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ABSTRACT 

 
MATERIALS DESIGN AND BAND GAP ENGINEERING OF COMPLEX 
NANOSTRUCTURES USING A SEMI-EMPIRICAL APPROACH: LOW 

DIMENSIONAL BORON NANOSTRUCTURES, h-BN SHEET WITH GRAPHENE 
DOMAINS AND HOLEY GRAPHENE 

 
 

Cherno Baba Kah 
 
 

July 20, 2016 

This dissertation will explore the potential of a semi-empirical Hamiltonian, 

developed by the research group at the University of Louisville, in predicting the existence 

of new families of low-dimensional boron nanostructures based on icosahedral α-B12 

clusters, and in tuning the band gaps of h-BN sheets with graphene domains and holey 

graphene. This semi-empirical Hamiltonian models electron-electron and electron-ion 

interactions using environment-dependent (ED) functions, and ion-ion interactions via 

usual pairwise terms.  Additional features of our approach are that it uses a linear 

combination of atomic orbitals (LCAO) framework to describe the Hamiltonian and it 

calculates the charge distribution around a site self-consistently (SC). Throughout this 

dissertation, we will refer this semi-empirical Hamiltonian using the acronym SCED-

LCAO.  

Our first application on boron nanostructures using SCED-LCAO revealed that one 

and two-dimensional nanostructures (referred as α, δ4 and δ6 sheets) based on icosahedral 

α-B12 clusters were structurally stable. A relative stability with respect to δ6 was also 
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determined for the two-dimensional sheets with the strength of the stability in the order of 

𝛿4 < 𝛼 < 𝛿6. The infinite one-dimensional chain (which is the least stable among the low 

dimensional Boron structures predicted) as well as δ4 and δ6 sheets are found to have 

semiconducting properties while α sheet has metallic properties.  

With recent reports on the synthesis of an ultra-thin layer of α-tetragonal B50 

structure, we delved into a second project that focused on investigating the structural 

stabilities and properties of a single layer of α-tetragonal B50. We found that, the α-

tetragonal B50 does not keep its two-dimensional nature but prefers to exhibit symmetry 

breaking.  Our prediction is inconsistent with experimental observations but this may be 

due to experiments discerning double or multi-layer structures of α-tetragonal B50.  We 

note that the stability of multi-layer α-tetragonal B50 structure requires further 

investigation. 

A third application studied includes the band gap engineering on h-BN sheet by 

creating in it graphene domains of different shapes (triangular, circular, hexagonal and 

rectangular) and sizes with the aim of reducing the energy gap of pristine h-BN.  For this 

project, the parametrization of the SCED-LCAO Hamiltonian corresponding to the 

nitrogen element was developed as a first step towards the investigation of pristine h-BN 

sheets and h-BN sheets embedded with graphene domains. The results of our study of         

h-BN sheets embedded with graphene domains reveal that the density of states are 

dependent on the shapes and sizes of the graphene domains and that hexagonal and circular 

graphene domains are good candidates for engineering the gap of a pristine h-BN sheet.  

A fourth application of SCED-LCAO method focused on a study of the band gap 

of holey graphene sheets, i.e., graphene sheets carved with different types of geometrical 
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holes.  We found holey triangular graphene sheets to have the smallest possible energy gap 

with its biggest size being the most stable and having 0.11 𝑒𝑉 for gap. Holey circular 

graphene sheet has also a stable structure with a possible gap of 0.35 𝑒𝑉 while the most 

stable structure among the holey rectangular sheets was found to have a gap of 0.4 𝑒𝑉. 

Computational studies undertaken in this dissertation demonstrate that the SCED-

LCAO method is a powerful technique for designing materials with desired properties, 

which can guide the experimentalists to synthesize novel complex materials.  The novel 

structures and properties predicted in this work for boron icosahedra chains and sheets, 

holey graphene sheets and h-BN with graphene domains await experimental confirmation.
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CHAPTER I 
INTRODUCTION 

 

This dissertation will focus mainly on structural and electronic properties of low-

dimensional materials, mostly, one- and two-dimensional materials.  The electronic and 

transport properties often undergo drastic changes, and new phenomena emerge, when the 

system is reduced in size (from 3D to 2D, 1D, or 0D).  This is because quantum 

confinement of electrons occurs in one or two dimensions. These reduced-dimensional 

systems and nanostructures manifest interesting physical properties and phenomena, which 

are beginning to spur interesting nanoscale device applications.   

There has been tremendous progress in synthesizing low-dimensional materials. 

Atomically thin quasi-2D materials have been created by mechanical exfoliation or other 

techniques such as molecular beam epitaxy, chemical vapor deposition (CVD), etc.  

Examples of 2D or quasi-2D materials that have already been synthesized include 

graphene, few-layer crystals of hexagonal BN, transition metal dichalcogenides, 

phosphorene, etc.  Unlike graphene, these 2D materials can be semiconductors or good 

metals.  

Computational studies have kept pace with these developments, providing valuable 

physical insights at the microscopic level. Often, computational studies have also paved 

the way to experimental discoveries.  In order for computational studies to be predictive, it 

is important to describe interactions present in the system accurately. The structure and 
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properties of condensed matter systems are usually dictated by the outer valence electrons 

of its constituent atoms. The mutual interactions of these electrons and their interactions 

with the ions determine the electronic structure of the system, which in turn determines 

many of the properties of the material. Understanding material properties from first 

principles involves solving an interacting quantum many-body Hamiltonian. The exact 

solutions to the quantum many-body Hamiltonian are impracticable. A particular 

formalism, called Density Functional Theory (DFT) [1], for solving this many-electron 

problem in an ab-initio fashion has become a method of choice for determining the 

electronic ground state of the system. This formalism transforms the many-electron 

problem to one of a self-consistent field one-particle problem for ground-state properties.  

While DFT methods is reliable for predicting ground state structures of systems, one 

limitation of this method is that it is computationally expensive to deal with nanoscale 

systems containing thousands of atoms.  Therefore, semi-empirical methods that mimic 

DFT based methods have become the method of choice for studying large-sized 

nanostructures, containing thousands of atoms, and low-dimensional systems with reduced 

symmetries.  

There are several flavors of semi-empirical methods that are loosely referred as 

“tight-binding” methods. One common feature of all tight-binding methods is that they use 

atomic-like states or linear combination of atomic orbitals as the framework to describe the 

interaction Hamiltonian with the matrix elements of this interaction Hamiltonian 

parameterized (hence the name “semi-empirical”). Additionally, a tight-binding method 

can use an orthogonal or a non-orthogonal basis set to describe its Hamiltonian.  Within 

the non-orthogonal tight-binding schemes, some methods will have the overlap functions 
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calculated in a given basis set (“Gaussian”, “fire-ball”, etc.) or modeled via cleverly chosen 

functions. 

The particular flavor of the tight-binding or semi-empirical approach used in this 

dissertation is called as the Self-Consistent Environment-Dependent LCAO (linear 

combination of atomic orbitals) [2-4].  The details of this formalism will be developed in 

full glory in chapter 2 of this dissertation. 

Recent advances in nanoscale characterization and device fabrications, in 

particular, the groundbreaking experiments regarding the two-dimensional material 

graphene [5], have opened up new opportunities for 2D materials in nanoelectronics and 

optoelectronics. 2D atomic layered materials, which possess a high degree of anisotropy 

with nanoscale thickness (e.g., one or a few atomic layers) and infinite length in other 

dimensions, hold enormous promise as a novel class of ultrathin 2D materials with various 

unique properties, and hence exhibit great potential as lithographic nanoelectronics devices 

and conversion systems that are substantially different from their respective 3D bulk forms. 

The most widely studied atomic layered 2D nanomaterial is graphene, a single layer of 

carbon atoms only one atom thick and packed in a hexagonal lattice. Graphene exhibits 

exceptional strength and possesses extraordinary electronic properties. Its electronic, 

thermal, and mechanical properties make it attractive for a variety of potential applications. 

However, graphene lacks a band gap that is essential for many electronic applications. 

Thus, researchers have been struggling to build electronic circuits beyond graphene. In the 

process of searching 2D nanostructures beyond the graphene, interesting questions have 

been raised as to whether other pure 2D materials with band gaps exist or the combination 

of the graphene with other 2D materials can open up the band gap of graphene and whether 
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its band gap can be tuned further?  Encouraged by such exciting challenges, my research 

efforts for the doctoral dissertation focused on the following projects: (i) predicting novel 

forms of 2D Boron nanostructures, (ii) assessing whether the band gap of h-BN sheet, 

which is a wide-band gap semiconductor with 5 eV gap, can be tuned by inserting graphene 

domains, and, finally, whether band gap in graphene sheet can be opened up through 

functionalization or considering holey graphene sheets.   

The reason why we are interested in searching new boron 2D materials is because 

of the different polymorphic structures exhibited by bulk boron that contain 12-atom cage 

structures arranged in the form of an icosahedron in its building block. Boron, being an 

electron deficient element, it forms both localized two-center-two-electron bonds (2c-2e) 

and three-center-two-electron bonds (3c-3e) that result in both planar and quasi-planar 

atomic clusters.  While there have been several theoretical studies on 2D boron sheets 

containing elemental boron, in this work, we will be investigating 2D boron sheets that 

contain icosahedral B12 clusters as their building unit.  

Previous studies of two-dimensional monolayer structures of boron have predicted 

a variety of structures (α’, β1, β2, β3, δ5, δ6). The α’ structure in ref. [6] was found to have 

the highest cohesive energy compared to other boron sheets and it possesses 

semiconducting properties but it is structurally slightly buckled. It was obtained from 

further relaxation of another α structure in ref. [7] with high cohesive energy (i.e., an 

unstable structure with negative phonon frequencies). Another predicted monolayer of 

boron structure is β1 with the second highest cohesive energy and flat structure; this 

structure was found to have metallic properties. In the work cited in ref. [6] other 

monolayer sheets of boron were predicted such as β2 and β3 which were buckled with 
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metallic properties, δ6 which is a stable buckled triangular sheet and δ5 with the highest 

cohesive energy among δ sheets and is planar. These theoretically predicted Boron 2D 

monolayer structures, however, have not been synthesized successfully so far, mostly due 

to complicated chemical bonding nature when the boron atoms aggregate to form infinite 

2D and 3D structures.  

In our proposed project, we considered alternative strategies in searching the new 

Boron 2D materials. We are looking for the existence of other types of low dimensional 

structures based on the icosahedral B12 cluster using the robust parameters obtained for the 

Boron SCED-LCAO Hamiltonian [4]. Our motivation is based on the fact that the Boron 

crystalline structures are the most stable structures among boron allotropes and the 

icosahedral B12 cluster is the building block of the crystalline structures [8]. For instance, 

a linear or planar directional cut of the α-Boron structure will result in a one-dimensional 

or two-dimensional structure based on the icosahedral B12. Three different two-

dimensional icosahedral α-B12 based structures, referred as α, δ4 and δ6, were found to be 

structurally stable with δ4 and δ6 to be semiconductors and α to be metallic. To validate our 

results for both infinite and two-dimensional α-B12 sheet, first-principles DFT with (Vienna 

Ab-initio Simulation Package – VASP) [9] package is used.  

An ultrathin single-crystalline Boron nanostructure has recently been successfully 

synthesized [10]. High-resolution TEM and the selected-area electron diffraction pattern 

have demonstrated that the single-crystalline structure is like a few layered tetragonal α-

B50 film. Motivated by this new discovery, we investigated the existence and the stability 

of a single-layered tetragonal α-B50. The semi-empirical SCED-LCAO method and the 

DFT method with two different pseudopotentials (e.g., ultra-soft and PAW) were used. It 



6 
 

was observed that irrespective of the method and size of the supercell used, the single 

layered tetragonal α-B50 sheet has a symmetry breaking due to distortion of some of the 

icosahedral B12 and is slightly a buckled sheet. By examining the bulk structure of 

tetragonal α-B50, we understood that due to the presence of a single Boron atom with 

dangling bonds on the surface, the possible stability of the structure might indeed be 

questioned. We propose that two or multi-layers of α-tetragonal B50 will be more stable, 

but that requires further investigation and a preliminary result will be reported in this 

dissertation. 

The reason why we are interested in engineering the band gap by inserting graphene 

domain in the h-BN sheet is because h-BN and graphene are known to have similar 

structural properties, but quite different electronic properties. The h-BN sheet has a wide 

band gap of about 5 𝑒𝑉 while, graphene is a gapless material. The combination of the two 

types of structures is expected to give rise to new types of hybridization and also 

complementary electronic properties. Recent experimental results showed that synthesized 

2D hybrid structures of boron nitride and graphene domains reveal the optical gap 

narrowed to ~1.62 eV, as the carbon content in the hybrid BNC sheet increased to an atomic 

percent of 65% [11]. This experiment demonstrates that by controlling the domain size of 

graphene domains, one can tune the energy gap in a hybrid BNC sheet composed of BN 

and graphene domains. Motivated by these experimental observations, I systematically 

study the band gap narrowing by embedding the graphene domains in the h-BN sheet with 

different shapes and sizes. The nitrogen parameters developed for SCED-LCAO 

Hamiltonian were used for the band gap engineering of h-BN sheet with the graphene 

domains. Different studies have also been carried out on how to open the gap of a graphene 
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sheet. Part of such studies are done on porous graphene materials such as graphene 

nanomesh [12, 13] which can be used in supercapacitors, crumpled graphene [14] which 

can be used in the diffusion or transport of electrons during a rapid charge or discharge 

process, and the graphene foam [14] which can be used for energy storage as in batteries. 

Motivated by these results, I have systematically investigated how to open the gap in 

graphene by creating holes of triangular, circular and rectangular shapes with different 

sizes on a graphene sheet, and the effect of these hole structures on the band gap of 

graphene. 

 The organization of this dissertation is as follows. Chapter II will provide a detailed 

account of the formalism behind our semi-empirical approach and the functional forms of 

various interaction terms present in our self-consistent and environment-dependent LCAO 

Hamiltonian.  We will also discuss in detail how to obtain optimized parameters of the 

SCED-LCAO Hamiltonian for several group III and IV elements of the periodic table. 

Chapter 3 will discuss the application of SCED-LCAO to boron based system. In this 

chapter, we will use SCED-LCAO to predict the existence of low dimensional boron 

nanostructures with icosahedral B12 cluster as building units.  Our results will be validated 

using a DFT package (VASP). Chapter IV describes the parameterized SCED-LCAO 

Hamiltonian for nitrogen using different strategies. The first strategy involves determining 

optimized parameters of the SCED-LCAO Hamiltonian for nitrogen using a database 

containing BnNm and CnNm clusters, while the second strategy uses a database containing 

GanNm clusters.  A third strategy contained an expanded database containing all three sets 

of clusters, namely, BnNm, CnNm and GanNm. Three different sets of parameters were 

obtained for the SCED-LCAO Hamiltonian corresponding to nitrogen.  The robustness of 
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these parameterized SCED-LCAO Hamiltonian containing nitrogen elements was tested 

by performing computational studies of h-BN sheet, w-BN bulk and w-GaN bulk. In 

chapter V, we study the band gap engineering of functionalized h-BN sheets with carbon 

domains and graphene sheets carved with holes of different shapes and sizes (“holey 

graphene”).  In the concluding chapter, we highlight the major results obtained in this work 

and offer suggestions for future work.  
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CHAPTER II 

METHODOLOGY 

 

2.1 Quantum Mechanics based simulations. 

In the field of material sciences, computational based methods have been used 

extensively for the study and understanding of the structures as well as electronic properties 

of different materials. Based on the sizes or expensiveness in terms of time and memory, 

different methods of quantum mechanics based simulations have been developed mainly 

including the first principles which is either wavefunction based ab-initio methods (mostly 

used in quantum chemistry) or the charge density based density functional theory (DFT) 

methods (used in both quantum chemistry and condensed matter physics) [3] and semi-

empirical simulations methods either orthogonal or non-orthogonal tight binding. The first 

principles based molecular dynamics simulation methods have the particularity of been 

accurate or reliable but can handle a limited size of structures, between tens of atoms in ab-

initio based methods and not more than hundreds of atoms in a given system when using 

DFT based methods. The simulation time in first-principles methods is usually in the order 

of a few picoseconds (ps). The first-principles methods also have rather good predictive 

power that is they have the ability of determining structural and electronic properties of 

unknown materials and they can also reproduce results from other methods of calculations 

or properties of materials already synthesized. Disadvantages or limitations of first-

principles methods are, they are slow even though accurate, the methods require very large 
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computational time and memory and more importantly these methods cannot be used for 

very large systems like complex chemical reactions, biological systems and nanostructures 

with low or no symmetry [2]. 

In contrast to the first-principles simulations based methods, the semi-empirical 

simulations methods have the capacity of handling large or very big sizes of materials, in 

the order of tens of thousands of atoms with a simulation time of a few nanoseconds (ns) 

but they are not easily transferable. Namely, the conditions or parameters sets for a given 

system can only be used for that specific system, and if a new material is to be considered, 

one will have to create new sets of conditions or parameters. Thus, such semi-empirical 

methods have limited predictive power. Disadvantages of such semi-empirical methods or 

traditional non-orthogonal tight binding methods are due to that (1) only two-center 

interactions were included within the calculations for a given system, and (2) the charge 

redistribution within the systems under considerations is also calculated using such semi-

empirical methods without self-consistency consideration. 

 

2.2 Why SCED-LCAO? 

As stated in section 2.1, the traditional non-orthogonal tight binding (TB) methods 

have limited transferability due to the fact that only two-center interactions are included in 

their calculations and also the charge redistributions is not done using self-consistency [2]. 

A number of solutions have been proposed to improve the transferability and at the same 

time include self-consistency and or environment-dependency [2]. In some of these newly 

developed methods, such as in a self-consistent charge density-functional based tight-

binding method (DFTB) developed by Frauenheim T, et al. [15] for predictive materials 
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simulations in physics, chemistry and biology, the charge redistribution is calculated using 

self-consistency through an eigenvalue equation with a Hamiltonian having a two-center 

interaction term. But in this method, the environment dependency which is necessary in 

having a transferable Hamiltonian is only considered if the systems have charge 

fluctuations. But if no charge fluctuation is involved, the environment dependency term 

disappears making it not totally transferable. Hence the Condensed Matter Theory (CMT) 

group of the University of Louisville thought it necessary to develop a semi-empirical 

method that would be accurate, fast, reliable, robust, and transferable and also has a 

predictive power and can handle large systems of atoms. The Self-Consistent and 

Environment-Dependent Hamiltonian within the framework of the Linear Combination of 

Atomic Orbitals or SCED-LCAO Hamiltonian was therefore proposed [2-4]. The 

particularity of this method is that the charge redistribution is calculated using self-

consistency and also not only two-center interactions are considered within its 

Environment-Dependent term but multi-center interactions as in electron-electron, 

electron-ion and ion-ion interactions are also considered. The electrons screening effects 

are therefore considered during simulations. A thorough optimization and robust testing of 

parameters for SCED-LCAO Hamiltonian ensures its transferability. SCED-LCAO 

Hamiltonian is expected to not only solve the issues or shortcomings of traditional non-

orthogonal tight binding methods by calculating charge redistribution through self-

consistency and at the same time take care of environment dependency but it is also 

expected to overcome limitations in terms of size and time mentioned in first-principle 

methods [3]. 
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 2.3 Detailed discussion about SCED-LCAO. 

By definition, we know that the many-body Hamiltonian is given as: 

𝐻 =  − ∑
ℏ2

2𝑚
 𝑙 ∇𝑙

2 −  ∑
ℏ2

2𝑀𝑖
∇𝑖

2
𝑖 +  ∑ 𝑣(𝑟𝑙 − 𝑅⃗⃗𝑖)𝑙,𝑖 + ∑

𝑒2

4𝜋𝜖0𝑟𝑙𝑙′
𝑙,𝑙′ +  ∑

𝑍𝑖𝑍𝑗𝑒2

4𝜋𝜖0𝑅𝑖𝑗
𝑖,𝑗                (1) 

where 𝑙𝑙′ = 𝑟𝑙 − 𝑟𝑙′; 𝑅⃗⃗𝑖𝑗 = 𝑅⃗⃗𝑖 − 𝑅⃗⃗𝑗; 𝑣(𝑟𝑙 − 𝑅⃗⃗𝑖) is the potential between an electron at site 

𝑟𝑙 and an ion at site 𝑅⃗⃗𝑖 and 𝑍𝑖 is the number of valence electrons associated with the ion at 

site 𝑅⃗⃗𝑖. The solutions for this many-body Hamiltonian are rather impracticable hence the 

need was felt to simplify the expression of the Hamiltonian to a single self-consistent one 

electron problem for the ground state properties. 

                                            𝐻 = − ℏ2

2𝑚
∇2 +  𝑉𝑒𝑓𝑓                                  (2) 

where 𝑉𝑒𝑓𝑓 is defined as the effective potential and, in the first-principles methods of 

simulations the effective potential is express within the Kohn-Sham [1] approximation as:  

                      𝑉𝑒𝑓𝑓
𝐾𝑆 = 𝑉(𝑟) +  𝑒2  ∫

𝑛(𝑟′)

|𝑟− 𝑟′|
𝑑𝑟 +  

𝛿

𝛿𝑛(𝑟)
𝐸𝑋𝐶[𝑛(𝑟)]                                  (3) 

with the exchange correlation energy 𝐸𝑋𝐶 being a functional of the charge density 𝑛(𝑟). 

In the semi-empirical methods of quantum mechanics based simulations however, the 

effective potential is expressed in terms of defined parameters. All these methods of 

calculations use atomic-like states or the linear combinations of atomic orbitals (equation 

4) as a framework to describe the interaction of the Hamiltonian with the matrix elements. 

                                        |𝜓𝜆(𝑟)⟩ =  ∑ ∑ 𝐶𝑖𝛼𝛼 |𝜑𝛼(𝑟 −  𝑅⃗⃗𝑖)⟩𝑖                                    (4) 

The general eigenvalue problem intended to be solved is:   

                                              𝐻̂|𝜓𝜆(𝑟)⟩ =  𝜖𝜆|𝜓𝜆(𝑟)⟩                                            (5.1) 

                                ⟨𝜑𝑖𝛼|𝐻̂|𝜑𝑗𝛽⟩𝐶𝑖𝛼
𝜆 =  𝜖𝜆𝐶𝑖𝛼

𝜆 ⟨𝜑𝑖𝛼|𝜑𝑗𝛽⟩                                          (5.2) 
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or 

                                             ⟨𝜑𝑖𝛼|𝐻̂|𝜑𝑗𝛽⟩𝐶𝑖𝛼
𝜆 =  𝜖𝜆𝐶𝑖𝛼

𝜆 𝑆𝑖𝛼,𝑗𝛽                                         (5.3) 

In the new generation of SCED-LCAO [4] the Hamiltonian is defined in terms of 

parametrized matrix elements with its diagonal and off diagonal elements being 

respectively: 

   𝐻̂𝑖𝛼,𝑖𝛼 =  𝜀𝑖𝛼 + ∑ 𝑊𝑖𝛼(𝑅𝑖𝑘)𝑘≠𝑖 + (𝑁𝑖 − 𝑍𝑖)𝑈𝑖 +  ∑ {𝑁𝑘𝑉𝑁(𝑅𝑖𝑘) −  𝑍𝑘𝑉𝑧(𝑅𝑖𝑘)}𝑘≠𝑖     (6.1) 

 
𝐻̂𝑖𝛼,𝑗𝛽 =  

1

2
[𝜀𝑖𝛼

′ +  𝜀𝑗𝛽
′ ]𝐾(𝑅𝑖𝑗)𝑆𝑖𝛼,𝑗𝛽(𝑅𝑖𝑗) + 

1

2
[∑ 𝑊𝑖𝛼(𝑅𝑖𝑘)𝑘≠𝑖 +

 ∑ 𝑊𝑗𝛽(𝑅𝑗𝑘)𝑘≠𝑗 ]𝐾(𝑅𝑖𝑗)𝑆𝑖𝛼,𝑗𝛽(𝑅𝑖𝑗) +  
1

2
[(𝑁𝑖 − 𝑍𝑖)𝑈𝑖 +  (𝑁𝑗 − 𝑍𝑗)𝑈𝑗]𝑆𝑖𝛼,𝑗𝛽(𝑅𝑖𝑗) +

 
1

2
[∑ {𝑁𝑘𝑉𝑁(𝑅𝑖𝑘) −  𝑍𝑘𝑉𝑧(𝑅𝑖𝑘)}𝑘≠𝑖 +  ∑ {𝑁𝑘𝑉𝑁(𝑅𝑗𝑘) −  𝑍𝑘𝑉𝑧(𝑅𝑗𝑘)}𝑘≠𝑗 ]𝑆𝑖𝛼,𝑗𝛽(𝑅𝑖𝑗)     (6.2) 

 
The Hückel energies terms 𝜀𝑖𝛼

′  and 𝜀𝑗𝛽
′  in equation 6.2 are adjustable parameters. The first 

term (in between square brackets) in the expression of the off-diagonal matrix elements of 

the Hamiltonian (equation 6.2) includes the two-center interaction term followed by the 

expression with the 𝑊 term that takes into account the possible occupation of the excited 

local orbitals in an atomic aggregation and therefore, the effects of interactions with 

neighboring atoms. The on-site electron-electron interactions both in equation 6.1 (third 

term) and equation 6.2 (third term in between square brackets) provide the framework for 

the charge redistribution calculation and the fourth terms for both equations 6.1 and 6.2 

take care of the environment dependence and multicenter interactions also called the 

environment dependent term defined by the different potential functions VN and VZ.  

As already mentioned, the particularity of the SCED-LCAO is its ability to 

calculate the charge redistribution through self-consistency. The self-consistency is 
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determined through the eigenvalue problem stated in equation 5.2. Following the 

construction of the SCED-LCAO Hamiltonian with the different parameters, the general 

eigenvalue problem will be solved for this Hamiltonian as in equation 7. 

              ⟨𝜑𝑖𝛼|𝐻̂|𝜑𝑗𝛽⟩ =  𝐻𝑖𝛼,𝑗𝛽
𝑆𝐶𝐸𝐷−𝐿𝐶𝐴𝑂(𝑁𝑖, 𝑁𝑗 , {𝑉𝑘𝑖

𝑁}, {𝑉𝑘𝑗
𝑁 }, {𝑉𝑘𝑖

𝑧 }, {𝑉𝑘𝑗
𝑧 })                          (7) 

The charge projected on each site will be obtained from the solution of the 

eigenvalue problem (Eq. (8)) and will be inserted back in the eigenvalue equation via Eq. 

(7). 

𝑁𝑖 =  ∑ ∑ ∑ 𝐶𝑖𝛼
𝜆 𝐶𝑗𝛽

𝜆
𝑗𝛽 𝑛𝜆𝑆𝑖𝛼,𝑗𝛽𝛼

𝑜𝑐𝑐
𝜆                                                 (8) 

The cycle repeated until the self-consistency is reached between the input and 

output charges. In summary the self-consistency calculation can be described by:  

 
Figure 1. Schematic description of the Self-Consistency calculations in SCED-LCAO 

 

The SCED-LCAO Hamiltonian is a parametrized function with 6 different 

parametric functions. The first is a scaling function which gives a reliable description of 

the two-center interaction term’s dependence to the separation 𝑅𝑖𝑗 [4]. 

                                          𝐾(𝑅𝑖𝑗) =  𝐾𝑖𝑗
0 𝑒𝛼𝑖𝑗,𝑘𝑅𝑖𝑗                                                             (9) 
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The 𝑊 term is used as an additional term on minimal basis sets when an aggregate of 

atoms exists and it tends to zero as the separation approaches infinity.  

                                       𝑊𝑖𝛼(𝑅𝑖𝑗) =  𝑊𝑖𝛼
0 𝑒−𝛼𝑖𝛼,𝑤𝑅𝑖𝑗                                                (10) 

The third parametric function used in the SCED-LCAO Hamiltonian is the overlap matrix 

element  

                                 𝑆𝑖𝑗,𝜏(𝑅𝑖𝑗) =  (𝐴𝑖𝑗,𝜏 +  𝐵𝑖𝑗,𝜏𝑅𝑖𝑗)
1+ 𝑒

−𝛼𝑖𝛼,𝜏𝑑𝑖𝑗,𝜏

1+ 𝑒
−𝛼𝑖𝛼,𝜏(𝑑𝑖𝑗,𝜏−𝑅𝑖𝑗)

                                   (11) 

where the term 𝜏 in equation 11 indicating the different overlapping orbitals 

𝑠𝑠𝜎, 𝑠𝑝𝜎, 𝑝𝑝𝜎 𝑎𝑛𝑑 𝑝𝑝𝜋. 

For a heterogeneous system, the different parameters for different species are 

obtained from the corresponding fitting parameters associated with the atom at a site 𝑖 and 

those associated with another atom at another site 𝑗. The parameters used for a 

heterogeneous system are then: 

                                                         𝛼𝑖𝑗,𝐾 =  𝛿𝑖𝑗𝛼𝑖,𝐾 +  (1 − 𝛿𝑖𝑗)𝛼𝑗,𝐾                                         (12) 

𝐴𝑖𝑗,𝜏 =  
𝛿𝑖𝑗|𝜀𝑖,𝜇|𝐴𝑖,𝜏+ (1− 𝛿𝑖𝑗)|𝜀𝑗,𝜈|𝐴𝑗,𝜏

𝛿𝑖𝑗|𝜀𝑖,𝜇|+ (1− 𝛿𝑖𝑗)|𝜀𝑗,𝜈|
 ;   𝛼𝑖𝑗,𝜏 =  

𝛿𝑖𝑗|𝜀𝑖,𝜇|𝛼𝑖,𝜏+ (1− 𝛿𝑖𝑗)|𝜀𝑗,𝜈|𝛼𝑗,𝜏

𝛿𝑖𝑗|𝜀𝑖,𝜇|+ (1− 𝛿𝑖𝑗)|𝜀𝑗,𝜈|
  

𝐵𝑖𝑗,𝜏 =  
𝛿𝑖𝑗|𝜀𝑖,𝜇|𝐵𝑖,𝜏+ (1− 𝛿𝑖𝑗)|𝜀𝑗,𝜈|𝐵𝑗,𝜏

𝛿𝑖𝑗|𝜀𝑖,𝜇|+ (1− 𝛿𝑖𝑗)|𝜀𝑗,𝜈|
  ;  𝑑𝑖𝑗,𝜏 =  

𝛿𝑖𝑗|𝜀𝑖,𝜇|𝑑𝑖,𝜏+ (1− 𝛿𝑖𝑗)|𝜀𝑗,𝜈|𝑑𝑗,𝜏

𝛿𝑖𝑗|𝜀𝑖,𝜇|+ (1− 𝛿𝑖𝑗)|𝜀𝑗,𝜈|
         

where for 𝜏 = 𝑠𝑠𝜎 𝜀𝑖,𝜇 =  𝜀𝑖,𝑠 and  𝜀𝑗,𝜈 =  𝜀𝑗,𝑠             

for  𝜏 = 𝑠𝑝𝜎; 𝜀𝑖,𝜇 =  𝜀𝑖,𝑠 and 𝜀𝑗,𝜈 =  𝜀𝑗,𝑝         

for  𝜏 = 𝑝𝑠𝜎; 𝜀𝑖,𝜇 =  𝜀𝑖,𝑝 and 𝜀𝑗,𝜈 =  𝜀𝑗,𝑠                                                                   

for  𝜏 = 𝑝𝑝𝜎; 𝜀𝑖,𝜇 =  𝜀𝑖,𝑝 and 𝜀𝑗,𝜈 =  𝜀𝑗,𝑝 

and for  𝜏 = 𝑝𝑝𝜋; 𝜀𝑖,𝜇 =  𝜀𝑖,𝑝 and 𝜀𝑗,𝜈 =  𝜀𝑗,𝑝 

(13) 
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The term 𝛿𝑖𝑗 represents a parameter that allows a weighted average of the 

parameters characterizing the overlap matrix elements in a heterogeneous environment 

with one type of atom located at site 𝑖 and another type located at site 𝑗. It accounts for the 

chemical potential differences between two different atomic species [2] and has values in 

the range 0 < 𝛿𝑖𝑗 < 1. 𝛿𝑖𝑗 =
1

2
 when the two sites 𝑖 and 𝑗 are occupied by the same type of 

atom. 

The fourth, fifth and sixth parametric functions defined in the SCED-LCAO 

Hamiltonian are the potential function describing the electron-electron interaction 𝑉𝑁, the 

potential function describing the electron-ion interaction 𝑉𝑍 and the short range function 

∆𝑉𝑁. The two terms 𝑉𝑁 and 𝑉𝑍 represent the weighted averages over the corresponding 

terms for elemental systems that occupy sites 𝑖 and 𝑗 respectively and their respective 

expressions are: 

𝑉𝑁(𝑅𝑖𝑗) =  𝛿𝑖𝑗𝑉𝑖,𝑁(𝑅𝑖𝑗) +  (1 −  𝛿𝑖𝑗)𝑉𝑗,𝑁(𝑅𝑖𝑗) 

𝑉𝑍(𝑅𝑖𝑗) =  𝛿𝑖𝑗𝑉𝑖,𝑍(𝑅𝑖𝑗) +  (1 −  𝛿𝑖𝑗)𝑉𝑗,𝑍(𝑅𝑖𝑗) 

where:  

                       𝑉𝑖,𝑁(𝑅𝑖𝑗) =  𝑉𝑖,𝑍(𝑅𝑖𝑗) +  Δ𝑉𝑖,𝑁(𝑅𝑖𝑗)   

                           𝑉𝑖,𝑍(𝑅𝑖𝑗) =  
𝐸0

𝑅𝑖𝑗
[1 −  (1 +  𝐵𝑖,𝑍𝑅𝑖𝑗)𝑒−𝛼𝑖,𝑍𝑅𝑖𝑗]                                      (15) 

                           Δ𝑉𝑖,𝑁(𝑅𝑖𝑗) =  (𝐴𝑖,𝑁 + 𝐵𝑖,𝑁𝑅𝑖𝑗)
1+ 𝑒

−𝛼𝑖,𝑁𝑑𝑖,𝑁

1+ 𝑒
−𝛼𝑖,𝑁(𝑑𝑖,𝑁−𝑅𝑖𝑗) 

and  

                       𝑉𝑗,𝑁(𝑅𝑖𝑗) =  𝑉𝑗,𝑍(𝑅𝑖𝑗) +  Δ𝑉𝑗,𝑁(𝑅𝑖𝑗)    

(14) 
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                           𝑉𝑗,𝑍(𝑅𝑖𝑗) =  
𝐸0

𝑅𝑖𝑗
[1 −  (1 +  𝐵𝑗,𝑍𝑅𝑖𝑗)𝑒−𝛼𝑗,𝑍𝑅𝑖𝑗]                                      (16) 

                           Δ𝑉𝑗,𝑁(𝑅𝑖𝑗) =  (𝐴𝑗,𝑁 +  𝐵𝑗,𝑁𝑅𝑖𝑗)
1+ 𝑒

−𝛼𝑗,𝑁𝑑𝑗,𝑁

1+ 𝑒
−𝛼𝑗,𝑁(𝑑𝑗,𝑁−𝑅𝑖𝑗) 

 

With the corresponding parameters being 

𝐴𝑖,𝑁; 𝐵𝑖,𝑁; 𝐵𝑖,𝑍; 𝑑𝑖,𝑁 and 𝛼𝑖,𝑍 where 𝛼𝑖,𝑍 =  
𝑈𝑖− 𝐴𝑖,𝑁

𝐸0
−  𝐵𝑖,𝑍                                         (16.1) 

𝐴𝑗,𝑁; 𝐵𝑗,𝑁; 𝐵𝑗,𝑍; 𝑑𝑗,𝑁 and 𝛼𝑗,𝑍 where 𝛼𝑗,𝑍 =  
𝑈𝑗− 𝐴𝑗,𝑁

𝐸0
−  𝐵𝑗,𝑍                                         (16.2) 

with 𝐸0 =  
𝑒2

4𝜋𝜀0
 being the ground state energy. 

The total energy of an atom of the system at a given site is: 

𝐸𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑛𝜆𝜀𝜆
𝑜𝑐𝑐
𝜆 +  

1

2
∑ (𝑍𝑖

2 −  𝑁𝑖
2)𝑈𝑖𝑖 −  

1

2
∑ ∑ 𝑁𝑖𝑗≠𝑖 𝑁𝑗𝑉𝑁(𝑅𝑖𝑗)𝑖 +

1

2
∑ ∑ 𝑍𝑖𝑗≠𝑖 𝑍𝑗

𝐸0

𝑅𝑖𝑗
𝑖                                                                                                   (17)                                                                                                                                                                                                            

and the 𝑙𝑡ℎ component (where 𝑙 = 𝑥, 𝑦 or 𝑧) of the force acting on the atom at a given 

site 𝑘 is:  

𝐹𝑘
𝑙 =  − ∑ ∑ ∑ 𝑛𝜆(𝐶𝑖𝛼

𝜆 )
∗
𝐶𝑗𝛽

𝜆 [
𝜕𝐻𝑖𝛼,𝑗𝛽

𝑆𝐶𝐸𝐷−𝐿𝐶𝐴𝑂

𝜕𝑥𝑘
𝑙 −  𝜀𝜆

𝜕𝑆𝑖𝛼,𝑗𝛽

𝜕𝑥𝑘
𝑙 ] +  

1

2𝑗𝛽𝑖𝛼
𝑜𝑐𝑐
𝜆 ∑ ∑

𝜕(𝑁𝑖𝑁𝑗𝑉𝑁(𝑅𝑖𝑗))

𝜕𝑥𝑘
𝑙𝑗≠𝑖𝑖 −

 
1

2
∑ ∑ 𝑍𝑖𝑗≠𝑖 𝑍𝑗

𝜕(
𝐸0
𝑅𝑖𝑗

)

𝜕𝑥𝑘
𝑙𝑖                                                                                                         (18) 

The parameters given in the above stated equations are important in determining 

the SCED-LCAO Hamiltonian. To ensure of their reliability, an optimization or fitting 

scheme based on global least-squares defined in Ref. [2] of these parameters is required. 

In the framework of fitting the SCED-LCAO parameters, their transferability is first 

investigated by setting up a database for physical properties such as bond lengths or 

geometries and binding energies of stable structures like small clusters, sheets, bulk phases 
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obtained from reliable first-principle calculations, experimental results and metastable 

configurations obtained by first principles calculations [2]; then these set of parameters 

will be optimized for the SCED-LCAO Hamiltonian and finally compare the results with 

ab-initio calculations and or experimental results. If transferability is confirmed the next 

step on fitting is the robust test which is done by calculating the physical properties for 

more complicate or complex structures using optimized set of parameters obtained and the 

results are compared with ab-initio and or experimental results. A summary of the 

framework for fitting SCED-LCAO scheme is given in figure 2 below. 

 
Figure 2. Scheme for fitting SCED-LCAO parameters. 

 

The accuracy of SCED-LCAO Hamiltonian was compared to DFT and previously 

reported semi-empirical methods that included within their expressions only two-center 

interactions such as in the old model of ref. [15] and also in the models reported by ref. 

[16-18] or when the method included two-center interactions with no self-consistency but 
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having also an environment dependency term as in models [19-22]. It was shown that the 

SCED-LCAO Hamiltonian was more in agreement with DFT using local density 

approximation (LDA) for total energy calculations for Si bulk phases than the non-

orthogonal tight binding semi-empirical based methods mentioned earlier. We can note 

that in the new model of DFTB [15], the environment dependency treatment depends on 

whether there is charge redistribution or not. If there is charge redistribution, then the 

environment dependency is included, if there is no charge redistribution the environment 

dependency part disappears. Hence there is no need to improve the Si bulk phase diagram 

since the environment dependency term of their new model will have no effects on the 

results. 

 
Figure 3. Si bulk phase diagram [2] comparison between SCED-LCAO and DFT with 
other semi-empirical methods having only two-center interactions or two-center 
interactions and environment-dependency involved.  
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The SCED-LCAO was shown to be an accurate and transferable Hamiltonian. To 

ensure that SCED-LCAO Hamiltonian is a necessary within the field of theoretical physics, 

the computational wall time and memory usage required for simulation with SCED-LCAO 

should be more efficient than the other semi-empirical methods and or first-principles 

methods.  In reference [3] it was proven that SCED-LCAO required five times less memory 

and was also thirty times faster than VASP in calculations of small clusters of Si. When 

very large systems of structures are involved, the order-N algorithm (O(N)) is also proven 

to be a good tool. The particularity of SCED-LCAO molecular dynamic is that it can be 

used to calculate structures of complex molecules, quasi-one-dimensional structures, 

crystalline structures and crystalline structures with defects through parallel computing as 

mentioned in [3] where results of calculations on silicon nanowires with diameters 𝑑 

ranging 3 ≤ 𝑑 ≤ 15𝑛𝑚 were shown and it was also shown that the execution time and the 

memory required were scaling linearly as the size of the nanowires were increasing. At the 

same time, it was also shown that the computational speed-up was system-size dependent.  

The fitted parameters for carbon, silicon, boron and gallium have been tested 

extensively and have been reported in literature (for carbon, silicon and boron). In table 1 

we will summarize the different Hamiltonian parameters fitted for each of the elements 

mentioned above. 
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Hamiltonian 
Parameters 

CARBON SILICON BORON GALLIUM 

𝜀𝑠(𝑒𝑉) -17.360 -13.550 -13.460 -11.55396 
𝜀𝑝(𝑒𝑉) -8.329 -6.520 -8.430 -5.673576 

𝜀𝑠
′(𝑒𝑉) -37.274639 -13.779244590 -16.410946500 -15.89942562 

𝜀𝑝
′ (𝑒𝑉) -21.689008816 -7.778834550 -14.529140600 -9.78502345 

𝑤𝑠
0(Å−1) 0.839858480 1.277531550 -0.920581500 -0.00445490 

𝑤𝑝
0(Å−1) -0.614966730 -1.093182750 0.182560680 -0.10498407 

𝛼𝑠,𝑤(Å−1) 1.666784180 1.813967100 2.171829850 1.32305085 

𝛼𝑝,𝑤(Å−1) 1.780814610 1.337365470 1.225140150 1.39086822 

𝑈(𝑒𝑉) 13.940753510 7.997116560 18.586169640 13.66059628 

𝛼𝐾(Å−1) -0.071034140 0.274291720 0,172647010 0.09070368 

𝐴𝑁(𝑒𝑉) -2.629122940 -0.759899550 -2.075105160 -1.40923471 

𝐵𝑁(Å−1) -1.577483080 0.214034770 -1.143059360 -1.74623609 

𝛼𝑁(Å−1) 3.523180590 2.420667900 2.502264520 2.38478380 

𝑑𝑁(Å) 0.696949050 2.209409220 -0.597076730 -0.04540130 

𝐵𝑍(Å−1) 2.259314750 1.962774350 2.916817290 1.57855854 
Table 1.1. Hamiltonian fitted parameters for carbon [23], silicon [23], boron [24] and 
gallium [25] 
 

Overlap 
Parameters 

CARBON SILICON BORON GALLIUM 

𝐵𝑠𝑠𝜎(Å−1) 1.010909470 0.000678000 0.317921800 -0.17126234 

𝛼𝑠𝑠𝜎(Å−1) 2.655122460 2.074621740 1.476503650 1.71417826 

𝑑𝑠𝑠𝜎(Å) 0.498627150 1.405027960 0.520118300 1.66785074 

𝐵𝑠𝑝𝜎(Å−1) -0.523238020 -1.076298970 0.465862790 0.49124563 

𝛼𝑠𝑝𝜎(Å−1) 2.422573570 2.043994870 1.819749840 2.04314742 

𝑑𝑠𝑝𝜎(Å) 1.254380770 1.002657780 1.118493150 1.68594570 

𝐵𝑝𝑝𝜎(Å−1) -1.214184510 -0.841175340 -0.906133270 -0.61936298 

𝛼𝑝𝑝𝜎(Å−1) 2.171554140 2.193129270 3.634107780 2.57254048 

𝑑𝑝𝑝𝜎(Å) 1.211609000 1.895552620 1.528827550 2.36229832 

𝐵𝑝𝑝𝜋(Å−1) -0.109556040 -0.163947800 -0.305454380 -0.11258717 

𝛼𝑝𝑝𝜋(Å−1) 2.038494880 2.108168830 1.425364160 1.69590206 

𝑑𝑝𝑝𝜋(Å) 0.804059930 1.617996160 0.326449510 1.29280440 

Table 1.2. Overlap fitted parameters for carbon [23], silicon [23], boron [24] and gallium 
[25] 
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It has then been proven both in refs. [2-4] that SCED-LCAO as a semi-empirical 

method has transferable Hamiltonian parameters and is at the same time reliable. It was 

also shown that it can be used in more complex environments due to its environment-

dependency term taking care of the electron screen effects in an aggregate of atoms. SCED-

LCAO also has a very large scale that is it can handle systems of tens of thousands of atoms 

(~20000 atoms system) and also has a much more relative simulation time compared to 

DFT based ab-initio methods and finally SCED-LCAO has a good predictive power
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CHAPTER III 

LOW DIMENSIONAL α-B12 STRUCTURES – AN APPLICATION OF SCED-LCAO 

HAMILTONIAN FOR BORON ELEMENT 

 

3.0 Background. 

Boron as an element occupies the fifth (5th) position in the periodic table of 

elements. It is a non-metal with low chemical reactivity at room temperature, a very high 

melting point of 2450𝐾, and low volatility of ordinary temperatures [26]. Boron also 

displays some of the most remarkable physical and chemical properties of any element in 

the periodic table. Its position in the periodic table suggests that boron is an electron-

deficient element and has the tendency of forming three-center two-electron bonding type 

or covalent bonding type; it is also used as a dopant in the semiconducting industry. Boron 

has been of great interest to researchers and the development of newly discovered materials 

and allotropes of boron have been reported in the literature including (1) linear, planar, 

quasi-planar, convex, ring and icosahedral clusters for small sizes of Bn (n ≤14) clusters 

[27, 28]; (2) planar, quasi-planar, and double rings for sizes of Bn clusters  with n ≤42 [29-

36]; (3) fullerene, cage, and core-shell structures for intermediate sizes of Bn clusters (n 

≤180) [37-45]; and (4) compact structures for larger sized of Bn clusters (n >180) [4], 

respectively.  

In particular, we have to note that the B80 fullerene has been part of the most famous 

cage structures of boron with the debate being centered on its most stable isomer. Initially 
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B80 with Ih symmetry was predicted as the most stable boron cage [38] and energetically 

more stable than boron double rings which were already considered as building blocks of 

boron nanotubes. The Ih B80 was also compared to B72 and B92, and these were found to be 

less stable. Subsequently, the report from ref. [42] claimed that if geometry optimization 

was performed without any symmetry constrains, a new symmetry namely Th symmetry 

will be found to have a more stable in energy, and more importantly this new symmetry 

has two isomers depending on the capping atoms at the center of the 20 hexagons. The 

contributions of these capping atoms were studied in ref. [40] through their bonding nature. 

Using density functional formalism, ref. [39] studied the vibrational stability of B80 

fullerenes and found that B80 with Ih was vibrationally unstable with two sets of imaginary 

modes, while the B80 with Th symmetry was vibrationally stable. Through the use of 

dispersion-corrected density functional calculations on B80 with Ih symmetry, ref. [44] 

compared it to the two B80 isomers namely Th-A and Th-B and it was confirmed that the 

B80 Ih has imaginary vibrational modes, but by inclusion of density functional dispersion 

correction, all vibrational modes were positive and the energy order was reversed with Ih 

symmetry becoming more stable than Th-A. Hence according to ref. [44] Ih is reinstalled 

as the lowest energy conformation among the buckyball structures with the van der Waals 

dispersion forces greatly impacting on the geometry of the capping atoms. Ref. [41], as an 

erratum to ref. [38], gave a number of local minima isomers of B80 namely Ih, Th, and, C1 

was reported as a new lower minimum. The stability of B80 was also considered in ref. [4] 

as a robust test for the boron SCED-LCAO Hamiltonian. SCED-LCAO MD simulation 

was performed on the B80 with initial Ih symmetry. It was found that the system was 

transformed to a Th symmetry before stabilizing to C2h symmetry. 
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The newly discovered materials and allotropes of boron for large size of Bn clusters 

with 80≤n<770 have been reported by the CMT group at the University of Louisville [4] 

as compact boron structures. The stability and energetics of nearly 230 compact boron 

clusters ranging from 100 to 768 atom systems have been investigated using SCED-LCAO 

molecular dynamics. These compact boron clusters were divided into random structures of 

Bn with over 90 stable boron clusters considered; and rhombohedral structures of Bn with 

a total of 80 rhombohedral clusters including chain-like, sheet-like and bulk-like were also 

considered. Another type of compact structures considered was the spherical icosahedral 

structure of Bn obtained through spherical cut from α-B. A SCED-LCAO molecular 

dynamics was performed on such structures and it was found that the spherical cuts were 

still more stable than the cage and chain like cuts when the boron atoms are larger than 

200, concluding that the more bulk-like the compact structures are the more stable for large 

Bn clusters.  

Boron nanowires have already been successfully synthesized according to [46-48], 

and simultaneously, on the theoretical side, tubular and monolayer sheet structures have 

been predicted [6, 7, 49-54]. With the synthesis of a two-dimensional carbon structure, 

graphene [5], the search for the possible existence of two-dimensional structures based on 

boron have been intense. Recently a two-dimensional sheet of type α has been predicted, 

using ab-initio calculations by refs. [7, 52], to be the most stable monolayer boron sheet 

among all monolayer sheets, followed by β-types of boron sheets [55]. Quite recently ref. 

[6] used PBE0 hybrid functional within first-principles to do a global search for new lowest 

energy polymorphs of two-dimensional boron sheets. Different types of boron monolayer 

sheets have been considered with the classification of the types depending on the 
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coordination number of boron atoms, i.e., α-, β-, χ-, ψ-, and δ-types, respectively. The α-

type (same as in ref. [7]) was found to have the greatest cohesive energy but exhibited 

negative phonon frequencies which were removed after a new relaxation of the structure. 

The newly relaxed structure was found to be slightly buckled and named α’. It was reported 

to have greater cohesive energy compared to α and both sheets exhibited semiconducting 

properties using the hybrid PBE0, in contrast to the metallic properties found in the 

calculations using the hybrid PBE [6, 7]. In the β-type, β1, β2, and β3 are reported to be 

metallic with β1 being planar and having the second greatest cohesive energy after α’ while 

β2, and β3 are slightly buckled. δ5 was found to be planar and also having the greatest 

cohesive energy among the δ-type of boron monolayer sheets but buckled δ6 was more 

stable among δ sheets. Therefore, the predicted monolayer sheets were found to have great 

cohesive energies with semiconducting properties such as the buckled α’ sheet in the α-

type, the planar and metallic β1 sheet in the β-type, and the buckled δ6 sheet in the δ-type. 

These predicted 2D boron monolayer sheets have not yet been synthesized successfully, 

and raise an interesting issue to search for new types of 2D boron structures in the boron 

family. 

As mentioned earlier, in crystalline boron the icosahedral boron 12 units or α-B12 

are the building blocks of boron crystalline structures [8] and they have bonding type of 

three-center two-electrons (i.e., each pair of electrons is explicitly shared by three bonded 

B atoms). Even though the isolated icosahedral α-B12 was found to be less favorable or 

stable energetically compared to the quasi-planar B12 or ring structures B12 clusters [4] as 

shown in table 2, it was more favorable when icosahedral α-B12 units are aggregated with 

the bond lengths of about 1.71Å [26], which are stronger than their intra-icosahedral bonds 
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(which are the bonds between Boron atoms within the same icosahedron unit (1.73 to 

1.79Å [26])), and hence it is more suitable in forming stable or metastable polymorphs. 

Our main aim in this chapter was to use the well fitted Hamiltonian parameters for 

boron element [4] to investigate the possibility of having low dimensional boron structures 

built by icosahedral α-B12 units and systematically study their structural and electronic 

properties. These low dimensional structures will have their initial structures derived from 

the rhombohedral α-B in which as mentioned earlier, a given icosahedron has the 

possibility to form strong covalent bonds with other six neighboring icosahedra. The 

structural properties of rhombohedral α-B are its lattice parameter 𝑎0 = 2.83 Å and the 

apex angle α. Using a linear truncation of rhombohedral α-B along (001) direction, one-

dimensional icosahedral structures referred to as one-dimensional icosahedral chains were 

created. To obtain a two-dimensional icosahedral sheet, a cut at one of the faces of the 

rhombohedral α-B will be needed. A more detailed discussion on how to obtain the two-

dimensional sheets will be given in sub-section 3.1 of this chapter. 

 
Table 2. Energy stability comparison between icosahedral α-B12, planar B12 and ring 
structured B12. With α-B12 > planar B12 > ring B12. [where > stands for “less stable 
energetically than”] 
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3.1 Finite icosahedral α-B12 chains. 

The structural and electronic properties for finite chains of icosahedral α-B12 were 

investigated by use of the boron SCED-LCAO Hamiltonian parameters given in Table 1 in 

CHAPTER II. This was done by first creating the chain structures through a linear 

truncation of rhombohedral α-B along the (001) direction (referred as 1x1xn). The shortest 

possible finite chain considered was a dimer with a total of 24 atoms and a two-center two-

electron bond joining the two α-B12 making the chain. The lengths of the chains were then 

increased along the (001) direction by 𝑛 units of α-B12. Hence the considered finite chains 

have lengths defined by the number n of α-B12 in it where n ranges between 2 and 26. 

Structure relaxations were performed through 3000 MD steps with 1.20 fs per MD steps at 

0K. The relaxation was done until the forces were less than 10-2 eV/atom and as it was 

performed, we found that there was freedom of movement for the balls along the chain 

direction and that freedom of movement lead to extension of the chains in the covalent 

bonds. We note that the bonds became longer for the short chains. For longer chains the 

bonds at the center or near the center of the chain were much stronger than the covalent 

bonds at the extremes. The dimer and 1x1x9 can be taken as examples. In the dimer, the 

single two-center two-electron bond after relaxation extends to 1.745 Å which is even 

longer than the 1.71 Å in α-B reported in ref. [26]. While for the chain with 9 balls, the two 

covalent bonds at the center of the chain are about 1.733 Å but at the ends of the chain, the 

bonds become weaker with the bond length of about 1.740 Å which are slightly elongated 

compared to the central ones. To be more convinced about this we also examined a longer 

chain with 14 balls. We found that after relaxation the balls at the extremes of the chain 

have their bonds extended to 1.731 Å, as compare to the most central bond with a length 



29 
 

of 1.702 Å. Hence we can say that structurally, for a given chain, the two-center two-

electron type of bonding is strong as one gets closer to the center of the chain. In a more 

general way as the length of the chains increases, the strengths of the covalent bonds 

between the icosahedral units also increase. Figure 4 gives a summary of the different 

bonding discussed above after 2 MD steps and after full relaxation. 

 
Figure 4.1. Two-center two-electron bonding for finite α-B12 chains ((a) dimer, (b), 1x1x9 
finite chain and (c) 1x1x14 finite chain). The numbers denote the bond lengths after 2 MD 
steps. 

 
Figure 4.2. Two-center two-electron bonding for finite α-B12 chains ((a) dimer, (b), 1x1x9 
finite chain and (c) 1x1x14 finite chain). The numbers denote the bond lengths after full 
relaxation.  
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The structural stability of the icosahedral finite chains was also determined by 

finding the relative energy for a given chain length with respect to the energy of a single 

α-B12 and as can be seen from figure 5, the relative chain energies converges as the length 

of the chains increase. 

 
Figure 5. Energies of finite α-B12 chains relative to a single α-B12 ball. 
 

An illustration of the structures of chains with lengths 2 and 9 are shown in the inset 

with the arrows pointing to their respective energies. The distribution of the charges with 

a given finite chain was also investigated by performing local analysis of the structures. 

The ball will be divided into two halves and the average charge of each half was 

determined. We found that the unboned halves of the units (i.e., the two distinct ends of a 

given chain) tend to lose charges compared to the inner parts or the other halves of the unit, 

and as the length/number of α-B12 balls increases, the average charges at the center of the 

chain tend to be uniform to 3.0𝑒. For an illustration, figure 6 shows the average charge 

distribution of some finite chains. 



31 
 

 
Figure 6. Charge distribution for an average of 6 atoms indicated by the red circles. The 
structures are single α-B12, α-B12 dimer, and the finite chain with 19 α-B12 balls, 
respectively. 
  

The electronic properties of the finite chains were studied from their respective 

electronic densities of states. It was observed that the finite chains were all displaying 

metallic behaviors as can be seen from figure 7. We also noticed that moving from the 

single α-B12 ball to the dimer and subsequently increasing the length of the chains, there is 

the appearance of some states just around the top of the valence bands which are associated 

with the presence of the two-center two-electron bonds (see the states marked by red circles 

in Fig. 7). By having a closer look at the states around the top of the valence band and the 

bottom of the conduction band (see Fig. 8), it was observed that the existence of states 

around the Fermi level (see the states marked by red circles in Fig. 8) is attributed to the 

bonding states at the end of the chain and such states tend to disappear as the length of the 

chains increases. 
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Figure 7. The electronic density of states (EDOS) of a single α-B12 (a) ball and a selected 
number of finite chains. The red circles show the states associated with the presence of the 
inter-icosahedral bonds between 2 balls in a given chain; note that (b) is the EDOS for the 
dimer; (c) is for the chain with 9 balls, (d) is for the one with 19 balls and (e) is the chain 
with 40 balls. 
 

The finite chains are found to be all metallic. By comparing the EDOS of the single 

ball (Fig. 8 (a)) we noticed that those states start to decrease as the chains are formed and 

increased, and the Fermi level shifts towards the left that is near the bottom of the 

conduction band as shown in figure 8 (b)-(e) highlighted by the red dashed line. 
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Figure 8. Zoomed in EDOS for (a) a single α-B12 ball, (b) a dimer of α-B12, (c) a finite 
chain with 9 balls, (d) a finite chain with 19 balls and (e) a finite chain with 40 balls, 
respectively. The red circle is highlighting the states associated with the bonding at the end 
of the chains. 
 

Hence for the finite chains we discovered that the inter icosahedral bonds become 

shorter therefore stronger as the lengths of the chains increase, the charge distribution was 

also related to the length of the finite chain since the average charges at the center of the 

chains were found to be more uniform as the chain length increases. In terms of electronic 

properties, the finite chains were metallic due to the appearance of states accounting for 

the inter icosahedral bonds. Another observation was the smoothening of the states at the 

bottom of the conduction band with the Fermi energy shifting towards that end. These 
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results have been presented in the APS March Meeting in 2013 [56]. All these observations 

made us question of what will happen if we have chain as long as possible. Would its 

structural and electronic properties be similar to that of the shorter finite chains or would 

it be totally different? 

 

3.2 Infinite icosahedral α-B12 chain. 

The infinite icosahedral chain is built through a linear truncation of rhombohedral 

α-B along the (001) direction. The structural and electronic properties of the infinite chain 

will be investigated by lattice constant optimization, local analysis to determine the 

bonding nature, the charge redistribution, and the electronic density of states. The 

optimization of the infinite icosahedral chain was done by scaling the lattice parameter 𝑎 

of its individual structures to the optimized lattice constant 𝑎0 of α-B. The subsequent 

structures are then relaxed and their final energies compared to obtain the one with the 

lowest energy as the optimized chain structure. Figure 9 shows the total energy per atom 

vs the ratio of the lattice parameter 𝑎 over that of the lattice constant 𝑎0. The optimized 

lattice constant is 𝑎∗ = 1.057 ∗ 𝑎0 with 𝑎0 = 2.834 Å. 
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Figure 9. Lattice constant optimization for infinite α-B12 chains with a0 = 2.834 Å and the 
optimized lattice constant obtained for the infinite chain being a* = 1.057a0 
 

The structural stability and the existence of the infinite chain was also investigated 

by calculations of its phonon frequencies using density functional theory based VASP [9] 

and we found that the lowest vibrational frequencies occur at 43.599 cm-1 which indicates 

that the infinite chain is stable and can also exists if synthesized under proper conditions.  

Other structural properties to be considered are the bonding nature, the pair and angle 

distribution functions. As mentioned earlier, the chains have two types of bonds, inter-

icosahedral and intra-icosahedral bonds. For the infinite chains, the intra-icosahedral bonds 

were found in the range between 1.62 and 1.75 Å which is close to that of the isolated α-

B12 (i.e., between 1.61 and 1.75 Å) but shorter than the intra-icosahedral bonds in the bulk 

α-B (i.e., between 1.73 and 1.80 Å), which can be explained as the existence of dangling 

bonds in the icosahedra B12. As for the inter-icosahedral bonds, the bond lengths (1.762 Å) 
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are uniform along the chain and longer than that in the finite chains and in the bulk α-B as 

indicated in figure 10. 

 
Figure 10. Inter-icosahedral bonds lengths for infinite α-B12 chains. (a) after 2MD steps 
and (b) after fully relaxation. 
 

Pair and angle distribution functions were also compared to those of the isolated 

B12 to fully account for the different bonds and angles within the infinite chain. As can be 

seen from the pair distribution function plot (figure 11.1), the periodicity of the icosahedral 

infinite α-B12 chain is characterized by the pronounced peaks at greater distances with the 

presence of second and third nearest neighbors being more apparent in the infinite chain 

than in the isolated icosahedron. The small shoulder that appeared at the first peak in the 

infinite chain reveals the inter-icosahedral bonds. 
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Figure 11.1. Pair distribution function for infinite chain and isolated icosahedron B12 
 

For the angle distribution in figure 11.2, we can see that the isolated icosahedral 

B12 has a single dominant peak at around 60º associated to the triangular structures inside 

the B12 ball. But that dominant peak is split into several sub-peaks in the infinite chain 

which is due to the deformation of the triangles and subsequent symmetry reduction for the 

balls along the infinite chain axis. Such deformation is also characterized by their 

elongation as identified by the peaks around the angles 96º and 128º as shown in figure 

11.2. 
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Figure 11.2. Angle distribution functions for infinite chain and icosahedron B12. The two 
arrows are showing the 96º and 128º bonding angles within the chain. 
 

The electronic properties of the infinite chain will be evaluated by first looking at 

the charge transfer along the chain axis as was done with the finite chains. Since for the 

infinite chain there is no unboned half due to the periodicity a uniform charge distribution 

throughout the length of the infinite chain is confirmed as shown in figure 12 below. 

 

Figure 12. Average charge distribution throughout the length of the infinite chain. The 
red circles depict the atoms being averaged. 
 

The electronic structure of the infinite chain was obtained through the calculations 

of the electronic density of states (see Fig. 13). We confirmed that the states associated to 

the inter-bond between balls in the finite chain (e.g., the red circle in figure 7) still exist in 
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the infinite chain (e.g., the red circle in figure 13 (a)), and the states associated with the 

bonding at the end of the finite chains (see figure 8) disappear in the infinite chain (see 

figure13 (b)). In particular, with a continuation of the shifting of the Fermi energy from the 

bottom of the conduction band towards the top of the valence band, as the chain from finite 

length to the infinite, a subsequent gap of 0.74 eV is opened, clearly indicating that the 

infinite chain exhibits semiconducting behaviors even though it is small compared to the 

bulk α-B (1.90eV [57] close to the optical gap of 2.0 eV). The results for the infinite 

icosahedral chain have been published in nanotechnology in 2015 [58]. 

 
Figure 13. EDOS for infinite chain. (a) red circle shows the existence of covalent bonds 
along the axis of the chain and (b) Energy gap opens and states associated with the chain 
ends with the finite length disappear. 
 
 

3.3 Icosahedral α-B12 ring structures. 

With the interesting structural and electronic properties of the one dimensional 

icosahedral α-B12 chains especially the infinite chain, the question arose of what will 

happen if we tried to form ring structures of different shapes and sizes? Would the 

structural and electronic properties of such structures be interesting? The different sizes of 

rings that were considered are constructed by 4, 5, 6, 7, 8 and 9 balls. Due to the restrictions 

in movements for the B12 balls in 0 K, we decided to heat the structures to 300 K hence 



40 
 

providing more freedom for the balls to either rotate or vibrate and finally cool down from 

300 K to 0 K. We found that consistently, there are more inter icosahedral bonds between 

two and three balls due to the rotation of the balls, as compared to the chains. We also 

found that rings having 4, 6 and 8 balls keep the plane, while rings with 5, 7 and 9 balls 

tend to move out of plane and they have the tendency of joining together. The types of inter 

icosahedral bonds, cohesive energy, and energy gap of each structure are given in Table 3 

below. The number of bonds is indicated as S for single, D for double or two bonds, and T 

for triple or three bonds. 

Ring structures Cohesive 
Energy (eV) 

Energy gap 
(eV) 

Bond Types 

 

 
 

-4.291 

 
 

0.682 

 
 

1D, 3T 

 

 
-4.202 

 
0.863 

 
1S, 1D, 3T 

 

 
-4.317 

 
0.744 

 
6T 

 

 
-4.317 

 
0.704 

 
1S, 1D, 6T 

 

 
-4.347 

 
0.087 

 
2D, 8T 

 

 
-4.318 

 
0.675 

 
7S, 1D, 9T 

 
Table 3. Cohesive and gap energies for different icosahedral ring structures with the 
different number of bond types. S is for single, D for double and T is for three or triple 
bonds. 
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As can be noticed from the final stabilized structure, the icosahedron symmetries 

are well kept. Even after the rotations they go through for a reconstruction of the rings, 

except for rings with 5 B12 balls and 9 B12 balls in which one of the icosahedron has its 

symmetry broken. Ring with 8 balls has the structure of two ring 4 joined together with the 

most favorable energy among all rings but has metallic properties as can be seen from table 

3. We found that ring with 6 balls was the most interesting among all the rings considered. 

The structure has been found to be very rigid after the first relaxation at 0 K and even 

heating it to 300 K and cooling back to 0 K, it did not change the bonding configuration. 

Ring with 6 balls is, therefore, structurally stable, energetically favorable, and has 

semiconducting properties. Hence the question was what would happen if two such relaxed 

structures are placed adjacent to each other? Very interestingly, we found that after 3000 

MD steps, a new stable structure of 12 icosahedrons is formed with a favorable cohesive 

energy of -4.346 eV which is 0.029 eV lower than that of the single ring of 6 icosahedrons 

but with metallic properties. The total energy per atom with respect to the number of MD 

steps is shown in figure 14 below. We have presented these results on APS March Meeting 

in 2014 [59]. 
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Figure 14. Energy vs number of MD steps for relaxation of two isolated ring 6 structures 
with the top and side views of the initial and final structures shown by the insets. 
 

3.4 Two-dimensional icosahedral α-B12 structures. 

Due to the structural stability and semiconducting properties found with the 6 

membered rings in our studies, we had the question about the possible existence of two 

dimensional structures based on icosahedral B12 and also what would be their possible 

electronic properties. To create the different two dimensional B12 based structures, a planar 

cut was done on the α-B structure and a sheet of purely B12 structures was obtained. From 

the obtained B12 structure, a primary unit cell was defined and based on the nomenclature 

in [6] such structure was named δ6 sheet. 
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Figure 15. Initial triangular 6x6 icosahedral B12 based structure called δ6. The black dashed 
arrows show the lattice vectors of the primary unit cell. 

 

From the triangular structure δ6, two other B12 based structures are obtained through 

a creation of different vacancies on the δ6, namely the icosahedral δ4 and icosahedral α 

sheets as shown in Fig. 16. The icosahedral α sheet was obtained by creating 4 vacancies 

through the removal of 4 icosahedral B12 balls at the different corners of the triangular 6x6 

sheet, while the icosahedral δ4 based structure was obtained by creation of 9 vacancies from 

the triangular δ6 sheet. 

 

Figure 16. Input structures for icosahedral α (a) and icosahedral δ4 (b) B12 based structures. 
The black dashed arrows show the lattice vectors of the primary unit cell for each 
icosahedral sheet structure.  
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Lattice constant optimizations for these three (α, δ4 and δ6) icosahedral structures 

were performed using both our semi empirical method (SCED-LCAO) and first principles 

calculations (VASP package). In the following we will give the energetics of the three 

sheets together with their structural and electronic analyses. To perform the lattice constant 

optimization in SCED-LCAO, different super cells were used depending on the structure. 

For the icosahedral δ6 structure, a 6x6 super cell was used in the real space structural 

optimization; while for icosahedral δ4 a 3x3 super cell was used and finally a 2x2 super 

cell for the icosahedral α sheet. The calculations were performed using a time step of 1.2 

fs and the forces were set to less than or equal to 10-2 eV/Å. Structurally, the three sheets 

are also different in terms of the icosahedral B12 balls in them. For δ6 in figure 15, all 

icosahedral B12 balls have the same types of bonds which are 4 single covalent bonds that 

will be denoted by the letter S and 2 two directional covalent bonds linking two different 

B12 balls that will be denoted by the letter D. Since all icosahedrons are the same in the δ6 

sheet, the ball type A (see Fig. 15) is used for them. For the icosahedral B12 δ4 sheet (figure 

16 (b)) two types of icosahedrons are observed, type A where the icosahedron is bonded to 

4 other icosahedrons with an S bond that is it has 4 different S bonds and type B where the 

icosahedron has 6 total bonds 2S and 2D bonds. For the icosahedral B12 α sheet (figure 16 

(a)) three types of icosahedrons are observed A, B and C. Type A icosahedron is analogous 

to the single type A in the icosahedral δ6 sheet with 4S bonds connected to 4 different 

icosahedrons and 2D bonds connected to 2 different icosahedrons hence a total of 8 bonds; 

type B icosahedron has a total of 7 possible bonds 3S and 2D while type C has a total of 6 

bonds, 4S and 1D bonds. The energetics obtained after our lattice constant optimization 

using SCED-LCAO are shown in figure 17 below with the optimized lattice constants for 
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δ6 being 2% less than that of α-B (with 𝑎∗ = 0.98 ∗ 𝑎0 or 𝑎∗ = 8.070 Å ) while both δ4 and 

α icosahedral B12 sheets have their optimized lattice constant 1% less than that of α-B. 

From the results obtained, we found that δ6 sheet was the one with the most favorable 

energy among all three considered structures. As mentioned at the beginning of the section, 

we validated our results obtained with SCED-LCAO by the DFT based package VASP.  

 
Figure 17. Lattice constant optimization using SCED-LCAO method for the icosahedral 
sheets based structures δ6 (black), α (red) and δ4 (green). Note that a0 is obtained from α-B 
and is 8.23479 Å. 
 

During our calculations with VASP, the Vanderbilt ultra-soft pseudo-potential [60, 

61] was used to describe the interactions between the core and the valence electrons and 

for exchange-correlation potentials, the GGA PW91 [62] was used. For the convergence 

of our energy calculations, the cut off energy for the plane wave basis sets was fixed to be 

321.5 eV and the k points were set according to the Monkhorst-Pack scheme with a k-point 

mesh of 6 x 1 x 6 for the icosahedral δ6 sheet, 4 x 1 x 4 for the icosahedral δ4 and 2 x 1 x 2 
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for the icosahedral α sheet with the primitive unit cell for each sheet being used to do the 

calculations. To avoid any interactions between two different sheets within the periodic 

conditions, a vacuum region of 15 Å was created. Structurally, we can point that in both 

methods the optimized and relaxed sheets kept the planar structure and using the first 

principle calculations the optimized lattice was found to be 2.5% less than that of α-B in 

the icosahedral δ6 structure while for both icosahedral α and δ4 sheets the optimized lattice 

constants were found to be 0.4% less than that of α-B. Figure 18 shows the relative energy 

per atom defined as RE: 

𝑅𝐸 = 𝑇𝑜𝑡𝑎𝑙 𝐸/𝑎𝑡𝑜𝑚(𝑠𝑦𝑠𝑡𝑒𝑚 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

− 𝑇𝑜𝑡𝑎𝑙 𝐸/𝑎𝑡𝑜𝑚 (𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 𝛿6 𝑠ℎ𝑒𝑒𝑡 𝑎𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚) 

which is the difference between the total energy per atom of the system under consideration 

(δ6, δ4 and α) and the total energy per atom for the fully relaxed δ6 sheet at equilibrium. We 

can note that δ6 is the most favorable structure in terms of energies for both SCED-LCAO 

and DFT and at the same time in terms of the shapes of the different energy plots. The 

stability and also possible existence of these structures was further investigated through the 

calculations of their phonon frequencies using VASP by solving the dynamical matrix or 

the force constant matrix at the gamma point and we found that the lowest vibrational 

frequencies occur at 216.640 cm-1 for icosahedral δ6, 38.116 cm-1 for icosahedral α and 

34.416 for icosahedral δ4 sheet. These positive lowest vibrational frequencies suggest that 

the structures are stable and can possibly be synthesized if the right conditions are met. The 

favorability in terms of energies of the icosahedral δ6 sheet can be explained by its different 

bonding types compared to the other sheets. As mentioned earlier in the icosahedral δ6 

sheet, each icosahedron has a maximum number of 8 bonds with 4 covalent bonds of S 
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type and 2 directional covalent bonds of type D which means stronger interactions between 

any given icosahedron and its immediate neighbors. 

 
Figure 18. The relative energy per atom versus the ratio of the lattice constant of 
icosahedral sheets with respect to that of α-B. (a) Icosahedral δ4 sheet, (b) icosahedral α 
sheet and (c) icosahedral δ6 sheet. The insets show the DFT results for the different 
structures. 
 

While in the icosahedral α sheet (figure 16(a)) the icosahedrons with type B have 

one less covalent bond of the type S and the B12 of type C have two less directional covalent 

bonds or one less D hence in both cases they interact with one less icosahedron compared 

to the δ6 sheet; and for the δ4 icosahedral sheet, both types A and B icosahedrons interact 

with 4 icosahedrons and as already discussed the type A icosahedrons have a total of 4 

covalent bonds which are all S bonds while the B type icosahedron has a total of 6 bonds 

with 2S covalent bonds and 2D directional covalent types. The structural properties of these 
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two dimensional icosahedral sheets have been further determined through their pair and 

angle distribution functions and summary of these two functions compared to that of a 

single icosahedron B12 revealed a change in terms of intra bonding and angles. The pair 

distribution functions for all three structures show a broadening of the first peak which 

identifies the nearest neighbor bonding but not only between atoms of the same 

icosahedron but also between two atoms in two different icosahedrons. For the next nearest 

neighbors, we noticed the appearance of different peaks also identified as coming from 

both within a given icosahedron and also between two icosahedrons as shown by the 

different arrows in figure 19 (a). As the coordination number of B12 balls decreases, we 

notice that the intensities for both the nearest neighbor and next nearest neighbor peaks 

decrease.  

 
Figure 19. (a) Pair distribution function for icosahedral based sheets δ6 (top left), α (top 
right) and δ4 (bottom panel). Insets are partial cuts of the different structures with the 
different types of bonds identified by the arrows with black for NN and green, red and blue 
for the different NNN distances. The green dashed curve is the pair distribution function 
for isolated B12. 
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The angle distribution functions shown in figure 19 (b) are a comparison between 

the sheets and a single icosahedron and it can be noticed that the small deformations on the 

icosahedrons due to the different types of interactions with their neighbors are shown by 

the smaller angles accounting for triangles less than 60º which are the dominant angles in 

a single icosahedron. For the angles between 98º and 130º, in a single icosahedron they are 

represented by a single broad peak while for our two dimensional icosahedral based sheets, 

we have distinct peaks identifying this range of angles within a single icosahedron of a 

given sheet but also angles between two different icosahedrons.  

 
Figure 19. (b) Angle distribution functions for icosahedral based sheets δ6 (top left), α (top 
right) and δ4 (bottom panel). Insets are partial cuts of the different structures. Angles are 
shown by the different colored circles with light red and black for angles within an 
icosahedron between 50 and 60º, dark red, dark blue and yellow for angles between the 
ranges 98 to 130º and green for 90º and 150º angles. The green dashed curve is the pair 
distribution function for isolated B12. 
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Two particular angles are the 90º and the 150º angles shown by the green circles in 

figure 19 (b). Both of them are angles along one of the directional covalent bonds from one 

icosahedron to another forming either a right angle when connected to the second atom 

forming another directional bond or when connecting with one of the vertices of the 

icosahedron. It can be noticed that both angles are not present in the angle distribution of a 

single icosahedron and their intensities decreases as the coordination number of icosahedral 

B12 decreases and will tend to disappear as the interactions between the icosahedrons 

weaken. In figure 19 (c), a synthesis of the pair and angle distribution functions of the three 

icosahedral sheets under consideration compared to α-B bulk is shown. From the pair 

distribution function curve, the broadening of the curves for the three sheets earlier 

discussed can be observed when compared to that of the α-B which can be explained by 

the deformation as already stated of the icosahedrons in the different sheets. Another 

noticeable different between the curves of the α-B and that of the sheets is the small peak 

appearing at around 2.0 Å in the α-B curve while disappearing in the sheets’ curves. This 

peak accounts for the directional covalent bonds which are longer in the α-B bulk in the 

order of 2.03 Å while shorter in the sheets between 1.75 to 1.82 Å.  

The bond lengths distributions of the icosahedral sheets compared to that of a single 

icosahedron B12, α-B and the finite icosahedral chain is summarized in table 4 where the 

intra-icosahedral bonds are denoted by bintra, binter for the inter-icosahedral bonds and the 

total number of S bonds for a given icosahedral type is identified as NS and ND for the total 

number of directional bonds. As stated above, the slight deformation of the icosahedrons 

in the two dimensional sheets suggested by the broadening of their respective pair 

distribution curves which is also confirmed by their wider ranges compared to both the 
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single icosahedron B12 and the α-B. The inter-icosahedral bonds on the other hand the 

sheets have agreements with α-B in the S type covalent bonds while the infinite chain has 

longer S bonds and for the directional D bonds as already mentioned have shorter therefore 

more interactions compared to α-B. 

 
Figure 19. (c) Pair and angle distribution functions for icosahedral δ6 sheet (solid black), 
icosahedral δ4 sheet (dashed red), icosahedral α sheet (dashed green) and α-B (dotted black) 
 

System bintra (Å) binter (Å) NS ND 
Icosahedron B12 1.61-1.75 NA NA NA 

α-B 1.73-1.80 1.67 (S); 2.03 (D) 6 4 
Icosahedral chain 1.62-1.75 1.76 (S) 2 0 

Icosahedral sheets     δ6 1.56-1.77 (Type A) 1.69 (S); 1.80 (D) 4 2 
                                  α 1.56-1.77 (Type A) 

1.57-1.80 (Type B) 
1.59-1.79 (Type C) 

1.69 (S); 1.82 (D) 
1.69-1.72 (S); 1.82 (D) 
1.69-1.72 (S); 1.75 (D) 

4 
3 
4  

2 
2 
1 

                                  δ4 1.59-1.79 (Type A) 
1.59-1.80 (Type B) 

1.68 (S) 
1.68 (S); 1.82 (D) 

4 
2 

0 
2 

Table 4. Structural properties for icosahedron B12, α-B, infinite icosahedral chain and 
icosahedral sheets (δ6, α and δ4). bintra, binter, NS and ND are defined in the text. 
 

The electronic properties of the two dimensional icosahedral based sheets was also 

investigated and through the calculations of their electronic density of states, we found that 

the icosahedral δ6 and δ4 sheets have semiconducting properties with their calculated gap 

energies being 0.520 and 0.385 eV respectively while the icosahedral α sheet have a near 

gapless energy at 0.018 eV. Compared to their monolayer counterparts, which were found 
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to have metallic like energy gaps, we found that the sheets have interesting electronic 

properties even though the obtained gaps are smaller to that of α-B which was found to be 

close to the optical gap of 2.0 eV. The different density of states of the three sheets together 

with that of the infinite icosahedral chain and the α-B are presented in figure 20 below. 

  
Figure 20. Density of states for icosahedral B12 based structures; (a) icosahedral infinite 
chain, (b) icosahedral δ4, (c) α, (d) δ6 sheets and (e) crystalline α-B. The Fermi Energy was 
set at 0 and is shown by the red dashed line. 
 

3.5 Energy barriers  

The calculations of the vibrational frequencies for the two-dimensional structures 

(δ6, α and δ4) in the previous sub-section (3.4) revealed that they all have positive lowest 

frequencies suggesting possibilities for the structures to be synthesized. The two-

dimensional δ6 however was found to be the most stable among all three structures, hence 

the need to find possible pathways to create α and δ4 sheets from an existent δ6 sheet. To 
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make the transition from δ6 to α, four icosahedral B12 were gradually removed (as indicated 

in sub-section 3.4) from the 6x6 unit cell of the δ6 sheet along the direction perpendicular 

to the sheet (see Fig. 21(a)). The transition from δ6 to δ4 was made by gradual removal of 

nine icosahedral B12 units (as in sub-section 3.4) from the 6x6 unit cell of the δ6 sheet along 

the direction perpendicular to it (see Fig. 21(b)). Likewise, the transition from α to δ4 was 

made by gradually removing five icosahedral B12 units from the 2x2 unit cell of the α 

structure along the direction perpendicular to it and at the same time by moving three 

icosahedral units towards the center of an adjacent hexagonal hole (see Fig. 21(c)). Such 

transition procedures were performed until further moves along the perpendicular 

directions to δ6 or α do not change the energy of the combined systems. To estimate the 

energy barriers, the energy difference between the initial stage (δ6 when transition is δ6 – 

α or δ6 – δ4 and α when transition is α – δ4) and the final stage is calculated. The energy of 

the final stage is defined as the combination of the energy of the system under consideration 

(α or δ4) plus the energy of the number of icosahedral units removed along the 

perpendicular direction (4, 9 or 5). We found that the transition from δ6 to α requires 

0.17 𝑒𝑉/𝑎𝑡𝑜𝑚 (~1700 𝐾), the transition from δ6 to δ4 requires 0.38 𝑒𝑉/𝑎𝑡𝑜𝑚 (~3800 𝐾) 

and the transition from α to δ4 requires 0.27 𝑒𝑉/𝑎𝑡𝑜𝑚 (~2700 𝐾) (as shown in Fig. 21 

(d)). It was therefore found that it requires more energy to make the transition from δ6 to 

δ4. With the high-energy barriers reported above, the icosahedral sheets are considered to 

be energetically and thermally stable and a possible pathway would be to produce α from 

δ6 since the energy barrier between the two is lower and then produce δ4 from α sheet. We 

have published all the results for the two-dimensional icosahedral sheets in 

Nanotechnology in 2015 [58]. 
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Figure 21. Transition paths (a) δ6 (top) – α (bottom), (b) δ6 (top) – δ4 (bottom) and (c) α 
(top) - δ4 (bottom). Black circles indicate the removed icosahedral units and black triangles 
in top panel of (c) indicates the direction of movement of the icosahedral balls. 
 
 

3.6 Single layered α-Tetragonal B50  

Bulk α-tetragonal B50 [63] is made up of four icosahedral B12 centered at (1
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1
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); 

(
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3
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1

4
); (3

4
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) and (1

4
,  
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4
) and two individual Boron atoms at positions (0,0,  

1

2
) 

and (1

2
,  

1

2
,  0) with lattice constants 𝑎0 = 8.75 Å and 𝑐0 = 5.06 Å. Figure 22 shows the 

structures of the bulk α-Tetragonal B50. 
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Figure 22. Top (left) [64] and 3D (right) [63] views of α-Tetragonal B50 structure. For 
notations on figure see corresponding references. 
 
 

There are three types of co-ordination which can be seen from the figure 22:  the 

fivefold intra-icosahedral co-ordination at the boron atoms inside the icosahedron, the 

sixfold inter-icosahedral bonding at the boron atoms bonding the neighboring 

icosahedrons, and the fourfold bonding at the single isolated boron atoms in the interstitials.  

The third type of bonding is unique in linking the icosahedrons together to form a three-

dimensional network in the bulk α-tetragonal B50. Compared to rhombohedral α-B, bulk α-

tetragonal B50 was not stable at ambient temperature and pressure, and can only be 

synthesized at high temperature (1200-1300 ºC) and high pressure (8-9 GPa) [63]. The 

reason why we are attracted by this system is because more recently, Xu, J., et al., [10] 

have successfully synthesized ultrathin single-crystalline boron nanosheets. The Raman 

spectrum and the HRTEM image provide that the structure of these sheets can be attributed 

to the (002) and (200) lattice planes of α-tetragonal B50 phases [10]. The ultrathin nature 

of their structure was also confirmed by the almost transparent image of the structure and 

behaves as a p-type semiconductor with high carrier mobility (see Fig. 23). 
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Figure 23. SEM pictures at different magnifications in a and b, enlarged image in c and 
Raman spectrum in d for Ultrathin Boron Nanosheets presented by [10]. 
 
 

This was the first time to show experimentally the existence of the 2D boron sheet 

formed by the icosahedron B12. This experimental observation intrigued us to undertake a 

study that aims to explore whether a single layered α-tetragonal B50 sheet is stable in 

computational studies based on SCED-LCAO and DFT. Should this investigation find the 

single-layered structure of B50 to be unstable, this would imply that experiments are 

observing multiple layers or a thin film of B50.  In this case, theoretical studies should 

determine the critical thickness (or layers) when B50 becomes stable.  
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The structure of unrelaxed single layered α-tetragonal B50 sheet is shown Fig.24. 

 

Figure 24. Top view (left) and side view after a 45° angle rotation (right) for a single 
layered α-tetragonal B50 sheet. 
 

It can be seen from Fig. 24 that the bonding nature in the single layered α-tetragonal 

B50 sheet is quite different from their bulk counterpart. For instance, one of the double 

inter-icosahedral bonds between B12 balls in the bulk disappeared in the single layered sheet 

(e.g., as indicated by the black square in Fig. 24), and some of the isolated boron atoms 

also lost their bonds to the neighboring icosahedron which is key in linking the 

icosahedrons together to form a three-dimensional network (see red circle in Fig. 24). In 

particular, the icosahedrons are not located in the plane but up and down alternatively (see 

the side view in Fig. 24). Therefore, there are many dangling bonds on the icosahedrons, 

including isolated boron atoms in a single layered α-tetragonal B50 sheet, implying the sheet 

might be unstable and a surface reconstruction to stabilize the sheet is required.  To test the 

stability of this sheet, we optimized the structure based on SCED-LCAO molecular 

dynamics as well as using the DFT method as implemented in the VASP package. 

In SCED-LCAO calculations, we used a 2x2 super cell in real space and the 

optimized structure were determined with forces converging to  <  10−2 𝑒𝑉/𝑎𝑡𝑜𝑚. On the 
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other hand, in DFT-VASP calculations, we used a 1x1 super cell with similar force 

convergence criterion. We tested our DFT results with two different types of 

pseudopotentials and exchange correlation potentials.  In one case, we used an ultra-soft 

(US) pseudopotential [60, 61] with generalized gradient approximation GGA PW91 [62] 

for exchange correlation and in the other case, we used the projector augmented wave 

(PAW) [65] with PBE [66] for exchange correlation. The typical k-point mesh used in 

energy calculation was 3x3x1. The optimized lattice constant (see Fig. 25) for the B50 sheet 

with SCED-LCAO was found to be 0.96𝑎0 while for VASP we found 0.97𝑎0 and 0.98𝑎0 

for US and PAW respectively, where 𝑎0 = 8.75 Å is the predicted lattice constant given 

by [67].  

 
Figure 25. Lattice constant optimization for a single layered α-tetragonal B50 sheet using 
(a) SCED-LCAO, (b) DFT (US/GGA) and (c) DFT (PAW/PBE).   The bulk lattice constant 
value used here is  𝑎0 = 8.75 Å [67]. 
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It was found that, after full relaxation (see the insets in Fig. 25), the reconstructed 

single layered sheet is structurally stable with positive vibration frequencies, but it totally 

lost its initial symmetry, and the degree of the distortion is different in all three cases. In 

all of the three cases we found buckling of the whole structure and a deformation of some 

of the icosahedral B12 clusters. The boron atoms with dangling bonds try to relocate to 

increase their co-ordination. But, due to the deformation of some icosahedral clusters, the 

relaxed α-tetragonal B50 sheets have two types of intra-icosahedral bonding: one is within 

a deformed icosahedral cluster and the other is within a regular icosahedral cluster. We 

also found that for the inter-icosahedral bonds there are single and double bonding types, 

while for the bonds between the B12 clusters and two single boron atoms there are also two 

different types of the bonding with the isolated or not isolated B atom.  

 

Figure 26. Relaxed structures for α-Tetragonal B50 sheet using SCED-LCAO, VASP-US 
and VASP-PAW_PBE 
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Our simulations suggest that a stable single-layered α-tetragonal B50 sheet broke 

the α-Tetragonal B50 symmetry because of the existence of many dangling bonds associated 

with the isolated boron atoms and icosahedrons. The stability in the α-tetragonal B50 

symmetry could is expected to be improved in a multi-layer or a thin film of α-tetragonal 

B50 because of the opportunity to reduce the number of dangling bonds in such a system 

and because it is energetically favorable to reduce the surface to volume ratio.  

Experimentally synthesized ultrathin sheets have a thickness of about 8-12 nm which 

translates to about 20 layers. Therefore, we plan to investigate the structural stability of 

multi-layer sheets starting from two-layered α-tetragonal B50. 
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CHAPTER IV 

PAREMERIZATION OF THE SCED-LCAO HAMILTONIAN FOR GROUP V 

ELEMENTS: A ROBUST TEST FOR NITROGEN AS A CASE STUDY 

 

This chapter will focus on developing the parameters characterizing the SCED-

LCAO Hamiltonian for the element nitrogen. Since one of the goals of this dissertation is 

to study the bandgap engineering of h-BN sheets inserted with graphene domains, it is 

necessary to develop the SCED-LCAO Hamiltonian for the element nitrogen. Prior 

researchers in the group have developed the SCED-LCAO Hamiltonian for silicon, carbon, 

and boron. There were also some preliminary attempts to develop the SCED-LCAO 

Hamiltonian for nitrogen using GaN in the database. In this work, we will expand the 

database to include other systems and compounds (BN and CN systems) containing 

nitrogen and we will carry out a systematic study so that the parameters associated with 

the SCED-LCAO Hamiltonian for nitrogen are robust and transferable. 

 

4.1 Fitting for Nitrogen SCED-LCAO parameters 

To develop SCED-LCAO parameters for nitrogen element, a database of different 

types of heterogeneous clusters that contain nitrogen and another element will be used.  

The database used in our study consists of properties such as bond lengths and cohesive 

energies, which are obtained using ab-initio approaches (either VASP or Gaussian). For 

each of the clusters in our database, we calculate properties, such as the bond-length and 
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cohesive energies, both via SCED-LCAO and ab-initio approaches and then we use a least 

square method (Marquadt algorithm) for minimizing the residue. We randomly generate 

several parameter sets of the SCED-LCAO Hamiltonian, and use the Marquadt algorithm 

to get the lowest possible residue. The optimization code for finding the best set of 

parameters for SCED-LCAO Hamiltonian was originally written by a previous graduate 

student, Dr. Chris Leahy, which was subsequently modified by another graduate student, 

Dr. Lyle Smith, to circumvent some of the charge self-consistency issues encountered 

during these optimizations.  

Two different strategies were considered for the fitting, depending on the type of 

nitrogen based clusters during the optimization. One strategy was to use BN and CN 

clusters while the other strategy used GaN clusters. In both cases the total residue of the 

different optimizations is monitored with the aim of always having a residue as small as 

possible with an improvement in the values of the parameters when compared to a previous 

set. Throughout the fitting, three particular parameters are closely monitored in 

determining the parameters of the SCED-LCAO Hamiltonian for nitrogen. They are the 

two off-site Hückel energies described by parameters 𝜀𝑠
′  and 𝜀𝑝

′  , and the Hubbard term U 

which describes the strength on-site electron correlations. Our experience shows that the 

difference in values between 𝜀𝑠
′  and 𝜀𝑝

′  must be very close to the difference in values 

between the two onsite orbital energies 𝜀𝑠 and 𝜀𝑝. We find that either too large or too low 

values of U will not describe the charge transfers correctly, resulting in incorrect ground 

state structure and predicting incorrect relative energy of structures. 
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4.1.1 Nitrogen parameters optimized with BN and CN clusters 

As already stated, one approach for obtaining the optimized parameters for SCED-

LCAO Hamiltonian for Nitrogen uses a database of properties containing several types of  

BN and CN clusters.  We considered a total of 22 BnNm clusters and 17 CnNm clusters (n+m 

≤10) in the fitting procedure. Tables 5.1 and 5.2 show the database containing clusters of 

different symmetries and their properties corresponding to BnNm and CnNm clusters.  The 

physical properties for these clusters were calculated from first-principles methods, and the 

corresponding results for the optimized parameters of the SCED-LCAO Hamiltonian are 

shown to assess the quality of the fitting for clusters containing nitrogen. It can be seen 

clearly from these tables that the SCED-LCAO results are consistent with the DFT results 

[25], clearly indicating that our SCED-LCAO Hamiltonian for nitrogen can correctly 

characterize the interactions present in the nitrogen element.  The properties given in the 

database contain all characteristic bond lengths representing a given cluster and its 

corresponding binding energy (shown within parenthesis). 
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Clusters 
(BnNm) 

Symmetry Database References 
Å, (eV) [25] 

SCED-LCAO Results 
Å, (eV) 

 
Dih 0.659675 

(-0.088449) 
0.57696801 

(-0.08985155) 

 
Dih 

 
1.323160 

(-0.116296) 
1.33959339 

(-0.13124683) 
 

 

 
Civ 

1.143163 
1.456700 

(-0.126543) 

1.15522522 
1.44828062 

(-0.12271019) 

 

 
C2v 

0.648227 
1.255078 

(-0.126553) 

0.62192704   
1.22006672      

(-0.12032262) 

 

 
C2va 

0.583497 
1.272920 
1.456654 

(-0.142195) 

0.58551443      
1.25607078 
1.45337274 

(-0.14876831) 

 

 
C2vb 

1.156522 
0.858636 
0.671727 

(-0.130590) 

1.16150972 
0.81891018 
0.62033131 

(-0.12337348) 
 

 
 

 
Civa 

1.369382 
1.203877 
1.122779 

(-0.141462) 

1.39541651      
1.21509313      
1.13703854      

(-0.14290138) 
 

 

 
Civb 

 

1.259239 
1.395666 
1.112110 

(-0.154901) 

1.22607933      
1.46434972      
1.13573563      

(-0.16097148) 

 
Dih 1.311856 

(-0.141881) 
1.24591301      

(-0.12675317) 

 

 
C2v 

 

0.615391 
1.537884 
1.341462 

(-0.128828) 

0.61148444 
1.537884 

1.25322429      
(-0.12721283) 

 

 
D2h 

1.181049 
0.798394 

(-0.149559) 

1.13197994 
0.78632948 

(-0.15414776) 
 

 
 

 
Diha 

0.782703 
1.310395 

(-0.134575) 

0.81305716 
1.29218386 

(-0.13683636) 

 

 

 
Dihb 

0.596192 
1.413008 

(-0.119698) 

0.68565586 
1.413008 

(-0.11660460) 

 

 
 

C2vb 

1.170906 
0.871357 
1.299613 
0.019619 

(-0.133577) 

1.17956408      
0.83134489      
1.26333222      
0.03449571      

(-0.12733551) 
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C2vf 
 

0.841462 
0.718120 
1.060525 
1.408541 

(-0.150901) 

0.88408457 
0.70893295 
1.01865124      
1.43643509 

(-0.14975781) 

 

 
C2v 

1.077058 
1.418147 
0.864972 

(-0.138497) 

1.08097937      
1.39871494      

0.864972 
 (-0.13083305) 

 

 

 
C2va 

 

0.964237 
0.899674 
1.320332 
1.306801 

(-0.130675) 

1.00346356    
0.86729849      
1.27499972      
1.29071038      

(-0.12353820) 
 

 
 

 
 

C2ve 

1.403723 
0.810052 
0.288643 
1.200235 

(-0.164109) 

1.36766111      
0.82262378      
0.34084446      
1.19505750      

(-0.16099290) 

 

 
D3h 

1.096560 
1.514849 

(-0.189761) 

1.14535173      
1.48036298      

(-0.18679473) 

 

 

 
 

D2d 

0.919119 
1.173999 
0.650063 
0.830255 

(-0.174808) 

0.91847910      
1.18674703      
0.64945912      
0.83915222      

(-0.18478289) 

 

 
D4h 

1.491329 
1.879734 

(-0.203256) 

1.55925778      
1.81894145      

(-0.19679969) 

 

 
D5h 

1.916653 
2.253138 

(-0.209663) 

1.97060645 
2.18608135 

(-0.20129187) 

Table 5.1.  BnNm clusters in different symmetries with geometries and binding energies 
obtained by ab-initio [25] and SCED-LCAO calculations. B (purple) and N (indigo). The 
ab-initio calculations (Gaussian package) were done by Dr. Lyle Smith. 
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Clusters 
(CnNm) 

Symmetry Database References 
Å, (eV) [25] 

SCED-LCAO Results 
Å, (eV) 

 

 
C2v 

0.790381 
1.032042 

(-0.152305) 

0.790381 
1.032042 

 (-0.15768115) 
 

 

 
Dih 

1.375569 
1.152190 

(-0.200156) 

1.24791463 
1.24721882 

(-0.19502662) 

 

 
D2h 

0.737351 
1.147029 

(-0.158600) 

0.85994201 
1.08621712 

(-0.16851971) 

 

 

 
Dih 

1.309768 
1.182964 

(-0.195146) 

1.22822829 
1.28001647 

(-0.21731863) 

 

 
C3v 

0.885050 
1.078976 

(-0.113750) 

0.86336069 
1.11860677 

(-0.10038047) 

 
 

 

 
 

C2va 

1.147810 
1.092002 
0.597800 
0.423120 

(-0.183823) 

1.11809448 
1.12815664 
0.50565470 
0.51020701 

(-.15290536) 
 

 

 
 

C2vb 

1.411641 
1.150442 
1.039574 
0.784888 

(-0.170241) 

1.411641 
1.22782363 
1.10012744 
0.72738546 

(-0.18210087) 

 

 
D3h 

1.020275 
1.054562 

(-0.145869) 

0.98413625 
1.12871523 

(-0.17230773) 

 

 
 

 
 

C2v 

1.240676 
0.990182 
1.263540 
0.736694 
0.584440 

(-0.191604) 

1.12347032 
1.06002346 

1.263540 
0.736694 

0.59007508 
(-0.19637876) 

 

 
C4v 

0.985652 
1.317528 

(-0.120716) 

1.09090095 
1.23596939 

(-0.10434597) 

 

 
D4h 

1.156781 
1.163554 

(-0.087302) 

1.17961463 
1.08059809 

(-0.11078869) 
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C2v 

1.251150 
1.017708 
1.327555 
1.118334 
0.657546 
0.542555 

(-0.192238) 

1.251150 
1.017708 
1.327555 

1.10346494 
0.66854482 
0.58796384 

(-0.20099080) 

 

 
 

D3h 

 
1.405862 
1.157188 

(-0.204757) 

 
1.30488327 
1.21550396 

(-0.21735430) 

 

 
C4v 

1.013399 
1.249088 

(-0.140432) 

1.03337243 
1.249088 

 (-0.18533345) 

 

 
D4h 

1.181593 
1.041468 

(-0.132661) 

1.12033221 
1.03219016 

(-0.17051836) 

 

 
 

D2d 

0.685372 
1.089384 
0.761442 

(-0.150744) 

0.60147098 
1.09619391 
0.67131896 

(-0.21472773) 

 

 
 

Td 

 
1.482883 
1.146910 

(-0.203655) 

 
1.35417934 
1.18486524 

(-0.21564890) 
 

Table 5.2.  CnNm clusters in different symmetries with geometries and binding energies 
obtained by ab-initio [25] and SCED-LCAO calculations. C (yellow) and N (indigo). The 
ab-initio calculations (Gaussian package) were done by Dr. Lyle Smith. 
 

One particular function to be evaluated during the fitting of different parameters in 

SCED-LCAO code is the overlap function as defined in equation 11. The overlap function 

is expected to have the general shape of any overlap curves obtained from ab-initio 

calculations, and as already indicated in [24], the following constraints must be met:   

 The normalized overlap cannot exceed unity; 

 The overlap curve must decay to nearly zero within a cutoff to ensure localized 

behaviors of the Hamiltonian matrix elements defined in Eq. 6.2. 
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Figure 27. Overlap matrix elements functions for Nitrogen element vs the bond lengths in 
Å. Color coding shown in the legend of the curves. 
 

A plot of the overlap matrix elements obtained for this first set of presented results 

is shown in Fig. 27. We can note that only four of the five functions of the overlap matrix 

elements were fitted for Nitrogen which means that the 𝑝𝑠𝜎 function was subjected to the 

condition 𝑆𝑝𝑠𝜎 = −𝑆𝑠𝑝𝜎. Also note that 𝐴𝜏 = 1 for 𝜏 = 𝑠𝑠𝜎, 𝑝𝑝𝜎 and 𝑝𝑝𝜋 while 𝐴𝜏 = 0 

for 𝜏 = 𝑠𝑝𝜎, 𝑜𝑟 𝑝𝑠𝜎 hence the a total of 12 parameters for the overlap matrix elements will 

be optimized. The conditions of not exceeding unity and nearly zero tails beyond 5 Å are 

met within the cut off 8 Å for SCED-LCAO Hamiltonian for nitrogen (see Fig. 27 and 28).  
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Figure 28. Hamiltonian matrix elements functions for Nitrogen element vs the bond lengths 
in Å. Color coding shown in the legend of the curves. 
 

Figure 28 shows the Hamiltonian plots for Nitrogen element obtained with the first 

set of optimization and as expected all curves converged to zero around the cutoff point 

defined to be 5 Å. The results of the optimized parameters are summarized in table 6 below. 
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Hamiltonian Parameters         
for Nitrogen 

Hamiltonian Parameters          
for Nitrogen 

𝜀𝑠(𝑒𝑉) -26.23360 𝑈(𝑒𝑉) 14.37890796 
𝜀𝑝(𝑒𝑉) -13.84240 𝐵𝑍(Å−1) 3.54620870 
𝜀𝑠

′(𝑒𝑉) -29.80655145 𝐴𝑁(𝑒𝑉) -2.79304279 
𝜀𝑝

′ (𝑒𝑉) -21.13934210 𝐵𝑁(Å−1) 2.01457266 
𝑊𝑠

0(Å−1) 0.58870680 𝛼𝑁(Å−1) 3.88124844 
𝑊𝑝

0(Å−1) -0.35574524 𝑑𝑁(Å) 1.03590259 
𝛼𝑠,𝑤(Å−1) 1.48115559 𝛼𝑁𝐶(Å−1) 0.43919196 
𝛼𝑝,𝑤(Å−1) 1.80524342 𝛼𝑁𝐵(Å−1) 0.59121571 
𝛼𝐾(Å−1) 0.35974085   

Overlap Parameters                
for Nitrogen 

Overlap Parameters                
for Nitrogen 

𝐵𝑠𝑠𝜎(Å−1) 0.60241762 𝐵𝑝𝑝𝜎(Å−1) -1.51869428 
𝛼𝑠𝑠𝜎(Å−1) 1.77820450 𝛼𝑝𝑝𝜎(Å−1) 3.41293853 

𝑑𝑠𝑠𝜎(Å) 0.26212788 𝑑𝑝𝑝𝜎(Å) 0.94860474 
𝐵𝑠𝑝𝜎(Å−1) 0.46076751 𝐵𝑝𝑝𝜋(Å−1) 0.03232676 
𝛼𝑠𝑝𝜎(Å−1) 3.01771075 𝛼𝑝𝑝𝜋(Å−1) 3.76990646 

𝑑𝑠𝑝𝜎(Å) 1.22199361 𝑑𝑝𝑝𝜋(Å) 0.70753711 
Table 6. First set of SCED-LCAO Hamiltonian parameters for Nitrogen element. 
 

Since the databases used in the fitting process included only the BnNm and CnNm 

clusters, to test the transferability of the optimized nitrogen parameters, we need to perform 

the robust test for the crystalline structures containing nitrogen atom. The first nitrogen 

based structure considered in our robust test is a monolayered h-BN sheet (Fig. 29). Lattice 

constant optimization of the structure was performed. Fig. 30 gives the optimization plot 

as function of the lattice constant. We found that our optimized lattice constant is about 

3.5% overestimated compared to the experimental value of 2.5 Å [68]. Calculated 

electronic densities of states show a wide band gap behavior with the energy gap of 3.303 

eV which is underestimated compared to both DFT results (4.04 𝑒𝑉 and 4.64 𝑒𝑉 using 

LDA and GGA, respectively, [69]) and experimental measurements (5.9 𝑒𝑉  [70, 71] and 
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5.4 𝑒𝑉 in [11], respectively). The average charge transfer from Boron to Nitrogen was 

0.657 𝑒. 

 
Figure 29. Top view of the optimized 15x10 h-BN monolayer using SCED-LCAO 
parameters for Boron and Nitrogen. 
 
 

 
Figure 30. Lattice constant optimization of h-BN sheet with optimized lattice at                     
a* = 1.035a0 
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The second robust test was done for Wurtzite BN (w-BN) bulk structure. A 7x7x4 

w-BN bulk was built with the lattice constants 𝑎0 = 2.55 Å and 𝑐0 = √
8

3
𝑎0 [68] (figure 

31).  

 

Figure 31. Top view (left panel) and side view (right panel) of the optimized and relaxed 
w-BN using SCED-LCAO parameters for Boron and Nitrogen. 
 

The optimized lattice constants were found to be 4% overestimated (see Fig. 32). 

The energy gap was also investigated through the calculations of the electronic density of 

states and a gap energy of 𝐸𝑔 = 3.7𝑒𝑉 was obtained. Similar to the case of h-BN sheet, the 

calculated gap in the case of w-BN was also underestimated compared to the previously 

reported values that lie in the range of 4.5 to 5.5 𝑒𝑉 [68]. 
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Figure 32. Lattice constant optimization of w-BN (7x7x4) bulk with the optimized lattice 
constants being 𝑎∗ = 1.04𝑎0 and  𝑐∗ = 1.04𝑐0, where 𝑎0 and 𝑐0 are defined in the text. 
 

The amount of charges transferred between boron and nitrogen was calculated to 

be ≈ 0.499 electrons, slightly less charge transfer compared with the amount transferred h-

BN sheet, indicating nitrogen gains less charge in the w-BN bulk than in the h-BN sheet. 

Since the GaN clusters were not included in the database, it is a big challenge to 

test the transferability of the optimized SCED-LCAO Hamiltonian for nitrogen in GaN 

systems. Therefore, we chose Wurtzite GaN crystalline structures as the third structure 

used in our robust test of the nitrogen parameters. It has been reported that lattice 

parameters of w-GaN are given by [72] (𝑎0 = 3.189 Å and 𝑐0 = 5.208 Å) and the energy 

gap is in the range of  3.23 to 3.457 𝑒𝑉 at 300𝐾 [73-77] and 3.30 to 3.50 𝑒𝑉 at 0𝐾 [73, 

76, 78, 79]. Lattice constant optimization was performed on a 6x6x4 w-GaN structure as  
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Figure 33. Top view (left panel) and side view (right panel) for the optimized and relaxed 
w-GaN using SCED-LCAO parameters for Gallium and Nitrogen. 
 
 
shown by its top and side views in figure 33. The optimized lattices were found to be 

overestimated by 3% as can be seen in the optimization plot (Fig. 34). The optimized 

structure was then fully relaxed and the electronic density of states were calculated. 

Interestingly, the calculated energy gap for w-GaN bulk was found to be 𝐸𝑔 = 4.962 𝑒𝑉, 

larger than the reported values, while the amount of charges transferred between the 

elements Gallium and Nitrogen was around 0.753 electrons. 

 
Figure 34. Lattice constant optimization of w-GaN (6x6x4) bulk with the optimized lattice 
constants being 𝑎∗ = 1.03𝑎0 and 𝑐∗ = 1.03𝑐0, where 𝑎0 and 𝑐0 are defined in the text. 
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4.1.2 Nitrogen parameters optimized with GanNm clusters. 

The second strategy used for determining the parameters of SCED-LCAO 

Hamiltonian for nitrogen consisted of including only the properties of GanNm clusters in 

the database. A list of different clusters used in this fitting procedure and their properties 

are listed in Table 7.  This database of properties was computed by Dr. Smith [25].   

My work consisted of performing a robust test of the optimized SCED-LCAO 

nitrogen parameters for different hetero structures containing nitrogen, namely h-BN, w-

BN and w-GaN. 

Clusters 
GanNm 

Symmetry Database References 
Å, (eV) [25] 

SCED-LCAO Results 
Å, (eV) [25] 

 

 
D3h 

 
1.915125 

(-0.09120750) 

 
1.91206761 

(-0.06997367) 

 

 

 
Ciha 

2.704187 
1.725278 
1.845941 

(-0.07495350) 

2.46234324 
1.70791602 
1.90968009 

(-0.06486886) 
 

 

 
 

C2v 

3.700572 
1.209966 
1.902282 
1.481297 

(-0.07983020) 

3.39992022 
1.27831495 
1.91893693 
1.43383416 

(-0.07004712) 
 
 

 

 
 

Ciha 

2.686556 
2.550218 
1.719684 
1.843453 

(-0.06696020) 

2.51709146 
2.32957791 
1.71133512 
1.90520958 

(-0.05932974) 
 

 

 
Diha 

1.740596 
1.880500 

(-0.08630740) 

1.74979945 
1.78835803 

(-0.07944046) 
 

 

 
Cih 

1.912230 
1.201475 
1.136267 

(-0.13104750) 

2.01779008 
1.22065495 
1.16599979 
-0.12997784 

 

 

 
C2vb 

1.896811 
1.397985 
0.594313 

(-0.10365850) 

1.96107874 
1.29373921 
0.62911387 

(-0.09068114) 
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Py 

1.190017 
1.448884 
0.589452 
1.558995 

(-0.10415450) 

1.03573571 
1.30329321 
0.62478750 
1.81052627 

(-0.09621957) 
 
 

 

 
 

Ciha 

2.744226 
1.872233 
1.198579 
1.136618 

(-0.10788460) 

2.48401855 
1.90510833 
1.24739455 
1.18046492 

(-0.11399023) 
 

 

 
Diha 

1.173079 
2.020915 

(-0.10853960) 

1.26334680 
1.97744385 

(-0.10199629) 
    
 
 

 

 
 

Cihb 

1.767594 
1.782539 
1.197856 
1.130722 

(-0.10910380) 

1.81798028 
1.86623543 
1.24076908 
1.16775707 

(-0.13245292) 

 

 
D3d 

1.748908 
2.025861 
2.026850 

(-0.10289000) 

1.83431304 
2.07768866 
2.12729860 

(-0.10981760) 
Table 7. GanNm clusters in different symmetries with geometries and binding energies 
obtained by ab-initio and SCED-LCAO calculations [25]. Ga (yellow) and N (indigo) 
 

As reported in ref. [25] these different GanNm clusters were used to determine the 

optimized nitrogen parameters for SCED-LCAO. Table 8 reports the SCED-LCAO 

Hamiltonian parameters for nitrogen obtained using this second strategy.  
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Hamiltonian Parameters         
for Nitrogen 

Hamiltonian Parameters         
for Nitrogen 

𝜀𝑠(𝑒𝑉) -26.23360 𝑈(𝑒𝑉) 15.88403566 
𝜀𝑝(𝑒𝑉) -13.84240 𝐵𝑍(Å−1) 3.84869042 
𝜀𝑠

′(𝑒𝑉) -34.67487053 𝐴𝑁(𝑒𝑉) -3.50765478 
𝜀𝑝

′ (𝑒𝑉) -20.28141541 𝐵𝑁(Å−1) 1.78176908 
𝑊𝑠

0(Å−1)  0.24230389 𝛼𝑁(Å−1) 3.94697772 
𝑊𝑝

0(Å−1) -0.40115070 𝑑𝑁(Å) 0.57207437 
𝛼𝑠,𝑤(Å−1) 1.38831534 𝛼𝑁𝐶(Å−1)  
𝛼𝑝,𝑤(Å−1) 1.45510897 𝛼𝑁𝐵(Å−1)  
𝛼𝐾(Å−1) 0.25788710   

Overlap Parameters                
for Nitrogen 

Overlap Parameters  
for Nitrogen 

𝐵𝑠𝑠𝜎(Å−1) 0.67554176 𝐵𝑝𝑝𝜎(Å−1) -1.52123746 
𝛼𝑠𝑠𝜎(Å−1) 1.72525441 𝛼𝑝𝑝𝜎(Å−1) 3.29562875 

𝑑𝑠𝑠𝜎(Å) 0.24987968 𝑑𝑝𝑝𝜎(Å) 0.96429255 
𝐵𝑠𝑝𝜎(Å−1) 0.47210819 𝐵𝑝𝑝𝜋(Å−1) 0.03734260 
𝛼𝑠𝑝𝜎(Å−1) 3.08262899 𝛼𝑝𝑝𝜋(Å−1) 3.69029550 

𝑑𝑠𝑝𝜎(Å) 1.27079590 𝑑𝑝𝑝𝜋(Å) 0.74092947 
Table 8. Second set of SCED-LCAO Hamiltonian parameters for Nitrogen element. 
 

We next performed a robust test to check the transferability of these parameters to 

different cases. The first case considered was the structural optimization of w-GaN 

crystalline structure. The optimized lattice constant using this strategy was 3% 

underestimated and the energy gap was found to be 𝐸𝑔 = 4.510 𝑒𝑉, which is less than what 

was predicted using strategy #1. The amount of charge transferred between Ga and N 

elements, however, is 0.776 electrons, larger than that what was obtained using the first set 

of nitrogen parameters.  

Since in this strategy, the database did not contain any properties about BN systems, 

it is a big challenge to test the transferability of the nitrogen parameters optimized in this 

case. Similar as we discussed in 4.1.1, we selected h-BN sheet and w-BN crystalline 

structures as the testing systems. We found the optimized lattice constant for h-BN sheet 
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to be 1% underestimated and the energy gap was 𝐸𝑔 = 3.396 𝑒𝑉 was slightly larger than 

that obtained from the first set of the nitrogen parameters (discussed in 4.1.1). The 

calculated charge transfer between boron and nitrogen was also a little bit lower (i.e.,  

0.609 𝑒 in this case and 0.657 𝑒 in the first case). In addition, we found from the robust 

test for w-BN structure that this set of nitrogen parameters underestimated the lattice 

constants by 4% and could not describe the w-BN system reasonably.    

From the robust tests using these two sets of nitrogen parameters, we found that the 

first strategy overestimated the lattice constants of the crystalline structures, and the second 

set using only GanNm clusters in the database underestimated the lattice constants. We also 

found that these sets of parameters show different trends for energy band gap and charge 

transfers relative to experiments/DFT.   Based on these two observations, we decided to 

develop a third strategy that expanded the database to include properties of all three 

clusters.  In this third strategy, we considered two cases: (i) Start with optimized parameters 

as obtained in strategy #1 but add GanNm clusters and (ii) start with optimized parameters 

as obtained in strategy #2 but add both BnNm and CnNm clusters. The aim of using these 

two directions was to further improve the already tested sets of Nitrogen parameters. 

 

4.2 Tuning the optimized Nitrogen SCED-LCAO parameters with an expanded 

database. 

From these two sets of Nitrogen parameters already optimized, we decided to use 

a third strategy to tune the parameters. A database expansion was then proposed to include 

different CnNm, GanNm, and BnNm clusters. Table 9 lists the fitting results for these clusters.  
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Clusters 
(CnNm) 

Symmetry Database References 
Å, (eV) [25] 

SCED-LCAO Results 
Å, (eV) 

 
C2N 

 
C2v 

0.790381 
1.032042 

(-0.152305) 

0.790381 
1.032042 

 (-0.15518146) 
 

C2N2 
 

Dih 
1.375569 
1.152190 

(-0.200156) 

1.22301805 
1.27846555 

(-0.18489171) 
 

C2N2 
 

D2h 
0.737351 
1.147029 

(-0.158600) 

0.82984288 
1.13598749 

 (-0.15046782) 
 

C3N2 
 

Dih 
1.309768 
1.182964 

(-0.195146) 

1.21979439 
1.29798459 

(-0.21134173) 
 

CN3 
 

C3v 
0.885050 
1.078976 

(-0.113750) 

0.79515542 
1.13669891 

 (-0.13064064) 

 
C3N2 

 
D3h 

1.020275 
1.054562 

(-0.145869) 

0.95657128 
1.16115683 

(-0.16719341) 
Table 9.1. CnNm clusters in different symmetries with geometries and binding energies 
obtained by ab-initio [25] and SCED-LCAO calculations after database expansion. 
 

Clusters 
GanNm 

Symmetry Database References 
Å, (eV) [25] 

SCED-LCAO Results 
Å, (eV) 

Ga3N D3h 1.915125 
(-0.09120750) 

1.87361838 
(-0.08663734) 

 
Ga3N 

 
Ciha 

2.704187 
1.725278 
1.845941 

(-0.07495350) 

2.47736182 
1.67076202 
1.84528489 

(-0.07482634) 
 
 

Ga4N 

 
 

C2v 

3.700572 
1.209966 
1.902282 
1.481297 

(-0.07983020) 

3.38277633 
1.22367837 
1.86912944 
1.42566837 

(-0.08208574) 
 
 

Ga4N 

 
 

Ciha 

2.686556 
2.550218 
1.719684 
1.843453 

(-0.06696020) 

2.51905362 
2.36993188 
1.67331049 
1.84135884 

(-0.06706916) 
 

Ga3N2 

 
Diha 

1.740596 
1.880500 

(-0.08630740) 

1.73058740 
1.74189151 

(-0.09351220) 
 

GaN3 
 

Cih 
1.912230 
1.201475 
1.136267 

(-0.13104750) 

1.91742180 
1.16673874 
1.10542101 

(-0.12854615) 



80 
 

 
GaN3 

 
C2vb 

1.896811 
1.397985 
0.594313 

(-0.10365850) 

1.90284817 
1.22141580 
0.60404396 

(-0.10011877) 
 

GaN3 
 
 

Py 

1.190017 
1.448884 
0.589452 
1.558995 

(-0.10415450) 

1.10468489 
1.23258292 
0.59954052 
1.67547238 

(-0.10533089) 
 
 

Ga2N3 

 
 

Ciha 

2.744226 
1.872233 
1.198579 
1.136618 

(-0.10788460) 

2.50320345 
1.82805717 
1.20346261 
1.12636389 

(-0.11300815) 
 

Ga2N3 
 

Diha 
1.173079 
2.020915 

(-0.10853960) 

0.11300815 
1.89199829 

(-0.10316715) 
 
 

GaN4 

 
 

Cihb 

1.767594 
1.782539 
1.197856 
1.130722 

(-0.10910380) 

1.79380063 
1.83982536 
1.18487897 
1.10857809 

(-0.13563672) 
 

Ga6N6 
 

D3d 
1.748908 
2.025861 
2.026850 

(-0.10289000) 

1.80544341 
2.04050491 
1.89766259 

(-0.11403329) 
Table 9.2. GanNm clusters in different symmetries with geometries and binding energies 
obtained by ab-initio [25] and SCED-LCAO calculations after database expansion. 
 

Clusters 
(BnNm) 

Symmetry Database References 
Å, (eV) [25] 

SCED-LCAO Results 
Å, (eV) 

BN Dih 0.659675 
(-0.088449) 

0.58475764 
(-0.09790214) 

BN2 Dih 
 

1.323160 
(-0.116296) 

1.37397991 
(-0.12384299) 

 
BN2 

 
Civ 

1.143163 
1.456700 

(-0.126543) 

1.13742886 
1.41503257 

(-0.12216280) 
 

BN2 
 

C2v 
0.648227 
1.255078 

(-0.126553) 

0.62677059 
1.25237169 

(-0.12051271) 
 

BN3 
 

C2va 
0.583497 
1.272920 
1.456654 

(-0.142195) 

0.57901677 
1.30747910 
1.46218033 

(-0.13866398) 
 

BN3 

 
C2vb 

1.156522 
0.858636 
0.671727 

(-0.130590) 

1.15301698 
0.85569203 
0.61335796 

(-0.12817254) 
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BN3 

 

 
Civa 

1.369382 
1.203877 
1.122779 

(-0.141462) 

1.38188884 
1.20209633 
1.10809587 

(-0.14536553) 
 

BN3 
 

Civb 
 

1.259239 
1.395666 
1.112110 

(-0.154901) 

1.27747138 
1.43482542 
1.10474971 

(-0.15712812) 
B2N Dih 1.311856 

(-0.141881) 
-0.13866398 

(-0.14695152) 
 

B2N2 
 

C2v 
 

0.615391 
1.537884 
1.341462 

(-0.128828) 

0.61740598 
1.537884 

1.28127546 
(-0.12621733) 

 
B2N2 

 
D2h 

1.181049 
0.798394 

(-0.149559) 

1.13862604 
0.83127362 

(-0.14931366) 
 

B3N 
 

C2v 
1.077058 
1.418147 
0.864972 

(-0.138497) 

1.08464721 
1.35134485      
0.86671371 

 (-0.13448410) 
 

B3N 
 

Civa 
 

1.30029500 
1.57007800 
1.54653100 

(-0.11985725) 

1.28027033 
1.58258061 
1.71816743 

(-0.11787019) 
 

B3N 
 

Civb 
 

1.37794200 
1.26515400 
1.78043900 

(-0.13633825) 

1.35681047 
1.24029226 
1.75971302 

(-0.13698039) 
Table 9.3. BnNm clusters in different symmetries with geometries and binding energies 
obtained by ab-initio [25] and SCED-LCAO calculations after database expansion. 
 

It was found that with an extension of the database, all the structural properties and 

cohesive energies fitted better with the DFT calculations. Table 10 summarizes the new set 

of optimized parameters obtained by adding BnNm and CnNm clusters to the already 

optimized parameters of strategy #2. 
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Hamiltonian Parameters         
for Nitrogen 

Hamiltonian Parameters         
for Nitrogen 

𝜀𝑠(𝑒𝑉) -26.23360 𝑈(𝑒𝑉) 16.35696834 
𝜀𝑝(𝑒𝑉) -13.84240 𝐵𝑍(Å−1) 4.28111905 
𝜀𝑠

′(𝑒𝑉) -36.52887172 𝐴𝑁(𝑒𝑉) -2.75813588 
𝜀𝑝

′ (𝑒𝑉) -24.66565288 𝐵𝑁(Å−1) 1.47863869 
𝑊𝑠

0(Å−1) 0.77960808 𝛼𝑁(Å−1) 3.91763769 
𝑊𝑝

0(Å−1) -0.47307269 𝑑𝑁(Å) 0.61063727 
𝛼𝑠,𝑤(Å−1) 0.95204876 𝛼𝑁𝐶(Å−1) 0.41618895 
𝛼𝑝,𝑤(Å−1) 1.47150765 𝛼𝑁𝐵(Å−1) 0.51857326 
𝛼𝐾(Å−1) 0.13359119   

Overlap Parameters                
for Nitrogen 

Overlap Parameters  
for Nitrogen 

𝐵𝑠𝑠𝜎(Å−1) 0.57409702 𝐵𝑝𝑝𝜎(Å−1) -1.51531003 
𝛼𝑠𝑠𝜎(Å−1) 0.04130860 𝛼𝑝𝑝𝜎(Å−1) 3.23504242 

𝑑𝑠𝑠𝜎(Å) 0.33019252 𝑑𝑝𝑝𝜎(Å) 1.07988300 
𝐵𝑠𝑝𝜎(Å−1) 0.46233834 𝐵𝑝𝑝𝜋(Å−1) 0.04130860 
𝛼𝑠𝑝𝜎(Å−1) 3.43835960 𝛼𝑝𝑝𝜋(Å−1) 3.37257746 

𝑑𝑠𝑝𝜎(Å) 1.44240327 𝑑𝑝𝑝𝜋(Å) 0.62455627 
Table 10. Tuned SCED-LCAO Hamiltonian parameters for Nitrogen through database 
expansion. 
 

Using these tuned nitrogen parameters, we conducted robust tests and found that 

for all three crystalline structures under consideration, the optimized lattice constants are 

in better agreement with the experimental results [68, 72]. For both h-BN sheet and w-GaN 

bulk, a small overestimation of 2% was found for the lattice constant, while for w-BN bulk 

the lattice constant was only overestimated by about 1%. Furthermore, the energy gaps 

corresponding to these cases are found as follows: (i) 5.26 𝑒𝑉 for w-BN bulk that is 

consistent with the reported experimental values in Ref. 63 (see Table 11); (ii) 3.360 𝑒𝑉 

for h-BN sheet (underestimated) and (iii) 6.556 𝑒𝑉 for w-GaN bulk (overestimated).  

 A summary of the three different sets of nitrogen parameters discussed above is 

given in table 11 with the structures used for the robust test, the optimized lattice constants, 

energy gap and the charge transfer to nitrogen from either boron or gallium. The three 
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different Hamiltonian parameters (𝜀𝑠
′ , 𝜀𝑝

′  and 𝑈) that were the most important parameters 

controlling the chemical potential (and therefore, the charge transfers) and electron-

electron correlation (and therefore, the band gap) are also included in table 11 to show their 

different evolutions with respect to the methods used. 

Nitrogen 
parameters 

First set Second set 

Structures 
(super cell) 

h-BN 
(15x10) 

w-BN 
(7x7x4) 

w-GaN  
(6x6x4) 

h-BN 
(15x10) 

w-BN 
(7x7x4) 

w-GaN 
(6x6x4) 

a* (Å) 1.035 x a0 1.04 x a0 1.03 x a0 0.99 x a0 No 
optimized 

lattice 
constant, 
smaller 

than radius 

0.97 x a0 

c* (Å) - 1.04 x c0 1.03 x c0 - 0.97 x c0 
Egap(eV) 3.303 3.701 4.962 3.396 4.5096 
Charge 

transfer N 
gains (e) 

0.6568 0.4993 to 
0.4994 

0.7531 
to 

0.7532 

0.60867 0.776 

𝜀𝑠
′  -29.80655145 -34.67487053 

𝜀𝑝
′  -21.139342100 -20.28141541 

𝑈 14.37890796 15.88403566 
 

Nitrogen 
parameters 

Third set 

Structures h-BN 
(15x10) 

w-BN 
(7x7x4) 

w-GaN 
(6x6x4) 

a* (Å) 1.02 x a0 1.01 x a0   1.02 x 
a0 

c* (Å) - 1.01 x a0 1.02 x c0 
Egap(eV) 3.360 5.26 6.556 
Charge 

transfer N 
gains (e) 

0.46547 0.306 0.547 

𝜀𝑠
′  -36.52887172 

𝜀𝑝
′  -24.66565288 

𝑈 16.35696834 
Table 11. Summary of robust test for Nitrogen SCED-LCAO Hamiltonian parameters 
obtained with first (top table left), second (top table right), third (bottom table) sets of 
optimization.  
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CHAPTER V 

APPLICATIONS OF NITROGEN SCED-LCAO PARAMETERS FOR BAND GAP 

ENGINEERING  

 

5.0 Background.  

With the advances made in synthesizing two-dimensional materials such as 

graphene and monolayer h-BN, there is unprecedented enthusiasm in the research on two-

dimensional materials as they open the door to many technological innovations and provide 

a perfect playground to test the existing theories and models for two-dimensional systems. 

The properties of materials in reduced dimensions are different from their bulk counterparts 

because of effects arising from the quantum confinement of electrons and size-effects that 

profoundly alter the electronic, transport, optical, and other properties of 2D materials. 

Specifically, a fundamental research on 2D ternary systems is exciting because, by varying 

the percent composition of an element in a hybrid structure, one could tune the energy gap.  

Such materials design studies are necessary for the progress in photovoltaics research. 

Graphene is known to have a unique band structure with a zero band gap at the 

Dirac point and a linear energy dispersion near its Fermi level [5], while h-BN is a wide 

band gap material with an energy gap of 5.9 𝑒𝑉 [70, 71].   With synthesis of these materials 

via exfoliation or CVD becoming a routine, it is natural to ponder over the question: 

“whether it is possible to synthesize an atomic sheet composed of ternary elements B, N, 

and C? “If so, will it form an alloy sheet or will it phase separate into BN domains and 
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graphene domains?  Recently, the Rice university group synthesized 2D hybrid structures 

of boron nitride and graphene domains using methane and ammonia-borane as precursors 

for BN and C in a thermal catalytic CVD method [11]. The experimental set-up allowed 

the carbon content in the hybrid structure to be controlled and thus allowing a study of the 

energy gap dependence as a function of the atomic percent composition of carbon (0%, 

35%, 65%, 85%, etc.) in the hybrid structure. A variety of characterization tools ((AFM, 

HRTEM, Raman, XPS, EELS, and UV-visible absorption spectroscopy, etc.) was used to 

determine the atomic structure and bonding of hybrid ternary BNC films. Based on the 

results of these characterizations, the authors argue that the observed structure was neither 

an alloy nor a stacked structure of h-BN and graphene but a hybrid 2D structure composed 

of graphene and BN domains. Specifically, the absorption spectroscopy experiment 

conducted on the synthesized samples reveal a second absorption peak corresponding to 

carbon domains in the BNC sheet and, furthermore, the position of this peak shifted to 

higher wavelengths as the carbon content in the hybrid structure increased. More 

specifically, the optical gap shifted from 1.62 eV to 1.51 eV, as the carbon content in the 

hybrid BNC sheet increased from an atomic percentage of 65% to 85%.  This experiment 

demonstrates that by controlling the domain size of graphene domains, one can tune the 

energy gap in a hybrid BNC sheet composed of BN and graphene domains. 
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Figure 35. The absorption spectra in the ultraviolet-visible regions for different types of 
graphene-like films as reported in Ref. [11]. 
 
 

On the theoretical front, the literature reports a study that calculates the formation 

energies and energy gaps of circular shaped carbon quantum dots (QD) of different 

diameters embedded into h-BN sheets using the DFT method as implemented in the 

SIESTA code [80]. This study finds the formation energy to oscillate as a function of the 

size of the carbon quantum dots and concludes that the hybrid system has lower energy 

whenever the quantum dot contains complete aromatic rings.  The density of states for the 

hybrid (QD + h-BN) system seems to indicate the existence of a strong hybridization 

among 2p orbitals of B, N and C.  Fig. 36 shows the energy gap dependence as a function 

of the diameter of graphene QD, as obtained in ref. [80].  
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Figure 36. Energy gap 𝐸𝑔 as a function of the diameter d of the graphene quantum dot as 
reported in Ref. [80]. 
 

It is worth noting that the theoretical study presented in ref. [80] is restricted to 

circular graphene quantum dots in h-BN sheets and the highest atomic percentage 

considered is less than 11%, while the BNC films investigated by the Rice group contain 

graphene domains and BN domains of random size and arbitrary shapes.  

Motivated by the above two studies, I have performed a systematic study of 

different shaped (triangular, rectangular, circular, hexagonal) and sized graphene domains 

(up to an atomic percentage of 40%) in h-BN sheets to understand the energy gap-

dependence of the ternary BNC sheet as a function of the size and shape of graphene 

domains. The following section will discuss the results obtained from such a study.  In 

section 5.2, we have studied the stability of patterned graphene sheets containing holes of 

different shapes (circular, rectangular, hexagonal) and sizes. The goal of designing such 

patterned graphene sheets is to understand whether they will serve to open up the energy 

gap of graphene. A study of such patterned graphene with holes may hold promise as 

materials for supercapacitors [11-12, 82] and energy storage applications [13]. 
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5.1 Band gap engineering by constructing h-BN sheet with various graphene 

domains. 

Figure 37 depicts the four different types of graphene domains embedded in an h-

BN sheet. In addition, the size of the graphene domains will be changed to understand the 

roles played by both size and shape of graphene domains in altering the band gap of pristine 

h-BN sheet. As a first step, we optimize the structure of a pristine h-BN sheet and determine 

the energy band gap as obtained by the SCED-LCAO method. The Hamiltonian parameters 

for nitrogen as obtained in chapter IV are used in constructing the SCED-LCAO 

Hamiltonian for the h-BN system. A supercell of size 15x10 containing 600 atoms and a 

vacuum of 1000 Å is used in our SCED-LCAO calculations. Simulations of pristine h-BN 

sheets were followed by simulations of 2D hybrid BNC system, containing graphene 

domains of different shapes (triangular, hexagonal, circular, and rectangular) and sizes 

embedded into the h-BN sheet. In the case of triangular graphene domains embedded into 

h-BN sheets, we distinguish two cases based on how the etching is performed. In the first 

case, the etching of h-BN sheets is such that we replaced all boron atoms falling along the 

perimeter of the triangular etch by carbon atoms (T-B type graphene domains) and in the 

second case, we replaced all nitrogen atoms falling along the perimeter of triangular etch 

by carbon atoms (T-N type graphene domains). In the former case, the interface between 

the graphene domain and the h-BN sheet will have C-N bonds while in the second case, 

the interface between the graphene domain and the h-BN sheet will have C-B bonds. It will 

be interesting to investigate how this difference in the bonding characteristics of the 

interface will influence the electronic density of states and the energy gaps. 
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Figure 37. A schematic of a 15x10 h-BN sheet and the four types of graphene domains 
(triangular, circular, hexagonal and rectangular) to be created. 
 
 

Prior to doing detailed simulations of graphene domains of different sizes in h-BN 

sheet, we had to decide on which parameter set to choose for the SCED-LCAO 

Hamiltonian for nitrogen. Therefore, we calculated the band gap of pristine h-BN sheet 

using both sets.  We found that option #1 yielded a band gap of 3.303 eV and option #2 

yielded an energy gap of 3.396 eV. We also found that the calculated electronic properties 

of h-BNC sheets were similar for both parameter sets of nitrogen. Therefore, in the rest of 

this work, we will use the first set of nitrogen parameters reported in Table10.  The 

reliability of our SCED-LCAO calculations for h-BN sheets and hybrid h-BN/C sheet was 

also confirmed using DFT calculations performed using the VASP package [9] for selected 
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cases.  In DFT calculations, we used a smaller supercell of size 10x5 since the total number 

of atoms handled by first-principles is limited. This imposed further restrictions on sizes 

and shapes of graphene domains in the first-principle simulations of hybrid h-BN/C system. 

Using DFT simulations, we were able to perform simulations only on the two smallest 

triangular and rectangular domains, and three circular graphene domains. 

 

5.1.1 Triangular shaped graphene domains in hybrid h-BN/C sheets. 

5.1.1.a Case 1: Graphene domains with C-N interface (T-B). 

Triangular shaped graphene domains are embedded in the 15x10 h-BN sheets. A 

total of 4 different sizes for the triangular domains were considered with an increase 

number of Carbon atoms as the sizes increase. Triangular 1 (T-B1) has a total of 3 Boron 

atoms replaced by Carbon and it is the smallest in size with the 3 atoms forming the 

triangular shape. The next size is triangular 2 (T-B2), a total of 12 Boron is replaced along 

the boundaries of the triangle to form the 3 different sides with 5 atoms per side. The total 

number of carbon atoms is 21. Triangular 3 (T-B3) accounts for 21 Boron replaced along 

the perimeter of the domain with the total 57 carbon atoms in the domain, and triangular 4 

(T-B4) has a total of 30 Carbon atoms replacing 30 Boron atoms along the perimeter with 

the total 111 carbon atoms in the domain. These four samples are fully optimized and 

relaxed using the SCED-LCAO method and only two of them (i.e., T-B1 and T-B2) are 

found stable. They were shown in the insets of Fig. 38 (a). 

As already found in chapter IV, h-BN has a wide band gap with the Fermi level 

clearly shown between the top of the valence band (VB) and the bottom of the conduction 

band (CB) (see the black curve and black dashed line in Fig. 38 (a) and (b)). Embedding a 
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triangular graphene domain on the h-BN sheet changes the physiognomy of the density of 

states. For instance, in the cases of triangular Boron 1 and 2 (T-B1 and T-B2), even though 

the shapes and the positions of the VB and CB almost unchanged, there are a few ‘impurity’ 

states appearing within the gap of the pristine h-BN sheet and the larger the size of the 

graphene domain, the more the states, and therefore the narrower the band gap (see the 

dashed red and green curves in Fig. 38 (a)). 

 
Figure 38. (a) The density of states of patterned h-BN sheets containing triangular graphene 
domains of two different sizes as calculated using the SCED-LCAO method. To design 
such patterned h-BN sheets (labeled T-B), we replaced both boron and nitrogen atoms 
within a triangular region by carbon atoms and the boron atoms along the perimeter by 
carbon atoms. The black dashed line denotes the Fermi level of the h-BN sheet. The insets 
shown in this figure correspond to relaxed structures of h-BN/C hybrid sheets containing 
3- and 21- carbons domains (labeled T-B1 and T-B2, respectively). 
 
 With the appearances of some states between VB and CB of the DOS calculations, 

we were interested in finding the origin of such states hence it was proposed to calculate 

the local density of states (LDOS) located at the carbon domain. Fig. 38 (b) shows the 

LDOS (blue curve) for the biggest triangular domain (T-B2) together with the total DOS 

for pristine h-BN (black curve) and T-B2 (red curve) respectively. By comparing the total 
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DOS (red) with the LDOS (blue), we found that the states appearing between the VB and 

CB are indeed contributions from the graphene domain.    

 
Figure 38. (b) The local density of states located at the carbon domain for T-B2 (blue) 
together with the total DOS for pristine h-BN (black) and T-B2 (red) respectively. The 
dotted black line shows the Fermi level of pristine h-BN. 
 
 

5.1.1.b Case 2: Triangular Nitrogen. 

Similar as in triangular Boron, triangular Nitrogen also has four different sizes 

of triangular graphene domains. Triangular Nitrogen1 (T-N1) were constructed with 3 

nitrogen atoms replaced by 3 carbon atoms along the perimeter of the triangle which 

also is the smallest possible triangular domain; triangular nitrogen 2 (T-N2) with 12 

nitrogen atoms being replaced by carbon; triangular nitrogen 3 (T-N3) in which 21 

carbon atoms replaced 21 nitrogen atoms along the perimeter and finally triangular 

nitrogen 4 (T-N4) where a total of 30 nitrogen atoms are replaced by carbon. These 

samples were optimized and fully relaxed using the SCED-LCAO, and the relaxed h-

BN sheet with different size of triangular nitrogen graphene domains were shown in 
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the insets of Fig. 39 (a). The electronic density of states calculations for triangular 

Nitrogen show that the replacement of boron and nitrogen atoms by carbon atoms 

through embedding leads to the appearing of states both at the top of the valence band 

and the bottom of the conduction band (see Fig. 39 (a)) hence a decrease in the energy 

difference between the two bands. With increasing the size of the graphene domain, the 

shapes of VB and CB change, e.g., their peaks were broaden and their tails were 

extended towards the gap, leading to narrowing the band gap.  

 
Figure 39. (a) The densities of states results corresponding to the second type of triangular 
graphene domains (T-N) embedded into h-BN sheets, where the interface now contains C-
B bonds with all nitrogen atoms along the perimeter of the triangle replaced by carbon 
atoms and the interior B and N atoms replaced by carbon atoms. Insets show the relaxed 
structures corresponding to four different sizes of graphene domains embedded in h-BN 
sheets. The black dashed line denotes the Fermi level of the h-BN sheet. 
 
 

The calculation of the LDOS located at the carbon domain for T-N4 as an example 

is shown in Fig. 39 (b) and it reveals that the states appearing between the VB and CB are 

partially due to the presence of the carbon domain and partially due to the boron and 

nitrogen atoms at the boundary. The states are more pronounced as the size of the domain 

increases. 
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Figure 39. (b) The local density of states located at the carbon domain for T-N4 (blue) 
together with the total DOS for pristine h-BN (black) and T-N4 (red) respectively. The 
dotted black line shows the Fermi level of pristine h-BN. 
 

5.1.2 Circular Shapes of graphene domains. 

Circular graphene domains are constructed by creating the graphene domain 

with circular shapes embedded in our h-BN sheet. The possible smallest domain is 

circular1 (C-1) which is a complete hexagon of 3 boron and 3 nitrogen atoms which 

are all replaced by carbon hence a total of 6 carbon atoms. A total of 6 different sizes 

of circular shape (i.e., C-1, C-2, C-3, C-4, C-5, and C-6) were found to be possible to 

be embedded on our 15x10 BN sheet. The largest circle has a diameter of 23.97 Å. It 

was found that, during the relaxation, the graphene domain kept intact towards the 

center of the circle, while at the boundaries the strong interactions between the 3 

different atoms lead to break of the hexagonal symmetries locally more noticeable in 

the smaller circular domains. The relaxed h-BN sheet with various circular graphene 

domains were shown in the insets of Fig. 40 (a). The electronic density of states shown 
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in Fig. 40 (a), predict the appearance of new states both at the top of the VB and also 

bottom of the CB similar to the cases found in the triangular domains. Through local 

density of states calculations (e.g., the blue curve of Fig. 40 (b) shows the LDOS for 

graphene domain C-6), the states were identified to be mainly contribution from the 

graphene domain which is also observable from the total DOS since as the diameter of 

the circles increase the states also appear more clearly together with a shift of the Fermi 

level towards to the conduction band in the h-BN sheet; suggesting a decrease in the 

energy gap. 

 
Figure 40. (a) The densities of states results for h-BN/C hybrid sheets corresponding to 
circular graphene domains of different sizes using the SCED-LCAO method.  The Fermi 
level is denoted by the black dashed line. The insets show the relaxed structures of h-BN/C 
hybrid sheets corresponding to six different circular graphene domains of different sizes. 
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Figure 40. (b) The local density of states located at the carbon domain for C-6 (blue) 
together with the total DOS for pristine h-BN (black) and C-6 (red) respectively. The dotted 
black line shows the Fermi level of pristine h-BN.  
 
 

5.1.3 Hexagonal Shapes of graphene domains. 

Four hexagonal domains were considered which were constructed by the number 

of hexagons and are named as H-1, H-2, H-3, and H-4, respectively. The smallest 

hexagonal domain H-1 was formed by three nearest hexagons with thirteen carbon atoms. 

The second one, H-2 was constructed by seven nearest hexagons with six of them around 

the central one. When adding another twelve hexagons surrounded to the H-2, we formed 

H-3. The biggest hexagonal Carbon domain, H-4, was constructed by adding 18 hexagons 

at the boundary of H-3, with possible distance between two edges of the hexagon being 

17.99 Å. We found that, at the center of a given domain the graphene structure is well-

defined. But as one moves from the center towards the hexagonal boundaries, the 

interaction between the carbon atoms and boron or nitrogen atoms becomes stronger with 

different bonds between two types of carbon. The two types of carbon atoms identified at 
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the boundaries are C1 and C2. In C1 the carbon is connected to two carbon atoms and a 

single nitrogen atom while in C2 the carbon atom is connected to two carbon atoms and a 

single boron atom. These two types of carbon atoms are alternately distributed along the 6 

edges of the hexagon domain. The relaxed h-BN sheet with different size of hexagonal 

graphene domains were shown in the insets of Fig. 41 (a). As in the previous discussions, 

the electronic density of states revealed the appearance of some hybrid states at the top of 

VB and the bottom of CB, leading to a decrease in their energy difference but the shape of 

the valence/conduction band almost remains the same as the pure h-BN. 

 
Figure 41. (a) The densities of states results for h-BN/C hybrid sheets corresponding to 
hexagonal graphene domains of different sizes as obtained using the SCED-LCAO method.  
The Fermi level of the h-BN sheet is denoted by the black dashed line. The insets show the 
relaxed h-BN/C hybrid sheet corresponding to hexagonal graphene domains of different 
sizes. 
 
 
 The calculation of the LDOS for the hexagonal graphene domain also revealed that 

the states are originating from the carbon domains of the different hexagonal shapes. Fig. 

41 (b) as an example, shows the total DOS of both pristine BN (black curve) H-4 h-BNC 

(red curve) respectively, with the LDOS for H-4 domain (blue curve). 
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Figure 41. (b) The local density of states located at the carbon domain for H-4 (blue) 
together with the total DOS for pristine h-BN (black) and H-4 (red) respectively. The dotted 
black line shows the Fermi level of pristine h-BN. 
 
 

5.1.4 Rectangular Shapes of graphene domains. 

Rectangular shapes of graphene domains are constructed and embedded in the h-

BN sheet to create the h-BNC sheets and subsequently check the effect on the gap energy. 

A total of 7 rectangular shaped graphene domains were created, named as R-1, R-2, R-3 

R-4, R-5, R-6, and R-7. Note that CB and CN bonds are located at opposite sides of the 

rectangular and alternatively distributed at the other two sides. The smallest rectangular 

graphene domain is rectangular 1 (R-1), in which a total of 6 carbon atoms substitute 3 

boron and 3 nitrogen atoms and form the perimeter. The largest possible rectangular carbon 

domain for which there is no interaction between the neighboring domains is rectangular 7 

(R-7), where a total of 42 carbon atoms substitute 21 boron and 21 nitrogen atoms along 

the edges of the perimeter with lengths of  29.97 Å and 21.00 Å, respectively. At the 

boundaries the interactions between the carbon atoms and boron or nitrogen atoms are 
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strong but the symmetries are kept. The relaxed h-BN sheet with various rectangular 

graphene domains were shown in the insets of Fig. 42 (a). The electronic density of states 

calculations also revealed that the introduction of rectangular graphene domains within the 

h-BN sheet favored the appearance of some hybrid states at the top of the VB and the 

bottom of CB. As the area of the rectangular domains increases a decrease in the energy 

difference between the two bands was found when compared to the energy gap of pure h-

BN sheet. The origin of the hybrid states between top of the VB and bottom of the CB were 

also confirmed to be from the carbon domains through calculations of the LDOS for the 

rectangular graphene domain (e.g., the blue curve in Fig. 42 (b) shows the LDOS for R-7 

domain). 

 
Figure 42. (a) The densities of states results for rectangular h-BN/C hybrid sheets sheet 
calculated using SCED-LCAO. The Fermi level of the h-BN sheet is denoted by the black 
dashed line. The insets show the relaxed structures corresponding to rectangular h-BN/C 
hybrid sheets for rectangular graphene domains of different sizes. 
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Figure 42. (b) The local density of states located at the carbon domain for R-7 (blue) 
together with the total DOS for pristine h-BN (black) and R-7 (red) respectively. The dotted 
black line shows the Fermi level of pristine h-BN. 
 
 

5.1.5 Energy gap 

Fig. 43 shows the calculated energy gap as a function of the area of graphene 

domains corresponding to different shapes in hybrid h-BN/C sheets. The values of the 

Fermi energy, energies for the highest valence and the lowest conduction bands, and the 

energy gap for all h-BN sheets with different shapes and sizes of graphene domains are 

listed in Table 12.  For the case of Triangular-B graphene domains (black dots) with boron 

atoms at the boundary replaced by carbon, there exits only C-N bonds (~ 1.2 Å) at the 

boundary. On the other hand, since the bonds that exist within the boundary are C-C bonds 

(~1.46 Å), and those existing outside the boundary are B-N bonds (1.5 Å), a mismatch 

among the three types of bond lengths in the vicinity of the boundary causes a local strain 

in the system. This strain increases as the domain size increases, and we find that only the 

two smallest Triangular-B domains (i.e., T-B1 and T-B2) are stable in our SCED-LCAO 
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simulations.  The energy gap corresponding to these cases are 3.0 eV and 0.7 eV, 

respectively.  There is not much in the energy gap for the h-BN/C sheet labeled T-B1 

relative to the pristine h-BN sheet (3.3 eV), since the substitution of boron by carbon atoms 

takes place at only at three alternating locations of a hexagonal ring in the h-BN sheet. 

Essentially, a low % of carbon substitution into the h-BN sheet has little influence on the 

energy gap. On the other hand, the energy gap for the T-B2 case shows a big reduction in 

the energy gap relative to the pristine h-BN sheet. The reduction in the energy gap is 

associated with slight distortions of hexagonal rings at the boundary of the domain that 

manifest as defect states in the density of states (see, Fig. 38 (a)). 

For hybrid sheets with Triangular-N graphene domains (red squares), the carbon 

atoms at the boundary of the domain are bonded with boron atoms only.  Since boron atoms 

are electron deficient, they do not prefer to form sp2 type of C-B bonds, but prefers to form 

a three-center two-electron type of B-B bonds with the next nearest neighbor boron atoms 

upon relaxation of the structure. Consequently, the symmetry of the graphene domain is 

broken and the domain boundary exhibits distortion, creating many defect states at the top 

of VB and at the bottom of the CB.  The energy gap in such hybrid h-BN sheets show a 

drastic reduction in the energy gap compared to pristine h-BN sheets with gap values 

ranging from ~ 0.01-0.3 eV, except in the case of T-N1 (Eg ~ 0.9 eV) where the smallest 

triangular domain is not a carbon domain but a triangular domain containing boron atoms. 

For circular graphene domains (green diamonds), the initial unrelaxed structures 

have the same number of C-B bonds and C-N bonds at the boundary.  Since their bond 

lengths are different, one expects local strains at the domain boundary. However, these 

bonds are distributed uniformly and, therefore, the local strain arising from the differences 



102 
 

in bond lengths is not that drastic upon relaxation.  This may be the reason why the density 

of states is somewhat insensitive to the size of the circular graphene domain. The new states 

found in the gap must arise from states associated with C-B and C-N bonds along the 

boundary and the states associated with the graphene domains. For larger graphene 

domains, the contributions to these states come mainly from the carbon domain.  

For the case of hexagonal hybrid h-BN/C sheets, the initial structures contain 

complete hexagonal carbon rings within the graphene domain. Since the six-fold symmetry 

of hexagonal rings is not broken upon relaxation, there are no symmetry-broken states 

within the gap.  As the size of the carbon domain increases, the energy gap oscillates as the 

size of the graphene domain increases and this behavior is attributed to the aromaticity 

property of the carbon rings [75].  There are C-B bonds and C-N bonds along the domain 

boundary and the number of such bonds of each type are the same, and hence less 

distortions along the boundary.   The contributions to the total density of states from C-B 

and C-N bonds are in general small compared to contributions from C-C bonds.  The size 

of graphene domain dictates practically the energy gap. 

For the case of rectangular graphene domains embedded in h-BN/C sheets, as the 

size of the domain increases, one observes the valence band edge to move towards the 

Fermi level and the conduction band edge moving away from the Fermi level.  

Additionally, one can see new shoulders near the conduction band edge.  Since rectangular 

graphene domains are such that each of the opposite sides of the zig-zag domain have 

different bonds, namely, C-N and C-B bonds, respectively, and, therefore, the perimeter of 

this domain is under local strain. However, on the armchair side of the domain, the C-N 

bond and C-B bonds alternate with each other.  The net strain exhibited by the domain 
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leads to the change of the energy gap of the hybrid h-BN/C sheet.  The energy gap oscillates 

between 0.4 eV and .05 eV within a small energy window. 

In summary, by embedding carbon domains in h-BN sheets, their energy gaps can 

be manipulated.  Both the carbon domain size and its shape influence the energy gap of 

pristine h-BN sheets.  Since the properties contained in the database of the SCED-LCAO 

method mimics that of the DFT method, the absolute value of the energy gap obtained here 

must be used cautiously, but the relative trend obtained for the energy gap as a function of 

shape and size provides useful guidelines for materials design. Our results suggest that for 

controlled tuning of the energy gap of h-BN sheets, circular and hexagonal carbon domains 

are preferable. A summary of the Fermi level, energy at the top of the valence band and 

energy at the bottom of the conduction band is given in Table 12. Our results for this study 

have been presented on the APS March Meeting in 2015 [81]. 

 
 
Figure 43. Energy gap versus area for graphene domains of different shapes and types 
(triangular, circular, hexagonal, or rectangular) embedded into h-BN sheets. An oscillatory 
behavior for Eg versus area is obtained. 
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Graphene 
domains 

EVB (eV) EF (eV) ECB (eV) Egap (eV) 

T-B1 -13.8610 -13.86944 -10.7392 3.122 
T-B2 -11.7117 -13.91695 -10.0034 0.718 
T-N1 -12.88285687 -12.88285686 -11.98153220 0.901 
T-N2 -13.106367 -12.9247937 -12.92479360 0.182 
T-N3 -12.71577220 -12.459977920 -12.45997791 0.256 
T-N4 -12.9777402 -12.9764216 -12.96775499 0.01 
C-1 -13.212627 -13.001213 -12.808575 0.404 
C-2 -12.78322 -12.59705 -12.42672 0.355 
C-3 -12.98228 -12.67170 -12.41622 0.566 
C-4 -13.02209 -12.82156 -12.360838 0.661 
C-5 -12.72373 -12.64491 -12.56616 0.158 
C-6 -12.88629 -12.48535 -12.307118 0.579 
H-1 -13.09378 -12.508276 -12.50739 0.586 
H-2 -13.1348 -12.66801 -12.2363 0.899 
H-3 -13.0285 -12.7774 -12.44296 0.586 
H-4 -12.94113 -12.76493 -12.478915 0.462 
R-1 -13.13712 -12.93149 -12.7833 0.354 
R-2 12.8533 -12.8401 -12.8288 0.025 
R-3 -13.0057 -12.959597 -12.9134 0.092 
R-4 -12.83747 -12.83316 -12.6565 0.181 
R-5 -12.81360 -12.81097 -12.80833 0.005 
R-6 -12.67457 -12.6648 -12.5804 0.094 
R-7 -12.6439 -12.5736 -12.5732 0.071 

Table 12. Fermi levels, energies for the highest valence and lowest conduction bands, and 
corresponding energy gaps of graphene domains on h-BN sheet. Triangular boron (T-B), 
triangular nitrogen (T-N), circular (C), hexagonal (H) and rectangular (R) graphene 
domains are listed respectively. 
 
 

5.2 Band Gap Opening in Patterned Graphene Structures with Holes (“Holey 

Graphene”) 

In the last section, we focused on tuning the large band gap of h-BN down by 

embedding the graphene domains.  Graphene is known to be a gapless material.  In this 

section, we ask the question whether, by carving holes of different shapes and sizes, one 

can open a gap in graphene. We will use the SCED-LCAO method to determine whether 

holey graphene structures are stable.  If stable structures are obtained, we will calculate the 
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electronic density of states to ascertain the dependence of shape and size of patterned holes 

in graphene on the energy gap. 

For this study, we considered a supercell of size 15x10 and the largest size of the 

patterned hole in the graphene sheet was chosen carefully so that interactions between 

neighboring holes are avoided.  The shapes of the holes proposed are triangular, rectangular 

and circular (see Fig. 44). Through SCED-LCAO molecular dynamics, we will investigate 

the effect of the different hole shapes and sizes on opening the energy gap of a graphene 

sheet. 

 

Figure 44.  Patterned holes of different shapes etched into a graphene sheet referred 
hereafter as “holey [82] graphene.” 
 

5.2.1 Holey triangular graphene sheets 

The first type holey graphene sheet considered in this work is patterned triangular 

holes. Five different triangular holey sheets were chosen. The triangular holey graphene 

sheets 1, 3 and 5 have zigzag boundaries with the apex regions of these triangular domains 

containing incomplete pentagons.  The shortest distance between any two sides of these 



106 
 

triangular domains is2.484 Å. On the other hand, triangular holey graphene 2 and 4 have 

complete hexagons at the vertices. We found that after lattice optimization and complete 

relaxation, for the first three sets of holey triangular sheets mentioned above (1, 3 and 5) 

both holey graphene sheet 1 and holey 5 kept the incomplete pentagons at their respective 

vertices with their separations becoming closer, i.e., 1.89 to 2.0 Å for holey 1, and 1.83 to 

1.85 Å for holey 5, respectively. On the other hand, for holey triangular 3, two of the 

pentagons at two of the vertices form complete pentagons with bond lengths of 1.586 

and1.66 Å, respectively, and the third pentagon remains open with a separation of 1.873 Å. 

For holey triangular 2 and 4, the hexagons at the vertices are slightly deformed after 

relaxation but still intact (see the insets of Fig. 45). In terms of the effect from the different 

holey triangular sheets on the energy gap, as compared to that of pure graphene, we found 

that if the vertices of the holey triangles keep their incomplete pentagons with the 

separations becoming closer, a small gap of 𝐸𝑔 ≈ 0.1 𝑒𝑉 gets opened (e.g., in holey 

triangular 1 and 5). But, if the vertices of the triangles are complete hexagons or at least 

one is a complete pentagon, such as in holey triangular 2, 3 and 4 (see Fig. 45), it is hard 

to see the gap opening. 
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Figure 45. The calculated values of the energy gap of a graphene sheet embedded with 
triangular holes (“holey triangular graphene”) of increasing sizes. The inset shows the 
relaxed structures corresponding to the different cases studied. 

 

5.2.2 Holey circular graphene sheets 

In this section, we study the effect of patterned graphene sheets with circular holes 

of different sizes. A total of four holey circular graphene sheets was considered with hole 

sizes corresponding to areas 103.43,161.61,316.77 and 413.74 Å2, respectively. These 

circular holes were created by removing the carbon atoms inside a circle centered at the 

center of a hexagon. The unrelaxed structure of holey graphene 1 has its boundary formed 

by alternating hexagons and open polygons. In total, there are six hexagons and six 

incomplete polygons at the boundary. The incomplete polygons have separations of 

2.485 Å and after MD relaxation, the separation distances become closer in the range of 

2.15 to 2.19 Å. 
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The holey circular graphene 2 also has 6 hexagons forming the circular holes, but 

in contrast to holey circular 1, in holey circular graphene 2 the 6 hexagonal carbon networks 

are separated by carbon atoms in zigzag structures and the distances between any two 

hexagons is ≈ 4.97 Å before relaxation. After SCED-LCAO MD relaxation, we found the 

diameter of the circular hole to expand slightly and the hexagonal networks at the domain 

boundary to be distorted with the separation distance between some of the hexagon 

increasing to 6.11, 6.13, and 7.45 Å respectively while decreasing between 4.54 and 

4.69 Å, respectively for the remaining hexagons. 

For holey circular 3, there are two types of hexagonal networks at the boundary: (i) 

hexagons separated by arm-chair configurations and (ii) those separated by incomplete 

polygons. The hexagons, the incomplete polygons, and the arm-chair configurations 

alternate along the perimeter of the circular hole. The separation distance between 

hexagons separated by incomplete polygons is 2.486 Å. After relaxing the structure, the 

holey circular graphene 3 expands its diameter with the hexagons separated by arm-chair 

structures getting closer with a separation of 2.66 to 2.67 Å while the ones separated by 

incomplete polygons have wider separations of 4.95 Å. 

For holey circular 4, the hexagonal carbon networks are separated by either zigzag 

or arm-chair networks. The separation between hexagons due to arm-chair configuration 

before relaxation is 2.869 Å while that due to the zigzag configurations are 4.969 Å. For 

the holey circular graphene 4, after relaxations the shortest separation between two 

hexagons is for hexagons separated by arm-chair networks and this separation ranges from 

2.67 to 2.69 Å while for the hexagons separated by zigzag networks, their separation 
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became wider and ranged between 7.42 to 7.43 Å. A small buckling was observed at the 

edges of the circular hole 4.  

The energy gap opening corresponding to circular holes in graphene of different 

sizes is shown in Fig. 46.   The amount of stress introduced in graphene due to different 

sized circular holes is different.  For each case studied, the hole boundary has different 

types of edges and corners. A sharper boundary appears to facilitate the band gap opening 

more. Graphene sheets labeled holey circular 3 has the largest band gap opening 

(approximately, 0.32 eV). 

 
Figure 46. The calculated values of the energy gap of a graphene sheet embedded with 
circular holes (“circular holey graphene”) of increasing sizes. The inset shows the relaxed 
structures corresponding to the different cases studied. 
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5.2.3 Holey rectangular graphene sheets. 

A total of 16 different rectangular holes were constructed but 5 are considered to 

be in pairs of the same rectangular sizes with different configuration. A complete 

description for the different holey rectangular graphene sheets will be given in the appendix 

A. Using SCED-LCAO MD code all the holey rectangular graphene structures were fully 

relaxed. We found that structurally, the rectangular holes in which the area of the rectangles 

are free from the interference of any Carbon atom (as in holey rectangular 1, 2_2nd, 3, 

4_2nd, 5, 6, 7_2nd, 8, 9_2nd, 10 and 11_2nd) have a reconstruction of the hexagons forming 

the boat configuration on the holey sides. The atoms closest to the corners of these two 

sides tend to push away from the corners and move towards the center of their respective 

sides. This leads to the distances between two hexagons on either side of a boat 

configuration becoming closer or moving away from each other if the boat configuration 

is around the center of the actual side. On the other hand, the holey rectangular structures 

having Carbon atoms within their respective area (as in holey rectangular 2_1st, 4_1st, 7_1st, 

9_1st and 11_1st) have been found to have their atoms at each sides of a boat configuration 

to be getting closer to each other. For the structures with smaller rectangular area among 

this group, the incomplete pentagons/hexagons tend to close up. But as the size of the 

rectangles increases, the incomplete nature is kept.  

For all types of rectangular holes, the zigzag sides kept their initial configurations 

throughout the relaxation process. Through the electronic density of states calculations, we 

found that by creating rectangular holey graphene sheet can open an energy gap from the 

0 𝑒𝑉 gap known for graphene (See Figs. 47-48). The first set of holey rectangular graphene 

sheets mentioned above is divided into three groups: group (1) has no hexagon present (as 
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in holey rectangular 1 and 2_2nd), group (2) has an even number of hexagons (as in holey 

rectangular 5, 8 and 9_2nd), and group (3) has an odd number of hexagons (as in holey 

rectangular 3, 4_2nd, 6, 7_2nd, 10 and 11_2nd) along their respective boat configuration 

sides. It was found that, in group (1), the extension of the two zigzag sides leads to a 

decrease in energy gap as the area of the rectangular hole is increased; in group (2), the 

decrease in energy gap is also proportional to the extension of the zigzag sides but is 

indirectly proportional to the area of the holey. Such indirect proportionality between the 

area and energy gap was also observed in group (3), such as from the holey rectangular 3 

to 4_2nd and from the holey rectangular 10 to 11_2nd; but an exception was detected such 

as from the holey rectangular 6 to 7_2nd where a significant opening of the energy gap with 

the extension of the zigzag sides was found. In general, we can however say that for this 

first set of holey rectangular sheets a possible bang gap opening is realistic and it is 

indirectly proportional to the extension/contraction of the zigzag sides of the holes within 

the graphene sheets.  
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Figure 47. Energy gap dependence on the size of the rectangular holes for the first set of 
the rectangular holes. Insets show the different relaxed structures in the first set of 
rectangular holes (1, 2_2nd, 3, 4_2nd, 5, 6, 7_2nd, 8, 9_2nd, 10 and 11_2nd). 
 
 

For the second set of rectangular holes, incomplete pentagons/hexagons are present 

at the four corners and Carbon atoms with dangling bonds are within the areas of the holes 

(holey rectangular 2_1st, 4_1st, 7_1st, 9_1st and 11_1st). We found a nearly linear 

proportionality between the energy gap and the area of the rectangular holes. The energy 

gap ranges between 𝐸𝑔 = 0.107 to 𝐸𝑔 = 0.403 𝑒𝑉.  
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Figure 48. Energy gap dependence on the size of the rectangular holes for the second set 
of the rectangular holes. Insets show the different relaxed structures in the second set of 
rectangular holes (2_1st, 4_1st, 7_1st, 9_1st and 11_1st). 
 
 

Based on our results discussed above, we found that it is possible to open the energy 

gap of graphene sheet by patterning holes of different shapes and sizes in a graphene sheet. 

In general, the energy gap versus size of the patterned hole curve shows an oscillating 

pattern but the envelope of this curve has a positive slope, indicating that a graphene sheet 

with larger holes will in general exhibit larger energy gaps. In order to have a clear 

understanding of the gap opening, we performed local analysis. The nearest neighbor and 

the charge transfer on the atoms at the boundary are analyzed and summarized in Appendix 

B. We found that most atoms located at the edge of the holes have dangling bonds and lost 

their charges (from 0.006 to 0.142 e), but must atoms located at the corners keep their 3 

neighbors and most of them gain charges (from 0.001 to 0.057 e). Definitely the existence 
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of dangling bonds and charge transfer lead to the breaking of band structure symmetry at 

the Dirac point and hence a gap opening. 
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CHAPTER VI 

SUMMARY AND OUTLOOK 

 

This section highlights some of the major findings of this dissertation. Through a 

series of studies on complex low-dimensional boron nanostructures, patterned two-

dimensional sheets of graphene “holey graphene”, and patterned two-dimensional h-BN 

sheets with graphene domains, we have established that a semi-empirical approach based 

on the SCED-LCAO Hamiltonian is a powerful computational technique for designing 

materials with desired electronic properties.  The projects undertaken in this dissertation 

demonstrate that the SCED-LCAO approach is quite robust for boron containing and 

nitrogen containing compounds and systems. Because of its complex chemistry, boron is 

notoriously difficult to describe in a semi-empirical approach. Since nitrogen is highly 

electronegative, unless charge transfers in an aggregate of heterogeneous clusters, are 

captured correctly, usually semi-empirical approaches tend to fail.  The SCED-LCAO 

approach passes many of these stringent tests, making it a predictive computational tool 

for materials design. 

 The first application chosen for this stringent test was in predicting one- and two-

dimensional structures of boron based on icosahedral B12 units. The infinite one-

dimensional icosahedral B12 chains were stable and this system exhibited an energy gap of 

0.74 eV.  We also found a ring structure containing six icosahedral B12 units to be 

energetically stable with this structure exhibiting a semiconducting behavior.  Encouraged 
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by these stable systems based on B12 icosahedra, we designed three types of two-

dimensional sheets based on B12icosahedra (δ6, α, and δ4). Both δ6 and δ4 boron sheets 

exhibited semiconducting properties while α icosahedral sheet exhibited metallic 

properties. Among the boron sheets investigated, the δ6 sheet had the lowest energy, i.e., 

the most stable B12-based boron sheet.  

Prompted by a recent research on the synthesis of ultrathin boron sheets (i.e., 8-12 

nm or 20 layers) containing thin films of α-tetragonal B50, we performed simulations based 

on the SCED-LCAO method to test the stability of monolayer α-tetragonal B50 sheet.  We 

found this structure to be unable to keep the α-tetragonal B50 symmetry.  We feel that only 

a study of a multi-layer α-tetragonal B50 sheet can confirm the experimental observation. 

This work is undertaking, and we do found, from our preliminary results, that the 

two/three/four layered α-tetragonal B50 sheets indeed are stable keeping the α-tetragonal 

B50 symmetry. 

A significant amount of the effort on this dissertation was devoted to the 

development and parameterization of the SCED-LCAO Hamiltonian for nitrogen. The 

heart of any transferable semi-empirical approach is the database used for the 

parametrization. We generated a database for the structure and properties of nitrogen 

containing heterogeneous clusters (e.g., CnNm, BnNm, and GanNm) using a first-principles 

method available within the Gaussian package.  Three different sets of optimized 

parameters for nitrogen were generated, corresponding to different cluster properties 

included in the database. These optimized SCED-LCAO Hamiltonian parameters were 

tested by checking how well they reproduced the lattice constants and energy gaps of 
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different nitrogen containing structures such as h-BN sheet, crystalline w-BN bulk and 

crystalline w-GaN bulk.   

The best parameterized set is expected to be readily transferable to different 

environments. One such optimized set for nitrogen was used in subsequent studies 

involving the band gap engineering h-BN sheets.  In this dissertation, we patterned the h-

BN by embedding graphene domains of different shapes (triangular, circular, hexagonal 

and rectangular) and studied how such domains would influence the energy gap of this 

hybrid 2D sheet. We found from the densities of states calculations that the valence and 

conduction bands of the h-BN sheet retain their basic shapes, but the energy gap between 

the valence band and the conduction band is strongly dependent on the shape and size of 

the graphene domains. The hybrid 2p orbitals between B and C, and N and C, appear at the 

band gap region, either mainly at the top of the valence band, or at the top of the conduction 

band, or both, depending on the shapes and the size of the graphene domains.  We found 

that, in the domain range of < 600 Å2, irrespective of the shape of the graphene domain, 

the energy gap oscillates as the domain size of graphene is increased.  This gap oscillation 

is, perhaps, related to the ratio of the number of complete and incomplete hexagonal rings 

in a given graphene domain. In particular, the h-BND sheet with hexagonal domains 

containing complete hexagonal rings and circular domains show the trend to reduce the 

band gap when the domain size is over 600 Å2. 

In an effort to understand how the SCED-LCAO tool could be further utilized for 

band gap engineering of materials, we also studied the energy gap variation of graphene 

sheets embedded with different shapes and sizes of holes.  It was found that it is possible 

to open the energy gap of an otherwise gapless graphene sheet by patterning holes of 
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different shapes and sizes in a graphene sheet. In general, the energy gap versus size of the 

patterned hole curve shows an oscillating pattern but the envelope of this curve has a 

positive slope, indicating that a graphene sheet with larger holes will in general exhibit 

larger energy gaps.  It was also found that a graphene sheet with larger patterned holes was 

also energetically more stable.  More specifically, it was found that: (i) triangular holey 

graphene sheets yielded the smallest possible energy gap opening (0.04 to 0.11 𝑒𝑉), (ii) 

the circular holey graphene sheets exhibited an energy gap in range of 0.1 to 0.35 𝑒𝑉, and 

(iii) the rectangular holey graphene sheets exhibited an energy gap in the range 0.1 to 

0.4 𝑒𝑉.  

The main findings of this dissertation are as follows:  

 The SCED-LCAO method predicted a new family of low dimensional boron 

nanostructures based on B12 icosahedra.  

 Monolayer boron sheets with α-tetragonal B50 symmetry cannot keep the 

symmetry but multilayered α-tetragonal B50 could keep the symmetry. 

 By embedding graphene domains in h-BN sheets or by embedding holes in pristine 

graphene sheets, it is possible to engineer the energy gaps of a wide-band gap 

material and a gapless material, respectively. 

We would like to remark that while holey graphene structures and hybrid h-BN 

sheets with graphene domains have been synthesized, there are no experiments on 2D 

boron sheets as proposed in this dissertation.  
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6.1 Ongoing work 

As it was suggested in the introduction of this dissertation, we engaged into 

preliminary studies for two, three and four layers of α-tetragonal B50 structures and 

investigated their respective stabilities. Starting with a relaxation of the above stated multi-

layered structures for α-tetragonal B50 we found that all three structures are stable. The 

icosahedrons that compose the structures are not deformed as was observed in the single 

layered α-tetragonal B50 and the presence of the boron atoms with dangling bond did not 

lead to a change in their overall bonding nature. Figure 49 below shows the top and side 

views for the relaxed two-layered and three-layered α-tetragonal B50 structures. We are 

now engaged in optimizing these different structures and investigate their respective 

structural and electronic properties.  

 

Figure 49. Relaxed structures for two-layered α-tetragonal B50 (top panel) and three-
layered α-tetragonal B50 (bottom panel). (a) and (c) top views, (b) and (d) side views. 
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APPENDIX A 

HOLEY RECTANGULAR GRAPHENE SHEETS. 

 

Holey rectangular 1 is the smallest in size and its sides are made of zigzag 

configurations for two parallel sides and boat configuration for the other two sides. Holey 

rectangular 2 was identified as holey rectangular 2_1st. The structural configuration for this 

sheet was obtained in a way that 2 parallel sides have zigzag configurations while the other 

two sides have a complete hexagon hence contributing 2 Carbon atoms within the area of 

the rectangle and also 4 apparent incomplete pentagons at the corners of the rectangle hole. 

In total, 10 Carbon atoms are removed to form this structure. Holey rectangular 2_2nd was 

the second type in this pair and it was obtained by further removing the four Carbon atoms 

within the area of the previous rectangular hole. Hence two parallel sides have zigzag 

configuration while the other two parallel sides have boat configurations. A total of 20 

Carbon atoms are removed to form holey rectangular Carbon 3 which has zigzag 

configurations in two parallel sides and boat configurations in the other two sides. The two 

sides with boat configurations are longer than the zigzag sides. Holey rectangular 4 also 

has two types as in holey rectangular 2. The first type which is holey rectangular 4_1st has 

4 incomplete pentagons/hexagons at the corners of the rectangular hole and 4 complete 

hexagons, 2 on each one of the two parallel sides. The presence of these complete hexagons 

will lead to the presence of a total of 8 Carbon atoms within the area of the rectangle. A 

total of 28 Carbon atoms were removed to create holey rectangular 4_1st. By removal of 

the 8 atoms present within the area of rectangular 4_1st, holey rectangular 4_2nd will be 

created with a total of 36 Carbon atoms being removed. Rectangular holey Carbon sheet 5 
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was built through the removal of 42 Carbon atoms in the graphene sheet and it has the two 

distinct configurations: zigzag and boat on two parallel sides. On the sides with boat 

configurations, there is 2 complete hexagons on each side. Holey rectangular 6 was built 

by removal of a total of 72 Carbon atoms. It has two parallel sides with zigzag configuration 

and other two parallel sides with boat configurations. On these two sides, 6 complete 

hexagons are identified with 3 on each side. For holey rectangular 7 two different types are 

obtained: holey rectangular 7_1st in which the 4 corners have an incomplete 

pentagon/hexagon and the two sides having boat configuration have 4 visible hexagons 

which contribute a total of 16 Carbon atoms within the area of the rectangle. The other type 

of holey rectangular 7 is holey rectangular 7_2nd which is constructed by further removal 

of the 16 atoms within the area of the rectangle in type one. Hence for holey rectangular 

7_2nd, a total of 104 Carbon atoms are removed. The two parallel sides having the boat 

configuration now has 3 distinct hexagons in each side within the perimeter of the 

rectangle. To build holey rectangular 8, 110 atoms of Carbon have been removed from the 

graphene sheet. This structure has a total of 8 complete hexagons 4 on each of the sides 

having the boat configurations as part of its perimeter. Holey rectangular 9 also is the 4th 

member of these rectangular hole domains having two types holey rectangular 9_1st and 

holey rectangular 9_2nd. In the first mentioned type of holey rectangular 9, 5 complete 

hexagons are identified on each side holding boat configuration which lead to a total of 20 

Carbon atoms within the area of the triangle and also it leads to the formation of incomplete 

pentagons/hexagons at the corners of the rectangle. To get rid of the incomplete 

pentagons/hexagons at the corners of the rectangle, the 20 Carbon atoms found within the 

area of the first type are removed which gives a total of 130 Carbon atoms being removed 
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from the original graphene sheet. The two sides with configurations on holey rectangular 

9_2nd now have 4 hexagons each as part of the perimeter of the rectangle. Holey rectangular 

10 was built up by removal of 156 Carbon atoms from the graphene sheet. It has two 

parallel sides with zigzag configuration as in the previous structures and also two other 

parallel sides with boat configuration. In each of these two sides, 5 Carbon hexagons are 

counted along the perimeter of the rectangle formed by the hole. Holey rectangular 11 also 

has two types, in the first one a total of 180 atoms of Carbon are removed from graphene, 

and was identified as holey rectangular 11_1st. In this first type, 24 Carbon atoms are 

located within the area of the rectangle creating 4 incomplete pentagons/hexagons. The 

removal of these 24 Carbon atoms leads to a total of 204 atoms being removed from the 

original graphene structure. On the sides having boat configuration 5 hexagons are 

observed on each to be part of the perimeter of holey rectangular 11_2nd. 
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APPENDIX B 

HOLEY GRAPHENE SHEETS – LOCAL ANALYSIS 

 

We have performed local analysis for the holey graphene sheets with different 

shapes and sizes of holes. The Figures B.1 to B.25 show the relaxed holey graphene 

structures with the emphasis around the holes. The numbers in the figures denote the atom 

numbers. Tables B.1 to B.25 list a summary of the local analysis for the different holey 

graphene structures discussed in Chapter V of this dissertation. The second column gives 

the atom # which indicates the atoms located at the boundaries of the different holes. The 

* sign next to the atom numbers in the respective tables indicates (i) the atoms at the three 

vertices for the holey triangular graphene structures, (ii) the atoms at the edge of zigzag 

configurations separating two hexagons in the cases of the holey circular graphene 

structures, and (iii) the four atoms at the different corners for the holey rectangular 

graphene structures. The third column gives the nearest neighbors associated with the 

atoms listed in column 2 (within the cutoff 1.55 Å). Since the carbon atom in pristine 

graphene has 3 neighbors, there must be dangling bonds on the atoms around the boundary 

if they have less than 3 neighbors. The last column of each table shows the average charge 

gained (+) or lost (-) by the atom.  
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Figure B.1 Relaxed holey triangular graphene 1 near the hole area. The numbers identify 
the different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 

Holey Triangular Graphene 1 

218* 3 -0.012 
258 2 -0.087 
259 2 -0.087 
261 2 -0.023 
297 2 -0.023 
298 2 -0.088 
300* 3 -0.013 
332 2 -0.087 
333 2 -0.023 
335 2 -0.088 
369* 3 -0.013 
371 2 -0.087 

Table B.1 The atom numbers (2nd column), the nearest neighbors (3rd column), and the net 
charge (4th column) of atoms at the boundary of  the holey triangular graphene 1. 
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Figure B.2 Relaxed holey triangular graphene 2 near the hole area. The numbers identify 
the different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 

Holey Triangular Graphene 2 
 
 
 
 
 
 

217* 2 +0.011 
218 2 -0.117 
220 2 -0.064 
254 2 -0.082 
255 2 -0.132 
257 2 -0.046 
287 2 -0.084 
288* 2 -0.089 
317 2 -0.088 
318 2 -0.045 
348 2 -0.089 
349 2 -0.085 
351 2 -0.132 
384* 2 +0.002 
387 2 -0.115 

Table B.2 The atom numbers (2nd column), the nearest neighbors (3rd column), and the net 
charge (4th column) of atoms at the boundary of  the holey triangular graphene 2. 

 



131 
 

 
Figure B.3 Relaxed holey triangular graphene 3 near the hole area. The numbers identify 
the different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 

Holey Triangular Graphene 3 

176* 3 +0.049 
178 2 -0.029 
216 2 -0.061 
217 2 -0.090 
219 2 -0.096 
253 2 -0.019 
254 2 -0.140 
256 2 -0.044 
286 2 -0.127 
287 2 -0.085 
289* 3 -0.004 
315 2 -0.080 
316 2 -0.040 
318 2 -0.084 
346 2 -0.075 
347 2 -0.083 
349 2 -0.135 
381 2 -0.035 
382 2 -0.038 
384 2 -0.085 
420* 3 +0.057 

Table B.3 The atom numbers (2nd column), the nearest neighbors (3rd column), and the net 
charge (4th column) of atoms at the boundary of  the holey triangular graphene 3. 
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Figure B.4 Relaxed holey triangular graphene 4 near the hole area. The numbers identify 
the different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 

Holey Triangular Graphene 4 

135* 2 -0.045 
138 2 -0.052 
174 2 -0.051 
175 2 -0.121 
177 2 -0.083 
209 2 -0.119 
210 2 -0.129 
212 2 -0.085 
240 2 -0.084 
241 2 -0.118 
243 2 -0.053 
267 2 -0.130 
268* 2 -0.040 
291 2 -0.084 
292 2 -0.053 
316 2 -0.119 
317 2 -0.085 
319 2 -0.118 
345 2 -0.051 
346 2 -0.083 
348 2 -0.129 
379* 2 -0.045 
380 2 -0.052 
382 2 -0.121 

Table B.4 The atom numbers (2nd column), the nearest neighbors (3rd column), and the net 
charge (4th column) of atoms at the boundary of  the holey triangular graphene 4. 
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Figure B.5 Relaxed holey triangular graphene 5 near the hole area. The numbers identify 
the different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 

Holey Triangular Graphene 5 

94* 3 +0.005 
134 2 -0.085 
135 2 -0.077 
137 2 -0.036 
173 2 -0.043 
174 2 -0.043 
176 2 -0.086 
208 2 -0.137 
209 2 -0.129 
211 2 -0.082 
239 2 -0.084 
240 2 -0.134 
242 2 -0.043 
266 2 -0.129 
267 2 -0.079 
269* 3 +0.008 
289 2 -0.087 
290 2 -0.044 
292 2 -0.079 
314 2 -0.136 
315 2 -0.081 
317 2 -0.134 
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343 2 -0.038 
344 2 -0.089 
346 2 -0.129 
376 2 -0.083 
377 2 -0.031 
379 2 -0.136 
413* 3 +0.008 
415 2 -0.076 

Table B.5 The atom numbers (2nd column), the nearest neighbors (3rd column), and the net 
charge (4th column) of atoms at the boundary of  the holey triangular graphene 5. 
 
 

 
Figure B.6 Relaxed holey circular graphene 1 near the hole area. The numbers identify the 
different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 

Holey Circular Graphene 1 

258 2 -0.041 
259 2 -0.049 
260 2 -0.05 
261 2 -0.045 
295 2 -0.040 
296 2 -0.043 
329 2 -0.043 
330 2 -0.045 
331 2 -0.041 
332 2 -0.040 
368 2 -0.050 
369 2 -0.049 

Table B.6 The atom numbers (2nd column), the nearest neighbors (3rd column), and the net 
charge (4th column) of atoms at the boundary of  the holey circular graphene 1. 
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Figure B.7 Relaxed holey circular graphene 2 near the hole area. The numbers identify the 
different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 

Holey Circular Graphene 2 

217* 2 -0.010 
218 2 -0.073 
219 2 +0.085 
220* 2 -0.055 
251 2 +0.085 
252 2 -0.080 
253 2 -0.070 
254 2 +0.049 
282* 2 -0.108 
283* 2 -0.020 
311 2 +0.089 
312 2 +0.059 
342 2 -0.080 
343 2 -0.065 
375* 2 -0.007 
378 2 -0.074 
379 2 -0.084 
382* 2 -0.064 

Table B.7 The atom numbers (2nd column), the nearest neighbors (3rd column), and the net 
charge (4th column) of atoms at the boundary of  the holey circular graphene 2. 
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Figure B.8 Relaxed holey circular graphene 3 near the hole area. The numbers identify the 
different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 

Holey Circular Graphene 3 

178 2 -0.067 
179 2 +0.069 
182 2 +0.069 
183 2 -0.067 
215 2 +0.071 
216 2 -0.067 
217 2 -0.066 
218 2 +0.071 
246 2 +0.070 
247 2 +0.070 
273 2 -0.067 
274 2 -0.067 
299 2 -0.067 
300 2 +0.070 
301 2 +0.070 
302 2 -0.067 
329 2 +0.071 
330 2 +0.071 
360 2 -0.066 
361 2 -0.066 
362 2 +0.069 
363 2 +0.069 
364 2 -0.067 
365 2 -0.067 

Table B.8 The atom numbers (2nd column), the nearest neighbors (3rd column), and the net 
charge (4th column) of atoms at the boundary of  the holey circular graphene 3. 
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Figure B.9 Relaxed holey circular graphene 4 near the hole area. The numbers identify the 
different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Holey Circular Graphene 4 

135* 2 -0.036 
138 2 -0.061 
139 2 +0.071 
142 2 +0.071 
143 2 -0.062 
146* 2 -0.036 
174 2 -0.062 
175 2 -0.061 
201 2 +0.076 
202 2 +0.074 
225 2 -0.063 
226 2 +0.069 
227 2 +0.072 
228 2 -0.062 
248* 2 -0.037 
249* 2 -0.029 
269 2 -0.063 
270 2 -0.062 
292 2 +0.069 
293 2 +0.072 
317 2 +0.076 
318 2 -0.061 
319 2 -0.061 
320 2 +0.074 
347* 2 -0.036 
348 2 -0.061 
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349 2 +0.072 
350 2 +0.071 
351 2 -0.061 
352* 2 -0.035 

Table B.9 The atom numbers (2nd column), the nearest neighbors (3rd column), and the net 
charge (4th column) of atoms at the boundary of  the holey circular graphene 4. 
 
 

 
Figure B.10 Relaxed holey rectangular 1 near the hole area. The numbers identify the 
different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 

Holey Rectangular Graphene 1 

258* 3 +0.040 
259 2 -0.087 
262 2 -0.024 
263* 3 +0.044 
298 2 -0.024 
299 2 -0.086 
334* 3 +0.040 
335 2 -0.087 
336 2 -0.026 
337* 3 +0.045 

Table B.10 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 1. 
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Figure B.11 Relaxed holey rectangular graphene 2_2nd near the hole area. The numbers 
identify the different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 

Holey Rectangular graphene 2_2nd  

218* 3 +0.036 
219 2 -0.010 
222 2 -0.087 
223* 3 +0.036 
258 2 -0.112 
259 2 -0.048 
294 2 -0.049 
295 2 -0.129 
330 2 -0.112 
331 2 -0.047 
366* 3 +0.036 
367 2 -0.010 
368 2 -0.087 
369* 3 +0.037 

Table B.11 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 2_2nd. 
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Figure B.12 Relaxed holey rectangular graphene 3 near the hole area. The numbers identify 
the different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 

Holey Rectangular Graphene 3 

256* 3 +0.041 
257 2 -0.101 
258 2 +0.096 
259 2 -0.080 
260 2 -0.003 
261* 3 +0.037 
292 2 -0.051 
293 2 -0.109 
324 2 -0.109 
325 2 -0.045 
356* 3 +0.037 
357 2 -0.001 
360 2 -0.076 
361 2 +0.099 
364 2 -0.096 
365* 3 +0.040 

Table B.12 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 3. 
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Figure B.13 Relaxed holey rectangular graphene 4_2nd near the hole area. The numbers 
identify the different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 

Holey Rectangular Graphene 4_2nd  

216* 3 +0.040 
217 2 -0.098 
218 2 +0.096 
219 2 -0.076 
220 2 -0.004 
221* 3 +0.038 
252 2 -0.057 
253 2 -0.092 
284 2 -0.136 
285 2 -0.100 
316 2 -0.095 
317 2 -0.101 
348 2 -0.099 
349 2 -0.092 
380* 3 +0.044 
381 2 -0.044 
384 2 +0.095 
385 2 -0.060 
388 2 -0.016 
389* 3 +0.039 

Table B.13 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 4_2nd. 
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Figure B.14 Relaxed holey rectangular graphene 5 near the hole area. The numbers identify 
the different atoms. 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 

Holey Rectangular Graphene 5 

214* 3 +0.036 
215 2 -0.006 
218 2 -0.061 
219 2 +0.079 
222 2 +0.079 
223 2 -0.061 
226 2 -0.006 
227* 3 +0.036 
254 2 -0.115 
255 2 -0.115 
282 2 -0.064 
283 2 -0.064 
310 2 -0.113 
311 2 -0.113 
338* 3 +0.036 
339 2 -0.011 
340 2 -0.060 
341 2 +0.078 
342 2 +0.078 
343 2 -0.060 
344 2 -0.011 
345* 3 +0.036 

Table B.14 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 5. 
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Figure B.15 Relaxed holey rectangular graphene 6 near the hole area. The numbers identify 
the different atoms. 
 
 

Structures Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Holey Rectangular Graphene 6 

212* 3 +0.034 
213 2 -0.023 
214 2 -0.073 
215 2 +0.049 
216 2 +0.059 
217 2 +0.040 
218 2 +0.051 
219 2 -0.074 
220 2 -0.021 
221* 3 +0.035 
244 2 -0.071 
245 2 -0.073 
268 2 -0.130 
269 2 -0.128 
292 2 -0.100 
293 2 -0.100 
316 2 -0.104 
317 2 -0.103 
340* 3 +0.039 
341 2 -0.015 
344 2 -0.068 
345 2 +0.058 
348 2 +0.021 
349 2 +0.078 
352 2 +0.053 
353 2 -0.065 
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356 2 -0.017 
357* 3 +0.039 

Table B.15 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 6. 
 
 

 
Figure B.16 Relaxed holey graphene 7_2nd near the hole area. The numbers identify the 
different atoms. 
 

Structure Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Holey Rectangular Graphene 7_2nd  

172* 3 +0.039 
173 2 -0.008 
174 2 -0.060 
175 2 +0.060 
176 2 +0.086 
177 2 +0.065 
178 2 +0.095 
179 2 -0.065 
180 2 -0.007 
181* 3 +0.038 
204 2 -0.093 
205 2 -0.094 
228 2 -0.085 
229 2 -0.084 
252 2 -0.095 
253 2 -0.095 
276 2 -0.117 
277 2 -0.117 
300 2 -0.075 
301 2 -0.076 
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324 2 -0.108 
325 2 -0.108 
348* 3 +0.038 
349 2 -0.007 
352 2 -0.066 
353 2 +0.094 
356 2 -0.070 
357 2 +0.070 
360 2 +0.084 
361 2 -0.060 
364 2 -0.009 
365* 3 +0.039 

Table B.16 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 7_2nd. 
 
 

 
Figure B.17 Holey rectangular graphene 8 near the hole area. The numbers identify the 
different atoms. 
 

Structure Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 

170* 3 +0.042 
171 2 -0.025 
174 2 -0.060 
175 2 +0.084 
178 2 +0.076 
179 2 -0.062 
182 2 -0.061 
183 2 +0.076 
186 2 +0.086 
187 2 -0.060 
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Holey Rectangular Graphene 8 

190 2 -0.017 
191* 3 +0.042 
210 2 -0.099 
211 2 -0.105 
230 2 -0.092 
231 2 -0.092 
250 2 -0.133 
251 2 -0.136 
270 2 -0.095 
271 2 -0.095 
290 2 -0.095 
291 2 -0.097 
310* 3 +0.043 
311 2 -0.029 
312 2 -0.061 
313 2 +0.083 
314 2 +0.077 
315 2 -0.062 
316 2 -0.062 
317 2 +0.077 
318 2 +0.083 
319 2 -0.061 
320 2 -0.027 
321* 3 +0.043 

Table B.17 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 8. 
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Figure B.18 Holey rectangular graphene 9_2nd near the hole area. The numbers identify the 
different atoms. 
 

Structure Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Holey Rectangular Graphene 9_2nd  

130* 3 +0.034 
131 2 -0.023 
134 2 -0.069 
135 2 +0.080 
138 2 +0.079 
139 2 -0.063 
142 2 -0.063 
143 2 +0.079 
146 2 +0.080 
147 2 -0.069 
150 2 -0.023 
151* 3 +0.034 
170 2 -0.061 
171 2 -0.061 
190 2 -0.113 
191 2 -0.113 
210 2 -0.088 
211 2 -0.088 
230 2 -0.126 
231 2 -0.125 
250 2 -0.088 
251 2 -0.089 
270 2 -0.112 
271 2 -0.112 
290 2 -0.061 
291 2 -0.061 
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310* 3 +0.034 
311 2 -0.023 
312 2 -0.070 
313 2 +0.080 
314 2 +0.079 
315 2 -0.063 
316 2 -0.063 
317 2 +0.079 
318 2 +0.080 
319 2 -0.069 
320 2 -0.022 
321* 3 +0.035 

Table B.18 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 9_2nd. 
 
 

 
Figure B.19 Relaxed holey rectangular graphene 10 near the hole area. The numbers 
identify the different atoms. 
 

Structure Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 

168* 3 +0.038 
169 2 -0.006 
170 2 -0.059 
171 2 +0.098 
172 2 +0.043 
173 2 -0.070 
174 2 +0.054 
175 2 +0.053 
176 2 -0.070 
177 2 +0.043 



149 
 

 
 
 
 
 
 
 
 

Holey Rectangular Graphene 10 

178 2 +0.098 
179 2 -0.059 
180 2 -0.007 
181* 3 +0.038 
196 2 -0.102 
197 2 -0.105 
212 2 -0.077 
213 2 -0.075 
244 2 -0.104 
245 2 -0.099 
260 2 -0.077 
261 2 -0.080 
276 2 -0.098 
277 2 -0.095 
292* 3 +0.039 
293 2 -0.010 
296 2 -0.066 
297 2 +0.095 
300 2 -0.075 
301 2 +0.072 
304 2 +0.076 
305 2 -0.062 
308 2 -0.062 
309 2 +0.063 
312 2 +0.088 
313 2 -0.061 
316 2 -0.009 
317* 3 +0.039 

Table B.19 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 10. 
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Figure B.20 Relaxed holey rectangular graphene 11_2nd near the hole area. The numbers 
identify the different atoms. 
 

Structure Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Holey Rectangular Graphene 11_2nd 

128* 3 +0.042 
129 2 -0.019 
130 2 -0.055 
131 2 +0.096 
132 2 +0.053 
133 2 -0.071 
134 2 +0.059 
135 2 +0.054 
136 2 -0.070 
137 2 +0.053 
138 2 +0.098 
139 2 -0.055 
140 2 -0.014 
141* 3 +0.040 
156 2 -0.107 
157 2 -0.104 
172 2 -0.092 
173 2 -0.092 
188 2 -0.123 
189 2 -0.121 
204 2 -0.086 
205 2 -0.085 
220 2 -0.086 
221 2 -0.085 
236 2 -0.123 
237 2 -0.121 
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252 2 -0.092 
253 2 -0.092 
268 2 -0.107 
269 2 -0.104 
284* 3 +0.042 
285 2 -0.019 
288 2 -0.055 
289 2 +0.096 
292 2 +0.053 
293 2 -0.071 
296 2 +0.056 
297 2 +0.058 
300 2 -0.070 
301 2 +0.052 
304 2 +0.098 
305 2 -0.054 
308 2 -0.014 
309* 3 +0.040 

Table B.20 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 11_2nd. 
 
 

 
Figure B.21 Relaxed holey rectangular graphene 2_1st near the hole area. The numbers 
identify the different atoms. 
 

Structure Atom # Nearest Neighbors Charge (e) 
 
 
 
 

218* 3 -0.018 
219 3 +0.046 
222 3 +0.052 
223* 3 -0.003 
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Holey Rectangular Graphene 2_1st  

258 2 -0.099 
259 2 -0.041 
260 2 -0.072 
261 2 -0.054 
296 2 +0.014 
297 2 -0.090 
332 2 -0.099 
333 2 -0.053 
368* 3 -0.018 
369 3 +0.046 
370 2 -0.041 
371 2 -0.071 
372 3 +0.052 
373* 3 -0.003 

Table B.21 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 2_1st. 
 
 

 
Figure B.22 Holey rectangular graphene 4_1st near the hole area. The numbers identify the 
different atoms. 
 

Structure Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 

216* 3 -0.031 
217 3 +0.054 
218 2 -0.073 
219 2 +0.140 
220 3 -0.081 
221 3 +0.028 
222 2 -0.141 
223 2 -0.010 



153 
 

 
 
 
 
 

Holey Rectangular Graphene 4_1st  

224 3 +0.016 
225* 3 +0.001 
256 2 -0.053 
257 2 -0.109 
288 2 -0.132 
289 2 -0.025 
320 2 -0.025 
321 2 -0.132 
352 2 -0.106 
353 2 -0.012 
354 2 -0.142 
355 2 +0.142 
356 2 -0.072 
357 2 -0.052 
388* 3 +0.003 
389 3 +0.015 
392 3 +0.029 
393 3 -0.083 
396 3 +0.052 
397* 3 -0.031 

Table B.22 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 4_1st. 
 
 

 
Figure B.23 Holey rectangular graphene 7_1st near the hole area. The numbers identify the 
different atoms. 
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Structure Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Holey Rectangular Graphene 7_1st  

172* 3 +0.005 
173 3 +0.013 
174 2 -0.018 
175 2 -0.140 
176 3 +0.037 
177 3 -0.087 
178 2 +0.137 
179 2 -0.048 
180 3 +0.012 
181 3 -0.050 
182 2 +0.118 
183 2 -0.025 
184 3 -0.002 
185 3 +0.011 
186 2 -0.049 
187 2 +0.037 
188 3 +0.055 
189* 3 +0.026 
212 2 -0.097 
213 2 -0.085 
236 2 -0.009 
237 2 -0.110 
260 2 -0.116 
261 2 -0.101 
284 2 -0.081 
285 2 -0.135 
308 2 -0.039 
309 2 -0.044 
332 2 -0.118 
333 2 +0.032 
334 2 -0.111 
335 2 +0.123 
336 2 -0.075 
337 2 +0.117 
338 2 -0.026 
339 2 -0.040 
340 2 +0.030 
341 2 -0.102 
364* 3 -0.015 
365 3 -0.005 
368 3 +0.036 
369 3 -0.069 
372 3 +0.029 
373 3 -0.055 



155 
 

376 3 -0.003 
377 3 +0.007 
380 3 +0.053 
381* 3 +0.012 

Table B.23 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 7_1st. 
 
 

 
Figure B.24 Relaxed holey rectangular graphene 9_1st near the hole area. The numbers 
identify the different atoms. 
 

Structure Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

130* 3 -0.025 
131 3 +0.048 
134 3 -0.035 
135 3 -0.043 
138 3 +0.008 
139 3 +0.024 
142 3 -0.029 
143 3 -0.045 
146 3 +0.026 
147 3 -0.051 
150 3 +0.051 
151* 3 -0.023 
170 2 -0.044 
171 2 -0.055 
172 2 +0.084 
173 2 +0.091 
174 2 -0.051 
175 2 -0.063 
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Holey Rectangular Graphene 9_1st  176 2 +0.064 
177 2 +0.103 
178 2 -0.055 
179 2 +0.087 
180 2 -0.062 
181 2 -0.045 
200 2 -0.132 
201 2 -0.125 
220 2 -0.097 
221 2 -0.094 
240 2 -0.149 
241 2 -0.145 
260 2 -0.100 
261 2 -0.098 
280 2 -0.135 
281 2 -0.125 
300 2 -0.046 
301 2 -0.053 
320* 3 -0.024 
321 3 +0.052 
322 2 -0.063 
323 2 +0.088 
324 3 -0.051 
325 3 +0.027 
326 2 -0.056 
327 2 +0.102 
328 3 -0.045 
329 3 -0.029 
330 2 +0.065 
331 2 -0.062 
332 3 +0.023 
333 3 +0.009 
334 2 -0.052 
335 2 +0.089 
336 3 -0.042 
337 3 -0.037 
338 2 +0.084 
339 2 -0.056 
340 3 +0.047 
341* 3 -0.026 

Table B.24 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 9_1st. 
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Figure B.25 Holey rectangular graphene 11_1st near the hole area. The numbers identify 
the different atoms. 
 

Structure Atom # Nearest Neighbors Charge (e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Holey Rectangular Graphene 11_1st  

128* 3 -0.037 
129 3 +0.056 
130 2 -0.064 
131 2 +0.084 
132 3 -0.035 
133 3 -0.043 
134 2 +0.083 
135 2 -0.055 
136 3 +0.012 
137 3 +0.020 
138 2 -0.067 
139 2 +0.077 
140 3 -0.036 
141 3 -0.037 
142 2 +0.077 
143 2 -0.066 
144 3 +0.020 
145 3 +0.013 
146 2 -0.056 
147 2 +0.082 
148 3 -0.042 
149 3 -0.036 
150 2 +0.085 
151 2 -0.064 
152 3 +0.055 
153* 3 -0.037 
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168 2 -0.056 
169 2 -0.056 
184 2 -0.132 
185 2 -0.133 
200 2 -0.088 
201 2 -0.092 
216 2 -0.099 
217 2 -0.102 
232 2 -0.090 
233 2 -0.089 
248 2 -0.094 
249 2 -0.090 
264 2 -0.128 
265 2 -0.127 
280 2 -0.060 
281 2 -0.070 
282 2 +0.083 
283 2 -0.059 
284 2 +0.100 
285 2 +0.065 
286 2 -0.063 
287 2 -0.063 
288 2 +0.064 
289 2 +0.102 
290 2 -0.057 
291 2 +0.082 
292 2 -0.069 
293 2 -0.056 
308* 3 -0.036 
309 3 +0.060 
312 3 -0.049 
313 3 +0.026 
316 3 -0.044 
317 3 -0.029 
320 3 +0.018 
321 3 +0.018 
324 3 -0.028 
325 3 -0.045 
328 3 +0.024 
329 3 -0.047 
332 3 +0.061 
333* 3 -0.036 

Table B.25 The atom numbers (2nd column), the nearest neighbors (3rd column), and the 
net charge (4th column) of atoms at the boundary of  the holey rectangular graphene 
11_1st.
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