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II 
 

         

A comparison between Hamiltonian and Lagrangian formulations, for constrained 

system is done. It is shown that the two approaches are equivalent. The Hamiltonian 

formulation are treated using Dirac's and Guler's methods. A second order 

Lagrangian dynamics in phase space is studied. Besides, The equivalence between 

the Hamiltonian and the Lagrangian formulations for the parametrization-invirant 

theories is done.                                                                                                               

 

 

 

 

 

 

 

 



III 
 

 ملـــــخص

 للأنظمت المقيدة الهاملتونيان واللاجرانج دراست مقارنت بين صيغتي 

 

 إعــــــــداد

 الباحث/ وسيم محمد أبوطواحينت

 

 إشــراف

 ناصــــر فرحــــــــــــــاث الأستاذ الدكتور/

 

للأهظمة المقيدة . ويتضح التكافؤ بين هاثين  ثم إجراء مقارهة بين صيغة لاجرهجيان وصيغة هاملتوهيان

الصيغتين. صياغة هاملتون ثمت باستخدام كل من طريقتي ديراك وجولر. ثم دراسة ديناميكا اللاجراهج من 

الدرجة الثاهية في فراغ الطور, اضافة إلى دراسة التكافؤ بين صياغة هاملتون وصياغة لاجراهج للنظريات 

 رة .البارامترية الغير متغاي
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The theory of constrained systems is developed by Dirac ,   - and it is becoming the 

fundamental tool for the study of classical systems of particles and fields [3,4]. In 

particular, the equivalence between the Lagrangian and Hamiltonian formulations for 

constrained systems has been established by Gotay and Nester when considering the 

geometric version of the dynamical equation , -  Hamilton-Jacobi approach was 

developed to study singular first order systems ,   -  

The presence of constraints in the singular Lagrangian theories makes one to be 

careful when applying Dirac’s method, especially when first class-constraints arise. 

Dirac showed that the algebra of Poisson’s brackets devide the constraints into two 

classes: the first-class constraints and the second class ones. The first-class 

constraints which have zero Poisson’s brackets with all other constraints in the 

subspace of phase space in which constraints hold. Constraints, which are not first-

class, are by definition second-class. In the case of second class constraints Dirac 

introduced a new Poisson brackets, the Dirac brackets, to attain self-consistency 

However, whenever we adopt the Dirac method, we frequently encounter the 

problem of  the operating ordering ambiguity. 

In Dirac's approach, an accurate description of the constraint functions plays a crucial 

role. Dirac’s main aim was to apply this procedure to field theory, indeed, many field 
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theories are singular. Since the first class constraints are generators of gauge 

transformations which lead to the gauge freedom. In other words, the equations of 

motion are still degenerate and depend on the functional arbitrariness ,  -  

 

                      

This section serves as an initiation to the concept of singularities in the Lagrange 

formalism. We will introduce some basic notions such as constraints arising due to 

the singularities and the definition of the canonical momenta. 

We will start our discussion of constrained systems with the principle of least action. 

Any physical system can be described by a function L depending on the positions 

and velocities,  -. 

 

   (  ( )  ̇ ( ))                                             (   ) 

 

We assume for the sake of simplicity that this Lagrange function exhibits no explicit 

time dependence. The abbreviations  ( )and  ̇( )stand for the set of all positions 

 ( )  *  ( )+ andvelocities  ̇( )  * ̇ ( )+ , respectively, with         The 

system’s motion proceeds in a way that the action integral 

 

  ∫     (  ( )  ̇ ( )) 
  

  

                                                  (   ) 

 

becomes stationary under infinitesimal variations     ( ) . Assuming that the end 

points are fixed during the variation, i.e.    (  )     (  )   , yields the equations 

of motion for the classical path, which is called Euler-Lagrange equation  

 

  

   

 
 

  

  

  ̇ 

                                                     (   ) 

 

Executing the total time derivative gives 
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 ̈ 

   

  ̇   ̇ 

 
  

   

  ̇ 

   

     ̇ 

                                       (   ) 

 

In this form we recognize that the accelerations  ̈  can be uniquely expressed by the 

position  and the velocities  ̇  if and only if the Hessian matrix 

 

    
   

  ̇   ̇ 

                                                      (   ) 

is invertible. In other words its determinant must not vanish. 

 

                                                                  (   ) 

 

Since we are interested in the Hamiltonian formulation, we have to perform a 

Legendre transformation from the velocities to the momenta. The latter are defined 

as 

   
  

  ̇ 

                                                                (   ) 

 

In the case that the determinant vanishes, the Lagrangian (   ) is singular and some 

of the accelerations are not determined by the velocities and positions. This means 

that some of the variables are not independent from each other. The singularity of the 

Hessian is equivalent to the noninvertibility of (   ). As a consequence, in a singular 

system we are not able to display the velocities as functions of the momenta and the 

positions. This gives rise to the existence of r relations between the positions and 

momenta 

  (     )                                                        (   ) 

 

if the rank of the Hessian matrix (   ) is (   )  The conditions in Eq.(   ), which 

obviously cannot be equations of motion, are called primary constraints , -  They 

follow directly from the structure of the Lagrangian and the definition of the 

momenta (   )  The interesting point is that these functions are real restrictions on 

the phase space. 
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The standard quantization methods can’t be applied directly to the singular 

Lagrangian theories. However, the basic idea of the classical treatment and the 

quantization of such systems were presented along time by Dirac ,   -   And is now 

widely used in investigating the theoretical models in a contemporary elementary 

particle physics and applied in high energy physics, especially in the gauge theories 

, -  

 This is because the first-class constraints are generators of gauge transformation 

which lead to the gauge freedom ,  -  

Let us consider a system which is described by the Lagrangian (   ) such that the 

rank of the Hessian matrix is (     )        

The singular system characterized by the fact that all velocities  ̇  are not uniquely 

determined in terms of the coordinates and momenta only. In other words, not all 

momenta are independent, and there must exist a certain set of relations among them 

of the form (   )  

The generalized momenta corresponding to the generalized coordinates    are 

defined as  

   
  

  ̇ 

                                                                   (   ) 

   
  

  ̇ 

                                                 (    ) 

 

Here  ̇  stands for the total derivative with respect to  .  

      The equations (    ) enable us to write the primary constraint as [1,2] 

 

  
                                                            (    ) 

 

In this formulation the total Hamiltonian is defined as  

          
                                                      (    ) 

where the canonical Hamiltonian    is defined as  
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      ̇                                                           (    ) 

 

and    are arbitrary functions. ( Throughout this thesis, we use Einstein's summation 

rule which means that the repeating of indices indicate to summation ). 

        The equations of motion are obtained in term of Poisson brackets as       

 

 ̇  *     +  *     +    {     
 }                                   (    ) 

 

 ̇  *     +  *     +    {     
 }                                   (    ) 

 

The consistency conditions, which means that the total time derivative of the primary 

constrains should be identically zero are given as  

 

 ̇ 
  {  

    }  {  
    }    {  

    
 }                             (    ) 

 

Where                 

 

Equations (    ) may be identically satisfied for the singular system with primary 

constraints, or lead to the new secondary constraints, repeating this procedure until 

one arrives at a final set of constraints or specifies some of      Primary and 

secondary constraints are divided into two types: first class constraints which have 

vanishing poisson brackets with all other constraints, and second class constraints 

which have non-vanishing poisson brackets.  

 

 

                                 (  ̈            )   

The aim is to obtain a valid and consistent Hamilton-Jacobi theory of singular 

system. The mathematical method used is the Caratheodory's equivalent Lagrangians 

method. The main point of the method is to define the equivalent Lagrangian ( 



6 
 

variational principle ) and then pass to the phase space. This formulation leads us to a 

set of  Hamilton-Jacobi partial differential equation ,    -                                        

                                       

The starting point of the Hamilton - Jacobi method is to consider the 

Lagrangian      (    ̇   )          with the Hessian matrix (   ) of rank 

(   ),                                                                                                                     

Then we can  solve (   ) for  ̇  in term of     ̇      and  t as                                 

 

 ̇   ̇ (    ̇      )                                                 (    ) 

 

Substituting (1.17) into (1.10), we get 

   
  

  ̇ 

    (    ̇      )                                (    ) 

Relations (    )  indicate the fact that the generalized momenta   are not 

independent of     which is a natural result of the singular nature of the Lagrangian.  

Although, it seems that   are functions of   ̇ , it is a task to show that they do not 

depend on it explicitly.                                                                                                    

The fundamental equations of the equivalent Lagrangian method  read as 

   
  

  
    (    ̇      )           

  

   

              
  

  ̇ 

          (    ) 

 

where the function    (    ) is the action. The Hamiltonian  H0 reads as  

      ̇     ̇        
  (      ̇   ̇ )                        (    ) 

 
Like the functions   , the Hamiltonian    is also not an explicit function of   ̇ . 
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Therefore, the function    (    ) should satisfy the following set of Hamilton– 

Jacobi partial differential equation (         ) which is expressed  as  

 

  
 (           

  

   

    
  

  
)                                         (    ) 

 

  
 (           

  

   

    
  

  
)                                         (    ) 

where  

 

  
                                        

                                     (    ) 

 

Equations (    ) and (    ) may be expressed in a compact form as  

  
 (            

  

   

    
  

  
)     

                                                                       (    ) 

where  

  
                                                                           (    ) 

The equations of motion are written as total differential equations in many variables 

   as follows , -  

    
   

 

   

                                                      (    ) 

    
   

 

   

                                                                  (    ) 

    
   

 

   

                                                                  (    ) 
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where           and                 

We define 

   (     )                                                                  (    ) 

and making use of Eq.(    ) and definitions of generalized momenta (    ) we obt-

ain:  

 

   
  

   
    

  

   
    (            )  (      

   
 

   
)         (    ) 

 

Equations (         ) and (    ) are called the total differential equations for the 

characteristics. If these equations form a completely integrable set, the simultaneous 

solutions of them determine the function  (     ) uniquely by the prescribed initial 

conditions. The set of Equations (         ) is integrable if the variations of   
  

vanish identically ,     -, that is:                                                                                  

   
                                                                            (    ) 

   
                                                  (    ) 

If condition (    ) and (    ) are not satisfied identically, one considers them as 

new constraints and again testes the consistency conditions. Hence , the canonical 

formulation leads to obtain the set of canonical phase space coordinates   and   as 

functions of   ,  besides the canonical action integral is obtained in terms of the 

canonical coordinates. The Hamiltonians   are considered as the infinitesimal 

generators of canonical transformations given by parameters   respectively.               

 A general approach for solving the set of HJPDE's for the constrained system 

(     )(    ) has been studied ,    -. The general solution is given in the form :      

                                                                                                                   

 (       )   ( )    (     )    (  )                     (    ) 
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where    are the (   ) constants of integration and A is some other constant. The 

equation of motion can be obtained using the canonical transformations as follows:     

 

   
  

   

                
  

   

                                             (    ) 

 

where    are constants and can be determined from the initial conditions. The 

number of    is equal to the rank of the Hessian matrix.                                                

      Equation (    ) can be solved to furnish    and    as follows :      

     (          )                                                      (    ) 

     (          )                                                        (    ) 

 

                                                             

                                   

 

                                          

Singular Lagrangian as field system has been studied in Ref [7]. As a natural 

extension of the Hamiltonian formulation we would like to study the Lagrangian 

approach of a constrained system. The usual way to pass from the Hamiltonian to the 

Lagrangian approach is to use Eqs. (         )  Since there are additional 

constraints, Eq (    )  given in the phase space, they should also appear as 

constraints in the configuration space. As we have stated before, Eqs. (         ) 

and Eq.(    ) allow us to treat the system as a continuous or field system. Thus, we 

propose that the Euler-Lagrange equations of a constrained system are in the form    

 

 

   

*
   

 (    )
+  

   

   

                                          (    ) 
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with constraints  

     
   

   

                                                     (    ) 

where  

  (         ̇    )   (       ̇  (    ) ̇ )             ̇  
   

  
          (    ) 

and 

     [         
  

  ̇ 

]                                        (    ) 

One should notic that variations of constraints should be considered in order to have 

a consistent theory.                                                                                                           
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In this chapter we study some singular Lagrangians from the classical mechanics of 

particles and apply Dirac’s method for building the equation of motion. We find then 

the reason for the singularity, and therefore, we get the Hamilton equations with the 

familiar procedure, that is without the need of Dirac’s procedure. Known cases of 

singular Lagrangians in special relativity are also presented ,  -                                   

 

                       

As it has been shown in chapter one, the transition from the Lagrangian to the 

Hamiltonian formalism is carried out by expressing the generalized velocities 

 ̇ (       ) in terms of the momenta      (    ̇   )      ̇  ⁄  and eliminating 

them in the function    ∑  ̇     This is possible if the mathematical condition.     

 

‖
   

  ̇ 

‖  ‖
   

  ̇   ̇ 

‖                                                   (   ) 

 

is satisfied. This signifies that they build a set of independent variables. But if the 

determinant vanishes then there exists one or more relations between the   s :               

  (     )                                                         (   ) 
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where     is the rank of the matrix (     ̇   ̇ ⁄ ),thus not all   s are independent. 

In such situation one says that the Lagrangian is degenerat or singular, and the 

Hamilton equations of motion cannot be obtained by the familiar procedure. In an 

attempt to generalize the Hamiltonian dynamics, Dirac ,      - developed a method 

for building the canonical equations starting from the complete Hamiltonian                

  

      ∑                                                           (   ) 

 

where    ∑  ̇     depends on the coordinates and the independent  's, and    are 

new independent variables. This comes from taking a virtual variation of   (,  -)  

 

    ∑( ̇     
  

   

    )  ∑( ̇      ̇    )             (   ) 

 

Using Eq. (1.30) and (1.31) we get 

 

∑(   
   

   

)     (   
   

   

)                                        (   ) 

 

for all          consistent with the restrictions: 

  

∑(
   

   

    
   

   

   )

 

   

                                          (   ) 

 

that is,    's of all         depend on the remaining ones. Eliminating them from Eq. 

(   ) by the well-known multiplier's procedure, one has 
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 ̇  
   

   

  ∑  

   

   

                                                              (   ) 

 

 ̇   
  

   

 ∑  

   

   

                                          (   ) 

 

 Dirac then imposes  ̇    to the primary restrictions    the consistency conditions   

from which one can obtain additional restrictions. Some of these can be identities 

(   ) , others of the form   (   )    (           (   )) , and others of type 

  (   )      (   )     that can be used to fix some of the unknown variables   . 

The second possibility is treated in a similar way as conditions                               

 

                                      

Here, we write down a set of particular Lagrangians of a special type: 

  
 

 
 ( ̇ 

   ̇ 
     ̇ 

     ̇  ̇          ̇  ̇      )                                       

  (        )             (   ) 

 

where   and   are constants. This is called the Mittelstaedt's Lagrangian ,  -  

 

  
 

  
( ̇    ̇)

  
 

  
 ̇ 

   (        )                                  (    ) 

 

that of Cawley (,  -), 

 

   ̇  ̇   (        )                    (  
 

 
    

 )                    (    ) 
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the Lagrangian of Deriglazov,  - 

 

    
  ̇ 

    
  ̇ 

        ̇  ̇   (     )                         (    ) 

where  

    
    

                                                                                 (    ) 

 They all have in common that the potential energy V depends only on the coordinates 

of the system, and that they are singular. Certainly, it is not difficult to see that there 

exists one relation between the p’s in each instance:                                                        

                                                                  (    ) 

                                                                                      (    ) 

                                                                                            (    ) 

                                                                                (    ) 

Thus in these cases one cannot arrive at the canonical equations of motion using the 

well-known procedure, and we are forced to use Dirac’s method. 

                                                                       

Actually, we will only give the details for Lagrangian (    ) because the results for 

the other are found in the reference ,  -                                                                         

We start by obtaining the momenta of the system, using Eq. (    )  

 

   
 

 
( ̇    ̇)    

 

 
( ̇   ̇ )        

 

 
 ̇                        (    ) 

 

so,    depends on    and only   (     )  and    are  independent. The primary 

restriction is then Eq (    )      =0. For getting   (   (   ))  we eliminate the 

velocities from ∑  ̇      in favor of the independent  's, resulting                               
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                                                           (    ) 

The complete Hamiltonian is then  

  
 

 
  

  
 

 
  

     (     )                                   (    ) 

The consistency condition  ̇   ̇   ̇    leads to the secondary restriction 

 ̇  
  

   

 
  

   

                                                         (    ) 

This is a relation between           which we briefly write as  

       (     )                                                  (    ) 

We then build the consistency condition  ̇       

 ̇  ,    -                                                              (    ) 

from which we find  

 (     )                            (    
  

   

)                      (    ) 

,    - is the Poisson bracket of    and H. Eq. (    ) allows the fixing of variable    

  
               

     

                                                   (    ) 

With the additional relations Eq. (    ) and Eq. (    )  we can now write the 

canonical equations of motion:                                                                                          

 ̇                            ̇                       ̇                                                   (    ) 
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 ̇                                    ̇                       ̇                                      (    ) 

with  

    (     )                        
               

     

                    (    ) 

Thus, the independent equations of motion are  

 ̇  
            

     

                       ̇                                    (    ) 

 ̇  (   )    
                           ̇  (   )     

                       (    ) 

  Eq.(    ) can easily be written in newtonian form  

  (     ) ̈      ̈       ̇ 
        ̇  ̇       ̇ 

 =m(   )    
             (    ) 

 ̈   (   )    
                                                                   (    ) 

On the other hand, for Deriglazov's Lagrangian Eq.(    ) it is found that 

  
  

 

   
   (     )   (         )                                       (    ) 

and  

                                 (  )                              (    ) 

   
  

   (       )
                                               (    ) 

Therefore, the independent canonical equations are  
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 ̇   
  

           

                                                                (    ) 

 ̇   
  

 

   (       )
    (   )    (  )

                             (    ) 

and from here one also gets the Newton's equations of motion (                 (   )  

           ( )    ) 

  (       )     (           )  
  (   )    (  )

                 (    ) 

                                                                       

The particular cases, here considered, here imply the relations 

     (    )    (    ) between the momenta. Without regarding the Hamiltonian 

formalism, we can deduce the consequence of such relations                .                         

        For Lagrangian of Equ. (   ) the  's are given by  

      ̇       ̇                                                (    ) 

      ̇       ̇                                                 (    ) 

        ̇     ( ̇        ̇      )                (    ) 

After substituting for       and    from Eqs (         ) and telring into account 

Lagrange's equations, the time derivativs of (    ) gives. If we now take the time 

derivative of  Eq (    ), substitute there    and    from Eqs. (         ) and take 

into account Lagrange's equations, we write                                                                     

                                                                     (2.42)      

In a similar way, the implication of      for the remaining cases is 
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             (     )                                                        (    ) 

                                                                                               (    ) 

                    (  )                                                  (    ) 

Equations (         ) are relations between the coordinates of each system, thus 

one coordinate cannot be independent. In these cases, the reason for the Lagrangian to 

be singular is that the coordinates are not independent, and so the canonical equations 

cannot be obtained by the familiar procedure, in which it is necessary that the 

coordinates be generalized (independent). Therefore, eliminating one of the 

coordinates from the corresponding Lagrangian, it would be possible to build 

straightforwardly the Hamilton’s equations.                                                                     

Let us do it for Lagrangians (    ) and (    )  substituting Eq. (    ) into (    ) we 

get 

  
 

  
(     )

 
 ̇ 

  
 

 
(
 

 
    

 

 
)  ̇ 

  
 

 
(     )    ̇  ̇            (    ) 

with  

  (     )   (    (     )   )                                 (    ) 

Likewise, the substitution of  Eq. (    ) into (    ) leads to  

  (       )
 
 ̇ 

    (  )                
 (  )   (    (  ))            (    ) 

   
  

 

 (       )
    (  )                                    (    ) 

 Let us write the equation of motion for Deriglazov's Lagrangian    (    ), 

     ⁄        ⁄ 
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 (       )
 
 ̈   (       )(            ) ̇ 

     
                    (    ) 

This equation is equivalent to Eq. (2.38). This can be seen from Eq. (2.45) that we 

write at     (  )  

  (   )    (  )
 (     )    (  )

                                             (    ) 

so that  

(   )    (  )
 

 

  

 (   )    (  )
                                                   (    ) 

   
  

 

  

(       )(   )    (  )
                                               (    ) 

and thus factor F cancels out from Eq (    ), and        from Eq.(    )  

 Regarding (    ) we get, after substituting (    ) into (    )       

  
 

  
   ̇ 

  (
  

  
 

 

  
)  ̇ 

  
   

 
 ̇  ̇                            (    ) 

where we have done the abbreviations  

                                                                       (    ) 

  (     )   (       (     )   )                                       (    ) 

The two momenta and the generalized velocities are then given by  

   
  

  ̇ 

 
  

 
 ̇  

  

 
 ̇                                                               (    ) 

   
  

 
 ̇  (

  

 
 

 

 
)  ̇                                                              (    ) 
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 ̇  
     

  
   

   

 
                 ̇   

   

 
                     (    ) 

Thus the Hamiltonian is  

   
 

   
   

 

   
(       )

    (     )                         (    ) 

We can now easily write the canonical equations of motion: 

 ̇  
     

  
   

   

 
                 ̇   

   

 
                       (    ) 

 ̇     
  

 

  
      

 

  
(         ) (      

 

 
     )  (    ) 

 ̇     
  

 

  
      

 

  
(         ) (      

 

 
     )          (    ) 

From here we come to the equations of motion for    and    by eliminating    and 

   in the two last equations (         )  For this purpose, we derive Eqs. (     

    ) with respect to   and substitute the result in Eqs.(         )  We get, after 

solving for  ̈  and  ̈  and taking into account that                                                          

                                                                    (    ) 

the equations  

   ̈      ̇ 
      ̇ 

       ̇  ̇         
  

      

 
   

              (    ) 

        
   

 

 
   

                                                         (    ) 

By Eq. (    )  regarding that 
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(   )    
 (   )    

                                                 (    ) 

we can see that Eqs (    ) and (    ) are fully equivalent to Eqs. (    ) and (    )  

For the cases presented here we then see that even though there exists a relation 

between the momenta, it is not necessary to apply Dirac’s method for building the 

canonical equations. We can continue using the conventional procedure, without the 

need of invoking any generalization of the dynamics.                                                      

       These Lagrangians are of the type     

 

    (    ̇ )   (    )                                            (    ) 

 

which is known to be singular. Of course, this does not change the fact that they are so 

because one uses more coordinates than the number of degrees of freedom. Lowering 

the number of coordinates accordingly, the problems reduce to ordinary ones. 

Moreover, restrictions Eq.(    ) and Eq.(    ) are not set ‘on the fly’, rather they are 

a consequence of the way we build the Lagrangian.                                                         

     We can summarize the results in other terms. If we interpret the velocity   

dependent part of Eq.(   ) to Eq.(    ) as the kinetic energy of the system,              

  
 

 
 (

  

  
)
 

 
 

 
       ̇  ̇                               (    ) 

 

where     are the components of the metric tensor, and sum over repeated indices is 

understood, then the volume element in the space of the system can be written as          

   √‖   ‖                                                 (    ) 

where ‖   ‖ is the determinant of the metric tensor. But if, as it is here the cases, Eq. 

(   ) is violated, then the volume element vanishes, and thus the system is restricted 

to a space of lower dimension (e.g. a surface).                                                                  
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There are several possibilities to build the free particle relativistic Lagrangian that 

reduce to the classical expression in the limit      For instance [15]                         

       √    ̇                                                   (    ) 

for the one dimensional motion is  

        
 

 
   ̇                                                     (    ) 

when the velocity of the particle is much smaller than c. The corresponding 

Hamiltonian is, therefore                                                                                                   

     ̇     
       

√       
  √                             (    ) 

 where  

  
     ̇

√    ̇ 
           

   

√       
                                   (    ) 

One tries to come in another way to the Hamiltonian by using the proper time   of the 

particle: 

                                                           (    ) 

Instead of the coordinates time       and   are then functions of the 

parameter   ( )  ( )  so that the Lagrangian now is                                                       

 

       √                                                          (    ) 

where  

   
  

  
                    

  

  
                                                 (    ) 
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For the Lagrangian of Eq.(    ) we can construct two momenta    and  , given by 

   
  

   
  

      

√         
                                          (    ) 

  
  

   
 

      

√         
                                             (    ) 

It is not difficult to see that there exists a relation between them: 

  
                                                                    (    ) 

so that Eq.(    ) is singular. This Lagrangian is peculiar in a certain sense. For all 

Lagrangians of the form                                                                                                     

 (     )   (          )                                         (    ) 

where   is an arbitrary function of the invariant             the only function   that 

violates Eq. (   ) is just the square root. Indeed, the determinant Eq.(   ) for the 

function (    ) is                                                                                                              

‖
   

  ̇   ̇ 

‖        (    (         )   )                  (    ) 

where    is the derivative of    with respect of its argument, so that the determinat is 

zero for a function   satisfying the equation                                                                     

    (         )                                                     (    ) 

that  

 ( )   √                                                            (    ) 

where   and   are constants. 

Eq.(    ) is, in this sense, the "worst" choice one can take, much in the equivalent 

manner as the construction of Lagrangian. If one should have started with the 

relativistic covariant Newton's second law                                                                        
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                                                    (    ) 

where              and the line element is given by    (      )  and the 

metric tensor     has components                                                                                      

                                                              (    ) 

one would have arrived at  

  
 

 
  (         )                                     (    ) 

which is certainly not singular. With Lagrangian (    )  one can directly get the 

Hamiltonian by the familiar procedure:                                                                             

  
  

 

     
 

  

  
                                           (    ) 

 The equations of motion are according to (    ) 

     (           )

(         )  ⁄                                           (    ) 

     (           )

(         )  ⁄                                          (    ) 

and they clearly reduce to only one equation, from which it follows                               

                                                                (    ) 

a relation between   and    On the contrary, from (    ) one get the equations  

                                                                        (    ) 

or  

                                                        (    ) 
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Lagrangian Eq.(    ) describes a relativistic particle if we demand it to be real, so 

that      In the case represented by Eq. (2.90), one can add the condition     for 

completeness, or demand that the proper time   ( appering in Eq (    )  for example ) 

must be real.                                                                                                                       

       We are not diminishing the interesting properties of Lagrangian in equ. (    ), 

like invariance, parametrization independence, rather we are only showing here the 

consequences for the existence of a relation between momenta, and how can one 

overcome it without the necessity of generalizing the classical dynamics.                       

There is another example of a (relativistic) singular Lagrangian, namely [20],         

  
 

  
( ̇ 

   ̇ 
 )  

 

 
                                            (    ) 

where      ( )       ( )    ( ) are the unknowns and   is a constant.   is 

singular because                                                                                                                 

  

  ̇
                                                              (    ) 

and this is a relation between   s. 

       On the other hand, the equations of motion are  

 

  
(
 ̇ 

 
)           

 

  
(
 ̇ 

 
)                                    (    ) 

 

  
( ̇ 

   ̇ 
 )                                                 (    ) 

from which the third, that is a consequence of Eq. (2.95), can be solved for  ( )  

   
 

 
√ ̇ 

   ̇ 
                                                  (    ) 

The first two Eqs. (    ) can thus be expressed in the form  



26 
 

 

  
(

 ̇ 

√ ̇ 
   ̇ 

 
)              

 

  
(

 ̇ 

√ ̇ 
   ̇ 

 
)                 (    ) 

and they are equivalent to the equations of motion resulting from (    )  

 According to Deriglazov, Dirac's method applied to (    )  leads to the Hamiltonian  

  
 

 
(  

    
    )                                    (     ) 

and hence the canonical equations are  

 ̇                ̇              ̇               ̇                               (     ) 

with the conditions (primary and secondary) 

                                                 
    

                                     (     ) 

The secondary condition is similar to the primary one (    ) for Lagrangian (    )  

The canonical equations of motion (     ) contain an undetermined variable    that 

equals   ̇  One can intend to fix it employing the Eqs.(     ). From Eqs. (     ) one 

sees that    and    are constant, so that                                                                            

 ̇  
  

  

 ̇     ̇                                                        (     ) 

or 

                                                                                     (     ) 

where   is an arbitrary constant. On the other side, variable   can be written as  

   
    

  
 ̇ 

                                                          (     ) 

from which it follows 

 ̇   √
    

  
 ̈                                                     (     ) 
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and hence 

   √
    

  
 ̈                                                         (     ) 

Of course, from the canonical equations of motions    and    cannot be determined 

as functions of    so that υ, like    remains undetermined.                                              

      For Lagrangians (    ) and (    ), one cannot avoid the use of Dirac's method 

for constructing the Hamiltonian, not even by employing the restrictions as was done 

in sec.      In the case of Eq.(    ) the altemative is to take a different Lagrangian, 

for instance that given by Eq. (    ).                                                                              
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By means of class of nondegenerate models with a finite number of degree of 

freedom, it will be proved that in a Hamiltonian formulation of dynamics, there 

exists an equivalent second-order Lagrangian formulation whose configuration space 

coincides with the Hamiltonian phase-space. The above result is extended to scalar 

field theories in a Lorentz-covariant manner ,  -                                                           

It is well-known that the Euler-Lagrange and Hamilton equations play a central role 

in theoretical physics. For system described by nondegenerate Lagrangians ,     -    

 

   (
    

  ̇   ̇ 
)    (       )                                     (   ) 

 

 the Euler-Lagrange equations are equivalent to the Hamilton ones. Indeed, if one 

defines, in the standard manner, the canonical momenta and the Hamiltonian 

  ( 
    ) then, from the Euler-Lagrange equations, one infers the Hamilton 

equations. Conversely, if one eliminates algebraically the canonical momenta from 
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the Hamiltonian equations, then one deduces the Euler-Lagrange equations. In the 

case of constrained (degenerate) systems ,    -, the equivalence between the two 

sets of equations is no longer manifest and must be implemented via the introduction 

of Lagrange multipliers.                                                                                                   

 For a nondegenerate system, locally described by the bosonic canonical pairs 

(     ) and the Hamiltonian   ( 
    ), the Hamilton equations                                   

 

 ̇  
   

   

                         ̇   
   

   
                                (   ) 

 

can be derived from the first-order varitional principle based on the action 

 

  , 
    -  ∫   

  

  

. ̇      ( 
    )/                           (   ) 

 

 It is straightforward to verify that the Euler-Lagrange equations for the first-order 

Lagrangian                                                                                                                       

 

ℒ(       ̇
   ̇ )   ̇      ( 

    )                                      (   ) 

 

coincide with the Hamiltonian equations (   )  

It is easy to see that the Lagrangian(   ) is degenerate in the sense of the Dirac 

approach ,      -  but the canonical analysis of this Lagrangian emphasizes only 

second-class constraints. Then, by passing to the Dirac bracket we find that the 

dynamics in terms of independent variables is precisely described by Eqs.(   ) (up 

to a possible change in variable notation). Thus, given a Hamiltonian formulation of 

dynamics for a nondegenerate system one can always construct an equivalent 

degenerate first-order Lagrangian formulation whose configuration space coincides 



30 
 

with the Hamiltonian phase-space. On the other hand, the Hamiltonian action of a 

nondegenerate system is just an example of first-order theory. Indeed, there are many 

familiar dynamical systems that are described at the Lagrangian level by degenerate 

first-order actions. For instance, the Lagrangian actions for the Schrodinger and 

Dirac equations are first-order in the time derivatives and, in consequence, the 

equations of motion are olso first-order in time. On the other hand, the Klein-

Gordon, Maxwell, and Einstein, equations are second-order (in spacetime) ,  -           

 The previous discussion leads, to the following problem: given a first-order 

formulation of dynamics in terms of some variables, does there exist an equivalent, 

nondegenerate, second-order Lagrangian formulation in terms of the same variables? 

It is possible that the answer to this question is not affirmative for any first-order 

system. Besides the challenging aspect ( intellectual or the like ), the investigation of 

the previous problem is important from the point of view of equal footing between 

first- and second-order formalisms involving exactly the same variables and, 

implicitly, of establishing a novel equivalence between first-and second-order 

equations in terms of the same variables. The above-mentioned equivalence between 

first- and second-order equations may also be of interest to mathematicians,  -         

  

         In this chapter we start the investigation of the above problem in the framework 

of two classes of nondegenerate models (one class with a finite number of degrees of  

freedom and the other with scalar fields). In this respect we show, for each of the two 

models that given a Hamiltonian formulation of dynamics, one can find an equivalent 

second-order Lagarngian formulation whose configuration space coincides with the 

Hamiltonian phase-space.                                                                                                

In view of this, we start with a class of Hamiltonians of the form                             

 

  ( 
    )  

 

 
         (  )                                       (   ) 
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where     is a constant, symmetric, and invertible matrix,     is the inverse of    , 

and  (  ) is an arbitrary potential. The corresponding Hamilton equations read as      

 ̇                                                                             (   ) 

 ̇   
  

   
                                                                    (   ) 

Now, we take the second-order Lagrangian 

 ̅ ( 
      ̇

   ̇ )   ̇  ̇       

  

   
                                      (   ) 

from which we derive the Euler-Lagrange equations 

  ̅ 

   
   ̈       

   

      
                                            (   ) 

  ̅ 

   
   ̈     

  

   
                                                    (    ) 

The next theorem represents the first of our main results. 

 

                   

The Hamilton equations (       )  and the (second-order) Euler-Lagrange 

equations (        ) describe the same dynamics, i.e.                                                

 

{

 ̇         

 ̇   
  

   
  

 

{
 
 

 
   ̈       

   

      
       

  ̈     
  

   
   

                            (    ) 
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Proof. The proof of above theorem is done in three steps.  

Step 1.  From Eqs. (       ) and (        ) we deduce the relations  

  

  ̅ 

   
  

 

  
( ̇  

  

   
)  

   

      
( ̇       )                        (    ) 

  ̅ 

   
  

 

  
( ̇       )     ( ̇  

  

   
)                              (    ) 

which prove that: if .  ( )   ( )/ are solutions of Eqs.(       ), then they are 

also solutions of Eqs.(        ).                                                                                 

Step 2.Next, we prove the following statement: if   ( ) are solutions of Eq.(    ), 

then   ( )      ̇
 ( ) are solutions of Eq. (   )                                                                     

 Assume that   ( ) are solutions of Eq. (3.10), i.e. 

  ̅ 

   
                                                                      (    ) 

Substituting the relations  ( )      ̇
 ( )in (   ), we obtain the formulas 

  ̅ 

   
    

 

  

  ̅ 

   

                                                (    ) 

which combined with (    ) 

Step 3. Finally,we establish the third conclusion, namely: if .  ( )   ( )/  are 

solutions of Equ. (        ) , then they are also solutions of Eqs. (       ) .    

We conclude that the solutions of Eqs.  (        ) are given by.  ( )   ( )  
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    ̇
 ( )/, where   ( ) are the solutions of Eq. (    ). In consequence, the solutions 

to Eqs. (        ) verify Eq.(   ). Inserting Eq.(   ) into Eq.(    ), we find that 

the solutions to Eqs. (        ) satisfy also Eq.(   ). Conclusions of       and 

      prove the theorem.                                                                                                 

In the context of Hamiltonians of the type (   ) the above theorem emphasizes a new 

type of relationship between the Lagrangian and Hamiltonian formalisms for 

nondegenerate systems.                                                                                                    

In the sequel, we extend the result of Theorem 1 to field theories in a Lorentz-

covariant manner. Since we consider only nondegenerate systems, we take the 

simplest case of scalar field theories. In order to be specific, we take a class of  

Hamiltonians of the form                                                                                                 

 

   ∫     (
 

 
        

 

 
   (   

 )(    )   (  ))         (    ) 

 

where     is a constant, symmetric, and invertible matrix,     is the inverse of    , 

and  (  ) is an arbitrary function depending only on the undifferentiated scalar 

fields. The Hamilton equations that follow from (    )  are given by                           

  

 ̇                                                                    (    ) 

 ̇         
    

  

   
                                            (    ) 

In (         )and in what follows, we use the standard notations  ̇      

    ⁄             ⁄ and the flat Minkowski metric of  "mostly minus" signature, 

        (    ) . Comparing Eq.(   )  with Eq.  (    ) , we find that the 

former role of  (  ) is played here by                                                                            
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 ̂,  -  ∫     ( 
 

 
   (   

 )(    )   (  ))  ∫       ̂  (    ) 

Let us try now a generalization of Eq.(   ) of the type 

          ̅ , 
      ̇

   ̇ -  ∫      (              

  ̂

   
) 

 ∫      ℒ̅
     (    ) 

where  

  ̂

   
 

  ̂

   
   

  ̂

 (   
 )

                                                     (    ) 

Taking into account formulas (    ) and (    ) we find that the Lagrangian density of 

Eq.(    ) takes the Lorentz-covariant form 

ℒ̅
  (    )(    )       

  

   
                               (    ) 

which further leads to the Euler-Lagrange equations 

 ℒ̅
 

   
              

   

      
                          (    ) 

 ℒ̅
 

   

            
  

   
                                     (    ) 

Under these considerations, the next theorem represents the second main result of 

this section.                                                                                                                      
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The Hamilton equations (         )  and the (second-order) Euler-Lagrange 

equations (         ) are equivalent, i.e.                                                                    

{

 ̇         

 ̇         
    

  

    
  

 

{
 
 

 
              

   

      
       

           
  

   
   

 (    ) 

 

Proof. 

 The proof goes along the same line with the proof of Theorem 1.( )Bymeans of 

Eq.(         )and Eq.(         ) we derive the formulas                                   

 

 ℒ̅
 

   
    ( ̇        

    
  

   
)                              

 (      
    

   

      
) ( ̇       )      (    ) 

 

 ℒ̅
 

   

    ( ̇
       )     ( ̇  μ

  
   

    
  

   
)                   (    ) 

 

From (         )we arrive at the following result: if (  ( )   ( ))  are also 

solutions of Eqs. (         ), then they are also solutions of Eqs. (         ).    

(  ) In the next step we prove that: if   ( ) are solutions of Eq. (    ), 

then  ( )      ̇
 ( )are solutions of Eq. (    )  

Let   ( ) be solutions to Eq. (    ), which means that 

 ℒ̅
 

   

( )                                                             (    ) 
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Replacing the formulas   ( )      ̇
 ( )  in Eq. (    ) , we find the relations  

 

 ℒ̅
 

   
      (

 ℒ̅
 

   

( ))                                   (    ) 

 

 (   ) In this step we show that the following result holds: if (  ( )   ( )) are 

solutions of Eqs. (         ),then they are also solutions of Eqs (         )     

As we have proved at step (ii), the solutions to Eqs. (         ) are expressed by 

.  ( )   ( )      ̇
 ( )/  with   ( ) solutions of Eq (    ).Then, the solutions 

to also satisfied by the solutions to Eqs. (         )                                                  

Theorem 2 extends to above emphasized new type of relationship between 

Lagrangian and Hamiltonian formalisms to scalar field theories.                                   
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The Equivalence between The Hamiltonian and Lagrangian 

Formulation For The Parametrization-Invariant Theories  

  

                       

The link between the treatment of singular Lagrangians as field systems and the 

canonical Hamiltonian approach is studied. It is shown that the singular Lagrangians 

as field systems are always in exact agreement with the canonical approach for the 

parametrization invariant theories[24]. 

This formulation leads us to obtain the set of Hamilton-Jacobi partial differential 

equations (HJPDE) as in chapter 1. 

 

        In this chapter, we study the link between the treatment of singular Lagrangians 

as field systems and the canonical formalism for the parametrization invariant 

theories [24]. 

 

                                                           

Consider a system with the action integral as ,  - 

 

 (  )  ∫   ℒ(    ̇   )                                            (   ) 
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where ℒ is a regular Lagrangian with Hessian n. Parametrize the time t → τ(t), with 

 ̇= d /dt >0. The velocities  ̇ may be expressed as 

 

 ̇    
  ̇                                                                  (   ) 

 

where   
  are define as  

  
  

   

  
                                                                 (   ) 

 

Denote      and    (     )            then the action integral of Eq.(   ) 

may be written as 

 

 (  )  ∫    ̇ ℒ (   
  

 

 ̇
)                                            (   ) 

 
which is parametrization invariant since ℒis homogeneous of first degree in the velo-

cities   
  with ℒ given as  

ℒ(    ̇ )   ̇ℒ (   
  

 

 ̇
)                                           (   ) 

 

The Lagrangian ℒ is now singular since its Hessian is n. 

The canonical method in ,         - leads us to obtain the set of Hamilton-Jacobi 

Partial differential equations as follows: 

 

  
      (       ̇  ( ̇    ))    

   
      

        
             

  

  
         (   ) 

  
                   

  

  
                                    (   ) 

where     is defined as          

    ℒ(     )    
                                            (   ) 



39 
 

Here,   
  and     are the generalized momenta conjugated to the generalized coordi-

nates    and t, respectively. 

The equations of motion are obtained as total differential equations in many variables 

as follows: 

    
   

 

   

   
   

 

   

    
   

 

   

                                       (   ) 

     
   

 

   

   
   

 

   

     
   

 

   

                              (    ) 

     
   

 

   

   
   

 

   

                                                (    ) 

Since 

   
                                                                 (    ) 

vanishes identically, this system is integrable and the canonical phase space coordin-

ates    and    are obtained in terms of the time (    )  

         Now, we look at the Lagrangian (   ) as a field system. Since the rank of the 

Hessian matrix is n, this Lagrangian can be treated as a field system in the form 

 

     (   )                                                              (    ) 

thus, the expression  

  
  

   

  
 

   

  
 ̇                                                       (    ) 

can be substituted in (   ) to obtain the modified Lagrangian    : 

    ̇ℒ (    
 

 ̇
(
   

  
 

   

  
 ̇))                                      (    ) 

Making use of Eq.(    )  we have 
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(

   

 (     ⁄ )
)  

 

  
(

   

 (     ⁄ )
)                (    ) 

Calculations show that Eq.(    ) leads to a well-known Lagrangian equation as 

 ℒ

   

 
 

  
(

 ℒ

 (     ⁄ )
)                                          (    ) 

Using Eq.(   )  we have 

    ℒ  
 ℒ

  ̇ 

 ̇                                                  (    ) 

In order to have a consistent theory, we should consider the total variation of     

In fact, 

     
 ℒ

  
                                                         (    ) 

Making use of Eq.(    ), we find that 

     
   

  
                                                        (    ) 

Besides, the quantity    is identically satisfied and does not lead to constraints. The 

equations of motion (   )  and (    )  are equivalent to the equations of motion 

(    )  and (    )  Besides, the variations of constraints (    )  and (    )  are 

identically satisfied and no further constraints arise. 

 

                                            

In the following sections, we study the Hamiltonian and Lagrangian formulations for 

classical field systems and demonstrate the equivalence between these two formulat-

ions for the reparametrization-invariant fields. 

     A classical relativistic field      ( ⃗  )in four space-time dimensions may be 
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described as the action functional 

 

 (  )  ∫   ∫   {ℒ(       )}                                   (    ) 

which leads to the Euler-Lagrange equations of motion as 

 

 ℒ

   

   *
 ℒ

 (    )
+                                                 (    ) 

 

We can go over from the Lagrangian description to the Hamiltonian description by 

using the definition 

   
 ℒ

  ̇ 

                                                                    (    ) 

 

then the canonical Hamiltonian is defined as 

 

   ∫    (   ̇  ℒ)                                        (    ) 

 

The equations of motion are then obtained 

 

 ̇   
   

   

                   ̇  
   

   

                                   (    ) 

 

4.4                                       

In analogy with the finite dimensional systems,we introduce the reparametrization-

invariant action for the field system: 

 

  ∫   ∫ℒ                                                          (    ) 
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where       

ℒ   ̇ℒ(       )                                                     (    ) 

 

Following the canonical method, we obtain the set of [HJPDE], 

 

  
       

( )    

  
   

  

  
 ℒ             

  

  
                   (    ) 

 

  
                 

  

  
                                                           (    ) 

 

where    is defined as 

 

    ℒ(       )    
( )    

  
                                  (    ) 

 

and    
( )

    are the generalized momenta conjugated to the generalized coordinates 

   and t, respectively. 

 The equations of motion are obtained as follows: 

 

    
   

 

   

   
   

 

   

   
   

 

   

                                        (    ) 

 

     
   

 

   

   
   

 

   

    
   

 

   

                                (    ) 

 

     
   

 

  
   

   
 

  
                                                (    ) 

Now the Euler-Lagrangian equations for the field system read as 

 ℒ

   

 
 

   
(

 ℒ

 (      ⁄ )
)                                        (    ) 
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The treatment of Lagrangians as field systems is always in exact agreement with the 

Hamilton-Jacobi treatment for reparametrization-invariant theories. In analogy with 

the finite-dimensional systems, it is observed that the Lagrangian and the Hamilton-

Jacobi treatments for the reparametrization-invariant fields are in exact 

agreement,  -  

 

In the classical mechanics of particles, there is no case reported of a singular 

Lagrangian for a real system; all instances that we know are of artificially built 

system. Thus, it seem that the Lagrangians of classical mechanics are basically non 

degenerate ,  -  

 

       Singularities appears first when we generalize to cases where there is not a 

previously given rule for building L, like in the special relativity. There one has the 

freedom to choose the Lagrangians among several possibilities, some of which are 

regular and others singular.  

     Perhaps it would be more natural to set the condition on new Lagrangians to be 

regular. One can argue against this by saying that the additional variables   that 

appear in the theory can reveal symmetries of the system, like gauges. However, if 

two Lagrangians, one regular and the other singular, lead to the same set of equations 

(for example, field equations), they must share comparable symmetries. 
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To conclude with, in chapter 3 we have proved that given a Hamiltonian formulation 

of dynamics we can find an equivalent second-order Lagrangian formulation whose 

configuration space coincides with the Hamiltonian phase-space. This has been done 

initially in the context of a class of nondegenerate models with a finite number of 

degrees of freedom. The above result has been extended to scalar field theories in 

Lorentz-covariant manner. In a future work we hope to generalize the previous 

results to a generic first-order system whose one-form potential leads to a 

nondegenerate symplectic two-forms ,  -  
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