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ABSTRACT

CONSTRAINED HAMILTONIAN SYSTEMS with HIGHER−ORDER

LAGRANGIANS
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Sabreen Sobhy Mahmoud

Supervisor

Prof. Dr. Nasser Farahet

March 2015

60 pages

The higher−order regular Lagrangian is reduced to first−order singular Lagrangian.

Dirac’s method of discrete regular systems with higher−order Lagrangian, are stud-

ied as singular systems with first−order Lagrangian, and the equations of motion are

obtained. It is shown that the Hamilton−Jacobi approach leads to the same equa-

tions of motion as obtained by Dirac’s method. The second−order and third−order

Lagrangian are studied as an examples. The Hamilton−Jacobi formulation for

first−order constrained systems has been discussed. In such formalism the equa-

tions of motion are written as total differential equations in many variables. We

generalize the Hamilton−Jacobi formulation for singular systems with second−order

Lagrangians and apply this new formulation to Podolsky electrodynamics, compar-

ing the results with the results obtained through Dirac’s method. The equations of

motion for the associated Lagrangian to a nonholonomic Lagrangian of second−order

are computed in both methods Dirac and Hamilton−Jacobi. Besides, the canonical

path integral quantization was obtained to quantize singular systems. All the results

obtained using Hamilton−Jacobi method, are in exact agreement with those results

obtained using Dirac’s method.
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اث اىشحب اىعاىيت ىلأّظَت اىعاديت إىً دواه ر هزٓ اىشساىت اخخزاه اىذواه اىلاغشاّجيت حخْاوه       

حٌ حطبيق طشيقت ديشاك ىلأّظَت اىعاديت اىَْفصيت  ,ِ اىذسجت الأوىً ىلأّظَت اىَقيذةٍ  لاغشاّجيت

راث اىشحب اىعاىيت وححىييها لأّظَت ٍقيذة ٍِ اىذسجت الأوىً , وحٌ اىحصىه عيً ٍعادلاث 

اىحشمت. وقذ طبقج طشيقت أخشي وهي طشيقت هاٍيخىُ جامىبي واىخي أدث  إىً ّفس ٍعادلاث 

قَْا بذساست اىذواه اىلاغشاّجيت  وأيضاشمت اىخي حٌ اىحصىه عييها ٍِ خلاه طشيقت ديشاك. اىح

 ىلأّظَت اىَقيذة ٍِ اىذسجت اىثاّيت واىذسجت اىثاىثت باسخخذاً طشيقت هاٍيخىُ .

حيث حٌ مخابت صياغت هاٍيخىُ جامىبي ىلأّظَت اىَقيذة راث اىشحبت الأوىً مَا ّىقشج           

اسخخذٍْا  صياغت  ,اىحشمت عيً شنو ٍعادلاث حفاضييت مييت في اىعذيذ ٍِ اىَخغيشاث ٍعادلاث

هاٍيخىُ جامىبي ىذساست اىذاىت اىلاغشاّجيت ىيذيْاٍينا اىنهشبائيت ىبىدوىسني, وحٌ ٍقاسّت اىْخائج 

 ٍع طشيقت ديشاك.

راث  يش حاٍت اىخقييذىلأّظَت اىغدلاث اىحشمت ىيذواه اىلاغشاّجيت وحٌ اىحصىه عيً ٍعا          

إىً جاّب رىل, حٌ اىحصىه  اىذسجت اىثاّيت باسخخذاً ميخا اىطشيقخيِ ديشاك وهاٍيخىُ جامىبي.

 عيً اىَساس اىخناٍيي ىخنَيٌ الأّظَت اىَقيذة.

ٍخطابقت ٍع ماّج مو اىْخائج اىخي حٌ اىحصىه عييها باسخخذاً طشيقت هاٍيخىُ جامىبي          

 ىه عييها باسخخذاً طشيقت ديشاك.حيل اىْخائج اىخي حٌ اىحص
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Chapter 1

Introduction

1.1 Historical Background

The Hamiltonian formulation of singular systems is usually made through a formal-

ism developed by Dirac[1, 2, 3] who assumed that there is an action integral which

depend on the motion, such that, when one varies the motion, and puts down the

conditions for the action integral to be stationary, one gets the equation of mo-

tion [3] then he showed that, in the presence of constraints, the number of degrees

of freedom of the dynamical system was reduced. His approach are subsequently

extended to continuous systems [1], this formalism has found a wide range of appli-

cations in field theory [4, 5] and it is still the basic tool for the analysis for singular

systems. Following Dirac, the path integral quantization of singular theories with

first class constraints in canonical gauge was given by Faddeev and Popov [6]. The

generalization of the method to theories with second class constraints is given by

Senjanovic[7]. In this formalism the constraints caused by the Hessian matrix sin-

gularity are added to the canonical Hamiltonian [8, 9], A most powerful approach

for treating constrained systems which called the Hamilton−Jacobi approach(Güler

method), which has been developed to investigate the constrained systems. Sev-

eral constrained systems were investigated by using the Hamilton-Jacobi approach

[10, 11, 12, 13, 14, 15, 16]. The equivalent Lagrangian method is used to obtain the
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set of Hamilton-Jacobi Partial Differential Equation (HJPDE). In this approach,

the distinction between the first- and second-class constraints is not necessary. The

equations of motion are written as total differential equations in many variables,

which require the investigation of the integrability conditions. In other words, the

integrability conditions may lead to new constraints. Moreover, it is shown that

gauge fixing, which is an essential procedure to study singular system by Diracs

method, which is not necessary if the Hamilton-Jacobi approach is used.

Following Hamilton-Jacobi approach, there is another approach for quantizing con-

strained systems of classical singular theories by path integral quantization which is

Hamilton-Jacobi quantization [17, 18].

The study of new formalisms for singular systems may provide new tools to in-

vestigate these systems. In classical dynamics, different formalisms (Lagrangian,

Hamiltonian, Hamilton-Jacobi) provide different approaches to the problems, each

formalism having advantages and disadvantages in the study of some features of

the systems and being equivalent among themselves. In the same way, different

formalisms provide different views of the features of singular systems, which justify

the interest in their study.

The Hamilton-Jacobi formalism that was developed [8, 9] to include singular higher−order

Lagrangians by Ostrogradsky[19]. The higher−order singular Lagrangian have been

studied in many different problems of physics like general relativity, string theories,

Diracs model of the radiating electron,Yang−Mills(massive vectors) fields and take

a wide range in Refs.[20, 21, 22, 23].
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1.2 Constrained Systems

Singular Lagrangian systems represent a special case of a more general dynamics

called constrained systems[3]. A general feature of constrained system is character-

ized by the existence of constraint for its classical configurations. The constraints

also place restrictions on the possible choice of boundary conditions for the canoni-

cal coordinates.

The dynamics of the physical system is encoded in the Lagrangian, a function of po-

sitions and velocities of all degrees of freedoms, which comprise the system[24]. The

Lagrangian formulation of classical physics requires the configuration space formed

by n generalized coordinates qi, n generalized velocities q̇i and parameter τ , defined

as

L ≡ L(qi, q̇i; t), i = 1, . . . , n. (1.2.1)

where τ is a parameter which will be the time on which the coordinates qi depend.

For a system characterized by this Lagrangian, the action which is a function of

path in configuration space reads as

S =

∫
L(qi, q̇i; t) dt. (1.2.2)

The action principle states that the path which satisfies the classical equation is the

one which brings the action to extremes

δS = δ

∫
L(qi, q̇i; t) dt.

=

∫ t2

t1

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i +

∂L

∂t
δt

)
dt.

(1.2.3)

In deriving (1.2.3), it was assumed that q̇i is dependent of qi, so that δq̇i = d
dt
δqi.

Imposing δS = 0, we obtain the Euler-Lagrange equations of motion

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0. (1.2.4)

5



So, the Lagrangian equations are of second order.

To go over the Hamiltonian formalism, defining a generalized momentum pi conju-

gate to qi as[24]

pi =
∂L

∂q̇i
, (1.2.5)

then the momentum is function of qj and q̇j such that,

pi = pi(qj, q̇j) j = 1, . . . , n. (1.2.6)

The canonical Hamiltonian H0 is defined by

H0 =
n∑
i=1

q̇i pi − L. (1.2.7)

Consider the differential of the Lagrange function (1.2.1) and using eqs. (1.2.4),

(1.2.5) and (1.2.7), then we read off the Hamilton’s equations of motion as

q̇i =
∂H0

∂pi
, ṗi = −∂H0

∂qi
. (1.2.8)

It is standard national practice to define the Poisson bracket of two functions f and

g on phase space by [3]

{f, g} =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
, (1.2.9)

thus the Hamilton’s equation may be written as

q̇i = {qi, H0}, ṗi = {pi, H0}. (1.2.10)

So, the time evolution of any function of positions and momenta is given by

dF

dt
= {F,H0}+

∂F

∂t
. (1.2.11)

In order to characterize the constrained systems; one evaluates the time derivative

of the momentum as

dpi
dt

=
∂pi
∂qj

q̇j +
∂pi
∂q̇j

q̈j. (1.2.12)
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We can write the Lagrangian equation of motion (1.2.4) as

∂L

∂qi
− dpi

dt
= 0, (1.2.13)

then by using the definition (1.2.5) and the Lagrangian equation of motion (1.2.4),

we get

∂L

∂qi
=
∂pi
∂qj

q̇j +
∂pi
∂q̇j

q̈j. (1.2.14)

∂L

∂qi
− ∂2L

∂qj ∂q̇i
q̇j −

∂2L

∂q̇i∂q̇j
q̈j = 0. (1.2.15)

Defining Hessian matrix elements Aij of second derivatives of the Lagrangian with

respect to velocities as

Aij =
∂2L

∂q̇i∂q̇j
, (1.2.16)

so we can solve (1.2.15) for q̈j as

q̈j = A−1ij

[
∂L

∂qi
− ∂2L

∂qi ∂q̇j
q̇j

]
. (1.2.17)

A valid phase space is formed if the rank of the Hessian matrix is n. Systems, which

posses this property, are called regular and their treatments are found in a standard

mechanics books. Systems, which have the rank less than n are called singular

systems. Thus, by definition we have[4]

Hessian = det

(
∂2L

∂q̇i∂q̇j

)
=


6= 0 regular system,

= 0 singular system.

(1.2.18)

To clarify the situation of singular systems, it can be investigated by two different

approach of quantization.

1.2.1 Dirac’s Method of Singular Systems with First−Order

Lagrangian

The Hamiltonian formulation for constrained systems is usually made through a

formalism developed by Dirac [2, 3]. In this formalism Dirac showed that the algebra
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of Poisson brackets determines a division of constraints into two classes: so−called

first−class and second− class constraints. The first−class constraints are those that

have zero Poisson brackets with all other constraints in the subspace of phase space

in which constraints hold; constraints which are not first−class are by definition

second−class [2, 3].

Now, we will give a brief review in Dirac’s approach. For the singular Lagrangian

function L(qi, q̇i, t), which defined in (1.2.18) with the rank is n− r, r < n.

The generalized momenta which corresponding to the generalized coordinates qi are

defined as

pa =
∂L

∂q̇a
, a = 1, . . . , n− r, (1.2.19)

pµ =
∂L

∂q̇µ
, µ = n− r + 1, . . . , n. (1.2.20)

Here, q̇i stands for the total derivative with respect to time t. The equation (1.2.20)

enables us to write the primary constraints as

H ′µ = pµ +Hµ ≈ 0. (1.2.21)

One can define the total Hamiltonian as

HT = Ho + λµH
′
µ, (1.2.22)

where λµ are arbitrary functions, H ′µ are the primary constraints and Ho is the

canonical (usual) Hamiltonian, which is defined as

Ho = piq̇i − L(qi, q̇i, t), i = 1, . . . , n. (1.2.23)

The poisson brackets of the two function are defined as equation (1.2.9), the time

variation of any function g is defined in the phase space as

ġ = {g,HT} = {g,Ho}+ λµ{g,H ′µ}. (1.2.24)

Thus, the equations of motion can be written as

q̇a = {qa, HT} = {qa, Ho}+ λµ{qa, H ′µ}, (1.2.25)
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ṗa = {pa, HT} = {pa, Ho}+ λµ{pa, H ′µ}. (1.2.26)

The consistency conditions, which means that the total derivative of primary con-

straints should be vanish, are given as

Ḣ ′µ = {H ′µ, HT} = {H ′µ, Ho}+ λµ{H ′µ, H ′µ} ≈ 0. (1.2.27)

These equations may be identically satisfied with the help of primary constraints, or

lead to new relations which are called secondary constraints, repeating this procedure

until one arrives at a final test of constraints or specifies some of λµ.

1.2.2 Hamilton−Jacobi Approach

Hamilton−Jacobi approach of singular systems was developed by Güler [8, 9]. One

starts from singular Lagrangian L(qi, q̇i, t). Since the rank of the Hess. matrix is

n− r, r < n, one may solves (1.2.19) for q̇a as

q̇a = q̇a(qi, q̇µ, pa; t) ≡ ωa, (1.2.28)

substituting from (1.2.28) in (1.2.20), we get

pµ =
∂L

∂q̇µ
|q̇a=ωa ≡ −Hµ(qi, q̇µ, pa; t). (1.2.29)

The canonical Hamiltonian Ho is defined as

Ho = −L(qi, q̇ν , q̇a; t) + paωa + pµq̇µ|pν=−Hν , (1.2.30)

µ, ν = n− r + 1, . . . , n.

The functionHo is not an explicite function of the velocities q̇µ.Therefor, the Hamilton−Jacobi

function S(t, qi) should satisfy the following set of Hamilton−Jacobi partial differ-

ential equations (HJPDE) simultaneously for an extremum of the function

H ′α(t, qα, pi =
∂S

∂qi
, p0 =

∂S

∂t
) = 0, (1.2.31)
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α = 0, n− r + 1, . . . , n.

where

H ′o = po +Ho, (1.2.32)

H ′µ = pµ +Hµ. (1.2.33)

The equations of motion are obtained as total differential equations in many variables

as follows

dqa =
∂H ′α
∂pa

dtα; (1.2.34)

dpa = −∂H
′
α

∂qa
dtα; (1.2.35)

dpµ = −∂H
′
α

∂qµ
dtα; (1.2.36)

dZ =

(
−Hα + Pa

∂H ′α
∂pa

)
dtα; (1.2.37)

where Z = S(tα, qa) is the action.

The equations of motion (1.2.34 - 1.2.37) are integrable if and only if [8, 9, 11]

dH ′α = 0, α = 0, n− r + 1, . . . , n. (1.2.38)

If dH ′α is not identically zero, we have a new constraint, repeating this procedure

until a complete system is obtained. The equation (1.2.38) is the necessary and

sufficient condition that the system (1.2.34 - 1.2.37) of total differential equations

to be completely integrable. The set of equations of motion (1.2.34 - 1.2.36) may be

only integrable, then we call this system as partially integrable[25].

1.2.3 The Canonical Path Integral Quantization

The Hamilton−Jacobi path integral quantization of singular systems can be found

in refs.[11, 12, 13]. If the set of equations (1.2.34 - 1.2.37) is integrable, then one
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can solve them to obtain the trajectories of the motion in the canonical phase space

coordinates as

qa ≡ qa(t, tµ), pa ≡ pa(t, tµ), µ = 1, . . . , r, a = 1, . . . , n− r. (1.2.39)

Moreover, the canonical action integral is integrable and can be obtained in terms

of canonical variables. In this case, the path integral representation may be written

as [13, 18]

ψ(q′a, t
′
α; qa, tα) =

∫ q′a

qa

n−r∏
a=1

dqa dpa × exp

{
i

∫ t′α

tα

[
−Hα + pa

∂H ′α
∂pa

]
dtα

}
; (1.2.40)

α = 0, n− r + 1, . . . , n.

One should notice that the integral (1.2.40) is an integration over the canonical

phase space coordinates (qa, pa).

1.3 Theories with Higher Derivatives

Now we shall be concerned with Lagrangian theories with higher derivatives and

their canonical quantization[21, 26, 27], the Lagrangians of such theories in general

case contain derivatives of higher order than one ( higher derivatives) of the coor-

dinates qi. The Lagrangian formulation of these theories requires the configuration

space formed by n generalized coordinates qi ,q̇i and q̈i, etc..., can be written as

L = L(qi, q̇i, q̈i, . . .) (1.3.1)

which it a function of qi , i = 1, . . . , n where n number of coordinates , and their

time derivatives up to some order k.

In this case , The Euler−Lagrange equation of motion that follow from extremality

of the action are of the form

δS

δqi
=

k∑
l=0

(−1)l
dl

dtl

 ∂L

∂
(l)
q i

 = 0 . (1.3.2)
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The generalized momenta (p(s−1)i, p(k−1)i) conjugated to the generalized coordinates

(
(s−1)
q i,

(k−1)
q i) respectively as

p(s−1)i =
∂L

∂
(k)
q i

− ṗ(s)i (1.3.3)

p(k−1)i =
∂L

∂
(k)
q i

. (1.3.4)

However, a valid phase space is formed if the rank of the Hess matrix

∂2L

∂
(k)
q i∂

(k)
q j

, i, j = 1, . . . , n, (1.3.5)

is n. Systems which have this property are called regular and their treatments are

found in a standard mechanics books. Systems which have the rank less than n are

called singular systems.

In the following two sections, one investigates singular systems using both Diracs

method and the canonical method.

1.3.1 Dirac’s Method of Singular Systems with Higher−Order

Lagrangian

The equivalence canonical Hamiltonian Ho in (1.2.23) is defined as

H0 =
k−2∑
u=0

p(u)i
(u+1)
qi + p(k−1)if(k)i +

k−1∑
u=0

(u+1)
qµ p(u)µ|p(s)ν=−H(s)ν

− L(
(s)
qi ,

(k)
qµ,

(k)
qi = f(k)i),

(1.3.6)

where µ, ν = 0, n−r+1, . . . , n i = 1, . . . , n−r. Thus, the extended Hamiltonian

is determined as

HT = Ho +

(k−1)∑
s=0

λsH
′
(s)µ, (1.3.7)
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where λs are unknown coefficients.

The equation of motion can be written as the total derivatives in terms of Poisson

brackets as

(u+1)
qi = {

(u)
qi , HT} = {

(u)
qi , H0}+

(k−1)∑
s=0

λ(s)µ{
(u)
qi , H

′
(s)µ}, (1.3.8)

ṗ(u)i = {p(u)i, HT} = {p(u)i, H0}+

(k−1)∑
s=0

λ(s)µ{p(u)i, H
′
(s)µ}, (1.3.9)

where u, s = n− r + 1, . . . , n µ,= 0, n− r + 1, . . . , n i = 1, . . . , n− r.

Due to singular nature of the Hessian, we have α functionally independent relations

of the form

H ′µ(qi,
(k)
p i, p(s−1)i, p(k−1)i) ≈ 0. (1.3.10)

The consistency conditions

Ḣ ′(u)µ = {H ′(u)µ, Ho}+

(k−1)∑
(s=0)

λs{H ′(u)µ, H
′(s)ν} ≈ 0, (1.3.11)

lead to the secondary constraints. Sometimes, there are some difficulties to deter-

mine the multiplies λs, to remove this arbitrariness, one has to impose the external

gauge fixing conditions for each first class constraints.

Fixing gauge is not always an easy task, which make one be careful when applying

Dirac’s method.
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1.3.2 The Canonical Method Quantization for Higher−Order

Lagrangian

The canonical method [26, 20] has been developed to investigate singular systems

where the equations of motion are obtained as total differential equations in many

variables, now we will give a brief review of the canonical method for higher−order

Lagrangian . Let us consider a Lagrangian L(qi, q̇i, q̈i, . . . ,
(k)
qi , t), If the rank of the

Hess matrix ∂2L

∂
(k)
qi ∂

(k)
qj

is n − R,R < n, then the generalized momenta conjugated to

the generalized coordinates
(k)
qi are defined as(1.3.3) and(1.3.4)

One can solve the derivatives
(k)
qa in terms of coordinates

(s)
qi ,and the momenta p(k−1)b

and unsolved derivatives
(k)
qµ as follows:

q(k)a ≡ f(k)a(q
(s)
i , q(k)µ , p(k−1)b, t) (1.3.12)

where a, b = 1, . . . , n− r ,and µ = 0, n− r + 1, . . . , n.

The Hamiltonian is defined as(1.3.6)

Here the Hamiltonian H0 does not depend explicitly upon the derivatives
(k)
qµ , that

is

∂H0

∂
(k)
qµ

= 0 (1.3.13)

Now let us consider the following notation the time parameter will be called t(s)0 ≡
(s)
q0

, (for any value of s) the coordinate
(s)
qµ will be called t(s)µ , the momenta p(s)µ will

be called P(s)µ , and the momentum p(s)0 = P(s) will be defined as

P(s) =
∂S

∂t
(1.3.14)

where S is the action , and H(s)0 ≡ H0. Then to obtain an extremum of the action

integral, we must find a function S(t(c)µ,
(c)
qa, t), (c = 0, . . . , k − 1) that satisfies the

14



following set of Hamilton−Jacobi partial differential equation (HJPDE)

H ′(s)α = P(s)α +H(s)α = 0. (1.3.15)

where s, u = 0, . . . , k − 1 and α, β = 0, n− r + 1, . . . , n.

The equations of motion can be written as the total differential equation as follows

d
(u)
qi =

k−1∑
s=0

∂H ′(s)α
∂p(u)i

dt(s)α, (1.3.16)

.

dp(u)c = −
k−1∑
s=0

∂H ′(s)α

∂
(u)
qc

dt(s)α, (1.3.17)

where c = 0, 1, . . . , n i = 1, . . . , n,

Making

Z ≡ S(t(s)α, q
(s)
a ) (1.3.18)

and using the momenta definitions together with equation(1.3.17), we have

dZ =
k−1∑
d=0

(
−H(d)α +

k−1∑
d=0

P(s)a

∂H(d)α

∂P(s)a

)
dt(d)α; (1.3.19)

the set of equations (1.3.16 , 1.3.17 and 1.3.19) is integrable if and onlly if dH ′(α) = 0,

and if they form a completely integral set, their solutions determine Z ≡ S(t(s)α, q
(s)
a )

uniquely from the initial conditions.
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Our aim in this thesis is to deal with higher−order regular Lagrangian as first−order

singular one, as will be introduced in the following chapters. In chapter two, the

discrete systems of higher−order Lagrangian is discussed. Using Hamilton−Jacobi

method, a treatment of singular Lagrangian system as field system is studied, then

the canonical path integral quantization is constructed. The results that were ob-

tained, using the Hamilton−Jacobi method are in exact agreement with those ob-

tained using Dirac’s method in Ref. [28],[14]. An example with continuous systems

with second order Lagrangian is studied, in chapter three.

In chapter four, the discrete systems with higher order regular Lagrangian is treated

as first order singular Lagrangian. We used the Hamilton−Jacobi method to con-

struct the equations of motion as total differential equations. These equations are

integrable under specified conditions on new coordinates ,quantization of regular

Lagrangian of nonholonomic spinning particle are studied as an example.
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Chapter 2

Applications on Second And Third
Order Lagrangians

Systems with higher−order Lagrangian have been studied with increasing interest

because they appear in many relevant physical problems. Many authors studied

higher−order singular Lagrangian systems using both Dirac and Hamilton−Jacobi

approaches [14, 15, 16, 23, 28]. A treatment of singular Lagrangian system as

field system was studied in Ref[28] In this chapter, we will discuss two models

of discrete systems with higher−order Lagrangian. In section (2.1), we will make

a brief discussion of the canonical method to investigate singular system of the

second−order singular Lagrangian and an example is solved. Hamilton−Jacobi

method for third−order will be addressed in section (2.2) with an example will

be discussed. The canonical path integral quantization is displayed in section (2.3).

2.1 Canonical Formulation of The Second−Order

Lagrangian

The second−order Lagrangian is described by the function L(qi,
(2)
qi ,

(1)
qi i, t), where

q
(s)
i = dsqi

dts
, s = 0, 1, 2 and i = 1, ..., N. The system is regular if the rank of the

17



Hessian matrix[20, 26]

Aij =
∂2L

∂
(2)
qi∂

(2)
qj

(2.1.1)

is N , and singular if the rank is N −R , R < N . The generalized momenta can be

written as

p(0)i =
∂L

∂q
(1)
i

− d

dt
(
∂L

∂q
(2)
i

). (2.1.2)

p(1)i =
∂L

∂q
(2)
i

(2.1.3)

where p(0)i, p(1)i are the momenta conjugated to the coordinates qi, q
(1)
i respectively.

Since the rank of Hessian matrix is N-R, one may solve equation (2.1.3) for q
(2)
a as

a function of p(1)a, q
(2)
µ and t as,

q(2)a ≡ f(2)a(qi, q
(1)
i , q

(2)
i , p(1)a, t), (2.1.4)

where a = 1, ..., N − R and µ = N − R + 1, ..., N. Since the momenta are not

independent; p(s)µ can be written as

p(s)µ = −H(s)µ(q
(u)
j , p(u)a, t), (2.1.5)

where u, s = 0, 1 , u ≥ s, j = 1, 2.

The canonical method leads us to obtain the set of Hamilton−Jacobi partial differ-

ential equations as

H ′0 = p0 +H0(q
(u)
i , p(u)a, t) = 0, (2.1.6)

H ′(s)µ = p(s)µ +H(s)µ(q
(u)
i , p(u)a, t) = 0. (2.1.7)

The usual Hamiltonian H0 is defined as

H0 = p(0)aq
(1)
a + p(1)af(2)a + q(1)µ p(0)µ|p(0)µ=−H(0)µ

+ q(2)µ p(1)µ|p(1)µ=−H(1)µ

−L(qi, q
(1)
i , q

(2)
i = f(2)a). (2.1.8)

The Hamiltonian H0 does not depend on q
(2)
µ , so that

∂H0

∂q
(2)
µ

= 0. (2.1.9)
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The equations of motion in the canonical method are given as total differential

equations in many variables of the forms

dqa =
∂H ′0
∂p(0)a

dt+
∂H ′(0)µ
∂p(0)a

dqµ, (2.1.10)

dq(1)a =
∂H ′0
∂p(1)a

dt+
∂H ′(0)µ
∂p(1)a

dqµ +
∂H ′(1)µ
∂p(1)a

dq(1)µ , (2.1.11)

dp(0)i = −∂H
′
0

∂qi
dt−

∂H ′(0)µ
∂qi

dqµ −
∂H ′(1)µ
∂qi

dq(1)µ −
∂H ′(2)µ
∂qi

dq(2)µ , (2.1.12)

dp(1)i = − ∂H
′
0

∂q
(1)
i

dt−
∂H ′(0)µ

∂q
(1)
i

dqµ −
∂H ′(1)µ

∂q
(1)
i

dq(1)µ −
∂H ′(2)µ

∂q
(1)
i

dq(2)µ , (2.1.13)

The set of total differential equations (2.1.10-2.1.13) is integrable if the variation

of the constraints H ′0 and H ′(s)µ are identically zero. If the variations of H ′0 and

H ′(s)µ are not identically zero, then a new constraint will arise and again we test the

integrability conditions until we obtain a complete system [3,9].

2.1.1 An Example

In the next point we will use the canonical method and the treatment of singular

system as field system to solve the second−order singular Lagrangian[14],

L =
1

2
β
(

(q
(2)
1 )2 − 2(q

(2)
1 q

(2)
2 ) + (q

(2)
2 )2

)
+

1

2
K(q

(1)
1 − q

(1)
2 )2 +

1

2
γ(q1 − q2)(2.1.14)

The system is singular since the rank of the Hessian matrix

Aij =
∂2L

∂q
(2)
i ∂q

(2)
j

(2.1.15)

is ONE. where i, j = 1, 2.

The canonical momenta (2.1.2-2.1.3) are

p(1)1 =
∂L

∂q1
(2)

= β(q1
(2) − q2(2)), (2.1.16)

p(1)2 =
∂L

∂q2
(2)

= β(q2
(2) − q1(2)) = −P(1)1 = −H(1)2, (2.1.17)
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p(0)1 =
∂L

∂q1
(1)
− ṗ(1)1 = K(q1

(1) − q2(1))− β
d

dt
(q1

(2) − q2(2)), (2.1.18)

p(0)2 =
∂L

∂q2
(1)
− ṗ(1)2 = K(q2

(1)−q1(1))−β
d

dt
(q2

(2)−q1(2)) = −p(0)1 = −H
(0)2,(2.1.19)

Equations (2.1.16) can be solved for q
(2)
1 as

q1
(2) =

p(1)1
β

+ q2
(2) = f(2)1, (2.1.20)

The Hamiltonian (2.1.8), takes the form

H0 =
1

2β
(p(1)1)

2 + p(0)1(q
(1)
1 − q

(1)
2 )− 1

2
K(q

(1)
1 − q

(1)
2 )2 − 1

2
γ(q1 − q2)2 (2.1.21)

The set of Hamilton−Jacobi equations (2.1.6) and (2.1.7) can be read as

H ′(0)2 = p(0)2 +H(0)2 = p(0)2 + p(0)1 = 0, (2.1.22)

H ′(1)2 = p(1)2 +H(1)2 = p(1)2 + p(1)1 = 0, (2.1.23)

H ′0 = p0 +H0 = 0. (2.1.24)

The equations of motion (2.1.10-2.1.13) can be written as

dq1 =
∂H ′0
∂p(0)1

dt+
∂H ′(0)2
∂p(0)1

dq2 = (q1
(1) + q2

(1))dt+ dq2, (2.1.25)

dq
(1)
1 =

∂H ′0
∂p(1)1

dt+
∂H ′(0)2
∂p(1)1

dq2 +
∂H ′(1)2
∂p(1)1

dq
(1)
2 =

1

β
p(1)1dt+ dq

(1)
2 , (2.1.26)

dp(0)1 = −∂H
′
0

∂q1
dt−

∂H ′(0)2
∂q1

dq2 −
∂H ′(1)2
∂q1

dq
(1)
2 = γ(q1 − q2)dt. (2.1.27)

dp(0)2 = −∂H
′
0

∂q2
dt−

∂H ′(0)2
∂q2

dq2 −
∂H ′(1)2
∂q2

dq
(1)
2 = −γ(q1 − q2)dt. (2.1.28)

dp(1)1 = − ∂H
′
0

∂q
(1)
1

dt−
∂H ′(0)2

∂q
(1)
1

dq2 −
∂H ′(1)2

∂q
(1)
1

dq
(1)
2 =

(
−P(0)1 +K(q

(1)
1 − q

(1)
2 )
)
dt.

(2.1.29)

dp(1)2 = − ∂H
′
0

∂q
(1)
2

dt−
∂H ′(0)2

∂q
(1)
2

dq2−
∂H ′(1)2

∂q
(1)
2

dq
(1)
2 =

(
P(0)1 −K(q

(1)
1 − q

(1)
2 )
)
dt. (2.1.30)
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The system of total differential equations (2.1.25-2.1.30) is integrable if the vari-

ation of H ′(s)2 is identically zero.

The variation of H ′(0)2 is

dH ′(0)2 = dp(0)2 + dp(0)1 = 0 (2.1.31)

The variation of H ′(1)2 is

dH ′(1)2 = dp(1)2 + dp(1)1 = 0. (2.1.32)

From (2.1,31) and (2.1.32), we conclude that the system is integrable.

2.1.2 Treatment of Second−Order Lagrangian as Field Sys-

tem

The second−order Lagrangian system can be treated as field system where the field

qa are expressed in term of the independent coordinates as

qa ≡ qa(t, xµ), (2.1.33)

where µ = N − R + 1, ..., N. The Euler-Lagrange equation of the second−order

Lagrangian takes the form

∂L′

∂qa
− ∂

∂xµ
(

∂L′

∂(∂µqa)
) +

∂2

∂xµ1∂xµ2
(

∂L′

∂(∂µ1∂µ2qa)
) = 0, (2.1.34)

where

∂µqa ≡
∂qa
∂xµ

, (2.1.35)

∂µ1∂µ2qa ≡
∂2qa

∂xµ1∂xµ2
, (2.1.36)

and the modified Lagrangian L′ is defined as [10,14]
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L′(xµ, qa, ∂µqa, ∂µ1∂µ2qa, x
(1)
µ , x(2)µ ) ≡ L(xµ, qa, q

(1)
a = (∂µqa)x

(1)
µ ,

q(2)a = ∂µ2(∂µ1qax
(1)
µ1

)x(1)µ2 ) (2.1.37)

with x
(1)
µ = dxµ

dt
and x

(1)
0 = 1

The constraint equation can be written as

dG0 = −∂L
′

∂t
dt, (2.1.38)

dGµ = −∂L
′

∂qµ
dt. (2.1.39)

where

G0 = H0(q
(u)
i , p(u)a, t), (2.1.40)

Gµ = Hµ(q
(u)
i , p(u)a, t). (2.1.41)

Solving of Euler-Lagrange equation (2.1.34) together with the constraint equations

(2.1.38) and (2.1.39) we get the solution of the system. Since the rank of Hessian

matrix of the Lagrangian (2.1.15) is one then the system is singular, and can be

written as field system in the form

q1 = q1(q2, t), (2.1.42)

The first and second derivatives with respect to t of (2.1.42) is:

q
(1)
1 =

∂q1
∂t

+
∂q1
∂q2

q
(1)
2 , (2.1.43)

q
(2)
1 =

∂2q1
∂t2

+ 2
∂2q1
∂t∂q2

q
(1)
2 +

∂2q1
∂q22

(q
(1)
2 )2 +

∂q1
∂q2

q
(2)
2 , (2.1.44)

Substituting (2.1.43) into (2.1.37) we get the modified Lagrangian function

L′ =
1

2
β

[(
∂2q1
∂t2

)2

+ 4
∂2q1
∂t2

∂2q1
∂t∂q2

q
(1)
2 + 2q

(2)
2

∂2q1
∂t2

∂q1
∂q2

+2
∂2q1
∂t2

∂2q1
∂q22

(q
(1)
2 )2 + 4

(
∂2q1
∂t∂q2

)2

(q
(1)
2 )2 + 4

∂2q1
∂t∂q2

∂q1
∂q2

q
(1)
2 q

(2)
2
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+2
∂q1
∂q2

∂2q1
∂q22

q
(2)
2 (q

(1)
2 )2 + 4

∂2q1
∂t∂q2

∂2q1
∂q22

(q
(1)
2 )3 + (q

(2)
2 )2

(
∂q1
∂q2

)2

+ (q
(1)
2 )4

(
∂2q1
∂q22

)2

−2
∂2q1
∂t2

q
(2)
2 − 4

∂2q1
∂t∂q2

(q
(1)
2 )(q

(2)
2 )− 2

∂q1
∂q2

(q
(2)
2 )2 − 2

∂2q1
∂q22

(q
(1)
2 )2q

(2)
2 + (q

(2)
2 )2

]

+
1

2
K

[(
∂q1
∂t

)2

+ 2
∂q1
∂t

∂q1
∂q2

q
(1)
2 − 2

∂q1
∂t
q
(1)
2 +

(
∂q1
∂q2

)2

(q
(1)
2 )2

−2
∂q1
∂q2

(q
(1)
2 )2 + (q

(1)
2 )2

]
+

1

2
γ(q1 − q2)2 (2.1.45)

The Euler-Lagrange equations (2.1.34) read as

∂L′

∂q1
− ∂

∂t
(
∂L′

∂(∂q1
∂t

)
)− ∂

∂q2
(
∂L′

∂(∂q1
∂q2

)
) +

∂2

∂t2
(
∂L′

∂(∂
2q1
∂t2

)
) +

∂2

∂t∂q2
(

∂L′

∂( ∂
2q1

∂t∂q2
)
) +

∂2

∂q22
(
∂L′

∂(∂
2q1
∂q22

)
)

∂2

∂q2∂t
(

∂L′

∂( ∂
2q1

∂q2∂t
)
) = 0 (2.1.46)

Making use of (2.1.45), equation (2.1.46) becomes

γ(q1 − q2)−
∂

∂t

[
k

(
q
(1)
1 − q

(1)
2

)]
− ∂

∂q2

[
β

(
q
(2)
1 − q

(2)
2

)
q
(2)
2 + k

(
q
(1)
1 − q

(2)
2

)
q
(1)
2

]

+
∂2

∂t2

[
β

(
q
(2)
1 − q

(2)
2

)]
+ 2

∂2

∂t∂q2

[
β

(
q
(2)
1 − q

(2)
2

)
q
(1)
2

]

+
∂2

∂q22

[
β

(
q
(2)
1 − q

(2)
2

)
(q

(1)
2 )2

]
= 0 (2.1.47)

The constraint equation (2.1.39) read as

∂L′

∂q2
−
dP(0)2

dt
= 0. (2.1.48)

Using (2.1.28) and (2.1.45), we get:

−γ(q1 − q2) +
∂

∂t

{
k
(
q
(1)
1 − q

(1)
2

)}
+

∂

∂q2

{
k
(
q
(1)
1 − q

(2)
2

)
q
(1)
2

}
− ∂2

∂t2

{
β
(
q
(2)
1 − q

(2)
2

)}

−2
∂2

∂t∂q2

{
β
(
q
(2)
1 − q

(2)
2

)
q
(1)
2

}
− ∂

∂q2

{
β
(
q
(2)
1 − q

(2)
2

)
q
(2)
2

}
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− ∂2

∂q22

{
β
(
q
(2)
1 − q

(2)
2

)(
q
(1)
2

)2}
= 0 (2.1.49)

Adding (2.1.47)and(2.1.49) , we get

∂

∂q2

{
β
(
q
(2)
1 − q

(2)
2

)}
≡ ∂

∂q2
(P(1)1) = 0. (2.1.50)

Using (2.1.50)and(2.1.47) become,

γ(q1 − q2)−
d

dt

{
k
(
q
(1)
1 − q

(1)
2

)}
+
d2

dt2

{
β
(
q
(1)
1 − q

(1)
2

)}
= 0. (2.1.51)

Notice that equation (2.1.50) is equivalent to equation (2.1.26) and equation (2.1.51)

is equivalent to the sum of equations (2.1.27) and (2.1.29).

2.2 Canonical Formulation of The Third−Order

Lagrangian

The third−order Lagrangian is described by the function L(qi, q
(1)
i , q

(2)
i , q

(3)
i , t), where

q
(s)
i = dsqi

dts
, s = 0, 1, 2, 3 and i = 1, ..., N. The system is regular if the rank of the

Hessian matrix [20,26]

Aij =
∂2L

∂q
(3)
i ∂q

(3)
j

(2.2.1)

is N , and singular if the rank is N −R , R < N . The generalized momenta can be

written as

p(0)i =
∂L

∂q
(1)
i

− d

dt
(
∂L

∂q
(2)
i

) +
d2

dt2
(
∂L

∂q
(3)
i

) ≡ ∂L

∂q
(1)
i

− ṗ(1)i, (2.2.2)

p(1)i =
∂L

∂q
(2)
i

− d

dt
(
∂L

∂q
(3)
i

) ≡ ∂L

∂q
(2)
i

− ṗ(2)i, (2.2.3)

p(2)i =
∂L

∂q
(3)
i

, (2.2.4)

where p(0)i, p(1)i and p(2)i are the momenta conjugated to the coordinates qi, q
(1)
i and

q
(2)
i respectively.

24



Since the rank of Hessian matrix is N-R, one may solve equation (2.1.3) for q
(3)
a

as a function of p(1)a, p(2)a, q
(3)
µ and t as,

q(3)a ≡ f(3)a(qi, q
(1)
i , q

(2)
i , p(1)a, p(2)a, q

(3)
µ , t), (2.2.5)

where a = 1, ..., N − R and µ = N − R + 1, ..., N. Since the momenta are not

independent; p(s)µ can be written as

p(s)µ = −H(s)µ(q
(u)
j , p(u)a, t), (2.2.6)

where u, s = 0, 1, 2 , u ≥ s, j = 1, 2, 3.

The canonical method leads us to obtain the set of (HJPDE) as

H ′0 = p0 +H0(q
(u)
i , p(u)a, t) = 0, (2.2.7)

H ′(s)µ = p(s)µ +H(s)µ(q
(u)
i , p(u)a, t) = 0. (2.2.8)

The usual Hamiltonian H0 is defined as

H0 = p(0)aq
(1)
a + p(1)aq

(2)
a + p(2)af(3)a + q(1)µ p(0)µ|p(0)µ=−H(0)µ

+ q(2)µ p(1)µ|p(1)µ=−H(1)µ

+q(3)µ p(2)µ |p(2)µ=−H(2)µ
−L(qi, q

(1)
i , q

(2)
i , q(3)µ , q(3)a = f(3)a). (2.2.9)

The Hamiltonian H0 does not depend on q
(3)
µ , so that

∂H0

∂q
(3)
µ

= 0. (2.2.10)

The equations of motion in the canonical method are given as total differential

equations in many variables of the forms

dqa =
∂H ′0
∂p(0)a

dt+
∂H ′(0)µ
∂p(0)a

dqµ, (2.2.11)

dq(1)a =
∂H ′0
∂p(1)a

dt+
∂H ′(0)µ
∂p(1)a

dqµ +
∂H ′(1)µ
∂p(1)a

dq(1)µ , (2.2.12)

dq(2)a =
∂H ′0
∂p(2)a

dt+
∂H ′(0)µ
∂p(2)a

dqµ +
∂H ′(1)µ
dp(2)a

dq(1)µ +
∂H ′(2)µ
∂p(2)a

dq(2)µ , (2.2.13)
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dp(0)i = −∂H
′
0

∂qi
dt−

∂H ′(0)µ
∂qi

dqµ −
∂H ′(1)µ
∂qi

dq(1)µ −
∂H ′(2)µ
∂qi

dq(2)µ , (2.2.14)

dp(1)i = − ∂H
′
0

∂q
(1)
i

dt−
∂H ′(0)µ

∂q
(1)
i

dqµ −
∂H ′(1)µ

∂q
(1)
i

dq(1)µ −
∂H ′(2)µ

∂q
(1)
i

dq(2)µ , (2.2.15)

dp(2)i = − ∂H
′
0

∂q
(2)
i

dt−
∂H ′(0)µ

∂q
(2)
i

dqµ −
∂H ′(1)µ

∂q
(2)
i

dq(1)µ −
∂H ′(2)µ

∂q
(2)
i

dq(2)µ . (2.2.16)

The set of total differential equations (2.1.10−2.1.13) is integrable if the variation

of the constraints H ′0 and H ′(s)µ are identically zero. If the variations of H ′0 and

H ′(s)µ are not identically zero, then a new constraint will arise and again we test the

integrability conditions until we obtain a complete system [9].

2.2.1 An Example

Now we will use the canonical method and the treatment of singular system as field

system to solve the third-order singular Lagrangian[29],

L = q
(3)
1 q

(3)
2 + q

(2)
1 (q

(2)
2 − q

(2)
3 ) + q

(1)
1 (q

(1)
2 − q

(1)
3 )− q1q3. (2.2.17)

The system is singular since the rank of the Hessian matrix

Aij =
∂2L

∂q
(3)
i ∂q

(3)
j

(2.2.18)

is two. where i, j = 1, 2, 3.

The canonical momenta (2.2.2−2.2.4) are

p(2)1 =
∂L

∂q
(3)
1

= q
(3)
2 , (2.2.19)

p(2)2 =
∂L

∂q
(3)
2

= q
(3)
1 , (2.2.20)

p(2)3 =
∂L

∂q
(3)
3

= 0, (2.2.21)

p(1)1 =
∂L

∂q
(2)
1

− ṗ(2)1 = q
(2)
2 − q

(2)
3 − q

(4)
2 , (2.2.22)
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p(1)2 =
∂L

∂q
(2)
2

− ṗ(2)2 = q
(2)
1 − q

(4)
1 , (2.2.23)

p(1)3 =
∂L

∂q
(2)
3

− ṗ(2)3 = −q(2)1 , (2.2.24)

p(0)1 =
∂L

∂q
(1)
1

− ṗ(1)1 = q
(1)
2 − q

(1)
3 − q

(3)
2 + q

(3)
3 + q

(5)
2 , (2.2.25)

p(0)2 =
∂L

∂q
(1)
2

− ṗ(1)2 = q
(1)
1 − q

(3)
1 + q

(5)
1 , (2.2.26)

p(0)3 =
∂L

∂q
(1)
3

− ṗ(1)3 = −q(1)1 + q
(3)
1 . (2.2.27)

Equations (2.2.19) and (2.2.20) can be solved for q
(3)
1 and q

(3)
2 as

q
(3)
1 = p(2)2 = f(3)1, (2.2.28)

q
(3)
2 = p(2)1 = f(3)2. (2.2.29)

Since the momenta are not independent, p(u)µ can be written as

p(0)3 = −q(1)1 + p(2)2 = −H(0)3, (2.2.30)

p(1)3 = −q(2)1 = −H(1)3, (2.2.31)

p(2)3 = 0 = −H(2)3. (2.2.32)

The Hamiltonian (2.2.9), takes the form

H0 = p(0)1q
(1)
1 + p(0)2q

(1)
2 + p(1)1q

(2)
1 + p(1)2q

(2)
2 + p(2)1f(3)1 + p(2)2f(3)2 + q

(1)
3 p(0)3

+q
(2)
3 p(1)3 − L(qi, q

(1)
i , q

(2)
i , q

(3)
3 , q

(3)
1 = f(3)1, q

(3)
2 = f(3)2),

(2.2.33)

or

H0 = p(0)1q
(1)
1 + p(0)2q

(1)
2 + p(1)1q

(2)
1 + p(1)2q

(2)
2 + p(2)1p(2)2 + q

(1)
3 p(2)2

−q(2)1 q
(2)
2 − q

(1)
1 q

(1)
2 + q1q3 (2.2.34)
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The set of Hamilton−Jacobi equations (2.2.7) and (2.2.8) can be read as

H ′(0)3 = p(0)3 +H(0)3 = p(0)3 + q
(1)
1 − p(2)2 = 0, (2.2.35)

H ′(1)3 = p(1)3 +H(1)3 = p(1)3 + q
(2)
1 = 0, (2.2.36)

H ′(2)3 = p(2)3 +H(2)3 = p(2)3 = 0, (2.2.37)

H ′0 = p0 +H0 = 0. (2.2.38)

The equations of motion (2.2.11−2.2.16) can be written as

dq1 =
∂H ′0
∂p(0)1

dt+
∂H ′(0)3
∂p(0)1

dq3 +
∂H ′(1)3
∂p(0)1

dq
(1)
3 +

∂H ′(2)3
∂p(0)1

dq
(2)
3 = q

(1)
1 dt, (2.2.39)

dq2 =
∂H ′0
∂p(0)2

dt+
∂H ′(0)3
∂p(0)2

dq3 +
∂H ′(1)3
∂p(0)2

dq
(1)
3 +

∂H ′(2)3
∂p(0)2

dq
(2)
3 = q

(1)
2 dt, (2.2.40)

dq
(1)
1 =

∂H ′0
∂p(1)1

dt+
∂H ′(0)3
∂p(1)1

dq3 +
∂H ′(1)3
∂p(1)1

dq
(1)
3 +

∂H ′(2)3
∂p(1)1

dq
(2)
3 = q

(2)
1 dt, (2.2.41)

dq
(1)
2 =

∂H ′0
∂p(1)2

dt+
∂H ′(0)3
∂p(1)2

dq3 +
∂H ′(1)3
∂p(1)2

dq
(1)
3 +

∂H ′(2)3
∂p(1)2

dq
(2)
3 = q

(2)
2 dt, (2.2.42)

dq
(2)
1 =

∂H ′0
∂p(2)1

dt+
∂H ′(0)3
∂p(2)1

dq3 +
∂H ′(1)3
∂p(2)1

dq
(1)
3 +

∂H ′(2)3
∂p(2)1

dq
(2)
3 = p(2)2dt, (2.2.43)

dq
(2)
2 =

∂H ′0
∂p(2)2

dt+
∂H ′(0)3
∂p(2)2

dq3 +
∂H ′(1)3
∂p(2)2

dq
(1)
3 +

∂H ′(2)3
∂p(2)2

dq
(2)
3 = (p(2)1 + q

(1)
2 )dt− dq3,

(2.2.44)

dp(0)1 = −∂H
′
0

∂q1
dt−

∂H ′(0)3
∂q1

dq3 −
∂H ′(1)3
∂q1

dq
(1)
3 −

∂H ′(2)3
∂q1

dq
(2)
3 = −q3dt, (2.2.45)

dp(0)2 = −∂H
′
0

∂q2
dt−

∂H ′(0)3
∂q2

dq3 −
∂H ′(1)3
∂q2

dq
(1)
3 −

∂H ′(2)3
∂q2

dq
(2)
3 = 0, (2.2.46)

dp(0)3 = −∂H
′
0

∂q3
dt−

∂H ′(0)3
∂q3

dq3 −
∂H ′(1)3
∂q3

dq
(1)
3 −

∂H ′(2)3
∂q3

dq
(2)
3 = −q1dt, (2.2.47)

dp(1)1 = − ∂H
′
0

∂q
(1)
1

dt−
∂H ′(0)3

∂q
(1)
1

dq3−
∂H ′(1)3

∂q
(1)
1

dq
(1)
3 −

∂H ′(2)3

∂q
(1)
1

dq
(2)
3 = −(p(0)1− q(1)2 )dt− dq3,

(2.2.48)

dp(1)2 = − ∂H
′
0

∂q
(1)
2

dt−
∂H ′(0)3

∂q
(1)
2

dq3 −
∂H ′(1)3

∂q
(1)
2

dq
(1)
3 −

∂H ′(2)3

∂q
(1)
2

dq
(2)
3 = −(p(0)2 − q(1)1 )dt,

(2.2.49)
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dp(1)3 = − ∂H
′
0

∂q
(1)
3

dt−
∂H ′(0)3

∂q
(1)
3

dq3 −
∂H ′(1)3

∂q
(1)
3

dq
(1)
3 −

∂H ′(2)3

∂q
(1)
3

dq
(2)
3 = −p(2)2dt, (2.2.50)

dp(2)1 = − ∂H
′
0

∂q
(2)
1

dt−
∂H ′(0)3

∂q
(2)
1

dq3−
∂H ′(1)3

∂q
(2)
1

dq
(1)
3 −

∂H ′(2)3

∂q
(2)
1

dq
(2)
3 = −(p(1)1−q(2)2 )dt−dq(1)3 ,

(2.2.51)

dp(2)2 = − ∂H
′
0

∂q
(2)
2

dt−
∂H ′(0)3

∂q
(2)
2

dq3 −
∂H ′(1)3

∂q
(2)
2

dq
(1)
3 −

∂H ′(2)3

∂q
(2)
2

dq
(2)
3 = −(p(1)2 − q(2)1 )dt,

(2.2.52)

dp(2)3 = − ∂H
′
0

∂q
(2)
3

dt−
∂H ′(0)3

∂q
(2)
3

dq3 −
∂H ′(1)3

∂q
(2)
3

dq
(1)
3 −

∂H ′(2)3

∂q
(2)
3

dq
(2)
3 = 0. (2.2.53)

The system of total differential equations (2.2.39−2.2.53) is integrable if the variation

of H ′(s)3 is identically zero.

The variation of H ′(0)3 is

dH ′(0)3 = dp(0)3 + dq
(1)
1 − dp(2)2 = (−q1 + p(1)2)dt (2.2.54)

since dH ′(0)3 does not identically zero we have a new constraint

H ′′(0)3 = −q1 + p(1)2. (2.2.55)

The variation of H ′′(0)3 is

dH ′′(0)3 = −dq1 + dp(1)2 = −p(0)2dt. (2.2.56)

Again dH ′′(0)3is not identically zero we have

H ′′′(0)3 = −p(0)2. (2.2.57)

Using (2.2.46) the variation of H ′′′(0)3 is

dH ′′′(0)3 = −dp(0)2 = 0. (2.2.58)

We can solve equation (2.2.57)as

p(0)2 = C. (2.2.59)

29



Using equation (2.2.26) we get

q
(1)
1 − q

(3)
1 + q

(5)
1 = C (2.2.60)

or by taking the derivatives of (2.2.60)

q
(2)
1 − q

(4)
1 + q

(6)
1 = 0. (2.2.61)

The variation of H ′(1)3 is

dH ′(1)3 = dp(1)3 + dq
(2)
1 ≡ 0. (2.2.62)

the variation of H ′(2)3 is

dH ′(2)3 = dp(2)3 ≡ 0. (2.2.63)

From (2.2.58),(2.2.62) and (2.2.63), we conclude that the system is integrable.

The equivalent partial differential equation of (2.2.44) is

∂q
(2)
2

∂q3
= −1 (2.2.64)

which can be solved as

q
(2)
2 = −q3 + F (t) (2.2.65)

or

F (t) = q
(2)
2 + q3. (2.2.66)

The second and forth derivative of (2.2.66)can be written as

F (2) = q
(4)
2 + q

(2)
3 , (2.2.67)

F (4) = q
(6)
2 + q

(4)
3 . (2.2.68)

Equation(2.2.25) and (2.2.45) together take the form,

q
(6)
2 − q

(4)
2 + q

(4)
3 + q

(2)
2 − q

(2)
3 + q3 = 0 (2.2.69)

Using equations (2.2.66),(2.2.67) and (2.2.68),equation (2.2.69) becomes

F (4) − F (2) + F = 0 (2.2.70)
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2.2.2 Treatment of The Third−Order Lagrangian as Field

System

The third−order Lagrangian system can be treated as field system where the field

qa are expressed in term of the independent coordinates as

qa ≡ qa(t, xµ), (2.2.71)

where µ = N − R + 1, ..., N. The Euler-Lagrange equation of the third-order La-

grangian takes the form[10]

∂L′

∂qa
− ∂

∂xµ
(

∂L′

∂(∂µqa)
)+

∂2

∂xµ1∂xµ2
(

∂L′

∂(∂µ1∂µ2qa)
)− ∂3

∂xµ1∂xµ2∂xµ3
(

∂L′

∂(∂µ1∂µ2∂µ3qa)
) = 0,

(2.2.72)

where

∂µqa ≡
∂qa
∂xµ

, (2.2.73)

∂µ1∂µ2qa ≡
∂2qa

∂xµ1∂xµ2
, (2.2.74)

∂µ1∂µ2∂µ3qa =
∂3qa

∂xµ1∂xµ2∂xµ3
, (2.2.75)

and the modified Lagrangian L′ is defined as[10,22]

L′(xµ, qa, ∂µqa, ∂µ1∂µ2qa, ∂µ1∂µ2∂µ3qa, x
(1)
µ , x(2)µ , x(3)µ ) ≡ L(xµ, qa, q

(1)
a = (∂µqa)x

(1)
µ ,

, q(2)a = ∂µ2(∂µ1qax
(1)
µ1

)x(1)µ2 , q
(3)
a = ∂µ3(∂µ2(∂µ1qax

(1)
µ1

)x(1)µ2 )x(1)µ3 ), (2.2.76)

with x
(1)
µ = dxµ

dt
and x

(1)
0 = 1

The constraint equation can be written as

dG0 = −∂L
′

∂t
dt, (2.2.77)

dGµ = −∂L
′

∂qµ
dt. (2.2.78)

where

G0 = H0(q
(u)
i , p(u)a, t), (2.2.79)
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Gµ = Hµ(q
(u)
i , p(u)a, t). (2.2.80)

Solving of Euler-Lagrange equation (2.2.72) together with the constraint equations

(2.2.77) and (2.2.78) we get the solution of the system. Since the rank of Hessian

matrix of the Lagrangian (2.2.17) is two then the system is singular,and can be

written as field system in the form

q1 = q1(q3, t), (2.2.81)

q2 = q2(q3, t). (2.2.82)

The first, second, and third derivatives with respect to t of (2.2.81) and (2.2.82)

respectively are:

q
(1)
1 =

∂q1
∂t

+
∂q1
∂q3

q
(1)
3 , (2.2.83)

q
(1)
2 =

∂q2
∂t

+
∂q2
∂q3

q
(1)
3 , (2.2.84)

q
(2)
1 =

∂2q1
∂t2

+ 2
∂2q1
∂t∂q3

q
(1)
3 +

∂2q1
∂q23

(q
(1)
3 )2 +

∂q1
∂q3

q
(2)
3 , (2.2.85)

q
(2)
2 =

∂2q2
∂2t

+ 2
∂2q2
∂t∂q3

q
(1)
3 +

∂2q2
∂q23

(q
(1)
3 )2 +

∂q2
∂q3

q
(2)
3 , (2.2.86)

and

q
(3)
1 =

∂3q1
∂t3

+ 3
∂3q1
∂t2∂q3

q
(1)
3 + 3

∂3q1
∂t∂q23

(q
(1)
3 )2 + 3

∂2q1
∂t∂q3

q
(2)
3 +

∂3q1
∂q33

(q
(1)
3 )3

+3
∂2q1
∂q23

q
(1)
3 q

(2)
3 +

∂q1
∂q3

q
(3)
3 . (2.2.87)

q
(3)
2 =

∂3q2
∂t3

+ 3
∂3q2
∂t2∂q3

q
(1)
3 + 3

∂3q2

∂t∂q
(2)
3

(q
(1)
3 )2 + 3

∂2q2
∂t∂q3

q
(2)
3 +

∂3q2
∂q33

(q
(1)
3 )3

+3
∂2q2
∂q23

q
(1)
3 q

(2)
3 +

∂q2
∂q3

q
(3)
3 . (2.2.88)

Substituting (2.2.83−2.2.88) into (2.2.17) we get the modified Lagrangian function

L′ = (
∂3q1
∂t3

+ 3
∂3q1
∂t2∂q3

q
(1)
3 + 3

∂3q1
∂t∂q23

(q
(1)
3 )2 + 3

∂2q1
∂t∂q3

q
(2)
3 +

∂3q1
∂q33

(q
(1)
3 )3 + 3

∂2q1
∂q23

q
(1)
3 q

(2)
3
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+
∂q1
∂q3

q
(3)
3 )(

∂3q2
∂t3

+ 3
∂3q2
∂t2∂q3

q
(1)
3 + 3

∂3q2

∂t∂q
(2)
3

(q
(1)
3 )2 + 3

∂2q2
∂t∂q3

q
(2)
3 +

∂3q2
∂q33

(q
(1)
3 )3+

3
∂2q2
∂q23

q
(1)
3 q

(2)
3 +

∂q2
∂q3

q
(3)
3 ) + (

∂2q1
∂t2

+ 2
∂2q1
∂t∂q3

q
(1)
3 +

∂2q1
∂q23

(q
(1)
3 )2 +

∂q1
∂q3

q
(2)
3 )[(

∂2q2
∂t2

+2
∂2q2
∂t∂q3

q
(1)
3 +

∂2q2
∂q23

(q
(1)
3 )2 +

∂q2
∂q3

q
(2)
3 )− q(2)3 ] + (

∂q1
∂t

+
∂q1
∂q3

q
(1)
3 )

[(q
(1)
2 =

∂q2
∂t

+
∂q2
∂q3

q
(1)
3 )− q(1)3 ]− q1q3. (2.2.89)

The Euler-Lagrange equations (2.2.72) read as

∂L′

∂q1
− ∂

∂t
(
∂L′

∂(∂q1
∂t

)
)− ∂

∂q3
(
∂L′

∂(∂q1
∂q3

)
) +

∂2

∂t2
(
∂L′

∂(∂
2q1
∂t2

)
) + 2

∂2

∂t∂q3
(

∂L′

∂( ∂
2q1

∂t∂q3
)
) +

∂2

∂q23
(
∂L′

∂(∂
2q1
∂q23

)
)−

∂3

∂t3
(
∂L′

∂(∂
3q1
∂t3

)
)−3

∂3

∂t∂q23
(

∂L′

∂( ∂3q1
∂t∂q23

)
)−3

∂3

∂t2∂q3
(

∂L′

∂( ∂3q1
∂t2∂q3

)
)− ∂3

∂q33
(
∂L′

∂(∂
3q1
∂q33

)
) = 0, (2.2.90)

and

∂L′

∂q2
− ∂

∂t
(
∂L′

∂(∂q2
∂t

)
)− ∂

∂q3
(
∂L′

∂(∂q2
∂q3

)
) +

∂2

∂t2
(
∂L′

∂(∂
2q2
∂t2

)
) + 2

∂2

∂t∂q3
(

∂L′

∂( ∂
2q2

∂t∂q3
)
) +

∂2

∂q23
(
∂L′

∂(∂
2q2
∂q23

)
)

− ∂3

∂t3
(
∂L′

∂(∂
3q2
∂t3

)
)− 3

∂3

∂t∂q23
(

∂L′

∂( ∂3q2
∂t∂q23

)
)− 3

∂3

∂t2∂q3
(

∂L′

∂( ∂3q2
∂t2∂q3

)
)− ∂3

∂q33
(
∂L′

∂(∂
3q2
∂q33

)
) = 0.

(2.2.91)

Using equation(2.2.89), equation(2.2.90)and(2.2.91)becomes

−q3 −
∂q

(1)
2

∂t
+ q

(2)
3 −

∂q
(3)
2

∂q3
q
(3)
3 −

∂q
(2)
2

∂q3
q
(2)
3 −

∂q
(1)
2

∂q3
q
(1)
3 +

∂2q
(2)
2

∂t2
− q(4)3 + 6

∂2q
(3)
2

∂t∂q3
q
(2)
3 + 4

∂2q
(2)
2

∂t∂q3
q
(1)
3

+3
∂2q

(3)
2

∂2q3
q
(1)
3 q

(2)
3 +

∂2q
(2)
2

∂q23
(q

(1)
3 )2−∂

3q
(3)
2

∂t3
−9

∂3q
(3)
2

∂t∂q23
(q

(1)
3 )2−9

∂3q
(3)
2

∂t2∂q3
q
(1)
3 −

∂3q
(3)
2

∂q33
(q

(1)
3 )2 = 0,

(2.2.92)

−∂q
(1)
1

∂t
− ∂q

(1)
1

∂q3
q
(1)
3 −

∂q
(2)
1

∂q3
q
(2)
3 −

∂q
(3)
1

∂q3
q
(3)
3 +

∂2q
(2)
1

∂t2
+ 6

∂2q
(3)
1

∂t∂q3
q
(2)
3 + 4

∂2q
(2)
1

∂t∂q3
q
(1)
3 +

3
∂2q

(3)
1

∂q23
q
(1)
3 q

(2)
3 +

∂2q
(2)
1

∂q23
(q

(1)
3 )2−∂

3q
(3)
1

∂t3
−9

∂3q
(3)
1

∂t∂q23
(q

(1)
3 )2−9

∂3q
(3)
1

∂t2∂q3
q
(1)
3 −

∂3q
(3)
1

∂q33
(q

(1)
3 )2 = 0.

(2.2.93)
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By using the equations (2.2.30),(2.2.83),(2.2.20)and (2.2.87),the constraint equation

(2.2.80) reads as

G3 = (
∂q1
∂t

+
∂q1
∂q3

q
(1)
3 )− (

∂q
(2)
1

∂t
+
∂q

(2)
1

∂q3
q
(1)
3 ), (2.2.94)

dG3 = [(
∂q

(1)
1

∂t
+
∂q

(1)
1

∂q3
q
(1)
3 )− (

∂2q
(2)
1

∂t2
+ 2

∂2q
(2)
1

∂t∂q3
q
(1)
3 +

∂2q
(2)
1

∂2q3
(q

(1)
3 )2 +

∂q
(2)
1

∂q3
q
(2)
3 )]dt,

(2.2.95)

and

dG3 = −∂L
′

∂q3
dt = q1. (2.2.96)

Using (2.2.95)and(2.2.96)we get,

(
∂2q

(2)
1

∂t2
+2

∂2q
(2)
1

∂t∂q3
q
(1)
3 +

∂2q
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∂2q3
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(1)
3 )2+

∂q
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1

∂q3
q
(2)
3 )−(

∂q
(1)
1

∂t
+
∂q

(1)
1

∂q3
q
(1)
3 )+q1 = 0. (2.2.97)

Now equation (2.2.97) can be written as

(
∂3q

(3)
1

∂t3
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∂3q
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1

∂t2∂q3
q
(1)
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∂q3
q
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3 ) = 0.

(2.2.98)

Subtracting (2.2.98) from (2.2.93)we get

2
∂2q

(2)
1

∂t∂q3
q
(1)
3 −2

∂q
(2)
1

∂q3
q
(2)
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∂3q
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∂t∂q23
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∂t∂q3
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3 +6

∂2q
(3)
1

∂q23
q
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3 q

(2)
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(2.2.99)

Using equation (2.2.99) equation (2.2.93) becomes,

−dq
(1)
1

dt
+
d2q

(2)
1

dt2
+
d3q

(3)
1

dt3
= 0. (2.2.100)

The constraint equation (2.2.79) take the form

G0 = H0(qa, xµ, pa =
∂L

∂qa
), (2.2.101)

dG0 = (q
(4)
3 − q

(2)
3 + q3)(
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∂q3

q
(1)
3 ) + [(

∂2q
(2)
1

∂t2
+ 2

∂2q
(2)
1

∂t∂q3
q
(1)
3 +

∂2q
(2)
1

∂q23
(q

(1)
3 )2
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+
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(2.2.102)

Using equation (2.2.97)and(2.2.98)equation (2.2.102)lead us
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(2.2.103)

Adding (2.2.92)and(2.2.103)we get

−6
∂3q

(3)
2

∂t2∂q3
q
(1)
3 −6

∂3q
(3)
2

∂t∂2q3
(q

(1)
3 )2+9

∂2q(3)

∂t∂q3
q
(2)
3 +6

∂2q
(3)
2

∂2q3
q
(1)
3 q

(2)
3 +2

∂2q
(2)
2

∂t∂q3
q
(1)
3 −2

∂q
(2)
2

∂q3
q
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(2.2.104)

Using equation (2.2.104) equation (2.2.92) becomes

q
(6)
2 − q

(4)
2 + q

(4)
3 + q

(2)
2 − q

(2)
3 + q3 = 0, (2.2.105)

or

F (4) − F (2) + F = 0. (2.2.106)

Which is equivalent to (2.2.70). The solution of system is exactly solution by using

canonical method and treatment of system as field system.
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2.3 The Canonical Path Integral of Higher−Order

Lagrangian

Hamilton−Jacobi path integral quantization of singular systems was developed in

ref. [11, 12, 13]. If the set (HJPDE’s)of equations is integrable, then one can

solve them to obtain the trajectories of the motion in the canonical phase space

coordinates.Now making

Z ≡ S

(
t(s)α, q

(s)
a

)
(2.3.1)

and using the momenta definitions together with equation (1.3.17), we have

dZ =
k−1∑
d=0

(
−H(d)α +

k−1∑
d=0

P(s)a

∂H(d)α

∂P(s)a

)
dt(d)α; (2.3.2)

In this case , the path integral representation may be written as

〈OUT |S| IN〉 =

∫ n−r∏
a=1

DqaDpa exp

[
i

∫ t′a

ta

k−1∑
d=0

(
−H(d)α +

k−1∑
d=0

P(s)a

∂H(d)α

∂P(s)a

)
dt(d)α

]
(2.3.3)

Now for the second−order Lagrangian (2.1.14) ,for α = 0, 2 K = 2 a = 1, 2

we have

dZ =

(
−H(0) +

1∑
d=0

P(s)a

∂H ′(0)
∂P(s)a

)
dt(0)

+

(
−H(0)2 +

1∑
d=0

P(s)a

∂H ′(0)2
∂P(s)a

)
dt(0)2

+

(
−H(1)2 +

1∑
d=0

P(s)a

∂H ′(1)2
∂P(s)a

)
dt(1)2 (2.3.4)

or

dZ =

{
1

2β

(
p(1)1

)2

+
1

2
K(q

(1)
1 − q

(1)
2 )2 +

1

2
γ(q1 − q2)2

}
dt(0) (2.3.5)

So, the path integral for this system will be

〈OUT |S| IN〉 =

∫ 2∏
a=1

dq1dq2dq
(1)
1 dq

(1)
2 dp(0)1dp(0)2dp(1)1dp(1)2 exp

[
i

∫ t′a

ta

{
1

2β

(
p(1)1

)2
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+
1

2
K(q

(1)
1 − q

(1)
2 )2 +

1

2
γ(q1 − q2)2

}
dt(0)

]
(2.3.6)

the set of equations(2.1.25 − 2.1.30) are integrable if and onlly if dH ′(s)2 = 0, and

they form a completely integral set , their solutions determineZ ≡ S(t(s)α, q
(s)
a )

uniquely from the initial conditions.

Let us investigate the integrability conditions in terms of the action [25] .

dH ′β = {H ′β, H ′α}dt(α) (2.3.7)

where α, β = 0, 2 then

∂H ′0
∂t2

=
∂H ′0
∂q2

= γ(q1 − q2) 6= 0 (2.3.8)

so the integrability conditions in terms of the action are not satisfied , hence the

action function is not integrable and it has no unique solution .

Now for the third−order Lagrangian (2.2.17) ,for α = 0, 3 K = 3 a = 1, 2, 3

we have :

dZ =

(
−H(0) +

2∑
d=0

P(s)a

∂H ′(0)
∂P(s)a

)
dt(0)

+

(
−H(0)3 +

2∑
d=0

P(s)a

∂H ′(0)3
∂P(s)a

)
dt(0)3

+

(
−H(1)3 +

2∑
d=0

P(s)a

∂H ′(1)3
∂P(s)a

)
dt(1)3

+

(
−H(2)3 +

2∑
d=0

P(s)a

∂H ′(2)3
∂P(s)a

)
dt(2)3 (2.3.9)

or

dZ =

[
− p(2)1p(2)2 − q(1)3 p(2)2 + q

(2)
1 q

(2)
2 + q

(1)
1 q

(1)
2 − q1q3

]
dt0 + p(0)3dq3 + p(1)3dq

(1)
3

(2.3.10)
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SO , the path integral for this system will be :

〈OUT |S| IN〉 =

∫ 3∏
a=1

dqadq
(1)
a dp(0)adp(1)adp(2)a exp

[
i

∫ t′a

ta

[
− p(2)1p(2)2

−q(1)3 p(2)2 + q
(2)
1 q

(2)
2 + q

(1)
1 q

(1)
2 − q1q3

]
dt0 + p(0)3dq3 + p(1)3dq

(1)
3 (2.3.11)

the set of equations(2.2.39 − 2.2.53) are integrable if and onlly if dH ′(s)3 = 0, and

they form a completely integral set , their solutions determineZ ≡ S(t(s)α, q
(s)
a )

uniquely from the initial conditions.

Let us investigate the integrability conditions in terms of the action .

dH ′β = {H ′β, H ′α}dt(α) (2.3.12)

where α, β = 0, 3 then

∂H ′0
∂t3

=
∂H ′0
∂q3

= q1 6= 0 (2.3.13)

so the integrability conditions in terms of the action are not satisfied , hence the

action function is not integrable and it has no unique solution .
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Chapter 3

The Lagrangian of Podolosky

Electrodynamics

3.1 Introduction

In this chapter we will consider a continuous system with Lagrangian density de-

pendent on the dynamical field variables and its derivatives upon second order

` = `(ψ, ∂ψ, ∂2ψ), so we consider the case of the generalized electromagnetic theory

of Podolosky which is developed in the 1948 [31] as a generalization of Maxwells

electromagnetism. Besides the fact that the quantum electrodynamics, based on

Maxwells theory, is the most successful theory of the modern physics, it suffers from

problems of divergences as the infinite self energy of the punctual electron and a

divergent vacuum polarization current, difculties that come from the fact that the

classical electrodynamics presents a r−1 singularity in the electrostatic potential.

Podoloskys theory adds a higher order derivative term in Maxwells Lagrangian,

which maintains the most important features of the classical electromagnetism, and

also gives linear field equations. We adopt the metric ηµν = diag(+1,−1,−1,−1),

as stated previously, the generalization of the formalism presented in chapter 1 is
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straightforward.That the Euler−Lagrange equation of motion are now given by

∂`

∂ψa
− ∂µ

(
∂`

∂(∂µψa)

)
+ ∂µ∂υ

(
∂`

∂(∂µ∂υψa)

)
= 0 (3.1.1)

and that the momenta conjugated respectively to ψ̇a and ψ̈a, are

pa =
∂`

∂ψ̇a
− 2∂k

(
∂`

∂(∂k ˙ψa)

)
− ∂0

(
∂`

∂(ψ̈a)

)
(3.1.2)

πa =
∂`

∂(ψ̈a)
(3.1.3)

The Hessian matrix is now

Aij =
∂2`

∂ψ̈a∂ψ̈b
(3.1.4)

3.2 Dirac’s Method

The Podolsky electrodynamics Lagrangian is given by [26]

` = −1

4
FµνF

µν + a2∂λF
αλ∂pFα

p (3.2.1)

where the factor−1
4

is conventional, and a is a dimensional parameter can be written

as a = 1
m

, where m is mass parameter, a generalized field tensorFµν is defined by

Fµν = ∂µAν − ∂νAµ (3.2.2)

An analysis of the Hamiltonian formalism for this theory was carried out in ref.[20,30],the

Euler−Lagrange equations are

(1 + 2a2∂m∂
m)∂pF

p
α = 0 (3.2.3)

where ∂m∂
m = ηµν∂µ∂ν = ∂2

∂t2
−∇2 is the d’Alembertian operator.

with our dynamical variables chosen as Aµ and Ȧµ. The conjugated momenta given

by definitions (3.1.2) and (3.1.3) are

pµ = −F0µ − 2a2(∂k∂λF
0λδkµ − ∂0∂λF λ

µ ) (3.2.4)
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πµ = 2a2(∂λF
0λδ0µ − ∂λF λ

µ ) (3.2.5)

Let µ = 0 ,the primary constraints are

φ1 = π0 ≈ 0 (3.2.6)

φ2 = p0 − ∂kπk ≈ 0 (3.2.7)

Using the definition ofπ we can write the accelerations Äi as

Äi =
1

2a2
πi + ∂kF

i
k + ∂iȦo (3.2.8)

The canonical Hamiltonian is given by

Hc =

∫
d3x

[
pµȦµ + πµÄi − `

]
. (3.2.9)

Using equation (3.2.8) we get

Hc =

∫
d3x

[
Ȧo∂iπi + piȦi +

1

2a2
πiπ

i + πi∂kFk
i + πi∂

iȦo +
1

4
FµνF

µν

+
1

2
(Ȧi − ∂iA0)(Ȧi − ∂iA0)− a2(∂kȦk − ∂k∂kA0)(∂iȦi − ∂i∂iA0)

]
(3.2.10)

According to Diracs formalism the total Hamiltonian is

HT = HC +

∫
d3x(C1(X)φ1 + C2(X)φ2) (3.2.11)

where C1(X) and C2(X) are multipliers.

The consistency conditions result in

φ̇1 = {φ1, HT} ≈ 0 (3.2.12)

φ̇2 = {φ2, HT} (3.2.13)

So we have a secondary constraint given by

φ3 = ∂kpk ≈ 0 (3.2.14)

41



and the consistency condition results in φ̇3 = {φ3, HT} ≈ 0. All constraints are first

class so the extended Hamiltonian is

HE = HC +

∫
d3x(C1(x)φ1 + C2(x)φ2 + C3(x)φ3) (3.2.15)

The equations of motion for the dynamical variables, given by Ȧα = {Aα, HE}are

Ȧ0 = Ȧ0 + C2, Ȧi = Ȧi − ∂iC3, (3.2.16)

Besides, Äα =
{
Ȧα, HE

}
gives

Ä0 = C1, Äi =
1

2a2
πi + ∂kF

ik + ∂iȦ0 (3.2.17)

which mean that both Ā0and A0 are arbitrary while we obtained again equation

(3.2.8).

For the momenta variables π̇i = {πi, HE} andṗα = {pα, HE} gives

π̇i = −F0i − 2a2∂i∂kF
k
0 − pi (3.2.18)

ṗ0 = −∂iF 0i − 2a2∂i∂i∂kF
k
0 (3.2.19)

ṗi = −∂i∂kπk + ∂k∂
kπi − ∂kF k

i (3.2.20)

Equation (3.2.18) is the definition of pi given by equation (3.2.4) and together with

(3.2.19) it gives constraint φ3.

3.3 Hamilton−Jacobi Formalism

According to the primary constraints (3.2.6) and (3.2.7), the set of Hamilton−Jacobi

partial differential equation can be obtained as

H ′0 = HC + P0, P0 =
∂S

∂t
(3.3.1)

H ′1 = π0, H
′
2 = P0 − ∂kπk (3.3.2)
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and the total differential equation for Ai is

dAi =
∂H ′0
∂pi

dt+
∂H ′1
∂pi

dȦ0 +
∂H ′2
∂pi

dA0 (3.3.3)

dAi =
∂H ′0
∂pi

dt =
∂HC

∂pi
dt⇒ dAi = Ȧidt (3.3.4)

which is completely equivalent to equation (3.2.16) since C3 is arbitrary. ForȦi we

have

dȦi =
∂H ′0
∂πi

dt+
∂H ′1
∂πi

dȦ0 +
∂H ′2
∂πi

dA0 =
∂H ′0
∂πi

dt =
∂HC

∂πi
dt (3.3.5)

dȦi = (
1

2a2
πi + ∂kF

ik + ∂iȦ0)dt (3.3.6)

Again we have a result in agreement with Diracs method result given in (3.2.17).

For the momenta pi and p0 we have

dpi = −∂H
′
0

∂Ai
dt− ∂H ′1

∂Ai
dȦ0 −

∂H ′2
∂Ai

dA0 =
∂H ′0
∂Ai

dt = −∂HC

∂Ai
dt (3.3.7)

dpi = −
∫
d3x

[
πj∂k(

∂F jk

∂Ai
)− 1

2
F jn∂Fjn

∂Ai

]
dt (3.3.8)

dpi = −[∂i∂kπk + ∂k∂
kπi − ∂kF ik]dt (3.3.9)

dp0 = −∂H
′
0

∂A0

dt− ∂H ′1
∂A0

dȦ0 −
∂H ′2
∂A0

dA0 = −∂HC

∂A0

dt (3.3.10)

dp0 = −
∫
d3x

[
(Āi − ∂iA0)

∂(Āi − ∂iA0)

∂A0

−2a2(∂iȦi − ∂i∂iA0)
∂(∂kȦk − ∂k∂kA0)

∂A0

dt (3.3.11)

dp0 =
[
−∂i(Ȧi − ∂iA0)− 2a2∂k∂k(∂iȦi − ∂i∂iA0)

]
dt (3.3.12)

Finally for πi we have:

dπi = −∂H
′
0

∂Ȧi
dt− ∂H ′1

∂Ȧi
dȦ0 −

∂H ′2
∂Ȧi

dA0 =
∂H ′0
∂Ȧi

dt = −HC

∂Ȧi
dt (3.3.13)

dπi = −
∫
d3x

[
pj
∂Āj
∂Āi

+ (Āj − ∂jA0)
∂(Āj − ∂jA0)

∂A0
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−2a2(∂iĀj − ∂j∂jA0)
∂(∂kĀk − ∂k∂kA0)

∂A0

dt (3.3.14)

dπi =
[
−pi − F 0i − 2a2∂i∂kF

0k
]
dt (3.3.15)

Equations (3.3.9), (3.3.12) and (3.3.15) are completely equivalent to (3.2.18), (3.2.19)

and (3.2.20) respectively; consequently equations (3.3.12) and (3.3.15) give us the

secondary constraint that isn’t present in the total differential equations.
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Chapter 4

Quantization of Regular

Lagrangian of Nonholonomic

Spinning Particle

The Hamiltonian formulation for systems with higher order regular Lagrangians was

first developed by Ostrogradski[19]. This led to Euler’s and Hamiltons equations of

motion. However, in Ostrogradski’s construction the structure of phase space and in

particular of its local simplistic geometry is not immediately transparent which leads

to confusion when considering canonical path integral quantization. In Ostrograd-

ski’s construction, this problem can be resolved within the well established context

of constrained systems [32] described by Lagrangians depending on coordinates and

velocities only. Therefore, higher−order systems can be set in the form of ordinary

constrained systems . These new systems will be functions only of first order time

derivative of the degrees of freedom and coordinates which can be treated using the

theory of constrained systems[2]. The purpose of the present chapter is to study the

canonical path integral quantization for singular systems with arbitrary higher order

Lagrangian. where the path integral for certain kinds of higher order Lagrangian
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systems has been obtained, we consider an application of Nonholonomic regular La-

grangian of second order which will be quantized, using both the Hamilton Jacobi

method and Dirac’s method. Section (4.1), a brief review of the reduction of higher

order regular Lagrangians to the first order singular Lagrangians. Both methods,the

Hamilton Jacobi and dirac will be establish in section(4.2),besides this we calculate

the canonical path integral quantization.

4.1 Review of The Reduction of Higher−Order

Regular Lagrangian To First Order Singular

One

Given a system of degrees of freedom qn(t),(n = 1, . . . , N) with higher−order regular

Lagrangian L0(qn, q̇n, . . . , q
m
n ) where q

(s)
n = dsqn

dts
, (s = 0, ...,m) Now let us introduce

new independent variables (qn,m−1, qn,i; (i = 0, . . . ,m − 2)) such that the following

relations would hold [19].

q̇n,i = qn,i+1 (4.1.1)

Clearly, the variables (qn,m−1, qn,i,(i = 0, . . . ,m− 2)) would then correspond to the

time -derivatives (q
(m−1)
n , q

(i)
n ) respectively, that is,

q(0)n = qn,0, q̇n = qn,1, q(m−1)n = qn,m−1, q(m)
n = q̇n,m−1. (4.1.2)

Equation(4.1.1) represents relations between the new variables. In order to en-

force these relations for independent variables (qn,m−1, qn,i), additional Lagrange

multipliers λn,i are introduced [19]. The variables qn,m−1, qn,i, λn,i, thus, determine

the set of independent degrees of freedom of the extended Lagrangian system. The

extended Lagrangian of this auxiliary description of the system is given by

LT (qn,i, qn,m−1, q̇n,i, q̇n,m−1, λn,i) = L0(qn,i, qn,m−1, q̇n,i)+
m−2∑
i=0

λn,i(q̇n,i−qn,i+1) (4.1.3)
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The new Lagrangian in (4.1.3) is singular, and one can use the standard methods

of singular systems like Diracs method or the canonical approach to investigate this

Lagrangian.

Upon introducing the canonical momenta

pn,m−1 =
∂LT

∂q̇n,m−1
, (4.1.4)

pn,i =
∂LT
∂q̇n,i

= λn,i = −Hn,i, (4.1.5)

πn,i =
∂LT

∂λ̇n,i
= 0 = −φn,i. (4.1.6)

The canonical Hamiltonian for the new first order singular Lagrangian can be writ-

ten as

H0(qn,i, qn,m−1, pn,m−1, λn,i) =

pn,m−1q̇n,m−1 +
m−2∑
i=0

pn,iq̇n,i +
m−2∑
i=0

πn,iλ̇n,i − LT (qn,i, qn,m−1, q̇n,i, q̇n,m−1, λn,i). (4.1.7)

Equations(4.1.5) and (4.1.6) represent primary constraints [2,3]. Their Hamilton−Jacobi

partial differential equations can be obtained as

H ′0 = p0 +H0(qn,i, qn,m−1, pn,m−1, λn,i) = 0, (4.1.8)

φ′n,i = πn,i = 0, (4.1.9)

H ′n,i = pn,i − λn,i. (4.1.10)

Thus, The equations of motion can be written as total differential equations in many

variables as follows:

dqn,j =
∂H ′0
∂pn,j

dt+
∂φ′n,i
∂pn,j

dλn,i +
∂H ′n,i
∂pn,j

dqn,i, (4.1.11)

dqn,m−1 =
∂H ′0

∂pn,m−1
dt+

∂φ′n,i
∂pn,m−1

dλn,i +
∂H ′n,i
∂pn,m−1

dqn,i, (4.1.12)
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dλn,j =
∂H ′0
∂πn,j

dt+
∂φ′n,i
∂πn,j

dλn,i +
∂H ′n,i
∂πn,j

dqn,i, (4.1.13)

dpn,j = − ∂H
′
0

∂qn,j
dt−

∂φ′n,i
∂qn,j

dλn,i −
∂H ′n,i
∂qn,j

dqn,i, (4.1.14)

dpn,m−1 = − ∂H ′0
∂qn,m−1

dt−
∂φ′n,i
∂qn,m−1

dλn,i −
∂H ′n,i
∂qn,m−1

dqn,i, (4.1.15)

dπn,j = − ∂H ′0
∂λn,j

dt−
∂φ′n,i
∂λn,j

dλn,i −
∂H ′n,i
∂λn,j

dqn,i, (4.1.16)

where j = 0, 1, . . . ,m− 2.

The total differential equations are integrable if and only if

dH ′0 = dp0 − dH0 = 0, (4.1.17)

dH ′n,j = dpn,j − dλn,j = 0, (4.1.18)

dφ′n,j = dπn,j = 0, (4.1.19)

4.1.1 The Path Integral Quantization of the First Order Sin-

gular Lagrangian

If the coordinates t, qn,i,λn,i are denoted by tα, that is,

tα = t, qn,i, λn,i, (4.1.20)

then the set of primary constraints (4.1.8), (4.1.9), and (4.1.10) can be written in a

compact form as

H ′α = 0, (4.1.21)

where

H ′α = H ′0, H
′
n,i, φ

′
n,i. (4.1.22)
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The canonical path integral for the extended Lagrangians can be obtained as

K(q′n,m−1, q
′
n,i, λ

′
n,i, t

′; qn,m−1, qn,i, λn,i, t)

=

∫ q′n,m−1

qn,m−1

N∏
n=1

(Dqn,m−1Dpn,m−1) exp

[
i

~

∫ t′α

tα

(
−H ′α + pn,m−1

∂H ′α
∂pn,m−1

)
dtα

]
,

(4.1.23)

where,n = 1, . . . , N , i = 0, . . . ,m− 2.

Note that (4.1.12) gives

∂H ′α
∂pn,m−1

dtα =
∂H ′0
∂pn,m−1

dt+
∂φ′n,i
∂pn,m−1

dλn,i
∂H ′n,i
∂pn,m−1

dqn,i = dqn,m−1. (4.1.24)

Therefore, (4.1.23) can be written as

K(q′n,m−1, q
′
n,i, λ

′
n,i, t

′; qn,m−1, qn,i, λn,i, t)

=

∫ q′n,m−1

qn,m−1

N∏
n=1

(Dqn,m−1Dpn,m−1) exp

[
i

h

∫ t′α

tα

(−H ′αdtα + pn,m−1dqn,m−1)

]
, (4.1.25)

However, according to (4.1.5) and (4.1.6), we get

Hn,i = −λn,i (4.1.26)

φn,i = 0, (4.1.27)

so, it can be found that

H ′αdtα = H ′0dt+Hn,idqn,i + φ′n,idλn,i = H ′0dt− λn,idqn,i. (4.1.28)

Then the transition amplitude can be written in the final form as

K(q′n,m−1, q
′
n,i, λ

′
n,i, t

′; qn,m−1, qn,i, λn,i, t)

=

∫ q′n,m−1

qn,m−1

N∏
n=1

(Dqn,m−1Dpn,m−1) exp

[
i

h

∫ t′α

tα

(−H ′0dt+ λn,idqn,i + pn,m−1dqn,m−1)

]
.

(4.1.29)

Equation (4.1.29) represents the canonical path integral quantization of higher−order

regular Lagrangians as first-order singular Lagrangians.
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4.2 Nonholonomic Lagrangian of Second−Order

The constraint is a relation between the coordinate (some times and time), there

are two types of constraint, holonomic constraint which is a relation in the form

f(~r1, ~r2, . . . , ~rn, t), other wise it is called nonholonomic constraint. Now the La-

grangian of nonholonomic spinning particle is

L(q, q̇, q̈) =
1

2

3∑
i=0

(q̇i)
2 − 1

2

3∑
i=0

(q̈i)
2 (4.2.1)

Consider the Nonholonomic constraint,

q̇3 = q2q̇1 (4.2.2)

which gives

q̈3 = q̇2q̇1 + q2q̈1 (4.2.3)

so the constrained Lagrangian is

L =
1

2
(q̇21 + q̇22 + (q2q̇1)

2)− 1

2
(q̈21 + q̈22 + (q̇2q̇1 + q2q̈1)

2) (4.2.4)

where Lis regular Lagrangian: To reduce this Lagrangian into first order singu-

lar Lagrangian, we use constrained auxiliary description , using the equations and

(4.1.2) where n = 1, 2, m = 2 the higher derivatives, and i = 0, we get

q
(0)
1 = q1,0, q

(0)
2 = q2,0 (4.2.5)

q
(1)
1 = q1,1, q

(1)
2 = q2,1 (4.2.6)

q
(2)
1 = q̇1,1, q

(2)
2 = q̇2,1 (4.2.7)

Hence, the Lagrangian (4.2.4) becomes:

L =
1

2

(
q21,1 + q22,1 + (q2,0q1,1)

2

)
− 1

2

(
q̇21,1 + q̇22,1 + (q2,0q̇1,1 + q2,1q1,1)

2

)
(4.2.8)
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Upon using (4.1.1), the recursion relations is q̇1,0 = q1,1 and q̇2,0 = q2,1 and (4.1.3)

the extended Lagrangian is simply

LT =
1

2

(
q21,1+q

2
2,1+(q2,0q1,1)

2

)
−1

2

(
q̇21,1+q̇

2
2,1+(q2,0q̇1,1+q2,1q1,1)

2

)
+λ1,0(q̇1,0−q1,1)+λ2,0(q̇2,0−q2,1)

(4.2.9)

The conjugate momenta can be obtained as

p1,1 =
∂LT
∂q̇1,1

= −(1 + q22,0)q̇1,1 − q2,0q2,1q1,1 (4.2.10)

p2,1 =
∂LT
∂q̇2,1

= −q̇2,1 (4.2.11)

p1,0 =
∂LT
∂q̇1,0

= λ1,0 = −H1,0 (4.2.12)

p2,0 =
∂LT
∂q̇2,0

= λ2,0 = −H2,0 (4.2.13)

Also

π1,0 =
∂LT

∂λ̇1,0
= 0 = −φ1,0 (4.2.14)

π2,0 =
∂LT

∂λ̇2,0
= 0 = −φ2,0 (4.2.15)

It is obvious that the equations (4.2.12−4.2.15) are constraints.Therefore, the coor-

dinates q1,0, q2,0, λ1,0 and λ2,0 represent the restricted coordinates.

4.2.1 Hamilton−Jacobi Formalism

Using (4.1.7) and (4.2.10) the canonical Hamiltonian takes the form

H0 = − p1,1p1,1
(1 + q22,0)

− q2,0q2,1q1,1p1,1
(1 + q22,0)

− 1

2
p22,1

−1

2

(
q21,1 + q22,1 + (q2,0q1,1)

2

)
+

1

2

(p1,1 + q2,0q2,1q1,1)

(1 + q22,0)
2

+
1

2

(
− q2,0p1,1

(1 + q22,0)
− q2,0q2,1q1,1p1,1

(1 + q22,0)
−
q22,0q2,1q1,1

(1 + q22,0)
+ q2,1q1,1

)2

(4.2.16)
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Accordingly, the set of HJPDEs can be written as

H ′0 = P0 +H0, (4.2.17)

H ′1,0 = p1,0 − λ1,0, (4.2.18)

H ′2,0 = p2,0 − λ2,0, (4.2.19)

φ′1,0 = π1,0, (4.2.20)

φ′2,0 = π2,0, (4.2.21)

and the equations of motion are

dq1,0 = q̇1,0dt, (4.2.22)

dq2,0 = q̇2,0dt, (4.2.23)

dq1,1 = −(p1,1 + q2,0q2,1q1,1)

(1 + q22,0)
2

dt, (4.2.24)

dq2,1 = −p2,1dt, (4.2.25)

dp1,0 = 0, (4.2.26)

dp2,0 =

[
(q2,0q1,1)q1,1 +

p1,1q2,1q1,1
(1 + q22,0)

− q2,0
(p21,1 − q22,1q21,1)

(1 + q22,0)
2

−
(3p1,1q2,1q1,1q

2
2,0)

(1 + q22,0)
3

+
(q22,1q

2
1,1q

2
2,0)

(1 + q22,0)
3

]
dt, (4.2.27)

dp1,1 = (q1,1 − λ1,0 + q1,1q
2
2,0 − q22,1q1,1 − q2,0q2,1

(p1,1 + q2,0q2,1q1,1)

(1 + q22,0)
2

)dt, (4.2.28)

dp2,1 = (q2,1 − λ2,0 − q2,1q21,1 − q2,0q1,1
(p1,1 + q2,0q2,1q1,1)

(1 + q22,0)
2

)dt, (4.2.29)

dπ1,0 = 0, (4.2.30)

dπ2,0 = 0, (4.2.31)

dλ1,0 = λ̇1,0dt, (4.2.32)

dλ2,0 = λ̇2,0dt, (4.2.33)
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The equations of motion are integrable if the following are identically satisfied

dH ′0 = dP0 + dH0 = 0 (4.2.34)

dH ′1,0 = dP1,0 − dλ1,0 = 0 (4.2.35)

dH ′2,0 = dP2,0 − dλ2,0 = 0 (4.2.36)

dφ′1,0 = dπ1,0 = 0 (4.2.37)

dφ′2,0 = dπ2,0 = 0 (4.2.38)

4.2.2 The Path Integral Quantization of The System

From (4.1.29) the canonical path integral quantization for this system is

K =

∫ 2∏
n=1

(Dqn,1Dpn,1) exp

[
i

~

∫
(−H0dt+ λn,0dqn,0 + pn,1dqn,1)

]
. (4.2.39)

For n = 1, 2 , then

K =

∫ 2∏
n=1

(Dq1,1Dq2,1Dp1,1Dp2,1) exp

[
i

~

∫ (
p1,1p1,1

(1 + q22,0)
+
q2,0q2,1q1,1p1,1

(1 + q22,0)
+

1

2
p22,1

+
1

2

(
q21,1 + q22,1 + (q2,0q1,1)

2

)
− 1

2

(p1,1 + q2,0q2,1q1,1)

(1 + q22,0)
2

−1

2

(
− q2,0p1,1

(1 + q22,0)
− q2,0q2,1q1,1p1,1

(1 + q22,0)
+ q2,1q1,1

)2

− λ1,0q1,1 − λ2,0q2,1
)
dt

+λ1,0dq1,0 + λ2,0dq2,0 + p1,1dq1,1 + p2,1dq2,1. (4.2.40)

Equation (4.2.40)can be written in a compact form as

K =

∫ 2∏
n=1

(Dq1,1Dq2,1Dp1,1Dp2,1) exp

[
i

~

∫ (
1

2

(
q21,1 + q22,1 + (q2,0q1,1)

2

)

−1

2

(
q̇21,1+ q̇22,1+(q2,0q̇1,1+q2,1q1,1)

2

)
+λ1,0(q̇1,0−q1,1)+λ2,0(q̇2,0−q2,1)

)
dt

]
(4.2.41)

Finally we have:

K =

∫ 2∏
n=1

(Dq1,1Dq2,1Dp1,1Dp2,1) exp

[
i

~

∫
LTdt

]
(4.2.42)
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4.2.3 Dirac’s Method

Now we will use Dirac method to study the same system discussed in previous

subsection with higher order singular Lagrangians, the total Hamiltonian can be

written as

HT = H0 + λ1φ
′
1 + λ2φ

′
2 + λ′1H

′
1,0 + λ′2H

′
2,0 (4.2.43)

were λ1, λ2, λ
′
1, λ
′
2 are arbitrary functions. The equation of motion can be written

as:

q̇n,i = {qn,i, HT} (4.2.44)

q̇n,m−1 = {qn,m−1, HT} (4.2.45)

ṗn,i = {pn,i, HT} (4.2.46)

ṗn,m−1 = {pn,m−1, HT} (4.2.47)

weren = 1, 2 , m = 2 and i = 0 to determined the arbitrary functions, we use the

consistency conditions

φ̇′1 = {φ′1, HT} = {φ′1, H0}+ λ1{φ′1, φ′1}+ λ2{φ′1, φ′2}+ λ′1{φ′1, H ′1,0}+ λ′2{φ′1, H ′2,0}

(4.2.48)

λ′1 = q1,1 (4.2.49)

φ̇′2 = {φ′2, HT} = {φ′2, H0}+ λ1{φ′2, φ′1}+ λ2{φ′2, φ′2}+ λ′1{φ′2, H ′1,0}+ λ′2{φ′2, H ′2,0}

(4.2.50)

λ′2 = q2,1 (4.2.51)

Ḣ ′1,0 = {H ′1,0, HT} = {H ′1,0, H0}+λ1{H ′1,0, φ′1}+λ2{H ′1,0, φ′2}+λ′1{H ′1,0, H ′1,0}+λ′2{H ′1,0, H ′2,0}

(4.2.52)

λ1 = 0 (4.2.53)

Ḣ ′2,0 = {H ′2,0, HT} = {H ′2,0, H0}+λ1{H ′2,0, φ′1}+λ2{H ′2,0, φ′2}+λ′1{H ′2,0, H ′1,0}+λ′2{H ′2,0, H ′2,0}

(4.2.54)
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λ2 = (q2,0q1,1)q1,1 − (q2,0q̇1,1 + q2,1q1,1)q̇ (4.2.55)

The equation of motion (4.2.44) to (4.2.47) becomes

q̇1,0 = {q1,0, HT} = {q1,0, H0}+ λ2{q1,0, φ′2}+ λ′1{q1,0, H ′1,0}+ λ′2{q1,0, H ′2,0} = q1,1

(4.2.56)

q̇2,0 = {q2,0, HT} = {q2,0, H0}+ λ2{q2,0, φ′2}+ λ′1{q2,0, H ′1,0}+ λ′2{q2,0, H ′2,0} = q2,1

(4.2.57)

ṗ1,0 = {p1,0, HT} = {p1,0, H0}+ λ2{p1,0, φ′2}+ λ′1{p1,0, H ′1,0}+ λ′2{p1,0, H ′2,0} = 0

(4.2.58)

ṗ2,0 = {p2,0, HT} = {p2,0, H0}+ λ2{p2,0, φ′2}+ λ′1{p2,0, H ′1,0}+ λ′2{p2,0, H ′2,0} =

[
(q2,0q1,1)q1,1 +

p1,1q2,1q1,1
(1 + q22,0)

− q2,0
(p21,1 − q22,1q21,1)

(1 + q22,0)
2

−
(3p1,1q2,1q1,1q

2
2,0)

(1 + q22,0)
3

+
(q22,1q

2
1,1q

2
2,0)

(1 + q22,0)
3

]
(4.2.59)

ṗ1,1 = {p1,1, HT} = {p1,1, H0}+ λ2{p1,1, φ′2}+ λ′1{p1,1, H ′1,0}+ λ′2{p1,1, H ′2,0} =

(q1,1 − λ1,0 + q1,1q
2
2,0 − q22,1q1,1 − q2,0q2,1q̇1,1) (4.2.60)

ṗ2,1 = {p2,1, HT} = {p2,1, H0}+ λ2{p2,1, φ′2}+ λ′1{p2,1, H ′1,0}+ λ′2{p2,1, H ′2,0} =

(q2,1 − λ2,0 − q2,1q21,1 − q2,0q1,1q̇1,1) (4.2.61)

π̇1,0 = {π1,0, HT} = {π1,0, H0}+λ2{π1,0, φ′2}+λ′1{π1,0, H ′1,0}+λ′2{π1,0, H ′2,0} = −q1,1+q1,1 = 0

(4.2.62)

π̇2,0 = {π2,0, HT} = {π2,0, H0}+λ2{π2,0, φ′2}+λ′1{π2,0, H ′1,0}+λ′2{π2,0, H ′2,0} = −q2,1+q2,1 = 0

(4.2.63)

Notice that the equations (4.2.56) to (4.2.63) are equivalent to equations (4.2.22) to

(4.2.31)
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Chapter 5

CONCLUSION

The purpose of this thesis is to study the higher-order singular Lagrangian systems

by using the Hamiltonian formulation (Dirac’s method and the canonical method),

and the Lagrangian treatment of singular systems as field (continuous) systems. Be-

sides, the canonical path integral has been investigated. The second and the third

order singular Lagrangian were studied using previews methods, all methods give

us the same equation of motion .

The second order Lagrangian of Podolosky electrodynamics was studied by Dirac’s

method and Hamilton Jacobi method , the equations of motion that obtained are

the same.

Dirac’s method and the Hamilton Jacobi formulation represent the Hamilton treat-

ment of the constraints systems , where Dirac’s method introduces a primary con-

straints, then we construct the total Hamiltonian which is the primary constraints

multiplied by Lagrange multiplier to the usual Hamiltonian. The consistency condi-

tion is checked on the primary constraints, were they are classified into two types :

first and second classes constraints. The first−class constraints which have vanish-

ing Poisson brackets, but the second−class constraints have non−vanishing Poisson
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brackets. The equations of motion are obtained as total derivative in terms of

Poisson brackets. In the Hamilton Jacobi formulation, the equations of motion are

written as total differential equations in many variables. If the integrability condi-

tions are not identically satisfied, then these will be considered as new constraints.

This process will be continued until we obtain a complete system. the singular

systems have two types of integrable systems, completely integrable systems were

the integrability conditions are identically satisfied, and partially integrable sys-

tems were integrability conditions are not satisfied. In the canonical method it is

not necessary to distinguish between the primary and secondary constraints, also

it is no need to introduce the Lagrange multiplierλµ. Another approach is the La-

grangian treatment of singular systems as field system, in this treatment we solved

the Euler−Lagrangian equation with some constraints. This treatment is applied in

many applications for the singular Lagrangian systems and the results are in exact

agreement with the results obtained using Dirac’s method and the Hamilton Jacobi

formulation. This treatment unified the Hamiltonian and Lagrangian formulations

of constrained systems.

As in Hamilton−Jacobi method, the Lagrangian treatment of singular systems as

field system, there is no need to introduce arbitrary Lagrange multipliers, which

should be determined in the Dirac’s method. The existence of this kind of arbitrary

Lagrange multipliers is inevitable and they should be determined by imposing a new

gauge condition, which is not easy task in Dirac’s method. The Hamilton Jacobi

formulation and the Lagrangian treatment of singular systems as field system need

more investigations for some another physical models.

The last method, the reducing of higher−order regular Lagrangian systems to first

order singular Lagrangian. Both Dirac’s and Hamilton−Jacobi formulations were

represented to study the reduction form of the first order singular Lagrangian. The

higher order (regular) lagrangian with order m is transformed to first order singular
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by introducing an auxiliary fields,and the equations of them were re−written as a

set of m-constraints.

The main advantages of using Hamilton−Jacobi method is that we have no differ-

ence between first and second class constraints and we don’t need gauge fixing term,

because the gauge variables are separated in the process of constructing an integrable

system of total differential equations. Besides, the integrable action function pro-

vided by the formalism can be used in the process of the path integral quantization

method of the constrained systems.
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