of low charge transfer, the 

value of 
ij may be approximated with simply 

ij =½, and indeed that is a good 

initial guess in a numerical scheme to find the optimal value of 
ij . If the 

ij  value 
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floats too far either towards 0 or 1, for example 
ij =0.1 or 

ij =0.9, it is highly 

suspect that this value is not physically realistic. 

5.1.1 Parameter based weighted averaging 

The H ckel type function has an exponential parameter: 

 
,( ) ij K ijR

ijK R e


  (5.1)  

This parameter is replaced by a weighted average of the homogeneous 

parameter values.  

 , , ,(1 )ij K ij i K ij j K        
(5.2)  

Note that if the two atoms are the same 
ij =0 and the expression is reduced back 

to the homogeneous case discussed in chapter 1. 

5.1.2 Function based weighted averaging 

The function  ( )N ijV R  and ( )Z ijV R  are simple weighted averages of the respective 

functions. 

 
, ,

, ,

( ) ( ) (1 ) ( )

( ) ( ) (1 ) ( )

N ij ij i N ij ij j N ij

Z ij ij i Z ij ij j Z ij

V R V R V R

V R V R V R

 

 

  

  
 

(5.3)  

5.1.3 Parameter based onsite energy weighted averaging 

The overlap functions are parameter averaged, but weighted not only with 

the parameter 
ij , but also with the onsite energy. 
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 (5.4)  

In the homogeneous case the set of overlaps is , , ,ss sp pp pp       but 

in general sp ps   for the general case, thus there are 5 overlap functions 

instead of 4  , , , ,ss sp ps pp pp      . The difference in electronegativity of two 

atoms in the neighborhood of each other will drive charge transfer from the atom 

with the higher electronegativity to the atom with the lower electronegativity. For 

example boron and phosphorus should send charge to silicon, and phosphorus 

would send charge to boron. An onsite energy weighted mean formulation is 

utilized because we want to fully capture the fact that the bonding state charge 

will be transferred from the atom with the higher onsite energy to the atom with 

the lower onsite energy. There is a preference for flow direction – simple 

averaging will not account for this. This is critical in the binary system because 

we expect the onsite energies to not be same, or even necessarily similar.  
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(5.5)  

For a given function  , the onsite energies utilized are as listed: 
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(5.6)  

This completes the necessary modifications to the Hamiltonian and 

overlap required to describe the heterogeneous system. It has also increased the 

number of parameters in the overall system. For a 3 element scenario such as a 

silicon wire doped with phosphorus we have added 3 extra parameters, but for 

say the same system with hydrogen passivation we would add 6 mixing 

parameters. For an N element system we add 
( 1)

2

n n 
mixing parameters. Each 

parameter has to be optimized; this can become a cumbersomely large project. It 

may be of interest to find an alternative integral representation of the overlap that 

will not require mixing parameters. It may be of interest to then exploit that 

expression to extract mixing parameters for the Hamiltonian via a nonlinear least 

squares fitting routine.  

5.1.4 Optimized mixing parameters 

The final optimized mixing parameters are shown in figure 56. Once 

optimized it is clear that indeed as suspected the best fit was as predicted in 

5.1.3, and not too extreme as mentioned in 5.1, i.e., 
ij  is not very near 0 or 1. 



 

110 

 

Figure 56. Optimized mixing parameters. 

5.2 DOPING THE PERPENDICULAR WIRE 

In this section the multi-twin silicon nanowire96 (MTSNW) is briefly 

described, and then two applications are explored. First the wire is doped with 

boron, second it is doped with both phosphorus and boron combined. An SEM 

image97 of a MTSNW is shown in figure 57. The image shows that the wire has 

five-fold symmetry with stacking faults between the wedges. Because of this, a 

dopant atom may preferentially want to float towards the inside or outside of the 

wire based upon whether or not that particular atom reduces or increases stress. 

Extensive analysis was performed on both applications. In the first case an 

earlier set of boron and silicon parameters were used. In the second case the 

latest set of silicon, boron and phosphorus parameters are used. It is noted that 

the homo-lumo gap is the same for the undoped unpassivated MTSNW when 

using either silicon parameter set. 
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Figure 57. The multi-twinned perpendicular nanowire 

There are two different types of MTSNW, parallel and perpendicular. The 

MTSNW, both parallel and perpendicular cases, have interesting properties. The 

internal stress of the wire continuously increases96 when approaching the center 

of the core, reaching a maximum near the center. For small diameter wires, less 

than 6 nm, the MTSNW is lower in energy than the crystalline silicon nanowire.  

 

Figure 58. The difference between the parallel (left) and 

perpendicular (right) wires 

The differences in the parallel and perpendicular wire are noted in the above 

illustration, see figure 58.  
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Figure 59. Image of the parallel wire 

As the wires get larger in diameter, it was noted that the presence of one 

dopant atom had less and less influence on the system as a whole. These small 

energy differences were difficult to capture in the simulation. The lattice constant 

optimized, unpassivated, parallel, MTSNW is shown in figure 59 for 

completeness, but was not analyzed. The perpendicular MTSNW was lattice 

constant optimized, see figure 60, and in both applications before any analysis 

was performed. This was done separately for the passivated and unpassivated 

cases. 

 

Figure 60. The perpendicular twin wire was lattice optimized 
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5.2.1 Hydrogen passivated multi-twin wire with boron doping 

An early study worth noting was performed by the CMT group and 

presented at the American Physical Society March Meeting98 by Dr. Chakram 

Jayanthi. This study included an older set of silicon parameters that did not 

include the function
,0( ) i W ijR

i ij iW R W e 

 


 . The mixing parameter 

ij was set to 
ij

=0.5 in all cases. A very crude parameter set for hydrogen was used to 

passivated the wire. The wire is shown in figure 61.  

 

Figure 61. Hydrogen passivated multi-twin wire 

Boron was substituted into the wire at every possible location. Due to the 5 fold 

symmetry, there are 5 wedges. Each wedge has mirror symmetry. This reduces 

the number of substitutional cases of interest to approximately 7 locations. In 
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each of these 7 locations, one at a time, a boron atom was substituted. The 

boron parameters used were also an older set that did not contain the function 

,0( ) i W ijR

i ij iW R W e 

 


 . The boron and silicon sets at that time had both been tested 

to be quite good, later they were improved for increased transferability and 

reliability. The electronegativity of hydrogen is about the same as that of 

phosphorus, so it is expected that there would be some charge transfer but not a 

drastic amount like we may see from fluorine.  

 

Figure 62. Locations of boron substitution and interstitial placement. 

A second case was also performed; interstitial atoms were placed in the 

channels between the wedges. The wire used is 2 unit cells thick, 2.2 nm in 

diameter, and contains 460 silicon atoms and 100 hydrogen atoms. One boron 

atom was placed at each location, the system was relaxed, and the energy and 

homo-lumo gap were extracted. See figure 62. Interstitial locations are purple 
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and labelled alphabetically, substitutional locations are labeled numerically. The 

results are listed in figure 63. 

 

Figure 63. Results of doped multi-twin wire 

It is noted that the lowest system energy substitutional location is at the 

surface. This is because near the surface the reconstruction in the neighborhood 

around the boron atom is least pronounced as shown in figure 64.  

 

Figure 64. Substitution of boron near the surface. 
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It is worth noting that the energy of the system decreases as the boron 

substituted atom moves away from the center. This is because less stress is 

induced near the surface. The homo-lumo gap also decreases as the boron atom 

is moved near the surface, this also makes sense physically.  

The energy differences in the system are very small for any case. Given 

this it would be difficult to say that any location would be preferred over any other 

location in the substitutional case. The same is approximately true for the 

interstitial case, although there is a lowest energy location. This location is at a 

special location in the faulting stack with the most room. Likewise the interstitial 

case closes the homo-lumo gap and the wire effectively becomes metallic.  

 

Figure 65. EDOS plot of lowest energy substitutional and interstitial 

cases in twin-wire 



 

117 

From the electronic density of states calculation, see figure 65, it can be 

seen that the atoms near the center such as point 45 substitutional and point C 

interstitial both close the homo-lumo gap. The passivated wire undoped has a 

homo-lumo gap of 0.425 eV, which is on the order of what we may expect from 

silicon, a bit underestimated.  

The unpassivated wire has a homo-lumo gap of 0.12 eV, this is also 

physically reasonable due to surface reconstructions. This value is also the same 

value found with the latest set of silicon parameters that include the ( )i ijW R
 

formulation. In conclusion it is noted that although we had a very crude model for 

hydrogen, and we used older boron and silicon parameter sets, a very good 

result was found. This validates the fact that even when the robust checks are 

not fully implemented, in some cases, the parameter sets can be quite useful. 
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5.2.2 Simultaneous Boron and Phosphorus Doping 

 The second application brings together the latest boron, phosphorus and 

silicon parameter sets including the ( )i ijW R
 function. This work was presented at 

the American Physical Society March Meeting71. The unpassivated MTSNW was 

lattice constant optimized. The electronic density of states plot is shown in figure 

66. The homo-lumo gap is very small it is approximately 0.125 eV. This is 

expected from the previous application in section 5.2.1. 

 

Figure 66. Electronic density of states for the undoped MTSNW 

Two cases were examined. The first case is the substitution of a boron atom near 

the outside of the MTSNW, and a phosphorus atom near the core (Bout). The 

second case is the exact opposite; the boron is near the core and the 

phosphorus atom is near the outside of the MTSNW. The first case is shown in 

figure 67.  
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Figure 67. Boron placed outside and phosphorus near the center of 

the core and enlargement. 

The electronic density of states does not look appreciably different since there is 

a very small gap to begin with. Note that the gap in this case went from 0.125 eV 

to 0.01 eV closing it even further. See figure 68. 

 

Figure 68. Electronic density of states for the Bout doped MTSNW 
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The second case is shown in figure 69. 

 

Figure 69. Boron on the inside and phosphorus on the outside 

Again the electronic density of states does not look appreciably different. Note 

that the gap in this case went from 0.125 eV to 0.05 eV cutting the gap in half. 

See figure 70. 

 

Figure 70. Electronic density of states for the Pout doped MTSNW 
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The difference in energy between the Bout and Pout cases are quite small. The 

Pout case is lower in energy by about 0.001 eV/atom. See figure 71. 

 

Figure 71. The higher energy state is boron in phosphorus out. 

So although the energy difference is small, the result is that the unpassivated 

MTSNW does have a preference for boron to be near the inside and phosphorus 

near the outside.  

 

Figure 72. HOMO-LUMO shift due to Bout/Pout swap 
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This makes sense because boron is much smaller and puts less stress on the 

system when inside, and phosphorus is much larger and puts less stress on the 

system when near the outside of the wire. The homo-lumo shifts and Fermi 

energy shifts are shown in figure 72. 

 

Figure 73. The pair distribution function. 

The pair distribution function is not appreciably affected by either doping scheme. 

See figure 73. But, the angle distribution function shows an interesting feature. 

Most angles in the system are around 110 degrees indicating tetrahedral quality, 

but there is a significant distribution of approximately 60 degrees in the system.  
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Figure 74. Angle distribution function for the MTSNW 

The numerous angles around 60 degrees are easily seen in in figure 74. They 

represent surface reconstructions due to no passivation ruining the tetrahedral 

nature of the wire. These will disappear in with hydrogen passivation, and indeed 

are not present in figure 61 from the first application. 

 

Figure 75. Surface reconstruction in the MTSNW
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CHAPTER VI: SUMMARY AND FUTURE WORK 

6.1 SUMMARY 

• We have demonstrated a general method to construct a transferable semi-

empirical Hamiltonian for boron based upon high quality ab-initio methods 

that is self-consistent and environment dependent. 

• The Hamiltonian is in good agreement with DFT for intermediate sized 

clusters in prediction of energies, bond lengths and bond angles. 

• The boron Hamiltonian was utilized to look at relative energies of various 

intermediate to large clusters. 

• Amorphous clusters are competitive with symmetrical clusters up to about 

120 atoms, and then compact icosahedral structures without dangling 

bonds seem to be energetically favorable. Structures with dangling bonds, 

the boron 80 cage, and large non-compact structures tend to be less 

energetically favorable. 

• We have demonstrated a general method to construct a transferable semi-

empirical Hamiltonian for phosphorus based upon high quality ab-initio 

methods that is self-consistent and environment dependent. 
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• The Hamiltonian is in good agreement with DFT for intermediate sized 

clusters in prediction of energies, bond lengths and bond angles. 

• We have demonstrated a general method to construct a heterogeneous 

mixing scheme to construct a Hamiltonian based upon homogeneous 

parameters and mixing parameters only.  

• The phosphorus Hamiltonian is demonstrated to work well with similarly 

formulated boron and silicon Hamiltonians in comparison to DFT (GGA) in 

a realistic 460 atom simulation of the silicon multi-twinned wire. 

6.2 FUTURE WORK 

Future work will be focused on applications of the boron and phosphorus 

Hamiltonian and continued improvement of the SCED-LCAO methodology.  

The boron parameters developed in this work will be used to study the 

stability of one dimensional boron 12 icosahedral chains and 2D sheets based 

also on the boron 12 atom icosahedra.  They will also be used in 2D sheets 

based on boron/carbon/nitrogen alloys for energy gap manipulations for 

optoelectronics applications. The phosphorus parameters in conjunction with the 

boron parameters will be used to study the doping effects of arbitrary structures 

of silicon. Boron carbide and boron nitride structures and devices are also being 

considered. 
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