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Abstract

A comparison between Hamiltonian and Lagrangian formulations, for constrained
system is done. It is shown that the two approaches are equivalent. The Hamiltonian
formulation are treated using Dirac's and Guler's methods. A second order
Lagrangian dynamics in phase space is studied. Besides, The equivalence between
the Hamiltonian and the Lagrangian formulations for the parametrization-invirant

theories is done.
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Chapter 1

Introduction

1.1 Historical Preview

The theory of constrained systems is developed by Dirac [1,2] and it is becoming the
fundamental tool for the study of classical systems of particles and fields [3,4]. In
particular, the equivalence between the Lagrangian and Hamiltonian formulations for
constrained systems has been established by Gotay and Nester when considering the
geometric version of the dynamical equation [5]. Hamilton-Jacobi approach was
developed to study singular first order systems [6 — 9].

The presence of constraints in the singular Lagrangian theories makes one to be
careful when applying Dirac’s method, especially when first class-constraints arise.
Dirac showed that the algebra of Poisson’s brackets devide the constraints into two
classes: the first-class constraints and the second class ones. The first-class
constraints which have zero Poisson’s brackets with all other constraints in the
subspace of phase space in which constraints hold. Constraints, which are not first-
class, are by definition second-class. In the case of second class constraints Dirac
introduced a new Poisson brackets, the Dirac brackets, to attain self-consistency
However, whenever we adopt the Dirac method, we frequently encounter the
problem of the operating ordering ambiguity.

In Dirac's approach, an accurate description of the constraint functions plays a crucial

role. Dirac’s main aim was to apply this procedure to field theory, indeed, many field



theories are singular. Since the first class constraints are generators of gauge
transformations which lead to the gauge freedom. In other words, the equations of

motion are still degenerate and depend on the functional arbitrariness [10].

1.2 Singular Systems

This section serves as an initiation to the concept of singularities in the Lagrange
formalism. We will introduce some basic notions such as constraints arising due to
the singularities and the definition of the canonical momenta.

We will start our discussion of constrained systems with the principle of least action.
Any physical system can be described by a function L depending on the positions

and velocities[11].

L=L(q;(®),q(®), i=1,..,n (1.1)

We assume for the sake of simplicity that this Lagrange function exhibits no explicit
time dependence. The abbreviations g(t)and g(t)stand for the set of all positions
q(t) = {q;(t)} andvelocities q(t) = {q;(t)} , respectively, with i=1,..n. The

system’s motion proceeds in a way that the action integral

t2

t1

becomes stationary under infinitesimal variations §q;(t). Assuming that the end
points are fixed during the variation, i.e. §q;(t;) = 8q;(t,) = 0, yields the equations

of motion for the classical path, which is called Euler-Lagrange equation

———— = 0. (1.3)

Executing the total time derivative gives



. 0%L oL 0%
qi ==, = —(; —.
]aCIjaqi aq; g aCIjaCIi

(1.4)

In this form we recognize that the accelerations ¢; can be uniquely expressed by the

positiong;and the velocities g; if and only if the Hessian matrix

9L
04;0q;’

Wij l,] = 1, e, N (15)

is invertible. In other words its determinant must not vanish.

Since we are interested in the Hamiltonian formulation, we have to perform a
Legendre transformation from the velocities to the momenta. The latter are defined
as

oL

= a—ql (1.7)

p;

In the case that the determinant vanishes, the Lagrangian (1.1) is singular and some
of the accelerations are not determined by the velocities and positions. This means
that some of the variables are not independent from each other. The singularity of the
Hessian is equivalent to the noninvertibility of (1.5). As a consequence, in a singular
system we are not able to display the velocities as functions of the momenta and the
positions. This gives rise to the existence of r relations between the positions and

momenta
ém (i, q;) =0, (1.8)

if the rank of the Hessian matrix (1.5) is (n — r). The conditions in Eq.(1.8), which
obviously cannot be equations of motion, are called primary constraints [1]. They
follow directly from the structure of the Lagrangian and the definition of the
momenta (1.7). The interesting point is that these functions are real restrictions on

the phase space.



1.3 Dirac Method

The standard quantization methods can’t be applied directly to the singular
Lagrangian theories. However, the basic idea of the classical treatment and the
quantization of such systems were presented along time by Dirac [1,2]. And is now
widely used in investigating the theoretical models in a contemporary elementary
particle physics and applied in high energy physics, especially in the gauge theories
[4].

This is because the first-class constraints are generators of gauge transformation
which lead to the gauge freedom [12].

Let us consider a system which is described by the Lagrangian (1.1) such that the
rank of the Hessian matrix is (n — r),r < n.

The singular system characterized by the fact that all velocities g; are not uniquely
determined in terms of the coordinates and momenta only. In other words, not all
momenta are independent, and there must exist a certain set of relations among them
of the form (1.8).

The generalized momenta corresponding to the generalized coordinates g; are

defined as
oL
Pa = =) a = 1, e, n—=r, (19)
09,
oL
Py =5 =—H, u=n—r+1,..,n (1.10)
4,

Here g, stands for the total derivative with respect to t.

The equations (1.10) enable us to write the primary constraint as [1,2]

H, =P, +H,=0. (1.11)

In this formulation the total Hamiltonian is defined as

HT = HO + AH-HI,U (112)

where the canonical Hamiltonian H,, is defined as



Hy=pq;—L i=1,..,n (1.13)

and A, are arbitrary functions. ( Throughout this thesis, we use Einstein's summation

rule which means that the repeating of indices indicate to summation ).

The equations of motion are obtained in term of Poisson brackets as
4 =1{q, Hr} = {q;, Ho} + Aﬂ{quH/,’t}i (1.14)

pi = {pi, Hr} = {pi, Ho} + A,{ps, Hi}- (1.15)

The consistency conditions, which means that the total time derivative of the primary

constrains should be identically zero are given as
H, ={H,,H;} = {H}, Ho} + 4,{H), H,} = 0. (1.16)
Where y,v=n—-r+1,..,n.

Equations (1.16) may be identically satisfied for the singular system with primary
constraints, or lead to the new secondary constraints, repeating this procedure until
one arrives at a final set of constraints or specifies some of 4,. Primary and
secondary constraints are divided into two types: first class constraints which have
vanishing poisson brackets with all other constraints, and second class constraints

which have non-vanishing poisson brackets.

1.4 Hamilton- Jacobi Approach (Giiler's method)

The aim is to obtain a valid and consistent Hamilton-Jacobi theory of singular
system. The mathematical method used is the Caratheodory's equivalent Lagrangians

method. The main point of the method is to define the equivalent Lagrangian (



variational principle ) and then pass to the phase space. This formulation leads us to a

set of Hamilton-Jacobi partial differential equation [6 — 10].

1.4.1 Construction of phase space

The starting point of the Hamilton - Jacobi method is to consider the
Lagrangian L = L(q;,q;,t), i =1,...,n, with the Hessian matrix (1.5) of rank

n—-r),r<n

Then we can solve (1.9) for g, in term of q;, %, pg, and tas

Ga = 4a(qi %4 Das t)- (1.17)

Substituting (1.17) into (1.10), we get

oL )
Py=7—= —Hﬂ(qi,xﬂ,pa; t). (1.18)
4,

Relations (1.18) indicate the fact that the generalized momenta p, are not
independent of p, which is a natural result of the singular nature of the Lagrangian.

Although, it seems that H,are functions of x,, it is a task to show that they do not

depend on it explicitly.

The fundamental equations of the equivalent Lagrangian method read as

—H

o (1.19)

where the function S = S(q;; t) is the action. The Hamiltonian Hgreads as

Hy = paqq + PuXylp,=-n, — L(t, i, %y, 4q), w,v=n—7r+1,..,n (1.20)

Like the functions H,, the Hamiltonian H, is also not an explicit function of X,.



Therefore, the function S = S(g;; t) should satisfy the following set of Hamilton—

Jacobi partial differential equation ( HJPDE's ) which is expressed as

aS

, a5
HO (t’xlu Qa,Di = G_qJPO = E) =0,
i

, 05 as
Hﬂ (t’xll' o) Di = a_qiipo = E) = Or

where

Hy = Py + H,,

Hﬁ=Pu+Hu

(1.21)

(1.22)

(1.23)

Equations (1.21) and (1.22) may be expressed in a compact form as

, aS aS
Hg (tﬁ »a » Di =6_q-'p° =E> =0,
l
a,B=0n—-r+1,..,n,

where

H,=p,+H,.

a=1,..

,N—Tr, (1.24)

(1.25)

The equations of motion are written as total differential equations in many variables

tg as follows [9]:

6H(; " 1
dqi = i dt,, i=0,1,
dp = éCdlf
a %) . ar
dp = (;dt
u ) . ar

(1.26)

(1.27)

(1.28)



wherea=1,..,n—randa=0n—-r+1,..,n.

We define
Z = S(te qq) (1.29)

and making use of Eq.(1.26) and definitions of generalized momenta (1.19),we obt-

ain:

!

as 3 dH.,
dq, = (_Hadta + paan) =|—Hy + Pq 9P dtg. (1-30)
a

47 = = gp + 22
at, e T 5

Equations (1.26 — 1.28) and (1.30) are called the total differential equations for the
characteristics. If these equations form a completely integrable set, the simultaneous
solutions of them determine the function S(t,, q,) uniquely by the prescribed initial
conditions. The set of Equations (1.26 — 1.28) is integrable if the variations of H,
vanish identically [10, 13], that is:

dHy =0, (1.31)
dH, =0, wu=n-r+1,..,n (1.32)

If condition (1.31) and (1.32) are not satisfied identically, one considers them as
new constraints and again testes the consistency conditions. Hence , the canonical
formulation leads to obtain the set of canonical phase space coordinates q,and p,as
functions oft, , besides the canonical action integral is obtained in terms of the
canonical coordinates. The Hamiltonians H, are considered as the infinitesimal

generators of canonical transformations given by parameters t,respectively.

A general approach for solving the set of HIPDE's for the constrained system

(1.21)(1.22) has been studied [7,14]. The general solution is given in the form :

S(qa qu t) = F©) + Wu(Eq q0) + fu(q,) + A, (1.33)



where E, are the (n — r) constants of integration and A is some other constant. The

equation of motion can be obtained using the canonical transformations as follows:

dS dS
- ; pi=5
aq;

(1.34)

where A, are constants and can be determined from the initial conditions. The

number of 1, is equal to the rank of the Hessian matrix.

Equation (1.33) can be solved to furnish g, and p; as follows :

Ga = 9¢(Aa B, g t), (1.35)

pi = i Eqr 4o t), (1.36)

1.5 Mixed of Lagrangian and Hamiltonian Formulation

of Constrained System

1.5.1 Singular Lagrangian as Field System

Singular Lagrangian as field system has been studied in Ref [7]. As a natural
extension of the Hamiltonian formulation we would like to study the Lagrangian
approach of a constrained system. The usual way to pass from the Hamiltonian to the
Lagrangian approach is to use Egs. (1.26 — 1.28). Since there are additional
constraints, Eq (1.25), given in the phase space, they should also appear as
constraints in the configuration space. As we have stated before, Egs. (1.26 — 1.28)
and Eq.(1.25) allow us to treat the system as a continuous or field system. Thus, we

propose that the Euler-Lagrange equations of a constrained system are in the form

a[ oL ] oL
0, (1.37)

0%, 10(9,94) - 04, B



with constraints

dG, = oL dt 1.38
uw axu ’ (1.38)
where
. . . . x
L,(xll’ 0uqar Xy Qa) = L(Qa'xw% = (au%)xﬂ)’ Xy = dtv' (1.39)
and
oL
G, = H, [Qa»xv»pa = a_qa] (1.40)

One should notic that variations of constraints should be considered in order to have

a consistent theory.

10



Chapter 2

On Singular Lagrangians and Dirac’s Method

In this chapter we study some singular Lagrangians from the classical mechanics of
particles and apply Dirac’s method for building the equation of motion. We find then
the reason for the singularity, and therefore, we get the Hamilton equations with the
familiar procedure, that is without the need of Dirac’s procedure. Known cases of

singular Lagrangians in special relativity are also presented [15].

2.1 Preliminaries

As it has been shown in chapter one, the transition from the Lagrangian to the
Hamiltonian formalism is carried out by expressing the generalized velocities
g;(i = 1,...,n) in terms of the momenta p; = p;(q;, 4;,t) = dL/0q;, and eliminating

them in the function H, = ). Pq — L. This is possible if the mathematical condition.

0D
H P + 0, (2.1)

aq;

3 H 0L
04;0q;

is satisfied. This signifies that they build a set of independent variables. But if the

determinant vanishes then there exists one or more relations between the p’s :

d)k(p! q, t) = 0; k = 1, e, 4, (22)

11



where n — «a is the rank of the matrix (aZL/aqiaqj),thus not all p’s are independent.
In such situation one says that the Lagrangian is degenerat or singular, and the
Hamilton equations of motion cannot be obtained by the familiar procedure. In an
attempt to generalize the Hamiltonian dynamics, Dirac [1,2,16] developed a method

for building the canonical equations starting from the complete Hamiltonian
HT - HO + kad)k’ (23)

where H, = ). ¢;p; — Ldepends on the coordinates and the independent p's, and v;, are

new independent variables. This comes from taking a virtual variation of Hy([17]):

c’)L
5H0 = Z <QL6PL aq ) Z(q16pl pLSql) (2-4)

Using Eq. (1.30) and (1.31) we get

Z( aHO)s (+aH°)5 —0 25
qi a7, pi — \Di 34, q; =0, (2.5)

for all &p;, 6q;, consistent with the restrictions:

n
a¢k 0y )
—op; | =0, k=1,..,q, 2.6
Z(aql 5o (2.6)

i=1

that is, a 6's of all 6p;, §q; depend on the remaining ones. Eliminating them from Eq.

(2.5) by the well-known multiplier's procedure, one has

12



. O0H, 0Py
.= + E 2.7
i op; Uk op;’ (2.7)

oH Oy
l'?i=———zv : i=1,..,n, (2.8)
aq; “ aq;

Dirac then imposes ¢, = 0 to the primary restrictions ¢,, the consistency conditions ,

from which one can obtain additional restrictions. Some of these can be identities

(0 =0), others of the form f,(q,p) = 0 (like of Eq.(2.2)), and others of type
9:(q,p) +vh(p,q) = 0, that can be used to fix some of the unknown variables vy,.

The second possibility is treated in a similar way as conditions ¢, = 0.

2.2 Cases of Singular Lagrangians

Here, we write down a set of particular Lagrangians of a special type:

1
L= Em(CI% + CI% + lzqg + 2141 q3cosqz + 21q,43sings)
+V(q1! qZ! Q3); (29)

where [ and m are constants. This is called the Mittelstaedt's Lagrangian [18],

1 . . 1
L=o—(q+ 42)* + Zcz? +V(q1, 92, q3), (2.10)
that of Cawley ([19]),
.. 1,
L=¢,4,+V(q1,9293), (V = EQZQ3)' (2.11)

13



the Lagrangian of Deriglazov[20]

L =q34f + qid3 + 21924142 + V(q1, 92), (2.12)

where
V=q?+ql (2.13)
They all have in common that the potential energy V depends only on the coordinates

of the system, and that they are singular. Certainly, it is not difficult to see that there

exists one relation between the p’s in each instance:

¢1 =p3 — Lpycos q; — L p,sing; = 0, (2.14)
$,=p2—p1 =0, (2.15)
$3 =p3 =0, (2.16)
b4 = q101 — q2p2 = 0. (2.17)

Thus in these cases one cannot arrive at the canonical equations of motion using the

well-known procedure, and we are forced to use Dirac’s method.

2.3 Dirac’s Method for Mittelstaedt s and Deriglazov Lagrangians

Actually, we will only give the details for Lagrangian (2.10) because the results for

the other are found in the reference [20].

We start by obtaining the momenta of the system, using Eq. (2.10):

1 1 1
= (g 4G, P> =—0(d1+3)), DPa=—0n, 2.18
P1 m(‘h"“h) P2 m(‘h"“?z) P3 ‘u‘h ( )

so, P, depends on p; and only p,(orp,) and p; are independent. The primary
restriction is then Eq. (2.15) p, — p,;=0. For getting Hy(Eq. (2.3)), we eliminate the

velocities from ), g;p; — L in favor of the independent p's, resulting

14



m
Hy=—p? + Ep% - V. (2.19)
2 2
The complete Hamiltonian is then
m
H =7Pf +%p§ —V +v(P, — Py). (2.20)

The consistency condition ¢, = p, — p; = 0 leads to the secondary restriction

av.  av
=——-—2=0. (2.21)

B dq: 0q -
This is a relation between g,, g,andgs;which we briefly write as
¢, = q — F(q1,93) = 0. (2.22)
We then build the consistency condition ¢, = 0, or
¢, = [¢2, H] = 0, (2.23)

from which we find

U(l + Fl) —mpF1 —up3 F3 =0, (Fl = (2.24)

Q| @
2|
N——

[¢,, H] is the Poisson bracket of ¢, and H. Eq. (2.24) allows the fixing of variable v:

v =mP1F,1 + upsF;
1+F;

(2.25)

With the additional relations Eq. (2.22) and Eg. (2.25), we can now write the

canonical equations of motion:

g, =mp,—v, G =v , 4z = ups , (2.26)

15



with

V= mp,F; +upsks

q; = F(Ch; CI3),

1+F,
Thus, the independent equations of motion are
. =mP1_#p3F,3 s
a1 1+F, ) 43 = UP3,
pr=1), . Pz =(Va)y,p-

EQ.(2.30) can easily be written in newtonian form

(1+ F1)§y + F3Gs + F1147 + 2F13¢:45 + E33Q§:m(V.1)q2:F'

ds = #(V,3)q2=F -

On the other hand, for Deriglazov's Lagrangian Eq.(2.24) it is found that

2
P

H = 12 —V(q1,92) +v(q1p1 — q202)-
4q;

and

¢, =q.V; —qV, = 0, or ¢,=q,—F(qy) =0.

_ P1 P
2F2(F + q,F,) "

U:

Therefore, the independent canonical equations are

16

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)



. p1
—_ , 2.36
T = 7ok ¥ 2q,FF, (2.36)

P = it F
YT T (F gy (Va) gperiary (2:37)

and from here one also gets the Newton's equations of motion (Deriglazov uses V (x,y) =

x? +vy%and F(x) = +x)
2F(F + q1F1)qy + 2F(2F; + q:F 1) a8 = (Va),, o) =0 (238)

2.4 An Alternative Procedure to Arrive to The Equations of Motion

The  particular cases, here considered, here imply the relations
¢, = 0,(2.14) to (2.17) between the momenta. Without regarding the Hamiltonian

formalism, we can deduce the consequence of such relations

For Lagrangian of Equ. (2.9) the p's are given by

pr=mgqg, +mlqs;cosqs, (2.39)
p, =mqg, +mlqssings, (2.40)
ps = m 1243 + m 1(g, cos g3 + G, sin q3), (2.41)

After substituting forp,, p,,and p; from Egs. (2.39 — 2.41) and telring into account
Lagrange's equations, the time derivativs of (2.24) gives. If we now take the time
derivative of Eq.(2.24), substitute there p, and p, from Egs. (2.39 — 2.41) and take

into account Lagrange's equations, we write

Vilcosqs+V,lsing; — V3 =0. (2.42)

In a similar way, the implication of ¢; = 0 for the remaining cases is

17



V1 =V,0rq; = F(q1,q3), (2.43)

1 Vi=qV,orq, = F(qq), (2.45)

Equations (2.42 — 2.45) are relations between the coordinates of each system, thus
one coordinate cannot be independent. In these cases, the reason for the Lagrangian to
be singular is that the coordinates are not independent, and so the canonical equations
cannot be obtained by the familiar procedure, in which it is necessary that the
coordinates be generalized (independent). Therefore, eliminating one of the
coordinates from the corresponding Lagrangian, it would be possible to build

straightforwardly the Hamilton’s equations.

Let us do it for Lagrangians (2.10) and (2.12). substituting Eq. (2.43) into (2.10) we
get

1 2, 171 1y, 1 L
L= (14F)'@ +5(—Fy +;) @3 +—(L+F)Fs0ids + V', (246)

with
V’(‘hr%) = V(‘hrF(‘h» Q3)r Q3)- (2.47)

Likewise, the substitution of Eq. (2.45) into (2.12) leads to

L=(qF,+F) a2 +V'(q), Vi(g) =V(q,F(q),  (248)

p3

" 4(F+ quF,)°

—V'(q0). (2.49)

Let us write the equation of motion for Deriglazov's Lagrangian Eq (2.49),
dp,/dt = dL/0q,:
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Z(F + CI1F,1)Zéh + Z(F + CI1F,1)(2 Fi+ CI1E11)"I% - Vi = 0.

(2.50)

This equation is equivalent to Eq. (2.38). This can be seen from Eq. (2.45) that we

write at g, = F(q,):

(V) g,pa = (92Y2)g,2p(q,y

so that

1
_F(V‘Z)QZ=F(CI1) ’

(V’l)CIz=F(Q1) - q1

1
I/';_ = E(F + qlEl)(I/:Z)q2=F(ql)’

and thus factor F cancels out from Eq. (2.38), and F + g, F,from Eq.(2.50).

Regarding (2.10) we get, after substituting (2.43) into (2.10),

L=l a2+ BZ+ oz + 2 g v

where we have done the abbreviations
A - 1 + El; B = P:S;
V'(‘hr%) = V(CI1»CI2 = F(‘hr%)» Q3)-

The two momenta and the generalized velocities are then given by

_ oL _A2 AB

P1—a—ql—z%+;%;
B BZ+1
pP3 = m‘h m qs,
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(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)



_m+uB? uB . uB

G = 12 b1 — P Ps, qs; = _7P1 + U ps. (2.59)
Thus the Hamiltonian is
m U ,
Hy = bt m(Bm — Ap3)* —V'(q41, q3). (2.60)

We can now easily write the canonical equations of motion:

_ m+ uB? uB uB

g1 = 12 b1 — 2 Ps, qz = _Tpl + 1 ps. (2.61)

. , m U B
pr=Vi+ EA,1P1 - F (Bp, —Aps3) (B,1P1 - ZA,1P3) , (2.62)

) ,  m U B
3 =V3+ 75430 — _Z(B p1— Aps) (B,3P1 - —A'3p3). (2.63)
A A A
From here we come to the equations of motion for g; and g3 by eliminating p, and
ps in the two last equations (2.61 — 2.63). For this purpose, we derive Egs. (2.57 —
2.58) with respect to t and substitute the result in Egs.(2.61 — 2.63). We get, after

solving for ¢, and 5 and taking into account that

Az =B, =F3 , (2.64)
the equations
. 2 2 .. ., m+4uB* |
AGy+A1q97 +B3qs +243q:G3 + uB V3 — TV1 =0, (2.65)
! B !
a3 —uVz+u V=0 (2.66)

By Eg. (2.43), regarding that
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(Vll)qzzF = (V;Z)q2=F 4 (267)

we can see that Egs. (2.65) and (2.66) are fully equivalent to Egs. (2.31) and (2.32).

For the cases presented here we then see that even though there exists a relation
between the momenta, it is not necessary to apply Dirac’s method for building the
canonical equations. We can continue using the conventional procedure, without the

need of invoking any generalization of the dynamics.

These Lagrangians are of the type

L="Lo(Qm 0n) +V(Q, Q) (2.68)

which is known to be singular. Of course, this does not change the fact that they are so
because one uses more coordinates than the number of degrees of freedom. Lowering
the number of coordinates accordingly, the problems reduce to ordinary ones.
Moreover, restrictions Eq.(2.43) and Eq.(2.45) are not set ‘on the fly’, rather they are

a consequence of the way we build the Lagrangian.

We can summarize the results in other terms. If we interpret the velocity

dependent part of Eq.(2.9) to Eq.(2.12) as the kinetic energy of the system,
1 ds\> 1 .
T = Sm (%) =5 M Gij4i4;» (2.69)

where g;; are the components of the metric tensor, and sum over repeated indices is

understood, then the volume element in the space of the system can be written as

dt = 4/ | gmnll dq; dq; dqs, (2.70)

where || g || is the determinant of the metric tensor. But if, as it is here the cases, Eq.
(2.1) is violated, then the volume element vanishes, and thus the system is restricted

to a space of lower dimension (e.g. a surface).
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2.5 Relativistic Lagrangians

There are several possibilities to build the free particle relativistic Lagrangian that

reduce to the classical expression in the limit ¢ — oo. For instance [15]

L=-mc+/c?—q?, (2.71)

for the one dimensional motion is

1
L~-mc*+ om q> (2.72)

when the velocity of the particle is much smaller than c. The corresponding

Hamiltonian is, therefore

p? + m2c?
H=p§—-L=c——— = ¢ /p? + m?c?, (2.73)
[p? + m2c?

where

mc g C
d - P (2.74)

Pl U Pime

One tries to come in another way to the Hamiltonian by using the proper time t of the

particle:
c?dt? = c* dt* — dq?, (2.75)

Instead of the coordinates time t. g and t are then functions of the

parametert: q(7), t(t), so that the Lagrangian now is

L=—-mc./c?t'?—q'? (2.76)

where

t'=—, q =—. (2.77)
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For the Lagrangian of Eq.(2.76) we can construct two momenta p, and p, given by

_ oL mc3t’ 278

Po = ot c2t'2 — qrz’ (2.78)
dL mcq'

p = = . (2.79)

aq’ c2t'2 — qrz

It is not difficult to see that there exists a relation between them:

pé = c?p? + m2c*, (2.80)

so that Eq.(2.76) is singular. This Lagrangian is peculiar in a certain sense. For all

Lagrangians of the form
L(t',q") = F(c?*t"? — q'?), (2.81)

where F is an arbitrary function of the invariant c2t'? — g'?, the only function F that
violates Eq. (2.1) is just the square root. Indeed, the determinant Eq.(2.1) for the
function (2.81) is

0%L
= —4c?F'(F' + 2(c?t"* — ¢'*)F"), (2.82)

04;04;

where F' is the derivative of F with respect of its argument, so that the determinat is

zero for a function F satisfying the equation
F' +2(c?t'"* —q'*)F" =0, (2.83)
that
F(x) = avx + b, (2.84)
where a and b are constants.

Eq.(2.76) is, in this sense, the "worst" choice one can take, much in the equivalent
manner as the construction of Lagrangian. If one should have started with the

relativistic covariant Newton's second law
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qui dqli
deZ =m p =0, (2.85)

where ¢° = ct, g1 = g, and the line element is given by ds = (dq° dq), and the

metric tensor g;; has components

Jdo=1 gu=-1  gi0=901 =0, (2.86)

one would have arrived at

1
L= Zm (c?t'? — q'%), (2.87)

which is certainly not singular. With Lagrangian (2.88) one can directly get the

Hamiltonian by the familiar procedure:

2 2
bo p
= - —. 2.88
2mc? 2m (2.88)
The equations of motion are according to (2.76)
C3mql(qltll _ thll)
(c2t’2 — q'2)3/2 =0, (2.89)
C3mt/(q/t11 _ t/qn)
(Czt’z _ q12)3/2 = O’ (2'90)
and they clearly reduce to only one equation, from which it follows
q = cit+cy, (2.91)
a relation between g and t. On the contrary, from (2.87) one get the equations
t" =0, q" =0, (2.92)
or
t=a,7+ by, q = a,t + b,. (2.93)
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Lagrangian Eq.(2.71) describes a relativistic particle if we demand it to be real, so
that v < c. In the case represented by Eq. (2.90), one can add the condition v < ¢ for

completeness, or demand that the proper time 7 ( appering in Eq. (2.95), for example )

must be real.

We are not diminishing the interesting properties of Lagrangian in equ. (2.76),
like invariance, parametrization independence, rather we are only showing here the
consequences for the existence of a relation between momenta, and how can one

overcome it without the necessity of generalizing the classical dynamics.

There is another example of a (relativistic) singular Lagrangian, namely [20],

1 ) 1
L= Z(qg —qi) + Emzq, (2.94)

where q, = qo(1), 91 = q,(t), q = q(7) are the unknowns and m is a constant. L is

singular because

oL _

Fri 0, or p=0, (2.95)

and this is a relation between p's.

On the other hand, the equations of motion are

d (qo d (1

& (d0) _ _(_)=o, 2.96
dr(q) dt \q (2.96)
1 oo 2

?(%_‘h)_m =0, (2.97)

from which the third, that is a consequence of Eg. (2.95), can be solved for q(7):

1 .2 .2
q= ia do — 41- (2.98)

The first two Egs. (2.97) can thus be expressed in the form
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(2.99)

i(q_> _ 0 £<Q_> _ 0
w\Ja§ - 43 v \J§ - 43
and they are equivalent to the equations of motion resulting from (2.76).

According to Deriglazov, Dirac's method applied to (2.97), leads to the Hamiltonian
q
H=5s—pi—m)+up, (2.100)

and hence the canonical equations are

4; = qpu pi =0, q=v, p=0, 1=01, (2.101)
with the conditions (primary and secondary)
p =0, pé —p? —m? =0. (2.102)

The secondary condition is similar to the primary one (2.80) for Lagrangian (2.76).

The canonical equations of motion (2.101) contain an undetermined variable v, that
equals 4. One can intend to fix it employing the Egs.(2.101). From Egs. (2.101) one

sees that p, and p, are constant, so that

g, = %qo = A q,, A = constant, (2.103)
0
or
g1 =Aqo+ B, (2.104)

where B is an arbitrary constant. On the other side, variable g can be written as

147

2 qs, (2.105)

q

m2

. 1-A%
q= i 7610' (2.106)
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and hence

1-A?%
tio» (2.107)

Of course, from the canonical equations of motions g, and g, cannot be determined

as functions of , so that v, like g, remains undetermined.

For Lagrangians (2.76) and (2.94), one cannot avoid the use of Dirac's method
for constructing the Hamiltonian, not even by employing the restrictions as was done
in sec. 2.4. In the case of EQ.(2.76) the altemative is to take a different Lagrangian,

for instance that given by Eq. (2.87).
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Chapter 3

Second — Order Lagrangian Dynamics

in The Phase — Space

3.1 Preliminaries

By means of class of nondegenerate models with a finite number of degree of
freedom, it will be proved that in a Hamiltonian formulation of dynamics, there
exists an equivalent second-order Lagrangian formulation whose configuration space
coincides with the Hamiltonian phase-space. The above result is extended to scalar

field theories in a Lorentz-covariant manner [21].

It is well-known that the Euler-Lagrange and Hamilton equations play a central role

in theoretical physics. For system described by nondegenerate Lagrangians [22, 23].

0%L,
det W # 0 (locally), (3.1

the Euler-Lagrange equations are equivalent to the Hamilton ones. Indeed, if one

defines, in the standard manner, the canonical momenta and the Hamiltonian
Ho(q%,p;), then, from the Euler-Lagrange equations, one infers the Hamilton

equations. Conversely, if one eliminates algebraically the canonical momenta from
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the Hamiltonian equations, then one deduces the Euler-Lagrange equations. In the
case of constrained (degenerate) systems [2,16], the equivalence between the two
sets of equations is no longer manifest and must be implemented via the introduction

of Lagrange multipliers.

For a nondegenerate system, locally described by the bosonic canonical pairs

(¢, p;) and the Hamiltonian Hy (g%, p;), the Hamilton equations

_ 0H, . oH, .

)

q

can be derived from the first-order varitional principle based on the action

t2

Sola',pi] = j dt (4'p; - Ho(q',pD)). (33)

t1

It is straightforward to verify that the Euler-Lagrange equations for the first-order
Lagrangian

£(q' i, 440 = ¢'p; — Ho(q', py) (3.4)

coincide with the Hamiltonian equations (3.2).

It is easy to see that the Lagrangian(3.4) is degenerate in the sense of the Dirac
approach [1,2,16], but the canonical analysis of this Lagrangian emphasizes only
second-class constraints. Then, by passing to the Dirac bracket we find that the
dynamics in terms of independent variables is precisely described by Eqgs.(3.2) (up
to a possible change in variable notation). Thus, given a Hamiltonian formulation of
dynamics for a nondegenerate system one can always construct an equivalent

degenerate first-order Lagrangian formulation whose configuration space coincides
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with the Hamiltonian phase-space. On the other hand, the Hamiltonian action of a
nondegenerate system is just an example of first-order theory. Indeed, there are many
familiar dynamical systems that are described at the Lagrangian level by degenerate
first-order actions. For instance, the Lagrangian actions for the Schrodinger and
Dirac equations are first-order in the time derivatives and, in consequence, the
equations of motion are olso first-order in time. On the other hand, the Klein-

Gordon, Maxwell, and Einstein, equations are second-order (in spacetime) [21].

The previous discussion leads, to the following problem: given a first-order
formulation of dynamics in terms of some variables, does there exist an equivalent,
nondegenerate, second-order Lagrangian formulation in terms of the same variables?
It is possible that the answer to this question is not affirmative for any first-order
system. Besides the challenging aspect ( intellectual or the like ), the investigation of
the previous problem is important from the point of view of equal footing between
first- and second-order formalisms involving exactly the same variables and,
implicitly, of establishing a novel equivalence between first-and second-order
equations in terms of the same variables. The above-mentioned equivalence between

first- and second-order equations may also be of interest to mathematicians[21].

In this chapter we start the investigation of the above problem in the framework
of two classes of nondegenerate models (one class with a finite number of degrees of
freedom and the other with scalar fields). In this respect we show, for each of the two
models that given a Hamiltonian formulation of dynamics, one can find an equivalent
second-order Lagarngian formulation whose configuration space coincides with the
Hamiltonian phase-space.

In view of this, we start with a class of Hamiltonians of the form

. 1 .
Ho(q', py) = Eu”pip,- + U(q"), (3.5)
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where uY is a constant, symmetric, and invertible matrix, y;; is the inverse of u/,

and U (qi) is an arbitrary potential. The corresponding Hamilton equations read as

q' = up;, (3.6)
, oU
Di = N (3.7)

Now, we take the second-order Lagrangian

ou

ZO(qit pi, qi; pl) = qipi - #Upl a_qj ’ (38)
from which we derive the Euler-Lagrange equations
6Ly . kj 02U —0 39
5qi = —Pi — KL Pk aqlaqf — Y ( . )
OLo _ i Y _ 0 3.10
5pr = 0 55 =0 (3.10)

The next theorem represents the first of our main results.

3.2 Theorem 1

The Hamilton equations (3.6 —3.7) and the (second-order) Euler-Lagrange

equations (3.9 — 3.10) describe the same dynamics, i.e.

L . N LY}
q' = upj, (—Pi—u"’pka 507 = 0
_ U @{ anq (3.11)
bi=—77, _ni_ i) -0
aq | ' —u 9 = ¥
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Proof. The proof of above theorem is done in three steps.

Step 1. From Eqgs. (3.6 — 3.7) and (3.9 — 3.10) we deduce the relations

8Ly d(, +6U>+ 0%U @ — wip) 312
5q¢ — dc\Pi T aqi) Tagiag T TH P (312)
8lo_ _d . g Y- ij(~.+a_U) (3.13)
6pi_ dt qi U p] U p] aq] , '

which prove that: if (qi(t),pl-(t)) are solutions of EQs.(3.6 — 3.7), then they are
also solutions of Egs.(3.9 — 3.10).

Step 2.Next, we prove the following statement: if g'(t) are solutions of Eq.(3.10),
then p;(t) = w;4’ (t) are solutions of Eq. (3.9).

Assume that g‘(t) are solutions of Eq. (3.10), i.e.

6Z°—0 3.14
5o = (3.14)

Substituting the relationsp; (t) = p;;¢’ (£)in (3.9), we obtain the formulas

5T, d 5T,

— =y ——, 3.15
which combined with (3.14)

Step 3. Finally,we establish the third conclusion, namely: if (qi(t),pi(t)) are
solutions of Equ. (3.9 — 3.10), then they are also solutions of Egs. (3.6 —3.7).

We conclude that the solutions of Egs. (3.9 — 3.10) are given by(qi(t),pi(t) =
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ui,-qf(t)), where g*(t) are the solutions of Eq. (3.10). In consequence, the solutions

to Egs. (3.9 — 3.10) verify Eq.(3.6). Inserting Eq.(3.6) into Eq.(3.10), we find that
the solutions to Egs. (3.9 — 3.10) satisfy also Eq.(3.7). Conclusions of step1 and

step3 prove the theorem.

In the context of Hamiltonians of the type (3.5) the above theorem emphasizes a new
type of relationship between the Lagrangian and Hamiltonian formalisms for

nondegenerate systems.

In the sequel, we extend the result of Theorem 1 to field theories in a Lorentz-
covariant manner. Since we consider only nondegenerate systems, we take the
simplest case of scalar field theories. In order to be specific, we take a class of
Hamiltonians of the form

1 1 .
Ho = | a>2x (Euabnanb > Hap (00 (2 p") + V(<pa>), (3.16)

where u? is a constant, symmetric, and invertible matrix, u,p, is the inverse of u®?,
and V(¢%) is an arbitrary function depending only on the undifferentiated scalar

fields. The Hamilton equations that follow from (3.16) are given by

P* = uy,, (3.17)

av
0pa’

Mg = —Hap0;0'® — (3.18)

In (3.16 — 3.18)and in what follows, we use the standard notations f = dof =
df/ot,d;g = dg/dx" and the flat Minkowski metric of "mostly minus" signature,

Oy = 0" = (+ —---—). Comparing Eq.(3.5) with Eq. (3.16), we find that the

u

former role of U(q") is played here by
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—~

1 . ~
0] = [ 7% - S @009 + V9™ = [ ¢ x T @19)
Let us try now a generalization of Eq.(3.8) of the type
- q sU
LO [(pa: T[al (Pa: T[a] = j dD—l X (aﬂ(paa#na - ‘uabn.a 6_([)b>

= de—lxio, (3.20)

where

50 ot o0

50b o8 %300 (3:21)

Taking into account formulas (3.19) and (3.21) we find that the Lagrangian density of

Eq.(3.20) takes the Lorentz-covariant form

_ av
Ly = (au‘Pa)(aM”a) - llab”aa_(pb ) (3.22)
which further leads to the Euler-Lagrange equations
5L, _ p be 0%V
5_(pa = —a‘ua Ty — UL W =0 , (3.23)
Lo _ g ompe —pae g (3.24)
om, M ek dP ' '

Under these considerations, the next theorem represents the second main result of

this section.
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3.3 Theorem 2
The Hamilton equations (3.17 —3.18) and the (second-order) Euler-Lagrange

equations (3.23 — 3.24) are equivalent, i.e.

0%V
P = #abﬂb ) (_aua“ﬂa - #bcﬂb —6 P =0,
) i b W o ¢ o9 (3.25)
Tq = —Uap0;0'@° — dao®’ U na ab ov —
qe | —0,0"9% — b 0,

Proof.
The proof goes along the same line with the proof of Theorem 1.(i)Bymeans of
Eq.(3.17 — 3.18)and Eq.(3.23 — 3.24) we derive the formulas

5L,
Sp¢

, . v
= —9d, (na + Uap0;0' QP + a<pa>

2

+ <ﬂabaiai§0b + W) (¢ —ubem,) (3.26)

5L,
om,

= —0o(9® — u®my) — u® | 7ty + p, 0;0" ey 3.27
N HWoTtp) — W \Ttp T 1) 0;0°@ . (3.27)

dp°

From (3.26 —3.27)we arrive at the following result: if (¢%(x),m,(x)) are also

solutions of Egs. (3.17 — 3.18), then they are also solutions of Egs. (3.23 — 3.24).

(i) In the next step we prove that: if ¢*(x) are solutions of Eq. (3.24),
thenm, (x) = ugp@? (x)are solutions of Eq. (3.23)

Let ¢(x) be solutions to Eq. (3.24), which means that

5L,
o,

(x) = 0. (3.28)
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Replacing the formulas m,(x) = ug,®?(x) in Eq.(3.23), we find the relations

8L, 8L,
5—<Pa = Hap 0o (6_71(1 (x)). (3.29)

(iii) In this step we show that the following result holds: if ((pa(x),rta(x)) are
solutions of Egs. (3.23 — 3.24),then they are also solutions of Egs. (3.17 — 3.18).

As we have proved at step (ii), the solutions to Eqgs. (3.23 — 3.24) are expressed by

((pa(x), T, (x) = uabgbb(x)), with ¢?(x) solutions of Eq. (3.24).Then, the solutions
to also satisfied by the solutions to Egs. (3.23 — 3.24).

Theorem 2 extends to above emphasized new type of relationship between
Lagrangian and Hamiltonian formalisms to scalar field theories.
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Chapter 4

The Equivalence between The Hamiltonian and Lagrangian

Formulation For The Parametrization-Invariant Theories

4.1 Preliminaries

The link between the treatment of singular Lagrangians as field systems and the
canonical Hamiltonian approach is studied. It is shown that the singular Lagrangians
as field systems are always in exact agreement with the canonical approach for the
parametrization invariant theories[24].

This formulation leads us to obtain the set of Hamilton-Jacobi partial differential

equations (HJPDE) as in chapter 1.

In this chapter, we study the link between the treatment of singular Lagrangians
as field systems and the canonical formalism for the parametrization invariant
theories [24].

4.2 Parametrization — Invariant Theories as Singular Systems

Consider a system with the action integral as [25]
S(ql) = fdtﬁ(ql'ql't)' i = 1,...,7’1, (41)
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where L is a regular Lagrangian with Hessian n. Parametrize the time t — z(z), with

1= d7/dt >0. The velocities g;may be expressed as

Qi = ql,T’ (4'2)
where q; are define as
dg;
ql dT ( )

Denote t = qoand q, = (g, q;), 1 = 0,1, ..., n, then the action integral of Eq.(4.1)

may be written as

!

S(q”) = jd‘ri‘L(qw%) (4.4)

which is parametrization invariant since Lis homogeneous of first degree in the velo-

cities g, with £ given as

£(q,,q,) =tcL (qw%). (4.5)

The Lagrangian £ is now singular since its Hessian is n.
The canonical method in [8,9,12,13] leads us to obtain the set of Hamilton-Jacobi

Partial differential equations as follows:

Hy = P, — L(q0, 91 9o, (4; = wy)) + p{q; + PeQolp,=—n, =0, P = 7. (40
, aS
Hi=p,+H, =0, p. = E: (4.7)
where H; is defined as
Ht = —L(qi,wi) + pfwl (48)
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Here, p{ and p, are the generalized momenta conjugated to the generalized coordi-
nates g; and t, respectively.

The equations of motion are obtained as total differential equations in many variables

as follows:
. 0H, 0H| OH|
dgt = —d ——dg® = —=dgqg°, 49
1 ap; T ap; 1 op; 1 (9)
. 0H, J0H; J0H;
dp' = — dr — dq® = — dq°, (4.10)
aq; aq; aq;
d 0Hq d OH; dqg® =0 (4.11)
p = — T — q = U. .
‘ a9 a9y
Since

vanishes identically, this system is integrable and the canonical phase space coordin-
ates g; and p; are obtained in terms of the time (q, = t).
Now, we look at the Lagrangian (4.5) as a field system. Since the rank of the

Hessian matrix is n, this Lagrangian can be treated as a field system in the form

q; = qi(7, 1), (4.13)
thus, the expression
dq; | 0q; .
i =——+—=1 414
QL aT at ( )

can be substituted in (4.5) to obtain the modified Lagrangian L'
. 1¢0q; 0q;,
= in (g (24 20)) 115
(q“ i\ar T ot (+15)

Making use of Eq.(1.43), we have
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oL @ oL ) oL 0 e
aq; %(a(aqi/at)) - E(a(aqi/ar)) e (4.16)

Calculations show that Eq.(1.43) leads to a well-known Lagrangian equation as

oL o0 ( 0L ) _0 117
dq; 0t\a(dq;/ot)) (+17)

Using Eq.(4.8), we have
H, =—-L+ oL, 4.18

In order to have a consistent theory, we should consider the total variation of H,.

In fact,

oL

H, =
dH; ot

dt. (4.19)
Making use of Eq.(1.44), we find that

dH oL d 4.20
= ——qr. .

Besides, the quantity H, is identically satisfied and does not lead to constraints. The
equations of motion (4.9) and (4.10) are equivalent to the equations of motion
(4.13) and (4.14). Besides, the variations of constraints (4.19) and (4.20) are

identically satisfied and no further constraints arise.

4.3 Classical Fields as Constrained Systems

In the following sections, we study the Hamiltonian and Lagrangian formulations for
classical field systems and demonstrate the equivalence between these two formulat-
ions for the reparametrization-invariant fields.

A classical relativistic field ¢; = ¢; (%, t)in four space-time dimensions may be

40



described as the action functional

S(p;) = fdt fd3x{,£(¢i,6#¢)i)}, n=0123; i=12..,n, (421)

which leads to the Euler-Lagrange equations of motion as

oL 0L
y [ (4.22)

R TS

We can go over from the Lagrangian description to the Hamiltonian description by

using the definition

oL (4.23)
Y
then the canonical Hamiltonian is defined as
H, = f d3x (m;p; — L). (4.24)
The equations of motion are then obtained
L J0H, . J0H, L5

4.4 Reparametrization — Invariant Fields.
In analogy with the finite dimensional systems,we introduce the reparametrization-

invariant action for the field system:

S = fdr fLRd3x, (4.26)
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where

L =tL(Ps, 0,6:).

Following the canonical method, we obtain the set of [HIPDE],

, dp;  dt ds
H0=T[T+ l(T)d—Tl'l‘?TtE—LR , T = ——
as

where H, is defined as

do;
H, = —L(¢s, 0,;) + 1" d—t‘,

and ("
¢; and t, respectively.

The equations of motion are obtained as follows:

_OHy  OH{ - OH;

do; dt
¢l aT[i vt aT[i aT[:i ’
p 0H, g 0H| it 0H| it
w; = — T— = — ,
l d¢; 0¢; 0¢;
dm, = OHq d oH; dt =0
=T T e T

Now the Euler-Lagrangian equations for the field system read as

oL o ( oL )_0
dp;  9x*\a(a¢;/0x,) B
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(4.27)

(4.28)

(4.29)

(4.30)

, T are the generalized momenta conjugated to the generalized coordinates

(4.31)

(4.32)

(4.33)

(4.34)



Chapter 5

Conclusion

The treatment of Lagrangians as field systems is always in exact agreement with the
Hamilton-Jacobi treatment for reparametrization-invariant theories. In analogy with
the finite-dimensional systems, it is observed that the Lagrangian and the Hamilton-
Jacobi treatments for the reparametrization-invariant fields are in exact

agreement[24].

In the classical mechanics of particles, there is no case reported of a singular
Lagrangian for a real system; all instances that we know are of artificially built
system. Thus, it seem that the Lagrangians of classical mechanics are basically non

degenerate [15].

Singularities appears first when we generalize to cases where there is not a
previously given rule for building L, like in the special relativity. There one has the
freedom to choose the Lagrangians among several possibilities, some of which are
regular and others singular.

Perhaps it would be more natural to set the condition on new Lagrangians to be
regular. One can argue against this by saying that the additional variables v that
appear in the theory can reveal symmetries of the system, like gauges. However, if
two Lagrangians, one regular and the other singular, lead to the same set of equations

(for example, field equations), they must share comparable symmetries.
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To conclude with, in chapter 3 we have proved that given a Hamiltonian formulation
of dynamics we can find an equivalent second-order Lagrangian formulation whose
configuration space coincides with the Hamiltonian phase-space. This has been done
initially in the context of a class of nondegenerate models with a finite number of
degrees of freedom. The above result has been extended to scalar field theories in
Lorentz-covariant manner. In a future work we hope to generalize the previous
results to a generic first-order system whose one-form potential leads to a

nondegenerate symplectic two-forms [21].
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