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ABSTRACT 

SELF-CONSISTENT AND ENVIRONMENT-DEPENDENT HAMILTONIAN 

FOR QUANTUM-MECHANICS MATERIALS SIMULATIONS 

Chris Leahy 

May 12,2007 

I will report the development of a semi-empirical self-consistent and 

environment-dependent model Hamiltonian, which is intended to treat large systems 

in the order of 10000 atoms. This covers a range of important physical phenomena 

that are too large to be treated with first-principles calculations. Our model 

features an aggressive treatment of environment-dependent effects, which are known 

to limit the accuracy of two-center models which do not include them. Specifically, 

we account for multi-center integrals, and we use a full iterative treatment of the 

self-consistency problem, which addressed the important role of charge 

redistribution. Our results indicate that our treatment is superior to other 

semi-empirical models that treat environment-dependency in a more 

phenomenological manner, and either ignore the charge redistribution, or treat it 

not at equal footing as the environment-dependency. The feasibility of this 

methodology has been tested for silicon. 
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CHA.PTER I 

INTRODUCTION 

The field of computational materials science always goes back to the fact that 

a straightforward application of the known laws of physics to a problem of 

real-world interest, results in a burden of calculation far beyond the capabilities of 

any known calculating machine. The ever-increasing availability of faster computers 

at lower prices can not alleviate this problem, in part because the required 

calculations scale very slowly, but also because there is an ever-increasing demand 

for more complicated problems, resulting in something of an arms race among those 

involved. All is not lost, however, as even though a straightforward application of 

the laws of physics is not workable, a complicated application of the laws of physics 

is. Starting with the laws of quantum mechanics, these workable models can be 

interpreted as applying various layers of approximations to reduce the burden of the 

calculation. The goal is to cut out as many calculations as possible while still 

maintaining some meaningful level of accuracy. 

It is useful to make some gross classifications of the wide variety of resulting 

models. First, one can distinguish models that use only fundamental physical 

constants from those that use adjustable parameters. Models in the first category 

are called "first-principles" or "ab-initio", while those in the second are usually 

called "empirical" or "semi-empirical". Next, one can distinguish models that 

calculate electronic structure properties from those that do not. The first category 

is usually recognizable by the existence of an eigenvalue problem, where particle 

interactions contribute to a Hamiltonian matrix. The second category includes 

"molecular mechanics" models, which replace the eigenvalue problem with a more 
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Newtonian formula where particle interactions contribute directly to the total 

energy. Finally, one can distinguish models that account for the locations of 

individual atoms from those that do not. This second category includes "finite 

element methods", which, although usually encountered in engineering problems, 

are increasingly seen in computational physics and chemistry. 

Although useful, these gross classifications are becoming increasingly blurred 

as models become more complicated. First-principles methods can be chosen based 

on their accuracy in calculating experimentally known properties; in some ways this 

choice itself amounts to an empirical selection. At the same time, empirical models 

can be adjusted to match the results of first-principles calculations, and one can 

then argue that the resulting model is in some ways not empirical at all. Along 

these same lines is the increasing use of combining parts from different categories to 

produce hybrid and multi-scale models. Multi-scale modeling takes advantage of the 

fact that interesting physical processes often have a very small region where 

something interesting is happening, surrounded by a much larger region that serves 

mainly as ballast. 

One should be careful to avoid arguments that, for example, empirical models 

are better than first principles models. First-principles models address the need for 

calculations on systems of very limited size (typically not more than 100 atoms), 

while empirical electronic structure models address the need for larger systems 

(10000 to 20000 atoms), and molecular mechanics can treat systems into the 

millions of atoms. In practice there is usually only one class of models suitable for a 

specific problem; a 1000 atom oxide surface calculation almost certainly means that 

one will be using an empirical electronic structure model. 

This report concerns the development of a model in the category that uses 

adjustable parameters, the category that calculates electronic structure, and of 

course the category that accounts for the locations of individual atoms. The model 

is intended to address a wide range of important problems in materials science that 
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involve 1000s of atoms. This includes semiconductor surfaces, most notably Si, 

which is a more mature and arguably over-studied area of materials science. Also 

carbon nanotubes and related "nano-structures", which are currently the most 

popular applications, although the future of nanotubes as a consumer technology is 

not clear. Perhaps more interesting are potential applications in less saturated 

areas, such as oxides and transition metal surfaces. 

Deserving special mention are biological applications. Although widely 

studied using electronic structure calculations, there appears to be a sharp divide 

between models such as our own, which have their origins in the semiconductor 

community, and those that are currently used to study biological systems. This 

divide might be related to the larger numbers of atoms needed for biological 

calculations, although it is probably due more to historical patterns of specialization 

in narrow areas of research. In any event, the types of models that are the subject 

of this report are rarely used for biological applications, which makes their potential 

for use in this area very interesting. 

The primary goal of this research was the development of a self-consistent 

and environment-dependent model or methodology intended to be used to study 

large-scale systems. Although silicon is used as a representative example, the 

methodology has been developed with a broader range of materials in mind. Indeed, 

an important part of this thesis is the development of second "prototype" model 

that addresses the need to extend such models to organic and biological materials. 

During the course of the research, a significant number of insights into orbital 

models themselves were obtained, which are interesting outside the context of any 

specific calculation. Such results are discussed throughout this thesis along with the 

discussion of our environment-dependent model. 

In addition to the successful development of our environment-dependent 

model, it is useful to point out here some of the more general conclusions that 

present themselves in this work: 
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• The two-center part of such orbital models is usually not given enough 

attention; indeed a careful treatment of the two-center part appears to be 

critical to the success of the overall model. This is discussed in detail in 

Chapter II. 

• In addition to what might be called a "derivation" approach to developing 

such models, i.e. starting with a set of equations and attempting to derive 

approximate solutions, a "policy-based" approach, which starts with a list of 

requirements that a model must satisfy, appears to be very useful. The radial 

function prototype discussed in Chapter IV was obtained primarily from such 

a policy-based approach. 

• The actual source code needed to perform any numerical calculation is also 

usually not given enough attention. Although our discussion does not 

emphasize this issue as much as others, our discussion of optimization 

algorithms in Chapter V serves as a relatively brief example of the large 

amount of "nuts-and-bolts" work that has gone into our model. 

• Semi-empirical orbital models, despite being widely used in modern research, 

still carry a large amount of obsolete "baggage" from the early years of their 

development. This concept appears in our discussion of the limitations of 

existing models in Chapter III. 

The thesis is organized as follows: In Chapter II, we discuss the two-center 

part of our model. This includes the development of a parameterized functional 

form for the overlap and Hamiltonian matrix elements. We also discuss some 

important results that can be thought of as more highly theoretical, i.e. results that 

appear to be valid outside the context of any particular material. This includes a 

novel derivation or interpretation of the widely used Huckel approximation, and also 

a new interpretation of orbital-based models in terms of the limiting values of the 

matrix elements for small values of the atomic site separation R. In Chapters III 
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and IV we discuss new ideas for the what might be called the "next generation" of 

orbital-based models. The central concept is that the current generation of models 

is simply not suitable for more complex calculations and materials. Specifically, this 

occurs when one attempts to model (1) the d orbitals, (2) multi-element systems, 

and (3) organic materials, specificillly those involving nitrogen and oxygen. A new 

radial function prototype is presented which addresses these issues. 

In Chapter V we turn our attention to optimization algorithms, which are a 

central part of the source code that is used to obtain the semi-empirical parameters. 

One of the purposes of this chapter is to illustrate, with selected examples, the large 

amount of work that was done in the development of the actual source code. 

Indeed, this is the area in which my own work was most heavily concentrated. 

Finally, in Chapter VI we discuss the environment-dependent parts of our model, 

i.e. the parts of our model that were not discussed in Chapter II. Also in this 

chapter we report the parameterization and of our model for silicon, and we show 

some representative applications of this model: the structure of the 

intermediate-sized Si7l cluster, and the reconstruction of the Si (001) surface. 
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CHAPTER II 

TWO-CENTER TECHNIQUES 

A "Nine functions" 

The atomic-scale modeling technique that we use goes by a variety of names. 

In the past, it was referred to as tight-binding, although this name now often refers 

to less-computational and more analytical techniques. The name linear combination 

of atomic orbitals (LeAD) is appropriate, although this name also describes several 

other techniques. Since the technique uses free parameters or empirical parameters 

chosen to give the best calculated values, it can be referred to as parameterized or 

empirical or semi-empirical. The atomic-scale interactions are based on two-center 

integrals, with modifications for higher-order interactions called 

environment-dependent interactions. So, the names two-centeT and 

environment-dependent can also be used. Since the two-center integrals use a 

non-orthogonal basis set, the name non-orthogonal is also occasionally used. 

Finally, the higher-order interactions involve a self-consistent calculation of the 

electron numbers, and so the name self-consistent can also be used. 

The two-center part of the technique, i.e. without the environment-dependent 

modifications, has a long history. The development of this technique can be 

interpreted as a series of layers of approximations, starting with the fundamental 

equation of quantum mechanics, the Schrbdinger equation. This equation is 

intractably difficult to solve, either analytically or numerically, for any system with 

more than a total of a few electrons and nuclei. So, a series of approximations are 

made to obtain a tractable computational problem. We will discuss certain areas of 

6 



these approximations in detail as they relate to our specific empirical orbital model. 

However, a detailed discussion of each layer of approximation is outside the scope of 

this thesis. 

The result of these approximations is that physical properties can be 

calculated from a small number of two-ccntcr interactions or two-center integrals. 

Specifically, each interaction is a scalar function of the scalar separation R between 

two atoms. Loosely speaking, each function represents the strength of a particular 

type of interaction between the atomic orbitals of two atoms separated by a 

distance R. For a basis set consisting of sand p orbitals, there are a total of 9 such 

functions, 4 each for the overlap and Hamiltonian interactions, and 1 for a two-body 

repulsive interaction: 

overlap: 

Hamiltonian: 

repulsive: 

Sssa(R), Sspa(R) , Sppa(R), Sppn(R) 

Hssa(R), Hspa(R), Hppa(R), Hppn(R) 

Erep(R) 

(1) 

The early development of these functions is attributed to Slater [1]. For a particular 

configuration of atoms then, these overlap and Hamiltonian functions are used to 

set up the overlap matrix S and the Hamiltonian matrix H. The resulting 

eigenvalue equation is then solved for the energy eigenvalues E. The electrons are 

then assigned to the energy eigenvalues using a distribution such as the Fermi 

distribution. The resulting energy is the band energy Eband . The band energy is 

then combined with the repulsive energy Erep to give the total energy Etot . 

Unfortunately, after the pre-computational 1954 paper by Slater, it is not 

clear exactly who to attribute the later development of these functions to. Harrison 

[2] developed much of the early less-computational "tight-binding" theory, which 

was widely used to obtain closed-form analytical expressions for material properties. 

Chadi [3], in a series of papers in the late 1970s, developed a widely-used orthogonal 

model. These types of early orthogonal models did not use overlap functions S or a 

repulsive energy Erep. It is also Chadi [4] who is credited with using a two-body 
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repulsive interaction in 1979 (earlier models often did not require the specification of 

a total energy because they calculated properties that depended only on the band 

energy Eband ). Tomanek and Schulter [5] are usually credited with applying these 

types of models to clusters in 1986 (earlier models were almost exclusively for 

systems with periodic boundary conditions, such as crystalline Si). One of the 

earliest models to use overlap functions, i.e. a non-orthogonal model, is that of 

Allen, Broughton, and McMahan in 1986 [6]. In 1992 Wang and Ho [7] developed a 

model for both cluster and bulk C, and in 1993 Mercer and Chou [8] developed a 

similar model for Si and Ge. In our opinion these are the first two models that have 

the same "look and feel" as the models that are currently in use. 

Now, we are using a parameterized technique, which means that the shape of 

each of these 9 functions will be adjusted to give the best calculated values. The 

implementation of such a technique into a computer program requires the 

development and testing of a large amount of source code, which is quite difficult 

and time-consuming. Still, since the calculated energies are determined entirely by 

the 9 scalar functions, it seems that this two-center model should be a "closed case". 

What remains to be said about the two-center model? Actually, a great deal 

remains to be said. Improvements to the two-center model have been a major 

success of our work. These include improvements to the computational model, 

which should be of interest to the atomic-scale modeling community, and also 

improvements to the theoretical interpretation of empirical orbital models, which 

should be of interest to the broader community. So, in this chapter we will discuss 

our two-center model, i.e. the two-center part of our model before we apply our 

environment-dependent modifications. 

B Hyperbolic function 

The first item that we need is a parameterized functional form for the 8 

overlap and Hamiltonian functions in eq. 1. The repulsive energy is treated 
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separately. Now, from a less-computational perspective, one is interested in the best 

shape of the entire function, i.e. as if the function had an infinite number of 

parameters, where each parameter would be the value of the function at a specific 

value of R, and where R can take on all values from 0 to 00. However, for the 

numerical problem one needs a relatively small number of parameters. A brute-force 

attempt might be to use a grid or mesh of around 200 points uniformly spaced from 

R = 0 to some maximum value R = Rmax. This would result in around 1600 

empirical parameters, i.e. 200 for each of the 8 functions in eq. 1, which is quite 

beyond the capabilities of a modern computer system. A second attempt might be 

to use a function such as a polynomial, and to treat the coefficients of the 

polynomial as parameters. To allow for a function of a reasonably arbitrary shape, 

i.e. a smooth function without too many oscillations, it would be necessary to use 

about 10 or 12 coefficients or parameters for each function. This would result in 

around 100 empirical parameters. Now, if finding the best set of parameters is a 

local optimization problem, then one can probably use 100 parameters. However, we 

have found after much experimentation that finding the best set of parameters is a 

global optimization problem. We have also found that this is a particularly difficult 

global optimization problem. It is our position that, with the computational 

resources currently available, it is not possible to find the global minimum with 

reasonable confidence for such a large number of parameters. 

Our search for a functional form with a smaller number of parameters began 

by considering the work of Frauenheim et. al. in Ref. [9], [10], [11]. Frauenheim 

used first-principles calculations to obtain the two-center integrals in eq. 1 for 

Carbon, Silicon, and Germanium. Their method, described as "density functional 

tight binding", consists of solving a modified version of the atomic Kohn-Sham 

equations for each element of interest. The eigenfunctions obtained from the 

Kohn-Sham equations are then used to construct the two-center integrals. It is 

important to clarify that we do not expect our final parameters, i.e. after empirical 
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fitting, to exactly reproduce these first-principles integrals. Loosely speaking, these 

functions serve as "internal" quantities that one does not expect to be able to 

compare with any experiment. Different first-principles methods will give different 

values for these integrals. Even if they did all give the same values, the concept of 

empirical modeling is to allow certain quantities that are not of interest to the "end 

user" to have values that are slightly different from the known values. This 

flexibility allows other quantities that are of interest to the end user to have values 

that are more accurate, i.e. the empirical model recovers some of the accuracy that 

is lost in the various layers of approximations discussed in Section A. 

The integrals of Frauenheim are shown in Figure 1 for Silicon. We noted that 

for each function there appear to be two different regions of behavior; the first for 

R> 2.oA where the functions are quickly decreasing to zero, and the second for 

R < 2.oA where the shape is linear. The behavior for R> 2.oA is due to the 

physical constraint that the interactions must go to zero outside a small range. The 

behavior for R < 2.oA is due to physical constraints on the integrals for R -) O. The 

behavior for R ~ 2.oA is due to a competition between these constraints. Our 

parameterized form begins with the concept of two regions of behavior separated by 

a crossover separation Scross, which is treated as a free parameter. We start with a 

variant of the Fermi distribution function, which features such a two-region 

behavior: 
S(R) first ~empt exp( -Sexp· (R - Scross)) 

1 + exp( -Sexp . (R - SCTOSS)) 

This form also already features the desired exponential decrease to zero; the range 

of the interaction is determined by the free parameter Sexp. To allow for a small 

number of oscillations in each function, we include a polynomial factor with free 

parameters So and Sl: 

S(R) sf,cond~ttempt (So + Sl . R). exp( -Sexp· (R - SCTOSS)) 
1 + exp( -Sexp . (R - Scross)) 

Finally, we are also interested in the value of the functions for R -) o. With a small 
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modification we can force So to be the value of the function at R = 0: 

S ( ) final form ( R = So + Sl . R + (SO + Sl . R) . exp( -Sexp . Scross)) (2) 

exp( -Sexp . (R - Scross)) 
1 + exp( -Sexp' (R - Scross)) 

This is the final form of our parameterized function. 

As an initial teJ3t, we fit our functional form in eq. 2 to the integrals of 

Frauenheim for Silicon shown in Figure 1. With 8 functions, and 4 free parameters 

So, Sl, Sexp, Scross for each function, we used a total of 32 parameters in this test. 

The results are shown in Figure 2. The agreement is quite remarkable; all features 

of the integrals are accurately reproduced. Also, the numerical values of the free 

parameters are in agreement with the physics of the material. For example, the 

values of Scruss are all around 2.oA, which is the value that separates the two 

regions of behavior for Silicon. Similar agreement is also found for C and Ge. We 

should again point out that this test fitting is not in any wayan attempt to obtain a 

final set of parameters for Si. Here, we are only demonstrating the ability of our 

functional form to take on the variety of shapes that are expected for two-center 

integrals. 

Using 32 parameters is still a rather large number for a poorly-behaved global 

problem. Since our parameters can be directly related to the physics of the 

material, it is possible to further reduce the number of parameters using constraints. 

After a significant amount of experimentation, we have found that the parameters 

Sexp and SCTOSS can be coni:itrained to have the same value for each of the 4 overlap 

functions. This also works for the Hamiltonian functions, i.e. with values Hexp and 

Hcross that are different from the overlap values. This reduces the number of 

parameters from 32 to 20, which is a significant improvement. However, further 

experimentation has shown that these constraints might not be appropriate for C, 

and we are also moving away from using these constraints for Si and Ge. 
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C Overlap integrals for R -t ° 
For real materials, even under the most extreme conditions, atoms do not 

come much closer to each other than they do under normal conditions. For example, 

the nearest-neighbor distance for 8i in a diamond anvil cell at an extreme pressure 

of 250GPa is only about eight percent smaller than the nearest-neighbor distance at 

atmospheric pressure [12J. For these reasons it is often argued that the two-center 

integrals in eq. 1 do not contain any useful information for small values of R. 

However, the strong repulsion of the atomic nuclei, which is responsible for the 

atoms not coming close to each other, is not present in the two-center integrals. In 

fact, the two-center integrals are well-defined for all values of R, including the limit 

as R -t 0, and including the values at R = O. This can be seen from the explicit 

form of the two-center integrals: 

Here, we have used the Ss(} interaction as an example; the discussion in this section 

applies in general to all such two-center integrals, including other orbitals such as 

the d-orbitals. 

Following the diamond anvil cell argument, we can see that small values of R 

and values in the limit as R -t 0 will never be present in any matrix elements for 

any physical system that might be of interest in the field of materials science. 

However, the values at R = 0 are always present; these are just the "on-site" matrix 

elements, which are associated with the interaction of an atomic orbital with itself 

and with other atomic orbitals at the same nucleus. In the literature the on-site 

matrix elements are often discussed without reference to R, as in: 

S I . = r <I> (r)· <I> (r)· dr 
SSO" on-site J r S S 
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The crux of the matter is whether the diamond anvil cell argument means that one 

can ignore the behavior of the two-center integrals for small values of R. This has 

been the traditional argument, that one can use a function that has the appropriate 

behavior for experimentally relevant values of R, but that might be divergent or 

undefined for small values of R, and that the on-site matrix elements can be treated 

separately, without reference to R, as in this expression. We will argue in this study 

that the values of the two-center integrals at small values of R contain significant 

information that can improve both the computational aspect and also the 

theoretical interpretation of the model. 

We will consider the overlap integrals first; these integrals are simpler since 

they do not involve the Hamiltonian operator H. If we use the analogy of a knob 

that can be used to turn down the value of R, we have two important results. First, 

the value of the integral in the limit as R -t 0 is equivalent to the value of the 

integral at R = O. Second, at R = 0 the two-center integral becomes a one-center 

integral, and the value of the integral is then determined by the fact that atomic 

orbitals at the same site are orthogonal and normalized. Since the sSeJ interaction 

involves the same orbitals <Ps and <Ps we must have Sssa(R) IR=O = 1. Similarly, since 

the SPeJ interaction involves two different orbitals <P sand <Pp we must have 

Sspa(R)IR=o = O. We then have: 

limR~O Sssa(R) = Sssa(R)IR=O = 1 

limR~'O Sspa(R) = Sspa(R)IR=o = 0 

limR~O Sppa Ui) = Sppa (R) I R=O = 1 

limR~O Spp1f(R) = Spp1f(R)I R=o = 1 

(3) 

One should not dismiss as trivial the result that the limit as R -t 0 is equivalent to 

the value at R = O. Although this result is valid for the overlap integrals, it is not 

valid for the Hamiltonian integrals. 

We can see clear evidence in Figure 1 and 2 that the overlap integrals 

extrapolate to these limiting values. This same behavior is also observed for C in 
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Ref. [9] and Ge in Ref. [11]. From this we can begin to make the argument that the 

values of the two-center integrals, at values of R that are not experimentally 

relevant, affect the values of the two-center integrals at values of R that are 

experimentally relevant. For example, the parameters So in eq. 2, when fit to the 

first-principles integrals of Frauenheim, all have values around either 1.0 or 0.0 

consistent with eq. 3. One could continue to develop this argument based on other 

features in Figure 1 and 2. For example, in the range of chemical bonding, Spprr is 

always significantly larger (in magnitude) than Ssprr, and this seems to be related to 

the different limiting values of Spprr and Ssprr. However, we feel that the best 

argument for the importance of treating small values of R is the practical benefit 

this provides to the search for the best set of parameters. We will discuss this issue 

in more detail, in the more general context of parameter constraints, in Section F. 

D Hamiltonian integrals for R ---7 0 

The behavior of the Hamiltonian integrals for R ---7 0 is more complicated 

because of the Hamiltonian operator H. We first need the expanded form of the 

Hamiltonian: 

This form is valid within the mean field approximation, which is one of the layers of 

approximation discussed in Section A. The expanded form of the potential V (r) is: 

where the sum is over all the atomic nuclei indexed by k. This form is valid within 

the central field approximation, which is also one of the layers of approximation 

discussed in Section A. This will result in the following terms in the Hamiltonian 

matrix elements: 
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(4) 

The terms Hij,k are in general three-center integrals, i.e. involving the three centers 

or three atomic nuclei at R i , R j , R k . Within the two-center approximation, 

integrals involving three distinct centers are taken to be zero: 

Hk = 0 '), for i f j 1= k 

Before proceeding, it is important to note that the layers of the mean field 

approximation, central field approximation, and two-center approximation are 

already required by the empirical orbital model, i.e. required in order to construct 

an overlap and Hamiltonian matrix from the functions in eq. 1. This means that 

this expansion of the Hamiltonian is exact within the approximations that are 

already required by the model. 

We now consider the limiting behavior of the terms eq. 4 for R -t O. It is 

now very important to carefully distinguish between the R -t 0 limit and the values 

at R = O. The limiting behavior of the \72 terms is not problematic; we have: 

For the Hij,k terms, one must consider that even for very small values of R, the 

centers Ri and R j are still distinct, and thus the potential terms 11; and Vj are also 

distinct: 

However, for the values at R = 0, the centers Ri and R j are equivalent, and thus 

the potential terms 11; and Vj are equivalent, i.e. there is only one potential term for 

which k = i or k = j. Furthermore, at R = 0 the terms in eq. 4 that one might be 

tempted to discard as three-center integrals, are actually two-center integrals. That 

is, at R = 0 we have i = j, and there are no combinations of 'i, j, k for which 

7: f j f k. There are no three-center integrals that can be discarded at R = O. This 
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gIves: 

Hij(R)IR=o = Hii,'V + Hii,i + I.:k#i Hii,k 

These results can be combined to give: 

This is a very important result that we will return to throughout this chapter. 

For the purposes of our discussion in this section, eq. 5 shows that the 

limiting behavior of the Hamiltonian integrals is not equivalent to the values at 

(5) 

R = O. This result applies both to the more general form Hij(R) in eq. 5, and also 

to the specific forms Hssa (R) etc. in eq. 1. For example, if we keep in mind that 

Hssa(R) is just a particular type of integral Hij(R) where the orbitals <!>i and <!>j are 

both required to be s-or bi tals <!> s, we have: 

Hssa(R)IR=o = limR-->O Hssa(R) - fr <!>s (r - Ri) . Vi (lir - Rill) . <!>s (r - R i ) . dr 

+ I.:k#i J~ <!>s (r - R i ) . Vk (lir - Rkl/) . <!>s (r - R i ) . dr 

We can now proceed to set up the of constraints on the Hamiltonian integrals as we 

did on the overlap integrals in eq. 3. For this we will need two additional results: 

limR-->o Hpp7r (R) = limR-->O Hppa (R) 

These results can be obtained by noting that both the operator \7; and, within the 

two-center approximation, the potential terms Vi (II r - Ri 1/) and Vj (1/ r - R j 1/), 

modify only the radial parts of the orbitals <!> (r - R) and not the angular parts. As 

R -) 0, the angular parts of the integrals become orthogonal, but the modified 

radial parts do not become normalized. This gives: 

limR--->O Hssa(R) = c~ =I Hssa(R)IR=o 

limR-->O Hspa (R) = 0 =I Hspa (R) I R=O 

limR-->O Hppa(R) = c; =I Hppa(R)IR=o 

limR--->O Hpp7r(R) = c~ =I Hpp7r (R)I R=o 
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which can be interpreted as a definition of c' and c'. Here, we have used c' and c' s p s p 

rather than Cs and cp ; these latter symbols are usually already reserved for the 

on-site energies, which will be discussed later. 

E Hamiltonian integrals at R = 0 

In Section C and D we considered the relationship between the R -----+ 0 limit 

and the values at R = 0, with the goal of obtaining expressions for the R -----+ 0 limit 

in eq. 3 and 6. In this section we consider the same relationship, but with the goal 

of obtaining expressions for the values at R = O. Historically, the values at R = 0, 

called the on-site energies, were developed first. However, following the order of the 

development in this chapter, we will take the perspective that we already have a set 

of 8 functions HsseJ (R) etc. with well-defined R -----+ 0 limits, and that we still need to 

specify how our empirical orbital model is going to treat the functions at R = O. For 

the overlap functions, we already have the values at R = 0 from eq. 3, and so it 

remains only to treat the Hamiltonian functions. Of course, if one wants to take the 

more historical perspective that one already has the on-site energies and that one 

wants to specify the R -----+ 0 limit in terms of these on-site energies, it is a 

straightforward matter to work backwards from the results in this section to the 

results in Section C and D. 

Let us then return to eq. 5: 

Following a more historical perspective, one can argue that H 2i ,i is expected to have 

a larger contribution to the Hamiltonian than Lkcfi Hii,k because Hii,i is a one-center 

integral while all the terms in Lkcfi Hii,k are two-center integrals. An alternative 

argument that leads to the same result is that Lkcfi Hii,k must be discarded in order 

to treat the values at R = 0 as empirical parameters. This is due to the fact that 

the value of Lkcfi Hii,k depends on a specific configuration of atoms, i.e. depends on 
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the all the potentials Vk (II r - Rk II) located at all the other atomic nuclei at Rk (see 

eq. 4). Following the same arguments as in Section D, we can then show that: 

H (R)I not~litc 0 
spu R=O -

H (R) I notJ:uite H (R) I 
pP7f . R=O pprI R=O 

and: 
H (R) I notJ:uite c 

ssu R=O S 

H (R) I 1101. J:
uite ° spu R=O 

H (R)I 
Jl()t~\litce 

ppu R=O c p 

H (R) I 
Jlot~uite 

pP7f R=O cp 

which can be interpreted as a definition of Cs and Cpo These expressions are valid 

only if all the terms in Lk,ii Hii,k are neglected. 

(7) 

For the Hamiltonian matrix then, one has 4 functions of R with well-defined 

limits c' for R ---+ 0, and with well-defined values c at R = 0, but with c' i- C. Before 

continuing, it is useful to look ahead to some of the results that will be developed 

later in this chapter by considering the expected numerical values for the energies c 

and c'. Since we are dealing with bound states, the on-site energies c are expected 

to be negative. We can go so far as to obtain explicit values for the on-site energies 

by considering that, for a system consisting of only a single atom, the energy 

eigenvalues are just the on-site energies C. For example, a density-functional theory 

calculation for a single atom gives the following results: 

c Si Ge 

Cs -0.563 Ht -0.439 Ht -0.463 Ht 

cp -0.223 Ht -0.166 Ht -0.161 Ht 

(8) 

These results were obtained using the Gaussian-03 software package with the 

MPWIPW91 hybrid functional and the cc-pVTZ basis set. As with any DFT 

calculation, there are several caveats about how to obtain and interpret the results; 

however, we are using the results here only as a representative example. 
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We can now return to eq. 5, substituting the results in eq. 7, 6, and 4 to 

obtain: 

C s = c~ - fr <I>" (r - R i) . Vi (II r - Ri II) . <I> s (r - R i ) . dr 

E p = E~ - fr <I> p (r - R i ) . Vi (II r - Ri II) . <I> p (r - R i ) . dr 

Since we are still dealing with bound states, the integrals in this expression, which 

involve the potential V, are expected to be negative. This means that the limiting 

values c~ and c~ are expected to be more negative than the on-site values Cs and cp. 

We can obtain approximate numerical values for c~ and c~ by noting that the on-site 

energies Cs and cp and the integrals in this expression are both strictly one-center 

integrals. In the absence of any other information, one might expect the values of 

the potential integrals to be approximately equal to the values of the on-site 

energIes, glVmg: 

c~ rv 2· C8 

c~ rv 2 . cp 

(9) 

If one considers only the fit in Figure 2, the evidence for this limiting 

behavior of the Hamiltonian is inconclusive. Indeed, one can creatively extrapolate 

the functions in Figure 2 to just about any energy from O.OHt to -1.0Ht. One issue 

here is that the MPWIPW91 energies in eq. 8 are not the on-site energies used by 

Frauenheim. It is also quite possible that the functions in Figure 2 are showing the 

limitations of the mean field approximation and the central field approximation, 

which are needed to obtain eq. 6. However, as with the overlap functions, we feel 

that the evidence for this limiting behavior is provided by our extensive experience 

in obtaining reasonable results by incorporating this limiting behavior in our model, 

and our extensive experience in obtaining unreasonable results without this. For 

example, we have found that, when incorporated into a full-scale empirical 

optimization, we can not obtain reasonable results with c' = c. This invariably leads 

to a poor fit, or to parameter values which are not physically meaningful. 
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F Parameter constraints 

In Section B, we discussed that the parameters Sexp and Seross can be 

constrained to have the same value for each of the 4 overlap functions, and that the 

parameters Hexp and Heross can be constrained to have the same value for each of 

the 4 Hamiltonian functions. We also showed that for each function, the parameter 

So or Ho is the value of the function in the limit as R --+ O. From our discussion of 

the behavior of these functions for small values of R, we have obtained expressions 

for the values of these functions in the R --+ 0 limit and for the values at R = 0 in 

eq. 3, 6, and 7. These results can be used to further reduce the number of empirical 

parameters. One can then select from several different models or parameterizations 

depending on which constraints are used. First, there is the most general 

parameterization with no constraints: 

model with no parameter constraints: 

4 parameters for each overlap function 

4 parameters for each Hamiltonian function 

on-site energies Cs and fp 

34 total parameters (two-center part only) 

Then there is a parameterization with the exp and cross constraints discussed in 

Section B: 

model with exp and cross constraints: 

2 parameters for each overlap function, plus Sexp and Seross 

2 parameters for each Hamiltonian function, plus Hexp and Heross 

on-site energies fs and fp 

22 total parameters (two-center part only) 
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Then there is a parameterization with the R ~ 0 constraints. Here, the parameters 

So or Ho are replaced with the appropriate limiting values from eq. 3 and 6: 

model with R ~ 0 constraints: 

3 parameters for each overlap function 

3 parameters for each Hamiltonian function, plus c~ and c~ 

on-site energies Cs and cp 

28 total parameters (two-center part only) 

Finally, there is a parameterization with both the exp and CTOSS constraints and the 

R ~ 0 constraints: 

model with exp and cross and R ~ 0 constraints: 

1 parameter for each overlap function, plus Sexp and SCTOSS 

1 parameter for each Hamiltonian function, plus Hexp and HCTOSS' plus c~ and c~ 

on-site energies Cs and cp 

16 total parameters (two-center part only) 

(10) 

These parameterizations address two key issues in empirical modeling: to 

reduce the total number of parameters, and to provide accurate initial values for the 

parameters. To understand the importance of these issues, we must keep in mind 

that our empirical optimization problem requires a very large number of evaluations 

of a least-squares function, i.e. a number large enough to exhaust any 

computational resources that we might have available. For such problems, if one 

uses too many parameters, or if one uses inaccurate initial values for the 

parameters, it is quite possible to have an unsolvable or intractable numerical 

problem. By applying parameter constraints, we have reduced the number of 

parameters to about 20 for the two-center integrals (the final total number of 

parameters will be about 2 x this with the environment-dependent modifications, 

which are not discussed in this chapter). 

These constraints also allow us to provide accurate initial values for the 
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parameters. That is, even if the constraints are not applied during the fitting 

process, they can still be applied before the fitting process to obtain the initial 

values. Values for the on-site energies Es and Ep can be obtained directly from 

firi:it-principlei:i calculations as in eq. 8. Values for s' and E' can be obtained from s p 

eq. 1. Values for Sexp, SCTOSS' H exp , HeToss can be obtained from a knowledge of the 

two-atom cluster of the element of interest. In the most straightforward case, SCTUSS 

and Heross are just the equilibrium dimer bond length or nearest-neighbor distance 

of the material, and Serp and Hell' specify the range over which the atoms interact 

significantly. For example, it is well-known that the Si-Si interaction extends to only 

about 5A. The remaining 8 parameters, 1 for each overlap and Hamiltonian integral, 

specify the strength or relative strength of the particular interaction. Although not 

as straightforward ai:i the other parameters, initial values for these parameters can 

often be obtained from the existing literature (the relative strengths of the 

two-center interactions were widely used in early tight-binding calculations, which 

were often less computational and more analytical). 

G Extended Huckel approximation I 

The topic of this section, the Huckel approximation, appears in many different 

forms, some of which might not bear any overt resemblance to each other. Our 

discussion followi:i a non-standard development that is more suitable to the context 

of this report and to a modern computational treatment. If one considers the fact 

that both the overlap and Hamiltonian functions in eq. 1 represent interactioni:i 

between atomic orbitals, one might consider the relation between these functions: 

This equation, which has a very similar form to the Huckel approximation, is at thii:i 

point nothing more than a definition of the function Ksscr(R). Without making any 

approximations, one can set up the functions Ksscr(R) , Kspcr(R), Kppcr(R), Kppn(R) , 
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and then reformulate the model to consist of these 4 functions rather than the 4 

Hamiltonian functions. 

Next, if we consider the limiting value of Kssa(R) for R -----+ 0 we have: 

or: 

We can then reformulate the model again to consist of 4 unitless functions kssa (R) 

etc., each of which has a limiting value of 1 for R -----+ 0: 

Hssa(R) = c~ . kssa(R) . Sssa(R) 

This reformulation becomes an approximation when one makes the argument that 

the 4 unitless functions kssa (R) etc. can be replaced with a single unitless function 

k(R): 

Hssa(R) = c~ . k(R) . Sssa(R) 

Hspa(R) = c~p . k(R) . Sspa(R) 

Hppa(R) = c~ . k(R) . Sppa(R) 

Hpp,,(R) = c~ . k(R) . Spp7r(R) 

(11) 

Note that in our development it is necessary to introduce a new parameter c~p 

because the limiting values of Hspa and Sspa are both zero, leaving the limiting value 

of Kspa undefined. 

We have now arrived at one of the many variants of the extended HUckel 

approximation. The original development of this approximation is attributed to 

Anderson [13] and Hoffmann [14]; it was not until much later that the approximation 

was used in a model similar to our own by Menon [15]. In some early variants the 

function k(R) is taken to be a constant k(R) = 1 for all R. In many variants the 
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prefactors E' are constructed from the on-site energies E using a single parameter Ko: 

This approximation was widely used in early less-computational calculations, with 

empirical values of Ko from 1.75 to 2.25 [13]. 

If we consider these results in the context of our discussion of the limiting 

values of the Hamiltonian integrals in Section E, we have obtained a novel 

explanation of the Huckel approximation in terms of the behavior of the two-center 

integrals in eq. 1 for small values of R. This is a remarkable result, because all 

standard explanations of the Huckel approximation rely on a questionable argument 

that the atomic orbitals <P are approximate eigenfunctions of the Hamiltonian 

operator H with approximate eigenvalues E (see Ref. [13]), which results in a 

questionable proportionality between the Hamiltonian and overlap matrix elements: 

In contrast, we have obtained such a proportionality based entirely on the limiting 

behavior of the two-center integrals for R ---+ O. Most importantly, our explanation 

of the difference between the limiting values E' and the on-site values E in eq. 9 and 

5 is consistent with the widely-used values of Ko from 1.75 to 2.25. The widely-used 

extended Huckel approximation then, provides strong evidence for our argument of 

the importance of small values of R in empirical orbital modeling. 

H Extended Hiickel approximation II 

In Section F we made the argument that there are enough similarities in the 

shapes of the overlap and Hamiltonian integrals that one can choose from a variety 

of constraints to reduce the number of empirical parameters. In this section we are 
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going to make a novel argument that the extended Huckel approximation can be 

interpreted as a particular set of constraints on the parameters of the overlap and 

Hamiltonian integrals. Let us begin by considering a highly simplified model where 

each of the 8 functions Ssscr(R) etc. has the functional form e-o: R , i.e. a model with 

a total of 8 parameters a sscr etc .. Now, suppose that we are required to reduce the 

number of parameters from 8 to 1. The only reasonable choice would be to use the 

same value of a for each of the 8 functions. Next, suppose that we are required to 

reduce the number of parameters from 8 to 2. The important question now is 

whether we can find a reasonable separation of the 8 functions into 2 groups, so that 

we can use one parameter a for each group. There is of course such a reasonable 

separation; there is one group of overlap functions and one group of Hamiltonian 

functions. Note that this 8 ----+ 2 case is very similar to one of our choices in Section 

F, where two exp parameters Sexp and Hexp are used for all 8 functions. 

Continuing this line of reasoning, suppose that we are required to reduce the 

number of parameters from 8 to 4. Is there a reasonable separation of the 8 

functions into 4 groups? There is indeed, it is just the separation into the groups 

SSeT, SPeT, PPeT, pp7r. With this particular separation, each overlap function is 

grouped with its corresponding Hamiltonian function; with this separation we 

obtain a Hiickel approximation for this highly simplified model: 

For illustrative purposes only. Do not attempt to use. 

Hsscr(R) = Eo . Ssscr(R) = Eo . exp (-a sscr . R) 

Hspcr(R) = Eo' Sspcr(R) = Eo' exp (-ospcr' R) 

Hppcr(R) = Eo . Sppcr(R) = Eo . exp (-appcr . R) 

Hppn(R) = Eo . Sppn(R) = Eo . exp (-appn . R) 

Here we have included an energy prefactor Eo solely for the purpose of having a 

Hamiltonian with the appropriate units. Using this line of reasoning, we can see 

that a Huckel approximation is one of many possible reasonable groupings of the 

overlap and Hamiltonian functions. 
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We have discussed groupings for 8 ----+ 1, 8 ----+ 2, 8 ----+ 4, and 8 ----+ 8 parameters. 

It might be useful to point out that one can use more complicated groupings to 

obtain almost any conceivable number of parameters. For example, one could argue 

that the ppu and pp7r functions should be grouped together because they both 

involve interactions between two p-orbitals. This leads to 8 ----+ 3 and 8 ----+ 6 

groupings. As a final example, one could obtain a 8 ----+ 5 Huckel approximation by 

using exponents 0: for the overlap functions and exponents 0: + ,6.0: for the 

Hamiltonian functions, i.e. with 4 different o:'s and only one ,6.0:. This corresponds 

to a widely used variant of the Huckel approximation where the function k(R) in eq. 

11 is taken to have the form e-6.a·R. 

It is clear that if we move away from this highly simplified model and return 

to the functional form in eq. 2, our line of reasoning, that the Huckel approximation 

is a particular set of parameter constraints, still holds. We could at this point 

attempt to specify exactly how the Hamiltonian parameters in eq. 2 can be 

reformulated to result in a proportionality between Hand S that satisfies the 

Huckel approximation in eq. 11. For example, it is evident that if Hssa(R) is to have 

an overall factor of E~, one must reformulate not only Ho ----+ E~ . Ho but also 

HI ----+ E~ . HI. However, such a reformulation is not useful or even necessary. The 

Huckel approximation relies on the usefulness of dividing a Hamiltonian function by 

its corresponding overlap function. This usefulness depends more on the shape of 

the functions, as in Figure 1, and less on a specific parameterization of the 

functions. In many ways we have already established this usefulness by our 

consideration of the shapes of the integrals in Figure 1 and the parameter 

constraints in Section F. The Hamiltonian and overlap functions have the same 

range of 5.oA, the same crossover at 2.oA, and the same relative strength. This is 

really all that is necessary to have a useful Huckel approximation. 

In practice, if one uses a Huckel approximation, eq. 2 will not be used to 

construct the Hamiltonian functions, the Hamiltonian functions will be constructed 
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usmg eq. 11. We have used a Huckel approximation in much of our work on C, Si, 

and Ge. Our form for k(R) follows that used by Menon in Ref. [15]: 

k(R) = exp (-Kexp' R) 

There does not appear to be any benefit to using a more complicated form for k(R). 

This is likely due to the fact that the two-center integrals go to zero outsize a small 

range, and thus k(R) is well-defined only for R < 5.oA (using Si as an example). In 

our work Kexp is almost always small and negative during the fitting process, 

indicating that the Hamiltonian integrals have a slightly longer range than the 

overlap integrals. We should also point out that this form for k(R) does not 

correspond exactly to using Hexp = Sexp + Kexp for the exp parameter in eq. 2 

because the exp parameter is involved other parts of eq. 2. In the context of the 

discussion in Section F, this leads us to another choice for a parameterization: 

model with and R -+ ° and Huckel constraints: 

3 parameters for each overlap function 

o parameters for each Hamiltonian function, plus E~ and E~, plus E~p and Kexp 

on-site energies E sand Ep 

18 total parameters (two-center part only) 

(12) 

We have occasionally combined this parameterization with exp and cross 

constraints in eq. 10, but we usually return to the parameterization in eq. 12, which 

uses exp and cross parameters for each of the 4 overlap functions. 

I Repulsive energy 

With a parameterized form for the 8 functions for the overlap and 

Hamiltonian in eq. 1, it remains to specify a parameterized form for the repulsive 

energy function Erep (R), which is used to construct the repulsive energy Erep for a 
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system of atoms indexed by i and j as: 

Erep = Li,) Erep(Rij) 

This simple two-body or pairwise energy is added to the band energy after the 

eigenvalue equation has been solved, i.e. this energy is not involved in the 

eigenvalue equation. In the formalism of first-principles or ab-initio approaches, the 

total energy E tot consists of three combinations of interactions between nuclei and 

electrons: 

E tot = Eelectrons-nuclei + Enuclei-nuclei + Eelectrons-electrons 

The band energy E band accounts for the interaction between electrons and nuclei, 

but for mathematical reasons Eband also contains an unavoidable "double-counting" 

of the energy between electrons and other electrons: 

Eband = Eelectrons-nuclei + 2 . Eelectrons-electrons 

This results in an expression for the total energy E tot in which the energy E e-e 

appears with an explicit negative sign: 

E tot = Eband + Enuclei-nuclei - Eelectrons-electrons 

The repulsive energy, or more appropriately the energy not accounted for by the 

band energy, is then: 

Enon-band = Enuclei-nuclei - Eelectrons-electrons 

This result follows very closely a discussion by Chadi [4]. 

(13) 

The traditional argument for replacing the very complicated first-principles 

energy Enon-band with the very simple empirical energy Erep is that the energies E n-n 

and Ee-e , which are both long-range, under certain conditions combine to give a 

short-range energy that is repulsive and can be constructed from a pairwise energy 

Erep( R). However, although one can say that the resulting empirical model is 
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accurate, it is apparently very dangerous to make claims about the accuracy of the 

intermediate steps used to arrive at Erep. In a detailed analysis on this topic, 

Foulkes and Haydock [16] compared tight-binding (TB) to density-functional theory 

(DFT) and concluded: 

The origin of [the TB expression for the total energy] is not at all 

clear. It looks rather like [the DFT expression for the total energy], but 

the double-counting (and nuclear-nuclear repulsion) terms are now 

assumed to be pairwise and short-ranged (which is certainly not the case 

if charge transfer leads to long-range interatomic Coulomb forces) and 

the [energy eigenvalues] are now the solutions of a non-self-consistent 

Schrodinger equation rather than a self-consistent one. It seems, 

therefore, that [the TB expression for the total energy] ignores 

self-consistency and assumes that all the important nonpairwise 

behavior in the interatomic forces comes from the sum of the 

one-electron eigenvalues. In fact, as we will explain, neither of these 

conclusions is quite right and the approximations behind [the DFT 

expression for the total energy] are rather more subtle and sophisticated 

than they appear. [16] 

There have been several attempts to develop empirical orbital models with 

more elaborate repulsive energies, i.e. more elaborate than a two-center or pairwise 

function Erep(R). For example, Mercer and Chou [8] include higher-order energy 

terms that depend on the angles associated with three atoms. We prefer to think of 

such higher-order terms as modifications to models which consist strictly of the 9 

functions in eq. 1. There are two reasons for this. First, the broader context of our 

report is the development of environment-dependent models. In this context, these 

more elaborate repulsive energies look very much like specific cases of 

environment-dependence. Our environment-dependent model does not even have a 

repulsive energy; it treats the total energy using an expression similar to eq. 13. 
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The second reason is that there does not appear to be any "standard extension" , 

either in theory or in practice, to a pairwise repulsive energy. Various extensions 

using bond angles, coordination numbers, and atomic charges are all in current use 

[8]. In an empirical orbital model, the only standard form for the repulsive energy is 

a two-center pairwise form. 

When we need to use a self-contained two-center model, i.e. a model with no 

environment-dependent modifications, we use the following simple form for the 

repulsive energy: 

Erep(R) = (Eo + El . R) . exp (-Eexp . R) 

The parameter El should be relatively small, or more appropriately, should have a 

relatively small effect on the shape of the function; the repulsive energy is always 

positive, it does not oscillate. The range of Erep(R) is apparently always 

significantly smaller than the range of the overlap and Hamiltonian integrals, i.e. 

the exponent Eexp should be significantly larger than Sexp and Hexp. We have 

observed this behavior across a large range of empirical parameter fittings for C, Si, 

and Ge. This is the same behavior that is observed by Foulkes and Haydock [16] 

and by Frauenheim [9], [10], [11] by extracting a pairwise energy from 

density-functional theory calculations. 

Unlike the overlap and Hamiltonian functions, the repulsive energy does not 

appear to contain any useful information for any values of R smaller than those 

which might be observed experimentally. There is no benefit to using a functional 

form such as * . e-Eexp·R that has a more appropriate behavior for R -+ O. The 

repulsive energy should be interpreted as being defined only for experimentally 

relevant values of R, or for values of R used during the fitting process (as it is often 

desirable to use smaller-than-experimental values for fitting). We have also observed 

a behavior that has not been reported in the literature. The calculated values of the 

fitting properties do not depend strongly on any properties of the repulsive energy 

other than the value of the repulsive energy at the nearest-neighbor distance of the 
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material. This suggests that the repulsive energy might do little more than count 

the number of nearest-neighbors: 

where Ncoord is some average coordination number and Ecoord is some average 

coordination energy. 
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CHAPTER III 

NEXT-GENERATION MODELS 

A Too many functions 

Our parameterization of the 9 functions in eq. 1 ends with our discussion of 

the repulsive energy in the previous section. In this chapter I will discuss concepts 

for what might be called the "next generation" of two-center techniques. My 

interest in these concepts grew out of a frustration with a particular mathematical 

"feature" of the overlap matrix that results in a failure, both in theory and in 

practice, to solve the eigenvalue equation for a system of atoms. I will discuss this 

issue of non-positive-definite overlap in detail in this chapter. However, the resulting 

concepts are best tied together by the fact that they address the issue of applying 

two-center techniques to more complicated materials, and it is with this issue that 

we will begin. 

It is becoming clear from the recent literature, conferences, and also from 

recent trends in funding, that several features will be demanded of the next 

generation of empirical orbital models. First, the model must treat multi-element 

systems natively. Although there will still be important applications that involve 

only a single type of atom, such as carbon nanotubes and silicon surfaces, such 

applications have become marginalized by the demand for problems with more than 

one type of atom. Similarly, the model must be able to treat the most important 

elements in biochemistry and pharmaceuticals. Since most models are already able 

to treat hydrogen and carbon, what this really means is that the model must be able 

to treat nitrogen and oxygen. Similarly, the model must treat d-orbitals and 
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near-valence orbitals natively. These orbitals are needed for the transition metals, 

the calculation of optical and spectroscopic properties, and (arguably) to improve 

the accuracy of s, p orbital calculations. 

Next, the model must treat the calculation of properties other than the energy 

natively. Traditionally, the core of material science calculations has been the energy 

landscape, i.e. the energy as a function of the coordinates of the nuclei. From this 

one can calculate equilibrium energies and geometries, forces and elastic coefficients, 

band structures (if individual energy eigenvalues are included), and also a very large 

variety of kinetic and thermal properties. However, this core is arguably being 

replaced by the ever-increasing need to calculate properties that can not be 

obtained from a knowledge of the energy landscape only. The electron density p(r) 

is a representative example of such a property. Finally, I will add to this list my own 

requirement that all reasonable configurations of atoms must have a calculatable 

energy. This requirement is related to the issue of non-positive-definite overlap, 

which will be discussed later. 

At this point in our discussion, it is not clear that models based on the 9 

functions in eq. 1 do not already satisfy these requirements. In fact, empirical 

orbital models are widely used for multi-element systems, d-orbitals and 

near-valence orbitals, nitrogen and oxygen, and not-just-energy properties. I will 

make the argument in this report that models based on the 9 functions in eq. 1 do 

not satisfy these requirements. To begin this argument, let us consider a system 

consisting of the elements H, C, N, 0, and Fe. This is intended to represent a 

biological system; iron has been chosen to illustrate the effect of d-orbitals. The 

standard or minimal basis set that one would use consists of s orbitals for hydrogen; 

s, p orbitals for carbon, nitrogen, and oxygen; and s, p, d orbitals for iron. How 

many functions, corresponding to the 9 functions in eq. 1, must be specified for this 

system? For the H -H interaction there is only one function sSeJ. For the C-C, N-N, 

and 0-0 interactions there are SSeJ, SPeJ, PPeJ, pp7r. For the Fe-Fe interaction there 
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H-H ssa 
C-C ssa, spa, ppa, pP7f 
N-N ssa, spa, ppa, pP7f 
0-0 ssa, spa, ppa, pP7f 
Fe-Fe ssa, spa, ppa, pP7f sda,pda,pd7f, dda, dd7f, ddb 
H-C ssa, spa 
H-N ssa, spa 
H-O ssa, spa 
C-N ssa, spa, ppa, pP7f psa 
C-O ssa, spa, ppa, pP7f psa 
N-O ssa, spa, ppa, pP7f psa 
H-Fe ssa, spa, sda 
C-Fe ssa, spa, ppa, pP7f sda,pda,pd7f psa 
N-Fe ssa, spa, ppa, pP7f sda, pda,pd7f psa 
O-Fe ssa, spa, ppa, pP7f sda,pda,pd7f psa 

Figure 3. Tabulation of the functions that must be specified for a system consisting 
of the five elements H, C, N, 0, Fe. 

are ten functions ssa, spa, ppa, pP7f, plus sda, pda, pdrr, dda, dd7f, dd6. 

Next, we must consider the H-C, H-N, and H-O interactions. Each consists of 

only two functions ssa and spa (pper and pP7f are not present here because p 

orbitals are not used for hydrogen). Next, the C-N, C-O, and N-O interactions each 

consist of the four functions sser, sper, pper, PP7f. However, it turns out that one 

must also include a fifth function pser. Such additional functions are necessary in 

general for interactions between two different elements. For example, the sper 

function for C-N represents an interaction between two different types of atoms 

(carbon and nitrogen) and two different types of orbitals (s and p), and thus 

requires a corresponding function pser. Turning now to the Fe interactions, for H-Fe 

we have only three functions sser, sper, sda. Again, functions such as pder and dda 

are not present for hydrogen. Finally, for C-Fe, N-Fe, and O-Fe we have all the 

functions that consist of s, p in the first position and s, p, d in the second position. 

This includes ssa, sper, ppa, pprr, plus sda, pda, pdrr, plus the corresponding 

function pser. These results are tabulated in Figure 3. 

It is evident from Figure 3 that we have a problem. There are too many 
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functions. If we account for both the overlap and Hamiltonian interactions, there 

are 142 functions for a system consisting of only five different types of atoms. To be 

fair, we should point out that in practice many of these interactions can be taken to 

be zero, either because a particular element is known not to bond to another 

particular element, or because the orbitals involved in the interaction are known to 

interact weakly. We should also emphasize that it is never intended to fit all these 

functions simultaneously. In the best-case scenario, each pair of elements would be 

fit separately, i.e. one fitting for each row in Figure 3, and so the dimensionality of 

the optimization problem is affected only by the number of functions in each row, 

and not by the total number of functions in all rows. However, starting with a S,p 

model for a single element, it is clear from this table that adding a different element, 

or adding d-orbitals or near-valence orbitals, results in what might be called an 

explosion in the number of functions and empirical parameters. The interaction 

between two different transition metals requires a whopping fourteen functions SS(), 

SP(), PP(), pP1r, plus sd(), pd(), pd1r, dda, dd1r, ddl5, plus psa, dsa, dpa, dp1r, not 

including the ten functions each for the interactions between the same type of atom. 

From this we can make the argument that a model based on the 9 functions 

III eq. 1 was never designed for such systems, similarly that if asked to develop a 

model for such systems from scratch, one would not develop the current model, and 

similarly that the model does not treat these systems natively. Before proceeding, it 

is useful to briefly discuss two issues that help put this problem in context. The first 

issue is that of averaging. There is a general feeling in the community, which some 

might even call an axiom, that a model for multi-element systems should be able to 

be constructed from the individual models for each single-element system, i.e. with 

little or no additional parameter fitting. This would mean that any multi-element 

interaction could be constructed from the corresponding single-element interactions, 

using some type of averaging scheme, for example: 

(14) 
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In this context, we can reformulate the requirement for multi-element systems to 

say that the model m'ust treat multi-element averaging natively. Models based on 

the 9 functions in eq. 1 definitely do not treat averaging natively. 

The second issue is that of first-principles-style models. This is related to the 

previously-mentioned technique of discarding functions based on a prior knowledge 

that certain interactions either do not occur or are weak. Although often very 

useful, such techniques work against the concept of having as arbitrary or as general 

a model as possible. This arbitrariness is a very well-liked feature of first-principles 

models; one can ask for a calculation on almost any configuration of atoms no 

matter how exotic. This feature is so well-liked that it is becoming expected of 

empirical orbital models. For example, if one discards the Fe-Fe interactions, one 

can treat systems where Fe atoms are known not to bond to other Fe atoms. 

However, such a model could never be used to study surfaces of crystalline iron. 

This issue of arbitrariness is closely related to the historical development of 

empirical orbital models. Following our previous discussion, it was not until the mid 

1990s that the overlap and Hamiltonian functions came to be regarded as arbitrary 

or general functions of a scalar variable R. In earlier calculations, only the values at 

the first few nearest-neighbor distances were used. These earlier models actually 

treated multi-element systems more naturally or more natively than the later 

models. This is because the identification of nearest-neighbor values, combined with 

other techniques such as hybridization and crystal symmetry, did not result in an 

explosion in the number of functions and parameters. The result is something of a 

paradox, in that the earlier models are in some ways more adept at complex systems 

than the later models. The important point is that the treatment of multi-element 

systems becomes more problematic, not less, as one takes the more modern approach 

of treating the overlap and Hamiltonian functions as arbitrary functions of R. 
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B Non-positive-definite overlap 

The first sign of trouble was that our source code was reporting errors (or 

"exceptions" in the language of software engineering), specifically that for certain 

sets of empirical parameters the fitting properties could not be evaluated. The 

program's error handling and error reporting features (essential features for any 

large program) traced the problem to the failure of the eigenvalue equation solver to 

calculate the energy eigenvalues. The eigenvalue equation solver was reporting that 

the overlap matrix was not positive definite. At first this did not seem to be a 

problem, as it simply meant that the offending sets of parameters needed to be 

discarded (which they were). However, I became convinced over time that this was 

indeed a serious problem. Although this exception often occurred for the more 

"extreme" fitting properties, such as those with unusually small bond lengths, it 

also occurred for some likely experimentally observable properties. Also, we would 

find that a best or optimized set of parameters, i.e. a set that worked during the 

fitting process, would sometimes not work when applied to other configurations of 

atoms. We have also observed this behavior for other models similar to our own, 

where the parameters for these models are available in the published literature. 

The problem of non-positive-definite overlap is not just a low-level 

computational problem. It is a high-level theoretical problem. The eigenvalue 

equation that results from using a non-orthogonal basis set is: 

or in matrix form: 

H·C=S·C·E 

where Hand S are the Hamiltonian and overlap matrix, C is the eigenvector matrix, 

and E is the eigenvalue array. Now, for the orthogonal problem, it is well-known that 

if H is Hermitian the energies E are guaranteed to be real. This is so important that 

it is considered to be axiomatic that any modeled Hamiltonian must be Hermitian. 
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However, for the non-orthogonal problem, if H is Hermitian then the energies E are 

not guaranteed to be real. This can be seen in the context of the orthogonal 

problem by constructing the orthogonalized Hamiltonian V = 8- 1 . H which results 

in the orthogonal equation V . C = C . E. Even with both Hand S Hermitian, V is 

still not Hermitian, and the energies E can not be guaranteed to be real. 

In the context of the non-orthogonal problem, one avoids taking the inverse 

of 8 and instead constructs the Cholesky factorization U of the overlap: 

8 = ut. U 

where U is an upper triangular matrix. The non-orthogonal problem can then be 

cast in the orthogonal form [17]: 

((U-1 )t . H . U-1 ) . (U . C) = (U . C) . (E) 

The cast Hamiltonian (U- 1)t . H . U-1 is guaranteed to be Hermitian, and the 

energies E are guaranteed to be real. However, the crux of the matter is that the 

Cholesky factorization U exists only if the overlap matrix 8 is positive definite. In 

fact, the existence of U can be taken to define whether a (symmetric) matrix is 

positive definite. The important result is that for the non-orthogonal problem, one 

can have a Hermitian Hamiltonian and still have configurations of atoms that do 

not have a calculatable energy. Our calculatable energy requirement in the previous 

section can then be reformulated to say that the overlap matrix must be positive 

definite. Undesirable non-positive definite overlap is a fundamental feature of 

models which use the 9 functions in eq. 1, as we will discuss in the next section. 

The lack of requiring the overlap matrix to be positive definite is arguably a 

flaw or oversight in the historical development of empirical orbital models. Although 

tight-binding models date back to 8later's 1954 paper, the importance of using a 

non-orthogonal Hamiltonian was not recognized until a 1993 paper by Canel, 

Carlsson, and Fedders [18], and it was not until the late 1990s that non-orthogonal 

models were relatively widely used. In all models it was always taken as axiomatic 
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that the Hamiltonian matrix was required to be Hermitian. However, the main 

reason for this requirement is to guarantee that the energy eigenvalues are real. As 

a transition was made to non-orthogonal models, the Hamiltonian was still required 

to be Hermitian, but this requirement is somewhat pointless if the overlap matrix is 

not also required to be positive definite. It is interesting to note that orthogonal 

models, which have a longer history and have been more widely used, already satisfy 

our requirement of positive definite overlap. This is of course because for orthogonal 

models, the overlap matrix is just the identity matrix, which is always positive 

definite. 

C Integrability constraints I 

How is it possible for the 9 functions in eq. 1 to result in systems with no 

calculatable energy? More specifically, what are the theoretical properties of overlap 

matrices that are responsible for maintaining positive definite overlap? In this 

section we will show that it is the construction of overlap matrix elements as actual 

integrals of actual atomic orbitals that maintains positive definite overlap, and that 

the loss of this property is responsible for systems which do not have a calculatable 

energy. It is useful to begin with an informal argument based on the "degrees of 

freedom" involved in the overlap matrix. For the empirical model the 4 functions 

SSSIJ(R) , SsplJ(R) , SpplJ(R) , Spp7r(R) can be interpreted as 4 degrees of freedom; in 

the most general case these functions are parameterized independently of each 

other. Each degree of freedom is a scalar function of a scalar variable R defined for 

values of R from 0 to 00. However, the functions SsslJ(R) etc. are intended to 

represent integrals of atomic orbitals: 

SSSIJ(R) = fr <Ps (r - R I ) . <Ps (r - R 2 ) . dr 

SsplJ(R) = fr <Ps (r - R I ) . <Pp (r - R 2) . dr 

SpPIJ(R) = fr <Pp (r - R I ) . <I>p (r - R 2) . dr 

Spp7r(R) = fr <I>p (r - Rd . <I>p (r - R2) . dr 
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where the symmetry notation (J and IT refers to the relative orientation of the 

orbitals at positions Rl and R 2 : for the p-orbitals, (J refers to a pz orbital oriented 

along the same axis as R2 - R 1 , while IT refers to a Px or Py orbital oriented along 

the same axis as R2 - Rl (of course for the s-orbitals there is only one possible 

orientation, (J). How many degrees of freedom are there if these integrations are 

performed explicitly? There are 4 atomic orbitals <1>5 (r), <1>px (r), <1>py (r), <1>pz (r). 

The angular parts of these three-dimensional functions are fixed, and there are only 

2 independent radial functions, or degrees of freedom, ¢ s (r) and ¢p (r), which are 

defined for values of r from 0 to 00. Without the integration then, there are 4 

degrees of freedom, but with the integration there are only 2 degrees of freedom. 

This conflict in the number of degrees of freedom is more dramatic if one 

considers the d-orbitals. If one adds d-orbitals to an existing sand p orbital model, 

there is only one new radial function ¢d (r). However, there are six new two-center 

integrals Ssda(R), Spda(R) , Spd1r(R) , Sdda(R) , Sdd1r(R), Sdd8(R). This is an example 

of the explosion in the number of functions discussed in Section A. The conflict is 

even more dramatic if one considers the five-element example in Figure 3. Here, 

there is 1 radial function for hydrogen, 2 each for carbon, nitrogen, and oxygen, and 

3 for iron, for a total of 10 radial functions or degrees of freedom. There are a 

whopping seventy-one degrees of freedom Figure 3. 

This can be stated more formally by saying that the integrals in eq. 15 are 

convolutions of atomic orbitals, and that the atomic orbitals are deconvolutions of 

the integrals. That is, the convolutions are mathematical operations that map input 

functions ¢ (r) to output functions S (R), and the deconvolutions map input 

functions S (R) to output functions ¢ (r). It is these deconvol utions that show that 

there are indeed theoretical conflicts in treating the S (R) as independent functions. 
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First, let us express the integrals in eq. 15 in functional notation: 

Sssa(R) = S [¢s (r)] 

Sspa(R) = S [¢s (r) '¢p Cr)] 

Sppa(R) = S [¢p (r)] 

Spp7r(R) = S [¢p (r)] 

where the brackets indicate a functional dependence. If we consider the expression 

for Sppa (R), this implies that the radial function ¢p (r) can be constructed entirely 

from a knowledge of the two-center integral Sppa(R): 

(16) 

This deconvolution shows that the existence of a well-defined two-center integral 

Sppa (R) implies the existence of a well-defined radial function ¢p (r). However, the 

expression for pp7r implies the existence of a different radial function: 

(17) 

The radial functions in eq. 16 and 17 will be different if the two-center 

integrals S(R) are treated as independent functions. The tight-binding model, i.e. 

the 9 functions in eq. 1, implies the existence of multi-valued radial functions. This 

is also the case for ¢ s (r). For ss(J we have the deconvolution: 

(18) 

For SP(J the situation is slightly more complicated. First, there is a partial or mixed 

deconvolution: 

But we can substitute for ¢p (r) from eq. 16 to obtain: 

(19) 
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The radial functions ¢ s (r) in eq. 18 and 1 9 are in general different. These results 

clearly extend to other orbitals, such as d-orbitals and excited or near-valence 

orbitals. 

It is actually a straightforward matter to show that the existence of 

well-defined or single-valued radial functions guarantees that the overlap matrix is 

always positive definite, and hence guarantees that a system has a calculatable 

energy. Start with the definition [17] of a positive definite matrix S: 

x·S·x>O 

where x is any array. Express the overlap matrix S in indexed form: 

where i and j index the atomic nuclei, and a and (3 index the atomic orbitals at 

each nucleus. Note that although i and a are separate indexes for the purposes of 

the integration, ia is a single index for the purposes of the eigenvalue equation. 

This means that the array x is indexed by ia. This gives: 

Whatever the item LiD: .... LjiJ ... is, it is something squared, which is always 

positive. This important result proves our earlier claim that it is the actual 

integration of actual atomic orbitals that maintains positive definite overlap and 

calculatable energies. 

D Integrability constraints II 

The requirement of positive definite overlap suggests that we move away from 

an "overlap-parameterized" model, and toward a model which features a direct 

parameterization of the radial functions of the atomic orbitals. Our research in this 

area took place towards the end of our project, and so for logistical reasons we have 
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not significantly tested such a model. Without this testing, we will refer to direct 

parameterization of the radial functions as a prototype, and our discussion will focus 

on broader issues rather than on specific parameterizations of the radial functions. 

We can see from our discussion in the previous section that this prototype satisfies 

the requirement of positive definite overlap, and thus also satisfies the requirement 

that all reasonable configurations of atoms have a calculatable energy. 

Next, we can see that this prototype satisfies the requirement that 

multi-element systems are treated natively, and that d-orbitals and near-valence 

orbitals are also treated natively. This is due to the fact that treating the radial 

functions as degrees of freedom does not result in an explosion in the number of 

empirical parameters as one moves from a single-element system to a multi-element 

system, or as one adds d-orbitals or near-valence orbitals to an existing s, p orbital 

model. As we have already discussed, in Figure 3 there are seventy-one independent 

functions for the overlap-parameterized model, but only 10 independent functions 

for the radial-function prototype. 

The key to understanding how this is effected is to consider multi-element 

averaging (see eq. 14). For example, if one has a radial-function parameterization 

for C-C, and a separate radial-function parameterization for N-N, this means that 

one has the radial functions ¢~ (r) for carbon and ¢~ (r) for nitrogen. Then, for the 

C-N interaction, we will have 

(20) 

With an overlap-parameterized model, SZ-;;N would either need to be parameterized 

separately, or would need to be constructed from sZer and S~er using a questionable 

averaging scheme as in eq. 14. With the radial-function prototype, no additional 

parameterization is necessary, and there is no questionable averaging. If one wants 

to interpret eq. 20 as a type of averaging, then we have the result that the 

radial-function prototype satisfies the requirement that multi-element averaging is 

treated natively. 
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We have four important items to mention about such a prototype. The first 

item concerns the construction of the two-center integrals SSS(I (R) etc .. We should 

clarify that, for a radial-function model, these functions will still be constructed. 

This is due to the fact that the functions Sss(I(R) etc., regardless of whether they are 

parameterized directly or not, provide the fastest way to calculate the elements of 

the overlap and Hamiltonian matrix. In fact, Slater's 1954 paper, ~hich established 

the parameterization of these functions, also established a recipe for using these 

functions to construct the overlap and Hamiltonian matrix. For example: 

(21 ) 

specifies how to constrict the matrix element Sia,jj3 when ex and f3 refer to Px 

orbitals. Further discussion of these formulas is not needed, other than to point out 

that this recipe still appears to be the best way to construct the matrix elements for 

our prototype. 

The second issue is that in some cases it is possible to perform the 

integration over the radial functions analytically, making it possible to provide 

explicit functional forms for SSM (R) etc .. In Figure 4 we show analytical forms for 

SSS(I(R) , Ssp(I(R) , Spp(I(R), Spp-rr(R) obtained using the parameterized forms for the 

radial functions: 

¢ S (r) = (So + S 1 . r + S 2 . r2) . exp ( - E . r) 

¢p (r) = (Po + H . r + P2 . r2) . exp ( - E . r) 
(22) 

Although these integrations are so unwieldy that one would never attempt to do 

them on paper, one can use a computer algebra software package, which we did to 

obtain the results in Figure 4 (this is not a straightforward matter, as the 

multi-dimensional integrals require a transformation to prolate two-center 

spheroidal coordinates). This leads to a remarkable conclusion that our prototype is 

in some ways nothing more than a complicated parameterization of the 9 functions 

m eq. 1, with a complicated set of parameter constraints as in Section F. That is, a 
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very special set of constraints that guarantees positive definite overlap and provides 

for native multi-element averaging. Even in the general case where analytical 

integration is not possible, this interpretation is still meaningful in that one still has 

a parameterization (although not analytical) of the 9 functions in eq. l. 

The third issue is the behavior of the two-center integrals for small values of 

R. In Chapter II we discussed in detail the importance of treating the two-center 

integrals Sssa (R) etc. for all values of R, including small values. Our interest in 

integrability constraints developed largely independently of our interest in small 

values of R. However, it turns out that the two topics are related in an important 

way. The concept that the existence of two-center integrals implies the existence of 

radial functions, as in eq. 16, formally requires that the two-center integrals Sssa(R) 

etc. are defined for all values of R. This is due to the fact that the functional 

dependence indicated by the brackets in eq. 16 means that the value of ¢p (r) at 

just one specific value of r depends on the values of Sppa (R) at all the values of R. I 

would like to emphasize that, as an empirical model, one can make a strong 

argument for a radial function model without this formal requirement. It is still 

interesting to note that a radial function model is consistent with a treatment of 

small values of R. 

The fourth item concerns the global optimization problem. We have 

discussed previously that the search for the best set of parameters involves a poorly 

behaved optimization function, with a large number of poorly distributed local 

minima. Now, in general such poor behavior might be an unfortunate but inherent 

part of an optimization problem. However, such behavior can also indicate that an 

optimization problem has too many degrees of freedom, i.e. that there are hidden or 

unaccounted-for constraints. There is indeed evidence that the poor behavior of our 

optimization function is not an inherent part of the problem: we have observed that 

many local minima have very similar patterns as to how the calculated values differ 

from the reference values. For example, if one local minimum gives a bond length 
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S (R) - 1 1 ~£'R ( 
ssu ,- 840 • E7 . e . 
3E6SiR6 + 21E5SiR5 + 14S2E 6S]R5 + 14E6S?R4 + 84E5 S]S2 R4 
+126E4S~R4 + 42E6S2SoR4 + 210E5 SoS2R 3 + 70E5 S?R3 + 70E6S]50 R3 

+420E4S]S2R3 + 630E3 S?R3 + 1470E3S]S2 R2 + 2205E2S?R2 

+630E4S0 S2R 2 + 70E6S&R2 + 280E4SiR2 + 280E5 S]50 R 2 

+1260E3SoS 2R + 4725ESiR + 3150E2S]S2R + 21OE5S1iR 
+630E4S0 S]R + 630E3 S? R + 1260E2 S0 52 + 630E25i + 63050S]E3 

+31505]52E + 4725Si + 2105&E4 ) 

S (R) - y3 ] R -£'R ( 
spu - - 840 . E6' . e . 
3E5P252R 5 + 17E4P252R4 + 7E5p]52 R4 + 7E5P25]R4 + 77E3P252R 3 

+21E5 P250 R3 + 35E4P2S]R3 + 14E5 H5]R3 + 21E5 P0 52R 3 + 28E4H52R3 

+91E4P2SoR 2 + 35E5 HSoR2 + 49E4H5IR 2 + 252E2 P252R 2 + 63E3 PI 52 R2 

+35E5 P05]R2 + 140E3 P25]R2 + 21E4p052R 2 + 525ES2P2R + 35E4POS1R 
+ 105E3 P]S]R + 315E2 P2S]R + 105E4 HSoR + 70E550 PoR + 210E3 P250 R 
+ 105E2 P]52R + 52552P2 + 105E2 HS1 + 105EP]52 + 35E3 poS] 
+21OE2 P250 + 105E3 P150 + 70E450 Po + 315EH5] ) 

S (R) 1 1 ~£'R ( 
ppu = - 280 • E7 . e . 
3E6 Pi R6 + 14E6 P1P2R5 + 13E5 PJ R5 + 34E4 Pi R4 + 42E5 P]P2R4 

+ 14E6 Pc R4 + 42E6 P2PoR4 + 14E4 HP2R3 + 28E5 p]2 R3 + 14E5 PoP2R3 

-42E3 Pi R3 + 70E6 P]POR3 - 567 E2 Pi R2 - 336E3 HP2R 2 + 70E6 PJ R2 
-126E4 P2PoR 2 - 42E4 Pi R2 - 1575EPi R - 420E3 PoP2R - 210E3 p]2 R 
-1050E2 HP2R - 210E4 PoHR - 70E5 P~ R - 1050P]P2E - 1575Pi 

2 22 24 3) -420E POP2 - 210E p] - 70Po E - 210PoP]E 

5 (R) ] ] -£'R ( 
pp7r = 21:10 • E7 . e . 
3E5 Pi R 5 + 14E5 P1P2R4 + 31E4 pi R4 + 112E4P]P2R 3 + 14E5 Pi R3 
+42E5 PoP2R3 + 189E3 Pi R3 + 462E3 P]P2R 2 + 84E4 p l

2 R2 + 714E2 pi R2 
+ 70E5 P]POR 2 + 182E4 P2 Po R2 + 1050E2 HP2R + 420E3 PoHR 
+1575EPi R + 210E4 PoHR + 210E3 PfR + 70E5 PJ R + 420E2 POP2 
+ 1050HP2E + 210PoHE3 + 70PJ E4 + 21OE2 pi + 1575Pi ) 

Figure 4. Explicit two-center integrals for a radial-function prototype, using the radial 
functions in eq. 22 (which for simplicity have not been normalized). 
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for Si3 that is a few percent too large, and a bond length for Si4 that is a few 

percent too small, several other local minima will give very similar results. This is a 

remarkable observation when one considers that we use 200 or more such bond 

lengths, binding energies, etc. and that we observe very strong correlation of 

different local minima across all 200 properties. Also, this behavior seems to be 

widespread, at least in our own experience, as we have observed this for just about 

every non-trivial parameter fitting that we have done. 

This strong correlation of different local minima suggests that, loosely 

speaking, these "different" local minima are really not different at all, but rather in 

some way they represent the same local minimum. This would mean that the local 

minima are connected by hidden constraints, and that the problem would be less 

poorly behaved if one accounted for these constraints. This can be better 

understood if one considers the situation in reverse: start with a well-behaved 

function with a small number of inherently different local minima. Then maliciously 

introduce some spurious and highly non-linear degrees of freedom into the function. 

What would happen? One might expect this to wreak havoc on the function, 

causing just the type of behavior that we observe, as well-defined local minima split 

or bifurcate with the introduction of spurious dimensions. As we have not 

significantly tested our radial function prototype, we can not claim that it is the 

integrability constraints that are responsible for the poor behavior of the 

optimization function. However, if they are responsible, then treating Sssa (R) etc. 

as independent functions would have a devastating effect on the ability to find the 

global minimum. This would mean that a parameter fitting calculation would waste 

large amounts of time exploring the spurious dimensions introduced by removing 

the constraints. 
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E Preliminary results 

Although still a prototype, we have performed an initial test that supports a 

radial function model. We have applied our environment dependent model, which 

consists of a two-center model consisting of the function Sss!J (R), Hss!J (R), etc., and 

also consists of environment dependent modifications discussed elsewhere in this 

report, to the single-element systems of C, Si, and Ge. For logistical reasons C and 

Si were more heavily optimized, to the point that we now have stable sets of 

parameters for these two elements; Ge also has been very successfully optimized. 

The work on C and Si consisted not only of parameter optimization in the direct 

sense, but also of subsequent testing of several "candidate" sets of parameters that 

were eventually discarded in favor of one "final" set. 

For this initial test, we used our results for the overlap functions Sss!J(R), 

Ssp!J(R) , Spp!J(R), Sppn(R) to study our deconvolution argument, i.e. that the 

existence of overlap functions implies the existence of radial functions. In the work 

leading to these sets of parameters for Sss!J (R), etc., we occasionally used parameter 

constraints on the overlap functions. However, for the most part, these four function 

we parameterized independently of each other. The results of this test suggest that 

even though the four overlap functions were parameterized independently, they can 

be approximately obtained from only two radial functions. 

For this test, we performed a least squares curve fitting of our four optimized 

overlap functions to the same four functions obtained from analytical integration of 

the following radial functions: 

¢S (r) = (So + Sl 'T + S2' r2) . exp (-E· r) 

¢p (r) = (Po + PI ' r + P2 . r2) . exp (-E· r) 
(23) 

This relatively simple form was chosen for simplicity; in general one could use 

higher-order polynomial coefficients and, in particular, could use different values for 

the exponents. The curve fitting was performed by first extracting ¢s (r) from 
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SSSCI (R), and extracting ¢p (r) from Sppa (R), then by constructing Sspa (R) and 

SPP7r (R) from ¢ s (r) and ¢p (r). The results are shown in Figure 5. 

Even with this overly-simplified form for ¢ s (r) and ¢p (r), these results 

suggest that the large-scale empirical fitting process is driving the system toward 

results that are consistent with the existence of not four but only two independent 

functions, i.e. ¢s (r) and ¢p (r). This is an important result in light of the fact that 

our final sets of parameters for C and Si involved a large amount of computational 

resources. During the course of the optimization, we encountered the problematic 

nature of the optimization problem discussed earlier. This includes: (1) the 

optimization consisted of large number poorly-distributed local minima, resulting in 

the need for a greatly increased time to find the global minimum, (2) the overlap 

matrix was frequently not positive definite, resulting in sets of parameters for which 

systems of atoms did not have a calculatable energy (and also interrupting the 

optimization algorithm), (3) several different local minima gave very similar results 

to each other, suggesting the existence of hidden constraints, (4) parameters with 

reasonable calculated values but unreasonable parameter values, such as long range 

Sssa (R), also suggesting the existence of hidden constraints, and (5) the failure of 

candidate sets of parameters in subsequent testing, also suggesting the existence of 

hidden constraints. 

In conclusion, this initial test suggests that the treatment of Sssa(R), 

Sspa (R), Sppa (R), SpP1f (R) as independent functions might have a devastating effect 

on the global optimization problem, i.e. by requiring an excessive amount of 

computational resources to find the global minimum. In the language of global 

optimization, we have found approximate constraints that greatly reduce the 

parameter space that one must search for the global minimum in. Finally, it 

perhaps is remarkable that the individual deconvolutions exist, i.e. that starting 

with Sssa(R) , one can obtain ¢s (r) that reproduces Sssa(R). This is remarkable 

because the existence of a solution to a deconvolution problem can not in general be 
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Figure 5. Preliminary test of our radial function prototype, using the radial functions 
in eq. 23. The overlap functions used in our current model are shown (solid), together 
with the same functions obtained from a deconvolution procedure (dashed). 
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guaranteed. Our initial test suggests that this deconvolution is well-defined as one 

considers the overlap integrals individually. 
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CHAPTER IV 

RADIAL FUNCTION PROTOTYPE 

A Nitrogen and Oxygen 

Of the many classifications of materials science models that can be made, one 

is to distinguish models that have their origins in the semiconductor community 

from those that have their origins in the organic materials community. For models 

in the first group, including our own, the original idea of treating multi-element 

systems was of course to treat systems of interest to the semiconductor community. 

However, with the increasing demand for organic and biological applications it is 

perhaps these systems that are now more interesting. Although the technical 

differences between the two categories are subtle, models in the first category are 

rarely used to study organic systems other than simple hydrocarbons. This makes 

the native treatment of nitrogen and oxygen by our radial function prototype 

particularly interesting. While we are on the subject of nitrogen and oxygen, we 

should not overlook the important industrial and military applications for these 

elements. Transition metal oxides are a representative example of important 

applications that are outside both the semiconductor and the organic communities. 

We have already argued in Section A that models based on the based on the 

9 functions in eq. 1 do not treat multi-element averaging natively. In this section we 

are going to argue that, even if for the sake of argument they did, that they still do 

not treat nitrogen and oxygen natively. The problem with these elements is that, 

apart from any problems caused by multi-element averaging, tight-binding models 

can not treat either nitrogen or oxygen separately, i.e. as single-element-only 
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systems. This is caused by the fact that, as individual elements, nitrogen and 

oxygen do not form enough structures from which one can obtain a list of reference 

properties needed for empirical fitting. As single-element systems, these two 

elements do little more than form the dimers N2 and O2. Nitrogen and oxygen do 

have crystalline structures, but these consist only of isolated dimers weakly bonded 

to each other by van der Waals forces. 

We should point out that in hindsight it is perhaps something of a 

coincidence that elements such as C and Si can be treated. The difference is 

actually quite subtle, as C and Si as single elements do not readily form a large 

number of structures suitable for fitting either. The band structure of diamond Si, 

along with a few other experimentally observed structures such as Si2 , is not enough 

for a large-scale fitting. The subtle difference is that although they do not readily 

form, there are still a large number of structures that can be studied using 

first-principles calculations. Beginning in the 1980s, most notably with the work of 

Cohen for crystalline Si [19] and the work of Raghavachari for C and Si clusters [20], 

there arose a very loose standard of computationally well-defined crystalline phases 

and small clusters, making such large-scale fitting possible. This includes at least six 

different crystalline phases and at least 20 different small clusters for Si. 

Unfortunately, nitrogen and oxygen do not form enough structures suitable for 

fitting that can be studied either experimentally or with first-principles calculations. 

Let us then return to the tight-binding averaging scheme for multi-element 

systems in eq. 14: 

We can now see that, even if for the sake of argument we assume that this type of 

averaging works, it still can not treat nitrogen and oxygen. The averaging is based 

on the existence of a parameter fitting for the single-element systems, but for 
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nitrogen and oxygen we do not have such a parameter fitting: 

Our radial function prototype avoids these problems by constructing the two-center 

integrals directly, without any reference to N-N or 0-0: 

One can then completely avoid any need to treat nitrogen and oxygen separately, 

and can proceed to treat multi-element systems directly or natively. 

To be fair, we should mention that there are some creative ways of working 

around this problem within tight-binding. One option is to maintain the 

parameterization of the N-N or 0-0 functions, but to fit only to multi-element 

systems, i.e. by using some averaging scheme to construct the multi-element 

interactions. This is a questionable technique that does not appear to be widely 

used. The next and most widely used option is to avoid any averaging scheme, and 

to parameterize functions such as S?s-;N (R) individually. If we overlook the issue of 

positive definite overlap, this is actually a reasonable technique for problems 

consisting of only two different elements. However, for more complex systems one 

again encounters the explosion of parameters discussed in Section A. Here also, we 

have the paradox that the earlier or simpler models are capable of treating nitrogen 

and oxygen natively, while it is with the more complicated or more general models 

that things start to break down. 

Finally, we should point out that a radial function prototype raises the 

possibility of fitting "across the boards", i.e. where the radial functions of several 

elements are fit at the same time. For organic and biological systems, one could 

start with {H, C, N, O} and then fit to a large list of small organic molecules. This is 

of course not a new idea, as it is exactly the type of fitting preferred by the models 

used in the organic community. However, such a fitting has never been attempted 

by any of the models that we are in competition with. A particularly appealing 
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feature of fitting across the boards is that one can fit to experimentally known 

values, as it is perhaps a legitimate criticism of existing models that they rely too 

heavily on first-principles calculations, particularly density functional theory. In 

hindsight this criticism might also be applied to Si itself and to other semiconductor 

elements, i.e. apart from any of the complications caused by nitrogen and oxygen. 

B Not-just-energy properties 

The empirical orbital models that are the subject of this report, including our 

radial function prototype, and including models with environment-dependent 

modifications, all use a matrix form of the Schrodinger equation: 

where Hand S are input, and C and E are output. Although not explicitly part of 

the matrix eigenvalue equation, the one-electron wave functions W.\ are also implied 

as part of the output: 

The wave functions W.\ "inherit" their dependence on the position r from the atomic 

orbitals <P, as indicated in this expression. It is with this position dependence that 

existing models are problematic. By directly parameterizing the functions SSSJ(R) 

etc., such models never explicitly specify the atomic orbitals, leaving the position 

dependence of the wave functions undefined: 

\Nith a radial function prototype, the atomic orbitals are parameterized directly, 

and the position dependence of W.\ is restored. 

To be fair, we should acknowledge that existing models do treat the 

calculation of some properties other than the energy natively. In fact, it is the 

existence of electronic structure information that distinguishes first-principles and 
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empirical orbital models from molecular mechanics and finite element models. The 

limitation is that existing models can only obtain not-just-energy properties from 

objects that are present in the eigenvalue equation. Properties that can not be 

expressed in terms of these objects can not be evaluated. The charge density p(r) is 

probably the most important example: 

Contour plots of p( r) are the most widely used tool to visualize electronic structure 

information. In practice one can obtain such plots for tight-binding models by 

introducing some "characteristic set" of atomic orbitals. In light of our discussion, 

such characteristic orbitals look very much like attempts (i.e. poor attempts) to 

obtain radial functions as deconvolutions of the two-center integrals. 

The charge density p( r) and other functions of r are involved in a very wide 

variety of electronic structure applications. However, the problematic nature of 

not-just-energy properties is perhaps better understood by considering properties 

that are not functions of r. To understand this in more detail, we will consider a 

representative example, that of atomic polar tensor charges. The starting point of 

this discussion is the need to calculate the charge "associated with" individual 

atoms, which is closely related to the more qualitative concepts of ionic and covalent 

bonding. When position information is not available, one att(~mpts to construct an 

expression for the charge using objects that are present in the eigenvalue equation. 

The most straightforward approach leads to an expression for the total number of 

electrons Ntotal: 

By removing some of the summations over in and j f3, one can identify charges 

associated with various combinations of sites and orbitals. Charges obtained from 

this expression are usually called Mulliken charges. 
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The Mulliken analysis is not a particularly bad way of calculating atomic 

charges. However, it is not a particularly good way either. Amid concerns over their 

accuracy, several first-principles calculations have replaced these types of charge 

analyses with more elaborate ones. In the atomic polar tensor analysis, which is 

attributed to Cioslowski [21], charges are obtained from derivatives of the dipole 

moment: 

with: 

For the purposes of our discussion in this section, we are not interested in debating 

the accuracy of the Mulliken analysis. It is as a representative example that the 

Mulliken vs. APT debate reveals the limitations of how existing models treat 

not-just-energy properties. Here we have two different models or "analyses" for the 

concept of atomic charges. The Mulliken analysis, in hindsight perhaps by 

coincidence, can be expressed entirely in terms of objects that are present in the 

eigenvalue equation. The APT analysis can not, even though it represents the same 

concept of atomic charge. 

If we look more closely at eq. 24, we can see where things start to go wrong. 

Existing models are only aware of position r integrals if they happen to be the 

overlap J <Pi' <Pj or the Hamiltonian.J <Pi . H . <Pj. If the integral is changed slightly, 

in this case to J <Pi' X . <P j , existing models break down. It is this special ability to 

"look inside" the integrals that gives a radial function prototype the advantage. The 

only evident way to treat such properties within the existing framework would be to 

introduce more parameterized functions. This brings us back to our deconvolution 

argument, as independently parameterized functions would imply multi-valued 

radial functions. Again we have the interesting conclusion that our prototype is in 

some ways a very complicated set of parameter constraints. That is, one can 
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perform the integrations "on paper", and them use them in calculations, as if the 

atomic orbitals did not exist. The APT example shows that this concept of 

constraints applies not only to the overlap and Hamiltonian functions, but also to 

integrals such as J<I>i' x· <I>j. 

C Hamiltonian orbitals 

Our radial function prototype treats multi-element systems natively, at least 

as far as the overlap matrix is concerned. However, to completely satisfy the 

multi-element requirement, the Hamiltonian must also treat multi-element systems 

natively. To develop a prototype for the Hamiltonian, we return to our discussion in 

Section D, where the matrix elements of the Hamiltonian consist of the terms H ij ,\! 

and Hij,k: 

H" = r <I> (r - R) . V2 . <I>. (r - R) . dr t), v Jr t t r) ) 

It is again important to point out that although several layers of approximation are 

needed to obtain this form for H, these layers of approximation are already required 

in order to construct the two-center integrals Hssu(R), Hspu(R), Hppu(R) , Hpprr(R). 

Within the context of this report, it is the existence of Hssu(R) etc. that defines a 

"two-center model", and we will take this as a starting point for our discussion. 

This is not an arbitrary or semantic definition, as there are about six research 

groups that we are in competition with, and each of them use a Hssu (R) etc. 

framework for their environment-dependent model. 

As a first pass at a prototype for the Hamiltonian, it is evident that if one 

already has explicit functional forms for the radial functions ¢ s (T) and ¢p (T), then 

one can construct the terms Hij ,\! without any additional empirical parameters, i.e. 

by operating on the orbitals <[> (r) explicitly with V;. It is also evident that one can 

construct the terms Hij,k if one introduces a parameterized function V (T) for the 
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potential. Note that within the central field approximation, the three-dimensional 

potential V (r) of an arbitrary configuration of atoms is completely specified by a 

one-dimensional scalar function V (r) at each atomic nucleus, which is presumably 

the same for each type of element. This leads naturally to a treatment of 

multi-element systems, as the operator \7; is the same for each element, and as each 

potential term Vk is associated with a specific element, i.e. the element of the 

nucleus located at R k : 

Hij •k firs~ass fr <I>:lem(i) (r - Ri ) . ~~lem(k) (11r - Rkll) . <I>;lem(j) (r - R
J

) . dr (25) 

where elern( i) refers to the identity of the element indexed by i. It is important to 

point out that the prefactor ;':: which has been incorporated into the operator \7; 
involves the mass of the electron, which is the same for each element; the prefactor 

;;; involving the mass of the nucleus in involved in the subsequent motion of the 

atoms, but is not involved in the eigenvalue equation. 

This first pass at a prototype for the Hamiltonian is problematic for two 

reasons. First, it is widely agreed that even highly accurate first-principles 

calculations usually do not give accurate values for the atomic orbitals <I> (r) 

themselves, i.e. as values of the probability density of an individual electron. 

Operating on <I> (r) with \7; means that the Hamiltonian matrix elements will 

consist of second-order differences ofthe values of <I> (r) at adjacent values of r. This 

suggests that it is not appropriate to operate on parameterized radial functions with 

\7;. The second problem is that the resulting model places too much emphasis on 

the overlap and not enough on the Hamiltonian. The real Hamiltonian operator is 

very complicated, and there is a general feeling that one should have at least as 

many parameters for the Hamiltonian as for the overlap. This is the case with the 9 

functions in eq. 1, where there are 4 degrees of freedom each for the overlap and 

Hamiltonian. However, our first pass at a prototype results in two or three degrees 
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of freedom ¢ s (r), ¢p (r), ¢ d (r) for the over lap but only one degree of freedom V (r) 

for the Hamiltonian. 

The crux of the matter is that is never necessary to specify an explicit form 

for the operator \7;, i.e. one can replace \7; with a more general unknown or 

unspecified operator, as long as certain conditions are satisfied. The most important 

of these conditions is that the operator modifies only the radial part of an atomic 

orbital and not the angular part: 

\7;. ¢(e,cp)' ¢(r) = ¢(B,cp)· \7;. ¢(r) = ¢(B,cp)· ¢'V (r) 

with: 

Because of this condition, the Hamiltonian integrals have the same symmetry 

properties as the overlap integrals; it is this condition that allows one to construct 

Hssu(R) etc .. Our argument is that we can make a second pass at a prototype for 

the Hamiltonian by treating the functions ¢ 'V (r) as degrees of freedom: 

¢; (r) = {\7;} . ¢s (r) 

¢~ (r) = {\7;} . ¢p (r) 

where {'v;} is some generalization of the \7; operator. This second pass results in a 

model with two or three degrees of freedom ¢s (r), ¢p (r), ¢d (r) for the overlap, and 

three or four degrees of freedom ¢; (r), ¢~ (r), ¢'I (r), V (r) for the Hamiltonian. 

This second pass still satisfies our requirement for multi-element systems. 

The "\72 orbitals" ¢ 'V (r) have a well-defined association with a specific element, 

because ¢ (r) is associated with a specific element, and because {\7;} is not 

associated with any element. Two additional comments are also in order. First, with 

explicit functional forms for ¢ (r) and V (r), it is possible to explicitly evaluate the 

three-center integrals. Now, we are not suggesting that such integrals be included in 

an empirical orbital modeL From a performance standpoint, three-center integrals 

are very costly and would slow down a calculation to an unacceptable leveL There 
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also appears to be a growing consensus that the most important extension to a 

two-center framework involves the electron density p (r) rather than other 

extensions such as three-center integrals. It is evident however, that the ability to 

calculate such integrals could be quite useful for testing and reference purposes. 

The second comment is that the treatment of {\7;} as a generalization of the 

\7; operator is quite consistent with existing overlap-parameterized models. This 

can be illustrated by returning to our deconvolution argument. Here, we will 

dispense with any complications due to multi-valued radial functions and consider 

only the sSeJ and pPeJ interactions. For the overlap, we have two degrees of freedom 

SssO"(R) and SpPO"(R) before the deconvolution, and two degrees of freedom ¢s (,) 

and ¢p (,) after. However, if ¢ '/ (,) and ¢~ (,) are not treated as a degrees of 

freedom, then for the Hamiltonian we have two degrees of freedom HssO" (R) and 

HppO"(R) before the deconvolution, but only one degree of freedom V (,) after. If we 

temporarily dispense with the complications caused by V (,), then this is consistent 

with a treatment of ¢ '/ (,) and ¢~ (,) as degrees of freedom, rather than as resulting 

from some specific operator \7;. One can go so far as to obtain expressions for 

¢'/ (,) and ¢~ (,) as functionals: 

¢'/ (,) de~lv ¢'/ (,) [SssO" (R), HssO" (R)] 

¢~ (,) de~nv ¢~ (,) [SppO"(R) , HppO" (R)] 

Of course, with the potential V (,) this strict one-to-one correspondence of degrees 

of freedom breaks down. Still, one can make a strong argument that tight-binding 

models, i.e. models that treat SssO"(R) , HssO"(R) , etc. as degrees of freedom, imply 

the existence of one or more degrees of freedom associated with some generalization 

of the \7; operator. 

Finally, one can make a third pass at the Hamiltonian by treating the 

potential V (,) not as a function but as an operator. This leads to "potential 

orbitals" ¢~ (,) and ¢~ (,): 
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The potentials V (T) and the radial functions ¢ (T) are both associated with a 

specific element, and so the resulting model will not treat multi-element systems 

natively unless V(T) and ¢ (T) always index the same element. Now, one can argue 

that within the two-center approximation, the integrals J <Pi . Vk . <Pj are taken to be 

zero unless k = i or k = j. In this case one will always have either J (<Pi' Vi)· <P j or 

J <P 2 • (Vj . <P J ), and then ¢ v (T) can be associated with a specific element. This 

argument, however, does not account for the "neglected two-center integrals": which 

will be discussed later in this chapter. For now we can point out that this third pass 

will not lead to two degrees of freedom ¢ 'V (T) and ¢ v (T) for each type of orbital, 

because the off-site matrix elements of the Hamiltonian will always factor as: 

(26) 

As long as the neglected two-center integrals are treated separately, this leads to a 

reasonable model with two or three degrees of freedom ¢s (T), ¢p (T), ¢d (T) for the 

overlap, and two or three degrees of freedom ¢~ (T), ¢: (T), ¢7 (T) for the 

Hamiltonian, with ¢H (T) = ~ ¢ 'V (T) + ¢ v (T), although it will not be possible to 

identify ¢'V (T) and ¢v (T) individually. 

D Neglected two-center integrals 

We have taken a policy-driven approach to our discussion of the next 

generation of two-center models, i.e. an approach that starts with a list of 

requirements and then seeks models that satisfy those requirements. Now, the 

concept of a two-centeT model is that matrix elements consist of integrals involving 

one, two, three, or (in some cases) four centers or atomic nuclei, and that a 

reasonable model can be obtained by treating only the one and two center integrals. 

Within the central field approximation, there is a very well-defined accounting of 

the total number of integrals: N 2 for the overlap, N 2 for the \72 terms of the 

Hamiltonian, and N 3 for the V terms of the Hamiltonian. Of these N 3 terms, it is 
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an elementary matter of combinatorics that there are N . (N - 1) . (N - 2) terms 

with three distinct centers, leaving 3N2 - 2N terms that contain either one or two 

distinct centers. From a policy-driven approach it then seems obvious that a 

two-center model should be required to treat not just some of the two-center 

integrals, but all of the two-center integrals. 

Existing tight-binding models do not satisfy this requirement. For the V 

terms there are three indexes i, k, j. Two distinct centers are obtained for i = k # j 

and for i # k = j. However, two distinct centers are also obtained for k # i = j. 

These "neglected" two-center integrals consist of orbitals i and j which are located 

at the same nucleus and a potential term k located at a different nucleus. Following 

the notation of Section D and E, if these integrals are accounted for then the on-site 

matrix elements of the Hamiltonian have the form: 

(27) 

Although it would be quite possible to include these terms in a tight-binding model, 

almost all existing models treat the on-site elements as fixed constants, which 

corresponds to taking Hii,k = O. However, unlike three-center integrals, which one 

can argue are relatively small, there is no reason to believe that these integrals are 

any smaller than other two-center integrals that are not neglected. We will then add 

a final requirement to our list: the model must tTeat the neglected two-centeT 

integmls. 

As with other topics in this chapter, this problem can be better understood 

by considering the historical development of tight-binding models. Early models 

started with periodic crystalline structures as the fundamental type of material, the 

most important of which by far was diamond Si. The high symmetry of such simple 

periodic structures often results in a cancellation of quantities that do not otherwise 

cancel. Similarly, the existence of a well-defined coordination number often results 

in "effective constants" for interactions that are otherwise more complicated. As 

discussed in an article by Mercer and Chou [22], this is indeed the case with the 
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neglected two-center integrals. For example, the summation in eq. 27 is zero for the 

S, Px and Px, Py interactions for several types of crystal symmetries, including the 

cubic symmetry of diamond Si. For simple crystal structures, the remaining 

interactions result in effective constants which have only a simple dependence on 

coordination number and coordination distance. 

From a historical perspective then, the use of tight-binding models for 

complicated non-periodic systems is a fairly recent development. When simple 

periodic structures were the fundamental type of material, it was probably 

appropriate to incorporate the neglected two-center integrals into the on-site 

energies Cs and Cpo However, the resulting "standard model" of SSSCJ(R) , HSSCJ(R) , 

etc. was then carried over to the modern arena, where complicated non-periodic 

structures are now the fundamental type of material. It is also quite likely that the 

lack of treating these integrals is in some cases a simple mistake or oversight. It is 

very easy to take the combination <Pi . Vk . <p) and then make a "two-center 

approximation" that retains only those combinations with k = i or k = j. This 

oversight is suggested by the fact that journal articles on tight-binding models 

rarely mention these integrals or offer any explanation of why they are excluded 

from a model. In fact, it is not clear to what extent the on-site energies obtained by 

existing models contain the "coordination constant" effects of the neglected 

integrals. This could lead to undesirable behavior, as the energies c are the energies 

of the isolated atom, which of course should not have any coordination energy. 

Both our first and second passes at the Hamiltonian in Section C are already 

capable of meeting our new requirement. This simply involves explicitly evaluating 

the integrals J <Pi . Vk . <Pi using the overlap functions ¢ (r) and the potential 

function V (r). Multi-element systems are treated natively; a detailed expression for 

the integration with element identities has already been given in eq. 25. Using these 

integrals in large-scale calculations does not appear to be problematic. Following 

the notation of Mercer and Chou [22], one sets up the scalar functions ISSCJ(R) , 
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Ispu(R), Ippu(R) , IpJYlr (R). In fact, the neglected two-center integrals apparently 

satisfy exactly the same transformation relations as the overlap and Hamiltonian 

integrals, for example (see eq. 21): 

The performance cost is also reasonable. Of the 3N2 - 2N terms for the potential, 

there are only N . (N - 1) neglected terms. Other previous items of discussion, such 

as the possibility of obtaining analytical forms for Issu(R) etc., also apply here. 

It is important to point out that, following our second pass in Section C, the 

parameterization of V (r) is meaningful only if it is used in these neglected integrals. 

Otherwise, the factorization of the off-site elements in eq. 26 will result in the 

collapse of V (r) as a degree of freedom. That is, without the neglected integrals, 

the Hamiltonian can be expressed entirely in terms of the Hamiltonian orbitals 

¢H (r)) without any reference to V (r). It is only by using V (r) in both the on-site 

and off-site elements that complete factorization does not occur, making it possible 

to treat V (r) as a parameterized function. One might want to make a third pass at 

the Hamiltonian, as in Section C. In this case however, it does not appear to be 

meaningful to introduce "potential orbitals", i.e. to replace the potential function 

with an operator. The multiplication Vk . <Pi does not result in an orbital centered at 

R i , and even if it did the resulting radial function ¢ v (r) would be associated with 

two different elements. 

There still does appear to be at least one meaningful generalization, and that 

is to use a different potential function V I ('r) for the neglected integrals than for the 

other Hamiltonian integrals. Due to the factorization in eq. 26, this does not result 

in a net increase in the number of parameters. However, the resulting Hamiltonian, 

with degrees of freedom ¢~ (r), ¢: (r), ¢: (r), and V1(r), is perhaps the most 

appealing of all choices. First, it achieves a better balance between the \72 and V 

terms. Just as one expects the Hamiltonian to be more complicated than the 

overlap, one expects the potential to be more complicated than the kinetic energy. 
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Our second pass in Section C can be criticized for placing too much emphasis on the 

kinetic energy. Next, this final pass is consistent with the possibility that V(r) and 

V I (r) are associated with fundamentally different types of chemistry, a possibility 

suggested by the success of models that do not treat the neglected integrals. Finally, 

the decoupling of V I (r) from the off-site terms is expected Lu assist the optimization 

algorithm, in that a change in the parameters of V I (r) will not change the 

Hamiltonian orbitals ¢H (1') = ~¢\l (r) + ¢v (r). 

A final note that one should use caution when implementing these neglected 

integrals, as the variety of options that we have enumerated can lead to some 

confusiun. Most importantly, we should clarify the various options for treating the 

one-center integrals I <Pi . Vi . <Pi. If one treats each Hamiltonian integral 

individually, the one-center integrals Hii,i appear explicitly in the on-site elements: 

However, if one starts with the on-site energies ti, the one-center integrals do not 

appear explicitly, as they are already incorporated in ti: 

Finally, if one avoids the on-site energies ti and instead starts with the off-site 

elements and their limiting values t~, the one-center integrals appear explicitly, but 

with a minus sign: 

The minus sign results from the fact that each off-site value t: implicitly contains 

two occurrences of H ii ,;. Note also that the factorization in eq. 26 makes it easy to 

make a "Murphy's law" mistake of being off by a factor of two. The traditional 

tight-binding functions HSSCI etc. each account for one kinetic and two potential 

terms, while our Hamiltonian orbitals ¢H each account for one-half kinetic and one 

potential ternl. 
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CHAPTER V 

OPTIMIZATION TECHNIQUES 

A "Given a function" 

"Given a function F(X), find the value X min such that F(Xmin ) < F(X) for 

all other values of X." This is the widely-encountered minimization problem. If we 

had an analytical form for F(X), it might be very easy to find Xmin- However, for 

the numerical problem the only information that we can ever know about F(X) is 

the specific numerical value of F, and in some cases the numerical values of the 

derivatives of F, for a specific numerical value of X. This means that even the most 

sophisticated minimization algorithm will need to send one value of X to the 

function F, then another value of X, then another, until the algorithm is reasonably 

certain that it has found the minimum value. The difficulty with minimization 

problems is that the time required to find the minimum value can vary over many 

orders of magnitude depending on the problem. In some cases the problem might be 

unsolvable, even on the fastest computer. 

A closely related problem is the root-finding problem: "Given a function 

F(X), find the value X root such that F(Xroot ) = 0." Of course, if something other 

than zero is on the right-hand side of this equation, the equation can always be 

expressed as F(Xroot ) - G(Xroot ) =: 0, which is still a root-finding problem. In many 

applied problems the function F depends on several values {Xl, X 2 , X3 ... }, and one 

has a multi-dimensional problem. For the multi-dimensional minimization problem 

one still has a scalar value for F, but for the multi-dimensional root-finding problem 

the existence of a well-defined solution requires that F and X have the same 
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dimension. Finally, for the multi-dimensional minimization problem, if the function 

F can be expressed as a sum of squared terms, one has a least-squares problem. 

Although it might seem that this should be treated as any other minimization 

problem, the structure of a least-squares function can be exploited to find the 

minimum in much less time than for a general function. Of course, there must be a 

relatively large number of terms in the least-squares sum: in order to exploit 

least-squares algorithms there must be at least as many terms in the sum as there 

are dimensions in X. 

The minimization problem is to find the global minimum, which is the set 

{Xi} with the absolute smallest value of F. Minimization algorithms however are 

fundamentally related to the number and distribution of local minima. In the best 

case, there would be only one local minimum, and only a relatively small number of 

evaluations of F would be needed to find the global minimum. The actual number 

of evaluations would depend rather strongly on the number of dimensions and on 

the shape of the function, but very roughly only about 103 evaluations would be 

needed. In the worst case the local minima would be distributed randomly, and a 

brute-force search would be necessary to find the global minimum. The number of 

evaluations needed would then be (Nsearch)Nd,m, where Nsearch is the number of 

search points for each dimension, and Ndim is the number of dimensions. With 

typical values of 40 for the number of dimensions and 200 for the number of search 

points, it is evident that the worst-case problem is unsolvable. 

B Optimization in atomic-scale modeling 

In atomic-scale modeling, optimization problems are particularly important. 

The energy E of a system of atoms is a function of the geometric coordinates X, of 

the atoms, and the equilibrium geometry is the set of coordinates with the minimum 

energy. This is a multi-dimensional minimization problem. Energy minimization is 

perhaps the most widely used numerical problem in atomic-scale modeling. Next, in 
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many quantum mechanics models, the quantities of interest depend on a set of 

electron numbers Ni , but the electron numbers appear in an equation which can not 

be solved explicitly for N i . This is the widely-encountered self-consistency problem, 

and this is a multi-dimensional root-finding problem. Next, in many atomic-scale 

modeling problems one has a set of free parameters or empirical parameters Si, and 

one wants to find the set of parameters that give the "best" calculated properties 

Pk · The concept of the "best" properties is usually quantified as the minimum value 

of a least-squares sum, and so this is a least-squares problem. 

In many energy minimization problems, one is interested in how the energy 

depends on a single geometric coordinate. For example, for bulk or crystalline 

systems one is often interested in the energy E as a function of the atomic volume V. 

This is a one-dimensional minimization problem. The very important Fermi energy 

EF , which determines the number of electrons occupying each energy eigenvalue, is 

defined by an equation which can not be solved explicitly. This one-dimensional 

root-finding problem is particularly difficult because the Fermi function is extremely 

nonlinear. Finally, the numerical calculation of elastic coefficients, and the very 

closely related vibration frequencies, depend on the properties of the energy as a 

function of a specific geometric coordinate or mode of vibration. This 

one-dimensional numerical derivative problem, although not strictly an optimization 

problem, uses many of the same concepts as other optimization problems. 

We should also mention the two very important research areas of molecular 

dynamics and Monte Carlo simulations. Our atomic-scale modeling program does 

not include these two types of simulations. However, in the context of optimization 

problems, both molecular dynamics and Monte Carlo simulations can be interpreted 

as generalizations of the energy minimization problem. In addition to using the 

energy E = E(Xi) to find the equilibrium geometry, molecular dynamics and Monte 

Carlo simulations are used to calculate a wide variety of kinetic and thermal 

properties, each of which can be calculated from some property of the function 
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E(Xi). A discussion of these techniques is outside the scope of this report. 

However, some of the results in this chapter might be useful in these areas. 

C Logistical issues 

Numerical optimization problems have a relatively long history and are 

well-understood (see Ref. [17], [25]). The local minimization problem is considered 

to be a "closed case", with variable metric algorithms often providing the best 

performance. The local root-finding problem is also considered to be a closed case, 

with variants of either the Newton algorithm or the BTOyden algorithm often 

providing the best performance. The self-consistency problem is still widely 

discussed in the literature, but this is usually in the context of making relatively 

small modifications to improve the performance. The local least-squares problem is 

more complicated, but the Levenberg-Marquardt algorithm works so well that for 

most practical purposes this is also a closed case. 

The global problems are somewhat different. The global root-finding problem 

does not appear to be of major importance; the self-consistency problem is almost 

always treated as a local problem, as the existence of multiple solutions is not 

physically reasonable. The global minimization problem is very important in many 

different fields. Although still an active area of discussion in the literature, it is now 

fairly well-understood, with several types of algorithms available. The global 

least-squares problem is not well-understood and it is not widely discussed in the 

literature. Our need for an efficient global least-squares algorithm has led us to 

develop a global modification of the Levenberg-Marquardt algorithm. 

The one-dimensional problems for both minimization and root finding are 

also a closed case. In this area there are many algorithms available, and the 

selection of the algorithm usually depends on the specific problem. In practice 

reliability issues, such as handling unexpected conditions, are often as important as 

performance issues. In fact, if performance is critical for a one-dimensional problem, 
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the strategy is usually to use the previously evaluated points to construct a curve 

such as a spline, and in this case the problem becomes less of a minimization 

problem and more of a spline interpolation problem. Global problems in one 

dimension are also not problematic, as it is usually possible to solve such problems 

using a brute-force search. 

D Least-squares residual 

The physical properties calculated by empirical models depend on a set of 

parameters Si. The objective of empirical modeling is to find the best set of 

parameters Si' This is done by selecting a set of physical properties Pk , called fitting 

properties, and constructing a least-squares sum: 

R(S) first ~empt "\""" pk. . (pk (S) _ pk ) 2 
2 L.."k we'ght calc 2 rej 

(28) 

For each fitting property, there is a weight factor Pweight which represents the 

relative importance of the property, the value Peale calculated by the model, and a 

reference value Prej which is the desired value of the property. Ideally, the reference 

values would be the experimental values of the physical properties. However, due to 

the need for a large number of fitting properties, and the need for a uniform 

technique to be used for the reference values, the reference values are usually 

obtained from first-principles or ab-initio calculations such as density functional 

theory. 

The scalar value R is called the residual, as it represents the amount by 

which the calculated values differ from the reference values, and of course if all the 

calculated values are equal to the reference values then the residual is zero. The 

form in eq. 28 is widely used, and it is at least sufficient for a least-squares 

optimization. However, in this form the actual numerical value of the residual is 

rather meaningless, particularly if properties with different physical units are used. 
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Our final form for the residual R is: 

(29) 

For each property, we now also have a characteristic scale Pseale. The values Peale, 

Pre!, and Pseale should all have the same physical units, and then the weight Pweight 

is unit less , and also the residual R is unitless. The weight factors are now squared, 

which results in a more intuitive interpretation of weight as a relative importance. 

Dividing by the number of properties N p prevents the numerical value of the 

residual from scaling with the number of properties. That is, if we double the 

number of terms in the sum in eq. 28, this has the undesirable effect of doubling the 

value of the residual. The square root allows for the residual to scale linearly with 

the difference Peale - Pre!. 

With these modifications, the residual is now a type of average of the 

differences Peale - Pre!' This means that the actual numerical value of the residual 

is now physically meaningful as the average deviation of the calculated values from 

the reference values. The factor of 1000 in eq. 29 is used to obtain a "user-friendly" 

numerical value. This factor is chosen so that a residual of 1.0 corresponds to an 

accuracy of 1 part in 1000; this is approximately the level called "chemical 

accuracy", which is something of a reference accuracy for atomic-scale calculations. 

Our interpretation of various values of the residual, which has been quite useful in 

practice, is shown in Figure 6. 

The use of a residual with a physically meaningful value is of critical 

importance. For example, suppose that there are two research groups that are 

competing to develop the best numerical model for some physical system. How can 

we decide which group has the best model? With the residual in eq. 28 there is no 

way to decide unless each group uses exactly the same set of fitting properties H 

with exactly the same reference values Pre!. With a physically meaningful residual 

as m eq. 29 we can make such decisions, even if different fitting properties and 
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residual value 
~ 1000 

~ 100 

~ 50 

~ 20 

~ 10 

~1 

interpretation 
The calculated values are within an order of magnitude 
of the reference values. Values around 1000 are often 
encountered during optimization, since the dependence 
of the residual on the parameters is extremely nonlinear. 

The calculated values are accurate to about 1 part in 
10. This is a good value for an initial or starting set of 
parameters, before optimization. If the initial residual is 
much larger, it is likely that the optimization will fail to 
find the minimum in a reasonable amount of time. 

We have chosen this value somewhat arbitrarily as mean .. 
ing that the physical model is reasonable, or similarly 
that the values of the parameters are reasonable. Af
ter much experimentation this still seems to be a good 
threshold value. 

This about the best value that we have obtained for a full 
optimization. At this level, not only are the individual 
calculated values accurate, but also comparative values 
such as energy differences and trends and patterns are 
also accurate. This is very desirable because it suggests 
that the model will be accurate for molecular dynamics 
and thermodynamics simulations, which depend on en
ergy differences. 

This is approximately the accuracy of the first-principles 
calculations used to obtain the reference values. Any 
attempt to obtain a residual less than the accuracy of the 
reference values is misguided since one will be no longer 
be exploring real-world values, but rather the limitations 
of the first-principles calculations. 

The calculated values are accurate to about 1 part in 
1000. Some individual properties might have a mean
ingful residual at this level if their reference values are 
sufficiently accurate. 

Figure 6. Interpretation of various values of the least-squares residual R. 
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different reference values are used. There are a variety of similar situations where 

one needs such a comparison or competition. For example, one might want to apply 

the same model to several diflerent systems and then ask which system the model 

works best for. Or, one might want to test a new modification to an existing model 

to see if the modification provides any improvement. Finally, hecallse the residual R 

is a type of average, one can identify a residual Rk for each property. This can be 

used to identify how well a model works for an individual property. 

We should also mention that one might want to modify the residual to 

account for the number of empirical parameters used in the model. Formally, if the 

region near the minimum is linearized this gives a set of linear equations: 

which can be solved exactly for any number of properties up to the total number of 

parameters N s . In practice there are nonlinear effects, but there is still the informal 

sense that if one has, for example, 200 properties and 40 parameters, that only 160 

properties have been fit in a non-trivial way. This suggests the use of the following 

modification in eq. 29: 
{T N p {T 

V IV; -+ N p - Ns . V IV; 
This will increase the value of the residual R, indicating a poorer fit. Loosely 

speaking, this modification penalizes a model for using too many empirical 

parameters. Note that for Ns 2: N p the residual is meaningless, as it should be, 

indicating that nothing has been fit in a non-trivial way. 

E Global least-squares 

For most of the optimization problems in our program, efficient algorithms 

are already available, as discussed in Section C. This is not the case for the global 

least-squares problem. There are in general two approaches to the global problem. 

The first is to treat the residual R as a scalar value, and to use a global 
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minimization algorithm. This has the advantage that one can use the pre-existing 

algorithms without the need to develop a new algorithm. However, there are Np 

terms in the least-squares summation, and if the summation is performed explicitly 

then a large amount of information about the behavior of the individual terms is 

lost. So, the second approach is to adapt the Levenberg-Marquardt algorithm to the 

global problem. Other atomic-scale modeling problems similar to our own seem to 

prefer the first approach of treating the global problem as a scalar problem. 

However, we have found that the second approach of treating the global problem as 

a least-squares problem gives a faster optimization. In this section we discuss our 

global modifications to the Levenberg-Marquardt algorithm. 

The most obvious starting point for the global modification is a to send 

successive sets of parameters Si to the local L-M algorithm. It is useful in this 

context to use the terminology "base camp" and "search team" to refer to the 

relevant sets of parameters. The base camp Sbase is the initial or starting set of 

parameters. From this base camp we send out a search team Ssearch, which is a new 

set of parameters. The search team is used by the L-M algorithm, which moves 

Ssearch downhill to a local minimum. Now, if the local minimum is acceptable, then 

we move the base camp to the local minimum. If the local minimum is not 

acceptable, then we simply ignore it and send out a new search team. For this there 

are two essential procedures that must be specified: first, how to construct a new set 

Ssearch from a current set Sbase, and second, how to decide if a local minimum is 

acceptable. For the first procedure we define a scalar S which can be interpreted as 

the distance between Ssearch and Sbase: 

S= (30) 

If we assume that the global minimum is more likely to be a small distance from 

Sbase than a large distance from Sbase, then it is reasonable to choose successive sets 

Ssearch using a random distribution where small values of S are more likely and 
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large values of S are less likely. 

In the absence of any directional information about the distribution of local 

minima, the direction from Sbase to Ssearch should be chosen randomly. Our 

algorithm for the construction of Ssearch from Sbase is then: 

S~earch = S~ase + S . (
2.::\ r~1'N+1s' r~l'+l) -~" S' . r -1,+1' scale (31 ) 

with: 

S = -Sglobal . In (ro,d (32) 

where ra,b is a random number with uniform distribution over the interval from a to 

b. The factor r=-l,+l provides the random direction, and the square root factor acts 

as a normalization coefficient to satisfy the constraint in eq. 30. Our specific choice 

for the random value of S in eq. 32 is the exponential distribution [17], where Sglobal 

is a unitless "half-life" constant which represents the expected range over which the 

local minima are distributed. For example, a value of Sglobal = 0.30 indicates that 

the search parameters will differ from the base parameters by about 30%. If one has 

some further knowledge about the distribution of the local minima, then it would of 

course be reasonable to use a different random distribution in place of eq. 32. 

Finally, although it is evident from the context of the discussion, we should 

emphasize that the array ri or rk refers to the same array of random numbers for 

each of its 3 appearances in eq. 31.. 

For the second procedure of deciding whether a local minimum is acceptable, 

we simply use the rule that it is acceptable if it is the best local minimum found so 

far. An alternative would be to move the base camp to the search team using a 

random probability that depends on the value of the residual at the local minimum. 

This would take us into the area of thermal techniques such as simulated annealing, 

which interpret the residual as a type of physical energy barrier. Perhaps the most 

important feature of our algorithm is that it does not use thermal techniques. The 

dependence of the residual R on the parameters Si is highly nonlinear, even in 
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regions where the values of the parameters are reasonable. This suggests that 

thermal techniques are not appropriate for these types of problems, because the 

residual barriers are too large. If one wishes to adapt this algorithm to problems 

where a thermal interpretation is more appropriate, one can use a probability for 

moving to the local minimum that depends on the difference between two 

appropriate values of R. Indeed, we have used this thermal adaptation at times, and 

although it certainly adds flair to the algorithm, it does not appear to be useful for 

our particular problem. 

Finally, we should point out that this algorithm can be easily and highly 

parallelized. For these types of atomic-scale modeling problems, the derivatives of 

the least-squares terms can not be evaluated analytically. This means that some 

type of forward difference must be used to calculate the Jacobian matrix elements 

Jki = ~~~, which are used by the Levenberg-Marquardt algorithm. There will be a 

forward difference for each of the parameters Si, and since each forward difference is 

independent of the others, we can parallelize the calculation of the Jacobian by 

sending one forward difference to each processor. Coincidentally, the number of 

parameters Ns is just about same as the number of processors available on a 

modern multi-processor computer. One could also parallelize the algorithm by 

sending an entire local optimization to each processor, with some minor 

modifications to account for the fact that each of these local optimizations must run 

independently of the others in order to be parallelized. 

F Distribution of local minima 

As with any global algorithm, it is the validity of the assumptions about the 

distribution of local minima, and not the creativity of some anthropomorphic 

analogy, that determines whether the algorithm is useful for a particular problem. 

Indeed, it is a fair criticism of some global algorithms that too much emphasis is 

placed on such anthropomorphic analogies. In this section we briefly discuss the 
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justification of our assumptions about the distribution of local minima. 

For atomic-scale modeling problems, the empirical parameters are usually 

chosen to have as simple a physical interpretation as possible. For example, an 

empirical parameter might represent the spatial extent of the distribution of 

electrons around a Silicon atom, which is known to be about 5A. It is then expected 

that the optimized set of parameters is more likely to have a value in the range 4A -

6A, less likely to have a value in the range 3A - 7 A, and unlikely to have a value 

outside this range. This suggests that the exponential distribution in eq. 32 is valid. 

It is not enough just to have such a distribution of local minima. One must 

also start somewhere inside this distribution. That is, in eq. 31 the construction of 

the search parameters Ssearch from the base parameters Sbase implies that the 

starting parameters are relatively close to the global minimum. This is consistent 

with our use of empirical parameters which have a simple physical interpretation; 

accurate starting values for such parameters can usually be obtained. 

We should also mention the important role of the characteristic scales Sscale 

m eq. 30. The purpose of the scales is to be able to construct a scalar value for the 

distance between two sets of parameters. Unfortunately, unlike in real 

three-dimensional physical space where distance is well-defined, there is no such 

well-defined distance for a set of parameters Si. It is the scales that define the 

concept of distance, or more formally the metric, for the parameters. 

Next, as we have discussed previously, based on our own observations, the 

dependence of the residual on the parameters is extremely nonlinear. Continuing 

our example, there might be a small (good) residual at 5.5A, but a very large (bad) 

residual at 4.5A. This suggests that the numerical values of the residual do not 

contain any useful information about the distribution of local minima. This is 

consistent with our algorithm in eq. 31: new parameters S are constructed only 

from other parameters S and not from any residual values R. 

It should be possible to develop better algorithms for the global least-squares 
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problem. In one of the very few articles on this subject, Velazquez et. al. [23] have 

suggested that, for a large class of problems, the numerical values of the residual 

contain information about the distribution of local minima. Their technique, called 

selective minimization, is based on the observation that "smallest residual" or 

"smallest deviation" or "smallest error" problems are a special type of least-squares 

problems, distinguished from the general least-squares problem by the fact that the 

global minimum has a very small residual. It is evident that empirical parameter 

modeling is just such a smallest-residual problem. 

G Gaussian fill 

Global optimization algorithms have a tendency to return to the same local 

minimum over and over again. For a molecular dynamics or Monte Carlo simulation 

this might be a good thing, because physical properties such as vibration 

frequencies and transition rates can be calculated from the probability of returning 

to a local minimum. For empirical modeling this is not a good thing, because we are 

interested only in finding the global minimum as quickly as possible. This can be 

stated more formally by saying that for empirical modeling there is no physical 

significance to the dynamical path taken by the algorithm. Returning to the same 

local minimum is simply a waste of time. 

A simple and effective solution to this problem has been developed recently 

by Parrinello et. a1. [24]. Their solution is to add to the residual R a relatively 

narrow Gaussian function centered at each of the previously-found local minima L: 

(33) 

The entire summation is zero except when the current set of parameters Si is very 

close to one of the local minima 5 L,i' The Gaussian functions act to fill up each 

local minimum; when a minimum is sufficiently filled it is no longer a minimum, and 

the optimization algorithm will no longer return to it. In theory, filling the local 

81 



minima is problematic because the Gaussian terms are history-dependent. That is, 

for a specific set of parameters Si, we can have R fill = R early in the optimization, 

and R fill of R later in the optimization. In practice this is not a problem: R fill is 

never interpreted as the official value of the residual; it is only a raw value used by 

the optimization algorithm. 

Our specific form for the Gaussian functions in eq. 33 is: 

with: 

Here S(Si, SL,d is just a scalar value for the distance between the current set of 

parameters Si and the local minimum SL,i' This form introduces two new unitless 

constants S fill and r fill for the width and height of the Gaussian functions. The 

value of S fill should be close to (or less than) the expected separation between local 

minima, so that the Gaussians from different local minima do not overlap. We use a 

value of Sitll = 0.02, but of course this should not be taken to be a "universal" 

value. The value of r fill should be close to (or less than) the expected depth of the 

local minima; we use a value of r fill = 0.20. Finally, we have included the residual R 

as a factor for the Gaussian functions in eq. 34; this seems to be necessary in order 

to interpret r fill as a fixed constant. 

H Success-failure algorithms 

We have discussed previously that if one has a one-dimensional problem, it is 

usually not suitable to use a multi-dimensional algorithm with the number of 

dimensions set to one. In this section we discuss the one-dimensional algorithm that 

we use for minimization. The algorithm is due to Rosenbrock [26]. The input 

consists of X init , which is the initial or expected X-value for the minimum, and 
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Xchange, which is the initial or expected change in X init . The algorithm also 

monitors the variables Xbest and F best , which correspond to the best or smallest 

evaluated value of F(X). To get things started, one evaluates F(X) at the points 

Xinit and X init + Xchange' Each evaluation of F(X) is then called a success if 

F < Fbest and a failure if F 2': F best . After the evaluations at X init and 

Xinit + Xchange, one sets the variable step size X step = Xchange, and then constructs a 

trial value of X in one of two ways, depending on whether the most recent 

evaluation of F(X) is a success or a failure: 

success: 

failure: 

Xtrial = Xbest + Cexpand . X step 

Xtrial = Xbest - Ccontract . X step 

(35) 

The coefficients Cexpand and Ccontract are expansion and contraction coefficients. They 

are constrained by the conditions: 

Cexpand > 1.0 
(36) 

0.0 < Ccontract < l. 0 

After Xtrial is assigned, the value of X step is updated to the new step size 

X step = Xtrial - X best . The function F(X) is then evaluated at the trial point Xtrial, 

the variables Xbest and Hest are updated, and the entire process is repeated. 

The success-failure algorithm is included in our discussion of optimization 

techniques because of the serious errors that can result from the use of a 

one-dimensional minimization or root finding algorithm. First, many 

one-dimensional algorithms require the specification of a range of X -values in which 

the minimum or root is located (see Ref. [17;). Based on our own experience, we 

feel that the use of any specified-range algorithm is unacceptable for the physical 

models discussed in this report. The problem with such algorithms is that they can 

return the upper or lower bound of the range as the minimum. For example, if we 

attempt to minimize the function F = (X - 4)2 using the range X = [6,20]' we 

might be told that the function has a minimum at X = 6. It would of course be 
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possible to add a separate algorithm to search for a range that is guaranteed to 

contain a local minimum, or to modify the algorithm to report an error message if 

the lower or upper bound is returned as the minimum. In practice these 

modifications add an unnecessary level of complexity to what should be a simple 

problem. The success-failure algorithm uses only an initial point X init and an initial 

step size Xchange; it does not require a specified range for the minimum. 

Next, many one-dimensional algorithms use polynomial interpolation to 

reduce the number of function evaluations needed to find the minimum. 

Unfortunately, this introduces a large number of unexpected conditions that must 

be accounted for. These include a polynomial with a maximum rather than a 

minimum, a polynomial with a minimum outside the range of X-values used to 

construct the polynomial, and polynomial that is a straight line. Also, if such an 

algorithm is very close to the minimum, the polynomial is very close to a straight 

line, and division by zero can cause the algorithm to fail. This requires additional 

modifications to account for the final stage of the minimization. The success-failure 

algorithm updates Xbest using only the expansion or contraction step in eq. 35. 

There are no such unexpected conditions associated with the update of X best , and 

no such modifications for the final stage of the minimization. 

This does not mean that the success-failure algorithm can not be modified to 

reduce the number of function evaluations needed to find the minimum. It means 

that such modifications are much less likely to cause errors than they would be if 

made to a different algorithm. This is because the success-failure algorithm can 

serve as a framework for a polynomial interpretation algorithm. The expansion and 

contraction steps in eq. 35 will converge to the minimum as long as the conditions 

in eq. 36 are satisfied, even if the expansion and contraction factors take on different 

values during the minimization. The strategy here is to use polynomial 

interpolation to suggest or recommend a step size to be used in eq. 35, and then use 

the success-failure framework to decide whether to accept this step, or to reject it 
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and revert to a default expansion or contraction factor. 

I Fermi energy algorithms 

Our final optimization technique is the atomic-scale modeling problem of the 

calculation of the occupation numbers from the energy eigenvalues. The input to 

the problem consists of an array {Ed for the energy eigenvalues of an atomic-scale 

system. Sizes in the 10000s of eigenvalues are typical. The output consists of the 

array {Ni } for the number of electrons occupying each eigenvalue or eigenstate. The 

occupation numbers Ni are specified by the equation: 

( 
(E-EF)) ( ( (E-EF)))-l Ni(Ei ) = nelec . exp - t ET . 1 - exp - 'ET 

where nelec is a fixed parameter (input) for the maximum number of electrons 

allowed to occupy a single state, and ET is a fixed parameter (input) for the 

"thermal energy" of the electrons. The Pauli exclusion principle requires that 

(37) 

nelec = 1 or nelec = 2 depending on whether the physical model treats electron spin 

explicitly. The value of ET is typically very roughly on the order of 1 part in 106
, 

assuming that a characteristic scale for the eigenvalues is available. We should point 

out that ET does not represent the actual real physical temperature of the system of 

atoms. The physical temperature is usually associated with the motion of the nuclei 

of the atoms, as in a molecular dynamics or Monte Carlo simulation. 

The remaining variable in eq. 37 is the scalar Fermi energy EF . The value of 

EF is specified by the constraint: 

where Nelec (input) is the total number of electrons in the system. The weight 

factors Wi are all Wi = 1 for a system without periodic boundary conditions. 

However, for a periodic system such as a crystal or surface it is necessary to treat 

the general case of arbitrary weight factors. The arrays {Ei }, {Ni }, and {Wd are 
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all multi-dimensional. However, the scalars EF and Nelec are both one-dimensional. 

From the perspective of the numerical algorithm, the energies Ei and weights Wi are 

treated as fixed input, and the scalar EF is treated as an unknown. The relevant 

equation for the algorithm is then Li Wi . Ni(EF) - Nelec = a, which is a 

one-dimensional root-finding problem. 

Before proceeding, let us clarify the role of this problem in atomic-scale 

modeling with an informal example. Consider the set of eigenvalues {-12.000, 

-10.000, -8.000, -6.000} for a system with a total of 4 electrons. Loosely 

speaking, as a first attempt we want to put two electrons into each of these 

eigenvalues or eigenstates, giving the array of occupation numbers Ni = {2.000, 

2.000, 0.000, O.OOO}. In this simple example we can assign Ni without actually 

calculating EF . However, if we gradually increase the value of -10.000 and decrease 

the value of -8.000, this first attempt at assigning Ni will result in values that do 

not have a smooth dependence on Ei . The distribution in eq. 37 is introduced to 

restore this smooth dependence. In our example this second attempt might result in 

the occupation numbers N; = {1.999, 1.999, 0.001, 0001}. That is, most of the 

occupation numbers will either be very close to zero or very close to nelec, with the 

possibility of having some intermediate values if some of the energies Ei are very 

close to each other. 

The Fermi energy problem is included in our discussion of optimization 

techniques because it is especially prone to errors or bugs. The root-finding function 

Li Wi . Ni(EF) - Nelec is extremely fiat in regions where EF is not close to one of 

the energies Ei . In fact, because of the limitations of fioating-point storage, the 

function is exactly fiat in these regions. In practice a root-finding algorithm will 

usually fail in these regions; a perfectly fiat region contains no information about 

how to proceed toward a root. This can be developed more formally by determining 

the range over which the function is not fiat. For this we need the machine accuracy 

t, which is usually defined as the smallest number for which 1 and 1 + E can be 
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distinguished from each other. For our purposes this means that the root-finding 

function is non-fiat for Ni > c and Ni < nelec . (1 - c). Using these values in eq. 37 

shows that the function is non-fiat in the regions: 

(38) 

This important equation shows that In (c 1
) is not large enough to extend the 

non-fiat regions from one value of Ei to another. With 64-bit fioating point storage, 

the logarithm in eq. 38 has taken the range of non-fiat coverage from a factor of 

c 1 ~ 1 . 1016 to a factor of only In (C 1
) ~ 40. Since ET is required to be small, and 

since typical separations between energy eigenvalues are on the order or 1 part in 

101
, we have shown that exactly fiat regions, which are expected to cause a 

root-finding algorithm to fail, are common for the Fermi energy problem. 

We have experimented with several possible modifications to prevent a 

root-finding algorithm from failing. Our first attempts were to use modified 

root-finding algorithms that could handle exactly fiat regions. Our next attempts 

were to identify cases where we could assign the occupation numbers without 

actually calculating Ep. This will work for any physical system that has a 

well-defined band gap, i.e. a band gap larger than In (c- 1
) . ET . However, we found 

that these attempts are prone to errors or bugs, especially for periodic systems. Our 

solution is to return to an unmodified root-finding algorithm. The trick is to very 

carefully assign an initial value for E p , so that the root-finding algorithm always 

starts in a non-fiat region and never has a chance to enter a failure-prone fiat region. 

We use a first pass through the array {Ei} to find the elements of the array Ei/owe.r 

and Ei that are the upper and lower bounds for the Fermi energy. Note that 
upper 

because of the need to treat the weight factors Wi for periodic systems, we can not 

use a trivial assignment such as ilower = Ne/ee. These elements Ei/ower and Eiupper can 
nel ec 

be identified by the condition: 

",i=i/ ower W > N E L.."i=l i . nelec elec - csafe' scale 

",i=iupper W N + E 
L.."i=l i . nelec > elec csafe' scale 
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where Csaje is a small tolerance with Csaje » c, and Escale is the characteristic scale 

of the energy eigenvalues. The initial value of EF for the root finding algorithm is 

then J'ust EF = -2
1 

(Eil + Ei ). We have found that this modification is very ower upper 

stable for both non-periodic and periodic systems over a large range of system sizes. 
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CHAPTER VI 

ENVIRONMENT-DEPENDENT TECHNIQUES 

A Introduction 

In Chapter II we discussed what can be called a "standard model" for a 

self-contained algorithm to calculate the energy of an arbitrary configuration of 

atoms using only two-center integrals, or more generally parameterized functions 

which represent two-center integrals. The previous discussion actually already 

introduced several of the environment-dependent concepts that are the subject of 

this chapter. In some ways, we came close in Chapter II to spelling out an 

environment-dependent model. 

The two key words or phrases associated with our model are 

"environment-dependent" and "self-consistent". These are not just buzzwords; but 

are important to describe the manner in which our model compares to other 

competing models. Environment-dependent refers in general to any interaction 

beyond those of a two-center model. In our model, the environment-dependent 

effects account for both the three- and four-center integrals that are not treated in a 

two-center model. While there are a few competing models that include 

environment-dependent effects, it is the full iterative self-consistent treatment of 

charge redistribution effects that set our model apart from competing models. 

Our discussion in this chapter is out of necessity less refined than our 

discussion of two-center techniques in Chapter II. There, we were able to provide 

"line-by-line" derivations, and we were also able to show "term-by-term" 

correspondence of the components of our model with the components of 
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first-principles models. Perhaps the most important point in this respect is that the 

environment-dependent part of our model is more phenomenological, and that there 

is less opportunity here for such line-by-line and term-by-term derivations. This is 

due at least in part to the leading-edge nature of this research. 

It is also very important for the purposes of this report as a dissertation to 

point out that the individuals involved in this research specialized in different areas 

of the project. My own work was more highly specialized in the implementation of 

the algorithms, the development of a first-principles database, and the preliminary 

fitting of the empirical parameters for C, Si, and Ge. A colleague, Dr. Ming Yu, 

specialized more highly in the subsequent fitting of C and Si, and the applications of 

the model to C and Si systems. As a result my discussion in this chapter is more 

oriented toward those areas in which I was more heavily involved. 

B First-principles approach 

Our discussion .in Chapter II exhausted the types of mathematical objects 

that can be obtained from the bundle of approximations that comprises what can 

alternately be called "tight binding" or "two-center" theory. If we were to ask 

hypothetically what the most evident extensions or modifications to this theory 

would be, from the perspective of a two-center model only, there are two apparent 

directions that we could take. The first would be to modify the pairwise repulsive 

energy to include higher-order terms, the most likely of which would involve the 

bond angles eiJk associated with each triplet of atomic nuclei. Recall that the 

"derivation" of the repulsive energy is on very weak ground, as it represents a 

composite term which is known to be very complicated in first-principles treatments: 

Erepulsioue = Enuclei-nuclei - Eelectrons-electrons 

The second direction would be to treat the three-center integrals; along with the 

repulsive energy, these integrals are really the only mathematical objects that we 
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are free to work within the central field approximation. 

There is however an increasing consensus that this hypothetical approach is 

not productive. Bond-angle terms and other classical modifications to the repulsive 

energy would result in a sharp increase in the number of parameters, while at the 

same time the classical nature of such modifications would work against the concept 

of having an electronic structure model. Three-center integrals of course can not be 

criticized as being classical in nature; however, they also would suffer an 

unacceptable increase in the number of parameters. Furthermore, the growing 

consensus is that these integrals are simply not the "weakest link" in two-center 

models. 

The consensus from both the theoretical and practical approaches is that the 

charge T'edistT'ibution, or more generally some modification involving the charge 

density, is the most important item in the development of models that approach the 

accuracy of first-principles calculations, while at the same time maintaining the fast 

speed that allows one to study larger systems. This concept of charge redistribution 

is of course not present in two-center models, having been lost in the various layers 

of approximation; the matter must be approached from a first-principles 

perspective. Our discussion follows closely that of our own recent publication [30]. 

We begin with the many-body Hamiltonian [29]: 

where land l' index the electrons, and i and j index the nuclei. Z refers to the 

number of electrons associated with the neutral atom; for the purposes of our 

empirical model, which uses a valence approximation, Z will refer to the number of 

valence electrons. 
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C On-site terms 

When the above Hamiltonian is treated in a one-particle approximation, one 

obtains an expression for the on-site terms, which serves as a starting point for our 

environment-dependent model: 

(39) 

The individual terms in this expression refer to various interactions involving the 

orbital indexed by ex and associated with the atom indexed by i. c?a refers the 

interaction with its own nucleus, 'Uia the interactions with orbitals at its own site, 

u:a the interactions with orbitals at other sites, and Via the interactions with nuclei 

at other sites; c?a also includes the kinetic energy. At this point there are several 

directions that one could proceed in, depending on the extent to which one wants to 

treat the self-consistency problem, which describes the charge redistribution. 

In our model we choose a rather ambitious treatment requiring an iterative 

numerical treatment, i.e. a root-finding algorithm, which is the numerical or 

computational equivalent of the self-consistency problem. However, we avoid 

treating the charge density with a three-dimensional grid or mesh, which would slow 

the model down to an unacceptable level. Instead, we have chosen to treat the 

charge density using the electron numbers Ni associated with each site i. Our 

semi-empirical treatment of the terms in eq. 39 is: 

U:a + 'Uia = L:k~i (Nk . VN(Rik ) ~ Zk . VZ(Rik )) 

In these expressions, Cia is the traditional on-site energy corresponding to the 

eigenvalues of the isolated atom. If one wants to think of the model as a 

modification or extension of a traditional two-center model, then we can begin to 
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think of the Hamiltonian in the form: 

Henv = Htrad + modifications 

where env refers to our environment-dependent model, and tTad refers to a 

traditional "tight-binding" model. 

Mathematically, the scalar values U, and the functions VN(R) and Vz(R) can 

be discussed from different perspectives. One approach is to start with U (which 

describes same-site i-i interactions), and then to treat VN(R) and Vz(R) (which 

describe different-site i-k interactions) as generalizations of U. The other approach 

is start with VN(R) and Vz(R), and then to treat U as a special case of V (R) for 

the same-site interactions. 

In any event, the physical interpretation is that U describes the effective 

energy for electron-electron interactions at the same site, VN(R) describes the 

electron-electron interactions at different sites, and Vz(R) describes the orbital-ion 

interactions at different sites. In alternate treatments the scalar value U arises as 

part of the widely-used Hubbard model. Although our treatment of U still 

corresponds to a Hubbard model, in our model U is more of a starting point for the 

more important empirical functions VN(R) and Vz(R). For the computational 

problem VN(R) and Vz(R) are treated as parameterized functions, and U is treated 

as a parameter. Following our discussion in Chapter II, this parameterization is 

very important, as any modification of an existing model must not result in a sharp 

increase in the number of parameters. In Chapter II we saw that our two-center 

model uses roughly 20 parameters, representing nine parameterized functions. Our 

environment-dependent modification then adds two parameterized functions, 

reSUlting in a balanced increase in the number of parameters. 
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D Off-site terms 

In our model the off-site terms are treated as generalizations of the on-site 

terms in Section C: 

Hia ,j(3liclJ = ~ . (C'ia + Cj(3) . K(Rij) . Sia,j(3 

+~ ((Ni -- Zi) . Ui + (N) - Zj) . Uj ) . Sia,J(3 

+~ L:kcli (Nk . VN(Rik ) - Zk . VZ(Rik )) . Sia,j(3 

+~ L:kclj (Nk . VN(Rjk ) - Zk . VZ(Rjk )) . Sia,J(3 

( 40) 

The first property to note about this Hamiltonian is that the first line in eq. 40 is in 

the form of traditional two-center Hamiltonian: 

Henv = Htrad + modifications 

Here, H trad is treated using a HUckel approximation, where each element of the 

Hamiltonian is constructed from its corresponding overlap element, as discussed in 

Chapter II: 

Following our discussion in Chapter II, although it is possible to interpret the 

HUckel approximation in terms of physical or theoretical arguments, one can also 

interpret this as a thoughtful set of constraints, which reduces the total number of 

parameters by re-using some of the overlap parameters for the Hamiltonian. In 

other words, one still has the trad part of the model in terms of the very general 

two-center functions Hssa(R), Hspa(R) etc.: 

The environment-dependent modifications to the off-site terms consist of 

contributions from the same-site 'i-i and j-j interactions (involving U) and from the 

different-site i-k and j-k interactions (involving VN and Vz ). The rather unwieldy 

appearance of eq. 40 is a result of the requirement that H is symmetric or 
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Hermitian; eq. 40 is largely a straightforward symmetrization of the on-site formulas 

in Section C. The environment-dependent terms are also expressed in terms of the 

overlap elements Sia,j(3, in the manner of a Huckel approximation. Again, at least 

symbolically, one can cast eq. 40 in a variety of interesting forms, such as: 

Henv = ~ . (cie, + Cj(3) . (Ktrad + modifications) . Strad 

which emphasizes the Huckel approximation, and: 

which emphasizes the two-center functions. Apart from suggesting that there are a 

variety of ways in which one could introduce more parameterized functions into the 

model, this line of symbolic analysis also has not resulted in any significant 

theoretical insight. 

E Total energy 

Following our discussion in Chapter II, in the formalism of first-principles 

models, the band energy contains an unavoidable double-counting of the energy 

between electrons and other electrons, resulting in an expression for the non-band 

contribution to the total energy as: 

Enon-ba,nd = Enuclei-nuclei - Edouble-count ( 41) 

In two-center models, it is at this point that one introduces a pairwise repulsive 

energy to account for Enon-band' However, in our model we can explicitly evaluate 

the double-counting term: 

Here we arrive at a very interesting feature of our model. While we could use a 

pairwise parameterized function for Enon-band, it turns out that we already have all 
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the ingredients in place to construct the total energy, without introducing any 

additional empirical parameters. This results from the explicit appearance of 

VN(R), which is known from theoretical considerations to contain a long-range R- 1 

term. When combined with En -n , which is of course also known to contain a 

long-range R- 1 term, we can explicitly reproduce the cancellation of the long-range 

terms, and the resulting short-range "repulsive" energy. 

Our expression for the total energy is then: 

E tot = Eband + ~ Lik • i# Zi . Zk . VC(Rk) 

_1 " (N . N· - Z . Z) . u· 2 i....Ji t t t 2 t 

-~ Lik • i# Ni . Nk . VN(Rik ) 

where the Vc term is equivalent to En-n , and the U and VN terms are equivalent to 

Ed-c , in eq. 41. The potential Vc(R) is just the Coulomb energy or potential: 

This implies a requirement that VN(R) is equivalent to Vc(R) at "large" distances, 

which in practice are any distances larger than the known short range over which 

the old repulsive energy acts: 

VN(R) -+ Vc(R) for R > Rshort 

The crux of the matter is that in our model, the long range terms do not always 

cancel; in fact, complete cancellation is a special case of the more general partial 

cancellation that occurs for systems with N :F Z: 

where 6N = N - Z. This of course is highly desirable, as long-range interactions 

are known to occur, and the inability to reproduce these interactions is a known 

limitation of two-center models. 
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F Functional forms 

In Chapter II we argued that it is useful to separate the general concept of 

having a parameterized function from the specific parameterized functional form 

that is used. In principle we can think of searching for the best shape of the 

function as a whole, i.e. as in the manner of variational calculus. Nevertheless, due 

to the difficult global nature of the fitting problem, it is still necessary to specify a 

form with only a few parameters per function; high-order polynomials and other 

brute-force parameterizations are not acceptable. 

As discussed in Section E, by requiring the same long-range R- 1 behavior for 

both Vc(R) and VN(R), one satisfies both the known theoretical properties of these 

functions, as well as the highly desirable "partial cancellation" of the electron 

numbers in eq. 42. If we return to our model for the Hamiltonian in eq. 40, we can 

see that this same long-range R- 1 behavior is also implied for the function Vz(R): 

This results in a partial cancellation in the Hamiltonian elements as well as in the 

total energy: 

Hia,jpl iiJ = etc. + ~ Lkfi !:iNk· Vc(Rid . Sia,jp + etc. for R> Rshort 

With these considerations in place, there are a only a limited number of ways that 

one can parameterize VN(R) and Vz(R). 

In some of our earliest work on this model, we noted that for systems with no 

charge transfer (N = Z), which includes the stable crystalline structures of most 

elements, the Hamiltonian elements can be expressed as: 

( 43) 

where !:i V = VN - Vz . We realized that by parameterizing the short-range function 

!:i V (R) directly, we could compare the new model to our extensive experience with 
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two-center models. That is, for ~ V(R) = 0, the Hamiltonian reduces to a 

two-center model (for systems with no charge transfer); we can then use the analogy 

of a knob that can be used to "turn up" the magnitude of the 

environment-dependent modification, i.e. by turning up the magnitude of ~ V (R). 

Of course, after becoming more familiar with environment-dependent models, 

one moves away from the need to always refer back to two-center models. It is 

important to point out however, that the identification of ~ V (R) was critical to our 

early understanding of the model. At that time, one of the chief criticisms of the 

model that we were using was that is was quite poor at reproducing the 

high-pressure phases of Si. There was a general consensus that this was due to the 

high coordination number; diamond Si has a small c.n. of 4, while the high-pressure 

phases (body and face-centered cubic) have coordination numbers of 8 and 12. 

Although these high-c.n. phases are not of material interest for Si itself, there was 

an increasing need to treat transition metals and other large-c.n. elements. Also, 

there is always the difficulty of treating C, which is known to be cause problems due 

to the very different chemistries of the c.n.=3 (graphite) and c.n.=4 (diamond) 

structures. In fact, some earlier two-center models attempted to remedy this 

situation by counting the coordination number of each atom, and using it to 

explicitly modify the total energy. 

Following our identification of ~V(R) in eq. 43, we realized that the 

summation over a short-range interaction has the effect of counting the coordination 

number, as: 

Hia ,j(3Ii#J = etc. + Ncoord· ~V(Rcoord) . Sia,j(3 + etc. 

where Ncoord is some effective coordination number, and Reoord is some effective 

coordination distance. This early analysis suggested an important connection 

between the conventional wisdom of coordination-dependent effects, and the ability 

of our model to reproduce such effects without any artificial "bond-counting" 

functions. 
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In any event, returning to the actual functional forms for VN(R) and Vz(R), 

we settled on treating Vz (R) using a conventional polynomial x exponential, 

combined with a long range part: 

e2 

Vz(R) = . (1 - (1 + Bz · R)· exp(-Qz' R)) 
41fco . R 

Rather than treating VN(R) explicitly, we parameterize the short-range ,0.V(R) 

using our customized "hyperbolic" functional form: 

,0.V(R) = (AN + B N . R) . 1 + exp( -Qz . dN) 
1 + exp( -Qz . (dN - R)) 

( 44) 

which of course results in VN(R) being well-defined as VN = 6 V + Vz . It is readily 

seen that both VN(R) and Vz(R) have the appropriate long-range behavior. Finally, 

we also constrain the parameter AN as: 

which reproduces the appropriate limiting behavior limR-->o VN(R) = U. Together 

with the use of the constant 1 instead of an additional parameter Az in eq. 44, this 

constraint is something of a "finishing touch" that is not of critical importance. 

G Parameterization for Si 

By performing an extensive parameter fitting, we have obtained a stable 

"official" set of parameters for Si. The details of the numerical optimization have 

been discussed in Chapter V. For this fitting we used a relatively large set of 

reference values, which were chosen with the goal of improving the transferability of 

the parameterization to a variety of large-scale systems. This includes cluster, bulk, 

and band structure properties which we will discuss in this and subsequent sections. 

For the clusters, we included the bond lengths and binding energies for 2-atom to 

6-atom clusters. The comparison of the calculated and reference values for these 

clusters are shown in Table 1, which is taken with some minor modifications from 

our Ref. [30]. 
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cluster geometry property present work ab-initio 
Si2 DCXlh bond length T (A) 2.226 2.288 

binding energy e (e V) -2.435 -2.499 
Si3 C2v T (A) 2.284 2.357 

T (A) 2.168 2.158 
e (eV) -3.413 -3.574 

DCXlh T (A) 2.141 2.167 
e (eV) -3.427 -3.404 

Si4 D2h T (A) 2.275 2.311 
e (eV) -4.101 -4.242 

Td T (A) 2.332 2.474 
e (eV) -3.773 -3.659 

DCXlh T (A) 2.116 2.156 
T (A) 2.164 2.176 
e (eV) -3.289 -3.367 

Si5 D3h T (A) 2.207 2.306 
T (A) 3.141 3.064 
e (eV) -3.352 -4.452 

C4v T (A) 2.209 2.275 
T (A) 2.358 2.513 
e (eV) -4.327 -4.266 

DCXlh T (A) 2.082 2.133 
T (A) 2.128 2.144 
e (eV) -3.545 -3.534 

Td T (A) 2.127 2.215 
T (A) 3.475 3.617 
e (eV) -3.334 -3.283 

Si6 D4h T (A) 2.248 2.363 
T (A) 2.639 2.734 
e (eV) -4.698 -4.664 

D3d T (A) 2.261 2.285 
T (A) 2.948 3.208 
e (eV) -3.896 -3.972 

Dih T (A) 2.057 2.098 
T (A) 2.072 2.134 
T (A) 2.149 2.158 

e (eV) -3.446 -3.464 

TABLE 1 

Results of our environment-dependent model for small Si clusters. The ab-initio 
values were calculated using the GAUSSIAN-98 software package, with the MPWIPW91 

hybrid functional and the cc-pVTZ basis set. 
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One of the most important aspects of our choice of fitting properties is that 

we use not only the lowest-energy geometries for each cluster, but also several other 

geometries that do not have the lowest energy. For example, the lowest energy 

geometry of the Sis cluster is known to be the D3h geometry. However, we also fit to 

the C4v , Dih' and Td geometries. For each geometry, both for the reference values 

and for the calculated values, the geometry was fully relaxed, i.e. relaxed under the 

constraints of the required geometry of course. 

The reasoning behind this strategy is quite important. One anticipates a 

model that can be used to study the statistical and thermodynamic properties of 

material (in our own work this usually takes the form of molecular dynamics 

calculations, but one could also anticipate the use of Monte Carlo methods). If one 

fits only to the lowest-energy geometries, it is likely that the resulting model will be 

less accurate for the calculation of items such as transition rates, etc. that involve 

non-equilibrium geometries. Our choice of geometries is designed to force the 

parameterization to address such materials. In fact, several of the geometries 

included in our fitting are not true local minima, having imaginary frequencies that 

lead to other geometries. I was motivated in this choice by the pioneering work of 

Raghavachari [20] on Hartree-Fock calculations for small Si clusters. For example, 

Raghavachari notes of one particular geometry of Si7 that: 

"Another structure that we have considered is the edge-capped 

octahedron (7d). Though it is not expected to be a particularly stable 

structure, it was considered mainly to estimate the energy required to 

move the capping atom in 7c from one face to another. 7d can be 

considered as a transition state for such a process." [20] [emphasis added] 

The details of the geometries 7c, 7d here are not particularly important, 

rather it is the concept that such geometries represent transition states that is 

relevant. 
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The ab-initio values for the clusters I calculated using the GAUSSIAN-98 

software package; all cluster calculations were performed using the MPWIPW91 

hybrid functional and the cc-pVTZ basis set. These ab-initio calculations alone 

represent some of the most intensive parts of my own research. Indeed, it is not 

uncommon to see entire journal articles devoted to the discussion of ab-initio 

calculations of small elemental clusters. Also, our choice of the all-electron 

MPWIPW91 level and the large cc-pVTZ basis set represent some of the most 

aggressive calculations feasible for small Si clusters; we are not aware of any 

published results for such clusters at this aggressive level. 

It is perhaps equally important what strategies were avoided in choosing the 

cluster fitting properties. One example is the technique of using one level of theory 

to obtain the ab-initio geometries, and a different (higher) level of theory to obtain 

the energies. This is an entirely reasonable approach for projects that involve 

ab-initio calculations only. However, we are concerned that, for empirical modeling, 

it is more important to perform all the calculations at the same level of theory. 

Although there do not appear to be any comparative studies on which of these 

technique leads to the best empirical model, it is well-known that different levels of 

theory can introduce systematic differences in their calculated values, i.e. differences 

such as an overall shifting of the energies in some direction. We do not feel that is 

productive to attempt to force an empirical model to reproduce the systematic 

differences between two different types of ab-initio calculations. 

A second example of a strategy that we deliberately avoid is fitting to forces. 

Even though such fitting would be expected to improve items such as transition 

states, we have become increasingly concerned about the effects of the small but 

nonzero differences between the calculated and reference values, which are always 

present in empirical modeling. For example, suppose that an ab-initio calculation 

has an equilibrium bond length of 2.20A, and some force calculated slightly away 

from equilibrium at 2.30A. However, suppose that our model (for a particular set of 
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parameters) has for the same cluster an equilibrium bond length of 2.25A. Just 

what bond length are we supposed to calculate the force at? There are at least 3 

reasonable options: we can use the "fixed" ab-initio value of 2.30A, the "shifted" 

value of 2.35A (i.e. 0.05A past equilibrium), or the "percentage" value of around 

2.352A (i.e. around 4.5% past equilibrium). The differences in the calculated forces 

resulting from such arbitrary choices can be surprisingly large. 

For the bulk properties we fit to both the energy curves of several crystalline 

phases as well as the band structure. The ab-initio calculations of bulk properties 

are not as problematic as those for clusters; for Si these reference values were taken 

from the older but well-established work of Cohen [19]. The results of for the band 

structure are shown in Figure 7. It is clear that the valence band is very well 

reproduced. The conduction band is seen to be more problematic, although this is 

also a known limitation of density functional theory, and of almost all existing 

empirical models. An overview of the reasons why ab-initio methods such as DFT 

are poor for the conduction band is given by Louie [31]. The problem is traced to 

the inability of the exchange-correlation energy to appropriately describe properties 

other than the ground state. 

In Figure 8 we show the results of our model for several crystalline phases of 

Si, together with a comparison of our model to several other similar models. If we 

first consider the results in Figure 8 for only our model, we can see that the 

excellent agreement with the density-functional calculations. Of particular interest 

is the accuracy of the bcc and fcc phases which, as discussed in Section F, are 

generally though to be difficult to fit due to the large coordination numbers. These 

observations suggest the validity of the environment-dependent effects in our model. 

Perhaps even more remarkable is the comparison to other tight-binding models 

shown in Figure 8. The first three models are not environment-dependent, and it is 

perhaps not surprising that our results are an improvement. However, the model of 

Wang and Ho features an environment-dependent repulsive energy (as discussed in 
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Figure 7. Results of our environment-dependent model for the band structure of 
(diamond) Si. The DFT values are taken from the work of Cohen in Ref. [19]. 
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Figure 8. Results of our environment-dependent model for the bulk energy curves of 
Si, compared to the results of other empirical models. The DFT values are taken from 
the work of Cohen in Ref. [19] "Menon" refers to the model of Ref. [15]. "Kaxiras" 
refers to the model of Ref. [27]. "Frauenheim" refers the model of Ref. [10]. "Wang" 
refers to the model of Ref. [7]. "NRL" refers to the model of Ref. [28]. 

Section B), and the model of NRL features environment-dependent effects in the 

Hamiltonian, but without a treatment of self-consistency. The improvement over 

these models further validates the environment-dependent effects in our model, and 

offers evidence of the importance of treating the full iterative self-consistency 

problem. 
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H Applications for Si 

In addition to developing an official set of parameters for Si, our research 

group has also applied this model to several interesting problems. My own part in 

the research group was more heavily oriented toward the development of the model. 

Most of this application work was done by a colleague, Dr. Ming Yu. As such this 

discussion will be brief, as it is intended here more to demonstrate the validity of my 

work on the model development of the model. One of the items that must be kept 

in mind is that no matter how carefully the least-squares fitting is done, a small 

residual does not necessarily indicate that model will be useful for applications. 

Conceptually, empirical modeling is a type of extmpolation, in that the parameters 

are adjusted by fitting them to the calculated properties of small systems, while the 

model is then used to study large systems. The "adjustment" of the parameters 

means that the fitting properties must be evaluated (very roughly) some 106 times, 

i.e. for 106 different sets of parameters. As such there is no way to put large systems 

in the fitting. One hopes that the extrapolation works, but in practice this must be 

tested, and it is these types of applications that validate the extrapolation. 

Our first such application concerns the structure of the Si7l cluster. While 

bulk Si prefers a tetrahedral arrangement of atoms, most of the atoms of the Si7l 

cluster are on the exterior, and the "reconstruction" of such exterior atoms leads to 

complicated structures of low symmetry. Charge redistribution is of critical 

importance in such reconstructions, and it is with such systems that one might 

expect poor results from a model that does not properly account for charge transfer. 

In Figure 9 we show the structure of the cluster along with its pair distribution 

function. The pair distribution function gives the probability of finding an atom at 

a given distance from another atom. The results are compared to a 

density-functional-theory calculation of the same structure. Our calculation 

correctly reproduces the first and second nearest-neighbor peaks, demonstrating the 

ability of our method to reproduce the correct structural information as density 
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functional theory. 

Our second and perhaps most important application is the reconstruction of 

the Si (001) surface. Starting with the ideal PI x 1 reconstruction, a molecular 

dynamics simulation was performed which resulted in the C4 x 2 reconstruction, 

which is the experimentally observed reconstruction. This is shown in Figure 10. 

Two items are of particular interest for our discussion. First, this result occurs when 

the full self-consistent treatment of charge transfer is turned on, but not when it is 

turned off When combined with our previous results, a pattern begins to emerge 

indicating that self-consistency is required in order to reproduce such results. 

Second, the combination of both speed and accuracy of our model allow it to break 

new ground in such calculations. Although the C4 x 2 reconstruction can be 

obtained both by first-principles and other semi-empirical calculations, to the best 

of our knowledge ours is the only application in which it has been obtained entirely 

from the ideal PI x 1 reconstruction. Apparently, first-principles calculations are 

too slow, and other semi-empirical calculations are not accurate enough to obtain 

this result. 
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CHAPTER VII 

CONCLUSION 

In addition to the parameterization of our model for Si, we have also 

parameterized and applied our model to other group IV materials, most notably to 

carbon. In Figures 11 through 15 we show, mostly for reference purposes, the 

semi-empirical parameters for C, Si, and Ge, along with the calculated cluster and 

bulk properties for carbon and germanium. The parameters shown in Figure 11 

follow the notation used in Ref. [30], which is slightly different from the notation 

used in out discussion; one should consult Ref. [30] if one is interested in using the 

parameters in Table 11. The same comments that apply to our results for Si also 

apply to these results for C and Ge. If there is an additional comment to be made 

about these results, it is that the chemistry of carbon is quite different from that of 

Si and Ge. So, while the success for Ge is perhaps less remarkable, the success for C 

further demonstrates the flexibility and transferability of our model. 

In contrast to Si and Ge, carbon exhibits sp, sp2, and Sp3 hybridizations. We 

have examined carbon clusters of various sizes, starting from various initial 

configurations, in order to examine the competition between these types of bonding, 

in determining the equilibrium structures of these molecules. In Figure 16 we show 

the "bucky-diamond" structure of C147 , which was obtained using our SCED-LCAO 

method. The interior of this structure has Sp3 bonding, while the exterior has Sp2 

bonding. This type of structure has been previously obtained by first-principles 

calculations [35], but has not been obtained by other tight-binding calculations. 

This example demonstrates that our methodology is capable of capturing various 

bonding characteristics exhibited by carbon. 
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Figure 1l. Values of the semi-empirical parameters for C, Si, and Ce. The notation 
follows that of Ref. [30], which is slightly different from the notation used elsewhere 
in this report. 

While we have also successfully obtained a parameterization for the 

heterogeneous system SiC, using an averaging technique as discussed previously, we 

have also encountered the limitations of the existing framework for heterogeneous 

systems consisting of elements from different groups, such as Li/Si. Therefore future 

research efforts are expected to focus on the radial function prototype, which is 

designed specifically to address systems consisting of several types of elements. In 

conclusion then, we have presented both a working model, and also a number of 

significant insights into the models themselves, for the simulation of large-scale 

systems using semi-empirical techniques. 
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Figure 12. Results of our environment-dependent model for small C clusters. The 
ab-initio values were calculated using as in Table l. 
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Figure 16. Equilibrium structure of the C147 "bucky-diamond" cluster, calculated 
using our semi-empirical model for carbon. 

116 



REFERENCES 

[1] J.e. Slater and G.F. Koster, Physical Review 94, 1498-1524, (1954). 

[2] S. Froyen and W.A. Harrison, Physical Review B 20, 2420-2422, (1979). See 

also W.A. Harrison, Electronic Structure and the Properties of Solids (New 

York, Dover, 1989). 

[3] (There are a relatively large number of papers from the late 1970s; they are 

referenced in this later article) D.J. Chadi, Physical Review B 29, 785-792, 

(1984) . 

[4] D.J. Chadi, Physical Review B 19, 2074-2082, (1979). 

[5] D. Tom~Lnek and M.A. Schulte, Physical Review Letters 56, 1055-1058, (1986). 

[6] P.B. Allen, J.Q. Broughton, and A.K McMahan, Physical Review B 34, 

859-862, (1986). 

[7] C.H. Xu, C.Z. Wang, and KM. Ho, Journal of Physics: Condensed Matter 4, 

6047-60E)4 (1992). 

[8] J.L. Mercer and M.Y. Chou, Physical Review B 47, 9366-9376, (1993). 

[9] D. Porezag, Th. Frauenheim, Th. Kohler, G. Seifert, and R. Kaschner, Physical 

Review B 51, 12947-12957, (1995). 

[10] Th. Frauenheim, F. Weich, Th. Kohler, S. Uhlmann, D. Porezag, and G. 

Seifert, Physical Review B 52, 11492-11502, (1995). 

[11] P.K Sitch, Th. Frauenheim, and R. Jones, Journal of Physics Condensed 

Matter 8, 6873-6888, (1996). 

117 



[12] S.J. Duclos, Y.K Vohra, and A.L. Ruoff, Physical Review B 41, 12021-12028, 

(1990). 

[13] A.B. Anderson, Journal of Chemical Physics 62, 1187-1188, (1975). 

[14] R Hoffmann, Journal of Chemical Physics 39, 1397-1412, (1963). 

[15] M. Menon and KR Subbaswamy, Physical Review B 55, 9231-9234, (1997). 

[16] W.M.C. Foulkes and R Haydock, Physical Review B 39, 12520-12536, (1989). 

[17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical 

Recipes in C (Cambridge, Cambridge University Press, 1992). 

[18] L.M. Canel, A.E. Carlsson, and P.A. Fedders, Physical Review B 48, 

10739-10750, (1993). 

[19] M.T. Yin and M.L. Cohen, Physical Review Letters 45, 1004-1007, (1980); 

M.T. Yin and M.L. Cohen, Physical Review B 26, 5668-5687, (1982). 

[20] K Raghavachari, Journal of Chemical Physics 84, 5672-5686, (1986); K. 

Raghavachari and J.S. Binkley, Journal of Chemical Physics 87, 2191-2197, 

(1987); K Raghavachari and GM. Rohlfing, Journal of Chemical Physics 89, 

2219-2234, (1988). 

[21] J. Cioslowski, Journal of the American Chemical Society 111, 8333-8336, 

(1989). 

[22] J.L. Mercer and M.Y. Chou, Physical Review B 49, 8506-8509, (1994). 

[23] L. Velazquez, C.N. Phillips, RA. Tapia, and Y. Zhang, Computational 

Optimization and Applications 20, 299-315, (2001). 

[24] A. Laio and M. Parrinello, Proceedings of the National Academy of Sciences 

(PNAS) 99, 12562-12566, (2002). 

118 



[25] J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained 

Optimization and Nonlinear Equations (Philadelphia, SIAM, 1996). 

[26] H.H. Rosenbrock, The Computer Journal 3, 175-184, (1960). 

[27] N. Bernstein and E. Kaxiras, Physical Review B 56, 10488-10496, (1997). 

[28] M.J. Mehl and D.A. Papaconstantopoulos, Physical Review B 54, 4519-4530, 

(1996) . 

[29] See for example F.J. Garda-Vidal, A. Martfn-Rodero, F. Flores, J. Ortega, and 

R. Perez:> Physical Review B 44, 11412-11431, (1991). 

[30] C. Leahy, M. Yu, C.S. Jayanthi, and S.Y. Wu, Physical Review B 74, 155408, 

1-13 (2006). 

[31] M.S. Hybertsen and S.G. Louie, Physical Review B 34, 5390-5413 (1986). See 

also J.P. Perdew and M. Levy, Physical Review Letters 51, 1884-1887 (1983); 

L.J. Sham and M. Schluter, Physical Review Letters 51, 1888-1891 (1983). 

[32] O.F. Sankey and D.J. Niklewski, Physical Review B 40, 3979, (1989); A.A. 

Demkov, J. Ortega, O.F. Sankey, and M.P. Grumbach, Physical Review B 52, 

1618, (1995). 

[33] C. Mailhiot and A. K McMahan, Physical Review B 44, 11578-11591 (1991). 

[34] M.T. Yin and M.L. Cohen, Physical Review B 29, 6996-6998 (1984). 

[35] J.Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, and L.J. Terminello, 

Physical Review Letters 90, 037401, 1-4 (2003). 

119 



NAME: 

ADDRESS:: 

EDUCATION: 

CURRICULUM VITAE 

Chris Leahy 

Department of Physics 

University of Louisville 

Louisville, KY 40292 

M.S. Physics 

University of Louisville 

1998 

120 


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	5-2007

	Self-consistent and environment-dependent Hamiltonian for quantum-mechanics materials simulations.
	Christopher R. Leahy 1972-
	Recommended Citation


	tmp.1423685735.pdf.8UlR9

