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ABSTRACT 
 
 

THERMIONIC EMISSION PROPERTIES OF NOVEL CARBON 
NANOSTRUCTURES 

 
Andriy Sherehiy 

 
November 25, 2014 

 
 
Materials with low work function values (< 2 eV) are highly in demand for low 

temperature thermionic electron emission, which is a key phenomenon for waste heat 

recovery applications. Here we present the study of the thermionic emission of the hybrid 

structure phosphorus, (P) doped diamond nano crystals grown on conical carbon 

nanotubes (CCNTs). The CCNTs provide the conducting backbone for the P-doped 

diamond nanocrystals.  

In the first part of this thesis thermionic emission properties of conical carbon 

nanotubes (CCNTs) grown on platinum wires and planar graphite foils were investigated. 

The work function (Φ) values extracted from the thermionic emission data range from 4.1 

to 4.7 eV. The range of Φ values is attributed to the morphological characteristics, such 

as tip radius, aspect ratio, density, and wall structure of CCNTs. The observed lower 

values for Φ are significantly smaller than that of multi-walled carbon nanotubes 

(MWNTs).  

 

iv 



 
 

 
 

The reduced Φ values are attributed to field penetration effect as a result of the 

local field enhancement from these structures having high aspect ratio and an excellent 

field enhancement factor. The high amplification of the external field at the apex of the 

nanostructures is capable of reducing both the barrier height and the width, in turn 

contributing to the improved emission current at lower temperatures. The ultraviolet 

photoemission spectroscopy data of CCNTs grown on Pt wires are in reasonable 

agreement with the thermionic emission data.  

In the next part of the thesis we present work function reduction of phosphorus 

(P) doped (i) diamond nanocrystals grown on conical carbon nanotubes (CCNTs) and (ii) 

diamond films grown on silicon substrates. Thermionic emission measurements from 

phosphorus doped diamond crystals on CCNTs resulted in work function value of 2.23 

eV. The reduced work-function is interpreted as due to the presence of the surface states 

and midband-gap states and no evidence for negative electron affinity was seen. 

However, Ultraviolet photo-spectroscopy studies on phosphorus doped diamond films 

yielded a work function value of ~1.8 eV with a negative electron affinity (NEA) value of 

1.2 eV. Detailed band diagrams are presented to support the observed values for both 

cases.  

 In addition we determined the work function values of nanocrystalline P doped 

diamond films grown on W foil to be significantly lower, 1.0- 1.33 eV compared to the 

hybrid structure and polycrystalline film on Si substrates.  

 We studied tungsten (W) nanowires as an alternative material in place of CCNT as 

the supporting and conducting channel for P doped diamond crystals in a new hybrid 

structure.  
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We described the process of fabrication of arrays of vertical W nanowires by 

microwave plasma treatment and synthesis of P doped nanocrystalline diamond on top of the 

reduced W nanowires. Thermionic emission measurements from the alternative hybrid 

structure resulted in high value of the work function ~ 5.1 eV. 
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CHAPTER 1 

INTRODUCTION 

 
   

Progress in micro and nanotechnology followed by the development of new 

classes of materials in the recent 10 – 20 years provided new possibilities in a number of 

disciplines. The advancement in synthesis and characterization techniques allowed better 

control of structural properties of the synthesized materials at micro and nanoscale. Some 

examples of such materials are carbon nanotubes (CNT) / conical carbon nanotubes 

(CCNT), synthetic diamond grown by chemical vapor deposition (CVD), and nanowires 

(both semiconducting and metallic). On the other hand, advancement in measurement 

techniques allowed the study of the electronic transport or electron emission in the 

mentioned materials. It is expected that on the micro and nanoscale these structures 

would behave differently than their macroscopic bulk counterparts. This fact, combined 

with knowledge about specific structural properties of the novel structures, have 

revitalized the interest of the phenomena well known for decades and thermionic 

emission (TE) from such structures is the primary focus of this work.   

 Thermionic emission is the release of charge carriers from the surface of the 

material upon increasing of the temperature of the material. Thermal energy supplied to 

the carriers allows them to overcome the surface potential barrier which is equal to the 



 

2 
 

work function of a given material. In this work the charge carriers are electrons, however 

in some cases which is outside of the scope of this study, it could be ions.  

 Thermionic emission first was observed by F.Guthrie in 1873 [1] and towards the 

end of 19th centuries by a few other researchers -- including Edison -- who utilized this 

effect in his first constructed vacuum lamp. In 1901 Richardson introduced his 

empirically deduced equation for the emission current density from the metal surface [1] 

  

𝐽(𝑇) = 𝐴0𝑇
2𝑒

−
𝜙

𝑘𝐵𝑇     (1.1) 

 

where, 𝐴0 is Richardson constant, T is the temperature in K, kB is the Boltzman constant 

and ϕ is the work function. Nordheim and Sommerfield later derived the similar emission 

formula using Fermi-Dirac distribution and newly developed quantum mechanical 

formalism [1]. Even though this formula has existed for over 100 years it is still being 

used to describe thermionic emission.  

 Thermionic emission  has had numerous applications, usually as a source of the 

electrons in vacuum electronics, vacuum lamps, ionization pressure gauges, X-ray tubes, 

filaments in Electron Microscopes, as well in magnetrons (source of microwaves). –

Conversion of heat to useful energy(direct conversion of the heat energy into the 

electrical energy by utilizing thermionic emission [2]) is another important application of 

thermionic emission.  

  Figure 1.1 represents a schematic view of the thermionic emission converter 

(TEC), where emitter temperature is elevated (in contact with heat source) emits 

electrons to vacuum gap which are collected by the collector located at some separation 
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distance from the emitter and kept at much lower temperature. By attaching the load to 

the electrodes in the circuit, an electric current will be generated assuming there is a 

constant supply of heat energy to the emitter. The work function of the emitter has to be 

larger than that of the collector. The optimal value of the work function for the emitter 

should be ≤ 2 eV while that for collector should be as low as ~1 eV to be used as a 

thermionic converter at low enough temperatures [2]. 

 

 

Figure 1.1 Schematic view of the thermionic emission converter 

 

It is evident from Richardson eq (1.1) that efficient emission to the vacuum 

depends on the temperature and the work function. Thus the efficiency of the TEC 

depends on the work functions of the material used for the collector and emittor 

Another important condition required thermionic emitter materials is its stability 

at high temperatures ~ 1000 K or lower depending on the work function. Thus the 

suitable material for the hot cathode in thermionic emission needs to satisfy these two 

conditions: low work function (≤ 2 eV) and the stability in the high temperature range 

700 - 1000 K.  
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Currently available materials which satisfy the above conditions include 

Thoriated Tungsten, porous Tungsten impregnated with Ba based multi component oxide, 

coated cathodes (BaO, SaO, CaO), boride cathodes (LaB6 and the whole family of the 

hexaboride materials). An alternative candidate for cathode material is Nitrogen (N), 

Sulfur (S) or Phosphorous (P) doped diamond with Negative Electron Affinity (NEA) 

[3]. Diamond has unique features which include high thermal conductivity, high 

breakdown electric field, high mechanical hardness and low coefficient of thermal 

expansion, and resistance to harsh environments including radiation, chemicals, and 

corrosion [4].  One thermionic emission study has shown that P doping of a diamond film 

together with the presence of NEA exhibit lower work function of ~ 0.9 eV [5]. It is the 

lowest reported work function value for doped diamond and remains one of the lowest 

among all other known materials.  

 In search for the structure suitable for the thermionic emission conversion, a 

different approach utilizing properties of the micro/nanostructures was attempted. 

Specifically, a hybrid structure consisting of the conical carbon nanotubes (CCNT) 

coated with P doped diamond crystals Figure 2a [6,7] is proposed in this work. It was 

suggested that such hybrid architecture has an essential and unique property - large 

surface area(high surface to volume ratio) - which could improve the emission properties 

of doped diamond crystals and improve the incorporation of dopants in to the diamond 

crystals. An alternative hybrid structure consisting of arrays of W nanowires coated with 

P doped diamond crystals Figure 1.2b is also proposed.  
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Figure 1.2 Hybrid structure of the: a) CCNT coated with diamond crystals; b) W nw 
coated with diamond crystals. 
  

 The goal of this work is to study the thermionic emission from the array of CCNT 

grown on different substrates (Pt wire and graphite foil) and determination of the work 

function of the structures.  The study also includes the examination of the dependence of 

the work function on the morphology of the CCNT arrays based on their characterization 

and analysis of the field emission (FE) measurements. Next,  the study is concerned with 

thermionic emission from the CCNT coated with P doped diamond crystals and 

determination of the work function of the diamond crystals. The study also includes the 

understanding of the mechanism behind the origin of such work function values. 

Ultraviolet photoelectron spectroscopy of the P doped diamond films (instead of diamond 

crystals) is meant to be complementary to the thermionic emission measurements of the 

hybrid structure.  

 The next phase of the study involves thermionic emission measurements of the 

hybrid structure based on tungsten (W) nanowires decorated with P doped diamond 

crystals. This part involves synthesis of the WOx nanowire array, reduction to the 

metallic W nanowires and growth and doping of diamond crystals, and finally thermionic 

emission measurements on W nanowires and W nanowires decorated with P doped 

diamond.  
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 Chapter 2   presents the theoretical background of the thermionic and field 

emission mechanisms including the free electron model approximation of field and 

thermionic emission with a discussion on its applicability and limitations. 

 Chapter 3 reviews work function values of the carbon based materials determined 

by different methods. Specifically thermionic emission studies of carbon nanotubes and 

diamond films   are presented and analyzed in this chapter.  

 Chapter 4 is dedicated to conical carbon nanotubes. Structural properties, 

experimental details about synthesis and thermionic and field emission measurements are 

discussed. In this chapter, the results of the FE and TE measurements are presented along 

with their analysis and discussion. 

 In chapter 5 we concentrate on the hybrid structure of the CCNT coated with P 

doped diamond, P doped polycrystalline diamond film on Si substrate and P doped 

nanocrystalline diamond film on W substrate presenting experimental details about 

synthesis of these structures, doping and TE measurements case of diamond films, UPS 

measurements are presented. We discuss the results of the work function values– and 

suggest underlying mechanism leading to such values of ϕ.   

 Chapter 6 is dedicated to second hybrid structure of the W nanowires coated with 

P doped diamond films with a detailed description of the synthesis and WOx nanowires, 

reduction process to W nanowires, and doped diamond growth on the W/WOx nanowire 

array. Results of the thermionic emission measurements are presented as well.   
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CHAPTER 2 

 
THEORETICAL BACKGROUND: FIELD AND THERMIONIC 

EMISSION
 
 

  
In this chapter a review of the theory of the two basic types of electron emission 

(field and thermionic) is presented. Description of the FE and TE is based on the free 

electron theory. Field emission first described by Fowler and Nordheim is a direct result 

of quantum tunneling of electrons through a surface potential barrier in the presence of a 

strong electric field. Thermionic emission is generally described in two slightly different 

processes: real thermionic emission at high temperatures (~1000 K) with no external 

electric fields and field enhanced thermionic emission (Schottky emission) also at high 

temperatures in the presence of a weak electric field resulting in a small reduction of the 

surface image potential.  

 

2.1 Free electron theory of metals. Scattering by 1D barrier. 

 

The free electron theory of metals [8] is the basis for the traditional quantum-

mechanical theories of field and thermionic emission from metals [9]. Some important 

formulas derived on the basis of this theory have been used in the analysis of 
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experimental results until recently. We, therefore, would like to provide a brief 

description of free electron theory of electron emission phenomena.    

 The free electron theory is based on the assumption that electrons occupying 

states in conduction band behave as free particles. In this model, electron states are 

described by plane wave function  

𝜓𝑘(𝒓) =
1

𝐿
3

2⁄
𝑒𝑖𝒌𝒓     (1.1) 

 

where, 𝐿3 ≡ 𝑉 is the metal volume (assumed to be very large) and k is the wave vector 

 

𝒌 =
2𝜋

𝐿
(𝑛𝑥, 𝑛𝑦 , 𝑛𝑧)    (1.2) 

 

where, nx, ny, nz are positive or negative integers. Energy of the electron occupying 

particular state  𝜓𝑘(𝒓) is given by  

 

𝐸𝑘 =
ℏ2𝑘2

2𝑚
     (1.3) 

 

where, m is the mass of the electron. A zero value of energy is aligned with the bottom of 

the conduction band. For a complete description, it is important to specify that for a given 

k there are two states with different spin orientation of the electron (up, down) with the 

same spatial wave function (1.1). Considering that L extends to infinity, the number of 

electron states per unit volume with energies between E and E+dE is given by 
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𝜌(𝐸)𝑑𝐸 =
2

(2𝜋)3
∭ 𝑑3𝑘

𝐸+𝑑𝐸

𝐸
=

1

2𝜋2 (
2𝑚

ℏ2 )
3

2⁄
𝐸

1
2⁄ 𝑑𝐸   (1.4) 

The probability that an electron state with energy E is occupied is calculated using Fermi-

Dirac distribution function 

 

𝑓(𝐸) =
1

1+𝑒𝑥𝑝[
𝐸−𝐸𝐹
𝑘𝐵𝑇

]
     (1.5) 

 

where kB is the Boltzmann constant, EF is the Fermi level and T is the absolute 

temperature. Fermi level could be determined from the requirement defined by given 

integral 

 

 ∫ 𝜌(𝐸)𝑓(𝐸)𝑑𝐸
∞

0
= 𝑁𝐶      (1.6) 

 

where, NC is the number of conduction band electrons per unit volume (concentration).  

 In describing the electron emission from the metal’s surface, one must define a more 

specific form for the electron concentration. According to Modinos [9] let us consider the 

case under equilibrium conditions, where the number of electrons which cross a unit area 

(in xy plane, Fig 1.1), in z direction (from left to right), per unit time, where total energy 

is in range [E, E+dE], and normal energy is defined by  

 

𝑊 =
ℏ2kz

2

2m
     (1.7) 
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Between W and W+dW . Number of electrons defined in such manner is denoted by  

N(E,W)dEdW and is expressed by 

 

𝑁(𝐸,𝑊)𝑑𝐸𝑑𝑊 =
2𝑓(𝐸)

(2𝜋)3
∭ 𝑣𝑧𝑑

3𝑘
{𝐸,𝑊}

   (1.8a) 

=
𝑚

2𝜋2ℏ3
𝑓(𝐸)𝑑𝐸𝑑𝑊     (1.8b) 

where, 

 𝑣𝑧 =
1

ℏ

𝜕𝐸𝑘

𝜕𝑘𝑧
=

ℏ𝑘𝑧

𝑚
      (1.9) 

 

is the velocity of the electrons normal to the considered unit area. Limits {E,W} in (1.9) 

indicate that in the integration are included only electronic states with energies between 

E+dE and   W+dW corresponding to vz > 0.  

 

 

Figure 2.1 Schematic view of the considered unit area at metal surface. 

 

 The general qualitative definition of the field and thermionic emission (presented 

in introduction) implies that for quantum mechanical description of electron emission 
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from metal surface it is required first to consider general case of scattering of electron at a 

potential barrier. Following Modinos [9], let us introduce a potential barrier, V(z) – 

shown in Figure 1.2 - and let electrons with total energy E and wave vector k|| = (kx,ky) 

be incident on this barrier from left.  

 

 

Figure 2.2 One dimensional potential barrier. 

 

Schrodinger equation for this particular case has the following form, 

 

−
ℏ2

2𝑚

𝑑2𝑢

𝑑𝑧2
+ 𝑉(𝑧)𝑢 = 𝑊𝑢(𝑧)     (1.9) 

 

and is satisfied by u(z) of the electronic wave function which has following form (in our 

case), 

𝜓 = 𝑢(𝑧)𝑒𝑖𝒌||𝒓||      (1.10) 
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where, r|| = (x,y). The normal energy here W = E - 
ℏ2𝑘||

2

2𝑚
 > VL and could lie above or 

below the top of the barrier Vp. The transmitted wave propagating in the positive z 

direction is described by the function, 

 

𝑢(𝑧) = 𝐶𝑒𝑖𝒒𝑹𝒛     (1.10) 

 

where V = VR is the constant potential to the right of the barrier (Fig 1.2) and 

 

𝑞𝑅 = [
2𝑚

ℏ2
(𝑊 − 𝑉𝑅)]

1

2      

 

In the region of the constant potential V = VL on the left side of the barrier, wave function 

has the form  

𝑢(𝑧) = 𝐴𝑒𝑖𝒒𝑹𝒛 + 𝐵𝑒−𝑖𝒒𝑹𝒛    (1.11) 

 

 where  

𝑞𝐿 = [
2𝑚

ℏ2
(𝑊 − 𝑉𝐿)]

1

2      

 

In the expression (1.11), the first term represents the incident wave and the second term 

represents the reflected wave.   

 In order to determine incident, reflected, transmitted current densities it is needed 

to use the formula for probability current density vector [10] 
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𝒋 =
𝑖ℏ

2𝑚
(Ψ∇Ψ∗ − Ψ∗∇Ψ) 

 

 In our case where we consider motion along z direction [9] 

 

𝑗𝑧,𝛼 =
ℏ

2𝑚𝑖
(𝑓𝛼

∗ 𝜕

𝜕𝑧
𝑓𝛼 − 𝑓𝛼

𝜕

𝜕𝑧
𝑓𝛼

∗)    (1.12) 

 

where fα denotes the incident, reflected, and transmitted wave.  

Using this expression, one can find transmission and reflection coefficients. The 

transmission coefficient by definition is of such form [9] 

 

𝐷(𝑊) ≡
𝑗𝑧,𝑡𝑟𝑎

𝑗𝑧,𝑖𝑛𝑐
=

𝑞𝑅

𝑞𝐿
|
𝐶

𝐴
|
2

    (1.13) 

 

and the reflection coefficient 

 

𝑅(𝑊) ≡
𝑗𝑧,𝑟𝑒𝑓

𝑗𝑧,𝑖𝑛𝑐
= |

𝐵

𝐴
|
2

    (1.13) 

 

 Explicit expressions for D(W) and R(W) could be obtained analytically only for a few 

specific potential barriers. However, it should to be noted that D(W) and R(W) could be 

obtained numerically for any barrier which depends only on the z coordinate (Fig 1.2).  
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Under the condition that potential barrier decreases slowly and monotonically to the right 

of the barrier top, the ordinary WKB approximation is valid [10] and the wave function 

(as transmitted wave) in this region (z ≥ zr) has the form  

  

𝑢(𝑧) =
𝐶

[𝜆(𝑧)]
1

2⁄
𝑒𝑥𝑝 [𝑖 ∫ 𝜆(𝑧)𝑑𝑧

𝑧

𝑧𝑟
]   (1.14) 

where 

𝜆(𝑧) ≡ [
2𝑚

ℏ2 (𝑊 − 𝑉(𝑧))]
1

2⁄
   (1.15) 

  

Modinos notes that for general analysis of the electron emission phenomena it is more 

preferable to have an analytic expression for the transmission coefficient obtained by less 

accurate method than numerical one. Miller and Good developed such a method which is  

a generalization of the ordinary WKB method. This method is valid for certain limiting 

conditions [9] - when satisfied it provides a good approximation the following formula 

for transmission coefficient    

𝐷(𝑊) = [1 − 𝑒𝑥𝑝(−𝐴(𝑊))]
−1

   (1.16) 

where 

𝐴(𝑊) = 2𝑖 ∫ 𝜆(𝜉)𝑑𝜉
𝑧2

𝑧1
    (1.17) 

 

where, λ(ξ) is given by eq. (1.15), z1 and z2 are the roots of the eq. W – V(z). These 

general formulas are applicable for the cases when normal energy W is above or below 

the top of the barrier and there are no zeros or singularities in the vicinity of z1, z2. When 
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W > V(z) z1, z2 roots are real; for W < V(z) z1, z2 become complex roots, the one being 

conjugation of the other. 

 

2.2 Electron emission from the metal surface 

 

 Let us consider a semi-infinite surface of the metal. According to the free electron 

theory of metals, an electron inside the metal stays at constant potential. A minimum 

energy (at absolute zero) must be supplied to the metal in order to allow an electron to 

escape from it. minimum energy required is equal to the work function φ which is the 

energy difference between the Fermi level and the top of the surface potential barrier at 

absolute zero (Fig 1.3). We know from electrostatics that an electron placed at finite 

distance from the plane surface of a conductor is attracted to it and experiences the 

“image” potential given by ke/4z (where 𝑘 =
1

4𝜋𝜀0
 and 𝜀0 = 8.854 ∙ 10−12 𝐹

𝑚
). Thus the 

potential energy of the electron in the vacuum outside of the metal is asymptotically 

described by the given equation 

𝑉(𝑧) ≃ 𝐸𝐹 + 𝜙 − 𝑘
𝑒2

𝑧
    (1.18) 

 

It is agreed that above equation is valid for z > 3Å, if we consider the metal surface [9]. 

In the case of the presence of an external electric field F outside of the metal surface we 

need to add a term to the above eq. - eFz  

 

𝑉(𝑧) = {𝐸𝐹 + 𝜙 − 𝑘
𝑒2

𝑧
− 𝑒𝐹𝑧    for 𝑧 > 0 

0                                        for 𝑧 < 0
   (1.18a) 
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The above equation describes a potential for the electron emission in the presence of an 

external electric field outside (z > 0) and within (z < 0) the metal.   Fig. 1.3   presents a 

schematic illustration of the potential V(z).    

 

 

Figure 2.3 The surface potential barrier. Image potential is represented by solid curve.  

 

The number of electrons (within metal) with a normal energy between W and W + 

dW scattered on the surface barrier is given by 

 

𝑁(𝑊, 𝑇)𝑑𝑊 =
𝑚𝑘𝐵𝑇

2𝜋2ℏ3
𝑙𝑛 [1 + 𝑒𝑥𝑝 (−

𝑊−𝐸𝐹

𝑘𝐵𝑇
)] 𝑑𝑊  (1.19) 

 

Then the current density will be given by  

 

𝐽(𝐹, 𝑇) = 𝑒 ∫ 𝑁(𝑊, 𝑇)𝐷(𝑊)𝑑𝑊
∞

0
   (1.20) 
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where F, T denotes the applied electric field and the temperature respectively. D(W) is the 

transmission probability of electrons scattered at the surface  potential barrier. Using eq. 

(1.16) and (1.17) one can determine the form of the transmission coefficient D(W) for the 

given potential (1.18a) and in result obtain the general expression for the emission current 

density [9] 

 

𝐽(𝐹, 𝑇) = 𝑒 ∫ 𝑁(𝑊, 𝑇)𝐷(𝑊)𝑑𝑊
∞

0
       (1.21) 

=
𝑒𝑚𝑘𝐵𝑇

2ℏ3𝜋2
{∫

𝑙𝑛 [1 + 𝑒𝑥𝑝 (−
𝑊 − 𝐸𝐹

𝑘𝐵𝑇
)]

1 + 𝑒𝑥𝑝[𝑄(𝑊)]

𝑊𝑙

0

𝑑𝑊 

+∫ 𝑙𝑛 [1 + 𝑒𝑥𝑝 (−
𝑊 − 𝐸𝐹

𝑘𝐵𝑇
)]𝑑𝑊

∞

𝑊𝑙

} 

where, 

𝑄(𝑊) = −2𝑖 ∫ 𝜆(𝜉)𝑑𝜉
𝑧2

𝑧1

 

𝜆(𝜉) = [
2𝑚

ℏ2
(𝑊 − 𝐸𝐹 − 𝜙 + 𝑘

𝑒2

𝜉
+ 𝑒𝐹𝜉)]

1
2

 

 

and Wl is related to potential barrier peak: 𝑊𝑙 ≡ 𝑉𝑚𝑎𝑥 + (1 −
1

√2
)(𝑒3𝐹)

1

2. We note 

that λ(ξ) has a singularity at ξ = 0. Modinos [3] notes that it does not affect validity of the 

equation (1.16) for the potential (1.18a) in case of the normal energies W < Vmax. 

However for the W > Vmax case eq. (1.16) may not be applicable. However, he also notes 
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that for W > Wl transmission coefficient D(W, F) should be close to the unity when we 

use eq. (1.21).   

 It is important to remember that eq (1.21) describes the current density based on 

free electron model. As it was noted before, this approximation is valid for those 

quantities which depend only on the height of the surface barrier and its asymptotic 

behavior z > 3 Å. There are other phenomena related to electron scattering at the metal- 

vacuum interface which cannot be properly described by free-electron model since there 

is anisotropy associated with crystalline structure of the metal and subsequently its band 

structure [9].  

 

2.3 Field Emission 

  

 From the general expression for current density (1.21) it is possible to analytically 

obtain an expression for specific regions of the temperature and the applied electric field. 

As a result one can arrive at the expressions for the field or thermionic emissions. 

 At low temperatures (room temperature) and for typical surface barrier of (most 

of the  metals) ϕ ≈ 4 - 5 eV in the presence of the external electric field (F ≈ 4000 V/μm), 

the second integral in eq. (1.21) is negligible. The first integral has significant 

contribution to J(F,T) only in the vicinity of the Fermi level. Therefore, the eq. (1.21) 

under these conditions will be reduced to the following expression, 

 

𝐽(𝐹, 𝑇) =
𝑒𝑚𝑘𝐵𝑇

2ℏ3𝜋2 ∫ 𝑒𝑥𝑝[−𝑄(𝑊)]𝑙𝑛 [1 + 𝑒𝑥𝑝 (−
𝑊−𝐸𝐹

𝑘𝐵𝑇
)]

+∞

−∞
𝑑𝑊 (1.21) 
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where, 𝑒𝑥𝑝[−𝑄(𝑊)] ≫ 1 for the defined conditions for ϕ and F values.  

The above expression could be further transformed, considering the immediate proximity 

of the Fermi level (region for which integral is defined) [9] which allows a Taylor 

expansion of Q(W) around EF and using two first terms of expansion in the exponent in 

the eq.1.21. Integrating transformed eq. 1.21 and considering very low temperature 

approximation one can obtain the Fowler - Nordheim equation [9] 

 

𝐽(𝐹) = 𝐴𝑓𝑒𝐹
2𝑒𝑥𝑝 (−𝑘

𝐵𝑓𝑒𝜙
1
2

𝐹
)   (1.22) 

 

where 

𝐴𝑓𝑒 ≡
𝑒3

[16𝜋2ℏ𝜙𝑡2(
(𝑘𝑒3𝐹)

1
2

𝜙
)]

    (1.22a) 

and 

𝐵𝑓𝑒 =
4

3𝑒
(
2𝑚

ℏ2 )

1

2
𝑣 (

(𝑘𝑒3𝐹)
1
2

𝜙
)   (1.22b) 

 

and v, t are so called “special field emission elliptic functions” [12].  

 The Fowler – Nordheim equation (1.22) describes the current density originating 

from the electron tunneling trough the surface potential barrier where bending and 

narrowing of the barrier is induced by the external electric field (Figure 1.4).  

The strength of the electric field affects the bending of the potential barrier, its thickness 

and height. Thus an increase of the magnitude of the applied electric field would decrease 
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the tunneling distance within the barrier and in result would increase population of the 

electrons (occupying states close to EF) which tunnel through potential barrier to the 

vacuum.   

 

Figure 2.4 Surface potential barrier for field emission as described by the Fowler – 
Nordheim. The surface potential barrier is represented by a solid line. Contribution from 
the electric field is shown by dotted line and from the image potential – by dashed line. 
 

 It is important to note that by plotting 𝑙𝑛 (
𝐽

𝐹2) versus 
1

𝐹
 one acquires the curve 

which is practically a straight line, known as the Fowler-Nordheim (FN) plot. The slope 

of a FN plot according to the Modinos [9] 

 

𝑠𝐹𝑁 =
𝑑𝑙𝑛(

𝐽

𝐹2)

𝑑(
1

𝐹
)

= −
4

3𝑒𝑘
(
2𝑚

ℏ
2 )

1
2
𝑠 (

(𝑘𝑒
3
𝐹)

1
2

𝜙
)𝜙

3

2   (1.23) 

 

where  

𝑠(𝑦) = 𝑣(𝑦) −
𝑦

2

𝑑𝑣

𝑑𝑦
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And s(y) is also a special field-emission elliptic function which is practically constant 

within a narrow region of the applied field and close to the unity. S(y) like v(y) and t(y) 

were computed and tabulated. However these elliptical functions are slowly varying with 

the change of the F and ϕ. Further, s(y) and t(y) are both close to unity for the typical 

values of the electric field and work function. When s(y) →1 slope from equation (1.23) 

has the given form 

 

𝑠𝐹𝑁 = −
4

3𝑒𝑘
(
2𝑚

ℏ2 )

1

2
𝜙

3

2    (1.24) 

 

 which is the case of the triangular barrier if we neglect image potential term in eq. 

(1.18a.). According to Modinos, for typical values of ϕ and F, the proportionality 

coefficients of the extracted values of the slope SFN and 𝜙
3

2 change by about 5% when the 

potential barrier (1.18a) is replaced by a triangular barrier. Thus for metals, any realistic 

barrier should be situated somewhere between these two [9]. 

 Following the main conclusion from the Fowler-Nordheim equation, in order to 

initiate tunneling through the potential barrier and achieve a desired value of the current 

density, it is required that the external electric field of specific value for given material. 

Considering the flat surface of the metal there are required also very high applied fields, 

which in practice means very high applied voltages. In order to achieve high fields, the 

phenomena known from classical electrostatics was utilized considering the structure 

with high aspect ratio, and high curvature at the tip as the emitting surface (cathode) as 

shown in the Fig. 2.5b.  
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Figure 2.5 The electric field lines represented by dashed lines between two electrodes: a) 
for uniform field with the two flat electrodes; b) for non-uniform field in the presence of 
the “sharp” (high aspect ratio) structure on the bottom electrode. 
 

High curvature will result in very high local electric field Fl which differs from 

macroscopic (“applied”) field Fa [5]. The relation between local and macroscopic fields is 

defined by dimensionless coefficient, 

 

𝛽 =
𝐹𝑙

𝐹𝑎
      (1.25) 

 

The parameter 𝛽 from above equation is called enhancement factor as it is a measure of 

the ability of the emitter to increase locally (in vicinity of the emitting surface) the 

magnitude of the applied electric field. Thus considering that in practice Fa  is defined by 

the voltage applied to the base of the studied sharp structure (Figure 2.5) we can conclude 

that the higher is the value of the 𝛽, the lower is magnitude of the applied field required 

to initiate a tunneling or reach desired value of the current density. Also, depending on 

the morphology of the substrate and emitter, different expressions of 𝛽 can be obtained 

empirically and would have similar correlation with aspect ratio h/r (height of 

structure/radius of the tip curvature) of the emitter [11]. 
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 For a complete description of the field emission from the structures of more 

complex geometry, as one shown in the Figure 2.5b, in F-N eq. 1.22, electric field 

𝐹 ≡ 𝐹𝑙 = 𝛽𝐹𝑎 [7]. Now, modified F-N equation will reflect the effect of the surface 

morphology of the emitter in the field emission. In expression for the slope of F-N plot 

for the triangle barrier will appear additional term, 

 

𝑠𝐹𝑁 = −
4

3𝑒𝑘
(
2𝑚

ℏ2 )

1

2 𝜙
3
2

𝛽
    (1.26) 

 

 In practice when conducting experimental study of field emission from given 

material usually is recorded variation of the current I depended on the applied voltage V. 

For convenience in analysis of the experimental data,  a simplified form of the FN 

equation (1.22) representing I dependence on the applied voltage V [14] is commonly 

used. 

 

𝐼(𝑉) = 𝑎𝐹𝐸𝑉2exp (−
𝑏𝐹𝐸𝜙

1
2

𝛽𝑉
)    (1.27) 

 

where constant 𝑎𝐹𝐸  contains information on effective emission surface S as well on 

separation distance d between cathode and anode; 𝑏𝐹𝐸 =
4

3𝑘𝑒
(
2𝑚

ℏ2 )

1

2
𝑑. The argument 

of the exponent in this version from eq (1.27) is very similar to the one in reduced 

formula (1.22) for the triangle barrier approximation. The slope obtained by plotting 



 

24 
 

Ln(I/V
2
) versus 1/V is not dependent on the 𝑎𝐹𝐸 constant, thus value of this constant is 

irrelevant in analysis of the β. 

 

2.4 Thermionic Emission 

 

 Thermionic emission is the promotion of electrons to the vacuum from a hot 

surface of a conducting material. Thus we apply appropriate set of conditions for the 

general expression of the emission current density (1.21). At high temperatures and weak 

fields most of the contribution in the integral (1.21) comes from a very narrow region of 

energy at the top of the surface potential barrier. These conditions allow to substitute in 

(1.21) for N(W,T) and D(W,F) series expansions of these quantities valid for W ≈ Vmax 

[9]. Consequently, the two integrals in eq. (1.21) could be replaced by the following one 

integral, 

 

𝐽(𝐹, 𝑇) =
𝑒𝑚𝑘𝐵𝑇

2ℏ3𝜋2
𝑒

−
𝜙

𝑘𝐵𝑇 ∫
𝑒𝑥𝑝(−

𝑊−𝐸𝐹−𝜙

𝑘𝐵𝑇
)

1+𝑒𝑥𝑝[−(
𝐹ℏ4

𝑚2𝑒5)
−

1
4
𝜋(1+

𝑊−𝐸𝐹−𝜙

(𝑘𝑒3𝐹)

1
2

)]

∞

0
𝑑𝑊 (1.28) 

 

when appropriate conditions for the thermionic emission are satisfied - as defined by 

Murphy and Good [11] and Modinos [9]. The above expression is effectively zero except 

in the neighborhood of the barrier top and the lower limit could be replaced by −∞. The 

integral could be calculated analytically and the result is   
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𝐽(𝐹, 𝑇) =
𝑒𝑚(𝑘𝐵𝑇)2

2ℏ3𝜋2 (
𝜋ℎ0

𝑠𝑖𝑛𝜋ℎ0
) 𝑒𝑥𝑝 (−

𝜙−(𝑘𝑒3𝐹)
1
2

𝑘𝐵𝑇
)  (1.28) 

 

where 

ℎ0 ≡ (
𝐹ℏ4

𝑚2𝑒5)
−

1

4 (𝑘𝑒3𝐹)
1
2

𝑘𝐵𝑇
    (1.29) 

   

For the weak applied electric fields, when 𝜋ℎ0 ≪ 1 eq. (1.28) reduces to the well-known 

Schottky formula [9] 

 

𝐽(𝐹, 𝑇) = 𝐴𝑅𝑇2𝑒𝑥𝑝(−
𝜙−(𝑘𝑒3𝐹)

1
2

𝑘𝐵𝑇
)   (1.30) 

 

where 

𝐴𝑅 =
𝑒𝑚𝑘𝐵

2

2𝜋2ℏ3
= 120 

𝐴

𝑐𝑚2𝐾2
 

 

is the so called Richardson constant. Electron emission described by eq. (1.30) is known 

as field-enhanced thermionic emission. Note that even the application of a weak electric 

field would cause lowering of the barrier height, as illustrated in figure 2.5, by the value 

Δ𝜙 ≡ (𝑘𝑒3𝐹)
1
2 
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Figure 2.6 Surface potentials for the thermionic emission and Schottky emission (field 
enhanced TE). Potential in the weak electric field (for Schottky emission) is represented 
by the blue dotted line. Image potential for thermionic emission is shown as the black 
solid line and contribution from the field is represented by the dashed-dot line.  
 

In a typical thermionic emission experiment, Δ𝜙 ≤ 0.1 𝑒𝑉 [9]. Also, the position of the 

peak of the barrier lies sufficiently far away from the surface (≫ 4Å) so that there is no 

ambiguity considering the validity of the image law in this case. 

 A more realistic theory of the thermionic emission from metal surfaces leads to 

the following modified equation, 

 

𝐽(𝐹, 𝑇) = 𝑡(𝑇, 𝐹)𝐴𝑅𝑇2𝑒𝑥𝑝(−
𝜙−(𝑒3𝐹)

1
2

𝑘𝐵𝑇
)  (2.31) 

 

Where t(F,T) is an average transmission coefficient, which depends on the particular 

properties of the emitter surface. Furthermore, t depends weakly on the field and 
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temperature [9]. If we consider the case without electric field, F = 0, then eq (1.31) 

reduces to the known formula,  

 

𝐽0(𝑇) = 𝑡0𝐴𝑅𝑇2𝑒𝑥𝑝 (−
𝜙

𝑘𝐵𝑇
)   (2.32) 

 

where 𝑡0 ≡ 𝑡(0, 𝑇). The above formula is known as the Richard-Laue-Dushman 

equation.  

 According to the (1.31) if we plot 𝐿𝑛(𝐽(𝐹, 𝑇)) versus 𝐹
1

2 we would obtain the 

straight line (so called Schottky line) with the slope 𝑆𝑆 =
(𝑘𝑒)

3
2

𝑘𝐵𝑇
 and intercept 𝐽0  - so called 

zero field value of the emission current density.  Most of the thermionic emission 

experiments performed so far from different materials have confirmed the validity of the 

Schottky theory to a very good degree of approximation [9] – under the condition that 

space charge effects are neglected. 

 The zero field value of the emitted current density, which could be obtained from  

the Schottky lines, corresponds to the quantity defined by the Richardson eq. (1.32). By 

plotting 𝐿𝑛 (
𝐽0

𝑇2) versus 1
𝑇

 one would obtain a straight line with the slope given by   

  

𝑆𝑅 = −
𝜙

𝑘𝐵
     (1.33) 
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Thus one could determine the value of the work function (from equation (1.32)) by 

performing linear fit of the thermionic emission experimental data with no need for 

specific information about 𝑡0.  

  Similarly as for the field emission, we can construct the formula which could be 

used for the analysis of the experimental data. By modifying the Schottky equation (1.31) 

we obtain a formula for the current I dependence on applied voltage V and temperature T 

 

𝐼(𝑉, 𝑇) = 𝑎𝑇𝐸𝑇
2𝑒𝑥𝑝(−

𝜙−𝑏𝑇𝐸𝑉
1
2

𝑘𝐵𝑇
)   (2.34) 

 

where 𝑎𝑇𝐸 = 𝑡(𝑇, 𝐹)𝐴𝑅𝑆 (S – emission area) and 𝑏𝑇𝐸 = (
𝑘𝑒3

𝑑
)

1

2 (d – separation 

distance). And equation for the zero field current, 

 

𝐼0(𝑇) = 𝑎𝑇𝐸
0 𝑇2𝑒𝑥𝑝 (−

𝜙

𝑘𝐵𝑇
) 

 

where 𝑎𝑇𝐸
0 = 𝑡0𝐴𝑅𝑆.   

 As we noted before, the description of the thermionic emission based on free 

electron model is an approximation and derived formulas are applied to the emission 

from a plane and uniform metal surface. Nevertheless, experimental thermionic emission 

studies from various planes of the single crystal tungsten revealed that thermionic 

emission values of the work functions are in agreement with the values obtained by other 

methods – such as field emission, photoemission and others [9]. The values of the work 
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functions for different planes are presented in Table 1 from the review paper by Riviere 

[16]. 

 

Table 1.1 Best estimate of the measured values of ϕ for some faces of Tungsten. 

face 110 111 116 100 

ϕ (eV) 5.30 4.40 4.30 4.58 

 

According to Modinos [9] this anisotropy of the work function is related to the presence 

of electrostatic dipole layer which is a small fraction of the surface potential at the metal-

vacuum interface [9].  
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CHAPTER 3 

 

WORK FUNCTION OF CARBON NANOTUBES AND DIAMOND 

 
 
 In this chapter we review relevant and significant work published by other 

researchers in relation to the work function of CNT and diamond. Specifically, we 

concentrate on thermionic emission as the method of determination of ϕ and study of the 

electron emission properties of the carbon materials. Also, we discuss how the intrinsic 

properties of CNT and diamond affect thermionic emission of these materials. 

 
 

3.1 Work function of carbon nanotubes and  

their thermionic emission properties. 

     

 3.1.1 Introduction. 

Carbon is an element of the IV group in the periodic table having a half filled 

valence shell with the electronic configuration  2s2 2px
1 2py

1 – 4 valence electrons. In the 

case of carbon nanotubes, some s and p orbitals will hybridize to form strong sp2 bonds. 

Together with their rolled honey comb structure, (Figure 3.1) carbon nanotubes have 

superior, mechanical, electrical, and thermal properties which make them suitable for 

many applications, including effective field emitters and thermionic emitters. Carbon 
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nanotubes have especially been proven to be a promising material for field emission 

cathodes. Various configurations based on these materials have been shown to produce 

high current densities and low turn on voltages [17, 18]. Carbon nanotubes are known to 

be mechanically, chemically and electrically robust. In contrast, metal oxides are not 

suitable for high current emission because they have too-high electrical resistivity and 

cause serious joule heating, which quickly damages the emitter when operating at  

 

Figure 3.1 Schematic view of the single wall carbon nanotube (SWCNT or SWNT) and 

multiwall carbon nanotube (MWCNT or MWNT). (source http://galleryhip.com/carbon-

nanotubes.html, 10/2014). 

 

high current density. It has been shown that poor vacuum conditions do not destroy 

carbon nanotube emitters, though it lowers their performance [19]. The geometrical 

properties, such as small tip size and high aspect ratio of carbon nanotubes, are believed 

to be responsible for the advantage of carbon nanotubes over other conventional 

materials. As a result, carbon nanotubes are considered to have great potential for field 

emission and thermionic emission applications.  

It is evident that the important parameter that governs the thermionic emissions is 

the work function, ϕ. There has been a wealth of results on experimental measurements 

(by different methods and theoretical calculations of the work function of carbon 
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nanotubes [20-36]. We will present some of the reported results on work function values 

of the carbon nanotubes, first by shortly discussing various methods such as 

photoelectron emission (PEE), photoemission electron microscopy (PEEM) ultraviolet 

photoelectron spectroscopy (UPS) and contact potential difference (CPD). Another 

method having especially practical use in case of the CNT is thermionic emission which 

we will discuss more in detail. 

 

3.1.2 Work function of the CNTs – methods of measurement. 

 

First we will review results of the theoretical work on the work function of the 

carbon nanotubes reported by a few research groups.  

Zhao et al. performed one of the first studies of the work function of single wall 

carbon nanotubes and SWNT bundles using first-principles methods [32]. Authors 

considered the models of the semiconducting and metallic tubes and investigated the 

dependence of ϕ on the chirality and tube diameter. Results showed (Table 3.1) that the ϕ 

of individual metallic nanotubes is weakly dependent on the diameter, chirality and is 

comparable to graphite ϕ of 4.91 eV. Work function of the semiconductor SWNT 

decreases with the increase of the tube diameter. Calculations showed, however, that the 

bundles (ropes) made of SWNT have slightly larger work function than individual SWNT 

and have no clear dependence on the diameter or chirality. Even though it is not explicitly 

stated in the work, the object of interest was most probably the side walls of CNT.   

Another first-principles study of the CNT work function conducted by Bin Shan 

and Kyeongjae Cho [33], confirmed that for the tubes with diameters larger than 1 nm 

there is no significant dependence on the diameter or chirality, and value of ϕ is 
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comparable to the one of the graphene sheet 4.66 eV (Figure 3.1). That is not the case for 

diameters less than 1 nm  - as it could be seen from the results presented in Table 3.1 

values could vary from 4.5 eV up to 5.9 eV. 

 
Tab 3.1 Theoretical work function values of carbon nanotubes and carbon materials. 

 

Material 

 
Work 

function, 
ϕ, [eV] 

 

Method Reference 

SWNT 
 

SWNT bundle 
(diam. ~1nm ) 

 
graphite 

 
4.68 – 4.77 

 
4.94 - 5.05 

 
 

4.91 
 

first-principles 
methods 

Zhao et al 
[20] 

SWNT 
(diam. 1 nm) 4.55 

 
simulation based 

on density-
function theory 

 

Zheng et al 
[22] 

 
SWNT 

(diameter > 1 nm) 
 

graphene sheet 
 

SWNT 
(diameter < 1 nm) 

 
 

4.66 
 
 

~4.5 - ~5.9 

first-principles 
methods 

Shan et al 
[21]1 

1 – In our case we consider diameter of CNT at the tip of the CNP to be >> 1nm 
 

Note that even though it is not explicitly stated in the first principles studies described 

above, the object of interest were most probably side walls of the CNT in the both cases. 

Earlier results reported by Zhou et al. regarding the electron structure of the opened-

ended SWNT showed that the presence of non-bonding valence electrons at the tip 
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induces variation of the electronic structure and importantly decrease of the work 

function. Interestingly, one of the other effects is also strengthening of the bonding 

between the carbon atoms at the mouth of the open – ended CNT [23]. Other theoretical 

studies by Chen et al. and Zheng et al. of the work function confirmed the fact about 

lower values of the work function at the tips for the capped and the open-ended SWNT 

[22, 24]. On the other hand these studies showed that a decrease of the value of ϕ at the 

capped or open-ended tip depends on the chirality.  

To date there are several earlier standard experimental methods for determining 

the work function of different materials: PEES, PEEM, UPS and CPD. These techniques 

were used also for the measurements of ϕ of the carbon nanotubes.  

Photoelectron emission study of the SWNT “bucky paper” and MWNT (grown by 

arc  discharge from the graphite rods) carried out by Shiraishi et al [25]  showed that 

value of the work function of the both single- and multiwall carbon nanotubes, 5.05 eV 

and 4.95 eV respectively, are larger than for the high oriented pyrolitic graphite (HOPG): 

4.80 eV (Table 3.2). It was reported that diameters of the SWNT and MWNT were about 

1nm and 20 nm respectively. The higher value of the ϕ for CNT compared to HOPG was 

interpreted as being due to the differences in geometry of the structures. Authors suggest 

that considering that HOPG (as single graphene sheet) has orthogonal σ – π valence 

states. CNT’s have mixed σ – π valence states that will causethe work function to 

increase. This was supported by additional PEE measurements of the work function of 

the fullerenes C60: 6.0 eV; and first principles calculations which reproduced 

experimental results. In this study, authors determined work function of the sidewalls of 

the CNT.   
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As mentioned earlier, a commonly used experimental method for determination of 

the work function of different materials is ultraviolet photoelectron spectroscopy. Ago et 

al. were the first to report the values of the work function of purified MWNT determined 

by UPS [27].  

Tab 3.2. Values of work function of carbon nanotubes and other carbon materials 
obtained by different experimental methods. 

 
 

Method Material 

 
Work 

function, 
ϕ, [eV] 

 

Reference 

PEES1 

 
HOPG 

 
SWNT 

 
MWNT 

 
C60 

 

 
4.80 

 
5.05 

 
4.95 

 
6.5 

 

[25] 

UPS2 

 
HOPG 

 
SWNT 

 
MWNT 
Purified 

air oxidized 
 

4.4 
 

4.8 
 
 

4.3 
4.4 

[26],[27] 

CPD3 
MWNT 

 
SWNT 

4.6 – 4.8 
 

4.7 

 
[28] 

 
[29] 

 
  

1 – Photoelectron emission spectroscopy (PEES); 
 2 – Ultraviolet photoelectron spectroscopy (UPS) 
 3 – Contact potential difference (CPD) 
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MWNT were grown by arc discharge on the graphite rods (with no catalyst) and were 

prepared for measurements in a form of the thin film made of metallic and 

semiconducting MWNT bundles.  Measured value of the work function of the MWNT is 

4.3 eV and for the HOPG 4.4 eV. 

Another UPS study by Suzuki et al. revealed that work function of the SWNT 

(grown by laser ablation) is 4.8 eV and for the graphite 4.6 - 4.7 eV. Tested samples were 

SWNT bundles where the average diameter of SWNT was 1.4 nm and that of the bundle 

20 nm.  

In the second study CNT samples were annealed before the UPS measurement 

which was not the case for the first one. This could be the source of the discrepancies in 

the value of the work function between the two groups. The presence of adsorbed 

molecules of the nitrogen, oxygen or water on the surface of the CNT can affect the 

values of work function [22]. Considering that in both UPS studies measurements were 

done on CNT bundles (nonaligned CNT), the spectra are dominated by contribution from 

the sidewalls of the CNT. Thus authors reported ϕ of the sidewalls. It is evident that 

Suzuki et al. results are in agreement with the theoretical results.  

Another method often used for the determination of the work function is Contact 

Potential Difference. Gao et al. performed experiments on individual MWNT 

(synthesized by arc discharge) using in situ transmission electron microscope (TEM) 

technique [29] which is still the CPD method in principle. In this study authors 

determined that values of the work of the tip of individual MWNTs are in the range 4.6 – 

4.8 eV. Results showed that ϕ is not dependent on the diameter (14 – 55 nm) of the tubes. 

Cui et al. CPD measurements of the SWNT [30] resulted in similar values of the work 

function: 4.6 eV. 
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3.1.3 Thermionic emission of the CNT and work function determination. 

 

Field emission properties of various carbon nanotubes, including single-walled 

carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) [17-19, 36, 37] 

and conical carbon nanotubes (CCNTs) [40] have been extensively studied. There has 

been limited work on the thermionic emission of CNT grown by plasma enhanced CVD 

(PECVD) or standard thermal CVD. Apart from the investigation of the thermionic 

emission properties of these structures, this type of the measurements was used as a 

method of determination of the ϕ (Table 3.3). The main advantages of the thermionic 

emission-based method of obtaining work function of the CNT are the (i) accuracy of the 

measurement and (ii) elimination of the adsorbents [32].  

D. Cox et al. were the first to report on the thermionic emission from the 

individual MWNT (grown by low temperature CVD) [31] using a nanomanipulation 

system contained within scanning electron microscope (SEM). Individual MWNTs 

(diameter: 50 – 100 nm) were selected on the substrate and manipulated in situ, in real 

time, in a SEM with the help of the two sharpened W tips. 

According to authors, in spite of the low temperature CVD synthesis, the MWNTs 

nanotubes were defective and as such had particularly low temperature conductivity. 

Utilizing this fact and using W tips as electrodes and running current through the 

individual nanotube it was possible to significantly increase the temperature, T, of the 

nanotube. Using copper wire for the third electrode and applying voltage, it was possible 

to measure the thermionic emission (TE) current from the heated MWNT. Figure 3.4 

demonstrates the dependence of TE current on heating current which was flowing 

through the nanotube. It can be seen that this resembles an exponential dependence. Thus, 
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authors estimated approximate values of temperature (T) using Richardson-Dushman law 

(eq. 1.1) and 4.95 eV as the value of the work function of the MWNT sidewall from [18]. 

According to estimation, 2150 K is the temperature at which electron emission started; 

and maximum temperature in this experiment is 2900 K.  

 

Table 3.3 Values of work function of carbon nanotubes obtained from thermionic 

emission measurements. 

 

Material 
T range [K] 

Work function, 

ϕ [eV] 
Reference 

a) Sidewalls 

SWNT 

DWNT 

MWNT 

b) Tips 

MWNT 

 
1817 - 2136 

 
1846- 2151 

 
1747 - 2115 

 
 
 

1827 - 2091 

 

4.70 - 4.92 

4.85 - 4.87 

4.80 - 4.91 

 

4.41 

[33] 

MWNT yarns 1468 - 2207 4.54 – 4.64 [32] 

MWNT 

(vertically aligned) 1366 - 1432 4.2 [35] 

MWNT yarns 
 

MWNT sheets 
1100 - 2300 

4.60 – 4.62 
 

4.55 – 4.62 
[36] 

MWNT 

(vertically aligned) 2021 - 2398 4.5 [37] 
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Alternative proper determination of the temperature of the nanotube applying heat 

transfer analysis based on the dissipative self-heating could not have been possible due to 

difficulties with accurate value of the thermal conductivity for the MWNT. On the other 

hand, use of the Richardson – Dushman equation 1.1 could not have provided accurate 

estimation of the temperature. Because of the fact previously discussed in chapter 2, that 

the value of the Richardson constant A0 from simplified R-D eq. 1.1 is not applicable 

even in the case of the clean smooth surface of the real metals [25, 2nd chapter] – even 

more it is not applicable in the case of the MWNT. Nevertheless, the exponential part of 

eq 1.1 or eq. 2.32 is still valid which is illustrated by experimental data [32]. 

A thorough description of the thermionic emission from the CNT bundles and 

yarns as well as determination of the value of the work function was presented by Peng 

Liu et al. [32,33].   

The values of ϕ obtained by thermionic emission method [32,33] (Table 3.3) are 

consistent with the theoretical predictions [20-22] (Table 3.1) and roughly agree with 

photoelectron emission (PEES) measurements [25] (Table 3.2). 

Initially, Peng Liu and colleagues investigated thermionic emission from the 

MWNT yarns. Authors had developed a method to prepare super aligned MWNT arrays 

by PECVD and from which continuous pure MWNT yarns can be directly drawn. For 

measurements,  samples were prepared using 2 cm long yarns with diameter of 20-30 

microns with ends attached to the electrodes. An Mo plate served as the anode as was 

placed in front of the angle shaped MWNT yarn, which served as cathode – this is 

reffered to as simple vauum diode configuration ([25] (ch. 2, page 37), [18]). The yarn 

was uniformly heated by passing a current through it and anode voltage was applied 
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using a sourcemeter.  Measurements were performed in high vacuum at the base pressure 

~4·10-8 torr and for temperatures in the range 1468 K – 2207 K. 

By collecting I-V curves for different temperatures and using Schottky eq 2.32 or 

2.34 for linear fitting of the accelerating field regime part of the LnI – V1/2 curves [32] as 

described in Chapter 2.5, authors determined the values of zero field emission current I0 

for appropriate temperatures T. Then after performing linear fitting of the 𝐿𝑛 (
𝐼0

𝑇2) vs 1
𝑇
 , 

value of the work function of the yarn was determined. 

Results of the study by Peng Liu et al. showed that values of the work function 

vary slightly from sample to sample (Table 3.3). Authors note that electrons are emitted 

mainly from the sidewalls of the MWNT in the yarn. MWNT tips contribution in the 

work function value is negligible due to comparably small area (10 nm diameter). 

Determined values of the emission constant A = ARt0 from eq. 2.32 differed from sample 

to sample and were much more larger than fundamental Richardson constant: 228 – 824 

A/cm2K. A possible reason suggested is due to the inaccurate estimation of the emission 

area due to errors in considering roughness of the yarn surface.  

After investigating thermionic emission of MWNT yarns Peng Liu et al. followed 

with the next study. This time the objects of interest were sidewalls and tips of the CNT, 

thus bundles of the single-, double- (DWNT) and multiwall carbon nanotubes [33] were 

prepared for measurement. CNTs were synthesized by CVD on a silicon wafer with 

patterned catalyst islands. Control of the synthesis allowed controlling the number of the 

ends (tips) of the nanotubes along the bundle. The measurements were performed using 

the same method as in the previous study of the MWNT yarns.. Again, CNTs were heated 
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by passing a current through it. Experimental procedure and conditions were similar to 

the one in the previous study.   

 Results revealed that values of the work function of the SWNT, DWNT and 

MWNT bundles vary slightly from sample to sample (Table 3.3) in the range 4.7 eV – 

4.92eV (Table 33.3), and there is no clear evidence of the dependence on the diameter or 

number of the walls. The value of work function for tips obtained from measurements 

was smaller (4.41 eV) than in the case of the sidewalls [33] of the CNT, which is in 

agreement with theoretical predictions [23,24] and what we discussed at the beginning of 

this chapter. Due to structural differences between sidewall and tip of the CNT, the 

electron density of states (DOS) would be different for either case. That will affect the 

value of the work function which could be lower at the end of the CNT [7.8]. Thermionic 

emission results of Peng Liu and colleagues confirm this.  

In parallel to Peng Liu’s work on the MWNT yarns, thermionic emission study of 

the vertically aligned MWNT (pristine and coated by BaO/ SrO) was published by Feng 

Jin et al [135]. MWNT arrays were synthesized by PECVD on the W ribbon with a thin 

layer of Ni used as a catalyst. The grown MWNTs were approximately 10 μm in length 

and 200 nm in diameter. BaO/SrO was used to reduce work function of the CNT. 

However the primary interest is in pristine MWNT. Field and thermionic emission 

measurements were performed using simple planar diode arrangement [25 (ch2, p.37), 

134] in ultra-high vacuum (no details reported on the value of the base pressure) with W 

strip with the MWNT array acted as the cathode. A source-meter was used to supply a 

high voltage across the cathode and anode and to measure the electron emission current 

flowing from cathode to anode. It was not specified in the article how the sample was 

heated. A quite large value of the field enhancement factor β = 1404 (for the pristine 
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MWNT) was determined from field emission measurements using simplified Fowler-

Nordheim eq.2.22 and eq. 2.26. Thermionic emission measurements were performed 

using the same method as Peng Liu and colleagues, collecting I-V curves at different 

temperatures in the range: 1366 K – 1432 K. The value of the work function obtained 

from the thermionic emission and Richardson-Dushman equation was 4.2 eV which is 

lower than in case of the Peng Liu’s et al measurements (4.41 eV for tips). 

The lower value of work function could be explained using a similar argument as 

previously, by the fact that for vertically aligned MWNT, emission would occur from the 

tips. Again in according to the theoretical predictions [23,24] one could expect lower 

value of the work function. As we will see later, another additional factor could cause the 

further decrease of the work function at the end of the CNT.  

Apart from these basic publications on thermionic emission from CNT there have 

been few other reports. MWNT sheets and “shrunk” yarns were studied by Yang Wei et 

al [36]. The experimental set up and procedure are very similar to the one used by Peng 

Liu et al. Measured values of the work function for yarns and sheets (Table 333) are 

roughly in agreement with the reported by Peng Liu and colleagues [32]. In this work 

calculated values of the emission constant for MWNT yarns and sheets are much closer 

to the Richardson constant. Authors claim that this is due to the structural properties of 

the samples and more accurate estimation of the emission by utilizing energy 

conservation law and Stefan-Boltzman law.  

Another report by the Kolekar et al [37] on thermionic emission from the 

vertically aligned MWNT grown by the Water Assisted CVD (super growth) on W wires. 

W wires with MWNT rolled in a shape of the coil acted as a cathode and a Mo foil was 

used as the anode. Experimental set up and procedure were similar to the one used by 
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Peng Liu et al. Work function determined for such structure was 4.5 eV which is in 

agreement with other reports on TE from the tips or vertically aligned CNT [32,33]. 

Finally, we would like to note that chronologically the earliest thermionic 

emission results from random films of SWNT and MWNT (purified nanotube paper) 

showed unusually low values of work function for CNT: 1.2 eV [23] and 3.46 eV [24]. 

However these values are not in agreement with theoretical predictions or majority of the 

experimental results obtained by other methods [25–29].  

   

3.2 Work function of diamond and thermionic emission properties 
of the diamond films. 

     
 3.2.1 Introduction. 

 

Diamond is another allotrope of carbon, in addition to carbon nanotubes, with 

exceptional intrinsic properties as well. In the case of diamond, all four s and p orbitals of 

the carbon will hybridize to form strong sp3 bonds with tetrahedral configuration (Figure 

3.9 a). Combined with crystalline structure of the diamond (Figure 3.9 bc) they lead to, as 

we mentioned earlier,  unique features which include high mechanical hardness, high 

carrier mobility, high thermal conductivity, low coefficient of thermal expansion, high 

breakdown electric field.  
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Figure 3.2 a) Schematic view of the tetrahedral sp3 component of diamond unit cell;  b) 
crystallographic unit cell (unit cube) of the diamond structure (a – cell constant, grey 
circles represent C atoms); (b) the primitive basis vectors (𝑎1⃗⃗⃗⃗ , 𝑎2⃗⃗⃗⃗ , 𝑎3⃗⃗⃗⃗ ) of the face centered 
cubic (fcc) lattice and the two atoms forming the basis are highlighted (Courtesy of Enzo 
Ungersbock, dissertation, http://www.iue.tuwien.ac.at/phd/ungersboeck/node27.html, 
10/2014). 

 

These characteristic features make diamond a good candidate for vacuum electronics and 

especially for thermionic emission applications. Due to specific properties of diamond, 

work function (important parameter in TE) could be lowered by: 1) Surface 

modification/surface coatings of elements inducing dipole moments, affecting the 

electron affinity; 2) Doping with appropriate dopants causing a change in the position of 

the Fermi level. What is more, considering the low concentration of intrinsic charge 

carriers at temperatures below 1000 oC and a wide band gap 5.47 eV [40], n- type doping 

would increase conductivity of the diamond what would be beneficial for the electron 

emission.  

 Electronic properties of the diamond surface in case of the simplest interface with 

vacuum are naturally the key factor when discussing the thermionic emission from this 

material as in case of any semiconductor. Among all the semiconductors, however, 

diamond possesses a unique feature - the presence of the true Negative Electron Affinity 

http://www.iue.tuwien.ac.at/phd/ungersboeck/node27.html
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Figure 3.3 Lowering of electron affinity 
of diamond by electrostatic effect of the 
surface termination by hydrogen. 

of hydrogen terminated surfaces – which we will discuss shortly. Another important 

subject is the surface and surface defect states in case of the diamond which will be 

reviewed as well.    

 

3.2.2 Negative Electron Affinity, n type doping of diamond and Thermionic 

Emission. 

 

Diamond grown using chemical 

vapor deposition technique exhibits 

negative electron affinity (NEA) i.e., the 

presence of a vacuum level below the 

conduction band minimum (CBM) due to 

hydrogen termination on the surface. This 

can ease the emission of electrons coming 

from the conduction band overcoming the 

small energy barrier that results from the 

reduced work function [41].  

On diamond surfaces terminated by hydrogen is formed a surface dipole layer set-

up by partially ionic C – H bonds - the more electronegative carbon is pulling electron 

from the hydrogen. Presence of such a dipole layer causes a potential step ΔV 

perpendicular to the surface – as it is illustrated in the figure 3.3 [4.2]. This potential step, 

over a distance of the order of the C - H bond length, implies that vacuum level (Vac) 

position is below the conduction band minimum (CBM). Respectively for fully hydrogen 
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terminated surface Vac is lowered by eΔV (where e is the elementary charge) compared 

to its value for clean diamond surface with no dipole layer.  

 
Table 3.4 Experimental values of the electron affinity for different diamond faces. 

 

Orientation Termination Electron 
aff. [eV] Publication 

(100)-(2x1) clean 0.5 F. Maier et al, Phys. Rev. B 64 (2001) 
165411 (100)-(2x1) H -1.3 

(100)-(1x1) O 1.7 

(100)-(1x1) O 0.54 Y.M. Wang et al, Diam. Relat. Mater. 9 
(2000) 1582 

(111)-(2x1) clean 0.38 J. B. Cui et al, Phys. Rev. Lett. 81 (1998) 
429 (111)-(1x1) H -1.27 

(110)-(1x1) clean 0.7 P. K. Baumann and R. J. Nemanich,  
Phys. Rev. B 58 (1998) 1643 

(110)-(1x1) H -1.0 L. Diederich et al, Surf. Sci. 424 L314 
(1999) 

 

Experimental studies revealed that depending on orientation of diamond surface 

(hydrogenated by plasma), value of NEA vary (Table 3.4) from -0.7 eV to -1.3 eV [42]. 

This is in comparison to oxygen terminated diamond surfaces with value of positive 

electron affinity ranging from 0.54 eV to 1.7 eV and to the clean diamond surfaces with χ 

= 0.38 – 0.70 eV [42,43]. 

In addition to the presence of a NEA, it was presumed that the work function of 

diamond could be further lowered by appropriate n type doping to bring Fermi level (EF) 

closer to the conduction band minimum (CBM). We need to note that experimental study 

of the work function of the nitrogen doped single crystalline diamond and n-type 

diamond films has shown that situation is more complex. As a result of band bending at 

the surface, reduction of the work function has not been observed at all or has been less 

effective than expected.   P-type doping into diamond with boron (B) has been widely 

studied and it is known to introduce an acceptor level (0.37 eV) above the valance band 
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Figure 3.4 Donor levels of the different 
impurities for the diamond. Where CBM – 
conduction  band minimum; VBM – valence 
band maximum. 

maximum [44]. However, study of n-type doping into diamond is limited and has been 

very challenging due to limited or no incorporation of dopants in to bulk diamond lattice. 

Several n-type dopants such as nitrogen (N), phosphorus (P), and sulfur (S) have been 

studied earlier [45] (Figure 3.4). 

 Nitrogen has been shown to 

create deep donor levels at 1.7 eV 

below the bottom of conduction band 

due to its structural distortion in 

diamond lattice. Consequently, N-

doped diamond does not yield room 

temperature conductivity, further 

limiting its electronic feasibility [46]. 

Moreover it has been reported that the 

n-type conductivity of N doped polycrystalline/ultra-nanocrystalline diamond (UNCD) 

films could be attributed to the nitrogen incorporation into grain boundaries (possibly an 

enhanced conductivity through interconnected shells of grain boundaries) [46]. Though 

theoretical modeling of sulfur (S) doping into diamond has not been reported to exhibit 

shallow donor levels, it is still a controversy over the type of donor level (shallow or 

deep) created by S [45].  

Co-doping of sulfur and boron has shown to exhibit n-type conductivity, but no 

significant reduction in the work function has been observed [47].Doping with 

phosphorus into single crystalline diamond (111) is known to create a shallow donor 

level 0.6 eV below the CBM [48]. It is also predicted that in P-doped diamond 

(polycrystalline or homoepitaxial) films at the back contact (diamond/ cathode metal) 
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electrons can be easily extracted due to the presence of ionized donors in the space 

charge region [49] and due to the creation of defects during P incorporation, which in 

turn eases the movement of electrons to be extracted [11]. However, the following factors 

have limited the success of controlled doping of phosphorus into the diamond lattice to 

any satisfactory level. First, because the size of the P atom is larger than carbon, some 

native defects and structural displacement will accompany during phosphorus 

incorporation (lattice mismatch and covalent bond length). Second, P incorporation is 

more favorable on (111) surface compared to (100) surface [50]. Nevertheless, 

considerable progress in phosphorus doped n-type diamond has been reported on (111) 

and (001) orientation [48, 51-53] along with recent study on (100) oriented single crystal 

diamond [51] using gas phase source of phosphorus. Recently, the growth and 

incorporation efficiency of phosphorus as a function of surface orientation of grains in 

[110]-textured polycrystalline CVD diamond has been reported [54]. Growth of 

phosphorus-doped polycrystalline diamond films on silicon substrates has also been 

reported using gas phase (as dopant phosphine PH3) [55] and organic precursors in case 

of the single crystalline homoepitaxial P doped films grown on diamond [56]. However, 

thermionic emission or work function measurements have not been performed in most of 

these materials.  

Some of the investigations based on thermionic emission from nitrogen doped 

homoepitaxial diamond [57], nanocrystalline (NCD) [58] and ultrananocrystalline 

diamond (UNCD) [59] films have resulted in observed work functions as low as 1.3 eV 

(Table 3.5). In other instances, thermionic emission energy distribution (TEED) results 

on undoped diamond films have been shown to exhibit work function value of 3.3 eV 
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[60]. A work function value as low as 0.9 eV has been observed for the phosphorus 

doped diamond film [61].  

 

Table 3.5 Values of work function of doped diamond films. 

Dopants 
Work 

function 

φ [eV] 

A 

[μA/cm2K2] 

Type of 

diamond 
film 

Minimum 
emission 

T [K] 
References 

S ~2.5 40 - 45 NCD 880 

[62] N 1.5-1.9 0.1 – 10 NCD 520 

P 0.9 10 PCD 620 

 

Based on the published results of thermionic emission from the n type doped 

diamond, it could be speculated that it could be possible in future to tune work function 

of the diamond by using appropriate dopants in the range of the ϕ values 0.9 eV – 2.5 eV 

which are of significant importance regarding thermionic energy conversion. 

Some of the surface modifications/coatings have been reported to lower the work 

function values of diamond [63-68]. However, thermal stability of these surfaces has 

either been not tested or unsatisfactory towards the thermionic emission. Hence, the 

search for the proper material with required work function values is still ongoing. 

 

3.2.3 Electronic properties of the surface of the diamond. Intrinsic and defect states 

at the surface of the diamond. 

 

 Surface states are intrinsic features of the material specific for the crystallographic 

surface under consideration, which presence is the result of the truncation of the periodic 
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potential of a crystal by surface - even in the case of ideal perfectly ordered surface of the 

single crystal [8, 42]. Surfaces states are the basis for the two dimensional structure 

which is a display of the dispersion relations between the energy of the corresponding 

Eigen-states and the crystal momentum vector k|| parallel to the surface. Due to the fact 

that the crystal lattice unit cell at the surface and near surface is different from the one for 

the bulk – with the larger surface of unit cell usually [42] (reconstruction phenomenon) – 

dispersion relation of the surface states is determined for the Brillouin zone 

corresponding to the reconstructed surface [8,42]. ]. If the surface states are degenerate 

with Bloch states [8] of the infinite crystal (with the same k||), they usually mix and form 

resonances. In the opposite case, surface states are localized at the surface and can take 

part in charge exchange with states of semi-infinite bulk but on condition that surface 

states position is within fundamental energy gap of the semiconductor – for example 

diamond. In this case surface states could pin the Fermi level at the surface [42].   

 Surface states on diamond were previously investigated experimentally (electron 

scattering and spectroscopy) and theoretically (density functional theory) for three 

reconstructed crystallographic surfaces (111), (110) and (100) and these studies provided 

a consistent description of the surface states of the main crystallographic surfaces [42]. 

For all three crystallographic orientations, the dangling bonds of the clean surfaces form 

π – electron systems which lead to different densities of surface states depending on the 

topology of the surfaces. On diamond reconstructed surface (100) 2x1 atoms form π - 

bonded symmetric dimers and based on simple tight binding description this interaction is 

mainly responsible for the bonding-antibonding (π–π
*) splitting between occupied and 

unoccupied (dimer) π orbitals. The dimer arrangement on the surface (rows separated by 

“large” distance of 2.52 Å along (011) direction causes further weaker splitting of the 
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dimer orbitals and the formation of the surface band structure with an occupied band 

originating from the π (bonding) orbital and an empty band originating from the π
*
 

(antibonding) orbital with a gap 1.3 eV between occupied and unoccupied states. It is 

important to note that occupied surface states do not extend into the absolute gap of the 

diamond. Instead, they are placed within the valence band with respect to energy, thus no 

charge exchange could take place between them and bulk diamond and they will not 

induce band bending [42].  

For the surfaces (111) and (110) situation is different. In this case dangling bonds 

are arranged in symmetric π bonded chains without dimerization . 

Reconstruction 2x1 is required on the (111) surface but not for the (110). The 

distance between π-orbitals is 1.45 Å for the (111) and 1.54 Å for the (110) – much 

smaller than for the (100) surface. In result the π – state system is formed, which is 

delocalized in one direction along the chains. As a consequence, these surfaces are 

predicted to be metallic. Theoretical predictions for the surfaces (111) and (110) are 

however, in contradiction with the experimental data [42]. For the surface (111) presence 

of the narrow band gap was detected (0.5 eV) and for (110) there is no conclusive 

experimental results. There is no clear evidence that surface for these orientations could 

induce Fermi level pinning at the surface [42]. 

In case of the hydrogen termination of the surfaces no occupied states within band 

gap are predicted theoretically or detected experimentally. Unoccupied states are 

predicted but their presence is not confirmed experimentally [42].   

Another type of states localized at the surface are defect states. The most basic 

surface defect is an isolated dangling bond but these bonds could be arranged along the 

surface steps or in more or less extended clusters on the surface of the material, not only 
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Figure 3.5 Illustration of defect induced 
surface band bending on a p-type diamond 
according to J.Ristein et al., [42]. A graphite 
like DOS of the surface  is assumed. 

single crystalline but also polycrystalline as well. For diamond behavior of this type of 

defects approaches asymptotically that of graphitic or more generally sp2 bonded patches. 

 Two dimensional surface density 

of states S-DOS is the important quantity 

in the discussion of the interaction of the 

surface defect states with bulk [42]. S-

DOS is formed by interaction and 

disorder of the individual defects on the 

surface of the diamond. Ristein et al. 

based on the case of the p type diamond 

and S-DOS similar to the graphite 

explained the mechanism of this 

interaction. In equilibrium the Fermi 

levels at the interface of the bulk and 

surface of the diamond need to be aligned. Thus, initially electrons are diffusing from 

defect states into the bulk of the diamond creating hole depletion layer with negative 

space charge and positive surface charge density until equilibrium is reached and bulk – 

surface Fermi level is aligned across interface Figure 3.5 [42]. The space charge profile 

creates the band bending which fulfills Poisson’s equation and has to be consistent with 

the local Fermi occupation statistics and this depends on the local position of the bands 

relative to Fermi level. It is important to note that under assumption that space charge 

density ρ in the depletion layer is constant (Schottky approximation) the total area charge 

density σ in the hole depletion area (Figure 3.5) is dependent on acceptor concentration 

and most importantly on difference between Fermi levels of the bulk and surface. The 
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total (negative) charge in the hole depletion layer of the diamond (Figure 3.5) needs to be 

compensated by the same amount of positive charge in the surface defects. This positive 

charge is also a function of the surface Fermi level and it is equal to zero when it is 

aligned with charge neutrality level of the defect system CNLdef. CNLdef is assumed to be 

aligned with intrinsic graphite Fermi level.  

According to J.Ristein et al., it is a self-consistent mechanism which allows  

determination of surface EF position and the band profile unambiguously - based on 

analysis of the relation between the defect system and the band structure and requirement 

for the total charge neutrality. Essentially, it is a characteristic of the heterosystem similar 

to the band offset between different semiconductors [42]. Finally, Ristein et al. noted that 

surface band bending of the moderately doped diamond is effectively induced already by 

surface defect concentrations of less than 1% of a monolayer and a 10 % of a monolayer 

are already sufficient to pin the surface Fermi level. The experimental results of the X ray 

photoelectron (XPS) and photoelectron yield spectroscopies of the clean and 

hydrogenated surfaces (111) and (100) of the single crystal diamond [42] were consistent 

with presented mechanism.     

Independent investigation of the band bending by Diederich et al., has 

demonstrated that electron affinity and work function of differently terminated, doped 

(nitrogen and boron) and oriented single crystal diamond surfaces by XPS  and ultraviolet 

photoelectron spectroscopy [43] showed consistency with the surface defect mechanism 

proposed by Ristein et al. UPS measurements allowed to determine the value of the work 

function (vacuum level – Femi level energy difference) and presence of the negative 

electron affinity (conduction band minimum – Fermi level energy difference); XPS 
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measurements provided information about value of the band bending at the surface of the 

doped diamond (shifting of the core carbon 1s levels) [Diederich et al., 43]. 

Analysis of the XPS and UPS measurements of the (100) surfaces of the strongly 

Nitrogen doped and Boron doped diamond revealed significant downward band bending 

for the N doped diamond in case of the clean (2.4 eV) and hydrogenated surface (1.7 eV). 

Experimental results showed that there is evidence for significant downward 

bending (1.6 eV) for the clean surface of the B doped diamond; weak band bending (0.7 

eV) was reported for the H terminated surface.  

Again we need to note that this result for the B doped diamond is in good 

agreement with the experimental results of Ristein et al and what is especially important 

is consistent with the mechanism proposed by Ristein regarding p type diamond [42]. 

Thus it is reasonable to apply Ristein’s description of the doped diamond-vacuum 

interface for the n type diamond. 

 Kono et al.’s investigations of hydrogen terminated phosphorus doped diamond 

surface (111) using XPS, UPS and He-I excited secondary electron spectroscopy (SES) 

showed an upward band bending of ~3.2 eV toward the surface. [53] Surface Fermi level 

position was determined to be 1.8 eV above valence band maximum. They suggested that 

such large upward band bending could have been induced by the surface Fermi level 

pinning caused by surface defect states which behave like graphitic patches in analogous 

to the case of the p type diamond studied by Ristein et al.  
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3.4 Summary 

 

We reviewed different experimental methods of determining the value of the 

work function of the CNT. It is clear that thermionic emission is an accurate and reliable 

method considering its consistency with theoretical prediction of the work function and 

other experimental methods such as PEES. On the other hand, TE measurements could 

serve as a tool to study surface effects of the pristine or functionalized CNT and of course 

diamond (doped and with functionalized surfaces). 

Previous theoretical and experimental studies show that work function is naturally 

affected by the specific geometric, atomic and electronic structure of the tips of the CNT. 

Finally, it has to be noted, that special atomic and electronic properties of the diamond 

surface indicate that nature of the electron emission (photoemission or thermionic 

emission) mechanism from this material is not trivial and requires caution in description 

of the emission, calculation and/or determination the origins of the value of the work 

function, .   

 

 

 

 

 

 



 

56 
 

 

 

CHAPTER 4 

 
CONICAL CARBON NANOTUBES. THERMIONIC EMISSION 

PROPERTIES AND WORK FUNCTION 
 
 
 

In this chapter we report results of the study of the thermionic emission properties 

of conical carbon nanotubes directly grown on platinum wires and graphite foils. The 

thermionic emission results were used to extract the work function values of CCNTs and 

further confirmed from ultra-violet emission spectroscopy.  

 

 

4.1 Synthesis of the Conical Carbon Nanotubes. 
 

4.1.1 Introduction 

 

 Conical carbon nanotube (CCNT) could be considered as modified multiwall 

carbon nanotubes consisting of central MWNT at the core surrounded by helical graphitic 

sheets in such manner that it has a conical geometry (Figure 4.1). Due to the unique 

features CCNTs are naturally expected to have superior field emission characteristics 

which were experimentally confirmed [69]. 

CCNTs could be grown on different substrates: Pt wire, graphite foil, W or Mo 

foil [69,70]. Depending on the substrate and synthesis conditions CCNTs have a diverse 
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morphology with length of the tube in the range 1- 70 μm, diameter of the tip: 5 – 100 

nm, and diameter of the base: 0.1 – 5 μm (Figure 4.1).   

 

 

 

Figure 4.1 a) Schematic view of the CCNT; b) SEM images of the CCNT with the 
different morphologies including SEM and TEM images of the their tips;  c) SEM image 
of a broken CCNT (left) with the magnified view of the area depicted by the white square  
It is clearly visible MWNT at the core of the broken CCNT.  
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 In this work we will concentrate on the samples with the array of the vertically 

aligned CCNTs grown on Pt wire and graphite foil. In this case the growth of CCNTs is 

uniform with respect to the coverage on the surface of the substrate and morphology 

(length and diameter of the tips and bases). In the case of Mo substrates the result of the 

growth was typically less uniform. 

 

4.1.2 Experimental procedure. 

 

Studied CCNT samples were grown by microwave plasma assisted chemical 

vapor) deposition (MWCVD) using AsTeX 5010 microwave plasma reactor (1.5 kW, 

2.45 GHz) on two different substrates: (i) platinum wire (Alfa Aesar, 300 μm diameter, 

99.9% (metals basis)) [69,70] and (ii) graphite foil (Alfa Aesar, 130 μm thick, 99.8% 

(metals basis)) with the sputtered thin layer (30 nm) of the Pt [70]. Total length of the Pt 

wire samples were ~3-4 cm and average area of deposition was 0.02 cm2 (~2mm section 

of Pt wire on one end). For graphite foils, average area of deposition was 0.5 cm2 and 

total area of the sample ~ 1 cm2. Samples grown on Pt wire are labeled 1, 2 and 3 while 

samples on graphite foil are labeled 4, 5 and 6 (Table 2). Substrates Pt wire and pure 

graphite foil (before sputtering) are usually cleaned in acetone sonication bath. Pt wires 

were placed vertically in graphite susceptor (Figure 4.2b) inside the vacuum chamber. 

Graphite foils after Pt sputtering were rolled around 1 mm graphite rod and then placed 

vertically in graphite susceptor as well (Figure 4.2b). 
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Figure 4.2 a) Schematic view of the vacuum chamber for MWCVD growth and b) 
arrangement of the substrates Pt wire and graphite foil on the susceptor inside the 
chamber. 
 

More detailed experimental procedure of the growth and sample preparation has 

been described in detail elsewhere [69,70].   However, some changes during the growth 

process were introduced for this particular study for both samples grown on the Pt wire 

and graphite foil. The experimental procedure is still similar to that of previous work 

[70], except for the addition of a two-step process with a change in the gas phase 

composition to vary the structural characteristics of CCNTs. Step 1 consists of carbon 

deposition using 1.35 % (Pt wire) or 2.5 vol. % (graphite foil) methane in 200 sccm of 

hydrogen followed by a deposition and etching with 1 % (Pt wire) or  2 vol. % (graphite 

foil) methane in 200 sccm of hydrogen in step 2. Time of the 1st step is 15 min and of the 

2 step 10 min. Pt wire samples were synthesized at pressures 25 torr and microwave 

power 950 W; graphite foil samples at 30 – 50 torr and microwave power 900 – 1000 W. 
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Final important detail is that during the growth both type of substrates were immersed 

vertically into plasma (Figure 4.2b). 

 

4.1.3 CCNT – Result of the growth. 

 

As a result of the MWCVD growth, samples were obtained with an array of 

randomly scattered Conical Carbon Nanotubes (CCNTs) on the substrates. Figure 1 

shows the SEM images of the four CCNTs samples under investigation. There are visible 

variations in density, morphology, and aspect ratio. The insets show the enlarged view of 

the individual CCNT tip. The close-up view of sample 6 as shown in Fig. 4.3 (e) shows 

presence of “horn-like” structures with blunt tips along with CCNTs. The characteristics 

for the CCNT samples are summarized in Table 2.  
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Figure 4.3 SEM images of array of CCNTs on Pt wire: (a) sample 1. On graphite foil: (b) 
sample 4, (c) sample 5 and (d,e) sample 6 with insets showing the enlarged view of the 
corresponding CCNT tip. The image (e) shows presence of microhorns structure along 
with CCNTs with inset showing top part of the microhorn. Images were obtained using 
NOVA Nano SEM 600. (Used with permission – Apendix A). 

 

Table 4.1 Characteristics of the CCNTs grown on Pt wire and graphite foil. 

 (Used with permission – Apendix A). 

 

 

CCNT sample Length1,  
l [μm] 

Base 
Diameter1,  

D [μm] 

Tip Diameter1 
d [nm] 

Aspect ratio, 
l/D 

Pt 
wire 1 - 3 5-10 0.1 - 0.5 10 - 20 50 - 100 

 
 
 

4 15 – 30 2 – 4 30 - 50 10 – 30 

5 2 – 15 0.5 - 1 50 – 100 4 – 30 

6 
(CCNT) 15 – 25 1 – 2.5 60 - 100 15 – 25 

(“microhorns”) 0.5 - 50 3  - 4 500 - 2000 1.7 - 10 

 

1 Length and diameter of CCNT are averaged values obtained from characterization of several different 
areas of each sample. 
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CCNTs grown on platinum wire are usually smaller in size with aspect ratio 

higher than in the case of graphite foil. The density of the growth of the CCNTs for Pt 

wire is on average significantly larger (107/cm2) in comparison with graphite foil 

samples: sample (4) - 104/cm2; sample (6) - 102/cm2 for both CCNTs and microhorns, 

respectively. However, these density values are rough estimates, as it is considered as an 

array of randomly grown CCNTs. 

 

4.2 CCNT - Thermionic Emission and UPS measurements. 
 

4.2.1 Thermionic emission - experimental. 

 

Thermionic emission and field emission measurements were performed on each 

sample in a vacuum chamber at a base pressure about 10−7 Torr. Two different 

arrangements of measurements were used for the CCNTs grown on (i) platinum wire and 

(ii) graphite foil (Figure 4.4).  

 

 

Figure 4.4  Field emission/thermionic emission measurement set-up for CCNTs grown 
on: (a) Pt wire; (b) graphite foil. (Used with permission – Apendix A). 
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In the case of the platinum wire, the sample was placed in a V-groove of a molybdenum 

plate (Figure 2 (a)). A flat molybdenum anode was slowly moved toward the CCNTs by 

means of a micromanipulator. In the second case, conducting graphite foil with 

synthesized CCNTs was placed on a thin ceramic plate (Boron Nitride) supported on a 

Pyrolitic Boron Nitride (PBN) heater (Fig. 2 (b)). A conducting molybdenum wire was 

attached mechanically to the graphite foil so that wire and foil act as the cathode. A 

molybdenum anode was arranged over the sample and attached to the micromanipulator 

(Fig. 2 (b)). Zero distance (d =0) between cathode (sample) and anode was established by 

observing a sudden electrical short when the anode just touched the sample. 

Measurements were performed at a set distance (d) for different temperatures by 

sweeping the voltage U from 0 to 500 V while recording the current I using a pico-

ammeter (Keithley 6487) equipped with a built-in variable voltage source. PBN heater 

was connected to a separate power supply. Temperatures were measured using an 

infrared pyrometer (Raytek MA2SCCF; Infrared; single color; Spectral response: 1.6 

μm).  

After loading the samples into the chamber and reaching desired pressure, field 

emission measurements were performed. I-U characteristics of the CCNTs were studied 

at room temperature for varying separations between the cold cathode and the anode. 

This was done in order to define conditions for which field enhanced thermionic emission 

will be the dominating mechanism of the electron emission to the vacuum and to obtain 

information about field emission properties of our samples. Separation distances between 

anode and cathode for thermionic emission measurements were typically 1000 – 2000 

μm. 
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4.2.2 UPS – Experimental. 

 

UPS measurements were performed using multi-chamber ultra-high vacuum 

(UHV) surface science facility (VG Scientific/ RHK Technology) comprising of a 150 

mm radius CLAM 4 hemispherical analyzer. CCNT arrays on platinum wire were studied 

using He-I (21.23 eV) and He-II (40.81 eV) UV excitations. A stable bias was provided 

to avoid the instrumental cutoff in the lens system of the analyzer at low kinetic energy 

(KE) for all the UPS spectra measurements. The external bias and the spectra were 

shifted back to zero-bias position through data post-processing. The calibration of the 

UPS spectrometer was performed by measuring and validating the absolute position of 

the Fermi level of a standard gold sample. 

 

4.2.3 Thermionic Emission and UPS of the CCNT - Results and discussion. 

 

The thermionic Current-Voltage characteristics measured at various temperatures 

are shown in Figure 4.5 a, b. These are results obtained from the CCNT grown on the Pt 

wire, sample 1. It is evident that I-V curves have a characteristic shape for FETE 

(Schotky curve). Similar to experimental I-V curves for MWNT and MWNT yarn or 

sheets discussed in chapter 3.1.2. For the I-V curves one can distinguish a low voltage 

region with a dramatic increase of the emission current with the voltage (retarding field 

regime) followed by a saturation-like region at higher voltages (accelerating field regime) 

[1, 9, 32, 70, 73, 74]. Thus we can use Schottky equations 2.31 and 2.34 from the chapter 

2. As noted before, in practice, instead of current density J and electric field E we 

consider current 
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Figure 4.5 (a) Emission current versus applied voltage at different temperatures for 
CCNT grown on platinum wire, sample 1; (the inset shows magnified I - U curves at 
lower temperatures); (b) I - U curve for various temperatures same as in (a) but the 
current I (for clarity) in logarithmic scale. (Used with permission – Apendix A). 

 

I dependence on temperature T and applied voltage U. Zero field emission current, I0, is 

determined from thermionic I-V (Figure 4.6 a) characteristics and )(ILn vs U curves 

(Figure 4 a)  for each temperature [9,32]. By extrapolating linear saturation part of )(ILn

vs U  curves one can obtain the value of zero field current I0 modifying equation (2.31), 

            

Once the values of I0 are known, by plotting 







2
0 

T

I
Ln  vs 

T

1  (Figure 4(b)) one can find 

the work function from the slope. The temperature dependence of zero field current, J0 is 

plotted in Figure 4 (c), which follows Richardson-Dushman model. Since current density, 

J is defined as current per unit area, J = I/S and use of )
S

I
Ln(Ln(J)  in eq. (3) implies 

E
kT

C
LnJLnJ  0



 

66 
 

that intercept )Ln(I0  constitutes the emission area S [32]. However, the slope (work 

function) of the linear fit, 







2
0 

T

I
Ln  vs 

T

1  does not depend on the size of the area S.  

 

Figure 4.6  (a) Ln(I) vs U1/2 curves showing low voltage retarding field regime followed 
by linear higher voltages accelerating field regime for sample 1; (b) Ln (I0/T2) versus 
(1/T) plot; (c) Zero field current I0 vs T. (Used with permission – Apendix A). 
 

The value of work function for CCNTs grown on platinum wire is calculated to be 

~4.1eV. This is significantly lower than values reported for carbon nanotubes, which are 

usually on average ~4.6 - 5 eV (Table 4.1). 

 For the samples with CCNT’s grown on graphite foil the value of work function 

was obtained using the same method.  
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Figure 4.7 Sample 4 grown on graphite foil : (a) I - U characteristic; (b) Ln(I) vs U1/2;  
 (c) Ln (I0/T2) versus (1/T) plot with best linear fit; (d) Richardson – Dushman curve, I0 vs 
T. (Used with permission – Apendix A). 
 

Fig. 5(a) shows the thermionic current, I vs. the cathode-anode voltage, U for various 

temperatures. Fig. 5(b) shows I vs U1/2 plot for each temperature which will be used to 

extract I0 values as described earlier. Fig. 5(c) shows the Ln (I0/T2) versus (1/T) plot for 

each temperature with the best linear fit whose slope is used to calculate the work 

function, Φ. The temperature dependence of the zero field current, I0 satisfies the 

Richard-Dushman model as shown in Figure 5(d). The analysis yields a value of 4.1 eV 
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for Φ for sample 4 and for samples 5 and 6 - 4.3 eV and 4.7 eV, respectively. Thermionic 

emission results for all samples are shown in table 4.2 and Richardson-Dushman plots for 

all 3 CCNT samples grown on the graphite foil are shown in the Figure 4.8. 

 

Figure 4.8 Richardson-Dushman plots for all three samples grown on the graphite foil 
(samples 4-6): a) linear Ln (I0/T2) versus (1/T) plots; b) the temperature dependence of 
the zero field current, I0. 
 

It has been found that this value of 4.1- 4.3 eV for samples 1-5 (except sample 6) 

is smaller than the value claimed for most of the multi-wall carbon nanotubes. The onset 

of thermionic emission occurs at a temperature as low as 900 0C which is lower than the 

reported temperatures in thermionic emission of the sidewalls of MWNT and in some 

case tips [32]. Though comparable to the value ϕ from vertically aligned MWNT [35]. 

These properties could possibly be attributed to the local electric field enhancement. It 

was shown that CCNTs have high aspect ratio and excellent field enhancement factors in 

addition to sparse distribution, reducing the screening effect [69]. The previously 

described structural differences of sample 6 in comparison with other CCNT samples 

(presence of microhorns) could be the reason for the higher observed value for work 

function.  
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In order to determine the work function by Ultraviolet Photoemission 

Spectroscopy (UPS), CCNTs grown only on platinum wires (significantly higher work 

function 5 – 6 eV) were studied. Figure 6 shows the low kinetic energy part of the He-I 

emission spectra of CCNT arrays on a platinum wire. The work function was then 

determined from the intersection of low-KE cut-off tail with the background level. Value 

of 4.5 eV was obtained for sample with CCNT arrays on platinum wires.  

 

Figure6 4.9 a) Low kinetic-energy He – I (21.23 eV) spectra of CCNT arrays on 
platinum wire (sample 3) with the inset b) showing low kinetic cut-off energy positions 
indicative of work function. (Used with permission – Apendix A). 

 
As mentioned, room temperature field emission properties of all the samples were 

studied for different anode-cathode separation distances d (Figure 4.9). These 

measurements could provide additional important information that can help understand 

the wide range of ϕ values for the six samples with different morphologies on different 

substrates.  
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Figure 4.10 shows a typical Fowler-Nordheim curves for different separation 

distances. The value of β is determined using simplified Fowler-Nordheim equation 2.22, 

2.27 as described in the chapter 2.3: loc
loc E

b

e
aE

J

2
3

2 





 
[24, 28]; where, a = 1.54·10−6 

(eV)A/V2; b = 6.83·109 V/(eV)3/2m. And Eloc = β·Eapp; Eloc - local(effective) electric field; 

Eapp - applied electric field, Eapp = U/d. Value of ϕ is obtained from thermionic emission 

measurements. 

 

Table 4.2 Summary of the work function values of each CCNT sample grown on graphite 

foil and on platinum substrate. (Used with permission - Apendix A).  

 
Sample 

# 
Work function, 

Φ (eV) 

 
d/dx  
(slope) 

 

β 

(value at 120 
μm) 

 
Aspect 
ratio, 

d/l 

Platinum 
wire 

1,2 4.1 18.09 

~2000 ~100 

3 4.2 (TE) 
4.5 (UPS)  

 
 

graphite 
foil 

4 4.1 15.71 1536 10 – 30 

5 4.3 8.52 1040 4 – 30 

6 4.7 7.39 1134 15 – 30 
(1.7 - 10) 
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Figure 4.10 Field emission measurements of the sample 4: a) current I dependence on 
electric field E; b) corresponding Fowler-Nordheim curves. 
 
 
 

It is known that β depends on the inter-electrode distance (d) and other factors 

such as tip radius, aspect ratio [71,76] and field screening effect [71,77]. In the case of 

CCNTs grown on different substrates, the discrepancy can be attributed to the structural 

characteristics of these conical morphologies with open edges on the outer surface acting 

as emission sites. From Figure 4.11 it is clearly seen that field enhancement is increasing 

with distance at a higher rate for samples with lower work function.  

At a separation distance ~120 μm, βvalues for samples 1 and 4 are above 1500, 

while for samples 5, 6 it remains less than 1000. It should be noted that samples 1 and 4 

have larger aspect ratio and higher density of the CCNTs compared to samples 5 and 6 

(Tables 4.1, 4.2). 
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Figure 4.11 The field enhancement factor,  vs. cathode-anode separation d for the four 
CCNT representative samples grown on graphite foils. (Used with permission – Apendix 
A). 

 

The reduction of work function of CCNTs could be related to geometric electric 

field enhancement β which induces local large fields at the tip of the CCNT. The 

presence of such local fields at the tip of CCNT could lead to the field penetration effect, 

which causes a reduction of the effective work function [24]. It was shown in a 

theoretical study that for SWNT (with open tip), field penetration can reduce the value of 

effective work function even by ~1.8 eV [24]. It has been reported that the magnitude of 

the electric field to which SWNT was exposed is ~ 0.33 V/Å. A. Mayer et al have shown 
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that the field penetration effects could be more pronounced for the MWNT, especially the 

one with open convex tip [24].  

It was illustrated at th beginning of this chapter that specific structural feature of 

CCNTs studied in this work is that they consist of an MWNT at the core along the axis of 

the CCNT. Concentric graphene layers are deposited around MWNT during the 

subsequent synthesis [69]. The number of graphene layers is gradually reduced towards 

the tip, where MWNT is exposed, which allows us to apply a field penetration model for 

CCNTs.  

For a cathode-anode separation of ~ 2000 m, the maximum applied electric field 

at the tip of the cathode, Eapplied,max = 0.25 V/μm during the thermionic emission 

measurements. Assuming a value of β of 2000 extracted from the field emission 

measurements for the largest cathode-anode separation of 200 m for the sample 1, the 

local electric field for sample 1 will be 

m
V

m
VEE appliedloc 

 50025.02000max,    

Electric field of such magnitude according to the proposed field penetration model for 

SWNT [24] will reduce the potential barrier by ~0.4 eV. While it is a rough estimation 

and one must consider the fact that the CCNTs have an exposed MWNT at the tip, we 

argue that our results of thermionic emission are consistent with the model in which field 

penetration is the main contributor for lowering the potential barrier and reduction of the 

value of the effective work function. It is also important to note that low densities of the 

CCNTs make the screening effect negligible [69].  

 The relationship between the values of effective work function and field 

enhancement factors for other samples (Table 4.2) seems to be in agreement with this 



 

74 
 

model with the exception of sample 6. Even though this sample has a higher value of 

work function (~ 4.7 eV), the β value is higher than that for sample 5. It might be due to 

the presence of horn-like structures (microhorns) on the graphite foil in addition to 

CCNTs. Microhorns do not have exposed MWNTs and the aspect ratio is smaller 

compared to CCNTs (Table 4.1, Figure 4.3 (e)). However, the density of microhorns is 

comparable to that of CCNTs. As a result, microhorns could contribute to the increase of 

the value of work function for sample 6. It is important to note that the influence of the 

field enhancement on thermionic emission properties of CCNTs in relation to the 

screening and field penetration effects is a more complex problem; it can depend on 

various parameters such as density, aspect ratio, magnitude of applied electric field, and 

temperature.  

 The difference between the values of the work function obtained by UPS (Figure 

6) and thermionic emission for sample 1 is also consistent with the field penetration 

model. As stated before, the presence of an electric field can cause a reduction of the 

potential barrier of CCNTs. This is obviously not the case for UPS. In addition, though 

UV photo-electro spectroscopy analysis was done under UHV conditions, the samples 

previously exposed to air were not annealed. Absorption of the gases at the tip of the 

CCNTs could have affected the UPS measurements. 

 Finally, we would like to comment on the field penetration effect in relation to 

previously published works presenting values of work function of carbon nanotubes 

obtained by similar methods (field enhanced thermionic emission) [33-37]. Influence of 

the field penetration effect has not been discussed in any of these articles. 

As we noted before the earliest thermionic emission results from random films of 

SWNT and MWNT (purified nanotube paper) showed unusually low values of work 
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function for CNT: 1.2 eV [38] and 3.46 eV [39]. These values are not in agreement with 

theoretical predictions or experimental results obtained by other methods [20-22]. The 

authors do not provide information about field emission measurements or field 

enhancement factors, nor many details about experimental procedure and number of 

tested samples. Hence it is hard to comment on these results in the context of the field 

penetration effect. 

Thermionic emission measurements from MWNT yarn [32] and bundles of 

SWNT/DWNT/MWNT [33] produced results in agreement with theoretical calculations 

and other experimental methods as we discussed in chapter 3. The authors performed 

field emission measurements from the yarn and concluded that field emission comes 

mostly from carbon nanotube tips protruding out of the yarn (values of field enhancement 

β are not presented) and most of the thermionic emission comes from the CNT sidewalls. 

Primary factors for neglecting thermionic emission from the tips are small density of the 

exposed CNT tips in the yarn, small area of the tips (10 nm) and long length of the 

MWNT (several hundreds of microns). Based on these facts and presented work function 

results, it is hard to conclude whether field penetration effect should be considered in this 

case.  

The same reasoning concerning field penetration effect could be applied to results 

of thermionic emission from the SWNT/DWNT/MWNT bundles [33]. It was reported 

that for the MWNT bundle with some tips appearing in the middle, the measured work 

function is smaller than without tips. Zhou et al. indicates that the work function of the 

tips is smaller than for sidewalls due to different electronic structure and image potential 

[20]. The authors do not present field emission data for CNT bundles and don not discuss 
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field enhancement on the tips of the carbon nanotubes. Again, it is hard to conclude 

whether field penetration effect should be considered in these measurements. 

The last cited article on thermionic emission measurements presents results from 

a vertically aligned multiwall carbon nanotube array [37]. The obtained value of work 

function 4.2 eV is lower than the predicted value for CNT tip: ~4.4 eV [20]. The authors 

performed field emission measurements. The calculated value of field enhancement 

factor is comparable to ours - β = 1404 (no information is provided about separation 

distance). No reasons for smaller work function for pristine MWNT are provided. We 

speculate that the work function could be reduced because of the field penetration effect. 

Ultimately, it would be beneficial to estimate the values of thermionic emission 

current densities of CCNTs. First the surface of the entire sample was considered. 

Though the average effective area (area of deposition of CCNT) of Pt wire is smaller 

(0.02 cm2) than that of graphite foil (0.5 cm2), the density for CCNTs on platinum wire is 

much higher and an estimated number of CCNTs would still be larger than in the case of 

graphite foil.  

Table 4.3 Estimated values of current densities for the whole sample  

and for individual CCNT. (Used with permission – Apendix A)  

  whole sample1 per CCNT 

 CCNT 
sample 

T, 
[K] 

I0 

[μA] 
IFETE

2 

[μA] 
J0 

[μA/cm2] 
JFETE

3 
[μA/cm2]  

J0,i
4 

[nA/cm2] 
JFETE,i

5 
[nA/cm2]  

Pt 
wire 1 1381 

1531 
0.74 
17.5 

1.37 
60 

74 
1750 

137 
6000 

0.74 
17.50 

1.37 
60 

Graphite 
foil 4 1393 0.91 2.5 1.82 5 0.18 0.5 
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1 Emission is considered from entire deposition area of the sample. 
2 IFETE,i  - field enhanced thermionic emission (FETE) current value for applied voltage U = 500V;  
3 JFETE  - current density for the entire sample (or array of CCNTs) for U = 500V (Eapp= 0.25 V/μm ). 
4 J0,i  - zero field current density per individual CCNT. 
5 JFETE,i  - current density per individual CCNT for U = 500V (Eapp= 0.25 V/μm ). 
 

 

Also for Pt wire emission area we estimated 0.01 cm2 as only one semicircular arc of the 

wire is exposed to the anode. Using this value of area and measured currents, we 

estimated values of the zero field current density J0 and field enhanced current density 

JFETE which are presented in the Table 4.3. 

The values of current densities from Table 4.3 were calculated using as the 

effective emission area, the area of the whole sample (CCNTs deposition area). Using 

this value of area and measured currents, we estimated values of the zero field current 

density J0 and field enhanced current density JFETE which are presented in the Table 4.3 

For the whole deposition area of CCNTs array of sample 1, values of current densities are 

significantly larger than for sample 4. Considering the current density per individual 

CCNT, the values for sample 1 are only slightly larger than for sample 4.  

  The value of FETE current density of the entire sample was reported only for 

vertically aligned MWNT array and it is comparable with ours [6].  At temperature T = 

1386 K and applied electric field Eapp= 0.25 V/μm, current density is JFETE ~ 50 μA/cm2. 

None of the referred articles on thermionic emission from carbon nanotubes (with similar 

method of measurement) reported the values of current densities per individual carbon 

nanotube. The reported maximum value of thermionic emission current density from 

individual MWNT sidewalls was estimated to be – 2 A/cm2 at temperature ~ 2900 K 

[31].  This value was derived using a different experimental method - SEM in-situ 
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measurements from MWNT sidewalls - with the assumption that the value of carbon 

nanotube work function was about 4.95 eV.  

 

4.2.4 Control measurements and conductivity of the CCNT. 

 

We performed the control experiment with bare graphite foil and bare platinum 

wire at high temperatures and did not observe any significant emission at the given 

anode-cathode separation (1 mm). The data for bare graphite foil are presented in Figure 

8. Measurements were performed on a 1 cm2 sample of pristine graphite foil. Separation 

distance was maintained at ~1 mm. In Figure 4.12 (a) are compared I-V curves for CCNT 

sample 1 and 4 (Pt wire and graphite foil) with the I-U curve for pristine graphite foil 

with no CCNTs. Figure 1 (b) shows emission current measurements at different 

temperatures for bare graphite foil. 

 

Figure 4.12  I-U characteristic at different temperatures for bare graphite foil and CCNTs 
on graphite: a) comparison of emission properties between bare graphite and 
CCNT on graphite foil at same temperature in logarithmic I scale; b) 
emission properties for bare graphite foil at different temperatures. (Used 
with permission – Apendix A). 
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At maximum attainable temperature, T = 1397 K maximum value of the current is 

52 nA for applied voltage U = 500V. This is an order of magnitude smaller than the 

emission current for CCNTs under similar conditions.  

In an attempt to estimate the quality of the electric contact from the tips of the 

CCNTs to the substrate – particularly graphite foil. We performed measurements in order 

to determine I-V characteristic of the bare CCNT using the same experimental set up as 

for the thermionic emission. The studied sample has CCNTs with an average height about 

10-20 μm which are vertically aligned on surface of the foil. Considering that 

micromanipulator with attached molybdenum anode has accuracy of ~10 μm and the fact 

that our CCNT sample serves as a cathode.  

 

Figure 4.13  I-U characteristic of the array of CCNT grown on the graphite foil in anode-CCNT 

contact mode. (Used with permission - Apendix B). 
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It is possible to make a contact only with CCNTs (not graphite foil) by reducing in small 

steps sample-anode separation distance and monitoring the change of the current with 

applied low bias (~1 V). When the contact is made value of the current would increases 

usually by one or two orders. Results are presented in Figure 4.12. 

From Figure 4.12 it is evident that it forms an Ohmic contact. However measured 

high value of the resistance 20 kΩ is probably related to imperfect electric contact 

between anode and CCNTs. Study of the field emission from CCNTs arrays grown on 

platinum and graphite foil substrates showed that they are efficient emitters comparable 

with the vertically grown carbon nanotubes. This fact itself would imply that CCNTs 

grown on the graphite foil have a good electric contact with substrate and themselves 

have good electric properties. 

 

4.3 Summary. 

 

In summary, CCNT samples were synthesized on Pt wire and graphite foil with 

different densities, tips sizes, lengths, and wall structures. The work function Φ was 

determined by thermionic emission, while the range of Φ values for each sample could be 

indirectly related to the morphological characteristics such as aspect ratio, density, and 

wall structure of CCNTs. The observed lower values for ϕ. are significantly smaller than 

reported for multi-walled carbon nanotubes (MWNTs). 
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CHAPTER 5 

 
THERMIONIC EMISSION FROM PHOSPHOROUS DOPED DIAMOND 

CRYSTALS SUPPORTED BY CONICAL CARBON NANOTUBES. 
UPS MEASUREMENTS OF THE CVD DIAMOND FILM

 
 
 

In this chapter we report results of the study of the thermionic emission properties 

of conical carbon nanotubes grown on the graphite foil coated with P doped diamond 

crystals and UPS measurements of the P doped diamond film grown on the Si. We 

discuss the results of the thermionic emission and UPS measurements and propose the 

possible mechanisms standing behind determined values of the work function.  

 

5.1 Synthesis of the P doped diamond crystals and diamond film. 
 

5.1.1 Introduction 

 

We address the challenge of obtaining n-type conductivity in diamond through 

doping of individual diamond microcrystals which due to increased surface area can be 

expected to exhibit very interesting overall conductivity values owing to size effects. 

Such studies can accurately be performed using appropriate architecture allowing the 

synthesis of individual diamond crystals. Here, we present a novel architecture consisting 
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of diamond nanocrystals grown on the tips of conical carbon nanotube (CCNT) array 

[69,70]  and the results of thermionic emission properties. CCNT backbone is expected to 

provide conducting pathways for diamond crystals. Hence, vertically grown CCNTs 

allow synthesis of the diamond crystals with increased surface area as well serve as an 

efficient conducting channels. In addition, work function of undoped and phosphorus 

doped diamond films were also studied using ultraviolet photoelectron spectroscopy 

(UPS) for comparison.  

 

5.1.2 Experimental procedure. Synthesis of the diamond crystals supported 

by CCNTs and diamond films on Si substrates. 

 

CCNTs coated with diamond crystals were grown using AsTeX 5010 microwave 

plasma reactor (1.5 kW) – the same reactor which hwas used for the synthesis of the 

CCNT. The CCNT arrays synthesized on graphite foils [70,71] were used as the substrate 

for nucleation and growth of diamond crystals. These foil substrates were pretreated in 

ultrasonic diamond solution bath (0-1micron powder in acetone solution) for few seconds 

followed by cleaning with acetone. The foils were then immersed vertically into the 

plasma as shown in Figure 1(a) for the growth of diamond, similar to the growth of 

CCNT arrays [71] except the height of the foil substrates in this case was lowered 

towards the diamond growing regime inside the reactor. Di-tertiary butyl phosphine was 

used as the liquid source for the phosphorus doping. The schematic of the bubbler set up 

was shown in the Figure 1(b). Hydrogen was used as a carrier gas for the doping  

precursor. 
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Figure 5.1. Experimental set up for growth of diamond crystals on CCNT arrays: a) 
vacuum chamber; b) susceptor with grahite foil illustrating sample arrangement; c) 
bubbler set up for phosphorus doping. (Used with permission – Apendix B). 
 

Depositions were performed at microwave power of 900-1000W, pressures of 30-50 torr 

with 0.2 – 1.5% methane in hydrogen with total flow rate of 200 sccm. The phosphorus 

concentration was varied from 8000 – 30,000 ppm (with vapor pressure of Di-TBP being 

measured as 1.7 torr), varying the bubbler pressure and carrier gas (hydrogen) flow rate. 

Estimated phosphorous/carbon ratio during growth is 0.001– 0.004.  The duration of the 

experiments lasted from 12 min to 1 hr. The carrier gas (H2) flow rate of 4 - 15 sccm was 

used with bubbler pressure of 720 torr.  
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Undoped diamond films were grown on silicon wafers pretreated in ultrasonic 

diamond solution bath mentioned above. The growth experiments were conducted under 

the conditions of 3-5% methane in hydrogen (200 sccm) at 60 torr, 1450 W microwave 

power and the sample stage at a temperature of 650 0C for about 10 hrs. P-doping of these 

diamond films were performed using same dopant source as above. The conditions 

include 0.2 % methane in hydrogen (200 sccm) at 980 W microwave power and 50 torr 

pressure. The carrier gas (hydrogen) flow rate of 4 sccm is used while maintaining the 

bubbler pressure at 460 torr for about 9 hrs. The phosphorous concentration was 28500 

ppm and estimated phosphorous/carbon ratio 0.005. 

 

5.1.3 Result of the growth. CCNTs coated with diamond crystals and 

diamond film on Si substrate. 

 

Figure 3 shows the SEM images of bare CCNTs, CCNTs coated with undoped 

diamond crystals, and CCNTs coated with P-doped diamond crystals. The size of the 

undoped and P-doped agglomeration of diamond crystals is in the range of 1-2 µm. The 

presence of the phosphorus in the diamond crystals was confirmed from the Secondary 

ion mass spectroscopy (SIMS) as shown in Figure 4, but quantitative value cannot be 

reported reliably owing to the rough analytical surface. Note that the very rough 

analytical surface results in a uniform P concentration at larger depths rather than a P tail 

off presumably due to the increase in roughness exposing more of the nanotubes during 

the profiling. 
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Figure 5.2 Scanning electron microscope (SEM) images of individual a) as synthesized 
CCNT b) undoped diamond coated CCNT c) P-doped diamond coated CCNT. (Used 
with permission - Apendix B) 
 

 

Figure 5.3 Secondary ion mass spectroscopy (SIMS) depth profile of phosphorus in P-
doped diamond crystals on conical carbon nanotubes. Vertical axis represents an 
approximate concentration. (Used with permission – Apendix B) 
 

The role of the resistivity of the substrate can be mostly ruled out, due to the presence of 

the conducting substrate (graphite foil) and conducting underlying structures (CCNTs) 

5 µm
3 µm

(a) (b) (c)
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for the diamond emitters.  This is advantageous for the emission applications where the 

resistivity of the substrate plays an important role on the values of emission currents.  

In Figure 5.4   SEM images of the P doped the diamond film grown on Si 

substrate are shown. As can be seen it is an uniformly grown diamond film with grain 

sizes ranging approximately 0.5 μm – 1 μm. However it could be seen that the  film has 

significant roughness And as a result SIMS analysis (Figure 5.5) shows a sharp peak for 

the concentration at the surface as in the case of the P doped diamond on CCNT. Again 

SIMS data have rather qualitative evidence for the presence of P impurities in the 

diamond film. 

 

 
 
 

Figure 5.4 SEM images of the P doped diamond film grown on the Si substrate. 
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Figure 5.5 Secondary ion mass spectroscopy (SIMS) depth profile of phosphorus in P-

doped diamond films on silicon wafer. (Used with permission - Apendix B). 

 

 

5.2 CCNT coated with diamond - Thermionic emission. 
 

5.2.1 Thermionic Emission – Experimental. 

 

Thermionic emission measurements were performed on each sample in a vacuum 

chamber with base pressure of ~8x10−8 Torr and 10−6 Torr at room temperature and 1000 

oC respectively. The conducting graphite foil with synthesized CCNT’s (or CCNT’s with 

diamond) was placed on a ceramic plate (Boron Nitride) supported on a Pyrolitic 

BoronNitride (PBN) heater. A conducting molybdenum electrode was attached 

mechanically to the graphite foil so that the wire and the foil act as the cathode. A 

molybdenum anode was arranged over the sample and attached to the micromanipulator 
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(Figure 4.2). The anode had a shape of the cylinder where the base is facing the sample. 

Diameter of the anode is 7 mm. Zero distance (d=0) between cathode (sample) and anode 

was established by observing a sudden electrical short when the anode just touched the 

sample. Measurements were performed at a set distance, d for different temperatures by 

sweeping the voltage U from 0 to 500 V while recording the current I using a pico-

ammeter (Keithley 6487) equipped with a built-in variable voltage source. PBN heater 

was connected to a separate power supply. Temperature was measured using an infrared 

pyrometer (Raytek MA2SCCF; Infrared; single color; Spectral response: 1.6 μm).  

 

5.2.2 Thermionic Emission and work function determination.  

Results and discussion. 

 

The work function of the CCNT coated with P doped diamond and undoped diamond was 

calculated using the same method which we have used to obtain work function values for 

bare CCNTs. Thus by rearranging and re-plotting thermionic I-U characteristic (Figure 

5.6(a)) curves as )(ILn vs U  (Figure 5.6(b)), the value of zero field current I0 can be 

extracted for each temperature. The temperature dependence of zero field current, I0 is 

plotted in Figure 5(c), which follows Richardson–Dushman model. Hence the plot of 









2
0

T

I
Ln vs. 1/T should result in a straight line (Figure 5(d)) with the slope being /kT. 

For doped diamond supported on CCNTs a work function value of ~2.23 eV was 

obtained by this analysis.  

Using the same method we obtained work function values for bare CCNT coated with 

undoped diamond. I-U and Ln(I) - U
1/2 curves for bare CCNTs for comparison (Figure 
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5.7(a) and (b)) and CCNTs with undoped diamond (Figure 5.7(c) and (d)) are presented 

at varying temperatures.  

 

 

Figure 5.6 P doped diamond crystals on CCNTs: (a) Thermionic I-V characteristics for 
different temperatures, (b) Ln(I) vs U1/2 (c) Richardson_Dushman curve (d) linear fit of 

the experimental points - 







2
0

T

J
Ln vs

T

1 . (Used with permission - Apendix B). 
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Figure 5.7. Thermionic I-V characteristics and Ln(I) vs U1/2 plots for: (a,b) bare CCNTs 
[37] and (c,d) CCNT’s with undoped diamond. (Used with permission - Apendix B). 
 

Figure 5.8 summarizes the analysis of Richardson–Dushman formalism for all three 

samples. The work function values obtained for bare CCNTs, undoped diamond coated 

CCNTs and P-doped diamond coated CCNT are 4.1 eV [71], 4.26 eV and 2.23 eV 

respectively. The temperature (1053 K) at which we were able to observe emission 

current in case of P-doped diamond is lower than for the other two samples, which could 

be attributed to its lower work function value. Considering the diamond crystals at the 
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tips being the emitting area, the experimental value of the emission constant A is 0.14 

A/cm2K. The maximum obtained value of current density is 575 µA/cm2 at temperature 

1303 K (1030 oC).  

 

Figure 5.8. Thermionic emission data (dots) and data-fit (line) to Richardson-Dushman 
equation from thermionic emitters based on bare CCNTs (red), CCNT coated with 
undoped diamond (green) and CCNT coated with phosphorus doped diamond ( blue). 
(Used with permission - Apendix B). 
 
It is clearly evident that phosphorus doped diamond has significantly lower work function 

value compared to bare CCNT arrays and undoped diamond coated CCNT arrays. 

However, reported value of the work function for P doped diamond film obtained by 

thermionic emission method - 0.9 eV [62] is significantly lower than ours. The main 

reason for higher value of work function for the CCNTs coated with P doped diamond is 

the loss of NEA during the measurements at high temperatures. Previous studies have 

shown that NEA is lost in the temperature range of 700 oC – 900 oC [62]. Minimum 

temperature at which we were able to measure field enhanced thermionic emission 

current was about 780 oC for P doped diamond sample. Thus reduction of the work 

function is attributed most probably only to the raising of the Fermi level closer to the 
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conduction band from donor states of phosphorus. However in order to obtain a clearer 

picture, further assumptions needed to be made. 

As we mentioned before in chapter 3, previous studies have shown that highly P 

doped diamond (face (111)) has upward band bending of 3.2 eV toward surface [53].  

The main factor causing such large value was the position of the surface EFs, found to be 

1.9 eV and 1.6 eV from the valence band maximum at the surface (VBMs) for H 

terminated and O terminated surfaces respectively of P doped diamond, which is lower 

than the bulk EF situated 0.6 eV below CBM. Surface EFs position is determined by the 

characteristic surface states, which depend on the amount and nature of the surface 

defects.  It was inferred that diamond surface defects have graphitic nature with charge 

neutrality point (CNP) estimated to be 1.4 eV above VBM [53,39].  

Depending on the type of doping, surface   Fermi level can be shifted relatively to CNP. 

Thus the mechanism of upward bending toward the surface for P doped diamond (in 

general n type) was explained qualitatively as the surface EFs shifting and pinning caused 

by surface defects in the form of graphitic patches or sp2 bonded carbon atoms [14,39]. 

SEM images show highly defective surfaces of diamond crystals grown on CCNTs. We 

can apply this mechanism of band bending in our case (diamond on CCNTs and diamond 

film) under the assumption that the approximate position of the surface EFs for P doped 

diamond to be ~1.8 – 2.0 eV above VBM.  

Figure 8 shows the band diagrams of diamond surface constructed in order to 

explain the possible scenarios according to the measured values of work functions of the 

diamond coated CCNTs. For that purpose, in addition to the position of the Fermi level, it 

is needed to know the values of the positive electron affinity (PEA) and the band bending 

η. It has been reported that donor level for P in diamond is 0.6 eV below CBM in the bulk 
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[48]. The value of PEA for clean diamond surfaces has been reported to be about 0.38-0.7 

eV [42,43] for a nod doped diamond while the band gap (ΔE) is ~5.5 eV. Undoped 

polycrystalline diamond films have p type properties with the bulk EF lying ~1 eV above 

VBM [21].   
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Figure 5.9. Surface energy band diagram of P doped and undoped diamond grown on 
CCNT’s:   a) no midband-gap states -  work function value comes from position of Fermi 
level only; b) presence of the midband-gap state; c) only for CCNTs with P doped 
diamond - bulk Fermi level is much lower in the band gap and there is weak band 
bending.  By short dashed line denoted conduction band minimum (CBMs) and valence 
band maximum (VBMs) at surface. By long dashed line denoted Fermi level and 
midband-gap state (MBG). (Used with permission - Apendix B). 
  

We propose three possible scenarios which result in obtained value of work 

function for P doped diamond grown on CCNTs stems: first is the pinning of the bulk 

Fermi level to the surface Fermi level and resulting in band bending. In second case could 

be considered combination of the pinning and the presence of the midband-gap (MBG) 

state originated from defects (due to doping and morphology of the individual diamond 

crystals)  (Figure 5.9) [21]. Finally the third possibility (regarding only P doped diamond 

coated CCNTs) is that presence of the defects and impurities could cause lowering of the 

bulk Fermi level. As an additional effect - surface states could be compensated by the 

donors and defects. Based on the band diagrams we can give more detail description of 
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possible cases for P doped diamond on CCNTs which can result in such values of work 

function: 

(i) there is no midband-gap states (or it’s overlapping with Fermi level), which results 

probably in lower value of upward band bending  η = 1.63 - χ  than it was reported for P 

doped diamond. Position of surface Fermi level EFs below conduction band minimum at 

the surface (CBMs) (CBMs – EFs = 2.23 – χ) would imply low amount of surface 

graphitic defects; 

(ii)  If we assume the presence of the midband – gap states for CCNTs coated with P 

doped diamond crystals we can define energy difference between MBG and Fermi level 

at the surface which depends on the value of the band bending η 

EF – MBG = ΔE – [(EFs - VBM) + (CBM - MBG)]    (5.1) 

EF – MBG = 5.5 – [(5.5 – (0.6 + η)) + 2.23 - χ] = η - χ - 1.63 eV   

and for CCNTs coated with undoped diamond 

EF – MBG = ΔE – [(CBM - MBG) + (EFs - VBM)]    (5.2) 

EF – MBG = 5.5 - (3.88 + 1+ η) = 0.62eV – η 

Based on the previous reports about the position of pinned Fermi level for P doped 

diamond -  if EFs – VBM = 1.6 eV; obtained value of band bending η would be 3.86 - χ , 

whereas  if EFs – VBM = 2 eV then η = 2.9 eV.  

(iii) Lowering of the bulk Fermi level and raising of the surface Fermi level due to 

surface (state compensation) would result in weak band  bending. In this situation energy 

difference would be expressed as follows 

CBM –Ef  = 2.23 – χ – η     (5.3) 
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Considering weak band bending we can write that 𝜂 → 0 and CBM –Ef  = 2.23 – χ. If we 

asssume that value of electron affinity at the surface of the doped diamond crystals would 

be comparable with the value of electron affinity of the clean surface of the undoped 

diamond – 0.38 eV – 0.7 eV. We can conclude that Fermi level could be situated 

approximately 1.5 – 2 eV below conduction band minimum. 

 

  

Figure 5.10. Schematic view of band diagram illustrating the band bending at the 
interface of CCNTs and diamond. (Used with permission - Apendix B).  

 

To complete the picture of the thermionic emission mechanism from our hybrid 

structurewe must address the fact that at lower temperatures (<800 0C) we have not 

observed sufficiently high values of IFETE (to be detected) which is the onset of the 

presence of NEA. We believe that main reason is the development of the potential barrier 

at the CCNTs and P doped diamond interface due to band bending as shown in Figure 

5.10 in analogous to the case of metal/n-type semiconductor structures. Considering the 
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CCNTs as the conducting channels for diamond it is needed to attain higher temperatures 

(>800 0C) to obtain sufficient values of current across the interface to supply electrons for 

emission.  

 

5.3 Ultraviolet Photoelectron Spectroscopy of diamond films  

grown on the Si substrate. 

 

5.3.1 UPS - Experimental procedure. 

 

Here, a multi chamber ultra-high vacuum (UHV) surface science facility (VG 

Scientific /RHK Technology) comprising of a 150 mm radius CLAM 4 hemispherical 

analyzer was used. The base pressure of the chamber was in the 10-9 torr range. A 

differentially pumped He-discharge lamp was used as the UV radiation source. The 

samples for this type of measurement typically have the active material in proper 

electrical contact with a gold film sputtered on copper foil to equilibrate the Fermi levels 

(EF). For that reason a part of the copper foil sputtered with gold was used as the sample 

and the other half was used for acquiring the reference gold spectra. Double sided copper 

tape was used to make the electrical contact between silicon substrates with diamond 

films and the underlining gold film on copper foil. The measurements were performed 

using He-I (21.23 eV) and He-II (40.81 eV) UV excitations. A stable bias was provided 

to avoid the instrumental cutoff in the lens system of the analyzer at low kinetic energy 

(KE) for all the UPS spectra measurements. The external bias was taken into 

consideration in order to shift the spectra back to zero-bias position through post 
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acquisition data processing. The calibration of the UPS spectrometer was performed by 

measuring the absolute position of the Fermi level of the gold sample using He-I. A 

spectrum, measured using a negative bias of 4.9eV is shown in the Figure 2(a) resulting 

in an EF value of 21.23 eV that is in well agreement with the expected value. Similarly 

He-II spectrum (Figure 5.11(b)) shows Fermi level value of 40.83 eV, which also agrees 

with the literature value [72]. As the active sample is in electrical contact with the 

reference gold film, the sample also has the same Fermi level as of the gold. The work 

function of the material is then determined from the intersection of low-KE cut off tail 

with the background level.  

 
Figure 5.11 UPS spectra of gold film showing Fermi level positions at (a) 21.23 eV for 
He I (b) 40.83 eV for He II radiations. Insets show magnified part of UPS spectra with 
Fermi edge. (Used with permission - Apendix B).  
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5.3.2 UPS and work function determination of the diamond films –  

Results and discussion. 

 

We discussed in the chapter 3 that UPS measurements of diamond could provide 

information about electron affinity and surface Femi level position [80]. In view of the 

fact that we didn’t observe any evidence for NEA in case of CCNTs coated with diamond 

we turned our attention to P doped diamond films grown on silicon substrate.  Figure 

5.12 shows the low kinetic energy part of the He-I emission spectra of (a) undoped and 

(b) phosphorous doped films. Both undoped and P-doped diamond films exhibit two 

peaks one for a low KE cut-off  and a second high intensity peak characteristic of work 

function and NEA behavior with electrons coming from CBMs respectively [80].  

 

Figure 5.12. Low kinetic-energy part of He – I (21.23 eV)  spectra of a) undoped 
diamond film; b) phosphorus doped diamond  film. Spectra of the undoped diamond film 
show  low kinetic cut-off energy positions indicative of effective work function, sharp 
peak related to thermalized electron states and a high intensity cut-off position of 
conduction band minimum due to the presence of NEA and MBG state. Spectra of the p 
doped diamond film has no thermalized electrons sharp peak but has visible KE cut-off of 
eff. work function and NEA high intensity cut-off. (Used with permission - Apendix B).  
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All the numbers for the cut off energy positions are obtained with the 

extrapolation to zero intensity.   

In the case of undoped diamond, the value of the effective work function is given 

as 3.9 eV and sharp peak is related to electrons thermalized to the bottom of conduction 

band and lower edge of sharp peak defines CBMs position to be 4.4eV above surface 

Fermi level (CBMs – EFs = 4.4 eV).  

The lower energy edge of the second wider peak 5.1 eV could be related to 

midband-gap state (CBMs - MBG) which will be discussed further. For P-doped 

diamond, a  low KE cut-off is situated at 1.8 eV and CBMs position at surface situated at 

3 eV giving rise to same NEA value of 1.2 eV. A work function value of 4.67 eV 

obtained for gold film lies in the value range reported in the literature [72]. Interestingly 

work function value of 3.6 eV has been reported for hydrogen terminated phosphorus 

doped (111) single crystal diamond [53]. An upward band bending of 3.2 eV from the 

simulated surface Fermi level position and absence of NEA from the Secondary Electron 

Spectra was attributed to the large work function value.  

Though the presence of the NEA was predicted theoretically, the reason for the 

absence could not be evidently articulated [52]. The similar explanation for the lack of 

NEA peaks in UPS spectrum (band bending towards surface) has been proposed for N-

doped diamond with H terminated surface [80]. However, in the present case the 

presence of NEA value of 1.2 eV evident from the UPS spectra could be attributed to the 

reduced work function value detected.  
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Figure 5.13 Surface energy band diagrams for P doped and undoped diamond films 
grown on Si/SiO2 – based on UPS results: a) presence of the midband-gap state for P 
doped and undoped diamond films; b) no midband-gap state for P doped diamond film; c) 
no midband-gap states, lowering of the bulk Fermi level and weak band bending.  Energy 
difference for undoped diamond was obtained from equation EF – MBG = (EF - VBM) - 
[ΔE – (CBM - MBG)]. Dotted line in both band diagrams is the vacuum level in case of 
NEA. Underlined values of energies are obtained from UPS measurements. By short 
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dashed line denoted conduction band minimum (CBMs) and valence band maximum 
(VBMs) at surface. By long dashed line denoted Fermi level and midband-gap state 
(MBG). (Used with permission - Apendix B).  
 
We consider three most probable scenarios for the P doped diamond films and one for the 

undoped diamond film which are all illustrated in the band diagram (Figure 5.13) 

constructed based on the UPS results:  

(i) if  there is present midband-gap state (Figure 11 a)), the energy difference between 

MBG and surface Fermi level for P doped diamond film and undoped diamond film 

respectively would be η – 2.4eV and η – 0.6 eV.  In agreement with previous assumption, 

if Fermi level is at ~2 eV above VBM,  in result η – 2.4 eV = 0.5 eV and value of η in 

this case is 2.9 eV which is close to the value 3.2 eV reported by Kono et al. [53]. As for 

the undoped diamond films, from the band diagram we can determine the position of the 

surface Fermi level at 1.1 eV above VBM. From the equation describing energy 

difference we know that EFs – MBG = 0.7 eV and MBG position is 0.4 eV above VBM.  

(ii) Upward band bending at the surface and NEA (no midband-gap states) (Figure 11 b)). 

Value of work function is 1.8 eV, energy difference at surface CBMs – EFs = 3 eV. 

Obtained upward band bending value is 2.4 eV. Thus higher than for P doped crystals on 

CCNTs. For undoped diamond film value of the upward band bending is ~0.6 eV where 

work function value is 3.9 eV and energy difference CBMs – EFs = 5.1 eV. 

(iii) In the third scenario we could again assume that bulk Fermi level is significantly 

lower and surface Femi level is higher in the band gap. In consequence there is no or very 

weak band bending. Based on UPS data Fermi level in this case would be 3 eV below 

CBM thus indicating the p type property of the diamond film in the bulk. We did 

performed thermionic emission measurements from P doped nanocrystalline diamond 

film (with hydrogenated surface) grown on W foil (Appendix A, Figure 12) and found 
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that the value of effective work function is 1.33 eV. Considering the presence of NEA in 

case of the diamond film grown on W foil it could imply that value obtained value 1.33 

eV is the difference between the surface Fermi level and CBMs. Which would support 

argument about the lower position of the bulk Fermi level. 

This is the first report on the work function of phosphorus doped diamond polycrystalline 

films, and further theoretical calculations are needed to accommodate for all the 

differences in the present scenarios for the determination of position of the surface Fermi 

level and band bending values.   

 

5.4 P doped diamond  film on W foil. 

 

We also measured thermionic emission from P doped nanocrystalline film grown 

on W foil. P doped diamond films were synthesized on W foils pretreated in ultrasonic 

diamond solution bath. Growth was performed under the conditions of 1.5% CH4/H2 at 

pressure 70 torr, microwave power 1000 W and temperature of the sample stage ~450oC 

for 2.5 hours. P doping was performed using the precursor Di-tertiary-butylphosphine. 

Phosphorous concentration was maintained at 6000 – 8000 ppm and estimated 

phosphorous/carbon ratio during growth is 0.002 – 0.003. After the growth diamond 

films were additionally treated by hydrogen plasma of power 600 W and at pressure 50 

torr.   
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Figure 5.14 SEM images of the P doped nanocrystalline film grown on the W substrate: 
a) general low magnification view; b) higher magnification view depicting small size of 
the grain; c) cross section of the grown diamond film.  
(Used with permission - Apendix B).  

 

SEM images (Figure 5.14) show synthesized P doped nanocrystalline diamond 

films grown on   W substrate. It is evident from the images that the film is uniform (no 

pinholes) with a less roughness than in the case of P doped polycrystalline film grown on 

Si. 

Thermionic emission measurements from P diamond film sample were performed 

following the same procedure as for the CCNTs coated with diamond. The value of the 

work function obtained for the P doped diamond film grown on W foil is ~1.33 eV.  The 

measurements of the second synthesized sample gave value of work function 1 eV. These 

values are closer to the ones reported by Nemanich et al. 0.9 eV.  
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Figure 5.15. Thermionic emission measurements from P doped film grown on W foil: a) 
thermionic I-V characteristic for different temperatures; b) linear fit of the experimental 

points - 







2
0

T

J
Ln vs

T

1 . (Used with permission - Apendix B).  

 

Even though this time we were capable of performing measurement at lower 

temperatures (720oC - 8300 C), the value of the emission current is very low (Figure 

5.14). With maximum value of FETE current ~10 nA. Some of the reasons for such low 

value of the current could be again the Schottky barrier at the W – P doped diamond 

interface as well as   inefficient doping by phosphorous.  

 

5.5 Summary. 

 

In summary, we presented the work function reduction of phosphorus doped (i) 

diamond nanocrystals grown on conical carbon nanotubes (CCNTs) and (ii) diamond 

films grown on silicon substrates. Thermionic emission measurements from phosphorus 

doped diamond crystals on CCNTs resulted in work function value of 2.23 eV. The 
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presence of hybrid structure with combination of diamond, CCNTs and graphite, 

prevented the determination of accurate work function of diamond by UPS. The 

Ultraviolet Photoelectron spectroscopy Studies on phosphorus doped diamond films 

yielded a work function value of 1.8 eV with observed NEA value of 1.2 eV. Additional 

thermionic emission measurements of the P doped films grown on W foil revealed even 

more reduced value of the work function 1.0 – 1.3 eV. However these samples exhibit 

very low value of emission current – much lower than in the case of CCNT coated with P 

doped diamond. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

107 
 

 

 

 

CHAPTER 6 

 

TUNGSTEN OXIDE NANOWIRES. THERMIONIC EMISSION 

PROPERTIES AND WORK FUNCTION

 

 

 

In this chapter, we report on the thermionic emission properties of hybrid 

structure of tungsten nanowires decorated with phosphorous doped diamond. The starting 

material is tungsten oxide nanowires grown on W foil subsequently reduced to W/WOx 

utilizing hydrogen plasma. Finally, W/WOx nanowires were coated with P doped 

nanocrystalline diamond. The thermionic emission results were used to extract the work 

function values of the W/WOx nanowires and hybrid structure of W/WOx decorated with 

P doped nanocrystalline diamond.  
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6.1 Synthesis of the Tungsten Oxide nanowires - W18O49. 

 

6.1.1 Introduction. 

 

As we mentioned in the introduction, in place of CCNT we proposed a hybrid 

structure consisting of W/WOx nanowires as a conducting channel to support doped 

diamond nanocrystals. W/WOx nanowires in turn could be obtained by reduction of 

tungsten oxide structures. Tungsten oxide nanowires have been extensively used in other 

applications such as gas sensing, photo catalysis etc. Some of the attractive features of 

these structures are relatively simple synthesis procedure and uniform vertical growth 

over a large area [81] (~1cm2 or even more).  

 

 6.1.2 Experimental procedure – synthesis and MW plasma reduction. 

 

 Tungsten oxide nanowires were grown using a custom built hot filament CVD 

system (Figure 6.1) [81,82]. The experimental setup consists of a quartz tube with the 

provisions for controlled gas flow and pressure. The W filament (Alfa Aesar 0.5 mm 

diameter: length ~ 3 m) is used as the tungsten source and the substrate was heated heater 

via radiation at high temperatures. Substrates (W foil) are placed underneath the filament 

on a quartz boat (Figure 6.1). 
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Figure 6.1 Schematic of the Scale up Hot Filament CVD reactor with tungsten filament 

inside the vacuum chamber (Courtesy of J.Thangala et al. [2]). 

The tungsten filament is heated up using an electrical feed-through to a temperature in the 

range of 1000 K – 1500 K. The temperatures within the system were monitored using a 

single wavelength pyrometer (Raytek, Model no. 2838780101). Typically, the substrates 

(quartz or W foil) were heated directly by filament to a temperature of about 823 K. 

Before the growth, W foils were cleaned in acetone and dried. Growth was 

performed at the pressure of 380 torr, with an O2 flow of 16 sccm. Magnitude of the 

current through the filament was maintained at 10 A and 27 V while the temperature of 

the filament ~ 1100 K. Time of the growth was kept for 30 min. 

After the growth, reduction of the nanowires from oxide to tungsten was achieved 

in the MWCVD system AsTeX 5010 (1.5 kW, 2.45 GHz). Microwave power was 800 W, 

the pressure 25 torr, hydrogen flow 200 sccm and the time of the process 40 min – 1 hr.  
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6.1.3 Results – W18O49 nanowires and after reduction WOx. 

 

 The growth resulted in an array of vertically aligned W18O49 – confirmed by the 

XRD measurements (Figure 6.4a) [83]. As it could be seen from the SEM images (Figure 

6.2) nanowires are partially aligned – protruding at some angle from the substrate.  

 

 

 

Figure 6.2 Tungsten Oxide nanowires grow non the W foils: a) sample 1 view b) sample 
1 at larger magification; c) sample 2 d) larger magnification of sample 2 (tilted SEM 
image). Clearly seen difference in the morohology particularly diameter of the nanowire.  
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It can be clearly seen the difference in the diameters of the nanowires due to the 

growth conditions. By varying the temperature, growth time, and the pressure it is 

possible to induce changes in the morphology of the nanowires. 

 

 

 
Figure 6.3 a) nanowires of the sample 1 before and fter hydrogen plasma treatment; b) 
sample 2 before and fter hydrogen plasma treatment 
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Average diameter for sample 1 (Figure 6.2ab) 30 - 40 nm (length ~100 nm)and for the 

sample 2 (Figure 6.2 cd) 15 - 25 nm (length ~500 nm). 

During the proces of reduction using microwave hydrogen plasma, oxygen escapes from 

the crystal lattice of the nanowire, affecting the structural properties of the nanowire. At 

least we would expect change of the diameter of the individual nanowire (Figure 6.3 a)  - 

due to partial etching by hydrogen plasma  or even more drastic changes such as bending 

of the nanowires (Figure 6.3 b). 

 

6.1.4 Results – W18O49 nanowires before and after reduction. XRD, RAMAN, TEM. 

 

 In order to confirm the reduction of the tungsten oxide nanowires (W18O49) to 

tungsten or more oxygen deficient phase WOx, samples were analyzed using X ray 

diffraction (Brucker D8 Advance series 2).   Figure 6.4 represents the XRD spectra of the 

sample 2 before the reduction. They show the characteristic peaks of the W18O49 (Figure 

6.4 a) phase as well strong peaks corresponding to W substrate probably due to exposed 

edges of the W foil.  

After the hydrogen plasma treatment, the intensity of the characteristic peaks of 

the W18O49 dramatically decreased (Figure 6.4 b). 

 Raman analysis of the samples provided unambiguous evidence to support the  

reduction of the nanowires after hydrogen plasma treatment. Raman measurements were 

performed using a Renishaw InVia system. A 442 nm (blue laser, HeCd) excitation 

wavelength was used for collecting the spectra at ~5% of the standard power of the laser   

(~ 0.05 mW). Reduction of the power of the laser was necessity in order to avoid 

oxidation due to heating or burning of the sample. 
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Figure 6.4 XRD spectra of the W18O49 nanowires (sample 2): a) before hydrogen 
microwave plasma treatment; b) after the treatment. Most of the diffraction peaks (beside 
W peaks) could be indexed to monoclinic W18O49. [83] 

 

 

a) 

b) 
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Figure 6.5 Raman spectra of the W18O49 array sample. By dashed lines are marked 
ranges of the typical broad bands for the nanowire tungsten oxide samples: 1st: 100–
500 cm− 1 assgined to O–W–O bending modes; 2nd: 600–1000 cm− 1 contributed by W – 
O stretching modes [84,85]. 
 

From the Raman spectra presented in Figure 6.5 it is clearly seen the 

disappearance of the characteristic broad bands for the tungsten oxide nanocrystalline 

structures [84,85] implying effective reduction of the oxide. 

Finally, analysis by the Transmission Electron Microscopy (TEM) including 

SAED and EDAX revealed some interesting details of the individual nanowires.   

From the TEM images it is clear that each individual W18O49 nanowire (before 

hydrogen plasma treatment) is single crystalline. The crystalline faces are clearly visible 

in the image (Figure 6.6 c). 
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Figure 6.6 Selected Area Electron Difraction images of the W18O49 individual nanowire  
a) before recution and b) after; TEM images – c) befor reduction and d) after. EDAX 
spectra e) before and after f). 
 

Selected Area Electron Diffraction (SAED) of individual nanowires supports this 

hypothesis with the presence of a pattern of dots (Figure 6.6 a) and we can assign an 

appropriate crystalline face to the pattern with respect to the XRD data (Figure 6.5 a). 

However, in the case of reduced nanowires the SAED pattern consists of concentric rings 

(Figure 6.6 b) which is characteristic for polycrystalline or amorphous materials. 

Moreover, the TEM image of the reduced nanowire does not show any clear faces of the 

crystal (Figure 6.5 d). It seems that after hydrogen plasma treatment, nanowire has an 
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amorphous (porous) structure or ultra nanocrystlline structure where we cannot clearly 

see the grains. In addition EDAX spectra from the nanowire (Figure 6.6 e, f) show clear 

reduction of the oxygen peak after the hydrogen plasma treatment (marked by an arrow in 

the graph). 

  

6.2 Synthesis of the P doped diamond on the reduced  

W/WOx nanowires. 

 

 P doped crystals were grown on the reduced array of WOx nanowires (sample 2). 

Before the growth, samples were pretreated as usual by sonication in colloidal solution of 

the ethanol and diamond powder (1-10 nm). However time of treatment of the WOx 

samples was significantly reduced. W foils with the array of WOx nanowires was dipped 

in to the solution for a short time (15 sec) in a sonication bath. This procedure was 

repeated while sonicating and finally cleaned in pure ethanol.  

 After that samples were loaded into the chamber of the Astex 5010 MWCVD 

system. Depositions were performed at slightly different conditions in comparison to the 

growth of doped diamond on CCNT. Microwave power:  900 W, pressures: 50 torr with 

2.5% methane in hydrogen with total flow rate of 200 sccm. The phosphorus 

concentration was set for 10,000 ppm (with vapor pressure of Di-TBP being measured as 

1.7 torr). Time of the growth was maintained for1 hour. 

 As a result of the growth  califlower like diamond structures (Figure 6.7) were 

obtained on top of the nanowires.  
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Figure 6.7 SEM images of the P doped diamond nanocrystallien aglomerations grown on 
the reduced WOx nanowires. 
 

Given the comparably short lengths of the nanowires (~100 nm), some of the 

diamond agglomerations completely coated groups of nanowires. It is hard to determine 

whether any of the diamond crystals or nanocrystalline structures was coated only at the 

tip of the individual nanowire.  Nucleation of the diamond during the growth could have 

been initiated at the substrate among the nanowires. 

 

6.3 Thermionic emission measurements of the WOx nanowires coated 

by P doped diamond. 

 

 Thermionic emission measurements of the WOx nanowire sample with P doped 

diamond (sample 2) was performed using the same experimental system as for other 

samples described in the Chapter 3. Measurement procedure was  the same as described 

in Chapter 2 – 4.   First we determined value of the work function of reduced WOx 

nanowires sample to be ~ 5.2 eV comparable for polycrystalline W. However, there have 
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been reports on the work function values determined by TE in the range 5.2 – 5.33 eV for 

some faces of the single crystalline W – (110), (011, (112) ). 

 

Figure 6.8 a) Emission current versus applied voltage at different temperatures for WOx 

nanowire coated with P doped. b) Richardson-Dushman linear fitting. 

 

Value of the work function determined for P-doped diamond supported on WOx 

nanowires by thermionic emission measurements is unexpectedly  higher than that of P 

doped diamond on CCNT (2.23 eV). The reason for such higher value could be explained 

based on similar mechanisms in case of the diamond coated CCNTs and P doped 

diamond films the band diagram illustrating possible two scenarios are presented in 

figure 6.9. Also we have to note that considering minimum temperature at which we were 

able to measure emission current was 980 oC, it is reasonable to expect that diamond 

surface is not terminated by hydrogen and studied P doped diamond has positive electron 

affinity. 
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Figure 6.9 Surface energy band diagram of P doped nanocrystals grown on the W/WOx 
nanowires. 

 

In the first case (Figure 6.9a), due to presence of the surface defect states and 

assumed P donor level to be at 0.6 eV below CBM, there is present upward band bending 

at the surface. Additionally, considering that diamond structure grown on nanowires is 

nanocrystalline it is possible that there are present mid-band gap states. MBG position 

should be much lower in the band gap close to valence band maximum compared to 

earlier discussed P doped diamond crystals on CCNTs and P doped diamond film, what is 

implied by the high value of the measured work function 5.1 eV. The value of the band 

bending η is expected to be not very large (less than in case of first hybrid structure and P 

doped diamond film) because of the weak contribution of the electrons from the P donor 

level. Otherwise, the lower value of the work function would have been expected because 

of the effective contribution of the significant population of electrons by the P impurities 

in diamond. Which would suggest that during emission electrons were mostly excited 

from the Fermi level of the P doped diamond – 0.6 eV below CBM.      
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In the second scenario (Figure 6.9b), The Fermi level is much lower in the band 

gap and there is weak upward band bending. In sum, a large value of the work function is 

related to the low position of the MBG placed much closer to the VBM compared to the 

first case (Figure 6.9a).  

 

6.4 Summary 

 

Combined characterization techniques (XRD, Raman, TEM) showed efficient 

reduction of the tungsten oxide nanowires due to hydrogen plasma treatment. However, 

removal of the oxygen from crystal lattice creates the porous structure: made up mostly 

of W atoms of ultra nanocrystalline or even amorphous. The deduced structure is 

expected to have electronic properties very different from the single crystal monoclinic 

W18O4 leading to poor emission properties as evidenced by the high values of the work 

function (~5.1 eV) of the hybrid structure consisting of reduced WOx nanowires and P 

doped diamond.  
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CHAPTER 7 

 
CONCLUSIONS 

 
 
 

In this work we studied novel hybrid structures of CCNT coated with P doped 

diamond. The main goal was to study the thermionic emission properties to determine the 

work function of P doped diamond. We also proposed an alternative material in place of 

CCNT, W/WOx nanowires. Considering its specific properties, W was picked as the 

material of choice due to its use in field emission and thermionic emission applications. 

As a part of the study of the thermionic emission properties of the hybrid structures, first 

we concentrated on the pristine CCNT, as they play an important role as the conducting 

backbone for the P doped diamond.   

CCNT samples were synthesized on Pt wires and graphite foils with different 

densities, tips sizes, lengths, and wall structures. The work function ϕ was determined by 

thermionic emission, while the range of ϕ values for each sample could be indirectly 

related to the morphological characteristics such as aspect ratio, density, and wall 

structure of CCNTs. The observed lower values for ϕ are significantly smaller than that 

reported for multi-walled carbon nanotubes (MWNTs). The reduced ϕ values could be 

attributed to the local electric field enhancement of the CCNTs and as a consequence, 

field penetration effect that is capable of significantly reducing potential barrier. The UPS 
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measurements of CCNTs grown on Pt wires show higher values of work function 

compared to the values obtained by thermionic emission method, thus supporting our 

assumption regarding field penetration effect.  

In the next part of this work we studied the emission properties of the hybrid 

structure. For better understand of the underlying mechanism of the emission properties 

of our structure we further studied ultraviolet photoelectron emission from the P doped 

diamond films. Ultimately, the work function reduction of phosphorus doped (i) diamond 

nanocrystals grown on conical carbon nanotubes (CCNTs) and (ii) diamond films grown 

on silicon substrates are presented. The CCNTs provide the conducting backbone for the 

P-doped diamond microcrystals as well allow to increase the surface area of the former. 

Thermionic emission measurements from phosphorus doped diamond crystals on CCNTs 

resulted in work function value of 2.23 eV. The presence of hybrid structure with 

combination of diamond, CCNTs and graphite, prevented the determination of accurate 

work function of diamond by UPS. The Ultraviolet Photoelectron spectroscopy studies on 

phosphorus doped diamond films yielded a work function value of 1.8 eV with observed 

NEA value of 1.2 eV. The origin of the reduced values of work functions is discussed 

using detailed band diagrams. Proposed explanation of work function reduction for the 

doped diamond crystals supported on CCNTs is upward band bending due to P doping 

and difference between bulk and surface Fermi levels. We suggest that midband-gap state 

due to the structural defects of the polycrystalline diamond could be an additional factor 

affecting value of the work function. Finally, as a third possibility only for P doped 

diamond coated CCNTs and P doped diamond films, it could be considered that there is a 

significantly lower position of Fermi level than expected for this type of doping. For P 
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doped diamond films, the further decrease of work function value is attributed to negative 

electron affinity. 

Thermionic emission results from the P doped diamond films grown on W foil 

revealed that these structures have lower value of work function in the range 1.0 – 1.33 

eV in agreement with the value reported by Nemanich et al.. However, these films show 

very low emission currents. 

In order to realize the idea of an alternative hybrid structure, vertically grown 

Tungsten oxide (W18O49) nanowires on W foil were studied. It was revealed that 

reduction of W18O49 nanowires by hydrogen plasma removes oxygen from crystalline 

lattice of the nanowires and as a result the reduced W/WOx nanowires have a porous 

structure.   

Thermionic emission measurements from the alternative hybrid structure of 

W/WOx nanowires coated with P doped diamond showed a high work function value 

exceeding 5.0 eV. Suggested explanation of the large value of the ϕ is weak contribution 

from the P donor levels and low position of the mid-band gap states compared to CCNTs 

coated with P doped diamond and P doped diamond film. There is no clear explanation 

for such position of the MBG states and negligible role of the P doping in case of the 

alternative hybrid structure and this issue requires further investigation. 
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